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Abstract

This thesis provides a necessary and su�cient condition for asymptotic e�ciency of

a nonparametric estimator of the generalised autocovariance function of a Gaussian sta-

tionary random process. The generalised autocovariance function is the inverse Fourier

transform of a power transformation of the spectral density, and encompasses the tra-

ditional and inverse autocovariance functions. Its nonparametric estimator is based on

the inverse discrete Fourier transform of the same power transformation of the pooled

periodogram. The general result is then applied to the class of Gaussian stationary

ARMA processes and its implications are discussed. We illustrate that for a class of

contrast functionals and spectral densities, the minimum contrast estimator of the spec-

tral density satis�es a Yule-Walker system of equations in the generalised autocovariance

estimator. Selection of the pooling parameter, which characterizes the nonparametric es-

timator of the generalised autocovariance, controlling its resolution, is addressed by using

a multiplicative periodogram bootstrap to estimate the �nite-sample distribution of the

estimator. A multivariate extension of recently introduced spectral models for univariate

time series is considered, and an algorithm for the coe�cients of a power transformation

of matrix polynomials is derived, which allows to obtain the Wold coe�cients from the

matrix coe�cients characterizing the generalised matrix cepstral models. This algorithm

also allows the de�nition of the matrix variance pro�le, providing important quantities

for vector time series analysis. A nonparametric estimator based on a transformation of

the smoothed periodogram is proposed for estimation of the matrix variance pro�le.
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Chapter 1

Introduction

Spectral analysis can be applied to any type of process which �uctuates in some form.

Here the object of the analysis is the study of records from a random process.

The analysis of time series can be conducted by operating either in the time domain, or

in the frequency domain. Spectral analysis, or frequency domain analysis, is equivalent

to the time domain analysis, but it provides an alternative way of viewing the process,

which can highlight some aspects of the series and be more illuminating for some appli-

cations (Brockwell, Davis, and Calder, 2002).

A time series {x1, . . . , xN} is a realization of a stochastic process {Xt}, t ∈ T , i.e. a

sequence of random variables indexed by time, where T is a parametric space. A com-

plete probabilistic time series model for the sequence of random variables {X1, . . . , Xn}
would specify all of the joint distributions of the random vectors (X1, X2, . . . , Xn)′, n =

1, 2, . . . . Since each time series is just one realization of the stochastic process, such a

speci�cation will contain far too many parameters to be estimated based on a small set

of data, and is rarely used. Instead we specify only the �rst- and second-order moments

of the joint distributions, i.e., the expected values E[Xt] and the expected products

E[XtXt+h], t = 1, 2, . . . , h = 0, 1, 2, . . . , focusing on the properties of {Xt} that depend
only on these. This requires that the process is (weakly) stationary.

For this reason the autocovariance function plays an important role for characterizing a

stationary process. The autocovariance function and its Fourier transform, the spectral

density function, characterize the temporal dependence structure of a stationary stochas-
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tic process, and are of fundamental importance in time series analysis and prediction.

For Gaussian stationary processes they provide, along with the mean, a complete char-

acterization of the probability distribution of the process as well as the basic ingredients

for optimal (minimum mean square) prediction based on time series observations.

The autocovariance function is estimated nonparametrically by the sample autocovari-

ance function. This estimator has a long tradition in time series analysis, and its prop-

erties are demonstrated and discussed in time series textbooks, such as, for instance,

Brockwell and Davis (1991, ch. 7), where it is shown that under regularity conditions

it has an asymptotically normal distribution and that the elements of the asymptotic

covariance matrix are given by the celebrated Bartlett's formula.

The literature has further addressed the important question as to what classes of

parametric linear processes admit the sample autocovariance as an asymptotically e�-

cient estimator, i.e., an estimator whose variance achieves the Cramèr-Rao lower bound.

This issue has been investigated by Porat (1987) for Gaussian autoregressive (AR)

moving average (MA) mixed processes, based on state-space representations and matrix

Lyapunov equation theory. For Gaussian ARMA(r , q) processes with r ≥ q the sample

autocovariances are asymptotically e�cient only in a restricted number of cases, while

if q > r none of the sample autocovariances is asymptotically e�cient. See also Walker

(1995) for an alternative derivation of this result. The result implies that the variance

and the �rst r autocovariances of a pure AR(r) process are e�ciently estimated by the

sample autocovariances, while for a pure MA process none of the sample autocovariances

is asymptotically e�cient.

Kakizawa and Taniguchi (1994) derived in the frequency domain a necessary and

su�cient condition for asymptotic e�ciency of the sample autocovariances that applies

to the more general class of Gaussian stationary processes. Kakizawa (1999) extended the

previous results to the case of vector processes. Boshnakov (2005) studied the e�ciency

of the sample autocovariances for processes obtained by a �nite linear transformation of

a pure autoregressive process.

The generalised autocovariance (GACV) function was de�ned in Proietti and Luati

(2015) as the inverse Fourier transform of the pth power of the spectral density func-

tion. It encompasses the traditional autocovariance function (p = 1) and the inverse
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autocovariance function (Cleveland, 1972), which is the sequence of the coe�cients of

the Fourier expansion of the inverse spectrum (p = −1).

In this thesis asymptotic e�ciency of the nonparametric estimator of the GACV

considered in Proietti and Luati (2015) is studied. Following Hannan and Nicholls (1977)

and Luati et al. (2012), the estimator is based on powers of the pooled periodogram over

m non-overlapping consecutive frequencies, where m is the pooling parameter. Proietti

and Luati (2015) established consistency and asymptotic normality of the estimator.

We establish a necessary and su�cient condition for asymptotic e�ciency in terms of

the spectral density and its derivatives for general Gaussian stationary processes, which

nests as a particular case the result of Kakizawa and Taniguchi (1994), which holds for

p = 1.

After characterizing a class of processes for which the nonparametric estimator is fully

e�cient, we consider the case when the process is Gaussian ARMA(r , q). We show

that asymptotic e�ciency of the nonparametric estimator of the GACV for positive and

negative integer powers p depends on the exisistence of a solution to a trigonometric

polynomial equation. Investigation of conditions on the order of the trigonometric poly-

nomials involved imply that if p = 1, the nonparametric estimator of the GACV is

asymptotically e�cient for r ≥ q and 0 ≤ k ≤ r − q, which coincides with the result by

Kakizawa and Taniguchi (1994). These results also show that the asymptotic variance

of the nonparametric estimator achieves the Cramèr-Rao lower bound as m → ∞ for

p = −1 when r = 0 and 0 ≤ k ≤ q, i.e. it estimates e�ciently the �rst q inverse autoco-

variances when the true generating process is pure MA(q), thereby complementing the

results by Bhansali (1980) and Battaglia (1988). The inverse autocovariance function is

useful in interpolation problems and for the identi�cation of ARMA models. The results

obtained include as a special case the results for the sample autocovariance function by

Porat (1987) and Kakizawa and Taniguchi (1994). Some numerical examples also illus-

trate the rate of convergence to the Cramèr-Rao bound.

We also illustrate that for a class of contrast functionals and spectral densities, the

minimum contrast estimator of the spectral density satis�es a Yule-Walker system of

equations in the generalised autocovariance estimator.
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The pooling parameter m, which characterizes the nonparametric estimator of the

GACV, plays a crucial role. It allows asymptotic e�ciency of this estimator, since in-

creasing m reduces the variance of the estimator. However, it in�ates the �nite-sample

bias, determining a bias-variance trade-o�. Its selection has been addressed in Proietti

and Luati (2015) by the use of the Jackknife to estimate the MSE of the estimator.

This thesis proposes the use of a multiplicative periodogram bootstrap (MPB) (Meyer,

Paparoditis, and Kreiss, 2018) to estimate the MSE and to select the value of m that

minimizes it. This procedure is motivated by viewing the estimator of the GACV as a

periodogram-based estimator of a spectral mean. A real data application suggests that

estimation of the GACV by the nonparametric estimator considered should proceed via

a small value of m > 1.

Investigation of the properties of the generalised autocovariance function and its non-

parametric estimator motivates further research to extend the generalised autocovariance

function to the multivariate context, to study the properties of vector time series. Simi-

lar to the univariate case, the spectral density of a stationary vector process provides a

complete characterization of the serial correlation structure of the process, and all infor-

mation for prediction and interpolation. Frequency domain models for the spectrum of

vector time series allow to avoid some di�culties arising with the time domain speci�-

cation of models for stationary vector time series. Vector autoregressive moving-average

models are often used to model vector stationary time series, and are speci�ed in the

time domain as di�erence equations. However, it requires to impose some restrictions

on the coe�cient matrices, which may increase computational cost. Frequency domain

models for the matrix spectrum provide a recently extensively investigated alternative.

In particular, Holan et al. (2017) de�ned the vector exponential model (VEXP), which

extends to vector time series the exponential model by Bloom�eld (1973). The VEXP

model has some advantages over vector ARMA models, since it is stationary and invert-

ible, with unconstrained parameters, allowed to take any real value. The VEXP model

assumes that the logarithmic transformation of the spectral density matrix can be rep-

resented by a �nite Fourier polynomial. The Fourier coe�cients of the log-spectrum are

called cepstral matrices, and their collection is the matrix cepstrum, in analogy with



5

the cepstral coe�cients and the cepstrum for scalar time series. In the univariate case,

the cepstral coe�cients are related to the coe�cients of the Wold representation of the

process by a recursive formula by Pourahmadi (1983). A multivariate extension of this

formula for the exponential and log transform of a matrix polynomial is non-intuitive,

and is provided by Holan et al. (2017) to relate the cepstral matrices to the Wold coef-

�cient matrices.

The VEXP models can be extended by de�ning the generalised matrix cepstral models

Cavicchioli et al. (2020), which provide a multivariate version of the generalised cepstral

models de�ned by Proietti and Luati (2019). The generalised matrix cepstral mod-

els specify a linear model for the Box-Cox transform of the spectrum, represented by

a �nite Fourier polynomial, characterized by the generalised cepstral matrices. These

models include as special cases the VEXP model by Holan et al. (2017), and also AR

and MA models, by varying the transformation parameter. In analogy with the gen-

eralised cepstral coe�cients for scalar time series, the generalised cepstral matrices are

connected to the multivariate extension of the generalised autocovariance function, which

provides several important quantities for the analysis of vector time series. The gener-

alised cepstral matrices are related to the Wold coe�cient matrices that characterize the

process. In the univariate case this relation is described by a recursive formula provided

by (Gould, 1974), which is not easily generalised to the matrix coe�cients in the mul-

tivariate case. This thesis provides an algorithm to obtain the coe�cients of a power

transformation of a matrix polynomial, which can be used to obtain the coe�cients of

the Wold representation of the process from the generalised cepstral matrices. The Wold

coe�cients are useful for forecasting and assessing goodness-of-�t of the model.

As will be illustrated in the following discussion, the generalised autocovariance function

can be interpreted in terms of the traditional autocovariance of a power-transformed pro-

cess, whose coe�cients can be determined from the Wold coe�cients characterizing the

original process by a recursive formula by Gould (1974). Such a de�nition of an auxiliary

process is useful to de�ne and study the GACV and other quantities related to it, like the

variance pro�le (Luati et al., 2012). Hence, to determine a multivariate extension of these

quantities for vector time series, it is of interest to de�ne a vector power-transformed

process by its Wold coe�cients. This aim is accomplished by determining a relation
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between the coe�cients of a given matrix polynomial and the coe�cients of its power

transformation, for any real power transform. Karampetakis and Tzekis (2005) derived

a recursive relation for the coe�cients of a power transformation of a matrix polyno-

mial for positive integer powers, while Holan et al. (2017) derived these formulas for the

exponential and logarithmic transform. Speci�cation of the matrix variance pro�le in

terms of an auxiliary process allows to give a useful interpretation to this measure, and

analytical results in terms of the coe�cients that characterize the process dynamics. The

matrix variance pro�le nests as special cases the unconditional variance-covariance ma-

trix of the process, the variance-covariance matrix of the one-step-ahead prediction error,

and the variance-covariance matrix of the interpolation error. The power-transformed

process is related with the de�nition of both the matrix variance pro�le and the gener-

alised autocovariance matrix, and, if considering the inverse transform, it coincides with

the inverse process mentioned in Heyse and Wei (1985) for the de�nition of the inverse

autocovariance matrix function, which provides a useful tool for identi�cation of ARMA

models.

In Chapter 2 provides the basic concepts of spectral analysis, including the de�nition of

the spectral density function, and the periodogram as its natural estimator. Asymptotic

properties of the periodogram are presented, which suggest a smoothed version of the

periodogram to overcome some drawbacks of the raw estimator of the spectrum. Some

recent advances, including a description of the generalised cepstral models, and the de�ni-

tion of the generalised autocovariance function, and its nonparametric estimator are also

presented in this chapter. A mathematical appendix shows analytical tools to express

the asymptotic variance of the estimator of the GACV in terms of the spectral density

function. Chapter 3 contains the main results of the project, concerning the asymptotic

e�ciency of the estimator of the GACV. A necessary and su�cient condition for asymp-

totic e�ciency of the estimator is derived, and it is checked for the class of Gaussian

ARMA processes. Selection of the pooling parameter is also addressed in this chapter by

the use of a frequency domain bootstrap. The appendix at the end of the chapter shows

the derivation of the Fisher information matrix for a Gaussian stationary process, which

is used in the chapter to de�ne the Cramèr-Rao bound. Also, the appendix derives the

limit as m → ∞ of a multiplicative factor that determines asymptotic e�ciency of the
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estimator. Chapter 4 concerns the multivariate extension of some concepts of spectral

analysis introduced in Chapter 2 for scalar time series, including the generalised matrix

cepstral models and the generalised autocovariance matrix. The relation between the

coe�cients of a given matrix polynomial and those of its power transformation, for any

real power is investigates. This also leads to a multivariate extension of the variance

pro�le, based on the de�nition of a power-transformed vector process. A nonparamet-

ric estimator of the matrix variance pro�le is proposed, based on a transformation of

the smoothed periodogram matrix. Chapter 5 contains some concluding remarks, and

possible future developments of the project.



Chapter 2

Spectral analysis

A time series can be analysed using two di�erent approaches: one operating in the

time domain, by means of the autocovariance function, and one operating in the fre-

quency domain, in terms of the Fourier transform of the autocovariance function: the

spectral density function.

Every stationary process admits both a time domain representation and a frequency do-

main representation, and its characteristics can be described equivalently by either the

time domain or frequency domain approach.

Spectral analysis of time series refers to the analysis of stationary time series by means

of their spectral representation, which decomposes a time series into a sum of sinusoidal

components with uncorrelated random coe�cients, that represent the latent components

of the series. This allows to determine the relative contribution of each frequency com-

ponent to the total variation of the process. The spectral representation of a time series

is associated to the spectral decomposition of the autocovariance function.

We �rst introduce some important quantities for the spectral analysis of time series,

which are at the basis of the de�nition of the generalised autocovariance function and

its estimator.

8



2.1 The spectral density function 9

2.1 The spectral density function

Let {Xt} be a zero-mean stationary stochastic process with autocovariance function

γk = E[XtXt−k], with γk = γ−k, satisfying
∑∞

k=−∞ |γk| <∞. The spectral density func-

tion of {Xt} is the function f(·) de�ned as the Fourier transform of the autocovariance

function:

f(ω) =
1

2π

∞∑
k=−∞

e−iωkγk, −π ≤ ω ≤ π. (2.1)

In turn, the autocovariance function is the inverse Fourier transform of the spectral

density function,

γk =

∫ π

−π
f(ω)eiωk dω =

∫ π

−π
f(ω) cosωk dω, (2.2)

that is, the autocovariances of a stationary time series with absolutely summable ACVF

are the Fourier coe�cients of the nonnegative even function f(·) de�ned in (2.1),

(Brockwell et al., 2002).

For k = 0, one recovers γ0 =
∫ π
−π f(ω) dω, the variance of the process. Thus, the spectral

density function can be seen as a measure of the contribution to the total variance of

the process, given by each periodic component. A large peak in the spectral density

function, at a speci�c frequency ω indicates the presence in the time series of a strong

sinusoidal component at (or near) ω.

The summability condition on the autocovariances implies that the spectral density func-

tion exists and is a real-valued continuous function of ω. By the Euler's formula:

e±iω = cosω ± i sinω, (2.3)

and noting that for a stationary process γk = γ−k, the spectral density function f(·) can
also be written as:

f(ω) =
1

2π
{γ0 + 2

∞∑
k=1

γk cosωk}, −π ≤ ω ≤ π. (2.4)

Since the cosine function has period 2π, so also does f(ω), and it is also a nonnegative

even function, i.e. f(ω) = f(−ω), and f(ω) ≥ 0 for all ω ∈ (−π, π], and it su�ces to

con�ne attention to the values of f on the interval [−π, π].
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The autocovariance generating function Gγ(z) represents a mathematical tool that

allows us to derive an analytic formula for the spectral density function of linear processes,

which is easy to compute. Gγ(z) is de�ned as:

Gγ(z) =
∞∑

k=−∞

γkz
k = γ0 +

∞∑
k=1

γk(z
k + z−k) (2.5)

Hence, 1
k!
∂k

∂L
Gγ(0) = γk.

The autocovariance generating function evaluated at e−iω gives

Gγ(e
−iω) =

∞∑
k=−∞

γk(e
−iω)k =

∞∑
k=−∞

γke
−iωk = 2πf(ω), (2.6)

which is the spectral density function of the precess characterized by the autocovariance

function γk.

Let us consider a zero-mean stationary process {Xt}, with Wold representation

Xt = Ψ(B)εt = (1 + ψ1L+ ψ2L
2 + . . . )εt =

∞∑
j=0

ψjεt−j, εt ∼ WN(0, σ2)

The autocovariance function of xt is γk =
∑∞

j=0 ψjψj+k.

Then,

Gγ(z) =
∞∑

k=−∞

γkz
k = σ2

∞∑
k=−∞

∞∑
j=0

ψjψj+k = σ2Ψ(L)Ψ(L−1),

and thus, for the linear process {Xt}, we have

2πf(ω) = Gγ(e
−iω) = σ2Ψ(eiω)Ψ(e−iω) = σ2|Ψ(e−iω)|2 (2.7)

This formula provides a useful tool for the computation of the spectral density function of

a speci�c model, by expressing it as a function of the parameters that govern the process.

One of the most popular estimators of the spectral density function is the peri-

odogram, which is described next, and will be central in nonparametric estimation of the

generalised autocovariance function.
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2.2 The periodogram

If {Xt} is a stationary time series with ACVF γk and spectral density f(·). Denote
γ̃k the sample autocovariance function of the observations {x1, x2, . . . , xN} :

γ̃k =

 1
N

∑N
t=k+1(xt − x̄)(xt−k − x̄), k = 0, . . . N − 1,

γ̃−k, k = −1,−2, . . . ,−N + 1.

where x̄ is the sample mean.

The periodogram of {x1, x2, . . . , xN} is the function

IN(ω) =
1

2πN

 N∑
t=1

(xt − x̄) exp (−iωt)
2

(2.8)

Then, just as the sample ACVF γ̃k of the observations {x1, x2, . . . , xN}, can be re-

garded as the sample analogue of γk, so also can the periodogram IN(ω) of the observa-

tions be regarded as the sample analogue of f(ω) (Brockwell et al., 2002), as stated in

the next proposition.

