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INTRODUCTION 

Carotid endarterectomy (CEA) is the treatment of choice for the prevention of 

stroke in patients affected with symptomatic and/or high-grade carotid stenosis 1,2,3. 

However, controversies persist regarding the optimal surgical technique to reduce 

perioperative complications and improve clinical outcome.  

The “eversion” CEA (e-CEA) was originally described in 1959 4 and involves 

transection of the distal common carotid artery (CCA) and plaque removal by turning 

inside out both the internal (ICA) and the external carotid artery (ECA) (Figure 1a). 

However, this technique may not allow a full visualization of the distal end point of the 

endarterectomy. As a consequence, its wide acceptance in common surgical practice 

was reached only 30 years later with the introduction of a modified method 5 that entails 

the transection of the ICA at its origin at the carotid bulb and eversion of the ICA only 

over the atherosclerotic plaque (Figure 1b). The e-CEA is particularly useful in patients 

with some elongation with kinking or coiling of the ICA because it allows the 

correction of arterial redundancy performed by reanastomosing the ICA more 

proximally to the common carotid artery. Also, it is associated with reduced clamping 

times and low restenosis rates because sutures are placed at the widest part of the artery, 

and avoids the use of prosthetic material 10.  

A number of studies, including few randomized trials 6,7,8,9,10, have compared 

clinical results following e-CEA with those obtained with standard CEA (s-CEA), that 

is performed through a longitudinal arteriotomy of the ICA (Figure 2). No significant 

differences were found between the two modalities in terms of perioperative stroke, 

myocardial infarction or death, early carotid occlusion, local complications and carotid 

restenosis during follow-up. However, Mehta et al.11 reported an increased risk of 
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postoperative hypertension in patients submitted to e-CEA compared to those operated 

on with the s-CEA technique. The Authors attributed such phenomenon to a possible 

direct iatrogenic damage to the carotid sinus fibers occurring during dissection and 

exposure of the proximal ICA at the bulb and its oblique circumferential incision. 

Notably, postoperative hemodynamic instability in patients undergoing CEA is 

associated with increased cardiovascular morbidity and mortality 12,13. 

The long-term effect of e-CEA on carotid baroreceptors (CB) and on peripheral 

chemoreceptors (PC) located in the carotid bodies in close proximity to the former has 

never been previously investigated. Interestingly, recent studies on patients with 

histologically demonstrated complete carotid sinus denervation as a result of bilateral 

carotid body tumor resection (bCBTR), showed that in humans, in contrast to what 

observed in experimental models, the lack of CB is not completely compensated by 

aortic and cardiopulmonary baroreceptors 14. In particular, CB denervation results in a 

persistent decrease in vagal and sympathetic baroreflex sensitivity and an increase in 

blood pressure variability 15. These findings have practical implications also because 

reduced baroreceptors sensitivity has a prognostic relevance being associated with the 

occurrence of ventricular arrhythmias and sudden cardiac death in patients with 

myocardial infarction 16. Furthermore, bCBTR was found to be associated with a 

peripheral chemoreflex failure that entails the abolition of the ventilatory response to 

hypoxia 15. 

The aim of this study is to assess the long-term effect of e-CEA on arterial 

baroreflex and peripheral chemoreflex function in humans, as assessed in patients 

submitted to bilateral e-CEA to eliminate the background noise from contralateral 
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carotid sinus fibers. Also, we will investigate whether such patients may represent a 

human model of carotid sinus denervation. 

 

 

FIGURE 1a. The original eversion carotid endarterectomy. 
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FIGURE 1b. The modified version of eversion carotid endarterectomy employed in 

the study. 
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FIGURE 2. The standard technique for carotid endarterectomy with patch 

angioplasty. 
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METHODS 

A retrospective review was conducted on a prospectively compiled 

computerized database of 3128 CEAs performed on 2617 patients at our Center between 

January 2001 and March 2006.  During this period, a total of 292 patients who had 

bilateral carotid stenosis ≥70% at the time of the first admission underwent staged 

bilateral CEAs. Of these, 93 patients had staged bilateral e-CEAs, 126 staged bilateral s-

CEAs and 73 had different procedures on each carotid. 

CEAs were performed with either the eversion or the standard technique with 

routine Dacron patching in all cases regardless of ICA diameter. Preoperative diagnostic 

work-up and anesthetic and surgical management were previously described in detail 17.  

The study inclusion criteria were bilateral CEA with the same technique on both 

sides and an uneventful postoperative course after both procedures. Exclusion criteria 

were: age >70 years, diabetes mellitus, chronic pulmonary disease, symptomatic 

ischemic cardiac disease or medical therapy with b-blockers, cardiac arrhythmia, 

permanent neurologic deficits or an abnormal preoperative cerebral CT scan, carotid 

restenosis and previous neck or chest surgery or irradiation.  

Perioperative systolic blood pressure (SBP) and heart rate (HR) values up to 24 

hours after surgery were retrospectively collected by means of charts review. 

Quantification of hemodynamic variability was calculated according to Sternbach et 

al.18 as a fraction of the preoperative baseline value and expressed as a percentage 

according to the following equation: (HR or SBP max - HRor SBP min)/HR or SBP 

baseline x 100. 

