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Abstract

This Thesis focuses on two main research topics: (1) the use of innovative techniques
for the evaluation of main hydraulic variables of natural rivers (e.g. river bathymetry, dis-
charge, water level) and (2) the monitoring and hydrological modelling of Monate Lake
(Varese, Italy). Regarding the research topic (1), the work addresses three main issues:
the river bathymetry estimation based on space-borne data, the river discharge assessment
by means of Data Assimilation (DA) approaches, the use of satellite altimetry information
in hydraulic modelling.
Notwithstanding the pivotal role of river bathymetric information in hydraulic applica-
tions, its availability is limited. In order to overcome the inability of satellite Digital
Elevation Model (DEM)s in describing the submerged part of the river, the Slope-Break
(SB) method, exclusively based on topographic information (i.e. river channel width
and elevation), is proposed (Domeneghetti, 2016). A Matlab-tool (RiBEST) is proposed,
based on the SB approach for an automatic estimation of river bathymetry, exploiting
a satellite DEM (i.e. SRTM). Testing this approach on three different study areas (i.e.,
Po River (Italy), Limpopo River (Mozambique) and Clarence River (Australia)), the re-
sults are encouraging, demonstrating how SB method is suitable in the description of the
submerged part. Moreover, the SRTM cross-sections modified by means of RiBEST are
exploited to implement i) two 1-D hydraulic models for Po and Limpopo River, ii) a 2-D
hydraulic model for Clarence River, underling the benefits of river bathymetry knowledge
in the hydraulic modelling.
Secondly, the research refers to the assessment of DA approaches for river discharge esti-
mation. In particular, a 4D-Var method is exploited, based solely on space-borne infor-
mation (i.e. water surface elevations from SWOT) and global available data (i.e. prior
discharge value from a global hydrological model - WBM). The challenge is to improve
our capability to estimate the river discharge by using remotely sensed data only (e.g.
cross-sections profiles derived from SRTM modified with RiBEST tool, water surface data
observed from SWOT) referring to a 132-km Po River stretch. The results show a good
representation of river discharge, in particular for low flows (i.e. 0 - 2000 m3/s).
Thirdly, a comprehensive and cross-missions view of the potential of satellite altimetry
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Abstract

mission for hydraulic modelling calibration is addressed. Each satellite series (i.e. EN-
VISAT, TOPEX/Poseidon, Jason-2, etc. . . ) has its own characteristics such as accuracy,
spatial and temporal resolutions. The last one is the most limiting property in the use of
data, thus Multi-Mission series (MM) are proposed, combining information provided by
all single-missions. Generally, altimetry time series prove to be suitable in reproducing
the observed water levels, while MM series ensures a uniform behaviour along the study
area, providing additional benefits in case of low frequency series.
Regarding point (2), the main scope is the understanding of water dynamics of the Monate
Lake (Varese, Italy) taking advantage of a monitoring network data and hydrological in-
vestigations. This work is dedicated to the implementation of semi-distributed conceptual
models for a basin with seasonally variable catchment size. In particular, the variation
of the additional groundwater watershed area is considered to be strictly dependent to
precipitation variability. Generally, the proposed models reproduce the lake dynamics.
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Premise

This PhD project takes part of the PhD program Structural and Environmental Health
Monitoring and Management (SEHM2) relative to the monitoring in general, spacing
among several topics and application, touching different ambits of monitoring. Relevant
examples are health monitoring of civil and industrial structures and infrastructures, per-
formance monitoring of networks (gas, water, electric, telephone, road, rail, etc.), moni-
toring and managing air and hydrogeological systems. In particular, my PhD project has
been funded by a convention between the Municipality of Travedona-Monate (Province
of Varese, Italy) and DICAM (Department of Civil, Chemical and Environmental Engi-
neering) of the University of Bologna.
For this reason the present work is divided into two parts. The Part 1 is relative to the
investigation of innovative approaches for the study of hydraulic variables. The steep
declining of the world’s in-situ gauge stations of the last 30 years has led the research
of alternative and/or complementary inland water measuring techniques. Particular im-
portance is given to space-borne data thanks to the growing availability of satellite in-
struments and missions. The Chapter 1 presents a comparison between traditional (i.e.
in-situ campaigns) and innovative approaches, listing a several literature investigations
about river bathymetry, discharge and water levels estimation, topics explored in de-
tails in the following part of the thesis. The knowledge of river cross-section shape, and
consequently of river bathymetry, is fundamental in order to implement hydraulic and
hydrological model describing the water body behaviour realistically. Since the satellite
DEM are unable to describe the submerged cross-section portion, several studies have
widely investigated techniques to estimate the river thalweg. In the Chapter 2 a tool for
the river bathymetry estimation is presented. Basing on a pure geometric approach for
river depth assessment, this tool can automatically correct the cross-section profile pro-
vided by satellite information and evaluate hydraulic parameters (i.e. hydraulic radius,
flow area, wetted perimeter). The benefits of this approach have been tested on hydraulic
modelling for three different study cases.
Remote sensing approaches to measure hydraulic parameters (such as water surface el-
evation, river and lakes width) are strongly consolidated. Nevertheless, river discharge
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estimation directly from satellite is still a current challenge. Data Assimilation (DA)
methods are becoming increasingly popular in hydraulic-hydrological applications. They
combine available information from observations (remotely sensed or in-situ) and mathe-
matical models simulations to provide an optimal estimation of unknown variables (i.e.,
river discharge) and parameters (i.e., roughness coefficient, bed elevation). The Chap-
ter 3 illustrates the estimation of river discharge using an algorithm implemented by
the Institut national de recherche en sciences et technologies pour l’environnement et
l’agriculture (IRSTEA) that combines hydraulic model and a DA approach. The prior
bathymetric information is retrieved exploiting the tool presented in the previous chap-
ter.
The final part is relative to the satellite altimetry information, whose use is now well
consolidated for the hydraulic model calibration. The Chapter 4 aims to depict a wide
comparison of different altimetry satellite missions, focusing on the main features char-
acterising each satellite series. In particular, the temporal resolution and the number
of observations can strongly restrict these satellite information in hydraulic applications.
For this reason, an innovative approach to overcome these main limitations is presented.
The Part 2 is dedicated to the presentation of Monate Lake case study, the main motiva-
tion that have driven to the building of the monitoring network and the performed activ-
ities in collaboration with University of Bologna. In particular, the amount of measured
data have allowed the implementation of hydrological model to study the lake behaviour
in all its complexity.
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CHAPTER 1
Traditional and innovative methods
for hydraulic variables estimation

The water you touch from rivers is the last of the one
that went and the first of the one that comes. Similarly
the present time.

Leonardo da Vinci
(1452 - 1519)

This Chapter contains:

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 River bathymetry information: fundamental concepts, open problems and

investigated estimation methods . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Remote sensing data and mathematical models for river discharge assessment 13
1.4 Measuring river water levels from satellite altimetry data: main limits and

alternative approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
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Traditional and innovative methods for hydraulic variables estimation

1.1 Introduction

“The core of sustainable development and critical for socio-economic development, en-
ergy and food production, healthy ecosystems and for human survival itself; the heart of
adaptation to climate change, serving as the crucial link between society and the envi-
ronment”, as United Nations (UN) defines water. As the global population grows, there
is an increasing need to balance all of the competing commercial demands on water re-
sources so that communities have enough for their needs. Continental waters provide
water supply for various human activities. These mainly include water for drinking, ir-
rigation, industrial and energy production. In accordance with Food and Agricultural
Organization (FAO), agriculture and industry accounts for 70% and 19% of global water
withdrawal respectively (Figure 1.1). Moreover at the human level, water cannot be seen
in isolation from sanitation. Together, they are vital for reducing the global burden of
disease and improving the health, education and economic productivity of populations.
Monitoring of inland waters is mandatory for a better understanding of the water cycle,
sustainable management of water resources in various sectors at regional or catchment
scale. It is also vital for forecasting natural hazards such as flooding events, which
have major impact on economics. The 90% of natural disasters are weather-related,
including floods and droughts (United Nations International Strategy fro Disaster Re-
duction (UNISDR), The human cost of weather related disaster, 2015); moreover, around
two-thirds of the world’s transboundary rivers do not have a cooperative management
framework, affecting the efficiency of flooding events monitoring and control (Swedish
International Water Institute (SIWI), Transboundary waters: cooperation from source to
sea, 2018).
Caring of the surveillance of national territory for managing its own resources is the ba-
sic idea for the environmental conservation. A significant example is the United States
Geological Survey (USGS) agency, born in 1879 with the task of classifying public land,
examine geological structures, mineral resources and all elements of the United States
domain. In particular the monitoring of surface and groundwater is entrusted to National
Water Information System (NWIS): nowadays the information are available for about
1.7 millions of gauged stations in whole national territory, provided by manual and au-
tomatic procedures and freely available. Thinking on a global scale, the principal source
of accessible data on river flows is the Global Runoff Data Centre (GRDC) operated by
the German Federal Institute of Hydrology. The GRDC maintains a database of historic
daily mean river flows, and some associated metadata, covering 6000 stations in over 120
countries.
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Chapter 1 - Part 1

Figure 1.1: Agricultural (a)), industrial (b)) and municipal (c)) water as a share of total
water withdrawals, 2005 (Ritchie, 2017).
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Data are provided by countries (generally the National Hydrological Services) under a
standard licence, enabling GRDC to make data available on request for non-commercial
usage.
Despite of the pivotal role of in-situ information, the drop-off in measurements from the
mid-1980s, due to the expensive cost of the measurement procedures (i.e. specific tools,
qualified personnel, monitoring networks maintenance) and the operative difficulties for
transboundary water or in remote areas, makes in-situ information hard to be collected for
most of the water bodies in the world. Even in places where stream gauges exist, legal and
institutional restrictions often make the data unavailable for scientific purposes. (Alsdorf
and Lettenmaier (2003), Harmancioglu et al. (2003), Milzow et al. (2011), Gleason and
Hamdan (2017), Figure 1.2). For this main reason, innovative water measuring techniques
have caught on about 30 years ago. In particular, recent studies (see e.g. Schumann et al.,
2009; Bates et al., 2013; Domeneghetti et al., 2014; Schumann et al., 2016) demonstrate
the feasibility and potentially convenience of remote sensing data in various hydrological-
hydraulic applications, especially in ungauged or poorly gauged areas.

Figure 1.2: Number of GRDC stations providing daily data each year. ©GRDC

Remote sensing sensors detect and classify the objects and elements on Earth, using
the sun as a source of illumination (passive sensors) or providing their own source of en-
ergy (active sensors). Most passive systems used by remote sensing applications operate
in the visible, infrared, thermal infrared, and microwave portions of the electromagnetic
spectrum. They include accelerometers, imaging radiometer and spectrometers, measur-
ing land and sea surface temperature, vegetation properties, cloud and aerosol properties.
The majority of active sensors operate in the microwave band of the electromagnetic spec-
trum, which gives them the ability to penetrate the atmosphere under most conditions.
Radio Detection and Ranging (RADAR) sensors, altimeters and scatterometers are ac-
tive sensors. These types of instruments are useful for measuring the vertical profiles of
aerosols, forest structure, precipitation and winds, sea surface topography, and ice (Brivio
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et al., 2006).
Each sensor is characterized by a series of resolutions (i.e. radiometric, spatial, spectral,
temporal) depending on the satellite’s orbit and sensor design (Campbell and Wynne,
2011). In particular, spatial resolution is defined by the size of each pixel within a digital
image and the area on Earth’s surface represented by that pixel, the temporal resolution
is the time it takes for a satellite to complete an orbit and revisit the same observation
area. These two information play an important role in how data from a sensor can be
used.
Initially the exploitation of satellite data was dedicated to the monitoring of wide water
bodies, such as oceans, seas, lakes (Birkett and Mason, 1995; Pereira-Cardenal et al.,
2011). In the last decade several sensors and tools have been developed for the study
of inland water bodies (Archer et al., 2018; Hawker et al., 2018; Shastry and Durand,
2019). Remote sensing have represented - and still represents - an appealing alternative
means of obtaining several type of information. Potential advantages of a remote sensing
approach include greater efficiency, expanded coverage, increased measurement frequency
and lower cost respect with the traditional monitoring techniques. In addition, remote
sensing methods provide exciting opportunities to examine long segments of rivers with
continuous coverage and high spatial resolution. Since maintaining gauges in remote area
puts field personnel at risk, non-contact methods are exploited to estimate hydraulic vari-
ables (i.e. streamflow, water levels) such as small unmanned aircraft systems (i.e. drones),
helicopters, or fixed-wing aircraft. All this instruments, being very expensive, strongly
affect the economical availability, limiting survey campaigns (Legleiter and Kinzel, 2020).
The space-borne information often are freely available, allowing the assessment of not
instrumented and remote areas.
Nevertheless these innovative approaches present some limitations. Depending on the
sensor used, the data quality is function of the climate conditions (i.e. presence of clouds;
see Batini et al., 2017). Moreover, limited spatial and temporal resolutions can strongly
constrain the field of application (i.e. high detailed land description, hourly and fast
water levels variations). In this context, several researches have aimed at proposing ap-
proaches exploiting space-borne data for the hydraulic variables estimation (i.e. water
levels, river discharge, cross-section shape), highlighting how the satellite data can poten-
tially be a valid alternative to in-situ information. The following sections (Sections 1.2,
1.3, 1.4) present the main research topics of this PhD, while Section 1.5 reports the main
motivations and goals at the base of this work.
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1.2 River bathymetry information: fundamental con-
cepts, open problems and investigated estimation
methods

Accurate modelling of river flow dynamics is fundamental for flood prediction as well
as land management and risk analysis. Estimation of depth and flow velocity, and conse-
quently of river discharge, is essential for floodplain risk assessment. The main difficulty
in the implementation of hydraulic models is that they require an amount of different
data (e.g., hydrological and topographic data), specific to the survey area; in particular,
river bathymetric information is pivotal for the prediction of floodplain inundation (Neal
et al., 2015).
The core input data for most environmental models is a topographic map of the study
area in a digital form, or DEM. DEMs can be obtained from various combinations of sur-
veying tools and data techniques spacing from traditional ground surveying such as total
stations, various form of Global Positioning System (GPS) systems and echo sounders,
topographic contour maps, or through remote sensing techniques applied to air or space-
borne imagery acquired by Light Detection and Ranging (LiDAR), the Shuttle Radar
Topography Mission (SRTM) or the Advanced Spaceborne Thermal Emission and Re-
flection Radiometer (ASTER). Each DEM has a different spatial resolution, which may
affect the accuracy of model applications. Adoptable techniques of river geometry sam-
pling range among traditional approaches and more innovative methodologies such as
multibeam sonars mounted to ships (Conner and Tonina, 2014) or single beam sonars to
small watercraft (Merwade et al., 2008; Pasternack and Senter, 2011).
Furthermore, even at the catchment scale, it is not economically and practically feasible
to measure along the total length of a number of streams, especially considering that
river geometry might not be stable over time (Buffington, 2012; Soar et al., 2017). These
circumstances together drive to the fact that accurate bathymetry information is typically
limited to developed areas and major rivers, while most part of the globe can count, almost
exclusively, on remotely sensed topographic data, such as space-borne DEMs. Amongst
available products, SRTM is nowadays available at almost global scale (i.e. covering
about 80% of the globe) with a resolution of 1 arc-second (nearly 30 m resolution). In
the last years, the relationship between geomorphologic land features and SRTM vertical
elevations error has been widely investigated (Yan et al., 2015; Schumann et al., 2014;
Iwahashi et al., 2017), and shown to be influenced by specific terrain characteristics (such
as terrain slope, presence of buildings and tree canopy; Ludwig and Schneider, 2006).
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Space-borne instruments can measure river water surface elevation, slope width, while
river bottom and channel shape assessment is far more challenging (Alsdorf et al., 2007).
The remote sensed information are affected by limitations, in particular for the reconstruc-
tion of the submerged part because of the radar inability of penetrating the water surface.
In this context of data scarcity, the research community proposes different approaches to
face the lack of river geometry information. Some studies combine the water levels and
hydrodynamic models (Andreadis et al., 2007; Durand et al., 2008), meanwhile Neal et al.
(2012a) propose to evaluate river bottom referring to empirical equations relating geom-
etry to the catchment area (Leopold and Maddock, 1953). Legleiter and Roberts (2009)
investigate the relationship among river thalweg and reflectance attenuation on the water
column, using different optic sensors (i.e. ASTER, LANDSAT TM). An other line of
research studies methodologies for river bathymetry determination during floods exploit-
ing the principle of maximum entropy and flow velocity information, without the need of
involving hydraulic quantities as energy slope and/or Manning’s roughness (Moramarco
and Singh, 2010; Moramarco et al., 2013). Mersel et al. (2013) investigated the possibil-
ity of estimating river bathymetry exploiting only water level and water width measured
from satellite. Regardless of the approach adopted to infer the river bathymetry, the
impact of a rough representation of the river geometry on a hydrodynamic model is still
not completely depicted. Trigg et al. (2009) compared a one-dimensional (1-D) diffusive
model based on simplified and rectangular cross sections with a hydrodynamic 1-D model
based on a fully irregular channel. The outcomes underline the assumption of prismatic
rectangular channel with flow area equivalent to the real one could reproduce water lev-
els in large, shallow sloped rivers, while a proper simulation of floodplain water levels
requires more detailed investigations. Similarly, Fewtrell et al. (2011) compared the skill
of complex, fully irregular geometries and simplified rectangular geometries embedded in
a 1-D hydrodynamic model coupled with a two-dimensional (2-D) one. They concluded
that accurate estimates of the river conveyance capacity and cross section depth values
were required for the predictions of far-field flood elevations.
Exploiting topographic relationship similar to those adopted by Mersel et al. (2013),
Domeneghetti (2016) shown the potential of integrating simplified river bathymetry in-
formation into space-borne DEMs for the implementation of a 1-D hydraulic model. In
particular, the study proved the potential for hydraulic modelling of spaceborne DEMs
(e.g., SRTM) when enhanced by including the river bathymetry estimated based on re-
motely sensed data only.
The Chapter 2 further deals with river bathymetry estimation by presenting the RiBEST
(River Bathymetry Estimation from SaTellite) tool, developed by the candidate: a Matlab-
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based algorithm for automatic river depth detection and cross-section modification. Tak-
ing advantage of a DEM devoid of bathymetry information (i.e., satellite derived SRTM
30) RiBEST enables to (i) estimate cross-sections submerged portion; (ii) assess hydraulic
parameters (such as flow area and hydraulic radius); (iii) modify river cross-sections in-
cluding channel bathymetry. Beside RiBEST presentation, this study offers new insights
on bathymetry estimation by proving the methodological soundness and tool robustness
under different contexts: a) heavily human impacted river (Po River, Italy), b) remote
areas (Limpopo River, Mozambique) and c) river partially constrained with vast flood-
plain areas (Clarence River, New South Wales, Australia). In addition, the methodology
effectiveness is tested adopting two different hydraulic modelling schemes: 1-D (i.e. for
Po and Limpopo Rivers) and 2-D models (i.e. Clarence River). In both cases, results
are evaluated against those provided by numerical models (1-D and 2-D) implemented on
detailed topography information.

1.3 Remote sensing data and mathematical models
for river discharge assessment

River flow and hydrometric data are the essential foundations upon which improved
river and water management strategies can be developed. River discharge is an important
hydrological quantity that summarizes how the channelized streamflow forms combining
climatological (i.e. precipitation) and geographical (i.e. soil moisture, land cover) factors.
Detailed river flow information are pivotal for a wide variety of applications at the base
of economical development and human safe, ranging among the management of water
resources and flood warning and alleviation schemes. Observational records allow to in-
terpreting hydrological trends, thus to develop approach of flood and drought episodes
prediction (National River Flow Archive (NRFA)).
Commonly, the river discharge is equal to the product of the stream’s cross-section area
and its mean velocity, whose in-situ measurements are frequently non-trivial to deter-
mine. Among the traditional instruments for measuring the water velocity the hydro-
metric paddle-wheel is able to estimate the punctual speed, quantifying the number of
rotations per minute performed by the propeller placed at the end of the fixed body. In
streams featured by high depth and strong current, this tool has to be used in suspension;
for low speed, it has to be fixed to pointed rods on the bottom. Other in-situ techniques
are based on the use of ultrasound placed near the banks of the channel, measuring the
speed of current that crosses the entire section river, quantifying the time spent in his
displacement between two predetermined points.
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As the measuring of discharge directly from space is not possible, some studies infer it
by using remotely sensed hydraulic variables (i.e. water levels, surface velocity): in this
way, different quantities can be measured separately through remote sensing and used,
successively, for discharge estimation (Bjerklie et al., 2003; Legleiter et al., 2020). The
analysis of Kinzel and Legleiter (2019) is based on the computation of river discharge ex-
ploiting flow velocity via Particle Image Velocimetry (PIV) of thermal image time series
and cross-section area provided by a bathymetric LiDAR. Meanwhile since the strong
correlation between river water levels and discharge, approaches based on satellite altime-
try information prove a valid alternative for the river flow estimation (Birkinshaw et al.,
2010; Tarpanelli et al., 2013b). In this context Smith and Pavelsky (2008) and Tarpanelli
et al. (2011) investigate the potential of MODerate resolution Imaging Spectroradiome-
ter (MODIS) for river discharge estimation: featured by moderate spatial resolution (i.e.
250 m) and by a short revising time interval this satellite product is suitable for flow dy-
namics and flood mapping representation. Moramarco et al. (2019) propose an approach
based on the entropy theory for discharge monitoring, combining ground and satellite data
of hydraulic variables (i.e., surface velocity, channel width, stage). In particular, MODIS
datasets and ENVISAT altimetry provide velocity and surface water level, respectively.
From 2022, the Surface Water and Ocean Topography (SWOT) mission will provide river
discharge estimates globally from space, guaranteeing a good spatial resolution and cov-
erage. Since its potential, many researches (Pavelsky and Durand, 2012; Gleason and
Smith, 2014; Paiva et al., 2015; Durand et al., 2016) investigate the possibility of estimat-
ing river discharge using SWOT data by mean of statistical models and algorithms (i.e.
River Kriging-RK). In particular, Durand et al. (2016) compares five several discharge
algorithms evaluated on 19 study cases, reaching encouraging outcomes.
An other branch of studies seek the potential of mathematical approaches such as Data
Assimilation (DA) for the assessment of hydraulic variables.

Figure 1.3: Schematic representation of DA methods.

