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Abstract 

The shipping sector contributes significantly to global greenhouse gas emissions, along with a 

number of other pollutant species, since maritime activities typically rely on the use of heavy, less 

refined fossil fuels. As the worldwide energy demand is predicted to grow in the near future, 

international authorities have started developing mitigation strategies to curb the amount of pollutant 

emissions generated by maritime activities. More stringent environmental regulations have been 

adopted, introducing tight emission limits and requirements for ship fuels’ sulphur content. In this 

context, the use of liquefied natural gas (LNG) as an alternative ship fuel is currently considered by 

shipowners as an economical and feasible solution to comply with the regulations in force. The 

growing interest for LNG-fuelled vessels also determined the development of a network of small-

scale LNG facilities as part of the fuel supply chain, as well as an increase in road transportation of 

LNG. 

Substituting conventional marine fuels with LNG marks a fundamental step towards a reduction of 

emissions due to maritime transportation of goods and passengers. However natural gas is a highly 

flammable substance and concerns over the safety of its use onboard ships demand a thorough 

evaluation, especially when considering passenger ships and port activities. 

Despite the positive safety record of the LNG shipping industry, the fire hazard posed by this 

substance cannot be disregarded. Moreover, process conditions encountered throughout the small-

scale supply chain and in fuel gas supply systems installed on board typically differ from those of 

LNG carriers or large-scale storage terminals. 

The present study aims at a comprehensive safety assessment of marine LNG technologies, 

focusing on small-scale applications and passenger ships, seeking to fill the current knowledge gap 

in this field. An in-depth evaluation of the safety of existing technologies for LNG bunkering and 

onboard fuel gas supply is carried out, providing key information about the credible accident 

scenarios and their expected consequences. The safety criticalities are identified based on the 

application of specifically developed models for the evaluation of the inherent safety performance of 

LNG bunkering and propulsion technologies. 

As a starting point, a sustainability assessment methodology is developed, to evaluate the 

performance of alternative LNG ship fuel systems, allowing a comparison with conventional 

technologies based on marine fuel oil. A multi-criteria decision approach is defined to rank the 

sustainability performance of the alternative systems considered with a focus on environmental, 

economic and safety aspects. Specific impact indicators are defined and aggregated to calculate an 

overall sustainability impact index and obtain a synthetic sustainability fingerprint of the alternatives. 

The results allowed a quantification of the trade-off issues between environmental and safety 

performance of LNG versus conventional propulsion technologies. 

A quantitative method for inherent safety assessment is developed to allow a comparative evaluation 

of the inherent safety performance of the main LNG bunkering technologies, also with respect to 

conventional fuel bunkering processes that were considered as a reference baseline. The developed 

methodology allowed to rank the inherently safer solution among the assessed technologies, also 

allowing the identification of critical process units and operations. 
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A dedicated methodology for accident frequency estimation was used to introduce operational and 

organizational factors into the conventional quantitative risk assessment framework, aimed at 

determining the impact of managerial aspects over the risk level of port-to-ship LNG bunkering 

process while also addressing the effect of simultaneous port operations. Societal and individual risk 

figures are estimated considering two opposite management scenarios and compared to baseline 

risk levels predicted using the typical quantitative risk assessment approach. 

The results of the application of the above methods allowed the identification of two safety critical 

elements onboard LNG fuelled ships: the fuel preparation room and the LNG storage tanks. 

Part of the work is thus dedicated to set up a specific modelling approach for the performance of 

pressurised cryogenic storage tanks exposed to fire scenarios. A computational fluid dynamic (CFD) 

setup is developed to predict the consequences of accidental fires attacking double-walled, vacuum 

insulated tanks used for storage and transportation of LNG in a range of different small-scale 

applications. The model allows the numerical simulation of cryogenic tanks exposed to extremely 

high heat loads, overcoming the limitations of the previous works, and providing precise data for 

further analysis of the tank structural integrity under extreme conditions. The model was also applied 

to evaluate the response of LNG storage tanks exposed to distant hydrocarbon pool fires.  

Finally, a consequence modelling of LNG fire scenarios occurring inside the fuel preparation room 

of gas-fuelled ships is carried out using CFD tools. This approach allowed for a preliminary 

evaluation of the heat flux received by the ship structure also considering the influence of the forced 

ventilation system, providing valuable results for performance-based design approaches and to 

assess the possibility of accident escalation. 

The obtained results represent a first step towards a wider approach aimed at enhancing the safety 

level of the entire LNG supply chain for maritime propulsion. Furthermore, these results can make a 

valuable contribution to support the decision-making process for shipowners and port authorities in 

the design and safety assessment of such systems, both in port areas and onboard ships, and may 

provide guidance for emergency responders. 
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Chapter 1. Introduction 

1.1. Shipping emissions 

Shipping is an essential link in the global supply chain, and a key part of the European Union 

economy. It is also one of the most energy-efficient modes of transport available. According to the 

2017 European Environment Agency report on aviation and shipping (European Environment 

Agency, 2018), transport accounts for almost a quarter of Europe’s greenhouse gas (GHG) 

emissions. Within this sector, shipping is responsible for about 13% of EU’s GHG emissions and of 

2.2% of global GHG emissions, as reported by the third International Maritime Organization (IMO) 

GHG study (International Maritime Organization, 2015).By the end of the twentieth century, the IMO 

started addressing the environmental impact caused by marine activities, adopting MARPOL Annex 

VI, which introduces emission limits for SOx and NOx (Thomson et al., 2015). However, it is expected 

that world energy consumption will rise nearly 50% between 2018 and 2050 and energy-related CO2 

emissions will grow at an average rate of 0.6% per year between 2018 and 2050 (US Energy 

Information Administration, 2019). IMO and EU committed to strongly reduce GHG emissions from 

the shipping sector to achieve the objectives set by the Paris agreement. On a global scale, the IMO 

recently revised Annex VI of MARPOL convention (International Maritime Organization, 2008) 

introducing requirements for fuels’ sulphur content and emissions abatement technologies installed 

on seagoing vessels. Starting from 2020, fuel sulphur content is drastically reduced from 3.5% in 

mass up to 0.5% globally and further cut to 0.1% for sensible sea zones defined as Emission Control 

Areas (ECAs). 

In order to meet the 60% GHG emissions reduction target (with respect to 1990 levels) by 2050 set 

for the transport sector in the European Commission's 2011 Transport White Paper (European 

Commission, 2011), more sustainable behaviour was encouraged, resulting in the adoption of the 

alternative fuels Directive (European Parliament, 2014). Moreover, EU was the first organization to 

set out a strategy in 2018 to monitor and report CO2 emission from any large ship (over 5,000 gross 

tonnage) loading or unloading cargo or passengers at ports in the European Economic Area 

(European Commission, 2017), followed by IMO, which implemented its Data Collection System in 

2019 (International Maritime Organization, n.d.). 

The mentioned European alternative fuels Directive promotes the use of fuels having a lower 

environmental impact than oil such as hydrogen, electricity, biofuels, and natural gas (either 

compressed or liquefied). For the maritime industry viable solutions to achieve the emission 

reduction goals are represented by the adoption of exhaust gas treatment systems or the switch 

towards alternative cleaner fuels (Horvath et al., 2018). Recent trends in international emission 

regulations, technology development and shipping economics make liquefied natural gas (LNG) an 

increasingly attractive marine fuel. Switching from traditional fuel oil to natural gas can allow a 

relevant reduction in SOx emissions, along with negligible emissions of NOx and particulate matter 

(PM). Moreover, a CO2 emission reduction up to 25% may be achieved if LNG is used since it is less 

carbon-intensive than fuel oil (Helfre and Boot, 2013). 
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1.2. Ship emissions abatement technologies 

Several solutions can be adopted to reduce shipping emissions, which can be identified in four 

different groups (Smith et al., 2019): 

1) Technologies aimed at improving ships’ energy efficiency; 

2) Operational measures and practices improving energy efficiency; 

3) The use of alternative fuels or renewable energy sources (e.g., wind propulsion); 

4) Technologies specific to the capture or treatment of exhaust emissions (GHG and air pollutant 

emissions). 

Besides the emissions regulations, the IMO has adopted mandatory energy-efficiency measures to 

reduce emissions of greenhouse gases from international shipping as amendments to MARPOL 

Annex VI in 2011 which came into force on 1 January 2013. The regulations make the Energy 

Efficiency Design Index, which provides a measure of the CO2 emissions per cargo carried, 

mandatory for new ships, and the Ship Energy Efficiency Management Plan, mandatory for all ships 

regardless their age (International Maritime Organization, 2018).  

To achieve carbon-neutrality in the shipping sector, a number of different technological solutions are 

currently being explored, ranging from the use of alternative fuels such as LNG, methanol, biogas or 

hydrogen, to a radical change of energy source, with the exploitation of solar or wind energy. As 

reported in a survey conducted among Baltic shipping companies (Stalmokaite and Yliskylä-

Peuralahti, 2019), the recent technological evolution in the maritime industry is a response to the 

tightening of environmental regulations; however some of the companies surveyed believe that the 

use of cleaner fossil fuels can only be a short-term solution to tackle emission reduction. Investing 

in more radical propulsion technologies, such as electricity, wind and solar energy is perceived as 

the most promising pathway towards carbon-neutral shipping. A study carried out for the Danish 

maritime cargo sector investigates the emissions of different alternative energy sources for ships 

under different socio-economic scenarios (ben Brahim et al., 2019). The authors conclude that 

sailing cargo ships, driven by a combination of wind and electricity from batteries seem to be cost-

efficient only in the case of a very strong fall in battery and power conversion hardware costs. Among 

the technological solutions explored, hydrogen, methanol and ammonia have comparable cost 

performance and could represent longer term solutions for emission reduction. An insight into the 

different technical challenges concerning the use of alternative fuels is given in Section 1.3. 

At the present date, the use of ‘‘end of pipe’’ abatement technologies like scrubbers and Selective 

Catalytic Reduction systems (SCR) represents an economical solution to meet requirements for SOx 

and NOx emission levels, especially when considering compliance to environmental regulation of 

existing vessels, since they do not require a switch to different machinery. Scrubber and SCR 

systems are well consolidated technologies developed for land applications. Scrubbers can work 

either exploiting an “open-loop” or a “closed-loop” configuration: the former type uses only seawater 

to neutralize the SO2 contained in the exhaust gas that is re-emitted into the sea, while the closed-

loop configuration relies on the use of wash water added with a caustic reagent (e.g., sodium 

hydroxide). The bleed off from closed-loop scrubbers is sent to the water treatment system and then 

directly discharged overboard or sent to a dedicated holding tank in cases when a “zero discharge” 

mode is required. 

SCR systems require the use of urea solutions combined with a metal catalyst to perform reduction 

of NOx to N2 and water. This system allows for a reduction in levels of NOX by above 90% when 

working in optimal conditions (Brynolf et al., 2014b).  
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It is important to remark that an optimal solution for emission reduction cannot be easily identified 

since a number of economic variables come into play, first of all the variability of oil prices, that can 

significantly influence the benefits of the mentioned solutions.  

1.3. Other alternative marine fuels 

The growing interest towards alternative marine fuels is mainly motivated by the IMO 2020 sulphur 

cap that limits the sulphur content of marine fuels. Shipowners and building companies are exploring 

the use of unconventional fuels, anticipating a possible increase in the prices of low-sulphur fuel oil. 

Indeed, IMO 2020 compliant fuel prices spiked during the last months of 2019 in preparation to 

sulphur cap transition; however, the price spread with traditional fuel oil (i.e., high-sulphur fuel oil) 

has significantly reduced during the first trimester of 2020. Moreover, investing in less pollutant fuels 

might be beneficial for shipping companies’ reputation as reported by Stalmokaite and Yliskylä-

Peuralahti, (2019). 

As of today, the most promising alternative fuels are LNG, methanol, biofuels, hydrogen, Liquefied 

Petroleum Gas (LPG), and ammonia. Among the different options, LNG is deemed to be the most 

technological-ready and cost-effective alternative: as of July 2020, a total of 117 LNG-fuelled ships 

are currently in operation and 220 more are on order as reported by DNV-GL (2020). Switching to 

LNG should allow for a reduction in emissions of CO2 up to 20%, SOx up to 100%, NOx up to 90%, 

and PM up to 99% as claimed by (IGU, 2015). 

Methanol is typically produced from synthesis gas, which can be produced from either natural gas 

or biomass. Similarly to LNG, it has very low sulphur content, but it is liquid at standard temperature 

and pressure, therefore much easier to handle. Moreover, vessel retrofitting costs are advantageous 

compared to LNG (Brynolf et al., 2014a). 

As reported in (DNV GL, 2019), there is currently a limited uptake of biodiesel fuels in shipping. The 

limited availability of biomass to produce biodiesel can also lead to a lack of available fuel for 

maritime use, being in competition with road and aviation use. The main advantage of using biodiesel 

relies on the bunker infrastructure, since the conventional petroleum-based fuel infrastructure can 

readily be used. 

Hydrogen represents an ideal alternative fuel thanks to the absence of operational GHG emissions, 

even if there can be upstream GHG emissions, depending on its production pathway, that need to 

be considered. Hydrogen is most efficiently used in fuel cells (around 50-60 % efficiency), but can 

also be used with internal combustion engines, with a lower efficiency. Onboard storage of hydrogen 

is currently challenging due to space uptake. Furthermore, the lack of bunkering infrastructure and 

the significant costs of safety measures required to handle such dangerous material are limiting the 

interest in such alternative fuel to research. A number of EU-funded research project are currently 

active, such as H2SHIPS (H2SHIPS Partners, 2019) and FLAGSHIPS (FLAGSHIPS Partners, 

2019). 

Despite showing environmental benefits comparable to LNG, very limited experience is available 

related to the use of LPG as a ship fuel. Although technical rules and standards for the use of low-

flashpoint fuels (such as LPG) are already in place, there are currently only 34 vessels running on 

LPG according to latest figures by DNV-GL (2020). Low energy cost (close to LNG) and low capital 

costs make this fuel as attractive as LNG. On the other hand, a major downside to LPG as an 

alternative fuel is its environmental performance when produced from fossil sources. According to 

Hammer, (2019) using LPG as a fuel might eliminate SOx and PM emissions and reduce NOX 

emissions depending on the engine technology used. 
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Similarly to hydrogen, GHG emissions from ammonia are high with the current production from fossil 

energy sources without Carbon Capture and Storage, until the transition to renewable power 

production is well under way (DNV GL, 2019). Ammonia can be used either in internal combustion 

engines or fuel cells where it can be used directly or split into hydrogen and nitrogen. According to 

Hansson et al. (2020) there are no commercially available ammonia propulsion systems, even if 

research in this field is currently ongoing. Ammonia is a toxic substance both for humans and 

environment, thus safety systems and mitigation measures need to be put in place that will raise 

installation costs. In addition to this, the bunker infrastructure would need to be completely 

developed, making ammonia a possible alternative fuel for the future, provided that issues related to 

NOX emissions are tackled (Valera-Medina et al., 2018). 

1.4. LNG operations safety record 

Historical accident analysis allows a better understanding of the root causes and consequences of 

accidents involving LNG releases, contributing to the identification of hazards posed by LNG 

technologies. Handling, storage and transportation of LNG is distinguished by a positive safety 

record: nearly 100,000 cargoes have been delivered since the first LNG carrier sailed off in 1964 

without recording loss of cargo tank containment or cargo-related loss of life (Riviera Maritime Media 

Ltd, 2019). In recent years the expansion of the LNG market increased the operational activity in the 

LNG transportation chain, paving the way for onshore transportation via tanker trucks, and more 

recently starting the discussion about rail transportation in the USA (Roman, 2020). Consequently, 

LNG accidents shifted from production or import terminals to transportation chain. 

According to figures reported by the US DOT Pipeline and Hazardous Materials Safety 

Administration (U.S. DOT PHMSA, 2020), the total number of accidents involving LNG reported 

during the last 20 years (2000-2019) was 18, for an estimated total cost of about 82 billion dollars. 

No fatalities are associated with these incidents and only one operator injury resulted according to 

the source (accident at Plymouth LNG Peak Shaving Plant in 2014). A summary of LNG accidents 

is reported in Table 1. 
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Table 1: List of LNG-related accidents 

Year 
Location 
(Vessel) 

Facility type Type of event 
Fatalities/
Injuries 

Reference 

1944 
Cleveland, 
OH, USA 

Peak shaving 
Flash fire, 
explosion 

128/200-
400 

(National Association of 
State Fire Marshals, 
2005) 

1971 
Panigaglia, 

Italy 
Regasification 

terminal 
Gas release due 

to rollover 
-/- (Sam Mannan, 2012) 

1979 
Cove Point, 
MD, USA 

Regasification 
terminal 

Confined 
Explosion 

1/1 
(National Association of 
State Fire Marshals, 
2005) 

1983 
Norman 

Lady 
LNG carrier 

ship 
LNG spillage -/- 

(Woodward and 
Pitblado, 2010a) 

1989 Tellier 
LNG carrier 

ship 
LNG spillage -/- 

(Woodward and 
Pitblado, 2010a) 

1989 Thurley, UK Peak shaving Flash fire -/2 
(Woodward and 
Pitblado, 2010a) 

1993 
Bontang, 
Indonesia 

Export facility LNG spillage -/- 
(CHIV International, 
2014) 

2002 
Tivissa, 
Spain 

LNG tanker 
truck 

BLEVE 1/2 
(Planas-Cuchi et al., 
2004) 

2004 
Skikda, 
Algeria 

Liquefaction 
plant 

Explosion 27/80 
(National Association of 
State Fire Marshals, 
2005) 

2011 
Zarzalico, 

Spain 
LNG tanker 

truck 
BLEVE 1/- (Planas et al., 2015) 

2014 
Plymouth, 

USA 
Regasification 

terminal 

Gas release 
following damage 

to LNG tank 
insulation 

-/1 
(Rukke and Katchmar, 
2016) 

2019 
Shaanxi, 

China 
LNG tanker 

truck 
BLEVE -/- (Wang et al., 2020) 
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1.5. Objectives and outline of the work 

The overall objective of this PhD research project was to address the safety aspects of the use of 

LNG as a marine fuel, integrating such issues with an economic and environmental analysis to 

outline the current state of marine LNG industry and provide a comprehensive framework of the 

safety of LNG-fuelled ships. Specific emphasis was given to the quantification of risks related to the 

LNG bunkering operations and to the modelling of pressurized LNG storage tanks exposed to 

hydrocarbon fires. Furthermore, the consequences of fires originating onboard LNG-fuelled ships 

were investigated. More specifically, the main aims of the project are: 

1. To outline the inherent safety profile of different LNG bunkering concepts, understanding 

which part of the delivery chain for LNG as a fuel can be considered the most hazardous; 

2. To provide a computational model that can be used to predict the thermo-fluid dynamic 

behaviour of commonly used LNG storage vessels in case of flame engulfment; 

3. To extend the scope of quantitative risk assessment (QRA) of LNG bunkering operations 

integrating the effect of managerial policies; 

4. To investigate the effects of onboard fire scenarios inside the fuel preparation room of LNG-

fuelled vessels in terms of radiation levels to which the ship hull and the gas fuel equipment 

can be exposed; 

5. To integrate safety aspects of different Fuel Gas Supply Systems into the sustainability 

assessment of LNG propulsion technologies in order to support the decision-making process. 

Chapter 2 presents the state of the art in the use of LNG as alternative marine fuel. An overview of 

the main information regarding the existing LNG-fuelled fleet is given, together with a description of 

the LNG as a fuel supply chain structure and an outline of the current technologies used for gas-

fuelled ship propulsion. 

Chapter 3 reports a literature review of the main aspects concerning safety of LNG-fuelled ships, 

defining the current context for the use of LNG as an alternative marine fuel. The regulatory 

framework is firstly presented, discussing the relevant international regulations, standards, and 

guidelines. The Chapter also includes a review of the latest studies, tools, and assessment 

methodologies addressing the three core areas discussed in this thesis. A review of risk assessment 

studies of LNG installations is presented in Section 3.3, along with approaches proposed for the 

quantification of inherent safety. An overview of the numerical and experimental studies carried out 

to model the behaviour of cryogenic tanks exposed to fire conditions is given in Section 3.4, while a 

description of recent environmental impact and sustainability studies for alternative marine fuels is 

presented in Section 3.5. 

The main research questions addressed in the present study are summarised in Chapter 4. 

Chapter 5 describes the sustainability assessment of the main LNG-based fuel system used in the 

maritime sector. A reference case study is defined as the basis for the application of the proposed 

sustainability assessment methodology, that encompasses three fundamental domains: 

environmental impact, economic feasibility, and the inherent safety profile of the assessed fuel 

systems. A set of indicators is used to quantify the impact for each domain, then results are used to 

determine a sustainability fingerprint and define a ranking of the evaluated marine fuelling 

technologies. 
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Chapter 6 focuses on the safety aspects related to LNG bunkering operations. More specifically, a 

comparative safety assessment between marine LNG and conventional fuel bunkering technologies 

is presented in Section 6.1. The characteristics of four different bunkering concepts are outlined, 

providing the basis for the application of a specific methodology aimed at the quantification of the 

inherent safety profile of LNG, marine gasoil (MGO) and intermediate fuel oil (IFO) bunkering 

processes. A consequence-based approach is developed and applied to rank the assessed 

alternatives and identify the inherently safer solutions for maritime fuel bunkering, also highlighting 

criticalities to be address for the future development of green shipping technologies. In Section 6.2 

a case study is defined to perform a holistic safety analysis of the LNG refuelling operations carried 

out in port. A dedicated methodology for accident frequency estimation is exploited to integrate 

operational and managerial aspects in the conventional QRA framework, with the objective to 

quantify the risk modification induced by human-related elements during the bunkering process. The 

influence of management on the expected safety performance is evaluated comparing the risk 

calculated assuming two different management scenarios against risk figures obtained disregarding 

the effect of organizational factors. 

Chapter 7 focuses on the computational modelling of pressurized cryogenic vessels exposed to full 

engulfing hydrocarbon pool fires. Firstly, a description of the publicly available experimental 

investigation of accident scenario involving the engulfment of cryogenic tanks in fires is proposed to 

help identifying the most relevant results and criticalities of the experimental activity carried out in 

the recent years. A Computational Fluid Dynamic (CFD) model developed to evaluate the dynamic 

behaviour of cryogenic tanks exposed to an engulfing fire scenario is then presented. The model 

allows the evaluation of tank pressurization rates and temperature distribution of its content, 

providing the basis for the definition of a set of specific key performance indicators (KPIs) intended 

to support the safety assessment of LNG tanks during fire exposure. In addition, the proposed 

modelling approach is also used to evaluate the effects of distant hydrocarbon pool fires on cryogenic 

LNG tanks, as described in Section 7.4. Advantages and limitations of the modelling setup are 

analysed in detail. 

Lastly, a specific demonstration of CFD tools capabilities is presented in Chapter 8. A detailed 

consequence assessment study for selected accident scenarios of interest occurring inside an 

onboard confined space is described. A comparative assessment of LNG pool fire consequences is 

performed, analysing the incident radiation levels to which the ship structure can be exposed in case 

of fire originating from two different fuel gas supply systems. Such analysis is aimed at providing 

useful information to drive performance-based design of gas-fuelled ships and enhance their safety 

level. 
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Chapter 2. State of the art on LNG as an alternative 

fuel for marine propulsion 

Since the early exploitation of Boil-Off Gas (BOG) on cargo ships, the use of methane as an 

alternative fuel for marine propulsion has experienced a significant growth. Starting from 1970’s, 

LNG was used as a fuel in LNG carriers. In these applications, the BOG produced inside the LNG 

tanks is used in traditional boiler/steam turbine systems (Curt, 2004). More recently, the Baltic region 

states have pioneered the use of LNG as a ship fuel in ferries and offshore service vessels for the 

oil and gas industry (Canadian Natural Gas Vehicle Alliance, 2015). Nowadays the use of methane 

as alternative fuel for marine propulsion has experienced a significant growth: larger LNG-fuelled 

vessels, including bulk and chemical carriers and cruise ships, are under construction or already 

operating (Speirs et al., 2019). The current price of LNG, lower than conventional marine fuel oils, is 

another attractive factor. Speirs et al. (2019) estimated that the higher capital costs for ships’ LNG-

based propulsion systems may be recovered between 5- and 16-years payback period considering 

current price regimes. 

