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Abstract

Medical imaging innovations have paved the way to quantitative imaging in
oncology for developing cancer imaging biomarkers (IBs). At present, diagnostic
imaging still mostly relies on morphometric analysis, based on visual assessments, or
semi-automatic tools. However, different cancer features, including angiogenesis and
heterogeneity, are known to be present far before that morphological changes become
visible. Therefore, proper tools are required to perform functional assessments for
early diagnosing the onset of either primary cancer or metastasis, predicting cancer
aggressiveness, analysing cancer features at microscopic level and developing and
monitoring therapies targeted against specific cancer subtypes.

This Thesis focuses on two distinct imaging technologies, Computed Tomogra-
phy perfusion (CTp) and multiparametric Magnetic Resonance Imaging (mpMRI)
exploited for investigating diverse cancer features, occurring on different primary
sites. I developed a methodology in CTp which adopts a voxel-based image analysis
approach and extended its use to mpMRI, for performing in both cases quantitative
local analyses and achieving precision and accurateness at single-voxel level. This
is expected to improve reproducibility of measurements and characterize biological
behaviours in the highest detail, thus facilitating the clinical interpretation of the
outcomes.

In quantitative applications, both CTp and mpMRI encounter technical limita-
tions. While CTp enables the analysis of tissue hemodynamics for monitoring angio-
genesis and cancer response to anti-angiogenic drugs, it has not entered the clinical
routine yet due to different perfusion computing methods yielding unreproducible
results. Instead, machine learning applied to mpMRI analysis may be exploited to
extract imaging features representative of cancer heterogeneity and employ these
features to build predictive models. However, the recent employment of software
generating with a semi-automatic approach hundreds of features, regardless of their
clinical meaning, have led to a distrustfulness of clinicians towards machine learning
applications and weakened their clinical appealing accordingly.

In CTp, my contributions focus on investigating whether, and under what con-
ditions, two of the widely adopted perfusion methods, Maximum Slope (MS) and
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Deconvolution (DV), could yield reproducible perfusion parameters. To this end, I
developed signal processing methods to model the first pass kinetics in hepatic perfu-
sion study and remove any numerical cause hampering MS and DV reproducibility.
In mpMRI analysis, I propose a new approach to extract imaging features based
on the local computation of first order features, which preserves spatial reference,
thus enabling their representation through colorimetric maps and making them easy
to be interpreted, accordingly. The new imaging features are exploited to develop
predictive and prognostic models.

On the methodological side, as regards CTp, my research unveiled the cause of
MS and DV non-reproducibility: MS and DV represent two different states of the
system. Transport delays invalidate MS assumptions which require correction. By
formalizing the right MS formulation, I have achieved the voxel-based equivalence of
the two methods. On the clinical side, my radiomics approach disclosed that, in rec-
tal cancer, patients responding to neoadjuvant chemoradiation show, at pre-therapy
mpMRI, only few sparse coarse subregions with altered tissue density. Instead, in
prostate cancer, asymmetry gradients generated by the disproportion between high-
and low- diffusivity gland component volumes predict cancer clinically significance
which prescribes curative treatments.
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Chapter 1

Introduction and Thesis overview

Bioengineering provides a large part of the medical innovations, regarding ad-
vanced technologies and analytic tools and techniques, which address different med-
ical fields including oncology, for cancer diagnosis, assessment of patient’s prognosis,
monitoring new therapeutic protocols and therapy response. Accordingly, bioengi-
neers constitute the bridge between innovation and real clinical application. In fact,
the numerical analysis of medical data provides clinical evaluations with objectiv-
ity and robustness, whilst mathematical modelling advances the understanding of
cancer mechanisms, through enabling the investigation of cause-effect relationships
at progressive degrees of complexity. Working in multidisciplinary teams, bioengi-
neers serve as figures to support the clinical interpretation of mathematical and
modelling aspects of cancer mechanisms and to associate the information stemming
from data analysis to the underlying biological processes, thus identifying the factors
promoting cancer development and its sustainment into the human body [1].

In this Thesis, I focus on signal and image processing techniques to contribute
at improving oncologic practice by providing reliable and non-invasive tools for pre-
dicting cancer aggressiveness and treatment effects. In particular, I address medical
imaging to investigate those cancer biological properties, such as angiogenesis and
heterogeneity, which are known to play a key role in determining the degree of
cancer aggressiveness and treatment response, and whose quantitative evaluation is
objectively challenging.

In this regard, angiogenesis is the growth, promoted by vascular endothelial
growth factors, of new blood vessels from pre-existing ones and their proliferation
into cancer to increase the nutrient and oxygen supply. Yet more, the degree of
disorganization and disruption of the new vessels is known to correlate with cancer
aggressiveness [2]. Instead, heterogeneity refers to the (spatial) variations occur-
ring in cancer proliferation, responsible for the differentiation of cancers in multiple
subtypes. Cancer heterogeneity occurs at a macroscopic level, with structural al-
terations also visible in the radiological images, as well as at the deeper underlying
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2 CHAPTER 1

layers, with modifications of biochemical functions and gene expression. Hence, the
dynamic and microscopic nature of angiogenesis requires dynamic imaging modali-
ties, such as the Computed Tomography perfusion (CTp), through which performing
a parametric analysis of dynamic signals, arising from a tracer injected into the vas-
cular network. Instead, in order to study cancer heterogeneity, medical imaging
technologies, such as multiparametric Magnetic Resonance Imaging (mpMRI), are
fit for objectively measuring both salient and latent image properties that can often
capture different tissue heterogeneity levels with a great accuracy. Prospectively,
numerical analysis of mpMRI contributes to advance precision medicine and develop
patient oriented treatments targeted against specific cancer subtypes.

At present, several technical and analytical open issues still hinder quantitative
imaging referred to both CTp and mpMRI in the clinical practice. CTp suffers from
the side-effect of radiation dose exposure, which has to be minimized as much as
possible. Then, the self-limited image quality makes achieving reliable quantitative
measurements harder. In addition, for most of anatomic districts, CTp lacks of
any ground-truth and different computing methods for perfusion parameters yield
unreproducible results. Thus increases the difficulty of validating them and pro-
crastinates the entrance of CTp in the clinical routine. As regards the numerical
analysis of mpMRI, descriptive and more often inferential statistics techniques used
for the extraction of imaging features yield a huge amount of data, this contributing
to make their clinical interpretation very difficult indeed.

In this Thesis, my contribution, inspired to the principles of quantitative imag-
ing, is based on a dedicated analysis of each stage of a processing pipeline to min-
imize uncertainty and variance of measures, thus identifying four main progressive
analytic levels: (i) single-voxel, (ii) a region of neighbouring voxels, (iii) the en-
tire region of interest, oriented to (iv) a single-patient analysis. The methodology
has been structured throughout CTp analysis, by deepening signal processing, the-
oretical and mathematical modelling, and data analysis. Then, the same principles
have been adopted, in clinical classification problems, to setup a machine learning
pipeline, including the computation of new imaging features, to be reliably used in
cancers occurring in different anatomic districts, even with small datasets.

In CTp imaging, I have dealt with the reproducibility of two widely adopted
perfusion methods, the Maximum Slope (MS) and the Deconvolution (DV) assum-
ing the common agreement principle, to mutually validate them. As the reference
organ, I have addressed the liver, where perfusion studies are still harder due to the
dual vascular contribution coming from the arterial and portal vein circulation. To
cope with the reproducibility issue, I have developed three main signal processing
methods, voxel oriented, which involve (i) the extraction of the end of the first pas-
sage of the tracer, data-driven (ii) modelling of the first passage and (iii) iterative
DV computation. These methods have allowed separating the tissue signals referred
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to each vascular input contribution and computing MS and DV independently on
them. Yet more, these methods have permitted to exclude numerical reasons re-
sponsible for such a non-reproducibility of MS and DV and to ascribe the cause to
theoretical reasons. Hence, I have investigated whether and under what conditions
the two methods could be equivalent and I have proposed an alternative formulation
of MS, the generalized MS (gMS), accounting for transport delays between input
and tissue.

Instead, in mpMRI analysis, I have adopted a local approach to characterize
each voxel based on its neighbourhood, extracting imaging features by considering
a patch of neighbouring voxels as a structural unit, this recalling the concept of
the smallest informative unit, already known in medicine. This approach aims at
detecting image units large enough to be considered homogeneous and sufficiently
numerous to allow investigating their heterogeneity. Hence, I have developed some
algorithms, employing machine learning techniques, to identify potential predictive
and prognostic imaging biomarkers of rectal and prostate cancer (PCa).

In CTp analysis, the main finding is to discover the cause of MS and DV non-
reproducibility: MS and DV are namely representing two different states of the
system, due to vascular transport delays. Moreover, the gMS can account for them
and yield MS and DV equivalence, accordingly. In this regard, I have achieved
a proof of concept on a dataset of seventy-five patients belonging to the multi-
centre PIXEL study [3], where voxel-based equivalence of gMS and DV has been
attained. Moreover, I have verified the theoretical hypothesis of the gMS under sim-
pler modelling conditions, by exploiting a case study made of two CTp examinations
of colorectal cancer, which is described through a single input model. In this case,
where no delays were expected between input and tissue, the equivalence of MS and
DV has been achieved. Then, in a clinical application, the liver perfusion study has
been applied, on data belonging to the SARAH study [4], to compare the effects
on perfusion parameters of Sorafenib and Selective Internal Radiotherapy (SIRT) in
advanced hepatocarcinoma (HCC) at one-month follow-up.

In mpMRI analysis, my research has led to detect very promising IBs, with
either a predictive or prognostic role. I have identified a single feature on a dataset
of forty locally advanced rectal cancer (LARC) able to discriminate patients showing
moderate and complete response to neo-adjuvant chemoradiotherapy (nCRT) from
those having poor and minimal response. As regards PCa study, I have achieved a
preliminary stratification of patients, through a single feature, into four progressive
PCa risk levels, and I have developed a predictive model using a couple of imaging
features to detect clinically significant PCa (csPCa).

Besides the present introductory Chapter, the Thesis content is organised as
follows, also described by the flowchart in Figure 1.1:

• Chapter 2 provides insights into CT and mpMRI technologies, routinely used
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Fig. 1.1: Thesis content flowchart. Chapters from 2 to 5 introduce the background and state
of the art regarding CTp, mpMRI, and machine learning in medical imaging. Chapter 6 presents
the new voxel-based methodology developed for CTp analysis, whilst Chapter 7 reports CTp
experimental results. Chapter 8 describes my contributions in radiomics: a radiomic study on
renal cancer carried out exploiting features from the state of the art and the translation of the
methodology developed in CTp to mpMRI analysis, with the setup of new imaging features,
used in the clinical studies on rectal and prostate cancer.
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in the clinical practice for cancer diagnosis, therapy assessment, and patient
monitoring. In particular, the physics principles of CT and MRI are discussed,
also reporting how CT and mpMRI allows acquiring either dynamic or func-
tional sequences, besides static morphological ones.

• Chapter 3 deepens the description of relevant cancer features, including cell
proliferation and tumour growth, angiogenesis, and heterogeneity, which prompt
the main advances in imaging acquisition protocols, image analysis, and cancer
care. Hence, the Chapter explains how evolutions in cancer research, promot-
ing tailored treatments, have highlighted the need for reliable biomarkers to
orient the clinical decision making. At the end, the evolution from clinical to
imaging biomarkers is presented, even discussing their current utilization into
clinical practice.

• Chapter 4 presents the fundamentals of CTp image analysis through the de-
scription of an operating workflow split into five main stages: (i) the extraction
of dynamic signals from image sequences, (ii) the choice of either a single or
dual input model depending on the physiology of the organ under investigation,
(iii) the selection of either a mono or multicompartmental model depending on
whether the perfusion study focuses on only the first passage of the tracer or
even on the recirculating phase, (iv) the fitting of vascular and tissue CTp sig-
nals, and (v) the computation of perfusion parameters through MS, DV, and
compartmental methods. Lastly, open issues of CTp analysis are discussed.

• Chapter 5 presents the fundamentals of machine learning and its application to
medical imaging, recently referred to as radiomics. The Chapter also provides
some elements of statistics necessary to understand the principles of binary
discrimination and classification. Throughout this Chapter an example of
radiomic workflow is presented. Then, for each operating stage, some of the
methods known in the literature are explained, since they have been used
in radiomic applications presented subsequently. In particular, the shrinkage
methods for feature selection, Support Vector Machine (SVM) classifier, and
k-fold Cross Validation (CV) for model selection are deepened. At the end,
open issues of radiomics are discussed.

• Chapter 6 explains my methodological contributions to pursue the repro-
ducibility of MS and DV. First, the Chapter presents PIXEL, a French multi-
centre study on liver perfusion used as the reference for developing the methods
for CTp analysis. Second, my preprocessing choices are presented, including
model selection and data preparation. Then, the Chapter explains the methods
developed to (i) extract the end of the first passage of the tracer in the liver,
(ii) model the first pass with data-driven parametric functions, (iii) compute
perfusion parameters with MS and DV, after setting up an iterative procedure
to solve DV and separate the contributions of tissue signals referred to each of
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the two hepatic vascular inputs, (iv), investigate the theoretical and modelling
equivalence of MS and DV, thus formulating the gMS method. Moreover,
the reproducibility assessment criteria are discussed. Yet more, the software
pipeline developed for CTp analysis is presented in Appendix.

• Chapter 7 presents the experimental results of the voxel-based reproducibility
of MS and DV. First, a preliminary study investigates the effects of fitting
errors on perfusion parameters. Then, by including seventy-five liver CTp ex-
aminations of PIXEL study, the Chapter starts showing the efficacy of compu-
tational methods in reducing variance and improve precision of measurements,
thus yielding (i) an excellent matching of colorimetric perfusion maps and (ii)
voxel-based agreement of BF measurements. Then, I prove that the gMS can
catch the time when MS and DV are representing the stame status of the sys-
tem, thus yielding equal voxel-based measurements. Then, equivalence of MS
and DV is shown also on a case study of two colorectal cancer CTp examina-
tions. At the end, a clinical application is presented, where CTp is exploited
to compare two different treatments in advanced HCC.

• Chapter 8 presents my contributions in radiomics. In particular, a method-
ological study assessing the reproducibility of the most frequently adopted ra-
diomic features is reported, carried out during my PhD research period abroad.
Then, I propose a new approach to compute imaging features giving relevance
to local variability of image values and facilitating the clinical interpretation
of feature values. The Chapter discusses the application of this approach in
clinical radiomic studies on LARC to predict the nCRT response, and on PCa
to perform a preliminary staging of PCa risk levels and classify csPCa.

• Chapter 9 provides concluding remarks and hints for future works.

Research presented in this Thesis have been carried out within the:

• Computer Vision Group (CVG), Advanced Research Center on Electronic Sys-
tem (ARCES), University of Bologna, Italy
Head: Prof. Alessandro Bevilacqua

and in collaboration with the following institutions:

• Department of Radiology, Beaujon Hospital, University Paris VII “D. Diderot”,
Clichy, France.
Chair: Prof. Valérie Vilgrain

• Department of Radiology, Addenbrooke’s Hospital, Cambridge, United King-
dom.
Chair: Prof. Fiona Gilbert

• Diagnostic Imaging Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori
”Dino Amadori” – IRST S.r.l., Meldola (FC), Italy.
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• Department of Radiology, S. Orsola-Malpighi Hospital, Bologna, Italy.

Chair: Prof. Rita Golfieri
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Chapter 2

Imaging modalities and techniques

In oncology, different imaging modalities are conventionally adopted for tumour
diagnosis, therapy assessment, and patient monitoring. CT and MRI are largely
employed as anatomic imaging modalities and provide high resolution information
regarding tissue morphology, such as tumour location and size, and also structural
changes involving the adjacent organs [5]. Moreover, both CT and MRI can also be
exploited with dynamic contrast-enhanced (DCE) imaging techniques, namely DCE-
CT and DCE-MRI, in order to derive functional information of tumour microvas-
culature. In DCE-CT and DCE-MRI, repeated image acquisitions are performed
with the conventional CT and MR scanners in order to characterize the vascular
tumour pathways by following the dynamics of a contrast agent (CA) intravenously
injected [6]. In compliance with the multidisciplinary nature of this Thesis, in the
following, I address the physics principles of CT and MRI, together with their clin-
ical impact, though the most of the technical details could already be known by
bioengineers reading this Thesis.

2.1 Computed Tomography

CT is the widest spread modality for morphological and structural imaging, that
since its introduction, in the early seventies, has revolutionized the field of radiology.
Yet more, it is still progressing with continuous advances in terms of technologies
and image reconstruction techniques. These developments have lead to an effective
synergy between the fields of radiology and oncology, that, in its turn, exceptionally
improves oncologic patient care.

In CT imaging modality, X-rays are directed to thin sections of the body from
multiple orientations. X-rays intensity decrease along the path, depending on the
X-ray energy, path length, and density of the encountered structures. Hence, at-
tenuated X-rays, detected after they have passed through the volumetric sections
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of human body, are processed in order to reconstruct images of the distribution of
X-ray attenuation coefficients in the analysed volume. Therefore, two basic com-
ponents constitute the CT scanners, an X-ray source, that is in the most of cases
an X-ray tube producing a polychromatic X-ray beam, or a synchrotron producing
a monochromatic X-ray beam, and X-rays detectors, which receive the attenuated
X-rays e convert them in a digitally processable signal. The X-ray tube is located on
a structure rotating around a fixed support called gantry, in which the patient bed
is moved during acquisitions. CT scanners currently adopted in clinic refer to the
third and fourth generation of scanners. While in CT scanners of the third genera-
tion, X-rays tube and detectors are opposite located on the rotating structure and
move synchronously, in the fourth generation CT scanners, a ring of fixed detectors
is used, and only the X-ray tube moves around the entire rotating line. In planar
fan beam CT scanner configuration, X-rays are collimated and detected by linear
detector arrays. In this case, collimation reduces the scattering of X-rays, so that a
lower number of spurious X-rays is received by detectors. The employment of linear
arrays limits the CT acquisition at one slice at a time. Instead, in cone-beam CT
scanner configuration, X-rays detectors are planar, and the collimator is removed.
Thousands of slices can be acquired at a time, thus decreasing image noise during
reconstruction. Finally, the parallel beam configuration adopts a synchrotron as
beam line X-ray source, with the advantage of volumetric acquisition in the absence
of distortion, although the size of the acquirable volume is limited by the beam line
configuration. X-ray tube parameters, together with the intrinsic property of the
detectors, strongly affect the quality of the reconstructed CT images. In particular,
the peak X-ray energy determine the X-ray spectrum, X-ray tube current affects
X-ray intensity, while the focal spot size influences the spatial resolution by varying
the Field of View (FOV) of the acquisition. X-rays detectors are made of scin-
tillators generally realized with cesium iodide, gadolinium oxysulfide, and sodium
metatungstate. Material, size and geometry determine the number of scintillation
events detected and counted. Currently adopted CT detectors show a compact de-
sign made of three essential layers. The first one is the scintillator to convert X-rays
to light, the second one is the photodiode, to convert light to current, and at last
there is the mechanical and electrical supporting layer. Scintillator is a particular
luminescent material converting high-energy photons into visible light, suitable to
be processed by a photodiode. Important requirements for scintillators are opti-
cal transparency in order to ensure high efficacy of X-ray conversion, high X-ray
stopping power, good spectral match with the underlying photo-detector, so that
crystals and polycrystalline are the most suitable types of scintillators [7].

X-ray attenuation mainly depends upon two types of interactions between pho-
tons and matter, the Compton scattering and the photoelettric effect. Both of them
are X-ray absorption processes. Based on the Compton effect, the interaction of the
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photon (X-ray) with free electrons produces a photon scattering (change of direction)
and release energy to the electron. The scattered rays have different wavelength and
energy with respect to the incident X-ray, and it is possible to reconstruct the in-
tensity of the scattered X-rays starting from the intensity and the wavelength of
the incident X-ray, which are known, and from the X-ray scattering angle, which is
retrieved from the corresponding direction of the detector that detects the scattered
X-ray. In particular, the difference in wavelength between the incident and scattered
X-rays is called Compton shift. This is a kind of partial absorption and it dominates
at high X-ray energy, where absorption mostly depends on material density. The
photoelectric effect occurs when a X-ray interacts with matter, and in particular
with an electron of an atom, thus producing the ejection of the electron from its
K-shell, the innermost shell of the atom. In order to produce the electron ejection,
the energy of the incident photon must be greater or equal to the one of the electron
in its shell. Then, the removed electron is completely absorbed in the process, and,
in order to stabilize the atom that has lost one of its electrons, an outer electrons
fills that vacancy. The energy lost by the outer electrons to enter the unstable atom
is emitted as X-ray radiation with attenuated intensity with respect to the incident
X-ray. Therefore, the photoelectric effect, predominantly occurring at low energy,
strongly relies upon the atomic number of the attenuating medium, the energy of
the incident photon, and also the density of the medium [8].

Signals received are processed with image reconstruction algorithms in order to
reconstruct the local X-rays attenuation coefficient, µ, of each point within the body
section, thus producing cross-sectional radiodensity images - slices - of the body.
Once a sufficient number of body slices are collected, they are stacked together,
thus mimicking a volumetric imaging in which the smaller unit is represented by the
voxel. For CT scanners, a transverse plane here referred to as x-y plane is scanned
and the z-axis is oriented perpendicular to the scan or image plane, therefore aligned
longitudinally with the body. Sagittal and coronal sections are approximated by y-z
and x-z planes, respectively. Local attenuation coefficients are computed by means
of the Inverse Radon transform based on the following relationship (Equation 2.1):

I = I0 · e−µ·d (2.1)

where I, is the signal intensity being attenuated by the object, I0 is the primary
intensity, and d is the absorber thickness. This relationship is valid for the sim-
plest case of homogeneous object (constant density) invested by a monochromatic
radiation, such as the one produced by a well-calibrated synchroton. According to
Equation 2.1, µ can be easily computed as follows in Equations 2.2, 2.3:

ln

(
I0
I

)
= µ · d (2.2)
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µ =
1

d
· ln

(
I0
I

)
(2.3)

Indeed, body tissues are inhomogeneous structures (with at least small variations
of local densities), invested from polychromatic X-ray beams, so that Equation 2.1
should be adjusted into Equation 2.4:

I =

∫ Emax

0
I0(E) · e−

∫ d
0 µ(E)dsdE (2.4)

where, the contribution to the total attenuation resulting from each ray path in-
terval depends on the local value of µ (a distribution of values), and is expressed
by the integral over µ along the ray path. In addition, Equation 2.4 introduces the
dependency of attenuation values on energy, E. Accordingly, the integration over
all energy intervals is considered. In practice, Equation 2.4 allows estimating a dis-
tribution of attenuation coefficient, µ = µ(x, y), at a fixed z-position. Dependency
of attenuation from energy is known to cause so called beam hardening artefacts.
Low-energy photons are absorbed by the tissue more than high-energy photons, thus
increasing the mean energy value of the X-ray beam leaving the body section. This
phenomenon is referred to as “hardening” of the beam. Beam hardening artefacts
creates streaks and dark bands in CT images between two dense objects [9].

The most widely used reconstruction method for CT images is the filtered back-
projection (FBP). According to FBP, each signal received by the X-ray detector,
describing the attenuation of the beam for a given path, is backprojected along
the viewing direction from which it is detected. Hence, the contributions arising
from multiple backprojected directions are added to each voxel intersecting that
ray direction. Resulting attenuation coefficient of each voxel is given by the sum of
non-negative values corresponding to each projection. The major artefact of FBP re-
construction is that positive attenuation coefficients are also assigned to voxels that
do not contains any object, thus resulting in blurring edges in the reconstructed CT
images. Iterative reconstruction algorithms and combinations of multiple CT scans
can reduce image blurring as well as the beam hardening CT artefacts above men-
tioned. The basic idea of iterative reconstruction is a trial and error approach: for
each X-ray beam direction, a forward projection is computed by summing the inten-
sities of all voxels along that path. This projection is compared based on different
statistical metrics with the actual recorded projection, and the process is iterated
until convergence is reached to the desired similarity value. If on the one hand,
iterative reconstruction algorithms result in a better image quality, with lower noise
and artefacts, on the other hand they require high computation time, which limits
their large employment [10].

Actually, reconstructed images are displayed as CT numbers, CTN , expressed in
Hounsfield Units (HU), thus both removing any dependence of the X-ray spectrum
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and expressing values in a more convenient size. Conversion from local µ values to
CTN is defined as follows in Equation 2.5:

CTN =
µx − µwater

µwater
1000 (2.5)

where, µx is the attenuation coefficient of each point of the image - pixel - whilst
µwater is the attenuation coefficient of water employed for normalization. By defi-
nition, -1000 HU refers to vacuum and 0 HU to water. The CT values of air and
water are independent of the energy of the X-rays, thus constituting two calibration
points. Indeed, a single voxel unit may contain tissues with different attenuation
values, so that the corresponding CTN approximates the weighted sum of the dif-
ferent attenuation values. The X-ray detector’s limit to differentiate tissues under
the voxel unit size is referred to as partial volume effect. Accordingly, the CTN of
a voxel affected by the partial volume effect is described by Equations 2.6, 2.7:

CTN = ν1CTN1 + ν2CTN1 + ...νiCTNi...+ νnCTNn (2.6)∑
i

νi = 1 (2.7)

where, νi are the partial volume elements, resulting as the weights of the linear com-
bination of each relative CTN . Lung tissue and fat show negative CT values, whilst
most other body areas such as connective tissues and most soft tissue organs show
high CT positive values. CT values of bone and contrast media strongly depend on
energy and increase with reduced voltage settings. From a theoretical point of view,
the Hounsfield scale is no upper bounded, although in practice, CT medical scanners
usually provide a range of values between -1024 HU and +3071 HU corresponding
to 4096 (212) levels, with 12 bits per pixel required. However, all the levels cannot
be evaluated in a single view by the human eye. Therefore, CT images are often
displayed by selecting a restricted window of grey levels, so that CT values exceed-
ing window limits are saturated to the minimum or maximum value of the chosen
range. The window is set up by its width (WW) which affects image contrast and
by its level (WL, i.e. the centre of the window) which changes image brightness.
For instance, Figure 2.1: shows two examples of WW/WL values commonly em-
ployed for visualizing lung (Figure 2.1 (a), WW=1500 HU and WL=-400 HU) and
abdomen (Figure 2.1 (b), WW=400 HU and WL=60 HU) CT images. In addition,
Figure 2.2 shows the same image as Figure 2.1 (b) after adopting the HU window
of Figure 2.1 (a). One can see that an erroneous set up of WW/WL values hampers
the correct interpretation of the anatomic image. In fact, the most appropriate HU
window often depends on the anatomic region under investigation. Image contrast
is defined by the difference in intensity of two neighbouring image areas. That is,
CT images show high contrast in those areas where structures with high attenuation
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Fig. 2.1: Examples of HU windows for the visualization of lung (a) and abdomen (b) CT
images, by properly setting the WW and WL values.

Fig. 2.2: Abdomen CT image of Figure 2.1 (b) displayed using the HU window in Figure 2.1
(a).

values are adjacent to ones with low attenuation values. Accordingly, high density
structures can be easily characterized with CT, while soft and low density tissues are
completely hidden in most practical cases, for which other morphological imaging
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modalities result more proper [9].
CT image resolution is measured through the voxel size, that refers both to the

spatial resolution as pixel spacing and temporal resolution as frequency of sampling
along the z-axis. Image voxel size mainly depends upon three factor, that is size
of the FOV, acquisition matrix and slice thickness. While FOV is a parameter
dependent on the focal spot size, which can be adjusted according to the tissue being
imaged and patient size, the acquisition matrix depends on physical factors, that
is the number of detector rows of a CT scanner and detector sizes which state the
minimum value of pixel dimension. Currently, multi-slice CT scanners are employed,
with detector rows ranging from 256 to 320, z-coverage up to 160 mm, and pixel
size of 0.6 mm. Multi-slice CT scanners allow acquiring multiple slices (equals to
the number of detector rows) per gantry rotation (with rotation time equals to 0.28
s), thus strongly reducing overall acquisition length. Once FOV has been fixed, the
digital pixel spacing in the image is stated by Equation 2.8:

pixel spacing =
FOV

matrix size (2.8)

Actually, image resolution relies on a compromise between image quality and pa-
tient dose exposure [8]. In particular, CT dose refers to the energy absorbed from
radiation per mass of tissue and is measured in Gray (mGy). For practical reasons,
it is commonly expressed as CT Dose Index (CTDI) that measures the dose absorp-
tion per each slice, by accounting for the different distribution of radiation between
the centre and the periphery, and also considering intrinsic patient’s characteristics,
such as body weight or height [11]. It is also employed the Dose Length Product
(DLP, measured in mGy/cm), where the CTDI is multiplied for the scan length (mea-
sured in cm). Moreover, the DLP can be used to compute the effective dose exposure
(measured in mSv) of the patients, that is given by Equation 2.9:

E = (k ×DLP ) (2.9)

where k coefficients are tabular values referred to adult or pediatric patients over
different ages and body regions, measured in mSv/mGy·cm [12].

CT image quality is substantially determined by X-ray beam width that varies
the number of photons per voxels, so that the increase of photon numbers can reduce
image noise. Differently, dose absorption relies on the concentration of photons per
voxels. For instance, if keeping fixed the dose exposure, a better image quality
can be attained by enlarging voxel sizes, thus increasing the number of photons per
voxels accordingly. Indeed, X-ray beam width depends on design characteristics, and
acquisition factors of CT protocols, that is voltage (kVp) and tube current (mA or
mAs). Standard values of voltage and tube current range within kVp:[80÷200] and
mA=[90÷130], respectively. Image noise (mainly quantum noise) inversely relate
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with the square root of the number of photons in a voxel, while tube current, rotating
time, and slice thickness all directly correlate with number of photons in the voxel.
For instance, by increasing mA by four fold, will reduce by one half image noise.

While for many years the only method adopted for slice acquisitions was the so
called “scan and step”, that is acquisition of slices by progressive z-values without
overlapping, a recent common alternative is the spiral or helical scanning. Accord-
ingly, the patient body is moved continuously along z-axis during the rotation of
the gantry around it. This leads another acquisition parameter to be properly set
before acquisition, the Pitch factor, which expresses the ratio between the distance
at which the patient is moved and the X-ray beam width. The main advantages
refer to the shortness of acquisition time and dose reduction, albeit with the risk
of worsening image quality. In fact, for helical CT scans the CTDI should be di-
vided by the Pitch value to account for the spreading of radiation in a wider area,
that reduces photons concentration per slice. Moreover, the spreading of X-rays can
originate blurring artefacts in CT images. Therefore, one the one hand helical scans
offer more flexibility in terms of image reconstruction, that is images at several slice
thickness and orientations can be reconstructed in post-processing. On the other
hand, a CT image with high detail can be reconstructed only if that detail is present
in the original scan. For these reasons, axial CT acquisitions can still be the proper
solution in many practical cases [9].

2.2 Magnetic Resonance Imaging

MRI measures different characteristics of tissues, by using different energies and
physical concepts. Incidentally, one of the advantages is that ionizing radiations are
no longer needed. In particular, MRI exploits the phenomenon of Nuclear Magnetic
Resonance (NMR) to generate morphological images along multiple axes of human
body. To recall the basic principle of NMR, nuclei contain protons, positive charged
particles which cause nuclei to exhibit a magnetic field. In addition, protons within a
nucleus, bear a spin angular momentum, I, that can be either I=0 or I = 1/2. Only
nuclei whose protons have non null angular moment will be affected by magnetic
fields. Human body is predominantly composed of hydrogen (one proton and one
electron) as a part of water molecules, and its nucleus has I = 1/2. Therefore, MRI
exploits the signals arising from the magnetization of hydrogen nuclei to generate
images of body sections. Of course, all nuclei within human body with an odd
number of protons will have a half integer angular moment I, however, MRI is
based on hydrogen basically due to its elevate concentration in human body, and its
strong magnetic moment.

From quantum mechanics theory, nuclei with I = 1/2 under an external magnetic
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field, B0, measured in Tesla (T), have two possible energy states, parallel (α, low
energy) and antiparallel (β, high energy) to B0. The energy difference between the
two states and so, the disparity between parallel and antiparallel spins, increases as
the field B0 increases. In addition, each charged particle has a magnetic moment µ⃗,
defined according to Equation 2.10:

µ⃗ = γ · J⃗ (2.10)

where, J⃗ is the total angular momentum and γ is called gyromagnetic ratio, a
constant specific for each nucleus. Moreover, the disparity of parallel and antiparallel
spins generates a residual magnetization, M , also causing a degree of polarization
of the matter. Because of the presence of the magnetic moment µ⃗, each charged
nucleus precesses about the axis of B0 with an angular frequency, ω0, called Larmor
Frequency and expressed by Equation 2.11:

ω0 = γB0 (2.11)

Generally, these nuclei within the static field B0, are described as in the ground
state energy level of an harmonic oscillator, that is an unperturbed state. When
perturbed, nuclei are promoted to higher or lower energy levels, and seek to retrieve
their equilibrium ground state when perturbation ends. Hence, unperturbed nuclei
are described by the energy level as in Equation 2.12

En =

(
n+

1

2

)
· hω0 (2.12)

where h is the constant Plank and n is the quantized energy level, that is n=1 if
referring to α and n=2 if referring to β. This leads the energy difference between α

and β expressed as in Equation 2.13:

∆E = hω0 (2.13)

Hence, the phenomenon of NMR occurs when some nuclei change their energy state
(α or β) due to a perturbing magnetic source. In MR, the NMR is induced by
applying a second magnetic field B1, perpendicularly to the static field B0 (typical
B0 values are 1.5-3 T). The resonance condition causing the transition between α

and β energy levels is described by Equation 2.14:

hω1 =
∣∣Eα − Eβ

∣∣ (2.14)

where ω1=γB1, that is the resonance frequency due to B1, that must be in the order
of the energy distance between the two spin states to perturb their equilibrium state.
In MRI, B1 is applied as short radiofrequency (RF) pulses that tip off µ⃗ from the axis
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of B0 of a so called flip angle proportional to the magnitude of the magnetic field [13].
During relaxation, that is returning to equilibrium state, the absorbed energy (and
subsequently emitted) produces a typical Free Induction Decay (FID) signal. This
signal is detected and amplified and constitutes the primary source for MR image
reconstruction. In particular, in order to spatially localize the nuclei emitting FID
signals, RF pulses of magnetic gradients are applied along three orthogonal distances.
Also, RF pulses are repeated so that multiple FID signals are averaged to improve the
signal-to-noise (SNR) ratio. At last, averaged FID signals are Fourier transformed,
to reconstruct the MR image [14].

Spatial resolutions on reconstructed images is defined according to Equation 2.15,
that states the relationship between acquired MR images and the physical object:

I(x, y, z) = O(x, y, z)⊗ h(x, y, z) (2.15)

Here, the acquired image, I(x, y, z) is given by the convolution of the physical object,
O(x, y, z), with a 3D Point Spread Function (PSF). In practice, two different objects
can be detected if their distance is not less that the full width at half maximum
(FWHM) of the PSF. PSF in MRI are generally anisotropic, since the acquisition
process is different for each dimension. In fact, slice resolution is also strictly linked
to the frequency response of the RF gradient pulses for slice selection. As for CT
imaging, the digital pixel spacing of the image is related to FOV and acquisition
matrix (Equation 2.8). However, by considering the width of the PSF inversely
related to the number of samples acquired in the corresponding dimension, data
truncation losses can occur even at small pixel sizes [15].

A MRI scanner is composed by several hardware components to generate, en-
code, and receive the signals that are converted into images. First, a magnet that
generates a strong static field in the space where images must be acquired. Sec-
ond, a system of gradient coils and gradient amplifiers to create the magnetic field
gradient system. Then, an RF amplifier and RF transmit coil to activate resonat-
ing nuclei, and RF receive hardware components to detect the signals back emitted
by resonating nuclei. RF signals are received and collected by a spectrometer, un-
til they are enough to reconstruct the image. In current MR scanners, cryogenic
superconducting magnets of 1.5-3 T are employed to generate the static field. In
this regard, the major issues refer to the combination of large field strength, high
field homogeneity at the centre of the magnet’s volume, and high field stability.
Superconducting magnets, and in particular coil windings, are cooled through im-
mersion in liquid helium at a temperature of 4.3 K, where their electrical resistance
becomes zero. At this state, if an external power supply is applied, the inductive
current generated can be maintained even when the power supply is removed, thus
also producing and maintaining the static magnetic field. The amount of inhomo-
geneities in the magnetic field causes, in a proportional manner, spatial distortion
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effects. Actually, MRI signals are weak, and small external RF interferences can
degrade signal and image quality. Therefore, the MR scanner room is fully shielded
from external sources, thus also preventing interference from the MR system to RF-
sensitive external instrumentals. The spectrometer of MR systems serves for RF
generation and transmission, and reception of RF signals, so that it includes a va-
riety of RF components. Typically, the spectrometer is integrated in a high-speed
digital computer to allow a real time precise RF pulse and waveform generation and
to enable precise data acquisition timing. RF transmission is realized by a cascade
of RF amplifiers and RF coils, that can serve as both transmitting and receiving
antennas. While uniform RF excitation fields have a great relevance for achieving a
good image quality, uniform receive sensitivity is not a requirement, thus being even
advantageous when many receive coils are used together. In current MR scanners,
generally distinct RF coils are used for transmission and reception. In particular,
volume coils are used for RF transmission and surface of array coils for reception,
since they yield a higher SNR than volume ones. Actually, phased array coils are
used for reception, consisting of multiple coils allowing receiving with a higher SNR
multiple signals, that are combined to reconstruct one image. The improvement
of SNR is allowed by separate preamplifiers and receiver channels. Recent MRI
scanners have up to 64 receiver channels and around 200 coil elements [16].

2.2.1 T1- and T2- weighted MRI

After NMR perturbation, the signal observed varies over time depending on the
nature of the tissue itself and the interactions within the tissue and external forces.
There are two main types of magnetization relaxation, that is longitudinal (T1)
and transverse (T2) relaxation. The first refers to the spin-lattice energy transfer
occurring when nuclei lose the energy absorbed through RF, the second refers to the
spin-spin energy transfer, due to interactions among nuclei. Both T1 and T2 times,
needed for longitudinal and transverse relaxation , respectively, are property of the
analysed tissue. In particular, T1 corresponds to the time taken by the longitudinal
magnetization to recover of the 63% (T1 recovery). Accordingly, T1 limits the time
TR, that is the repetition time for RF pulses. T2 is the time took for the 63% of
the transverse magnetization to be lost due to dephasing (T2 decay). In practice,
it is the time between the RF pulse and the MR signal, or Time of Emission (TE).
Body tissues can be differentiated according to their own T1 and T2 times, thus
obtaining the corresponding T1- and T2- weighted MR sequences. In T1-weighted
images, in order to emphasize the differences between T1 times of different tissues,
TR is required to be very short. And also, TE must be short to limit the effects
of T2 time. A low signal is measured in T1-weighted images for tumours, necrotic
areas, sclerosis, calcification, whist high signals are generated by fat and contrast
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media. Instead, in order to emphasize tissue differences according to the T2 time,
TE must be long. In this case, tissues such as fat, with short T2 time, result dark,
whilst water, tumour, and inflammation are bright. T2 relaxation also impacts on
MR images spatial resolution: the higher degree of relaxation, the narrower the PSF.
Nowadays, 3T-MRI systems can reach in-plane resolutions lower than 1 mm2 with 3
mm of slice thickness. T1- and T2- weighted images are the reference morphological
MR sequences in tumour studies [17].

2.2.2 Diffusion Weighted Imaging

The application of RF pulses according to different protocols allows MRI images
to show several properties of the tissue of interest. The variety of tissue proper-
ties that can be pointed out through images is one of the major strength of MRI
if compared to CT modality, and shows its relevance in oncologic imaging, where
with a wider amount of information related to tumour, diagnosis and treatments
can be more precise and accurate. Diffusion Weighted Imaging (DWI) is based on
the attenuation of T2 signals according to the capability of water molecules to dif-
fuse (due to Brownian motion) in that region. Diffusion is measured through the
diffusion coefficient, D, that describes the rate of diffusion and is dependent upon
temperature, the size of particles, and viscosity of the tissue. The free diffusion
of water molecules at normal body temperature is D=3 × 10−3 mm2/s. However,
water molecules in human tissues are not free to move, since they encounter macro-
molecules, cell membranes, and other microstructures that obstacle their motion.
High signals in DWI emphasize areas of restricted diffusion, that suggests tissue
diseases.

In practice, a T2-weighted image must be obtained with no diffusion attenua-
tion, before applying gradient RF pulses along multiple directions. Generally, DWI
acquires isotropic images by employing three gradients of same amplitude along the
three x, y, and z axes [17]. In particular, when applying RF pulses for DWI, the
spin’s magnetic moment acquires a phase shift so that the signal received in MRI is
due to the bulk magnetization, which is the sum of the magnetization vectors of all
particles with unknown location. In particular, the bulk signal attenuation, S(TE),
with respect to the original signal, S0, is given by Equation 2.16 [13]:

S(TE)

S0
= e−bD (2.16)

where, b is a diffusion attenuation factor chosen before image acquisitions. Generally,
the choice of the appropriate b-value mostly depends on the degree of anisotropy in
the tissue of interest. Low b-values (b=50/100 s/mm2) sequences have a contrast
similar to T2-weighted images but also added suppression of intravascular signal
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intensity, thus increasing lesion conspicuity. Moreover, DWI images has generally
a lower in-plane resolution than the corresponding slice in T2-weighted sequences,
with pixel spacing between [1÷1.5] mm2 [18]. In this regard, Figure 2.3 shows

Fig. 2.3: T2-weighted image (a) and DWI at b=0 s/mm2 image (b) of prostate, outlined in
red. T2-weighted image has a higher in-plane resolution, thus representing anatomy with more
detail.

an axial T2-weighted image (Figure 2.3 (a)) and a DWI image (Figure 2.3 (b))
acquired with b=0 s/mm2, where, in both images, prostate Region of Interest (ROI) is
outlined in red. One can appreciate the higher morphological detail in T2-weighted
image rather than DWI one having a lower in-plane resolution. Because of the
different resolution, higher in T2-weighted than in DWI, the prostate contouring has
a smoother appearance in Figure 2.3 (a), whilst it seems rawer in Figure 2.3 (b).
High b-values will emphasize the contrast between restricted areas and those ones
with normal diffusion, which can be very useful in tumour localization. Figure 2.4
compares DWI images acquired at four different b-values, that is b=0, 150 s/mm2 as
low b-values, and b=800, 2000 s/mm2 as high b-values. In all images, prostate (red)
and tumour (green) ROIs are outlined. From b=0 s/mm2 to b=2000 s/mm2 there is a
progressive loss of anatomical references with enhancement of only the tumour area.
Actually, high b-value DWI sequences can suffer from the so called susceptibility
artefact arising from the air-tissues boundaries, that generates high signal not to be
diagnosed as abnormal [19].

Assuming isotropic diffusion in two different areas with diffusion coefficients DA

and DB, respectively, and signal intensities S0A and S0B when no diffusion is applied
(i.e. b=0 s/mm2), the contrast (∆Smax) between these two signals is maximized if
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Fig. 2.4: DWI images acquired at four different b-values (low b-values in a,b and high b-
values in c,d) with prostate and tumour ROIs outlined in red and green, respectively. From
b=0 s/mm2 (a) to b=2000 s/mm2 one can appreciate the enhancement of DWI high signals in
tumour and loss of morphological detail of the surrounding prostate gland.

b-value corresponds to Equation 2.17 [13]:

b∆Smax =
ln
(
DA
DB

)
− ln

(
S0A
S0B

)
DA −DB

(2.17)

In biological tissues, DWI signals correlate to tissue cellularity. Different fea-
tures, commonly associated with malignancy and hypercellular metastatic tissues,
including water diffusion from extra-cellular to intra-cellular spaces, restriction of
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cellular membrane permeability, can be detected by DWI imaging, this explaining
the increased role of this modality in oncology. Moreover, due to short acquisition
times, that is not more than 5 minutes if more than three different b-values-weighted
sequences are acquired, DWI is easily incorporated in routine MRI protocols [19].

Apparent Diffusion Coefficient

Actually, for a quantitative evaluation of DWI sequences, the coefficient D should
be computed from Equation 2.16. To this end, the Apparent Diffusion Coefficient
(ADC) parametric maps have been introduced. By recalling Equation 2.16, the D

can be estimated by exploiting at least a couple of b-values-weighted DWI images,
according to Equation 2.18:

D =
ln
(
S1
S2

)
b2 − b1

(2.18)

In practice, in human tissues where water molecules cannot freely diffuse, the real
diffusion D corresponds to the ADC, measured in one direction. Accordingly, the
mean ADC value (ADCm) is calculated from the gradients applied along the three
directions as in Equation 2.19 [13]:

ADCm =
ADCx + ADCy + ADCz

3
(2.19)

ADC parametric maps can represent at voxel level the hidden physical processes oc-
curring at a micrometric scale. A higher number of b-values sequences allows a more
accurate computation of ADC maps, where Equation 2.16 is solved through linear
regression. The downside is significant motion artefacts that can jeopardize the re-
liability of ADC maps, especially when more than two b-values are considered. On
the contrary of original DWI signals, regions of restricted diffusion are represented
by low ADC values (dark signals), that are lower for malignant lesions than benign
or healthy tissues [19]. For instance, Figure 2.5 compares ADC (a) image and DWI
(b) at high b-value (b=2000 s/mm2) where prostate and tumour ROIs are outlined in
red and green, respectively. The malignant area is represented by hypo-intensity in
ADC maps and high DWI signal. Recently, most of clinical interest on ADC maps
relies on therapy assessment based on changing of ADC values at follow up exam-
inations after treatments. With effective treatments, in the short period one can
observe a persistent high signal in DWI, but increased (toward normalization) ADC
values, while in the long term successful therapies will normalize the DWI signal
too [20]. Actually, modern mpMRI protocols are based on the acquisition and joint
interpretation of multiple sequences, that is anatomic T1- and T2- weighted, DWI se-
quences, and ADC maps, together with functional MRI sequences through dynamic
acquisition techniques for a comprehensive view of tumour characteristics [21].
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Fig. 2.5: Comparison of ADC (a) and DWI at b=2000 s/mm2 (b) images, where prostate (red)
and tumour (green) ROIs are outlined. As one can notice, the malignant area is characterized
by hypo-intensity in the ADC map and hyper-intensity in DWI.

2.3 Dynamic contrast-enhanced imaging techniques

DCE-CT and DCE-MRI are well-established imaging techniques used to describe
the microvasculature of tissue and organs, and any potential alteration hinting at
malignancy. Moreover, functional imaging of the tissue hemodynamics allows mon-
itoring tailored treatments based on anti-angiogenic drugs, that act as inhibitors of
vascular tumour growth [22].

DCE protocols require the acquisition of a baseline image, in the absence of
a CA, followed by a series of images acquired over time after the injection of the
CA [23]. The temporal changes in the enhancement of the CA allow characterizing
the vascular functionality of the tissue of interest, through the analysis of the so-
called Time Attenuation Curves (TACs) or Time Intensity Curves (TICs) retrieved
from DCE-CT and DCE-MRI sequences, respectively. Figure2.6: shows an example
of DCE-CT sequence acquired over time after the injection of the CA and, in green,
the enhancement of the CA within the tissue. Each image of the whole sequence
contributes to reconstruct one sample of the green curve.

Curves of CA over time represents three main phases of tissue perfusion that
is, entry of the CA into the capillary network from the arterial systems, circulation
in the vascular network, and exit into the venous network. Depending on the CA
and tissue under investigations, leakage phenomena can be observed too, from the
intravascular space to the interstitium [24].

The presence of CA in blood vessels modifies X-ray attenuation on CT images
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Fig. 2.6: An example of DCE-CT protoloc, which requires the acquisition of repeated CT scans
over time in order to reconstruct the enhancement of the CA within the tissue, represented
by the green curve.

in a linear way and signal intensity on MRI in a non-linear manner. CA employed
in DCE-CT are iodinated media, containing iodine atoms. that are administered
mainly through intravenous injection. As explained before (Sect. 2.1), interactions
between photons also depends on the atomic number of the matter. Since iodine
has Z=53, very high if compared to most tissues in the body, the administration of
iodinated CA produced image contrast due to differential photoelectric absorption.
Moreover, the main advantage of using iodine is that the energy level of its electron
shell is 33.2 keV, similar to the energy of X-rays commonly employed in CT imaging.
The radiodensity of iodinated CA ranges between [25-30] HU per milligram of iodine
per milliliter at a tuve voltage of 100-140 kVp. Collateral effects and allergic reactions
still remain the main issue related to the use of CA. In this regard, widespread
iodinated CA are water soluble, non-ionic (organic) compound that can reduce side
effects because not dissociate into single components.

As regards DCE-MRI, images can be acquired using both T2- or T1- weighted
sequences, thus allowing exploiting two different contrast mechanisms to reduce T2-
or T1- relaxation times, respectively. One approach is based on the susceptibility ef-
fect, that is local magnetic inhomogeneities arising between structures with different
susceptibility, such as the CA and the surrounding tissues, that lead to a negative
enhanced T2-weighted images. The susceptibility effect is properly exploited in those
tissues, such as brain, having specific vascular barriers that can prevent the passage
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of the CA into the interstitial space, thus allowing catching with high temporal
resolution (1 Hz frequency sampling) the first passage of the CA into the tissue.
In tumours, where substantial CA leakages occur from blood vessels, the measure-
ments of reduction of T2-relaxation time due to the susceptibility effect might be
very inaccurate, so that the contrast mechanism most commonly adopted is based
on negative enhanced T1-weighted sequences (0.2 Hz frequency sampling) produced
by the reduction of T1 relaxation time, mostly derived from the CA which is exited
into the interstice [25]. CA for DCE-MRI reduces T1 or T2 time in tissue by af-
fecting the amplitude and time scale of the magnetic field variation. The majority
of CA employed in DCE-MRI are paramagnetic agents, such as transition or rare
earth metals, containing unpaired electrons generating, in their turn, large residual
magnetic dipoles. Accordingly, strong magnetic field originate and protons in the
proximity experience a reduction of the relaxation times of water molecules. Today,
most of MRI CA are based on gadolinium (Gd), a silvery earth metal. In particular,
the most common oxidation state of Gd is Gd3+, holding seven unpaired electrons, so
promising to originate the largest dipole based on the number of unpaired electrons.
Gd3+ improves image contrast by increasing T1 relaxation time, thus appearing
bright in T1-weighted DCE-MRI sequences. However, Gd3+ is a toxic material, and
the limited sensitivity of MRI (on the contrary to the high sensitivity of PET imag-
ing) requires high concentration dose, which further emphasizes collateral effects for
patient. Significant quantities of Gd3+ (Gd3+>0.1 g) must be administered to de-
tect contrast enhancement. Generally, to constrain toxicity, Gd3+ is stabled with an
organic chelator, a molecule with high solubility, able to involve Gd3+ and prevent
pH precipitation. The downside is that the longer distance between water molecules
and Gd3+ due to chelator, the weaker the contrast in DCE imaging, thus originat-
ing some issues related to the needed dose of paramagnetic agent, that however still
remains lower than the one required of CA for DCE-CT [13].

The main challenge of the DCE imaging techniques still remains the quantifica-
tion of the so-called perfusion parameters, that is measures of vascular functionality
of the tissue of interest computed by processing the extracted TACs and TICs. The
lack of consensus on methods and software for quantitative analysis of DCE images
still hampers DCE-CT and DCE-MRI techniques to enter the clinical routine [26],
except for some anatomic districts such as brain [27] and heart [28]. If compared
to DCE-MRI, DCE-CT show higher simplicity in terms of both acquisition and
processing, and also benefits from large availability, low cost, and patient accept-
ability [29]. On the contrary, the major limit refers to the radiation dose exposure.
In fact,the need to reduce X-ray exposure limits the total number of slices acquired
and requires to use low tube currents and voltages, thus potentially leading to an
increase of image noise [30]. DCE-MRI saves patients from radiation exposure and
allows imaging on multiple and arbitrary planes on the internal body with high ei-
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ther spatial or temporal resolution, set according to the characteristics of the tumour
under investigation. That is, for semi-quantitative analysis where tumour hetero-
geneity has to be probed at the finest possible level, a high spatial resolution is
recommended, whilst high temporal resolutions are needed for quantitative analysis
for which CA enhancement requires to be high-frequency sampled to allow accurate
model fittings [31]. Although both refers to DCE imaging, data acquisition and
processing can be very heterogeneous between DCE-CT and DCE-MRI. Protocols
and analytic methods mainly depends on various factors, including the acquisition
strategy, referred to selection of the temporal resolution, also as a consequence of
the injection dose, mode and type of CA, data preprocessing (motion correction and
conversion of signals into TACs/TICs), and, not least, the analysis mode (based on
Region of Interests, ROIs, or individual voxels). A detailed workflow for DCE-CT
imaging analysis will be discussed in Chapter 4.
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Chapter 3

Hallmarks of cancer
and tumour biomarkers

Tumour exhibits a set of hallmarks functions and characteristics, varying over
spatio and time, and most of them currently being studied [2]. In the era of per-
sonalized medicine, understanding with the finest detail the mechanisms underlying
tumour biology and inter-relationships occurring within tumour habitat, aims at
improving the efficacy of target and tailored therapies, through defining new admin-
istration protocols, with the highest possible specificity for the innumerable tumour
subtypes [32]. In the following, three main hallmarks of cancer are highlighted, from
cell proliferation and tumour growth (Sect. 3.1) to tumour angiogenesis (Sect. 3.2)
and heterogeneity (Sect. 3.3). On the ground of these biological mechanisms, cancer
research has focused on studying and monitoring cancer evolution over spatio and
time, thus highlighting the need for reliable biomarkers for improving the clinical
decision making. Hence, the origin of biomarkers, from clinical to imaging ones, and
their current employment into clinical practice is deepened in Sects. 3.4 and 3.5,
respectively.

3.1 Cell proliferation and tumour growth

Tumour originates from proliferating cells, carrying oncogenic and mutation fac-
tors, which acquire through a multistep process tumorigenic features, turning over
time into malignant ones. Besides masses of proliferating cells, tumours are referred
to as complex tissues, where different cellular subtypes interact with each other and
actively participate to the developments of a set of hallmark functions. Also normal
cells constituting the tumour stroma, play a role in tumorigenesis since realizing
the tumour microenvironment which facilitates tumour proliferation and growth [2].
Genomic instability is the fundamental underlying condition of tumour proliferation

29
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(and also heterogeneity), which induces a series of correlated hallmarks functions
of cancer cells, including the sustainment of proliferative signalling, tumour growth,
resistance to cell death [33]. In particular, one of the distinctive traits of cancer
cells is the capability to promote chronic proliferation. Normal tissues are highly
regulated in a controlled system alternating production of growth-promoting signals,
cell growth and cell division, thus preserving tissue architecture in terms of numbero
of cells and their organization. Instead, cancerous cells enable alternative signalling
pathways, largely regulated by growth factors, and modify the normal cell-cycle,
also influencing other biological properties, survival, and metabolism. Promoted
by mutated growth factors, hyper-cellularization occurring in tumours dramatically
changes tissue structure in terms of the spatial relationships between cancer cells and
the surrounding microenvironment. Moreover, regulation of cancer cell proliferation
occurs between cells and their immediate neighbours, thus making the comprehen-
sion of the proliferation and growth signalling systems very challenging and not yet
enough exhaustive [2].

Oncogenic factors in proliferating cancer cells are known to modify, in the so
called metabolic reprogramming, the pathways of nutrient acquisition and assim-
ilation of carbon into macromolecules such as lipids, proteins, and nucleic acids,
thus sustaining tumour growth. In particular, glucose and glutamine are the two
metabolic pathways considerably reprogrammed, for instance by the Ras-related
oncogenes. These factors regulate both the nutrient uptake and utilization, thus
supporting biosyinthesis, redox homeostasis and cell survival. Cancer cells develop
the ability to withstand the hard environmental conditions optimising the nutrient
resources at the disposal, and also compensating for the loss of glucose or glutamine
with alternative metabolic pathways [34].

One of the major issues related to metabolic reprogramming is therapy resis-
tance. For instance, mitochondrial metabolism is one of the alternative pathway
of the resistant cancer cells [35], so that mitochondria are recently being consid-
ered as promising targets for the development of novel anticancer drugs. In this re-
gard, PET functional imaging which relies in most of clinical applications on glucose
metabolism, can contribute in detecting the reprogrammed metabolic processes [36].
Recent studies have proved the efficacy of different imaging modalities in correlat-
ing with overproliferation factors suggesting tumour growth. To this purpose, beside
PET imaging [37], which is nominally the most specific modality, an increasing role
has been gained by functional MRI sequences, including DWI and ADC paramet-
ric maps, according to well-established relationships between cell proliferation and
water diffusivity [38].
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3.2 Tumour angiogenesis

Tumour growth and invasion of the surrounding tissues are strongly promoted
by a process referred to as angiogenesis, that is the growth of new blood vessels from
pre-existing ones and their proliferation into cancer in order to ensure the supply of
nutrients and oxygen. Hence, angiogenesis is another relevant hallmark of tumour
progression, which also acts as promoting factor for the development of metastasis
and their metabolic sustainment over time [39]. Indeed, tumour are made of cancer
cells and stromal cells, which create, as above mentioned, the proper microenvi-
ronment for tumour development. In particular, tumour growth and increase in
aggressiveness is mostly due to cell-to-cell communications occurring between tu-
mour and stromal cells, also involving signalling pathways for the energetic refill
and vascular supply. Under the promotion of endothelial cells, which are a particu-
lar kind of stromal cells, angiogenesis occurs [40]. It starts from the degradation of
the basement membrane of existing vessels, followed by the migration of endothelial
cells in the interstice, where they proliferate and create new vessel connections, thus
regenerating the basement membrane and promoting anastomosis. Figure 3.1 shows

Tumour

VEFG

Blood vessel

(a) (b) (c)

Fig. 3.1: Three stages of tumour angiogenesis: (a) tumour secretes VEFG; (b) VEFG increases
blood vessels growth and their proliferation into tumour; (c) tumour with increased blood
supply

tumour angiogenesis split into three subsequent phases. First, tumour promotes the
production of cellular growth factors. Second, growth factors favour blood vessels
growth and their proliferation into tumour. Third, tumour receives an increased
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blood supply. Actually, not all tumours induce angiogenesis as soon as they start to
growth, but they turn into an angiogenic phenotype when the so called angiogenic
switch occurs. Basically, the switch is due to an unbalanced increased production
of angiogenic factors with respect to angiogenesis inhibitors [41]. For instance, an
over-expression of angiogenic factors can be promoted by Ras-related oncogenes –
which also regulate the metabolic reprogramming in proliferating tumour cells (as
explained above) – thus showing that the distinct hallmarks of cancers can also
be regulated by the same operating factors [2]. Angiogenesis does not only serve
for the metabolic sustainment of tumours, but also offers tumour metastatic cells
the ways to enter the circulatory system, thus explaining the increase of tumour
aggressiveness.

The primary factor promoting angiogenesis is the vascular endothelial growth
factor (VEGF) that can be produced by hypoxic tumour cells, endothelial cells, and
the so called tumour-associated macrophages. VEGFs include the originally iden-
tified glycoproteins called VEGFA, and the family of VEGF-related polypeptides.
In particular, VEGFA is reported as both the main endothelial growth factor and
a regulator of vascular permeability, largely modified by angiogenesis [42]. Blood
vessels produced by angiogenesis are distort and enlarged, with an excessive vessel
branching. Microhaemorrhages and leakage phenomena are also present, together
with abnormal levels of endothelial cell proliferation and apoptosis [2]. In this re-
gard, Figure 3.2 shows the comparison between the normal and tumour vasculature.
While normal tissue are organized in hierarchical pathways transporting blood from
arteries to venous vessels, tumour vasculature results locally interrupted, irregular,
and disorganized.