Proposition 1. (Brockwell et al., 2002)

If {x1, x2, . . . , xN} are any real numbers and ωk is any of the nonzero Fourier frequencies
ωk = 2πk

N
in (−π, π], then

IN(ωk) =
1

2π

∑
|h|<N

γ̃he
−ihωk , (2.9)

where γ̃h is the sample ACVF of x1, x2, . . . , xN . Hence IN(ω) is a natural estimate of

the spectral density f(ω).

The relationship between the periodogram and the sample autocovariance mimics

that between the spectral density and the autocovariance function. IN(ω) can equiva-

lently be written as:

IN(ω) =
1

2π

[
γ̃0 + 2

N−1∑
j=1

γ̃j cosωj
]
,

and the sample autocovariances are the Fourier coe�cients of IN(ω). Then,

γ̃k =

∫ π

−π
IN(ω) cosωk dω,
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and the area under the periodogram gives the sample variance γ̃0 :

γ̃0 =

∫ π

−π
IN(ω) dω

Similarly to the spectral density function, the periodogram is a nonnegative, even

function, i.e. IN(−ω) = IN(ω), ω ∈ (0, π), with period 2π.

Some asymptotic distributional results for the periodogram are presented in the next

section.

2.2.1 Large sample properties of the periodogram

Based on the previous discussion, one possible approach to estimate the spectral

density function is provided by the periodogram of the observations. However, using

the raw periodogram ordinates to estimate the spectral density function presents some

limitations. Asymptotic distributional results for IN(ω) are available. Fuller (1976)

showed that for N su�ciently large, and ω 6= 0, π :

2IN(ω)

f(ω)
≈ χ2(2) (2.10)

where χ2(2) is a Chi-square random variable with df = 2 degrees of freedom. Equivalently
IN (ω)
f(ω)

is approximately an exponential random variable with unit mean:

IN(ω)

f(ω)
≈ Exp(1)

While, at ω = 0, π the random variable IN (ω)
f(ω)

≈ χ2(1) is approximately distributed as a

Chi-square with 1 degree of freedom.

The random variables 2IN (ω)
f(ω)

and 2IN (λ)
f(λ)

are approximately independent.

By the properties of the Chi-square random variable with 2 degrees of freedom, or, by

the properties of the standard exponential random variable, one has for ω 6= 0, π :

E[IN(ω)] ≈ f(ω)

Hence, the periodogram IN(ω) is an asymptotically unbiased estimator of the spec-

tral density function f(ω). However, it is an approximately unbiased estimator of the
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spectral density function only for some processes and some frequencies. Moreover, the

periodogram is not a consistent estimator of the spectral density function, since its vari-

ance does not reduce with increasing sample size N. Instead, as N → ∞ its variance

converges to a nonzero value as we are trying to estimate as many parameters as the

observations available. To overcome this inconsistency problem in practice, smoothing

techniques are often applied to the periodogram.

The periodogram is a central element in nonparametric estimation of the generalised

autocovariance function, as will be illustrated in the following sections.

Based on the fundamental concepts of spectral analysis presented, let us introduce some

recent advances in the context of frequency domain analysis of time series.

2.3 Recent advances

As illustrated in the previous chapter, the spectrum of a stationary process provides

a complete characterization of the serial correlation structure of the process, and hence,

all information needed for linear prediction and interpolation. One of the most popular

models for the spectrum of a time series is the exponential model by Bloom�eld (1973),

which speci�es a linear model for the log transform of the spectrum, represented by a

�nite Fourier polynomial. The Fourier coe�cients of the expansion of the log-spectrum

are called cepstral coe�cients, and their collection forms the cepstrum, where cepstral

and cepstrum are anagrams of spectral and spectrum (Bogert, 1963).

This idea is further developed by the introduction of the generalised linear cepstral

models, de�ned by Proietti and Luati (2019).

2.3.1 Generalised linear cepstral models

The generalised linear cepstral models specify a linear model for the Box-Cox trans-

formation of the spectral density f(·).
Let {Xt} be a stationary stochastic process with autocovariance function γk =

∫ π
−π e

iωkf(ω) dω,

k = 0,±1,±2, . . . , where f(·) is the spectral density function, satisfying
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∫ π
−π ln f(ω) dω > −∞, and

∫ π
−π f(ω)λ dω < ∞ for all λ ∈ R. The Box-Cox transform of

2πf(ω) is:

g(ω) =


[2πf(ω)]λ−1

λ
, λ 6= 0,

ln [2πf(ω)], λ = 0,

where λ ∈ R. Assume that g(·) can be represented by a �nite Fourier polynomial:

g(ω) = cλ0 + 2
K∑
k=1

cλk cosωk (2.11)

The generalised cepstral coe�cients are de�ned as the inverse Fourier transform of g(ω) :

cλk =
1

2π

∫ π

−π
g(ω) cos (ωk) dω, k = 0, 1, . . . , K. (2.12)

For λ = 0 we obtain the exponential model for the spectrum (Bloom�eld, 1973). c0k are

the cepstral coe�cients, and their collection is the cepstrum (Bogert, 1963).

The generalised linear cepstral models nest several spectral models: the exponential

model (obtained for the logarithmic link), the moving-average model (identity link), the

autoregressive model (inverse link). The generalised cepstral coe�cients are also used to

evaluate the mutual information between the past and future of the process, and they

are related to important characteristics of the process: 1/(1− c−1,0) is the interpolation

error variance, while exp (c0,0) provides the one-step-ahead prediction error variance, by

the Kolmogorov-Szego formula, and c1,0 + 1 = γ0 is the unconditional variance of the

process.

The generalised linear cepstral models can be estimated by maximization of the Whittle

likelihood. Based on the distributional results for the periodogram I(ω) discussed in the

previous section, the log-likelihood of the periodogram IN(ωj), j = 1, . . . , [(N − 1)/2]

with ωj = 2πj
N
, is:

l(λ, θλ) = −
N∑
j=1

[
lnf(ωj) +

IN(ωj)

f(ωj)

]
,

where θλ = (cλ,0, cλ,1, . . . , cλ,K)′ is the vector of parameters.

The maximum likelihood estimate of λ is obtained by maximization of the pro�le (par-

tially maximized with respect to θλ) Whittle likelihood. The truncation parameter K is
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selected by minimizing an information criterion, like AIC or BIC.

The generalised cepstral coe�cients are linked to the generalised autocovariance func-

tion, de�ned as the inverse Fourier transform of the pth power of the spectral density

function (Proietti and Luati, 2015), which is described in the next section.

2.3.2 The generalised autocovariance function

The generalised autocovariance function extends and includes as special cases the

traditional autocovariance function and the inverse autocovariance function. Some of

its main applications are in model identi�cation, in cluster and discriminant analyses of

time series, as it leads to a more general measure of distance. It also allows the de�nition

of a class of White Noise tests with improved size and power properties, which can serve

as goodness-of-�t tests. The GACV is related to the generalised cepstral coe�cients

(Proietti and Luati, 2019), which can be estimated by maximization of the Whittle like-

lihood. An alternative estimation method is represented by a nonparametric estimator,

proposed in Proietti and Luati (2015), which we will consider in the next sections. First,

let us provide the de�nition of the GACV.

Let {Xt}t∈T , with T ∈ N a discrete time set, denote a zero mean stationary Gaus-

sian process with autocovariance function γk = E(XtXt−k), k ∈ Z, and spectral den-

sity fθ(ω) =
∑∞

k=−∞ γke
−ıωk, ω ∈ [−π, π], both depending on an s × 1 vector of pa-

rameters θ = (θ1, . . . , θs)
′ ∈ Rs. Assume that the spectral density is positive, that∫ π

−π log f(ω) dω > −∞, and that
∫ π
−π[f(ω)]p dω <∞.

For p ∈ R the generalised autocovariances, denoted γpk, are de�ned as the Fourier

coe�cients of [2πfθ(ω)]p (Proietti and Luati, 2015), i.e.,

[2πfθ(ω)]p =
∞∑

k=−∞

γpke
−ıωk = γp0 + 2

∞∑
k=1

γpk cosωk,
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or, equivalently,

γpk =
1

2π

∫ π

−π
[2πfθ(ω)]p cos(kω) dω. (2.13)

Obviously, γ1k = γk, while γ−1,k is the inverse autocovariance function, see Cleveland

(1972) and Battaglia (1983).

The generalised autocovariance function can be given a further interpretation in terms

of the traditional autocovariance function, by de�ning a new process starting from the

original one.

Let us consider a purely non-deterministic process {Xt}, with Wold representation Xt =

Ψ(L)εt = (1 + Ψ1L + Ψ2L
2 + . . . )εt, with coe�cients satisfying

∑∞
j=0 Ψ2

j < ∞ and

εt ∼ WN(0, σ2), where L is the lag operator (LjXt = Xt−j), and such that all the roots

of the characteristic equation Ψ(L) = 0 are in modulus greater than 1.

The traditional autocovariance function of the process {Xt} is

γk = σ2

∞∑
j=0

ΨjΨj+k, k = 0, 1, . . . , γk = γ−k

The power-transformed process upt is de�ned as:

upt =

[Ψ(L)]pεt = [Ψ(L)]p[Ψ(L)]−1xt, for p ≥ 0,

[Ψ(L−1)]pεt = [Ψ(L−1)]p[Ψ(L)]−1xt, for p < 0.

where L−1 is the forward operator. For any real p, the power transformation of the

original polynomial is still a power series, with new coe�cients determined recursively

from the original ones (Gould, 1974). For p > 0, [Ψ(L)]p =
∑∞

j=0 ϕjL
j and for p <

0, [Ψ(L−1)]p =
∑∞

j=0 ϕjL
−j, with:

ϕj =
1

j

j∑
h=1

[h(p+ 1)− j]Ψhϕj−h, j > 0, ϕ0 = 1 (2.14)

The spectral density function of the process upt is fu(ω) = (2π)−1σ2|Ψ(e−iω)|2p =

(2π)−1σ2|ϕ(e−iω)|2. Then:

[2πf(ω)]p = σ2p|Ψ(e−iω)|2p = 2πfu(ω)(σ2)p−1 (2.15)

γpk = (σ2)p−1γu = σ2p

∞∑
j=0

ϕjϕj+k, (2.16)
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where γu is the autocovariance function of the process upt.

This relation with the autocovariance function of the power-transformed process allows

to give the GACV an analytic form, and to derive it for many stationary processes. We

will use this to interpret the results about the asymptotic e�ciency of the nonparametric

estimator of the GACV.

The GACV is related to the variance pro�le, de�ned as the power mean of the spec-

trum of Xt (Luati et al., 2012):

vp =

{
1

2π
[2πf(ω)]p

} 1
p

, (2.17)

and for p 6= 0 we have vp = γ
1
p

p0. Analogously we can observe that

vp =

{
V ar(upt)

1

σ2

} 1
p

σ2.

The variance pro�le provides, depending on the value of p the unconditional variance

of the process, corresponding to the arithmetic mean of the spectral density (p = 1),

the interpolation error variance, given by the harmonic mean of the spectrum (p = −1),

or the one-step ahead prediction error variance, the geometric mean of the spectrum,

obtained as a limiting case when p→ 0.

The generalised autocovariances are also linked to the generalised cepstral coe�cients,

de�ned as the Fourier coe�cients of the Box-Cox transformation of the spectral density

of the process (Proietti and Luati, 2019), introduced in the previous section. By simple

algebra, one has:

cλ0 =
1

λ
(γλ0 − 1), cλk =

1

λ
γλk, k 6= 0.

In Proietti and Luati (2019) estimation of the generalised cepstral coe�cients by max-

imization of the Whittle likelihood is described. This represents an estimation method

also for the GACVs, by their relation with the generalised cepstral coe�cients, shown

above.
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An alternative option for estimation of the GACV is given by the nonparametric esti-

mator proposed by Proietti and Luati (2015), which we describe next.

2.3.3 Nonparametric estimation of the GACV

The nonparametric estimator of the generalised autocovariance function proposed by

Proietti and Luati (2015) is based on the same principles as the estimator of the variance

pro�le, which generalises Hannan and Nicholls (1977) estimator of the prediction error

variance. Hannan and Nicholls (1977) proposed to estimate the prediction error variance

σ2 by:

σ̂2(m) = m exp

{
1

M

M−1∑
j=0

log
[ 1

m

m∑
k=1

2πI(ωjm+k)
]
− ψ(m)

}
, (2.18)

whereM = bN−1
2
c, b·c denotes the integer part of the argument, and ψ(·) is the digamma

function. By the distributional properties of the periodogram, ψ(m) represents a bias cor-

rection term. The estimator σ̂2(m) generalises the estimator proposed by Davis and Jones

(1968) by replacing the raw periodogram ordinates (m = 1) with the non-overlapping

averages of m consecutive ordinates, resulting in a smaller mean square estimation error.

The estimator of the variance pro�le is based on a bias corrected power mean of the

pooled periodogram over m non-overlapping consecutive frequencies.

v̂p(m) = m

{
1

M

M−1∑
j=0

[ 1

m

m∑
k=1

2πI(ωjm+k)
]p Γ(m)

Γ(m+ p)

} 1
p

, (2.19)

where M = bN−1
2m
c. The introduction of m > 1 in (2.19) is needed for estimation of the

interpolation error variance (p = −1) and, more generally, for estimation for negative p.

Let us now introduce the nonparametric estimator of the GACV.

Given a time series of N consecutive observations, {xt, t = 1, 2, . . . , N}, we denote

I(ωj) the periodogram de�ned in (2.8) where ωj is the Fourier frequency ωj = 2πj
N
∈

(0, π), 1 ≤ j ≤ bN−1
2
c.

Following Hannan and Nicholls (1977) and Luati et al. (2012), Proietti and Luati

(2015) proposed the following nonparametric estimator of the generalised autocovariances
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based on the inverse discrete Fourier transform of the pth power of the corrected pooled

periodogram,

γ̂pk =
1

M

M−1∑
j=0

Y
(p)
j cos(ω̄jk), (2.20)

where M = bN−1
2m
c and, de�ning the pooled periodogram over m ≥ 1 non-overlapping

consecutive frequencies as

Īj =
m∑
l=1

I(ωjm+l),

Y
(p)
j = (2πĪj)

p Γ(m)

Γ(m+ p)
.

The frequencies ω̄j = ωjm+(m+1)/2 are the mid range frequencies and m is the pooling

parameter. The multiplicative factor Γ(m)
Γ(m+p)

is a bias-correction term, and its need is

shown by the following distributional properties. It is known (Koopmans, 1974) that

(2πĪj)
p =

( m∑
k=1

2πI(ωjm+k)
)p

= [2πfθ(ωjm+m+1
2

)]pXp
j ,

where Xj ∼ Ga(m, 1), with E[Xp
j ] = Γ(m+p)

Γ(m)
. Hence,

E[Y
(p)
j ] = E[(2πĪj)

p]
Γ(m)

Γ(m+ p)
= [2πfθ(ωjm+m+1

2
)]p

To ensure the existence of the second moment of the pth power of the gamma random

variable with parameter (m, 1) some restrictions on m and p are needed In the Gaus-

sian case we need p > −m/2, while in the more general IID case it has to be p > 1−m/4.

Let γp = [γp0, γp1, . . . , γpK ]′ be the vector of the generalised autocovariance func-

tions up to lag K and γ̂p = [γ̂p0, γ̂p1, . . . , γ̂pK ]′ the corresponding estimator. Under the

stated assumptions and additional assumptions on m and on the coe�cients of the Wold

representation of the process Proietti and Luati (2015) showed that:

√
N(γ̂p − γp)→

d
N(0,V ) (2.21)

where V = {vkl, k, l = 1, . . . , K}, with

vkl = m (C(m; p, p)− 1)
∞∑

j=−∞

(γp,j+kγp,j+l + γp,j+kγp,j−l) + k4γkγl, (2.22)
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or, equivalently,

vkl = m (C(m; p, p)− 1)
1

π

∫ π

−π
[2πfθ(ω)]2p cos(ωk) cos(ωl) dω, (2.23)

where

C(m; p, p) =
Γ(m+ 2p)Γ(m)

Γ2(m+ p)
,

and Γ(·) is the Gamma function. Equivalence between (2.22) and (2.23) is proved in

the appendix 2.4. For m = 1 and p = 1 (2.22) and (2.23) coincide with the asymptotic

covariance between the sample ACV at lag k and the sample ACV at lag l.

These asymptotic results are used to study asymptotic e�ciency of the nonparametric

estimator γ̂pk of the GACV.
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2.4 Appendix

Let us prove equivalence between equations (2.22) and (2.23) for the covariance

between γ̂pk and γ̂pk. Starting from (2.22) we derive Eq. (2.23), which is expressed

in terms of the spectral density function, and is used in the derivation of results about

asymptotic e�ciency of γ̂pk in Theorem 1.

The fourth cumulant k4 is zero for a Gaussian process. Thus we have:

lim
N→∞

(N −m)cov{γ̂p,m, γ̂p,n}

=
∞∑

l=−∞

[γp,l+mγp,l+n + γp,l+mγp,l−n]

=
∞∑

l=−∞

[γp,lγp,l+n−m + γp,lγp,l−(n+m)]

=
∞∑

l=−∞

γp,lγp,l+n−m +
∞∑

l=−∞

[γp,lγp,l−(n+m) (2.24)

Now we know that the generalised autocovariance function is the inverse Fourier

transform of the pth power of the spectral density function: γp,k = F−1([2πfθ(ω)]p).

Applying the Convolution theorem we can write:

∞∑
l=−∞

γp,lγp,l+n−m = F−1([2πfθ(ω)]2p) =
1

2π

∫ π

−π
[2πfθ(ω)]2p exp iω(n−m) dω.

By the Euler's formula, and some trigonometric identities, we obtain:
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∞∑
l=−∞

γp,lγp,l+n−m +
∞∑

l=−∞

γp,lγp,l−(n+m) =

=
1

2π

∫ π

−π
[2πfθ(ω)]2p exp iω(n−m) dω +

1

2π

∫ π

−π
[2πfθ(ω)]2p exp−iω(n+m) dω =

=
1

2π

∫ π

−π
[2πfθ(ω)]2p[exp iω(n−m) + exp−iω(m+ n)] dω =

=
1

2π

∫ π

−π
[2πfθ(ω)]2p[cosω(n−m) + i sinω(n−m) + cosω(n+m)− i sinω(n+m)] dω =

=
1

2π

∫ π

−π
[2πfθ(ω)]2p[cosω(n−m) + cosω(n+m)] dω =

=
1

2π

∫ π

−π
[2πfθ(ω)]2p[cosnω cosmω + sinnω sinmω + cosnω cosmω − sinnω sinmω] dω =

= (2π)2p−1

∫ π

−π
[fθ(ω)]2p 2 cos (ωn) cos (ωm) dω

which coincides with (2.23).

This result implies that the asymptotic variance of γ̂p,k is:

lim
N→∞

N V {γ̂p,k} = (2π)2p−1

∫ π

−π
[fθ(ω)]2p 2 cos2 (ωk) dω (2.25)



Chapter 3

E�cient nonparametric estimation of

generalised autocovariances

Consistency and asymptotic normality of the estimator γ̂pk of the GACV are estab-

lished in Proietti and Luati (2015). Here we study asymptotic e�ciency of this estimator.