2.1. Drivers for the use of LNG 

The use of LNG for marine vessels is largely driven by the need to comply with stricter international 

emission control regulations curbing sulphur and nitrogen oxides emissions. Most ships today use 

heavy fuel oil or marine gas oil as fuel, significantly contributing to the emission of transport-related 

air pollutants which impact on public health. Due to the high sulphur content of bunker fuel oil, even 

up to 3,500 times as much sulphur as road vehicle fuel (Sharples, 2019), it is estimated that the 

shipping sector is responsible for more than 10% of Europe’s total SOX emissions and about 20% 

and 8% of NOX and PM European total emissions respectively. As reported by Stenersen and 

Thonstad (2017), the high sulphur amount of ship fuels also affects the emissions of nitrogen oxides 

and promotes the formation of large particulates. 

Having recognized shipping as one of the main transportation sectors contributing to global air 

pollution, international actors such as IMO and EU have tightened emission regulations pushing 

navigation companies and shipowners to adapt their activities and consider the use of alternative 

fuels. In this scenario, LNG is seen as the readiest alternative fuel that can be used during the 

transition period towards the use of carbon-neutral energy sources. 

The key environmental benefits of LNG come from the absence of sulphur (as required for the 

liquefaction process) and from the reduced well-to-propeller CO2 emissions that can be around 20% 

lower than conventional oil fuels according to figures provided by DNV GL – Maritime (2018). 

However, the reduction of GHG emission might be impaired by methane slip since methane has a 

global warming potential 28 times higher than the same quantity of CO2. This kind of downside mainly 

affects Lean-Burn Spark Ignited (LBSI) engines that suffer higher methane slips than Diesel cycle 

gas engines, as reported by Stenersen and Thonstad (2017). On the other hand, Diesel cycle 

engines, regardless of whether they are fuelled by LNG or by fuel oils, have higher NOX emissions 

compared to engines operating on the otto cycle, therefore a SCR or Exhaust Gas Recirculation 

system (EGR) will be needed to comply with the IMO tier III NOX limits. 

Another factor that favours the use of LNG is its competitive price. Compared to other alternative 

fuels, especially to low-sulphur fuel oil, which is the main alternative for compliance with IMO global 

sulphur cap, LNG has advantageous price levels.  
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For the year 2019, LNG had an average price of 4.9 $/MMBtu (around 15 €/MWh), about four times 

cheaper than ECA-compliant low-sulphur MGO (0.1 MGO), and around 16 $/MMBtu cheaper than 

methanol.  

  

Figure 1: Bunker fuel price in $/MMBtu. Data retrieved from DNV GL – Maritime (2020). 

A further advantage of using LNG as a fuel is the fact that LBSI gas engines are intrinsically compliant 

with NOx emissions restrictions. This aspect is especially appealing when choosing the propulsion 

system of newbuild vessels, as from 2021 onwards, all newly built ships operating in the North and 

Baltic Seas shall be compliant with IMO Tier III emission limits (Sharples, 2019). Therefore, using 

LNG will not require any additional investment to meet emission requirements and will also allow 

savings in fuel costs relative to MGO. Besides considerations on the availability of LNG bunker fuel 

at ports, the economic feasibility of investing on LNG propulsion for newbuild vessels will ultimately 

depend on the balance between fuel price levels. Considering the actual price levels of IMO-

compliant fuels (MGO and low sulphur fuel oil) and high sulphur fuel oil, LNG has currently a 

significant premium over the mentioned fuels, with a price differential of about 200 $ per metric tonne 

and 140 $ per metric tonne for IMO-compliant fuels and high sulphur fuel oil, respectively. 

2.2. LNG-fuelled ships 

The number of LNG-fuelled ships has been growing steadily during the last 20 years and as of the 

first half of 2020 it reached a total of 391 seagoing vessels, as reported in Section 1.3. Comparing 

the figures for the last two years the number of LNG-fuelled ships in service grew by 24.6% between 

2018 and 2019 and by 23.8% between 2017 and 2018 (DNV-GL, 2020). A breakdown of LNG-fuelled 

ships by vessel type is provided in Figure 2. The largest part of the operating LNG fleet, about 25 %, 

consists of ferries, that together with offshore supply vessels and tanker represent almost half of the 

operating LNG-fuelled ships. If ship orders were confirmed, crude oil tankers and container ships will 

almost double their share in the future LNG fleet. An interesting case is represented by cruise ships: 

the first LNG-fuelled cruise ship is the newly-built AIDAnova, owned by Aida Cruises that entered 

into service in 2019 (Kalosh, 2019), followed by Costa Smeralda of Costa Crociere, launched in the 

late 2019 (Carnival Corporation & PLC, 2019).  
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As can be seen in Figure 2, shipowners have an evident interest in investing in this market segment. 

According to DNV-GL (2020) the ordered cruise ships will be delivered between the end of 2020 and 

2027. 

 

Figure 2: Total number of LNG-fuelled ships sorted by type as of July 2020. Source: Alternative Fuels 
Insight platform (DNV-GL, 2020). 

Based on the data provided by the Alternative Fuels Insight platform (DNV-GL, 2020), there are 

currently 15 operating LNG bunker vessels, and 22 more to be delivered by 2023. The majority of 

bunker vessels are operating in European waters, including the world’s largest LNG bunkering vessel 

Gas Agility that has a storage capacity of 18,600 m3 (Bankes-Hughes, 2020). Except for this ship, 

other bunker vessels have capacities ranging from 5,000 to 10,000 m3 and one third of operating 

vessels can store between 1,000 and 5,000 m3 of LNG. The smallest and oldest bunker vessel is the 

Swedish Seagas, which has a capacity of only 187 m3. It is performing refuelling operations for the 

M/S Viking Grace since 2013. 

2.3. Development of the bunkering infrastructure 

The expansion of the LNG market fostered several new investments: as of February 2020, 13 LNG 

regasification terminals in Europe provide supplementary value-adding services such as reloading, 

transhipment, small-scale LNG bunkering and truck-loading (IGU, 2020). The supply chain of LNG 

traditionally relied on large-scale facilities exploiting economies of scale. However, in the recent 

years a network of small-scale LNG terminals (SSLNG) began to develop driven by favourable 

investment costs and by the necessity to accommodate an increasing number of smaller volumes 

demands of LNG. The International Gas Union (IGU) defines small scale liquefaction and 

regasification facilities as plants with a capacity of less than 1 million tonnes per annum (MTPA), 

whilst SSLNG carriers are defined as vessels with a capacity of less than 30,000 m3 (IGU, 2015). 
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Figure 3: Schematic supply chain of LNG as maritime fuel. Adapted from (SNAM, 2020). 

Besides an increased modularity, SSLNG terminals represent a valid solution for supplying energy 

to remote areas not reached by gas pipelines or where investing in larger installations might not be 

economical. Moreover, SSLNG projects, offer to the investors immediate and potentially more 

attractive returns in a shorter term than large-scale LNG projects (Lo Brutto, 2019). The emission 

reduction measures implemented and the consequent use of LNG as a transport fuel for road and 

marine uses represent a further driver for the expansion of SSLNG sites: according to Gas 

Infrastructure Europe, 32 small-scale terminals are already in operation and 6 more are expected to 

be built in Europe as of June 2020 (Gas Infrastructure Europe, 2020). Small-scale bunkering facilities 

are a necessary element for the supply chain of LNG as a fuel. An increasing number of LNG-fuelled 

vessels is already operating, and a growth is expected with 155 ships on order, of which 30 cruise 

liners. However, this growth requires an adequate number of bunkering infrastructures and a more 

homogeneous distribution of bunkering sites along the main shipping routes as DNV GL forecasts 

that by 2050 up to 41% of marine fuel will be LNG (Sea\LNG LTD, 2019). In addition to that, coastal 

SSLNG terminals represent the final step in completing the LNG supply chain, enabling the loading 

of LNG onto trucks, for onward distribution to power stations and industrial consumers in off-grid 

locations and also delivering LNG to road filling stations for the use as vehicle fuel (Sharples, 2019). 

2.4. Categories of LNG storage tanks 

Depending on the volume of LNG to be stored two main types of tanks can be used in SSLNG 

facilities: flat bottom vertical cylindrical tanks or vacuum insulated bullet tanks. The former type are 

atmospheric cryogenic tanks with capacities ranging from 7,500 m3 up to 160,000 m3 for very large 

terminals, consisting of a primary container made of austenitic steel and an outer shell. As shown in 

Figure 4, flat bottom tanks can be divided into single, double, or full containment tanks, depending 

on leakage retaining capacities of the outer shell. 
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Figure 4: Classification of onshore LNG storage tanks 

In a single containment tank, the inner shell made of austenitic steel holds the LNG and an outer 

shell retains the insulating material but do not provide any containment in case of vapour or liquid 

release, for which a safety bund is needed. Double containment tanks are built encasing the inner 

shell in a concrete structure that forms the secondary barrier against liquid spills but will not hold 

vapour releases. Full containment tanks are designed as a double tank: both inner and outer shells 

can retain any liquid or vapour release. Bullet tanks are pressure vessels operating between 0.5 - 8 

barg with maximum capacities up to 1,200 m3. They consist of an inner tank made of cryogenic grade 

steel and an outer vessel that can be either cryogenic or non-cryogenic steel. The gap between the 

inner and outer tanks is kept under vacuum conditions and filled with insulating materials. These 

tanks are modular, flexible and can be installed either in vertical or horizontal positions. 

According to Lo Brutto, (2019), the cost of LNG storage for bullet tanks is roughly 2,000 $/m3 (for 

capacities of 1,000 to 15,000 m3), while the cost for LNG flat bottom tank is around 1,000 to 1,300 

$/m3 (for tanks from 15,000 to 30,000 m3). For smaller terminals (up to around 15,000 m3) bullet 

tanks are the preferred solution due to cheaper foundation costs and the possibilities to build such 

equipment as prefabricated modules in factories, reducing site costs (Lo Brutto, 2019). Moreover, 

pressurised tanks are designed and operated so that no BOG compressor is needed in the terminal, 

allowing for an easier management of BOG.  
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Despite the positive safety record of LNG industry, as reported in Section 1.4, the small-scale 

business has some peculiarities that can arise safety issues. SSLNG installations are likely to be 

constructed in the proximity of populated areas, such as coastal or harbour zones mainly due to 

logistic needs (e.g., ease of supply, access to main routes, etc.), whereas larger terminals are 

located in more remote areas or industrial sites. As outlined in a previous work by Tugnoli et al., 

(2010), the societal acceptability of newly-built storage and distribution facilities requires a proof that 

risk for population is negligible. Furthermore, the SSLNG business results scattered and more 

challenging to manage than large facilities due to the large number of smaller parcels and multiple 

players involved. For these reasons relevance is given to SSLNG facilities in the present work, since 

they represent a novel and expanding branch of the LNG industry. 

2.5. Description of fuel systems 

A fuel gas supply system (FGSS) is designed to deliver the methane fuel to ship’ engines at the 

required operating conditions that depend mainly on the type of engine working pressure. The three 

principal engine technologies and relative FGSS are briefly discussed in the following. These engine 

concepts have different combustion characteristics that result in different efficiency and exhaust 

emissions. The main gas engine technologies are: 

1. Low pressure Dual-Fuel engines (LPDF) 

2. High pressure Dual-Fuel engines (HPDF) 

3. Lean-Burn Spark Ignited engines (LBSI) 

As reported by Stenersen and Thonstad (2017), LPDF engines can be either medium speed, 4-

stroke, with a power output ranging between 1-18MW, or slow speed, 2-stroke, generating 5-63 MW. 

LBSI and 2-stroke HPDF engines have more limited power outputs, currently reaching 8 MW at 

maximum. LBSI are single fuel gas engines used on all gas powered ferries in Norway, whereas 

LPDF represent the preferred solution for offshore supply vessels (Stenersen and Thonstad, 2017). 

Slow speed 2-stroke LPDF engines using low pressure gas have entered the market recently and 

are mainly installed on commercial ships. The slow speed HPDF 2-stroke concept, such as MAN 

B&W’s ME-GI engines, are particularly appreciated for service on large freight ships, such as LNG 

carriers (Sharples, 2019). 

A more detailed analysis of the different features of gas engine concepts is provided in the following. 

Simplified process flow diagrams (PFD) of the above mentioned FGSS are shown in Figure 5. 

Typical operating conditions and key features of the FGSS are based on data collected from various 

research papers (Jeong et al., 2017a) and (Lee et al., 2015a) together with confidential technical 

information. 
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Figure 5: Simplified FGSS schemes for different gas engine concepts: a) High pressure Dual-Fuel; 
b) Low pressure Dual-Fuel; c) Lean-Burn Spark Ignited. 

2.5.1. High pressure Dual-Fuel technology 

The PFD of a FGSS exploiting HPDF engine technology is shown in Figure 5a.This engine concept 

is based on diesel operating principle. The LNG is stored in pressurized tanks and pumped up to 

300-350 bar before being vaporized. The fuel gas pressure in this system is a function of the liquid 

flow at the pump discharge and the consumption by the engines. Therefore, the primary pressure 

control is done by adjusting the pump speed to meet the consumption of the engines. Since the high-

pressure pump is a reciprocating unit, there are unavoidable pulsations due to each delivery stroke. 

In order to smoothen these pulsations, a damper is fitted to each pump skid to absorb these 

fluctuations. Finally, natural gas is injected directly into the cylinder, after the pilot diesel fuel has 

ignited. This kind of engine ensures multi fuel capability with no particular requirements for the gas 

mixture quality and the advantage of eliminating methane slips as there is no gas during the 

compression stroke (methane is burned as it is injected). On the other hand, it needs an exhaust 

gas after-treatment to comply with IMO Tier III NOx emission limits. This could be implemented using 

either an Exhaust Gas Recirculation (EGR) or a Selective Catalytic Reduction stage (SCR). A 

compressor provides the gas combustion units (GCU) with boil-off gas at the required pressure level. 

The heat generated in the GCU can be transferred into the ship's other system that requires heating, 

such as domestic hot water or water-glycol (WG) systems for example (Chorowski et al., 2015). 

2.5.2. Low pressure Dual-Fuel technology 

The LPDF system, shown in Figure 5b, relies on a diesel-ignited gas engine with dual fuel capability. 

The engine is based upon Otto cycle, which guarantees low NOx emissions and high efficiency. Gas 

is supplied at low pressures (4-5 bar), and a constant feed of pilot diesel fuel is required to ignite fuel 

mixture. Such engines may also run completely on liquid fuel. Bunkered LNG is stored in slightly 

pressurized tanks. A Pressure Build-up Unit (PBU) can be used to maintain the tank pressure: LNG 

from the tank is evaporated in a WG heat exchanger and vapours are sent back to the tank until the 

pressure set point is reached (see panel C of Figure 5).  
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Alternatively, a cryogenic submerged pump can be used in place of PBU unit (as illustrated in Figure 

5b). Fuel gas supply system is made up of a low-pressure LNG vaporizer followed by a heater, 

needed to increase gas temperature up to the operative values of the engine. Feed gas pressure is 

regulated by the Gas Valve Unit (GVU). The main functions of the GVU are to regulate the gas 

feeding pressure to the engine, and to ensure a fast and reliable operation and shut down of the gas 

supply (Babicz, 2015).  

The low-pressure dual fuel LNG engine is currently the dominating engine type in the marine gas 

propulsion market and can be considered a proven technology (Stenersen and Thonstad, 2017). 

2.5.3. Lean-Burn Spark Ignited technology 

LBSI engines are “single fuel” Otto gas engines running with high air excess. Vaporized LNG is fed 

at low pressures (4-5 bar) into the combustion chamber. The homogeneous combustion allows 

compliance with IMO Tier III limits, but this engine is sensitive to fuel gas quality. The FGSS, 

illustrated in Figure 5c has the same features of the one described in 2.5.2 for LPDF technology. 

Lean burn spark ignition initially came into the marine industry as engines for short-distance ferries 

since it needs a permanent gas supply and cannot be run on oil if LNG is not available. Boil off gas 

generated inside LNG storage tanks can be managed in two different ways:  

1) Using a GCU. Before gas vapour is provided into the GCU, it needs to be warmed-up to room 

temperature in a gas heat exchanger.  

2) Using a BOG re-liquefaction system. Natural gas is compressed and liquefied by means of a 

cryogenic refrigerator, and then LNG is sent back to the tank. This solution is typically 

featured on LNG carriers that need to manage large amounts of BOG, where is coupled with 

low-pressure membrane LNG tanks (IMO type B tanks).  

2.6. Overview of LNG bunkering operations 

As described in an LNG bunkering study conducted by DNV-GL, (2014) three main bunkering 

concepts are usually exploited to supply LNG to vessels: truck-to-ship, ship-to-ship and port-to-ship. 

The choice between different fuel delivery configurations depends on three main parameters: 

required bunkering volumes, bunkering frequency, and physical and logistical limitations. More 

specifically, the total LNG volume handled on a yearly basis in a harbour area, along with possible 

time constraints for operations, drives the selection of the most suitable bunkering method.  

 
Figure 6: Main LNG bunkering options. 
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The port-to-ship (PTS) concept is typically implemented for ports with stable, long-term bunkering 

demand. The LNG is delivered to receiving vessels through flexible cryogenic hoses or loading arms, 

designed in accordance with standards presented in Section 3.1. When transfer arms are used, 

larger hose diameter can be installed, increasing the bunkering rate, and reducing the required time 

at berth. Flexible bunker hoses are typically made of a layered polyester fabric outer layer, ceramic 

fibre, and a thermoplastic polymer sheath lining. The hose is reinforced both internally and externally 

with cryogenic grade steel wire. Hose flexibility allows for relative movements between shore and 

the receiving ship. One end of the hose (either the receiving ship end or the bunker facility end) or 

its mid-section is usually fitted with emergency release systems, such as drip-free breakaway 

couplings that allow a safe hose disconnection, without any LNG or vapour release, in case of 

excessive motion or tension. The typical range of hose diameters spans from 3” up to 16”, with 

working pressures up to 10-20 bar depending on the hose type and manufacturer (Gutteling 

Composite Hoses, 2020), (Trelleborg, 2020). Although the PTS option has great flexibility in the 

design for transfer rate and volume, it is the least flexible with respect to geography since the 

bunkering facility must be sited at a fixed location, in proximity to LNG import terminals or connected 

to transportation routes (i.e., railways, major roads). 

Conversely, ship-to-ship LNG bunkering (STS) can take place at different locations: along the 

quayside, at anchor or at sea. STS is suitable both for large and small-scale applications depending 

on the bunker ship capacity, which can range from 1,000 to 10,000 m3. This bunkering concept is 

currently the preferred solution for refuelling LNG-fuelled cruise ships, using a feeder vessel with 

7,500 m3 storage capacity (Gallarati, 2020). Since the bunker vessels are moored alongside LNG-

fuelled ships, the STS bunker concept could allow simultaneous cargo handling if approved by the 

relevant authorities (e.g., port authority). Possible disadvantages of STS bunkering may arise when 

conducting the operation out at sea: strong currents, winds and waves increase the risk of collision 

between LNG feeder and receiving vessels. While transfer rates are not as high as PTS bunkering, 

the transfer capabilities widely exceed the truck-to-ship (TTS) bunkering rates and volumes. 

The TTS is a suitable bunkering concept for small-scale applications since the volume of LNG that 

can be transferred is significantly limited compared to the other bunkering concepts. The size of 

tanker truck in Europe is usually limited around 55-60 m3, hence longer bunkering times or multiple 

trucks are needed to meet the required bunkering volume. Tanker trucks are connected to the 

receiving ship on the portside, using a flexible hose, assisted by a manual hose-handling crane. TTS 

bunkering offers great flexibility to vessel owners, operators, and to bunkering facility since any jetty 

can be potentially used, combining economic attractiveness thanks to low capital investments and 

the possibility to deliver LNG to remote locations. However, the limited transfer flowrates (around 40-

60 m3/h) and the significant impact on other operations carried out at the quay due to the presence 

of the tanker trucks represents the main disadvantages of TTS bunkering concept.  
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2.7. Main LNG hazards 

Physical properties of LNG, which is a mixture mainly made of methane (87–99 mol%) and other 

light hydrocarbons (Migliore, 2013), vary with composition, which depends on the gas origin. LNG 

has radically different characteristics and behaviour with respect to conventional marine fuels: it is 

stored at cryogenic conditions and boils at approximately ‒160 °C. Release of small volumes of liquid 

will result in the formation of large gas clouds due to the high thermal expansion coefficient of LNG 

(approximately 600 times the volume of spilled liquid). At -160°C, the vapour is denser than air, and 

cold gas clouds will spread by gravity at low heights until they become warmer. LNG for fuel supply 

may be delivered at elevated pressure (e.g., at 5 bar and ‒155 °C), exceeding the boiling point at 

atmospheric conditions. In such conditions, LNG releases will result in instantaneous flashing and 

much larger vapour clouds. 

Natural gas flammability represents the main threat related to LNG handling: natural gas has a 

flashpoint of ‒187 °C and a self-ignition temperature of approximately 650 °C, compared with a 

flashpoint in excess of 60 °C and a self-ignition temperature of 300 °C for marine gas oil (MGO). The 

flammability range of natural gas at atmospheric conditions is between 5 vol. % and 15 vol.% as 

reported by Mannan (2012a). However, such range is dependent on both temperature and mixture 

composition (Pio and Salzano, 2019). Besides the main hazards connected to its flammable nature, 

LNG spills may cause brittle fracture of non-cryogenic grade steel structure exposed to spills and 

frostbite due to cryogenic temperatures. 
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Chapter 3. Literature review 

3.1. Regulatory framework of LNG as a ship fuel 

In the following, a brief overview is provided concerning the international and national regulations 

governing the use of LNG as a marine fuel. The Baltic region states have pioneered the use of LNG 

as a ship fuel in ferries and offshore service vessels for the oil and gas industry (Canadian Natural 

Gas Vehicle Alliance, 2015). The first LNG-fuelled passenger ship was the Norwegian vessel MV 

Glutra, built in 2000 (Riviera Maritime Media Ltd, 2016). Since then, Norway has played an important 

role in the widespread utilization of LNG as a ship fuel: according to DNV GL (2019), 43% of the total 

LNG-fuelled ships were based in Norway in 2016. The results of a survey conducted by Lloyd’s 

Register (Lloyd’s Register, 2014) highlighted that shipowners agree that legislation regulating ship-

source emissions would play an important role in encouraging the use of LNG as a marine fuel. 

However, the increasing number of ships opting to utilize LNG as their choice of marine fuel is in 

sharp contrast with the state of development of the international legal framework governing the use 

of LNG as a marine fuel, as reported by (Xu et al., 2015). Moreover, as concluded by Aneziris et al. 

(2020), there are still gaps in the harmonization of LNG safety regulations issued by different 

countries and also for regulations covering different aspects of LNG operations at ports. The 

regulatory framework addressing the use of LNG as a marine fuel is presented following the 

hierarchy illustrated in Figure 7. 