Understanding the mechanism underlying angiogenesis is at the basis of cancer
research towards the development of effective anti-angiogenic drugs. The US Food
and Administration (FDA) has approved for the first time, in 2004, bevacizumab,
an anti-angiogenic drug, for metastatic colorectal cancer, also applied in kidney and
lung tumour care. Entering of bevacizumab in clinical practice has strongly pro-
moted research in molecular target therapies, and after that, a conspicuous number
of anti-angiogenic drugs have been licensed [43]. Like bevacizumab, anti-angiogenic
drugs have been initially proposed as VEGFs inhibitors, under the hypothesis that
blocking angiogenesis would have reduced tumour growth and improved overall sur-
vival of oncologic patients. Actually, this has resulted as a transient effect of anti-
angiogenic drugs, which instead act to normalize tissue vasculature, with a cytostatic
rather than a cytotoxic effect, thus consequently improving the efficacy of conven-
tional therapies in reaching the target site. Moreover, a normalized vasculature
may reduce the shedding of metastatic cells from the primary tumour. In addi-
tion, anti-angiogenic drugs decrease tumour hypoxia and improve the absorption
of macromolecules from vessels to tumours. Hence, for instance, radiation therapy
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Fig. 3.2: Normal (a) and tumour (b) vasculature

is reported as having a better outcome when delivered during the normalization
window of tumours under the effects of anti-angiogenic factors [44].

Assessment of angiogenesis by perfusion imaging

Quantifying tumour angiogenesis has significant implications in clinical manage-
ment of patients, primarily for tumour staging and monitoring therapy response [45].
The assessment of therapy efficacy is conventionally based on tumour size changes,
which may result inadequate for evaluating response to anti-angiogenic drugs. From
a clinical point of view, a more reliable indicator is time to progression. However,
time to progression requires very large studies with numerous patients in order to
be validated as clinical endpoint, with the risk of treating ineffectively patients
for a long time [46]. Alternatively, clinical standard adopt biological markers de-
rived from the histopathological study, which is exploited for characterizing tumour
features, associated to several biological functions, most of which referring to the
surrounding tumour habitat. Histopathological markers for angiogenesis include the
microvascular density (MVD), microvascular cell proliferation (MVCP), and total
vascular area (TVA), albeit measurements are limited by local tumour heterogeneity
and the reduced number of biopsy samples [45]. In addition, there is a variety of
tumour subtypes showing different responses to therapy even if being assigned to
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the same grade of aggressiveness, therefore biological markers result in most of cases
insufficient to provide a comprehensive view of the disease [47].

The amount of blood normally exchanged into the vascular network is modified
by angiogenesis, therefore evaluating tissue perfusion may be very useful to measure
hemodynamic changes and identify which perfusion parameters correlate better to
patient prognosis [48]. From a theoretical point of view, the study of tissue perfusion
dates from the nineties, when in physiological modelling studies, perfusion has been
defined as the transport of blood to a unit volume of tissue per unit of time [49]. Ad-
vances in cancer care trough novel anti-angiogenic drugs have renewed the interest
in the study of tissue perfusion, also strongly promoted by improvements in dynamic
imaging technologies. In fact, dynamic imaging offers an incredible opportunity to
monitor tissue hemodynamics through the study of the kinetics of a tracer injected
into the vascular compartment. DCE-CT and DCE-MRI techniques, also referred
to as perfusion imaging, allow deriving from the concentration of CA over time
perfusion parameters, including Blood Flow (BF), Blood Volume (BV), Mean Tran-
sit Time (MTT), Permeability Surface (PS), Transfer costant (Ktrans), Extraction
Fraction (EF), and Perfusion Index (PI), which represent the status of tissue vascu-
lature. Ultimately, perfusion parameters allow detecting any abnormality indicative
of angiogenesis, and also observing improvement or worsening depending on the effi-
cacy of a treatment [50]. It is worth noting that as morphological changes in tumour
size occurs later than variations in microcirculation, the perfusion study, although
with a limited translation into clinical routine so far, can be a very useful tool for
assisting the clinical decision making [48]. Perfusion imaging can measure the blood
flow within the capillary network of tumour tissues and towards the extravascular
space. In fact, microvasculature involving mainly capillaries, is characterized by a
slow flow, which permits exchanges with the supplied tissue. Capillary permeabil-
ity allows a compound of nutrients, hormones, and mediators to diffuse into the
interstitial space.

Referring to perfusion parameters, BF measures the quantity of blood reach-
ing one unit of tissue volume per unit of time, and is expressed in [ml/min·100g] or
[ml/min·100ml], if considering the unit of volume at the denominator with unit density.
Accordingly, BF is equivalently expressed in [min−1].

BV represents the fraction of blood volume contained in capillaries with respect
to a unit tissue of volume. This ratio is expressed in [ml/100ml] or in %.

MTT is the mean time, measured in [s] in which blood flow passes through the
capillary network, that is the time between the inflow through a large artery and its
outflow through a vein.

PS indicates the flow of molecules through the capillary membrane in a unit
tissue of volume, therefore expressed like BF in [ml/min·100g]. In many cases, PS
depends not only from the status of vasculature, but also from the intrinsic properties
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of the CA, which determine its tendency to exit the intravascular compartment.
Ktrans is a combination of BF and PS derived under proper modelling conditions,

also depending from the mathematical model employed to describe the kinetics of the
CA. Accordingly, Ktrans is measured in [ml/min·100g]. Physiologically, Ktrans measures
the component of the flow that reaches the extravascular space, this means that, in
practice, it describes the delivery of nutrients to tissue cells.

EF is the volume of CA within the interstitial compartment, that is the ex-
travascular component of CA in unit tissue of volume. Like BV, EF is measured in
[ml/100ml] or in %.

Finally, in particular organs, such as lung and liver, where blood is supplied to the
capillary network from two main vessels, PI measures the proportional contribution
at the inflow of a tissue unit of the two inputs, that is a ratio of the BF coming from
one of the two inputs, over the total BF [24].

Several research studies have demonstrated a correlation between perfusion pa-
rameters and biological markers of angiogenesis [51], and diagnosis [52] and stag-
ing [53] of different tumour subtypes, albeit the exact relationships between them
are not yet well-known. Nevertheless, some frequently observed phenomena can
be mentioned: BV and BF both correlate with MVD, however, in most studies
BV has resulted to perform better than BF in depicting MVD status. In fact, BF
measurements can be affected by other factors, such as cardiac output, above all
in tumour vessels lacking of auto-regulatory mechanisms, where if the cardiac out-
put falls down, one can observe a misleading decrease of BF [54], accordingly. In
addition, MTT is expected to decrease in presence of arteriovenous shunts, typical
occurring in tumours, while BV and permeability-related perfusion parameters have
shown to increase in response to tumour adaptation to hypoxia, that is definitely
associated to modifications towards more aggressive tumour phenotypes and therapy
resistance [55]. Depending on the tracer kinetic model adopted, different perfusion
parameters can be computed. In this regard, the major cause hampering perfusion
imaging to enter clinical practice relies on the difficulty to achieve reproducible re-
sults with different mathematical computing methods. A methodological contribute
in quantitative CTp imaging is given in Chapter 6, after explaining the theoretical
background in Chapter 4.

3.3 Tumour heterogeneity

At the smallest clinically detectable tumour size, of approximately 0.5 cm3 [56],
cancer cells are reasonably homogeneous, but they show a strong tendency to differ-
entiate in tumour subtypes when proliferating [2]. In fact, tumours exhibit substan-
tial spatial variations at macroscopic level, and also in gene expression, biochem-
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istry, and histopathology, referred to as tumour heterogeneity. Its origin arises from
both genomic and phenotypic causes, which may influence prognosis and response
to therapies [57]. By conceiving the tumour as a molecularly dynamic disease, also
consequently to angiogenesis, mapping tumour heterogeneity over spatio and time
is a further essential requirement for developing effective and durable therapeutic
treatments [58].

According to the Nowell’s theory of clonal evolution, cancers arise from single
cells and subsequently develop genomic instability, that is known as one of the major
causes of tumour heterogeneity, and occurs consequently to high rate errors during
DNA replication. Then, evolutionary selection pressures on expanding tumours
affected by genomic instability, lead to the emergence of genetic mutations and het-
erogeneous subpopulations of tumours [59]. Nowadays, the different techniques for
genoma sequencing have allowed identifying the so called genetic signature of many
mutagenic processes, and even chemotherapy itself is known to create and enforce
genomic instability. Actually, it is such a combination of genomic instability with
other factors which cooperates for tumour malignancy, metastasis development, and
tumour progression [58]. Moreover, the tumour microenvironment has an effect on
the different cellular phenotypes that may proliferate into different tumour regions.
For instance, any tumour contains areas of hypoxia and normoxia. In the hypoxic
region, cells with anaerobic metabolism will be advantaged and will repopulate that
tumour region, whilst the opposite will occur in a normoxia area of the same tumour,
thus increasing the phenotypic heterogeneity within tumour [60].

Indeed, tumour heterogeneity comprises both intra-tumour and inter-tumour
heterogeneity. While the first refers to the different lesions present in an individual
tumour, the second indicates differences between tumours within individual patients.
In particular, some relevant features can be highlighted for the intra-tumour hetero-
geneity. It can be dynamic and tends to increase together with the tumour growth.
Accordingly, high levels of heterogeneity are often associated to poor prognosis, due
to the cell resistance to therapies. Moreover, in practical cases, heterogeneity may
show dependencies not only from the underlying tumour biology, but also based on
the imaging test used [32].

In the era of personalized cancer medicine, the investigation of intra-tumour
and inter-tumour heterogeneity results very challenging for both clinicians and re-
searchers, especially for the development of reliable clinical indicators of tumour
progression and aggressiveness. Heterogeneity is a clear limit to pursue personalized
treatments if only biopsy-based approaches are considered for tumour characteriza-
tion, since the discrete sampling of a needle biopsy, although being the standard
of care for clinical assessment of prognosis and aggressiveness of suspicious malig-
nant tissue areas, cannot represent the entire tumour phenotypes, and can miss
some lesions with a poor prognosis signature, thus leading to underestimate tumour
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aggressiveness [61]. Moreover, quantitative measurements commonly employed in
clinics may be misleading in depicting tumour characteristics, since are often based
on average values computed over the whole heterogeneous tumour, thus resulting
dramatically unspecific [59]. Lastly, another clinical implication of heterogeneous
tumours is the biochemical recurrence. Depending on the grade of intra-tumour
heterogeneity, some cells can contain a pre-existing resistant clone that is free to
repopulate the tumour even after a chemotherapeutic treatment.

Each tumour results as a uniquely molecularly characterized microenvironment,
this explaining the meaning of inter-tumour heterogeneity. In practice, this limits the
applicability of the cancer biomarkers over distinct types of tumours, and also among
the same tumours that have evolved along different carcinogenic pathways [60].
Altogether, insights into tumour heterogeneity strongly support an approach aimed
at a local regional quantitative assessment, which may increase the overall accuracy
in detecting even the smallest morphological and phenotypic subtypes of tumour
populations, consequently improving efficacy of target therapeutic strategies [32].

3.4 From clinical to imaging biomarkers

From a clinical point of view, effectiveness of cancer care shows a notable depen-
dency from the availability of markers of tumour features and biological functions.
The ways through which these tumour markers can be derived determine how of-
ten they can be measured, and which degree of specificity they hold. A biomarker
has been defined by the FDA as a “characteristic that is measured as an indicator
of normal biological processes, pathogenic processes or responses to an exposure or
intervention” [62]. In a non-invasive approach body fluids such as plasma, serum
or urine can be analysed to study the presence and concentration of specific sub-
stances. For instance, the Prostate Specific Antigen (PSA) level in blood plasma
represents a clinical biomarker of PCa expression. Alternatively, clinical biomarkers
of tumour stage and therapy response are derived from immunohistochemistry and
histopathology, both requiring a tissue sample to be analysed [63]. Medical imaging
in cancer care has a fundamental relevance since allows a real time monitoring of the
disease, without tissue destruction, at different spatio and temporal resolutions, also
with a minimal invasiveness [64]. Its current clinical employment in cancer manage-
ment is substantially based on visual assessments or morphometric semi-quantitative
analyses, thus lacking of any approved standardized quantitative approach [43]. In
agreement with the concept of precision medicine, the role of medical imaging has
evolved within oncological practice, from being primarily a diagnostic tool to be
integrated in clinical decision making for tumour staging, prognosis, gauging the ef-
fectiveness of therapies [65]. The spatial and temporal tumour heterogeneity arising
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from local variations in tumour growth, cell metabolism, vasculature, oxygenation,
can be quantitatively measured by computing, from morphological and functional
imaging (e.g. CT, MRI, and PET) innumerable imaging features representing vari-
ous aspects of tissue properties [66].

Indeed, the employment in computer vision of imaging features with predictive
purposes dates from the sixties, whilst its application in medical imaging started
in the eighties [67]. Actually, most of early applications refer to Computer Aided
Detection (CADe) and Diagnosis (CADx) systems, the former with the aim of de-
tecting, localizing and segmenting tumour lesions, the latter employed to distinguish
benign and malignant lesions. Since the last two decades, quantitative approaches
in medical imaging started to be applied for developing imaging biomarkers (IBs) of
tumour prognosis and therapeutic endpoints [68]. In 2007, the Radiologic Society
of North America (RSNA) organized the Quantitative Imaging Biomarkers Alliance
(QIBA) involving researchers, healthcare professionals, industry stakeholders, and
scientists to regulate the use of IBs in clinical trials and promote standardized ap-
proaches of quantitative imaging, from imaging feature extraction to data analysis
and display and reporting methods, with the aim of accelerating IBs translation
into clinical practice [69]. With the rapid increase of technologies and computing
resources allowing reconstructing higher quality images with incredibly low process-
ing times, the interest in IBs is strongly grew, from both clinical and research side.
If compared to biological and chemical biomarkers, currently employed in cancer
care, IBs benefit from non-invasiveness, immediateness of measurements, high level
and broad extent of information intrinsically detected. In fact, quantitative imaging
techniques for feature extraction (e.g. histogram and texture analysis, Fourier and
wavelet transforms) allow analysing image properties in a transformed domain (e.g.
probability, frequency, or time-frequency), where measurements represent tumour
biology even beyond what images offer at a visual-based inspection [70].

3.5 The role of biomarkers in clinical practice

In clinical practice, biomarkers are organized into three main categories, that is
diagnostic, prognostic and predictive biomarkers.

For the sake of clarity, biomarkers need to be distinguish from surrogate end-
points, that are intended to substitute a clinical endpoint, that is a characteristic
reflecting patient feel and symptomatology. Biomarkers can refer to surrogate end-
points before being definitely translated into clinics, when larger prospective trials
are performed to confirm the association between the measurement and the clinical
outcome [43]. The application of surrogate endpoints takes an additional complexity
and is limited to those cases in which the pathophysiology of the disease is fully
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understood, otherwise they might generate pitfalls in the disease assessment [71].
Diagnostic biomarkers are used for detecting or confirming the presence of a

disease or any its subtype, or a characteristic condition of clinical interest. As men-
tioned above, PSA is the diagnostic biomarker employed for PCa detection, or for
instance, Carcinoembryonic Antigen (CEA) levels in blood is substantially raised
by the colorectal cancer. Indeed, measurements of biomarkers have not perfect clin-
ical and analytical sensitivity and specificity, so that the clinical applicability of a
biomarker relies on the best trade-off between these two features, also depending
on the role of the biomarker itself. Diagnostic biomarkers are likely employed in
screening tests, thus requiring high sensitivity rather than high specificity. This
means that a number of diseases higher than the real one can be incorrectly de-
tected, with the advantage of reducing at the minimum level the miss of undetected
tumours [72]. Prognostic and predictive biomarkers both provide information on the
status of a tumour or disease, but while prognostic biomarker quantify the severity
condition and tumour aggressiveness irrespective to treatment, predictive biomark-
ers substantially quantify the benefit received from a treatment compared to the
baseline condition [73]. Actually, all biomarkers can have a certain degree of both
prognostic and predictive role, and recognising their difference can have a strong
impact on the management of disease. On the one hand, a prognostic biomarker
that is incorrectly interpreted as predictive one may lead to an overestimation of
the benefits of the treatment, for instance a pharmaceutical drug, that consequently
will be considered as a tailored treatment for a subtype of disease, thus limiting its
availability to a specific portion of the population, and its cost will increase accord-
ingly. On the other hand, if a predictive biomarker is intended as prognostic, its
power will be underestimated, since its effect on a specific subtype of disease will be
hidden in the more general context of patient prognosis [74].

3.5.1 Diagnostic biomarkers

All altered cellular processes and modified cell biologic properties, constituting
the hallmarks of tumour development and growth, can potentially serve as diagnostic
biomarkers for cancer. Since the most of cancer cell mutations occur at molecular
level, involving DNA, RNA, microRNAs and proteins, molecular biomarkers are
currently the most widely adopted for cancer detection. Moreover, molecular diag-
nostic biomarkers have gained a particular interest due to the worldwide diffusion
of the personalized medicine approach for cancer treatment. Accordingly, the em-
ployment of target molecules for cancer diagnosis advantages the development of
specific drugs against these target molecules [75]. Conventionally, cancer is diag-
nosed through morphological assessments based on imaging, and antibody staining
in biopsy or tissue samples. However, recent developments have made possible the
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detection of cancer from a variety of molecular indicators present in body fluids such
as saliva, urine, broncho alveolar and ductal lavage, thus improving the specificity of
the diagnosis itself and increasing the precision of the detected tumour features [76].
Actually, due to the high level of heterogeneity of tumour subtypes and molecular
processes involved in malignancy, there is a plethora of diagnostic biomarkers cur-
rently employed, each referring to a specific clinical application, and most of them
rely on molecular indicators [77]. In this context, diagnostic imaging still remains
the reference tool for assessing those macroscopic morphological features of tissues
that may hint at tumour proliferation. The employment of IBs in most of cases pro-
vides a companion diagnostic status, together with molecular indicators, in order to
reveal information of prognosis and therapy response [78].

3.5.2 Prognostic biomarkers

The underlying idea of clinical prognostic biomarkers is cancer staging, at diag-
nosis as well as in follow-up examinations, that is, measuring the extent of severity of
cancer disease. Cancer staging plays a fundamental role in defining the most proper
treatment and assessing the changes of a successful clinical outcome, thus definitely
quantifying patient prognosis [79]. Cancer staging can be performed through mor-
phological assessments of tumour extensions, dynamic analysis of tissue perfusion,
and biological evidences of tumour patterns at hystopathology. In particular, the
stage of a disease does not only reflect the rate of growth and extension, but also
the type of the relationships with the surrounding tissue microenvironment.

The most widely adopted staging system is the TNM, currently at the eighth
edition, that code the extent of primary tumour (T), regional lymph nodes (N), and
distant metastases (M), thus defining stage groups according to T, N, and M status.
At the basis of the TNM classification there is the clinical observation that survival
rates are higher for localized diseases rather than tumours that extend beyond the
original tumour site. Each of the T, N, and M stages is further split in different
subclasses of progressive tumour extension. Moreover, in clinical practice, TNM
classification is specified for each tumour type or small groups of them sharing
some similar behaviour in tumour growth. However, some general rules can be
highlighted. The class T comprises the stage Tx, referring to primary tumour that
cannot be assessed, T0, with no evidence of primary tumour, the stage Tis, meaning
carcinoma in situ, and four progressive stages from T1 to T4 describing the increase
in size and local extent of the primary tumour. Similarly, the stage N comprises
the groups Nx, N0, and three progressive classes from N1 to N3 describing the
increasing involvement of regional lymph nodes. Finally, M0 and M1 stages describe
the absence and presence, respectively, of distant metastases. Actually, there are two
different types of clinical and pathological TNM classification. The first of them is
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a pretreatment classification, essential to select the most adequate therapy. This
clinical TNM staging arise from information collected through imaging, endoscopy,
biopsy, and surgical exploration. Instead, the pathological classification is performed
after surgery, and it is used to provide additional information to estimate prognosis
and end outcome, as well as to guide adjuvant therapy planning [80].

Clinical pre-treatment cancer staging can be only partially derived from imaging,
since the visual-based interpretation of CT, MRI, or PET images results unspecific
to differentiate benign from malignant lesions, as well as the degree of lesion aggres-
siveness. For instance, the American College of Radiology (ACR) has proposed a
standardized Reporting and Data Systems (RADS) for different tumours, such as
prostate (PI-RADS), liver (LI-RADS), colon (C-RADS) and others, with the aim
to reduce variability in reporting image findings [81]. Different RADS also attempt
to provide a risk assessment of tumour malignancy from images, thus scoring tu-
mour lesions with numbers corresponding to qualitative interpretations in terms
of “normal”, “negative”, “benign”, “probably benign”, “high risk”, or “definitely
malignant”, that however have shown in clinical practice a limited and unspecific
prognostic value [82].

In clinical practice, cancer stage-related pathological information are derived
from biopsy, that is currently the reference procedure for obtaining pathological
proof of tumour metastases or to determine the spread of a tumour. In patients with
more than one primary tumour and diffuse metastasis, biopsy is useful to determine
which primary tumour originate metastases. Moreover, a biological inspection of
biopsy samples is exploited to obtain a phenotypic representation of the tumour [83].
Accordingly, different staging system based on biopsy outcomes have been developed
for several types of tumours, such as the Gleason Score (GS) for PCa [84]. Biopsy has
been proposed as a random-sampling-based approach for studying some portions of
tissue, guided generally by ultrasonography to reach the site of interest. Nowadays
more image-guided procedures are also available, such as MRI-guided biopsy or MRI-
fusion biopsy, which improve the safety and the efficacy of the procedure by assisting
the needle exploration of tumour site with more detailed morphological images, thus
leading to sample more accurately the most supposedly aggressive areas. However,
underestimation of tumour aggressiveness still occurs, and despite developments in
execution techniques, biopsy still remains an invasive examination, that can originate
considerable side effects, including bleeding and infection [85]. Current guidelines
suggest reducing the biopsy rate especially for low-grade diseases, thus endorsing
IBs for revealing tumour prognosis [86].
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3.5.3 Predictive biomarkers

Imaging is currently exploited for objectively characterizing tumour response
and defining clinical requirements for novel anticancer agents. The availability of
predictive biomarkers allowing an early assessment of tumour response plays an im-
portant role in defining and adjusting target cancer therapies. Among the several
criteria for evaluating tumour response, the RECIST system, introduced in 2000,
is nowadays, with the RECIST version 1.1 (RECIST1.1) the most widely employed
standardized method for solid tumours, based on a morphological evaluation of tu-
mour burden size changes over time, after treatments. RECIST1.1 criteria establish
four main categories of tumour response according to the size of tumour burden,
defined through the sum of measurements of unidimensional diameters of target le-
sions. In particular, the longest diameter, greater or equals to 10 mm, is considered
for nonnodal target lesions and the shortest axis, greater or equals to 15 mm, for
target limph nodes, with a maximum number of assessed target lesions equals to
five, up to two lesions in any organ. Hence, tumour response is considered com-
plete if all nonnodal target lesions disappear and the shortest axis of nodal lesions
becomes lower than 10 mm, while, response is considered partial if more than the
30% of decrease of all target lesion measurements is observed between baseline and
follow-up assessment. Moreover, tumour is considered stable if no size changes are
reported, or in progression if an increase of more than the 20% and 5 mm in the
sum of all measurements is registered, or one or more lesions appear, or progression
is observed in previous non target lesions [87].

Despite its large employment, RECIST1.1 system has well-known limitations,
such as in case of lesions that do not meet criteria to be defined as target lesions,
or in case of lesions with particular growth patterns and localization. For instance,
lesions with complex shapes and irregular margins do not allow accomplishing the
standardize procedure for measuring lesion diameters. Moreover, RECIST1.1 cri-
teria have been initially conceived for assessing the effects of cytotoxic drugs, such
as chemotherapy, that can be considered an effective treatment if leads to tumour
shrinkage and limits the growth of new lesions, since mostly acting to inhibit cell
duplication. However, as explained above (Sect. 3.2), new target therapies act on
different tumour mechanisms, including hormonal interferences, signals transduc-
tion, inhibition of angiogenesis, therefore, a tumour regression in the short time
after treatment is just minimally observed, and such tumour response criteria based
on size and morphological tumour changes can reasonably underestimate the effects
of treatments. Modified RECIST criteria have also been proposed to overcome the
limitations of RECIST1.1 in monitoring new therapies, although some limitations
still remain [88]. In the end, it is worth noting that RECIST criteria report up
to 10% and 30% of error in intra-observer and inter-observer comparisons, respec-
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tively [89]. In all, this strongly motivates research in IBs for improving the accuracy
of therapy response evaluation.
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Chapter 4

Quantitative CTp image analysis

This Chapter presents the fundamental of CTp analysis, from the theoretical
comprehension of tissue modelling to the operative pipeline adopted to compute
perfusion parameters, thus deriving insights into tumour vascularity, angiogenesis,
hemodynamic evolution of malignancy.

First, the extraction of Time Concentration Curves (TCCs) from CTp images is
described in Sect. 4.1. Second, the Chapter focuses on modelling aspects. In partic-
ular, the choice of the model depending on the physiology of the organ (Sect. 4.2)
and kinetics of the CA (Sect. 4.3). Then, the most used fitting models for vascular
and tissue TCCs are addressed in Sect. 4.4. Hence, the computation of perfusion pa-
rameters through different methods is presented in Sect. 4.5. In the end, an overview
of the major factors contributing to hamper the translation of CTp into clinics for
most organs, is provided in Sect. 4.6.

4.1 From image sequences to TCCs

As introduced in Chapter 3, Sect. 3.2, CTp image analysis allows measuring
tissue perfusion, modified by angiogenesis or anti-angiogenic therapies.

Dynamic image protocols require repeated scans of a tissue of interest acquired
before, during, and after the intravenous injection of a CA, in order to follow the
vascular dynamics of the CA into tissue [90]. Basically, information contained in
the stack of image slices acquired repeatedly over time is represented through time
signal, the TCCs. These measure the enhancement of the CA in terms of its con-
centration, compared to the baseline value, which represents the CA unenhanced
stage [23]. Before computing perfusion parameters, some preprocessing steps are
needed, including segmentation of ROIs, image denoising, computation and sub-
traction of the baseline value from the original TCCs.

As regards segmentation, a tissue ROI is generally outlined on a reference slice
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and co-aligned over all the slices of the entire sequence. Accordingly, a time signal
arises from each pixel within the ROI, where each sample refers to the value of that
pixel in an image slice. Figure 4.1 shows a stack of CTp images, and the corre-

Fig. 4.1: A stack of sixty DCE-CT examinations acquired each second for the first thirty
seconds and each three seconds for the remaining time. In red, a ROI is drawn on the hepatic
tissue and the signal derived from the median value of the ROI is represented, where each
sample of the signal corresponds to one image of the entire stack.

sponding time signal derived from the median pixel within the segmented ROIs in
the liver. Generally, the temporal resolution of the signals retrieved varies depend-
ing on the imaging modality considered. Moreover, depending on whether the CTp
study focuses on the CA first passage only or even on its recirculating phase, the
temporal resolutions can be varied during acquisitions (Sect. 4.3). The example in
Figure 4.1 represents a hepatic perfusion study mainly focused on the first passage
of the CA into tissue, therefore images are acquired each second for the first 30 sec-
onds, and each three seconds for the remaining samples. Based on the tissue under
investigation, a further ROI is drawn on at least one vessel, representing the tissue’s
main vascular supply, and a time signal is derived accordingly [91]. For instance,
Figure 4.2 shows for the same example in Figure 4.1 , the signals extracted from the
aortic and portal vein ROIs, which represent the two main hepatic vascular inputs.
The segmentation of the input vessels shall prefer a feeding vessel big enough to
avoid partial volume effects [92]. In addition, the vascular input has to be chosen at
the minimum distance from the tissue being analysed, in order to reduce the delays
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Fig. 4.2: Hepatic vascular inputs in DCE-CT examinations of liver: in blue, the signal ex-
tracted from the aortic artery; in green, the signal from the portal vein.

effects on the computed perfusion parameters.
The need for longer acquisition times for dynamic analysis rises the issue of the

excessive patient radiation exposure, which imposes to diminish CT tube current
and voltage at the expense of image quality. Accordingly, in the clinical practice,
to reduce image noise, slice thickness is enlarged and images are reconstructed with
a lower in-plane resolution [91]. Even considering to decrease the number of slices
acquired, that is the coverage of the volume of interest or the sampling frequency,
CTp images still have a poorer quality if compared to standard static morphological
CT images. Image noise can dramatically degrades the quality of signals and the
accurateness of computing methods applied on TCCs, as well as the reproducibil-
ity of results, thus jeopardizing the reliability and clinical usefulness of the CTp
itself [50]. Moreover, both respiratory and peristaltic motion of patients represents
one additional source of noise in dynamic signals. Acquisition are often carried out
in breath-hold conditions, although this limits their temporal duration [91]. Hence,
in most of cases, unreliable pixels need to be discarded before any perfusion quan-
titative measurement [93]. Exploiting spatio-temporal filters for CT images is the
most commonly solution adopted to correct for the presence of acquisition noise and
motion artefacts. In particular, edge-preserving median filters are largely applied to
CTp images to remove spurious pixels while preserving information content of the
structures and their boundaries. Commonly, a kernel size of 3 [94] or 5 [28] pixels
is adopted, or even 7 pixels as reported in Figure 4.3. In particular, it shows the
effects of an anisotropic median filter with kernel size of 7 pixels on some TCCs
extracted from original (a) and filtered (b) images, where the mean of coefficient of
variation (CV ) of all signals, largely employed to measure signal reliability in perfu-
sion analysis [95], diminishes by 32% referring to original images and 4% considering
the filtered ones.
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Fig. 4.3: Comparison between signals extracted from CTp before (a) and after (b) filtering
images with a median filter with kernel of size 7 pixels.

The last preprocessing stage refers to the baseline computation and its removal
from the original TCCs to achieve as many TACs. The literature proposes different
approaches for the computation of baseline values, based on voxel-based measure-
ments or referred to the entire ROI. For instance, one of the most widely used ap-
proach is to adopt for all the TCCs within the ROI, one global baseline value only,
computed as the mean of all the TCCs at the first time instant [96]. Instead, two
different voxel-based approaches consider one baseline value for each ROI’s TCC,
derived from the first [51] or the mean of the first four or five image slices [97].
Actually, image noise influences the computation of perfusion parameters as well
as the extraction of CA baseline values, above all if only one or a few samples are
considered for the computation. Therefore, in order to improve the robustness of
baseline values, a very recent study [98] proposes a voxel-based approach based on an
adaptive computation of the maximum number of baseline samples, thus exploiting
as much as possible signal’s information from which deriving a more reliable baseline
value. Finally, Figure 4.4 shows the TACs corresponding to the TCCs reported in
Figure 4.3(b).

4.2 Physiology of the organ: single or dual input model

TACs measure the average concentration of CA within image voxel which varies
consequently to its flow within the tissue. A basic assumption of CTp imaging is
that each voxel is supplied by an impermeable artery which transports the CA to
a permeable capillary, from which, in its turn, it comes out into the interstitial
space. Then, CA is driven out of the voxel through an impermeable vein [99].
Accordingly, tissue voxel is mathematically modelled using a single input model,
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Fig. 4.4: TACs achieved from the TCCs in Figure 4.3 after baseline removal. In red, the
median TAC.

where the tissue box, independently from its internal structures defined based on
the CA kinetic model adopted (Sect. 4.3), is linked to the vascular network through
one input and output pathways, as shown in Figure 4.5 (a). Actually, some human

(a) (b)

Tissue TISSUEInput Output

Input 1

Input 2

OutputTissue

Fig. 4.5: Selection of the model to be used for studying tissue perfusion based on the
physiology of the organ: a single input model with one only inflow and outflow (a) and a
dual input (b) model accounting for the two vascular inputs supplying lung and liver.

organs, including lung and liver, receive a substantial blood supply from two main
vessels, therefore the employment of such a single input model may underestimate
any quantitative measurement of tissue perfusion [100]. In those cases, a more
accurate representation of tissue physiology is achieved by considering a dual input
model, as the one shown in Figure 4.5 (b), where the two inputs mix with each
other at the inflow of the tissue capillary bed and the tracer concentration observed
in the tissue and reaching the unique outflow pathway results from the proportional
contributions of the inputs themselves.

For instance, in lung, blood supply is split between the pulmonary and bronchial
circulation, therefore the two main input vessels considered in perfusion analysis
are the pulmonary and aortic arteries [101], whilst in liver, the blood reaches the
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tissue from the aorta and the portal vein [102]. Actually, because of difficulties in
imaging the second vascular supply, single input models have been largely adopted
for lung and liver too. In particular, in lung, before the widespread of 320-row CT
systems, the z-coverage provided by the previous CT scanners did not allow imaging
the pulmonary artery within the maximum temporal limit imposed by dynamic
acquisitions of thorax [103], and the same happened in liver, where in order to image
the portal vein or its major branches, the region of the hepatic hilum need to be
included, with consequent technical difficulties due to the narrow z-coverage [104].
In addition, in liver, the use of single input model has been largely justified by
considering that the major blood supply in hepatic tumours arises from the arterial
inflow [105]. Moreover, in some cases, the portal vein is not visible in images and
this hampers the correct ROI drawing, therefore the single input model results to
be the only practicable solution for performing perfusion analysis [106].

Although the adoption of such a dual input model may increase both the clin-
ical accuracy of the results and allow a wider comprehension of more biological
mechanisms underlying different clinical diseases, dual input models complicate the
mathematical modelling due to the presence of time delays, that need to be taken
into account [107]. In fact, on the one hand, the delay between the two inputs
makes very challenging to estimate the mixing proportion of the vascular contribu-
tions which determines the tissue tracer enhancement. On the other hand, there is
a further delay between the input vessels and the delivery of CA at tissue capillaries
which complicates the tissue modelling. As we will see, even small delays in the
arrival of the CA at the tissue may strongly influence the computation of perfusion
parameters.

4.3 Kinetics of the contrast agent

CTp imaging allows studying different tissue hemodynamic features depending
on the CA adopted and injection modality, besides the choice of the tracer kinetic
model. Generally, to fulfil the assumptions of different mathematical models used to
compute perfusion parameters, a short sharp injection of CA is recommended [55],
thus ensuring that the CA concentration in the input vessel reaches its peak before
the maximum tissue enhancement. In particular, this requirement is necessary when
compartmental analysis (Sect. 4.5.2) is performed. Accordingly, CA is generally
administered through a bolus of 40-50 ml at 5-10 ml/s. Some computing methods,
like Deconvolution, are less affected by slower injection rates, albeit faster injections
are useful since they improve the SNR of the TCCs.

Also intrinsic properties of the CA have an effect on the tissue hemodynamics
assessed through a perfusion study. One can distinguish mainly two types of CA,
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intravascular and extravascular. Early applications of CTp imaging primarily con-
sidered extravascular CAs, which pass across the capillary membrane towards the
extravascular space. Later on, intravascular iodinated CAs have been developed
to obtain more vascular-specific perfusion parameters and a prolonged tissue en-
hancement. In fact, intravascular CAs have shown to improve the computation of
perfusion parameters, since a prolonged and emphasized tissue enhancement facili-
tate the mathematical modelling of the TCCs. For this reason, they are, nowadays,
the most frequently adopted in perfusion studies [96].

4.3.1 First pass or recirculation

The study of perfusion may be limited to the first pass of CA into the vascular
compartment of the tissue of interest, or include the CA recirculating phases, when
CA is progressively washed out by the vascular circulatory system over subsequent
cardiac cycles. Accordingly, CTp acquisitions last from 40 to 60 s if perfusion anal-
ysis focus on the first pass, otherwise they cover a longer time interval, up to 2 or
3 min [54]. During first pass, CA has mainly an intravascular distribution, whereas
in the recirculating phase CA moves towards the extravascular space. A short and
sharp CA bolus injection is important to obtain the characteristic rapid increase in
up-slope of the CA enhancement, which reaches a peak and then decreases to the
baseline value [108]. Accordingly, a high temporal resolution is needed in first pass
acquisitions in order to catch the rapid variations of the signals, while, to reduce
radiation exposure, a lower resolution is accepted in the CA delayed phase [54].
From a clinical point of view, it could be interesting to assess variations of perfu-
sion parameters between first pass and recirculation, also considering that perfusion
parameters in each of the two phases can have a different prognostic or predictive
role. In this regard, a different selection of the end of the first pass can strongly
vary the values of the computed perfusion parameters [109]. Figure 4.6 shows a
representative vascular TAC of the aortic artery where the two kinetic phases are
highlighted. Actually, distinguishing between the two kinetic phases of the CA on
the TACs extracted from image sequences can be very challenging. Some simula-
tion studies show that the CA kinetics limited to the first pass of CA is represented
by a TAC decaying to the baseline, after its peak [110], and it is well-known that
when adopting sharp and short bolus injections, the recirculation contributes to
TACs mainly after that its peak occurs, in vessels as well as in tissue curves [111].
An additional complexity arises when considering a dual input physiological model,
where the tissue enhancement results from the overlapping of two different kinetic
phases of CA within the respective input vessels. Some studies define the end of the
first pass as the lowest point reached after the maximal peak and before recircula-
tion peak, and accordingly, some software packages have implemented an automatic
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Fig. 4.6: Kinetics of the CA comprising two main phases, the first pass, when CA mainly
flows into the intravascular compartment, and the recirculation, when CA moves towards the
extravascular compartment.

computation of the first pass time, also to be evaluated as an additional perfusion
parameter [109]. However, two major considerations are needed. First, computing
the end of the first pass as the first local minimum after the signal’s peak leads to
non-robust and unreliable measurements, which mostly suffer from noise, variations
in sampling frequency, motion artefacts, and ROI positioning. Second, except for
arterial input TACs, tissue curves do not show a clear local minimum after the peak,
but the descending phase of the signal after the peak is progressively integrated in
the subsequent re-enhancement of the signal itself due to recirculation. Therefore,
this method cannot be applied and leads to a strongly approximate solution.

From a methodological point of view, the correct separation of first pass and
recirculation still remains an open issue and, at the best of my knowledge, none
alternative solutions have been proposed so far. Actually, the problem has had a
limited interest in research studies since one of the early changes in tissue perfusion
due to angiogenesis and tumour growth is observed in alterations of vascular per-
meability, thus requiring the study of the entire vascular dynamics, including the
recirculation phase (i.e. when CA extravasates), and generally performed through
multi-compartmental computing methods [108]. However, it is worth notice that
this lack limits the applicability of some perfusion methods and does not allow the
comparison of results achieved with different perfusion methods, thus delaying the
standardization and reproducibility of results of the CTp, and ultimately contribut-
ing to postpone its translation into the clinical practice.
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4.3.2 Mono and multicompartmental model

To accomplish the clinical purpose, perfusion imaging should refer to the first
pass only or include the recirculating kinetic phase of the CA. Accordingly, tissue
modelling may be limited to represent the intravascular compartment, thus adopting
a monocompartmental model, or can be extended to describe also the extravascular
space with a multicompartmental model. A monocompartmental model is suitable
when perfusion imaging protocol adopts an intravascular CA (i.e. with a negligible
dispersion in the interstice during the first pass) and is focused on the first pass phase
of the CA kinetics. By assuming a single compartment, one can measure a reduced
number of perfusion parameters, namely BF, BV, MTT, and PI if a dual input
organ is considered. Instead, a multicompartmental model is needed to describe
the recirculation of CA into the vascular network, which include its extravasation
through highly permeable capillaries [108].

Perfusion compartmental models aim at describing the exchanges which occur
between tissue and blood within the capillary bed, using simplified boxes made of
one or multiple interacting chambers. From a biological point of view, as shown in
Figure 4.7 (a), capillaries are constituted of erythrocytes within the blood plasma
(PSL), and separated from the extracellular space (EES) by a thin layer of endothe-
lial cells, semi-permeable to small molecules, whereas tissue includes cells, which
are separated by frost protein fibers called interstice, generally referred to as the
entire EES. Accordingly, whilst BF refers to the flow within PSL, BV is generally
split into two components BVe and BVp, referred to EES and PLS, respectively.
Similarly, the blood flow from PLS to EES is assessed through the permeability-
related perfusion parameters. From a mathematical point of view, this biological
system is represented by a compartmental model as the one shown in Figure 4.7
(b). The internal cylinder indicates the PLS, whilst the external one refers to EES.
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Fig. 4.7: Representation of a tissue capillary through a biological (a) and mathematical (b)
model. The CA entering the compartment is driven into the PLS and exits towards the EES
by passing across the permeable endothelial cells of the membrane.
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Capillary permeability ensures the exchanges between the two regions. Figure 4.8
reports a simplified version of the capillary modelling through compartments. In

Fig. 4.8: Representation of simplified version of mono (a) and multicompartmental (b) models
corresponding to the system reported in Figure 4.7(b).

particular, Figure 4.8 (a) describes a monocompartmental model representing the
PLS only, whilst Figure 4.8 (b) a multicompartmental model, including both PLS
and EES [112].

Models employed to describe tissue perfusion exchanges are assumed to be well-
mixed or plug-flow compartments, as shown in Figure 4.9. In the first case, a

Fig. 4.9: Compartmental models distinguished in well-mixed (a) and plug-flow (b) systems.
In the first case, there is an instantaneous mixing of CA within the PLS and its concentration
is spatially homogeneous, whilst in the second case, the concentration of CA within the
compartment is spatio dependent. Accordingly, to account for each position, the entire length
L of the capillary is split into infinitesimal elements dx.

well-mixed compartment (Figure 4.9 (a)), the concentration of CA is considered
to be uniform in the unit volume, along the whole length L, for each sampling
time. Accordingly, the CA flowing towards the outlet is directly proportional to its
concentration in the entire compartment. Well-mixed systems neglect spatial het-
erogeneities in CA concentration within the capillary bed, which can be caused, for
instance, by the multiple contributions arriving at tissue inflow from small arteri-
oles. In the second case, a plug-flow compartment (Figure 4.9 (b)), the assumption
of spatial homogeneity in CA concentration is relaxed. Moreover, a plug-flow system
requires as additional assumption that the diameter of a single erythrocyte is larger
than that one of a single capillary, thus forcing erythrocytes to travel in single file
through the capillary, therefore with a uniform velocity. Hence, in a capillary of
a given length L, the concentration of CA is spatial dependent. Accordingly, L is
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split into small disks with infinitesimal thickness dx and the concentration of CA is
usually referred to each of them [113].

4.4 TCC fitting models

In most practical cases, the pipeline to compute the perfusion parameters from
a CTp study requires to model also the TACs through a fitting procedure. The
main aim of such a fitting stage is to remove residual noise from signals [114], thus
benefiting the computing methods in achieving more robust measurements than
those ones computed on raw data [115]. For this purpose, numerous mathematical
fitting methods are at the disposal and a detailed explanation of all of them is beyond
the scope of this manuscript. However, it is worth noting that a major classification
of fitting models distinguishes between non-parametric and parametric ones. The
former extract information exclusively from data, thus suffering from noise and
presence of outliers and hampering the clinical interpretation of the model itself.
The latter are defined through a finite number of known parameters with well-
established mathematical relationships. Moreover, parametric fitting models are
based on physiological models, and have been already used by the literature, since
they explain physiological and pathological behaviours, thus definitely contributing
to enrich the clinical interpretation of the quantitative perfusion analysis. For these
reasons, parametric models are by far the most frequently adopted class in perfusion
studies [95],[116]. I also adopted parametric models for fitting the vascular and tissue
signals because the sparse and non-uniform sampling of extracted TACs did not make
the employment of non-parametric models physiologically acceptable. Therefore, I
preferred having reasonably a fitting error higher than that one which I could have
obtained using non-parametric models, but preserving the correspondence between
the fitting model and the physiological meaning of the signals. Nevertheless, the
employment of non-parametric models can be addressed in a future stage of this
research.

Rather than on the whole TAC, including CA recirculation, a fitting procedure
can be performed exclusively in some portions of the TACs, for instance in order
the extract the contribution referred to the first pass only, thus allowing assessing
vascular hemodynamics into the two CA phases separately.

Different parametric models have been largely employed in TAC modelling. In
the following, the most popular methods will be detailed, one of which primarily
employed for vascular TACs, the Lagged Normal (LN) model (Sect. 4.4.1), whilst
some others largely used for fitting the tissue TACs, the sigmoid (Sect. 4.4.2) and
Gamma Variate (Sect. 4.4.3). In this regard, in the absence of specific values, fitting
parameters are unitless.
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4.4.1 The lagged normal

The LN model has been parametrized with the specific aim of describing the
dispersion of an indicator in arterial or, in general, large vessels [117]. Initially, the
distribution of an indicator within the vascular network has been described through
a normal density curve, as reported in Equation 4.1:

f1(t) =

 1
σ
√
2π
e−

1
2
( t−tc

σ
)2 , for t ≥ 0

0, for t < 0
(4.1)

where, f1(t) is a Gaussian curve of unit area, standard deviation σ, and central
time tc, around which transit times are symmetrically distributed. However, later
on, experimental observations have highlighted that indicator curves obtained in
mixing chambers tend to be always skewed, so that a first order exponential term
has been introduced, as the one formalized in Equation 4.2:

f2(t) =
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τ · e

− t
τ , for t ≥ 0

0, for t < 0
(4.2)

where, f2(t) is the exponential function with decay time, τ . Hence, from the com-
bination of the two contributions arising from Eqs. 4.1 and 4.2, the formulation of
the LN model is derived and expressed through a differential equation, as reported
in Equation 4.3:
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Equation 4.3 can also be represented by means of three more practical parameters
enabling data-driven criteria of selection, the skewness (s), the mean time (tm), and
the Relative Dispersion (RD), which allow expressing the three LN parameters, as
described by Eqs. 4.4, 4.5, and 4.6:

τ = RD · tm·
(s
2

) 1
3 (4.4)

σ =
√
(RD · tm)2 − τ2 (4.5)

tc = tm − τ (4.6)

In particular, s, as it is defined for a Gaussian process, determines the degree of
asymmetry, thus assuming positive values for the LN model, whereas tm indicates the
mean transit time of the LN, which combines the effects of Gaussian and exponential
decay times. For instance, Figure 4.10 (a) shows an example of LN function in
order to appreciate the right-skewed decay, characteristic of the model, where tm is
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Fig. 4.10: (a) Representative behaviour of a LN fitting model, with such a right-skewed decay,
where the parameter tm is highlighted. In (b), it is reported the variation of the LN model
when tm ranges between 10 s and 30 s with step equals to 5 s

highlighted. Figure 4.10 (b) shows the behaviour of the LN as tm varies between
tm = [10 ÷ 30] s, a reasonable interval for vascular TCCs, with step equals to 5
s. Accordingly, the shifting of tm towards higher values induces larger and lower
functions. Finally, RD describes the variance of the LN normalized with respect to
tm and is expressed by Equation 4.7:

RD =

∫∞
0 f(τ)(τ − tm)2dτ

tm

RD ≃
∫ tmax

tmin
f(τ)(τ − tm)2dτ

tm

(4.7)

Figure 4.11 shows how LN shape varies as RD and s range between RD = [0.3÷1.1]

[a.u.] and s = [0.5÷ 1, 7] [a.u.], respectively. Actually, since Equation 4.3 describes
a probability density function, it is scaled, for normalization purposes, by a global
factor which represents the area under the observed curve (AUC).

Figure 4.12 shows an example of LN fitting performed on the TAC extracted
from the aortic artery in a hepatic CTp examination, where AUC=6078, s=1.09,
RD=0.3, and tm=22. In this case, the LN function fits the vascular TAC during
the first pass phase of the CA, then decays to the baseline value.

So far, the LN is still the widely adopted model for representing TACs extracted
from large vessels [116], and strongly suggested for applications in liver studies [118].
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Fig. 4.11: Example of LN model with Area = 800, tm=17 s, and varying RD (a) and s (b),
respectively. In particular, when RD varies between RD = [0.3÷ 1.1], s = 1.5 (a), and when
s = [0.5÷ 1, 7], RD is kept fixed at 0.3. The two parameters show an opposite effect on the
shape of the LN. Higher RD values induces larger and lower functions, whilst higher s values
leads to more asymmetric functions, spread in a narrower range, therefore reaching a higher
peak value.

Fig. 4.12: Example of LN fitting of a vascular TCC extracted from the aortic artery in liver
CTp examination. In this case, AUC=6078, s=1.09, RD=0.3, and tm=22

4.4.2 The sigmoid

The employment of the sigmoid model mostly relies on applications focused
on the study of only the first pass CA kinetic phase [119]. In fact, this model is
particularly suitable to represent the up-slope signal curves due to the arrival of CA
in tissue. Varying model parameters allows achieving a very accurate fitting of the
ascending phase of the TACs, thanks to its flexibility with respect to experimental
data, albeit limited up to the TAC peak value. From Hill’s equation, the sigmoid
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model is described by Equation 4.8:

f(t) = E0 + (Emax − E0)
tα

(EC50 + t)α
(4.8)

where, Emax is the maximal concentration reached (i.e. the saturation value), there-
fore corresponding to the TAC’s peak value, whilst E0 represents the baseline con-
centration (i.e. before the enhancement). EC50 represents the time instant when
E(t) reaches the half-value of Emax, whilst α is the parameter that determines the
slope of the curve’s ascent, mostly affecting the shape of the model. A graphi-
cal explanation of E0, Emax, and EC50 is provided in Figure 4.13 (a), showing a

Fig. 4.13: In (a), the representative behaviour of a sigmoid model with the three parameters
E0, Emax, and EC50 highlighted in order to clarify their meaning; in (b), variation of the
sigmoid as α = [3÷ 12], which modifies the up-slope of the curve.

representative behaviour of a sigmoid model. In addition, Figure 4.13 (b) shows
the variation of the sigmoid’s up-slope depending on the α parameter, in this case
ranging within α = [3÷ 15] with step 3.

Figure 4.14 (a) shows an example of a tissue TCC extracted from a liver CTp
examination, fitted by a sigmoid model, with E0 = 65, Emax = 147, EC50 = 22.9s,
and α = 8.4. As one can see, the sigmoid fits the TCC samples up to the peak value,
then reaching saturation. In particular, Figure 4.14 (b) highlights the fitting model
achieved during the ascending phase of the signal. Accordingly, a large use of this
model is diffused in perfusion studies exploiting the MS (Sect. 4.5.1) to compute
perfusion parameters, where BF is derived from only the portion of signal comprises
between the first enhancement and peak samples [93].
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Fig. 4.14: In (a), the fitted signal; in (b), the fitted signal focused on the ascent phase of
the signal.

4.4.3 The gamma variate

More than the sigmoidal model, the GV [120] is nowadays the reference model
for representing tissue TACs, both in phantom [121],[122] and human studies[123],
also exploited for representing the enhancement in large vessels, like the portal vein
in the hepatic perfusion [124].

According to its original formalization [125], the GV model is described by Equa-
tion 4.9:

f(t) = K(t− t0)
α · e−

(
(t−t0)

β

)
(4.9)

which is valid for t > t0, where t0 is the location time, the first time instant when
f(t) is non-null. Moreover, K is a global scale factor, and α and β are shape and
scale factors, respectively. Figure 4.15 shows the effect of varying t0 in Equation 4.9,
which substantially causes a right-time-shift of the curve, thus representing a delayed
arrival of the CA within tissue.

Since the early applications, GV function has proved to be very suitable in
representing tracer dilution curves. In addition, this model, whose mathematical
derivation can be found in detail in [126], allows a physiological interpretation of the
parameters, thus being suggested for its application in perfusion studies. In brief,
by following what explained for compartmental models in Sect. 4.3.2, a blood vessel
can be modelled as a series of mixing chambers with equal volume V , which receives
from the vascular input a blood flow at a rate, Q. Accordingly, the parameter α in
Equation 4.9 is related to the number of mixing chambers within the vessel’s model,
whilst β is given by the ratio of Q and V , as expressed in Eqs. 4.10 and 4.11:

α = n− 1 (4.10)
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Fig. 4.15: Example of GV model with K = 0.5, α = 2, and β = 10, with t0 = [1 : 4 : 20].
Variation of t0 causes a right-shift of the curve over time.

β =
V

Q
(4.11)

Hence, α and β have an opposite meaning. In practice, by assuming a constant Q, the
higher α (i.e., the higher the number of mixing chambers) the lower V , that means
that each chamber is expected to have a reduced V in order to preserve the rate Q.
Accordingly, an opposite behaviour is expected in the shape of the GV function by
varying, in Equation 4.9, α or β, respectively. In this regard, Figure 4.16 shows some

Fig. 4.16: Example of a GV function with varying α (a) and β (b), respectively, and others
parameters kept fixed at t0 = 1, and K = 1. In particular, while α varies, β = 0.5 and
viceversa. If only α is varying, the GV curves reproduce slower mean transit times as the value
of α increases (a), whilst if only β is varying, the curves describes a higher rate Q for higher
β values.

GV curves achieved when one between α or β is varying within [0.5,0.8,1,1.2,1.6]
and the other parameters are kept fixed at t0 = 1 and K = 1. In particular, in
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Figure 4.16 (a), α is varying and β = 0.5, and the opposite is shown in Figure 4.16
(b). By assuming a constant β, lower α values describe a slower mean transit time
of CA within the tissue compartment, whilst, if α is constant, lower values of β can
reproduce higher flow rate of CA entering the compartment.

A simplified version of Equation 4.9 is obtained by considering t0 = 0, thus
achieving Equation 4.12:

f(t) = Ktα · e−
(

t
β

)
(4.12)

Hence, Equation 4.12 can be exploited to derive the relationship between α and β

and the time tmax, that is the time instant when the GV peak value occurs, by
setting its first derivative to zero. Therefore, from Equation 4.13:

f ′(tmax) = 0

= K

[
αtmax

α−1 · e−
tmax

β −
e− tmax

β

βtαmax

]

= Ktmax
α−1e

− tmax
β

[
α− tmax

β

] (4.13)

Equation 4.14 can be derived, also expressed in the form of Equation 4.15:

tmax = α · β (4.14)

β =
tmax

α
(4.15)

Equation 4.14 is also graphically described by Figure 4.17 where the GV model is
represented according to the variation of the ratio between α and β. One can see that
tmax of each curve moves towards lower or higher values according to Equation 4.14.
Finally, K can be expressed in terms of f(tmax), thus achieving Equation 4.16:

Fig. 4.17: A graphical representation of the relationship between α and β as reported in
Equation 4.14. tmax of each curve varies depending on the value of α and β.
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K = f(tmax) · t−α
max · eα (4.16)

Figure 4.18 shows the fitting of the same TCC reported in Figure 4.14 (a) through

Fig. 4.18: Comparison between the sigmoid fitting reported in Figure 4.14(a) and the GV
fitting, which allows fitting the first pass kinetics of the CA rather than the only ascending
phase of the TCC as the sigmoidal model does.

a GV function, with K ∼ 10−6, α = 6.96, β = 3.99, and t0=6 s (estimated through
a minimization procedure employing the Interior Point, IP, algorithm). It is worth
noting, as highlighted in Sect. 4.4.2, that while the fitting with a sigmoid model is
limited to the ascending phase of the TCC, the GV model allows fitting the entire
first pass kinetics of the CA. Moreover, a mixture of GV functions can be used to
fit the whole signal, thus including the recirculation.

4.5 Computing methods for perfusion parameters

Several computing methods can be applied on the TACs, and in most of cases, on
their fitted versions, in order to derive perfusion parameters, which allow quantifying
tissue perfusion. In this regard, in Chapter 3, Sect. 3.2, the most widely adopted
perfusion parameters have been introduced.

A major classification of perfusion computing methods relies on the theoretical
principle exploited for carrying out the mathematical modelling. A method, on the
ground of the Indicator Dilution Theory (IDT), adopts a deconvolution approach
on a monocompartmental model. Accordingly, it allows computing BF, BV, and
MTT and neglects the computation of permeability-related perfusion parameters.
Instead, numerous other methods are based on the Fick’s principle, and by adopt-
ing mono or multicomparmental models, provide analytical solutions to a variable
number of differential equations which describe each of the compartment involved
in the model. The higher number of compartments, the more detailed the descrip-
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tion of diffusive exchanges, and the greater number of the perfusion parameters
computed, accordingly. Among compartmental models, MS exploits Fick’s prin-
ciple and the mass conservation’s law under the assumption of no venous outflow
from the compartment, and provides an approximate solution of the basic differ-
ential equation representing the monocompartmental model. It allows extracting
only the BF, referred to the first pass CA kinetic phase. Although allowing a lim-
ited representation of tissue perfusion, MS has been largely employed due to its low
complexity and robustness, and as such it is detailed in Sect. 4.5.1. In addition,
the most diffused compartmental methods are presented in Sect. 4.5.2, limiting the
description to those ones employing bicompartmental models. At the end, the DV
method is explained and discussed in Sect. 4.5.3.

4.5.1 Maximum Slope

MS is based on the assumption of a monocompartmental model as the one repre-
sented in Figure 4.19, describing a unit of tissue volume where a blood flow carrying

Cin(t) Cout(t)CT(t)
VT

Fig. 4.19: The diffusion of a tracer is described through the Fick’s principle using a single
input monocompartmental model. The BF within the unit of tissue volume VT , is mea-
sured by applying the mass conservation’s law. Cin(t), CT (t), and Cout(t) represent the
CA concentration at the arterial input, within the compartment, and at the venous outflow,
respectively.

on a certain quantity of CA comes from an input artery and is driven out through
a venous vessel. In particular, in order to fulfil the monocompartment hypothe-
sis, MS assumes the conservation of the mass under the assumption of no venous
outflow [127]. Accordingly, on the ground of the mass conservation’s law, the Fick
principle describes the diffusion of a tracer through a single input compartmental
model, as expressed by Equation 4.17:

dCT (t)

dt
=

BF
VT

[Cin(t)− Cout(t)] (4.17)

where, CT (t) is the CA concentration within the tissue volume, VT , where a certain
amount of BF is exchanged. Cin(t) represents the CA input concentration usually
referred to as the arterial blood plasma concentration CA(t), whilst Cout(t) refers
to the venous outflow. Actually, a minimum transit time exists before the injected
CA reaches the venous circulation, when it is assumed to be still inside tissue.



4.5. Computing methods for perfusion parameters 65

Therefore, under the assumption of no venous outflow, Cout ≈ 0, and Equation 4.17
can be simplified as follows (Equation 4.18):

dCT (t)

dt
≈ BF

VT
Cin(t) (4.18)

This also implies that CT (t) reaches its maximum slope in the correspondence of
the maximum value of Cin(t). Assuming VT as a normalization factor represented
by a constant volume unit, BF is given by Equation 4.19 [128], that is the MS of
the tissue TAC normalized by the maximum value of the input TAC.

BF ≈
dCT (t)

dt |max

Cin(t)|max
(4.19)

In addition, Figure 4.20 provides a graphical representation of the computation of
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Fig. 4.20: Graphical representations of the terms of Equation 4.19 which define the formula-
tion of the MS method for computing the BF by assuming a single input model.

BF with MS as in Equation 4.19.
The original MS formulation, thought for single input monocompartmental mod-

els, needs to be extended to be applied also in dual input models (Sect. 4.2). For
instance, in case of a liver CTp study, the quantitative assessment of tissue perfusion
has to account for the two contributions arising from the arterial and portal vascular
circulation. In practice, the computation of BF in Equation 4.19, is split into two
additional terms, according to Equation 4.20:

BF = aBF + pBF (4.20)

where, aBF refers to the BF arriving from the arterial vessel, while pBF is the BF
received from the portal vein. Therefore, by substituting Equation 4.19 into each
term of Equation 4.20, the dual input expression of the MS method is achieved, as
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reported in Equation 4.21:

BF ≈
dCTA

(t)

dt |max

CA(t)|max
+

dCTP
(t)

dt |max

CP (t)|max
(4.21)

where, CTA
(t) and CTP

(t) are the components of tissue TAC, each referred to a
different input, that is the arterial (CA(t)) and portal (CP (t)) vessels, respectively.

However, under the MS approach CTA
(t) and CTP

(t) cannot be analytically
separated. Commonly, they are approximated by exploiting the TAC extracted
from the spleen. In particular, the peak’s time of the splenic TAC is assumed as
the end of the arterial phase and the begin of the portal phase on the tissue TAC.
Accordingly, the two components CTA

(t) and CTP
(t) are given by Eqs. 4.22 and

4.23 [129]:
CTA

(t) ≈ CT (t)|t∈[0,CS(tmax)) (4.22)

CTP
(t) ≈ CT (t)|t≥CS(tmax) (4.23)

where CS(t) is the mean TAC extracted from the spleen and tmax is the time instant
when its peak occurs. In this regard, Figure 4.21 extends the graphical representa-
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Fig. 4.21: Graphical representations of the terms of Equation 4.21 which define the extention
of the MS method for computing the BF in a dual input model.

tion of Figure 4.20 with the representation of the terms involved in the computation
of the dual input MS (Equation 4.21) for the representative case of hepatic perfusion
study. Actually, in case of dual input MS, besides BF, a further perfusion parame-
ter can be computed, that is the PI. In case of liver, PI is commonly referred to as
Hepatic PI (HPI), and is expressed by Equation 4.24.

