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ABSTRACT

In this thesis we classify all finite irreducible modules over the conformal superalgebra K by means
of their correspondence with irreducible finite conformal modules over the annihilation superalgebra
associated with K. We obtain that degenerate Verma modules over the annihilation superalgebra
associated with K are part of infinite complexes and the number of these complexes is infinite;
we compute the homology of these complexes with techniques of spectral sequences and provide
an explicit realization of all irreducible quotients. We prove a technical result, stated by Boyallian,
Kac and Liberati, on singular vectors of degenerate Verma modules over the annihilation superal-
gebra associated with CKg. We start the computation of the homology of the diagram of infinite
complexes of degenerate Verma modules for C Kg found by Boyallian, Kac and Liberati.
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Introduction

In this thesis we study the finite irreducible representations over the conformal superalgebras K}
and CK(;

Finite simple conformal superalgebras were completely classified in [FK] and consist in the list:
Cur g, where g is a simple finite—dimensional Lie superalgebra, W, (n > 0), Sy, s, S, (n>2be0),
Kp(n > 0,n # 4), K}, CKg. The finite irreducible modules over the conformal superalgebras
Curg, Koy, Ky were studied in [CKI]. Boyallian, Kac, Liberati and Rudakov classified all finite
irreducible modules over the conformal superalgebras of type W and S in [BKLR]; Boyallian, Kac
and Liberati classified all finite irreducible modules over the conformal superalgebras of type Ky
in [BKLI1]. The classification of all finite irreducible modules over the conformal superalgebras
of type Ky, for N < 4, had been previously studied also by Cheng and Lam in [CL]. Finally a
classification of all finite irreducible modules over the conformal superalgebra C Ky was obtained
in [BKL2| and [MZ] with different approaches. For N = 4 the conformal superalgebra K, is not
simple; the derived algebra K is instead a simple conformal superalgebra.

A conformal superalgebra R is a left Zy—graded C[0]—module, endowed with C—bilinear prod-
ucts (a(yb), defined for all a,b € R and for all n > 0, that satisfy some properties (see Definition
. The products (a(n)b) are called n—products. It is possible to associate with a conformal
superalgebra R a Lie superalgebra as follows. We consider R = R[y,y~!], that is a left Zy—graded
C[d]—module, where d = 8 + dy. We give R a structure of conformal superalgebra with the defini-
tion of n—products starting from the n—products in R. We take the quotient R/éR, on which the
0—product is a Lie bracket; the Lie superalgebra R/ IR is denoted by Lie R. We call annihilation
superalgebra A(R) associated with R the subalgebra of Lie R generated by the monomials with
nonnegative powers of y. The annihilation superalgebra has a fundamental role since the study of
the finite modules over R reduces to the study of a class of modules over it, the so—called finite
conformal modules.

Given a Z—graded Lie superalgebra g and a g—module V', we call singular vectors of V the
vectors that are annihilated by g-¢; the set of singular vectors of V' is denoted by Sing V. Moreover
if F'is a g>o-module, we denote by Ind(F") the generalized Verma module U(g) ®(g.,) F'; that
is isomorphic, as a vector space, to U(g<o) ® F' via the Poincaré—Birkhoff—Witt Theorem. The
Z—grading of g induces a Z—grading on U(g<o) and Ind(F'). We will invert the sign of the degree,
so that we have a Z>¢—grading on U(g<o) and Ind(F). We will say that an element v € U(g<o)x
is homogeneous of degree k. Analogously an element m € U(g<o)r ® F' is homogeneous of degree
k. The study of irreducible finite conformal modules over the annihilation superalgebras associated
with the conformal superalgebras of type W, S, K is related to the study of singular vectors of the
generalized Verma modules:

Theorem 0.1 ([KR2],[CL]). Let g be the annihilation superalgebra associated with a confor-
mal superalgebra of type W, S, or K. Then:

1. if F' is an irreducible g>o—module of finite dimension, g-o acts trivially on it and Ind(F') has
a unique mazximal submodule;
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2. the map F — I(F), where I(F) is the quotient of Ind(F') with respect to its mazimal sub-
module, is a bijective correspondence between irreducible go—modules of finite dimension and
irreducible finite conformal g—modules;

3. the g—module Ind(F) is irreducible if and only if the go—module F' is irreducible and
Sing(Ind(F')) = Sing(F).

Let us recall the definition of the contact Lie superalgebra. Let A(N) be the Grassmann
superalgebra in the N odd indeterminates &1, ..., £x. Let ¢ be an even indeterminate and A(1, N) =
Clt,t7 1] ® A(N). We consider the Lie superalgebra of derivations of A(1, N):

N
W(1,N)= {D = a@,ﬁ—Zaﬁi | a,a; € /\(l,N)},
i=1
where 0; = % and 0; = é% for all i € {1,...,N}.

We consider the contact form w = dt — Zfi 1 &d&;. The contact Lie superalgebra K (1, N) is defined
as follows:
K(1,N)={D e W(1,N) | Dw = fpw for some fp € N(1,N)}.

It is possible to associate with the Lie superalgebra K (1, N) the conformal superalgebra Ky and
the annihilation superalgebra is A(Ky) = K(1, N)4, that is one of the simple infinite—dimensional
Lie superalgebras classified by Kac in [K2].

The annihilation superalgebra g := A(K}) associated with the simple conformal superalgebra K
is instead an extension of K(1,4); by a 1—dimensional center CC'.

On g we consider the standard grading, whose depth is 2. In the description of g we use that
K(1,4)4 is isomorphic to A(1,4);+ = C[t] ® A(4) via the isomorphism

AL 4) s — K(1,4)4

N
f =210+ (=V)PD Y (&0 f + 0 f) (& + D).
i=1

It follows that:
go = sly @ sly & Ct & CC = (ey, fu, hy) @ <€y, fys hy> e Ct ¢ CC,

where

o —&§183 — §284 — 16184 + 16283 o _ —&183 + &284 + 16184 + 18283

* 2 v 2
I = §183 + &a8a — 16184 + 16283 f = §183 — §284 + 16184 + 16283
r — 2 9 y 2 I
hy = —i&1&2 + 18384, hy = —i&1&2 — i&384,

t is a grading element in g and C' is a central element. We denote by g§° the semisimple part of gg.
We have that:

988 - <6x7 fx) hx> @ <€y) fy7 hy> = <x18x2,a:28x1,x1(9x1 - x281’2> @ <ylay27y28y17ylay1 - 3/28y2>-

We will identify the irreducible g§®—module of highest weight (m,n) with respect to h,, h, with
the space of homogeneous polynomials of degree m in the variables z1,x2, and degree n in the
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variables y1, y2.
The following isomorphism of gj*—modules holds:

g1 = (21, 22) ® (Y1, Y2),
§o + 181 <> T1y1, §o — &1 > Ty, —&u + 183 <> 11y, &4+ 163 <> Ty (1)

The space g_s is a gop—module of dimension 1 and we denote by O its generator —1/2.

Since Ind(F) = U(g<o) ® F, it follows that Ind(F') = C[0] ® A(4) ® F. Indeed, if we denote by
n; the image in U(g) of & € A(4), for all i € {1,2,3,4}, in U(g) we have that n? = ©, for all
i € {1,2,3,4}: since [§,&] = —1 in g, it follows that n;n; = —mm; — 1 in U(g). Motivated by (1)),
we will use the following notation

w11 = 12 + i1, W = N2 — N1, Wi2 = —N4 + 103, W21 = N4 + i13. (2)

Let F' be a finite—dimensional irreducible gg—module. We study the action of g on a generalized
Verma module Ind(F) using the so—called A—action of the elements in A(4) C g on Ind(F),
where the A—action of an element f € A(4) is defined as fi(g ® v) = > .5, ;‘.—f(tjf).(g ® v), for
g®v € Ind(F). We find an explicit form of the A—action and show in particular that the elements
(t7 f)j>4 act trivially on the elements g ® v with g € A(4), v € F.

The A—action has a fundamental role in the study of singular vectors since the property of a vector
m € Ind(F') of being singular can be rewritten in terms of conditions on the derivatives with respect
to A\ of the A—action. Using this action, we obtain the following classification of singular vectors
of the generalized Verma modules. We denote by u = (m,n, u, o) the highest weight of the
irreducible finite—dimensional gop—module F', written with respect to h, hy, t and C. We denote
by F(m,n, p, pic) the irreducible finite—dimensional go—module F' of highest weight u, when it is
necessary to specify the highest weight, analogously we denote by M (m,n, p, pe) the generalized
Verma module Ind(F') = U(g<o) ® F, with F irreducible finite—dimensional go—module of highest
weight u, when we need to specify the highest weight of F. We say that a vector m € Ind(F) is
a highest weight singular vector if it is a singular vector and it is annihilated by e, and e,. The
following results about singular vectors are presented also in [BC].

Theorem 0.2. Let F' be an irreducible finite—dimensional go—module, with highest weight . A
vector m € Ind(F') is a non trivial highest weight singular vector of degree 1 if and only if m is (up
to a scalar) one of the following vectors:

m+n m-—n
2 0 2

a: u=(m,n,— ) with m,n € Z>o,

- m, n,
Mig = W11 Q X1 Y15

b: = (m,n,1+ 252 —1 — 28 with m € Z~q, n € Z>o,
. 1
My = wo1 @ o71'y] — w1 @ " T2yl

m+n n—m

c: p=(m,n,2+ 15" 50 with m,n € Zo,

- m, n m—1 n m, n—1 m—1 n—1, .
Mic =W QT Y] —Wi2 QT Toy; — W QT Y, Y2+ wi @®xy "T2y; Y2;

d: p=(m,n, 145", 1+ mT'm), with m € Z>p, n € Zxo,

— m, n m, n—1
Mg =W ®xy Yy — W11 QT Yy Y2-
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Theorem 0.3. Let F' be an irreducible finite—dimensional go—module, with highest weight p. A
vector m € Ind(F") is a non trivial highest weight singular vector of degree 2 if and only if m is (up
to a scalar) one of the following vectors:

a: p=(0,n,1—5,—1—7%) withn € Zx,

— n.
mog = Wi11wW21 Q Yy ;

b: p=(m,0,1—5,1+ %) withm € Zxo,

— m.,
mop = W11W12 Q T ';

c: p=(m,0,2+ %, —5) withm € Z>1,

= -1 -2,.2,
Moe = Warwz1 ® 1" + (Wi1wae + warwiz) ® 1" X2 — wiwiz ® )" “x3;

d: p=(0,n,2+5%,5) withn € Z>1,
Maog = wawiz @ Yy — (wawil + worwiz) @ y?‘lya —wyiwa ® y?_ng-

Theorem 0.4. Let F' be an irreducible finite—dimensional go—module, with highest weight p. A
vector m € Ind(F') is a non trivial highest weight singular vector of degree 3 if and only if m is (up
to a scalar) one of the following vectors:
a p= (1701 gv _%);

M3 = W11W22wW21 @ T1 + WorwW12W11 @ T2;

M3y = Wi1Wrwi2 @ Y1 + Wwigw2wip @ Ya.

Moreover, there are no singular vectors of degree greater than 3.
Between two Verma modules M (m, n, ug, p.) and M (m, n, [ig, fic) there exists a morphism of g—modules
if and only if there exists a singular vector m of highest weight (m,n, uy, pe) in M (m, n, [y, fic)-
The morphism of g—modules is constructed as follows:

M(ma n, [it, :uc) — M(T%’ ﬁa /jta ﬁc)

’qu—)m

where v, is a highest weight vector in F(m,n, jit, pic). Since, as a g—module, M (m,n, ji, pic) is
generated by v, the morphism is completely determined.

Using the classification of singular vectors we find the sequences in Figure [I.1} we observe that
the diagram is similar to the one obtained for E(3,6) and E(3,8) (see [KR1],[KR2],[KR3],[KR4]).
Each point represents the generalized Verma module M (m,n, uq, tc), where (m,n, p, i) is deter-
mined by its position with respect to the axes m = 0,n = 0 and 4, . by the quadrant. The
arrows represent the morphisms of g—modules constructed as before. We study the realization of
irreducible modules. Due to Theorem we know that M (m,n, u, p1c) admits a unique maxi-
mal submodule and it is irreducible if and only if it does not contain nontrivial singular vectors.
Therefore, from Theorems (0.2}{0.3 it follows that M (m,n, ut, pic) is irreducible if (m, n, pe, pe)
is different from:

a) (m,n, —m;’", ME) with m,n € Zso,
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b) (m,n, 1+ 25", —1 — ™) with m,n € Zx>o,

c) (myn,2+ m;", 5 with m,n € Zso, (m,n) # (0,0),

d) (m,n,1+ 257,14+ m;”) with m,n € Z>o.

If (m,n, p, pic) is one of the weights in the previous list, we know that M (m,n, pu, i.) has a unique
maximal submodule. The purpose in this case is to realize the irreducible quotients.

By construction, if V : M (m,n, p, te) — M(m,n, [ig, fic) is a morphism, the kernel of V is the
maximal submodule of M (m,n, pu, i) since the quotient of the Verma module with respect to
KerV is isomorphic to Im V that is an irreducible module. If M (m,n, p, pic) is a Verma module
represented in Figure with (m, n, ug, 1e) # (0,0,0,0), (0,0,2,0), then there exist two morphisms
Vo M(m,n, pg, pe) — M(m,n, fig, fic) and v M (v, 1, fig, fie) — M (m,n, pg, pe) constructed as
before. If the sequence is exact in M (m,n, uy, tic), then KerV = ImV is the unique irreducible
submodule of M (m,n, ut, pie). In the points in which the sequence is not exact, we study the
quotient of Ker V with respect to Im V . Therefore we study the homology of the complexes using
spectral sequences, following [KR1]. We obtain the following result.

Theorem 0.5. The sequences in Figure are complexes and are exact in each module except
for M(0,0,0,0) and M(1,1,3,0). The spaces of homology in M(0,0,0,0) and M(1,1,3,0) are
isomorphic to the trivial representation.

We use Theorem in order to compute the size of the irreducible quotients I(m,n, ug, i) of
M (m,n, pt, pic). For a S(g_o)—module V', we define its size as (see [KRI]):

1
size(V) = Zrks(972) V.

Proposition 0.6. The size of the irreducible quotients I(m,n, us, i) takes the following values:

A) size(I(m,n, =24 m1)) = 2mn + m + n,

B) size(I(m,n,1+ 252 —1— ")) =2(m+1)(n—1)+n—14+3m+3+2=2mn+m+3n+2,

C) size(I(m,n, 2 +2,25™)) =2(m + 1)(n+ 1) + m+n+ 2 = 2mn + 3m + 3n + 4,

D) size(I(m,n,1+ 5™ 1+ ) = 2mn 4+ n + 3m + 2.

In [BKL2] the authors classified all singular vectors over the conformal superalgebra C' K, intro-
duced in [CK2], and therefore all finite irreducible modules over the conformal superalgebra C K.
In [MZ] the authors classify all irreducible modules of finite type over the conformal superalgebra
C'Kg using a different approach. In [BKL2] the classification of singular vectors of highest weight
of C'Kg is based on a technical lemma whose proof is missing. We know that the annihilation
superalgebra associated with C' Ky, that we denote by g, is a subalgebra of K(1,6), isomorphic to
the exceptional Lie superalgebra E(1,6) (see [BKL2],[CK3|,[CK2]). On g we consider the standard
grading. The space g is isomorphic to so(6) @ Ct. Following [BKL2|, we fix the Cartan subalgebra
of 50(6) spanned by the following elements:

Hy = —i&1&, Hy = —i&384, Hz = —1&58,

and we set hy := Hy — Hs, ho := Hy — Hs, hg := Hy 4+ Hs. Let A\ = niA + naXa + n3l3 be a
dominant weight, where the \;’s are the fundamental weights of s0(6) extended by \;(t) = 0. We
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use the notation F'(u, A) to denote the irreducible gop—module of highest weight A with respect to
50(6) and weight p; with respect to t. The space g_j is an irreducible go—module of dimension
6; g—o is an irreducible gop—module of dimension 1, we call © its generator —1/2. Let F' be an
irreducible gg—module of finite dimension; the Verma module Ind(F) = C[O] ® A(6) ® F. Indeed,
we denote by n; the image in U(g) of & € A(6), for all « € {1,2,3,4,5,6}. In U(g) we have that
n? = 0, for all i € {1,2,3,4,5,6}: since [§;,&] = —1 in g, it follows that mm; = —mim; — 1 in
U(g). Let I = (i1,...,ix) be an ordered subset of {1,2,3,4,5,6}; we use the notation n; = n;,...1;, -
For & € A(6) we indicate with &; its Hodge dual in A(6), i.e. the unique monomial such that
E1&r = E16983646586; we denote by 77 the image in U(g<o) of ;. Then we extend by linearity the
definition of Hodge dual to elements > ; aymr € U(g<o) and we set ©Fn; = OFnr. Let T be the
vector space isomorphism 7" : Ind(F') — Ind(F’) that is defined by T'(¢ ® v) = g®wv. It follows that,
for a vector m € Ind(F'), T'(m) can be written as:

N
T(m) = 3004 () )
k=0 I

The following technical lemma (Lemma 4.4 in [BKL2]) is used in [BKL2] to classify singular vectors.

Lemma 0.7. Let 1 € Ind(F) be a singular vector, such that T (1) is written as in (3). The degree
of m with respect to © is at most 2. Moreover, T'(m) has the following form:

T(m):@2<2m®v1,2> +®1< Zm@vm) +<Zm®v1,o>-

[1>5 11>3 [11=1

We prove this lemma with arguments analogous to the arguments used for Kj.
As before, there exists a morphism of g—modules between two Verma modules M (u¢, \) and
M (fi, \) if and only if there exists a singular vector 77 of highest weight (1, A) in M (Jig, A).
The morphism of g—modules is constructed as follows:

M(:ut’ >‘) — M(ﬁtv )‘)
Uy > 1

where v, is a highest weight vector of F'(u, A). Since, as a g—module, M (g, \) is generated
by v,, the morphism is completely determined. In [BKL2| such morphisms are represented as
in Figure the diagram is similar to the one obtained for E(5,10) (see [KR3], [R], [CC],
[CCK2]). Each point represents the generalized Verma module M (s, A), where the weight is
determined by the position with respect to the axes and the quadrant. The arrows represent the
morphisms of g—modules constructed as before. In [BKL2|] the irreducible quotients of Verma
modules are not explicitly realized. We begin the study of the homology of the complexes in
Figure We call M4(u,niA1 + n2Aa + n3X3) the modules represented in the first quadrant
in Figure Mp(pe,m1A\1 + n2da + ngAz) the modules represented in the second quadrant and
Me (g, mi A1 + naXa + ngAs) the modules represented in the third quadrant. We find an explicit
expression for morphisms in the first quadrant. We use arguments of spectral sequences to compute
the homology of the first quadrant and we use an argument of conformal duality (see [CCKI]) to
obtain the homology for the third quadrant. In particular we prove the following result.

Proposition 0.8. As a g—module, the homology space is 0 for the modules Ma(—n1 — 5, n1 1 +
n3Asg) if (n1,m3) # (0,0), is isomorphic to the trivial representation for M4(0,0). The homology
space is 0 for the modules Mc(n1 + % + 4,n1 1 + n2X2) if (n1,n2) = (0,0) or ny > 0 and it is
isomorphic to the trivial representation for Mo (5, A1).

We will compute the homology for Mp(us, n1A1 + n2da + n3A3) and Mo (% + 4,n2)2) in the
future.



Chapter 1

Preliminaries on conformal
superalgebras

We recall some notions on conformal superalgebras. For further details see [K1, Chapter 2], [DI,
[BKLR], [BKL1].

Let g be a Lie superalgebra; a formal distribution with coefficients in g, or equivalently a g—valued
formal distribution, in the indeterminate z is an expression of the following form:

a(z) = Z anz "L
nez

with a, € g for every n € Z. We denote the vector space of formal distributions with coefficients
in g in the indeterminate z by g[[z,27!]]. We denote by Res(a(z)) = ag the coefficient of 2!
of a(z). The vector space g[[z, 2 !]] has a natural structure of C[0,]—module. We define for all
a(z) € g[[z, 27Y]] its derivative:

0.a(z) = Z(—n — Dapz "2

neL

A formal distribution with coefficients in g in the indeterminates z and w is an expression of the
following form:

a(z,w) = Z ampz ™ T

mne”

with a,,, € g for every m,n € Z. We denote the vector space of formal distributions with
coefficients in g in the indeterminates z and w by g[[z, 27!, w, w™!]]. Given two formal distributions
a(z) € g[[z, 27Y]] and b(w) € g[[w,w™!]], we define the commutator [a(2), b(w)]:

021000 = [ S 3 b = 3l

nez meEZ m,ne”
Definition 1.1. Two formal distributions a(z),b(z) € g[[z,27!]] are called local if:
(z — w)N[a(2),b(w)] = 0 for some N > 0.

We call d—function the following formal distribution with coefficients in g in the indeterminates

z and w:
§(z—w)=2"" Z (%)n

See Corollary 2.2 in [K1] for the following equivalent condition of locality.

7



1. Preliminaries on conformal superalgebras

Proposition 1.2. Two formal distributions a(z),b(z) € g[[z, 2] are local if and only if [a(z), b(w)]
can be expressed as a finite sum of the form:

o(2), b)) = 3 alw) b)) 2 — ),
J
where the coefficients (a(w);b(w)) := Res.(z — w)[a(z),b(w)] are formal distributions in the

indeterminate w.

Definition 1.3 (Formal Distribution Superalgebra). Let g be a Lie superalgebra and F a family
of mutually local g—valued formal distributions in the indeterminate z. The pair (g, F) is called a
formal distribution superalgebra if the coefficients of all formal distributions in F span g.

We define the A—bracket between two formal distributions a(z), b(z) € g[[z, 27]] as the gener-
ating series of the (a(2)(;)b(2))’s:

N
gt

[a(2)ab(2)] =

320

(a(2))b(2))- (1.1)

Definition 1.4 (Conformal superalgebra). A conformal superalgebra R is aleft Zy—graded C[0]—module
endowed with a C—linear map, called A—bracket, R ® R — C[A\] ® R, a ® b+ [a)b], that satisfies
the following properties for all a, b, c € R:

(1) [Paxb] = —Maxbl, [axd] = O\ + 9)[axbl;
(2) [axb] = =(=1)P@PO)[b__sal;
(3) [anlbucl] = [[anblaspc] + (= 1)P PO b, [ard];

where p(a) denotes the parity of the clement a € R and p(da) = p(a) for all a € R.

We call n—products the coefficients (a(,)b) that appear in [axb] = ;- ’]\.—f(a(j)b) and give an

equivalent definition of conformal superalgebra.

Definition 1.5 (Conformal superalgebra). A conformal superalgebra R is a left Zy—graded C[0]—module
endowed with a C—bilinear product (a(,)b) : R® R — R, defined for every n > 0, that satisfies the
following properties for all a,b,c € R, m,n > 0:

(1) (amyb) =0, for n>0;
(2) ((0a)m)b) = —n(am-1)b);
(3) (agb) = (=P 32 (=18 (b y);
(4) (agm)(bm©) = X720 (7) (a(y D) man—s)€) + (=1)PDPO) (b (amyc));
where p(da) = p(a) for all a € R.
Using conditions (2) and (3) it is easy to show that for all a,b € R, n > 0:
(a(n)0b) = 9(a(n)b) + n(am—1)b).

Due to this relation and (2), the map 0 : R — R, a — 0Oa is a derivation with respect to the
0—product.



Remark 1.6. A formal distribution superalgebra, endowed with A—bracket (|1.1]), satisfies conditions
(1), (2), (3) of conformal superalgebras, for a proof see Proposition 2.3 in [K1].

We say that a conformal superalgebra R is finite if it is finitely generated as a C[0]—module.
An ideal I of R is a C[0]—submodule of R such that a,b € I for every a € R, b € I, n > 0.
A conformal superalgebra R is simple if it has no non-trivial ideals and the A—bracket is not
identically zero. We denote by R’ the derived subalgebra of R, i.e. the C—span of all n—products.

Definition 1.7. A module M over a conformal superalgebra R is a Zs—graded C[0]—module
endowed with C—linear maps R — End¢c M, a — a( ) defined for every n > 0, that satisfy the
following properties for all a,b € R, v € M, m,n > 0:

(1) a (n)v =0 for n>0;
(2) (8a)%)v = [8M,a%)]v = —naé‘fl_l)v;

(3) [ ( )7bé\7{)] Z] 0( )( (J)b)(m+n J)U

A module M is called finite if it is a finitely generated C[0]—module.

We can construct a conformal superalgebra starting from a formal distribution superalgebra (g, F).
Let F be the closure of F under all the n—products, 0, and linear combinations. By Dong’s Lemma,
F is still a family of mutually local distributions (see [KI]). It turns out that F is a conformal
superalgebra. We will refer to it as the conformal superalgebra associated with (g, F).
Let us recall the construction of the annihilation superalgebra associated with a conformal super-
algebra R. Let R = Rly,y™!], set p(y) = 0 and 9 = 9 + 9,. We define the following n—products
on R, for all a,b € R, f,g € Cly,y~ '], n > 0:

(afmbg) = D (agnish) <8{,

1l
JEL+ I

ﬁg
In particular if f = ¢y and g = y™ we have for all k£ > 0:
m n m m—+n—j
(ay™ wby") = > _ < -)(a(k+j)b)y e
JELy J

We observe that OR is a two sided ideal of R with respect to the O—product. The quotient
LieR := R/ OR has a structure of Lie superalgebra with the bracket induced by the 0—product, i.e.
for all a,b € R, f,g € Cly,y~]:

83
af.bg) = 3 (o) (511)o- (1.2)
JEL
The images in Lie R of elements ay™ € R are often denoted by ay,.

Definition 1.8. The annihilation superalgebra A(R) of a conformal superalgebra R is the subal-
gebra of Lie R spanned by all elements a,, with n > 0 and a € R.

The extended annihilation superalgebra A(R)¢ of a conformal superalgebra R is the Lie superalge-
bra C9 x A(R). The semidirect sum C9 x A(R) is the vector space CO & A(R) endowed with the
structure of Lie superalgebra given by the bracket:

0, ay™] = —0y(ay™) = —may™ ',

for all a € R.
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For all a € R we consider the following formal power series in A(R)[[M]]:

)\n
=3 ",
n!

n>0
For all a,b € R, we have: [ay,b,] = [axb]a4, and (Da)y = —Aay (for a proof see [CCKI]).

Proposition 1.9 ([CKI]). A module over a conformal superalgebra R is the same as a module
over the Lie superalgebra A(R)® such that aym € C[A] ® M for alla € R, m € M, i.e. for every
a € R, m € M there exists ng € N such that a,.m =0 for all n > ng.

Proposition [I.9) reduces the study of modules over a conformal superalgebra R to the study of
a class of modules over its (extended) annihilation superalgebra.

Proposition 1.10 ([BKLI1]). Let g be the annihilation superalgebra of a conformal superalgebra R.
Assume that g satisfies the following conditions:

L1 g is Z—graded with finite depth d;
L2 There exists an element whose centralizer in g is contained in go;
L3 There exists an element © € g_4 such that g;—q = [O, gi], for all i > 0.

Finite modules over R are the same as modules V' over g, called finite conformal, that satisfy the
following properties:

1. For everyv € V, there exists jo € Z, jo > —d, such that g;.v =0 when j > jo;
2. V is finitely generated as a C|©]—module.

Remark 1.11. We point out that condition L2 is automatically satisfied when g contains a grading
element, i.e. an element a € g such that [a, b] = deg(b)b for all b € g.

Let g = ®;cz9; be a Z—graded Lie superalgebra. We will use the notation gsg = ®;i>08i,
<0 = Di<08i and g>0 = B;>08;- We denote by U(g) the universal enveloping algebra of g.

Definition 1.12. Let F' be a g>o—module. The generalized Verma module associated with F' is
the g—module Ind(F') defined by:

Ind(F) :=Ind}_ (F) = U(g) @u(gs,) F-

g>0

We will identify Ind(F) with U(g<o) ® F as vector spaces via the Poincaré—Birkhoff—Witt
Theorem. The Z—grading of g induces a Z—grading on U(g<o) and Ind(F). We will invert the
sign of the degree, so that we have a Z>¢—grading on U(g<o) and Ind(F). We will say that an
element v € U(g<o)x is homogeneous of degree k. Analogously an element m € U(g<o)r ® F is
homogeneous of degree k.

Proposition 1.13. Let g = ®;cz9; be a Z—graded Lie superalgebra. If F is an irreducible
finite—dimensional g>o—module, then Ind(F) has a unique mazimal submodule. We denote by
I(F') the quotient of Ind(F') by the unique maximal submodule.

Proof. First we point out that a submodule V' # {0} of Ind(F') is proper if and only if it does not
contain nontrivial elements of degree 0. Indeed, if V' contains an element vy # 0 of degree 0, then it
contains 1 ® F' = g>.vp, due to irreducibility of F'. Therefore g<o.F = Ind(F) C V. The union S
of all proper submodules is still a proper submodule of Ind(F"), since S does not contain nontrivial
elements of degree 0, thus S is the unique maximal proper submodule. ]
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Definition 1.14. Given a g—module V', we call singular vectors the elements of:
Sing(V) ={v eV | gso.v =0}.

In the case V = Ind(F'), for a g>p—module F', we will call trivial singular vectors the elements
of Sing(V') that lie in 1 ® F' and nontrivial singular vectors the nonzero elements of Sing(V") that
do not liein 1 ® F.

Theorem 1.15 ([KR2],|CL]). Let g be a Lie superalgebra that satisfies L1, L2, L3, then:
1. if F is an irreducible finite—dimensional g>o—module, then g~¢ acts trivially on it;

2. the map F — I(F) is a bijective map between irreducible finite—dimensional go—modules and
irreducible finite conformal g—modules;

3. the g—module Ind(F) is irreducible if and only if the go—module F is irreducible and Ind(F")
has no nontrivial singular vectors.

We recall the notion of duality for conformal modules (see for further details [BKLR], [CCK1]).
Let R be a conformal superalgebra and M a conformal module over R.

Definition 1.16. The conformal dual M* of M is defined by:
M* = {f,\ M — C[)\] ‘ f,\((‘)m) = /\f,\(m), Vm € M} .

The structure of C[0]—module is given by (9f)x(m) = —Afa(m), for all f € M*, m € M. The
A—action of R is given, for all a € R, m € M, f € M*, by:

(axf)u(m) = —(=1)P P 5\ (aym).

Definition 1.17. Let T': M — N be a morphism of R—modules, i.e. a linear map such that for
alla € Rand m € M:

i: T(0m) = 0T (m),
ii: T(aym) = a)T(m).
The dual morphism 7% : N* — M* is defined, for all f € N* and m € M, by:

[T*()]x (m) = =fx (T(m)).

Theorem 1.18 ([BKLR], Proposition 2.6). Let R be a conformal superalgebra and M, N R—modules.

Let T : M — N be a homomorphism of R—modules such that N/ImT is a finitely generated
torsion—free C[0]—module. Then the standard map ¥ : N*/KerT* — (M/KerT)*, given by
[(U()]x(m) = fr(T(m)) (where by the bar we denote the corresponding class in the quotient), is an
isomorphism of R—modules.

We denote by F the functor that maps a conformal module M over a conformal superalgebra
R to its conformal dual M* and maps a morphism between conformal modules T : M — N to its
dual T : N* — M*.

Proposition 1.19. The functor F is exact if we consider only morphisms T : M — N, where
N/ImT is a finitely generated torsion free C[0]—module.
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Proof. Let us consider an exact short sequence of conformal modules:

0 M-I N2 p_yy.

Therefore we know that dood; = 0, dy is injective, dq is surjective and Ker do = Im dy. We consider
the dual of this sequence:

& &
0— P* % N* L% M*—0.

By Theorem and Remark 3.11 in [CCKI], we know that dj is surjective and d is injective.
We have to show that Kerd] = Imd;. Let us first show that Kerd] D Imd;. Let g € Imd; C N*.
We have 8 = dj(«) for some o € P*. We have for all m € M:

[d1(B)]x (m) = =Ba(di(m)) = ax(dz(d1(m))) = 0.
Let us now show that Kerd] C Imdj. Let 5 € Kerd] C N*. We have for all m € M:
0= [d1(B)]x (m) = —Ba(di(m)).

Since Ker dy = Imdy, this condition tells that § vanishes on Kerds. We also know that for every
p € P, p=das(ny), for some n, € N. We define a € P* as follows, for all p € P:

—ﬂ)\(np) ifp 7& 0,
0 otherwise.

ax(p) = ax(da(ny)) = {

Let us show that « actually lies in P*. For every p € P:

ax(0p) = ax(0da(ny)) = ax(d2(dny)) = {;ﬁx(@np) if Ap #£ 0,

otherwise.

Since f € N*, we know that —f5\(9n,) = —ABxr(np). Therefore ay(dp) = Aax(p).
We have for all n € N that:

[da()] () = —ax(d2(n)) = Br(n).



Chapter 2

The conformal superalgebra K z/L

We recall the notion of the contact Lie superalgebra. Let A(N) be the Grassmann superalgebra in
the N odd indeterminates &1, ..., £y. Let t be an even indeterminate and A(1, N) = C[t,t " |@A(N).
We consider the Lie superalgebra of derivations of A(1, N):

N
W(1,N) = {D—a&g—i—Zai& | a,a; € /\(1,N)},

i=1

where 0; = % and 0; = E% for every i € {1,..., N}.
Let us consider the contact form w = dt — Zf\i 1 &d&;. The contact Lie superalgebra K (1, N) is

defined by:
K(1,N)={D e W(1,N) | Dw = fpw for some fp € N(1,N)}.

We denote by K'(1, N) the derived algebra [K (1, N), K(1,N)] of K(1, N). Analogously, let A(1, N); =
C[t] ® A(N). We consider the Lie superalgebra of derivations of A(1, N).:

N
W(l,N)+ = {D = ad; +Zalaz ‘ a,a; € A(l,N)+}
i=1
The Lie superalgebra K (1, N), is defined by:
K(1,N); ={D e W({1,N)4 | Dw= fpw for some fp € N(1,N)+}.

One can define on A(1, N) a Lie superalgebra structure as follows: for all f,g € A(1,N) we let:
N N N
.01 = (27 = D &0if ) (0ug) — @) (20 = Y- idig) + (-1 D (Y aufaig).  (21)
i=1 i=1 i=1

We recall that K (1, N) =2 A(1, N) as Lie superalgebras via the following map (see [CK3]):

A1,N) — K(1,N)

N
f =210+ (=V)PD Y (&0 f + 0 f) (& + D).
=1

From now on we will always identify elements of K (1, N) with elements of A(1, N) and we will
omit the symbol A between the &;’s. We consider on K(1, N) the standard grading, i.e. for every
t"m&, -+ &, € K(1,N) we have deg(t™&;, ---&,) =2m + s — 2.

Now we want to realize K(1,N); as the annihilation superalgebra of a conformal superalgebra.

13
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In order to do this, we construct a formal distribution superalgebra using the following family of
formal distributions:

F= {A(z) =) (A" = Aj(t—z), VA€ /\(N)}.

meZ
Note that the set of all the coefficients of formal distributions in F spans A(1, N).

Proposition 2.1. For all A(z),B(z) € F, A(z) and B(z) are local. For all A,B € \(N), A =
&y -+ &, and B =&, - --&j,, the n—products are given by:

N
(A(2)(0)B(2)) = (r = 2)0.(AB)(2) + (-1)" Y _(8:A 0 B)( (2.2)
=1
(A(2)1yB(2)) = (r + s — 4)(AB)(z);
(A(2)m)B(2)) =0 for n > 1.
For all A, B € A(N), n >0, all other n—products can be found by linearity and the relations:

((0:4)(2) () B(2)) = =n(A(2) (n-1)B(2)),
(A(2)(n)0:B(2)) = 0:(A(2)(n) B(2)) + n(A(2) (n—1)B(2))-
The closure of F under all n—products and 0, is F = C[0,]F.

Proof. 1t is sufficient to show the result for all A(z), B(z) € F with A, B monomials in A(N)
and use linearity. Let A,B € A(N), A =§;,---&, and B = §j, ---§;,; we show that the formal

distributions
A(z) =) (At™)z" and B(z) = Y (Bt")z "}

meZ nez
are local. Indeed, we have:
[A(z), B(w)] =
_ Z [Atm, Btn] —m—lw—n—l
mne”
N
= Z ((n (2—1r)—m(2—s)) ABt™ T 4 (1) Z 0;A 0;B tm+") PR
mne” =1
1 P —m—1 N n Z—m—l
- mznéz (n(2—r)—m(2—s)) ABt Tt mznéz(_l) ; OADBI™" =
We set h = m +n — 1 in the first series and [ = m + n in the second series. We obtain:
[A(z), B(w)] =
- —m—1
=Y ((h-mt )21 -m@-s)ABEZ : s+ > (- ZaAaBtl f(me)
h,m€eZ l,meZ i=1
= Z (h+1)(2 — r)AB thw =2z =m=Lym 4 Z m(r—2+s—2)ABthw hlmmLym-t
h,m€eZ h,m€eZ

N
+ Z (—1)T Z 0;A 0;B tl’w_l_lz_m_lwm

I,m€eZ =1
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N
=(r —2)0u((AB)(w))d(z —w) + (r + s — 4)(AB)(w)0d(z — w TZ (0;A 0;B)(w)d(z — w)

=1
N
:( (r—2)0y (AB) (w) + (=1)" Z (0;A 0;B) (w))é(z —w)+ (r+s—4) (AB) (w)0y0(z — w).
i=1
Therefore, for all A,B € A(N), A=¢&;,---&, and B=¢;, ---&;,, the n—products are given by:

N

(A(2)(0)B(2)) = (r = 2)0:(AB)(2) + (=1)" Y (8 A 8:B)(2);

i=1
(A(2)1)B(2)) = (r + s — 4)(AB)(2);
(A(2)(nyB(2)) =0 for n > 1.

For all A, B € A(N), n > 0, all other n—products can be found by linearity and the relations:
((0:A4)(2)(n)B(2)) = —n(A(2)(n-1)B(2)),
(A(2) () 0:B(2)) = 0:(A(2)(n) B(2)) + n(A(2) (n-1)B(2)).
Hence the closure of F under all n—products and 8, is F = C[0,]F. O

The closure F is the conformal superalgebra associated with the formal distribution superalge-
bra (K(1,N),F).

Proposition 2.2. The conformal superalgebra F = C[0.]F is a free C[.]—module.

Proof. We have that the set of all elements of type Ad(t — z), where A = §;,...§;, is a monomial
in A(N), is a basis of F. Let us consider a finite linear combination, with coefficients in C[9,], of
elements of this basis:

ZP L) Aib(t — 2) =0,

where A; € A(N), P;(9,) € C[0,] for every 1 < i < s. From linear independence of the A;’s, we
obtain for every 1 <i < s:

Pi(0,)é(t — z) = 0.
Therefore every coeflicient P; must be 0. 0

We will identify F = C[0,] ® F with Ky := C[0] ® A(N). We identify 0, with d and every
A(z) € F with A € A(N). We will refer to Ky as the conformal superalgebra associated with
K(1,N). For all monomials f,g € A(N), f =¢&,...&, and g = §j,...§j,, the A—bracket is given by:

N
[rg] = ((r — 2)d( —1)" ) (0if)(0g)) + Alr + s — 4) fg, (2.3)

=1
by Proposition In [BKLI] it is shown that the annihilation superalgebra of Ky is A(Ky) =
K(1,N)4 and that it satisfies conditions L1, L2, L3. Thus, the study of finite irreducible modules

over the conformal superalgebra K is reduced to the study of singular vectors of Verma modules
on K(1,N),.
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For N = 4, Ky is not simple. The derived superalgebra K} is one of the finite simple conformal
superalgebras completely classified in [FK]. Our aim is to study all finite irreducible modules over
the conformal superalgebra Kj.

Let V' be a vector space and {b;},; a basis of it. An element v € V' can be uniquely expressed as
v =), ¢;b;. The support of v is Suppv = {b; : ¢; # 0}.

Proposition 2.3. The element §1&28384 ¢ K. More precisely:
Ky = (0", - &,, 0'61683&, for 0 <r <4,k € Zxo, | € Zo).

Proof. By Proposition we know that {@k&l &, for k€ Z>0, 0 <r < 4} is a basis for Kjy.
We first show that &1828384 ¢ K. Since the j—products are bilinear maps, it is sufficient to show

that £1£2€3€4 does not belong to Supp(f(;)9), for any f =&, ---&,, g =&, - & € N4).
The element £;£2¢384 does not belong to Supp( f0) g). Indeed it does not belong to the support of

(—1)" (1 (8if)(Dig)), because, for all 1 < i < 4, & 1698364 ¢ Supp((8;f)(Dig)). Clearly it does not
belong to the support of (r —2)9(fg).

The element 126364 does not belong to Supp(f(1)g). Indeed if £1628384 € Supp((r + s — 4)fg),
then r + s = 4, that is a contradiction.

Every monomial 0% f € K, \ C£16263€4 lies in K7, indeed:

1. if k > 0, then 9F f = <_%(0)8k—1f);
2. if k =0, then there exists a § € A(4) such that & f # 0. We have f = —(¢; (0)§Z.f).

Therefore, we have:

KZIL = <ak£“ ERRIA 8l£1£2£3£4a for0<r<4, ke Zzo, le Z>0>.

Proposition 2.4. The element t=1¢16263¢4 ¢ K'(1,4). More precisely:
K/(]-74) = <tk£’bl t '5@’,«7 tl£1§2§3§47 fOT 0 S r < 4) k7l S Za l 7é _1>

Proof. We know that {t*¢;, ---&;, , for k € Z, 0 < r < 4} is a basis for K(1,4). Let us first show
that t1¢1&¢&364 ¢ K'(1,4). Since the bracket is bilinear, it is sufficient to prove that
t71€169€3€4 does not belong to Supp|f, g] for any f, g monomials of K(1,4). Let f = atF&, - - &
and g = bt'¢;, - -+ &, € K(1,4), with a,b € C. We have the following possibilities.

r

1. Let us suppose that t~1¢1&€384 = (2 — 1) fOrg. Hence, we have:

_ 1
o) =tV a-b-l= g and &Gy = 668G,
Then we obtain [ = —k and k # 0. Indeed the power k of t* cannot be 0, since 9;t! =t~ is
impossible for a Laurent polynomial. Therefore:

[f ]_Htk‘t—l—kg. c & &g & —(ktk_lf' & )(Q—S)Lé' &
y gl = 9 r 11 ir J1 Js 11 ir _k(z_,r) J1 Js

st i%f,t-lsl@ég@

4—pr—
- #rlfﬁz&a& =0, sincer+s=4.
—r



2.1 The annihilation superalgebra of K} 17

2. Due to antisymmetry of [f, g], we have t71&1&0€364 # (2 — 8)(0if)g.
3. The element t~1£,£263¢,4 does not belong to the support of (—1)p(f)(2?:1 (0:£)(0:9)). Indeed,
for all 1 <1 <4, (@f)(@,g) =+ t_1§1§253§4.
Every monomial f € K (1,4) \ Ct~1¢1£263¢4 lies in K’(1,4), indeed:

1. if deg(f) # 0, then f = dgé{;f);

2. if deg(f) = 0, then f is either equal to a&;{; = —a[&r&i&j, & ] forsome 1 <i < j <4, aeC
and k # i, j or it is equal to at = —a/[t&y, &;] for some «a € C.

Therefore, we have:

K'(1,4) = (t*€;, - &, 1161606384, for 0 <r < 4, k,l € Z, 1 # —1).

2.1 The annihilation superalgebra of K}

Motivated by Proposition and Theorem we want to understand the structure of A(K}).
Let us recall some notions on central extensions of Lie superalgebras.

Definition 2.5. Let g be a Lie superalgebra. A 2—cocycle on g is a bilinear map ¢ : g x g — C
that satisfies the following conditions:

1. ’l/)(a,b) = _(_Dp(a)p(b)w(b, a)?
2. (=12 (a, [b, ]) + (=1)PDPO(b, [¢, a]) + (=1)PDPp(c, [a,b]) =0,
for all a,b,c € g. The set of all 2—cocycles on g is denoted by Z2(g, C).

Remark 2.6. We denote the set of linear maps g — C by C(g, C), we call its elements 1— cochains.
For every 1—cochain f € Cl(g,C), it is possible to construct a 2—cocycle df on g. For all a,b € g
we define:

5f(a7 b) = f([aa bD
It is a straightforward verification that 6 f is a 2—cocycle on g. The map 6 : C'(g,C) — Z?(g,C),
f — 0f, is called coboundary operator.

Definition 2.7. We denote by B?(g,C) the image of § : C'(g,C) — Z?(g,C). Two 2—cocycles

V1,109 € Z%(g, C) are cohomologous when 1 — 1o € B%(g,C). We denote by H?(g, C) the quotient
Z°(g,C)
32(3@)'

Definition 2.8. A Lie superalgebra g is a central extension of g by a one—dimensional center CC
if there exist two morphisms i : CC' — g and s : § — g such that the following sequence is exact:

05CO05g55 g0,
and Ker(s) lies in the center of g.

Definition 2.9. Two central extentions g; and g of g by a one—dimensional center CC' are
isomorphic if there exists an isomorphism of Lie superalgebras ® : g1 — go such that the following
diagram is commutative:

S1

0 cC g

g
JId }D Jld
12 52 d

0 CC @2 g 0.
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Proposition 2.10. There is a bijection between central extensions of g by a one—dimensional
center and elements of H*(g,C). If ¢ € Z%(g,C) the corresponding central extension is, up to
isomorphisms, g = g & CC where:

[C,a] =0 and la,bly = [a,b]g + ¢(a,b)C,
for all a,b € g.

Proof. From the definition it follows directly that a central extension g = g®Ci(C) as vector spaces
and we have the following relation between the bracket [-,-]; in g and the bracket [, -]g in g for all
a,beg, apeC:

[a + i(C), b+ Bi(C)]g = [a, b]g + ¥ (a, 0)i(C),

where ¢ : g x g — C is a 2—cocycle.

Conversely, given ¢ € C?(g, C), we can construct a central extension g of g. We define g := g CC.
For all a,b € g, a,8 € C, we set i(aC) := aC, s(a + aC) = a and [a + aC,b + BC; =
la,blg +1(a,b)C. It follows directly from the definition of 2—cocycles that it is a central extension.
Finally we show that two isomorphic central extensions g; = g @ CC and gy = g ® CC correspond
to cohomologous 2—cocycles. Since g; and g are isomorphic, we have an isomorphism ® : g1 — go
such that the following diagram is commutative:

0——CC—"5g g 0
Jld lcb Jld
0——CC—258—25g—250
Thus for all a € g, « € C:
®(a+aC) =a+ p(a)C + aC, (2.4)

where p € Cl(g, C).
We call 9 (resp. 12) the 2—cocycle that corresponds to gi(resp. g2). We have for all a,b € g:
(I)([a’ b}ﬁl) = (I)([a7 b]g + 1/11(0» b)C>
= [a,b]g + (p([a, blg) + ¢1(a, b)) C.

But from the fact that ® is an isomorphism we also have:
®([a, b]g,) = [®(a), D(b)]g,
— [a+ p(@)C,b + p(B)Clg,
= [a, b]g + ¥2(a, b)C.
Therefore, dp + 11 = 1s.

Analogously, if 11,12 € Z2%(g,C) are cohomologous, i.e. ¥ — 12 = én € B?(g,C), then we can
construct an isomorphism between the central extensions defined by 11 and 1y as in (2.4)) letting

pi=n. O
The following proposition is the main result of this section.

Proposition 2.11. The following is a surjective morphism of Lie superalgebras:

¢: LieK) — K'(1,4)
P&)y™ —— PEL™ if P(§) # &1&283¢
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OE1Ealslay™ r— —m1&aalat™ L.

The Lie superalgebra Lie K} is a central extension of K'(1,4) by a one—dimensional center.
The annihilation superalgebra of K} is a central extension of K(1,4)+ by a one—dimensional center

CC:
A(K) = K(1,4), & CC.

The extension is given by a 2— cocycle ¢ € Z>(K(1,4),, C) whose non—trivial entries are computed,
using bilinearity and antisimmetry of ¢, from:

Y(1,&182838) = -2,
Y(&, 0:6162838) = —1.

We need a lemma in order to prove Proposition [2.11
Lemma 2.12. The element 0&1£263€4y° € Lie K is central.

Proof. We have, for all py' € Lie K, with p € K:

[0¢1663641°, py'] = (8) ((06162€384)0p) ¥ = 0.

In the last equality we used the fact that ((0£1£26364)0p) is computed as the restriction of the
0—product in Lie Ky, for which we can use the relation (9a(,)b) = —n(a(m—1)b)- O

We set the following notation. Given a proposition P, we will use X p:

_J 1 if Pis true,
P10 if Pis false.

Remark 2.13. From the definition of Lie K, for all a € K} and m € Z, we have that day™ =
—may™~!. We showed that £16263¢y ¢ Kj. Hence, every class of equivalence of a monomial
Ok P(€)y™ € Lie K, has a unique representative of the type:

(D T POV if PE) # &i6atata

or of the type:

(—1)Ft n !3f1§2€3§4yn_k+1 if P(§) = £16283¢4.

(n—(k—1))
Therefore the set {fn &y, 061E83Ey™, for k,m €T, T # 4} is a basis for Lie K.
Proof of Proposition|2.11. Observe that ¢ is well defined due to Remark and Proposition

It is clear from its definition that ¢ is surjective.
We prove that ¢ is a morphism of Lie superalgebras. We have to distinguish four cases:

L Let f = Q(&)y" and g = Q(&)y' in Lie K}, with Q(&) = &, -+ &,, Q(€) = & -+ &, r < 4,5 <4,
Q&) - Q&) # £&1&28384s and h,l € Z. In Lie Kj we have, using bracket and n—products

22):
f=Y (h) Qi D)y

JELy J
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= <g> Q@)™ + (}f) Q@™
4
= (r —2)0(QQ)y" ™ + (-1)" Z 2iQ0,Qy" ™ + h(r + s — 4)QQy"

i=1

4
—(r=2)(QQ)(h+ Dy + (=)' > 3iQ QY + h(r + s — )QQy"
=1

4
= (2=l +h(s —2)QQy" "+ (-1)" Y 2:QaQy" .

=1
In K'(1,4) we have, using bracket :
[6(f), 6(9)] = [t"Q(£), #Q(¢)]
= (2—t"QOUTIQE) — "I Q)2 — ) Q(E) + Z 2:Q 0;Q 1"
=1
4
= (2= 1)+ h(s —2)QQt"™ + (—=1)" >~ 2:Q ,Q "™ = ¢([f, g]).
=1

2. Let f = Q(§)y" and g = Q(€)y" in Lie K, with Q(€) = &, -+ &,y Q(€) = &y -+ &, 7 <4y 5 < 4,
Q&) - Q&) = &1&2&384 and h,l € Z. In Lie K, we have, using bracket and n—products
22):

IEDY (j)(% Q)y"H

jezy
= <g> (Quuy@)y" + (T) (QuyQ)y" !
= (r — 2)9(&1628380)y" .

In K'(1,4) we have, using bracket m

[6(f) [t"Q(€), 1'Q(&)]

(2- thQ@ Qe — ht" Q) (2 — s)H'Q(€)
(

= (

(2 =)l + h(4 —r — 2))&1&88at
2 — ) (1 + h)&&&Et Y = o((r — 2)0 (E1626380) y"T).

3. Let f = 0&1&&36y™ and g = 0&1&26384y" in Lie K}, with m,l € Z. In Lie K} we have, using
bracket ([1.2]) and n—products ([2.2)):

[f, 9] = Z <j>(3§1€2§3§4 1061 &28380)y T = 0.
JELy

Indeed, for every j > 0, the j—product (9€1€28384 (;)0€1€26384) is computed in terms of
(1628384 (;1€16283€4) = 0 for all j > 0. On the other hand in K'(1,4) we have, using bracket
1)

[6(f), 6(9)] = [ — m&&obs&at™ 1, 1616636481 = 0.
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4. Let f = 0&1&2€3&4y™ and g = P(€)y in Lie K, with P(§) # £162€3€4, m, 1 € Z. First, we point
out that (01£2€384 (jyP(€)) = —7(£1628384 (1) P(§)) = 0 for all j > 2. In Lie K} we have, using
bracket ([1.2]) and n—products ([2.2)):

[f, 9] = [0&1&8&38ay™, P(€)y']
= (0&1£28384 (o) P(O)y™ ! + m(0&1 €238 (1) P(©))y™ 1 + @) (0€1€28384 (9 P(€))y™ T2

=0 —m(&&&sés o P))y™ " + (T;) (061626384 (2 P())y™H 2

N
= —2m 0668 Xpeyec ¥ —m Y 0i(616263€0)0; (P(E)) y" !