14



Traditional and innovative methods for hydraulic variables estimation

At the beginning of 21th century DA started to be suitable on hydrological and hy-
draulic applications (Gauthier et al., 1999; Roux and Dartus, 2004; Honnorat et al., 2009).
DA methods combine observations with model output with the objective of improving the
latter: the main goal is to predict the state of a system, or its future, in the best possible
way. Starting from a predicted state (i.e. hydraulic model output) affected by errors and
exploiting a prior information (i.e. background), DA approaches obtain an updated fore-
cast of the system closer to a series of observations by means of a fitting process (Figure
1.3). In geophysical science it refers to the concept of inverse problem: contrary to a direct
problem that is based on cause-effect sequence, it aims to identify the unknown causes of
given known consequences (Bertero et al., 2001).
Most of proposed DA methods in literature are based on the same statistical Bayesian the-
ory proposed by Bayes (1763) and reformulated later by Laplace (1820) in the framework
of statistical inference. Among them, variational DA has been the preferable approaches
in operational geophysical applications. They seeks to find the best estimate of the un-
known quantities via the minimization of a functional penalizing weighted distance from
the observations and from the background, over a finite time window, called “assimilation
window” (Oubanas, 2018). In particular, the 4D-Var method has been used in several
applications, being adapted for nonlinear systems where heterogeneous variables are es-
timated simultaneously (Oubanas, 2018). The estimation of river discharge by mean DA
approaches is widely investigated (Neal et al., 2009; Oubanas et al., 2018a; Wang et al.,
2018; Li et al., 2020): starting from an hydraulic model characterized by uncertainties
(i.e. river bathymetry, bed roughness coefficient) and a series of observations, the DA
method can provide the river discharge trend on an observation period. Notwithstanding
more inaccuracy and uncertainty can be introduced, recent approaches attempt to fully
exploit remote sensed and globally-available data (i.e. satellite altimetry information and
DEMs) in order to be suitable also in ungauged basins.
Moving towards to this perspective, the Chapter 3 illustrates the use of variational DA
methods for the river discharge assessment basing on satellite information (i.e. SWOT
water levels). A full Saint-Venant 1.5D-network hydraulic model is implemented on the
Po River cross-sections derived from satellite DEM (i.e. SRTM). The 4D-Var estimation
problem determinates discharge as well as the spatially distributed bed roughness coeffi-
cient simultaneously. This research topic was developed in collaboration with the research
team at IRSTEA (Montpellier, France).
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1.4 Measuring river water levels from satellite al-
timetry data: main limits and alternative ap-
proaches

Over the last thirty years hydraulic modelling has developed to such an extent that
it can now provide high-quality flood risk maps (Merz et al., 2010), damage assessment
(Luino et al., 2009), water resource management (Loucks and Van Beek, 2005), real-time
flood forecasting and dynamic perspective in case of future scenarios (Bronstert, 2003).
Hydraulic modelling describes the flood routing and, hence, tracks the propagation of a
flood wave given as an input at an upstream location of a river channel to any down-
stream locations. The routing model requires an accurate geometric description of the
river channel and floodplains, reliable input of river discharge and the calibration of the
roughness parameter, considered as the most important factor that has an impact on
predicting flow characteristics (Aronica et al., 1998; Bates and Anderson, 1996; Pappen-
berger et al., 2005). The model calibration generally consists in tuning the roughness
parameter to minimize the misfit between simulated and observed output represented
by flow or water level hydrographs. Typically, the calibration is done by using water
level or discharge observations gathered at the gauged stations available along the river.
Recently, scientific literature is enriched by studies on the integration of remote sensing
and ground observations for hydraulic model calibration. Numerous examples use the
flood extent derived by the backscatter value of Synthetic Aperture Radar (SAR) images
to calibrate the roughness parameter (Andreadis and Schumann, 2014; Schumann et al.,
2014; Wood et al., 2016; Matgen et al., 2011; Tarpanelli et al., 2013c); in some cases con-
sidering also the uncertainty in the flood extraction (Di Baldassarre and Montanari, 2009;
Giustarini et al., 2015). Directly related to the water surface elevation, satellite altimetry
has demonstrated its large potential in the calibration of 1-D or 2-D hydraulic models
(Domeneghetti et al., 2014; O’Loughlin et al., 2013; Yan et al., 2015). Neal et al. (2012b)
calibrated the hydraulic model LISFLOOD-FP for an 800 km reach of the Niger river in
Mali using the laser altimetry data from Ice, Cloud and land Elevation Satellite (ICEsat).
Differently from radar altimetry data that are collected with a given repeat period at the
same locations, ICESat does not produce repeat-track measurements and, although con-
sidered the most accurate source of altimetry information, the hydrological community is
still sceptical about monitoring rivers in a different way from the traditional adoption of
fixed gauging stations (O’Loughlin et al., 2016). Similarly, CryoSat-2 satellite suffers from
a limited use due to the almost annual repeat cycle (i.e., 369 days), which is considered
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inadequate to represent river dynamics. However, its dense spatial sampling (about 7.5
km at the equator) can be extremely useful in deriving water level profiles that normally
cannot be achieved. Schneider et al. (2018) used CryoSat-2 water level data to calibrate
the Manning roughness coefficient each 10 km over the Po river main channel by using the
DHI Mike 11 software (Liang et al., 2015). Compared with values calibrated through in
situ measurements, CryoSat-2 showed a strong potential in calibrating the roughness coef-
ficient at a detailed level with the consequent reduction of the over- and under-estimation
of the high flows (Jiang et al., 2019). Concerning short-repeat and fixed-orbit missions
radar altimetry (i.e., ERS-2, Envisat, and Jason-2), several examples have demonstrated
their valid contribution in supporting the ground network for describing the hydromet-
ric regime (Garambois and Monnier, 2015) and the potential benefits expected in case
of its integration with in situ data (Domeneghetti et al., 2014). Most of these studies
have focused on rivers larger in width than about 300 m, a limitation imposed by the
along-track spatial resolution of delay/Doppler altimetry. The Fully Focused SAR (FF-
SAR) processing, however, improves the along-track resolution of SAR altimetry up to
the theoretical threshold of half of the antenna length (Egido and Smith, 2016; Vignudelli
et al., 2019). Kleinherenbrink et al. (2020) have implemented the FF-SAR algorithm over
lakes, canals, and ditches in Netherlands using CryoSat-2 full-bit-rate data. For cases
where the altimetry track crosses the water bodies in a near-perpendicular angle, they
have successfully derived the water level of a ditch as small as 5 m in width and located
only 10 m away from a canal. Though more studies are required to indicate the potentials
and limitations of FF-SAR, it is expected that the method would open an unprecedented
opportunity to monitor smaller water bodies. Moreover, when the future SWOT mission
will be fully operational, for rivers wider than 100 m, a 2-D river mapping at 10-70 m
resolution will be available (Biancamaria et al., 2016).
Concerning the use of short-repeat and fixed-orbit missions radar altimetry for the cal-
ibration of the hydraulic model, two limitations are the most relevant and worth to be
analysed: the length (duration) of the time series and the revisit time of the satellite.
The importance of the duration (i.e., years of observation or number of overpasses) of the
satellite mission has been analysed by Domeneghetti et al. (2015a) who showed its impact
on the estimation of the roughness coefficient. In particular, they found that sample sizes
of 2.5 years can be considered sufficient to the calibration process in case of using ERS-2
and Envisat time series. However, an extension of similar investigations to other satellites
is desirable to assess the potential of current and past altimetry missions for hydraulic
simulations. Also, the revisit time, typically 10 to 35 days for altimetry missions, repre-
sents a limitation for hydrodynamic applications. A possible solution is the development
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of approaches that consider the use of multiple missions (MM) to derive densified time
series in specific locations. Tourian et al. (2016) transferred the water level information
coming from four satellite missions (Jason-2, Envisat, SARAL and CryoSat-2) and, hence,
several virtual stations, to specific locations of the river coincident with the ground mon-
itoring stations along the Po, Mississippi, Congo and Danube rivers. The combination of
the altimetry data has been carried out with the hydraulic concepts of wave travel time
and celerity of the flow calculated with the geometric characteristics of the river, such as
length of the reach, slope and width. A successive study of (Tourian et al., 2017) analysed
a similar approach over the Niger river and obtained river discharge by assimilating alti-
metric and in situ river discharge with a Kalman filter approach. Boergens et al. (2017)
integrated water level measurements of Envisat, SARAL and Jason-2 by using ordinary
kriging in the main channel of the Mekong River. All these attempts to increase the
frequency of sampling of the river water surface are valuable contributions especially for
hydrological applications and for deriving more frequent discharge time series. However,
the value of MM time series has never been tested in hydraulic modelling.
Moving from previous considerations, the present work investigates three main aspects
that are still only partially analysed in the literature:
1) the comparison of the available altimetry data in terms of their performance for the
calibration of hydraulic models. Specifically, the analysis provides a comprehensive com-
parison of different satellite altimetry products available to the research community and
covering nearly 27 years, such as: Envisat (E), Envisat extended mission (EX), TOPEX/-
Poseidon (TP), SARAL/AltiKa (SA), Jason-2 (J2) and Jason-3 (J3), Sentinel 3A (S3A)
and Sentinel 3B (S3B). Despite not directly analysed, the potential of ERS and CryoSat
is also presented;
2) the assessment of the effect of the record length (i.e., number of available satellite
measurements, in relation to different data products) on the calibration reliability. The
study investigates the possible accuracy of the model calibration in relation to the record
length of the altimetry product adopted for its execution. This info could be beneficial
not only at the early stages of a mission, but also when historical time series are limited
in length (perhaps due to missing values or mission interruption). Findings of such evalu-
ation might serve a modeller when called to evaluate the extent of the calibration period;
3) the potential use of the use of MM satellite time series in the process of hydraulic model
calibration. These synthetic altimetry time series result from the combination of different
single-mission time series and overcome the spatial and temporal sampling limits that
characterize a given single mission (Tourian et al., 2016). The construction of MM time
series represents a recent frontier towards a larger exploitation of altimetry data provided
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from the overall set of past and on-going satellite missions. Thus, the evaluation of its
potential for the implementation of an accurate and reliable hydraulic model constitutes
an element of interest for the hydrologic community.
Although not claiming to provide a general statement and ranking of the altimetry prod-
ucts, this study aims at delivering a comprehensive and cross-missions view of the po-
tential of current and past altimetry data. The analysis is implemented along the Po
river in the stretch between the gauged stations of Borgoforte (basin area equal to 62.450
km2) and Pontelagoscuro (basin area equal to 70.091 km2), for a direct comparison with
other studies. The hydraulic simulation is carried out with the Hydrologic Engineering
Center’s River Analysis System (HEC-RAS) software package (Hydrologic Engineering
Center, 2001) in a quasi-2D configuration. This study is presented in Domeneghetti et al.
(2021).

1.5 Research questions

As introduced in the previous section, the use of satellite data in hydraulic and hy-
drological applications is common and continuously increasing. However, there are still
a number of open issues concerning its potential and fields of applications. The lack of
global datasets of hydraulic variables of interest (such as discharge, river depth, river
width) represents a strong restriction for investigating variables relationships and hy-
draulic modelling. In this context, the use of satellite information can give a push in
this sense, offering new solutions and perspectives for many hydrological and hydraulic
applications.
Remote sensing products allow to examine remote areas, providing the opportunity of
investigating also ungauged water bodies. Notwithstanding the quasi global coverage of
satellite data, thinking at global scale is always complex. For example, the available
sensors for discharge estimation limit the analysis of water courses characterized by re-
markable dimensions (widths of a few hundred meters). SWOT will partly overcome
these limits by observing water courses with a width of 50-100 m worldwide. Although
the remarkable step forward, it follows that a large part of existing rivers will remain in-
visible to satellite sensors. Several studies investigate criteria that, based on topographic
and hydrological information relative to the main streams, allow the extraction of more
detailed information along the non-instrumented and non-detectable tributary branches.
The main objective is therefore the creation of large-scale hydraulic variable datasets
(Beck et al., 2016).
In this context, this dissertation aims to present some innovative approaches for the mon-
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itoring, or the estimation, of hydraulic and hydrological variables. In particular, the
proposed approaches focus on the use of specific space-borne information (e.g. space-
borne DTM, satellite altimetry), analysing in details limitations and potential of their
use.
The common thread of the proposed investigation is the understanding of how, and in
which measure, the satellite data could integrate, substitute or be complementary to tra-
ditional measuring techniques for some hydraulic and hydrological applications. Although
a single answer would be inappropriate, the potential of the satellite data is a function of
the user’s needs of the satellite product. Undoubtedly, the birth of satellite monitoring
brought new prospectives in hydraulic applications, mainly for its positive economic im-
pact on monitoring activities, being most of the space-borne products freely-available.
Among most commonly used satellite-derived data for hydraulic applications there are
Digital Terrain Models (DTM). The spatial resolution is discriminating in the choice of
these satellite products. Analysis relative to the description of river channel geometry
does indeed become troublesome if the DEM pixel size has the same order of magnitude
of river width. On the contrary, DEMs featured by rougher definition can be suitable for
large scale studies, decreasing the analysis computational costs. Moreover, the user has
to consider bias and inaccuracy characterizing the DEM: Chapter 3 refers to SRTM-30
(i.e. 30 meters) since the wide amount of researches relative to its elevation bias and
limitations.
Also, in the ambit of satellite altimetry, the temporal frequency of satellite overpasses,
number of available observations in a period of interest and data accuracy strongly influ-
ence the range of applicability of these satellite products (Chapter 4). Last but not least,
the reliability of proposed methods exploiting satellite data plays an important role; for
this reason all the studies proposed in the Thesis have been validated presenting a direct
comparison with in-situ measurements.
The first part of this thesis focuses on the river bathymetry estimation, pivotal issue
for hydraulic modelling and applications. The Chapter 2 presents an automatic tool
(RiBEST) for river hydraulic parameters assessment (i.e., river thalweg, flow area, wet-
ted perimeter, hydraulic radius), exploiting satellite DEMs (i.e., SRTM). The benefits
of this approach have been tested on hydraulic modelling for three different study cases:
a) an heavily human impacted river (Po River, Italy), b) a naturally shaped river in re-
mote areas (Limpopo River, Mozambique) and c) a river partially constrained with vast
floodplain areas (Clarence River, New South Wales, Australia). For this reason, the first
research questions is:
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Can the integration of a simplified river bathymetry description into a space-borne
DEM sustain proper 1-D and 2-D hydraulic modelling?

XXXXXX.
Chapter 3 regards the assessment of river discharge. Since its impossibility to be mea-
sured directly from satellite, this work aims to exploit space-borne information (i.e., wa-
ter surface elevation from SWOT) in a DA framework for the estimation of river flows.
The proposed 4D-Var method, implemented in collaboration with IRSTEA (Montpellier,
France), aims at combining available satellite observations with hydraulic model output
(i.e., Simulation and Integration of Controls for Channels (SIC2)), assessing river dis-
charge and Strickler coefficient at the same time. The inaccuracies of observations and
in the description of river channel can affect the estimation process. Starting from this
consideration, the aim of this research is to exploit cross-sections profile derived from
RiBEST and thus posing the following question:

How a better knowledge of the river shape (e.g. river bathymetry) might impact the
discharge estimating using DA techniques?

XXXXXX.
The final part (Chapter 4) is dedicated to the investigation of the use of satellite altimetry
information in the hydraulic model calibration. Several satellite missions are considered
(i.e., Envisat, Envisat extended mission, TOPEX/Poseidon, SARAL/AltiKa, Jason-2 and
Jason-3, Sentinel 3A and Sentinel 3B) with the objective of evaluating their performance
in hydraulic model calibration. Moreover, an innovative dataset, Multi-Mission series, for
overcoming the main satellite limitations (i.e., time resolution, number of data) is tested.
Thus, the main research questions that this work investigation attempts to answer are:

Which satellite altimetry series are more suitable for hydraulic model calibration?
Can multi-mission approach overcome single-mission limitations?
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CHAPTER 2
RiBEST: a tool for the river
bathymetry and hydraulic
parameters assessment

Try to change our traditional attitude towards building
programs. Instead of imagining that our main job is to
instruct a computer on what to do, let’s instead focus on
explaining to humans what we want a computer to do.

Donald Knuth
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2.1 Slope Break Method (SB): fully-geometric ap-
proach for bathymetry estimation

As introduced before (see Section 1.2), satellite DEMs are unable of describing the
river submerged part, not allowing a reliable river cross-section reconstruction. This
strong limitation have induced the research community of investigating approaches to
improve the representativeness of river geometry in satellite products. In particular, sev-
eral morphological methods have been proposed in the literature. Among more complex
approaches, the Slope Break Method (SB) considers two linear relationships between the
river section width (w) and the related height (h; expressed as elevation in meter a.s.l.),
one referred to low flow condition and one for moderate - high flows (Mersel et al., 2013;
Domeneghetti, 2016).

Figure 2.1: On the left: a generic river cross-section with real submerged part (black) and
reconstructed one (dash red). On the right: empirical relationship among width (w) and
elevation (h) (Domeneghetti, 2016)

Starting from the minimum gauged water level (hmin Figure 2.1), SB extrapolates w-h
relationships for a series of elevations with an incremental step (e.g., 50 cm). The identifi-
cation of linear links is performed computing the derivatives (i.e. finite forward difference;
dh/dw) for all the possible h-w pairs. The mean derivative (dh/dw) is calculated for four
initial points, considering the subsequent dh/dw values as long as they deviate from dh/dw

for a value lower than 40%. At the h-w pair where this hypothesis is not satisfied (that
is an abrupt change on dh/dw value) Slope-Break point is found and cross-section (CS)
thalweg (zmin Figure 2.1) can be identified, exploiting the dh/dw computed referring to
at least five w-h couples below the Slope-Break point. The CS is thus called “optimal”
for the SB approach application. The number of w-h pairs considered as threshold is a
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user-defined parameter introduced to limit the risk of adopting misleading relationships
based on a limited CS portion.
Mersel et al. (2013) proved the validity of the SB method for bathymetry estimation
using detailed topographic information available along several rivers located in different
regions (namely, Gange, Upper Mississipi, Illinois and Rio Grande rivers). Domeneghetti
(2016) investigated the SB potential for enhancing the topography description ensured
by satellite-sensed DEM (such as the SRTM) and for estimating the decrease of model
accuracy expected in case of lack of finer data. The SB method does not require in situ in-
formation and is solely based on topographic data, easy gettable from space-borne DEMs.
It proves reliable in the reconstruction of the river geometry, allowing the implementation
of a 1-D hydraulic model with satisfying performances (i.e., Mean Absolute Error (MAE)
of 0.27 m and Root Mean Square Error (RMSE) of 0.35 m respect with the benchmark
model). Findings of this latter study emphasized the potential of space-borne DEMs
embedding bathymetry information to sustain large-scale analysis and global inundation
modelling.

2.2 RiBEST: River Bathymetry Estimation from Satel-
lite

RiBEST tool is a Matlab-based software applying SB method for river bathymetry
estimation. The tool has been conceived in order to be adaptable to multiple topographic
sources (DEM of different resolution and origin) and different contexts (data-poor or data-
rich areas). As a matter of fact, inputs required are limited to the channel centerline of
the river of interest and a DEM of the area (e.g., SRTM). This characteristic makes the
tool straightforward and versatile. Flowchart of Figure 2.2 describes RiBEST’s structure,
which can be divided into four main sessions.

Part 1: Input reading
The tool requests two mandatory inputs: a DEM (e.g., space-borne data such as SRTM)
and the centerline of the river stretch of interest. DEM information (i.e. spatial reso-
lution, raster vertices coordinates) are automatically extracted and no direct inputs are
demanded to the user. The tool can manage raster of any spatial resolutions provided as
geotiff data type. River centerline identifies the planimetric extension of the river stretch
of interest and is provided by the user as a shape file. DEM and shapefile must have the
same reference system (i.e. with plane or geographic coordinates).
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Figure 2.2: Flowchart of RiBEST tool structure.
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Part 2: CS extraction
Regarding CSs position, the user can proceed with two options: “user defined location”
or “fixed distance sampling”. In the first case, CSs position is imposed by means of a
shapefile provided by the user. Alternatively, the code automatically generates cross-
sections perpendicular to the river centerline adopting a fixed step (e.g., 300 m, 500 m,
etc.) indicated by the user. Once identified, the tool extracts the terrain elevation at each
CS considering a user defined width.

Part 3: SB application
CS thalweg (zmin, Figure 2.1) is assessed after the identification of a linear relationship
among w-h couples (five, at least) sampled below the SB point. Referring to low flow
conditions, this relationship is characteristic of the main river channel, which is typi-
cally different from the relationship eventually identified among w-h couples located in
the floodplains and relative to medium-high flows. Starting from this consideration, the
correct identification of the main channel within each CS is fundamental to yearn for
a realistic bathymetry estimation. RiBEST automatically selects the main channel ex-
ploiting two different methods. The first approach (M1) locates the channel as the river
portion delimited by the highest points on the right and left side of the river centerline
(upper panel, Figure 2.3); the second one (M2), moving separately to left and right from
the centerline, delimits the main channel by looking for points having elevation equal or
higher than previous one (bottom panel, Figure 2.3). Although flexible, these selection
strategies might not ensure a proper identification of the main channel in every circum-
stance; perhaps, secondary channels might interfere with main channel selection in case
of M1 approach, while M2 may fail due to discontinuities in river bed elevations. In or-
der to overcome these limitations the modeller can adopt a third approach, namely IM,
Interactive Method, which allows the user to check and choose the approach (M1 or M2)
considered as the most appropriate for each CS. Adopting IM mode, the user can choose
the best main channel selection strategy or remove the cross-section from SB application.
Once the main channel is selected, the tool calculates the river channel width associated
with potential water surface elevations sampled within the channel with a constant step
of 50 cm. A counter quantifies points (i.e., the w-h couples) for which the mean deriva-
tive (dh/dw) is computed. It considers the four initial points and the subsequent dh/dw
values as long as they deviate from dh/dw for a value lower than 40%. If the counter
is at least five, the section is optimal; vice versa it is neglected for the average lowering
estimation. High dh/dw values imply poor channel width variation, typical feature of
limited dimensions rivers.
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Figure 2.3: Upper panel reports an example of river channel selection using M1 (red line):
the discontinuity in the river bed (red dashed line) makes the M2 selection not representative.
Bottom panel depicts river channel selected by means M2 (blue line): in this case M1 would
consider also the secondary channel (red dashed line) compromising the following process of
bathymetry estimation. For both the images, satellite-derived CS profile and river channel
centerline are represented by black line and light blue triangle, respectively.

Part 4: Cross-section geometry modification and hydraulic parameters estimation
The h-w values are linearly interpolated to find h value relative to w null (zmin). The
difference between hmin and zmin represents the CS lowering to be applied in order to
correct CS profile. An average lowering is calculated referring to optimal CS only and
applied to the overall reach. RiBEST tool provides the modified CS profile, proposing two
different CS shapes. In the first case, the average lowering value is applied to the segment
consisting from all the points at the river centreline height (i.e. rectangular profile, upper
panel Figure 2.4); in the second option, only segment central point depth is increased
(i.e. triangular shape, upper panel Figure 2.4). For all the CSs for which the fluvial axis
has a different height respect with adjacent points (thus hmin refers only to a single point
instead of a segment), geometric modification is not applied.
Once CS are modified, RiBEST can evaluate flow area and hydraulic radius. Under full
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channel hypothesis (i.e. water level in correspondence of the maximum channel elevation),
flow area (A) and wetted perimeter (wp) are calculated as sum of areas and segments
between CS point couples respectively (bottom panel Figure 2.4). The hydraulic radius
(R) is expressed as A and wp ratio.

Figure 2.4: Upper panel: the satellite DEM CS (black line) after the geometric modifi-
cation (dashed red and light blue lines); the blue profile is the reference one (i.e. LiDAR
integrated with bathymetric in-situ information). Bottom panel: evaluation of flow area
(blue area) and wetted perimeter (red line) of the main channel below the maximum water
height from satellite DEM (dashed light blue line).
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2.3 RiBEST analysis in different application contexts

2.3.1 Study areas and available in-situ data

To test RiBEST applicability and robustness, three different areas have been inves-
tigated: Po River (Italy), an example of heavily human impacted river, Limpopo River
(Mozambique) located in a remote areas and Clarence River (New South Wales, Aus-
tralia) featured by the presence of vast floodplains. The choice falls on the following river
reaches for several reasons. Firstly, the river width is generally greater than the spa-
tial resolution of adopted satellite DEM (i.e. Po river width spans 200 and 500 meters,
Limpopo 100-700 m and Clarence 150-800 m). Moreover, these stretches are sinuous and
unbraided, presenting a single-channel shape, a condition under which the SB method
have been developed (see Part 3 Section 2.2). Finally, ground surveyed data are available
in all cases (i.e. detailed in-situ information, water levels data) enabling the validation of
model application.

Figure 2.5: Study areas: on the top the Po River (Italy), on the bottom left the Limpopo
River (Mozambique) and on the bottom right the Clarence River (New South Wales, Aus-
tralia).
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The Po River (upper panel Figure 2.5) is the longest Italian river with an overall basin
extent of about 86859 km2, a total length of 650 km and more than 140 tributaries. The
vast floodplains, typically protected by a continuous embankment, are characterized by a
reservoir capacity of about 450 Mm3 with a width ranging from 200 m and 5 km.
In particular this study is referred to the 132 km-stretch that goes from the gauging station
of Borgoforte to the beginning of the river delta. The upper panel of Figure 2.5 depicts
the survey area, showing the gauging stations (i.e. Borgoforte, Pontelagoscuro) where
the Po River Basin Authority (Autorità di Bacino Distrettuale del Fiume Po (AdBPo),
https://adbpo.gov.it/) is responsible of in-situ monitoring of hydrological vari-
ables (i.e. water levels, river flow). In order to test the validity of the proposed method, a
detailed knowledge of the riverbed topography is needed. The reference DEM integrates
a LiDAR-2m DEM acquired in 2005 by AdBPo with topography information from multi-
beam sonar and traditional surveys (i.e. more than 100 river CSs provided by Agenzia
Interregionale per il Fiume Po (AIPO); see Camorani et al., 2006). Moreover, a series
of maximum high watermarks observed in the aftermath of a major flood event occurred
along the Po river is exploited for hydraulic model validation.

