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Introduction 1
The increased computational power, and possibility of storing safely and

rapidly vast amount of high-dimensional data lead to the production of huge

amounts of data and therefore the development of techniques for their analysis

became a central issue. During the last decades, researchers defined many ap-

proaches for data representation and classification, each tanking advantage of

different features of the data. Among these techniques, topological data analy-

sis and persistent homology represent flexible techniques, capable of adapting

to different data structures.

Originally—and still now in the most concrete applications—persistence was

structured considering two sides: data and representation, respectively. Data

can be of various origins, provided that the properties one needs to investigate

can be expressed in terms of birth and death. The representation side is actually

twofold. Indeed, one needs to define a persistence module, and its fingerprint,
i.e., either a persistence diagram or a barcode. A persistence module is a func-

tor from an indexing category (typically either ℕ, a finite subset of ℕ, or ℝ,

with their usual order) to FinVecK . Much attention has been recently devoted

to generalisations of persistent modules and their associated fingerprints, [1,

2]: accepting any preordered set as indexing category and an arbitrary cate-

gory as target gives huge freedom to the representation. Conditions on the

target category make definition and computation of persistence diagrams pos-

sible and effective (e.g., for stability issues). The usual limitation to homology

with coefficients in a field might be dropped, and torsion represented in a

generalised persistence diagram. The generalisation of the indexing category

makes it also possible to merge, somehow, data and their representation as

persistence modules: [1, Example 4.1] shows a case where data is the index-

ing category. Still, the great majority of applications follows this algorithmic

flow: first, data are mapped into a filtered topological space (often a simplicial

complex); then one computes persistent homology (on a field) on the filtered

topological space; finally, persistence diagrams are used for analysis, classifica-

tion, retrieval etc. The papers on which the present thesis relies, namely [3–5],

focus on the generalisation of thefirst part of the classical flowmentioned above

answering the question: “What can be represented by a persistence diagram?”.

The axiomatization task pursued in those papers consists in finding features
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of Persistent Betti Number functions that allow for the definition of persistence

diagrams, and make them the requirement in a very general definition. Can

this generalisation be connected to the one of [1]? Possibly. Can it be linked to

the generalisations of [1, 2] on the representation side of the classical process?

Hopefully, and this is already the spirit of [3].

We now examine in detail classical persistent homology. It is a topological

method that can be summarized in two steps: the construction of a sequence of

nested topological spaces, called filtration, and the analysis of how homology

groups change along this filtration. Given a space -, the filtration procedure

consists in the extraction of sublevel-sets of a filtering function 5 : - → ℝ. Some

data structures are already endowed with a filtering function, think about the

intensity of pixels in an image or the weights associated with the edges of a

graph. In other cases, it is necessary to explicitly define such functions, as for the

construction of filtered complexes on point cloud data, [6]. Homology groups

are topological invariants that can change along with the defined filtration. To

each homology class, it is possible to associate birth and death times, and its

lifetime is called persistence. For example, in the case of 0-th degree homology

classes are connected components. The birth and death times of a connected

component respectively correspond to the time of its first appearance and to

the time of itsmergingwith an older component. Various visualization systems

have been introduced for persistence homology, e.g. barcodes or persistence

diagrams [6, 7]. The latter is the most used and consists in the subset of ℝ2

composed by the diagonal and all the pairs (D, E) where D and E are the birth

and death times of a homology class respectively.

As shown in [3, 8–10], the approach just described presents some limita-

tions, principally caused by the categorical framework used. In the aforemen-

tioned procedure, the categorical framework can be summarized as follows:

a source category Top, a target category FinVeck and a homology functor

�: : Top → FinVeck. In [3] the authors provide a generalization of these

concepts, as reported in table 1.1. It is possible to notice that this generalized

persistence framework does not require auxiliary constructions as topological

spaces. This allows one to use directly the category towhich the data belongs as

source category, without any transformation. For example, in [11], the authors

presented many different ways to associate to a weighted graph a sequence

of simplicial complexes. In this generalized scenario, this step is not neces-

sary, and the persistence approach can be applied directly on the category of

weighted graphs WGraph. Moreover, it is possible to use functors different
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Classical framework Categorical framework

Topological spaces Source category C
Vector spaces Regular target category R
Dimension Rank function on R
Homology functor Arbitrary functor from C to R

Table 1.1: From the

classical to the cat-

egorical framework,

[3].

from homology, and to have different target categories. In [4] autors show how

it is possible to define a categorical persistence function on the category of

weakly directed posets, having the category Set as target category, and use

this to induce a categorical persistence function on other categories. In [4] the

authors reports some examples on the category of graphs, such as the analysis

of maximal clique communities or of maximal blocks.

The objective of this thesis is to understand how data analysis can benefit from

the generalised persistence approach defined in [3]. In chapter 2, we recall the

basic notions of category theory and the main theoretical results behind the

generalised persistence framework defined in [3].

In chapter 3 we study the category of graphs. After briefly recalling some

notation and concepts about graphs, we present how the category of graphs,

Grphs, can be used as a target category. Recalling that this category is a regular

category, we are left with the choice of a rank function. We provide some

examples of possible rank functions, although many of them fail in at least

one of the conditions required to be rank functions. Moreover, we analyse

how the framework defined in [4] applies to connectivity-related notions in

the case of directed graphs, also providing some examples highlighting the

differences between such notions. In the latter part of the chapter, we present

a study about how some features change as we assign different orientations to

the same graph.

In chapter 4we extend the notions introduced in [5] on graphs to the framework

of sets. We use the introduced notions to define a novel image operator that

enhance the signal intensity of the pixels near to a border. We provide some

examples of its effect on a test image, also showing its stability to salt and

pepper noise perturbations. Moreover, we use such an operator to define a

new pooling layer, which provides an efficient downsampling procedure. We

present some examples showing the performances of this new layer in terms of

accuracy against some state-of-the-art pooling layers on the image classification

task.
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In this chapter we recall some notions that will be useful in the remainder.

Many of the definitions and results are taken from [3, 4]. For further references

concerning category theory, see [12, 13].

2.1 Categories

Categories are very general and abstract structures, introduced in [14] with

the aim of building a language allowing to provide insight into similar struc-

tures through different areas of mathematics by formulating and investigating

these structures simultaneously with a high degree of generality and, through

functors, to move problems from one area of mathematics to another where

solutions may be more straightforward.

Definition 2.1.1 CategoryA category C consists of:

a collection of objects Obj(C);
II for each pair -,. of objects, a set Hom(-,.) of morphisms from - to .. Let

us denote a morphism 5 ∈ Hom(-,.) as 5 : - → .;
I for each triple of objects -,., / ∈ Obj(C) a binary operation ◦ :

HomC(-,.) ×HomC(., /) → HomC(-, /);
I for each object - an element 1- ∈ Hom(-, -) called the identity morphism;
I such that the following properties are satisfied:

• composition is associative: for each quadruple,, -,., / of objects, if
5 ∈ Hom(., /), 6 ∈ Hom(-,.) and ℎ ∈ Hom(,, -), then ( 5 ◦ 6) ◦
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ℎ = 5 ◦ (6 ◦ ℎ);
• composition satisfies the left and right unit laws: for each pair -,. of

objects, if 5 ∈ Hom(-,.), then 5 ◦ 1- = 5 = 1. ◦ 5 .

Definition 2.1.2Functor Consider two categories B,C. Then a functor � : B → C is a
mapping such that:

� associates to each - ∈ Obj(B) an object �(-) ∈ Obj(C)
II � associates to each morphism 5 : - → . in B a morphism �( 5 ) : �(-) →
�(.) in C in such a way that:

• � preserves identities, i.e. �(id-) = id�(-) for all - ∈ ObjC
• � preserves compositions, i.e. �(6 ◦ 5 ) = �(6) ◦ �( 5 ) for all morphisms
5 : - → ., 6 : . → / in B.

Given -,. ∈ Obj(B) we can define the mapping �-,. : MorphB(-,.) →
MorphC(�(-), �(.)). We will say that the functor � is faithful if all the �-,. are
injective, full if they are surjective and fully faithful if they are both injective and
surjective.

Category theory deals mostly with the properties of morphisms instead of

studying objects, as it possible to infer from definitions 2.1.1, 2.1.2. This be-

haviour reflects in the following definitions, where, differently from other

mathematical theories, properties are stated by looking at the relationship

between morphisms.

Definition 2.1.3Epimorphism Consider -,. ∈ Obj(C). 5 : - → . is an epimorphism if
given the following diagram

- . /
5 6

ℎ

if 6 ◦ 5 = ℎ ◦ 5 then 6 = ℎ.

Example 2.1.1 (Epimorphism) Let Set be the category whose objects are sets

and whose morphisms are functions between sets. Let -,. ∈ Obj(Set) and
5 : - → ., then 5 is an epimorphism if and only if it is surjective.

Definition 2.1.4Monomorphism Consider -,. ∈ Obj(C). 5 : - → . is a monomorphism if
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given the following diagram

/ - .
6

ℎ

5

if 5 ◦ 6 = 5 ◦ ℎ then 6 = ℎ.

Example 2.1.2 (Monomorphism) Let -,. ∈ Obj(Set) and 5 : - → ., then

5 is a monomorphism if and only if it is injective.

Definition 2.1.5 IsomorphismConsider-,. ∈ Obj(C). 5 : - → . is an isomorphism if given
the following diagram

- .
5

6

if 6 ◦ 5 = 1- then 5 ◦ 6 = 1. .

Example 2.1.3 (Isomorphism) Let -,. be sets and 5 : - → ., then 5 is

an isomorphism if and only if it is an isomorphism in the classical sense

(injective and surjective).

In many applications that follow, it will be essential to have a notion of subob-

jects of a particular object, e.g. subsets, subgroups, subspaces. Since we do not

want to deal directly with what is inside an object but work only with mor-

phisms, we will define subobjects as equivalence classes of monomorphisms,

[12].

Definition 2.1.6 SubobjectConsider a category C and two monomorphisms 5 : . → -,
6 : / → -. We will say that 5 ≤ 6 if 5 factors through 6, i.e. 5 = 6 ◦ 5 ′

for some 5 ′ : . → /. If both 5 ≤ 6 and 6 ≤ 5 we will write 5 ≡ 6 and this
defines an equivalence relation among monomorphisms with common codomain -.
The equivalence classes of ≡ are the subobjects of -.

Limits and colimits

In the remaining part of the chapter uniqueness will be always intended up to

isomorphisms.
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Definition 2.1.7 Let us consider a category C and a category I used for indexing
and called index category. We can define a diagram as a functor � : I→ C.

Definition 2.1.8Cone, cocone Given a diagram � : I→ C, a cone of � is a pair (�,#), where
� ∈ Obj(C) and # is a family of morphisms with #- : � → �(-) for - ∈ I, such
that for every morphism 5 : - → . in I, we have �( 5 ) ◦ #- = #. . An example of
cone is the notion of limit, see definition 2.1.9.

A cocone of � will dually be a pair object family of morphisms (�,#) with #- :

�(-) → � for - ∈ I, such that for every morphism 5 : - → . in I, we have
#. ◦�( 5 ) = #- . An example of cocone is the notion of colimit, see definition 2.1.10.

Definition 2.1.9Limit Consider a diagram � : I → C over C. A limit of � is a cone
(!, )) of � such that for every other cone (�,#) there exists a unique morphism
D : �

!−→ ! such that )- ◦ D = #- for all - in I.

�

!

�(-) �(.)

D#- #.

)- ).

�( 5 )

Definition 2.1.10Colimit Consider a diagram � : I→ C over C. A colimit of � is a cocone
(!, )) of � such that for every other cone (�,#) there exists a unique morphism
D : !

!−→ � such that D ◦ )- = #- for all - in I.

�(-) �(.)

!

�

�( 5 )

)-

#-

).

#.D

All the following definitions are obtained by considering limits and colimits of

some appropriate diagrams.
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Definition 2.1.11 Terminal objectAn object pt in a category C is called terminal if there exists a

unique morphism G
!−→ pt for any object G ∈ C. If it exists, the terminal object is

unique, up to unique isomorphism.

Example 2.1.4 (Terminal object) Let the category Top be the category whose

objects are topological spaces andwhosemorphisms are continuos functions.

Then, any point space pt is a terminal object in Top.

Definition 2.1.12 Initial objectAn object ∅ in a category C is initial if for any object G ∈ C

there exists a unique morphism ∅ !−→ G.

Example 2.1.5 (Initial object) The empty set is an initial object in Set.

Definition 2.1.13 Zero object,
pointed category

An object which is both initial and terminal is said zero object.
A category C equipped with a zero object is said pointed.

Example 2.1.6 (Zero object) LetGrpbe the categorywhose objects are groups

and whose morphisms are groups homomorphisms. Then any trivial group

1 is the zero object in Grp. Indeed 1 ↩→ � � �/� = 1, for every � ∈ Grp.
In the category of VecK , whose objects are vector spaces on the field K and

whose morphisms are K-linear maps between vector spaces, the zero object

is the 0-dimensional vector space.

Definition 2.1.14 ProductLet -,. be objects of a category C. The (binary) product of
- and . is a triplet (%,�- ,�.) composed by an object % and two morphisms
�- : % → - and �. : % → ., such that given (%′,�′

-
,�′H), we have a unique

morphism %′→ % that makes the following diagram commute:

%′

- % .

�′
-D

�′
.

�.�-

We denote the product - × ..

Definition 2.1.15 CoproductLet -,. be objects of a category C. The coproduct of - and .
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is a triplet (�, �- , �.) composed by an object � and two morphisms �- : - → �

and �. : . → �, such that given (�′, �′
-
, �′
.
), we have a unique morphism � → �′

that makes the following diagram commute:

�′

- � .

�′
-D

�′
.

�.�-

We denote the coproduct - q ..

Example 2.1.7 (Product and coproduct) Let -,. ∈ Obj(Set). The product

- × . is simply the cartesian product. The coproduct - q . is the disjoint

union of - and ..

Definition 2.1.16Equalizer Let -,. be objects of C and consider two morphisms -
5
−→ .,

-
6
−→ .. A pair object morphism (&, @) such that &

@
−→ - is an equalizer if

5 ◦ @ = 6 ◦ @. Moreover, the pair (&, @) must be universal, i.e. given another
equalizer (&′, @′), there exists a unique morphism &′

D−→ & such that the following
diagrams commutes.