=1

—2 (?) A4 +0—4) 616684 X peyec ™7
N

= —2m 96168364 X preyec ¥ —m Y 9i(€126360)0i(P(€)) y T
i=1

In K'(1,4) we have, using bracket (2.1):

[6(f), 8(9)] = [ — m&1&abs&at™ 1, P(EH]

N
= —m(=20 = 2(m — 1)) t" 2668686 Xpyee —m Y 0iGikaéséa) 0 (P(E)) 71

i=1
= o([f, 9))-

The previous computations imply that the kernel of the map ¢ : Lie K} — K'(1,4) is Ker¢ =
(0&1€2€3&4) and so the following sequence is exact:

0 = (961626564) 5 Lie K & K'(1,4) — 0.

By Lemma the Lie superalgebra Lie K is therefore a central extension of K’(1,4) by the
one—dimensional center (9§1£2£34).

In particular, we point out that ¢ : Lie K} /C0&1£28364 — K'(1,4) is an isomorphism. In the pre-
vious computations we computed all the possible brackets between monomials in Lie K, therefore
in particular all the possible brackets between monomials in A(K)). We point out that the central
element 0&;&2€3¢4 lies in the support of [f, g], with f and g monomials in A(K}), only in the case
(2) of the previous computations for h =1 = 0 and r # 2. In particular:

(&, 0i61628384] = —0&1£263¢4

and

[1,€1828384] = —2061628384.

Hence, A(K}) is a central extension of K(1,4)4 by a one—dimensional center (9&1£2€3¢4) and the
extension is given by a 2—cocycle 1 € Z2(K(1,4),,C) whose non—trivial entries are computed,
using bilinearity and antisimmetry of v, from:

V(1,66638) = -2,
V(& 0;6182838) = —1.
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Chapter 3

Verma modules

In this chapter we study the action of g := A(K}) = K(1,4);+ ® CC on a Verma module Ind(F),
where F' is a finite—dimensional irreducible g>¢p—module, on which g~ acts trivially. The grading
on g is the standard grading of K (1,4); and C has degree 0. We have:

g2 = <1> )
g-1 = (&1,8,8. &),
go = ({C,1,&& 1 <i<j<4}).

Remark 3.1. The annihilation superalgebra g satisfies conditions L1, L2, L.3. Indeed:
1. L1 is obvious.

2. The element ¢ is a grading element, i.e. [t,a] = deg(a)a for all a € g. Hence, by Remark
t satisfies condition L2.

3. The element © of L3 is chosen as —% € g—2. Indeed for all m, s € Z>( such that 2m+s—2 >
—2, the element t"&;, -+ &, € Gamys—2 satisfies t7&;, -+ &, = —25[0,4™TE;, - &,]. We
also have C = [0, £1£2€384].

Remark 3.2. Since Ind(F) = U(g<o) ® F, it follows that Ind(F') = C[O©] ® A(4) ® F. Indeed, let us
denote by 7; the image in U(g) of & € A(4), for all i € {1,2,3,4}. In U(g) we have that n? = O,
for all ¢ € {1,2,3,4}: since [§;,&;] = —1 in g, we have n;n; = —nym; — 1 in U(g).

From now on it is always assumed that F' is a finite—dimensional irreducible g>o—module. Let
us focus on go = ({C,1,&€ 1 <i<j<4}) =s0(4)®CEy @ CC, where so(4) is the Lie algebra
of skew—symmetric matrices and Ego := t. As in [BKL1], we denote F; ; := —&;§;, F; j corresponds
to E; j — Ej; € s0(4). We take as a basis of a Cartan subalgebra b the following (cf. [Kn| pag.83):

H, = iFLQ, Hy = Z'F374.

We call hy := Hy — Hy, hy := Hy + Hj. Let €; € b* be such that ¢;(Hy) = d;,. The set of roots is
A = {e1 —e9,61 + &9, —(e1 — €2), —(e1 + £2)}, the set of positive roots is AT = {e1 — 9,61 + £2}.
We have the following root decomposition:

50(4) = h @ (Bacarfa) with g, = CE,,
where the F,’s are:

B oy =F3+Fos+ily—iFs3,
Eeiye, = F13—Foy — il 4 — il 3,

23
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E_(ci—epy = P13+ Foy—iF1 g4+ i3,
E_(ciqen) = F13— Fou+iF1 4+ iFy3.

We will use the following notation:

(E81—82 + E81+82)

2 )
(E€1—€2 — E€1+62)

5 .
The set {a12, 51,2} is a basis of the upper Borel subalgebra Bso(a)-

We will write the weights u = (m, n, po, pe) of weight vectors of gop—modules with respect to action
of the vectors hq, he, Eyo and C.

Remark 3.3. Since C' is central, by Schur’s lemma, C acts as a scalar on F', and so we will denote
also this scalar by C.

Q12 =

Bi2 =

We will study the action of g on Ind(F’) using the A—action notation:

j o
flgen) =Y SN go)
Jj=>0
for f € N(4), g € U(g<o) and v € F. In order to find an explicit formula for fy(¢g ® v) with
feN4), geU(gen), v €F, we need some lemmas. We will denote by capital letters ordered
sets I = (i1, 2, --ix) of integers that lie in {1,2,3,4}. By abuse of notation, we will denote by
INJ (resp. I\ J) the increasingly ordered set whose elements are the elements of the intersection
of the underlying sets of I and J (resp. the elements of the difference of the underlying sets of
I and J). We will say I C J when the underlying set of I is contained in the underlying set of
J. Analogously we will denote by I¢ the increasingly ordered set whose elements are the elements
of the complement of the underlying set of I. Given I = (i1, i2,---ix), we will use the notation
&r (resp. ny) to denote the element &, &, -+ &, € A(4) (resp. the element 0,1, -+ 1i, € U(g<o))
and we will denote |£7| = |I| = k (resp. |nr| = |I| = k). We will denote & = £1£2€3&4 (resp.
Ne = mnansna). Given I = (i1, ig,--- i) and 1€ = (jk+1, Jk+2, - ja), we will denote by e the sign

of the permutation
(1 2 -k E+1 - 4)
i1 92 o U Jk41 c J4 )"

We will also use the following notation, for a € C, I = (iy, i2, - - ig):

8]7]5' = ailc% .. -8ik775' 8155 = 61»18@ . az‘kfs;
Oag;Ms = adms Oug, s = adr&s;
Oyns = ns 0pés = &s.

Given monomials &7 € A(4) and 77 € U(g<o), we will use the following notation:

§rxng = Xinj=pMInJg,
N7 *& = X ynj=¢MJN1-

We extend this notation by linearity to elements » ;& € A(4) and > ;s € U(g<o).
We observe that in g, by (2.1) and Proposition

[tmer, &) = —mt™ e + (=)Mo + (17, &) C.

In particular:

[tmgh gr] = _mtmilgfgr + (_1)|I|tmarfl + szoxr:[cgfc- (33)
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Lemma 3.4. Let & € \(4), ng € U(g<o), v € F and m > 3. We have:

(t"€r).(nQ ® v) = =X =3 X |1=0 6 re11Q ® C.

Proof. We can always assume, without loss of generality, that ng = nnx with INJ =0, K C I.
We first point out that ("&r).(ng ® v) = 0 when m > 3 because deg(t™&;) =2m + |I| -2 >4 >

deg(ngq)-
Let us show, using (3.3), the thesis for m =3, I, K = 0 and J = (1,2, 3,4):

(). (mmamsns @ v) = —3(21)man3na ® v — 31 (2E2)n3na ® v — 3mme(2E3)na ® v — 3mmans (&) ®

= 6(t6182)m3m4 @ v — 612(t&163)M @ v
= —6(£15%8)m Qv
= —6® Cuv.

If m =3, |[I| >0, (t3¢).(ng ® v) = 0 because deg(t>¢r) = 2m + |I| — 2 > 4 > deg(ng). If m = 3,
[I| =0 and |Q| # 4, (£3).(ng ® v) = 0 because deg(t®) = 4 > deg(ng). O

Now we study the term of degree 0 in A of the A—action.

Lemma 3.5. Let I,J, K with INJ =0, K CI. We have:

Er.(nymk @) = Z (_1)\Il(\J|+|K|)+|L\(|L|—1)/2—|L|(\K\—|L\)77J(5L,7K)(aL&) Qv
LCK

+ Xjrj=s €1 9r<(ns)nx © Cv.

Proof. From repeated applications of (3.3) it follows:

(i) @v = (=)l ¢ mie @ v+ X112 €1 01 (ns)nx ® Co. (34)

Indeed, from (§3.3), if |I| = 1, 2, then {; commutes with every &, such that r € J and formula ({3.4))
is straightforward. In the case |I| = 3 and J = I, using (3.3]), we have:

§r-(nrenk) @ v = —nrelmg @ v+ X|q1=3 €1 91¢(n.7)ng @ Cv.

Finally for |I| = 3,4 and |J| = 0, formula (3.4]) is immediate.
The rest of the proof is the same as the proof of Lemma A.2 in [BKLI] and it is done by induction
on |K| using formula ({3.4)). O

Lemma 3.6. Let f =& € AN(4), g =n1 € U(g<o). We have:

4
Fg@v) =(=1PD(If| =2)0(0r9) @ v+ Y do,p) (i x 9) @ v+ (=1)'D Y~ 850,59 © Fijv

i=1 i<j

+ X11=3 €1 9r(9) ® C.

Proof. The proof is analogous to the proof in [BKLI] of Lemma A.3, and it is based on Lemma
The extra term in C' is due to the additional term of Lemma which is not present in Lemma
A.2 of [BKLI]. O

Now we study the term of degree 1 in A of the A—action.

v
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Lemma 3.7. Let f =& € AN(4), g =n1 € U(g<o). We have:

4
tf.(g @ v) =(=1)"Y)(959) @ Egov + (=1)PV TN " ((9(8i9)) x &) ®
=1

+ Z (09,7 (8;9) ® F; jv) + X|1j=2 €101 (g9) ® C.
i#]

Proof. Without loss of generality we can suppose that g = nyngx with INJ =0, K C I. Let us
prove that:

t&r- (i ® v) =(=1)"Vln; (MK @ v + Z DI Bm ) (€05 mi @ v (3.5)
7=1

+ X112 €10reny)ni @ Cv.

The formula is the same as the relation proved for K (1, V)4 in the proof of Lemma A.4 of [BKLI],
except for an additional term in C. We point out that a term with C' is involved only if |I| = 2 and
|J| = 2. Let us prove by induction on |J|. If |J| = 0, is straightforward. Let us consider
ny=mnyns with JNI = () and s ¢ J. We have, using for s, that:

tr.(nmsni @ v) =(=1)ln, (¢ mank @ v + Z DI D 1) (€8 msmie @ v
J=1

+ X122 €1(0rens)nsni @ Cv.

Notice that, since we are supposing 15 = 7,1 with JNI=0ands ¢ J, the term
X|1j=2 €1(0ren.s)nsni ® Cv is O because if |I| = 2, then |J| < 2. We have, using (3.3, that:

tér.(nymsnk @) =(=D)"ln (tnnmi @ v + Z DTN @) (€085 msmi @ v
7=1

=)Dy (e m @ v — (=) (€165 )mic @ v

4
+ ) (=)L (9 g (€165 )nk ® v
j=1

— (- X|1| o X|s1=161(Orenms)nx @ Co.
We observe that:
— (=DM (&r&)mk © v = (=)@, 5) (6 nw @ o
= (‘Uunﬂ_mﬂj‘(3577])(5155)771( ®v.
Therefore:

t€r. (s ® v) =(~DND (e ng @ v + Z DT @55 (616 e @ 0
7=1

+ X|]‘:251(81c77])771< &® CU.

Hence, formula (3.5 is proved. The rest of the proof is analogous to the proof of Lemma A.4 in
[BKL1] and it is based on ([3.5)). O
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Now we study the term of degree 2 in A of the A\—action.

Lemma 3.8. Let f =& € N4), g=n1 € U(g<o). We have:
1o p(f)
(525 f) .(g (0%9) ’U) :(71) <Z af(&-@jg) (4 Fi,jv) — X\I|:l Er 3[cg ® Cw.
1<J

Proof. As before, without loss of generality, we can suppose that g = nyng with INJ =0, K C I.
Let us prove that:

(%t2fl) (K ®v) = (3.6)
= _XI:K Z (_1)|IHJ|+|I|(|I|+1)/2((8lajnJ)(8InK)(€1£j) ®’U) i X|[‘:1 er 610(77])77[( Q Cw.
1,J€J,i<j

In order to prove (3.6]), we need to prove the following:

1
(5¢%¢1)-(nmic © ) = (3.7)
1
> seng 5(8SUJ)(t25I§S)77K Qv+ Y seng(dsn)(tiks)nx @ v
SCJS|=0 SCT|S|=1
+ > (seng(0sms)(Erés)ni @ v) = X 1=y €1 0re (n1)nk @ Co,
SCJ5|=2

where sgng = +1 and sgn; = +1. The numbers sgng and sgn; will be computed explicitly later.
We prove (3.7) by induction on |J|. If [J| = 0, (3.7) is straightforward. Let us consider n5 = 1 n,
with J NI =0 and r ¢ J. We have, using (3.7) for 1y, that:

1 2 .
(575 51)-(77J77r771< ®v) =
1
= ) sgng 5(8577])@25155)%71( Qu+ > seng(Osn)(trks)nnx @ v
SCJ,|8|=0 SCJ,S|=1
+ Y seng(9sms)(Erés)mnr © v = X g1 €1 Ore ()0 © Co.

SCJ|S|=2

Notice that, since we are supposing 1+ = n;n, with JNI=0andr¢J , the term
ny =mnJn
X121 €1 Ore(ny)nymi ® Cv is 0 because if [I| =1, then |J| < 3. We have, using (3.3, that:

(%ﬂ&) (nymenk @ v) =

1
= ) sgng 5(3577J)(t2§1§s)77r771< Qv+ Y, sgng(Osn)(trés)mmi ® v
SCJ,|S|=0 SCJ|8]=1

T Z sgng (0sn.7)(Er€s)mrnx @ v
SCU[S|=2

1
= ) seng 5 (Osms)m (Perés)nx @ v+ > seng(Dsng)(trésé )k ® v
SC.J[S|=0 SC.J[S]=0

+ > seng@sn)ne(trés)nk @ v+ > sgng(Osns)(Er€s&)nx @ v
SCTIS|=1 SCTIS|=1
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+ Z (seng(Dsmr)nr(Erés)ni @ v) + X pj=1 €188y Ore(nyny)nx @ Cv
SCT|8|=2

1
= ) seng 5(3577J77r)(t2&€s)?71< Qv+ Y, sgng(0m;)(trésé)nk ©v
SCTIS|=0 SCT1S|=0

+ ) seng(Osmume)(terés)nk ® v+ > sgng(0s9ny) (Er6s&e )i @ v
5CJ,|S|=1 S5CJ,|S|=1

+ Y (sens(@snsm) (E1€s)nk @ v) + X g1 €1 5807 Ore(nym)nk © Cv
SC.J,|S|=2

1
= > seng 5(98775)@25155)% Qv+ Y seng(sny)(tiés)nx ® v
SCJ,|S|=0 SCJ|S|=1

+ Z (Sgns(asﬁj)(flﬁs)ﬁK ®v) + X|1]=1€1880; Or-(my)nk ® Cv.
SCJ,|8|=2

We now compute explicitly the sign of the term Oje (nj)UK ® Cv. Hence we consider I with

[I] =1 and |J| = 3, that is the only case in which there is a term involving C. For I = (i) and
J = (j,k,1) = I¢ we have:

1
<§t2§i) (njmmnk ®v) =

= —(t&&)memnk @ v+ n;(t&Sk)mnx @ v — ik (t&&)nK @ v — ninkm (%tQ&') NK ®v
= (&&i&k)mnix © v+ n(§&i&)nk @ v — mem (&) nx @ v
— 0 (&) @ v + im(t&ik)nre @ v — ik (t&iS) N @ v — ik (%tQQ) NK ®v
m(&i&i&k)nx @ v +ernx @ Cv + ne(§&&)nKk @ v — mem(t&&j)nx @ v

1
—nj(&&&)nr @ v+ nim(t&i&k)nr © v — nymk(t&&)NK @ v — nnem (§t2§i) Nk @ v

9 .
= Z > SgnSz 2@—0) (D5 7) (" Ers ) @ v — er (Breng)ni @ Cv,
i=0 5CJ,|S|=i

where sgng; = 1. Hence, we proved (3.7). We notice that in (3.7) the terms

1
> seng 5(837”)(1525155)7;[( Qv+ Y sgng(Osns)(trés)nx @ v
SCJ|S|=0 SCJ,|8|=1

are actually zero, since deg(t?¢;€s) > deg(nx) and deg(t£1€s) > deg(nk ). Hence (3.7)) reduces to:

1
(5752&) (nmx @v) = > (seng(dsns)(Erés)nx @ v) = X |pj=161 (Orens)nk © Cu.
SCIIS|=2

In the proof of Lemma A.5 in [BKLIJ, the number sgng for |S| = 2 is computed explicitly, in
particular it is shown that it is equal to —(—1)'1 171, 1t follows that ([3.7) reduces to:

(%ﬁf]).(n]n[{ ®uv) = ‘IHJl Z 8 aﬂ?J 615153)771( ® U) X|I|:1€I (Oreng)nkx ® Cv. (3.8)

1<J

Formula (3.6) can be proved using (3.8)), (3.3) and induction on |K|. The proof is similar to the
proof of (3.7). Finally, the rest of the proof is analogous to the proof of Lemma A.5 in [BKLI] and

it is based on ({3.6]). O
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The previous lemmas can be summarized in the following result.

Proposition 3.9. Let f =& € A(4), g =nr € U(g<o). The A—action has the following expression:

4
Falg ®@v) =(=1PI(|f] = 2)0(9r9) @ v+ Y do,p) (& xg) ® v

=1

P(f)z aafg(g)ﬂjv)—i—x‘ﬂ 361816()®Cv
1<J

4
A ((—1>p<f><afg> @ Boov + (~1)"H0) S (95(0i9)) + ) 9 v
i=1

+ Y (95,(959) ® Fijv) + X |10 €1 0reg ® 0U>
i#]j
4+ A2 ((_1)p(f) Z (07(8,0;9) ® F; jv) — Xjij=1 610109 @ Cv)
1<j

X (< X001 © Cv)

Now we introduce the definition of Hodge dual. For n; € A(4) we indicate with 77 its Hodge
dual in U(g<p), i.e. the unique monomial such that 77 x&; = n1mansns. Then we extend by linearity
the definition of Hodge dual to elements Y an; € U(g<o) and we set Okn; = OF7y.

We recall Lemma 4.2 from [BKLI].

Lemma 3.10. For f =& € N(4), g =n1, € U(g<o), ¢ € {1,2, 3,4}, we have:

g =g*& = (-1)7¢+7, (3 9
%: _<_1)‘§|aigv ( 1)
g*& = —0;7. (3.12)

Proposition 3.11. Let T be the vector space isomorphism T : Ind(F') — Ind(F') that is defined by
T(gov)=g®uv. Let f =& € N4), g=nr € U(g<o). We have:

TofroT Hg®v)=

= (- ><f'<f'“>/“'f'g'{<\fr 26/ *7) © v — (—1PD S (0:f) * (9:7)) @ v
=1
— Z ((arasf) * g FT,SU) + X|]‘:3 €I 5[6 *g® Cv
r<s
4
+)\[f*g®EooU—(—1)p(f)Z (&) +g) @0+ (—1PD S ((0f)&5) x5 ® Figo)
=1 i#j

+ Xm:g erlre*xg® CU):|
X [ =2 (€& %9) ® Fijv) = Xy 1610 5 ® Cv)] + X[ = Xjgmoe x5 © Co }
1<j

Proof. The proof is analogous to the proof of Theorem 4.3 in [BKLI]. We consider the vector
space isomorphism 7" : Ind(F') — Ind(F') that is defined by T'(¢g ® v) = g ® v. The formula in the



3. Verma modules

statement is the expression for T o fy o T 1 (g®w) for f = &7 € A(4), g =7 € U(g<o). The thesis
for the terms that do not involve C' can be shown like in the proof of Theorem 4.3 in [BKLI]. We
focus on the terms in C.

1. We compute X3 €1 Ore(g) = X|rj=3 €I dre(g). Using (3.9)), we obtain that Orcg = (—1)¢ex
qg.

2. We compute X7y €1 Oreg = X|1j=2 €1 Oreg. Using ([3.10]), we obtain that
- 1 —
Oreg = (—1)*2720¢pe x g = ~Epe % 7.

3. We compute —X|1j=1€I Oreg = —X|r1=1 €1 Oreg. Using (3.10)), we obtain that drcg = (—1)3%+3|§|£Ic*
g=(-)"Wlgexg.

4. We compute —X|11=0 Oreg = ~X|11=0 Oreg. Using (3.10]), we obtain that djeg = (—1)4%+4‘§‘§IC*
g=2_&1exg.

Hence the formula is proved. t

In the following lemma we give a recursive formula in order to compute, for f = &; € A(4) and
g =11 € U(g<o), the A—action f\(0%g ® v) starting from f\(©* 'g ® v). This recursive formula
holds both for formula in Proposition [3.9 and for the formula in Proposition [3.11]

Lemma 3.12. Let f =& € AN(4), g =n1 € U(g<o) and k € Z~o. We have:
A(OFg@v) = (8 +1)(H0* g @) — X ;410" g @ Cu.
Proof. We have by and Proposition
k N j k
AOFg @) = Z?(t £)(6Fg @)
>0 7"

_Z @tﬂ )ok- 1g®v+z jt] 'O g @0 — X e g ® Co
z>o l>0 :

= (0 +X)(HO* g @v) — X ;a0 g ® Cu.
For |f| # 4 the formula reduces to:

Mh(®Fg@v)=(©+ N fr(g@0).



Chapter 4

Singular vectors

The aim of this chapter is to classify all the singular vectors of Verma modules on g.

Remark 4.1. From the definition of the A—action we deduce that m € Ind(F') is a highest weight
singular vector if and only if the following hold:

S1 & (fyi) = 0 for all f € A(4);
S2 L (fam)azo = 0 for all f =& € A(4) such that 1] > 1;
S3 (fari)n=o = 0 for all f = &7 € A(4) such that |[I| > 3 or f € By,

Indeed condition S1 is equivalent to

N2

Y iG-1) T (EH)m =0,

j=0
for all f € A(4), that is (#/f).7m = 0 for all f € A(4) and j > 2.
Condition S2 is equivalent to (tf).m = 0 for all f =&, € A(4) such that || > 1.
Condition S3 is equivalent to f.ni = 0 for all f = & € A(4) such that [I| > 3 or f € Bgoa)-
Therefore S1, S2, S3 are equivalent to the conditions g>o.m = 0 and Bgo4).m = 0, ie. m is a
highest weight singular vector.

Remark 4.2. We denote by g;°® the semisimple part of go. We introduce the following notation:

Eal—ag
2 9

E—(El—fz)

5 hy = Hy — Ho,

fx:_

er =
and

E E_
ey = S fy = SR Hy .

We have that:
988 = (€, fz, ha) B <eya Ty hy> 2 (2102,, 20z, , T10y, — T204,) B <3/18y27y26y17ylay1 - 928y2>'
By direct computations, we obtain the following result.

Lemma 4.3. As g5’ —modules:
g-1 = (71, 72) ® (Y1, Y2)-
The isomorphism is given by:

§o +i&1 <> x1y1, &2 — 61 <> way2, —&4 + i3 <> T1Yy2, &4+ 183 < T2yt

31
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Motivated by the previous lemma, we will use the notation
win = N2 + 1, w2 =12 — N1, Wiz = —N4 + 103, w1 = N4+ in3. (4.1)

We point out that [w11,was] = 40, [wi2,w21] = —40O and all other brackets between the w's are 0.
We will identify the irreducible g§°—module of highest weight (m,n) with respect to hy, h, with
the space of homogeneous polynomials of degree m in the variables z1, 2, and of degree n in the
variables y1, y2.

The aim of this chapter is to solve equations S1, S2, S3 in order to obtain the following classification
of singular vectors. We recall that the highest weight of F' is always written with respect to the
action of hy, hy, Foo and C.

Theorem 4.4. Let F' be an irreducible finite—dimensional go—module, with highest weight . A
vector in m € Ind(F') is a non trivial highest weight singular vector of degree 1 if and only if m is
(up to a scalar) one of the following vectors:

a: u= (m,n,—mgn,%) with m,n € Z>o,

- m, n,
Mig = W11 Q X1 Y15

b: p=(m,n, 1+ 75", -1~ m;”), with m € Zsg, n € Z>o,

— m,n m—1 n.
mip = W21 QT Yy — W11 QT T2y

c: pu=(myn,2+ m;”, 5, with m,n € Zso,

- m, n m—1 n m, n—1 m—1 n—1, .
Mic = W22 QT Y] —Wi2 QT Toy; — W QT Y, Yo+ win ®xy "T2y; Y2;

d: = (m,n,1+ 252,14 28 with m € Z>o, n € Zo,

Mg = wig @ oYY — win @ 7Y Hye.

Theorem 4.5. Let F' be an irreducible finite—dimensional go—module, with highest weight . A
vector m € Ind(F) is a non trivial highest weight singular vector of degree 2 if and only if m is (up
to a scalar) one of the following vectors:
a: p=(0,n,1-7%5,-1— %) withn € Z>,

M2q = W11W21 @ Y1’
b: p=(m,0,1—"5,1+4+ %) withm € Zxo,

Mgy = wiiwi2 @ 1"

c: pp=(m,0,24 %, =) withm € Z>1,

- m m—1 m—2_2.
Mae = Waowaz1 @ " + (wi11waz + worwi2) @ " T — wiiwi2 @ T “23;

d: p=(0,n,2+%,5) withn € Z1,

- n n—1 n—2, 2
Mg = Wwawiz ® Y1 — (waawi + woiwi2) @ Y1 Y2 — wiiwa @y~ “ys.
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Theorem 4.6. Let F' be an irreducible finite—dimensional go—module, with highest weight . A
vector m € Ind(F) is a non trivial highest weight singular vector of degree 3 if and only if m is (up
to a scalar) one of the following vectors:
a: U= (1707 %7 _%)7

M3q = Wi1Weowe1 @ T1 + W1 wi2wW11 @ T2;

Mgp = Wi1wwi2 @ Y1 + Wi2w21w11 & Ya.
Theorem 4.7. There are no singular vectors of degree greater than 3.

Remark 4.8. Let us call M (1, pa, 13, tta) the Verma module Ind(F'(p1, p2, g3, p14)), where

F(uq, p2, i3, pa) is the irreducible go—module with highest weight (u1, pe, pus, pa). We call a
Verma module degenerate if it is not irreducible. We point out that, given M (u1, pa, i3, 14) and
M (j11, j12, i3, fra) Verma modules, we can construct a non trivial morphism of g—modules from the
former to the latter if and only if there exists a highest weight singular vector m in M (g1, fi2, fi3, fia)
of highest weight (p1, u2, 13, pt4). The map is uniquely determined by:

Vo M(p1, o, 3, a) — M (fi, fiz, fi3, fia)
vy 1,

where v, is a highest weight vector of F'(u1, p2, 3, pta). If m is a singular vector of degree d, we
say that V is a morphism of degree d.

We use Remark [4.8] to construct the maps in Figure [4.1] of all possible morphisms in the case of
K. The maps will be described in detail in chapter [5| From Theorems and it follows

that the module M (0,0,2,0) does not contain non trivial singular vectors, hence it is irreducible
due to Theorem [L.15

Proposition 4.9. The module M(0,0,2,0) is irreducible and it is isomorphic to the coadjoint
representation of K(1,4), where we consider the restricted dual, i.e. K(1,4)% = @jez(K(1,4)4,)"

Proof. Due to Theorem the module M(0,0,2,0) is irreducible since it does not contain non
trivial singular vectors. We point out that, since C' acts as the scalar 0 on M (0,0,2,0), the action
of g on M(0,0,2,0) is determined by the action of K(1,4).

We first want to show explicitly that K (1,4)% is an irreducible K(1,4);—module.

We recall that the action on the restricted dual is given, for every g,v € K(1,4)1 and f € K(1,4)%,
by:

(9-)(v) = =(=)PDPD g ([g,0]),

where p(g) (resp. p(f)) denotes the parity of g (resp. f) and the bracket is given by (2.1).

Since we are considering the restricted dual, a basis of K(1,4)% is given by ©* and the elements
(t°, -+~ &,)" with s > 0. We first show that K(1,4),.©0* = K(1,4)%. Then we will show that,
given 0 # x € K(1,4)%, we have that ©* € K(1,4).x.

We show, by induction on p, that (&, ---&;,)* lies in K(1,4).0%, in particular &;,.---(&,.(0%)) =
B(&iy -+ &,)" for a scalar B € C\ {0} that is not needed explicitly.

Indeed, we have, using bracket , that for every i € {1,2,3,4} and for every monomial a in
K(l, 4)+Z

0 if a # «&;, for every a € C\ {0},

(£i-0%)(a) = —©7([&i, a]) = {_(@*)(Qa@) = —2a if a = ag; for some o € C\ {0}.
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Then & = —1(£.0%).

Now we show that &;,.--- (&,.(0%)) = B(&, ---&,)" forascalar 3 € C\{0}, using that &;,.--- (&,.(0%)) =
Yq(&iy -+ &), for every ¢ < p and for a scalar 74 € C\ {0}. Indeed we have, using bracket (2.1]),
that for every monomial a in K(1,4)4:

(&1 (&, (07)))(@) = (& p—1(8in -+~ &) ") (@)
. 0 if a # &, &, & , for every a € C\ {0},
= (a6 ey a]) = GGy MO0
—(=1)Pypaif a = ag;, &, - &, for some o € C\ {0} .
We now show, by induction on s, that, for fixed p, (£°&;, ---&;,)* lies in K(1,4).0; in particular

(t°&;, - - - &, )" is obtained, up to a scalar, repeating s—times the application of © on §;,. - - - (&;,.(©%)).
Indeed we have, using bracket (2.1)), that for every monomial a in K(1,4):

(©-(&ir -+~ (&, -(07))))(a) = (©.8(&i, -~ &i,))")(a)

= —B(&, - &,)"([0,d]) = {0 if a # at&;, --- &, for every a € C\ {0},

Ba if a = atg;, --- &, for some a € C\ {0}, = Bt -~ &,)" (a).

Figure 4.1
B (m,n, 142" —1-m20) g n (m,n, —mfn mon) A
D
D)
/> /

= -
//

C (m, n, B4 4 2, 250

o
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Now we show that (¢°¢;, - --&;,)* lies in K (1,4).©" using that (9, --- &))" = 74(0.--- (©.(&, - -- &)™),
———
g—times
for every ¢ < s and for v, € C\ {0}. Indeed we have, using bracket (2.1)), that for every monomial
ain K(1,4)4:
(0. (0.6, -+ &,)))(a) = =751 (&, .&,) ([0, a))
———

s—times

)0 if a # at®¢;,..&;,, for every a € C\ {0},
"\ eoisa if a= at®é;,...&;, for some o € C\ {0},

= 5751t -+ &)™

Now we show that, given 0 # x € K(1,4)%, we have ©* € K(1,4);.x. Let us write z as a finite
linear combination of elements in the basis:

x = Z as 1(t%¢r)".
s, I

We choose one of the monomial of maximum degree among the (£°¢;)*’s in Supp(z), i.e. one
monomial with maximum value of 2s+ |I| — 2. Let us call this monomial (¢tme=&; )*. We observe
that, using bracket (2.1]), for every monomial a in K(1,4)+ we have:

* 2 *
(et (7076, ) ) (@) = — (=) Tmeel (omangy Oy ([tomeethey,,,,,, al)

_ ] 0 if a # a®© for every a € C\ {0},
| = (=D)Hmasl® (5000 + 1o if @ = a® for some a € C\ {0}.

Therefore ©* = Atsmastle, — (¢smazg; —3* for some v € C\ {0}. We also have, using bracket
(2.1)), that for every monomial a in g and (¢t°¢7)* # (t¥me=&p, )" in Supp(x):

(tsmw—&—lglmam.(tsé})*)(a) _ _(_1)‘Imax||”(tSEI)*([tS'mam“rlglmaw’ a]) —0.
Indeed if deg(t°¢r) < deg(t*m=¢;, ..), then
(&) ([t ety a]) = 0,

since deg([t*me=+1¢y,,,,, a]) > deg(t"=¢p,,,, ).
If deg(t°¢) = deg(t**¢y,,,, ), then

(&) ([t ep,,0,0 a]) = 0,

since deg([tsmest1¢; a]) = deg(t®maz&; ) only for a = ©, but (t°¢) # tSmasgy .

Therefore ©* = ytsmastle, g

We now show that M (0,0,2,0) is isomorphic to the coadjoint representation of K(1,4).

Indeed, we notice that a morphism of K (1,4), —modules ® : M(0,0,2,0) — K(1,4)% must satisfy,
for all m € M (0,0,2,0) and a,b € K(1,4),:

®(b.m)(a) = =2 (m)([b, a]),

where the bracket is given by . We take the morphism of modules ® such that ®(v) = ©%,
where v is a highest weight vector in F'(0,0,2,0). Let us show that this map is surjective. We
show, by induction on p, that (&, ---&,)* lies in Im @, in particular ®(&;, ---&,v) = B(&, ---&,)*
for a scalar 5 € C\ {0} that is not needed explicitly.
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Indeed, we have, using bracket (2.1)), that for every ¢ € {1,2,3,4} and for every monomial a in
K(l, 4)+Z

0 if a # a&;,

2eiv)(@) = ~@(v) (6, al) = ~67((&i,al) = {—(@*)(204@) = 2« if a = a¢; for some a € C\ {0}.

Then & = —3®(&.0) € Im(®). Now we show that ®(&, -+ &,v) = B(&, -+ &,)* for a scalar
B € C\ {0}, using that ®(&;, - - &,v) = 74(&, - &,)", for every ¢ < p and for a scalar v, € C\ {0}.
Indeed we have, using bracket (2.1]), that for every monomial a in K(1,4):

q)(gn U fipv)(a) = _(I)(giz o .gipv)(l:gil’a:l)

if i i
= _PYp*l(fiz "'gip)*([gilaa]) = {O na 7& a§ gp

Yp-1eif a = a;, ---&;, for some a € C\ {0}, = Yp—1(&ir -+ &)™

We now show, by induction on s, that, for fixed p, (£°&;, ---&;,)* lies in Im ®; in particular
(£, -+ &i,)" = BR(O%E, -+~ &,v) for a scalar B € C\ {0}.
Indeed we have, using bracket (2.1)), that for every monomial a in K(1,4):

(OG- &, v)(a) = =®(&, -+ &,v)([0,a]) = =&, -~ &,) ([0, d])

_ {o if a+#at&, &,

fa if a = at&;, ---&;, for some a € C\ {0} = Bt &, )" (@)

Now we show that (t°&;, ---&;,)* lies in Im @ using that (¢9;, ---&;,)* = 7, ®(09;, --- &, v), for
every ¢ < s and for 7, € C\ {0}. Indeed we have, using bracket (2.1), that for every monomial a
in K(1,4)4:

®(O°,  &,v)(a) = —B(O7 &, &,0)([0,a]) = —Ys1 (7716, -+ &,)" ([0, a])
_ {0 if a 75 Oétsgil M 'fip,

= S_Stsi Gy *.
Yo—15a if a = at®¢;, - -- &, for some a € C\ {0} P18t &)

Now we show that & is injective. We know that (K (1,4)+)s0.v = 0 and also (sly ®sly & CC).v = 0.
Then we analyze what happens when we compute ®(z.v) for © = a1 + aols + azés + sy + PO €

(K(1,4)1)<o-

®(z.v)(a) = —0%([z,a]) = =O"([a1&1 + 22 + @383 + s + 5O, a)
= —201&](a) — 20085 (a) — 2a383(a) — 204&; (a) — 20t"(a).

But &7, &5, &, & and t* are linearly independent, therefore, in order to have ®(z.v) = 0, we need
z = 0. The same argument can be iterated for z;.(z2.(z3....(x;))).v, with z;’s € (K(1,4)+)<o0.
Hence, ® is injective. O

In order to prove Theorems and we need some lemmas.

Remark 4.10. We point out that, by Remark a vector m € Ind(F) is a highest weight singular
vector if and only if it satisfies S1, S2, S3. Since 7', defined as in Proposition[3.11] is an isomorphism
and 7 = T~'n, the fact that 7 € Ind(F) satisfies S1, S2, S3 is equivalent to impose conditions
S1, S2, S3 for T o fy o T~ 'm, using the expression given by Proposition

Therefore in the following Lemmas we will consider a vector T'(m) € Ind(F') and we will impose
that the expression for (T'o fyoT~1T(1m) = (T o fy)m given by Proposition satisfies conditions
S1, S2, S3. We will have that m is a highest weight singular vector.
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Motivated by Remark in the following lemmas we consider m € U(g<p) and we will use
the expression for the A—action of Proposition for T'(m). We consider a vector m € Ind(F)
such that:

N

T(T?L ZZ@ 77[®’l)[k, (42)

k=0 I
with vy € F' for all k. For all k, we will denote vy = v(1234) - In this notation we consider
the sets I always in increasing order. For instance, if T'(m) = mn2 @ u — 3n2m1 @ w, we write it as
mmnz @ v(1,2),0 Where v(y 9) 9 = u + 3w.
In order to make clearer how the A—action of Proposition works for a vector m € Ind(F'), such
that 7'(1m) is written as in (4.2)), let us see the following example.

Example 4.11. Let T(m) = ©%n1n3 ® v(1,3)2 t M2 ® V)0 and f = &. Using Proposition and
Lemma [3.12] we have:

(T'o fa)m =

-(A+0) { 952*771773)@”113)24‘2 (0i€2) * (Oimn3)) ® v(1,3),2
=1

4
A& * mns ® Eoov(1 3)2 + Z 0;((§28:) *mm3) @ v(13)2 — Z (((0:&2)€5) * mn3 ® Fijo13)2)]

=1 vy
F X[ =) (L2485 *mms) @ Fijvaz)e) — £2) S@p *mns @ Cua s 2)] }
i<j
4
— O(82 % 1m2) ® v(2),0 +Z (9:&2) * (9im2)) @ v(2),0 + A& n2 @ Boovizy o + Y, 9i((628i) * 12) @ v(2) 0
=1 =1
- Z ((0:€2)€5) % m2 ® F; juay0)] + X[ — Z ((L2&i&j * m2) @ Fy ju2)0) — £2) E2)e * 12 @ Cv2) 0)]
i#] i<j

—(A+ 9)2{ + Omns ® v(13)2 + A — MmNz @ Eoov(,3),2 + 04((€264) % mm3) © v(1,3).2
— ((0262)&4) x M3 @ Fauvig)2] } + 1@ vy 0+ A — ij * 12 @ Fa jv2) 0] + A2, ® Cu) o
24
— (A +0)*{Ommans @ v(13)2 + A — mmans ® Eoov(13)2 + mm2ns @ v(13)2 — Mmsna ® Fo4v(1 3)2] }
+1®vg2)0 + A[mme ® Fiavey o — n213 @ Fazvieyo — 2 @ Faav(g) o] + A*1. ® Coga) p.

Lemma 4.12. Let m € Ind(F') be a singular vector such that T (m) is written as in formula (4.2)).
The degree of My in © is at most 3.

Proof. Using Proposition [3.11] Lemma [3.12] and Remark [£.10] condition S1 for f = 1 reduces to:

2

d k—2
0=—5((T o1y %Z}k ~1)(A+0)

(=2)Onr @ vk + A (N1 @ Egovr g — (4 — [I))n1 @ vr i)

+ ,\2< _ E &&*nr ® Fi,j?}l,k> + )3 (—X\I|:07717]2773?74 ® Cvl’k) ]
1<J
N

+ QZ Z k(A +0)*! [771 ® Eoovrk — (4 — [I[)nr @ vr
k=1 1

—2A ( Z §i&Gxnr @ Fz‘,jvl,k> + 322 (—X|1|:0771772773774 ® CUI,k) ]

i<j
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N
+ Z Z A+0)F| -2 Zfifj *xn; @ Fjjur g + 62 (—X|1|:o771?727737l4 ® Cvz,k)

k=0 I i<j

Now we write © as ©® + A — X and consider this expression as a polynomial in the indeterminates
© + A and \. The coefficients of (A + ©)°A3, with s > 0, are:

D (s +2)(s + D)X pj=o+ @ Coreyz = 0. (4.3)
1

We consider the coefficients of (A + ©)*A? with s > 1 and obtain:

_ZZ S+2 S+1)€1€]*7]1®F7]U[3+2 62 S+1 X|I| On*®CUIS+1_O
I i<y

Therefore, using (4.3]), we obtain that for s > 1:

D> &g xnr @ Fijorspa = 0. (4.4)

I i<j

Now we look at the coefficients of (A 4+ ©)*X with s > 2 and obtain:

Z(S +2)(s +1)(2n1 ® vrs+2 + 01 @ Eoovrs+2 — (4 — [I))nr @ vy s12)
I

=4 (s + 1&g *nr @ Fjvr e —GZXm o7 ® Curs = 0,

I i<j
Therefore, using (4.3]) and (4.4), we obtain that for s > 2:

> @0 @ vrsin 4+ 01 ® Boovrera — (4 = )01 @ vre42) = 0. (4.5)
I

Finally we look at the coefficients of (A + ©)% with s > 3 and obtain:

D (s +1)(s)(=2n1 @ vrs41) + 2(s + 1) (1 @ Eoovr,er1 — (4= 1)1 @ vp541)
I

- QZZEZ@ * N1 @ F jurs = 0.

I i<j
Therefore, using (4.4) and (4.5), we obtain that for s > 3:
Z(S +1)(s)(—2n1 @ vrsy1) +2(s + 1)(n1 ® Eoovr,sy1 — (4 — [I])n1 @ v1,s41)
= (s +1)(8)(=2n1 ® vr,41) +2(5 + 1)(=2n01 ® v7,541)

= Z(S +1)(s +2)(=2nr ® v1641) = 0.

Hence, vy = 0 for all & > 4. ]

Therefore, we proved that, for a singular vector m € Ind(F'), T'(m) has the following form:

T(1) = 0> _nr @) + 0’ _mr®@vi2) + O nr @)+ (O n @ vro)- (4.6)
I 1 1 I
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Now for a vector m € Ind(F'), such that T'(m) is as in we write the A—action in the following
way, using Proposition Lemma and Remark [4.10] for f = &, € A(4):

(T o fy)m (4.7)
=bo(f) + G1(f) + A[Bo(f) — ao(f) — G2(f)] + (A +©)[ao(f) + bi(f) + 2G2(f)]

+ (A +0)*[ar(f) + ba(f) +3G3(F)] + (A +©)? [az(f) + b3(f)] + (A + ©)*as(f)
+ AN+ 0)[Bi(f) — ai(f) = 3G3(f)] + N (A + ©)C1(f) + X*(A + ©)D1(f)
+ AN+ 0)?[Ba(f) — aa(f)] + A2 (A + 0)*Ca(f) + X*(A + ©)’Dy(f)
+ AN+ 0)°[B3(f) — az(f)] + XA + 0)°Cs(f) + X*(A + ©)*Ds(f)
+ N [Co(f) + Gs(f)] + N Do(f),

where the coefficients a,(f), by(f), Bp(f), Cp(f), Dp(f), Gp(f) depend on f for every 0 < p < 3.
The following is their explicit expression:

ap(f) = Z( 1) (F1AF D /2+ A1 [(m 2)(f xn1) ® vI,p];

I
4

by(f) = S ()27 [ —DPD S (@) * Oenn) © o1 — S (D00 f) %11 ® Frgr)

1 1=1 r<s

+ Xipj=3 €L ELe *x N1 ® C’U],p:| ;

4

By(f) = Z(—1)(‘f|(‘f|+1)/2)+|f‘m [f 1 ® Egovry — (—1)P) Z 9i((f&)*nr) @vrp
I =1

+ (=PI (0i1)&) 01 ® Fijorp) + X|pjma €L ELe %11 © Cvz,p)] :
i#£]
C,(f) = Z(_1)(\f|(\f|+1)/2)+|f\|1| [ _ Z(f&fj *np @ F; jurp) — X|Lj=1€L Erexnr ® C’v],p)] ;

T i<j

Dy(f) = 3 () AIUA D 24170 [ — Xm0 & * 11 ® Cory |
I

Gp(f) =~ Z X\L\:45L77[ ® Cvy p.

1
We will write a,, instead of a,(f) when it is clear from the context on which f the coefficient depends.
Analogously we will write b,, By, Cp, D,, G, instead of b,(f), Bp(f), Cp(f), Dp(f), Gp(f).

Proposition 4.13. Let m € Ind(F), such that T'(m) is as in formula (4.6). Using notation (4.7)),
we have that:

1. condition S1 is equivalent to the following system of relations Vf = & € N(4):

D3 =0,

Dy =0,

C3=0,

Ci1+ 2B +as + 3bg =0,
Di+a3=0,

02 —3&3 = O,



40 4. Singular vectors

B3 + 2a3 =0,
Do+ C1+ By +b3 =0,
Co+B1+by+G3=0,

2. condition S2 is equivalent to the following system of relations for all f = & € N(4) with
|I| > 1:
By + b+ G2 =0,
Bi + a1 + 2by + 3G3 =0,
2a9 + By + 3b3 = 0,
3asz + B3 =0,

3. condition S8 is equivalent to the following system of relations for all f = & € N(4) with
|I‘ >3orfe 350(4).‘

bp +G1 =0,

ap + b1 +2G2 =0,
ay + by +3G3 =0,
as + b3 =0,
az = 0.

Proof. We compute %((To fa)m) and %((T o fy)m) using notation (4.7)). We have that:

%((T o fA)1m) =By + by + Ga + A[2Cy + By — a1 — G3] + X*[3Dg + C1] + A Dy
+ (A +©)[Bi + a1 + 2b2 + 3G3] + (A + ©)?[2az + Ba + 3b3] + (A + ©)*[3a3 + Bs]
+ A+ ©)[201 + 2By — 2as] + A2(A + ©)[3D1 + 2Cs] + 2X3 (A + ©)Ds
+ XA+ ©)?[3B3 — 3az + 2Ca] + A (A + ©)?[3D + 3C3] + 3A*(A + ©)°D;
+ 20X + ©)*C3 + 3A*(\ + ©)° D,

and

d2
7((T o f)\)m) =2Cy + 2B1 + 2by + 2G5 + A [6D0 +4Ch + 2By — 2@2] + A2 [6D1 + 202] + 2)\3D2

d\?
+ (A + ©)[2C1 + 4By + 2as + 6b3] + A(A + ©)[6D; + 8C5 + 6B3 — 6as]
+ N (A+0)[12D5 + 6C5] + 6X* (A + ©) D
+ (A +©)%[2Cs + 6az + 6B3] + A(A + ©)?[12C5 + 6D ] + 18X*(A + ©)%Ds
+2(A+0)3C5 + 6A(\ + ©)*Ds.

We consider these expressions as polynomials in the variables A and A + ©. Condition S1
reduces to the following system of relations Vf = £ € A(4):

Oy =0,
Dy =0,
Dy =0,

Cy + 3as + 3B3 =0,
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C1 + 2By + as + 3bs = 0,
3Dy + 4C5 + 3Bs — 3az = 0,
3Dy +2C) + By —ag =0,
3D; + Cy = 0,

Co+ By + by + G5 = 0.

These conditions are equivalent to the relations in (1). Condition S2 states that for all f = &; € A(4)
with |I| > 1:

d
ﬁ((T o fA)Tﬁ)‘)\ZO =By +b +Goy+ @[Bl + a1 + 2bs + 3G3] +©6? [2a2 + By + 3()3] + 0?3 [3&3 + Bg] =0.

Therefore condition S2 reduces to the following system of relations for all f = & € A(4) with
Il > 1:

By +b1+G2 =0,

Bi+a; +2by+3G3 =0,

2a9 + By + 3b3 = 0,

3as + B3 = 0.

Condition S3 states that for all f = &; € A(4) such that [I| > 3 or f € Bsga):
((T o fA))a—o = bo + G1 + O[ag + b1 + 2G3] + ©%[a1 + b2 + 3G3] + ©°[az + bs] + O"az = 0.

Therefore condition S3 reduces to the following system of relations for all f = & € A(4) with
’I| >3or fe 350(4)2

bp + G1 =0,

ap + b1 +2G2 =0,
a1 + b2 +3G3 =0,
as + b3 =0,
az = 0.

Let us show some other reductions on singular vectors.

Lemma 4.14. Let m € Ind(F) be a singular vector, such that T'(m) is written as in formula (4.6)).
For all I we have that vi3 = 0.

Proof. By Proposition we know that Vf = ¢ € A(4) with |f| > 1 we have 2a3 + B = 0 and
3as+ B3 = 0. Therefore ag = 0 for all f = &, € A(4) with |f| > 1. Let us suppose that there exists
vr3 # 0 with 0 < |I| < 3. Let Iy be a set of minimal cardinality with this property. We have that:

0=ag= S (=1)IID2HIMI(| £ = 2)(f s @ vy 5).
11150

We choose f = &rg if |I§| # 2, otherwise we choose f = & with s ¢ Iy. In the first case we have:

0=as(f) = Z (_1>(\fl(\f|+1)/2)+|f||1|(,]8‘ — 2)(&gg * 1 @ vr3)
11> 1o
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= (—1) IS D/ 2+ TG ol (| re| — 2)ers (0 @ vry 3)-

This implies that vy, 3 = 0. In the second case, we have:

0=as(f) =— Z (=1) WD+ (¢ wemp @ vy 5)
[11>]1o]
= — (=)0l xmpy @ vge3) = (1) e @ V(spes) + D S8 N7 @ Vs e s
Jj€lo

where sgn, ; = 1 depends on s and j and is not needed explicitly. From linear independence of
€s * N1y, M and ;e for j € Iy, we obtain that vy, 3 = 0. Hence, for all I with |I| < 3 we have that
Ur,3 = 0.

We now show that v, 3 = 0. For f = &, we know by Proposition that Do+ C1 + By + b3 = 0,
C1 + 2By + as + 3bsg = 0 and 2as + By + 3bg = 0. We take a linear combination of these equations
and we obtain that Do + as + b3 = 0 for f = &;,. Since Dy(&;,) = 0, we have:

0=az+bs= —(Z(—l)Hm&o * 1 @ vr2) + (—1)nie ® vy 3 = 0.
I

Using linear independence of n;c and the &;, x ny’s we obtain that v, 3 = 0. O

Lemma 4.15. Let m € Ind(F') be a singular vector, such that T (m) is written as in formula (4.6)).
For all I we have that vra = 0.

Proof. By Proposition we know that Dy + C1 + By + b3 =0, C1 + 2By + as + 3b3 = 0 for all
f=¢&r and 2ag + By 4 3bg = 0 for all f = & with |f| > 1. In Lemma we proved that vr3 =0
for all I, therefore b3 = 0. We know that Dy = 0 for all f = £, with |f| > 1. Hence for all f such
that |f| > 1, we have:

Cl+32:07
C1+2By +az =0,
2a9 + By = 0.

This implies that C; = By = ag = 0 if | f| > 1. The proof is now analogous to Lemma using
that ap = 0, and we deduce that vy = 0 for I such that || < 3.

We now show that v, 2 = 0. By Proposition we know that by(f) = 0 for all f = £ with
|f| = 3. We choose f = £1£2€3 and obtain:

0 250(515253)
=> Z 1*1(0i&16283) * (Oimr) @ vrg = Y Y (—1)*11(8,0:&16288) * 1 @ Frsvr0

I =1 I r<s
+ Z( 1)31ley % nr @ Curg.
T
In the previous equation, the terms that contain 74 only are:
N4 ® Cvg g.

Therefore vy g = 0, if C'# 0. If C' = 0 the A—action in Proposition reduces to the A\—action
found in Theorem 4.3 of [BKLIJ. In Lemma B.4 of [BKLI1] it is shown that vy, = 0. We use that
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vpo = 0 in order to prove the thesis. Indeed by Proposition @ we have that Cy + By + b = 0,
Bi 4+ a1 +2bp =0 for all 1 < |f| <4, and so Cyp — a; — ba = 0. We choose f = ¢;, and we have:

(11(51‘0) = Z(_1)1+\I|§i0 * N @ Ur,1,
i
Co(&io) = — Z Z(—l)lﬂl‘fiofié}' *xnr @ F; juro+
T i<y
= (=) €y x 1 @ Cogp,
i
ba(&ip) =(=1)" (=1 g0)e @ Ve = (—1)0n0)c @ V2.

