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ABSTRACT

In this thesis we classify all finite irreducible modules over the conformal superalgebra K ′4 by means
of their correspondence with irreducible finite conformal modules over the annihilation superalgebra
associated with K ′4. We obtain that degenerate Verma modules over the annihilation superalgebra
associated with K ′4 are part of infinite complexes and the number of these complexes is infinite;
we compute the homology of these complexes with techniques of spectral sequences and provide
an explicit realization of all irreducible quotients. We prove a technical result, stated by Boyallian,
Kac and Liberati, on singular vectors of degenerate Verma modules over the annihilation superal-
gebra associated with CK6. We start the computation of the homology of the diagram of infinite
complexes of degenerate Verma modules for CK6 found by Boyallian, Kac and Liberati.
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Introduction

In this thesis we study the finite irreducible representations over the conformal superalgebras K ′4
and CK6.

Finite simple conformal superalgebras were completely classified in [FK] and consist in the list:
Cur g, where g is a simple finite−dimensional Lie superalgebra, Wn(n ≥ 0), Sn,b, S̃n (n ≥ 2, b ∈ C),
Kn(n ≥ 0, n 6= 4), K ′4, CK6. The finite irreducible modules over the conformal superalgebras
Cur g, K0, K1 were studied in [CK1]. Boyallian, Kac, Liberati and Rudakov classified all finite
irreducible modules over the conformal superalgebras of type W and S in [BKLR]; Boyallian, Kac
and Liberati classified all finite irreducible modules over the conformal superalgebras of type KN

in [BKL1]. The classification of all finite irreducible modules over the conformal superalgebras
of type KN , for N ≤ 4, had been previously studied also by Cheng and Lam in [CL]. Finally a
classification of all finite irreducible modules over the conformal superalgebra CK6 was obtained
in [BKL2] and [MZ] with different approaches. For N = 4 the conformal superalgebra K4 is not
simple; the derived algebra K ′4 is instead a simple conformal superalgebra.

A conformal superalgebra R is a left Z2−graded C[∂]−module, endowed with C−bilinear prod-
ucts (a(n)b), defined for all a, b ∈ R and for all n ≥ 0, that satisfy some properties (see Definition
1.5). The products (a(n)b) are called n−products. It is possible to associate with a conformal

superalgebra R a Lie superalgebra as follows. We consider R̃ = R[y, y−1], that is a left Z2−graded
C[∂̃]−module, where ∂̃ = ∂ + ∂y. We give R̃ a structure of conformal superalgebra with the defini-
tion of n−products starting from the n−products in R. We take the quotient R̃/∂̃R̃, on which the
0−product is a Lie bracket; the Lie superalgebra R̃/∂̃R̃ is denoted by LieR. We call annihilation
superalgebra A(R) associated with R the subalgebra of LieR generated by the monomials with
nonnegative powers of y. The annihilation superalgebra has a fundamental role since the study of
the finite modules over R reduces to the study of a class of modules over it, the so−called finite
conformal modules.

Given a Z−graded Lie superalgebra g and a g−module V , we call singular vectors of V the
vectors that are annihilated by g>0; the set of singular vectors of V is denoted by Sing V . Moreover
if F is a g≥0-module, we denote by Ind(F ) the generalized Verma module U(g) ⊗U(g≥0) F , that
is isomorphic, as a vector space, to U(g<0) ⊗ F via the Poincaré−Birkhoff−Witt Theorem. The
Z−grading of g induces a Z−grading on U(g<0) and Ind(F ). We will invert the sign of the degree,
so that we have a Z≥0−grading on U(g<0) and Ind(F ). We will say that an element v ∈ U(g<0)k
is homogeneous of degree k. Analogously an element m ∈ U(g<0)k ⊗ F is homogeneous of degree
k. The study of irreducible finite conformal modules over the annihilation superalgebras associated
with the conformal superalgebras of type W,S,K is related to the study of singular vectors of the
generalized Verma modules:

Theorem 0.1 ([KR2],[CL]). Let g be the annihilation superalgebra associated with a confor-
mal superalgebra of type W, S, or K. Then:

1. if F is an irreducible g≥0−module of finite dimension, g>0 acts trivially on it and Ind(F ) has
a unique maximal submodule;
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2 Introduction

2. the map F 7→ I(F ), where I(F ) is the quotient of Ind(F ) with respect to its maximal sub-
module, is a bijective correspondence between irreducible g0−modules of finite dimension and
irreducible finite conformal g−modules;

3. the g−module Ind(F ) is irreducible if and only if the g0−module F is irreducible and
Sing(Ind(F )) = Sing(F ).

Let us recall the definition of the contact Lie superalgebra. Let
∧

(N) be the Grassmann
superalgebra in the N odd indeterminates ξ1, ..., ξN . Let t be an even indeterminate and

∧
(1, N) =

C[t, t−1]⊗
∧

(N). We consider the Lie superalgebra of derivations of
∧

(1, N):

W (1, N) =

{
D = a∂t +

N∑
i=1

ai∂i | a, ai ∈
∧

(1, N)

}
,

where ∂t = ∂
∂t and ∂i = ∂

∂ξi
for all i ∈ {1, ..., N}.

We consider the contact form ω = dt−
∑N

i=1 ξidξi. The contact Lie superalgebra K(1, N) is defined
as follows:

K(1, N) = {D ∈W (1, N) | Dω = fDω for some fD ∈
∧

(1, N)} .

It is possible to associate with the Lie superalgebra K(1, N) the conformal superalgebra KN and
the annihilation superalgebra is A(KN ) = K(1, N)+, that is one of the simple infinite−dimensional
Lie superalgebras classified by Kac in [K2].
The annihilation superalgebra g := A(K ′4) associated with the simple conformal superalgebra K ′4
is instead an extension of K(1, 4)+ by a 1−dimensional center CC.
On g we consider the standard grading, whose depth is 2. In the description of g we use that
K(1, 4)+ is isomorphic to

∧
(1, 4)+ = C[t]⊗

∧
(4) via the isomorphism

∧
(1, 4)+ −→ K(1, 4)+

f 7−→ 2f∂t + (−1)p(f)
N∑
i=1

(ξi∂tf + ∂if)(ξi∂t + ∂i).

It follows that:

g0
∼= sl2 ⊕ sl2 ⊕ Ct⊕ CC ∼= 〈ex, fx, hx〉 ⊕ 〈ey, fy, hy〉 ⊕ Ct⊕ CC,

where

ex =
−ξ1ξ3 − ξ2ξ4 − iξ1ξ4 + iξ2ξ3

2
, ey =

−ξ1ξ3 + ξ2ξ4 + iξ1ξ4 + iξ2ξ3

2
,

fx =
ξ1ξ3 + ξ2ξ4 − iξ1ξ4 + iξ2ξ3

2
, fy =

ξ1ξ3 − ξ2ξ4 + iξ1ξ4 + iξ2ξ3

2
,

hx = −iξ1ξ2 + iξ3ξ4, hy = −iξ1ξ2 − iξ3ξ4,

t is a grading element in g and C is a central element. We denote by gss0 the semisimple part of g0.
We have that:

gss0 = 〈ex, fx, hx〉 ⊕ 〈ey, fy, hy〉 ∼= 〈x1∂x2 , x2∂x1 , x1∂x1 − x2∂x2〉 ⊕ 〈y1∂y2 , y2∂y1 , y1∂y1 − y2∂y2〉.

We will identify the irreducible gss0 −module of highest weight (m,n) with respect to hx, hy with
the space of homogeneous polynomials of degree m in the variables x1, x2, and degree n in the
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variables y1, y2.
The following isomorphism of gss0 −modules holds:

g−1
∼= 〈x1, x2〉 ⊗ 〈y1, y2〉,

ξ2 + iξ1 ↔ x1y1, ξ2 − iξ1 ↔ x2y2, −ξ4 + iξ3 ↔ x1y2, ξ4 + iξ3 ↔ x2y1. (1)

The space g−2 is a g0−module of dimension 1 and we denote by Θ its generator −1/2.
Since Ind(F ) ∼= U(g<0) ⊗ F , it follows that Ind(F ) ∼= C[Θ] ⊗

∧
(4) ⊗ F . Indeed, if we denote by

ηi the image in U(g) of ξi ∈
∧

(4), for all i ∈ {1, 2, 3, 4}, in U(g) we have that η2
i = Θ, for all

i ∈ {1, 2, 3, 4}: since [ξi, ξi] = −1 in g, it follows that ηiηi = −ηiηi − 1 in U(g). Motivated by (1),
we will use the following notation

w11 = η2 + iη1, w22 = η2 − iη1, w12 = −η4 + iη3, w21 = η4 + iη3. (2)

Let F be a finite−dimensional irreducible g0−module. We study the action of g on a generalized
Verma module Ind(F ) using the so−called λ−action of the elements in

∧
(4) ⊂ g on Ind(F ),

where the λ−action of an element f ∈
∧

(4) is defined as fλ(g ⊗ v) =
∑

j≥0
λj

j! (tjf).(g ⊗ v), for
g⊗ v ∈ Ind(F ). We find an explicit form of the λ−action and show in particular that the elements
(tjf)j≥4 act trivially on the elements g ⊗ v with g ∈

∧
(4), v ∈ F .

The λ−action has a fundamental role in the study of singular vectors since the property of a vector
~m ∈ Ind(F ) of being singular can be rewritten in terms of conditions on the derivatives with respect
to λ of the λ−action. Using this action, we obtain the following classification of singular vectors
of the generalized Verma modules. We denote by µ = (m,n, µt, µc) the highest weight of the
irreducible finite−dimensional g0−module F , written with respect to hx, hy, t and C. We denote
by F (m,n, µt, µc) the irreducible finite−dimensional g0−module F of highest weight µ, when it is
necessary to specify the highest weight, analogously we denote by M(m,n, µt, µc) the generalized
Verma module Ind(F ) ∼= U(g<0)⊗F , with F irreducible finite−dimensional g0−module of highest
weight µ, when we need to specify the highest weight of F . We say that a vector ~m ∈ Ind(F ) is
a highest weight singular vector if it is a singular vector and it is annihilated by ex and ey. The
following results about singular vectors are presented also in [BC].

Theorem 0.2. Let F be an irreducible finite−dimensional g0−module, with highest weight µ. A
vector ~m ∈ Ind(F ) is a non trivial highest weight singular vector of degree 1 if and only if ~m is (up
to a scalar) one of the following vectors:

a: µ = (m,n,−m+n
2 , m−n2 ) with m,n ∈ Z≥0,

~m1a = w11 ⊗ xm1 yn1 ;

b: µ = (m,n, 1 + m−n
2 ,−1− m+n

2 ), with m ∈ Z>0, n ∈ Z≥0,

~m1b = w21 ⊗ xm1 yn1 − w11 ⊗ xm−1
1 x2y

n
1 ;

c: µ = (m,n, 2 + m+n
2 , n−m2 ), with m,n ∈ Z>0,

~m1c = w22 ⊗ xm1 yn1 − w12 ⊗ xm−1
1 x2y

n
1 − w21 ⊗ xm1 yn−1

1 y2 + w11 ⊗ xm−1
1 x2y

n−1
1 y2;

d: µ = (m,n, 1 + n−m
2 , 1 + m+n

2 ), with m ∈ Z≥0, n ∈ Z>0,

~m1d = w12 ⊗ xm1 yn1 − w11 ⊗ xm1 yn−1
1 y2.
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Theorem 0.3. Let F be an irreducible finite−dimensional g0−module, with highest weight µ. A
vector ~m ∈ Ind(F ) is a non trivial highest weight singular vector of degree 2 if and only if ~m is (up
to a scalar) one of the following vectors:

a: µ = (0, n, 1− n
2 ,−1− n

2 ) with n ∈ Z≥0,

~m2a = w11w21 ⊗ yn1 ;

b: µ = (m, 0, 1− m
2 , 1 + m

2 ) with m ∈ Z≥0,

~m2b = w11w12 ⊗ xm1 ;

c: µ = (m, 0, 2 + m
2 ,−

m
2 ) with m ∈ Z>1,

~m2c = w22w21 ⊗ xm1 + (w11w22 + w21w12)⊗ xm−1
1 x2 − w11w12 ⊗ xm−2

1 x2
2;

d: µ = (0, n, 2 + n
2 ,

n
2 ) with n ∈ Z>1,

~m2d = w22w12 ⊗ yn1 − (w22w11 + w21w12)⊗ yn−1
1 y2 − w11w21 ⊗ yn−2

1 y2
2.

Theorem 0.4. Let F be an irreducible finite−dimensional g0−module, with highest weight µ. A
vector ~m ∈ Ind(F ) is a non trivial highest weight singular vector of degree 3 if and only if ~m is (up
to a scalar) one of the following vectors:

a: µ = (1, 0, 5
2 ,−

1
2),

~m3a = w11w22w21 ⊗ x1 + w21w12w11 ⊗ x2;

b: µ = (0, 1, 5
2 ,

1
2),

~m3b = w11w22w12 ⊗ y1 + w12w21w11 ⊗ y2.

Moreover, there are no singular vectors of degree greater than 3.
Between two Verma modulesM(m,n, µt, µc) andM(m̃, ñ, µ̃t, µ̃c) there exists a morphism of g−modules
if and only if there exists a singular vector ~m of highest weight (m,n, µt, µc) in M(m̃, ñ, µ̃t, µ̃c).
The morphism of g−modules is constructed as follows:

M(m,n, µt, µc) −→M(m̃, ñ, µ̃t, µ̃c)

vµ 7−→ ~m

where vµ is a highest weight vector in F (m,n, µt, µc). Since, as a g−module, M(m,n, µt, µc) is
generated by vµ, the morphism is completely determined.

Using the classification of singular vectors we find the sequences in Figure 4.1; we observe that
the diagram is similar to the one obtained for E(3, 6) and E(3, 8) (see [KR1],[KR2],[KR3],[KR4]).
Each point represents the generalized Verma module M(m,n, µt, µc), where (m,n, µt, µc) is deter-
mined by its position with respect to the axes m = 0, n = 0 and µt, µc by the quadrant. The
arrows represent the morphisms of g−modules constructed as before. We study the realization of
irreducible modules. Due to Theorem 0.1 we know that M(m,n, µt, µc) admits a unique maxi-
mal submodule and it is irreducible if and only if it does not contain nontrivial singular vectors.
Therefore, from Theorems 0.2,0.3,0.4, it follows that M(m,n, µt, µc) is irreducible if (m,n, µt, µc)
is different from:

a) (m,n,−m+n
2 , m−n2 ) with m,n ∈ Z≥0,
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b) (m,n, 1 + m−n
2 ,−1− m+n

2 ) with m,n ∈ Z≥0,

c) (m,n, 2 + m+n
2 , n−m2 ) with m,n ∈ Z≥0, (m,n) 6= (0, 0),

d) (m,n, 1 + n−m
2 , 1 + m+n

2 ) with m,n ∈ Z≥0.

If (m,n, µt, µc) is one of the weights in the previous list, we know that M(m,n, µt, µc) has a unique
maximal submodule. The purpose in this case is to realize the irreducible quotients.
By construction, if ∇ : M(m,n, µt, µc) −→ M(m̃, ñ, µ̃t, µ̃c) is a morphism, the kernel of ∇ is the
maximal submodule of M(m,n, µt, µc) since the quotient of the Verma module with respect to
Ker∇ is isomorphic to Im∇ that is an irreducible module. If M(m,n, µt, µc) is a Verma module
represented in Figure 4.1, with (m,n, µt, µc) 6= (0, 0, 0, 0), (0, 0, 2, 0), then there exist two morphisms
∇ : M(m,n, µt, µc) −→M(m̃, ñ, µ̃t, µ̃c) and ∇̂ : M(m̂, n̂, µ̂t, µ̂c) −→M(m,n, µt, µc) constructed as
before. If the sequence is exact in M(m,n, µt, µc), then Ker∇ = Im ∇̂ is the unique irreducible
submodule of M(m,n, µt, µc). In the points in which the sequence is not exact, we study the
quotient of Ker∇ with respect to Im ∇̂ . Therefore we study the homology of the complexes using
spectral sequences, following [KR1]. We obtain the following result.

Theorem 0.5. The sequences in Figure 4.1 are complexes and are exact in each module except
for M(0, 0, 0, 0) and M(1, 1, 3, 0). The spaces of homology in M(0, 0, 0, 0) and M(1, 1, 3, 0) are
isomorphic to the trivial representation.

We use Theorem 0.5 in order to compute the size of the irreducible quotients I(m,n, µt, µc) of
M(m,n, µt, µc). For a S(g−2)−module V , we define its size as (see [KR1]):

size(V ) =
1

4
rkS(g−2) V.

Proposition 0.6. The size of the irreducible quotients I(m,n, µt, µc) takes the following values:

A) size(I(m,n,−m+n
2 , m−n2 )) = 2mn+m+ n,

B) size(I(m,n, 1 + m−n
2 ,−1− m+n

2 )) = 2(m+ 1)(n− 1) +n− 1 + 3m+ 3 + 2 = 2mn+m+ 3n+ 2,

C) size(I(m,n, m+n
2 + 2, n−m2 )) = 2(m+ 1)(n+ 1) +m+ n+ 2 = 2mn+ 3m+ 3n+ 4,

D) size(I(m,n, 1 + n−m
2 , 1 + m+n

2 )) = 2mn+ n+ 3m+ 2.

In [BKL2] the authors classified all singular vectors over the conformal superalgebra CK6, intro-
duced in [CK2], and therefore all finite irreducible modules over the conformal superalgebra CK6.
In [MZ] the authors classify all irreducible modules of finite type over the conformal superalgebra
CK6 using a different approach. In [BKL2] the classification of singular vectors of highest weight
of CK6 is based on a technical lemma whose proof is missing. We know that the annihilation
superalgebra associated with CK6, that we denote by g, is a subalgebra of K(1, 6)+ isomorphic to
the exceptional Lie superalgebra E(1, 6) (see [BKL2],[CK3],[CK2]). On g we consider the standard
grading. The space g0 is isomorphic to so(6)⊕Ct. Following [BKL2], we fix the Cartan subalgebra
of so(6) spanned by the following elements:

H1 = −iξ1ξ2, H2 = −iξ3ξ4, H3 = −iξ5ξ6,

and we set h1 := H1 − H2, h2 := H2 − H3, h3 := H2 + H3. Let λ = n1λ1 + n2λ2 + n3λ3 be a
dominant weight, where the λi’s are the fundamental weights of so(6) extended by λi(t) = 0. We
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use the notation F (µt, λ) to denote the irreducible g0−module of highest weight λ with respect to
so(6) and weight µt with respect to t. The space g−1 is an irreducible g0−module of dimension
6; g−2 is an irreducible g0−module of dimension 1, we call Θ its generator −1/2. Let F be an
irreducible g0−module of finite dimension; the Verma module Ind(F ) ∼= C[Θ]⊗

∧
(6)⊗ F . Indeed,

we denote by ηi the image in U(g) of ξi ∈
∧

(6), for all i ∈ {1, 2, 3, 4, 5, 6}. In U(g) we have that
η2
i = Θ, for all i ∈ {1, 2, 3, 4, 5, 6}: since [ξi, ξi] = −1 in g, it follows that ηiηi = −ηiηi − 1 in
U(g). Let I = (i1, ..., ik) be an ordered subset of {1, 2, 3, 4, 5, 6}; we use the notation ηI = ηi1 ...ηik .
For ξI ∈

∧
(6) we indicate with ξI its Hodge dual in

∧
(6), i.e. the unique monomial such that

ξIξI = ξ1ξ2ξ3ξ4ξ5ξ6; we denote by ηI the image in U(g<0) of ξI . Then we extend by linearity the

definition of Hodge dual to elements
∑

I αIηI ∈ U(g<0) and we set ΘkηI = ΘkηI . Let T be the
vector space isomorphism T : Ind(F )→ Ind(F ) that is defined by T (g⊗v) = g⊗v. It follows that,
for a vector ~m ∈ Ind(F ), T (~m) can be written as:

T (~m) =

N∑
k=0

Θk

(∑
I

ηI ⊗ vI,k
)
. (3)

The following technical lemma (Lemma 4.4 in [BKL2]) is used in [BKL2] to classify singular vectors.

Lemma 0.7. Let ~m ∈ Ind(F ) be a singular vector, such that T (~m) is written as in (3). The degree
of ~m with respect to Θ is at most 2. Moreover, T (~m) has the following form:

T (~m) = Θ2

( ∑
|I|≥5

ηI ⊗ vI,2
)

+ Θ1

( ∑
|I|≥3

ηI ⊗ vI,1
)

+

( ∑
|I|≥1

ηI ⊗ vI,0
)
.

We prove this lemma with arguments analogous to the arguments used for K ′4.
As before, there exists a morphism of g−modules between two Verma modules M(µt, λ) and
M(µ̃t, λ̃) if and only if there exists a singular vector ~m of highest weight (µt, λ) in M(µ̃t, λ̃).
The morphism of g−modules is constructed as follows:

M(µt, λ) −→M(µ̃t, λ̃)

vµ 7−→ ~m

where vµ is a highest weight vector of F (µt, λ). Since, as a g−module, M(µt, λ) is generated
by vµ, the morphism is completely determined. In [BKL2] such morphisms are represented as
in Figure 6.1; the diagram is similar to the one obtained for E(5, 10) (see [KR3], [R], [CC],
[CCK2]). Each point represents the generalized Verma module M(µt, λ), where the weight is
determined by the position with respect to the axes and the quadrant. The arrows represent the
morphisms of g−modules constructed as before. In [BKL2] the irreducible quotients of Verma
modules are not explicitly realized. We begin the study of the homology of the complexes in
Figure 6.1. We call MA(µt, n1λ1 + n2λ2 + n3λ3) the modules represented in the first quadrant
in Figure 6.1, MB(µt, n1λ1 + n2λ2 + n3λ3) the modules represented in the second quadrant and
MC(µt, n1λ1 + n2λ2 + n3λ3) the modules represented in the third quadrant. We find an explicit
expression for morphisms in the first quadrant. We use arguments of spectral sequences to compute
the homology of the first quadrant and we use an argument of conformal duality (see [CCK1]) to
obtain the homology for the third quadrant. In particular we prove the following result.

Proposition 0.8. As a g−module, the homology space is 0 for the modules MA(−n1 − n3
2 , n1λ1 +

n3λ3) if (n1, n3) 6= (0, 0), is isomorphic to the trivial representation for MA(0, 0). The homology
space is 0 for the modules MC(n1 + n2

2 + 4, n1λ1 + n2λ2) if (n1, n2) = (0, 0) or n1 > 0 and it is
isomorphic to the trivial representation for MC(5, λ1).

We will compute the homology for MB(µt, n1λ1 + n2λ2 + n3λ3) and MC(n2
2 + 4, n2λ2) in the

future.



Chapter 1

Preliminaries on conformal
superalgebras

We recall some notions on conformal superalgebras. For further details see [K1, Chapter 2], [D],
[BKLR], [BKL1].
Let g be a Lie superalgebra; a formal distribution with coefficients in g, or equivalently a g−valued
formal distribution, in the indeterminate z is an expression of the following form:

a(z) =
∑
n∈Z

anz
−n−1,

with an ∈ g for every n ∈ Z. We denote the vector space of formal distributions with coefficients
in g in the indeterminate z by g[[z, z−1]]. We denote by Res(a(z)) = a0 the coefficient of z−1

of a(z). The vector space g[[z, z−1]] has a natural structure of C[∂z]−module. We define for all
a(z) ∈ g[[z, z−1]] its derivative:

∂za(z) =
∑
n∈Z

(−n− 1)anz
−n−2.

A formal distribution with coefficients in g in the indeterminates z and w is an expression of the
following form:

a(z, w) =
∑
m,n∈Z

am,nz
−m−1w−n−1,

with am,n ∈ g for every m,n ∈ Z. We denote the vector space of formal distributions with
coefficients in g in the indeterminates z and w by g[[z, z−1, w, w−1]]. Given two formal distributions
a(z) ∈ g[[z, z−1]] and b(w) ∈ g[[w,w−1]], we define the commutator [a(z), b(w)]:

[a(z), b(w)] =

[∑
n∈Z

anz
−n−1,

∑
m∈Z

bmw
−m−1

]
=
∑
m,n∈Z

[an, bm]z−n−1w−m−1.

Definition 1.1. Two formal distributions a(z), b(z) ∈ g[[z, z−1]] are called local if:

(z − w)N [a(z), b(w)] = 0 for some N � 0.

We call δ−function the following formal distribution with coefficients in g in the indeterminates
z and w:

δ(z − w) = z−1
∑
n

(w
z

)n
.

See Corollary 2.2 in [K1] for the following equivalent condition of locality.

7
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Proposition 1.2. Two formal distributions a(z), b(z) ∈ g[[z, z−1]] are local if and only if [a(z), b(w)]
can be expressed as a finite sum of the form:

[a(z), b(w)] =
∑
j

(a(w)(j)b(w))
∂jw
j!
δ(z − w),

where the coefficients (a(w)(j)b(w)) := Resz(z − w)j [a(z), b(w)] are formal distributions in the
indeterminate w.

Definition 1.3 (Formal Distribution Superalgebra). Let g be a Lie superalgebra and F a family
of mutually local g−valued formal distributions in the indeterminate z. The pair (g,F) is called a
formal distribution superalgebra if the coefficients of all formal distributions in F span g.

We define the λ−bracket between two formal distributions a(z), b(z) ∈ g[[z, z−1]] as the gener-
ating series of the (a(z)(j)b(z))’s:

[a(z)λb(z)] =
∑
j≥0

λj

j!
(a(z)(j)b(z)). (1.1)

Definition 1.4 (Conformal superalgebra). A conformal superalgebra R is a left Z2−graded C[∂]−module
endowed with a C−linear map, called λ−bracket, R ⊗ R → C[λ]⊗ R, a⊗ b 7→ [aλb], that satisfies
the following properties for all a, b, c ∈ R:

(1) [∂aλb] = −λ[aλb], [aλ∂b] = (λ+ ∂)[aλb];

(2) [aλb] = −(−1)p(a)p(b)[b−λ−∂a];

(3) [aλ[bµc]] = [[aλb]λ+µc] + (−1)p(a)p(b)[bµ[aλc]];

where p(a) denotes the parity of the element a ∈ R and p(∂a) = p(a) for all a ∈ R.

We call n−products the coefficients (a(n)b) that appear in [aλb] =
∑

j≥0
λj

j! (a(j)b) and give an
equivalent definition of conformal superalgebra.

Definition 1.5 (Conformal superalgebra). A conformal superalgebra R is a left Z2−graded C[∂]−module
endowed with a C−bilinear product (a(n)b) : R⊗R→ R, defined for every n ≥ 0, that satisfies the
following properties for all a, b, c ∈ R, m,n ≥ 0:

(1) (a(n)b) = 0, for n� 0;

(2) ((∂a)(n)b) = −n(a(n−1)b);

(3) (a(n)b) = −(−1)p(a)p(b)
∑

j≥0(−1)j+n ∂
j

j! (b(n+j)a);

(4) (a(m)(b(n)c)) =
∑m

j=0

(
m
j

)
((a(j)b)(m+n−j)c) + (−1)p(a)p(b)(b(n)(a(m)c));

where p(∂a) = p(a) for all a ∈ R.

Using conditions (2) and (3) it is easy to show that for all a, b ∈ R, n ≥ 0:

(a(n)∂b) = ∂(a(n)b) + n(a(n−1)b).

Due to this relation and (2), the map ∂ : R → R, a 7→ ∂a is a derivation with respect to the
0−product.
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Remark 1.6. A formal distribution superalgebra, endowed with λ−bracket (1.1), satisfies conditions
(1), (2), (3) of conformal superalgebras, for a proof see Proposition 2.3 in [K1].

We say that a conformal superalgebra R is finite if it is finitely generated as a C[∂]−module.
An ideal I of R is a C[∂]−submodule of R such that a(n)b ∈ I for every a ∈ R, b ∈ I, n ≥ 0.
A conformal superalgebra R is simple if it has no non-trivial ideals and the λ−bracket is not
identically zero. We denote by R′ the derived subalgebra of R, i.e. the C−span of all n−products.

Definition 1.7. A module M over a conformal superalgebra R is a Z2−graded C[∂]−module
endowed with C−linear maps R → EndCM , a 7→ aM(n), defined for every n ≥ 0, that satisfy the
following properties for all a, b ∈ R, v ∈M , m,n ≥ 0:

(1) aM(n)v = 0 for n� 0;

(2) (∂a)M(n)v = [∂M , aM(n)]v = −naM(n−1)v;

(3) [aM(m), b
M
(n)]v =

∑m
j=0

(
m
j

)
(a(j)b)

M
(m+n−j)v.

A module M is called finite if it is a finitely generated C[∂]−module.
We can construct a conformal superalgebra starting from a formal distribution superalgebra (g,F).
Let F be the closure of F under all the n−products, ∂z and linear combinations. By Dong’s Lemma,
F is still a family of mutually local distributions (see [K1]). It turns out that F is a conformal
superalgebra. We will refer to it as the conformal superalgebra associated with (g,F).
Let us recall the construction of the annihilation superalgebra associated with a conformal super-
algebra R. Let R̃ = R[y, y−1], set p(y) = 0 and ∂̃ = ∂ + ∂y. We define the following n−products

on R̃, for all a, b ∈ R, f, g ∈ C[y, y−1], n ≥ 0:

(af(n)bg) =
∑
j∈Z+

(a(n+j)b)
(∂jy
j!
f
)
g.

In particular if f = ym and g = yn we have for all k ≥ 0:

(aym(k)by
n) =

∑
j∈Z+

(
m

j

)
(a(k+j)b)y

m+n−j .

We observe that ∂̃R̃ is a two sided ideal of R̃ with respect to the 0−product. The quotient
LieR := R̃/∂̃R̃ has a structure of Lie superalgebra with the bracket induced by the 0−product, i.e.
for all a, b ∈ R, f, g ∈ C[y, y−1]:

[af, bg] =
∑
j∈Z+

(a(j)b)
(∂jy
j!
f
)
g. (1.2)

The images in LieR of elements aym ∈ R̃ are often denoted by am.

Definition 1.8. The annihilation superalgebra A(R) of a conformal superalgebra R is the subal-
gebra of LieR spanned by all elements an with n ≥ 0 and a ∈ R.
The extended annihilation superalgebra A(R)e of a conformal superalgebra R is the Lie superalge-
bra C∂ nA(R). The semidirect sum C∂ nA(R) is the vector space C∂ ⊕A(R) endowed with the
structure of Lie superalgebra given by the bracket:

[∂, aym] = −∂y(aym) = −maym−1,

for all a ∈ R.
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For all a ∈ R we consider the following formal power series in A(R)[[λ]]:

aλ =
∑
n≥0

λn

n!
an.

For all a, b ∈ R, we have: [aλ, bµ] = [aλb]λ+µ and (∂a)λ = −λaλ (for a proof see [CCK1]).

Proposition 1.9 ([CK1]). A module over a conformal superalgebra R is the same as a module
over the Lie superalgebra A(R)e such that aλm ∈ C[λ] ⊗M for all a ∈ R, m ∈ M , i.e. for every
a ∈ R, m ∈M there exists n0 ∈ N such that an.m = 0 for all n ≥ n0.

Proposition 1.9 reduces the study of modules over a conformal superalgebra R to the study of
a class of modules over its (extended) annihilation superalgebra.

Proposition 1.10 ([BKL1]). Let g be the annihilation superalgebra of a conformal superalgebra R.
Assume that g satisfies the following conditions:

L1 g is Z−graded with finite depth d;

L2 There exists an element whose centralizer in g is contained in g0;

L3 There exists an element Θ ∈ g−d such that gi−d = [Θ, gi], for all i ≥ 0.

Finite modules over R are the same as modules V over g, called finite conformal, that satisfy the
following properties:

1. For every v ∈ V , there exists j0 ∈ Z, j0 ≥ −d, such that gj .v = 0 when j ≥ j0;

2. V is finitely generated as a C[Θ]−module.

Remark 1.11. We point out that condition L2 is automatically satisfied when g contains a grading
element, i.e. an element a ∈ g such that [a, b] = deg(b)b for all b ∈ g.

Let g = ⊕i∈Zgi be a Z−graded Lie superalgebra. We will use the notation g>0 = ⊕i>0gi,
g<0 = ⊕i<0gi and g≥0 = ⊕i≥0gi. We denote by U(g) the universal enveloping algebra of g.

Definition 1.12. Let F be a g≥0−module. The generalized Verma module associated with F is
the g−module Ind(F ) defined by:

Ind(F ) := Indg
g≥0

(F ) = U(g)⊗U(g≥0) F.

We will identify Ind(F ) with U(g<0) ⊗ F as vector spaces via the Poincaré−Birkhoff−Witt
Theorem. The Z−grading of g induces a Z−grading on U(g<0) and Ind(F ). We will invert the
sign of the degree, so that we have a Z≥0−grading on U(g<0) and Ind(F ). We will say that an
element v ∈ U(g<0)k is homogeneous of degree k. Analogously an element m ∈ U(g<0)k ⊗ F is
homogeneous of degree k.

Proposition 1.13. Let g = ⊕i∈Zgi be a Z−graded Lie superalgebra. If F is an irreducible
finite−dimensional g≥0−module, then Ind(F ) has a unique maximal submodule. We denote by
I(F ) the quotient of Ind(F ) by the unique maximal submodule.

Proof. First we point out that a submodule V 6= {0} of Ind(F ) is proper if and only if it does not
contain nontrivial elements of degree 0. Indeed, if V contains an element v0 6= 0 of degree 0, then it
contains 1⊗ F = g≥0.v0, due to irreducibility of F . Therefore g<0.F = Ind(F ) ⊆ V . The union S
of all proper submodules is still a proper submodule of Ind(F ), since S does not contain nontrivial
elements of degree 0, thus S is the unique maximal proper submodule.
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Definition 1.14. Given a g−module V , we call singular vectors the elements of:

Sing(V ) = {v ∈ V | g>0.v = 0} .

In the case V = Ind(F ), for a g≥0−module F , we will call trivial singular vectors the elements
of Sing(V ) that lie in 1 ⊗ F and nontrivial singular vectors the nonzero elements of Sing(V ) that
do not lie in 1⊗ F .

Theorem 1.15 ([KR2],[CL]). Let g be a Lie superalgebra that satisfies L1, L2, L3, then:

1. if F is an irreducible finite−dimensional g≥0−module, then g>0 acts trivially on it;

2. the map F 7→ I(F ) is a bijective map between irreducible finite−dimensional g0−modules and
irreducible finite conformal g−modules;

3. the g−module Ind(F ) is irreducible if and only if the g0−module F is irreducible and Ind(F )
has no nontrivial singular vectors.

We recall the notion of duality for conformal modules (see for further details [BKLR], [CCK1]).
Let R be a conformal superalgebra and M a conformal module over R.

Definition 1.16. The conformal dual M∗ of M is defined by:

M∗ = {fλ : M → C[λ] | fλ(∂m) = λfλ(m), ∀m ∈M} .

The structure of C[∂]−module is given by (∂f)λ(m) = −λfλ(m), for all f ∈ M∗, m ∈ M . The
λ−action of R is given, for all a ∈ R, m ∈M , f ∈M∗, by:

(aλf)µ(m) = −(−1)p(a)p(f)fµ−λ(aλm).

Definition 1.17. Let T : M → N be a morphism of R−modules, i.e. a linear map such that for
all a ∈ R and m ∈M :

i: T (∂m) = ∂T (m),

ii: T (aλm) = aλT (m).

The dual morphism T ∗ : N∗ →M∗ is defined, for all f ∈ N∗ and m ∈M , by:

[T ∗(f)]λ (m) = −fλ (T (m)) .

Theorem 1.18 ([BKLR], Proposition 2.6). Let R be a conformal superalgebra and M,N R−modules.
Let T : M −→ N be a homomorphism of R−modules such that N/ ImT is a finitely generated
torsion−free C[∂]−module. Then the standard map Ψ : N∗/KerT ∗ −→ (M/KerT )∗, given by
[Ψ(f)]λ(m) = fλ(T (m)) (where by the bar we denote the corresponding class in the quotient), is an
isomorphism of R−modules.

We denote by F the functor that maps a conformal module M over a conformal superalgebra
R to its conformal dual M∗ and maps a morphism between conformal modules T : M → N to its
dual T ∗ : N∗ →M∗.

Proposition 1.19. The functor F is exact if we consider only morphisms T : M → N , where
N/ ImT is a finitely generated torsion free C[∂]−module.
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Proof. Let us consider an exact short sequence of conformal modules:

0→M
d1−→ N

d2−→ P → 0.

Therefore we know that d2 ◦d1 = 0, d1 is injective, d2 is surjective and Ker d2 = Im d1. We consider
the dual of this sequence:

0→ P ∗
d∗2−→ N∗

d∗1−→M∗ → 0.

By Theorem 1.18 and Remark 3.11 in [CCK1], we know that d∗1 is surjective and d∗2 is injective.
We have to show that Ker d∗1 = Im d∗2. Let us first show that Ker d∗1 ⊃ Im d∗2. Let β ∈ Im d∗2 ⊂ N∗.
We have β = d∗2(α) for some α ∈ P ∗. We have for all m ∈M :

[d∗1(β)]λ (m) = −βλ(d1(m)) = αλ(d2(d1(m))) = 0.

Let us now show that Ker d∗1 ⊂ Im d∗2. Let β ∈ Ker d∗1 ⊂ N∗. We have for all m ∈M :

0 = [d∗1(β)]λ (m) = −βλ(d1(m)).

Since Ker d2 = Im d1, this condition tells that β vanishes on Ker d2. We also know that for every
p ∈ P , p = d2(np), for some np ∈ N . We define α ∈ P ∗ as follows, for all p ∈ P :

αλ(p) = αλ(d2(np)) =

{
−βλ(np) if p 6= 0,

0 otherwise.

Let us show that α actually lies in P ∗. For every p ∈ P :

αλ(∂p) = αλ(∂d2(np)) = αλ(d2(∂np)) =

{
−βλ(∂np) if ∂p 6= 0,

0 otherwise.

Since β ∈ N∗, we know that −βλ(∂np) = −λβλ(np). Therefore αλ(∂p) = λαλ(p).
We have for all n ∈ N that:

[d∗2(α)]λ (n) = −αλ(d2(n)) = βλ(n).



Chapter 2

The conformal superalgebra K ′4

We recall the notion of the contact Lie superalgebra. Let
∧

(N) be the Grassmann superalgebra in
the N odd indeterminates ξ1, ..., ξN . Let t be an even indeterminate and

∧
(1, N) = C[t, t−1]⊗

∧
(N).

We consider the Lie superalgebra of derivations of
∧

(1, N):

W (1, N) =

{
D = a∂t +

N∑
i=1

ai∂i | a, ai ∈
∧

(1, N)

}
,

where ∂t = ∂
∂t and ∂i = ∂

∂ξi
for every i ∈ {1, ..., N}.

Let us consider the contact form ω = dt −
∑N

i=1 ξidξi. The contact Lie superalgebra K(1, N) is
defined by:

K(1, N) = {D ∈W (1, N) | Dω = fDω for some fD ∈
∧

(1, N)} .

We denote byK ′(1, N) the derived algebra [K(1, N),K(1, N)] ofK(1, N). Analogously, let
∧

(1, N)+ =
C[t]⊗

∧
(N). We consider the Lie superalgebra of derivations of

∧
(1, N)+:

W (1, N)+ =

{
D = a∂t +

N∑
i=1

ai∂i | a, ai ∈
∧

(1, N)+

}
.

The Lie superalgebra K(1, N)+ is defined by:

K(1, N)+ = {D ∈W (1, N)+ | Dω = fDω for some fD ∈
∧

(1, N)+} .

One can define on
∧

(1, N) a Lie superalgebra structure as follows: for all f, g ∈
∧

(1, N) we let:

[f, g] =
(

2f −
N∑
i=1

ξi∂if
)

(∂tg)− (∂tf)
(

2g −
N∑
i=1

ξi∂ig
)

+ (−1)p(f)
( N∑
i=1

∂if∂ig
)
. (2.1)

We recall that K(1, N) ∼=
∧

(1, N) as Lie superalgebras via the following map (see [CK3]):

∧
(1, N) −→ K(1, N)

f 7−→ 2f∂t + (−1)p(f)
N∑
i=1

(ξi∂tf + ∂if)(ξi∂t + ∂i).

From now on we will always identify elements of K(1, N) with elements of
∧

(1, N) and we will
omit the symbol ∧ between the ξi’s. We consider on K(1, N) the standard grading, i.e. for every
tmξi1 · · · ξis ∈ K(1, N) we have deg(tmξi1 · · · ξis) = 2m+ s− 2.
Now we want to realize K(1, N)+ as the annihilation superalgebra of a conformal superalgebra.
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In order to do this, we construct a formal distribution superalgebra using the following family of
formal distributions:

F =

{
A(z) :=

∑
m∈Z

(Atm)z−m−1 = Aδ(t− z), ∀A ∈ ∧
(N)

}
.

Note that the set of all the coefficients of formal distributions in F spans
∧

(1, N).

Proposition 2.1. For all A(z), B(z) ∈ F , A(z) and B(z) are local. For all A,B ∈
∧

(N), A =
ξi1 · · · ξir and B = ξj1 · · · ξjs, the n−products are given by:

(A(z)(0)B(z)) = (r − 2)∂z(AB)(z) + (−1)r
N∑
i=1

(∂iA ∂iB)(z); (2.2)

(A(z)(1)B(z)) = (r + s− 4)(AB)(z);

(A(z)(n)B(z)) = 0 for n > 1.

For all A,B ∈
∧

(N), n ≥ 0, all other n−products can be found by linearity and the relations:

((∂zA)(z)(n)B(z)) = −n(A(z)(n−1)B(z)),

(A(z)(n)∂zB(z)) = ∂z(A(z)(n)B(z)) + n(A(z)(n−1)B(z)).

The closure of F under all n−products and ∂z is F̄ = C[∂z]F .

Proof. It is sufficient to show the result for all A(z), B(z) ∈ F with A,B monomials in
∧

(N)
and use linearity. Let A,B ∈

∧
(N), A = ξi1 · · · ξir and B = ξj1 · · · ξjs ; we show that the formal

distributions
A(z) =

∑
m∈Z

(Atm)z−m−1 and B(z) =
∑
n∈Z

(Btn)z−n−1

are local. Indeed, we have:

[A(z), B(w)] =

=
∑
m,n∈Z

[Atm, Btn]z−m−1w−n−1

=
∑
m,n∈Z

(
(n (2− r)−m (2− s))AB tm+n−1 + (−1)r

N∑
i=1

∂iA ∂iB t
m+n

)
z−m−1w−n−1

=
∑
m,n∈Z

(n (2− r)−m (2− s))AB tm+n−1 z
−m−1

wn+1
+
∑
m,n∈Z

(−1)r
N∑
i=1

∂iA ∂iB t
m+n z

−m−1

wn+1
.

We set h = m+ n− 1 in the first series and l = m+ n in the second series. We obtain:

[A(z), B(w)] =

=
∑
h,m∈Z

((h−m+ 1) (2− r)−m (2− s))AB th z−m−1

w−(m−h−2)
+
∑
l,m∈Z

(−1)r
N∑
i=1

∂iA ∂iB t
l z−m−1

w−(m−l−1)

=
∑
h,m∈Z

(h+ 1)(2− r)AB thw−h−2z−m−1wm +
∑
h,m∈Z

m(r − 2 + s− 2)AB thw−h−1z−m−1wm−1

+
∑
l,m∈Z

(−1)r
N∑
i=1

∂iA ∂iB t
lw−l−1z−m−1wm
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=(r − 2)∂w((AB)(w))δ(z − w) + (r + s− 4)(AB)(w)∂wδ(z − w) + (−1)r
N∑
i=1

(∂iA ∂iB)(w)δ(z − w)

=
(

(r − 2) ∂w (AB) (w) + (−1)r
N∑
i=1

(∂iA ∂iB) (w)
)
δ(z − w) + (r + s− 4) (AB) (w)∂wδ(z − w).

Therefore, for all A,B ∈
∧

(N), A = ξi1 · · · ξir and B = ξj1 · · · ξjs , the n−products are given by:

(A(z)(0)B(z)) = (r − 2)∂z(AB)(z) + (−1)r
N∑
i=1

(∂iA ∂iB)(z);

(A(z)(1)B(z)) = (r + s− 4)(AB)(z);

(A(z)(n)B(z)) = 0 for n > 1.

For all A,B ∈
∧

(N), n ≥ 0, all other n−products can be found by linearity and the relations:

((∂zA)(z)(n)B(z)) = −n(A(z)(n−1)B(z)),

(A(z)(n)∂zB(z)) = ∂z(A(z)(n)B(z)) + n(A(z)(n−1)B(z)).

Hence the closure of F under all n−products and ∂z is F̄ = C[∂z]F .

The closure F̄ is the conformal superalgebra associated with the formal distribution superalge-
bra (K(1, N),F).

Proposition 2.2. The conformal superalgebra F̄ = C[∂z]F is a free C[∂z]−module.

Proof. We have that the set of all elements of type Aδ(t − z), where A = ξi1 ...ξir is a monomial
in

∧
(N), is a basis of F . Let us consider a finite linear combination, with coefficients in C[∂z], of

elements of this basis:

s∑
i=1

Pi(∂z)Aiδ(t− z) = 0,

where Ai ∈
∧

(N), Pi(∂z) ∈ C[∂z] for every 1 ≤ i ≤ s. From linear independence of the Ai’s, we
obtain for every 1 ≤ i ≤ s:

Pi(∂z)δ(t− z) = 0.

Therefore every coefficient Pi must be 0.

We will identify F̄ = C[∂z] ⊗ F with KN := C[∂] ⊗
∧

(N). We identify ∂z with ∂ and every
A(z) ∈ F with A ∈

∧
(N). We will refer to KN as the conformal superalgebra associated with

K(1, N). For all monomials f, g ∈
∧

(N), f = ξi1 ...ξir and g = ξj1 ...ξjs , the λ−bracket is given by:

[fλg] = ((r − 2)∂(fg) + (−1)r
N∑
i=1

(∂if)(∂ig)) + λ(r + s− 4)fg, (2.3)

by Proposition 2.1. In [BKL1] it is shown that the annihilation superalgebra of KN is A(KN ) =
K(1, N)+ and that it satisfies conditions L1, L2, L3. Thus, the study of finite irreducible modules
over the conformal superalgebra KN is reduced to the study of singular vectors of Verma modules
on K(1, N)+.
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For N = 4, KN is not simple. The derived superalgebra K ′4 is one of the finite simple conformal
superalgebras completely classified in [FK]. Our aim is to study all finite irreducible modules over
the conformal superalgebra K ′4.
Let V be a vector space and {bi}i∈I a basis of it. An element v ∈ V can be uniquely expressed as
v =

∑
i cibi. The support of v is Supp v = {bi : ci 6= 0}.

Proposition 2.3. The element ξ1ξ2ξ3ξ4 /∈ K ′4. More precisely:

K ′4 = 〈∂kξi1 · · · ξir , ∂lξ1ξ2ξ3ξ4, for 0 ≤ r < 4, k ∈ Z≥0, l ∈ Z>0〉.

Proof. By Proposition 2.2, we know that
{
∂kξi1 · · · ξir , for k ∈ Z≥0, 0 ≤ r ≤ 4

}
is a basis for K4.

We first show that ξ1ξ2ξ3ξ4 /∈ K ′4. Since the j−products are bilinear maps, it is sufficient to show
that ξ1ξ2ξ3ξ4 does not belong to Supp(f(j)g), for any f = ξi1 · · · ξir , g = ξj1 · · · ξjs ∈

∧
(4).

The element ξ1ξ2ξ3ξ4 does not belong to Supp(f(0)g). Indeed it does not belong to the support of

(−1)r(
∑4

i=1(∂if)(∂ig)), because, for all 1 ≤ i ≤ 4, ξ1ξ2ξ3ξ4 /∈ Supp((∂if)(∂ig)). Clearly it does not
belong to the support of (r − 2)∂(fg).
The element ξ1ξ2ξ3ξ4 does not belong to Supp(f(1)g). Indeed if ξ1ξ2ξ3ξ4 ∈ Supp((r + s − 4)fg),
then r + s = 4, that is a contradiction.
Every monomial ∂kf ∈ K4 \ Cξ1ξ2ξ3ξ4 lies in K ′4, indeed:

1. if k > 0, then ∂kf =
(
−1

2 (0)
∂k−1f

)
;

2. if k = 0, then there exists a ξi ∈
∧

(4) such that ξif 6= 0. We have f = −(ξi (0)ξif).

Therefore, we have:

K ′4 = 〈∂kξi1 · · · ξir , ∂lξ1ξ2ξ3ξ4, for 0 ≤ r < 4, k ∈ Z≥0, l ∈ Z>0〉.

Proposition 2.4. The element t−1ξ1ξ2ξ3ξ4 /∈ K ′(1, 4). More precisely:

K ′(1, 4) = 〈tkξi1 · · · ξir , tlξ1ξ2ξ3ξ4, for 0 ≤ r < 4, k, l ∈ Z, l 6= −1〉.

Proof. We know that
{
tkξi1 · · · ξir , for k ∈ Z, 0 ≤ r ≤ 4

}
is a basis for K(1, 4). Let us first show

that t−1ξ1ξ2ξ3ξ4 /∈ K ′(1, 4). Since the bracket (2.1) is bilinear, it is sufficient to prove that
t−1ξ1ξ2ξ3ξ4 does not belong to Supp[f, g] for any f, g monomials of K(1, 4). Let f = atkξi1 · · · ξir
and g = btlξj1 · · · ξjs ∈ K(1, 4), with a, b ∈ C. We have the following possibilities.

1. Let us suppose that t−1ξ1ξ2ξ3ξ4 = (2− r)f∂tg. Hence, we have:

tk∂t(t
l) = t−1; a · b · l =

1

2− r
and ξi1 · · · ξir · ξj1 · · · ξjs = ξ1ξ2ξ3ξ4.

Then we obtain l = −k and k 6= 0. Indeed the power k of tk cannot be 0, since ∂tt
l = t−1 is

impossible for a Laurent polynomial. Therefore:

[f, g] =
2− r
2− r

tkt−1−kξi1 · · · ξir · ξj1 · · · ξjs − (ktk−1ξi1 · · · ξir)(2− s)
t−k

−k(2− r)
ξj1 · · · ξjs

= t−1ξ1ξ2ξ3ξ4 +
2− s
2− r

t−1ξ1ξ2ξ3ξ4

=
4− r − s

2− r
t−1ξ1ξ2ξ3ξ4 = 0, since r + s = 4.
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2. Due to antisymmetry of [f, g], we have t−1ξ1ξ2ξ3ξ4 6= (2− s)(∂tf)g.

3. The element t−1ξ1ξ2ξ3ξ4 does not belong to the support of (−1)p(f)(
∑4

i=1(∂if)(∂ig)). Indeed,
for all 1 ≤ i ≤ 4, (∂if)(∂ig) 6= t−1ξ1ξ2ξ3ξ4.

Every monomial f ∈ K(1, 4) \ Ct−1ξ1ξ2ξ3ξ4 lies in K ′(1, 4), indeed:

1. if deg(f) 6= 0, then f = [t,f ]
deg(f) ;

2. if deg(f) = 0, then f is either equal to αξiξj = −α[ξkξiξj , ξiξj ] for some 1 ≤ i < j ≤ 4, α ∈ C
and k 6= i, j or it is equal to αt = −α[tξ1, ξ1] for some α ∈ C.

Therefore, we have:

K ′(1, 4) = 〈tkξi1 · · · ξir , tlξ1ξ2ξ3ξ4, for 0 ≤ r < 4, k, l ∈ Z, l 6= −1〉.

2.1 The annihilation superalgebra of K ′4

Motivated by Proposition 1.10 and Theorem 1.15, we want to understand the structure of A(K ′4).
Let us recall some notions on central extensions of Lie superalgebras.

Definition 2.5. Let g be a Lie superalgebra. A 2−cocycle on g is a bilinear map ψ : g × g → C
that satisfies the following conditions:

1. ψ(a, b) = −(−1)p(a)p(b)ψ(b, a),

2. (−1)p(a)p(c)ψ(a, [b, c]) + (−1)p(a)p(b)ψ(b, [c, a]) + (−1)p(a)p(c)ψ(c, [a, b]) = 0,

for all a, b, c ∈ g. The set of all 2−cocycles on g is denoted by Z2(g,C).

Remark 2.6. We denote the set of linear maps g→ C by C1(g,C), we call its elements 1−cochains.
For every 1−cochain f ∈ C1(g,C), it is possible to construct a 2−cocycle δf on g. For all a, b ∈ g
we define:

δf(a, b) = f([a, b]).

It is a straightforward verification that δf is a 2−cocycle on g. The map δ : C1(g,C)→ Z2(g,C),
f → δf , is called coboundary operator.

Definition 2.7. We denote by B2(g,C) the image of δ : C1(g,C) → Z2(g,C). Two 2−cocycles
ψ1, ψ2 ∈ Z2(g,C) are cohomologous when ψ1−ψ2 ∈ B2(g,C). We denote by H2(g,C) the quotient
Z2(g,C)
B2(g,C)

.

Definition 2.8. A Lie superalgebra ĝ is a central extension of g by a one−dimensional center CC
if there exist two morphisms i : CC → ĝ and s : ĝ→ g such that the following sequence is exact:

0→ CC i−→ ĝ
s−→ g→ 0,

and Ker(s) lies in the center of ĝ.

Definition 2.9. Two central extentions ĝ1 and ĝ2 of g by a one−dimensional center CC are
isomorphic if there exists an isomorphism of Lie superalgebras Φ : ĝ1 → ĝ2 such that the following
diagram is commutative:

0 // CC

Id
��

i1 // ĝ1

Φ
��

s1 // g

Id

��

// 0

0 // CC i2 // ĝ2
s2 // g

d // 0.
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Proposition 2.10. There is a bijection between central extensions of g by a one−dimensional
center and elements of H2(g,C). If ψ ∈ Z2(g,C) the corresponding central extension is, up to
isomorphisms, ĝ = g⊕ CC where:

[C, a] = 0 and [a, b]ĝ = [a, b]g + ψ(a, b)C,

for all a, b ∈ g.

Proof. From the definition it follows directly that a central extension ĝ ∼= g⊕Ci(C) as vector spaces
and we have the following relation between the bracket [·, ·]ĝ in ĝ and the bracket [·, ·]g in g for all
a, b ∈ g, α, β ∈ C:

[a+ αi(C), b+ βi(C)]ĝ = [a, b]g + ψ(a, b)i(C),

where ψ : g× g→ C is a 2−cocycle.
Conversely, given ψ ∈ C2(g,C), we can construct a central extension ĝ of g. We define ĝ := g⊕CC.
For all a, b ∈ g, α, β ∈ C, we set i(αC) := αC, s(a + αC) := a and [a + αC, b + βC]ĝ :=
[a, b]g +ψ(a, b)C. It follows directly from the definition of 2−cocycles that it is a central extension.
Finally we show that two isomorphic central extensions ĝ1

∼= g⊕CC and ĝ2
∼= g⊕CC correspond

to cohomologous 2−cocycles. Since ĝ1 and ĝ2 are isomorphic, we have an isomorphism Φ : ĝ1 → ĝ2

such that the following diagram is commutative:

0 // CC

Id
��

i1 // ĝ1

Φ
��

s1 // g

Id

��

// 0

0 // CC i2 // ĝ2
s2 // g

d // 0.

Thus for all a ∈ g, α ∈ C:

Φ(a+ αC) = a+ ρ(a)C + αC, (2.4)

where ρ ∈ C1(g,C).
We call ψ1(resp. ψ2) the 2−cocycle that corresponds to ĝ1(resp. ĝ2). We have for all a, b ∈ g:

Φ([a, b]ĝ1
) = Φ([a, b]g + ψ1(a, b)C)

= [a, b]g + (ρ([a, b]g) + ψ1(a, b))C.

But from the fact that Φ is an isomorphism we also have:

Φ([a, b]ĝ1
) = [Φ(a),Φ(b)]ĝ2

= [a+ ρ(a)C, b+ ρ(b)C]ĝ2

= [a, b]g + ψ2(a, b)C.

Therefore, δρ+ ψ1 = ψ2.
Analogously, if ψ1, ψ2 ∈ Z2(g,C) are cohomologous, i.e. ψ1 − ψ2 = δη ∈ B2(g,C), then we can
construct an isomorphism between the central extensions defined by ψ1 and ψ2 as in (2.4) letting
ρ := η.

The following proposition is the main result of this section.

Proposition 2.11. The following is a surjective morphism of Lie superalgebras:

φ : LieK ′4 −→ K ′(1, 4)

P (ξ)ym 7−→ P (ξ)tm if P (ξ) 6= ξ1ξ2ξ3ξ4
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∂ξ1ξ2ξ3ξ4y
m 7−→ −mξ1ξ2ξ3ξ4t

m−1.

The Lie superalgebra LieK ′4 is a central extension of K ′(1, 4) by a one−dimensional center.
The annihilation superalgebra of K ′4 is a central extension of K(1, 4)+ by a one−dimensional center
CC:

A(K ′4) = K(1, 4)+ ⊕ CC.

The extension is given by a 2−cocycle ψ ∈ Z2(K(1, 4)+,C) whose non−trivial entries are computed,
using bilinearity and antisimmetry of ψ, from:

ψ(1, ξ1ξ2ξ3ξ4) = −2,

ψ(ξi, ∂iξ1ξ2ξ3ξ4) = −1.

We need a lemma in order to prove Proposition 2.11.

Lemma 2.12. The element ∂ξ1ξ2ξ3ξ4y
0 ∈ LieK ′4 is central.

Proof. We have, for all pyl ∈ LieK ′4, with p ∈ K ′4:

[
∂ξ1ξ2ξ3ξ4y

0, pyl
]

=

(
0

0

)
((∂ξ1ξ2ξ3ξ4)0p) y

l = 0.

In the last equality we used the fact that ((∂ξ1ξ2ξ3ξ4)0p) is computed as the restriction of the
0−product in LieK4, for which we can use the relation (∂a(n)b) = −n(a(n−1)b).

We set the following notation. Given a proposition P , we will use χP :

χP =

{
1 if P is true,

0 if P is false.

Remark 2.13. From the definition of LieK ′4, for all a ∈ K ′4 and m ∈ Z, we have that ∂aym =
−maym−1. We showed that ξ1ξ2ξ3ξ4 /∈ K ′4. Hence, every class of equivalence of a monomial
∂kP (ξ)yn ∈ LieK ′4 has a unique representative of the type:

(−1)k
n!

(n− k)!
P (ξ)yn−k if P (ξ) 6= ξ1ξ2ξ3ξ4,

or of the type:

(−1)k−1 n!

(n− (k − 1))!
∂ξ1ξ2ξ3ξ4y

n−k+1 if P (ξ) = ξ1ξ2ξ3ξ4.

Therefore the set
{
ξi1 · · · ξiryk, ∂ξ1ξ2ξ3ξ4y

m, for k,m ∈ Z, r 6= 4
}

is a basis for LieK ′4.

Proof of Proposition 2.11. Observe that φ is well defined due to Remark 2.13 and Proposition 2.4.
It is clear from its definition that φ is surjective.
We prove that φ is a morphism of Lie superalgebras. We have to distinguish four cases:

1. Let f = Q(ξ)yh and g = Q̃(ξ)yl in LieK ′4, with Q(ξ) = ξi1 · · · ξir , Q̃(ξ) = ξj1 · · · ξjs , r < 4, s < 4,

Q(ξ) · Q̃(ξ) 6= ±ξ1ξ2ξ3ξ4 and h, l ∈ Z. In LieK ′4 we have, using bracket (1.2) and n−products
(2.2):

[f, g] =
∑
j∈Z+

(
h

j

)
(Q(j)Q̃)yh+l−j
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=

(
h

0

)
(Q(0)Q̃)yh+l +

(
h

1

)
(Q(1)Q̃)yh+l−1

= (r − 2)∂(QQ̃)yh+l + (−1)r
4∑
i=1

∂iQ∂iQ̃ y
h+l + h(r + s− 4)QQ̃ yh+l−1

= −(r − 2)(QQ̃)(h+ l)yh+l−1 + (−1)r
4∑
i=1

∂iQ∂iQ̃ y
h+l + h(r + s− 4)QQ̃ yh+l−1

= ((2− r)l + h(s− 2))QQ̃ yh+l−1 + (−1)r
4∑
i=1

∂iQ∂iQ̃ y
h+l.

In K ′(1, 4) we have, using bracket (2.1):

[φ(f), φ(g)] =
[
thQ(ξ), tlQ̃(ξ)

]
= (2− r)thQ(ξ)ltl−1Q̃(ξ)− hth−1Q(ξ)(2− s)tlQ̃(ξ) + (−1)r

4∑
i=1

∂iQ∂iQ̃ t
h+l

= ((2− r)l + h(s− 2))QQ̃ th+l−1 + (−1)r
4∑
i=1

∂iQ∂iQ̃ t
h+l = φ([f, g]).

2. Let f = Q(ξ)yh and g = Q̃(ξ)yl in LieK ′4, with Q(ξ) = ξi1 · · · ξir , Q̃(ξ) = ξj1 · · · ξjs , r < 4, s < 4,

Q(ξ) · Q̃(ξ) = ξ1ξ2ξ3ξ4 and h, l ∈ Z. In LieK ′4 we have, using bracket (1.2) and n−products
(2.2):

[f, g] =
∑
j∈Z+

(
h

j

)
(Q(j)Q̃)yh+l−j

=

(
h

0

)
(Q(0)Q̃)yh+l +

(
h

1

)
(Q(1)Q̃)yh+l−1

= (r − 2)∂(ξ1ξ2ξ3ξ4)yh+l.

In K ′(1, 4) we have, using bracket (2.1):

[φ(f), φ(g)] =
[
thQ(ξ), tlQ̃(ξ)

]
= (2− r)thQ(ξ)ltl−1Q̃(ξ)− hth−1Q(ξ)(2− s)tlQ̃(ξ)

= ((2− r)l + h(4− r − 2))ξ1ξ2ξ3ξ4t
h+l−1

= (2− r)(l + h)ξ1ξ2ξ3ξ4t
h+l−1 = φ

(
(r − 2)∂ (ξ1ξ2ξ3ξ4) yh+l

)
.

3. Let f = ∂ξ1ξ2ξ3ξ4y
m and g = ∂ξ1ξ2ξ3ξ4y

l in LieK ′4, with m, l ∈ Z. In LieK ′4 we have, using
bracket (1.2) and n−products (2.2):

[f, g] =
∑
j∈Z+

(
h

j

)
(∂ξ1ξ2ξ3ξ4 (j)∂ξ1ξ2ξ3ξ4)yh+l−j = 0.

Indeed, for every j ≥ 0, the j−product (∂ξ1ξ2ξ3ξ4 (j)∂ξ1ξ2ξ3ξ4) is computed in terms of
(ξ1ξ2ξ3ξ4 (j)ξ1ξ2ξ3ξ4) = 0 for all j ≥ 0. On the other hand in K ′(1, 4) we have, using bracket
(2.1):

[φ(f), φ(g)] =
[
−mξ1ξ2ξ3ξ4t

m−1,−lξ1ξ2ξ3ξ4t
l−1
]

= 0.
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4. Let f = ∂ξ1ξ2ξ3ξ4y
m and g = P (ξ)yl in LieK ′4, with P (ξ) 6= ξ1ξ2ξ3ξ4, m, l ∈ Z. First, we point

out that (∂ξ1ξ2ξ3ξ4 (j)P (ξ)) = −j(ξ1ξ2ξ3ξ4 (j−1)P (ξ)) = 0 for all j > 2. In LieK ′4 we have, using
bracket (1.2) and n−products (2.2):

[f, g] =
[
∂ξ1ξ2ξ3ξ4y

m, P (ξ)yl
]

= (∂ξ1ξ2ξ3ξ4 (0)P (ξ))ym+l +m(∂ξ1ξ2ξ3ξ4 (1)P (ξ))ym+l−1 +

(
m

2

)
(∂ξ1ξ2ξ3ξ4 (2)P (ξ))ym+l−2

= 0−m(ξ1ξ2ξ3ξ4 (0)P (ξ))ym+l−1 +

(
m

2

)
(∂ξ1ξ2ξ3ξ4 (2)P (ξ))ym+l−2

= −2m∂ξ1ξ2ξ3ξ4χP (ξ)∈C y
m+l−1 −m

N∑
i=1

∂i(ξ1ξ2ξ3ξ4)∂i (P (ξ)) ym+l−1

− 2

(
m

2

)
∂(4 + 0− 4) ξ1ξ2ξ3ξ4χP (ξ)∈C y

m+l−2

= −2m∂ξ1ξ2ξ3ξ4χP (ξ)∈C y
m+l−1 −m

N∑
i=1

∂i(ξ1ξ2ξ3ξ4)∂i(P (ξ)) ym+l−1.

In K ′(1, 4) we have, using bracket (2.1):

[φ(f), φ(g)] =
[
−mξ1ξ2ξ3ξ4t

m−1, P (ξ)tl
]

= −m(−2l − 2(m− 1)) tm+l−2ξ1ξ2ξ3ξ4χP (ξ)∈C −m
N∑
i=1

∂i(ξ1ξ2ξ3ξ4) ∂i (P (ξ)) tm+l−1

= φ([f, g]).

The previous computations imply that the kernel of the map φ : LieK ′4 −→ K ′(1, 4) is Kerφ =
〈∂ξ1ξ2ξ3ξ4〉 and so the following sequence is exact:

0→ 〈∂ξ1ξ2ξ3ξ4〉
i−→ LieK ′4

φ−→ K ′(1, 4)→ 0.

By Lemma 2.12 the Lie superalgebra LieK ′4 is therefore a central extension of K ′(1, 4) by the
one−dimensional center 〈∂ξ1ξ2ξ3ξ4〉.
In particular, we point out that φ : LieK ′4/C∂ξ1ξ2ξ3ξ4 → K ′(1, 4) is an isomorphism. In the pre-
vious computations we computed all the possible brackets between monomials in LieK ′4, therefore
in particular all the possible brackets between monomials in A(K ′4). We point out that the central
element ∂ξ1ξ2ξ3ξ4 lies in the support of [f, g], with f and g monomials in A(K ′4), only in the case
(2) of the previous computations for h = l = 0 and r 6= 2. In particular:

[ξi, ∂iξ1ξ2ξ3ξ4] = −∂ξ1ξ2ξ3ξ4

and

[1, ξ1ξ2ξ3ξ4] = −2∂ξ1ξ2ξ3ξ4.