HPI = aBF
aBF+pBF (4.24)

The main advantage of employing MS for the computation of perfusion parameters is
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that it strongly allows reducing acquisition times, and, in case of CTp, the radiation
dose administered to patient, accordingly. Moreover, MS is a simple method, with
a low computational complexity, therefore implemented in many software packages
commercialized for perfusion analyses [130]. Yet more, according to its mathematical
formulation, MS yields robust measurements, albeit sometimes poorly accurate. In
this regard, it is worth noting that, as shown in Figure 4.20, the peak’s time of
the input function may not correspond to the time of the MS on the tissue TAC,
and this happens in most practical cases. Such a delay between the two TACs is
known to cause underestimated BF measurements. In addition, the MS method is
based on the assumption of no venous outflow, which is valid for very few seconds,
therefore often in the MS’s time instant a venous outflow already exists, thus leading
to inaccuracies in the BF estimates [131].

The biggest open issue relies on the application of MS when studying perfu-
sion of dual input organs. MS is commonly used in most recent works assessing,
for instance, liver perfusion with the approximate solution above presented (Equa-
tion 4.21) and none alternative approach have been proposed so far [132]. Such
an approximative solution makes substantially not comparable BF values computed
with MS to the measurements achieved with other methods, thus ultimately jeop-
ardizing the reliability of the measures themselves. It is also worth noting that MS
has been conceived to compute BF only. Accordingly, in many applications, MS
is used in association with the Patlak model – one of the compartmental methods
which is explained in the next Sect. 4.5.2 – to estimate more perfusion parameters.

4.5.2 Compartmental model

Dual input single compartmental models, like the one presented in Figure 4.22,
can be described, alternatively to the MS method, by the Materne one [133]. Ac-

Cout(t)CT(t)
VT

CA(t)

CP(t)

k1A

k1P

k2

Fig. 4.22: Representation of a dual input single compartmental model, referring for instance
to hepatic perfusion, described by the Matterne method exploiting the Fick’s principle.

cordingly, the differential equation in Equation 4.17 valid for the single input model
in Figure 4.19, can be rewritten as in Equation 4.25:

dCT (t)

dt
= k1ACA(t) + k1PCP (t)− k2CT (t) (4.25)
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where k1A and k1P are the arterial and portal venous inflow rate constant, while
k2 is the outflow rate constant. By solving for CT (t), also including two time delay
parameters, τA and τP , accounting for the transit time from the artery (generally
the aorta) and portal vein to the tissue, one achieves Equation 4.26:

CT (t) =

∫ t

0
k1ACA(t

′ − τA) + k1PCP (t
′ − τP )e

−k2(t−t′)dt′ (4.26)

where CT (0)=0 is assumed. Hence, an unweighted least squares fit of the exper-
imental CT (t) through the model reported in Equation 4.26 allows achieving the
parameters k1A, k1P , and k2. Accordingly, total tissue perfusion is calculated as
follows (Equation 4.27):

BF =
k1A + k1P

EF
(4.27)

where EF is assumed to be unit in the normal liver, that means that CA is free to
access the EES, thus leading to Eqs. 4.28,4.29:

aBF = k1A (4.28)

pBF = k1P (4.29)

Finally, MTT is derived from k2, according to Equation 4.30:

MTT = k−1
2 (4.30)

The methods presented so far limits the quantification of tissue perfusion at
the PLS. Extending quantitative perfusion analysis to the EES can be performed
through exchange or uptake models. The major difference between them relies on
whether the assumption that CA cannot accumulate into the EES is fulfilled or not.
In case of exchange models, not allowing the CA accumulation, a backward flux of
CA exists from EES to the PLS. In this regard, the simplest method to describe the
tracer’s flow between PLS and EES exploits the two compartments exchange model
(2CX) [113], reported in Figure 4.23. In order to fulfil the mass conservation’s law

Fig. 4.23: Representation of the 2CX model: the CA enters in the PLS, with volume viv
and then reaches the EES, with volume vev. Exchanges between PLS are bidiretional and
measured through the parameter PS.

imposing no CA accumulation within the system, the exchanges between the PLS
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having volume viv, and EES with volume vev are assumed as being bidirectional
and quantified by the parameter PS. The CA enters the PLS, where its flow is Fiv

and moves towards the EES. The total tissue concentration of CA is a weighted
sum of that one in PLS (Civ(t)) and ESS (Cev(t)), respectively, as expressed by
Equation 4.31:

CT (t) = vivCiv(t) + vevCev(t) (4.31)

Accordingly, the EES’s inflow is PSCiv(t) and it is equal to the outflow out of
ESS coming back to the PLS. Then, the model in Figure 4.23 is represented by
Eqs. 4.32,4.33:

Viv
dCiv(t)

dt
= Fiv(Cin(t)− Civ(t)) + PS (Cev(t)− Civ(t)) (4.32)

Vev
dCev(t)

dt
= PS (Civ(t)− Cev(t)) (4.33)

The solution of these equations provide Fiv, viv, vev, and PS.
While the 2CX model describes two well-mixed compartments, an alternative

modelling is represented by the tissue homogeneity (TH) model, where the PLS
is represented as a plug-flow system (Figure 4.24). Since the EES is represented

Vev

PS

VivFiv

Cin(t)

Fig. 4.24: Representation of the THM where the well-mixed EES of the 2CX model is
substituted by a plug-flow system

by a well-mixed system as well as the 2CX model, Equation 4.33 is still valid for
representing the ESS in the TH model. On the contrary, Equation 4.32 needs to
be converted into Equation 4.34, in order to fulfil the assumptions of a plug-flow
system:

Viv

L
∂Civ(x, t)

∂t
= −Fiv

∂Civ(x, t)

∂t
+

PS
L (Cev(x, t)− Civ(x, t)) (4.34)

where the boundary condition is Civ(0, t) = Cin(t). Actually, Equation 4.34 does
not have a solution in the time domain, therefore the TH model has had a limited
diffusion. The adiabatic approximation (AATH) has been proposed in order to
circumvent this lack. The AATH model relies on considering the capillary wall
impermeable to CA along its length, whilst exchanges are admitted only at the
venous end of the capillary, where x = L (Figure 4.25). Therefore, Equation 4.34
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Vev

PS

VivFiv

Cin(t)

Fig. 4.25: Representation of the AATH model, where the CA exchanges are assumed to
happen at the venous outlet only, where x = L, thus allowing solving the Equation 4.34 in
the time domain, considering PS = 0.

can be simplified into Equation 4.35, where PS is assumed to be zero.

Viv

L
∂Civ(x, t)

∂t
= −Fiv

∂Civ(x, t)

∂t
(4.35)

Accordingly, the EES is described by assuming viv tending to zero and Cin(t) =

Civ(L, t) at the venous outlet, as given by Equation 4.36 [134]:

Vev
dCev(t)

dt
= PS (Cin(t)− Cev(t)) (4.36)

By assuming that also the PLS is represented through a plug-flow system, the
distributed parameter (DP) model is derived, as shown in Figure 4.26: The EES is

PS

Viv

Vev

Cin(t)
Fiv

Fig. 4.26: Representation of the DP model: both the PLS and EES compartments are
described through plug-flow systems.

modelled through a series of infinitesimal compartments where, in contrast to the
TH model, in the EES, exchanges are allowed only between adjacent capillary walls.
Consequently, both Civ(t) and Cev(t) depend on the position, x, as expressed by
Equation 4.34 and Equation 4.37:

Vev
∂Cev(x, t)

∂t
= PS (Civ(x, t)− Cev(x, t)) (4.37)

Actually, the assumption of no parallel transport in the EES is not justified by any
biological or physical evidence. However, it allows achieving an analytical solution
for the equations of the DP model [135].

From all the previous models, one can derive the Tofts model by assuming, as
a further assumption, an infinite CA infusion, that means infinite Fiv. Accordingly,
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the Cev(t) can be expressed as in Equation 4.38:

Civ(t) = Ktranse
−t

(
Ktrans

vev

) ∫ t

0
Civ(τ)dτ (4.38)

Hence, Equation 4.31 can be rewritten according to the extended Tofts model, which
include the PLS space too, as in Equation 4.39 [24]:

CT (t) = vivCin(t) +Ktranse−tK
trans

vev

∫ t

0
Civ(τ)dτ (4.39)

Currently, the Tofts model is the most widely used method in perfusion studies,
since it has proved to yield reproducible results, albeit with a limited physiological
interpretation. Moreover, comparison between different centres is constrained by
the adoption of exactly the same perfusion protocol. In fact, Ktrans substantially
combines the effects of physiological conditions referred to capillary permeability and
acquisition conditions. In fact, the model requires a moderate temporal resolution,
because the use of two only parameters might not allow achieving a good fit of the up-
slope phase of the TACs. In this regard, the extended model, with one additional
parameters has proved to increase both the goodness of fit and the physiological
interpretation of results, preserving the robustness of measurements [24].

Under the conditions of small PS, large vev, and short acquisitions times, the
outflow from the EES is negligible and CA tends to accumulate. Accordingly, the
uptake model describes the CA concentration into the EES as in Equation 4.40:

vev
dCev(t)

dt
= PSCiv(t) (4.40)

Actually, in case of uptake models, the EES is not accessible, therefore the number
of perfusion parameters computed is limited to Fiv, PS, and viv [113]. A further
simplification of the uptake model is achieved with by Patlak method, which assumes
an infinite Fiv too, thus reducing the computable parameters at PS and viv [136].
Moreover, this also leads PS to be equal to Ktrans. Hence, Equation 4.39 can be
rewritten as in Equation 4.41:

CT (t) = vivCin(t) +Ktrans

∫ t

0
Civ(τ)dτ (4.41)

The two parameters, Ktrans and viv can be estimated by linear regression. In fact,
by assuming y(t) = CT (t)

Cin(t)
and x(t) =

∫ t
0 Cin(τ)dτ

Cin(t)
, Equation 4.41 can be rewritten as

in Equation 4.42:
y(t) = viv +Ktransx(t) (4.42)

Generally, a graphical solutions of this equation is provided through the Patlak-
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Rutland plot [137].
Compartmental methods for perfusion analysis have had a wide diffusion so far,

thus being implemented in many software packages [138]. However, a complete re-
producibility of results in multicentre studies has not been reached yet. From a
mathematical point of view, they can yield robust measurements, while, from a clin-
ical point of view, they might lead to difficulties in interpreting results. Differential
equations are solved in most of cases through fitting procedures, by which perfusion
parameters are derived by minimization. First, this does not allow separating the
different kinetic phases of the CA and, above all, compartmental methods may force
the representation of tissue perfusion with a specific model, thus hiding or missing
some particular phenomena.

4.5.3 Deconvolution method

The DV method is grounded on the IDT, under the assumption of system linear-
ity and time-invariance [139]. As well as the MS method, DV adopts a monocopart-
mental model like the one reported in Figure 4.19, without no additive hypothesis
on the internal chambers. Hence, the output function Cout(t) is conceived as the
convolution of the input function Cin(t) with the system’s impulse response func-
tion, h(t), representing the probability density function of the transit times of CA
molecules which flow from the inlet towards the outlet (Equation 4.43).

Cout(t) = Cin(t)⊗ h(t)

Cout(t) =

∫ t

0
Cin(τ)h(t− τ)dτ

(4.43)

In particular, h(t) is a characteristics of both the tracer and system and it is mea-
sured as 1/t. However, perfusion imaging does not allow extracting the TACs from
the venous outflow because it is not possible to identify a principal outflow vessel,
and venous blood is a “mixed” blood arising from different regional areas. Therefore,
the analysis of tracer diffusion is performed by considering the tracer which remains
into the tissue rather than exiting the compartment, over time. To this purpose, we
shall hypothesize to collect in a single container all the outflow from the system. In
this case, the total amount of CA at the outlet, is given by the cumulative frequency
function expressed by Equation 4.44

H(t) =

∫ t

0
h(τ)dτ (4.44)

where, H(t) tends to one as t tends to infinite. Accordingly, h(t) and H(t) have the
same time delay, and when h(t) is at its maximum, H(t) has a flex point, then H(t)

approaches unity as h(t) reaches zero. Hence, by looking inside the compartment,
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the function 1−H(t) represents the fraction of the input within the system, at each
time instant t, that is the system’s impulse residue function, R(t) (Equation 4.45).

R(t) = 1−H(t)

R(t) = 1−
∫ t

0
h(τ)dτ

(4.45)

For t = 0, when CA has been injected within the system, R(0) is equal to 1, while
it tends to zero when all tracer molecules have left the tissue. Alternatively, Equa-
tion 4.45 can be written as in Equation 4.46:

h(t) = −dR(t)

dt
(4.46)

Figures. 4.27 (a,b) show h(t) and H(t), respectively, whilst Figure 4.27 (c) reports
the corresponding R(t). In particular, the time delay of H(t) for leaving the zero
line equals the plateau’s length of R(t) at unit value, before decaying. For an
ideal instantaneous injection, R(t) is a first order exponential decay function [140].
However, since the input function, differently from ideality, is not instantaneous,
R(t) may undergo dispersion, so that in practical cases, R(t) assumes the bell-shape
reported in Figure 4.27 (d), with R(tmax) < 1 and occurring for t > 0.

Hence, rewriting Equation 4.17 into its integral form, and considering a unit
volume VT , Equation 4.47 is obtained accordingly, which represents the CA concen-
tration within the compartment through the IDT.

CT (t) = BF

∫ t

0
(Cin(τ)− Cout(τ))dτ (4.47)

By substituting Equation 4.43 into Equation 4.47, we obtain Equation 4.48:

CT (t) = BF

∫ t

0
Cin(τ)dτ −

∫ t

0
Cin(τ)h(t− τ)dτ (4.48)

where, in the first integral, Cin(t) can be equivalently expressed by the convolution
with the delta function, δ(t), thus achieving Equation 4.49:

CT (t) = BF

∫ t

0

(∫ t

0
Cin(ξ)δ(τ − ξ)dξ −

∫ t

0
Cin(ξ)h(τ − ξ)dξ

)
dτ (4.49)

that can be rearranged into Equation 4.50:

CT (t) = BF

∫ t

0
Cin(ξ)

(∫ t

0
δ(τ − ξ)− h(τ − ξ)dτ

)
dξ (4.50)
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Fig. 4.27: The functions h(t), H(t), and R(t) are reported in (a), (b), and (c), respec-
tively, according to their relationship presented in Eqs. 4.44,4.45. h(t)(a) is a probability
density function representing transit times of CA molecules within the system, and its inte-
gration over time yields H(t)(b), which tends to unit, when all molecules have exited the
compartment. Accordingly, R(t), describing the tracer molecules which remains within the
compartment, decays from unit value to zero. In real cases, when tracer injections are not
perfectly instantaneous, R(t) assumes the bell-shape reported in (d), it is spread over time,
with R(tmax) < 1 occurring for t > 0.

By considering that for t > 0 we have (Equation 4.51):

R(t) = 1−
∫ t

0
h(τ)dτ =

∫ t

0
(δ(τ)− h(τ))dτ (4.51)

and by substituting τ ′ = τ − ξ, we achieve (Equation 4.52):∫ t

0
(δ(τ − ξ)− h(τ − ξ))dτ =

∫ t−ξ

−ξ

(
δ(τ ′)− h(τ ′)

)
dτ ′ = R(t− ξ) (4.52)
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Hence, Equation 4.50 can be rewritten into Equation 4.53:

CT (t) = BF

∫ t

0
Cin(ξ)R(t− ξ)dξ (4.53)

Then, a tissue TAC is described by the convolution of Cin(t) with R(t)(Equation 4.54) [114]:

CT (t) = Cin ⊗BF ·R(t) (4.54)

Since perfusion imaging allows measuring CT (t) and Cin(t), a DV procedure allows
recovering R∗(t), which is a BF-scaled version of R(t). Accordingly, BF can be
estimated as the initial value of R∗(t) (Equation 4.55):

BF = R∗(t)|t=t0 (4.55)

or, in practical cases, BF is derived from the maximum value of R∗(t) (Equa-
tion 4.56):

BF = R∗(t)|t=tmax (4.56)

Therefore, once R(t) is known, it is possible to compute h(t) too from Equation 4.46,
in order to measure the MTT, according to Equation 4.57:

MTT =

∫ ∞

0
th(t)dt (4.57)

Then, since BF and MTT are computed from R∗(t) and h(t), respectively, BV is
derived by applying the Central Volume Theorem (CVT), as expressed by Equa-
tion 4.58:

BV = MTT ·BF (4.58)

Alternatively, BV is computed according to Equation 4.59, and MTT from the CVT
as in Equation 4.60:

BV =

∫ t

0
R∗(t)dt (4.59)

MTT =
BV

BF
(4.60)

Actually, DV means solving an ill-posed inverse problem, for which different
approaches have been proposed in the literature, in order to achieve accurate esti-
mates of R∗(t). Model dependent techniques, with a limited utilization, perform a
parametric deconvolution by assuming a predefined model for the R∗(t), thus im-
plicitly imposing a priori knowledge of tissue microvasculature. If on the one hand
this reduces the freedom’s degrees and consequently the computational complexity,
on the other hand small uncertainties in modelling assumptions may lead to totally
incorrect solutions. For this reason, in most practical cases, non parametric DV
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techniques are adopted, which mainly exploit an algebraic approach. This implies
a reformulation of the convolution problem (Equation 4.54) in its matrix form, by
assuming that for discrete small time instants, R∗(t) and the TACs are constant.

To this purpose, Equation 4.54 is represented according to Equation 4.61:

Ax = b (4.61)

where A ∈ Rn×n and b ∈ Rn represent Cin(t) and CT (t), respectively, with n the
number of TCC samples. In particular, A expresses Cin(t) in Equation 4.62:

A =


Cin(t1) 0 0 ... 0

Cin(t2) Cin(t1) 0 ... 0

Cin(t3) Cin(t2) Cin(t1) ... 0

... ... ... ... 0

Cin(tN ) Cin(tN−1) ... ... Cin(t1)

 (4.62)

whereas b is the voxel-based CT (t) (Equation 4.63):

b =


CT (t1)

CT (t2)

...

...

CT (tN )

 (4.63)

Performing DV means estimating x from Equation 4.61, as expressed by Equa-
tion 4.64:

x = A−1b (4.64)

whose best solution is given by Equation 4.65, through the least-square minimiza-
tion:

min
x
∥Ax− b∥2 (4.65)

However, A is known to be ill-conditioned and several regularization methods are
proposed in the literature for improving DV accurateness, including Tikhonov method
[141], truncated Singular Value Decomposition (tSVD), circular tSVD (cTSVD) [142].
In partciular, cTSVD is a well-established technique for CTp, allowing for time de-
lays between the vascular input and the tissue curves [143]. In practice, in order
to prevent aliasing in circular deconvolution, Cin(t) and CT (t) are first zero-padded
for L = 2n samples. Then, the circular square matrix Ac ∈ RL×L is implemented
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according to Equation 4.66 [144]:

Ac
i,j =

Cin(ti−j+1), for j ≤ i
Cin(tL+i−j+1), for j > i

(4.66)

The cTSVD solution is achieved by SVD decomposition of Ac, so that its inverse
matrix Ac−1 = VΣUT, where Σ is the diagonal matrix of the singular values sorted
in descending order, and V and U contain the left- and the right-singular vectors,
respectively. In order to reduce the oscillation of the solution, the less representative
singular values in Σ are removed [145].

By solving the algebraic decomposition, DV allows estimating the three per-
fusion parameters which mainly represent the intravascular compartment, that is
BF, BV, and MTT. From a theoretical point of view, the DV approach can be ex-
ploited to compute the three perfusion parameters both including and excluding the
recirculating phase of the CA. However, in practice, the last case depends on the
availability of proper methods to extract the TCC referred to the first pass only
from the longer signals, as explained in Sect. 4.3.1.

Moreover, like for the MS method, an additional complexity arises when perform-
ing DV in dual input models. By recalling what explained in Chapter 3, Sect. 3.2,
dual input perfusion introduces an additional perfusion parameters that in case of
liver perfusion, is the HPI, whose formulation has been previously reported for the
MS method. In practice, a dual input model means that Equation 4.54 has to be
expressed as in Equation 4.67:

CT (t) = [HPI · CA(t) + (1−HPI) · CP (t)]⊗R∗(t) (4.67)

where, Cin(t) is split into the linear combination of the two inputs, weighted by the
HPI. Similarly, Equation 4.67 can be rewritten and split into the two Eqs.4.68.4.69:

CTA
(t) = [HPI · CA(t)]⊗R∗(t) (4.68)

CTP
(t) = [1-HPI · CP (t)]⊗R∗(t) (4.69)

where, CTA
(t) and CTP

(t) are the TACs referred to CA(t) and CP (t), respectively. It
is worth noting that in Equation 4.67, both R∗(t) and HPI are unknown, this strongly
increasing the computational complexity of the DV procedure. Some techniques of
blind deconvolution through minimization procedures have been proposed to solve
Equation 4.67, albeit with a limited diffusion. In this regard, a novel methodological
approach is proposed in the next Chapter 6.
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4.6 Reproducibility of perfusion parameters: an open issue

CTp data analysis requires a strict methodological pipeline, where several as-
pects are considered, including acquisition protocol, image and signal processing,
mathematical modelling of tissues and tracers’ dynamic and kinetic properties, im-
plementation of computational procedures for deriving perfusion parameters. Ul-
timately, perfusion parameters may be used to derive IBs for tumour diagnosis,
prognosis, and therapy monitoring [146].

All the methodological stages discussed so far have an impact on the numerical
perfusion values obtained with the different computing methods, this rising the
issue of proving the reproducibility and clinical reliability of results. In fact, the
lack of standardized experimental conditions for achieving reproducible results still
represents the major cause hampering CTp, as well as the other dynamic imaging
techniques, to become a consolidated approach used in the clinical routine. This has
led CTp to undergo alternating phases of higher and lower interest from the medical
community, which, despite the well-known potentiality and usefulness of the tool,
has constrained CTp to a secondary role with respect to other imaging modalities,
because of some technical issues. In fact, the lack of reproducibility of perfusion
parameters does not justify the additional patient radiation exposure, so that CTp
acquisitions are performed in most of cases only within clinical trials.

Actually, CTp is rising a renewed interest in the clinical research field, with more
than 120 scientific works in the last years (according to PubMed database) address-
ing CTp applications in liver [147], head and neck [148], lungs [149], abdomen [150],
and kidneys [151]. Three wide European multicentre liver CTp studies also exist
(SARAH [4], PIXEL [3], and PROSPeCT [152]), enrolling more than 300 patients
each, to evaluate promising IBs in predicting tumour development and patient prog-
nosis. Many efforts are being addressed towards the development of motion correc-
tion artefacts [153], improve image quality with new reconstruction algorithms [154],
and reducing dose radiation exposure [147], however, some difficulties still remain
to have different computing methods and software yielding comparable results. In
addition, no consensus exists on which the best method is for perfusion analysis re-
ferred to different anatomic districts and acquisition protocols. In several occasions,
the employment of software packages have further emphasized the variability of re-
sults, especially among different institutions and scanners [155]. Moreover, it is not
well known how they work, from image preprocessing to parameter computation,
and this limits clinicians to be confident with the tool, and researchers to address
the causes of such a variability.

Proving the reproducibility of CTp perfusion parameters has an additional com-
plication derived by the lack of any ground truth. Hence, reproducibility of measure-
ments would lead, implicitly, to accuracy of results. Accordingly, CTp reproducibil-
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ity can be pursued based on the common agreement approach [156]. This principle
is largely adopted in other quantitative imaging applications, and it results the only
feasible also in CTp. The mutual concordance of many computing methods becomes
the objective reference for bounding solutions as close as possible around the truth
value.

Many studies report variations of up to 30% between perfusion values, depending
on the computing methods chosen [157]. In addition, very few methodological studies
deal with how to improve CTp reproducibility and even less [112] focus on the
modelling aspects rather than on the computational ones. Non reproducible results
may arise, for instances, from different modelling of time delays or compartmental
inner structures. However, if the reproducibility of two different methods cannot be
achieved based on their different theoretical underlying assumptions, one should at
least define the exact modelling causes of such a diversity and, accordingly, which
contribution is needed (either computable or not) in order to obtain the equivalence
of measurements.

Actually, very few works perform a quantitative comparative analysis of different
computing methods and in all cases the comparison refer to aggregate data, with-
out reporting patient-wise voxel-based correlations of perfusion parameters. In this
regard, a voxel-based approach has a fundamental importance. Reproducibility of
CTp means equivalence of single perfusion values, not just of global averages arising
from entire ROIs. Moreover, a voxel-based approach allows detecting the unreliable
voxels, due to noise or artefacts, which may lead to misleading perfusion parame-
ters [93]. One should also consider that global perfusion estimates cannot depict
small local changes in tissue vasculature, thus resulting in poorly accurate clinical
assessments and definitely reducing the prognostic and predictive role of CTp itself.

Reproducibility of perfusion parameters also depends on the availability of mul-
ticentre studies in order to confirm results achieved in a single institution. In fact,
numerous factors can further jeopardize repeatability and reproducibility of param-
eters among different centres, including the employment of multiple CT scanners,
acquisition protocols, tracer infusion protocols, and different training and expertise
of technicians performing the examination [54]. Recently CTp, as well as other
dynamic imaging techniques, have been integrated in the so called “omics” imag-
ing, which combines information derived from clinics with structural and functional
imaging, in order to enrich the processes of tumour diagnosis, management, and
clinical decision making. Then, the reproducibility of perfusion parameters has be-
come an urgent need because its lack can dramatically impacts on the reliability of
all measurements derived.

The next Chapter 6 shows my methodological contributions to boost CTp repro-
ducibility of two of the widely adopted computing methods, MS and DV, referring
to PIXEL, a multicentre hepatic CTp study.
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Chapter 5

Quantitative imaging
for a radiomic approach

Radiomics is the application of machine learning methods and techniques to
medical images to extract features and classify them based on different clinical pur-
poses. The medical interest is mainly focussed on detecting patients with tumour
and those without, predicting grades of therapy responses, and stratifying tumour
stages. In practice, this field of application results limited by the number of cases
at the disposal. Enrolling hundreds of patients is very difficult, and yet more, even
if a consistent number of patients is initially included, there might be several tech-
nical and clinical reasons for excluding them during data analysis. For instance,
exclusion criteria might be the presence of image noise and artefacts, employment of
non standardized acquisition protocols, the presence of other comorbidities confus-
ing the clinical assessment. Accordingly, in most situations, the variety of machine
learning methods applicable reliably is limited. In this regard, linear classifiers are
good candidates for working even with a few samples, to reduce overfitting and
improve model generalizability. Moreover, they offer simplicity and computational
attractiveness.

First, this Chapter offers a critical discussion on radiomics, proposed as the nov-
elty of radiology (Sect. 5.1). Then, fundamentals of machine learning are provided in
Sect. 5.2. Elements of statistics are provided in Sect. 5.3 to better understand binary
discrimination. Hence, the radiomic workflow is presented in Sect. 5.4. The subse-
quent sections explain the theory of some machine learning methods and techniques
widely employed in radiomics for image preprocessing (Sect. 5.5), feature generation
(Sect. 5.6), preparation (Sect. 5.7), and selection (Sect. 5.8), model development
(Sect.. 5.9) and selection (Sect. 5.10). Most of these methods have been applied in
clinical studies presented in Chapter 9, therefore the theoretic description has been
enriched with the discussion of some critical issues encountered during application.

81
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5.1 Radiomics in oncology: is there a novelty?

Over the past decade, the field of radiology has been apparently renewed with
the conceptualization, in 2012, of “radiomics” as the new emerging field of extracting
from radiological images a huge number of quantitative features, which may reflect
the underlying pathophysiology of a tissue, and provide information of tumour stage
and prognosis. Radiomics has been defined as belonging “to the last category of
innovations in medical image analysis” [158].

Computer vision experts may reasonable argue that none innovation has been
introduced in medical imaging with radiomics, since automatic machine learning
techniques to derive quantitative features and large-scale data analysis methods are
at least fifty years old [159]. Then, which is the real novelty? Perhaps, one might
answer that radiomics, the machine learning with a new guise, has been disclosed
to radiologists.

Actually, the event has brought a real revolution in radiology. The number of
published radiomic studies incredibly exploded, as well as the the number of free
and commercial software packages for automatic radiomic analysis. Radiomics has
become the focus of international conferences and congress events, where clinicians
and radiologists consider themselves experienced enough to divulge methods and
techniques that normally belong to competence of computer scientists and engineers.
Most of recent radiomic studies are written and reviewed by radiologists, thus being
published in prestigious clinical journals, albeit in some cases far beyond from being
scientifically grounded.

From a theoretical point of view, such a wide clinical interest can promote re-
search in improving and innovating techniques for automatic medical image analysis,
however, an inappropriate use of the tools at the disposal can, at the same time,
delay the translation of radiomic outcomes into clinics because of the hard difficulty
to achieve standardized protocols and reproducible results.

The principle of “radiologists teaching to radiologsts” successfully applied in
medical practice, cannot perform well when the matter of teaching is radiomics and
machine learning. The process of translating machine learning methods within a
new field of applications, such as radiology, is really delicate because the correctness
of procedures must be preserved while their explanation to radiologists needs to be
simplified to let them become familiar and confident in the methodology. First of
all, radiomics is an ideological revolution of radiology, which has to be led from
radiologists to convince their colleagues to open their mind to a renewed medical
practice. Then, radiomics is a methodological revolution which needs to be carried
out by expert scientists. Only this synergy will allow achieving reliable results, which
can really improve efficacy of medical practice.
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5.2 Fundamentals of Machine Learning

The purpose of this Section is to provide the fundamentals of machine learning
mostly dealing with topics or methods used in the next Chapters.

Among main goals of machine learning are pattern recognition and classifica-
tion, that is processing of input data collected from different kind of sensors, such
as images and signals, in order to assign them to a finite number of classes or cate-
gories [160]. In particular, a pattern is any measurement extracted from the input
data which needs to be classified [161]. Figure 5.1 reports a schematic workflow

Fig. 5.1: A workflow representing the machine learning methodology made of five main
steps: input preprocessing (a), feature generation (b), feature processing and selection (c),
development of the classifier (d), and model selection (e).

of a machine learning process, made of five stages. As first, the input data are
preprocessed in order to standardize the subsequent feature extraction procedure
and improve the accurateness of measurements. Second, features or patterns are
generated according to different techniques chosen based on the specific pattern
recognition task. Then, data are prepared before developing the classifier. This
means that data features are processed with the aim of making them homogeneous,
thus allowing feature comparisons in a multivariate approach. Hence, features are
selected in order to train a classifier employing only those features having the high-
est discriminative capability. The fourth stage is supervised classification, where
the selected patterns are assigned to a target label. Finally, the performance of the
classifier is assessed and the best model is selected.

Input preprocessing

Input preprocessing is the first procedure required from the machine learning
pipeline and has a crucial role for the validity of subsequent measurements, and,
definitely, for training correctly the classifier. A machine learning pipeline can re-
ceive several kinds of input data, such as images, texts, audio, signals, and all of
them need to be converted in something understandable by machines. Accordingly,
input preprocessing is the first stage of data elaboration which aims at identifying
the component of interest (i.e. the signal) in the input data, by removing the effects
of noise and artefacts, and standardizing the input data to ensure the comparability
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of results.
As the first thing, a preprocessing workflow requires a comprehensive analysis

of the inputs received, for detecting any inconsistency within data and verifying
the correct acquisition of inputs and the availability of all information which will
be exploited during the whole machine learning process. The workflow adopted
for input preprocessing is not general purpose, but strongly depends on specific
machine learning applications. Generally, it can include the use of filtering methods
for denoising and removing artefacts, thus also enhancing the object of interest in
the input data.

Input preprocessing plays a crucial role for data standardization. In many practi-
cal cases, inputs are heterogeneous. For instance, data can be collected from sensors
using different sampling frequencies or data might be acquired from multiple signal
sources. Therefore, in case of heterogeneous datasets, resampling procedures can be
applied to uniform the sampling frequency, or proper normalization factors need to
be detected and applied to data in order to compensate for the different acquisition
sources.

Ultimately, the input preprocessing relies on a series of procedures, exploited to
reduce the variability of data due to the external sources, generically referred to as
noise, and preserving the real variability of data, which constitutes the information
to be learnt by the classifier.

Feature generation

Features are measurable properties or characteristics derived from a phenomenon
being studied, including both visible and latent aspects. The process of feature gen-
eration is based on a multiplicity of methods and techniques which allows studying
the input data in a multi-layer approach.

Generally, the features extracted can be categorical or numerical. Categorical
features assume a fixed and finite number of values. In particular, categorical fea-
tures are nominal, if they not imply any dependence of order or rank, like days,
months, or the Boolean values (true and false), whilst, they are ordinal, if they
naturally imply a kind of sorting, such as the three categories small, medium, and
large, or temporal ordering. Instead, numerical features are continuous or discrete
variables which do not refer to a predefined set of possible values. Among numeri-
cal features, some of them refer to interval measurements, for which the differences
between values are relevant, for instance dates, increments, whilst other features are
employed as absolute measurements, like length, counts, age.

The main issue in feature generation is the selection of the proper class of fea-
tures with respect to the specific classification task. In fact, obviously, an infinite
number of features can be generated from input data and innumerable techniques
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can be adopted to further increase the number of extracted features, but this may
lead to an exponential rise of the computational complexity, loss of efficiency and
meaningfulness of procedures. Hence, feature generation requires a deep analysis
of input data for detecting the most proper way of measuring and extracting the
relevant information.

Once features have been extracted from data, they constitute a vector of multiple
observations organised in a tabular form. Depending on the specific classification
task, the feature vector, that is a N -by-p matrix, where N are the samples or
observations and p are the extracted features, can be also associated to a vector of
target labels, eventually exploited by the classifier as learning examples. As such,
the feature matrix is processed in the subsequent steps.

Feature processing and selection

Feature processing operations aim at improving the quality and homogeneity of
the dataset, which will be employed for training the classifier. Procedures include
detecting and removing records with invalid values, outlier clipping, standardizing,
scaling, and normalizing numerical values, adjusting anomalous distributions, and
treating missing values. Then, this intermediate step prior to training the classifier,
accomplishes the crucial role of dimensionality reduction and feature selection.

In fact, the major problem occurring when dealing with high dimensional fea-
ture vectors (i.e., a very large number of features) is the consequent high number of
parameters to be learnt by the classifier, which, especially for small datasets (i.e.,
a few number of observations) may lead to overfitting, large variance of estimates,
and low generalizability. Moreover, in many cases several features are highly cor-
related, therefore carry on a similar information content, thus resulting redundant.
Accordingly, most features can be removed from the original feature vector in or-
der to achieve a subset of the most informative features which hold the greater
discriminative power.

In practice, dimensionality reduction may be performed through two different
approaches. First, a subset of the original feature vector can be achieved through
combination or selection of the original features, where combination means applying
transformation techniques which convert the original feature space into one with a
lower dimension. Some examples of these methods are the PCA and the Independent
Component Analysis (ICA). Accordingly, the classifier is trained on the transformed
feature vector [161].

In most applications, working with transformed variables may yield an additional
complexity in interpreting feature meaning and results. Therefore, the preferred
choice is the identification within the original dataset of the most discriminative sub-
set referring to the classification task. The two main different selection approaches



86 CHAPTER 5

are filtering and wrapper methods, respectively. In particular, filtering methods are
based on correlation measures between the features and the output variable, whilst
wrapper methods performs preliminary training steps for each feature subset to de-
tect the most effective ones. Accordingly, wrapper methods are computationally
more expensive than filtering methods, which employ in most of cases fast and easy
statistical techniques. However, wrapper methods yield a more accurate selection
of the best subset of features. In fact, whilst filtering methods simply discard the
features with the lowest discriminative power, often using univariate analysis tech-
niques, wrapper methods select a feature subset performing a multivariate analysis
and detecting the features which may yield the highest accuracy of results.

Wrapper methods generally exploit classification and regression techniques. In
fact, in a combined workflow, many classification algorithms such as Recursive Fea-
ture Selection Support Vector Machine (RFE-SVM) or decision trees (DTs) are
employed also for feature selection. Finally, a very popular class of regression-based
methods largely employed for feature selection are shrinkage methods, which will be
presented later in Sect. 5.8 [162].

Classification

The core of machine learning is partitioning the entire feature space into two
or more regions where distinct patterns are grouped. Accordingly, machine learn-
ing algorithms design the decision boundary for partitioning learning data in a m-
dimensional feature space, m representing the length of the vector of the selected
features. Then, the decision boundary is used to make predictions on new data [161].

Machine learning problems are split into unsupervised and supervised learn-
ing [163]. In unsupervised learning, the examples are not labelled, therefore the
dataset for training is constituted uniquely by the feature vector. Accordingly, the
main goal of unsupervised learning is clustering, that is the extraction, automatically
from the data, of groups of observations sharing similar characteristics measured by
proper metrics or distance functions. Yet more, unsupervised learning is used for
density estimation of distribution of data within the feature space or for visualiza-
tion purposes, requiring the down-projection from a high-dimensional space to a bi-
or three-dimensional one. Instead, supervised learning requires that the training
set contains, besides the feature vector, a target vector where each observation is
assigned to a specific class or category. Supervised machine learning algorithms are
exploited in the classification tasks. Actually, a further distinction is needed for
classification problems. While classification namely refers to the assignment of each
input to one among a finite number of discrete classes or categories, the problem is
called regression if the output is represented by continuous variables [164].

In this Thesis, I employed supervised learning algorithms. Data employed in ma-
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chine learning studies, are commonly partitioned into two or three subsets, namely
training and test sets, and when possible, as in our case, a validation set. The
initial model is trained on the training set, made of learning examples. Then, the
trained model is validated on the validation set in order to adjust the hyperparame-
ters of the model and estimate the prediction error, accordingly. Finally, to provide
an unbiased evaluation of the predictive performance of the validated model, it is
tested on the holdout test set, where none of the examples has been used in the
previous stages. Hence, the test of the final predictive model allows assessing the
generalization error of the model itself.

Splitting training and test sets from the original dataset can be performed ran-
domly, whilst the splitting of training and validation subsets is realized through
proper resampling methods. In fact, while the hold-out test set does not enter di-
rectly in the model development phase, training and validation sets are used jointly
during model training and validation. Most common resampling methods are k-fold
Cross Validation (CV), Leave-one-out (LOO)-CV, multiple random splits, boot-
strap. These methods require multiple runs of training, where original samples are
included in the training set, other times constitute the out-of-bag samples, where
the model is assessed and validated. Hence, the classification block in the machine
learning pipeline provides multiple competing models, from which the optimal one
needs to be selected and definitely tested.

The most diffused machine learning methods for training classifiers include DTs,
neural networks (NNs), Bayesian networks (BNs), support vector machines (SVM).
DTs are logic-based algorithms. A DT is realized through learning simple decision
rules inferred by features. The root node of the tree is composed by the feature that
best divides the training set based on a specific metric. Accordingly, the methods
based on decision trees differ on the decision metric adopted to split the tree at each
node. Two common approaches avoid overfitting in DTs. One is to stop the splitting
before a perfect separation of the training data is achieved. Another one is to prune
the tree, by imposing a limited number of leaves [165]. DTs are non parametric
models, therefore easily interpretable and slightly affected by outliers. However,
the computational complexity may become inefficient when working with very large
datasets, and at the same time, overfitting may occur when working with small
datasets. An other frequent limit is represented by the so called data fragmentation
problem, which means that in some nodes there are not enough samples to make
stastically significant decisions [166].

NNs are based on the perceptron concept, where decision is derived from a
threshold value applied on a weighted combination of the inputs (i.e. features) of the
model. However, perceptron algorithm just works for linearly separable problems.
Hence, NNs realize a multi-layer perceptron-based model, where innumerable units,
called neurons, make connections with each other. These units generally lie in
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the intermediate hidden layer, between the input and output layers. NNs have
great potentiality, although being time consuming and computationally demanding.
NNs do not fit for small dataset because of overfitting risk. Moreover, NNs do not
allow controlling the internal branching of the network, thus making sometimes very
challenging the task of interpreting results [165].

BNs belong to statistical learning algorithms and are probability models, pro-
viding an estimate of the probability that a given observation falls within a certain
class, rather than simply performing a classification. In particular, BNs are graphical
models, based on Directed Acyclic Graphs (DAGs), representing probability rela-
tionships among features. The nodes in DAGs are in a one-to-one correspondence
with the features [165]. In particular, each node, corresponding to each feature, is
associated to a conditional probability established between the specific node and the
set of its parents in the graph. DAG does not allow cycles, and features are orga-
nized in a topological sorting, where each feature comes before its descendent ones.
The design of a DAG requires the knowledge of the marginal probability of the root
nodes and the conditional probabilities of each non-root node, given all the com-
binations of possible parents [161]. Accordingly, the process of realizing a BN can
be divided into two different tasks, the learning of the DAG and the determination
of its parameters. Designing the DAG is the crucial point for the construction of a
BN, above all if its structure is unknown. Different methods have been proposed for
this purpose, albeit not reported in this manuscript. BNs have great potentiality
for working with small datasets, and differently from DTs or NNs, they include the
possibility to account for prior information. However, wrong hypothesis on the DAG
structure due to non-statistically representative small datasets can lead to strong
inaccuracies on the results.

Finally, SVM is a very useful tool for solving linear and non-linear problems, well
working with small datasets. Since it is adopted in machine learning applications
of this Thesis, a detailed description of the methodology is provided in the present
Chapter [165].

Model selection

The last stage involved in a machine learning pipeline accomplishes the task of
selecting the optimal model from a set of candidate deriving from the classification
block. In fact, classification may involve the training on the same dataset of different
classifiers, or of the same classifier using different hyperparameters.

A class of metrics for model selection are information criteria based on likelihood
functions and applicable for parametric model-based problems. These metrics give a
penalty to the candidate models based on the expected optimistic bias of the trained
model. In fact, the trained models are expected to overestimate generalization per-
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formances, therefore, the candidate trained models are ranked after being weighted
by a penalty factor which consider both the performance achieved on the training set
and the complexity of the model. Generally linear models, or models with few pa-
rameters are preferred because they show better generalization performances on the
test set, with a lower probability of overfitting training data. Popular probabilistic
measures for model selection are the Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), Hannan and Quinn (HQ), and Bridge Criterion (BC).

The CV technique has been mentioned above for model validation, introduced
into different forms, such as k-fold CV or LOO-CV based on the criterion adopted
for splitting the dataset into training and validation sets. Then, CV can also be
exploited for model selection. By computing the error loss function for each trained
model, that one with the smallest average validation loss is selected and it is retrained
on the complete training set. CV for model selection do not require parametric
models, thus allowing a wide range of applications [167].

Finally, model selection can be performed in a very easy computational approach
by directly comparing the predictive performance of models. For instance, one can
refer to the Receiver Operating Characteristic (ROC) curve, which will be explained
in detail in the following Section. Several metrics can be derived after selecting the
optimal working point of the model, generally where the Youden cut-off is located,
on its corresponding ROC curve. Besides sensitivity and specificity, comparison may
refer to Positive Predictive Value (PPV), accuracy (ACC), informedness (I), AUC,
F1-score. The main advantage of these metrics is the easiness of interpretation of
both model and results. Accordingly, most of them are detailed later.

5.3 Binary discrimination

Thinking at machine learning applications into medical field, we can imagine that
machine learning benefit clinical practice realizing a system from which obtaining
objective decisions deriving from the experience of a huge team of clinicians and the
outcomes of billions of patients worldwide [159].

Actually, at the basis of each clinical decision there is a simple process of dis-
crimination, which means separating patients in classes, and in the simplest case,
into two classes, speaking of binary discrimination. From a statistical point of view,
binary discrimination relies on testing the statistical hypothesis of difference of a
feature value between two classes. Hence, the aim of binary discrimination is to
find out a decision threshold, either a single value, a line, or a surface to separate
two classes. For instance, patients are separated between healthy or with disease,
therapy responders or non-responders, high stage or low stage tumour, and so on.
Substantially, patients are categorized as positive or negative with respect to a clin-
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ical status or end-point. In the following, some elements of statistics are provided,
including the fundamentals of statistical hypothesis testing and a very common
method employed to assess the performance of a binary discrimination.

5.3.1 Statistical hypothesis testing

Statistical hypothesis testing is the reformulation of the discrimination problem
into two alternative hypothesis, H0 and H1, expressed as follows:

H0: the value of the feature differs significantly
H1: the value of the feature does not differ significantly

where, H0 is called null hypothesis and H1 is the alternative hypothesis. The
choice for accepting the null or alternative hypothesis depends on experimental ev-
idence derived from statistical information. For instance, given two classes, one
can test the null hypothesis referring to the difference between the mean values,
therefore the null hypothesis tests whether this difference is significantly different
from zero. For the sake of simplicity, we can consider a general case of a random
variable x = x1, x2, ..., xN , with N observations, which is defined by a probability
function, pZ(Z; θ), as the one shown in Figure 5.2, with an unknown parameter,
θ. In particular, Z is referred to as test statistic, that is a computed quantity for

Fig. 5.2: Acceptance and rejection regions for hypothesis testing. If the value of the statistic
test falls within D, H0 is accepted, otherwise rejected.

which a probability is determined [168]. Hence, D is the area where H0 is accepted,
whilst D̄ is the complementary area, where H0 is rejected. In practice, for each
value of Z, if its probability falls within D, H0 is considered true. Otherwise, if the
probability of Z falls within D̄, H1 is considered true. The limit between D and D̄

is defined by the significance level α of the test, that is the probability chosen as
the criterion for rejecting H0. In practice, α is the probability of rejecting the null
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hypothesis when it is true. By assuming α = 0.05 the area of D̄ should be equal to
0.05, this implying that the two tails in Figure 5.2 have area equals to 0.025 each.
Hence, with α = 0.05 we expect to reject H0 if it is true, 5% of times. Based on
the different statistical tests adopted, chosen according to prior information about
the distribution of a variable, the value of the statistic test probability is tabulated
with the statistic test value. This means that in practical cases, when performing a
statistical test the probability of the computed statistic test, namely the p-value, is
compared to the significance level of the test itself, as follows:

if p-value> α H0 is accepted
if p-value≤ α H0 is rejected

Being based on probability distributions, some errors are expected to occur when
taking a certain decision. In this regard, Table 5.1 summarizes the two types of
errors occurring in hypothesis testing. On the one hand, the error committed when

Table 5.1: Errors occurring in hypothesis testing

If H0 is true If H0 is false

If H0 is rejected Type I error No error
If H0 is not rejected No error Type II error

rejecting the null hypothesis if it is true is called Type I error and is expected to
occur with a frequency of α. On the other hand, the error of not rejecting H0 if it is
false is referred to as Type II error and is represented by β. Accordingly, the power
of a statistical test is 1− β, that is the probability of rejecting H0 if it is false [168].

Let us consider the example case of testing the null hypothesis of null mean of
a population, µ=0. Hence, the statistic test Z is expressed as in Equation 5.1:

Z =
X̄ − µ

σX̄
(5.1)

where X̄ and σX̄ are the sample mean and standard deviation. Hence, if H0 is not
rejected (Equation 5.2):

P

[
−Z0.05 ≤

X̄ − µ

σX̄
≤ Z0.05

]
= 0.95 (5.2)

where the significance level α is assumed to be 0.05. Equation 5.2 can also rewritten
as Equation 5.3, in terms of the so called confidence limits.

P
[
X̄ − Z0.05σX̄ ≤ µ ≤ X̄ + Z0.05σX̄

]
= 0.95 (5.3)
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In particular it follows (Equations 5.4, 5.5):

L1 = X̄ − Z0.05σX̄ (5.4)

L2 = X̄ + Z0.05σX̄ (5.5)

where L1 and L2 are respectively the lower and upper confidence limits, whilst the
distance between them defines the confidence interval (Equation 5.6):

X̄ ± Z0.05σX̄ (5.6)

Hence, the significance level of the test, α, implicitly defines also the confidence
interval (CI), which is 1 − α. Generally, confidence limits are an estimate of the
precision of measures [168].

To the aim of a binary discrimination, the statistical hypothesis testing is a
useful and easy tool for detecting and discarding irrelevant features, having a poor
discriminative capability. However, it does not provide any information regarding
the goodness of discrimination, in other words the overlapping between the two
classes. For instance, the mean values of two classes may be significantly different
but their large spread may lead to a poor separation between classes [161].

5.3.2 The ROC curve

A binary discrimination is graphically assessed through the ROC curve, widely
employed for visualizing, organizing and selecting classifiers based on their perfor-
mance. As such, ROC curves are also extensively used in the medical decision
making community for evaluating the performance of supervised classifiers.

The output of a classifier can be a continuous variable which is converted into
predicted class labels according to a threshold value or a binary discrete variable
representing the class membership. By comparing the predicted class labels to the
actual ones, four different cases may substantially occur, which are outlined in Ta-
ble 5.2, known as confusion matrix. In particular, if a positive (p′) instance is
correctly classified as positive (p), it is referred to as True Positive (TP), whilst if it
is misclassified as negative (n) it is counted as False Negative (FN). Similarly, if a
negative (n′) instance is correctly classified as negative, it is referred to as True Neg-
ative (TN), whilst if it is misclassified as positive it is counted as False Positive (FP).
Given a two-by-two confusion matrix, several metrics can be calculated accordingly
and reported in Table 5.3. In particular, sensitivity and specificity corresponding
to the TP rate (TPR) and TN rate (TNR), respectively, refer in medical practice
to the probability of detection and false alarm rate. Moreover, the count of FP and
FN represent the Type I and Type II errors, respectively, mentioned in Sect. 5.3.1.
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Table 5.2: Confusion matrix of a supervised binary classifier, where p and n are the positive
and negative classes, respectively.

Actual
class

Predicted class
p n total

p′ True
Positive

False
Negative P′

n′ False
Positive

True
Negative N′

total P N

Table 5.3: Metrics derived from a two-by-two confusion matrix

Metric Formula

sensitivity (TPR) TP
TP+FN

specificity (TNR) TN
TN+FP

accuracy (ACC) TP+TN
TP+TN+FP+FN

positive predictive value (PPV) TP
TP+FP

negative predictive value (NPV) TN
TN+FN

false negative rate (FNR) FN
TP+FN

false positive rate (FPR) FP
TN+FP

false discovery rate (FDR) FP
TP+FP

false omission rate (FOR) FN
TN+FN

F1 score 2TP
2TP+FP+FN

F2 score 5TP
5TP+FP+4FN

The ROC curve is defined in the space given by the FPR (x-axis) and TPR
(y-axis), with FPR=1 − TNR. Accordingly, each confusion matrix is represented
through a single point in the ROC space. For instance, Figure 5.3 (a) shows the
representative points of five different discrete classifiers in the ROC space. The ideal
best classifier is located on the left corner of the space, where both sensitivity and
specificity are equal to the 100%, whilst the point located on the diagonal y = x,
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Fig. 5.3: ROC space represented by the FPR (x-axis) and TPR (y-axis) where each point
represents the performance of a discrete binary classifier (a). Instead, a ROC curve is derived
from a continuous classifier as the threshold, T, applied on the output variable is varied (b).

has same performance of a random assignment.
If a classifier yields a continuous variable as output on which a threshold is ap-

plied to achieve a binary outcome (i.e. to predict the positive or negative class),
the classifier itself is represented through a curve in the ROC space, representing
its performance as the threshold varies. Hence, Figure 5.3 (b) shows an example
of ROC curve. If the ROC curve is in the lower right triangle of the ROC space,
the classifier performs worse than the random guessing, whilst, a classifier performs
as much better as its ROC curve departs from the diagonal towards the left up-
per triangle of the ROC space. A very common metric employed to compare ROC
curves is the AUC. Since the AUC is a portion of the unit square given by TPR and
FPR ranging within the interval [0, 1], its value is between 0 and 1 as well. Hence,
the random classifier has AUC=0.5. The output of a continuous classifiers can also
be seen through plotting two probability density functions, ω0(T) and ω1(T) cor-
responding to the probability of assigning an instance to the negative and positive
class, respectively, with T the threshold parameter, varied in order to have a bi-
nary outcome from a continuous variable. Hence, the TPR(T)=

∫∞
T ω1(x)dx, whilst

FPR(T)=
∫∞
T ω0(x)dx. Accordingly, Figure 5.4, shows the corresponding portions

of TP, TN, FP, and FN under the probability density function curves.
Given a ROC curve, the threshold T to achieve the best possible classifier is

selected from the Youden Index (YI) which identifies the point on the ROC curve
most distant from the diagonal. That point maximizes the informedness (I) of the
classifier, where I=specificity+sensitivity-1, used in practical cases to chose the best
trade-off between sensitivity and specificity metrics [169].
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TP

TNFN

FP

T

Fig. 5.4: Portions of TP, TN, FP, and FN under the two probability density functions ω1(T)
and ω0(T), referring to the positive and negative class, respectively.

5.4 A radiomic workflow

On the ground of what stated in Sect. 5.1 and explained in Sect. 5.2, a radiomic
approach relies on the application of machine learning methodology to radiological
image analysis. Accordingly, a radiomic workflow consists of three main steps, high-
lighted in Figure 5.5. The first step is image processing (Figure 5.5 (1)), including
image acquisitions, preprocessing and preparation (e.g. image denoising and resam-
pling), and ROIs segmentation. Then, radiomics features are extracted (Figure 5.5
(2)) from the ROIs. In most of applications, the radiomic features include shape
features which assess the morphometric characteristics of tumour ROIs, first order
statistical features that are histogram-based descriptors, second and higher order
texture features calculating the statistical spatial relationships between neighbour-
ing pixels, and features derived applying different filters or transform on images,
such as wavelet transforms [70]. Then, radiomic features are processed and analysed
(Figure 5.5 (3)) in order to select, either in an univariate or multivariate approach,
the features with the highest discriminative capability to be applied for developing
the predictive model. Hence, this last third step includes also model development,
selection and assessment of the classification performance [68].

5.5 Image processing

A radiomic workflow requires acquisition of images according to a specific stan-
dardized protocol, based on the clinical purpose, imaging modality, and patient
characteristics, with the aim of achieving reproducible results in all the subsequent
steps of quantitative imaging, including feature extraction and their application for
clinical purposes [68]. Several studies report numerous sources of noise and variabil-
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Fig. 5.5: The radiomic workflow consisting of three main steps: (1) image preprocessing,
including image acquisition and preparation (e.g. ROI segmentation); (2) feature extrac-
tions, such as shape features, first order and texture features, and wavelet transforms; (3)
radiomic data analysis including the selection of the most discriminative radiomic features
and development of the predictive model.
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ity in the early steps of the radiomic workflow which hamper the clinical reliability
of the results, besides delaying the translation of radiomics outcomes into clinics
and weakening its potential role in clinical decision-making [170]. Since data vari-
ability is in most of cases unavoidable, the only way to cope with varying scanners,
technologies, acquisition protocols and image reconstruction algorithms is to set up
properly preprocessing steps, to reduce as much as possible, the influence of these
sources of noise on the results. So far, radiomic studies have been performed mostly
in single centre institutions, whereas multicentre analyses are needed to prove the
clinical meaningfulness of radiomics as a diagnostic, prognostic or predicting tool.
Variability of data collected in multicentre study is incredibly high and complex to
handle, and pre-treatment of data plays a crucial role [171].

Since the initial spread of radiomics [158], CT has been the most widely adopted
modality in radiomic studies, mainly due to its broad availability. Later on, MRI
has gained an increasing role, so that nowadays, among more than one thousand
scientific papers published on radiomic studies in 2020, around eight hundred are
equally split between CT and MRI (according to PubMed database). Subregions of
tumour habitat as well as metastatic lesions and normal tissues are generally imaged
and analysed exploiting radiomic approaches. Among several applications, CT is
the reference imaging technology for radiomic studies regarding head and neck [172]
and lung cancers [173], whilst MRI is largely adopted in the study of breast [174],
prostate [175], abdominal tumours [176]. Also PET radiomics is a growing field and
most of radiomic studies refer to the use of 18F-FDG. In addition, the availability of
hybrid systems has also offered new opportunities to associate incremental radiomic
information derived from both morphological and functional sequences with the
tumour tissue biology and behaviour. Actually, although PET imaging has a great
promising role in radiomics since being highly specific in catching abnormalities in
tumour biology, it shows several technical limitations. In fact, if compared to CT
and MRI, PET images show lower resolution and higher noise, and often finding the
correlation of radiomic features derived from PET and morphological imaging can
result very challenging [177].

Data preparation of acquired images requires segmentation of ROIs from which
radiomic features are subsequently extracted. The process is normally carried out
manually by expert radiologists which identify the most informative tissue area in
order to answer the clinical question and delineate for each image slice a contour of
the selected ROI [178]. Indeed, a large number of tools for automatic segmentation
have been proposed, although with a limited success, because of the difficulties to
achieve a large-scale fully validated segmentation tool. More often, semi-automatic
methods are used, which also allows manual refinements of segmentations. For
instance, region growing and watersheed are two widely used methods in the ma-
jority of CAD systems [68]. In particular, in the region growing approach, after the
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operator-dependent selection of a pixel seed, its neighboring pixels are iteratively
added to the foreground region based on a similarity criterion [179], whereas, the
watersheed method requires a manual selection of a ROI on a single slice in order to
generate an initial three-dimensional surface of the lesion, refined with active geomet-
ric contours [180]. If semi-automatic and, above all, automatic tools allow strongly
reducing the time required for segmentations, they often need manual refinements,
since noise in the image, low contrast, smoothness of edges may cause poorly ac-
curate segmentations. In some cases, reproducibility of radiomic features extracted
from semi-automatic or automatic regions have shown higher reproducibility than
those derived from manual segmented ROIs [181]. However manual segmentation,
although being time consuming, still remains the ground truth in order to achieve the
highest accuracy of the results. Accordingly, until now, in morphological imaging
most of radiomic studies adopt manually segmented ROIs [178].

Depending on the image acquisition protocols and the dataset being analysed,
data preparation can involve also filtering, denoising, resampling. In fact, in most
of cases radiomic studies are conducted on retrospective datasets. This means that
data are originally acquired for different research purposes and raw data are not
usually stored, so that often reconstructing images differently is not possible. Im-
ages may need to be pre-processed in order to reduce their differences. For instance,
heterogeneous resolutions can be interpolated to a common voxel size, or images
can be filtered to achieve similar noise characteristics [171]. It is worth noting that
preprocessing can dramatically alter information retained by data, it can result very
challenging to be performed while preserving the original information and guarantee-
ing the full validity of the subsequent computational steps. A data-driven selection
for the most proper solution is recommended.

5.6 Feature generation

The process of feature generation is a key step in classification. Several computer
vision methods can be applied to the field of medical imaging for feature generation
and, based on both the clinical objective and either characteristics or dimensionality
of data, a researcher is required to choose the most appropriate strategy [182]. In
oncological applications, the features extracted from radiological images can allow
measuring objectively the properties of normal and abnormal structures and high-
lighting latent properties, expected to be more powerful in predicting tumour ag-
gressiveness and therapy response than visual findings. By assuming a coarse-grain
taxonomy, imaging features can be organized into three main categories, morpholog-
ical features, grey level (GL)-based, and filter-based features [182]. In the following,
I address just some of the imaging features, currently the most widely exploited
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in radiomic studies [70]. In this regard, my discussion focuses on shape features
as morphological descriptors [183], first order features [70], texture features of sec-
ond [184] and higher orders [185], as GL-based descriptors, and wavelet transforms
in the frequency domain, as filter-based features [186].