 

Figure 7: Regulatory framework for the use of LNG as marine fuel. 

The set of rules encompassing the safe use of LNG as a fuel, and bunker operations in particular, 

comprises international regulations and standards and guidelines issued by classification societies 

or industry. These regulatory instruments follow a hierarchy and cover different aspects of the LNG 

bunkering chain depicted in Figure 3: rules applicability can be either for the shore-side of the 

bunkering process or for the ship-side. In this Chapter the rules are presented following the hierarchy 

of Figure 7, specifying to which side of the LNG bunkering chain they are applicable. 
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3.1.1. Higher level regulations 

IMO Codes and Regulations 

The first regulatory instrument aiming at the strengthening of safety of merchant ships was the IMO 

convention for Safety of Life at Sea (SOLAS) (IMO, 1974). This international maritime safety treaty, 

applicable both to receiving ships and bunker vessels, requires Flag States to ensure that their ships 

comply with minimum safety standards in construction, equipment, and operation. Several 

amendments were introduced since the first adoption of this treaty, among which the International 

Code for the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC), 

mandatory under SOLAS chapter VII since 1st July 1986, and more recently the International Code 

of Safety for Ships Using Gases or Other Low-Flashpoint Fuels (IGF), mandatory since 1st January 

2017. 

The relevance of the IGC Code to the broader use of LNG as a marine fuel is limited. This Code is 

aimed to provide an international standard for the safe transportation of liquefied gases and other 

hazardous substances by sea in bulk. Design and construction standards of cargo ships involved in 

such carriage are prescribed, along with the equipment they should carry so as to minimize the risk 

to the ship, to its crew and to the environment. The most recent comprehensive amendments of the 

IGC Code were adopted by resolution MSC.370(93), entered into force on 1st July 2016 (IMO, 2016). 

The IGF Code is an international standard applicable to ships operating with gas or low-flashpoint 

liquids (such as LNG) as fuel other than ships covered by the IGC Code. IMO resolution 

MSC.391(95) amended the text of SOLAS convention, making the IGF Code mandatory for ships 

built or converted after 1st January 2017 (IMO, 2015b). The goal of the Code is to provide criteria for 

the arrangement and installation of machinery for propulsion and auxiliary purposes addressing all 

areas that need special consideration for the usage of gas or low-flashpoint fuels. The basic 

philosophy of the IGF Code is to reach an equivalent level of integrity in terms of safety, reliability, 

and dependability as that which can be achieved with a new and comparable conventional oil fuelled 

main and auxiliary machinery. 

The Seafarers’ Training, Certification and Watch-keeping code (STCW) contains requirements for a 

minimum standard of competence in basic and advanced training for ships subject to the IGF Code. 

The STCW Code first came into force in 1978, following SOLAS convention, with the main objective 

of promoting safety of life and property at sea and the protection of the marine environment. The 

latest amendments by Resolution MSC.396(95) harmonized the regulation with IGF Code provisions 

in 2015 (IMO, 2015c). 

European measures 

It is important to remark upon the difference between EU Directives and Regulations. The former 

instruments set goals that must be achieved, but the transposition of Directives into national laws is 

delegated to each Member State. Conversely, EU Regulations have binding legal force throughout 

every Member State and enter into force on a set date in all the Member States. 

Two Directives reflect the commitment of the European Union towards reduction of pollutant 

emissions from maritime activities: Directive 2016/802/EU (European Parliament, 2016), which 

establishes limits on the maximum sulphur content of gas oils, heavy fuel oil in land-based 

applications as well as marine fuels (also known as “Sulphur Directive”), and the Directive 

2014/94/EU (European Parliament, 2014) on the deployment of alternative fuels infrastructure. Both 

Directives are relevant in the context of LNG as a fuel since they recognize the use of LNG as 

alternative fuel that can be used to significantly reduce emission amounts from shipping. 
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Starting from January 2010, all ships at berth in European ports were required to use fuels with a 

sulphur content below 0.1% in mass. This Directive also anticipated the IMO 2020 global sulphur 

cap by five years, requiring that passenger ships operating on regular services to or from any EU 

port should not use marine fuels if their sulphur content exceeded 1.50% in mass in sea areas 

outside the ECAs, when at that time the sulphur limit outside ECAs was set at 3.50%. Even if not 

dealing with technical aspects, the Regulation (EU) 2017/352 (European Parliament, 2017), 

applicable from March 2019, establishes a framework for the provision of port services, also including 

LNG bunkering. The Regulation sets the minimum requirements for the provision of port services 

and port staff training. 

Depending on the amount of hazardous substance stored, LNG bunkering terminals can be subject 

to Directive 2012/18/EU, also known as “Seveso III” Directive (European Parliament, 2012), 

addressing the prevention of major accidents and the mitigation of their consequences on human 

health and the environment. The Directive introduces a distinction between lower and upper-tier 

establishments based on the amount of hazardous substance present inside the facility. For LNG, 

the lower-tier requirement is set at 50,000 kg, whilst facilities processing more than 200,000 kg of 

LNG (about 435 m3 considering a density of 460 kg/m3 for LNG) are defined as upper-tier 

establishments. Therefore, even SSLNG terminals are likely to fall under the scope of the Seveso III 

directive. Transport outside establishments and directly related intermediate temporary storage of 

dangerous substances (including loading and unloading) are specifically excluded from this directive 

and are governed by legislation on transport. Bunker vessels are therefore not subject to Seveso III 

Directive. It is important to remark that also establishments with less than 50 tonnes of stored LNG 

can be covered by the Directive if other dangerous substances are present (e.g., storage of other 

fuels in the port area). 

The European Agreement concerning the International Carriage of Dangerous Goods by Inland 

Waterways (ADN) entered into force on February 2008 (United Nations Economic Commission for 

Europe (UNECE), 2019). The Regulations annexed to the ADN are applicable to LNG bunker 

vessels and barges operating in rivers and port areas. The mentioned Regulations define a list of 

dangerous substances and articles, providing rules for the transportation in packages and in bulk on 

board inland navigation vessels or tank vessels, as well as including provisions for the construction 

and operation of such vessels. Part 8 of the ADN set requirements concerning the training of vessels’ 

crew applicable to personnel of LNG bunker vessels, barges, or riverine LNG carriers.  

Operations involving LNG tanker trucks, including loading and unloading, are covered by the 

European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR), 

recently amended and updated (United Nations Economic Commission for Europe (UNECE), 2018). 

The newest version of the ADR, entered into force in January 2019, is made of two annexes that set 

requirements for packaging and labelling of the dangerous goods transported and requirements for 

the construction, equipment and operation of the vehicle carrying the goods in question. Specific 

provisions for design, construction, inspection, and testing of LNG tanks are also included in ADR in 

Part 6. 
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3.1.2. Technical standards 

Several international standards have been developed to regulate the use of LNG as a fuel, 

technically and operationally implementing the provisions contained in higher level regulations and 

directives. Moreover, standards simplify international trade by ensuring compatibility and 

interoperability of components, products, and services by setting out requirements for specific items, 

material, or equipment, and describing in detail methods or procedures. European Norms (ENs) are 

documents that have been ratified by one of the three European Standardization Organizations (i.e., 

CEN, CENELEC or ETS). These standards must be implemented at national level by each member 

country of CEN-CENELEC. Furthermore, laws and regulations may refer to standards and make 

compliance with them compulsory. 

ISO Standards 

The two most relevant ISO standards addressing the use of LNG as a marine fuel are the EN ISO 

20519:2017 and ISO/TS 18683:2015. Both standards are applicable to the LNG bunkering interface 

between the fuel provider and the receiving ship. As defined in ISO/TS 18683, the bunker interface 

is the area of LNG transfer which comprises manifold, valves, safety and security systems and other 

equipment, also including the personnel involved in the bunkering operations. The scope of this 

standard is to give guidance on the minimum requirements for the design and operation of LNG 

bunkering facilities, including the interface as previously defined. It covers LNG bunkering from shore 

or ship LNG supply facilities, whereas the use of portable storage tanks such as containers or trailers 

to load and store LNG onboard ships to be used as fuel is outside the scope of this standard. This 

document set requirements for the design of installations supplying LNG as a ship fuel, and for risk 

assessment, also suggesting risk criteria to be adopted. Similar guidance is provided in the ISO/TS 

16901:2015 standard (ISO, 2015), applicable to both onshore LNG export and import terminals or 

peak shaving plants. 

The EN ISO 20519:2017 is the most recent standard addressing LNG bunkering. It has a scope 

similar to ISO/TS 18683, setting requirements for transfer systems and equipment used to bunker 

LNG fuelled vessels, also including operational procedures and requirements for training and 

qualification of the personnel. This standard supports the implementation of the IGF Code, providing 

the frame for the application of IGF provisions on bunkering operations. Risk-based criteria for the 

determination of bunker safety and security zones are outlined in EN ISO 20519 as well as in ISO/TS 

18683. 

Other relevant standards addressing LNG operations in port are the ISO 28460:2010, ISO/TR 

17177:2015, and EN ISO 16904:2016. The ISO 28460 standard specifies the requirements for ship, 

terminal, and port service providers to ensure the safe transit of an LNG carrier through the port area 

and the safe transfer of its cargo. Hybrid floating and fixed LNG terminal not included within the 

scope of ISO 28460 are addressed in ISO/TR 17177. This standard provides guidance for 

installations, equipment and operation at the ship-to-terminal and ship-to-ship interface of the 

beforementioned LNG terminals. Lastly, the EN ISO 16904 specifies the design, minimum safety 

requirements and inspection and testing procedures for LNG marine transfer arms intended for use 

on onshore terminals. This standard is supplementary to local or national standards and regulations 

and is additional to the requirements of ISO 28460, also covering the minimum requirements for safe 

LNG transfer between ship and shore. 
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CEN Standards 

A large part of the European Norms relevant to LNG terminals covers the different aspects of the 

design of onshore installations. A fundamental standard is EN 1473:2016 that makes provisions for 

the design, construction and operation of LNG installations with a storage capacity of more than 200 

t of LNG (CEN, 2016). This standard is applicable to terminals storing LNG at relative pressures 

lower than 0.5 bar, including liquefaction, regasification, and peak-shaving plants. Complementary 

to EN 1473, EN 13645 addresses the design of onshore LNG installations with a storage capacity 

between 5 and 200t (CEN, 2002). Design and manufacture specifications for vertical, cylindrical steel 

tanks built on site for the storage of cryogenic liquids are given in EN 14620:2006 (CEN, 2006). The 

maximum design pressure of the tanks covered by this European Standard is limited to 0.5 barg. 

Requirements for the design, fabrication, inspection and testing of static vacuum insulated cryogenic 

vessels with a design pressure greater than 0.5 barg are given in part 2 of EN 13458:2002 (CEN, 

2002b). Another important standard is EN 1474:2008 which gives general guidelines for the design 

and testing of LNG marine transfer systems (CEN, 2008). Part 2 of this norm addresses transfer 

hoses to be used either during offshore or coastal transfer operations, whereas part 3 applies 

exclusively to offshore transfer facilities (e.g., between floating units, or between floating and fixed 

units). 

NFPA Standards 

Similar in scope to EN 1473, the NFPA 59A standard (NFPA, 2018) provides requirements for the 

design, construction operation and maintenance of LNG facilities. It also provides the essentials 

requirements in terms of fire protection and safety of such facilities, including a chapter addressing 

SSLNG terminals. 

3.1.3. Class rules and industry guidance 

Various associations and classification societies have published guidelines and best practices for 

the use of LNG as a marine fuel with the objective of supporting all the stakeholders involved in the 

LNG marine industry. 

A relevant document is the one published in 2016 by the International Association of Classification 

Societies (IACS) (IACS, 2016) This guideline is intended to give recommendations for procedures 

and equipment required for LNG bunkering operations and to provide a methodology for risk 

management so as to achieve a similar level of safety as reached for traditional oil fuel bunkering 

operations. IACS guidelines are completely integrated in the more recent second version of the LNG 

bunkering guidelines published by the Society for Gas as a Marine Fuel (SGMF) (SGMF, 2017) that 

provides best practice guidance derived from the industry. The SGMF has also published a number 

of other documents that help to define a procedural framework for specific issues of LNG bunkering 

operations, such as recommendations for the determination of control zones or for the arrangement 

of manifolds. Other relevant guidelines for LNG bunkering have been published by the Society of 

International Gas Tanker and Terminal Operators (SIGTTO) (SIGTTO, 2013), the American ABS 

Group (ABS, 2017), the European Maritime Safety Agency (EMSA) (EMSA, 2017) and the Oil 

Companies’ International Marine Forum (OCIMF) (OCIMF, 2018). In 2015, the classification society 

DNV-GL issued its recommended practice for the development and operation of LNG bunkering 

facilities (DNV-GL, 2015a), with the aim of ensuring global compatibility and to secure a high level 

of safety, integrity and reliability for LNG bunkering facilities.
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Table 2: Summary of the most relevant regulatory instruments for the use of LNG as a fuel 

Document Applicability Scope Type Issued by 

IGC Code 
LNG bunker 
vessel 

Construction, equipment, and operation of ships carrying liquefied 
gases in bulk. 

International code IMO 

IGF Code 
LNG-fuelled 
ships 

Mandatory provisions for the arrangement, installation, control and 
monitoring of machinery, equipment and systems using low-
flashpoint fuels 

International code IMO 

STCW 
LNG bunker 
vessel and 
Receiving ship 

Requirements for minimum standards of competence for seafarers International code IMO 

Directive 2016/802/EU 
LNG-fuelled 
ships 

Reduction of sulphur content of marine fuels including requirements 
for ships calling at EU ports 

European Directive EC 

Directive 2014/94/EU 
Shore side 
and bunkering 
interface 

Directive on the deployment of alternative fuels infrastructure for 
European transport. 

European Directive EC 

Regulation 2017/352 
Shore side 
and bunkering 
interface 

Rules for the provision of port services and financial transparency 
European 
Regulation 

EC 

Directive 2012/18/EU 
Shore side 
and bunkering 
interface 

Control of major-accident hazards for establishments involving 
dangerous substances 

European Directive EC 

ADN 
LNG bunker 
vessel 

Transport of dangerous goods via inland waterways Convention UNECE 

ADR 
LNG tanker 
truck 

Transport of hazardous materials by road Convention UNECE 

EN ISO 20519:2017 
Bunkering 
interface 

Requirements for transfer systems and equipment used for 
bunkering LNG not covered by the IGC Code 

International 
Standard 

ISO 

ISO/TS 18683:2015 
Bunkering 
interface 

Minimum requirements for the design and operation of LNG 
bunkering facilities, including recommendations for operator training 

ISO Technical 
Specification 

ISO 

ISO/TS 16901:2015 
Bunkering 
interface 

Guidance on risk assessment for LNG facilities onshore and at 
shoreline, excluding environmental risks associated with an LNG 
release. 

ISO Technical 
Specification 

ISO 

ISO 28460:2010 
Shore side 
and bunkering 
interface 

Provisions to ensure the safe transit of an LNG carrier through the 
port area and the safe and efficient transfer of its cargo 

International 
Standard 

ISO 
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ISO/TR 17177:2015 
Bunkering 
interface 

Guidelines for the marine interfaces of hybrid LNG terminals not 
included in ISO 28460:2010 

ISO Technical 
Report 

ISO 

EN ISO 16904:2016 
Bunkering 
interface 

Specifications for the design, minimum safety requirements and 
inspection and testing procedures for LNG marine transfer arms 
installed in conventional onshore LNG terminals. Additional to 
requirements of ISO 28460:2010, it also covers the minimum safety 
requirements for LNG transfer between ship and shore. 

International 
Standard 

ISO 

EN 1473:2016 Shore side 

Functional guidelines including recommended procedures and 
practices for the design, construction, and operation of all onshore 
LNG installations with storage at pressure lower than 0,5 barg and 
capacity above 200 t. 

European Norm CEN 

EN 1474:2008 
Bunkering 
interface 

Part 2 provides general guidelines for the design, material selection, 
and testing details for LNG transfer hoses. Part 3 addresses the 
design and testing of offshore transfer systems. 

European Norm CEN 

EN 13645:2002 Shore side 
Requirements for the design and construction of onshore stationary 
LNG installations with a total storage capacity between 5 t and 200 
t. Complementary to EN 1473:2016 

European Norm CEN 

EN 14620:2006 Shore side 

Specifications for the design and construction of above ground 
vertical, cylindrical tanks, built on site, with a steel primary liquid 
container. is made of steel. The maximum design pressure of the 
tanks covered by this standard is limited to 0,5 barg. Tanks for the 
storage of liquefied oxygen, nitrogen and argon are excluded. 

European Norm CEN 

EN 13458:2002 Shore side 
Requirements for the design, fabrication, inspection, and testing of 
static vacuum insulated cryogenic vessels designed for a maximum 
allowable pressure of more than 0,5 bar. 

European Norm CEN 

IACS Rec.142 
Bunkering 
interface 

Recommendations and procedures for LNG bunkering operations, 
including requirements for transfer equipment. This document also 
sets harmonized minimum baseline recommendations for bunkering 
risk assessment, equipment, and operations. 

Guidelines IACS 

DNVGL-RP-G105 
Bunkering 
interface 

Functional requirements for LNG bunkering facilities, addressing 
risk assessment, safety management system and operation of LNG 
terminal. 

Recommended 
Practice 

DNV-GL 

IAPH Checklists 
Bunkering 
interface 

Checklists for ship-to-ship, shore-to-ship and truck-to-ship bunkering 
scenarios, including a list of relevant actions by the Port Authority 
when authorizing, overviewing, or evaluating bunkering operations. 

Checklists IAPH 
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SGMF Bunkering 
Guidelines 

Bunkering 
interface 

Guidance providing a description of potential LNG hazards, and 
roles and responsibilities of bunkering crew. Description of best 
practices Bunkering Procedure and implemented safety systems 

Guidelines SGMF 

Ship to Ship Transfer 
Guide for Petroleum, 
Chemicals and Liquefied 
Gases 

Bunkering 
interface 

Guidelines addressing ship-to-ship transfer from LNG carriers. 
Useful reference when establishing rules and procedures for 
transfer operations between seagoing ships and LNG regasification 
vessels. 

Guidelines SIGTTO 

LNG Bunkering Technical 
and Operational Advisory 

Bunkering 
interface 

Advisory providing requirements on vessel design and operational 
issues. Bunkering checklists and risk assessment methodology and 
reporting are also addressed. 

Technical and 
Operational Advisory 

ABS 

Mooring Equipment 
Guidelines 

Bunkering 
interface 

Overview of the requirements for safe mooring from both a ship 
and terminal perspective 

Guidelines OCIMF 

Guidance on LNG 
Bunkering to Port 
Authorities/Administrations 

Shore side, 
Bunkering 
interface, LNG 
receiving ship 

Informative and guidance document aiming at harmonization of 
requirements throughout ports in Europe. It is intended to provide 
Port Authorities and Administrations with necessary advice 
addressing the planning and operational stages of LNG bunkering. 

General guidance EMSA 
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3.2. Emergency planning guidelines 

As explained in Section 3.1, the Seveso III directive distinguishes between lower and upper-tier 

establishments based on the amount of hazardous substance inside the facility. The Directive 

requires that the operator of upper-tier establishments shall produce a safety report to demonstrate 

that a major accident prevention policy is implemented, and internal emergency plans have been 

drawn up. Moreover, the operators are required to provide all necessary information to competent 

authorities in order to set up external emergency plans. An emergency plan is a written set of 

instructions that describes what workers and other personnel at the establishment should do in an 

emergency. The external emergency plan includes procedures to ensure close coordination with 

local authorities and emergency response teams. The emergency plan should be based on a realistic 

assessment of the hazards originating from the work activity considered, and the possible 

consequences of an emergency occurring as a result of those hazards. External hazards should also 

be examined in preparing an emergency plan. Internal and external emergency plans must be 

reviewed, tested, updated (when necessary) at least every three years. 

Different documents address the emergency planning of LNG bunkering facilities. The EMSA 

provides some good practice and minimum requirements for emergency plans in its guidance 

document on LNG bunkering (EMSA, 2017). A summary of the information required for internal and 

external emergency plans is reported in Table 3.  

Table 3: Non-exhaustive list of information to be included in emergency response plans. 

Internal emergency plans External emergency plans 

Designation of responsibilities for local 
authorities, hospitals, local fire brigades, 
person in charge and selected personnel 
from the bunkering facility. 

Names or positions of persons authorized 
to start emergency procedures and of 
persons authorized to take charge of and 
coordinate off-site action. 

Name or position of the person with 
responsibility for liaising with the authority 
responsible for the external emergency 
plan. 

Arrangements for receiving early warning of 
incidents, and alert and call-out procedures. 

Description of the actions which should be 
taken to control the conditions or events 
that could result in a major accident and to 
limit their consequences, including a 
description of the available safety 
equipment. 

Arrangements for coordinating resources 
necessary to implement the external 
emergency plan. 

Arrangements for limiting the risks to 
persons on site including how warnings are 
to be given and the actions to be taken on 
receipt of a warning 

Provisions for assisting with on-site 
mitigation action. 

Procedures for providing early warning of 
the incident to the authority responsible for 
setting the external emergency plan in 
motion, including how to communicate 
more detailed information as it becomes 
available. 

Arrangements for off-site mitigation action, 
including responses to major-accident 
scenarios as set out in the safety report and 
considering possible domino effects, 
including those having an impact on the 
environment. 

Arrangements for training staff in the 
emergency response’s duties and for 
providing assistance with off-site mitigation 
action. 

Arrangements for providing the public and 
any neighbouring establishments with 
specific information relating to the accident 
and the behaviour that should be adopted. 
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An Emergency Response Plan for an LNG installation should be prepared to address cryogenic 

hazards, potential cold burn injuries to personnel and firefighting techniques for the control, mitigation 

and elimination of a gas cloud fire, jet fire or an LNG pool fire. 

Other publications provide emergency planning indications such as the LNG Fire Protection and 

Emergency Response guidance by BP, (2007). Different response strategies are outlined specifically 

for the possible dangerous scenarios resulting from LNG releases. A set of specific procedures are 

suggested for addressing release events or fire scenarios occurring at LNG tanker manifolds, clearly 

stating actions to be taken by ship crew and onshore terminal personnel. 

A detailed list of information that must be included in emergency response plans is also provided by 

the US Federal Energy Regulatory Commission, (2006) that sets out the requirements for emergency 

planning that should be followed by LNG terminal operators in the USA. Other relevant publications 

addressing LNG emergency response are the guide to contingency planning for marine terminals 

handling liquefied gases in bulk by SIGTTO, (2001), and the emergency response strategies outlined 

in the book “Liquefied Gas Fire Hazard Management” by SIGTTO, (2004). 