Hence, A(K ′4) is a central extension of K(1, 4)+ by a one−dimensional center 〈∂ξ1ξ2ξ3ξ4〉 and the
extension is given by a 2−cocycle ψ ∈ Z2(K(1, 4)+,C) whose non−trivial entries are computed,
using bilinearity and antisimmetry of ψ, from:

ψ(1, ξ1ξ2ξ3ξ4) = −2,

ψ(ξi, ∂iξ1ξ2ξ3ξ4) = −1.
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Chapter 3

Verma modules

In this chapter we study the action of g := A(K ′4) = K(1, 4)+ ⊕ CC on a Verma module Ind(F ),
where F is a finite−dimensional irreducible g≥0−module, on which g>0 acts trivially. The grading
on g is the standard grading of K(1, 4)+ and C has degree 0. We have:

g−2 = 〈1〉 ,
g−1 = 〈ξ1, ξ2, ξ3, ξ4〉 ,
g0 = 〈{C, t, ξiξj 1 ≤ i < j ≤ 4}〉 .

Remark 3.1. The annihilation superalgebra g satisfies conditions L1, L2, L3. Indeed:

1. L1 is obvious.

2. The element t is a grading element, i.e. [t, a] = deg(a)a for all a ∈ g. Hence, by Remark 1.11,
t satisfies condition L2.

3. The element Θ of L3 is chosen as −1
2 ∈ g−2. Indeed for all m, s ∈ Z≥0 such that 2m+ s−2 ≥

−2, the element tmξi1 · · · ξis ∈ g2m+s−2 satisfies tmξi1 · · · ξis = − 1
m+1 [Θ, tm+1ξi1 · · · ξis ]. We

also have C = [Θ, ξ1ξ2ξ3ξ4].

Remark 3.2. Since Ind(F ) ∼= U(g<0)⊗F , it follows that Ind(F ) ∼= C[Θ]⊗
∧

(4)⊗F . Indeed, let us
denote by ηi the image in U(g) of ξi ∈

∧
(4), for all i ∈ {1, 2, 3, 4}. In U(g) we have that η2

i = Θ,
for all i ∈ {1, 2, 3, 4}: since [ξi, ξi] = −1 in g, we have ηiηi = −ηiηi − 1 in U(g).

From now on it is always assumed that F is a finite−dimensional irreducible g≥0−module. Let
us focus on g0 = 〈{C, t, ξiξj 1 ≤ i < j ≤ 4}〉 ∼= so(4)⊕CE00 ⊕CC, where so(4) is the Lie algebra
of skew−symmetric matrices and E00 := t. As in [BKL1], we denote Fi,j := −ξiξj , Fi,j corresponds
to Ei,j −Ej,i ∈ so(4). We take as a basis of a Cartan subalgebra h the following (cf. [Kn] pag.83):

H1 = iF1,2, H2 = iF3,4.

We call h1 := H1 −H2, h2 := H1 +H2. Let εj ∈ h∗ be such that εj(Hk) = δj,k. The set of roots is
∆ = {ε1 − ε2, ε1 + ε2,−(ε1 − ε2),−(ε1 + ε2)}, the set of positive roots is ∆+ = {ε1 − ε2, ε1 + ε2}.
We have the following root decomposition:

so(4) = h⊕ (⊕α∈∆gα) with gα = CEα,

where the Eα’s are:

Eε1−ε2 = F1,3 + F2,4 + iF1,4 − iF2,3,

Eε1+ε2 = F1,3 − F2,4 − iF1,4 − iF2,3,

23
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E−(ε1−ε2) = F1,3 + F2,4 − iF1,4 + iF2,3,

E−(ε1+ε2) = F1,3 − F2,4 + iF1,4 + iF2,3.

We will use the following notation:

α1,2 =
(Eε1−ε2 + Eε1+ε2)

2
, (3.1)

β1,2 =
(Eε1−ε2 − Eε1+ε2)

2
. (3.2)

The set {α1,2, β1,2} is a basis of the upper Borel subalgebra Bso(4).
We will write the weights µ = (m,n, µ0, µc) of weight vectors of g0−modules with respect to action
of the vectors h1, h2, E00 and C.

Remark 3.3. Since C is central, by Schur’s lemma, C acts as a scalar on F , and so we will denote
also this scalar by C.

We will study the action of g on Ind(F ) using the λ−action notation:

fλ(g ⊗ v) =
∑
j≥0

λj

j!
(tjf).(g ⊗ v),

for f ∈
∧

(4), g ∈ U(g<0) and v ∈ F . In order to find an explicit formula for fλ(g ⊗ v) with
f ∈

∧
(4), g ∈ U(g<0), v ∈ F , we need some lemmas. We will denote by capital letters ordered

sets I = (i1, i2, · · · ik) of integers that lie in {1, 2, 3, 4}. By abuse of notation, we will denote by
I ∩ J (resp. I \ J) the increasingly ordered set whose elements are the elements of the intersection
of the underlying sets of I and J (resp. the elements of the difference of the underlying sets of
I and J). We will say I ⊆ J when the underlying set of I is contained in the underlying set of
J . Analogously we will denote by Ic the increasingly ordered set whose elements are the elements
of the complement of the underlying set of I. Given I = (i1, i2, · · · ik), we will use the notation
ξI (resp. ηI) to denote the element ξi1ξi2 · · · ξik ∈

∧
(4) (resp. the element ηi1ηi2 · · · ηik ∈ U(g<0))

and we will denote |ξI | = |I| = k (resp. |ηI | = |I| = k). We will denote ξ∗ = ξ1ξ2ξ3ξ4 (resp.
η∗ = η1η2η3η4). Given I = (i1, i2, · · · ik) and Ic = (jk+1, jk+2, · · · j4), we will denote by εI the sign
of the permutation ( 1 2 ··· k k+1 ··· 4

i1 i2 ··· ik jk+1 ··· j4
)
.

We will also use the following notation, for a ∈ C, I = (i1, i2, · · · ik):

∂IηS = ∂i1∂i2 . . . ∂ikηS ∂IξS = ∂i1∂i2 . . . ∂ikξS ;

∂aξIηS = a∂IηS ∂aξI ξS = a∂IξS ;

∂∅ηS = ηS ∂∅ξS = ξS .

Given monomials ξI ∈
∧

(4) and ηJ ∈ U(g<0), we will use the following notation:

ξI ? ηJ = χI∩J=∅ηIηJ ,

ηJ ? ξI = χI∩J=∅ηJηI .

We extend this notation by linearity to elements
∑

I ξI ∈
∧

(4) and
∑

J ηJ ∈ U(g<0).
We observe that in g, by (2.1) and Proposition 2.11:

[tmξI , ξr] = −mtm−1ξIξr + (−1)|I|tm∂rξI + ψ(tmξI , ξr)C.

In particular:

[tmξI , ξr] = −mtm−1ξIξr + (−1)|I|tm∂rξI +χm=0χr=IcεIC. (3.3)
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Lemma 3.4. Let ξI ∈
∧

(4), ηQ ∈ U(g<0), v ∈ F and m ≥ 3. We have:

(tmξI).(ηQ ⊗ v) = −χm=3χ|I|=0 6 ∂IcηQ ⊗ Cv.

Proof. We can always assume, without loss of generality, that ηQ = ηJηK with I ∩ J = ∅, K ⊆ I.
We first point out that (tmξI).(ηQ ⊗ v) = 0 when m > 3 because deg(tmξI) = 2m + |I| − 2 > 4 ≥
deg(ηQ).
Let us show, using (3.3), the thesis for m = 3, I,K = ∅ and J = (1, 2, 3, 4):

(t3).(η1η2η3η4 ⊗ v) = −3(t2ξ1)η2η3η4 ⊗ v − 3η1(t2ξ2)η3η4 ⊗ v − 3η1η2(t2ξ3)η4 ⊗ v − 3η1η2η3(t2ξ4)⊗ v
= 6(tξ1ξ2)η3η4 ⊗ v − 6η2(tξ1ξ3)η4 ⊗ v
= −6(ξ1ξ2ξ3)η4 ⊗ v
= −6⊗ Cv.

If m = 3, |I| > 0, (t3ξI).(ηQ ⊗ v) = 0 because deg(t3ξI) = 2m + |I| − 2 > 4 ≥ deg(ηQ). If m = 3,
|I| = 0 and |Q| 6= 4, (t3).(ηQ ⊗ v) = 0 because deg(t3) = 4 > deg(ηQ).

Now we study the term of degree 0 in λ of the λ−action.

Lemma 3.5. Let I, J,K with I ∩ J = ∅, K ⊆ I. We have:

ξI .(ηJηK ⊗ v) =
∑
L⊆K

(−1)|I|(|J |+|K|)+|L|(|L|−1)/2−|L|(|K|−|L|)ηJ(∂LηK)(∂LξI)⊗ v

+χ|I|=3 εI ∂Ic(ηJ)ηK ⊗ Cv.

Proof. From repeated applications of (3.3) it follows:

ξI .(ηJηK)⊗ v = (−1)|I||J |ηJξIηK ⊗ v +χ|I|=3 εI ∂Ic(ηJ)ηK ⊗ Cv. (3.4)

Indeed, from (3.3), if |I| = 1, 2, then ξI commutes with every ξr such that r ∈ J and formula (3.4)
is straightforward. In the case |I| = 3 and J = Ic, using (3.3), we have:

ξI .(ηIcηK)⊗ v = −ηIcξIηK ⊗ v +χ|I|=3 εI ∂Ic(ηJ)ηK ⊗ Cv.

Finally for |I| = 3, 4 and |J | = 0, formula (3.4) is immediate.
The rest of the proof is the same as the proof of Lemma A.2 in [BKL1] and it is done by induction
on |K| using formula (3.4).

Lemma 3.6. Let f = ξI ∈
∧

(4), g = ηL ∈ U(g<0). We have:

f.(g ⊗ v) =(−1)p(f)(|f | − 2)Θ(∂fg)⊗ v +
4∑
i=1

∂(∂if)(ξi ? g)⊗ v + (−1)p(f)
∑
i<j

∂(∂i∂jf)g ⊗ Fi,jv

+χ|I|=3 εI ∂Ic(g)⊗ Cv.

Proof. The proof is analogous to the proof in [BKL1] of Lemma A.3, and it is based on Lemma 3.5.
The extra term in C is due to the additional term of Lemma 3.5, which is not present in Lemma
A.2 of [BKL1].

Now we study the term of degree 1 in λ of the λ−action.
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Lemma 3.7. Let f = ξI ∈
∧

(4), g = ηL ∈ U(g<0). We have:

tf.(g ⊗ v) =(−1)p(f)(∂fg)⊗ E00v + (−1)p(f)+p(g)
4∑
i=1

((∂f (∂ig)) ? ξi)⊗ v

+
∑
i 6=j

(
∂∂if (∂jg)⊗ Fi,jv

)
+χ|I|=2 εI ∂Ic(g)⊗ Cv.

Proof. Without loss of generality we can suppose that g = ηJηK with I ∩ J = ∅, K ⊆ I. Let us
prove that:

tξI .(ηJηK ⊗ v) =(−1)|I||J |ηJ(tξI)ηK ⊗ v +

4∑
j=1

(−1)|I||J |−|I|+|J |(∂jηJ)(ξIξj)ηK ⊗ v (3.5)

+χ|I|=2 εI(∂IcηJ)ηK ⊗ Cv.

The formula is the same as the relation proved for K(1, N)+ in the proof of Lemma A.4 of [BKL1],
except for an additional term in C. We point out that a term with C is involved only if |I| = 2 and
|J | = 2. Let us prove (3.5) by induction on |J |. If |J | = 0, (3.5) is straightforward. Let us consider
η
J̃

= ηJηs with J̃ ∩ I = ∅ and s /∈ J . We have, using (3.5) for ηJ , that:

tξI .(ηJηsηK ⊗ v) =(−1)|I||J |ηJ(tξI)ηsηK ⊗ v +
4∑
j=1

(−1)|I||J |−|I|+|J |(∂jηJ)(ξIξj)ηsηK ⊗ v

+χ|I|=2 εI(∂IcηJ)ηsηK ⊗ Cv.

Notice that, since we are supposing η
J̃

= ηJηs with J̃ ∩ I = ∅ and s /∈ J , the term
χ|I|=2 εI(∂IcηJ)ηsηK ⊗ Cv is 0 because if |I| = 2, then |J | < 2. We have, using (3.3), that:

tξI .(ηJηsηK ⊗ v) =(−1)|I||J |ηJ(tξI)ηsηK ⊗ v +

4∑
j=1

(−1)|I||J |−|I|+|J |(∂jηJ)(ξIξj)ηsηK ⊗ v

=(−1)|I|(|J |+1)ηJηs(tξI)ηK ⊗ v − (−1)|I||J |ηJ(ξIξs)ηK ⊗ v

+
4∑
j=1

(−1)|I||J |−|I|+|J |+|I|+1(∂jηJ)ηs(ξIξj)ηK ⊗ v

− (−1)|J |χ|I|=2χ|J |=1εI(∂IcηJηs)ηK ⊗ Cv.

We observe that:

−(−1)|I||J |ηJ(ξIξs)ηK ⊗ v = (−1)|I||J |+1+|J |(∂sηJ̃)(ξIξs)ηK ⊗ v

= (−1)|I||J̃ |−|I|+|J̃ |(∂sηJ̃)(ξIξs)ηK ⊗ v.

Therefore:

tξI .(ηJηsηK ⊗ v) =(−1)|I|(|J̃ |)η
J̃
(tξI)ηK ⊗ v +

4∑
j=1

(−1)|I||J̃ |−|I|+|J̃ |(∂jηJ̃)(ξIξj)ηK ⊗ v

+χ|I|=2εI(∂IcηJ̃)ηK ⊗ Cv.

Hence, formula (3.5) is proved. The rest of the proof is analogous to the proof of Lemma A.4 in
[BKL1] and it is based on (3.5).
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Now we study the term of degree 2 in λ of the λ−action.

Lemma 3.8. Let f = ξI ∈
∧

(4), g = ηL ∈ U(g<0). We have:(1

2
t2f
)
.(g ⊗ v) =(−1)p(f)

(∑
i<j

∂f (∂i∂jg)⊗ Fi,jv
)
−χ|I|=1 εI ∂Icg ⊗ Cv.

Proof. As before, without loss of generality, we can suppose that g = ηJηK with I ∩ J = ∅, K ⊆ I.
Let us prove that:(1

2
t2ξI

)
.(ηJηK ⊗ v) = (3.6)

= −χI=K
∑

i,j∈J,i<j
(−1)|I||J |+|I|(|I|+1)/2

(
(∂i∂jηJ)(∂IηK)(ξiξj)⊗ v

)
−χ|I|=1 εI ∂Ic(ηJ)ηK ⊗ Cv.

In order to prove (3.6), we need to prove the following:(1

2
t2ξI

)
.(ηJηK ⊗ v) = (3.7)∑

S⊆J,|S|=0

sgnS
1

2
(∂SηJ)(t2ξIξS)ηK ⊗ v +

∑
S⊆J,|S|=1

sgnS(∂SηJ)(tξIξS)ηK ⊗ v

+
∑

S⊆J,|S|=2

(
sgnS(∂SηJ)(ξIξS)ηK ⊗ v

)
−χ|I|=1 εI ∂Ic(ηJ)ηK ⊗ Cv,

where sgnS = ±1 and sgnJ = ±1. The numbers sgnS and sgnJ will be computed explicitly later.
We prove (3.7) by induction on |J |. If |J | = 0, (3.7) is straightforward. Let us consider η

J̃
= ηJηr

with J̃ ∩ I = ∅ and r /∈ J . We have, using (3.7) for ηJ , that:(1

2
t2ξI

)
.(ηJηrηK ⊗ v) =

=
∑

S⊆J,|S|=0

sgnS
1

2
(∂SηJ)(t2ξIξS)ηrηK ⊗ v +

∑
S⊆J,|S|=1

sgnS(∂SηJ)(tξIξS)ηrηK ⊗ v

+
∑

S⊆J,|S|=2

sgnS(∂SηJ)(ξIξS)ηrηK ⊗ v −χ|I|=1 εI ∂Ic(ηJ)ηrηK ⊗ Cv.

Notice that, since we are supposing η
J̃

= ηJηr with J̃ ∩ I = ∅ and r /∈ J , the term
−χ|I|=1 εI ∂Ic(ηJ)ηrηK ⊗ Cv is 0 because if |I| = 1, then |J | < 3. We have, using (3.3), that:(1

2
t2ξI

)
.(ηJηrηK ⊗ v) =

=
∑

S⊆J,|S|=0

sgnS
1

2
(∂SηJ)(t2ξIξS)ηrηK ⊗ v +

∑
S⊆J,|S|=1

sgnS(∂SηJ)(tξIξS)ηrηK ⊗ v

+
∑

S⊆J,|S|=2

sgnS(∂SηJ)(ξIξS)ηrηK ⊗ v

=
∑

S⊆J,|S|=0

sgnS
1

2
(∂SηJ)ηr(t

2ξIξS)ηK ⊗ v +
∑

S⊆J,|S|=0

sgnS(∂SηJ)(tξIξSξr)ηK ⊗ v

+
∑

S⊆J,|S|=1

sgnS(∂SηJ)ηr(tξIξS)ηK ⊗ v +
∑

S⊆J,|S|=1

sgnS(∂SηJ)(ξIξSξr)ηK ⊗ v
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+
∑

S⊆J,|S|=2

(
sgnS(∂SηJ)ηr(ξIξS)ηK ⊗ v

)
+χ|I|=1 εI sgnJ ∂Ic(ηJηr)ηK ⊗ Cv

=
∑

S⊆J,|S|=0

sgnS
1

2
(∂SηJηr)(t

2ξIξS)ηK ⊗ v +
∑

S⊆J,|S|=0

sgnS(∂rηJ̃)(tξIξSξr)ηK ⊗ v

+
∑

S⊆J,|S|=1

sgnS(∂SηJηr)(tξIξS)ηK ⊗ v +
∑

S⊆J,|S|=1

sgnS(∂S∂rηJ̃)(ξIξSξr)ηK ⊗ v

+
∑

S⊆J,|S|=2

(
sgnS(∂SηJηr)(ξIξS)ηK ⊗ v

)
+χ|I|=1 εI sgnJ ∂Ic(ηJηr)ηK ⊗ Cv

=
∑

S⊆J̃ ,|S|=0

sgnS
1

2
(∂SηJ̃)(t2ξIξS)ηK ⊗ v +

∑
S⊆J̃ ,|S|=1

sgnS(∂SηJ̃)(tξIξS)ηK ⊗ v

+
∑

S⊆J̃ ,|S|=2

(
sgnS(∂SηJ̃)(ξIξS)ηK ⊗ v

)
+χ|I|=1 εI sgnJ ∂Ic(ηJ̃)ηK ⊗ Cv.

We now compute explicitly the sign of the term ∂Ic(ηJ̃)ηK ⊗ Cv. Hence we consider I with

|I| = 1 and |J̃ | = 3, that is the only case in which there is a term involving C. For I = (i) and
J̃ = (j, k, l) = Ic we have:(1

2
t2ξi

)
.(ηjηkηlηK ⊗ v) =

= −(tξiξj)ηkηlηK ⊗ v + ηj(tξiξk)ηlηK ⊗ v − ηjηk(tξiξl)ηK ⊗ v − ηjηkηl
(1

2
t2ξi

)
ηK ⊗ v

= (ξiξjξk)ηlηK ⊗ v + ηk(ξiξjξl)ηK ⊗ v − ηkηl(tξiξj)ηK ⊗ v

− ηj(ξiξkξl)ηK ⊗ v + ηjηl(tξiξk)ηK ⊗ v − ηjηk(tξiξl)ηK ⊗ v − ηjηkηl
(1

2
t2ξi

)
ηK ⊗ v

= −ηl(ξiξjξk)ηK ⊗ v + εI ηK ⊗ Cv + ηk(ξiξjξl)ηK ⊗ v − ηkηl(tξiξj)ηK ⊗ v

− ηj(ξiξkξl)ηK ⊗ v + ηjηl(tξiξk)ηK ⊗ v − ηjηk(tξiξl)ηK ⊗ v − ηjηkηl
(1

2
t2ξi

)
ηK ⊗ v

=

2∑
i=0

∑
S⊆J̃ ,|S|=i

sgnS,i
1

2

2

(2− i)!
(∂SηJ̃)(t2−iξIξS)ηK ⊗ v − εI (∂IcηJ̃)ηK ⊗ Cv,

where sgnS,i = ±1. Hence, we proved (3.7). We notice that in (3.7) the terms∑
S⊆J,|S|=0

sgnS
1

2
(∂SηJ)(t2ξIξS)ηK ⊗ v +

∑
S⊆J,|S|=1

sgnS(∂SηJ)(tξIξS)ηK ⊗ v

are actually zero, since deg(t2ξIξS) > deg(ηK) and deg(tξIξS) > deg(ηK). Hence (3.7) reduces to:(1

2
t2ξI

)
.(ηJηK ⊗ v) =

∑
S⊆J,|S|=2

(
sgnS(∂SηJ)(ξIξS)ηK ⊗ v

)
−χ|I|=1εI (∂IcηJ)ηK ⊗ Cv.

In the proof of Lemma A.5 in [BKL1], the number sgnS for |S| = 2 is computed explicitly, in
particular it is shown that it is equal to −(−1)|I||J |. It follows that (3.7) reduces to:(1

2
t2ξI

)
.(ηJηK ⊗ v) = −(−1)|I||J |

∑
i<j

(
(∂i∂jηJ)(ξIξiξj

)
ηK ⊗ v

)
−χ|I|=1εI (∂IcηJ)ηK ⊗ Cv. (3.8)

Formula (3.6) can be proved using (3.8), (3.3) and induction on |K|. The proof is similar to the
proof of (3.7). Finally, the rest of the proof is analogous to the proof of Lemma A.5 in [BKL1] and
it is based on (3.6).
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The previous lemmas can be summarized in the following result.

Proposition 3.9. Let f = ξI ∈
∧

(4), g = ηL ∈ U(g<0). The λ−action has the following expression:

fλ(g ⊗ v) =(−1)p(f)(|f | − 2)Θ(∂fg)⊗ v +

4∑
i=1

∂(∂if)(ξi ? g)⊗ v

+ (−1)p(f)
∑
i<j

(
∂(∂i∂jf)g ⊗ Fi,jv

)
+χ|I|=3 εI ∂Ic(g)⊗ Cv

+ λ

(
(−1)p(f)(∂fg)⊗ E00v + (−1)p(f)+p(g)

4∑
i=1

((∂f (∂ig)) ? ξi)⊗ v

+
∑
i 6=j

(
∂∂if (∂jg)⊗ Fi,jv

)
+χ|I|=2 εI ∂Icg ⊗ Cv

)
+ λ2

(
(−1)p(f)

∑
i<j

(
∂f (∂i∂jg)⊗ Fi,jv

)
−χ|I|=1 εI ∂Icg ⊗ Cv

)
+ λ3

(
−χ|I|=0 ∂Icg ⊗ Cv

)
.

Now we introduce the definition of Hodge dual. For ηI ∈
∧

(4) we indicate with ηI its Hodge
dual in U(g<0), i.e. the unique monomial such that ηI ?ξI = η1η2η3η4. Then we extend by linearity

the definition of Hodge dual to elements
∑

I αIηI ∈ U(g<0) and we set ΘkηI = ΘkηI .
We recall Lemma 4.2 from [BKL1].

Lemma 3.10. For f = ξI ∈
∧

(4), g = ηL ∈ U(g<0), i ∈ {1, 2, 3, 4}, we have:

∂ig = g ? ξi = (−1)|g|ξi ? g, (3.9)

∂fg = (−1)(|f |(|f |−1)/2)+|f ||g|f ? g, (3.10)

ξi ? g = −(−1)|g|∂ig, (3.11)

g ? ξi = −∂ig. (3.12)

Proposition 3.11. Let T be the vector space isomorphism T : Ind(F )→ Ind(F ) that is defined by
T (g ⊗ v) = g ⊗ v. Let f = ξI ∈

∧
(4), g = ηL ∈ U(g<0). We have:

T ◦ fλ ◦ T−1(g ⊗ v) =

= (−1)(|f |(|f |+1)/2)+|f ||g|
{

(|f | − 2)Θ(f ? g)⊗ v − (−1)p(f)
4∑
i=1

((∂if) ? (∂ig))⊗ v

−
∑
r<s

(
(∂r∂sf) ? g ⊗ Fr,sv

)
+χ|I|=3 εI ξIc ? g ⊗ Cv

+ λ

[
f ? g ⊗ E00v − (−1)p(f)

4∑
i=1

∂i((fξi) ? g)⊗ v + (−1)p(f)
∑
i 6=j

(
((∂if)ξj) ? g ⊗ Fi,jv

)
+χ|I|=2 εIξIc ? g ⊗ Cv)

]
+ λ2

[
−
∑
i<j

(
(fξiξj ? g)⊗ Fi,jv

)
−χ|I|=1 εIξIc ? g ⊗ Cv)

]
+ λ3

[
−χ|I|=0ξ∗ ? g ⊗ Cv

]}
.

Proof. The proof is analogous to the proof of Theorem 4.3 in [BKL1]. We consider the vector
space isomorphism T : Ind(F ) → Ind(F ) that is defined by T (g ⊗ v) = g ⊗ v. The formula in the



30 3. Verma modules

statement is the expression for T ◦ fλ ◦ T−1(g ⊗ v) for f = ξI ∈
∧

(4), g = ηL ∈ U(g<0). The thesis
for the terms that do not involve C can be shown like in the proof of Theorem 4.3 in [BKL1]. We
focus on the terms in C.

1. We compute χ|I|=3 εI ∂Ic(g) = χ|I|=3 εI ∂Ic(g). Using (3.9), we obtain that ∂Icg = (−1)|g|ξIc?
g.

2. We compute χ|I|=2 εI ∂Icg = χ|I|=2 εI ∂Icg. Using (3.10), we obtain that

∂Icg = (−1)2 1
2

+2|g|ξIc ? g = −ξIc ? g.

3. We compute−χ|I|=1 εI ∂Icg = −χ|I|=1 εI ∂Icg. Using (3.10), we obtain that ∂Icg = (−1)3 2
2

+3|g|ξIc?

g = (−1)1+|g|ξIc ? g.

4. We compute−χ|I|=0 ∂Icg = −χ|I|=0 ∂Icg. Using (3.10), we obtain that ∂Icg = (−1)4 3
2

+4|g|ξIc?
ḡ = ξIc ? g.

Hence the formula is proved.

In the following lemma we give a recursive formula in order to compute, for f = ξI ∈
∧

(4) and
g = ηL ∈ U(g<0), the λ−action fλ(Θkg ⊗ v) starting from fλ(Θk−1g ⊗ v). This recursive formula
holds both for formula in Proposition 3.9 and for the formula in Proposition 3.11.

Lemma 3.12. Let f = ξI ∈
∧

(4), g = ηL ∈ U(g<0) and k ∈ Z>0. We have:

fλ(Θkg ⊗ v) = (Θ + λ)(fλΘk−1g ⊗ v)−χ|I|=4εIΘ
k−1g ⊗ Cv.

Proof. We have by (2.1) and Proposition 2.11:

fλ(Θkg ⊗ v) =
∑
l≥0

λj

j!
(tjf).(Θkg ⊗ v)

=
∑
l≥0

λj

j!
Θ(tjf)Θk−1g ⊗ v +

∑
l≥0

λj

j!
(jtj−1f)Θk−1g ⊗ v −χ|f |=4εIΘ

k−1g ⊗ Cv

= (Θ + λ)(fλΘk−1g ⊗ v)−χ|f |=4εIΘ
k−1g ⊗ Cv.

For |f | 6= 4 the formula reduces to:

fλ(Θkg ⊗ v) = (Θ + λ)kfλ(g ⊗ v).



Chapter 4

Singular vectors

The aim of this chapter is to classify all the singular vectors of Verma modules on g.

Remark 4.1. From the definition of the λ−action we deduce that ~m ∈ Ind(F ) is a highest weight
singular vector if and only if the following hold:

S1 d2

dλ2 (fλ ~m) = 0 for all f ∈
∧

(4);

S2 d
dλ(fλ ~m)|λ=0 = 0 for all f = ξI ∈

∧
(4) such that |I| ≥ 1;

S3 (fλ ~m)|λ=0 = 0 for all f = ξI ∈
∧

(4) such that |I| ≥ 3 or f ∈ Bso(4).

Indeed condition S1 is equivalent to∑
j≥0

j(j − 1)
λj−2

j!
(tjf).~m = 0,

for all f ∈
∧

(4), that is (tjf).~m = 0 for all f ∈
∧

(4) and j ≥ 2.
Condition S2 is equivalent to (tf).~m = 0 for all f = ξI ∈

∧
(4) such that |I| ≥ 1.

Condition S3 is equivalent to f.~m = 0 for all f = ξI ∈
∧

(4) such that |I| ≥ 3 or f ∈ Bso(4).
Therefore S1, S2, S3 are equivalent to the conditions g>0.~m = 0 and Bso(4).~m = 0, i.e. ~m is a
highest weight singular vector.

Remark 4.2. We denote by gss0 the semisimple part of g0. We introduce the following notation:

ex =
Eε1−ε2

2
, fx = −

E−(ε1−ε2)

2
, hx = H1 −H2,

and

ey =
Eε1+ε2

2
, fy = −

E−(ε1+ε2)

2
, hy = H1 +H2.

We have that:

gss0 = 〈ex, fx, hx〉 ⊕ 〈ey, fy, hy〉 ∼= 〈x1∂x2 , x2∂x1 , x1∂x1 − x2∂x2〉 ⊕ 〈y1∂y2 , y2∂y1 , y1∂y1 − y2∂y2〉.

By direct computations, we obtain the following result.

Lemma 4.3. As gss0 −modules:

g−1
∼= 〈x1, x2〉 ⊗ 〈y1, y2〉.

The isomorphism is given by:

ξ2 + iξ1 ↔ x1y1, ξ2 − iξ1 ↔ x2y2, −ξ4 + iξ3 ↔ x1y2, ξ4 + iξ3 ↔ x2y1.

31
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Motivated by the previous lemma, we will use the notation

w11 = η2 + iη1, w22 = η2 − iη1, w12 = −η4 + iη3, w21 = η4 + iη3. (4.1)

We point out that [w11, w22] = 4Θ, [w12, w21] = −4Θ and all other brackets between the w′s are 0.
We will identify the irreducible gss0 −module of highest weight (m,n) with respect to hx, hy with
the space of homogeneous polynomials of degree m in the variables x1, x2, and of degree n in the
variables y1, y2.
The aim of this chapter is to solve equations S1, S2, S3 in order to obtain the following classification
of singular vectors. We recall that the highest weight of F is always written with respect to the
action of hx, hy, E00 and C.

Theorem 4.4. Let F be an irreducible finite−dimensional g0−module, with highest weight µ. A
vector in ~m ∈ Ind(F ) is a non trivial highest weight singular vector of degree 1 if and only if ~m is
(up to a scalar) one of the following vectors:

a: µ = (m,n,−m+n
2 , m−n2 ) with m,n ∈ Z≥0,

~m1a = w11 ⊗ xm1 yn1 ;

b: µ = (m,n, 1 + m−n
2 ,−1− m+n

2 ), with m ∈ Z>0, n ∈ Z≥0,

~m1b = w21 ⊗ xm1 yn1 − w11 ⊗ xm−1
1 x2y

n
1 ;

c: µ = (m,n, 2 + m+n
2 , n−m2 ), with m,n ∈ Z>0,

~m1c = w22 ⊗ xm1 yn1 − w12 ⊗ xm−1
1 x2y

n
1 − w21 ⊗ xm1 yn−1

1 y2 + w11 ⊗ xm−1
1 x2y

n−1
1 y2;

d: µ = (m,n, 1 + n−m
2 , 1 + m+n

2 ), with m ∈ Z≥0, n ∈ Z>0,

~m1d = w12 ⊗ xm1 yn1 − w11 ⊗ xm1 yn−1
1 y2.

Theorem 4.5. Let F be an irreducible finite−dimensional g0−module, with highest weight µ. A
vector ~m ∈ Ind(F ) is a non trivial highest weight singular vector of degree 2 if and only if ~m is (up
to a scalar) one of the following vectors:

a: µ = (0, n, 1− n
2 ,−1− n

2 ) with n ∈ Z≥0,

~m2a = w11w21 ⊗ yn1 ;

b: µ = (m, 0, 1− m
2 , 1 + m

2 ) with m ∈ Z≥0,

~m2b = w11w12 ⊗ xm1 ;

c: µ = (m, 0, 2 + m
2 ,−

m
2 ) with m ∈ Z>1,

~m2c = w22w21 ⊗ xm1 + (w11w22 + w21w12)⊗ xm−1
1 x2 − w11w12 ⊗ xm−2

1 x2
2;

d: µ = (0, n, 2 + n
2 ,

n
2 ) with n ∈ Z>1,

~m2d = w22w12 ⊗ yn1 − (w22w11 + w21w12)⊗ yn−1
1 y2 − w11w21 ⊗ yn−2

1 y2
2.
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Theorem 4.6. Let F be an irreducible finite−dimensional g0−module, with highest weight µ. A
vector ~m ∈ Ind(F ) is a non trivial highest weight singular vector of degree 3 if and only if ~m is (up
to a scalar) one of the following vectors:

a: µ = (1, 0, 5
2 ,−

1
2),

~m3a = w11w22w21 ⊗ x1 + w21w12w11 ⊗ x2;

b: µ = (0, 1, 5
2 ,

1
2),

~m3b = w11w22w12 ⊗ y1 + w12w21w11 ⊗ y2.

Theorem 4.7. There are no singular vectors of degree greater than 3.

Remark 4.8. Let us call M(µ1, µ2, µ3, µ4) the Verma module Ind(F (µ1, µ2, µ3, µ4)), where
F (µ1, µ2, µ3, µ4) is the irreducible g0−module with highest weight (µ1, µ2, µ3, µ4). We call a
Verma module degenerate if it is not irreducible. We point out that, given M(µ1, µ2, µ3, µ4) and
M(µ̃1, µ̃2, µ̃3, µ̃4) Verma modules, we can construct a non trivial morphism of g−modules from the
former to the latter if and only if there exists a highest weight singular vector ~m in M(µ̃1, µ̃2, µ̃3, µ̃4)
of highest weight (µ1, µ2, µ3, µ4). The map is uniquely determined by:

∇ : M(µ1, µ2, µ3, µ4) −→M(µ̃1, µ̃2, µ̃3, µ̃4)

vµ 7−→ ~m,

where vµ is a highest weight vector of F (µ1, µ2, µ3, µ4). If ~m is a singular vector of degree d, we
say that ∇ is a morphism of degree d.

We use Remark 4.8 to construct the maps in Figure 4.1 of all possible morphisms in the case of
K ′4. The maps will be described in detail in chapter 5. From Theorems 4.4, 4.5 and 4.6 it follows
that the module M(0, 0, 2, 0) does not contain non trivial singular vectors, hence it is irreducible
due to Theorem 1.15.

Proposition 4.9. The module M(0, 0, 2, 0) is irreducible and it is isomorphic to the coadjoint
representation of K(1, 4)+, where we consider the restricted dual, i.e. K(1, 4)∗+ = ⊕j∈Z(K(1, 4)+j)

∗.

Proof. Due to Theorem 1.15, the module M(0, 0, 2, 0) is irreducible since it does not contain non
trivial singular vectors. We point out that, since C acts as the scalar 0 on M(0, 0, 2, 0), the action
of g on M(0, 0, 2, 0) is determined by the action of K(1, 4)+.
We first want to show explicitly that K(1, 4)∗+ is an irreducible K(1, 4)+−module.
We recall that the action on the restricted dual is given, for every g, v ∈ K(1, 4)+ and f ∈ K(1, 4)∗+,
by:

(g.f)(v) = −(−1)p(g)p(f)f([g, v]),

where p(g) (resp. p(f)) denotes the parity of g (resp. f) and the bracket is given by (2.1).
Since we are considering the restricted dual, a basis of K(1, 4)∗+ is given by Θ∗ and the elements
(tsξi1 · · · ξip)∗ with s ≥ 0. We first show that K(1, 4)+.Θ

∗ = K(1, 4)∗+. Then we will show that,
given 0 6= x ∈ K(1, 4)∗+, we have that Θ∗ ∈ K(1, 4)+.x.
We show, by induction on p, that (ξi1 · · · ξip)∗ lies in K(1, 4)+.Θ

∗, in particular ξi1 . · · · (ξip .(Θ∗)) =
β(ξi1 · · · ξip)∗ for a scalar β ∈ C \ {0} that is not needed explicitly.
Indeed, we have, using bracket (2.1), that for every i ∈ {1, 2, 3, 4} and for every monomial a in
K(1, 4)+:

(ξi.Θ
∗)(a) = −Θ∗([ξi, a]) =

{
0 if a 6= αξi, for every α ∈ C \ {0} ,
−(Θ∗)(2αΘ) = −2α if a = αξi for some α ∈ C \ {0} .
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Then ξ∗i = −1
2(ξi.Θ

∗).
Now we show that ξi1 . · · · (ξip .(Θ∗)) = β(ξi1 · · · ξip)∗ for a scalar β ∈ C\{0}, using that ξi1 . · · · (ξiq .(Θ∗)) =
γq(ξi1 · · · ξiq)∗, for every q < p and for a scalar γq ∈ C \ {0}. Indeed we have, using bracket (2.1),
that for every monomial a in K(1, 4)+:

(ξi1 . · · · (ξip .(Θ∗)))(a) = (ξi1 .γp−1(ξi2 · · · ξip)∗)(a)

= (−1)pγp−1(ξi2 · · · ξip)∗([ξi1 , a]) =

{
0 if a 6= αξi1ξi2 · · · ξip , for every α ∈ C \ {0} ,
−(−1)pγp−1α if a = αξi1ξi2 · · · ξip for some α ∈ C \ {0} .

We now show, by induction on s, that, for fixed p, (tsξi1 · · · ξip)∗ lies in K(1, 4)+.Θ
∗; in particular

(tsξi1 · · · ξip)∗ is obtained, up to a scalar, repeating s−times the application of Θ on ξi1 . · · · (ξip .(Θ∗)).
Indeed we have, using bracket (2.1), that for every monomial a in K(1, 4)+:

(Θ.(ξi1 . · · · (ξip .(Θ∗))))(a) = (Θ.β(ξi1 · · · ξip)∗)(a)

= −β(ξi1 · · · ξip)∗([Θ, a]) =

{
0 if a 6= αtξi1 · · · ξip for every α ∈ C \ {0} ,
βα if a = αtξi1 · · · ξip for some α ∈ C \ {0} ,

= β(tξi1 · · · ξip)∗(a).

Figure 4.1

(m,n,−m+n
2 , m−n2 ) A

m

n

n

m

(m,n, m+n
2 + 2, n−m2 )C

n

m

(m,n, 1 + n−m
2 , 1 + n+m

2 ) D

m

n(m,n, 1 + m−n
2 ,−1− m+n

2 )B
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Now we show that (tsξi1 · · · ξip)∗ lies inK(1, 4)+.Θ
∗ using that (tqξi1 · · · ξip)∗ = γq(Θ. · · · (Θ︸ ︷︷ ︸

q−times

.(ξi1 · · · ξip)∗),

for every q < s and for γq ∈ C \ {0}. Indeed we have, using bracket (2.1), that for every monomial
a in K(1, 4)+:

(Θ. · · · (Θ︸ ︷︷ ︸
s−times

.(ξi1 · · · ξip)∗))(a) = −γs−1(ts−1ξi1 ...ξip)
∗([Θ, a])

=

{
0 if a 6= αtsξi1 ...ξip , for every α ∈ C \ {0} ,
γs−1sα if a = αtsξi1 ...ξip for some α ∈ C \ {0} ,

= sγs−1(tsξi1 · · · ξip)∗.

Now we show that, given 0 6= x ∈ K(1, 4)∗+, we have Θ∗ ∈ K(1, 4)+.x. Let us write x as a finite
linear combination of elements in the basis:

x =
∑
s,I

αs,I(t
sξI)

∗.

We choose one of the monomial of maximum degree among the (tsξI)
∗’s in Supp(x), i.e. one

monomial with maximum value of 2s+ |I|−2. Let us call this monomial (tsmaxξImax)∗. We observe
that, using bracket (2.1), for every monomial a in K(1, 4)+ we have:

(tsmax+1ξImax .(t
smaxξImax)∗)(a) = −(−1)|Imax|

2
(tsmaxξImax)∗([tsmax+1ξImax , a])

=

{
0 if a 6= αΘ for every α ∈ C \ {0} ,
−(−1)|Imax|

2
(smax + 1)α if a = αΘ for some α ∈ C \ {0} .

Therefore Θ∗ = γtsmax+1ξImax .(t
smaxξImax)∗ for some γ ∈ C \ {0}. We also have, using bracket

(2.1), that for every monomial a in g and (tsξI)
∗ 6= (tsmaxξImax)∗ in Supp(x):

(tsmax+1ξImax .(t
sξI)

∗)(a) = −(−1)|Imax||I|(tsξI)
∗([tsmax+1ξImax , a]) = 0.

Indeed if deg(tsξI) < deg(tsmaxξImax), then

(tsξI)
∗([tsmax+1ξImax , a]) = 0,

since deg([tsmax+1ξImax , a]) ≥ deg(tsmaxξImax).
If deg(tsξI) = deg(tsmaxξImax), then

(tsξI)
∗([tsmax+1ξImax , a]) = 0,

since deg([tsmax+1ξImax , a]) = deg(tsmaxξImax) only for a = Θ, but (tsξI) 6= tsmaxξImax .
Therefore Θ∗ = γtsmax+1ξImax .x.
We now show that M(0, 0, 2, 0) is isomorphic to the coadjoint representation of K(1, 4)+.
Indeed, we notice that a morphism of K(1, 4)+−modules Φ : M(0, 0, 2, 0)→ K(1, 4)∗+ must satisfy,
for all m ∈M(0, 0, 2, 0) and a, b ∈ K(1, 4)+:

Φ(b.m)(a) = −Φ(m)([b, a]),

where the bracket is given by (2.1). We take the morphism of modules Φ such that Φ(v) = Θ∗,
where v is a highest weight vector in F (0, 0, 2, 0). Let us show that this map is surjective. We
show, by induction on p, that (ξi1 · · · ξip)∗ lies in Im Φ, in particular Φ(ξi1 · · · ξipv) = β(ξi1 · · · ξip)∗
for a scalar β ∈ C \ {0} that is not needed explicitly.
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Indeed, we have, using bracket (2.1), that for every i ∈ {1, 2, 3, 4} and for every monomial a in
K(1, 4)+:

Φ(ξiv)(a) = −Φ(v)([ξi, a]) = −Θ∗([ξi, a]) =

{
0 if a 6= αξi,

−(Θ∗)(2αΘ) = −2α if a = αξi for some α ∈ C \ {0} .

Then ξ∗i = −1
2Φ(ξi.v) ∈ Im(Φ). Now we show that Φ(ξi1 · · · ξipv) = β(ξi1 · · · ξip)∗ for a scalar

β ∈ C\{0}, using that Φ(ξi1 · · · ξiqv) = γq(ξi1 · · · ξiq)∗, for every q < p and for a scalar γq ∈ C\{0}.
Indeed we have, using bracket (2.1), that for every monomial a in K(1, 4)+:

Φ(ξi1 · · · ξipv)(a) = −Φ(ξi2 · · · ξipv)([ξi1 , a])

= −γp−1(ξi2 · · · ξip)∗([ξi1 , a]) =

{
0 if a 6= αξi1 · · · ξip ,
γp−1α if a = αξi1 · · · ξip for some α ∈ C \ {0} ,

= γp−1(ξi1 · · · ξip)∗.

We now show, by induction on s, that, for fixed p, (tsξi1 · · · ξip)∗ lies in Im Φ; in particular
(tsξi1 · · · ξip)∗ = βΦ(Θsξi1 · · · ξipv) for a scalar β ∈ C \ {0}.
Indeed we have, using bracket (2.1), that for every monomial a in K(1, 4)+:

Φ(Θξi1 · · · ξipv)(a) = −Φ(ξi1 · · · ξipv)([Θ, a]) = −β(ξi1 · · · ξip)∗([Θ, a])

=

{
0 if a 6= αtξi1 · · · ξip
βα if a = αtξi1 · · · ξip for some α ∈ C \ {0}

= β(tξi1 · · · ξip)∗(a).

Now we show that (tsξi1 · · · ξip)∗ lies in Im Φ using that (tqξi1 · · · ξip)∗ = γqΦ(Θqξi1 · · · ξipv), for
every q < s and for γq ∈ C \ {0}. Indeed we have, using bracket (2.1), that for every monomial a
in K(1, 4)+:

Φ(Θsξi1 · · · ξipv)(a) = −Φ(Θs−1ξi1 · · · ξipv)([Θ, a]) = −γs−1(ts−1ξi1 · · · ξip)∗([Θ, a])

=

{
0 if a 6= αtsξi1 · · · ξip ,
γs−1sα if a = αtsξi1 · · · ξip for some α ∈ C \ {0}

= γs−1s(t
sξi1 · · · ξip)∗.

Now we show that Φ is injective. We know that (K(1, 4)+)>0.v = 0 and also (sl2⊕sl2⊕CC).v = 0.
Then we analyze what happens when we compute Φ(x.v) for x = α1ξ1 +α2ξ2 +α3ξ3 +α4ξ4 +βΘ ∈
(K(1, 4)+)<0.

Φ(x.v)(a) = −Θ∗([x, a]) = −Θ∗([α1ξ1 + α2ξ2 + α3ξ3 + α4ξ4 + βΘ, a])

= −2α1ξ
∗
1(a)− 2α2ξ

∗
2(a)− 2α3ξ

∗
3(a)− 2α4ξ

∗
4(a)− 2βt∗(a).

But ξ∗1 , ξ∗2 , ξ∗3 , ξ∗4 and t∗ are linearly independent, therefore, in order to have Φ(x.v) = 0, we need
x = 0. The same argument can be iterated for x1.(x2.(x3....(xr))).v, with xi’s ∈ (K(1, 4)+)<0.
Hence, Φ is injective.

In order to prove Theorems 4.4, 4.5 and 4.6, we need some lemmas.

Remark 4.10. We point out that, by Remark 4.1, a vector ~m ∈ Ind(F ) is a highest weight singular
vector if and only if it satisfies S1, S2, S3. Since T , defined as in Proposition 3.11, is an isomorphism
and ~m = T−1 ~m, the fact that ~m ∈ Ind(F ) satisfies S1, S2, S3 is equivalent to impose conditions
S1, S2, S3 for T ◦ fλ ◦ T−1 ~m, using the expression given by Proposition 3.11.
Therefore in the following Lemmas we will consider a vector T (~m) ∈ Ind(F ) and we will impose
that the expression for (T ◦fλ◦T−1)T (~m) = (T ◦fλ)~m given by Proposition 3.11 satisfies conditions
S1, S2, S3. We will have that ~m is a highest weight singular vector.
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Motivated by Remark 4.10, in the following lemmas we consider ~m ∈ U(g<0) and we will use
the expression for the λ−action of Proposition 3.11 for T (~m). We consider a vector ~m ∈ Ind(F )
such that:

T (~m) =

N∑
k=0

∑
I

ΘkηI ⊗ vI,k, (4.2)

with vI,k ∈ F for all k. For all k, we will denote v∗,k = v(1,2,3,4),k. In this notation we consider
the sets I always in increasing order. For instance, if T (~m) = η1η2 ⊗ u− 3η2η1 ⊗ w, we write it as
η1η2 ⊗ v(1,2),0 where v(1,2),0 = u+ 3w.
In order to make clearer how the λ−action of Proposition 3.11 works for a vector ~m ∈ Ind(F ), such
that T (~m) is written as in (4.2), let us see the following example.

Example 4.11. Let T (~m) = Θ2η1η3 ⊗ v(1,3),2 + η2 ⊗ v(2),0 and f = ξ2. Using Proposition 3.11 and
Lemma 3.12, we have:

(T ◦ fλ)~m =

= −(λ+ Θ)2
{
−Θ(ξ2 ? η1η3)⊗ v(1,3),2 +

4∑
i=1

((∂iξ2) ? (∂iη1η3))⊗ v(1,3),2

+ λ
[
ξ2 ? η1η3 ⊗ E00v(1,3),2 +

4∑
i=1

∂i((ξ2ξi) ? η1η3)⊗ v(1,3),2 −
∑
i 6=j

(
((∂iξ2)ξj) ? η1η3 ⊗ Fi,jv(1,3),2

)]
+ λ2

[
−
∑
i<j

(
(ξ2ξiξj ? η1η3)⊗ Fi,jv(1,3),2

)
− ε(2) ξ(2)c ? η1η3 ⊗ Cv(1,3),2)

]}
−Θ(ξ2 ? η2)⊗ v(2),0 +

4∑
i=1

((∂iξ2) ? (∂iη2))⊗ v(2),0 + λ
[
ξ2 ? η2 ⊗ E00v(2),0 +

4∑
i=1

∂i((ξ2ξi) ? η2)⊗ v(2),0

−
∑
i 6=j

(
((∂iξ2)ξj) ? η2 ⊗ Fi,jv(2),0

)]
+ λ2

[
−
∑
i<j

(
(ξ2ξiξj ? η2)⊗ Fi,jv(2),0

)
− ε(2) ξ(2)c ? η2 ⊗ Cv(2),0)

]
=− (λ+ Θ)2

{
+ Θη1η2η3 ⊗ v(1,3),2 + λ

[
− η1η2η3 ⊗ E00v(1,3),2 + ∂4((ξ2ξ4) ? η1η3)⊗ v(1,3),2

− ((∂2ξ2)ξ4) ? η1η3 ⊗ F2,4v(1,3),2

]}
+ 1⊗ v(2),0 + λ

[
−
∑
26=j

ξj ? η2 ⊗ F2,jv(2),0

]
+ λ2η∗ ⊗ Cv(2),0

=− (λ+ Θ)2
{

Θη1η2η3 ⊗ v(1,3),2 + λ
[
− η1η2η3 ⊗ E00v(1,3),2 + η1η2η3 ⊗ v(1,3),2 − η1η3η4 ⊗ F2,4v(1,3),2

]}
+ 1⊗ v(2),0 + λ

[
η1η2 ⊗ F1,2v(2),0 − η2η3 ⊗ F2,3v(2),0 − η2η4 ⊗ F2,4v(2),0

]
+ λ2η∗ ⊗ Cv(2),0.

Lemma 4.12. Let ~m ∈ Ind(F ) be a singular vector such that T (~m) is written as in formula (4.2).
The degree of ~m in Θ is at most 3.

Proof. Using Proposition 3.11, Lemma 3.12 and Remark 4.10, condition S1 for f = 1 reduces to:

0 =
d2

dλ2
((T ◦ 1λ)~m) =

N∑
k=2

∑
I

k(k − 1)(λ+ Θ)k−2

[
(−2)ΘηI ⊗ vI,k + λ (ηI ⊗ E00vI,k − (4− |I|)ηI ⊗ vI,k)

+ λ2

(
−
∑
i<j

ξiξj ? ηI ⊗ Fi,jvI,k
)

+ λ3
(
−χ|I|=0η1η2η3η4 ⊗ CvI,k

)]

+ 2
N∑
k=1

∑
I

k(λ+ Θ)k−1

[
ηI ⊗ E00vI,k − (4− |I|)ηI ⊗ vI,k

− 2λ

(∑
i<j

ξiξj ? ηI ⊗ Fi,jvI,k
)

+ 3λ2
(
−χ|I|=0η1η2η3η4 ⊗ CvI,k

)]



38 4. Singular vectors

+
N∑
k=0

∑
I

(λ+ Θ)k

[
− 2

∑
i<j

ξiξj ? ηI ⊗ Fi,jvI,k + 6λ
(
−χ|I|=0η1η2η3η4 ⊗ CvI,k

)]
.

Now we write Θ as Θ + λ − λ and consider this expression as a polynomial in the indeterminates
Θ + λ and λ. The coefficients of (λ+ Θ)sλ3, with s ≥ 0, are:∑

I

(s+ 2)(s+ 1)χ|I|=0η∗ ⊗ CvI,s+2 = 0. (4.3)

We consider the coefficients of (λ+ Θ)sλ2 with s ≥ 1 and obtain:

−
∑
I

∑
i<j

(s+ 2)(s+ 1)ξiξj ? ηI ⊗ Fi,jvI,s+2 − 6
∑
I

(s+ 1)χ|I|=0η∗ ⊗ CvI,s+1 = 0.

Therefore, using (4.3), we obtain that for s ≥ 1:∑
I

∑
i<j

ξiξj ? ηI ⊗ Fi,jvI,s+2 = 0. (4.4)

Now we look at the coefficients of (λ+ Θ)sλ with s ≥ 2 and obtain:∑
I

(s+ 2)(s+ 1)(2ηI ⊗ vI,s+2 + ηI ⊗ E00vI,s+2 − (4− |I|)ηI ⊗ vI,s+2)

− 4
∑
I

∑
i<j

(s+ 1)ξiξj ? ηI ⊗ Fi,jvI,s+1 − 6
∑
I

χ|I|=0η∗ ⊗ CvI,s = 0.

Therefore, using (4.3) and (4.4), we obtain that for s ≥ 2:∑
I

(2ηI ⊗ vI,s+2 + ηI ⊗ E00vI,s+2 − (4− |I|)ηI ⊗ vI,s+2) = 0. (4.5)

Finally we look at the coefficients of (λ+ Θ)s with s ≥ 3 and obtain:∑
I

(s+ 1)(s)(−2ηI ⊗ vI,s+1) + 2(s+ 1)(ηI ⊗ E00vI,s+1 − (4− |I|)ηI ⊗ vI,s+1)

− 2
∑
I

∑
i<j

ξiξj ? ηI ⊗ Fi,jvI,s = 0.

Therefore, using (4.4) and (4.5), we obtain that for s ≥ 3:∑
I

(s+ 1)(s)(−2ηI ⊗ vI,s+1) + 2(s+ 1)(ηI ⊗ E00vI,s+1 − (4− |I|)ηI ⊗ vI,s+1)

=
∑
I

(s+ 1)(s)(−2ηI ⊗ vI,s+1) + 2(s+ 1)(−2ηI ⊗ vI,s+1)

=
∑
I

(s+ 1)(s+ 2)(−2ηI ⊗ vI,s+1) = 0.

Hence, vI,k = 0 for all k ≥ 4.

Therefore, we proved that, for a singular vector ~m ∈ Ind(F ), T (~m) has the following form:

T (~m) = Θ3(
∑
I

ηI ⊗ vI,3) + Θ2(
∑
I

ηI ⊗ vI,2) + Θ(
∑
I

ηI ⊗ vI,1) + (
∑
I

ηI ⊗ vI,0). (4.6)
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Now for a vector ~m ∈ Ind(F ), such that T (~m) is as in 4.6, we write the λ−action in the following
way, using Proposition 3.11, Lemma 3.12 and Remark 4.10 for f = ξL ∈

∧
(4):

(T ◦ fλ)~m (4.7)

=b0(f) +G1(f) + λ
[
B0(f)− a0(f)−G2(f)

]
+ (λ+ Θ)

[
a0(f) + b1(f) + 2G2(f)

]
+ (λ+ Θ)2

[
a1(f) + b2(f) + 3G3(f)

]
+ (λ+ Θ)3

[
a2(f) + b3(f)

]
+ (λ+ Θ)4a3(f)

+ λ(λ+ Θ)
[
B1(f)− a1(f)− 3G3(f)

]
+ λ2(λ+ Θ)C1(f) + λ3(λ+ Θ)D1(f)

+ λ(λ+ Θ)2
[
B2(f)− a2(f)

]
+ λ2(λ+ Θ)2C2(f) + λ3(λ+ Θ)2D2(f)

+ λ(λ+ Θ)3
[
B3(f)− a3(f)

]
+ λ2(λ+ Θ)3C3(f) + λ3(λ+ Θ)3D3(f)

+ λ2
[
C0(f) +G3(f)

]
+ λ3D0(f),

where the coefficients ap(f), bp(f), Bp(f), Cp(f), Dp(f), Gp(f) depend on f for every 0 ≤ p ≤ 3.
The following is their explicit expression:

ap(f) =
∑
I

(−1)(|f |(|f |+1)/2)+|f ||I|
[
(|f | − 2)(f ? ηI)⊗ vI,p

]
;

bp(f) =
∑
I

(−1)(|f |(|f |+1)/2)+|f ||I|
[
− (−1)p(f)

4∑
i=1

((∂if) ? (∂iηI))⊗ vI,p −
∑
r<s

((∂r∂sf) ? ηI ⊗ Fr,svI,p)

+χ|L|=3 εL ξLc ? ηI ⊗ CvI,p
]
;

Bp(f) =
∑
I

(−1)(|f |(|f |+1)/2)+|f ||I|
[
f ? ηI ⊗ E00vI,p − (−1)p(f)

4∑
i=1

∂i((fξi) ? ηI)⊗ vI,p

+ (−1)p(f)(
∑
i 6=j

((∂if)ξj) ? ηI ⊗ Fi,jvI,p) +χ|L|=2 εL ξLc ? ηI ⊗ CvI,p)
]
;

Cp(f) =
∑
I

(−1)(|f |(|f |+1)/2)+|f ||I|
[
−
∑
i<j

(fξiξj ? ηI ⊗ Fi,jvI,p)−χ|L|=1 εL ξLc ? ηI ⊗ CvI,p)
]
;

Dp(f) =
∑
I

(−1)(|f |(|f |+1)/2)+|f ||I|
[
−χ|L|=0 ξ∗ ? ηI ⊗ CvI,p

]
;

Gp(f) = −
∑
I

χ|L|=4εLηI ⊗ CvI,p.

We will write ap instead of ap(f) when it is clear from the context on which f the coefficient depends.
Analogously we will write bp, Bp, Cp, Dp, Gp instead of bp(f), Bp(f), Cp(f), Dp(f), Gp(f).

Proposition 4.13. Let ~m ∈ Ind(F ), such that T (~m) is as in formula (4.6). Using notation (4.7),
we have that:

1. condition S1 is equivalent to the following system of relations ∀f = ξI ∈
∧

(4):

D3 = 0,

D2 = 0,

C3 = 0,

C1 + 2B2 + a2 + 3b3 = 0,

D1 + a3 = 0,

C2 − 3a3 = 0,
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B3 + 2a3 = 0,

D0 + C1 +B2 + b3 = 0,

C0 +B1 + b2 +G3 = 0,

2. condition S2 is equivalent to the following system of relations for all f = ξI ∈
∧

(4) with
|I| ≥ 1:

B0 + b1 +G2 = 0,

B1 + a1 + 2b2 + 3G3 = 0,

2a2 +B2 + 3b3 = 0,

3a3 +B3 = 0,

3. condition S3 is equivalent to the following system of relations for all f = ξI ∈
∧

(4) with
|I| ≥ 3 or f ∈ Bso(4):

b0 +G1 = 0,

a0 + b1 + 2G2 = 0,

a1 + b2 + 3G3 = 0,

a2 + b3 = 0,

a3 = 0.

Proof. We compute d2

dλ2 ((T ◦ fλ)~m) and d
dλ((T ◦ fλ)~m) using notation (4.7). We have that:

d

dλ
((T ◦ fλ)~m) =B0 + b1 +G2 + λ

[
2C0 +B1 − a1 −G3

]
+ λ2

[
3D0 + C1

]
+ λ3D1

+ (λ+ Θ)
[
B1 + a1 + 2b2 + 3G3

]
+ (λ+ Θ)2

[
2a2 +B2 + 3b3

]
+ (λ+ Θ)3

[
3a3 +B3

]
+ λ(λ+ Θ)

[
2C1 + 2B2 − 2a2

]
+ λ2(λ+ Θ)

[
3D1 + 2C2

]
+ 2λ3(λ+ Θ)D2

+ λ(λ+ Θ)2
[
3B3 − 3a3 + 2C2

]
+ λ2(λ+ Θ)2

[
3D2 + 3C3

]
+ 3λ3(λ+ Θ)2D3

+ 2λ(λ+ Θ)3C3 + 3λ2(λ+ Θ)3D3,

and

d2

dλ2
((T ◦ fλ)~m) =2C0 + 2B1 + 2b2 + 2G3 + λ

[
6D0 + 4C1 + 2B2 − 2a2

]
+ λ2

[
6D1 + 2C2

]
+ 2λ3D2

+ (λ+ Θ)
[
2C1 + 4B2 + 2a2 + 6b3

]
+ λ(λ+ Θ)

[
6D1 + 8C2 + 6B3 − 6a3

]
+ λ2(λ+ Θ)

[
12D2 + 6C3

]
+ 6λ3(λ+ Θ)D3

+ (λ+ Θ)2
[
2C2 + 6a3 + 6B3

]
+ λ(λ+ Θ)2

[
12C3 + 6D2

]
+ 18λ2(λ+ Θ)2D3

+ 2(λ+ Θ)3C3 + 6λ(λ+ Θ)3D3.

We consider these expressions as polynomials in the variables λ and λ + Θ. Condition S1
reduces to the following system of relations ∀f = ξI ∈

∧
(4):

C3 = 0,

D2 = 0,

D3 = 0,

C2 + 3a3 + 3B3 = 0,
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C1 + 2B2 + a2 + 3b3 = 0,

3D1 + 4C2 + 3B3 − 3a3 = 0,

3D0 + 2C1 +B2 − a2 = 0,

3D1 + C2 = 0,

C0 +B1 + b2 +G3 = 0.

These conditions are equivalent to the relations in (1). Condition S2 states that for all f = ξI ∈
∧

(4)
with |I| ≥ 1:

d

dλ
((T ◦ fλ)~m)|λ=0 =B0 + b1 +G2 + Θ

[
B1 + a1 + 2b2 + 3G3

]
+ Θ2

[
2a2 +B2 + 3b3

]
+ Θ3

[
3a3 +B3

]
= 0.

Therefore condition S2 reduces to the following system of relations for all f = ξI ∈
∧

(4) with
|I| ≥ 1:

B0 + b1 +G2 = 0,

B1 + a1 + 2b2 + 3G3 = 0,

2a2 +B2 + 3b3 = 0,

3a3 +B3 = 0.

Condition S3 states that for all f = ξI ∈
∧

(4) such that |I| ≥ 3 or f ∈ Bso(4):

((T ◦ fλ)~m)|λ=0 = b0 +G1 + Θ
[
a0 + b1 + 2G2

]
+ Θ2

[
a1 + b2 + 3G3

]
+ Θ3

[
a2 + b3

]
+ Θ4a3 = 0.

Therefore condition S3 reduces to the following system of relations for all f = ξI ∈
∧

(4) with
|I| ≥ 3 or f ∈ Bso(4):

b0 +G1 = 0,

a0 + b1 + 2G2 = 0,

a1 + b2 + 3G3 = 0,

a2 + b3 = 0,

a3 = 0.

Let us show some other reductions on singular vectors.

Lemma 4.14. Let ~m ∈ Ind(F ) be a singular vector, such that T (~m) is written as in formula (4.6).
For all I we have that vI,3 = 0.

Proof. By Proposition 4.13, we know that ∀f = ξL ∈
∧

(4) with |f | ≥ 1 we have 2a3 +B3 = 0 and
3a3 +B3 = 0. Therefore a3 = 0 for all f = ξL ∈

∧
(4) with |f | ≥ 1. Let us suppose that there exists

vI,3 6= 0 with 0 ≤ |I| ≤ 3. Let I0 be a set of minimal cardinality with this property. We have that:

0 = a3 =
∑
|I|≥|I0|

(−1)(|f |(|f |+1)/2)+|f ||I|(|f | − 2)(f ? ηI ⊗ vI,3).

We choose f = ξIc0 if |Ic0| 6= 2, otherwise we choose f = ξs with s /∈ I0. In the first case we have:

0 = a3(f) =
∑
|I|≥|I0|

(−1)(|f |(|f |+1)/2)+|f ||I|(|Ic0| − 2)(ξIc0 ? ηI ⊗ vI,3)
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= (−1)(|Ic0 |(|Ic0 |+1)/2)+|Ic0 ||I0|(|Ic0| − 2)εIc0 (η∗ ⊗ vI0,3).

This implies that vI0,3 = 0. In the second case, we have:

0 = a3(f) = −
∑
|I|≥|I0|

(−1)(|f |(|f |+1)/2)+|f ||I|(ξs ? ηI ⊗ vI,3)

= −(−1)1+|I0|(ξs ? ηI0 ⊗ vI0,3)− (−1)s−1(η∗ ⊗ v(s)c,3) +
∑
j∈I0

sgns,j η(j)c ⊗ v(s,j)c,3,

where sgns,j = ±1 depends on s and j and is not needed explicitly. From linear independence of
ξs ? ηI0 , η∗ and η(j)c for j ∈ I0, we obtain that vI0,3 = 0. Hence, for all I with |I| ≤ 3 we have that
vI,3 = 0.
We now show that v∗,3 = 0. For f = ξi0 we know by Proposition 4.13 that D0 +C1 +B2 + b3 = 0,
C1 + 2B2 + a2 + 3b3 = 0 and 2a2 +B2 + 3b3 = 0. We take a linear combination of these equations
and we obtain that D0 + a2 + b3 = 0 for f = ξi0 . Since D0(ξi0) = 0, we have:

0 = a2 + b3 = −(
∑
I

(−1)1+|I|ξi0 ? ηI ⊗ vI,2) + (−1)i0ηic0 ⊗ v∗,3 = 0.

Using linear independence of ηic0 and the ξi0 ? ηI ’s we obtain that v∗,3 = 0.

Lemma 4.15. Let ~m ∈ Ind(F ) be a singular vector, such that T (~m) is written as in formula (4.6).
For all I we have that vI,2 = 0.

Proof. By Proposition 4.13 we know that D0 + C1 + B2 + b3 = 0, C1 + 2B2 + a2 + 3b3 = 0 for all
f = ξL and 2a2 +B2 + 3b3 = 0 for all f = ξL with |f | ≥ 1. In Lemma 4.14, we proved that vI,3 = 0
for all I, therefore b3 = 0. We know that D0 = 0 for all f = ξL with |f | ≥ 1. Hence for all f such
that |f | ≥ 1, we have: 

C1 +B2 = 0,

C1 + 2B2 + a2 = 0,

2a2 +B2 = 0.

This implies that C1 = B2 = a2 = 0 if |f | ≥ 1. The proof is now analogous to Lemma 4.14, using
that a2 = 0, and we deduce that vI,2 = 0 for I such that |I| ≤ 3.
We now show that v∗,2 = 0. By Proposition 4.13 we know that b0(f) = 0 for all f = ξL with
|f | = 3. We choose f = ξ1ξ2ξ3 and obtain:

0 =b0(ξ1ξ2ξ3)

=
∑
I

4∑
i=1

(−1)3|I|(∂iξ1ξ2ξ3) ? (∂iηI)⊗ vI,0 −
∑
I

∑
r<s

(−1)3|I|(∂r∂sξ1ξ2ξ3) ? ηI ⊗ Fr,svI,0

+
∑
I

(−1)3|I|ξ4 ? ηI ⊗ CvI,0.

In the previous equation, the terms that contain η4 only are:

η4 ⊗ Cv∅,0.