The terms in 1) of Cp —ay — by = 0 are:

E(i0) Mi0)e ® Cvp — (=1)7ig)e ® Va2 = 0,
Since vy o = 0, we have that v, = 0. 0

Lemma 4.16. Let m € Ind(F') be a singular vector, such that T'(m) is written as in formula (4.6)).
For all I such that |I| <2, we have that vy = 0.

Proof. By Proposition and Lemmas and we know that a;(f) = 0 for all f = ¢,
|L| > 3. Then, from an analogous argument to the one used in Lemma for all I such that
|I| <1, we have that v;; = 0.

Now let us show that for all I such that |I| = 2, we have that v;; = 0. By Proposition and
Lemmas and we know that By + b = 0 for all f =&, € A(4) with |L| > 1. We choose
f =&, and set (a)¢ = (b,c,d). We have:

bi(&) =+ Y (=) (@unr) @ vra
171>2

= D (D" 0angye) @ vigen + (=D (Baniye) @ vigyes + (1) H0uEs @ vay,
1<j,1,j7#a i#a

Bo(éa) = Y _(=1)"Mléaxnr @ Eoovro + D (=1 H0i(¢ats <)@

] i#a |1

=3 =0 e @ Fjoro.

a#j |1
The terms in 1y of By(&,) are:
Nd @ Faqvp -
We have shown in Lemma that vy o = 0. Therefore, taking the terms of b in 74, we obtain:
(Dan(p,c)e) @ V(p,eye,r = 0.

Hence we have v )1 = 0. O

By Lemmas|4.14} 4.15{and [4.16} for a singular vector m € U(g<o), T'(m) has the following form:

T (M)

@(Z nr®@uvri) + (Z nr Q@ vrp)- (4.8)

[11=3 =1
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Therefore, from , we have that there can only be singular vectors of degree 3, 2 and 1. Hence
we have showed Theorem Following the notation used in [BKLI], we rewrite in the
following way: for |I| = 3, n; will be written as N(@iye; where ()¢ = I, vy 1 will be renamed as v;
and vy o will be renamed as v;, so that they depend on one index; for |I| = 2, n; will be written as
N(i,j)c> Where (4,7)¢ = I, and v will be renamed as v; j. In particular, from , for the singular
vectors m of degree 3, 2 and 1, T'(m) have respectively the form:

degree 3 T(m) = O(3; e @ vi1) + (22, m @ vio),

degree 2 T'(m) = On. @ v + (3, (i j)c @ Vij)s

degree 1 T(m) = (3_; 1) @ vi)-

By Proposition and Lemmas [4.14] [£.15] [4.16] we obtain the following result.

Proposition 4.17. Let m € Ind(F), such that T'(m) is written as in formula (4.8). Using notation
(4.7), we have that:

1. condition S1 reduces to the following system of relations for all f = &5 € N(4):

C1 =0,
D, =0,
Dy =0,
Co + By = 0;

2. condition S2 reduces to the following system of relations for all f =& € N(4) with |I] > 1:
BO + b1 = 0,
B + a1 = 0;

3. condition S8 reduces to the following system of relations for all f = & € N(4) with |I| > 3
or f € 350(4) :

bo+G1 =0,
a0+b1:07
a1:0.

4.1 Vectors of degree 2

The aim of this section is to classify all singular vectors of degree 2. We have that for a singular
vector m of degree 2

T(m) = On. @ v + (O Mii gy @ vig)- (4.9)
i<j
We will assume that v; ; = —v;; for all 4, j. We write 17 in the following way:
m =(nz + im1) (na + ing) @ w1 + (N2 + im) (4 — in3) @ wa + (2 — im) (N4 + in3) ® w3 (4.10)

+ (n2 —in1)(ma — in3) @ wa + (N2 +in1) (M2 — in1) @ ws + (N4 +i03) (M1 — i13) @ we + O ® wr
=(—=mmn3 + imns + in2n3 + n2m4) @ w1 + (MN3 + iMNs — N203 + M20s) @ wat
(mms — imng + inans + nens) @ ws + (—min3 — in1na — in2n3 + N2ns) @ wa+
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(20 + 2in11m2) @ ws + (20 + 2ingny) @ we + O ® wy.
Then, keeping in mind the relation between mi and T'(n), we have:

V1,2 = in5, (4.11)
V1,3 = W1 — W2 — w3 + Wy,

V1,4 = iw1 + 2"LU2 — ’iwg — iw4,

V2,3 = iw1 — Z"LUQ + ’ilU3 — z'w4,

V2,4 = —W1 — W2 — W3 — Wy,

U374 = 2iw6,

Vx = 2wz + 2wg + wry.

Indeed, let us show for example one of the previous equations. In (4.9), let us consider 7 3)c ®v1 3 =
n2na ® v1 3 . We have that nany is the Hodge dual of —nin3. In (4.10)), the terms in 7173 are:

—mn3 ® w1 +mn3 ® wz +mn3 ® ws — mn3 ® wy,

therefore vy 3 = w1 — w2 — w3 + wy.
In the following lemma we write explicitly the relations of Proposition for a vector as in formula

[E9).

Lemma 4.18. Let m € Ind(F'), such that T(m) is written as in formula (4.9). We have that:
1) condition S1 reduces to the following relation for f = 1:

- Z(fifj * 15,5y @ Fijvij) + nw @ Eoovs = 0; (4.12)
1<j
2) condition S2 reduces to the following relation for all f = &1, € N(4) with |L| = 1,2:

4

> [f * 1,5y @ Eoovij — (— Z (&) *Mgye) @ vig + (1D (06 f)&) * Mgy © Fravig)

i<j =1 k£l
(4.13)
4
+ Xpj=2 EL &Le % M(ijye © Cvi,j>} = (1D (0if) % (0me) @ ve = Y _((9,05F) %10 @ Frsv.) = 0
=1 r<s

3) condition S8 reduces to the following system of relations.
For f € 350(4).'

> (0,0 f) % ne ® Frov4) = 0. (4.14)

r<s

For f =&, with |L| > 3 or f € Byy(a):

4
Z( )(|f|(|f|+1)/2 |: Z 8lf aﬂ? (,5)¢ )) ® Vi — Z((arasf) *N@,5)e ® Fr,svi,j)
=1

i<j r<s

(4.15)

+ XLj=3 €L ELe * i)y © C%’] = X|p=sfLs ® Cvs = 0.
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Lemma 4.19. Let m € Ind(F), such that T'(m) is written as in formula (4.9). Then the relations
of Lemma [{.18 reduce to the following equations.
For every f € Bgys) we have:

fu. =0. (4.16)
For every a € {1,2,3,4}:
—v, = (1) Fj 4vja. (4.17)
ia
For every a # b € {1,2,3,4}:
0= EOO'Ua,b — Vab — Z (—1)a+jFa7j'l}j7b. (4.18)
j#ab

For every a,b € {1,2,3,4} with (¢,d) = (a,b):

0=-— a,bUx + (—1)a+bE00va7b - Z (—1)b+jFa7j’Uj’b + Z (—1)a+ij’jUj7a - g(a,b)g(c,d)cvc,d'
J7Fa,b JFab
(4.19)
Moreover:
0= Eoovs + (1) F; jug 5, (4.20)
1<j
and
0 :(Z F(i,j)c X Ui,j) — Cluy. (4.21)
1<j

For every a,b,c € {1,2,3,4} and d = (a,b, )¢, we have:

0 =(—1)"" vy + (—1)" Fypva,c — (— 1) Focvap + €(ape) (—1) T C00a. (4.22)
Finally:
aq2(vi2) = —iv1 3 + V23, B1,2(v1,2) = —v1,4 — (V24, (4.23)
a12(v1,3) = ivy 2, Pr2(v1,3) = —iv3 4,
ai2(vi4) = —v34, B1,2(v1,4) = v12,
aq2(v23) = —v12, B1,2(v2,3) = V34,
a1 2(v24) = —ivs 4, B1,2(v2,4) = iv1 2,
a12(v34) = V14 + V24, B1,2(v3,.4) = iv13 — V23,

where a1 2 and P12 are defined by (3.1) and (3.2)).

Proof. Equation (4.14) for f € B, is equivalent to Equation (4.16). Indeed Bjo4) = (012 =
F173 — ’L'F2’3, 51’2 = F2,4 + Z'F1’4> and we obtain:

0=n, @ (—F13+iF>3)vs,
0 =T« X (—F2’4 — Z'F174)’U*.



4.1 Vectors of degree 2 47

Thus this implies that v, must be a highest weight vector, when it is nonzero.

We consider Equation (4.13]) with f = &;,:

4
> [Cax Mgy ® Boovig + Y 0((£abl) *x M gye) @ vig — D &% N jye ® Fagvig] + Oane @ vs = 0,
i<j =1 al
(4.24)

and, considering the terms in 7)4)c, we obtain:

=- Z & % N(aye ® Favia — Z &% Naye @ Foiva,1 + Dot ® vy

I<a a<l
_ l
= Z c® Fa Vo — Z(_l) N(a)e ® Fa,lva,l + 5a77* @ Uy
I<a a<l
_Z ®ﬂavla ( 1)a7177(a)c @ V.
l#a

Hence, considering the coefficient 74)c, we obtain as in [BKLI]:
—U = Z(—l)a+lﬂ,avl7a.
l#a

Analogously, if b # a € {1, 2, 3,4}, considering the coefficient of N)e in Equation (4.24)), we obtain
if a < b

0 = Nan(ap)e ® EooVap — Nal(a,p)c @ Vap — Z S x N pye @ Fagvip — Z §1x N,y @ Faivpy

atl, 1<b atl,1>b
= (=1)* gy ® Eoovap — (—=1)*  npye ® vap — Z (=1 nye @ Fopuop — Z (=1 npye ® Foyopy
a#l,l<b a#l, 1>b
= (=1)* 'n@)e @ Boovap — (=1)* pye @ vap + > (= e ® Fovpp,
l#a,b

and if b < a:

0 = NaNp,a)c © Eoovba — Nal(b,a)e © Vba — Z Sxnapye @ Fagvip — Z §x Np,1ye @ Favpy

a#l,1<b a#l, 1>b
= (=1)"n@)e ® Eoovpa — (—1)" @) @ vbq — Z (—1)l_l7l(b)c ® Fovpp — Z (—1)lﬁ(b)c ® Favpg
a#l,1<b a#l, 1>b
= (=1)*ngye ® Eoovha — (=1)*np)e @ vha+ Y (=1)'1p)e © Fagvip.
I£ab

Hence:

0= Eoovap — Vap — Y (—1)* M Fyvp.
I£ab

Equation (4.13)) for £,&, with (¢,d) = (a,b)¢, is
0=n:® Fa bUx — ( )a+b77 ® EOOUa b

+ Z Z (O1(&ab) &) * Nijye @ Fivig + €ap) (§ca) * Nie,a)e @ Cca-
1<j l#k
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The coefficient of —n, is:
0= —Fopvs + (—1)* " Eggvgp — Z (—1)"M F, v + Z (1) Fy jvja — €(a,5)E(e.d) Ce,d-
Jj#ab j#ab
Equation , since the terms in C' are not involved, reduces, as in [BKLI], to:
0= Eoovs + Y _(—1)"F, juj ;.
1<j

Equation (4.15)) for f = £,&&. with d = (a, b, ¢)¢ reduces to:

4
0= 9(abplc) * Ou(niigye) @vij — Y 0r0s(€ale) * i jye @ Frstij + > E(ape)€a * Mirgye ® Cij.

1<j l=1 i<j r<s 1<j
From the terms in (—1)%,)e we have:

(=D vy + (1) Fupvae — (—1)* P Fycvap + E@ape) (1) Crqa = 0.

From the terms in (—1)!

and c,a,b.

Equation (4.15)) for f =&, is:

Ny and the terms in (—1)“n()e, we obtain the same equation for b, a, c

4
0=-— Z Z al(£1§2£3£4) * al("?(@j)c) & Vij — Z Z 8r83(§1£2§3£4) *T)(i,5)¢ ® Fr,svi,j — 1 ® C,

1<j =1 i<j r<s
=M% @ (Z Flijye @vig) — s @ Cs.

1<j

Equation (4.15) for f = a12 € Bgo(ay is:

4
0=—> ) O~ +ikas) * DN gy) @iy — Y 0rDs(—E1és + i&abs) % (i jye @ Frsvi

i<j =1 i<j r<s
=—(m —im)ns @ V12 — N3N @ Q12012 — N34 @ V1,3 — N2Ns @ 1 2V1 3

T MmN ® V14 — N2N3 @ (12014 + N3N4 R V2,3 — N4 ® 1 2023

+ i @ vaa — NiN3 @ a1 2V2.4 + (—N2n3 — iN1N3) D V34 — M2 @ Q1203 4
=12 @ (V14 + V24 — a12034) + N3 ® (—0 2024 — 103 4)

+mna @ (—v12 — @12023) + 0203 @ (—a1 2014 — V3.4)

+m2ns ® (—a12v1,3 +iv12) + 131 @ (—a1201,2 — 013 + V23).

From the previous equation we obtain relations (4.23)) for a o.
Equation (4.15)) for f = 812 € Bgo() is:

4
0= "N (6t —i&1&a) x Alngjye) @ vig — . > 0 0s(—Eas — i€1E4) * (i jye ® Fi v

i<j =1 i<j r<s
=—(m2+im)(—n3) @v12 — M3M4 @ P1201,2 + IMN2 @ V1,3 — M2 @ P1,201,3
— 304 @ V1,4 — 1213 @ B12014 — MN2 @ V2,3 — MNa @ B1,2023
— in3Na ® V2.4 — M3 @ Pr2v2.a + (—inana + mna) @ V34 — M2 ® B12v34
=mn2 @ (iv1,3 —v2,3 — F1,203.4) + M3 @ (w12 — F1,202,4)
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+mng @ (—P1,2v2,3 + v34) + 1203 @ (V1,2 — P1,201.4)
+n2ns @ (—ivs g — B1,2v1,3) + M304 @ (—B12v1,2 — V14 — 1V24).

From the previous equation we obtain relations (4.23)) for 5 .
O

Lemma 4.20. There are no singular vectors m of degree 2, such that T'(m) is written as in formula

(4.9) with v, # 0.

Proof. Let T'(m) € Ind(F') be as in formula (4.9). We show that relations of Lemma lead to
v, = 0. Let a,b € {1,2,3,4} with a < b and (a,b) = (¢, d).

We consider Equation (4.18)) for a,b, multiplied by —(—1)**?, plus Equation ([4.18)), for reversed

role of a and b, multiplied by (—1)**?; we get:

0=—2(=1)"*Eggvap + 2(=1) vy + Y (=1 Fjuj5 — Y (=) jvj.
j#ab j#ab

We compare this with Equation (4.19)) and obtain:
Fa,bv* = (—1)a+b+1Eoo’l)a7b + 2(—1)a+b1}a7b — C?}Qd, (4.25)

since for a < b we have that £, p)g(cq) = 1.

Equation (4.19) reduces to:

0= —Fopvs + (=) Eoovap + Y (1) E, jupj — (—1)* 7 Fy jva 5] — Cca. (4.26)
j#(l,b

We insert equations (4.22)) for j, a,b, where we denote by h = h(j) = (4, a,b)¢, into this and obtain:

Fapve =(=1)""Egovap — 2(=1)"Pvap — > €0 (=) C0;5) — Ceg (4.27)
j#ab
=(=1)*"Boovap — 2(=1)"Pvap — Y (1) Coin) = Y (1) Cvjp) = Cvca.
j<a or j>b a<j<b

Combining (4.27) and (4.25)), we get:

(1) 2Eo0vap =4(=1)"Pvep + D (=1)Cujp) + Y (=1)/F'Cujp).

j<a or j>b a<j<b
We substitute this in 2(4.27)) and obtain:
v =— S (-1Cua) — 3 (-1)7Cuy) — 200
j<a or j>b a<j<b

This reduces to the following, for every a < b:
Fypv. = 0. (4.28)

From these conditions it follows that v, is killed also by the negative roots, so F' = (v,) has
dimension 1 and so(4) acts trivially on it. Moreover all the v,;’s are multiple of v, since F' = (vy).
From (4.17)), —v, = Z#a(—l)“ﬂFj’avjya for every 1 < a < 4 then, since all the v,’s are multiple
of vy, then v, = 0 that is a contradiction since in our hypothesis v, # 0. OJ
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By Lemma we know that, for a singular vector m of degree 2, T'(1) is of the form:

T(m) = (E NG, j)e @ Vij)-

1<J

By Lemma [4.19) we obtain the following result.

(4.29)

Lemma 4.21. Let m € Ind(F'), such that T(m) is written as in formula (4.29)). Then the relations

of Lemma |4.18 reduce to the following equations.
For all a € {1,2,3,4}:

0="> (-1)*""Fjavja-
i#a
For all a,b € {1,2,3,4}:
0 = EooVap — Vap — Z (=1 E, jv;p.
J#a,b
For all a,b € {1,2,3,4} with (a,b) = (¢,d):
0= (—1)a+bE00’Ua7b — Z (—1)b+jFa7jvj,b + Z (—1)a+ij,jUj,a — E(a,b)g(c,d)cvc,d-
J#ab j#ab

For every a,b,c € {1,2,3,4} and d = (a,b,c)":

0 :(_1)b+cvb7c + (_1)a+cFa7bva7C — (—1)a+bFa7cva7b + e(a’bjc)(—l)“erCva,d.

Moreover:
0="> (=)™ Fjuv,
i<j
and
0= Z F(i,j)cvi,j-
i<j
Finally:
a12(vi2) = —ivi 3+ va3, Br2(v12) = —v14 — V24,
ai2(v1,3) = vy 2, B12(v1,3) = —iv34,
ai2(vi4) = —v34, Br2(v14) = v12,
ai2(v23) = —v12, B12(v2,3) = v34,
a12(ve4) = —iv3 4, B1,2(v2,4) = iv12,
a12(v34) = V14 + iV 4, B1,2(v34) = iv13 — V23,

where aq 2 and B2 are defined by (3.1) and (3.2).

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

Remark 4.22. Relations (4.36) for a2 and ()2 are equivalent to the following relations, in which

we use notation (4.11)):

aq2(w) = —ws — we, B1,2(w1) = ws + we,

a2(w2) = ws — we, B1,2(w2) = ws — we,

(4.37)
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aqp(ws) =0, Br,2(ws3) = 0,
aqp(ws) =0, B1,2(ws) = 0,
a12(ws) = w3 — wy, Br2(ws) = w3 + wy,
a12(we) = —w3 — wy, Br2(we) = —ws + wy
We represent these relations with the following drawings:
01,2 1,2 01,2 01,2
(wr) (w5 + we) (wa), (w2) (w5 — we) (ws)
P12 P12 B2 P12

Proof of Theorem [{.5. Throughout this proof y will denote the highest weight of F' with respect to
Eoo, p1 (resp. u2) will denote the highest weight of F' with respect to Hy(resp. Hs) and m = pq — po
(resp.n = p1 + po) will denote the highest weight of F' with respect to h, (resp. hy).

1) We suppose ws = wg = 0. Therefore ws = wsq = 0. Indeed, by Equations (4.37)), o 2(ws +ws) =
—2w4 = 0 and o 2(ws — we) = 2wz = 0.
We have the following subcases.

la) We suppose wy # 0 and wy = 0. From (4.37)), we have that w; is a highest weight vector.
Then from (4.11):

vi2 =0,
V1,3 = wi,
V14 = w1,
vg,3 = 1wy,
V24 = —W1,
1)374 =0.

Equation (4.31)) for a = 1,b = 3 reduces to:

0 =FEgov1,3 —v1,3 + F1ov23 — F1 4034
:Eoo(wl) —wy + F172(z'w1).

Therefore:
0= (Ep + Hi)w; — wy.
We obtain pup = 1 — py. Equation (4.33]) for a = 1,b = 2, ¢ = 3 reduces to:

0=—wv23+ Fiovi 3+ Fi3vi2—Cvig
=—1twq + F1,2w1 —1Cwy.

Therefore:
0= (Hl + C’)w1 + wi.
We obtain C' = —1 — p;. Equation (4.33)) for a = 3,b =1, ¢ = 4 reduces to:

0=—vi4+ Fi3v3a+ F34v13 — Cuas
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= — 1wy + F34w; — iCwy.
Therefore:
0= (Hy + C)wy + wy.
We obtain pig = —1—(—1—p1) = p1. Therefore the weight of wq with respect to hy, hy, Ego, C
is (0,n,1—7%,-1— %) for n € Zxo.
All the other equations of Lemmaare easily verified by this choice of v1 2, v1,3, V1.4, V2,3, V2.4, V3 4.
The singular vector obtained, written using notation (4.1J) is:
M2q = W11W21 @ Y1
in M(0,n,1—-%,-1—1%) for n € Z>.
1b) We suppose w; = 0 and wy # 0. From (4.37)), we have that ws is a highest weight vector.

Then from (4.11]) we have:

v12 =0,
V1,3 = —Wa2,
V1,4 = W2,
v2,3 = —iwg,
Vg4 = —W2,
v34 = 0.

Using (4.11)) and Equation (4.31)) for a = 1,b = 3 we obtain:
0 =FEoov1,3 —v1,3 + F12v23 — F1 4034
:E()o(—wz) + wo + Fl,g(—iwg).

Therefore:
0= (E()() + Hl)wg — wsy.
We obtain pug =1 — uq. Using (4.11]) and Equation (4.33)) for a = 1,b = 2, ¢ = 3 we obtain:

0=—wva3+ Fipviz+ Fi3vio — Cuig

=iwy — F qwy — 1Cws.
Therefore:
0= (H; — C)ws + wo.
We obtain C =1+ u;. Using and Equation for a = 3,b =1,c =4 we obtain:
0=—vi4+ Fiav3a+ F340v13 — Cuas
= —iwy — F3 qws + iCws.
Therefore:
0 = (Hs 4+ C)wy — wo.

We obtain pp =1 — (14 p1) = —p1. Therefore the weight of w; with respect to hg, hy, Ego, C
is (m,0,1 — 3,1+ ) with m € Zxq.
All the other equations of Lemma, are easily verified by this choice of v1 2, v1,3, V1,4, V2,3, V2,4, V3 4.
The singular vector obtained, written using notation (4.1), is:
Moy = winwiz @ 7",

in M(m,0,1—%,1+ %) with m € Z>,.
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1c) We suppose wy # 0 and wg # 0. From (4.37)), we have that both vectors are a highest weight
vector of F. Using (4.11)) and Equation (4.33) for a = 3,b = 2, ¢ = 4 we obtain:

0 =vo4 + Fo3v34 — F34v23 — Cv1 3
= —w; —wy + HQ(—wl + wg) + C’(—w1 + wz).

Using (4.11)) and Equation (4.33)) for a = 4,b = 1, ¢ = 3 reduces to:

0 =v13 — F14v34 + F3 4014 — Cv24
=w1 — w2 + F3,4(2'w1 + ’iQUQ) — C’(—w1 — U)Q)
=wy — wy + Howy + Hows + Cwy + Cws.

We take the sum of these 2 equations and get:
0 = —2w9 + 2Hows + 2Cws>.

Hence we obtain po = —C 4 1. We take the difference of these 2 equations and get:
0 = 2wy + 2Howq + 2Cw.

Hence we obtain us = —C' — 1. This is impossible.

2) Let us analyze the case w7 = 0 and its subcases. From we know ws + wg = 0. We suppose
ws # 0 (the case ws = 0 leads to 1), then from oy o(ws) = w3 —wy and oy 2(we) = —w3 — wy we
deduce that wy = 0; we also know that ws # 0 since o 2(w2) = 2ws. Let us split the problem in
the following subcases.

2a) We suppose w1 = wy = wy = 0 and wg # 0, w3 # 0, ws + wg = 0. By Remark we have:

ar2(wz) = 2w Br2(w2) = 2w
ara(wz) =0 B12(ws3) =0,
ara(ws) = w3 B12(ws) = w3
a1 2(we) = B1,2(ws) =

Therefore w3 is a highest weight vector. Equations (4.11]) reduce to:

'ULQ = 2iw5,
V1,3 = —Ww2 — ws,

V1,4 = ’iwg — iwg,

V2,3 = —i’wz + ’iwg,
V2,4 = —W2 — W3,
V3,4 = —2iw5.

Let us compute the weight of ws. Using (4.11) and Equation (4.31)) for a = 1,b = 3 we obtain:

0 =FEgov1,3 —v1,3 + F12v23 — F1 4034
:Eoo(—UJQ — wg) + w9 + w3 + FLQ(—Z.U}Q + iw3) — F1,4(—2iw5).

Using (4.11)) and Equation (4.31)) for a = 2,b = 3 we obtain:

0 =Epov2,3 —v2,3 + F2 1013 + Fr 4034
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=Eoo(—twz + tw3) + iwy — iwz + Fo1(—w2 — w3) + Foa(—2iws).
We take the last equation minus the previous multiplied by i and get:
0 =Epo(—tws + twsz + twy + twg) + iwe — iwsg — iwy — iws — F1 o(—wa — w3)

+ By o(—wa + ws) + i Fy 4(—2iws) + Fy 4(—2iws).

Therefore:
0 =2iEpo(ws3) — 2iws + 2F pws — 211 pws,
that is equivalent to:
0 =FEypws — w3 — Hywsg — ws.

We obtain po = p1 + 2. Let us consider equation (4.33) for a = 1,b = 2,¢ = 4, using (4.11)) we
obtain:
0 =vo4 — F12v14 + F14v120 — Cv13
= —wy — W3 — FLQ(Z'U)Q — ’iwg) + F1742iw5 — C(—wg — wg).

Let us now consider equation (4.33)) for a =2,b=1,¢ = 4:

0=—v14— Fiovoy — Fyavip — Cva3
= —jwy + 1wz — FLQ(—wg — wg) + (—1)3F274(2’L'QU5) — C(—iwg + iw3).

We take the sum of last multiplied by i and the previous, we get:

0 =W2 — W3 — W2 — W3 — FLQ(—T:’UJQ — iW3 + ’iWQ — iW3)
— iF2,4(2iw5) + F1742Z'ZU5 — C’(+w2 — w3 — Wy — ZU3)
= — 2w3 + 2iF w3 + B 22ws + 2Cw3
= — 2wz + 2iF172w3 + 2wz + 2Cw3 = +2H w3 + 2Cws.
We obtain C' = —p;. Now let us consider equation (4.33|) for a = 3,b = 1, ¢ = 4, using (4.11))

we obtain:

0=—via+ Figv3a+ F34v13 — Cuas
= — (in — iW3) + F1,3(—2iw5) + F374(—w2 — W3) — C(—iWQ + ’iwg).

Let us consider equation (4.33) for a = 3,b = 2,¢ = 4, using (4.11)) we obtain:

0 =vo 4 + Fy3v34 — F34v23 — Cv13

= —wo — w3 + F2,3(—2iw5) — F3,4(—iw2 + iwg) — C(—U)Q — wg).
We compute the difference between the first and the second multiplied by i:

0 = — 1wy + tw3 + two + tws + F173(72iw5) — iF273(72iw5)
+ F3 4(—wy — w3 + wy — w3) — C(—iws + twsz + tws + tws3)
=2iw3 — 2iwz — 2F3 qw3 — 2iCw3 = —2i(—Hy + C)ws.

We obtain p5 = C. Hence, the weight of w3 with respect to hy, hy, Ego, C is (m, 0, F +2, —73).
From o 2(ws) + f12(ws) = Bz —ec,ws = 2ws and oy 2(w2) + S12(w2) = E- —c,we = dws, we
have:

1
Wy = —7E_(51_52)LU3 = —We, Wwo =

1
2m )E—(El—az)E—(m—@)w&

dm(m — 1
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From this we also know that m > 1.
All the other equations of Lemmaare easily verified by this choice of v1 2, v1,3,v1.4, V23, V2.4, V3 4.
The singular vector obtained, written using notation (4.1J), is:

- m m—1 m—2,.2
Moe = wawz @ 1" + (wi1we + warwi2) ® 1" 22 — wiwie ® 7' 23,

in M(m,0,% +2,-%) with m > 1.

2b) We suppose that ws = wy = wy = 0 and wy # 0, wa # 0, ws # 0, ws + wg = 0. Using (4.11]),
Equation (4.33)) for a = 1,b = 3, ¢ = 4 reduces to:

0=—wv34—Fi3v14 — Frav1 3 — Cvio
= — (—2iw5) — F173(iw1 + iwz) — F174(’U)1 — ’LUQ) — C’(2iw5).

Using (4.11)), Equation (4.33|) for a = 2,b = 3, ¢ = 4 reduces to:

0=—wv34+ Fo3v24 + F5 4023 — Cvi 2
= — (*275’[1)5) + F273(*’w1 — U)Q) + F274(iw1 — iwg) — C(21w5)

We take the sum of these two equations and get:

0 =4iws — Fy 3(iwy + iwz) + Fr3(—wi — wo)
— Fi (w1 — we) + Fo 4(twy — twg) — 4iCws
=diws + i(F13 — iFh3)wy — i(Fi3 — iFh3)ws
+i(Fau +iF1 g)wy — i(Foa + i F) 4)wy — 4iCws
=4jws — diws — 4iCws = —4iCws.
We obtain C = 0. For C = 0, the A—action of Proposition |3.11| reduces to the action found in

Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of degree
2.

2¢) We suppose w; = wg = wg = wy = 0 and we # 0, ws # 0, ws +we = 0. Using (4.11)), Equation
(4.33]) for a = 1,b = 3, ¢ = 4 reduces to:

0=—wv34— Fr3vi4— Frav13— Curp
= — (—2iw5) - Fl’g(i’u)2> - F174(—’LU2) - C(in5).

Using (4.11)), Equation (4.33|) for a = 2,b = 3, ¢ = 4 reduces to:

0=—wv34+ Fo3v24 + Fp4v23 — Cvi o
= — (—2iws) + F2’3(—'LU2) + F2,4(—z'w2) — C(2iws).

We take the sum and get:

0 =4diws — F1,3(+z'w2) + F273(7w2) — F174(7w2) + F2’4(7iw2) — 41011)5
=diws — i(F13 — 1Fy3)wy — i(Fo g + iF7 4)wa — 4iCws
=4diws — diws — 4iCws = —4iCws.
We obtain C = 0. For C = 0, the A—action of Proposition reduces to the action found in

Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of degree
2.
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2d) We suppose that wg = wy = 0 and w; # 0, we # 0, w3 # 0, ws # 0, ws +wg = 0. From (4.37)),

we have that w; and ws are highest weight vectors, therefore they are multiples.

Using (4.11)), Equation (4.33) for a = 1,b = 3, ¢ = 4 reduces to:

0=—wv34—Fi3v1a— Frav13 — Cuip

= — (—2iw5) — Fl,g(i’wl + 1w — iw3) — F1,4(w1 — Wy — W3) — C(in5).
Using (4.11)), Equation (4.33|) for a = 2,b = 3, ¢ = 4 reduces to:

0=—wv34+ Fo3v24 + F5 4023 — Cvi o
= — (—ing,) + Fg,g(—wl — wy — wg) + F274(iw1 —two + iwg) - C(2iw5).

We take the sum of these equations and get:

0 =4iws — F1 3(iwy + iwy — twg) + Fr3(—w1 — wy — ws)
— F g(w1 — wy — ws3) + Fra(iwy — tws + iwsz) — 4iCws
=diws — i(F1 3 — iFp3)wi — i(F1 3 — iFy3)we + i(Foq + 1F1 4)wy — i(Fo g + iF) 4)wo
+i(Fi3+ Foa —iFy 4 +iF5 3)ws — 4iCws
=4jws — diws + iE_(El_EQ)wg — 4iCws = —4iCws + iE_(El_Ez)wg.

We take the difference and get:

0 = — Fy 3(iw + iwy —iws) — Fo3(—w; — wy — w3)
— F14(wy — wy — w3) — Fp4(iwg — dwg + iws)
=—i(F13+iFo3 —iFi4+ Fog)w) —i(F13 +iFo3 + iF14 — Fo4)ws
+i(Fi 3 —iFh3)ws — i(Foa + iF 4)ws

= — iE,(&,Q)wl — Z'Ef(z-:1+€2)w2'

Since w; is a highest weight vector and ws is not, these two terms are linearly independent
unless they are both 0, in particular E_ _.,yw1. But we know that w3 is a multiple of w1,
then —4iCws +iE_(., _., w3 = —4iCw; = 0. We obtain C' = 0. For C' = 0, the A—action of
Proposition reduces to the action found in Theorem 4.3 of [BKLI]; in that case it was
shown that there are no singular vectors of degree 2.

3) Let us now analyze the case wy # 0, with ws = wg # 0 and all its subcases. In particular we know
that this implies w; # 0 because aq 2(w1) = —ws — we, and w3 = 0 since oy 2(ws — we) = 2ws.

3a) We suppose we = wg = 0 and wy # 0, wy # 0, wy # 0, ws = weg # 0. By Remark we

have:
Ong(wl) = —2ws; ,3172(101) = 2w57
a172(w4) =0 6172(71)4) =0,
ap2(ws) = —wy B1,2(ws) = wa,
OéLQ(’wG) = —W4 51,2(“76) = W4.

We have that wy is a highest weight vector and Equations (4.11]) reduce to:

’U1,2 = 2iw5,
V1,3 = W1 + Wy,

V1,4 = W1 — W4,
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V2,3 = 1w — Wy,
V24 = —W1 — W4,

V3,4 = 22’w5.
Let us compute the weight of wy. Using (4.11)), Equation (4.31]) for a = 1,b = 3 reduces to:

0 =Epov1,3 —v1,3 + F1 2023 — F1 4034
:Ego(wl + ’11)4) — w1 — Wy + FLQ(Z.’lUl — z'w4) — F174(22'w5).

Using (4.11)), Equation (4.31]) for a = 2,b = 3 reduces to:

0 =Epov2,3 — v2,3 + F21v1,3 + F 4034
=FEpo(tw1 — iwyg) — iwy + iwg — F1 2(w1 + wa) + Fo 4(2iws).

We take the sum of the first equation and the second multiplied by i and get:

0 =FEpo(w1 +ws —wy + wq) —wy —wg + wy — wy
+ Fy o(twy — twyg — iwy — iwy) — 20F 4(ws) — 2F5 4(ws)
=Foo(2wy) — 2wy + F172(_27;w4) — 25172(105)
:E00(2w4) — 2wy + Fl,z(—in4) — 2wy
:2E00w4 — 2H1w4 — 4w4.

We obtain pg = p1 + 2. Let us consider Equation (4.33)) for a = 1,0 = 2,¢ = 4, using (4.11))
we obtain:

0 =vo4 — Fiov14 + F14v12 — Cv13
= —w] — W4 — FLQ(iwl — iw4) + F1742iw5 — C(w1 + w4).

Let us now take Equation (4.33) for a = 2,b = 1,¢ = 4, using (4.11)) we obtain:

0=—v14— Frovag — Fo4v12 — Cua3
= — 1wy + 1wy — Flyg(—wl — 11)4) — F274(2iw5) — C’(iwl — iw4).

We take the difference between the last and the previous multiplied by i and get:

0 = — jwy + fwg + 1wy + twy — F1 2(—w1 — wa + w1 — wy)
— I 4(2iws) — iFy 42iws — Ciwy — jwy — iwy — twy)
=2iwy4 + 2F swy — 2051 2ws + 2iCwy
—2F) ywy + 2iCwy.

Therefore:
0= H1w4 — C’w4.
We obtain C' = p;. Using (4.11)), Equation (4.33|) for a = 3,b = 1, ¢ = 4 reduces to:

0=—wv14+ F13v34+ F34v13 — Cua3
= — (iw1 — iW4) + F173(2Z.IU5) + F3,4(w1 + w4) — C’(iw1 — iw4).

Using (4.11)), Equation (4.33|) for a = 3,b = 2, ¢ = 4 reduces to:

0 =vo 4 + Fo3v34 — F34v23 — Cv1 3
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= —w; — w4+ F273(2iw5) — F3,4(iw1 — iw4) — C’(w1 + w4).
We compute the difference between the first and the second multiplied by i:
0=—1twy + 1wy + 2wy + 1wy + F173(2iw5) — iF2,3(2iw5)
+ F3 4(wy + wyg — wi + wy) + C(—iwy + twg + twy + twy)
=2iwy — 2iwy + 2F3 4wy + 2iCwy.
Therefore:
0= H2w4 — CZU4.
We obtain p5 = C'. Hence the weight of w4 with respect to hg, hy, Eg, C is (0,7, 5 + 2, ).
From on 2(ws) — Bi,2(ws) = Ezyyeyws = —2ws, arg(wi) — Pr2(wi) = Eepqe,wr = —4ws and
2ws + 2wg + wy = 0, we have:
1
ws = %E_(51+52)w4 = we,
wy = —4ws,
1
W= = Dy Dt B Wt
From this we know that n > 2. All the other equations of Lemma are easily verified by
this choice of vy 2, v1,3, V14,023, V2,4, v34. The singular vector obtained, written using notation
), is:
Mag = Wagwia @ Y — (wawiy + warwiz) ® Y tys — wiyway ® Y 2w,
in M(0,n, 5 +2,5) withn > 1.
3b) We suppose wy = w3 = wy = 0 and wy # 0, wy # 0, ws = wg # 0. Using (4.11)), Equation

(4.33]) for a = 1,b = 3, ¢ = 4 reduces to:

0=—wv34—Fi3v1a — Frav13 — Cuia
= — (2iw5) — F173(iw1) — F1,4(w1) — C(Q’iw5).

Using (4.11)), Equation (4.33|) for a = 2,b = 3, ¢ = 4 reduces to:

0=—wv34+ Fo3v24 + Fp4v23 — Cvi
= — (2iw5) + FQ’g(_’IUl) + F2,4(iw1) — C(inf)).

We take the sum of these two equations and obtain:

0=—41ws — i(F173 — Z'F273)(’w1) + i(F274 —+ iF1,4)w1 — C’4z’w5
= — 4wy — Z‘Oq,g (’Ll)l) + Z‘,Blg(wl) — C4iws
= — djws + 2iws + 2iws — 4iCws = —4iC'ws.

We obtain C = 0. For C' = 0, the A—action of Proposition reduces to the action found in
Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of degree
2.
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3c)

3d)

We suppose ws = wy = 0 and w; # 0,wy # 0, wy # 0, ws = wg # 0. Using (4.11]), Equation
(4.33)) for a =1,b = 3, ¢ = 4 reduces to:
0=—wv34—Fi3via— Frav13—Cuio
= — (27jw5) — Fl,g(iwl + Z"LUQ) — F1,4(w1 — wQ) — C(in5).

Using (4.11)), Equation (4.33|) for a = 2,b = 3, ¢ = 4 reduces to:

0=—wv34+ Fo3va4 + Fp4v23 — Cv12
= — (2211)5) =+ ngg(*wl — ’LUQ) + F2,4(iw1 — iwg) — C(Ql’wg,)

We take the sum and obtain:

0=-— 4iw5 — ’l‘(Fl,g — Z'F273)(’w1) + i(F274 + z'F174)w1
— Z'(Fl’g — Z'F273)’u}2 — Z'(F274 + z'F174)w2 — C4iws
= — 4wy — Z'Oq,g('wl) + iﬁljg(wl) — ’L'Oq’g(wg) — ’L.ﬁLQ(’LUQ) — C4iws
= — djws + 2iws + 2iws — 4iCws = —4iC'ws.
We obtain C' = 0. For C = 0, the A—action of Proposition reduces to the action found in

Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of degree
2.

We suppose w3 = 0 and wy # 0, we # 0, wy # 0, wy # 0, ws = wg # 0. We have that ws
and wy are multiples because, from (4.37)), we know that they are both highest weight vectors.
Using (4.11)), Equation (4.33) for a = 1,b = 3, ¢ = 4 reduces to:
0=—wv34— Fr3vi4— Frav13— Curp
= — (QiU}5) — F173<Z"w1 + 1wy — iw4) — F174(w1 — way + w4) — C(2iw5).

Using (4.11)), Equation (4.33|) for a = 2,b = 3, ¢ = 4 reduces to:

0=—wv34+ Fo3v24 + F3 4023 — Cvi 2
= — (2iws) + Fo3(—w1 — wa — wy) + Fo 41wy — twg — twy) — C(2iws).

We take the sum and obtain:

0=-— 4iw5 - Z'(F173 — Z'ngg)(wl) + Z'(F274 + iF1,4)w1 - Z'(F173 - Z'ngg)wg
— Z'(F274 + iF174)w2 + i(FLg — F2,4 + Z'F1,4 + z'F273)w4 — C4iws
= — diws — iag 2(wr) +if12(w1) — iar2(we) —if12(w2)
+ i(FLg —Fy 4 +ilFy 4+ iy 3)wy — Cdiws
= — diws + 2iws + 2iws — 4iCws +iE_ (o cpyws = —4iCws +iE_ (| op)wa.

We take the difference and obtain:

0=— ’L'(Fl’g + iFg}g)’wl + Z'(—F274 + Z'F174)’LU1 — ’L'(Fl’g + ’L.F273)'UJ2 — i(—F274 + z'F174)w2+
+i(Fig+ Foa+iF1 4 —iF53)ws
= —iE_ (o) _cp)W1 — 1B _ (o) yop)W2.
Since w9 is a highest weight vector and w; is not, these two terms are linearly independent,
unless they are both 0, in particular E_., ., ws = 0. But we know that w, is a multiple of
wa, then —4iCws +iE_ (| | cpyws = —4iCws = 0. We obtain C' = 0. For C' = 0, the A—action

of Proposition reduces to the action found in Theorem 4.3 of [BKLI]; in that case it was
shown that there are no singular vectors of degree 2.
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4) Let us now analyze the case wy # 0 (hence ws # —wg), with ws # wg and all its subcases. In
particular we know that this implies w; # 0 because aj2(w1) = —ws — we and wy # 0 because
a1 2(w2) = ws — ws. We have the following subcases.

4a)

4b)

We suppose w3z = wyg = 0 and wy # 0, we # 0, ws # 0, wg # 0, ws # tws.
Using (4.11)), Equation (4.33) for a = 1,b = 3, ¢ = 4 reduces to:

0=—w34—Fi3v14 — Frav13—Cvig
= — (2iw6) — Fl’g(iwl + ’iwg) - F174(’LU1 — ’wg) — C(ing,).

Using (4.11)), Equation (4.33|) for a = 2,b = 3, ¢ = 4 reduces to:

0=—wv34+ Fo3v24 + Fp4v23 — Cvy1 2
= — (2iw6) + Fg,g(—wl — wg) + F274(iw1 — iwz) — C'(ing,).

We take the sum and obtain:

0=-— 4iw6 — C4z’w5 — Z'(F173 — Z'ngg)(wl) — i(F173 — Z'Fng)(wg)
+ Z'(F274 + Z'F174)(’w1) — Z'(F274 + z'F174)(w2)
= — diwg — Cdiws + i(ws + we) — i(ws — weg) + i(ws + wg) — i(w5 — wg)
= — C4iws = 0.
We obtain C = 0. For C = 0, the A—action of Proposition reduces to the action found in

Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of degree
2.

We suppose that wg = 0 and wy # 0, we # 0, wg # 0, ws # 0, wg # 0, w5 # Fws.
Using (4.11)), Equation (4.33) for a = 1,b = 3, ¢ = 4 reduces to:

0=—w34— Fi3v14 — F14v13 — Cvio

= — (2iw6) — Fl’g(iwl + twy — iwg) — F174(w1 — Wy — wg) — C’(2iw5).

Using (4.11)), Equation (4.33|) for a = 2,b = 3, ¢ = 4 reduces to:

0=—wv34+ Fo3v24 + F5 4023 — Cvi 2
= — (21'11)6) + F273(—w1 — Wy — wg) + F2,4(iw1 —qwg + iwg) — C(Ziw5).

We take the sum and obtain:

0 = — diwg — Cdiws — i(F13 — iFo3)(wy) — i(F1 3 —iFy3)(wa)+
+i(Fog +iF1a)(wr) — i(Fou +iF1 4)(we) +i(Fi3 4+ Foy — iF 4 + iF 3)ws
= — diwe — Cdiws + i(ws + we) — (w5 — we) + i(ws + we) — i(ws — we) + 1E_(c, _c,)w3
= — Cdiws +iE_(;, ., w3 = 0.

Using (4.11)), Equation (4.33) for a = 4,b = 1, ¢ = 2 reduces to:

0=—vi2+ Fravog + Fr4v14 — Cvuzy
= — (2iw5) + F174(—w1 — Wy — w3) + F2,4(z'w1 + twg — iwg) — C(2iw6).

Using (4.11)), Equation (4.33|) for a = 3,b = 1, ¢ = 2 reduces to:

0=—v12— Fi3va3— Fa3v13 —Cuzy
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= — (2iws) — F13(iwy — dwg + iw3) — Fp (w1 — wo — w3) — C(2iws).
We take the sum and obtain:
0 = — diws — Cdiwg + i(Fou + iF1 a)wi + i(Fou + iF a)way — i(F1 3 — iF53)wy
+i(Fig3 —iFy3)wy —i(Fi 3+ Foq — iF1 4+ iF5 3)ws
= — diws — Cdiwe + i(ws + we) + (w5 — we) + i(ws + we) + i(ws — we) — IE_(c _c, w3
=— Cdiwg — iE_(., ., ws.
Hence we know that:
0=—-Chiws +1E_(;,_c, w3,
0=—-Chiwg — iE_(c,_cp)W3.
From this we obtain that ws + wg = 0 that is a contradiction.

4c) We suppose that ws = 0 and wy # 0, wy # 0, wy # 0, ws # 0, we # 0, ws # Fws.
Using (4.11)), Equation (4.33) for a = 1,b = 3, ¢ = 4 reduces to:

0=—wv34— Fr3vi4— Fr4v13 —Cvi2
= — (inﬁ) — F173(Z'w1 + 1wy — iw4) — F174(w1 — w2 + w4) — C(ing)).
Using (4.11)), Equation (4.33|) for a = 2,b = 3, ¢ = 4 reduces to:
0=—w34+ Fo3v24 + Fp4v23 — Cviz
= — (2iw6) + F273(—w1 — Wy — w4) + F2,4(iw1 — Wy — z’w4) — C(2z’w5).
We take the sum and obtain:
0=-— 4iw6 — C’4z’w5 — Z'(F173 — Z‘FQ’?,)('U)I) — i(F173 — Z'F273)(w2)+
+i(Foa + iF1a)(wi) — i(Fou +iF1a)(we) +i(Fi3 — Fou +iF1 4+ iFp 3)ws
= — djwg — C'diws + i(w5 + wﬁ) — i(w5 — ’11)6) + é(w5 + w(j) — i(w5 — UJ6) + iE—(51+52)w4
= — C4iws + ’L'E_(51+€2)w4.
Using (4.11)), Equation (4.33) for a =4,b =1, ¢ = 2 reduces to:
0=—v12+ Fravaa + Fo4v14 — Cuzy
= — (2iw5) + F174(—w1 — wo — w4) + F2,4(iw1 + 1wy — z'w4) — C(ing).
Using (4.11)), Equation (4.33) for a = 3,b =1, ¢ = 2 reduces to:
0=—wv12— Fi3va3— Fy3v1 3 — Cuzy
= — (2iw5) — F173(Z"LU1 — Wy — z’w4) — F273(w1 — w2 + w4) - C(inﬁ).
We take the sum and obtain:
0=—41ws — C’4iw6 + Z'(F274 + iF174)w1 + i(F2,4 + iF174)w2 — Z'(F173 — iF273)w1 + i(F173 — Z'F273)UJ2
+i(Fi3—Fog+iF1 4 +iFs3)wy
= — 4iws — Cdiwg + i(w5 + w6) + z'(w5 — ’IUG) + i(w5 + UIG) + i(w5 — ’U)6) + iE_(51+52)w4
= — Cdiwg + iE_(51+€2)w4.
Hence we know that:
0= —-Cdiws + iE_(€1+52)w4,
0= —Cdiwg + iE,(51+52)w4.

From this we have that ws — wg = 0 that is a contradiction.
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4d) We suppose wy # 0, wg # 0, w3 # 0, wg # 0, ws # 0, we # 0, ws # Fwg.
Using (4.11)), Equation (4.33) for a = 1,b = 3, ¢ = 4 reduces to:
0=—wv34—Fi3v1a— Frav13 —Cuia
= — (Q’iwﬁ) — F173(iw1 + 1w — twg — iw4) — F1,4(’LU1 — W9 — W3 + UI4) — C(2iw5).
Using (4.11)), Equation (4.33) for a = 2,b = 3, ¢ = 4 reduces to:
0=—wv34+ Fo3v24 + Fp4v23 — Cvy g
= — (2iw6) + F273(—’LU1 — W9 — W3 — w4) + F274(iw1 — Wy + 1wz — iw4) — C(2iw5).
We take the sum and obtain:
0=—41wg — C’4iw5 - i(F173 - iF273)(w1) - Z'(F173 — ’L'F273)(w2)+
+i(Foy 4+ i 4)(wr) — i(Fog 4+ iF 4)(we) +i(F13 — Fog +iF 4 + iF5 3)wa+
+i(Fi3+ Foq—iFy 4+ iF273)w3
= — diwg — Cdiws + i(ws + wg) — i(ws — we) + i(ws + we) — i(ws — we)
+ Z'E,(Elfgz)wg + iE,(€1+52)w4
= — C4iws + iE—(El—EQ)wg + iE_(61+82)w4 =0.
Hence we know that:
0= —C4iws + iE_(€1_€2)w3 + iE_(51+52)w4.
Now we apply a2 and 312, we call the weight of w3 and w4 (they are multiples, because they
are highest weight vectors from (4.37)) with respect to Hy — Hy and H; + Ha respectively m
and n. We have:
0 = —4C (w3 — wy) — 2mws — 2nwy,
0 = —4C (w3 + wyg) — 2mws + 2nwy.
From the sum of these —8Cwsg = 4mws, from the difference 8Cwy = +4nwy. This leads to
m = —2C, n = 2C. The weight should be dominant, then C' must be 0, but for C' = 0 the
A—action of Proposition reduces to the action found in Theorem 4.3 of [BKLI]; in that
case it was shown that there are no singular vectors of degree 2.
4e) We suppose ws = 0 and wy # 0, wy # 0, we # 0, we deduce from a; 2(ws) = w3 — w4 = 0 and

B1,2(ws) = w3 + wg = 0 that wz = wy = 0.

Using (4.11)), Equation (4.33) for a =4,b =1, ¢ = 2 reduces to:

0=—v12+ Flava4 + Foav1 4 — Cuzy
:F1,4(—w1 — UJQ) + F274(z'w1 + iwg) — C(inﬁ).

Using (4.11)), Equation (4.33|) for a = 3,b = 1, ¢ = 2 reduces to:

0=—wv12—Fi3va3— Fo3v13 — Cuzy
= — Fy 3(twy — twg) — Fo3(w1 — wa) — C(2iws).

We take the sum and obtain:

0=—4iCwg — Z'(F173 — ’L'Fg,g)wl + Z'(F173 — Z.F2’3)w2 + i(F2,4 + iF1,4)(w1)
+i(Fyq + iF1 4)(we)
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4f)

= — 4iC'wg + twg — 1wg + 1we — 1wg = —4iC'wg.

We obtain C' = 0. For C' = 0, the A—action of Proposition [3.11] reduces to the action found in
Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of degree
2.

We suppose that wg = 0 and w; # 0, we # 0, ws # 0. We deduce, from o 2(ws) = —ws—wy =
0 and S 2(ws) = —ws + wg = 0, that w3 = wy = 0.

Using (4.11)), Equation (4.33) for a = 1,b = 3, ¢ = 4 reduces to:

0=—wv34 — F13v14 — F14v13 — Cvia
= — F173(z'w1 + i’wg) — F1,4(w1 — UJQ) — C(2iw5).

Using (4.11)), Equation (4.33) for a = 2,b = 3, ¢ = 4 reduces to:

0=—v34+ Fo3v24 + Fpav23 — Cvi
=+ F273(—w1 — UJQ) + F2,4(z'w1 — in) — C(2iw5).

We take the sum and obtain:

0=-— C4iw5 — Z'(F173 — iF273)(w1) — ’i(FLg — iF273)(’w2)+
+ Z'(FQA + iF174)(w1) — i(F274 + Z‘F174)(’w2)
= — C4iws + iws — iws + ws — iws
= — C4zw5
We obtain C = 0. For C = 0, the A—action of Proposition [3.11| reduces to the action found in

Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of degree
2.

