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Abstract

Global Ocean climatologies are fundamental for our understanding of climate variability and

trends, essential for initialisation and validation of numerical models. The thesis aims to com-

pute a new global ocean monthly climatology of basic physical climate state variables such as

temperature, salinity, density and dissolved oxygen from in-situ based historical datasets col-

lected in the World Ocean Database 2018. The novelty of these climatologies stems from the

implementation of new quality control procedure, called "Nonlinear Quality Control" (NQC)

thereafter. NQC is applied to the database that is used to compute the climatology and the

improvements in the analysis discussed.

The climatologies presented in the thesis are processed by a statistical interpolation tool,

the Data Interpolating Variational Analysis (DIVA) that is applied on the global domain for

the first time. Two different versions of temperature and salinity climatologies are estimated

based on the different temporal coverage of the data: a long term average (1900 to 2017)

using multiple platforms, and a shorter time estimate (2003 to 2017) using data from ocean

drifting platforms such as profiling floats. Sensitivity experiments are carried out to choose

the key parameters of DIVA. The computed climatologies show consistency with well-known

reference climatologies such as World Ocean Atlas 2018 and World Argo Global Hydrographic

Climatology.

Preliminary health of the ocean indicators are presented for the historical data set, using

the validated NQC and mapping algorithms. First, the mapping of density has been carried out

from NQC processed profiling float dataset and Brunt-Väisäla frequency profiles were computed

from the density and averaged in 5° square boxes for Atlantic and Pacific Oceans. Brunt-Väisäla

frequency is quantifying the ocean stratification strength which impacts ocean ventilation and

vertical mixing in general. The computation of dissolved oxygen climatology and saturation

oxygen in the water column was analysed and the Apparent Oxygen Utilisation (AOU) was

estimated from several different measuring platforms.

Evidence for ocean warming is present in the two global ocean climatologies as expected as

well as the deep increase in salinity. The preliminary comparison of averaged Brunt-Väisäla

profiles with Emery et al. (1984) shows significant stratification changes in the water column.

Moreover, the comparison of O2 and AOU calculated only for the period of 2003-2017 seems

to indicate lower and higher values respectively in comparison with WOA18. These differences
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are found to be large at intermediate depth for both O2 and AOU. These results could be

important for health of the ocean considerations and further extensive analysis will be required

before a solid conclusion is reached.
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Chapter 1

Introduction

1.1 General Introduction

The natural variability of the ocean is due to time-space scales that range from seconds to

decades, from tens of meters to several hundred kilometers. Estimating the variability of such

a system at time scales of decades to centuries is a formidable task. Observations usually

involve sampling the highest space-time frequency possible given the measuring platform and

the sensor accuracy. To estimate climatologies, information on the long term variability of the

oceans needs to be extracted from these data. However it is difficult to accurately compute

information on the observed statistical distributions and their moments, as well as the mean

and the standard deviation.

Operational ocean satellites (Le Traon, 2011) have started to map the surface ocean vari-

ability for a few ocean variables and they will continue to increase in scope in the few next

years. However only in situ observations can explore the variability of the deep ocean. A

key issue in estimating climatology from in situ data is that the observations undersample the

oceanic variability both in space and time. In situ observations are also affected by errors in

the measurement procedures, the calibration of the instrument, or by the limited precision of

the instrument. However, data quality issues can be analyzed in the framework of quality con-

trol methods applied to the observations: quality control is an essential component of climate

research, which is often overlooked.

In general, the Global Ocean Observing System (Moltmann et al., 2019) has three different

streams of observations, namely, real time, delayed mode and historical. In the real time stream,

15



CHAPTER 1. INTRODUCTION

observations are available immediately after the measurement and very little quality control is

carried out. This stream of data supports the ocean operational forecasting systems throughout

the world (Pinardi et al., 2018). The delayed mode data, is a higher quality control stream,

and the delay in delivery is mainly due to data policy agreements1. The historical data are

stored in the real time and delayed mode data in a common historical archive database. The

historical observational collections can thus undergo a higher quality control check based on

statistical information deduced from the observations themselves.

As in situ data are primary building blocks in understanding the ocean’s climate variability,

the challenge is to manage them at a global level with standard, international protocols. The

NOAA global ocean database (World Ocean Database-WOD, Garcia et al. (2018)) was the

first to start collecting data from different observation producers and to establish a historical,

publicly available database2. For Europe, SeaDataNet (Schaap and Lowry, 2010) and SeaData-

Cloud (Simoncelli et al., 2018) have started to tackle the problem of European ocean historical

databases and climatologies. In all these projects, quality control procedures have been defined

and applied to ocean data sets starting from the 1900s to today, and climatological estimates

have been carried out, as described in the following section.

Finally, long-term time series of ocean variables have also be reconstructed using reanalysis

techniques (Storto et al., 2011). These techniques are applied to historical databases and use a

numerical ocean model to dynamically "interpolate" observations on a regular grid.

In this thesis we focus on climatological estimates from historical databases using statistical

methods derived from the observations themselves and not from a numerical model. This

is a complementary methodology with respect to reanalysis, which we hope will contribute

in understanding the uncertainties in the estimation of ocean climate trends. However these

statistical realisation of inappropriate sampled observations are highly dependent upon several

factors such as mapping algorithm, corresponding parameters and the dataset being used.

Consequently several uncertainties will emerges among these estimates due to these choices.

In order to understand and minimise them, it is always desirable to have various realisation

of these estimate which should be reproducible. The previous estimates are unable to be

reproduced because of various ad-hoc assumptions. The motivation of the thesis is to have a

long term climatologies of ocean essential variables with an advanced mapping algorithm called

1see for example https://www.nodc.noaa.gov/woce/wdiu/wocedocs/datapol.htm
2https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html
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Data Interpolating variational Analysis with new a quality controlled (introduced in chapter 2)

processed data and its comparison with previous estimates. Multiple approaches in mapping

the ocean climate into regularly gridded data sets will support an ensemble-based estimate of

the ocean climate, which is necessary given the turbulent, episodic nature of ocean climate

variability is proposed and given in this Thesis.

1.2 Methods in Ocean Climatological Studies

Historical ocean observational databases enable climatologies to be constructed with different

space and time scales. Several steps are required to develop a long-term climatological estimate

of the ocean state, for example:

(i) Quality assurance of the observations;

(ii) Understanding of the spatial and temporal data gaps;

(iii) Mapping to a regular grid.

In this thesis we start by developing a new method for the quality assurance of the historical

observations. The latter are affected by several kinds of uncertainties. The main source of errors

in the observations are:

(i) Sensor accuracy, problems in the data transmission system, sensor calibration and drifts,

and human errors in the assembly procedures;

(ii) Non-uniform sampling or errors in representativeness.

In order to capture these sources of uncertainties, sophisticated quality control procedures

are exploited, which depend on the data stream used. Real time quality procedures are auto-

matic and normally only check for instrumental and transmission errors. When real time data

streams enter a delayed mode data stream, they are further quality controlled on the basis of

statistical checks. Statistical checks are needed to capture the representativeness errors. In this

thesis, a new statistical quality control procedure is developed.

A suitable interpolation scheme plays a vital role in constructing a reliable climatology. Ob-

jective, statistical schemes used to map the observations in a regular grid started in the second

half of the 20th century. In Objective Analysis (OA), the interpolated field is a combination

of the first guess field and the weighted sum of the observations. Different weight functions

were considered by Cressman (1959) who defined them as the ratio of the distance between

the grid location and the observation location. However, Cressman’s weight functions are too
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simple and suboptimal, are not founded on basic statistical principles and do not consider ob-

servational errors. Later, Barnes (1964) improved Cressman’s method and defined the weight

functions as exponentials. But the empiricism of the technique remained. In 1963, Gandin

introduced objective analysis (OA) based on the Gauss-Markov least square theory. This was

a real step toward a comprehensive estimation theory of a field on a regular grid based on

irregularly spaced data.

The next step was Optimal Interpolation (OI) which facilitated the optimal combination of

observations with a first guess field, unlike quantities derived from the observations themselves,

assuming first guess and observations with their own errors. OA and OI require prior knowledge

of the error variances and covariances of the first guess field and the observations. In addition,

the basic assumption in OI is that the field under investigation is stationary and homogeneous,

i.e. its statistical characteristics must remain unvaried for the time interval considered. This

also implies that its second order statistics, or correlation function, is homogeneous in time.

In 2010, Data Interpolating Variational Analysis (DIVA; Barth et al., 2014) was developed

which is based on the Variational Inverse Method (VIM; Brasseur, 1991). VIM estimates a

climatological field on a regular grid starting from irregularly spaced observations with the

characteristics. The interpolated field is smooth but close to observations within their error

statistics. The innovative feature of DIVA is the inclusion of realistic land sea boundaries and

coastal constraints such as a no slip boundary condition at the coasts. It works on unstructured

grids that are able to resolve the complex coastal shapes. The OI interpolation technique is

equivalent to the field constructed by VIM under the conditions explained in (McIntosh, 1990)

i.e. the weights used by VIM are the inverse of the error covariances used by OI.

1.3 A Brief Overview of Global Ocean Climatologies

Several global ocean climatologies have been constructed from historical observations stored in

large databases.

The first global ocean climatology was produced by (Levitus, 1982) in 1982 and its modern

version is the World Ocean Atlas (WOA) produced by the U.S. National Oceanographic Center

(NODC) using the World Ocean Database (WOD). The WOA has several versions starting

from 1994 with the latest being WOA18 (Locarnini et al., 2018). WOA18 is produced using

the interpolation scheme of Barnes briefly described above.
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Recently aWorld Argo global hydrographic climatology (WAGHC) was produced by (Gouret-

ski, 2019) for temperature and salinity on both isobaric and isopycnal levels. Argo is a profiling

float program3 that revolutionized the number of observations in the open ocean (Belbeoch

et al., 2010). The Gandin (1963) interpolation method is used with a Gaussian correlation

function. WOA and WAGHC are both on a regular 0.25°× 0.25° spatial resolution grid.

Another gridded dataset for temperature and salinity, called EN4, was created by the UK

Met office (Good et al., 2013). EN4 uses data from profiling floats and many other data sources

and applies objective analysis. The International Pacific Research Center (IPRC; Hacker et al.,

2010) has its own tool called the Monthly Objective Analysis for Argo (MOAA; Hosoda et al.,

2008). In addition, global monthly isopycnal upper-ocean climatology (MIMOC) was computed

by Sunke 2013 (Schmidtko et al., 2013). Climatological estimates such as EN4, IPRC, MOAA

and MIMOC are available on coarse 1° or 0.5° spatial resolution grids, for 2000 to 2015 because

they only use Argo data. In this thesis we also develop a climatology from Argo data, but we

use the DIVA advanced interpolation scheme for a high resolution 0.25°× 0.25° grid.

A gridded climatology can be constructed also from reanalysis described in the previous

section. The Copernicus Marine Environment Monitoring Service (CMEMS; Lellouche and

Regnier, 2015) provides ocean reanalyses using in situ and satellite observations at (1/12)°

resolution. Estimating the Circulation and Climate of the Ocean (ECCO; Fukumori et al.,

2018) provides a dynamical mean state of the ocean for 1994 to 2013 on an 1° resolution grid.

The Global Ocean Data Assimilation Experiment (GODAE; Bell et al., 2009) provides a global

ocean climatology of temperature and salinity along with biogeochemical variables using DIVA

on 1°×1° grid resolution. The Simple Ocean Data Assimilation (SODA; Carton and Giese, 2008)

analysis consists of a global ocean reanalysis from 1958 to 2008. The Ocean Reanalysis and

system4 (ORA4; Balmaseda et al., 2013) produced by ECMWF is a global Ocean Reanalysis,

and finally the CMCC Global Ocean Reanalysis System (C-GLORS; Storto et al., 2011) are

two other global reanalyses at 0.25° resolution.