& - .

&′

@ 5

6

@′
D

Thus, equalizers are unique up to isomorphisms. Moreover, every equalizer is a
monomorphism.

Example 2.1.8 (Equalizer) Let �, � ∈ Obj(Set) and 5 , 6 : � → �, then the

equalizer is

{0 ∈ � | 5 (0) = 6(0)}

Definition 2.1.17Coequalizer Let -,. be objects of C and consider two morphisms -
5
−→ .,

-
6
−→ .. A pair object morphism (&, @) such that .

@
−→ & is a coequalizer if

@ ◦ 5 = @ ◦ 6. Moreover, the pair (&, @) must be universal, i.e. given another
coequalizer (&′, @′), there exists a uniquemorphism&

D−→ &′ such that the following
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diagrams commutes.

- . &

&′

5

6

@

@′
D

Thus, coequalizers are unique up to isomorphisms. Moreover, every coequalizer is an
epimorphism.

Example 2.1.9 (Coequalizer) Let �, � ∈ Obj(Set) and 5 , 6 : � → �, then

the coequalizer is the quotient of � with ∼, such that 5 (G) ∼ 6(G) for every
G ∈ �.

Definition 2.1.18 Finitely
(co)complete
category

A category C is finitely complete if it has equalizers, a terminal
object and binary products. Analogously, a category C is finitely cocomplete if it has
coequalizers, an initial object and binary coproducts.

Definition 2.1.19 Let -,. and / be objects of a category C, and -
5
−→ /, .

6
−→ /

morphisms. A triplet (%, ?1, ?2), where % is an object and %
?1−→ -, %

?2−→ . are
two morphisms, is a pullback if the following diagram

% -

. /

?1

?2 5

6

commutes and, given another triplet (%′, ?′
1
, ?′

2
)wehave a uniquemorphism%′

D−→ %

that makes the following diagram commute:

%′

% -

. /

?′
1

?′
2

D

?1

?2 5

6

That is to say, the pullback is universal with respect to the diagram, and thus unique
up to isomorphism. We denote it - ×/ ..
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Example2.1.10 (Pullback)Pullback Given three sets-,. and/ and functions-
5
−→ /,

.
6
−→ /, the coproduct - ×/ . is the subset of the cartesian product:

- ×/ . = {(G, H) | G ∈ -, H ∈ . and 5 (G) = 6(H)}

Example 2.1.11 (Fiber)Fiber In the category of sets, let pt be the terminal object. Let

5 : - → . be a map between sets and H ∈ .. The fiber over H is 5 −1(H) ⊂ -
realised by the pullback

5 −1(H) -

pt .

5

Regular, Abelian and semisimple categories

In our investigation we will need to add some assumptions to the general

definition of category, in order to guarantee that objects can be factorized, and

in some cases, the existence of finite number of irreducible objects.

Definition 2.1.20Regular
epimorphism

An epimorphism that is the coequalizer of a parallel pair of
morphism.

Definition 2.1.21Regular category A category R is regular if the following conditions hold:

R is finitely complete.

1.2. Given -
5
−→ . a morphism and its pullback (%, ?1, ?2), then the coequalizer

of ?1 and ?2 exists.
3. Given the pullback

' -

/ .

6 5

if 5 is a regular epimorphism, so is 6.

Example 2.1.12 (Regular categories) The category Set with usual functions

between sets as morphisms and the category of groups Grp with group
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homomorphisms are regular categories.

We will now introduce some preliminary concepts to the definition of Abelian

category.

Kernels and cokernels Let C be a category and � : - → . a morphism. If

for every object / and morphisms 6, ℎ : / → -, we have �6 = �ℎ, then � is

said a (left) zero morphism. If C is pointed, i.e. it has a zero object 0, then given

two objects -,. there exists a unique zero morphism � : - → . given by the

composition - → 0→ ..

Definition 2.1.22 KernelLet C be a category with zero morphism � and 5 : - → . a
morphism. The kernel of 5 is defined as the equalizer of � and 5 .

Definition 2.1.23 CokernelLet C be a category with zero morphism � and 5 : - → . a
morphism. The cokernel of 5 is defined as the coequalizer of � and 5 .

Definition 2.1.24 Abelian categoryA category C is abelian if

it is pointed, i.e. C has a zero object;
1.2. has binary products and binary coproducts;
3. every morphism has kernel and cokernel;
4. each monomorphism is a kernel and each epimorphism is a cokernel.

In an Abelian category, the binary product and binary coproduct coincide

and are sometimes called biproduct. We will sometimes simply call it sum, in

analogy with the sum of vector spaces.

Remark 2.1.1 Every Abelian category is a regular category.

Definition 2.1.25 . Simple objectLet C be an Abelian category. An object - ∈ Obj(C) is simple
if its only subobjects are 0 and -.

Lemma 2.1.1 (Schur Lemma) Given (, (′ simple objects in an Abelian category,
morphisms from ( to (′ are either zero or invertible.

Definition 2.1.26 Semisimple cate-
gory

An Abelian category is semisimple if all its objects are semisim-
ple, i.e. each object can be written as a finite sum of simple objects.
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2.2 Rank-based persistence

Standard persistence theory is based on some fundamental steps. The first is

the construction, starting from the data, of a filtration of a topological space.

To this filtration, it is then associated a sequence of vector spaces through a

homology functor. Thedimension of the images of themappings between these

vector spaces describes how homology classes vary along with the filtration,

and this information is usually encoded in persistence diagrams. This theory

requires the use of topological spaces as source category, vector spaces as target

category and homology functor between them. Historically these restrictions

are natural because persistence theory was born from homology theory, but

they are not necessary, as proven in [3]. In the remainder the domain of the

functor used to build categorical persistence will be called source categorywhile

the codomain will be called target category.

In this section, wewill sketch the generalisation of persistence theory provided

in [3], to which we refer the reader for details. In this approach, persistence

functions are defined as the rank of the image of morphisms. For this reason,

a good notion of image is achieved by considering regular categories as target

categories. In a regular category, see definition 2.1.21, each morphism -
)
−→ .

can be factored as -
�−→→ /↩

�
−→., where � is a monomorphism and � is a regular

epimorphism. Thus the key ingredients of this formulation will be regular

categories endowed with rank functions.

Rank functions

We borrowed the following definitions and text from [3].

Definition 2.2.1Rank function,
ranked category

Let R be a regular category. Given a lower-bounded function
A : Obj(R) → ℤ, we say that A is a rank function if:

For any monomorphism � ↩→ �, A(�) ≤ A(�)
1.2. For any regular epimorphism �� �, A(�) ≥ A(�)
3. For any pullback square:

� �

� �

�1

�1 �2

�2
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where �1, �2 are monomorphisms and �1,�2 are regular epimorphisms, the
following inequality holds:

A(�) − A(�) ≥ A(�) − A(�)

We say that a rank function A is strict if the inequalities in conditions 1 and 2 are
strict unless the morphisms are invertible. If furthermore R has an initial object ∅
and A(∅) = 0, we say that A is 0-based. A ranked category (R, A) is simply a
regular category R equipped with a rank function A.

An important class of rank functions is the one of fiber-wise rank functions,

see Example 2.1.11.

Definition 2.2.2 Fiber-wise func-
tion

Given a regular category R with terminal object pt, we say that

a function A : Obj(R) → ℤ is fiber-wise if, for all regular epimorphism �
)
� �, we

have:
A(�) − A(�) =

∑
�∈Hom(pt,�)

(A(� ×�� pt) − A(pt)) (2.1)

where the � ×�
�
pt realizes the pullback:

� ×�
�
pt �

pt �

)

�

Proposition 2.2.1 Let R be a regular category with terminal object pt and A :

Obj(D) → ℤ a lower-bounded function such that:

1. For any monomorphism � ↩→ �, A(�) ≤ A(�)
2. For any regular epimorphism �� pt, A(�) ≥ A(pt)
3. A is fiber-wise

Then A defines a rank function on R.

Proposition 2.2.2 If a functor � : Q→ R preserves the image factorization, i.e. it
preserves monomorphisms and regular epimorphisms, and A is a rank function on
R, then A ◦ � : Obj(Q) → ℤ is a rank function on Q.

These conditions simplify as we move to the stronger notion of Abelian cate-

gory. There, indeed, to prove that a function is fiber-wise, it is enough to check
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that it satisfies the following condition.

Proposition 2.2.3 LetR be anAbelian category. Then A : Obj(R) → ℤ is fiber-wise
if and only if for all short exact sequence � ↩→ �� �, A(�)+ A(�) = A(�)+ A(0).

Also proving that a fiber-wise function is a rank function is much easier.

Proposition 2.2.4 Let R be an Abelian category. If A : Obj(R) → ℤ is fiber-wise
and for all � ∈ Obj(R), A(0) ≤ A(�) then A is a rank. Furthermore, if A(0) = A(�)
only if � is null then A is strict.

Example 2.2.1 Let C be an Abelian category. As in [15, Sect. 1] we say that an

object - in C has finite length if there exists a series of inclusions

0 ' -0 ↩→ -1 ↩→ · · · ↩→ -= ' -

where all quotients-8/-8−1 are simple. If such series exists, then ;4=6Cℎ(-) =
=. If in an Abelian category all objects have finite length, we say that the

category has finite length.

Proposition 2.2.5 Given C an Abelian category of finite length, the function

;4=6Cℎ : Obj(C) → ℤ

is a strict 0-based fiber-wise rank.

Categorical persistence

Given a functor # : C → R, between a category C and a regular category

R endowed with a rank function A, it might be useful to define a rank on C,

but this is not possible unless C is regular and the functor # preserves image

factorizations, see proposition 2.2.2. These assumptions are not satisfied in

usual scenarios. For this reason it is necessary to define categorical persistence
functions directly on the morphisms of C.

Definition2.2.3Categorical
persistence
function

LetD be a category.A lower-bounded function ? : Morph(D) →
ℤ is a categorical persistence function if, for all D1 → D2 → E1 → E2, the following
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inequalities hold:

?(D1 → E1) ≤ ?(D2 → E1) and ?(D2 → E2) ≤ ?(D2 → E1).
1.2. ?(D2 → E1) − ?(D1 → E1) ≥ ?(D2 → E2) − ?(D1 → E2).

Proposition 2.2.6 Given a functor � : C → D and a categorical persistence
function ? for D, ? ◦ � is a categorical persistence function for C.

Given a regular category R, we denote by 8< : Morph(R) → Obj(R) the map

associating to each morphism its image.

Proposition 2.2.7 Given a ranked category (R, A), A ◦ 8< defines a categorical
persistence function on R.

Proposition 2.2.8 Given a ranked category (R, A) and a functor � : C → R, the
function A ◦ 8< ◦ � : Morph(C) → ℤ is a categorical persistence function.

With the notion of categorical persistence function it is possible to give the

following definition of generalized persistence functions, see [5].

Definition 2.2.4 Indexed diagramAn (ℝ, ≤)-indexed diagram is any functor � from the category
(ℝ, ≤) to C. The (ℝ, ≤)-indexed diagram � is said to be monic if all morphisms
of its image are monomorphisms of C. (ℝ, ≤)-indexed diagrams form a category,
C(ℝ,≤).

The information provided by persistence can be visualised as persistence dia-

grams.

Definition 2.2.5 Multiplicity, cor-
nerpoint

Given D < E ∈ ℝ ∪ {−∞,+∞} we define the multiplicity
of D, E as the minimum of the following expression, over �D , �E disjoint connected
neighborhoods of D and E respectively:

?�(sup(�D), inf(�E)) − ?�(inf(�D), inf(�E))
−?�(sup(�D), sup(�E)) + ?�(inf(�D), sup(�E))

(2.2)

We denote this quantity by �(D, E). Whenever �(D, E) > 0 we say (D, E) is a cor-
nerpoint. By convention in this definition we consider ?�(D, E) = minG,H ?�(G, H)
whenever either D or E is not finite.
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Definition 2.2.6Persistence
diagram

The persistence diagram �� associated with the persistence func-
tion ?� is the multiset of its cornerpoints, along with all the diagonal points
{(D, D)|D ∈ ℝ≥0} with infinite (countable) multiplicity.

Given a persistence diagram �, the coordinates of a point (D, E) ∈ � with

D ≠ E correspond to the birth and death times of a certain feature. It is possible

to define a distance between persistence diagrams.

Definition 2.2.7Bottleneck
distance

Given persistence diagrams�, �′, let Γ be the set of all bĳections
between � and �′. We define the bottleneck distance as the real number

3(�, �′) = inf

�∈Γ
sup

?∈�
‖? − �(?)‖∞

.

Persistence through posets

In what follows we will restrict ourselves to filtrations, i.e. given a category C
we will work in the subcategory C< , where the only morphisms allowed are

monomorphisms.Monic persistence
function

In this framework we call a persistence function a categorical

persistence function (see definition 2.2.3) on the category (ℝ, ≤), while we call

a monic persistence function on C a categorical persistence function on C< .

A poset % isweakly directedWeakly directed if, whenever 0, 1 ∈ % have a lower bound, they also

have an upper bound. An element ? ∈ % upbeat (resp. downbeat)Upbeat, downbeat if the set of all

elements strictly higher (resp.lower) than ? has minimum (resp. maximum).

It is possible to consider the homotopy type of posets, [16], and moreover

determine if two posets have the same homotopy type. Following [17], we can

define the coreCore of a poset %, core(%), as the deformation retract of % that is

minimal. Since the deletion of upbeat and downbeat elements does not change

the homotopy type of %, the core of % can be obtained by removing the beat

points until none is left.

Theorem 2.2.9 Two finite posets are homotopy equivalent if and only if they have
isomorphic cores.



2.2 Rank-based persistence 19

Definition 2.2.8 Weakly directed
property

Let P ⊆ Obj(C)/' be a property preserved by isomorphisms.
We call (P the functor C< → Poset< that associates to each object in C the poset
of subobjects that respect the property P. We say that the property P is weakly

directed if, for all - ∈ Obj(C), (P(-) is a weakly directed poset.