O
4.2 Vectors of degree 3
The aim of this section is to classify all singular vectors of degree 3.
We have that, for a singular m vector of degree 3, T'(1m) is of the form:
i i
We write m as:
m =(n2 + in) (2 — 1) (4 + in3) ® w1 + (2 + i) (2 — i) (N4 — in3) © wa+ (4.39)

(4 +in3)(na — in3) (N2 + i) @ w3 + (N4 +in3)(Na — i03) (N2 — im) @ wa+
O(n2 + in1) ® ws + O(n2 — in1) @ we + O (s + i13) @ wr + O (g — iN3) @ ws

=(20in3 4 20mn — 2mnan3 + 2imnans) @ w1 + (=2i0On3 + 2004 + 2mm2n3 + 2in1N2nNs) ® wat
(2iOm1 + 20n2 — 2mim3na + 2inanzna) @ w3 + (—21Om + 20m + 213N + 2iNem3N4) ® Wt
O(n2 +1im) @ ws + O(n2 — in1) @ we + O(ns + in3) @ wr + O(ny — inz) ® ws.

Keeping in mind the relation between m and T'(m), we have:

V1,0 = 29w3 + 21wy, (440)
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U0 = 2wz — 2wy,

1)37() = 2iw1 + ing,

V40 = 2w1 — 2w,

v1,1 = —2iw3 + 21wy — ws + 1w,
U1 = 2w3 + 2wy + ws + we,

V3,1 = —2iw1 + 2twe — 1wy + 1w,
v4,1 = 2w1 + 2wz + wy + ws.

Indeed, let us show for example one of the previous equations. In (4.38), let us consider 7y ® va .
We have that 7, is the Hodge dual of —n1n3ns. In (4.39)), the terms in 7171314 are:

—2m1M3M4 @ w3 + 211103N4 @ Wy,

hence vy g = 2wz — 2wy4. Analogously for vy o, v3 and vso. Moreover in (4.38), let us consider, for
example, @T](l)c ®v1,1 = Omanans ® v1,1. We have that ©nan3ny is the Hodge dual of —©n;. In
(4.39)), the terms in ©n; are:

21011 ® w3 — 2i0On @ wy + 101 ® ws — 1ON @ wg,

hence vi,1 = —2iws + 2iw4 — iws + twe. Analogously for va1,v31 and v41.
In the following lemma we write explicitly the relations of Proposition for a vector as in formula,
@33).

Lemma 4.23. Let mi € Ind F' be a vector, such that T'(m) is written as in formula (4.38)).
1) Condition S1 reduces to the following relation for f = & with |L| =0,1:

0= Z [ D (Fak*mi ® Figvig) = Xpj=y €L Ee 7 © C’w,o)] (4.41)

<k
4
+> [f*n@c ® Boovig — (—1)P 3" a((£6) * ) @ via + (=DPD S ((0uf)&) * 10y © Fravin)
i =1 £k
+ X|L|:2 €L é-Lc * ’I’](Z)c ® C'Ui,]_):| .

2) Condition S2 reduces to the following system of relations.
For f =& with |L| =1,2,3:

4
0= Z [f*??i @ Egovio — (—1)PY) Zaz((f&) *1;) @ v + (—1)p(f)(2((8lf)§k) *1; @ F vi0)

1=1 I#k
(4.42)

+ X|pj=2 €L ELe ¥ 0 ® CU@',O):| +> [ 1P Z ((OLf) * (Bingiye)) ® via

= ((0:05f) * ngiye ® Frgvin) + X =3 €L §Le * N(iye ® C'vm} .

r<s

For f =& with |L| = 1:

L(£&) *ngiye) @ via + (=PI ((01f)ék) * ngiye © Fipvin)
I#£k

||M_>

0 :Z [f*n(i)c ® Eoovin — (—

(4.43)
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+ X|1j=2 €L §Le * M(i)e @ Cvi,l)] +) [(If\ = 2)(f *nye) ® Ui,1:| -

3) Condition S8 reduces to the following system of relations.
For f =&, with |L| = 3,4 or f € Bgoa):

4

0= Z )N 'f+1/2>+f'[ PN (01f) * (Omi)) @ vig = Y ((0r0sf) % mi @ Frsvi0)

=1 r<s
(4.44)

+ X|Lj=3 €L ELe * i ® Cvi,o} = Xjpj=afLnG)e ® Cin.
i

For f =&, with |L| =3 or f € Byyay:

4
o=2[<\f|—2><f*m>®m,o}+Z[—< DS (00f) % o)) © i (4.45)
7 1 =1

- Z((arasf) * 77(2)0 & Fr,svi,l) + X|L|:3 €L ch * Tl(z)c & C'Ui,l:| .

r<s

Lemma 4.24. Let mi € Ind F' be a vector such that T'(m) is written as in formula (4.38). The
relations of Lemma[[.23 reduce to the following equations.
For alli € {1,2,3,4}:

Vi1 = (—1)i+1201)i70. (4.46)
Forallr # s € {1,2,3,4}:
EOOUT,O — 21},"’0 + FSJU&O = 0. (4.47)

Moreover C (resp. Eg) acts as multiplication by +% (resp. 3) on F.
For all a,b,c € {1,2,3,4} with d = (a,b,c):

Ve,0 + Fa,cva,(] + Fb,cvb,O =0, (448)
Fb,cvd,O — €(a,b,c) CuUa,O = 0. (449)

For all a,b,c € {1,2,3,4} with d = (a,b,c)":
—E(ape)Vd0 + (1) Fapven — (—1)°Fycvp1 + (—1)"Fycva1 + Ceape(—1) g1 = 0. (4.50)
For all a,b € {1,2,3,4} with (c¢,d) = (a,b), if we let k = c¢,d and s # a,b, k:
Eoovr0 — ko + Fakvao + Fypvso + (—1)Xa<k<o Fy oy = 0, (4.51)
= Fy cva,0 + Fpave0 + €(a,p)Ca0 + (—1)a+b_1(—1)X°<“<dUa,1 + (_1)XC<“<dFa,bUb71 =0. (4.52)
For all a,b,c € {1,2,3,4} with a < b < ¢ and (d) = (a,b,c)":

0 =(—1)?Egovao + (=1)2F, qvao + (—1)Fpqup0 + (—1)Fe queo (4.53)
+ (_1)6_1Fa,bvc,1 - (_l)b_lFa,cUb,l + (_l)a_lFb,cUa,l - C'Ud,l-
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For all a € {1,2,3,4} with (b,c,d) = (a)°:
(—1)%a,1 — (—1)*Eoovas + (—1)°Fapvp1 4 (—1)Faeven + (—1)*Fy qvg1 = 0. (4.54)

For all a € {1,2,3,4} with (b,c,d) = (a)°:
—Fy V4,0 + Fp,qVe,0 — Fe,ave,o + Loova,1 — Va1 = 0. (4.55)

For all a € {1,2,3,4} with (b,c,d) = (a)°:

0 :(—1)an7cvd70 + (—1)a_1Fb7dU070 + (—1)aFc7dvb70 + 6(a)(—1)a_1 ® CU%O + (—1)a_1E0[ﬂ)a71

(4.56)
+ (=1 Fypup1 + (1) Facven + (—1)1F, qva,.
Finally:
a12(v10) = —v30, B12(v1,0) = —iva, (4.57)
a1,2(v20) = iv3p, B12(v20) = —v4,0,
a12(v30) = v1,0 — V2,0, B1,2(v3,0) =0,
ag2(vap) = B1,2(va,0) = iv1,0 + va,0,

where a1 2 and P12 are defined by (3.1) and (3.2).

Proof. We consider the difference between (4.41)) and (4.43)) for f = &. We denote by (a, c,d) = (b)°.
We have that:

4
— & * Np)e @ vp1 = < — Z Z E&i6k * M ® Fikvio — €y (§abela) * b @ CUb,O) :

=1 I<k
It is equivalent to:
b * N(p)e @ Vb1 = Z E&ik * N1 k)e @ FLEV(b,1,8)e,0 — E@)MoMaNeNd © Cpo- (4.58)

I<k,l,k+#b

Let us focus on Equation (4.42)) for f = & with s # b. We have:

0—28577 )C®U11+Z£s*771®EOOUzO+ZZal gsgl *771 ®U10_Zzgl*m®Fslsz

i=1 i=1 [=1 i1=1 l#s
(4.59)

The terms in 7, p)c of this equation are:

DsT(pye @ vp,1 — Z §1x Nspiye @ Fsivispiyeo = 0.
l#s,b

We take the sum over s # b and, as in [BKLI], using (4.58) we obtain:

0=2 & x (D) © b1 =D Y (6€) ¥ Nspiye ® Fattispayeo
s#b s#b l#£s,b

=3 @ vn1 = 2( D (&) * sy @ Fuat(spiyeo)
s<l,s,l#b

=(3 = 2)n(p)e @ vp,1 — 26y N(p)e @ Cupo
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=Ny @ (Vb1 — 25(b)CUb,O)'

That is:
v1,1 = 2Cv1 0,
vg1 = —2Cv9,
v31 = 2Cv30,

V41 = —207}4’0.
Given r # s € {1, 2, 3,4}, the terms in nsn, of (4.59)) are:

Nsr & EOOUT,O + Z 6l((§s§l) * 777") QUro + NsMr & Fs,rvs,O = 0.
l#s,r

This condition is equivalent to:
Eoovro — 2vr0 + Fspvs0 = 0.

Using (4.46)), Equation (4.44) for f =&, is:
4

4 4
0=- Z (&) * O (n;) ® v — Z Z 0r0s(&x) *Mi @ Fr g0 0 — C'Zn(i)c R Vi1

i=1 1=1 r<s i—1 i
= — N2n3na @ v1,0 + MN3N4 @ V2,0 — MN2Na ® V3,0 + MN2M3 @ Va0 + N304 @ F1 2010 + N3nanz @ F1 2020
— n2nam @ F13v10 — n2man3 @ F13v30 + m2m3m & F14v10 + n2n3na @ F1avao + mnanz ® Fazva0
+mnans @ Fo3v30 + mmnans @ F3 4030 + mnans @ F34v40 —mnsnz @ Fo 4v20 — mn3na @ Fo 4040
— C(mmnznz) ® (=2C)vao — C(mnzns) @ (—2C)va,0 — C(mnans) ® (2C)vz0 — C(n2m3ma) @ (2C)v1 .

The coefficient of nymons is:
40+ F1av10 4 F34v30 + Faava0 4 2C%040 = 0. (4.60)
Using , we obtain:
V4,0 + 2010 — Eoovao + 2v40 — FEoovao + 2040 — Egovao + 2C%vs0 = 0.

This is equivalent to:

7+ 2C?
EO0U4,0 = TU470. (4.61)
The coefficient of nymany is:
—’0370 — F173’U170 — F273’U270 + F374’U470 - 2021)370 =0. (4.62)

Using (4.47)), we obtain:
—v30 — 2030 + Eoovs o — 2v30 + Eoovs o — 2v30 + Egovso — 2C%v30 = 0.
This is equivalent to:

7+ 2C?

3 U0 (4.63)

Eyovs,o =
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The coefficient of n1m3ny is:
v2,0 + F1ov10 — Fa3vso — Faqvap + 2C%va 0 = 0. (4.64)
Using , we obtain:
v2,0 + 2v2,0 — Eoov2,0 + 2v20 — Eoov2,0 + 2v2,0 — Eoov2,0 + 26‘21)270 =0.

This is equivalent to:

7+ 202
Epovz,0 = —3 20 (4.65)
The coefficient of nonsny is:
—v1,0 + FLQ'UQ,(] + F1’3’U3,0 + F1,4’U4,0 — 202’1)1,0 =0. (4.66)

Using (4.47)) we obtain:
— 1,0 — 2v1,0 + Eoovi,0 — 2v1,0 + Eoovi,0 — 2v1,0 + Eoovi,o — 2C%v19 = 0.
This is equivalent to:

7+ 2C?

3 VL0 (4.67)

Eyovi,0 =

Therefore Eyy acts as %
Let us analyze Equation (4.44)) for f = £,&,€.. We denote (d) = (a, b, c)¢. We obtain:

4 4

DD Ai(Cabple) * 0u(ni) @ vio — > 0r0s(Eabpbe) * 0i © Frsvin + > E(aper€a * M @ Cvig = 0.

i=1 =1 r<s
Looking at the coefficient of n;n; for every i, j € {a,b,c,d}, we obtain:

Ve,0 + Fa,cva,O + Fb,cvb,O =0,
Fycvao = €(a,p,c)Ca0 = 0.

Equation (4.48), for a =2,b=3,c =1, is:

v1,0 — F13v30 — F12020=0.
Using (4.47)) and the value of Fyg, we get:

0 =v1,0 — F13v30 — Fi 2020

14202  1—-4C?

=10 —2———V1,0 = 3 VL0

From this we have that C' = i% and Egyg acts as %
Equation (4.45)) for f = £,&&., with d = (a, b, ¢)¢, reduces to:

4
0 =nanpNend @ vao — Z Z 0r0s(§abpée) * Neiye ® Frsvi1 + E(ap,e)éd * MN(aye @ Cug1-

i r<s

The coefficient of n, is:

—€(a,b,c)Vd,0 + (_1)6Fa,bvc,1 - (_1)bFa,cUb,1 + (_1)an,cUa,1 + C€(a,b7c)(—1)dvd,1 =0.
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Equation (4.42)) for f = £,&, with (¢,d) = (a,b)¢, reduces to:

4
0 =napne @ Eoove,o + Natbna @ Eoovao — » > 0((§abelt) * ni) @ vio+
=1
)0 (0u(6ale)ér) * mi ® Frpvio + E(ap) Y Eeba* mi @ Cvig+
T ik 5

4
- Z Z al(§a€b> * 81(77(2')6) & Vi1 — Z Z aras (fa&b) * n(i)c 02y Fr,svi,l-
1

i 1= i r<s
The coefficient of n,mpni for k = ¢,d and s # a, b, k is:
Eoovr,0 — vk + Fy kVa0 + Fy rvp0 + (_1)Xa<k<bFa,bvs,l = 0.
The coefficient of ngn.ng is:
—Fycva0 + Fpaveo + €(a,p) Clao + (—1) 0+ (1) Xecacayy g + (—1)Xecaca Fpy vy 1 = 0.

From the coefficient of nyn.n4 we obtain the same equation with reversed roles of a and b. Equation
(4.42) for f = &u&pe, with a < b < ¢ and d = (a, b, ), reduces to:

0 =namstena © Boovao — Y > (0(€abole)r) * mi ® Fiyvio
i 12k

=Y 0,:04(&abele) * Maye ® Frsvi + E(apeyNati(aye ® Cva1.-

i r<s

The coefficient of 7, is:
0 =(=1)*Eoova0 + (—=1)*Faavao + (1) Fyaveo + (1) Fuaveo+
+ (=) Fupven — (1) F, copy + (1) cva1 — Cogy.
Equation for f = ¢, with (b,c,d) = (a)€, reduces to:
(—1)*a,1 — (—1)*Boova, + (—1)°Fypvp1 + (—1)°Fycven + (—1)*F, qva1 = 0.

Equation (4.41)) for f =1 reduces to:

4

0==> " G&*m® Fpvio+ > _n@e © Eoovin — Y Y (& *ngpe) @ vin.

i i<k i i =1
We obtain that for all a € {1,2,3,4}, with (b, c,d) = (a)°, the coefficient of 7, is:
—Fp cva,0 + Fbaveo — Fedvbo + E00vVa,1 — Va1 = 0.

Condition (4.41)) for f = &,, with (a)¢ = (b, ¢, d), reduces to:

0=—> " &k *ni ® Favip — £@MicNaNa ® Clao + &a * Mgy @ Boovar — » > & *Maye @ Fapvin.
i i<k i kta

The coefficient of 7, is:

0 :(—1)an7cvd70 + (—1)a_1Fb7dUC70 + (—1)aFc7dvb70 + €(a)(—1)a_1 X Cva’o + (—1)a_1E00’Ua71
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+ (= 1) Fopvp1 + (=1) Facven + (1) Faqva.
Let us analyze Equation (4.44) for f = a1 2:

0=-— bo(—§1€3 + i€283)
-—> Z O(—6183 + 16283) x D(mi) @ vio — > > 0p0s(—€163 + ias) * mi @ Fy 510

1 1=1 i r<s
=3 ®v1,0 — N1 @ a12V1,0 — N3 @ V2,0 — N2 @ 12020 + (=11 +in2) @ V30 — N3 ® A1,2V30 — N1 @ 1,2V40
=M @ (—a1,201,0 — V3,0) + M2 ® (iv30 — a1,2020) + N3 @ (V1,0 — 12,0 — A1 2030) + N1 @ (—1,2040)-

Therefore, we have:

a12(v10) = —v30,
a1,2(v2,0) = iv3p,
a1,2(v3,0) = v1,0 — 02,0,
o1,2(v40) =

For f = f31,2, Equation (4.44) reduces to:
0=- bo(—§2§4 —i&16a)

=-> Z O(—aba — i61&0) x Di(m) ® vig — 3 > 0pOs(—&aba — i616a) * mi @ Fy 510

i l=1 i r<s
=i, @ v1,0 — M @ P12v1,0 + M1 @ V20 — M2 @ B12v20 — N3 ® B1,203,0 + (=12 — iN1) @ Va0 — N4 ® B1,2040
=M ® (—f1,201,0 — 104,0) + N2 @ (—v4,0 — F1,202,0) + 13 @ (—P1,203,0) + N4 @ (1v1,0 + v2,0 — B1,2V4,0)-

Therefore, we have:

B1,2(v1,0) = —iv4,0,
B1,2(v2,0) = —v4,0,
B1,2(v3,0) =0,
B1,2(va,0) = ivi0+ v2p

Equation (4.45)) for f = aj 2 reduces to:
0 =—b1(—&1&3 +1i8283)

4
== D a(-&&s +i&ks) x A(nee) @ vin — Y Y :0s(—E183 + i€a&s) * ngiye ® Frovin

v =1 7 r<s
=minens @ V1,1 — N2n3na @ 0 2V1,1 + iN1N2Nav21 — MN3Na @ 0 pV21 + (—N2m3na — 1N3N4) © V31
— MN2n4 & 1 2V31 — N1N2"3 & 1204 1.

Therefore, we have:

Q12V1,1 = —U3,1,
o1 2U21 = —1iV3 1,
Q12031 = V1,1 + U2,

Q1 2V41 = 0.
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These relations are coherent with the previous equations and ({4.46]).
Equation (4.45) for f = /312 reduces to:

0=-— b1(—§2§4 —i&1€4)
=- Z Z O1(—&284 — i€184) * Oy(Ngiye) @ vig — Z Z 0y0s(—&aka — i€184) * N(iye @ Fr g0

i r<s
= —1n2n3 @ V1,1 — N203M4 @ P1,201,1 + N12n3 @ v21 — MmN R B12v2.1 — MN2ns @ B1,2031
+ (=mm3n4 + N2m3na)va — Mm2n3 @ 12041

Therefore, we have:

B1,2v1,1 = V4,1,

B1,2v2,1 = —v41,
B1,2v3,1 = 0,
B1,2v41 = —iv11 + V2,1.

These relations are coherent with the previous equations and (4.46|).

Remark 4.25. Let us point out that relations (4.46|) are equivalent to the following, using notation

(4.40):

—2iws + 2iwy — iws + iwg = 2C (2iws + 2iwy),
2ws 4 2w4 + ws + wg = —2C (2ws — 2wy),

)

)

—2iwq + 2iwe — iwy + iwg = 2C (21w + 24w,
2wy 4 2wy + wy + wg = —2C (2w — 2wy).

Thus, we obtain:

—(2+
—(2 — 4C)wy,
(2 + 4C)w1,
—(2 = 4C)ws.

Equations (4.57)) are equivalent to the following, using notation (4.40)):

a1 2(wi) = wy, Bra(wr) = —wy, (4.69)
a1 2(w2) = wy, Br2(w2) = wy,

ag2(ws) = —wy — wa, Br2(w3) = —wy + wa,

ag2(wyg) =0, Br2(wyg) = 0.

We represent these relations with the following drawings:

(—w1 —w2)

Q12 Qg2
w3) / \ (wy
Py —

5 1,2
(wg — wr)

Proof of Theorem[{.6. Let us analyze the following cases.

4C)ws, (4.68)
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1) Let us suppose wyq = 0. This splits in the following subcases.

la)

1b)

We suppose we = wg = 0 and w; # 0, wg # 0. By Equations (4.69), we have that w; is a
highest weight vector. Let us compute its weight. From (4.40) we have:

Ul,O = 2iw3,
v 0 = 2ws,
v3,0 = 21wy,
v4,0 = 2wy,

2)171 = QO(ing),
U271 = —20(2103),
v31 = 2C(2iwn),
vy = —2C(2wy).

By Equation for a = 3,b = 4 we obtain:
F34v30 = 2040 — Eoova,0.
It is equivalent to:
F3 4(2iwy) = 4wy — Ego2wy = (4 — 5)ws.

Therefore, we have How, = —%wl.
By Equation (4.49|) for a = 3,b = 1, ¢ = 2, we obtain:

Fipv40— Cuzp = 0.
It is equivalent to:

F1,2(2w1) — C(21’U)1> = 0.

Therefore, we have Hyw; = —Cw;. Since Hy + Hy acts as a non negative integer on wi, we
obtain C' = —%, and the highest weight of w; with respect to hy, hy, Ego, C is (1,0, %, —%)

By Equations (4.69) we know that aqo(ws) + Bi2(w3) = Ee —c,ws = —2w;. Hence w3 =
%E_(gl_ez,)wl. Moreover, by Equations (4.68)) and C' = —%, we have ws = wg = wy = wg = 0.

All the other equations of Lemma, are verified by this choice of v1,9, v2,0, V3,0, V4,0, V1,1, V2,1, 03,1, V4,1-

We have therefore obtained, using notation (4.1)), the following singular vector in M (1,0, %, —%):
M3q = W11W22wW21 @ T1 + Wo1wi2wi1 & Ta.

We suppose w1 = wyg = 0 and we # 0, ws # 0. By Equations (4.69), we have that ws is a
highest weight vector, let us compute its weight. From (4.40) we have:

v1,0 = 2iws,
v, 0 = 2w3,
’1)3,0 = 2iw2,
V40 = —2w3,

V11 = 20(22'w3).
V21 = —20(2103).
31 = 20(22’[02)
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1c)

1d)

vg,1 = —2C(—2wo).
By Equation for a = 3,b = 4 we obtain:
F34v30 = 2040 — Eoov4,0-
It is equivalent to:
F3 4(2iws) = —4wy — Ego(—2w2) = (—4 + 5)ws.

Therefore we have iF3 qwo = %wg.
By Equation (4.49) for a = 3,b = 1, ¢ = 2, we obtain:

Fiov40— Cuszp = 0.
It is equivalent to:
FLQ(—ZU)Q) - C(Q’LU)Q) = 0.

Therefore we have Hiwy = C'ws.

Since Hy — Hs acts as a non negative integer on we, we obtain C' = %, and the highest weight
of wy with respect to hg, hy, Eo, C is (0,1, %, %)

By Equations we know that ag2(wsz) — B12(ws) = Eq 4e,ws = —2wy. Hence wz =
%E,(Eﬁa)wg. Moreover, by Equations and C = %, we have that ws = —2E_ (., 4., w2
and wg = w7 = wg = 0. All the other equations of Lemma are verified by this choice of
1,0, V2,0, V3,0, V4,0, V1,1, V2,1, V3,1, V4,1-

We have therefore obtained, using notation , the following singular vector in M (0, 1,

DOt

1y,
) §)
Map = W11 W2rw12 @ Y1 + WigWawii @ Yo.

We suppose wy = 0 and wy # 0, we # 0, wy # 0. By Equations (4.69), we know that w; and
wy are highest weight vectors.
We consider equations (4.49)) for a = 3,b = 1,¢ = 2 and, using (4.40)), we obtain:

0 =F1pv40 — Cuzp
=F1 22wy — 2wg) — C(2iw; + 2iws).

We consider equations (4.49)) for a = 4,b = 1,¢ = 2 and, using (4.40)), we obtain:

0 :F1,21)370 + 01}470
=F 5(2iw; + 2iws) + C(2w; — 2ws).

We take the sum between the first multiplied by i and the second, and the difference between
the second and the first multiplied by i:

0= 4H1w1 + 4Cw1
0= 4H1w2 — 4Cw2.

This leads to C = 0. But, for C' = 0, the A—action of Proposition reduces to the action
found in Theorem 4.3 of [BKLI]; in that case it was shown that there are no singular vectors
of degree 3.

We suppose wg = wyq = 0. Then, by Equations , we have that 0 = 51 2(w3) = —w;1 + wy
and 0 = am(wg) = —w; — wy. Hence we get w; = wy = 0. By Equations we know also
that ws = wg = wy = wg = 0. Therefore we obtain the trivial vector.
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le) We suppose w; = wy = wy = 0 and wy # 0. By Equations we know also that
wg = w7 = wg = 0 and ws = —(2+ 4C)ws. By Equations , we know that w3 and ws are
highest weight vectors.
We know that Equation for a = 2,b = 3,c = 1 reduces to the following, using :

0 =v19 — Fi2v20 — F1,3v30
:2iw3 — 2F1,2w3.

Therefore Hiws = —ws, but this is impossible for a highest weight vector, since we know that
both h, = Hy — Hy and hy, = H; + H> act as nonnegative scalars on ws, therefore Hy = %
acts as a nonnegative scalar on ws.

2) Let us suppose that wy # 0. By Equations (4.69)), we have that wy # 0, we # 0, wsg # 0 and that
wy is a highest weight vector.

By Equation (4.48) for a = 1,b = 3, ¢ = 2 we obtain, using (4.40)):

0=—1wv20+ Fo3v30 — F1 2010
= — 2wz + 2wy + F2’3(2iw1 + 2iw2) — F1,2(2iw3 -+ 2iw4).

By Equation (4.48) for a = 2,b = 3,¢ = 1 we obtain, using (4.40):

0 =v19— Fi2v20 — F1,3030
=2iws3 + 2twy — F172(2w3 — 2’[04) — F1,3(22'w1 + 2iw2).

We take the sum of the second and the first multiplied by i:

0 =4iwy + (—F173 + Z'ngg)(2iw1 + 2iw2) —+ 4F172w4
:4i’w4 — 2iw4 — 2z’w4 + 4F172w4.

Therefore Hywy = 0. By Equation (4.49) for a = 1,b = 3, ¢ = 4 we obtain, using (4.40)):

0 =F34v20 — Cv1p
:F374(2’LU3 - 2w4) - C(2iw3 + 22"11)4).

By Equation (4.49) a = 2,b = 3, ¢ = 4 we obtain, using (4.40):

0 =F34v10+ Cvap
=F3 4(2iw3 + 2iwy) + C(2ws — 2wy).

We take the difference between the second and the first multiplied by i:

0 =4Howy — 4Cwy4.
Therefore Howy = Cwy. Therefore (Hy — Hy)wy = —Howy = —Cwy and (Hy + Ha)wy = Howy =
Cwy. Hence C = 0. But, for C = 0, the A—action of Proposition reduces to the action

found in Theorem 4.3 of [BKLI]; in that case it was shown that there are no singular vectors of
degree 3.
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4.3 Vectors of degree 1

The aim of this section is to classify singular vectors of degree 1. Let us consider a vector m € Ind(F)
of degree 1 such that T'(m) is of the form:

i
We write m as:
2
M= ((n2 — ina1) @ wi + (2 + ingr1) @ @) . (4.71)
=1
Hence for [ =1, 2:
Vo = wy + Wy, (4.72)

vo—1 = i(wy — wy).

Indeed, let us show one of these relations. In m, let us consider 7)c ® v1. We have that
N(1)e = N(2,3,4) is the Hodge dual of —n;. In , the terms in 77 are —in; @ wy +in; ® wi. Hence
v1 = i(wy; — w1). The other relations in 1_} are obtained analogously.

In the following lemma we write explicitly the relations of Proposition [f.17]for a vector as in formula
@70).

Lemma 4.26. Let m € Ind(F) such that T'(m) is written as in formula (4.70). Then relations of
Proposition [{.17 reduce to the following equations.
1) Condition S2 reduces to the following relation for f = &, with |L| = 1:

4
0=>" [f * iy ® Eoovi — (=1)PD S " 0((£6) % mye) @ w3+ (1D ((00f)k) * maye ® Frpvs)
7 =1

12k
(4.73)
+ X|L|:2 erre x N(i)e & Cvi):| .
2) Condition S8 reduces to the following relation for f = &g, with |L| =3 or f € Byy(4):
4
0=>" {— (=DPES((0uf) * (Oimiye)) @ vi — Y _((0rsf) * Miye ® Frsv7) (4.74)
i =1 r<s

Lemma 4.27. Let m € Ind(F') such that T'(m) is written as in formula (4.70). Then relations of
Lemma[{.26 reduce to the following equations.
For all a € {1,2,3,4}:

0= (=1)"Eoova — Z(—l)kFa,k’Uk- (4.75)
k#a

For all a,b,c and d = (a,b,c)°:

0= (=1)Fapve — (—1)°Fycvp + (—1)*Fycva + E(qpe) (—1)*Coa. (4.76)
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Finally:
ai2(v1) = —us, B1,2(v1) = ivg, (4.77)
a12(vg) = —ivs, B1,2(v2) = —v4,
a1,2(v3) = vy + dve, B1,2(v3) =0,
ai2(vs) =0, B1,2(ve) = —ivy + va,

where a1 2 and P12 are defined by (3.1) and (3.2).
Proof. Let us consider Equation (4.73]) for a € {1,2,3,4}. From coefficient of —7,, we obtain:
0 = (—1)aE001)a — Z(_l)kFa,kvk~
k#a
Let us consider Equation (4.74)) for f = £,&€. with d = (a,b, ). We have:

4
0=-— Z Z 005 (gafbfc) * 7(iye @ F svi + €(a,b,c)NdNabNe @ Cug.

r<s i=1
It is equivalent to:
0 = neNe)e @ Fapve — mnp)e @ Fa,cvs + Man(a)e @ FbcVa + €(ap,e)NaN@y @ Cvd,
that is:
0= (—=1)Fapve — (—1)"Facvp + (—1)“FycVa + €(a p,0) (—1)*Cvg.

Let us consider Equation (4.74)) for f = aj 2. We have:

Zzal (—&16s + i&8s) * Du(ngaye) @ v — D > 0r0s(—€183 + i2€s) * ngye @ Firvs

7 = 1 r<s
— (& — Zéz) (—12m4) @ v1 — MaM3ns @ a1 2v1 — (&1 — i&2) * (—miMa) @ V2 — MN3Ns ® 1,202
— (=&3) * (m2m4) ®@ vz — (i§3) * (—mMa) ® v3 — MM2Ns ® Q1 203 — MT2N3 @ Q1204
=mnena @ (v1 + v — 1203) + NaN3Ns ® (—v3 — 1 201) + MN3Ne © (—ivg — 1 202) + MN2N3 @ (—a1204).

Therefore:
041,2(1)1) = —Us3,
aq2(v2) = —ivs,
04172<’U3) =1 + i’l)g,
06172 (’1)4) =0.

Let us consider Equation (4.74) for f = (31 2. We have:

=-> Z Ou(—&aba — i€1€0) % Di(ne) @ vi — Y Y 0rDs(—Eaba — i€1€a) > mipe @ Fr s

1 1= 7 r<s
— (& + Z51) (m2m3) @ v1 — Mam3ns @ Br2v1 — (§2) * (MN3) @ v2 — MN3Ns @ B12v2 — MN2ns @ P1,203
— (=€) * (—mm3) @ vg — (—i&a) * (n2M3) @ v4 — £16283 @ P1,2v4
=mn2n3 @ (—ivy + va — B1,2v4) + Minens @ (—P1,203) + MN3Ns @ (—v4 — B12v2) + M2m3ns @ (ivg — P1,2v1).
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Therefore:
Bi2(v1) = vy,
B1,2(v2) = —wva,
,8172(1}3) = 07
B1,2(vs) = —ivy + v2
[
Remark 4.28. Using notation (4.72]), we obtain that Equations (4.77) are equivalent to:
a1 z(wi) =0, (4.78)
a1 2(w1) = wa — W, (4.79)
ag2(we) = wy = —ay 2(w2), (4.80)
Br2(w1) =0, (4.81)
Bra(wr) = —(w2 + wa), (4.82)
Br2(wz) = w1 = Bi2(w2). (4.83)

We represent these relations with the following drawings:

Using notation (4.72]),
Lemma B.6):

(wg — w2)

1.2 1.2

1,2

(w1)
<w2 + {52>

Equations (4.75]) can be written in the following way, as in [BKLI] (see
2 EO() + H1 1151 = E—(El—EQ)iDQ - E_(€1+€2)w2, (484)

w1 = E€1_€2w2 — E€1+€2@2, (4.85)

Proof of Theorem [{.4. Throughout this proof y will denote the highest weight of F' with respect to
Eoo, p1 (resp. ug) will denote the highest weight of F' with respect to Hy (resp. He) and m = uq — o
(resp.n = p1 + po2) will denote the highest weight of F' with respect to h, (resp. hy).

Let us first observe that, by Equation , we have that if wy # 0 then wy # 0. Therefore the
following three cases are possible.

1. w1:w2:O,
2. w1 # 0 and wq # 0,

3. w1 =0 and wy # 0.

1) We suppose that w; = we = 0.
By Equation (4.79)), we obtain that if wq # 0, then w; # 0. Hence, there are two subcases.
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la) Let us suppose that w; # 0 and we = 0. By Equations (4.78) and (4.81]), we know that w; is
a highest weight vector. Let us compute its weight. By (4.72]) we know that vy = —iw;, vy =
@1,1)3 = 0,214 =0.
Equation (4.76)) for a = 1,b = 3, ¢ = 4 reduces, using (4.72)), to:
0= —F374(—7;1’171) + Cws. (486)
Then Hyw; = —Cw;. By (4.84), 2(Eg + Hy)w; = 0, that means pug + g3 = 0. Hence the
weight of w; with respect to hy, hy, Ego, C' is (m,n, —m;”, St with m,n € Zxo.
All the other equations of Lemma [4.27] are verified by this choice of vy, vo, v3, v4.
We have therefore obtained, using notation (4.1)), the following singular vector in M (m,n, — m;‘",
with m,n € ZZ():
Mg = w11 @ 7Yy
1b) We suppose that w; # 0 and wy # 0. By (4.80) and (4.83]), we know that wy is a highest

weight vector, let us compute its weight.
By " we know that V1 = —i@l,’l)g = {171,'1}3 = —2‘7:52,7}4 = ’&72.
Equation (4.76)) for a = 1,b = 2, ¢ = 3 reduces, using (4.72), to:

0=-— FLQ(Z'(U)Q - @2)) — F1,3(w1 + 1171) — F273(z'(w1 — '&71)) + C(wz + 1172)
:Z'Fl,g’[ﬁg — F173@1 + Z'F273’u71 + Cws. (4.87)

Equation (4.76)) for a = 1,b = 2, ¢ = 4 reduces, using (4.72)), to:

0 =F1 2(we + wa) — Fy a(wr + wy) — Fo4(i(w; — wy)) + C(i(we — w2))
:FLQ’LEQ — F1,41Z1 + ’L'F274’wl — 1Cws. (4.88)

We consider a linear combination of (4.87) and (4.88) and obtain:

0 =2H wy + 2CWy — aq 2w — B12W1
=2H 1wy + 2Cwsy + 2ws,

that is equivalent to:
leg = —ng — ’&52. (4.89)

Therefore py = -1 - C.
By Equation (4.84]) we have:

2(Eoo + Ha)wy = —FE. w1 = (—a1,2 — P1,2)W1 = 2ws.

Therefore jig + p12 = 1. The highest weight of wy with respect to hy, hy, Eg, C is (m,n,1 +
e, —m;" —1). We point out that m € Zs and n € Z>¢. Indeed by (4.79)) and (4.82)), we
have that (05172 + 5172)(1’51) = E51,52 (’[El) = *2{1\)/2 75 0 and therefore {171 == ﬁE—(sl—Q)UﬂjZ'

All the other equations of Lemma [4.27] are verified by this choice of vy, vo, v3, v4.

We have therefore obtained, using notation (4.1)), the following singular vector in M (m,n, 1+

@,—m;n — 1) with m € Z~g, n € ZZO:

- m, n m—1 n
mipy = wa1 @ 7Yy —wi @] T2y7 -
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2) We suppose that w; # 0 and we # 0. Then by (4.80) we have that ws # 0 and by (4.83)) we
have that w; # 0. By (4.78) and (4.81) we know that w; is a highest weight vector. Equation

(4.76|) for a = 1,b = 3, ¢ = 4 reduces, using (4.72)), to:

0=F 3(w2 + ’LUQ) + F 4( (wg — wg)) — F3,4(z'(w1 — ’&71)) + C’(w1 + @1)
:F173w2 + F1,3w2 + ZF174w2 — 1F1747:l72 — iF374w1 + iF374151 4+ Cwy + Cuw;. (4.90)

Equation (4.76) for a = 2,b = 3, ¢ = 4 reduces, using (4.72)), to:

0 =Fs 3(wa + wa) + Fo 4(i(we — w2)) + F34(wi + w1) + Ci(wy; — wy))
:F273IU2 + F273w2 + ZF274w2 — ZFQA{DZ + F374w1 + F3’4751 + Ciwy — 1Cw. (4.91)

Using a linear combination of (4.90)) and (4.91), we obtain:

0=(Fi3+iF14—iFo3+ Fou)ws + (F13 —iF1 4 — iFo3 — Fo 4)wa — 2iF3 4w1 + 2Cw
=FE. _c,ws + Eo 4o w2 — 2Howy + 2Cwy
=(ai2 + Bir2)ws + (a12 — f1,2)W2 — 2Howy + 2Cw,
=2wy — 2wy — 2Howy + 2Cw1.

Therefore pus = C. By Equation (4.85]) we have:
2(Eoo — Hi)wr = Bz —cywy — Ez 0, We = (12 + fr12)w2 — (012 — Pi2)We = 4w;.

Therefore pg — p1 = 2.

Now we want to express ws, w1, we in function of w;.

By and , ago(w2) + fr2(we) = Es —cy,wy = 2w;. Therefore wy = QM_%QCE_(&I_Q)U)I.
By ﬁ and (4.83 , (12 (7:[72) —ﬁLg({Ez) = E51+52@2 2w1 Therefore w w2 L 2 (51+52)w1
By 4.78)) and (4.81 R 061’2(@1) +61,2(wl) = Egl_gz/{,ljl — 29 and, by and , 04172(’[51) —
61,2({171) = E51+52ﬁ1/1 = 2wsy. We obtain:

~ 1
o (2,“1 + 20) (2”1 — 20) E7(€1*52)E*(E1+82)w1‘

m+n

Finally, the highest weight of w; with respect to hy, hy, Ego, C is (m,n, 52
m,n € Zsg.

All the other equations of Lemma are verified by this choice of wy, ws, w1, ws and hence of
U1, V2, V3, V4.

We have therefore obtained, using notation , the following singular vector in M (m,n, m;” +

2, "5™) with m,n € Z~o:

5 with

- m, n m—1 n m, n—1 m—1 n—1
Mie =W QT Y] —W12@ Ty X2y — W21 @T1Y; Yo+ w1 ®Ty Ty, “Yo2.

3) We suppose that w; = 0 and wy # 0. By (4.78) and (4.81)), w; # 0, since (12 — Si12)w1 =
2wy # 0. Hence there are 2 subcases.

3a) We suppose that w; = 0, wy # 0, wy # 0 and wy = 0. In this case, from and (4.83)),
it follows that wy is a highest weight vector. Let us compute its weight. Equatlon (4.76|) for
a=1,b=2 ¢ =3 reduces, using (4.72)), to:

0=—F 2( (w2 — wg)) — F1,3(w1 + lEl) — F273(i(w1 — wl)) + C(’LUQ + 752)
= —iF pwo — F173w1 + Z'F2737ﬂ1 + Cws. (4.92)
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Equation (4.76)) for a = 1,b = 2, ¢ = 4 reduces, using (4.72)), to:
0 =F1 2(wa + w2) — F1a(wi + w1) — Fou(i(wr —w1)) + Ci(wa — w2))
ZFLQU)Q — F1747:l71 + iF274151 + iCws. (4.93)
Considering a linear combination of (4.92) and (4.93)), we obtain:
0=—-2Hjwy — algwl + BLQ’(Zl + 2Cwsq
Therefore py = -1+ C.
By (4.85)) we have:
2(Eoo — Ho)we = Ec\ e, w1 = (1,2 — fr2)wr = 2wo.
Therefore pg — pa = 1.
Hence the highest weight of wy with respect to hg, hy, Eoo, C is (m,n, 257 +1, ™ +1), with
m € Zzo, n € Z~q. Indeed n > 0 since, by " and ‘ , (01172 —5172)(11’71) = Fe 4o (’[171) =
2wy # 0. Hence we obtain that wy = %E_(El_i_EQ)'LUQ.
All the other equations of Lemma are verified by this choice of w1y, ws, w1, Wy and hence
of vy, v9, v3, vy4.
We have therefore obtained, using notation (4.1)), the following singular vector in M (m, n, “5™+
1, mT-&—n + 1), with m € ZZO7 n € Zso:
Mg = wiz @ oYY — win @ TYT Y.
3b) We suppose that w; = 0, wy # 0, wy # 0, we # 0. By (4.79) and (4.82), wo and ws are highest

weight vectors. Let us compute their highest weight.
Equation (4.76)) for a = 1,b = 2, ¢ = 3 reduces, using (4.72), to:

0=— Flyz(i(wg — 1]72)) — F173(w1 + ’&71) — F273(i(w1 — @1)) + C(’u)g + @2)
— iFLQwQ + iFLQ@Q — F173?f1}v1 + iF2737:l71 + Cwy + Cws. (4.94)
Equation (4.76)) for a = 1,b = 2, ¢ = 4 reduces, using (4.72)), to:
0 =Fy2(w2 + w2) — Fia(wy + wy) — Foa(i(wy — wy)) + C(i(w2 — w2))
FLQ’LUQ + Fl’gwg — F1741ﬂ1 + iF2741Z1 + 1Cwy — 1Cws. (495)

Considering linear combinations of (4.94) and (4.95)), we obtain:

0=—-—2Hjwy — 04172{171 + ﬂl,zﬂ}vl + 2Cwq
= — 2H1w2 — 2’LU2 + 20'1,02,

that is
Hiwy = —wa + Cwy;
and:
0 = 2H w2 — o pwy — PBrwy + 2Cwe,
that is:

Hiwy = —wy — Cws.

This implies that C = 0. But, for C' = 0, the A\—action of Proposition reduces to the
action found in Theorem 4.3 of [BKL1] where the vectors of degree 1 were classified, but this
case was ruled out.

O]



Chapter 5

Homology

In this chapter we study the homology of the complexes in Figure The main result is the
following Theorem:

Theorem 5.1. The sequences in Figure are complexes and they are exact in each module
except for M(0,0,0,0) and M(1,1,3,0). The homology spaces in M(0,0,0,0) and M(1,1,3,0) are
isomorphic to the trivial representation.

Lemma 5.2. Let V : M (uq, o, pia, pa) —> M (i1, fiz, i3, 14) be a morphism represented in Figure
and constructed as in Remark. ThenImV is an irreducible g— submodule of M (fi1, fia, fi3, fi4)-

Proof. By Theorems and Remark we know that M (g1, fig, fis, fia) contains a
unique, up to scalars, highest weight nontrivial singular vector, that we call 7. By construction of
V, Im V is the g—submodule of M (fi1, 12, i13, 14) generated by m. In particular it is straightforward
that gom is an irreducible finite—dimensional gop—module on which g~ acts trivially, since m is
singular. The g—module ImV = g is therefore isomorphic to Ind(ggrt). Hence, due to Theorem
Im V is an irreducible g—module since in M (111, fi2, fi3, ft4) there is only the highest weight
nontrivial singular vector m that is trivial for Ind(gem). O

Remark 5.3. Using Theorem we are able to realize all irreducible quotients of Verma modules.
We have that:

e If (pu1, 2, 13, f14) is not among the weights that occur in Theorems[d.4] then M (1, pa, i3, f14)
is irreducible, due to Theorem [1.15] since it does not contain nontrivial singular vectors.

o If (11, po, ps, pa) is among the weights that occur in Theorems then M (pu1, po, i3, f4)
is degenerate. We denote its irreducible quotient by I(p1, g2, 13, 14). By Remark we
know that from each M (u1, po, s, na) in Figure except for M (0,0,0,0), we can con-
struct a morphism V to another Verma module M (ji1, fi2, i3, f14). Due to Lemma KerV
is the maximal submodule of M (1, pa, i3, p1a) because M (1, pio, p3, pa)/ KerV .= ImV is
irreducible. Therefore I(p1, pa, 13, pa) = M (p1, p2, 13, pa)/ Ker V and ImV is an explicit
realization for I(uy, pa, i3, f4).

If M(u1, po, p3, pa) is a Verma module represented in Figure with (u1, po, ps, pa) #
(0,0,0,0),(0,0,2,0), then there exist two morphisms V : M (pi1, pi2, pi3, f1a) — M(ﬁl,ﬁg,ﬁg,ﬁ4)
and V M(Ml, fi2, i3, fta) —> M (pi1, p2, p3, pa) constructed as in Remark 4.8 Due to The-
orem if (p1, po, ps, pa) # (0,0,0,0) and (1,1,3,0), the submodule KerV ImV is
1rredu01ble and it is the unique submodule of M (p1, p2, i3, ft4); in this case (1, g2, 113, f14)

is also isomorphic to the Cokernel of the map ¥V that ends in M (p1, o2y 3, fi4)-

In the case of M(0,0,0,0), by Remark [{.8, we have a morphism V : M(1,1,—-1,0) —
M (0,0,0,0). By Theorem [5.1, M(0,0,0,0)/ImV is irreducible and therefore 1(0,0,0,0) =
M(0,0,0,0)/Im V.
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5.1 The morphisms

In order to show Theorem we start by writing explicitly the morphisms that occur in Figure
We recall the notation introduced in Remark [4.2] for the basis of g§°:

E_ . _
% he = Hy — Hy,

EE'l*E'Q

GIZT’ fx:_

and

E E_
ey = 7€1+627 fy = —7(521+€2)’ hy = H1 + HQ.

We have that:

90 :<e$7 f&?y hr) @ <€y, fy, hy> @ (Ct @ CC
g<x18m2’ x2aﬂ71’$18$1 - x28$2> D <y18y2a 928?;1,3/182/1 - y2ay2>

® C(_%(xlaxl + 220z, + Y10y, + Y20y,)) © C(%(ﬂflaﬂm + 220q,) — %(yla?fl +420y,)).
Let us recall the notation (4.1)):
win = N2 + N1, w2 =12 — N1, Wiz = —N4 + 03, w1 = N4+ in3.
We point out that
(w11, we2] =40,  [wi2, wa] = —40 (5.1)
and all other brackets between the w's are 0. Moreover in U(g<o) we have:
Wiy = why = wi = wi; = 0. (5.2)

Indeed for example w3 = (n2 +i71) (N2 + im) = © + inany + imn2 — O = 0.
We introduce the following gg—modules:

Vy = Clxy, 2,11, y2],

Vg =C [8$1,8x2,y17y2][1,71} )
Vo=C [am,am,aypayz][z,o] )
Vp = Clxy, 22, aylvaw}[l,l} :

The subscripts [4, j] mean that ¢ acts on Vx, for X = A, B, C, D, as —5(210y, + 2205, + 10y, +120,,)
plus ¢:1d and C acts on Vy, for X = A, B,C, D, as %(xlam + x905,) — %(ylﬁyl + y20y,) plus jld;
the subscript [¢, j] is assumed to be [0, 0] when it is omitted, i.e. for X = A.

The elements of g§° act on Vx, for X = A, B,C, D, in the standard way:

xiazjxk = Xj:kl‘i, xzaxjaxk = —Xi:kam]., J?iam].yk =0, J?iam]..ayk = 0;
yiayjyk = Xj:k;yiu yiayj'ayk = _Xi:k:ayj7 yiayjl’k = 07 yzay]amk =0.
We introduce the following bigrading:
V)?%n = {f € Vx : (2104, + 2205,).f =mf and (y10y, +y20y,).f =nf}. (5.3)

The V;(n "™ are irreducible goy—modules, in particular we point out that, for m,n € Z>, Vlgn’n is
the irreducible go—module determined by coordinates (m,n) in quadrant A of Figure Vg
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m,—n

is the
irreducible go—module determined by coordinates (m, n) in quadrant C and VgZ "™ is the irreducible
go—module determined by coordinates (m,n) in quadrant D. Therefore for m,n € Z>q:

is the irreducible go—module determined by coordinates (m,n) in quadrant B, V.

m+n m-—n
Vm7ngF< y 10y — ) ))
A m,n 5 5
VB—m,ngF<m’n71+m2—n7_m;—n_1>’
VC‘m"”gF(m,n,m+n+2,n_m),
2 2
Vﬁ”‘v*“gF<m,n,1+”_2m,m;”+1).

We have that Vx = @m,nV;(” ™ is the direct sum of all the irreducible go—modules in quadrant
X. We denote by My" = U(g<o) ® V¢""; we point out that, for m,n € Zso, M}"" is the
Verma module represented in Figure n quadrant A with coordinates (m,n), Mzg"" is the
Verma module represented in quadrant B with coordinates (m,n), M;"™"" is the Verma module
represented in quadrant C with coordinates (m,n), M}""" is the Verma module represented in
quadrant D with coordinates (m,n). Moreover we denote by Mx = @m,nezM;?’” the direct sum
of all Verma modules in the quadrant X of Figure

We follow the notation in [KRI] and define, for every u € U(g<o) and ¢ € Hom(Vx, V), the map
u® ¢: Mx — My by:

(u® ) (v @v) =u u®p(v), (5.4)

for every v ® v € U(g<o) ® Vx. From this definition it is clear that the map u ® ¢ commutes with
the action of gg.

We consider, for j = 1,2, the map 0,, : Vx — Vx that is the derivation by x; for X = A, D and the
multiplication by 9, for X = B, . We define analogously, for j = 1,2, the map 9,, : Vx — Vx,
that is the derivation by y; for X = A, B and the multiplication by 9,, for X = C,D. We will
often write, by abuse of notation, d,; instead of 1 ® 0, : Mx — Mx.

We define the maps AT : My — Mx, A~ : Mx — Mx, V : Mx — Mx as follows:

AT = w11 ® Oy + w21 ® Oy, (5.5)
A~ :w12®8m +w22®8x2, .
V= A+8y1 + A‘@w =w11 ® amayl + w1 ® 836283/1 + wig ® 8x1(9y2 + woo ® 81281,2. (57)
In particular,
. m,n m—1n—1,

by abuse of notation we will write V instead of V|/mn». We will show that the map V is the explicit
expression of the morphisms of degree 1 in Figure
Remark 5.4. By (5.1) and (5.2) it is straightforward that (A*)2 = 0, (A7)?2 = 0 and ATA™ +
A-AT =0.
Remark 5.5. We point out that V : My"™ — My~ """ is constructed so that V(v), for v highest

weight vector in V", is the highest weight singular vector of degree 1 in M;?_l’n_l, classified in
Theorem [£.4] In particular:

a: let V: M — M;ln_l’”_l. The highest weight vector in V" is 2"y}". We have:

m,n m—1, n—1
V(z'yr) = w11 @ mna(" Ty,

that is the highest weight singular vector m, of M (m—1,n—1, —%”_2, 1) found in Theorem

£l
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b: Let V: M;™" — MB?m_l’"_l. The highest weight vector in V""" is 9l y}. We have:
V(OyT) = wi1 ® ndy, Oyt ™" + wa1 @ ndj P,
that is the highest weight singular vector miy, of M(m +1,n — 1,1+ m_T’H'Q, —mTJF" —1) found
in Theorem [£.4]

c: Let V: M,™" — Mc_m_l’_"_l. The highest weight vector in V™" is 07 0;,. We have:

T2 7Y2”

V(@man ) = w11 & 83318;"28 O 4w ® 8;;*18 O 4+ w2 ® Op 8’”8"“ + woo & 8;?;*18;;1,

T2 Y2 Y1~y2 Y1~y2 17227Y2

that is the highest weight singular vector my. of M(m + 1,n + 1, m+§”+2 + 2, %5™) found in
Theorem (4.4

d: Let V: MJ" — Mgb_l’_"_l. The highest weight vector in V5" ™" is 270}, We have:

man \ __ m—1 7 m—1qn+1
V(z1'9y,) = w11 @ mzy"™ 0y, 0y, + w12 @ may" O,

that is the highest weight singular vector mqqg of M(m —1,n+ 1,1+ TL*TM, mT”‘ + 1) found in
Theorem 4.4

The following is straightforward.