Selected patients were divided in two groups based on operative technique, i.e. 

bilateral e-CEA or bilateral s-CEA, and underwent noninvasive assessment of 
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baroreflex and chemoreflex function after discontinuation of antihypertensive 

medication and restrain from smoking and from alcohol and caffeine assumption for 48 

hours. Young and aged-matched healthy subjects were also recruited and submitted to 

the same tests under the same conditions to provide reference values for comparison 

with patients. Health was judged by standard clinical evaluation, ad hoc carotid duplex 

scanning, EKG and medical history.  

Internal Review Board approval and patients informed consent were obtained. 

 

Surgical technique 11 

In the s-CEA, after systemic heparinization, the common (CCA), external 

(ECA), and internal ICA carotid arteries are clamped and a longitudinal arteriotomy is 

made in the CCA and extended to the ICA, distal to the end of the atherosclerotic 

plaque. The endarterectomy is then performed, followed by distal intimal endpoint 

tacking sutures whenever indicated, and closure of the arteriotomy using a syntethic or 

biological patch. In the e-CEA, the CCA, ECA, and ICA are exposed as in the standard 

technique. However, the proximal ICA at the carotid bifurcation is mobilized 

circumferentially to facilitate its transection from the CCA at the carotid bulb. During 

this approach, carotid sinus nerve fibers derived from the glossopharyngeal nerve and 

innervating the carotid body within the adventitia of the proximal ICA are divided. 

After systemic heparinization and clamping of the carotid vessels, the ICA is obliquely 

transected at the carotid bulb and everted over the atherosclerotic plaque. After 

completion of the endarterectomy, the everted ICA is brought down to its normal 

anatomic position and reanastomosed to the distal CCA or more proximally in case of 

kinking or coiling of the ICA. 
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Cardiovascular reflex tests  

Heart rate reflexes occur within seconds of a perturbation, and beat-to-beat heart 

rate analysis comes from analysis of EKG. Standard precordial placements of the 

recording electrodes were used. Patients were assessed by 4 tests: Lying-to-standing 

(LS) Orthostatic hypotension (OH) Deep breathing (DB), and  Valsalva Maneuver 

(VM). Investigations were performed in a room with an ambient temperature of 22°C to 

24°C. 

Lying-to-standing. Studying the heart rate changes to standing (30:15 ratio was 

calculated dividing R-R interval at the 30th beat by the R-R interval at the 15th beat) is 

indicated in testing the integrity of parasympathetic cholinergic cardiovagal function. In 

to gravitational changes from upright posture, standing induces an exercise reflex and 

mechanical squeeze on both venous capacitance and arterial resistance vessels. These 

changes stimulate the baroreceptors, and there ensues a pronounced neurally mediated 

reflex, which decreases sympathectic outflow, releases vasoconstrictor tone, decreases 

total peripheral resistance by up to 40% and drops blood pressure by up to 20 mmHg. 

These changes last 6-8 s. 

Orthostatic hypotension. Studying blood pressure changes to standing is indicated in 

testing the integrity of the sympathetic adrenergic function. Orthostatic hypotension is a 

reduction of systolic blood pressure of at least 20 mm Hg or diastolic blood pressure. 

Blood pressure was measured with the patient supine, and after at 30, 60, 90, 120 and 

180 s after standing following 3 min of recumbency. 

Deep breathing. Studying heart rate variation with respirations is indicated in testing 

the integrity of the parasympathetic cholinergic (cardiovagal) function.  Inspiration 

increases heart rate, and expiration decreases it. The patient breathed deeply at six 
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breaths per min for 1 min, while the heart rate was recorded by EKG. The maximum 

and minimum R-R intervals during each breathing cycle were measured and converted 

to beats per min. Each test was repeated three times and the mean value was calculated. 

The mean difference between maximum  and minimum heart rate was calculated. 

Valsalva maneuver. Testing  heart rate changes during the Valsalva  maneuver 

(Valsalva ratio) is indicated in testing the integrity of parasympathetic cholinergic 

function. The patient blowed through a mouthpiece attacked to a manometer, 

maintaining 40 mmHg pressure for 15 s under continuous EKG monitoring. The 

Valsalva ratio was calculated dividing the longest R-R interval after strain release by the 

shortest R-R interval during the strain period. 

 

Spectral analysis of heart rate and blood pressure variability  

Cardiovascular signals were acquired by a Micromed Myoquick SystemPLUS 4 

channel digital polygraph (Micromed s.r.l., Mogliano Veneto (TV), Italy). EKG was 

recorded with two electrodes placed on the patient’s thorax, breathing pattern (PNG) 

was recorded by a piezoelectric thoracometer and finger arterial blood pressure (BP) 

was continuously monitored by a Ohmeda Finapres 2300 system (model 5, TNO-

BioMedical Instrumentation, Ohmeda, Englewood (CO), USA) connected to the 

Micromed system. For each patient, EKG, PNG and BP were concurrently recorded 

during two different epochs: (1) resting (e.g. the patient lying horizontal on a bed); (2) 

standing (e.g. the patient changed to the orthostatic  position). Each epoch lasted at least 

5 min.  