Table 5.4 provides an overview of the main characteristics of the shape, first

Table 5.4: Overview of the main characteristics of the most adopted radiomic features, where
D stands for diagnosis and P for both prognosis and prediction

Features Category Property Role Complexity Interpretability
Shape Structural Morphology D low simple

First order Statistical Histogram D, P low simple
Texture Statistical Texture D, P high difficult
Wavelet Filter-based Texture D, P medium difficult

order, texture, and wavelet features included in the discussion. In particular, the
comparison among these four classes of features relies on five indicators, category,
property, role addressed in clinical applications, computational complexity, and clin-
ical interpretability. Shape features are the only ones which measure structural
properties based on geometrical and morphological descriptors of the tissue ROIs,
without any relationship with the image GL-distributions. Hence, information con-
tent provided by basic morphological descriptors is strictly correlated to the visual
interpretation of images performed by radiologists [70]. Accordingly, shape fea-
tures, also with a very low computational complexity, enable simple clinical inter-
pretability. In clinical applications, shape features based on simple morphological
descriptors can have good performance if applied for diagnosis (referred to as D in
Table 5.4) [187]. In fact, on several occasions, the increase or decrease of tumour size
are late descriptors of tumour progression or good response to anti-cancer therapies,
respectively. Thus, basic morphological features can have a poorer prognostic or
predictive value than other features referred to GL descriptors. On the contrary,
first order, texture, and wavelet-based features are frequently adopted not only for
diagnosis, but also for prognosis and prediction of therapy response (both referred to
as P in Table 5.4). Several studies adopt for clinical classification purposes, a com-
pound of different feature classes in order to catch various aspects of the tissue under
investigation [188]. While first order features measure the statistical properties of
GL-based histograms, with a low computational complexity and simple clinical in-
terpretability, both texture and wavelet-based features can provide measure of the
texture of the imaged tissue. In particular, the former are based on statistical prop-
erties of bi-dimensional GL histograms, the latter rely on the characteristics of the
filters employed for the frequency transform. Then, the computational complexity
and clinical interpretability rise accordingly.
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Shape features

Shape features are descriptors of geometry and morphology of the ROI indepen-
dent from the GL distributions, calculated on the segmentation mask rather than
directly on images [70]. Generally, multi slice ROIs are collected to allow computing
3D shape features, referred to the entire segmented volume. In this regard, ROI
mask volume is not conceived as a collection of voxels, each one contributing with
a single volume element, but it is described through the set of coordinates of voxel
centres, thus avoiding partial volume effects often occurring in ROI segmentation.
Accordingly, to represent the outer structure, a surface mesh is computed, thus re-
ducing the overestimation of the surface area when all single voxels are considered as
single elements. A triangle mesh is derived from the surface of the ROI using differ-
ent meshing algorithms, such as the Marching Cubes [189], that is one of the most
widely adopted ones. A volumetric mesh is drawn with triangle faces and vertices
covering the entire volume ROI: faces are delimited with lines, that are connection
between two adjacent vertices, and two lines only can share one vertex. To compute
the mesh volume, all faces should have the same orientation of the normal of the
face. Consequently, the correct orientation of the mesh faces leads to all face edges
being shared between exactly two faces. The most widely used shape features include
mesh surface, volume surface, surface area to volume ratio, asphericity, sphericity,
spherical disproportion, maximum diameter, major axis length, minor axis length,
least axis length, elongation, flatness, volume density [183].

Although shape features have a very low computational cost and allow an easy
clinical interpretation, they strongly depend on the segmentation, relying on both
intra-reader and inter-reader variability. Moreover, shape features perform a mor-
phological assessment of tumour, which may have mainly a diagnostic role, thus not
representing tissue heterogeneity [68]. Shape features are computed to provide a
quantitative measure of tumour extent and structure, although none of the hidden
properties of the tumour is caught. Shape features are also a valid tool for mea-
suring objectively image findings that radiologists are used to assess qualitatively.
According to what reported in one of the most recent radiomic multicentre stud-
ies [173], also in agreement with the majority of scientific articles in the literature,
when compared with statistical descriptors or higher order texture features or filter
transforms, shape features suffer from a lower sensitivity. Therefore in the most of
cases, other feature classes are adopted.

First order features

First order (FO) features describe the GL distribution of pixels without consider-
ing any spatial relationship between them. Basically, FO features are histogram de-
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scriptors such as mean, median, skewness, kurtosis, minimum and maximum value,
percentile, computed referring to the 3D volume distribution of GLs arising from
multi-slice segmented ROIs. Most of these FO features represent the average (e.g.
mean, median, etc.) and variation of data (e.g. interquartile range, percentile, etc.),
whilst some of them focus on the shape of the distribution, usually represented by
moments (e.g. skewness, kurtosis, etc.). FO features can also account for the diver-
sity of GL values, by applying concepts derived from information theory to quantify
the heterogeneity of image values. Some examples of this kind of FO features are
entropy and uniformity. In particular, entropy measures the information content of
the image, that is quantifies uncertainty by weighting the information content by its
probability: the higher the entropy, the more heterogeneous the image content. In
practice, FO metrics measuring diversity of values are not computed directly on the
histogram of GLs, but after its rebinning, applied in order to derive the relative fre-
quentist probability of each range of GLs [190]. FO features are robust descriptors,
reported as the most repeatable and reproducible features [191], also allowing an
easy computation and clinical interpretation, since representing at the coarse level
tissue inhomogeneities and abnormalities. The highest number of software packages
for radiomic analysis shares the same computational implementation of FO features,
thus also explaining their higher reproducibility if compared with other radiomic fea-
tures [192]. However, since FO features arise from global observation of tissue ROIs,
their sensitivity in catching small local abnormalities can be low, thus limiting a
wide applicability of FO features for personalized medicine. FO features lack the
spatial references in characterizing the GL distributions of tissue structures, this
being one of the major reasons why the texture features have gained such a large
interest and application in radiomic studies [190].

Second order texture features

Texture is one of the characteristic properties of images, one of the aspects being
used by human eye in interpreting pictorial information of images, thus unravelling
the structural arrangement of surfaces and their relationship to the surrounding en-
vironment. Texture features are calculated in the spatial domain and mostly rely
on the assumption that the texture information of an image is contained in the
average spatial relationships among GLs. Therefore, the extraction of texture fea-
tures is based on computing a set of GL spatial-dependence probability distribution
matrices [184].

Originally, texture analysis was thought for assessing surface texture in 2D im-
ages, and it has been later extended to 3D volume. Second order texture features
are based on GL co-occurence matrices (GLCMs), which express the combination of
discretised GLs of neighbouring pixels, or voxels in 3D GLCMs, along specific image
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directions [184]. In practice, GLCMs are bi-dimensional histograms quantifying how
much frequently similar pixel-values are located next to each other, by considering
the neighbourhood as a unique direction at a certain distance (d). Therefore, second
order statistics are derived from the spatial relationship of two pixel values and not
from the values themselves. The HU values within an image ROI often need to
be quantised into a fixed number of GLs (e.g. 32, 64, 128), before computing the
GLCM, a matrix in which both rows and columns represent a set of possible image
values. Given d, each value (i, j) of the GLCM, Pd[i, j] counts all pairs of pixels
having GLs i and j, separated by the so-called displacement vector, established in
order to examine the texture based on d and the orientation. By convention, pixels
to the east of the reference pixel are at 0°, to the north-east at 45°, the north at
90°, and north-west at 135°. When considering 2D GLCMs, these four symmetric
unique directions are considered, thus representing a 8-connected neighbourhood.
In particular, the displacement vectors depending on d and corresponding to these
four directions are reported in Table 5.5. When considering 3D GLCMs, thirteen

Table 5.5: Four unique directions of 2D GLCM

Displacement vector Direction (°,θ)

(0, d, 0) 0
(-d, d, 0) 45
(-d, 0, 0) 90
(-d, -d, 0) 135

unique symmetric directions are investigated, thus corresponding to a 26-connected
neighbourhood, and reported in Table 5.6. In particular, by considering the ori-
entation of the three x, y, z-axes, the angles θ and ϕ are measured between x and
y, and y and z, respectively. The values on the main diagonal of GLCMs repre-
sent the joint probabilities of finding identical pixel-values in the original image,
therefore by moving away from the main diagonal, GLCMs represent the increas-
ing difference between intensity values in the original image. The texture features
most widely extracted from GLCMs are the ones proposed in the early seventies
by Haralick [184]. All these metrics weight the entries of the GLCM by some value
depending on what properties need to be highlighted. For instance, angular second
moment squares the elements of the GLCM and then sums them up. Therefore,
the lower the difference between values, the higher the value of uniformity. Con-
trast quantifies the degree of different intensity values along given orientation and
distance. Since the texture is an intrinsic property of an image, results have to be
rotationally invariant, therefore second order features are derived from 2D GLCMs
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Table 5.6: Thirteen unique directions of 3D GLCM

Displacement vector Direction (°, θ, ϕ)

(d, 0, d) (0,45)
(d, 0, 0) (0,90)
(d, 0, -d) (0,135)
(d, d, d) (45,45)
(d, d, 0) (45,90)
(d, d, -d) (45,135)
(0, d, d) (90,45)
(0, d, 0) (90,90)
(0, d, -d) (90,135)
(-d, d, d) (135,45)
(-d, d, 0) (135,90)
(-d, d, -d) (135,135)
(0, 0, d) (0,0)

after direction-weighting the GLCMs themselves [190]. GLCMs and corresponding
second order texture features have low computational complexity – albeit greater
than shape and FO features – and are computed in all radiomic packages [192].
Nevertheless, some open issues are still present, referred to their most reliable and
reproducible employment in radiomic studies. For instance, no agreement still exists
on how to aggregate GLCM information with the highest reproducibility in clinical
applications, that is whether extracting single representative texture features from
3D GLCMs or averaging texture features of multi-slices. Actually, most clinical
studies rely on 2D GLCMs-based features due to their lower computational com-
plexity than 3D GLCMs. However, characterizing tumour with multi-slice images
(i.e. features derived from single slices) can lead to a high approximation of the
entire tumour volume, thus also jeopardizing the accurateness of the description of
tumour heterogeneity, especially when a low spatial resolution along the axial di-
rection increases the partial volume effects. In this regard, recent studies report a
better clinical correlation achieved with 3D texture features and more reproducibil-
ity of 3D rather than 2D features [193]. Moreover, the choice of the distance d

at which consider the neighbouring pixels, affects the performance of second order
texture features in classification. Finally, preprocessing steps of image denoising,
filtering and quantization, can dramatically affect image texture, thus making more
difficult the reproducibility of results [183].
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Higher order texture features

While second order texture features consider spatial relationships between two
neighbouring pixels, higher order statistical features assess the relationship between
three or more pixels. The original and easiest way to derive higher order statistical
texture features has been proposed in 1975 by Galloway, with the introduction of the
GL Run Length matrices (GLRLMs), where a GL run is defined as a line of pixels in
a certain direction with the same intensity value. Accordingly, the number of pixel
constituting the run line is called run length and the number of its occurrence is the
run length value. In a GLRLM, the rows represent the discretized GLs, the columns
the run lengths. In practice, a run length describes the neighbouring pixels having
the same GL in a specific orientation or direction. The most commonly used texture
features derived from the GLRLMs are long run emphasis, short run emphasis, GL
uniformity, and run length uniformity. Generally, the combinations of these param-
eters are used to constitute a feature vector. Similarly to GLCMs, the GLRLMs are
computed for different directions and then averaged to obtain rotationally invariant
results [185]. Higher order texture features have both a higher computational com-
plexity and a harder clinical interpretation. Despite frequently included in software
tools for radiomic analyses, their clinical application in classification purposes is not
widespread.

It is worth noting that the behaviour of texture features, referring to both second
and higher order statistics, is frequently affected by imaging modalities and their
acquisition parameters [186]. For instance, slice thickness is one of the factors mainly
affecting values and reproducibility of texture features. It is well-recognised that a
thin slice thickness can improve measurements of tumour volume and its changes
over time, thus also improving clinical assessments. However, if referring to the
computation of texture features, one should also consider some other factors. If on
the one hand, thinner slice images are often associated with higher noise levels, which
can negatively affect texture features, on the other hand, thicker slices can lead to
blur images, making the characteristic texture patterns more difficult to identify,
thus resulting in the loses of some texture details due to a poorer spatial resolution
along the axial direction. Therefore, the clinical reliability of texture features mostly
relies on achieving the best trade-off between feature reproducibility and capability
of characterizing tissue texture in detail [193].

Wavelet

Images, acquired and normally interpreted in the spatial domain, can be trans-
formed into the frequency domain in order to emphasize frequency-based features.
In fact, instead of assigning an intensity value to each couple of spatial coordinates
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of the image, in the frequency domain images are described through the pattern and
rate at which intensity values change along different directions [190].

One of the most powerful mathematical transformations, largely exploited in im-
age analysis, are the discrete wavelet transforms, which are non-stationary signals
alternating low frequency components such as the background and high frequency
components such as edges and structures. In particular, discrete wavelet trans-
forms represent images through a basic function, called “mother wavelet”, properly
scaled and shifted in order to fit the original signal. Hence, the wavelet can lo-
calize the original signal in both time and frequency domains, and this is referred
to as the main advantage of wavelet transform if compared to Fourier transform
that represent signals in frequency only. Moreover, wavelet transforms perform a
multi-resolution analysis, through which the original image is decomposed into low-
and high-frequency components at different scales. The process is realized though
a bank of filters, the original image is convolved with the mother wavelet, in a sin-
gle and repeated downsampling step along each direction (i.e., rows and columns).
Therefore, wavelet decomposition yields a set of wavelet coefficients corresponding
to different scales and directions [186].

Given an image X, and let L and H be respectively a low-pass and high-pass
filter, an example of the wavelet decompositions of X is referred to as XLLH , inter-
preted as the application of a L filter along x- and y- directions, and a H filter along
z-direction, thus being constructed as in Equation 5.7:

XLLH(i, j, k) =

NL∑
p=1

NL∑
q=1

NH∑
r=1

L(p)L(q)H(r)X(i+ p, j + q, k + r) (5.7)

where, NL is the length of the filter L, and NH is the length of H. Each component
such as XLLH of the original image is called sub-band, and first-order and texture
features can be derived on each sub-band of the transformed image [61].

The choice of the mother wavelet dramatically impacts on the information con-
tent preserved by the decompositions, and consequently, on the accuracy of any
post-processing procedure, such as the computation of radiomic features. In this re-
gard, the key characteristics for the selection of the mother wavelet are the number of
the filter coefficients, the number of vanishing moments, symmetry, orthogonality,
and computational complexity. For instance, a large number of coefficients pro-
duces smoother decompositions but with a higher computational complexity [194].
The number of vanishing moments controls the ability of the mother wavelet of
enhancing structures that can be approximated with high-degree polynomials. In
particular, the number of vanishing moments equals the degree of the polynomial of
the wavelet scaling function up to which the derivative of the Fourier transform is
zero, and this means that up to that degree of polynomial function, the wavelet scal-
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ing function alone can be used to represent those structures. In addition, symmetry
affects the equality of decomposition of the image, independently from the forward
or reverse direction of convolution. Finally, orthogonality establishes to what extent
decompositions are correlated along the different directions. For all these reasons,
the identification of the optimal mother wavelet can be very challenging and also
strictly dependent from the imaging modality, acquisition parameters, and tumour
phenotype being analysed [186]. Some recent studies strongly promote the use of
wavelet transforms, which are reported as having a high prognostic value of tumour
aggressiveness [195], and also allow achieving more robust and reproducible results
of first order and texture features computed on decomposed images if compared
to feature values computed on the original images. Of course, working in a trans-
formed image domain yields an additional complexity in interpreting outcomes and
correlating them with the underlying biological interpretation [193].

5.7 Data preparation

As explained above, in Sect. 5.2, homogeneity of data is an essential property for
training the classifier correctly. In the following, two basic aspects of data prepara-
tion will be presented, outlier removal and data normalization and standardization,
which have been employed in clinical applications presented in the subsequent Chap-
ters.

5.7.1 Outlier removal

The process of outlier removal, herein presented, mainly refers to data distributed
according to a random process. Accordingly, radiomic features are considered as
discrete random variables.

Given a random variable, the mean value is the reference for localizing the ex-
pected value of the variable itself, while the standard deviation gives a measure of
dispersion of the range of the variable. Accordingly, an outlier is defined as a feature
which is very distant from the mean, given a certain threshold, usually expressed in
terms of standard deviation. A distance of two or three times the standard devia-
tion covers the 95% or the 99% of the distribution, respectively. Therefore, all data
points beyond this limit, can be considered outliers, that is not representative of
the real behaviour of the random variable. Depending on the original shape of the
distribution, outlier removal can also be performed on one site only. The presence of
outliers may produce large errors during training, therefore in most practical cases
they are removed.

However, if the dataset at the disposal is not big enough to completely drop off
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outliers, some other techniques are used to prevent the influence of outliers on the
model. For instance, when designing the classifier it may be adopted a cost function
that is less sensitive to outliers. Alternatively, after removing outliers, these may be
treated as missing values, therefore predicted heuristically, by assuming the expected
value or the extreme value of the distribution after outlier removal. In particular, in
this last case, prediction of the missing value accounts for the the prior information
regarding its original localization within the distribution and attempts to preserve
it [161].

It is worth noting that this kind of outlier removal process is employed in uni-
variate feature analysis, when each feature is considered and assessed separately. As
such, the process is largely used when working with few samples, where multivariate
feature analysis results difficult to perform reliably.

5.7.2 Data standardization and normalization

Commonly, feature values lie within very different dynamic ranges. When con-
ducting a multivariate analysis, features need to be comparable. In fact, having a
high variability among feature ranges may lead the features with the wider range and
higher absolute values to predominate the classifier even if they have a lower discrim-
inative power than features with narrower ranges and lower values. To prevent this,
data are generally rescaled into similar ranges, through linear and non-linear meth-
ods. The most popular methods are data standardization and [0, 1]-normalization.
Actually, data standardization is normalization through mean and variance. In prac-
tice, given a feature variable of N observations, the value of each of them is converted
as in Equation 5.10, through the operators described in Equations 5.8, 5.9:

x̄ =
1

N

∑
i=1

Nxi (5.8)

σ2 =
1

N − 1

∑
i=1

N(xi − x̄)2 (5.9)

x̂ =
x− x̄

σ
(5.10)

Hence, the standardized features have null mean and unit variance. As a conse-
quence, the process yields features lying into similar ranges, symmetric with respect
to zero.

Instead, data normalization, also called min-max feature scaling, provides fea-
tures within the range [0,1]. Hence, data are rescaled according to Equation 5.11:

x̂ =
x− xmin

xmax − xmin
(5.11)
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Actually, Equation 5.11 can also be rewritten as Equation 5.12 to represent the more
general case of feature scaling within the interval [a, b], with b > a.

x̂ = a+
(x− xmin)(b− a)

xmax − xmin
(5.12)

Data normalization modifies feature range without affecting the original variance
of data. Therefore, normalized features have identical ranges and different vari-
ances. The choice of preserving the original variance of data generally depends on
applications, although one should consider that variance means information, there-
fore features with higher variance hold intrinsically a greater discriminative power.
Moreover, selecting the most proper data normalization method may depend on the
classifier adopted. Different classifiers are known to perform better when working
with standardized or normalized data [161].

5.8 Shrinkage methods for subset selection

If a given feature vector X is constituted by m features, the methods for subset
selection allow reducing the number of m features to p, with p ≤ m. Shrinkage
methods are based on the idea of exploiting linear regression for feature selection.
Accordingly, being based on linear methods, they are particularly suitable in case
of a limited number of observations, low SNR or sparse data.

By considering the feature vector XT = (X1, X2, ..., Xm), the linear model for
predicting through regression the real output Y is expressed as in Equation 5.13:

Y = f(X) = β0 +

m∑
j=1

Xjβj (5.13)

where β = (β0, β1, ..., βm)T is the vector of coefficients, which need to be estimated,
generally through least squares minimization. Hence, given a feature vector of N

observation, each xij = (xi1, xi2, ...xim) is a vector of feature measurements for the
i-th observation. Accordingly, the minimization of the residual sum of squares is
given by Equation 5.14:

RSS(β) =

m∑
i=1

(yj − f(xi))
2

=

m∑
i=1

(yj − β0 −
m∑
j=1

xijβj)

(5.14)

Actually, linear regression has two major disadvantages, that is prediction accuracy
and interpretation. The least square estimates have often low bias but large variance.
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An useful way to improve their accuracy is by shrinking some coefficients to zero.
In addition, a large number of predictors makes the interpretation of the linear
combination which will determine the classifier performance more difficult [196].

Shrinkage methods arise from linear regression by adding a regularization term to
the error function, also in order to control over-fitting. For instance, ridge regression
imposes a penalty on the size of coefficients, so that the vector of coefficients is
derived from Equation 5.15:

β̂ridge = argmin
β


N∑
i=1

(yi − β0 −
m∑
j=1

xijβj)
2 + λ

m∑
j=1

β2
j

 (5.15)

In particular, λ ≥ 0, is the regularization parameter, the penalty factor, which
determines the amount of shrinkage. The higher the value of λ, the more coefficients
are shrunk towards zero. Then, Equation 5.15 can be rewritten into Equation 5.16:

β̂ridge = argmin
β

N∑
i=1

(yi − β0 −
m∑
j=1

xijβj)
2

subject to
m∑
j=1

β2
j ≤ t

(5.16)

which makes the constrain t on the coefficients explicit. Generally, the ridge solution
depends on the variance of features, therefore the feature vector needs to be stan-
dardized (i.e. null mean, unit variance) before solving Equation 5.16. In addition,
thanks to its penalty term, the ridge regression induces the shrinkage of correlated
variables.

An alternative method to ridge regression is represented by the lasso shrinkage
method. Similarly to the ridge method, Equation 5.16 is expressed for lasso as in
Equation 5.17 [196]:

β̂lasso = argmin
β

N∑
i=1

(yi − β0 −
m∑
j=1

xijβj)
2

subject to
m∑
j=1

|β2
j | ≤ t

(5.17)

Accordingly, Equation 5.17 can be rewritten as Equation 5.18, its equivalent
Lagrangian form:

β̂lasso = argmin
β

1

2

N∑
i=1

(yi − β0 −
m∑
j=1

xijβj)
2 + λ

m∑
j=1

|βj |

 (5.18)
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Hence, while the penalty term in Equation 5.15 expresses the L2-norm (λ
∑m

j=1 β
2
j )

that one in Equation 5.17 is the L1-norm (λ
∑m

j=1 |βj |). Accordingly, while ridge
regression has closed solution, the solution of lasso is non-linear in yi and, in par-
ticular, it results a quadratic programming problem. However, modern algorithms
allow providing an estimate for ridge and lasso in approximately the same amount of
time. The major advantage for preferring lasso than ridge in practical applications
of feature subset selection is that by the nature of its expression, and considering
small constraints t, lasso leads some coefficients to be exactly zero. For a graphical
comparison of ridge and lasso regression methods, one can refer to Figure 5.6: By

β1

β2

β1

β2

(a)                                                                                      (b)

Fig. 5.6: The constraint regions in a bidimensional case of ridge (a) and lasso regression
methods (b): a disk and a diamond, respectively. The presence of corners in (b) leads some
coefficients to be exactly zero.

assuming the case of two features, in Figure 5.6 (a) it is reported the constraint
region for ridge, that is the disk β2

1 + β2
2 ≤ t, whilst in Figure 5.6 (b), it is shown

the constraint region for lasso, that is the diamond |β1|+ |β2| ≤ t. The presence of
corners in the constraint region of lasso leads the coefficient βj to be exactly zero
when the solution occurs at that corner. Accordingly, for higher dimensional spaces,
the diamond becomes a rhomboid and so on.

Actually, feature selection through shrinkage methods as ridge and lasso can be
generalized by employing a generic Lp-norm, like in Equation 5.19 [164]:

β̂lasso = argmin
β

1

2

N∑
i=1

(yi − β0 −
m∑
j=1

xijβj)
2 + λ

m∑
j=1

|βj |p
 (5.19)

for p ≥ 0. Some representative examples of constraint regions for different values of
p are provided in Figure 5.7:
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β1

β2

(a)                                                                                     (b)

β1

β2

β1

β2

β1

β2

p=0.5 p=1 p=2 p=4

Fig. 5.7: The constraint regions in a bidimensional case for p=0.5 (a), p=1 (b), p=2 (c),
and p=4 (d), which determines the type of the Ln-norm (λ

∑m
j=1 |βj |p).

The cases for p < 1 have non-convex constraint regions, thus resulting in more
difficult solutions. The optimal values should range within p = [1, 2], however, only
the case p = 1 (i.e. lasso) leads the term |βj |p to be not differentiable at 0, and
so corresponding coefficients to be exactly zero. A compromise between lasso and
ridge has been proposed with the elastic net method. The penalty term is further
modulated through a parameter α which establishes the weight of the L2- and L1-
norm, as in Equation 5.20:

λ

m∑
j=1

(αβ2
j + (1− α)|βj |) (5.20)

The benefit introduces by the elastic net is that it is possible to achieve some coef-
ficients to be exactly zero while removing also highly correlated features [196].

When using the lasso regularization method and partially, also when adopting
the modified elastic net version, a certain amount of correlation can still be present
in the subset of selected features. This practically means that some of those cor-
related features can further be removed. This was the case encountered also in an
application of the lasso method presented in Chapter 9. Moreover, when working
with small dataset, in order to prevent overfitting, it is important to reduce as much
as possible the number of features used to train the classifier. To this purpose, in
a very simple approach, a correlation analysis can be performed after lasso regular-
ization in order to remove highly correlated features. Then, a further selection may
be performed from uncorrelated features, through the multivariate analysis of the
discriminative capability of small subsets limited to just two or three features, thus
allowing detecting the most powerful features to train the classifier.
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5.9 The SVM classifier

The original formulation of the SVM classifier dates to the sixties, and it still now
offers a very wide range of applications when working with medical data. Initially,
it is has been formulated for solving linear classifications problems, but it has also
been extended to non linear problems, through the so called kernel trick [197]. In
particular, the SVM classifier has been conceived for two linearly separable classes.
Hence, let xi with i=1,2,...,N be a feature vector of the entire training set, X, and let
the target vector be made of two separable classes, ω1 and ω2. The goal for linearly
separating the two classes is finding out the hyperplane, a linear separation surface,
expressed by Equation 5.21:

g(x) = wTx+ w0 = 0 (5.21)

that classify the training data exactly into two different spaces. In particular w =

[w1, w2, ..., wl]
T is called weight vector and w0 is the threshold. Accordingly, let

x1 and x2 be two points on the decision hyperplane, they can be substituted into
Equation 5.21, thus achieving the relationship in Equation 5.22:

0 = wTx1 + w0 = wTx2 + w0

wT (x1 − x2) = 0
(5.22)

Hence, from Equation 5.22, since (x1−x2) lie on the hyperplane, the vector w is nec-
essarily orthogonal to the hyperplane. In particular, Figure 5.8 shows the graphical
representation of a decision hyperplane in a bidimensional space, by assuming w1>0,
w2>0, and w0<0. In practice, w and w0 determine direction and intercept of the
hyperplane, respectively. Figure 5.8 also highlights d and z, which are respectively
expressed by Equations 5.23, 5.24:

d =
w0√

w2
1 + w2

2

(5.23)

z =
|g(x)|√
w2
1 + w2

2

(5.24)

Hence, |g(x)| represents the Euclidean distance of x from the decision hyperplane,
and it takes positive values on one side of the decision boundary, and negative ones
on the other side. This is expressed by Equation 5.25:

If wTx+ w0 ≥ 0 x ∈ w1

If wTx+ w0 ≤ 0 x ∈ w2

(5.25)
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Fig. 5.8: The graphical representation in a bidimensional space of a decision hyperplane, as
formulated by Equation 5.21

Actually, the “best” hyperplane refers to the generalization performance of the clas-
sifier, that is, not merely a correct classification of training data, but the capability
to classify correctly new data. In order to identify the optimal hyperplane through
Equation 5.21, the SVM introduces the concept of margin of the hyperplane. Ac-
cordingly, in order to treat equally the two classes, the searched hyperplane needs
to be at the same distance (i.e. margin) from the nearest points belonging to each
of the classes. As one can see in Figure 5.9 even by assuming equal margin for
the two classes, two different solutions are still possible. One has margin 2z1, and
the other one has margin 2z2. Again, the SVM adopts the criterion of the maxi-
mum margin to derive the more generalizable decision hyperplane. Mathematically,
Equation 5.24 can be scaled in order to have g(x) = 1 in the nearest point towards
w1, and g(x) = −1 in the nearest point towards w2. This can also be expressed by
Equation 5.26

1

∥w∥
+

1

∥w∥
=

2

∥w∥
(5.26)

which also requires to fulfil Equation 5.27:

wTx+ w0 ≥ 1, ∀x ∈ w1

wTx+ w0 ≤ −1, ∀x ∈ w2

(5.27)
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Fig. 5.9: The graph shows two possible decision hyperplane with different margins, 2z1 and
2z2 corresponding to direction 1 and 2, respectively. The SVM adopts the maximum margin
criterion, therefore direction 2 is chosen accordingly as the decision hyperplane.

The problem of finding the maximum margin is solved by minimizing the expression
in Equation 5.28:

minimize J(w) ≡ 1

2
∥w∥2

subject to yi(w
Tx+ w0) ≥ 1, i = 1,2,...,N

(5.28)

By exploiting the Lagrange multipliers, one can achieve Equations 5.29,5.30:

w =

N∑
i=1

λiyixi (5.29)

N∑
i=1

λiyi = 0 (5.30)

where λ is the vector of Lagrange multipliers. This means that the vector w is
given by the linear combination of observations having λi ̸= 0, which are called
support vectors (SVs) and lie on one of the two hyperplanes, defined accordingly by
Equation 5.31:

wTx+ w0 = ±1 (5.31)

It is worth noting that SVM classifier only depends on the SVs, that are the most
critical points within the training set. This explains the reason why the SVM works
very well with few samples. Moreover, the SVM is a convex problem which provides
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a global and unique solution.
Of course, the SVM classifier is applicable to non separable classes. In this case,

samples of the training set may belong to one of the following three categories, also
shown in Figure 5.10

• Vectors out of the decision surface and are correctly classified
• Vectors inside the band and correctly classified (placed in squares in Fig-

ure 5.10)
• Vectors inside the band and misclassified (placed in circles in Figure 5.10)

Fig. 5.10: A representative case of non separable classes where some points fall within the
decision surface. Among these ones, those points of each class correctly classified are placed
within squares, whilst the misclassified samples are placed within circles.

By introducing a so-called “slack variable” ξi which allows some points to be within
the margin, the three categories correspond respectively to ξi = 0, 0 < ξi ≤ 1, and
ξi > 1. Hence, for non separable classes, the goal of SVM is to have the maximum
margin possible while minimizing the points having ξi > 0. Equivalently, the SVM
minimizes the cost function reported in Equation 5.32:

J(w, w0, ξ) =
1

2
∥w∥2 + C

N∑
i=1

I(ξi) (5.32)

where ξ is the vector of ξi, and (Equation 5.33)

I(ξi) =

1 ξi > 0

0 ξi = 0
(5.33)
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The parameter C is referred to as the misclassification cost. Accordingly, the mini-
mization problem becomes (Equation 5.34):

minimize J(w) ≡ 1

2
∥w∥2 + C

N∑
i=1

ξi

subject to yi(w
Tx+ w0) ≥ 1− ξi, i = 1,2,...,N

ξ ≥ 0, i = 1,2,...,N

(5.34)

By adopting the Lagrangian multipliers, it is possible to demonstrate that the param-
eter C, in practice, constraints the value of λi. This means that in linear separable
classes, C → ∞. The slack variables ξi are not directly treated when solving the
problem in Equation 5.34, but they are indirectly defined through C.

Non linear case

SVM methodology can also be exploited for non linear cases, by assuming a
possible transformation from the input feature space to a k-dimensional space where
the non linear classification problem is converted into a linear one (Equation 5.35).

x ∈ R1 → y ∈ Rk (5.35)

By recalling Equations 5.21 and 5.29, and substituting the latter within the former,
one can achieve Equation 5.36 [161]:

g(x) = wTx+ w0

=

Ns∑
i=1

λiyix
T
i xi + w0

(5.36)

where Ns is the number of SVs. The expression reported in Equation 5.36 allows us
to adopt what has been commonly defined as the “kernel trick” for SVM classifiers.
Basically, a kernel is defined through the inner product of a mapping function from
the feature space to a k-dimensional space, as expressed by Equation 5.37:

k(x,x′) = ϕ(x)Tϕ(x′) (5.37)

where, k(x,x′) is a symmetric function, so that k(x,x′) = k(x′,x) and ϕ(x) is the
mapping function of x, x → ϕ(x). Accordingly, the expression in Equation 5.36
can be seen through the adoption of an identity mapping function which defines the
linear kernel (Equation 5.38) [164].

k(x,x′) = xTx′ (5.38)
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Very commonly adopted kernels are the polynomials and radial basis functions,
which are reported in Equations 5.39,5.40.

Polynomials
k(x, z) = (xT z+ 1)q, q>0 (5.39)

where q is the degree of the polynomial.
Radial basis function

k(x, z) = exp

(
−∥x− z∥2

σ2

)
(5.40)

However, they have not been used in our applications.
Finally, when the optimal kernel has been chosen, the minimization problem of

SVM becomes the one reported in Equation 5.41, and the decision hyperplane is the
one given by Equation 5.42:

max
λ

∑
i

λi −
1

2

∑
i,j

λiλjyiyjk(xixj)


subject to 0 ≤ λi ≤ C, i = 1,2,...,N∑

i

λiyi = 0

(5.41)

assign x in ω1(ω2) if g(x) =
Ns∑
i=1

λiyik(xi,x) + wo > (<)0 (5.42)

5.10 k-fold Cross Validation

CV is a method for validating the performance of a classifier, which allows pro-
viding a more accurate estimate of how the model will generalize with unknown
samples. Actually, different approaches of CV are used. Herein, explanation is
focused on k-fold CV. As previously introduced, in machine learning applications
the original dataset is split into training and test sets, as shown in Figure 5.11 (a).
Then, the training set is used for model development and the test set for perfor-
mance assessment. It is worth noting that model development in this case includes
both feature selection and tuning hyperparameters of the classifier.

A k-fold partitioning of the original dataset allows estimating the generalization
performance of the model on different subsets and accordingly selecting the model
with the lowest generalization error. Figure 5.11 (b,c,d) reports three different ways
of performing k-fold CV, depending on how the feature selection and model de-
velopment processes are integrated throughout the whole cycle. In the first case



118 CHAPTER 5

Fig. 5.11: (a) The original dataset is split into training and test set. (b) A k-fold procedure can
be performed after training the model on the entire dataset, for estimating the generalization
performance of the model itself and selecting the most generalizable model. The dataset is
split into k-folds, the model is trained in (k-1)-folds and tested on the remaining one. (c,d)
Two alternative approaches of repeated CV are presented: (c) feature selection and model
development are performed on (k-1)-folds, (d) feature selection is performed on the entire
dataset and model development on (k-1)-folds.

(Figure 5.11 (b)), the model is developed on the original entire dataset, which is
later partitioned into k-folds. Each of the k-folds is iteratively employed for valida-
tion. Common values of k are three, five, and ten, generally chosen based on the
size of the original dataset and the balance between positive and negative samples.
In fact, when splitting the dataset into k-folds one should avoid to make unbalance
datasets between positive and negative classes, for excluding any selection bias on
the model performance. Moreover, with k-fold CV, at the end all samples from the
wider dataset have been employed for both training and validation. To overcome
this issue, an alternative approach is the repeated CV, graphically represented in
Figure 5.11 (c). The original dataset is partitioned into k-folds before any model
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development. Accordingly, k-runs of training are performed, and for each run, the
model is validated on one fold and trained on the (k-1)-folds. An additional way of
performing k-fold CV is also that shown in Figure 5.11 (d). In this case, the phases
of feature selection and classifier setup are separated. That is, feature selection is
performed as the first step, to speed up the computational time required by each
run. Then, for each run the model is trained (with hyperparameter tuning) on the
(k-1)-folds and validated on the kth fold.

Once performed k-fold CV, it is very common to estimate the generalization
capability of the final model by averaging the performance achieved on each valida-
tion set. Alternatively, in an application-specific approach, the final model can be
selected by adopting a specific selection criterion based on the metrics computed for
assessing the performance of the models. Actually, numerous methods for aggregat-
ing data after performing CV also exist, albeit not reported in this Thesis.

In most of practical applications, CV is repeated several times, in order to remove
any dependence from the initial selection of training and test sets [198].

5.11 The challenge: standardization and reproducibility

Non-standardized procedures and non-reproducible results are the main issues
hindering radiomics from being a validated clinical practice. In this regard, many
factors jeopardize the repeatability of radiomic feature values and classification out-
comes, thus hampering radiologists’ confidence in radiomic usefulness, and delaying
its translation into clinics [199]. Nowadays, there is a broad awareness of the need
to reduce variability of results, although solution seems to be far yet.

In a whole radiomic workflow, innumerable factors are sources of variability
of results. Actually, one should distinguish between reproducibility of radiomic
features in terms of acquisition protocols, technical and computational aspects, and
reproducibility of features in classification, which can be pursued by preventing
overfitting and influence of outliers on training.

Some radiomic studies perform a dedicated analysis on reproducibility of ra-
diomic features, using phantoms to explore the effects of variable acquisition pa-
rameters, such as tube current in CT imaging [170], or voxel size [200]. Other
radiomic studies assess the effects of varying segmentations on first or second order
texture features, for instance, in non-small cell lung cancer [181],[201] and rectal
cancer[202]. Recently, the Image Biomarker Standardization Initiative (IBSI) [183]
has involved several researchers and radiologists from different countries to define
global guidelines for standardization of radiomics, based on the idea that the stan-
dardization will increase as well as reproducibility of radiomic features, if a pre-
defined methodology will be shared and applied across different centres and stud-
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ies. Hence, IBSI provides practical recommendations and a tentative standardized
framework. In agreement, Radiomics Ontology, accessible at the NCBO BioPor-
tal (https://bioportal.bioontology.org/ontologies/RO) provides a semantic
framework for radiomic features sharing the nomenclature proposed by IBSI. More-
over, the NRG Oncology investigators proposed the radiomics quality score (RQS)
to evaluate the quality of radiomic studies [203].

The development of fully automated frameworks for radiomic classifiers [204] as
well as the availability of many software packages of public domain or commercial
provided by different vendors for radiomic studies have been considered a marked
step forward towards the standardization of processes, but actually, on several oc-
casions, software packages have shown a great variability of measurements [192].
Moreover, the recent increase of high-performance computing resources in entry-
level workstations and the growth of automatic tools for radiomic analyses, has made
them popular and accessible to research groups with different expertises, this incred-
ibly increasing the variability of results. In addition, less experienced researchers in
quantitative medical images use radiomic software packages as black-boxes, without
full awareness of data processing choices. Accordingly, it is hard to believe that
this approach could be the effective solution for the standardization issue. Referring
to variability of radiomic features, the authors in [205] say: “to unravel this knot,
one needs to start from the end and first standardize the software framework used
to extract radiomic features”. Actually, a framework is made by a series of conse-
quent analytical choices that cannot perform at the same way on different inputs or
conditions. On the contrary, applying the same scheduled analytical framework on
different input data may lead to the opposite effects of increasing non-reproducibility
of radiomic features. Variability of input data, strongly depending on acquisition
conditions, parameters, scanners, and patients should be faced with a dedicated spe-
cific analysis aiming at applying the most proper solution chosen in a case-by-case
approach. The reliable employment of software for radiomic analysis should be post-
poned, in order to favour primarily the methodological validation of procedures, and
only later on to let them be widely accessible thanks to commercialized software.
Otherwise, the risk is not only to delay the clinical translation of radiomics, but even
to waste this great opportunity to improve and benefit the clinical decision making
with the quantitative radiomic contribution.

https://bioportal.bioontology.org/ontologies/RO


Chapter 6

A methodological approach for
MS and DV reproducibility

This Chapter presents my methodological contributions in CTp analysis, aimed
at pursuing the reproducibility of MS and DV in hepatic CTp, by assuming the
common agreement principle. In particular, this work refers to PIXEL, a multicen-
tre study on liver perfusion, presented in Sect. 6.1. Accordingly, the preliminary
methodological choices for analysing hepatic CTp examinations are introduced in
Sect. 6.2, including the selection of a monocompartmental model for analysing the
first pass kinetics of CA and data preparation procedures. One the one hand, this
Chapter proposes novel methods for: (i) extracting the end of the first passage of the
CA from tissue TACs (Sect. 6.3), (ii) modelling the first passage through a fitting
procedure (Sect. 6.4), (iii) computing perfusion parameters through MS and DV,
independently on the same signals, after exploiting an iterative procedure based on
a deconvolution process to separate arterial and portal contributions from tissue
TACs (Sect. 6.5). On the other hand, this Chapter questions the validity of the
MS assumptions which may lead MS to represent a different system’s status with
respect to DV, and proposes a reformulation of the MS method, the gMS, to allow
temporal and modelling equivalence of MS and DV (Sect. 6.6). Then, the criteria
for investigating the reproducibility of measurements at voxel level are detailed in
Sect. 6.7. In order to accomplish CTp analysis, I devised a software for handling the
whole process of the scientific study. The main goal of software design was aimed at
keeping data consistency. This has been done by embedding, in the output struc-
tures (matrices, figures, etc.), tags referring to the input and the code release that
generated it. In this regard, details are presented in Appendix.
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6.1 Case of study: PIXEL multicentre study

The difficulties of CTp and, more generally, of DCE imaging modalities to enter
the clinical practice are also due to the limited number of multicentre studies at the
disposal, through which validating IBs against the variability of scanners, acquisition
protocols, expertise of technicians and operators [206].

As mentioned in Sect. 4.6, three wide CTp multicentre studies exist. During my
PhD course, I have had the opportunity to work on data belonging at each of them.
Mainly, I have worked on data from the PIXEL (Perfusion IndeX: Evaluation for
Liver metastases) project and the methodology for reproducibility of MS and DV
has been developed and tested primarily on these data. For this reason, I provide
first an overview of aims and characteristics of the PIXEL study. In addition, I
have applied the methods developed for pursuing reproducibility of MS and DV also
on data belonging to PROSPeCT and SARAH projects. Accordingly, these two
multicentre studies will be briefly introduced in Chapter 7, before presenting the
experimental results of some specific applications.

The availability of PIXEL data has been possible thanks to the collaboration
between the CVG and Prof. V. Vilgrain who has directed the PIXEL project. In
particular, PIXEL is a French multicentre study – initially enrolling around four-
hundred patients in nineteen national Centres – aiming at assessing the predictive
role of the HPI for the onset of hepatic metastases in patients with non-metastatic
colorectal cancer (CRC) diagnosis, before the administration of any treatment. Sec-
ondary aims of the study are: (i) identifying a cut-off HPI value for predicting the
onset of hepatic metastases within three years from CRC diagnosis, and (ii) assess-
ing the role of other perfusion parameters and measuring the inter-reader variability
of perfusion parameters.

PIXEL inclusion criteria can be summarized as follows:
• age≥18 years old
• no previous cancer
• non metastatic CRC
• providing written informed consent
• patient followed by one of the involved Centre

In addition, non-inclusion criteria are:
• presence of hepatic metastases at CRC diagnosis
• chronic hepatopathy
• administration of chemotherapy after execution of CTp examination
• surgery of CRC after CTp after execution of CTp examination
• allergic reaction to iodine CA
• renal failure hampering the administration of iodine CA
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• pregnant patient

CTp imaging protocol has required:
• patients to breath slowly during the whole acquisition time
• administration of 40 ml of iodinated CA contemporaneously with acquisitions,

with a concentration of 350 mgI/ml, followed by 20 ml of saline solution
• acquisition of images every 1 s for the first 30 s, and 3 s after, up to 2 min
• CT tube current and voltage at 100 mA and 80 kV, respectively (1 s rotation

time, 100 mAs exposure)

Patients were enrolled since 2008 to 2011 and all were monitored for three years
from inclusion. Actually, fourteen Centres and 315 patients have been definitely
included. Table 6.1 resumes the included Centres, CT scanner employed in each
Centre, and number of enrolled patients.

For each patient, CTp image sequences, collected according to the Digital Imag-
ing and Communication in Medicine (DICOM) standard, have been carefully anal-
ysed in order to retrieve all needed information for perfusion analysis. In particular,
the availability of acquisition time instant of each CTp is mandatory for extracting
TCCs from images. Accordingly, CTp examinations where the acquisition time was
not available have been excluded. In addition, the enhancement of the portal vein in
several cases is not clearly detectable in CTp images, this preventing the outlining of
the ROI of the portal vein and, consequently, the computation of dual input hepatic
perfusion. For these reasons, some CTp examinations have been excluded. Table 6.2
resumes the relevant information of patients selected for perfusion analysis from each
Centre, also highlighting the number of patients who developed metastases (column
“Met.”) within three years from CRC diagnosis and those who have not (column
“Not-met.”).

As one can see from Table 6.2, the number of patients who have developed
metastases within three years from CRC diagnosis is really small. This has been the
major limitation hampering the detection and validation of an IB predictive of the
onset of hepatic metastases. Moreover, it is also worth noting that the PIXEL study
has been probably the first multicentre CTp study. Accordingly, a series of techni-
cal issues occurred when collecting data, which forced in many cases a subsequent
selection of patients during data processing, this making the proper comparison of
results of the different Centres very challenging if not, in some cases, impossible. For
instance, some Centres adopted a different image acquisition protocol or a different
protocol for CA injection. In some cases, as it happens in Centre 16, the sampling
frequency varies also within the Centre itself.

To the purpose of this Thesis, data from PIXEL study have been analysed to
investigate methodological aspects of perfusion computing methods, and the com-
parison between Centres was just a secondary aim. Therefore, among the whole
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Centres at the disposal, the most populous Centres were chosen and considered for
the reproducibility study, that is Centres 1 and 16, by selecting from Centre 16 those
patients sharing the same CTp protocol as Centre 1.

Table 6.1: PIXEL Centres and enrolled patients

Centre (C) Centre name CT scanner Patients

1 Beaujon GE Lightspeed VCT 71

2 Hegp Broussais GE Lightspeed VCT 32

3 Ambroise Paré Philips MX8000 IDT 16 18

6 Henri Mondor GE Lightspeed VCT 1
A. Chenevier

7 Pitié Salpeêtrière Philips Brillance 64 7

8 Chu Nantes GE Lightspeed VCT 20

9 Chru Angers Philips MX8000 IDT 16 44

10 Haut-Lévêque Siemens Definition 64 13
Bordeaux

12 Claude Huriez Philips Brillance 40 11

15 Institut Gustave GE Lightspeed VCT 23
Roussy Villejuif

16 Chu Amiens GE Lightspeed Pro 32 49

17 Institut mutualiste GE Discovery CT 750 HD 20
Montsouris

18 Chu Caen Philips Brillance 40 2
Hôpital Cte De Nacre

19 Cabinet d’héatologie Philips MX8000 IDT 16 4
et de gastro entérologie
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Table 6.2: Patients of PIXEL selected for perfusion analysis

Centre (C) Met. Not-met. Total patients
1 6 65 71
2 3 29 32
3 1 17 18
6 0 1 1
7 0 7 7
8 2 18 20
9 4 40 44
10 0 13 13
12 1 10 11
15 2 22 24
16 5 42 47
17 1 19 20
18 1 1 2
19 2 2 4

TOTAL 28 286 314

6.2 CTp study of liver through MS and DV

By facing the CTp reproducibility issue, the simplest operating conditions have
been considered, referring to the choice of the compartmental model, the kinetic
phase of the CA, and the computational methods for estimating perfusion param-
eters. Therefore, this Thesis adopts a monocompartmental model and focuses on
the first pass of the CA, studied through MS and DV methods, being the former
the most simple and robust to compute and the latter the most precise one [207].
Accordingly, this reproducibility study addresses the computation of BF values,
the only perfusion parameter computable with the MS method and even the most
common parameter considered to early detect tumour changes in diverse anatomic
districts [91].

By considering the study of the dual input liver perfusion, in Chapter 4, I have
presented some open issues related to MS and DV methods. Here, I briefly recap
these issues in Table 6.3 and all of them are addressed throughout this Chapter.

Moreover, before deepening the reproducibility issues, the stages of model selec-
tion and data preparation are highlighted.

6.2.1 Model selection

Figure 6.1 reports the dual input monocompartmental model adopted for perfu-
sion analysis. By recalling what previous described, the input of the system is the
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Table 6.3: Summary of the open issues of MS and DV methods applied to the hepatic
perfusion study

Method Open issues

MS • Approximate separation of CTA
(t) and CTP

(t) by the spleen’s peak
• Presence of delays between input TAC’s peak and tissue maximum slope

DV • Extraction of TAC referred to CA first pass only
• Solving deconvolution with two unknown parameters

Fig. 6.1: Hepatic dual-input one compartmental model

linear combination of CA(t) and CP (t) weighted by the HPI (Equation 6.1).

Cin(t) = HPI · CA(t) + (1−HPI) · CP (t) (6.1)

CTp sequences allow extracting voxel-based signals, CT (t), which are practically
given by the sum of the two contributions CTA

(t) and CTP
(t), due to CA(t) and

CP (t), respectively, as formalized in Equation 6.2.

CT (t) = CTA
(t) + CTP

(t) (6.2)

Accordingly, the major issues regard the computation of the HPI and the extraction
of the two tissue contributions from the whole tissue signals.

6.2.2 Data preparation

First, the analysis of CTp examinations requires ROI segmentation and image
preprocessing in order to extract the TCCs from the entire dynamic sequence. Hence,
in each CTp examination, a central representative slice is selected and two ROIs
are first drawn, on the aorta and the liver, respectively. The procedure of ROI
placement on liver is carried out manually, by an expert radiologist, with a great
care, excluding large vessels, such as portal vein or hepatic artery. Then, a ROI
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outlines the portal vein, and it is aligned over time, on each sampling instant, to
compensate for motion in the subsequent CTp scans [208]. Actually, the variability
in ROI outlining does not affect the findings of the voxel-based analysis performed,
this making a second segmentation, commonly required for studying reproducibility
on lesion analysis, useless. In addition, a denoising procedure is performed on CTp
images, by referring to the portions of image highlighted with the vascular and
tissue ROIs. Hence, a median 2D filter with [5×5] pixel size is adopted for aortic
and portal vein ROIs, from which one mean TCC (CA(t) and CP (t), respectively)
is achieved. Instead, a median 3D filter with [9×9×3] voxel size is chosen for tissue
ROIs from which single voxel-based signals are derived (CT (t)), after excluding
voxels undergoing dynamic artefacts [93]. Since vascular TCCs, which are averaged
ROI signals, present limited noise in the unenhanced portion, the baseline value is
computed for them by averaging the first five samples. Instead, by adopting a voxel-
based approach for tissue, baseline values are computed for each voxel-based TCC
according to the method presented in [209]. After baseline removal from vascular
and liver TCCs, the corresponding TACs are achieved. Hereinafter, CA(t), CP (t),
CT (t) refer to the TACs.

Finally, since CTp acquisition protocols generally adopt higher sampling fre-
quency during the first pass than in the CA recirculating phase, a preliminary non-
parametric fitting of the real TACs is performed to up-sample signals, so as to work
on a uniform sampling frequency of 1 Hz.

6.3 Extracting the first pass signal

Focussing on first-pass kinetics, it is needed to extract from the vascular and
tissue TACs the contribution due to the first passage only. As far as the hepatic
monocompartmental model is concerned, the CA vascular kinetics can be reason-
ably applied on tissue haemodynamics, yet more in the absence of altered vascular
pathways (e.g., due to angiogenesis or diseases), yielding a CA recirculation flood-
ing the tissue after the maximum CA concentration is reached. Therefore, the main
problem is to find out enough TAC samples expectedly belonging to the first-pass
phase, that could be successively used in a parametric fitting model to extract a
complete first-pass signal from the real tissue TAC. In practice, while the left bound
of the interval is known (i.e., the first acquired sample t0), what lacks is the last
first-pass interval sample.

Based on the considerations above, I have found reasonable choosing the time
instant halfway between the peak time (tp) and the washout time (tw), when the
outflow is maximum. Hence, I have first performed a signal denoising for each
patient through a smoothing spline [210], computed over all the acquired n samples,
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setting the smoothing parameter λ = 0.7 [211], also on the basis of preliminary tests.
Then I have computed the derivative on these smoothed signals, thus achieving tp

(when it has 0-value) and tw (when it has its minimum). It is worth noting that if
different values of λ can affect the goodness of fit, the effects on tp and tw are almost
negligible. Finally, for each TAC [t0, (tp + tw)/2] represents the time interval whose
samples are considered as belonging to the first-pass phase.

Figure 6.2 (a) shows a real TAC with a superimposed smoothing spline, where
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Fig. 6.2: The last time instant of the first pass phase of CA is assumed halfway between
tp and tw, when the peak value and the minimum derivative of the TCC occur (a). Hence,
the first pass signal is extracted from the samples included within the interval [tp, tp+tw

2
]

highlighted in (b).

the time instants tp and tw are highlighted, when the peak value and the minimum
derivative occur, respectively. Hence, in Figure 6.2 (b), by assuming the end of the
first pass halfway between tp and tw, the portion of the tissue TAC due to the CA
first pass is emphasized by the coloured area.

6.4 Modelling the first pass through signal fitting

A fitting procedure is performed against the real TACs between [tp, tp+tw
2 ] to ex-

tract and model the signals referred to the first passage of CA. In particular, vascular
and tissue signals have been fitted by adopting two widely used parametric models,
the LN and GV functions, respectively. The fitting procedure has been performed
using the Interior Point [212], a constrained nonlinear optimization algorithm imple-
mented in the fmincon function of Matlab© (R2018b v.9.5, The MathWorks, Natick,
MA, USA).

According to the theoretical description provided in Chapter 4, Sect. 4.4.1, LN
model is expressed through four parameters, AUC, tm, RD, and s. An initial es-
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timate of the two parameters AUC and tm has been achieved for each patient by
considering the maximum value of the signal multiplied by ten and the time instant
in which the maximum value occurs, as reported in Eqs. 6.3 and 6.4.

AUC = TAC|max · 10 (6.3)

tm = t|TACmax (6.4)

In particular, the multiplication by ten in Equation 6.3 accounts for a minimum
dispersion of the vascular TACs. In fact, non-instantaneous injections cause dis-
persed TACs, whose maximum value underestimates the area under the curve of
the impulse function, which would represent an instantaneous injection. Instead,
for RD and s, patient-independent initial estimates have been used. A preliminary
analysis based on the shape of arterial and portal vein signals allowed detecting the
most likely couple of these two parameters, to represent a tall, narrow, and slightly
right-skewed aortic signal, and a short, large, and strongly right-skewed portal vein
signal. In this regard, Figure 6.3 shows the variations of LN functions for five dif-

Fig. 6.3: LN models for five different values of the couple RD and s, with AUC and tm kept
fixed at AUC=4000 and tm=20 for the aortic signal and AUC=6000 and tm=40 for the portal
vein, respectively.

ferent values of the couple RD and s, with AUC and tm kept fixed. In particular,
AUC=4000 and tm=20 for the artery, whilst AUC=6000 and tm=40 for the portal
vein. Then, based on the different LN shapes achieved, RD =0.3 and s=1.5 have
been chosen as initial estimate of the minimization procedure for fitting the aorta,
whilst RD=0.7 and s=1.7 have been used for the portal vein.

As introduced in Chapter 4, Sect. 4.4.3, GV model has four main parameters,
that is the global scale K, shape and scale factors, α and β, respectively, and the
location time t0. Patient-independent initial estimates have been fed to the mini-
mization algorithm for all the four parameters. A preliminary analysis, based on
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the shape of tissue signals, maximum enhancement values and initial time instants
of tissue enhancements, allows choosing as the initial estimates the values K=50,
α=0.5, β=20, and t0=25 s. In particular, the choice of K refers to the average of
maximum enhancement values achieved on tissue signals. Accordingly, the value of
β has been increased by one order magnitude with respect to the β values generally
used when GV model describes a probability density function (as in Figure 4.16).
Then, the small α value has been chosen to allow the complete decrease of the curve
towards the baseline value within the acquisition time interval. The estimate of t0
corresponds to tm value of LN model observed, on average, on the aortic vascular
input, considered as the minimum required for having the tissue enhancement. For
LN and GV parameters, all possible positive values have been explored by the min-
imization algorithm. Finally, Figure 6.4 shows the signals extracted from CA(t),

Fig. 6.4: LN and GV fitting of CA(t), CP (t), and CT (t) referring to the first pass signals.

CP (t), and a representative CT (t), and their first pass fitting signals superimposed,
LNA(t), LNP (t), and GV(t), respectively. Hereinafter, CA(t), CP (t), and CT (t) refer
to the first pass fitting signals.

6.5 Computation of perfusion parameters

If one worked with a single input model, extracting the first pass signals would
be enough to compute BF values referred only to first pass through DV, and compare
them with those arising from MS. Instead, in the dual input hepatic model, both
MS and DV require CTA

(t) and CTP
(t) to compute aBF and pBF, respectively.

Hereinafter, aBFx, pBFx, and BFx stand for the parameters computed with MS or
DV depending on x=MS or x=DV.

In order to avoid approximating the two contributions according to Eqs. 4.22
and 4.23, I have decided to compute BFMS analytically, employing the same signals
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as DV, this also expectedly improving reproducibility. From a mathematical point
of view, the two contributions CTA

(t) and CTP
(t) arise from Eqs. 4.68 and 4.69.

Accordingly, in order to compute CTA
(t) and CTP

(t), both HPI and R∗(t) are needed.
In fact, one of the open issues mentioned for DV (Table. 6.3) is how to solve the
procedure having two unknown parameters.

To this purpose, I have implemented a two-stage procedure, made of an ini-
tialization (Init) and a computation (Compute) block, outlined in Figure 6.5. The

Fig. 6.5: Two-stage procedure made of initialization (Init) and computation (Compute)
blocks. Initially, HPI[e] is estimated through convolution (⊗min), stemming from an ideal
model of R∗(t) (i.e. R∗(t)[i]), minimized against CT (t). Then, by exploiting HPI[e], R∗(t)[r]

is first achieved via deconvolution (⊗−1), then fed to the Compute block, where the estimates
of HPI[r] and R∗(t)[r] are iteratively refined until convergence (i.e., until the mean residuals
computed between two subsequent estimates of R∗(t)[r] reach a plateau).

first, sequential, block aims at providing a very preliminary estimate of HPI and
R∗(t), used to initialize the second block, whose purpose is iteratively refining HPI
and R∗(t), until convergence is reached. In particular, I have started in the first
block by estimating the voxel-based HPI values (HPI[e]) via convolution (⊗min),
from Equation 4.67, which is directly minimized against CT (t) using an ideal model
of R∗(t) (i.e., R∗(t)[i]). Then, HPI[e] is employed to deconvolve Equation 4.67, now
achieving voxel-based estimations of R∗(t) on real data (i.e., R∗(t)[r]), which is fed to
the second stage to achieve an early estimate of the real HPI (i.e., HPI[r]). The sub-
sequent refinements of R∗(t)[r] and HPI[r] are iteratively performed minimizing the
mean residuals of R∗(t)[r] (µ[R∗(t)[r]]) computed between two subsequent estimates.
The mean curve computed over all the included patients (Figure 6.6 (a)) shows a
L-like curve shape, similar in each patient, with a plateau for µ[R∗(t)[r]] starting at
the light blue point, the fourth iteration (that is, referring to differences between es-
timates at i=4 and i=3). As one can infer by the very low standard deviations, this
occurs for all patients and because there are no real benefits to wait for convergence,
I have chosen to stop the process and taking R∗(t)[r] at i=3. This choice has been
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Fig. 6.6: (a) The mean curve of µ[R∗(t)[r]] referring to whole patients, with the light blue
point highlighting the iteration (i = 4) at which a plateau starts; for a sample patient (ID37,
Centre 1) (b) µ[HPI[r]], (c) ρs[HPI[r]] and (d) ICC[HPI[r]] are reported.

also supported by the concomitant best HPI[r], as one can see for a representative
sample patient (ID37, Centre 1) in Figure 6.6 (b), reporting the evolution of the
mean residuals, and by the Spearman coefficient (ρs) and the Intraclass Correlation
Coefficient (ICC) in Figure 6.6 (c,d), respectively.

Finally, by deconvolving CTA
(t) and CTP

(t) with the corresponding input func-
tions, CA(t) and CP (t) respectively, we can compute voxel-based aBFDV and pBFDV
values, subsequently summed up to yield the total BFDV value (Equation 4.20). Sim-
ilarly, MS is independently applied to CTA

(t) and CTP
(t) to compute aBFMS and

pBFMS via central finite-differences, then summed up to achieve BFMS.
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6.6 The generalized MS

Once computed the two tissue contributions CTA
(t) and CTP

(t), MS and DV
reproducibility has been further investigated by analysing the modelling assumptions
of the two methods, in order to detect any theoretical inconsistency hampering
reproducibility.

In particular, I have focused on the MS theoretical formulation which is grounded
on a strong modelling assumption. In this regard, it is worth noting that the first
experimental measurement of tissue perfusion by dynamic CT is reported in the
study by Miles [213] on cardiac chambers. In that case, in addition to the hypothesis
of no-outflow, the experiment implicitly relies on being no dispersion between the
input and the organ, since the radiolabelled microspheres are injected directly into
the left ventricle. Hence, the latter hypothesis implies that the maximum gradient
of the time-activity curve of the tissue occurs at the same time of the maximum
value of the input curve.