The Limpopo River (left bottom panel Figure 2.5) is one of the major rivers of Mozam-
bique. It extends from the Witwatersrand mountains in South Africa to the Indian Ocean
with a length of 1700 km and a hydrographic basin of about 415000 km2. Only after the
Olifants River enters Limpopo River, its main tributary, Limpopo River becomes navi-
gable to the sea. In its extension, the basin covers a wide range of climates including
tropical rainy conditions along the coast of Mozambique, tropical dry savannah and hot
dry steppe further inside in Zimbabwe, until cool arid slopes in the mountainous areas
of South Africa (Reali, 2018). The selected river stretch is South-East of hydrographic
basin, with a length of about 166 km. As depicted in Figure 2.5, the last 50 km near the
river mouth have been not detected: the water course presents limited channel width (i.e.
under 90 m) restricting the CS profile description from the satellite DEM.
Detailed terrain information (i.e. 1m-LiDAR, UAV-derived topography) proposed in pre-
vious studies (Reali, 2018; Mazzoleni et al., 2020) are not exploitable for this analysis,
since they refer to only a 30 km-stretch of this survey river portion. Notwithstanding the
lack of a monitoring network and of a high resolution DEM, a series of 129 CSs measured
in field are exploited in phase of validation. In 2010 a detailed field bathymetric campaign
was performed as a joint effort of the National Directorate of Water and Resource Man-
agement together with two local consultancy companies, Salomon LDA and Consultec
LDA, by means of Total Station and RTK-GPS tools, guaranteeing a resolution of 0.5 m
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and vertical accuracy of about 2 cm (Mazzoleni et al., 2020).

The Clarence River (right bottom panel Figure 2.5) is the largest river in mainland
Australia South of the Tropic of Capricorn, with a total length of 394 km, drainage area
of 22700 km2 and 24 tributaries. The Clarence river has a long history of flooding, with
more than high flow events recorded since 1839 (i.e. since the European settlement).
Four events having larger than 10 years average recurrence interval occurred in 2001,
2009, 2011, and 2013 and almost caused the overtopping of the levee systems protecting
the main urban areas, namely Grafton, Ulmarra, and Maclean (Huxley and Farr, 2013).
Accurate modelling of river flow in low and high periods is also essential to support bio-
diversity programs (Rogers et al., 2016).
This study focuses on the 128 km (i.e. 135 km of main stem; 165 km considering also
branch 1 from Brushgrove to MacLean and branch 2 from MacLean to Yamba) long
river reach from Lilydale to Yamba, the river mouth. The Australian Bureau of Me-
teorology provides measured discharge data at Lilydale (http://www.bom.gov.au/
waterdata/), while water level gauge stations at 11 locations (Rogans Bridge, Grafton,
Ulmarra, Brushgrove, Tyndale, Maclean, Palmers Island Bridge, Lake Woooloweyah, Oys-
ter Channel, Yamba) are maintained by the New South Wales Manly Hydraulics Labo-
ratory (http://new.mhl.nsw.gov.au/). The reference DEM is derived from a 1m
LiDAR having a vertical accuracy of ±30 cm and horizontal accuracy of ±80 cm (New
South Wales Land and Property Management Authority, 2010; https://elevation.
fsdf.org.au/). This dataset was resampled using the Geo Editor for Modeling (Hilton,
2017) to a 30 m resolution as this resolution allowed the optimal trade-off between model
accuracy and computational time (Grimaldi et al., 2018). Bathymetric data are avail-
able from Copmanhurst to Yamba (∼100 km); morphologic and hydraulic analysis allow
the assessment of a river bathymetry that is effective for the implementation of raster-
based flood forecasting models in the narrow river reach from Lilydale to Copmanhurst
(Grimaldi et al., 2018). The terrain data were modified to include the levee system. For
this analysis 154 CSs are used (116 for the main stem, 23 and 15 for branch 1 and 2,
respectively), derived from two field surveys completed in 1960s (Huxley and Farr, 2013)
and November 2015 respectively (Grimaldi et al., 2018).

2.3.2 Satellite-borne DEM

SRTM is an international project of U.S. National Geospatial-Intelligence Agency
(NGA) and U.S. National Aeronautics and Space Administration (NASA) obtaining a
satellite DEM on a quasi-global scale from 56°S to 60°N. In the first version of SRTM,
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the C-band radar signals with an interval of 1 arc-sec (30 meters) were available only for
U.S.A, while the other countries were sampled in 3 arc-sec (i.e. 90 meters). Recently
SRTM resolution has raised to 30 meters with global coverage. The analysis refers to
SRTM version 4.1 provided by CGIAR-CSI (http://srtm.csi.cgiar.org). It has
been decided to investigate SRTM potential because of: i) free availability for almost 80%
of the globe; ii) high spatial resolution, primary factor that influences CSs description; iii)
several studies have widely investigated its elevation bias. The removal of these inaccura-
cies is pivotal for the correct use of satellite-derived DEMs (Baugh et al., 2013). Yamazaki
et al. (2017) proposed MERIT (Multi-Error-Removed Improved-Terrain), a high-accuracy
global DEM by eliminating major bias components from existing DEMs using multiple
satellite data sets and filtering techniques. Significant improvements were found in flat
regions where river networks and hill-valley structures became clearly represented. Never-
theless, MERIT is characterised by a lower spatial resolution respect with SRTM 30 (i.e.
3 arc-sec spatial resolution, about 90 m at the equator), performing a coarser description
for the most of available CSs, in particular for limited width sites. It has been demon-
strated SRTM elevation bias is less evident in flat land, where the average vertical error is
few meters (i.e. 2.6 m and 3.2 m, Koch et al., 2002; Falorni et al., 2005, respectively). Ro-
driguez et al. (2006) provides overall vertical error assessment for each continent, ranging
from 4.7 m up to 9 m. C-band wave length adopted are unable of penetrating the dense
canopy. For areas with considerable vegetation heights, SRTM altimetry is representative
of an intermediate elevation among the real vegetation height and the bare ground, with
an overall overestimation that depends on the adopted instruments, vegetation structure
and other factors (i.e., Brown et al., 2009; Baugh et al., 2013). SRTM canopy heights
effect is not considered in the analysis since all three study areas are characterised by
sparse bush and tree cover with limited extent, bare ground or cultivated fields and lack
of buildings. Nevertheless, SRTM CS profiles of Limpopo River seem to move upwards
respect with in-situ data with a constant shift (i.e. 4-6 meters). This fact is also high-
lighted by Baade and Schmullius (2016) whose analysis were conducted in the Southern
part of Kruger National Park, about 80 km west of Limpopo River. Comparing different
DEM types (i.e. SRTM, TanDEM-X, ASTER), a SRTM mean positive offset of about
4.5 meters was estimated. It is in agreement with similar findings for South Africa in the
SRTM C-band validation studies of Rodriguez et al. (2006), evaluating a continent global
error of 5.6 meters. After these considerations, a 5-meters lowering has been applied to
all SRTM data for Limpopo survey area.
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2.3.3 Numerical modelling

To detect how bathymetry knowledge affects hydraulic modelling, SRTM CSs modi-
fied by using RiBEST tool are exploited for the implementation of hydraulic models (i.e.
1-D model, 2-D model). In particular, the study refers to different models: i) two 1-D
hydraulic models for Po and Limpopo River have been built using the HEC-RAS software;
ii) a 2-D hydraulic model developed using LISFLOOD-FP for Clarence River (Bates et al.,
2010). From now on, hydraulic model based on river CSs modified by RiBEST tool is
called “SRTM-mod”. All the model inputs and parameters are shown in Table 2.1.

1-D hydraulic model
Since its wide use for hydraulic modelling (Pappenberger et al., 2005; Mazzoleni et al.,
2014), in this work the one-dimensional version of the HEC-RAS model is used, solving the
Saint–Venant equations using the finite-difference method (Preissman, 1961) to discretize
the continuity and momentum equations. The reference models have been built on de-
tailed topographic information and ground data (i.e. LiDAR integrated with bathymetry
measurements for Po River; in-situ information for Limpopo River; see Section 2.3.1).
Also, the boundary conditions (see Table 2.1) derive from in-situ data, in order to avoid
additional data uncertainties affecting hydraulic models outcomes and to highlight the
effect of not detailed geometry on flood modelling. Historical flow hydrographs (reaching
peaks of 11250 m3/s for Po River and 1060 m3/s for Limpopo River) are considered as
upstream conditions, while normal depth conditions are assumed as downstream condi-
tions (2‰and 1.6‰for Po and Limpopo River, respectively).
The model calibration is based on the identification of the Manning’s roughness coefficient,
n (m-1/3s) for the main channel and floodplains. The aim is the optimal n identification
maximizing the average Nash-Sutcliffe Efficiency (NSE) and minimizing the average Root
Mean Square Error (RMSE), evaluated respect with the reference data (see Table 2.1).
For the Po River a series of maximum observed water levels are available; on the contrary,
since the lack of in-situ observation for the Limpopo River, the maximum CS water levels
have been simulated adopting the reference hydraulic model.

NSE = 1−
∑N
i=1 [xsim − xref ]2∑N
i=1 [xsim − x̄]2

(2.1)

where xsim and xref are the simulated and reference (see Table 2.1) water levels re-
spectively, x̄ indicates the average maximum reference water level at each river CS and
N the number of observations. NSE ranges between - ∞ and 1, when the simulated val-
ues fit perfectly the reference ones. Thus NSE must be maximised in the calibration phase.
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RMSE =

√√√√ N∑
i=1

(xsim − xref )2

N
(2.2)

RMSE is always non-negative, and a value of 0 (almost never achieved in practice)
would indicate a perfect fit to the data. Thus RMSE must be minimized in the calibration
phase.
The Limpopo River hydraulic model is implemented considering only the reach from Ponte
da Barragem de Macarretene, a barrage with a capacity of 4 Mm3 used to elevate the
water level to feed the intake of an irrigation channel positioned 1 km upstream (Figure
2.6) with a length of about 88 km and with 85 CSs.
Referring to Domeneghetti (2016), the Po study area can be divided into three subreaches
with different roughness coefficients: the upper stretch goes from Borgoforte to Sermide
(blue stretch, Figure 2.7), the middle one is delimited by the confluence of Panaro River
(yellow stretch, Figure 2.7), while the lower part ends at the beginning of river delta
(orange stretch, Figure 2.7). The optimal set of Manning’s coefficients obtained in the
calibration phases for Po and Limpopo River are shown in Section 2.4.2.

Figure 2.6: The 88-km stretch (orange line) of Limpopo River and CSs (black lines)
exploited for hydraulic modelling. The red dashed line depicts the river reach not considered
in this phase.
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Figure 2.7: Upper (in blue), middle (in yellow) and lower (in orange) subreaches of Po
River for the calibration phase (Domeneghetti, 2016).

2-D hydraulic model
The 2-D hydraulic model is based on LISFLOOD-FP (Bates et al., 2010) and it solves
the inertial approximation of the shallow water equations using a finite difference method
which is explicit in time and first order in space. In the model set-up used for this study,
river geometry is discretised using a number of grid cells. Measured bathymetric data are
used for the implementation of the reference model; more specifically, irregularly spaced
CSs and additional soundings where available are converted into a submeter irregular mesh
topography using a customised along-thalweg curvilinear interpolation algorithm and a
second order inverse distance algorithm. The nearest neighbour method is finally used
to sample this submeter irregular mesh topography to a regular 30 m grid, which is inte-
grated with the reference DEM into one seamless data structure. Measured time series of
discharge at Lilydale and water level at Yamba are used as input and downstream bound-
ary conditions, respectively. Floodplain roughness values are evaluated using land cover
data and previous analysis (Huxley and Farr, 2013); spatially distributed river roughness
values are exploited as calibration parameters. More specifically, the model is calibrated
using remote sensing-derived flood extent and wet/dry boundary points retrieved from
the analysis of two SAR (CosmoSkyMed) images acquired during the January 2011 flood
event. The calibrated Manning’s roughness values range between 0.016 and 0.025 m-1/3s;
the Critical Success Index (CSI) is used to quantify the agreement between modelled and
observed flood extent and the average value for the two satellite images is 0.71. Water
level gauged data at 10 locations from January 10th to January 17th are used as indepen-
dent validation dataset and the average NSE is 0.88 (the minimum value is 0.44 at Lake
Wooloweyah), the average RMSE is 0.27 m (the maximum value is 0.47 m at Rogans
Bridge). The calibrated model with measured bathymetry and levee system is then used
as a benchmark (hereafter called “REF”) to evaluate the impact of different representa-
tions of river bathymetry on the modelling of flow dynamics in both low and high flow
conditions. The tested morphological datasets are the SRTM and the SRTM-mod.
The RiBEST algorithm is applied from 36 km downstream of Lilydale (4 km upstream
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of Rogans Bridge) to the river mouth at Yamba (Figure 2.5); that is, the algorithm is
applied to a total river length of 165 km (including both the main stem and the lateral
branches). Available measured river cross sections between Copmanhurst and the river
stretch beginning are on average 149 m wide (median 139, minimum 96, maximum 225),
estimated river width between Lilydale and Copmanhurst is 186 m. The algorithm could
not be applied to the narrow river reach between Lilydale and Copmanhurst; in fact, a
data parsimonious assessment based on hydraulic analysis and information derived from
Remote Sensing (RS), and a few (at least three) measurements is proposed by Grimaldi
et al. (2018). The results of the application of the RiBEST algorithm to a total of 154
CSs are detailed in Section 2.4. Measured discharge data are not available downstream of
Lilydale, consequently, the reference model is used to generate the discharge time series
at river stretch beginning. The modelled discharge time series, the measured water level
at Yamba, and the calibrated roughness parameter set are used as input, downstream
boundary, and parameters for the implementation of the SRTM and SRTM-mod mod-
els. In other words, the only difference between the three model implementations is the
morphological dataset, with the latter two model implementations differing only for the
bathymetric data. The models are used to predict river and floodplain dynamics during
a mid-flow period (from December 28th 2010 to January 6th 2011), a high flow period
(from January 10th to January 17th), a low flow period (from February 4th to February
28th 2011). It is here underlined that the high flow period is defined to focus on a flood
event, the low flow period started only after the exhaustion of the decreasing limb for all
the models. Specific purpose of this study is not the assessment of the absolute accuracy
of three model set-ups but rather the quantitative analysis of the impacts of different rep-
resentations of river geometry. For this reason, it is decided not to repeat the calibration
for the SRTM and SRTM-mod models; moreover, it is here underlined that the refer-
ence model is calibrated to achieve an accurate representation of floodplain inundation
extent during a high flow period, while low flow periods were not considered for model
calibration.

2.4 Results and discussion

2.4.1 Geometric SRTM cross-sections modification by RiBEST

Table 2.2 summarises RiBEST results and performances for the river bathymetry
evaluation. In particular, it reports the results relative to the use of the IM (Interactive
Method) approach for channel selection and CSs locations were identified by means of
shape files referring to previous field surveys. The number of optimal CSs is expressed in
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percentage on the total amount of CSs for each reach.

Table 2.2: Results of RiBEST application for river bathymetry estimation: optimal CSs
ratio [%], average lowering [m], Mean Error (ME) and Root Mean Square Error (RMSE)
before (SRTM) and after (SRTM-mod) RiBEST application.

Optimal Average ME ME RMSE RMSE
CSs lowering SRTM SRTM SRTM SRTM
[%] [m] mod [m] [m] mod [m] [m]

Po 70 7.4 0.1 7.4 2.6 7.9
Limpopo 33 5.3 0.4 5.8 1.4 5.9
Clarence 48 7.7 4.6 12.3 4.6 13.0

In order to grasp the complexity of Clarence study area for a realistic 2-D hydraulic
model implementation, the two minor branches (branch 1: from Brushgrove to Maclean;
branch 2: from Maclean to the delta, Figure 2.5) are also considered for the bathymetry
estimation. RiBEST suggests an average lowering of 5.1 and 6.1 meters for branch 1 and
branch 2, respectively.

The value and accuracy of the estimation process is assessed based on different error
metrics, calculated before and after RiBEST application:

• Mean Error (ME):
ME = hmin − href (2.3)

• Root Mean Square Error (RMSE):

RMSE =
√

(hmin − href )2 (2.4)

where hmin represents SRTM river bottom and href the minimum reference channel el-
evation. For all the study cases, RiBEST tool provides significant improvement in terms
of bathymetry estimation, showing lower ME and RMSE values, in particular for Po
and Limpopo Rivers (Table 2.2). The high values of ME and RMSE for Clarence River
(i.e. 4.6 and 4.6 meters respectively) are probably consequence of the presence of several
irregularities at the bottom of the reference CSs (i.e. very deep small grooves), which
occasionally provide consistent href discontinuities. The bathymetry evaluation analysis
simply investigates the punctual overlap between SRTM-mod and the reference river bot-
tom, providing a first idea of main channel representation. A more complete evaluation of
river morphology should take into consideration also CS shape, perhaps estimating other
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hydraulic parameters, such as flow area and hydraulic radius. RiBEST performs such
estimations assuming a rectangular shape for the modified CSs: this choice relies on the
fact that assuming a rectangular shape provides better performance than the triangular
one, since it appears to be more representative of real sections dimension in case of wide
rivers. Table 2.3 shows the hydraulic parameters estimated (i.e. flow area (A), hydraulic
radius (R)) considering SRTM-mod CSs. Reference values are obtained averaging hy-
draulic parameter values for reference CSs on the overall river stretch. RMSE is reported
as ratio between the average parameter value using SRTM-mod Css and the reference
value (first column, Table 2.3).
Scatter plot of Figure 2.8 and graphs of 2.9 highlight a good correlation among estimated
and observed hydraulic parameters. In particular, the coefficient of determination R2

is equal to 0.70, 0.77 and 0.99 for R and 0.72, 0.83 and 0.96 for A for Po, Limpopo
and Clarence Rivers, respectively. In general estimated hydraulic parameters are repre-
sentative of the real ones, especially for the Clarence River. An overestimation of both
parameters is evident for Limpopo River.

Table 2.3: RiBEST outcomes for hydraulic parameters assessment: reference parameter,
coefficient of determination (R2) and Root Mean Square Error (RMSE) for flow area (A)
and hydraulic radius (R), respectively.

Reference R2 RMSE Reference R2 RMSE
A A A R R R

[m2] [/] [/] [m] [/] [/]
Po 9675 0.72 0.71 9.0 0.70 0.26

Limpopo 3509 0.83 1.13 6.75 0.77 0.33
Clarence 26852 0.96 0.25 18.13 0.99 0.17
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Figure 2.8: Hydraulic radius (R) estimated from SRTM-mod respect with the reference
one for Po, Limpopo and Clarence River respectively.

42



RiBEST: a tool for the river bathymetry and hydraulic parameters assessment

Figure 2.9: Flow area (A) estimated with SRTM-mod (red line) and surveyed (blue line)
CSs along Po, Limpopo and Clarence Rivers, respectively.

2.4.2 Impact of river bathymetric information on hydraulic mod-
elling

1-D hydraulic model
The best Manning’s coefficient sets obtained from the calibration phases carried out for Po
and Limpopo River are shown in Table 2.4. The reference roughness values are calibrated
with 1-D reference hydraulic models (see Table 2.1), represented in brackets. It should
be noticed that Po River is discretized into three portions (Figure 2.7), thus calibration
results are shown as combination of Manning’s coefficients for the river channel.
Limpopo River calibration required channel roughness coefficients higher than reference
ones along the overall reach (i.e. NSE and RMSE equal to 0.96 and 0.97 respectively),
while calibrated Manning’s coefficients are in good accordance with reference ones for the
Po River (i.e. NSE and RMSE equal to 0.99 and 0.39, respectively).
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Table 2.4: 1-D hydraulic models calibration results: Manning’s coefficients for channel and
floodplains (reference values in brackets), Nash-Sutcliffe efficiency value (NSE), Root Mean
Square Error (RMSE).

Manning’s [m-1/3s] NSE [/] RMSE [m]
channel floodplains

Po 0.040-0.038-0.027 0.08 0.99 0.39
(0.044-0.042-0.025) (0.10)

Limpopo 0.050 0.07 0.96 0.97
(0.030) (0.07)

Figure 2.10: Comparison among maximum simulated CS water levels (blue points) using
the best Manning’s coefficients combination of the calibration phase (see Table 2.4) and the
reference ones (red points) for Po River (upper panel) and Limpopo River (bottom panel).
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Figure 2.10 compares maximum simulated and reference water levels at each CS for Po
(upper panel) and Limpopo River (bottom panel). Nearly a perfect overlapping among
simulated and reference levels is evident for Po River. The same occurs along most part
of the Limpopo River, although water levels are underestimated in the upper and lower
portions of the river. SRTM appears unable to properly describe CS geometry in these
transects characterized by limited widths (i.e. about 130 meters), thus overestimating the
flow area and obtaining minor water levels (Figure 2.10).
To test SRTM-mod hydraulic models reliability, Manning’s coefficients calibrated with
reference models (i.e. 0.044, 0.042, 0.025 for Po River; 0.03 for Limpopo River, see Table
2.4) are exploited for SRTM (thus based only SRTM river CS without RiBEST appli-
cation) and SRTM-mod models simulations. SRTM-mod models for both study cases
provide quite good results (i.e. NSE equal to 0.97 and 0.84; RMSE equal to 0.69 and 1.93
for Po and Limpopo Rivers, respectively), while SRTM models are unsuitable to represent
rivers dynamics (i.e. NSE equal to -0.98 and 0.41; RMSE equal to 5.28 and 3.70 for Po
and Limpopo Rivers, respectively).

2-D hydraulic model
The three morphological set-ups, namely, REF (reference model), SRTM and SRTM-mod
are used to investigate the impacts of different representations of river bathymetry on
the modelling of both low flow and high flow periods for Clarence River study case. As
explained in Section 2.3.3, the calibrated roughness values of the reference model are
exploited for the implementation of the models based on SRTM and SRTM-mod data.
Figure 2.11a-d shows the modelled and observed water level adopting all configurations
at Rogans Bridge, Grafton, Brushgrove and Maclean, respectively. Each gauge station is
selected to represent the models behaviour in the upstream, narrow river reach (Figure
2.11a), a river reach with complex river path (Figure 2.11b); in the mid-river reach,
including 4 gauge stations (Figure 2.11c); the most downstream river reach, up to the
river mouth, including 3 gauge stations (Figure 2.11d).
The NSE and RMSE are used to quantify the discrepancy between modelled and measured
data during a mid-flow period (from December 28th 2010 to January 6th 2011), a flood
event (from January 10th to January 17th), and during a low flow period (from February
4th to February 28th). The ratio between modelled and observed water level flood peak is
exploited to complement the previous analysis as in channelised rivers, small inaccuracies
in the prediction of water level can lead to large inaccuracies in the prediction of floodplain
inundation extent. Table 2.5 shows the values of the performance metrics for each flow
period and for different river traits. In the SRTM model, the inaccurate representation of
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river flow capacity led to large discrepancies between modelled and measured water levels
with negative NSE values for all the time series, with RMSE larger than 3 meters during
the flood event.

Figure 2.11: Modelled and measured time series of water level at four gauge stations:
Rogans Bridge (a), Grafton (b), Brushgrove (c), Maclean (d); in each figure, the shaded
areas indicate the mid-flow period (green), the high-flow period (red), the low-flow period
(blue).