Therefore v∅,0 = 0, if C 6= 0. If C = 0 the λ−action in Proposition 3.11 reduces to the λ−action
found in Theorem 4.3 of [BKL1]. In Lemma B.4 of [BKL1] it is shown that v∅,0 = 0. We use that
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v∅,0 = 0 in order to prove the thesis. Indeed by Proposition 4.13 we have that C0 + B1 + b2 = 0,
B1 + a1 + 2b2 = 0 for all 1 ≤ |f | < 4, and so C0 − a1 − b2 = 0. We choose f = ξi0 and we have:

a1(ξi0) =−
∑
I

(−1)1+|I|ξi0 ? ηI ⊗ vI,1,

C0(ξi0) =−
∑
I

∑
i<j

(−1)1+|I|ξi0ξiξj ? ηI ⊗ Fi,jvI,0+

−
∑
I

(−1)1+|I|ε(i0)ξ(i0)c ? ηI ⊗ CvI,0,

b2(ξi0) =(−1)1+4(−1)i0−1η(i0)c ⊗ v∗,2 = (−1)i0η(i0)c ⊗ v∗,2.

The terms in η(i0)c of C0 − a1 − b2 = 0 are:

ε(i0)η(i0)c ⊗ Cv∅,0 − (−1)i0η(i0)c ⊗ v∗,2 = 0.

Since v∅,0 = 0, we have that v∗,2 = 0.

Lemma 4.16. Let ~m ∈ Ind(F ) be a singular vector, such that T (~m) is written as in formula (4.6).
For all I such that |I| ≤ 2, we have that vI,1 = 0.

Proof. By Proposition 4.13 and Lemmas 4.14 and 4.15, we know that a1(f) = 0 for all f = ξL,
|L| ≥ 3. Then, from an analogous argument to the one used in Lemma 4.14, for all I such that
|I| ≤ 1, we have that vI,1 = 0.
Now let us show that for all I such that |I| = 2, we have that vI,1 = 0. By Proposition 4.13 and
Lemmas 4.14 and 4.15, we know that B0 + b1 = 0 for all f = ξL ∈

∧
(4) with |L| ≥ 1. We choose

f = ξa and set (a)c = (b, c, d). We have:

b1(ξa) = +
∑
|I|≥2

(−1)1+|I|(∂aηI)⊗ vI,1

=
∑

i<j, i,j 6=a
(−1)1+2(∂aη(i,j)c)⊗ v(i,j)c,1 +

∑
i 6=a

(−1)1+3(∂aη(i)c)⊗ v(i)c,1 + (−1)1+4∂aξ∗ ⊗ v∗,1,

B0(ξa) =
∑
|I|

(−1)1+|I|ξa ? ηI ⊗ E00vI,0 +
∑
i 6=a

∑
|I|

(−1)1+|I|∂i(ξaξi ? ηI)⊗I,0

−
∑
a6=j

∑
|I|

(−1)1+|I|ξj ? ηI ⊗ Fa,jvI,0.

The terms in ηd of B0(ξa) are:

ηd ⊗ Fa,dv∅,0.

We have shown in Lemma 4.15 that v∅,0 = 0. Therefore, taking the terms of b1 in ηd, we obtain:

(∂aη(b,c)c)⊗ v(b,c)c,1 = 0.

Hence we have v(b,c)c,1 = 0.

By Lemmas 4.14, 4.15 and 4.16, for a singular vector ~m ∈ U(g<0), T (~m) has the following form:

T (~m) = Θ(
∑
|I|≥3

ηI ⊗ vI,1) + (
∑
|I|≥1

ηI ⊗ vI,0). (4.8)
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Therefore, from (4.8), we have that there can only be singular vectors of degree 3, 2 and 1. Hence
we have showed Theorem 4.7. Following the notation used in [BKL1], we rewrite (4.8) in the
following way: for |I| = 3, ηI will be written as η(i)c , where (i)c = I, vI,1 will be renamed as vi,1
and vI,0 will be renamed as vi, so that they depend on one index; for |I| = 2, ηI will be written as
η(i,j)c , where (i, j)c = I, and vI,0 will be renamed as vi,j . In particular, from (4.8), for the singular
vectors ~m of degree 3, 2 and 1, T (~m) have respectively the form:

degree 3 T (~m) = Θ(
∑

i η(i)c ⊗ vi,1) + (
∑

i ηi ⊗ vi,0),

degree 2 T (~m) = Θη∗ ⊗ v∗ + (
∑

i<j η(i,j)c ⊗ vi,j),

degree 1 T (~m) = (
∑

i η(i)c ⊗ vi).

By Proposition 4.13 and Lemmas 4.14, 4.15, 4.16 we obtain the following result.

Proposition 4.17. Let ~m ∈ Ind(F ), such that T (~m) is written as in formula (4.8). Using notation
(4.7), we have that:

1. condition S1 reduces to the following system of relations for all f = ξI ∈
∧

(4):

C1 = 0,

D1 = 0,

D0 = 0,

C0 +B1 = 0;

2. condition S2 reduces to the following system of relations for all f = ξI ∈
∧

(4) with |I| ≥ 1:

B0 + b1 = 0,

B1 + a1 = 0;

3. condition S3 reduces to the following system of relations for all f = ξI ∈
∧

(4) with |I| ≥ 3
or f ∈ Bso(4):

b0 +G1 = 0,

a0 + b1 = 0,

a1 = 0.

4.1 Vectors of degree 2

The aim of this section is to classify all singular vectors of degree 2. We have that for a singular
vector ~m of degree 2

T (~m) = Θη∗ ⊗ v∗ + (
∑
i<j

η(i,j)c ⊗ vi,j). (4.9)

We will assume that vi,j = −vj,i for all i, j. We write ~m in the following way:

~m =(η2 + iη1)(η4 + iη3)⊗ w1 + (η2 + iη1)(η4 − iη3)⊗ w2 + (η2 − iη1)(η4 + iη3)⊗ w3 (4.10)

+ (η2 − iη1)(η4 − iη3)⊗ w4 + (η2 + iη1)(η2 − iη1)⊗ w5 + (η4 + iη3)(η4 − iη3)⊗ w6 + Θ⊗ w7

=(−η1η3 + iη1η4 + iη2η3 + η2η4)⊗ w1 + (η1η3 + iη1η4 − iη2η3 + η2η4)⊗ w2+

(η1η3 − iη1η4 + iη2η3 + η2η4)⊗ w3 + (−η1η3 − iη1η4 − iη2η3 + η2η4)⊗ w4+
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(2Θ + 2iη1η2)⊗ w5 + (2Θ + 2iη3η4)⊗ w6 + Θ⊗ w7.

Then, keeping in mind the relation between ~m and T (~m), we have:

v1,2 = 2iw5, (4.11)

v1,3 = w1 − w2 − w3 + w4,

v1,4 = iw1 + iw2 − iw3 − iw4,

v2,3 = iw1 − iw2 + iw3 − iw4,

v2,4 = −w1 − w2 − w3 − w4,

v3,4 = 2iw6,

v∗ = 2w5 + 2w6 + w7.

Indeed, let us show for example one of the previous equations. In (4.9), let us consider η(1,3)c⊗v1,3 =
η2η4 ⊗ v1,3 . We have that η2η4 is the Hodge dual of −η1η3. In (4.10), the terms in η1η3 are:

−η1η3 ⊗ w1 + η1η3 ⊗ w2 + η1η3 ⊗ w3 − η1η3 ⊗ w4,

therefore v1,3 = w1 − w2 − w3 + w4.
In the following lemma we write explicitly the relations of Proposition 4.17 for a vector as in formula
(4.9).

Lemma 4.18. Let ~m ∈ Ind(F ), such that T (~m) is written as in formula (4.9). We have that:
1) condition S1 reduces to the following relation for f = 1:

−
∑
i<j

(ξiξj ? η(i,j)c ⊗ Fi,jvi,j) + η∗ ⊗ E00v∗ = 0; (4.12)

2) condition S2 reduces to the following relation for all f = ξL ∈
∧

(4) with |L| = 1, 2:

∑
i<j

[
f ? η(i,j)c ⊗ E00vi,j − (−1)p(f)

4∑
l=1

∂l((fξl) ? η(i,j)c)⊗ vi,j + (−1)p(f)(
∑
k 6=l

((∂kf)ξl) ? η(i,j)c ⊗ Fk,lvi,j)

(4.13)

+χ|L|=2 εL ξLc ? η(i,j)c ⊗ Cvi,j)
]
− (−1)p(f)

4∑
i=1

((∂if) ? (∂iη∗))⊗ v∗ −
∑
r<s

((∂r∂sf) ? η∗ ⊗ Fr,sv∗) = 0;

3) condition S3 reduces to the following system of relations.
For f ∈ Bso(4): ∑

r<s

((∂r∂sf) ? η∗ ⊗ Fr,sv∗) = 0. (4.14)

For f = ξL with |L| ≥ 3 or f ∈ Bso(4):

∑
i<j

(−1)(|f |(|f |+1)/2)

[
− (−1)p(f)

4∑
l=1

((∂lf) ? (∂lη(i,j)c))⊗ vi,j −
∑
r<s

((∂r∂sf) ? η(i,j)c ⊗ Fr,svi,j)

(4.15)

+χ|L|=3 εL ξLc ? η(i,j)c ⊗ Cvi,j
]
−χ|L|=4εLη∗ ⊗ Cv∗ = 0.
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Lemma 4.19. Let ~m ∈ Ind(F ), such that T (~m) is written as in formula (4.9). Then the relations
of Lemma 4.18 reduce to the following equations.
For every f ∈ Bso(4) we have:

f.v∗ = 0. (4.16)

For every a ∈ {1, 2, 3, 4}:

−v∗ =
∑
j 6=a

(−1)a+jFj,avj,a. (4.17)

For every a 6= b ∈ {1, 2, 3, 4}:

0 = E00va,b − va,b −
∑
j 6=a,b

(−1)a+jFa,jvj,b. (4.18)

For every a, b ∈ {1, 2, 3, 4} with (c, d) = (a, b)c:

0 = −Fa,bv∗ + (−1)a+bE00va,b −
∑
j 6=a,b

(−1)b+jFa,jvj,b +
∑
j 6=a,b

(−1)a+jFb,jvj,a − ε(a,b)ε(c,d)Cvc,d.

(4.19)

Moreover:

0 = E00v∗ +
∑
i<j

(−1)i+jFi,jvi,j , (4.20)

and

0 =(
∑
i<j

F(i,j)c ⊗ vi,j)− Cv∗. (4.21)

For every a, b, c ∈ {1, 2, 3, 4} and d = (a, b, c)c, we have:

0 =(−1)b+cvb,c + (−1)a+cFa,bva,c − (−1)a+bFa,cva,b + ε(a,b,c)(−1)a+dCva,d. (4.22)

Finally:

α1,2(v1,2) = −iv1,3 + v2,3, β1,2(v1,2) = −v1,4 − iv2,4, (4.23)

α1,2(v1,3) = iv1,2, β1,2(v1,3) = −iv3,4,

α1,2(v1,4) = −v3,4, β1,2(v1,4) = v1,2,

α1,2(v2,3) = −v1,2, β1,2(v2,3) = v3,4,

α1,2(v2,4) = −iv3,4, β1,2(v2,4) = iv1,2,

α1,2(v3,4) = v1,4 + iv2,4, β1,2(v3,4) = iv1,3 − v2,3,

where α1,2 and β1,2 are defined by (3.1) and (3.2).

Proof. Equation (4.14) for f ∈ Bso(4) is equivalent to Equation (4.16). Indeed Bso(4) = 〈α1,2 =
F1,3 − iF2,3, β1,2 = F2,4 + iF1,4〉 and we obtain:

0 =η∗ ⊗ (−F1,3 + iF2,3)v∗,

0 =η∗ ⊗ (−F2,4 − iF1,4)v∗.
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Thus this implies that v∗ must be a highest weight vector, when it is nonzero.
We consider Equation (4.13) with f = ξa:

∑
i<j

[
ξa ? η(i,j)c ⊗ E00vi,j +

4∑
l=1

∂l((ξaξl) ? η(i,j)c)⊗ vi,j −
∑
a6=l

ξl ? η(i,j)c ⊗ Fa,lvi,j
]

+ ∂aη∗ ⊗ v∗ = 0,

(4.24)

and, considering the terms in η(a)c , we obtain:

0 =−
∑
l<a

ξl ? η(l,a)c ⊗ Fa,lvl,a −
∑
a<l

ξl ? η(a,l)c ⊗ Fa,lva,l + ∂aη∗ ⊗ v∗

=−
∑
l<a

(−1)l−1η(a)c ⊗ Fa,lvl,a −
∑
a<l

(−1)lη(a)c ⊗ Fa,lva,l + ∂aη∗ ⊗ v∗

=
∑
l 6=a

(−1)l−1η(a)c ⊗ Fl,avl,a + (−1)a−1η(a)c ⊗ v∗.

Hence, considering the coefficient η(a)c , we obtain as in [BKL1]:

−v∗ =
∑
l 6=a

(−1)a+lFl,avl,a.

Analogously, if b 6= a ∈ {1, 2, 3, 4}, considering the coefficient of η(b)c in Equation (4.24), we obtain
if a < b:

0 = ηaη(a,b)c ⊗ E00va,b − ηaη(a,b)c ⊗ va,b −
∑

a6=l, l<b
ξl ? η(l,b)c ⊗ Fa,lvl,b −

∑
a6=l, l>b

ξl ? η(b,l)c ⊗ Fa,lvb,l

= (−1)a−1η(b)c ⊗ E00va,b − (−1)a−1η(b)c ⊗ va,b −
∑

a6=l, l<b
(−1)l−1η(b)c ⊗ Fa,lvl,b −

∑
a6=l, l>b

(−1)lη(b)c ⊗ Fa,lvb,l

= (−1)a−1η(b)c ⊗ E00va,b − (−1)a−1η(b)c ⊗ va,b +
∑
l 6=a,b

(−1)lη(b)c ⊗ Fa,lvl,b,

and if b < a:

0 = ηaη(b,a)c ⊗ E00vb,a − ηaη(b,a)c ⊗ vb,a −
∑

a6=l, l<b
ξl ? η(l,b)c ⊗ Fa,lvl,b −

∑
a6=l, l>b

ξl ? η(b,l)c ⊗ Fa,lvb,l

= (−1)aη(b)c ⊗ E00vb,a − (−1)aη(b)c ⊗ vb,a −
∑

a6=l, l<b
(−1)l−1η(b)c ⊗ Fa,lvl,b −

∑
a6=l, l>b

(−1)lη(b)c ⊗ Fa,lvb,l

= (−1)aη(b)c ⊗ E00vb,a − (−1)aη(b)c ⊗ vb,a +
∑
l 6=a,b

(−1)lη(b)c ⊗ Fa,lvl,b.

Hence:

0 = E00va,b − va,b −
∑
l 6=a,b

(−1)a+lFa,lvl,b.

Equation (4.13) for ξaξb with (c, d) = (a, b)c, is:

0 =η∗ ⊗ Fa,bv∗ − (−1)a+bη∗ ⊗ E00va,b

+
∑
i<j

∑
l 6=k

(∂l(ξaξb)ξk) ? η(i,j)c ⊗ Fl,kvi,j + ε(a,b)(ξcξd) ? η(c,d)c ⊗ Cvc,d.
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The coefficient of −η∗ is:

0 = −Fa,bv∗ + (−1)a+bE00va,b −
∑
j 6=a,b

(−1)b+jFa,jvj,b +
∑
j 6=a,b

(−1)a+jFb,jvj,a − ε(a,b)ε(c,d)Cvc,d.

Equation (4.12), since the terms in C are not involved, reduces, as in [BKL1], to:

0 = E00v∗ +
∑
i<j

(−1)i+jFi,jvi,j .

Equation (4.15) for f = ξaξbξc with d = (a, b, c)c reduces to:

0 =
∑
i<j

4∑
l=1

∂l(ξaξbξc) ? ∂l(η(i,j)c)⊗ vi,j −
∑
i<j

∑
r<s

∂r∂s(ξaξbξc) ? η(i,j)c ⊗ Fr,svi,j +
∑
i<j

ε(a,b,c)ξd ? η(i,j)c ⊗ Cvi,j .

From the terms in (−1)aη(a)c we have:

(−1)b+cvb,c + (−1)a+cFa,bva,c − (−1)a+bFa,cva,b + ε(a,b,c)(−1)a+dCva,d = 0.

From the terms in (−1)b−1η(b)c and the terms in (−1)cη(c)c , we obtain the same equation for b, a, c
and c, a, b.
Equation (4.15) for f = ξ∗ is:

0 =−
∑
i<j

4∑
l=1

∂l(ξ1ξ2ξ3ξ4) ? ∂l(η(i,j)c)⊗ vi,j −
∑
i<j

∑
r<s

∂r∂s(ξ1ξ2ξ3ξ4) ? η(i,j)c ⊗ Fr,svi,j − η∗ ⊗ Cv∗

=η∗ ⊗ (
∑
i<j

F(i,j)c ⊗ vi,j)− η∗ ⊗ Cv∗.

Equation (4.15) for f = α1,2 ∈ Bso(4) is:

0 =−
∑
i<j

4∑
l=1

∂l(−ξ1ξ3 + iξ2ξ3) ? ∂l(η(i,j)c)⊗ vi,j −
∑
i<j

∑
r<s

∂r∂s(−ξ1ξ3 + iξ2ξ3) ? η(i,j)c ⊗ Fr,svi,j

=− (η1 − iη2)η4 ⊗ v1,2 − η3η4 ⊗ α1,2v1,2 − iη3η4 ⊗ v1,3 − η2η4 ⊗ α1,2v1,3

+ η1η2 ⊗ v1,4 − η2η3 ⊗ α1,2v1,4 + η3η4 ⊗ v2,3 − η1η4 ⊗ α1,2v2,3

+ iη1η2 ⊗ v2,4 − η1η3 ⊗ α1,2v2,4 + (−η2η3 − iη1η3)⊗ v3,4 − η1η2 ⊗ α1,2v3,4

=η1η2 ⊗ (v1,4 + iv2,4 − α1,2v3,4) + η1η3 ⊗ (−α1,2v2,4 − iv3,4)

+ η1η4 ⊗ (−v1,2 − α1,2v2,3) + η2η3 ⊗ (−α1,2v1,4 − v3,4)

+ η2η4 ⊗ (−α1,2v1,3 + iv1,2) + η3η4 ⊗ (−α1,2v1,2 − iv1,3 + v2,3).

From the previous equation we obtain relations (4.23) for α1,2.
Equation (4.15) for f = β1,2 ∈ Bso(4) is:

0 =−
∑
i<j

4∑
l=1

∂l(−ξ2ξ4 − iξ1ξ4) ? ∂l(η(i,j)c)⊗ vi,j −
∑
i<j

∑
r<s

∂r∂s(−ξ2ξ4 − iξ1ξ4) ? η(i,j)c ⊗ Fr,svi,j

=− (η2 + iη1)(−η3)⊗ v1,2 − η3η4 ⊗ β1,2v1,2 + iη1η2 ⊗ v1,3 − η2η4 ⊗ β1,2v1,3

− η3η4 ⊗ v1,4 − η2η3 ⊗ β1,2v1,4 − η1η2 ⊗ v2,3 − η1η4 ⊗ β1,2v2,3

− iη3η4 ⊗ v2,4 − η1η3 ⊗ β1,2v2,4 + (−iη2η4 + η1η4)⊗ v3,4 − η1η2 ⊗ β1,2v3,4

=η1η2 ⊗ (iv1,3 − v2,3 − β1,2v3,4) + η1η3 ⊗ (iv1,2 − β1,2v2,4)
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+ η1η4 ⊗ (−β1,2v2,3 + v3,4) + η2η3 ⊗ (v1,2 − β1,2v1,4)

+ η2η4 ⊗ (−iv3,4 − β1,2v1,3) + η3η4 ⊗ (−β1,2v1,2 − v1,4 − iv2,4).

From the previous equation we obtain relations (4.23) for β1,2.

Lemma 4.20. There are no singular vectors ~m of degree 2, such that T (~m) is written as in formula
(4.9) with v∗ 6= 0.

Proof. Let T (~m) ∈ Ind(F ) be as in formula (4.9). We show that relations of Lemma 4.19 lead to
v∗ = 0. Let a, b ∈ {1, 2, 3, 4} with a < b and (a, b)c = (c, d).
We consider Equation (4.18) for a, b, multiplied by −(−1)a+b, plus Equation (4.18), for reversed
role of a and b, multiplied by (−1)a+b; we get:

0 =− 2(−1)a+bE00va,b + 2(−1)a+bva,b +
∑
j 6=a,b

(−1)b+jFa,jvj,b −
∑
j 6=a,b

(−1)a+jFb,jvj,a.

We compare this with Equation (4.19) and obtain:

Fa,bv∗ = (−1)a+b+1E00va,b + 2(−1)a+bva,b − Cvc,d, (4.25)

since for a < b we have that ε(a,b)ε(c,d) = 1.
Equation (4.19) reduces to:

0 = −Fa,bv∗ + (−1)a+bE00va,b +
∑
j 6=a,b

[(−1)b+jFa,jvb,j − (−1)a+jFb,jva,j ]− Cvc,d. (4.26)

We insert equations (4.22) for j, a, b, where we denote by h = h(j) = (j, a, b)c, into this and obtain:

Fa,bv∗ =(−1)a+bE00va,b − 2(−1)a+bva,b −
∑
j 6=a,b

ε(j,a,b)((−1)h+jCvj,h)− Cvc,d (4.27)

=(−1)a+bE00va,b − 2(−1)a+bva,b −
∑

j<a or j>b

((−1)jCvj,h)−
∑
a<j<b

((−1)j+1Cvj,h)− Cvc,d.

Combining (4.27) and (4.25), we get:

(−1)a+b2E00va,b =4(−1)a+bva,b +
∑

j<a or j>b

((−1)jCvj,h) +
∑
a<j<b

((−1)j+1Cvj,h).

We substitute this in 2(4.27) and obtain:

2Fa,bv∗ =−
∑

j<a or j>b

((−1)jCvj,h)−
∑
a<j<b

((−1)j+1Cvj,h)− 2Cvc,d.

This reduces to the following, for every a < b:

Fa,bv∗ = 0. (4.28)

From these conditions it follows that v∗ is killed also by the negative roots, so F = 〈v∗〉 has
dimension 1 and so(4) acts trivially on it. Moreover all the va,b’s are multiple of v∗ since F = 〈v∗〉.
From (4.17), −v∗ =

∑
j 6=a(−1)a+jFj,avj,a for every 1 ≤ a ≤ 4 then, since all the va,b’s are multiple

of v∗, then v∗ = 0 that is a contradiction since in our hypothesis v∗ 6= 0.
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By Lemma 4.20 we know that, for a singular vector ~m of degree 2, T (~m) is of the form:

T (~m) = (
∑
i<j

η(i,j)c ⊗ vi,j). (4.29)

By Lemma 4.19 we obtain the following result.

Lemma 4.21. Let ~m ∈ Ind(F ), such that T (~m) is written as in formula (4.29). Then the relations
of Lemma 4.18 reduce to the following equations.
For all a ∈ {1, 2, 3, 4}:

0 =
∑
j 6=a

(−1)a+jFj,avj,a. (4.30)

For all a, b ∈ {1, 2, 3, 4}:

0 = E00va,b − va,b −
∑
j 6=a,b

(−1)a+jFa,jvj,b. (4.31)

For all a, b ∈ {1, 2, 3, 4} with (a, b)c = (c, d):

0 = (−1)a+bE00va,b −
∑
j 6=a,b

(−1)b+jFa,jvj,b +
∑
j 6=a,b

(−1)a+jFb,jvj,a − ε(a,b)ε(c,d)Cvc,d. (4.32)

For every a, b, c ∈ {1, 2, 3, 4} and d = (a, b, c)c:

0 =(−1)b+cvb,c + (−1)a+cFa,bva,c − (−1)a+bFa,cva,b + ε(a,b,c)(−1)a+dCva,d. (4.33)

Moreover:

0 =
∑
i<j

(−1)i+jFi,jvi,j , (4.34)

and

0 =
∑
i<j

F(i,j)cvi,j . (4.35)

Finally:

α1,2(v1,2) = −iv1,3 + v2,3, β1,2(v1,2) = −v1,4 − iv2,4, (4.36)

α1,2(v1,3) = iv1,2, β1,2(v1,3) = −iv3,4,

α1,2(v1,4) = −v3,4, β1,2(v1,4) = v1,2,

α1,2(v2,3) = −v1,2, β1,2(v2,3) = v3,4,

α1,2(v2,4) = −iv3,4, β1,2(v2,4) = iv1,2,

α1,2(v3,4) = v1,4 + iv2,4, β1,2(v3,4) = iv1,3 − v2,3,

where α1,2 and β1,2 are defined by (3.1) and (3.2).

Remark 4.22. Relations (4.36) for α1,2 and β1,2 are equivalent to the following relations, in which
we use notation (4.11):

α1,2(w1) = −w5 − w6, β1,2(w1) = w5 + w6, (4.37)

α1,2(w2) = w5 − w6, β1,2(w2) = w5 − w6,
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α1,2(w3) = 0, β1,2(w3) = 0,

α1,2(w4) = 0, β1,2(w4) = 0,

α1,2(w5) = w3 − w4, β1,2(w5) = w3 + w4,

α1,2(w6) = −w3 − w4, β1,2(w6) = −w3 + w4.

We represent these relations with the following drawings:

〈w1〉 〈w5 + w6〉 〈w4〉,

α1,2

β1,2

α1,2

β1,2

〈w2〉 〈w5 − w6〉 〈w3〉.

α1,2

β1,2

α1,2

β1,2

Proof of Theorem 4.5. Throughout this proof µ0 will denote the highest weight of F with respect to
E00, µ1 (resp. µ2) will denote the highest weight of F with respect to H1(resp. H2) and m = µ1−µ2

(resp.n = µ1 + µ2) will denote the highest weight of F with respect to hx (resp.hy).

1) We suppose w5 = w6 = 0. Therefore w3 = w4 = 0. Indeed, by Equations (4.37), α1,2(w5 +w6) =
−2w4 = 0 and α1,2(w5 − w6) = 2w3 = 0.
We have the following subcases.

1a) We suppose w1 6= 0 and w2 = 0. From (4.37), we have that w1 is a highest weight vector.
Then from (4.11):

v1,2 = 0,

v1,3 = w1,

v1,4 = iw1,

v2,3 = iw1,

v2,4 = −w1,

v3,4 = 0.

Equation (4.31) for a = 1, b = 3 reduces to:

0 =E00v1,3 − v1,3 + F1,2v2,3 − F1,4v3,4

=E00(w1)− w1 + F1,2(iw1).

Therefore:

0 = (E00 +H1)w1 − w1.

We obtain µ0 = 1− µ1. Equation (4.33) for a = 1, b = 2, c = 3 reduces to:

0 =− v2,3 + F1,2v1,3 + F1,3v1,2 − Cv1,4

=− iw1 + F1,2w1 − iCw1.

Therefore:

0 = (H1 + C)w1 + w1.

We obtain C = −1− µ1. Equation (4.33) for a = 3, b = 1, c = 4 reduces to:

0 =− v1,4 + F1,3v3,4 + F3,4v1,3 − Cv2,3



52 4. Singular vectors

=− iw1 + F3,4w1 − iCw1.

Therefore:

0 = (H2 + C)w1 + w1.

We obtain µ2 = −1−(−1−µ1) = µ1. Therefore the weight of w1 with respect to hx, hy, E00, C
is (0, n, 1− n

2 ,−1− n
2 ) for n ∈ Z≥0.

All the other equations of Lemma 4.21 are easily verified by this choice of v1,2, v1,3, v1,4, v2,3, v2,4, v3,4.
The singular vector obtained, written using notation (4.1) is:

~m2a = w11w21 ⊗ yn1 ,

in M(0, n, 1− n
2 ,−1− n

2 ) for n ∈ Z≥0.

1b) We suppose w1 = 0 and w2 6= 0. From (4.37), we have that w2 is a highest weight vector.
Then from (4.11) we have:

v1,2 = 0,

v1,3 = −w2,

v1,4 = iw2,

v2,3 = −iw2,

v2,4 = −w2,

v3,4 = 0.

Using (4.11) and Equation (4.31) for a = 1, b = 3 we obtain:

0 =E00v1,3 − v1,3 + F1,2v2,3 − F1,4v3,4

=E00(−w2) + w2 + F1,2(−iw2).

Therefore:

0 = (E00 +H1)w2 − w2.

We obtain µ0 = 1− µ1. Using (4.11) and Equation (4.33) for a = 1, b = 2, c = 3 we obtain:

0 =− v2,3 + F1,2v1,3 + F1,3v1,2 − Cv1,4

=iw2 − F1,2w2 − iCw2.

Therefore:

0 = (H1 − C)w2 + w2.

We obtain C = 1 + µ1. Using (4.11) and Equation (4.33) for a = 3, b = 1, c = 4 we obtain:

0 =− v1,4 + F1,3v3,4 + F3,4v1,3 − Cv2,3

=− iw2 − F3,4w2 + iCw2.

Therefore:

0 = (H2 + C)w2 − w2.

We obtain µ2 = 1− (1 + µ1) = −µ1. Therefore the weight of w1 with respect to hx, hy, E00, C
is (m, 0, 1− m

2 , 1 + m
2 ) with m ∈ Z≥0.

All the other equations of Lemma 4.21 are easily verified by this choice of v1,2, v1,3, v1,4, v2,3, v2,4, v3,4.
The singular vector obtained, written using notation (4.1), is:

~m2b = w11w12 ⊗ xm1 ,

in M(m, 0, 1− m
2 , 1 + m

2 ) with m ∈ Z≥0.
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1c) We suppose w1 6= 0 and w2 6= 0. From (4.37), we have that both vectors are a highest weight
vector of F . Using (4.11) and Equation (4.33) for a = 3, b = 2, c = 4 we obtain:

0 =v2,4 + F2,3v3,4 − F3,4v2,3 − Cv1,3

=− w1 − w2 +H2(−w1 + w2) + C(−w1 + w2).

Using (4.11) and Equation (4.33) for a = 4, b = 1, c = 3 reduces to:

0 =v1,3 − F1,4v3,4 + F3,4v1,4 − Cv2,4

=w1 − w2 + F3,4(iw1 + iw2)− C(−w1 − w2)

=w1 − w2 +H2w1 +H2w2 + Cw1 + Cw2.

We take the sum of these 2 equations and get:

0 = −2w2 + 2H2w2 + 2Cw2.

Hence we obtain µ2 = −C + 1. We take the difference of these 2 equations and get:

0 = 2w1 + 2H2w1 + 2Cw1.

Hence we obtain µ2 = −C − 1. This is impossible.

2) Let us analyze the case w7 = 0 and its subcases. From (4.11) we know w5 +w6 = 0. We suppose
w5 6= 0 (the case w5 = 0 leads to 1), then from α1,2(w5) = w3−w4 and α1,2(w6) = −w3−w4 we
deduce that w4 = 0; we also know that w2 6= 0 since α1,2(w2) = 2w5. Let us split the problem in
the following subcases.

2a) We suppose w1 = w4 = w7 = 0 and w2 6= 0, w3 6= 0, w5 + w6 = 0. By Remark 4.22 we have:

α1,2(w2) = 2w5 β1,2(w2) = 2w5,

α1,2(w3) = 0 β1,2(w3) = 0,

α1,2(w5) = w3 β1,2(w5) = w3,

α1,2(w6) = −w3 β1,2(w6) = −w3.

Therefore w3 is a highest weight vector. Equations (4.11) reduce to:

v1,2 = 2iw5,

v1,3 = −w2 − w3,

v1,4 = iw2 − iw3,

v2,3 = −iw2 + iw3,

v2,4 = −w2 − w3,

v3,4 = −2iw5.

Let us compute the weight of w3. Using (4.11) and Equation (4.31) for a = 1, b = 3 we obtain:

0 =E00v1,3 − v1,3 + F1,2v2,3 − F1,4v3,4

=E00(−w2 − w3) + w2 + w3 + F1,2(−iw2 + iw3)− F1,4(−2iw5).

Using (4.11) and Equation (4.31) for a = 2, b = 3 we obtain:

0 =E00v2,3 − v2,3 + F2,1v1,3 + F2,4v3,4
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=E00(−iw2 + iw3) + iw2 − iw3 + F2,1(−w2 − w3) + F2,4(−2iw5).

We take the last equation minus the previous multiplied by i and get:

0 =E00(−iw2 + iw3 + iw2 + iw3) + iw2 − iw3 − iw2 − iw3 − F1,2(−w2 − w3)

+ F1,2(−w2 + w3) + iF1,4(−2iw5) + F2,4(−2iw5).

Therefore:

0 =2iE00(w3)− 2iw3 + 2F1,2w3 − 2iβ1,2w5,

that is equivalent to:

0 =E00w3 − w3 −H1w3 − w3.

We obtain µ0 = µ1 + 2. Let us consider equation (4.33) for a = 1, b = 2, c = 4, using (4.11) we
obtain:

0 =v2,4 − F1,2v1,4 + F1,4v1,2 − Cv1,3

=− w2 − w3 − F1,2(iw2 − iw3) + F1,42iw5 − C(−w2 − w3).

Let us now consider equation (4.33) for a = 2, b = 1, c = 4:

0 =− v1,4 − F1,2v2,4 − F2,4v1,2 − Cv2,3

=− iw2 + iw3 − F1,2(−w2 − w3) + (−1)3F2,4(2iw5)− C(−iw2 + iw3).

We take the sum of last multiplied by i and the previous, we get:

0 =w2 − w3 − w2 − w3 − F1,2(−iw2 − iw3 + iw2 − iw3)

− iF2,4(2iw5) + F1,42iw5 − C(+w2 − w3 − w2 − w3)

=− 2w3 + 2iF1,2w3 + β1,22w5 + 2Cw3

=− 2w3 + 2iF1,2w3 + 2w3 + 2Cw3 = +2H1w3 + 2Cw3.

We obtain C = −µ1. Now let us consider equation (4.33) for a = 3, b = 1, c = 4, using (4.11)
we obtain:

0 =− v1,4 + F1,3v3,4 + F3,4v1,3 − Cv2,3

=− (iw2 − iw3) + F1,3(−2iw5) + F3,4(−w2 − w3)− C(−iw2 + iw3).

Let us consider equation (4.33) for a = 3, b = 2, c = 4, using (4.11) we obtain:

0 =v2,4 + F2,3v3,4 − F3,4v2,3 − Cv1,3

=− w2 − w3 + F2,3(−2iw5)− F3,4(−iw2 + iw3)− C(−w2 − w3).

We compute the difference between the first and the second multiplied by i:

0 =− iw2 + iw3 + iw2 + iw3 + F1,3(−2iw5)− iF2,3(−2iw5)

+ F3,4(−w2 − w3 + w2 − w3)− C(−iw2 + iw3 + iw2 + iw3)

=2iw3 − 2iw3 − 2F3,4w3 − 2iCw3 = −2i(−H2 + C)w3.

We obtain µ2 = C. Hence, the weight of w3 with respect to hx, hy, E00, C is (m, 0, m2 +2,−m
2 ).

From α1,2(w5) + β1,2(w5) = Eε1−ε2w5 = 2w3 and α1,2(w2) + β1,2(w2) = Eε1−ε2w2 = 4w5, we
have:

w5 = − 1

2m
E−(ε1−ε2)w3 = −w6, w2 =

1

4m(m− 1)
E−(ε1−ε2)E−(ε1−ε2)w3.
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From this we also know that m > 1.
All the other equations of Lemma 4.21 are easily verified by this choice of v1,2, v1,3, v1,4, v2,3, v2,4, v3,4.
The singular vector obtained, written using notation (4.1), is:

~m2c = w22w21 ⊗ xm1 + (w11w22 + w21w12)⊗ xm−1
1 x2 − w11w12 ⊗ xm−2

1 x2
2,

in M(m, 0, m2 + 2,−m
2 ) with m > 1.

2b) We suppose that w3 = w4 = w7 = 0 and w1 6= 0, w2 6= 0, w5 6= 0, w5 + w6 = 0. Using (4.11),
Equation (4.33) for a = 1, b = 3, c = 4 reduces to:

0 =− v3,4 − F1,3v1,4 − F1,4v1,3 − Cv1,2

=− (−2iw5)− F1,3(iw1 + iw2)− F1,4(w1 − w2)− C(2iw5).

Using (4.11), Equation (4.33) for a = 2, b = 3, c = 4 reduces to:

0 =− v3,4 + F2,3v2,4 + F2,4v2,3 − Cv1,2

=− (−2iw5) + F2,3(−w1 − w2) + F2,4(iw1 − iw2)− C(2iw5).

We take the sum of these two equations and get:

0 =4iw5 − F1,3(iw1 + iw2) + F2,3(−w1 − w2)

− F1,4(w1 − w2) + F2,4(iw1 − iw2)− 4iCw5

=4iw5 + i(F1,3 − iF2,3)w1 − i(F1,3 − iF2,3)w2

+ i(F2,4 + iF1,4)w1 − i(F2,4 + iF1,4)w2 − 4iCw5

=4iw5 − 4iw5 − 4iCw5 = −4iCw5.

We obtain C = 0. For C = 0, the λ−action of Proposition 3.11 reduces to the action found in
Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of degree
2.

2c) We suppose w1 = w3 = w4 = w7 = 0 and w2 6= 0, w5 6= 0, w5 +w6 = 0. Using (4.11), Equation
(4.33) for a = 1, b = 3, c = 4 reduces to:

0 =− v3,4 − F1,3v1,4 − F1,4v1,3 − Cv1,2

=− (−2iw5)− F1,3(iw2)− F1,4(−w2)− C(2iw5).

Using (4.11), Equation (4.33) for a = 2, b = 3, c = 4 reduces to:

0 =− v3,4 + F2,3v2,4 + F2,4v2,3 − Cv1,2

=− (−2iw5) + F2,3(−w2) + F2,4(−iw2)− C(2iw5).

We take the sum and get:

0 =4iw5 − F1,3(+iw2) + F2,3(−w2)− F1,4(−w2) + F2,4(−iw2)− 4iCw5

=4iw5 − i(F1,3 − iF2,3)w2 − i(F2,4 + iF1,4)w2 − 4iCw5

=4iw5 − 4iw5 − 4iCw5 = −4iCw5.

We obtain C = 0. For C = 0, the λ−action of Proposition 3.11 reduces to the action found in
Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of degree
2.
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2d) We suppose that w4 = w7 = 0 and w1 6= 0, w2 6= 0, w3 6= 0, w5 6= 0, w5 +w6 = 0. From (4.37),
we have that w1 and w3 are highest weight vectors, therefore they are multiples.

Using (4.11), Equation (4.33) for a = 1, b = 3, c = 4 reduces to:

0 =− v3,4 − F1,3v1,4 − F1,4v1,3 − Cv1,2

=− (−2iw5)− F1,3(iw1 + iw2 − iw3)− F1,4(w1 − w2 − w3)− C(2iw5).

Using (4.11), Equation (4.33) for a = 2, b = 3, c = 4 reduces to:

0 =− v3,4 + F2,3v2,4 + F2,4v2,3 − Cv1,2

=− (−2iw5) + F2,3(−w1 − w2 − w3) + F2,4(iw1 − iw2 + iw3)− C(2iw5).

We take the sum of these equations and get:

0 =4iw5 − F1,3(iw1 + iw2 − iw3) + F2,3(−w1 − w2 − w3)

− F1,4(w1 − w2 − w3) + F2,4(iw1 − iw2 + iw3)− 4iCw5

=4iw5 − i(F1,3 − iF2,3)w1 − i(F1,3 − iF2,3)w2 + i(F2,4 + iF1,4)w1 − i(F2,4 + iF1,4)w2

+ i(F1,3 + F2,4 − iF1,4 + iF2,3)w3 − 4iCw5

=4iw5 − 4iw5 + iE−(ε1−ε2)w3 − 4iCw5 = −4iCw5 + iE−(ε1−ε2)w3.

We take the difference and get:

0 =− F1,3(iw1 + iw2 − iw3)− F2,3(−w1 − w2 − w3)

− F1,4(w1 − w2 − w3)− F2,4(iw1 − iw2 + iw3)

=− i(F1,3 + iF2,3 − iF1,4 + F2,4)w1 − i(F1,3 + iF2,3 + iF1,4 − F2,4)w2

+ i(F1,3 − iF2,3)w3 − i(F2,4 + iF1,4)w3

=− iE−(ε1−ε2)w1 − iE−(ε1+ε2)w2.

Since w1 is a highest weight vector and w2 is not, these two terms are linearly independent
unless they are both 0, in particular E−(ε1−ε2)w1. But we know that w3 is a multiple of w1,
then −4iCw5 + iE−(ε1−ε2)w3 = −4iCw5 = 0. We obtain C = 0. For C = 0, the λ−action of
Proposition 3.11 reduces to the action found in Theorem 4.3 of [BKL1]; in that case it was
shown that there are no singular vectors of degree 2.

3) Let us now analyze the case w7 6= 0, with w5 = w6 6= 0 and all its subcases. In particular we know
that this implies w1 6= 0 because α1,2(w1) = −w5 − w6, and w3 = 0 since α1,2(w5 − w6) = 2w3.

3a) We suppose w2 = w3 = 0 and w1 6= 0, w4 6= 0, w7 6= 0, w5 = w6 6= 0. By Remark 4.22 we
have:

α1,2(w1) = −2w5 β1,2(w1) = 2w5,

α1,2(w4) = 0 β1,2(w4) = 0,

α1,2(w5) = −w4 β1,2(w5) = w4,

α1,2(w6) = −w4 β1,2(w6) = w4.

We have that w4 is a highest weight vector and Equations (4.11) reduce to:

v1,2 = 2iw5,

v1,3 = w1 + w4,

v1,4 = iw1 − iw4,
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v2,3 = iw1 − iw4,

v2,4 = −w1 − w4,

v3,4 = 2iw5.

Let us compute the weight of w4. Using (4.11), Equation (4.31) for a = 1, b = 3 reduces to:

0 =E00v1,3 − v1,3 + F1,2v2,3 − F1,4v3,4

=E00(w1 + w4)− w1 − w4 + F1,2(iw1 − iw4)− F1,4(2iw5).

Using (4.11), Equation (4.31) for a = 2, b = 3 reduces to:

0 =E00v2,3 − v2,3 + F2,1v1,3 + F2,4v3,4

=E00(iw1 − iw4)− iw1 + iw4 − F1,2(w1 + w4) + F2,4(2iw5).

We take the sum of the first equation and the second multiplied by i and get:

0 =E00(w1 + w4 − w1 + w4)− w1 − w4 + w1 − w4

+ F1,2(iw1 − iw4 − iw1 − iw4)− 2iF1,4(w5)− 2F2,4(w5)

=E00(2w4)− 2w4 + F1,2(−2iw4)− 2β1,2(w5)

=E00(2w4)− 2w4 + F1,2(−2iw4)− 2w4

=2E00w4 − 2H1w4 − 4w4.

We obtain µ0 = µ1 + 2. Let us consider Equation (4.33) for a = 1, b = 2, c = 4, using (4.11)
we obtain:

0 =v2,4 − F1,2v1,4 + F1,4v1,2 − Cv1,3

=− w1 − w4 − F1,2(iw1 − iw4) + F1,42iw5 − C(w1 + w4).

Let us now take Equation (4.33) for a = 2, b = 1, c = 4, using (4.11) we obtain:

0 =− v1,4 − F1,2v2,4 − F2,4v1,2 − Cv2,3

=− iw1 + iw4 − F1,2(−w1 − w4)− F2,4(2iw5)− C(iw1 − iw4).

We take the difference between the last and the previous multiplied by i and get:

0 =− iw1 + iw4 + iw1 + iw4 − F1,2(−w1 − w4 + w1 − w4)

− F2,4(2iw5)− iF1,42iw5 − C(iw1 − iw4 − iw1 − iw4)

=2iw4 + 2F1,2w4 − 2iβ1,2w5 + 2iCw4

=2F1,2w4 + 2iCw4.

Therefore:

0 = H1w4 − Cw4.

We obtain C = µ1. Using (4.11), Equation (4.33) for a = 3, b = 1, c = 4 reduces to:

0 =− v1,4 + F1,3v3,4 + F3,4v1,3 − Cv2,3

=− (iw1 − iw4) + F1,3(2iw5) + F3,4(w1 + w4)− C(iw1 − iw4).

Using (4.11), Equation (4.33) for a = 3, b = 2, c = 4 reduces to:

0 =v2,4 + F2,3v3,4 − F3,4v2,3 − Cv1,3
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=− w1 − w4 + F2,3(2iw5)− F3,4(iw1 − iw4)− C(w1 + w4).

We compute the difference between the first and the second multiplied by i:

0 =− iw1 + iw4 + iw1 + iw4 + F1,3(2iw5)− iF2,3(2iw5)

+ F3,4(w1 + w4 − w1 + w4) + C(−iw1 + iw4 + iw1 + iw4)

=2iw4 − 2iw4 + 2F3,4w4 + 2iCw4.

Therefore:

0 = H2w4 − Cw4.

We obtain µ2 = C. Hence the weight of w4 with respect to hx, hy, E00, C is (0, n, n2 + 2, n2 ).
From α1,2(w5) − β1,2(w5) = Eε1+ε2w5 = −2w4, α1,2(w1) − β1,2(w1) = Eε1+ε2w1 = −4w5 and
2w5 + 2w6 + w7 = 0, we have:

w5 =
1

2n
E−(ε1+ε2)w4 = w6,

w7 = −4w5,

w1 =
1

4n(n− 1)
E−(ε1+ε2)E−(ε1+ε2)w4.

From this we know that n ≥ 2. All the other equations of Lemma 4.21 are easily verified by
this choice of v1,2, v1,3, v1,4, v2,3, v2,4, v3,4. The singular vector obtained, written using notation
(4.1), is:

~m2d = w22w12 ⊗ yn1 − (w22w11 + w21w12)⊗ yn−1
1 y2 − w11w21 ⊗ yn−2

1 x2
2,

in M(0, n, n2 + 2, n2 ) with n > 1.

3b) We suppose w2 = w3 = w4 = 0 and w1 6= 0, w7 6= 0, w5 = w6 6= 0. Using (4.11), Equation
(4.33) for a = 1, b = 3, c = 4 reduces to:

0 =− v3,4 − F1,3v1,4 − F1,4v1,3 − Cv1,2

=− (2iw5)− F1,3(iw1)− F1,4(w1)− C(2iw5).

Using (4.11), Equation (4.33) for a = 2, b = 3, c = 4 reduces to:

0 =− v3,4 + F2,3v2,4 + F2,4v2,3 − Cv1,2

=− (2iw5) + F2,3(−w1) + F2,4(iw1)− C(2iw5).

We take the sum of these two equations and obtain:

0 =− 4iw5 − i(F1,3 − iF2,3)(w1) + i(F2,4 + iF1,4)w1 − C4iw5

=− 4iw5 − iα1,2(w1) + iβ1,2(w1)− C4iw5

=− 4iw5 + 2iw5 + 2iw5 − 4iCw5 = −4iCw5.

We obtain C = 0. For C = 0, the λ−action of Proposition 3.11 reduces to the action found in
Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of degree
2.
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3c) We suppose w3 = w4 = 0 and w1 6= 0,w2 6= 0, w7 6= 0, w5 = w6 6= 0. Using (4.11), Equation
(4.33) for a = 1, b = 3, c = 4 reduces to:

0 =− v3,4 − F1,3v1,4 − F1,4v1,3 − Cv1,2

=− (2iw5)− F1,3(iw1 + iw2)− F1,4(w1 − w2)− C(2iw5).

Using (4.11), Equation (4.33) for a = 2, b = 3, c = 4 reduces to:

0 =− v3,4 + F2,3v2,4 + F2,4v2,3 − Cv1,2

=− (2iw5) + F2,3(−w1 − w2) + F2,4(iw1 − iw2)− C(2iw5).

We take the sum and obtain:

0 =− 4iw5 − i(F1,3 − iF2,3)(w1) + i(F2,4 + iF1,4)w1

− i(F1,3 − iF2,3)w2 − i(F2,4 + iF1,4)w2 − C4iw5

=− 4iw5 − iα1,2(w1) + iβ1,2(w1)− iα1,2(w2)− iβ1,2(w2)− C4iw5

=− 4iw5 + 2iw5 + 2iw5 − 4iCw5 = −4iCw5.

We obtain C = 0. For C = 0, the λ−action of Proposition 3.11 reduces to the action found in
Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of degree
2.

3d) We suppose w3 = 0 and w1 6= 0, w2 6= 0, w4 6= 0, w7 6= 0, w5 = w6 6= 0. We have that w2

and w4 are multiples because, from (4.37), we know that they are both highest weight vectors.
Using (4.11), Equation (4.33) for a = 1, b = 3, c = 4 reduces to:

0 =− v3,4 − F1,3v1,4 − F1,4v1,3 − Cv1,2

=− (2iw5)− F1,3(iw1 + iw2 − iw4)− F1,4(w1 − w2 + w4)− C(2iw5).

Using (4.11), Equation (4.33) for a = 2, b = 3, c = 4 reduces to:

0 =− v3,4 + F2,3v2,4 + F2,4v2,3 − Cv1,2

=− (2iw5) + F2,3(−w1 − w2 − w4) + F2,4(iw1 − iw2 − iw4)− C(2iw5).

We take the sum and obtain:

0 =− 4iw5 − i(F1,3 − iF2,3)(w1) + i(F2,4 + iF1,4)w1 − i(F1,3 − iF2,3)w2

− i(F2,4 + iF1,4)w2 + i(F1,3 − F2,4 + iF1,4 + iF2,3)w4 − C4iw5

=− 4iw5 − iα1,2(w1) + iβ1,2(w1)− iα1,2(w2)− iβ1,2(w2)

+ i(F1,3 − F2,4 + iF1,4 + iF2,3)w4 − C4iw5

=− 4iw5 + 2iw5 + 2iw5 − 4iCw5 + iE−(ε1+ε2)w4 = −4iCw5 + iE−(ε1+ε2)w4.

We take the difference and obtain:

0 =− i(F1,3 + iF2,3)w1 + i(−F2,4 + iF1,4)w1 − i(F1,3 + iF2,3)w2 − i(−F2,4 + iF1,4)w2+

+ i(F1,3 + F2,4 + iF1,4 − iF2,3)w4

=− iE−(ε1−ε2)w1 − iE−(ε1+ε2)w2.

Since w2 is a highest weight vector and w1 is not, these two terms are linearly independent,
unless they are both 0, in particular E−(ε1+ε2)w2 = 0. But we know that w4 is a multiple of
w2, then −4iCw5 + iE−(ε1+ε2)w4 = −4iCw5 = 0. We obtain C = 0. For C = 0, the λ−action
of Proposition 3.11 reduces to the action found in Theorem 4.3 of [BKL1]; in that case it was
shown that there are no singular vectors of degree 2.
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4) Let us now analyze the case w7 6= 0 (hence w5 6= −w6), with w5 6= w6 and all its subcases. In
particular we know that this implies w1 6= 0 because α1,2(w1) = −w5 − w6 and w2 6= 0 because
α1,2(w2) = w5 − w6. We have the following subcases.

4a) We suppose w3 = w4 = 0 and w1 6= 0, w2 6= 0, w5 6= 0, w6 6= 0, w5 6= ±w6.
Using (4.11), Equation (4.33) for a = 1, b = 3, c = 4 reduces to:

0 =− v3,4 − F1,3v1,4 − F1,4v1,3 − Cv1,2

=− (2iw6)− F1,3(iw1 + iw2)− F1,4(w1 − w2)− C(2iw5).

Using (4.11), Equation (4.33) for a = 2, b = 3, c = 4 reduces to:

0 =− v3,4 + F2,3v2,4 + F2,4v2,3 − Cv1,2

=− (2iw6) + F2,3(−w1 − w2) + F2,4(iw1 − iw2)− C(2iw5).

We take the sum and obtain:

0 =− 4iw6 − C4iw5 − i(F1,3 − iF2,3)(w1)− i(F1,3 − iF2,3)(w2)

+ i(F2,4 + iF1,4)(w1)− i(F2,4 + iF1,4)(w2)

=− 4iw6 − C4iw5 + i(w5 + w6)− i(w5 − w6) + i(w5 + w6)− i(w5 − w6)

=− C4iw5 = 0.

We obtain C = 0. For C = 0, the λ−action of Proposition 3.11 reduces to the action found in
Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of degree
2.

4b) We suppose that w4 = 0 and w1 6= 0, w2 6= 0, w3 6= 0, w5 6= 0, w6 6= 0, w5 6= ±w6.
Using (4.11), Equation (4.33) for a = 1, b = 3, c = 4 reduces to:

0 =− v3,4 − F1,3v1,4 − F1,4v1,3 − Cv1,2

=− (2iw6)− F1,3(iw1 + iw2 − iw3)− F1,4(w1 − w2 − w3)− C(2iw5).

Using (4.11), Equation (4.33) for a = 2, b = 3, c = 4 reduces to:

0 =− v3,4 + F2,3v2,4 + F2,4v2,3 − Cv1,2

=− (2iw6) + F2,3(−w1 − w2 − w3) + F2,4(iw1 − iw2 + iw3)− C(2iw5).

We take the sum and obtain:

0 =− 4iw6 − C4iw5 − i(F1,3 − iF2,3)(w1)− i(F1,3 − iF2,3)(w2)+

+ i(F2,4 + iF1,4)(w1)− i(F2,4 + iF1,4)(w2) + i(F1,3 + F2,4 − iF1,4 + iF2,3)w3

=− 4iw6 − C4iw5 + i(w5 + w6)− i(w5 − w6) + i(w5 + w6)− i(w5 − w6) + iE−(ε1−ε2)w3

=− C4iw5 + iE−(ε1−ε2)w3 = 0.

Using (4.11), Equation (4.33) for a = 4, b = 1, c = 2 reduces to:

0 =− v1,2 + F1,4v2,4 + F2,4v1,4 − Cv3,4

=− (2iw5) + F1,4(−w1 − w2 − w3) + F2,4(iw1 + iw2 − iw3)− C(2iw6).

Using (4.11), Equation (4.33) for a = 3, b = 1, c = 2 reduces to:

0 =− v1,2 − F1,3v2,3 − F2,3v1,3 − Cv3,4
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=− (2iw5)− F1,3(iw1 − iw2 + iw3)− F2,3(w1 − w2 − w3)− C(2iw6).

We take the sum and obtain:

0 =− 4iw5 − C4iw6 + i(F2,4 + iF1,4)w1 + i(F2,4 + iF1,4)w2 − i(F1,3 − iF2,3)w1

+ i(F1,3 − iF2,3)w2 − i(F1,3 + F2,4 − iF1,4 + iF2,3)w3

=− 4iw5 − C4iw6 + i(w5 + w6) + i(w5 − w6) + i(w5 + w6) + i(w5 − w6)− iE−(ε1−ε2)w3

=− C4iw6 − iE−(ε1−ε2)w3.

Hence we know that:

0 = −C4iw5 + iE−(ε1−ε2)w3,

0 = −C4iw6 − iE−(ε1−ε2)w3.

From this we obtain that w5 + w6 = 0 that is a contradiction.

4c) We suppose that w3 = 0 and w1 6= 0, w2 6= 0, w4 6= 0, w5 6= 0, w6 6= 0, w5 6= ±w6.
Using (4.11), Equation (4.33) for a = 1, b = 3, c = 4 reduces to:

0 =− v3,4 − F1,3v1,4 − F1,4v1,3 − Cv1,2

=− (2iw6)− F1,3(iw1 + iw2 − iw4)− F1,4(w1 − w2 + w4)− C(2iw5).

Using (4.11), Equation (4.33) for a = 2, b = 3, c = 4 reduces to:

0 =− v3,4 + F2,3v2,4 + F2,4v2,3 − Cv1,2

=− (2iw6) + F2,3(−w1 − w2 − w4) + F2,4(iw1 − iw2 − iw4)− C(2iw5).

We take the sum and obtain:

0 =− 4iw6 − C4iw5 − i(F1,3 − iF2,3)(w1)− i(F1,3 − iF2,3)(w2)+

+ i(F2,4 + iF1,4)(w1)− i(F2,4 + iF1,4)(w2) + i(F1,3 − F2,4 + iF1,4 + iF2,3)w4

=− 4iw6 − C4iw5 + i(w5 + w6)− i(w5 − w6) + i(w5 + w6)− i(w5 − w6) + iE−(ε1+ε2)w4

=− C4iw5 + iE−(ε1+ε2)w4.

Using (4.11), Equation (4.33) for a = 4, b = 1, c = 2 reduces to:

0 =− v1,2 + F1,4v2,4 + F2,4v1,4 − Cv3,4

=− (2iw5) + F1,4(−w1 − w2 − w4) + F2,4(iw1 + iw2 − iw4)− C(2iw6).

Using (4.11), Equation (4.33) for a = 3, b = 1, c = 2 reduces to:

0 =− v1,2 − F1,3v2,3 − F2,3v1,3 − Cv3,4

=− (2iw5)− F1,3(iw1 − iw2 − iw4)− F2,3(w1 − w2 + w4)− C(2iw6).

We take the sum and obtain:

0 =− 4iw5 − C4iw6 + i(F2,4 + iF1,4)w1 + i(F2,4 + iF1,4)w2 − i(F1,3 − iF2,3)w1 + i(F1,3 − iF2,3)w2

+ i(F1,3 − F2,4 + iF1,4 + iF2,3)w4

=− 4iw5 − C4iw6 + i(w5 + w6) + i(w5 − w6) + i(w5 + w6) + i(w5 − w6) + iE−(ε1+ε2)w4

=− C4iw6 + iE−(ε1+ε2)w4.

Hence we know that:

0 = −C4iw5 + iE−(ε1+ε2)w4,

0 = −C4iw6 + iE−(ε1+ε2)w4.

From this we have that w5 − w6 = 0 that is a contradiction.
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4d) We suppose w1 6= 0, w2 6= 0, w3 6= 0, w4 6= 0, w5 6= 0, w6 6= 0, w5 6= ±w6.
Using (4.11), Equation (4.33) for a = 1, b = 3, c = 4 reduces to:

0 =− v3,4 − F1,3v1,4 − F1,4v1,3 − Cv1,2

=− (2iw6)− F1,3(iw1 + iw2 − iw3 − iw4)− F1,4(w1 − w2 − w3 + w4)− C(2iw5).

Using (4.11), Equation (4.33) for a = 2, b = 3, c = 4 reduces to:

0 =− v3,4 + F2,3v2,4 + F2,4v2,3 − Cv1,2

=− (2iw6) + F2,3(−w1 − w2 − w3 − w4) + F2,4(iw1 − iw2 + iw3 − iw4)− C(2iw5).

We take the sum and obtain:

0 =− 4iw6 − C4iw5 − i(F1,3 − iF2,3)(w1)− i(F1,3 − iF2,3)(w2)+

+ i(F2,4 + iF1,4)(w1)− i(F2,4 + iF1,4)(w2) + i(F1,3 − F2,4 + iF1,4 + iF2,3)w4+

+ i(F1,3 + F2,4 − iF1,4 + iF2,3)w3

=− 4iw6 − C4iw5 + i(w5 + w6)− i(w5 − w6) + i(w5 + w6)− i(w5 − w6)

+ iE−(ε1−ε2)w3 + iE−(ε1+ε2)w4

=− C4iw5 + iE−(ε1−ε2)w3 + iE−(ε1+ε2)w4 = 0.

Hence we know that:

0 = −C4iw5 + iE−(ε1−ε2)w3 + iE−(ε1+ε2)w4.

Now we apply α1,2 and β1,2, we call the weight of w3 and w4 (they are multiples, because they
are highest weight vectors from (4.37)) with respect to H1 −H2 and H1 +H2 respectively m
and n. We have:

0 = −4C(w3 − w4)− 2mw3 − 2nw4,

0 = −4C(w3 + w4)− 2mw3 + 2nw4.

From the sum of these −8Cw3 = 4mw3, from the difference 8Cw4 = +4nw4. This leads to
m = −2C, n = 2C. The weight should be dominant, then C must be 0, but for C = 0 the
λ−action of Proposition 3.11 reduces to the action found in Theorem 4.3 of [BKL1]; in that
case it was shown that there are no singular vectors of degree 2.

4e) We suppose w5 = 0 and w1 6= 0, w2 6= 0, w6 6= 0, we deduce from α1,2(w5) = w3 −w4 = 0 and
β1,2(w5) = w3 + w4 = 0 that w3 = w4 = 0.
Using (4.11), Equation (4.33) for a = 4, b = 1, c = 2 reduces to:

0 =− v1,2 + F1,4v2,4 + F2,4v1,4 − Cv3,4

=F1,4(−w1 − w2) + F2,4(iw1 + iw2)− C(2iw6).

Using (4.11), Equation (4.33) for a = 3, b = 1, c = 2 reduces to:

0 =− v1,2 − F1,3v2,3 − F2,3v1,3 − Cv3,4

=− F1,3(iw1 − iw2)− F2,3(w1 − w2)− C(2iw6).

We take the sum and obtain:

0 =− 4iCw6 − i(F1,3 − iF2,3)w1 + i(F1,3 − iF2,3)w2 + i(F2,4 + iF1,4)(w1)

+ i(F2,4 + iF1,4)(w2)
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=− 4iCw6 + iw6 − iw6 + iw6 − iw6 = −4iCw6.

We obtain C = 0. For C = 0, the λ−action of Proposition 3.11 reduces to the action found in
Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of degree
2.

4f) We suppose that w6 = 0 and w1 6= 0, w2 6= 0, w5 6= 0. We deduce, from α1,2(w6) = −w3−w4 =
0 and β1,2(w6) = −w3 + w4 = 0, that w3 = w4 = 0.
Using (4.11), Equation (4.33) for a = 1, b = 3, c = 4 reduces to:

0 =− v3,4 − F1,3v1,4 − F1,4v1,3 − Cv1,2

=− F1,3(iw1 + iw2)− F1,4(w1 − w2)− C(2iw5).

Using (4.11), Equation (4.33) for a = 2, b = 3, c = 4 reduces to:

0 =− v3,4 + F2,3v2,4 + F2,4v2,3 − Cv1,2

= + F2,3(−w1 − w2) + F2,4(iw1 − iw2)− C(2iw5).

We take the sum and obtain:

0 =− C4iw5 − i(F1,3 − iF2,3)(w1)− i(F1,3 − iF2,3)(w2)+

+ i(F2,4 + iF1,4)(w1)− i(F2,4 + iF1,4)(w2)

=− C4iw5 + iw5 − iw5 + w5 − iw5

=− C4iw5.

We obtain C = 0. For C = 0, the λ−action of Proposition 3.11 reduces to the action found in
Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of degree
2.

4.2 Vectors of degree 3

The aim of this section is to classify all singular vectors of degree 3.
We have that, for a singular ~m vector of degree 3, T (~m) is of the form:

T (~m) = Θ(
∑
i

η(i)c ⊗ vi,1) + (
∑
i

ηi ⊗ vi,0). (4.38)

We write ~m as:

~m =(η2 + iη1)(η2 − iη1)(η4 + iη3)⊗ w1 + (η2 + iη1)(η2 − iη1)(η4 − iη3)⊗ w2+ (4.39)

(η4 + iη3)(η4 − iη3)(η2 + iη1)⊗ w3 + (η4 + iη3)(η4 − iη3)(η2 − iη1)⊗ w4+

Θ(η2 + iη1)⊗ w5 + Θ(η2 − iη1)⊗ w6 + Θ(η4 + iη3)⊗ w7 + Θ(η4 − iη3)⊗ w8

=(2Θiη3 + 2Θη4 − 2η1η2η3 + 2iη1η2η4)⊗ w1 + (−2iΘη3 + 2Θη4 + 2η1η2η3 + 2iη1η2η4)⊗ w2+

(2iΘη1 + 2Θη2 − 2η1η3η4 + 2iη2η3η4)⊗ w3 + (−2iΘη1 + 2Θη2 + 2η1η3η4 + 2iη2η3η4)⊗ w4+

Θ(η2 + iη1)⊗ w5 + Θ(η2 − iη1)⊗ w6 + Θ(η4 + iη3)⊗ w7 + Θ(η4 − iη3)⊗ w8.

Keeping in mind the relation between ~m and T (~m), we have:

v1,0 = 2iw3 + 2iw4, (4.40)
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v2,0 = 2w3 − 2w4,

v3,0 = 2iw1 + 2iw2,

v4,0 = 2w1 − 2w2,

v1,1 = −2iw3 + 2iw4 − iw5 + iw6,

v2,1 = 2w3 + 2w4 + w5 + w6,

v3,1 = −2iw1 + 2iw2 − iw7 + iw8,

v4,1 = 2w1 + 2w2 + w7 + w8.

Indeed, let us show for example one of the previous equations. In (4.38), let us consider η2 ⊗ v2,0.
We have that η2 is the Hodge dual of −η1η3η4. In (4.39), the terms in η1η3η4 are:

−2η1η3η4 ⊗ w3 + 2η1η3η4 ⊗ w4,

hence v2,0 = 2w3 − 2w4. Analogously for v1,0, v3,0 and v4,0. Moreover in (4.38), let us consider, for
example, Θη(1)c ⊗ v1,1 = Θη2η3η4 ⊗ v1,1. We have that Θη2η3η4 is the Hodge dual of −Θη1. In
(4.39), the terms in Θη1 are:

2iΘη1 ⊗ w3 − 2iΘη1 ⊗ w4 + iΘη1 ⊗ w5 − iΘη1 ⊗ w6,

hence v1,1 = −2iw3 + 2iw4 − iw5 + iw6. Analogously for v2,1, v3,1 and v4,1.
In the following lemma we write explicitly the relations of Proposition 4.17 for a vector as in formula
(4.38).

Lemma 4.23. Let ~m ∈ IndF be a vector, such that T (~m) is written as in formula (4.38).
1) Condition S1 reduces to the following relation for f = ξL with |L| = 0, 1:

0 =
∑
i

[
−
∑
l<k

(fξlξk ? ηi ⊗ Fl,kvi,0)−χ|L|=1 εL ξLc ? ηi ⊗ Cvi,0)

]
(4.41)

+
∑
i

[
f ? η(i)c ⊗ E00vi,1 − (−1)p(f)

4∑
l=1

∂l((fξl) ? η(i)c)⊗ vi,1 + (−1)p(f)(
∑
l 6=k

((∂lf)ξk) ? η(i)c ⊗ Fl,kvi,1)

+χ|L|=2 εL ξLc ? η(i)c ⊗ Cvi,1)

]
.