Acquisition parameters were Band pass prefilter: 0.7-70 Hz (EKG channel), DC-

70 Hz (PNG and BP channels), sampling frequency: 256 Hz, coding: 12 bits. 



13  

A purposely-developed software (Heartscope, ver.1.6, A.M.P.S. llc, New York, 

USA) was used to identify the peak of R wave on EKG, the systolic arterial blood 

pressure (SAP), bursts of Muscle Sympathetic Nerve Activity (MSNA), and respiratory 

rate (RESP). The software constructs automatically time series of RR intervals, SAP, 

MSNA and RESP, with low operator-analysis interaction. Spontaneous variability of 

RR interval, SAP, MSNA and RESP were characterized by means of power spectral 

analysis using an autoregressive algorithm on all recorded parameters 19. In short, from 

beat-to-beat variability series of adequate length and stationarity (usually 250-350 

beats), the software calculated simple statistics and the best autoregressive estimate of 

the power spectral density. The powers and frequencies of the low (0.03-0.14 Hz) and 

the high (0.15-0.5 Hz) frequency spectral components (LF and HF, respectively), 

expressed in normalized units, were computed as the percent ratio of the absolute power 

of either HF or LF to the total power, less the Very Low Frequency (VLF) component, 

according to the following formula PLF[nu]=[(PLF[ms]
2)/(VARRR[ms]

2-VLF[ms]
2)]x100, where 

PLF[nu]=LF powers in normalized unit; VAR=tot variance; and VLF=very low frequency 

component <0.03 Hz; similar normalization was performed for HF powers. LF/HF of 

RR interval variability power ratio was also computed 20.  The total power (TP) of RR 

and SAP variabilities were also calculated 19.  

Cross spectral analysis was used to determine whether there was a stable 

relationship between RR and SAP series (significance coherence > 0.5). Cross-spectral 

analysis was performed by means of bivariate autoregressive identification 21 and was 

used to compute a squared coherence function, K2 and phase relationship, Ph. K2 was 

defined as the square cross-spectrum amplitude normalized by the product of the spectra 

of the two signals. Ph was defined as the phase of the cross-spectrum. K2 is a measure 



14  

of the statistical link between RR and SAP series at any given frequency and ranges 

between 1 (perfect correlation) and 0 (perfect uncorrelation). Ph is a measure of the 

phase shift between two oscillations at the same frequency detected in both RR and 

SAP series (negative values indicate that RR series lags behind SAP series at that 

specific frequency). In this study, coherence values 0.5 were considered significant 22. 

LFK2 and HFK2 were derived as the maximum of K2 inside the LF and HF bands, 

respectively. LFPh and HFPh were defined as the phase in correspondence of LFK2 and 

HFK2, respectively.  

The baroreflex gain was evaluated on the SAP and RR spontaneous variabilities. 

The following methods were used: 1) the sequence method that evaluates in the plane 

(RR, SAP) the gain of short spontaneous sequences characterized by simultaneous 

increase or decrease of both variables (indicated as BRS in the following); 2) the 

spectral method that calculates the baroreflex sensitivity as the average of the sum of the 

squared root of the ratio between the RR and SAP powers in both the LF and the HF 

bands (indicated as α index) 23; 3) the XAR method, that is the exogenous 

autoregressive causal linear parametric model 24; 4) the gains of the autoregressive 

transfer function between RR and SAP variabilities, computed at LF and HF. This 

computation provides critical values describing the stability of the SAP-RR relationship, 

as squared coherence (K2) and phase (Ph). LFPh is usually more negative (i.e. SAP 

precedes RR) than HFPh 23. 

Reference groups (Table 1) of young healthy subjects (young controls, n=15, age 

33+6, Body Mass Index=22.88+2.95 Kg/m2) and aged healthy subjects (old controls, 

n=21, age 66+10, Body Mass Index= 27.65+5.32 Kg/m2) were also recruited and 
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submitted to the same tests under the same conditions to provide reference values for 

comparison with patients. 

Statistical analysis: 

Significance of differences was estimated with GLM Mixed Model, with post 

hoc contrasts. Additional tests included, as appropriate, 1W ANOVA and T-test. 

Computations were performed with a commercial statistical package SPSS/PC+ 13.0 

(SPSS Inc, Chicago, Ill) for Windows (Microsoft, Redmond, Wash). 

 

      
Peripheral chemoreflex function 

The ventilatory response to oxygen is the measurement of the increase or 

decrease in the minute ventilation ( Ý V E ) caused by breathing various concentrations of 

oxygen under isocapnic conditions (PaCO2 = 40 mmHg). The change in ventilation may 

be recorded in relation to changes in PaO2 or haemoglobin oxygen saturation as 

monitored by pulse oximetry. This test investigates peripheral chemoreflex sensitivity 

which may be altered in a number of conditions and may be associated with a selective 

potentiation of autonomic and hemodynamic responses. 