Nevertheless, the impacts on the modelled flow dynamics are a function of valley
morphology. In the upstream, narrow valley, the large overestimation of the thalweg
elevation (Table 2.2) leads to a sensible, yet almost constant positive bias of approximately
8 m between modelled and measured water levels during both low and high flows, with
negligible impacts on flood wave routing (Figure 2.11a). In the downstream, nearly flat,
area, the reduced river capacity of the SRTM dampens the tidal oscillations in low flow
periods and leads to large impacts on flood waves routing with large overestimations of
water levels even for mid-flow periods, sensible delays of the flood peak, and increases (up
to 20 days) duration of the decreasing limb. The results of the model SRTM highlights
the benefits of using RiBEST when field data are not available.
In the narrow upstream area RiBEST sensibly reduces the SRTM overestimation of the
thalweg, nevertheless modelled water levels are affected by a positive bias of 3 m for
any flow period (Figure 2.11a). In the downstream, flat area, the application of RiBEST
allows an accurate representation of river flow capacity leading to positive NSE values
and RMSE values reduced when compared to model SRTM. In fact, SRTM-mod results
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in RMSE values having the same order of magnitude as the reference model for all the
gauge stations and for all the flow conditions.
In the low-flow period, water levels are strongly affected by the downstream tidal levels and
the accuracy of both the SRTM-mod and of the reference model increased from upstream
to downstream. Model SRTM-mod underestimates the damping of the tidal oscillations
and results in larger RMSE and lower NSE values than the reference model. Specifically,
RMSE values of the SRTM-mod and reference models are 0.34 m and 0.18 m at Grafton
and 0.11 m and 0.07 m at Maclean, respectively. These discrepancies are negligible for
most of the pragmatic applications, nevertheless, these results offer an insight on the
relevance of river shape for accurate flow modelling. The reduced damping effect of the
SRTM-mod can be explained by the decreased morphological complexity of rectangular
CSs: the highly irregular, asymmetric real river bathymetry acts as macro-roughness and
reduces the tidal oscillations. The impacts of a simplified river shape increases in the
direction of the flow and the SRTM-mod results in negative NSE values in the upstream
gauge stations.
In the high-flow period, river water levels are driven by the input flow hydrograph and
by the interactions with the floodplain areas; consequently, discrepancies increased from
upstream to downstream with the SRTM-mod and the reference model resulting in RMSE
values of 0.85 m and 0.41 m at Grafton, and 0.75 m and 0.09 m at Maclean, respectively.
SRTM-mod adequately reproduces the measurements during the rising limb with values
of flood peak ratio within the range 92.50 % (Lawrence) and 104.27 % (Tyndale) in
the mid-trait of the river reach; a slight underestimation with an average flood peak
ratio of 88% is observed in the most downstream area. However, the decreasing limb
is underestimated, discrepancies between SRTM-mod and measurements are larger from
upstream to downstream and NSE values decrease from Grafton (0.85), to Lawrence
(0.43), to Maclean (-0.02), to Oyster Channel (-0.92).
A similar effect is not observed in the reference model and the understanding of these
results required the analysis of the modelled floodplain inundation extents. Figure 2.12e-
g shows the comparison between simulated and observed flood extent for REF, SRTM, and
SRTM-mod models, respectively; the acquisition time of the observed (remote sensing,
RS) flood extent is shown in Figure 2.11a-d. As explained in Section 2.3.3, the reference
model is calibrated using this image. Moreover, the Grafton levee system with crest
elevation 8.25 m (Huxley and Farr, 2013) is accurately represented by the terrain data
used for the implementation of the reference model; conversely, the SRTM DEM is not
edited in the floodplain. The model SRTM has a peak value at Grafton of 10 m (Peak
Ratio 130%) leading to large overestimation of the inundation extent in the urban area.
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Overestimation of flood peak ratio between Ulmarra and Brushgrove (Peak Ratio 142%)
similarly leads to overestimation of the RS-derived flood extent in the large floodplain.
This large overestimation of the inundation extent affects the flood wave propagation
downstream leading to a large delay of the flood peak in gauge stations in the downstream
area (Figure 2.11d). The SRTM-mod slightly overestimates the peak value at Grafton
(Peak Ratio 101.5%), this small discrepancy and the lack of adequate representation
of the levee system leads to the overestimation of the flood extent at Grafton. Albeit
having a good accuracy at the point scale (Table 2.5), the SRTM-mod underestimates the
observed flood extent in the large floodplain between Ulmarra and Brushgrove. An in-
depth analysis of the floodplain inundation dynamics allows to explain these discrepancies.

In the upstream area of the catchment (up to Brushgrove), the SRTM model fills the
valley and large changes in water level leads to negligible changes of inundation extent
(Figure 2.12e,f), meaning that a simple comparison between modelled and inundation
flood extent (after the flood peak) partially hinders the detrimental impact of the lack of
representation of river bathymetry on the prediction of flood risk. Figure 2.12h shows the
flood extent predicted by SRTM-mod 28 hours after the RS acquisition time and demon-
strates that, despite the sensible discrepancy between the modelled and observed flood
extent at the acquisition time of the RS image, the SRTM-mod could almost reproduce
the full flood extent. This result is explained by inaccuracies in the representation of the
connectivity between the river and the floodplain in the SRTM-mod with the modelled
flood wave propagating southwards from Brushgrove rather than eastwards from Grafton.
The Clarence catchment is a morphologically complex area, with multiple small creeks
receiving water from the Clarence river during major flood events (Huxley and Farr, 2013)
and a lack of accuracy of the SRTM is expected. The inaccuracies in the representation
of the connectivity between the river and the floodplain leads to larger water volumes
persisting in the floodplain at the end of the flood event in the SRTM-mod than in the
reference model. These results explain the underestimation of the decreasing limb of the
measured water level time series (Figure 2.11a,b,c,d).
Figure 2.12i then compares the discharge values computed at Maclean by the reference
model, the SRTM, and the SRTM-mod, respectively (measured values are not available).
In the model SRTM, the overestimation of the inundation extent and volume in the up-
stream area leads to a sensible decrease and delay of the modelled flood peak at Maclean
when compared to the reference model. Conversely, the SRTM-mod results in larger
discharge values at an earlier time than the reference model. RiBEST could adequately
reproduce the flow capacity of the Clarence River, nevertheless, at Maclean, water levels
are lower than the measurements (and of the reference model, Figure 2.11d), and dis-
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charge values are larger than the reference model (Figure 2.12i). Consequently, it is here
hypothesized that, in the SRTM-mod, the use of rectangular CSs leads to a lower macro-
roughness than in the reference model. These results highlighted (i) the importance of
using spatially distributed data to adequately evaluate model performances (REF), (ii)
the need for a global database of flood defences, and (iii) the impact of the representation
of river shape on the modelling of flow dynamics. Moreover, when using RiBEST and
SRTM to implement 2-D models, care must be taken to achieve an accurate representation
of flow connectivity between the main river stem and the floodplain.
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2.5 Concluding remarks

This study proposes an innovative method to exploit satellite information (i.e. satel-
lite DEM) for river bathymetry assessment. In particular, the Slope-Break (SB) method
is exclusively based on topographic information (i.e. river channel width and elevation).
Starting from the analysis presented in Domeneghetti (2016), the study aim is to verify
SB reliability on several contexts: Po River (Italy), an example of heavily human im-
pacted river, Limpopo River (Mozambique) located in a remote areas and Clarence River
(New South Wales, Australia) featured by the presence of vast floodplains. Moreover, to
seek the benefits induced by river bathymetry knowledge derived from SB on hydraulic
modelling, i) two 1-D hydraulic models for Po and Limpopo River and ii) a 2-D hydraulic
model for Clarence River are implemented.
A Matlab-tool (RiBEST, see Section 2.2) is developed for an automatic evaluation of river
bathymetry exploiting only a DEM (i.e. SRTM) and river channel shapefile. SRTM has
been selected in particular for its high spatial resolution (i.e. 30 m) suitable for a quite
realistic representation of CSs profile. Moreover, it is freely-available, having a global
coverage and several studies have widely investigated its potentials and limitations.
In general, the application of RiBEST tool provides evident improvements to original
SRTM information, allowing a better description of CSs shape (see Table 2.2). Also hy-
draulic parameters (i.e. flow area (A), hydraulic radius (R)) are taken into consideration.
In general, estimated hydraulic parameters are representative of the real ones (i.e. R2

equal to 0.70, 0.77, 0.99 for R and 0.72, 0.83, 0.96 for A for Po, Limpopo and Clarence
River, respectively), in particular for Clarence River (Figures 2.8, 2.9).
Regarding the hydraulic modelling, for 1-D models Manning’s coefficients for channel and
floodplains are calibrated. Simulated and measured water levels are in agreement for both
study cases, in particular for Po River (i.e. NSE equal to 0.99 and 0.96, RMSE of 0.39 and
0.97 for Po and Limpopo respectively). The 2-D hydraulic model for Clarence River is
tested to predict river and floodplain dynamics considering different flow conditions (i.e.
mid-flow period, high flow period, low flow period). SRTM model seems to be unable
to represent realistic water levels, showing an high discrepancy with the reference ones
in all the gauged sections and for all the different flow conditions (i.e. negative NSE,
RMSE also higher that 3 m). On the contrary, SRTM-mod allows an accurate representa-
tion of water levels, in particular for middle-low river portion. In the low-flow condition,
SRTM-mod underestimates the damping of the tidal oscillations, fact due to the lack of
morphological complexity in the use of rectangular CS profile. Regarding the floodplains
inundation extent, SRTM model presents an overestimation extent in the urban area of
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Grafton, while SRTM-mod in general underestimates the flooded areas near Ulmarra and
the river mouth (Figure 2.12e-g). In general, SRTM model provides too high water levels
in all the survey area, while SRTM-mod ensures a higher agreement with the reference
model. The discrepancies among reference and SRTM-mod models are probably due to
the inaccuracies in the representation of complexity and connectivity of the study area
by means SRTM and to the semplifications introduced in modifying CSs geometry (i.e.
rectangular profile).
This research shows how river bathymetric information are pivotal for a realistic reproduc-
tion of water course behaviour by means of hydraulic modelling. The proposed geometric
approach (i.e. Slope-Break) is suitable for single-channel and unbraided wide rivers, re-
stricting in part the application field. To facilitate the application of the Slope-Break
approach the RiBEST tool has been conceived to be adaptable to several topographic
products (i.e. DEMs) and requiring few inputs (i.e. river centerline).
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CHAPTER 3
River data assimilation using a full
Saint-Venant hydraulic model

Never make assumptions,
always look for evidence.

Leroy Gethro Gibbs, NCIS
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3.1 Data Assimilation method for river discharge as-
sessment

“The problem we intend to solve is the estimation of the state of a system, at any ar-
bitrary past, present and future time. We possess two complementary, but both incomplete
and inaccurate, sources of information: the observations and the model. Data assimila-
tion provides the conceptual and methodological tools to tackle the problem by extracting
synergies between model and observations and by exploiting their respective informational
content” (Carrassi et al., 2018).

This statement briefly highlights the two main elements at the base of DA: the numer-
ical model for the description of the state of a system, and the observations to whom the
estimated state has to strive. As introduced in Section 1.3, the main aim of DA methods
is the prediction of the state of a system, intended as combination of several variables. In
this case, the goal consists in the forecast of river dynamics, in particular of discharge and
roughness coefficient. DA methods work on a predicted state, such as an hydraulic model
output, making it closer as possible to the available observations (i.e., SWOT) by means
an optimization process. Thus, the present Chapter is built as follows: Section 3.1 recalls
the theoretic concepts underling the analysis, presenting the hydraulic model exploited
in this work (Section 3.1.1), focusing on the numerical and observation models (Section
3.1.2) and the optimization process (Section 3.1.3). Secondly, the available satellite ob-
servations and the survey area are described in details (Section 3.2). The Section 3.3
illustrates the experimental design, thus clarifying the used DA method, all the variables
involved and the validation procedure. Finally, Section 3.4 presents work outcomes.
This research was developed in collaboration with the research group at IRSTEA of Mont-
pellier, France, under the supervision of Hind Oubanas and Pierre-Olivier Malaterre.

3.1.1 Hydraulic model SIC2

The hydraulic model exploited in this work is the SIC2, a 1.5D model based on the
full Saint-Venant equations and developed by IRSTEA for about 30 years, succeeding the
former CEMAGREF hydraulic model (Talweg-Fluvia-Sirene) (http://sic.g-eau.
net/).
Figure 3.1 depicts a conceptual representation of SIC2 model. The river is represented
by segments (or reaches) connected each other by means of nodes (N). The boundary
conditions are specified at upstream and downstream nodes. The description of river
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channel is done by means a series of cross sections along the river channel centerline:
for each of them, the hydraulic variables of interest (i.e., flow area (A), top width (L),
wetted perimeter (P )) are estimated at a given water level, z. These variables depend
also from a series of parameters (defined pg) describing the cross section geometry, such
as bed elevation (Zb), bottom width (l), bank slope (b). SIC2 can handle also irregular
cross sections (Oubanas et al., 2018a,b).

Figure 3.1: Conceptual scheme of SIC2 model. (Gejadze et al., 2017).

The Saint-Venant Equations 3.1 and 3.2 describe the flow dynamics:

∂A

∂t
+ ∂Q

∂x
= QL (3.1)

∂q

∂t
+ ∂q2/A

∂x
+ gA

∂z

∂x
= −gASf + CLQLv (3.2)

where:
q(x,t): local discharge
z(x,t): water surface elevation (WSE)
QL: lateral discharge
CL: lateral discharge coefficient varying in [0,1]
v(x,t): mean velocity ( q

A
)

Sf: friction slope, function of Ks(x), the Stricker coefficient, defined as:

Sf = q2

K2
sA

2R4/3 (3.3)

The initial (z0, q0) and the boundary conditions (i.e., the inflow discharge Q(t) at
the upstream node and a rating curve, defined by the rating curve parameters prc, at the
downstream node) are needed to solve the equations 3.1, 3.2, 3.3. The problem 3.1 - 3.3
is discretized by means the Preissmann scheme (Cunge et al., 1980) while the fixed-point
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iterations are used to resolve nonlinearity (see Malaterre et al., 2014).
Some inputs (i.e., cross-sectional geometrical parameters, roughness coefficients, boundary
conditions) are needed to the exploitation of SIC2 model for a chosen study case. For
ungauged basins, these information could be hard to collect. For this reason, the research
community is looking at space-born observations (i.e., satellite altimetry, river width or
observation from the upcoming mission SWOT; see Durand et al., 2008; Honnorat et al.,
2009; Oubanas et al., 2018b; Li et al., 2020) to generate needed initial input (i.e. WSE,
width and slope). Thus, SIC2 model can simulate water levels and local discharge and in
the following step the resolution of corresponding inverse problem provides variables of
interest (i.e. discharge).

3.1.2 State estimation: formulation of the problem

The two elements at the base of the estimation problem are the dynamic model and
the observation model.

The dynamic model - In order to describe a system varying in time, a numerical
model (M : A→ B) can be exploited. It maps the model inputs U ∈ A, from the inputs
space U to the state space B:

M(U) = X (3.4)

X represents the model state that is defined controllable if there exist a “control vector”
V defined over a finite interval in space and time which minimizes a chosen performance
index (Oubanas, 2018). Thus V collects all the unknown model parameters to be assessed
via DA approaches that strongly affect the model response.
The remaining model inputs components U0 = U \V are usually fixed at their best
available guess U0

b = Ub \V b, where the subscript “b” means “background” values of
U , U0 and V respectively. The background information is used to initialize the control
variables and it can derive from a previous forecast, if available.
The background Ub embodies uncertainties ξb that arise from various sources and are
defined as:

Ub = U t + ξb (3.5)

where Ut is the true model input vector.
The numerical model M can be affected by errors in its representation of the reality. The
model equations do not describe the system behaviour exactly; moreover, several errors
are provided from the lack of resolution in the discretization phase as well as from inac-
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curacies in parametrization. These limitations are not considered in this analysis.

The observation model - Noisy observations of the model state X, collected from
i.e. in-situ measurements, space-born sensors, are available at several times. These infor-
mation form the observation vector Y . The relationship among the model state X and
observations (Y ) is expressed by means of an observation operator, mapping X from the
state space B to the observations space C, as follow:

Y = H(X) ∈ C (3.6)

H often involves linear interpolations, convolutions or spectral-to-physical space trans-
formation in spectral models, varying its complexity (Carrassi et al., 2018).

For practical considerations, let us introduce the inputs-to-observations nonlinear map-
ping G : A→ C, defined as follow (Oubanas, 2018):

H(X) = H(M(U)) := G(U) = Y (3.7)

Observation Y * is also affected by errors ξ0. Similarly to model error ξb, ξ0 is also
represented as an additive term that summarizes instrumental and representativeness
errors (Lorenc, 1986). It can be expressed as follows:

Y ∗ = G(U t) + ξ0 (3.8)

3.1.3 Variational approach

Variational DA method aims at estimating the model that best approximates all the
observations within an observation window [t0, tK] simultaneously. Thus, the state esti-
mate at a given time tk depends on all observations available within the time window.
Under the hypothesis of Bayesian estimation (see Asch et al., 2016, for more details), in
variational DA the estimation problem is a type of minimization problem for a functional
J , called “cost function” with the following quadratic form:

J(V ) = 1
2 ||R

−1/2(G(V, Ub)− Y ∗)||2 + 1
2 ||B

− 1
2 (V − Vb)||2 (3.9)

where R and B are the covariance matrices corresponding to ξb and ξ0, respectively.
The first addend of the cost function J , the residual term, aims at minimizing the distance
between the control vector V and the observations Y in the observation space (G). The
second contribution is given by the regularization term, in order to minimize the distance
among V and the background vector V b in the model space.
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The minimization problem applied to the cost function (eq. 3.9) is solved by looking for
the point of zero-gradient ∆VJ(V ), whose form is given by:

∆V J(V ) = (G′(V ))∗R−1(G(V, U0
b )− Y ) +B−1(V − Vb) = 0 (3.10)

where (G′(V )) and (G′(V ))∗ are respectively the tangent linear and adjoint counter-
parts of the nonlinear operator (G(V, Ub

0)).

Three-dimensional variational data assimilation (3D-Var)
In the 3D-Var (Figure 3.2) the corrections are computed and utilized at each observa-

tion (blue diamonds) times tk sequentially: the analysis (red squares) at tk becomes the
initial condition for the forecast (green line) at the next observation time, tk+1, and so on
(Carrassi et al., 2018; Oubanas, 2018).
In this case, the inputs-to-observations mapping operator G coincides with the observa-
tion operator H. Thus the cost function J and its gradient ∆VJ(V ) are expressed as
follows:

J(V ) = 1
2 ||R

−1/2(H(V, Ub)− Y ∗)||2 + 1
2 ||B

− 1
2 (V − Vb)||2 (3.11)

∆V J(V ) = (H ′(V ))∗R−1(H(V, U0
b )− Y ) +B−1(V − Vb) = 0 (3.12)

The main limit of 3D-Var approach is the assumption that all the observations within
an observation window are valid only at the estimation time tk.

Figure 3.2: Illustration of 3D-Var variational problems. (Carrassi et al., 2018).

XXX
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Four-dimensional variational data assimilation (4D-Var)
In the 4D-Var approach the control variable is the entire trajectory within the assim-

ilation window ([tk, tk+2] in Figure 3.3), and the corrections (black arrows) are computed
and utilized at the observation times. The analysis trajectory (red line) is moved toward
the observations (blue diamonds) respect with the forecast, depicted by the green line.
For a generic observation time tk, the control vector V and the observations Y are related
by:

Ytk = Gt0→ti(V ) (3.13)

In this case the cost function and its gradient are given by equations 3.9 and 3.10.

Figure 3.3: Illustration of 4D-Var variational problems. (Carrassi et al., 2018).

3.2 Satellite data and area of study

3.2.1 SWOT: Surface Water and Ocean Topography

The oceanography and surface freshwater hydrology communities proposed a new mis-
sion named SWOT for a better understanding of the world’s oceans and its terrestrial
surface waters. SWOT aims at observing how water bodies change over time, recognizing
the potential of high-resolution, space borne measurements of water surface elevations.
SWOT is jointly developed by NASA and Centre National D’Etudes Spatiales (CNSE)
with contributions from the Canadian Space Agency (CSA) and UK Space Agency.
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Figure 3.4: Time–space diagram of continental water surface processes and SWOT obser-
vation window. (Biancamaria et al., 2016).

Figure 3.5: A diagram illustrating the swaths of data that SWOT will collect. The inter-
ferometer will produce two parallel tracks, with a Nadir track from a traditional altimeter
in the gap between the swaths. The overall width of the swaths will be approximately 120
km, ©JPL.
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Regarding the rivers monitoring, SWOT will provide detailed information about river
storage, discharge, water surface elevation variations at global scale. The assessment of
spatial and temporal dynamics of water bodies, even if pivotal, is nowadays challenging:
hydraulic river variables (i.e. stage, velocity and discharge) are function of several aspects,
such as vegetation, soil and bedrock characteristics, precipitation (Biancamaria et al.,
2016). Figure 3.4 represents the space-time scale of several hydrological processes (i.e.
snow, rainfall, groundwater) and the SWOT observation window. Note that the climatic
variability is out of the scope of SWOT mission, unless combined with complementary
observations (Oubanas, 2018).

Figure 3.6: SWOT’s nominal coverage during its 3-year science orbit will include measure-
ments between 78°N and 78°S collected over a period of 21 days. Maps show the coverage
after 3 days (left) and the full 21 days (center) of a complete cycle. The graphic at the
far right illustrates the number of observations at a given latitude during the 21-day repeat
period, ©JPL.

The core technology on-board the satellite is the Ka-Band Radar Interferometer (KaRIn)
instrument, originally developed from the efforts of the Wide Swath Ocean Altimeter
(WSOA). Figure 3.5 shows a conceptual view of the KaRIn instrument. KaRIn is a SAR
interferometer observing the KA-band (35.75 GHz frequency), relying on the measure-
ment of the relative delay between the signals measured by two antennas separated by a
known distance (10 m) named “baseline”, together with the system ranging information,
to derive the height for every imaged pixel in the scene. In this way for each ground
point a triangle is formed by the baseline and the distances of the two antennas, used
for geolocation. Two consecutive radar (red and blue dashed lines Figure 3.5) pulses are
exploited to find the relative phase difference between the two signals.
The main advantages in the choice of Ka band is the use of small wavelengths that
limit specular reflection and penetration of the electromagnetic wave into soil and veg-
etation and reduce costs given the shorter baseline. The KaRIn instrument would be
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complemented with a Jason-type (C- and Ku-band) nadir-looking conventional altimeter,
a three-frequency microwave radiometer, similar to the Advanced Microwave Radiometer
(AMR) flown on the Ocean Surface Topography Mission (OSTM), as well as GPS re-
ceivers and a DORIS transponder for precise orbit determination (POD).
SWOT mission can investigate rivers wider than 100 m, providing information about
WSE, slope and width. Unfortunately, KaRIn measurements are affected by random
noise, due to thermal noise and speckle effect (Biancamaria et al., 2016).

The latter is a result of the interference of many waves of the same frequency, hav-
ing different phases and amplitudes, which add together to give a resultant wave whose
amplitude, and therefore intensity, varies randomly. These errors provide a height bias of
several meters: in order to obtain a centimetric height precision, spatial averaging over
water pixels is performed (Oubanas, 2018).
Figure 3.6 illustrates the SWOT lifetime phases: the calibration/validation phase and
the nominal phase. During the first one the satellite follows the fast-sampling orbit with
1-day observation frequency. The collected data have to be validated by independent
observations (i.e. in-situ data). In the second phase, the orbit is modified resulting in a
repeat period of about 21 days and a global coverage of a 90% of all water bodies.

3.2.2 Study area and available data

This investigation refers to the same 132-km Po river stretch analysed in Section 2.3.1.
The study covers a period of about one year, that goes from May 2008 to April 2009.
Thus, referring to this period of time and to foreseen SWOT orbits, the survey area is
observed by the left and right swaths of the pass 0560, the left swath of the pass 0211,
and the right swath of the pass 0489 (Figure 3.7).
The hydrodynamic model at the base of this analysis exploits the flow hydrograph and
the observed water surface elevation as upstream and downstream boundary conditions,
respectively. Figure 3.8 shows the hydrograph at Borgoforte gauging station, the reference
data used in phase of validation. A strong discharge variability is evident, ranging from
565 to 6580 m3/s during the observation period. The vertical dashed line in Figure 3.8
represent the SWOT overpasses times, indicating also the SWOT observations for the DA
discharge estimation.
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Figure 3.7: The Po River study area with the ground track of SWOT overpasses (Oubanas
et al., 2018a).

Figure 3.8: Hydrograph at Borgoforte gauging station (black) relative to the observation
period (May 2008 - April 2009). The vertical dashed lines indicate the timing of the SWOT
overpasses.

SWOT simulator
Since the SWOT satellite launch is planned for 2022, to accurately evaluate its perfor-
mance, Jet Propulsion Laboratory (JPL) has developed several data product simulators
at different levels of fidelity and complexity. Two separate simulators have been devel-
oped specifically for the hydrology data products. The SWOT Hydrology L1b Simulator
produces synthetic radar interferograms of the scene exploiting as inputs the orbit, radar
parameters (e.g. power, bandwidth, baseline) and the DEM of the study area. These
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interferograms contains no noise that are added, modelled as correlated circular Gaussian
noise, from the simulator subsequently. The SWOT Hydrology L2 Simulator uses the
output of the L1b simulator to produce the final height and classification products (i.e.,
a pixel cloud with target class, elevation and area for each pixel, for more details see
Gaultier et al., 2017; Frasson et al., 2017; Oubanas, 2018). The pixel clouds are processed
by means of the RiverObs package developed at JPL (Frasson et al., 2017). This tool can
aggregate the 2D pixel clouds into nodes with regular spatiality on the river centerline,
estimating averaged height, width and uncertainties at each node. The user has to im-
pose a search window in which the pixel located are assigned to the considered pixel. For
this survey area, a 1600 m wide search window is used for all but the three highest flow
overpasses, for which the values is increased to 5000 m (Oubanas et al., 2018a).
The observations from the SWOT simulator are affected by bias. In particular, the ori-
entation of the river centerline respect to the satellite swath is the main factor to be
considered: it is important when the river is parallel to the swath, it is negligible when
the river is perpendicular to the swath, like in the current study (Oubanas et al., 2018a).
For more information about SWOT data characteristics, see Frasson et al. (2017).