In a real case, there are two possible factors deviating from theory: (a) a mini-
mum venous outflow and (b) the dispersion between CA concentration in the aorta
and that one in the vessel directly supplying the organ, that is often a closer small
artery. In particular, depending on dispersion, the true vascular input could have
a slightly lower peak’s amplitude than aorta and its peak may by delayed. Hence,
the second condition implies that the peak of the aortic input may occur before the
maximum gradient of the tissue CA enhancement.

Therefore, I have hypothesised that the denominator in the classical formulation
of MS, which I recall in Equation 6.5:

aBF ≈
dCTA

(t)

dt |max

CA(t)|max
(6.5)

could not be necessarily the peak of the aortic function. In fact, if the peak time
does not coincide with the time instant of the tissue maximum slope, Equation 6.5
will provide us with an underestimated aBF value. Hence, I have thought that
each value of CA(t) could be plausible in order to attain a more accurate aBF
estimate through the MS. Then, I have relaxed the constraint in Equation 6.5, by
replacing its denominator with any time-dependent sample of CA(t), thus attaining
the generalized MS, gMS, of Equation 6.6:

aBF ≈
dCTA

(t)

dt |max

CA(t)|t∈[ta,tmax]
(6.6)

where ta represents the beginning of the ascent phase of CA(t) and tmax refers to its
peak’s time-instant.
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Finally, the voxel-based gMS is computed on each CTA
(t).

6.7 Reproducibility assessment

Reproducibility of MS and DV values has been assessed in two stages, being
both based on voxel-based comparisons.

As explained before, the methods developed have allowed me to separate the
two contributions, CTA

(t) and CTP
(t), and compute aBF and pBF values on the

same signals separately through MS and DV, this expecting to increase precision
of measurements and reducing the variance accordingly. In addition, this expected
to improve the concordance of clinical evaluations arising from the two methods.
First, BF values through MS and DV have been compared to assess the agreement
of measurements, assessed through the linear correlation of BF values, which is
expected to yield strong and lowly dispersed correlations, although with numerical
differences.

Second, because of the hypothesis formulated in Sect. 6.6 (MS cannot represent
the same status of the system with respect to DV, due to a non-negligible transport
delay between input and tissue) I have assessed whether and to what extent gMS,
an extended formulation of MS accounting for transport delays, could represent the
same status of DV. Accordingly, by employing gMS and DV, I assessed the numerical
equivalence of perfusion parameters, referring to aBF values. For each voxel-based
CTA

(t), aBF values computed while varying the denominator in Equation 6.6 have
been compared with those arising from DV, searching for the time-instant mini-
mizing the differences between the two measures, namely the “equivalence” times.
The distributions of equivalence times have been evaluated through the interquar-
tile range (IQR). Figure 6.7 (a) shows an arterial input function, where the time
interval [ta, tmax] at the denominator of Equation 6.6, is highlighted. Then, a repre-
sentative equivalence time-instant is highlighted and the corresponding distribution
of equivalence times is shown in Figure 6.7 (b), achieved from the equivalence times
of all voxel within the analysed ROI. In addition, the medians of these distributions
have been also used to compare aBF achieved with gMS and DV, meaning that
each median have been used as the value at the denominator of Equation 6.6, thus
mimicking the classical MS formulation.

Finally, in order to allow comparing all the medians with each other, and remov-
ing the inter-patient variability in a simple manner, each temporal distribution has
been normalized to a common physiological time reference. Therefore, instead of
using scan beginning, that is an absolute reference, I have arbitrarily used the arte-
rial wash-in (WIa) (that is the maximum slope of aorta) time which, practically, has
been subtracted from the time distribution. Hence, the wash-in time normalization
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ta tmax

dt
max

dCA (t)
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Fig. 6.7: A representative arterial input function in which it is highlighted the time interval
[ta, tmax] where the equivalence time is searched out (a). Moreover, it is shown the arte-
rial wash-in time used as normalization factor for gMS computation. The distribution of
equivalence times achieved from all ROI voxels (b).

factor is also highlighted on the arterial function in Figure 6.7 (a).
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Chapter 7

Experimental results:
voxel-based reproducibility of BF

This Chapter presents the experimental results referring to the methodology
developed to pursue MS and DV reproducibility, presented in Chapter 6. After a
preliminary study focused on the analysis of fitting errors (Sect. 7.1), the Chapter
presents results achieved on a dataset of 75 CTp examinations of PIXEL. First, this
Chapter shows how the methods developed for solving computational open issues and
improving precision of BF measurements have effectively reduced the variance and
yielded the voxel-based agreement of BF measurements computed independently
through MS and DV (Sect. 7.2). Yet more, this Chapter presents the proof of
concept that MS, in its classical formulation, cannot represent the same status of
the system described by DV, and the cause has to be attributed to transport delays
between inputs and tissue. In this regard, the voxel-based aBF numerical equivalence
obtained through gMS and DV is reported (Sect. 7.3). By supporting the idea that
non-negligible transport delays are the cause of non-reproducibility of MS and DV,
a case study is reported (Sect. 7.4), where, in the absence of any delay between
input and tissue, the equivalence of MS and DV is achieved. In the end, a clinical
application is presented (Sect. 7.5), where perfusion parameters have been used to
compare, referring to SARAH study, the effects at one-month follow up of Sorafenib
and selective internal radiotherapy (SIRT) treatments in advanced non-operable
HCC.

7.1 Analysis of the effects of CTp fitting errors on BF values

In Chapter 6, tissue fitting through the GV model has been addressed. Since
the computing methods for perfusion analysis, including MS and DV, are based on
specific signal descriptors, such as maximum derivative, area under the curve, and
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time to peak, the reliability of estimates strongly depends on the quality of the
modelled TACs. Of course, performing a correct estimate of TACs represents the
first necessary stage for the reliability of all the subsequent computational steps.
Therefore, in the following I present a preliminary study aimed at investigating
how TAC fitting errors may affect final perfusion values. To this end, first, the
distributions of fitting residuals have been analysed in significant signal portions.
Then, the implications of GV fitting errors upon BF values computed with MS
(BFMS) and DV (BFDV) have been considered. The study has been carried out on
21 patients randomly chosen from the Centre 1 of the PIXEL study.

In order to assess to what extent GV fits real signals, I have performed the anal-
ysis of residuals by means of the histograms of voxel-based averaged residuals (µϵ),
thus evaluating statistical parameters as median value (M) and Median Absolute
Deviation (MAD). Moreover, I have investigated the local distribution of the per-
centage errors. In particular, I have focused on error affection on different phases of
the signals, separated as follows:

• Ascent phase
Between the first non-zero value of the real signal and one sample before the
maximum value

• Peak phase
Evaluated in a range of ±5 samples, with peak as the central one

• Descent phase (or end phase)
Between the peak and the end of the first pass, computed according to Sect. 6.3

This choice has been suggested by the high significance of these components
in computing perfusion parameters. In particular, the ascent phase retains a great
relevance for the MS method, since it holds the maximum derivative of the signal.
Instead, the peak phase results crucial because it strongly affects the solution recov-
ered by the DV method (whose maximum value estimates the BF, as in Sect. 4.5.3).
Then, the descent phase fits the first-pass enhancement of CTp signals, as stated
above. In order to assess the Gaussianity of the fitting process, a one-sample two-
tail t-test has been performed on each histogram as well. In addition, also the third
moment has been computed, to check for possible asymmetries. To the purpose of
assessing the implications of the fitting procedure over perfusion parameters, the
relation between µϵ and BF values, arising from both MS and DV methods applied
on GV fittings, has been inspected visually by means of residual plots. Then, I have
split up the BF range (for both MS and DV) into 10 groups holding the same num-
ber of values, thus permitting to evaluate differences in terms of standard deviation
of residuals among the groups.
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7.1.1 Analysis of residuals

I have first considered the analyses of residuals (ϵ) for a single-patient, and
only later on investigated on whether the attained results were generalizable, by
considering the fitting errors globally occurring for the 21 examinations. Figures 7.1
and 7.2 (a) show the histograms of voxel-based errors of the ROI over the whole

(H.U.)

Fig. 7.1: Histogram of mean residuals (µϵ) computed between GV fitting and real signals for
patient C1N1 over the whole time interval.

time interval considered, by referring to a single-case (patient C1N1) and to all
patients, respectively. As one can see, all fitting errors show a normal distribution,
as confirmed by t-test (p-value ∼ 10−5).

Actually, the histogram in Figure 7.1 just shows a slight left skewness (3.48·10−1),
that is absorbed by the global histogram (Figure 7.2 (a)), whose skewness value
(1.3 · 10−3) is compliant with Gaussianity, this confirming single examinations as
being instances of a Gaussian process. Yet more, this also indirectly supports the
hypothesis that the patient population considered is statistically representative.

However, the histogram in Figure 7.1 has non-null mean (µ = −0.0190) with
standard deviation (σ) equal to 0.1683. Nevertheless, by investigating the local
degree of dispersion, shown in Figure 7.3, voxel-based percentage errors result ho-
mogeneously distributed in a narrow range ([−4.63 ÷ 3.93]%), this permitting to
exclude the presence of local abnormalities in the performed fitting procedure. As
regard the histogram of all examinations (Figure 7.2 (a)), both µ and σ increase in
the absolute values (µtot = −0.454 and σtot = 0.3140 thus emphasizing single-cases
with possible higher absolute fitting errors. Figures 7.2(b), (c) and (d) depict the
histograms of residuals referring to the ascent, peak and end phase of the signal,
respectively. By considering the median residuals, one can see that in Figure 7.2 (b)
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(H.U.)
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(c) (d)
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Fig. 7.2: (a) Histogram of mean residuals (µϵ) computed between GV fittings and real signals
for all the 21 patients and histograms referred to the (b) ascent, (c) peak, (d) descent phase,
respectively.

Fig. 7.3: Map of percentage errors of patient C1N1.
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(µascent = −0.2304) and (c) (µpeak = −0.3449) absolute values are bigger than in
(d) (µend = −0.1163). This confirms both the ascent and the peak phases as the
most critical ones for the fitting procedure where, as expected, residuals are higher
in (b) because of the rapid increments of the HU values, and in (c) due to the non-
monotone behaviour of the signal within the interval. As regards (c), its criticality
is also confirmed by the worst σ (σpeak = 1.8872) among the three phases, while
σascent = 0.6660 is now even lower than σend = 0.6990. Figure 7.4 shows three differ-
ent GV curve families, referred to as many patients. As one can see, there is much
more variability in the peak or the end phase between GV curves of the same ROI
rather than in the ascent phase, where signals show a higher similarity. This could
motivate errors being more spread in those phases ((b) and (c)).

Globally, all histograms report negative M values, thus hinting at an underes-
timation of the real signals. I have realized that, often, this occurs in case of very
noisy real signals, that are also greatly frequent. In fact, if referring to the HU
mean value of the C(t), acquisition’s artefacts more often introduce over-enhanced
values rather than under-enhanced ones. In order to clarify this aspect, Figure 7.5
(a) shows an example of GV curve that fits a weakly noisy CT (t). The fitting has
frame-by-frame low residuals, without any singularity. On the contrary, as one can
see in Figure 7.5 (b), the GV model seems not to be suitable to take into account
strong and rapid variations of the real signal, whether these are localised in only
one or a very few number of samples, although in those cases residuals are high.
Nevertheless, errors’ distributions reported in the separated phases of Figures 7.2
(b), (c) and (d) account for different numbers of evaluated samples. In fact, the
ascent phase generally retains a greater number of samples and, moreover, it is the
most compliant with the voxel-based signal features. On the contrary, the peak and
the descent phase are studied by necessarily (and somewhat arbitrarily) defining the
interval they refer to, that usually has a lower number of samples.
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Fig. 7.4: Meaningful GV fittings for the ROI of three patients (from left to right, ID1, ID35,
ID8).



142 CHAPTER 7

7.1.2 Implications on BF values

On the basis of the achievements arising from the analysis of residuals regarding
the fitting procedure, I have focused on relationships between errors and BFMS and
BFDV. In particular, the Gaussianity of errors distribution shown in Figure 7.1 (a),
still confirmed in the global evaluation reported in Figure 7.2 (a), allows consider-
ing BF values, attained for all the 21 patients involved in the study, in a globally
manner. Therefore, Figures 7.6 (a) and (b) show the residual plots of voxel-based
averaged errors over BF values for MS and DV, respectively. One can see that
the residuals of Figure 7.2 (a), falling in the range [−1.5 ÷ 1.5] HU, are uniformly
distributed over the BF ranges of both MS ([44 ÷ 218] [ml/min/100g]) and DV
([45÷215] [ml/min/100g]). In addition, even an early visual evaluation of the plots,
Figure 7.6 allows realizing that µϵ arising from the fitting procedure result indepen-
dent from BF values. Nonetheless, from Tab. 7.1 it is possible appreciating that
the ten groups of 14165 BF values each show a comparable σ, this hinting the ho-
moscedasticity of the classes. The residual plots in Figure 7.6 also confirm that
fitting errors yield a quite good degree of symmetry with respect to 0 HU (the black
horizontal line).

The setup fitting procedure yields residuals normally distributed, with percent-
age errors spatially homogeneous. Each voxel-based fitting curve shows the same
uncertainty, thus limiting the risk of local anomalies or spatio-dependent erroneous
values regarding the BF distributions that, besides, are independent from fitting er-
rors. In practice, the achievements confirm that a GV fitting, properly parametrizes,
can give the possibility to independent methods to compute perfusion parameters,
laying in similar ranges, which could potentially converge towards similar values.
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Fig. 7.5: (a) GV fitting of a weakly noisy C(t), (b) GV fitting of a noisy C(t).
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Fig. 7.6: Residual plot of voxel-based averaged µϵ over BFMS (a) and BFDV (b).

Table 7.1: Table of σ values of µϵ referred to ten different groups of BF values computed
with MS and DV.

σ µϵ (MS) µϵ (DV)
σ1 0.298 0.283
σ2 0.343 0.277
σ3 0.346 0.295
σ4 0.308 0.304
σ5 0.302 0.295
σ6 0.291 0.290
σ7 0.281 0.294
σ8 0.307 0.306
σ9 0.322 0.320
σ10 0.246 0.362

7.2 Reproducibility of BF in the multicentre PIXEL study

As seen during the first preliminary study presented above and also mentioned
in Chapter 6, Sect. 6.1, the methods developed for the reproducibility of perfusion
parameters through MS and DV mainly address the PIXEL study. In particular, in
the following I present the results of the reproducibility of BF values at single voxel-
level through MS and DV achieved on a dataset of 75 patients, coming through the
Centres 1 and 16 of the PIXEL study. In particular, fifty-four patients have been
randomly chosen from Centre 1 and all patients sharing the same protocols of Centre
1 have been selected from the Centre 16.

In the following, after a brief discussion of the methodological results regarding
the fitting procedure set up for vascular and tissue signals, using LN and GV para-
metric models (Sect. 6.4), I present the voxel-based reproducibility of BF values,
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by considering also a comparative analysis of my results with the state of the art.
The methods developed for extracting and modelling the first pass, separating tissue
components due to the dual inputs on which computing independently MS and DV,
are expected to improve precision of measurements and allow a fair voxel-based com-
parison of perfusion values. Accordingly, from the numerical side, the voxel-based
agreement of BF values is addressed. Moreover, from the theoretical side, the main
achievement of this study concerns the questioning of the MS validity in its classical
formulation and the proof of concept that an alternative formulation of MS can lead
the two methods to effectively represent the same status of the system, and MS and
DV to be substantially equivalent, accordingly.

7.2.1 Analysis of fitting parameters

The implementation of the fitting procedure set up for vascular and tissue signals,
through LN and GV parametric models, has been addressed in Sect. 6.4. In this
regard, Table 7.2 resumes the parameters arising from the minimization procedure

Table 7.2: Summary of LN parameters minimized against real vascular signals of aorta and
porta. All parameters but tm are in arbitrary unit. tm is measured in s.

m σ min max

AUC Aorta 5412 1580 2550 9600
Porta 4910 1627 2350 10700

tm
Aorta 22.6 4.2 15.5 34.2
Porta 49.1 9.5 32.0 85

RD Aorta 0.3 0.1 0.2 0.4
Porta 0.5 0.1 0.4 0.6

s Aorta 1.3 0.3 0.4 1.7
Porta 1.8 0.1 1.5 2.0

for vascular signals, that is aorta and portal vein. In particular, mean (m), standard
deviation (σ), minimum (min), and maximum (max) values are provided for the four
LN parameters AUC, tm, RD, and s. I recall that patient-based initial estimates
have been used for AUC and tm, whilst patient-independent initial values have
been adopted for RD and s, being equal to RD=0.3 and s=1.5 for the aorta, and
RD=0.7 and s=1.7 for the porta. Results shown in Table. 7.2 substantially confirm
the need for patient-based initial estimates for the two parameters AUC and tm, both
showing high variability either in aorta or portal vein, as justified by the coefficient
of variation, CV , of both parameters. In particular, as regards AUC, CV =29% for
the aorta, and CV =33% for the portal vein. In addition, even the ranges are spread
over wide distributions, as reported by the range width (rw) which is AUCrw=7050
for the aorta and AUCrw=8350 for the porta. Moreover, data in Table 7.2 highlight
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slight differences between aorta and portal vein if referring to AUC, thus suggesting
that when the enhancement of aorta and portal vein is caught, the amount of CA into
the two vessels is almost comparable. However, a delayed transport is highlighted
in the portal vein where, as one can see in Table 7.2, the tm of the portal vein is
on average twice the one of the aorta, with the same CV =19% for both the vessels.
The delayed transport in the portal vein is also confirmed by the ranges of tm, where
one can notice that the max of tm of the aorta is 2.2 s after the min of tm of the
portal vein.

As regards RD, the initial value RD=0.3 for the aorta has been confirmed on
average after the minimization procedure, whilst the value RD=0.7 used as initial
estimate for the portal vein has overestimated the mean value of RD after the
minimization equals to RDm=0.5. In addition, the values of RD suitable for fitting
the two vascular signals result limited to three discrete values, as also shown by the
ranges and the values of σ, reported in Table 7.2. Finally, the values of s used as
initial estimates for the two vessels, over- and under- estimates the values achieved
after the minimization procedure, for the aorta and portal vein, respectively. In
fact, s=1.3 is slightly lower than s=1, initially considered for the aorta, whilst s=1.8
results slightly greater than s=1.5 used as initial seed for the porta. Moreover, if
compared to RD, the wider ranges of the s parameter achieved for both aorta and
portal vein show a great variability, especially as regards the aorta, where srw=1.3,
whilst srw=0.5 for the portal vein. As a concluding remark, I recall that RD and s

represent respectively the dispersion of the curve, which mainly affects the fitting of
the positive slope of the signal, and its skewness, which influences the fitting in the
descending phase of the curve. Accordingly, it is worth noting that, based on these
parameters, a great variability of vascular signals is highlighted during the descent
phase rather than during the ascent one, since s shows a wide range of possible
values, whilst the range of RD is really limited.

Table 7.3 reports the parameters arising from the minimization procedure of

Table 7.3: Resume of GV parameters minimized against real tissue signals. All parameters
but t0 are in arbitrary units. t0 is measured in s.

m σ min max

K 1.08·10-3 7.57·10-3 2.71·10-6 1.52·10-2

α 5.26 0.73 3.50 6.85
β 8.96 2.76 4.29 15.4
t0 7.80 0.68 4.82 12.9

tissue signals, achieved employing the GV model. In particular, m and σ refer to
the averaged values arising from all voxel-based solutions achieved for each patient.
Similarly, min, and max values are referred to the extreme values of m achieved for
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all patients. Actually, the values of all four GV parameters, K, α, β, and t0, result
very different from the initial estimates which have been fed to the minimization
algorithm in a patient-independent approach, that have been K=50, α=0.5, β=20,
and t0=25 s. This reasonably means that the initial estimates identified in a heuris-
tic manner, represented sub-optimal solutions for the parameters, corresponding
to local minimum values. However, one can appreciate from data reported in Ta-
ble 7.3, that the minimization algorithm exploited for estimating fitting parameters
converges towards more reliable distributions, also spread over quite narrow ranges
for all parameters but K. In fact K, which is a global scale factor, shows a wide
variability both in terms of dispersion (σ=7.57·10−3) and range width (Krw=0.15).
This means that K is the GV parameter which mainly accounts for the voxel-based
variability of real signals. One should consider that GV fitting, differently from LN
fitting, refers to each voxel-based signal separately. Accordingly, the wide diversity
of tissue signals, even emphasized from a greater – if compared to ROI-averaged
vascular signals – noise component corrupting them, leads to such a large range of
K values. A similar behaviour is shown also by β, which is the local scale factor
in the GV formulation. In fact, although less variable than K, β shows CVβ=30%,
thus representing a similar tendency to catch the variability of voxel-based signals,
as also reported by the quite large range, βrw=11.1. Meanwhile, the other three
parameters, α and t0 are much more similar among different voxels, as shown by
the very low CVs, which are CVα=14% and CVt0=9%, respectively. Moreover, α is
characterized by even a smaller range (αrw=3.35), which means that it is the most
stable in identifying the family of tissue signal curves, as expected because it is the
shape parameter. Finally, despite of a low CV value, t0 shows a quite large range
with rw=8.08 s, thus representing the very low variability of CA appearance time
instants among voxels of the same patient and the large variability among different
patients.

7.2.2 Voxel-based reproducibility of MS and DV

When considering the assessment of agreement between MS and DV, one should
notice that few works exist reporting BF values achieved with both MS and DV,
and all of these only refer to aggregate data, related to the entire cohort. This is the
first research reporting a patient-wise comparison of voxel-based BF values achieved
with both MS and DV, besides a cohort analysis to enable a comparison with the
state of the art.

For each patient of Centres 1 and 16, voxel-based BF values achieved via MS and
DV have been compared through the Pearson correlation index (ρ), split into five
contiguous classes with increasing correlation, in order to permit a more accurate
comparison between Centres. In addition, for each patient, M and MAD, m and
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σ, and CV are also computed for MS and DV separately. In order to assess the
semantic consistency of the results achieved by both methods, I have considered their
spatial distributions through colorimetric maps, investigating the similarity between
patterns through the normalized cross-correlation (NCC). Morever, the voxel-based
agreement of BFMS and BFDV has been assessed with scatter plots, thus measuring
the standard deviation of the secondary component obtained through the Principle
Component Analysis (PCA).

As regards the cohort analysis, the correlation of all mean BF (BFm) values
achieved via MS and DV is computed at group (G) level, where “group” is meant
as the set of patients of either Centres 1 or 16 or both (1&16) and assessed through
Spearman (ρs), Pearson (ρG), and ICC indexes. To this purpose, when addressing
the comparison with the literature, these correlations (c) between MS and DV have
been considered good or very good if 0.80 ≤ c < 0.90 or c ≥ 0.90, respectively. On
BFm and BFM distributions, MG, MADG, mG, σG, and CVG = σG/mG have been
assessed. Finally, a comparison between MS and DV is carried out considering the
absolute percentage differences of MG (∆M ) and mG (∆m). Afterwards, we com-
pared our results with other studies’, considering all the published works between
2013 and 2019, retrieved from PubMed database including the keywords: “func-
tional CT, perfusion CT, CT-perfusion, deconvolution, maximum slope, CT-based,
dynamic contrast-enhanced computed tomography, dynamic contrast-enhanced CT”
and excluding: “brain, cerebral, artery, coronary, stroke, cardi, dynamic contrast-
enhanced MRI, dynamic contrast enhanced MRI”. Finally, 18 works are considered,
dealing with different organs and glands, including liver (8), kidney (3), pancreas
(3), lung (2), oesophagus (1), lymph nodes (1).

I start presenting the patient-wise MS and DV voxel-based correlations, followed
by a comparison of the aggregate results with other studies.

Table 7.4 resumes the Pearson correlations between BF values computed at voxel

Table 7.4: Correlation (ρ) of BF between MS and DV in Centres 1 and 16

Centre Patients CVMS CVDVTotal ρ=0.99 ρ=0.98 ρ=0.97 ρ=0.96 0.90≤ρ≤0.95
1 54 37 5 6 3 3 11.6% 10.7%
16 21 15 4 - 1 1 11.3% 11.0%

level with MS and DV for each patient of Centres 1 and 16, where ρ values are
partitioned into 5 contiguous classes. Correlations are excellent, with 95% of patients
with ρ≥0.96 in Centre 1 as well as in Centre 16. These values are yet more significant
in the light of the very low mean CV s of all patients for MS (CVMS) and DV (CVDV),
suggestive of BF distributions with narrow ranges, with maximum CVMS=11.6% and
minimum CVDV=10.7% values in Centre 1, for MS and DV, respectively. It is also
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worth noting that CVDV values are also lower than CVMS ones, this confirming the
better precision of DV. Figure 7.7 (a,b) show the colormaps achieved by MS and

Fig. 7.7: Colorimetric maps of BFMS(a,c) and BFDV(b,d) for one among the best examinations
(C1N33), which shows ρ = 0.99, and a representative worse case (C1N38), with ρ = 0.97.

DV for one among the best examinations (C1N33), as one can see also from the
scatter plot of Figure 7.8 (a), which yields ρ = 0.99, and the results of NCC in
Figure 7.9 (a), where NCCmax=0.9997. The dispersion of the scatter plot is very
low, with σ=0.4105, this reflecting the high homogeneity between patterns even at
a local level, as confirmed by the symmetry of the peak and the quite anisotropic
dispersion of NCC values. Similarly, Figure 7.7 (c,d) reports the colorimetric maps of
BF by MS and DV for a representative patient (C1N38) having a worse correlation,
as also shown by the scatter plot in Figure 7.8 (b) where ρ=0.97, and the NCC
in Figure 7.9 (b) where NCCmax=0.9954. While the latter is really a high value
for NCC, the isotropic distribution of NCC values hints at a much worse match,
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Fig. 7.8: Linear regression of BF distribution for the examination C1N33(a) of Figure 7.7
(a,b) and the case C1N38(b) of Figure 7.7 (c,d). The two scatter plots have ρ=0.99 and
σ=0.4105 in (a) and ρ=0.97 and σ=1.4843 in (b) showing an excellent and discrete agree-
ment, respectively.

which emphasizes small local inhomogeneities between patterns, also confirmed by
a much higher dispersion degree of the scatter plot (σ=1.4843). Nevertheless, both
the maximum values are achieved at the image centre.

Table 7.5 reports the outcomes of our study (Centres 1, 16, 1&16) and of the most
recent literature addressing healthy tissue (H), primary cancer (C), or metastases
(m) in different organs and glands. These studies were all single Centres, except
for [214], and perfusion parameters were always computed with vendor’s Software.
The results reported perfusion parameters, correlations, and absolute percentage
differences of median and mean BF values achieved with MS and DV, referred to
the whole cohorts. As one can see, most of parameters are not computed (‘-’ points
out not available values) and this regards not only voxel-based, but group-wise
analyses as well, where the only parameters reported are those deriving from mean
(µG, σG, CVG), while median-derived parameters are almost never computed. As
a matter of fact, this element itself hints at a lack of accurate comparative studies,
making my work the most analytical one. Six works reported at least MG or mG
values for both MS and DV. Apart from the older work in [214], reporting correlation
values lower than 0.60, almost all the other correlation indexes are good (>0.80) or
very good (>0.90), but they are never coupled with low differences between MS and
DV BF values, this suggesting at least relevant systematic errors between MS and
DV computations. This happens in [224] (ρs=0.81, ∆m=54.6%), [132] (ρs=0.86,
∆m=44.7%), [216] (ρs=0.89, ∆m=44.7%), and even in [215], where ρG=0.91, the
highest ρG value of all the comparing studies considered, derives from ∆m=51.1%,
probably due to a linear correlation having a slope much higher than 1. Also the
work in [220] shows very good correlations (ρs=0.85, ICC = 0.83) but, besides
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reporting by far the highest σG in MS computations, not any (absolute percentage)
difference is given, nor ρG, this probably suggesting that neither voxel-based nor
global BF values were comparable with DV ones.

As regards my results, Figure 7.10 highlights the correlation of BF values com-
puted with MS and DV on the patients of Centres 1 (a) and Centre 16 (b). ρG,
ρs, and ICC coefficients are very high for Centre 1 (0.97, 0.96, 0.78) and excellent
for Centre 16 (0.99, 0.98, 0.84), and such an agreement is confirmed (even slightly
improved for ICC) by the multicentre analysis of 1&16 (Figure 7.6 (c)), with 0.97,
0.96, 0.79, respectively. Analogously, as regards m and q values, we can see that
increasing the number of patients by adding to Centre 1 those of Centre 16 does
not improve the slope, but it improves the bias, from q=12.24 to q=10.48. Actu-
ally, ICC coefficients for Centres 1 and 1&16 are lightly lower than those reported
in [220], but it is worth noting that our BF values are associated to the highest
precision, as confirmed by the lowest CVGs, when referring to either MS (CVG=0.25
and CVG=0.24, for Centres 1 and 1&16, respectively) and DV (CVG=0.23 for Cen-
tre 1 and CVG=0.22 for 1&16). The high precision is confirmed also in Centre
16, which yields the best CVG values, for DV (0.20) and MS (0.22), and the lowest
∆M=11.2% and ∆m=11.9%. In addition, also for Centres 1 and 1&16 the percentage
median and mean differences between MS- and DV-based BF values are incompa-
rably lower than those reported in the studies considered in Table 7.5, with the
“worst” ∆M=13.5% and ∆m=15.3% occurring for Centre 1&16 and 1, respectively.
These low differences between MS- and DV-based BF values are possible thanks to
the almost unitary slope and the quite low bias, as confirmed by the intercept (q)
values shown in Figure 7.6. The last remarks arise from a comprehensive view of

Fig. 7.9: NCC of the maps in Figure 7.7 for the patients C1N33 (a) and C1N38 (b), re-
spectively, where NCCmax=0.9997 (a) and NCCmax=0.9954 (b), both occurring at image
centre.
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Fig. 7.10: Scatter plots of median BF values computed with MS (x−axis) and DV (y−axis)
in Centre 1 (a), 16 (b), and 1&16 (c), respectively.

Table 7.5. It is clear that are very few studies directly addressing the problem of
reproducibility of BF values, whether these are computed with either MS or DV,
and when the percentage differences were reported, these were around 50% or even
more. This is independent on the organ and its healthy status - 13 works deal with
primary cancer, two with metastasis and three works only address healthy tissue.
All CVG referring to MS and DV computation are much higher than ours and it
worth noting that the second best CVG=0.33 [218] and the worst CVG=0.79 [225]
refer to liver cancer and healthy tissue, respectively. This suggests that the lowest
CVG values of our results do not depend on the healthy status of liver and, more in
general, on the organ, but it can be ascribed to the precision and the accuracy of our
CTp parameters computation methods, whose results are emphasized by Table 7.4.

7.3 The equivalence times of MS and DV

As explained in Sects. 6.6,6.7, besides the agreement of BF measurements, I have
investigated the theoretical aspects underlying the MS method, to go beyond the
“simple” concordance of BF values and achieve their numerical equivalence. To this
end, I have wondered whether the two methods were really representing the same
status of the system, and so the equivalence was basically reasonable. Accordingly,
by questioning the validity of classical MS assumptions, I have formalized the gMS
(Sect. 6.6), which addresses potential transport delays from the vascular input to
the tissue being studied, by varying the time reference in which the vascular input
is considered to compute the BF through the MS. In particular, I have searched
that time-instant when the vascular input signal can allow – if employed in the MS
formulation – the equivalence with BF computed through DV, thus mimicking a
reduced amount of vascular input which reaches the system in case of a delayed
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delivery. Hence, the distributions of so called equivalence times has been recovered,
that is where MS and DV yield exactly the same values, and the median of these
distributions has been adopted to compute the gMS, thus analysing whether a time of
equivalence between the two methods existed and where it was localized with respect
to a common temporal reference, which was the WIa. In particular, the methodology
has been setup for the equivalence of aBF. Accordingly, the following results refer to
the 75 patients of the PIXEL study, for which I have already presented the agreement
of total BF. The distributions of equivalence times have been assessed through σ,
IQR, and rw in order to measure their dispersion. Then, the localization of the
median equivalence time has been analysed with respect to meaningful references
on vascular and tissue signals, by considering the time distances with respect to the
time instant of WIa, the peak of the aortic signal (PEAKa), and the maximum slope
of the tissue (MSt). Moreover, for each patient, the linear correlation between the
gMS computed in the median of the equivalence time distribution and DV has been
measured through the R2 index with the aim of proving the numerical equivalence
if achieving unit slope and null intercept.

All the equivalence time distributions of DV and gMS result Gaussian-like distri-
butions, as that one shown in Figure 7.11 for the patient C1N26, which has the me-
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Fig. 7.11: Distribution of equivalence times for patient C1N26, which yields the median σ
value, σ = 0.11s. As one can notice, equivalence times are normally distributed.

dian σ value of the dataset equals to σ=0.11 s (IQR=0.16 s, rw=0.50 s). Moreover,
the same Gaussian-like distributions are achieved for patients C1N38 and C16N12,
yielding one of the most and least spread histograms, respectively, with σC1N38=0.29
s and σC16N12=0.02 s, and reported in Figure 7.12. In addition, these patients rep-
resent nearly the worst and the best case, if considering their IQRs, IQR=0.39 s
for C1N38 and IQR=0.01 s for C16N12, with rwC1N38=1.22 s and rwC16N12=0.16
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s, respectively. Moreover, as one can notice from Figure 7.13 reporting the spatial

Fig. 7.13: Spatial distribution of equivalence times for patient C1N26 (the one reported in
Figure 7.11) which results quite homogeneous if considering the small range depicted, without
any local abnormality.

distribution of equivalence times for patient C1N26 (the one in Figure 7.11), these
time of equivalence are quite homogeneously distributed over the ROI, thus allowing
excluding local abnormalities in transport delays.

Figure 7.14 (a) reports the distribution of IQRs for all patients. Despite the
greatest IQR=0.78 s (C1N20), also corresponding to the worst rw=1.97s, one can
notice that most of distributions are quite narrow, as proved by the 81% of patients
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Fig. 7.14: Histograms of the IQRs (a) of the equivalence time distributions and normalized
median values (b) with respect to WIa.

having IQR≤0.25 s. As above explained, for each equivalence time distribution, the
median time has been considered in the gMS formulation, thus employing the value
of the vascular input in that time-instant rather than in the peak one. Figure 7.14
(b) shows the distributions of these medians with respect to the chosen normal-
ization factor which is WIa, the wash-in time of the aorta, corresponding to the
maximum slope of CA(t). The histogram is clearly bimodal, where each distribution
is Gaussian-like.

As one can see in Figure 7.14 (b), the median of equivalence time distributions are
localized between [0.04÷2.59] s after WIa, this corresponding to the ascent portion of
the aortic signal comprised between the WIa and PEAKa. It is also worth noting that
this is the region of the aortic signal most prone to errors due to the steepest slope.
Under this consideration, the IQR histogram in Figure 7.14 (a), which reports such
narrow distributions, is yet more meaningful. Hence, by considering the bimodal
behaviour in Figure 7.14 (b), it basically means that for the first sub-population of
patients, where the normalized median is nearly lower than 1.22 s, the aBF computed
with gMS and DV are equal when the arterial input in a time instant close to the WIa
is considered in the gMS formulation, on average, 0.61 s after WIa. Instead, for the
second sub-population of patients, the normalized median is nearly greater than 1.22
s, on average 1.88 s after the WIa, closer to PEAKa. Therefore, I have hypothesized
that the reasons of such bimodal behaviour in Figure 7.14 (b) could be related to the
tissue enhancement. In fact, since the gMS has been thought to account for any time
delay hampering the MS in its classical formulation to represent the same status of
the system depicted by the DV, I have analysed the relationships between MSt and
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PEAKa. Accordingly, Figure 7.15 (a) reports the histogram of the time distance

WIa- M eq.times≥1.22s
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Fig. 7.15: Analysis of the distances between MSt and PEAKa in the two sub-populations
highlighted in Figure 7.14 (b) with respect to the cut-off value of 1.22 s. The green bars
(corresponding to data in Figure 7.14 (b) greater than 1.22 s) shows a minimal delay between
MSt and PEAKa. The blue bars (corresponding to data in Figure 7.14 (b) lower than 1.22 s)
shows MSt centred around 4.96s after PEAKa (a). The statistical separations of these two
groups is confirmed with p-value∼ 10−5.

between MSt and PEAKa for the first sub-population of Figure 7.14 (b), that is
the green bars corresponding to normalized medians centred around 0.61 s, and
the second sub-population represented by the blue bars, having normalized medians
centred around 1.88 s. As one can see from Figure 7.15 (a), the two populations of
Figure 7.14 (b) are even separated by considering the localization of MSt with respect
to PEAKa. Moreover, the separation is statistically confirmed at Wilcoxon rank-sum
test with p-value∼ 10−5, as also shown in the boxplots in Figure 7.15 (b). Basically,
this means that the green-bar-group has MSt very close to PEAKa, and requires
the arterial input value to be more distant from the WIa (on average after 1.88 s),
whilst, the blue-bar-group shows MSt around 4.96 s after PEAKa and requires the
arterial input very close to WIa (after 0.61 s on average). This seems to confirm the
hypothesis that a delayed delivery between arterial input and tissue compartment
is the primary cause of the underestimation of aBF achieved when using the MS
in its classical formulation. In fact, Figure 7.15 (a) means that when a short delay
between PEAKa and MSt exists, one performs a little underestimation with classical
MS (using the PEAKa as the reference at the denominator of MS formulation) and
the correction factor searched via gMS is localized quite close on the left of PEAKa.
Instead, when there is a greater delay (around 4.96 s) between PEAKa and MSt,
the classical MS formulation substantially underestimates the aBF value, and the
correction factor searched via gMS is localized far before PEAKa, around 0.61 s
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after WIa, and could be even 100 [H.U.] lower than PEAKa.
By computing voxel-based aBF values with DV and gMS for each equivalence

time, I have attained perfectly identical results for all the examinations, proved by
linear regressions with R2 = 1, null intercept (∼ 10−3) and unitary angular co-
efficient (with 10−5 accuracy). Even applying gMS with one median value only,
results are very good with R2 ≥0.98 in the 93% of patients, as shown in the his-
togram of Figure 7.16 (a). In addition, the distributions of slopes (Figure 7.16 (b))

(a)           (b)      (c)
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Fig. 7.16: Linear regression between gMS computed in the median of the equivalence times
and DV. The histograms of R2 (a), slopes (b), and intercepts (c) are reported.

and intercepts (Figure 7.16 (c)) are centred around 1.001 and -0.016, respectively,
with IQR=0.05 for the slopes and IQR=0.74 for the intercepts, corresponding to
the range [0.99÷1.05] for the former and [-7.4·10−1÷1.2·10−3]ml/min/100g for the
latter. Actually, when considering the gMS computed with respect to the median
of the equivalence times, there are some outliers showing higher values of slope and
intercept, that also include patients yielding R2 < 0.98.

Colorimetric maps in Figure 7.17 report for the patients C1N38 (a,b) and C16N12
(c,d) the spatial distributions of aBF values. As already shown with the histograms
in Figure 7.12, these patient have nearly the most and least spread histograms of
equivalence times. Accordingly, for patient C1N38, employing the median of equiv-
alence times in the gMS formulation is expected to worsen the linear correlation
between gMS and DV, since the median is less representative of the whole distribu-
tion in case of more spread values, which means less representative of the voxel-based
state of the system. In fact, the patient C1N38 yields one of the worst value of slope
and intercept, being 1.29 and -10.90 ml/min/100g, respectively. Meanwhile, in case
of very narrow distributions, as occurs for C16N12, an excellent correlation is con-
firmed when assuming the median of equivalence times in gMS, with slope equals to
one and intercept∼ 105. However, at a visual-based assessment of colorimetric maps,
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Fig. 7.17: Colorimetric maps of aBF values computed with DV and gMS for patients C1N38
and C16N12, whose equivalence time distributions, reported in Figure 7.12 are nearly the most
and least spread of the dataset. Even with slope and intercept departing from one and zero,
respectively, thus being corresponding to 1.29 and -10.90 ml/min/100g, respectively, patient
C1N38 shows very similar aBF maps (a). Instead, the maps of C16N12 (b) are clearly identical,
since having very narrow distributions of equivalence times and perfect linear correlation.

it is worth noting that the areas of high and low perfusion are still matching even
in case of worse correlation (C1N38), with aBF values ranging within very similar
ranges, that is [13.97÷65.28] ml/min/100g for DV and [15.62÷68.45] ml/min/100g
for gMS. Of course, aBF colorimetric maps are indistinguishable for C16N12, where
even the aBF ranges through DV and gMS are equal.

As a concluding remark, the equivalence achieved with gMS and DV is expected
to improve the accurateness of aBF values also computed in normal liver. Accord-
ingly, the range of aBF values with both methods in agreement results [2.89÷39.74]
ml/min/100g for DV and [2.94÷37.07] ml/min/100g for gMS, with median values
equal to 15.18 ml/min/100g and 15.16 ml/min/100g, respectively.
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7.4 A theoretical proof by a single-input model case study

As mentioned in Chapter 6, I have also had the opportunity to work on PROSPeCT,
a British clinical trial which enrolled 447 patients with the primary objective of
improving the prediction of metastatic disease in patients with colorectal cancer
through detecting a hybrid biomarker prognostic of disease free survival, by us-
ing jointly clinical parameters and findings from CTp imaging. The availability of
PROSPeCT data has been possible in the context of the collaboration – although
focused on a different project – between the CVG and Prof. Vicky Goh from the
King’s College, London, which led the PROSPeCT trial. My study on reproducibil-
ity of MS and DV is based on the hypothesis that MS and DV represent different
system’s status due to CA transport delays. In particular, by questioning the valid-
ity of MS assumptions, I have formulated the gMS to account for transport delays
occurring in a dual input model between the aortic signal which is considered the ref-
erence vascular input in place of the hepatic artery, generally hidden in hepatic CTp
examinations, and the tissue compartment. Accordingly, the availability of even
just two cases of colorectal cancer CTp examinations belonging to the PROSPeCT
study, has represented the opportunity to test on a single input model, the hypothe-
ses regarding transport delays hampering the MS in achieving the correct estimates
of BF values. In fact, for physiological reasons, the colon-rectum is expected to
have minimum delay between input and tissue. Therefore, the MS in its classical
formulation and DV are expected to converge towards a unique solution. In case of
the colon-rectum, the mesenteric artery is the primary feeding vessel. However, it
cannot often be employed for CTp analysis since being very small in CTp images.
Therefore, the aortic artery is used in place of the mesenteric one, as it happens for
liver perfusion studies. However, differently from what happens with liver, the point
where the aortic vessel is captured through colorectal CTp images should minimize
any potential delay in reaching the tissue compartment.

Figure 7.18 shows the CTp images of the two CTp examinations, ID12001 and
ID12006, which have been analysed. In particular, the two CTp examinations have
undergone the same computational workflow set up for the hepatic perfusion study,
obviously adapted in case of a single input model. Accordingly, as shown in Fig-
ure 7.18, two ROIs outline the aorta – in red – for patients ID12006 (a) and ID12001
(c), and as many ROIs have been drawn on the colorectal cancer (Figure 7.18 (b,c))
– in yellow. Similarly to what explained in Chapter 6, vascular and tissue signals
have been fitted through LN and GV models, respectively. MS and DV were applied
on each voxel of the colorectal cancer ROIs. The agreement between MS and DV
has been first visually assessed through histograms and colorimetric maps of BF
values. In addition, to assess to what extent the two measurements were equivalent,
a linear regression of BFMS and BFDV has been performed, computing R2 index,
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(a)                                           (b)                                            (c)

ID12006 ID12001

Fig. 7.18: CTp examinations for the perfusion study of colorectal cancer for patients ID12006
(a) and ID12001 (b,c) with the aortic ROIs superimposed in red (a,c), and the tumour ROIs
(b,c) in yellow.

slope (m), and intercept (q). Finally, the statistical equivalence of measurements
have been measured through Wilcoxon rank-sum test at α=0.05 significance level.

Figure 7.19 shows the histograms of BFMS (Figure 7.19 (a)) and BFDV (Fig-
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Fig. 7.19: Histograms of Histograms of BFMS (a) and BFDV (b) achieved for patient ID12006

ure 7.19 (b)) computed for the patient ID12006, where one can appreciate very
similar shapes of distributions, although slightly different ranges. In fact, BFMS
falls within [7.26÷86.19] ml/min/100g, whilst BFDV ranges within [16.10÷94.77]
ml/min/100g. Despite these differences, the colorimetric maps in Figure 7.20 high-
light very similar spatial distributions of low- and high- perfused areas, although
with more emphasized high-perfusion patches in DV map.

Actually, the linear regression in Figure 7.21 shows a slight dispersion of BF
values, with R2 = 0.98, m=0.996, very close to unit, and a residual bias, q=7.829
ml/min/100g, which is the major cause thwarting the exact numerical equivalence
of BFMS and BFDV. Accordingly, Wilcoxon rank-sum test yields a non-significant
p-value (p=0.32), meaning equivalence of BFMS and BFDV measurements, if com-
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Fig. 7.20: Colorimetric maps of BFMS(a) and BFDV(b) for patient ID12006
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Fig. 7.21: Linear regression of BFMS and BFDV for patient ID12006 with R2=0.98, m=0.996,
and q=7.829.

paring BFMS and BFDV unless 8 BF units (8 ml/min/100g) equivalent to the bias
obtained in the linear regression. Basically, this means that even without a statistical
equivalence, the two measurements of BF values with MS and DV can substantially
be clinically equivalent, being the difference of BF values less than the 10%. In fact,
the almost unit slope of linear regression (Figure 7.21) confirms that MS and DV
are representing the same status of the system, although with a residual numerical
bias.

Figure 7.22 reports the histograms of BFMS (a) and BFDV (b) referring to patient
ID12001.

As one can see just from the distributions, this patient yields much more sim-
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Fig. 7.22: Histograms of BFMS (a) and BFDV (b) achieved for patient ID12001

ilar BF values than patient ID12006, with BFMS ranging within [17.61÷120.76]
ml/min/100g and BFDV belonging to [20.74÷123.99] ml/min/100g. In addition,
the excellent agreement is confirmed through the colorimetric maps reported in
Figure 7.23. The spatial distribution of BFMS and BFDV are basically indistin-

Fig. 7.23: Colorimetric maps of BFMS(a) and BFDV(b) for patient ID12001

guishable, with identical patterns of low- and high- perfused tumour regions. The
equivalence of BF measurements is even proved by the linear regression of BFMS
and BFDV, shown through the scatter plot in Figure 7.24, which reports R2 = 0.99,
with m=1.017, and q=-0.035. Of course, this case confirms the clinical equivalence
of the BF measurements achieved independently with MS and DV. In addition, it
is yet more meaningful if considering that the statistical equivalence of BF values is
attained as well, as confirmed by the Wilcoxon rank-sum test yielding p=0.06.
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Fig. 7.24: Linear regression of BFMS and BFDV for patient ID12001 with R2=0.99, m=1.017,
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7.5 Assessing perfusion after Sorafenib and SIRT treatments

As explained throughout this Chapter, the methodological workflow set up for
perfusion analysis has allowed reaching three main goals. First, it has enabled
the formulation of the modelling conditions under which two independent perfusion
methods can represent the same status of the system. Second, it has shown how
to yield reproducible BF values on a dataset of 75 patients undergoing dual-input
hepatic CTp analysis. Third, in a case study involving two CTp examinations of
colorectal cancer, modelled through a single input compartment, the theoretical hy-
pothesis have been proved. Hence, in this last Section, I present the preliminary
results of a clinical application study, in which perfusion parameters have been
employed to investigate the effects of two different oncologic treatments. In partic-
ular, this data refer to SARAH, currently the most important CTp perfusion study
which have been conducted from 2011 to 2017, in order to compare efficacy and
safety of Sorafenib, the recommended treatment for patients with advanced HCC,
and selective internal radiotherapy (SIRT) performed with yttrium-90 (90Y) resin
microspheres. SARAH study enrolled 25 French Centres and 467 patients which
have been randomly assigned to Sorafenib (400 mg twice daily) or SIRT (2-5 weeks
after randomization) treatments. Initially, 222 patients were assigned to Sorafenib
group and 237 ones to SIRT group. During the course of the study, some patients
have been shifted from one group to the other one due to clinical reasons related to
patient health status. Ultimately, 239 patients have been treated with Sorafenib,
and 228 with SIRT. Included patients have undergone baseline CT and CTp exam-
inations, a first follow-up one month later, and every three months subsequently.
At each follow-up, both CT and CTp examinations have been repeated. Findings
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of SARAH study, exclusively based on the analysis of CT examinations and clinical
parameters, were published in 2017 [4] and report overall survival not significantly
differing between the two treatments.

In this preliminary study, I have analysed for the first time the CTp examinations
of SARAH study, limited to Centre 1 (the same Centre 1 as PIXEL). Centre 1 has to-
tally enrolled fifty-four patients, twenty-six treated with Sorafenib and twenty-eight
undergoing SIRT. Due to the unavailability of some CTp examinations, presence
of imaging artefacts, non-visible portal vein in CTp images, some patient were ex-
cluded from perfusion analysis of Centre 1. Ultimately, I have considered sixteen
patients belonging to Sorafenib group, of which fifteen with one month-follow up
(1m-Fup) and one-only with three month-follow up (3m-Fup), and eighteen patients
of SIRT group, of which fourteen with 1m-Fup and four with 3m-Fup. Perfusion
analysis has been performed adopting the same methodological workflow used for
the PIXEL study. In this case, perfusion measurements of aBF, pBF, BF, and HPI
have been performed with the DV method only to achieve a better precision of HPI
estimates. In each Centre, perfusion measurements have been compared between
baseline and Fup, by considering the signed variation of median and MAD values.
Absolute variations of perfusion parameters greater than one percentage unit for
HPI and BF unit for aBF, pBF, and BF, have been considered for detecting an
increase or decrease of the perfusion parameters. Otherwise, parameters have been
considered stable.

From the clinical side, Sorafenib is an antiangiogenic drug and, as such, it is
expected to have the primary impact on tumour perfusion, much more than SIRT can
do, especially at 1m-Fup. Accordingly, it can improve patient prognosis and overall
survival. At the same time, SIRT is the treatment holding the highest expectations
within the medical community in order to improve advanced HCC prognosis even
making the surgery possible. Accordingly, the analysis of tumour perfusion may
result more accurate in characterizing the effects of the two treatments since focusing
on dynamic tumour features related to angiogenesis, known to be the early hallmark
of tumour variations (as explained in Chapter 3).

Table 7.6 resumes the variations of perfusion parameters in the Sorafenib and
SIRT groups, by considering the three possible cases of Base>Fup, Base<Fup repre-
senting the decrease and increase of perfusion parameters, respectively, and Base≈Fup
indicating stable parameters. In addition, the variations |∆|Base>Fup and |∆|Base<Fup
are reported on average. For each patient the variation of M±MAD of all perfusion
parameters separately is also shown in Figures 7.25 and 7.26 for Sorafenib and SIRT
groups, respectively.

As one can notice from Table 7.6, for almost all parameters the absolute varia-
tions of parameters between baseline and Fup are quite similar, in both Sorafenib
and SIRT groups. A partial exception is represented by the BF of SIRT group, whose
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Table 7.6: Resume of variations of the four perfusion parameters, aBF, pBF, BF, and HPI,
for Sorafenib and SIRT groups.

Base>Fup |∆|Base>Fup Base<Fup |∆|Base<Fup Base≈Fup

Sorafenib

aBF 12 4±0 2 4±3 2
pBF 12 19±4 4 22±6 –
BF 13 23±5 3 20±3 –
HPI 6 7±0 (%) 8 11±0 (%) 2

SIRT

aBF 5 7±1 12 9±2 2
pBF 6 26±4 11 25±7 –
BF 5 51±6 11 38±5 2
HPI 10 4±0 (%) 7 7±1 (%) 1

decrease in 5 patients is slight higher (51±6 ml/min/100g) than its increase (38±5
ml/min/100g) referred to 11 patients. Sorafenib yields in a high number of patients
the decrease of aBF (12 patients), pBF (12 patients), and BF (13 patients) values,
whilst the opposite tendency is obtained for SIRT group, where the highest number
of patients registers an increase of perfusion parameters, 12 patients for aBF, and
11 ones for pBF and BF. Based on the characteristics of angiogenesis, and according
to the dual input phisiology of the liver, therapy-responder patients should show
a decrease of the HPI, following the regularization of the vascular network, major
altered in the arterial circulation. Although the Sorafenib group shows a reduction
of most of perfusion parameters, the HPI does not show any relevant regularization,
since almost the same number of patients show either a decrease (6 patients) or an
increase (8 patients) of HPI values. Basically, the reduction of aBF, observed in
patients treated with Sorafenib is not enough to cause the consequent reduction of
HPI. In fact, the decrease of aBF is limited on average to 4±0 ml/min/100g. More-
over, in the two patients showing stable HPI values (C1N11 and C1N26), the aBF
and pBF values slight decrease proportionally (Figure 7.25). On the contrary, in the
two patients showing stable aBF values (C1N17 and C1N25), pBF values strongly
vary, thus leading the HPI to increase in C1N25 and decrease in C1N17 (Figure 7.25
(a)). In addition, one can notice that the variation of aBF, pBF and BF values in
Sorafenib group are quite proportional with each other, thus leading the graph ∆BF
in Figure 7.25 (b) to be inversely correlated with ∆HPI in Figure 7.25 (a).

As said above, SIRT group shows an opposite tendency to Sorafenib for all
parameters. Actually, the absolute variation of aBF values is nearly twice than
that occurring in Sorafenib group in both increase (9±2 ml/min/100g) and decrease
(7±1 ml/min/100g). The strong reduction of BF observed in SIRT group causes a
high increase of HPI on average, equals to the 7±1 %. By comparing the increases
of aBF, pBF, and BF values in SIRT and Sorafenib groups, one can notice a high
variation (e.g., 38±5 ml/min/100g against 20±3 ml/min/100g for BF) in SIRT, also
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Fig. 7.25: Variations in Sorafenib group of M±MAD values of HPI (a), BF (b), aBF (c), and
pBF (d).

occurring in more patients, than in Sorafenib group. This leads the HPI in the
SIRT group to show a decrease, although limited to 4±1 %, for the highest number
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of patients (10 patients), while just 7 patients show an increased HPI. Finally, the
only patient, C1N41 showing a stable HPI shows proportional variations of the BF
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contributions. The patient C1N49 shows stable both BF and aBF values, with a very
small variation of pBF, whilst C1N49 shows a stable BF value due to the balanced
decrease and increase of aBF and pBF, respectively.

Overall, these preliminary findings show a greater impact of Sorafenib in reg-
ularizing perfusion parameters, although not yet visible in HPI values at 1m-Fup.
Of course, a long-term analysis is needed to really verify the efficacy of Sorafenib
treatment and its correlation to overall survival, as well as to confirm the lower per-
formance of SIRT group. As a concluding remark, it is worth noting that perfusion
analysis is confirmed, once more, to provide very useful information in characterising
dynamic tumour properties, and improving the comprehension of treatment effects
on tumour vascular network.



Chapter 8

Radiomics:
methodological and clinical studies

This Chapters presents my contributions in the field of radiomics, starting with
a methodological study (Sect. 8.1) aiming at assessing the reproducibility of FO and
second order texture features on RCC imaged with CT. In particular, this study has
been conducted during the three-month period which I have spent at the Department
of Radiology, Addenbrooke’s Hospital, University of Cambridge. Then, being aware
of major advantages and limits of radiomic features widely adopted in the literature, I
propose a novel approach to compute imaging features (Sect. 8.2), which have been
exploited in clinical radiomic studies presented later on. In particular, Sect. 8.3
shows a discrimination study, carried out in collaboration with the Department of
Radiology, S. Orsola-Malpighi Hospital, University of Bologna, to assess neoadjuvant
chemo-radiotherapy response in LARC. Sect. 8.4 reports two studies focusing on
prediction of PCa aggressiveness, developed in partnership with Diagnostic Imaging
Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori “D. Amadori” – IRST
s.r.l. (hereinafter IRCCS IRST). The first is a preliminary staging of PCa into four
risk levels, followed by a classification study to predict csPCa.

8.1 A reproducibility study of first order and texture features

This study has been carried out during the three-month period which I spent as
visiting researcher at the Department of Radiology, Addenbrooke’s Hospital, Univer-
sity of Cambridge, under the supervision of Prof. Evis Sala. In particular, between
February and April 2020, I have frequented the Radiogenomic and Quantitative
Imaging Group, and I was involved in a radiomic study on RCC. Actually, due
to their internal policy limiting the access to clinical data to short-term external
researchers, my contribution has been focused on methodological aspects.

169
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As already discussed in Chapter 5, the number of radiomic studies has exploded
during the last years and the reproducibility of radiomic features is still an open
issue (Sect. 5.11). The plethora of software packages available for radiomic analyses
has highlighted the urgent need for standardisation of methodology and measure-
ments [229], [183]. Many factors are known to induce variability in radiomic features
including noise [170], heterogeneous voxel size [230], and ROI segmentation [231],
besides tumour phenotype [232]. Despite its importance, only few studies directly
address robustness and reproducibility of radiomic features. Accordingly, since I had
to focus on RCC radiomics, I have considered to perform a reproducibility study of
the most adopted radiomic features. To the best of my knowledge, this is the first
work assessing robustness of FO and 2D and 3D second order texture features in
CT imaging of RCC and contralateral normal kidney (CK), by addressing three
types of perturbations induced by Added White Gussian Noise (AWGN, hereinafter
N), different voxel-size (V) and varying ROI (R). In addition, I have performed
a comparative analysis to select the best interpolation method to be preliminarily
applied, if needed, before any feature extraction procedure. Finally, results can pro-
vide practical operating guidelines to choose the proper voxel size in case of datasets
with heterogeneous in-plane resolutions and to aggregate information derived from
GLCMs, this contributing to improve standardisation of radiomic studies.

8.1.1 Data preparation

Patient images

This study has included 98 patients with RCC imaged at a single institution. CT
acquisition parameters are provided in Table 8.1. Images have been acquired with
Siemens SOMATOM Definition AS/AS+ CT scanners, with iterative reconstruction
kernel I30f\3. Scan resolution ranges from square voxel spacing vs = 0.541 mm to
vs = 0.957 mm, with vz = 5 mm-slice thickness. Mean values and ranges of tube
voltage and exposure are 109 [100,140] KVp and 166 [137,535] mAs, respectively.
Automatic tube voltage selection (CARE kV) and current modulation (CARE Dose)
have been employed to optimize the dose to patients, resulting in a mean and range
of 109 [100,140] KVp and 166 [137,535] mAs, respectively. Image series of the cor-
ticomedullary and nephrographic phase, acquired at 35 and 100 seconds after the
administration of the intravenous contrast agent (Omnipaque 300 mg I/ml, GE
Healthcare) have been included for 28 and 70 patients, respectively. This retrospec-
tive study has been approved by the Health Research Autority (HRA), University
of Cambridge and Cambridge Research and Development (R&D) department that
waived the written informed consent.
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Parameter CT
Number of scans 98
Scanners Siemens SOMATOM AS/AS+
Tube voltage (kVp) 109 [100,140]
Exposure (mAs) 166 [137,535]
Reconstruction kernel I30f\3
Voxel spacing ([x,y]-axes; mm) 0.740 [0.541,0.957]
Voxel spacing (z-axis; mm) 5
Image noise (σ; HU) 4 [2.9, 5.9]
SNR (dB) 42 [37, 45]

Table 8.1: CT image acquisition parameters

Segmentation

ROIs of RCC and CK have been semi-automatically outlined using the Microsoft
Radiomics Tool (Version 1.0.30558.1, project InnerEye, https://www.microsoft.
com/en-us/research/project/medical-image-analysis/) by a medical doctor
and clinical researcher with three years experience in renal imaging. The structures
have been segmented in all slices at the original scan resolution. In particular, CK
and RCC have been segmented on the first and last slice where they were visible and
contours for every other slice have been interpolated using an image intensity based
distance metric. Manual corrections have been applied to sub-optimally segmented
slices, leading to an iterative re-calculation of the remaining interpolated slices. The
segmentation of CK has included the renal cortex and medulla but not the the
collecting system and hilar fat.