We establish a necessary and su�cient condition for asymptotic e�ciency in terms of

the spectral density and its derivatives for general Gaussian stationary processes, which

nests as a particular case the result of Kakizawa and Taniguchi (1994), which holds for

p = 1. The results also show that the nonparametric estimator γ̂pk achieves the Cramèr-

Rao lower bound as m → ∞ for p = −1, i.e. it estimates e�ciently the �rst q inverse

autocovariances when the true generating process is pure MA(q). The inverse autoco-

variance function is useful in interpolation problems and for the identi�cation of ARMA

models.

We check this the condition for asymptotic e�ciency for the class of Gaussian ARMA(r , q)

processes. Analytical results for integer powers show that the nonparametric estima-

tors of the GACV of order k, for p = 1 are asymptotically e�cient for r ≥ q and

0 ≤ k ≤ r − q , while for p = −1 asymptotic e�ciency holds for r = 0 and 0 ≤ k ≤ q .

Hence, e�cient estimation of the inverse autocovariance function by the nonparametric

estimator of the GACV with p = −1 holds for MA processes. Some numerical results

for noninteger powers are available, which also illustrate the rate of convergence to the

Cramèr-Rao bound. The results obtained include as a special case the results for the

23
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sample autocovariance function by Porat (1987) and Kakizawa and Taniguchi (1994).

This chapter also illustrates that for a class of contrast functionals and spectral den-

sities, the minimum contrast estimator of the spectral density satis�es a Yule-Walker

system of equations in the generalised autocovariance estimator.

Selection of the pooling parameterm, which controls the resolution of the estimate, is dis-

cussed for large samples �rst. Considering asymptotic distributional results, we provide

a preliminary overview of the behaviour of the asymptotic variance as m varies. Since

the estimator is asymptotically unbiased, selection of m in large samples is based only on

minimization of the asymptotic variance. Preliminary investigations and analytical and

theoretical results suggest that varying m has a di�erent impact on the variance of the

estimator, depending on p. More speci�cally, increasing m implies a stronger variance

reduction for estimation of the GACV for negative powers p.

However, a very large sample is required for asymptotic unbiasedness to hold. Since in

�nite samples its bias is nonzero, we estimate the �nite-sample distribution of the esti-

mator (bias and variance) and, hence, its MSE for selecting the optimal value of m. This

is allowed by the multiplicative periodogram bootstrap, whose reasoning is illustrated in

this chapter, together with a real data application.

3.1 Asymptotic e�ciency of the estimator of the GACV

Let us �rst recall the de�nition of asymptotically e�cient estimator of an unknown

parameter.

De�nition 1. A sequence of estimators Tn is asymptotically e�cient for a parameter

τ(θ) if
√
n[Tn − τ(θ)]→

d
N(0, v(θ)) (3.1)

and

v(θ) =
[ d
dθ
τ(θ)]2

(Eθ( d
dθ

log f(X|θ))2)
(3.2)



3.1 Asymptotic e�ciency of the estimator of the GACV 25

that is, if the asymptotic variance of Tn achieves the Cramér-Rao lower bound.

Let {Xt}t∈T , with T ∈ N a discrete time set, denote a zero mean stationary Gaus-

sian process with autocovariance function γk = E(XtXt−k), k ∈ Z, and spectral density

fθ(ω) =
∑∞

k=−∞ γke
−ıωk, ω ∈ [−π, π], both depending on an s × 1 vector of parameters

θ = (θ1, . . . , θs)
′ ∈ Rs.

Impose the following assumptions:

Assumption 1. There exist two positive constants c and c such that

0 < c ≤ fθ(ω) ≤ c <∞, for ω ∈ [−π, π].

Assumption 2. The generalised autocovariances and their partial derivatives, ∂γpk/∂θj,

satisfy the summability conditions
∑∞

k=1 k|γpk| <∞,
∑∞

k=1 k|∂γpk/∂θj| <∞.

Assumption 3. The s× s matrix

1

4π

∫ π

−π

∂fθ(ω)

∂θ

∂fθ(ω)

∂θ′
dω

f 2
θ (ω)

is positive de�nite.

The �rst assumption restricts attention to short memory processes, ruling out long

memory and non-invertible ones, see Hassler (2018). Assumption 2 implies that
∫ π
−π [fθ(ω)]p dω <

∞ and fθ(ω) is di�erentiable with respect to θj, and ∂fθ(ω)/∂θj is continuous and dif-

ferentiable with respect to ω, with continuous derivative.

Hence, the GACV estimator γ̂kp in (2.20) is asymptotically e�cient if its asymptotic

variance, vkk converges to the Cramér-Rao lower bound

CRB{γ̂pk} =
∂γpk
∂θ′

I−1
N (θ)

∂γpk
∂θ

, (3.3)

with
∂γpk
∂θ

= (2π)p−1

∫ π

−π

∂[fθ(ω)]p

∂θ
cos(kω) dω,

and IN(θ) is the Fisher information matrix associated with X1, . . . , XN ,

IN(θ) =
1

4π

∫ π

−π

∂fθ(ω)

∂θ

∂fθ(ω)

∂θ′
1

f 2
θ (ω)

dω,
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whose generic element iN(j1, j2) is:

IN(j1, j2) = E

{
∂ logL(θ)

∂θj1

∂ logL(θ)

∂θj2

}
j1, j2 = 1, . . . , s.

The generic element of the Fisher information matrix in terms of the spectral density

function is derived in the appendix 3.6, and is given by:

iN(j1, j2) =
1

4π

∫ π

−π

∂fθ(ω)

∂θj1

∂fθ(ω)

∂θj2

1

f 2
θ (ω)

dω (3.4)

Under assumptions 1 − 3, and by (2.23), vkk ≥ CRB{γ̂pk} gives the following in-

equality:

lim
N→∞

N V {γ̂pk} = m(C(m; p, p)− 1)(2π)2p−1

∫ π

−π
[fθ(ω)]2p 2 cos2 (ωk) dω ≥

lim
N→∞

NCRB{γ̂pk} =

{
(2π)p−1

∫ π

−π

∂[fθ(ω)]p

∂θ′
cos(kω) dω

}
{

1

4π

∫ π

−π

∂fθ(ω)

∂θ

∂fθ(ω)

∂θ′
1

f 2
θ (ω)

dω

}−1{
(2π)p−1

∫ π

−π

∂[fθ(ω)]p

∂θ′
cos(kω) dω

}′
(3.5)

We �rst recall the following Lemma by Kakizawa and Taniguchi (1994), which allows

us to compare the asymptotic variance of γ̂pk and its Cramèr-Rao lower bound:

Lemma 1. Let A(ω) and B(ω) be r × s, t× s matrices, respectively, and let g(ω) be a

function such that g(ω) > 0 almost everywhere (a.e.) on [−π, π]. If the matrix{∫ π

−π

B(ω)B(ω)′

g(ω)
dω

}−1

exists, then∫ π

−π
A(ω)A(ω)′g(ω) dω ≥

{∫ π

−π
A(ω)B(ω)′ dω

}{∫ π

−π

B(ω)B(ω)′

g(ω)
dω

}−1{∫ π

−π
A(ω)B(ω)′ dω

}′
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where ≥ means the left-hand side minus the right-hand side is positive semi-de�nite.

Here the equality holds if there exists an r× t matrix C which is independent of ω such

that:

g(ω)A(ω) + CB(ω) = 0.

This can be seen by substituting A(ω) = −CB(ω)
g(ω)

in the inequality:

∫ π

−π

CB(ω)

g(ω)

B(ω)′C ′

g(ω)
g(ω) dω ≥

{∫ π

−π

(−C)B(ω)

g(ω)
B(ω)′ dω

}
×

×

{∫ π

−π

B(ω)B(ω)′

g(ω)
dω

}−1{∫ π

−π
B(ω)

(−1)B(ω)′C ′

g(ω)
dω

}
(3.6)

Since C does not depend on ω we can take it outside the integral, and write:

C

(∫ π

−π

B(ω)

g(ω)
B(ω)′ dω

)
C ′ ≥ C

{∫ π

−π

B(ω)

g(ω)
B(ω)′ dω

}
×

×
�������������{∫ π

−π

B(ω)B(ω)′

g(ω)
dω

}−1

������������
{∫ π

−π

B(ω)B(ω)′

g(ω)
dω

}
C ′ =

= C

(∫ π

−π

B(ω)

g(ω)
B(ω)′ dω

)
C ′

By noticing that:
∂[fθ(ω)]p

∂θ′
= p[fθ(ω)]p−1∂fθ(ω)

∂θ′
,

and simplifying some constants, the inequality (3.5) becomes:

m(C(m; p, p)− 1)

p2

∫ π

−π
[fθ(ω)]2p cos2 (ωk) dω ≥{∫ π

−π
[fθ(ω)]p

∂ ln fθ(ω)

∂θ′
cos(kω) dω

}
{∫ π

−π

∂ ln fθ(ω)

∂θ

∂ ln fθ(ω)

∂θ′
dω

}−1{∫ π

−π
[fθ(ω)]p

∂ ln fθ(ω)

∂θ′
cos(kω) dω

}′
. (3.7)

or, equivalently:
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m(C(m; p, p)− 1)

p2

∫ π

−π
f 2
θ (ω)[fθ(ω)]2(p−1) cos2 (ωk) dω ≥{∫ π

−π
[fθ(ω)]p−1∂fθ(ω)

∂θ′
cos(kω) dω

}
{∫ π

−π

∂fθ(ω)

∂θ

∂fθ(ω)

∂θ′
1

f 2
θ (ω)

dω

}−1{∫ π

−π
[fθ(ω)]p−1∂fθ(ω)

∂θ′
cos(kω) dω

}′
. (3.8)

Asymptotic e�ciency of γ̂pk occurs when vkk achieves the CRB on the right hand

side of (3.5), or, equivalently if in (3.8) equality holds. This requires a condition on the

spectral density of the process that will be stated in Theorem 1.

To asses asymptotic e�ciency of the estimator, note that inequality (3.8) takes the

following form:

K

∫ π

−π
A(ω)A(ω)′g(ω) dω ≥{∫ π

−π
A(ω)B(ω)′ dω

}{∫ π

−π

B(ω)B(ω)′

g(ω)
dω

}−1{∫ π

−π
A(ω)B(ω)′ dω

}′
. (3.9)

with A(ω) = cos (kω)[fθ(ω)]p−1, B(ω) = ∂fθ(ω)
∂θ

, g(ω) = f 2
θ (ω), and K = m(C(m;p,p)−1)

p2
.

The attainment of the CRB thus depends also on the term m(C(m;p,p)−1)
p2

, involv-

ing both the power p and the pooling parameter m, and, as it is evident from (3.8),
m(C(m;p,p)−1)

p2
→ 1 is required.
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Figure 3.1: Plot of c = m(C(m;p,p)−1)
p2

vs p with m = 30.

As shown in �gure 3.1, this factor has a minimum point at p = 1, where it attains

unity. It is possible to show that K → 1 as m → ∞, and the proof is provided in the

appendix 3.6.

Hence, in the cases p = 1 or p 6= 1 and m → ∞ m(C(m;p,p)−1)
p2

= 1. If p 6= 1 and

m→∞, the Cramér-Rao inequality (3.8) becomes:∫ π

−π
f 2
θ (ω)[fθ(ω)]2(p−1) cos2 (ωk) dω ≥{∫ π

−π
[fθ(ω)]p−1∂fθ(ω)

∂θ′
cos(kω) dω

}
{∫ π

−π

∂fθ(ω)

∂θ

∂fθ(ω)

∂θ′
1

f 2
θ (ω)

dω

}−1{∫ π

−π
[fθ(ω)]p−1∂fθ(ω)

∂θ′
cos(kω) dω

}′
. (3.10)

Applying Lemma 1 by setting:

A(ω) = cos (kω)[fθ(ω)]p−1, B(ω) =
∂fθ(ω)

∂θ
, g(ω) = f 2

θ (ω),

implies the following result.
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If p 6= 1 and m→∞, the following theorem provides a necessary and su�cient condition

for asymptotic e�ciency of γ̂pk for Gaussian stationary processes:

Theorem 1. Suppose that assumptions 1-3 are satis�ed and that m and M are large

enough for asymptotics and m
M

is small enough for f to be constant over frequency in-

tervals of length 2πm
M

and m(C(m, p, p) − 1) → p2. Then, γ̂pk is asymptotically e�cient

if and only if there exists an s-dimensional vector c, independent of ω, such that:

[fθ(ω)]p+1 cos (kω) + c′
∂fθ(ω)

∂θ
= 0, (3.11)

Theorem 1 provides a necessary and su�cient condition for asymptotic e�ciency of

γ̂pk which is valid for general Gaussian stationary processes. It is expressed in terms

of the spectral density function, which makes it easy to check for various models. This

result embodies in a single equation the condition for asymptotic e�ciency of the sample

autocovariance function (p = 1), of the estimator γ̂−1,k of the inverse autocovariance

function (p = −1), which at lag k = 0 provides the inverse of the interpolation error

variance, and of the estimator γ̂pk for general real powers p.

We can use the relation with the autocovariance function of the power-transformed

process, described in section 2.3.2 to interpret the results about the asymptotic e�ciency

of the nonparametric estimator of the GACV.

In view of the relation between xt and upt, observe that:

AV {γ̂pk} = m(C(m; p, p)− 1)(σ)2(p−1)AV {γ̃u,k} (3.12)

IN =
1

p2
IN(upt)

CRB{γ̂pk} = (σ)2(p−1)p2CRB{γ̃u,k} (3.13)

where AV {γ̃u,k} and CRB{γ̃u,k} are the asymptotic variance and CRB of the sample

autocovariance of the process upt, denoted by γ̃u,k. Then, one has:

AV {γ̂pk}
CRB{γ̂pk}

=
m(C(m; p, p)− 1)

p2

AV {γ̃u}
CRB{γ̃u}

The relation between asymptotic e�ciency of the nonparametric estimator of the

GACV for a given process xt and asymptotic e�ciency of the sample estimator of the
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ACVF of the power process upt is governed by the positive factor m(C(m;p,p)−1)
p2

. We know

that its value decreases as m increases. This function has a minimum point at p = 1 and

it increases as the distance of p from unity increases.

Some implications of Theorem 1 are given below.

Corollary 1. Consider the process with spectral density function fθ(ω) = 1
2π

[
1

θ(ω)

] 1
p , with

θ(ω) the trigonometric polynomial θ(ω) = θ0 + 2
∑K

j=1 θj cos (ωj), so that ∂θ(ω)
∂θ

= q(ω) =

[1, 2 cos (ω), 2 cos (2ω), . . . , 2 cos (ωK)]
′
. Then,

∂fθ(ω)

∂θ
= −(2π)p

1

p
[fθ(ω)]p+1q(ω).

Condition (3.11) in Theorem 1 becomes

[fθ(ω)]p+1

{
cos (kω)− (2π)p

p
c′q(ω)

}
= 0,

which is satis�ed if c =
[
0, 0, . . . , p

2(2π)p
, 0, . . . , 0

]′
. This implies that for p = −1 the

process is moving-average of order K and the �rst K inverse autocovariances γ−1,K =

[γ−1,1, . . . , γ−1,K ]
′
and γ−1,0 can be e�ciently estimated as N → ∞ by the estimator of

the GACV γ̂−1,K with large m.

Remark 1. The estimator (2.20) can be viewed in the wider context of estimation of

functionals of the spectral density, which are related to many important quantities in

stationary time series. Setting m = 1, for p > 0, Y p
j is the inverse Laplace transform

of [2πf(ωj)]
−(p+1) evaluated at 2πI(ωj), proposed by Taniguchi (1980) for estimating

[2πf(ωj)]
p. Asymptotic e�ciency of this estimator is studied in Taniguchi (1981), who

establishes that this estimator is asymptotically e�cient if p = 1 and the spectral density

is constant over [−π, π]. The nonparametric estimator γ̂pk further generalises these results

to any real power transform, including negative p. Furthermore, the introduction of the

pooling parameter m allows asymptotically e�cient estimates also for p 6= 1.

Remark 2. By setting the power p and the pooling parameter m to 1, inequality (3.8)

reduces to the asymptotic Cramér-Rao inequality for the sample estimator of the au-

tocovariance function analysed by Kakizawa and Taniguchi (1994). Note also that for
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p = 1, by the properties of the Gamma function, the constant m(C(m; p, p) − 1) does

not depend on the pooling parameter m. By the properties of the Gamma function we

have:

m(C(m; 1, 1)− 1) = m
(Γ(m+ 2p)Γ(m)

Γ2(m+ p)
− 1
)

= m
(Γ(m+ 2)Γ(m)

Γ2(m+ 1)
− 1
)

=

= m
((m+ 1)Γ(m+ 1)Γ(m)

m2Γ2(m)
− 1
)

=

= m
((m+ 1)mΓ2(m)

m2Γ2(m)
− 1
)

=
m(m+ 1)

m
−m = m+ 1−m = 1

Hence, m(C(m; 1, 1) − 1) = 1. This implies that if we consider estimation of the tradi-

tional autocovariance function, the asymptotic variance of the nonparametric estimator

γ̂1k does not depend on the pooling parameter m. Indeed, γ̂1k is the Riemannian sum ap-

proximation over the Fourier frequencies of the sample autocovariance at lag k, denoted

by γ̃k:

lim
N→∞

1

b(N − 1)/2c

b(N−1)/2c∑
j=1

2πI(ωj) cos (ωjk) =

∫ π

−π
I(ω) cos(ωk) dω = γ̃k,

with I(ω) = 1
2π

∑
|h|<N γ̃h cos (ωh). Hence limN→∞ γ̂1k = γ̃k, and their asymptotic vari-

ances, as N →∞, are equivalent. As a matter of fact, by setting p = 1, Theorem 1 pro-

vides the condition for asymptotic e�ciency of the sample autocovariances by Kakizawa

and Taniguchi (1994).

For p = 1 inequality (3.5) specialises to:

(4π)

∫ π

−π
[fθ(ω)]2 cos2 (ωk) dω ≥{∫ π

−π

∂fθ(ω)

∂θ′
cos(kω) dω

}
{

1

4π

∫ π

−π

∂fθ(ω)

∂θ

∂fθ(ω)

∂θ′
1

f 2
θ (ω)

dω

}−1{∫ π

−π

∂fθ(ω)

∂θ′
cos(kω) dω

}′
(3.14)

In this case (p = m = 1), by setting in Lemma 1:

A(ω) = cos kω, g(ω) = f 2
θ (ω), B(ω) =

∂fθ(ω)

∂θ
,
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the condition for asymptotic e�ciency of γ̂1k, and hence γ̃k is stated in the following

theorem by Kakizawa and Taniguchi (1994):

Theorem 2. (Kakizawa and Taniguchi, 1994)

Suppose that assumptions 1-3 are satis�ed. Then, the sample autocovariance γ̃k is

asymptotically e�cient if and only if there exists a s-dimensional vector c which is inde-

pendent of ω such that:

f 2
θ (ω) cos (kω) + c′

∂fθ(ω)

∂θ
= 0 (3.15)

The validity of Theorem 1 can be analysed for stationary Gaussian ARMA(r , q)

processes to establish the constraints on r, q, k allowing for asymptotic e�ciency of γ̂pk.