3.3 Experimental design
The present work consists in the application of a variant of 4D-Var method presented

in Gejadze and Malaterre (2016, 2017) on the 132-km stretch of Po River, basing on
space-borne observations (i.e. SWOT). In particular, the proposed analysis follows the
framework proposed by Oubanas et al. (2018a).
The dynamic model (M) is SIC2, built on the cross-sections derived from SRTM and
modified with RiBEST tool (Section 2.2). The model input vector U is formed by several
variables:

U = (z0, q0, Q, prc, QL, CL, Ks, Zb, pg, pnm)T (3.14)

The variables of interest (vector V ) to be estimated simultaneously are:

V = (Q(t), Ks(t)) (3.15)

while the observations consist in the water surface elevation data provided by SWOT
simulator at RiverObs nodes and for SWOT overpasses (Parapragh 3.2.1).
Regarding the computation of first guess model inputs (i.e., background information),
Qb derives from the global Water Balance Model (WBM) (Wisser et al., 2010), while
the prior information of Ks is imposed referring to a realistic value for the study case.
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The length of the subwindow is arbitrary, taking into consideration that the longer the
subwindow size, the more the computational memory required. In this case, being the
entire observations period of 350 days, each subwindow is of 42 days, excepting the last
one of 56 days. The background values of discharge (i.e. 841 m3/s) is imposed for the first
subwindow, while for the subsequent ones the prior discharge information corresponds to
the estimated discharge value relative to the last instant of the previous subwindow.

About the DA approach, a variant of eq. 3.9 is used (see Gejadze and Malaterre, 2017,
for more details):

J(V, α) = 1
2 ||R

−1/2(G(V, Ub)− Y ∗)||2 + α

2 ||B
− 1

2 (V − Vb)||2 (3.16)

where α is a regularization parameter to reduce the impact of possible error in assign-
ing B.

The DA estimation performances are measured by means of the following error metrics:

• Mean Absolute Error (MAE):

MAE = ‖Qe(t)−Qt(t)‖ (3.17)

• Root Mean Square Error (RMSE):

RMSE =
√√√√ 1
T

∑
t

(Qe(t)−Qt(t))2 (3.18)

• relative Root Mean Square Error (rRMSE):

rRMSE =

√√√√ 1
T

∑
t

(
Qe(t)−Qt(t)

Qt(t)

)2

(3.19)

• Normalized Root Mean Square Error (NRMSE):

NRMSE = 1
Q̄t

√√√√ 1
T

∑
t

(Qe(t)−Qt(t))2 (3.20)

• Nash-Sutcliffe Efficiency (NSE):

NSE = 1−
∑
t(Qe(t)−Qt(t))2∑
t(Q̄e(t)−Qt(t))2

(3.21)
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• Volumetric Efficiency (VE):

V E = 1−
∑
t ‖Qe(t)−Qt(t)‖∑

tQt(t)
(3.22)

where Qe(t) and Qt(t) are the estimated and reference discharge respectively, Q̄t(t)
the mean reference dischage, t the number of observations (i.e. 52 considering SWOT
overpasses time, 350 a daily computational ∆t) and T the length of observation periods
(i.e. 350 days).

3.4 Results and discussion

Table 3.1 reports DA discharge estimation performances for irregular (i.e. SWOT over-
passes time, called “SWOT-∆T”) and daily computational ∆T. The Figure 3.9 shows the
comparison among reference (i.e. Borgoforte hydrograph, black line) and the estimated
discharge (purple line). As shown in Table 3.1, using the SWOT-∆T the error metrics
improve with respect to the daily computational ∆T (i.e. RMSE of 191.4 and 616.0, NSE
of 0.78 and 0.61, respectively).

Table 3.1: Performances on discharge estimation with DA approach for the different tem-
poral discretization.

Computational ∆T MAE RMSE rRMSE NRMSE NSE VE
[m3/s] [m3/s] [%] [%] [-] [-]

SWOT-∆T 335.1 191.4 10.2 10.5 0.78 0.82
Daily 431.5 616.0 32.2 33.9 0.61 0.76

This is partly due to the fact that the proposed discharge trend (purple line in Figure
3.9) represents an hypothesis of the river flows values during the period that goes from
two consecutive SWOT overpasses (black points, Figure 3.9), when DA analysis is ap-
plied. In some cases, this introduces significant discrepancy with respect to the reference
hydrograph (i.e. yellow dashed boxes in Figure 3.9). For this reason, the error metrics
for irregular computational ∆T are more representative. The mean ∆T on the entire
observation period is about 7 days. A possible solution to overcome this limit is the con-
sideration of multimission data, perhaps including JASON, ENVISAT and Sentinel data
to reduce the average temporal discretization of observations.
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Figure 3.9: The black points represent the discharge values estimated at SWOT overpasses
(dashed vertical lines) estimated with DA approach. An hypothetical trend among two
satellite overpasses is depicted by the purple line. The red dashed line shows the discharge
background value for each subwindow.

In general a peak discharge underestimation can be noticed. Starting from this con-
sideration, Table 3.2 shows discharge estimation with DA performances considering sep-
arately low flows (i.e. Q(t) ≤ 2000 m3/s; 39 observations) and middle-high flows (i.e.
Q(t) > 2000 m3/s; 13 observations). In accordance with Figure 3.9, low flows are better
represented by DA estimation (i.e. RMSE of 75.8 and NSE of 0.72).

Table 3.2: Discharge estimation with DA approach performances for SWOT overpasses
time discretization for low (< 2000 m3/s) and medium-high (> 2000 m3/s) flow values.

Discharge range MAE RMSE rRMSE NRMSE NSE VE
[m3/s] [m3/s] [m3/s] [%] [%] [-] [-]
0 - 2000 176.5 75.8 6.9 5.7 0.72 0.87
> 2000 837.2 175.7 7.5 5.2 0.16 0.75

Figure 3.10 depicts the Strickler coefficient Ks along the study area (i.e. 132 km).
The reference Strickler trend (black line Figure 3.10) reports the best Manning’s coef-
ficient combination of the reference model, considering the Po River stretch subdivision
(see Figure 2.7). Notwithstanding Ks provides representative values locally, Strickler es-
timation trend is fluctuating, in particular for the upper-middle reach. This behaviour is
typical of ill-posed estimation problems, the so-called “equifinality issue”. Thus, Ks may
not provide a reliable global information of bed roughness.
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The approach limits in Q and Ks estimation partly might be due to the inaccuracy intro-
duced by the cross-section representation (i.e., SRTM integrated with RiBEST-derived
bathymetry). Further work will test the use of SWOT data, which is expected to be able
to reproduce the actual spatial sampling patterns.

Figure 3.10: Strickler coefficient estimation (purple line) and reference one (black line)
along the study area. The background values is depicted by dashed red lines.

3.5 Concluding remarks
This work proposes a discharge estimation method based on DA approaches and solely

space-borne information (i.e. SWOT) and global available data (i.e. WBM). In particu-
lar, a 4D-Var method is exploited, making several modifications to the classic approach
applied to the full Saint-Venant-based hydraulic model SIC2. This implemented version
overcomes computer resources limitations (i.e. memory limits), allowing the applicability
of the classical data assimilation methods to long-time periods.
In order to propose a method for ungauged basins detection, in-situ information are not
used. The main information (i.e. water surface elevation) derives from synthetic SWOT
overpasses generated with the SWOT simulator developed at the JPL. The survey area
refers to the 132-km Po River stretch (from Borgoforte gauging station to the beginning of
river delta) for an observation period of 350 days (May 2008 - April 2009). The hydraulic
model SIC2 is built on the cross-sections profiles derived from SRTM and modified with
RiBEST tool (see Section 2.2), in order to assess how the bathymetry knowledge affects
the DA discharge estimation. Considering an irregular computational ∆T (i.e., the SWOT
overpasses times), the DA estimation provides better results with respect to the use of
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daily ∆T (see Table 3.1). In general, even if a good dynamism is represented (Figure
3.9), a underestimation of discharge peaks can be noticed. Analysing DA performances
considering low flow values (i.e., 0 - 2000 m3/s) and middle-high flow (> 2000 m3/s),
an improvement of error metrics for low discharges is evident (i.e., RMSE of 75.8 m3/s,
rRMSE of 6.9 %). In this analysis, Q(t) is simultaneously estimated with the Strickler
coefficient Ks. It presents a fluctuating trend along the study area, not providing a reli-
able global information of bed roughness.
Future researches will investigate on approach limitations, such as the reduction of com-
putational ∆T exploiting multimission data (i.e., ENVISAT, Jason-2, etc). Moreover, the
geometric representation of cross-sections profiles (i.e., SRTM integrated with rectangular
channel shape) should be provided by other satellite information (i.e., SWOT).
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CHAPTER 4
Satellite altimetry for calibration of
hydraulic models

I saw for the first time the earth‘s shape. [..] The hori-
zon is dark blue, smoothly turning to black. . . the feel-
ings which filled me I can express with one word — joy.

Yuri A. Gagarin
Life Magazine, 21th April 1961

This Chapter contains:

4.1 Altimetry data series: investigated satellite products and Multi-Mission
series (MM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Numerical analysis and methodology . . . . . . . . . . . . . . . . . . . . . 81
4.2.1 Model set up, calibration and validation . . . . . . . . . . . . . . . 81
4.2.2 Accuracy of altimetry products . . . . . . . . . . . . . . . . . . . . 83
4.2.3 Impact of VS time series length on calibration . . . . . . . . . . . . 83

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.1 Accuracy of altimetry products . . . . . . . . . . . . . . . . . . . . 85
4.3.2 Performance of different altimetry time series on model calibration . 86
4.3.3 Performances of MM series on model calibration . . . . . . . . . . . 92
4.3.4 Comparison of single and MM altimetry series . . . . . . . . . . . . 96

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.1 Accuracy of altimetry products . . . . . . . . . . . . . . . . . . . . 104
4.4.2 Values of satellite altimetry and effects of time series length on

model calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4.3 Potential and limits of MM altimetry series for model calibration . 107

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



74



Satellite altimetry for calibration of hydraulic models

4.1 Altimetry data series: investigated satellite prod-
ucts and Multi-Mission series (MM)

Figure 4.1: Po river stretch considered in the study (140 km, from Borgoforte to the
beginning of the river delta) with the identification of gauged stations and the Virtual
Stations (VSs) relative to the overall set of satellite missions.

As introduced in Section 1.4, the use of satellite altimetry information is strongly
consolidated for hydraulic applications. The present work investigates the potential of
several satellite altimetry missions data, covering about 27 years, for hydraulic modelling.
In particular, the focus is on the investigation of the record length (i.e., number of available
satellite measurements, in relation to different data products) effect on the calibration re-
liability. Finally, to overcome the space-time limitations of original missions, an approach
that combines different single-mission time series (Multi-Mission series, MM) is presented.

Table 4.1 summarizes the different altimetry missions considered in the study (Fig-
ure 4.1): Envisat (E), Envisat Extended Mission (EX), TOPEX/Poseidon (TP), SAR-
AL/AltiKa (SA), Jason-2 (J2), Jason-3 (J3), Sentinal-3A (S3A) and Sentinel-3B (S3B).
These missions are characterized by different sensors, instrumentation, scopes, and orbits.
Therefore, the respective altimetry time series are characterized by distinctive temporal
and spatial resolution as well as different accuracy and reliability. Most of the considered
missions have a low temporal resolution (i.e. 35 days for E and SA, 30 days for EX, and
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27 days for S3A and S3B), while TP, J2 and J3 provide water surface elevation measure-
ments every 10 days. E (mission period 05/2002–10/2010) and SA (03/2013–01/2016)
are the successors of the former mission ERS-2 (04/1995–09/2007) using the same orbit
configuration with inter-track distance of 80 km at equator and a repeat cycle of 35 days.
E, EX, and SA data are processed adopting ICE-1 retracker, shown to provide robust
and accurate results over rivers. J2, launched in June 2008, is the successor of the former
missions TP (09/1992–08/2002), and J3 was launched in 2016 as the successor of J2 and
placed in the same orbit with the inter-track distance of about 315 km at equator and a
repeat cycle of 10 days.
For both J2 and J3, the water levels are derived using the ICE retracker, as it has proven to
outperform other retrackers over continental waters Cretaux et al. (2018). The currently
active S3A and S3B guarantee the continuity of E-type measurements in a fully opera-
tional manner. Sentinel-3 provides SAR altimetry data with a revisit time of 27 days.
The two missions have orbits almost similar to that of E and ERS, with the ground-track
separation of 104 km at equator. S3A and S3B data are processed using the OCOG re-
tracker which is a heritage of ICE-1, and hence, reliable for inland applications.
All water level time series are processed using the high-rate altimetry datasets. The usual
rate for all missions is 20 Hz which leads to the along-track distance of 294 m between
successive measurements. SA dataset however is provided with the sampling rate of 40
Hz, and hence, the spatial spacing of 173 m along-track. For clarity, Figure 4.2 presents
the temporal coverage of the altimetry products considered in the study, while Figure 4.3
reports a synoptic view of the water levels derived from the different missions.
Referring to the same study area, Tarpanelli et al. (2013a) and Domeneghetti et al. (2014,
2015b) investigated the potential of ERS-2 time series for similar purposes. The compari-
son of ERS-2 with water level values recorded at the nearest gauging station, or estimated
at VSs, shows significant correlations, with the mean absolute error in the order of 0.7 m.
In particular, Domeneghetti et al. (2015b) investigated the effect of ERS-2 uncertainty on
model calibration, while Schneider et al. (2018) did the same considering CryoSat time
series. For the sake of brevity, and to avoid the repetition of already performed inves-
tigations, calibrations with ERS-2 and CryoSat data are not carried out in this work.
Actually, the drifting orbit of CryoSat implies a long-repeat ground track pattern that
would impose the adoption of different calibration strategies (i.e., it is not straightforward
to construct time series since its long repeat cycle – 369 day). Nevertheless, this does af-
fect the completeness of this investigation: results previously obtained with both ERS-2
and CryoSat are summarized and compared with those of other altimetry time series to
provide a complete overview of altimetry performance.
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Figure 4.3: Synoptic view of altimetry time series at VSs identified along the river stretch
of interest. The grey dashed line reports water levels observed at Borgoforte.

Multi-mission (MM): altimetry time series at high spatial and temporal
coverage
Water level time series from individual altimetry missions over the river are merged us-
ing an approach developed by Tourian et al. (2016) to overcome spatial and temporal
limitation of single altimetry missions. Adopting this solution all VSs of several satellite
altimeters along the Po River are connected to each other hydraulically and statistically.
To this end, first the bias between different missions is removed (see Tourian et al., 2016,
for more details). Then, for any given location along the river, the time lag due to stream
flow between the altimetric virtual stations and the selected location is estimated.
Since the MM approach has been developed for being applicable also on poorly surveyed
areas, average river width using imagery together with the slope derived from satellite
altimetry are used as inputs to a simple empirical hydraulic equation that estimates aver-
age flow velocity and thus the time lag between VSs (Bjerklie et al., 2005; Tourian et al.,
2015). Figure 4.4 shows the estimated time lag between VS along the Po River high-
lighted with those selected for this study. From the most upstream selected VS in this
study (TP120, J2-120 and J3-120; see Figure 4.1) till most downstream VS (TP85, J2-85
and J3-85), the time lag is about 0.85 day. Using the estimated time lag, the water level
hydrographs of all measurements are shifted and stacked at the selected location. The
stacked time series at the selected location is then normalized according to its statistical
distribution and especially the water level value at 3rd and 85th percentiles as lower and
upper bounds. As an example, Figure 4.5 shows normalized water level obtained at VS
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J2-85, for which first the time lag between all VSs and the J2-85 is corrected and then
individual time series are normalized according to their 3rd and 85th percentiles.

Figure 4.4: Estimated time lag between each VS along the Po River relative to the very
first VS. The red box highlights VSs selected for this study (from Tourian et al., 2016).

Figure 4.5: Normalized water level values at VS J2-85. The grey curves show the bound-
aries of confidence limit after rejecting all possible outliers.

Afterwards, outliers are identified and removed from the normalized time series by
defining a confidence limit of 99% of a Student’s t test for a one month sliding time win-
dow. The confidence limit is delineated in Figure 4.5 by an upper- and a lower bound
confidence level. All measurements outside the confidence limit are identified as outlier
and removed from measurements. The outlier-free normalized time series is then rescaled
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back according to the water level distribution of the selected location (Figure 4.6).
Using this methodology, we obtain a time series with 3 days effective temporal resolu-
tion from altimetry missions originally with temporal resolution ranging from 10 to 35
days. The MM water level time series are validated at the gauging stations of Borgoforte
and Pontelagoscuro, for which individual water level time series are densified, obtaining
correlation coefficient equal to 0.75 and 0.78, RMSE of the value of 0.94 m and 0.75 m,
and bias of 0.05 and 0.37 m, respectively. The accuracy of MM series inevitably conveys
the simplifications and assumptions of the approach used for their construction. Thought
for applications in data scarce areas, those simplifications mainly regards the description
of the river geometry and dynamics (i.e., river width and time lag). Investigating the
impacts of such limitations on the use of MM series for the calibration was out of the
scope of this work. Nevertheless, these analyses are suggested for future work.

Figure 4.6: Densified water level time series at VS J2-85.

4.2 Numerical analysis and methodology

4.2.1 Model set up, calibration and validation

The numerical simulations of the river stretch of interest is carried out by means of
a quasi-two-dimensional (quasi-2D) model implemented with the HEC-RAS code. The
river geometry is properly reproduced by taking advantage of a 2-m DEM available along
the overall Po river, which combines a LiDAR survey of the emerged river portion with
traditional ground cross-sections and multi-beam sonar surveys (Camorani et al., 2006).
The quasi-2D scheme ensures a proper representation of the flow dynamics by enabling
mutual interactions between the main channel and a series of lateral floodplains (i.e. stor-
age areas) delimited by a system of minor dikes, which are schematized within the code as
lateral structures. Although the numerical scheme refers to 1D hydraulic equations, the
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adoption of this schematization enables a proper simulation of the hydraulic interaction
among the main channel and lateral floodplains. The appropriateness of this configuration
has been proven by a number of previous studies that referred to the same river portion
(Castellarin et al., 2011; Domeneghetti et al., 2015b). The numerical simulations for the
overall period of interest (1992-2019) are carried out by imposing the mean daily discharge
values recorded at the upstream gauged station (Borgoforte) as upstream boundary con-
ditions, and the normal flow condition at the downstream cross-section located at the
beginning of the river delta (see Figure 4.1). According to previous experiences on the
study area (Domeneghetti et al., 2014, 2015a), lateral inflows of some minor tributaries
are not taken into account during the simulation since their contributions are neglectable
relative to the Po river discharge. The calibration procedure focuses on the identification
of the Manning coefficient, n (s·m-1/3), of the main channel that maximizes NSE obtained
in reproducing the observed water levels, by varying it within the range 0.01-0.06 s·m-1/3.
Because the quasi-2-D model has limited sensitivity to the roughness coefficient adopted
for the floodplains, its value is considered constant and equal to 0.1 s·m-1/3 for all the
numerical simulations (see e.g. Castellarin et al., 2011; Domeneghetti et al., 2015a).
Referring to the simulation time frame considered in this study (1995-2019), calibration
and validation schemes vary in relation to investigation setting, as indicated hereafter:

• a) analysis considering one VS at time, referring separately to the dataset retrieved
from specific altimetry mission (Table 4.1, Figure 4.1) and the MM time series.
In each calibration, the roughness coefficient is unique and assumed to be static
through time. For each single mission the calibration is performed referring to the
overall period of altimetry data availability (see Figure 4.3), once calibrated, the
model validation is carried out comparing simulated water surface levels with the
in-situ data available within considered time frame (1995-2019) and not used for the
calibration. For a single MM series that covers the overall period of interest, the
latter is split in two parts: 1995-2017 for calibration, 2017-2019 for validation.

• b) Analysis considering all MM time series together: the calibration adopts spa-
tially distributed parameterization by splitting the river into a number of stretches
corresponding to VSs locations and considering multiple roughness coefficients.

When referring to MM time series, the calibration refers to the period covering the
presence of all altimetry missions. Its considerable extent (22 years, from 1995 to 2017)
provide a data series length sufficient to ensure a consolidated calibration, guaranteeing
at the same time a sufficient validation period (2 years, 2018-2019).
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4.2.2 Accuracy of altimetry products

Typically, as spotted in Figure 4.1, VSs do not coincide with gauging stations and
thus a direct comparison between traditional observation and remotely sensed data is
not straightforward. To overcome this problem we compare the satellite-derived water
surface elevation values, hsat(x,t), sensed at a given location, x, at the day of the satellite
overpass, t, with the in situ water surface elevation, hsitu(x,t), linearly interpolated at
the track location referring to concurrent water levels measured at the gauging stations
located upstream and downstream the satellite track. This appears reasonable in the
absence of diversion structures or dams along the river portion of interest. Following this
approach, the error, ε(x,t), can be calculated with the equation 4.1:

ε(x, t) = hsat(x, t)− hsitu(x, t) (4.1)

which has been applied distinguishing all the altimetry products.
The same approach is used considering the MM time series, where t covers all days of
observation sensed by at least one of the considered altimetry missions. Considering that
different altimetry missions use different reference ellipsoids (TOPEX ellipsoid for TP,
J2, J3, and SA, and the WGS84 for E, EX, S3A, and S3B), we calculate the geoid height
with respect to the one adopted for MM creation (EGM2008). The same for in situ data,
which refer to ITALGEO 2005 geoid (Barzaghi et al., 2007).

4.2.3 Impact of VS time series length on calibration

The length of an altimetry dataset, m (i.e., the number of satellite overpasses available
at a given VS from a specific altimeter, which differs from the official mission duration),
influences the reliability of the calibration (Domeneghetti et al., 2015b). To investigate
its impact for different satellite products we repeat the calibration exercise by considering
several altimetry subsets randomly sampled from each original altimetry time series (i.e.,
E, TP, J2, etc.) with a length m that varies from 3 to Ltot. In this case, Ltot indicates
the total amount of altimetric observations available for a given mission at a specific VS.
Indicating with x the location of a given VS along the study area, the subset sampled
from the original altimetry time series and used for the calibration can be expressed as:

hsat,m(x) = [hsat(x, t1), ..., hsat(x, tm)] ∀m = 3, ..., Ltot (4.2)

For m lower than 3, the time series is considered too short and not suitable for calibra-
tion purposes. To overcome the uncertainty related to the selection of the m observations
among those available for a given mission, and at a given VS, the sampling procedure
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is embedded in a Monte Carlo framework that generates 1000 random hsat,m samples for
each m value. Once sampled, the calibration is carried out considering each hsat,m sample
at time. Finally, with the aim to infer the error introduced by the altimetry data, we
repeat the same procedure by calibrating the numerical model with reference to different
subsets randomly extracted from the water level values observed in-situ at the VS (hsitu).
Equation 4.3 indicates the in-situ time series randomly extracted from the overall set:

hsitu,m(x) = [hsitu(x, t1), ..., hsitu(x, tm)] ∀m = 3, ..., Ltot (4.3)

Calibration results obtained with these hsitu,m(x) samples are used as a reference for
evaluating the potential of altimetry for model calibration. For what regards the adoption
of MM time series, in order to make the calibration performances of MM and traditional
time series comparable, we refer to specific observation periods instead of considering a
given number of observations (m). The observation period is expressed in terms of a
number of months from the date of the first altimetry observation and varies in relation
to the revisit time of each mission: 12 months for TP, J2, and J3 (i.e., high-frequency
missions), 14 months for S3A and 20 months for other missions. Based on this temporal
discretization, once identified a given observation period (e.g., 1, 2, . . . , n observation
periods), the number of altimetry observations adopted for the calibration for both MM
and traditional time series is defined as the sum of all available water levels values observed
since the beginning of the time series.
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4.3 Results

4.3.1 Accuracy of altimetry products

Table 4.2 summarizes the results of the comparison between altimetry time series and
in-situ water surface elevations estimated at VS locations. In particular, the table reports
the number of observations that constitutes each time series, the correlation coefficient
(R) between altimetry and in-situ data, the NSE value, MAE as well as the mean (µ) and
standard deviation (σ) of the errors expressed following equation 4.1. Altimetry products
are listed in a chronological order following Figure 4.2. In case of VSs observed from
multiple sensors (e.g. VS 85 and VS 120) each time series is considered separately.