2) Condition S2 reduces to the following system of relations.
For f = ξL with |L| = 1, 2, 3:

0 =
∑
i

[
f ? ηi ⊗ E00vi,0 − (−1)p(f)

4∑
l=1

∂l((fξl) ? ηi)⊗ vi,0 + (−1)p(f)(
∑
l 6=k

((∂lf)ξk) ? ηi ⊗ Fl,kvi,0)

(4.42)

+χ|L|=2 εL ξLc ? ηi ⊗ Cvi,0)

]
+
∑
i

[
− (−1)p(f)

4∑
l=1

((∂lf) ? (∂lη(i)c))⊗ vi,1

−
∑
r<s

((∂r∂sf) ? η(i)c ⊗ Fr,svi,1) +χ|L|=3 εL ξLc ? η(i)c ⊗ Cvi,1
]
.

For f = ξL with |L| = 1:

0 =
∑
i

[
f ? η(i)c ⊗ E00vi,1 − (−1)p(f)

4∑
l=1

∂l((fξl) ? η(i)c)⊗ vi,1 + (−1)p(f)(
∑
l 6=k

((∂lf)ξk) ? η(i)c ⊗ Fl,kvi,1)

(4.43)
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+χ|L|=2 εL ξLc ? η(i)c ⊗ Cvi,1)

]
+
∑
i

[
(|f | − 2)(f ? η(i)c)⊗ vi,1

]
.

3) Condition S3 reduces to the following system of relations.
For f = ξL with |L| = 3, 4 or f ∈ Bso(4):

0 =
∑
i

(−1)(|f |(|f |+1)/2)+|f |
[
− (−1)p(f)

4∑
l=1

((∂lf) ? (∂lηi))⊗ vi,0 −
∑
r<s

((∂r∂sf) ? ηi ⊗ Fr,svi,0)

(4.44)

+χ|L|=3 εL ξLc ? ηi ⊗ Cvi,0
]
−
∑
i

χ|L|=4εLη(i)c ⊗ Cvi,1.

For f = ξL with |L| = 3 or f ∈ Bso(4):

0 =
∑
i

[
(|f | − 2)(f ? ηi)⊗ vi,0

]
+
∑
i

[
− (−1)p(f)

4∑
l=1

((∂lf) ? (∂lη(i)c))⊗ vi,1 (4.45)

−
∑
r<s

((∂r∂sf) ? η(i)c ⊗ Fr,svi,1) +χ|L|=3 εL ξLc ? η(i)c ⊗ Cvi,1
]
.

Lemma 4.24. Let ~m ∈ IndF be a vector such that T (~m) is written as in formula (4.38). The
relations of Lemma 4.23 reduce to the following equations.
For all i ∈ {1, 2, 3, 4}:

vi,1 = (−1)i+12Cvi,0. (4.46)

For all r 6= s ∈ {1, 2, 3, 4}:

E00vr,0 − 2vr,0 + Fs,rvs,0 = 0. (4.47)

Moreover C (resp. E00) acts as multiplication by ±1
2 (resp. 5

2) on F .
For all a, b, c ∈ {1, 2, 3, 4} with d = (a, b, c)c:

vc,0 + Fa,cva,0 + Fb,cvb,0 = 0, (4.48)

Fb,cvd,0 − ε(a,b,c)Cva,0 = 0. (4.49)

For all a, b, c ∈ {1, 2, 3, 4} with d = (a, b, c)c:

−ε(a,b,c)vd,0 + (−1)cFa,bvc,1 − (−1)bFa,cvb,1 + (−1)aFb,cva,1 + Cε(a,b,c)(−1)dvd,1 = 0. (4.50)

For all a, b ∈ {1, 2, 3, 4} with (c, d) = (a, b)c, if we let k = c, d and s 6= a, b, k:

E00vk,0 − vk,0 + Fa,kva,0 + Fb,kvb,0 + (−1)χa<k<bFa,bvs,1 = 0, (4.51)

− Fb,cvd,0 + Fb,dvc,0 + ε(a,b)Cva,0 + (−1)a+b−1(−1)χc<a<dva,1 + (−1)χc<a<dFa,bvb,1 = 0. (4.52)

For all a, b, c ∈ {1, 2, 3, 4} with a < b < c and (d) = (a, b, c)c:

0 =(−1)dE00vd,0 + (−1)dFa,dva,0 + (−1)dFb,dvb,0 + (−1)dFc,dvc,0 (4.53)

+ (−1)c−1Fa,bvc,1 − (−1)b−1Fa,cvb,1 + (−1)a−1Fb,cva,1 − Cvd,1.
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For all a ∈ {1, 2, 3, 4} with (b, c, d) = (a)c:

(−1)ava,1 − (−1)aE00va,1 + (−1)bFa,bvb,1 + (−1)cFa,cvc,1 + (−1)dFa,dvd,1 = 0. (4.54)

For all a ∈ {1, 2, 3, 4} with (b, c, d) = (a)c:

−Fb,cvd,0 + Fb,dvc,0 − Fc,dvb,0 + E00va,1 − va,1 = 0. (4.55)

For all a ∈ {1, 2, 3, 4} with (b, c, d) = (a)c:

0 =(−1)aFb,cvd,0 + (−1)a−1Fb,dvc,0 + (−1)aFc,dvb,0 + ε(a)(−1)a−1 ⊗ Cva,0 + (−1)a−1E00va,1
(4.56)

+ (−1)bFa,bvb,1 + (−1)cFa,cvc,1 + (−1)dFa,dvd,1.

Finally:

α1,2(v1,0) = −v3,0, β1,2(v1,0) = −iv4,0, (4.57)

α1,2(v2,0) = iv3,0, β1,2(v2,0) = −v4,0,

α1,2(v3,0) = v1,0 − iv2,0, β1,2(v3,0) = 0,

α1,2(v4,0) = 0 β1,2(v4,0) = iv1,0 + v2,0,

where α1,2 and β1,2 are defined by (3.1) and (3.2).

Proof. We consider the difference between (4.41) and (4.43) for f = ξb. We denote by (a, c, d) = (b)c.
We have that:

− ξb ? η(b)c ⊗ vb,1 =

(
−

4∑
i=1

∑
l<k

ξbξlξk ? ηi ⊗ Fl,kvi,0 − ε(b)(ξaξcξd) ? ηb ⊗ Cvb,0
)
.

It is equivalent to:

ξb ? η(b)c ⊗ vb,1 =
∑

l<k,l,k 6=b
ξbξlξk ? η(b,l,k)c ⊗ Fl,kv(b,l,k)c,0 − ε(b)ηbηaηcηd ⊗ Cvb,0. (4.58)

Let us focus on Equation (4.42) for f = ξs with s 6= b. We have:

0 =

4∑
i=1

∂sη(i)c ⊗ vi,1 +

4∑
i=1

ξs ? ηi ⊗ E00vi,0 +

4∑
i=1

4∑
l=1

∂l((ξsξl) ? ηi)⊗ vi,0 −
4∑
i=1

∑
l 6=s

ξl ? ηi ⊗ Fs,lvi,0.

(4.59)

The terms in η(s,b)c of this equation are:

∂sη(b)c ⊗ vb,1 −
∑
l 6=s,b

ξl ? η(s,b,l)c ⊗ Fs,lv(s,b,l)c,0 = 0.

We take the sum over s 6= b and, as in [BKL1], using (4.58) we obtain:

0 =
∑
s 6=b

ξs ?
(
∂sη(b)c

)
⊗ vb,1 −

∑
s 6=b

∑
l 6=s,b

(ξsξl) ? η(s,b,l)c ⊗ Fs,lv(s,b,l)c,0

=3η(b)c ⊗ vb,1 − 2
( ∑
s<l,s,l 6=b

(ξsξl) ? η(s,b,l)c ⊗ Fs,lv(s,b,l)c,0

)
=(3− 2)η(b)c ⊗ vb,1 − 2ε(b)η(b)c ⊗ Cvb,0
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=η(b)c ⊗ (vb,1 − 2ε(b)Cvb,0).

That is:

v1,1 = 2Cv1,0,

v2,1 = −2Cv2,0,

v3,1 = 2Cv3,0,

v4,1 = −2Cv4,0.

Given r 6= s ∈ {1, 2, 3, 4}, the terms in ηsηr of (4.59) are:

ηsηr ⊗ E00vr,0 +
∑
l 6=s,r

∂l((ξsξl) ? ηr)⊗ vr,0 + ηsηr ⊗ Fs,rvs,0 = 0.

This condition is equivalent to:

E00vr,0 − 2vr,0 + Fs,rvs,0 = 0.

Using (4.46), Equation (4.44) for f = ξ∗ is:

0 =−
4∑
i=1

4∑
l=1

∂l(ξ∗) ? ∂l(ηi)⊗ vi,0 −
∑
r<s

4∑
i=1

∂r∂s(ξ∗) ? ηi ⊗ Fr,svi,0 − C
∑
i

η(i)c ⊗ vi,1

=− η2η3η4 ⊗ v1,0 + η1η3η4 ⊗ v2,0 − η1η2η4 ⊗ v3,0 + η1η2η3 ⊗ v4,0 + η3η4η1 ⊗ F1,2v1,0 + η3η4η2 ⊗ F1,2v2,0

− η2η4η1 ⊗ F1,3v1,0 − η2η4η3 ⊗ F1,3v3,0 + η2η3η1 ⊗ F1,4v1,0 + η2η3η4 ⊗ F1,4v4,0 + η1η4η2 ⊗ F2,3v2,0

+ η1η4η3 ⊗ F2,3v3,0 + η1η2η3 ⊗ F3,4v3,0 + η1η2η4 ⊗ F3,4v4,0 − η1η3η2 ⊗ F2,4v2,0 − η1η3η4 ⊗ F2,4v4,0

− C(η1η2η3)⊗ (−2C)v4,0 − C(η1η3η4)⊗ (−2C)v2,0 − C(η1η2η4)⊗ (2C)v3,0 − C(η2η3η4)⊗ (2C)v1,0.

The coefficient of η1η2η3 is:

v4,0 + F1,4v1,0 + F3,4v3,0 + F2,4v2,0 + 2C2v4,0 = 0. (4.60)

Using (4.47), we obtain:

v4,0 + 2v4,0 − E00v4,0 + 2v4,0 − E00v4,0 + 2v4,0 − E00v4,0 + 2C2v4,0 = 0.

This is equivalent to:

E00v4,0 =
7 + 2C2

3
v4,0. (4.61)

The coefficient of η1η2η4 is:

−v3,0 − F1,3v1,0 − F2,3v2,0 + F3,4v4,0 − 2C2v3,0 = 0. (4.62)

Using (4.47), we obtain:

−v3,0 − 2v3,0 + E00v3,0 − 2v3,0 + E00v3,0 − 2v3,0 + E00v3,0 − 2C2v3,0 = 0.

This is equivalent to:

E00v3,0 =
7 + 2C2

3
v3,0. (4.63)
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The coefficient of η1η3η4 is:

v2,0 + F1,2v1,0 − F2,3v3,0 − F2,4v4,0 + 2C2v2,0 = 0. (4.64)

Using (4.47), we obtain:

v2,0 + 2v2,0 − E00v2,0 + 2v2,0 − E00v2,0 + 2v2,0 − E00v2,0 + 2C2v2,0 = 0.

This is equivalent to:

E00v2,0 =
7 + 2C2

3
v2,0. (4.65)

The coefficient of η2η3η4 is:

−v1,0 + F1,2v2,0 + F1,3v3,0 + F1,4v4,0 − 2C2v1,0 = 0. (4.66)

Using (4.47) we obtain:

− v1,0 − 2v1,0 + E00v1,0 − 2v1,0 + E00v1,0 − 2v1,0 + E00v1,0 − 2C2v1,0 = 0.

This is equivalent to:

E00v1,0 =
7 + 2C2

3
v1,0. (4.67)

Therefore E00 acts as 7+2C2

3 .
Let us analyze Equation (4.44) for f = ξaξbξc. We denote (d) = (a, b, c)c. We obtain:

4∑
i=1

4∑
l=1

∂l(ξaξbξc) ? ∂l(ηi)⊗ vi,0 −
∑
r<s

∂r∂s(ξaξbξc) ? ηi ⊗ Fr,svi,0 +
∑
i

ε(a,b,c)ξd ? ηi ⊗ Cvi,0 = 0.

Looking at the coefficient of ηiηj for every i, j ∈ {a, b, c, d}, we obtain:

vc,0 + Fa,cva,0 + Fb,cvb,0 = 0,

Fb,cvd,0 − ε(a,b,c)Cva,0 = 0.

Equation (4.48), for a = 2, b = 3, c = 1, is:

v1,0 − F1,3v3,0 − F1,2v2,0 = 0.

Using (4.47) and the value of E00, we get:

0 =v1,0 − F1,3v3,0 − F1,2v2,0

=v1,0 − 2
1 + 2C2

3
v1,0 =

1− 4C2

3
v1,0.

From this we have that C = ±1
2 and E00 acts as 5

2 .
Equation (4.45) for f = ξaξbξc, with d = (a, b, c)c, reduces to:

0 =ηaηbηcηd ⊗ vd,0 −
4∑
i

∑
r<s

∂r∂s(ξaξbξc) ? η(i)c ⊗ Fr,svi,1 + ε(a,b,c)ξd ? η(d)c ⊗ Cvd,1.

The coefficient of η∗ is:

−ε(a,b,c)vd,0 + (−1)cFa,bvc,1 − (−1)bFa,cvb,1 + (−1)aFb,cva,1 + Cε(a,b,c)(−1)dvd,1 = 0.
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Equation (4.42) for f = ξaξb, with (c, d) = (a, b)c, reduces to:

0 =ηaηbηc ⊗ E00vc,0 + ηaηbηd ⊗ E00vd,0 −
∑
i

4∑
l=1

∂l((ξaξbξl) ? ηi)⊗ vi,0+

+
∑
i

∑
l 6=k

(∂l(ξaξb)ξk) ? ηi ⊗ Fl,kvi,0 + ε(a,b)

∑
i

ξcξd ? ηi ⊗ Cvi,0+

−
∑
i

4∑
l=1

∂l(ξaξb) ? ∂l(η(i)c)⊗ vi,1 −
∑
i

∑
r<s

∂r∂s(ξaξb) ? η(i)c ⊗ Fr,svi,1.

The coefficient of ηaηbηk for k = c, d and s 6= a, b, k is:

E00vk,0 − vk,0 + Fa,kva,0 + Fb,kvb,0 + (−1)χa<k<bFa,bvs,1 = 0.

The coefficient of ηaηcηd is:

−Fb,cvd,0 + Fb,dvc,0 + ε(a,b)Cva,0 + (−1)a+b−1(−1)χc<a<dva,1 + (−1)χc<a<dFa,bvb,1 = 0.

From the coefficient of ηbηcηd we obtain the same equation with reversed roles of a and b. Equation
(4.42) for f = ξaξbξc, with a < b < c and d = (a, b, c)c, reduces to:

0 =ηaηbηcηd ⊗ E00vd,0 −
∑
i

∑
l 6=k

(∂l(ξaξbξc)ξk) ? ηi ⊗ Fl,kvi,0

−
∑
i

∑
r<s

∂r∂s(ξaξbξc) ? η(i)c ⊗ Fr,svi,1 + ε(a,b,c)ηdη(d)c ⊗ Cvd,1.

The coefficient of η∗ is:

0 =(−1)dE00vd,0 + (−1)dFa,dva,0 + (−1)dFb,dvb,0 + (−1)dFc,dvc,0+

+ (−1)c−1Fa,bvc,1 − (−1)b−1Fa,cvb,1 + (−1)a−1Fb,cva,1 − Cvd,1.

Equation (4.43) for f = ξa with (b, c, d) = (a)c, reduces to:

(−1)ava,1 − (−1)aE00va,1 + (−1)bFa,bvb,1 + (−1)cFa,cvc,1 + (−1)dFa,dvd,1 = 0.

Equation (4.41) for f = 1 reduces to:

0 = −
∑
i

∑
l<k

ξlξk ? ηi ⊗ Fl,kvi,0 +
∑
i

η(i)c ⊗ E00vi,1 −
∑
i

4∑
l=1

∂l(ξl ? η(i)c)⊗ vi,1.

We obtain that for all a ∈ {1, 2, 3, 4}, with (b, c, d) = (a)c, the coefficient of η(a)c is:

−Fb,cvd,0 + Fb,dvc,0 − Fc,dvb,0 + E00va,1 − va,1 = 0.

Condition (4.41) for f = ξa, with (a)c = (b, c, d), reduces to:

0 =−
∑
i

∑
l<k

ξaξlξk ? ηi ⊗ Fl,kvi,0 − ε(a)ηbηcηdηa ⊗ Cva,0 + ξa ? η(a)c ⊗ E00va,1 −
∑
i

∑
k 6=a

ξk ? η(i)c ⊗ Fa,kvi,1.

The coefficient of η∗ is:

0 =(−1)aFb,cvd,0 + (−1)a−1Fb,dvc,0 + (−1)aFc,dvb,0 + ε(a)(−1)a−1 ⊗ Cva,0 + (−1)a−1E00va,1
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+ (−1)bFa,bvb,1 + (−1)cFa,cvc,1 + (−1)dFa,dvd,1.

Let us analyze Equation (4.44) for f = α1,2:

0 =− b0(−ξ1ξ3 + iξ2ξ3)

=−
∑
i

4∑
l=1

∂l(−ξ1ξ3 + iξ2ξ3) ? ∂l(ηi)⊗ vi,0 −
∑
i

∑
r<s

∂r∂s(−ξ1ξ3 + iξ2ξ3) ? ηi ⊗ Fr,svi,0

=η3 ⊗ v1,0 − η1 ⊗ α1,2v1,0 − iη3 ⊗ v2,0 − η2 ⊗ α1,2v2,0 + (−η1 + iη2)⊗ v3,0 − η3 ⊗ α1,2v3,0 − η4 ⊗ α1,2v4,0

=η1 ⊗ (−α1,2v1,0 − v3,0) + η2 ⊗ (iv3,0 − α1,2v2,0) + η3 ⊗ (v1,0 − iv2,0 − α1,2v3,0) + η4 ⊗ (−α1,2v4,0).

Therefore, we have:

α1,2(v1,0) = −v3,0,

α1,2(v2,0) = iv3,0,

α1,2(v3,0) = v1,0 − iv2,0,

α1,2(v4,0) = 0.

For f = β1,2, Equation (4.44) reduces to:

0 =− b0(−ξ2ξ4 − iξ1ξ4)

=−
∑
i

4∑
l=1

∂l(−ξ2ξ4 − iξ1ξ4) ? ∂l(ηi)⊗ vi,0 −
∑
i

∑
r<s

∂r∂s(−ξ2ξ4 − iξ1ξ4) ? ηi ⊗ Fr,svi,0

=iη4 ⊗ v1,0 − η1 ⊗ β1,2v1,0 + η4 ⊗ v2,0 − η2 ⊗ β1,2v2,0 − η3 ⊗ β1,2v3,0 + (−η2 − iη1)⊗ v4,0 − η4 ⊗ β1,2v4,0

=η1 ⊗ (−β1,2v1,0 − iv4,0) + η2 ⊗ (−v4,0 − β1,2v2,0) + η3 ⊗ (−β1,2v3,0) + η4 ⊗ (iv1,0 + v2,0 − β1,2v4,0).

Therefore, we have:

β1,2(v1,0) = −iv4,0,

β1,2(v2,0) = −v4,0,

β1,2(v3,0) = 0,

β1,2(v4,0) = iv1,0 + v2,0.

Equation (4.45) for f = α1,2 reduces to:

0 =− b1(−ξ1ξ3 + iξ2ξ3)

=−
∑
i

4∑
l=1

∂l(−ξ1ξ3 + iξ2ξ3) ? ∂l(η(i)c)⊗ vi,1 −
∑
i

∑
r<s

∂r∂s(−ξ1ξ3 + iξ2ξ3) ? η(i)c ⊗ Fr,svi,1

=η1η2η4 ⊗ v1,1 − η2η3η4 ⊗ α1,2v1,1 + iη1η2η4v2,1 − η1η3η4 ⊗ α1,2v2,1 + (−η2η3η4 − iη1η3η4)⊗ v3,1

− η1η2η4 ⊗ α1,2v3,1 − η1η2η3 ⊗ α1,2v4,1.

Therefore, we have:

α1,2v1,1 = −v3,1,

α1,2v2,1 = −iv3,1,

α1,2v3,1 = v1,1 + iv2,1,

α1,2v4,1 = 0.
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These relations are coherent with the previous equations and (4.46).
Equation (4.45) for f = β1,2 reduces to:

0 =− b1(−ξ2ξ4 − iξ1ξ4)

=−
∑
i

4∑
l=1

∂l(−ξ2ξ4 − iξ1ξ4) ? ∂l(η(i)c)⊗ vi,1 −
∑
i

∑
r<s

∂r∂s(−ξ2ξ4 − iξ1ξ4) ? η(i)c ⊗ Fr,svi,1

=− iη1η2η3 ⊗ v1,1 − η2η3η4 ⊗ β1,2v1,1 + η1η2η3 ⊗ v2,1 − η1η3η4 ⊗ β1,2v2,1 − η1η2η4 ⊗ β1,2v3,1

+ (−η1η3η4 + iη2η3η4)v4,1 − η1η2η3 ⊗ β1,2v4,1.

Therefore, we have:

β1,2v1,1 = iv4,1,

β1,2v2,1 = −v4,1,

β1,2v3,1 = 0,

β1,2v4,1 = −iv1,1 + v2,1.

These relations are coherent with the previous equations and (4.46).

Remark 4.25. Let us point out that relations (4.46) are equivalent to the following, using notation
(4.40):

−2iw3 + 2iw4 − iw5 + iw6 = 2C(2iw3 + 2iw4),

2w3 + 2w4 + w5 + w6 = −2C(2w3 − 2w4),

−2iw1 + 2iw2 − iw7 + iw8 = 2C(2iw1 + 2iw2),

2w1 + 2w2 + w7 + w8 = −2C(2w1 − 2w2).

Thus, we obtain:

w5 = −(2 + 4C)w3, (4.68)

w6 = −(2− 4C)w4,

w7 = −(2 + 4C)w1,

w8 = −(2− 4C)w2.

Equations (4.57) are equivalent to the following, using notation (4.40):

α1,2(w1) = w4, β1,2(w1) = −w4, (4.69)

α1,2(w2) = w4, β1,2(w2) = w4,

α1,2(w3) = −w1 − w2, β1,2(w3) = −w1 + w2,

α1,2(w4) = 0, β1,2(w4) = 0.

We represent these relations with the following drawings:

〈w3〉

〈−w1 − w2〉

〈w2 − w1〉

〈w4〉.

α1,2

β1,2

α1,2

β1,2

Proof of Theorem 4.6. Let us analyze the following cases.
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1) Let us suppose w4 = 0. This splits in the following subcases.

1a) We suppose w2 = w4 = 0 and w1 6= 0, w3 6= 0. By Equations (4.69), we have that w1 is a
highest weight vector. Let us compute its weight. From (4.40) we have:

v1,0 = 2iw3,

v2,0 = 2w3,

v3,0 = 2iw1,

v4,0 = 2w1,

v1,1 = 2C(2iw3),

v2,1 = −2C(2w3),

v3,1 = 2C(2iw1),

v4,1 = −2C(2w1).

By Equation (4.47) for a = 3, b = 4 we obtain:

F3,4v3,0 = 2v4,0 − E00v4,0.

It is equivalent to:

F3,4(2iw1) = 4w1 − E002w1 = (4− 5)w1.

Therefore, we have H2w1 = −1
2w1.

By Equation (4.49) for a = 3, b = 1, c = 2, we obtain:

F1,2v4,0 − Cv3,0 = 0.

It is equivalent to:

F1,2(2w1)− C(2iw1) = 0.

Therefore, we have H1w1 = −Cw1. Since H1 + H2 acts as a non negative integer on w1, we
obtain C = −1

2 , and the highest weight of w1 with respect to hx, hy, E00, C is (1, 0, 5
2 ,−

1
2).

By Equations (4.69) we know that α1,2(w3) + β1,2(w3) = Eε1−ε2w3 = −2w1. Hence w3 =
1
2E−(ε1−ε2)w1. Moreover, by Equations (4.68) and C = −1

2 , we have w5 = w6 = w7 = w8 = 0.
All the other equations of Lemma 4.24 are verified by this choice of v1,0, v2,0, v3,0, v4,0, v1,1, v2,1, v3,1, v4,1.
We have therefore obtained, using notation (4.1), the following singular vector inM(1, 0, 5

2 ,−
1
2):

~m3a = w11w22w21 ⊗ x1 + w21w12w11 ⊗ x2.

1b) We suppose w1 = w4 = 0 and w2 6= 0, w3 6= 0. By Equations (4.69), we have that w2 is a
highest weight vector, let us compute its weight. From (4.40) we have:

v1,0 = 2iw3,

v2,0 = 2w3,

v3,0 = 2iw2,

v4,0 = −2w2,

v1,1 = 2C(2iw3).

v2,1 = −2C(2w3).

v3,1 = 2C(2iw2).
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v4,1 = −2C(−2w2).

By Equation (4.47) for a = 3, b = 4 we obtain:

F3,4v3,0 = 2v4,0 − E00v4,0.

It is equivalent to:

F3,4(2iw2) = −4w2 − E00(−2w2) = (−4 + 5)w2.

Therefore we have iF3,4w2 = 1
2w2.

By Equation (4.49) for a = 3, b = 1, c = 2, we obtain:

F1,2v4,0 − Cv3,0 = 0.

It is equivalent to:

F1,2(−2w2)− C(2iw2) = 0.

Therefore we have H1w2 = Cw2.

Since H1 −H2 acts as a non negative integer on w2, we obtain C = 1
2 , and the highest weight

of w2 with respect to hx, hy, E00, C is (0, 1, 5
2 ,

1
2).

By Equations (4.69) we know that α1,2(w3) − β1,2(w3) = Eε1+ε2w3 = −2w2. Hence w3 =
1
2E−(ε1+ε2)w2. Moreover, by Equations (4.68) and C = 1

2 , we have that w5 = −2E−(ε1+ε2)w2

and w6 = w7 = w8 = 0. All the other equations of Lemma 4.24 are verified by this choice of
v1,0, v2,0, v3,0, v4,0, v1,1, v2,1, v3,1, v4,1.
We have therefore obtained, using notation (4.1), the following singular vector in M(0, 1, 5

2 ,
1
2):

~m3b = w11w22w12 ⊗ y1 + w12w21w11 ⊗ y2.

1c) We suppose w4 = 0 and w1 6= 0, w2 6= 0, w3 6= 0. By Equations (4.69), we know that w1 and
w2 are highest weight vectors.
We consider equations (4.49) for a = 3, b = 1, c = 2 and, using (4.40), we obtain:

0 =F1,2v4,0 − Cv3,0

=F1,2(2w1 − 2w2)− C(2iw1 + 2iw2).

We consider equations (4.49) for a = 4, b = 1, c = 2 and, using (4.40), we obtain:

0 =F1,2v3,0 + Cv4,0

=F1,2(2iw1 + 2iw2) + C(2w1 − 2w2).

We take the sum between the first multiplied by i and the second, and the difference between
the second and the first multiplied by i:

0 = 4H1w1 + 4Cw1

0 = 4H1w2 − 4Cw2.

This leads to C = 0. But, for C = 0, the λ−action of Proposition 3.11 reduces to the action
found in Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors
of degree 3.

1d) We suppose w3 = w4 = 0. Then, by Equations (4.69), we have that 0 = β1,2(w3) = −w1 + w2

and 0 = α1,2(w3) = −w1 −w2. Hence we get w1 = w2 = 0. By Equations (4.68) we know also
that w5 = w6 = w7 = w8 = 0. Therefore we obtain the trivial vector.
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1e) We suppose w1 = w2 = w4 = 0 and w3 6= 0. By Equations (4.68) we know also that
w6 = w7 = w8 = 0 and w5 = −(2 + 4C)w3. By Equations (4.69), we know that w3 and w5 are
highest weight vectors.
We know that Equation (4.48) for a = 2, b = 3, c = 1 reduces to the following, using (4.40):

0 =v1,0 − F1,2v2,0 − F1,3v3,0

=2iw3 − 2F1,2w3.

Therefore H1w3 = −w3, but this is impossible for a highest weight vector, since we know that
both hx = H1−H2 and hy = H1 +H2 act as nonnegative scalars on w3, therefore H1 =

hx+hy
2

acts as a nonnegative scalar on w3.

2) Let us suppose that w4 6= 0. By Equations (4.69), we have that w1 6= 0, w2 6= 0, w3 6= 0 and that
w4 is a highest weight vector.
By Equation (4.48) for a = 1, b = 3, c = 2 we obtain, using (4.40):

0 =− v2,0 + F2,3v3,0 − F1,2v1,0

=− 2w3 + 2w4 + F2,3(2iw1 + 2iw2)− F1,2(2iw3 + 2iw4).

By Equation (4.48) for a = 2, b = 3, c = 1 we obtain, using (4.40):

0 =v1,0 − F1,2v2,0 − F1,3v3,0

=2iw3 + 2iw4 − F1,2(2w3 − 2w4)− F1,3(2iw1 + 2iw2).

We take the sum of the second and the first multiplied by i:

0 =4iw4 + (−F1,3 + iF2,3)(2iw1 + 2iw2) + 4F1,2w4

=4iw4 − 2iw4 − 2iw4 + 4F1,2w4.

Therefore H1w4 = 0. By Equation (4.49) for a = 1, b = 3, c = 4 we obtain, using (4.40):

0 =F3,4v2,0 − Cv1,0

=F3,4(2w3 − 2w4)− C(2iw3 + 2iw4).

By Equation (4.49) a = 2, b = 3, c = 4 we obtain, using (4.40):

0 =F3,4v1,0 + Cv2,0

=F3,4(2iw3 + 2iw4) + C(2w3 − 2w4).

We take the difference between the second and the first multiplied by i:

0 = 4H2w4 − 4Cw4.

Therefore H2w4 = Cw4. Therefore (H1−H2)w4 = −H2w4 = −Cw4 and (H1 +H2)w4 = H2w4 =
Cw4. Hence C = 0. But, for C = 0, the λ−action of Proposition 3.11 reduces to the action
found in Theorem 4.3 of [BKL1]; in that case it was shown that there are no singular vectors of
degree 3.



4.3 Vectors of degree 1 75

4.3 Vectors of degree 1

The aim of this section is to classify singular vectors of degree 1. Let us consider a vector ~m ∈ Ind(F )
of degree 1 such that T (~m) is of the form:

T (~m) =
∑
i

η(i)c ⊗ vi. (4.70)

We write ~m as:

~m =
2∑
l=1

((η2l − iη2l−1)⊗ wl + (η2l + iη2l−1)⊗ w̃l) . (4.71)

Hence for l = 1, 2:

v2l = wl + w̃l, (4.72)

v2l−1 = i(wl − w̃l).

Indeed, let us show one of these relations. In (4.70), let us consider η(1)c ⊗ v1. We have that
η(1)c = η(2,3,4) is the Hodge dual of −η1. In (4.71), the terms in η1 are −iη1⊗w1 + iη1⊗ w̃1. Hence
v1 = i(w1 − w̃1). The other relations in (4.72) are obtained analogously.
In the following lemma we write explicitly the relations of Proposition 4.17 for a vector as in formula
(4.70).

Lemma 4.26. Let ~m ∈ Ind(F ) such that T (~m) is written as in formula (4.70). Then relations of
Proposition 4.17 reduce to the following equations.
1) Condition S2 reduces to the following relation for f = ξL with |L| = 1:

0 =
∑
i

[
f ? η(i)c ⊗ E00vi − (−1)p(f)

4∑
l=1

∂l((fξl) ? η(i)c)⊗ vi + (−1)p(f)(
∑
l 6=k

((∂lf)ξk) ? η(i)c ⊗ Fl,kvi)

(4.73)

+χ|L|=2 εL ξLc ? η(i)c ⊗ Cvi)
]
.

2) Condition S3 reduces to the following relation for f = ξL with |L| = 3 or f ∈ Bso(4):

0 =
∑
i

[
− (−1)p(f)

4∑
l=1

((∂lf) ? (∂lη(i)c))⊗ vi −
∑
r<s

((∂r∂sf) ? η(i)c ⊗ Fr,svi) (4.74)

+χ|L|=3 εL ξLc ? η(i)c ⊗ Cvi
]
.

Lemma 4.27. Let ~m ∈ Ind(F ) such that T (~m) is written as in formula (4.70). Then relations of
Lemma 4.26 reduce to the following equations.
For all a ∈ {1, 2, 3, 4}:

0 = (−1)aE00va −
∑
k 6=a

(−1)kFa,kvk. (4.75)

For all a, b, c and d = (a, b, c)c:

0 = (−1)cFa,bvc − (−1)bFa,cvb + (−1)aFb,cva + ε(a,b,c)(−1)dCvd. (4.76)
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Finally:

α1,2(v1) = −v3, β1,2(v1) = iv4, (4.77)

α1,2(v2) = −iv3, β1,2(v2) = −v4,

α1,2(v3) = v1 + iv2, β1,2(v3) = 0,

α1,2(v4) = 0, β1,2(v4) = −iv1 + v2,

where α1,2 and β1,2 are defined by (3.1) and (3.2).

Proof. Let us consider Equation (4.73) for a ∈ {1, 2, 3, 4}. From coefficient of −η∗, we obtain:

0 = (−1)aE00va −
∑
k 6=a

(−1)kFa,kvk.

Let us consider Equation (4.74) for f = ξaξbξc with d = (a, b, c)c. We have:

0 =−
∑
r<s

4∑
i=1

∂r∂s(ξaξbξc) ? η(i)c ⊗ Fr,svi + ε(a,b,c)ηdηaηbηc ⊗ Cvd.

It is equivalent to:

0 = ηcη(c)c ⊗ Fa,bvc − ηbη(b)c ⊗ Fa,cvb + ηaη(a)c ⊗ Fb,cva + ε(a,b,c)ηdη(d)c ⊗ Cvd,

that is:

0 = (−1)cFa,bvc − (−1)bFa,cvb + (−1)aFb,cva + ε(a,b,c)(−1)dCvd.

Let us consider Equation (4.74) for f = α1,2. We have:

0 =−
∑
i

4∑
l=1

∂l(−ξ1ξ3 + iξ2ξ3) ? ∂l(η(i)c)⊗ vi −
∑
i

∑
r<s

∂r∂s(−ξ1ξ3 + iξ2ξ3) ? η(i)c ⊗ Fr,svi

=− (ξ1 − iξ2) ? (−η2η4)⊗ v1 − η2η3η4 ⊗ α1,2v1 − (ξ1 − iξ2) ? (−η1η4)⊗ v2 − η1η3η4 ⊗ α1,2v2

− (−ξ3) ? (η2η4)⊗ v3 − (iξ3) ? (−η1η4)⊗ v3 − η1η2η4 ⊗ α1,2v3 − η1η2η3 ⊗ α1,2v4

=η1η2η4 ⊗ (v1 + iv2 − α1,2v3) + η2η3η4 ⊗ (−v3 − α1,2v1) + η1η3η4 ⊗ (−iv3 − α1,2v2) + η1η2η3 ⊗ (−α1,2v4).

Therefore:

α1,2(v1) = −v3,

α1,2(v2) = −iv3,

α1,2(v3) = v1 + iv2,

α1,2(v4) = 0.

Let us consider Equation (4.74) for f = β1,2. We have:

0 =−
∑
i

4∑
l=1

∂l(−ξ2ξ4 − iξ1ξ4) ? ∂l(η(i)c)⊗ vi −
∑
i

∑
r<s

∂r∂s(−ξ2ξ4 − iξ1ξ4) ? η(i)c ⊗ Fr,svi

=− (ξ2 + iξ1) ? (η2η3)⊗ v1 − η2η3η4 ⊗ β1,2v1 − (ξ2) ? (η1η3)⊗ v2 − η1η3η4 ⊗ β1,2v2 − η1η2η4 ⊗ β1,2v3

− (−ξ4) ? (−η1η3)⊗ v4 − (−iξ4) ? (η2η3)⊗ v4 − ξ1ξ2ξ3 ⊗ β1,2v4

=η1η2η3 ⊗ (−iv1 + v2 − β1,2v4) + η1η2η4 ⊗ (−β1,2v3) + η1η3η4 ⊗ (−v4 − β1,2v2) + η2η3η4 ⊗ (iv4 − β1,2v1).
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Therefore:

β1,2(v1) = iv4,

β1,2(v2) = −v4,

β1,2(v3) = 0,

β1,2(v4) = −iv1 + v2.

Remark 4.28. Using notation (4.72), we obtain that Equations (4.77) are equivalent to:

α1,2(w1) = 0, (4.78)

α1,2(w̃1) = w2 − w̃2, (4.79)

α1,2(w2) = w1 = −α1,2(w̃2), (4.80)

β1,2(w1) = 0, (4.81)

β1,2(w̃1) = −(w2 + w̃2), (4.82)

β1,2(w2) = w1 = β1,2(w̃2). (4.83)

We represent these relations with the following drawings:

〈w̃1〉

〈w2 − w̃2〉

〈w2 + w̃2〉

〈w1〉.

α1,2

β1,2

α1,2

β1,2

Using notation (4.72), Equations (4.75) can be written in the following way, as in [BKL1] (see
Lemma B.6):

2(E00 +H1)w̃1 = E−(ε1−ε2)w̃2 − E−(ε1+ε2)w2, (4.84)

2(E00 +H2)w̃2 = E−(ε1+ε2)w1 − Eε1−ε2w̃1,

2(E00 −H1)w1 = Eε1−ε2w2 − Eε1+ε2w̃2, (4.85)

2(E00 −H2)w2 = Eε1+ε2w̃1 − E−(ε1−ε2)w1.

Proof of Theorem 4.4. Throughout this proof µ0 will denote the highest weight of F with respect to
E00, µ1 (resp.µ2) will denote the highest weight of F with respect to H1 (resp.H2) and m = µ1−µ2

(resp.n = µ1 + µ2) will denote the highest weight of F with respect to hx (resp.hy).
Let us first observe that, by Equation (4.80), we have that if w1 6= 0 then w2 6= 0. Therefore the
following three cases are possible.

1. w1 = w2 = 0,

2. w1 6= 0 and w2 6= 0,

3. w1 = 0 and w2 6= 0.

1) We suppose that w1 = w2 = 0.
By Equation (4.79), we obtain that if w̃2 6= 0, then w̃1 6= 0. Hence, there are two subcases.
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1a) Let us suppose that w̃1 6= 0 and w̃2 = 0. By Equations (4.78) and (4.81), we know that w̃1 is
a highest weight vector. Let us compute its weight. By (4.72) we know that v1 = −iw̃1, v2 =
w̃1, v3 = 0, v4 = 0.
Equation (4.76) for a = 1, b = 3, c = 4 reduces, using (4.72), to:

0 = −F3,4(−iw̃1) + Cw̃1. (4.86)

Then H2w̃1 = −Cw̃1. By (4.84), 2(E00 + H1)w̃1 = 0, that means µ0 + µ1 = 0. Hence the
weight of w̃1 with respect to hx, hy, E00, C is (m,n,−m+n

2 , m−n2 ) with m,n ∈ Z≥0.
All the other equations of Lemma 4.27 are verified by this choice of v1, v2, v3, v4.
We have therefore obtained, using notation (4.1), the following singular vector inM(m,n,−m+n

2 , m−n2 )
with m,n ∈ Z≥0:

~m1a = w11 ⊗ xm1 yn1 .

1b) We suppose that w̃1 6= 0 and w̃2 6= 0. By (4.80) and (4.83), we know that w̃2 is a highest
weight vector, let us compute its weight.
By (4.72) we know that v1 = −iw̃1, v2 = w̃1, v3 = −iw̃2, v4 = w̃2.
Equation (4.76) for a = 1, b = 2, c = 3 reduces, using (4.72), to:

0 =− F1,2(i(w2 − w̃2))− F1,3(w1 + w̃1)− F2,3(i(w1 − w̃1)) + C(w2 + w̃2)

=iF1,2w̃2 − F1,3w̃1 + iF2,3w̄1 + Cw̃2. (4.87)

Equation (4.76) for a = 1, b = 2, c = 4 reduces, using (4.72), to:

0 =F1,2(w2 + w̃2)− F1,4(w1 + w̃1)− F2,4(i(w1 − w̃1)) + C(i(w2 − w̃2))

=F1,2w̃2 − F1,4w̃1 + iF2,4w̃1 − iCw̃2. (4.88)

We consider a linear combination of (4.87) and (4.88) and obtain:

0 =2H1w̃2 + 2Cw̃2 − α1,2w̃1 − β1,2w̃1

=2H1w̃2 + 2Cw̃2 + 2w̃2,

that is equivalent to:

H1w̃2 = −Cw̃2 − w̃2. (4.89)

Therefore µ1 = −1− C.
By Equation (4.84) we have:

2(E00 +H2)w̃2 = −Eε1−ε2w̃1 = (−α1,2 − β1,2)w̃1 = 2w̃2.

Therefore µ0 + µ2 = 1. The highest weight of w̃2 with respect to hx, hy, E00, C is (m,n, 1 +
m−n

2 ,−m+n
2 − 1). We point out that m ∈ Z>0 and n ∈ Z≥0. Indeed by (4.79) and (4.82), we

have that (α1,2 + β1,2)(w̃1) = Eε1−ε2(w̃1) = −2w̃2 6= 0 and therefore w̃1 = 1
2mE−(ε1−ε2)w̃2.

All the other equations of Lemma 4.27 are verified by this choice of v1, v2, v3, v4.
We have therefore obtained, using notation (4.1), the following singular vector in M(m,n, 1 +
m−n

2 ,−m+n
2 − 1) with m ∈ Z>0, n ∈ Z≥0:

~m1b = w21 ⊗ xm1 yn1 − w11 ⊗ xm−1
1 x2y

n
1 .
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2) We suppose that w1 6= 0 and w2 6= 0. Then by (4.80) we have that w̃2 6= 0 and by (4.83) we
have that w̃1 6= 0. By (4.78) and (4.81) we know that w1 is a highest weight vector. Equation
(4.76) for a = 1, b = 3, c = 4 reduces, using (4.72), to:

0 =F1,3(w2 + w̃2) + F1,4(i(w2 − w̃2))− F3,4(i(w1 − w̃1)) + C(w1 + w̃1)

=F1,3w2 + F1,3w̃2 + iF1,4w2 − iF1,4w̃2 − iF3,4w1 + iF3,4w̃1 + Cw1 + Cw̃1. (4.90)

Equation (4.76) for a = 2, b = 3, c = 4 reduces, using (4.72), to:

0 =F2,3(w2 + w̃2) + F2,4(i(w2 − w̃2)) + F3,4(w1 + w̃1) + C(i(w1 − w̃1))

=F2,3w2 + F2,3w̃2 + iF2,4w2 − iF2,4w̃2 + F3,4w1 + F3,4w̃1 + Ciw1 − iCw̃1. (4.91)

Using a linear combination of (4.90) and (4.91), we obtain:

0 =(F1,3 + iF1,4 − iF2,3 + F2,4)w2 + (F1,3 − iF1,4 − iF2,3 − F2,4)w̃2 − 2iF3,4w1 + 2Cw1

=Eε1−ε2w2 + Eε1+ε2w̃2 − 2H2w1 + 2Cw1

=(α1,2 + β1,2)w2 + (α1,2 − β1,2)w̃2 − 2H2w1 + 2Cw1

=2w1 − 2w1 − 2H2w1 + 2Cw1.

Therefore µ2 = C. By Equation (4.85) we have:

2(E00 −H1)w1 = Eε1−ε2w2 − Eε1+ε2w̃2 = (α1,2 + β1,2)w2 − (α1,2 − β1,2)w̃2 = 4w1.

Therefore µ0 − µ1 = 2.
Now we want to express w2, w̃1, w̃2 in function of w1.
By (4.80) and (4.83), α1,2(w2) + β1,2(w2) = Eε1−ε2w2 = 2w1. Therefore w2 = −1

2µ1−2CE−(ε1−ε2)w1.

By (4.80) and (4.83), α1,2(w̃2)−β1,2(w̃2) = Eε1+ε2w̃2 = −2w1. Therefore w̃2 = 1
2µ1+2CE−(ε1+ε2)w1.

By (4.78) and (4.81), α1,2(w̃1)+β1,2(w̃1) = Eε1−ε2w̃1 = −2w̃2 and, by (4.79) and (4.82), α1,2(w̃1)−
β1,2(w̃1) = Eε1+ε2w̃1 = 2w2. We obtain:

w̃1 =
1

(2µ1 + 2C)(2µ1 − 2C)
E−(ε1−ε2)E−(ε1+ε2)w1.

Finally, the highest weight of w1 with respect to hx, hy, E00, C is (m,n, m+n
2 + 2, n−m2 ) with

m,n ∈ Z>0.
All the other equations of Lemma 4.27 are verified by this choice of w1, w2, w̃1, w̃2 and hence of
v1, v2, v3, v4.
We have therefore obtained, using notation (4.1), the following singular vector in M(m,n, m+n

2 +
2, n−m2 ) with m,n ∈ Z>0:

~m1c = w22 ⊗ xm1 yn1 − w12 ⊗ xm−1
1 x2y

n
1 − w21 ⊗ xm1 yn−1

1 y2 + w11 ⊗ xm−1
1 x2y

n−1
1 y2.

3) We suppose that w1 = 0 and w2 6= 0. By (4.78) and (4.81), w̃1 6= 0, since (α1,2 − β1,2)w̃1 =
2w2 6= 0. Hence there are 2 subcases.

3a) We suppose that w1 = 0, w2 6= 0, w̃1 6= 0 and w̃2 = 0. In this case, from (4.80) and (4.83),
it follows that w2 is a highest weight vector. Let us compute its weight. Equation (4.76) for
a = 1, b = 2, c = 3 reduces, using (4.72), to:

0 =− F1,2(i(w2 − w̃2))− F1,3(w1 + w̃1)− F2,3(i(w1 − w̃1)) + C(w2 + w̃2)

=− iF1,2w2 − F1,3w̃1 + iF2,3w̃1 + Cw2. (4.92)
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Equation (4.76) for a = 1, b = 2, c = 4 reduces, using (4.72), to:

0 =F1,2(w2 + w̃2)− F1,4(w1 + w̃1)− F2,4(i(w1 − w̃1)) + C(i(w2 − w̃2))

=F1,2w2 − F1,4w̃1 + iF2,4w̃1 + iCw2. (4.93)

Considering a linear combination of (4.92) and (4.93), we obtain:

0 =− 2H1w2 − α1,2w̃1 + β1,2w̃1 + 2Cw2

=− 2H1w2 − 2w2 + 2Cw2.

Therefore µ1 = −1 + C.
By (4.85) we have:

2(E00 −H2)w2 = Eε1+ε2w̃1 = (α1,2 − β1,2)w̃1 = 2w2.

Therefore µ0 − µ2 = 1.
Hence the highest weight of w2 with respect to hx, hy, E00, C is (m,n, n−m2 +1, m+n

2 +1), with
m ∈ Z≥0, n ∈ Z>0. Indeed n > 0 since, by (4.79) and (4.82), (α1,2−β1,2)(w̃1) = Eε1+ε2(w̃1) =
2w2 6= 0. Hence we obtain that w̃1 = −1

2nE−(ε1+ε2)w2.

All the other equations of Lemma 4.27 are verified by this choice of w1, w2, w̃1, w̃2 and hence
of v1, v2, v3, v4.
We have therefore obtained, using notation (4.1), the following singular vector inM(m,n, n−m2 +
1, m+n

2 + 1), with m ∈ Z≥0, n ∈ Z>0:

~m1d = w12 ⊗ xm1 yn1 − w11 ⊗ xm1 yn−1
1 y2.

3b) We suppose that w1 = 0, w2 6= 0, w̃1 6= 0, w̃2 6= 0. By (4.79) and (4.82), w2 and w̃2 are highest
weight vectors. Let us compute their highest weight.
Equation (4.76) for a = 1, b = 2, c = 3 reduces, using (4.72), to:

0 =− F1,2(i(w2 − w̃2))− F1,3(w1 + w̃1)− F2,3(i(w1 − w̃1)) + C(w2 + w̃2)

− iF1,2w2 + iF1,2w̃2 − F1,3w̃1 + iF2,3w̃1 + Cw2 + Cw̃2. (4.94)

Equation (4.76) for a = 1, b = 2, c = 4 reduces, using (4.72), to:

0 =F1,2(w2 + w̃2)− F1,4(w1 + w̃1)− F2,4(i(w1 − w̃1)) + C(i(w2 − w̃2))

F1,2w2 + F1,2w̃2 − F1,4w̃1 + iF2,4w̃1 + iCw2 − iCw̃2. (4.95)

Considering linear combinations of (4.94) and (4.95), we obtain:

0 =− 2H1w2 − α1,2w̃1 + β1,2w̃1 + 2Cw2

=− 2H1w2 − 2w2 + 2Cw2,

that is

H1w2 = −w2 + Cw2;

and:

0 = 2H1w̃2 − α1,2w̃1 − β1,2w̃1 + 2Cw̃2,

that is:

H1w̃2 = −w̃2 − Cw̃2.

This implies that C = 0. But, for C = 0, the λ−action of Proposition 3.11 reduces to the
action found in Theorem 4.3 of [BKL1] where the vectors of degree 1 were classified, but this
case was ruled out.



Chapter 5

Homology

In this chapter we study the homology of the complexes in Figure 4.1. The main result is the
following Theorem:

Theorem 5.1. The sequences in Figure 4.1 are complexes and they are exact in each module
except for M(0, 0, 0, 0) and M(1, 1, 3, 0). The homology spaces in M(0, 0, 0, 0) and M(1, 1, 3, 0) are
isomorphic to the trivial representation.

Lemma 5.2. Let ∇ : M(µ1, µ2, µ3, µ4) −→M(µ̃1, µ̃2, µ̃3, µ̃4) be a morphism represented in Figure
4.1 and constructed as in Remark 4.8. Then Im∇ is an irreducible g−submodule of M(µ̃1, µ̃2, µ̃3, µ̃4).

Proof. By Theorems 4.4, 4.5, 4.6 and Remark 4.8, we know that M(µ̃1, µ̃2, µ̃3, µ̃4) contains a
unique, up to scalars, highest weight nontrivial singular vector, that we call ~m. By construction of
∇, Im∇ is the g−submodule of M(µ̃1, µ̃2, µ̃3, µ̃4) generated by ~m. In particular it is straightforward
that g0 ~m is an irreducible finite−dimensional g0−module on which g>0 acts trivially, since ~m is
singular. The g−module Im∇ = g~m is therefore isomorphic to Ind(g0 ~m). Hence, due to Theorem
1.15, Im∇ is an irreducible g−module since in M(µ̃1, µ̃2, µ̃3, µ̃4) there is only the highest weight
nontrivial singular vector ~m that is trivial for Ind(g0 ~m).

Remark 5.3. Using Theorem 5.1 we are able to realize all irreducible quotients of Verma modules.
We have that:

• If (µ1, µ2, µ3, µ4) is not among the weights that occur in Theorems 4.4, 4.5, 4.6, thenM(µ1, µ2, µ3, µ4)
is irreducible, due to Theorem 1.15, since it does not contain nontrivial singular vectors.

• If (µ1, µ2, µ3, µ4) is among the weights that occur in Theorems 4.4, 4.5, 4.6, thenM(µ1, µ2, µ3, µ4)
is degenerate. We denote its irreducible quotient by I(µ1, µ2, µ3, µ4). By Remark 4.8, we
know that from each M(µ1, µ2, µ3, µ4) in Figure 4.1, except for M(0, 0, 0, 0), we can con-
struct a morphism ∇ to another Verma module M(µ̃1, µ̃2, µ̃3, µ̃4). Due to Lemma 5.2, Ker∇
is the maximal submodule of M(µ1, µ2, µ3, µ4) because M(µ1, µ2, µ3, µ4)/Ker∇ ∼= Im∇ is
irreducible. Therefore I(µ1, µ2, µ3, µ4) ∼= M(µ1, µ2, µ3, µ4)/Ker∇ and Im∇ is an explicit
realization for I(µ1, µ2, µ3, µ4).
If M(µ1, µ2, µ3, µ4) is a Verma module represented in Figure 4.1, with (µ1, µ2, µ3, µ4) 6=
(0, 0, 0, 0), (0, 0, 2, 0), then there exist two morphisms∇ : M(µ1, µ2, µ3, µ4) −→M(µ̃1, µ̃2, µ̃3, µ̃4)
and ∇̂ : M(µ̂1, µ̂2, µ̂3, µ̂4) −→ M(µ1, µ2, µ3, µ4) constructed as in Remark 4.8. Due to The-
orem 5.1, if (µ1, µ2, µ3, µ4) 6= (0, 0, 0, 0) and (1, 1, 3, 0), the submodule Ker∇ = Im ∇̂ is
irreducible and it is the unique submodule of M(µ1, µ2, µ3, µ4); in this case I(µ1, µ2, µ3, µ4)
is also isomorphic to the Cokernel of the map ∇̂ that ends in M(µ1, µ2, µ3, µ4).
In the case of M(0, 0, 0, 0), by Remark 4.8, we have a morphism ∇ : M(1, 1,−1, 0) →
M(0, 0, 0, 0). By Theorem 5.1, M(0, 0, 0, 0)/ Im∇ is irreducible and therefore I(0, 0, 0, 0) ∼=
M(0, 0, 0, 0)/ Im∇.
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5.1 The morphisms

In order to show Theorem 5.1, we start by writing explicitly the morphisms that occur in Figure
4.1. We recall the notation introduced in Remark 4.2 for the basis of gss0 :

ex =
Eε1−ε2

2
, fx = −

E−(ε1−ε2)

2
, hx = H1 −H2,

and

ey =
Eε1+ε2

2
, fy = −

E−(ε1+ε2)

2
, hy = H1 +H2.

We have that:

g0 =〈ex, fx, hx〉 ⊕ 〈ey, fy, hy〉 ⊕ Ct⊕ CC
∼=〈x1∂x2 , x2∂x1 , x1∂x1 − x2∂x2〉 ⊕ 〈y1∂y2 , y2∂y1 , y1∂y1 − y2∂y2〉

⊕ C(−1

2
(x1∂x1 + x2∂x2 + y1∂y1 + y2∂y2))⊕ C(

1

2
(x1∂x1 + x2∂x2)− 1

2
(y1∂y1 + y2∂y2)).

Let us recall the notation (4.1):

w11 = η2 + iη1, w22 = η2 − iη1, w12 = −η4 + iη3, w21 = η4 + iη3.

We point out that

[w11, w22] = 4Θ, [w12, w21] = −4Θ (5.1)

and all other brackets between the w′s are 0. Moreover in U(g<0) we have:

w2
11 = w2

22 = w2
12 = w2

21 = 0. (5.2)

Indeed for example w2
11 = (η2 + iη1)(η2 + iη1) = Θ + iη2η1 + iη1η2 −Θ = 0.

We introduce the following g0−modules:

VA = C [x1, x2, y1, y2] ,

VB = C [∂x1 , ∂x2 , y1, y2][1,−1] ,

VC = C [∂x1 , ∂x2 , ∂y1 , ∂y2 ][2,0] ,

VD = C [x1, x2, ∂y1 , ∂y2 ][1,1] .

The subscripts [i, j] mean that t acts on VX , for X = A,B,C,D, as −1
2(x1∂x1 +x2∂x2 +y1∂y1 +y2∂y2)

plus i Id and C acts on VX , for X = A,B,C,D, as 1
2(x1∂x1 + x2∂x2) − 1

2(y1∂y1 + y2∂y2) plus j Id;
the subscript [i, j] is assumed to be [0, 0] when it is omitted, i.e. for X = A.
The elements of gss0 act on VX , for X = A,B,C,D, in the standard way:

xi∂xjxk = χj=kxi, xi∂xj .∂xk = −χi=k∂xj , xi∂xjyk = 0, xi∂xj .∂yk = 0;

yi∂yjyk = χj=kyi, yi∂yj .∂yk = −χi=k∂yj , yi∂yjxk = 0, yi∂yj .∂xk = 0.

We introduce the following bigrading:

V m,n
X := {f ∈ VX : (x1∂x1 + x2∂x2).f = mf and (y1∂y1 + y2∂y2).f = nf} . (5.3)

The V m,n
X ’s are irreducible g0−modules, in particular we point out that, for m,n ∈ Z≥0, V m,n

A is

the irreducible g0−module determined by coordinates (m,n) in quadrant A of Figure 4.1, V −m,nB
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is the irreducible g0−module determined by coordinates (m,n) in quadrant B, V −m,−nC is the

irreducible g0−module determined by coordinates (m,n) in quadrant C and V m,−n
D is the irreducible

g0−module determined by coordinates (m,n) in quadrant D. Therefore for m,n ∈ Z≥0:

V m,n
A
∼= F

(
m,n,−m+ n

2
,
m− n

2

)
,

V −m,nB
∼= F

(
m,n, 1 +

m− n
2

,−m+ n

2
− 1
)
,

V −m,−nC
∼= F

(
m,n,

m+ n

2
+ 2,

n−m
2

)
,

V m,−n
D

∼= F
(
m,n, 1 +

n−m
2

,
m+ n

2
+ 1
)
.

We have that VX = ⊕m,nV m,n
X is the direct sum of all the irreducible g0−modules in quadrant

X. We denote by Mm,n
X = U(g<0) ⊗ V m,n

X ; we point out that, for m,n ∈ Z≥0, Mm,n
A is the

Verma module represented in Figure 4.1 in quadrant A with coordinates (m,n), M−m,nB is the

Verma module represented in quadrant B with coordinates (m,n), M−m,−nC is the Verma module

represented in quadrant C with coordinates (m,n), Mm,−n
D is the Verma module represented in

quadrant D with coordinates (m,n). Moreover we denote by MX = ⊕m,n∈ZMm,n
X the direct sum

of all Verma modules in the quadrant X of Figure 4.1.
We follow the notation in [KR1] and define, for every u ∈ U(g<0) and φ ∈ Hom(VX , VY ), the map
u⊗ φ : MX −→MY by:

(u⊗ φ)(u′ ⊗ v) = u′ u⊗ φ(v), (5.4)

for every u′ ⊗ v ∈ U(g<0)⊗ VX . From this definition it is clear that the map u⊗ φ commutes with
the action of g<0.
We consider, for j = 1, 2, the map ∂xj : VX −→ VX that is the derivation by xj for X = A,D and the
multiplication by ∂xj for X = B,C. We define analogously, for j = 1, 2, the map ∂yj : VX −→ VX ,
that is the derivation by yj for X = A,B and the multiplication by ∂yj for X = C,D. We will
often write, by abuse of notation, ∂xj instead of 1⊗ ∂xj : MX −→MX .
We define the maps ∆+ : MX −→MX , ∆− : MX −→MX , ∇ : MX −→MX as follows:

∆+ = w11 ⊗ ∂x1 + w21 ⊗ ∂x2 , (5.5)

∆− = w12 ⊗ ∂x1 + w22 ⊗ ∂x2 , (5.6)

∇ = ∆+∂y1 + ∆−∂y2 = w11 ⊗ ∂x1∂y1 + w21 ⊗ ∂x2∂y1 + w12 ⊗ ∂x1∂y2 + w22 ⊗ ∂x2∂y2 . (5.7)

In particular,
∇|Mm,n

X
: Mm,n

X −→Mm−1,n−1
X ;

by abuse of notation we will write ∇ instead of ∇|Mm,n
X

. We will show that the map ∇ is the explicit
expression of the morphisms of degree 1 in Figure 4.1.

Remark 5.4. By (5.1) and (5.2) it is straightforward that (∆+)2 = 0, (∆−)2 = 0 and ∆+∆− +
∆−∆+ = 0.

Remark 5.5. We point out that ∇ : Mm,n
X −→Mm−1,n−1

X is constructed so that ∇(v), for v highest

weight vector in V m,n
X , is the highest weight singular vector of degree 1 in Mm−1,n−1

X , classified in
Theorem 4.4. In particular:

a: let ∇ : Mm,n
A −→Mm−1,n−1

A . The highest weight vector in V m,n
A is xm1 y

n
1 . We have:

∇(xm1 y
n
1 ) = w11 ⊗mnxm−1

1 yn−1
1 ,

that is the highest weight singular vector ~m1a of M(m−1, n−1,−m+n−2
2 , m−n2 ) found in Theorem

4.4.
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b: Let ∇ : M−m,nB −→M−m−1,n−1
B . The highest weight vector in V −m,nB is ∂mx2

yn1 . We have:

∇(∂mx2
yn1 ) = w11 ⊗ n∂x1∂

m
x2
yn−1

1 + w21 ⊗ n∂m+1
x2

yn−1
1 ,

that is the highest weight singular vector ~m1b of M(m+ 1, n− 1, 1 + m−n+2
2 ,−m+n

2 − 1) found
in Theorem 4.4.

c: Let ∇ : M−m,−nC −→M−m−1,−n−1
C . The highest weight vector in V −m,−nC is ∂mx2

∂ny2
. We have:

∇(∂mx2
∂ny2

) = w11 ⊗ ∂x1∂
m
x2
∂y1∂

n
y2

+ w21 ⊗ ∂m+1
x2

∂y1∂
n
y2

+ w12 ⊗ ∂x1∂
m
x2
∂n+1
y2

+ w22 ⊗ ∂m+1
x2

∂n+1
y2

,

that is the highest weight singular vector ~m1c of M(m + 1, n + 1, m+n+2
2 + 2, n−m2 ) found in

Theorem 4.4.

d: Let ∇ : Mm,−n
D −→Mm−1,−n−1

D . The highest weight vector in V m,−n
D is xm1 ∂

n
y2

. We have:

∇(xm1 ∂
n
y2

) = w11 ⊗mxm−1
1 ∂y1∂

n
y2

+ w12 ⊗mxm−1
1 ∂n+1

y2
,

that is the highest weight singular vector ~m1d of M(m− 1, n+ 1, 1 + n−m+2
2 , m+n

2 + 1) found in
Theorem 4.4.

The following is straightforward.

Lemma 5.6. Let u⊗ φ be a map as in (5.4). Let us suppose that u⊗ φ =
∑

i ui ⊗ φi where {ui}i
and {φi}i are bases of dual g0−modules and ui is the dual of φi for all i. Then u ⊗ φ commutes
with g0.

Lemma 5.7. Let us consider a map u⊗ φ ∈ U(g<0)⊗Hom(VX , VY ). In order to show that u⊗ φ
commutes with g0, it is sufficient to show that wu⊗ φ(v) = u⊗ φ(w.v) for all v ∈ VX , w ∈ g0.

Proof. Let w ∈ g0. We have, for every ui1ui2 . . . uik ⊗ v ∈ U(g<0)⊗ VX :

w.(ui1ui2 . . . uik ⊗ v) = ui1ui2 . . . uik ⊗ w.v +
∑

ũi1 ũi2 . . . ũik ⊗ v.

Hence we have that for a map u⊗ φ ∈ U(g<0)⊗Hom(VX , VY ):

(u⊗ φ)(w.(ui1ui2 . . . uik ⊗ v)) = ui1ui2 . . . uiku⊗ φ(w.v) +
∑

ũi1 ũi2 . . . ũiku⊗ φ(v).

On the other hand we have:

w.(u⊗ φ)(ui1ui2 . . . uik ⊗ v) = w.(ui1ui2 . . . uiku⊗ φ(v))

= ui1ui2 . . . uikwu⊗ φ(v) +
∑

ũi1 ũi2 . . . ũiku⊗ φ(v).

Therefore, in order to show that u⊗ φ commutes with g0, it is sufficient to show that wu⊗ φ(v) =
u⊗ φ(w.v) for all v ∈ VX , w ∈ g0.

Lemma 5.8. Let Φ : MX → MY be a linear map. Let us suppose that Φ commutes with g≤0 and
that Φ(v) is a singular vector for every v highest weight vector in V m,n

X and for all m,n ∈ Z. Then
Φ is a morphism of g−modules.

Proof. Due to Proposition 2.3 in [KR1], it is sufficient to show that g>0Φ(w) = 0 for every w ∈ VX ,
in order to prove that Φ commutes with g>0.
We know that g>0Φ(v) = 0 for v highest weight vector in V m,n

X for all m,n ∈ Z. Let v be the
highest weight vector in V m,n

X , f one among fx, fy, e one among ex, ey and g+ ∈ g>0. We have
that:

g+.Φ(f.v) = g+.(f.Φ(v)) = f.(g+.Φ(v)) + [g+, f ].Φ(v) = 0.

This can be iterated and we obtain that g>0.Φ(w) = 0 for all w ∈ V m,n
X . Hence g>0.Φ(w) = 0 for

all w ∈ VX .
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Proposition 5.9. The map ∇, defined in (5.7), is a morphism of g−modules and ∇2 = 0.

Proof. The map ∇ : MX → MX commutes with g<0 by (5.4). By Remark 5.5 and Lemmas 5.6,
5.8 it follows that ∇ is a morphism of g−modules. The property ∇2 = 0 follows from the fact that
∇ is a map between Verma modules that contain only highest weight singular vectors of degree 1,
by Theorems 4.4, 4.5, 4.6.

By Remark 5.5 and Proposition 5.9, it follows that, for all m,n ∈ Z≥0:

i: the maps ∇ : Mm,n
A −→Mm−1,n−1

A are the morphisms represented in Figure 4.1 in quadrant
A;

ii: the maps∇ : M−m,nB −→M−m−1,n−1
B are the morphisms represented in Figure 4.1 in quadrant

B;

iii: the maps ∇ : M−m,−nC −→ M−m−1,−n−1
C are the morphisms represented in Figure 4.1 in

quadrant C;

iv: the maps∇ : Mm,−n
D −→Mm−1,−n−1

D are the morphisms represented in Figure 4.1 in quadrant
D.

We introduce the following notation:

VA′ = ⊕m∈ZV m,0
A = C [x1, x2] ,

VB′ = ⊕m∈ZV m,0
B = C [∂x1 , ∂x2 ][1,−1] ,

VC′ = ⊕m∈ZV m,0
C = C [∂x1 , ∂x2 ][2,0] ,

VD′ = ⊕m∈ZV m,0
D = C [x1, x2][1,1] .

We denote MX′ = U(g<0) ⊗ VX′ . We point out that MX′ is the direct sum of Verma modules of
Figure 4.1 in quadrant X that lie on the axis n = 0. We consider the map τ1 : MA′ −→MD′ that
is the identity. We have that:

[t, τ1] = τ1, (5.8)

[C, τ1] = τ1.

We call ∇2 : MA′ −→MD′ the map

∆−∆+τ1 = w11w12 ⊗ ∂2
x1

+ w11w22 ⊗ ∂x1∂x2 + w21w12 ⊗ ∂x1∂x2 + w21w22 ⊗ ∂2
x2
.

We consider the map τ2 : MB′ −→MC′ that is the identity. We have that:

[t, τ2] = τ2, (5.9)

[C, τ2] = τ2.

By abuse of notation, we also call ∇2 : MB′ −→MC′ the map

∆−∆+τ2 = w11w12 ⊗ ∂2
x1

+ w11w22 ⊗ ∂x1∂x2 + w21w12 ⊗ ∂x1∂x2 + w21w22 ⊗ ∂2
x2
.