1.4 Objectives of the Thesis

This thesis contributes with two essential steps in the creation of a climatology from in situ

observations: (i) an improved data quality control procedure, (ii) an advanced interpolation

3https://www.seabird.com/profiling-floats/
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algorithm for the depiction of monthly mean temperature and salinity climatologies for the

world ocean.

The three primary aims of this thesis are thus:

• To develop an advanced control procedure of in-situ data, thereby eliminating the observa-

tions that are not suitable for large-scale ocean climatologies.

• To implement the above quality control procedure on temperature and salinity profiles from

WOD18 and construct monthly mean global ocean climatologies using DIVA.

• On the basis of the experience gained, to develop climatologies for derived quantities from

temperature and salinity such as ocean density, Brunt-Väisäla frequency profiles, Dissolved oxy-

gen and Apparent Oxygen Utilisation which will be used in the future to estimate the health

of the ocean indicators.

The thesis is structured as follows:

1. Chapter 2 describes a new quality control procedure with its detailed schematics. The

procedure is tested in four different regional domains and the results are analysed.

2. Chapter 3 presents a new global ocean climatological estimate of temperature and salin-

ity using DIVA from the quality control processed data. The results are analysed and

compared with previous climatologies.

3. Chapter 4 gives an account of the computed mapping of derived quantities. The details

of the Density, Mixing index Brunt-Väisäla frequency and AOU are discussed.

4. Chapter 5 provides the overall conclusions and recommendations for future work.
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Chapter 2

A Nonlinear Quality Control for

large-scale ocean temperature and salinity

climatologies

2.1 Introduction

In situ ocean observations are fundamental to our understanding of oceanic processes, from

short to climate time scales. The climatological analysis of in-situ observations requires high

quality and uniform spatial and temporal coverage for repeated periods. This is why historical

data sets where observations are collected from different sources and are partially harmonised,

are essential components of the global ocean observing system. Such historical data sets provide

the longest records of in situ measurements that can be used to reconstruct the ocean climate.

The World Ocean Database (WOD, Boyer et al., 2019) is one of the largest collections of in-situ

observations from multiple observing platforms . In this chapter we concentrate on this large

collection in order to derive an advanced monthly mean temperature and salinity climatology

for the world ocean. We examine the required quality control procedures for historical ob-

servations before spatial mapping and other types of analysis are carried out. Measurements

in WOD derive from multiple platforms with non-uniform spatial and temporal sampling and

from different sensors with substantially different accuracies. As a result, WOD measurements

contain various kinds of uncertainties. Given that a measurement is an approximation of the

truth because of the errors inherent in the specific observation methodology, the sources of
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errors need to be quantified in order to use them to estimate the climatological signals.

Uncertainties in oceanographic in-situ data are quite complicated because the oceanic vari-

ability is the sum of several processes occurring at a very wide range of spatial and temporal

scales. These multiple scales are not adequately sampled by the instruments because of sensor

accuracy and the sampling scheme. The uncertainties in the observational historical database

are the sum of two major errors: Gross Errors and Representativeness Errors (REs) (Janjić

et al., 2018). Gross errors are related to limited instrument precision, sensitivity, calibration,

failure, transmission errors or incorrect archiving, while REs are caused by poor sampling by

the platform and/or inability to resolve the spatial and temporal scales. As described by Daley

(1993); Janjić and Cohn (2006); Schutgens et al. (2016), REs are connected to the inappro-

priate sampling of the space and time scales. In addition, Barth et al. (2008) explained that

REs occur when the observations used in the analysis are not collected at the same time on the

spatial area of interest (non-synoptic data).

In terms of estimating a "time mean" or climatology, REs are particularly important because

none of the observations collected are repeated in time at the same position and for a sufficiently

long time, e.g. CTD casts taken in an eddy field of a certain region and never repeated for

that region. The CTD profiles taken in a region and not repeated several times in the same

region will not be a good estimate of the climatology. Probably such CTD profiles should be

rejected in the climatological analysis because of large REs. Gouretski and Koltermann (2004)

defines the observational ocean climatology as a statistical estimate starting from inadequately

sampled characteristics of a dynamical fluid. In order to estimate the low frequency variability

of the ocean, the observations that do not accurately sample the time mean value, i.e. they are

not close to the mean, should be eliminated from the database collection. Disentangling these

unresolved scales from the observational data before a spatial and temporal analysis is referred

to as the quality control procedure to eliminate non-representative data.

There are several ways to account for REs in a spatial climatological analysis:

(i) By eliminating errors using robust quality control procedures before performing any

analysis.

(ii) By accounting for these uncertainties directly in the analysis algorithm. For example,

the objective or variational analysis (Barth et al., 2014) uses error covariance matrices of the

observations and background to grid the data, accounting directly for such uncertainties. For

the background errors, the data assimilation algorithms use the standard deviation of the
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oceanic fields, assuming that the standard deviation is an error proxy.

In this chapter we explore the first method, i.e. the quality control procedure for the

observations before using them in the analysis algorithms. This a priori quality control is a

trade-off between a low RE and a sufficient number of measurements. We use the Gross Error

checks already defined by WOD for temperature and salinity observations, and we develop a

new set of RE checks that eliminates outliers from the dataset.

WOD and its 2018 version (WOD18) is the most comprehensive collection of historical

global ocean observations from 1772 to the present. WOD18 has its own QC that was devel-

oped by Levitus (1982) and updated by Boyer et al. (2019). In WOD18, a quality flag value,

based on the Gross error check and a statistical quality check, is assigned to each individual

measurement on a profile of temperature and salinity. If these flags are used to reject data,

several outliers cannot be eliminated, as is shown for the salinity values in Fig. 2.1. Some

prominent outliers and anomalous values are evident regardless of the WOD quality flags. An

advanced and robust quality control procedure is therefore needed in order to account for these

outliers that are most likely due to REs. We call the RE quality control procedure that we

defined and implemented in this study the Nonlinear Quality Control (NQC) procedure, similar

to the one used by Jia et al. (2016) but now used to compute a global ocean climatology for

temperature and salinity. The main questions addressed by this paper are:

(i) How the NQC be formulated so that it rejects the outliers/non representative data?

(ii) Can we apply the NQC to very different ocean regions and how sensitive are the results to

the specific choices in the NQC method?

Section 2.2.1 describes the WOD18 quality control procedures and introduces the NQC algo-

rithm. In section 2.3 the NQC is applied to the North Western Pacific, the North Atlantic, and

the South Atlantic regions. Section 2.4 discusses the sensitivity experiments, and Section 2.5

provides the conclusions.

2.2 Quality Control Procedures

2.2.1 WOD18 Quality Control Procedures

Profiling floats have dramatically increased the amount of data in the world oceans and in-

creased the basic data set for the estimation of climatology due to the almost uniform, random
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sampling scheme of the floats (Riser et al., 2016). For this study, we selected only profiling float

(PFL) dataset from WOD18 because we wanted to try the procedure on a uniform quality data

set. In addition, PFL are the most numerous measurements in the global ocean nowadays and

we wanted to show that the method worked well with this basic monitoring system. Profiling

float (PFL) measurements, as with other types of sensors and platforms, suffer from salinity

drift, thermal lag offset, pressure hysteresis and data stream transmission errors (Boyer et al.,

2019). In WOD18 there are two types of quality control flags associated with the PFL: (a) an

individual value flag (WODf) for each variable measured at a certain depth; (b) a profile flag

(WODfp) which considers a statistical checks explained below.

The WODf consist of eight different checks:

(i) Format conversion;

(ii) Profile position, date and time checks,

(iii) Assignment of cruise and cast numbers,

(iv) Speed check,

(v) Duplicate cast check,

(vi) Depth Inversion,

(vii) Excessive gradient check, and

(viii) Range checks on observed data.

The WODf quality check is clearly aimed at controlling the gross error. On the other hand,

the WODfp checks for measurements that do not exceed a statistical threshold computed from

the data in different subregions. The world ocean is subdivided into the rectangles, 5° × 5°,

where the mean and standard deviation of the observations is computed as a function of depth.

The measurement value is then compared to the standard deviation and if it exceeds a pre-

set number of standard deviations, it is flagged as an "outlier". One of the problems in this

procedure was highlighted by Smolyar et al. (2018) that is, the random occurrence of variable

water masses in regular squares. As a result, the statistics of the regular box will not be an

effective threshold to eliminate the outliers as shown in Fig. 2.1.
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(a)

(b)

Fig. 2.1: Quality controlled salinity observations selected from WOD18 in a layer of 10m
(between 5m to 15m): (a) WODf, (b) WODf together with WODfp.

2.2.2 The Nonlinear Quality Control

The NQC aims to eliminate data that are not representative of a climatology of temperature and

salinity in a 0.25°× 0.25° grid. Taking as the initial point the WODf and WODfp flags explained

above and eliminating the rejected data with these checks, NQC adds a novel procedure to

estimate the REs based on a new statistical estimate of the standard deviation.

In the definition of statistics for ocean observations, there are two degrees of freedom: the

spatial averaging area and the number of standard deviations to be used as a threshold to reject

the observations that exceed these values. Starting from the spatial averaging area, Fig. 2.1

shows that the WODf and WODfp checks do not eliminate all the outliers using an arbitrary

rectangular grid as the subdivision to compute the standard deviations. We argue that a

selection of the averaging domain that is "regime oriented" would be better. For example, in

the Kuroshio extension, Jia et al. (2016) defined 5 areas containing different subregions around
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the Kuroshio western boundary current, its extension and the Japan Sea. We show here how

important this is.

The second issue is how to compute the mean with which to calculate the standard deviation

in each subregion. In the NQC this is performed by estimating the mean by first interpolating

the fields on the target grid and then estimating the mean. To interpolate the irregular space

data, we use the Objective Analysis (OA, see Appendix A) method applied to the observations.

This provides a smoothed mean of the field in each subregional averaging area. The standard

deviations are then computed from the mean of the objectively interpolated fields in each sub-

region. The observations are then rejected if they are three standard deviations away from the

mean thus calculated, and they are then eliminated from the data set. The detailed schematics

of the procedure is shown in Fig. 2.2.

Fig. 2.2: NQC schematic. The procedure is composed of two steps: linear QC, where the
profiles are checked by the WODf and WPDfp flags; and a second, so-called NQC, that is
iterative. Observations are gridded in the area of interest using OA, the mean and the stan-
dard deviation computed for each subregion and the observations are rejected on the basis of
exceeding 3 standard deviation. At the next iteration step, the observations with the eliminated
data from the previous step are then used again to compute the average and the std and the
data are flagged again. At a certain point of the iterative process no more data will be rejected
and we will consider the NQC to have converged.
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The procedure of objective analysis and standard deviation computation is repeated using

the steps outlined in the previous paragraph. The iterations continue until there are no more

observations rejected, thus ending the NQC procedure. This procedure is shown in Fig. 2.2.

The proposed quality control procedure is nonlinear because in the iterative procedure each

step depends on the results of the previous one. We called this procedure NQC starting from

this Thesis. The success of the NQC relies on three main factors such as: the appropriate

subdivision of the domain,in order to calculate the standard deviation, the threshold standard

deviation to eliminate the non representative data and the choice of OA parameters to grid the

data at intermediate steps. The above choices will directly impact on the convergence of the

procedure and the number of iterations required. In contrast, classical quality control procedure

simply recalculates the standard deviation after the data removal without any gridding that

changes the structure of the error field.

Here we focus on producing monthly mean climatologies of temperature and salinity in a 0.25°×

0.25° grid for three regions of the world ocean using the profiling float data from WOD18.

2.3 Application of the NQC Procedure

Three study regions were chosen for the NQC application : North West Pacific (NWP), North

Atlantic (NA) and South Atlantic (SA), as shown in Figures. 2.3, 2.6 and 2.9. The WOD18

PFL profiles for temperature and salinity are used for the period 2003-2017. We have selected

all those profiles and observed values for which we have BOTH quality flag value (WODf and

WODfp) equal to "0". The target is a monthly mean climatology in a 0.25°× 0.25° grid.