Lemma 5.6. Let u® ¢ be a map as in (5.4). Let us suppose that u ® ¢ =, u; @ ¢; where {u;};
and {¢;}, are bases of dual go—modules and u; is the dual of ¢; for all i. Then u® ¢ commutes
with gg-

Lemma 5.7. Let us consider a map u® ¢ € U(g<o) @ Hom(Vx,Vy). In order to show that u ® ¢
commutes with go, it is sufficient to show that wu ® ¢(v) = u @ d(w.v) for allv € Vx, w € go.

Proof. Let w € go. We have, for every u; ui, ... u;, @ v € U(g<o) ® Vx:
W. (Ui Uiy« - Uiy, @ V) = Ujy Uiy - . . Ujy, QWU+ ZﬂilﬂiQ S U, @ .
Hence we have that for a map u ® ¢ € U(g<o) ® Hom(Vx, Vy):
(u® @) (w.(Uiy Uiy - . - Uiy, @ V)) = Uiy Uiy - . - Ui U @ P(W.V) + Z Uiy Ui - - - Uiy U @ (V).
On the other hand we have:
w.(u® @) (Wi Wiy - .. Uiy, @ V) = W.(Ujy Uiy - - - Ui, u R P(V))
= Ujy Uiy - - - Uj WU & G(V) + Z Uiy Ui - - - Uiy U @ (V).

Therefore, in order to show that u ® ¢ commutes with g, it is sufficient to show that wu ® ¢(v) =
u® ¢(w.v) for all v € Vx, w € go. O

Lemma 5.8. Let ® : Mx — My be a linear map. Let us suppose that ® commutes with g<o and
that ®(v) is a singular vector for every v highest weight vector in V""" and for allm,n € Z. Then
® is a morphism of g—modules.

Proof. Due to Proposition 2.3 in [KR1], it is sufficient to show that g-o®(w) = 0 for every w € Vx,
in order to prove that ® commutes with g-g.

We know that g-o®(v) = 0 for v highest weight vector in V{"" for all m,n € Z. Let v be the
highest weight vector in V", f one among f,, fy, e one among ez, e, and g4 € gso. We have
that:

92 B(f0) = g1.(f-B(0)) = £.(9+-B(v)) + [g, J].B(v) = 0.

This can be iterated and we obtain that g~o.®(w) = 0 for all w € V¢"". Hence g~o.®(w) = 0 for
all w € V. O
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Proposition 5.9. The map V, defined in (5.7), is a morphism of g—modules and V? = 0.

Proof. The map V : Mx — Mx commutes with g<o by (5.4). By Remark and Lemmas
it follows that V is a morphism of g—modules. The property V2 = 0 follows from the fact that
V is a map between Verma modules that contain only highest weight singular vectors of degree 1,

by Theorems [£.4] O
By Remark [5.5 and Proposition [5.9} it follows that, for all m,n € Zxo:

m—1,n—1

i: the maps V : M,ZW — M, are the morphisms represented in Figure in quadrant
A;

ii: the maps V: Mp"™" — Mgmfl’"fl are the morphisms represented in Figurein quadrant
B;

iii: the maps V : M;"™" — M(;m*l’*"*l are the morphisms represented in Figure in
quadrant C;

iv: themaps V : MJ"" — M]T)”_l’_”_1 are the morphisms represented in Figurein quadrant
D.

We introduce the following notation:

VD/ = @mGZVEn,O = C x1,$2][1’1} .

We denote My = U(g<o) ® Vys. We point out that M- is the direct sum of Verma modules of
Figure in quadrant X that lie on the axis n = 0. We consider the map 71 : M ;» — M,/ that
is the identity. We have that:

[t, 7'1] =171, (58)

[C,m] =m7.
We call Vo : M, — M, the map
ATATT = wigwi ® 02, + wiwee @ Oy Ogy + W1 W12 ® Oy, Oy + Warwan @ 02,
We consider the map 75 : M — M+ that is the identity. We have that:

[t, To] = T2, (5.9)

[C, 2] = 7.
By abuse of notation, we also call Vo : Mz — M/ the map
ATAT T = wiwis ® 02, 4 wi1wes @ Oy, Oy + Wa1 W12 ® Oy, Oy + Warwan ® 02,

We observe that My = EBmeZM;?’O for X = A, B,C, D. We will denote M;(”, = M;?’O.
We have that, for every m > 2:

. m m—2
Vaarr, « Miy — M

and
. —-m —m—2
Vo s M — M™%,
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By abuse of notation we will also write V4 instead of Vs M and V2| M m. We will show that the

map Vo is the explicit expression of the morphisms of degree 2 in Flgure - 4.1] from the quadrant A
to the quadrant D and from the quadrant B to the quadrant C.

Remark 5.10. i: The map Vy : M — Mm_2 is constructed so that V(v ) for v highest

weight vector in V , is the hlghest weight smgular vector of degree 2 in M , classified in
Theorem . Indeed the highest weight vector in V is 7" and we have:

Va(x") = wirwia @ m(m — 1):n;”*2,

that is the highest weight singular vector mo, of M(m — 2,0,1 — mT_Q, 14 ’”T) found in
Theorem [4.5]

ii: The map Vs : Ml;/m — Mg,,m72 is constructed so that Va(v), for v highest weight vector in
VB_,m, is the highest weight singular vector of degree 2 in Mc_,m_Q, classified in Theorem
Indeed, the highest weight vector in VE;,m is 0, and we have:

Vo (O0) = wiiwia ® 92,00 + (wi1was + warwi2) ® Op, O + waywen @ O3,

€2

that is the highest weight singular vector 7. of M (m+2,0, 2—|—mT+2, —mT”) found in Theorem

Proposition 5.11. The map Va : My — M (resp. Vo : My — M.s) is a morphism of
g—modules and VoV = VVa = 0.

Proof. The map Vo commutes with g<o by (5.4). By Remark and Lemmas it follows
that Vs is a morphism of g—modules. Finally, VoV = VVy = 0 follows from the fact that due to
Theorem [4.6] there are no highest weight singular vectors of degree 3 in the codomain of V5,V and
VVs. O

By Remark and Proposition it follows that, for every m > 2, the maps Vs : MY, —
Mgl,*z are the morphisms represented in Figure from the quadrant A to the quadrant D and
the maps Vo : M ];m — Mg,m” are the morphisms from the quadrant B to the quadrant C.

We now define the map 73 : VX’O — VCO’0 that is the identity. We have that:

[t, 73] = 273, (5.10)
[C, 73] = 0.

We define the map V3 : Mg’l — Mgl’o as follows, using definition (5.4)), for every m € Mg’l:
V3(m) = A~ o (wiywa ®73) 0 (1 ® 8y, )(m) + A~ o ((wigwa + wi1wse) @ 73) 0 (1 @ by, ) (m).

Remark 5.12. The map V3 : Mg’l — Mgl’o is constructed so that Vs(v), for v highest weight
vector in Vj’l, is the highest weight singular vector of degree 3 in M, 1’0, classified in Theorem
Indeed, the highest weight vector in Vg’l is y; and we have:

Vi3(y1) = wnwaiwiz ® Oz, + wiiwawr @ Oz, = wawiawi1 ® Oz, — W11wW2wW21 @ Oy,

that is the highest weight singular vector 13, of M(1,0, 3 %) found in Theorem

DRI

Proposition 5.13. The map V3 is a morphism of g—modules and V3V = VV3 = 0.
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Proof. First we show that the map V3 is a morphism of g—modules. It commutes with g-¢ due to
(5.4). Due to Lemmas [5.7| and it is sufficient to show that wu ® V3(v) = u® V3(w.v) for every
1

w e g, veV, .

We have, for every v € Vg’lz

hx.Vg(v) =

= A" hy(wiwa @ 73)(1 ® 0y, ) (v) + A7 hy((wigwa1 + wiiwae) @ 73)(1 @ Oy, ) (v)

= A" (w w21 ® 13)ha (1 ® 0y, ) (v) + A7 ((wi2w21 + wiiwae) @ 73)he (1 ® 0y, ))(v) = V3(hs.v);

ez.Vi(v) =

= AT ex(wiiwa @ 73)(1 ® 0y, ) (v) + A” ez ((winwar + wiiwaz) @ 73)(1 ® Oy, ) (v)

= A7 (wiiw21 ® 13)ex(1 ® 0y, ) (v) + A~ ((wipwa1 + wiiwaz) ® 73)ex(1 ® 0y, ) (v) = Va(ez.v);
fx'v?)(v) =

= A7 fa(wnwa ® 13)(1® 0y, ) (v) + A7 fo((wipwar + witwaz) @ 73)(1 ® Oy, ) (v)

= A7 (wnwa1 ® 73) fo (1 ® Oy, ) (v) + A7 ((wr2wa1 + wiiwze) ® 73) fo(1 ® Oy, ) (v) = Vs(fz.v);
hy.V3(v) =

—A7 (wiiw21 @ 13)(1 ® 0y, ) (v) + A™ (Rwiiwer ® 73)(1 @ Oy, ) (v)
+ A7 (wnwa @ 73)(—1 ® Jy, ) (v) + A (wr1wa1 @ 73)(1 ® 0y, ) (hy.v)
— A7 ((wizwa1 + wi1wa) ® 13)(1 ® Oy, ) (v) + A~ ((wi2wa1 + wi1ws2) ® 73)(1 @ 9y, ) (v)
" ((wr2wa1 + wi1w22) ® 13)(1 ® Oy, ) (hy.v) = V3(hy.v);
ey.-V3(v) =

= AT (w1we1 @ 73)(1 ® Gy, ) (v) + A™ (wiwa; @ 73)(—1 @ 9, ) (v)
+ A+((w12w21 + U)ngz) (029 7’3)(1 (039 6y2)(v) + A” (2’(011’[021) X 7'3)(1 X 8y2) + Vg(ey.v)
= A" (wiiwa1 ® 13)(1 ® Oy, ) (V) + wi2w21w11 @ O, T30y, (V)

+ w1 wwi @ Oy, T30y, (V) + wiiweawe1 & Oz, T30y, (V) + V3(ey.v)

v)
= A7 (wiiw21 @ 13)(1 ® Jy, ) (v) + warwi11wW12 @ Ogy T30y, (V) — Wiiwa1 W ® Oz, T30y, (V) + V3(ey.v)
(

= A" (wiiw21 ® 13)(1 ® 0y, ) (v) — A™ (wriwa21 @ 73)(1 @ Oy, ) (v) + Va(ey.v) = V3(ey.v);
fy-Vs(v) =
= A7 ((wi2wa21 + wiiwaz) @ 73)(1 ® 0y, ) (v) + A7 (2winwae ® 73)(1 @ Iy, ) (v)

+ A™ ((wiawa1 + wiiwae @ 73)(—1 @ 9y, ) (v) + Va(fy.v) = Va(fy.v).

It is straightforward, using (5.10)), that V3 commutes with ¢ and C.

Finally V3V = VV3 = 0 since there are no singular vectors of degree 4 due to Theorem [4.7] O
Let us define the maps At Mx — Mx and A Mx — Mx as follows:

AY = w1y ® Oy, + w1z ® Iy, 5.11)

A™ = wy; ® By, + way @ By, (5.12)

We point out that the morphism V, defined in ([5.7]), can be expressed also by:
V =A%9, + A0,

Remark 5.14. By (5.1) and (5.2)) it is straightforward that (A2 =0, (A7)2 =0 and ATA~ +

A-A* =0.

We introduce the following notation:

Vyr = @neZVX’n = Cly1, 2],
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0
VB" = @nEZVan =C [yl, yQ][L—H s
07
VC” = @HEZVC " - C [8y1,8y2:|[2,0] 5
O,
VD// == @HEZVDR - (C [8y1,8y2][171] .
We denote My = U(g<o) ® Vyr. We point out that M~ is the direct sum of Verma modules of
Figure in quadrant X that lie on the axis m = 0. We consider the map 7 : M ,» — M that
is the identity. We have that:
t,71] = 71, (5.13)

[C, 7] = —T1.
We call Vs : M v — Mpgn the map

ATATT = wiwe ® 351 + wipwa1 ® Oy, Oy, + wi1wW22 @ Oy, Oy, + W12W2 @ 322.
We consider the map 72 : M » — M that is the identity. We have that:

[t, 2] = T2, (5.14)
[C, To] = —To.

By abuse of notation, we also call 62 : Mpn — M the map

ATATR = wiwy ® (951 + wiawa1 ® Oy, Oy, + Wi1wWa2 @ Oy, Oy, + Wi2wa2 @ 352.

We have that, for every n > 2:

V. . n n—2
VQ |MZ“ . MA// — MB//

and
— . —-n —n—2
Va g - Mt — Mg~

By abuse of notation we will also write 62 instead of 62 M, and 62 M We will show that the
A D//

map Vs is the explicit expression of the morphisms of degree 2 in Figure from the quadrant A
to the quadrant B and from the quadrant D to the quadrant C.
Remark 5.15. i: The map Vs : My, — Mg;Q is constructed so that Vy(v), for v highest

weight vector in VX,,, is the highest weight singular vector of degree 2 in Mg;z, classified in
Theorem H Indeed, the highest weight vector in V7, is yi' and we have:

Va(y}') = wiwa @ n(n — 1)yi=2,

that is the highest weight singular vector mig, of M(0,n — 2,1 — ”772, -1 - "772) found in

Theorem [4.5]

ii: The map % M;,’,‘ — ME,’,”‘*2 is constructed so that Vs (v), for v highest weight vector in

—-n . . . . —n—2 . .
VB,, , is the highest weight singular vector of degree 2 in M o classified in Theorem

Indeed, the highest weight vector in V;,,” is 0y, and we have:

V2(02) = wiiwar ® 92,01, + (wi1was + wizwa1) ® Oy, O + wizwes @ )2,

that is the highest weight singular vector migg of M (0,n+2,2+ ”T“, —"T“) found in Theorem
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Proposition 5.16. The map 62 : My — Mpgn (resp. 62 : Mpn — M) is a morphism of
g—modules and VoV = VVs = 0.

Proof. The map 62 commutes with g<g by (5.4). By Remark H and Lemmas 8| it follows
that Vo is a morphism of g—modules. Fmally, VQV VVs = 0 follows from the fact that due to

Theorem [4.6} there are no highest weight singular vectors of degree 3 in the codomain of V.V and
VVs. O

We recall the definition of the map 73 : VX’O — VCO’O that is the identity. We have already
pointed out that:

[ta 7-3] = 273»
[C, 7'3] =0.

We define the map 63 : Mil’o — Mg’_l as follows, using definition (5.4)), for every m € Mi"oz

%(m) = A" o (wpiwi2 ® 13) 0 (1 ® Oy, ) (M) + A” o ((warw12 + wiiwae) ® 13) 0 (1 ® Oy, ) (M).

Remark 5.17. The map Vs Mi"o — Mg’_l is constructed so that 63(1}), for v highest weight
vector in Vj’o, is the highest weight singular vector of degree 3 in Mg’_l, classified in Theorem E
Indeed, the highest weight vector in Vj’o is 1 and we have:

Vi(z1) = wiiwiawar ® Oy, + wiiwiawar @ Oy, = Wi2w21wi1 & Oy, — W11WwW12 ® Jy,,

that is the highest weight singular vector mg, of M (0,1, g, %) found in Theorem

Proposition 5.18. The map 63 is a morphism of g—modules and 63V = V%g =0.

Proof. First we show that the map V3 is a morphism of g—modules. It commutes with g<o due to
(5.4). Due to Lemmas|[5.7|and |5 1t is sufficient to show that wu ® V3(v) = u® V3(w.v) for every
w E go, UV E Vj 0 We have, for every v € Vj 0,

he.V3(v) = Va(hev) — A (wiiwia @ 73)(1 ® 8y, ) (v) + 287 (wrwi2 @ 73) (1 © 8y, ) (v)
— A (wnwiz ® 73)(1© 0y ) (v) — A7 ((warwiz + wirwez) @ 73)(1 © Oy, ) (v)
+ A ((warwia 4+ wiwma) © 13)(1 ® 8,) (v) = V3 (hev);
hy.63(1)) = @;(hy.v) + A™ (wnwiz — wiiwiy ® 73)(1 @ By ) (v)
+ 3_((11}2111)12 + wiiwo — warwi2 — wiiwee) ® 73)(1 ® 04,)(v) = (hy v);
e:-V3(v) = Va(ezv) + At (wigwiz ® 73)(1 @ 95,) (v) + A (wiiwia @ 73)(—1 @ 9, ) (v)
+ AT ((worwiz 4+ wiwmg) © 13)(1 ® 8y,) (v) + A (2wiwi2 @ 73) (1 ® Oy, ) (v)
= V3(epv) + A (winwiz @ 73)(1 @ 8y ) (v) + warwigwiy @ Oy, 730z,
+ wirw2wi1 @ Oy, T304, + Wi1wwi2 @ Oy, T30,
= V3(ep.v) + A7 (wiiwiz @ 73) (1 ® 84,) () 4+ wigwiwa @ Oy, 7384, — 40w11 @ 8y, T30,
+ 40w11 ® Oy, T30, — W11W12W22 @ Oy, T304,
= V3(ez0) + A (wiwia @ 73)(1 @ 8,) (v) — A (wiywia @ 73)(1 @ 8, ) (v) = V(e4.0);
f2-V3(v) = V3(fv) + A ((warwia + w11wma) @ 73)(1 ® 8y, ) (v) + A7 (2wagwan @ 73) (1 ® 8y, (v)
+ A ((warwia 4+ wiwm) ® 13) (=1 @ 9y, ) (v) = Va(firv);
6y.%3(’0) = %3(63/.1)) + A ((warwr1 + wiiwe) @ 13)(1 @ 8y, ) (v) = %3(634.2});
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fyﬁg(v) = 63(fy.v) + 87((10221012 + wipwzz) ® 13)(1 ® Oy, ) (v) = 63(@’“)'

It is straightforward, using (5.10), that V3 commutes with ¢ and C.
Finally V3V = VV3 = 0 since there are no singular vectors of degree 4 due to Theorem O

5.2 Preliminaries on spectral sequences

For the proof of Theorem we will use the theory of spectral sequences. Therefore we recall some
notions about this theory; for further details see [KR1, Appendix] and [M, Chapter XI]. We follow
the notation used in [KRI].

Let A be a module with a filtration:

. CF, tACF,AC F,11AC ..., (5.15)

where p € Z. A filtration is called convergent above if A = U, F,A. Let us suppose that A is
endowed with a differential d : A — A such that:

d*=0 and d(F,A) C F,_si14, (5.16)

for fixed s and every p in Z. The classical case studied in [M| Chapter XI, Section 3] corresponds
to s = 1. We will need the case s = 0.

The filtration ([5.15)) induces a filtration on the module H(A) of the homology spaces of A; indeed,
for every p € Z, F,H(A) is defined as the image of H(F,A) under the injection FA — A.

Definition 5.19. Let E' = {Ep} _; be a family of modules. A differential d : B — E of degree
—r € 7 is a family of homorphisms {d, : £, — EP—T}peZ such that d, o d,1, = 0 for all p € Z.
We denote by H(E) = H(E,d) the homology of E under the differential d that is the family
{Hp(E,d)} ¢z, Where:

Ker(d, : E, — E,_,)
Im(dpir : Eppr — Ep)

H,(E.,d) =

Definition 5.20 (Spectral sequence). A spectral sequence E = {(E",d")}, ., is a sequence of
families of modules with differential (E",d") as in definition such that, for all r, d" has degree
—r and:

H(E",d") = E™1

Proposition 5.21. Let A be a module with a filtration as in (5.15)) and differential as in (5.16)).
Therefore it is uniquely determined a spectral sequence, as in definition E = {(E",d")}, ez
such that:

H(E",d") = E™1, (5.17)

Ey = F,A/F, 1A for r<s—1, (5.18)

d"=0 for r<s-—1, (5.19)

d*~' = Grd, (5.20)

B} = H(FA/Fp 1 A). (5.21)

Proof. For the proof see [KR1, Appendix]. O

We point out, that for our purposes, ([5.21)) is important, because it states that E* is isomorphic
to the homology of the module Gr A with respect to the differential induced by d.
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Remark 5.22. Let {(E",d")}, ., be a spectral sequence as in definition We know that E}
Hy(E®,d"). We denote E} = C)/By, where C) = Ker d{g and B) = Imd],,. Analogously E2
Hy(E',d") and E2 = C} /B}, where CI/B0 Keral1 B,/B) = Imd},w and B} C Cj. Thus, we
obtain:

1R

0 1 2 2 1 0
B,CB,CB,C..CC,CC,CC,.

Definition 5.23. Let A be a module with a filtration as in (5.15)) and differential as in ([5.16]). Let
{(E",d")},cy be the spectral sequence determined by Proposition We define E° as

Eoo — m”'C;
PooUn By

Let B be a module with a filtration as in (5.15)). We say that the spectral sequence converges to B
if, for all p:

EX = F,B/F, 1B.

Proposition 5.24. Let A be a module with a filtration as in (5.15)) and differential as in (5.16]).
Let us suppose that U, F),A = A and, for some N, F_nA = 0. Then the spectral sequence converges
to the homology of A, that is:

EX = FyH(A)/F,-1H(A).

Proof. For the proof see [KR1, Appendix]. O

Remark 5.25. Let A be a module with a filtration as in and differential as in (5.16). We
moreover suppose that A = ®,czA, is a Z—graded module and d : A, — A,_1 for all n € Z.
Therefore the filtration induces a filtration on each A,. The family {F,An}  ; is indexed
by (p,n). It is customary to write the indices as (p, q), where p is the degree of the filtration and
q = n — p is the complementary degree. The filtration is called bounded below if, for all n € Z,
there exists a s = s(n) such that FsA4, = 0.

In this case the spectral sequence E = {(£",d")}, .5, determined as in Proposition is a family

of modules E" = {qu}p oeZ. indexed by (p,q), where Ej = vaqez Ep ,» with the differential

={d,: Epqg — EP—T7q+T—1}p,qu of bidegree (—r,r — 1) such that d, 4 o dpyrq—r+1 = 0 for all
p,q € Z. Equations (5.17)), (5.18) ,(5.19), (5.20) and (5.21]) can be written so that the role of ¢ is
explicit. For instance, Equation (5.17)) can be written as:

H, (5 d) = Ker(dy g Ep g — Ep o qir1) ~ prtl
pg\ 4 ) = B
Im(d;-i-r,CI—r—&-l : Ep+r,q—r+1 — Epq) e

for all p,q € Z. Equation (5.21)) can be written as £ = H(FpAyiq/Fp-14,44) for all p,q € Z.

We now recall some results on spectral sequences of bicomplexes; for further details see [KRI]
and [Ml, Chapter XI, Section 6].

Definition 5.26 (Bicomplex). A bicomplex K is a family {Kp 4}, o7 of modules endowed with
two families of differentials, defined for all integers p, q, d’ and d” such that

/. ",
d: Kp,q ? Kp—qu d”: Kp,q ? Kp,q—l

and d? =d" =d'd" +d"d = 0.
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We can also think K as a Z—bigraded module where K = Z% qez Kp,q- A bicomplex K as in
Definition can be represented by the following commutative diagram:

(5.22)

d/l dl/ d/l

d’ d’ d’ d’

o Kppigr1 —— Kp g1 —— Kpo1g41 —— -+

d// dll d//

d’ K d’ K d’ K d’

) * Bptlg P, p—1ygq -

d// dll d//

Definition 5.27 (Second homology). Let K be a bicomplex. The second homology of K is the
homology computed with respect to d”, i.e.:

0" (K) = Ker(d" : Kpq — Kp,qfl)‘
p.q d//(Kp7q+1)

The second homology of K is a bigraded complex with differential d' : H) (K) — H)
induced by the original d’.
Its homology is defined as:

Ker(d' : H" (K) — H”
H;H(IZI(K) — ( : pvq”( ) p_lzq)’
d (Hp—i-l,q(K))

and it is a bigraded module.

Definition 5.28 (First homology). Let K be a bicomplex. The first homology of K is the homology
computed with respect to d’, i.e.:

H., (K) = Ker(d" : {(p,q — Kp14)
’ d'(Kpt14)

The first homology of K is a bigraded complex with differential " : H,, ,(K) — H,, , 4
by the original d”.
Its homology is defined as:

(K) induced

HUH(K) = Ker(d" : H]'J7q(K) — H]'J7q_1)
r d"(H}, 41 (K)) ’

and it is a bigraded module.

Definition 5.29 (Total complex). A bicomplex K defines a single complex T' = Tot(K):

T, = Z Kpg d=d +d":T, — T, 1.
p+g=n

From the properties of d’ and d”, it follows that d? = 0.
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We point out that 7;, is the sum of the modules of the secondary diagonal in diagram (5.22]).
We have that:

d d d d
=T =Ty =Ty =

The first filtration F’ of T'= Tot(K) is defined as:

(F)T)n=>_ Knnn-

h<p

The associated spectral sequence E’ is called first spectral sequence. Analogously we can define the
second filtration and the second spectral sequence.

Proposition 5.30. Let (K,d,d") be a bicomplex with total differential d. The first spectral se-

quence E' = {(E",d")}, E" =3_,  EJ, has the property:

0 0\ ~ 1 g\ ~ 2~
(E",d°) = (K,d"), (E",d")=(H(K,d"),d), E]’mq:H]’)H(’Z’(K).

The second spectral sequence E" = {(E"",6")}, E" =3 E.% has the property:

0 50\ ~ 1 g1y~ 2 ~
(E™,8%) = (K,d), (E™,§)=(H(K,d),d"), E; =HH,/K).

If the first filtration is bounded below and convergent above, then the first spectral sequence converges
to the homology of T with respect to the total differential d.

If the second filtration is bounded below and convergent above, then the second spectral sequence
converges to the homology of T with respect to the total differential d.

Proof. See M) Chapter XIJ. O

5.3 Computation of the homology

The aim of this section is to prove Theorem Following [KR1], let us consider the filtration of
U(g<o) defined as follows: for all i > 0, F;U(g<o) is the subspace of U(g<o) spanned by elements
with at most 7 terms of g-o. Therefore:

C = FyU(g<o) C FAU(g<0) C ... C F;_1U(g<0) C F;U(g<0) C ...,

where F;U(g<0) = g<0li-1U(g<0) + Fi—1U(g<0). We call [;Mx = F;U(g<o) ® Vx. We have that
VFE,Mx C Fiy1Mx. Hence Mx is a filtered complex with the bigrading induced by and
differential V.

We can apply Propositions and to our complex (Mx, V) and obtain a spectral sequence
{(E*,V")} such that E° = H(Gr Mx), E"*' = H(E', V') and E* = Gr H(Mx).

Therefore we first study Gr Mx.

Remark 5.31. We observe that g contains a copy of W (1,0) = (p(t)0;) via the injective morphism:

Indeed, let us prove that this injective map is a morphism of Lie superalgebras. In g:

[zﬂ@

D40 = Lpdua(t) — Sow(t)a(r)

In particular, we point out that g_o is contained in this copy of W (1,0).
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We consider the standard filtration on W (1,0) = LYW, > LYV > LIV ...

Lemma 5.32. For alli >0 and j > —1:
LYV F,Mx C F,_jMx. (5.23)

Proof. We point out that L}’V - @kzj g2k, since p(t)0; € ngg(p(t))_l corresponds to 7’(2—t) € g and
deg(5)) = 2deg(p(1)) - 2.
Let us fix j and show the thesis by induction on i. It is clear that L}/VFOM x C F_jMx. Indeed let
wj € L;-/V, v € FyMx, then:
oMy if j>0;
wjwed 0UX T )= (5.24)
FlMX if ] = —1.

Now let us suppose that the thesis holds for i. Let w; € L}’V and wjug...ur @ v € Fiy1Mx, with
r <i+1 and uy,us,...,u, € g<g. We moreover suppose that, for some N, us = O for all s < N
and ug € g1 for all s > N . We have:

Wit gty @ v = (—1)PEIPED gy iy, @ v + [w), ur|ug...t, @ .

Using the hypothesis of induction, we know that wiwjus...u, ® v € F,_jMx C Fj1_jMx. Let
us focus on [wj, uq]ug...ur ® v. We have two possibilities: [wj,u1] € @p>jgo—2 if 1 = © or
[wj, u1] € Br>jgor—1 if ur € g_1.

In the case uy = O, [wj,u1] € ijil and, by hypothesis of induction, [wj, ui]us...u, ®v € F._jMx C
Fip1-jMx.

In the case u; € g—1, we have that deg({w;,u1]ug...u,) > 2j —1 —r + 1 and, by our assumption,
ug, ..., up € g—1. Therefore [wj, ui]us.. u, ® v € Fr_9jMx C Fip1-jMx. d

By (5.23)), we know, since W (1,0) = Gr W (1,0), that the action of W (1,0) on Mx descends on
Gr Mx.
We point out that, using the Poincaré—Birkhoff—Witt Theorem, we have GrU(g<p) = S(g—2) ®
A(g-1); indeed we have already noticed that in U(g<o), for all i € {1,2,3,4}, n? = ©.
We define:

W =W(1,0)+go=W(1,0) ® g5’ & CC,

that is a Lie subalgebra of g. On W we consider the filtration W = LY, D L}V > L}V..., where
LY =LY @ g @ CC and L};V = Lk,W for all £ > 0. Therefore, as YW—modules:

GrMx =GrU(g<o) ® Vx = S(g—2) ® A(g—1) ® Vx.
From (5.23)), it follows that LYY = L}V annihilates Gy := A(g_1) ® Vx. Therefore, as W—modules:
Gr My = S(g—2) ® (A(g-1) ® Vx) = Ind}hw (A(g-1) @ V).

We observe that Gr Mx is a complex with the morphism induced by V, that we still call V. Indeed
VF,Mx C F;+1Mx for all i, therefore it is well defined the induced morphism

V:Gr Mx = FMyx/F,_1Mx — Griy1 Mx = Fi 1My /F;Mx,

that has the same formula as V defined in ([5.7)), apart from the fact that the multiplication by the
w’s must be seen as multiplication in GrU(g<o) instead of U(g<o).
Therefore we have that (Gx, V) is a subcomplex of (Gr Mx,V): indeed it is sufficient to restrict
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V to Gx; the complex (Gr Mx, V) is obtained from (Gx, V) extending the coefficients to S(g_2).
We point out that also the homology spaces H™"(Gx) are annihilated by L}Y. Therefore, as
W—modules:

H™"(Gr Mx) = S(g_2) @ H™™(Gx) = Indi(Hm’"(GX)). (5.25)

From ([5.25)) and Proposition it follows that:
Proposition 5.33. If H™"(Gx) =0, then H™"(Gr Mx) = 0 and therefore H™"(Mx) = 0.

5.3.1 Homology of complexes G x

Motivated by Proposition in this section we study the homology of the complexes G x’s. We
denote by Gx/ := A(g_1) @ Vx.

Let us consider the evaluation maps from Vx to V- that map yi1,¥2,0,,,0y, to zero and are the
identity on all other elements. We can compose these maps with Vo when X = A, B and obtain
new maps, that we still call Vs, from G4 to Gy and from Gp to G respectively.

We consider also the map from G, to Gp (resp. from G to G¢) that is the composition of
Va:G,y — Gy (resp.Va : Gy — Gv) and the inclusion of Gy into Gp (resp. G into G¢);
we will call also this composition Vo. We define:

Gao =Ker(Vy: G4 — Gpr), Gpe = CoKer(Vy: G, — Gp),
Gpo =Ker(Vy:Gp — Gr), Gego = CoKer(Vy: Gy — Go).

Remark 5.34. The map V is still defined on G xo since VVy = VoV = 0.

The bigrading (5.3)) induces a bigrading also on the Gxo’s. We point out that G\"" = G';" for
n>0,Gy" =GR forn <0, GE" =GR for n > 0 and G = GZ2" for n < 0.

The complexes (Gxo, V) start or end at the axes of Figure Thus for us:

Ker(v:GjilefZgl*”*l)
1 .qgm+Ln m,n
Hm’n(GAo) _ m(V GAOGm,n —G 6 )
AO
L Im(V:G G
Ker(V:GnDlgn—>Ggo_l’n_1)
Im(V:G b G
m,n — GT"
H™™"(Gpe) = D for m = 0;

(V-G e
m,n m—1,n—1 .
(Ker(V : G — G ) for n=0;

for m > 0,n > 0;

for m =0 or n = 0;

for m > 0,n < 0;

( Ker(V:GggnHGmfl‘nfl)

B° .
Im(V:Gr};{;‘-Ln-«-l_}Ggéﬂ) for m < 0,n > 0;
H™"(Gpe) = { Ker(V: Gp" — Grgo_l’"_l) for m = 0;
B — -
or n =
Im(V:ngl’n+1—>Ggén) ’
Ker(V:G?gnHGgo_l’n_l)
o — for m < 0,n < 0;
H™™(Geo) = { m(V:GEe " =g ’ '

Ker(V : Gl" — Gglofl’nfl) for m=0orn=0.

Remark 5.35. The following relations are straightforward from the definition of the Gxo’s and

Remark [5.34}

H™"(Ga)=H™"(Gao) for m > 0,n > 0;
H™"(Gp)=H™"(Gpo) for m>0,n <0;
H™"™(Gp) = H™"(Gpo) for m < 0,n > 0;
H™™(Ge) = H™"(Geo) for m < 0,n <0.
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Motivated by Remark [5.35] and Proposition [5.33] we study the homology of the complexes
Gxo’s.
Now we introduce an additional bigrading as follows:

(VX)[p,q} = {f € VX : ylaz,uf = pf and Z/28y2f = qf}7 (526)
(GX)p.q) = N9-1) ® (Vx)[p,q-

The definition can be extended also to Gx.. We point out that this new bigrading is related to the

bigrading by the equation p + ¢ = n.

We have that d’ := A+8y1 : (GX)[p,q} — (GX)[P—L(]]’ d" = A_ayQ : (GX)[p,q} — (GX)[p,q—l] and
d=d +d": ©,GY" — G

We know, by Remark that d'*> = d"* = d'd" + d"d’ = 0. Therefore ®,G and ®,,G"%, with
the bigrading (5.26]), are bicomplexes with differentials d’, d” and total differential V = d’ + d”.
Now let:

Vo= Awir,wer) and AL = A'wia, , was).

We point out that /\fﬂr and A" are isomorphic as (2102, — 2204, , ©104,, T205, ) —modules; therefore, in

the following results, we will often write A" when we are speaking of the (x10,, —220.,, ©10x,, ©20, ) —module
isomorphic to A’ and A’.

We introduce the following notation, for all «, 8 € Z:

Gala, B)pg = NN 1@ C lay, 2] 1w, Gp(o, B)pg = AT PN @ C[0s,, 0u,] yus,
Gpla, B)pg = AT PN 1@ C oy, 2] 9,70, Gola, B)pg = ANTPN7I0 C [0y, 02,) 9,70, 1.

Y2 7 Y1

From now on we will use the notation A’ [z1, 2] (resp. A'L[0s,0s,]) for AL ® Clay, xs] (resp.
L @ Cl0s,, 0.

We have that, as (2105, — 220z,, £104,, ©203,)—modules, Gx = @y 3G x (e, ), where Gx(a, ) =

Dp,aGx (@, B)p.q-

Analogously we can define Gxo (a,ﬁ)mq] and, as (210, — ©204,, ©104,, 205, )—modules we have:

Gxo = @a,BGXO (a, B), where Gxo(a, B) = Dp,qGxo (a,/B)[nq}.

The Gx(a, 8)’s and Gxo(a, 3)’s are bicomplexes, with the bigrading and differentials d’ =

AT9,, and d’ = A7 9,,.

The computation of homologies of Gx and Gxo can be reduced to the computation for Gx («, 3)

and Gxo(a, B).

To prove the following results we will use Proposition [5.30)

In the following lemmas we compute the homology of the Gxo(a, 3)’s. We start with the homology

of the Gxo(a, 3)’s when either « or 8 do not lie in {0, 1,2}.

Lemma 5.36. Let us suppose that o > 2 or 3 > 2. Let k = max(a, ).
Then as (104, — 20y, , 104, T20,, ) —modules:

m,n m,n ~ 0 ifm>007"m:0,n<ka
H™ (GAO(aaB)):H 7 (GA(a’B)): {/\a+ﬁn me:O n > k;

mn mon - ]0 ifm<0orm=0, n<k-—2,
H™ (GBO(aaﬁ)):H ’ (GB(a7/6)):{/\a+Bn2 zfm:O n>k_9

Let us suppose that « < 0 or f < 0. Let k = min(a, 3).
Then, as (x10z, — 2054, 105, , 20z, )—modules:

H™"(Gpe(a, B)) = H™"(Gp(a, B)) =

0 ifm>0 orm=0, n>k,
AOFTAn if m=0, n<k;
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m,n m,n ~ 0 if m<0orm=0, n>k-2,
H™"(Geo(a, B)) = H™ (Gc(a75)):{/\a+6—n—2 ifm=0, n<k—2

Proof. We first observe that if & > 2 or > 2 (resp. @ < 0 or 8 < 0), then Gxo(«, 5) = Gx(«, )
for X = A, B (resp. X = C, D), since they are different only when p + ¢ = 0, that does not occur
here. We use the theory of spectral sequences of bicomplexes.

We prove the statement in the case 8 > 2 for X = A, B and 5 < 0 for X = C, D; the case a > 2 for
X =A,B and a < 0 for X = C, D can be proved analogously using the second spectral sequence
instead of the first one.

Case A) Let us consider G 4o (a, 3) with the differential d” = A~0,,:

A By a—p ., Begil —1 A7 ja—p, -
el A/ /\a p/\ﬂi 1 [xla 1'2] ylfyg /\+ p/\é 1 [.’L’l,$2] yll)yg
A0 — —q— + 0
Y2 « p/\ﬁ q 1[x17x2]y§-)yg 1(—1/2

This complex is the tensor product of /\?fp v} and the following complex, since /\j“__p Yy is not

involved in d":

A~ L, A-D L Ad A-d
02 A2 [z1, mo]yh 2 2 AL [z, 20) gy 2 A0 [z, 0]y ——2 0.

This complex is exact except for the right end, in which the homology space is (Cyg . Let us analyze
in detail.

i: Let us consider the map A~d,, : A° [y, zo] yg S ygfl. We compute the kernel.

Let p(xl,xg)yg e N [x1, z2] yg We have:
A™9 0y = d B-1 9 p-1
o (D(T1, 22)Y5 ) = w12 @ g, p(21,72)Byy — + waz @ Oz, p(z1,72)Byy
It is zero if and only if p is constant, therefore the kernel is Cyg .

ii: Let us consider the map A~8,, : AL [x1, 2]y ' — A% [x1,22] 45 2. We compute the kernel.
Let wio @ pr(z1, m2)ys + was @ pala1, 22)ys - € AL [z, 2] y2 . We have:

B

A~ 8y, (w12 @ pr(x1, 22)ys ' + way @ pala1, z2)ys )

= wiawa2 ® Og,p1(z1,22)(8 — 1)?45_2 + waowi2 ® Oy, pa(x1,22)(B — 1)y§_2-

This is zero if and only if 9y, p1 (21, 22) = Oy, p2(x1, 22), that means that py (21, x2) = [ Oz, p2(x1, T2)ds.
Hence an element of the kernel is:

1 1 yﬁ
Wis @ (/83;1]?2(3?17372)61372)95_ + wao ®p2($1,$2)y2ﬁ_ = Aayg((/p2($1,$2)dx2> %)

Thus at this point the sequence is exact.
iii: We consider the map A~d,, : A [z1, 9] yg_z — 0. We have that:

vy !
wiawas @ p(x1,22)ys © = A7y, <w12 ® (/p(m, x2)dw2> 52— 1)'
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Since the original complex was the tensor product with A~ n Pyl we have that the non zero homology
group is AY Py} yg ;ﬁq (G a0 (v, B)) survives only for ¢ = 8. Now we should compute its homology
with respect to d’, but the E;}q(GAo (ar, 8))’s do not involve z1, x2, so the differentials d’’s are zero

and we have E'2 = E'L. Moreover, for a one—row spectral sequence, we know that F'2 = ... = F'*®
since, for all 7 > 2 and all p € Z, d, ;5 has bidegree (—r,r — 1), i.e. dy 5: B} 5 — EJ =0,

r T I p—r,8+1—
dp+7“,,377‘+1 : Ep+r,ﬁfr+l =0— Epﬁ' We have:

0 it g #86,
NPyl if g = B

We observe that the first filtration (Fj(Ga(a,B)))n = >_5<,(Ga(a,B))pn—n is bounded below,
since F'; = 0, and it is convergent above. Therefore by Proposition 5.30#

Y H™(Ga(a,8)= Y E B)) = E25 5(Gala, B)) = ATy Pyl

m p+qg=n

E,%(Ga(a, B)) = {

Since there are no z1’s and x9’s involved, this means that H™" (G a(«, ) = 0 if m # 0 and
HO"(G g, B)) = /\frﬁ*n n—p ﬁ o NOHB=R o9 (2104, — 1204,, 1104,, 20z, )—modules.

Case D) In the case of Gp(a, ), using the same argument, when 5 < 0 we obtain:

, 0 if q¢# 5,
E (G , =
p,q( D(O[ 6)) {/\ipaylpa?ﬁﬂ if q= B
Therefore:
S Gl Y E B)) = B2 5(Gpla, B)) = AT "0, m4P0,

pt+q=n

Since there are no x1’s and z2’s involved, this means that H™"(Gp(a,3)) = 0 if m # 0 and
HY"(Gp(a, B)) = /\i*ﬂ*”a;{‘*ﬁaj =~ NP a8 (2105, — 290y, 10, , 2205, )—modules.

Case B) In the case of Gp(«, 8) when > 2 we have the following complex with the differential
d’" = A70y,:

oa— — A 8 oa— A o—
— /\+ p/\g ot [8901789E2] y§y2 % /\ p/\ﬁ [61176332] yfy2 <— /\ p/\B -t [81178382] ylyg+1'

This complex is the tensor product of A{ Py} and the following complex, since A "y{ is not

involved in d":

A

0, A~O
0 2 A2 [0y, By |y 2 2

AT 0y,

A*ByQ
/\1 [8:E176x2] - /\0 [83317812] y2 A— O

This complex is exact except for the left end, in which the homology space is C/\2_y§ -2

analyze in detail.

. Let us
i: Let us consider the map A8y, : A° [8,,, O] s — AL [0y, 0,] 5 L. We compute the kernel.
Let p(0y, 0y)ys € A [0ay, 0uy] 5. We have:

A_aw (p(axl ) 81;2)y§) = w2 ® a:clp(aan ) a:cz)/@ygﬂ_l + woo & azgp(awy 8352)/33/25_1

It is zero if and only if 05, p(0s,, Ozy) = Oz,P(0z,, Oxz,) = 0, that is p = 0, therefore the kernel is 0.
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ii: Let us consider the map A~8,, : AL [8x1,8x2]y25_1 —> A2 [0ay,0y] ¥ 2. We compute the
kernel. Let wys ®p1(8x1,8x2)y2’6_1 + wa2 ®p2(8w1,8x2)y2 e N [0,,, 04 yQ’B_l. We have:

Ay, (w12 @ p1(ay, Oy )y +1020 @ p2(Day, Dy )y )
= wiowa ® Op,p1 (8 — 1)3/572 + woowia ® Oy, p2(B — 1)?%572

This is zero if and only if 0y,p1(0z,, Ozy) = Oz, P2(0x,, Ox,), that means that py(z1,z2) = W

T3
(in particular ps must contain at least one 0,,). Therefore an element of the kernel is:

8:51172 (8301 ’ aazz) yﬂ—l

o, 5 4w ® p2(0y, 8y)y§_1 = A7d,,

w12 &

At this point the sequence is exact.

iii: Let us consider the map A~0,, : N2 [0, Oxs, ] yg 2 0. Obviously every element wiswos ®
]9((95,;1,(‘)y)ygf2 S y2’872 lies in the kernel. If p contains at least one 0,, then:

p(&m,éa2)y§‘1)'

Wiawas ® P(y,, ny )y 2 = A8y, ( — weo ®
1 2/92 y2< 621 B 1

If p contains at least one 0,,, then:

POy, Oy) ¥ )

—W12W22 ®p(8x1,8m2) = A7 0y (w12 © O, p—1

If p is constant, it does not belong to the image of A™d,,, then the homology group is isomorphic
to (C/\2_y§ -2,

Since the original complex was the tensor product with A5~ i Py?” we have that the non zero homology
group is //\i PN ylyg 2. The space Ep’q(G,Bo( a, B)) survives only for ¢ = 8 — 2. We have that
Ep}q = Ep?q because the map d’ is 0 on the Ep%q’s (the image of the map d’ always involves elements
of positive degree in 0., or 0., that are 0 in E;}q for the previous computation).

Since we have a one row spectral sequence, we have E'? = ... = E'®. We have:

0 if ¢q#8-2,
/\i_p/\Q_yfyg_2 if g=p—-2.

B, (Gr(a, B)) = {

We observe that the first filtration (F(G(a,8)))n = D <, (GB(a, B))jhn-n) is bounded below,
since F’; =0, and it is convergent above. Therefore by Proposition [5.30

Zﬂmn Gp(a, B)) Z @, B)) = ;1036+2,ﬂ—2(GB(0475)) NPTy TR,

ptg=n
Since there are no 9,,’s and 0,,’s involved, this means that H"™"(Gp(«a,[)) = 0 if m # 0 and
H"(Gg(a,B)) = /\ﬁfrﬁ*r‘ﬂ/\z_y?iﬁJFng*2 o \NOHATN=2 o (1102, — 220z, , 104y, T20,, ) —modules.

Case C) In the case of G¢(a, ), using the same argument, when 5 < 0 we obtain:

0 if g#8-2,
ATPANZ O, PO, T i g =5 -2

Eﬁ@dmﬁbz{
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Therefore:

ST H™(Gola, ) = Y B(Gola, ) = B go(Gola, ) = ATTOTTENZ g2, 042,
pta=n
Since there are no 0y,’s and J.,’s involved, this means that H™"(G¢c(a,B)) = 0 if m # 0 and
HO™(Go(a, B)) = AT 7209, 0720, 042 o2 NCFP=1=2 o (0018, — 298,y , 10y, 220, ) —modules.
O

In Lemma we computed the homology of the Gxo(a, 5)’s in the case that either « or 5 do
not belong to {0, 1,2}. In order to compute the homology of the Gx-(a, 8)’s in the case that both
a and B belong to {0,1,2}, we need the following remark and lemmas.

Remark 5.37. We introduce some notation that will be used in the following lemmas. Let 0 < g < 2.
Let us define:

~ ASTPANTT Uy 2y if p>0,q >0,
Gal B = § . .
0 otherwise.
We have an isomorphism of bicomplexes v : Ga(a, B)pq — Gala, B)ip,q Which is the valuating

map that values y; and ys in 1 and is the identity on all other elements. We consider on G Ala, B)
the differentials d = A" and d” = A~ induced by AT9,, and A~9,, for G4(a, 5). We also define:

/\aH/\éﬂ[az,az] if p=¢g=0,
GD’(Oé,ﬂ)[p,q} = {0+ b

otherwise.
The following is a commutative diagram:
\P)
Ga(a, B) Gp(a,B)
| | i
A_A+T1
Ga(a,B) Gp (o, B)

We have that G40 (a, 8) := Ker(A~ At : GA(a B) — G (a, B)) is isomorphic, as a bicomplex,
to Gae(a, ). Its diagram is the same of GA( , B) except for p = q = 0. The diagram of GA( ,B)
is the following, respectively for « =0, a =1, a > 2:

a=20 a=1 a>2
AN [, 0] ALAY [y, a0] « AS A (21, 0] ALAY [0, o)« ALAY [21, 0] « ALY [, 9]
1 1 1 4 1 1
1 1 1 4 1 1

NN [, o), ALAZ [y, 2] NSNS [0, 2], ALAZ [, o) « AL A a1, 0] <A AE [24, 2],

where the horizontal maps are d’ and the vertical maps are d’. The diagram of G o (o, B) is
analogous to this, except for p = ¢ = 0, where /\a/\ﬁ [1, 2] is substituted by Ker(A~A™ :
AN (21, 9] — /\a+1/\ﬁ+1[:c1, 2])s that we shortly call Ker(A~A™) in the next diagram.

The E'' spectral sequence of G Ao (a, ), i.e. the homology with respect to A~ is the following,
respectively for a =0, a =1, a > 2, f=1land a =0, a=1,a>2 =2 (the computation is
analogous to Lemma [5.36)):
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a=0,=1 a=1,=1 a>2,60=1
0 1 0 2 1 0
AL Ay “ AL AL “ Ny “ AL
1 ! . 1 1 !
Ker(A~A+) Ker(A=AH)  ASA [a1,00] NN [w1,2a]  NoAL[w1,20]  ASAL[er,a]
Im(A~) > Im(A~) Im(A-) Tm(A-) Im(A-) Im(A—) °
a=0,0=2 a=1,=2 a>2,0=2
0 1 0 2 1 0
1 ! . 1 1 !
0 0 < 0 0 « 0 < 0
1 ! . 1 1 !
Ker(A7A+) KBT(A7A+) - /\?r/\Q,[CL‘LxQ] /\i/\i[zl,zz] . /\i/\ihhwz] - /\i/\ihhxz]
Im(A=) Im(A~) Im(A—) Im(A-) Im(A-) Im(A—) °

We have that, in the diagram of the E'' spectral sequence, only the rows for ¢ = 0 and ¢ = 3 are
different from 0. The previous diagram will be the first step in Lemma [5.40] for the computation
of the homology of the G40 («, 5)’s when «, 8 € {0, 1,2}.

Analogously we define, for 0 < 5 < 2:

_ APAPY9, 9,1 if p<0,g<0,
Gc(avﬁ)[p,q] — { + [ 1 2]

0 otherwise.

We have an isomorphism of bicomplexes v : Go(a, 8)pq — éc(a, B)(p,q Which is the valuating

map that values d,, and 9y, in 1 and is the identity on all other elements. We consider on Gelo, B)
the differentials d = A" and d” = A~ induced by AT9,, and A~9,, for Go(a, §). We also define:

ASTINTYO,,, 0p,) i p=q =0,
GB’(Oéaﬁ)[m]:{OJr 0210

otherwise.
We have the following commutative diagram:
Vo
GB'(avﬁ) GC(O‘76)
id v
A_A+Tg
GB/(Oz,ﬁ) Gel(a, B).

We have that Geo(a, 8) := CoKer(A~Atry Gy (o, B) — Ge(a, B)) is isomorphic, as a
bicomplex, to Geo(a, ). Its diagram is the same of Go(a, 3) except for p = ¢ = 0. In the
following diagram we shortly write CoKer(A~A™) for:

CoKer(A™AY : ASTIAPY8,,, 00y — AT (00, Oi,))-

The diagram of the bicomplex G~—'Co(o¢, B) is the following, respectively for « =2, « =1 and a < 0:
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oa=2 a=1 a<0
CoKer(A~AT),  AIN’[0a,,0a,] = CoKer(A~AY), ATA”[0r,,00,] = NLA (02, 02,) = ASA (02, 02,
4 1 1 4 1 1
N N 1 N N 1

/\3-/\2—[8%178&?2]7 /\3—/\2—[617178%2] H/\}s—/\Q—[aamarz]a /\3-/\2—[8&61:812} e/\i/\2_[8$1,812],e/\(j_/\Q_[aml,am],

where the horizontal maps are d’ and the vertical maps are d”.
In the following diagram we shortly write Ker(A™); ; for:

Ker(A™ : /\i_/\j, [0y 5 O] — /\i./\jjl[axuam])a

and we shortly write % for:

Ker(A* : /\(_T_/\g [aﬁﬂl 5 812} — /\i/\€+1[6m1 ) 61'2])
A=A AN, 00,) — NIA [0y, 82,)

The E' spectral sequence of CNJCo (a, B) is the following, respectively fora =2, a=1,a <0, =1
and a =2, =1, a <0, § =0 (the computation is analogous to Lemma |5.36)):

a=2,=1 a=1,8=1 a<0,8=1
% Ker(A*)gJ « % Ker(A*)gyl « Ker(A*)Ll « Ker(A*)ojl
4 L { 4 L {
2 A2 2 A2 1 A2 2 A2 1 A2 0 A2
AZAZ, AAZ e ALAZ, AAZ o« ALAZ o ADAZ
a=28=0 a=1,8=0 a<0,8=0
II111<(eg(*AA_J)f) Ker(A7)20 < IIEFX@A}) Ker(A7)2p « Ker(A7)io « Ker(A7)gpo
{ ) | { ) |
0 0 = 0 0 “ 0 = 0
4 L { 4 L {
2 A2 2 A2 1 A2 2 A2 1 A2 0 A2
AZAZ AAZ e ALAZ, AAZ e ALAZ o AOAZ

We have that only the rows ¢ = 0 and ¢ = 8 — 2 are different from 0. We point out that, since
8 <2

Ker(A™) . A (ATA'[0,,,04,))
Im(AfAJr) o A*AJF(/\iil/\éil[axpam])

The isomorphism holds because § < 2 and we know, by Lemma that

= CoKer(A™ (A AP 00y, 00]) 2 A™(ASA? ™ [0r,, Ora))-

0255 A [0y, 00a] 255 AL (00,00 20 A2 [00y,00,] 2550

is exact except for the right end.
The previous diagram will be the first step in Lemma for the computation of the homology of

the Ggo(a, B)’s when a, g € {0,1,2}.
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The following two technical lemmas will be used in the proof of Lemma[5.40| for the computation
of the homology of the Gx-(«, 3)’s when «, 8 € {0,1,2}.