We observe that MX′ = ⊕m∈ZMm,0
X for X = A,B,C,D. We will denote Mm

X
′ = Mm,0

X .
We have that, for every m ≥ 2:

∇2|Mm

A
′

: Mm
A′
−→Mm−2

D′

and
∇2|M−m

B
′

: M−m
B′
−→M−m−2

C′
.
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By abuse of notation we will also write ∇2 instead of ∇2|Mm

A
′

and ∇2|M−m
B
′

. We will show that the

map ∇2 is the explicit expression of the morphisms of degree 2 in Figure 4.1 from the quadrant A
to the quadrant D and from the quadrant B to the quadrant C.

Remark 5.10. i: The map ∇2 : Mm
A′
−→ Mm−2

D′
is constructed so that ∇2(v), for v highest

weight vector in V m
A′

, is the highest weight singular vector of degree 2 in Mm−2
D′

, classified in
Theorem 4.5. Indeed, the highest weight vector in V m

A′
is xm1 and we have:

∇2(xm1 ) = w11w12 ⊗m(m− 1)xm−2
1 ,

that is the highest weight singular vector ~m2b of M(m − 2, 0, 1 − m−2
2 , 1 + m−2

2 ) found in
Theorem 4.5.

ii: The map ∇2 : M−m
B′
−→M−m−2

C′
is constructed so that ∇2(v), for v highest weight vector in

V −m
B′

, is the highest weight singular vector of degree 2 in M−m−2
C′

, classified in Theorem 4.5.

Indeed, the highest weight vector in V −m
B′

is ∂mx2
and we have:

∇2(∂mx2
) = w11w12 ⊗ ∂2

x1
∂mx2

+ (w11w22 + w21w12)⊗ ∂x1∂
m+1
x2

+ w21w22 ⊗ ∂m+2
x2

,

that is the highest weight singular vector ~m2c of M(m+2, 0, 2+m+2
2 ,−m+2

2 ) found in Theorem
4.5.

Proposition 5.11. The map ∇2 : MA′ −→ MD′ (resp. ∇2 : MB′ −→ MC′ ) is a morphism of
g−modules and ∇2∇ = ∇∇2 = 0.

Proof. The map ∇2 commutes with g<0 by (5.4). By Remark 5.10 and Lemmas 5.6, 5.8 it follows
that ∇2 is a morphism of g−modules. Finally, ∇2∇ = ∇∇2 = 0 follows from the fact that due to
Theorem 4.6, there are no highest weight singular vectors of degree 3 in the codomain of ∇2∇ and
∇∇2.

By Remark 5.10 and Proposition 5.11, it follows that, for every m ≥ 2, the maps ∇2 : Mm
A′
−→

Mm−2
D′

are the morphisms represented in Figure 4.1 from the quadrant A to the quadrant D and

the maps ∇2 : M−m
B′
−→M−m+2

C′
are the morphisms from the quadrant B to the quadrant C.

We now define the map τ3 : V 0,0
A −→ V 0,0

C that is the identity. We have that:

[t, τ3] = 2τ3, (5.10)

[C, τ3] = 0.

We define the map ∇3 : M0,1
A −→M−1,0

C as follows, using definition (5.4), for every m ∈M0,1
A :

∇3(m) = ∆− ◦ (w11w21 ⊗ τ3) ◦ (1⊗ ∂y1)(m) + ∆− ◦ ((w12w21 + w11w22)⊗ τ3) ◦ (1⊗ ∂y2)(m).

Remark 5.12. The map ∇3 : M0,1
A −→ M−1,0

C is constructed so that ∇3(v), for v highest weight

vector in V 0,1
A , is the highest weight singular vector of degree 3 in M−1,0

C , classified in Theorem 4.6.

Indeed, the highest weight vector in V 0,1
A is y1 and we have:

∇3(y1) = w11w21w12 ⊗ ∂x1 + w11w21w22 ⊗ ∂x2 = w21w12w11 ⊗ ∂x1 − w11w22w21 ⊗ ∂x2 ,

that is the highest weight singular vector ~m3a of M(1, 0, 5
2 ,−

1
2) found in Theorem 4.6.

Proposition 5.13. The map ∇3 is a morphism of g−modules and ∇3∇ = ∇∇3 = 0.
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Proof. First we show that the map ∇3 is a morphism of g−modules. It commutes with g<0 due to
(5.4). Due to Lemmas 5.7 and 5.8, it is sufficient to show that wu⊗∇3(v) = u⊗∇3(w.v) for every
w ∈ g0, v ∈ V 0,1

A .

We have, for every v ∈ V 0,1
A :

hx.∇3(v) =

= ∆−hx(w11w21 ⊗ τ3)(1⊗ ∂y1)(v) + ∆−hx((w12w21 + w11w22)⊗ τ3)(1⊗ ∂y2)(v)

= ∆−(w11w21 ⊗ τ3)hx(1⊗ ∂y1)(v) + ∆−((w12w21 + w11w22)⊗ τ3)hx(1⊗ ∂y2))(v) = ∇3(hx.v);

ex.∇3(v) =

= ∆−ex(w11w21 ⊗ τ3)(1⊗ ∂y1)(v) + ∆−ex((w12w21 + w11w22)⊗ τ3)(1⊗ ∂y2)(v)

= ∆−(w11w21 ⊗ τ3)ex(1⊗ ∂y1)(v) + ∆−((w12w21 + w11w22)⊗ τ3)ex(1⊗ ∂y2)(v) = ∇3(ex.v);

fx.∇3(v) =

= ∆−fx(w11w21 ⊗ τ3)(1⊗ ∂y1)(v) + ∆−fx((w12w21 + w11w22)⊗ τ3)(1⊗ ∂y2)(v)

= ∆−(w11w21 ⊗ τ3)fx(1⊗ ∂y1)(v) + ∆−((w12w21 + w11w22)⊗ τ3)fx(1⊗ ∂y2)(v) = ∇3(fx.v);

hy.∇3(v) =

= −∆−(w11w21 ⊗ τ3)(1⊗ ∂y1)(v) + ∆−(2w11w21 ⊗ τ3)(1⊗ ∂y1)(v)

+ ∆−(w11w21 ⊗ τ3)(−1⊗ ∂y1)(v) + ∆−(w11w21 ⊗ τ3)(1⊗ ∂y1))(hy.v)

−∆−((w12w21 + w11w22)⊗ τ3)(1⊗ ∂y2)(v) + ∆−((w12w21 + w11w22)⊗ τ3)(1⊗ ∂y2)(v)

+ ∆−((w12w21 + w11w22)⊗ τ3)(1⊗ ∂y2)(hy.v) = ∇3(hy.v);

ey.∇3(v) =

= ∆+(w11w21 ⊗ τ3)(1⊗ ∂y1)(v) + ∆−(w11w21 ⊗ τ3)(−1⊗ ∂y2)(v)

+ ∆+((w12w21 + w11w22)⊗ τ3)(1⊗ ∂y2)(v) + ∆−(2w11w21)⊗ τ3)(1⊗ ∂y2) +∇3(ey.v)

= ∆−(w11w21 ⊗ τ3)(1⊗ ∂y2)(v) + w12w21w11 ⊗ ∂x1τ3∂y2(v)

+ w11w22w11 ⊗ ∂x1τ3∂y2(v) + w11w22w21 ⊗ ∂x2τ3∂y2(v) +∇3(ey.v)

= ∆−(w11w21 ⊗ τ3)(1⊗ ∂y2)(v) + w21w11w12 ⊗ ∂x1τ3∂y2(v)− w11w21w22 ⊗ ∂x2τ3∂y2(v) +∇3(ey.v)

= ∆−(w11w21 ⊗ τ3)(1⊗ ∂y2)(v)−∆−(w11w21 ⊗ τ3)(1⊗ ∂y2)(v) +∇3(ey.v) = ∇3(ey.v);

fy.∇3(v) =

= ∆−((w12w21 + w11w22)⊗ τ3)(1⊗ ∂y1)(v) + ∆−(2w12w22 ⊗ τ3)(1⊗ ∂y2)(v)

+ ∆−((w12w21 + w11w22 ⊗ τ3)(−1⊗ ∂y1)(v) +∇3(fy.v) = ∇3(fy.v).

It is straightforward, using (5.10), that ∇3 commutes with t and C.
Finally ∇3∇ = ∇∇3 = 0 since there are no singular vectors of degree 4 due to Theorem 4.7.

Let us define the maps ∆̃+ : MX −→MX and ∆̃− : MX −→MX as follows:

∆̃+ = w11 ⊗ ∂y1 + w12 ⊗ ∂y2 , (5.11)

∆̃− = w21 ⊗ ∂y1 + w22 ⊗ ∂y2 . (5.12)

We point out that the morphism ∇, defined in (5.7), can be expressed also by:

∇ = ∆̃+∂x1 + ∆̃−∂x2 .

Remark 5.14. By (5.1) and (5.2) it is straightforward that (∆̃+)2 = 0, (∆̃−)2 = 0 and ∆̃+∆̃− +
∆̃−∆̃+ = 0.

We introduce the following notation:

VA′′ = ⊕n∈ZV 0,n
A = C [y1, y2] ,
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VB′′ = ⊕n∈ZV 0,n
B = C [y1, y2][1,−1] ,

VC′′ = ⊕n∈ZV 0,n
C = C [∂y1 , ∂y2 ][2,0] ,

VD′′ = ⊕n∈ZV 0,n
D = C [∂y1 , ∂y2 ][1,1] .

We denote MX′′ = U(g<0)⊗ VX′′ . We point out that MX′′ is the direct sum of Verma modules of
Figure 4.1 in quadrant X that lie on the axis m = 0. We consider the map τ̃1 : MA′′ −→MB′′ that
is the identity. We have that:

[t, τ̃1] = τ̃1, (5.13)

[C, τ̃1] = −τ̃1.

We call ∇̃2 : MA′′ −→MB′′ the map

∆̃−∆̃+τ̃1 = w11w21 ⊗ ∂2
y1

+ w12w21 ⊗ ∂y1∂y2 + w11w22 ⊗ ∂y1∂y2 + w12w22 ⊗ ∂2
y2
.

We consider the map τ̃2 : MD′′ −→MC′′ that is the identity. We have that:

[t, τ̃2] = τ̃2, (5.14)

[C, τ̃2] = −τ̃2.

By abuse of notation, we also call ∇̃2 : MD′′ −→MC′′ the map

∆̃−∆̃+τ̃2 = w11w21 ⊗ ∂2
y1

+ w12w21 ⊗ ∂y1∂y2 + w11w22 ⊗ ∂y1∂y2 + w12w22 ⊗ ∂2
y2
.

We have that, for every n ≥ 2:
∇̃2 |Mn

A
′′

: Mn
A′′
−→Mn−2

B′′

and
∇̃2 |M−n

D
′′

: M−n
D′′
−→M−n−2

C′′
.

By abuse of notation we will also write ∇̃2 instead of ∇̃2 |Mn

A
′′

and ∇̃2 |M−n
D
′′

. We will show that the

map ∇̃2 is the explicit expression of the morphisms of degree 2 in Figure 4.1 from the quadrant A
to the quadrant B and from the quadrant D to the quadrant C.

Remark 5.15. i: The map ∇̃2 : Mn
A
′′ −→ Mn−2

B′′
is constructed so that ∇̃2(v), for v highest

weight vector in V n
A′′

, is the highest weight singular vector of degree 2 in Mn−2
B′′

, classified in
Theorem 4.5. Indeed, the highest weight vector in V n

A′′
is yn1 and we have:

∇̃2(yn1 ) = w11w21 ⊗ n(n− 1)yn−2
1 ,

that is the highest weight singular vector ~m2a of M(0, n − 2, 1 − n−2
2 ,−1 − n−2

2 ) found in
Theorem 4.5.

ii: The map ∇̃2 : M−n
B′′
−→ M−n−2

C′′
is constructed so that ∇̃2(v), for v highest weight vector in

V −n
B′′

, is the highest weight singular vector of degree 2 in M−n−2
C′′

, classified in Theorem 4.5.

Indeed, the highest weight vector in V −n
B′′

is ∂ny2
and we have:

∇̃2(∂ny2
) = w11w21 ⊗ ∂2

y1
∂ny2

+ (w11w22 + w12w21)⊗ ∂y1∂
n+1
y2

+ w12w22 ⊗ ∂n+2
y2

,

that is the highest weight singular vector ~m2d of M(0, n+2, 2+ n+2
2 ,−n+2

2 ) found in Theorem
4.5.
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Proposition 5.16. The map ∇̃2 : MA′′ −→ MB′′ (resp. ∇̃2 : MD′′ −→ MC′′ ) is a morphism of

g−modules and ∇̃2∇ = ∇∇̃2 = 0.

Proof. The map ∇̃2 commutes with g<0 by (5.4). By Remark 5.15 and Lemmas 5.6, 5.8 it follows
that ∇̃2 is a morphism of g−modules. Finally, ∇̃2∇ = ∇∇̃2 = 0 follows from the fact that due to
Theorem 4.6, there are no highest weight singular vectors of degree 3 in the codomain of ∇̃2∇ and
∇∇̃2.

We recall the definition of the map τ3 : V 0,0
A −→ V 0,0

C that is the identity. We have already
pointed out that:

[t, τ3] = 2τ3,

[C, τ3] = 0.

We define the map ∇̃3 : M1,0
A −→M0,−1

C as follows, using definition (5.4), for every m ∈M1,0
A :

∇̃3(m) = ∆̃− ◦ (w11w12 ⊗ τ3) ◦ (1⊗ ∂x1)(m) + ∆̃− ◦ ((w21w12 + w11w22)⊗ τ3) ◦ (1⊗ ∂x2)(m).

Remark 5.17. The map ∇̃3 : M1,0
A −→ M0,−1

C is constructed so that ∇̃3(v), for v highest weight

vector in V 1,0
A , is the highest weight singular vector of degree 3 in M0,−1

C , classified in Theorem 4.6.

Indeed, the highest weight vector in V 1,0
A is x1 and we have:

∇̃3(x1) = w11w12w21 ⊗ ∂y1 + w11w12w22 ⊗ ∂y2 = w12w21w11 ⊗ ∂y1 − w11w22w12 ⊗ ∂y2 ,

that is the highest weight singular vector ~m3b of M(0, 1, 5
2 ,

1
2) found in Theorem 4.6.

Proposition 5.18. The map ∇̃3 is a morphism of g−modules and ∇̃3∇ = ∇∇̃3 = 0.

Proof. First we show that the map ∇3 is a morphism of g−modules. It commutes with g<0 due to
(5.4). Due to Lemmas 5.7 and 5.8, it is sufficient to show that wu⊗∇̃3(v) = u⊗∇̃3(w.v) for every
w ∈ g0, v ∈ V 1,0

A . We have, for every v ∈ V 1,0
A :

hx.∇̃3(v) = ∇̃3(hx.v)− ∆̃−(w11w12 ⊗ τ3)(1⊗ ∂x1)(v) + 2∆̃−(w11w12 ⊗ τ3)(1⊗ ∂x1)(v)

− ∆̃−(w11w12 ⊗ τ3)(1⊗ ∂x1)(v)− ∆̃−((w21w12 + w11w22)⊗ τ3)(1⊗ ∂x2)(v)

+ ∆̃−((w21w12 + w11w22)⊗ τ3)(1⊗ ∂x2)(v) = ∇̃3(hx.v);

hy.∇̃3(v) = ∇̃3(hy.v) + ∆̃−(w11w12 − w11w12 ⊗ τ3)(1⊗ ∂x1)(v)

+ ∆̃−((w21w12 + w11w22 − w21w12 − w11w22)⊗ τ3)(1⊗ ∂x2)(v) = ∇̃3(hy.v);

ex.∇̃3(v) = ∇̃3(ex.v) + ∆̃+(w11w12 ⊗ τ3)(1⊗ ∂x1)(v) + ∆̃−(w11w12 ⊗ τ3)(−1⊗ ∂x2)(v)

+ ∆̃+((w21w12 + w11w22)⊗ τ3)(1⊗ ∂x2)(v) + ∆̃−(2w11w12 ⊗ τ3)(1⊗ ∂x2)(v)

= ∇̃3(ex.v) + ∆̃−(w11w12 ⊗ τ3)(1⊗ ∂x2)(v) + w21w12w11 ⊗ ∂y1τ3∂x2

+ w11w22w11 ⊗ ∂y1τ3∂x2 + w11w22w12 ⊗ ∂y2τ3∂x2

= ∇̃3(ex.v) + ∆̃−(w11w12 ⊗ τ3)(1⊗ ∂x2)(v) + w12w11w21 ⊗ ∂y1τ3∂x2 − 4Θw11 ⊗ ∂y1τ3∂x2

+ 4Θw11 ⊗ ∂y1τ3∂x2 − w11w12w22 ⊗ ∂y2τ3∂x2

= ∇̃3(ex.v) + ∆̃−(w11w12 ⊗ τ3)(1⊗ ∂x2)(v)− ∆̃−(w11w12 ⊗ τ3)(1⊗ ∂x2)(v) = ∇̃3(ex.v);

fx.∇̃3(v) = ∇̃3(fx.v) + ∆̃−((w21w12 + w11w22)⊗ τ3)(1⊗ ∂x1)(v) + ∆̃−(2w21w22 ⊗ τ3)(1⊗ ∂x2)(v)

+ ∆̃−((w21w12 + w11w22)⊗ τ3)(−1⊗ ∂x1)(v) = ∇̃3(fx.v);

ey.∇̃3(v) = ∇̃3(ey.v) + ∆̃−((w21w11 + w11w21)⊗ τ3)(1⊗ ∂x2)(v) = ∇̃3(ey.v);
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fy.∇̃3(v) = ∇̃3(fy.v) + ∆̃−((w22w12 + w12w22)⊗ τ3)(1⊗ ∂x2)(v) = ∇̃3(fy.v).

It is straightforward, using (5.10), that ∇̃3 commutes with t and C.
Finally ∇̃3∇ = ∇∇̃3 = 0 since there are no singular vectors of degree 4 due to Theorem 4.7.

5.2 Preliminaries on spectral sequences

For the proof of Theorem 5.1 we will use the theory of spectral sequences. Therefore we recall some
notions about this theory; for further details see [KR1, Appendix] and [M, Chapter XI]. We follow
the notation used in [KR1].
Let A be a module with a filtration:

... ⊂ Fp−1A ⊂ FpA ⊂ Fp+1A ⊂ ..., (5.15)

where p ∈ Z. A filtration is called convergent above if A = ∪p FpA. Let us suppose that A is
endowed with a differential d : A −→ A such that:

d2 = 0 and d(FpA) ⊂ Fp−s+1A, (5.16)

for fixed s and every p in Z. The classical case studied in [M, Chapter XI, Section 3] corresponds
to s = 1. We will need the case s = 0.
The filtration (5.15) induces a filtration on the module H(A) of the homology spaces of A; indeed,
for every p ∈ Z, FpH(A) is defined as the image of H(FpA) under the injection FpA −→ A.

Definition 5.19. Let E = {Ep}p∈Z be a family of modules. A differential d : E −→ E of degree
−r ∈ Z is a family of homorphisms {dp : Ep −→ Ep−r}p∈Z such that dp ◦ dp+r = 0 for all p ∈ Z.
We denote by H(E) = H(E, d) the homology of E under the differential d that is the family
{Hp(E, d)}p∈Z, where:

Hp(E, d) =
Ker(dp : Ep −→ Ep−r)

Im(dp+r : Ep+r −→ Ep)
.

Definition 5.20 (Spectral sequence). A spectral sequence E = {(Er, dr)}r∈Z is a sequence of
families of modules with differential (Er, dr) as in definition 5.19, such that, for all r, dr has degree
−r and:

H(Er, dr) ∼= Er+1.

Proposition 5.21. Let A be a module with a filtration as in (5.15) and differential as in (5.16).
Therefore it is uniquely determined a spectral sequence, as in definition 5.20, E = {(Er, dr)}r∈Z
such that:

H(Er, dr) ∼= Er+1, (5.17)

Erp
∼= FpA/Fp−1A for r ≤ s− 1, (5.18)

dr = 0 for r < s− 1, (5.19)

ds−1 = Gr d, (5.20)

Esp
∼= H(FpA/Fp−1A). (5.21)

Proof. For the proof see [KR1, Appendix].

We point out, that for our purposes, (5.21) is important, because it states that Es is isomorphic
to the homology of the module GrA with respect to the differential induced by d.
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Remark 5.22. Let {(Er, dr)}r∈Z be a spectral sequence as in definition 5.20. We know that E1
p
∼=

Hp(E
0, d0). We denote E1

p
∼= C0

p/B
0
p , where C0

p = Ker d0
p and B0

p = Im d0
p+r. Analogously E2

p
∼=

Hp(E
1, d1) and E2

p
∼= C1

p/B
1
p , where C1

p/B
0
p = Ker d1

p, B
1
p/B

0
p = Im d1

p+r and B1
p ⊂ C1

p . Thus, we
obtain:

B0
p ⊂ B1

p ⊂ B2
p ⊂ ... ⊂ C2

p ⊂ C1
p ⊂ C0

p .

Definition 5.23. Let A be a module with a filtration as in (5.15) and differential as in (5.16). Let
{(Er, dr)}r∈Z be the spectral sequence determined by Proposition 5.21. We define E∞p as:

E∞p =

⋂
r C

r
p⋃

r B
r
p

.

Let B be a module with a filtration as in (5.15). We say that the spectral sequence converges to B
if, for all p:

E∞p
∼= FpB/Fp−1B.

Proposition 5.24. Let A be a module with a filtration as in (5.15) and differential as in (5.16).
Let us suppose that ∪p FpA = A and, for some N , F−NA = 0. Then the spectral sequence converges
to the homology of A, that is:

E∞p
∼= FpH(A)/Fp−1H(A).

Proof. For the proof see [KR1, Appendix].

Remark 5.25. Let A be a module with a filtration as in (5.15) and differential as in (5.16). We
moreover suppose that A = ⊕n∈ZAn is a Z−graded module and d : An −→ An−1 for all n ∈ Z.
Therefore the filtration (5.15) induces a filtration on each An. The family {FpAn}p,n∈Z is indexed
by (p, n). It is customary to write the indices as (p, q), where p is the degree of the filtration and
q = n − p is the complementary degree. The filtration is called bounded below if, for all n ∈ Z,
there exists a s = s(n) such that FsAn = 0.
In this case the spectral sequence E = {(Er, dr)}r∈Z, determined as in Proposition 5.21, is a family
of modules Er =

{
Erp,q

}
p,q∈Z indexed by (p, q), where Erp =

∑
p,q∈ZE

r
p,q, with the differential

dr =
{
drp,q : Ep,q −→ Ep−r,q+r−1

}
p,q∈Z of bidegree (−r, r − 1) such that dp,q ◦ dp+r,q−r+1 = 0 for all

p, q ∈ Z. Equations (5.17), (5.18) ,(5.19), (5.20) and (5.21) can be written so that the role of q is
explicit. For instance, Equation (5.17) can be written as:

Hp,q(E
r, dr) =

Ker(drp,q : Erp,q −→ Erp−r,q+r−1)

Im(drp+r,q−r+1 : Erp+r,q−r+1 −→ Erp,q)
∼= Er+1

p,q .

for all p, q ∈ Z. Equation (5.21) can be written as Esp,q
∼= H(FpAp+q/Fp−1Ap+q) for all p, q ∈ Z.

We now recall some results on spectral sequences of bicomplexes; for further details see [KR1]
and [M, Chapter XI, Section 6].

Definition 5.26 (Bicomplex). A bicomplex K is a family {Kp,q}p,q∈Z of modules endowed with

two families of differentials, defined for all integers p, q, d′ and d′′ such that

d′ : Kp,q −→ Kp−1,q, d′′ : Kp,q −→ Kp,q−1

and d′2 = d′′2 = d′d′′ + d′′d′ = 0.
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We can also think K as a Z−bigraded module where K =
∑

p,q∈ZKp,q. A bicomplex K as in
Definition 5.26 can be represented by the following commutative diagram:

d′′
��

d′′
��

d′′
��

· · · d′ // Kp+1,q+1

d′′

��

d′ // Kp,q+1

d′′

��

d′ // Kp−1,q+1

d′′

��

d′ // · · ·

· · · d′ // Kp+1,q

d′′

��

d′ // Kp,q

d′′

��

d′ // Kp−1,q

d′′

��

d′ // · · ·

· · · d′ // Kp+1,q−1

d′′

��

d′ // Kp,q−1

d′′

��

d′ // Kp−1,q−1

d′′

��

d′ // · · ·

.

(5.22)

Definition 5.27 (Second homology). Let K be a bicomplex. The second homology of K is the
homology computed with respect to d′′, i.e.:

H ′′p,q(K) =
Ker(d′′ : Kp,q −→ Kp,q−1)

d′′(Kp,q+1)
.

The second homology of K is a bigraded complex with differential d′ : H ′′p,q(K) −→ H ′′p−1,q(K)
induced by the original d′.
Its homology is defined as:

H ′pH
′′
q (K) =

Ker(d′ : H ′′p,q(K) −→ H ′′p−1,q)

d′(H ′′p+1,q(K))
,

and it is a bigraded module.

Definition 5.28 (First homology). Let K be a bicomplex. The first homology of K is the homology
computed with respect to d′, i.e.:

H ′p,q(K) =
Ker(d′ : Kp,q −→ Kp−1,q)

d′(Kp+1,q)
.

The first homology of K is a bigraded complex with differential d′′ : H ′p,q(K) −→ H ′p,q−1(K) induced
by the original d′′.
Its homology is defined as:

H ′′qH
′
p(K) =

Ker(d′′ : H ′p,q(K) −→ H ′p,q−1)

d′′(H ′p,q+1(K))
,

and it is a bigraded module.

Definition 5.29 (Total complex). A bicomplex K defines a single complex T = Tot(K):

Tn =
∑
p+q=n

Kp,q, d = d′ + d′′ : Tn −→ Tn−1.

From the properties of d′ and d′′, it follows that d2 = 0.
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We point out that Tn is the sum of the modules of the secondary diagonal in diagram (5.22).
We have that:

· · · d−→ Tn+1
d−→ Tn

d−→ Tn−1
d−→ · · · .

The first filtration F ′ of T = Tot(K) is defined as:

(F ′pT )n =
∑
h≤p

Kh,n−h.

The associated spectral sequence E′ is called first spectral sequence. Analogously we can define the
second filtration and the second spectral sequence.

Proposition 5.30. Let (K, d′, d′′) be a bicomplex with total differential d. The first spectral se-
quence E′ = {(E′r, dr)}, E′r =

∑
p,q E

′r
p,q has the property:

(E′0, d0) ∼= (K, d′′), (E′1, d1) ∼= (H(K, d′′), d′), E′2p,q
∼= H ′pH

′′
q (K).

The second spectral sequence E′′ = {(E′′r, δr)}, E′′r =
∑

p,q E
′′r
p,q has the property:

(E′′0, δ0) ∼= (K, d′), (E′′1, δ1) ∼= (H(K, d′), d′′), E′′2p,q
∼= H ′′qH

′
p(K).

If the first filtration is bounded below and convergent above, then the first spectral sequence converges
to the homology of T with respect to the total differential d.
If the second filtration is bounded below and convergent above, then the second spectral sequence
converges to the homology of T with respect to the total differential d.

Proof. See [M, Chapter XI].

5.3 Computation of the homology

The aim of this section is to prove Theorem 5.1. Following [KR1], let us consider the filtration of
U(g<0) defined as follows: for all i ≥ 0, FiU(g<0) is the subspace of U(g<0) spanned by elements
with at most i terms of g<0. Therefore:

C = F0U(g<0) ⊂ F1U(g<0) ⊂ ... ⊂ Fi−1U(g<0) ⊂ FiU(g<0) ⊂ ... ,

where FiU(g<0) = g<0Fi−1U(g<0) + Fi−1U(g<0). We call FiMX = FiU(g<0)⊗ VX . We have that
∇FiMX ⊂ Fi+1MX . Hence MX is a filtered complex with the bigrading induced by (5.3) and
differential ∇.
We can apply Propositions 5.21 and 5.24 to our complex (MX ,∇) and obtain a spectral sequence{

(Ei,∇i)
}

such that E0 = H(GrMX), Ei+1 ∼= H(Ei,∇i) and E∞ ∼= GrH(MX).
Therefore we first study GrMX .

Remark 5.31. We observe that g contains a copy of W (1, 0) = 〈p(t)∂t〉 via the injective morphism:

W (1, 0) −→ g

p(t)∂t −→
p(t)

2

Indeed, let us prove that this injective map is a morphism of Lie superalgebras. In g:[p(t)
2
,
q(t)

2

]
=

1

2
p(t)∂tq(t)−

1

2
∂tp(t)q(t).

In particular, we point out that g−2 is contained in this copy of W (1, 0).
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We consider the standard filtration on W (1, 0) = LW−1 ⊃ LW0 ⊃ LW1 ... .

Lemma 5.32. For all i ≥ 0 and j ≥ −1:

LWj FiMX ⊂ Fi−jMX . (5.23)

Proof. We point out that LWj ⊆
⊕

k≥j g2k, since p(t)∂t ∈ LWdeg(p(t))−1 corresponds to p(t)
2 ∈ g and

deg(p(t)2 ) = 2 deg(p(t))− 2.
Let us fix j and show the thesis by induction on i. It is clear that LWj F0MX ⊂ F−jMX . Indeed let

wj ∈ LWj , v ∈ F0MX , then:

wj .v ∈

{
F0MX if j ≥ 0;

F1MX if j = −1.
(5.24)

Now let us suppose that the thesis holds for i. Let wj ∈ LWj and u1u2...ur ⊗ v ∈ Fi+1MX , with
r ≤ i + 1 and u1, u2, ..., ur ∈ g<0. We moreover suppose that, for some N , us = Θ for all s ≤ N
and us ∈ g−1 for all s > N . We have:

wju1u2...ur ⊗ v = (−1)p(wj)p(u1)u1wju2...ur ⊗ v + [wj , u1]u2...ur ⊗ v.

Using the hypothesis of induction, we know that u1wju2...ur ⊗ v ∈ Fr−jMX ⊂ Fi+1−jMX . Let
us focus on [wj , u1]u2...ur ⊗ v. We have two possibilities: [wj , u1] ∈ ⊕k≥jg2k−2 if u1 = Θ or
[wj , u1] ∈ ⊕k≥jg2k−1 if u1 ∈ g−1.
In the case u1 = Θ, [wj , u1] ∈ LWj−1 and, by hypothesis of induction, [wj , u1]u2...ur⊗v ∈ Fr−jMX ⊂
Fi+1−jMX .
In the case u1 ∈ g−1, we have that deg([wj , u1]u2...ur) ≥ 2j − 1 − r + 1 and, by our assumption,
u2, ..., ur ∈ g−1. Therefore [wj , u1]u2...ur ⊗ v ∈ Fr−2jMX ⊂ Fi+1−jMX .

By (5.23), we know, since W (1, 0) ∼= GrW (1, 0), that the action of W (1, 0) on MX descends on
GrMX .
We point out that, using the Poincaré−Birkhoff−Witt Theorem, we have GrU(g<0) ∼= S(g−2) ⊗∧

(g−1); indeed we have already noticed that in U(g<0), for all i ∈ {1, 2, 3, 4}, η2
i = Θ.

We define:

W = W (1, 0) + g0 = W (1, 0)⊕ gss0 ⊕ CC,

that is a Lie subalgebra of g. On W we consider the filtration W = LW−1 ⊃ LW0 ⊃ LW1 ... , where
LW0 = LW0 ⊕ gss0 ⊕ CC and LWk = LWk for all k > 0. Therefore, as W−modules:

GrMX = GrU(g<0)⊗ VX ∼= S(g−2)⊗ ∧
(g−1)⊗ VX .

From (5.23), it follows that LW1 = LW1 annihilates GX :=
∧

(g−1)⊗VX . Therefore, as W−modules:

GrMX
∼= S(g−2)⊗ (

∧
(g−1)⊗ VX) ∼= IndW

LW0
(
∧

(g−1)⊗ VX).

We observe that GrMX is a complex with the morphism induced by ∇, that we still call ∇. Indeed
∇FiMX ⊂ Fi+1MX for all i, therefore it is well defined the induced morphism

∇ : GriMX = FiMX/Fi−1MX −→ Gri+1MX = Fi+1MX/FiMX ,

that has the same formula as ∇ defined in (5.7), apart from the fact that the multiplication by the
w’s must be seen as multiplication in GrU(g<0) instead of U(g<0).
Therefore we have that (GX ,∇) is a subcomplex of (GrMX ,∇): indeed it is sufficient to restrict
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∇ to GX ; the complex (GrMX ,∇) is obtained from (GX ,∇) extending the coefficients to S(g−2).
We point out that also the homology spaces Hm,n(GX) are annihilated by LW1 . Therefore, as
W−modules:

Hm,n(GrMX) ∼= S(g−2)⊗Hm,n(GX) ∼= IndW
LW0

(Hm,n(GX)). (5.25)

From (5.25) and Proposition 5.24, it follows that:

Proposition 5.33. If Hm,n(GX) = 0, then Hm,n(GrMX) = 0 and therefore Hm,n(MX) = 0.

5.3.1 Homology of complexes GX

Motivated by Proposition 5.33, in this section we study the homology of the complexes GX ’s. We
denote by GX′ :=

∧
(g−1)⊗ VX′ .

Let us consider the evaluation maps from VX to VX′ that map y1, y2, ∂y1 , ∂y2 to zero and are the
identity on all other elements. We can compose these maps with ∇2 when X = A,B and obtain
new maps, that we still call ∇2, from GA to GD′ and from GB to GC′ respectively.
We consider also the map from GA′ to GD (resp. from GB′ to GC) that is the composition of
∇2 : GA′ −→ GD′ (resp.∇2 : GB′ −→ GC′ ) and the inclusion of GD′ into GD (resp. GC′ into GC);
we will call also this composition ∇2. We define:

GA◦ = Ker(∇2 : GA −→ GD′ ), GD◦ = CoKer(∇2 : GA′ −→ GD),

GB◦ = Ker(∇2 : GB −→ GC′ ), GC◦ = CoKer(∇2 : GB′ −→ GC).

Remark 5.34. The map ∇ is still defined on GX◦ since ∇∇2 = ∇2∇ = 0.
The bigrading (5.3) induces a bigrading also on the GX◦ ’s. We point out that Gm,nA = Gm,nA◦ for
n > 0, Gm,nD = Gm,nD◦ for n < 0, Gm,nB = Gm,nB◦ for n > 0 and Gm,nC = Gm,nC◦ for n < 0.
The complexes (GX◦ ,∇) start or end at the axes of Figure 4.1. Thus for us:

Hm,n(GA◦) =


Ker(∇:Gm,n

A◦ −→G
m−1,n−1
A◦ )

Im(∇:Gm+1,n+1
A◦ −→Gm,n

A◦ )
for m > 0, n > 0;

Gm,n
A◦

Im(∇:Gm+1,n+1
A◦ −→Gm,n

A◦ )
for m = 0 or n = 0;

Hm,n(GD◦) =


Ker(∇:Gm,n

D◦ −→G
m−1,n−1
D◦ )

Im(∇:Gm+1,n+1
D◦ −→Gm,n

D◦ )
for m > 0, n < 0;

Gm,n
D◦

Im(∇:Gm+1,n+1
D◦ −→Gm,n

D◦ )
for m = 0;

Ker(∇ : Gm,nD◦ −→ Gm−1,n−1
D◦ ) for n = 0;

Hm,n(GB◦) =


Ker(∇:Gm,n

B◦ −→G
m−1,n−1
B◦ )

Im(∇:Gm+1,n+1
B◦ −→Gm,n

B◦ )
for m < 0, n > 0;

Ker(∇ : Gm,nB◦ −→ Gm−1,n−1
B◦ ) for m = 0;

Gm,n
B◦

Im(∇:Gm+1,n+1
B◦ −→Gm,n

B◦ )
for n = 0;

Hm,n(GC◦) =


Ker(∇:Gm,n

C◦ −→G
m−1,n−1
C◦ )

Im(∇:Gm+1,n+1
C◦ −→Gm,n

C◦ )
for m < 0, n < 0;

Ker(∇ : Gm,nC◦ −→ Gm−1,n−1
C◦ ) for m = 0 or n = 0.

Remark 5.35. The following relations are straightforward from the definition of the GX◦ ’s and
Remark 5.34:

Hm,n(GA) = Hm,n(GA◦) for m > 0, n ≥ 0;

Hm,n(GD) = Hm,n(GD◦) for m > 0, n ≤ 0;

Hm,n(GB) = Hm,n(GB◦) for m < 0, n ≥ 0;

Hm,n(GC) = Hm,n(GC◦) for m < 0, n ≤ 0.
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Motivated by Remark 5.35 and Proposition 5.33, we study the homology of the complexes
GX◦ ’s.
Now we introduce an additional bigrading as follows:

(VX)[p,q] = {f ∈ VX : y1∂y1f = pf and y2∂y2f = qf} , (5.26)

(GX)[p,q] =
∧

(g−1)⊗ (VX)[p,q].

The definition can be extended also to GX◦ . We point out that this new bigrading is related to the
bigrading (5.3) by the equation p+ q = n.
We have that d′ := ∆+∂y1 : (GX)[p,q] −→ (GX)[p−1,q], d

′′ := ∆−∂y2 : (GX)[p,q] −→ (GX)[p,q−1] and

d = d′ + d′′ : ⊕mGm,nX −→ ⊕mGm,n−1
X .

We know, by Remark 5.4, that d′2 = d′′2 = d′d′′ + d′′d′ = 0. Therefore ⊕mGmX and ⊕mGmX◦ , with
the bigrading (5.26), are bicomplexes with differentials d′, d′′ and total differential ∇ = d′ + d′′.
Now let:

∧i
+ =

∧i〈w11, w21〉 and
∧i
− =

∧i〈w12, , w22〉.

We point out that
∧i

+ and
∧i
− are isomorphic as 〈x1∂x1−x2∂x2 , x1∂x2 , x2∂x1〉−modules; therefore, in

the following results, we will often write
∧i when we are speaking of the 〈x1∂x1−x2∂x2 , x1∂x2 , x2∂x1〉−module

isomorphic to
∧i

+ and
∧i
−.

We introduce the following notation, for all α, β ∈ Z:

GA(α, β)[p,q] =
∧α−p

+

∧β−q
− ⊗ C [x1, x2] yp1y

q
2, GB(α, β)[p,q] =

∧α−p
+

∧β−q
− ⊗ C [∂x1 , ∂x2 ] yp1y

q
2,

GD(α, β)[p,q] =
∧α−p

+

∧β−q
− ⊗ C [x1, x2] ∂−py1

∂−qy2
, GC(α, β)[p,q] =

∧α−p
+

∧β−q
− ⊗ C [∂x1 , ∂x2 ] ∂−py1

∂−qy2
.

From now on we will use the notation
∧i
±[x1, x2] (resp.

∧i
±[∂x1 , ∂x2 ]) for

∧i
± ⊗ C[x1, x2] (resp.∧i

± ⊗ C[∂x1 , ∂x2 ]).
We have that, as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules, GX = ⊕α,βGX(α, β), where GX(α, β) =
⊕p,qGX(α, β)[p,q].
Analogously we can define GX◦(α, β)[p,q] and, as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules we have:
GX◦ = ⊕α,βGX◦(α, β), where GX◦(α, β) = ⊕p,qGX◦(α, β)[p,q].
The GX(α, β)’s and GX◦(α, β)’s are bicomplexes, with the bigrading (5.26) and differentials d′ =
∆+∂y1 and d′′ = ∆−∂y2 .
The computation of homologies of GX and GX◦ can be reduced to the computation for GX(α, β)
and GX◦(α, β).
To prove the following results we will use Proposition 5.30.
In the following lemmas we compute the homology of the GX◦(α, β)’s. We start with the homology
of the GX◦(α, β)’s when either α or β do not lie in {0, 1, 2}.

Lemma 5.36. Let us suppose that α > 2 or β > 2. Let k = max(α, β).
Then as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules:

Hm,n(GA◦(α, β)) = Hm,n(GA(α, β)) ∼=

{
0 if m > 0 or m = 0, n < k,∧α+β−n if m = 0, n ≥ k;

Hm,n(GB◦(α, β)) = Hm,n(GB(α, β)) ∼=

{
0 if m < 0 or m = 0, n < k − 2,∧α+β−n−2 if m = 0, n ≥ k − 2.

Let us suppose that α < 0 or β < 0. Let k = min(α, β).
Then, as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules:

Hm,n(GD◦(α, β)) = Hm,n(GD(α, β)) ∼=

{
0 if m > 0 or m = 0, n > k,∧α+β−n if m = 0, n ≤ k;
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Hm,n(GC◦(α, β)) = Hm,n(GC(α, β)) ∼=

{
0 if m < 0 or m = 0, n > k − 2,∧α+β−n−2 if m = 0, n ≤ k − 2.

Proof. We first observe that if α > 2 or β > 2 (resp. α < 0 or β < 0), then GX◦(α, β) = GX(α, β)
for X = A,B (resp. X = C,D), since they are different only when p+ q = 0, that does not occur
here. We use the theory of spectral sequences of bicomplexes.
We prove the statement in the case β > 2 for X = A,B and β < 0 for X = C,D; the case α > 2 for
X = A,B and α < 0 for X = C,D can be proved analogously using the second spectral sequence
instead of the first one.

Case A) Let us consider GA◦(α, β) with the differential d′′ = ∆−∂y2 :

...
∆−∂y2←−−−− ∧α−p

+

∧β−q+1
− [x1, x2] yp1y

q−1
2

∆−∂y2←−−−−∧α−p
+

∧β−q
− [x1, x2] yp1y

q
2

∆−∂y2←−−−− ∧α−p
+

∧β−q−1
− [x1, x2] yp1y

q+1
2

∆−∂y2←−−−− ... .

This complex is the tensor product of
∧α−p

+ yp1 and the following complex, since
∧α−p

+ yp1 is not
involved in d′′:

0
∆−∂y2←−−−− ∧2

− [x1, x2] yβ−2
2

∆−∂y2←−−−− ∧1
− [x1, x2] yβ−1

2

∆−∂y2←−−−− ∧0
− [x1, x2] yβ2

∆−∂y2←−−−− 0.

This complex is exact except for the right end, in which the homology space is Cyβ2 . Let us analyze
in detail.

i: Let us consider the map ∆−∂y2 :
∧0
− [x1, x2] yβ2 −→

∧1
− [x1, x2] yβ−1

2 . We compute the kernel.

Let p(x1, x2)yβ2 ∈
∧0
− [x1, x2] yβ2 . We have:

∆−∂y2(p(x1, x2)yβ2 ) = w12 ⊗ ∂x1p(x1, x2)βyβ−1
2 + w22 ⊗ ∂x2p(x1, x2)βyβ−1

2 .

It is zero if and only if p is constant, therefore the kernel is Cyβ2 .

ii: Let us consider the map ∆−∂y2 :
∧1
− [x1, x2] yβ−1

2 −→
∧2
− [x1, x2] yβ−2

2 . We compute the kernel.

Let w12 ⊗ p1(x1, x2)yβ−1
2 + w22 ⊗ p2(x1, x2)yβ−1

2 ∈
∧1
− [x1, x2] yβ−1

2 . We have:

∆−∂y2(w12 ⊗ p1(x1, x2)yβ−1
2 + w22 ⊗ p2(x1, x2)yβ−1

2 )

= w12w22 ⊗ ∂x2p1(x1, x2)(β − 1)yβ−2
2 + w22w12 ⊗ ∂x1p2(x1, x2)(β − 1)yβ−2

2 .

This is zero if and only if ∂x2p1(x1, x2) = ∂x1p2(x1, x2), that means that p1(x1, x2) =
∫
∂x1p2(x1, x2)dx2.

Hence an element of the kernel is:

w12 ⊗
(∫

∂x1p2(x1, x2)dx2

)
yβ−1

2 + w22 ⊗ p2(x1, x2)yβ−1
2 = ∆−∂y2

((∫
p2(x1, x2)dx2

)yβ2
β

)
.

Thus at this point the sequence is exact.

iii: We consider the map ∆−∂y2 :
∧2
− [x1, x2] yβ−2

2 −→ 0. We have that:

w12w22 ⊗ p(x1, x2)yβ−2
2 = ∆−∂y2

(
w12 ⊗

(∫
p(x1, x2)dx2

) yβ−1
2

β − 1

)
.



98 5. Homology

Since the original complex was the tensor product with
∧α−p

+ yp1 , we have that the non zero homology

group is
∧α−p

+ yp1y
β
2 . E

′1
p,q(GA◦(α, β)) survives only for q = β. Now we should compute its homology

with respect to d′, but the E
′1
p,q(GA◦(α, β))’s do not involve x1, x2, so the differentials d′’s are zero

and we have E
′2 = E

′1. Moreover, for a one−row spectral sequence, we know that E
′2 = ... = E

′∞

since, for all r ≥ 2 and all p ∈ Z, drp,β has bidegree (−r, r − 1), i.e. drp,β : Erp,β −→ Erp−r,β+r−1 = 0,
drp+r,β−r+1 : Erp+r,β−r+1 = 0 −→ Erp,β. We have:

E
′∞
p,q (GA(α, β)) =

{
0 if q 6= β,∧α−p

+ yp1y
β
2 if q = β.

We observe that the first filtration (F ′p(GA(α, β)))n =
∑

h≤p(GA(α, β))[h,n−h] is bounded below,
since F ′−1 = 0, and it is convergent above. Therefore by Proposition 5.30:∑

m

Hm,n(GA(α, β)) ∼=
∑
p+q=n

E
′∞
p,q (GA(α, β)) = E

′∞
n−β,β(GA(α, β)) ∼=

∧α+β−n
+ yn−β1 yβ2 .

Since there are no x1’s and x2’s involved, this means that Hm,n(GA(α, β)) = 0 if m 6= 0 and

H0,n(GA(α, β)) =
∧α+β−n

+ yn−β1 yβ2
∼=

∧α+β−n as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules.

Case D) In the case of GD(α, β), using the same argument, when β < 0 we obtain:

E
′∞
p,q (GD(α, β)) =

{
0 if q 6= β,∧α−p

+ ∂−py1 ∂
−β
y2 if q = β.

Therefore:∑
m

Hm,n(GD(α, β)) ∼=
∑
p+q=n

E
′∞
p,q (GD(α, β)) = E

′∞
n−β,β(GD(α, β)) ∼=

∧α+β−n
+ ∂−n+β

y1
∂−βy2

.

Since there are no x1’s and x2’s involved, this means that Hm,n(GD(α, β)) = 0 if m 6= 0 and

H0,n(GD(α, β)) =
∧α+β−n

+ ∂−n+β
y1 ∂−βy2

∼=
∧α+β−n as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules.

Case B) In the case of GB(α, β) when β > 2 we have the following complex with the differential
d′′ = ∆−∂y2 :

← ∧α−p
+

∧β−q+1
− [∂x1 , ∂x2 ] yp1y

q−1
2

∆−∂y2←−−−− ∧α−p
+

∧β−q
− [∂x1 , ∂x2 ] yp1y

q
2

∆−∂y2←−−−− ∧α−p
+

∧β−q−1
− [∂x1 , ∂x2 ] yp1y

q+1
2 .

This complex is the tensor product of
∧α−p

+ yp1 and the following complex, since
∧α−p

+ yp1 is not
involved in d′′:

0
∆−∂y2←−−−− ∧2

− [∂x1 , ∂x2 ] yβ−2
2

∆−∂y2←−−−− ∧1
− [∂x1 , ∂x2 ] yβ−1

2

∆−∂y2←−−−− ∧0
− [∂x1 , ∂x2 ] yβ2

∆−∂y2←−−−− 0.

This complex is exact except for the left end, in which the homology space is C
∧2
−y

β−2
2 . Let us

analyze in detail.

i: Let us consider the map ∆−∂y2 :
∧0
− [∂x1 , ∂x2 ] yβ2 −→

∧1
− [∂x1 , ∂x2 ] yβ−1

2 . We compute the kernel.

Let p(∂x, ∂x2)yβ2 ∈
∧0
− [∂x1 , ∂x2 ] yβ2 . We have:

∆−∂y2(p(∂x1 , ∂x2)yβ2 ) = w12 ⊗ ∂x1p(∂x1 , ∂x2)βyβ−1
2 + w22 ⊗ ∂x2p(∂x, ∂x2)βyβ−1

2 .

It is zero if and only if ∂x1p(∂x1 , ∂x2) = ∂x2p(∂x1 , ∂x2) = 0, that is p = 0, therefore the kernel is 0.
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ii: Let us consider the map ∆−∂y2 :
∧1
− [∂x1 , ∂x2 ] yβ−1

2 −→
∧2
− [∂x1 , ∂x2 ] yβ−2

2 . We compute the

kernel. Let w12 ⊗ p1(∂x1 , ∂x2)yβ−1
2 + w22 ⊗ p2(∂x1 , ∂x2)yβ−1

2 ∈
∧1
− [∂x1 , ∂x2 ] yβ−1

2 . We have:

∆−∂y2(w12 ⊗ p1(∂x1 , ∂x2)yβ−1
2 +w22 ⊗ p2(∂x1 , ∂x2)yβ−1

2 )

= w12w22 ⊗ ∂x2p1(β − 1)yβ−2
2 + w22w12 ⊗ ∂x1p2(β − 1)yβ−2

2 .

This is zero if and only if ∂x2p1(∂x1 , ∂x2) = ∂x1p2(∂x1 , ∂x2), that means that p1(x1, x2) =
∂x1p2(x1,x2)

∂x2

(in particular p2 must contain at least one ∂x2). Therefore an element of the kernel is:

w12 ⊗
∂x1p2(∂x1 , ∂x2)

∂x2

yβ−1
2 + w22 ⊗ p2(∂x, ∂y)y

β−1
2 = ∆−∂y2

(p2(∂x1 , ∂x2)

∂x2

yβ2
β

)
.

At this point the sequence is exact.

iii: Let us consider the map ∆−∂y2 :
∧2
− [∂x1 , ∂x2 ] yβ−2

2 −→ 0. Obviously every element w12w22 ⊗
p(∂x1 , ∂y)y

β−2
2 ∈

∧2
− [∂x1 , ∂x2 ] yβ−2

2 lies in the kernel. If p contains at least one ∂x1 , then:

w12w22 ⊗ p(∂x1 , ∂x2)yβ−2
2 = ∆−∂y2

(
− w22 ⊗

p(∂x1 , ∂x2)

∂x1

yβ−1
2

β − 1

)
.

If p contains at least one ∂x2 , then:

−w12w22 ⊗ p(∂x1 , ∂x2)yβ−2
2 = ∆−∂y2

(
w12 ⊗

p(∂x1 , ∂x2)

∂x2

yβ−1
2

β − 1

)
.

If p is constant, it does not belong to the image of ∆−∂y2 , then the homology group is isomorphic

to C
∧2
−y

β−2
2 .

Since the original complex was the tensor product with
∧α−p

+ yp1 we have that the non zero homology

group is
∧α−p

+

∧2
−y

p
1y
β−2
2 . The space E

′1
p,q(GB◦(α, β)) survives only for q = β − 2. We have that

E
′1
p,q
∼= E

′2
p,q because the map d′ is 0 on the E

′1
p,q’s (the image of the map d′ always involves elements

of positive degree in ∂x1 or ∂x2 that are 0 in E
′1
p,q for the previous computation).

Since we have a one row spectral sequence, we have E
′2 = ... = E

′∞. We have:

E
′∞
p,q (GB(α, β)) =

{
0 if q 6= β − 2,∧α−p

+

∧2
−y

p
1y
β−2
2 if q = β − 2.

We observe that the first filtration (F ′p(GB(α, β)))n =
∑

h≤p(GB(α, β))[h,n−h] is bounded below,
since F ′−1 = 0, and it is convergent above. Therefore by Proposition 5.30:∑
m

Hm,n(GB(α, β)) ∼=
∑
p+q=n

E
′∞
p,q (GB(α, β)) = E

′∞
n−β+2,β−2(GB(α, β)) ∼=

∧α+β−n−2
+

∧2
−y

n−β+2
1 yβ−2

2 .

Since there are no ∂x1 ’s and ∂x2 ’s involved, this means that Hm,n(GB(α, β)) = 0 if m 6= 0 and

H0,n(GB(α, β)) =
∧α+β−n−2

+

∧2
−y

n−β+2
1 yβ−2

2
∼=

∧α+β−n−2 as 〈x1∂x1−x2∂x2 , x1∂x2 , x2∂x1〉−modules.

Case C) In the case of GC(α, β), using the same argument, when β < 0 we obtain:

E
′∞
p,q (GC(α, β)) =

{
0 if q 6= β − 2,∧α−p

+

∧2
−∂
−p
y1 ∂

−β+2
y2 if q = β − 2.
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Therefore:∑
m

Hm,n(GC(α, β)) ∼=
∑
p+q=n

E
′∞
p,q (GC(α, β)) = E

′∞
n−β+2,β−2(GC(α, β)) ∼=

∧α+β−n−2
+

∧2
−∂
−n+β−2
y1

∂−β+2
y2

.

Since there are no ∂x1 ’s and ∂x2 ’s involved, this means that Hm,n(GC(α, β)) = 0 if m 6= 0 and

H0,n(GC(α, β)) =
∧α+β−n−2

+ ∂−n+β−2
y1 ∂−β+2

y2
∼=

∧α+β−n−2 as 〈x1∂x1−x2∂x2 , x1∂x2 , x2∂x1〉−modules.

In Lemma 5.36 we computed the homology of the GX◦(α, β)’s in the case that either α or β do
not belong to {0, 1, 2}. In order to compute the homology of the GX◦(α, β)’s in the case that both
α and β belong to {0, 1, 2}, we need the following remark and lemmas.

Remark 5.37. We introduce some notation that will be used in the following lemmas. Let 0 < β ≤ 2.
Let us define:

G̃A(α, β)[p,q] =

{∧α−p
+

∧β−q
− [x1, x2] if p ≥ 0, q ≥ 0,

0 otherwise.

We have an isomorphism of bicomplexes γ : GA(α, β)[p,q] −→ G̃A(α, β)[p,q] which is the valuating

map that values y1 and y2 in 1 and is the identity on all other elements. We consider on G̃A(α, β)
the differentials d′ = ∆+ and d′′ = ∆− induced by ∆+∂y1 and ∆−∂y2 for GA(α, β). We also define:

GD′ (α, β)[p,q] =

{∧α+1
+

∧β+1
− [x1, x2] if p = q = 0,

0 otherwise.

The following is a commutative diagram:

GA(α, β) GD′ (α, β)

γ id

∇2

∆−∆+τ1

G̃A(α, β) GD′ (α, β).

We have that G̃A◦(α, β) := Ker(∆−∆+τ1 : G̃A(α, β) −→ GD′ (α, β)) is isomorphic, as a bicomplex,

to GA◦(α, β). Its diagram is the same of G̃A(α, β) except for p = q = 0. The diagram of G̃A(α, β)
is the following, respectively for α = 0, α = 1, α ≥ 2:

α = 0∧0
+

∧0
−[x1, x2]

∧0
+

∧β
−[x1, x2],

· · ·

∧1
+

∧0
−[x1, x2]

∧0
+

∧0
−[x1, x2]

· · · · · ·

α = 1

∧1
+

∧β
−[x1, x2]

∧0
+

∧β
−[x1, x2],

α ≥ 2∧2
+

∧0
−[x1, x2]

∧1
+

∧0
−[x1, x2]

∧0
+

∧0
−[x1, x2]

· · · · · · · · ·

∧2
+

∧β
−[x1, x2]

∧1
+

∧β
−[x1, x2]

∧0
+

∧β
−[x1, x2],

where the horizontal maps are d′ and the vertical maps are d′′. The diagram of G̃A◦(α, β) is

analogous to this, except for p = q = 0, where
∧α

+

∧β
−[x1, x2] is substituted by Ker(∆−∆+ :∧α

+

∧β
−[x1, x2] −→

∧α+1
+

∧β+1
− [x1, x2]), that we shortly call Ker(∆−∆+) in the next diagram.

The E′1 spectral sequence of G̃A◦(α, β), i.e. the homology with respect to ∆−, is the following,
respectively for α = 0, α = 1, α ≥ 2, β = 1 and α = 0, α = 1, α ≥ 2, β = 2 (the computation is
analogous to Lemma 5.36):
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α = 0, β = 1∧0
+

Ker(∆−∆+)
Im(∆−)

,

α = 1, β = 1∧1
+

∧0
+

Ker(∆−∆+)
Im(∆−)

∧0

+

∧1

−[x1,x2]

Im(∆−)
,

α ≥ 2, β = 1∧2
+

∧1
+

∧0
+∧2

+

∧1

−[x1,x2]

Im(∆−)

∧1

+

∧1

−[x1,x2]

Im(∆−)

∧0

+

∧1

−[x1,x2]

Im(∆−)
.

α = 0, β = 2∧0
+

Ker(∆−∆+)
Im(∆−)

,

0

α = 1, β = 2∧1
+

∧0
+

Ker(∆−∆+)
Im(∆−)

∧0

+

∧2

−[x1,x2]

Im(∆−)
,

0 0

α ≥ 2, β = 2∧2
+

∧1
+

∧0
+

0 0 0∧2

+

∧2

−[x1,x2]

Im(∆−)

∧1

+

∧2

−[x1,x2]

Im(∆−)

∧0

+

∧2

−[x1,x2]

Im(∆−)
.

We have that, in the diagram of the E′1 spectral sequence, only the rows for q = 0 and q = β are
different from 0. The previous diagram will be the first step in Lemma 5.40 for the computation
of the homology of the G̃A◦(α, β)’s when α, β ∈ {0, 1, 2}.
Analogously we define, for 0 ≤ β < 2:

G̃C(α, β)[p,q] =

{∧α−p
+

∧β−q
− [∂x1 , ∂x2 ] if p ≤ 0, q ≤ 0,

0 otherwise.

We have an isomorphism of bicomplexes γ : GC(α, β)[p,q] −→ G̃C(α, β)[p,q] which is the valuating

map that values ∂y1 and ∂y2 in 1 and is the identity on all other elements. We consider on G̃C(α, β)
the differentials d′ = ∆+ and d′′ = ∆− induced by ∆+∂y1 and ∆−∂y2 for GC(α, β). We also define:

GB′ (α, β)[p,q] =

{∧α−1
+

∧β−1
− [∂x1 , ∂x2 ] if p = q = 0,

0 otherwise.

We have the following commutative diagram:

GB′ (α, β) GC(α, β)

id

∇2

γ

∆−∆+τ2

GB′ (α, β) G̃C(α, β).

We have that G̃C◦(α, β) := CoKer(∆−∆+τ2 : GB′ (α, β) −→ G̃C(α, β)) is isomorphic, as a

bicomplex, to GC◦(α, β). Its diagram is the same of G̃C(α, β) except for p = q = 0. In the
following diagram we shortly write CoKer(∆−∆+) for:

CoKer(∆−∆+ :
∧α−1

+

∧β−1
− [∂x1 , ∂x2 ] −→ ∧α

+

∧β
−[∂x1 , ∂x2 ]).

The diagram of the bicomplex G̃C◦(α, β) is the following, respectively for α = 2, α = 1 and α ≤ 0:
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α = 2

CoKer(∆−∆+),

· · ·

∧2
+

∧2
−[∂x1 , ∂x2 ],

α = 1∧2
+

∧β
−[∂x1 , ∂x2 ] CoKer(∆−∆+),

· · ·· · ·

∧2
+

∧2
−[∂x1 , ∂x2 ]

∧1
+

∧2
−[∂x1 , ∂x2 ],

α ≤ 0∧2
+

∧β
−[∂x1 , ∂x2 ]

∧1
+

∧β
−[∂x1 , ∂x2 ]

∧0
+

∧β
−[∂x1 , ∂x2 ]

· · · · · · · · ·

∧2
+

∧2
−[∂x1 , ∂x2 ]

∧1
+

∧2
−[∂x1 , ∂x2 ],

∧0
+

∧2
−[∂x1 , ∂x2 ],

where the horizontal maps are d′ and the vertical maps are d′′.
In the following diagram we shortly write Ker(∆−)i,j for:

Ker(∆− :
∧i

+

∧j
−[∂x1 , ∂x2 ] −→ ∧i

+

∧j+1
− [∂x1 , ∂x2 ]),

and we shortly write Ker(∆−)
Im(∆−∆+)

for:

Ker(∆− :
∧α

+

∧β
−[∂x1 , ∂x2 ] −→

∧α
+

∧β+1
− [∂x1 , ∂x2 ])

∆−∆+ :
∧α−1

+

∧β−1
− [∂x1 , ∂x2 ] −→

∧α
+

∧β
−[∂x1 , ∂x2 ]

.

The E′1 spectral sequence of G̃C◦(α, β) is the following, respectively for α = 2, α = 1, α ≤ 0, β = 1
and α = 2, α = 1, α ≤ 0, β = 0 (the computation is analogous to Lemma 5.36):

α = 2, β = 1

Ker(∆−)
Im(∆−∆+)∧2

+

∧2
−,

α = 1, β = 1

Ker(∆−)2,1
Ker(∆−)

Im(∆−∆+)∧2
+

∧2
−

∧1
+

∧2
−,

α ≤ 0, β = 1

Ker(∆−)2,1 Ker(∆−)1,1 Ker(∆−)0,1

∧2
+

∧2
−

∧1
+

∧2
−

∧0
+

∧2
−.

α = 2, β = 0

Ker(∆−)
Im(∆−∆+)

0

∧2
+

∧2
−

α = 1, β = 0

Ker(∆−)2,0
Ker(∆−)

Im(∆−∆+)

00

∧2
+

∧2
−

∧1
+

∧2
−,

α ≤ 0, β = 0

Ker(∆−)2,0 Ker(∆−)1,0 Ker(∆−)0,0

0 0 0

∧2
+

∧2
−

∧1
+

∧2
−

∧0
+

∧2
−.

We have that only the rows q = 0 and q = β − 2 are different from 0. We point out that, since
β < 2:

Ker(∆−)

Im(∆−∆+)
∼=

∆−(
∧α

+

∧β−1
− [∂x1 , ∂x2 ])

∆−∆+(
∧α−1

+

∧β−1
− [∂x1 , ∂x2 ])

∼= CoKer(∆−(
∧α−1

+

∧β−1
− [∂x1 , ∂x2 ])

∆+

−−→ ∆−(
∧α

+

∧β−1
− [∂x1 , ∂x2 ])).

The isomorphism holds because β < 2 and we know, by Lemma 5.36, that

0
∆−−−→ ∧0

− [∂x1 , ∂x2 ]
∆−−−→ ∧1

− [∂x1 , ∂x2 ]
∆−−−→ ∧2

− [∂x1 , ∂x2 ]
∆−−−→ 0

is exact except for the right end.
The previous diagram will be the first step in Lemma 5.40 for the computation of the homology of
the G̃C◦(α, β)’s when α, β ∈ {0, 1, 2}.
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The following two technical lemmas will be used in the proof of Lemma 5.40 for the computation
of the homology of the GX◦(α, β)’s when α, β ∈ {0, 1, 2}.

Lemma 5.38. Let 0 ≤ β ≤ 2. Let us consider the complex S(α, β) defined as follows:

S(α, β)α
∆+

←−− ... ∆+

←−− ∆−(
∧k

+

∧β
−[x1, x2])

∆+

←−− ... ∆+

←−− ∆−(
∧0

+

∧β
−[x1, x2]),

where S(α, β)α = Ker(∆−(
∧α

+

∧β
−[x1, x2])

∆+

−−→ ∆−(
∧α+1

+

∧β
−[x1, x2])). The homology spaces of the

complex S(α, β), from left to right, are respectively isomorphic to:

Hα(S(α, β)) ∼=
∧α+β+1, ... , Hk(S(α, β)) ∼=

∧k+1+β, ... , H0(S(α, β)) ∼=
∧β+1.

Proof. We first focus on 0 < β ≤ 2. In order to make the proof more clear, we show the statement
for β = 1 that is more significant; the proof for β = 2 is analogous. We observe that, due to the
definition of S(α, 1), Hi(S(α, 1)) = Hi(S(α + 1, 1)) for 0 ≤ i ≤ α, then it is sufficient to compute
it for large α. We take α > 2. For sake of simplicity, we choose α = 3. We point out that the
complex S(3, 1) reduces to:

0
∆+

←−− ∆−(
∧2

+

∧1
−[x1, x2])

∆+

←−− ∆−(
∧1

+

∧1
−[x1, x2])

∆+

←−− ∆−(
∧0

+

∧1
−[x1, x2]).

In this case the thesis reduces to show that:

H3(S(3, 1)) ∼= 0, H2(S(3, 1)) ∼= 0, H1(S(3, 1)) ∼= 0, H0(S(3, 1)) ∼=
∧2

+.

We use that the complex S(3, 1) is isomorphic, via ∆−, to the complex:

0
∆+

←−−
∧2

+

∧1
−[x1, x2]

Im(∆−)

∆+

←−−
∧1

+

∧1
−[x1, x2]

Im(∆−)

∆+

←−−
∧0

+

∧1
−[x1, x2]

Im(∆−)
,

that is exactly the row for q = 0 in the diagram of the E′1 spectral sequence of G̃A◦(3, 1) in Remark
5.37. In particular, since α = 3, this is the row for q = 0 and values of p respectively 0, 1, 2 and 3
from the left to the right. The fact that the two complexes are isomorphic follows from β = 1 > 0
and the fact that by Lemma 5.36 we know that

0
∆−−−→ ∧0

− [x1, x2]
∆−−−→ ∧1

− [x1, x2]
∆−−−→ ∧2

− [x1, x2]
∆−−−→ 0

is exact except for the left end.
We have that, since E′2(GA◦(3, 1)) has two nonzero rows for q = 0 and q = 1 (see the diagram in
Remark 5.37), the differentials are all zero except for drp,q for r = β + 1 = 2, q = 0, 1 < p ≤ 3.
Indeed 1 < p ≤ 3 because:

d2
p,0 : E′2p,0 −→ E′2p−2,1

and we have that E′2p−2,1 = 0 if p− 2 < 0 and E′2p,0 = 0 if p > 3.

Since the homologies of GA◦(3, 1) and G̃A◦(3, 1) are isomorphic, by Lemma 5.36 we have:

∑
p+q=n

E′∞p,q (G̃A◦(3, 1)) =

{
0 if n < 3,∧1

+ if n = 3.
(5.27)

From this relation we obtain that d2
p,0, for 1 < p ≤ 3, must be an isomorphism. Indeed, let us first

show that d2
p,0, for 1 < p ≤ 3, is surjective. We have:

d2
p,0 : E′2p,0(G̃A◦(3, 1)) −→ E′2p−2,1(G̃A◦(3, 1)). (5.28)
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We know that E′2p−2,1(G̃A◦(3, 1)) ∼=
∧α+β−p+1

+ =
∧5−p

+ using an argument similar to Lemma 5.36.
But, by (5.27), we know that for n = p− 1 < 3:∑

p̃+q̃=p−1

E′∞p̃,q̃ (G̃A◦(3, 1)) = 0.