The ventilatory response to hypoxia was assessed in 21 patients at least 3 months 

after undergoing carotid artery endarterectomy by patch (n=10) or eversion (n=11) 

technique. The control group consisted of 12 healthy volunteers. Classic rebreathing 

tests were performed at sea level at 21°C and 60% relative humidity. The subjects were 

asked to refrain from smoking and drinking caffeinated beverages for at least 2 h before 

the experiment. The ventilatory response to decreasing concentrations of oxygen under 

isocapnic conditions was measured using an open circuit technique . The subjects were 

seated comfortably breathing through pneumotachograph and non-rebreathing valve 
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(Hans Rudolph) connected to a 50 l Douglas bag containing a gas mixture of 23% 

oxygen, 4% carbon dioxide and balance nitrogen regulated by separate rotameters. Tidal 

volume, breathing frequency, fractional inspired and end-tidal concentrations of oxygen 

and carbon dioxide were monitored breath by breath using a metabolic cart (Vmax, 

Sensor Medics, Yorba Linda California, USA). Oxygen saturation was continuously 

monitored via a pulse oximeter (9600 Nonin, Philadelphia, USA) connected to the 

metabolic cart via an analog/digital interface permitting a breath by breath record of 

oxygen saturation and heart rate. After allowing the subjects to reach a steady state, 

baseline measurements were taken followed by a standard step test was performed. 

Stepwise decrements in oxygen concentrations (from 20% to 10%) were performed 

allowing the subjects to reach steady state at every concentration. Carbon dioxide was 

added as necessary in order to maintain a steady end-tidal carbon dioxide concentration. 

The chemoreflex sensitivity to hypoxia was obtained from the slopes of the linear 

regression of minute ventilation vs Sao2%. 
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RESULTS 

A total of 29 patients (16 males, age 62.4±8.0 years) were enrolled. Twenty-

eight were studied retrospectively and one was evaluated prospectively and 

longitudinally. Overall, 13 patients had undergone bilateral e-CEA (44.8%) and 16 

bilateral s-CEA (55.2%) with a mean interval between the procedures of 62±56 days. 

Hemodynamic variability was not different between the groups (HR variability (%): 

30.7±16.8 vs 25.4±16.9, p=0.4; SBP variability (%): 36.2±13.5 vs 30.6±13.7, p=0.3).  

After a mean interval of 24±17 months from the last CEA, sixteen patients 

(55.2%) completed both baroreflex and chemoreflex function tests. Thirteen patients 

(44.8%), due to lack of compliance or fatigue, underwent only either baroreflex (n=8) or 

chemoreflex function evaluation (n=5). 

 

Cardiovascular reflex tests  

No patient showed signs or symptoms of autonomic dysfunction, including 

labile hypertension, tachycardia, palpitations, headache, inappropriate diaphoresis, 

pallor or flushing. The results of standard cardiovascular autonomic test are shown in 

Figure 3. Among  the e-CEA patients, 3 had a DB pathologic test, whereas in the s-CEA 

group, 5 had a DB pathologic test, and only one of them had also a pathologic LS test. 

Overall, 8 patients had a DB test below normal values, but all of them were older than 

50 years, and had a VR within normal limits. Hence, the DB results must be considered 

biased by the patients age. In conclusion, our results showed no evidence of autonomic 

dysfunction in any of the enrolled patients. 
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FIGURE 3. Results of standard cardiovascular autonomic test in the e-CEA (Δ) and in 

the s-CEA (ο) groups. Normal values for each test are represented on white background. 

 

 
 
 
LS, Lying-to-Standing; DB, Deep Breathing; VR, Valsalva Ratio; PH, Postural 
(Orthostatic) Hypotension. 
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Spectral analysis of heart rate and blood pressure variability  

Rest 

Table 2A provides summary data on short term cardiovascular variabilities. 

Monovariate data showed marked, and expected, differences between young and old 

controls in absolute values of RR variability such as RRσ2, and, as a corollary, absolute 

powers of LFRR and HFRR. No difference was observed in normalized powers of RR 

variability. Old controls and patients did not differ.  

Systolic arterial pressure was greater in old controls, as compared to young 

controls, but, again, patients did not differ from old controls. Likewise (Table 2B) 

bivariate data expressing different aspects of spontaneous baroreflex regulations of heart 

period, demonstrated a marked age related impairment, as documented by reductions in 

the frequency domain α index, in the time domain BRS and in model derived XAR, as 

well as in the LF and HF gains. Notably, within the obvious reduction in baroreflex 

functions observed in patients, a slight, but significantly higher value was observed in e-

CEA, as compared to s-CEA. 

Regarding differences between groups on bivariate parameters, a depressed K2 

function, both at LF and HF, should be pointed out in all controls (similar to patients) as 

compared to young controls. 

Active Stand 

As expected, in young and old controls standing up was associated to reduced 

RR and to a shift of the RR spectral profile in favor of the LF component. Likewise, an 

increase was also observed in LFSAP. Overall these changes suggest sympathetic 

activation. 
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SAP remained unchanged and, notably, was not reduced upon standing in 

patients, who, however, did not manifest. Significant increases in spectral markers of 

sympathetic excitation (Fig. R1) of note is that, also in standing (Table 3B) residual 

baroreflex performance appeared better maintained in e-CEA (as suggested by greater 

values of BRS and LF gain). Also in standing K2 tended to be more elevated in young 

controls. 
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Peripheral chemoreflex function  

The control group was slightly younger than the patch group (mean age 46.4 ± 

18.3 years compared with 54,6 ± 11.7 and 61.8 ± 8.2 for the eversion and patch groups 

respectively, (P=0.03 compared with patch, oneway ANOVA with LSD correction for 

multiple comparisons). There was also a male predominance in the control group (males 

=10) compared with both patch (n=7) and eversion (n=5). 