The NQC procedure is carried out using regime oriented subdivisions to compute the standard

deviations. The regime oriented subdivision of these regions is based mainly on the ocean

currents and the topography, considering the difference between open ocean and shelf/slope

areas.

2.3.1 NQC applied in the North Western Pacific

The NWP domain is selected from 18°N to 44°N and 115°E to 144°E. The subdivision of NWP

is taken from the study by Jia et al. (2016) with some modifications, as shown in Figure 2.3.

Regions R2 and R3 include the North Pacific subtropical counter current ,and R1 the South
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China Sea. Region R4 is the Kuroshio western boundary current region, and R5 contains North

Pacific subtropical mode waters and the Kuroshio recirculation. Regions R6 and R7 are the

southern part of the Japan sea and a small part of the Oyashio current, respectively. The

histogram of the number of PFL profiles available from WOD18 is shown in Fig.2.4 which

highlights that a relatively scarce number of PFLs are available for the NWP region.

(a)

Fig. 2.3: Regime oriented subdivision of North West Pacific.

28



2.3. APPLICATION OF THE NQC PROCEDURE

Fig. 2.4: Number of observations with WOD QC for different depths and months used in this
study.

The gridded field of temperature and salinity before and after the application of NQC is

shown in Fig. 2.5. The WODf and WODfp quality control procedure clearly does not eliminate

outliers that are evident on the western side of the Okinawa island chain, especially for salinity.

For temperature, the smoother estimate of climatology is evident in the noise in the 25°C isoline

contour in the open ocean subtropical recirculation area.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.5: Salinity (May)((a),(c) & (e)) and Temperature (February) ((b),(d) & (f)) mapping
at 10m for North West Pacific using regime oriented division scheme. First row represents OA
mapping using only WOD QC check (before application of NQC), second row is NQC after
third iteration, while third row is difference of WOD QC and NQC check.
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2.3.2 NQC applied in the North Atlantic

The NA domain was selected from 29°N to 51°N and 76°W to 6°W, including the North Atlantic

subtropical gyre. The subdivision of North Atlantic follows the major ocean currents of the

region. The Gulf stream off Cape Hatteras and its free jet part in R1 and R2, comprehensive

of the rings and mesoscale eddies in the vicinity of the Stream, in the subtropical Gyre area.

R3 and R4 contain part of the North Atlantic drift area, comprehensive of the Azores current

system and the Gibraltar area inflow/outflow system. R5 and R6 consider the northern side of

the North Atlantic drift, the first flowing northeastward toward the Gulf of Biscay while the

other dominated by open ocean mesoscale eddies. Last R7 contains the eastern portion of the

subpolar gyre with the consideration of the Labrador sea western boundary current system.

Fig. 2.6: Regime oriented subdivision of North Atlantic.

Similarly to the NWP region, the NQC removes the outliers, as shown in Fig. 2.8. The

removal is particularly evident for the anomalous salinity values around 56°W and 43°N, as well

as 46°W and 42°N. It is now evident that these signals are not consistent with climatological

estimates, but are due to a subsampling of the oceanic eddy variability. Essentially, these

observations are not representative of climatological temperature and salinity values. The

difference between WOD QC and NQC in the mapped fields is shown in Fig. 2.8 highlighting

the locations where data is being removed.

31



CHAPTER 2. A NONLINEAR QUALITY CONTROL

(a)

(b)

(c)

Fig. 2.7: Salinity (February) (a),(b) mapping at 10m for North Atlantic using regime oriented
division scheme. (a) represents mapping using only WOD QC (before application of NQC), (b)
is NQC processed, while (c) is the difference of WOD QC and NQC check.
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(a)

(b)

(c)

Fig. 2.8: Temperature (February) (a),(b) mapping at 10m for North Atlantic using regime
oriented division scheme. (a) represents mapping using only WOD QC (before application of
NQC), (b) is NQC processed, while (c) is the difference of WOD QC and NQC check.
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2.3.3 NQC applied in the South Atlantic

The SA domain extends from 10°S to 70°S and 73°W to 7°E. It is divided into ten dynamical

regime oriented subregions (Lothar and Matthew, 1999), as shown in Fig. 2.9. R1, R2 and

R3 contain the South Equatorial current region. R7 is the region of confluence between the

Brazilian current moving southward in R4 and the Malvinas current moving toward north in

R8. R6 and R8 represent the Benguela and Agulhas current and its retroflection, respectively.

R5 and R9 represent a central part of the South Atlantic subtropical gyre. R10 contains the

Falkland current and the border of the Antarctic circumpolar current.

Fig. 2.9: Regime oriented subdivision of South Atlantic.

The gridded field of temperature and salinity for the SA is shown in Fig. 2.10. In this region,

different types of outliers remain after the initial WODf and WODfp check. They are removed

by the NQC as seen from the difference field in Fig. 2.10. In this region it is particularly

important to apply NQC if a smooth climatology needs to be estimated.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2.10: Salinity (May) ((a),(c) & (e)) and Temperature (February) ((b),(d) & (f)) mapping
at 10m for South Atlantic using regime oriented division scheme. First row represents mapping
using only WOD QC (before application of NQC), second row is after application of NQC,
while third row is difference of WOD QC and NQC check.
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As the ocean variability is large in the upper ocean layers, the REs or sampling errors are

more frequent in the surface layers, and larger amounts of data are rejected for the 10m and

500m layers (not shown) compared to other depths. The resulting standard deviation with

NQC should therefore decrease with respect to the simple WOD quality control checks. Figure

2.12 shows for all three regions that in fact the difference in standard deviations between the

two data sets is more prominent for the upper layers.

2.4 Sensitivity of the NQC Procedure to Subregions

In this section we show the sensitivity of NQC to the different domain subdivisions and to the

different methods used to calculate the mean in each subregion.

Regarding the choice of different subregions, we compared a classical 5° × 5° regular sub-

domain decomposition to the regime oriented subdivision previously discussed. The number of

observations rejected after NQC with these two different subdivisions are shown in Fig. 2.11.

Both subdivision schemes for NQC eliminate the outliers, however for the regular subdivision,

the method eliminates larger amounts of data with respect to the regime oriented subdivision

in all domains. For regime oriented subdivisions, the NQC scheme converges successfully at

the fourth iteration for all domains and rejects a maximum of 15% of data for all the three

regions. NQC with regular division did not converge at all in most of the cases even after sev-

enth or eighth iteration, while NQC with regime oriented division is converging mostly before

4th iteration. This is clearly due to random occurrence of water masses in the regular division

and as a result the statistics of a regular box is not an effective threshold either rejecting so

much data or not eliminating any outliers. The NQC with regular division in SA domain has

resulted to eliminate 85% of data after 4th iterations and this shows that the method does not

converge. In Figures 2.13, and 2.14 we show the distribution of the rejected data using the two

methods, the regular and the regime oriented NQC. Moreover, Tables 2.1 and 2.2 also show the

distribution of the rejected data using the two methods, the regular and the regime oriented

NQC. It is clear that the regular domain subdivision rejects much more uniformly across the

different subareas while the regime oriented NQC is single point rejected data as expected for

outliers.
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(a) (b) (c)

(d) (e) (f)

Fig. 2.11: Number of observations for Salinity (May) (first row) and Temperature (February)
(second row) with WOD QC and NQC check (fourth iteration) with regime and regular division
schemes for NWP ((a) and (d)), NA((b) and (e)), and SA((c) and (f)).
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(a) (b) (c)

(d) (e) (f)

Fig. 2.12: Standard deviation for different depths for Salinity (May, first row) and Temperature
(February, second row) for NWP ((a), (d)), NA ((b), (e)), and SA ((c), (f)).

(a) (b)

Fig. 2.13: Scatter plot of outliers eliminated for regime oriented division (a) and regular division
in (a) at 10m for Salinity for month of February,
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(a) (b)

Fig. 2.14: Scatter plot of outliers eliminated for regime oriented division (b) and regular division
in (c) at 10m for Temperature for month of February,

Depth %Salinity
(Regime)

%Temperature
(Regime)

%Salinity (Reg-
ular)

%Temperature
(Regular)

10m 10% 5% 9% 12%
500m 11% 20% 20% 26%
1000m 12% 10% 16% 15%
1500m 10% 9% 9% 12%

Table 2.1: Percentage of rejected observations in NWP for Temperature and Salinity for regime
and regular divisions at different depths.

Depth %Salinity
(Regime)

%Temperature
(Regime)

%Salinity (Reg-
ular)

%Temperature
(Regular)

10m 6% 5% 28% 24%
500m 7% 6% 22% 22%
1000m 4% 4% 20% 28%
1500m 5% 3% 22% 23%

Table 2.2: Percentage of rejected observations in NA for Temperature and Salinity for regime
and regular divisions at diffrent depths.

2.5 Summary and Conclusions

We have described a new method for the quality control of historical observational data in

order to produce long term climatological estimates of temperature and salinity in the world’s

oceans. The new method is characterised by an iterative procedure that computes the mean
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and standard deviations of a series of interpolated fields and rejects outliers on the basis of a

threshold standard deviation value.

The NQC detects outliers that are due to the non-representativeness of observations with

respect to climatological estimates. The procedure entails the subdivision of the domain into

dynamical homogenous regions, "regime oriented" regions, and the computation of gridded

fields using OA to estimate the subregional mean. The procedure iterates and continues to

eliminate the data until the convergence is reached, i.e. no more data are rejected.

This new procedure was applied in the North West Pacific, North Atlantic and South At-

lantic regions. A previous application was carried out only for the NWP and the sensitivity to

the choice of subregion was not assessed. The sensitivity of the NQC to the regional subdivi-

sions, i.e., a regime oriented with respect to a regular, 5 × 5° subdivision, was also evaluated.

The NQC with regime oriented subdivisions was found to converge after four iterations and

to reject a relatively low number of profiles compared to regular ones which did not even con-

verge. We argue that a regime oriented quality control is necessary to estimate climatology for

temperature and salinity in the world oceans. We also demonstrated that this NQC procedure

is applicable to very different regions of the world oceans, and thus it will enable us to define

a low frequency climatology with more representative data. The choice of the division of the

domain is one of the key steps in the elimination of non- representative data. It would there-

fore be interesting to apply a machine learning algorithm such as self-organised maps (Maze

et al., 2017) in order to have the division of the dynamically homogenous regions based on

water mass properties and compare our results with the previous studies such as Bhaskar et al.

(2017). The procedure could also be applied to biogeochemical data. In the future we plan to

consider both new data sets and machine learning algorithms to help in the automatisation of

the NQC algorithm for the global ocean.
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Chapter 3

A New Temperature and Salinity

Climatology for the Global Ocean

3.1 Introduction

Defining the climatological state of the ocean is a formidable task. Climatology can be defined

as the study of the statistics of environmental variables characterizing the ocean’s physical and

biochemical state. Specifically, this work concentrates on the estimation of the monthly mean

values of temperature and salinity in the global ocean derived from historical observational

records. Climatology is an essential input to numerical ocean models for initialization and

validation purposes and it is intrinsically useful to understand climate anomalies.

The first challenging task for climatological studies is collecting observational records and

harmonizing them, in terms of metadata and quality control. This was described in the second

chapter of this thesis and the same concepts will be used in this third chapter where we look at

the second step in building climatology, that is, spatial analysis. As defined by Daley (1993):

"Spatial analysis is the estimation by numerical algorithm of atmospheric state variables on a

three-dimensional regular grid from observations available at irregularly distributed locations."

These numerical algorithms are based on statistical assumptions and theory which have greatly

evolved over the past twenty years. These techniques are being referred to as interpolation

schemes.

The first global ocean gridded climatology was reported by Levitus (1982) and has been the

basis for all other subsequent estimates. The World Ocean Atlas (WOA) is an improved version
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of Locarnini et al. (2018) and, since 1994, this has been regularly updated every four years.