Table 4.2: Comparison of satellite altimetry and in-situ water surface levels: distance from
upstream cross-section, n° of satellite data (Ltot), correlation coefficient (R), Nash-Sutcliffe
(NSE), Mean Absolute Error (MAE), error mean (µ) and standard deviation (σ).

VS distance n°data R NSE MAE µ σ
[km] Ltot [m] [m] [m]

TP120 25.44 174 0.77 0.37 0.67 -0.42 0.75
J2-120 25.44 298 0.98 0.93 0.29 0.18 0.38
J3-120 25.44 107 0.87 0.69 0.38 0.20 0.76
EX820 34.23 12 0.91 0.68 0.52 0.50 0.57
S3B272 42.24 14 0.96 0.93 0.25 0.00 0.32
S3A427 48.73 51 0.94 0.84 0.43 0.30 0.47
E22 49.60 61 0.85 0.72 0.34 0.05 0.87
SA44 50.89 8 0.92 0.41 0.46 0.14 0.55
SA629 65.84 15 0.96 0.72 0.44 0.40 0.30
E315 66.87 65 0.97 0.89 0.37 0.30 0.43
EX775 78.72 5 -0.35 -3.97 1.17 1.17 1.4
S3A272 86.76 51 0.96 0.65 0.88 0.84 0.50
TP85 88.11 158 0.6 -0.35 0.54 0.08 0.70
J2-85 88.11 294 0.98 0.94 0.29 0.20 0.37
J3-85 88.11 99 0.95 0.86 0.40 0.24 0.45

Table 4.3 reports the same error statistics referring to MM time series, which is unique
for each VS.
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Table 4.3: Comparison of MM time series and in-situ water surface levels: correlation
coefficient (R), Nash-Sutcliffe (NSE), Mean Absolute Error (MAE), error mean (µ) and
standard deviation (σ).

VS n° data R NSE MAE µ σ
Ltot [m] [m] [m]

MM120 1739 0.81 0.39 0.88 0.73 0.81
MM820 1739 0.82 0.60 0.49 0.01 0.72
MMB272 1739 0.82 0.61 0.55 0.22 0.73
MM427 1739 0.82 0.49 0.70 0.51 0.74
MM22 1738 0.81 0.67 0.59 0.17 0.79
MM44 1738 0.81 0.67 0.58 0.11 0.79
MM629 1733 0.79 0.59 0.66 0.30 0.83
MM315 1734 0.79 0.58 0.67 0.32 0.83
MM775 1731 0.76 0.20 1.11 0.94 0.95
MMA272 17.31 0.73 -0.11 1.42 1.29 1.05
MM85 1731 0.73 0.36 0.90 0.59 0.98

4.3.2 Performance of different altimetry time series on model
calibration

Table 4.4 summarizes results of the model calibrations and validations carried out
using each altimetry time series at a time. It reports NSE, RMSE, MAE obtained at
each satellite track considering the overall available datasets, which means m=Ltot. These
performance statistics are compared with the ones obtained by repeating calibration con-
sidering in-situ water level elevation interpolated at the same location, and time of the
satellite overpasses (in brackets). ∆-RMSE and ∆-MAE quantify the additional cali-
bration errors due to the use of altimetry data instead of in-situ ones, while the last
three columns report the results of the validation performed using satellite time series.
Figure 4.7 reports the results of the calibration exercise performed considering altime-
try time series of different length and randomly sampled from the original datasets (see
eq. 4.2). Considering each altimetry product and VS at time, panels of Figure 4.7 show
the calibrated roughness coefficient in relation to the number of observations, m, used
for the calibration. The solid line indicates the Manning’s coefficient that ensures the
optimal NSE value among the 1000 calibrations performed with a given m value, while
the grey area represents the range of variability of the roughness coefficients calibrated
within Monte Carlo framework. The wider this area, the more the results of a calibration
process depend on the altimetry record used for the calibration, with the risk of being
significantly influenced by the range of water levels sensed during a specific period (e.g.,
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mainly high or low flows).
Figure 4.8 provides an overview of the maximum error that we can expect when we

use altimetry data for the calibration of a hydrodynamic model. The black line indicates
the maximum MAE as function of m, thus the maximum error obtained considering
all possible calibrated configurations obtained in Monte Carlo framework with a given
data length (i.e., grey areas, Figure 4.7). The comparison with the same maximum
MAE obtained calibrating the model with in-situ data (red line) provides a quantitative
estimation of the additional error induced by satellite altimetry uncertainty. Figure 4.9
summarizes the findings of Figure 4.8 showing the temporal evolution of the performance
of satellite altimetry for model calibration. The length of each box represents the temporal
coverage of the mission, while the box height identifies the range of variability of the MAE
obtained during the calibration considering the overall amount of available observations
(see Table 4.4). In order to give a complete overview, Figure 4.9 also includes the results
from the previous investigation using ERS-2 (Domeneghetti et al., 2015b). A similar
calibration exercise over the Po river was done by Schneider et al. (2018) using CryoSat-2
series observed during the period 2010-2016. Their findings report an average RMSE
(ME) of nearly 0.4 m (-0.18 m) for the SAR mode, with values ranging from 0.06 m (-0.05
m) up to 0.63 m (-0.23 m) (not shown in Figure 4.9).
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Figure 4.7: Calibration results for different altimetry series length: range of calibrated
roughness coefficient (grey areas) and optimal Manning’s value (black line) as a function of
the number of satellite measurements, m.
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Figure 4.8: MAE obtained calibrating the numerical model with satellite altimetry data
(black line) and in-situ water levels (red line) as a function of data length, m.
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4.3.3 Performances of MM series on model calibration

Table 4.5 summarizes the results of the calibration (1995-2017) performed using MM
series, as well as those obtained using in-situ water levels observed, in the same period, at
the same day of the satellite overpasses. MM series are specified for each VS sensed along
the study area, thus Table 4.5 has only 11 rows, according to the number of intersections
between the Po river and the considered satellite orbits (VSs). As previously shown for
the original satellite altimetry data, Figure 4.10 reports the results of the calibration
carried out adopting MM altimetry series of different length and randomly sampled from
the datasets used for calibration. Considering each VS at a time, panels in Figure 4.10
show the Manning coefficient calibrated in relation to the series length, m. The solid
black line indicates the roughness coefficient that ensures the optimal NSE value among
those tested for a given m value, while the grey area represents the range of variability of
the calibrated coefficients. Even in this case, the width of the grey area is indicative of
the sensibility of the calibration result to the length of the altimetry record used for the
calibration. It is worth noting here that the temporal interval considered for calibration
(1995-2017) is long enough to guarantee the achievement of a consolidated and stable
calibration.
Figure 4.11 reports the maximum error obtained by calibrating the model with MM series:
the black line indicates the maximum MAE as function of m, which is compared with the
error obtained when calibrating the same model with an in-situ data record of the same
length (red line).
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Figure 4.10: Calibration results for different MM series length: range of calibrated rough-
ness coefficient (grey areas) and optimal Manning’s value (black line) as a function of data
length, m.
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Figure 4.11: MAE obtained calibrating the numerical model with MM altimetry data
(black line) and in-situ water levels (red line) as a function of data length, m.
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4.3.4 Comparison of single and MM altimetry series

Table 4.6 presents the calibration results obtained using the MM time series. Results
are compared with those achieved by calibrating the model with the original satellite
altimetry available at the different VSs. Values reported in Table 4.6 refer to the case
of considering the overall altimetry series length (m=Ltot). Last four columns report
the calibration (validation) performances when considering the overall set of MM series
along the Po river. Figures 4.12, 4.13, 4.14, 4.15, 4.16, 4.17 show the comparison between
original satellite series and MM ones. Each figure represents one satellite mission, E22,
J2-85, SA629, TP120, J3-85 and S3A-272 from Figure 4.12 to 4.17, respectively (S3B-
272 is not shown since the limited amount of data). For each figure panel a) represents
the number of measurements using MM series (grey columns) and unique sensor (black
columns) considering different observation periods (temporal step equal to 20 months for
E22 and SA44, 12 months for J2-85, J3-85 and TP120, 14 months for S3A-272). Panels
b), c) and d) depict MAE, NSE variability and Manning’s coefficient as a function of the
number of available data, respectively.
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4.4 Discussion

4.4.1 Accuracy of altimetry products

Table 4.2 summarizes the comparison between satellite and original altimetry data.
Excluding EX775, which has a very limited number of observations, all the altimetry series
show quite high R values, which are always larger than 0.6 and generally improves mov-
ing from historical missions to the most recent ones. Similarly, NSE values are in general
positive, with the few exceptions of EX775 and TP85. In general, J2 series outperform all
other missions providing a mean error, µ, of about 20 cm and the lowest values of standard
deviation (µ = 0.38 cm in the worst case). Despite the limited amount of observations,
S3B is the only time series having a lower mean error (µ = 0), while S3A series show
performance in line with those of J2 and S3B, unless irregular among the available VSs.
J3 provides µ values comparable to those of J2, but higher standard deviations, σ. A
possible justification can be due to the characteristics of J3 series, which appear shorter
than those of J2 (nearly 1/3 in length; see Table 4.2) and characterized by a higher fre-
quency of low-flow conditions. This latter aspect is evident in Figure 4.3, where J3 covers
a period of time (2016-on) during which water levels are on average lower (meaning low
flow period) than what observed by J2 (yellow lines). This aspect may play a significant
role when considering possible hooking effect (or “off-nadir” effect, Schwatke et al., 2015),
which is expected to be more relevant in case of smaller water extent. In addition to this,
after a closer look at J3 data and correspondent observed level, the performance of J3
at VS 120 appears strongly influenced by few significant errors observed during a short
period (beginning of 2018), during which the altimeter sensed water level considerably
higher than the observed ones. Those errors, since the limited extent of J3 series, heavily
affect the statistics, which would have been in line with those of J2 otherwise.
SA series ensure high correlation values, while MAE values are worse than those from the
older mission E. This might be due to the limited length of the series (8 and 15 obser-
vations in total at the two available VSs). In contrast, despite the number of available
observations, TP provides the worst results, with low NSE and high MAE values. The
mean error values, µ, indicate a general overestimation of the satellite series (µ > 0) with
the only exception of TP120 that shows a negative bias. Finally, referring to ERS-2 data,
Domeneghetti et al. (2015b) identify MAE values in the order of 0.7 m, with µ and σ up
to 0.64 cm and 0.84 cm, respectively, at two VS along the Po river.
Table 4.3 shows the results of the same comparison performed with MM series. Results
highlight a uniform performance in terms of R (0.80). NSE values are in general positive,
even if always lower than 0.66. In general, performance indexes appear more homogeneous
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along the study area, which is somehow expected considering the way the MM series are
defined along the river.
Looking at the spatial distribution of the error, the analysis performed does not enable
the identification of a specific relationship among error magnitude and river morphology,
such as river width or river orientation. However, it is worth noting that in general the
performances obtained considering the MM series at a given location are always lower
than those obtained considering the original altimetry series, with the only exception of
few VSs where the performances of the altimetry products were not convincing, perhaps
due to their limited length (e.g., VS 775). In such a case, MM series is more capable to
reproduce the observed water level dynamics.

4.4.2 Values of satellite altimetry and effects of time series length
on model calibration

The results of the calibration performed using satellite altimetry shed some light on
the potential of different products for modelling applications. In particular, the influence
of the number of observations on the variability of the results varies in relation to the
satellite product.
Assuming that a calibration result should be considered reliable when the variability of
the roughness coefficient is very limited (i.e., ±0.005 s·m-1/3 in terms of Manning’s co-
efficient), this condition is reached in case of considering a number of observations that
varies from one mission to another. Looking at Figure 4.7, this target is reached for E in
case of using more than nearly 35 observations, which means nearly 3.5 years of observa-
tion considering its revisit time (35 days). Similar results have been obtained considering
ERS-2 series (Domeneghetti et al., 2015b). The lengths of required series become smaller
in case of TP (revisit time equal to 10 days), which ensures reliable performance with
50 observations, recorded on average in 1.5 years. Better performances are obtained in
case of J2 series, for which the same performance is obtained calibrating the model with
nearly 30 observations (less than 1 year of record considering its temporal resolution).
The same number of observations is required by S3A, although its lower repeat period
extends the time series up to more than 2 years. Similarly, 30 observations are needed for
J3-85, while nearly 60 (slightly more than 1.5 year) are required for the J3-120. Again,
this latter difference can be justified by the errors noticed for J3-120 series and previously
described. Regarding the satellite series EX, the limited number of available observations
prevents us from drawing general conclusions. The same holds for SA44 (8 measurements
in total). Despite the limited amount of data, the calibration results with S3B272 and
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SA629 are good: the calibration appears reliable already with a limited number of data,
nearly 10, which means a period of observation of approximately 1 year and less than
1 year for SA and S3B, respectively, considering their repeat periods. In addition, this
seems to confirm the value of SA mission, which is the only one operating at Ka band
among those considered. As a matter of fact, although considering wider inland water
bodies and rivers (e.g. nearly 5 km) Schwatke et al. (2015) proved the higher potential of
a Ka-band instrument compared to the typical Ku-band sensors, thus offering promising
expectation from future satellite missions that envisage the adoption of Ka-band altimeter
(e.g. SWOT mission).
The evolution of the calibration performance in relation to m, number of observations,
is clearly depicted by Figure 4.8, where the maximum MAE obtained during the calibra-
tions typically decreases with extensive series. Looking at the errors obtained using in-situ
data (red lines), the maximum MAE reaches the minimum value after a limited amount
of data, assuming errors that are almost uniform along the study area: the optimal er-
ror varies in the range ∼10-30 cm (see also Table 4.3). The evolution of the black lines
(altimetry data) confirms previous findings on satellite potential. S3A, S3B, J3, J2 and
TP products ensure the fastest achievement of the minimum error. However, regarding
the distance between red and black lines, which can be considered as a measure of the
error introduced in the model calibration when using altimetry data instead of in-situ, E
series provide performances comparable to that of J2 (see Table 4.4). On the contrary,
TP series, despite being more frequent, introduce larger errors: nearly double that of E
or J2.
Finally, it is worth highlighting the performance of S3B272, which ensures the lowest error
among all considered satellite series. These results are clearly summarized in Figure 4.9,
which shows the temporal distribution of the satellite series together with their calibra-
tion performances. What is evident is that, with the only exception of EX and caution
on considering J3, the error and its variability are generally decreasing in time, showing
a constant improvement in satellite capacity to remotely observe water elevation. This
potential of altimetry time series is also confirmed by the validation results (Table 4.4),
for which the lowest NSE is equal to 0.54. In general, if not even better, NSE values are
comparable to the ones obtained during the calibration phase. Only in few cases the vali-
dation provided accuracy significantly worse than the one achieved during the calibration
(e.g., S3B272, S3A272).
Findings concerning SARAL/Altika might be misleading since the poor performance at
SA44, which is responsible for the significant size of the error box of Figure 4.9. As a
matter of fact, the additional error introduced at SA629 is equal to 0.09 m, which is the
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lowest of all the series. Future analysis with longer SA series will reveal the real potential
of this satellite product for model calibration.
Concerning the use of MM series on model calibration, in the light of the higher num-
ber of observations combined by MM series, the calibration easily converges to the final
configuration (Figures 4.10 and 4.11). However, errors introduced using such series are
higher than those associated with traditional series: ∆-RMSE and ∆-MAE are on average
equal to 0.53 m and 0.38 m, respectively (Table 4.5). As expected, MM performances in
terms of model calibration do not vary from one location to another being the result of
a spatial and temporal combination of all available satellite dataset. However, it is also
worth noting that using high frequency water level series reduces the calibration accuracy
(NSE) also in case of referring to extended series of in-situ data (see comparison of NSE
values for in-situ data in Tables 4.4 and 4.5). Since the calibration considers a constant
Manning’s coefficient, we argue that this loss of efficiency might be due to the consid-
eration of a higher variability of river flow conditions, which include both low and peak
flow regime. As a matter of fact, a model calibrated referring to medium-to-large flow
conditions, that are those most frequent in the river, might have poor performance when
used to reproduce low flow scenarios (see e.g. Moramarco and Singh, 2010; Domeneghetti
et al., 2012). Validation results confirm the potential of MM time series for model cali-
bration, reporting performances in line with those achieved calibrating the model using
in-situ data for the same time period (values in brackets in Table 4.5).
Leaving aside specific performances of different single mission products, the calibrated
roughness coefficients obtained considering one time series at time (first two columns of
Table 4.6) appear in line with values obtained from previous studies performed over the
study area, which shown a general decreasing trend moving downstream (reference values
are 0.004-0.042-0.025 sm-1/3 for the upper, middle e lower river portion, respectively; see
Domeneghetti, 2016). Similar behaviour is also observed adopting MM series, with vari-
ation on roughness values not particularly significant.

4.4.3 Potential and limits of MM altimetry series for model cal-
ibration

Using MM series always entails an additional error: ∆-RMSE and ∆-MAE are al-
ways positive, with values up to 0.56 m and 0.38 m, respectively. The only exception is
represented by MM-EX775, which is due to the poor performance of EX series at that
location. Thus, in case of considering the overall altimetry series length (m = Ltot; which
varies in relation to the series), the use of a single MM series for model calibration does
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not provide benefits and is not recommended.
However, results presented in Figures 4.12-4.17 provide more insights: NSE variability
(panel c)) associated to MM (grey lines) is always lower than the one obtained with the
original series (black lines), thus providing more stable calibration even for very short
calibration periods. This is particularly significant in case of altimetry series with limited
observation frequency (i.e., 35 days, such as E and SA), for which the calibration imme-
diately converges to the real Manning coefficient (black and grey lines overlap in panels
d)), even using data observed within 1 observation period (i.e., 20 months; see e.g., Figure
4.12 and 4.14). On the contrary, differences are much larger and not negligible in case of
satellite products characterized by higher temporal observation frequency (i.e., J2, J3 and
TP). This might be explained by considering that, in case of high frequency series (i.e.,
those with revisit time of 10 days), the MM generation process further enhances the tem-
poral coverage of the remote series, but it introduces errors larger than those associated
with the original satellite series, which are still in any case frequent enough to provide a
reliable calibration.
When using all MM series together, some differences emerged in terms of calibrated Man-
ning’s coefficients, which are not always in agreement with those obtained considering
one VS at time (Table 4.6). This is due to the mutual interaction of the calibrating river
cross-sections (VSs) that requires local modification of the friction values to deal with
opposing biases. However, apart for few exceptions (MM120 and MMA272), the use of all
MM series together provides performances along the entire river in line with those ensured
by adopting one MM series at time, which is promising in assuring a proper simulation
of flowing dynamics over long river stretch.
A possible strategy towards an improvement of MM reliability and accuracy, at the ex-
pense of some temporal frequency reduction, could be the adoption of only best performing
single missions (e.g., E, J2, J3 and SA). Preliminary trials on this matter did not pro-
vide satisfying results, but future work will further investigate in this direction. In this
context, future analysis could also consider the opportunity to include other recent al-
timetry products that, although characterized by long repeat cycles, have high accuracy
on water level measurement. This is the case for example of IceSat-2 (ATLAS altimetry;
available from December 2018) that can ensure high accuracy on water elevation sensing
but has a repeat period of 91 days (see e.g., Yuan et al., 2020). Shifting in space such in-
formation could further sustain satellite products exploitation for inland river monitoring.
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4.5 Concluding remarks

This study provides additional insights regarding the potential of satellite altimetry
sensors for hydraulic applications. Although not aspiring at providing an evaluation and
comparison of altimetry missions in absolute terms (a wider spectrum of rivers and flow-
ing conditions would have been necessary), this work offers a comprehensive and cross-
missions view of the potential of such products, together with MM series, which have
been tested for hydraulic model calibration. To this end we referred to a reach of nearly
140 km of the Po river for which we implemented a quasi-2D hydraulic model based on
detailed topographic data.
In general, altimetry time series properly reproduce observed water level time series, show-
ing correlation coefficients (R) always larger than 0.6 in case of single missions. Despite
limited to one VS, S3B (Sentinel-3B) ensures the lowest error (η=0). J2 (Jason 2) shows
high accuracy (mean error equal to 20 cm), followed by S3A (Sentinel-3A), J3 (Jason 3)
and Envisat (E). Even though the limited extent of the derived time series, SA (SAR-
AL/Altika) shows promising performances with high R values (higher than 0.9). On the
contrary and despite the high number of observations, TP (TOPEX/Poseidon) series do
not ensure reliable estimation of water levels.
MM series ensures a uniform behaviour along the study area (R is nearly constant and
equal to 0.80), however, their performances at a given location are always lower than
those obtained considering the original altimetry series (see Tables 4.2 and 4.3).
Results of the model calibration depict a general temporal improvement of satellite per-
formances moving from the oldest to more recent missions, with the only exception of EX
series (see Figure 4.8). The lower additional error induced by the use of remote sensing
data on model calibration (∆-MAE) is limited to nearly 20 cm in case of using J2 and E
series, while it is larger (up to 30÷40 cm) in case of other series (up to 60 cm in case of
ERS-2 series; Domeneghetti et al., 2015b). J2 series ensure trustworthiness and reliability
on the calibration process with the lower temporal observation extent: lower than 1 year
of data (∼ 30 observations), followed by J3 and S3A that reach the same reliability after
1.5, 1.6 and 2.2 years, respectively (i.e., 50, 60 and 30 observations, respectively). For
a similar performance, E requires nearly 3.5 years of data (i.e, 35 observations). Using
ERS-2 data would require a series extent up to 4.5 years (nearly 50 observations consid-
ering a satellite revisit time of 35 days). Unless limited in time, results show SA and S3B
time series potential in achieving reliable calibration using only few observations (e.g.,
nearly 10).
The use of MM series for model calibration has provided errors higher than those obtained
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using original satellite series in case of considering their overall length: additional errors
are equal to 0.56 m and 0.38 m in terms of ∆-RMSE and ∆-MAE, respectively.
However, the comparison of MM and original series’ performances in relation to the num-
ber of available observations depicts the potential of MM series, which are able to ensure
calibrations more reliable than those obtained in case of altimetry series provided by low
frequency satellites (i.e., E, SA) that cover very short period (e.g. 1÷2 observation period;
20-40 months). In such circumstances MM series offer calibration performances (i.e., reli-
able estimation of the friction coefficient and lower uncertainty) higher than those ensured
with the original series. However, if satellite sensors with higher temporal observation fre-
quency are available (i.e., J2 and J3), the use of original series, even though limited in
terms of observations, appears to be the best option. That said, MM series ensure a
higher spatial coverage of the river, which could be significant when referring to long river
stretch and single altimetry missions characterized by long inter-track distances.
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CHAPTER 1
A conceptual model for basin with
seasonally variable catchment size

A strong wind rose and soon a violent hurricane broke
out. The castle well began to throw out water and soon
the entire castle, the fields, the meadows. . . everything
was covered by water. The hurricane ceased and instead
of the castle and meadows, there was a lake, the lake of
Monate.

Costanzo Ranci
"The lean shore. Legends of Maggiore Lake", 1931
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1.1 Introduction

In 1987 the World Commission on Environment and Development (WCED) in the
paper Our Common Future introduced, for the first time, the concept of Sustainable
Development, defined as “the development that meets the needs of the present without
compromising the ability of future generations to meet their own needs”. Sustainabil-
ity goals (https://sdgs.un.org/goals) address the global challenges, including
poverty, inequality, climate change, environmental degradation, peace and justice. The
simultaneity between the human development and the natural systems, without under-
mining the integrity and stability of the environment, has to be guaranteed.
In particular, the famous American environmentalist and activist Paul Hawken defines the
environmental sustainability as the stabilization of the currently disruptive relationship
between human culture and the living world, avoiding the destruction of earth’s resources
faster than they can be regenerated and replenished.
The concept of Sustainable Development is one of the fundamental principles at the base of
legislative decree of 3 April 2006, n.152, the Italian reference legislation in the environmen-
tal field. It was the first step of a series of legislations in environmental conservation and
protection, from the law 68/2015, representing the long-awaited sanctioning response to
combat criminal phenomena (i.e., environmental pollution, environmental disaster, Traf-
fic and abandonment of highly radioactive material) that see the environment as a legal
asset to be protected, to the law 221/2015 with the concepts of Green Public Procure-
ment (GPP) and Minimum Environmental Criteria (MEC). The main instrument for the
environmental conservation is the monitoring activity, aimed to assess the consequences
of natural resource management actions to man and the environment. Respecting the
competences of the Regions, the goal of National System (law 132/2006) is the monitor-
ing of environmental resources and their evolution in qualitative and quantitative terms,
using monitoring networks and modelling tools.
In this context, our research focuses on the basin of Monate Lake, an example of envi-
ronmental area of inestimable value for the purity of the water, the excellent state of the
banks and the strategic position for tourism, fishing and agricultural crops. The confor-
mation of its shores and their prevailing privatization helped to prevent the lake from
being surrounded by industrial settlements and mass tourism, thus preserving the quality
of the water. Thanks also to an ordinance, under which motor navigation is forbidden, the
lake is still one of the very few pre-alpine basins of glacial origin that can be bathed on the
entire surface (Montanari and Castellarin, 2012). Moreover, the lake has no tributaries
with the exception of the Roggia Riale stream and only one emissary, the Acquanegra
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creek. Previous analysis (e.g. Barnaba, 1987) have widely investigated the water balance
of the lake basin, hypothesising the presence of a groundwater basin.