In all subjects ventilation ( Ý V E ) and oximetry data fitted a linear regression model 

with r values > 0.8. Oneway analysis of variance showed a significantly higher slope 

both for ∆VE/∆SaO2 in controls compared with both patient groups which were not 

different from each other (-1.37 ± 0.33 compared with -0.33±0.08 and -0.29 ±0.13 

l/min/%SaO2, p<0.05, Fig.). Similar results were observed for and ∆VE/∆PetO2 (-0.20 ± 

0.1 versus -0.01 ± 0.0 and -0.07 ± 0.02 l/min/mmHg, p<0.05). 

A regression model using treatment, age, baseline FiCO2 and minimum SaO2 

achieved showed only treatment as a significant factor in explaining the variance in 

minute ventilation (R2= 25%). 
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FIGURE 4. Slopes of the linear regression of minute ventilation vs Sao2%. 
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FIGURE 5. Slopes of the linear regression of minute ventilation vs Pet02 mmHg. 
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Discussion 
 

Baroreflex and chemoreflex mechanisms play an important part in the dynamic 

adjustments of circulation and ventilation. Carotid sinus baroreceptors lie in close 

proximity to the peripheral chemoreceptors of the carotid bodies, and the afferent 

signals from the former and the latter travel up the carotid sinus nerve to join with the 

glossopharyngeal nerve towards the brainstem 15. 

In the late 1920s, Hering and Koch were the first to recognize the reflex nature 

of changes in heart rate and blood pressure evoked by external massage of the neck 15. 

The afferents were tracked as nerve endings at the carotid bifurcation 25,26. The arterial 

baroreflex buffers abrupt transients of blood pressure and originates from stretch 

sensitive receptors in the arterial wall of the carotid sinus and the aortic arch and large 

vessels of the thorax 27,28. Afferent fibers from carotid sinus baroreceptors join the 

glossopharyngeal nerve (ninth cranial nerve) and project to the nucleus tractus solitarii 

in the dorsal medulla, which in turn projects to efferent cardiovascular neurones in the 

medulla. In addition to carotid baroreceptors, stretch-sensitive baroreceptors are also 

located in the aortic arch, heart and large pulmonary vessels. The extra-carotid  

baroreceptors transmit their afferent information along with the vagal nerves to the same 

brain stem nuclei. The efferent limbs of the baroreflex loop consist of sympathetic and 

parasympathetic fibres to the heart as well as to blood vessels. 

Adjustment of respiration in response to alterations in levels of oxygen, carbon 

dioxide and hydrogen ions in the body fluids are mediated by a complex interplay 

between central and peripheral chemoreceptors 15,29. The peripheral arterial 

chemoreceptors, located in the carotid and aortic bodies, are responsible for the 

immediate ventilatory and arterial pressure increments during acute hypoxia.  Apart 
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from hypoxaemia, peripheral chemoreceptors play a minor role in the sensing of 

changes in arterial carbon dioxide tension (PCO2) and pH. Carotid and aortic bodies are 

supplied with sensory fibres, which course through carotid sinus/glossopharyngeal and 

vagus nerve respectively towards medullary centres, including the nucleus tractus 

solitarii 30 Central chemoreceptive areas located at the rostral ventrolateral medulla 

respond to changes in the hydrogen ion concentration in the interstitial fluid in the brain 

and are chiefly responsible for ventilatory and circulatory adjustments during 

hypercapnia and chronic disturbances of acid–base balance. 

 
Chronic failure of the baroreflex due to bilateral carotid denervation was firstly 

described in 1993 as a separate clinical syndrome, characterized by a limited blood 

pressure buffering capacity against excessive rises or falls in response to emotional and 

physical stimuli 31 . The underlying causes of baroreflex failure included the familial 

paraganglioma syndrome, neck surgery or radiation therapy for pharyngeal carcinoma, 

bilateral lesions of the nucleus tractus solitarii, and surgical section of the 

glossopharyngeal nerves; in two patients the cause was unknown 31. Symptoms and 

signs included headache, palpitations, diaphoresis and pale flushing. They bear a strong 

resemblance to those of a phaeochromocytoma. In baroreflex failure, desinhibition of 

central activation of efferent sympathetic pathways arises from the absence of tonic 

inhibitory baroreceptor input to the vasomotor centres of the brainstem 32. Apart from 

volatile hypertension, which is most common, baroreflex failure has a broad spectrum 

of other clinical presentations including predominant hypotension, orthostatic 

tachycardia and intolerance and malignant vagotonia with severe bradycardia, 

depending on the extent of baroreceptor denervation and concomitant destruction of 
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autonomic structures 33,34. Centrally acting sympatholytic agents like clonidine may 

reduce the frequency and severity of the attacks. 

 
Bilateral denervation or removal of carotid body chemoreceptors mainly derived 

from studies in small numbers of patients who underwent bilateral resection of healthy 

carotid bodies as an experimental treatment of bronchial asthma or chronic obstructive 

pulmonary disease 35.  All the observations obtained in these settings, however, are in 

fact biased by the possible confounding chronic pulmonary disease, which itself alters 

chemoreflex function 36. More recently, peripheral chemoreflex function was eventually 

assessed in patients who had undergone bilateral carotid body tumour resection and 

were free of pulmonary disease 37. 