Proposition 2.2.10 LetPbe a weakly directed property onObj(C). ThenP induces
a stable categorical persistence function on C< denoted as ?P.
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Many real-world problems can be formalized as graphs, i.e. as vertices con-

nected by edges. Think about the emails exchanged by colleagues or the spread

of information in a social network. In some contexts, it may be relevant to as-

sign a concept of strength to these edges, for example, associating a number,

or an orientation if the information flows only in one direction. In section 3.1

we review some of the basic notions of graph theory, in section 3.2 we provide

some examples of how categories of graphs can be endowed with rank func-

tions to obtain target categories. In section 3.3 we show through examples how

connectivity related weakly direceted properties work in the framework of di-

rected graphs and compare it with the undirected case. In section 3.4 we will

study how some features change when we assign a lot of different orientations

to the same undirected graph. For some reference about graph theory, you can

refer to [18, 19].

3.1 Background

In this section, we want to introduce some of the principal notions that will be

useful throughout this chapter.
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Graphs and digraphs

If we ask anybodywhat a graph is, themost common answer will be some dots

connected by arcs. This definition, although primitive, is precisely the intuition

laying behind the formal notion of a graphwewill state in the next few lines.

Definition 3.1.1Graph, vertex,
edge, incidence
function, order,

size

A graph � is an ordered triple (+(�), �(�), A�) consisting of a
set +(�) of vertices, a set �(�), disjoint from +(�), of edges and an incidence

function A� that associates to each edge of � an unordered pair of (not necessarily
distinct) vertices of�. If 4 is and edge and D, E are vertices such that A�(4) = {D, E},
then 4 is said to join D and E and D and E are called the ends of 4. The number of
vertices of � is called the order and denoted as |� |, while the number of edges of �
is called the size of � and denoted as ‖�‖. For notational simplicity we denote the
unordered pair {D, E} as DE.

The ends of an edge 4 are said to be incidentIncident with the edge and vice versa.

Two vertices incident with a common edge are said adjacentAdjacent , as are two edges

with a vertex in common, and two distinct adjacent vertices are said neighbours

Neighbours . The set of neighbours of a vertex E in a graph � is denoted as #�(E). The
degree of a vertexDegree E in a graph �, denoted as 3�(E) is the number of edges of

� incident with E, each loop counting as two edges. A vertex of degree zero

is called an isolated vertexIsolated vertex . We denote by �(�) and Δ(�) the minimum and the

maximum degree of the vertices of �, and by 3(�) the average degree.Maximum,
minimum,

average degree,
independent, loop

A set of

vertices (edges) is called independent if taken any pair of its elements, they are

not adjacent. An edge with two identical ends is called a loop, while an edge

with distinct ends is a link. Two edges are said to be parallel if they have the

same ends.

Definition 3.1.2Subgraph Consider a graph � = (+(�), �(�), A�). Another graph �′ =
(+(�′), �(�′), A�′) is a subgraph of � if+(�′) ⊆ +(�), �(�′) ⊆ �(�) and A�′ is
the restriction of A� to �(�′). We then say that � contains �′, and write �′ ⊆ �.

Given a graph� there are two natural ways of deriving subgraphs, edge deletion
and vertex deletion. Edge deletion consists in the removal of an edge 4, leaving all

the vertices and the remaining edges intact. Similarly, vertex deletion consists

in the removal of a chosen vertex E together with all the edges incident to E. We

will denote these subgraphs as � − {4} and � − {E}. A subgraph �′ obtained

from � by edge deletion only is called spanning subgraphSpanning
subgraph

, i.e. +(�′) = +(�).
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If . is the set of deleted edges, then �′ is also denoted as � − .. A graph

obtained by vertex deletion only is called induced subgraph Induced subgraph. If - is the set of

vertices deleted, the resulting subgraph is denoted by � − -. We will say that

this graph is induced by . = +(�) \ -.

Definition 3.1.3 Simple graphA graph � that has no loops and no parallel edges is called
simple graph. When no confusion arises, we define the simple graph � as the pair
(+(�), �(�)), where �(�) ⊆ (+(�)×+(�)), i.e. each edge is uniquely determined
by its ends.

A path Pathis a simple graph whose vertices can be arranged in a linear sequence in

such away that two vertices are adjacent if they are consecutive in the sequence

and are non-adjacent otherwise. If the sequence is cyclic, then it is a cycle Cycle.

Think about the graph naturally associated with a railway network, where

the train stations are vertices and an edge connects two stations if a direct

railway line connects them. This representation does not report the strength

of such connections (e.g. the number of people travelling between them). In

many applications, it is not only useful to know which elements of a set are

connected, but also to associate a weight to each connection.

Definition 3.1.4 Weighted graphA weighted graph is a pair (�, F) where � is a graph and
F : �(�) → ℝ is a weight function associating to each edge a real number.

If relevant, graphs can be endowed with a direction. Imagine, for instance, to

represent with a graph the streets connecting squares in a city. The edges of

this graph the lanes of the streets, need to be oriented.

Definition 3.1.5 Directed graphA directed graph � is an ordered triple (+(�), �(�), 3�) con-
sisting of a set +(�) of vertices, a set �(�), disjoint from +(�), of edges and
an incidence function 3� that associates to each edge of � an ordered pair of (not
necessarily distinct) vertices of �, i.e. if D, E are the ends of 4, 3�(4) = (D, E). The
vertex D is the tail of 4 and E is the head of 4; we also say that D dominates E.

Given a directed graph �, if - and . are subsets of +(�), we denote set the

edgeswhose tails lie in- andwhoseheads lie in. by��(-,.). If. = +(�)\-,

the set ��(-,.) is called the outcut Outcut, incutof � associated to -, and denoted by

%+(-). Analogously, the ��(., -) is called the incut of � associated with -,

and denoted by %−(-).
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Given a directed graph � = (+(�), �(�), 3�), we can associate to � an undi-

rected graph�where+(�) = +(�),�(�) = �(�) and for every edge 4 ∈ �(�),
if 3�(4) = (D, E) then A�(4) = {D, E}, called the underlyingUnderlying graph graph. A directed
pathDirected path or directed cycle is an orientation of a path or a cycle in which each vertex

dominates its successor in the sequence.

Connectivity

In this subsection we will recall different notion of connectivity on graphs and

digraphs.

Let Fbe a family of subgraphs of a graph �. A member � of F is maximal in
F if no members of Fproperly contain �. Given a property ? we will say that

� is maximal with respect to ? if it is maximal in the family of subgraphs of �

satisfying ?.

Definition 3.1.6Connected graph A graph � is connected if for every partition of its vertex set
+(�) into two nonempty sets - and ., there is an edge with one end in - and one
end in ..

Definition 3.1.7Connected
component

Let Cbe the family of connected subgraphs of a graph �. We say
that a subgraph - of � is a connected component of � if it is maximal in C.

The notion of connectivity just introduced simply ensures that, if it is satisfied,

every vertex is reachable from any other point of the graph. It is possible to

define stronger notions of connectivity.

Definition 3.1.8k-connectivity Given a graph � and : ∈ ℕ, we say that � is :-connected if the
subgraph � − - is connected for every - ⊂ +(�), |- | < :. Similarly, we say that
� is :-edge connected if � − . is connected for every . ⊂ �(�), |. | < :.

Definition 3.1.9Blocks Given a graph � we say that a vertex E ∈ +(�) is a cut vertex if
its removal increases the number of connected components. Given a subgraph � of
�, we say that � is a block of � if it is connected, it does not contain any cut vertex
and it is maximal with respect to these properties.
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Definition 3.1.10 Edge blocksGiven a graph � we say that an edge 4 ∈ �(�) is a cut edge if
its removal increases the number of connected components. Given a subgraph � of
� we say that � is an edge-block of � if it is connected, it does not contain any cut
edge and it is maximal with respect to these properties.

All the definitions about connectivity given so far are referred to undirected

graphs. Connectivity can be also defined for directed graphs.

Definition 3.1.11 Weak, regular,
strong connectiv-
ity

Consider a directed graph �. We say that � is

weakly connected if its underlying graph � is connected;
II regularly connected if for every pair of vertices D, E ∈ +(�), there is either a

directed path connecting D to E or a directed path connecting E to D;
I strongly connected if for every pair of vertices D, E ∈ +(�), there are a directed

path connecting D to E and a directed path connecting E to D.

Let us study the relations induced on vertices by the notions of regular and

strong connectivities. Consider two vertices D, E ∈ +(�). We say that D is

regularly connected to E, D ∼' E, if there exists in � either a directed path

going from D to E or a directed path going from E to D. We say that D is

regularly connected to E, D ∼( E, if there exists in � both directed paths

going from D to E and from E to D. Then, ∼( is an equivalence relation, whose

equivalence classes are the strongly connected components of�,while∼' is not
an equivalence relation. For this reason two strongly connected components do

not intersect. These concepts extend also the notion of connected component.

SetP = {weak, regular, strong}. We say that� subgraph of� is a ?-connected

component for ? ∈ P if it is ?-connected and maximal with respect to this

property. It is possible to extend also the definitions of blocks and edge blocks

to the directed framework.

Definition 3.1.12 Directed blockGiven an oriented graph � we say that a vertex E ∈ +(�)
is a ?−cut vertex for ? ∈ P if its removal increases the number of ?−connected
components. Given a subgraph � of � we say that � is a ?−block of � if it is
?−connected, it does not contain any ?−cut vertex and it is maximal with respect
to these properties.

Definition 3.1.13 Directed edge-
block

Given a graph � we say that an edge 4 ∈ �(�) is a ?−cut edge
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for ? ∈ P if its removal increases the number of ?−connected components. Given a
subgraph � of � we say that � is a ?−edge-block of � if it is ?−connected, it does
not contain any ?−cut edge and it is maximal with respect to these properties.

The following theoremgives a characterisation of undirected graphs that admit

an orientation for which they are strongly connected.

Theorem 3.1.1 (Robbin’s theorem) Given an undirected graph � it is possible
to find an orientation for which it is strongly connected if and only if � is 2-edge
connected.

Proof. See [18, thm 5.10].

Families of graphs

In the remainder we will sometimes make use of some particular families of

graphs. We list them here.

Definition 3.1.14Complete graph A complete graph is a simple graph in which any two vertices
are adjacent. We denote them by  = , where the parameter = corresponds to the order
of the graph.

Definition 3.1.15Bipartite graph A graph � is bipartite if its vertex set can be partitioned into
two subsets - and . so that every edge in �(�) has one end in - and one end in ..
The partition (-,.) is a bipartition of the graph.

Definition 3.1.16Complete
bipartite graph

A graph � is called a complete bipartite graph if it is a simple,
bipartite graph with bipartition (-,.) and every vertex in - is joined to every
vertex in ..

Definition 3.1.17Cycle graph A graph � is a cycle graph if it is composed by a single cycle. It
will be denoted as �= , where = is the order.

Definition 3.1.18Random graph A random graph of order = is a subgraph of the complete graph
 = , where each edge of  = is kept with probability ? ∈ [0, 1]. This graph is denoted
as �=,? .
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3.2 Graphs as target category

Categories of graphs

In this subsection, we will present the categories of graphs that will be used in

what follows and state their properties. A category is defined by its objects and

morphisms. As objects wewill consider graphs (see definition 3.1.1) and simple

graphs (see definition 3.1.3). Morphisms will be chosen to preserve incidence,

map vertices to vertices and edges to vertices or edges, allowing contractions.

More formally we have

Definition 3.2.1 Graph morphismLet � = (+(�), �(�), A�) and � = (+(�), �(�), A�) be
two graphs. Then 5 : �→ � is a graph morphism if 5 (+�) ⊆ +(�), 5 (��) ⊆
+(�) ∪ �(�) in such a way that for every 4 ∈ �(�) with A�(4) = (D, E) we can
have either 5 (4) ∈ �(�) with A�( 5 (4)) = ( 5 (D), 5 (E)), or 5 (4) = 5 (D) = 5 (E) ∈
+(�). Thus, if there is an edge between two vertices in � we want either an edge
between the images of these two vertices or that D, E, 4 are all mapped to the same
vertex.

Combining the classes of objects and themorphism listed above, we can define

the following categories:

I Graphs: category of graphs with graph morphisms;

I SiGraphs: category of simple graphs with graph morphisms;

From literature we know that the two categories introduced are regular.

Theorem 3.2.1 The category Graphs is regular (see [20] theorem 2.34).

Theorem 3.2.2 The category SiGraphs is regular (see [21], [22]).

Rank functions

We will provide some examples of functions defined on graphs and show

whether or not they satisfy the conditions for being rank functions. Although

for simplicity we will work in SiGraphs, unless differently stated, these func-

tions perform in the same way also in Graphs.
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Definition 3.2.2Coloring Let us consider a simple graph �. We define a coloring on � to be
the assignment of a label to each vertex of the graph such that two adjacent vertices
have different labels. The minimal number of labels needed to color the graph will be
called the chromatic number of �, "(�).

Definition 3.2.3Genus The genus of a graph � is the minimal integer = such that there
is an embedding of � into a surface of genus =.

Definition 3.2.4Crossing number Given a graph �, the crossing number cr(�) is the smallest
number of edge crossing of a planar representation of the graph �.

Definition 3.2.5Circuit number Given a graph�, its circuit number cn(�) is theminimal number
of edges that must be removed from the graph to break all its cycles.

Definition 3.2.6Thickness Given a graph�, we define its thickness �(�) to be the minimum
number of planar graphs whose union is �.

Definition 3.2.7k-clique, clique
number

Given a graph � we say that a subgraph � of � is a k-clique if it
is a complete graph of order :. The maximal : for which � contains a k-clique will
be called the clique number of � and denoted $(�).

Definition 3.2.8Spanning tree,
number of

spanning trees

Given a graph �, a spanning tree for � is a subgraph of � which
is a tree and contains every vertex of �. The number of spanning trees of a graph �
will be denoted by C(�).

Proposition 3.2.3 The functions chromatic number, genus, crossing number, circuit
rank, connectivity, thickness, clique numbers and the number of spanning trees do
not satisfy condition 2) of the definition of rank function.

Proof. Figure 3.1 contains the graphs used to provide the epimorphism contra-

dicting condition 2). The domain of such epimorphism if depicted in panel a).

This graph � is composed by five copies of  1,4, connected each other as in

figure, while the codomain is a graph� isomorphic to  5. The epimorphism is

obtained mapping the vertices in � to the vertex in � sharing the same color.