Figure 1.1: Geologic transect before (upper panel) and after (bottom panel) the quarry
activities (Rabuffetti, 2012).

For all these considerations, the Monate Lake hydrology is the subject of considerable
scientific interest. In order to evaluate the impact of quarry cultivation in Cava Faraona on
the Monate Lake water balance, in 2012 an environmental monitoring plan was drawn up
in agreement with the Municipal Administration of Travedona Monate and the company
Holcim SpA. It aims to monitor several environmental variables, ranging from air quality,
noise and vibrations to climatic and hydrogeological ones. The collected data, as well as
the environmental monitoring plan documentation, are freely available on the Travedona
Monate Municipality website (http://www.comune.travedonamonate.va.it).
The Travedona Monate Municipality entrusted the Department of Civil, Chemical, En-
vironmental and Materials Engineering (DICAM) of the University of Bologna with the
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role of supervising the environmental monitoring. In particular, Cava Faraona and Cava
Santa Maria, located between Travedona Monate and Ternate Municipalities, have been
subject to an extension proposal, involving a further part of the lake catchment area. In
accordance with Rabuffetti (2012), a significant correlation among the planned cultivation
activities and the Monate Lake and wells waters can not be excluded. The goal is ascer-
taining any environmental criticalities and guaranteeing special precautions regarding the
sustainability of an important operation conducted on its territory and more generally in
the interest of its fellow citizens. Figure 1.1 illustrates geologic transects before (upper
panel) and after (bottom panel) the quarry activities for estimating the effects of the
quarry activities on the environment. After the quarry extension (bottom panel Figure
1.1), Rabuffetti (2012) have hypothesized depleted water tables towards Monate Lake and
the filtrations to Varese Lake due to secondary permeability formation.
Exploiting the climatic, hydraulic and hydrological information (i.e., precipitation, lake
water levels), a simple predictive model has been implemented, suitable for the basin pecu-
liarities representations of the Monate Lake. Thus, the first goal of this research activity is:

To develop a parsimonious conceptual rainfall-runoff model suitable for predicting
the hydrological unusual behaviour of the Lake of Monate.

The second part of this work is dedicated to the extension of the proposed model in
order to represent a groundwater basin with variable catchment area. Thus, the second
object is:

To address a simplified modelling of the seasonal dynamics of the groundwater catch-
ment of the Lake of Monate.

Given this general framework, the Part 2 of this dissertation is structured as follows.
The Section 1.2 presents the study area and the monitoring network, illustrating in de-
tails the instruments and data useful for the analysis. The Section 1.3 focuses on the
hydrological model used and its adaptation to the study case, as well as, the proposed
modifications to the original model. The Section 1.4 is dedicated to the presentation of
calibration and validation phases of the model, followed by the results discussion (Section
1.5).

117



Chapter 1 - Part 2

1.2 Study area and monitoring network

1.2.1 Study area

The Monate Lake is located East of Maggiore Lake in the Province of Varese (Italy) at
266 m a.s.l. with an area of 2.58 km2 and 7.8 km of coasts. The mean depth is about 18
m, reaching 35 meters in some locations. The lake is mainly feed by spring origin waters,
has no tributaries with the exception of the Roggia Riale stream. The only emissary is the
Acquanegra creek, originating from the lake shores and flowing into the Maggiore Lake,
of an overall length of 11 km. Its outflow is about 3.45 Mm3 per year.

Figure 1.2: The catchment area of Monate Lake. The topographic watershed is shown in
green, obtained from Digital Terrain Model (DTM). The estimated groundwater catchment
is represented in red (Barnaba, 1987), the Monate Lake in blue. The Cava Faraona is
depicted as as a red dashed line.

Regarding the catchment area of Monate Lake, several geological studies have proved
the presence of an impermeable rocky substratum of the tertiary age, arranged in layers
inclined towards West, therefore towards the Lake itself. This substrate is covered by a
moraine layer of quaternary origin, whose thickness varies from few to some dozen meters,
locally reaching even a hundred meters. The area is also affected by an important outcrop
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of Eocene Nummulitic limestones, cultivated in Santa Marta and Faraona quarries, located
East of the Lake (Barnaba, 1987; Montanari and Castellarin, 2012). Although the rocky
substrate is mainly impermeable, the presence of tectonic or primary origin cracks is
possible that may be site of water veins. This hypothesis is supported by the presence
of an aqueduct and industrial wells characterized by a water level compatible with the
bedrock levels. The aforementioned wells, in particular the one located East of Cava
Faraona (Figure 1.2), have a significant importance and a permanent supply. It is possible
that the supply dynamics of these wells are more complex than simple feeding by the
quaternary substrate, speculating the presence of cracks, albeit modest, in the rocky
substrate. As evidence of this, the quaternary substrate could not guarantee a permanent
and constant water supply, especially during periods of prolonged dry season. Despite
this, the deposits are feed by the aquifer on during the upwelling of the aquifer itself,
originated by meteoric precipitation. Thus, the water volumes remain for long time,
guaranteeing supply to the lake even in the dry periods (Montanari and Castellarin,
2012). Given the absence of important tributaries, the contributions to the basin are
mainly of a meteoric nature, which feeds the lake through direct precipitation and the
aquifer by percolation and underground infiltration. The low ratio between the areas of
the catchment and lake surface involves a difficult and slow renewal of the water lake,
due to the limited volume of inflows into the basin. Considering the volume of water
stored in the lake (about 45 Mm3) and the average annual outflow (about 3.45 Mm3), a
renewal time of over 13 years is estimated. This information is relevant for the lake health
evaluation: in such long periods, accumulations of the polluting materials in the waters
could originate. Barnaba (1987) has widely investigated the identification of hydrological
Monate Lake basin boundaries. For the descending inclination of the predominantly
impermeable substrate layers from East to West, the phreatic watershed between Monate
and Varese Lakes does not coincide with the topographical watershed. For this reason, in
addition to the surface and underground contributions of the hydrographic basin, it is also
necessary to take into account groundwater catchment outside the superficial catchment
basin South-East of Travedona, which favors the percolation of the water towards the Lake
(Figure 1.2). In particular, according to Barnaba (1987), the extension of the hydrological
basin of Monate Lake is about to 6.49 km2, a value including the 5.75 km2 resulting from
the analysis of the topographical watershed position (surface catchment basin) and 0.74
km2 which are located South-East of Travedona beyond the topographical watershed with
Varese Lake.
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1.2.2 Monitoring network

Figure 1.3: Study area monitoring network (yellow points).

In 2013 Holcim SpA has installed a hydrometeoclimatic monitoring network in order
to study the lake behaviour relating to the quarrying activities in Cava Faraona (Figure
1.2). To evaluate the possible quarry cultivation work effects on the lake water balance
and to detect hydrometric level changes in the subsoil, a dense network of piezometers was
created throughout the area (see “Pz” in Figure 1.3). The observation period considered
in this work is 01/01/2014 - 01/12/2019. The latest monitoring report updated to 2020
confirms the presence of a watershed placed in an intermediate position between Pz1 and
Pz2 piezometers (Figure 1.3), already hypothesized in previous studies (Barnaba, 1987;
Montanari and Castellarin, 2012). To verify the existence of the groundwater divide and
better estimate pressure surface contours trends, a new piezometer (Pz10) was introduced
in June 2016. In this point, the lake being fed by the aquifer (in the Southern portion
where the Pz1 is located), is going to feed the aquifer itself, in the Northern portion (Pz2
location). Comparing the trend of phreatimetric simulations referring to different seasons,
the position variation of the phreatic line relative to 266 m a.s.l. (average altitude of
Monate Lake and therefore it can be interpreted as an approximation of the groundwater
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catchment) is evident (Figure 1.4).

Figure 1.4: Example of isoline representation of the water table relative to 266 m a.s.l.
during IV monitoring year.

Hydrometric and meteorological data
A data logger and biweekly campaigns with hydrometric rod (Level Gauge Monate, Fig-
ure 1.3) assess Monate Lake water levels. Regarding the Acquanegra stream, a digital
hydrometric rod is installed, allowing remote monitoring of the creek levels (Level Gauge
Acquanegra, Figure 1.3). This information is useful for the flow rate hydrogram recon-
struction, after identification of the most suitable flow scale. The available data for the
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hydrological model implementation are collected by:

• Two/four-monthly reports that, since October 2013, have been dealing with envi-
ronmental monitoring of the survey area,in particular, it collects:

– Flow data from Mainstream, located at “Level Gauged Acquanegra” in Figure
1.3;

– Piezometric data (Pz1-10 and PzA-D, Figure 1.3);

– Hydrochemical monitoring and measurements of the hydrometric levels of Monate
Lake, carried out both manually through the use of a hydrometric rod installed
on the North shore of the lake, and continuously via data-logger, present since
Decemeber 2013;

– Measurements of hydrometric levels and survey of Acquanegra stream section:
a digital hydrometric rod is used for remote level measurements;

– Recording of water volumes pumped from the quarry lake to Varese Lake.

• Thermopluviometric station owned by Holcim SpA, installed in September 2013
at S. Marta quarry (“S.Marta Station”, Figure 1.3). The station provides meteo-
climatic data such as:

– Hourly cumulative precipitation values (mm/h);

– Average, maximum and minimum hourly values of temperature (°C), atmo-
spheric pressure (hPa) and relative humidity (%).

• Agenzia Regionale per la Protezione dell’Ambiente Lombardia (ARPAL) (Regional
Agency for environmental protection) with the management of fourteen evaporimet-
ric stations installed in 2008 in order to contribute to groundwater levels monitoring.
They are distributed throughout territory of Province of Varese and one is located in
Cava Faraona, about 1.5 km away from the Holcim SpA thermo-snow-pluviometric
station. Meteoclimatic data collected include:

– Average and maximum daily and hourly wind speed values (m/s);

– Total daily (MJ/m2d) and hourly average solar radiation (W/m2);

– Cumulative values of hourly (mm/h) and daily (mm) precipitation;

– Average hourly values of temperature (°C), atmospheric pressure (hPa) and
relative humidity (%);

– Average, maximum and minimum daily values of temperature (°C) and relative
humidity (%).
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• ARPAL Varano Borghi Station located 3 km from Santa Marta quarry:

– Average and maximum daily and hourly wind speed values (m/s);

– Cumulative precipitation over 24 h (mm) and minimum, average and maximum
daily temperature (°C).

• ARPAL Somma Lombardo station located 16 km from Santa Marta quarry:

– Total daily (MJ/m2d) and hourly average solar radiation (W/m2).

The period analysed in this work is January 2014 – December 2019. For the data
relating to the average daily wind speed and the daily average global solar radiation, use-
ful for evaluating the potential evapotranspiration, reference information are provided by
ARPAL Province of Varese. The hourly rainfall and temperature data, pressure and rela-
tive humidity (maximum, minimum and average hourly values) information are collected
from measurements at “S.Marta Station” managed by Holcim SpA, located at S.Marta
quarry.

Mainstream data
From November 2016 a new instrumentation was introduced for the direct measurement
of the flow at the Acquanegra stream. Mainstream devices represent a new generation
of Area-Velocity transmitters and flow meters. The basic instrumentation consists of an
electronic microprocessor unit, an ultrasonic sensor for measuring the average speed of
the fluid and a level sensor. Mainstream meter allows the user to configure the precise
geometry of the measurement section within the entire equipment, for all regular geo-
metric shapes. Once geometry of the cross-section has been established, the discharge is
determined as the product among mean velocity and flow area.
The main strength of this instrumentation is the versatility: it works both in conditions of
clean water and in the presence of wastewater, in channels of any shape and size, without
requiring the construction of any specific hydraulic work. Within the following analysis,
Mainstream flow measurements derived are pivotal: these data allow flow rating curve
update for the evaluation of Acquanegra discharge (see Section 1.3.2).

Pre-processing of meteorological data and dataset management
The first phase of data processing required the integration of missing hourly meteorolog-
ical data, in order to create a complete database suitable for subsequent analyses. The
reconstruction of missing data is carried out starting from the values recorded 24 hours
before and 24 hours after the missing data, as follows:
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• the mean between the two values is calculated for the average values;

• the maximum/minimum between the two values is taken for the maximum/mini-
mum values;

• a null value is taken for precipitation.

Once the hourly data archive is completed, an evaluation of daily step values is per-
formed, according to the following procedure:

• the average over the 24-hour interval is calculated for the average values;

• for the maximum/minimum values the maximum/minimum over the 24-hour inter-
val is considered;

• the cumulative values over the 24-hour interval is taken for the precipitation.

Specifically, both operations are performed automatically by the use of a script set in
the R environment (R Core Team, 2019). Exploiting as input hourly meteoclimatic data,
the user achieves a dataset with daily data and without missing values. This approach is
particularly useful by allowing continuous updating of the database, since the monitoring
activities of the area is still ongoing.
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Figure 1.5: Yearly cumulative rainfall [mm] at Varano Borghi station.

Figure 1.6: Seasonal cumulative rainfall [mm] at Varano Borghi station.
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Figure 1.7: Yearly mean lake water elevation [m a.s.l.].

Figure 1.8: Seasonal mean lake water elevation [m a.s.l.].
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1.3 Hydrological model

The objective of rainfall-runoff models is to simulate outflow produced by precipita-
tion on a basin. They aim to represent the set of processes at the base of the hydrological
cycle at the basin scale. The integrated models are particularly versatile and suitable for
the description of floods, mitigation of flood risk, but also for water resources manage-
ment. An example is the Bucket Model, an empirical integrated model with concentrated
parameters which assimilates the hydrographic basin to a reservoir, or to a series of reser-
voirs, receiving a meteoric precipitation as an input and releasing the water volume by
means of appropriately positioned discharges. The great limitation of the standard Bucket
Model is the presence of a single discharge threshold of the surface runoff, not describing
its real gradual production. The organic soil, that concerns the first layer of soil where
evapotranspiration occurs, has different water storage capacities depending on the con-
sidered area within the same basin. In particular the storage capacity increases in flat
areas, vice versa in mountainous zones. To overcome this limit, applications of different
Bucket Model have been developed, arranged in series or in parallel, in order to make
the representation of the basin surface flow more realistic. However, this solution does
not definitively solve the problem. Despite this, the simplicity of this type of models
makes them particularly suitable for applications that are not supported by an adequate
knowledge of the contributing basin, for example for uninstrumented basins.
The Probability Distributed Model (PDM) (Moore and Clarke, 1981; Moore, 2007) rep-
resents an extension of the Bucket Model when the distribution of different water storage
capacities that characterize the basin is to be reproduced. The PDM model aims to over-
come the limitation imposed by the linear reservoir model, proposing an approach capable
of providing more regular objective functions. The absorption capacity variability (i.e.
of the canopy and of soil) within the catchment is characterised by a probability density
function of a determined shape, defined by parameters that will later need to be fixed or
calibrated. The model inputs are the precipitation on the basin and the potential evapo-
transpiration.
Its functioning mechanism is described as follows: the rain is stored in a reservoir, repre-
senting the ground, thus the stored water level and the saturated area are estimated. The
surface runoff originates from the excess of saturation. The water that does not infiltrate
defines the surface accumulation and it is stored in another reservoir (or more reservoirs in
series) from which, through the bottom outflow, the surface contribution to the river flow
escapes. Otherwise, the deep contribution originates from the reservoir bottom discharge.
For this work HyMOD model is used (see Section 1.3.1), which has a series of common
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features with the previously described models. HyMOD is widely investigated in litera-
ture and exploited in hydrological applications (Castiglioni et al., 2010; Lombardi et al.,
2012; Cervi et al., 2018) .

1.3.1 HyMOD model

The HyMOD model proposed by Boyle (2001) is based on the same principle of the
PDM model, assuming the storage capacity of the soil is variable within the basin. The
conceptual scheme of the HyMOD model is reported in Figure 1.9.

Figure 1.9: Schematic representation of HyMOD model (Boyle, 2001)

The structure of the model requires that the quantity of water falling on the basin in
form of precipitation, once purged from evapotranspiration, is divided into underground
and surface flows. This conceptual scheme derives from the experimental evidence that
the precipitation only partly infiltrates the soil, depending on the local value of storage
capacity. For this reason, the superficial and underground portions of soil, represented
from distinct reservoirs, receive a quantity of water directly depending on their storage
capacity.
In particular, to represent the frequency distribution and therefore the spatial variability
of the storage capacity of the basin C(t) [mm], the HyMOD model exploits the Pareto
distribution, expressed as:

F (C(t)) = 1−
(
C(t)
Cmax

)β
0 ≤ C(t) ≤ Cmax (1.1)

Equation 1.1 describes the probability of not exceeding the water storage capacity for
a particular local value of C(t).

The distribution parameters are:
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• Cmax [mm] identifies the maximum retention capacity of the basin;

• β [/] identifies the shape of the distribution. It is a calibration parameter that
quantifies the variability of the water retention capacity of the basin. In particular:

– if β = 1 the distribution is uniform, so all values between 0 and Cmax have the
same probability. There is therefore a linear trend in the distribution;

– if β > 1 the distribution assumes a downward concavity, thus low values of C
are more frequent than high values;

– if β < 1 the distribution assumes a concavity towards the top, thus high values
of C are more frequent than low values;

– if β = 0 the distribution degenerates into a probability function always equal
to 0 except for the value equal to Cmax (for which the probability is equal to
1), therefore constant storage capacity (see Bucket Model).

C(t) represents the local water content at the generic instant of time, expressed as
water height. In areas where the storage capacity is higher than C(t), the rain is inter-
cepted by the basin, infiltrates and is stored; once the basin is saturated, the rain volume
part that organic soil is unable to retain, becomes outflow ER(t). This amount of water
can be expressed as:

ER(t) = ER1(t) + ER2(t) (1.2)

Both components of equation 1.2 depend on a new parameter α [/] as follow:

• ER1 = αER(t), input of a cascade of linear reservoirs (concept of Nash Model),
characterized by Kquick [T-1] that identifies the surface runoff;

• ER2 = (1 − α)ER(t) input of a single linear reservoir, characterized by Kslow [T-1]
that identifies the based flow.

The surface runoff and baseflow determinate the total discharge at the basin outlet.
The water volume stored on the basin can be expressed as:

W (t) = C(t)−

 C(t)∫
0

F (Ψ)dΨ

 (1.3)

Through the integral development of 1.3:
C(t)∫
0

F (Ψ)dΨ =
C(t)∫
0

1−
(

1− Ψ
Cmax

)β dΨ (1.4)
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C(t)∫
0

F (Ψ)dΨ = C(t) +
Cmax
β + 1

[
1− Ψ(t)

Cmax

]β+1
Ψ(t)=C(t)

Ψ(t)=0

(1.5)

C(t)∫
0

F (Ψ)dΨ = C(t) + Cmax
β + 1

1−
(

1− C(t)
Cmax

)β+1
 (1.6)

W (t) = Cmax
β + 1

1−
(

1− C(t)
Cmax

)β+1
 (1.7)

Imposing C(t) = Cmax in 1.7:

W (t) = Cmax
β + 1 (1.8)

Explaining C(t):

C(t) = Cmax

1−
(

1−W (t)β + 1
Cmax

) 1
β+1
 (1.9)

Imposing stored water volume in the basin W (t) at a generic time, equation 1.9 allows
to estimate stored water volume in areas with the maximum water storage.
The algorith has 7 steps as follow:

1. C(t) = F (W (t)) (Equation 1.9);

2. C(t+ ∆t) = min(Cmax;C(t) + P (t+ ∆t));

3. ER1(t+ ∆t) = max(0;C(t) + P (t+ ∆t)− Cmax);

4. W (t+ ∆t) = f−1(C(t+ ∆t));

5. ER2(t+ ∆t) = max(0;C(t+ ∆t)− C(t)− (W (t+ ∆t)−W (t)));

6. Effective evapotranspiration relative to current calculation step is

ET (t+ ∆t) = ETP (t+ ∆t) ∗ W (t+ ∆t)
Wmax

(1.10)

7. The water volume relative to the current computational step is updated:

W (t+ ∆t) = max(0;W (t+ ∆t)− ET (t+ ∆t) (1.11)
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In the present work the potential evapotranspiration estimation refers to Penman Mon-
teith Formula:

ET0 =
0.408∆(Rn −G) + γ 900

T+273u2(es − ea)
∆ + γ(1 + 0.34u2) (1.12)

where:
Rn = net radiation [MJm-2d-1]
G = soil heat flow [MJm-2d-1]
T = average air temperature [°C]
u2 = wind velocity at 2 meters height [ms-1]
es-ea = vapor pressure deficit [kPa]
∆ = saturation curve slope [kPa°C-1]
γ = psychrometric constant [kPa°C-1]

In summary, the HyMOD model is characterised by 5 parameters:

• α [/] which distributes the flow between slow and quick release reservoirs;

• Kquik[∆T] representing the residence time of the slow release reservoir, where ∆t is
the selected time step (i.e., 1 day in our case);

• Kslow[∆T] representing the residence time of the quick release reservoir;

• Cmax [mm] identifying the maximum local storage capacity of the soil;

• β [/] is the degree of spatial variability of the soil moisture capacity.

The strength of HyMOD model is represented by the basin discretisation in infinitesi-
mal cells which allows to obtain a continuous variation of storage capacity values. There-
fore, HyMOD describes the storage capacity in details by the introduction of other pa-
rameters, whose limited number allows an easy practical application and a quick model
calibration.
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1.3.2 Hydrological model of the Monate Lake

Figure 1.10: Conceptual scheme of the Monate Lake hydrological model.

The study starts from considering the hydrological balance of the lake as conceptual-
ized in Figure 1.10. This model structure has been initially implemented during previous
investigations (Soligno, 2015; Tomesani, 2016; Leuci, 2017; Stumpo, 2019) in R environ-
ment. The model structure reflects the hydrogeological setting of the survey area, in which
the groundwater catchment is larger than the topographical catchment. The model as-
sumes that an additional groundwater catchment concurs to baselow towards the Monate
Lake. In summary, the water supplies to Monate Lake come both from the surface or
topographical catchment and the additional groundwater catchment in terms of baseflow;
the surface runoff is only relative to the superficial hydrographic basin.
In particular, the hydrological model consists of by two Parts (Figure 1.10):

• Part 1: HyMOD for the simulation of daily surface runoff (green box, Figure 1.10)
and baseflow (brown box, Figure 1.10). The HyMOD equations are applied to the
topographic catchment (excluding the lake area) and to the groundwater catchment.
The necessary data for this application are: daily cumulated rainfall and daily cu-
mulated potential evapotranspiration on hydrographic and groundwater catchment,
respectively;

• Part 2: lake water body. This component simulates outflow. The component re-
ceives precipitation as a direct inflow and simulates evapotranspiration fluxes at
each daily time step. This net inflow volume is then converted into water level
variations (∆Z, Figure 1.10). Based on the water level and the Acquanegra rat-
ing curve, the stream discharge is computed. Near the Acquanegra gauging station
(“Level Gauge Acquanegra”, Figure 1.3), two gates are present for the regulation of
the Acquanegra flows. These gates are normally open, yet if closed, they prevent the
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water to flow into the stream. The gates are closed when the Acquanegra channel
undergoes maintenance operations. A lateral bypass prevents excessive water levels
when gates are closed, protecting the shores from flooding (Figure 1.11). The lateral
weir has a single span of 0.11 x 7.83 m at an average elevation of 266.96 m a.s.l.
Thus when the gates are closed and the water level is higher than this elevation,
the lateral weir comes into operation allowing the water to bypass the gates and
to reach the Acquanegra emissary. In the condition of maximum levels above the
lateral weir (i.e. for lake water levels of 267.27 m a.s.l.), the discharge is equal to
2.30 m3/s. The model represents the by-pass and correctly simulates its hydraulic
behaviour once the maintenance periods are known and the gates are simulated as
closed. The input data for the simulation are the cumulated rainfall, lake evapo-
ration, lake water level at the beginning of simulation period and simulated inflow
from Part 1. The variation of water level is estimated as:

∆Z = qtot∆t
Alago

+ (P − E) (1.13)

where

– qtot is the entire inflow simulated at each time step by Part 1;

– ∆t is the time step (in seconds);

– P and E are the lake precipitation and evaporation, respectively in [mm].