Overall, peripheral chemoreflex failure was found to cause a permanent 

abolition of ventilatory responsiveness to hypoxia under normocapnic conditions. A 

small residual hypoxic response may be present during simultaneous hypercapnia. In 

addition, the condition causes a 20–30% decrease in CO2 sensitivity. Long-term resting 

hypoventilation and hypercapnia may occur. The impairment of chemoreflex function is 

less severe following unilateral than after bilateral carotid body resection. These 

observations emphasize the importance of carotid relative to aortic chemoreceptor 

function in humans. The aortic bodies have a minor role in the modulation of 

spontaneous respiratory activity, but may generate a discernible response when their 

gain is amplified by hypercapnia 15.  

 
Baroreflex and chemoreflex function after CEA have been previously 

investigated, but the eversion technique has never been addressed. Also, conflicting 

results have been reported in the literature due to patient selection and methods for 
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baroreflex testing. Wade et al.38 studied in 8 patients before and after bilateral CEA 

showing no baroreflex consistent change as a result of surgery. On the other hand, 

peripheral chemoreflex function, which depends on the integrity of the same afferent 

innervation as carotid baroreceptors, was markedly impaired by bilateral CEA. In 

contrast to these findings, Vanmaele et al. 39did not observed any loss of chemoreceptor 

function after bilateral CEA. As far as unilateral CEA is concerned, Tyden et al 40 

showed an intraoperative increase in baroreflex sensitivity following removal of the 

atherosclerotic plaque. Hirschl et al. 41 reported a differential effect of CE on baroreflex 

function in hyper- and normotensive subjects, with sensitivity increased in 

hypertensives.  

 
Suggested mechanisms of attenuated baroreflex sensitivity by CEA include 

trauma to the carotid sinus baroreceptors or to the carotid sinus nerve 42 and a decrease 

in wall distensibility due to surgery-induced periarterial fibrosis 43. On the other hand, 

removal of an atherosclerotic plaque may have a beneficial effect on baroreflex function 

by means of changes in the mechanical properties of the carotid sinus arterial wall and 

reintegration of baroreceptor areas into circulatory regulation 42 . Another important 

determinant of the net effect of unilateral CE on functional baroreflex integrity is the 

compensatory ability of the residual aortic and contralateral carotid baroreceptors. 

Compensation by residual baroreceptors probably accounts for the fact that severe and 

acute baroreflex failure resolves within days to weeks in most cases 31,14. After 

unilateral CE, compensation by the contralateral carotid baroreceptors may be limited 

by atherosclerotic changes of the nonoperated carotid artery. In atherosclerosis, 

distensibility of the carotid sinus vessel wall and sensitivity of baroreceptors are 

reduced 44,45. 
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In order to eliminate the background noise from contralateral carotid sinus 

fibers, in order study we employed a model of bilateral eversion CEA. Even though this 

was the purpose, it is noteworthy that in our experience patients with bilateral 

significant carotid stenosis at the time of the first hospital admission and scheduled for 

staged bilateral CEA account for 11.1% of the total population submitted to CEA 17.  

Also, disease progression in contralateral asymptomatic ICAs after CEA is relatively 

common in patients with a diseased ICA, with a risk at 10 years of undergoing a 

contralateral CEA of 8.8%. 46. 

 Overall, we demonstrated that bilateral e-CEA does not imply a carotid sinus 

denervation. All patients were asymptomatic and had a residual baroreflex and 

chemoreflex function,  in contrast to those submitted to bilateral carotid body tumor 

resection 14. As a result of some expected degree of iatrogenic damage, such 

performance was lower than that of controls. Interestingly though, baroreflex 

performance appeared better maintained in e-CEA than in s-CEA. This may be related 

to the changes in the elastic properties of the carotid sinus vascular wall, as the patch is 

more rigid than the endarterectomized carotid wall that remains in the e-CEA. Finally, 

these data have relevant clinical implication in the assessment and treatment of the 

frequent hemodynamic disturbances associated with carotid angioplasty stenting 47, a 

procedure that has yet to be demonstrated as safe and effective like CEA. 
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Table 1 - Study population       
        
    Young controls Old controls e-CEA s-CEA ANOVA 

Number   15 21 8 11    

Age Year 33+6 66+10 62+11 65+6 0.001 *  †  ‡ 

Gender m-f 8-7 11-10 2-6 7-4  

BMI Kg/m2 22.88+2.95 27.88+4.70 28.05+2.69 27.55+4.27  

SAP mmHg 119+14 140+16 153+18 143+13 0.001 *  †  ‡ 

DAP mmHg 70+9 73+7 86+7 82+9 0.001 †  ‡  ††  ‡‡

Heart Rate b/min 62.4+9.5 61.4+9.8 70.9+11.8 66.9+9.2    

       
Abbreviations: BMI=Body Max Index, SAP=Systolic Arterial Pressure, DAP=Diastolic Arterial Pressure.  