Moreover dr = 0 for r > 2 and d2
p−2,1 = 0. Therefore d2

p,0 must be surjective.

Let us see that d2
p,0 is injective. If p < 3, then E′∞p,0(G̃A◦(3, 1)) = 0 since it appears in the sum∑

p̃+q̃=p

E′∞p̃,q̃ (G̃A◦(3, 1)) = 0,

by (5.27). Moreover

d2
p+2,−1 : E′2p+2,−1(G̃A◦(3, 1)) = 0 −→ E′2p,0(G̃A◦(3, 1))

is identically 0.
Hence Ker(d2

p,0) = 0.
If p = 3, we know, by (5.27), that ∑

p̃+q̃=p

E′∞p̃,q̃ (G̃A◦(3, 1)) ∼=
∧1

+ (5.29)

and E′∞p,0(G̃A◦(3, 1)) appears in this sum.
Moreover we know that

E′22,1(G̃A◦(3, 1)) = E′∞2,1(G̃A◦(3, 1)) ∼=
∧1

+,

since dr = 0, when r > 2, d2
4,0 = d2

2,1 = 0 and E′22,1(G̃A◦(3, 1)) ∼=
∧1

+ due to a reasoning similar to
Lemma 5.36.
Since E′∞2,1(G̃A◦(3, 1)) also appears in the sum (5.29), we conclude that E′∞p,0(G̃A◦(3, 1)) = 0.
But

d2
p+2,−1 : E′2p+2,−1(G̃A◦(3, 1)) = 0 −→ E′2p,0(G̃A◦(3, 1))

is identically 0, then Ker(d2
p,0) = 0.

Therefore we obtain from the isomorphism that E′2p,0(G̃A◦(3, 1)) ∼=
∧5−p

+ .
Hence:

H3(S(3, 1)) ∼= 0, H2(S(3, 1)) ∼= 0, H1(S(3, 1)) ∼= 0, H0(S(3, 1)) ∼=
∧2

+.

We now prove the statement in the case β = 0. Due to the definition of S(α, 0), Hi(S(α, 0)) =
Hi(S(α+ 1, 0)) for 0 ≤ i ≤ α, then it is sufficient to compute it for large α. For sake of simplicity,
we choose α = 2. We point out that the complex S(2, 0) reduces to:

∆−(
∧2

+

∧0
−[x1, x2])

∆+

←−− ∆−(
∧1

+

∧0
−[x1, x2])

∆+

←−− ∆−(
∧0

+

∧0
−[x1, x2]).

In this case the thesis reduces to show that:

H2(S(2, 0)) ∼= 0, H1(S(2, 0)) ∼=
∧2

+, H0(S(2, 0)) ∼=
∧1

+.

We compute the homology spaces by direct computations.
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i: Let us computeH0(S(2, 0)). We take p(x1, x2) ∈
∧0

+

∧0
−[x1, x2]; an element in ∆−(

∧0
+

∧0
−[x1, x2])

has the following form:

P := w12 ⊗ ∂x1p+ w22 ⊗ ∂x2p.

Hence:

∆+(P ) = w12w11 ⊗ ∂2
x1
p+ w12w21 ⊗ ∂x1∂x2p+ w22w11 ⊗ ∂x1∂x2p+ w22w21 ⊗ ∂2

x2
p.

Therefore P lies in the kernel if and only if ∂2
x1
p = ∂x1∂x2p = ∂2

x2
p = 0, that is p = ax1 + bx2,

for a, b ∈ C. Thus H0(S(2, 0)) ∼=
∧1.

ii: Let us compute H1(S(2, 0)). We take w11p(x1, x2) +w21q(x1, x2) ∈
∧1

+

∧0
−[x1, x2]; an element

in ∆−(
∧1

+

∧0
−[x1, x2]) has the following form:

P := w11w12 ⊗ ∂x1p+ w11w22 ⊗ ∂x2p+ w21w12 ⊗ ∂x1q + w21w22 ⊗ ∂x2q.

Hence:

∆+(P ) = w11w12w21 ⊗ ∂x1∂x2p+ w11w22w21 ⊗ ∂2
x2
p+ w21w12w11 ⊗ ∂2

x1
q + w21w22w11 ⊗ ∂x1∂x2q.

Therefore P lies in the kernel if and only if:{
∂x1∂x2p− ∂2

x1
q = 0,

∂2
x2
p− ∂x1∂x2q = 0.

We obtain that: {
∂x1q =

∫
∂x1∂x2pdx1 = ∂x2p+Q2(x2),

∂x1q =
∫
∂2
x2
pdx2 = ∂x2p+Q1(x1),

where Q1(x1) (resp. Q2(x2)) is a polynomial expression costant in x2 (resp. costant in x1).
Therefore, if P lies in the kernel then ∂x1q = ∂x2p+a, with a ∈ C. Let us consider an element
of the kernel, we obtain that:

P =w11w12 ⊗ ∂x1p+ w11w22 ⊗ ∂x2p+ w21w12 ⊗ (∂x2p+ a) + w21w22 ⊗
∫
∂2
x2
pdx1

=∆+
(
− w12 ⊗ p− w22 ⊗

∫
∂x2pdx1

)
+ w21w12 ⊗ a = ∆+

(
∆−
(
−
∫
pdx1

))
+ w21w12 ⊗ a.

We point out that w21w12 ⊗ a does not lie in the image of the map ∆−(
∧0

+

∧0
−[x1, x2])

∆+

−−→
∆−(

∧1
+

∧0
−[x1, x2]), because w21w12⊗a = ∆+(−w12⊗ax2) but−w12⊗ax2 /∈ ∆−(

∧0
+

∧0
−[x1, x2]).

Thus H1(S(2, 0)) ∼=
∧2.

iii: Let us computeH2(S(2, 0)). We take w11w21p(x1, x2) ∈
∧2

+

∧0
−[x1, x2]; an element in ∆−(

∧2
+

∧0
−[x1, x2])

has the following form:

P := w11w21w12 ⊗ ∂x1p+ w11w21w22 ⊗ ∂x2p.

We point out that:

P = ∆+(−w11w12 ⊗
∫
∂x1pdx2 − w11w22 ⊗ p) = ∆+(∆−(−w11 ⊗

∫
pdx2)).

Therefore every element of ∆−(
∧2

+

∧0
−[x1, x2]) lies in the image of the map ∆−(

∧1
+

∧0
−[x1, x2])

∆+

−−→
∆−(

∧2
+

∧0
−[x1, x2]). Thus H0(S(2, 0)) ∼= 0.
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Lemma 5.39. Let 0 ≤ β ≤ 2. Let us consider the complex T (α, β) defined as follows:

∆−(
∧2

+

∧β−1
− [∂x1 , ∂x2 ])

∆+

←−− ... ∆+

←−− ∆−(
∧k

+

∧β−1
− [∂x1 , ∂x2 ])

∆+

←−− ... ∆+

←−− (5.30)

∆+

←−− CoKer(∆−(
∧α−1

+

∧β−1
− [∂x1 , ∂x2 ])

∆+

−−→ ∆−(
∧α

+

∧β−1
− [∂x1 , ∂x2 ])).

The homology spaces of the complex T (α, β), from left to right, are respectively isomorphic to:

H2(T (α, β)) ∼=
∧β−1

+ , ... , Hk(T (α, β)) ∼=
∧k+β−3

+ , ... , Hα(T (α, β)) ∼=
∧−1+α+β−2

+ .

Proof. We first point out that the statement is obvious for β = 0 since in this case the complex is
trivial and the homology spaces are obviously trivial.
We now focus on β = 1. The complex T (α, β), due to its construction, has the property that
Hi(T (α, β)) = Hi(T (α− 1, β)) for α ≤ i ≤ 2; then we can compute the homology for small α. Let
us take α < 0.
For sake of simplicity we focus on α = −1. In this case the complex T (−1, 1) reduces to:

∆−(
∧2

+

∧0
−[∂x1 , ∂x2 ])

∆+

←−− ∆−(
∧1

+

∧0
−[∂x1 , ∂x2 ])

∆+

←−− ∆−(
∧0

+

∧0
−[∂x1 , ∂x2 ])

∆+

←−− 0. (5.31)

The thesis reduces to:

H2(T (−1, 1)) ∼=
∧0

+, H1(T (−1, 1)) ∼= 0, H0(T (−1, 1)) ∼= 0, H−1(T (−1, 1)) ∼= 0.

In order to prove the thesis, we use that the complex T (−1, 1) is isomorphic, via ∆−, to the row
for q = 0 in the diagram of the E′1 spectral sequence of G̃C◦(−1, 1) in Remark 5.37, that is:

Ker(∆−)2,1
∆+

←−− Ker(∆−)1,1
∆+

←−− Ker(∆−)0,1
∆+

←−− 0,

where we shortly write Ker(∆−)i,j for:

Ker(∆− :
∧i

+

∧j
−[∂x1 , ∂x2 ] −→ ∧i

+

∧j+1
− [∂x1 , ∂x2 ]).

We point out that in this case, the spaces Ker(∆−)2,1, Ker(∆−)1,1 and Ker(∆−)0,1 correspond
respectively to the valus of p = −3,−2,−1 and q = 0 in the diagram of the E′1 spectral sequence
of G̃C◦(−1, 1) (see Remark 5.37).
The fact that the two complexes are isomorphic follows from β = 1 < 2 and the fact that by Lemma
5.36 we know that

0
∆−−−→ ∧0

− [∂x1 , ∂x2 ]
∆−−−→ ∧1

− [∂x1 , ∂x2 ]
∆−−−→ ∧2

− [∂x1 , ∂x2 ]
∆−−−→ 0

is exact except for the right end.
In this case the complex E′1 of G̃C◦(−1, 1) has two nonzero rows, for q = 0 and q = β − 2 = −1,
and the differentials drp,q are all zero except for r = 2, q = −1 and −2 < p ≤ 0. Indeed:

d2
p,−1 : E′2p,−1 −→ E′2p−2,0,

where E′2p,−1 = 0 if p > 0 and E′2p−2,0 = 0 if p− 2 < −3.
We know by Lemma 5.36 that:

∑
p+q=n

E′∞p,q (G̃C◦(−1, 1)) =

{
0 if n > −3∧1

+ if n = −3.
(5.32)
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From this we obtain that drp,q for r = 2, q = −1 and −2 < p ≤ 0 must be an isomorphism. Indeed,
let us first show that d2

p,q for q = −1 and −2 < p ≤ 0 is injective. We have that:

d2
p,−1 : E′2p,−1(G̃C◦(−1, 1)) −→ E′2p−2,0(G̃C◦(−1, 1)). (5.33)

We obtain that E′2p,−1(G̃C◦(−1, 1)) ∼=
∧−p−1

+ using an argument similar to Lemma 5.36.
We know, by (5.32), that for n = p− 1 > −3:∑

p̃+q̃=p−1

E′∞p̃,q̃ (G̃C◦(−1, 1)) = 0.

Hence E′∞p,−1(G̃C◦(−1, 1)) = 0.

Moreover dr = 0 for r > 2 and d2
p+2,−2 = 0 since its domain is 0. Therefore d2

p,−1 must be injective.

Let us see that d2
p,−1 is surjective.

If p− 2 > −3, then E
′∞
p−2,0(G̃C◦(−1, 1)) appears in the sum∑

p̃+q̃=p−2

E
′∞
p̃,q̃ (G̃C◦(−1, 1)) = 0,

by (5.32).
Therefore E

′∞
p−2,0(G̃C◦(−1, 1)) = 0.

But we know that

d2
p−2,0 : E

′2
p−2,0(G̃C◦(−1, 1)) −→ E

′2
p−4,1(G̃C◦(−1, 1)) = 0

is identically 0 because the codomain is 0. Hence d2
p,−1 must be surjective.

If p− 2 = −3, then E
′∞
p−2,0(G̃C◦(−1, 1)) appears in the sum∑

p̃+q̃=α−2

E
′∞
p̃,q̃ (G̃C◦(−1, 1)) =

∧1
+, (5.34)

by (5.32).
We know that E

′2
−2,−1(G̃C◦(−1, 1)) = E

′∞
−2,−1(G̃C◦(−1, 1)) ∼=

∧1
+, since dr = 0, when r > 2, d2

0,−2 =

d2
−2,−1 = 0 and E

′2
−2,−1(G̃C◦(−1, 1)) ∼=

∧1
+ due to an argument similar to Lemma 5.36. Since

E
′∞
−2,−1(G̃C◦(−1, 1)) also appears in the sum (5.34), we conclude that E

′∞
p−2,0(G̃C◦(−1, 1)) = 0.

We point out that

d2
p−2,0 : E

′2
p−2,0(G̃C◦(−1, 1)) −→ E

′2
p−4,1(G̃C◦(−1, 1)) = 0

is identically 0 because the codomain is 0. Therefore d2
p,−1 must be surjective.

Hence, since d2
p,−1 is an isomorphism, we obtain that

E
′2
p−2,0(G̃C◦(−1, 1)) ∼=

∧−1−p
+ .

Then E
′2
s,0(G̃C◦(−1, 1)) ∼=

∧−s−3
+ .

Therefore we obtain:

H2(T (−1, 1)) ∼=
∧0

+, H1(T (−1, 1)) ∼= 0, H0(T (−1, 1)) ∼= 0, H−1(T (−1, 1)) ∼= 0.
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We finally prove the statement in the case β = 2. Due to the definition of T (α, 2), Hi(T (α, 2)) =
Hi(T (α− 1, 2)) for α ≤ i ≤ 2, then it is sufficient to compute it for small α. For sake of simplicity,
we choose α = 0. We point out that the complex T (0, 2) reduces to:

∆−(
∧2

+

∧1
−[∂x1 , ∂x2 ])

∆+

←−− ∆−(
∧1

+

∧1
−[∂x1 , ∂x2 ])

∆+

←−− ∆−(
∧0

+

∧1
−[∂x1 , ∂x2 ]).

In this case the thesis reduces to show that:

H2(T (0, 2)) ∼=
∧1

+, H1(T (0, 2)) ∼=
∧0

+, H0(T (0, 2)) ∼= 0.

We compute the homology spaces by direct computations.

i: Let us compute H0(T (0, 2)). We take w12 ⊗ p(∂x1 , ∂x2) +w22 ⊗ q(∂x1 , ∂x2) ∈
∧0

+

∧1
−[∂x1 , ∂x2 ];

an element in ∆−(
∧0

+

∧1
−[∂x1 , ∂x2 ]) has the following form:

P := w12w22 ⊗ ∂x2p+ w22w12 ⊗ ∂x1q.

Hence:

∆+(P ) = w12w22w11 ⊗ ∂x1∂x2p+ w12w22w21 ⊗ ∂2
x2
p+ w22w12w11 ⊗ ∂2

x1
q + w22w12w21 ⊗ ∂x1∂x2q.

Therefore P lies in the kernel if and only if:{
p∂x1∂x2 − q∂2

x1
= 0,

p∂2
x2
− q∂x1∂x2 = 0.

The previous equations are equivalent to p∂x2 − q∂x1 = 0. Hence P lies in the kernel if and
only if P = 0. Thus H0(T (0, 2)) ∼= 0.

ii: Let us compute H1(T (0, 2)). We take w11w12⊗p1 +w11w22⊗p2 +w21w12⊗q1 +w21w22⊗q2 ∈∧1
+

∧1
−[∂x1 , ∂x2 ]; an element in ∆−(

∧1
+

∧1
−[∂x1 , ∂x2 ]) has the following form:

P := w11w12w22 ⊗ ∂x2p1 + w11w22w12 ⊗ ∂x1p2 + w21w12w22 ⊗ ∂x2q1 + w21w22w12 ⊗ ∂x1q2.

Hence:

∆+(P ) =w11w12w22w21 ⊗ ∂2
x2
p1 + w11w22w12w21 ⊗ ∂x1∂x2p2 + w21w12w22w11 ⊗ ∂x1∂x2q1

+ w21w22w12w11 ⊗ ∂2
x1
q2.

Therefore P lies in the kernel if and only if:

∂2
x2
p1 − ∂x1∂x2p2 − ∂x1∂x2q1 + ∂2

x1
q2 = 0. (5.35)

We notice that if p1 6= 0, then (5.35) reduces to:

p1 =
∂x1∂x2p2 + ∂x1∂x2q1 − ∂2

x1
q2

∂2
x2

.

Hence if P lies in the kernel and p1 6= 0 then:

P = ∆+
(
w12w22 ⊗

(
q1 −

q2∂x1

∂x2

))
= ∆+(∆−

(
w12 ⊗

q1

∂x2

+ w22 ⊗
q2

∂x2

)
.
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Thus if P lies in the kernel and p1 6= 0, then P = 0 in homology.
If P lies in the kernel, p1 = 0 and p2 6= 0, then (5.35) reduces to:

p2 =
−∂x1∂x2q1 + ∂2

x1
q2

∂x1∂x2

= −q1 +
∂x1q2

∂x2

.

Therefore if P lies in the kernel, p1 = 0 and p2 6= 0 then:

P = w11w22w12 ⊗ ∂x1(−q1 +
∂x1q2

∂x2

) + w21w12w22 ⊗ ∂x2q1 + w21w22w12 ⊗ ∂x1q2

= ∆+
(
− w22w12 ⊗ q1 + w22w12

∂x1q2

∂x2

)
= ∆+

(
− w22w12 ⊗ q1

)
+ ∆+

(
∆−
(
w22

q2

∂x2

))
.

Hence in homology P = ∆+(−w22w12⊗q1). If q1 has at least degree 1 in ∂x1 , ∂x2 then P = 0 in
homology: indeed, for example, if q1 has at least degree 1 in ∂x2 then P = ∆+(−w22w12⊗q1) =
∆+∆−

(
w12 ⊗ q1

∂x2

)
. Otherwise, if P lies in the kernel, p1 = 0, p2 6= 0 and q1 = a ∈ C, then in

homology P = ∆+(−w22w12 ⊗ a) 6= 0 since −w22w12 ⊗ a /∈ ∆−(
∧0

+

∧1
−[∂x1 , ∂x2 ]).

If P lies in the kernel, p1 = 0 and p2 = 0, then (5.35) reduces to:

∂x1∂x2q1 = ∂2
x1
q2,

and therefore P = w21w12w22 ⊗ ∂x2q1 + w21w22w12 ⊗ ∂x1q2 = 0.
Therefore H1(T (0, 2)) ∼=

∧0.

iii: Let us compute H2(T (0, 2)). We take w11w21w12 ⊗ p(∂x1 , ∂x2) + w11w21w22 ⊗ q(∂x1 , ∂x2) ∈∧2
+

∧1
−[∂x1 , ∂x2 ]; an element in ∆−(

∧2
+

∧1
−[∂x1 , ∂x2 ]) has the following form:

P := w11w21w12w22 ⊗ ∂x2p+ w11w21w22w12 ⊗ ∂x1q.

We point out that

P = ∆+(w11w12w22 ⊗ p− w21w22w12 ⊗ q),

but w11w12w22 ⊗ p − w21w22w12 ⊗ q ∈ ∆−(
∧1

+

∧1
−[∂x1 , ∂x2 ]) if and only if both p and q have

at least degree 1 in ∂x1 , ∂x2 . Indeed, for example, if p has at least degree 1 in ∂x2 and q has
at least degree 1 in ∂x1 :

w11w12w22 ⊗ p− w21w22w12 ⊗ q = ∆−
(
w11w12 ⊗

p

∂x2

− w21w22 ⊗
q

∂x1

)
.

Therefore P does not lie in ∆+∆−(
∧1

+

∧1
−[∂x1 , ∂x2 ]) if and only if P = w11w21w12w22⊗a∂x2 +

w11w21w22w12 ⊗ b∂x1 for a, b ∈ C. Thus H2(T (0, 2)) ∼=
∧1.

Now using Remark 5.37 and Lemmas 5.38, 5.39, we are able to compute the homology of the
GX◦(α, β)’s when α, β ∈ {0, 1, 2}.

Lemma 5.40. If 0 ≤ α ≤ β ≤ 2 then, as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules:

Hm,n(GA◦(α, β)) ∼=


∧α+β−n if m = 0, n ≥ β,∧α+β−n+1 if m = 1, 0 ≤ n ≤ α,
0 otherwise;
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Hm,n(GD◦(α, β)) ∼=

{∧α+β−n if m = 0, n ≤ 0,

0 otherwise;

Hm,n(GB◦(α, β)) ∼=

{∧α+β−n−2 if m = 0, n ≥ 0,

0 otherwise;

If 0 ≤ β ≤ α ≤ 2 then, as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules:

Hm,n(GC◦(α, β)) ∼=


∧α+β−n−2 if m = 0, n ≤ β − 2,∧−1+α+β−n−2 if m = −1, α− 2 ≤ n ≤ 0,

0 otherwise.

Analogously if 0 ≤ β ≤ α ≤ 2 then, as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules:

Hm,n(GA◦(α, β)) ∼=


∧α+β−n if m = 0, n ≥ α,∧α+β−n+1 if m = 1, 0 ≤ n ≤ β,
0 otherwise;

Hm,n(GD◦(α, β)) ∼=

{∧α+β−n if m = 0, n ≤ 0,

0 otherwise;

Hm,n(GB◦(α, β)) ∼=

{∧α+β−n−2 if m = 0, n ≥ 0,

0 otherwise;

If 0 ≤ α ≤ β ≤ 2 then, as 〈x1∂x1 − x2∂x2 , x1∂x2 , x2∂x1〉−modules:

Hm,n(GC◦(α, β)) ∼=


∧α+β−n−2 if m = 0, n ≤ α− 2,∧−1+α+β−n−2 if m = −1, β − 2 ≤ n ≤ 0,

0 otherwise.

Proof. We prove the statement in the case 0 ≤ α ≤ β ≤ 2 for X = A,B,D and 0 ≤ β ≤ α ≤ 2
for X = C using the theory of spectral sequences for bicomplexes; the case 0 ≤ β ≤ α ≤ 2 for
X = A,B,D and 0 ≤ α ≤ β ≤ 2 for X = C can be proved analogously using the second spectral
sequence instead of the first.

Case A) Let us first consider GA◦(0, 0) = Ker(∇2 :
∧0

+

∧0
−[x1, x2]y0

1y
0
2 −→

∧1
+

∧1
−[x1, x2]). We

have that GA◦(0, 0) = C + 〈x1, x2〉, since an element p(x1, x2) ∈
∧0

+

∧0
−[x1, x2]y0

1y
0
2 goes to 0 if and

only if ∂x1∂x1p = ∂x1∂x2p = ∂x2∂x2p = 0. In this case the statement is true indeed, since we are
focusing on α = β = 0, then p = q = 0. Therefore Gm,nA◦ (0, 0) = 0 when n 6= 0, G1,0

A◦(0, 0) = 〈x1, x2〉,
G0,0
A◦(0, 0) = C and, from

∇−→ G2,1
A◦(0, 0) = 0

∇−→ G1,0
A◦(0, 0) = 〈x1, x2〉 → 0,

we have that H1,0(GA◦(0, 0)) ∼=
∧1. From the sequence

∇−→ G1,1
A◦(0, 0) = 0

∇−→ G0,0
A◦(0, 0) = C→ 0,

we deduce that H0,0(GA◦(0, 0)) ∼=
∧0. Then we can assume β > 0. As in Remark 5.37 we consider:

G̃A(α, β)[p,q] =

{∧α−p
+

∧β−q
− [x1, x2] if p ≥ 0, q ≥ 0,

0 otherwise.
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We consider on this space the differentials d′ = ∆+ and d′′ = ∆− induced by ∆+∂y1 and ∆−∂y2

for GA(α, β). As in Remark 5.37, the E′1 spectral sequence of G̃A◦(α, β), i.e. the homology with
respect to ∆−, is the following:

∧α
+

∧0
+· · ·

0 · · · 0

Ker(∆−∆+)
Im(∆−)

∧0

+

∧β

−[x1,x2]

Im(∆−)
.· · ·

We have that only the rows for q = 0 and q = β are different from 0. We observe that d′ is 0 on
the row q = β. Moreover drp,q is 0 for r ≥ 2 because either the domain or the codomain of these
maps are 0, since α ≤ β. Therefore E′2 = ... = E′∞.
We need to compute E′2 for q = 0. We apply Lemma 5.38 to compute the homology for the
row q = 0. We point out that the isomorphism in (5.28) of Lemma 5.38 was induced by ∇, that

decreases the degree in x1, x2 by 1. Therefore E′2p,0(G̃A◦(α, β)) ∼=
∧α+β−p+1

+ is formed by elements
with representatives of degree 1 in x1, x2.
Hence we have that if n ≥ β > α:∑

p+q=n

E′∞p,q (G̃A◦(α, β)) = E′∞n−β,β(G̃A◦(α, β)) = E′2n−β,β(G̃A◦(α, β)) ∼=
∧α+β−n

+ .

Indeed in this sum there is not the possibility (p, q) = (p, 0) with p ≤ α < β. We have that

H0,n(G̃A◦(α, β)) ∼=
∧α+β−n

+ , if n ≥ β > α.
If 0 ≤ n ≤ α < β:∑
p+q=n

E′∞p,q (G̃A◦(α, β)) = E′∞n,0(G̃A◦(α, β)) = E′2n,0(G̃A◦(α, β)) ∼=
∧α+β−n+1

+ (in x1, x2 degree 1).

(5.36)

We have the H1,n(G̃A◦(α, β)) ∼=
∧α+β−n+1

+ , if 0 ≤ n ≤ α.
If n = α = β we have both terms in the sum, but one is represented by elements of degree 1 in
x1, x2, the others by elements of degree 0, then the result is unchanged.

Case D) We define:

G̃D(α, β)[p,q] =

{∧α−p
+

∧β−q
− [x1, x2] if p ≤ 0, q ≤ 0,

0 otherwise.

We have an isomorphism of bicomplexes γ : GD(α, β)[p,q] −→ G̃D(α, β)[p,q] which is the valuating

map that values ∂y1 and ∂y2 in 1 and is the identity on all other elements. We consider on G̃D(α, β)
the differentials d′ = ∆+ and d′′ = ∆− induced by ∆+∂y1 and ∆−∂y2 for GD(α, β). We also define:

GA′ (α, β)[p,q] =

{∧α−1
+

∧β−1
− [x1, x2] if p = q = 0,

0 otherwise.

We have the following commutative diagram:
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GA′ (α, β) GD(α, β)

id γ

∇2

∆−∆+τ1

GA′ (α, β) G̃D(α, β).

We have that G̃D◦(α, β) := CoKer(∆−∆+τ1 : GA′ (α, β) −→ G̃D(α, β)) is isomorphic, as a bicom-

plex, to GD◦ . Its diagram is the same of G̃D except for p = q = 0 (upper right point in the

following diagram), where instead of
∧α

+

∧β
−[x1, x2] there is CoKer(∆−∆+ :

∧α−1
+

∧β−1
− [x1, x2] −→∧α

+

∧β
−[x1, x2]).

Moreover we observe that GA′ (0, 0) = 0, then GD◦(0, 0) = GD(0, 0) and we can use the same
argument of Lemma 5.36. We then assume β > 0, the diagram of GD(α, β) is:∧2

+

∧β
−[x1, x2]

∧α
+

∧β
−[x1, x2]· · ·

· · · · · · · · ·

∧2
+

∧2
−[x1, x2]

∧α
+

∧2
−[x1, x2],· · ·

where the horizontal maps are d′ and the vertical maps are d′′. In the following diagram we shortly

write Ker(∆−)
Im(∆−∆+)

for the space:

Ker(∆− :
∧α

+

∧β
−[x1, x2] −→

∧α
+

∧β+1
− [x1, x2])

Im(∆−∆+ :
∧α−1

+

∧β−1
− [x1, x2] −→

∧α
+

∧β
−[x1, x2])

.

In the following diagram we also shortly write Ker(∆−)i,j for:

Ker(∆− :
∧i

+

∧j
−[x1, x2] −→ ∧i

+

∧j+1
− [x1, x2]).

The E′1 spectral sequence of G̃D◦(α, β) is (the computation is analogous to Lemma 5.36):

Ker(∆−)2,β
Ker(∆−)

Im(∆−∆+)
· · ·

0 · · · 0

0 0.0

We observe that, since β > 0:

Ker(∆−)

Im(∆−∆+)
∼=

∆−(
∧α

+

∧β−1
− [x1, x2])

∆−∆+(
∧α−1

+

∧β−1
− [x1, x2])

∼= CoKer(∆−(
∧α−1

+

∧β−1
− [x1, x2])

∆+

−−→ ∆−(
∧α

+

∧β−1
− [x1, x2])).

The non zero row of the previous diagram is isomorphic, via ∆−, to the following complex:

∆−(
∧2

+

∧β−1
− [x1, x2])

∆+

←−− ... ∆+

←−− (CoKer(∆−(
∧α−1

+

∧β−1
− [x1, x2])

∆+

−−→ ∆−(
∧α

+

∧β−1
− [x1, x2]))).

(5.37)

The fact that the two complexes are isomorphic follows from β > 0 and the fact that by Lemma
5.36 we know that

0
∆−−−→ ∧0

− [x1, x2]
∆−−−→ ∧1

− [x1, x2]
∆−−−→ ∧2

− [x1, x2]
∆−−−→ 0
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is exact except for the left end.
We observe that we can compute the homology of the complex (5.37) using homology of S(2, β−1)
and Lemma 5.38. Indeed this complex is different from S(2, β−1) only at the right end (using the di-

rection of the previous). Indeed the left end is ∆−(
∧2

+

∧β−1
− [x1, x2]) ∼= Ker(∆−(

∧2
+

∧β−1
− [x1, x2])

∆+

−−→
∆−(

∧3
+

∧β−1
− [x1, x2] = 0)) that is the left hand of S(2, β − 1).

The homology at the right end of our complex (5.37) is:

Ker
(

∆+
( ∆−(

∧α
+

∧β−1
− [x1, x2])

∆−∆+(
∧α−1

+

∧β−1
− [x1, x2])

))
∼=

Ker(∆+(∆−(
∧α

+

∧β−1
− [x1, x2])))

∆−∆+(
∧α−1

+

∧β−1
− [x1, x2])

∼= Hα(S(2, β − 1)).

Therefore we can use the homology groups of S(2, β − 1) and obtain that the homology spaces for
complex (5.37) are isomorphic, respectively from left to right, to:

∧2+β
+ ...

∧α+β
+ .

We conclude because E
′2
n,0(G̃D◦(α, β)) = E

′∞
n,0(G̃D◦(α, β)) ∼=

∧α−n+β
+ and:∑

p+q=n

E
′∞
p,q (G̃D◦(α, β)) = E

′∞
n,0(G̃D◦(α, β)) ∼=

∧α−n+β
+ .

Case C) Let us first consider GC◦(2, 2) = CoKer(∇2 :
∧1

+

∧1
−[∂x1 , ∂x2 ] −→

∧2
+

∧2
−[∂x1 , ∂x2 ]).

We have that GC◦(0, 0) = C + 〈∂x1 , ∂x2〉, since an element p(∂x1 , ∂x2) ∈
∧1

+

∧1
−[∂x1 , ∂x2 ] goes to

an element with degree increased by 2 in ∂x1 , ∂x2 . In this case the statement is true. Indeed,
since we are focusing on α = β = 2, therefore p = q = 0. Hence Gm,nC◦ (2, 2) = 0 when n 6= 0,

G−1,0
C◦ (0, 0) = 〈∂x1 , ∂x2〉, G

0,0
C◦(2, 2) = C. From the sequence

∇−→ G0,1
C◦(2, 2) = 0

∇−→ G−1,0
C◦ (2, 2) = 〈∂x1 , ∂x2〉 → 0,

we have that H−1,0(GC◦(0, 0)) ∼=
∧1. From the sequence

∇−→ G1,1
C◦(2, 2) = 0

∇−→ G0,0
C◦(2, 2) = C→ 0,

we have that H0,0(GC◦(2, 2)) ∼=
∧2. Hence we focus on β < 2.

As in Remark 5.37, we consider:

G̃C(α, β)[p,q] =

{∧α−p
+

∧β−q
− [∂x1 , ∂x2 ] if p ≤ 0, q ≤ 0,

0 otherwise.

We consider on this space the differentials d′ = ∆+ and d′′ = ∆− induced by ∆+∂y1 and ∆−∂y2

for GC(α, β).

As in Remark 5.37, the E′1 spectral sequence of G̃C◦(α, β) is:

Ker(∆−)2,β
Ker(∆−)

Im(∆−∆+)
· · ·

0 · · · 0

∧2
+

∧2
−

∧α
+

∧2
−.· · ·
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We have that only the rows q = 0 and q = β − 2 are different from 0. We observe that d′ is 0
on the row q = β − 2. Moreover drp,q is 0 for r ≥ 2 because either the domain or the codomain of
these maps are 0, since 2− α ≤ 2− β. Therefore E′2 = ... = E′∞.
We need to compute E′2 for q = 0.

We can apply Lemma 5.39 to compute the homology for the row q = 0. We observe that the
isomorphism in (5.33) of Lemma 5.39 is induced by ∇ that increases the degree in ∂x1 , ∂x2 by 1.
Thus the elements of E

′2
p,0(G̃C◦(α, β)) are represented by elements with degree 1 in ∂x1 , ∂x2 .

Therefore we have that if 0 ≤ β ≤ α ≤ 2 and α− 2 ≤ n ≤ 0:∑
m

Hm,n(G̃C◦(α, β)) =
∑
p+q=n

E
′∞
p,q (G̃C◦(α, β)) =E

′∞
n,0(G̃C◦(α, β)) ∼=

∧−1+α+β−n−2
+ (degree 1 in ∂x1 , ∂x2).

Then H−1,n(G̃C◦(α, β)) ∼=
∧−1+α+β−n−2

+ . We then have that if 0 ≤ β ≤ α ≤ 2 and n ≤ β − 2:∑
m

Hm,n(G̃C◦(α, β)) =
∑
p+q=n

E
′∞
p,q (G̃C◦(α, β)) = E

′∞
n−β+2,β−2(G̃C◦(α, β)) ∼=

∧α+β−n−2
+ .

Hence H0,n(G̃C◦(α, β)) ∼=
∧α+β−n−2

+ . Finally if 0 ≤ β ≤ α ≤ 2 and n = β − 2 = α − 2, both the
terms appear in the sum, but the degree with respect to ∂x1 , ∂x2 is in one case 1 and in the other
0, then we have the same result.

Case B) We define:

G̃B(α, β)[p,q] =

{∧α−p
+

∧β−q
− [∂x1 , ∂x2 ] if p ≥ 0, q ≥ 0,

0 otherwise.

We have an isomorphism of bicomplexes γ : GB(α, β)[p,q] −→ G̃B(α, β)[p,q] which is the valuating

map that values y1 and y2 in 1 and is the identity on all other elements. We consider on G̃B(α, β)
the differentials d′ = ∆+ and d′′ = ∆− induced by ∆+∂y1 and ∆−∂y2 for GB(α, β). We also define:

GC′ (α, β)[p,q] =

{∧α+1
+

∧β+1
− [∂x1 , ∂x2 ] if p = q = 0,

0 otherwise.

We have the following commutative diagram:

GB(α, β) GC′ (α, β)

γ id

∇2

∆−∆+τ2

G̃B(α, β) GC′ (α, β).

If we consider GC′ (α, 2) = 0, then GB◦(α, 2) = GB(α, 2) and we can use the same argument we
used in Lemma 5.36, then we focus on β < 2.
We have that G̃B◦(α, β) = Ker(∆−∆+τ2 : G̃B(α, β) −→ GC′ (α, β)) is isomorphic, as a bicomplex,

to GB◦(α, β), its diagram is the same of G̃B(α, β) except for p = q = 0 (lower left point in the
following diagram). In the following diagram we shortly write Ker(∆−∆+) for:

Ker(∆−∆+ :
∧α

+

∧β
−[∂x1 , ∂x2 ] −→ ∧α+1

+

∧β+1
− [∂x1 , ∂x2 ]).

The diagram of G̃B◦(α, β) is:
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∧α
+

∧0
−[∂x1 , ∂x2 ]

∧0
+

∧0
−[∂x1 , ∂x2 ]· · ·

· · · · · · · · ·

Ker(∆−∆+)
∧0

+

∧β
−[∂x1 , ∂x2 ],· · ·

where the horizontal maps are d′ and the vertical maps are d′′. The E
′1 spectral sequence of

G̃B◦(α, β) is:

0 00

0 · · · 0

Ker(∆−∆+)
Im(∆−)

∧0

+

∧β

−[∂x1 ,∂x2 ]

Im(∆−)
.· · ·

Since β < 2 and, by Lemma 5.36, the following complex is exact except for the right end:

0
∆−−−→ ∧0

− [∂x1 , ∂x2 ]
∆−−−→ ∧1

− [∂x1 , ∂x2 ]
∆−−−→ ∧2

− [∂x1 , ∂x2 ]
∆−−−→ 0;

then we observe that:∧k
+

∧β
−[∂x1 , ∂x2 ]

Im(∆−)
∼=

∧k
+

∧β
−[∂x1 , ∂x2 ]

Ker(∆− :
∧k

+

∧β
−[∂x1 , ∂x2 ] −→

∧k
+

∧β+1
− [∂x1 , ∂x2 ])

∼= ∆−(
∧k

+

∧β
−[∂x1 , ∂x2 ]).

Moreover, since β < 2:

Ker(∆−∆+ :
∧α

+

∧β
−[∂x1 , ∂x2 ] −→

∧α+1
+

∧β+1
− [∂x1 , ∂x2 ])

Im(∆− :
∧α

+

∧β−1
− [∂x1 , ∂x2 ] −→

∧α
+

∧β
−[∂x1 , ∂x2 ])

∼=

Ker(∆−∆+ :
∧α

+

∧β
−[∂x1 , ∂x2 ] −→

∧α+1
+

∧β+1
− [∂x1 , ∂x2 ])

Ker(∆− :
∧α

+

∧β
−[∂x1 , ∂x2 ] −→

∧α
+

∧β+1
− [∂x1 , ∂x2 ])

∼=

Ker(∆+ : ∆−(
∧α

+

∧β
−[∂x1 , ∂x2 ]) −→ ∆−(

∧α+1
+

∧β
−[∂x1 , ∂x2 ])).

The non zero row of the E
′1 spectral sequence of G̃B◦(α, β) is therefore isomorphic to:

Ker(∆+ : ∆−(
∧α

+

∧β
−[∂x1 , ∂x2 ]) −→ ∆−(

∧α+1
+

∧β
−[∂x1 , ∂x2 ]))

∆+

←−− ... ∆+

←−− ∆−(
∧0

+

∧β
−[∂x1 , ∂x2 ]).

We observe that we can compute its homology using the homology of T (0, β + 1). Indeed this
complex is different from T (0, β + 1) only at the right end (using the direction of the previous
complex). Indeed the homology of the left end is the same as in T (0, β+1), since we are considering
only the Kernel. The right end of our complex corresponds in T (0, β + 1) to:

CoKer(∆−(
∧−1

+

∧β
−[∂x1 , ∂x2 ]) = 0

∆+

−−→ ∆−(
∧0

+

∧β
−[∂x1 , ∂x2 ])) ∼= ∆−(

∧0
+

∧β
−[∂x1 , ∂x2 ]).

Since E
′2
n,0(G̃B◦(α, β)) = E

′∞
n,0(G̃B◦(α, β)), if n ≥ 0, we have:∑

p+q=n

E
′∞
p,q (G̃B◦(α, β)) = E

′∞
n,0(G̃B◦(α, β)) ∼=

∧α−n+β−2
+ .
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We now sum up the information of Lemmas 5.36 and 5.40 in the following result about the
homology of the GX◦ ’s.
Following [KR1], we introduce the notation P (n, t, c) that denotes the irreducible
〈y1∂y1 − y2∂y2 , y1∂y2 , y2∂y1〉 ⊕ Ct ⊕ CC−module of highest weight (n, t, c) with respect to y1∂y1 −
y2∂y2 , t, C when n ∈ Z≥0 and P (n, t, c) = 0 when n < 0.
Moreover we call Q(i, n, t, c) the irreducible g0−module of highest weight (i, n, t, c) with respect to
x1∂x1 − x2∂x2 , y1∂y1 − y2∂y2 , t, C when i, n ∈ Z≥0 and Q(i, n, t, c) = 0 when n < 0 or i < 0.
Moreover, for i ∈ {0, 1, 2}, we will denote by ri the remainder i mod 2, that is ri = 0 for i = 0, 2
and ri = 1 for i = 1.
Using Lemmas 5.36, 5.40 and the fact that GX◦ = ⊕α,βGX◦(α, β), we obtain the following result.

Proposition 5.41. As g0−modules:

Hm,n(GA◦) ∼=


∑2

i=0Q
(
ri, n− i,−i− 1

2n,−
1
2n
)

if m = 0, n ≥ 0,∑2
i=0Q

(
ri, i− n− 1,−i− 1

2n+ 1
2 ,−

1
2n+ 1

2

)
if m = 1, 0 ≤ n ≤ 1,

0 otherwise.

Hm,n(GD◦) ∼=

{∑2
i=0Q

(
ri,−n+ i,−i− 1

2n+ 1,−1
2n+ 1

)
if m = 0, n ≤ 0,

0 otherwise.

Hm,n(GB◦) ∼=

{∑2
i=0Q

(
ri, n+ 2− i,−i− 1

2n− 1,−1
2n− 1

)
if m = 0, n ≥ 0,

0 otherwise.

Hm,n(GC◦) ∼=


∑2

i=0Q
(
ri,−n− 2 + i,−i− 1

2n,−
1
2n
)

if m = 0, n ≤ 0,∑2
i=0Q

(
ri, n+ 2− i− 1,−i− 1

2n−
1
2 ,−

1
2n−

1
2

)
if m = −1, −1 ≤ n ≤ 0,

0 otherwise.

Proof. This result follows directly from Lemmas 5.36, 5.40 and the decompositionGX◦ = ⊕α,βGX◦(α, β).
Let us see it explicitly for X = A. The proof is analogous for X = B,C,D.
From the decomposition GA◦ = ⊕α,βGA◦(α, β) we obtain that:

Hm,n(GA◦) =
∑
α,β

Hm,n(GA◦(α, β)). (5.38)

We first point out that, from the definition of the GA◦(α, β)’s, the element y1∂y1 − y2∂y2 acts on
elements of Hm,n(GA◦(α, β)) as multiplication by α− β.
By Lemmas 5.36 and 5.40 we obtain that the RHS of (5.38) is 0 for m > 1.
For m = 0, Equation (5.38) reduces to:

H0,n(GA◦) =H0,n(GA◦(0, n)) +H0,n(GA◦(1, n− 1)) + ...+H0,n(GA◦(n− 1, 1)) +H0,n(GA◦(n, 0))
(5.39)

+H0,n(GA◦(1, n)) +H0,n(GA◦(2, n− 1)) + ...H0,n(GA◦(n− 1, 2)) +H0,n(GA◦(n, 1))

+H0,n(GA◦(2, n)) +H0,n(GA◦(3, n− 1))...+H0,n(GA◦(n− 1, 3)) +H0,n(GA◦(n, 2)).

We point out that the RHS of (5.39) is the sum of three irreducible g0−modules that we call M0,
M1 and M2, that are defined as follows. As vector spaces:

M0 := H0,n(GA◦(0, n)) +H0,n(GA◦(1, n− 1)) + ...+H0,n(GA◦(n, 0)) ∼=
∧0 ⊗ P

(
n,−1

2
n,−1

2
n
)
.

Indeed by Lemmas 5.36 and 5.40:
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H0,n(GA◦(n, 0)) =
∧0 ⊗ yn1

H0,n(GA◦(n− 1, 1)) =
∧0 ⊗ yn−1

1 y2

...

H0,n(GA◦(1, n− 1)) =
∧0 ⊗ y1y

n−1
2

H0,n(GA◦(0, n)) =
∧0 ⊗ yn2 .

y2∂y1

y2∂y1

Therefore, as a g0−module, M0
∼= Q

(
0, n,−1

2n,−
1
2n
)

. Moreover as vector spaces:

M1 := H0,n(GA◦(1, n)) +H0,n(GA◦(2, n− 1)) + ...+H0,n(GA◦(n, 1)) ∼=
∧1 ⊗ P

(
n,−1

2
n,−1

2
n
)
.

Indeed by Lemmas 5.36 and 5.40:

H0,n(GA◦(n, 1)) ∼=
∧1
− ⊗ yn1

H0,n(GA◦(n− 1, 2)) ∼=
∧1
− ⊗ yn−1

1 y2

...

H0,n(GA◦(3, n− 2)) ∼=
∧1
− ⊗ y3

1y
n−3
2

H0,n(GA◦(2, n− 1)) ∼=
∧1
− ⊗ y2

1y
n−2
2

H0,n(GA◦(1, n)) ∼=
∧1
− ⊗ y1y

n−1
2 .

y2∂y1

y2∂y1

y2∂y1

Indeed let us observe that, by Lemma 5.36, H0,n(GA◦(n, 1)) ∼=
∧1
−⊗ yn1 = 〈w12⊗ yn1 , w22⊗ yn1 〉. We

have:

(y1∂y1 − y2∂y2).(w12 ⊗ yn1 ) = (n− 1)w12 ⊗ yn1 ,
y2∂y1 .(w12 ⊗ yn1 ) = w12 ⊗ nyn−1

1 y2 ∈ H0,n(GA◦(n− 1, 2)),

y1∂y2 .(w12 ⊗ yn1 ) = w11 ⊗ yn1 = ∇
(x1y

n+1
1

n+ 1

)
= 0 in H0,n(GA◦(n+ 1, 0)).

Analogously:

(y1∂y1 − y2∂y2).(w22 ⊗ yn1 ) = (n− 1)w22 ⊗ yn1 ,
y2∂y1 .(w22 ⊗ yn1 ) = w22 ⊗ nyn−1

1 y2 ∈ H0,n(GA◦(n− 1, 2)),

y1∂y2 .(w22 ⊗ yn1 ) = w21 ⊗ yn1 = ∇
(x2y

n+1
1

n+ 1

)
= 0 in H0,n(GA◦(n+ 1, 0)).

Moreover let us show explicitly that

H0,n(GA◦(3, n− 2))
y2∂y1−−−→ H0,n(GA◦(2, n− 1)).

Indeed, by Lemmas 5.36 and 5.40, H0,n(GA◦(3, n− 2)) ∼=
∧1
− ⊗ y3

1y
n−3
2 and H0,n(GA◦(2, n− 1)) ∼=∧1

+ ⊗ y1y
n−1
2 . We have that:

y2∂y1 .(w12 ⊗ y3
1y
n−3
2 ) = w12 ⊗ 3y2

1y
n−2
2 .
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But w12 ⊗ y2
1y
n−2
2 = −w11 ⊗

2y1y
n−1
2

n−1 in H0,n(GA◦(2, n− 1)) since:

∇
(x1y

2
1y
n−1
2

n− 1

)
= w11 ⊗

2y1y
n−1
2

n− 1
+ w12 ⊗ y2

1y
n−2
2 .

Analogously for w22 ⊗ y3
1y
n−3
2 we have that:

y2∂y1 .(w22 ⊗ y3
1y
n−3
2 ) = w22 ⊗ 3y2

1y
n−2
2 = −w21 ⊗

6y1y
n−1
2

n− 1
in H0,n(GA◦(2, n− 1)).

Finally by Lemmas 5.36 and 5.40, H0,n(GA◦(1, n)) ∼=
∧1

+ ⊗ yn2 ∼=
∧1
− ⊗ y1y

n−1
2 . Therefore:

y2∂y1 .(w12 ⊗ y1y
n−1
2 ) = w12 ⊗ yn2 = ∇

(x1y
n+1
2

n+ 1

)
= 0 in H0,n(GA◦(0, n+ 1)),

y2∂y1 .(w22 ⊗ y1y
n−1
2 ) = w22 ⊗ yn2 = ∇

(x2y
n+1
2

n+ 1

)
= 0 in H0,n(GA◦(0, n+ 1)).

Hence, as a g0−module, M1
∼= Q

(
1, n− 1,−1− 1

2n,−
1
2n
)

. Finally as vector spaces:

M2 := H0,n(GA◦(2, n)) +H0,n(GA◦(3, n− 1)) + ...+H0,n(GA◦(n, 2)) ∼=
∧2 ⊗ P

(
n,−1

2
n,−1

2
n
)
.

Indeed by Lemmas 5.36 and 5.40:

H0,n(GA◦(n, 2)) ∼=
∧−

2 ⊗ yn1

H0,n(GA◦(n− 1, 3)) ∼=
∧−

2 ⊗ yn−1
1 y2

...

H0,n(GA◦(3, n− 1)) ∼=
∧−

2 ⊗ y3
1y
n−3
2

H0,n(GA◦(2, n)) ∼=
∧−

2 ⊗ y2
1y
n−2
2 .

y2∂y1

y2∂y1

Indeed let us observe that, by Lemma 5.36 and 5.40, H0,n(GA◦(n, 2)) =
∧2
− ⊗ yn1 = 〈w12w22 ⊗ yn1 〉.

We have:

(y1∂y1 − y2∂y2).(w12w22 ⊗ yn1 ) = (n− 2)w12w22 ⊗ yn1 ,
y2∂y1 .(w12w22 ⊗ yn1 ) = w12w22 ⊗ nyn−1

1 y2 ∈ H0,n(GA◦(n− 1, 3)),

y1∂y2 .(w12w22 ⊗ yn1 ) = w11w22 ⊗ yn1 + w12w21 ⊗ yn1

= ∇
(
− w22 ⊗

x1y
n+1
1

n+ 1
+ w12 ⊗ x2

yn+1
1

n+ 1

)
= 0 in H0,n(GA◦(n+ 1, 1)).

Moreover let us show explicitly that

H0,n(GA◦(3, n− 1))
y2∂y1−−−→ H0,n(GA◦(2, n)).

Indeed, by Lemmas 5.36 and 5.40, H0,n(GA◦(3, n − 1)) ∼=
∧2
− ⊗ y3

1y
n−3
2 and H0,n(GA◦(2, n)) ∼=∧2

+ ⊗ yn2 . We have that:

y2∂y1 .(w12w22 ⊗ y3
1y
n−3
2 ) = w12w22 ⊗ 3y2

1y
n−2
2 .
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But w12w22 ⊗ y2
1y
n−2
2 = −w21w11 ⊗

2yn2
n(n−1) in H0,n(GA◦(2, n)) since:

∇
(
w12 ⊗

x2y
2
1y
n−1
2

n− 1
+ w21 ⊗

2x1y1y
n
2

n(n− 1)

)
= w12w22 ⊗ y2

1y
n−2
2 + w21w11 ⊗

2yn2
n(n− 1)

.

Finally y2∂y1 acts trivially on H0,n(GA◦(2, n)):

y2∂y1 .(w12w22 ⊗ y2
1y
n−2
2 ) = w12w22 ⊗ 2y1y

n−1
2 = ∇

(
w12 ⊗

2x2y1y
n
2

n

)
= 0 in H0,n(GA◦(1, n)).

Therefore, as a g0−module, M2
∼= Q

(
0, n− 2,−2− 1

2n,−
1
2n
)

.

Now let us focus on m = 1. We notice that, by Lemma 5.40, H1,n(GA◦(α, β)) 6= 0 only for 0 ≤ α ≤
β ≤ 2 and 0 ≤ n ≤ α or 0 ≤ β ≤ α ≤ 2 and 0 ≤ n ≤ β; in these cases H1,n(GA◦(α, β)) ∼=

∧α+β−n+1.
Therefore we have that H1,n(GA◦(α, β)) = 0 if n ≥ 2. Indeed for n = 2 we obtain α = β = 2 and∧α+β−n+1 ∼=

∧3 = 0. The case n > 2 is ruled out by conditions 0 ≤ α ≤ β ≤ 2 and 0 ≤ n ≤ α or
0 ≤ β ≤ α ≤ 2 and 0 ≤ n ≤ β. Hence we focus on n = 0 and n = 1.
Let n = 0. We have that Equation (5.38) reduces to:

H1,0(GA◦) = H1,0(GA◦(0, 0)) +H1,0(GA◦(1, 0)) +H1,0(GA◦(0, 1)). (5.40)

We point out that the RHS of (5.40) is the sum of two irreducible g0−modules M1 and M2 that
are defined as follows. We define:

M1 := H1,0(GA◦(0, 0)).

By relation (5.36) in the proof of Lemma 5.40, as a g0−module:

H1,0(GA◦(0, 0)) ∼= Q
(

1, 0,−1

2
,
1

2

)
Moreover:

M2 := H1,0(GA◦(1, 0)) +H1,0(GA◦(0, 1)).

By relation (5.36) in the proof of Lemma 5.40, as a g0−module:

H1,0(GA◦(1, 0)) +H1,0(GA◦(0, 1)) ∼= Q
(

0, 1,−3

2
,
1

2

)
Finally, let n = 1. We have that:

H1,1(GA◦) = H1,1(GA◦(1, 1)). (5.41)

By relation (5.36) in the proof of Lemma 5.40, as a g0−module:

H1,1(GA◦(1, 1)) ∼= Q
(
0, 0,−2, 0

)
.

5.3.2 Homology of complexes MX

We are now able to compute the homology of the complexes MX ’s.
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Proposition 5.42.

Hm,n(MA) = 0 for all (m,n) 6= (0, 0), (1, 1),

Hm,n(MB) = 0 for all (m,n),

Hm,n(MC) = 0 for all (m,n) 6= (0, 0), (−1,−1),

Hm,n(MD) = 0 for all (m,n).

Proof. By Remarks 5.34, 5.35 and Proposition 5.41 we know that:

Hm,n(GA) = Hm,n(GA◦) = 0 if m > 1 or (m = 1 and n ≥ 2),

Hm,n(GD) = Hm,n(GD◦) = 0 if m > 0 and n ≤ 0,

Hm,n(GB) = Hm,n(GB◦) = 0 if m < 0 and n ≥ 0,

Hm,n(GC) = Hm,n(GC◦) = 0 if m < −1 or (m = −1 and n ≤ −2).

Therefore we obtain, by Proposition 5.33, that:

Hm,n(MA) = 0 if m > 1 or (m = 1 and n ≥ 2),

Hm,n(MD) = 0 if m > 0 and n ≤ 0,

Hm,n(MB) = 0 if m < 0 and n ≥ 0,

Hm,n(MC) = 0 if m < −1 or (m = −1 and n ≤ −2).

Let us analyze the modules Hm,n(GX◦) for m = 0. We have, by Proposition 5.41, that H0,n(GA◦) ∼=
H0,n−2(GB◦) as g0−modules for n ≥ 2, indeed:

H0,n(GA◦) ∼=
2∑
i=0

Q
(
ri, n− i,−i−

1

2
n,−1

2
n
)
,

H0,n−2(GB◦) ∼=
2∑
i=0

Q
(
ri, n− i,−i−

1

2
n,−1

2
n
)
.

By Remark 5.34, we know that

H0,n(GA◦) =
G0,n
A◦

Im(∇ : G1,n+1
A◦ → G0,n

A◦ )
,

H0,n−2(GB◦) = Ker(∇ : G0,n−2
B◦ → G−1,n−3

B◦ ) for n ≥ 3,

H0,0(GB◦) = G0,0
B◦ for n = 2.

We want to show that the map induced by ∇̃2 between H0,n(GA◦) and H0,n−2(GB◦), for n ≥ 2, is
an isomorphism.
Indeed the kernel of the map induced by ∇̃2 between H0,n(GA◦) and H0,n−2(GB◦), for n ≥ 2, is
actually isomorphic to

Ker(∇̃2 : G0,n
A◦ → G0,n−2

B◦ )

Im(∇ : G1,n+1
A◦ → G0,n

A◦ )
=

Ker(∇̃2 : G0,n
A → G0,n−2

B )

Im(∇ : G1,n+1
A → G0,n

A )
= H0,n(GA).

Moreover the image of the map induced by ∇̃2 between H0,n(GA◦) and H0,n−2(GB◦), for n ≥ 2, is

Im(∇̃2 : G0,n
A◦ → G0,n−2

B◦ ) = Im(∇̃2 : G0,n
A → G0,n−2

B ).
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Therefore if we show that ∇̃2 induces an isomorphism between H0,n(GA◦) and H0,n−2(GB◦) for
n ≥ 2, we can conclude that as g0− modules:

Ker(∇̃2 : G0,n
A◦ → G0,n−2

B◦ )

Im(∇ : G1,n+1
A◦ → G0,n

A◦ )
∼= 0;

Im(∇̃2 : G0,n
A◦ → G0,n−2

B◦ ) ∼= Ker(∇ : G0,n−2
B◦ → G−1,n−3

B◦ ) = Ker(∇ : G0,n−2
B → G−1,n−3

B ) for n ≥ 3;

Im(∇̃2 : G0,n
A◦ → G0,n−2

B◦ ) ∼= G0,0
B◦ = Ker(∇2 : G0,0

B → G−2,0
C ) for n = 2.

This means that if we show that the map induced by ∇̃2 between H0,n(GA◦) and H0,n−2(GB◦), for
n ≥ 2, is an isomorphism, then we obtain H0,n(GA) = 0 and H0,n−2(GB) = 0 for n ≥ 2. Hence by
Proposition 5.33 we obtain that H0,n(MA) = 0 and H0,n−2(MB) = 0 for n ≥ 2.
Thus, let us show that the induced map is an isomorphism. It is sufficient to show that the images
of highest weight vectors in H0,n(GA◦) are different from 0. By Proposition 5.41 we know that the
highest weight vectors in H0,n(GA◦) are yn1 , w12 ⊗ yn1 , w12w22 ⊗ yn1 . We have:

∇̃2(yn1 ) = w11w21 ⊗ n(n− 1)yn−2
1 ,

∇̃2(w12 ⊗ yn1 ) = w12w11w21 ⊗ n(n− 1)yn−2
1 ,

∇̃2(w12w22 ⊗ yn1 ) = w12w22w11w21 ⊗ n(n− 1)yn−2
1 .

By Proposition 5.41 we have that H0,1(GA◦) ∼= H−1,0(GC◦) as g0−modules, indeed:

H0,1(GA◦) ∼= Q
(

0, 1,−1

2
,−1

2

)
+Q

(
1, 0,−3

2
,−1

2

)
,

H−1,0(GC◦) ∼= Q
(

0, 1,−1

2
,−1

2

)
+Q

(
1, 0,−3

2
,−1

2

)
.

With an analogous argument, in order to obtain that H0,1(MA) = H−1,0(MC) = 0, it is sufficient
to show that the map induced by ∇3 between H0,1(GA◦) and H−1,0(GC◦) is an isomorphism.
We show that the map induced by ∇3 is different from 0 on highest weight vectors in H0,1(GA◦).
By Proposition 5.41 we know that the highest weight vectors in H0,1(GA◦) are y1, w12 ⊗ y1. We
have:

∇3(y1) = w11w21w12∂x1 + w11w21w22∂x2 ,

∇3(w12 ⊗ y1) = w12w11w21w12∂x1 + w12w11w21w22∂x2 = w12w11w21w22∂x2 .

By Proposition 5.41 it follows that H0,n(GD◦) ∼= H0,n−2(GC◦) as g0−modules for n ≤ 0, indeed:

H0,n(GD◦) ∼=
2∑
i=0

Q
(
ri,−n+ i,−i− 1

2
n+ 1,−1

2
n+ 1

)
,

H0,n−2(GC◦) ∼=
2∑
i=0

Q
(
ri,−n+ i,−i− 1

2
n+ 1,−1

2
n+ 1

)
.

With an analogous argument, in order to obtain that H0,n(MD) = H0,n−2(MC) = 0 for n ≤ 0,
it is sufficient to show that the map induced by ∇̃2 between H0,n(GD◦) and H0,n−2(GC◦) is an
isomorphism for n ≤ 0.
We show that the map induced by ∇̃2 is different from 0 on highest weight vectors in H0,n(GD◦). By
Proposition 5.41 we know that the highest weight vectors in H0,n(GD◦) are ∂−ny2

, w11⊗∂−ny2
, w11w21⊗

∂−ny2
. We have:

∇̃2(∂−ny2
) = w11w21 ⊗ ∂2

y1
∂−ny2

+ w11w22 ⊗ ∂y1∂
−n+1
y2

+ w12w21 ⊗ ∂y1∂
−n+1
y2

+ w12w22 ⊗ ∂−n+2
y2

,
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∇̃2(w11 ⊗ ∂−ny2
) = w11w12w21 ⊗ ∂y1∂

−n+1
y2

+ w11w12w22 ⊗ ∂−n+2
y2

,

∇̃2(w11w21 ⊗ ∂−ny2
) = w11w21w12w22 ⊗ ∂−n+2

y2
.

Finally, by Proposition 5.41 we have that H1,0(GA◦) ∼= H0,−1(GC◦) as g0−modules, indeed:

H1,0(GA◦) ∼= Q
(

1, 0,−1

2
,
1

2

)
+Q

(
0, 1,−3

2
,
1

2

)
,

H0,−1(GC◦) ∼= Q
(

1, 0,−1

2
,
1

2

)
+Q

(
0, 1,−3

2
,
1

2

)
.

With an analogous argument, in order to obtain that H1,0(MA) = H0,−1(MC) = 0, it is sufficient
to show that the map induced by ∇̃3 between H1,0(GA◦) and H0,−1(GC◦) is an isomorphism.
We show that the map induced by ∇̃3 is different from 0 on highest weight vectors in H1,0(GA◦). By
Proposition 5.41 we know that the highest weight vectors in H1,0(GA◦) are x1, w11⊗x2−w22⊗x1.
We have:

∇̃3(x1) = w11w12w21∂y1 + w11w12w22∂y2 ,

∇̃3(w11 ⊗ x2 − w22 ⊗ x1) = w11w21w12w22∂y2 − w22w11w12w21∂y1 .

Let us now focus on the remaining four cases.

Proposition 5.43.

H0,0(MC) ∼= 0,

H−1,−1(MC) ∼= C.

In order to prove Proposition 5.43, we need the following results and the theory of spectral
sequences. So far we have shown that E0(MC)0,0 = H0,0(GrMC) = S(g−2) ⊗ H0,0(GC) and
E0(MC)−1,−1 = H−1,−1(GrMC) = S(g−2)⊗H−1,−1(GC) as W−modules.

Lemma 5.44. Let

ξ = iw11w21∆−∂y1 + (iw12w21 + iw11w22)∆−∂y2 .

be an element in M−1,−1
C . The following hold:

1. ∇ξ = 0,

2. g0.ξ = 0,

3. (tξ1 + itξ2).ξ ∈ Im∇, (ξ1ξ3ξ4 + iξ2ξ3ξ4).ξ ∈ Im∇,

4. ξ /∈ Im∇,

5. [ξ] is a basis for the g0−module H−1,−1(GC) ∼= C.

Proof. 1) Let us show that ∇ξ = 0.

∇ξ =iw11w21w12w21 ⊗ ∂x1∂
2
y1
∂x2 + iw11w21w22w11 ⊗ ∂x1∂

2
y1
∂x2 + iw12w21w12w11 ⊗ ∂2

x1
∂y1∂y2

+ iw12w21w12w21 ⊗ ∂x1∂y1∂y2∂x2 + iw12w21w22w11 ⊗ ∂x1∂y1∂y2∂x2 + iw11w22w12w21 ⊗ ∂x1∂y1∂y2∂x2

+ iw11w22w12w11 ⊗ ∂2
x1
∂y1∂y2
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=− 4iΘw11w21 ⊗ ∂x1 ⊗ ∂2
y1
∂x2 + i4Θw11w21 ⊗ ∂x1∂

2
y1
∂x2 − 4iΘw12w11 ⊗ ∂2

x1
∂y1∂y2

− 4iΘw12w21 ⊗ ∂x1 ⊗ ∂y1∂y2∂x2 − iw21w12w22w11 ⊗ ∂x1∂y1∂y2∂x2 − 4iΘw22w11 ⊗ ∂x1∂y1∂y2∂x2

− iw22w11w12w21 ⊗ ∂x1∂y1∂y2∂x2 + 4iΘw12w21 ⊗ ∂x1∂y1∂y2∂x2 − iw11w22w11w12 ⊗ ∂2
x1
∂y1∂y2

=− 4iΘw12w11 ⊗ ∂2
x1
∂y1∂y2 + iw22w11w12w21 ⊗ ∂x1∂y1∂y2∂x2 − iw22w11w12w21 ⊗ ∂x1∂y1∂y2∂x2

+ 4iΘw12w11 ⊗ ∂2
x1
∂y1∂y2 = 0.

2) Let us show that g0.ξ = 0.

x1∂x2 .ξ =− iw11w21w12 ⊗ ∂x2∂y1 + iw11w21w12 ⊗ ∂x2∂y1 − iw12w21w12∂x2∂y2 + iw12w11w12 ⊗ ∂x1∂y2

+ iw12w11w22 ⊗ ∂x2∂y2 + iw12w21w12 ⊗ ∂x2∂y2 − iw11w22w12 ⊗ ∂x2∂y2 + iw11w12w12 ⊗ ∂x1∂y2 = 0;

x2∂x1 .ξ =iw11w21w22 ⊗ ∂x1∂y1 − iw11w21w22 ⊗ ∂x1∂y1 + iw22w21w12 ⊗ ∂x1∂y2

+ iw12w21w22 ⊗ ∂x1∂y2 − iw12w21w22 ⊗ ∂x1∂y2 + iw21w22w12 ⊗ ∂x1∂y2 = 0;

y2∂y1 .ξ =iw12w21w12 ⊗ ∂x1∂y1 + iw11w22w12 ⊗ ∂x1∂y1 + iw12w21w22 ⊗ ∂x2∂y1

− iw12w21w12 ⊗ ∂x1∂y1 − iw12w21w22 ⊗ ∂x2∂y1 − iw11w22w12 ⊗ ∂x1∂y1 = 0;

y1∂y2 .ξ =− iw11w21w12 ⊗ ∂x1∂y2 − iw11w21w22 ⊗ ∂x2∂y2 + iw11w21w12 ⊗ ∂x1∂y2

+ iw12w21w11 ⊗ ∂x1∂y2 + iw11w21w22 ⊗ ∂x2∂y2 + iw11w21w12 ⊗ ∂x1∂y2

+ iw11w22w11 ⊗ ∂x1∂y2

=− iw21w12w11 ⊗ ∂x1∂y2 − 4iΘw11 ⊗ ∂x1∂y2 + iw11w21w12 ⊗ ∂x1∂y2

+ 4iΘw11 ⊗ ∂x1∂y2 = 0.

The fact that t.ξ = C.ξ = 0 is a straightforward computation.
3) We point out that (tξ1 + itξ2) and ξ1ξ3ξ4 + iξ2ξ3ξ4 are the lowest weight vectors of g1 (see the
Appendix).
We compute (tξ1 + itξ2).ξ in three parts separately. Let us denote ξ = m1 +m2 +m3, where

m1 = iw11w21∆−∂y1 ,

m2 = iw12w21∆−∂y2 ,

m3 = iw11w22∆−∂y2 .