The Acquanegra discharge can be evaluated through an empirical rating-curve which
reads:

Q(t)stream = a(Zmasl(t)− Zbottom)b = 1.671(Zmasl − 266.44)1.765 (1.14)

where Zmasl and Zbottom indicate the water level elevation and Acquanegra cross-
section lowest elevation of the gauging station. This relationship is valid only in
case of open gates, whereas when the gates are completely closed:

– if Z ≤ 266.96 m a.s.l., Q(t)stream = 0;

– if Z > 266.96 m a.s.l., the discharge can be calculated by:

Q(t)torrente = µL(Zmasl(t)− Zweir)
√

2g(Zmasl(t)− Zweir) (1.15)

where Z indicates the quote of lake water level, with µ equal to 0.385, L is
the lateral weir length and g the gravitational acceleration. Once Acquanegra
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discharge is calculated, an updating of lake water level is needed:

Z(t+ ∆t)updated = Z(t+ ∆t)− Qstream∆t
Alake

(1.16)

Figure 1.11: The lateral weir for by-passing the Acquanegra gates.

As shown in Figure 1.10, an additional outflow from the Lake is represented in the
model (Qsprings). This additional loss term represents a deep percolation from the lake
which feeds a system of springs located North-East to the lake of Monate, where a golf
course is present. A survey campaign in May 2019 quantified this perennial discharge
in about 56 l/s. The introduction of this loss in the model is fundamental to accurately
represent the water balance.

1.3.3 Generalization: the groundwater catchment contributing
area as variable of the system

The size of the additional groundwater catchment can be roughly estimated from
Barnaba (1987) in about 0.576 km2. The present work aims to consider the underground
extrabasin area (Au) as a variable of the system, proposing four strategies for HyMOD
modification.
In the first modelling strategy (H1), Au is simply considered as a sixth parameter, cali-
brated within the range 0.3 km2 - 0.9 km2. In order to introduce the concept of seasonality
for Au variation, the second modelling strategy (H2) adopts a sinusoidal behaviour of Au

during the observation period, according to the following expression:

Au(i) = 0.576 ∗ param 6 ∗ sin
(

2π ∗ (i+ param 7)
param 8

)
(1.17)

Considering i as the reference day, Au shows sine trend along the whole observation
period, varying within minimum and maximum values [km2] given from the sinusoidal
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amplitude [/] (param 6). Since the seasonality variation of Au can start shifted from the
reference day, a sinusoidal phase is inserted (param 7), whereas the period (the length
of one cycle of the curve) is represented by param 8.
In order to reduce the number of additional parameters, the third modelling strategy
(H3) aims to introduce a direct relationship between Au and the antecedent cumulative
precipitation on the basin.
As said in Section 1.3.2, the HyMOD equations are applied to the surface and the addi-
tional groundwater watersheds distinctly. The two model inputs are the daily cumulative
rainfall and the daily potential evapotranspiration for both topographic and additional
groundwater catchment, provided by the monitoring network. In the third modelling
strategy (H3) the input to the additional groundwater catchment is a series of adjusted
daily rainfall values (psott) calculated as:

psott(i) = p(i) ∗
[
1 + param 6

(
pcum(i)
pm

− 1
)]

(1.18)

As indicated by eq. 1.18, psott is given by the product between the daily precipitation
at the reference day (p(i)) and an adjusting coefficient that is a function of the ratio
between the cumulative 90-day rainfall before i (pcum(i)) and the mean cumulative 90-
day precipitation over the entire observation period (pm), multiplied by an amplitude
coefficient [/] (param 6). The rainfall data used in this modelling strategy were observed
at ARPAL Varano Borghi raingauge, located 3 km from Santa Marta quarry. The Figure
1.5 depicts the yearly cumulative rainfall trend at Varano Borghi station, whereas the
Figure 1.6 shows the seasonal cumulative rainfall.
In the presented models (H1, H2 and H3), Qsprings has a fixed value of 56 l/s, measured
during the survey of May 2019. A fourth modelling strategy (H4) uses assumption of H3
and adopts as param 7 the discharge of deep percolation Qs, which is calibrated between
the arbitrary selected upper and lower limits, 20 l/s and 150 l/s, respectively.

1.4 Calibration and validation strategies

We adopted the Genetic Algorithm (GA) as the automatic model calibration pro-
cedure. GA is a type of evolutionary computer algorithm in which genes representing
possible solutions are generated. This breeding of genes includes the use of mechanism
analogous to the crossing-over process in genetic recombination and an adjustable muta-
tion rate (Hosch, 2017). A fitness function is used on each generation of algorithms to
gradually improve the solutions in analogy to the process of natural selection. GA inherits
and readjusts biological terminology, such as:
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• Population: set of multiple solution candidates which are iteratively refined;

• Chromosome: one of the problem solution, generally codified with a characters or
bit array;

• Gene: part of a chromosome;

• Fitness: assessment grade relative to a solution. The evaluation is based on ah hoc
fitness function;

• Crossover: the process of improving and combining traits of the currently known
solutions;

• Mutation: random alteration of a solution. The mutation process can generate
a better or worse solution but in each chance limits the trapping of subsequent
generations in local optima.

Figure 1.12: The basic cycle of Genetic Algorithms (Weise, 2009).

Figure 1.12 summarizes GA process. In this work GA package (Scrucca, 2013) in
R environment is exploited for the automatic calibration. Three different calibration
strategies have been developed. The Objective Function (F.O.) of the first strategy (S1)
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is the NSE estimated on the observed (from data logger) and simulated Monate Lake
water levels, defined as:

NSE(Θ) = 1−
∑N
t=1 [x(t)− x̂(t)]2∑N
t=1 [x(t)− x̄(t)]2

(1.19)

where x̄(t) indicates the average observed water level and N is the number of observa-
tion. NSE ranges between -∞ and 1, when the simulated values fit perfectly the observed
ones. Thus NSE must be maximised in the calibration phase.
In the second calibration strategy (S2), F.O. is the combination of NSE estimated on
the water levels (see S1) and Spearman’s rank correlation coefficient (ρs) on daily simu-
lated baseflow and the daily average of piezometric levels of Pz1 and Pz10 . These two
piezometers are located inside of the groundwater area (red area, Figure 1.2). ρs is a non
parametric measure of the statistical dependence between the rankings of two variables,
defined as:

ρs = 1− 6∑iD
2
i

N(N2 − 1) (1.20)

where Di = ri − si is the difference between the two ranks of each observation, with
ri and si first and second variable ranks respectively; N is the number of observations.
Spearman correlation ranges among -1 and + 1. The sign indicates the direction of as-
sociation between the two variables, X and Y . If Y tends to increase when X increases,
the Spearman correlation coefficient is positive. If Y tends to decrease when X increases,
the Spearman correlation coefficient is negative. A Spearman correlation of zero indicates
that there is no tendency for Y to either increase or decrease when X increases.
The strategy 3 (S3) assesses the NSE among observed (from spot measurements) and
simulated lake water levels.
S1 and S3 have been tested on the whole observation period (01/01/2014 - 1/12/2019),
whereas S2 on a shorter temporal window (01/07/2016 - 31/12/2016) since Pz10 data
are available only from 15/06/2016. The goodness of simulation results is evaluated esti-
mating ME, RMSE and NSE among observed and simulated lake water levels and among
Acquanegra discharge from Equation 1.15 (from now on called “reference Acquanegra
discharge”) and simulated one.
For S1 and S3, other calibrations have been explored relative to different periods (see
Figure 1.5):

• 2017, which has been characterized by the lowest yearly cumulative precipitation
value;

• 2016, representing the average precipitation trend of the whole observation period;
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• 2014, the most rainy year during the observation period.

Considering these observation periods, the validation is carried out comparing observed
and simulated variables (i.e., lake water levels, Acquanegra discharge) for the remaining
period within the considered time frame (2014-2019). The Mainstream data would be
more suitable than reference Acquanegra discharge data (provided by equation 1.14) in
this phase. Unfortunately, it is impossible to exploit Mainstream information since avail-
able only from the second half of the observation period (from 1/1/2017). In this case,
Acquanegra discharge values are in good agreement with Mainstream ones (see Figure
1.13), thus it can be assumed that using empirical discharge values does not introduce
significant errors.

Figure 1.13: Acquanegra discharge [m3/s] estimated with Equation 1.15 (blue line) and
measured by Mainstream (red line) from 01/01/2017.
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1.5 Results and discussion
Since the higher completeness ensured by H4 with respect to the previous configura-

tions and for the sake of brevity, in this section only the comparison between the original
HyMOD (H) and the H4 model is presented. H4 has been tested for several periods of
cumulative rainfall (i.e. 30, 60, 90 and 180 days). Since these different parametrizations
produced very similar results in calibration performances, it has been decided to only
present H4 with 90 days-period results. Table 1.1 reports the variability range of the
calibrated parameters for H and H4 models.
Table 1.2 sums up the calibration results for both models relative to different calibration
strategies and periods (see Section 1.3).

Table 1.1: Variability ranges of the model parameters.

Model Cmax β α Kslow Kquick Arain Qs
[mm] [/] [/] [∆T] [∆T] [/] [l/s]

H 50 - 500 0.1 - 2 0.2 - 0.8 0.005 - 0.99 0.05 - 0.99 / /
H4 50 - 500 0.1 - 2 0.2 - 0.8 0.005 - 0.99 0.05 - 0.99 -2 - 5 30 -100

Considering the entire observation period (2014 - 2019) the second calibration strategy
(S2) does not prove suitable solutions, while S3 outperforms (i.e. F.O. equal to 0.70) in
both H and H4. S1 and S3, in general, are in agreement for both H and H4; the better
outcome of S3 might probably be due to the estimation of NSE on minor number of lake
water level observations (see Section 1.3). For H4, S1 and S4 provide higher values of β, α
and Kslow compared with H. Qs is about 42 l/s for both calibration strategy, highlighting
an overestimation of the fixed Qsprings value for H (i.e. 56 l/s). It is probably due to
the fact that the survey campaign providing this information was during the spring 2019,
which was a rainy period as shown in Figure 1.6.
Table 1.3 reports the simulation performances presenting ME, RMSE and NSE among
observed and simulated lake water elevations and Acquanegra discharge. The first cali-
bration strategy (S1) outperforms the calibration strategies for both hydrological models,
in particular for H and in lake water levels representation. Figures 1.14 and 1.15 depict
simulation results exploiting S1 for H and H4, respectively. Upper panels show the ob-
served (black line) and simulated (red line) Acquanegra discharge [m3/s]. H4 provides
higher discharge values than H in May 2015 - May 2016 and May 2018 - May 2019 pe-
riods, whereas presents a better description for 2017. The same tred is present for the
lake water level simulation (middle panels). Generally the realistic representation of the
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second half of 2018 and 2019, featured by very low flows, seems to be critical for both
the models. The main difference between H and H4 simulation results is evident in the
bottom panel that plots the observed Acquanegra discharge (blue line), simulated surface
runoff (in red) and baselow (in black). H4 provides a sort of pulsation of the baselow,
underlining the variation of groundwater catchment with rainfalls.

Table 1.3: Simulation performances for H and H4 models on the observation period 2014-
2019. The error metrics are relative to lake water levels (subscript “L”) and Acquanegra
discharge (subscript “Q”).

Model Strategy MEL RMSEL NSEL MEQ RMSEQ NSEQ
[m] [m] [/] [m3/s] [m3/s] [/]

H S1 0.02 0.08 0.61 0.01 0.09 0.57
H S2 -0.05 0.13 -0.06 -0.02 0.11 0.34
H S3 0.03 0.09 0.54 0.02 0.10 0.37

H4 S1 0.01 0.09 0.47 0.01 0.09 0.47
H4 S2 -1.11 1.30 <-20 -0.09 0.14 -0.09
H4 S3 0.02 0.10 0.45 0.02 0.10 0.37
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Figure 1.14: H model simulation results. Upper and middle panels depict Acquanegra
discharge and lake water levels, respectively. In both images, the red line represents the
simulated data, the black line the observed one, while green points indicate the spot mea-
surements. Lower panel shows simulated Acquanegra discharge (blue line), surface runoff
(in red) and baselow (in black). The vertical grey boxes show the periods of closed gates.
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Figure 1.15: H4 model simulation results. Upper and middle panels depict Acquanegra
discharge and lake water levels, respectively. In both images the red line represents the
simulated data, the black line the observed one, while green points indicate the spot mea-
surements. Lower panel shows simulated Acquanegra discharge (blue line), surface runoff
(in red) and baseflow (in black). The vertical grey boxes show the periods of closed gates.
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In order to highlight the different meteorological features among the years, Table 1.2
reports also the calibration performance for both H and H4 models relative to:

• 2014, characterized from high rainfalls values;

• 2016, representing the average precipitation trend of the observation period;

• 2017, the driest year.

As hypothesised, the parameters of calibration on 2014 and 2017 are not suitable for
the lake behaviour representation on the observation period (Table 1.4). Calibrating on
2016 provides quite good results, in particular with S3 (Table 1.4, Figure ).

Table 1.4: Validation performances for H and H4 models. The validation period is the year
indicated in the third column, while the remaining part of the observation period 2014-2019
is used for calibration. The error metrics are relative to lake water levels (subscript ’L’) and
Acquanegra discharge (subscript ’Q’).

Model Strategy Period MEL RMSEL NSEL MEQ RMSEQ NSEQ
[m] [m] [/] [m3/s] [m3/s] [/]

H S1 2014 0.07 0.11 0.12 0.04 0.10 -0.01
H S3 2014 0.07 0.11 0.07 0.05 0.11 -0.33
H S1 2016 0.08 0.12 0.25 0.07 0.11 0.37
H S3 2016 0.05 0.10 0.38 0.04 0.10 0.44
H S1 2017 -0.04 0.13 0.01 -0.02 0.10 0.43
H S3 2017 -0.05 0.13 -0.03 -0.03 0.10 0.43

H4 S1 2014 0.04 0.11 0.17 0.02 0.10 -0.02
H4 S3 2014 0.10 0.16 -0.97 0.11 0.26 -5.93
H4 S1 2016 0.07 0.13 0.14 0.07 0.14 -0.05
H4 S3 2016 0.05 0.11 0.35 0.04 0.11 0.37
H4 S1 2017 -0.39 0.55 -17 0.09 0.14 0.04
H4 S3 2017 -0.07 0.16 -0.45 -0.03 0.11 0.33
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Figure 1.16: H model validation results calibrating on 2016 with S3. Upper and middle
panels depict Acquanegra discharge and lake water levels respectively. In both images, the
red line represents the simulated data, the black line the observed one one while green points
indicate the spot measurements. Lower panel shows simualted Acquanegra discharge (blue
line), surface runoff (in red) and baseflow (in black). The vertical grey boxes show the
periods of closed gates.
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Figure 1.17: H4 model validation results calibrating on 2016 with S3. Upper and middle
panels depict Acquanegra discharge and lake water levels respectively. In both images, the
red line represents the simulated data, the black line the observed one one while green points
indicate the spot measurements. Lower panel shows simualted Acquanegra discharge (blue
line), surface runoff (in red) and baseflow (in black). The vertical grey boxes show the
periods of closed gates.

146



A conceptual model for basin with seasonally variable catchment size

In the light of presented results, H4 seems to not provide significant benefits in the
lake behaviour simulation respect with H. The proposed modified HyMOD (H4) aims to
consider the groundwater catchment, whose determination is quite complex, strictly cor-
related to the cumulative precipitation on the basin. However, a strong rainfall seasonality
is missing along the observation period. Referring to Figure 1.5, 2014 was an extremely
rainy year: several reports of ARPAL defined the Winter 2013/2014 anomalous, charac-
terized from rainfalls three times superior than the average values. On the other hand,
2017 was very dry, with about one third less precipitation respect with previous and fol-
lowing years. The lack of rainfall seasonality appears also evident analysing the seasonal
cumulative rainfall (Figure 1.6): excepting the Spring, the other seasons present a fluc-
tuating trend. Similar patterns are found for yearly and seasonal mean lake water levels
(Figures 1.7 and 1.8), evidencing its correlation with rainfall on the basin. Also the val-
idation results based on calibration of 2014, 2016 and 2017 demonstrate this hypothesis.
Furthermore, the data availability for the survey area (only 6 years) strongly limits the
observation period, that is quite short for considering the seasonality of this complex sys-
tem. Moreover, some inaccuracies might have been introduced by considering punctual
rainfall information (i.e. Varano Borghi station), which may not be representative of the
whole basin, and in the assessment of evapotranspiration (see eq. 1.12).

1.6 Concluding remarks

Part 2 of this dissertation is dedicated to the implementation of a semi-distributed
conceptual model for a basin with seasonally variable catchment size. Starting from the
end of 2013, the Monate Lake basin is surveyed by a dense monitoring network, built in
order to study the impact of Cava Faraona activities on the lake behaviour. The peculiar-
ity of this basin consists in the presence of a groundwater catchment located East of the
Monate Lake, whose extension was only speculated by previous studies (Barnaba, 1987).
The HyMOD model (called “H”) is exploited as hydrological model, suitable for reproduc-
ing the spatial variability of basin storage capacity. In order to take into consideration the
complexity of the study area, the groundwater catchment extent is considered as a vari-
able of the system, proposing different modification of the HyMOD model. In particular,
the configuration “H4” considers the groundwater catchment area closely linked to the
rainfall seasonality. For brevity, the results are only relative to the comparison between
H and H4 models. The goodness of simulations is evaluated from the comparison among
observed and simulated lake water levels and Acquanegra discharges, the only emissary
of the lake.
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The outcomes of the two formulations (H and H4) show similar capabilities in reproduc-
ing the lake dynamics, suggesting that the modification of the original model setting (H)
does not provide significant benefits. We argue that a 6-years observation period might
be too short for investigating the seasonal behaviour of the groundwater catchment, while
the influence of single year peculiarity (i.e. high cumulative annual rainfall) influence the
analysis. In general, HyMOD reproduces the lake water levels and Acquanegra discharge
dynamics (i.e. NSE equal to 0.61), even if showing some limitations in reproducing the
driest periods (i.e. summers 2018 and 2019).
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This Thesis focuses on the assessment of hydraulic and hydrological variables, propos-

ing innovative methodologies and instruments. The Part 1 addresses three main issues:
the river bathymetry estimation based on space-borne data, the river discharge assessment
by means Data Assimilation (DA) approaches, the use of satellite altimetry information
in hydraulic modelling.
Firstly, in order to overcome the inability of satellite DEMs (i.e. SRTM) in describing the
submerged part of the river, the Slope-Break (SB) method, exclusively based on topo-
graphic information (i.e. river channel width and elevation), is proposed (Domeneghetti,
2016). Three different study area are surveyed: Po River (Italy), an example of heav-
ily human impacted river, Limpopo River (Mozambique) located in a remote areas and
Clarence River (New South Wales, Australia) featured by the presence of vast floodplains.
For an automatic applications of this approach, a Matlab-tool (RiBEST, see Paragraph
2.2) is developed, exploiting only the river channel shapfile and a DEM of the survey area.
In this work, SRTM has been selected for its high spatial resolution (i.e. 30 m) suitable
for a quite realistic representation of cross-sections profile. Generally, SB approach proves
to be suitable in the description of the submerged part, providing evident improvements
to original SRTM information (see Table 2.2). Moreover, hydraulic parameters (i.e., flow
area, hydraulic radius) are evaluated, proving representative of the real ones (see Figures
2.8, 2.9). The benefits of river bathymetry knowledge is evident also in the hydraulic
modelling. The SRTM cross-sections modified by means of RiBEST are exploited to im-
plement i) two 1-D hydraulic models for Po and Limpopo River, ii) a 2-D hydraulic model
for Clarence River. In both cases, the outcomes are encouraging.
Secondly, the research refers to the assessment of DA approaches for river discharge esti-
mation. In particular, a 4D-Var method is exploited, based solely on space-borne infor-
mation (i.e. water surface elevations from SWOT) and global available data (i.e. prior
discharge value from WBM). In order to assess how the bathymetry knowledge impact
on the DA discharge estimation, the hydraulic model (i.e. SIC2) is implemented on the
cross-sections profiles derived from SRTM modified with RiBEST tool (see Paragraph
2.2) for a 132-km stretch of Po River. The results show a good representation of low
flows (i.e. 0 - 2000 m3/s), while a general underestimation of discharge peaks is evident.
Also the Strickler coefficient is simultaneously estimated with river discharge. It presents
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a fluctuating trend along the study area, not providing a reliable global information of
bed roughness. The limitations in DA estimation might be due to the inaccuracy intro-
duced by the cross-section representation (i.e., SRTM integrated with RiBEST-derived
bathymetry).
Thirdly, a comprehensive and cross-missions view of the potential of satellite altimetry
mission for hydraulic modelling calibration is addressed. Moreover, Multi-Mission series
(MM), combining information provided by all single-missions, are proposed to overcome of
temporal resolution and series length limitations. Generally, altimetry time series prove
to be suitable in reproducing the observed water levels, in particular Sentinel-3B and
Jason 2, while MM series ensures a uniform behaviour along the study area. Moreover,
J2 series ensure trustworthiness and reliability on the calibration process with the lower
temporal observation extent: lower than 1 year of data (∼ 30 observations). Regarding
the MM approach, it provides better results in term of calibration reliability than those
obtained by series of low frequency satellites (i.e., E, SA) that cover very short period
(e.g. 1÷2 observation period; 20-40 months). On the other hand, in the case of higher
temporal observation frequency (i.e., J2, J3), the use of original series is recommended.
That said, MM series ensure a higher spatial coverage of the river, which could be signif-
icant when referring to long river stretch and single altimetry missions characterized by
long inter-track distances.
The Part 2 illustrates an example of monitoring activities for the environmental con-
servation and protection of the Monate Lake, located in Varese (Italy). Exploiting the
information provided by a dense monitoring network built in 2013, this work is dedicated
to the implementation of a semi-distributed conceptual model for a basin with seasonally
variable catchment size. In particular, previous studies (i.e. Barnaba, 1987) have investi-
gated the presence of an groundwater catchment located East of the Monate Lake. The
HyMOD model (called “H”) is exploited as hydrological model, suitable for reproducing
the spatial variability of basin storage capacity. In this work an extension of this original
model is proposed (called “H4”), considering the groundwater catchment extent variable
and closely linked to the rainfall seasonality. The outcomes of the two formulations (H
and H4) show similar capabilities in reproducing the lake dynamics, suggesting that the
modification of the original model setting (H) does not provide significant benefits.
In conclusion, this Thesis provides an overview of innovative methodologies for the esti-
mation of hydraulic variables. In particular, the analysis performed in this work underline
the added value of the satellite data in hydraulic fields, representing a valid alternative
to the in-situ measurements.
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List of Acronyms
1-D one-dimensional

2-D two-dimensional

AdBPo Autorità di Bacino Distrettuale del Fiume Po

AIPO Agenzia Interregionale per il Fiume Po

ARPAL Agenzia Regionale per la Protezione dell’Ambiente Lombardia

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer

CNSE Centre National D’Etudes Spatiales

CSA Canadian Space Agency

CSI Critical Success Index

DA Data Assimilation

DEM Digital Elevation Model

DTM Digital Terrain Model

ERS Emergency Recovery System

F.O. Objective Function

FAO Food and Agricultural Organization

GA Genetic Algorithm

GIS Geographic Information System

GPS Global Positioning System

GRDC Global Runoff Data Centre

HEC-RAS Hydrologic Engineering Center’s River Analysis System



ICEsat Ice, Cloud and land Elevation Satellite

IRSTEA Institut national de recherche en sciences et technologies pour l’environnement
et l’agriculture

JMP Joint Monitoring Programme

LiDAR Light Detection and Ranging

MAE Mean Absolute Error

ME Mean Error

MODIS MODerate resolution Imaging Spectroradiometer

NWIS National Water Information System

NASA National Aeronautics and Space Administration

NGA National Geospatial-Intelligence Agency

NRFA National River Flow Archive

NRMSE Normalized Root Mean Square Error

NSE Nash-Sutcliffe Efficiency

PDM Probability Distributed Model

PIV Particle Image Velocimetry

RADAR Radio Detection and Ranging
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