Significant differences: YOUNG controls vs OLD controls * , YOUNG controls vs e-CEA † , YOUNG controls vs s-CEA ‡ , OLD controls 

vs e-CEA †† , OLD controls vs s-CEA ‡‡ , e-CEA vs s-CEA §. 

 
 



Table 2A - Summary statistics of RR and SAP variability at REST          
               

  Measure units 
 YOUNG controls      OLD controls e-CEA s-CEA ANOVA 

Average SEM Average SEM Average  SEM Average  SEM    

RR msec 981.51+36.75 996.35 + 36.71 946.18 + 45.08 855.03 + 36.89  

RR σ2 msec2 3770.24+1038.90 850.59 + 152.36 823.49 + 240.93 616.11 + 160.73 0.001 *  †  ‡ 

RR LFa msec2 1460.26+624.88 120.74 + 18.35 174.82 + 48.86 102.09 + 37.86 0.012 *  †  ‡ 

RR HFa msec2 785.45+126.34 262.72 + 100.33 208.16 + 74.57 115.17 + 36.63 0.001 *  †  ‡ 

RR LFnu nu 53.89+3.87 43.20 + 5.74 41.89 + 8.81 41.82 + 7.75  

RR HFnu nu 43.68+3.72 48.39 + 5.84 49.46 + 9.05 48.32 + 8.27  

RR LF/HF - 1.51+0.26 2.02 + 0.59 1.75 + 0.88 1.75 + 0.60  

SAP mmHg 117.31+3.35 137.22 + 4.46 142.61 + 3.59 146.82 + 6.10 0.001 *  †  ‡ 

SAP σ2 msec2 38.43+8.64 30.17 + 5.28 20.28 + 7.04 26.15 + 4.62  

SAP LFa mmHg2 9.60+3.26 4.29 + 0.99 3.62 + 1.05 2.92 + 0.94  

SAP HFa mmHg2 2.78+0.69 4.61 + 1.53 2.90 + 1.04 4.80 + 1.62  

RESP HF mHz 258.07+10.25 263.33 + 10.40 258.38 + 14.30 289.45 + 13.96    

               
Abbreviations: SEM=Standard Error, σ2=variance, LF=Low Frequency, HF=High Frequency, a=Absolute Units, nu=Normalized Unit, SAP=Systolic 

Arterial Pressure, RESP=Respiration. 

Significant differences: YOUNG controls vs OLD controls * , YOUNG controls vs e-CEA † , YOUNG controls vs s-CEA ‡ , OLD controls vs e-CEA †† , 

OLD controls vs s-CEA ‡‡ , e-CEA vs s-CEA §.  



 
 

Table 2B - Summary statistics of bivariate analysis of RR and SAP variability at REST       
               

  Measure units 
    Normali Young       Normali OLD e-CEA s-CEA ANOVA 

Average SEM Average SEM Average  SEM Average  SEM    

Alpha msec/mmHg 17.08+1.67 8.04+0.81 8.93 + 1.66 6.41 + 1.42 0.001 *  †  ‡ 

BRS msec/mmHg 19.93+2.45 7.75+1.24 13.85 + 5.14 4.93 + 1.15 0.001 *  ‡  § 

XAR msec/mmHg 5.36+0.85 1.99+0.98 2.00 + 0.94 0.55 + 0.34 0.008 *  †  ‡ 

RR-SAP LF mHz 101.91+5.01 71.59+5.46 57.49 + 7.59 83.67 + 12.67 0.002 *  †  § 

RR-SAP LF K2 - 0.75+0.04 0.54+0.04 0.54 + 0.07 0.58 + 0.06 0.004 *  †  ‡ 

RR-SAP LF Ph rad -0.95+0.13 -1.14+0.30 -2.09 + 0.14 -1.10 + 0.40  

RR-SAP HF mHz 231.37+15.72 270.69+12.35 259.16 + 14.95 285.21 + 16.79  

RR-SAP HF K2 - 0.85+0.03 0.73+0.05 0.79 + 0.07 0.93 + 0.02 0.018 *  ‡‡ 

RR-SAP HF Ph rad -0.31+0.11 0.61+0.21 -0.17 + 0.42 0.16 + 0.14 0.009 *  †† 

RR-SAP Gain (LF) msec/mmHg 12.809+1.422 5.221+1.026 6.07 + 1.24 5.22 + 1.43 0.001 *  †  ‡ 

RR-SAP Gain (HF) msec/mmHg 20.064+2.512 8.384+1.739 9.66 + 3.16 5.70 + 1.42 0.001 *  †  ‡ 

               
Abbreviations: SEM=Standard Error, Alpha=frequency domain index of baroreflex sensitivity, BRS=Baroreceptor Reflex Sensitivity, XAR=Causal Baroreflex 

Index, SAP=Systolic Arterial Pressure, LF=Low Frequency, HF=High Frequency, K2=Squared Coherence, Ph=Phase. 

Significant differences: YOUNG controls vs OLD controls * , YOUNG controls vs e-CEA † , YOUNG controls vs s-CEA ‡ , OLD controls vs e-CEA †† , OLD 

controls vs s-CEA ‡‡ , e-CEA vs s-CEA §. 