WOA uses the basic interpolation schemes defined by Barnes (1964). Another global ocean

climatological estimate is the World Argo Hydrographic Global Ocean Climatology (WAGHC,

Gouretski (2019)), a first global ocean climatology that is produced on isopycnal and iso-

baric levels. The WAGHC interpolation scheme is based on Objective Analysis (OA) following

Gandin (1960).

Some of the challenges in previous climatologies are related to the specific algorithm that

interpolates observations across land-sea boundaries. As most of the past interpolating algo-

rithms do not naturally inherit an objective method that forbids using observations across the

land-sea boundaries, we analysed the differences among climatologies in the vicinity of penin-

sulas. For instance, the Isthmus of Panama, a narrow land area between the Caribbean Sea

and the Pacific Ocean, is a critical area where observations could be improperly used across dis-

connected oceans. Figure 3.1 shows several available climatologies in this area. It is clear that

the climatologies give a very different estimate: for WAGHC and OA schemes it is evident that

information spreads from the Pacific to the Atlantic along the Columbian coasts. On the other

hands, WOA, despite the usage of separate first guess field across the Isthmus (Tim Boyer,

personal communication) shows low salinities anomalies in the Gulf of Mexico. By contrast,

Figure 3.1 demonstrates that the DIVA interpolation algorithm has completely suppressed the

contamination of Pacific Ocean data in the Caribbean Sea and vice-versa. Another difference

between the climatologies is evident along the Louisiana coasts of the Gulf of Mexico, where

the Mississippi river outflow dominates. The climatologies are very different and this could be

due to the algorithm used, the first guess and the number of data used in the analysis. Thus it

is clear that climatology uncertainty has several sources that are difficult to point out and if the

statistical interpolation method uses ad hoc assumptions, specific hypothesis reproducibility of

the results is at stake. DIVA solves in an objective way the problem of interpolation of oceano-

graphic observations across land boundaries but it is, as the other statistical models, making

assumptions about the statistical distribution of ocean variables. Therefore, it is likely that a

multi-model ensemble of all available climatologies would provide a more accurate solution, a

shown later in this Chapter.
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(a) (b)

(c) (d)

Fig. 3.1: Salinity(January) mapping of Panama Isthmus (a) WOA(correlation length = 214 km,
uses all data from WOD18), (b) WAGHC (correlation length = 333 km, signal to noise ratio =
0.5 , uses data from WOD13, in particular OSD, CTD, PFL and APB and additional data from
the Alfred Wegener Institute, Bremerhaven, and from different institutions in Canada), (b) OA
estimate (correlation length = 300 km and error in the observations = 0.3, uses Dataset1), and
(d) DIVA(correlation length = 300 km and N/S = 0.5, uses Dataset1).

The chapter’s main objective is to estimate global ocean climatology using an advanced in-

terpolating tool called Data-Interpolating Variational Analysis (DIVA), following proper quality

control undertaken on the historical data set. In fact, the Nonlinear Quality Control algorithm

developed in Chapter 2 of this thesis is applied. Furthermore, sensitivity experiments to inter-

polation parameters, such as the signal to noise ratio and the field correlation length, are also

carried out. Finally, results are compared with the WOA18 and WAGHC datasets.

In section 3.2, the historical data set used for climatology is reviewed together with the

quality control procedure. The interpolation scheme and the implementation domain, together

with the choices of the interpolation parameters, are discussed in section 3.3. Monthly mean
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temperature and salinity fields are compared with existing climatologies in section 3.4, while

sections 3.6 and 3.7 conclude the Chapter.

3.2 Historical Databases

Two different versions of climatologies are being estimated based on two datasets extracted from

the World Ocean Database 18 (WOD18, Garcia et al. (2018)). The first, called Dataset1 (see

Table 5.1) uses multiple platforms, such as bottle data from OSD (Ocean Station Data) and

CTD (Conductivity Temperature and Depth) from ship surveys, MRB (Mooring Buoy) and

PFL (Profiling Floats). MRB profiles are only distributed across the equatorial and tropical

region, while CTD, OSD and PFL profiles cover instead the global domain. The data from other

available platforms were not used because we wanted to consider the concomitant measurement

of temperature and salinity and an approximately equal number of profiles for the surface and

the upper pycnocline. Therefore, XBT and MBT were discarded because only temperature

measurement are available from these platforms. DRB, UOR and SUR were also not selected

because they were only at the surface. Moreover, APB and GLD (gliders) were not used

because they consisted in high temporal resolution measurements that were not considered

to be appropriate for the climatological estimate. The observations in Dataset1 are taken

from 1900 to 2017: the climatology estimated from this data set will be named SDC_V1.

The second dataset, called Dataset2 (see Table 5.1), only contains profiles from floats that

are autonomous neutrally buoyant vehicles equipped with several oceanographic sensors. It

contains data from different floats such as PLACE, MARVOR, SOLO and APEX, etc. A real

revolution in ocean observations started with the Argo program in 2000 where these floats

started to be numerous in all the world ocean basins. In Dataset2, only profiling floats from

2003 to 2017 were considered, the majority of PFL being APEX floats. The PFL measurements

earlier than 2003 were not considered because strongly affected by different problems such as

pressure drift (Barker et al., 2011), an offset in the salinity due to biofouling (Wong et al.,

2003), (Wong, 2008) and transmission errors. Therefore, we selected the consolidated profiles

only from 2003 to 2017 to avoid erroneous observations. The amount of PFL data in the last

fifteen years exceeds the amount of data available from all the other platforms, as shown in

Figure 3.2.
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Fig. 3.2: Number of profiles from four different measuring platforms used in this Thesis ex-
tracted from WOD18.

3.2.1 Application of Nonlinear Quality Control Procedure

In this climatology, we only accepted profiles flagged as positive by the WOD18 quality flags.

Two types of quality flags are available: a) an individual value flag (WODf) available for each

variable measured at a certain depth; b) a profile flag (WODfp) which considers a statistical

quality check that was described in Chapter 2.

An additional quality control step, the Nonlinear Quality Control procedure (NQC) de-

scribed in Chapter 2, was implemented with the following assumptions:

(i) The domain is divided into 5×5°boxes, where mean and standard deviations (std) are

computed.

(ii) Data is eliminated outside 2 std in each box and the procedure is repeated until con-

vergence is achieved.

The number of observations before and after the application of NQC are show in Figure 3.3.

The application of NQC has eliminated outliers and non-representative data, as demonstrated

in Chapter 2. Data eliminated by means of NQC approximately constitute less than 15% of

the total for all months.

45



CHAPTER 3. A NEW TEMPERATURE AND SALINITY CLIMATOLOGY

Fig. 3.3: Number of observations usind WOD QC and NQC for both Dataset1 and Dataset2
for Temperature: January (left) and August(right).

Dataset Temperature Temperature Salinity Salinity
name profiles measurements profiles measurements
Dataset1 6,012,750 803,362,255 5,265,504 757,320,791
Dataset2 1,658,955 384,430,391 1,557,989 362,928,173

Table 3.1: Number of profiles and measurements in Dataset1 and Dataset2.

3.3 Climatology Construction

3.3.1 An Overview of the Interpolation Algorithm

DIVA is based on the Variational Inverse Method (VIM) applied on a curvilinear orthogonal

grid using a Finite Element Method (Barth et al., 2014). The method is equivalent to Optimal

Interpolation (OI). The major difference between DIVA and OI is in the proper consideration

of land boundaries, as explained in the introduction.

In DIVA, a cost function is minimized and contains three terms: the misfit between the

observations and reconstructed field, the regularity or smoothness constraint and the advection

constraint. This cost function can be written as:

J [φ] =
N∑
i=1

µi[di − ϕ(xi, yi)]
2 + ||ϕ− ϕb||2 + Jc(ϕ), (3.1)
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where di are the observations at the location (xi, yi), ϕ is the target field in the regular

grid, also called analysis, ϕb is the first guess field or "background" and µi are weights derived

from specific error estimates Troupin et al. (2012) and the correlation length L, which will be

described later. Jc is the advection constraint which considers that variable gradients should

be along the coasts. Furthermore, the smoothness constraint is defined as:

||ϕ− ϕb||2 = α2

∫
Ω

(∆∆ϕ : ∆∆ϕ+ α1∆ϕ.∆ϕ+ α0ϕ
2)dΩ, (3.2)

The non-dimensional form of the cost function is:

J̃ [φ] =
N∑
i=1

µiL
2[di − ϕ(xi, yi)]

2 +

∫
Ω̃

(∆̃∆̃ϕ : ∆̃∆̃ϕ+ α1L
2∆̃ϕ.∆̃ϕ+ α0L

4ϕ2)dΩ̃ + Jc(ϕ). (3.3)

In DIVA the following values are assumed:

α0L
4 = 1 (3.4)

α1L
2 = 2 (3.5)

α2 = 1 (3.6)

µiL
2 = 4π

σ2

ε2i
(3.7)

From (3.7), we see that µ are defined as the signal variance σ2 of the background with respect

to the error variance of the observations, ε2i . The kernel, equivalent to the correlation function

in optimal interpolation is defined as:

K(r) =
r

L
K1(

r

L
), (3.8)

where r is the distance between the data point and the analysis grid point and K1 is the

Bessel function of the second kind. For more details on the solution method see Barth et al.

(2014).

The best estimate or analysis is dependent on the values of two key parameters that are

decided a priori, the Correlation Length (CL) and the N/S, that is, 1
µi
. The CL determines

the distance over which observations will influence a particular estimate of the φ field at the
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given grid point. Large CL values indicate a larger-scale weighted average of the observations

resulting in a smoother field, while smaller values will allow for the resolution of smaller-scale

features, resulting in a noisier field.

Large values of N/S imply larger deviations in the analysis field from observations or, in

other words, the analysis field closer to the background or first guess field. On the other hand,

small values of N/S mean an analysis field closer to observations relative to the first guess field.

The relative error field µ values in DIVA are computed using the method called the clever poor

man approach Troupin et al. (2012). Moreover, the correct specification of the first guess field

is of paramount importance in the estimation of the final analysis field and will be examined

in the next sections.

3.3.2 Horizontal and Vertical Analysis Domain

The global domain for the analysis extends from 0°E to 360°W and from 80°N to −80°S. The

grid spacing is 1
4
° in latitude and longitude. Bathymetry is specified from the GEBCO 30 sec

data set (IOC, 2003). The number of non-uniform depth layers considered in this analysis are

45 (surface to 6000m) and 36 (surface to 2000m) for SDC_V1 and SDC_V2, respectively, as

listed in Table 3.2. We considered a vertical discretization of layers, thus all measurements

belonging to a 10m thick layer around each nominal depth are considered for interpolation at

that specific depth. This prevents vertical interpolation of data which is a problematic issue

when there are large vertical data gaps in a profile near the thermocline surface.

To better resolve the upper thermocline structure, a larger number of layers are defined from

the surface to 500m, while the remaining levels are at a 100m (500m to 1900m) and 500m (1900

to 6000) distance apart. Data are grouped in monthly files in order to estimate the monthly

climatology.