The values of the functions listed in the proposition on these two graph will

not satisfy the inequality A(�) ≥ A(�), as required in definition 2.2.1.
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(a) The graph �

(b) The graph �

Figure 3.1: The graphs � and � needed to define the epimorphism 5 : � → � used as

counterexample in proposition 3.2.3. The morphism sends each vertex of � to the vertex of �
with the same color.

Proposition 3.2.4 The number of connected components (and similarly blocks and
edge blocks), does not satisfy condition 1) of the definition of rank function.

Proof. Let us consider as counterexample for the connected components a

graph � composed by two connected components �1 and �2. We can consider

a graph � obtained from � by adding an edge between �1 and �2. Then � is

connected and the monomorphism < : � → � provides a counterexample.

Definition 3.2.9 DiameterThe shortest path distance 3(D, E) between two vertices D, E ∈ +
is the number of edges belonging to the shortest path % connecting D and E. The
diameter of a graph � is defined as

diam(�) = max

D,E∈+
3(D, E)

Definition 3.2.10 GirthThe girth of a graph � is defined to be the length of the smallest
cycle contained in �. If the graph is acyclic the girth is defined to be +∞.

Proposition 3.2.5 Diameter and girth do not satisfy condition 1) of the definition
of rank function.



30 3 Persistence on graphs

(a) The graph �. (b) The graph �.

Figure 3.2: The graphs � and � needed to define the monomorphism 5 : � → � used as

counterexample to condition 1) of the rank functions definition in proposition 3.2.5.

Proof. Figure 3.2 provides two graphs that define amonomorphism contradict-

ing condition 1) of definition 2.2.1. Themonomorphism is definedmapping the

vertices of � to the vertex with the same color in �. Both diameter and girth

applied to the graphs � an� do not satisfy the inequality defined in definition

2.2.1 condition 1), leading to the sought counterexample.

Definition 3.2.11Dissociation
number

Given a graph �, a subset of vertices � ⊂ +� is a dissociation
if in the induced subgraph all the vertices have at most degree 1. The cardinality of a
maximal dissociation set is called the dissociation number dn(�).

Proposition 3.2.6 The dissociation number of a graph is not a rank function.

Proof. Let us consider the monomorphism 8 : �5 →  5, where �5 is the

cycle graph with 5 vertices. If we consider in �5 the subset � containing two

adjacent vertices and the antipodal one, this is a maximal dissociation for �5

and dn(�5) = 3. In  5 we have that whenever we pick 3 vertices, in the induced

subgraph every vertex has degree 2; so a maximal dissociation set is composed

only by 2 vertices and dn( 5) = 2, contradicting condition 2).

Proposition 3.2.7 The maximum degree Δ(�) is not a rank function.

Proof. Let us consider the following epimorphism 4 : �8 → �, where �

is the graph obtained from �8 by gluing two antipodal edges (obtaining two

triangles connected by an edge). ThenΔ(�8) = 2, whileΔ(�) = 3 contradicting

condition 2).

Definition 3.2.12Stability number Given a graph �, we say that a set of vertices � ⊂ +� is a
stable set if its elements are pairwise not adjacent. We say that it is maximum if there
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are no larger stable sets. The cardinality of the maximum stable set is called stability
number of � and denoted by 
(�).

Proposition 3.2.8 The stability number is not a rank function.

Proof. Let us consider a graph � containing at least one edge. Then let us

consider the monomorphism between the graph �, obtained removing from

� all the edges, and �. Then 
(�) = |+� | = |+� |, while, since we have at least

two adjacent vertices in �, 
(�) < |+� |, contradicting condition 1).

Definition 3.2.13 Matching, max-
imal matching,
maximum match-
ing, matching
number

Given a graph �, a matching " is a set of pairwise non-
adjacent edges, none of which are loops. A maximal matching is a matching "
that is not a subset of any other matching. A maximum matching is a matching
" whose cardinality is maximal in �. The matching number is the cardinality of
a maximum matching.

The following two functions are the only ones we found that satisfy conditions

1) and 2) but not condition 3).

Proposition 3.2.9 The matching number of a graph �(�) satisfies conditions 1) and
2) but does not satisfy condition 3).

Proof. Toprove condition 1) let us consider a graphmonomorphism 8 : �→ �.

Let us consider a maximum matching"� on �. By construction, if two edges

are in"� they are not adjacent in G and then also their images are not adjacent

in �. Thus the image of "� through 8 is a matching for � and may not be a

maximum matching. So �(�) ≤ �(�).

Now consider an epimorphism 4 : � → �, and take a maximum matching

"� on �. We can consider the counterimage of "� through 4. Again by

construction this is a matching in � which may not be a maximum matching.

So we have that �(�) ≥ �(�), and also condition 2) is satisfied.

For condition 3) let us consider the counterexample provided in figure 3.3. If

we label the graphs as in definition 2.2.1 we can see that �(�) = 2, �(�) = 2,

�(�) = 1 and �(�) = 2, contradicting condition 3).
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Figure 3.3: This commutative diagram is a counterexample for the matching number function

in proposition 3.2.9. The morphisms associates vertices with the same colors and the graph on

the top-left is the pullback of the morphisms 5 and 6.

Proposition 3.2.10 Given a graph � , the cardinality of the set containing all the
maximal matchings of the graph "(�) satisfies conditions 1) and 2) but does not
satisfy condition 3).

Proof. Toprove condition 1) let us consider a graphmonomorphism 8 : �→ �.

Let us consider amaximalmatching"� on�. By construction, if two edges are

in"� they are not adjacent in G and then also their images are not adjacent in

�. Thus the image of"� through 8 is a matching for � and it can be extended

to a maximal matching"� . So �(�) ≤ �(�).

Now consider an epimorphism 4 : �→ �. Now consider amaximal matching

"� on �. We can consider the counterimage of "� through 4. This is a

matching in � which can be extended to a maximal matching"�. So we have

that <(�) ≥ <(�), and also condition 2) is satisfied.

Consider the commutative diagram in figure 3.4. Labelling the graphs as in

definition 2.2.1 we have that <(�) = 1, <(�) = 2, <(�) = 1 and <(�) = 5, and

thus this pullback diagram does not satisfy condition 3).
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Figure 3.4: This commutative diagram is a counterexample for the function mapping a graph

� to the number of maximal matchings of � in proposition 3.2.10. The morphisms associate

vertices with the same colors and the graph on the top-left is the pullback of the morphisms

5 and 6.

In the last part we will present some simple functions which are rank func-

tions.

Theorem 3.2.11 The order function, mapping a graph � to its order |� |, is a
fiber-wise function (see definition 2.1.11) in both SiGraphs and Graphs.

To prove the previous theorem we will need the following results.

Lemma 3.2.12 Regular epimorphisms in SiGraphs are surjective on vertices and
edges (see [21]).

Lemma 3.2.13 Epimorphisms in Graphs are surjective on vertices and edges (see
[20], proposition 2.25)

Proof. (Of theorem 3.2.11) From lemmas 3.2.13, 3.2.12, regular epimorphisms

are surjective on vertices in both SiGraphs and Graphs. In both categories

the terminal object pt is the graph with only one vertex and no edges. Given

regular epimorphism ) : �→ �, we have that {)−1(E)}E∈+(�) is a partition of

+(�) and from surjectivity that )−1(E) ≠ ∅ for all E ∈ +(�). Moreover |pt| = 1.
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So we have that ∑
Eℎ∈+(�)

(
|)−1(Eℎ)| − |pt|

)
=

=
∑

Eℎ∈+(�)
|)−1(Eℎ)| −

∑
Eℎ∈+(�)

1 = |� | − |� |

and the function order is a fiber-wise function.

Theorem 3.2.14 The function order is a rank function in both SiGraphs and
Graphs.

Proof. Since the function order is fiber-wise, it is sufficient to prove condi-

tions 1) and 2) of proposition 2.2.1. Consider a monomorphism # : � ↩→ �.

Monomorphisms in both categories are injective on vertices, thus |� | ≤ |� |
and condition 1) is proven. Consider now a regular epimorphism ) : � � pt.

Since +(�) is cannot be empty, we have that |� | ≥ 1 = |pt|.

Theorem 3.2.15 The function size, mapping a graph � to its size ‖�‖ is a rank
function.

In the following proof, given � subgraph of �, we will define � −� � to be the

graph obtained from � removing the edges in �.

Proof. Since we know that monomorphisms are injective in both edges and

vertices and regular epimorphisms are surjective on edges andvertices, the first

two conditions of the definition are satisfied. For the last condition, consider a

commutative diagram of the form

� �

� �

�1

�1 �2

�2

where �1, �2 are monomorphisms and �1,�2 are regular epimorphisms. Since

�1 is injective on edges, ‖�‖ = ‖�1(�)‖ and thus ‖�‖−‖�‖ = ‖� −� �1(�)‖. The
fact that �1 is surjective and �2 is injective implies that �2(�1(�)) ⊂ � has size
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‖�‖. Moreover, since �2 is surjective, every edge in � −� �1(�) has nonempty

preimage in � −� �1(�). Thus we have that

‖�‖ − ‖�‖ = ‖� −� �2(�)‖ ≤ ‖� −� �1(�)‖ = ‖�‖ − ‖�‖

and condition 3) is proven.

3.3 Connectivity in directed graphs

In this section, we will analyse the behaviour of connected components, blocks

and edge-blocks in directed graphs. We would like to recall the existence

of three notions of connectivity for directed graphs, as explained in defini-

tion 3.1.11, and the consequent existence of different notions of blocks and

edge-blocks, see definitions 3.1.12,3.1.13. These notions of connectivity are very

different from one another. In the case of weak connectivity, the analysis of

connectivity is reduced to the one made in the undirected case. In the other

two cases, orientation is considered, and the results change considerably.

Consider the graph depicted in figure 3.5. It is composed of three disjoint

subgraphs �, �, � all connected to a central vertex E by a single edge. Since

we have three edges incident to E, at least two of them must have the same

orientation with respect to E, outward or inward. Suppose that the two having

the same direction are the ones corresponding to the components � and �.

Then it is not possible to travel from � to � or from � to �, and thus this

graph, although weakly connected, cannot be regularly connected with any

orientation.

Strong connectivity is the most difficult of the three kinds of connectivity

to achieve. Consider the graphs depicted in figure 3.6, where � and � are

two strongly connected components. In panel a) of the figure it is possible to

notice that whatever orientation we choose for the edge 4 the entire graph is

regularly connected. However, it is impossible to obtain strong connectivity.

Even the addition of many edges between the two components depicted in

panel b) will not guarantee strong connectivity. Consider, for example, the

case where all the edges share the same orientation, say from � to �. In this

scenario it is impossible to reach� from�, contradicting the strong connectivity

condition.
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E

A B

C

Figure 3.5: An example of a graph that cannot be regularly connected

A B
e

(a) A graph that cannot be strongly

connected.

A B

(b)Agraph that can or not be strongly

connected.

Figure 3.6: Two examples of graphs that can be non strongly connected.

Since weak connectivity behaves like standard connectivity in undirected

graphs, in what follows, we will discuss only regular and strong connectivity.

In the remainder, strongly connected components will be denoted by SCC.

Proposition 3.3.1 Let '� be the property of being regularly connected, i.e. a graph
� is '� if it is regularly connected. The property '� is not weakly directed.

Proof. Consider again the graph in figure 3.5.We have three disjoint subgraphs

�, �, � connected to a central vertex E. Suppose that the orientation has an

arrow going from � to E, an arrow going from E to � and one from E to �.

Suppose moreover for simplicity that the subgraphs �, � and � are strongly

connected.

The two regularly directed components �1 and �2, respectively induced by

the vertices +(�) ∪ {E} ∪ +(�) and +(�) ∪ {E} ∪ +(�), which are maximal,

belong to the poset associated to the property of being regularly connected,

where given two graphs�, �,� ≤ � if� is a subgraph of �. They have lower

bound since the subgraph � is regularly connected and � ⊂ �1 ∩ �2 but by
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the maximality of �1 and �2 they will not have an upper bound, contradicting

definition 2.2.8.

Notice that this problem is related to the fact that regular connectivity does

not induce an equivalence relation on the vertex set +(�). For this reason the

notion of strong connectivity does not share the same problem.

Let (� be the property of being strongly connected, i.e. a graph � is (� if it is

strongly connected.

Proposition 3.3.2 (� is a weakly directed property.

Proof. Consider a graph � and two strongly connected subgraphs �1 and �2.

If their intersection �1 ∩ �2 is strongly connected, and thus �1 and �2 have a

lower bound, their union�1∪�2 is strongly connected as well, since, by strong

connectivity, if �1 ∩ �2 ≠ ∅, then �1 ∩ �2 = �1 = �2 = �1 ∪ �2.

For this reason (� induces a persistence function ?(� on graph filtrations,

called the strongly connected component number. For a given graph filtration �,

?(�(D, E) equals the number of SCCs in �(E) that contains at least one SCC

when restricted to �(D).

This approach can be generalized to a wider class of properties deriving from

equivalence relations defined on graphs.

Proposition 3.3.3 Consider an equivalence relation ∼ defined on the vertex set of a
graph. Then the property of being an equivalence class with respect to ∼ is a weakly
directed property.

Proof. Straightforward.

Examples of persistence diagrams on digraphs

In what follows, we provide examples showing the behaviour of strongly con-

nected components, strong blocks and strong edge blocks on a given underly-

ing weighted graph. We will show how these features modulate when assign-

ing different orientations to the graph. The graphwe used has a highminimum
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Figure 3.7: The underlying weighted graph � used in the next examples

vertex degree, since theorem 3.1.1 states that it is necessary, but not sufficient,

to have a 2-edge connected subgraph to get a strongly connected component,

and stronger notions of connectivity are required for strong blocks and edge

blocks.

The weighted graph depicted in figure 3.7 is the undirected graph used in the

various examples. It is composed by three subgraphs  0,  1,  2
, spanned by

the set of vertices {0, 1, 2, 3, 4}, {01, 11, 21, 31, 41} and {02, 12, 21, 32, 42} respec-
tively, which are isomorphic to  5. Edges have been added to connect these

subgraphs. In this way we obtained a graph with minimum degree �(�) = 4.

The choice of having subgraphs isomorphic to  5 is related to the existence of

orientations for which it is a strong block or edge-block. In this way it is possi-

ble to get blocks and edge-blocks easily by choosing appropriate orientations

on these subgraphs.