3.2 Asymptotic e�ciency of γ̂pk for ARMA processes

Let {Xt}t∈T be a zero-mean stationary and invertible Gaussian ARMA(r , q) process,

with spectral density function

f(ω) =
σ

2π

β(eiω)β(e−iω)

φ(eiω)φ(e−iω)
,

where β(e−iω) = 1 +
∑q

j=1 βje
−iωj, 1 +

∑q
j=1 βjz

j 6= 0 ⇐⇒ |z| ≤ 1, and φ(e−iω) =

1−
∑r

j=1 φje
−iωj, 1−

∑r
j=1 φjz

j 6= 0 ⇐⇒ |z| ≤ 1.

For an ARMA process we ask if γ̂pk is an asymptotically e�cient estimator as p varies.

By Theorem 1, asymptotic e�ciency of γ̂pk with su�ciently large m requires the exis-

tence of a s-dimensional vector c which is independent of ω such that Eq. (3.11) is satis-

�ed. In this case s = r+q+1 is the number of parameters in θ = (σ, φ1, . . . , φr, β1, . . . , βq)
′.

First, we illustrate analytical results for positive and negative integer values of p.

Then, in the next section, numerical results show how asymptotic e�ciency of γ̂pk varies

with real powers p.
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Let us �rst restrict our attention to positive integer values of p. Note that we can

multiply both sides of Eq. (3.11) by the nonzero factor [φ(eiω)φ(e−iω)]p+1, so that we

only need to check whether there exists a vector c such that:

[
( σ

2π

)p+1
β(eiω)β(e−iω)]p+1 cos (kω) = −c′[φ(eiω)φ(e−iω)]p+1∂fθ(ω)

∂θ
(3.16)

By Euler's formula and trigonometric identities we can express both the left-hand side

and the right-hand side of (3.16) as Fourier polynomials. The existence of c depends on

the degree of these polynomials. De�ning the space of 2π-periodic functions admitting

a �nite Fourier polynomial representation as

Ml = {F |F (ω) = c0 + c1 cosω + · · ·+ cl cos (lω), cl 6= 0},

for the speci�ed ARMA(r , q) process we have:

[β(eiω)β(e−iω)]p+1 cos (kω) ∈M(p+1)q+k (3.17)

[φ(eiω)φ(e−iω)]p+1 ∂fθ(ω)
∂σ
∈Mpr+q (3.18)

[φ(eiω)φ(e−iω)]p+1 ∂fθ(ω)
∂φj

∈Mmax((p−1)r+q+j,pr+q−j), j = 1, . . . , r (3.19)

[φ(eiω)φ(e−iω)]p+1 ∂fθ(ω)
∂βj

∈Mmax(pr+q−j,pr+j), j = 1, . . . , q. (3.20)

These imply that (3.16) can be written as:

v′(1, cosω, . . . , cosω[(p+ 1)q + k])′ = −c′A(1, cosω, . . . , cosω(pr + q))′ (3.21)

where v has length (p+1)q+k+1 and contains the Fourier coe�cients of [β(eiω)β(e−iω)]p+1 cos(kω)

and the j-th row of the s×(pr+q+1) matrix A contains those of [φ(eiω)φ(e−iω)]p+1∂fθ(ω)/∂θj.

The left-hand side of (3.16) is:

[β(eiω)β(e−iω)]p+1 cos (kω) = v0 + v1 cosω + · · ·+ v(p+1)q+k cos [(p+ 1)q + k]ω

To see this, �rst remind the following identities:

e±iωn = cos (ωn)± i sin (ωn), (3.22)

(eiωn + e−iωn) = 2 cos (ωn), (3.23)

cos (α) cos (β) =
1

2
(cos (α + β) + cos (α− β)), (3.24)

cos (−ω) = cos (ω). (3.25)
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Consider a polynomial β(z) = β0 + β1z + β2z
2 + · · ·+ βqz

q. It is clear that [β(z)]n =

b0 + b1z + · · · + bnqz
nq for n a positive integer. Analogously, if p is a positive integer,

[β(z)]p+1 = e0 + e1z+ · · ·+ e(p+1)qz
(p+1)q = e(z). By simple algebra, it can be shown that

[β(z)β(z−1)] = a0 +a1(z+z−1)+ · · ·+aq(z
q +z−q), and, similarly, [β(z)]p+1[β(z−1)]p+1 =

g0 + g1(z + z−1) + · · ·+ g(p+1)q(z
(p+1)q + z−(p+1)q). By (3.23):

[β(z)]p+1[β(z−1)]p+1 = g0 + g12 cosω + · · ·+ g(p+1)q2 cos ([(p+ 1)q]ω)

Then, if we consider k ≤ (p+ 1)q, by (3.24):

[β(eiω)β(e−iω)]p+1 cos (kω) =

g0 cos (ωk) + g1

(
cos (k + 1)ω + cos (k − 1)ω

)
+ g2

(
cos (k + 2)ω + cos (k − 2)ω

)
+

+ · · ·+ gk
(

cos (2k)ω + cos (k − k)ω
)

+ · · ·+ g(p+1)q

(
cos ((p+ 1)q + k)ω + cos ((p+ 1)q − k)ω

)
=

= v0 + v1 cosω + v2 cos 2ω + · · ·+ v(p+1)q+k cos ((p+ 1)q + k)ω, (3.26)

otherwise, if k > (p + 1)q the leading term in (3.26) is null. Eq. (3.26) coincides with

(3.17). (3.18)- (3.20) can be derived analogously.

Relations (3.17) - (3.20) imply:

v′(1, cosω, . . . , cosω[(p+ 1)q + k])′ = −c′A(1, cosω, . . . , cosω(pr + q))′, (3.27)

Consider (p+ 1)q + k ≤ pr + q. Denote d = (1, cos (ω), . . . , cosω[(p+ 1)q + k])′ and

d1 = (cosω[(p+ 1)q + k + 1], . . . , cosω(pr + q))′. Then, Eq. (3.27) becomes:

v′d = −c′A(d′,d′
1)′. (3.28)

Note that if p = 1, the square matrix A ∈ Rs×s is nonsingular by assumption. In this

case the condition for asymptotic e�ciency is satis�ed by setting c = −(A′)−1(v′, 0, . . . , 0)′.

Hence, for p = 1, γ̂pk is asymptotically e�cient when r ≥ q and 0 ≤ k ≤ r − q, which
coincides with the results in Kakizawa and Taniguchi (1994).

On the other hand, if p 6= 1,A ∈ Rs×(pr+q+1) is not square in general. In particular,

by assumption 3 A ∈ Rs×(pr+q+1) has full row-rank, s = r + q + 1. Investigation of the

existence of a solution for to the matrix equation (3.27) allows to establish asymptotic
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e�ciency of the estimator for positive integer p.

Let us consider the case when the power p + 1 is a negative integer (p < −1). By

multiplying both sides of Eq. (3.11) by [β(eiω)β(e−iω)]−(p+1) the condition to be checked,

that guarantees asymptotic e�ciency of the estimator, becomes:( σ
2π

)p+1
[φ(eiω)φ(e−iω)]−(p+1) cos (kω) = −c′[β(eiω)β(e−iω)]−(p+1)∂fθ(ω)

∂θ
(3.29)

By the same arguments used in the proof for positive integer p, the following relations

are valid:

[φ(eiω)φ(e−iω)]−(p+1) cos (kω) ∈M−(p+1)r+k

[β(eiω)β(e−iω)]−(p+1)∂fθ(ω)

∂σ
∈M−pq−r

[β(eiω)β(e−iω)]−(p+1)∂fθ(ω)

∂φj
∈Mmax(−pq−r−j,−pq−2r+j), j = 1, . . . , r

[β(eiω)β(e−iω)]−(p+1)∂fθ(ω)

∂θj
∈Mmax(−pq−r−j,−pq−q−r+j), j = 1, . . . , q.

Note that −(p + 1)r is a positive integer, and so is −p. Hence, the previous relations

imply:

v′1(1, cosω, . . . , cosω[−(p+ 1)r + k])′ = −c′B(1, cosω, . . . , cosω(−pq − r))′, (3.30)

where v1 has length (−(p+1)r+k+1) and contains the Fourier coe�cients of [φ(eiω)φ(e−iω)]−(p+1) cos (kω),

and the j-th row of the matrix B ∈ Rs×(−pq−r+1) contains those of [β(eiω)β(e−iω)]−(p+1)∂fθ(ω)/∂θj.

Analogous considerations as those for positive integer p imply that for p a negative

integer asymptotic e�ciency of γ̂pk is determined by establishing the conditions of exis-

tence of a solution for the equation (3.30).

Note that for p = −1 Eq. (3.29) becomes:

cos (kω) =
∂fθ(ω)

∂θ
.
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or, equivalently:

v′1(1, cosω, . . . , cosωk)′ = −c′B(1, cosω, . . . , cosω(q − r))′, (3.31)

In Eq. (3.30),when p = −1, v′1 = (0, 0, . . . , 1), and B ∈ Rs×(q−r+1) is a nonsingular square

matrix if r = 0. In this case, for 0 ≤ k ≤ q, we can specify c = −(B′)−1(v′, 0, . . . , 0)′.

This result is contained in Corollary 1, and implies that for a moving-average process of

order q the nonparametric estimator γ̂pk of the GACV with p = −1 and su�ciently large

m is asymptotically e�cient for 0 ≤ k ≤ q and, hence, it estimates e�ciently the �rst q

inverse autocovariances.

3.2.1 AR(1) example

Let us consider an example to show what the elements of c,v and A are, and their

role in assessing asymptotic e�ciency of the estimator γ̂pk. For simplicity, consider an

AR(1) process {Xt}, and asymptotic e�ciency of γ̂1k. The spectral density function is:

fθ(ω) =
σ

2π

1

1− 2φ cosω + φ2
(3.32)

For a stationary AR(1) process the estimator γ̂1k of the traditional autocovariance func-

tion is asymptotically e�cient for k = 0, 1.

We �nd the elements of the vector c that satis�es (3.16).

Let us set k = 0. Consider the left-hand side of (3.16):

φ2(eiω)φ2(e−iω)f 2
θ (ω) cos (kω) =

= φ2(eiω)φ2(e−iω)
σ2

4π2

1

φ2(eiω)φ2(e−iω)
cos (kω) =

=
σ2

4π2
cos (kω) =

σ2

4π2
= v

(3.33)
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On the right-hand side of (3.16), the elements of the matrix A are:

φ2(eiω)φ2(e−iω)
∂fθ(ω)

∂σ
=

1

2π
φ(e−iω)φ(eiω) =

=
1− 2φ cosω + φ2

2π
= a11 + a12 cosω

a11 =
1 + φ2

2π
, a12 =

−φ
π

φ2(eiω)φ2(e−iω)
∂fθ(ω)

∂φ
=
σ(2 cosω − 2φ)

2π
=

=
σ

π
cosω − σφ

π
= a21 + a22 cosω

a21 = −σφ
π
, a22 =

σ

π

Hence, A is:

A =

[
1+φ2

2π
−φ
π

−σφ
π

σ
π

]
And

(A′)−1 =

[
2π

1−φ2
2πφ

1−φ2
2πφ

σ(1−φ2)
π(1+φ2)
σ(1−φ2)

]
Then, the vector c is given by:

c = −(A′)−1(v, 0)′ =

=

[
2π

1−φ2
2πφ

1−φ2
2πφ

σ(1−φ2)
π(1+φ2)
σ(1−φ2)

](
σ2

4π2

0

)
=

(
− σ2

2π(1−φ2)

− σφ
2π(1−φ2)

)

Then, Eq. (3.11) for an AR(1) holds.

3.3 Numerical illustrations

Some speci�c cases of ARMA processes are considered and the performance of the

nonparametric estimator of interest is compared to that of the sample estimator of the

sample autocovariance function, asymptotically approximated by γ̂1k.
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Let us start by analysing an AR(1) process {Xt}t∈T . Its spectral density function is:

fθ(ω) =
σ

2π

1

1− 2φ cosω + φ2
.

The parameter vector is θ = (φ, σ2)′. We denote the asymptotic variance of γ̂pk by

AV {γ̂pk} = m(C(m; p, p)− 1)
σ2p

π

∫ π

−π

( 1

1− 2φ cosω + φ2

)2p

cos2 (kω) dω.

Tables 3.1 and 3.2 refers to the AR(1) process with parameters parameters φ = 0.8

and σ2 = 1. It displays the values of AV {γ̂pk}, CRB{γ̂pk} and their ratio for di�erent

values of m and p. Recall that for Gaussian processes it must be m > −2p. Values

greater than one measure the ine�ciency of the estimator (2.20). As we know, the

sample autocovariance function γ̂1k is asymptotically e�cient for k = 0, 1. Except for

this case, exact equality between the asymptotic variance and Cramér-Rao bound of γ̂pk

never holds, but it is approximated as m increases.
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Table 3.1: Asymptotic e�ciency of γ̂pk for an AR(1) model with φ = 0.8 and

σ2 = 1.

k p m AV CRB AV/CRB k AV/CRB

1

2

1 1.35 · 105 9.94 · 104 1.36

2

1.38

2 1.26 · 105 9.94 · 104 1.26 1.29

30 1.09 · 105 9.94 · 104 1.10 1.12

3/2

1 3.09 · 103 2.81 · 103 1.09 1.11

2 3.03 · 102 2.81 · 103 1.07 1.09

30 2.91 · 103 2.81 · 103 1.03 1.05

1 1 6.75 · 10 6.75 · 10 1.00 1.01

1/2

1 1.24 1.02 1.22 1.25

2 1.20 1.02 1.17 1.20

30 1.14 1.02 1.12 1.15

-1/2
2 0.89 0.11 7.98 1.20 · 102

30 0.42 0.11 3.79 5.70 · 10

-1
3 1.38 · 10 1.64 8.43 ∞
30 4.93 1.64 3.01 ∞
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Table 3.2: Asymptotic e�ciency of γ̂pk for an AR(1) model with φ = 0.8 and

σ2 = 1.

k p m AV/CRB k AV/CRB k AV/CRB

4

2
30 1.21

5

1.28

7

1.53

50 1.20 1.27 1.52

3/2
30 1.15 1.25 1.59

50 1.15 1.25 1.59

1 1 1.16 1.31 1.88

1/2
30 1.56 1.99 3.58

50 1.56 1.99 3.58

-1/2
30 5.02 · 102 1.06 · 103 3.9 · 103

50 4.94 · 102 1.04 · 103 3.85 · 103

-1
30 1.61 8.48 3.46

50 1.56 8.25 3.37

For positive values of p no constraint on the pooling parameter is needed, so we

let m vary from 1 to 30 for k = 1, 2, to show the e�ect of pooling. As it is shown in

Table 3.1, for p = 2 and k = 1 the asymptotic variance (and also the relative CRB) of

the estimator of γ2k has a strong increase with respect to the case for p = 1. However,

pooling has a positive e�ect on the asymptotic e�ciency of the estimator, as a value

of m = 30 reduces its asymptotic variance by 18.7%. For negative powers, the pooling

parameter m has a strong e�ect on the variance of γ̂pk (keeping p �xed). If we consider

estimation of the inverse autocovariance function γ−1,k, it must be m > 2. For m = 3

the asymptotic variance of γ̂−1,1 is AV {γ̂−1,1} = 13.82, while, considering m = 30 gives

AV {γ̂−1,1} = 4.93, with a reduction of 64.3%.

In general, from tables 3.1, 3.2 we can see that as the distance of p from unity increases

the estimator of γpk gets far from the condition for asymptotic e�ciency, as expected
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from the previous considerations. For p 6= 1, pooling contributes in reducing the variance

of the estimator, and especially when p is negative pooling has a sizeable impact on the

variance, as shown by the important reduction achieved for p = −1.

0 5 10 15

5
10

15

k

A
V

/C
R

B

p=1

p=3/2

Figure 3.2: Plot of AV/CRB vs k for p = 1.5 and p = 1 for an AR(1) process with

σ = 1, φ = 0.8.

If we consider values of k larger than 1, neither the sample estimator γ̃k nor γ̂pk is

asymptotically e�cient, and the results get worse as the lag k increases, ceteris paribus.

For instance, for k = 2 the ratio between the asymptotic variance and CRB for γ̂pk with

p = −1/2 dramatically increases, and approaches in�nity for p = −1. However, for k > 1

AV/CRB for some of the GACVs estimators tend to unity as m increases. Note also

that for k ≥ 4 the estimator of the GACV γ̂pk for several values of p has better results

than the sample estimator of the ACVF (p = 1), since the ratio AV/CRB relative to the

�rst estimator is closer to unity, as shown in Table 2. For instance, with k = 7 the ratio

AV/CRB for γ̂1,7 (or equivalently γ̃7) is AV/CRB = 1.88, while the same ratio for γ̂2,7

and γ̂3/2,7 is 1.59 and 1.53 respectively, with m = 30. The ratios AV/CRB relative to

γ̂pk and γ̂1k both increase as k increases, and the di�erence between them also becomes

larger in favour of the estimator of the GACV for several values of p. This is clear from

the plot in Figure 3.2 of the ratio AV/CRB against k, where the red dashed line refers
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to the estimator of the GACV for p = 3/2 and the black solid line refers to the SACVF.

Let {Xt} be a zero-mean Gaussian AR(2) stationary process. The spectral density

function is:

fθ(ω) =
σ2

2π

1

(1 + φ2
1 + φ2

2 + (2φ1φ2 − 2φ1) cos (ω)− 2φ2 cos (2ω))

The vector of the parameters is θ = (φ1, φ2, σ
2)′. Let us investigate asymptotic

e�ciency of the estimator γ̂pk, as the power p and the pooling parameter m vary, and

compare the results with those relative to an AR(1) process.

Table 3.3: Asymptotic e�ciency of γ̂pk for an AR(2) model with φ1 = 0.7, φ2 =

−0.1, σ = 1.

k p m AV/CRB k AV/CRB k AV/CRB

1

2

1 1.26

2

1.30

3

1.45

2 1.18 1.21 1.36

30 1.02 1.05 1.18

3/2

1 1.06 1.08 1.22

2 1.04 1.06 1.20

30 1.007 1.02 1.15

1 1 1.00 1.00 1.17

1/2

1 1.09 1.17 1.56

2 1.05 1.13 1.50

30 1.004 1.08 1.43

-1/2
2 2.34 6.35 54.70

30 1.11 3.01 26.00

-1
3 3.39 10.29 ∞
30 1.21 3.67 ∞



3.3 Numerical illustrations 44

From Table 3.3 we can see that the results are coherent with those relative to an

AR(1) process: as p gets far from unity, the ratio between the asymptotic variance and

the CRB of γ̂pk increases. As before, for p 6= 1 the pooling e�ect is stronger for negative

values of the power p, and as the lag k increases the results get worse. We can note

that the estimators of the functions γ3/2k and γ1/2k at lag k = 1 perform very well, as

the relative ratios between the asymptotic variance and CRB are respectively 1.007 and

1.004, very close to unity. In this case we also have better results for γ̂pk with p < 0 and

k = 1, 2.