3.3.3 Background Fields

The choice of the first guess field or background field could be important when data are

irregularly-spaced horizontally and vertically. Two types of backgrounds were tested in this

study. The first type, called Background1, is a vertical profile corresponding to a spatial mean

of the observations over the entire global ocean for each layer given in (see Table 5.1). The

fields are shown in Fig. 3.4 (a) and (b) for Dataset1 and (c) and (d) for Dataset2, respectively.
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The differences in these two backgrounds at the surface are due to the absence of observations

on the continental shelves in Dataset2 since the PFL parking depth is 1000m or deeper. Thus,

the surface salinity-minimum is absent in Background1 for Dataset2 due to river runoff in the

continental shelves. The second choice of background, called Background2, is estimated by

using DIVA starting from Background1, and using a correlation length of 1000 km and a small

N/S ratio of 0.5. Figure 3.6 shows the difference of the SDC_V1 analysis with respect to

Background1 and Background2 at the surface. In the case of the Background1, the difference is

at large scales, adding and removing temperature and salinity across the latitudinal extension

of the ocean basins. In the case of the analysis done with Background2, observations are used

twice in the DIVA interpolation algorithm, adding only small scale increments to the initial

guess. We can define this as a progressive refinement procedure that should better converge

locally to the observations. We conclude that SDC_V1 is a progressive refinement of Back-

ground1, using twice the same observations with different correlation lengths to arrive to a

statistically optimal solution. One way to decide which background is best is by computing

analysis residuals, that is, the difference between the observations and the analysis interpolated

back at observation locations. Figure 3.5 illustrates an important result in this chapter: when

NQC is used, the root mean square residual analysis is insensitive to the choice of background.

This is because the NQC eliminates outliers or non-representative data and this reduces the

analysis’ sensitivity to the specification of background. The difference of residuals between the

analysis with Background1 and Background 2 using the NQC data set illustrate the insensitiv-

ity of the resulting analysis to this choice, except for some regions of intense mesoscale activity

as the western boundary currents and the Antarctic Circumpolar Current northern border. As

illustrated before, the Background2 is a refinement of Background1 using a large correlation

function and using the data set twice, the second time with smaller correlation to produce the

analysis. The convergence of this process depends on the quality of the input data set: if only

the WOD QC input data set is used, i.e. outliers/non-representative data are left in the anal-

ysis, the choice of background becomes more important and the difference between residuals

becomes more non-uniform and larger, especially for salinity. This is shown very clearly in Fig.

3.6 where the difference of residuals in the case of WOD QC input data set shows sensitivity to

the Background chosen, especially for the salinity residuals. Thus, our analysis is carried out

for both Dataset1 and Dataset2 with the spatial mean profile of Fig. 3.4.
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No. Nominal
Depth(m)

Layer No. Nominal
Depth(m)

Layer

1 5 0-10 24 370 365-375
2 10 5-15 25 400 395-405
3 20 15-25 26 450 445-455
4 30 25-35 27 500 495-505
5 40 35-45 28 600 595-605
6 50 45-55 29 700 695-705
7 60 55-65 30 800 795-805
8 70 65-75 31 900 895-905
9 80 75-85 32 1100 1095-1105
10 90 85-95 33 1300 1295-1305
11 100 95-105 34 1500 1495-1505
12 120 115-125 35 1700 1695-1705
13 140 135-145 36 1900 1895-1905
14 160 155-165 37 2200 2195-2205
15 180 175-185 38 2700 2695-2705
16 200 195-205 39 3200 3195-3205
17 220 215-225 40 3700 3695-3705
18 240 235-245 41 4200 4195-4205
19 260 255-265 42 4700 4695-4705
20 280 275-285 43 5200 5195-5205
21 300 295-305 44 5700 5695-5705
22 320 315-325 45 6000 5995-6005
23 340 335-345

Table 3.2: Depth layers used for SDC climatology, the nominal depth is selected at the middle
of each layers. The levels of SDC_V1 extend from 5m to 6000m while for SDC_V2 from 5m
to 2000m
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(a) (b)

(c) (d)

Fig. 3.4: Background1(spatial mean of data at each layer) for SDC_V1 computed from
Dataset1: Temperature (a) and Salinity (b). Background1 for SDC_V2 computed from
Dataset2: Temperature(c) and Salinity(d).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3.5: RMS of Residuals for the month of January: Temperature(left column) and Salin-
ity(right column) at 5m mapping with WOD QC dataset with choice of Background1 (a),(b),
with NQC dataset with choice of Background1 (c),(d) and with NQC dataset with choice of
Background2 (e). And (g) and (h) show differences of (c) and (e) for temperature, (d) and (f)
for salinity respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.6: RMS of residuals for the month of January using the WOD QC input data set:
Temperature (left column) and Salinity( right column) at 5m. (a) and (b): with choice of
Background1. (c) and (d): with choice of Background2. (e) and (f): difference of residuals
(Background1-Background2).

3.3.4 Sensitivity Experiments for DIVA Parameter Choices

The choice of CL and N/S for a global ocean domain is quite challenging. The global ocean con-

tains a multiplicity of scales. Therefore, a single CL value could either overly smear the general

circulation fronts (such as the western boundary currents) or contaminate the climatology with

mesoscale eddies or other higher frequency processes. In the past CL was also estimated by the

data itself, binning the data and fitting analytical curves (reference). However in the case of the

global ocean the data is so non-uniformly spaced that the CL estimation quality will be very

different among ocean areas. Thus we preferred to take a new but traditional approach that

uses equal CL everywhere as in WOA18 Locarnini et al. (2018). In order to choose reasonable

values, several sensitivity experiments were performed with different CL values ranging from
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100 to 1000 km and N/S values varying from 0.1 to 50. A roughness index is defined as the

mean of the derivative of field in the two directions and is defined as:

RI =
1

N

n,m∑
i,j=1

√
(∆xif)2 + (∆yjf)2 (3.9)

where ∆ is the finite difference derivate in the latitudinal and longitudinal directions, xi is the

grid location in longitude and yj in the latitudinal direction and N = n ∗m is total number of

the interpolating grid points. RI gives a measure of the spatial scale of the field, for instance a

field with mesoscale features will have high RI while a smoother field with large scale features

have low values of RI. We do not believe that the usage of Rossby radius of deformation and/or

its corresponding wavelength is a correct way to define the correlation length for a climatology.

The latter is the result of many propagating waves in the ocean, which sum up in a mean field

that is necessarily smooth. Thus a roughness index, or its inverse, the smoothness index, is a

better choice to decide the correlation length of the interpolating algorithm with respect to the

wavelength of the primary process that has created the climatology. Many climate indices are

in fact "smoothed" to extract the basic long term signals.

As expected, for large CL values the analysis has a small RI value, as shown in Fig. 3.7 and

3.8. Furthermore, we decided that RI should not exceed the standard deviation (std) of the

data itself. The results for the month of January are shown in Fig. 3.7 and 3.8: it is evident

that the criteria of accepting a value of RI less than the field STD eliminates only CL at 100

km, varying a little bit with depth. The "elbow" of all the curves sits between 0.4 and 0.6 for

N/S ratio, thus we choose 0.5. Choosing this N/S value, and taking RI equal approximately

half of the field STD, the value of CL of 300 km emerges. However, in the case of N/S, we took

an intermediate value of 0.5 which always give a relatively low RI.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.7: Roughness Index of SDC_V1 for Temperature and the month of January at 5m (a),
100m (b), 500m (c), 1100m (d), 1500 (e) and 1900m (f) for different CL and N/S.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.8: Roughness Index of SDC_V2 (Temperature) for the month of January at 5m (a),
100m (b), 500m (c), 1100m (d), 1500 (e) and 1900m (f) for different for different CL and N/S.
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3.4 Temperature and Salinity Climatology

Temperature and salinity mapping with a CL of 300km and an N/S of 0.5 was carried out for

Dataset1 and Dataset2 for all depths and months. Figures 3.9 and 3.10 show the mapped fields

of temperature and salinity for Dataset1 and Dataset2 and for January and August at different

depth levels. Fields are masked where analysis errors are greater than 30% (relative to the

field standard deviation). It is immediately evident that SDC_V1 provides more information

in polar and coastal regions with respect to SDC_V2, since more observations are available in

these areas.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3.9: SDC_V1 January mapping for Temperature (left column), (a), (c), (e) and (g) and
Salinity (right column) (b), (d), (f) and (h) at 5, 900, 1050 and 3700m respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3.10: SDC_V2 January mapping for Temperature(left), ((a), (c) and (e)) and Salinity
((d), (f) and (b)) at 5, 900 and 1050m respectively.

SDC_V1 and SDC_V2 are both plausible climatological estimates. SDC_V1 is a longer

term average while SDC_V2 is an estimate of the last 15 years. The difference between these

estimates is shown in Figure. 3.11 and 3.12 : SDC_V2 is warmer and more saline than SDC_V1

and the root mean square (RMS) difference varies from 0.4 ° to 0.5°C and 0.7 to 0.6 PSU for

temperature and salinity, respectively. Dataset1 uses bottle data therefore the difference field

along ship tracks is evident. The differences are quite localised because of the difference in the

input datasets but there is also a large scale signal which probably refers to the last fifteen

years warming. In the case of salinity the signal is a bit more complicated, with no clear sign,

with a clear increase/decrease only in localised areas near shelf breaks and the coastal areas.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3.11: Difference between SDC_V2 and SDC_V1 for January. Temperature (left column)
(a), (b), (c), and (d) and Salinity (right column) (e), (f), (g), and (h) for 5, 100, 900 and 1500m
respectively.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3.12: Difference of SDC_V2 and SDC_V1 for August, Temperature(left column) at (a),
(b), (c), and (d) at 5, 100, 900 and 1500m and Salinity(right column) at (e), (f), (g), and (h).

Furthermore we would like to point out that SDC_V1 is also affected by a large nonuniform

distribution of observations in the two hemispheres. Such non-uniform distribution is not

present in the SDC_V2 estimates so this is also a difference between the two climatologies.
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However, the statistical multi-model estimate that we propose here would be a way to control

such an uncertainty and a potential solution to get a lower error estimate due to the skewed

input data distribution. To quantify the temperature and salinity differences between the two

analyses, we evaluated the horizontally averaged bias between SDC_V2 and SDC_V1 as shown

in Fig. 3.13. It is evident now that while temperature is warming at all depth, salinity is lower

except for the intermediate depths between 50 and 500 m that, if confirmed is a new result.

This might be due to compensating effects between warming and salinity in the upper water

column as described by Chen et al. (2019).

(a) (b)

Fig. 3.13: Bias between SDC_V2 and SDC_V1 for January, Temperature in (a), and Salinity
in (e)
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3.5 Validation with other Climatologies

The analysis’ validation is an essential step for an indication of the reliability of results.

The main source of data in WAGHC is extracted from WOD13, in particular OSD, CTD,

PFL and APB. However, additional data were added from the Alfred Wegener Institute, Bre-

merhaven, and from different institutions in Canada for the time period between 1900 to 2016

Gouretski (2018). Similarly, the analysis was performed monthly at a 0.25 degree spatial reso-

lution. In WAGHC, the objective analysis scheme is used with a CL of 333km and an N/S value

of 0.5. The WAGHC background is an analysis carried out with a correlation length of 555km.

The difference field between SDC_V1 and WAGHC is shown in Fig. 3.14. The comparison

shows overall consistency, even if differences are quite large in the tropical and equatorial areas

around 100m. This is probably due to the vertical smoothing in WAGHC which considered the

interpolation of observations at levels instead of thin layers as in our case.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3.14: Difference of SDC_V1 and WAGHC for January and August at 5 and 100m: Tem-
perature ((a), (c), (e) and (g)) and Salinity ((b), (d) , (f) and (h)).

The second comparison of our climatology is with WOA18. The data considered in WOA18

are profiles from OSD, CTD, PFL, MRB, Mechanical Bathythermographs, Digital Bathyther-

mographs, Expendable Bathythermographs, moored and drifting buoys, gliders, undulating

oceanographic recorders (UOR), pinniped mounted CTD sensors and surface only data Lo-

carnini et al. (2018) and Zweng et al. (2019). WOA18 is a monthly climatology defined at
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57 depth levels at the spatial resolution of 0.25° for six decades i.e. 1955-1964, 1965-1974,

1975-1984, 1985-1994, 1995-2004 and 2005-2012. To compute the difference between the cli-

matologies, WOA18 time average fields over the six decades were interpolated on the DIVA

analysis grid using linear interpolation. In WOA, the Barnes interpolation scheme was used

with a CL of 333km. The comparison of SDC_V1 with WOA18 is shown in Fig. 3.15. Again,

the comparison shows consistency, even if a larger temperature positive difference is evident

with respect to WAGHC differences.