3.3. Inherent safety and risk assessment 

Several studies have investigated the safety issues related to LNG operations, such as those of 

Alderman, (2005) and Lee at al. (2015), who conducted a fire risk assessment of different LNG fuel 

supply systems. Various studies focused specifically on LNG bunkering: Jeong et al. (2018), 

discussed the definition of safety exclusion zones for LNG bunkering site and performed an 

integrated quantitative risk assessment (QRA) to determine the extension of the safety zones for 

cargo ships of different size (Jeong et al., 2017b). A risk assessment study for different LNG 

bunkering operations performed in port areas was carried out by DNV (DNV, 2012). However, due 

to the recent exploitation of LNG as a marine fuel, there is still limited information about safety 

performance of bunkering installations. The technical literature still lacks a comparative safety 

assessment addressing both traditional diesel fuels and LNG ship bunkering technologies. The 

quantification and following assessment of the expected safety performance of bunkering 

technologies relied on a screening tool based on inherent safety principles. The inherent safety 

philosophy is hinged on five fundamental principles firstly outlined by Kletz (1978): minimization of 

inventories, substitution of hazardous materials, attenuation of process conditions, limitation of the 

effects and process simplification. Such principles are now widely applied in pursuing the reduction 

of the hazards related to industrial processes. Several authors developed inherent safety KPI 

suitable for decision-making and for the comparison of alternatives. Among these, Tugnoli et al., 

(2007) developed a consequence-based method independent from expert judgment and applicable 

to processes for which little information is available. Such an approach was later applied successfully 

by Landucci et al., (2008) to investigate and compare the safety performance of hydrogen storage 

technologies, pointing out critical safety issues that need to be considered for further development 

of these technologies. More recently, Tugnoli et al., (2012) applied the inherent safety KPI approach 

for the analysis of the safety profile of design alternatives proposed for LNG import terminals, 

allowing the identification of critical elements in the safety performance of the alternative plant 

designs. The inherent safety KPI method was exploited in the present work to perform a direct 

comparison among safety performance of different marine fuels and related technologies. 

Concerning the QRA of LNG installations, Aneziris et al., (2014) estimated the risk level of onshore 

and offshore LNG regasification terminals, also including transfer operations. More recently, Martins 

et al., (2016) and later Lee (2020) conducted a QRA for an LNG floating storage and regasification 

unit, evaluating the individual and societal risk levels for such installations.  
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A first methodological analysis of the human element involved during LNG bunkering was performed 

by Stokes et al., (2013) who highlighted the importance of a robust competency management 

system. Despite the numerous works addressing safety aspects of LNG installations, a study 

integrating the impact of managerial aspects over the risk profile of an LNG bunkering facility is still 

missing in the technical literature. Another important aspect, often disregarded in process safety 

studies related to LNG bunkering, is represented by simultaneous operations (SIMOPs). Performing 

SIMOPs at berth while bunkering LNG might help to maintain similarity between fuel oil and LNG 

refuelling operations, enabling the long term viability of LNG as a marine fuel while keeping down 

cost and ensuring process efficiency thanks to the reduction of the time spent at berth by vessels 

and an optimized usage of available port infrastructure (American Petroleum Institute, 2016). 

However, it is also recognized that SIMOPs have the potential to increase the risk level by adding 

new ignition sources and exposing a higher number of individuals to dangerous scenarios. Despite 

this, only a few studies have addressed this issue, as highlighted by Aneziris et al., (2020). 

3.4. Numerical modelling of cryogenic tanks pressurization dynamics 

In cryogenic storage tanks, LNG is stored as a boiling liquid at saturation conditions. Although 

cryogenic tanks are equipped with state-of-the-art insulation systems, heat leaks from the 

surrounding environment leading to interface evaporation and tank self-pressurization (Choi et al., 

2017) are still present, even during normal operation. 

Several numerical approaches have been used to model thermal response of cryogenic vessels 

exposed to external heat sources. Liquid hydrogen tank thermal stratification and self-pressurization 

effects were modelled by Gursu et al. (1993) using three different lumped models. They concluded 

that thermal stratification of the tank lading is one of the primary factors that determine the pressure 

rise rate. 

Safety-oriented studies involving cryogenic storages were mainly aimed at understanding and 

modelling thermal stratification phenomena, which can lead to rollover events (Hubert et al., 2019). 

A one-dimensional thermal diffusion model was developed by Seo and Jeong (2010), who assume 

stagnant vapor and liquid phases. A lumped parameter model was developed by Deshpande et al. 

(2011) in order to predict time to rollover and to investigate its sensitivity to variation of heat and 

mass transfer coefficients. More recently, Migliore et al. (2015) developed a non-equilibrium thermal 

model for the prediction of the weathering of stored LNG in above-ground tanks. 

Recent Computational Fluid Dynamics (CFD) studies of cryogenic containment systems addressed 

the issue of BOG generation and tank self-pressurization, such as the works by Barsi and Kassemi 

(2008) and Saleem et al. (2018). A numerical study of natural convection inside pressurized LNG 

tanks was carried out by Roh and Son (2012), who quantified the effects of tank pressure, size and 

pressurization procedure on the BOG generation pattern. A CFD-based method for the prediction of 

LNG rollover was recently developed by Hubert et al. (2019). Ovidi et al.(2019) investigated the 

pressurization behaviour of vertical cryogenic storage tanks considering the effect of different fluids, 

tank filling level and the possibility of insulation damage. All the aforementioned models and studies 

considered values of heat flux comprised between 2-50 W/m2, representative of heat flows through 

the thermal insulation during normal operation of cryogenic tanks, as can be derived from the works 

by Migliore et al. (2015) and Roh and Son (2012) and reported by Deshpande et al. (2011). Only a 

very limited number of experimental studies were carried out to assess the thermodynamic response 

of cryogenic tanks exposed to higher heat loads: Xie et al. conducted an experimental study aimed 

to simulate a sudden catastrophic loss of insulating vacuum of high-vacuum multilayer-insulated 

tanks under conventional ambient conditions (Xie et al., 2012, 2010), reaching heat flux values up 

to 600 W/m2. 
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In case of fire engulfment of an LNG tank, for instance due to the ignition of liquid spills that may 

occur following the leakage of tank connection pipes or due to the ignition of diesel fuel pools after 

a road accident, a more significant heat release rate is expected. The heat released from the fire is 

transferred by radiation and convection to the outer surface of the vessel, then by conduction through 

tank walls and insulating layer. The heat load is then transferred to the tank lading by convection 

and radiation from the vessel internal surface (Landucci and Birk, 2013). During the fire exposure of 

the tank, the internal wall in contact with liquid phase might superheat significantly, potentially 

inducing a transition of the boiling mechanism towards nucleate boiling phenomena (Gong et al., 

2009). Heat ingress induces free convection currents that establish close to the walls, which transfer 

warmer liquid up to the vapor-liquid interface leading to thermal stratification of the lading and 

enhancing evaporation. 

To date, a limited number of studies were developed in the technical and scientific literature with the 

aim of evaluating the thermal response of cryogenic vessels exposed to fires. Scarponi et al. (2016) 

set up a non-equilibrium lumped model for the dynamic simulation of pressure build up and 

temperature behaviour of LNG tanks under fire attack. Despite the model can replicate real accidents 

dynamics, taking into account the effect of PRV (pressure relief valve) opening, it considers a single 

node for the liquid phase. Thus, it is unable to predict liquid temperature stratification. A similar model 

was developed by Hulsbosch-dam et al. (2017) and was compared against the results of the only 

experimental study of fire exposure of a cryogenic pressure vessel available at the time in the 

technical and scientific literature. The non-equilibrium model predicts the PRV opening time with 

good accuracy and can reproduce the experimental results obtained from the bonfire test of a 3 m3 

double-walled tank filled with liquid nitrogen. However, the model is not able to predict liquid thermal 

stratification, which is a key parameter for assessing tank pressurization (Gursu et al., 1993). 

3.5. Sustainability studies of alternative marine fuels 

During the last 10 years, a number of different studies addressed the issues connected to ship 

pollutant emissions. Trozzi (2010) describes in detail a methodology for the estimation of emission 

for maritime navigation which uses installed engine power and fuel consumption and takes into 

account the different navigation phases of ships (cruising, at the dock in port, or when approaching 

harbours). A study aimed at the evaluation of the social cost of cruise ships pollutant air emissions 

for major Greek ports was conducted by Maragkogianni and Papaefthimiou (2015) who estimated 

the economic health impacts related to NOx, SO2 and PM2.5 emissions in port cities. Gaseous and 

particle emissions from a LPDF ferry operating in the Baltic Sea were measured by Anderson et al. 

(2015) for different engine loads and different mixtures of LNG and MGO. Several inventories of ship 

emissions have been published, such as the work by Whall et al. (2010) that provides a detailed 

emission dataset for the UK based on year 2007 ship movements, or the study by Jalkanen et al. 

(2016) in which the emissions originating from ship traffic in European sea areas for the year 2011 

were modelled using data from the Automatic Identification System installed onboard to describe 

ship traffic activity. A global emission inventory is presented in the recently published fourth IMO 

greenhouse gas study (IMO, 2020), in which greenhouse gas inventories are distinguished between 

domestic shipping and international emissions on a voyage basis. Other studies were addressed to 

understand the balance between environmental and economic benefits of switching to LNG fuel, 

such as the work by Banawan et al. (2009) that analyse the case of a short-range passenger ship, 

or the study conducted by Burel et al. (2013) who assessed the operational costs and pollutant 

emission reduction for a tanker ship equipped with dual fuel engines. A similar study was carried out 

by Jafarzadeh et al. (2017) who performed a trade-off analysis considering technical, environmental 

and economic aspects of LNG-fuelled fishing vessels operating in Norwegian waters. 
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Various Life Cycle Assessments were aimed at estimating the environmental impact of using LNG 

as an alternative marine fuel. Brynolf et al. (2014a) carried out a comparative study assessing the 

environmental performance of LNG, liquefied biogas, methanol, and bio-methanol. An extensive 

study by Baresic et al. (2018) provides a techno-economic analysis of LNG as a fuel in four different 

future LNG demand scenarios for the period 2010-2050. Hwang et al. (2019) compared the Life 

Cycle Environmental impact of LNG as a marine fuel with conventional MGO for a bulk carrier 

engaged in domestic services in South Korea. Recently, a wider conceptual sustainability 

assessment of alternative marine fuels was performed by Ren and Liang (2017) who used a fuzzy 

group multi-criteria decision making approach to determine the sustainability order of the 

alternatives, considering environmental, economic, technological and social aspects. Trivyza et al. 

(2018) adopted a multi-objective decision support method to evaluate the most sustainable ship 

energy system optimising environmental and economic objectives. An hybrid decision making model 

was developed by Jeong et al. (2019) to evaluate the best LNG propulsion system integrating 

economic, environmental and technical features. 
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Chapter 4. Research questions  

The use of LNG as a marine fuel has become a tangible reality during recent years. Numerous 

studies were carried out to investigate different LNG related aspects, ranging from the environmental 

impact of gas engine emissions to the understanding of physical phenomena occurring in cryogenic 

storage tanks subject to heat leaks. Despite the advancements promoted by such studies, some 

gaps need to be filled to provide a holistic approach to the evaluation of the overall safety of LNG as 

a fuel. In particular, a screening tool based on inherent safety principles that could be used to drive 

the development of future LNG-based projects in the maritime sector is still lacking.  

The review of studies addressing the numerical modelling of cryogenic tanks pressurization 

dynamics has identified many contributions focused on the prediction of BOG generation, which is a 

relevant issue for both spaceflight equipment and long-term storage, but only few studies 

investigated the response of cryogenic tanks exposed to high heat loads. Simplified approaches, 

such as lumped models based on thermal nodes, were used to model the fire impact over LNG 

storage tanks. However, such a modelling approach suffers various limitations that need to be 

overcome in order to improve modelling accuracy and robustness. 

Several risk assessment studies have investigated the safety issues related to LNG operations, 

focusing on offshore and onshore LNG regasification terminals or specifically on LNG bunkering 

activities. Recently, a methodological analysis of the human element involved during LNG bunkering 

was performed, highlighting the importance of a robust management system. Despite the numerous 

studies addressing safety aspects of LNG installations, the scientific literature still lacks a study 

integrating the impact of managerial aspects over the risk profile of an LNG bunkering facility. 

Many studies addressed the environmental impact associated with ship emissions, pointing out the 

benefits of using LNG as marine fuel and current limitations of such technology. Several publications 

presented approaches or methodologies to guide the selection of sustainable alternative energy 

sources for shipping, using multi-criteria decision-making methods that account for social, economic, 

and environmental aspects. However, a comprehensive sustainability assessment encompassing 

safety features of alternative LNG-based fuel systems is still lacking in the literature as well as a 

structured comparison among such systems and conventional technologies based on marine gas oil 

(MGO). 

To fill the above discussed knowledge gaps and to provide a framework for the evaluation of novel 

green shipping technologies with emphasis on safety issues, the following research questions are 

outlined and tentatively answered in the present study: 

1. What is the most sustainable gas-fuelled propulsion system for ships when considering safety 

together with economic and environmental aspects? 

2. To which extent the use of LNG as a marine fuel is inherently safer (or unsafe) compared to 

traditional fuels? 

3. What is the risk related to LNG bunkering operations and how and to what extent is it affected 

by human actions? 

4. What are the consequences of LNG fire scenarios on infrastructures, including storage tanks? 
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Chapter 5. Sustainability of LNG as an alternative 

marine fuel 

This Chapter describes a method proposed for the sustainability assessment of alternative LNG-

based fuel systems for large cruise ships, which is aimed at the identification of the most sustainable 

fuel system technology considering environmental, economic and safety aspects. The ultimate goal 

of the developed methodology is to provide a decision-making support tool for shipowners and 

stakeholders, providing guidance in the selection of the most appropriate ship propulsion technology 

considering the different factors impacting on the three sustainability domains (economic, social and 

environmental). 

The proposed approach is motivated by a dearth of studies integrating process safety quantification 

into marine fuel sustainability and multi-criteria decisional analyses, as highlighted in Section 3.5. To 

capture specific safety features, the consequence-based approach for inherent safety evaluation 

that will be further detailed in Chapter 6 is here exploited with some specific features in order to allow 

its use within the specific framework of sustainability assessment. Moreover, the method described, 

here applied for the assessment of LNG fuel gas systems, has a general validity, and may be used 

to evaluate any other type of alternative marine fuel system. 

A tiered system of key performance indicators is defined to quantify the impact for each of the three 

sustainability domains evaluated. A profitability index is also defined to capture the economic 

attractiveness of the assessed alternatives. Upon definition of normalisation and aggregation criteria 

for the impact KPIs, an overall sustainability index is calculated to provide a synthetic measure of 

the sustainability fingerprint of each alternative. As reported in Figure 8, the first step of the approach 

requires the definition of a reference ship type and installed engine power for which different 

alternative fuel systems are considered. The necessary process equipment, operating conditions, 

fuel consumption, and machinery-related costs are the main data required for the characterization 

of the alternatives. A set of different impact indicators are selected for each sustainability domain 

(i.e., environmental, societal, and economic), then they are normalised and aggregated (steps 3 and 

4) in order to calculate the overall sustainability indicator. 

 

Figure 8: Overview of the approach followed for the sustainability assessment. 

The sustainability performance of LNG-based alternative systems is compared to that of 

conventional MGO fuel systems and a ranking of the alternatives is obtained on the basis of overall 

sustainability index values. In addition, a sensitivity analysis is performed to test the results 

robustness against variations of the aggregation factors and of other parameters influencing model 

results. 
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5.1. Case study definition 

A Hyperion-class cruise ship (The Maritime Executive, 2016) was chosen as a representative case 

study to provide a common basis for the sustainability assessment of different fuel systems. 

(Caterpillar Motoren GmbH & Co. KG, 2018, 2012) 

Four reference technology schemes were defined based on the ship characteristics reported in Table 

4. Three of the reference schemes consider the different LNG FGSS described in Section 2.5, then 

the analysis also included a conventional MGO fuel system. A simplified process flow diagram of 

each alternative fuel system is shown in Figure 9. 

Table 4: Main data for the reference cruise ship type considered for the analysis 

Item Value Unit 

Gross tonnage 125,572 - 

Breadth 38 m 

Length 300 m 

Passenger number 3,300 - 

Trip number/year 20 - 

Trip time 6,264 h/y 

Power 36 (4×9,000 kW) MW 

Ship fuel autonomy 10a days 
a based on fuel consumption data 

The fuel tanks were included in the technology scheme to consider the potential safety issues related 

to the storage of hazardous substances. According to available technical information, gas-fuelled 

cruise ships with a gross tonnage in the order of 100,000 feature an overall LNG storage capacity of 

about 3,600 m3 divided over three type-C cryogenic tanks (Corkhill, 2018). The capacity of MGO 

tanks was estimated on the basis of the considered days of autonomy and engines specific fuel 

consumption data. The resulting required storage capacity of about 2,000 m3 was assumed to be 

split over five storage tanks. A SCR abatement unit (not shown in Figure 9) was considered for 

schemes 2 and 4 to make them compliant with IMO NOx Tier III emission limits since those 

technologies are not intrinsically compliant as opposite to the other considered alternatives.
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Figure 9: Reference schemes considered for alternative fuel system technologies: a) Scheme 1 - LPDF; 
b) Scheme 2 - HPDF; c) Scheme 3 - LBSI; d) Scheme 4 - MGO. 
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5.2. Environmental impact 

Shipping activities generates different amount and quality of gaseous emissions. As shown in Figure 

10, the exhaust gas emissions impact mainly on two distinct targets: air and water, the latter due to 

the eutrophication potential of NOX emissions. A conventional “activity-based” (or bottom-up) 

approach was used in this assessment to estimate exhaust emissions amounts on a yearly basis for 

each pollutant.  

 

Figure 10: Environmental impact tree used for the assessment of the impact of the alternative 
solutions considered. Potential emission factors, PF, values were collected from the study by Guinée 
(2001). 

As suggested by Maragkogianni and Papaefthimiou (2015) three different navigation activities, 

namely berthing, manoeuvring and navigation were taken into account and the emission amounts 

were estimated as:  

𝐸𝑝 = ∑ (𝑃𝑒𝑛𝑔 ∙ 𝐿𝐹𝑎,𝑒𝑛𝑔 ∙ 𝑇𝑎 ∙ 𝑒𝑓𝑎,𝑒𝑛𝑔)

 𝑎,𝑒𝑛𝑔

 Eq. 5.1 

where 𝐸 represents the emissions amount (in g) for the pollutant species 𝑝; 𝑃 is the engine power 

(in kW); subscript 𝑒𝑛𝑔 indicates the engine type, (i.e., main engine -ME- or auxiliary -AE-); 𝐿𝐹 is the 

engine load factor associated with the specific navigation activity, indicated by subscript 𝑎; 𝑇 is the 

activity time (h/y) and 𝑒𝑓 is the emission factor expressed in g/kWh.  
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Four environmental indicators, each addressing a different impact category, were calculated based 

on emission amounts estimated with Eq. 5.1. The four impact indicators are: 

1. Global warming (GW); 

2. Rain acidification (RA); 

3. Human toxicity (HT); 

4. Eutrophication (EU). 

GW is mainly related to CO2 emissions and methane slips from fuel systems, while the other 

indicators account for the effects of NOX and SOX emissions. 

Environmental impact quantification requires the use of potential factors for each different substance 

and impact category assessed, which were collected from a reference database (Guinée, 2001). 

The potential factors used in this assessment are reported in Figure 10. Finally, the scores 

associated with the environmental indicators were calculated multiplying the emission amount 𝐸 by 

the relevant potential factor (𝑃𝐹), as described by Eq. 5.2. 

𝐼𝑐 = ∑ 𝐸𝑝 ∙ 𝑃𝐹𝑝,𝑐

𝑝

 Eq. 5.2 

The subscripts 𝑝 and 𝑐 in Eq. 5.2 refer to the pollutant species and impact category, respectively. 

5.3. Economic implications 

The economic assessment of the alternative fuel system technologies relied on the Net Present 

Value (NPV) technique. The investment profitability is calculated subtracting the present value of 

future costs from the present value of cash incomes over project lifespan, here assumed as 25 years. 

The NPV is calculated as follows: 

𝑁𝑃𝑉 = ∑
𝐵𝑡 − 𝐶𝑡

(1 + 𝑟)𝑡

𝑛

𝑡=0

 Eq. 5.3 

where 𝐵𝑡 and 𝐶𝑡 represent the benefits and costs of the considered investment at time t, and n is the 

lifespan of the project. The main source of uncertainty of this approach is represented by the value 

of the discount rate 𝑟. This quantity depends on various factors, such as the interest rate paid by the 

government on treasury bonds and the prime rate charged by major banks to their best customers 

as highlighted by Jafarzadeh et al. (2017). Since the exact estimation of 𝑟 is beyond the scope of 

this study, a value of 8% was assumed as a reference economic scenario, as suggested by 

Jafarzadeh et al. (2017). A dedicated sensitivity analysis (reported in Section 5.7.3) was performed 

to assess the sustainability performance considering different discount rate values since other similar 

studies use a 𝑟 value ranging from the lower 5% (Jeong et al., 2019) up to a maximum 15% (Acciaro, 

2014). 

As defined by Eq. 5.3, a positive NPV value corresponds to a remunerative investment. Thus, the 

economic indicator was obtained multiplying the NPV by -1, to obtain a profitability index (𝑃𝑟𝐼) for 

which the highest value implies the worst alternative, coherently with the definition of the other impact 

indicators. 
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A summary of the cost items considered in the economic evaluation is reported in Table 5. In the 

application of the method, a newly built ship was considered. Capital costs were estimated 

considering all investments needed to implement the fuel system such as the engine, the LNG tanks, 

and the pollutant abatement technology (when needed to comply with current regulations), 

accounting for purchase and installation costs. 

The annual operating costs considered include fuel consumption, maintenance and the application 

of an environmental tax calculated over CO2 emissions. For HPDF and MGO systems, a 

maintenance cost of 0.006 €/kWh was assumed for the SCR system needed for NOX-Tier III 

compliance. 

The cost related to the environmental tax was retrieved from a study which discusses about the 

possibility of a carbon tax as a key element of a GHG mitigation strategy for international maritime 

transport. The study explores different taxation policy schemes using a discrete time-period model 

for forecasts up to 2040. The carbon tax value considered in this study is representative of a pure 

(revenue-raising) carbon tax for year 2030.  

Table 5: Capital and operating costs for LNG and MGO fuelled ships. 

Cost Item Unit Value Source 

LNG technologies 

Gas dual fuel engine [€/kW] a 350 b 

Faber et al. (2017) 
Generators and electric system [€/kW] a 400 

SCR investment (including 
installation) 

[€/kW] a 45 

Installation costs [€/kW] a 100 

LNG fuel supply system (including 
tanks) 

[€/kW] a 130 
Data gathered from European 
manufactuers 

Maintenance [€/kWh] 0.015 Trivyza et al. (2018) 

Fuel price [€/t] 201.25 
Market Observatory for Energy of 
the European Commission (2019) 

Environmental tax – CO2 [€/t CO2] 75 Parry et al. (2018) 

MGO technology 

MGO engine [€/kW] a 180 

Faber et al. (2017) 
Generators and electric system [€/kW] a 240 

MGO fuel system [€] 100,000 

SCR investment (including 
installation) 

[€/kW] a 45 

Maintenance [€/kWh] a 0.014 Trivyza et al. (2018) 

Fuel price [€/t] 434 Bunker Index (2018) 

Environmental tax – CO2 [€/t CO2] c 75 Parry et al. (2018) 
a: Cost basis is the overall main engine power, except for SCR investment and installation costs, which 
consider the total installed power on board. 
b: High-pressure dual fuel engine cost is 280 €/kW. 
c: The SCR system is only considered for HPDF and MGO systems 
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5.4. Safety implications 

In the context of sustainability assessment, the social impacts may be extended to several potential 

target categories, as reported by Santoyo-Castelazo and Azapagic (2014). The impact quantification 

follows a cause-effect logic that involves subjective aspects that are difficult to estimate if the 

available information is limited to technical aspects. In this sustainability assessment, the inherent 

safety of the proposed alternative fuel system technologies was considered as a measure of social 

acceptability. Therefore, the social impact evaluation was based on the inherent safety quantification 

of the alternative reference schemes. The approach adopted in this assessment relies on the 

evaluation of consequence-based KPIs. The set of indicators used was firstly developed by Tugnoli 

et al., (2007) and adapted within the present study to evaluate the key features of alternative ship 

propulsion technologies. The procedure required for the evaluation of the inherent safety KPI is 

summarized in the following. Upon identification of the main fuel system process units and relevant 

operating conditions, which are reported in Appendix A, a set of specific literature-based LOCs (loss 

of containment events) was associated with each process unit, defining the release events to be 

considered for the consequence assessment. A “credit factor” (𝐶𝑓) was then assigned to each LOC 

event associated with every process unit under analysis. Credit factor values were derived from 

statistical data on equipment leak frequency reported in the work by P.A.M. Uijt de Haag and Ale, 

(2005). This approach allows for the estimation of “standard” credit factors for each reference class 

of equipment units, which may be modified to account for improved safety standards of specific 

equipment items if further information is available. Therefore, credit factors should not be intended 

as equipment failure frequencies, but only as factors summarizing the past performance of similar 

equipment items. These factors allow identifying the worst credible scenarios in the analysis. An 

example of standard sets of LOCs and related credit factors proposed for some unit categories is 

given in Table 6. 