We will study 4 different orientations of �, denoted by �8 = (+, �8) for 8 ∈
{1, . . . , 4}, where each �8 is an orientation defined on �. The oriented graphs

are depicted in figures 3.8,3.10,3.12,3.14.

The orientation of �1 is chosen in such a way that strongly connected compo-

nents, strong blocks and strong edge-blocks appear along with the filtration.

The orientations are chosen in such a way that every vertex has at least two

inward and two outward edges. This choice is dictated by the fact that to ob-

tain, for example strongly connected components, since it is necessary, but not

sufficient, to have for each vertex at least one inward and one outward edge.

This decision reflects on the persistence diagrams depicted in figure 3.9. In

panel a) is reported the strongly connected components persistence diagram.

It is possible to notice that two SCCs are born for C = 3, corresponding to

the subgraphs {2, 3, 01} and {11, 21, 31} which merge for time C = 5. Panel
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Figure 3.8: The graph �1, i.e. the one with the first orientation

b) reports the strong blocks persistence diagram. There are two strong blocks

which never merge, one born for C = 7 and one for C = 8. These correspond to

 0
and  2

, respectively. We can notice that  1
cannot be a strong block, since

the removal of 21 leave 31 with only inward edges. The final blocks are formed

by  0 ∪  1
and  2

. The entire graph is not a block since removing 21 there are

no edges going from  2
to  0 ∪  1

. In panel c) is depicted the strong edge-

blocks persistence diagram. As for the case of the strong blocks, two strong

edge-blocks are born,  0
and  2

respectively at time C = 7 and C = 8. In this

case they merge for C = 10.

The orientation of �2 is chosen to be similar to the one of �1, showing how

such a minimal difference can affect the final result. For this reason the only

change made on �1 is the orientation of one edge, namely (31, 42). In �1 the

two blocks composed by  0 ∪  1
and  2

are not merging because the edges

(11, 12) and (31, 42) pointed in the same direction, thus it is not possible to have

a directed path going from  2 to  
0 ∪  1

. In �2 this does not happen because

(11, 12) and (42, 31) are pointed in opposite direction, so the two blocks  0∪ 1

and  2
merge.

The orientation of �3 is chosen to be more balanced with respect to the ones

of �1 and �2, in such a way that for every subgraph - of �3 the outcut %+(-)
and the incut %−(-) have similar cardinality. This has been done properly bal-

ancing the number of inward and outward edges for each vertex of �3. This

choice makes it easier to obtain strongly connected components than in �1 or

�2. Figure 3.13 depicts the persistence diagrams for strongly connected com-

ponents, strong blocks and strong edge-blocks. The choice of such orientation

provides some strongly connected components already at the beginning of the

filtration, for time C = 2, and the merging of all these components for time

C = 5, as pictured in the corresponding persistence diagram (see figure 3.13,
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(c) The PD relative to the strong edge blocks

Figure 3.9: The persistence diagram computed with respect to the first orientation.

panel a)). For the same reason, each of the three  5-shaped subgraphs becomes

a strong block starting from C = 6, as we can see in figure 3.13, panel b).

The orientation assigned to �4 is defined in such a way that many subgraphs

- of �4 present big differences between the cardinality of the outcut %+(-)
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Figure 3.10: The graph �2, i.e. the one with the second orientation
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(a) The PD relative to the strong blocks

Figure 3.11: The persistence diagrams computed with respect to the second orientation.

and the cardinality of the incut %−(-). This choice gives a connectivity which

is completely different from the one provided in �1, �2 and �3. In figure

3.15 is depicted the strongly connected components persistence diagram. The

components born along the filtration are {22, 32, 42} for C = 2, {0, 1, 4} and
{3, 01, 41} for C = 4 and {11, 12, 21} for C = 9.Due to the choice of the orientation,

these components never merge. Moreover no strong blocks or strong edge-

blocks are ever born.
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Figure 3.12: The graph �3, i.e. the one with the third orientation
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(c) The PD relative to the strong edge blocks

Figure 3.13: The persistence diagrams computed with respect to the third orientation.
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Figure 3.14: The graph �4, i.e. the one with the fourth orientation
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(a)ThePD relative to the strongly connected components

Figure 3.15: The persistence diagrams computed with respect to the fourth orientation.
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3.4 Cornerpoints distributions for directed graphs

In [4] persistence is used for analysing how certain graph-theoretical properties

(e.g. blocks, edge-blocks, clique communities) of a given undirected graph

� = (+, �, A) change along the filtration induced by a set of weights {F4}4∈�.
As shown in the previous sections, by changing the notion of connectivity, it is

possible to extend such analysis to the case of oriented graphs.

Given an undirected graph � = (+, �, A) along with a set of weights {F4}4∈�,
we can consider � as an underlying graph and endow it with an orientation.

The analysis of the changes of some properties along the filtration leads to

a persistence diagram. Since the set of orientation we can choose from has

cardinality 2
|� |
, it is possible to compute the persistence diagrams for all these

orientations and analyse the distribution of cornerpoints. We may get some

information about the structure of � by analysing the distribution of such

diagrams, and it may be interesting to relate this to the persistence diagram

of the underlying graph. Since theorem 3.1.1 exhibits a connection between

the notions of strongly connected components and edge blocks, in this experi-

ments, wewill try to highlight any possible connection between the persistence

diagrams related to these two objects.

Remark 3.4.1 Since the number of orientations grows quickly as the number

of edges increases, it is not computationally feasible to analyse all possible of

orientations of �. For this reason we chose to work on a randomly sampled

subset of orientations.

Example 3.4.1 Let us consider the undirected graph � = (+, �, A) endowed

with weights {F4}4∈� used in [4] Sec. 4.

The fact that the size of � is quite small, |� | = 15, implies that only a small

number of possible strongly connected components can appear along with

the filtration. This leads to a scattered distribution of cornerpoints because

only a few cornerpoints can exist. Despite the roughness of the distribution,

this experiment can give us an insight into the heuristic effect of the sub-

sampling. In fact, for graphs of this size, it is still feasible to compute the

distribution considering the entire set of orientations and compare it with

the ones performed subsampling the set of orientations. Figure 3.16 panel a)

shows the graph �with the relative weights, while in panel b) is reported its
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Figure 3.16: The graph � used in the first experiment and the corresponding edge-blocks PD

edge-blocks persistence diagram.

Figure 3.17 depicts the distributions of cornerpoints performedwith different

subsample. Due to the huge difference between the number of occurring of

different cornerpoints, they are represented as the heatmap of the logarithm

of the distribution. The distribution computedwith respect the entire dataset

is reported in panel a), while panels b), c) d) and e) report the distributions

computed with subsamples of different size, 10000, 1000, 500, 100 orienta-

tions respectively. Subsample distributions are coherent with the ground

truth in most cases, and visible changes appear only when considering the

100 orientations case. This example provides empirical proofs that the sub-

sampling procedure does not affect the distribution strongly.

Moreover, as expected from theorem 3.1.1, the edge blocks persistence dia-

gram is contained in all the distributions of persistence diagrams. The first

cornerpoint on the top left corner and the lowest cornerpoint of the distribu-

tions correspond to the cornerpoints of the edge blocks persistence diagram.
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Example 3.4.2 In the following examples, due to the size of the chosen

graphs, it will not be possible to analyse the entire set of all orientations

and thus we will not have a ground truth distribution. For this reason, it is

necessary to understand forwhich cardinality of the performed subsampling

we can obtain a good approximation of the ground truth distribution. In this

experiment we will consider the same random graph �30

0.35
and compare the

distributions obtained considering subsamples of size 100, 200, 500, 1000,

2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, 750000, 1000000.

Results are reported in figure 3.18. It is possible to notice that as the number

of orientations increases the distributions stabilise, and we will assume that

it is converging to the ground truth distribution. For the scope of future

experiments, we consider the distribution obtained with 100000 orientations

a good approximation of the ground truth.

Example 3.4.3 In the following example, we will consider a sequence of

random graphs �=? with = = 30. We will associate to this graph a set of

random integer weights between 0 and 50. We will see how the distribution

of cornerpoints changes as we change the probability ? and thus the number

of edges appearing in �=? . For comparison purposes, we will fix the seed

used for generating the random values, in order to have that�=? is a weighted

subgraph of�@ whenever ? ≤ @. As highlighted before for these experiments

will be used only 100000 orientations.

Figure 3.19 shows the distribution of cornerpoints for ? ∈ {0.10, 0.15, 0.20,

0.25, 0.30, 0.35, 0.40, 0.45}. It interesting to notice how the distribution

changes as the probability varies. For the smallest values of ?, the number of

edges belonging to �=? is small and so is the number of strongly connected

components. SCCs will not appear until the last step of the filtration, and

thus the distribution is centred in the top right part of the diagram. As ?

increases the number of edges in �=? increase, making easier the appearance

of strongly connected components already in the beginning of the filtration.

As a consequence, the distribution shifts close to the origin.

Example 3.4.4 The previous example analysed the relationship between the

distribution of cornerpoints and the probability ?. In this experiment, we

want to analyse the effect of the order of the graph on the distribution. For

this experiment we considered orders = ∈ {20, 30, 40, 50} and probability
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? = 0.35. The results are depicted in figure 3.20. Although the probability

? is fixed, whenever we increase the order of the graph, we should expect a

higher probability of obtaining edge-blocks and so strongly connected com-

ponents. This effect reflects in the appearance of strongly connected com-

ponents already in the beginning of the filtration, shifting the distribution

closer to the origin.

In the experiments performed in this last section, we show how the connec-

tivity of random graphs changes while varying some parameters, e.g., the

probability of appearance of an edge, or the order of the graph. To perform

such analysis, we consider a graph � as the underlying graph and study the

cornerpoint distribution of strongly connected components obtained by as-

signing to � different orientations. Computationally, it would be arduous to

consider all possible orientations, thus in example 3.4.1, we empirically prove

that by considering an adequately large subset of possible orientations, we

obtain a good approximation of the distribution realised by the whole set of

orientations.

In examples 3.4.2 and 3.4.3, we show how changing the probability of appear-

ance of edges and the order of the graph can affect the cornerpoint distribution.

As expected, for parameters associated with more complex graphs, i.e. with

high order or high probability, cornerpoints cluster near the origin. This effect

is due to the fact that more complex structures lead to faster appearance of

strongly connected components.

We expect that cornerpoint distributions could be used to compare graph

connectivity because they not only capture the presence of connected regions

as regular persistence analysis, but also provide an evaluation of the strength

of such connectivity. Consider, for example, two graphs � and �, both having

an edge block with birth and death times 1 and 3. Suppose that the edge block

in � is a loop �= , while the one in � is a complete graph  = , with = > 3,

and that the weights of the edges are randomly chosen to satisfy the birth and

death times. Whereas standard persistence would report in both cases only

one cornerpoint at coordinates (1, 3), the cornerpoint distribution is capable of

distinguishing these two scenarios, reporting a unique cornerpoint for � and

a more widely spread distribution for �.
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(a) All orientations (b) 10000 orientations

(c) 1000 orientations (d) 500 orientations

(e) 100 orientations

Figure 3.17: The logarithmic heatmap of the distribution of cornerpoints
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Figure 3.18: The logarithmic heatmap of the distribution of cornerpoints for a random graph with 30 vertices
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Figure 3.19: The logarithmic heatmap of the distribution of cornerpoints for a random graph with 30 vertices
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3.5 Conclusions

The generalized persistence framework introduced in [3] allows us to anal-

yse the persistence of certain features directly, without the need of building

auxiliary transformations which map data points to topological spaces. In this

chapter, we studied how the category of graphs, Graphs, behaves with such

generalization, both as source and target category. In 3.1 we recalled some

basic notions of graph theory. In section 3.2, after noticing that Graphs is a

regular category, we proved that many of the classical graphs invariants do

not satisfy the conditions for being rank functions. The only exceptions we

found are the size and the order functions. In section 3.3, we extended the

notions of connected components, blocks and edge-blocks to directed graphs

and studied how these behaves along a given filtration. The last section is de-

voted to the analysis of how different orientations can affect the persistence

diagrams obtained studying the strong connectivity of the graph. By analysing

many orientations it is possible to obtain a distribution of cornerpoints. The

experiments performed considered both deterministic and random graphs,

providing an empirical analysis of the behaviour of the distribution as we

change the number of vertices or the probability of appearance of an edge.

In future works, we will try and extend these last studies about cornerpoint

distributions, trying to capture additional information concerning the con-

nectivity of the underlying graph, for instance by identifying communities.

Moreover, it would be interesting to bring more examples of rank functions on

Graphs and other categories, as Set or Grp.
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Deep learning is a branch of machine learning which has proven its effective-

ness in the last 15 years, becoming a central tool in many fields. Despite its

recent development, the first model of a neural network, the perceptron, was

introduced in the 40s, [23, 24]. In order to reach high accuracy, it is necessary

to use large networks, and, since the training of such networks is computa-

tionally expensive, the research in this field was almost abandoned. The recent

advances in hardware technology, as the development of faster CPUs and the

advent of GPUs, overcame the computational cost issues and gave a boost to

the research and applications in deep learning. Whereas the first perceptrons

were used just in binary classification tasks, nowadays applications spread in

many different fields, for examples image processing, [25–27], medical image

analysis, [28], speech analysis, [29, 30], finance, [31, 32]. In section 4.1 we recall

basic notions of deep learning. In section 4.2, we extend the notions of steady

and ranging sets introduced in [5] to the category of Set. In section 4.3, a novel

operator for the analysis of images is introduced, and it is used in section 4.4

to define a novel pooling layer. In section 4.5, we present some experiments

showing the performance of this new layer in a classification task and com-

paring it to other state-of-the-art pooling layers. For some reference about this



56 4 Persistence pooling

topic, the reader can refer to [33, 34].

4.1 Background

Deep learning

The goal of deep learning algorithms is to approximate some function 5 ∗ :

ℝ= → ℝ<
, mapping each input x in the dataset to the corresponding output

y∗. The operations performed by the network can be summarized as a function

y = 5 (x, �) depending on the parameter set �. The goal of a deep learning

algorithm is to find the optimal parameter set � that best approximate 5 ∗.