65



CHAPTER 3. A NEW TEMPERATURE AND SALINITY CLIMATOLOGY

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3.15: Difference of SDC_V1 and WOA18 for January and August at 5 and 100m: Tem-
perature ((a), (c), (e) and (g)) and Salinity ((b), (d), (f), and (h)).

Finally, we constructed an Hovmoller diagram of RMS differences between WOA18 and

WAGHC to show the major differences in the vertical profile (Fig. 3.16 and 3.17). The largest

RMS differences of temperature are found with SDC_V1 at the thermocline depth for both
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WOA18 and WAGHC, yet the differences are more prominent with WOA18. We argue that

the reason for this difference at the thermocline is due to the different interpolation method

used in the vertical profile which might create different thermocline gradients.

(a) (b)

(c) (d)

Fig. 3.16: Hovmoller diagram of RMS difference for temperature, SDC - WOA18 (a) & (b) and
SDC - WAGHC (c) & (d).

(a) (b)

(c) (d)

Fig. 3.17: Hovmoller diagram of RMS difference for salinity, SDC - WOA18 (a) & (b), and
SDC - WAGHC (c) & (d).
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In this chapter, we developed a multi-model ensemble methodology to improve the global

climatology estimate. Uncertainties in global climatologies are due to the details of the input

data set chosen, to the specific choices of background and statistical interpolation algorithms,

to the specific quality control used. Like for numerical models, a multi-model statistical esti-

mate can diminish the errors with respect to specific quality assessments indices. Thus having

a diversity of climatological estimates could provide in the future the best estimate of the cli-

matological state of the ocean. This was demonstrated here using a simple multi-model mean

of the 4 climatology fields available showing that the multi-model ensemble spread is lower

than the root mean square of residuals. In the future it could be desirable to use more esti-

mates for the multi-model climatology. The discrepancies among the available estimates are

the combination of different hypothesis in the mapping algorithm, the number of observations

used, the first guess or the interpolation in space and time of the observations, if considered. In

order to reduce the single climatology estimate uncertainties, ensemble multi-model method-

ologies could be devised. The multi-model ensemble approach is very simple: considering each

member of the ensemble to be a different climatology from a different statistical interpolat-

ing model, the ensemble mean of these models will be superior to the single models within a

certain evaluation matrix Krishnamurti et al. (1999). The evaluation matrix used consists of

the comparison between the ensemble mean error and residual root mean square (RMS) errors.

The multi-model ensemble mean error is represented by the standard deviation of the members

around the ensemble mean, also called the spread. If the spread is lower than the RMS of

residuals, then the ensemble estimate will be more accurate. Residuals, ri are defined as the

difference between the climatology, so-called θic, interpolated at the observation location and

the reference observations y0 .

ri = H(θic)− yo, (3.10)

In the formula above, H is the bilinear interpolation or observation operator. It is clear that ri

contain a mixture of errors coming form the estimate θic, from the observations and from H.

The climatology multi-model ensemble mean, θEc(x, y, z) is defined:

θEc(x, y, z) =
N∑
i=1

θc
i(x, y, z)

N
, (3.11)
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where N = 4, corresponding to the number of climatological estimates under consideration.

Furthermore, ensemble spread is computed as the standard deviation from the ensemble mean

of each individual estimate, average over the number of grid points m, and is given by:

s̃(z) =
1

4

4∑
i=1

(√√√√ m∑
k=1

(θik − θEck)2

m

)
. (3.12)

Similarly, the residual RMS, averaged between the four realizations is computed and its com-

parison with the ensemble spread is shown in Figure 3.18(a) and 3.18(b). The figure shows

clearly that the ensemble spread for temperature and salinity is smaller than the anomaly

residual standard deviation, proving that the multi-model ensemble mean is a better estimate

of the climatology.

(a) (b)

Fig. 3.18: Ensemble spread and RMS of residuals for Temperature (a) and Salinity (b) as a
function of depth for the different layers of Table 2.

3.6 Discussions

Two different versions of global ocean climatologies were estimated using DIVA, with the ap-

plication of the new NQC developed in Chapter 2. Two different backgrounds were analyzed: a

spatial mean of observations in the vertical profile and an analysis carried out with a correlation

length of 1000km and an N/S of 0.5. Results show that, if pre-processing is carried out by the

NQC algorithm, the interpolated field becomes less dependent on the choice of background field
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(see Figure 3.5).

Furthermore, for the first time, the choice of DIVA parameters is deduced from a new

roughness index (RI) which quantifies the analysis’ degree of smoothness as a function of CL

and N/S values.

Inter-comparison of the SDC_V1 with the SDC_V2 climatology shows that the 2003-

2017 climatology is warmer and saltier. It is to be fully assessed if this is a trend caused

by climate change and global warming. The comparison of the SDC_V1 climatology with

WOA and WAGHC shows reasonable agreement but also relevant differences in the tropical

and polar areas. Moreover, the SDC_V1 climatology is closer to WAGHC than WOA18 for

both temperature and salinity. One reason could be connected to the fact that the objective

analysis parameters used and the technique itself are similar to DIVA.

3.7 Conclusions and Future Work

The estimation of temperature and salinity climatology is a key element for improving our un-

derstanding of the ocean state. Historical data sets available today enable an almost complete

reconstruction of global ocean fields. For the first time, this chapter has outlined the combined

application of a nonlinear quality control method and a DIVA interpolation scheme which can

consider coastal constraints. We believe the computed SDC_V1 and SDC_V2 climatologies

have the potential to become a reference data set for the oceans temperature and salinity mean

state. Worth considering for future work is the application of an improved NQC version us-

ing a regime-oriented division instead of regular 5° square rectangles on a global domain. An

optimised choice of DIVA parameters that are different for each level might improve results.

Moreover, further validation with independent dataset such as satellite observations or ran-

domly subsampled input dataset will enable to understand whether the analysis under fit or

over fit the observations.

3.8 Data Availability Statement

The estimated temperature and salinity climatologies has resulted as a data products and can

be accessed using the following link:

https://doi.org/10.12770/98d22ac0-5398-4889-8f8e-8f28273b548b (Global Ocean Climatology -

70



3.8. DATA AVAILABILITY STATEMENT

Temperature and Salinity Climatology V2)
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Chapter 4

Global Ocean Health Indicators

4.1 Introduction

Ocean health indicators were advocated in the Sustainable Development Goals framework

(Rosa, 2017). These indicators are designed to measure the level of pollution, acidification,

etc. Two of these indicators, stratification and oxygen level indicators, are easily connected to

the work in this thesis and this Chapter shows their preliminary computation.

According to the latest IPCC report (Poloczanska et al., 2018), the upper oceans seem to

have been gaining stratification and losing oxygen ever since the 1970s due to global warming.

The water column’s stratification is related to its vertical mixing and is one of the main processes

affecting upper ocean biochemistry, the lower levels of the marine ecosystem. Water column

stratification is related to physical properties, such as temperature and salinity, through the

density and the derived Brunt-Väisäla frequency. In this context, this chapter focuses on

the computation of water column density and evaluates the averaged Brunt-Väisäla frequency

profiles in the Atlantic and Pacific oceans.

In addition, the WOD18 (Garcia et al., 2019) historical database also contains the largest

collection of in situ dissolved oxygen measurements. Again, as for temperature and salinity,

the new DIVA mapping technique has never been applied to this data set and this will be

attempted in this thesis.

This chapter will first define a methodology to compute high quality density profiles from

the WOD18 PFL data set (section 4.2). Climatological seasonal estimates of the derived Brunt-

Väisäla frequency will then be constructed for the Pacific and Atlantic oceans (section 4.2.3),
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followed by the mapping of dissolved oxygen and Apparent Oxygen Utilization (AOU) (Chapter

4.3). A summary and section on future steps is concluded in this chapter.

4.2 Global Ocean Density Mapping

Density is a key ocean dynamical variable which affects circulation through induced changes

in the pressure field, forcing momentum equations. It is difficult to measure density directly

and, since the beginning, oceanographers developed temperature and salinity measurements

that are converted to density by means of an empirical equation of state, that is, the Equation

of Seawater developed by UNESCO in the 1970s and 1980s.

The Equation of State of Seawater used here is referred to as EOS-80 (Fofonoff and Mil-

lard Jr, 1983) or the in situ equation for seawater since in situ temperature and salinity are

used. It is a nonlinear function of temperature and salinity thus, it is improper to use interpo-

lated data to find density. Instead, a density profile should be computed at the depth where

temperature and salinity are measured, as pointed out by Gouretski (2019).

4.2.1 Preprocessing of the Dataset

The basic data set used in this chapter is the Profiling FLoats (PFL) subset from the WOD18

historical database, called Dataset2 in Chapter 3. In addition to Nonlinear Quality Control

(NQC) applied to temperature and salinity as described in Chapter 3, we considered here only

the profiles where both temperature and salinity values were present at different depths. The

number of profiles and observations are given in Table 5.1. The number of profiles that include

temperature and salinity together are reduced to 1/2 of the total number: we argue that this

is due to the fact that the NQC procedure is performed separately on temperature and salinity

data. This problem must be addressed in future by considering the application of NQC with the

constraint of only retaining profiles containing both temperature and salinity measurements.

Density profiles are computed using the Python Seawater Library which uses the EOS-80

equation for seawater (Fofonoff and Millard Jr, 1983), that is:
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ρ(S, T, P ) =
ρ(S, T, 0)

1− P
K(S,T,P )

K(S, T, P ) = K0(S, T, 0) + AP +BP 2

ρ(S, T, 0) = ρ0 + [b0 + b1T + b2T
2 + b3T

3 + b4T
4]S +

[c0 + (c1T + c2T
2)]S
√
S + d0S

2

ρ0 = a0 + a1T + a2T
2 + a3T

3 + a4T
4 + a5T

5 (4.1)

where T,S,P are the temperature, salinity and pressure in ◦C, PSU and db, respectively and

the density is in kg m−3. K0, A, B are given by:

K0 = KW + f0 + f1T + f2T
2 + f3T

3 + g0

√
S + g1T

√
S + T 2

√
S)S, (4.2)

KW = e0 + e1T + e2T
2 + e3T

3 + e4T
4, (4.3)

A = AW + (i0 + i1T + i2T
2 + j0

√
S)S, (4.4)

AW = h0 + h1T + h2T
2 + h3T

3. (4.5)

B = BW +m0S +m1TS +m2T
2S, (4.6)

BW = k0 + k1T + k2T
2, (4.7)

where f0, f1, f2, f3, g0, g1, e0, e1, e2, e3, e4,m0,m1,m2, i0, i1, i2, j0, k0, k1, k2, h0, h1, h2, h3,

a0, a1, a2, a3, a4, a5, b0, b1, b2, b3, b4, c0, c1, c2 and d0 are constants provided in McDougall et al.

(2009).

Variable Total Profiles Total Observations
Temperature 1,652,136 380,970,230
Salinity 1,564,877 343,619,337
Temperature & 688,186 196,536,424
Salinity together

Table 4.1: Number of profiles and observations for temperature and salinity after NQC from
Dataset2 defined in Chapter 3 (2003-2017 period and only PFL platforms).
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4.2.2 Interpolated Density Fields

After the computation of density profiles, DIVA is applied at each depth layer given in Chapter

3 with a correlation length of 300km and noise-to-signal (N/S) value of 0.5. Temporal and

spatial resolution is monthly and 0.25° × 0.25° in the global domain (similar to Temperature

and Salinity Climatologies). The background is given by the spatial mean of all observations

as a function of depth and it is presented in Figure 4.1 for all months.

Fig. 4.1: Background density profile used for the interpolation.