Table 6: Definition of LOC events considered in the present analysis and of related credit factors 
(1/y). Adapted from Tugnoli et al., (2009). n.a.: not applicable; n.c.: not considered. 

LOC Type 
Pressurized 

storage 
vessel 

Atmospheric 
storage vessel 

Shell and 
tube heat 

exchanger 
Pump 

Loading 
arm/hose 

R1: small leak, continuous 
release from a 10 mm 
equivalent diameter hole 

1×10-5 1×10-4 1×10-3 n.a. n.c. 

R2: catastrophic rupture, 
release of the entire 
inventory in 600 s 

5×10-7 5×10-6 5×10-5 n.a. n.c. 

R3: catastrophic rupture, 
instantaneous release of 
the entire inventory and 
release from the full-bore 
feed pipe 

5×10-7 5×10-6 5×10-5 n.a. n.c. 

R4: pipe leak, continuous 
release from a hole having 
10% of pipe diameter 

n.c. n.c. n.c. 5×10-4 6×10-4 

R5: pipe rupture, 
continuous release from 
the full-bore pipe 

n.c. n.c. n.c. 1×10-4 6×10-5 

Process units were divided into two categories according to the criteria proposed by Scarponi et al. 

(2016), based on the following inequality: 
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𝑃𝑈𝐼 > max
𝑖

(�̇�𝑖) × 180 Eq. 5.4 

where 𝑃𝑈𝐼 is the LNG inventory (m3) of the process unit considered and �̇�𝑖 is the flow rate of the 

stream 𝑖 entering or leaving the process unit (m3/s). When Eq. 5.4 was verified, the process inventory 

is considered as the most relevant hazard factor and LOCs of type R1, R2 and R3 are assigned. 

Otherwise, the inlet and outlet streams of the process unit are considered the more relevant hazard 

factors and LOCs of type R4 and R5 are assigned. Dangerous scenario consequences resulting 

from each LOC event were estimated following a threshold-based approach. The values of the 

damage threshold considered in this thesis, derived from the works of Landucci et al., (2008) and 

Cozzani et al., (2013) for effects on humans and escalation hazard respectively, are reported in 

Table 7. 

Table 7: Threshold values adopted for damage distances evaluation. LFL: lower flammability limit; 
n.a.: not applicable. 

Accidental scenario 
Threshold values 

Effect on humans Domino escalation 

Flash fire ½ LFL, %vol. n.a. 

Jet fire 7 kW/m2 15a – 45b kW/m2 

Pool fire 7 kW/m2 15a – 45b kW/m2 

Vapor cloud explosion  0.14 bar 0.20b – 0.22a bar 
a Value for atmospheric equipment; b Value for pressurized equipment 

Standard event trees are used to identify the scenarios, while source terms and physical effects are 

calculated using conventional literature models such as those proposed by Van Den Bosh and 

Weterings, (2005). For the sake of simplicity, the composition of the hazardous materials considered 

in this sustainability assessment was assumed as pure methane for LNG and as pure n-nonane for 

MGO. These assumptions were introduced to facilitate the accident consequence assessment and 

the following calculation of damage distances for the different LOC events considered. It is important 

to remark that this simplified approach was followed to compare the accident outcomes severity, 

rather than to carry out a detailed consequence analysis, which should need a more accurate 

characterization of the fuel properties. Finally, the damage distances obtained are used to calculate 

an inherent safety KPI for each reference scheme described in Section 5.1. For this goal, a unit 

inherent hazard index (𝑈𝐻𝐼) was calculated for each process unit featured in the fuel system as 

follows: 

𝑈𝐻𝐼𝑢 = ∑ 𝐶𝑓𝑢,𝐿𝑂𝐶 ∙ ℎ𝑢,𝐿𝑂𝐶
2

𝑛𝑢

𝐿𝑂𝐶=1

 Eq. 5.5 

where 𝑛𝑢 is the number of LOCs considered for a specific unit 𝑢 of the reference scheme considered, 

ℎ𝑢,𝐿𝑂𝐶  is the maximum damage distance obtained for a specific LOC type, identified by the index 

𝐿𝑂𝐶, and 𝐶𝑓𝑢,𝐿𝑂𝐶  is the credit factor relevant for the LOC event being accounted. To avoid 

uncertainties introduced by consequence analysis models in describing “near field” effects, the actual 

damage distance used in Eq. 5.5 is the maximum between the calculated damage distances and 5 

m. Successively, the unit indicators were aggregated summing over all the 𝑁 process units of each 

scheme to obtain an overall inherent hazard index (𝐻𝐼): 

𝐻𝐼 = ∑ 𝑈𝐻𝐼𝑢

𝑁

𝑢=1

 Eq. 5.6 
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5.5. Normalisation of indicators 

The normalisation step was carried out comparing the indicator values against a reference term 

which acts as normalisation factor (𝑁𝐹), as described by Eq. 5.7: 

𝑁𝐼𝑖 =
𝐼𝑖

𝑁𝐹𝑖
 Eq. 5.7 

where the subscript 𝑖 refers to a specific impact category, 𝐼𝑖 is the indicator to be normalised and 𝑁𝐹𝑖 

is the normalisation factor. 

The selection of an appropriate 𝑁𝐹 among the variety of values proposed in the literature is of utmost 

importance, since an improper choice may introduce a bias in the results (Bare et al., 2006). In the 

present analysis, an external normalisation approach was applied to avoid the introduction of biases 

and to provide a comparison independent from the type of technology under evaluation. The 

normalised indicators obtained represent the relative impact of the specific alternative assessed over 

the local area of impact, selected as reference. European territorial water was considered as the 

reference area to assess the impact scale. Thus, the external normalisation factors in this study were 

determined on the basis of available data for Europe. The European gross domestic product was 

considered as a 𝑁𝐹 for the profitability index. The frequency value for the total loss of passenger 

ships in European territorial waters was multiplied by the extension of European member states 

Mediterranean Sea waters and considered as the 𝑁𝐹 for the safety indicator. A summary of the 𝑁𝐹 

values used in this work is reported in Table 8. Normalisation of environmental indicators was 

performed considering the indicator-specific aggregate emission (in kg eq., see Table 8) for the 

European member states during a reference year (Wegener Sleeswijk et al., 2008). 

The data needed to determine the numerical values of the external 𝑁𝐹𝑠 were retrieved from several 

free access databases that report widely used economic and environmental data (Oers, 2016; 

International monetary fund, 2018; The World Bank Group, 2018). 

Table 8: Normalisation factors adopted in the present work. 

Indicator Description NF Unit Reference 

𝑮𝑾 
Global warming 
impact indicator 

5.22 ×1012 kg CO2 eq./y Wegener Sleeswijk et al. (2008) 

𝑹𝑨 
Rain 
Acidification 
impact indicator  

1.68 ×1010 kg SO2 eq./y Wegener Sleeswijk et al. (2008) 

𝑯𝑻 
Human toxicity 
impact indicator 

5.00 ×1011 
kg 1,4-
dichlorobenzene 
eq./y 

Wegener Sleeswijk et al. (2008) 

𝑬𝑼 
Eutrophication 
impact indicator 

1.85 ×1010 kg PO4
3- eq./y Wegener Sleeswijk et al. (2008) 

𝑷𝒓𝑰 
Profitability 
Index 

3.96 ×108 M€ 
International monetary fund, 
(2018) 

𝑯𝑰 
Inherent safety 
Index 

4.92 ×107 a m2/y 
Eliopoulou et al. (2016), and 
European Environmental 
Agency, (2015) 

a: total loss frequency for passenger ship is 3.83×10-5 events/year. European Mediterranean Sea waters cover 
a surface of 1.28 ×106 km2. 
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5.6. Aggregation of indicators 

As illustrated in Figure 11, the aggregation procedure is based on a three-level hierarchy, allowing 

the comparison of the alternatives accounting for the different domains of sustainability.  

 

Figure 11: Hierarchy of considered sustainability key performance indicators. 

Table 9 reports the Level 2 KPIs that reflect the impact of the assessed alternative over the three 

main sustainability domains. As shown in the table, the four environmental impact indicators 

described in Section 5.2 were aggregated into a single environmental KPI value, 𝐸𝑛𝑣𝐼, by a weighed 

sum. The weight set used, also reported in Table 9, emphasizes the importance given to greenhouse 

gases emissions, which is one of the main drivers for using LNG as a fuel. 

Table 9: Summary of KPIs adopted in the study for the sustainability assessment. 

Domain KPI Brief description 

Environment 
Environmental 

index (𝐸𝑛𝑣𝐼) 

Synthetic indicator accounting the impact of air and water 
pollution. 

𝐸𝑛𝑣𝐼 = 𝐺𝑊 ∗ 𝑤𝐺𝑊 + 𝑅𝐴 ∗ 𝑤𝑅𝐴 + 𝐻𝑇 ∗ 𝑤𝐻𝑇 + 𝐸𝑈 ∗ 𝑤𝐸𝑈  

𝑤𝐺𝑊 = 0.3; 𝑤𝑅𝐴 = 0.3; 𝑤𝐻𝑇 = 0.2; 𝑤𝐸𝑈 = 0.2 

Economic 
Profitability 

index (𝑃𝑟𝐼) 
Sum of discounted annual cash flows generated over a 
timespan (multiplied by factor -1) 

Safety 
Inherent safety 

index (𝐻𝐼) 
Damage extent and credibility of accidental scenarios 

Overall 

sustainability 

index

Normalized 

safety 

indicators

Normalized 

economic 

indicator

Normalized 

environmental 

indicator

Economic 

indicator

Safety 

indicators

Environmental 

index

Profitability 

index
Safety indexWeighting

Level 3

Level 2

Level 1

Weighting

Environmental 

indicators

Normalization
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A single overall indicator was defined for Level 3, the overall sustainability index (𝑂𝑆𝐼). This allows 

for a direct comparison among the alternatives, providing a compact overview of the global 

sustainability performance of each reference scheme. 𝑂𝑆𝐼 is a normalised overall index obtained 

from the weighted summation of Level 2 KPIs as follows: 

𝑂𝑆𝐼 = ∑ 𝑊𝑖𝐼𝑖

𝑖

 Eq. 5.8 

where 𝐼𝑖 is the level 2 KPI for the i-th impact domain, and 𝑊𝑖 is the weight factor considered for the 

specific domain. 

The weight values used to calculate the 𝑂𝑆𝐼 (reported in Table 14) were derived from a similar work 

by Tugnoli et al. (2008). The selected values are intended to emphasize inherent safety aspects 

(which are given a weight of 0.4), whereas environmental and economic domains share a value of 

0.3. Different combinations of weight factors were explored in a specific sensitivity analysis which 

results are reported in Section 5.7.3. 

Internal normalisation of 𝑂𝑆𝐼 allows for an immediate comparison of global sustainability 

performance of the assessed alternative fuel systems. The normalised indicator (𝑂𝑆𝐼𝑁) is calculated 

as: 

𝑂𝑆𝐼𝑁,𝑘 =
𝑂𝑆𝐼𝑘

max
𝑘

(𝑂𝑆𝐼𝑘)
 Eq. 5.9 

where 𝑂𝑆𝐼𝑘  is the overall sustainability index for the k-th alternative. 
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5.7. Results 

5.7.1. Level 1 impact indicators 

The assessment of exhaust gas emissions resulting from the different navigation activities 

represents the starting point for the calculation of environmental impact indicators. The required 

cruise ship activity timing was calculated assuming the time percentage spent in each operation 

mode (manoeuvring, at berth, or in navigation) on a yearly basis. Activity time percentages were 

obtained from an extensive study of ship traffic in the European sea areas for the year 2011 

conducted by Jalkanen et al. (2016), who used accurate vessel activity data acquired by automatic 

position reporting systems. Average auxiliary (AE) and main engine (ME) load factors for berthing 

and manoeuvring were retrieved from the work by Tzannatos, (2010), whilst navigation load factors 

were collected from a ship emissions inventory by Whall et al., (2010). A summary of the considered 

values is reported in Table 10. 

Table 10: Considered time scheduling and engine load factors for environmental impact assessment. 

Activity 
Activity time 

[%] 
Activity time 

[h/y] 

Engine load factor [%] 

AE ME 

Manoeuvring 3.0% 188 75% 20% 

At berth 44.0% 2,756 60% 0% 

Navigation 53.0% 3,320 30% 80% 

Literature emission factors and yearly emission amounts estimated using Eq. 5.1 for each different 

fuel system considered, are reported in Table 11. 

Table 11: Emission factors and total emission amount of main and auxiliary engines. Values in 
brackets refer to navigation, the others to in-port activities. 

Scheme 
Engine 

type 

Emission factors [g/kWh] 

NOx SOx PM 2.5 CO2 VOC CH4 Reference 

1 
Main 1.15a 0.02b 0.10b 450a 0.50b 6.90a a) Stenersen and 

Thonstad (2017) 
 
b) Kristenen 
(2015) 
 
c) Caterpillar 
Motoren GmbH 
& Co. KG (2012) 

Auxiliary 1.90a 0.02b 0.10b 444a 0.50b 6.90a 

2 
Main 2.50c 0.02b 0.10b 417b 0.50b 0.00a 

Auxiliary 2.50c 0.02b 0.10b 445b 0.39c 0.00a 

3 

Main 0.90a 0.00b 0.03b 472a 0.50b 4.10a 

Auxiliary 0.90a 0.00b 0.03b 472a 0.50b 4.10a 

4 
Main 2.50e 0.47e 0.22e 

710d 
(645)d 

1.50d 
(0.50)d 

-d 
d) Whall et al. 
(2007) 
 
e) IMO (2015a) 

Auxiliary 2.50e 0.90e 0.30e 690d 0.40d -d 

Scheme Total emission amount [t/y] 

1 58.42 1.18 4.94 15,345.02 24.68 340.56 - 

2 94.71 1.18 4.94 21,285.18 22.01 0.00 - 

3 44.42 0.13 1.48 23,316.34 24.68 202.36 - 

4 123.39 23.15 11.08 32,987.57 22.51 0.45 - 
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Methane emissions accounted in this study are only related to the engine and do not consider 

operational emissions due to venting or refuelling. Fuel sulphur content of MGO was assumed to be 

equal to 0.1% in mass, in compliance with threshold values for ECAs reported in annex VI of 

MARPOL regulation. Methane slips from diesel propulsion systems were estimated as 2% of total 

VOC (volatile organic compounds) emissions following the approach suggested by the IMO (2015a). 

The results obtained for the economic impact assessment are reported in Table 12. Values for capital 

expenses (CAPEX) and operational expenses (OPEX) were estimated using the method described 

in Section 5.3. For the sake of brevity, the complete summary of consequence assessment results 

and inherent safety KPIs calculated for the process units included in all the reference schemes 

considered is reported in Appendix A. The considered LOC events and associated 𝐶𝑓 are shown for 

each single process unit for all the reference schemes assessed, together with calculated damage 

distances and resulting 𝑈𝐻𝐼. 

Table 12: Results of economic impact assessment and calculated value of 𝑃𝑟𝐼 indicator (not 
normalised) for the alternative fuel systems. 

Scheme 1 2 3 4 

CAPEX [M€] 35.28 34.38 35.28 16.84 

Fuel consumption [t/y]     

LNG  36,456.48 31,119.55 36,581.76 0.00 

MGO 405.91 563.76 0.00 39,914.21 

Maintenance cost [M€/y] 6.90 10.12 6.84 9.50 

Fuel cost [M€/y] 7.51 7.51 7.34 17.32 

Environmental tax [M€/y] 0.74 1.30 1.42 2.01 

OPEX [M€] 15.15 18.93 15.59 28.83 

Σ OPEX - end of project life [M€] 363.57 454.41 374.27 692.03 

𝑷𝒓𝑰 [M€] 198.92 237.87 203.61 293.76 

A summary of non-normalised Level 1 indicators for the alternative fuel systems is reported in Table 

13. The calculated values of environmental indicators clearly point out the reduction of pollutant 

emission achieved with LNG-based fuel systems (Schemes 1, 2 and 3) with respect to conventional 

technologies (Scheme 4). The total SOX emissions of LNG-based technologies are reduced by more 

than 95% compared to MGO-fuelled ships, whereas NOX emissions mark a significant reduction 

(more than 60%) comparing scheme 3 with scheme 4. It is important to remark that fuel supply 

systems of schemes 2 and 4 are both equipped with SCR exhaust gas treatment system; thus, the 

calculated yearly emissions are already mitigated. As expected, PM emission resulting from dual 

fuel and gas only technologies are less than half the amount of those coming from MGO, since the 

emission of particles is particularly affected by the fuel sulphur content (Kristenen, 2015). 

Using LNG for cruise ship propulsion can also save more than 30% of total CO2 yearly emissions. 

The only exception to this general trend is related to VOC emissions, which show a slight increase 

for the LNG-based schemes. In particular, methane emission figures are significantly higher for gas 

engines than traditional diesel engines (with the only exception of Scheme 2), thus limiting the 

environmental benefits of LNG fuel systems. 
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Table 13: Summary of non-normalised values for level 1 impact indicators and KPIs. Reference 
schemes are reported in Figure 9. 

Indicator Scheme 1 Scheme 2 Scheme 3 Scheme 4 Unit 

Environment 

𝑮𝑾 2.49×107 2.13×107 2.90×107 3.30×107 kg CO2 eq./y 

𝑹𝑨 3.06×104 4.88×104 2.24×104 8.95×104 kg SO2 eq./y 

𝑯𝑻 7.43×104 1.18×105 5.45×104 1.59×105 kg 1,4-dichlorobenzene eq./y 

𝑬𝑼 7.59×103 1.23×104 5.77 ×103 1.60×104 kg PO4
3- eq./y 

Economic 

𝑷𝒓𝑰 206.68 211.22 207.90 298.20 M€ 

Inherent safety 

𝑯𝑰 17.92 27.26 17.26 16.75 m2/y 

From an economic perspective, Scheme 1 results to be the most convenient solution, closely 

followed by Scheme 3, even if this latter solution shows a larger environmental tax amount. The 

higher installation costs of dual fuel systems and the increased maintenance costs related to SCR 

equipment required to comply with Tier III limits slightly penalise Scheme 2, making it the least 

economic option among gas alternatives. Scheme 4 shows the lowest profitability (i.e., highest value 

of 𝑃𝑟𝐼) having the highest OPEX among all alternatives and the highest environmental tax load. The 

initial advantage of lower investment costs is eroded by the higher fuel costs. Maintenance and fuel 

costs account for the majority of total OPEX, reaching a maximum share of 51 and 59% (for Scheme 

2 and 4 respectively). It should be noted that the environmental taxation scheme applied has a limited 

impact when considered as a proportion of total annual expenses since its share reaches a maximum 

13% for Scheme 3 gas propulsion technology. The cost item related to fuel oil consumption for dual 

fuel alternatives (Schemes 1 and 2) marginally affects total fuel costs, contributing about 2.3 and 

3.8% of the total value, respectively. 

With respect to safety, the conventional MGO-based fuel system shows, as expected, the lowest 𝐻𝐼 

value. The low 𝐻𝐼 score of Scheme 4 is mainly determined by the lower number of fuel system 

components. For this scheme booster pumps are deemed as the critical units and have a negative 

impact over safety performance due to their high value of 𝑈𝐻𝐼 index (see Table A4 in Appendix A). 

Scheme 2 exhibits the worst expected safety performance, with a 𝐻𝐼 about 50% higher than the 

other alternatives. Such a difference can be explained considering that the 𝐻𝐼 index is influenced by 

the complexity of the reference scheme in terms of number of process units, equipment type (i.e., 

rotating, heat exchanger, etc.) and severity of operating conditions (see Table A1 in Appendix A). All 

these factors worsen the LNG fuel systems safety level with respect to the conventional system. In 

particular, Scheme 2 shows the worst performance, due to the higher operating pressure and the 

presence of high-pressure LNG pumps that significantly affect the overall 𝐻𝐼 value. Substitution of 

rotating equipment with PBU in the fuel gas supply system of Scheme 3 makes this solution the 

inherently safest LNG fuel system option. 
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5.7.2. Aggregated key performance indicators (Level 2 and Level 3) 

The complete set of normalised Level 1 indicators together with aggregated Level 2 and Level 3 

indicators is reported in Table 14, whereas Figure 12 shows a radar plot comparing the normalised 

values of aggregated level 2 indicators. 

Table 14: Normalised values of Level 1, Level 2, and Level 3 indicators. Weight factors used for the 
aggregation of indices are reported in the last column of the table. 

Indicator Scheme 1 Scheme 2 Scheme 3 Scheme 4 
Weight 
factors 

Level 1 

𝑮𝑾 4.76×10-6 4.08×10-6 5.55×10-6 6.32×10-6 0.3 

𝑹𝑨 1.82×10-6 2.90×10-6 1.33×10-6 5.32×10-6 0.3 

𝑯𝑻 1.48×10-7 2.36×10-7 1.09×10-7 3.19×10-7 0.2 

𝑬𝑼 4.10×10-7 6.65×10-7 3.12×10-7 8.67×10-7 0.2 

𝑷𝒓𝑰 a 2.76×10-6 2.81×10-6 2.77×10-6 3.90×10-6 1.0 

𝑯𝑰 a 3.64×10-7 5.54×10-7 3.51×10-7 3.41×10-7 1.0 

Level 2 

𝑬𝒏𝒗𝑰 2.09×10-6 2.27×10-6 2.15×10-6 3.73×10-6 0.3 

𝑷𝒓𝑰 a 2.70×10-6 2.76×10-6 2.72×10-6 3.90×10-6 0.3 

𝑯𝑰 a 3.64×10-7 5.54×10-7 3.51×10-7 3.41×10-7 0.4 

Level 3 

𝑶𝑺𝑰 1.58×10-6 1.73×10-6 1.60×10-6 2.42×10-6 - 

𝑶𝑺𝑰𝑵 0.653 0.714 0.660 1.000 - 
a Only one indicator is defined at Level 1 for safety and economic domains, namely 𝐻𝐼 and 𝑃𝑟𝐼 respectively. 
Thus, both indexes are considered for Level 1 and 2. 

As shown in Figure 12, all LNG-fuelled alternatives share a very similar economic impact indicator, 

while the result for Scheme 4 is sensibly higher (+39% compared to Scheme 2). This difference 

confirms that the higher fuel and taxation costs are a crucial economic limitation for the MGO 

scheme, despite the lower initial investment costs. Safety performance has a relevant impact on the 

overall sustainability of alternative fuel systems. Conventional MGO option (Scheme 4) shows the 

best safety performance, with a 𝐻𝐼 index 61% lower than Scheme 2, confirming the inherent safety 

of fuel oil when compared to low flash point fuels, such as natural gas. 
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Figure 12: Radar plot showing the values of Level 2 indicators defined in Table 9 for the alternative 

fuel systems considered. Notice the different scale factor of 𝐻𝐼 axis. 