Lemma 5.38. Let 0 < 3 < 2. Let us consider the complex S(«, ) defined as follows:

S, Ba A ED AN AL [, 2a]) A5 ED AN A8 (21, 29)),

where S(a, B)a = Ker(A (/\a/\ [1,x2]) AT, A‘(/\iﬂ/\ﬁ [1,x2])). The homology spaces of the
complex S(c, B), from left to right, are respectively isomorphic to:

Ho(S(a, B)) 2 AT Hu(S(a, B)) 2 A8 Ho(S(en, B)) 22 AP

Proof. We first focus on 0 < g < 2. In order to make the proof more clear, we show the statement
for § = 1 that is more significant; the proof for § = 2 is analogous. We observe that, due to the
definition of S(a, 1), H;(S(a, 1)) = H;y(S(a+ 1,1)) for 0 < i < «, then it is sufficient to compute
it for large a. We take a > 2. For sake of simplicity, we choose @ = 3. We point out that the
complex S(3,1) reduces to:

0 A5 A~ (A2 AL [21,00]) 5 A~ (ALAL[1, 22)) S5 A (AIAL [, 2)).
In this case the thesis reduces to show that:

H3(S(3,1)) 20, Hy(S(3,1)) =0, Hi(S(3,1)) =0, Hp(S(3,1)) =A%
We use that the complex S(3,1) is isomorphic, via A~ to the complex:

At NAL[z, @] ar ALAL[zy,20) A ALAL [z, 2]
Im(A~) Im(A~) Im(A-)

that is exactly the row for ¢ = 0 in the diagram of the E'' spectral sequence of G a0 (3,1) in Remark
(.37} In particular, since a = 3, this is the row for ¢ = 0 and values of p respectively 0,1,2 and 3
from the left to the right. The fact that the two complexes are isomorphic follows from g =1 > 0
and the fact that by Lemma [5.36| we know that

=\ [1, x2] 2L [x1, 2] 202 [x1, z2] 250

is exact except for the left end.

We have that, since E’?(G 4(3,1)) has two nonzero rows for ¢ = 0 and ¢ = 1 (see the diagram in
Remark [5.37)), the differentials are all zero except for dpgforr=p+1=24¢=0,1<p<3.
Indeed 1 < p < 3 because:

a2y EYy — EY
and we have that E? ,, =0 if p — 2<OandE’20—01fp>3
Since the homologies of G40 (3,1) and G 4s(3,1) are isomorphic, by Lemma we have:

S ER(Gas(3,1) = {0 ifn <3, (5.27)

praen /\i_ if n=3.

From this relation we obtain that dg,m for 1 < p < 3, must be an isomorphism. Indeed, let us first
show that d]%,O? for 1 < p < 3, is surjective. We have:

2o E%(Gao(3,1)) — B2 51 (Gao(3,1)). (5.28)
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We know that E” L(Gas(3,1)) = /\‘j‘fﬁ_pJrl = /\‘j’r_p using an argument similar to Lemma
But, by -, we know that for n = p—1<3:

> ESGae(3,1) =0.

p+g=p—1

Moreover d” = 0 for r > 2 and d2 _91 = 0. Therefore d12,70 must be surjective.
Let us see that d2  is injective. pr < 3, then E]’D‘?g(éAo (3,1)) = 0 since it appears in the sum

> EEGae(3,1) =0,

p+q=p

by (5.27)). Moreover
dyio 1 Bpin 1(Gas(3,1)) = 0 — EZy(Gas(3,1)

is identically 0.
Hence Ker(d2 ) =0.
If p=3, we know by - that

D ER(Gac(3,1) = AL (5.29)
p+g=p
and E;fg(éAo (3,1)) appears in this sum.

Moreover we know that

E§2,1(C~?A°(37 1)) = Eg?f(@Ao (3,1)) = AL,

~

since d” = 0, when r > 2, dj y = d5; = 0 and Eé?l(éAo(?), 1)) = /\i due to a reasoning similar to
Lemma [5.36 N
Since EXY (GAo (3,1)) also appears in the sum (5.29), we conclude that E%(Ga0(3,1)) = 0.
But
dyin 1t Epfyp _1(Gas(3,1)) = 0 — Efp(Gas(3,1)
is identically 0, then Ker(dlz)’o) =0
Therefore we obtain from the isomorphism that E’20(G 40(3,1)) = /\i_p .
Hence:

H3(S(3,1)) =0, Ha(S(3,1)) =0, Hi(S(3,1)) =0, Ho(S(3,1)) =A%

We now prove the statement in the case 5 = 0. Due to the definition of S(«,0), H;(S(a,0)) =
H;(S(a+1,0)) for 0 <i < a, then it is sufficient to compute it for large . For sake of simplicity,
we choose av = 2. We point out that the complex S(2,0) reduces to:

AT (NN [o1, 22]) 5 AT (ALA [1, 2]) S5 A (ALAL [a1, 22]).
In this case the thesis reduces to show that:
H»(S(2,0)) =0, H1(S(2,0)) =AY, Ho(S(2,0)) = AL.

We compute the homology spaces by direct computations.
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i: Let us compute Ho(S(2,0)). We take p(z1,22) € ALAY [21, z9]; an element in A~ (ALAY [z1, 29])
has the following form:

P = w12 ® 0z, p + waz @ Oy, p.
Hence:
AT(P) = wipwi @ 02, p + wiawa1 ® O, OpyP + Woaw11 ® Oy Oy + Waowo @ 02, p

Therefore P lies in the kernel if and only if 92 D= 0z, 0p,p = 822 p =0, that is p = az; + bxa,
for a,b € C. Thus Ho(S(2,0)) = A

ii: Let us compute H1(S(2,0)). We take wy1p(z1, 2) +wo1q(x1,x2) € /\}r/\ [x1, z2]; an element
in Af(/\i/\(i [1, z2]) has the following form:

P = wiwiz ® O3, p + winwze @ Oy,p + warwiz ® O, + wawz @ O,q.
Hence:
AT(P) = wiiwiawz1 ® O, Onyp + wi1waowa @ O2,p + warwiowi ® 95, q + warwawi1 ® Oy, Oryq.
Therefore P lies in the kernel if and only if:
{amamp ~82,4=0,
92,p — 9y, 00,q = 0.
We obtain that:

xlq = famampdxl = axgp + QQ(xQ)a
Ouq = [ 02,pdxy = Opyp + Q1(21),

where Q1 (x1) (resp. Q2(x2)) is a polynomial expression costant in xo (resp. costant in zp).
Therefore, if P lies in the kernel then 0,,¢ = 0,,p+a, with a € C. Let us consider an element
of the kernel, we obtain that:

P =wi1w12 ® Oz, p + w11w22 @ Op,p + worwiz @ (Fpyp + @) + wogwas ® /5§2pd$1

=A+( — WP —wp® /8x2pdx1) + warwiz ® a = A (A‘( — /pdg;l)) + worwis & a.

We point out that wejwis ® a does not lie in the image of the map A~ (/\0 AY [1, :L‘g]) —A—+—>
(/\+/\ [11, x2]), because w1 w12®a = AT (—wi2®@azs) but —wia®@azrs ¢ A~ (/\0 lz1,22]).
Thus H;(5(2,0)) = A%

iii: Let us compute Hy(S(2,0)). We take wiiwo1p(x1, 22) € /\i/\ [1, 22]; an element in A~ (/\i/\(l [z1, z2])
has the following form:

P = wiiwoywiz @ Oy, p + wi1wo1 w2z & Oy, p.
We point out that:
P = AT (—wnwi2 ® /@clpdwz —wpwy ®p) = AT(AT(—wn ® /Pd$2))~
AT

Therefore every element of A~ (A2 A [z, x]) lies in the image of the map A~ (AL A% [z1, 22]) =
A= (NLA 21, 29]). Thus Hy(S(2,0)) 0.
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O
Lemma 5.39. Let 0 < 5 < 2. Let us consider the complex T(c, B) defined as follows:
_ + + _ + +
A~ (NN 0, 0)) o o A AT (N AT 0, 00,]) S (5.30)

(A_Jr COKer(A_(/\i—l/\é—l[azlj8m2]) A_+> A—(/\i/\é—l[axl’azA))'
The homology spaces of the complex T'(«v, 5), from left to right, are respectively isomorphic to:
Hy(T(e, 8)) 2 AL, ) Hy(T(o, B)) 2 ASYP73 Ho(T(a, B)) = AT HOH2,

Proof. We first point out that the statement is obvious for g = 0 since in this case the complex is
trivial and the homology spaces are obviously trivial.

We now focus on f§ = 1. The complex T'(a, 3), due to its construction, has the property that
H;(T(c,8)) = Hi(T(ax — 1, 8)) for o < i < 2; then we can compute the homology for small . Let
us take a < 0.

For sake of simplicity we focus on o = —1. In this case the complex T'(—1,1) reduces to:
+ + +
AT (AN B2y, On]) S AT(ALAL (02, 0y)) S AT(AGAL [0, Ors]) < 0. (5.31)

The thesis reduces to:
HQ(T(_L 1)) = /\3-7 HI(T(_17 1)) = 07 HO(T(_L 1)) = 07 Hfl(T( 1 1)) = 0.

In order to prove the thesis, we use that the complex T'(—1,1) is isomorphic, via A , to the row
for ¢ = 0 in the diagram of the E’! spectral sequence of Gco( 1,1) in Remark [5 that is:

Ker(A™)a1 A0 Ker(A™ )11 A5 Ker(A™ )1 <22 0,

where we shortly write Ker(A™); ; for:
Ker(A™ : ALAY (02, 0] — N AT 00y, 02, ))-

We point out that in this case, the spaces Ker(A™ )z 1, Ker(A7);; and Ker(A™)p; correspond
respectively to the valus of p = —3, -2, —1 and ¢ = 0 in the diagram of the E’' spectral sequence
of Geo(—1,1) (see Remark [5.37)).

The fact that the two complexes are isomorphic follows from 5 = 1 < 2 and the fact that by Lemma
[£.36] we know that

025 A% [0y, 0] 2 AL [02y, Dus] 2 A2 [Dy, Dy] = 0

is exact except for the right end.
In this case the complex E'' of Go(—1,1) has two nonzero rows, for ¢ =0 and ¢ = 8 —2 = —1,
and the differentials d}, , are all zero except for r =2, ¢ = —1 and —2 < p < 0. Indeed:

2 . /2
dy 1 By — Bl 50,

whereEzl—Olfp>Oand 20—01fp—2< —3.
We know by Lemma-that

S B (Gee(—1,1)) = {0 ifn>=3 (5.32)

pramn /\_1Ir if n=-3.
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From this we obtain that dj, , for r =2, ¢ = —1 and —2 < p < 0 must be an isomorphism. Indeed,
let us first show that d2 for qg=—1and —2 < p <0 is injective. We have that:

A2y E? (Geo(—1,1)) — E? 5 o(Geo(—1,1)). (5.33)

We obtain that E2 | (Gee(—1,1)) = /\er*1 using an argument similar to Lemma M
We know, by (5.32), that forn=p—1> —3:

S E(Gee(—1,1)) = 0.
p+g=p—1
Hence E/®,(Gco(—1,1)) = 0.
Moreover d" = 0 for » > 2 and dg +2,—2 = 0 since its domain is 0. Therefore d2 _; must be injective.
Let us see that dﬁ,_l is surjective.

If p—2 > -3, then E;ff?’o(éco(—l, 1)) appears in the sum
Z ﬁq(GCO( )) =0,

by (6-32).

Therefore Ep o O(GCO( 1,1)) = 0.
But we know that

dp 2,0 " E 20(G0°( 1,1))—>E 41(GC°( 1,1)) =0

is identically 0 because the codomain is 0. Hence dg,q must be surjective.
If p— 2= -3, then EI,,O_OZ’O(CNJCO(—L 1)) appears in the sum

Y Eps(Geo(=1,1) = AL, (5.34)

pHg=a—2
) ) ) 1
We know that E'2 Zy 1(Goe(=1,1)) = E%S (Geo(—1,1)) = AL, since d” = 0, when r > 2, d(2)7—2 =
d_27_1 = 0 and E—2,—1(éc°( 1)) & /\ due to an argument similar to Lemma M Since

Elfi,l(éco(—l, 1)) also appears in the sum (5.34)), we conclude that Epof’Q’O(Gco(— ,1)) =0.
We point out that

dp 201 Ly 2 20(600(—17 1) — E1/72—4,1(éC°(—17 1))=0

is identically 0 because the codomain is 0. Therefore d;_l must be surjective.
Hence, since d;_l is an isomorphism, we obtain that

E2,0(Geo(=1,1)) = AL

Then E%)(Geo(—1,1)) 2 A2
Therefore we obtain:

Hy(T(=1,1)) = AL, Hy(T(=1,1)) 20, Hy(T(~1,1)) 20, H1(T(~1,1)) =0.
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We finally prove the statement in the case § = 2. Due to the definition of T'(«, 2), H;(T(a,2)) =
Hi(T(a—1,2)) for « < i <2, then it is sufficient to compute it for small a. For sake of simplicity,
we choose aw = 0. We point out that the complex 7T'(0,2) reduces to:

AT(NZAL ey, Ora]) S AT (NYAL D2, Bra]) S A(AAL 02, D2
In this case the thesis reduces to show that:
Hy(T(0,2)) = AL, Hi(T(0,2)) =A%,  Ho(T(0,2)) = 0.
We compute the homology spaces by direct computations.

i: Let us compute Hy(T'(0,2)). We take wis ® p(9s,, Ouy) + w2 @ q(Os,, Ony) € /\&/\l_[axl,am];
an element in A~ (A% AL[,,,d,,]) has the following form:

P = w1awaz & Ogyp + woaw12 & Oz, q.
Hence:
AT(P) = wiawawiy ® Oy, Opyp + wi2Wazwa1 ® 02, + waowizwi1 ® 02, q + Waaw12w21 @ Oy, Oryq.

Therefore P lies in the kernel if and only if:

paxlarg - qagl = 0’
pa£2 - qamam =0.

The previous equations are equivalent to p0d,, — g0z, = 0. Hence P lies in the kernel if and
only if P =0. Thus Hy(7'(0,2)) = 0.

ii: Let us compute H; (T(O, 2)) We take wii1wis @ p1+ wi1weg @ po +woiwiz ® q1 + woiwee X qa €
/\}r/\l_[&cl,@m]; an element in A‘(/\i/\l_[ﬁxl,am]) has the following form:

P = wijwiaweg @ Op,p1 + wi1woowiz @ Oy, P2 + Wa1wi2w22 @ Oz, q1 + Wi w2wi2 @ Oy, G2.
Hence:

2
AT (P) =wiiwi2wnw @ 05,p1 + wiwaaw12w21 @ Oz, Oz, P2 + worw12w22w11 @ Oz Oy 1
2
+ warwaewipwi1 ® Iy, go.

Therefore P lies in the kernel if and only if:

622]71 - 83518932102 - 89:18@(]1 + 831q2 =0. (535)

T

We notice that if p; # 0, then (5.35) reduces to:

aasl 8x2p2 + 83316:1:2(]1 - 821 q2
)

Hence if P lies in the kernel and p; # 0 then:

O _
P = A" (wiawa2 @ (¢1 —%71)) =AT(A (w12®£+w2z®2).
Orry Ouy Oy
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Thus if P lies in the kernel and p; # 0, then P = 0 in homology.
If P lies in the kernel, p; = 0 and p2 # 0, then (5.35) reduces to:

. —890181:2% + 83%1(]2 + a;m(h

p2 = =@t
Oz, Oz, Oz,

Therefore if P lies in the kernel, p; = 0 and ps # 0 then:

02,02
P = wiiwawiz2 ® O0gy (—q1 + ;1 ) + warwipwag ® O, q1 + W21w2w12 @ Oy G2
T2
_ At o1 @2\ _ A+ +(A— 92
= AT ( — waowri2 ® g1 + wawis 3 ) =AY (—wpwia®q) + AT (A (w228f))-
T2 X2

Hence in homology P = A" (—waow12®q1). If ¢1 has at least degree 1in 9, 0,, then P = 0 in

homology: indeed, for example, if ¢; has at least degree 1 in 9,, then P = AT (—woow12®q1) =

ATA~ (w12 ® aq—l). Otherwise, if P lies in the kernel, p1 =0, p2 # 0 and ¢1 = a € C, then in
e

homology P = AT (—wawiz ® a) # 0 since —waowis ® a ¢ A‘(/\E)r/\l,[f)xl, Oy ])-
If P lies in the kernel, p; = 0 and ps = 0, then (5.35) reduces to:

a$1 8902(]1 - 8‘51 q2,

and therefore P = wajwiawaz @ Oz, q1 + w21w2wi2 @ Oy, q2 = 0.
Therefore Hy(T(0,2)) = A"

iii: Let us compute Hy(7'(0,2)). We take wijweiwis ® p(Opy, Ouy) + witworway @ q(0z,, 0,) €
N2ZAL[8s,,05,); an element in A (A2AL[8,,,s,]) has the following form:

P := wiwa1wipwar @ Opyp + wi1w21woowi2 @ Og, q.
We point out that
P = AT (w11wi2weg ® p — wawaawiz ® q),

but wiiwipwae ® p — worwawiz ® q € A‘(/\i/\i[@xl, Oy,]) if and only if both p and ¢ have
at least degree 1 in 0,,,0,. Indeed, for example, if p has at least degree 1 in 0,, and ¢ has
at least degree 1 in O,,:

_ p q
Wi wiawee ® p — warwewiz ® ¢ = A (w11w12 ® 75— —warw @ 7)
Oz, Oz,

Therefore P does not lie in AJFA_(/\}F/\l,[(%;1 ,0z,]) if and only if P = w11 wawiaweg @ ady, +
w1wWowwi2 ® bdy, for a,b € C. Thus Ho(T(0,2)) = AL

O]

Now using Remark and Lemmas we are able to compute the homology of the
Gxo(a, B)’s when a, 8 € {0,1,2}.

Lemma 5.40. If 0 < a < § < 2 then, as (x10y, — 204,, ©10s,, 205, ) —modules:
/\a—l-ﬁ—n ifm=0, n>8,
H™™(Gpo(0, 8)) Z QAP ifm=1, 0<n<a,

0 otherwise;
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1%

at+pB—n . .
H"™™(Gpe(a, B)) {A sm=0 =0

0 otherwise;

1%

a+pB—n—2 . -
H™ (G (v, 5) {A sm=0 =0

0 otherwise;

If 0 < B < a <2 then, as (x10y, — £905,, 104,, T205, )—modules:

/\Oth*’an Zf m — 0’ n S /B . 2’
m,n ~ —14+a+B—n—2 . o
H™™"(Geo (o, B)) = QA ifm=-1, a—2<n<0,
0 otherwise.

Analogously if 0 < 8 < a < 2 then, as (x10y, — 203y, T10x,, T20z, )—modules:

Ao+ ifm=0, n>q,
H™ (G (e B)) 2 AP i =1, 0<n< B,
0 otherwise,
a+pB—n .
=0 <0
B (Gpe(o, ) 2 { gym =0 n<0
0 otherwise;

a+fB—n—2 . o
H™ (G e (0, ) {/\ if m=0, n>0,

0 otherwise;

If 0 < a < B <2 then, as (x10y, — 905y, 10x,, T20y, )—modules:

NoHBn=2 ifm=0, n<a-—2,
m,n ~ —1+a+p—n—2 . o
H™™(Geo(a, B)) = 4 A if m=—-1, B—-2<n<0,
0 otherwise.

Proof. We prove the statement in the case 0 < a < < 2for X = A B,Dand 0 < < a <2
for X = C using the theory of spectral sequences for bicomplexes; the case 0 < f < a < 2 for
X=AB,Dand 0 <a<p <2for X =C can be proved analogously using the second spectral
sequence instead of the first.

Case A) Let us first consider G40 (0,0) = Ker(Va : ALAY [21, 22]y0y3 — ALAL[21, 22]). We
have that G 40(0,0) = C + (z1, z2), since an element p(z1,z2) € /\3_/\(1 [z1, 22]y%99 goes to 0 if and
only if 0;,0,,p = 03, 0z,p = 02,0z,p = 0. In this case the statement is true indeed, since we are
focusing on v = 8 = 0, then p = g = 0. Therefore G'32"(0,0) = 0 when n # 0, G52(0,0) = (x1, z2),
GY%2(0,0) = C and, from

Y G3H0,0) =0 G2(0,0) = (31, 29) — 0,
we have that H"?(G 40(0,0)) = A'. From the sequence
¥, 6%10,0) =0 G%2(0,0) = C — 0,
we deduce that H%0(G 40(0,0)) = A°. Then we can assume 3 > 0. As in Remark we consider:

NPT Uy, @) i p> 0,9 >0,

0 otherwise.

Gala, B)pg = {



5.3 Computation of the homology 111

We consider on this space the differentials ’ = AT and d” = A~ induced by AT9,, and A9,
for G4(a, B). As in Remark |5.37, the E'! spectral sequence of G 4(c, 3), i.e. the homology with
respect to A™, is the following;:

AL e e N

1 N

0 0

1 s
Ke(@A-at) AN o)
Im(A™) T Im(AT)

We have that only the rows for ¢ = 0 and ¢ = 8 are different from 0. We observe that d’ is 0 on
the row ¢ = 3. Moreover d;, , is 0 for r > 2 because either the domain or the codomain of these
maps are 0, since o < 3. Therefore E? = ... = E'®.

We need to compute E? for ¢ = 0. We apply Lemma to compute the homology for the
row ¢ = 0. We point out that the isomorphism in of Lemma was induced by V, that
decreases the degree in x1,x9 by 1. Therefore Ez’fo(ém(a, B)) = /\fr_erl
with representatives of degree 1 in x1, zs.

Hence we have that if n > 8 > a:

is formed by elements

3 ER(Gac(a,8) = B4 5(Gac(a, B) = B2 5 5(Gas(a, B)) = AT

ptq=n

Indeed in this sum there is not the possibility (p,q) = (p,0) with p < a < f. We have that
HO™ (G o (o B)) = AP i > B> a
fo<n<a<g:

Z GAo (o, B)) = ;38(@,40(04,6)) E’QO(GAo( ,B)) = /\a+ﬁ " (in @1, 2o degree 1).
+q=n
o (5.36)

We have the H'™(G 40 (ar, 8)) 2 /\frﬂ_nﬂ, if0<n<a.
If n = a = B we have both terms in the sum, but one is represented by elements of degree 1 in
x1, 2, the others by elements of degree 0, then the result is unchanged.

Case D) We define:

~ ASTPAP Uy o) i p<0,¢ <0,
Gp(a, B)pqg = {0+ [ |

otherwise.

We have an isomorphism of bicomplexes v : Gp(a, 8)p,q — G p(a@, B)[p,q Which is the valuating

map that values 9y, and 0,, in 1 and is the identity on all other elements. We consider on € p(a, B)
the differentials d = A" and d” = A~ induced by AT9,, and A~9,, for Gp(a, ). We also define:

AN gy if p=qg=0,
Gy (0B = {0* e

otherwise.

We have the following commutative diagram:
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Va
GA'(auﬁ) GD(CY,B)
id Y
AfAJrTl B
Gy (o, B) Gpl(a, )

We have that Gpe(a, 8) := CoKer(A~Atr Gy (a,B) — Gp(a, B)) is isomorphic, as a bicom-
plex, to Gpo. Its diagram is the same of Gp except for p = ¢ = 0 (upper right point in the
following diagram), where instead of ASA” [z1, 2] there is CoKer(A~A* : AY AP ay, 2y] —
/\i/\[j[$1,$2]).

Moreover we observe that G 4 (0,0) = 0, then Gpo(0,0) = Gp(0,0) and we can use the same
argument of Lemma We then assume (3 > 0, the diagram of Gp(«, ) is:

NN [y o) = oo e AN [, o)
4 1
N 1
/\3_/\2_ [1‘1, .1‘2] oo e /\3_/\2_ [371, .%‘2],

where the horizontal maps are d’ and the vertical maps are d”. In the following diagram we shortly

write % for the space:

Ker(A™ : /\i/\é [11, 2] — /\i/\€+1[$1,$2])
Im(A-AT: /\i_l/\ffl[:m,@] — /\i/\g[l‘lal‘ﬂ)‘

In the following diagram we also shortly write Ker(A™); ; for:
Ker(A™ : Ny [21, 0] — NN 2y, 20)).
The E" spectral sequence of G po(a, B) is (the computation is analogous to Lemma [5.36]):

Ker(A‘)Qﬁ — e Ker(A7)

m(A-AF)
1 4
0 0
1 4
0 — 0« 0

We observe that, since 5 > 0:

Ker(A™) A_(/\i/\éil[xbl“ﬂ)

~ ~ —ha—1,8-1 AT aaB-1
Im(A*A+) - AiA‘F(/\iil/\éil[l'l,ﬂfg]) —COK@I‘(A (/\Jr NZ [.’131,.%‘2]) — A ( +/\— [ZEl,.’L‘Q])).

The non zero row of the previous diagram is isomorphic, via A~, to the following complex:

AN A, wa]) E5 AT (CoKer(A (AN o, 7)) 25 AT (AN a1, ).

(5.37)
The fact that the two complexes are isomorphic follows from 5 > 0 and the fact that by Lemma
we know that

0 —A—:) /\9 [x1, 2] —A—; /\1_ (21, x2] —A:—) /\2— (71, z2] ‘A‘; 0
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is exact except for the left end.
We observe that we can compute the homology of the complex ([5.37)) using homology of S(2,5—1)
and Lemmal5.38 Indeed this complex is different from S(2, 3—1) only at the right end (using the di-

_ _ +
rection of the previous). Indeed the left end is A~ (/\i/\é Yy, m9]) & Ker(A‘(/\i/\é a1, 29)) SN

Af(/\i/\/j_l[xl,wg] = 0)) that is the left hand of S(2,5 — 1).
The homology at the right end of our complex ([5.37)) is:

Ker (A+ (

A~(AGNT [z, 20)) )) N Ker(A+ (A~ (ASA? a1, 29)))) ~ F[,(S(2,8 — 1)).
1) |

A=A+ AN oy, @ AZAHNTINT o, )

Therefore we can use the homology groups of S(2,5 — 1) and obtain that the homology spaces for
complex (5.37)) are isomorphic, respectively from left to right, to:

248 a+p
AP NS
We conclude because E;%O(é[)o(a, B)) = E;lof)(é'po (o, B)) = /\i_nJrﬂ and:

S EpS(Goe(0,8)) = B (Goe(a, ) = AT,

p+q=n

Case C) Let us first consider G¢o(2,2) = CoKer(Vy : /\L/\i[axl,am] — /\i/\% (02, Ox,])-
We have that Ge(0,0) = C + (3y,,ds,), since an element p(dy,,dzy) € ALAL[Ds,,8y,] goes to
an element with degree increased by 2 in 0,,,0;,. In this case the statement is true. Indeed,
since we are focusing on o = 8 = 2, therefore p = ¢ = 0. Hence G{3"(2,2) = 0 when n # 0,
GE%’O(O, 0) = (02, 0zs), G%g(2, 2) = C. From the sequence

Ya%2,2) =0 % G510(2,2) = (01, 01,) = O,

we have that H~19(G¢4(0,0)) = A'. From the sequence

Yoahl2,2) =05 G%(2,2) =C — 0,

we have that H0(G¢o(2,2)) =2 A%. Hence we focus on § < 2.
As in Remark [5.37, we consider:

G , =
c(a, B) [p,q] 0 otherwise.

~ {/\il’/\ﬁq[am,am] if p<0,q<0,
We consider on this space the differentials d = A* and d” = A~ induced by AT9,, and A~d,,
for Go(a, B). N
As in Remark the E"! spectral sequence of G (a, 3) is:

_ Ker(A™
Ker(A7)g3 « -+ < ﬁ
I3 d
0 0
I3 d

NN = e NN
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We have that only the rows ¢ = 0 and ¢ = § — 2 are different from 0. We observe that d’ is 0
on the row ¢ = 8 — 2. Moreover dy, , is 0 for r > 2 because either the domain or the codomain of
these maps are 0, since 2 — a < 2 — 3. Therefore E"? = ... = E'*.

We need to compute E? for g = 0.

We can apply Lemma (.39 to compute the homology for the row ¢ = 0. We observe that the
isomorphism in of Lemma is induced by V that increases the degree in 0,,,0,, by 1.
Thus the elements of E O(Gco( 6)) are represented by elements with degree 1 in 0,,, 0y,.
Therefore we have that 1f 0<pf<a<2anda—-2<n<0:

ZHm"GCO = Y Ex(Gee(a,8) =E5(Gee(, 8)) =
p+g=n

/\_—’_1+a+/3—”_2 (degree 1 in 8z178502)'

Then H™5"(Geo (o, B)) = /\_1+O‘+”B_"_2. We then have that if 0 < f<a<2andn < —2:

Y H™M(Gos(a,8)) = Y Eyy(Gee(a, 8)) = E5.05-5(Gee(a, 8) = AT,

m pHqg=n
Hence HO™(Geo (o, B)) 2 /\ﬁyfﬁ*nﬁ. Finally if 0 < f <a <2and n = —2 = a — 2, both the
terms appear in the sum, but the degree with respect to 0,,, 0z, is in one case 1 and in the other
0, then we have the same result.

Case B) We define:

~ ASPAP=g, 0, if p>0,q >0,
G, B)pg = {0+ [ ]

otherwise.

We have an isomorphism of bicomplexes v : Gp(a, 8)p,q — G B(a, B)[p,q Which is the valuating

map that values y; and ys in 1 and is the identity on all other elements. We consider on G sla, B)
the differentials d = A" and d” = A~ induced by A*9,, and A~9,, for Gg(a, ). We also define:

/\a+1/\€+1 a:cl,axz if b=q= 07
G (o, B)pg = {0+ [ ]

otherwise.
We have the following commutative diagram:
Va
GB(O%B) GC’(O[7B)
| | i
AfAJrTQ
Gp(a, B) Ger(a,B)

If we consider Gv(a,2) = 0, then Gpo(,2) = Gp(a,2) and we can use the same argument we
used in Lemma [5.36] then we focus on § < 2.

We have that Gpeo(«, 8) = Ker(A~A%ry : Gp(a, 8) — G (e, B)) is isomorphic, as a bicomplex,
to Gpo(a, ), its diagram is the same of éB(a,ﬁ) except for p = ¢ = 0 (lower left point in the
following diagram). In the following diagram we shortly write Ker(A~A™) for:

Ker(A~AT : AYA? [0, 0] — ASTIAPTD,,, 000)).
The diagram of éBo(a,ﬁ) is:
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ANIAL (B, Bny] = -+ = ALAY [0ry, O]
d I3

1 1
Ker(A_A+) AR /\3/\? [6z178$2]7

where the horizontal maps are d’ and the vertical maps are d”. The E'! spectral sequence of

éBO (Oé, B) is:

0 « 0 « 0
N A2
0 0
'
Ker(A~A") _ NN )
Im(A~) 4Im(A )

Since 8 < 2 and, by Lemma the following complex is exact except for the right end:

025 A2 [Bry, D] 255 AL [001, Brs] 2 A [0y, D] 2 0

then we observe that:

N N 10,,,00,] NEAP (8, 0sy)
Im(A™) Ker(A~: AEA2[0,,, 00, — AEAPTY0,,,0,,))

= A_ (/\ﬁ_/\é [8x1 9 ail?2])

Moreover, since 3 < 2:

Ker(A~AY - AXA2[0,,, 80y — AN D, , 00,))
Im(A= : ASA Y0, 0ny] — NN 04y, 00,))

Ker(A~A* : AYA2[0,,, 80y — AN D, , 00,))
Ker(A~ : AYA° [0y, 00y) — NEATT8,,, 02y))

Ker(A* : A(AYA [0, 02,]) — A~ (ATTIAZ [0y, 0,])).

12

12

The non zero row of the E'! spectral sequence of Gpo (c, B) is therefore isomorphic to:

Ker(A* : A (AN (04, 00]) — A (AT A [0y, 00,]) S . A5 A~ (ALA? [0y, 01y

We observe that we can compute its homology using the homology of 7'(0,5 + 1). Indeed this
complex is different from 7'(0,5 + 1) only at the right end (using the direction of the previous
complex). Indeed the homology of the left end is the same as in T'(0, 3+ 1), since we are considering
only the Kernel. The right end of our complex corresponds in 7'(0, 3 + 1) to

CoKer (A~ (AT A [0a, 9as]) = 0 25 A~ (AL A (021, 00,])) 2 A~ (A NS [0ay, Bu,]).
Since E;Z%O(éBo(a, B)) = E,;Oﬁ(égo (ar, B)), if n > 0, we have:

3 B (Gpe(anB) = E5(Crela, ) 2 NGH72,

pt+q=n
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We now sum up the information of Lemmas [5.36] and [5.40] in the following result about the
homology of the Gxo’s.
Following [KRI], we introduce the notation P(n,t,c) that denotes the irreducible
(Y10y; — Y20y, , Y10y, , Y20y, ) ® Ct ® CC—module of highest weight (n,t,c) with respect to y10y, —
Y20y,,t,C when n € Z>¢ and P(n,t,c¢) =0 when n < 0.
Moreover we call Q(i,n,t,c) the irreducible go—module of highest weight (i, n,t, c) with respect to
210y, — 2055, Y10y, — Y20y,,t,C when i,n € Z>o and Q(i,n,t,c) =0 when n < 0 or i < 0.
Moreover, for i € {0,1,2}, we will denote by r; the remainder ¢ mod 2, that is r; = 0 for ¢ = 0,2
and r; = 1 for ¢ = 1.
Using Lemmas and the fact that Gxo = ®, 3G x0 (e, 3), we obtain the following result.

Proposition 5.41. As go—modules:

Z?:OQ(ri,n—i,—i—%n,—%n) if m=0, n>0,
H™(Gpo) 27 0 Qrivi—n—1,—i—n+ 1 -dnt+ 1) if m=1 0<n<1,
0 otherwise.
H™™(Gpe) S22 Q(ri,—n+i,—i—in+1,-In+1)  if m=0, n<0,
0 otherwise.
H™"(Gpo) & Z?ZOQ(ri,n+2 —i,—i—3n—1,—In—1) if m=0, n>0,
0 otherwise.
Z?ZOQ(M,—R—2+Z',—2'—%n,—%n) if m=0, n<O0,
H™"(Gee) = (XL Qrin+2—i—1,—i—gn—g,—m—3) if m=-1, -1<n<0,
0 otherwise.

Proof. This result follows directly from Lemmas and the decomposition G xo = @4 gGxo (v, ).

Let us see it explicitly for X = A. The proof is analogous for X = B, C, D.
From the decomposition G g0 = @4 G a0 (a, 3) we obtain that:

H™™(Ga0) = H™(Gao(r, B)). (5.38)
o3

We first point out that, from the definition of the G s (a, 3)’s, the element y10y, — y20,, acts on
elements of H™"(G 40 («, 8)) as multiplication by a — .

By Lemmas and we obtain that the RHS of (5.38) is 0 for m > 1.
For m = 0, Equation (5.38)) reduces to:

HO™(Gp0) =H""(G 40(0,n)) + HO™ (G 4o (1, — 1)) + ... + H*"(G 4o (n — 1,1)) + H*"(G 40 (n, 0))
(5.39)

+ HO™(G 4o (1,n)) + HO"(G g0 (2,0 — 1)) + ...HO (G40 (n — 1,2)) + HO"(G 40 (n, 1))

+ HO (G 40(2,n)) + H*"(G 40 (3,1 — 1))... + HO"(G a0 (n — 1,3)) + H*"(G 4 (n,2)).

We point out that the RHS of (5.39) is the sum of three irreducible go—modules that we call My,
My and Ms, that are defined as follows. As vector spaces:

11
Mo := H""(G 4= (0,n)) + H*" (G40 (1,n — 1)) + ... + HO"(G40(n,0)) = \° ® P(n, —5m —§n>.

Indeed by Lemmas and
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HO™(G 40 (n,0)) = A’ @ yf
ly28y1
HO"(Gao(n—1,1)) = A @y Ly,

HO™(Gao(1,n— 1)) = A" @ yryp
ly2ay1
HO™(G 40(0,n)) = N’ @ 3.

Therefore, as a go—module, My =2 Q(O, n, —%n, —%n) Moreover as vector spaces:

1 1
My := HO™(G o (1,n)) + H*" (G0 (2,n — 1)) + ... + HO™"(G a0 (n, 1)) = A' @ P(n, —5n —§n>.
Indeed by Lemmas and

HO™(Gao(n,1)) 2 AL @y
ly2ay1
HO™ (G ao(n —1,2)) 2 AL @y ys

HO™(Ga0(3,n — 2)) = AL @ yfyp
ly25@1
HO™(Gae(2,m — 1)) 2 AL @ yRys >
l925b1
HO™(G o (1,n)) 2 AL @ gyt

Indeed let us observe that, by Lem]rnam7 HO™(G a0 (n,1)) 2 AL @y = (w12 @y}, wan @ y7). We
have:

(Y10y;, — ¥20y,) (w12 ® yT') = (n — w12 @ Y7,

Y20y, (w12 ® yT') = wia @y}~ 'ya € H*"(Gae(n — 1,2)),

n+1
1Yy

e ) —0 in H""(Gae(n+1,0)).

1102 (w12 ® 97) = wnr @7 = V (
Analogously:

(Y10y, — Y20y,) (w22 @ YT') = (n — 1)waa @ YT,

Y20y, (w22 @ Y1) = waa @ ny} 'ya € H*(Gao(n — 1,2)),

n+1
T2y,

n—+1

Y10y, (w22 @ YY) = wa1 @ yi' = V( ) =0 in H"(Gae(n+1,0)).

Moreover let us show explicitly that
0,
HO™(G a0 (3,1 — 2)) =5 HO™(Gao(2,n — 1)).

Indeed, by Lemmas and HO(Gao(3,n — 2)) = AL @ yys = and HO™(G a0 (2,n — 1)) =
/\i ® y1y§_1. We have that:

Y20y, (w12 ® y:fyghg) = w12 ® Sy%yS’Q.
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-1
But w2 @ y3ys % = —wiy ® & in H%"(G 40 (2,n — 1)) since:
1 n—1
X1 o 2 1
V<&) =w11®&+w12®y1y3 2,
n—1 n—1

3

Analogously for was ® y3ys > we have that:

n—1

6y1y,
n—1

n—3

Y20y, (w2 ® yiys %) = wao @ yiyh = —wy ® in  H"™"(Ga-(2,n — 1)).

Finally by Lemmas and [5.40, H%"(G 40(1,n)) = + ® yy = A @ y1y£‘_1. Therefore:

n+1
Y20y, (w12 @ y1ys ') = w1z ® Y5 = V( 1yj 1 ) =0 in H*(Ga(0,n+1)),
n+1

ygﬁyl.(wm [ ylyg_l) = W2 & yg” = V(%) =0 in Ho’n(GAo(O,n =+ 1))

Hence, as a gop—module, M; = Q(l,n —-1,—-1— %n, —%n) Finally as vector spaces:

1 1
My = HO™(Gpe (2,)) + HO™ (G o (3,1 = 1) + oot HY(Goae (n,2)) = A2 @ P, - —§n>.

Indeed by Lemmas [5.36] and [5.40}

HO"(G 0 (n,2)) = Ny @ yf
lyZayl
HO"(Gpo(n —1,3)) 2 Ay @y Ly

HO™(Gao(3,n—1)) 2N\, @ yiys ™
ly26y1
HO™(G a0 (2,n)) 2 N @ y2yy 2

Indeed let us observe that, by Lemma and HO™(G a0 (n,2)) = N2 @y} = (wizwag @ 7).
We have:

(Y10, — Y20y,)-(wi2wa2 ® YY) = (n — 2)wipwa @ Y7,
Y20y, -(W12wae @ Y}') = wigwae @ ny! tys € HO™(G as(n — 1, 3)),
Y10y, -(W12wa2 @ Y1) = wiiwa @ Y1 + w12w21 @ yy
n+1

— 1y Y1 )_ : 0,n o
_v( 2® 2 +w12®xgn+1 =0 in H""(Gao(n+1,1)).

Moreover let us show explicitly that

y2 Y1

HO™(G g0 (3,n — 1)) —

Indeed, by Lemmas and HO™(Gao(3,n — 1)) = A2 @ ydyn=2 and HO"(Ga0(2,n)) =
A2 @ y5. We have that:

—5 HO"(Gae(2,n)).

Y20y, -(wi2wa2 ® Yiyh ™) = wizwan @ 3yTys .



5.3 Computation of the homology 119

But wiawos ® y%ygfz = —wyrwi ® % in HO"(G 40(2,n)) since:
2, n—1 n n
T2 2x11 _ 2
V(wm ® 29 + w1 ® SN ) = wipw2 & y%yg 2 4wy wyy ® Yz .
n—1 n(n —1) n(n —1)

Finally y20y, acts trivially on H%"(G 40(2,n)):

=0 in H"(Gao(1,n)).

2 n—2\ __ n—1 _ 2x2y1y§
Y20y, -(Wi2wa2 @ Y1y ~) = wipwar @ 2y1y5 = V(wiz ® Y

Therefore, as a go—module, My = Q(O,n —2,-2— %m —%n)

Now let us focus on m = 1. We notice that, by Lemma HY"(G a0 (a, B)) # 0 only for 0 < o <
B<2and0<n<aor0<p<a<2and0<n<p;in these cases H'"(G 40 (v, B)) = NOHAnFL
Therefore we have that HY"(G 40 (r, 8)) = 0 if n > 2. Indeed for n = 2 we obtain a = 3 = 2 and
NHPHL > A3 — (0 The case n > 2 is ruled out by conditions 0 < a < g <2and 0 <n < aor
0<pB<a<2and 0<n<p. Hence we focusonn =0 and n = 1.

Let n = 0. We have that Equation reduces to:

HY(Gy0) = HYO(G40(0,0)) + HYO(G 40(1,0)) + HYO(G 40(0,1)). (5.40)

We point out that the RHS of (5.40)) is the sum of two irreducible go—modules M; and M, that
are defined as follows. We define:

My == H"(G 4+(0,0)).
By relation (5.36|) in the proof of Lemma as a go—module:

11
H' (G0 (0,0)) 2 Q(1,0.-3. 5)
2°2
Moreover:
My == H"(G 45 (1,0)) + H"°(G 40(0,1)).
By relation (5.36) in the proof of Lemma as a gg—module:

HY0(Gas(1,0)) + HY0(G4(0,1)) = Q(o, 1, —g, %)
Finally, let n = 1. We have that:
HY (G po) = HYH(Ga0(1,1)). (5.41)
By relation in the proof of Lemma as a gop—module:

HY(Ga0(1,1)) = Q(0,0,—-2,0).

5.3.2 Homology of complexes My

We are now able to compute the homology of the complexes Mx’s.
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Proposition 5.42.

H™™(My) =0 for all (m,n) # (0,0),(1,1),
H™™(Mp)=0 for all (m,n),

H™™(M¢c)=0 for all (m,n) # (0,0),(—1,-1),
H™"(Mp) =0 for all (m,n).

Proof. By Remarks [5.34] [5.35 and Proposition [5.41] we know that:

H™™(Gp)=H"™"(Gao)=0 ifm>1or (m=1andn >2),
H™"(Gp)=H™"(Gpe)=0 ifm>0andn <0,
H™"(Gp)=H"™"(Gpo)=0 ifm<0andn >0,
H™"(Ge)=H"™"(Geo) =0 ifm<—1lor (m=-1andn < -2).

H™"(Ma)=0 ifm>1lor(m=1andn>2),
H™™(Mp)=0 ifm>0andn <0,

H™™"(Mp)=0 ifm<0andn >0,

H™"(Mc)=0 ifm<—-1lor(m=-1andn<-2).

Let us analyze the modules H™" (G xo) for m = 0. We have, by Proposition that HO"(G 40) =
H%"=2(Gpo) as go—modules for n > 2, indeed:

1 1
H" (Gae) 2 ) Q(ri,n—i, —i— 5n,—gn),
_ .. 1
HOm 2(GBo)g E Q(ri,n—z,—z—fn,—in).

By Remark we know that
07
GO
T+l 0y’
Im(V: G0 — GYY)
HY"2(Gpgo) = Ker(V : G%?_Z — G;’n_‘g) for n > 3,
H"(Gpo) =G%  for n=2.

HO,n (GAO ) —

We want to show that the map induced by 62 between H%"(G a0) and H*"2(Gpo), for n > 2, is
an isomorphism. B

Indeed the kernel of the map induced by Vs between H%"(G 40) and H*"2(Gpo), for n > 2, is
actually isomorphic to

Ker(%Q : G%L — G%’?ﬂ) _ Ker(€2 . G?q,n . G%’”ﬂ)
Im(V : G}L{?H — G%’?) Im(V : G114,n+1 ~ G?L{n)

= Ho’n(GA).

Moreover the image of the map induced by Vs between H®"(G 40) and H*""2(Gpo), for n > 2, is

Im(€2 . G%? — G%ZﬁQ) = Im(%2 : G%n — G%n72)
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Therefore if we show that Vs induces an isomorphism between H%"(G40) and HO"2(Gp.) for
n > 2, we can conclude that as gg— modules:
Ker(Vs : G%f — G%f_z)
T+l 0,
Im(V : GAZ)H — G47)
Im(Vy : G%’? — G%?72) =~ Ker(V : G%’ZL*Z — G;i’nfg’) = Ker(V : G%n*2 — G;l’nf?’) for n > 3;

Im (V5 : G?L{? — G%gﬁ) = G%’g = Ker(Vay : G%O — G’82’0) for n = 2.

I

0;

This means that if we show that the map induced by Vs between H*™(G 40) and H*"~2(G o), for
n > 2, is an isomorphism, then we obtain H*"(G4) = 0 and H*""2(Gp) = 0 for n > 2. Hence by
Proposition we obtain that H%"(M,4) = 0 and H*"~2(Mp) = 0 for n > 2.

Thus, let us show that the induced map is an isomorphism. It is sufficient to show that the images
of highest weight vectors in H*"(G 40) are different from 0. By Proposition we know that the
highest weight vectors in HO’”(GAo) are yi, w12 ® Y7, wigwa Q@ yi'. We have:

Va(y}) = wiwa @ n(n — 1)yi=2,

Va(wia @ y}) = wigwiiway @ n(n — yp—2,

%2(1012?1)22 ® Y1) = wigwwiiwa Q@ n(n — 1)9711_2-

By Proposition we have that H%!(G o) =2 H~19(Geo) as go—modules, indeed:

HOY (G yo) = Q(o, -1 1) + Q(LO, - —1)’

2° 2 2
1 1 3 1

H9(Gpo) & ( 1,—= _7) (1 _2 _f).
(GC) Q 07 ) 2a 9 +Q 7O> 23 9

With an analogous argument, in order to obtain that H%'(M,) = H=%%(Mg) = 0, it is sufficient
to show that the map induced by V3 between H*!(G 40) and H=19(G¢o) is an isomorphism.

We show that the map induced by V3 is different from 0 on highest weight vectors in H%!(G 40).
By Proposition we know that the highest weight vectors in H%!'(G 40) are y1, w12 ® y1. We
have:

V3(y1) = wiiwai w120z, + wiiwa w20y,

VE’)(le X yl) = w12w11w21w12811 + w12w11w21w223x2 = w12w11w21w22612-

By Proposition it follows that H%"(Gpe) = H*""2(G o) as go—modules for n < 0, indeed:

1 1
HO™ (G pe) Q(ri, —n+i—i—n+l—sn+ 1),

M

=0

ol

HO"2(Geo)

12

A | 1
Q(ri,—n—l—z,—z—§n+1,—§n+1>.

[e=]

1=

With an analogous argument, in order to obtain that H*"(Mp) = H*""2(M¢) = 0 for n < 0,
it is sufficient to show that the map induced by Vs between H%"(Gpo) and HO" 2(G¢o) is an
isomorphism for n < 0.

We show that the map induced by V, is different from 0 on highest weight vectors in H"(G po). By
Propositionwe know that the highest weight vectors in HO’"(GDo) are 81/_2”, w11®8y_2”, wWi1wWo1 X
9,,". We have:

S a- 2 o —nl —ntl —n42
Vg(amn) = wiiwo ® 6y1 ay;z + wiiwa ® ay1 8y2”+ + wiowo ® ayl (9y2n+ + wigwas ® 8y2n+ ,
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- —n+1 —n+2
\Y) (w11 ® 8y2n) = Wiiwi2w21 K 8y18y2n+ + wWiiwi2Woe & 6y2”+ R

Va(wiiwa ® 9,.") = wiiwawizwas ® 9,2

Finally, by Proposition we have that H'9(G 40) =2 H% (G o) as go—modules, indeed:

HY(G o) = Q(Lo,—1 1) +Q(o,1,—§ 1),

272 279
HO 1 (Geo) & Q(1,0, —%, %) + Q(o, 1, —g, %)

With an analogous argument, in order to obtain that H'0(M4) = H%1(M¢) = 0, it is sufficient
to show that the map induced by V3 between H0(G 40) and H*1(Geo) is an isomorphism.

We show that the map induced by V3 is different from 0 on highest weight vectors in H LO(G o). By
Proposition we know that the highest weight vectors in H9(G 40) are z1, w11 ® 19 — wos @ 21.
We have:

Vi(z1) = wiiwiaw210y, + wi1wi2w220y,,

Va(win ® 2 — waa @ 1) = Wi1W21W12W220y, — W22W11W12W21 Dy, -

Let us now focus on the remaining four cases.

Proposition 5.43.

12

0,
C.

H™ (M)
H*l,fl(MC)

1

In order to prove Proposition [5.43] we need the following results and the theory of spectral
sequences. So far we have shown that E°(Mc)%? = HO9(GrMg) = S(g_2) ® H*°(G¢) and
E°(Me) bt = H-LV=Y(Gr M¢) = S(g_2) ® H-V71(G¢) as W—modules.

Lemma 5.44. Let
&= z’wnwglA*@ﬂ + (iwlgwgl + Z'UJHUJQQ)A*ayT

be an element in Mal’_l. The following hold:

1. VE=0,

2. go.£ =0,

3. (t&1 +it&s).£ € ImV, (18384 +1€2€384).£ € ImV,
4. £¢ImV,

5. [€] is a basis for the go—module H-2~1(G¢) = C.

Proof. 1) Let us show that V& = 0.

. 2 . 2 . 2
V§ =W W21 W12W21 & 8;31(93/1 8$2 4+ 1w w21 ww11 X 8;5183/1 (93;2 4+ 1w2wo1w12wW11 X leayl 8y2

+ iw12w21w12w21 ® 8x18y1 8y2(9332 + iw12w21w22w11 ® 8x18y1 8y2(9332 + iw11w22’w12’w21 ® 8x18y1 8y2(9332

. 2
+ 1wy wwi2wi & aatlayl 3y2
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= — 4iOwi1w1 ® Oy ® 0y, Dy, + 14OWI W ® Dy, 0y, Doy — 41OW12WIL @ O, Dy, Dy,
— 4iOw12w91 ® Oy @ Oyy Oy, Oy — 121 W12W22W11 ® Oy Oyy Oy Oy — 41OW22W11 @ Oy Oy Oy, Oy
— iwgow11W12Wa1 ® Oy, Oy, Oy Oy + 4iOW12W1 ® Doy By, Dy Oy — TW11WeW1 W12 @ D, Dy, Dy,
= — 4iOwizwi1 ® 83,0y, 0y, + iwgrwi1wiowar ® O, By, Dy Doy — w2011 W12W1 @ Doy Dy, Dy Ouy
+ 4iBOwi2wi @ 351% Oy, = 0.

2) Let us show that go.§ = 0.