Climatological estimates of density for January and August are shown in Fig. 4.2 at 5m,

900m and 1,500m. Several large area gaps appear at 900 and 1500m. The field shows the

typical meridional gradient between lighter waters at the equator and heavier waters at the

Poles and in the Mediterranean Sea. More analysis will be conducted in the future to study

the structures of this density field.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.2: Interpolated density field: January(left column)(a), (c) and (e), August(right column),
(b), (d), and (f) at 5m, 900m, and 1500m. The areas with normalised error greater than 30%
are masked.

4.2.3 Brunt-Väisäla Frequency Profiles

Brunt-Väisäla Frequency (BVF) profiles are computed for each density profile described previ-

ously for density mapping. Preprocessing considers the following steps:

(i) Only density profiles with no vertical gaps larger than 40m in the first 500m of the water

column are considered.

(ii) The resulting profiles are interpolated vertically at every metre from the surface up to

2000m using a linear interpolation between two adjacent values.

(iii) A finite difference scheme is applied to the vertically interpolated profile to estimate the
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Brunt-Väisäla frequency which is then spatially and temporally averaged.

BVF squared is defined by:

N2 = −g
ρ

dρ

dz
(4.8)

where g is the gravitational constant, 9.8m/s2, ρ is the density, z is the depth in metres and

N2 is in s−2. The finite difference form of (4.8) is:

N2 = − g
ρl

(ρl+1 − ρl)
∆zl

(4.9)

where the index l = 1, 2, ..., N indicates the levels from the surface to 2000m and ∆z is 1m. We

decided to calculate the box averages of BVF profiles for the Pacific and Atlantic ocean areas

and seasonal averages only. Each domain is subdivided into 5 by 5 degree square boxes as shown

in Fig. 4.3 and BVF is averaged in the boxes. Seasons are defined as: winter for Jan-Feb-Mar,

spring for Apr-May-June, summer for Jul-Aug-Sept and autumn for Oct-Nov-Dec.
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(a) (b)

Fig. 4.3: Brunt-Väisäla Frequency study 5× 5 degree boxes for the Atlantic (a) and Pacific (b)
ocean areas.

The resulting BVF profiles are shown in Figures (4.4 & 4.5) for the Equatorial Atlantic,

Fig. (4.6 & 4.7) for the Equatorial Pacific, Fig. (4.8 & 4.9) for the North Atlantic, Fig. (4.10)

for the North Pacific and Fig. (4.11 & 4.12) for the South Atlantic and Pacific, respectively.

They are compared with the results reported in Emery et al. (1984).

Seasonally averaged BVF profiles show maxima in the upper 300m everywhere except in

winter and spring in the North Atlantic and Pacific. Maximum BVF peaks occur in the summer

followed by autumn, while minimum peaks are found in winter followed by spring, respectively,

in the North Atlantic and Pacific. Minimal seasonal variations are noted in equatorial regions

as shown in Fig. (4.4 & 4.5) for the Atlantic and in Fig. (4.6 & 4.7) for Pacific areas. For the

southern hemisphere, the minimum values of BVF are reached during summer (of the northern

hemisphere in our definition) and the maximum occur in winter. The comparison with Emery

et al. (1984) profiles reveals overall good congruence. An increase in the magnitude of the peaks

during summer (northern hemisphere) and winter (southern hemisphere) are worth noting. This

can be due to the use of in situ density instead of potential density in (4.8) and climate warming.
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This important aspect will be analyzed in the near future.

(a)

(b)

Fig. 4.4: Averaged BVF (s−1) profiles for the Equatorial Atlantic: box no. 284 (f) from Fig.
4.3 and corresponding profiles from Emery et al. (1984) in (b).
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(a)

(b)

Fig. 4.5: Averaged BVF (s−1) profiles for the Equatorial Atlantic: box no. 250 (a) from Fig.
4.3 and corresponding profiles from Emery et al. (1984) in (b).
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(a)

(b)

Fig. 4.6: Averaged BVF (s−1) profiles in the Equatorial Pacific: Box no. 575 (a) from Fig. 4.3
and corresponding profiles from Emery et al. (1984) in (b).
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(a)

(b)

Fig. 4.7: Averaged BVF (s−1) profiles in the Equatorial Pacific: Box no. 541 (a) from Fig. 4.3
and corresponding profiles from Emery et al. (1984) in (b).
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(a)

(b)

Fig. 4.8: Averaged BVF [s−1] profiles in North Atlantic: box no. 392 (a) from Fig. 4.3 and
corresponding profiles from Emery et al. (1984) in (b).
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(a)

(b)

Fig. 4.9: Averaged BVF (s−1) profiles in North Atlantic: box no. 426 (a) from Fig. 4.3 and
corresponding profiles from Emery et al. (1984) in (b).
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(a)

(b)

Fig. 4.10: Averaged BVF [s−1] profiles in North Pacific: box no. 822 (a) from Fig. 4.3 and
corresponding profiles from Emery et al. (1984) in (b).
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(a)

(b)

Fig. 4.11: Averaged BVF (s−1) profiles in South Atlantic: box no. 122 (a) and 156(b) from
Figure. 4.3.

(a)

(b)

Fig. 4.12: Averaged BVF (s−1) profiles in South Pacific: box no. 246 (a) and 306 (b) from
Figure. 4.3.
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4.3 Global mapping of Dissolved Oxygen and AOU

As stated in the introduction, dissolved oxygen (µmol kg−1) is a very important indicator of the

state of ocean health. It is a non-conservative quantity since it is absorbed from the atmosphere

by air-sea exchanges, produced by photosynthesis inside the water column and consumed by

living organisms trough respiration.

Another important quantity is Apparent Oxygen Utilisation (AOU) which is the difference

between saturation and in situ concentration. AOU (µmol kg−1) at depth is used to infer

oxygen consumption trough (mostly bacterial) respiration. It is defined as "apparent" because

it is assumed that a water particle at depth left the surface in condition of oxygen saturation.

In the next section, in situ dissolved oxygen observations and AOU are mapped using DIVA

and the results are discussed.

4.3.1 Preprocessing of the Data

The input database used for this climatology is the WOD18 (Garcia et al., 2019), profiles from

multiple platforms such as CTD and PFL, and bottle data from OSD for the 2003 to 2017 time

periods with WOD QC i.e. WODf and WODfp (Table 4.2). No additional QC is applied in this

analysis due to the scarcity of data. The only profiles selected are those where O2, Temperature

and Salinity are present together in the datasets, as this is a requirement for the computation

of the equilibrium saturation concentration as described below. This restriction has further

decreased the amount of O2 profiles as listed in Table 4.2, where the total number of profiles

and measurements are shown. Figure 4.13 shows O2 spatial distribution: measurements are

frequent in the north Atlantic, North-East Pacific and Southern Ocean while there are mainly

single transects in the rest of the ocean.

Total Profiles O2 Total Observations O2

225,434 60,050,946

Table 4.2: Number of profiles and observations of O2 (PFL, CTD and OSD) available from
WOD18 when also temperature and salinity measurements are considered .

The spatial resolution of mapping is global and only a seasonal analysis of O2 and AOU

is carried out due to lack of data at higher frequencies. The Apparent Oxygen Utilisation

(AOU) is the difference between the in situ dissolved oxygen and its equilibrium saturation
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concentration with the same physical and chemical properties. AOU represents the sum of the

biological activity of sampled seawater experienced with respect to its last equilibrium with the

atmosphere and is computed by the following equation.

AOU = Os
2 −O2, (4.10)

where Os
2 is the equilibrium saturation concentration with the same physical and chemical

properties. The saturation concentration, Os
2, is calculated by using the equation of Garcia and

Gordon (1992) which uses solubility coefficients derived from the data of Benson and Krause Jr

(1984).

Fig. 4.13: Spatial distribution of observations for dissolved Oxygen for Summer.

4.3.2 Interpolation Algorithm Set-up

The DIVA mapping of dissolved oxygen and AOU is carried out seasonally, with seasons defined

as described in the previous section. For the global domain, it is carried out with a spatial

resolution of 0.25 degrees. The correlation length and noise-to-signal ratio are 300km and 0.5,

respectively. These are the same values chosen in Chapter 3. The mapped fields of O2 and

AOU for summer and winter are shown at 20m, 900m, and 1500m in Figures 4.15, 4.16, 4.17

and 4.18 along with the root mean square of the difference between the DIVA interpolated

fields and the WOA18 available at a 1° resolution. The DIVA interpolated fields are masked

with a 50% percentage error and are interpolated in the WOA18 grid for comparison purposes.
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(a) (b)

Fig. 4.14: Vertical Profile used as background field for DIVA mapping: Dissolved Oxygen (a)
and Apparent Oxygen Utilisation (b). Units are µmol kg−1.

Overall, the distribution of O2 from the two data sets shows consistent patterns such as a

high amount of O2 ranges between 300 to 400 µmol kg−1 at high latitudes, particularly in the

Arctic region. Mid- and subtropical latitudes show minimum amounts of oxygen of around 100

to 200 µmol kg−1. AOU depends on biological respiration activity and AOU is generally low, or

even negative, at the surface because of the air-sea oxygen exchange processes. Negative values

of AOU implies that dissolved oxygen (DO) has not been utilised by biological activity and it

is larger than the saturation DO. This could be due to several physical and biological processes

such as a strong intake of oxygen from air-sea sea interaction processes and low respiration of

primary production. On other hand, deeper layers have a high AOU because the water parcel

has not been in contact with the atmosphere for a long period of time and respiration is active.
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4.3. GLOBAL MAPPING OF DISSOLVED OXYGEN AND AOU

(a) (b)

(c) (d)

(e) (f)

Fig. 4.15: O2 (µmol kg−1) mapping for Summer (left column) and difference between this thesis
mapped field and the WOA climatology (right column) at different depths: for 20m for ((a)
and (b)); 900m ((c) and (d)); and for 1500m ((e) and (f)).
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.16: O2 (µmol kg−1) mapping for Winter (left column) and difference between this thesis
mapped field and the WOA climatology (right column) at different depths: for 20m ((a) and
(b)); 900m ((c) and (d)); and for 1500m ((e) and (f)).
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.17: AOU (µmol kg−1) interpolated field for Summer (left column) and difference between
the interpolated and the WOA mapped field (right column) at different depths: for 20m ((a)
and (b)); 900m ((c) and (d)); and for 1500m ((e) and (f)).
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.18: AOU (µmol kg−1) interpolated field for Winter (left column) and difference between
the interpolated and the WOA mapped field (right column) at different depths: for 20m((a)
and (b)); 900m ((c) and (d)); and for 1500m ((e) and (f)).

The difference between the DIVA interpolated oxygen or AOU and WOA18 shows a negative

difference of 10 to 30 µmol kg−1 at all the depths and seasons, except for a positive difference in

the eastern equatorial regions that are characterised by oxygen minimum zones. Moreover, the

comparison of the DIVA interpolated fields with WOA18 shows maximum positive differences at

around 900m which implies higher oxygen utilisation when compared to the WOA18 mapping.

This is also a relevant theme to be further addressed in the near future.

4.4 Summary and Future Steps

In this chapter, density profiles are computed from NQC-processed in situ temperature and

salinity profiles. Averaged Brunt-Väisäla frequency profiles are computed in 5° boxes for the

Pacific and Atlantic Oceans. Stratification was found to be higher than previously reported.
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O2 and AOU DIVA mapping was carried out using WOD18 data for the past 15 years. The

comparison of the O2 and AOU DIVA mapping with WOA18 shows that the water column

is possibly less oxygenated and biological respiration activity might also be higher. These

differences could be attributed to two main reasons:

(i) The averaging time period of WOA18 is from 1964 to 2017 and only bottle data have been

considered in computing the estimate.

(ii) The temperature in the recent data set shows warming temperature trends when compared

to the long-term average from 1900 to 2017 (see Chapter 3). This potentially supports the

fact that warmer water has less ability to dissolve oxygen, thereby confirming the fact that less

oxygen is entering the ocean.