8.1.2 Image processing

Image processing for feature robustness analysis has been performed according
to the workflow reported in Figure 8.1, where the main steps are outlined. For each
block of the flowchart more details are provided in the corresponding subsequent
Section. After CT image acquisition and segmentation, an image interpolation pro-
cedure has been needed to standardize the different resolutions of the dataset. To
this purpose, three well-known interpolation methods have been analysed and com-
pared, to find the method best preserving the statistical properties of the original
images, to be used for all the subsequent steps. The comparison has been carried out
by exploiting the Enhancement Measurement Error-Image Quality (EME-IQ) [233]
score that measures local image contrast, amongst the most important information
cues, so that higher EME-IQ values indicate the interpolation method better pre-
serving sharpness and edges. After that, three different perturbations have been

https://www.microsoft.com/en-us/research/project/medical-image-analysis/
https://www.microsoft.com/en-us/research/project/medical-image-analysis/
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Fig. 8.1: Workflow of CT image processing for feature robustness analysis. First, CT images
have been acquired (a) and ROIs segmented (b). Then, one out of three resampling methods
has been chosen based on the highest EME-IQ score (c), then CT images have been perturbed
by changing resolution (d), noise addition (e), and ROI variation (f). Finally, FO, and 2D and
3D texture features based on GLCMs (g) have been extracted from original and perturbed
images and robustness analysis has been performed (h).

applied to whole images and ROIs. The first perturbation considered has been the
AWGN, added to the original CT images using the same standard deviation (σ) as
the original images. As the second perturbation, the original CT slices have been
resampled and interpolated along the z directions. Finally, to simulate inter-reader
variability, ROI enlargement and shrinking have been considered [234]. Lastly, 3D
FO and 2D-3D texture features (from GLCMs) have been computed on the original
and perturbed CT images, and their reproducibility has been studied.
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Image interpolation

Different scan voxel size is a well-known source of variability for radiomic features
in a heterogeneous image dataset that should be taken into account when perform-
ing radiomic studies [230]. Hence, applying a resampling procedure is needed, to
achieve one voxel size [200]. However, any resampling method relies on interpola-
tion techniques that may potentially alter latent image properties, thus affecting
the reproducibility of the features extracted from the resampled image and from the
original [191]. In radiomic analyses, the interpolation method must be conceived for
quantitative imaging and preserve the original properties of the CT GL distributions,
rather than to simply yield visually pleasant images. In this work, I have analysed
and compared three well-known interpolation methods, that is, linear interpolation,
largely employed even in most radiomic studies [200] thanks to its low complexity
and computational cost, Akima cubic Hermite spline [235] and Lanczos [236] inter-
polation, the latter mostly used in computer vision and quantitative imaging. The
comparison has been performed by resampling the original CT images at the best
(vbs = 0.541) and worst (vws = 0.957) original voxel size, and rounding the GLs to the
nearest integer. When employed for visualization purposes, the different interpola-
tion methods are assessed through a forward-backward process, which compares the
quality of original and restored image [237]. Here, I have measured directly the qual-
ity of the interpolated images and adopted the EME-IQ score, a Non-Reference IQ
measure that quantifies the level of local contrast [233]. For each patient, EME-IQ
scores have been computed and averaged on all CT slices, in both upsampling and
downsampling. Then, the three interpolation methods have been ranked according
to their EME-IQ score. I have chosen the method that resulted the best score for the
highest number of patients for both upsampling and downsampling, and adopted in
the subsequent steps of V image perturbation.

Image perturbation

Additive noise (AWGN)

CT images are known to be mostly affected by quantum noise, arising from
the effects of the variability of electronic density of tissue voxels [238], statistically
represented by a random Gaussian process[239]. Therefore, I have perturbed CT
images by AWGN where, for each patient, σ is given by the average of the standard
deviation of each slice, estimated according to the method proposed by Ikeda et
al. [240].
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Changing voxel size

Original CT images consisted of anisotropic voxels, with different in-plane res-
olutions, but one slice spacing that was on average one order of magnitude bigger.
As regards slice resolution, I have investigated three different resampling strategies,
that are: (i) upsampling the whole dataset to vbs, (ii) downsampling to vws , (iii)
resampling at the median resolution (vMs = 0.741 mm). Although working with
isotropic voxels would be advisable, resampling to the z−axis resolution for isotropy
would introduce an unrecoverable signal loss. Therefore, besides keeping the original
scan resolution (vz = 5 mm), I have limited the highest resolution to vz = 1 mm,
exploring intermediate values, with 1-mm steps. In total, combining three voxel
sizes with five slice thicknesses, I have tested 15 different voxel sizes.

Segmentation perturbation

One of the causes affecting the clinical reliability of radiomic features as pre-
dictive or prognostic biomarkers is the lack of reproducibility of quantitative mea-
surements, depending on the variability of intra- and inter-observer ROI segmen-
tation [181]. Similarly to the work in [234], I have simulated such a variability,
considering volume variations up to 20%, by ROI enlargement and shrinking. Ac-
tually, while dilating ROIs means including different tissues, making a mistake by
defect implies missing some tissue of the same type. Consequently, ROIs have been
shrunk by 10%, 15% and 20% or dilated by 10%. This procedure has been carried
out through binary morphological dilation and erosion, with a 3×3 pixel square
structuring element, according to a pixel-based random contourization procedure.
In this regard, the percentage of pixels exceeding the desired volume variation, has
been randomly restored to the original value.

8.1.3 Feature extraction

In this study, I have included 13 FO and 19 GLCM features computed in both 2D
(GLCM2D) and 3D (GLCM3D), since no agreement exists yet on how to aggregate
GLCM information to extract single representative features [183]. Hence, GLCM2D
have computed in four directions, θ = 0◦, 45◦, 90◦, 135◦, and GLCM3D have been
extended in 13 directions [241], with five odd distances, from δ = 1 to δ = 9. The
features have been extracted after intensity-based outlier removal performed on CT
images at the 2.5% threshold at both left and right tails of GL distributions. Based
on a preliminary analysis of our CT dataset, the commonly used choice [202], [242]
of 32 quantization levels has been adopted for the GLCM computation. GLCMs
have been also symmetrized and direction-weighted. In GLCM2D, features have
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been first computed on each slice and then averaged. In all, 108 radiomic features
have been computed on the original and perturbed CT images, for RCC and CK
separately. Table 8.2 lists all FO and GLCM features.

First order GLCM2D-3D
mean (m) autocorrelation (autoc)
median (M) correlation (corr)
skewness (s) cluster prominence (cprom)
maximum value (max) homogeneity (homom)
m of last decile (m90th) maximum probability (maxpr)
M of last decile (M90th) contrast (contr)
standard deviation (std) cluster shade (cshade)
M absolute deviation (MAD) variance (sosvh)
interquartile range (iqr) dissimilarity (dissi)
local coefficient of variation (lCV ) energy(energ)
uniformity (u) entropy (entro)
entropy (e) difference variance (dvarh)
kurtosis (k) difference entropy (denth)

information measure of corr (inf1h)
inverse difference normalized (indnc)
inverse difference moment normalized (idmnc)
sum average (savgh)
sum variance (svarh)
sum entro (senth)

Table 8.2: List of FO (n=13) and GLCM2D-3D (n=19) features.

8.1.4 Robustness analysis

All the extracted features have been analysed for both RCC and CK and robust-
ness has been assessed using the ICC(1,1) with 95% confidence interval (CI) [234].
Radiomic features have been considered as being robust (r) if ICC 95% CI≥0.90,
non-robust (nr) if CI<0.90, and with indeterminate robustness (i) otherwise (i.e.,
with 0.90 strictly included in CI). In total, 29 perturbations have been assessed, one
coming through N, 24 combinations of V, and four from R, as detailed in Table 8.3.

First, the robustness of all radiomic features together has been investigated
against all perturbations, to have an overview of features behaviour depending on
the tissue phenotype (i.e., RCC or CK) only. Mean percentage of r, nr, and i fea-
tures have been reported for each perturbation type. Moreover, the proportional
contribution given by each feature class to the global robustness has been investi-
gated, together with the contribution of the single features. In practice, robustness
has been assessed (i) for all feature classes (i.e., FO, GLCM2D, GLCM3D) against
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all image perturbations, (ii) for each feature class against each perturbation type
(i.e., N, V, R), and (iii) for each feature against all image perturbations.

N° Type Perturbation Description
1 N N AWGN
15

V

vs − vz 15 voxel-sizes by combining vbs, vMs , vws with vz=[1÷5]
1 V Global assessment of the all 15 voxel-sizes
1 vbs Resolution vbs kept fixed and vz=[1÷5]
1 vMs Resolution vMs kept fixed and vz=[1÷5]
1 vws Resolution vws kept fixed and vz=[1÷5]
1 Z1 Resolution vz = 1 kept fixed for all vbs, vMs , vws
1 Z2 Resolution vz = 2 kept fixed for all vbs, vMs , vws
1 Z3 Resolution vz = 3 kept fixed for all vbs, vMs , vws
1 Z4 Resolution vz = 4 kept fixed for all vbs, vMs , vws
1 Z5 Resolution vz = 5 kept fixed for all vbs, vMs , vws

4 R

R+10 Dilation, volume variation equals to +10%
R-10 Erosion, volume variation equals to -10%
R-15 Erosion, volume variation equals to -15%
R-20 Erosion, volume variation equals to -20%

Table 8.3: Descriptions of the 29 perturbations assessed

Finally, this study has assessed the real need for having GLCMs computed at
multiple δ distances, because of their known high correlation. To this end, I have
performed this analysis by adopting the voxel size resulting as the most reliable
from analyses at step (i). In conclusion, the correlation of features computed at all
δ has been measured through the linear Pearson coefficient (ρ) and the statistical
significance of the differences has been assessed by the ANOVA test (p-value≤0.001).

8.1.5 Experimental results

Assessing the robustness of radiomic features has become necessary to deter-
mine feature reproducibility before translating predictive and prognostic radiomic
biomarkers into clinical practice. Feature robustness depends on the tumour phe-
notype and is not generalizable [232], hence, this study focuses on the need for
analysing feature robustness on RCC in CT. In addition, the analysis is extended
to CK to determine which features might be robust enough to assess, for instance,
diffuse renal diseases. As first, this study offers an in-depth analysis of three known
interpolation methods aiming at supporting researchers in choosing the most appro-
priate one when resampling CT images. Then, it analyses the robustness of radiomic
features against some of the most frequent sources of variability, which are noise,
heterogeneous scan voxel size and varying segmentation.
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Figure 8.2 reports the comparison of Linear, Akima and Lanczos interpolation

Fig. 8.2: Comparison of linear, Akima, and Lanczos interpolation methods, based on the
percentage of patients receiving the highest EME-IQ score, for both upsampling (a) and
downsampling (b) respectively at the best (vbs) and the worst (vws ) resolutions of the CT
image dataset. The Lanczos method yielded the highest EME-IQ score in 78% and 63% of
patients, respectively.

methods based on the EME-IQ score. Results show that Lanczos interpolation out-
performs the other methods in both upsampling and downsampling procedures. In
fact, when resampling at vbs (Figure 8.2 (a)), the linear method achieves the best
result for only 4% of patients, Akima for 18% and Lanczos for 78% of patients. More-
over, this ranking is confirmed when resampling at vws (Figure 8.2 (b)), where linear
and Akima methods reach 1% and 36%, respectively, whilst Lanczos still proved
to be the best one for 63% of patients. As one can notice, results emphasize the
poor performance of the linear interpolation, although being probably the method
most widely employed in radiomic studies, and even suggested by the IBSI [183].
More specifically, if on the one hand resampling based on linear interpolation im-
proves visual images’ perception, on the other hand it smooths tissue edges and
texture variation, thus limiting quantitative information [243]. By comparing this
study with the state of the art, I have to say that some authors are aware of the
importance of the interpolation methods, which may influence feature robustness.
For instance, Whybra et al. [244] carry out a comparison of feature robustness, after
linear and spline interpolations. The authors conclude that the two methods are
equivalent since no difference exist in terms of feature stability, albeit in the pres-
ence of large numerical variations. However, although those features may result as
being reproducible, this does not ensure that the features are correctly representing
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the original CT image information. For this purpose, based on my finding I can
recommend a preliminary analysis to assess that the resampling procedure does not
affect the properties of the GLs distribution.

It is also worth noting that the upsampling procedure, although adding artifi-
cial information, improves the original image quality – where the mean EME-IQ
score is 2.87 ranging between [1.36,6.72] – with all methods considered, and accord-
ing to their rank. In fact, EME-IQ=2.99 (with EME-IQ=[1.61÷6.48]) for linear,
EME-IQ=3.09 (with EME-IQ=[1.68÷6.71]) for Akima, and EME-IQ=3.12 (with
EME-IQ=[1.70÷6.80]) for Lanczos. Even more relevant, when downsampling, while
linear interpolation degrades – with EME-IQ=2.71 [1.53÷5.40] – the original im-
age quality, Lanczos, which performs the best, preserves the EME-IQ score of the
original image, reporting EME-IQ=2.85 [1.65÷5.64], even similarly to Akima (EME-
IQ=2.84 [1.63÷5.66]).

Therefore, this results has allowed me to chose Lanczos as the reference inter-
polation method.

Figure 8.3 reports the percentage of r, nr, and i features against each pertur-
bation for RCC (Figure 8.3 (a)) and CK (Figure 8.3 (b)), respectively. As one
can notice, there are many more r features in RCC than in CK. In fact, on aver-
age against all perturbations, RCC has 65.6% of r features, 18.0% nr, and 16.4% i
(Figure 8.3 (a)), whilst in CK the 39.0% is r, 42.9% nr, and the remaining 18.0%
i(Figure 8.3 (b)). Nevertheless, both RCC and CK show an excellent robustness
against N perturbation, as reported by N-RCC:100% and N-CK:99.6% (with the re-
maining 0.4% of i features). Moreover, this agrees with the outcome of Zwanenburg
et al. [234], which similarly found that the highest percentage of robust features is
against N perturbations.

Instead, substantial differences of r features between RCC and CK are found
under R and V perturbations. In fact, results show that against R- perturbations,
while in RCC r features are never lower than 70%, being 94.6%, 76.9%, and 70.4%
for R-10, R-15, and R-20, respectively, in CK a very low percentage of feature is
reproducible, being 8.9%, 4.9%, 2.5% for R-10, R-15, and R-20, respectively. In
addition, as regards R+10, RCC shows 19% of r features, whilst CK has only 4%
of them. As expected, r features have a much worse performance against R+10
perturbation, this suggesting that when segmenting it is always better performing a
“safe” contouring, that is, underestimating rather than overestimating the ROI.

As regards V perturbations, whilst in RCC the percentage of r and nr features
is 73.0% and 14.5%, in CK values are lower, with r-CK: 50.8% and nr-CK: 30.3%.
Despite this difference, RCC and CK show a common behaviour against all pertur-
bations at fixed vz values (i.e., Z1÷Z5), both having a low percentage of r features
(on average, 56.7% for RCC and 40.8% for CK) if compared with those at fixed
vs resolutions (i.e., vbs, vMs , vws ), that is on average 68.6% for RCC and 48.1% for
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Fig. 8.3: Overall percentage of robust (r), non-robust (nr), and with indeterminate robustness
(i) features against image perturbation for RCC (a) and CK (b), separately.

CK. In addition, if considering vz, most of the 15 combinations have more than 60%
of r features in RCC, mainly referred to vMs coupled with multiple vz values, with
the highest percentage (94.6%) achieved with vMs -Z5, that is, without interpolating
along the z-direction. This couple is also the best in CK, with 87.7% of r features.
One should consider that when resampling a heterogeneous CT dataset, the goal
is to minimize interpolation artefacts. Accordingly, my results show that choosing
the median resolution (vMs ) answers this purpose, with a greater effect in CK rather
than in RCC. This suggests that resampling at the median voxel size is strongly
recommended. In addition, focussing on the different vs-vz couples, vMs performs
at best when no interpolation in the z-direction is carried out between slices. This
is somewhat expected, since the large difference between vs (higher) and vz (lower)
voxel sizes makes the interpolation along the z-direction introduce a low reliable sig-
nal, if compared with the information in the original CT slices. Accordingly, while
resampling along z-axis should be carefully evaluated, especially in case of a large
slice spacing, preservation of the original vz resolution could be in most cases the
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best choice.
Figure 8.4 focuses on feature robustness of each feature class per perturbation

Fig. 8.4: Overall percentage of robust (r), non-robust (nr), and with indeterminate robustness
(i) feature robustness reported per each feature class (i.e., FO, GLCM2D, and GLCM3D) for
RCC (a) and CK (b).

type (values are also reported in Table 8.4). Our robustness analysis finds the FO
features as being definitely the most reproducible ones, with FO features yielding
the highest percentage of r features, in both RCC and CK, for V (RCC: 100.0%,
CK: 75.6%), R (RCC: 94.9%, CK: 38.5%), and N (RCC and CK: 100.0%) pertur-
bation types. This also confirms what is reported in the review of the most recent
research works regarding feature repeatability and reproducibility by Traverso et
al. [191]. Instead, GLCM2D and GLCM3D features achieve comparable results in
both RCC and CK. In fact, the percentage of r features averaged over all perturba-
tions is GLCM2D: 80.9% and GLCM3D: 78.6% in RCC, and GLCM2D:47.4% and
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FO GLCM2D GLCM3D
N V R N V R N V R

RCC
r (%) 100 100 94.9 100 59.7 83.2 100 59.8 76.1

nr (%) 0 0 0 0 14.9 0.7 0 28.7 10.9
i (%) 0 0 5.1 0 25.4 16.1 0 11.5 13

K
r (%) 100 75.6 38.5 98.9 39.4 3.9 100 37.3 2.5

nr (%) 0 8.3 53.8 0 45.4 88.4 0 37.0 91.9
i (%) 0 16.1 7.7 1.1 15.2 7.7 0 25.7 5.6

Table 8.4: Feature robustness against image perturbations referred to Figure 8.4.

GLCM3D: 46.4% in CK. Robustness against V and R is always higher in RCC than
in CK. In particular, R perturbation shows the greatest difference, with GLCM2D-
R: 83.2% and GLCM3D-R: 76.1% in RCC and GLCM2D-R: 3.9% and GLCM3D-R:
2.5% in CK.

All the FO features are r features in RCC in at least 60% of perturbations, and
9 of them are confirmed in CK too, this meaning that all r features in CK (9/13)
are robust in RCC as well. Besides the well-established statistical descriptors (e.g.
m, M, etc.), there are both lCV and e, two common indicators for measuring local
heterogeneity or irregularity, that is also one of the changing properties of normal
tissues while shifting into tumour ones [61]. The remaining 4/13 FO features result
robust in RCC only, thus showing a higher specificity for tumour tissues, which
could be useful to face specific tumour-related clinical questions. As far as second
order features are concerned, 48 GLCM2D and 53 GLCM3D result r features in
RCC in at least 60% of perturbations, and 44 of them are in both classes. In CK, 28
GLCM2D and 24 GLCM3D result r features in at least 60% of perturbations and 21
of them are shared. Similarly to FO features, all GLCM features (both 2D and 3D)
that prove to be robust in CK, are robust in RCC too (such as autoc, entro, savgh,
sentro, sosvh, svarh), while other features, measuring local asymmetries of GLCMs,
are more tumour-specific (such as cprom, cshad, energ, inf1h, and maxpr).

This research also investigates the well-known phenomenon of the high correla-
tion of GLCM-based texture features computed at different distances, to see whether
and to what extent using higher distances is worth. Even this study shows that
GLCM features computed at multiple δ are often highly correlated, with ρ ≥ 0.90

for all the selected features. Moreover, ANOVA tests yield p-values > 0.03 for almost
all δ. Figure 8.5 shows the boxplots of a representative feature, GLCM2D-sosvh,
computed in RCC at multiple δ, where no relevant difference can be detected and
ANOVA test confirms their statistically equivalence (p-value = 0.97). Actually, the
equivalence between distances weakens as they shorten. For instance, the features
entro and sentro representing local tissue heterogeneity show significant differences
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Fig. 8.5: Boxplots of GLCM2D-sosvh computed from δ = 1 to δ = 9 did not show any
relevant difference and confirmed no statistical significance at ANOVA test (p-value=0.97).

between δ = 1 and δ = 3 in both RCC and CK (p-value ≤ 10−6), and between δ = 3

and δ = 5 in CK only. Analogously, the features cprom, maxpr, and inf1h in RCC
are statistically equivalent for δ ≥ 3, and different from δ = 1 (p-value ≤ 10−4).
In practice, almost all features show to be equivalent when computed at distances
from 3 to 9. This evidence is yet more relevant if considering that even in CK,
having really wide ROIs, distances higher than δ = 3 are most of times equivalent.
This could suggest that computing textures at distance δ = 3 should be generally
enough, this permitting to make features selection simpler and more effective, beside
reducing computational burden.

As a general remark, the recent literature lacks of comparative studies between
2D and 3D texture feature robustness, and even when features are compared on
the basis of their capabilities (e.g., predictive ability, and so on) the outcomes are
controversial [245]. Our results show that the overall robustness of GLCM features
computed in 2D or 3D is similar. However, our findings show a higher number of r
features for GLCM2D and, at the same time, a higher number of perturbations not
affecting robustness of GLCM2D features. Therefore, GLCM2D texture features
should be preferred.

8.2 A novel approach for radiomic feature computation

Beside the methodological radiomic study which I have presented above, my
main contribution to radiomics also includes a novel approach to extract imaging
features. In particular, I propose a new set of imaging features stemming from
a deep analysis of the open issues of the imaging features currently used in the
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literature (discussed in Chapter 5). Accordingly, this Section aims at (i) introducing
the reasons to set up a novel approach to compute radiomic features (Sect. 8.2.1),
describing (ii) the two step process to achieve them, based on a local computation
of FO features (Sect. 8.2.2) and (iii) describing how to derive the whole set of global
descriptors which summarises the properties of tissue being investigated through a
vector of eighty-four features (Sect. 8.2.2).

Then, this new set of imaging features has been applied in different clinical
studies carried out on LARC and PCa – presented in Sects. 8.3,8.4 – with the aim
of testing their capability to identify potential prognostic and predictive IBs.

8.2.1 Why new imaging features

In Chapter 5 it has been provided a theoretical explanation of the imaging fea-
tures widely adopted in radiomic study applications (Sect. ??). To summarize the
main advantages and disadvantages of the different features classes, I recall that
both shape and FO features have low computational complexity and allow an easy
clinical interpretation, but the former limit image analysis to morphological assess-
ments, also strongly dependent from ROI segmentation, whilst the latter, allowing
only global assessments without any spatial reference, may yield a limited additional
information content. Then, by considering more complex imaging features, including
texture features (of second and higher orders) and wavelet transforms, the informa-
tion content extracted from images substantially increases through the investigation
of spatial relationships among neighbouring voxels. However, the computational
cost rises accordingly and these more complex features can be very sensitive to
image acquisition modalities and parameters, thus increasing the risk of poorly re-
producible and robust measurements. In addition, by analysing images employing
GLCMs, GLRLMs, or wavelet transforms, the clinical interpretation of results is
more difficult, especially for radiologists and oncologists to whom these tools are
primarily addressed.

Accordingly, I propose a new set of imaging features aiming at owing the main
advantages of the feature classes explained so far. In particular, the novel imaging
features have been thought to have an easy tool in terms of both computational
complexity and clinical interpretation of the outcomes, which could also provide
robust measurement, reducing at most any dependence from technical imaging pa-
rameters, while preserving the spatial information content of images. In fact, this is
known to be very relevant in characterizing tissue patterns and detecting the tumour
structural properties.

The computation of the new set of imaging features is based on a two stage
procedure. The first stage is the local computation of FO features, which allows
common FO features to account also for the spatial reference with the aim of catching
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the variability of image value at local level, thus investigating tissue heterogeneity
locally. The second stage is the extraction of global descriptors characterizing, with
different metrics, various aspects of local heterogeneity. This Section addresses these
two computational stages, respectively.

8.2.2 Local computation of parametric feature maps

As explained in Sect. ??, FO features substantially rely on histogram based
measurements, thus performing a global assessment of image values. However, one
should notice that the global histogram of an image is not representative of its details.
For instance, Figure 8.6 shows four different grey scale images having exactly the

Fig. 8.6: The four different gray-scale images have the same histogram with m±σ=105±52,
thus proving that the global histogram is not representative of local image details.

same histogram, where m and σ are 105 and 52, respectively. In addition, Figure 8.7
highlights, in one of the images of Figure 8.6, three pixels with the same grey value
in which a surrounding square window of 15 pixels side length has been investigated
by way of example through the histograms reported on the right side of the figure.
One can notice that, at local level, the three pixels with same grey value equal to
146 are inserted into very different contexts, and shapes and mean values of local
histogram can depict these local differences, that represent different image details.
Yet more, Figure 8.8 reports the maps of σ values computed locally by using the same
representative square window of 15 pixels side for each of the images in Figure 8.6.
As one can see, even if the global σ value is identical for the four images, the local
values are very different as well as the mean of local σ (σm) values, that is σm=13,
σm=27, σm=15, σm=17, respectively from left to right. It is also worth noting that
the colorimetric maps in Figure 8.8 highlight the areas with a greater image contrast,
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Fig. 8.7: Three local image windows centred on three different pixels having the same grey
value but showing a different neighbourhood as represented by the histograms of each window,
having three different shapes and mean values.

Fig. 8.8: σ values computed locally with a window of 15 pixels side length. The four images
have the same global σ (σ=52 as in Figure 8.6), but very different local σ values. Yet more,
σm for each image is different, σm=13, σm=27, σm=15, σm=17, respectively from left to
right.

thus emphasizing structures and edges.
By referring to medical image analysis, for instance of MRI or CT, I propose

to adopt a similar approach based on FO imaging features computed locally, that
is, by considering a small local window centred on each pixel of the image ROI.
For instance, Figure 8.9 shows the process of computing a local map of m values
considering a ROI outlining the prostate gland in a T2-weighted MR image slice.
Hence, for each pixel within the ROI, a FO feature (e.g., the mean m) is computed
by considering the pixels belonging to the square window centred on the pixel itself,
further represented through a colorimetric map for visualization purposes. In this
way, the local computation of image features leads to three main achievements. First,
each global metric computed on parametric maps provides a more representative
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Fig. 8.9: Computation of local features in a T2-weighted MR image by adopting a local
window centred on each pixel within the prostate ROI, thus achieving parametric maps of
local FO features. In this representative case, the local m is considered.

feature value (as in Figure 8.8, where the σm of each feature is different to the global
σ value computed directly on images in Figure 8.6). Second, this process allows
achieving parametric maps through which emphasizing slightly visible image details
and sharpening structures and edges. Third, parametric maps of local features
can even highlight, depending on the metric considered, latent properties of images
through measures of local variabilities and asymmetries of image values, aiming at
catching the heterogeneity of structures at underlying layers.

In this Thesis, I have focused on seven metrics, among the most widely adopted
measures of dispersion, in order to investigate the extent of variability of image
values. The local computation of the seven metrics allowed achieving as many
parametric maps, which enable, in their turn, a visual assessment of FO features.
This is very helpful to improve the confidence of radiologists for the tool, since
radiologists are allowed to see the variations of local features in correspondence to the
morphological references. In particular, the seven metrics considered are reported
in Table 8.5, each coupled with a parametric map computed on a T2-weighted MR
image of a rectal cancer ROI. For all feature formulas reported in Table 8.5, let us
define the domain Ω:LW, where LW is the local window and N is the number of
pixels in Ω, so that xi ∈ Ω, i = 1, ..., N .
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Table 8.5: Seven parametric maps of local first order features

Parametric map Formula

Median (M)
M = x[ fc2 ]

, fc =
∑

i Npxi
2

Mean (m)
m = 1

N

∑
i xi

Interquartile range (IQR)
IQR = Mupper half −Mlower half

Coefficient of Variation (CV )
CV =

1
N

∑
i xi√∑

i (xi−x̄)2

N

Skewness (s)
s =

1
N

∑
i (xi−x̄)3

( 1
N

∑
i (xi−x̄)2)

3/2

Kurtosis (k)
k =

1
N

∑
i (xi−x̄)4

( 1
N

∑
i (xi−x̄)2)

2 − 3

Entropy (e)
e = −

∑
i pxi log pxi
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The major factor determining the capability of parametric maps of increasing
the information content of original images relies on the choice of the window size,
through which performing the local computation. In the applications which will be
presented in Sects. 8.3 and 8.4, the window size has been selected for investigating a
tissue unit ranging between 0.5 mm and 10 mm side length, generally corresponding
to the smallest detectable tumour size through mpMRI images. Accordingly, a
variable number of pixels is used for each patient, adaptively depending on the
spatial acquisition resolution, without any need of pre-fixed values for the window
size.

Actually, the image analysis based on small local windows recalls the basic con-
cept of local image processing relying on the convolution of a kernel function with
an image. However, while convolution is a linear operator and can be exploited, for
instance, for the computation of m at local level, yielding the same results as the
approach that I propose, a convolution kernel cannot apply to the computation of
non-linear functions, such as M , s, k, CV , etc.

Finally, as regards the FO features computed locally, M and m metrics have
been considered to measure the primal – even visible – content of image on two
different filtered images, the former which preserves contrast and edges, the latter
which smooths local variations and attenuates spurious components. Instead, the
other five metrics, computed locally, aim at measuring different aspects of the het-
erogeneity of the analysed tissue. The maps of IQR and CV represent two different
ways to emphasize structure boundaries. The IQR is a direct measure of image value
dispersion. Since homogeneous structural components are reasonable associated to
similar GLs in the image, higher values of IQR characterize transition zones among
adjacent tissue components. Instead, the CV map is an inverse measure of hetero-
geneity, since the σ is at the denominator of the formula. Accordingly, CV assumes
higher values in homogeneous structures, like edges, characterized by small σ values.
Accordingly, CV maps, although indirectly, may result in a similar visual effect of
IQR maps, but, depending on the application, each of them can have a better or
worst specificity in tissue characterization. Then, the maps of s and k are two direct
measures of Gaussianity of distributions. Departures from Gaussianity, above all if
measured at local level, can unravel sub-populations of image values which may hint
at semantic heterogeneities associated to structural or functional tissue alterations.
This is valid for both changes of benign tissue towards malignancy, leading to an
increase of heterogeneity, and recovery towards homogeneity, for instance of tumour
tissues responding to therapies, whose heterogeneity decreases. Finally, maps of e
directly measure tissue heterogeneity. The logarithmic transform of image content,
realized with the computation of entropy, emphasizes the more informative areas,
with the highest variability of image values in the smallest region, and flattens those
regions with a lower variability of values. Accordingly, it allows measuring objec-
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tively the intrinsic heterogeneity of the image itself.

8.2.3 A new set of imaging features

To summarize quantitatively the information retained by the seven colorimetric
maps and measure specific properties of them, twelve global statistical descriptors
have been computed accordingly, based on the histogram of the feature values within
the local map. Actually, in medical imaging applications, several image slices are
assessed contemporaneously for each patient. Therefore, to aggregate information
from all patient slices, one global histogram is derived from the parametric maps
of all slices of each patient. Then, twelve global descriptors are computed on each
of the seven different parametric maps, this allowing achieving eighty-four radiomic
features. Figure 8.10 shows the process, referred to one patient, through which the
new set of eighty-four imaging features is computed. Hence, given the acquired
images and the ROIs segmented on multiple image slices, the seven local parametric
maps (Table. 8.5) are computed for each segmented slice according to the procedure
reported in Sect. 8.2.2. Then, for each parametric map, twelve statistical descriptors
are computed on a global histogram referring to all slices. The pseudo-code for
the computation of the new set of imaging features as Algorithm 1. Besides the

Algorithm 1: Pseudo-code for the computation of the set of new imaging features
define a local window LW;
define a set of m features;
define a set of k descriptors;

read imm,ROI;
padding of imm;
foreach feature m do

PM[m] ← ROI;
foreach pixel p ∈ ROI do

PM[m](p) ← m(LW);
end foreach
foreach descriptor k do

ret[k] ← k(PM);
end foreach
return ret;

end foreach
return PM;

seven features computed locally, the twelve global descriptors also include the five
descriptors reported in Table 8.6 and are defined in the domain Ω : PM where PM

is the parametric map.
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Fig. 8.10: Workflow for computing the new set of imaging features for each patient. Seven
parametric maps are derived from as many features computed locally within image ROIs.
Then, from the histograms of the seven features referred to all ROI slices, twelve global
descriptors are derived accordingly, thus finally achieving 84 imaging features.
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Table 8.6: Five more statistical descriptors computed on the seven parametric maps, beyond
the seven features computed even locally and above reported.

Statistical descriptor Formula

Maximum value (MAX) maxxi(Ω)

Standard deviation (σ)
√∑

i (xi−x̄)2

N

Median absolute deviation (MAD) M(|xi −M(Ω)|)

Mean over the 90th percentile (m90th) m(x ∈ xi ≥ x90th)

Median over the 90th percentile (M90th) M(x ∈ xi ≥ x90th)

8.3 Discriminate nCRT responder from non-responder in
Rectal Cancer

This clinical study has been conducted in collaboration with the Department
of Radiology of the S. Orsola-Malpighi Hospital, University of Bologna, leaded by
Prof. R. Golfieri.

Colorectal cancer is the third most common cancer and the second leading cause
of oncologic-related mortality in the world [246]. It is is more common among men
than women, although the incidence is rapidly increasing in the female population
due to the standardization of lifestyle habits, and 3–4 times more common in devel-
oped than in developing countries [247]. LARC is defined as a tumour penetrating
through the whole bowel wall (stages T3/T4) and/or characterized by the involve-
ment of regional lymph nodes (N1/N2), without any distant metastases (M0). The
standard of care treatment for patients affected with LARC currently involves nCRT,
followed by total excision of the mesorectum (TME) [248]. MRI plays an important
role, together with endorectal ultrasound, both in the primary staging and in the
restaging of LARC after nCRT [249]. According to the ESMO guidelines [250], ac-
curate imaging of the tumour and lymph nodes using high‐quality MRI is essential
to determine the local staging of rectal cancer, which is a critical marker to decide
whether performing nCRT according to the staging system. Recent evidence sug-
gests that 15-27% of patients will achieve pathological complete response (PCR) to
nCRT, before the surgery, suggesting that a ‘wait and watch’ approach could be
the best choice for these patients, avoiding all the surgical complications. On the
other hand, the percentage of patients who do not achieve tumour regression after
nCRT, defined as non-responders (NRs) patients, is reported to be between 7 and
30% [251],[252]. Moreover, the potential side effects of nCRT can be very serious,
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varying between hematologic, gastrointestinal and dermatologic effects, incontinence
or sexual dysfunction [253]). Finally, 14–27% of patients with LARC who receive
this regimen can develop acute or long-term grade 3–4 toxic effects as reported by
Sauer et al [254]. In this scenario, the early identification of NR and PCR patients
before the beginning of nCRT could be of great value in order to avoid ineffective
treatment and to develop a more tailored strategy of care, such as a primary sur-
gical intervention or an intensified treatment regimen. Based on the concept that
radiomic features extracted from routinely acquired medical images might help the
identification of predictive IBs, as explained in Chapter 5, this study aims at assess-
ing the role of radiomic features extracted from pre-therapy baseline T2-weighted
MR images in predicting the pathological response of patients undergoing nCRT,
thus distinguishing the group of patients with poor or minimal response from those
obtaining moderate response or PCR, based on the tumour regression grade (TRG)
assigned after surgical resection.

Histopathological reference standard

The clinical reference standard to determine nCRT response is achieved at
histopathological report. Following the TRG staging system according to AJCC [255],
nCRT response is assessed through the following four groups:

• TRG 0: no viable cancer cells (i.e., PCR)
• TRG 1: single or small groups of tumor cells (i.e., moderate response)
• TRG 2: residual cancer outgrown by fibrosis (i.e., minimal response)
• TRG 3: minimal or no tumor cells killed (i.e., poor response)

8.3.1 Study population

This is a retrospective study enrolling initially eighty-five patients diagnosed
with LARC, who have undergone MRI for primary staging, from January 2018 to
December 2019. The inclusion criteria have been (i) patients diagnosed with LARC
in S. Orsola-Malpighi Hospital according to ESGAR-ESGE guidelines undergoing,
(ii) primary staging pre-treatment MR, and (iii) treated with long-course neoadju-
vant CRT, (iv) followed by TME. The exclusion criteria have been: (i) patients who
did not complete the standard nCRT, (ii) patients who did not undergo surgical
resection in our institution, (iii) patients without available TRG information on the
histopathological report, and (iv) patients with incomplete staging MRI or imaging
artefacts.

As reported in Figure 8.11 showing the flowchart of patient enrolment, from the
initial cohort of eighty-five patients, they have been excluded eleven patients who
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Fig. 8.11: Flowchart of patient enrolment in radiomic LARC study

did not complete the standard nCRT, twenty-four patients who have not undergone
surgical resection in S. Orsola-Malpighi Hospital, seven patients with TRG not avail-
able, and three patients with incomplete MRI staging or MR images corrupted by
artefacts. Forty patients have been finally enrolled, 14 (35%) women and 26 (65%)
men, with a median age of 65 years (interquartile range, IQR=14.5 years).

Based on the histopathological report, patients have been finally clustered into
two groups: (1) patients with TRG=[0,1] (TRG0-1), who have obtained moderate
response or PCR, and (2) patients with TRG=[2,3] (TRG2-3), who have obtained
a poor or minimal response.

The Institutional Review Board has approved the study and waived the require-
ment for written informed consent (No 842/20202/Oss/AOUBo).

8.3.2 Image protocol acquisition

All patients underwent pelvic MRI scan performed with 1.5 T MRI (GE Health-
care) following ESGAR guidelines [256] for rectal cancer primary staging. The pro-
tocol included three T2-weighted fast spin echo sequences in the sagittal, oblique-
axial high-resolution and oblique-coronal high-resolution planes. DWI images were
also obtained in axial planes using Echo-Planar Imaging sequences at three b-values
(b=0, 600, and 1000 s/mm2) and restriction of diffusion was quantified by the ADC
value. Bowel cleansing was performed with two days of low-fibre diet and oral ad-
ministration of Macrogol-Na-K 14 gr the day before the MRI study.
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8.3.3 Data preparation and feature generation

All oblique-axial high-resolution T2-weighted fast spin echo and DWI images
have been retrieved from the Picture Archiving and Communication System (PACS,
Carestream, Canada) for image segmentation. A radiologist with more than 15 years
of experience has performed all the segmentations by manually outlining the lesion
on each consecutive slide, excluding the intestinal lumen, employing a designated,
free open source software package for visualization and medical image computing
(ImageJ, version 1.52a, available at https://imagej.nih.gov/ij [257] in a two-step
process: (i) the entire tumour region has been highlighted on 3 orthogonal planes
of the space, (ii) a manual segmentation has been performed on the 3 mm-thickness
axial plane in all slices of the tumour’s site, by outlining a ROI on each of them.
The radiologist has been blinded to the histopathological results.

Eighty-four radiomic features have been generated from tumour ROIs according
to Sect 8.2.3.

8.3.4 Statistical analysis and feature selection

A statistical univariate analysis has been performed on the original eighty-four
radiomic features to select the one with the highest discriminative capability for the
two groups TRG0-1 (TP) and TRG2-3 (TN). It is well known that to have the highest
generalization capability the simplest discrimination model has to be adopted. In
addition, the ratio r = N/l, with N being the number of samples of the smallest
class and l the number of features finally selected, must be kept as the highest as
possible. To this aim, to prevent overfitting, one RF only has been considered for
discrimination [161]. One-tail Wilcoxon rank-sum test at α=0.05 significance level
has been used to assess the statistically significance of the separation between the
two groups. The overall selection procedure has been carried out in three steps.
First, radiomic features unable to statistically differentiate TRG0-1 and TRG2-3
have been discarded. Second, the radiomic features coming through the first step
have been ranked according to the p-value after Bonferroni correction. Third, the
feature showing the lowest p-value has been selected and its discriminative capability
assessed through the ROC, by computing its AUC. To determine the best cut-off for
the selected radiomic feature, the YI has been computed and the couple of values for
specificity (SP) and sensitivity (SE) has been achieved, accordingly. The values of
FP, FN, PPV, and NPV are also used to discuss performances. Separation between
TRG0-1 and TRG2-3 has also been assessed by computing M values and IQR for
each group.

https://imagej.nih.gov/ij
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8.3.5 Experimental results

At present, there is a growing interest in the medical community towards ra-
diomics applied in the study of colorectal cancer. Nevertheless, there is a number of
studies whose specific aim is the possibility of predicting the response to neoadju-
vant therapy through the radiomic analysis, which can prospectively tailor medical
care based on tumour profiling [22]. Also, this might allow identifying the respon-
sive patients and providing them with targeted therapies, whilst distinguishing the
non-responsive ones who can be immediately addressed to surgery, avoiding toxicity
and collateral effects of the neoadjuvant therapy. In this work, radiomic features
extracted from pre-therapy baseline MR images have been analysed to discriminate
TRG0-1 and TRG2-3 according to the AJCC classification, which indicates the re-
sponse to nCRT carried out subsequently. Eighteen radiomic features come through
the first feature selection step (p-value<0.05), whilst the local entropy of the skew-
ness (se), a local measure of tumour heterogeneity, results the most discriminative
radiomic feature to separate TRG0-1 and TRG2-3, with p∼ 10−5, much lower than
the significance threshold of α=3 · 10−3, considering the Bonferroni correction of
α=0.05. Moreover, being the smallest class (TRG0-1) of 15 patients, the final se-
lection of a single radiomic feature leads the ratio value to be r=15, thus strongly
preserving the generalizability of the model.

Figure 8.12 reports the ROC curve of se, yielding AUC=0.90 (95% CI, 0.73-0.96),
with YI=0.68 (cut-off se=3.93) corresponding to the couple SE=PPV=80% and
SP=NPV=88%. In particular, as one can see from the waterfall plot in Figure 8.12
(b), showing se for the two groups, TRG0-1 with green bars and TRG2-3 with
blue ones – the cut-off value has been subtracted for visualization purposes – the
separation is achieved with 3 FPs and 3 FNs. Accordingly, the couple SE=PPV,
SP=NPV represents a very good trade-off between need for containing the risk of
overtreatment and detection of the responder patients. It goes without saying that
the cut-off of se currently set at se=3.93 can be adjusted to ensure that no patient
who needs nCRT is excluded from therapy, allowing the achievement of a number
of FN equals to 0 (i.e., sensitivity of 100%). Consequently, this would lead to lose
the specificity of the calculation and to rise the number of FPs, with a consequent
increase of nCRT-induced over-treatment.

The two populations of TRG0-1 and TRG2-3 have very different characteris-
tics that the radiomic analysis performed on pre-therapy MR images has allowed
highlighting. In particular, the distance between patients with different grades of
nCRT response relies on parametric skewness maps at baseline, which results spread
over the ranges [2.82-5.26] for TRG0-1 and [2.88-8.74] for TRG2-3, respectively. As
one can appreciate through the boxplots in Figure 8.12 (c), the skewness maps at
baseline show different heterogeneity values. In fact, the first group (TRG0-1) iden-
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Fig. 8.12: Discrimination results between TRG0-1 and TRG2-3. In particular, (a) shows the
ROC curve yielding AUC=0.90 (95% CI, 0.73-0.96) with SE=80% and SP=88%, (b) shows
the waterfall plot of se where the two groups are highlighted with green (TRG0-1) and blue
(TRG2-3) bars, and (c) reports the boxplots of the two groups (p-value∼ 10−5).

tifying patients that will completely respond to the therapy (TRG 0) and those with
single cells or small groups of tumour cells (TRG 1), is characterized by a greater
heterogeneity of skewness maps, as reported by se-M=4.08, even with a very low
dispersion of values, as shown by IQR=0.15 [4.00÷4.15]. Instead, the second group
(TRG2-3) of patients who will respond poorly (TRG 2) or show minimal response
(TRG 3) have a low heterogeneity of skewness values (se-M=3.68), also spread over
a wider range, with IQR=0.46 [3.40÷3.86].

As regards a plausible clinical interpretation of our feature, first it is worth
noting that this is not the heterogeneity of tumour tissue, but the heterogeneity of
the skewness, computed on the local tissue regions. To clarify, Figure 8.13 reports the
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skewness maps of four patients, with TRG from 0 to 3, highlighting the evolution
of local skewness variability. In fact, while in the maps of TRG0 and TRG1 the
asymmetries are localized, as it can be seen by the wide red and blue regions,
these tend to shade in the skewness map of TRG2 and yet more in TRG3, showing
quite uniform speckles. Accordingly, se, the entropy computed on the skewness
maps, catches the higher heterogeneity of TRG0 and TRG1 in Figure 8.13 (a,b),
with respect to that of TRG2 and TRG3 in Figure 8.13 (c,d). It is worth noting
that the skewness represents the asymmetry of local T2-weighted values, that is
a departure from normality, and in case of an early alteration stage, it begins in
subregions of the ROI, each with a different evolving status (i.e., local skewness
value), this yielding a heterogeneous picture of the ROI in TRG 0-1. Instead, in a

Fig. 8.13: Colorimetric maps of local skewness of four patients with TRG 0 (a), TRG 1 (b),
TRG 2 (c), and TRG 3 (d) highlighting the evolution of local skewness variability. While
localized asymmetries are present in the maps of TRG0-1, quite uniform speckles are shown in
TRG2-3. Accordingly, se catches the higher heterogeneity of (a,b) maps and the lower ones
in (c,d) maps.
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later evolution stage, the extension of the skewed regions dramatically shrinks, this
hinting at a greater similitude between voxels of the ROIs, represented by much less
heterogeneous TRG2-3. The lower the baseline tumour aggressiveness, the higher
the heterogeneity (contrast) in skewness maps, the greater the benefit from nCRT
therapy.

By comparing these results with the state of the art, one can notice that sev-
eral authors ([252],[258],[259],[260],[261],[262],[263],[264]) have recently addressed
the prediction of nCRT response based on clinical assessments [258],[261] or dif-
ferent TRG [252],[259],[260],
[262],[263] staging systems. However, the first relevant difference with this work is
that in all these studies the ratio r is far smaller than ours is (r=15). The higher ra-
tio (r=9.4) can be found in the work of Cusumano et al [259], that however achieves
a worse separation (AUC=0.77), whilst the remaining have the ratio value ranging
from r=5.5 [252] to even r=0.87 [258], that is, more features than patients. Never-
theless, if sometimes the results are a little better than ours (AUC=0.92 [260] and
AUC=0.94 [258],[261],[263]) some others are even much worse (AUC=0.72 [252],
AUC=0.75 [264], AUC=0.82 [262]). Despite most of these studies perform an exter-
nal validation of the predictive model on a holdout test-set, their very low r makes
the generalizability of their models questionable.

As a concluding remark, these findings suggest that radiomics can really help
physicians in choosing the best therapy based on quantitative imaging data, which
have remained hidden so far, and have never been considered in the choice of the
optimal therapeutic process of the patient. In addition, the new set of imaging
features shows very good performance, although limited to a discrimination study,
and holds great potentialities in developing predictive IBs of nCRT response on a
wider dataset. Finally, the preliminary findings showing such a marked differentia-
tion between TRG0-1 and TRG2-3, which indicate that in the future the staging of
patients according to the four single TRG stages could be even possible.

8.4 Exploiting radiomics in Prostate Cancer (PCa)

In this Section, I will introduce two clinical radiomic studies carried out in
collaboration with the Department of Diagnostic Imaging of IRCCS IRST, led by
Dr. Domenico Barone. In particular, these studies refer to applications of radiomics
and quantitative imaging techniques in the study of PCa.

According to the last statistics, PCa is the second most diagnosed cancer world-
wide and the fifth most common cause of cancer death among men [246]. This
strongly impacts on the clinical management in terms of costs and resources, also
based on the PCa stage at the diagnosis, that could suggest different clinical path-
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ways [265]. Non-clinically significant PCa (ncsPca) diagnosis assigned at biopsy,
with a Gleason Score (GS) equals to 3+3 (GS=3+3), generally corresponds to a
favorable prognosis, with a high life expectancy at 10 years from diagnosis, and a
low risk of biochemical recurrence. In most of cases, ncsPCa do not require cu-
rative treatments, thus being admitted to active surveillance (AS) protocols [266].
Instead, PCa with a GS≥3+4 or higher, namely clinically significant PCa (csPCa),
may be submitted to radiotherapy or even radical prostatectomy (RP) and have a
worse clinical outcome [195]. PCa aggressiveness is conventionally assessed through
biopsy, that can be totally random or aimed at the most supposed malignant ar-
eas, whether it is TRUS- or MRI-guided. Hence, tissue samples are analysed in
terms of structural changes and glandular patterns which may describe different cell
differentiations, correlated to tumour aggressiveness [267].

Frequently, biopsy outcomes are reported to differ from those obtained after
RP [268], and even between closely repeated examinations [269]. Moreover, notable
side effects are experienced from men undergoing biopsy, including bleeding, pain,
and infection [270]. Therefore, the availability of non-invasive imaging approaches
for distinguishing ncsPCa from csPCa is a very attractive prospective to both in-
crease the detection rate of csPCa and spare patients from unnecessary biopsies
and overtreatment [271]. mpMRI is employed in the clinical routine, primarily for
PCa diagnosis. The current guidelines of PI-RADS v2.1 attribute a key role to the
morphological T2-weighted sequence and the DWI to obtain functional information
regarding variations of tissue diffusivity [56]. In fact, from a theoretical point of
view, DWI measures the (water) diffusion properties within tumour tissues, where
the structural diffusion of the biological components and the hyper-cellularization
processes obstruct the motion of the water molecules [272]. Water restriction yields
a high DWI signal, detecting tumour changes towards malignancy, progressively
more emphasized in high b-value sequences (b≥1000 s/mm2), to detriment of the
benign glandular components, where any morphological reference is lost. However,
high b-value DWI sequences can be altered by anatomical components or T2-shining
artefacts, particularly in the 1.5T systems. Therefore, in the clinical practice, a
definite clinical confirmation for PCa diagnosis is conveyed by the ADC maps. As
explained in Chapter 2, ADC maps derive from a normalization process of two, or
more, DWI sequences acquired at different b-values. Originally, high signals in DW
images are converted into low signals in ADC maps, which recover the informa-
tion related to the apparent diffusion of water’s molecules, thus losing the specific
measures contained in the native DWI sequences, which arise directly from the tis-
sue properties. Nevertheless, the ADC normalization process also allows removing
the misleading high signals in DWI and, consequently, distinguishing the tumour
boundaries more clearly, keeping the morphological information of the gland [272],
albeit motion artefacts can remain. Moreover, ADC maps improve SNR of DWI
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sequences and enhance image quality. Hence, they are currently the most effective
sequences for PCa detection and localization. Accordingly, ADC has been predomi-
nantly exploited in quantitative imaging too ([273],[274]), eventually combined with
T2-weighted and native DWI sequences ([275]), and on several occasions, ADC met-
rics have proved to correlate with the GS successfully. It is not surprising that good
results have been achieved by previous studies in classifying ncsPCa and csCPa
([276],[274]). More recently, the advent of 3T-MRI systems has allowed enhancing
the quality of DW images and improving SNR of high b-value sequences, thus re-
ducing noise and artefacts. Consequently, with these systems, the motivations for
which the ADC has been preferred to DWI, decay. The present technology allows
exploiting the native DWI sequences at their best, both in the clinical practice and,
above all, in the quantitative imaging.

Thanks to the collaboration with IRCCS IRST and the availability of a 3T-MR
system, the two clinical studies addressed in the following sections have represented
the opportunity to restore the main role of DWI in quantitative imaging applications,
for patient staging and characterizing cancer aggressiveness, letting ADC have a key
role in qualitative and semi-quantitative assessment for detection.

PCa grading system

The clinical reference standard to determine PCa aggressiveness and prognosis
is represented by GS, assigned at histopathological or biopsy examination.

GS grading systems classify the microscopic tumour appearance into five differ-
ent patterns:

• Pattern 1: well differentiated carcinoma, close to normal prostate tissue
• Pattern 2: well differentiated carcinoma, with increased stroma.
• Pattern 3: moderately differentiated carcinoma
• Pattern 4: poorly differentiated carcinoma
• Pattern 5: anaplastic carcinoma

Accordingly, the GS is given by the sum of the two most recurrent patterns
arising from tissue inspection. Besides the GS grading system, the ISUP grading
system has been conceptualized, also to the aim of distinguishing GS=3+4 from
GS=4+3, which both yield GS=7, but have been reported as having a different
prognosis. Table 8.7 summarizes the correspondence between Gleason and ISUP
score systems.
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Table 8.7: Correspondence between GS and ISUP score systems

GS GSsum ISUP
3+3 6 1
3+4 7 2
4+3 7 3
4+4 8 4
4+5 9 5
5+4 9 5
5+5 10 5

8.4.1 Study population

The two retrospective studies on PCa refer to three distinct and subsequent pro-
cesses of patient enrolment, as shown in Figure 8.14. Accordingly, a first preliminary

Fig. 8.14: Flowchart of patient enrolment processes in the PCa radiomic study

study has been conducted on the dataset collected after the first enrolment process.
Based on the achieved results, a second enrolment process has been carried out, thus
extending the sample size of ncsPCa and csPCa. The extended dataset has been
employed to conduct a second study. In particular, data analysis for conducting
that second study has begun at the end of the second enrolment process. At that



202 CHAPTER 8

time, a third enrolment process has been further carried out to enrich the sample
size used in the second study.

The patient cohort selected through the first enrolment consisted of fifty-seven
consecutive patients who have undergone prostate 3T-mpMRI at IRCCS IRST be-
tween April and September 2019. The records have been retrieved from the PACS.
Eligibility criteria have been: (i) clinical suspicion of PCa (high level of PSA, abnor-
mal digital rectal examination, family history of PCa), (ii) 3T-mpMRI performed at
IRST IRCCS, (iii) TRUS biopsy performed as a part of standard-of-care or due to
recruitment into other clinical trials at IRCCS IRST. Exclusion criteria have been:
(i) absence of previous RT or focal therapies, (ii) motion artefacts. As reported
in Figure 8.14, from the first enrolment, eight patients have been excluded due to
previous RT or focal therapies, and seven ones because of imaging motion artefacts.
In the end, forty-two patients have been included.

Then, a second cohort of patients has been retrieved from the PACS between
November 2019 and February 2020, by modifying the eligibility criteria as follows:
(i) clinical suspicion of PCa (high level of PSA, abnormal digital rectal examination,
family history of PCa), (ii) 3T-mpMRI performed at IRST IRCCS, (iii) TRUS biopsy
performed as part of standard-of-care or due to recruitment into other clinical trials
at IRCCS IRST, yielding GS at least equals to six (i.e., GS=3+3). Meanwhile,
exclusion criteria have been kept fixed. Hence, according to Figure 8.14, from an
initial cohort of fifty-five patients, sixteen have been excluded due to previous RT or
focal therapies (n=10) and imaging motion artefacts (n=6), thus including thirty-
nine patients.

Lastly, the third enrolment process carried out on March 2020, by adopting the
the same eligibility and exclusion criteria of the second one, has allowed including
twelve more patients. In all, the study population includes ninety-three patients,
and their clinical characteristics are reported in Table 8.8.

According to mpMRI and biopsy results, patients have been split into seven dif-
ferent groups (G). Besides patients with confirmed PCa having positive both mpMRI
(PI-RADS≥3) and biopsy (GS≥6), split in their turn into five groups according to
the five ISUP grade groups (arising from the GS assigned at biopsy), study popula-
tion has included patients with mpMRI and biopsy both negative (G-NN), reported
as unconfirmed PCa, and patients with undetermined clinical outcome due to posi-
tive mpMRI and negative biopsy (G-PN).

Both the retrospective studies are IRB approved and the written informed con-
sent has been waived.
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Table 8.8: Study population of radiomic PCa study enrolling ninety-three patients split into
seven groups, of which five with confirmed PCa (26 ncsPCa and 50 csPCa), one with un-
determined clinical outcome showing positive mpMRI and negative biopsy, and one with
unconfirmed PCa (mpMRI and biopsy both negative).

mpMRI (P/N) Biopsy (P/N) GS ISUP Group (G) PCa Pats.
N N neg. – NN – 7
P N neg. – PN – 10
P P 3+3 1 1 ncs 26
P P 3+4 2 2 cs 22
P P 4+3 3 3 cs 14
P P 4+4 4 4 cs 8
P P 4+5 5 5 cs 4
P P 5+4 5 5 cs 2

8.4.2 Objectives of the studies

Two distinct studies have been conducted adopting a radiomic approach for
identifying potential IBs of PCa. As already introduced above in Sect. 8.4, both
of them exploit one-only DWI sequence, DWIb2000, considered as the one with the
highest prognostic potentiality in evaluating PCa aggressiveness. It is also worth
noting that employing a single DWI sequence can reduce variability of measures,
patient motion artefacts, thus contributing to improve standardization.

The first study, whose experimental results are reported in Sect. 8.4.4, aims
at investigating whether radiomic features can stratify patients in four classes of
progressive PCa risk level. In particular, if the clinical suspicion is unconfirmed
at biopsy (i.e., negative biopsy), two distinct classes of risk of developing PCa are
considered, depending on it is unconfirmed even at mpMRI or not, that are G-NN
and G-PN respectively. On the contrary, if PCa is confirmed (biopsy is positive),
again two distinct classes of risk are considered, where the risk is that of increasing
PCa aggressiveness , from ncsPCa to csPCa, and worsening of prognosis, accordingly.
Table 8.9 reports the population involved in this preliminary staging study. In
particular, this study refers to the dataset collected after the first patient enrolment
process, described above. As a consequence, the population sample, limited to forty-
two patients, has allowed exclusively a discrimination study.

Thanks to the second and the third enrolment processes, a wider population
of ncsPCa and csPCa has been available. Accordingly, the second study aims at
assessing the predictive role of high b-value DWI in classifying ncsPCa and csPCa,
through measuring the local tumour heterogeneity in DWIb2000 sequence. Conse-
quently, this study, whose experimental results are presented in Sect. 8.4.5, has
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Table 8.9: Study population of the preliminary study aiming at staging four progressing PCa
risk levels. Accordingly, this study includes the four groups G-NN (n=7), G-PN (n=10),
ncsPCa (n=10), and csPCa (n=15).

GS Group (G) PCa Pats. Total pats.
neg. NN – 7 7
neg. PN – 10 10
3+3 1 ncs 10 10
3+4 2 cs 5

154+3 3 cs 6
4+4 4 cs 3
4+5 5 cs 1

involved the population reported in Table 8.10. In particular, Tables 8.11 and 8.12

Table 8.10: Study population of the classification study for ncsPCa (b=26) and csPCa (n=50)

GS Group (G) PCa Pats. Total pats.
3+3 1 ncs 26 26
3+4 2 cs 22

50

4+3 3 cs 14
4+4 4 cs 8
4+5 5 cs 4
5+4 5 cs 2

describe the population of ncsPCa and csPCa collected at the end of the second
enrolment process (Table 8.11) – including the ncsPCa and csPCa already enrolled
during the first process – and the population enrolled during the third process (Ta-
ble 8.12), respectively.

Table 8.11: Dataset of ncsPCa and csPCa after the first and second enrolment process

GS Group (G) PCa Pats. Total pats.
3+3 1 ncs 6 24
3+4 2 cs 19

40
4+3 3 cs 10
4+4 4 cs 5
4+5 5 cs 4
5+4 5 cs 2
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Table 8.12: Dataset of ncsPCa and csPCa enrolled during the third process

GS Group (G) PCa Pats. Total pats.
3+3 1 ncs 2 2
3+4 2 cs 3

104+3 3 cs 4
4+4 4 cs 3

8.4.3 Data preparation and feature generation

Images have been acquired with a 3T multi-coil Ingenia MRI system (Philips).
mpMRI protocol has included T2-weighted, DWI with nine b-values, ADC maps
computed exploiting the nine b-weighted DWI sequences, and DCE-MRI sequences.
Patient preparation has required fasting 6 h before the examination, bowel prepara-
tion to be performed 2 h before the examination, and emptying of the bladder. To
reduce peristaltic motion, 1 ml of scopolamine-butylbromide (Buscopan, Boehringer
Ingelheim, Ingelheim, Germany) has been administered in a slow bolus infusion at
20 mg/ml, diluted in 10 ml of saline solution.

MRI examinations have been analysed by a radiologist with eight-year experience
in urogenital pathologies. Axial T2-weighted, DWI, DCE sequences, and ADC maps
are considered contemporary for reporting and each detected lesion is assigned a PI-
RADS score [PI-RADS V2.1]. Prostate ROIs have been manually outlined on axial
T2-weighted images and co-aligned on the parallel DWIb2000 sequences using Aliza
Medical Imaging 1.98.18 (Bonn, Germany - https://www.aliza-dicom-viewer.
com/). Meanwhile, all PCa lesions having at least a PI-RADS score equal to three
have been segmented on DWIb2000 sequences. PCa ROIs have been outlined slice
by slice along the most emphasized internal boundaries detected on DWIb2000, also
using cognitive fusion of all available MRI sequences, especially useful in case that
motion artefacts, intestinal air, hip prosthesis artefacts are present. While PCa
lesions in the peripheral zone (PZ) have been segmented directly on DWI sequences,
for central and transitional zone lesions ROIs have been outlined on DWIb2000 and
refined using the cognitive fusion of parallel axial T2-weighted.