As shown in Figure 12, this is compensated by the worst environmental performance of the MGO 

propulsion system, which significantly penalizes the sustainability of this technology. Overall, LNG-

based alternatives feature similar environmental impact, with Scheme 1 performing better than 

others due to reduced CO2 emissions. Figure 13 shows the sustainability ranking based on the 

calculated values of 𝑂𝑆𝐼𝑁 , and the weight factors listed in Table 14. 

 
Figure 13: Values of the overall normalised sustainability indicator, 𝑂𝑆𝐼𝑁 , and ranking resulting for 
the four alternatives considered based on the weight factors reported in Table 14. Colours indicate 

the contribution of the different impact domains to 𝑂𝑆𝐼𝑁 . 
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The MGO fuel system (Scheme 4) results the least sustainable alternative for cruise ships, having 

the highest 𝑂𝑆𝐼𝑁  value. This result is mainly due to the negative impact of both environmental and 

economic aspects (see Table 14). 

Considering dual fuel technologies, the reduced methane slip achieved in Scheme 2 is not sufficient 

to counterbalance the higher cost figures related to additional maintenance. Moreover, the high-

pressure level and the need of compressors worsen the inherent safety level of this scheme. 

Schemes 1 and 3 have a very similar overall index, with Scheme 3 technology favouring of the lowest 

value of the inherent safety index thanks to the absence of rotating equipment. However, when 

compared to Scheme 1, the almost double amount of environmental tax cost linked to higher CO2 

emission levels makes this option slightly less favourable. In conclusion, Scheme 1 may be deemed 

as the most sustainable solution for newly built large cruise ships, due to the lowest values of the 

estimated KPIs for all the three impact categories, as shown in Figure 13. 

5.7.3. Sensitivity analysis 

The set of weight factors used for index aggregation clearly affects the final value of the overall index 

and the sustainability-based ranking of the alternative fuel systems. As proposed by Dal Pozzo et al. 

(2017), ternary diagrams can be used to show the results obtained using different weight factors in 

the aggregation process. Each point of the diagram shown in Figure 14a represents a possible 

combination of weights for Level 2 aggregation, and the surface of the triangle represent all possible 

weight sets. Weight combinations falling in the white area in the plot still result in Scheme 1, showing 

the best overall performance. This is the case if a set of equal weights is used for the three impact 

categories (black square in Figure 14a). The blue area in the plot is the region of weight combinations 

in which Scheme 4 shows the best sustainability performance. Diesel propulsion becomes the most 

sustainable solution only when limited relevance is given to environmental aspects (weight factor 

less than 0.35), confirming that the higher environmental impacts associated with this technology 

represent an important limit for its sustainability performance. The range of weight values for the 

safety domain that result in a low 𝑂𝑆𝐼𝑁  value for Scheme 4 is limited. This confirms that only when 

inherent safety is deemed crucial for the analysis, the MGO scheme might benefit from its inherently 

safer profile. Nevertheless, the figure shows that the high operating costs represent a penalization 

of conventional fuel system, even when considering the higher complexity and capital costs of LNG-

based systems. 

 
Figure 14: Influence of different sets of weight factors on the 𝑂𝑆𝐼 values for a conventional MGO fuel 

system (a); 𝑃𝑟𝐼 percent impact over 𝑂𝑆𝐼𝑁  for different discount rate values (b). 
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A different type of sensitivity analysis was performed to prove the stability of the results against the 

variation of discount rate 𝑟. A ± 50% modification of the baseline 𝑟 value (i.e., 8%) was considered, 

covering the range of possible values reported in the literature. As shown in Figure 14b, the variation 

of economic index impact over the 𝑂𝑆𝐼𝑁  value is limited. When compared to the baseline scenario, 

the influence of 𝑃𝑟𝐼 over the calculated 𝑂𝑆𝐼𝑁  increases by a maximum +7.4% imposing 𝑟 = 4% (i.e., 

a -50% variation), whereas a -6.1% difference is obtained for 𝑟 = 12% (i.e., a +50% variation). 

Scheme 4 is the alternative that is mostly affected by discount rate variation. 

Furthermore, a Monte Carlo method was applied to perform a sensitivity analysis among the ranking 

of alternatives, following the approach suggested by Tugnoli et al. (2008). This analysis was aimed 

at calculating the cumulative probability of an inversion in the ranking due to the variation of level 2 

aggregation weight set. The variability range of level 2 indicator weight factors was assumed equal 

to ± 50% of the initial value selected for each weight factor. A symmetric beta distribution (National 

Institute of Standards and Technology, 2012) with shape parameters 𝛼 = 𝛽 = 4 was considered to 

assess the values within the variation interval. The robustness of the ranking of the alternative 

technologies based on the calculated 𝑂𝑆𝐼 values was assessed calculating the distribution of the 

differences between selected pairs of alternatives. The difference is indicated as 𝛥𝑂𝑆𝐼 in Figure 15. 

A positive 𝛥𝑂𝑆𝐼 value indicates that there is no shift in the ranking of alternatives and that the original 

preference order shown in Figure 13 is maintained. 

 

Figure 15: Distribution of cumulative probability for 𝑂𝑆𝐼 differences (𝛥𝑂𝑆𝐼) between reference 
schemes 
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As shown in Figure 15, the cumulative probability of having negative values of 𝛥𝑂𝑆𝐼 when varying 

the set of weights selected is negligible for reference scheme 4. Focusing on Schemes 3 and 2, 

there is about a 10% probability that Scheme 3 can result more sustainable than Scheme 1, whereas 

Scheme 2 has a probability lower than 5% to perform better than Scheme 3. 

As a matter of fact, the occurrence of a swap in the original alternative ranking reported in Figure 13 

for Schemes 3 and 1 could be expected, due to the almost identical value of the overall 𝑂𝑆𝐼 index 

and to the wide variation of impact target weights considered for the sensitivity analysis. Differently, 

even if the sustainability performance of Schemes 3 and 2 is very similar, the original ranking was 

proven robust, since the shift in probability values resulted very limited, as shown from the sensitivity 

analysis. The obtained results confirm that a moderate uncertainty in the selection of weights does 

not drastically affect the outcomes obtained with the approach described in this Chapter. 

5.8. Conclusions 

The sustainability assessment methodology presented in this chapter allowed comparing the 

performance of different cruise ship fuel systems. A multi-criteria analysis was performed, 

considering the three main domains of sustainability: environment, economics, and safety. KPIs were 

calculated and further aggregated into an overall sustainability index that was used as a metric to 

rank the assessed technologies. The results obtained from the multi-criteria analysis performed 

evidenced that the use of LPDF systems (Scheme 1) results the most sustainable solution thanks to 

the lowest figures for all the impact indicators. This scheme shares a similar 𝑂𝑆𝐼 value with LBSI 

systems (Scheme 3). However, the better safety profile of the latter is counterbalanced by a higher 

environmental impact caused by larger amounts of emitted CO2, which also negatively affects the 

economic profile of Scheme 3. One of the main advantages of the HPDF technology (Scheme 2) is 

the low global warming impact achieved thanks to the substantial reduction of methane slip. 

However, the need of a SCR exhaust gas treatment system and the additional costs for its 

maintenance penalize the economic profile of this scheme that, combined with the highest 𝐻𝐼 value, 

make this solution the least sustainable among the gas-based alternatives. As expected, Scheme 4 

solution, based on the use of MGO, results the least sustainable fuelling alternative due to its 

negative environmental profile, which also downgrades its economic appeal due to the taxation 

scheme considered. Finally, the ranking obtained for the alternative technologies was proven robust 

by means of a Monte Carlo sensitivity analysis that explored different values of the weights used for 

KPI aggregation. Overall, the method developed allowed obtaining a synthetic sustainability 

fingerprint, identifying the critical points that will be crucial for the development of “green ships” 

accounting for a holistic perspective of safety, environmental and economic aspects. However, an 

inherent limitation of the proposed methodology, correlated to its application during early design 

phases, is the exclusion of safety barriers installed on board, since details needed for their 

assessment are usually defined at a later design stage. Technological aspects such as the safety 

and security of fuel supply for gas-only fuel systems or the availability of required infrastructures 

(more broadly, technological readiness) might also influence the preference order of the alternatives. 

Lastly, no assumptions were made regarding the time spent by ships inside ECA zones. However, 

such aspect may be considered in further analysis since it might affect the economic performance 

of the alternatives. 
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Chapter 6. Risk assessment of LNG bunkering 

operations 

This Chapter is focused on the risk assessment of the different LNG bunkering options presented in 

Section 2.6. In the first part of the Chapter, an inherent safety assessment of the more common LNG 

bunkering technologies is carried out, comparing the results with those obtained for conventional 

marine fuels bunkering operations. To this end, a tool for the quantitative assessment of the inherent 

safety performance of bunkering technologies is developed. Such a tool aims to support decision-

making in the early process design of LNG bunkering technologies, allowing the identification of the 

safest alternative. Moreover, this approach can integrate economic and environmental 

considerations in broader sustainability assessment studies, providing a metric to address societal 

aspects, as described in Chapter 5. A set of inherent safety indicators based on consequence 

evaluation of potential accident scenarios with respect to human and asset targets is proposed, 

allowing the evaluation and the ranking of different hazard sources characteristic of each ship 

bunkering technology assessed. Furthermore, the credibility of loss of containment events is 

introduced in the analysis using equipment-specific credit factors, which summarise the past 

performance of similar process units, providing a useful estimation of release credibility in the early 

phase of design. Reference schemes for the different bunkering concepts are outlined to support the 

inherent safety assessment and to identify the characteristic process conditions needed for 

consequence assessment. 

A methodological approach aimed at understanding the influence of managerial aspects on the risk 

level of LNG bunkering facilities is presented in Section 6.2. The proposed approach integrates the 

conventional QRA workflow with a previously developed methodology for the modification of leak 

frequencies that accounts for external influencing elements related to both operational and 

organizational issues named TEC2O (Frequency modification methodology based on TEChnical 

Operational and Organizational factors). A case study is outlined to demonstrate the application of 

the approach. Following the identification of main process units and operating conditions, individual 

and societal risk levels connected with LNG bunkering operations carried out at ports are estimated. 

Release occurrence frequencies are then modified according to TEC2O methodology and risk levels 

for two opposite management scenarios are calculated and compared, leading to the identification 

of the more influential operating and organizational factors. Finally, a sensitivity analysis is carried 

out to assess the effect of variations of TEC2O parameters on the values of the modified occurrence 

frequencies. 

6.1. Inherent safety assessment of LNG bunkering technologies 

To facilitate the inherent safety assessment of the different bunkering technologies, the overall 

bunkering process was considered as a “system”. Each system was considered to be based on a 

specific “concept” and constituted of different process “blocks”, as illustrated in Figure 16. Although 

concepts C and D are representative of a PTS bunkering arrangement, conventional marine fuels 

bunkering for passenger ships is typically carried out through a small-scale auxiliary bunker vessel 

having an overall storage capacity in the range of 100-800 m3 of fuel. Intermediate Fuel Oil (IFO) 

and MGO bunkering operations are normally carried out at berth during passenger boarding using 

flexible rubber hoses compliant to EN 1765:2016 (CEN, 2016b) and not through the use of transfer 

arms, as considered for Concept A. 
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Figure 16: Overview of the different concepts and relative process blocks considered for the 
alternative ship bunkering systems analysed. Blue blocks refer to STS bunkering configuration, while 
dark yellow indicates a PTS arrangement. 

Reference schemes for each onshore bunkering facility were elaborated based on a survey of the 

technical literature and current industrial practice and data retrieved from detailed studies by the 

Danish Maritime Authority, (2012) and Gas Infrastructure Europe, (2020). The reference scheme of 

the LNG-fuelled vessel is based on the LBSI FGSS described in Section 2.5.3, whereas schemes of 

the IFO/MGO bunker and user vessels were defined based on the data from Caterpillar, (2013). The 

defined schemes provided the required basis for gathering the main process data necessary in the 

framework of the present study, and to allow the quantification and comparison of the expected 

inherent safety performance of alternative bunkering technologies. Other technological aspects, 

such as economics, different possible storage solutions or energy efficiency fall out of the scope of 

the present analysis and were not considered. 

6.1.1. Reference systems for LNG bunkering and supply 

In the present study, only two main alternative LNG bunkering systems were considered: Concept 

A, featuring the typical PTS configuration (Figure 16a); and Concept B, with a STS configuration 

(Figure 16b). The TTS technology was not considered in the present analysis as it is only suitable 

for small-scale applications and therefore not comparable to any conventional fuel bunkering 

operation. The simplified reference process flow diagrams (PFDs) including the equipment tags for 

all the blocks present in the two alternative systems (see Figure 16) are reported in Figure 17 and 

described in detail in the following. Process operating conditions and equipment features are 

summarized in Appendix B. 
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S-LNG block: LNG shore-based bunkering facility 

The reference PFD considered for LNG shore-based bunkering facilities is reported in Figure 17a 

for both Concepts A and B. In both concepts, cryogenic loading pumps (G01 A/B) transfer LNG from 

storage tanks (D01, D02, etc.), connected with a common manifold, up to the loading arm (S02). 

Similarly, a boil-off gas (BOG) line connects tanks to BOG transfer arm (S01), allowing tank pressure 

regulation and equalization during LNG transfer to either user vessel fuel system (Concept A) or 

bunker vessel (Concept B).  

B-LNG block: ship-to-ship bunker vessel 

Ship-to-ship operations for LNG bunkering may be carried out either in port areas or in the open sea. 

In this study, only ship-to-ship transfer in port areas was considered for sake of comparison with 

conventional fuel bunkering. 

Figure 17b provides a reference scheme for a small-scale bunker vessel with a storage capacity of 

about 6,000 m3. LNG is stored in two bi-lobe IMO independent type C tanks (D01 and D02) and is 

delivered to the receiving ship using submerged cryogenic pumps installed inside the tanks through 

a flexible hose for cryogenic applications (LNG line S04), designed according to EN 1474-2. During 

bunkering operations, the BOG line (S03) is connected to the receiving vessel. Moreover, the BOG 

produced is managed by means of a compressor (P01) which allows tank pressure compensation 

and the fuel supply to the vessel dual fuel engine. In addition, the bunker vessel is equipped with a 

LBSI type FGSS for feeding its dual fuel engines. 

V-LNG block: user vessel 

The reference scheme assumed for the LNG fuel system installed on a ship is based on the LBSI 

technology described Section 2.5.3. This kind of FGSS was assumed as representative of a 

passenger ferry boat with an installed power of about 38 MW (DNV-GL, 2015b). The considered 

reference scheme, shown in Figure 17c, includes a single LNG storage tank (D01), an LNG vaporizer 

and a fuel gas heater (E01 and E02, respectively) needed to control gas temperature. The BOG 

compressor (P01) is used to manage tank pressure. A BOG pre-heater (E03) is installed upstream 

the compressor to control vapor temperature. 
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Figure 17: Reference schemes considered for the storage and supply blocks of LNG fueled vessels 
in Concepts A and B of Figure 16: a) S-LNG shore-based storage facility; b) B-LNG bunker vessel, 
and c) V-LNG fuel system onboard ship. For B-LNG and V-LNG blocks cryogenic submerged pumps 
are installed inside storage tanks. 
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6.1.2. Reference systems for conventional bunkering with diesel fuels 

Reference process schemes for conventional diesel fuel bunkering were defined with the 

collaboration of a team of experts involving port operators (either qualified personnel of port 

authorities or operating companies) of several Italian harbour areas. A specific survey was submitted 

to the expert team, to integrate the information available from the technical literature (Caterpillar, 

2013; OCIMF, 2010). Conventional fuel bunkering operations were considered to be carried out 

adopting only PTS configurations, by using a small-scale auxiliary bunker vessel. As shown in Figure 

16, two alternative concepts, based on different fuel types and thus requiring different operating 

conditions, were considered for the sake of comparison. The two alternative fuels considered were:  

1. IFO 380, in Concept C;  

2. MGO in Concept D. 

Further technical characteristics of both fuels can be found in the work by Mohd Noor et al., (2018). 

The simplified reference schemes including the equipment tags for concepts C and D are reported 

in Figure 18. Due to the similarities, a single reference scheme was considered for IFO and MGO in 

each block of Figure 16. Process operating conditions and equipment features are summarized in 

Section B.1 of Appendix B. 

S-IFO and S-MGO blocks: onshore bunkering facilities  

Figure 18a shows the reference scheme considered for the land based IFO and MGO facilities. The 

fuel is stored in several atmospheric tanks (T01-T06) connected with a pipe network and pumping 

stations (pumps G01/02). Fuel is delivered to the bunker vessel at about 2 bar pressure (OCIMF, 

2010). 

B-IFO and B-MGO blocks: ship-to-ship auxiliary bunker vessel 

Figure 18b shows the reference scheme considered for a typical auxiliary bunker vessel employed 

for refuelling operations for ferry boats, either adopting IFO or MGO. The onboard storage system 

consists of atmospheric tanks (T01-T07) that are heated to reduce fuel viscosity and to ease fuel 

transfer operations. A bunker pump (G01) is used to deliver the required fuel at about 2 bar pressure 

to the receiving vessel tanks (OCIMF, 2010). 

V-IMO and V-MGO blocks: fuel system on the end-user vessel 

Figure 18c shows the reference scheme of a typical diesel fuel supply system installed on ferry 

boats. Fuel is stored onboard in two prismatic atmospheric tanks (D01 and D02). A gear pump (G01) 

transfers the fuel towards two settling tanks (D03 and D04). A heater (E01) follows the settling tanks, 

then the oil is transferred by pump (G02) to two daily service tanks (D05 and D06). Prior to engine 

injection, the fuel is heated again (in heater E02) in order to reach an adequate viscosity grade as 

required by the engine, and finally injected into the engine through a booster pump (G03). 
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Figure 18: Reference schemes considered for the storage and supply blocks based on the utilization 
of conventional fuels in Concepts C and D of Figure 16: a) S-IFO and S-MGO shore-based storage 
facility; b) B-IFO and B-MGO bunker vessel; c) V-IFO and V-MGO fuel system onboard ship. 
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6.1.3. Methodology 

The consequence based KPI approach described in Section 5.4 was adopted in this Chapter and 

further expanded in order to assess the inherent safety profile of vessel bunkering operations, thus 

extending its applicability to the entire bunker supply chain of marine fuels. The procedure required 

for the evaluation of KPIs is schematized in Figure 19. 

 

Figure 19: Overview of the methodology implemented for the inherent safety assessment of 
alternative technologies for marine fuel bunkering. 

The preliminary part of the analysis (Step 1 in Figure 19) consists in the definition of reference 

schemes for vessel bunkering to support the inherent safety assessment of each technology 

considered. LOC events categorization was carried out considering the reference release types and 

credit factors listed in Table 6 (Step 2 in Figure 19). In step 3 of the methodology the consequence 

analysis of the possible scenarios following each LOC was performed using the well-known integral 

models proposed by Van Den Bosh and Weterings, (2005). To avoid introducing uncertainties 

related to fuel composition, dangerous effects were estimated assuming LNG as pure methane, 

while IFO and MGO were assumed as pure n-dodecane and pure n-nonane, respectively. Differently 

from what done in Chapter 5, an escalation distance was also calculated considering the damage 

threshold relative to process equipment reported in Table 7. Such an extension in scope led to the 

calculation of additional unit KPIs (Step 4 of Figure 19), as specified in the following. All the assessed 

units were then allocated to the relevant process blocks (Step 5 of Figure 19). Successively, unit 

indicators were aggregated to obtain block and overall inherent hazard indexes (Step 6 and 7 of 

Figure 19). Finally, the alternative distribution systems were ranked on the basis of the overall KPIs 

calculated in the previous steps (Step 8 in Figure 19). 
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6.1.4. Description of inherent safety KPIs 

In addition to the unit inherent hazard index (𝑈𝐻𝐼) defined in Section 5.4, a unit potential hazard 

index (𝑈𝑃𝐼) was defined for each unit as follows: 

𝑈𝑃𝐼𝑢,𝐵 = 𝑚𝑎𝑥
𝐿𝑂𝐶

(ℎ𝑢,𝐵,𝐿𝑂𝐶
2 ) Eq. 6.1 

where ℎ𝑢,𝐵,𝐿𝑂𝐶  is the maximum damage distance obtained for a specific LOC type, and process unit, 

𝑢, belonging to the block (𝐵) of the system. The 𝑈𝑃𝐼𝑢,𝐵 index is representative of the largest area 

affected by the worst-case scenario originated from the considered process unit, being hence 

proportional to the squared value of damage distance. 

Adapting the definition of the 𝑈𝐻𝐼 to the concept schematization of Figure 16, equationEq. 5.5 can 

be rearranged as: 

𝑈𝐻𝐼𝑢,𝐵 = ∑ 𝐶𝑓𝑢,𝐵,𝐿𝑂𝐶 ∙ ℎ𝑢,𝐵,𝐿𝑂𝐶
2

𝑛𝑢,𝐵

𝐿𝑂𝐶=1

 Eq. 6.2 

where 𝑛𝑢,𝐵 is the number of LOCs considered for a specific unit 𝑢 of the block 𝐵 considered and 

𝐶𝑓𝑢,𝐵,𝐿𝑂𝐶  is the credit factor relevant for the LOC being accounted. The sum of the 𝑈𝑃𝐼𝑢,𝐵 and of 

𝑈𝐻𝐼𝑢,𝐵 values for a particular block of a bunkering system (defined as a group of N units – see Table 

B1, Table B2 and Table B3 reported in Appendix B for a detailed list of equipment considered in 

each block) is used to calculate the block potential hazard index (𝐵𝑃𝐼𝐵) and the block inherent hazard 

index (𝐵𝐻𝐼𝐵 ) that are respectively defined as: 

𝐵𝑃𝐼𝐵 = ∑ 𝑈𝑃𝐼𝑢,𝐵

𝑁

𝑢=1

 Eq. 6.3 

 

𝐵𝐻𝐼𝐵 = ∑ 𝑈𝐻𝐼𝑢,𝐵

𝑁

𝑢=1

 Eq. 6.4 

These aggregated indexes allow the assessment of the expected inherent safety performance of 

each block of fuel bunkering systems, based either on a direct assessment of potential worst-case 

scenarios (𝐵𝑃𝐼) or on the safety performance and release scenarios of the process units (𝐵𝐻𝐼). 

Therefore, the aggregation at the level of the overall system, thus considering all the blocks in the 

bunkering system, is also needed. In particular, the sum of the overall KPIs for each block is adopted 

to evaluate the overall inherent safety performance of the system: 

𝑃𝐼 = ∑ 𝐵𝑃𝐼𝐵

𝑀

𝐵=1

 Eq. 6.5 

 

𝐻𝐼 = ∑ 𝐵𝐻𝐼𝐵

𝑀

𝐵=1

 Eq. 6.6 

where 𝑀 is the number of blocks in each bunkering system, while 𝑃𝐼 and 𝐻𝐼 are the overall potential 

and overall inherent hazard indexes, respectively. 
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Considering the limited space available on board of vessels, and the limited distances between 

process units in bunkering facilities, escalation indexes were deemed necessary for the evaluation 

of the inherent safety profile of the systems considered. These indexes account for the possibility of 

severe “domino” scenarios, due to the simultaneous damage and release from several units, not 

accounted in the assessment of single units. The KPIs considered for escalation are based on the 

evaluation of an escalation distance (𝑒𝑢,𝐿𝑂𝐶) for each credible scenario, which is calculated using the 

domino effect thresholds reported in Table 7. A “near field” cut-off approach was adopted in this case 

as well, thus considering 𝑒𝑢,𝐿𝑂𝐶  as the maximum value between the calculated escalation distance 

and 5 m. 