These issues demand an extensive analysis that was not carried out in this thesis. Now that

we have shown that the DIVA interpolation algorithm works for all parameters and that this

algorithm has given consistent results with respect to published climatologies, we will undertake

a specific study on the changing ocean conditions in the different decades.

In this chapter, density profiles are computed from NQC processed in-situ temperature and

salinity profiles. Averaged Brunt-Väisäla frequency profiles are computed in 5° boxes for Pacific

and Atlantic Ocean and it is found that stratification is higher than previously reported.

4.5 Data Availability Statement

The analysis carried out in this chapter has resulted as three data products and can be accessed

using the following link:

https://doi.org/10.12770/725d02ed-2c93-44e8-a1ac-48a9cd5ac883 (Global Ocean Climatology -

Density Climatology)

https://doi.org/10.12770/ee42b875-d615-42ed-9023-e1e7d7d27250 (Averaged Brunt-Vaisala Fre-

quency profiles for the Atlantic and Pacific Oceans)

https://doi.org/10.12770/b7af83fb-83ba-46bf-9c4f-26167b5b3fda (Global Ocean Climatology -

Dissolved Oxygen and Apparent Oxygen Climatology)

95



CHAPTER 4. GLOBAL OCEAN HEALTH INDICATORS

96



Chapter 5

Summary and Conclusions

The knowledge of the climatological state of the global ocean is essential for climate studies

giving an estimate of the “reference” variability of the essential ocean variables. Furthermore in

this thesis we have designed and analyzed the methods to produce such climatological estimates

only from observational data using statistical algorithms that can map the irregularly spaced

data into regular grids. Such methods are complementary to reanalysis methodologies that

produce the optimal melding of observations with numerical ocean models. These climatological

studies are possible because historical data sets are now available with common formats and

they are freely available. The historical data set used in this thesis is WOD18 (Garcia et al.,

2018) for temperature, salinity and dissolved oxygen. These essential ocean variables are the

basic ones to start a proper investigation of health of the ocean issues as required for the

Sustainable Development Goals targets (Rosa, 2017). As the mean/climatological state of the

ocean is a virtual representation of the reality, i.e. a statistical mean of measurements taken

at different space-time scales, several approaches are needed in order to reduce uncertainties

in the estimates. Recently a variational methodology has been developed (DIVA, Barth et al.

(2014)) for observational databases that estimates the climatological state of the oceans only

on the basis of statistical assumptions about errors in the observations, in the background and

the correlation length. The method is optimal from the point of view of the least square theory

because it weights observations and background with their errors and produces an estimate of

the gridded-climatological errors. The following sections we will summarise the research carried

out in this thesis, followed by conclusion and directions of future work.
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5.1 Summary

In this thesis, a new global ocean climatological estimate for basic physical parameters such

as temperature, salinity, density, and dissolved oxygen has been computed. The reliability

of estimate is closely tied to the quality assurance of the in-situ observations and statistical

interpolation schemes of mapping. Therefore in the present work, a special focus has been given

to following:

(i)- A Nonlinear Quality Control (NQC) procedure is developed (Chapter 2) in order to

eliminate non- representative or high frequency signals from the historical datasets . The pro-

cedure eliminates the non-representative data and outliers based on the first order statistics

of homogenous dynamical region. The subdivision of the target domain into dynamical subre-

gions, and the computation of the standard deviations (std) used as a threshold to eliminate

non-representative data are the two key steps of the procedure. In the present study, the do-

main subdivision is considered from our knowledge of ocean currents and topography. The

observations are first gridded in the subdomain, then the subregion std is used to discard the

non-representative data. The procedure is iterative and statistics of data changes at each step

and eliminate the data until convergence is reached, i.e. no more data is rejected by comparison

with the standard deviation in the subregion. The method is tested in regional domains such

as North Atlantic, South Atlantic and North West Pacific and results are compared with and

without NQC mapping procedures.

(ii)- The temperature and salinity mapping using the variational algorithm called DIVA (Chap-

ter 3) is carried out after an application of NQC on the WOD18 datasets. In this study, two

different versions of the climatological estimates are produced: a long term (1900 to 2017) cli-

matology using multiple platforms in-situ data, a shorter time estimate (2003-2017) using data

from ocean drifting platforms such as profiling floats. It is found that the choice of background

is not so important for the quality of the final estimate if NQC is applied prior the mapping

algorithm is applied. Sensitivity experiments are carried out to choose the key parameters of

DIVA, that are the horizontal correlation lengths and the Noise to Signal ratio (N/S). Further-

more a “thin layer” discretization is used in vertical, without any vertical interpolation thus

avoiding the smearing of the vertical temperature and salinity profiles. Furthermore two new

indices are designed to show the impact of the correlation and N/S ration choices. The com-

puted climatologies show consistency with well-known reference climatology such as WOA18
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(Locarnini et al., 2018) and WAGHC (Gouretski, 2019).

(iii)- An initial development of health of the ocean indicators from the historical data set, with

the validated NQC and mapping algorithms, has also been presented (Chapter 4). In this

context, mapping of density has been carried out from NQC processed profiling float dataset,

using DIVA with same parameters as selected for the temperature and salinity mapping. Brunt-

Väisäla frequency profiles were then computed from the density profiles and averaged in 5°

square boxes for Atlantic and Pacific Oceans to have an estimate of stratification. The clima-

tology of Brunt-Väisäla frequency has been compared with previous literature results of Emery

et al. (1984). The computation of dissolved oxygen climatology and saturation oxygen in the

Brunt-Väisälaater column was analyzed and the Apparent Oxygen Utilization (AOU) values

were analyzed. AOU contains information about biological respiration in the ocean and it is

directly connected to ocean health indicators.

5.2 Conclusions

The major findings of the Thesis are summarised as follows:

(i)- The NQC algorithm developed in this thesis has eliminated the prominent outliers and

non-representative temperature and salinity values from the data set. Only four iterations are

required for the algorithm to converge and only about 15% of the data are eliminated. NQC

has shown thus the potential of being a robust quality control procedure for the global ocean

and for computation of large scale ocean climatologies.

(ii)- The application of NQC to the historical data set shows that the choice of background field

in the interpolation algorithm becomes less important for the quality of the resulting clima-

tology. The comparison of SDC with available estimates has highlighted various uncertainties

that are combination of various hypothesis in the mapping algorithms or the datasets being

used. In order to address these discrepancies, a multimode ensemble mean is computed and

found a more reliable for global ocean climatologies.

(iii) This thesis has shown that the application of variational interpolation algorithms to the

biogeochemical data such oxygen data and apparent oxygen utilisation. The comparison of

Brunt-Väisäla Frequency with available estimates in the literature has shown high stratifica-

tion for all the seasons. In addition, preliminary results of comparisons of O2 and AOU with

available literature has shown several differences that needs further investigations.
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5.3 Future Prospects

The success of the NQC procedure developed in this thesis relies on the correct determination

of homogenous dynamical subregions of the target interpolating domain. In this context, there

is a need to develop an advanced machine learning algorithm that will be able to define the

subdomains for the optimal control of the data. The extension of NQC to biogeochemical data

should be also tried. Optimisation of DIVA parameters is essential for a quality estimate of

the global ocean climatology. In the future it will be preferable to use different correlation

functions for the different regions of the world ocean, given the different dynamics that prevail

in the tropics with respect to the polar regions, etc.

Evidence for ocean warming is present in the two global ocean climatologies calculated for

the two periods, 1900-2017 and 2003-2017. Furthermore the preliminary results of comparison

of averaged Brunt-Väisäla profiles with Emery et al. (1984) shows significant stratification

changes in the water column. Moreover, the comparison of O2 and AOU calculated only for

the period 2003-2017 seems to indicate lower and higher values respectively in comparison with

WOA18. The differences are found to be large at intermediate depth for both O2 and AOU.

These results could be important for health of the ocean considerations and further extensive

analysis is required before a solid conclusion is reached.

100



Appendix

Appendix A

The ocean was first measured in the 17th century by Count Luigi Ferdinando Marsili (Pinardi

et al., 2018). Considerable progress was then made with the four-year Challenger expedition

(1872-1876) (Deacon et al., 2013), during which physical, biochemical and geological in-situ

observations were collected for scientific ocean studies.

The modern but early ocean measurements started with reversing mercury thermometers

in 1874 and advanced to Nansen bottles in 1894, which were replaced by Niskin bottles in

1966(Warren, 2008). The advent of the rosette sampler in 1930 and later the Conductivity,

Temperature, Depth (CTD) instrument in the 1970s (Wallace, 1974) substantially increased

the capacity to measure the ocean variables at several time and space scales. The CTD uses a

platinum thermometer to measure temperature, a conductivity sensor to measure the salinity

of water, and a pressure sensor to measure depth. CTD led to the possibility of continuous

measurements of temperature and salinity along the water column and at the surface using a

thermosalinograph (Schloesser et al., 2016). For temperature only, the Mechanical Bathyther-

mograph (MBT), an instrument developed during the late 1930s, introduced the concept of

semi-autonomous sampling of the water column. It was replaced by the Expendable Bathyther-

mograph (XBT) in 1966 (Spilhaus, 1938).

In order to carry out observations from these sensors, a platform is required for deployment

at the sea surface, the sea floor or in the ocean interior. The platform varies depending on

the type of measurement required in the space and time. For instance, a research vessel is an

Eulerian platform that is used to deploy rosette bottles, and also for MBTs and XBTs. An

Anchor is a mooring cable attached to a floating element that keeps it close to vertical positions;

and moored buoys attached with various sensors such as CTDs record seawater measurements

at a fixed position. Lagrangian measurements are taken by buoys and floats that drift with

the ocean currents. Autonomous, vehicles such as gliders (Davis et al., 2002) and profiling

floats (Gould et al., 2004) equipped with different sensors are also used for oceanographic

measurements. In order to fill the temporal and spatial gaps in the harsh environmental areas

such as the southern ocean, marine animals such as northern and southern Weddell elephant

seals are used as platforms (Boehlert et al., 2001). In addition, satellite technologies can be

used to measure the dynamic properties from space such as sea surface temperature, color of

the ocean, coral reefs, and sea ice.
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Appendix B: Objective Analysis

Objective Analysis was introduced in oceanography by Bretherton et al. (1976) and Carter and

Robinson (1987). It is a mapping technique to interpolate irregularly space data in a regular

grid. OA is based on the Gauss-Markov theorem that consider the minimization of the variance

of the observational errors in the interpolated field, also called an analysis. OA requires the

knowledge of the correlation function of the field to be interpolated. In order to simplify the

procedure, an isotropic and homogenous Gaussian correlation function is normally used which

assumes that the targeted field is stationary and homogenous. The spatial correlation function

used in the OA is:

F (r) = (1− r2

a2
)exp(− r2

2b2
) (5.1)

r2 = (x1 − x2)
2 + (y1 − y2)

2 (5.2)

where a is de-correlation distance, while b is a folding scale and r is the distance between two

coordinate points (x1, y1) and (x2, y2). In order to fulfil the condition of having a positive

definite correlation matrix, a and b must satisfy condition a > b
√

2. In addition, OA provides

an estimation of the analysis error field. The specific OA parameters chosen in our interpolation

are shown in Table 5.1.

Objective Analysis Parameters
Grid Spatial Resolution 0.25° latitude, longitude
Temporal Resolution monthly
Zero Crossing Distance (a) 700 km
Decay Length (b) 400 km
Radius of Influence 300 km

Table 5.1: OA Parameters for the three region of application of NQC algorithm

This study also used the R radius of influence to interpolate the data, i.e. the maximum

radius where observations are considered in order to estimate the field at a given grid point.

Equation 5.1 coverts the longitude and latitude into spherical coordinates that involves radius

of earth hence it is taking the curvature of the earth into account. The interpolated data are

masked by an analysis percentage error variance greater than 30%.
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