210z,.6 = — 1W11W2W12 ® Oy Oy, + 1W11W21 W12 & Opy Oy — 1W12W21 W1202, Oy, + tW12wW11 W12 @ O, Oy
+ 1wigwi1wo ® 3x28y2 + twiawoiwie Q 8m28y2 — w1 wowia ® 81233/2 + twiiwiowiz ® 8x16y2 = 0;
120, .§ =iw11w21W22 ® O, Oy, — iw11wW21wW22 @ O, Oy, + iwaow21wi2 @ Oy Oy,
+ iwi2w21 W22 & Og, Oy, — tW12W21W22 ® O, Oy, + iwW21wW2w12 & Ogy Oy, = 0;
Y20y, .§ =iwi2w21w12 ® gy Oy + 1w Wo2wW12 @ Oy Oyy + 1W12W21 W22 @ Oy, Oy,
— 1w12w21W12 ® Oz, Oy, — tw12W21 W22 ® 01,0y, — W11W2wW12 & Oy Oy, = 0;
Y10y,.§ = — twn1w21w12 ® Oy, Oy, — 1W11W21 W22 X O, Oy, + 1W11W21 W12 @ Ogy Oy,
+ iwiaw21w11 & gy Oy, + tw11 W21 W22 ® Oz, Oy, + iwW11W21W12 & Ogy Oy,
+ iwwawil & Oz, Oy,
= — iw21w121U11 ® 8301(93,,2 — 4’i@’ll)11 ® 8331(93/2 + i’wuwglwlz & leayz
+ 4iOw11 ® 6;,;16?,2 =0.

The fact that t.£ = C.£ = 0 is a straightforward computation.

3) We point out that (&1 + it€s) and &1&38s + i€2€3&4 are the lowest weight vectors of g1 (see the
Appendix).

We compute (t&; + it€2).€ in three parts separately. Let us denote & = mj + mg + ms, where

m1 = tw w1 A~ Oy,
Mo = 1wi2w21 A~ Oy,,

ms3 = iwllwggA_ayg.
We will use the following relations that come from bracket (2.1)) and Proposition m

[t& + itéo, wi1] = —2i(t + Hy), [t& + it&o, wo2] = 0,
[tfl + it§2, wlz] = —2iy26y1, [tfl + it§2, wzﬂ = —Qixgazl.

We have:

(t&1 +it&2).(m1) =2(t + Hi)wa1 A™ 0y, — twi1(—2i220,, ) A0y, + iwi1wo (t§1 + it&a) A~ 0y,
=2(t + H1)wa1 A0y, — 2w11 (2205, ) A~ 0y, + 2wi1w21(Y20y, ) @ 0,0y,
=2wo1 (t + H1)A™ 0y, — 2w A™ 0y, — 2wi1 (2205, ) AT 0y,
= — 2w21w120z, Oy, + 2w w12(t + H1)0p, 0y, — 4w21w220,,0y,

+ 2wo1waa(t + H1)03, 0y, — 2w21 A™ 0y, — 2wi1 (2205, ) A™ Oy,
= — 2w21w120z, 0y, + 4w w210z, Oy, — 4w21w22 @ Op, Oy,

+ 6w21w2205,0y, — 2w A™ Oy, — 2w11(2204,)A™ 0y,
=2w91w120z, Oy, + 2wW21Ww220,,0y;, — 2wW21w1204, 0y,

— 2W21 w2205, 0y, — 2w11 (2205, ) A™ Oy,

= — 2w11w220., Oy, + w11wa2 @ Oz, 0y, = 0;



124 5. Homology

(t&1 +it&).(ma) =(2y20y, )Jwa1 A 0y, — iwi2(—2ix205, ) A~ Oy, + iwiowa1(—2iYy20y, ) ® Oz, Oy,
=wo1(2y20y, )A™ Oy, + 2w A™ Oy, — 2w12(2204, ) A~ Oyy — 2w12w210,, Oy,
= — 2w21w1205, 0y, — 2W21W2204, 0y, + 2W22wW1205, Oy, — 2wW12W21 04, Oy, ;
(t&1 + it&a).(m3) =2(t + Hi)waa A~ Oy, + twi1waa(—2iy20y, ) Ox, Oy,
=2waa(t + H1)A™ Oy, — 4waa A~ 0y, — 2w11w220,, Oy,
= — 2w2w120z, Oy, + 6waow120z, Oy, — dwaow1205, Oy, — 2w11wW220z, Oy,

= — 2w11w228118y1.
Then we have that:

(t&1 +it&2).§ = — 2w w1204, 0y, — 2W21W2202, 0y, + 2W22W1204, Oy,
— 2w12W210z, Oy, — 2w11wW220,, Oy,
= — 2w w120z, Oy, — 2wW21wW2205,0y, + 2Wa2wW120,, Oy,
+ 2w21w1205, 0y, + 80 ® 0,0y, — 80 ® 0y, 0y, + 2wa2w110,, Oy,
=V (2w9e ® 1).
We compute (£1€384 + 1£2€384).€ in three parts separately. We will shortly write g7 instead of

(€1€384 +1€28€38&4). We will use the following relations that come from bracket (2.1) and Proposition
21T

[g1, w11] = 2C + 2Ho, [g1,wa2] =0,
(91, wi2] = 2y20y, , (91, wa1] = —2x20;,.

We have that:

g1.m1 =1(2C + 2H2)wa1 A™ 0y, — iwi1(—2220,, ) A~ 0y, + iwi1w21g1A™ 0y,
=iw91 (2C + 2H2) A~ 0y, + 2iwa1 A~ 0y, + 2iw11 (2205, ) A~ 0y, + twi1w21(2y20y,) ® Or, Oy,
= — 2iwo w120z, 0y, + twa1w12(2C + 2Hs) @ 0y, 0y, + iwa1w22(2C + 2Hs) @ 04,0y,
+ 2iwo1 A Oy, + 2iw11w2r ® O, Oy, — 2iw11Wo2 ® Og, Oy, + twi1w21 ® (2y20y, ) Or, Oy,
= — 2iw21w120z, Oy, — 2iw21 W22 ® Oz, Oy, + 21w21 w1205, 0y, + 2iw21wW220,, 0y,
+ 2w 1w @ Oz, Oy; — 2iw11wW220,, 0y, = 0;
g1-ma =(2iy20y, )wa1 A~ Oy, — iw12(—22204, ) A~ 0y, + tw12w21(g1) A~ Oy,
=2iwp A~ Oy, + 2iwz w1z @ (Y20, )0z, Oy, + 2iw21w22 @ (Y20y, ) Oy Oy + 2iw12w2204, Oy,
— 2iw1aw2a ® Oy, Oy, + iw12w21(g1)A™ Oy,
=2iw A" Oy, — 21w W12 ® Op, Oy, — 21W21 W2 ® Op, Oy, + 21W12W22 ® Oy, Oy, — 21wW12W22 X Oy, Oy,
+ iwi2w21(91)A™ Oy,
=2iwow120z, Oy, — 21W21wW1204, Oy, — 2iW21W220,,0y, — 21w12w2105, 0y,
=2{waow120z, Oy, — 2iW21W220,,0y, + 81O ® Oy, Oy, ;
g1.m3 =i(2C + 2H2)waa A~ Oy, + iwi11w22(g1) A~ Oy,
=iw92(2C + 2H2) A~ 0y, + twi1w22(2y20y, ) Or, Oy,
=iwoow12(2C + 2H3) 0y, 0y, — 2iwoow1204, Oy, — 2iw11w2205, Oy,
=2{w9ow120z, 0y, — 21W2w120z, Oy, — 2iwW11W220,, Oy,
=2iw9ow110z, 0y, — 810 @ Oy, 0y, -

Then we have:

(£1€384 + 1£28364) . =2iwaw120,, Oy, — 2iW21 w2204, 0y, + 81O ® 0y, 0y, + 2iwoow1105, 0y, — 8iO ® Oy, 0y,
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=V (2iw ® 1).

4) Let us show that £ ¢ Im V. Let us consider V : M(0,0,2,0) — M (1,1,3,0). Since M(0,0,2,0)
is irreducible and V # 0, the map V is injective. Therefore, if £ = V(v), then t.v = 0 because of
injectivity and the fact that t.£ = 0. Let us take v € M (0,0, 2,0) whose weight is 0 with respect to
t. Then:

V=010 ® 1+ aswiiwry ® 1 + azwiiwis 1 + cqwiiwo ® 1

+ aswaowiz @ 1 + agwaow @ 1+ arwigw & 1.

If ¢ = V(v), from injectivity and the fact that (x10;, — 20,,).6 = 0, we obtain that (x10,, —
x20z,).v = 0, that is:

(.Z‘laxl — 1‘28332).’0 = 2a3wiiwo1 ® 1 — 2agwaws; ® 1 = 0.

We deduce that a3 = ag = 0. Similarly, if £ = V(v), from injectivity and the fact that (y10,, —
Y20y, ). = 0, we obtain (y10y, — y20y,).v = 0, that is:

(Y10y;, — ¥20y,).v = 20qwi1w21 @ 1 — 205wwi2 ® 1 = 0.
We deduce that ay = a5 = 0. Hence:
V=010 ® 1+ cpwiiwr ® 1 + arwiaw @ 1.
We compute V.

Vv =01 Owi1 ® O0p, 0y, + a10Ow21 ® 02,0y, + 1 Owia ® Oy, Oy, + a1Owa2 ® Op, 0y,
+ aawiiwaowil @ Or, Oy, + aawi1wowe1 @ O, Oy, + 2wi1ww12 ® Ogy Oy,

+ arwipwoiwil ® O, Oy, + arwigwoiwiz @ O, Oy, + 7wi2w21 W22 & Opy Oy, .
The terms in d,,0,, in Vv and & should be the same, then we have:
a1Ow11 + aawiiwwll + arwiw1w = +Hiw W wi2.

Therefore:

a1 + 4dao — 4ay = 0,
—Qy = 7.

The terms in 0,,0y, in Vv and & should be the same, then we have:

010w ® 0z, Oy, + Qrwi2wW21 W22 @ Opy Oy, = 1W12W21 W22 & Oy Oy, -

ap =0,

a7 = 1.
This leads to a contradiction.
Let us show also that [¢] # 0 in H~171(G¢) because ¢ does not lie in the image of V : G%O —
G5 7', Indeed if € lies in the image of V : Gg' — G5 ™', therefore [¢] = 0 in H—~1 (M)
since H=V"1(Grg) = S(g_2) ® H-V71(G¢) is the first step of the spectral sequence; this is a
contradiction.
5) By Proposition we know that H~571(G¢) = C as a go—module. From the previous
properties we know that 0 # [¢] € H~71(G¢), hence [¢] is a basis for the go—module H~171(G¢).

O
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Corollary 5.45. £ is a secondary singular vector in M(1,1,3,0), i.e. a singular vector in the
quotient M(1,1,3,0)/Im V.

Lemma 5.46. Let

A= §iw11w21w12w22 ® 1+ iOwipwe ® 1+ iOwijwe ® 1

be an element in Mg’o = M(0,0,2,0). The following hold:
1. 10z,.A = 0 and y10y, .\ = 0,
2. X\ is a basis for the go—module H*°(G¢) = C.
Proof. Let us prove that x19,,.A = 0 and y19,,.A = 0. We have:
210z, A =tw12w110 ® 1 + iOw w2 ® 1 =0,
Y10y, A =+ %iwuwglwuwm ® 1+ 1Owjw ® 1 + 1Owjiwe; ® 1 = 0.
We point out that VA is a cycle in Gr M¢ since A € FyMc and VA € FyMc. Indeed in M¢:

1. 1. )
VA =5 Wi w1 WipWaw ® O, Oy, + 2 W1 W W12War W ® Og, Oy, + 1OW12wW2 W11 @ O, Oy,

+ iOwworwes @ 895283,2 + iQwpwo w1z @ 8$1(9y2 + iQwiwowo @ &Qayl
+ Qw1 wewis @ 8$18y2 + iOw wowil @ 8$18y1
=2iw11w21w120 @ Oz, 0y, + 2iw11W21 w220 ® Oz, Oy, + 1OW12W1 W11 @ Oy Oy,
+ iOwwo W @ 6128% + iOwworwiz @ leayz + iQwiwowo @ 8902(93!1
+ iOwi1woowis ® Oxlaw + iOwiiwowil @ amlayl
=10w11w21wW12 ® Oy, Oy, + 1OW11 W21 W22 ® Oz, Oy, + 1OWI12W21 W2 @ Oz, Oy,
+ 1Owi2w21wW12 ® Og, Oy, + 1OW11W2RWI2 & O, Oy,
=0¢.
Moreover [A] lies in H%?(G¢) since the terms of \ that include © are in F3M, the other is in
FyMec. By Proposition we know that H%?(G¢) = C as a go—module. From the previous
computations we know that 0 # [A\] € H"?(G¢), hence [)\] is a basis for the go—module H*°(G().

We have also that V[\] = O[¢].
O

Proof of Proposition [5.43 By (5.25) and Lemmas we know that as YW—modules
E°(Mc)*? = H*(Gr Mc) 2= S(g-2) ® H*(Gc) = S(g-2) © ([A),
E°(Mc)™ 7t = H™V"H(Gr M) = S(g-2) @ H " 7H(Ge) = S(g-2) @ ([€])-

By Lemma the morphism V© : EO(Mg)% — E%(Mg)~5~! maps [\ to ©[¢]. Therefore
V() is injective and E'(M¢)%° =0, B (Mg)~ b1 = C.
Thus E*®(Mc)° =2 EY(Mc)%° = 0 and E*(Mg)~ b1 =2 EY(Mg)~1~! =2 C as W—modules, and

hence as g—modules. O

Now we focus on the two remaining cases of M.

Proposition 5.47.

12

HO,U (MA)

C,
HYM(My) =0

I
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Remark 5.48. By straightforward computation we show that H%(M,) = ME{O /ImV = C. Indeed
ImV is the g—module generated by the singular vector w;; ® 1 and we have that:

220y, . (w11 ® 1) = w1 ® 1,

Y20y, (w11 ® 1) = wi2 ® 1,

Y20y, (2205, (w11 ® 1)) = wae ® 1,
wiz.-(wo1 ® 1) + wop.(wi2 ® 1) = —40 ® 1.

Therefore the only elements that do not lie in the image of V are those of F(0,0,0,0).
In order to prove Proposition we need the following result.

Lemma 5.49. Let
s = (w11 @ T2 — w21 @ T1)y2 — (W12 @ T2 — W2 @ T1)Y1

be an element in Mi’l. The following hold:

1. V[s] =0 in Gr My,

2. s is a highest weight vector of weight (0,0,-2,0),

3. s is a basis for the go—module H'(G ) = C.
Proof. 1. Let us show that V[s] =0 in Gr M4.

Vs =wiiwey ® 1 —wawiz ® 1 — wigwe @ 1+ wpwy ®1 =801 € F1My.
Since s € F1 M4, then V[s] =0 in Gr M 4.
2. Let us show that s is a highest weight vector of weight (0,0,-2,0). We have:

210g,.5 = W11 @ T1Y2 — W11 @ T1Y2 — W12 @ T1Y1 + w12 ® 1y1 = 0,
220z,.5 = W21 @ TaY2 — W21 @ Tay2 — W2 @ Tay1 + W ® w2y1 = 0,
Y10y,.5 = w11 @ Toy1 — w21 @ T1Y1 — w11 @ Tay1 + w21 @ x1y1 = 0,

Y20y, .5 = W12 @ Tay2 — W2 @ T1Y2 — W12 ® TaY2 + w2 ® T1Yy2 = 0,

t.s:(—l—l—l)s:—%,

2 2
C.s=0.
3. It follows from the facts that s lies in Gi{l, Vi[s] = 0 in Gr My, the space HY1(Gy) is
one—dimensional by Proposition and s does not lie in Im V, where V : Gig — Gi{l.

Indeed let us see that s ¢ Im V. Since t.s = —2s, it should come from an element in Gi’z of
weight —2 with respect to ¢, that is an element v, where v € F(2,2,—2,0). But:

Vv = w11 ® Oz, Oy, v + w21 & Oy Oy, v + W12 @ Oy Oy ¥ + Wa2 & Or, Oy, v-
Then v should satisfy the following identities:

Oz, Oy v = 22,
Oy Oy v = —x1Y32,
Oy Oy v = —T2Y1,
01,0y, v = T1Y1.

This is impossible.
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Proof of Proposition[5.47. By (5.25), Remark and Lemma we know that as W—modules

E°(Ma)™ = H**(Gr Ma) = S(g—2) @ H**(Ga) = S(g-2) @ (1)
E°(Ma)t = HYH(Gr Ma) 2 S(g-2) @ HV' (Ga) = S(g-2) ® ([s])-

By Lemma m the morphism V(© : EO(M4)Y! — E%(M4)%° maps [s] to 80 ® [1]. Therefore
V() is injective and E'(M4)b' 22 0. Thus E®(Ma)bt = EY(M4)»' = 0 as W—modules, and
hence as g—modules. ]

Remark 5.50. We point out that for C' = 0, the study of finite irreducible modules over K reduces
to the study of finite irreducible modules over Ky, already studied in [BKL1]. In particular, for
C = 0, the diagram of maps between degenerate modules reduces to the diagonal m = n in the
quadrants A and C of Figure For K, the homology had been already computed in [BKLI],
Propositions 6.2, 6.4] using de Rham complexes. Propositions and are coherent with the
results of [BKL1, Propositions 6.2, 6.4] for Kj.

5.4 Size

The aim of this section is to compute the size of the modules I(m,n, ut, ). For a S(g_2)—module
V', we define its size as (see [KRI]):

1
Size(V) = 1 rks(g_z) V.

Proposition 5.51. A) size(I(m,n, =242, ")) = 2mn 4+ m + n,
B) size(I(m,n,1+ 25", -1 —"2)) =2(m+1)(n—1)+n—14+3m+3+2 =2mn+m+3n+2,

C) size(I(m,n, 2% +2,25™)) =2(m + 1)(n+ 1) + m+n+ 2 = 2mn + 3m + 3n + 4,

D) size(I(m,n,1+ 257 14 %)) = 2mn + n + 3m + 2.

In order to prove Proposition [5.51| we need some preliminary results.

Remark 5.52. A consequence of results in [CCKI] on conformal duality is that, in the case of
K, the conformal dual of M = Ind(F), where F' = F(m,n, u, pic) is an irreducible go—module,
corresponds to the shifted dual Ind(F"V), where FV = F(m,n, —pu; + 2, —puc).

We will say that I(m,n, u, pc) is of type X if M(m,n, pt, pe) is represented in quadrant X in
Figure [4.1]
m+n m-—n

Remark 5.53. We point out that it is sufficient to compute the size for modules I(m, n, —™5%, =5")
of type A and I(m,n,1+ 5™ 1+ ™) of type D and use conformal duality, since conformal dual
modules have the same size.

Let us show that the module I(m,n, m;” +2, %5™) of type C is the conformal dual of I(m+1,n+

1, —%”4'2, m3m) of type A, , when (m,n) # (0,0). Indeed, by Remark 4.8, we have the following

dual maps:
Vm+1,n+1:M<m+17n+1’_m+;%+2’m2—n) _)M(mm’_m;—n’m;n)’
— 9 —
Vm:”;M<m,n,m;n+2,n 2m> —>M(m+1,n+1,m+:+ +2,” 2m).
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We use Remark [5.52| and Theorem [1.18| with T" := V™" M := M(m,n, m;” + 2, "‘27”) and

N = M<m+ 1,41, m4042 4 9 ”—2’").

We point out that we can apply Theorem because we know that M (m + 1,n + 1, "2 4
2, Lam) /Im(V™") is a finitely generated torsion—free C[O]—module.

Indeed, by Propositions and the complex of type C is exact in M(m+1,n+ 1, %m +
2,25™) when (m+ 1,n + 1) # (1,1). Therefore:

2 — 2 _
M(m+1,n+1, m+2n+ + 2, 2m) _ M(m+1,n+1, m+2n+ +2,2 2’”) ~ Im(vm—i-l,n—i-l)‘
Im(Vmn) Ker(Vm+lntl)

But Im(V™ 171 is a submodule of the free module M (m + 2,n + 2, 1 4 9 nom)y thys it is
torsion—free as a C[©]—module.

We have that M/ Ker T = M (m,n, ™ +2, 25™) /Ker(V™") = I(m, n, 5" +2, 25™) is the dual

of N*/Ker T* = ImT* & [(m + 1,n + 1, - 42 mn),

Using the same argument, it is possible to show that the module I(m,n,1 + ™52, -1 — mT‘”L) of
type B is the conformal dual of I(m + 1,n—1,1+ ”_?_2, 1+ m;”) of type D.

5.4.1 The character

We now introduce the notion of character, that will be used for the computation of the size.
Let s be an indeterminate. We define the character of a g—module V, following [KR1], as:

chV = try s L.
The character is a Laurent series in the indeterminate s; the coefficient of s* is the dimension of

the eigenspace of V' of eigenvalue k with respect to the action of —t € gg.

Remark 5.54. Let V be a g—module and W a g—submodule of V. It is straightforward that
chV/W =chV —chW.

We now compute directly the character of a Verma module M (m,n,u, nc) = U(g<o) ®
F(m,n, pu, pe) using the fact that —t¢ acts on elements of g_o as the multiplication by 2 and
on elements of g_; as the multiplication by 1. We have, if —1 < s < 1:

(1+5)*

ChM(mﬂ'lnutaNC) = s Mt dim F(m, n, i, MC) . T

where we used the facts that:

(O (D (e (Dt () =

and if |s|? < 1:

o0

St
1 —s2

k=0

For the computation of the size of a g—module V' we use that:

1
size(V) = 7 lim(1 - s*)ch V. (5.42)

s—1
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Proposition 5.55. The character of I(m,n, —m;r", —151) of type A is, if (m,n) # (0,0):

- m-rTn 4 -
chI(m,n,—ern m n>:37+(1+8) (( 2 m+n—1 mn)

2 72 1—s2 1—1—5)3+ (14 s)2 +1—i—s'

The character ofI< m;”) of type D is:

n—m m+n q_n-= m(1+s) -2 3+n—m mn+2m
hI(m,n, 1+ 2= 1 - [( )
ehllm,n Lt =g Ty ) = = \aFsp T e " 1vs

-2 -m—-—n+1 m+n+1

_(—1)nH n+1( )]
(=1 (1+s)3+ (14 s)? 1+s
+Sm+2"+2(1+3)4(1)n+1( 2 er—l—n—l-l)
1—s2 (1+s)3 (1+s)?

Proof. We can compute the character of modules I(m,n, ut, uc) using the character of M (m, n, u, puc)-
Let us now focus on the case I( m;", ™) of type A. By Propositions and the
following is an exact sequence, if (m, n) # (0,0):

m+4+n+2j m—n

m-+n—+ 2 m—n)

.—%N4m+$n+$— )—%.”—%Ndm+Ln+L—

2 2 2 2
—)M(m,n,—m+n,m_n) —>I(m,n,—m+n,m_n)—>0.
2 2 2 2
Hence, using Remark
m+n m—n m+n(1+3)4 > - .
Ch[<m,n,—T, 9 )ZS 2 ﬁZ(—1>]SJ(]+m+1)(]+n+l>

We use the following identity, that holds if |s| < 1 and is a consequence of the binomial series:
i (] + m> B 1
= (L4 s)m+l
We use the fact that:
G+m+D)(G+n+) =G+ +n+1)+m@G+n+1)

=G+DE+D)+G+Dn+m@+1)+mn
=G +2G+D+G+D(m+n—1)+mn.

Therefore:
hI( m—+n m—n> m;—n(1+5)4< 2 _|_m+n_1+ mn)
chl{m,n,— ) =s
2 2 1-52 \(1+s)3 (14 s)2 1+s
Now we compute the character for modules I(m,n, SR, m;‘ ) of type D.

By Proposition the following is an exact sequence:

m+n-+2+2j m—l—n—l—Z) m+n-+2 m+n+2)

—>M(m+n+2+j,ja— -—>M(m+n+2,0,—

2 9 2 2
—m— —m—n+2
—>M<m+n,0,1+ m2 ”,1+m2+”)—>M(m+n—1,1,1+mf”+,1+m2+")—>
—>M(m,n,1+n_2m,1+m7+n>—>I(m,n,1+n_2m,1+m;—n)—>0,
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where the first row is composed of modules of type A; then the complex changes and the following
terms are of type D. Hence, using Remark

n—m m+n\ _ _q_n-m(14s)* = » . j
chI(m,n,1+ 1+ )_s T 2}(—1)?(;+m+1)(n—]+1)51
J:
mante (1 1.2 , ,
s™ (1+Sg (=)™ m 4 n+ 24 1)+ 1)
0
We use that:
n . .
D=1 +m+1D)n—j+1)s =
§=0
o0 o0 ] )
= S +m+ ) —j+1) = > (1 G+m+Dn—j+1)s
j=0 j=n+1

Let us compute the first series; we have:
G+m+1)n—j+1)=0G+)n—-7+1)+mn—-j+1)

=J+)(=j+D)+nG+1)—m(G—-1)+mn
—G+DG+2)+3G+D)+n(G+1)—m(+ 1)+ 2m + mn.

Then, if |s| < 1:
= -2 3+n—m mn+2m
1)(n — 1)s! = .
jzo TG+m+1)(n—j+1)s Tt A T it

Let us compute the second series; we have:

[o¢]
— Z YG+m+)n—j+1)s == (DM HFm b1+ m D) —k—n—1+1).
j=n+1 k=0

We use that:

(k+n+1+m+1)n—k—n—-1+1)=
=(k+n+2+m)(—k)=—k*—k(m+n+2)
=—k(k+1)+k—(kE+1)(m+n+2)+m+n+2
—(k+2)(k+1)+2k+ 1) +k+1—(k+1)(m+n+2)+m-+n+1.

Then, if |s| < 1:
(o9} oo
Z G+mt+1Dn—j+1)s == (=DM (G gon om 4 2)(—k) =
j=n k=0
-2 -m—-—n+1 m+n+1
_(_1)nt! n+1( )
S A R s R s 1+s

Finally, we have:

Ch[(m’n,1+n—m m-+n S_l_n2m(1+3)4[(< —2 3+n—m mn+2m>

1 =
2 T ) 1—s? 14 s)3 (1+5)2 * 1+s
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-2 -m—-—n+1 m+n+1

_(_1)nH] n+1( )]
(=1 (1+s)3+ (1+4s)2 1+s
+Sm+2n+z(1+s)4(_1)n+1( 2 +m+n+1>
1—s2 (1+s)3 (1+s)?

O

Proof of Proposition[5.51. We first focus on 1(0, 0,0, 0) of type A. We have that size(1(0,0,0,0)) =
0. Indeed the following is an exact sequence:

m+n+2; n—m
2 ’ 2

v é

— M(0,0,0,0) = 1(0,0,0,0) — 0,

2 _
)—>...—>M<m+1,n+1,—m+nJr 7—n 2m>

...—>M(m+j7n+j,— 5

where ¢ is the projection to the quotient, 1(0,0,0,0) = 1\4(1%7@,0)’ Ker ¢ = Im V. Therefore using

the same computation for case A, we find size(1(0,0,0,0)) = 0.

Now let us compute the size of 1(0,0,2,0) of type C. Since M(0,0,2,0) is irreducible, we know
that size(1(0,0,2,0)) = size(M(0,0,2,0)) = 4.

Finally the size of I(m,n, u, uc) of type A for (m,n) # (0,0) and of type D follows directly from

Proposition and (5.42)). The size of I(m,n, u, pc) of type C for (m,n) # (0,0) and of type B
follows from Remark [(£.53 O



Chapter 6

The conformal superalgebra C' Kg

6.1 Singular vectors

In this chapter we recall the definition of the conformal superalgebra C'Kg. We recall some defi-
nitions and notation from [BKL2]. From Chapter [2| we know that the conformal superalgebra of
type K is:

Ky = C[0] @ A(N).
The A—bracket for f,g € A(N), f=§&;, ---&, and g = §j, ---&;,, is given by:

N

(9] = ((r = 2)0(f9) + (=1)" > _(0:)(Dig)) + A(r + s —4) fg.

i=1
The associated annihilation superalgebra is:
A(Ky) = K(L,N);.

We will identify K(1,N)y with A(1, N); using the following isomorphism of Lie superalgebras
introduced in Chapter

/\(17N)+ — K(LN)-F
N

fr= 210+ (=1)PD Y (&0 f + 0 f) (& + D).

i=1

We recall that on K (1, N); the bracket is given by (2.1). We consider on K (1, N) the Z—grading
deg(t°&i &in--Cip) = 25 + k — 2. We set £162...6y = &. We focus on N = 6. Analogously to the
case of K, we will use capital letters to denote ordered sets I = (i1, 12, ...,i) of distinct integers
in {1,2,3,4,5,6}. Given I and J ordered sets, the definitions of I N J, I\ J and I¢ are analogous
to the definitions given in the case of K} (see Chapter [3).

Following [BKL2], for {; € A(6) we define the modified Hodge dual &} to be the unique monomial
such that ;&7 = &, (notice that the definition of modified Hodge dual differs for a sign from the
definition of Hodge dual given in the case of K}). We can extend the definition of the modified
Hodge dual to monomials t*¢; € A(1, N) . letting (t°¢;)* = tF¢r. For f = & we set | f| = |1].

The conformal superalgebra C'Kg is a subalgebra of K¢ defined by (see construction in [CK2]):

CKg = C[0] — span {f —i(=1) gk (_8)3—|f\f*’ fene),0<[f] < 3} .

133
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We introduce the linear operator A : K(1,6)y — K(1,6)4 given for monomials with d odd

variables by:
dd+1) [ d 3—d .
A= (5) 0

and extended by linearity. The annihilation superalgebra associated with C'Kg is the subalgebra
of K(1,6)4 given by the image of Id — ¢A; it is isomorphic to the exceptional Lie superalgebra
E(1,6) (see BKL2],|CK3],[CK2]). The map A preserves the Z—grading, then E(1,6) inherits the
Z—grading. The homogeneous components of non—positive degree of E(1,6) and K(1,6)4 coincide

and are:
E(l’ 6) 2 = < >
(1)6) 1 — <£la€25' a§6>
E(1,6)0 = (t,&¢&5, 1 <1i,j <6).
Following the notation used in [BKL2], from now on we will denote Egg :=t, F; j := —&&;, © = —
g:= E(1,6).

Let us focus on go = (t,&€; 1 <i<j <6)=s0(6)® CEy. We point out that ¢ is a grading
element for g. Following [BKL2|], we consider the following as basis of a Cartan subalgebra b of
50(6):

Hy =iF19, Hy =1F3,, Hy = iF5g.

We set hy := H1—Hy, ho := Hy—Hs3, hs := Ha+Hs. Let ¢ € h* such that €;(Hy) = ;. The roots
are A = {+e; +¢;,1 <1< j <3}, the simple positive roots are AT = {e1 — 9,69 — 3,2 + £3}.
The root decomposition is:

50(6) = h S3) (@aeAga) with Ja = (CEav
where the E,’s are, for 1 <1< j <3:
Eej—c; = Foy19j-1+ Faoj + il 125 — iFo 251,
Eejve; = For—19j-1 — Fayo5 — iF125 — iFo 251,
E_(e)—¢;) = Far—1,2j-1 + Foj — iF—1,95 + iF95-1,
E_(cive;) = Far—12j—1 — Faroj + iFo—1,95 + 1Fo25-1.

We define for 1 <[ < j < 3:
1
a4 = i(Eal—aj + E€l+€j)7
1
517] ( €1—€j _E5l+5j)‘
The upper Borel subalgebra Bs,, is:
Bsos = <al,j75l,j7 1 S l <] S 3>

Remark 6.1. By straightforward computation, it is possible to show that g; is the sum of two
irreducible go—modules and the following are corresponding lowest weight vectors in F(1,6);:

U1 = t£1 + it£2,
ve = —§18385 — 1€28486 + 28485 + 1618386 — §18486 — 1628385 — 28386 — 1§1848s5-
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Let F' be a finite—dimensional irreducible gop—module, such that g-g acts trivially on it; we
have that Ind(F) = C[O]®@ A(6) ® F'. Indeed, let us denote by 7; the image in U(g) of & € A(6), for
all i € {1,2,3,4,5,6}. In U(g) we have that n? = ©, for all i € {1,2,3,4,5,6}: since [§;,&] = —1
in g, we have n;n; = —n;m; — 1 in U(g). We describe the action of g on Ind(F') using the A—action
notation, i.e.

N .
Algev) =" STU)-(g@ ),
Jj=0
with f € A(6), g € U(g<o) and v € F. Given & € A(6) and 1y € U(g<o), we define:
§rxng = Xinj=pMInJ,
NJ* &1 = Xrrj—p"I"1-

We extend the definition of modified Hodge dual to the elements of U(g<() in the following way:
for n; € U(g<o), we let n} to be the unique monomial such that & x 7 = .. We define the Hodge
dual of elements of A(6) (resp. U(g<o)) in the following way: for &1 € A(6) (resp. nr € U(g<o)), we
let & (vesp. 77) to be the unique monomial such that £7&; = &, (resp. f7*€7 = 1y). Then we extend

by linearity the definition of Hodge dual to elements > ; an; € U(g<o) and we set Oy, = ©F7y.
We point out that for g € U(g<g), § = (—1)!/g*.

Due to the fact that the homogeneous components of non—positive degree of F(1,6) are the same
as those of K(1,6), the A—action is given by restricting the A—action in Theorem 4.1 in [BKLI].
We define T the isomorphism 7" : Ind(F) — Ind(F'), g ® v — g ® v. We recall the following result
proved in [BKLI, Theorem 4.3].

Proposition 6.2 ([BKLI]). Let f =& € A(6) and g = nr, € U(g<o).

TofroT Hg®w)

6
=(—1) 02Tl {(Ifl —2)0(fxg) ®v — (=1 (i) % (0g) © v = Y _(8:05f) x5 © Frsv
i=1 r<s
6
(£ %5 © Boov = (1D Y 0((£6) % 9) @ v+ (1" Y ((0:)6) %5 © Figv)+
i=1 i#j
N (f6&) xg® Fijv
1<j

The following Theorem holds both for the A—action and the action described in Proposition
6.2]

Lemma 6.3. Let f € \(6), g € U(g<o) and k > 0, the following holds:
A(Ofgev) =@+ 1) (frg®0).
Proof. The proof is analogous to Lemma [3.12 O

Let m € Ind(F), with F irreducible go—module. From [BKL2] we know that 7 is a highest
weight singular vector if and only if:

S1: For f € A(6), with 0 < |f] < 3:

(i = i) PN () =0,
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S2: For f € A(6), with 1 < |f] < 3:

d L LFIASIHD 3 (7] px _
i (b S ) o
S3: For f, with |f| =3 or f € Bsy,:
L. IS4 5 . =
(fAm —i(=1) = NIy ,\m))‘/\zo =0

Remark 6.4. We point out that, by the previous conditions, a vector m € Ind(F) is a highest
weight singular vector if and only if it satisfies S1, S2, S3. Since 7', defined as in Proposition [6.2
is an isomorphism and 77 = T, the fact that 7 € Ind(F) satisfies S1, S2, S3 is equivalent to

[FIf1+1)
impose conditions S1, S2, S3 for (T o (f) — Z'(—]_)ff%
given by Proposition [6.2

Therefore in the following Lemmas we will consider a vector T'(m) € Ind(F') and we will impose that

the expression for (To( fy—i(—1) g A=V Yo =1 T (1) = (To(fr—i(—1) e NS=ILf )

given by Proposition [6.2] satisfies conditions S1, S2, S3. We will have that m is a highest weight
singular vector.

A3=IFLf* ) o T—1)1m, using the expression

Motivated by Remark in the following lemmas we consider m € U(g<o) and we will use the
expression for the A—action of Proposition [6.2|for T'(1m). We consider a singular vector m € Ind(F)
such that:

N
T(m) = Z@’f(Zm @W). (6.1)
k=0 I

In [BKL2] the following Lemma is stated (Lemma 4.4 in [BKL2]), even if the proof is missing.

Lemma 6.5. Let m € Ind(F) be a singular vector, such that T'(m) is written as in (6.1). Then
the degree of m with respect to © is at most 2. Moreover, T'(m) has the following form:

T(m) = 92( Z 771®UI,2) +@1< Z 7)1®vl,1> + < Z 771®UJ,0>.
[71>5 [1]>3 [I|>1
The rest of this section is dedicated to the proof of Lemma [6.5]

Lemma 6.6. A singular vector m € Ind(F), such that T'(m) is written as in (6.1), has degree at
most 4 with respect to ©.

Proof. By Remark condition S1 f = & is:

d2

v (T (&1 311+ iX* (£2€384586 A1) = 0.

Using Proposition [6.2] and Lemma the previous equation is:

2 [
d)\z{ DY A+ 0 (=) — O« @ vk + O @ vk (6.2)
k=0 I

6
+ A (51 * 11 @ Eoovr i + Z 0i(&1&i*nr) @ vr g — Z & nr ® Fl,j'UI,k> —\? Z &1&& * 1 @ Fyjur g
i=1 j#1 i<j
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+zAQZZ DI+ o)

k=0 I

308283848586 * 1) @ V1 k

6

+ ) 0i(52838a&s86) * Oimr @ vr g — Y 0r0s(€263848586) * N1 @ Frsvr i

i=1 r<s

+ A <€2€3€4§556 * 11 @ Eoovy k + Z Oi(Ea€3€aEsbobi 1) @ v — ) ((0i2€364€566)65) * 01 ® EJW,’C)] }

i=1 i£j

N
ZZ A+ 0)F 1*'”(—2251&&*771®Fz‘,j”1,k>+
k=0 I

i<j

N 6
+2) 0> k(A4 0)F (=1t [&1 *nr @ Bogvrg + > 0i(G&xnr @vpg) — Y & xmr @ Fyjur
k=1 I i=1 j£1

N
—20) L&A © Fi,jv[,k] + 3 k(k - 1A+ 0)F 2 (=)t [ = O& 11 @ vr g+ O @ vrk
i<j k=2 1

6
+ A <€1 * 11 ® Eoovrg + Y, 0i(&1&ixmp) @vrk — Y &xn @ FlJ””f) = XY G&E *m @ Fjury
i=1 j#1 i<j

6
+ Z S (1) H2i(A + ©)F [365253545556 * N @ vr g + Zl 0i(£283€4€586) x imr @ vr g

k=0 I

- Z 0r05(€2638648586) * N1 @ Fr svr e+

r<s

6
+ A <§2§3€4§5§6 * 01 © Boovrk + > 0i(6a€sabsoli xmr) @ vk — Y _(0i(€26a€aésle)€)) x 1 ® FiJULk)] +

i=1 i;éj

+2 Z > (=) H2ixk(A + ©)F ! [395253545556 * 1 @ v+ Z 0i(&28384€586) *x Oimr @ vr
k=1 1 =1

- Z 0r05(€263848586) * N1 @ Fr svr

r<s

6
+ A <§2€3€4§5§6 * 01 © Boovrk + Y 0i(6a€séalsoli x mr) @ vk — Y (0i(€26a€aésle)€)) x 1 ® Fi:jv”“)] *

i=1 i#j
6
+ Z > DNk — 1)(A + ©)F 2 [3@5253545556 *nr Qv+ Y 0i(6abslabss) * Oimr ® vpk

k=2 I =1

- Z 0r05(8283848586) * 1 @ Fr svr

r<s

6
+ A <€2€3£4§556 * 01 © Boovrk + > 0i(6a€séalsoli x i) @ vk — Y _(0i(€26a€adsle)€)) x 1 @ E’J“Uﬂ)] +

i=1 i#]
6
n Z Z )4\ + ©)F [£2§354§5€6 *x 11 @ Eoovr i, + Z 0i(&2€3848586&i * 1) @ V1

=0 I =1

— Z 0i(£2£3848566)E5 x 1 @ Fi,jvak] +
i#£j]
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6

n Z Z 1) 12002k () + ©)F! [5253545556 *x 11 @ Eoovr i, + Z 0i(€28384€5868 * 1) @ vk

k=1 1T 1=1

= (01(52834856)85) * 1 @ i ju, k]
i#£]

We consider the previous expression as a polynomial expression in A and A 4+ ©. Let us consider
the terms of Equation (6.2)) in A*(\ + ©)*=2, for all k. We have:

Z S (D)3 K(E - 1)(A + ©)F2) [ — 38283648586 * N @ vr gt
k=2 1
6

£2€3846586 * 11 @ Eoovr g + Z 0;(&2€36485868i * 1) @ vr g — Z(ai(§2§3€4§5§6)§j) * N ® Fi,jvl,k] :

i=1 i#]

Equivalently, the coefficient of A3(\ + ©)%, for s > 0 fixed, is:

> (=t [ — 3a€3aEsEe % 1 © U1 542 + EaE3€absls * N1 © Boovr 42 (6.3)
i
6
+ Z 0; (62836485661 * 1) @ V1 542 — Z(@(&fs&&&s)ﬁj) *xn; @ Fi,jvl,s+2] =0.
i=1 i#j

Let us consider the terms of Equation (6.2]) in A2(\ + ©)*, for all s:

N
sz(k__l)AQ()\_i_@)ka( 1+|]|: 2515253*771@}7,]“114

k=2 1 1<J

+2 Z > (-1 D20 k(A + ©)F [ — 38283848586 * N1 @ vkt
=1 1

6
+ £283848586 x N1 @ Egovr i + Z 0i(£2€364&5868i *x 1) @ vk — Z(ai(§2§3§4€5§6)§j) *n; @ Fijure |+

i—1 i#j
i Z S (=0)MENK(k — 1)(A + ©)F ! [362€a&a8ss * nr @ vy ]+
k=2 1
6
n Z Z DNk — 1) (A + ©)F2 [Z 0i(6283848586) * Oinr @ vy
k=2 1 =1

- Z 8r83(§2£3§4§5§6) * N & Fr,svl,k:| +

r<s

" Z 3 (—1)H2002k (A + ©)4 [§2§3§4§5§6 *xn1 ® Eoovr i, + Z 0i(§2€3848586& * 1) @ V1 kg

k=1 1 i=1

=) (01(528364856)85) * 1 @ Fiju, k]
i#£]

Then if we look actually at the coefficient of A2(\ + ©)*, for s > 1 fixed, we obtain:

Z(s +1)(s +2)(=1)+M [ _ Zglgigj * 1 @ Fi,jvf,sw} +

I 1<j
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+2 Z 1) H124(s + 1) [ — 38283848586 * N1 @ V1541 + §283848586 * N1 @ Eoovr,s i1

+ Z 0i(£2£38485868i * M1) @ V1541 — Z(ai(f2£3f4§5£6)§j) * 1 @ F jur sp1|+
i#]j

N Z 1) lis(s + 1)[362€3€4E5E6 * M1 ® Vrgp1]+

n Z 1)Hi(s + 1) (s + 2) [Z 0;(£2€3848586) * Oimr ® V1542

=1

= Z 0r05(£263848586) * 1 @ Fr,g’vl,s+2] +

r<s

+ Z 1) 1245 + 1) [5253545556 * 11 @ Eoovrs+1 + Z 0;(§2€3848586& * 1) ® V1 541

=1

- Z i (£2€3648586)E5) * 1 ® F jur, 5+1] =0.
i#]

Using (/6.3]), we obtain that the expression in the second and third rows is zero, and the last two
rows equal to — 3, (—1)" 124 (s + 1)[~369€364€586 * 1 @ vrs41], then we get, for s > 1:

> (s +2) (=1t [ — > Q& @ Fi,j“LsH} + ) (=) Wis[38083808586 * 1 @ vr s+
I

I i<j

6
+ Z(—l)m”i(s +2) [Z 0i(£26364&586) % Omr @ vrsp2 — Y 0:05(62€38a8586) * N1 @ Frzvrspa |+

i=1 r<s

_ Z 1)1 1243663648566 + 11 © vrs41] = 0.

That is for s > 1:

> (=1 1*"'[ Z&&@*m@F,]wM]+Z<—1>1+I'i[3§2£3§4§5§6*m®vf,s+1]+ (6.4)

I 1<J I

6
+ > (=) [Z 0i(§263€48586) * Omr @ vrsra — Y 0,05(62€3648586) % 1 ® Frzvrsta| = 0.

I i=1 r<s

Let us consider the terms of Equation (6.2)) in A(A + ©)%, for all s. We have:

N
2 Z Z k(A + ©)FIA(—1)H I [ —2 Z §1&i&5 * 1 @ Fi,jvl,k] +

k=1 I i<j

6
+ Z Z k(k —1)(A + ©)F2x(=1) ! [{1 *nr @ vk + & *nr @ Egourk + Z 9i(&1&i *mr) @ vrk
k=2 I i=1
=) Grm® Fl,jvl,k] +

ja«él

+ Z Z 123 () 4 ©)F [ 38283848586 * N1 @ vk + £283848586 * N1 @ Eoovr k
k=0 1
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H'Mm

0;(£2€36485868i * 1) @ vr ) — Z 0;(£2€3848586)E5 * 1 @ F; vy, k}

i=1 i#j
N
DA + ©)F (3608384858661 @ vi 1]+
=1 1
N
+) Y (=) ixE(A + ©)F ! [Z Or(E2€s€4856) * Ot @ V1 — ) OrDs(Eaabalibe) %1 @ Frsvr k| +
Py i=1 r<s

N 6
DD I C  PYPEAC)L [5253545556 x5 @ Egovr e + Y, 0i(€a€séabsboli x 1) @ vp i

k=0 I 1=1

=) 0i(&ats&absle) xm ® Fi,jvl,k] :
i#]
If we look actually at coefficients of A\(A + ©)%, for s > 2 fixed, we obtain:

22 s+ 1 1+\I| |:—2Z§1€i§j *771®Fi,jvl,s+1:|+
1<j
6

+ > (s +1)(s+2) (-1 [51 <11 @ ULy + & xnr @ Bogvreya + Y (618 % 0r) @ vrera
i=1

- ij * N7 & Fl,jvl,s+2] +
J#1

+ Z(—l)lﬂl‘?i [ — 38283848586 * N1 @ v1 s + £283848586 * N1 @ Eoovr,s

+ Z 0;(£2€3648586&i * 1) @ vr s Z(6¢(§2f3§4§556)€j) * 17 ® Fi,jvf,s] +
i#£j

+ Z 1) 1445 [3¢083E48586 % 1 ® vr 5]+

6
+) (=) 4i(s + 1) [Z 0i(€263€48586) * 01 @ vrsr1 — D 0p05(62€s&abslo) * M1 ® Frzvr s |+
I

=1 r<s

6
+ > (=)l [5253545556 11 ® Eoours + > 0i(€a€3€a€soi * nr) ® vr s
I

=1

- Z (£283848586)E5) * 1 @ F v, s:| =0.

i#]
We use to point out that the sum in the fourth and fifth rows is zero. Moreover, again due to
, the sum of the terms in the last two rows equals to — ZI(—l)1+|I‘4i[—3§2§3£4§5§6*m®v175] =
ZI(—l)H‘I'éM [362€384&586 %N @ vr 5. The sum of this term and terms from the first, sixth, seventh
rows is zero due to (6.4)).
The remaining terms give the following condition for s > 2:

6
> (=t [51 *Nr Qv s2 + & kN1 @ Eoovrsia + Y (618 k1) ® 01 sy2 (6.5)
i i=1

=D &*m® Fl,jvl,s+2} =0.
i#1
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Let us consider the terms of Equation (6.2) in (A + 0)%, for all s. We have:

ZZ A+ 0)F 1+|I|<—2251&'53'*771®Fz‘,jvl,k>+

pa i<
N 6
2 Z Z k(A 4+ ©)F 1 (—1)t+H] [51 *nr @ Egovr g + Z 0i(&1&iér @ vrg) — ij * 11 & F1501
—1 I i=1 A1

N
+ 30D Kl = DO+ O ) e @ v + D0 ST k(= DO+ 0)F (=)0 @ vy
I

k=2 1

Z 1+IIIQZ A+ @)’ngl 36263848586 * M1 @ vy k] +
T

_l’_

+
1= 1= [M= L

> (=12 + ©) [Za (263€a€566) * Di(nr) @ vr g — > 0,05 &@@&f@*m@%vm}
1

i=1 r<s

If we look actually at coefficients of (A + ©)%, for s > 3 fixed, we obtain:

Z(_UH\” ( -2 Z §1&&*xnr ® Fi,j”[,s) +

I i<j

+ 22 (s + 1)(=1)" {51 * 11 @ Eoovr,s+1 + Z 0i(§18i€1) @ Vi1 — Y & xmr @ Fyjur, s+1:|
=1 j#1

+Z (s + V(=DM wnr @ vraea] + D (s + D(s + 2) (=) [0ins @ vr s
T

+Z 1) 123 [36,€364€586 * 1 @ vre1]+

6
+ > (=12 [Z 0i(€28364€586) % Di(n1) @ v — Y 0r05(€a638a&sle) * 1 ® Fr,gvl,s:| =0.
i

=1 r<s

Using (6.4)) we get that the sum of terms from the first row and the last two rows is zero. Using (6.5))
we obtain that the sum of terms from the second row equals to —2 3" (s+1)(=1) " HI[& xn;@vr s 11].
We obtain that for s > 3:

—2 Z s+ D))" wnr @vpaa] + ) s(s + D))" M—& %y @ vy o41]
I
+ Z s+1)(s +2) (=) 81 @ v1440] = 0.
I

That is for s > 3:

> DG o @ vr ] + > (D)0 @ vrepa] = 0. (6.6)
I I
If we look at terms of involving ng with |K| <5 and 1 € K, we get:
- Z ()" g @ vr,s41] = 0.

[11<4,1¢1

From this we get, using linear independence of the terms &; x 7y for different I’s, that vy ; = 0 when
|[I| <4,1¢ I and k > 4. (Since we could have chosen at the beginning a general §; instead of
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&1, condition 1 ¢ I is not necessary). If we look at terms of involving nx with |K| = 4 and
1¢ K, we get:

OnKu{1y ® VEUf1},s42 = 0.

From this we obtain that v;y = 0 when [I| =5, 1 € I and £ > 5. (Since we could have chosen
at the beginning a general ¢; instead of &1, condition 1 € [ is not necessary). The terms of
involving 7] are:

771< & Uk 542 = 0.
From this we obtain v, = 0 if £ > 5. OJ

Therefore, for a singular vector m, T'(m) has the following form:

T(m) =0 O @vra) + 03 m@v13) +O°O _mr@ura) + 0O _m@vra) + (O m ®@wvro).
I I I I I
(6.7)

Following [BKL2|, we write the A—action in the following way, using Proposition and Lemma
0. ol

(T o fx)() =bo + A(Bo — ao) + A*Co + (A + ©)[ag + bi]

+ (A4 0)%[ar + bo] + (A + ©)°A(B2 — a)

+ (A +0)3[ag + b3] + (A + ©)*X\(B; — a3)

+ (A +0)Yaz + ba] + (A + O)*N(By — a4)

+ A+ OBy —a1) + (A + O)N*Cy
+ (A +0) /\202
+(A+0)%A
+ (A +©) >\204 + (A +0)°ay,

where the coefficients a, b, B, C depend on f and are explicitly defined as follows. For all0 <p <4
we let:

apl) = S (-DIMDN ] = 2)(F x1) 0 01 (63)
I _

bp(f) = Z(_1)(|f\(|f\+1)/2)+\f||f\ - (_ ) Z(a f) ( 2"71) QUrp — Z(arasf) * N1 & Fr,s'UI,p ;

I - =1 r<s

_ 6
By(f) = S (=) WD £y @ Bogur, — (—1)P0 S 04 £ % 1) @ o1,
I - =1

(=P S (@f)6) e © Figony)|
1#]
Cp(f) = Y (=) WD+ [— > (&g xm @ Fi,jm,p] .
I i<j
We also have:
(T o f;)(ﬁi) =bdy + )\(Bdo — ado) + )\QCdo + (/\ + @)[ado + bdl] + ()\ -+ @))\(Bdl — adl) (6.9)

+ (A +0)A2Cd; + (A + 0)*ady + bda] + (A + ©)*A(Bda — ads) + (A + ©)*A2Cdy
+ (A + 0)ady + bds] + (A 4+ ©)3\(Bds — ads) + (A + ©)3)\2Cd3
+ (A + 0)*ads + bdy) + (A + ©)*N(Bdy — ady) + (A + ©)*]N2Cdy + (A + ©)%ady,

where we mean that ad, = a,(f*), bd, = b,(f*), Bdp, = B,(f*), Cdp, = Cp(f*).
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Proof of Lemmal[6.5 Let us analyze condition S2 for f = ¢;:

d N2/ ek o
Y (T(fj A+ ZA2(£j )\m))) Ao =0

Using notation , we obtain:
By + b1 + @[Bl + a1+ 2b2] + @2[2(12 + By + 3()3] + @3[3613 + Bs + 4b4] + @4[4a4 + B4] = 0.
Therefore:

4aqs + B4 =0,
3as + By +4by, =0,
2a9 + By + 3b3 = 0,
By + a1+ 2by =0,
( Bo+b1 =0.