It should be noted from Table 3.3 that for k = 3 the sample autocovariance, approxi-

mated by γ̂1,3, is not asymptotically e�cient, as expected, and the ratio of its asymptotic

variance and CRB is 1.17. In this case the estimator γ̂2,3 with m = 30 and the sample

ACVF perform equally well. The ratio AV/CRB in this case decreases towards unity

as m increases. The ratio AV/CRB relative to the estimator γ̂p3 with p = 3/2 is equal

to 1.15. So in this case the nonparametric estimator γ̂pk performs better than the sam-

ple estimator of the autocovariance function. Note that considering this AR(2) process,

some other combination of the power p and the lag k produce better results in terms of

e�ciency, with respect to the AR(1) case: the estimators of γ2k, γ3/2k, γ1/2k at the lags

k = 1, 2.

The following table refers to a moving-average process of order 1.
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Table 3.4: Asymptotic e�ciency of γ̂pk for an MA(1) model with θ = 0.7.

k p m AV/CRB k AV/CRB

1

2

1 2.32

2

30.26

30 1.89 24.60

50 1.88 24.44

3/2
1 1.97 78.73

30 1.86 74.25

1 1 1.85 2.02

-1/2

2 2.30 4.36

30 1.09 2.07

50 1.07 2.04

-1

3 3.00 4.15

30 1.07 1.48

50 1.04 1.44

-2
5 6.62 7.78

50 1.16 1.36

Table 3.4 shows a speci�c example of results about moving-average processes. In these

cases results about asymptotic e�ciency of γ̂pk for positive and negative powers p are

reversed with respect to the autoregressive case: the numerical results in the table above

show good estimates for negative powers p, improving as m increases. As an example,

the ratio AV/CRB for the estimator of the inverse autocovariance function (p = −1) is

1.07 for m = 30 and 1.04 with m = 50, very close to unity.

3.4 Minimum contrast estimation

Let us consider the process with spectral density function

[2πfθ(ω)]p = [θ(ω)]−1, (3.34)
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where θ(ω) > 0 is the trigonometric polynomial θ0 + 2
∑K

k=1 θk cos(ωk). Writing θ(ω) =

θ0|φ(e−ıω)|2, φ(e−ıω) = 1 −
∑K

j=1 φje
−ıωj, such that θk = θ0

∑K−k
j=1 φjφj+k, and setting

σ2 = θ−1
0 , it can be seen by integrating both sides of (3.34) over ω ∈ [−π, π], that

γpk is the autocovariance function of the AR(K) process Ut =
∑s

j=1 φjUt−j + σεt, εt ∼
i.i.d. N(0, 1).

Following Taniguchi (1987), let us consider minimum contrast (MC) estimation of

the spectral density fθ(ω) using the contrast functional

K(z; p) = ln(zp) +
1

zp
,

applied to fθ(ω)/gN(ω), where gN(ω) is the corrected pooled periodogram, gN(ω) =

Ī(ω) p
√

Γ(m)/Γ(m+ p) such that E{[gN(ω)]p} = [fθ(ω)]p.

De�ne

Y (ω) =
1

2π

M−1∑
−M+1

γ̂pke
−ıωk, ω ∈ [−π, π],

so that γ̂pk =
∫ π
−π Y (ω)eıωkdω, and gN(ω) = [Y (ω)]1/p.

The MC estimator of (φ1, . . . , φK , σ
2)′ is the minimizer of∫ π

−π
K

(
fθ(ω)

gN(ω)
, p

)
dω =

∫ π

−π

{
lnσ2 − ln |φ(e−ıω)|2 − lnY (ω) +

1

σ2
Y (ω)|φ(e−ıω)|2

}
dω.

The MC estimator of σ2 is σ̂2 = 1
2π

∫ π
−π Y (ω)|φ̂(e−ıω)|2dω. Replacing in the contrast

function (and noticing
∫ π
−π |φ̂(e−ıω)|2dω = 0), the MC estimator of φ = (φ1, . . . , φs)

′ is

the minimizer of the criterion function

Q(φ) =

∫ π

−π
Y (ω)|φ(e−ıω)|2dω.

Writing

|φ(e−ıω)|2 = 1− 2φ′b(ω) + φ′B(ω)φ

where b(ω) = [cosω, cos(2ω), . . . , cos(ωK)]′ and B(ω) = {cos(ω(h−k)), h, k = 1, 2, . . . , s},
di�erentiating with respect to φ and setting the derivatives equal to zero yields

∂Q

∂φ
=

∫ π

−π
Y (ω)(b(ω)−B(ω)φ)dω ≡ 0,
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which is the generalised Yule-Walker system of equations:

γ̂pk =
K∑
j=1

φ̂j γ̂p,k−j, k = 1, 2, . . . , K.

Hence, an asymptotically e�cient estimator of (φ, σ2) and thus of θ can be obtained

by solving a generalised Yule-Walker system base on the GACV estimator (2.20).

3.5 Choice of the pooling parameter m

As we have seen, an important issue to be addressed for estimation of the GACV is

the choice of the pooling parameter m, since it allows (m→∞) the asymptotic variance

of the estimator γ̂pk to achieve its lower bound. However this parameter also has an

in�uence on other properties of the estimator, that have to be considered to have a good

estimate of the GACV. These properties, and hence selection of m, will strongly depend

on the power p. First of all, asymptotic theory requires M and m to be su�ciently large

and m
M

su�ciently small. For negative powers p we need to impose a constraint on m

to ensure the existence of the variance of the r.v.
(

2π
∑m

l=1 I(ωjm+l)
)p
. Moreover, the

asymptotic properties of the estimator of the GACV depend on the power p, and for

instance, its asymptotic variance is higher for negative p, in which case increasing m has

a strong e�ect.

Note that the estimator of the GACV uses a Daniell-type estimator for the spectral

density, which is plugged in the whole expression. Here m plays the role of a smoothing

parameter, controlling the resolution of the estimator. In our speci�c case the pooled

periodogram ordinates over m consecutive frequencies are used. Hence, we need m
M

to

be su�ciently small for f(ω) to be e�ectively constant over frequency intervals of length
2πm
M

, and M and m to be su�ciently large for the asymptotics to be valid. For a �xed

sample size N , increasing m reduces the variance of the estimator, producing a smoother

estimate, but increases the �nite sample bias, as the pooled periodogram ordinates over

m frequencies are used instead of the raw ordinates at each frequency.
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3.5.1 Choice of m in large samples

Let us consider a time series of lengthN large enough for asymptotics to be valid. The

estimator γ̂pk is asymptotically unbiased, hence the optimal selection of m will be based

on minimizing the asymptotic variance, given by (3) with k = l, for a Gaussian stationary

process. Minimization of this quantity consists in minimizing the multiplicative factor

m(C(m; p, p)−1), which is a nonincreasing function of the pooling parameter m for each

given value of p. This can be easily seen graphically, by looking at the plot in Figure 3.3.

Figure 3.3: Plot of m(C(m; p, p)− 1) vs m at di�erent values of the power p

The Gamma function Γ(z) is an analytic function whose only �nite singularities are

z = 0,−1,−2. . . . . In our case we consider m > −2p. The plot con�rms that the factor

m(C(m; p, p) − 1) (and hence the asymptotic variance of γ̂pk) decreases as the pooling

parameter m increases. From the plot we can also observe that as the distance of the

power p from unity increases the value of m(C(m; p, p)− 1) also increases, and the latter

is greater for negative p than for positive p. This behaviour re�ects on the variance of

the estimator, as we saw in the previous ARMA examples.
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The derivative of m(C(m; p, p)− 1) with respect to m, with m > −2p, is given by:

Γ(m+ 2p)Γ(m+ 1)

[Γ(m+ p)]2

{
Ψ(m+ 2p) + Ψ(m+ 1)− 2Ψ(m+ p)

}
− 1

where Ψ(z) = ∂lnΓ(z)
∂z

= Γ′(z)
Γ(z)

is the Digamma function, which has simple poles at

z = 0,−1,−2, . . . . From Figure 3.3, m(C(m; p, p) − 1), for a given value of p, is a

nonincreasing function of m, with a horizontal right asymptote. As shown in Appendix

A, the horizontal asymptote h(p) of m(C(m; p, p)− 1) as m→∞ is:

h(p) = p2

The pooling parameter m can be selected as follows. We implement a code with R

consisting of a function that increments the value of m by 1 unit, and evaluates the

reduction in m(C(m; p, p)−1). The optimal m selected is the one at which this reduction

is small enough. Let us de�ne

∆ = |mi+1(C(mi+1; p, p)− 1)−mi(C(mi; p, p)− 1)|,

We initialize ∆ and set a tolerance level, say ε, small enough. The function takes as

arguments an initial value for the parameter m, (m > −2p), the value for the power p,

and the maximum number of iterations that we want.

• Initialize m and the iteration number it;

• while ∆ > ε AND it < it.max

� update the iteration number it;

� update m;

� evaluate m(C(m; p, p)− 1) at m;

� evaluate ∆;

• return the value of m, m(C(m; p, p)− 1) and the iteration number.



3.5 Choice of the pooling parameter m 50

Table 3.5 reports the selected values of the pooling parameter m for some values of

the power p. The maximum number of iterations is 100 and the tolerance level ε is chosen

as 1% of the range of the function for each value of p considered, as these functions have

di�erent slopes. For instance for p = −2 the curve is steeper than the others and we

need ε = 0.21. Note that the selected m strongly depends on the tolerance level chosen.

Table 3.5: Selected values of the pooling parameter m for p =

2, 3/2, 1/2,−1/2,−1,−2.

p min max range epsilon m

2 4 5 1 0.01 14

3/2 2.25 2.39 0.14 0.014 5

1/2 0.25 0.27 0.02 0.002 5

−1/2 0.25 0.54 0.29 0.0029 12

−1 1 3 2 0.02 13

−2 4 25 21 0.21 15

The table shows that as p gets far from unity a higher value of m is selected, and the

greatest value selected is 15 for estimating γpk with p = −2, while the lowest selected m

is 5 for both p = 3/2 and p = 1/2.

3.5.2 Choice of m in �nite samples

As we have seen, selection of m based on the asymptotic properties of the estimator

of the GACV gives di�erent results depending on p. However, these results are based on

the assumption that the asymptotic distribution of γ̂pk is valid to a good approximation,

and we know that this requires a very large sample. As an example, with a size N = 200

and m = 5 M is only 19.

One method to select the optimal value of m based on a given sample is the use of
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the Jackknife (Quenouille, 1949), as indicated by Luati et al. (2012). Here we propose

the use of a generalization of the frequency domain bootstrap MPB (multiplicative pe-

riodogram bootstrap), as described in Meyer et al. (2018), which is valid for Gaussian

stationary processes, and is based on the assumption of asymptotic independence of the

periodogram ordinates. The MPB approach is often used to estimate the distribution of

periodogram-based estimators M(ϕ, IN) =
∫ π
−π ϕ(ω)I(ω) dω of a spectral mean M(ϕ, f).

The integral in the estimator M(ϕ, IN) is commonly approximated by a Riemann sum

over the Fourier frequencies ωj, j ∈ G(N), with G(N) : =
{
j ∈ Z : 1 ≤ |j| ≤ [N/2]

}
.

We can view the estimator γ̂pk of the GACV as an estimator γ̂pk = 1
2π
M

(
cos (ωk), [2πĪj]

p Γ(m)
Γ(m+p)

)
of the spectral mean γpk = 1

2π
M(cos (ωk), [2πf(ω)]p). We know that for M and m large

enough and M
m

is small enough, 2πĪj = 2πf(ω̄j)Xj, with Xj i.i.d. Gamma random vari-

ables, Xj ∼ Ga(m, 1) and ω̄j are the mid range frequencies de�ned in section 2.1. By fol-

lowing the same reasoning as the standard MPB procedure, we can generate the pseudo-

innovations U∗j as i.i.d. Ga(m, 1) r.v.s. Then de�ne U∗pj = [U∗j ]p Γ(m)
Γ(m+p)

, j ∈ G1(N), where

G1(N) :=
{
j ∈ Z : 0 ≤ j ≤M − 1

}
.

Let T ∗j = U∗pj [2πf̂N(ω̄j)]
p, where f̂N is a consistent (e.g. kernel-type) estimator of

the spectral density f based on a sample of size N. The random variables T ∗(ωj) are

then supposed to mimic the behaviour of [2πĪj]
p Γ(m)

Γ(m+p)
. The distribution of Lp,N =

1
2π
MG1(ϕ, [2πĪj]

p Γ(m)
Γ(m+p)

)− 1
2π
M(ϕ, [2πf ]p) is approximated by the distribution of

V ∗p,N =
1

2π
MG1(ϕ, T

∗)− 1

2π
MG2(ϕ, [2πf̂N ]p),

with G2(N) :=

{
j ∈ Z : 1 ≤ j ≤

[
N−1

2

]}
.
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3.5.3 Real data illustration

Figure 3.4: Quarterly growth rates of US Gross Domestic Product (1947.2-2012.1)

and spectrum estimates.
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Figure 3.5: Plot of estimates of bias, variance and MSE of γ̂pk for k = 3.
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An empirical illustration of the theoretical results obtained is given by investigation

of the quarterly growth rate series of the US Gross Domestic Product (GDP), whose

cyclical nature has been largely inspected. Values of the power p di�erent from 1 can

help in identifying the cyclical features of the series. This can be achieved by solving a

generalisation of the Yule-Walker system of equations. As p varies, the following expres-

sion describes a wider class of spectral models, from which the AR, MA, or fractional

models are obtained as special cases:

2πf(ω) =
[ σ2

p

φp(eiω)φp(e−iω)

] 1
p
, (3.35)

where φp(e
iω) = 1− φp1eiω − φp2e2iω − . . . φpKeKiω. For positive values of p, φp(B) char-

acterizes the autoregressive approximation of the process upt, from which the AR or MA

approximation of the original process can be obtained recursively.

Given a time series realization, one can select the optimal value of p by minimizing a mea-

sure of deviance based on the Whittle's likelihood, Dev(p) =
∑N

j=1

[ I(ωj)
f̂p(ωj)

+ lnf̂p(ωj)
]
.

Estimates of the GACV for several powers p are needed to compute the spectral es-

timates f̂p by the YW method. However, an important issue to be addressed before

estimation of the GACV is the choice of the pooling parameter. Here we use the fre-

quency domain bootstrap procedure described above for selecting the optimal level of

pooling m for several values of p considered. The length of the series is 260, and we

used B = 10000 bootstrap replications to estimate bias, variance and MSE of the es-

timators of the GACVs. A smoothed periodogram estimator with a Gaussian kernel is

used as a consistent estimator f̂ . Figure 3.5 shows some of the results obtained, for

p = −1, 1.5, 2, 2.5 and k = 3. From the plot, a suitable value of m would be 3 for

k = 3, p = 1.5 and p = 2, or 4 for p = 2.5. The GACV estimates, obtained with optimal

pooling parameters according to p, are used to solve the YW equation system to get the

estimates of the parameters that characterize the AR approximation of the process upt.

The corresponding estimates of the spectrum for some positive p are shown in Figure 3.4

together with the plot of the series. From the plot it is evident that powers p greater than

1 emphasize spectral peaks, revealing the cyclical nature of the series. By optimization of

the above measure of deviance we select p = 2.5. The corresponding spectrum estimate

characterizes a new model. It is given by the red line in Figure 3.4, with peaks showing
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a cyclical pattern. The coe�cients of the AR approximation of the power-transformed

process for p = 2.5, estimated by the YW method, suggest an AR(3) model for upt.
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3.6 Appendix

Let us derive the expression for the Fisher information matrix IN associated with

X1, . . . , XN .

Let us consider a Gaussian stationary process. The likelihood function is:

L(θ) = (2π)−N/2|ΣN |−1/2 exp{−1

2
X ′NΣ−1

N XN}

with

ΣN = (σ)j1,j2

where:

(σ)j1,j2 =

∫ π

−π
fθ(ω) exp [i(j1 − j2)ω] dω j1, j2 = 1, . . . , N

The derivative of the log-likelihood function with respect to θj is:

∂ log {L(θ)}
∂θj

=
1

2
X ′NΣ−1

N Σ
(j)
N Σ−1

N XN −
1

2
trΣ−1

N Σ
(j)
N

where, for j = 1, . . . , s,

Σ
(j)
N = (σ

(j)
j1,j2

)

σ
(j)
j1,j2

=
∂σj1,j2
∂θj

=

∫ π

−π
exp [i(j1 − j2)ω]

∂fθ(ω)

∂θj
dω j1, j2 = 1, . . . , N

The following lemmata are useful for the derivation of the matrix IN

Lemma 2 ((J. R. Magnus and Neudecker, 1979)). Let A and B be symmetric non-

random matrices of order N . Then,

E {(X ′NAXN)(X ′NBXN)} = (trAΣN)(trBΣN) + 2tr(AΣNBΣN). (3.36)

Theorem 3 ((J. Magnus and Neudecker, 1999)). Let X be a r.v. with E[X] = µ and

V [X] = Σ, and let A be a symmetric non-random matrix. Then

E [X ′AX] = tr(AΣ) + µ′Aµ (3.37)
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Lemma 3 ((Taniguchi, 1986)). Let D and D∗ be spaces of functions on [−π, π] de�ned

by:

D =

{
f |f(ω) =

∞∑
u=−∞

a(u) exp−iω, a(u) = a(−u),
∞∑

u=−∞

|u||a(u)| <∞

}

D∗ =

{
f |f(ω) ∈ D, 0 < F1 ≤ f(ω) ≤ F2 <∞for ω ∈ [−π, π].

}

For g1, g2 ∈ D∗ we de�ne Γ1,Γ2,Λ1,Λ2, the N ×N Toeplitz matrices, by:

Γs =

(∫ π

−π
exp{i(j1 − j2)ω}fs(ω) dω

)

Λs =

(∫ π

−π
exp{i(j1 − j2)ω}gs(ω) dω

)
j1, j2 = 1, . . . , N, s = 1, 2. Then

1

N
trΓ1Λ1

−1Γ2Λ2
−1 =

1

2π

∫ π

−π

f1(ω)f2(ω)

g1(ω)g2(ω)
dω +O(N−1). (3.38)

Under the assumptions 1-3 we can derive the expression for the Fisher information

matrix applying the de�nition given and by using the cited theorems and lemmata.
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iN(j1, j2) = E

{
∂ logL(θ)

∂θj1

∂ logL(θ)

∂θj2

}
=

= E [

(
1

2
X ′Σ−1

N Σ
(j1)
N Σ−1

N X − 1

2
trΣ−1

N Σ
(j1)
N

)(
1

2
X ′Σ−1

N Σ
(j2)
N Σ−1

N X − 1

2
trΣ−1

N Σ
(j2)
N

)
] =

=
1

4
E [X ′Σ−1

N Σ
(j1)
N Σ−1

N XX ′Σ−1
N Σ

(j2)
N Σ−1

N X] +

−1

4
E [X ′Σ−1

N Σ
(j1)
N Σ−1

N XtrΣ−1
N Σ

(j2)
N ] +

−1

4
E [tr(Σ−1

N Σ
(j1)
N )X ′Σ−1

N Σ
(j2)
N Σ−1

N X] +

+
1

4
tr(Σ−1

N Σ
(j1)
N )tr(Σ−1

N Σ
(j2)
N ) =

=
1

4
tr(Σ−1

N Σ
(j1)
N Σ−1

N ΣN)tr(Σ−1
N Σ

(j2)
N Σ−1

N ΣN) +

+
1

2
tr(Σ−1

N Σ
(j1)
N Σ−1

N ΣNΣ−1
N Σ

(j2)
N Σ−1

N ΣN) +

−1

4
tr(Σ−1

N Σ
(j2)
N )E [X ′Σ−1

N Σ
(j1)
N Σ−1

N X] +

−1

4
tr(Σ−1

N Σ
(j1)
N )E [X ′Σ−1

N Σ
(j2)
N Σ−1

N X] +

+
1

4
tr(Σ−1

N Σ
(j1)
N )tr(Σ−1

N Σ
(j2)
N ) =

Now we can apply Lemma 3 considering

Γ1 = Σ
(j1)
N =

∫ π

−π
exp {i(j1 − j2)ω}∂fθ(ω)

∂θ(j1)

dω,Γ2 = Σ
(j2)
N ,

Λ1 = Λ2 = ΣN =

∫ π

−π
exp {i(j1 − j2)ω}fθ(ω) dω

So that f1(ω) = ∂fθ(ω)
∂θj1

, f2(ω) = ∂fθ(ω)
∂θj2

and g1(ω) = g2(ω) = fθ(ω).