Similarly to 𝑈𝑃𝐼𝑢,𝐵 the unit potential domino index, 𝑈𝑃𝐷𝑢,𝐵, is defined as the square of the maximum 

escalation distance calculated for the unit: 

𝑈𝑃𝐷𝑢,𝐵 = 𝑚𝑎𝑥
𝐿𝑂𝐶

(𝑒𝑢,𝐵,𝐿𝑂𝐶
2 ) Eq. 6.7 

The unit domino hazard index, 𝑈𝐻𝐷𝑖,𝑘, is defined as follows, in analogy to 𝑈𝐻𝐼𝑖,𝑘: 

𝑈𝐻𝐷𝑢,𝐵 = ∑ 𝐶𝑓𝑢,𝐵,𝐿𝑂𝐶 ∙ 𝑒𝑢,𝐵,𝐿𝑂𝐶
2

𝑛𝑢,𝐵

𝐿𝑂𝐶=1

 Eq. 6.8 

A block domino potential hazard index, 𝐵𝑃𝐷𝐵, and a block domino inherent hazard index, 𝐵𝐻𝐷𝐵, are 

defined summing up respectively the 𝑈𝑃𝐷𝑢,𝐵 and 𝑈𝐻𝐷𝑢,𝐵 values for all the units in the B-th block of 

the bunkering system.  

Aggregation of block indexes was performed to calculate the overall inherent safety domino 

indicators of the considered bunkering concept. In analogy with Eq. 6.5 and Eq. 6.6, the overall 

domino potential hazard index, 𝑃𝐷, and the overall domino inherent hazard index, 𝐻𝐷, were defined 

as:  

𝑃𝐷 = ∑ 𝐵𝑃𝐷𝐵

𝑀

𝐵=1

 Eq. 6.9 

 

𝐻𝐷 = ∑ 𝐵𝐻𝐷𝐵

𝑀

𝐵=1

 Eq. 6.10 

The different indexes defined contribute to score different inherent safety aspects and may be used 

to obtain either an inherent safety fingerprint of the whole bunkering process or for single units. 
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6.1.5. Results and discussion 

The complete set of results for the KPI assessment of the alternative technologies for LNG bunkering 

is reported in Table B4 of Appendix B. The obtained results highlight that in Concept A, LNG storage 

tanks account for the highest 𝑈𝑃𝐼 and 𝑈𝑃𝐷. The presence of external loading pumps in the shore 

facility is a critical issue, since these units show a 𝑈𝐻𝐼 value of 43.3 m2/y and a 𝑈𝐻𝐷 of 40.4 m2/y. 

These values are the highest of the entire system, very similar to those of the LNG transfer arm. This 

is a direct consequence of pumps and compressors credit factor values that are particularly high due 

to the presence of rotating parts, which increase the equipment failure likelihood as reported in Table 

6. Submerged LNG transfer pumps are installed inside the double walled storage tank. Hence, 

release events from these units are excluded from the present analysis. 

With reference to STS operations (Concept B), the main LNG storage tanks onboard the bunker 

vessel show both the higher unit potential index, 𝑈𝑃𝐼, and the higher unit potential domino,  𝑈𝑃𝐷, of 

the entire bunkering system, respectively, 8.04×106 m2 and 7.87×106 m2. These values are almost 

twice those calculated for the shore facility storage tanks. This is due to the fact that bunker ship 

tanks have a capacity almost twice as big as that of each individual tank used for LNG storage in the 

shore facility and that the operating conditions in the bunker ship tank are more severe than those 

encountered in shore facility storages (higher temperature and pressure, as reported in Table B1 of 

Appendix B). 

When considering the influence of credit factors, the LNG loading pumps located in the shore facility 

appear also in this case the least inherently safe equipment involved in this system, with the highest 

𝑈𝐻𝐼 and 𝑈𝐻𝐷. 

For the sake of comparison, the KPIs were calculated for the conventional bunkering technologies 

as well. The results obtained are reported in Table B5 and Table B6 of Appendix B, for Concept C 

(IFO bunkering) and Concept D (MGO bunkering) respectively. Storage tanks located on the shore 

facility feature the highest 𝑈𝑃𝐼 and 𝑈𝑃𝐷 values due to the largest amount of stored hazardous 

substance. The bunker hose used in the shore facility is the most critical unit in terms of inherent 

hazard index, being characterized by the highest values of both 𝑈𝐻𝐼 and 𝑈𝐻𝐷. It is worth mentioning 

that the indexes obtained in the case of Concept D are higher than those obtained for Concept C, 

due to the lower flash point and wider flammability range of MGO with respect to IFO. 
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Comparison among the alternative bunkering system s 

A comparison among the normalised values of the potential and hazard indexes calculated for the 

alternative technologies is reported in Figure 20. The figure also reports the correspondent 

normalised indexes for domino effect. 

 

Figure 20: Normalised values of unit potential hazard and inherent hazard indexes for the bulk 
storage unit (UPI Storage and UHI Storage); maximum unit potential hazard and inherent hazard indexes 
(UPI MAX and UHI MAX); domino unit potential hazard and domino inherent hazard indexes for the bulk 
storage unit (UPD Storage and UHD Storage); maximum domino unit potential hazard and domino 
inherent hazard indexes (UPD MAX and UHD MAX). 

When credit factors are introduced in the analysis, a completely different result is obtained from the 

comparison among the inherent hazard indexes for the shore facility storage tanks (𝑈𝐻𝐼𝑆𝑡𝑜𝑟𝑎𝑔𝑒  in 

Figure 20). In fact, credit factors of atmospheric vertical tanks adopted for conventional fuels storage 

are one order of magnitude higher than those of the pressurized or semi-pressurized tanks adopted 

for LNG storage (see Table 6). This leads to doubled 𝑈𝐻𝐼𝑆𝑡𝑜𝑟𝑎𝑔𝑒  values with respect to LNG storage 

tanks, despite the more limited severity of accident scenarios resulting from conventional fuel 

releases compared to those calculated for LNG. Credit factors also affect the relative ranking among 

the performance of the worst critical equipment of each system, reducing the difference among the 

inherent safety performance of LNG and conventional technologies (see Figure 20). The same 

qualitative considerations can be extended to the comparison among the domino indexes. In 

particular, 𝑈𝑃𝐷 and 𝑈𝐻𝐷 for shore facility tanks and the most critical equipment drastically penalize 

LNG-based concepts compared to the conventional systems (see Figure 20). 

Figure 21 reports the KPIs calculated for each block of the different bunkering systems considered. 

Considering both the 𝐵𝑃𝐼 (reported in Figure 21a) and the 𝐵𝐻𝐼 (reported in Figure 21b) it is evident 

that the shore facility is the most critical unit amongst all bunkering blocks. This is mainly due to the 

larger inventories of hazardous materials and the more severe conditions in fluid handling and 

transfer. However, the analysis also points out that the KPIs of the LNG-based FGSS are quite high, 

comparable to those of the shore facility. Despite the limited onboard inventory of hazardous 

substances, the complexity of LNG fuel system in terms of required auxiliary units is the main cause 

of such result. Moreover, while the inherent hazard level of the LNG FGSS is comparable with that 

of the shore facility, the vulnerability is higher, due to the presence of passengers onboard during 
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bunkering operation. This highlights an important issue that should be considered in the safe 

development of LNG-fuelled vessels. 

The analysis of domino effect results crucial to identify the potential interference among the different 

operations carried out within each bunkering system, possibly leading to accident propagation. On 

the one hand, as shown in Figure 21c and Figure 21d, that report the values of the 𝐵𝑃𝐷 and 𝐵𝐻𝐷 

respectively, a relevant escalation hazard is present in LNG bunkering systems. This is due to the 

possibility of severe scenarios which may induce the catastrophic failure of neighbouring units. On 

the other hand, in both Concepts C and D, the scenarios associated with the release of IFO and 

MGO have a reduced escalation potential due to their limited severity and extension. 

 

Figure 21: KPI values for the single blocks of the alternative bunkering systems: a) block potential 
hazard index BPI (m2), b) block inherent hazard index BHI (m2/y), c) block domino potential hazard 
index BPD (m2), d) block domino inherent hazard index BHD (m2/y). 

A comparison of the overall inherent safety KPIs for the bunkering concepts considered is shown in 

Figure 22. It is evident how LNG based technologies (Concepts A and B) result in much higher 

values of the KPIs with respect to conventional technologies (Concepts C and D). As shown in Figure 

22a, the overall potential and domino indexes (𝑃𝐼 and 𝑃𝐷) for conventional fuel bunkering systems 

are at least one order of magnitude lower than those calculated for LNG. When comparing the overall 

inherent hazard index (𝐻𝐼, see Figure 22b), the differences among the four alternative fuelling 

concepts are attenuated, but the LNG-based technologies still feature KPI values almost twice than 

those obtained for conventional technologies. Also, when considering the domino overall inherent 

hazard (𝐻𝐷, see Figure 22b), conventional technologies (Concepts C and D) show again KPIs that 

are at least one order of magnitude lower than those of LNG (Concepts A and B). 

Based upon the values of the overall potential and inherent indexes, it is possible to rank the 

alternative bunkering technologies considered, as illustrated in Figure 22c. This ranking is 

independent from the selection of a particular KPI, since all the overall indexes have the same 

qualitative trend, as can be seen from Figure 22a and Figure 22b). 
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Figure 22: Overall KPIs for the alternative bunkering systems considered: a) overall potential hazard 
index PI (m2) and overall domino potential hazard index PD (m2); b) overall inherent hazard index HI 
(m2/y) and overall domino inherent hazard index HD (m2/y); c) qualitative ranking among the four 
Concepts considered based on overall inherent safety KPIs. 
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6.2. Integration of managerial aspects and simultaneous operation in 

LNG bunkering risk analysis 

As described in the introduction of this Chapter, a holistic safety analysis was performed exploiting 

the approach of quantitative risk assessment. Individual and societal risk related to shore-to-ship 

bunkering operation were calculated and compared to the risk figures resulting from two different 

management scenarios: one prioritizes emergency preparedness and safety culture, while the other 

accounts for a less safety-oriented management. Either operational mistakes or organizational flaws 

may lead to unwanted spillages causing hazardous situations. To reduce the time spent at berth by 

ships and ensure the cost-effectiveness of LNG refuelling operations, simultaneous port operations, 

such as passengers boarding, might be performed during bunkering. This kind of activities, as well 

as other managerial and operational aspects, have an influence over the risk profile of LNG 

bunkering installations. 

A reference case study, reproducing the characteristics of a small-scale touristic port, was defined 

in the following to demonstrate the applicability of the proposed approach and to quantify the risk 

modification due to managerial factors. 

6.2.1. Overview of the developed approach  

Baseline QRA 

The “baseline” QRA workflow (highlighted in blue in Figure 23) was defined in accordance with the 

guidelines for the risk assessment of installations supplying LNG as fuel to ships provided in ISO/TS 

18683. Comparably to the methodology illustrated in Section 6.1.3, the first steps of the QRA 

approach require the identification of the main equipment involved in the process and its layout and 

the gathering of main operating conditions. Each process unit was then associated with a set of 

possible LOC event types among those listed in Table 6. 

Each LOC was then associated with a baseline release frequency value based on the size of 

equipment connection and the assumed hole size range. Release frequencies were retrieved from 

a collection of process equipment leak frequency data for use in QRA issued by DNV, (2013a), 

whereas more detailed reliability data for transfer hoses, collected from a report by UK health and 

safety executive (HSE, 2019) were used. 

Baseline LOC frequency values, estimated without considering the influence of operational and 

organizational factors, represent the input of an event tree analysis (ETA), which was performed to 

identify the dangerous scenarios originating from release events and their occurrence frequency. 

Here, the effect of the presence of safety barriers (e.g. the activation of the emergency shut down), 

the activation of mitigation measures (e.g. the intervention of the emergency squad) and the 

occurrence of other possible events affecting the final outcome (e.g. immediate or delayed ignition) 

was quantified in terms of probabilities of success, following the indications of Aneziris et al., (2014) 

and Vílchez et al., (2011). More details on this aspect are presented in Section 6.2.3. 
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Figure 23: Workflow of the enhanced risk assessment analysis 

Besides the estimation of the occurrence frequencies of the scenarios identified in the ETA, the risk 

assessment process required the evaluation of their consequences. This task was carried out using 

the same models mentioned in Section 6.1.3. 

In the last step of the baseline QRA, the resulting frequencies of hazardous scenarios were 

combined with the outcomes of consequence evaluation to assess the risk level generated by the 

process or activity under assessment. 

Location-specific individual risk (LSIR) and societal risk are the two metrics used in this study to 

quantify the risk level associated with LNG bunkering activities. Values of death probabilities (𝑃𝑑) 

due to heat radiation and overpressure were estimated according to the guidance provided by Uijt 

de Haag and Ale, (2005). Probit functions retrieved from the technical literature (Van Den Bosh and 

Twilt, 1992) were used to correlate dangerous effects with 𝑃𝑑, allowing the calculation of the LSIR. 

Death probability values were then combined with figures available for the persons present inside 

the port area to yield societal risk values which were compared against the risk acceptance criteria 

reported in the ISO technical specification 18683:2015, concerning supply of LNG as a ship fuel 

(European committee for standardization, 2015).  

The spatial distribution of dangerous effects represents the basis for risk calculation. Risk figures 

were calculated discretizing the area under analysis (corresponding to the port area illustrated in 

Figure 25) using a grid (squares featuring 0.5 m edges were considered in the present work). Each 

cell of the grid (the centre of the cell was assumed to be representative of the entire cell for LSIR 

calculations) is subject to a different combination of dangerous effects (due to different distances 

from the release source) and likelihood of effects exposure (affected by distribution of wind 

probability for the specific grid point under analysis and LOC frequency).  

Definition of study basis 

and process conditions

Identification of credible 

LOCs

Evaluation of 

occurrence frequencies

Quantitative

ETA

Consequence

evaluation

Risk recombination

Selection and 

evaluation of relevant 

indicators

Calculation of frequency

modification factor

Baseline QRA TEC2O

Modification of delayed 

ignition probability due 

to SIMOPS 



66 
 

Every dangerous scenario (identified by index 𝑆) resulting from the ETA contributes to the overall 

LSIR value for a fraction (ΔIR𝐿𝑂𝐶,𝑤,𝑆) that was calculated as follows: 

ΔIR𝐿𝑂𝐶,𝑤,S = 𝑓𝐿𝑂𝐶 ∙ 𝑃𝑤 ∙ 𝑃𝑑 ∙ 𝑃𝑆 Eq. 6.11 

The subscript 𝐿𝑂𝐶 refers to a particular LOC event characterized by a frequency (𝑓𝐿𝑂𝐶), while the 

subscript 𝑤 refers to weather class and direction, whose probability value is (𝑃𝑤). The term 𝑃𝑆 

indicates the dangerous scenario probability. 

LSIR𝑃 = ∑ ΔIR𝐿𝑂𝐶,𝑤,𝑆
𝐿𝑂𝐶,𝑤,𝑆

 Eq. 6.12 

Equation Eq. 6.12 was used to calculate a value of LSIR for each cell centre point (𝑃) under 

consideration. This value was obtained summing all the considered LOC events, weather classes 

and identified dangerous scenarios. Concerning the estimation of societal risk, this was calculated 

in terms of the relation between incidents that cause at least a number 𝑁 of expected fatalities and 

the cumulative frequency (𝐹) of such incidents, and it was expressed using F-N curves. The total 

number of deaths (𝑁𝐿𝑂𝐶,𝑤,𝑆) resulting from the combination of a specific LOC event, weather class 

and dangerous scenario was calculated summing over all the cells (𝐶) of the domain the expected 

number of deaths of each grid cell. The latter value was obtained multiplying the estimated 𝑃𝑑 and 

the assumed cell population (𝑁𝐶) derived from population density: 

𝑁𝐿𝑂𝐶,𝑤,𝑆 = ∑ 𝑃𝑑
𝐶

∙ 𝑁𝐶  Eq. 6.13 

The frequency value at which a number of fatalities equal to 𝑁𝐿𝑂𝐶,𝑤,𝑆 can be expected was calculated 

as: 

𝑓𝐿𝑂𝐶,𝑤,𝑆 = 𝑓𝐿𝑂𝐶 ∙ 𝑃𝑤 ∙ 𝑃𝑆 Eq. 6.14 

The calculations of Eq. 6.13 and Eq. 6.14 were repeated for all LOC events, weather class and 

dangerous scenarios, then 𝐹 was obtained cumulating all 𝑓𝐿𝑂𝐶,𝑤,𝑆 values for which the condition 

𝑁𝐿𝑂𝐶,𝑤,𝑆 > 𝑁 is true. 

The expected value of casualties per year, or potential loss of life index (𝑃𝐿𝐿), was also derived from 

the calculated societal risk profile. This index is expressed as the number of expected fatalities per 

year and was calculated as follows. 

𝑃𝐿𝐿 = ∑ 𝑓𝐿𝑂𝐶,𝑤,𝑆 ∙ 𝑁𝐿𝑂𝐶,𝑤,𝑆
𝐿𝑂𝐶,𝑤,𝑆

 Eq. 6.15 

The 𝑃𝐿𝐿 index gives a quick measure of the societal risk level and it can be used to compare the 

risk increment due to managerial aspects. 

  



67 
 

TEC2O methodology 

The TEC2O method developed by Landucci and Paltrinieri, (2016) is intended to support dynamic 

risk assessment studies by determining modification factors aimed at a periodical update of the 

baseline leak frequency values. Specific modification factors are introduced in the methodology to 

increase/decrease the baseline LOC frequency values on the basis of the analysis of technical, 

human, and managerial elements. As illustrated in Figure 24a, the impact quantification of the 

mentioned factors relies on a weighted scoring system capable to account for their different 

importance in the considered process through the analysis of specific indicators, namely a technical 

modification factor (𝑇𝑀𝐹) and a management modification factor (𝑀𝑀𝐹). In the present study, the 

TEC2O methodology was adopted in order to modify baseline LOC frequency values, accounting for 

managerial aspects, thus addressing e.g., safety procedures, number of SIMOPs performed, 

frequency of maintenance operations, etc. Technical features were hereby excluded from the 

evaluation of the modification factor since equipment and process aspects remain unchanged from 

the baseline condition. The modified LOC frequencies (𝑓𝐿𝑂𝐶
′ ) were thus obtained as follows: 

𝑓𝐿𝑂𝐶
′ = 𝑓𝐿𝑂𝐶 × 𝑀𝑀𝐹 Eq. 6.16 

As illustrated in Figure 23, the modified LOC frequency values were used as an input for a quantified 

ETA in which increased delayed ignition probabilities were considered, reflecting an operational 

strategy that allows SIMOPs. The modified dangerous scenario frequencies calculated were then 

used to evaluate LSIR and societal risk together with consequence assessment results, as described 

previously. 

The 𝑀𝑀𝐹 accounts for managerial aspects related to definition of safety procedures, training and 

competencies of operators, safety culture, frequency of maintenance operations and communication 

at different levels of the organization. Those elements are evaluated following the Resilience based 

Early Warning Indicators (REWI) methodology developed by Øien et al., (2010), which proposes the 

use of specific indicators to quantify the mentioned aspects. As indicated by the authors, the TEC2O 

uses a selection of relevant indicators provided by the REWI methodology (Landucci and Paltrinieri, 

2016). As indicated by Øien et al. (2010), the 𝑀𝑀𝐹 is divided into two main subfactors to obtain more 

precise indications: operational subfactor (𝑂𝑃) and organizational subfactor (𝑂𝑅).  

Each subfactor is evaluated by giving a score to specific indicators (𝑆𝑂𝑃 and 𝑆𝑂𝑅, for operational 

and organizational indicators respectively) that are associated with correspondent weight values 

(𝑤𝑂𝑝𝑛 and 𝑤𝑂𝑟𝑝 for operational and organizational indicators respectively) leading to the calculation 

of the overall scores for 𝑂𝑃 and 𝑂𝑅 subfactors as follows: 

𝑂𝑃 = ∑ 𝑆𝑂𝑃𝑛

𝑁𝑜𝑝

𝑛=1

𝑤𝑂𝑝𝑛 Eq. 6.17 

 

𝑂𝑅 = ∑ 𝑆𝑂𝑅𝑝

𝑁𝑜𝑟

𝑝=1

𝑤𝑂𝑟𝑝 Eq. 6.18 
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Figure 24: Sub-section of TEC2O method considered in the analysis (a) and procedure for the 
calculation of the management score and the MMF (b). 

As indicated by Landucci and Paltrinieri, (2016), an equal weight was assigned to each indicator 

score (i.e., 𝑤𝑂𝑝𝑛 = 1 𝑁𝑜𝑝⁄ , 𝑤𝑂𝑟𝑝 = 1 𝑁𝑜𝑟⁄ ; where 𝑁𝑜𝑝 and 𝑁𝑜𝑟 are the total number of operational 

and organizational indicators, respectively), giving the same importance to all the operational and 

organizational aspects considered in the present study. Then, 𝑂𝑃 and 𝑂𝑅 subfactors were combined 

using the following relationship to calculate the overall management score, 𝜇: 

𝜇 = 𝜓𝑂𝑃 + (1 − 𝜓)𝑂𝑅 Eq. 6.19 

where 𝜓 = 0.5 in the present study. The analytical expressions for the rules used for the conversion 

of the management score 𝜇 into a 𝑀𝑀𝐹 value are reported in the original paper by Landucci and 

Paltrinieri (2016). An example of correlation is illustrated in Figure 24b. A dedicated sensitivity 

analysis was carried out to assess the variation of the calculated 𝑀𝑀𝐹 value with different sets of 

weights (𝑤𝑂𝑝𝑛 and 𝑤𝑂𝑟𝑝). Assumptions and results of this analysis are reported in Section B.3 of 

Appendix B. 

SOP_1

SOP_2

SOP_ nOP

Indicator 

score

Score

a)

b)

SOR_1

SOR_2

SOR_ nOR

μ

OR

OP

Management 

score

TEC2O sub-section 

considered for the 

analysis

OP_1

OP_2

OP_ nOP

Indicator

OR_1

OR_2

OR_ nOR

wOP_1

wOP_2

wOP_ nOP

wOR_1

wOR_2

wOR_ nOR

ψ

1- ψ

Indicator 

weight



69 
 

Impact of SIMOPs on delayed ignition probability 

A significant aspect that needs to be considered when including SIMOPS in the QRA framework is 

the increased delayed ignition probability due to the presence of additional sources of ignition in the 

areas where a flammable gas cloud may form. To consider this issue, a specific step was combined 

with the results of TEC2O methodology (purple block in Figure 23) and the baseline event tree was 

modified accordingly. Further details about the modification of ignition probabilities are reported in 

the following Sections. 

6.2.2. Definition of the test-case 

The case selected as a reference to illustrate the application of the methodology shown in Figure 23 

is a PTS LNG bunkering facility serving a roll-on/roll-off ferry. This is representative for a small-scale 

installation: the port infrastructure is intended as a seasonal touristic hub with a limited traffic density, 

and comprises a passenger waiting area, and a 160 m long berth on which an LNG storage tank and 

the bunkering equipment are installed. A general layout of the onshore LNG delivery infrastructure 

is given in Figure 25. Fuel is delivered to the ship via two cryogenic pumps through a 3” (DN 80) 

flexible transfer hose. Including ramp-up and purging time, the bunker operation is expected to be 

completed in two-hours timeframe. Pressure balancing between the on board and port LNG storage 

tanks is achieved using a 3” vapour return line during refuelling operations. Manoeuvring of the 

transfer hoses is facilitated by a handling crane installed on the pier. To provide a frequency basis 

for the study, two bunkering operations per day are assumed to take place at the facility, thus 

resulting in 720 bunkering operations per year, allowing for some maintenance downtime. 