Let us analyze explicitly equation By + a1 + 2by = 0 for f = ;.
The coefficient of the terms of By + a1 + 2b2 = 0 that contain 7; only are:

—vp1 + Eoovg1 + 5(—vp1) = 0. (6.10)

Now we analyze (By+ b1)(£;) = 0 and we consider the coefficient of the terms that involve 7; only.
We get:

Eoovgo — Hvgo = 0. (6.11)

We focus on (2as + Bz + 3b3)(&;) = 0 and consider the coefficient of the terms that involve 7; only.
We get:

—2vp 2 + Eoovp2 — Svg g = 0. (6.12)

Now let us analyze By(&;) + b1(&;) = 0. The coeflicient of the terms in 1 only come from b; when
g = n; and we obtain:

yq=0. (6.13)

Now let us analyze (B + a1 + 2b2)(§;) = 0. The coeflicient of the terms in 1 only come from by
when g = 7; and we obtain:

Let us analyze condition S2 for f = &;£;§;. We have:

d

o (T 3 — X (6€160)507))) o = 0.

Using notation and , we obtain:

By + b1 + @[Bl + a1+ 2b2] + @2[2a2 + By + 3b3] + @3[3a3 + Bs + 4[)4] + @4[4(14 + B4]
—1 {Bdo + bdy + @[Bdl + ady + 2bd2] + @2[2ad2 + Bds + 3bd3] + @3[3ad3 + Bds + 4bd4]
+0"'[4ady + Bdy]} = 0.
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Therefore we obtain:

(4ay + By — i(dady + Bdy) = 0,
3ag + Bs + 4by — i(3ads + Bds + 4bdy) = 0,
2as + Bg + 3bs — i(2ady + Bds + 3bds) = 0,
By + a1 + 2by — i(Bdy + ady + 2bds) = 0,
By + b1 —i(Bdg + bdy) = 0.

Let us now analyze condition S3 for f = &¢;&,. We have
(T (€& y11t — I ((€i&5)" \171))) =g = 0.
Using notation and , we obtain:

bo + Olag + b1] + ©%[a1 + by + O%[as + bs] + ©*[as + ba] + Oay
—1 {bdo + Olady + bdy] + @2[ad1 + bda] + @3[ad2 + bds] + @4[ad3 + bdy] + @5ad4} = 0.

Therefore we obtain:

aq — iad4 = 0,
as + by —i(ads + bdy)
ag + bz —i(ady + bds)
ay + by — i(ad1 + bdg)
ag + by — i(ado + bdl)
bo — ibdg = 0.

)

)

0
0
0,
0

i

Hence for f = &;&;&;, combining, by S2, By + a1 + 2by — i(Bdi + ad; + 2bdz) = 0 and, by S3,
a1 + by —i(ady + bda) = 0, we obtain By —a; —i(Bd; — adi) = 0. We take the coefficient of 1;n;n
and obtain:

Eoovg1 — 3vg1 —vp,1 = 0.

But we also have by that Eoovg; — 6vg; = 0, thus vp; = 0.

Moreover for f = n;n;n, we know, by S3, that ag + b1 — i(ady + bdi) = 0 and, by S2, that
By + b1 — i(Bdy + bd1) = 0. Hence ag — By — i(ady — Bdy) = 0. We take the coefficient of 7;n;mny
and obtain:

0 =vpo — (Eoovp, — 3vp0) = —Eoovg,o + 4vp 0.

But by we have Foovg o — dvgg = 0, thus vy g = 0.

Finally for f = §£;&, we know, by S3, that as + b3 —i(ads + bd3) = 0 and, by S2, that 2as + By +
3bs — i(2ady + Bda + 3bds) = 0; therefore —ag + Ba — i(—ada + Bds) = 0. We take the coefficient
of n;n;n, and obtain:

0= —vpo + Eoovg2 — 3vg 2 = Eoovp o — 4vg 2.

But by we have Foovg o — Tvgo = 0, thus vy = 0.

So far we have shown that, for all i € {1,2,3,4,5,6}, vpo = vg1 = vp2 = V(5)1 = V()2 = 0.

Let us now show that v(;; = 1. By condition S2 for f = &; we know By + by = 0. We take the
coefficient of 7; and obtain:

0=-—m®vgn1+m® Fjvgo-
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Therefore v = 0.
Let us analyze the condition S1 for |f| = 0:

d2
0:

(LMt — i(=1)°A3((€0)a))) =

2Co + 2B + 2by + A[4C + 2By — 2as] + 2)\2Cy + (A 4 ©)[2C) + 4By + 2a9 + 6bs]

+ (A4 ©)A[8Cy + 6Bs — 6as] + (A + ©)A26Cs + (A + ©)%[2Cs + 6B3 + 6as + 12b]

+ (A4 ©)2A\[12C5 + 12By — 12a4] + (A + ©)2X*12Cy + (A + ©)3[8B4 + 12a4 + 205

+ (A +0)3A16C, + (A + ©)*2C,

— 6iX {bdy + AN(Bdy — adg) + N*Cdy + (A + ©)[adg + bd1] + (A + ©)A(Bdy — ad1) + (A + ©)A\*Cdy
+(\+ ©)%ad; + bds] + (A + ©)2\(Bdy — ads) + (A + ©)*\2Cds

+(\+ ©)?lady + bd3] + (A + ©)3\(Bds — ads) + (A + ©)*\2Cd3

+(A + ©)*ads + bds] + (A + ©)*A(Bdy — ads) + (A + ©)*N2Cdy + (A + ©)°ads }

— 6iA% { Bdg + bdy + \[2Cdy + Bdy — ady] + \*Cdy + (A + ©)[Bd; + ad; + 2bds]

+(A + ©)A[2Cd; + 2Bdy — 2ada] + (A + ©)A*2Cds + (A + ©)?[Bds + 2ads + 3bds)]

+(A 4+ ©)2\[2Cdy + 3Bds — 3ads] + (A + ©)?A?3Cd3 + (A + ©)3[Bds + 3ads + 4bdy]

+(\+ ©)2A\[4Bdy — 4ady + 2Cds] + (X + ©)3X%4Cd,

+(A + ©)'[Bdy + 4ads] + (A + ©)*A2Cdy }

—iX* {2Cdy + 2Bdy + 2bdy + A[4Cdy + 2Bds — 2ads] + 2X*Cds + (A + ©)[2Cdy + 4Bds + 2ady + 6bds] }
+(X + ©)A[8Cds + 6Bdz — 6ads] + (A + ©)A*6Cd3 + (A + ©)*[2Cdy + 6Bds + 6ads + 12bd4]}
+(A+ ©)?A[120d5 + 12Bdy — 12ads] + (A + ©)*A212Cdy + (A + ©)*[8Bdy + 12ady + 20ds)}

+(A +©)3A\16Cds + (A + ©)*2Cdy. }

We consider this expression as sum of polynomials in the variables A and A + ©. The condition
reduces to the following system of equations:

Cy =0, (6.15)
C3+ 4By + 6a4 =0, (6.16)
Cy + 3ag + 3Bz + 6by = 0, (6.17)
Cy + ag + 2By 4 3b3 =0, (6.18)
ads + bdg = 0, (6.19)
2Bdy + 3ady = 0, (6.20)
Cdy =0, (6.21)
8Cy — 3iady — 3ibds = 0, (6.22)
Bds + ads + 2bdy = 0, (6.23)
— 5Cds — 8Bdy + 3ady = 0, (6.24)
Cdy =0, (6.25)
203 + 2(By — a4) — iady — ibdy = 0, (6.26)
20y — 2iBdy — iady — 6ibds = 0, (6.27)
— 5Cdy — 6Bds + 2ads — 2bd, = 0, (6.28)
—10Cds — 4(Bdy — ady) = 0, (6.29)
Cdy =0, (6.30)
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4Cy + 3B3 — 3as — 3iady — 3ibdy = 0, ( )
C3 — 2iBdy — 2ibdy = 0, (6.32)
—10Cdy — 8Bds + 5ady — 3bds = 0, (6.33)
— 10Cdy — 3Bd3 + 3ads = 0, (6.34)
2C1 + By — ag — 3ibdg = 0, (6.35)
Cy — 6iBdg + 3iady — 3ibd; = 0, (6.36)
—10Cdy — 4Bd; + 3ady — bds = 0, (6.37)
5Cd; + Bdy — ady = 0, (6.38)
Cdy =0, (6.39)
Co+ Bi + by = 0. (6.40)

We know by (6.37) that:
bdy = —10Cdg — 4Bdy + 3ad; = —4Bdy + 3ad;.
Indeed Cdy = 0 since f* = .. Using this relation we have that Equations (6.16]), (6.26]), (6.32)
reduce to:
C3+ 4By + 6ay =0,
203 + 2(B4 - CL4) - iadl — ibdg = 203 + 2(B4 - a4) - iadl — i(—4Bd1 + 3ad1) = O,
C3 — 2iBdy — 2ibdy = C3 — 2iBd; — 2@(—4Bd1 + 3ad1) =0.

This can be rewritten as:
C3+ 4By + 6a4 =0,
2C5 + 2(B4 — a4) — 4iady + 4i1Bdy = 0,
C3 — 6iady + 6iBd; = 0.

Now we consider the following linear combinations of the three equations:

3By + Tay + 2iady — 2iBd; = 0,
B4 — a4 + 4iad1 - 4in1 = 0.

Now ad; and Bd; involve only terms in 7, with vy, that is 0. So a4(1) = 0. Then, using that
[fI=0:
as(f) = ngn(—2771) ®ura =0,
I

where sgn = 41 and is not needed explicitly here. Using linear independence of distinct n;’s, we
get vr 4 = 0.
Now let us consider Equations (6.17)), (6.31)), (6.36]):

Cy + 3az + 3B3 + 6by =0,
402 + 3B3 - 3&3 - 3iad0 — 3’ibd1 = 0,
Cy — 6iBdy + 3iady — 3ibdy = 0.

We observe that by(1) = 0, ady and Bdp involve only terms with vp,0 that is 0, bd; involves only
terms with vg 1, vy where [I| = 1,2, that are zero. Then these equations reduce to:

Cy 4+ 3a3 + 3B3 =0,

4C9 + 3B3 — 3a3 = 0,
Cy =0.
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From this we have that ag(1) = 0. As before we deduce vy 3 = 0.
Thus we have shown that, for a singular vector m, T'(1m) has the following form:

T(ﬁ)=@2(2m®vm) +®1( Zm®v1,1> +<Zm®v1,0>-

1]>2 111>3 1>1

This means that there are singular vectors m of at most degree 8 and, in particular, T'(m) has the
following form:

T(m) = 6?2 Z nr ®vra degree 8,

11|=2
T(m) = 62 Z nr @ury degree 7,
1I|=3
T(m) = ©? Z nr®@uvrs  degree 6,
|I|=4
T(m) = Ck Z nr Qv+ O Z nr@vry + Z nr ®wvro degree 5,
1=5 |1]=3 11=1
T(m) = Ck Z N @vi2+ 6O Z nr v+ Z nr @wvro degree 4,
|11=6 |1]=4 1]=2
T(M)=0©> m@uvra+ » n®uvrg degree 3,
[1]=5 |7]=3
T(m) =0 Z nr v+ Z nr ®wvro degree 2,
\1]=6 |1]=4
T(m) = Z nr®@uvro degree 1.
|I|=5

If we look at vectors of degree 8,7 and 6 we can use the relation (By 4+ a1 + 2b2)(f) = 0 from S2
for f = ¢;. In both these three cases it reduces to ba(f) = 0 since there are no vy ;’s involved. We
get that:

bg(fj) = ngnI 8j’f}[ (024 V1,2 for ’I| = 2,3,4,
I

where sgn = +1 and is not needed explicitly here. By linear independence we get vro = 0 for
lI| =2,3,4. O

6.2 Homology

In [BKL2|, Boyallian, Kac and Liberati completely classified the highest weight singular vectors for
CKg, using the reduction found in Lemma Using an analog of Remark [4.8] they obtain the
morphisms between degenerate modules for C' K¢ represented in Figure We point out that the
Verma modules represented in Figure [6.1] are all degenerate except for the one represented at the
origin of the third quadrant.

The aim of this section is to compute the homology of the complexes in Figure in the first and
third quadrant. The computation of the homology for the second quadrant will be done in the
future. The first step for the computation of the homology is to find an explicit expression for the
maps in Figure [6.1
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Remark 6.7. From now on we will often use the following isomorphism of Lie algebras between
50(6) and sl(4) = (2;0;,2;0; — x;0j,1 < i # j < 4) given by:
U :sl(4) — 50(6)
—22302 —> E_(c _c,)s
22903 — B¢, —cy),
r20 — 303 — ha,
—22901 V> E_(cy_cy)s
22102 — E(cy—ey),
2101 — 2202 — ha,
—22403 —> E_(cyyey)s
21304 — E(EQ_,_EB),

2303 — 2404 — hs,
and extended uniquely to a Lie algebra isomorphism. We will call g§° = s0(6) = sl(4).
Remark 6.8. By a straightforward computation, it is possible to show that g_; is an irreducible

g5’ —module of highest weight (1,0,0) with respect to hy, ho, hg. In particular g_; is isomorphic to
A?((C*)*) and the isomorphism is given by:

&y +i&y — 82;3 A 8m4, &y —i&y — —8301 A sz, (6.41)
&y + i3 — —8902 A a;m, &y — i3 — —&El A GxS,
&6 + 15 ¢ Opy N Oy, &6 — €5 ¢ —Opy N Ogs.

Motivated by relations (/6.41]), from now on we will use the notation:

w34 = M2 + Ny, wig = —n2 + N1, (6.42)
Wo4 = —(774 + Z‘773), w13 = —14 + 113,
wig = N + N5, waz = —16 + 1)5.
We point out that [wsg, wia] = —40, [wag, wis] = 40, [wig, wa3] = —4O and all the other brackets
between the w’s are zero.
Let
AL = e, )\2:%’ /\3:%,

be the fundamental weights of s0(6) extended by \;(t) = 0. We denote by A = njA; + nada + ngAs
a dominant weight. Therefore ni,no,ng are the weights with respect to hy, ho, hs. We use the
notation F'(ny,ng,n3) to indicate the irreducible so(6)—module of highest weight .

Following [BKL2|, the Verma modules are denoted by M (ng, niA1 + nada + n3Ag) where ng is
the weight with respect to the central element ¢.

For the degenerate modules represented in Figure [6.1, we will use the following notation:

le’m =M (—nl — %,nl)\l -+ 713)\3) = U(g<0) & VXLM,

=S+ 2mahe + gk ) = Ulgo) © V3",

M = M (n1+ 2+ 4, +nzde) = Ulg<o) © VA",

M = M (



6.2 Homology 149

Figure 6.1

- M(—n1 — 5, mA1 + n3A3) A

o ///////

Ve,
LS
S S
S S
N S

VA

)

)

\\\\

S —0

nz2 _n3
C M(ny+% + 4,017 + nodo) M3 =5 +2,mA +n3ds) B

where the modules M 4’s are represented in the first quadrant, the modules Mp’s in the second
quadrant, the modules M¢’s in the third quadrant and, as so(6)—modules, V" = F(ny, O, ng),
VP = F(0,n9,n3), VA" = F(nl, n2,0). The element t acts as multlphcatlon by —ni — % on
Vit as multiplicatlon by %2 — % 4+ 2 on V4>™ and as multiplication by ni + % +4 on V",

Remark 6.9. We will think VZ‘“ n3 as the irreducible submodule of
Sym™ (A*((C*)*)) ® Sym"*((C*)*)
generated by the highest weight vector vy := (Ozy A Op, )" 0)* where {01, 02,05,04} is a basis for
(Ch)*.
We will think V5>" as the irreducible submodule of
Sym™ (C*) ® Sym™ ((C*)*)

3

generated by the highest weight vector vy := 220}® where {x1, x2, 3,24} is the standard basis of

C* and {01, 02, 03,04} is a basis for (C*)*.
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We will think V" as the irreducible submodule of
Sym™ (A\?(C*)) @ Sym™(C*)

generated by the highest weight vector vy := (z1 A z2)™ x]? where {x1,x2, 23,24} is the standard
basis of C* and {z; A z;} is a basis for A?(CH).

We observe that ¢ acts as Z:2x11#20 +m38§"3 +24%4 o1 vectors of Vit as 2108, $220z) ;x38m3 040, +2
3318931 +x28a:2 +x38z3 4240z

on vectors of V5> and as 4 + 4 on vectors of V"™

In [BKL2], Boyallian, Kac and L1berat1 completely classified the highest weight singular vectors
for C K, using the reduction found in Lemma they obtain the following classification.

Theorem 6.10 ([BKL2] Theorem 4.1). Let F' be an irreducible finite—dimensional go—module of
highest weight = (ng,n1A1 + nade + ngAg). Therefore a vector in Ind(F) is a nontrivial highest
weight singular vector if and only if it is (up to a scalar) one of the following:

(a’) n = (%a )\2)7
1M5q =0° (W34 ® T3 + Was ® Ty + Wis ® 71|

Ouw 4
1 [w23w14 — W14W23 + W4W13 — w13w24] ® T3
®w24
+ 1 [w23w14 — Wi4W23 — W34W12 + w12w34] & T2
Owiy
4 [w24w13 — W13W24 — W34W12 + w12w34] ® 71 + Owszgwogwiy @ T4
+ Zﬁ (w13w24 - w24w13) ( — Wi4w23 + w23w14) ® T3
+ i (w34w12 - w12w34) (w23w14 - ’w14’w23) & T2
16
W14
+ ZE (w34w12 — wigw3s) (Waaw13 — Wiwas) ® T1;

(b) n = (% +4,TL2)\2), with n9 Z 2,

> w13

na—1
msp 27 (w14w23 — Wo3W14 + W12W34 — w34w12) ® x377”
W24 ng—2
+ 7( 23W14 — W14W23 + Wi2W34 — W34W12) & T4ox]
w23 no—2
+ 7 (w13w24 — W24W13 + W12W34 — w34w12) ® x3waT
+ 7 (w24w13 — W13Waq — W34W12 + Wiaw3e) @ T4x 2
+ 7 (w14w23 — Ww14 + Waw13 — W13Wa4) @ Tox(
w34 ng—2
+ T (w23w14 — W14W23 + W24W13 — w13w24) ® x3T4TY
2 2
+ wa4waawi4 ® T2 wipwaswes @ 23T
2, mp—2 )
— W34wi3wa3 @ TFT)? T — wigwizwig ® 17,

(c) p= (=% +2,n3)\3), with nz > 0,
M3e = W3awwig @ 0%
(d) p=(n1+ % + 4,01\ +n2)e), withny > 1, ng >0,

Mg =
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= —wiz ® (x1 Ax2)"x)? — w1z @ (21 A zs)(x1 A 952)”1*13:7112
1
+ waz ® A Tm D) [2na(z1 A To)M a3zt — 2ng(xy A x3)(zy A mg)™  Lagat2 !

—2(ny + 1) (22 A xs) (21 A m2)™ 12]?]+

+ w3y ® [ — 2ng(w1 A xg) (21 A xz)"l_lwgﬂv’frl

2(n1 +n2 + 1)
+2(ny — 1)(z1 A zg)(x2 A 23) (21 A l’g)nl_2$?2 + 2ng(x1 A xg)(x1 A 1:2)”1_1304x?2
— (g Azg)(z1 Ax2)™ 12 = 2(ng — 1) (21 A xs) (22 A za) (21 A 22)™ 22}
1
2(n1 +ng +1) [
+ (2n1 4+ 2)(z2 A xg) (21 A xg)"lflx’fQ] —wig ® (21 Axg)(x1 A xg)"lfla;’l”;

-1

— Wy ® — 2ng(x1 A xg)n1$4$7f271 + 2no(x1 A 2g) (21 A :Ug)"l_l:ngx?frl

(e) p= ("% — 5 4 2,n2X2 +n3A3), withny > 1, n3 >0,
e = w34 @ 12 1 x3053 + woy @ 272 20l + wiy @ 212073,
(f) = (—n1 — 5, n1A1 +n3A3), withny >0, n3 >0,
myp = wss @ (O3 A Ox)"0)°.

We point out that, by Theorem there are only nontrivial singular vectors of degree 5, 3
and 1.
We define, using (j5.4)), the following map between the modules My in the first quadrant:

ns

n
Va:M (—m — ?3,%1)\1 + ng)\g) — M <—(n1 — 1) — ?, (n1 — 1))\1 + n3/\3) (6.43)

Va=w3s @034+ way @ 0a4+wiy @014+ wiz2® 02+ w3 ® a3+ wiz® o3,

where 0; ; denotes the derivative with respect to the element 9; A ;. We assume that 0; ; = —0;;
for all 4, j.

Remark 6.11. The map V 4 is constructed so that it sends the highest weight vector (03 A 04)™ 0}
of M(—m — %, niA + 7”L3)\3) to:

m = wsgy ® 711(83 A 84)”1_1623

that is the highest weight singular vector of M (—(n1 —1) =%, (n1 — A + ng)\g) found in The-
orem

Lemma 6.12. The map V 4, defined in (6.43)), is a morphism of g—modules and V2 = 0.

Proof. The map V 4 commutes with g« by (5.4). By Remark and Lemmas it follows
that V4 is a morphism of g—modules. The property V,%x = 0 follows from the fact that V4 is

a map between Verma modules that contain only highest weight singular vectors of degree 1 and
there are no singular vectors of degree 2, by Theorem [6.10) O

We call V3 the g—morphisms from MB{"S to Mg’”?’fz, for all ng > 1, that map the highest
weight vector ;% of VX’”S to the highest weight singular vector of degree 3 of Mg’"372 found in
Theorem We point out that V3V 4 : Mim — Mg’n3_2 is 0 since there are no highest weight
singular vectors of degree 4 due to Theorem The morphisms V3 are represented from the first
to the second quadrant in Figure [6.1
We call V5 the g—morphism, from Mg’l to Mg’l, that maps the highest weight vector 0, of Vg’l
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to the highest weight singular vector of degree 5 of Mg’l found in Theorem We point out that

V5Va4 Mi{l — Mg’l is 0 since there are no highest weight singular vectors of degree 6 due to
Theorem [6.10] The morphism V5 is represented from the first to the third quadrant in Figure [6.1
We now compute the homology for the first quadrant. We call M4 = @n17n3M7A}1’n3 and V4 =
Oy ng V™"

Following [KR1], let us consider the filtration on U(g<o) as follows: for all i > 0, F;U(g<o) is the
subspace of U(g<o) spanned by elements with at most 7 terms of g—o. Therefore:

C= F()U(g<(]) C F1U(9<0) C..C F¢,1U(g<0) - FiU(g<0) C ...,

where F;U(g<0) = g<0Fi—1U(g<0) + Fi—1U(g<0). We call ;M4 = F;U(g<o) ® V4. We have
that VaF;Ma C Fy1 M4 and the filtration is bounded below. Then we can use the theory of
spectral sequences; we first study Gr M 4. We consider the subalgebra gz of g given by the even
elements, that, since the grading is consistent, is gg = @®;>-192;. On gg we consider the filtration
g9 =L_1D Lo = ®i>002 O L1 = Di>102i-- -

Lemma 6.13. For all j > —1 and i > 0, we have:
LjFiMA C Fi_jMA. (6.44)
Proof. The proof is analogous to Lemma [5.32 O

By , we know, since g = Gr g, that the action of gz on M4 descends on Gr My.
We point out that, using the Poincaré—Birkhoff—Witt Theorem, we have GrU(g<o) = S(g—2) ®
A(g—1); indeed we have already noticed that in U(g<o), for all i € {1,2,3,4,5,6}, n? = ©.
Therefore, as gg—modules:

GrMa = GrU(g<o) ® Va = S(g—2) ® A(g-1) ® Va.
From ([6.44]), it follows that L; annihilates G4 := A(g—1) ® V4. Therefore, as gg—modules:
Gr Ma = S(g—2) ® (A(g-1) ® Va) = Indj, (A(g-1) @ Va).

We observe that Gr M4 is a complex with the morphism induced by V4, that we still call V 4.
Indeed VAF;My C Fy1 1My for all 4, therefore it is well defined the induced morphism

Va:Gry My =FMa/F,_1Mag — Grig1 Mg = Fip1Ma/F;Ma,

that has the same formula as V4 defined in , apart from the fact that the multiplication by
the w’s must be seen as multiplication in GrU(g<o) instead of U(g<o).

Therefore we have that (G 4,V 4) is a subcomplex of (Gr My, V 4): indeed it is sufficient to restrict
V4 to Ga; the complex (Gr M4,V y) is obtained from (Ga,V4) extending the coefficients to

S(g-2).
We point out that also the homology spaces H™"(G 4) are annihilated by L;. Therefore, as
gg—modules:

H™"(Gr M) 2 5(g_2) ® H™"(G 1) = IndP (H™"(G.4)). (6.45)

From (6.45)) and Proposition it follows that:

Proposition 6.14. If H™"(G4) =0, then H™"(Gr M4) = 0 and therefore H™"™(M4) = 0.
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We introduce the notation, for all ng > 0:
n, 0,n
VA,3 =V,

ng _ y,/0,n3
VI = Vi,

We will call Vi = @, V)7, Vi = @ VP, Gy = Ng-1) @ Vyr and G = N(g-1) @ Vi

Let us consider the evaluation map from V4 to Vs, that maps 91 A 02,01 A 03,01 A Oy, 02 \ 03,02 A
04,03 A 04 to zero and is the identity on all other elements; we can compose this map with Vg
and obtain a new map, that we still call V3, from G4 to G5/. Analogously we can consider the

inclusion of G into G'p and compose the map with V3; we obtain a map from G 4 to G that
we still call V3. We define:

Gao =Ker(Vz: G4 — Gpy), Gpo =CoKer(Vz: G,y — Gp).
The map V 4 is still defined on G 40 since V3V 4 = 0.
Remark 6.15. From its definition, it is obvious that G"\u™ = G"}""™ if ny > 0. Therefore:
H""(Gy) = H™"™ (G g0).
Remark 6.16. Let us focus on some technical computations. We point out that, using Remark [6.7}

—t+i&i& +ils& +isg  —t— (hi+ ") —hy 2100 + 200y + 2305 — 7404

2 2 2
Using bracket (2.1]), we obtain:

R I e
- + ifng —|—2Z£3£4 —+ i£5£6 ’ 64 B 2'63- _ 54 B 2,537 [—t + 'Lfl£2 +2Z£3£4 + Zf5£6 : 64 + ’Lfg- — O,
b4 i1t +2¢53§4 Ral 1 SR DR b ST +2¢£3£4 i85 L] o

We also have, using Remark

~t—ig6 — i€ i _ —t (M) s
2 - 2 T

Using bracket ([2.1]), we obtain:

[—t —i€1& —2z'§3§4 — €586 . i§1— _o, [—t —i&1& —2i€3§4 — 16586 6t i&— — & il
[—t — i&1&s —2i§3§4 - i§5§6’§4 B ng_ o, [—t —i&16o —2i§3€4 - i§5§67§4 L i&)_ — &4+ ik,
[—t —i&1&2 —2i§3§4 - 735556’56 - 2.55_ — 0, [—t —i& & —2i€354 - i§5§67£6 " i§5- — &6+ is.

Motivated by Remark we introduce an additional bigrading:

(Va)ip,q = {f €eVy 2 <_ 101 + 202 -2F$3(’“)3 - 1:434) f=pf, (—22404).f = qf} ,  (6.46)
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(Ga)p,g = Na-1) @ (Va)|p,q)-

We observe that, for elements in (V") 4, We have p 4 ¢ = 2n; + n3 that is the eigenvalue of
—2t on V" The definitions can be extended also to G 4e.

We define d' := wig ® 012 + w3z ® Oa3 + w13 ® 01,3 and d” = w34 ® O34 + wag @ Oo4 + w14 ® O1 4,
so that d + d" = V 4.

Using Remark [6.16] E and notation , it is an easy check that d' : (Ga)|p.q — (Ga)|p—2,q and
d": (Ga)jpg — (Ga)jpg-2)-

By Remark [6.8] it follows that that (d')? = (d")? = d'd” + d"d’ = 0. We point out that:

ni,n3 TL1,TL3
VA @n1+n3 k:G —)@n1+n3 =k— 1G

Therefore @, +n3 _xG"}""™ is a bicomplex with bigrading (6.46)), differentials d’,d” and total differ-
ential V4 = d' + d", the same holds for ©, 1ma G5 Now let:

/\i = Awsg, wog, wi4) and A = A (wig, w13, wos).
We define:

GA(av /B)[p,q] /\ /\+ (VA)[p ql-

We point out that o — p and g8 — ¢ are always even, indeed «a (resp B) is the eigenvalue of
2 (_m181+x282+r383—x484) (
2

b
resp. —2x404) on elements in /\ /\ (VA)[p ¢ and the elements of

/\_Tp (resp. /\%) have even eigenvalue with respect to 2 <— resp. —2x40y),
due to Remark [6.16]

If «v is even, only even values of p occur. If « is odd, only odd values of p occur. The values of
and ¢ are always even.

We point out that o + 8 > 0. Indeed this value represents the eigenvalue of —2¢ on elements in
Ga(a, ﬂ)[%q] and —2t has non negative eigenvalues on V4 and eigenvalue 2 for elements in g_;.
Moreover 3 > 0 since (Va)[,q # 0 only for ¢ > 0.

We have that G4 = @a G a(q, B), where Ga(a, ) = @ ¢Gala, B)pq- By Remark it follows
that V4 : Ga(a,8) = Ga(a, B). The same definition holds for G 4o(c, 8)} 4. The computation of

homologies of G4 and G40 can be reduced to the computation for G 4(«, 8) and Gae(«, ).

2101 +x202+1303—2404 > (
2

Lemma 6.17. Let o, B be such that 5 >0, a+ 5 > 0.
As <x181 — 1’282, xlag, xg(?l, 1‘282 — 1‘383, xgag, .%'3(92, .%'183, x381>—m0dules:

GZFO’”S:&JFB(O‘ B) o =~ A0 /\0 @ (V 0a+6)
Im VA A [a, 8]

H™""(Gala, ) =0 for (n1,n3) # (0,a + B).
Proof. We split the proof in different cases.

A) We first analyze the case of « odd. We point out that p can assume only odd values. We
modify the bigrading in order to obtain a new bigrading and use the theory of spectral sequences
for bicomplexes.

For every p,q we denote by p = %,Ej = 4. We will denote ( AFa

CNJA(Q,B)U—,;@] = Gala,B)pq- We now have that d’ : Galo, B)5 5a — Ga
CN?A(a,B)b—,;@ — éA(a,B)[ﬁ—qv,l]. We have still that G4(«, 8) = @5, ~GA(a

four subcases.

(Va)[p,g- We denote
(o, B)p-1,3 and d” :
B)ipg- We split into
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1. We first consider the case 8 > 6 and a+ 8 > 6. We use the theory of spectral sequences of
bicomplexes. Let us consider G 4(«, ) with the differential d”:

d"’ a—(2p—1) 5*25_’_1 4" a—(2p—=1) B-—2q d"’ a—(2p—1) ,3*2(?_1 ~ d"

— A_ 2 /\+2 & (‘7A)[ﬁ,q~—1} — A_ 2 /\+2 (9 (‘7A)[]’57q‘] — A_ 2 /\Jr2 ® (VA)[ﬁgﬂ_l] — .

a—(2p—1) a—(2p—1)

It is the tensor product of A_ 2 and the following complex, since A_ 2

in d":

is not involved

d// ~ d// ~ d// ~ d// ~ d//
0<«+— /\i &® (VA)[I?%—?)} — /\3_ &® (VA)[ﬁ,g—Q} — /\i_ ® (VA)[@%—H — /\3_ ® (VA) ﬁﬁ] — 0.

We have that condition 8 > 6 assures that for ¢ the value g — 3 is acceptable since it is

positive. This complex is exact except for the right end, let us analyze in detail.

i: Let us consider the map d” : A} ® (‘7,4)[5 g — AL ® (‘7,4)[]5@71]. We compute the kernel.
~ 72
Let f € /\OJr ® (VA)[ﬁg]. We have:
)

’2

d"(f) = w34 ® O34f + way @ Oaaf +wig @ A1 4f.

It is zero if and only if O34 f = O2uf = 014f = 0.

ii: Let us consider the map d” : /\3r ® (17,4)[5@_1] — /\3L ® (Va) |- We compute the
)

5,52
kernel. Let v = w34 ® p1 + wog ® p2 + w14 @ p3 € /\i ® (VA)[ﬁ,gfl]' We have:

d"(v) =wssway ® Do ap1 + W34w1401 4 @ P1 + Waaw34 ® O3 42

+ waawi4 ® O ap2 + Wi14wss & 03 4p3 + W14wW2402 4P3-

This is zero if and only if:

O24p1 — O3.4p2 = 0,
01,4p1 — 03.4p3 = 0,
O 4p2 — O2.4p3 = 0.

That means that p; = [ 934pada s, ps = [ O1,4p2daa, where by [ pd; ; we mean a primitive of
p considered as a function in the indeterminate d; A 0;. Hence, an element of the kernel is:

w34 ® /33,4172612,4 + w2y ® P2 + Wi @ /31,4P2d2,4 =d" (/P2d2,4> .

Thus at this point the sequence is exact.
iii: Let us consider the map d” : A2 ®@ (Va)i=s_ o — A2 ® (Va)= 5 _.;. We compute the
+ [p7 2 2] + [p7 2 3]

kernel. Let v = wsqwoq ® p1 + w34wig @ pa + wogwig @ p3 € /\%r (= (‘7,4)[]3@_2}. We have:
)2

/!
d" (v) = waswawig ® 01.4p1 + W3aW14W24 @ 02 4P2 + WraW14W34 @ O3 4P3.

Therefore 01 4p1 — O2,4p2 + O34p3 = 0, that is equivalent to ps = [(—01,4p1 + O2.4p2)d3 4. In
that case:

W34wW24 @ P1 + W34W14 @ P2 + wogwig ® p3 = d’ (—w24 ® /p1d3,4 — Wiy ® /P2d3,4> .

Thus at this point the sequence is exact.
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iv: Let us consider the map d” : AS ® (VA)W@%} — 0. We have that A> ® (VA)mg,g] >

w3gwoswis ® f=d" (w34w24 ® [ fd174). Thus at this point the sequence is exact.
In the following diagram we use the notation K := {f € (VA)[ﬁ a5 | O3af = Oouf =01af = 0}.
12

The following is the diagram of the E'l spectral sequence, where the horizontal maps are d’
and the vertical maps are d”:

NN, ©Kas — NAL@Kas — AN @Ko — AAL @ Kap

1 4 4 1
0 — 0 — 0 - 0
L { ¥ L
0 — 0 — 0 — 0
L { ¥ L
0 = 0 - 0 = 0

The only nonzero row is:
0= NPAT @ Ko g ¢ N2 AS @ Koty ¢ ALAS @ Kany <= A2AS @ Kasa < 0.

We point out that condition o + 8 > 6 allows p to arrive to the value p = L‘H 3. Indeed,
since for all p,q we have p+¢ > 0, then p+ ¢ > 1 5. The condition p + ¢ = O‘—H —3—i—§ > % is
satisfied. We can compute the homology of this row and, with an analogous reasoning to the

previous one, we get that the only nonzero row of E'? s

0£0&0E 08 NN ® Kas N K5 <20,

[®

where f(g = {f € (VA)[LH i | O12f = O13f = Oosf = O}. Since for a one row spectral se-
2 9

quence we have that E'2 = E'*_ we have:

Boy+23)=nH"™ " (Calen ) = Y Epy = i,g = AN ® Kapn N K.
=14t

Since in Ka+1 N Kp we have only elements with 0" 05205°05*, we have:
2 P

HO™ (G, 8)) = ALAL ® (V™ )y 5.5

We now consider the case 8 > 6 and a+ 8 < 6, that is 0 < a+ B := h < 6. The computation
of E'! is analogous to the previous case and we obtain the same diagram, but the only nonzero
row is now:

d/ h—1 dl d/ d/ d/
0 A2 AL @Kap na <& & AAL® KQ;I_I ENANL® Kap 0.
2 2

Indeed condition 0 < ae+ 8 := h allows p to be “—H — 25=. Since for all p,q we have p+¢q > 0,

then p 4+ g > 1 because it is an integer and it is strlctly greater than 0. For p = O‘—H — %
and ¢ =5 Wehavep+q—"‘—Jrl h21—|—’g—1.

The condition p+ ¢ = 1 means p + g = 1, therefore in Ko41 »—1 we have only elements for

2 2
which 2nq, + ng = 1, that is ny = 0,n3 = 1. This means that there are only elements constant
in 0; A 9;, that lie in the image of d’. Indeed for h =3, v € Kaj1_n-1:
2

2

w2 ®y =d (v(01 A D)),
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wiz @y = d'(v(81 A 33)),
waz @y = d'(v(d2 A D3)).

For h=5v€ Kat1_n1:
2 2

wipwiz ® v = d'(—wiz ® v(0102)),
wigwez @ v = d' (w12 @ ¥(0203)),
wizwes ® v = d'(wiz @ 7(0203)).

Then we can conclude as in the previous case.

We now focus on 0 < 5 < 6 and o+ 5 > 6. We use the first spectral sequence and obtain the
a—(25-1)

product of A_ 2 with the complex:

4" g ~ 4" gf 1 ~ d" d"’ 0 ~ d"
0+ NI ® (VA)[ﬁ,O] — NP ® (VA)[ﬁ,l] — o AL® (VA)[ﬁg] — 0.

8 ~
In A\ ® (Va)p,0) the sequence is exact since ¢ = 0 implies that the polynomials are constant
in Oy A Oy, O A Oy, O3 A\ Oy, thus they lie in the image of d”. Therefore we obtain the following
diagram for E'!, where the horizontal maps are d’ and the vertical maps are d”:

NAL@Kas — NAL@Kas — AN @Ko — AAL© Kan

. i 1 .
0 — 0 — 0 — 0
. i 1 .
. i 1 .
0 — 0 — 0 — 0.

In particular the only nonzero row is:
d’ d’ d’ d’ d’
0= N2AL ® Kas <= N2AS © Kas <= ALAL ® Koot = AZAL © Kass 4= 0.

We can conclude in the same way.

We now focuson 0 < g <6and 0 < a+ 6 =h < 6. We can use the same reasoning as before,
a—(2p—1)
2

we use the first spectral sequence and obtain the product of A_ with the complex:

d/l g ~ dl/ g_l ~ d// d// 0 ~ d//
0+— A7 ® (VA)[]'DV,O] — A ® (VA)[]*;’I] — L AL® (VA)[ﬁ,g] +— 0.
B ~
Again in A? ® (VA)@’O} the sequence is exact since ¢ = 0 implies that the polynomials are
constant in 01 A O4, 0o A Oy, O3 A Oy, thus they lie in the image of d’. Therefore we obtain the

following diagram for E'!, where the horizontal maps are d’ and the vertical maps are d”:

2

h—1
AZ AL @ Kap_nac e NAL @ Koo e ALAL @ Ko
2

N I3 N
0 - - 0 - - 0
N I3 N
d I3 d

s}
1
1

[an)
1
1

s}
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The only nonzero row is:

d/ ﬂ d/ dl 1 d/ d/
0= A7 AL ®Kap 4= 4= ALAL @ Ko = AZAT ® Kan 4= 0.
2 2

We conclude as in case 2).

B) We now analyze the case of a even. We point out that p can assume only even values. We
modify the bigrading in order to obtain a new bigrading and use the theory of spectral sequences.
For every p,q we denote by p = 5,¢ = 4. We will denote (Va)g = (Va)pg- We denote

C:*YA(O"/B)[M = Gé(a,ﬁ)[p,q]. We now have that d' : C:’A(a,ﬁ)[@;ﬂ — Gala, B)p-14 and d” :

Gala,B)pg — Gale,B)pg-1y- We have still that Ga(a, 8) = @5zGala, B)pg. We split into
four subcases.

1) We first consider the case § > 6 and oo + 8 > 6. We use the theory of spectral sequences of
bicomplexes. Let us consider G 4(«, ) with the differential d”:

d"’ a—2p 3*217_;'_1

d// a—2p B—=2q d// a—2p 3*217_1 d//
— /\_2 /\+2

a—2p a—2p

It is the tensor product of A_? and the following complex, since A_2 is not involved in d”:

d// ~ d// ~ d// ~ d// ~ d//
0= AL ® (Va)a_g = AL @ (V) ey 6= AL @ (V) pa_yy = AL ® (Va)pp ) <= 0.

Note that § is always even. We have that condition § > 6 assures that for ¢ the value g -3
is acceptable since it is positive. This complex is exact except for the right end, the compu-
tations are the same as in case Al.

In the following diagram we use the notation Kj := {f € (‘7‘4)[5,2]’ | O34f = Oguf =01af = 0}.

The following is the diagram of the E'l spectral sequence, where the horizontal maps are d’
and the vertical maps are d”:

NN @Ko o NAL@Kas — AN @Koz AN ©K;

4 { 4 N
0 — 0 — 0 — 0
1 1 1 1
0 — 0 — 0 — 2
1 1 1 1
0 — 0 — 0 — 0

The only nonzero row is:
d’ d’ d d’ d’
0ENAL@Ka 5 & NN @Koy <& AN © Ko & A2AS @ Ko <& 0.
2 2 2 2
We point out that condition a+ 3 > 6 allows p to arrive to the value p = § — 3. Indeed, since
for all p, ¢ we have p+q > 0, then p+¢ > 0. The condition p+q=§ -3+ g > 0 is satisfied.

We can compute the homology of this row and, with an analogous reasoning to the previous
one, we get that the only nonzero row of E'? is:

0L 0L 0L 0L NN oK nE, o,
2



6.2 Homology 159

where f(g = {f € (VA) , | O1of =013f =asf = 0} Since for a one row spectral se-
quence E'2 = E'® we have.
®2(n1+”73) Hnl,TL3(GA g Z — a [3 _ /\0 /\0 ®KC¥ ﬁKﬁ
P+i=%

Since in Ka N K5 we have only elements with 9% 05203°9§*, we have:
2

HO™(Ga(o, 8)) 2 A2 @ (V™) s .01

2) We now consider the case 8 > 6 and o + 8 < 6, that is 0 < o+ 3 := h < 6. The computation
of E'! is analogous to the previous case and we obtain the same diagram, but the only nonzero
row is now:

! ﬂ ! ! ! !
Og—/\fﬂ@ff%_h & ENN @K S NN @ K <20,

[

Indeed condition 0 < a + § := h allows ﬁ to be § — % Since for all p,q we have p+ ¢ > 0,

then p+ ¢ > 0. Forﬁ:f—fandq wehavep+q—0
The condition p+ ¢ = 0 means p+ ¢ = 0 therefore in K h

we
2n1 + n3g = 0, that is n;y = 0,n3 = 0. This means that ine K
elements, that lie in the image of d’, since for h =2, v € K

have only elements for which

l\')

_n there are only constant
2

[N]]e)

[Ny

=1
2

W1 @ v = d/(’}/(al A 82)),
w13 Q v = d’(7(81 A 83)),
w3z @y = d'(7(d2 A B3)).

Forh=4,v€ Ka_n:

N
I\J

wipwiz ® v = d'(—wiz ® y(01 A 82)),
wigwaz ® v = d' (w12 ® v(92 A 93)),
wigwag @y = d' (w13 @ ¥(d2 A 93)).

Then we can conclude as in the previous case.
3) We now focus on 0 < 8 < 6 and a+ 8 > 6. We use the first spectral sequence and obtain the

a—2p

product of A_? with the complex:

d"’ ~ d"’ g_l ~ d"’ d"’ 0 ~ d"’
0 <+ /\Jr (VA)[ﬁ,O] — NP ® (VA)[];J] — o — AL ® (VA)[ﬁél — 0.

8 ~
In A7 ® (Va),0 the sequence is exact since ¢ = 0 implies that the polynomials are constant
in Oy A Oy, O A Oy, O3 N\ Oy, thus they lie in the image of d”. Therefore we obtain the following
diagram for E'!, where the horizontal maps are d’ and the vertical maps are d”:

/\3/\+®KM — /\2/\+®KQ4 — /\1/\+®KH — NAL &K

4 v Y 4
0 — 0 — 0 —

4 v Y 4
4 v y 4
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In particular the only nonzero row is:
d’ d’ d’ d’ d’
0ENAL@Ka 5 & NN @Ko o < MA@ Ko & A2AS @ Ko & 0.
2 2 2 2
We can conclude in the same way.
4) We now focuson 0 < <6 and 0 < o+ = h < 6. We can use the same reasoning as before,

a—2p
we use the first spectral sequence and obtain the product of A_? with the complex:

1/

d// g ~ d// g_l ~ d// d// 0 ~ d
0<+— /\Jr ® (VA)[ZIO] — /\Jr ® (VA)[ﬁl] — /\+ &® (VA)[ﬁé’] — 0.

=]

B ~
Again in A7 ® (VA)[ZIO} the sequence is exact since ¢ = 0 implies that the polynomials are
constant in 01 A O4, 0o A Oy, O3 \ Oy, thus they lie in the image of d’. Therefore we obtain the
following diagram for E'!, where the horizontal maps are d’ and the vertical maps are d”:

h k
/\3/\(_),_®KQT,h e /\_/\S_®Ka—Tzk e /\0,/\1®K%

I3 d I3
0 - - 0 - - 0
I3 d I3
I3 N I3
0 - - 0 - - 0.

The only nonzero row is:

d d d d
pim e EANN 9 Ka ) S AN @ Ka &0
2 2 2

/ h
0L AN @ K,
2

We conclude as in case 2).

By Lemma and decomposition G4 = @4 3G a(a, B) we obtain the following result.
Lemma 6.18. As go—modules:
H™"™(Gy) =20 if ng >0.
Gy
ImVy

~ 07 07 B
= @a+5=n3/\8/\3 ® (Vy nS)[aﬁ] =Vy .
Proposition 6.19. As go—modules:

VX’O = C z'fnl =n3 =0,

0 otherwise.

™G {

Proof. By Lemma [6.18/ and Remark we obtain that H™ "™ (G 40) = 0 if ny > 0.
ays
Im(V4:G ;"8 —G™8)
We have that the Kernel of the map induced by V3 between H""3(G4) and H*™~2(Gpg), with
Ker(V3:G?4’n3—>G%n3_2) ~ . ~0,n3 0,mn3—2 0,n3
(VA G LG0Ty Ker(Vs : G, — G )NV, We
show that it is 0. Indeed it is sufficient to show that V3 restricted to VX’”" is injective, but this
comes from the fact that V3(95?) # 0, where 0} is a highest weight of VX’%. The same argument
holds for H%'(G 4) and V5. O

In Lemma |6.18 we computed

but we are interested in the homology of G 4o.

ng > 1, is actually isomorphic to
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Finally we can show the following result, that follows from Propositions [6.19] and [6.14}

Proposition 6.20. As go—modules:

C z'fnlzng:O,

0 otherwise.

i >

Proof. By Propositions and we obtain that, for (ny,ng) # (0,0), H""3(My) = 0.

We point out that the singular vectors that determine the maps V 4 for n3 = 0 are singular vectors
also in the case of K¢ (see [BKL2, Theorem 4.1, Remark 4.2] and [BKL1, Theorem 5.1]). Since the
maps V4 : le,o — le_l’o are completely determined by the image of v, highest weight vector
of VX“O, and, due to equivariance, the action of g<p on v, we obtain that for n3 = 0 the maps
coincide with the maps in the case of K. The homology in this case was computed in [BKLI]. It

~

was shown that it is different from zero only for ny = n3 = 0 and H9(M,) = C. O

Now we focus on the third quadrant.

Remark 6.21. A consequence of results in [CCK1] on conformal duality is that, in the case of C'Kg,
the conformal dual of Ind(F'), where F' = F'(ng,ni\1 + naA2 + n3As) is an irreducible go—module,
corresponds to the shifted dual Ind(F"), where FV = F(—ng +4,n1\1 +n3l2 +naA3). We will use
the results about duality for shifted duals.

Proposition 6.22. As go—modules:

C if (n17n2) = (1?0 )
0 if (n1,n2)=(0,0) or n; >0.

~—

H™ "2 (M) = {

Proof. We point out that the singular vectors that determine the maps V¢ for ne = 0 are singular
vectors also in the case of Kg (see [BKL2, Theorem 4.1, Remark 4.2] and [BKLI, Theorem 5.1]).
Since the maps V¢ Mgl’o — Mng’O are completely determined by the image of v, highest

weight vector of V5 1’0, and, due to equivariance, the action of g<o on v, we obtain that for np =0
the maps coincide with the maps in the case of Kg. The homology in this case was computed in
[BKL1]. We know that:

C forn; =1,

0  otherwise.

H™(M¢) = {

We can use duality to compute the remaining homology spaces for the third quadrant for n; > 0
and no > 0. Indeed we have that, for ny > 0, ng > 0, the maps

Mnl—l,ng Ve Mnl,nz Ve Mnl-‘,-l,nz
C C C
are dual to:

\Y4 v _
le+1’n3 A MZhnS A le 1,713’

. . : ~1
where n3 = ny. We showed that the previous sequence is exact in M "™ and My'~ ", therefore

n1,n2 n1,n2
we have that {\r/[n ?VA) i I](\;[ f(VA) is isomorphic to a submodule of a free module, hence it is a finitely

n1—1,n9

generated torsion free C[@]—module. The same holds for ]\;[r?l(ivf,)' Hence, by Remark [6.21| and
Proposition we obtain exactness in MV for ny > 0, ny > 0. O
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Appendix A

Appendix

Let g = A(K}). Let us show that g¢ is generated by g1 = (t§, &€k, 1 < 1,i,j,k <4, i <j <k).
It is straightforward that g7 = go = (£1€26384, 12, 1&;€;), indeed:

§182638s = [t&1, 628384,
t2 - _[t§17t§1]7
t&i&5 = —[t&k, Ep&i&;l-

Now, by induction, we show that if gi_l = gi—1 then g¢ = g; for i > 2. If i = 2k — 1, then
gi = (t1&, -+ &) with 20 + s — 2 =i and s odd, that is s = 1 or s = 3. We have:

g, &, = ~[t6 1'71685,65.] for p € {1,2,3,43\ {j1, .G}
If i = 2k, then g; = (t!&), -~ &;,) with 21 + s — 2 =i and s even. We have that:
L — ey 1),
€5, &js = —[t€p, 171685 €] for p € {1,2,3,4}1\ {1, j2} ,

Peratats = ——[161626s, 6]

We point out that in this last case —I — 1 # 0 since [ is non—negative.

Finally we show that g1 = S1®.52, with S1 = (t£1, 12,183, 84) and Sa = (§16283, §18284, §1€384, E2€384)
that are irreducible gg—modules. It is obvious that they are modules, indeed ¢ and C' act as scalars
and:

0if k+£1,j,
(i€, t&x] = § &5 if k=1,
Ty

From the last computation it is also clear that S is irreducible. Let I = (i,7) and J with |J| = 3.
We have that:

(&1, €7) = X1ng)=101n1€101n58 -

From the last computation it is also clear that S5 is irreducible. Finally we show that t&; + ity is
a lowest weight vector of S7 and &1€384 4 1£2€3€4 is a lowest weight vector of Sy. Indeed:

[Hy,t& +itéo] = [—i&162, 11 + itéy] = —itéy — t&y,
[Ha, t&1 + itéa] = [—i€38a, &1 + it&2] = 0,

163
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[B_(c)—e5), &1 +it&a] = [~€1€3 — &aa + 16184 — 16283, 161 + it&o]
= —t€y — it&y + it€y + €3 =0,
[E_(c14e0), &1 + it&a] = [=€1&3 + &aés — 16184 — 16283, 161 + ity
= —t&3 + it§y — it&y + &3 =0,
[Hi, 18380 + i628384] = [—i&162, 18384 + 1628384] = —i&a€38s — 16384,
[Ha, 18638 + 1628384] = [—i€384, §16384 + 1§28384] = 0,
[E_(c)—e0)s §1€384 + 1€2€384] = [—€1€3 — €28 + 1€1€s — 1€2€3, E1€384 + 1€2€3E4]
= —i&18284 + §26183 + §18283 — 1626184 = 0,
[E_(c14e0)s §18384 + 1€2€384] = [—€1€3 + Eas — 16184 — 1€2&3, E1€384 + 1€2€384]
= —1€18284 — §26183 — §18283 — 1626184 = 0.
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