Table 3A - Summary statistics of RR and SAP variability at STAND          
               

  Measure units 
 YOUNG controls      OLD controls e-CEA s-CEA          ANOVA 

Average SEM Average SEM Average  SEM Average  SEM    

RR msec 793.66+34.12 922.86 + 36.48 900.38 + 41.27 801.21 + 44.15 0.037 *  ‡‡ 

RR σ2 msec2 3148.41+524.86 717.78 + 107.59 770.59 + 142.76 438.87 + 101.24 0.001 *  †  ‡ 

RR LFa msec2 1533.34+380.23 300.92 + 84.98 151.60 + 60.82 102.38 + 50.81 0.001 *  †  ‡ 

RR HFa msec2 131.85+31.30 59.36 + 15.31 84.10 + 20.60 56.17 + 21.92  

RR LFnu nu 85.46+3.74 67.50 + 4.91 46.69 + 6.97 48.15 + 9.46 0.001 *  †  ‡  ††  ‡‡  

RR HFnu nu 11.09+2.47 21.92 + 4.27 43.80 + 5.90 40.51 + 9.45 0.001 †  ‡  ††  ‡‡ 

RR LF/HF - 18.00+4.80 8.17 + 2.45 1.50 + 0.48 7.30 + 5.21 0.047 *  † 

SAP mmHg 113.28+5.45 138.87 + 7.00 148.84 + 4.38 150.65 + 4.77 0.001 *  †  ‡ 

SAP σ2 msec2 153.82+81.27 44.46 + 5.00 57.00 + 23.75 51.25 + 11.92  

SAP LFa mmHg2 28.43+4.17 18.03 + 4.00 3.10 + 1.08 5.41 + 1.90 0.001 *  †  ‡  ††  ‡‡ 

SAP HFa mmHg2 4.62+0.85 4.11 + 0.62 7.43 + 5.19 6.15 + 1.22   

RESP HF mHz 0.27+0.01 0.28 + 0.01 0.26 + 0.01 0.31 + 0.02     

               
Abbreviations: SEM=Standard Error, σ2=variance, LF=Low Frequency, HF=High Frequency, a=Absolute Units, nu=Normalized Unit, SAP=Systolic Arterial

Pressure, RESP=Respiration. 

Significant differences: YOUNG controls vs OLD controls * , YOUNG controls vs e-CEA † , YOUNG controls vs s-CEA ‡ , OLD controls vs e-CEA †† , OLD 

controls vs s-CEA ‡‡ , e-CEA vs s-CEA §. 



 



 
 

Table 3B - Summary statistics of bivariate analysis of RR and SAP variability at STAND       
               

  Measure units 
    Normali Young       Normali OLD e-CEA s-CEA ANOVA 

Average SEM Average SEM Average  SEM Average  SEM    

Alpha msec/mmHg 6.44+0.78 4.83+1.00 6.47 + 1.36 3.91 + 0.83   

BRS msec/mmHg 7.83+0.66 3.71+0.35 7.04 + 1.99 3.57 + 1.20 0.001 *   ‡  ††  § 

XAR msec/mmHg 3.77+0.59 2.14+0.99 2.01 + 1.52 0.61 + 0.22  

RR-SAP LF mHz 0.10+0.01 0.08+0.01 0.08 + 0.02 0.06 + 0.01 0.032 ‡ 

RR-SAP LF K2 - 0.80+0.04 0.67+0.04 0.50 + 0.07 0.50 + 0.04 0.001 *  †  ‡  ††  ‡‡ 

RR-SAP LF Ph rad -1.13+0.08 -1.05+0.31 -0.30 + 0.68 -1.78 + 0.28  

RR-SAP HF mHz 0.22+0.02 0.27+0.02 0.24 + 0.02 0.27 + 0.02  

RR-SAP HF K2 - 0.63+0.07 0.60+0.05 0.75 + 0.08 0.84 + 0.05 0.041 ‡  ‡‡ 

RR-SAP HF Ph rad -0.30+0.15 -0.03+0.29 -0.10 + 0.23 -0.14 + 0.23  

RR-SAP Gain (LF) msec/mmHg 6.53+0.53 4.04+0.75 5.85 + 1.79 2.39 + 0.48 0.01 *  ‡   § 

RR-SAP Gain (HF) msec/mmHg 5.47+0.82 3.49+0.79 5.40 + 1.38 3.20 + 1.11    

               
Abbreviations: SEM=Standard Error, Alpha=frequency domain index of baroreflex sensitivity, BRS=Baroreceptor Reflex Sensitivity, XAR=Causal Baroreflex

Index, SAP=Systolic Arterial Pressure, LF=Low Frequency, HF=High Frequency, K2=Squared Coherence, Ph=Phase. 

Significant differences: YOUNG controls vs OLD controls * , YOUNG controls vs e-CEA † , YOUNG controls vs s-CEA ‡ , OLD controls vs e-CEA †† , OLD 

controls vs s-CEA ‡‡ , e-CEA vs s-CEA §. 



FIG. R1 - Comparison of simple hemodynamics (HR, left; SAP, right) and power of selected spectral components (LFRR[nu], left; LFSAP, right) in 

young (Y) and old (O) controls, as well as in e-CEA (E) and S-CEA (P). Notice the lack of orthostatic hypotension in controls and in both 

groups of patients. 

Empty bars = Rest; stippled bars = Stand. 
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Figure R1 
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