Applying the Lemma gives:
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iN(j1, j2) =
1

4
tr(Σ−1

N Σ
(j1)
N )tr(Σ−1

N Σ
(j2)
N ) +

1

4π

∫ π

−π

∂fθ(ω)

∂θj1

∂fθ(ω)

∂θj2

1

f 2
θ (ω)

dω +

−1

4
tr(Σ−1

N Σ
(j2)
N )E [X ′Σ−1

N Σ
(j1)
N Σ−1

N X] +

−1

4
tr(Σ−1

N Σ
(j2)
N )E [X ′Σ−1

N Σ
(j2)
N Σ−1

N X] +
1

4
tr(Σ−1

N Σ
(j1)
N )tr(Σ−1

N Σ
(j2)
N ) =

(3.39)

Now we can use Theorem 3:

E [X ′AX] = tr(AΣN) + µ′Aµ

where in our case we have: µ = 0. In the �rst expectation A = Σ−1
N Σ

(j1)
N Σ−1

N , so

E [X ′Σ−1
N Σ

(j1)
N Σ−1

N X] = tr(Σ−1
N Σ

(j1)
N Σ−1

N ΣN) + 0. While in the second expectation A =

Σ−1
N Σ

(j2)
N Σ−1

N , giving E [X ′Σ−1
N Σ

(j2)
N Σ−1

N X] = tr(Σ−1
N Σ

(j2)
N Σ−1

N ΣN) + 0. Using these results

we obtain:

iN(j1, j2) =
1

2
tr(Σ−1

N Σ
(j1)
N )tr(Σ−1

N Σ
(j2)
N ) +

1

4π

∫ π

−π

∂fθ(ω)

∂θj1

∂fθ(ω)

∂θj2

1

f 2
θ (ω)

dω +

−1

4
tr(Σ−1

N Σ
(j2)
N )tr(Σ−1

N Σ
(j1)
N Σ−1

N ΣN)− 1

4
tr(Σ−1

N Σ
(j1)
N )tr(Σ−1

N Σ
(j2)
N Σ−1

N ΣN) =

=
1

2
tr(Σ−1

N Σ
(j1)
N )tr(Σ−1

N Σ
(j2)
N ) +

1

4π

∫ π

−π

∂fθ(ω)

∂θj1

∂fθ(ω)

∂θj2

1

f 2
θ (ω)

dω +

−1

2
tr(Σ−1

N Σ
(j1)
N )tr(Σ−1

N Σ
(j2)
N ) =

=
1

4π

∫ π

−π

∂fθ(ω)

∂θj1

∂fθ(ω)

∂θj2

1

f 2
θ (ω)

dω

which provides the generic element of the Fisher information matrix.

Asymptotic e�ciency of the estimator of the GACV depends on the factor m(C(m;p,p)−1)
p2

.

Here we prove its convergence to 1 as m→∞.
We start by using a result about the approximation of the ratio of two Gamma func-

tions, obtained by the use of the Stirling's series (Erdélyi, Magnus, Oberhettinger, and

Tricomi, 1954):

Γ(z + α)

Γ(z + β)
= zα−β

[
1 +

(α− β)(α + β − 1)

2z
+O(|z|−2)

]
(3.40)
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as z →∞, where α and β are bounded. By using this approximation we can rewrite

Γ(m)Γ(m+ 2p)

[Γ(m+ p)][Γ(m+ p)]
≈ m−p

[
1 +

(−p)(p− 1)

2m

]
mp
[
1 +

p(3p− 1)

2m

]
=

=
4m2 + 4mp2 − 3p4 + 4p3 − p2

4m2
, (3.41)

and substitute it in the whole expression:

m(C(m; p, p)− 1) = m
( Γ(m)Γ(m+ 2p)

[Γ(m+ p)][Γ(m+ p)]
− 1
)
≈

≈ m
(4m2 + 4mp2 − 3p4 + 4p3 − p2

4m2
− 1
)

(3.42)

By applying the change of variable t = 1
m

we can use the De L'Hopital theorem to

�nd the limit as t→ 0+:

lim
t→0+

(
4t−2+4p2t−1−3p4+4p3−p2

4t−2 − 1
)

t
=

= lim
t→0+

∂
∂t

(
4t−2+4p2t−1−3p4+4p3−p2

4t−2 − 1
)

∂
∂t
t

= p2 (3.43)

Hence the horizontal asymptote h(p) of m(C(m; p, p)− 1) as m→∞ is:

h(p) = p2 (3.44)

and, limm→∞
m(C(m;p,p)−1)

p2
= 1.



Chapter 4

Multivariate extensions

In studying a phenomenon, we often encounter many variables, Xi,t, i = 1, . . . , r,

and the observations are taken over time. For convenience we use a vector, Xt =

(X1,t, X2,t, . . . , Xr,t)
′ to denote the set of these variables, where Xi,t is the ith component

of the random vector at time t. A realization from the vector process Xt is a vector (or

multivariate) time series. We will consider discrete time series, with t ∈ T, where T is

a discrete time set. The fundamental characteristic of a multivariate time series is that

its observations depend both on component i and on time t (Wei, 2019).

We �rst introduce some basic concepts of multivariate time series analysis, in both the

time domain and the frequency domain.

As shown in the previous chapters for scalar time series, the de�nition of an auxiliary

process, based on a power transformation of the original process, allows the de�nition and

investigation of many important quantities in time series analysis, nested in the GACV.

Proietti and Luati (2015) de�ned the power-transformed process upt, whose Wold co-

e�cients can be obtained recursively from the Wold coe�cients of the original process

(Gould, 1974). This allows to give the GACV (and the quantities related to it, includ-

ing the variance pro�le) an analytical form in terms of the coe�cients that govern the

process.

Formulae for the coe�cients of powers of Taylor series have been known since a long

time. In the work by Gould (1974) several forms of formulae for the coe�cients of any

62



4.1 Multivariate spectral analysis of time series 63

real power of Taylor series are proved and put in a logical order. These formulae are

useful in the de�nition of the generalised linear cepstral models (Proietti and Luati,

2019), characterized by the generalised cepstral coe�cients, directly connected with the

GACV, and hence the variance pro�le. The generalised linear cepstral models are lin-

ear models for the Box-Cox transform of the spectral density. The exponential model

(Bloom�eld, 1973), which arises as a special case, is a linear model for the log-spectrum.

A recursive formula for the coe�cients of the log-transform of a polynomial is provided

by Pourahmadi (1983). A multivariate extension of the latter formula to matrix polyno-

mials and of the exponential model is provided by Holan et al. (2017). We aim at deriving

a method to get the coe�cients of a power transformation of a matrix polynomial, valid

for any real power. This allows analytical de�nition (in terms of the power-transformed

process) of the matrix GACV, the matrix variance pro�le, and generalised linear cepstral

models for vector time series.

In this chapter we will consider vector stationary time series. An rdimensional vector

process Xt is a stationary process if each of its components is a univariate stationary

process, and its �rst two moments are time-invariant.

4.1 Multivariate spectral analysis of time series

Let Xt = (X1,t, X2,t, . . . , Xr,t)
′ be a rdimensional real-valued vector process, with

mean vector µ and lag k covariance matrix function Γk = E[(Xt − µ)(Xt+k − µ)′] =

[γi,j,k]
r
i,j=1, where γi,j,k is the covariance between Xi,t and Xj,t+k, while for i = j, γii,k

is the autocovariance function for the ith component, Xi,t. It can be easily seen that

Γk = Γ′
−k, and that Γ0 is the variance-covariance matrix of the processXt.

The correlation matrix function of the process is de�ned by:

ρk = D−1/2ΓkD
−1/2,

where D is a diagonal matrix in which the ith diagonal element is the variance of the i

component Xi,t.
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Let us consider the Wold representation of the vector process Xt : Xt = Ψ(L)εt, where

{εt} is a vector White Noise process with mean zero and covariance matrix Σ. Then, the

covariance matrix function is given by:

Γk =
∑
j≥0

Ψj+kΣΨ
′

j (4.1)

Given a realization of length N, xt, from the vector processXt, the covariance matrix

function can be naturally estimated by the sample covariance matrix function, given by:

Γ̃k =
1

N

N−k∑
t=1

(xt − x̄)(xt+k − x̄)′, 0 ≤ k ≤ N − 1, (4.2)

where x̄ is the sample mean.

Results for spectral analysis of univariate time series can be readily generalised to a

r dimensional vector process.

The spectral representation of the covariance matrix function is given by:

Γk =

∫ π

−π
eiωkdF (ω), (4.3)

where F (ω) is the spectral distribution matrix of Xt. The diagonal elements Fi,i(ω) are

the spectral distribution functions of Xi,t, and the o�-diagonal elements Fi,j(ω) are the

cross-spectral distribution function between Xi,t, and Xj,t.

If the covariance matrix is absolutely summable, in the sense that each of the r × r

sequence γi,j,k is absolutely summable, then, the spectral density matrix exists and is

given by:

f(ω)dω = dF (ω) = [fi,j(ω)dω]. (4.4)

Thus,

Γk =

∫ π

−π
eiωkf(ω) dω, (4.5)

and

f(ω) =
1

2π

∞∑
k=−∞

Γke
−iωk = [fi,j(ω)], (4.6)
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where

fi,j(ω) =
1

2π

∞∑
k=−∞

γi,j,ke
−iωk. (4.7)

The diagonal elements fi,i(ω) are the spectral density functions of Xi,t, and the o�-

diagonal elements fi,j(ω) are the cross-spectrum of Xi,t, and Xj,t.

when k = 0 we have Γ0 =
∫ π
−π f(ω) dω. hence, the area under the multivariate

spectrum is the variance-covariance matrix of the process.It can be easily seen that the

spectral density matrix function f(ω) is positive semide�nite, that is c′f(ω)c ≥ 0 for

any nonzero rdimensional complex vector c′ (Wei, 2019). Also, f(ω)is Hermitian, i.e.

f ∗(ω) = f(ω).

For a vector process{Xt} with Wold representation Xt = Ψ(L)εt, where {εt} is a
vector White Noise process with mean zero and covariance matrix Σ, the spectral density

matrix function is given by:

f(ω) = Ψ(e−iω)ΣΨ
′
(eiω). (4.8)

Given a realization of lengthN xt from the vector processXt, the periodogram matrix

represents the sample analog of the spectral density matrix. Similar to the univariate

case, the periodogram matrix, or sample spectrum matrix, is de�ned as:

IN(ωj) =
1

2πN

 N∑
t=1

Xte
−iωjt

2

, (4.9)

and it can be shown that:

IN(ωj) =
1

2π

N−1∑
k=−(N−1)

Γ̃ke
−iωjk, (4.10)

The periodogram matrix, as the periodogram for scalar time series, is also a poor es-

timate of the spectral density matrix, and to overcome this issue, smoothing techniques

for the periodogram matrix are often used.

Similar to univariate time series, models for the spectrum of a vector time series can

be speci�ed. Holan et al. (2017) extended to vector time series the exponential model
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for scalar time series de�ned by Bloom�eld (1973).

4.2 The vector exponential model

The vector exponential model (Holan et al., 2017) represents a �exible frequency

domain model expressed in terms of the spectral density matrix, which extends to the

multivariate case the exponential model for scalar time series of Bloom�eld (1973).

The vector exponential model (VEXP) has some advantages over VAR and VARMA

models. The VEXP model is always invertible, which implies that the spectral density

matrix is non-singular at all frequencies, and it is also stationary. Although when es-

timation proceeds in an unconstrained fashion, VAR and VARMA processes need not

be stationary and invertible, there are practical scenarios in which restrictions on VAR

and VARMA processes are needed: non-invertibility of a vector process makes Whittle

estimation intractable, and also, for non-invertible vector processes long-term forecast-

ing �lters are not well-de�ned (McCracken and McElroy, 2014). For a VEXP model

stationarity and invertibility are automatic, and the parameters are unconstrained.

The de�nition of the VEXP model involves the notion of matrix exponential (Artin,

1991). Since the spectral density matrix is Hermitian, it can be written as f(ω) = PAP ∗,

where P is a unitary matrix,P ∗ = P−1, and A = A(ω) is diagonal with positive diagonal

elements. Then, expf = P exp (A)P ∗, where exp (A) is a diagonal matrix with diagonal

elements being the exponential of the diagonal elements of A. Hence, we can write:

f = exp [P log (A)P ∗].

Holan et al. (2017) noted that the matrix P log (A)P ∗ can be expanded as:

P log (A)P ∗ =
∞∑

k=−∞

Θke
−iωk, (4.11)

where Θk are the Fourier coe�cients of P log (A)P ∗, and they are called cepstral matrices

(cepstral coe�cients when considering scalar time series).
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Therefore, the spectral density matrix can be written as:

f = exp
( ∞∑
k=−∞

Θke
−iωk

)
(4.12)

To de�ne the VEXP model, Holan et al. (2017) denoted Ψ(z) = exp Ω(z), for some power

series Ω(z) =
∑

k≥1 Ωkz
k. When the cepstral matrices are all commutative Θ(z) = Ω(z).

The VEXP model is obtained by truncating the power series Ω(z) to a polynomial. Then,

the Wold representation of the order q VEXP model is de�ned to be:

Ψ(z) = exp [Ω]q1(z) (4.13)

The White Noise process has covariance matrix Σ = exp Ω0, and the spectral density

function of the VEXP(q) process can be written as:

f(ω) = exp {[Ω]q1(e−iω)} exp (Ω0) exp {[Ω′ ]q1(eiω)} (4.14)

For the VEXP(q) process a condition is needed on the Wold power series, which is that

detΨ(z) 6= 0 for all z ∈ D = {z ∈ C : |z| ≤ 1}. Conversely, whenever a cepstral power

series is also well-de�ned for z ∈ D, then, exp Ω(z) is well-de�ned. In particular, [Ω]q1(z)

is always convergent on C, so that the VEXP(q) is always invertible and stationary.

As established in Holan et al. (2017), the VEXP(q) process with q < ∞ is stationary,

invertible and identi�able.

In the univariate case, one may di�erentiate Eq. (4.13) with respect to z and match

the coe�cients to get the recurrence relations in (Pourahmadi, 1983). This approach is

demonstrably false in the multivariate case, since di�erentiation of the matrix exponential

must allow for the non-Abelian algebra, as pointed out in Holan et al. (2017). Instead,

they provide formulas relating the Wold matrix coe�cients to the cepstral matrices,

by expanding the matrix exponential using a Taylor series. The Wold coe�cients are

obtained by:

Ψk =
∑
l≥1

1

l!

( ∑
λ|=k:|λ|=l

l∏
j=1

Ωij

)
, k ≥ 1, (4.15)

where λ |= k denotes a partition of the integer k considering the order of the numbers

occurring in the partition. This is due to the (general) non-commutativity of the cepstral
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matrices, since Ω1Ω2 6= Ω2Ω1 in general, and they must be accounted as distinct terms in

the summation. Expanding the matrix logarithm, the relation of the cepstral matrices

to the Wold coe�cients is provided by:

Ωk =
∑
l≥1

(−1)l

l

( ∑
λ|=k:|λ|=l

l∏
j=1

Ψij

)
. (4.16)

Since the number of partitions involved in the formulas above quickly grows, Holan et

al. (2017) provide a simpler equivalent method to relate cepstral and Wold matrix coef-

�cients.

Formula (4.15) allows to get the Wold coe�cients characterizing the process, given

the cepstral coe�cients, by expanding the exponential transformation of the matrix

polynomial [Ω]q1(z). The Wold coe�cients are then used for computation of the spectral

density matrix, for forecasting, or assessing goodness-of-�t of the model.

As previously cited, in the univariate case the relation between the Wold coe�cients

and the Fourier coe�cients of the log-spectrum (the cepstral coe�cients) is provided by

a recursive formula involving previously computed Wold coe�cients and a �nite set of

cepstral coe�cients, described in Pourahmadi (1983).

Recursive formulae for the coe�cients of transformations of Taylor series and polynomi-

als have occupied attention of many scholars. In particular, recursive relations for the

coe�cients of powers of Taylor series have been known a long time.

Many authors have expresses the relation between the coe�cients of a given Taylor series

and its power transform in di�erent implicit or explicit forms. Gould (1974) derived these

formulae for power transformations of Taylor series, for any real power, and put them

in a logical order. His paper provides recursive formulae also for powers of Dirichlet series.

In the next section we consider in the univariate case recursive formulae for trans-

formations of polynomials, and a recursive formula is provided, which nests those by

Pourahmadi (1983) and by Gould (1974).
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4.3 Recursive formulae for powers of polynomials

Following Proietti et al. (2020), in the univariate case we derive an encompassing

formula for the coe�cients of the polynomial

ψ(z) = [1 + λb(z)]
1
λ , b(z) =

q∑
k=1

bkz
k. (4.17)

Denote θ(z) = 1 + λb(z) =
∑q

k=0 θkz
k, θ0 = 1, θk = λbk, k ≥ 1.

Di�erentiating both sides of (4.17) with respect to z and denoting ψ̇(z) = d
dz
ψ(z),

ḃ(z) = d
dz
b(z), and θ̇(z) = d

dz
θ(z),

ψ̇(z) = [1 + λb(z)]
1
λ
−1ḃ(z)

= ψ(z)[1 + λb(z)]−1ḃ(z).

Then, replacing θ̇(z) = λḃ(z), gives the identity

ψ̇(z)θ(z) = λ−1ψ(z)θ̇(z). (4.18)

Replacing ψ̇(z) =
∑∞

k=0(k + 1)ψk+1z
k and θ̇(z) =

∑q−1
k=0(k + 1)θk+1z

k and convoluting

the polynomials on both sides of (4.18) yields

∞∑
k=0

[
k∧q∑
j=0

(k + 1− j)ψk+1−jθj

]
zk =

∞∑
k=0

[
k∧q∑
j=1

j

λ
ψk+1−jθj

]
zk.

Equating the coe�cients of zk both sides

(K + 1)ψk+1 +

k∧q∑
j=1

(k + 1− j)θjψk+1−j =

k∧q∑
j=1

j

λ
θjψk+1−j, k ≥ 1,

and rearranging yields

ψk+1 =
1

k + 1

k∧q∑
j=1

[
j(λ−1 + 1)− (k + 1)

]
θjψk+1−j, ψ0 = 1, (4.19)

which is Gould's formula (Gould, 1974) p = λ−1.
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Also, replacing θj = λbj, gives the encompassing formula

ψk+1 =
1

k + 1

k∧q∑
j=1

[j(1 + λ)− λ(k + 1)] bjψk+1−j, ψ0 = 1, (4.20)

which gives the formula by Pourahmadi (1983) as a limiting case, for λ = 0, providing

the coe�cients of ψ(z) = exp{b(z)} as ψk+1 =
∑k∧q

j=1 jbjψk+1−j.