Neural networks use perceptrons, or neurons as basic units. For this reason,

they are also called multilayer perceptrons. A neuron is the composition of

an affine transformation and a nonlinearity. The affine transformation is per-

formed applying a weights vector w ∈ ℝ=
and a bias value 1 ∈ ℝ to an input

vector x ∈ ℝ=
, as w)x + 1. The final operation providing the neuron output

is the nonlinearity, called the activation functionActivation
function

. Being the only source of

nonlinearity in the model, this is needed in order to approximate nonlinear

target functions 5 ∗. The output of the neuron is then y = )(w)x + 1), where

) is the activation function. Although many activations have been introduced,

the sigmoid and the rectified linear unit (ReLU) are the most used. They are

respectively defined as

)(G) = 1

1 + 4−G ,

)(G) =


0, if G < 0

G, if G ≥ 0.

Feedforward deep neural networks, in their simplest formulation, are built as

a sequence of fully connected layers, see figure 4.1. Thus a neural network can

be seen classically as a composition of functions 5= ◦ 5=−1 ◦ · · · ◦ 50, where 50 is

the input function and 5= provide the final output of the model y. To each 58

corresponds a layer. Thus the operations performed by 58 can be written as:

x(8+1) = )(W8x8 + b8)
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Input Layer Hidden Layer Hidden Layer Output Layer

L2L1 L3 L4

Figure 4.1: A simple example of multilayer perceptron with two hidden layers.

where) is the activation function, usually chosen to be one of the previous one-

dimensional functions applied component-wise,W8
and b8 are respectively the

weights matrix and the bias vector. The 9-th row of the matrix W8
and the 9-th

element of the bias vector b8 are respectively the weights vector w8
9
and the

bias b8
9
of the 9-th neuron of the 8-th layer.

Following the notation given in the beginning of this section, y = 5 (x, �),
the entire network is denoted as a function 5 mapping the input x to the

predicted output y, whereas the set of parameters � contains all the weight

matrices W;
’s and all the bias vectors b;’s. The learning procedure consists

in the optimization of the introduced set of parameters, aiming to the best

possible approximation of a target function 5 ∗. To evaluate the performances

of the model it is necessary to introduce a cost function, or loss function Loss function, L,

whichmeasures the distance between the predicted and expected outputs. The

optimization of the parameter set is then performed by finding the ones that

minimize the loss function:

�∗ = arg min

�

{
L( 5 (x, �), y∗)

}
.

Usual choices for L are the mean square error Mean square errorand the cross entropy. The

first one computes the square distance between the predicted and the target

values

L(y) = ‖y − y∗‖2

|y| .
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The cross entropy functionCross entropy
function

, instead, considers the target values y∗ and the

predicted valuesy as probability distributions over the set of possible outcomes

of the model, and define the distance between them as

L(y) = −
∑
:

y∗:ln(y:).

The minimization of such functions, with respect to the weights of the model,

can be performed using the gradient descent method, [35]. The idea is that

the gradient computed in a point provides the local direction of the steepest

ascent. Then, iteratively computing the gradient and making a step in the

opposite direction, should return a path for the minimum. To compute the

gradient with respect to all the weights in a neural network, a fast algorithm,

based on the chain rule of calculus and called back-propagationBack-propagation , was introduced,

[36]. The so called forward pass gives the output of each layer, providing the

final estimate for the given input, while the backward pass propagates the

gradient back from the loss function to the input layer. The forward step can

be written as

B ;9 =
∑
8

F ;
8 9G
(;−1)
8
− 1 ;9 , G ;9 = )(B ;9)

where we distinguish between the output of the neuron before the activation

function B ;
9
andafter the activation function G ;

9
.With this notation, thebackward

step becomes

%L

%F ;
8 9

=
%L

%B ;
9

%B ;
9

%F ;
8 9

=
%L

%B ;
9

G
(;−1)
8

and a similar equation holds for the biases. Let us call �;
8
= (%L)/(%B ;

9
). From

[34] pag. 173, we have

�(;−1)
8

= )
(
B
(;−1)
8

) ∑
9

�;9F
;
8 9 .

Thus it is possible to compute the gradient for the weights belonging to the

;-th layer knowing only the input vector x(;−1)
and the already computed �’s

from the (; + 1)-layer.
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Convolutional neural networks

According to the fully-connected approach presented in the previous section,

data containing spatial information, e.g. images, have to be vectorized in order

to be considered a valid input for the first layer. This procedure leads to the

loss of spatial information, forgetting, for example, which pixels were close

to each other in the original image. Convolutional neural networks (CNNs)

overcome this issue, among others, since they use as input the original data

without transformations, becoming the perfect tool for analyzing grid-like data

as images.

In practice, an input image can be represented as a three-dimensional matrix

- = {G8 9:}, whose shape �- × �- × - refers to the width, height and number

of channels of the image. For example, grayscale images have only one channel,

while RGB images have three. For simplicity, let us focus on the case  - = 1.

Then, a filter is two-dimensional and can be represented as a matrix F =

{F8 9} of size �F × �F . The shape of the output of the convolutional layer is

(�- − �F + 1) × (�- − �F + 1). The output . is computed as

.8 9 =
�F−1∑
?=0

�F−1∑
A=0

-8+?,9+AF?A + 1 (4.1)

where 1 is a learnable bias. This operation is a cross-correlation and not a real

convolution, since, in the latter case, the filter should be flipped. However,

since in deep learning applications the filter is learnt by the model, these two

operations are equivalent. For this reason, networks relying on this operation

are called convolutional. Figure 4.2 depicts an example of convolution on a

two-dimensional image.

2 0 -4 -3 -5

3 6 -8 2 -1

5 5 -7 -8 2

6 3 -4 -3 4

7 -7 -3 1 1

1 3 2 3 4 8 5

4 5 0 2 1 0 4

1 2 2 5 3 5 4

1 6 1 0 7 4 4

7 2 1 0 6 4 1

4 0 4 5 2 0 1

1 3 0 7 5 7 5

1 0 -1

1 0 -1

1 0 -1
* =

Original image Filter Output

Figure 4.2: A simple example of how convolutional filters work in the two dimensional case.

The case with  - = 1 just presented deals with a simplified scenario in which

both the input and the output are two dimensional. In the extension of this
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framework to the general case, i.e. when more input and output channels are

required, each entry in theoutput imagewill begeneratedby consideringall the

input channels. For this reason, the filterF has to be of shape�F×�F× -× . ,
where  - and  . are the number of the input channels and output channels,

respectively. Then, the output is computed as

.8 9: =
 -∑
@=1

�F−1∑
?=0

�F−1∑
A=0

-8+?,9+A,@F?A@: + 1:

where 1: is the bias corresponding to the :−th output channel.

In many cases, convolutional layers have to preserve the input size. In order to

achieve this task, a frame around the image, called padding, is added. In most

of the cases, the padding is composed of zeros or obtained by replicating the

boundary pixels of the image.

Convolutional neural networks are composed by a sequence of convolutional

andpooling layers (see section 4.1) and a final part consisting of fully-connected

layers. A flattening layer reshapes the feature maps into a unique column,

connecting the convolutional and pooling layers to the fully-connected ones.

Pooling

In CNNs pooling layers are used to downsample the information provided by

convolutional layers. Pooling layer first subdivides of the input data in patches

and then assigns to each patch of the best representative value through a

pooling function P. Patches subdivision is usually performed by considering

each channel individually as a two-dimensional signal; as a consequence, each

patch will be referred to as a two-dimensional object. Given a filter  of fixed

size (:1, :2), each patch is obtained by sliding  by some integer multiples of

each of the so-called stride values B1, B2 along the respective direction. The

patch %8 9 mapped to the entry (8 , 9) of the output is:

%8 9 = �[(B18) : (B18 + :1), (B2 9) : (B2 9 + :2)].

After the subdivision in patches, each patch %8 9 is mapped through P to the

final output. The most used pooling functions are the maximum and the aver-

age.
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The use of pooling layers in CNNs has multiple effects. For example, data size

reduction reflects on the computation timing, since the smaller the data, the

faster the processing, and it also enlarges receptive fields, i.e. the region of

the input space used by a particular CNN feature. Moreover, it provides some

stability to minor deformations, see [27], even if some debate about it is still

ongoing [37].

On the other side, the main drawback of downsampling, and thus of pooling

layers, is the loss of information. The reduction of spatial resolution in pooling

layers leads to the inevitable loss of details. Another drawback regarding the

most used pooling layer, i.e. max pooling, is that it is not trainable. This im-

plies that the information passed by the pooling is not optimized in order to

minimize the training error. Moreover, as highlighted by Hinton:

The pooling operation used in convolutional neural networks is a big
mistake and the fact that it works so well is a disaster. If the pools (i.e.
patches) do not overlap, pooling loses valuable information about where
things are.

Different approaches have been proposed, overcoming such problems. In [38],

the authors introduced a stochastic pooling operator. They divided the input

into patches, and for each patch, computed a probability distribution based on

thevalues of thepatch . Thefinal output is a pixel chosen randomly according to

such adistribution.Another stochastic approach, called fractionalmaxpooling,

has been introduced in [39]: through a random selection of the size of the

patches, the spatial reduction of the input data can be fractional.

The methods just presented do not contain learnable parameters, thus they

cannot be optimized to minimize the loss function. Another approach pro-

posed is the introduction of learnable parameters in the pooling, which allow

learning optimal downsampling [40]. The method proposed in [40] consists

of applying a standard convolutional layer with a stride larger than 1. In this

way, the output size will be smaller than the input. As explained in section

4.1, convolutional layers require the introduction of four-dimensional matri-

ces of weights, which considerably increase the number of parameters of the

network. To overcome such an issue, in [41], the authors proposed the LEAP

pooling layer. For each channel in input, a two-dimensional convolutional fil-

ter is introduced. Similarly to the case presented in equation 4.1, the output is

obtained by convolving each patch with the filter. For computing each feature

channel, the LEAP operator uses only the information from the corresponding
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channel. Thus, this approach introduces fewer parameters if compared with

the one proposed in [40], since there are no intra-channel connections.

Persistence in Deep Learning

Flexibility and modularity make of persistence an ideal candidate method

to interact with machine learning. In particular, deep learning models can

optimisemillion of parameters to achieve a given task, however understanding

whichdata transformations and features contributed to theminimization of the

error function in a given task remains an open problem. A principled approach

could provide new insight, as well as a topological approach could allow deep

learning to see not only local, but also global structures of a given dataset. The

interaction between deep learning and persistence theory is on three levels:

the usage of persistence to gain mechanistic understanding of deep learning,

the usage of deep learning to make persistence learnable, and the integration of

the two approaches.

Despite providing surprisingly good performances, the complexity of neural

network architectures and the huge number of parameters cause a lack of in-

terpretability. A key challenge in the machine learning field is to understand

how deep learning works. Among other approaches, researchers used persis-

tence theory to study certain properties of neural networks. One method is to

see neural networks as weighted graphs, [42], where the weight of each edge

between layer ; and ; + 1 is obtained as the activation values of the starting

node, G ;
8
times the weight F ;

8 9
. The analysis of the obtained persistence dia-

grams provided not only information about the functionality of the network

but also the distance between persistence diagrams allowed them to identify

adversarial examples. Another mysterious aspect about deep learning is the

fact that non-smooth activation functions, as ReLu, outperform other smooth

activations, as sigmoids. In [43], the authors tackle such an issue. Since, in order

to correctly classify the input data, the algorithmhas to find away to unfold the

input distribution, trying to separate the classes, the authors assumed that the

topological complexity of data distribution should decrease, layer by layer. By

using persistent homology to compute the topological complexity, they were

able to show that non-smooth activations reduce the complexity faster and

more efficiently than smooth ones. On the other side, it is possible to use deep

learning to estimate persistence homology outputs. For example it is possible
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to train neural networks to estimate Betti numbers, [44], persistent images, [45]

given a data sample.

The last approach is to integrate persistence theory and deep learning. The

topological and geometrical information provided by the persistence analysis

can be fed to neural networks layers. Persistence information is usually encoded

in persistence diagrams (PDs) or equivalent representation systems. The lack

of structure and well-defined basic operations in the space of persistence dia-

grams makes it impossible to use PDs in machine learning pipelines directly.

One possible solution is to vectorise the information provided by a PD and

feed such vector to the neural network, [46], or it is possible to use a learnable

function to reduce the information carried by a PD to a unique value, [47].

On the other side, persistence landscapes provide an efficient way to encode

persistence information in vector spaces of functions, [48]. A weighted average

of persistence landscapes can be used to define a vectorization of persistence

information that can be fed to a neural network layer, [49].

Loss functions measure the distance between the obtained output and the

expected output. Different loss functions focus on different aspects of the out-

put. Persistence can be used to define loss functions measuring the distance

between the topology of the expected output and the obtained output, and

thus optimise the network parameters in order to preserve topological prop-

erties, for example, measuring the distance between PD [50, 51], or to penalise

topological complexity of the output, [52].

4.2 Persistence on Set

In this section, we adapt the framework defined in [5] onGraph to the category

Set. We will denote as Set a subcategory of the usual set category, in which

the only allowed morphisms are monomorphisms. With this choice, all the

(ℝ, ≤)-indexed diagrams correspond, up to isomorphisms, to filtrations of

sets. Given a set -, a filtration of subsets can be defined as the sublevel set of a

filtering function 5 : - → ℝ. We will denote the pair set, filtering function as

(-, 5 ). Notice that such filtrations aremonic diagrams, introduced in definition

2.2.4.



64 4 Persistence pooling

Definition 4.2.1Generalized
persistence
functions,

gp-function
generator

Assume that a correspondence ? is given, which assigns to each
monic (ℝ, ≤)-indexed diagram � in a category C a categorical persistence function
?� on (ℝ, ≤), such that ?� = ?�′ for �′ naturally isomorphic to �. All the resulting
categorical persistence functions ?� are called generalised persistence functions

(or shortly gp-functions) in C. The map ? is called a gp-function generator.

Let us consider a feature map � : 2
- → {CAD4, 5 0;B4} defined for all sets -.

We say that . ⊂ - is an �-set if �(.) = CAD4. Denote with -D the sublevel set

5 −1(−∞, D]. We say that . ⊂ - is an �-set at level F if it is an �-set of -F .

Definition 4.2.2Steady set,
ranging set

Call . ⊂ - a steady �-set (or simply an s-�-set) at (D, E)
((D, E) ∈ Δ+) if it is an �-set for all levels F such that D ≤ F ≤ E. We call - a
ranging �-set (or simply an r-�-set) at (D, E) if there exist levelsF ≤ D andF′ ≥ E
at which it is an �-set.