We will use the following relations that come from bracket (2.1) and Proposition 2.11:

[tξ1 + itξ2, w11] = −2i(t+H1), [tξ1 + itξ2, w22] = 0,

[tξ1 + itξ2, w12] = −2iy2∂y1 , [tξ1 + itξ2, w21] = −2ix2∂x1 .

We have:

(tξ1 + itξ2).(m1) =2(t+H1)w21∆−∂y1 − iw11(−2ix2∂x1)∆−∂y1 + iw11w21(tξ1 + itξ2)∆−∂y1

=2(t+H1)w21∆−∂y1 − 2w11(x2∂x1)∆−∂y1 + 2w11w21(y2∂y1)⊗ ∂x1∂y1

=2w21(t+H1)∆−∂y1 − 2w21∆−∂y1 − 2w11(x2∂x1)∆−∂y1

=− 2w21w12∂x1∂y1 + 2w21w12(t+H1)∂x1∂y1 − 4w21w22∂x2∂y1

+ 2w21w22(t+H1)∂x2∂y1 − 2w21∆−∂y1 − 2w11(x2∂x1)∆−∂y1

=− 2w21w12∂x1∂y1 + 4w21w21∂x1∂y1 − 4w21w22 ⊗ ∂x2∂y1

+ 6w21w22∂x2∂y1 − 2w21∆−∂y1 − 2w11(x2∂x1)∆−∂y1

=2w21w12∂x1∂y1 + 2w21w22∂x2∂y1 − 2w21w12∂x1∂y1

− 2w21w22∂x2∂y1 − 2w11(x2∂x1)∆−∂y1

=− 2w11w22∂x1∂y1 + w11w22 ⊗ ∂x1∂y1 = 0;
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(tξ1 + itξ2).(m2) =(2y2∂y1)w21∆−∂y2 − iw12(−2ix2∂x1)∆−∂y2 + iw12w21(−2iy2∂y1)⊗ ∂x1∂y2

=w21(2y2∂y1)∆−∂y2 + 2w22∆−∂y2 − 2w12(x2∂x1)∆−∂y2 − 2w12w21∂x1∂y1

=− 2w21w12∂x1∂y1 − 2w21w22∂x2∂y1 + 2w22w12∂x1∂y2 − 2w12w21∂x1∂y1 ;

(tξ1 + itξ2).(m3) =2(t+H1)w22∆−∂y2 + iw11w22(−2iy2∂y1)∂x1∂y2

=2w22(t+H1)∆−∂y2 − 4w22∆−∂y2 − 2w11w22∂x1∂y1

=− 2w22w12∂x1∂y2 + 6w22w12∂x1∂y2 − 4w22w12∂x1∂y2 − 2w11w22∂x1∂y1

=− 2w11w22∂x1∂y1 .

Then we have that:

(tξ1 + itξ2).ξ =− 2w21w12∂x1∂y1 − 2w21w22∂x2∂y1 + 2w22w12∂x1∂y2

− 2w12w21∂x1∂y1 − 2w11w22∂x1∂y1

=− 2w21w12∂x1∂y1 − 2w21w22∂x2∂y1 + 2w22w12∂x1∂y2

+ 2w21w12∂x1∂y1 + 8Θ⊗ ∂x1∂y1 − 8Θ⊗ ∂x1∂y1 + 2w22w11∂x1∂y1

=∇(2w22 ⊗ 1).

We compute (ξ1ξ3ξ4 + iξ2ξ3ξ4).ξ in three parts separately. We will shortly write g1 instead of
(ξ1ξ3ξ4 + iξ2ξ3ξ4). We will use the following relations that come from bracket (2.1) and Proposition
2.11:

[g1, w11] = 2C + 2H2, [g1, w22] = 0,

[g1, w12] = 2y2∂y1 , [g1, w21] = −2x2∂x1 .

We have that:

g1.m1 =i(2C + 2H2)w21∆−∂y1 − iw11(−2x2∂x1)∆−∂y1 + iw11w21g1∆−∂y1

=iw21(2C + 2H2)∆−∂y1 + 2iw21∆−∂y1 + 2iw11(x2∂x1)∆−∂y1 + iw11w21(2y2∂y1)⊗ ∂x1∂y1

=− 2iw21w12∂x1∂y1 + iw21w12(2C + 2H2)⊗ ∂x1∂y1 + iw21w22(2C + 2H2)⊗ ∂x2∂y1

+ 2iw21∆−∂y1 + 2iw11w22 ⊗ ∂x1∂y1 − 2iw11w22 ⊗ ∂x1∂y1 + iw11w21 ⊗ (2y2∂y1)∂x1∂y1

=− 2iw21w12∂x1∂y1 − 2iw21w22 ⊗ ∂x2∂y1 + 2iw21w12∂x1∂y1 + 2iw21w22∂x2∂y1

+ 2iw11w22 ⊗ ∂x1∂y1 − 2iw11w22∂x1∂y1 = 0;

g1.m2 =(2iy2∂y1)w21∆−∂y2 − iw12(−2x2∂x1)∆−∂y2 + iw12w21(g1)∆−∂y2

=2iw22∆−∂y2 + 2iw21w12 ⊗ (y2∂y1)∂x1∂y2 + 2iw21w22 ⊗ (y2∂y1)∂x2∂y2 + 2iw12w22∂x1∂y2

− 2iw12w22 ⊗ ∂x1∂y2 + iw12w21(g1)∆−∂y2

=2iw22∆−∂y2 − 2iw21w12 ⊗ ∂x1∂y1 − 2iw21w22 ⊗ ∂x2∂y1 + 2iw12w22 ⊗ ∂x1∂y2 − 2iw12w22 ⊗ ∂x1∂y2

+ iw12w21(g1)∆−∂y2

=2iw22w12∂x1∂y2 − 2iw21w12∂x1∂y1 − 2iw21w22∂x2∂y1 − 2iw12w21∂x1∂y1

=2iw22w12∂x1∂y2 − 2iw21w22∂x2∂y1 + 8iΘ⊗ ∂x1∂y1 ;

g1.m3 =i(2C + 2H2)w22∆−∂y2 + iw11w22(g1)∆−∂y2

=iw22(2C + 2H2)∆−∂y2 + iw11w22(2y2∂y1)∂x1∂y2

=iw22w12(2C + 2H2)∂x1∂y2 − 2iw22w12∂x1∂y2 − 2iw11w22∂x1∂y1

=2iw22w12∂x1∂y2 − 2iw22w12∂x1∂y2 − 2iw11w22∂x1∂y1

=2iw22w11∂x1∂y1 − 8iΘ⊗ ∂x1∂y1 .

Then we have:

(ξ1ξ3ξ4 + iξ2ξ3ξ4).ξ =2iw22w12∂x1∂y2 − 2iw21w22∂x2∂y1 + 8iΘ⊗ ∂x1∂y1 + 2iw22w11∂x1∂y1 − 8iΘ⊗ ∂x1∂y1
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=∇(2iw22 ⊗ 1).

4) Let us show that ξ /∈ Im∇. Let us consider ∇ : M(0, 0, 2, 0) −→M(1, 1, 3, 0). Since M(0, 0, 2, 0)
is irreducible and ∇ 6= 0, the map ∇ is injective. Therefore, if ξ = ∇(v), then t.v = 0 because of
injectivity and the fact that t.ξ = 0. Let us take v ∈M(0, 0, 2, 0) whose weight is 0 with respect to
t. Then:

v =α1Θ⊗ 1 + α2w11w22 ⊗ 1 + α3w11w12 ⊗ 1 + α4w11w21 ⊗ 1

+ α5w22w12 ⊗ 1 + α6w22w21 ⊗ 1 + α7w12w21 ⊗ 1.

If ξ = ∇(v), from injectivity and the fact that (x1∂x1 − x2∂x2).ξ = 0, we obtain that (x1∂x1 −
x2∂x2).v = 0, that is:

(x1∂x1 − x2∂x2).v = 2α3w11w21 ⊗ 1− 2α6w22w21 ⊗ 1 = 0.

We deduce that α3 = α6 = 0. Similarly, if ξ = ∇(v), from injectivity and the fact that (y1∂y1 −
y2∂y2).ξ = 0, we obtain (y1∂y1 − y2∂y2).v = 0, that is:

(y1∂y1 − y2∂y2).v = 2α4w11w21 ⊗ 1− 2α5w22w12 ⊗ 1 = 0.

We deduce that α4 = α5 = 0. Hence:

v = α1Θ⊗ 1 + α2w11w22 ⊗ 1 + α7w12w21 ⊗ 1.

We compute ∇v.

∇v =α1Θw11 ⊗ ∂x1∂y1 + α1Θw21 ⊗ ∂x2∂y1 + α1Θw12 ⊗ ∂x1∂y2 + α1Θw22 ⊗ ∂x2∂y2

+ α2w11w22w11 ⊗ ∂x1∂y1 + α2w11w22w21 ⊗ ∂x2∂y1 + α2w11w22w12 ⊗ ∂x1∂y2

+ α7w12w21w11 ⊗ ∂x1∂y1 + α7w12w21w12 ⊗ ∂x1∂y2 + α7w12w21w22 ⊗ ∂x2∂y2 .

The terms in ∂x1∂y1 in ∇v and ξ should be the same, then we have:

α1Θw11 + α2w11w22w11 + α7w12w21w11 = +iw11w21w12.

Therefore: {
α1 + 4α2 − 4α7 = 0,

−α7 = i.

The terms in ∂x2∂y2 in ∇v and ξ should be the same, then we have:

α1Θw22 ⊗ ∂x2∂y2 + α7w12w21w22 ⊗ ∂x2∂y2 = iw12w21w22 ⊗ ∂x2∂y2 .

{
α1 = 0,

α7 = i.

This leads to a contradiction.
Let us show also that [ξ] 6= 0 in H−1,−1(GC) because ξ does not lie in the image of ∇ : G0,0

C −→
G−1,−1
C . Indeed if ξ lies in the image of ∇ : G0,0

C −→ G−1,−1
C , therefore [ξ] = 0 in H−1,−1(MC)

since H−1,−1(GrC) = S(g−2) ⊗ H−1,−1(GC) is the first step of the spectral sequence; this is a
contradiction.
5) By Proposition 5.41 we know that H−1,−1(GC) ∼= C as a g0−module. From the previous
properties we know that 0 6= [ξ] ∈ H−1,−1(GC), hence [ξ] is a basis for the g0−module H−1,−1(GC).
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Corollary 5.45. ξ is a secondary singular vector in M(1, 1, 3, 0), i.e. a singular vector in the
quotient M(1, 1, 3, 0)/ Im∇.

Lemma 5.46. Let

λ =
1

2
iw11w21w12w22 ⊗ 1 + iΘw12w21 ⊗ 1 + iΘw11w22 ⊗ 1

be an element in M0,0
C = M(0, 0, 2, 0). The following hold:

1. x1∂x2 .λ = 0 and y1∂y2 .λ = 0,

2. λ is a basis for the g0−module H0,0(GC) ∼= C.

Proof. Let us prove that x1∂x2 .λ = 0 and y1∂y2 .λ = 0. We have:

x1∂x2 .λ =iw12w11Θ⊗ 1 + iΘw11w12 ⊗ 1 = 0,

y1∂y2 .λ = +
1

2
iw11w21w12w21 ⊗ 1 + iΘw11w21 ⊗ 1 + iΘw11w21 ⊗ 1 = 0.

We point out that ∇λ is a cycle in GrMC since λ ∈ F4MC and ∇λ ∈ F4MC . Indeed in MC :

∇λ =
1

2
iw11w21w12w22w11 ⊗ ∂x1∂y1 +

1

2
iw11w21w12w22w21 ⊗ ∂x2∂y1 + iΘw12w21w11 ⊗ ∂x1∂y1

+ iΘw12w21w22 ⊗ ∂x2∂y2 + iΘw12w21w12 ⊗ ∂x1∂y2 + iΘw11w22w21 ⊗ ∂x2∂y1

+ iΘw11w22w12 ⊗ ∂x1∂y2 + iΘw11w22w11 ⊗ ∂x1∂y1

=2iw11w21w12Θ⊗ ∂x1∂y1 + 2iw11w21w22Θ⊗ ∂x2∂y1 + iΘw12w21w11 ⊗ ∂x1∂y1

+ iΘw12w21w22 ⊗ ∂x2∂y2 + iΘw12w21w12 ⊗ ∂x1∂y2 + iΘw11w22w21 ⊗ ∂x2∂y1

+ iΘw11w22w12 ⊗ ∂x1∂y2 + iΘw11w22w11 ⊗ ∂x1∂y1

=iΘw11w21w12 ⊗ ∂x1∂y1 + iΘw11w21w22 ⊗ ∂x2∂y1 + iΘw12w21w22 ⊗ ∂x2∂y2

+ iΘw12w21w12 ⊗ ∂x1∂y2 + iΘw11w22w12 ⊗ ∂x1∂y2

=Θξ.

Moreover [λ] lies in H0,0(GC) since the terms of λ that include Θ are in F3M , the other is in
F4MC . By Proposition 5.41 we know that H0,0(GC) ∼= C as a g0−module. From the previous
computations we know that 0 6= [λ] ∈ H0,0(GC), hence [λ] is a basis for the g0−module H0,0(GC).
We have also that ∇[λ] = Θ[ξ].

Proof of Proposition 5.43. By (5.25) and Lemmas 5.44, 5.46 we know that as W−modules

E0(MC)0,0 = H0,0(GrMC) ∼= S(g−2)⊗H0,0(GC) = S(g−2)⊗ 〈[λ]〉,
E0(MC)−1,−1 = H−1,−1(GrMC) ∼= S(g−2)⊗H−1,−1(GC) = S(g−2)⊗ 〈[ξ]〉.

By Lemma 5.46, the morphism ∇(0) : E0(MC)0,0 −→ E0(MC)−1,−1 maps [λ] to Θ[ξ]. Therefore
∇(0) is injective and E1(MC)0,0 ∼= 0, E1(MC)−1,−1 ∼= C.
Thus E∞(MC)0,0 ∼= E1(MC)0,0 = 0 and E∞(MC)−1,−1 ∼= E1(MC)−1,−1 ∼= C as W−modules, and
hence as g−modules.

Now we focus on the two remaining cases of MA.

Proposition 5.47.

H0,0(MA) ∼= C,
H1,1(MA) ∼= 0.
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Remark 5.48. By straightforward computation we show that H0,0(MA) ∼= M0,0
A / Im∇ ∼= C. Indeed

Im∇ is the g−module generated by the singular vector w11 ⊗ 1 and we have that:

x2∂x1 .(w11 ⊗ 1) = w21 ⊗ 1,

y2∂y1 .(w11 ⊗ 1) = w12 ⊗ 1,

y2∂y1 .(x2∂x1 .(w11 ⊗ 1)) = w22 ⊗ 1,

w12.(w21 ⊗ 1) + w21.(w12 ⊗ 1) = −4Θ⊗ 1.

Therefore the only elements that do not lie in the image of ∇ are those of F (0, 0, 0, 0).

In order to prove Proposition 5.47 we need the following result.

Lemma 5.49. Let

s = (w11 ⊗ x2 − w21 ⊗ x1)y2 − (w12 ⊗ x2 − w22 ⊗ x1)y1

be an element in M1,1
A . The following hold:

1. ∇[s] = 0 in GrMA,

2. s is a highest weight vector of weight (0,0,-2,0),

3. s is a basis for the g0−module H1,1(GA) ∼= C.

Proof. 1. Let us show that ∇[s] = 0 in GrMA.

∇s = w11w22 ⊗ 1− w21w12 ⊗ 1− w12w21 ⊗ 1 + w22w11 ⊗ 1 = 8Θ⊗ 1 ∈ F1MA.

Since s ∈ F1MA, then ∇[s] = 0 in GrMA.

2. Let us show that s is a highest weight vector of weight (0,0,-2,0). We have:

x1∂x2 .s = w11 ⊗ x1y2 − w11 ⊗ x1y2 − w12 ⊗ x1y1 + w12 ⊗ x1y1 = 0,

x2∂x1 .s = w21 ⊗ x2y2 − w21 ⊗ x2y2 − w22 ⊗ x2y1 + w22 ⊗ x2y1 = 0,

y1∂y2 .s = w11 ⊗ x2y1 − w21 ⊗ x1y1 − w11 ⊗ x2y1 + w21 ⊗ x1y1 = 0,

y2∂y1 .s = w12 ⊗ x2y2 − w22 ⊗ x1y2 − w12 ⊗ x2y2 + w22 ⊗ x1y2 = 0,

t.s =
(
− 1− 1

2
− 1

2

)
s = −2s,

C.s = 0.

3. It follows from the facts that s lies in G1,1
A , ∇[s] = 0 in GrMA, the space H1,1(GA) is

one−dimensional by Proposition 5.41 and s does not lie in Im∇, where ∇ : G2,2
A −→ G1,1

A .

Indeed let us see that s /∈ Im∇. Since t.s = −2s, it should come from an element in G2,2
A of

weight −2 with respect to t, that is an element v, where v ∈ F (2, 2,−2, 0). But:

∇v = w11 ⊗ ∂x1∂y1v + w21 ⊗ ∂x2∂y1v + w12 ⊗ ∂x1∂y2v + w22 ⊗ ∂x2∂y2v.

Then v should satisfy the following identities:
∂x1∂y1v = x2y2,

∂x2∂y1v = −x1y2,

∂x1∂y2v = −x2y1,

∂x2∂y2v = x1y1.

This is impossible.
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Proof of Proposition 5.47. By (5.25), Remark 5.48 and Lemma 5.49, we know that as W−modules

E0(MA)0,0 = H0,0(GrMA) ∼= S(g−2)⊗H0,0(GA) = S(g−2)⊗ 〈1〉,
E0(MA)1,1 = H1,1(GrMA) ∼= S(g−2)⊗H1,1(GA) = S(g−2)⊗ 〈[s]〉.

By Lemma 5.49, the morphism ∇(0) : E0(MA)1,1 −→ E0(MA)0,0 maps [s] to 8Θ ⊗ [1]. Therefore
∇(0) is injective and E1(MA)1,1 ∼= 0. Thus E∞(MA)1,1 ∼= E1(MA)1,1 = 0 as W−modules, and
hence as g−modules.

Remark 5.50. We point out that for C = 0, the study of finite irreducible modules over K ′4 reduces
to the study of finite irreducible modules over K4, already studied in [BKL1]. In particular, for
C = 0, the diagram of maps between degenerate modules reduces to the diagonal m = n in the
quadrants A and C of Figure 4.1. For K4 the homology had been already computed in [BKL1,
Propositions 6.2, 6.4] using de Rham complexes. Propositions 5.43 and 5.47 are coherent with the
results of [BKL1, Propositions 6.2, 6.4] for K4.

5.4 Size

The aim of this section is to compute the size of the modules I(m,n, µt, µC). For a S(g−2)−module
V , we define its size as (see [KR1]):

size(V ) =
1

4
rkS(g−2) V.

Proposition 5.51. A) size(I(m,n,−m+n
2 , m−n2 )) = 2mn+m+ n,

B) size(I(m,n, 1 + m−n
2 ,−1− m+n

2 )) = 2(m+ 1)(n− 1) +n− 1 + 3m+ 3 + 2 = 2mn+m+ 3n+ 2,

C) size(I(m,n, m+n
2 + 2, n−m2 )) = 2(m+ 1)(n+ 1) +m+ n+ 2 = 2mn+ 3m+ 3n+ 4,

D) size(I(m,n, 1 + n−m
2 , 1 + m+n

2 )) = 2mn+ n+ 3m+ 2.

In order to prove Proposition 5.51 we need some preliminary results.

Remark 5.52. A consequence of results in [CCK1] on conformal duality is that, in the case of
K ′4, the conformal dual of M = Ind(F ), where F = F (m,n, µt, µC) is an irreducible g0−module,
corresponds to the shifted dual Ind(F∨), where F∨ ∼= F (m,n,−µt + 2,−µC).

We will say that I(m,n, µt, µC) is of type X if M(m,n, µt, µC) is represented in quadrant X in
Figure 4.1.

Remark 5.53. We point out that it is sufficient to compute the size for modules I(m,n,−m+n
2 , m−n2 )

of type A and I(m,n, 1 + n−m
2 , 1 + m+n

2 ) of type D and use conformal duality, since conformal dual
modules have the same size.
Let us show that the module I(m,n, m+n

2 + 2, n−m2 ) of type C is the conformal dual of I(m+ 1, n+
1,−m+n+2

2 , m−n2 ) of type A, , when (m,n) 6= (0, 0). Indeed, by Remark 4.8, we have the following
dual maps:

∇m+1,n+1 : M
(
m+ 1, n+ 1,−m+ n+ 2

2
,
m− n

2

)
−→M

(
m,n,−m+ n

2
,
m− n

2

)
,

∇m,n : M
(
m,n,

m+ n

2
+ 2,

n−m
2

)
−→M

(
m+ 1, n+ 1,

m+ n+ 2

2
+ 2,

n−m
2

)
.
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We use Remark 5.52 and Theorem 1.18 with T := ∇m,n, M := M
(
m,n, m+n

2 + 2, n−m2

)
and

N := M
(
m+ 1, n+ 1, m+n+2

2 + 2, n−m2

)
.

We point out that we can apply Theorem 1.18, because we know that M(m + 1, n + 1, m+n+2
2 +

2, n−m2 )/ Im(∇m,n) is a finitely generated torsion−free C[Θ]−module.
Indeed, by Propositions 5.42 and 5.43, the complex of type C is exact in M(m+ 1, n+ 1, m+n+2

2 +
2, n−m2 ) when (m+ 1, n+ 1) 6= (1, 1). Therefore:

M(m+ 1, n+ 1, m+n+2
2 + 2, n−m2 )

Im(∇m,n)
=
M(m+ 1, n+ 1, m+n+2

2 + 2, n−m2 )

Ker(∇m+1,n+1)
∼= Im(∇m+1,n+1).

But Im(∇m+1,n+1) is a submodule of the free module M(m+ 2, n+ 2, m+n+4
2 + 2, n−m2 ), thus it is

torsion−free as a C[Θ]−module.
We have that M/KerT = M(m,n, m+n

2 + 2, n−m2 )/Ker(∇m,n) ∼= I(m,n, m+n
2 + 2, n−m2 ) is the dual

of N∗/KerT ∗ ∼= ImT ∗ ∼= I(m+ 1, n+ 1,−m+n+2
2 , m−n2 ).

Using the same argument, it is possible to show that the module I(m,n, 1 + m−n
2 ,−1 − m+n

2 ) of
type B is the conformal dual of I(m+ 1, n− 1, 1 + n−m−2

2 , 1 + m+n
2 ) of type D.

5.4.1 The character

We now introduce the notion of character, that will be used for the computation of the size.
Let s be an indeterminate. We define the character of a g−module V , following [KR1], as:

chV = trV s
−t.

The character is a Laurent series in the indeterminate s; the coefficient of sk is the dimension of
the eigenspace of V of eigenvalue k with respect to the action of −t ∈ g0.

Remark 5.54. Let V be a g−module and W a g−submodule of V . It is straightforward that
chV/W = chV − chW .

We now compute directly the character of a Verma module M(m,n, µt, µC) = U(g<0) ⊗
F (m,n, µt, µC) using the fact that −t acts on elements of g−2 as the multiplication by 2 and
on elements of g−1 as the multiplication by 1. We have, if −1 < s < 1:

chM(m,n, µt, µC) = s−µt dimF (m,n, µt, µC) · (1 + s)4

1− s2
,

where we used the facts that:

1 ·
(

4

0

)
+ s ·

(
4

1

)
+ s2 ·

(
4

2

)
+ s3 ·

(
4

3

)
+ s4 ·

(
4

4

)
= (1 + s)4

and if |s|2 < 1:

∞∑
k=0

s2k =
1

1− s2
.

For the computation of the size of a g−module V we use that:

size(V ) =
1

4
lim
s→1

(1− s2) chV. (5.42)



130 5. Homology

Proposition 5.55. The character of I(m,n,−m+n
2 ,−n−m

2 ) of type A is, if (m,n) 6= (0, 0):

ch I
(
m,n,−m+ n

2
,
m− n

2

)
= s

m+n
2

(1 + s)4

1− s2

( 2

(1 + s)3
+
m+ n− 1

(1 + s)2
+

mn

1 + s

)
.

The character of I
(
m,n, 1 + n−m

2 , 1 + m+n
2

)
of type D is:

ch I(m,n, 1 +
n−m

2
, 1 +

m+ n

2
) =s−1−n−m

2
(1 + s)4

1− s2

[( −2

(1 + s)3
+

3 + n−m
(1 + s)2

+
mn+ 2m

1 + s

)
− (−1)n+1sn+1

( −2

(1 + s)3
+
−m− n+ 1

(1 + s)2
+
m+ n+ 1

1 + s

)]
+ s

m+n+2
2

(1 + s)4

1− s2
(−1)n+1

( 2

(1 + s)3
+
m+ n+ 1

(1 + s)2

)
.

Proof. We can compute the character of modules I(m,n, µt, µC) using the character ofM(m,n, µt, µC).
Let us now focus on the case I(m,n,−m+n

2 ,−n−m
2 ) of type A. By Propositions 5.42 and 5.47, the

following is an exact sequence, if (m,n) 6= (0, 0):

. . . −→M
(
m+ j, n+ j,−m+ n+ 2j

2
,
m− n

2

)
−→ . . . −→M

(
m+ 1, n+ 1,−m+ n+ 2

2
,
m− n

2

)
−→M

(
m,n,−m+ n

2
,
m− n

2

)
−→ I(m,n,−m+ n

2
,
m− n

2
) −→ 0.

Hence, using Remark 5.54:

ch I
(
m,n,−m+ n

2
,
m− n

2

)
= s

m+n
2

(1 + s)4

1− s2

∞∑
j=0

(−1)jsj(j +m+ 1)(j + n+ 1).

We use the following identity, that holds if |s| < 1 and is a consequence of the binomial series:

∞∑
j=0

(−1)jsj
(
j +m

m

)
=

1

(1 + s)m+1
.

We use the fact that:

(j +m+ 1)(j + n+ 1) = (j + 1)(j + n+ 1) +m(j + n+ 1)

= (j + 1)(j + 1) + (j + 1)n+m(j + 1) +mn

= (j + 2)(j + 1) + (j + 1)(m+ n− 1) +mn.

Therefore:

ch I
(
m,n,−m+ n

2
,
m− n

2

)
= s

m+n
2

(1 + s)4

1− s2

( 2

(1 + s)3
+
m+ n− 1

(1 + s)2
+

mn

1 + s

)
.

Now we compute the character for modules I(m,n, 1 + n−m
2 , 1 + m+n

2 ) of type D.
By Proposition 5.42 the following is an exact sequence:

→M
(
m+ n+ 2 + j, j,−m+ n+ 2 + 2j

2
,
m+ n+ 2

2

)
→ · · · →M

(
m+ n+ 2, 0,−m+ n+ 2

2
,
m+ n+ 2

2

)
→M

(
m+ n, 0, 1 +

−m− n
2

, 1 +
m+ n

2

)
→M(m+ n− 1, 1, 1 +

−m− n+ 2

2
, 1 +

m+ n

2
)→ . . .

→M
(
m,n, 1 +

n−m
2

, 1 +
m+ n

2

)
→ I

(
m,n, 1 +

n−m
2

, 1 +
m+ n

2

)
→ 0,
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where the first row is composed of modules of type A; then the complex changes and the following
terms are of type D. Hence, using Remark 5.54:

ch I
(
m,n, 1 +

n−m
2

, 1 +
m+ n

2

)
=s−1−n−m

2
(1 + s)4

1− s2

n∑
j=0

(−1)j(j +m+ 1)(n− j + 1)sj

+ s
m+n+2

2
(1 + s)4

1− s2

∞∑
i=0

(−1)n+1+i(i+m+ n+ 2 + 1)(i+ 1)sj .

We use that:

n∑
j=0

(−1)j(j +m+ 1)(n− j + 1)sj =

=
∞∑
j=0

(−1)jsj(j +m+ 1)(n− j + 1)−
∞∑

j=n+1

(−1)j(j +m+ 1)(n− j + 1)sj .

Let us compute the first series; we have:

(j +m+ 1)(n− j + 1) = (j + 1)(n− j + 1) +m(n− j + 1)

= (j + 1)(−j + 1) + n(j + 1)−m(j − 1) +mn

= −(j + 1)(j + 2) + 3(j + 1) + n(j + 1)−m(j + 1) + 2m+mn.

Then, if |s| < 1:

∞∑
j=0

(−1)j(j +m+ 1)(n− j + 1)sj =
−2

(1 + s)3
+

3 + n−m
(1 + s)2

+
mn+ 2m

1 + s
.

Let us compute the second series; we have:

−
∞∑

j=n+1

(−1)j(j +m+ 1)(n− j + 1)sj =−
∞∑
k=0

(−1)k+n+1sk+n+1(k + n+ 1 +m+ 1)(n− k − n− 1 + 1).

We use that:

(k + n+ 1 +m+ 1)(n− k − n− 1 + 1) =

= (k + n+ 2 +m)(−k) = −k2 − k(m+ n+ 2)

= −k(k + 1) + k − (k + 1)(m+ n+ 2) +m+ n+ 2

= −(k + 2)(k + 1) + 2(k + 1) + k + 1− (k + 1)(m+ n+ 2) +m+ n+ 1.

Then, if |s| < 1:

−
∞∑

j=n+1

(−1)jsj(j +m+ 1)(n− j + 1)sj =−
∞∑
k=0

(−1)k+n+1sk+n+1(k + n+m+ 2)(−k) =

− (−1)n+1sn+1
( −2

(1 + s)3
+
−m− n+ 1

(1 + s)2
+
m+ n+ 1

1 + s

)
.

Finally, we have:

ch I(m,n, 1 +
n−m

2
, 1 +

m+ n

2
) =s−1−n−m

2
(1 + s)4

1− s2

[( −2

(1 + s)3
+

3 + n−m
(1 + s)2

+
mn+ 2m

1 + s

)
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− (−1)n+1sn+1
( −2

(1 + s)3
+
−m− n+ 1

(1 + s)2
+
m+ n+ 1

1 + s

)]
+ s

m+n+2
2

(1 + s)4

1− s2
(−1)n+1

( 2

(1 + s)3
+
m+ n+ 1

(1 + s)2

)
.

Proof of Proposition 5.51. We first focus on I(0, 0, 0, 0) of type A. We have that size(I(0, 0, 0, 0)) =
0. Indeed the following is an exact sequence:

. . . −→M
(
m+ j, n+ j,−m+ n+ 2j

2
,−n−m

2

)
−→ . . . −→M

(
m+ 1, n+ 1,−m+ n+ 2

2
,−n−m

2

)
∇→M(0, 0, 0, 0)

φ→ I(0, 0, 0, 0) −→ 0,

where φ is the projection to the quotient, I(0, 0, 0, 0) ∼= M(0,0,0,0)
Im∇ , Kerφ = Im∇. Therefore using

the same computation for case A, we find size(I(0, 0, 0, 0)) = 0.
Now let us compute the size of I(0, 0, 2, 0) of type C. Since M(0, 0, 2, 0) is irreducible, we know
that size(I(0, 0, 2, 0)) = size(M(0, 0, 2, 0)) = 4.
Finally the size of I(m,n, µt, µC) of type A for (m,n) 6= (0, 0) and of type D follows directly from
Proposition 5.55 and (5.42). The size of I(m,n, µt, µC) of type C for (m,n) 6= (0, 0) and of type B
follows from Remark 5.53.



Chapter 6

The conformal superalgebra CK6

6.1 Singular vectors

In this chapter we recall the definition of the conformal superalgebra CK6. We recall some defi-
nitions and notation from [BKL2]. From Chapter 2 we know that the conformal superalgebra of
type K is:

KN = C[∂]⊗ ∧
(N).

The λ−bracket for f, g ∈
∧

(N), f = ξi1 · · · ξir and g = ξj1 · · · ξjs , is given by:

[fλg] =
(
(r − 2)∂(fg) + (−1)r

N∑
i=1

(∂if)(∂ig)
)

+ λ(r + s− 4)fg.

The associated annihilation superalgebra is:

A(KN ) = K(1, N)+.

We will identify K(1, N)+ with
∧

(1, N)+ using the following isomorphism of Lie superalgebras
introduced in Chapter 2:

∧
(1, N)+ −→ K(1, N)+

f 7−→ 2f∂t + (−1)p(f)
N∑
i=1

(ξi∂tf + ∂if)(ξi∂t + ∂i).

We recall that on K(1, N)+ the bracket is given by (2.1). We consider on K(1, N)+ the Z−grading
deg(tsξi1ξi2 ...ξik) = 2s + k − 2. We set ξ1ξ2...ξN = ξ∗. We focus on N = 6. Analogously to the
case of K ′4, we will use capital letters to denote ordered sets I = (i1, i2, ..., ik) of distinct integers
in {1, 2, 3, 4, 5, 6}. Given I and J ordered sets, the definitions of I ∩ J , I \ J and Ic are analogous
to the definitions given in the case of K ′4 (see Chapter 3).
Following [BKL2], for ξI ∈

∧
(6) we define the modified Hodge dual ξ∗I to be the unique monomial

such that ξIξ
∗
I = ξ∗ (notice that the definition of modified Hodge dual differs for a sign from the

definition of Hodge dual given in the case of K ′4). We can extend the definition of the modified
Hodge dual to monomials tkξI ∈

∧
(1, N)+ letting (tkξI)

∗ = tkξ∗I . For f = ξI we set |f | = |I|.
The conformal superalgebra CK6 is a subalgebra of K6 defined by (see construction in [CK2]):

CK6 = C[∂]− span
{
f − i(−1)

|f |(|f |+1)
2 (−∂)3−|f |f∗, f ∈ ∧

(6), 0 ≤ |f | ≤ 3
}
.

133
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We introduce the linear operator A : K(1, 6)+ −→ K(1, 6)+ given for monomials with d odd
variables by:

A(f) = (−1)
d(d+1)

2

(
d

dt

)3−d
f∗,

and extended by linearity. The annihilation superalgebra associated with CK6 is the subalgebra
of K(1, 6)+ given by the image of Id − iA; it is isomorphic to the exceptional Lie superalgebra
E(1, 6) (see [BKL2],[CK3],[CK2]). The map A preserves the Z−grading, then E(1, 6) inherits the
Z−grading. The homogeneous components of non−positive degree of E(1, 6) and K(1, 6)+ coincide
and are:

E(1, 6)−2 = 〈1〉,
E(1, 6)−1 = 〈ξ1, ξ2, ..., ξ6〉,
E(1, 6)0 = 〈t, ξiξj , 1 ≤ i, j ≤ 6〉.

Following the notation used in [BKL2], from now on we will denote E00 := t, Fi,j := −ξiξj , Θ = −1
2 ,

g := E(1, 6).

Let us focus on g0 = 〈t, ξiξj 1 ≤ i < j ≤ 6〉 ∼= so(6)⊕ CE00. We point out that t is a grading
element for g. Following [BKL2], we consider the following as basis of a Cartan subalgebra h of
so(6):

H1 = iF1,2, H2 = iF3,4, H3 = iF5,6.

We set h1 := H1−H2, h2 := H2−H3, h3 := H2+H3. Let εj ∈ h∗ such that εj(Hk) = δj,k. The roots
are ∆ = {±εl ± εj , 1 ≤ l < j ≤ 3}, the simple positive roots are ∆+ = {ε1 − ε2, ε2 − ε3, ε2 + ε3}.
The root decomposition is:

so(6) = h⊕ (⊕α∈∆gα) with gα = CEα,

where the Eα’s are, for 1 ≤ l < j ≤ 3:

Eεl−εj = F2l−1,2j−1 + F2l,2j + iF2l−1,2j − iF2l,2j−1,

Eεl+εj = F2l−1,2j−1 − F2l,2j − iF2l−1,2j − iF2l,2j−1,

E−(εl−εj) = F2l−1,2j−1 + F2l,2j − iF2l−1,2j + iF2l,2j−1,

E−(εl+εj) = F2l−1,2j−1 − F2l,2j + iF2l−1,2j + iF2l,2j−1.

We define for 1 ≤ l < j ≤ 3:

αl,j =
1

2
(Eεl−εj + Eεl+εj ),

βl,j =
1

2
(Eεl−εj − Eεl+εj ).

The upper Borel subalgebra Bso6 is:

Bso6 = 〈αl,j , βl,j , 1 ≤ l < j ≤ 3〉.

Remark 6.1. By straightforward computation, it is possible to show that g1 is the sum of two
irreducible g0−modules and the following are corresponding lowest weight vectors in E(1, 6)1:

v1 = tξ1 + itξ2,

v2 = −ξ1ξ3ξ5 − iξ2ξ4ξ6 + ξ2ξ4ξ5 + iξ1ξ3ξ6 − ξ1ξ4ξ6 − iξ2ξ3ξ5 − ξ2ξ3ξ6 − iξ1ξ4ξ5.
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Let F be a finite−dimensional irreducible g0−module, such that g>0 acts trivially on it; we
have that Ind(F ) ∼= C[Θ]⊗

∧
(6)⊗F . Indeed, let us denote by ηi the image in U(g) of ξi ∈

∧
(6), for

all i ∈ {1, 2, 3, 4, 5, 6}. In U(g) we have that η2
i = Θ, for all i ∈ {1, 2, 3, 4, 5, 6}: since [ξi, ξi] = −1

in g, we have ηiηi = −ηiηi − 1 in U(g). We describe the action of g on Ind(F ) using the λ−action
notation, i.e.

fλ(g ⊗ v) =
∑
j≥0

λj

j!
(ftj).(g ⊗ v),

with f ∈
∧

(6), g ∈ U(g<0) and v ∈ F . Given ξI ∈
∧

(6) and ηJ ∈ U(g<0), we define:

ξI ? ηJ = χI∩J=∅ηIηJ ,

ηJ ? ξI = χI∩J=∅ηJηI .

We extend the definition of modified Hodge dual to the elements of U(g<0) in the following way:
for ηI ∈ U(g<0), we let η∗I to be the unique monomial such that ξI ? η

∗
I = η∗. We define the Hodge

dual of elements of
∧

(6) (resp. U(g<0)) in the following way: for ξI ∈
∧

(6) (resp. ηI ∈ U(g<0)), we
let ξI (resp. ηI) to be the unique monomial such that ξIξI = ξ∗ (resp. ηI ?ξI = η∗). Then we extend

by linearity the definition of Hodge dual to elements
∑

I αIηI ∈ U(g<0) and we set ΘkηI = ΘkηI .
We point out that for g ∈ U(g<0), g = (−1)|g|g∗.
Due to the fact that the homogeneous components of non−positive degree of E(1, 6) are the same
as those of K(1, 6)+, the λ−action is given by restricting the λ−action in Theorem 4.1 in [BKL1].
We define T the isomorphism T : Ind(F )→ Ind(F ), g ⊗ v 7→ g ⊗ v. We recall the following result
proved in [BKL1, Theorem 4.3].

Proposition 6.2 ([BKL1]). Let f = ξI ∈
∧

(6) and g = ηL ∈ U(g<0).

T ◦ fλ ◦ T−1(g ⊗ v)

=(−1)(|f |(|f |+1)/2)+|f ||g|

{
(|f | − 2)Θ(f ? g)⊗ v − (−1)p(f)

6∑
i=1

(∂if) ? (∂ig)⊗ v −
∑
r<s

(∂r∂sf) ? g ⊗ Fr,sv

+λ
(
f ? g ⊗ E00v − (−1)p(f)

6∑
i=1

∂i((fξi) ? g)⊗ v + (−1)p(f)
∑
i 6=j

((∂if)ξj) ? g ⊗ Fi,jv
)

+

−λ2
∑
i<j

(fξiξj) ? g ⊗ Fi,jv

 .

The following Theorem holds both for the λ−action and the action described in Proposition
6.2.

Lemma 6.3. Let f ∈
∧

(6), g ∈ U(g<0) and k ≥ 0, the following holds:

fλ
(
Θkg ⊗ v

)
= (Θ + λ)k(fλg ⊗ v).

Proof. The proof is analogous to Lemma 3.12.

Let ~m ∈ Ind(F ), with F irreducible g0−module. From [BKL2] we know that ~m is a highest
weight singular vector if and only if:

S1: For f ∈
∧

(6), with 0 ≤ |f | ≤ 3:

d2

dλ2

(
fλ ~m− i(−1)

|f |(|f |+1)
2 λ3−|f | (f∗λ ~m)

)
= 0.
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S2: For f ∈
∧

(6), with 1 ≤ |f | ≤ 3:

d

dλ

(
fλ ~m− i(−1)

|f |(|f |+1)
2 λ3−|f | (f∗λ ~m)

)
|λ=0

= 0.

S3: For f , with |f | = 3 or f ∈ Bso6 :(
fλ ~m− i(−1)

|f |(|f |+1)
2 λ3−|f | (f∗λ ~m)

)
|λ=0

= 0.

Remark 6.4. We point out that, by the previous conditions, a vector ~m ∈ Ind(F ) is a highest
weight singular vector if and only if it satisfies S1, S2, S3. Since T , defined as in Proposition 6.2,
is an isomorphism and ~m = T−1 ~m, the fact that ~m ∈ Ind(F ) satisfies S1, S2, S3 is equivalent to

impose conditions S1, S2, S3 for (T ◦ (fλ − i(−1)
|f |(|f |+1)

2 λ3−|f |f∗λ) ◦ T−1)~m, using the expression
given by Proposition 6.2.
Therefore in the following Lemmas we will consider a vector T (~m) ∈ Ind(F ) and we will impose that

the expression for (T◦(fλ−i(−1)
|f |(|f |+1)

2 λ3−|f |f∗λ)◦T−1)T (~m) = (T◦(fλ−i(−1)
|f |(|f |+1)

2 λ3−|f |f∗λ))~m
given by Proposition 6.2 satisfies conditions S1, S2, S3. We will have that ~m is a highest weight
singular vector.

Motivated by Remark 6.4, in the following lemmas we consider ~m ∈ U(g<0) and we will use the
expression for the λ−action of Proposition 6.2 for T (~m). We consider a singular vector ~m ∈ Ind(F )
such that:

T (~m) =
N∑
k=0

Θk

(∑
I

ηI ⊗ vI,k
)
. (6.1)

In [BKL2] the following Lemma is stated (Lemma 4.4 in [BKL2]), even if the proof is missing.

Lemma 6.5. Let ~m ∈ Ind(F ) be a singular vector, such that T (~m) is written as in (6.1). Then
the degree of ~m with respect to Θ is at most 2. Moreover, T (~m) has the following form:

T (~m) = Θ2

( ∑
|I|≥5

ηI ⊗ vI,2
)

+ Θ1

( ∑
|I|≥3

ηI ⊗ vI,1
)

+

( ∑
|I|≥1

ηI ⊗ vI,0
)
.

The rest of this section is dedicated to the proof of Lemma 6.5.

Lemma 6.6. A singular vector ~m ∈ Ind(F ), such that T (~m) is written as in (6.1), has degree at
most 4 with respect to Θ.

Proof. By Remark 6.4, condition S1 f = ξ1 is:

d2

dλ2

(
T (ξ1 λ ~m+ iλ2(ξ2ξ3ξ4ξ5ξ6 λ ~m))

)
= 0.

Using Proposition 6.2 and Lemma 6.3, the previous equation is:

d2

dλ2

{
N∑
k=0

∑
I

(λ+ Θ)k(−1)1+|I|

[
−Θξ1 ? ηI ⊗ vI,k + ∂1ηI ⊗ vI,k (6.2)

+ λ

(
ξ1 ? ηI ⊗ E00vI,k +

6∑
i=1

∂i(ξ1ξi ? ηI)⊗ vI,k −
∑
j 6=1

ξj ? ηI ⊗ F1,jvI,k

)
− λ2

∑
i<j

ξ1ξiξj ? ηI ⊗ Fi,jvI,k

]
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+ iλ2
N∑
k=0

∑
I

(−1)1+|I|(λ+ Θ)k

[
3Θξ2ξ3ξ4ξ5ξ6 ? ηI)⊗ vI,k

+

6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6) ? ∂iηI ⊗ vI,k −
∑
r<s

∂r∂s(ξ2ξ3ξ4ξ5ξ6) ? ηI ⊗ Fr,svI,k

+ λ

(
ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,k +

6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,k −
∑
i 6=j

((∂iξ2ξ3ξ4ξ5ξ6)ξj) ? ηI ⊗ Fi,jvI,k
)]}

=
N∑
k=0

∑
I

(λ+ Θ)k(−1)1+|I|
(
− 2

∑
i<j

ξ1ξiξj ? ηI ⊗ Fi,jvI,k
)

+

+ 2
N∑
k=1

∑
I

k(λ+ Θ)k−1(−1)1+|I|
[
ξ1 ? ηI ⊗ E00vI,k +

6∑
i=1

∂i(ξ1ξi ? ηI ⊗ vI,k)−
∑
j 6=1

ξj ? ηI ⊗ F1,jvI,k

− 2λ
∑
i<j

ξ1ξiξj ? ηI ⊗ Fi,jvI,k
]

+

N∑
k=2

∑
I

k(k − 1)(λ+ Θ)k−2(−1)1+|I|
[
−Θξ1 ? ηI ⊗ vI,k + ∂1ηI ⊗ vI,k

+ λ

(
ξ1 ? ηI ⊗ E00vI,k +

6∑
i=1

∂i(ξ1ξi ? ηI)⊗ vI,k −
∑
j 6=1

ξj ? ηI ⊗ F1,jvI,k

)
− λ2

∑
i<j

ξ1ξiξj ? ηI ⊗ Fi,jvI,k
]

+
N∑
k=0

∑
I

(−1)1+|I|2i(λ+ Θ)k
[
3Θξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,k +

6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6) ? ∂iηI ⊗ vI,k

−
∑
r<s

∂r∂s(ξ2ξ3ξ4ξ5ξ6) ? ηI ⊗ Fr,svI,k+

+ λ

(
ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,k +

6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,k −
∑
i 6=j

(∂i(ξ2ξ3ξ4ξ5ξ6)ξj) ? ηI ⊗ Fi,jvI,k
)]

+

+ 2
N∑
k=1

∑
I

(−1)1+|I|2iλk(λ+ Θ)k−1

[
3Θξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,k +

6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6) ? ∂iηI ⊗ vI,k

−
∑
r<s

∂r∂s(ξ2ξ3ξ4ξ5ξ6) ? ηI ⊗ Fr,svI,k

+ λ

(
ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,k +

6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,k −
∑
i 6=j

(∂i(ξ2ξ3ξ4ξ5ξ6)ξj) ? ηI ⊗ Fi,jvI,k
)]

+

+
N∑
k=2

∑
I

(−1)1+|I|iλ2k(k − 1)(λ+ Θ)k−2

[
3Θξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,k +

6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6) ? ∂iηI ⊗ vI,k

−
∑
r<s

∂r∂s(ξ2ξ3ξ4ξ5ξ6) ? ηI ⊗ Fr,svI,k

+ λ

(
ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,k +

6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,k −
∑
i 6=j

(∂i(ξ2ξ3ξ4ξ5ξ6)ξj) ? ηI ⊗ Fi,jvI,k
)]

+

+
N∑
k=0

∑
I

(−1)1+|I|4iλ(λ+ Θ)k
[
ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,k +

6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,k

−
∑
i 6=j

∂i(ξ2ξ3ξ4ξ5ξ6)ξj ? ηI ⊗ Fi,jvI,k
]
+
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+
N∑
k=1

∑
I

(−1)1+|I|2iλ2k(λ+ Θ)k−1

[
ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,k +

6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,k

−
∑
i 6=j

(∂i(ξ2ξ3ξ4ξ5ξ6)ξj) ? ηI ⊗ Fi,jvI,k
]
.

We consider the previous expression as a polynomial expression in λ and λ + Θ. Let us consider
the terms of Equation (6.2) in λ3(λ+ Θ)k−2, for all k. We have:

N∑
k=2

∑
I

(−1)1+|I|(iλ3k(k − 1)(λ+ Θ)k−2)

[
− 3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,k+

ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,k +
6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,k −
∑
i 6=j

(∂i(ξ2ξ3ξ4ξ5ξ6)ξj) ? ηI ⊗ Fi,jvI,k
]
.

Equivalently, the coefficient of λ3(λ+ Θ)s, for s ≥ 0 fixed, is:∑
I

(−1)1+|I|
[
− 3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,s+2 + ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,s+2 (6.3)

+
6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,s+2 −
∑
i 6=j

(∂i(ξ2ξ3ξ4ξ5ξ6)ξj) ? ηI ⊗ Fi,jvI,s+2

]
= 0.

Let us consider the terms of Equation (6.2) in λ2(λ+ Θ)s, for all s:

N∑
k=2

∑
I

k(k − 1)λ2(λ+ Θ)k−2(−1)1+|I|
[
−
∑
i<j

ξ1ξiξj ? ηI ⊗ Fi,jvI,k
]
+

+ 2

N∑
k=1

∑
I

(−1)1+|I|2iλ2k(λ+ Θ)k−1

[
− 3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,k+

+ ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,k +
6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,k −
∑
i 6=j

(∂i(ξ2ξ3ξ4ξ5ξ6)ξj) ? ηI ⊗ Fi,jvI,k
]
+

+

N∑
k=2

∑
I

(−1)1+|I|iλ2k(k − 1)(λ+ Θ)k−1[3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,k]+

+
N∑
k=2

∑
I

(−1)1+|I|iλ2k(k − 1)(λ+ Θ)k−2

[ 6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6) ? ∂iηI ⊗ vI,k

−
∑
r<s

∂r∂s(ξ2ξ3ξ4ξ5ξ6) ? ηI ⊗ Fr,svI,k
]
+

+

N∑
k=1

∑
I

(−1)1+|I|2iλ2k(λ+ Θ)k−1

[
ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,k +

6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,k

−
∑
i 6=j

(∂i(ξ2ξ3ξ4ξ5ξ6)ξj) ? ηI ⊗ Fi,jvI,k
]
.

Then if we look actually at the coefficient of λ2(λ+ Θ)s, for s ≥ 1 fixed, we obtain:∑
I

(s+ 1)(s+ 2)(−1)1+|I|
[
−
∑
i<j

ξ1ξiξj ? ηI ⊗ Fi,jvI,s+2

]
+
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+ 2
∑
I

(−1)1+|I|2i(s+ 1)

[
− 3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,s+1 + ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,s+1

+
6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,s+1 −
∑
i 6=j

(∂i(ξ2ξ3ξ4ξ5ξ6)ξj) ? ηI ⊗ Fi,jvI,s+1

]
+

+
∑
I

(−1)1+|I|is(s+ 1)[3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,s+1]+

+
∑
I

(−1)1+|I|i(s+ 1)(s+ 2)

[ 6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6) ? ∂iηI ⊗ vI,s+2

−
∑
r<s̃

∂r∂s̃(ξ2ξ3ξ4ξ5ξ6) ? ηI ⊗ Fr,s̃vI,s+2

]
+

+
∑
I

(−1)1+|I|2i(s+ 1)

[
ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,s+1 +

6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,s+1

−
∑
i 6=j

(∂i(ξ2ξ3ξ4ξ5ξ6)ξj) ? ηI ⊗ Fi,jvI,s+1

]
= 0.

Using (6.3), we obtain that the expression in the second and third rows is zero, and the last two
rows equal to −

∑
I(−1)1+|I|2i(s+ 1)[−3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,s+1], then we get, for s ≥ 1:∑

I

(s+ 2)(−1)1+|I|
[
−
∑
i<j

ξ1ξiξj ? ηI ⊗ Fi,jvI,s+2

]
+
∑
I

(−1)1+|I|is[3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,s+1]+

+
∑
I

(−1)1+|I|i(s+ 2)

[ 6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6) ? ∂iηI ⊗ vI,s+2 −
∑
r<s̃

∂r∂s̃(ξ2ξ3ξ4ξ5ξ6) ? ηI ⊗ Fr,s̃vI,s+2

]
+

−
∑
I

(−1)1+|I|2i[−3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,s+1] = 0.

That is for s ≥ 1:∑
I

(−1)1+|I|
[
−
∑
i<j

ξ1ξiξj ? ηI ⊗ Fi,jvI,s+2

]
+
∑
I

(−1)1+|I|i[3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,s+1]+ (6.4)

+
∑
I

(−1)1+|I|i

[ 6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6) ? ∂iηI ⊗ vI,s+2 −
∑
r<s̃

∂r∂s̃(ξ2ξ3ξ4ξ5ξ6) ? ηI ⊗ Fr,s̃vI,s+2

]
= 0.

Let us consider the terms of Equation (6.2) in λ(λ+ Θ)s, for all s. We have:

2

N∑
k=1

∑
I

k(λ+ Θ)k−1λ(−1)1+|I|
[
− 2

∑
i<j

ξ1ξiξj ? ηI ⊗ Fi,jvI,k
]
+

+

N∑
k=2

∑
I

k(k − 1)(λ+ Θ)k−2λ(−1)1+|I|
[
ξ1 ? ηI ⊗ vI,k + ξ1 ? ηI ⊗ E00vI,k +

6∑
i=1

∂i(ξ1ξi ? ηI)⊗ vI,k

−
∑
j 6=1

ξj ? ηI ⊗ F1,jvI,k

]
+

+
N∑
k=0

∑
I

(−1)1+|I|2i(λ+ Θ)kλ

[
− 3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,k + ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,k
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+
6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,k −
∑
i 6=j

∂i(ξ2ξ3ξ4ξ5ξ6)ξj ? ηI ⊗ Fi,jvI,k
]
+

+
N∑
k=1

∑
I

(−1)1+|I|4iλk(λ+ Θ)k[3ξ2ξ3ξ4ξ5ξ6ξI ⊗ vI,k]+

+
N∑
k=1

∑
I

(−1)1+|I|4iλk(λ+ Θ)k−1

[ 6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6) ? ∂iηI ⊗ vI,k −
∑
r<s

∂r∂s(ξ2ξ3ξ4ξ5ξ6) ? ηI ⊗ Fr,svI,k
]
+

+

N∑
k=0

∑
I

(−1)1+|I|4iλ(λ+ Θ)k
[
ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,k +

6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,k

−
∑
i 6=j

∂i(ξ2ξ3ξ4ξ5ξ6)ξj ? ηI ⊗ Fi,jvI,k
]
.

If we look actually at coefficients of λ(λ+ Θ)s, for s ≥ 2 fixed, we obtain:

2
∑
I

(s+ 1)(−1)1+|I|
[
− 2

∑
i<j

ξ1ξiξj ? ηI ⊗ Fi,jvI,s+1

]
+

+
∑
I

(s+ 1)(s+ 2)(−1)1+|I|
[
ξ1 ? ηI ⊗ vI,s+2 + ξ1 ? ηI ⊗ E00vI,s+2 +

6∑
i=1

∂i(ξ1ξi ? ηI)⊗ vI,s+2

−
∑
j 6=1

ξj ? ηI ⊗ F1,jvI,s+2

]
+

+
∑
I

(−1)1+|I|2i

[
− 3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,s + ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,s

+
6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,s −
∑
i 6=j

(∂i(ξ2ξ3ξ4ξ5ξ6)ξj) ? ηI ⊗ Fi,jvI,s
]
+

+
∑
I

(−1)1+|I|4is[3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,s]+

+
∑
I

(−1)1+|I|4i(s+ 1)

[ 6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6) ? ∂iηI ⊗ vI,s+1 −
∑
r<s̃

∂r∂s̃(ξ2ξ3ξ4ξ5ξ6) ? ηI ⊗ Fr,s̃vI,s+1

]
+

+
∑
I

(−1)1+|I|4i

[
ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ E00vI,s +

6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6ξi ? ηI)⊗ vI,s

−
∑
i 6=j

(∂i(ξ2ξ3ξ4ξ5ξ6)ξj) ? ηI ⊗ Fi,jvI,s
]

= 0.

We use (6.3) to point out that the sum in the fourth and fifth rows is zero. Moreover, again due to
(6.3), the sum of the terms in the last two rows equals to −

∑
I(−1)1+|I|4i[−3ξ2ξ3ξ4ξ5ξ6?ηI⊗vI,s] =∑

I(−1)1+|I|4i[3ξ2ξ3ξ4ξ5ξ6 ?ηI⊗vI,s]. The sum of this term and terms from the first, sixth, seventh
rows is zero due to (6.4).
The remaining terms give the following condition for s ≥ 2:∑

I

(−1)1+|I|
[
ξ1 ? ηI ⊗ vI,s+2 + ξ1 ? ηI ⊗ E00vI,s+2 +

6∑
i=1

∂i(ξ1ξi ? ηI)⊗ vI,s+2 (6.5)

−
∑
j 6=1

ξj ? ηI ⊗ F1,jvI,s+2

]
= 0.
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Let us consider the terms of Equation (6.2) in (λ+ Θ)s, for all s. We have:

N∑
k=0

∑
I

(λ+ Θ)k(−1)1+|I|
(
− 2

∑
i<j

ξ1ξiξj ? ηI ⊗ Fi,jvI,k
)

+

2
N∑
k=1

∑
I

k(λ+ Θ)k−1(−1)1+|I|
[
ξ1 ? ηI ⊗ E00vI,k +

6∑
i=1

∂i(ξ1ξiξI ⊗ vI,k)−
∑
j 6=1

ξj ? ηI ⊗ F1,jvI,k

]

+

N∑
k=2

∑
I

k(k − 1)(λ+ Θ)k−1(−1)1+|I|[−ξ1 ? ηI ⊗ vI,k] +

N∑
k=2

∑
I

k(k − 1)(λ+ Θ)k−2(−1)1+|I|[∂1ηI ⊗ vI,k]

+
N∑
k=0

∑
I

(−1)1+|I|2i(λ+ Θ)k+1[3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,k]+

+

N∑
k=0

∑
I

(−1)1+|I|2i(λ+ Θ)k
[ 6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6) ? ∂i(ηI)⊗ vI,k −
∑
r<s̃

∂r∂s̃(ξ2ξ3ξ4ξ5ξ6) ? ηI ⊗ Fr,s̃vI,k
]
.

If we look actually at coefficients of (λ+ Θ)s, for s ≥ 3 fixed, we obtain:∑
I

(−1)1+|I|
(
− 2

∑
i<j

ξ1ξiξj ? ηI ⊗ Fi,jvI,s
)

+

+ 2
∑
I

(s+ 1)(−1)1+|I|
[
ξ1 ? ηI ⊗ E00vI,s+1 +

6∑
i=1

∂i(ξ1ξiξI)⊗ vI,s+1 −
∑
j 6=1

ξj ? ηI ⊗ F1,jvI,s+1

]
+
∑
I

s(s+ 1)(−1)1+|I|[−ξ1 ? ηI ⊗ vI,s+1] +
∑
I

(s+ 1)(s+ 2)(−1)1+|I|[∂1ηI ⊗ vI,s+2]

+
∑
I

(−1)1+|I|2i[3ξ2ξ3ξ4ξ5ξ6 ? ηI ⊗ vI,s−1]+

+
∑
I

(−1)1+|I|2i

[ 6∑
i=1

∂i(ξ2ξ3ξ4ξ5ξ6) ? ∂i(ηI)⊗ vI,s −
∑
r<s̃

∂r∂s̃(ξ2ξ3ξ4ξ5ξ6) ? ηI ⊗ Fr,s̃vI,s
]

= 0.

Using (6.4) we get that the sum of terms from the first row and the last two rows is zero. Using (6.5)
we obtain that the sum of terms from the second row equals to −2

∑
I(s+1)(−1)1+|I|[ξ1?ηI⊗vI,s+1].

We obtain that for s ≥ 3:

− 2
∑
I

(s+ 1)(−1)1+|I|[ξ1 ? ηI ⊗ vI,s+1] +
∑
I

s(s+ 1)(−1)1+|I|[−ξ1 ? ηI ⊗ vI,s+1]

+
∑
I

(s+ 1)(s+ 2)(−1)1+|I|[∂1ηI ⊗ vI,s+2] = 0.

That is for s ≥ 3:

−
∑
I

(−1)1+|I|[ξ1 ? ηI ⊗ vI,s+1] +
∑
I

(−1)1+|I|[∂1ηI ⊗ vI,s+2] = 0. (6.6)

If we look at terms of (6.6) involving ηK with |K| ≤ 5 and 1 ∈ K, we get:

−
∑

|I|≤4,1/∈I

(−1)1+|I|[ξ1 ? ηI ⊗ vI,s+1] = 0.

From this we get, using linear independence of the terms ξ1 ?ηI for different I’s, that vI,k = 0 when
|I| ≤ 4, 1 /∈ I and k ≥ 4. (Since we could have chosen at the beginning a general ξi instead of
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ξ1, condition 1 /∈ I is not necessary). If we look at terms of (6.6) involving ηK with |K| = 4 and
1 /∈ K, we get:

∂1ηK∪{1} ⊗ vK∪{1},s+2 = 0.

From this we obtain that vI,k = 0 when |I| = 5, 1 ∈ I and k ≥ 5. (Since we could have chosen
at the beginning a general ξi instead of ξ1, condition 1 ∈ I is not necessary). The terms of (6.6)
involving η∗1 are:

η∗1 ⊗ v∗,s+2 = 0.

From this we obtain v∗,k = 0 if k ≥ 5.

Therefore, for a singular vector ~m, T (~m) has the following form:

T (~m) = Θ4(
∑
I

ηI ⊗ vI,4) + Θ3(
∑
I

ηI ⊗ vI,3) + Θ2(
∑
I

ηI ⊗ vI,2) + Θ1(
∑
I

ηI ⊗ vI,1) + (
∑
I

ηI ⊗ vI,0).

(6.7)

Following [BKL2], we write the λ−action in the following way, using Proposition 6.2 and Lemma
6.3:

(T ◦ fλ)(~m) =b0 + λ(B0 − a0) + λ2C0 + (λ+ Θ)[a0 + b1] + (λ+ Θ)λ(B1 − a1) + (λ+ Θ)λ2C1

+ (λ+ Θ)2[a1 + b2] + (λ+ Θ)2λ(B2 − a2) + (λ+ Θ)2λ2C2

+ (λ+ Θ)3[a2 + b3] + (λ+ Θ)3λ(B3 − a3) + (λ+ Θ)3λ2C3

+ (λ+ Θ)4[a3 + b4] + (λ+ Θ)4λ(B4 − a4) + (λ+ Θ)4λ2C4 + (λ+ Θ)5a4,

where the coefficients a, b, B,C depend on f and are explicitly defined as follows. For all 0 ≤ p ≤ 4
we let:

ap(f) =
∑
I

(−1)(|f |(|f |+1)/2)+|f ||I|
[
(|f | − 2)(f ? ηI)⊗ vI,p

]
; (6.8)

bp(f) =
∑
I

(−1)(|f |(|f |+1)/2)+|f ||I|
[
− (−1)p(f)

6∑
i=1

(∂if) ? (∂iηI)⊗ vI,p −
∑
r<s

(∂r∂sf) ? ηI ⊗ Fr,svI,p
]
;

Bp(f) =
∑
I

(−1)(|f |(|f |+1)/2)+|f ||I|
[
f ? ηI ⊗ E00vI,p − (−1)p(f)

6∑
i=1

∂i(fξi ? ηI)⊗ vI,p

+ (−1)p(f)
∑
i 6=j

((∂if)ξj) ? ηI ⊗ Fi,jvI,p)
]
;

Cp(f) =
∑
I

(−1)(|f |(|f |+1)/2)+|f ||I|
[
−
∑
i<j

(fξiξj) ? ηI ⊗ Fi,jvI,p
]
.

We also have:

(T ◦ f∗λ)(~m) =bd0 + λ(Bd0 − ad0) + λ2Cd0 + (λ+ Θ)[ad0 + bd1] + (λ+ Θ)λ(Bd1 − ad1) (6.9)

+ (λ+ Θ)λ2Cd1 + (λ+ Θ)2[ad1 + bd2] + (λ+ Θ)2λ(Bd2 − ad2) + (λ+ Θ)2λ2Cd2

+ (λ+ Θ)3[ad2 + bd3] + (λ+ Θ)3λ(Bd3 − ad3) + (λ+ Θ)3λ2Cd3

+ (λ+ Θ)4[ad3 + bd4] + (λ+ Θ)4λ(Bd4 − ad4) + (λ+ Θ)4λ2Cd4 + (λ+ Θ)5ad4,

where we mean that adp = ap(f
∗), bdp = bp(f

∗), Bdp = Bp(f
∗), Cdp = Cp(f

∗).
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Proof of Lemma 6.5. Let us analyze condition S2 for f = ξj :

d

dλ

(
T (ξj λ ~m+ iλ2(ξ∗j λ ~m))

)
|λ=0

= 0.

Using notation (6.8), we obtain:

B0 + b1 + Θ[B1 + a1 + 2b2] + Θ2[2a2 +B2 + 3b3] + Θ3[3a3 +B3 + 4b4] + Θ4[4a4 +B4] = 0.

Therefore: 

4a4 +B4 = 0,

3a3 +B3 + 4b4 = 0,

2a2 +B2 + 3b3 = 0,

B1 + a1 + 2b2 = 0,

B0 + b1 = 0.

Let us analyze explicitly equation B1 + a1 + 2b2 = 0 for f = ξj .
The coefficient of the terms of B1 + a1 + 2b2 = 0 that contain ηj only are:

−v∅,1 + E00v∅,1 + 5(−v∅,1) = 0. (6.10)

Now we analyze (B0 + b1)(ξj) = 0 and we consider the coefficient of the terms that involve ηj only.
We get:

E00v∅,0 − 5v∅,0 = 0. (6.11)

We focus on (2a2 +B2 + 3b3)(ξj) = 0 and consider the coefficient of the terms that involve ηj only.
We get:

−2v∅,2 + E00v∅,2 − 5v∅,2 = 0. (6.12)

Now let us analyze B0(ξj) + b1(ξj) = 0. The coefficient of the terms in 1 only come from b1 when
g = ηj and we obtain:

v(j),1 = 0. (6.13)

Now let us analyze (B1 + a1 + 2b2)(ξj) = 0. The coefficient of the terms in 1 only come from b2
when g = ηj and we obtain:

v(j),2 = 0. (6.14)

Let us analyze condition S2 for f = ξiξjξk. We have:

d

dλ

(
T (ξiξjξk λ ~m− iλ

0((ξiξjξk)
∗
λ ~m))

)
|λ=0

= 0.

Using notation (6.8) and (6.9), we obtain:

B0 + b1 + Θ[B1 + a1 + 2b2] + Θ2[2a2 +B2 + 3b3] + Θ3[3a3 +B3 + 4b4] + Θ4[4a4 +B4]

− i
{
Bd0 + bd1 + Θ[Bd1 + ad1 + 2bd2] + Θ2[2ad2 +Bd2 + 3bd3] + Θ3[3ad3 +Bd3 + 4bd4]

+Θ4[4ad4 +Bd4]
}

= 0.
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Therefore we obtain: 

4a4 +B4 − i(4ad4 +Bd4) = 0,

3a3 +B3 + 4b4 − i(3ad3 +Bd3 + 4bd4) = 0,

2a2 +B2 + 3b3 − i(2ad2 +Bd2 + 3bd3) = 0,

B1 + a1 + 2b2 − i(Bd1 + ad1 + 2bd2) = 0,

B0 + b1 − i(Bd0 + bd1) = 0.