In the next section we are interested in �nding the relation between the coe�cients

of a given matrix polynomial, and the coe�cients of its power transformation, for any

real power transform

4.4 Formulae for powers of matrix polynomials

Let Ψ(z) be an r × r matrix polynomial of degree q, i.e., a polynomial in z with

matrix coe�cients:

Ψ(z) = Ψ0 + Ψ1z + Ψ2z
2 + · · ·+ Ψqz

q,

with

Ψ0 = Ir.

This is equivalent to a square matrix whose elements are polynomials in z.

Let us consider:

[Ψ(z)]p = Φp(z) = Φp,0 + Φp,1z + Φp,2z
2 + · · ·+ Φp,pqz

pq, (4.21)

where Φp,0 = Ir and p ∈ <. The Taylor series expansion for the matrix polynomial Φp(z)

is (Gohberg, Lancaster, and Rodman, 2005):

Φp(z) = Φp(z0) + Φ(1)
p (z0)(z − z0) +

1

2!
Φ(2)
p (z0)(z − z0)2 +

· · ·+ 1

l!
Φ(l)
p (z0)(z − z0)l + · · ·+ 1

pq!
Φ(pq)
p (z0)(z − z0)pq, (4.22)

where Φ
(l)
p (z) is the lth derivative of Φp(z).

Interest resides in �nding a recursive relation between the coe�cients of Φp(z) and the
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coe�cients of Ψ(z). Note that Φ1(z) = Ψ(z).

Let us start by �rst considering the case where p = k, a positive integer. The Taylor

series expansion of Φk(z) = [Ψ(z)]k about z0 = 0 is:

Φk(z) = [Ψ(z)]k = Φk(0) + Φ
(1)
k (0)z +

1

2!
Φ

(2)
k (0)z2 +

· · ·+ 1

l!
Φ

(l)
k (0)zl + · · ·+ 1

pq!
Φ

(kq)
k (0)zkq (4.23)

where Φ
(l)
k (0) = Dl[Ψ(z)]k

Dzl
|z=0 is the lth derivative of [Ψ(z)]k evaluated at z = 0. Hence,

the lth coe�cient of the power-transformed matrix polynomial Φk(z) is given by Φk,l =
1
l!
Φ

(l)
k (0).

The �rst derivative of [Ψ(z)]k (for k a positive integer) is given by:

D[Ψ(z)]k

Dz
=

k∑
j=1

Ψj−1(z)
DΨ(z)

Dz
Ψk−j(z). (4.24)

For A(z) and B(z) two r × r matrix polynomials, by the product rule for matrix

functions:

D[A(z)B(z)]

Dz
=
DA(z)

Dz
B(z) + A(z)

DB(z)

Dz
. (4.25)

Iterated use of (4.24) and (4.25) allows to write the derivatives of [Ψ(z)]k.

D2[Ψ(z)]k

Dz2
=

D

Dz

[DΨk(z)

Dz

]
=

D

Dz

[ k∑
j=1

Ψj−1(z)
DΨ(z)

Dz
Ψk−j(z)

]
.

By writing the derivative of a sum of functions as the sum of the derivatives of the

functions, and using (4.24) and (4.25) we �nd that:

D2[Ψ(z)]k

Dz2
=

k∑
j=1

{
j−1∑
i=1

Ψi−1(z)
DΨ(z)

Dz
Ψj−1−i(z)

DΨ(z)

Dz
Ψk−j(z) + Ψj−1(z)

D2Ψ(z)

Dz2
Ψk−j(z) +

+Ψj−1(z)
DΨ(z)

Dz

k−j∑
h=1

Ψh−1(z)
DΨ(z)

Dz
Ψk−j−h(z)

}
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Analogously the third derivative of [Ψ(z)]k is:

D3[Ψ(z)]k

Dz3
=

D

Dz

[D2Ψk(z)

Dz2

]
=

=
k∑
j=1

{
j−1∑
i=1

[
i−1∑
u=1

Ψu−1(z)
DΨ(z)

Dz
Ψi−1−u(z)

DΨ(z)

Dz
Ψj−1−i(z)

]
Ψ(z)

Dz
Ψk−j(z) +

+

j−1∑
i=1

[
Ψi−1(z)

D2Ψ(z)

Dz2
Ψj−1−i(z)

]
DΨ(z)

Dz
Ψk−j(z) +

+

j−1∑
i=1

[
Ψi−1(z)

DΨ(z)

Dz

j−1−i∑
v=1

Ψv−1(z)
DΨ(z)

Dz
Ψj−1−i−v(z)

]
DΨ(z)

Dz
Ψk−j(z) +

+

j−1∑
i=1

[
Ψi−1(z)

DΨ(z)

Dz
Ψj−1−i(z)

]
D2Ψ(z)

Dz2
Ψk−j(z) +

+

j−1∑
i=1

[
Ψi−1(z)

DΨ(z)

Dz
Ψj−1−i(z)

]
DΨ(z)

Dz

k−j∑
w=1

Ψw−1(z)
DΨ(z)

Dz
Ψk−j−w(z) +

+

j−1∑
p=1

[
Ψp−1(z)

DΨ(z)

Dz
Ψj−1−p(z)

]
D2Ψ(z)

Dz2
Ψk−j(z) + Ψj−1(z)

D3Ψ(z)

Dz3
Ψk−j(z) +

+Ψj−1(z)
D2Ψ(z)

Dz2

k−j∑
m=1

Ψm−1(z)
DΨ(z)

Dz
Ψk−j−m(z) +

+

j−1∑
n=1

[
Ψn−1(z)

DΨ(z)

Dz
Ψj−1−n(z)

]
DΨ(z)

Dz

k−j∑
h=1

[
Ψh−1(z)

DΨ(z)

Dz
Ψk−j−h(z)

]
+

+Ψj−1(z)
D2Ψ(z)

Dz2

k−j∑
h=1

[
Ψh−1(z)

DΨ(z)

Dz
Ψk−j−h(z)

]
+

+Ψj−1(z)
DΨ(z)

Dz

k−j∑
h=1

[
h−1∑
o=1

Ψo−1(z)
DΨ(z)

Dz
Ψh−1−o(z)

DΨ(z)

Dz
Ψk−j−h(z)

]
+

+Ψj−1(z)
DΨ(z)

Dz

k−j∑
h=1

[
Ψh−1(z)

D2Ψ(z)

Dz2
Ψk−j−h(z)

]
+

+Ψj−1(z)
DΨ(z)

Dz

k−j∑
h=1

[
Ψh−1(z)

DΨ(z)

Dz

k−j−h∑
g=1

Ψg−1(z)
DΨ(z)

Dz
Ψk−j−h−g(z)

]}
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The same proceeding can be applied to higher order derivatives.

To write the lth coe�cient of Φk(z) = [Ψ(z)]k note that:

Ψ(0) = Ir, [Ψ(0)]k = Ir

Ψ(1)(0) = Ψ1

Ψ(2)(0) = 2Ψ2

Ψ(3)(0) = 6Ψ3

. . .

Hence, by the previous results we get the coe�cients of Φk(z) as Φk,l = 1
l!
Φ

(l)
k (0):

Φk,0 = Ir

Φk,1 = kΨ1

Φk,2 =
1

2
k(k − 1)(Ψ1)2 + kΨ2

Φk,3 =
1

6
k(k − 1)(k − 2)(Ψ1)3 +

1

3

k∑
j=1

(2k − 1− j)Ψ2Ψ1 +
1

3

k∑
j=1

(k − 2 + j)Ψ1Ψ2 + kΨ3

. . .

A recursive relation among the coe�cients Φk,l is apparent, and it is given by

Φk,l =
l∑

i=0

Φk−1,iΨl−i, (4.26)

which coincides with the result by Karampetakis and Tzekis (2005).

Let us consider now [Ψ(z)]p = Φp(z) with p a real number. In this case we can make

use of the results in Holan et al. (2017) about the exponential transform and the log

transform of a matrix polynomial.

For any complex-valued square matrix A, convergence of the matrix exponential exp {A}
is guaranteed by Proposition 8.3 of Artin (1991). Let Ψ(z) = exp {Θ(z)}, with Θ(z) a

�nite degree matrix polynomial, and assume:

‖ Ir −Ψ(z) ‖< 1 ∀ z ∈ D (4.27)
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for some matrix norm ‖ ‖ and D = {z ∈ C : |z| ≤ 1} (Holan et al., 2017). (4.27)

guarantees invertibility of exp {Θ(z)}.

Let us get back to the power transformed matrix polynomial:

Φp(z) = [Ψ(z)]p = Φp,0 + Φp,1z + Φp,2z
2 + Φp,3z

3 + . . . .

If we take the logarithm in the previous equation, by the properties of the log transform

of matrix powers we have:

ln {Φp(z)} = ln {[Ψ(z)]p} = p ln {Ψ(z)} = pΘ(z). (4.28)

At this stage we can derive the coe�cients of Θ(z) based on the coe�cients in Ψ(z)

using the recursion (4.16) in Holan et al. (2017):

Θl =
∑
k≥1

(−1)k

k

( ∑
λ|=l:|λ|=k

( k∏
j=1

Ψij

))
(4.29)

Let us set pΘ(z) = Θp(z). Each coe�cient of Θp(z) is obtained from the coe�cients of

Θ(z) by multiplying each element by p. Then:

ln {Φp(z)} = Θp(z)

and

Φp(z) = exp {Θp(z)}.

Hence, the coe�cients of the matrix polynomial Φp(z) can be obtained by using the

result (4.15) in Holan et al.(2017, pag. 29):

Φp,l =
∑
k≥1

1

k!

( ∑
λ|=l:|λ|=k

( k∏
j=1

Θp,ij

))
(4.30)

Hence we are able to �nd the coe�cients of the power transformed polynomial Φp(z)

starting from the coe�cients of Ψ(z). The reverse proceeding is also allowed.

This two-step-procedure described above to obtain the coe�cients of a power trans-

formation of a matrix polynomial can be used for time series analysis purposes, in the

same spirit as univariate formulae are used as discussed in the previous chapters and

sections.
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4.5 The multivariate generalised cepstral model

The univariate generalised cepstral models, de�ned by Proietti and Luati (2019), in-

clude as special cases various univariate models, as shown in chapter 2, as the univariate

exponential model, or autoregressive and moving-average models. The generalised linear

cepstral models for the spectrum of a scalar time series can be extended to the multivari-

ate case to model the Box-Cox transform of the matrix spectrum of vector time series

(Cavicchioli et al., 2020).

Let Xt = (X1,t, X2,t, . . . , Xr,t)
′ be a r−dimensional stationary vector process, with

zero mean. As previously noted, the spectral density matrix is Hermitian, and it can be

expressed as f = PAP ∗, where A is a diagonal matrix with positive diagonal elements,

and P ∗ = P−1. Then, the λth power, with λ ∈ R, of the spectral density matrix is

fλ = PAλP ∗, and

f =
(
PAλP ∗

) 1
λ .

The matrix function fλ can be expanded as:

PAλP ∗ =
∞∑

k=−∞

Γλke
−iωk, (4.31)

where the matrix coe�cients Γλk can be obtained as the inverse Fourier transform of

PAλP ∗ :

Γλk =
1

2π

∫ π

−π
PAλP ∗eiωk. (4.32)

Equation above (4.32) provides a multivariate extension of the generalised autocovari-

ance function for scalar time series, and are called generalised autocovariance matrices

(Cavicchioli et al., 2020).

Let us introduce the Box-Cox transform g of the spectral density matrix f :

g(ω) =


[f(ω)]λ−Ir

λ
, λ 6= 0,

ln [f(ω)], λ = 0,
(4.33)
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Cavicchioli et al. (2020) showed that:

lim
λ→0

[f(ω)]λ − Ir
λ

= ln [f(ω)]

the matrix function g can be represented as:

g(ω) =
∞∑

k=−∞

Cλke
−iωk. (4.34)

In turn, the matrix coe�cients Cλk are the inverse Fourier transform of g(ω), and are

the generalised cepstral matrices:

Cλk =
1

2π

∫ π

−π
g(ω)eiωk. (4.35)

The generalised matrix cepstral model of order K, with transformation parameter

λ ∈ R arises by truncating the series in (4.34) and assuming that g can be represented

by a �nite Fourier polynomial:

g(ω) =
K∑

k=−K

Cλke
−iωk. (4.36)

Hence, the vector exponential model by Holan et al. (2017) is obtained as a special case

when λ = 0. Also, for λ = 1 the order K generalised matrix cepstral model coincides

with the vector moving-average model of order K, while for λ = −1 it gives the VAR(K)

model.

Cavicchioli et al. (2020) noted that Cλ,−k = C
′

λ,k, for every integer k < 0, and for

λ = k = 0 the Kolmogorov-Szego formula for the prediction error variance, Σ, gives:

exp
( 1

2π

∫ π

−π
ln [f(ω)]dω

)
= exp (C00) = Σ

For λ 6= 0 the generalised cepstral matrices are related to the generalised autocovariance

matrix:

Cλ0 =
1

λ
(Γλ0 − Ir), Cλk =

1

λ
Γλk (4.37)

For λ = −1, Γ−1,k provides the multivariate analog of the inverse autocovariance func-

tion, Γ0,k = 0r×r, and Γ0,0 = Ir up to a constant, while Ir +C1,0 = Γ1,0 is the uncondi-

tional variance matrix of the process, and (Ir−C1,0)−1 is the interpolation error variance.
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Let us consider the Wold representation of the vector process:

Xt = Ψ(L)εt,

where {εt} is a vector White Noise process with mean zero and covariance matrix Σ.

The spectral density matrix is f(ω) = Ψ(e−iω)ΣΨ
′
(eiω). Then,

f(ω)λ = Φλ(e
−iω)ΣΦ

′

λ(e
iω), (4.38)

where

Φλ(z) =
K∑
k=1

Φλ,kz
k, Φλ,0 = Ir.

Then, when λ 6= 0 the generalised cepstral matrices are:

Cλ0 =
1

λ

( K∑
k=0

Φλ,kΣλΦ
′

λ,k − Ir
)

(4.39)

Cλk =
1

λ

K∑
j=k

Φλ,jΣλΦ
′

λ,j−k (4.40)

where we assume that detΦλ(z) 6= 0 for |z| ≤ 1. For λ = 0 the Wold coe�cients can be

obtained from the cepstral matrix coe�cients C0k = Ωk, as shown by Holan et al. (2017),

by formula (4.15) in section 4.2. As pointed out in section 4.2, Pourahmadi's recursive

formula for the log-transform of scalar polynomials does not hold in the multivariate

setting, since the algebra relating the Wold coe�cients to the cepstral coe�cients is no

longer Abelian (Holan et al., 2017).

For λ 6= 0 we use the procedure described in the previous section, which relates the Wold

coe�cients to the coe�cients of Φλ(z), instead of the formula provided at pag. 614 in

(Cavicchioli et al., 2020).

First, note that Ψ(z) = [Φλ(z)]
1
λ , λ ∈ R, and ln [Ψ(z)] = 1

λ
ln [Φλ(z)] = 1

λ
Θ(z), where we

call ln [Φλ(z)] = Θ(z). Following the results by Holan et al. (2017), the coe�cients of

Θ(z) are obtained by:

Θl =
∑
k≥1

(−1)k

k

( ∑
λ|=l:|λ|=k

( k∏
j=1

Φλ,ij

))
. (4.41)
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Setting Θλ = 1
λ
Θ(z), obtained by multiplying each element of Θ(z) by 1

λ
, the coe�-

cients of the Wold polynomial Ψ(z) = exp Θλ(z), are given by:

Ψl =
∑
k≥1

1

k!

( ∑
λ|=l:|λ|=k

( k∏
j=1

Θλ,ij

))
(4.42)

Hence, all the relevant information for prediction is available from theK + 1 cepstral

matrix coe�cients.

Estimation of the matrix generalised cepstral models is addressed in Cavicchioli et al.

(2020) by maximization of the Whittle likelihood.

4.6 The matrix variance pro�le

The notion of Variance Pro�le introduced by Luati et al. (2012) can be extended to

the multivariate setting by the de�nition of an auxiliary vector process, derived from a

power transformation of the original process.

Let Xt = Ψ(L)εt be a causal r−dimensional vector linear process, where εt ∼
i.i.d.N(0,Σ),

Ψ(L) = Ir +Ψ1L+Ψ2L
2 + . . . , and L is the lag operator, LjXt = Xt−j.We assume that

|Ψ(z)| = 0 ⇐⇒ |z| > 1, that
∫ π
−π log f(ω) dω > −∞, and that the powers [f(ω)]p exist.

De�ne the power-transformed process:

upt =

[Ψ(L)]pΣ
(p−1)

2 εt, p ≥ 0,

[Ψ(L−1)]pΣ
(p−1)

2 εt, p < 0,

which is equivalent to

upt =

[Ψ(L)]pηt, p ≥ 0,

[Ψ(L−1)]pηt, p < 0,

with ηt ∼ i.i.d.N(0,Σp). Note that the pth power of the matrix polynomial Ψ(L) is

still a matrix polynomial: [Ψ(L)]p = Φp(L) =
∑∞

j=0 Φp,jL
j, whose coe�cients can be
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obtained recursively as illustrated in section 4.4. The spectral density matrix of upt is

fu(ω) = Φp(e
−iω) Σ

(p−1)
2 Σ Σ

(p−1)
2 Φ

′

p(e
−iω) =

= Φp(e
−iω) Σp Φ

′

p(e
−iω) =

= [Ψ(e−iω)]p Σp [Ψ
′
(e−iω)]p = [f(ω)]p (4.43)

and its autocovariance matrix is

Γuk =
1

2π

∫ π

−π
fu(ω)eiωk dω

Then, the matrix variance pro�le is de�ned as the power mean of the spectral density

matrix of the process X:

vp =

{
1

2π

∫ π

−π
[f(ω)]p dω

} 1
p

=

=

{
1

2π

∫ π

−π
fu(ω) dω

} 1
p

=

{
Γu0

} 1
p

(4.44)

The de�nition of the multivariate variance pro�le in terms of the auxiliary process

turns out to be useful for interpretation and computational purposes.

The variance pro�le for speci�c values of p provides some important measures of variance

for vector processes.

• p = 1:

the auxiliary process is upt = Ψ(L)εt = Xt, with εt ∼ i.i.d.N(0,Σ) and

v1 =
1

2π

∫ π

−π
f(ω) dω = Γ0

is the arithmetic mean of the spectral density matrix of the original process, and

it gives the unconditional variance-covariance matrix Γ0 of the vector process X.

• p→ 0 :

lim
p→0

vp = lim
p→0

{
Γu0

} 1
p

= lim
p→0

{
Σp

} 1
p

= Σ.



4.6 The matrix variance pro�le 80

As p→ 0,vp gives the variance-covariance matrix of the innovation process εt, and,

indeed, the power process upt → ηt = Σ
(p−1)

2 εt as p→ 0.