Let (�(-, 5 )(D, E) be the set of s-�-sets at (D, E) and let '�(-, 5 )(D, E) be the set of
r-�-sets at (D, E).

Let � be a feature defined on every set -. Consider the pair (-, 5 ) composed

by a set - and a filtering function 5 . We will say that the triplet (-, 5 , �) is
admissible if both |(�(-, 5 )(D, E)| and |'�(-, 5 )(D, E)| are finite for all (D, E) ∈ Δ+.
This condition is obviously satisfied by triplets containing finite sets.

Proposition 4.2.1 Consider an admissible triplet (-, 5 , �). Then the functions
�(-, 5 ) which assigns to (D, E) ∈ Δ+ the number |(�(-, 5 )(D, E)| and *(-, 5 ) which
assigns to (D, E) ∈ Δ+ the number |'�(-, 5 )(D, E)| are generalized persistence func-
tions.

The proof works similarly to [[5], Prop 1,2].

As gp-functions are not always stable,we introduce a condition that guarantees

stability (see theorem 4.2.2).

Definition 4.2.3Balanced
gp-function

Let ? be a gp-function generator in Set. Then the map ?

and the resulting gp-functions are said to be balanced if, for any two filtered
sets (-′, 5 ′) and (-′′, 5 ′′) with associated gp-functions ?(-′, 5 ′), ?(-′′, 5 ′′), the fol-
lowing condition holds. If an isomorphism # : -′ → -′′ exists such that
supG∈-′ | 5 ′(G) − 5 ′′

(
#(G)

)
| ≤ ℎ, ℎ > 0, then for all (D, E) ∈ Δ+ the inequality

?(-′, 5 ′)(D − ℎ, E + ℎ) ≤ ?(-′′, 5 ′′)(D, E) holds.
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Let (-′, 5 ′), (-′′, 5 ′′) be as above. Consider also the set � of all possible iso-

morphisms between -′ and -′′. We can define the following distance among

filtered sets.

Definition 4.2.4 Natural pseu-
dodistance

The natural pseudodistance of (-′, 5 ′) and (-′′, 5 ′′) is

�
(
(-′, 5 ′), (-′′, 5 ′′)

)
=

{
+∞ if � = ∅
inf)∈� supG∈-′ | 5 (G) − 6

(
)(G)

)
| otherwise

As in [5], it is possible to prove the following stability result.

Theorem 4.2.2 (Stability) Let ? be a balanced gp-functions generator in Set and
(-′, 5 ′), (-′′, 5 ′′) be any two filtered sets; then

3
(
�( 5 ′), �( 5 ′′)

)
≤ �

(
(-′, 5 ′), (-′′, 5 ′′)

)
where 3 is the bottleneck distance defined in definition 2.2.7 and� are the persistence
diagrams associated to the gp-functions ?(-′, 5 ′) and ?(-′′, 5 ′′).

4.3 Image operator

In this section, we present a novel operator for the analysis of images based

on the concept of steady sets, see definition 4.2.2. We will use this operator in

section 4.4 to define a novel pooling layer. Let us consider a grayscale image �.

This image can be represented as a ℝ<×=
matrix, whose entries correspond to

the pixel values. Pixel values naturally define a filtration on the image.

This operator is based on the notion of steady set introduced in definition 4.2.2.

The featuremap used in such operator dealswith each pixel individually. Since

images are finite sets, every feature map we choose leads to an admissible

triplet.

Definition 4.3.1 Neighbour setLet : ∈ ℕ. We define the neighbour set of a pixel x = (G, H) ∈ �
of size : to be

#:(x) = {x′ = (G′, H′) : G′ = G + B, H′ = H + C , B , C ∈ [−:, :]}
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Definition 4.3.2 Let <, =, : ∈ ℕ be such that |#:(x)| ≥ = > < for any pixel
x ∈ �. We say that a pixel x ∈ � is active at level ; ∈ ℝ if the following conditions
are satisfied:

1. |#:(x) ∩ 5 −1([−∞, ;])| ≥ <
2. |#:(x) ∩ 5 −1([−∞, ;])| ≤ =.

This operator considers a pixel active at time C, with respect to the filtration

induced by the pixels values, if at least< and less than = pixels in its neighbour

set have a value smaller than C. Thus a single pixel can be activated only one

time along the filtration.

Given an image �, the function �� that associates to the pair (D, E) the number

of pixels that are steady sets at (D, E) is a generalized persistence function.

Moreover,

Theorem 4.3.1 The function �� is balanced.

In this framework, we consider as isomorphic only images with the same

number of rows and columns. An isomorphism # : � → � associates to each

entry (8 , 9) in the image � the entry (8 , 9) in �.

Proof. Consider two isomorphic images � and � and the corresponding filtering

functions 5� and 5� such that supx | 5�(x)− 5�(x)| ≤ ℎ for ℎ > 0. Consider a pixel

x that is active in � between levels D− ℎ and E+ ℎ. This is equivalent to say that

|#:(x) ∩ 5 −1

�
([−∞, D − ℎ])| ≥ < and |#:(x) ∩ 5 −1

�
([−∞, E + ℎ)]| ≤ =. We need

to show that |#:(x) ∩ 5 −1

�
([−∞, D])| ≥ < and |#:(x) ∩ 5 −1

�
([−∞, E])| ≤ =. Let

y ∈ #:(x) be a pixel such that y ∈ 5 −1

�
([−∞, D − ℎ]). Since | 5�(y) − 5�(y)| ≤ ℎ

we have that y ∈ 5 −1

�
([−∞, D]), and y ∈ 5 −1

�
([−∞, D′]) for D′ ≥ D. For the same

reason if z ∈ #:(x) is such that z ∉ 5 −1

�
([−∞, E + ℎ]), then z ∉ 5 −1

�
([−∞, E]),

and z ∉ 5 −1

�
([−∞, E′]) for E′ ≤ E. So all the pixels y ∈ 5 −1

�
([−∞, D − ℎ]) are

also in 5 −1

�
([−∞, D]) and all the pixels z ∉ 5 −1

�
([−∞, E + ℎ]) do not belong to

5 −1

�
([−∞, E]). Thus |#:(x) ∩ 5 −1

�
([−∞, D])| ≥ |#:(x) ∩ 5 −1

�
([−∞, D − ℎ])| ≥ <

and |#:(x) ∩ 5 −1

�
([−∞, E])| ≤ |#:(x) ∩ 5 −1

�
([−∞, E + ℎ])| ≤ =, and the pixel x

is active in � for all the levels between D and E.

As an image can be thought as the grid-like sampling of a smooth function

5 : ℝ2 → ℝ, it is possible to consider its gradient, which represents the local

directional change of intensity in the image. Thus, it is possible to use the norm
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of the gradient to identify the borders of objects inside an image. The proposed

strategy behaves similarly to the gradient, enhancing the signal of the pixels

which are close to a discontinuity in the image.

For example, consider a discontinuity inside the image. A discontinuity can be

defined as a big change of intensity in the image, and thus there will be two

regions, onewith low and onewith high intensity. Consider now a pixel x close

to such discontinuity. Then, the neighbour set #:(x) contains pixels from both

regions. Assume that the number of pixels from the lower region that belong

to #:(x) is <1. By setting < < <1 < =, the pixel x will be active for a time that

is proportional to the change of intensity, and the value associated to G by our

operator will be high.

Figures 4.3, 4.4 depict examples of how such a operator behaves on images.

There are some effects to notice, related to the choice of the parameters :, <, =.

Let us start considering the effect of the choice of the filter size :. Consider a

discontinuity inside an image. To detect such a discontinuity, the neighbour set

of the pixel have to contain at least <1 > < pixels from the lower intensity and

at least =1 > = pixels from the higher intensity. Thus, to activate and deactivate

a pixel close to this discontinuity, the size of the filter has to be large enough

to include enough pixels from both intensities. For this reason, as we can see

in figure 4.4, as the parameter : increases, the borders detected are thicker

and the details blurrier. On the other side, the choice of the parameters < and

= reflects on the kind of features we can detect. For example, by choosing <

and = too small or too high we may identify only the corners of objects, while

by setting them to be near  /2, we may loose certain certain angular borders,

see panels a-d) in figure 4.3. This shows how this filter depends on the ratio

between the number of high and low intensity pixels <1 and =1. One way to

overcome such an effect can be to choose the parameters < and = to be far

apart and center them around the value  /2, as in figure 4.4. Notice, moreover,

that as < and = get closer, the details preserved are lesser.

In figure 4.3, panels e-h) we report the effects of the filter when in presence

of different intensities in a controlled environment. We normalized the image,

in such a way that the brighter square has intensity 1, the darker square has

intensity 0.5 and the background 0. The edges found by the filter have different

lifetimes and thus different intensities. Notice that the whole border of the

darker square have the same gray level, despite the fact that one part is shared

with the brighter square and the other is shared with the black background.

This phenomenon is due to the fact that the difference between intensities, and
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e) Original

a) Original b) k=6, m=2, n=10 c) k=6, m=79, n=91 d) k=6, m=160, n=168

f)  k=2, m=6, n=19 g) Persistence diagram

1

0.5

0
0

0.5 1

d

b

h) Different areas

Figure 4.3: The effects of the operator introduced in definition 4.3.2 in some controlled scenar-

ios. Panels a-d) show the effects of different choices of the parameters<, =, and the dependence

of the filter on the ratio between the number of high and low intensity pixels <1 and =1. Recall

that to activate a pixel we need< < <1 < =. If we choose< and = to be small, we need a small

<1 to activate a pixel, and we can detect only edges with unbalanced ratios as corners, b). As a

reflection of this scenario, the same happens with high values of< and =, see panel d). Setting
< and = close to  /2 we detect edges where the ratio is close to 1, for example flat borders,

while the corners are not detected, c). The second row depicts an example of how lifetime may

not be sufficient to encode all the information provided by the filter. Let us consider two objects

(1 of intensity 0.5 and (2 of intensity 1 overlapping inside an image, e). Although lifetimes

allow to identify the edges of the squares, f), they fail to distinguish all the 6 regions identified

by the persistence diagram, g). By considering also the birth time in the analysis it is possible

to overcome this issue, h).

thus the lifetime, is equal to 0.5 in both cases. It is still possible to distinguish the

difference between the two parts by considering not only the lifetime, but also

the birth timing. As highlighted by the persistence diagram, panel o), the filter

can identify six regions, and not only three as the lifetime does. Considering

also the birth times it is possible to recover all this information, obtaining the

partition depicted in panel h).

Figure 4.5 compares the proposed method with other state-of-the-art edge

detection methods, namely Canny and Sobel edge detection, in presence of

salt and pepper noise. The experiments were performed on the noisy image

and on the image preprocessed using a median filter. Panel a) reports the

performances in terms of peak signal-to-noise ratio (PSNR) and mean squared

error (MSE) of the different algorithms. Panel b) and c) show some sample

images from the two experiments. In the first experiment we wanted to test

the stability of the algorithms in presence of noise. We used each algorithm to

identify the edges of the original Lena image, obtaining for each of them its
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k=3, m=14, n=36

Original k=1, m=2, n=7 k=1, m=3, n=6 k=2, m=6, n=14

k=2, m=10, n=16 k=3, m=18, n=32 k=3, m=22, n=28

k=4, m=26, n=56 k=4, m=30, n=52 k=4, m=34, n=48 k=4, m=38, n=44

Figure 4.4: The effect of the operator introduced in definition 4.3.2 on the Lena image.

own ground truth (GT), reported in the first row of panel b). We added salt

and pepper noise to the Lena image, with noise levels between 5% and 50%.

For each noise level we compared the edges found by each algorithm with the

edges detected on the original image, computing PSNR and MSE. The second

and third rows in panel b) show the results when in presence of noise levels

20% and 40%. From panel b) it is possible to notice that the proposed method

guarantees higher stability to noise, alsowithout preprocessing. This empirical

analysis is supported by the quantitative measures reported in panel a), first

row.

In the second experiment we wanted to test not only the stability to noise

perturbations, but also the ability to detect the actual edges present in the

image. In this experiment we took as ground truth edges the pixels whose

gradient was not zero. Panel c) in figure 4.5 shows the results on the different

algorithms in presence of noise levels 20% and 40%. As in the previous ex-

periment, Canny and Sobel without preprocessing lead to noisy images, while

with some preprocessing it is possible to clearly recover the original edges,

despite the presence of some artifacts. Notice that the proposed filter detects

the real edges without the need of any preprocessing. The second row of panel

a) depicts the quantitative performances of the algorithms, when compared to

the GT edges. Notice how, without noise, all the algorithms obtain compara-
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ble results, both in terms of PSNR and MSE, while in presence of noise the

persistence based methods outperform the competitors.

Remark 4.3.1 Let ? be the probability of a pixel of being a pepper pixel

and @ be the probability of being a salt pixel. Suppose, moreover, that the

thresholds < and = and the filter size  = (2: + 1)2 are fixed. Denote with

" and # respectively the number of pepper and salt pixels covered by the

filter. Then the probability of" > < is

ℙ(" > <) = 1 −
<∑
8=1

(
 

8

)
? 8(1 − ?) −8 .

and of # >  − = is

ℙ(# >  − =) = 1 −
( −=)∑
8=1

(
 

8

)
@ 8(1 − @) −8 .

Thus, having an estimate of the noise levels ? and @, [53, 54], it is possible to

have an estimate of the performances of the operator, and thus to optimize

the parameters in order to achieve the desired results.
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Figure 4.5: We compare the proposed persistence based filter with Canny and Sobel edge

detection algorithms. Panel a) reports a quantitative study of the performances of the different

algorithms, both with or without preprocessing through median filter. The first row in panels

b) contain the original image and the ground truth images for each algorithm. The second and

the third rows in panel b) and the two rows in panel c) show the edges detected in presence of

salt and pepper noise, respectively with levels 20% and 40%.
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4.4 Persistence pooling

As mentioned above, the most used pooling operators suffer of some draw-

backs that may undermine their performances in terms of accuracy and of in-

formation preservation. A possible way to overcome such issues is to integrate

learnable filters in the pooling operation. This approach has been successfully

used in [41], [40], where convolutional filters have been used to reduce the di-

mension of the input dataset. In this section we present a pooling layer, based

on the operator described in section 4.3.