Let us now analyze condition S3 for f = ξiξjξk. We have(
T (ξiξjξk λ ~m− iλ

0((ξiξjξk)
∗
λ ~m))

)
|λ=0

= 0.

Using notation (6.8) and (6.9), we obtain:

b0 + Θ[a0 + b1] + Θ2[a1 + b2] + Θ3[a2 + b3] + Θ4[a3 + b4] + Θ5a4

− i
{
bd0 + Θ[ad0 + bd1] + Θ2[ad1 + bd2] + Θ3[ad2 + bd3] + Θ4[ad3 + bd4] + Θ5ad4

}
= 0.

Therefore we obtain: 

a4 − iad4 = 0,

a3 + b4 − i(ad3 + bd4) = 0,

a2 + b3 − i(ad2 + bd3) = 0,

a1 + b2 − i(ad1 + bd2) = 0,

a0 + b1 − i(ad0 + bd1) = 0,

b0 − ibd0 = 0.

Hence for f = ξiξjξk, combining, by S2, B1 + a1 + 2b2 − i(Bd1 + ad1 + 2bd2) = 0 and, by S3,
a1 + b2 − i(ad1 + bd2) = 0, we obtain B1 − a1 − i(Bd1 − ad1) = 0. We take the coefficient of ηiηjηk
and obtain:

E00v∅,1 − 3v∅,1 − v∅,1 = 0.

But we also have by (6.10) that E00v∅,1 − 6v∅,1 = 0, thus v∅,1 = 0.
Moreover for f = ηiηjηk we know, by S3, that a0 + b1 − i(ad0 + bd1) = 0 and, by S2, that
B0 + b1 − i(Bd0 + bd1) = 0. Hence a0 − B0 − i(ad0 − Bd0) = 0. We take the coefficient of ηiηjηk
and obtain:

0 = v∅,0 − (E00v∅,0 − 3v∅,0) = −E00v∅,0 + 4v∅,0.

But by (6.11) we have E00v∅,0 − 5v∅,0 = 0, thus v∅,0 = 0.
Finally for f = ξiξjξk we know, by S3, that a2 + b3− i(ad2 + bd3) = 0 and, by S2, that 2a2 +B2 +
3b3 − i(2ad2 + Bd2 + 3bd3) = 0; therefore −a2 + B2 − i(−ad2 + Bd2) = 0. We take the coefficient
of ηiηjηk and obtain:

0 = −v∅,2 + E00v∅,2 − 3v∅,2 = E00v∅,2 − 4v∅,2.

But by (6.12) we have E00v∅,2 − 7v∅,2 = 0, thus v∅,2 = 0.
So far we have shown that, for all i ∈ {1, 2, 3, 4, 5, 6}, v∅,0 = v∅,1 = v∅,2 = v(i),1 = v(i),2 = 0.
Let us now show that v(jl),1 = 1. By condition S2 for f = ξj we know B0 + b1 = 0. We take the
coefficient of ηl and obtain:

0 = −ηl ⊗ v(jl),1 + ηl ⊗ Fj,lv∅,0.
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Therefore v(jl),1 = 0.

Let us analyze the condition S1 for |f | = 0:

0 =
d2

dλ2
(T (1λ ~m− i(−1)0λ3((ξ∗)λ ~m))) =

2C0 + 2B1 + 2b2 + λ[4C1 + 2B2 − 2a2] + 2λ2C2 + (λ+ Θ)[2C1 + 4B2 + 2a2 + 6b3]

+ (λ+ Θ)λ[8C2 + 6B3 − 6a3] + (λ+ Θ)λ26C3 + (λ+ Θ)2[2C2 + 6B3 + 6a3 + 12b4]

+ (λ+ Θ)2λ[12C3 + 12B4 − 12a4] + (λ+ Θ)2λ212C4 + (λ+ Θ)3[8B4 + 12a4 + 2C3]

+ (λ+ Θ)3λ16C4 + (λ+ Θ)42C4

− 6iλ
{
bd0 + λ(Bd0 − ad0) + λ2Cd0 + (λ+ Θ)[ad0 + bd1] + (λ+ Θ)λ(Bd1 − ad1) + (λ+ Θ)λ2Cd1

+(λ+ Θ)2[ad1 + bd2] + (λ+ Θ)2λ(Bd2 − ad2) + (λ+ Θ)2λ2Cd2

+(λ+ Θ)3[ad2 + bd3] + (λ+ Θ)3λ(Bd3 − ad3) + (λ+ Θ)3λ2Cd3

+(λ+ Θ)4[ad3 + bd4] + (λ+ Θ)4λ(Bd4 − ad4) + (λ+ Θ)4λ2Cd4 + (λ+ Θ)5ad4

}
− 6iλ2

{
Bd0 + bd1 + λ[2Cd0 +Bd1 − ad1] + λ2Cd1 + (λ+ Θ)[Bd1 + ad1 + 2bd2]

+(λ+ Θ)λ[2Cd1 + 2Bd2 − 2ad2] + (λ+ Θ)λ22Cd2 + (λ+ Θ)2[Bd2 + 2ad2 + 3bd3]

+(λ+ Θ)2λ[2Cd2 + 3Bd3 − 3ad3] + (λ+ Θ)2λ23Cd3 + (λ+ Θ)3[Bd3 + 3ad3 + 4bd4]

+(λ+ Θ)3λ[4Bd4 − 4ad4 + 2Cd3] + (λ+ Θ)3λ24Cd4

+(λ+ Θ)4[Bd4 + 4ad4] + (λ+ Θ)4λ2Cd4

}
− iλ3

{
2Cd0 + 2Bd1 + 2bd2 + λ[4Cd1 + 2Bd2 − 2ad2] + 2λ2Cd2 + (λ+ Θ)[2Cd1 + 4Bd2 + 2ad2 + 6bd3]

}
+(λ+ Θ)λ[8Cd2 + 6Bd3 − 6ad3] + (λ+ Θ)λ26Cd3 + (λ+ Θ)2[2Cd2 + 6Bd3 + 6ad3 + 12bd4]

}
+(λ+ Θ)2λ[12Cd3 + 12Bd4 − 12ad4] + (λ+ Θ)2λ212Cd4 + (λ+ Θ)3[8Bd4 + 12ad4 + 2Cd3]

}
+(λ+ Θ)3λ16Cd4 + (λ+ Θ)42Cd4.

}
We consider this expression as sum of polynomials in the variables λ and λ + Θ. The condition
reduces to the following system of equations:

C4 = 0, (6.15)

C3 + 4B4 + 6a4 = 0, (6.16)

C2 + 3a3 + 3B3 + 6b4 = 0, (6.17)

C1 + a2 + 2B2 + 3b3 = 0, (6.18)

ad3 + bd4 = 0, (6.19)

2Bd4 + 3ad4 = 0, (6.20)

Cd4 = 0, (6.21)

8C4 − 3iad2 − 3ibd3 = 0, (6.22)

Bd3 + ad3 + 2bd4 = 0, (6.23)

− 5Cd3 − 8Bd4 + 3ad4 = 0, (6.24)

Cd4 = 0, (6.25)

2C3 + 2(B4 − a4)− iad1 − ibd2 = 0, (6.26)

2C4 − 2iBd2 − iad2 − 6ibd3 = 0, (6.27)

− 5Cd2 − 6Bd3 + 2ad3 − 2bd4 = 0, (6.28)

− 10Cd3 − 4(Bd4 − ad4) = 0, (6.29)

Cd4 = 0, (6.30)



146 6. The conformal superalgebra CK6

4C2 + 3B3 − 3a3 − 3iad0 − 3ibd1 = 0, (6.31)

C3 − 2iBd1 − 2ibd2 = 0, (6.32)

− 10Cd1 − 8Bd2 + 5ad2 − 3bd3 = 0, (6.33)

− 10Cd2 − 3Bd3 + 3ad3 = 0, (6.34)

2C1 +B2 − a2 − 3ibd0 = 0, (6.35)

C2 − 6iBd0 + 3iad0 − 3ibd1 = 0, (6.36)

− 10Cd0 − 4Bd1 + 3ad1 − bd2 = 0, (6.37)

5Cd1 +Bd2 − ad2 = 0, (6.38)

Cd2 = 0, (6.39)

C0 +B1 + b2 = 0. (6.40)

We know by (6.37) that:

bd2 = −10Cd0 − 4Bd1 + 3ad1 = −4Bd1 + 3ad1.

Indeed Cd0 = 0 since f∗ = ξ∗. Using this relation we have that Equations (6.16), (6.26), (6.32)
reduce to:

C3 + 4B4 + 6a4 = 0,

2C3 + 2(B4 − a4)− iad1 − ibd2 = 2C3 + 2(B4 − a4)− iad1 − i(−4Bd1 + 3ad1) = 0,

C3 − 2iBd1 − 2ibd2 = C3 − 2iBd1 − 2i(−4Bd1 + 3ad1) = 0.

This can be rewritten as: 
C3 + 4B4 + 6a4 = 0,

2C3 + 2(B4 − a4)− 4iad1 + 4iBd1 = 0,

C3 − 6iad1 + 6iBd1 = 0.

Now we consider the following linear combinations of the three equations:{
3B4 + 7a4 + 2iad1 − 2iBd1 = 0,

B4 − a4 + 4iad1 − 4iBd1 = 0.

Now ad1 and Bd1 involve only terms in η∗ with v∅,1 that is 0. So a4(1) = 0. Then, using that
|f | = 0:

a4(f) =
∑
I

sgn(−2ηI)⊗ vI,4 = 0,

where sgn = ±1 and is not needed explicitly here. Using linear independence of distinct ηI ’s, we
get vI,4 = 0.

Now let us consider Equations (6.17), (6.31), (6.36):
C2 + 3a3 + 3B3 + 6b4 = 0,

4C2 + 3B3 − 3a3 − 3iad0 − 3ibd1 = 0,

C2 − 6iBd0 + 3iad0 − 3ibd1 = 0.

We observe that b4(1) = 0, ad0 and Bd0 involve only terms with v∅,0 that is 0, bd1 involves only
terms with v∅,1, vI,1 where |I| = 1, 2, that are zero. Then these equations reduce to:

C2 + 3a3 + 3B3 = 0,

4C2 + 3B3 − 3a3 = 0,

C2 = 0.
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From this we have that a3(1) = 0. As before we deduce vI,3 = 0.
Thus we have shown that, for a singular vector ~m, T (~m) has the following form:

T (~m) = Θ2

( ∑
|I|≥2

ηI ⊗ vI,2
)

+ Θ1

( ∑
|I|≥3

ηI ⊗ vI,1
)

+

( ∑
|I|≥1

ηI ⊗ vI,0
)
.

This means that there are singular vectors ~m of at most degree 8 and, in particular, T (~m) has the
following form:

T (~m) = Θ2
∑
|I|=2

ηI ⊗ vI,2 degree 8,

T (~m) = Θ2
∑
|I|=3

ηI ⊗ vI,2 degree 7,

T (~m) = Θ2
∑
|I|=4

ηI ⊗ vI,2 degree 6,

T (~m) = Θ2
∑
|I|=5

ηI ⊗ vI,2 + Θ
∑
|I|=3

ηI ⊗ vI,1 +
∑
|I|=1

ηI ⊗ vI,0 degree 5,

T (~m) = Θ2
∑
|I|=6

ηI ⊗ vI,2 + Θ
∑
|I|=4

ηI ⊗ vI,1 +
∑
|I|=2

ηI ⊗ vI,0 degree 4,

T (~m) = Θ
∑
|I|=5

ηI ⊗ vI,1 +
∑
|I|=3

ηI ⊗ vI,0 degree 3,

T (~m) = Θ
∑
|I|=6

ηI ⊗ vI,1 +
∑
|I|=4

ηI ⊗ vI,0 degree 2,

T (~m) =
∑
|I|=5

ηI ⊗ vI,0 degree 1.

If we look at vectors of degree 8,7 and 6 we can use the relation (B1 + a1 + 2b2)(f) = 0 from S2
for f = ξj . In both these three cases it reduces to b2(f) = 0 since there are no vI,1’s involved. We
get that:

b2(ξj) =
∑
I

sgnI ∂jηI ⊗ vI,2 for |I| = 2, 3, 4,

where sgn = ±1 and is not needed explicitly here. By linear independence we get vI,2 = 0 for
|I| = 2, 3, 4.

6.2 Homology

In [BKL2], Boyallian, Kac and Liberati completely classified the highest weight singular vectors for
CK6, using the reduction found in Lemma 6.5. Using an analog of Remark 4.8, they obtain the
morphisms between degenerate modules for CK6 represented in Figure 6.1. We point out that the
Verma modules represented in Figure 6.1 are all degenerate except for the one represented at the
origin of the third quadrant.
The aim of this section is to compute the homology of the complexes in Figure 6.1 in the first and
third quadrant. The computation of the homology for the second quadrant will be done in the
future. The first step for the computation of the homology is to find an explicit expression for the
maps in Figure 6.1.
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Remark 6.7. From now on we will often use the following isomorphism of Lie algebras between
so(6) and sl(4) = 〈xi∂j , xi∂i − xj∂j , 1 ≤ i 6= j ≤ 4〉 given by:

Ψ : sl(4) −→ so(6)

−2x3∂2 7−→ E−(ε1−ε2),

2x2∂3 7−→ E(ε1−ε2),

x2∂2 − x3∂3 7−→ h1,

−2x2∂1 7−→ E−(ε2−ε3),

2x1∂2 7−→ E(ε2−ε3),

x1∂1 − x2∂2 7−→ h2,

−2x4∂3 7−→ E−(ε2+ε3),

2x3∂4 7−→ E(ε2+ε3),

x3∂3 − x4∂4 7−→ h3,

and extended uniquely to a Lie algebra isomorphism. We will call gss0 = so(6) ∼= sl(4).

Remark 6.8. By a straightforward computation, it is possible to show that g−1 is an irreducible
gss0 −module of highest weight (1,0,0) with respect to h1, h2, h3. In particular g−1 is isomorphic to∧2((C4)∗) and the isomorphism is given by:

ξ2 + iξ1 ←→ ∂x3 ∧ ∂x4 , ξ2 − iξ1 ←→ −∂x1 ∧ ∂x2 , (6.41)

ξ4 + iξ3 ←→ −∂x2 ∧ ∂x4 , ξ4 − iξ3 ←→ −∂x1 ∧ ∂x3 ,

ξ6 + iξ5 ←→ ∂x1 ∧ ∂x4 , ξ6 − iξ5 ←→ −∂x2 ∧ ∂x3 .

Motivated by relations (6.41), from now on we will use the notation:

w34 = η2 + iη1, w12 = −η2 + iη1, (6.42)

w24 = −(η4 + iη3), w13 = −η4 + iη3,

w14 = η6 + iη5, w23 = −η6 + iη5.

We point out that [w34, w12] = −4Θ, [w24, w13] = 4Θ, [w14, w23] = −4Θ and all the other brackets
between the w’s are zero.

Let

λ1 = ε1, λ2 =
ε1 + ε2 − ε3

2
, λ3 =

ε1 + ε2 + ε3

2
,

be the fundamental weights of so(6) extended by λi(t) = 0. We denote by λ = n1λ1 + n2λ2 + n3λ3

a dominant weight. Therefore n1, n2, n3 are the weights with respect to h1, h2, h3. We use the
notation F (n1, n2, n3) to indicate the irreducible so(6)−module of highest weight λ.

Following [BKL2], the Verma modules are denoted by M(n0, n1λ1 + n2λ2 + n3λ3) where n0 is
the weight with respect to the central element t.

For the degenerate modules represented in Figure 6.1, we will use the following notation:

Mn1,n3

A := M
(
−n1 −

n3

2
, n1λ1 + n3λ3

)
= U(g<0)⊗ V n1,n3

A ,

Mn2,n3

B := M
(n2

2
− n3

2
+ 2, n2λ2 + n3λ3

)
= U(g<0)⊗ V n2,n3

B ,

Mn1,n2

C := M
(
n1 +

n2

2
+ 4, n1λ1 + n2λ2

)
= U(g<0)⊗ V n1,n2

C ,
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Figure 6.1

n1

n3

n3

n1

n2 n2

M(−n1 − n3
2 , n1λ1 + n3λ3) A

M(n1 + n2
2 + 4, n1λ1 + n2λ2)C

M(n2
2 −

n3
2 + 2, n2λ2 + n3λ3) B

where the modules MA’s are represented in the first quadrant, the modules MB’s in the second
quadrant, the modules MC ’s in the third quadrant and, as so(6)−modules, V n1,n3

A
∼= F (n1, 0, n3),

V n2,n3

B
∼= F (0, n2, n3), V n1,n2

C
∼= F (n1, n2, 0). The element t acts as multiplication by −n1 − n3

2 on
V n1,n3

A , as multiplication by n2
2 −

n3
2 + 2 on V n2,n3

B and as multiplication by n1 + n2
2 + 4 on V n1,n2

C .

Remark 6.9. We will think V n1,n3

A as the irreducible submodule of

Symn1(
∧2((C4)∗))⊗ Symn3((C4)∗)

generated by the highest weight vector vλ := (∂x3 ∧ ∂x4)n1∂n3
4 where {∂1, ∂2, ∂3, ∂4} is a basis for

(C4)∗.
We will think V n2,n3

B as the irreducible submodule of

Symn2(C4)⊗ Symn3((C4)∗)

generated by the highest weight vector vλ := xn2
1 ∂n3

4 where {x1, x2, x3, x4} is the standard basis of
C4 and {∂1, ∂2, ∂3, ∂4} is a basis for (C4)∗.
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We will think V n1,n2

C as the irreducible submodule of

Symn1(
∧2(C4))⊗ Symn2(C4)

generated by the highest weight vector vλ := (x1 ∧ x2)n1xn2
1 where {x1, x2, x3, x4} is the standard

basis of C4 and {xi ∧ xj} is a basis for
∧2(C4).

We observe that t acts as
x1∂x1+x2∂x2+x3∂x3+x4∂x4

2 on vectors of V n1,n3

A , as
x1∂x1+x2∂x2+x3∂x3+x4∂x4

2 +2

on vectors of V n2,n3

B and as
x1∂x1+x2∂x2+x3∂x3+x4∂x4

2 + 4 on vectors of V n1,n2

C .

In [BKL2], Boyallian, Kac and Liberati completely classified the highest weight singular vectors
for CK6, using the reduction found in Lemma 6.5; they obtain the following classification.

Theorem 6.10 ([BKL2] Theorem 4.1). Let F be an irreducible finite−dimensional g0−module of
highest weight µ = (n0, n1λ1 + n2λ2 + n3λ3). Therefore a vector in Ind(F ) is a nontrivial highest
weight singular vector if and only if it is (up to a scalar) one of the following:

(a) µ = (9
2 , λ2),

~m5a =Θ2
[
w34 ⊗ x3 + w24 ⊗ x2 + w14 ⊗ x1

]
+

Θw34

4

[
w23w14 − w14w23 + w24w13 − w13w24

]
⊗ x3

+
Θw24

4

[
w23w14 − w14w23 − w34w12 + w12w34

]
⊗ x2

+
Θw14

4

[
w24w13 − w13w24 − w34w12 + w12w34

]
⊗ x1 + Θw34w24w14 ⊗ x4

+ i
w34

16

(
w13w24 − w24w13

)(
− w14w23 + w23w14

)
⊗ x3

+ i
w24

16

(
w34w12 − w12w34

)(
w23w14 − w14w23

)
⊗ x2

+ i
w14

16

(
w34w12 − w12w34

)(
w24w13 − w13w24

)
⊗ x1;

(b) µ = (n2
2 + 4, n2λ2), with n2 ≥ 2,

~m3b =
w13

2

(
w14w23 − w23w14 + w12w34 − w34w12

)
⊗ x3x

n2−1
1

+
w24

2

(
w23w14 − w14w23 + w12w34 − w34w12

)
⊗ x4x2x

n2−2
1

+
w23

2

(
w13w24 − w24w13 + w12w34 − w34w12

)
⊗ x3x2x

n2−2
1

+
w14

2

(
w24w13 − w13w24 − w34w12 + w12w34

)
⊗ x4x

n2−1
1

+
w12

2

(
w14w23 − w23w14 + w24w13 − w13w24

)
⊗ x2x

n2−1
1

+
w34

2

(
w23w14 − w14w23 + w24w13 − w13w24

)
⊗ x3x4x

n2−2
1

+ w34w24w14 ⊗ x2
4x
n2−2
1 + w12w24w23 ⊗ x2

2x
n2−2
1

− w34w13w23 ⊗ x2
3x
n2−2
1 − w12w13w14 ⊗ xn2

1 ;

(c) µ = (−n3
2 + 2, n3λ3), with n3 ≥ 0,

~m3c = w34w24w14 ⊗ ∂n3
4 ;

(d) µ = (n1 + n2
2 + 4, n1λ1 + n2λ2), with n1 ≥ 1, n2 ≥ 0,

~m1d =
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= −w12 ⊗ (x1 ∧ x2)n1xn2
1 − w13 ⊗ (x1 ∧ x3)(x1 ∧ x2)n1−1xn2

1

+ w23 ⊗
1

2(n1 + n2 + 1)

[
2n2(x1 ∧ x2)n1x3x

n2−1
1 − 2n2(x1 ∧ x3)(x1 ∧ x2)n1−1x2x

n2−1
1

− 2(n1 + 1)(x2 ∧ x3)(x1 ∧ x2)n1−1xn2
1

]
+

+ w34 ⊗
1

2(n1 + n2 + 1)

[
− 2n2(x1 ∧ x4)(x1 ∧ x2)n1−1x3x

n2−1
1

+ 2(n1 − 1)(x1 ∧ x4)(x2 ∧ x3)(x1 ∧ x2)n1−2xn2
1 + 2n2(x1 ∧ x3)(x1 ∧ x2)n1−1x4x

n2−1
1

− 4(x3 ∧ x4)(x1 ∧ x2)n1−1xn2
1 − 2(n1 − 1)(x1 ∧ x3)(x2 ∧ x4)(x1 ∧ x2)n1−2xn2

1

]
− w24 ⊗

1

2(n1 + n2 + 1)

[
− 2n2(x1 ∧ x2)n1x4x

n2−1
1 + 2n2(x1 ∧ x4)(x1 ∧ x2)n1−1x2x

n2−1
1

+ (2n1 + 2)(x2 ∧ x4)(x1 ∧ x2)n1−1xn2
1

]
− w14 ⊗ (x1 ∧ x4)(x1 ∧ x2)n1−1xn2

1 ;

(e) µ = (n2
2 −

n3
2 + 2, n2λ2 + n3λ3), with n2 ≥ 1, n3 ≥ 0,

~m1e = w34 ⊗ xn2−1
1 x3∂

n3
4 + w24 ⊗ xn2−1

1 x2∂
n3
4 + w14 ⊗ xn2

1 ∂n3
4 ;

(f) µ = (−n1 − n3
2 , n1λ1 + n3λ3), with n1 ≥ 0, n3 ≥ 0,

~m1f = w34 ⊗ (∂3 ∧ ∂4)n1∂n3
4 .

We point out that, by Theorem 6.10, there are only nontrivial singular vectors of degree 5, 3
and 1.
We define, using (5.4), the following map between the modules MA in the first quadrant:

∇A : M
(
−n1 −

n3

2
, n1λ1 + n3λ3

)
−→M

(
−(n1 − 1)− n3

2
, (n1 − 1)λ1 + n3λ3

)
(6.43)

∇A = w34 ⊗ ∂3,4 + w24 ⊗ ∂2,4 + w14 ⊗ ∂1,4 + w12 ⊗ ∂1,2 + w23 ⊗ ∂2,3 + w13 ⊗ ∂1,3,

where ∂i,j denotes the derivative with respect to the element ∂i ∧ ∂j . We assume that ∂i,j = −∂j,i
for all i, j.

Remark 6.11. The map ∇A is constructed so that it sends the highest weight vector (∂3 ∧ ∂4)n1∂n3
4

of M(−n1 − n3
2 , n1λ1 + n3λ3) to:

~m = w34 ⊗ n1(∂3 ∧ ∂4)n1−1∂n3
4

that is the highest weight singular vector of M
(
−(n1 − 1)− n3

2 , (n1 − 1)λ1 + n3λ3

)
found in The-

orem 6.10.

Lemma 6.12. The map ∇A, defined in (6.43), is a morphism of g−modules and ∇2
A = 0.

Proof. The map ∇A commutes with g<0 by (5.4). By Remark 6.11 and Lemmas 5.6, 5.8 it follows
that ∇A is a morphism of g−modules. The property ∇2

A = 0 follows from the fact that ∇A is
a map between Verma modules that contain only highest weight singular vectors of degree 1 and
there are no singular vectors of degree 2, by Theorem 6.10.

We call ∇3 the g−morphisms from M0,n3

A to M0,n3−2
B , for all n3 > 1, that map the highest

weight vector ∂n3
x4

of V 0,n3

A to the highest weight singular vector of degree 3 of M0,n3−2
B found in

Theorem 6.10. We point out that ∇3∇A : M1,n3

A −→M0,n3−2
B is 0 since there are no highest weight

singular vectors of degree 4 due to Theorem 6.10. The morphisms ∇3 are represented from the first
to the second quadrant in Figure 6.1.
We call ∇5 the g−morphism, from M0,1

A to M0,1
C , that maps the highest weight vector ∂x4 of V 0,1

A
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to the highest weight singular vector of degree 5 of M0,1
C found in Theorem 6.10. We point out that

∇5∇A : M1,1
A −→ M0,1

C is 0 since there are no highest weight singular vectors of degree 6 due to
Theorem 6.10. The morphism ∇5 is represented from the first to the third quadrant in Figure 6.1.
We now compute the homology for the first quadrant. We call MA = ⊕n1,n3M

n1,n3

A and VA =
⊕n1,n3V

n1,n3

A .
Following [KR1], let us consider the filtration on U(g<0) as follows: for all i ≥ 0, FiU(g<0) is the
subspace of U(g<0) spanned by elements with at most i terms of g<0. Therefore:

C = F0U(g<0) ⊂ F1U(g<0) ⊂ ... ⊂ Fi−1U(g<0) ⊂ FiU(g<0) ⊂ ... ,

where FiU(g<0) = g<0Fi−1U(g<0) + Fi−1U(g<0). We call FiMA = FiU(g<0) ⊗ VA. We have
that ∇AFiMA ⊂ Fi+1MA and the filtration is bounded below. Then we can use the theory of
spectral sequences; we first study GrMA. We consider the subalgebra g0̄ of g given by the even
elements, that, since the grading is consistent, is g0̄ = ⊕i≥−1g2i. On g0̄ we consider the filtration
g0̄ = L−1 ⊃ L0 = ⊕i≥0g2i ⊃ L1 = ⊕i≥1g2i... .

Lemma 6.13. For all j ≥ −1 and i ≥ 0, we have:

LjFiMA ⊂ Fi−jMA. (6.44)

Proof. The proof is analogous to Lemma 5.32.

By (6.44), we know, since g0̄
∼= Gr g0̄, that the action of g0̄ on MA descends on GrMA.

We point out that, using the Poincaré−Birkhoff−Witt Theorem, we have GrU(g<0) ∼= S(g−2) ⊗∧
(g−1); indeed we have already noticed that in U(g<0), for all i ∈ {1, 2, 3, 4, 5, 6}, η2

i = Θ.
Therefore, as g0̄−modules:

GrMA = GrU(g<0)⊗ VA ∼= S(g−2)⊗ ∧
(g−1)⊗ VA.

From (6.44), it follows that L1 annihilates GA :=
∧

(g−1)⊗ VA. Therefore, as g0̄−modules:

GrMA
∼= S(g−2)⊗ (

∧
(g−1)⊗ VA) ∼= Ind

g0̄
L0

(
∧

(g−1)⊗ VA).

We observe that GrMA is a complex with the morphism induced by ∇A, that we still call ∇A.
Indeed ∇AFiMA ⊂ Fi+1MA for all i, therefore it is well defined the induced morphism

∇A : GriMA = FiMA/Fi−1MA −→ Gri+1MA = Fi+1MA/FiMA,

that has the same formula as ∇A defined in (6.43), apart from the fact that the multiplication by
the w’s must be seen as multiplication in GrU(g<0) instead of U(g<0).
Therefore we have that (GA,∇A) is a subcomplex of (GrMA,∇A): indeed it is sufficient to restrict
∇A to GA; the complex (GrMA,∇A) is obtained from (GA,∇A) extending the coefficients to
S(g−2).
We point out that also the homology spaces Hm,n(GA) are annihilated by L1. Therefore, as
g0̄−modules:

Hm,n(GrMA) ∼= S(g−2)⊗Hm,n(GA) ∼= Ind
g0̄
L0

(Hm,n(GA)). (6.45)

From (6.45) and Proposition 5.24, it follows that:

Proposition 6.14. If Hm,n(GA) = 0, then Hm,n(GrMA) = 0 and therefore Hm,n(MA) = 0.
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We introduce the notation, for all n3 ≥ 0:

V n3

A′
= V 0,n3

A ,

V n3

B′
= V 0,n3

B .

We will call VA′ = ⊕n3V
n3

A′
, VB′ = ⊕n3V

n3

B′
, GA′ =

∧
(g−1)⊗ VA′ and GB′ =

∧
(g−1)⊗ VB′ .

Let us consider the evaluation map from VA to VA′ , that maps ∂1 ∧ ∂2, ∂1 ∧ ∂3, ∂1 ∧ ∂4, ∂2 ∧ ∂3, ∂2 ∧
∂4, ∂3 ∧ ∂4 to zero and is the identity on all other elements; we can compose this map with ∇3

and obtain a new map, that we still call ∇3, from GA to GB′ . Analogously we can consider the
inclusion of GB′ into GB and compose the map with ∇3; we obtain a map from GA′ to GB that
we still call ∇3. We define:

GA◦ = Ker(∇3 : GA −→ GB′ ), GB◦ = CoKer(∇3 : GA′ −→ GB).

The map ∇A is still defined on GA◦ since ∇3∇A = 0.

Remark 6.15. From its definition, it is obvious that Gn1,n3

A◦ = Gn1,n3

A if n1 > 0. Therefore:

Hn1,n3(GA) = Hn1,n3(GA◦).

Remark 6.16. Let us focus on some technical computations. We point out that, using Remark 6.7:

−t+ iξ1ξ2 + iξ3ξ4 + iξ5ξ6

2
=
−t− (h1 + h2+h3

2 )− h3

2
= −x1∂1 + x2∂2 + x3∂3 − x4∂4

2
.

Using bracket (2.1), we obtain:[
−t+ iξ1ξ2 + iξ3ξ4 + iξ5ξ6

2
, ξ2 − iξ1

]
= ξ2 − iξ1,

[
−t+ iξ1ξ2 + iξ3ξ4 + iξ5ξ6

2
, ξ2 + iξ1

]
= 0,[

−t+ iξ1ξ2 + iξ3ξ4 + iξ5ξ6

2
, ξ4 − iξ3

]
= ξ4 − iξ3,

[
−t+ iξ1ξ2 + iξ3ξ4 + iξ5ξ6

2
, ξ4 + iξ3

]
= 0,[

−t+ iξ1ξ2 + iξ3ξ4 + iξ5ξ6

2
, ξ6 − iξ5

]
= ξ6 − iξ5,

[
−t+ iξ1ξ2 + iξ3ξ4 + iξ5ξ6

2
, ξ6 + iξ5

]
= 0.

We also have, using Remark 6.7:

−t− iξ1ξ2 − iξ3ξ4 − iξ5ξ6

2
=
−t+ (h1 + h2+h3

2 ) + h3

2
= −x4∂4.

Using bracket (2.1), we obtain:[
−t− iξ1ξ2 − iξ3ξ4 − iξ5ξ6

2
, ξ2 − iξ1

]
= 0,

[
−t− iξ1ξ2 − iξ3ξ4 − iξ5ξ6

2
, ξ2 + iξ1

]
= ξ2 + iξ1,[

−t− iξ1ξ2 − iξ3ξ4 − iξ5ξ6

2
, ξ4 − iξ3

]
= 0,

[
−t− iξ1ξ2 − iξ3ξ4 − iξ5ξ6

2
, ξ4 + iξ3

]
= ξ4 + iξ3,[

−t− iξ1ξ2 − iξ3ξ4 − iξ5ξ6

2
, ξ6 − iξ5

]
= 0,

[
−t− iξ1ξ2 − iξ3ξ4 − iξ5ξ6

2
, ξ6 + iξ5

]
= ξ6 + iξ5.

Motivated by Remark 6.16, we introduce an additional bigrading:

(VA)[p,q] =

{
f ∈ VA : 2

(
−x1∂1 + x2∂2 + x3∂3 − x4∂4

2

)
.f = pf , (−2x4∂4).f = qf

}
, (6.46)
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(GA)[p,q] =
∧

(g−1)⊗ (VA)|[p,q].

We observe that, for elements in (V n1,n3

A )|[p,q], we have p + q = 2n1 + n3 that is the eigenvalue of
−2t on V n1,n3

A . The definitions can be extended also to GA◦ .
We define d′ := w12 ⊗ ∂1,2 + w23 ⊗ ∂2,3 + w13 ⊗ ∂1,3 and d′′ = w34 ⊗ ∂3,4 + w24 ⊗ ∂2,4 + w14 ⊗ ∂1,4,
so that d′ + d′′ = ∇A.
Using Remark 6.16 and notation (6.42), it is an easy check that d′ : (GA)|[p,q] −→ (GA)|[p−2,q] and
d′′ : (GA)|[p,q] −→ (GA)|[p,q−2].
By Remark 6.8, it follows that that (d′)2 = (d′′)2 = d′d′′ + d′′d′ = 0. We point out that:

∇A : ⊕n1+
n3
2

=kG
n1,n3

A −→ ⊕n1+
n3
2

=k−1G
n1,n3

A .

Therefore ⊕n1+
n3
2

=kG
n1,n3

A is a bicomplex with bigrading (6.46), differentials d′, d′′ and total differ-

ential ∇A = d′ + d′′, the same holds for ⊕n1+
n3
2

=kG
n1,n3

A◦ . Now let:

∧i
+ =

∧i〈w34, w24, w14〉 and
∧i
− =

∧i〈w12, w13, w23〉.

We define:

GA(α, β)[p,q] =
∧α−p

2
−

∧β−q
2

+ (VA)[p,q].

We point out that α − p and β − q are always even, indeed α (resp. β) is the eigenvalue of

2
(
−x1∂1+x2∂2+x3∂3−x4∂4

2

)
(resp. −2x4∂4) on elements in

∧α−p
2
−

∧β−q
2

+ (VA)[p,q] and the elements of∧α−p
2
− (resp.

∧β−q
2

+ ) have even eigenvalue with respect to 2
(
−x1∂1+x2∂2+x3∂3−x4∂4

2

)
(resp. −2x4∂4),

due to Remark 6.16.
If α is even, only even values of p occur. If α is odd, only odd values of p occur. The values of β
and q are always even.
We point out that α + β ≥ 0. Indeed this value represents the eigenvalue of −2t on elements in
GA(α, β)[p,q] and −2t has non negative eigenvalues on VA and eigenvalue 2 for elements in g−1.
Moreover β ≥ 0 since (VA)[p,q] 6= 0 only for q ≥ 0.
We have that GA = ⊕α,βGA(α, β), where GA(α, β) = ⊕p,qGA(α, β)[p,q]. By Remark 6.16, it follows
that ∇A : GA(α, β)→ GA(α, β). The same definition holds for GA◦(α, β)[p,q]. The computation of
homologies of GA and GA◦ can be reduced to the computation for GA(α, β) and GA◦(α, β).

Lemma 6.17. Let α, β be such that β ≥ 0, α+ β ≥ 0.
As 〈x1∂1 − x2∂2, x1∂2, x2∂1, x2∂2 − x3∂3, x2∂3, x3∂2, x1∂3, x3∂1〉−modules:

Gn1=0,n3=α+β
A (α, β)

Im∇A
∼=

∧0
−

∧0
+ ⊗ (V 0,α+β

A )[α,β],

Hn1,n3(GA(α, β)) = 0 for (n1, n3) 6= (0, α+ β).

Proof. We split the proof in different cases.

A) We first analyze the case of α odd. We point out that p can assume only odd values. We
modify the bigrading in order to obtain a new bigrading and use the theory of spectral sequences
for bicomplexes.
For every p, q we denote by p̃ = p+1

2 , q̃ = q
2 . We will denote (ṼA)[p̃,q̃] = (VA)[p,q]. We denote

G̃A(α, β)[p̃,q̃] = GA(α, β)[p,q]. We now have that d′ : G̃A(α, β)[p̃,q̃] −→ G̃A(α, β)[p̃−1,q̃] and d′′ :

G̃A(α, β)[p̃,q̃] −→ G̃A(α, β)[p̃,q̃−1]. We have still that GA(α, β) = ⊕p̃,q̃G̃A(α, β)[p̃,q̃]. We split into
four subcases.
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1. We first consider the case β > 6 and α + β > 6. We use the theory of spectral sequences of
bicomplexes. Let us consider GA(α, β) with the differential d′′:

d′′←− ∧α−(2p̃−1)
2

−
∧β−2q̃

2
+1

+ ⊗ (ṼA)[p̃,q̃−1]
d′′←− ∧α−(2p̃−1)

2
−

∧β−2q̃
2

+ ⊗ (ṼA)[p̃,q̃]
d′′←− ∧α−(2p̃−1)

2
−

∧β−2q̃
2
−1

+ ⊗ (ṼA)[p̃,q̃+1]
d′′←− .

It is the tensor product of
∧α−(2p̃−1)

2
− and the following complex, since

∧α−(2p̃−1)
2

− is not involved
in d′′:

0
d′′←− ∧3

+ ⊗ (ṼA)
[p̃,β

2
−3]

d′′←− ∧2
+ ⊗ (ṼA)

[p̃,β
2
−2]

d′′←− ∧1
+ ⊗ (ṼA)

[p̃,β
2
−1]

d′′←− ∧0
+ ⊗ (ṼA)

[p̃,β
2

]

d′′←− 0.

We have that condition β > 6 assures that for q̃ the value β
2 − 3 is acceptable since it is

positive. This complex is exact except for the right end, let us analyze in detail.

i: Let us consider the map d′′ :
∧0

+ ⊗ (ṼA)
[p̃,β

2
]
−→

∧1
+ ⊗ (ṼA)

[p̃,β
2
−1]

. We compute the kernel.

Let f ∈
∧0

+ ⊗ (ṼA)
[p̃,β

2
]
. We have:

d′′(f) = w34 ⊗ ∂3,4f + w24 ⊗ ∂2,4f + w14 ⊗ ∂1,4f.

It is zero if and only if ∂3,4f = ∂2,4f = ∂1,4f = 0.

ii: Let us consider the map d′′ :
∧1

+ ⊗ (ṼA)
[p̃,β

2
−1]
−→

∧2
+ ⊗ (ṼA)

[p̃,β
2
−2]

. We compute the

kernel. Let v = w34 ⊗ p1 + w24 ⊗ p2 + w14 ⊗ p3 ∈
∧1

+ ⊗ (ṼA)
[p̃,β

2
−1]

. We have:

d′′(v) =w34w24 ⊗ ∂2,4p1 + w34w14∂1,4 ⊗ p1 + w24w34 ⊗ ∂3,4p2

+ w24w14 ⊗ ∂1,4p2 + w14w34 ⊗ ∂3,4p3 + w14w24∂2,4p3.

This is zero if and only if: 
∂2,4p1 − ∂3,4p2 = 0,

∂1,4p1 − ∂3,4p3 = 0,

∂1,4p2 − ∂2,4p3 = 0.

That means that p1 =
∫
∂3,4p2d2,4, p3 =

∫
∂1,4p2d2,4, where by

∫
pdi,j we mean a primitive of

p considered as a function in the indeterminate ∂i ∧ ∂j . Hence, an element of the kernel is:

w34 ⊗
∫
∂3,4p2d2,4 + w24 ⊗ p2 + w14 ⊗

∫
∂1,4p2d2,4 = d′′

(∫
p2d2,4

)
.

Thus at this point the sequence is exact.

iii: Let us consider the map d′′ :
∧2

+ ⊗ (ṼA)
[p̃,β

2
−2]
−→

∧3
+ ⊗ (ṼA)

[p̃,β
2
−3]

. We compute the

kernel. Let v = w34w24 ⊗ p1 + w34w14 ⊗ p2 + w24w14 ⊗ p3 ∈
∧2

+ ⊗ (ṼA)
[p̃,β

2
−2]

. We have:

d′′(v) = w34w24w14 ⊗ ∂1,4p1 + w34w14w24 ⊗ ∂2,4p2 + w24w14w34 ⊗ ∂3,4p3.

Therefore ∂1,4p1 − ∂2,4p2 + ∂3,4p3 = 0, that is equivalent to p3 =
∫

(−∂1,4p1 + ∂2,4p2)d3,4. In
that case:

w34w24 ⊗ p1 + w34w14 ⊗ p2 + w24w14 ⊗ p3 = d′′
(
−w24 ⊗

∫
p1d3,4 − w14 ⊗

∫
p2d3,4

)
.

Thus at this point the sequence is exact.
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iv: Let us consider the map d′′ :
∧3

+ ⊗ (ṼA)
[p̃,β

2
−3]
−→ 0. We have that

∧3
+ ⊗ (ṼA)

[p̃,β
2
−3]
3

w34w24w14 ⊗ f = d′′
(
w34w24 ⊗

∫
fd1,4

)
. Thus at this point the sequence is exact.

In the following diagram we use the notationKp̃ :=
{
f ∈ (ṼA)

[p̃,β
2

]
, | ∂3,4f = ∂2,4f = ∂1,4f = 0

}
.

The following is the diagram of the E
′1 spectral sequence, where the horizontal maps are d′

and the vertical maps are d′′:∧3
−
∧0

+ ⊗Kα−5
2

∧2
−
∧0

+ ⊗Kα−3
2

∧1
−
∧0

+ ⊗Kα−1
2

∧0
−
∧0

+ ⊗Kα+1
2

0 0 0 0

0 0 0 0

0 0 0 0.

The only nonzero row is:

0
d′←− ∧3

−
∧0

+ ⊗Kα+1
2
−3

d′←− ∧2
−

∧0
+ ⊗Kα+1

2
−2

d′←− ∧1
−

∧0
+ ⊗Kα+1

2
−1

d′←− ∧0
−

∧0
+ ⊗Kα+1

2

d′←− 0.

We point out that condition α + β > 6 allows p̃ to arrive to the value p = α+1
2 − 3. Indeed,

since for all p, q we have p+ q ≥ 0, then p̃+ q̃ ≥ 1
2 . The condition p̃+ q̃ = α+1

2 − 3 + β
2 >

1
2 is

satisfied. We can compute the homology of this row and, with an analogous reasoning to the
previous one, we get that the only nonzero row of E

′2 is:

0
d′←− 0

d′←− 0
d′←− 0

d′←− ∧0
−

∧0
+ ⊗Kα+1

2
∩ K̃β

2

d′←− 0.

where K̃q̃ =
{
f ∈ (ṼA)[α+1

2
,q̃], | ∂1,2f = ∂1,3f = ∂2,3f = 0

}
. Since for a one row spectral se-

quence we have that E
′2 = E

′∞, we have:

⊕2(n1+
n3
2

)=nH
n1,n3(GA(α, β)) ∼=

∑
p̃+q̃=n+1

2

E
′∞
p̃,q̃ = E

′∞
α+1

2
,β
2

=
∧0
−

∧0
+ ⊗Kα+1

2
∩ K̃β

2
.

Since in Kα+1
2
∩ K̃β

2
we have only elements with ∂a1

1 ∂a2
2 ∂a3

3 ∂a4
4 , we have:

H0,n3(GA(α, β)) ∼=
∧0
−

∧0
+ ⊗ (V 0,n3

A )[n3−β,β].

2) We now consider the case β > 6 and α+ β ≤ 6, that is 0 ≤ α+ β := h ≤ 6. The computation
of E

′1 is analogous to the previous case and we obtain the same diagram, but the only nonzero
row is now:

0
d′←− ∧h−1

2
−

∧0
+ ⊗Kα+1

2
−h−1

2

d′←− · · · d′←− ∧1
−

∧0
+ ⊗Kα+1

2
−1

d′←− ∧0
−

∧0
+ ⊗Kα+1

2

d′←− 0.

Indeed condition 0 ≤ α+β := h allows p̃ to be α+1
2 −

h−1
2 . Since for all p, q we have p+ q ≥ 0,

then p̃ + q̃ ≥ 1 because it is an integer and it is strictly greater than 0. For p̃ = α+1
2 −

h−1
2

and q̃ = β
2 we have p̃+ q̃ = α+1

2 −
h−1

2 + β
2 = 1.

The condition p̃ + q̃ = 1 means p + q = 1, therefore in Kα+1
2
−h−1

2
we have only elements for

which 2n1 + n3 = 1, that is n1 = 0, n3 = 1. This means that there are only elements constant
in ∂i ∧ ∂j , that lie in the image of d′. Indeed for h = 3, γ ∈ Kα+1

2
−h−1

2
:

w12 ⊗ γ = d′(γ(∂1 ∧ ∂2)),
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w13 ⊗ γ = d′(γ(∂1 ∧ ∂3)),

w23 ⊗ γ = d′(γ(∂2 ∧ ∂3)).

For h = 5, γ ∈ Kα+1
2
−h−1

2
:

w12w13 ⊗ γ = d′(−w13 ⊗ γ(∂1∂2)),

w12w23 ⊗ γ = d′(w12 ⊗ γ(∂2∂3)),

w13w23 ⊗ γ = d′(w13 ⊗ γ(∂2∂3)).

Then we can conclude as in the previous case.

3) We now focus on 0 ≤ β ≤ 6 and α+ β > 6. We use the first spectral sequence and obtain the

product of
∧α−(2p̃−1)

2
− with the complex:

0
d′′←− ∧β

2
+ ⊗ (ṼA)[p̃,0]

d′′←− ∧β
2
−1

+ ⊗ (ṼA)[p̃,1]
d′′←− ... d′′←− ∧0

+ ⊗ (ṼA)
[p̃,β

2
]

d′′←− 0.

In
∧β

2
+ ⊗ (ṼA)[p̃,0] the sequence is exact since q̃ = 0 implies that the polynomials are constant

in ∂1 ∧ ∂4, ∂2 ∧ ∂4, ∂3 ∧ ∂4, thus they lie in the image of d′′. Therefore we obtain the following
diagram for E

′1, where the horizontal maps are d′ and the vertical maps are d′′:∧3
−
∧0

+ ⊗Kα−5
2

∧2
−
∧0

+ ⊗Kα−3
2

∧1
−
∧0

+ ⊗Kα−1
2

∧0
−
∧0

+ ⊗Kα+1
2

0 0 0 0

...
...

...
...

0 0 0 0.

In particular the only nonzero row is:

0
d′←− ∧3

−
∧0

+ ⊗Kα−5
2

d′←− ∧2
−

∧0
+ ⊗Kα−3

2

d′←− ∧1
−

∧0
+ ⊗Kα−1

2

d′←− ∧0
−

∧0
+ ⊗Kα+1

2

d′←− 0.

We can conclude in the same way.

4) We now focus on 0 ≤ β ≤ 6 and 0 ≤ α+β = h ≤ 6. We can use the same reasoning as before,

we use the first spectral sequence and obtain the product of
∧α−(2p̃−1)

2
− with the complex:

0
d′′←− ∧β

2
+ ⊗ (ṼA)[p̃,0]

d′′←− ∧β
2
−1

+ ⊗ (ṼA)[p̃,1]
d′′←− ... d′′←− ∧0

+ ⊗ (ṼA)
[p̃,β

2
]

d′′←− 0.

Again in
∧β

2
+ ⊗ (ṼA)[p̃,0] the sequence is exact since q̃ = 0 implies that the polynomials are

constant in ∂1 ∧ ∂4, ∂2 ∧ ∂4, ∂3 ∧ ∂4, thus they lie in the image of d′′. Therefore we obtain the
following diagram for E

′1, where the horizontal maps are d′ and the vertical maps are d′′:

∧h−1
2
−

∧0
+ ⊗Kα+1

2
−h−1

2

∧k
−
∧0

+ ⊗Kα+1−2k
2

∧0
−
∧0

+ ⊗Kα+1
2

... ...

0 0 0... ...

...
...

...

0 0 0.... ...
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The only nonzero row is:

0
d′←− ∧h−1

2
−

∧0
+ ⊗Kα+1

2
−h−1

2

d′←− · · · d′←− ∧1
−

∧0
+ ⊗Kα+1

2
−1

d′←− ∧0
−

∧0
+ ⊗Kα+1

2

d′←− 0.

We conclude as in case 2).

B) We now analyze the case of α even. We point out that p can assume only even values. We
modify the bigrading in order to obtain a new bigrading and use the theory of spectral sequences.
For every p, q we denote by p̃ = p

2 , q̃ = q
2 . We will denote (ṼA)[p̃,q̃] = (VA)[p,q]. We denote

G̃A(α, β)[p̃,q̃] = GA(α, β)[p,q]. We now have that d′ : G̃A(α, β)[p̃,q̃] −→ G̃A(α, β)[p̃−1,q̃] and d′′ :

G̃A(α, β)[p̃,q̃] −→ G̃A(α, β)[p̃,q̃−1]. We have still that GA(α, β) = ⊕p̃,q̃G̃A(α, β)[p̃,q̃]. We split into
four subcases.

1) We first consider the case β > 6 and α + β > 6. We use the theory of spectral sequences of
bicomplexes. Let us consider GA(α, β) with the differential d′′:

d′′←− ∧α−2p̃
2
−

∧β−2q̃
2

+1
+ ⊗ (ṼA)[p̃,q̃−1]

d′′←− ∧α−2p̃
2
−

∧β−2q̃
2

+ ⊗ (ṼA)[p̃,q̃]
d′′←− ∧α−2p̃

2
−

∧β−2q̃
2
−1

+ ⊗ (ṼA)[p̃,q̃+1]
d′′←− .

It is the tensor product of
∧α−2p̃

2
− and the following complex, since

∧α−2p̃
2
− is not involved in d′′:

0
d′′←− ∧3

+ ⊗ (ṼA)
[p̃,β

2
−3]

d′′←− ∧2
+ ⊗ (ṼA)

[p̃,β
2
−2]

d′′←− ∧1
+ ⊗ (ṼA)

[p̃,β
2
−1]

d′′←− ∧0
+ ⊗ (ṼA)

[p̃,β
2

]

d′′←− 0.

Note that β is always even. We have that condition β > 6 assures that for q̃ the value β
2 − 3

is acceptable since it is positive. This complex is exact except for the right end, the compu-
tations are the same as in case A1.
In the following diagram we use the notationKp̃ :=

{
f ∈ (ṼA)

[p̃,β
2

]
, | ∂3,4f = ∂2,4f = ∂1,4f = 0

}
.

The following is the diagram of the E
′1 spectral sequence, where the horizontal maps are d′

and the vertical maps are d′′:

∧3
−
∧0

+ ⊗Kα−6
2

∧2
−
∧0

+ ⊗Kα−4
2

∧1
−
∧0

+ ⊗Kα−2
2

∧0
−
∧0

+ ⊗Kα
2

0 0 0 0

0 0 0
...

0 0 0 0.

The only nonzero row is:

0
d′←− ∧3

−
∧0

+ ⊗Kα
2
−3

d′←− ∧2
−

∧0
+ ⊗Kα

2
−2

d′←− ∧1
−

∧0
+ ⊗Kα

2
−1

d′←− ∧0
−

∧0
+ ⊗Kα

2

d′←− 0.

We point out that condition α+β > 6 allows p̃ to arrive to the value p = α
2 − 3. Indeed, since

for all p, q we have p+ q ≥ 0, then p̃+ q̃ ≥ 0. The condition p̃+ q̃ = α
2 − 3 + β

2 > 0 is satisfied.
We can compute the homology of this row and, with an analogous reasoning to the previous
one, we get that the only nonzero row of E

′2 is:

0
d′←− 0

d′←− 0
d′←− 0

d′←− ∧0
−

∧0
+ ⊗Kα

2
∩ K̃β

2

d′←− 0,
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where K̃q̃ =
{
f ∈ (ṼA)[α

2
,q̃], | ∂1,2f = ∂1,3f = ∂2,3f = 0

}
. Since for a one row spectral se-

quence E
′2 = E

′∞, we have:

⊕2(n1+
n3
2

)=nH
n1,n3(GA(α, β)) ∼=

∑
p̃+q̃=n

2

E
′∞
p̃,q̃ = E

′∞
α
2
,β
2

=
∧0
−

∧0
+ ⊗Kα

2
∩ K̃β

2
.

Since in Kα
2
∩ K̃β

2
we have only elements with ∂a1

1 ∂a2
2 ∂a3

3 ∂a4
4 , we have:

H0,n3(GA(α, β)) ∼=
∧0
−

∧0
+ ⊗ (V 0,n3

A )[n3−β,β].

2) We now consider the case β > 6 and α+ β ≤ 6, that is 0 ≤ α+ β := h ≤ 6. The computation
of E

′1 is analogous to the previous case and we obtain the same diagram, but the only nonzero
row is now:

0
d′←− ∧h

2
−

∧0
+ ⊗Kα

2
−h

2

d′←− · · · d′←− ∧1
−

∧0
+ ⊗Kα

2
−1

d′←− ∧0
−

∧0
+ ⊗Kα

2

d′←− 0.

Indeed condition 0 ≤ α + β := h allows p̃ to be α
2 −

h
2 . Since for all p, q we have p + q ≥ 0,

then p̃+ q̃ ≥ 0. For p̃ = α
2 −

h
2 and q̃ = β

2 we have p̃+ q̃ = 0.
The condition p̃+ q̃ = 0 means p+ q = 0, therefore in Kα

2
−h

2
we have only elements for which

2n1 + n3 = 0, that is n1 = 0, n3 = 0. This means that in ∈ Kα
2
−h

2
there are only constant

elements, that lie in the image of d′, since for h = 2, γ ∈ Kα
2
−h

2
:

w12 ⊗ γ = d′(γ(∂1 ∧ ∂2)),

w13 ⊗ γ = d′(γ(∂1 ∧ ∂3)),

w23 ⊗ γ = d′(γ(∂2 ∧ ∂3)).

For h = 4, γ ∈ Kα
2
−h

2
:

w12w13 ⊗ γ = d′(−w13 ⊗ γ(∂1 ∧ ∂2)),

w12w23 ⊗ γ = d′(w12 ⊗ γ(∂2 ∧ ∂3)),

w13w23 ⊗ γ = d′(w13 ⊗ γ(∂2 ∧ ∂3)).

Then we can conclude as in the previous case.

3) We now focus on 0 ≤ β ≤ 6 and α+ β > 6. We use the first spectral sequence and obtain the

product of
∧α−2p̃

2
− with the complex:

0
d′′←− ∧β

2
+ ⊗ (ṼA)[p̃,0]

d′′←− ∧β
2
−1

+ ⊗ (ṼA)[p̃,1]
d′′←− ... d′′←− ∧0

+ ⊗ (ṼA)
[p̃,β

2
]

d′′←− 0.

In
∧β

2
+ ⊗ (ṼA)[p̃,0] the sequence is exact since q̃ = 0 implies that the polynomials are constant

in ∂1 ∧ ∂4, ∂2 ∧ ∂4, ∂3 ∧ ∂4, thus they lie in the image of d′′. Therefore we obtain the following
diagram for E

′1, where the horizontal maps are d′ and the vertical maps are d′′:∧3
−
∧0

+ ⊗Kα−6
2

∧2
−
∧0

+ ⊗Kα−4
2

∧1
−
∧0

+ ⊗Kα−2
2

∧0
−
∧0

+ ⊗Kα
2

0 0 0 0

...
...

...
...

0 0 0 0.
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In particular the only nonzero row is:

0
d′←− ∧3

−
∧0

+ ⊗Kα
2
−3

d′←− ∧2
−

∧0
+ ⊗Kα

2
−2

d′←− ∧1
−

∧0
+ ⊗Kα

2
−1

d′←− ∧0
−

∧0
+ ⊗Kα

2

d′←− 0.

We can conclude in the same way.

4) We now focus on 0 ≤ β ≤ 6 and 0 ≤ α+β = h ≤ 6. We can use the same reasoning as before,

we use the first spectral sequence and obtain the product of
∧α−2p̃

2
− with the complex:

0
d′′←− ∧β

2
+ ⊗ (ṼA)[p̃,0]

d′′←− ∧β
2
−1

+ ⊗ (ṼA)[p̃,1]
d′′←− ... d′′←− ∧0

+ ⊗ (ṼA)
[p̃,β

2
]

d′′←− 0.

Again in
∧β

2
+ ⊗ (ṼA)[p̃,0] the sequence is exact since q̃ = 0 implies that the polynomials are

constant in ∂1 ∧ ∂4, ∂2 ∧ ∂4, ∂3 ∧ ∂4, thus they lie in the image of d′′. Therefore we obtain the
following diagram for E

′1, where the horizontal maps are d′ and the vertical maps are d′′:

∧h
2
−
∧0

+ ⊗Kα−h
2

∧k
−
∧0

+ ⊗Kα−2k
2

∧0
−
∧0

+ ⊗Kα
2

... ...

0 0 0... ...

...
...

...

0 0 0.... ...

The only nonzero row is:

0
d′←− ∧h

2
−

∧0
+ ⊗Kα

2
−h

2

d′←− · · · d′←− ∧1
−

∧0
+ ⊗Kα

2
−1

d′←− ∧0
−

∧0
+ ⊗Kα

2

d′←− 0.

We conclude as in case 2).

By Lemma 6.17 and decomposition GA = ⊕α,βGA(α, β) we obtain the following result.

Lemma 6.18. As g0−modules:

Hn1,n3(GA) ∼= 0 if n1 > 0.

G0,n3

A

Im∇A
∼= ⊕α+β=n3

∧0
−

∧0
+ ⊗ (V 0,n3

A )[α,β] = V 0,n3

A .

Proposition 6.19. As g0−modules:

Hn1,n3(GA◦) ∼=

{
V 0,0
A
∼= C if n1 = n3 = 0,

0 otherwise.

Proof. By Lemma 6.18 and Remark 6.15 we obtain that Hn1,n3(GA◦) ∼= 0 if n1 > 0.

In Lemma 6.18 we computed
G

0,n3
A

Im(∇A:G
1,n3
A −→G0,n3

A )
, but we are interested in the homology of GA◦ .

We have that the Kernel of the map induced by ∇3 between H0,n3(GA) and H0,n3−2(GB), with

n3 > 1, is actually isomorphic to
Ker(∇3:G

0,n3
A →G0,n3−2

B )

Im(∇A:G
1,n3
A −→G0,n3

A )
∼= Ker(∇3 : G0,n3

A → G0,n3−2
B ) ∩ V 0,n3

A . We

show that it is 0. Indeed it is sufficient to show that ∇3 restricted to V 0,n3

A is injective, but this

comes from the fact that ∇3(∂n3
4 ) 6= 0, where ∂n3

4 is a highest weight of V 0,n3

A . The same argument
holds for H0,1(GA) and ∇5.
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Finally we can show the following result, that follows from Propositions 6.19 and 6.14.

Proposition 6.20. As g0−modules:

Hn1,n3(MA) ∼=

{
C if n1 = n3 = 0,

0 otherwise.

Proof. By Propositions 6.19 and 6.14 we obtain that, for (n1, n3) 6= (0, 0), Hn1,n3(MA) ∼= 0.
We point out that the singular vectors that determine the maps ∇A for n3 = 0 are singular vectors
also in the case of K6 (see [BKL2, Theorem 4.1, Remark 4.2] and [BKL1, Theorem 5.1]). Since the
maps ∇A : Mn1,0

A → Mn1−1,0
A are completely determined by the image of v, highest weight vector

of V n1,0
A , and, due to equivariance, the action of g≤0 on v, we obtain that for n3 = 0 the maps

coincide with the maps in the case of K6. The homology in this case was computed in [BKL1]. It
was shown that it is different from zero only for n1 = n3 = 0 and H0,0(MA) ∼= C.

Now we focus on the third quadrant.

Remark 6.21. A consequence of results in [CCK1] on conformal duality is that, in the case of CK6,
the conformal dual of Ind(F ), where F = F (n0, n1λ1 + n2λ2 + n3λ3) is an irreducible g0−module,
corresponds to the shifted dual Ind(F∨), where F∨ ∼= F (−n0 + 4, n1λ1 +n3λ2 +n2λ3). We will use
the results about duality for shifted duals.

Proposition 6.22. As g0−modules:

Hn1,n2(MC) =

{
C if (n1, n2) = (1, 0),

0 if (n1, n2) = (0, 0) or n1 > 0.

Proof. We point out that the singular vectors that determine the maps ∇C for n2 = 0 are singular
vectors also in the case of K6 (see [BKL2, Theorem 4.1, Remark 4.2] and [BKL1, Theorem 5.1]).
Since the maps ∇C : Mn1,0

C → Mn1+1,0
C are completely determined by the image of v, highest

weight vector of V n1,0
C , and, due to equivariance, the action of g≤0 on v, we obtain that for n2 = 0

the maps coincide with the maps in the case of K6. The homology in this case was computed in
[BKL1]. We know that:

Hn1,0(MC) =

{
C for n1 = 1,

0 otherwise.

We can use duality to compute the remaining homology spaces for the third quadrant for n1 > 0
and n2 > 0. Indeed we have that, for n1 > 0, n2 > 0, the maps

Mn1−1,n2

C

∇C−−→Mn1,n2

C

∇C−−→Mn1+1,n2

C

are dual to:

Mn1+1,n3

A

∇A−−→Mn1,n3

A

∇A−−→Mn1−1,n3

A ,

where n3 = n2. We showed that the previous sequence is exact in Mn1,n3

A and Mn1−1,n3

A . therefore

we have that
M
n1,n2
A

Im(∇A)
∼= M

n1,n2
A

Ker(∇A) is isomorphic to a submodule of a free module, hence it is a finitely

generated torsion free C[Θ]−module. The same holds for
M
n1−1,n2
A

Im(∇A) . Hence, by Remark 6.21 and

Proposition 1.19, we obtain exactness in Mn1,n2

C for n1 > 0, n2 > 0.
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Appendix A

Appendix

Let g = A(K ′4). Let us show that g>0 is generated by g1 = 〈tξl, ξiξjξk, 1 ≤ l, i, j, k ≤ 4, i < j < k〉.
It is straightforward that g2

1 = g2 = 〈ξ1ξ2ξ3ξ4, t
2, tξiξj〉, indeed:

ξ1ξ2ξ3ξ4 = [tξ1, ξ2ξ3ξ4],

t2 = −[tξ1, tξ1],

tξiξj = −[tξk, ξkξiξj ].

Now, by induction, we show that if gi−1
1 = gi−1 then gi1 = gi for i > 2. If i = 2k − 1, then

gi = 〈tlξj1 · · · ξjs〉 with 2l + s− 2 = i and s odd, that is s = 1 or s = 3. We have:

tlξj1 · · · ξjs = −[tξp, t
l−1ξpξj1ξjs ] for p ∈ {1, 2, 3, 4} \ {j1, ..., js} .

If i = 2k, then gi = 〈tlξj1 · · · ξjs〉 with 2l + s− 2 = i and s even. We have that:

tk+1 = −[tkξ1, tξ1],

tlξj1ξj2 = −[tξp, t
l−1ξpξj1ξj2 ] for p ∈ {1, 2, 3, 4} \ {j1, j2} ,

tlξ1ξ2ξ3ξ4 =
1

−l − 1
[tlξ1ξ2ξ3, tξ4].

We point out that in this last case −l − 1 6= 0 since l is non−negative.
Finally we show that g1 = S1⊕S2, with S1 = 〈tξ1, tξ2, tξ3, tξ4〉 and S2 = 〈ξ1ξ2ξ3, ξ1ξ2ξ4, ξ1ξ3ξ4, ξ2ξ3ξ4〉
that are irreducible g0−modules. It is obvious that they are modules, indeed t and C act as scalars
and:

[ξiξj , tξk] =


0 if k 6= i, j,

tξj if k = i,

−tξi if k = j.

From the last computation it is also clear that S1 is irreducible. Let I = (i, j) and J with |J | = 3.
We have that:

[ξI , ξJ ] = χ|I∩J |=1∂I∩JξI∂I∩JξJ .

From the last computation it is also clear that S2 is irreducible. Finally we show that tξ1 + itξ2 is
a lowest weight vector of S1 and ξ1ξ3ξ4 + iξ2ξ3ξ4 is a lowest weight vector of S2. Indeed:

[H1, tξ1 + itξ2] = [−iξ1ξ2, tξ1 + itξ2] = −itξ2 − tξ1,

[H2, tξ1 + itξ2] = [−iξ3ξ4, tξ1 + itξ2] = 0,
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[E−(ε1−ε2), tξ1 + itξ2] = [−ξ1ξ3 − ξ2ξ4 + iξ1ξ4 − iξ2ξ3, tξ1 + itξ2]

= −tξ3 − itξ4 + itξ4 + tξ3 = 0,

[E−(ε1+ε2), tξ1 + itξ2] = [−ξ1ξ3 + ξ2ξ4 − iξ1ξ4 − iξ2ξ3, tξ1 + itξ2]

= −tξ3 + itξ4 − itξ4 + tξ3 = 0,

[H1, ξ1ξ3ξ4 + iξ2ξ3ξ4] = [−iξ1ξ2, ξ1ξ3ξ4 + iξ2ξ3ξ4] = −iξ2ξ3ξ4 − ξ1ξ3ξ4,

[H2, ξ1ξ3ξ4 + iξ2ξ3ξ4] = [−iξ3ξ4, ξ1ξ3ξ4 + iξ2ξ3ξ4] = 0,

[E−(ε1−ε2), ξ1ξ3ξ4 + iξ2ξ3ξ4] = [−ξ1ξ3 − ξ2ξ4 + iξ1ξ4 − iξ2ξ3, ξ1ξ3ξ4 + iξ2ξ3ξ4]

= −iξ1ξ2ξ4 + ξ2ξ1ξ3 + ξ1ξ2ξ3 − iξ2ξ1ξ4 = 0,

[E−(ε1+ε2), ξ1ξ3ξ4 + iξ2ξ3ξ4] = [−ξ1ξ3 + ξ2ξ4 − iξ1ξ4 − iξ2ξ3, ξ1ξ3ξ4 + iξ2ξ3ξ4]

= −iξ1ξ2ξ4 − ξ2ξ1ξ3 − ξ1ξ2ξ3 − iξ2ξ1ξ4 = 0.
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