Hence,

lim
p→0

vp = lim
p→0

{
1

2π

∫ π

−π
[f(ω)]p dω

} 1
p

= Σ (4.45)

Σ represents the variance-covariance matrix of the one-step-ahead prediction error,

and its estimation provides useful measures of the the linear feedback and depen-

dence between two multiple time series (Geweke, 1982) and is needed for computing

the multivariate analog of the AIC and BIC (Lütkepohl, 2005).

• p = −1 :

in this case the power process u−1t coincides with the inverse process considered

in the de�nition of the inverse autocovariance matrix function in Heyse and Wei

(1985), i.e. u−1t = [Ψ(L−1)]−1ηt, with ηt ∼ i.i.d.N(0,Σ−1). The spectral density

matrix of u−1t is fu(ω) = [f(ω)]−1, and its autocovariance matrix is:

Γuk =
1

2π

∫ π

−π
eiωk[f(ω)]−1 dω = Γik,

where Γik, is the transpose of the inverse autocovariance matrix ofXt, following the

de�nition provided by Heyse and Wei (1985). Similar to the univariate case, the

inverse autocorrelation matrix function provides a useful tool for model identi�ca-

tion, as in speci�c cases it admits a dual relation with the autocorrelation matrix

function. In particular, for vector autoregressive models the inverse autocorrelation

matrix function shares the same cut-o� property as its univariate analog: for au-

toregressive models of order r the inverse autocorrelation function for both univari-

ate and multivariate time series are equal to zero for all lags greater than r. Heyse

and Wei (1985) showed that for an ARMA(r , q) process Zt,Φ(B)Zt = θ(B)et,

where Φ(B) is the AR polynomial of order r in the backshift operator and θ(B) is

the MA polynomial of order q, and et a White Noise process with zero mean and

variance-covariance matrix Σ, the transpose of the inverse autocorrelation matrix

function of Zt coincides with the autocorrelation matrix function of the inverse pro-

cess, de�ned as Ut = Φ
′
(B)[θ

′
(B)]−1at, where at is a White Noise process with zero
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mean and variance-covariance matrix Σ−1. Hence, in the multivariate setting, du-

ality between the inverse autocorrelation and the autocorrelation matrix functions

holds when Φ
′
(B)[θ

′
(B)]−1 = [θ

′
(B)]−1Φ

′
(B). This means that, when the process

is vector moving-average of order q the inverse autocorrelation matrix function will

not cut-o� at any lag. While, if the process is autoregressive of order r the inverse

autocorrelation matrix function will equal zero for all lags greater than r.

For p = −1 the matrix variance pro�le is:

v−1 =

{
1

2π

∫ π

−π
[f(ω)]−1 dω

}−1

=
{

Γi0

}−1

,

which provides the interpolation error variance matrix. As in Pourahmadi (1993)

(Theorem 3.1(b)), let X̃0 denote the linear interpolator ofX0 based on {Xt, t 6= 0}.
Then, the variance-covariance matrix Σ̃ of the error of interpolation is given by:

Σ̃ = COV (X0 − X̃0) = D−1
0

where

D0 =
1

2π

∫ 2π

0

[f(ω)]−1dω.

This implies that v−1 = D−1
0 = Σ̃ provides the variance matrix of the interpolation

error.

Estimation of the matrix variance pro�le can be addressed by using smoothing tech-

niques for the periodogram matrix, selecting a suitable kernel or spectral window.

4.7 Estimation of the Matrix Variance Pro�le

The matrix variance pro�le (4.44) can be estimated by a power transformation of the

estimated spectral density matrix. A possible choice is to estimate the spectral density

matrix nonparametrically by smoothing the periodogram matrix, to obtain a consistent

estimate. A general form for the smoothed periodogram estimator of the spectrum matrix

is:

f̂(ω) =

∫ π

−π
I(v)WN(ω − v) dv, (4.46)
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where W () is a spectral window. A discrete approximation of the expression above is

given by

f̂(ω) =
2π

N

[N/2]∑
j=−[N/2]

I(ωj)WN(ω − ωj). (4.47)

In particular, for a Daniell (i.e. rectangular) window with bandwidth 4πm/N, (4.47)

reduces to

f̂(ω) =
1

(2m+ 1)

m∑
j=−m

I

[
2π{v(ω) + j}

N

]
, (4.48)

where v(ω) is the largest integer such that 2πv(ω)/N is closest to ω (Priestley, 1981). In

(4.48) each diagonal element of the spectrum matrix is estimated by averaging 2m + 1

periodogram ordinates. If the spectrum is assumed to be roughly constant over the band-

width of WN(), then the distribution of (2m+ 1)f̂(ω) for ω 6= 0, π may be approximated

by the complex Wishart distribution with parameters 2m+ 1,f(ω).

Further investigation suggests the following form for the estimator (4.48) (Brillinger,

2002):

f̂(ω) =
1

m

m∑
j=1

ReI

[
ω +

2πj

N

]
, (4.49)

if ω = 0,±2π, . . . , or if ω = ±π,±3π, . . . , and N is even, and the form:

f̂(ω) =
1

m

m∑
j=1

ReI

[
ω − π

N
+

2πj

N

]
, (4.50)

if ω = ±π,±3π, . . . , and N is odd.

Assuming that the autocovariance function of the process, Γk, satis�es

∞∑
k=−∞

|Γk| <∞,

and that the spectrum is nearly constant over the bandwidth ofWN(), then, each element

of f̂(ω) is an asymptotically unbiased estimate of the corresponding element of f(ω).

Estimation of the matrix variance pro�le is based on the Daniell-type estimator (4.48)

of the spectrum matrix:
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v̂p = m

{
1

M

M−1∑
k=0

{ 1

m

m∑
j=1

I

[
2π{km+ j}

N

]}p
BC

} 1
p

, (4.51)

whereM = N−1
2m

, andBC is a bias correction factor depending on the properties of powers

of the complex Wishart distribution. When p = 1, the estimator (4.51) cioncides with

(4.48), where the averages of 2m + 1 periodogram ordinates are replaced by averages

of periodogram ordinates over m consecutive non-overlapping frequencies. For the case

p = 1 the corresponding estimator (4.51) is asymptotically unbiased, hence the bias

correction factor equals unity, BC = 1. For p 6= 1, the diagonal elements of v̂p correspond,

up to a multiplicative factor, to the estimates proposed by Luati et al. (2012) for the

scalar variance pro�le. Hence, for p 6= 1, BC needs to be determined by computing the

�rst order moment of powers of the complex Wishart distribution.



Chapter 5

Conclusions

This thesis has analysed asymptotic e�ciency of a nonparametric estimator of the

generalised autocovariance function, de�ned by Proietti and Luati (2015) as the inverse

Fourier transform of the pth power of the spectral density function. The GACV includes

as a special case the traditional autocovariance function, which is often estimated by

the sample autocovariance, whose asymptotic properties have been demonstrated and

discussed in the literature. Investigation of asymptotic e�ciency of the sample autoco-

variance showed that it is asymptotically e�cient only for some speci�c processes and

in a limited number of cases. Porat (1987) studied asymptotic e�ciency of the sample

autocovariance for Gaussian autoregressive (AR) moving average (MA) mixed processes,

based on state-space representations and matrix Lyapunov equation theory. These results

showed that for Gaussian ARMA(r , q) processes with r ≥ q the lag k sample autoco-

variances are asymptotically e�cient for 0 ≤ k ≤ r−q, while if q > r none of the sample

autocovariances is asymptotically e�cient. Kakizawa and Taniguchi (1994) derived in

the frequency domain a necessary and su�cient condition for asymptotic e�ciency of

the sample autocovariances that applies to the more general class of Gaussian stationary

processes.

This thesis has established a necessary and su�cient condition in the frequency do-

main for asymptotic e�ciency of the nonparametric estimator of the GACV proposed by

Proietti and Luati (2015). The result generalises the condition for asymptotic e�ciency

of the sample autocovariances provided by Kakizawa and Taniguchi (1994), and, hence,

84
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embodies in a single equation the condition for asymptotic e�ciency of the sample auto-

covariance (p = 1), of the estimator of the inverse autocovariances (p = −1), and of the

estimators of the generalised autocovariances for general powers p. The results showed

that asymptotic e�ciency of the estimator can be achieved when p = 1, or when p 6= 1

and the pooling parameterm, which characterizes the estimator, is su�ciently large. The

derived condition for asymptotic e�ciency is expressed in terms of the spectral density

function, which makes it easy to check for various models. Analytical results derived

in this thesis showed that for Gaussian ARMA(r , q) processes, asymptotic e�ciency of

the nonparametric estimator of the GACV for positive and negative integer powers p

depends on the existence of solutions to a trigonometric polynomial equation. Results

show that the estimator of the GACV with p = −1 and largem is asymptotically e�cient

for r = 0 and 0 ≤ k ≤ q. This result implies that the nonparametric estimator of the

GACV estimates e�ciently the �rst q inverse autocovariances when the true generating

process is pure MA(q).

The results obtained showed that asymptotic e�ciency of the nonparametric estima-

tor of the GACV depends also on the pooling parameter m, which plays the role of a

smoothing parameter. The estimator of the GACV is asymptotically unbiased, but in

�nite samples its bias arises as the pooled periodogram ordinates over m consecutive

non-overlapping frequencies are used instead of the raw ordinates at each Fourier fre-

quency. Increasing m reduces the variance but increases the �nite-sample bias. Proietti

and Luati (2015) proposed the use of the Jackknife to select the value of m. This thesis

proposed the use the of multiplicative periodogram bootstrap (Meyer et al., 2018) to

estimate the �nite-sample distribution of the estimator of the GACV, and to select the

optimal (minimum MMSE) value of the pooling parameter m. This procedure is based

on asymptotic distributional results for the periodogram, and on the assumption of ap-

proximate independence of the periodogram ordinates. This procedure is motivated by

the possibility of viewing the estimator of the GACV as a periodogram-based estimator

of a spectral mean. Application to a real data examples showed that a small value of

the pooling parameter m is preferable for estimation of the GACV.

This thesis has provided a description of fundamental concepts of spectral analysis of

stationary scalar and vector time series, together with some of the most recent advances
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in spectral modelling, including the vector exponential model (Holan et al., 2017), and

the generalised matrix cepstral model (Cavicchioli et al., 2020). The VEXP model and

the generalised matrix cepstral model are characterized by the cepstral and generalised

cepstral matrices, respectively. The cepstral matrices are related to the Wold coe�-

cients by a formula derived by Holan et al. (2017). This thesis provided an algorithm

that relates the matrix coe�cients of a given polynomial to the matrix coe�cients of

its power transform. This algorithm, based on the results by Holan et al. (2017), can

be used to derive the matrix coe�cients of the Wold representation of the process, from

the generalised cepstral matrices. It is also used to de�ne the matrix variance pro�le in

terms of an auxiliary process, which allows to give it further interpretation. A nonpara-

metric estimator of the matrix variance pro�le has been de�ned, based on the smoothed

periodogram matrix using a Daniell window. Possible future development of this project

could deal with the study of the distributional properties of this estimator. The study

of power transformations of the complex Wishart distribution, and the derivation of the

its moments allow to specify a bias correction factor for this estimator, as expected by

distributional results concerning its univariate analog. Possible future work may include

comparison of various smoothing techniques for the periodogram matrix, and comparison

of nonparametric and parametric estimation for the matrix variance pro�le.



Bibliography

Artin, M. (1991). Algebra. Prentice-Hall: Englewood Cli�s, New Jersey.

Battaglia, F. (1983). Inverse autocovariances and a measure of linear determinism for a

stationary process. Journal of Time Series Analysis , 4 (2), 79�87.

Battaglia, F. (1988). On the estimation of the inverse correlation function. Journal of

Time Series Analysis , 9 (1), 1�10.

Bhansali, R. (1980). Autoregressive and window estimates of the inverse correlation

function. Biometrika, 67 (3), 551�566.

Bloom�eld, P. (1973). An exponential model for the spectrum of a scalar time series.

Biometrika, 60 (2), 217�226.

Bogert, B. P. (1963). The frequency alanalysis of time series for echoes; cepstrum,

pseudo-autocovariance, cross-cepstrum and saphe cracking. Time series analysis ,

209�243.

Boshnakov, G. N. (2005). On the asymptotic properties of multivariate sample autoco-

variances. Journal of multivariate analysis , 92 (1), 42�52.

Brillinger, D. R. (2002). Time series: data analysis and theory. SIAM.

Brockwell, P. J., and Davis, R. A. (1991). Time series: theory and methods. Springer

Series in Statistics.

Brockwell, P. J., Davis, R. A., and Calder, M. V. (2002). Introduction to time series

and forecasting (Vol. 2). Springer.

Cavicchioli, M., et al. (2020). Generalised cepstral models for the spectrum of vector

time series. Electronic Journal of Statistics , 14 (1), 605�631.

Cleveland, W. S. (1972). The inverse autocorrelations of a time series and their appli-

cations. Technometrics , 14 (2), 277�293.

87



Bibliography 88

Davis, H. T., and Jones, R. H. (1968). Estimation of the innovation variance of a

stationary time series. Journal of the American Statistical Association, 63 (321),

141�149.

Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. (1954). Higher transcen-

dental functions. Bull. Amer. Math. Soc, 60 , 405�408.

Fuller, W. A. (1976). Introduction to statistical time series, new york: Johnwiley.

FullerIntroduction to Statistical Time Series1976 .

Geweke, J. (1982). Measurement of linear dependence and feedback between multiple

time series. Journal of the American statistical association, 77 (378), 304�313.

Gohberg, I., Lancaster, P., and Rodman, L. (2005). Matrix polynomials. Springer.

Gould, H. (1974). Coe�cient identities for powers of taylor and dirichlet series. American

Mathematical Monthly , 3�14.

Hannan, E., and Nicholls, D. (1977). The estimation of the prediction error variance.

Journal of the American Statistical Association, 72 (360a), 834�840.

Hassler, U. (2018). Time series analysis with long memory in view. John Wiley & Sons.

Heyse, J., and Wei, W. (1985). Inverse and partial lag autocorrelation for vector time

series. American Statistical Association Proceedings of Business and Economic

Statistics Section, 233�237.

Holan, S. H., McElroy, T. S., and Wu, G. (2017). The cepstral model for multivariate

time series: The vector exponential model. Statistica Sinica, 27 , 23�42.

Kakizawa, Y. (1999). Note on the asymptotic e�ciency of sample covariances in gaussian

vector stationary processes. Journal of Time Series Analysis , 20 (5), 551�558.

Kakizawa, Y., and Taniguchi, M. (1994). Asymptotic e�ciency of the sample covariances

in a gaussian stationary process. Journal of Time Series Analysis , 15 (3), 303�311.

Karampetakis, P., and Tzekis, P. (2005). On the computation of the minimal polyno-

mial of a polynomial matrix. International Journal of Applied Mathematics and

Computer Science, 15 , 339�349.

Koopmans, L. H. (1974). The spectral analysis of time series.

Luati, A., Proietti, T., and Reale, M. (2012). The variance pro�le. Journal of the

American Statistical Association, 107 (498), 607�621.

Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer Science



Bibliography 89

& Business Media.

Magnus, J., and Neudecker, H. (1999). Matrix di�erential calculus with applications in

statistics and econometrics (revised edition).

Magnus, J. R., and Neudecker, H. (1979). The commutation matrix: some properties

and applications. The Annals of Statistics , 381�394.

McCracken, M. W., and McElroy, T. (2014). Multi-step ahead forecasting of vector time

series. Federal Reserve Bank of St. Louis Working Paper Series(2012-060).

Meyer, M., Paparoditis, E., and Kreiss, J.-P. (2018). A frequency domain bootstrap for

general stationary processes. arXiv preprint arXiv:1806.06523 .

Porat, B. (1987). Some asymptotic properties of the sample covariances of gaussian

autoregressive moving-average processes. Journal of Time Series Analysis , 8 (2),

205�220.

Pourahmadi, M. (1983). Exact factorization of the spectral density and its application

to forecasting and time series analysis. Communications in Statistics-Theory and

Methods , 12 (18), 2085�2094.

Pourahmadi, M. (1993). On relations between prediction error covariance of univariate

and multivariate processes. Statistics & probability letters , 16 (5), 355�359.

Priestley, M. B. (1981). Spectral analysis and time series: multivariate series, prediction

and control (Vol. 2). Academic Press.

Proietti, T., and Luati, A. (2015). The generalised autocovariance function. Journal of

Econometrics , 186 (1), 245�257.

Proietti, T., and Luati, A. (2019). Generalised linear cepstral models for the spectrum

of a time series. Statistica Sinica, 29 (3), 1561�1583.

Proietti, T., Luati, A., and Papagni, F. (2020). Recursive formulae for the coe�cients

of powers of matrix polynomials.

Quenouille, M. H. (1949). Approximate tests of correlation in time-series. Journal of

the Royal Statistical Society. Series B (Methodological), 11 (1), 68�84.

Taniguchi, M. (1980). On estimation of the integrals of certain functions of spectral

density. Journal of Applied Probability , 73�83.

Taniguchi, M. (1981). An estimation procedure of parameters of a certain spectral

density model. Journal of the Royal Statistical Society: Series B (Methodological),



Bibliography 90

43 (1), 34�40.

Taniguchi, M. (1986). Third order asymptotic properties of maximum likelihood estima-

tors for gaussian arma processes. Journal of multivariate analysis , 18 (1), 1�31.

Taniguchi, M. (1987). Minimum contrast estimation for spectral densities of stationary

processes. Journal of the Royal Statistical Society: Series B (Methodological),

49 (3), 315�325.

Walker, A. (1995). On results of porat concerning asymptotic e�ciency of sample

covariances of gaussian arma processes. Journal of Time Series Analysis , 16 (2),

237�248.

Wei, W. W. (2019). Multivariate time series analysis and applications. John Wiley &

Sons.



Acknowledgement 

I would like to thank Professor Alessandra Luati, my supervisor, for her support and guidance during 

these years, and for her sympathy. This work would have not been completed without her unwavering 

support. I would also like to thank Professor Tommaso Proietti for his illuminating advices. All the 

Professors I met during this path deserve my thanks.  

I would like to thank Raffaele for his support, for always believing in me. Lastly, I would not have 

completed this project without the love of my family. Heartfelt thanks to my parents and my sister for 

their love and for always supporting me, for the endless calls and talks to always support me and for 

believing in me. I could not have done it without you! 


	Introduction
	Spectral analysis
	The spectral density function
	The periodogram
	Large sample properties of the periodogram

	Recent advances
	Generalised linear cepstral models
	The generalised autocovariance function 
	Nonparametric estimation of the GACV

	Appendix

	Efficient nonparametric estimation of generalised autocovariances
	Asymptotic efficiency of the estimator of the GACV 
	Asymptotic efficiency of pk for ARMA processes 
	AR(1) example

	Numerical illustrations 
	Minimum contrast estimation 
	Choice of the pooling parameter m
	Choice of m in large samples
	Choice of m in finite samples
	Real data illustration

	Appendix 

	Multivariate extensions
	Multivariate spectral analysis of time series
	The vector exponential model
	Recursive formulae for powers of polynomials
	Formulae for powers of matrix polynomials
	The multivariate generalised cepstral model
	The matrix variance profile
	Estimation of the Matrix Variance Profile

	Conclusions
	Bibliography