The persistence transform

The main idea of the proposed method is to transform the initial patch by

associating a new value to each pixel in the domain. It is necessary to define

the hyperparameters, i.e. parameters that are not learnable and thus do not

change during the training, <, =, : ∈ ℕ following the notation introduced in

definition 4.3.2. According to these parameters, the operator can be defined as

in definition 4.3.2, and for each pixel activation and deactivation times can be

computed. By taking the difference between these two timing, it is possible to

compute the persistence of each pixel. The output is obtained by substituting

each pixel value with the correspondent persistence.

In order to preserve the size of the original image, it is necessary to define a

padding of proper size around the image. This operation is necessary in order

to extract the filter of the right size around each pixel, also at the boundary of

the image.Algorithm 1presents the pseudo-code for computing the persistence

transform of the input image.

The pooling operator

Input data in CNNs are usually four-dimensional batches of images of fixed

size, where each image is a three-dimensional matrix, whose dimensions cor-

respond to height, width and number of channels. Through convolutional

operations, the height and width of an image are preserved, thus the input of

a pooling layer will be a four-dimensional matrix. Like the max-pooling layer,
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Algorithm 1 Persistence transform of an image �

1: Input two dimensional image �, parameters :, <, =

2: Output transformed image )

3: �?03 = pad_image(�,:) # create a frame of : pixels around �

4: ) = zeros(size(�)) # matrix that will contain the transformed image

5: for pixel 8 , 9 do
6: #8 9 = compute the set of neighbors of the pixel 8 , 9 in � using �?03
7: �8 9 = flatten #8 9

8: �8 9 = sort �8 9
9: 1 = �8 9[<] # compute the activation time

10: 3 = �8 9[=] # compute the deactivation time

11: )(8 , 9) = 3−1 # assign the persistence value to the correspondent output

pixel

12: end for

the proposed layer treats each channel individually as a two-dimensional im-

age, not taking advantage of the possible relations between different channels

as in [40].

To perform the pooling, we consider a channel of the input image and divide

it into patches %8 9 of size (Gpatch, Hpatch), as in standard pooling layers. Then

we associate to each patch %8 9 its persistence transform, %)8 9 , as defined in

subsection 4.4. As in convolution operations, it is necessary to introduce a set

of learnable weights, , of the same size of each %)8 9 . The (8 , 9)−th pixel of the

output image is obtained by using the weights in, to compute the weighted

average of %)8 9 . In practice, for each channel : in the input, a set of weights,:

is needed. The output $ is then computed as:

$:89 =
∑
AB

%):89AB,:AB .

Since the persistence transform has to preserve the size of the input image, it

is necessary to add a padding operation. This can be done in different ways. A

possible choice is to pad each patch %8 9 just before computing its persistence

transform, as in algorithm 1, obtaining patches of size (Gpatch + 2:, Hpatch + 2:).
In the applications proposed below, wemade another choice.We pad the input

channel with a frame of size :. Then the patches %8 9 were directly extracted

with shape (Gpatch+ 2:, Hpatch+ 2:). In this way, the artificial insertion of pixels

affects only the pixels at the boundary of the image, while for the internal ones

the information provided is the one of the original image. See algorithm 2.
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Algorithm 2 Pooling Layer

1: Input three dimensional image �, parameters :, <, =, weights,

2: Output the pooled image %>>;

3: �?03 = pad_image(�,:) # create a frame of : pixels around each channel of �

4: % = extract the patches of the image

5: ) = compute the persistence transform of each patch

6: $ = compute the weighted sum of each transformed patch with weights

,

4.5 Computational experiments

In this section we present some experiments that were performed in order to

test the proposed layer, trying to highlight the differences with the already

existing methods.

Datasets

The datasets used to perform these experiments are MNIST, [55], Fashion-

MNIST, [56], and CIFAR-10, [57]. The MNIST dataset is made of grayscale

images of hand-written digits of size 28 × 28 × 1. The dataset is composed of

70000 images, 60000 for training and 10000 for testing. The Fashion-MNIST

dataset is made of grayscale images of ten classes of clothes of size 28× 28× 1.

The dataset is composed of 70000 images, 60000 for training and 10000 for

testing. The CIFAR-10 dataset is made of RGB images of ten classes of animals

and transportations of size 32×32×3. The dataset is composed by 60000 images,

50000 for training and 10000 for testing.

Architectures

The architectures chosen for the experiments are simple, but efficient in order

to highlight the main differences between the proposed persistence pooling

layer and the traditional ones. Figure 4.6 depicts the two architectures used in

the experiments with theMNIST and Fashion-MNIST datasets. For the CIFAR-

10 experiments the architectures differ only for the height and width of the

layers before the flattening.

The first one is a simple architecture, where first the input image is down-

sampled via a pooling layer, and then the last two dense layers perform the
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Convolution Pooling Convolution Dense
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First architecture

Second architecture

Figure 4.6: The two architecture used in the experiments.

classification. This architecture is used to compare the downsampling perfor-

mances of the different layers. The second architecture is composed by two

convolutional layers separated by a pooling one, and finally two dense layers

return the output. This architecture is used to compare the different pooling

layers in a more standard scenario, including convolutional layers. Computa-

tional limitation dictated the choice of a small model, but such architecture

still guarantees a fair comparison between the different pooling layers. The

loss function used is the sparse categorical crossentropy provided by the Keras

library, see [58]. The networks are trained with batches of size 32 and for the

optimization the Adam algorithm has been used, see [59], with learning rate

� = 34 − 4. The number of epochs is set to 100, but the effective number is

smaller due to early stopping, [60], which ends the training if the validation

error increase for : consequent steps, in order to avoid overfitting.

Results

In the experiments we tested the two architectures presented in subsection

4.5 on the three datasets presented in 4.5. For each architecture we compared

the proposed persistence pooling layer with two states of the art layers: the

max pooling and the LEAP defined in [41]. Moreover, we tried to combine
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the proposed pooling layer with the max-pooling, considering the weighted

average of the two layers.

Table 4.1 shows the performances of the aforementioned architectures in each

experiment in terms of accuracy, i.e. the ratio between the number of correct

guesses and the total number of predictions. The first architecture was devel-

oped to highlight how the different layers on the input dataset downsampling

task. The absence of convolutional layers penalizes the max-pooling layer, be-

cause the downsampling results rough. The performances of the other layers

are similar on the Fashion-MNIST dataset, while on the other datasets the

proposed layer outperform the others.

The experiments performed on the second architecture shows that the pro-

posed layer perform better than the other state-of-the-art layers, max-pooling

and LEAP. Moreover on the MNIST dataset it is the one with the best per-

formances. On the more complex data provided by the Fashion MNIST and

the CIFAR10 datasets the combined layer outperform the others, improving

the accuracy of the max-pooling layer of 1.40% on the Fashion-MNIST and of

3.44% on the CIFAR10.

Deep learning outstanding results in term of accuracy come at the price of loss

of interpretability. The increasing complexity of deep learning models made it

almost impossible to understand the relation between inputs and outputs of a

neural network. To overcome such an issue, some methods trying to highlight

the most relevant features have been proposed. Grad-CAMs, specifically in-

troduced for CNN, use the gradient information flowing into the last layer of

the architecture to evaluate the relevance of each pixel in the input image. By

iterating this approach for each pixel, Grad-CAMs provide a heatmap showing

the significance of each pixel in the classification pipeline. This piece of infor-

mation is not only useful to understand what a model relies upon to solve a

given task, but it can be used to know which information your model relies on

not only gives a better understanding of its behaviour but can also assure that

the patterns used by the algorithm in the classification procedure are related to

the identified class. As an example, in [61] the authors trained the model using

a dataset where the horses’ images had the same tag in the background. The

heatmaps showed that the classification of horses only relied on the presence

of the tag and not on the actual presence of a horse in the image.

We used Grad-CAMs to better understand which features were considered

relevant by the different models in the classification procedure. Figures 4.7,
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max LEAP PL PML

First arc. MNIST 0.8905 0.9238 0.9472 0.9087

Second arc. MNIST 0.9886 0.9848 0.9908 0.9880

First arc. FMNIST 0.7978 0.8385 0.8424 0.8435
Second arc. FMNIST 0.8845 0.8776 0.8930 0.8985
First arc. CIFAR-10 0.3226 0.3291 0.4185 0.3869

Second arc. CIFAR-10 0.6145 0.5217 0.6355 0.6499

Table 4.1: The ac-

curacy for the three

datasets and the

two architectures

dataset

4.8, 4.9 depict the Grad-CAMs on some of the data used in the training of

the models, comparing which features are more relevant for each model. It is

interesting to notice howGrad-CAMs coming from the persistence pooling and

themax pooling focus on different parts of the image and, expecially onMNIST

dataset, they sometimes result complementary. This phenomenon shows how

the novel layer and max pooling take advantage of different features of the

image, suggesting that a clever interaction between them can lead to more

accurate results.
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c) Max poolinga) Pers pooling b) Pers + Max pooling d) LEAP

Figure 4.7: Grad-CAMs on the MNIST dataset. The first three rows show the Grad-CAMs on the digit 1, while the

second three the Grad-CAMs on 7.
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c) Max poolinga) Pers pooling b) Pers + Max pooling d) LEAP

Figure 4.8: Grad-CAMs on the Fashion-MNIST dataset. The first three rows show the Grad-CAMs on the class sandal,
while the second three the Grad-CAMs on the class bag.
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a) Original image b) Pers pooling c) Pers+Max pooling d) Max pooling e) LEAP

Figure 4.9: Grad-CAMs on the CIFAR10 dataset. The first row shows the Grad-CAMs on a deer image, the second on a

cat and the third on a boat.
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4.6 Conclusions

In this chapter, we analyze some effects of the categorical persistence intro-

duced in [3], [5] in the image processing field. In section 4.2 we extended the

steady and ranging concept introduced in [5] to the category Set. In section 4.3,

we introduced a new operator, based on the notion of steady set, that enhances

the signal of the pixels around the boundary of an object. We provided some

examples of its effects on a test image and showed that its performances are

stable with respect to the addition of salt and pepper noise to the image. More-

over, we provided a probabilistic framework that optimizes the parameters

defining the operator in order to avoid noise artefacts.

In section 4.4, we embedded such an operator in deep convolutional neural

networks, by defining a novel pooling layer. This pooling layer consists in the

following main steps: the patches subdivision, the application of the persis-

tence transform, defined using the new operator, to each patch and the final

weighted average of the transformed values. As the pooling layers introduced

in [41], [40] this layer contains a set of learnable weights, allowing to find

the optimal downsampling. In section 4.5, we presented some experiments,

comparing the performances of the proposed layer with some of the other

state-of-the-art pooling layers. The comparison was performed on the task of

classification, using two simple architectures. In the experiments, we tested

the proposed layer, a mixed layer obtained as the weighted average of the

proposed and the max-pooling layers, the max-pooling and the LEAP pool-

ing. These experiments showed that the signal enhancing provided by the

persistence transform highlight the relevant features, and that including the

proposed layer increases the accuracy of the model. In fact, the best results

were obtained with the persistence pooling layer on the MNIST dataset and

with the mixed layer on the other datasets.

Future works could be to test the efficiency of the proposed layer in other

frameworks, like generative models, or to use this layer not as a pooling layer,

but as a simplified convolutional layer, as done for the LEAP layer in [41].

Another topic could be to extend the generalized persistence approach to

other kinds of data, like graphs, studying operators that could be used in

graph convolutional neural networks.





Conclusions 5
Persistent homology is a useful tool in tacklingmany problems in data analysis,

providing an original perspective on of the structure of the data and, with

persistence diagrams, an easy way to summarize and visualize the results

of such analysis. For years, the classical approach followed in formalizing

and applying persistence was to associate a filtration of topological spaces

to the data, usually spaces of simplicial complexes, and then to study how

topological features changed alongwith the filtration. This approach presented

some categorical limitations, as highlighted in [3, 4], in the compulsory use of

topological spaces and homological functors. In [3], the authors provided an

original approach to persistence theory, extending the persistence framework

to a more general categorical setting. This method allows working directly in

the category where the data belong, allowing one to take advantage of features

that could not be studied with standard persistence theory, see [4], [5].

In this thesis, we analyzed how a broader formalization of persistence can be

integrated and adapted to machine learning and data analysis. In chapter 2 we

collected some basic notions of category theory. Moreover, from [3, 4][5], we

recalled some results concerning the novel framework that would be useful in

the remaining part of the thesis.

In chapter 3 we firstly addressed the problem of finding functions that can be

used as rank functions on the category of graphs. In this analysis, we showed

how many of the tested functions fail some of the requirements, leaving us

with only two rank functions, namely the size and the order of the graph.

In the following sections, we used the approach introduced in [4] to study

graphs properties through weakly directed posets. We analyzed connectivity

features in directed graphs, highlighting the differences between the different

notions of connected components. The last part of the chapter was devoted to

the analysis of how strongly connected components distributes as we change

the orientation over a chosen underlying graph.

In chapter 4, after a brief recall of the basic concepts of deep learning, we ex-

tended the notions of steady and ranging sets introduced in [5] to the category

Set. The notion of steady set was used to define a new operator on images,

whose effect is to enhance the signal of the pixels that are close to a discontinu-

ity. We showed with some experiments the effects of such an operator on a test



84 5 Conclusions

image. Moreover, the performances of this operator are not strongly affected

by salt and pepper noise, and it is possible to find an optimal parameter setting

in order to avoid noise artefacts. Another advantage of this operator is that it

is possible to use it in neural networks. In the second part of the chapter, we

showed how this operator can be embedded in a pooling layer. Standard pool-

ing layers rely only on simple features of the data analyzed, e.g. the maximum

or the average. In [40] and [41] the authors attempted to use more information,

allowing thenetwork to learn theoptimal downsampling. Thepersistencepool-

ing layer introduced not only allows to optimize the downsampling through

a set of learnable parameters but also performs a transformation of the input

signal that enhance some relevant features. In the last part of the chapter, we

reported some examples showing the performances of the proposed layer on

the task of image classification and comparing it with other state-of-the-art

pooling layers. These experiments showed that the transformation performed

by the proposed layer is a good choice as downsampling step; in fact, this layer

outperformed the other state-of-the-art methods tested in terms of accuracy.
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