By recalling the biopsy approach in sampling prostate tissue, the set of eighty-
four imaging (Sect. 8.2) has been extracted from PCa ROIs or from those patients
with positive mpMRI (G-PN, and G=[1÷5]), whilst they have been computed on
the whole prostate ROI for patients with negative mpMRI (G-NN group).

https://www.aliza-dicom-viewer.com/
https://www.aliza-dicom-viewer.com/
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8.4.4 Preliminary staging of four progressive PCa risk levels

As introduced above, this study performs a preliminary discrimination of four
progressive PCa risk levels, G-NN, G-PN, G-1 (i.e., ncsPCa), and G-[2÷5] (i.e.,
csPCa) based on the dataset reported in Table 8.9. Accordingly, this Section reports
data analysis and experimental results.

RFs selection and reproducibility analysis

Kruskal-Wallis (p-value<0.001) has been first performed for the multiple com-
parison of the four groups (i.e., G-NN, G-PN, ncsPCa, and csPCa) after consider-
ing Bonferroni correction (p-value< 10−5). Hence, the radiomic features yielding
the lowest p-value has been selected. Then, the one-tail Wilcoxon rank-sum test
has been employed to assess the pairwise separation of the four groups. Finally,
the potential role in patient stratification has been assessed by the Spearman index
(p<0.001) through the rank correlation of the selected radiomic feature with the four
classes. In order to assess the reproducibility of the selected radiomic feature, I have
considered to perturb the segmentation performed by the radiologist. To this aim,
prostate and lesions ROIs have been dilated and eroded by means of binary morpho-
logical operations, to lead heavy averaged changes in segmentation of about ±25%
of the volumes. In particular, prostate ROIs of each slice have been isotropically
dilated and eroded with a 5×5 square structuring element, while for lesion ROIs,
a much smaller 3×3 square structuring element has been used. Hence, the mean
absolute variations between the radiomic feature extracted from the dilated/eroded
volumes and the original ones have been computed, and their reproducibility has
been assessed through the ICC.

Experimental results

One out of eighty-four radiomic features has been selected, the mean of lo-
cal coefficient of variation (CVL-m), providing a measure of the local variability
of DWIb2000 values. Figure 8.15 shows the boxplots of the four groups, with the
clear separation confirmed by the Kruskal-Wallis multiple comparison (p∼10−6).
Moreover, Wilcoxon confirms the pairwise separation between G-NN and G-PN
(p-value=0.005), G-PN and G-1 (p-value=0.026) and, of course, G-1 and G-[2÷5]
(p-value=0.008). The reported median values for CVL-m are in increasing order,
10.7%, 13.2%, 15.8% and 20.1%, respectively, meaning that CVL-m can stratify the
4 groups according to their expected risk level, this confirmed by the strong Spear-
man correlation ρs=0.81 (p∼10−6). Moreover, this Spearman correlation, ρs=0.81,
results still valid when the separated seven groups are considered (i.e., when csPCa
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Fig. 8.15: Boxplot of the stratification of four progressive PCa risk levels, G-NN, G-PN,
ncsPCa, and csPCa performed by CVL-m, with p∼10−6 at Kruskal-Wallis.

group is split into four ones according to either GS or ISUP groups, as in Ta-
ble. 8.9). The selected radiomic feature, CVL-m, also shows a great reproducibility,
with ICC=0.99 for both dilatation and erosion, with ∆=3.54% for dilatation and
∆=1.57% for erosion.

In the end, these preliminary results show that one radiomic feature based on
local variability of high b-value DWI allows representing the known inhomogeneity
of tumour habitat and complexity of tissue microstructure worsened by reduced
intracellular space. CVL-m has a high propensity in risk stratification, as established
by differentiating G-NN, G-PN, G-1, and G-[2÷5]. In fact, this radiomic feature
naturally sorts the median values of these four groups, with a very low overlapping
between boxplots (Figure 8.15). This finding strongly supports the promising role
of CVL-m in characterizing the progressiveness of tissue heterogeneity in groups of
patients having a potential increasing risk of developing PCa or having increasingly
aggressive PCa.

As a matter of fact, the relevance of CVL-m to represent the heterogeneity of the
MRI imaged values is present in [277], when it is used to assess the heterogeneity
of images acquired at different resolutions. Then, CVL-m has also been employed
on lung and liver to detect abnormalities within locally structured patterns [278].
It is worth noting that the high value of the Spearman correlation among CVL-m
and the seven groups (Table. 8.9) also emphasizes the promising role of the radiomic
feature in depicting local changes hinting at increasing malignancy. To the best of
my knowledge, this is the first study reporting such a risk stratification for PCa,
including patients from unconfirmed PCa (G-NN) up to csPCa. Results achieved
so far, albeit preliminary, are a proof of what has motivated my research, that is,
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choosing multiple b-values would hardly lead to reproducible parameters and results.
Above all, results confirm that DWIb2000 retains the highest sensitivity for measuring
imaging features of PCa aggressiveness. As a concluding remark, these preliminary
results have paved the way to a more focused study on classifying ncsPCa and csPCa,
which is presented in Sect. 8.4.5.

8.4.5 Prediction of clinically significant PCa

According to the objective of the second study introduced in Sect. 8.4.3, this
study regards the patient cohort of ncsPCa and csPCa reported in Table. 8.10. In
the following, the development of the csPCa predictive model will be explained in
detail, and experimental results will be discussed.

Predictive model

A radiomic model has been built to recognize csPCa (TPs), distinguishing them
from ncsPCa (TNs), according to the process outlined in Figure 8.16. All radiomic

Fig. 8.16: Predictive model building

features (Figure 8.16 (a)) have been normalized and standardized, and redundant
and irrelevant radiomic features have been removed through LASSO, with the op-
timal tuning parameter (λ) selected using 10-fold CV (Figure 8.16 (b)) and the
minimum CV error rule. To prevent overfitting, two only radiomic features have
been considered from the subset of the ones selected by LASSO, using a two-stage
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approach. First, the couples with a high Pearson correlation (ρ ≥0.15) have been
discarded. Second, the most discriminant couple of radiomic features (i.e., yielding
the lowest p-value according to the Wilcoxon rank-sum test) has been selected from
those surviving the previous step.

The entire dataset available at the end of the second enrolment process, reported
in Table 8.11, has been split into training and (holdout) test set, made of 48 and 16
patients, respectively (Figure 8.17). The training set consisted of 30 TP and 18 TN,

Fig. 8.17: Splitting of training and test set from the entire dataset

whilst the test set comprised 10 TP and 6 TN. Then, the dataset available after the
third patient enrolment process, and reported in Table 8.12, has been integrated in
the holdout test set, once the training phase of the predictive model was concluded.
Accordingly, the holdout test set included at last 20 TP and 8 TN.

To preserve the representativeness of the training set without degrading the gen-
eralization performance, the training set has been derived from the entire dataset
(sixty-four patients of Table 8.11) to include the patients candidate to represent the
SVs of a SVM classifier, according to the method described in [279], based on their
distance from the separating hyperplane. In particular, the SVM margin (SVMm)
has been computed and patients have been ranked into three classes (Table 8.13),
based on their SVMm. Class 1 corresponds to SVMm > 1, patients correctly clas-
sified (n=40). Class 2 corresponds to 0≤SVMm ≤1, patients falling within the
decision surface. Class 3 corresponds to SVMm<0, patients misclassified (n=14).
Hence, the training and test set have been selected to balance the distribution of
patients belonging to each class, as reported in Table 8.14.

Then, the SVM classifier with linear kernel has been trained on the training set
(Figure 8.16 (c)) with a repeated 3-fold CV (as the one explained in Chapter 5,
Sect. 5.10, Figure 5.11 (d)), as reported in Figure 8.16 (d), for tuning the SVM
hyperparameters, that is, the kernel scale and the global misclassification cost, C.
The cost C is then scaled by the weight of the error occurring in each class, which
corresponds to its own prior probability. Each fold is made of sixteen patients, 10
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Table 8.13: Derivation of the training set based on the SVM margin criterion

SVMm Class Patients
SVMm>1 1 40
0≤SVMm ≤1 2 11
SVMm<0 3 14

Table 8.14: Selection of training and test set to balance the number of patients belonging
to the three classes defined according to their SVMm value.

Class 1 Class 2 Class 3
Training set 32 7 10
Test set 8 4 4

TP and 6 TN. To prevent any spurious solution, an internal validation procedure
is performed by one hundred repetitions of 3-fold CV. The model selection proce-
dure has been carried out into five steps. For each round, the ROC curve and the
corresponding AUC are computed for training and validation sets, and the models
most prone to overfitting, yielding a AUC on the validation set higher than that on
the training one, are discarded (step 1). Based on radiologist’s indication, missing
a csPCa has been considered much worse than yielding a false alarm to ncsPCa,
therefore I have computed the F2-score on the validation set and used it to select
the best SVM model (step 2), thus achieving at most one-hundred competing mod-
els, corresponding to as many runs of CV. Among the models coming through the
first two steps, an early selection is carried out by analysing their performance on
the training sets, discarding the models with a very low C parameter (C<1), more
prone to overfitting (step 3) and with F2-score<0.80 (step 4). At the end, the model
showing the highest F2-score on the validation set (Figure 8.16 (e)) is selected as the
ultimate predictive model, to be externally validated on the holdout test set (step
five). The performance of the SVM classifier are assessed through AUC, and SE, SP,
and I, measured at the Youden cut-off. PPV and FDR are computed accordingly.

Experimental results

Biopsy examination is presently the reference clinical tool for distinguishing
csPCs from ncsPCa, starting different clinical paths, that is, curative treatments
or active surveillance, watchful waiting, and observation, respectively [280]. mpMRI
has having a more and more crucial role in the pre-biopsy patient management,
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to prevent patients to undergo unnecessary operations [269] which are known to
cause side effects in about the 30% of men, 1% of which requires hospitalization
for observation [270]. A radiomic and quantitative mpMRI-based imaging approach
is frequently adopted in PCa study with the aim of enriching the radiological as-
sessment of medical images providing additive information referred to tumour ag-
gressiveness and prognosis, for instance, to distinguish csPCa from ncsPCa, prior
to biopsy. However, a “considerable overlap between csPCa and ncsPCa in mpMRI
parameter values” is known [273] and it represents the major limitation for mpMRI
to replace the biopsy in patient staging [273]. At present ADC is considered, among
the mpMRI sequences, as the most promising tool available for quantitative image
analysis. In particular, the ADC images have been very successful in the clinical
routine, mainly for two reasons. From the one hand, they allow reconstructing
the diffusion-weighed information achieving a SNR much higher than that of native
DWI. From the other hand, they allow preserving the morphology, especially if com-
pared to high b values, and annulling the artefacts of DWI images, like the T2 shine
artefact, which are known to mislead the assessments of suspicious malignant areas.
Consequently, the ADC sequences have become the reference ones for confirming
diagnosis of PCa and, as such, they have been largely employed even to extract
information as regards PCa prognosis.

In fact, if considering the scientific works published in the last five years (from
PubMed database) which implement a predictive model of csPCa (independently of
the lesion zone) and reported in Table 8.15, one can see that, except for [281], most

Table 8.15: Comparison of our study with the state of the art

Year, Authors mpMRI sEquation Feature AUC SE SP I
[269] 2015, Fehr et al. T2, ADC 18 rad. feat. 0.83 – – –
[273] 2017, Barbieri et al. ADC, IVIM ADCm(b[0-900]) 0.79 0.85 0.74 0.59
[276] 2018, Bonekamp et al. T2, ADC 10 rad. feat. 0.88 0.97 0.58 0.55
[281] 2019, Cristel et al. DCE-MRI ktrans 0.75 0.95 0.61 0.56
[282] 2019, Min et al. T2, ADC, DWIb1500 9 rad. feat. 0.82 0.84 0.73 0.57
[274] 2020, Hiremath et al. ADC ADCm(b[0-1300]) 0.85 0.77 0.81 0.58
[275] 2020, Zhang et al. T2, ADC, DWI 10 rad. feat. 0.81 0.80 0.73 0.53

2020, our work DWIb2000 2 rad. feat. 0.84 0.90 0.75 0.65

of these works utilize the ADC sequence [274], sometimes coupled with T2-weighted
([269], [275], [276], [282]), whilst one work only couples ADC with IVIM parametric
maps [273]. However, also in this last case, the best result reported refers to the
mean valued of ADC maps, ADCm.

Actually, with the coming of the 3T MR systems, which allow obtaining DW
images with an intrinsically higher SNR, there is no longer any real need to limit the
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quantitative analysis of tissue diffusivity to ADC sequences only. On the contrary,
our results confirm our hypothesis that high b-value DWI (e.g., DWIb2000) images
can embody information regarding tissue heterogeneity and tumour functional prop-
erties with specificity and sensibility higher than ADC maps can do.

High b-value DWI has already shown to increase both reader’s sensitivity [283]
and radiomic accuracy in distinguishing PCa from non-cancerous lesions [284], al-
though a limited success is reported in recognizing csPCa and ncsPCa so far. The
authors in [273] even state that DWI sequences are not yet feasible for reliable clin-
ical indications of tumour prognosis and, moreover, they cannot bring any added
value with respect to the ADC sequence in identifying csPCa.

In this study, I have developed a predictive model exclusively based on DWIb2000.
In particular, as regards feature selection, LASSO yields ten radiomic features, in
correspondence of the optimal λ=0.0325, whose coefficients are reported in Fig-
ure 8.18 (a) according to their rank. The correlation coefficients computed be-
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Fig. 8.18: Ranking of radiomic features selected by LASSO (a) and their correlation matrix
(b), where the uncorrelated couples are highlighted with white squares.

tween all the couples of radiomic features are resumed in the matrix shown in Fig-
ure 8.18 (b), where the white squares highlight the thirteen uncorrelated couples.
Hence, I have selected the most discriminant couple of radiomic features having a p-
value∼ 10−7. In particular, that couple is composed by the standard deviation of the
mean, mσ, and the median of the last decile of the skewness, sM90th, whose LASSO
coefficients are 0.405 and 0.310, respectively, corresponding to the second and the
fifth radiomic features in Figure 8.18 (a). Accordingly, one can notice that the two
features give information regarding the heterogeneity and the degree of asymmetry
among DWIb2000 image values.

Figure 8.19 (a) shows the ROC curve achieved by the couple mσ–sM90th on the
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Fig. 8.19: Performance of the predictive model on the training set. The ROC curve (a) yields
AUC=0.86 (95% CI, 0.79-0.93), and SE=77%, SP=94%, at the Youden cut-off (I=0.71).
The waterfall plot (b) with blue (ncsPCa) and green (csPCa) bars shows 1 FP and 7 FN.

training set, where csPCa are predicted with AUC=0.86 (95% CI, 0.79-0.93), and
SE=77%, SP=94%, at the Youden cut-off (I=0.71). Such a good separation is also
shown in the waterfall plot reported in Figure 8.19 (b), where blue and green bars
highlight ncsPCa and csPCa, respectively. As one can notice, even through the scat-
ter plot in Figure 8.19 (c), where the SVM separation hyperplane is highlighted in
black, the separation yields on the training set seven FN and one only FP, thus lead-
ing FDR=4%, PPV=96%, and F2-score=80% accordingly. Similarly, Figure 8.20
(a) reports the ROC curve achieved on the holdout test set which quite confirms the
performances of the couple mσ–sM90th already obtained on the training set, with a
close value of AUC=0.84 (95% CI, 0.63,0.90), and SE=90%, SP=75% at Youden
cut-off (I=0.65). Hence, in Figure 8.20 (b), one can appreciate the waterfall plot
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Fig. 8.20: Performance of the predictive model on the holdout test set. The ROC curve (a)
yields AUC=0.84 (95% CI, 0.63,0.90), and SE=90%, SP=75% at Youden cut-off (I=0.65).
The waterfall plot (b) with blue (ncsPCa) and green (csPCa) bars shows 2 FP and 2 FN.

referred to the test set, where prediction of csPCa is achieved with two FP and two
FN. Accordingly, FDR=10% and PPV=90%, and F2-score=90%. Then, it is worth
noting by considering the performance of the predictive model on both training and
test sets that it reaches to main goals. On the one hand, it substantially improves
(with those high values of PPV) the prediction of csPCa with respect to the clinical
mpMRI used in triage pre-biopsy setting which reaches at most PPV=51% [271].
On the other hand, the radiomic model kept bounded the risk of overtreatment, as
reported by the low FDR values, thus confirming the high potential role of radiomic
MRI in the clinical decision making. In fact, overtreatment of ncsPCa is reported
as being the major side-effect of the high-sensitivity tests used for revealing the tu-
mour malignancy degree [285]. A further confirmation of such a marked separation
achieved between ncsPCa and csPCa arises from the boxplots shows in Figure 8.21
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for the training (Figure 8.21 (a)) and test (Figure 8.21 (b)) sets, respectively. In
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Fig. 8.21: Boxplot of ncsPCa and csPCa in training (a) and test (b) sets.

fact, the two groups are separated with a p-value∼ 10−5 in the training set, with
the M of the two groups being equal to 0.39 (ncsPCa) and 0.88 (csPCa). Similarly,
on the test set, p-value=7·10−3, and the M values of the radiomic score are 0.20
(ncsPCa) and 0.68 (csPCa).

One can refer to Table 8.15 to compare the performance of this predictive model
with the state of the art. One can see that the work of [273], where the classification
is performed exclusively with ADCm, computed between b=0 and b=900 s/mm2, re-
ports nearly the worst values of AUC (AUC=0.79), with I=0.59. Analogously [281],
the only work using the DCE-MRI, reaches at most AUC=0.75, the worst consid-
ered, with I=0.56, substantially confirming the direction of the present guidelines
PI-RADS v2.1, where “DCE-MRI has become secondary to DWI and T2-weighted
images”, also considering that prostate DWI allows an easier image acquisition and
processing if compared with other functional MR techniques [283]. Actually, two
of the works considered, the first one employing ADCm [274] and the second one a
radiomic signature where 7 out of 10 radiomic features are extracted by the ADC
map [276], achieve quite high AUC values. In fact, AUC=0.85 in [274] e AUC=0.88
in [276], even though with low I values, I=0.58 and I=55, respectively, quite lower
than ours (I=0.65). Two works only include some native DWI sequences for extract-
ing the radiomic signature, with b=1500s/mm2 in [282] and b=0, 1000s/mm2 in [275].
However, although the work in [282] reports a good AUC=0.82 value, but I=0.57,
only one of the nine features composing the signature is extracted from the DWI
sequence, besides being the second-last by importance, while in [286], where the
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signature is made by 5 radiomic features, out of ten, extracted from DWI, a quite
high AUC=0.81 value is coupled with the worst I result (I=0.53). Finally, [269]
seems to achieve a result quite similar to ours in terms of AUC=0.83, but not any
other metric is provided for a deep comparison.

On the whole, it seems that ADC, although being largely employed, cannot offer
the performance of DWI in detecting csPCa. This is due to the ADC parametric
maps – as introduced above – which arise from a normalization procedure between
DWI images at different b-values. In fact, normalization implicitly acts as a low-pass
(averaging) filtering of the local value differences between adjacent structures, thus
weakening the native information conveyed by the original DWI sequences. In many
works, DWI has been reported as “the best monoparametric component of prostate
MRI assessment” [276], where “quantitative analysis at high b-value DWI” (from
b=1000 to b=2000) “suggests” the highest sensitivity of DWI in both detecting
PCa [283] and staging high grade diseases [287], but it has had a limited diffusion
in radiomic studies so far.

At the end, I agree that visual-based tumour detection and segmentation can be
performed with a much higher accuracy on the ADC sequences, and these should
remain the reference tool for visual assessments and ultimate confirmation of cancer
diagnosis. Nonetheless, our results and some literature strongly suggest that they
cannot be the best tool for quantitative imaging, since the information extracted is
far beyond what even expert eyes can visually detect.

Accordingly, the native DWI information can have a higher specificity, from a
quantitative point of view in detecting/catching the cellular differentiation degree
needed to distinguish csPCa from ncsPCa. [276] reports that the good performance
of the radiomic model and of the ADCm are equivalent. Also based on our results,
this suggests that a radiomic analysis carried out on DWI images rather than on
ADC maps can yield a marked advantage, whether the original information is either
visual or semi-quantitative.

One final consideration is worth to be reported. Often, the signal restriction in
ADC has been attributed to the iper-cellularity process associated, in its turn, at
a progression in terms of tumour aggressiveness. Actually, the work of [272] shows
as the ADC signal restriction is only weekly correlated to the main cell metrics
(nuclear count, nuclear area), but the stronger correlation is reported with the vari-
ation of gland component volumes (epithelium, stroma, and lumen). The tumour
progression attributed to a higher GS, results to be associated with an increasing
volume of low-diffusivity epithelial cells and decreasing volumes of high-diffusivity
stroma and lumen space. Accordingly, GS grade definitions relies on changes of
tissue architecture, which makes the tumour progressively more heterogeneous and
less differentiated as malignancy increases. Then, it is worth noting that our two
radiomic features extracted from DWIb2000 are two direct measures of tissue asym-
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metry and local variability in tissue diffusivity. DWIb2000 seems to catch with a
high specificity the asymmetry gradients found between the local propriety of tissue
diffusivity, following the disproportion between the gland components.



218 CHAPTER 8



Chapter 9

Conclusions

In this Thesis I have exploited principles of quantitative imaging to improve
reproducibility of CTp and reliability of radiomic MRI analysis to the aim of devel-
oping reliable biomarkers and favouring their translation into clinical routine. Both
dynamic imaging, such as CTp, and machine learning techniques applied to MR im-
age analysis have aroused great expectations in the medical community, since they
allow investigating those cancer properties, including angiogenesis and heterogene-
ity, where the major interests of pharmaceutical and clinical fields converge. In fact,
a deep comprehension of specific cancer features and mutual interactions occurring
between cancer and its surrounding habitat should advantage the development of
efficacious drugs targeted against different tumour subtypes, thus promoting the
role of precision medicine in cancer care. However, although for very different rea-
sons, both CTp and radiomics applied to MRI have encountered methodological and
technical limitations, which have hampered their clinical applicability so far.

On the one hand, the entering of CTp in the clinical practice has been hindered
by the difficulty of the different perfusion computing methods to yield reproducible
results, and the huge patient’s radiation dose exposure required from CTp acquisi-
tions. On the other hand, the expansion of the machine learning techniques applied
to MRI analysis by research groups with different degrees of expertise have led to
an increased variability of results arising from non-standardized procedures. Yet
more, the radiomic analytic approach often relying on a huge amount of features
with poor interpretability have weakened the clinical meaning of radiomic outcomes
and damped the enthusiasm of clinicians for the real benefit of machine learning in
clinical practice.

In this Thesis, I have adopted common principles for improving CTp and MRI
radiomics by analysing technical and modelling aspects at single-voxel level, which
has allowed reducing variance of measurements while increasing their accuracy and
precision. Moreover, in several occasions, my approach has highlighted relevant clin-
ical information benefiting the comprehension of both physiological and pathological
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tissue properties.
In particular, in CTp analysis, the methods developed for extracting the first

pass tracer kinetics from extended CTp signals (i.e., including first pass and re-
circulating phases), have removed the computational sources of variance, and have
allowed me to perform a fair comparison between two of the most widely adopted
perfusion methods, MS and DV. Therefore, I have discovered that the causes of
unreproduceability between MS and DV has to be attributed to theoretical aspects.
In fact, the reproducibility of DV and MS as it was originally formulated, has not
to be expected because the methods are representing two different status of the sys-
tem. In fact, MS in its classical formulation neglects any vascular transport delay
between vascular inputs and tissue, which instead have resulted the major cause of
such non-reproducibility. Yet more, I have formulated an alternative MS, the gMS,
to allow MS to represent the same temporal status of DV, thus achieving the equiv-
alence of measurements through gMS and DV. I have had an earlier proof in hepatic
perfusion, where a substantial delay in tissue modelling is introduced by consider-
ing the aortic artery as one of the vascular inputs, in place of the hepatic one (not
detectable in CTp sequences). In addition, I have obtained a proof of concept on a
CTp case study of colorectal cancer where no delays were expected between input
and tissue, and MS and DV are resulted equivalent.

Future works will inquire on whether pathological conditions, such as cancers
at different stages, could affect the vascular transport inducing varying delays. Yet
more, it could be worth investigating whether the efficacy of anti-angiogenic drugs
induces the tissue recovery from a delayed transport.

In radiomic MRI analysis, I have developed a two-stage strategy to characterize
each voxel based on its neighbourhood. First, I have computed locally FO features,
thus enabling the assessment of their spatial distributions through colorimetric maps.
Second, information retained by multiple parametric maps corresponding to different
cancer image slices has been summarized by simple global statistical descriptors,
which have allowed achieving robust and reliable measurements referred to the entire
cancer volume. This radiomic analytic approach has allowed investigating local
tissue properties, providing insights into cancer heterogeneity and how it varies
under the effects of treatments. Yet more, this investigating strategy is based on
FO features computed locally, which are easily interpretable and allows correlating
the spatial variations of the features to the morphology of underlying anatomical
structures. This is really helpful in favouring the clinical interpretation of features by
radiologists. It is worth noting that, even the global descriptors computed on local
parametric feature maps, resulted good estimators of local variability. In fact, when
this strategy of imaging feature computation have been applied on the studies on
LARC and PCa respectively, it has allowed achieving marked separations between
different classes, employing a very low number of features. Ultimately, one should
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notice that this radiomic analytic approach is ready to be validated on a larger
patient population, meanwhile it could be already used in prospective studies to
support radiologists in the clinical decision making.

Future works will aim at deepening to what extent these imaging features can
describe tissue heterogeneity and how they correlate with biological and hystopatho-
logical findings to allow a unified framework of cancer investigation.
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Appendix

CTp software development and management

Data processing for perfusion analysis, from data collection to computation of
perfusion parameters, has a large and complex workflow, and it is fundamental
to keep track of each step for reproducibility and repeatability of measurements.
Working with multicentre studies introduces an additional complexity, because a
large amount of data needs to be handle contemporaneously, and this may easily
lead a young researcher to get lost in data storing, managing, and analysis.

Me too, when starting coping with PIXEL data, had some difficulties. How or-
ganizing the code? How controlling the results correctness? How preventing possible
errors when setting parameters required by the functions? How storing results? How
storing information for recovering them rapidly in each moment? When addressing
a scientific research, the theory can be handle by many easily, while its implemen-
tation is the crucial point, which can even jeopardize the reliability of methodology
itself. In several cases, the discordance between the theory and its scientific imple-
mentation yield results non-compliant with the scientific methodology. Therefore, I
decided to spent a couple of months to design, define, and implement a prototype
of software architecture for CTp analysis according to the principles of modularity
and reusability. Not being neither a computer scientists or a computer engineer,
I had to study fundamentals of software development and management and learn
how to implement them for scientific projects. The software has been implemented
in MatLab©.

The main topics addressed when defining the architecture of the CTp analysis
software are the following:

• Software organization
Its meaning is twofold. First, it refers to the design of the data storage archi-
tecture based on hierarchical structures. Second, the definition of the relation-
ships which may occur among main code, procedures, and functions, calling
each other during software execution.

• Software maintenance
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All implementation strategies should preserve the logic structure of the soft-
ware over time. This means that any software update must never require
radical changes of the original logic structure. Accordingly, software has to
be designed to be flexible, to adapt to any new requirement, and safety, for
avoiding errors or loss of data.

• Data recovering
This issue is strictly related to data collection. The most effective way for stor-
ing information allows recovering them exhaustively in the shortest possible
time.

• Association of results – generation mode
Most importantly, the store of each data processing outcome, including figures
and graphs, has to include its generation mode, the software procedure used
and its running parameters, in order to reproduce that outcome anytime.

Figure 9.1 shows the chart of CTp analysis software architecture, comprising
both the structure of repositories and code organization. Contents are organized
employing a tree-structure split into multi-levels.

Fig. 9.1: Chart representing the architecture of the prototypic software for CTp analysis. It
has a tree-structure, split into multiple semantically coherent levels.

The folder DATA is split at the first level in multiple folders, referred to as
CxNy, corresponding to the generic Centre (C) x, Patient Number (N) y. Each CxNy
folder contains the INPUT and OUTPUT folders. The former includes the input
data, DICOM and ROI files into two separate folders, respectively, whilst the latter
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collects the outcomes of preprocessing and processing procedures. In particular,
the repository OUTPUT contains in its turn three sub-folders. The one named
REAL collects the *.mat files related to TCCs extracted from CTp image sequences,
from vascular input and tissue ROIs, separately. The folder PROCESSING contains
different folders, each referred to as Type n, corresponding to different processing
functions, like signal fitting or interpolation. For instance, this folder currently
includes Interp, FittingA, FittingP, and FittingT, corresponding to the resampling
of tissue TCCs, and the fitting of aortic (FittingA) and portal (FittingP) vascular
inputs or tissue (FittingT), respectively. Similarly, the folder PERFUSION collects
the outcomes arising from different computational methods for perfusion parameters
(e.g. MS, DV, etc.).

Instead, the CODE folder is organized into four different sub-levels. MAIN
contains the main *.m file, controlling the execution of the whole software. All
functions and procedures called by the main.m file are contained into METHODS
and UTILITIES depending on whether their employment is specific or transver-
sal across different purposes, respectively. Finally, the folder CONFIGURATION
FILES collects several *.ini files, each reporting the running parameters for each
procedure called by the main code during each specific run. Hereinafter, the term
function will be adopted to refer to the methods included in the CTp software for
signal processing and computation of perfusion parameters.

In particular, the execution of the main code is organized as follows, also de-
scribed through the flowchart in Figure 9.2.

As first, the software executes an initialization procedure, where the user is asked
to select the modality “write” or “read” for the configuration file by activating and
deactivating the corresponding flags. If the “write” modality is selected, the user has
to provide all running parameters for all the available procedures or just for those
of interest for the specific purpose. Actually, a new configuration file can be written
directly through the initialization procedure in MatLab or through any text editor
by following the template defined in the initialization procedure. Otherwise, if the
“read” modality is chosen, the user has to indicate the name of the configuration
file to be loaded from the CONFIGURATION FILES folder.

Each configuration file contains an initial general section with a series of flags, one
for each possible executable methods, which is activated or deactivated for allowing
its execution or not. Then, there are as many specific sections as the number of
implemented procedures, where all running parameters can be set.

Two different types of configuration files are adopted, global and local ones.
Generally, the user creates a new global configuration file only if changes regard
multiple methods, otherwise, variations of just execution parameters are stored into
local configuration files. In this regards, the automatic process of generation of local
configuration file will be clarified after explaining the whole process of execution of
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INITIALIZE

EXECUTE

read or
compute?

read or
write?

input data
available?

USER INPUT

OUTPUT

LOAD
TYPE_Gx.y.mat

TASK

EXECUTION

LOAD COMPUTE

MATLAB WORKSPACE

WRITE
global_x.y_aaaammddThhmmss.ini

local_x.y_aaaammddThhmmss.ini

WRITE

global_x_aaaammddThhmmss.ini

READ

global_x_aaaammddThhmmss.ini
global_x.y_aaaammddThhmmss.ini

SAVE
TYPE_Gx.y.mat

TYPE_Gx.y_aaaammddThhmmss.txt

if write if read

if yes

if read if compute

if yes if no

USER INPUT

if no USER
INPUT

Fig. 9.2: The flowchart represents the execution of the main code, made of “initialize”
and “execute” blocks. Service and execution parameters are defined during the initialization
procedure and loaded into the MatLab workspace. After initialization, the block “execute”
uses the parameters available in the Matlab workspace to execute each selected method.
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the main code.
Once completed the initialization procedure, all the selected methods are subse-

quently executed. Normally, each function works with the parameters specified in
the configuration file. In addition, the user can provide locally some modifications of
the parameters, directly in input to the function itself. At the end of the execution
of the main code, if local modifications of function parameters have occurred, they
are automatically collected and stored in a local configuration file. At the start of
execution, each function reads its relative execution parameters from the MatLab
workspace and verifies whether local changes have occurred, eventually updating
parameters. Running parameters of each function contain a list of flag defining the
execution modality of the function itself, filenames of input data required for execu-
tion, and specific running parameters. Hence, a function can be executed through
two different modalities, “read” or “compute”. In the first case, the function just
loads the file according to the filename provided and returns the content of the file
as the output. Instead, if the “compute” modality is selected, the function loads the
input data from the file specified as function parameter or, if not found, it calls the
relative functions to generate it. Then, when input data are available within the
function MatLab environment, the function task is executed by calling specific func-
tions. The output of the function is both saved as a *.mat file in its corresponding
folder path, semantically coherent (see the chart above) and returned as the output
in the principal MatLab workspace, to be used by the functions subsequently ex-
ecuted. For favouring reproducibility of measurements, the output of the function
includes the configuration filename relative to its generation. Moreover, each func-
tion saves an execution report file as a *.txt file in the same folder of the output
file, which includes date and time of execution, reference configuration file, execu-
tion parameters, execution messages or warnings collected during the execution and
time statistics.

Finally, a standard for naming configuration and output files has been conceived.
Configuration files are named as follows:

global_x_aaaammddThhmmss.ini

where x is an integer number starting from 0. If local configuration files are gen-
erated, two configuration files are then saved, the local ones containing the specific
portion of the global configuration file that has been modified and the new global
configuration file, after the local update. Accordingly, the two files are named as
follows:

global_x.y_aaaammddThhmmss.ini

local_x.y_aaaammddThhmmss.ini

where x.y are two integer numbers starting from 0 and 1, respectively. Finally,
the output and report files saved by functions are named as follows, respectively:
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TYPE_Gx.y.mat

TYPE_Gx.y_aaaammddThhmmss.txt

where TYPE refers to the specific function acronym which generated the files,
whilst x.y identifies the configuration file used for the execution.



List of Abbreviations

Abbreviation Definition
AATH Adiabatic Approximation Tissue Homogeneity
ACC Accuracy
ACR American College of Radiology
ADC Apparent Diffusion Coefficient
AS Active Surveillance
AUC Area Under the Curve
BF Blood Flow
BN Bayesian Network
BSA Body Surface Area
BV Blood Volume
BW Body Weight
CA Contrast agent
CEA Carcinoembryonic Antigen
CI Confidence Interval
CK Contralateral normal Kidney
C-RADS Colon RADS
CRC Colorectal Cancer
csPCa clinically significant Prostate Cancer
CT Computed Tomography
CTDI CT Dose Index
CV Coefficient of Variation
CV Cross Validation
2CX Two Compartments Exchange
D Diffusion Coefficient
DAG Directed Acyclic Graph
DCE Dynamic Contrast-enhanced
DICOM Digital Imaging and Communication in Medicine
DLP Dose Length Product
DP Distributed Parameter
DT Decision Tree

229



DV Deconvolution
DWI Diffusion Weighted Imaging
EES Extracellular Space
EME-IQ Enhancement Measurement Error-Image Quality
FBP Filtered Backprojection
FDA Food and Drug Administration
FDG fluoro-D-glucose
FDR False Discovery Rate
FID Free Induction Decay
FLT 3’-fluoro-3’deoxythymidine
FNR False Negative Rate
FO First Order
FOR False Omission Rate
FOV Field of View
FPR False Positive Rate
FWHM Full Width Half Maximum
GL Grey Level
GLCM Grey Level Co-occurrence matrix
GLRLM Grey Level Run Length matrix
GS Gleason Score
GV Gamma Variate
HCC Hepatocarcinoma
HPI Hepatic Perfusion Index
HU Hounsfield Unit
IB Imaging Biomarker
IBSI Imaging Biomarker Standardization Initiative
IDT Indicator Dilution Theory
IQR Interquartile Range
LARC Locally Advanced Rectal Cancer
LBM Lean Body Mass
LI-RADS Liver RADS
LN Lagged Normal
mpMRI multi-parametric Magnetic Resonance Imaging
MR Magnetic Resonance
MS Maximum Slope
MTC Medullary Thyroid Carcinoma
MTT Mean Transit Time
MVD Microvascular Density
nCRT Neoadjuvant Chemo-Radiotherapy
ncsPCa non-clinically significant Prostate Cancer

230



NET Neuroendocrine Tumour
NMR Nuclear Magnetic Resonance
NN Neural Network
NPV Negative Predictive Value
NR Non-Responder
PACS Picture Archiving and Communication System
PCa Prostate Cancer
PCR Pathological Complete Response
PET Positron Emission Tomography
PI Perfusion Index
PI-RADS Prostate Reporting and Data System
PLS Blood Plasma Space
PPV Positive Predictive Value
PS Permeability Surface
PSA Prostate Specific Antigen
PSF Point Spread Function
PSMA Prostate Specific Membrane Antigen
PZ Peripheral Zone
QIBA Quantitative Imaging Biomarkers Alliance
R Responder
RADS Reporting and Data System
RCC Renal Cell Carcinoma
RD Relative Dispersion
RF Radio-frequency
ROC Receiver Operating Characteristic
ROI Region of Interest
RQS Radiomics Quality Score
SE Sensitivity
SIRT Selective Internal Radiotherapy
SNR Signal to Noise Ratio
SP Specificity
SUV Standard Uptake Value
SVM Support Vector Machine
TAC Time Attenuation Curve
TCC Time Concentration Curve
TH Tissue Homogeneity
TIC Time Intensity Curve
TME Total Mesorectal Excision
TN True Negative
TP True Positive

231



TZ Transitional Zone
VEGF Vascular Endothelial Growth Factor
WL Level of HU window
WW Width of HU window

232



List of Figures

1.1 Thesis content flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 HU windows for lung and abdomen CT images . . . . . . . . . . . . . . . 14
2.2 HU windows abdomen CT images with incorrect WW and WL values . . . 14
2.3 Axial T2-weighted and DWI with b=0 s/mm2 images . . . . . . . . . . . . . 21
2.4 DWI images acquired with four different b-values . . . . . . . . . . . . . . 22
2.5 ADC parametric map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 DCE-CT imaging protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Angiogenesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Normal and tumour vasculature . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 DCE-CT signal extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 DCE-CT hepatic vascular inputs . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 CTp denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 DCE-CT TCCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.5 Single and dual input models . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 CA kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.7 Compartmental models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.8 Mono and multicompartmental models . . . . . . . . . . . . . . . . . . . . 54
4.9 Well-mixed and plug-flow systems . . . . . . . . . . . . . . . . . . . . . . 54
4.10 LN fitting model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.11 LN fitting with varying RD and s . . . . . . . . . . . . . . . . . . . . . . 58
4.12 LN fitting of vascular TCC . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.13 Sigmoid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.14 Sigmoidal fitting of TCC . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.15 GV model with varying t0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.16 GV model with varying α and β . . . . . . . . . . . . . . . . . . . . . . . 61
4.17 GV model as the ratio of α and β varies . . . . . . . . . . . . . . . . . . . 62
4.18 GV fitting of tissue TCC . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.19 Fick’s principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.20 MS on a single input model . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.21 MS on a dual input model . . . . . . . . . . . . . . . . . . . . . . . . . . 66

233



4.22 Matterne model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.23 2CX model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.24 TH model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.25 AATH model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.26 DP model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.27 h(t), H(t), and R(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.1 Machine learning workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Hypothesis testing region . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 ROC curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4 TPR(T) and TNR(T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.5 Radiomic workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6 Lasso and ridge constraint regions . . . . . . . . . . . . . . . . . . . . . . 110
5.7 Constraint regions for different Ln norms . . . . . . . . . . . . . . . . . . . 111
5.8 Decision hyperplane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.9 Maximum margin SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.10 SVM for non separable classes . . . . . . . . . . . . . . . . . . . . . . . . 115
5.11 k-fold CV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1 Dual input monocompartmental hepatic model . . . . . . . . . . . . . . . 126
6.2 Extracting the first pass signal . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3 LN models for fitting aortic and portal vein as RD and s vary . . . . . . . 129
6.4 Fitting of the first pass portion of TCCs . . . . . . . . . . . . . . . . . . . 130
6.5 Two-stage procedure for solving DV . . . . . . . . . . . . . . . . . . . . . 131
6.6 Convergence of the iterative process . . . . . . . . . . . . . . . . . . . . . 132
6.7 gMS graphical representation . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.1 Histogram of mean residuals (µϵ) for patient C1N1 . . . . . . . . . . . . . 139
7.2 Histograms of mean residuals (µϵ) during the three signal phases . . . . . . 140
7.3 Map of percentage errors of patient C1N1. . . . . . . . . . . . . . . . . . . 140
7.4 Examples of GV fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.5 GV fitting of differently noisy signals . . . . . . . . . . . . . . . . . . . . . 142
7.6 Residual plot of µϵ against BFMS and BFDV . . . . . . . . . . . . . . . . . 143
7.7 Voxel-based comparison of BFMS and BFDV through colorimetric maps . . 148
7.8 Voxel-based comparison of BFMS and BFDV through scatter plots . . . . . 150
7.9 Voxel-based comparison of BFMS and BFDV through NCC . . . . . . . . . 151
7.10 Scatter plots of BFMS against BFDV in Centres 1 and 16 . . . . . . . . . . 152
7.11 Equivalence times for patient C1N26 . . . . . . . . . . . . . . . . . . . . . 153
7.12 Equivalence times for patients C1N38 and C16N12 . . . . . . . . . . . . . 154
7.13 Spatial distribution of equivalence times for C1N26 . . . . . . . . . . . . . 154
7.14 Histograms of IQRs and normalized median equivalence times . . . . . . . 155

234



7.15 Distance between MSt and PEAKa . . . . . . . . . . . . . . . . . . . . . . 156
7.16 Linear regression between gMS and DV . . . . . . . . . . . . . . . . . . . 157
7.17 Colorimetic maps of aBF values for patients C1N38 and C16N12 . . . . . . 158
7.18 CTp examinations of colorectal cancer . . . . . . . . . . . . . . . . . . . . 160
7.19 Histograms of BFMS and BFDV for patient ID12006 . . . . . . . . . . . . . 160
7.20 Colorimetric maps of BFMS and BFDV for patient ID12006 . . . . . . . . . 161
7.21 Scatter plot of BFMS and BFDV for patient ID12006 . . . . . . . . . . . . 161
7.22 Histograms of BFMS and BFDV for patient ID12001 . . . . . . . . . . . . . 162
7.23 Colorimetric maps of BFMS and BFDV for patient ID12001 . . . . . . . . . 162
7.24 Scatter plot of BFMS and BFDV for patient ID12001 . . . . . . . . . . . . 163
7.25 Variation of perfusion parameters in Sorafenib group . . . . . . . . . . . . 166
7.26 Variation of perfusion parameters in SIRT group . . . . . . . . . . . . . . . 167

8.1 Workflow of CT image processing for feature robustness analysis . . . . . . 172
8.2 Comparison of linear, Akima, and Lanczos interpolation methods . . . . . . 177
8.3 Overall feature robustness against image perturbation for RCC and CK . . 179
8.4 Overall feature robustness per feature class for RCC and CK . . . . . . . . 180
8.5 Boxplots of GLCM2D-sosvh computed from δ = 1 to δ = 9 . . . . . . . . . 182
8.6 Four different images have the same histogram . . . . . . . . . . . . . . . 184
8.7 Differences in image details . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.8 Local maps of σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.9 Local computation of parametric feature maps . . . . . . . . . . . . . . . . 186
8.10 New set of imaging features . . . . . . . . . . . . . . . . . . . . . . . . . 190
8.11 Flowchart of patient enrolment in radiomic LARC study . . . . . . . . . . . 193
8.12 Discrimination results between TRG0-1 and TRG2-3 . . . . . . . . . . . . 196
8.13 Local skewness for different TRG . . . . . . . . . . . . . . . . . . . . . . . 197
8.14 Flowchart of patient enrolment processes in the PCa radiomic study . . . . 201
8.15 Boxplot of four progressive PCa risk levels . . . . . . . . . . . . . . . . . . 207
8.16 Predictive model building . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
8.17 Splitting of training and test set from the entire dataset . . . . . . . . . . 209
8.18 Feature selection process . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
8.19 Performance of the predictive model on the training set . . . . . . . . . . . 213
8.20 Performance of the predictive model on the holdout test set . . . . . . . . 214
8.21 Boxplot of ncsPCa and csPCa in training and test sets . . . . . . . . . . . 215

9.1 CTp analysis software architecture . . . . . . . . . . . . . . . . . . . . . . 224
9.2 Flowchart of execution of the main code . . . . . . . . . . . . . . . . . . . 226

235



236



List of Tables

5.1 Errors occurring in hypothesis testing . . . . . . . . . . . . . . . . . . . . 91
5.2 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Metrics derived from a two-by-two confusion matrix . . . . . . . . . . . . . 93
5.4 Overview of the main characteristics of the most adopted radiomic features,

where D stands for diagnosis and P for both prognosis and prediction . . . 99
5.5 Four unique directions of 2D GLCM . . . . . . . . . . . . . . . . . . . . . 102
5.6 Thirteen unique directions of 3D GLCM . . . . . . . . . . . . . . . . . . . 103

6.1 PIXEL Centres and enrolled patients . . . . . . . . . . . . . . . . . . . . . 124
6.2 Patients of PIXEL selected for perfusion analysis . . . . . . . . . . . . . . 125
6.3 Open issues of MS and DV in liver perfusion . . . . . . . . . . . . . . . . . 126

7.1 σ values of µϵ of ten BF values for MS and DV . . . . . . . . . . . . . . . 143
7.2 LN fitting parameters of aorta and portal vein . . . . . . . . . . . . . . . . 144
7.3 GV fitting parameters of tissue signals . . . . . . . . . . . . . . . . . . . . 145
7.4 Correlation of BFMS and BFDV in Centres 1 and 16 . . . . . . . . . . . . . 147
7.5 DV- and MS-based BF values in the recent literature . . . . . . . . . . . . 149
7.6 Variation of perfusion parameters between Sorafenib and SIRT group . . . 165

8.1 CT image acquisition parameters . . . . . . . . . . . . . . . . . . . . . . . 171
8.2 List of FO (n=13) and GLCM2D-3D (n=19) features. . . . . . . . . . . . 175
8.3 Descriptions of the 29 perturbations assessed . . . . . . . . . . . . . . . . 176
8.4 Feature robustness against image perturbations referred to Figure 8.4. . . . 181
8.5 Seven parametric maps of local first order features . . . . . . . . . . . . . 187
8.6 Some global statistical descriptors . . . . . . . . . . . . . . . . . . . . . . 191
8.7 Correspondence between GS and ISUP score systems . . . . . . . . . . . . 201
8.8 Study population of radiomic PCa study . . . . . . . . . . . . . . . . . . . 203
8.9 Study population of PCa staging study . . . . . . . . . . . . . . . . . . . . 204
8.10 Study population of the classification study for ncsPCa and csPCa . . . . . 204
8.11 Dataset of ncsPCa and csPCa after the first and second enrolment process 204
8.12 Dataset of ncsPCa and csPCa enrolled during the third process . . . . . . . 205
8.13 Derivation of the training set from the entire one . . . . . . . . . . . . . . 210
8.14 Balanced training and test sets . . . . . . . . . . . . . . . . . . . . . . . . 210

237



8.15 Comparison of our study with the state of the art . . . . . . . . . . . . . . 211

238



Bibliography

[1] R. Gunderman and T. Rickett. “Engineering and radiology: implications for
education”. In: Acad. Radiol. 19.8 (2012), pp. 1041–1042 (cit. on p. 1).

[2] D. Hanahan and R. Weinberg. “Hallmark of cancer: the next generation”. In:
Cell 144.5 (2011), pp. 646–674 (cit. on pp. 1, 29, 30, 32, 35).

[3] PIXEL. Programme Hospitalier de Recherche Clinique (PHRC) 2007 n◦AOM
07228-France and Assistance-Publique Hôpitaux de Paris (APHP) (cit. on
pp. 3, 78).

[4] V. Vilgrain, H. Pereira, E. Assenat, et al. “Efficacy and safety of selective
internal radiotherapy with yttrium-90 resin microspheres compared with so-
rafenib in locally advanced and inoperable hepatocellular carcinoma (SARAH):
an open-label randomised controlled phase 3 trial”. In: Lancet Oncol. 18
(2017), pp. 1624–1626 (cit. on pp. 3, 78, 164).

[5] S. Histed et al. “Review of functional/anatomic imaging in oncology”. In:
Nucl. Med. Commun. 33.4 (2012), pp. 349–361 (cit. on p. 9).

[6] Y. Cao. “The promise of dynamic contrast-enhanced imaging in radiation
therapy”. In: Semin. Radiat. Oncol. 21 (2011), pp. 147–156 (cit. on p. 9).

[7] E. Shefer et al. “State of the art of CT detectors and sources: a literature
review”. In: Curr. Radiol. Rep. 1 (2013), pp. 76–91 (cit. on p. 10).

[8] M. Prokop et al. Spiral and multislice. Computed Tomography of the body.
Thieme, 2003. Chap. 1 (cit. on pp. 11, 15).

[9] W. Kalender. Computed Tomography. Fundamentals, systems, technology,
image quality, applications. Wiley, 2011. Chap. 1 (cit. on pp. 12, 15, 16).

[10] S. Carmignato, W. Dewulf, and R. Leach. Industrial X-Ray computed tomog-
raphy. Springer, 2018. Chap. 2 (cit. on p. 12).

[11] D. Platte et al. “Radiation dosimetry for wide-beam CT scanners: recom-
mendations of a working party of the Institute of Physics and Engineering in
Medicine”. In: Br. J. Radiol. 86.1027 (2013), p. 20130089 (cit. on p. 15).

[12] M. Salvatori et al. “Radiation dose in nuclear medicine: the hybrid imaging”.
In: Radiol. Med. 124.8 (2019), pp. 768–776 (cit. on p. 15).

[13] T. Yankeelov, D. Pickens, and R. Price. Quantitative MRI in cancer. Taylor
& Francis Group, 2012. Chap. 1 (cit. on pp. 18, 20, 22, 23, 26).

239



[14] V. Grover et al. “Magnetic resonance imaging: principles and techniques:
lessons for clinicians”. In: J Clin. Exp. Hepatol. 5.3 (2015), pp. 246–255 (cit.
on p. 18).

[15] E. V. Reeth et al. “Super-resolution in magnetic resonance imaging: a review”.
In: Concept Magn. Reson. A 40A.6 (2012), pp. 306–325 (cit. on p. 18).

[16] T. Yankeelov, D. Pickens, and R. Price. Quantitative MRI in cancer. Taylor
& Francis Group, 2012. Chap. 3 (cit. on p. 19).

[17] C. Westbrook. MRI at a glance. Blackwell Science, 2002. Chap. 1 (cit. on
p. 20).

[18] A. Phadani et al. “Diffusion-weighted magnetic resonance imaging as a can-
cer biomarker: consensus and recommendations”. In: Neoplasia 11.2 (2009),
pp. 102–125 (cit. on p. 21).

[19] N. Bhatt et al. “Role of diffusion-weighted imaging in head and neck lesions:
pictorial review”. In: Neuroradiol. J 30.4 (2017), pp. 356–369 (cit. on pp. 21,
23).

[20] M. Morone et al. “Whole-body MRI: current applications in oncology”. In:
AJR Am. J. Roentgenol. 209 (2017), W336–W349 (cit. on p. 23).

[21] Y. Sun et al. “Automatic stratification of prostate tumour aggressiveness
using multiparametric MRI: a horizontal comparison of texture features”. In:
Acta Oncol. 58.8 (2019), pp. 1118–1126 (cit. on p. 23).

[22] G. Jayson et al. “Antiangiogenic therapy in oncology: current status and
future directions”. In: Lancet 388 (2016), pp. 518–529 (cit. on p. 24).

[23] K. Miles et al. “Current status and guidelines for the assessment of tumour
vascular support with dynamic contrast-enhanced computed tomography”.
In: Eur. Radiol. 22.7 (2012), pp. 1430–1441 (cit. on pp. 24, 45).

[24] C. Cuenod and D. Balvay. “Perfusion and vascular permeability: basic con-
cepts and measurements in DCE-CT ad DCE-MRI”. In: Diagn. Interv. Imag-
ing 94 (2013), pp. 1187–1204 (cit. on pp. 24, 35, 71).

[25] Y. Gordon et al. “Dynamic contrast-enhanced magnetic resonance imaging:
fundamentals and application to the evaluation of the peripheral perfusion”.
In: Cardiovasc. Diagn. Ther. 4.2 (2014), pp. 147–164 (cit. on p. 26).

[26] J. Winfield et al. “DCE-MRI, DW-MRI, and MRS in cancer: challenges and
advantages of implementing qualitative and quantitative multi-parametric
imaging in the clinic”. In: Magn. Reson. Imaging 25.6 (2016), pp. 245–254
(cit. on p. 26).

[27] A. Othman et al. “Radiation dose reduction in perfusion CT imaging of the
brain: a review of the literature”. In: J. Neuroradiology 43 (2016), pp. 1–5
(cit. on p. 26).

240



[28] D. Muenzel et al. “Dynamic CT perfusion imaging of the myocardium: a
technical note on improvement of image quality”. In: PLoS one 8.10 (2013),
e75263 (cit. on pp. 26, 47).

[29] C. Yang et al. “Comparison of quantitative parameters in cervix cancer mea-
sured by dynamic contrast-enhanced MRI and CT”. In: Magn. Reson. Med.
63.6 (2010), pp. 1601–1609 (cit. on p. 26).

[30] G. Brix et al. “Dynamic contrast-enhanced CT studies. Balancing patient
exposure and image noise”. In: Invest. Radiol. 46 (2011), pp. 64–70 (cit. on
p. 26).

[31] T. Yankeelov and J. Gore. “Dynamic constrast enhanced magnetic resonance
imaging in oncology: theory, data acquisition, analysis, and examples”. In:
Curr. Med. Imaging Rev. 3.2 (2009), pp. 91–107 (cit. on p. 27).

[32] J. O’Connor et al. “Imaging intratumour heterogeneity: role in therapy re-
sponse, resistance, and clinical outcome”. In: Clin. Cancer Res. 21.2 (2015),
pp. 249–257 (cit. on pp. 29, 36, 37).

[33] N. Pavlova and C. Thompson. “The emerging hallmarks of cancer metabolism”.
In: Cell Metab. 23.1 (2016), pp. 27–47 (cit. on p. 30).

[34] L. Boroughs and R. DeBerardinis. “Metabolic pathways promoting cancer
cell survival and growth”. In: Nat. Cell Biol. 17.4 (2015), pp. 351–359 (cit. on
p. 30).

[35] M. Heiden and R. DeBerardinis. “Understanding the intersections between
metabolism and cancer biology”. In: Cell 168.4 (2017), pp. 657–669 (cit. on
p. 30).

[36] P. Porporato et al. “Mitochondrial metabolism and cancer”. In: Cell Res. 28.3
(2017), pp. 265–280 (cit. on p. 30).

[37] A. Elmi et al. “Cell-proliferation imaging for monitoring response to CDK4/6
inhibition combined with endocrine-therapy in breast cancer: comparison
of [18F]FLT and [18F]ISO-1 PET/CT”. In: Clin. Cancer Res. 25.10 (2019),
pp. 3063–3073 (cit. on p. 30).

[38] J. Horvat et al. “Diffusion-Weighted Imaging (DWI) with Apparent Diffusion
Coefficient (ADC) mapping as a quantitative imaging biomarker for predic-
tion of immunohistochemical receptor status, proliferation rate, and molec-
ular subtypes of breast cancer”. In: J. Magn. Reson. Imaging 50.3 (2019),
pp. 836–846 (cit. on p. 30).

[39] A. Chung, J. Lee, and N. Ferrara. “Targeting the tumour vasculatur: insights
from physiological angiogenesis”. In: Nat. Rev. Cancer 10.7 (2010), pp. 505–
514 (cit. on p. 31).

[40] B. Lopes-Bastos, W. Jiang, and J. Cai. “Tumour-endothelial cell communi-
cations: important and indispensable mediators of tumour angiogenesis”. In:
Anticancer Res. 36.3 (2016), pp. 1119–1126 (cit. on p. 31).

241



[41] L. Yadav et al. “Tumour angiogenesis and angiogenic inhibitors: a review”.
In: J. Clin. Diagn. Res. 9.6 (2015), XE01–XE05 (cit. on p. 32).

[42] L. Welsh and M. Welsh. “VEFGA and tumour angiogenesis”. In: J. Intern.
Med. 273.2 (2019), pp. 114–127 (cit. on p. 32).

[43] I. Dregely et al. “Imaging biomarkers in oncology: basics and application to
MRI”. In: J. Magn. Res. Imaging 48.1 (2018), pp. 13–26 (cit. on pp. 32, 37,
38).

[44] R. Jain. “Antiangiogenesis strategies revisited: from starving tumors to alle-
viating hypoxia”. In: Cancer Cell 26.5 (2014), pp. 605–622 (cit. on p. 33).

[45] H. Yang et al. “Perfusion computed tomography evaluation of angiogenesis
in liver cancer”. In: Eur. Radiol. 20 (2010), pp. 1424–1430 (cit. on p. 33).

[46] V. Goh and A. Padhani. “Imaging tumor angiogenesis: functional assessment
using MDCT or MRI?” In: Abdom. Imaging 31 (2006), pp. 194–199 (cit. on
p. 33).

[47] R. Jain. “Perfusion CT imaging of brain tumors: an overview”. In: AJNR Am.
J. Neuroradiol. 32 (2011), pp. 1570–1577 (cit. on p. 34).

[48] D. Ippolito et al. “Diagnostic value of dynamic contrast-enhanced CT with
perfusion imaging in the quantitative assessment of tumor response to so-
rafenib in patients with advanced hepatocellular carcinoma: A feasibility
study”. In: Eur. J. Radiol. 90 (2017), pp. 34–41 (cit. on p. 34).

[49] A. Uusaro, E. Ruokonen, and J. Takala. “Estimation of splanchnic blood flow
by the Fick principle in man and problems in the use of indocyanine green”.
In: Cardiovasc. Res. 30.1 (1995), pp. 106–112 (cit. on p. 34).

[50] G. Brix et al. “Tracer kinetic modelling of tumour angiogenesis based on
dynamic contrast-enhanced CT and MRI measurements”. In: Eur. J. Nucl.
Med. Mol. Imaging 37.1 (2010), pp. 30–51 (cit. on pp. 34, 47).

[51] W. Thaiss et al. “Iodine concentration as a perfusion surrogate marker in
oncology: Further elucidation of the underlying mechanisms using Volume
Perfusion CT with 80 kVp”. In: Eur. Radiol. 26.9 (2016), pp. 2929–2936 (cit.
on pp. 35, 48).

[52] S. Zhou et al. “Correlations between computed tomography perfusion en-
hancement parameters and lymph node metastasis in non-small cell lung
cancer”. In: Int. J. Clin. Exp. Med. 9.7 (2016), pp. 12896–12903 (cit. on
p. 35).

[53] H. Sun et al. “Assessment of tumor grade and angiogenesis in colorectal
cancer”. In: Acad. Radiol. 21.6 (2014), P750–757 (cit. on p. 35).

[54] S. Kim, A. Kamaya, and J. Willmann. “CT perfusion of the liver: principles
and application in oncology”. In: Radiology 272.2 (2014), pp. 322–344 (cit. on
pp. 35, 51, 79).

242



[55] K. Miles. “Perfusion CT for the assessment of tumour vascularity: which
protocol?” In: Br. J. Radiol. 76 (2003), S36–42 (cit. on pp. 35, 50).

[56] ACR (American College of Radiology) PI-RADS Prostate imaging - reporting
and data system, version 2.1. 2019 (cit. on pp. 35, 199).

[57] K. Cyll et al. “Tumour heterogeneity poses a significant challenge to cancer
biomarker research”. In: Br. J. Cancer 117 (2017), pp. 367–375 (cit. on p. 36).

[58] I. Dagogo-Jack and A. Shaw. “Tumour heterogeneity and resistance to cancer
therapies”. In: Nat. Rev. Clin. Oncol. 15.81-94 (2018) (cit. on p. 36).

[59] P. Bedard et al. “Tumour heterogeneity in the clinic”. In: Nature 501.7467
(2013), pp. 355–364 (cit. on pp. 36, 37).

[60] L. Gay, A. Baker, and T. Graham. “Tumour cell heterogeneity.” In: Version 1.
F1000Res. 5.F1000 Faculty Rev-238 (2016). doi: 10.12688/f1000research.
7210.1 (cit. on pp. 36, 37).

[61] H. Aerts et al. “Decoding tumour phenotype by noninvasive imaging using
a quantitative radiomics approach”. In: Nat. Commun. 5.4006 (2014). doi:
10.1038/ncomms5006 (cit. on pp. 37, 105, 181).

[62] NCBI. Food and Drug Administration & National Institutes of Health. BEST
(Biomarkers, EndpointS, and other tools). From: http://www.ncbi.nlm.
nih.gov/books/NBK326791. Accessed: 2020-09-10 (cit. on p. 37).

[63] C. Oldenhuis et al. “Prognostic versus predictive value of biomarkers in on-
cology”. In: Eur. J. Cancer 44 (2008), pp. 946–953 (cit. on p. 37).

[64] L. Fass. “Imaging and cancer: a review”. In: Mol. Oncol. 2.2 (2008), pp. 115–
152 (cit. on p. 37).

[65] S. Yip and H. Aerts. “Applications and limitations of radiomics”. In: Phys.
Med. Biol. 61.13 (2016), R150–66 (cit. on p. 37).

[66] P. Lambin et al. “Radiomics: the bridge between medical imaging and per-
sonalized medicine”. In: Nat. Rev. Clin. Oncol. 14.12 (2017), pp. 749–762
(cit. on p. 38).

[67] K. Doi. “Computer-aided diagnosis in medical imaging: historical review,
current status and future potential”. In: Comput. Med. Imaging Graph. 31.4-
5 (2007), pp. 198–211 (cit. on p. 38).

[68] M. Avanzo, J. Stancanello, and I. E. Naqa. “Beyond images: the promise of
radiomics”. In: Phys. Med. 38 (2017), pp. 122–139 (cit. on pp. 38, 95, 97, 100).

[69] QIBA. Quantitative Imaging Biomarkers Alliance (QIBA). From: https:
//www.rsna.org/QIBA. Accessed: 2020-09-10 (cit. on p. 38).

[70] S. Rizzo et al. “Radiomics: the facts and the challenge of image analysis”.
In: Eur. Radiol. Exp. 2.1 (2018), p. 36. doi: 10.1186/s41747-018-0068-z
(cit. on pp. 38, 95, 99, 100).

[71] J. Aronsons. “Biomarkers and surrogate endpoints”. In: Br. J. Clin. Phar-
macol. 59.5 (2005), pp. 491–494 (cit. on p. 39).

243

https://doi.org/10.12688/f1000research.7210.1
https://doi.org/10.12688/f1000research.7210.1
https://doi.org/10.1038/ncomms5006
http://www.ncbi.nlm.nih.gov/books/NBK326791
http://www.ncbi.nlm.nih.gov/books/NBK326791
https://www.rsna.org/QIBA
https://www.rsna.org/QIBA
https://doi.org/10.1186/s41747-018-0068-z


[72] FDA-NIH Biomarker Working Group. BEST (Biomarkers, EndpointS, and
other Tools) Resource [Internet]. Silver Spring (MD): Food and Drug Admin-
istration (US); 2016-Diagnostic Biomarker. From: https://www.ncbi.nlm.
nih.gov/books/NBK402285/ Co-published by National Institutes of Health
(US), Bethesda (MD) (cit. on p. 39).

[73] S. Ruberg and L. Shen. “Personalized medicine: four perspectives of tailored
medicine”. In: Stat. Biopharm. Res. 7.3 (2015), pp. 214–229 (cit. on p. 39).

[74] K. Sechidis et al. “Distinguishing prognostic and predictive biomarkers: an
information theoretic approach”. In: Bioinformatics 34.19 (2018), pp. 3365–
3376 (cit. on p. 39).

[75] S. Sethi et al. “Clinical advances in molecular biomarkers for cancer diagnosis
and therapy”. In: Int. J. Mol. Sci. 14.7 (2013), pp. 14771–14784 (cit. on p. 39).

[76] Y. Wang. “Development of cancer diagnostics - from biomarkers to clinical
tests”. In: Transl. Cancer Res. 4.3 (2015), pp. 270–279 (cit. on p. 40).

[77] P. Maruvada et al. “Biomarkers in molecular medicine: cancer detection and
diagnosis”. In: Biotechniques 38.4S (2005), pp. 9–15 (cit. on p. 40).

[78] J. P. O’Connor et al. “Imaging biomarker roadmap for cancer studies”. In:
Nat. Rev. Clin. Oncol. 14.3 (2017), pp. 169–186 (cit. on p. 40).

[79] S. Edge and C. Compton. “The american joint committee on cancer: the 7th
edition of the AJCC cancer staging manual and the future of TNM”. In: Ann.
Surg. Oncol. 17 (2010), pp. 1471–1474 (cit. on p. 40).

[80] J. Brierley, M. Gospodarowicz, and C. Wittekind. TNM classification of ma-
lignant tumours. Wiley, 2017. Chap. 1 (cit. on p. 41).

[81] J. An, K. Unsdorfer, and J. Weinreb. “BI-RADS, C-RADS, CAD-RADS,
LI-RADS, Lung-RADS, NI-RADS, O-RADS, PI-RADS, TI-RADS: reporting
and data systems”. In: Radiographics 39 (2019), pp. 1435–1436 (cit. on p. 41).

[82] J. Barentsz et al. “Synopsis of the PI-RADS v2 guidelines for multiparametric
prostate magnetic resonance imaging and recommendations for use”. In: Eur.
Urol. 69.1 (2016), pp. 41–49 (cit. on p. 41).

[83] S. Gupta. “Role of image-guided percutaneous needle biopsy in cancer stag-
ing”. In: Semin. Roentgenol. 41.2 (2006), pp. 78–90 (cit. on p. 41).

[84] J. Epstein et al. “The 2014 International Society of Urological Pathology
(ISUP) consensus conference on Gleason Grading of Prostatic Carcinoma:
definition of grading patterns and proposal for a new grading system”. In:
Am. J. Surg. Pathol. 40.2 (2016), pp. 244–252 (cit. on p. 41).

[85] F. Bladou et al. “Transrecatl ultrasound-guided biopsy for prostate cancer
detection: systematic and/or magnetic resonance imaging-targeted”. In: Can.
Urol. Assoc. J. 11.9 (2017), E330–E337 (cit. on p. 41).

244

https://www.ncbi.nlm.nih.gov/books/NBK402285/
https://www.ncbi.nlm.nih.gov/books/NBK402285/


[86] N. Mottet et al. “EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part
1: Screening, Diagnosis, and Local Treatment with Curative Intent”. In: Eur.
Urol. 71.4 (2017), pp. 618–629 (cit. on p. 41).

[87] M. Nishino. “Tumor response assessment for precision cancer therapy: re-
sponse evaluation criteria in solid tumors and beyond”. In: Am. Soc. Clin.
Oncol. Educ. Book 38 (2018), pp. 1019–1029 (cit. on p. 42).

[88] S. Grimaldi, M. Terroir, and C. Caramella. “Advances in oncological treat-
ment: limitations of RECIST 1.1 criteria”. In: Q. J. Nucl. Med. Mol. Im. 62.2
(2018), pp. 129–139 (cit. on p. 42).

[89] R. Abramson et al. “Pitfalls in RECIST data extraction for clinical trials:
beyond the basics”. In: Acad. Radiol. 22.6 (2015), pp. 779–786 (cit. on p. 43).

[90] G. Petralia et al. “CT perfusion in oncology: how to do it”. In: Cancer Imaging
10 (2010), pp. 8–19 (cit. on p. 45).

[91] D. Ippolito et al. “Dynamic computed tomography perfusion imaging: com-
plementary diagnostic tool in heapocellular carcinoma assessment from di-
agnosis to treatment follow-up”. In: Acad. Radiol. (2019), pp. 1–11. doi:
10.1016/j.acra.2019.02.010 (cit. on pp. 46, 47, 125).

[92] K. Miles and M. Griffiths. “Perfusion CT: a worthwhile enhancement?” In:
Br. J. Radiol. 76.904 (2003), pp. 220–231 (cit. on p. 46).

[93] A. Bevilacqua et al. “Automatic detection of misleading blood flow values in
CT perfusion studies of lung cancer”. In: Biomed. Signal Process. Control 26
(2016), pp. 109–116 (cit. on pp. 47, 59, 79, 127).

[94] T. S. Koh et al. “Dynamic contrast-enhanced CT imaging of hepatocellular
carcinoma in cirrhosis: feasibility of a prolonged dual-phase imaging protocol
with tracer kinetics modeling”. In: Eur. Radiol. 19 (2009), pp. 1184–1196 (cit.
on p. 47).

[95] A. Bevilacqua et al. “A novel approach for semi-quantitative assessment of
reliability of blood flow values in DCE-CT perfusion”. In: Biomed. Signal
Process. Control 31 (2017), pp. 257–264 (cit. on pp. 47, 55).

[96] M. Kapanen, J. Halavaara, and A. Häkkinen. “Comparison of liver perfu-
sion parameters studied with conventional extravascular and experimental
intravascular CT contrast agents”. In: Acad. Radiol. 14.8 (2009), pp. 951–958
(cit. on pp. 48, 51).

[97] T. Yeung et al. “Improving Quantitative CT Perfusion Parameter Measure-
ments Using Principal Component Analysis”. In: Acad. Radiol. 21.5 (2014),
pp. 624–632 (cit. on p. 48).

[98] A. Bevilacqua and S. Malavasi. “A novel algorithm to detect the baseline
value of a time signal in Dynamic Contrast Enhanced-Computed Tomog-
raphy”. In: Proceedings of the IEEE 16th International Symposium on Cir-

245

https://doi.org/10.1016/j.acra.2019.02.010


cuits and Systems (ISCAS). DOI : 10.1109/ISCAS.2018.8351281. IEEE. 2018,
pp. 1–4 (cit. on p. 48).

[99] C. Thng et al. “Perfusion magnetic resonance imaging of the liver”. In: World
J. Gastroenterol. 16.13 (2010), pp. 1598–1609 (cit. on p. 48).

[100] Y. Ohno et al. “Dynamic contrast-enhanced perfusion area detector CT for
non-small cell lung cancer patients: Influence of mathematical models on early
prediction capabilities for treatment response and recurrence after chemora-
diotherapy”. In: Eur. J. Radiol. 85 (2016), pp. 176–186 (cit. on p. 49).

[101] X. Yuan et al. “Lung cancer perfusion: can we measure pulmonary and
bronchial circulation simultaneously?” In: Eur. Radiol. 22 (2012), pp. 1665–
1671 (cit. on p. 49).

[102] E. Talakić et al. “CT perfusion imaging of the liver and the spleen in patients
with cirrhosis: Is there a correlation between perfusion and portal venous
hypertension?” In: Eur. Radiol. 27.10 (2017), pp. 4173–4180 (cit. on p. 50).

[103] X. Yuan et al. “Differentiation of malignant and benign pulmonary nodules
with first-pass dual-input perfusion CT”. In: Eur. Radiol. 23 (2013), pp. 2469–
2474 (cit. on p. 50).

[104] C. Ng et al. “Effect of dual vascular input functions on CT perfusion pa-
rameter values and reproducibility in Liver Tumors and Normal liver”. In: J.
Comput. Assist. Tomogr. 36.4 (2012), pp. 388–393 (cit. on p. 50).

[105] B. Chen and T. T.-F. Shih. “DCE-MRI in hepatocellular carcinoma-clinical
and therapeutic image biomarker”. In: World J. Gastroenterol. 20.12 (2014),
pp. 3125–3134 (cit. on p. 50).

[106] G. Petralia et al. “Perfusion computed tomography in patients with hepato-
cellular carcinoma treated with thalidomide: initial experience”. In: J. Com-
put. Assist. Tomogr. 35 (2011), pp. 195–201 (cit. on p. 50).

[107] S. Lee et al. “Dual‐input tracer kinetic modelling of dynamic contrast en-
hanced MRI in thoracic malignancies”. In: J. Appl. Clin. Med. Phys. 20.11
(2019), pp. 169–188 (cit. on p. 50).

[108] L. Faggioni, E. Neri, and C. Bartolozzi. “CT Perfusion of head and neck
tumors: how we do it”. In: AJR Am. J. Roentgenol. 194 (2010), pp. 62–69
(cit. on pp. 51–53).

[109] A. Razek et al. “CT Perfusion of head and neck cancer”. In: Eur. J. Radiol.
83 (2014), pp. 537–533 (cit. on pp. 51, 52).

[110] P. Sahbaee, P. Segars, D. Marin, et al. “Determination of contrast media
administration to achieve a targeted contrast enhancement in computed to-
mography”. In: J. Med. Imaging 3.1 (2016), p. 013501 (cit. on p. 51).

[111] K. Bae. “Intravenous contrast medium administration and scan timing at CT:
consideration and approaches”. In: Radiology 256.1 (2010), pp. 32–62 (cit. on
p. 51).

246



[112] B. Romain et al. “Parameter estimation of perfusion models in dynamic
contrast-enhanced imaging: a unified framework for model comparison”. In:
Med. Image Anal. 35 (2017), pp. 360–374 (cit. on pp. 54, 79).

[113] M. Ingrisch and S. Sourbron. “Tracer-kinetic modeling of dynamic contrast-
enhanced MRI and CT: a primer”. In: J. Pharmacokinet. Pharmacodyn. 40
(2013), pp. 281–300 (cit. on pp. 55, 68, 71).

[114] A. Fieselmann et al. “Deconvolution-based CT and MR brain perfusion mea-
surement: theoretical model revisited and practical implementation details”.
In: Int. J. Biomed. Imaging 2011 (2011), pp. 1–20 (cit. on pp. 55, 75).

[115] T. Koh et al. “Assessment of tumor blood flow distribution by dynamic
contrast-enhanced CT”. In: IEEE Trans. Med. Imaging 32.8 (2013), pp. 1504–
1514 (cit. on p. 55).

[116] A. Akhbardeh et al. “A multi-model framework to estimate perfusion pa-
rameters using contrast-enhanced ultrasound imaging”. In: Med. Phys. 46.2
(2018), pp. 590–600 (cit. on pp. 55, 57).

[117] B. Bassingthwaighte, F. Ackerman, and E. Wood. “Application of the Lagged
Normal Density Curve as a Model for Arterial Dilution Curve”. In: Circ. Res.
18.4 (1966), pp. 398–415 (cit. on p. 56).

[118] M. Bindschadler et al. “Comparison of blood flow models and acquisitions for
quantitative myocardial perfusion estimation from dynamic CT”. In: Phys.
Med. Biol. 59 (2014), pp. 1533–1556 (cit. on p. 57).

[119] S. Goutelle et al. “The Hill equation: a review of its capabilities in pharma-
cological modelling”. In: Fundam. Clin. Pharmacol. 22 (2008), pp. 633–648
(cit. on p. 58).

[120] M. Mischi, J. den Boer, and H. Korsten. “On the physical and stochastic
representation of an indicator dilution curve as a gamma variate”. In: Physiol.
Meas. 29 (2008), pp. 281–294 (cit. on p. 60).

[121] M. Wagner et al. “A model based algorithm for perfusion estimation in in-
terventional C-arm CT systems”. In: Med. Phys. 40.3 (2013), p. 031916. doi:
10.1118/1.4790467 (cit. on p. 60).

[122] K. Scherer et al. “Dynamic quantitative iodine myocardial perfusion imaging
with dual-layer CT using a porcine model”. In: Sci. Rep. 9 (2019), p. 16046.
doi: 10.1038/s41598-019-52458-1 (cit. on p. 60).

[123] T. Behrenbeck et al. “Early changes in myocardial microcirculation in asymp-
tomatic hypercholesterolemic subjects: as detected by perfusion CT”. In: Ann.
Biomed. Eng. 42.3 (2014), pp. 515–525 (cit. on p. 60).

[124] A. Gill et al. “A semi-automatic method for the extraction of the portal
venous input function in quantitative dynamic contrast enhanced CT of the
liver”. In: Br. J. Radiol. 90.20160875 (2017) (cit. on p. 60).

247

https://doi.org/10.1118/1.4790467
https://doi.org/10.1038/s41598-019-52458-1


[125] M. Madsen. “A simplified formulation of the gamma variate function”. In:
Phys. Med. Biol. 37.7 (1992), pp. 1597–1600 (cit. on p. 60).

[126] R. Davenport. “The derivation of the gamma-variate relationship for tracer
dilution curves”. In: J. Nucl. Med. 24.10 (1983), pp. 945–948 (cit. on p. 60).

[127] M. Visscher and J. Johnson. “The Fick principle: analysis of potential errors
in its conventional application”. In: J. Appl. Physiol. 5.10 (1953), pp. 635–638
(cit. on p. 64).

[128] K. A. Miles et al. “Application of CT in the investigation of angiogenesis in
oncology”. In: Acad. Radiol. 7 (2000), pp. 840–850 (cit. on p. 65).

[129] T. Kanda et al. “CT hepatic perfusion measurement: comparison of three
analytic methods?” In: Eur. J. Radiol. 81.9 (2012), pp. 2075–2079 (cit. on
p. 66).

[130] D. J. Kovač et al. “CT perfusion and diffusion-weighted MR imaging of pan-
creatic adenocarcinoma: can we predict tumor grade using functional param-
eters?” In: Acta Radiol. 60.9 (2019), pp. 1065–1073 (cit. on pp. 67, 149).

[131] G. Brix et al. “Estimation of tissue perfusion by dynamic contrast-enhanced
imaging: simulation-based evaluation of the steepest slope method”. In: Eur.
Radiol. 20.9 (2010), pp. 2166–2175 (cit. on p. 67).

[132] S. Kaufman et al. “Characterization of hepatocellular carcinoma (HCC) le-
sions using a novel CT-based volume perfusion (VPCT) technique.” In: Eur.
J. Radiol. 84 (2015), pp. 1029–1035 (cit. on pp. 67, 149, 150).

[133] R. Materne et al. “Non-invasive quantification of liver perfusion with dynamic
computed tomography and a dual-input one-compartmental model”. In: Clin.
Sci. 99.6 (2000), pp. 517–525 (cit. on p. 67).

[134] K. S. Lawrence and T. Lee. “An adiabatic approximation to the tissue ho-
mogeneity model for water exchange in the brain: I. Theoretical derivation”.
In: J. Cereb. Blood Flow Metab. 18.12 (1998), pp. 1365–1377 (cit. on p. 70).

[135] L. D. Cheong et al. “Functional Imaging: Dynamic Contrast-Enhanced CT
using a Distributed-Parameter physiologic model for accessing stroke and
intracranial tumor”. In: Proceedings of IEEE Eng Med Biol Soc. Vol. 2006.
10.1109/IEMBS.2005.1616402. IEEE. 2005, pp. 294–297 (cit. on p. 70).

[136] H. Chen et al. “Extended graphical model for analysis of dynamic contrast-
enhanced MRI”. In: Magn. Reson. Med. 66.3 (2011), pp. 868–878 (cit. on
p. 71).

[137] T. Ichihara et al. “Quantitative analysis of first-pass contrast-enhanced my-
ocardial perfusion MRI using a Patlak plot method and blood saturation
correction”. In: Magn. Reson. Med. 62.2 (2009), pp. 373–383 (cit. on p. 72).

[138] R. Gacía-Figueiras et al. “CT Perfusion in oncologic imaging: a useful tool?”
In: AJR Am. J. Roentgenol. 200 (2013), pp. 8–19 (cit. on p. 72).

248



[139] P. Meier and K. L. Zierlier. “One the theory of the indicator-dilution method
for measurements of blood flow and volume”. In: J. Appl. Physiol. 6.12 (1954),
pp. 731–744 (cit. on p. 72).

[140] K. L. Zierler. “Equations for measuring blood flow by external monitoring of
radio isotopes”. In: Circ. Res. 16 (1965), pp. 309–321 (cit. on p. 73).

[141] P. Hansen. “Analysis of discrete ill-posed problems by means of the L-curve”.
In: SIAM Rev. 34.4 (1992), pp. 561–580 (cit. on p. 76).

[142] H.-J. Wittsack et al. “CT-perfusion imaging of the human brain: advanced de-
convolution analysis using circulant singular value decomposition”. In: Com-
put. Med. Imag. Grap. 32 (2008), pp. 67–77 (cit. on p. 76).

[143] V. S. Kadimesetty et al. “Convolutional neural network based robust denois-
ing of low-dose Computed Tomography perfusion maps”. In: TRPMS (2018).
DOI = 10.1109/TRPMS.2018.2860788 (cit. on p. 76).

[144] M. Pizzolato, T. Boutlelier, and R. Deriche. “Perfusion deconvolution in
DSC-MRI with dispersion-compliant bases”. In: Med. Image Anal. 36 (2017),
pp. 197–215 (cit. on p. 77).

[145] L. He et al. “A spatio-temporal deconvolution method to improve perfusion
CT quantification”. In: TMI 29.5 (2010), pp. 1182–1191 (cit. on p. 77).

[146] L. Antonelli et al. “Integrating imaging and omics data: a review”. In: Biomed.
Signal Process. Control 52 (2019), pp. 264–280 (cit. on p. 78).

[147] B. Bevilacqua, S. Malavasi, and V. Vilgrain. “Liver CT perfusion: which
is the relevant delay that reduces radiation dose and maintains diagnostic
accuracy?” In: Eur. Radiol. 29.12 (2019), pp. 6650–6658 (cit. on p. 78).

[148] M. Bogowicz et al. “Perfusion CT radiomics as potential prognostic biomarker
in head and neck squamous cell carcinoma”. In: Acta Oncol. (2019), pp. 1–6.
doi: 10.1080/0284186X.2019.1629013 (cit. on p. 78).

[149] C. Huang et al. “Diagnostic performance of perfusion computed tomography
for differentiating lung cancer from benign lesions: a meta analysis”. In: Med.
Sci. Monit. 25 (2019), pp. 3485–3494 (cit. on p. 78).

[150] D. H. Lee et al. “Prediciton of treatment outcome of chemotherapy using per-
fusion computed tomography in patients with unresectable advanced gastric
cancer”. In: Korean J. Radiol. 20.4 (2019), pp. 589–598 (cit. on p. 78).

[151] A. Fan et al. “Early changes in CT perfusion parameters: primary renal carci-
noma versus metastases after treatment with targeted therapy”. In: Cancers
11.608 (2019), pp. 1–12. doi: 10.3390/cancers11050608 (cit. on pp. 78,
149).

[152] PROSPECT. Information Services Division Scotland. Cancer Clinical Trials
Service. From: http://www.isdscotland.org/Products-and-Services/
Cancer-Clinical-Trials-Service/PROSPeCT.asp. Accessed: 2013-10-03
(cit. on p. 78).

249

https://doi.org/10.1080/0284186X.2019.1629013
https://doi.org/10.3390/cancers11050608
http://www.isdscotland.org/Products-and-Services/Cancer-Clinical-Trials-Service/PROSPeCT.asp
http://www.isdscotland.org/Products-and-Services/Cancer-Clinical-Trials-Service/PROSPeCT.asp


[153] L. L. Chu, R. J. Knebel, A. D. Shay, et al. “CT perfusion imaging of lung
cancer: benefit of motion correction for blood flow estimates”. In: Eur. Radiol.
28 (2018), pp. 5069–5075 (cit. on p. 78).

[154] J. Li et al. “Influence of tube voltage, tube current and newer iterative recon-
struction algorithms in CT perfusion imaging in rabbit liver VX2 tumors”.
In: Diagn. Interv. Radiol. 26 (2017), pp. 264–270 (cit. on p. 78).

[155] E. Bretas et al. “Is liver perfusion CT reproducible? A study on intra- and
interobserver agreement of normal hepatic haemodynamic parameters ob-
tained with two different software packages”. In: Br. J. Radiol. 90.1078 (2017),
p. 20170214. doi: 10.1259/bjr.20170214 (cit. on p. 78).

[156] S Bouix et al. “On evaluating brain tissue classifiers without a ground truth”.
In: NeuroImage 36 (2012), pp. 1207–1224 (cit. on p. 79).

[157] T. S. Koh, Q. S. Ng, C. H. Thng, et al. “Primary colorectal cancer: use of
kinetic modeling of dynamic contrast-enhanced CT data to predict clinical
outcome”. In: Radiology 267.1 (2013), pp. 145–154 (cit. on p. 79).

[158] P. Lambin et al. “Radiomics: extracting more information from medical im-
ages using advanced feature analysis”. In: Eur J Cancer 48.4 (2012), pp. 441–
446 (cit. on pp. 82, 97).

[159] A. Rajkomar, J. Dean, and I. Kohane. “Machine learning in medicine”. In:
N. Engl. J. Med. 380 (2019), pp. 1347–1358 (cit. on pp. 82, 89).

[160] G. Carleo et al. “Machine learning and the physical sciences”. In: Rev. Mod.
Phys. 91.4 (2019), 045002(39) (cit. on p. 83).

[161] S. Theodoridis and K. Koutroumbas. Pattern recognition. 2nd edition. Else-
vier, 2009. Chap. 5 (cit. on pp. 83, 85, 86, 88, 92, 107, 108, 116, 194).

[162] A. Singh, N. Thakur, and A. Sharma. “An evaluation of filter and wrapper
methods for feature selection in categorical clustering”. In: Proceedings of the
6th International Symposium on Intelligent Data Analysis (IDA 2005). 2005,
pp. 440–451 (cit. on p. 86).

[163] R. Duda, P. Hart, and D. Stork. Pattern classification. 2nd edition. Wiley,
1997. Chap. 2 (cit. on p. 86).

[164] C. Bishop. Pattern recognition and machine learning. Springer, 2006. Chap. 3
(cit. on pp. 86, 110, 116).

[165] I. Maglogiannis et al. Emerging artificial intelligence applications in com-
puter engineering: real word AI systems with applications in eHealth, HCI,
Information Retrieval and Pervasive Technologies. IOS Press, 2007. Chap. 1
(cit. on pp. 87, 88).

[166] A. Singh, N. Thakur, and A. Sharma. “A review of supervised machine learn-
ing algorithms”. In: Proceedings of the 3rd International Conference on Com-
puting for Sustainable Global Development (INDIACom). IEEE. 2016 (cit. on
p. 87).

250

https://doi.org/10.1259/bjr.20170214


[167] J. Ding, V. Tarokh, and Y. Yang. “Model selection techniques. An overview”.
In: IEEE Signal Process. Mag. 35.6 (2018), pp. 16–34 (cit. on p. 89).

[168] J. Zar. Biostatistical analysis. 5th edition. Pearson, 2009. Chap. 6 (cit. on
pp. 90–92).

[169] T. Fawcett. “An introduction to ROC analysis”. In: Pattern Recognit. Lett.
27 (2006), pp. 861–874 (cit. on p. 94).

[170] D. Mackin et al. “Effect of tube current on computed tomography radiomic
features”. In: Scientific Reports 8 (2018), pp. 2354–2363 (cit. on pp. 97, 119,
170).

[171] R. Da-Ano, D. Visvikis, and M. Hatt. “Harmonization strategies for multicen-
ter radiomics investigation”. In: Phys. Med. Biol. (2020). doi: 10.1088/1361-
6560/aba798 (cit. on pp. 97, 98).

[172] P. Mukherjee et al. “CT-based radiomic signatures for predicting histopatho-
logic features in head and neck squamous cell carcinoma”. In: Radiology: Imag-
ing cancer 2.3 (2020). doi: 10.1148/rycan.2020190039 (cit. on p. 97).

[173] G. Wu et al. “Diagnosis of invasive lung adenocarcinoma based on chest
CT radiomic features of part-solid pulmonary nodules”. In: Radiology (2020),
pp. 1–8. doi: 10.1148/radiol.2020192431 (cit. on pp. 97, 100).

[174] D. Leithner et al. “Radiomic signatures derived from diffusion-weighted imag-
ing for the assessment of breast cancer receptor status and molecular sub-
types”. In: Mol. Imaging Biol. 22.2 (2020), pp. 453–461 (cit. on p. 97).

[175] L. Gong et al. “Noninvasive prediction of high‐grade prostate cancer via bi-
parametric MRI radiomics”. In: J. Magn. Res. Imaging (2020). doi: 10.1002/
jmri.27132 (cit. on p. 97).

[176] S. Hectors et al. “MRI radiomics features predict immuno-oncological charac-
teristics of hepatocellular carcinoma”. In: Eur. Radiol. 30.7 (2020), pp. 3759–
3769 (cit. on p. 97).

[177] G. Cook et al. “Challenges and promises of PET radiomics”. In: Int. J. Radiat.
Oncol. Biol. Phys. 102.4 (2018), pp. 1083–1089 (cit. on p. 97).

[178] Z. Liu et al. “The applications of radiomics in precision diagnosis and treat-
ment of oncology: opportunities and challenges”. In: Theranostics 9.5 (2019),
pp. 1303–1322 (cit. on pp. 97, 98).

[179] M. Elter and A. Horsch. “CADx of mammographic masses and clustered
microcalcifications: a review”. In: Med. Phys. 36.6 (2009), pp. 2052–2068 (cit.
on p. 98).

[180] Y. Tan, L. Schwartz, and B. Zhao. “Segmentation of lung lesions on CT scans
using watershed, active contours, and Markov random field”. In: Med. Phys.
40.4 (2013), p. 043502. doi: 10.1118/1.4793409 (cit. on p. 98).

[181] C. Parmar et al. “Robust radiomics feature quantification using semiauto-
matic volumetric segmentation”. In: PLoS One 9.7 (2014), e102107. doi:

251

https://doi.org/10.1088/1361-6560/aba798
https://doi.org/10.1088/1361-6560/aba798
https://doi.org/10.1148/rycan.2020190039
https://doi.org/10.1148/radiol.2020192431
https://doi.org/10.1002/jmri.27132
https://doi.org/10.1002/jmri.27132
https://doi.org/10.1118/1.4793409


https://doi.org/10.1371/journal.pone.0102107 (cit. on pp. 98, 119,
174).

[182] C. Chowdhary and D. Acharjya. “Segmentation and feature extraction in
medical imaging: a systematic review”. In: Procedia Comput. Sci. 167 (2020),
pp. 26–36 (cit. on p. 98).

[183] A. Zwanenburg, M. Valliéres, M. Abdalah, et al. “The image biomarker
standardization initiative: standardized quantitative radiomics for high-
throughput image-based phenotyping”. In: Radiology 295 (2020), pp. 328–338
(cit. on pp. 99, 100, 103, 119, 170, 174, 177).

[184] R. Haralick, K. Shanmugam, and I. Dinstein. “Texture features for image
classification”. In: IEEE Trans. Syst., Man, Cybern. B. Cybern. 3 (1973),
pp. 610–621 (cit. on pp. 99, 101, 102).

[185] M. Galloway. “Texture analysis using gray level run lengths”. In: Comput.
Gr. Image Process. 4 (1975), pp. 172–179 (cit. on pp. 99, 104).

[186] M. Soufi, H. Arimura, and N. Nagami. “Identification of optimal mother
wavelets in survival prediction of lung cancer patients using wavelet decom-
position based radiomic features”. In: Med. Phys. 45.11 (2018), pp. 5116–5128
(cit. on pp. 99, 104–106).

[187] D. Patiño, A. Ceballos-Arroyo, J. Rodriguez-Rodriguez, et al. “Melanoma
detection on dermoscopic images using superpixels segmentation and shape-
based features”. In: Proceedings of the 15th International Symposium on Med-
ical Information Processing and Analysis. Vol. 11330. SIPAIM. 2020 (cit. on
p. 99).

[188] R. Javed, M. Rahim, T. Saba, et al. “A comparative study of features selection
for skin lesion detection from dermoscopic images”. In: Netw. Model. Anal.
Health Inform. Bioinform. 9 (2020). doi: 10.1007/s13721- 019- 0209- 1
(cit. on p. 99).

[189] W. Lorensen and H. Cline. “Marching cubes: a high resolution 3D surface con-
struction algorithm”. In: Proceedings of the 14th annual conference on Com-
puter graphics and interactive techniques. August 1987. 10.1145/37402.37422.
SIGGRAPH. 1987, pp. 163–169 (cit. on p. 100).

[190] M. Kolossváry et al. “Cardiac computed tomography radiomics. A compren-
sive review on radiomic techniques”. In: J. Thorac. Imaging (2017). doi:
10.1097/RTI.0000000000000268 (cit. on pp. 101, 103, 105).

[191] A. Traverso, L. Wee, A. Dekker, et al. “Repeatability and reproducibility
of radiomic features: a systematic review”. In: Int. J. Radiat 102 (2018),
pp. 1143–1159 (cit. on pp. 101, 173, 180).

[192] J. Foy et al. “Variation in algorithm implementation across radiomics soft-
ware”. In: J. Med. Imaging 5.4 (2018), p. 044505. doi: 10.1117/1.JMI.5.4.
044505 (cit. on pp. 101, 103, 120).

252

https://doi.org/https://doi.org/10.1371/journal.pone.0102107
https://doi.org/10.1007/s13721-019-0209-1
https://doi.org/10.1097/RTI.0000000000000268
https://doi.org/10.1117/1.JMI.5.4.044505
https://doi.org/10.1117/1.JMI.5.4.044505


[193] B. Zhao et al. “Reproducibility of radiomics for deciphering tumor phenotype
with imaging”. In: Sci. Rep. 6 (2018), p. 23428. doi: 10.1038/srep23428 (cit.
on pp. 103, 104, 106).

[194] S. Livens and G. V. de Wouwer. “Wavelets for texture analysis: an overview.”
In: Proceedings of the 6th international conference on Image Processing and
its Applications. 10.1049/cp:19970958. IPA 1997. 1997 (cit. on p. 105).

[195] A. Chaddad, P. Daniel, and T. Niazi. “Radiomics evaluation of histological
heterogeneity using multiscale textures derived from 3D wavelet transofrma-
tion of multispectral images”. In: Front. Oncol. 8.96 (2018). doi: 10.3389/
fonc.2018.00096 (cit. on pp. 106, 199).

[196] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learn-
ing. 2nd edition. Springer, 2001. Chap. 3 (cit. on pp. 109, 111).

[197] J. Nalepa and M. Kawulok. “Selecting training sets for support vector ma-
chines: a review”. In: Artif. Intell. Rev. 52 (2019), pp. 857–900 (cit. on p. 112).

[198] A. Vabalas et al. “Machine learning algorithm validation with a limited sam-
ple size”. In: PLoS One 14.11 (2019), e0224365. doi: 10.1371/journal.
pone.0224365 (cit. on p. 119).

[199] F. Orlhac et al. “Validation of a method to compensate multicenter effects
affecting CT radiomics”. In: Radiology 291 (2019), pp. 53–59 (cit. on p. 119).

[200] M. Shafiq-ul-Hassan, G. Zhang, and K. Latifi. “Intrinsic dependencies of CT
radiomic features on voxel size and number of gray levels”. In: Med. Phys. 44
(2017), pp. 1050–1062 (cit. on pp. 119, 173).

[201] Y. Balagurunathan, V. Kumar, Y. Gu, et al. “Test-retest reproducibility anal-
ysis of lung CT image features”. In: J. Digit. Imaging 27 (2014), pp. 805–823
(cit. on p. 119).

[202] P. Hu, J. Wang, H. Zhong, et al. “Reproducibility with repeat CT in radiomics
study for rectal cancer”. In: Oncotarget 7 (2016), pp. 71440–71446 (cit. on
pp. 119, 174).

[203] S. Sanduleanu et al. “Tracking tumor biology with radiomics: A systematic
review utilizing a radiomics quality score”. In: Radiother. Oncol. 127.3 (2018),
pp. 349–360 (cit. on p. 120).

[204] Q. Li et al. “A fully-automatic multiparametric radiomics model: towards re-
producible and prognostic imaging signature for prediction of overall survival
in glioblastoma multiforme”. In: Sci. Rep. 7 (2017), p. 1433. doi: 10.1038/
s41598-017-14753-7 (cit. on p. 120).

[205] C. Kuhl and D. Truhm. “The long route to standardized radiomics: unraveling
the knot from the end”. In: Radiology 295 (2020), pp. 339–341 (cit. on p. 120).

[206] E. Klotz et al. “Technical prerequisites and imaging protocols for CT per-
fusion imaging in oncology”. In: Eur. J. Radiol. 84 (2015), pp. 2359–2367
(cit. on p. 122).

253

https://doi.org/10.1038/srep23428
https://doi.org/10.3389/fonc.2018.00096
https://doi.org/10.3389/fonc.2018.00096
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1371/journal.pone.0224365
https://doi.org/10.1038/s41598-017-14753-7
https://doi.org/10.1038/s41598-017-14753-7


[207] A.-A. Konstas et al. “Theoretic basis and technical implementations of CT
perfusion in acute ischemic stroke, Part 2: technical implementations”. In:
Am. J. Neuroradiol. 30 (2009), pp. 885–892 (cit. on p. 125).

[208] A. Bevilacqua et al. “Quantitative Assessment of Effects of Motion Compen-
sation for Liver and Lung Tumors in CT Perfusion”. In: Acad. Radiol. 21.11
(2014), pp. 1416–1426 (cit. on p. 127).

[209] S. Malavasi et al. “The effects of baseline length in Computed Tomography
perfusion of liver”. In: Biomed. Signal Process. Control 62.102135 (2020). doi:
10.1016/j.bspc.2020.102135 (cit. on p. 127).

[210] C. de Boor. A practical guide to splines (Revised edition). Vol. 27. Springer-
Verlag New York, 2001, pp. 207–214 (cit. on p. 127).

[211] J. Lee. “Robust smoothing: smoothing parameter selection and applications
to fluorescence spectroscopy”. In: Comput. Stat. Data Anal. 54.12 (2010),
pp. 3131–3143 (cit. on p. 128).

[212] A. Forsgren, P. Gill, and M. Wright. “Interior Methods for Nonlinear Opti-
mization”. In: SIAM 44.4 (2002), pp. 525–597 (cit. on p. 128).

[213] K. Miles. “Measurement of tissue perfusion by dynamic computed tomogra-
phy”. In: Br. J. Radiol. 64.761 (1991), pp. 409–412 (cit. on p. 133).

[214] A. Djuric-Stefanovic et al. “Comparison between the deconvolution and max-
imum slope 64-MDCT perfusion analysis of the esophageal cancer: is conver-
sion possible?” In: Eur. J. Radiol. 82 (2013), pp. 1716–1723 (cit. on pp. 149,
150).

[215] W. van Elmpt et al. “Characterization of tumor heterogeneity using dynamic
contrast enhanced CT and FDG-PET in non-small cell lung cancer”. In: Ra-
diother. Oncol. 109 (2013), pp. 65–70 (cit. on pp. 149, 150).

[216] S. Schneeweiß et al. “CT-perfusion measurements in pancreatic carcinoma
with different kinetic models: is there a chance for tumour grading based on
functional parameters?” In: Cancer Imaging 16 (2016), pp. 43–50 (cit. on
pp. 149, 150).

[217] M. Kurucay, C. Kloth, S. Kaufmann, et al. “Multiparametric imaging for
detection and characterization of hepatocellular carcinoma using gadoxetic
acid-enhanced MRI and perfusion-CT: which parameters work best?” In:
Cancer Imaging 2017.17:19 (2017). doi: 10 . 1186 / s40644 - 017 - 0121 - 9
(cit. on p. 149).

[218] M. A. Fischer, H. P. Marquez, S. Gordic, et al. “Arterio-portal shints in the
cirrhotic liver: perfusion computed tomography for distinction of arterialized
pseudolesions from hepatocellular carcinoma”. In: Eur. Radiol. 27 (2017),
pp. 1074–1080 (cit. on pp. 149, 152).

[219] D. Tamandl, F. Waneck, W. Sieghart, et al. “Early response evaluation using
CT-perfusion one day after transarterial chemoembolization for HCC predicts

254

https://doi.org/10.1016/j.bspc.2020.102135
https://doi.org/10.1186/s40644-017-0121-9


treatment response and long-term disease control”. In: Eur. J. Radiol. 90
(2017), pp. 73–80 (cit. on p. 149).

[220] D. Deniffel et al. “Computed Tomography perfusion measurements in renal
lesions obtained by Bayesian estimation, advanced Singular-Value Decompo-
sition deconvolution, Maximum Slope, and Patlak models.” In: Invest. Ra-
diol. 00.00 (2018), pp. 1–9. doi: 10.1097/RLI.0000000000000477 (cit. on
pp. 149–151).

[221] S. Aslan, M. S. Nural, I. Camlidag, et al. “Efficacy of perfusion CT in dif-
ferentiating of pancreatic ductal adenocarcinoma from mass-forming chronic
pancreatitis and characterization of isoattenuating pancreatic lesions”. In:
Abdom. Radiol. (2018). doi: 10.1007/s00261-018-1776-9 (cit. on p. 149).

[222] S. Kaufmann, W. M. Thaiss, M. Schulze, et al. “Prognostic value of perfusion
CT in hepatocellular carcinoma treatment with sorafenib: comparison with
mRECIST in longitudinal follow-up”. In: Acta Radiol. 59.7 (2018), pp. 765–
772 (cit. on p. 149).

[223] M. Horger, P. Fallier-Becker, W. M. Thaiss, et al. “Is there a direct correla-
tion between microvascular wall structure and k-Trans values obtained from
perfusion CT measurements in lymphomas?” In: Acad. Radiol. (2018) (cit. on
p. 149).

[224] J. R. Mains, F. Donskov, E. M. Pedersen, et al. “Use of patient outcome end-
points to identify the best functional CT imaging parameters in metastatic
renal cell carcinoma patients”. In: Br. J. Radiol. 91.20160795 (2018) (cit. on
pp. 149, 150).

[225] S. Mulé, F. Pigneur, R. Quelever, et al. “Can dual-energy CT replace perfu-
sion CT for the functional evaluation of advanced hepatocellular carcinoma?”
In: Eur. Radiol. 28 (2018), pp. 1977–1985 (cit. on pp. 149, 152).

[226] Y. Nakamura, T. Kawaoka, T. Higaki, et al. “Hepatocellular carcinoma treated
with sorafenib: arterial tumour perfusion in dynamic contrast-enhanced CT
as early imaging biomarkers for survival”. In: Eur. J. Radiol. 98 (2018),
pp. 41–49 (cit. on p. 149).

[227] I. R. Andersen, K. Thorup, B. N. Jepsen, et al. “Dynamic ocntrast-enhanced
computed tomography in the treatment evaluation of patients with colorectal
liver metastases treated with ablation: a feasibility study”. In: Acta Radiol.
60.8 (2018), pp. 936–948. doi: 10.1177/0284185118806661 (cit. on p. 149).

[228] M. Wang et al. “Correlation study between dual source CT perfusion imaging
and the microvascular composition of solitary pulmonary nodules”. In: Lung
Cancer 130 (2019), pp. 115–120 (cit. on p. 149).

[229] R. Larue et al. “Quantitative radiomics studies for tissue characterization: a
review of technology and methodological procedures”. In: Br. J. Radiol. 90
(2017), p. 20160665 (cit. on p. 170).

255

https://doi.org/10.1097/RLI.0000000000000477
https://doi.org/10.1007/s00261-018-1776-9
https://doi.org/10.1177/0284185118806661


[230] M. Shafiq-ul-Hassan et al. “Voxel size and gray level normalization of CT
radiomic features in lung cancer”. In: Scientific Reports 8 (2018), p. 10545
(cit. on pp. 170, 173).

[231] I. Fotina et al. “Critical discussion of evaluation parameters for inter-observer
variability in target definition for radiation therapy”. In: Strahlentherapie
Onkol. 188 (2012), pp. 160–167 (cit. on p. 170).

[232] J. van Timmeren et al. “Test-retest data for radiomics feature stability anal-
ysis: generalizable or study-specific?” In: Tomography 2 (2016), pp. 361–365
(cit. on pp. 170, 176).

[233] K. Panetta, A. Samani, and S. Agaian. “Choosing the optimal spatial domain
measure of enhancement for mammogram images”. In: International Journal
of Biomedical Imaging (2014), Article ID 937849, 8 pages. doi: https://
doi.org/10.1155/2014/937849 (cit. on pp. 171, 173).

[234] A. Zwanenburg et al. “Assessing robustness of radiomic features by image
perturbation”. In: Scientific Reports 9 (2019), pp. 614–623 (cit. on pp. 172,
174, 175, 178).

[235] R. Song et al. “Heart Rate Estimation from Facial Videos Using a Spatiotem-
poral Representation with Convolutional Neural Networks”. In: IEEE Trans.
Instrum. Meas. (2020), pp. 1–1. doi: https://doi.org/10.1109/TIM.2020.
2984168 (cit. on p. 173).

[236] T. Moraes et al. “Medical image interpolation based on 3D Lanczos filter-
ing”. In: Comput. Methods Biomech. Biomed. Eng. Imaging. Vis. (2019). doi:
https://doi.org/10.1080/21681163.2019.1683469 (cit. on p. 173).

[237] K. Umehara, J. Ota, and T. Ishida. “Application of super-resolution con-
volutional neural network for enhancing image resolution in chest CT”. In:
Journal of Digital Imaging 31 (2018), pp. 441–450 (cit. on p. 173).

[238] G. Andria, F. Attivissimo, and A. M. L. Lanzolla. “A statistical approach
for MR and CT images comparison”. In: Measurement 46 (2013), pp. 57–65
(cit. on p. 173).

[239] H. Koyuncu and R. Ceylan. “Elimination of white Gaussian noise in arterial
phase CT images to bring adrenal tumours into the forefront”. In: Comput-
erized Medical Imaging and Graphics 65 (2018), pp. 46–57 (cit. on p. 173).

[240] M. Ikeda et al. “A method for estimating noise variance of CT image”. In:
Computerized Medical Imaging and Graphics 34 (2010), pp. 642–650 (cit. on
p. 173).

[241] V. Kovalev et al. “Three-dimensional texture analysis of MRI brain datasets”.
In: IEEE Transaction on medical imaging 20 (2001), pp. 424–433 (cit. on
p. 174).

256

https://doi.org/https://doi.org/10.1155/2014/937849
https://doi.org/https://doi.org/10.1155/2014/937849
https://doi.org/https://doi.org/10.1109/TIM.2020.2984168
https://doi.org/https://doi.org/10.1109/TIM.2020.2984168
https://doi.org/https://doi.org/10.1080/21681163.2019.1683469


[242] H. Jin and J. Kim. “Evaluation of feature robustness against technical param-
eters in CT radiomics: verification of phantom study with patient dataset”.
In: J. Signal Process. Sys. 92 (2020), pp. 277–287 (cit. on p. 174).

[243] J. Tan et al. “Sharpness preserved sinogram synthesis using convolutional
neural network for sparse-view CT imaging”. In: Proc. SPIE 10949, Medi-
cal Imaging 2019: Image processing, 109490E (15 March 2019) (2019). doi:
https://doi.org/10.1117/12.2512894 (cit. on p. 177).

[244] P. Whybra et al. “Assessing radiomic feature robustness to interpolation in
18F-FGD PET imaging”. In: Scientific Reports 9 (2019), pp. 9649–9659 (cit.
on p. 177).

[245] Y. Liu et al. “Tumor heterogeneity assessed by texture analysis on contrast-
enhanced CT in lung adenocarcinoma: association with pathologic grade”. In:
Oncotarget 8 (2017), pp. 53664–53674 (cit. on p. 182).

[246] F. Bray et al. “Global cancer statistics 2018: GLOBOCAN estimates of in-
cidence and mortality worldwide for 36 cancers in 185 countries”. In: CA
Cancer J. Clin. 68.6 (2018), pp. 394–424 (cit. on pp. 191, 198).

[247] P. Rawla, T. Sunkara, and A. Barsouk. “Epidemiology of colorectal cancer:
incidence, mortality, survival, and risk factors”. In: Gastroenterology Rev. 14.2
(2019), pp. 89–103 (cit. on p. 191).

[248] E. Lawson et al. “Advances in the management of rectal cancer”. In: Curr.
Prob. Surg. 56.11 (2019), p. 100648 (cit. on p. 191).

[249] M. Gersak et al. “Endoscopic ultrasound for the characterization and staging
of rectal cancer. Current state of the method. Technological advances and
perspectives”. In: Med. Ultrason. 17.2 (2019), pp. 227–234 (cit. on p. 191).

[250] R. Labianca et al. “Early colon cancer: ESMO Clinical Practice Guidelines for
diagnosis, treatment and follow-up”. In: Ann. Oncol. 24.6 (2013), pp. vi64–72
(cit. on p. 191).

[251] C. De Cecco et al. “Texture analysis as imaging biomarker of tumoral response
to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3-
T magnetic resonance”. In: Invest. Radiol. 50.4 (2015), pp. 239–245 (cit. on
p. 191).

[252] V. Giannini et al. “Predicting locally advanced rectal cancer response to
neoadjuvant therapy with 18F-FDG PET and MRI radiomics features”. In:
Eur. J. Nucl. Med. Mol. Imaging 46.4 (2019), pp. 878–888 (cit. on pp. 191,
198).

[253] J. Herman et al. “The quality-of-life effects of neoadjuvant chemoradiation
in locally advanced rectal cancer”. In: Int. J. Radiat. Oncol. Biol. Phys. 85.1
(2013), e15–9 (cit. on p. 192).

[254] R. Sauer et al. “Preoperative versus postoperative chemoradiotherapy for
rectal cancer”. In: N. Eng. J. Med. 351 (2004), pp. 1731–1740 (cit. on p. 192).

257

https://doi.org/https://doi.org/10.1117/12.2512894


[255] S. Edge and C. Compton. “The American Joint Committee on Cancer: the
7th edition of the AJCC Cancer Staging manual and the future of TNM”. In:
Ann. Surg. Oncol. 17 (2010), pp. 1471–1474 (cit. on p. 192).

[256] R. Betts-Tan et al. “Magnetic resonance imaging for clinical management of
rectal cancer: Updated recommendations from the 2016 European Society
of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting”.
In: Eur. Radiol. 28.4 (2018), pp. 1465–1475 (cit. on p. 193).

[257] M. Abramoff, P. Magalhaes, and S. Ram. “Image Processing with ImageJ”.
In: Biophotonics Int. 11.7 (2004), pp. 36–42 (cit. on p. 194).

[258] Z. Liu et al. “Radiomics Analysis for Evaluation of Pathological Complete
Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal
Cancer”. In: Clin. Cancer Res. 23.23 (2017), pp. 7253–7262 (cit. on p. 198).

[259] D. Cusumano et al. “Fractal-based radiomic approach to predict complete
pathological response after chemo-radiotherapy in rectal cancer”. In: Radiol.
Med. 123.4 (2018), pp. 286–295 (cit. on p. 198).

[260] Y. Li et al. “Predicting pathological complete response by comparing MRI-
based radiomics pre- and postneoadjuvant radiotherapy for locally advanced
rectal cancer”. In: Cancer Med. 8.17 (2019), pp. 7244–7252 (cit. on p. 198).

[261] Y. Cui et al. “Radiomics analysis of multiparametric MRI for prediction of
pathological complete response to neoadjuvant chemoradiotherapy in locally
advanced rectal cancer”. In: Eur. Radiol. 29.3 (2019), pp. 1211–1220 (cit. on
p. 198).

[262] X. Zhou et al. “Radiomics-Based pretherapeutic prediction of non-response
to neoadjuvant therapy in locally advanced rectal cancer”. In: Ann. Surg.
Oncol. 26.6 (2019), pp. 1676–1684 (cit. on p. 198).

[263] B. Petresce et al. “Pre-treatment T2-WI based radiomics features for predic-
tion of locally Advanced rectal cancer non-response to neoadjuvant chemora-
diotherapy: a preliminary study”. In: Cancer (Basel) 12.7 (2020), p. 1894 (cit.
on p. 198).

[264] I. Petkovska et al. “Clinical utility of radiomics at baseline rectal MRI to
predict complete response of rectal cancer after chemoradiation therapy”. In:
Abdom. Radiol. (NY) 45.11 (2020), pp. 3608–3617 (cit. on p. 198).

[265] T. McClintock et al. “Prostate cancer management costs vary by disease stage
at presentation”. In: Prostate Cancer Prostatic Dis. 23.4 (2020), pp. 564–566
(cit. on p. 199).

[266] F. Drost et al. “Can active surveillance reduce the harms of overdiagnosis
prostate cancer? A reflection of real life clinical practice in the PRIAS study”.
In: Transl. Androl. Urol. 7.1 (2018), pp. 98–105 (cit. on p. 199).

258



[267] M. Bjurlin et al. “Multiparametric MRI and targeted prostate biopsy: im-
provements in cancer detection, localization, and risk assessment”. In: Cent.
European J. Urol. 69 (2016), pp. 9–18 (cit. on p. 199).

[268] J. Epstein et al. “Upgrading and downgrading of prostate cancer from biopsy
to radical prostatectomy: incidence and predictive factors using the modified
Gleason grading system and factoring in tertiary grades”. In: Eur.Urol. 61.5
(2012), pp. 1019–1024 (cit. on p. 199).

[269] D. Fehr et al. “Automatic classification of prostate cancer Gleason scores
from multiparametric magnetic resonance images”. In: Proc. Natl. Acad. Sci.
USA 112.46 (2015), E6265–6273 (cit. on pp. 199, 211, 216).

[270] D. Rosario et al. “Short term outcomes of prostate biopsy in men tested for
cancer by prostate specific antigen: prospective evaluation within ProtecT
study”. In: BMJ 344 (2012), p. d7894. doi: 10.1136/bmj.d7894 (cit. on
pp. 199, 211).

[271] H. Ahmed et al. “Diagnostic accuracy of multi-parametric MRI and TRUS
biopsy in prostate cancer (PROMIS): a paired validating confirmatory study”.
In: Lancet 389.10071 (2017), pp. 815–822 (cit. on pp. 199, 214).

[272] A. Chatterjee et al. “Changes in Epithelium, Stroma, and Lumen Space cor-
relate more strongly with Gleason pattern and are stronger predictors of
prostate ADC changes than cellularity metrics”. In: Radiology 277.3 (2015),
pp. 751–762 (cit. on pp. 199, 216).

[273] S. Barbieri et al. “Differentiation of prostate cancer lesions with high and with
low Gleason score by diffusion-weighted MRI”. In: Eur. Radiol. 27.4 (2017),
pp. 1547–1555 (cit. on pp. 200, 211, 212, 215).

[274] A. Hiremath et al. “Test-retest repeatability of a deep learning architecture in
detecting and segmenting clinically significant prostate cancer on apparent
diffusion coefficient (ADC) maps”. In: Eur. Radiol. (2020). doi: 10.1007/
s00330-020-07065-4 (cit. on pp. 200, 211, 215).

[275] Y. Zhang et al. “Development of a novel, multi-parametric, MRI-based ra-
diomic nomogram for differentiating between clinically significant and in-
significant Prostate Cancer”. In: Front. Oncol. 10 (2020), p. 888 (cit. on
pp. 200, 211, 215).

[276] D. Bonekamp et al. “Radiomic machine learning for characterization of prostate
lesions with MRI: Comparison to ADC values”. In: AJR Am. J. Roentgenol.
289.1 (2018), pp. 128–137 (cit. on pp. 200, 211, 215, 216).

[277] S. Hurrel et al. “Optimized b-value selection for the discrimination of prostate
cancer grades, including the cribriform pattern, using diffusion weighted imag-
ing”. In: J Med Imaging (Bellingham) 5.1 (2018), p. 011004 (cit. on p. 207).

259

https://doi.org/10.1136/bmj.d7894
https://doi.org/10.1007/s00330-020-07065-4
https://doi.org/10.1007/s00330-020-07065-4


[278] A. Gibaldi et al. “Effects of guided random sampling of TCCs on blood flow
values in CT perfusion studies of lung tumors”. In: Acad. Radiol. 22.1 (2015),
pp. 58–69 (cit. on p. 207).

[279] M. Li, F. Chen, and J. Kou. “Candidate vectors selection for training sup-
port vector machines”. In: Proceedings of the 3rd international conference
on Natural Computation. 10.1109/ICNC.2007.292. ICNC 2007. 2007 (cit. on
p. 209).

[280] A. Schulman et al. “The Contemporary Role of Multiparametric Magnetic
Resonance Imaging in Active Surveillance for Prostate Cancer”. In: Curr.
Urol. Rep. 18.7 (2017), p. 52. doi: 10.1007/s11934-017-0699-2 (cit. on
p. 210).

[281] G. Cristel et al. “Can DCE-MRI reduce the number of PI-RADS v.2 false pos-
itive findings? Role of quantitative pharmacokinetic parameters in prostate
lesions characterization”. In: Eur. J. Radiol. 118 (2019), pp. 51–57 (cit. on
pp. 211, 215).

[282] X. Min et al. “MRI-based radiomics signature for discriminating between
clinically significant and insignificant prostate cancer: Cross-validation of a
machine learning method”. In: Eur. J. Radiol. 115 (2019), pp. 16–21 (cit. on
pp. 211, 215).

[283] A. Rosenkrantz et al. “Transition zone prostate cancer: revisiting the role
of multiparametric MRI at 3 T”. In: AJR Am. J. Roentgenol. 204.3 (2015),
W266–72 (cit. on pp. 212, 215, 216).

[284] G. Litjens et al. “Computer-extracted features can distinguish noncancerous
confounding disease from prostatic adenocarcinoma at multiparametric MR
Imaging”. In: Radiology 278.1 (2016), pp. 135–145 (cit. on p. 212).

[285] S. Loeb et al. “Overdiagnosis and overtreatment of prostate cancer”. In: Eur.
Urol. 65.6 (2014), pp. 1046–1055 (cit. on p. 214).

[286] M. Zhang et al. “Value of increasing biopsy cores per target with cognitive
MRI-targeted transrectal US prostate biopsy”. In: Radiology 291.1 (2016),
pp. 83–89 (cit. on p. 215).

[287] K. Grant et al. “Comparison of calculated and acquired high b value diffusion-
weighted imaging in prostate cancer”. In: Abdom. Imaging 40.3 (2015), pp. 578–
586 (cit. on p. 216).

260

https://doi.org/10.1007/s11934-017-0699-2


Acknowledgements

This work has been accomplished thanks to the contribution of many. Firstly,
I would like to thank both my PhD supervisor, Prof. Alessandro Bevilacqua, and
my co-supervisor, Prof. Mauro Ursino. I am really grateful to Prof. A. Bevilacqua
for placing his trust in me. I really appreciate the time he has devoted to me, the
day-by-day guidance he has given me, the scientific training he has delivered to me
and the way he helped me grow both as a professional and as a person.

I would also like to thank Prof. Valérie Vilgrain, leading the Dept. of Radiol-
ogy of Beaujon Hospital (Paris, FR), for involving me in the PIXEL and SARAH
projects, alongside Prof. Vicky Goh, leading the Dept. of Radiology of King’s Col-
lege (London, UK), whom I would like to thank for providing me with PROSPeCT
data. Prof. Evis Sala also has my gratitude for hosting me at the Radiogenomics
and Qauntitative Imaging Group of the Dept. of Radiology of the Addenbrooke’s
Hospital (Cambridge, UK), and Dr. Leonardo Rundo for building this connection.
My gratitude extends to Dr. Domenico Barone heading the Diagnostic Imaging Unit
of IRCCS-IRST (Meldola, IT), Prof. Giampaolo Gavelli, and Dr. Fabio Ferroni to
whom the CVG is tied by a consolidated cooperative relationship. I am thank-
ful for their proactiveness and precious suggestions. Furthermore, I am grateful to
Prof. Rita Golfieri leading the Dept. of Radiology of S.Orsola-Malpighi Hospital
(Bologna, IT) and her entire working team, in particular Dr. Francesca Coppola
and Dr. Silvia Lo Monaco. I thank all physicians of the team of Prof. R. Golfieri for
the enthusiasm with which they have welcomed our collaboration and encouraged
our research.

On a personal note, I am grateful to my parents, my sister, and Gianvito, not
only for their continuous support and their patience, but also for the enthusiasm
and joy which we have shared together celebrating my successes.

I am thankful to Barbara, Danila, and Loretta who have always been there for
me. And finally I thank Francesco, who has supported and encouraged me on both
my good and my bad days, continually turning the bad days into better ones.

261



262



THESIS END

Margherita Mottola

E-mail: margherita.mottola@unibo.it
Research group website: https://cvg.deis.unibo.it/

Personal website: https://www.unibo.it/sitoweb/margherita.mottola
(Curriculum Vitae available on the personal website)

Office address:
Via Toffano 2/2, 40125, Bologna, Italy

Home address:
Via Torleone 23, 40125, Bologna, Italy

https://cvg.deis.unibo.it/
https://www.unibo.it/sitoweb/margherita.mottola

	Frontespizio_0000832540_20210413