 

Figure 25: Layout and wind rose considered for the case study. Red dots indicate the assumed 
release points. 
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Process units and operating conditions 

The boundaries of the analysis encompass all the process units installed onshore and extent up to 

the manifold of ships bunker station. A simplified process flow diagram of the considered bunkering 

facility is shown in Figure 26. 

 

Figure 26: Simplified process flow diagram of the considered bunkering installation. 

LNG is loaded on board of the receiving ship using cryogenic pumps (G01 A/B in Figure 26) installed 

in proximity of the storage tank, at a maximum loading rate of 12.5 kg/s (approximately equivalent to 

100 m3/h at delivery conditions) and stored at saturation conditions in a double-walled, horizontal 

cryogenic tank (T1). It was assumed that the distance between fixed cryogenic pipeline and the ship 

LNG bunker station is covered by flexible cryogenic hoses (S1 and S2) that are maneuvered with 

the help of a hose crane. LNG and BOG transfer hoses are manufactured according to requirements 

set by EN 1474-2. The fixed cryogenic pipeline installed onshore consists of a tube-in-tube piping, 

housed in a culvert, for additional protection of the pipework from rams and other accidental 

damages. As done for the inherent safety evaluation, pure methane was assumed as reference 

substance for this analysis to avoid introducing uncertainties related to LNG composition. 

A summary of the main process conditions considered is reported in Table 15. 

Table 15: Process units and operating conditions considered for the analyzed bunkering operation. 

Parameter 

Process unit 

Storage 
tank T1 

Transfer 
pump 

G01 A/B 

LNG 
transfer 
hose S1 

BOG 
transfer 
hose S2 

LNG 
manifold 

S3 

BOG 
manifold 

S4 

Nominal capacity (m3) 450 - - - - - 

Inventory (kg) 201,414 4,558 21 10 21 10 

Line diameter (mm) - 76.2 76.2 76.2 76.2 76.2 

Flowrate (kg/s) - 27.5 12.66 12.66 12.66 12.66 

Pressure (bar) 3.5 4.0 4.0 4.0 4.0 4.0 

Temperature (K) 128 128 128 132 128 132 

State Liquid Liquid Liquid Vapor Liquid Vapor 

 

Storage tank

T1LNG receiving 

vessel

BOG Transfer hose 

S2

LNG Transfer hose 

S1

Transfer pumps

G01 A/B

BOG 

Manifold S4

LNG 

Manifold S3
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Simultaneous operations considered for the analysis 

As reported in the study conducted by Chen and Deal, (2016), passenger and vehicle boarding are 

among the various port operations that can be carried out during LNG bunkering and may represent 

a possible hazardous situation. The different SIMOPs that can be carried out while bunkering ships 

with LNG are mainly dependent on the type of vessel that is being refuelled and on the operational 

mode of bunkering (e.g., STS, PTS or TTS). Simultaneous activities are likely to raise the overall 

risk level of the LNG bunkering operation due to their potential to increase the likelihood of dangerous 

accident scenarios, the ignition probability and to expose a larger number of individuals to hazardous 

situations. In the present study, boarding operations of passengers and vehicles taking place while 

refuelling the ferry with LNG were deemed as the most representative events to be integrated in the 

QRA framework. To do so, the quantified ETA performed for the baseline QRA was updated 

considering the increased ignition probability due to the presence of both passengers and vehicles 

in proximity of the bunker location. It was assumed that 65 vehicles per hour and 250 passengers 

per hour are boarded onto the ferry within the bunkering timeframe. 

6.2.3. Results and discussion 

Results of baseline QRA 

As illustrated in Figure 27 the dangerous scenarios accounted in this study are pool fires (or jet fires 

for pressurized releases) and flash fires. The vapour cloud explosion scenario was excluded from 

the analysis following a preliminary estimation of the resulting effects performed using the Multi 

Energy model (Van Den Bosh and Weterings, 2005). This showed that beyond the distances at 

which the half-value of the lower flammability limit (LFL/2) is achieved, the explosion overpressure 

reaches limited values, not sufficient to cause any fatality. The common approach followed in QRA 

studies is to assume a 100% death probability for individuals within the LFL/2 distance (Uijt de Haag 

and Ale, 2005) in case of flash fires. Therefore, the impact of vapour cloud explosions on the risk 

level would be outpaced by that of flash fires. The effect of safety barriers, more specifically the 

intervention of ESD system and of the emergency team at the site was also considered in the 

analysis. The activation of safety barriers limits the released amount of hazardous material: to 

consider this effect in the ETA, a separated tree branch, which refers to a limited spillage following 

leak isolation, was considered. 
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Figure 27: Example of event tree considered for the analysis. Dangerous scenarios originating from 
limited releases are shaded in blue, while scenarios resulting from an unlimited release are 
highlighted in red. Scenarios highlighted in green do not generate dangerous effects. 

According to guidance provided by DNV, (2013b) and OGP, (2010), immediate and delayed ignition 

probabilities were estimated on the basis of calculated release rates, following the criteria reported 

in Table 16. 

As suggested in the Guidelines for Preventing Human Error in Process Safety published by the 

Center for Chemical Process Safety (2010), the probability that an operator fails when taking action 

to contain a spillage (𝑃𝐻𝑢𝑚 𝐸𝑟𝑟.) can be assumed as 10%. The leak isolation failure probability used 

in the ETA was estimated as follows:  

𝑃𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1 − (1 − 𝑃𝐻𝑢𝑚 𝐸𝑟𝑟.) ∙ (1 − 𝑃𝐸𝑆𝐷) Eq. 6.20 
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Where the failure probability of the ESD system (𝑃𝐸𝑆𝐷) was calculated according to the equation 

reported below.  

𝑃𝐸𝑆𝐷 = 1 − (1 − 𝑃𝐹𝐷𝐸𝑆𝐷)𝑛 Eq. 6.21 

It was assumed that each process section is equipped with two ESD devices for isolation (hence 

𝑛=2 in Eq. 6.21) and that the probability of failure on demand of the single ESD device (𝑃𝐹𝐷𝐸𝑆𝐷) is 

2% (DNV, 2013b). Under these circumstances, the leak isolation failure probability calculated with 

Eq. 6.20 resulted equal to 13.6%. 

Table 16: Criteria for the estimation of immediate and delayed ignition probabilities 

Immediate ignition 

Release phase Leak rate [kg/s] Probability 

Gas 

< 1 1.00×10-4 

1 – 10 1.00×10-3 

> 10 1.00×10-2 

Liquid 

< 1.2 1.00×10-4 

1.2 – 25 1.00×10-3 

> 25 1.00×10-2 

Delayed ignition 

Gas or Liquid 

0.1 1.00×10-3 

0.2 2.30×10-3 

0.5 6.60×10-3 

1.0 1.50×10-2 

2.0 1.74×10-2 

5.0 2.13×10-2 

10 2.47×10-2 

20 2.87×10-2 

50 3.50×10-2 

> 100 4.00×10-2 

A common aspect of uncertainty in QRA is associated with the frequency of inter-unit pipeline 

releases (DNV, 2013a). Application of process pipework failure data will tend to give overly 

conservative values with respect to longer inter-unit pipe segments. Due to the limited extension of 

fixed cryogenic pipework of the considered bunkering facility (<100 m), releases originating from this 

type of piping were assumed as already included in the LOC frequency value of the connected 

process units. LOC events categories reported in Table 17 are identical to those listed in Table 6, 

however the LOCs occurrence frequency values considered in this analysis were based on more 

detailed data sources, improving the estimation carried out with credit factors described in Section 

6.1.3. The leakage frequency of LNG and BOG transfer hoses was assumed equal to 4.0×10-7 per 

transfer operation whereas full bore ruptures have a frequency of 2.0×10-7 per transfer (HSE, 2019). 

These values were adjusted to account for their actual usage, considering the assumptions reported 

in Section 6.2.2.  
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The LOCs occurrence frequency values obtained in the baseline QRA are summarized in Table 17, 

while the estimated probabilities of immediate and delayed ignition are reported in Table 18. Finally, 

Table 19 reports the calculated 𝑃𝑖 values resulting from the ETA. 

Table 17: Considered baseline LOC event frequencies (1/y). n.a.: not applicable. 

LOC Type 
Storage 
tank T1 

Transfer 
Pump G01 

A/B 

LNG 
Transfer 
Hose S1 

BOG 
Transfer 
Hose S2 

LNG 
Manifold 

S3 

BOG 
Manifold 

S4 

R1 1.00×10-5 n.a. n.a. n.a. n.a. n.a. 

R2 0* n.a. n.a. n.a. n.a. n.a. 

R3 0* n.a. n.a. n.a. n.a. n.a. 

R4 n.a. 1.59×10-3 2.88×10-4 2.88×10-4 3.01×10-4 3.01×10-4 

R5 n.a. 6.10×10-4 1.44×10-4 1.44×10-4 6.81×10-5 6.81×10-5 
*LOC types 2 and 3 were deemed not credible for double-walled, cryogenic storage tank having frequencies 

lower than 1.00×10-6 (HSE, 2019) 

Table 18: Estimated ignition probabilities. Values in italic are those subject to modification due to 
SIMOPs, as explained in Section 6.2.2. 

LOC Type 
Storage 
tank T1 

Transfer 
Pump G01 

A/B 

LNG 
Transfer 
Hose S1 

BOG 
Transfer 
Hose S2 

LNG 
Manifold 

S3 

BOG 
Manifold 

S4 

Immediate Ignition 

R1 0.01% - - - - - 
R2 - - - - - - 
R3 - - - - - - 
R4 - 0.10% 0.10% 0.01% 0.01% 0.01% 
R5 - 0.10% 0.10% 1.00% 0.10% 0.10% 

Delayed Ignition 

R1 1.50% - - - - - 
R2 - - - - - - 
R3 - - - - - - 
R4 - 2.13% 2.13% 0.66% 0.10% 2.87% 
R5 - 2.47% 2.87% 3.50% 1.50% 0.10% 

Table 19: Baseline dangerous scenario probability values for limited and unlimited releases. Colour 
gradient highlights higher probability values. 

Process unit LOC Type 

Dangerous scenario 

Jet/Pool Fire Flash Fire 

Limited Unlimited Limited Unlimited 

Storage tank 
T1 

R1 8.64×10-6 1.36×10-6 1.30×10-3 2.04×10-4 

Transfer 
Pump G01 
A/B 

R4 8.64×10-5 1.36×10-5 1.84×10-3 2.89×10-4 

R5 8.64×10-5 1.36×10-5 2.13×10-3 3.36×10-4 

LNG Transfer 
Hose S1 

R4 8.64×10-5 1.36×10-5 1.84×10-3 2.89×10-4 

R5 1.36×10-5 1.36×10-5 3.90×10-4 3.90×10-4 

BOG Transfer 
Hose S2 

R4 8.64×10-6 1.36×10-6 5.70×10-4 8.98×10-5 

R5 8.64×10-4 1.36×10-4 2.45×10-3 4.71×10-4 

LNG Manifold 
S3 

R4 8.64×10-6 1.36×10-6 1.30×10-3 2.04×10-4 

R5 8.64×10-5 1.36×10-5 2.48×10-3 3.90×10-4 

BOG 
Manifold S4 

R4 8.64×10-6 1.36×10-6 8.64×10-5 1.36×10-5 

R5 8.64×10-5 1.36×10-5 1.84×10-3 2.89×10-4 
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The consequence evaluation step was carried out considering two different weather classes to 

account for distinct atmospheric stability conditions that affect gas cloud dispersion: class 5D, 

representative of dispersion-neutral conditions, and class 2F for high stability conditions (Ikealumba 

and Wu, 2017). Location-specific wind data was collected from an online database (WillyWeather, 

n.d.). All the dangerous effects were evaluated at a reference height of 1 m, representative for human 

vulnerability, assuming an ambient temperature of 15°C and a relative humidity of 70%. Transfer 

hoses inventory was estimated considering the volume of hazardous substance potentially trapped 

in an isolated section, which length was assumed equal to 10 m, while no limited inventory was 

considered for the transfer pumps so as to conservatively model a stationary release at worst 

possible conditions. Liquid spills were modelled as continuous releases, with an outflow rate given 

by Eq. 6.22, whereas pressurized gas release rates were calculated using Eq. 6.23, which assumes 

isentropic expansion to atmospheric conditions. 

�̇� = 𝐶𝐷𝐴ℎ𝑜𝑙𝑒√2𝜌𝐿𝑖𝑞(𝑝0 − 𝑝𝑎𝑡𝑚) Eq. 6.22 

Where the term �̇� is the release rate (kg/s); 𝐴ℎ𝑜𝑙𝑒 is the hole area (m2); 𝜌𝐿𝑖𝑞 is the liquid density (kg/ 

m3); 𝐶𝐷 is the discharge coefficient, considered equal to 0.61; and the terms 𝑃0 and 𝑃𝑎𝑡𝑚 indicate the 

initial liquid absolute pressure and the atmospheric pressure values (Pa), respectively. 

�̇� = 𝐶𝐷𝐴ℎ𝑜𝑙𝑒𝑝0
√𝛾𝑀

𝑅𝑇0
(

2

𝛾 + 1
)

(
𝛾+1
𝛾−1

)

 Eq. 6.23 

Here, the term 𝛾 is the ratio of gas specific heats, which is equal to 1.32 for methane; 𝑀 is the 

molecular weight (kg/mol); 𝑇0 is the initial gas temperature (K) and 𝑅 is the universal gas constant 

(J/kg mol K). 

The maximum release duration was assumed to be 900 s and 90 s for unlimited and limited releases, 

respectively. The higher cut-off value, adapted from Landucci et al., (2015) is intended to limit the 

consequence assessment to a credible timeframe prior to emergency responders’ intervention, while 

the lower limit is associated with an estimated ESD intervention time, as reported in another QRA 

study performed by DNV, (2013b). 

Application of TEC2O methodology and modification of delayed ignition probabilities 

due to SIMOPs 

The set of TEC2O indicators selected in this study is reported in Table 20, along with their scores. 

Site-specific data can be used to obtain a quantitative characterization of indicator scores and get a 

tailored frequency modification factor. However, the quantitative monitoring of the selected indicators 

was beyond the scope of the work and a qualitative evaluation was carried out instead, following the 

indications by Landucci and Paltrinieri, (2016). 

Two extreme (and opposite) situations were considered: the first one reflects an ideal management 

strategy combined with an effective process equipment maintenance program; the second one is 

representative of a process management policy less safety-oriented, for which, as example, 

maintenance operations are scheduled with a lower frequency. For the ideal management situation 

(referred to as TEC2O – Good in the following), the selected operational and organizational factors 

were all given scores indicative of a well-established safety attitude in the management of bunkering 

operation, as considered, for example, by factors #2 and #3.  
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Conversely, for the other management situation (referred to as TEC2O - Bad in the following), all 

factors were given a mediocre or negative connotation, considering for example a more limited 

experience with the LNG bunkering process (see factor #5), with some exceptions as described in 

the following. All the TEC2O indicators considered in this study intrinsically implement human factor 

in the analysis as explained in the original work of Landucci and Paltrinieri (2016). An important 

distinction between TEC2O – Good and TEC2O – Bad situations was made on the basis of the 

maximum number of SIMOPs performed each month: for the TEC2O – Good situation it was 

assumed that a maximum of two SIMOPs are carried out each month, accounting for sporadic 

necessities, whereas for the TEC2O – Bad situation the factor #1, relative to SIMOPs, was given a 

value three times greater, reflecting the worse management of the simultaneous port activities. It 

must be noted that the only process units affected by such factor are the transfer hoses S1/S2 and 

bunker manifolds S3/S4 since these units are the closest to the ferry embarking lines. 

Having considered four operational factors and four organizational factors, the weights 𝑤𝑂𝑝𝑛 and 

𝑤𝑂𝑟𝑝 (used in Eq. 6.17 and Eq. 6.18 respectively) are equal to 0.25 assuming that all factors share 

the same importance. 

As highlighted in Section 6.2.2 the presence of vehicles and passengers during bunkering operations 

increases the ignition probability. An average delayed ignition probability (𝑃𝐷𝐼) in a 90 s time interval 

was calculated using the line model described in the Dutch guidelines for quantitative risk 

assessment (Uijt de Haag and Ale, 2005), reported below. 

𝑃𝐷𝐼 =
1

90
∫ 𝑑(1 − 𝑒−𝛤𝑡)𝑑𝑡

90

0

 Eq. 6.24 

The term 𝑑 in Eq. 6.24 indicates the traffic density value, which was calculated on the basis of the 

assumptions reported in Section 6.2.2, considering an embarkment line with a length of 50 m. The 

ignition effectiveness values (𝛤) for vehicles and passengers were retrieved from the 

abovementioned guidelines (Uijt de Haag and Ale, 2005). The additional delayed ignition probability 

value calculated with Eq. 6.24, equal to 0.0681, was then added to the baseline values of relevant 

units reported in Table 18 to account for the risk modification induced by SIMOPs. Modified 

dangerous scenario probabilities (𝑃𝑖) were calculated updating the baseline event tree with the 

increased ignition probability values. 

The modified dangerous scenario frequencies (𝑓𝑆) were finally obtained as the product among the 

modified LOC frequencies (𝑓𝐿𝑂𝐶
′ ) and 𝑃𝑖 values, as expressed by the following equation:  

𝑓𝑆 = 𝑓𝐿𝑂𝐶
′ ∙ 𝑃𝑖   Eq. 6.25 

Values of the frequency modification factor estimated according to TEC2O methodology are reported 

in Table 20. 

The calculated 𝑀𝑀𝐹 value is finally used to modify the baseline LOC frequencies according to Eq. 

6.16, allowing to evaluate the modified dangerous scenario frequencies that are calculated 

multiplying the modified LOC frequency by the relevant dangerous scenario probability, as 

expressed by Eq. 6.25. For the sake of brevity, baseline and modified dangerous scenario 

frequencies are reported in Section B.4 of Appendix B. 
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Table 20: Comparison among selected TEC2O indicators used for the calculation of LOC frequency 
modification factor. The original factor ID from Landucci and Paltrinieri, (2016) is reported in brackets 
for ease of reference. 

Factor ID 

Process unit 

Storage tank 
T1 

Transfer pump 
G01 A/B 

LNG/BOG 
transfer hoses 

S1/S2 

LNG/BOG 
bunker 

manifolds S3/S4 

T
E

C
2

O
 -

 G
o
o

d
 

T
E

C
2

O
 -

 B
a
d
 

T
E

C
2

O
 -

 G
o
o

d
 

T
E

C
2

O
 -

 B
a
d
 

T
E

C
2

O
 -

 G
o
o

d
 

T
E

C
2

O
 -

 B
a
d
 

T
E

C
2

O
 -

 G
o
o

d
 

T
E

C
2

O
 -

 B
a
d
 

Operational factors 

1 - Maximum no. of 
simultaneous operations 
last month 
(OPE 1.3.3.1) 

2 2 2 2 2 6 2 6 

2 - Average no. of 
exercises completed by 
operating personnel 
each month  
(OPE 2.1.1.1) 

6 2 6 2 6 2 6 2 

3 - No. of emergency 
preparedness exercises 
last three months 
(OPE 2.1.1.3) 

18 6 18 6 18 6 18 6 

4 - No. of exceptions 
handled by operating 
personnel last month 
(OPE 2.2.1.1) 

2 6 2 6 2 6 2 6 

Organizational factors 

5 - No. of years of 
experience with this 
particular system 
(ORG 1.1.1.1) 

15 5 15 5 15 5 15 5 

6 - Fraction of operating 
procedures that were 
risk assessed 
(ORG 1.2.1.2) 

0.9 0.3 0.9 0.3 0.9 0.3 0.9 0.3 

7 - Amount of overtime 
worked 
(ORG 2.2.1.1) 

0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 

8 - No. of cases in which 
communication between 
actors has been 
inadequate 
(ORG 2.2.2.1) 

2 6 2 6 2 6 2 6 

Calculated MMF 0.168 1.189 0.168 1.189 0.168 2.446 0.168 2.446 

  



78 
 

Compared to baseline frequencies, dangerous scenario frequencies estimated assuming an ideal 

management situation are on average about 68% lower than frequencies calculated for the baseline 

condition. Some significant exceptions from this trend are represented by flash fires resulting from 

BOG hoses and manifold releases: the increased delayed ignition probability considered makes 

these dangerous scenarios up to about 12 times more frequent than correspondent baseline 

scenario. However, this effect is less important for BOG hose releases, for which the scenario 

frequency is almost twice the correspondent baseline frequency. On the other hand, final scenario 

frequencies of the TEC2O-Bad management situation result significantly increased with respect to 

the baseline situation. The combined effect of the additional ignition probability and modified LOC 

frequencies leads to a generalized increase of dangerous scenario frequencies, of about one order 

of magnitude for each of the aforementioned process units. It must be noted that the bunkering 

equipment located far away from the ship (i.e., storage tank T1 and transfer pumps G01/G02), which 

are not influenced by the simultaneous boarding operations, show increased LOC frequencies in line 

with the estimated 𝑀𝑀𝐹 value reported in Table 20. Conversely, dangerous scenarios originating 

from transfer hoses and bunker manifolds will occur with an average frequency about 30 times higher 

than for the baseline case. 

Comparison of individual and societal risk profiles  

The calculated spatial distribution of LSIR for the baseline situation is represented in Figure 28. As 

shown in the figure, the highest risk value is experienced in proximity of the bunkering point, where 

most of the LOC events were considered to happen. The risk level gradually decreases moving away 

from bunkering point, where LNG and BOG transfer hoses and manifolds are located. Iso-risk curves 

of Figure 28 are not symmetrical: the effect of predominant winds coming from north-eastern/eastern 

sectors (see Figure 25) increases the distance at which higher LSIR levels can be experienced for 

points located to the west of release sources. This effect is mainly related to accident scenarios that 

involve a delayed ignition, such as Flash Fires. In this case, the flammable cloud disperses along 

the downwind direction, where the jetty is located. 
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Figure 28: Iso-risk curves showing spatial distribution of LSIR for the baseline management situation 

An alternative representation of individual risk is given in Figure 29, which reports the maximum 

value of the LSIR as function of the distance from the bunkering point (red dot next to the ship in 

Figure 28) for the two management situations considered and the baseline case. The three risk 

threshold values highlighted in Figure 29 are those proposed by the ISO technical specification 

18683:2015 (European committee for standardization, 2015), as mentioned in Section 6.2.1. The 

standard identifies different kind of exposed population providing separate risk acceptance criteria: 

1st party personnel that are crew and bunkering operators directly involved in the activity; 2nd party 

personnel that refers to port and terminal personnel; and 3rd party personnel with prolonged risk 

exposure. The 3rd party personnel risk threshold also applies to the general public not involved in 

bunkering operations (e.g., passengers). 

It can be noted that for the TEC2O-Good situation intolerable risk levels for the 3rd party personnel 

and the general public are only reached within 10 m from the bunkering point, whereas for the 

baseline case this distance increases up to around 55 m. For the TEC2O-Bad situation the risk 

acceptance limits for 1st and 2nd party personnel are exceeded nearby the bunker point and high 

LSIR values are still reached farther than 100 m from this point. An interesting feature that can be 

noticed from Figure 29 is that the maximum LSIR for the baseline curve is located about 30 meters 

from the bunkering point. As can be seen in Figure 28 the LNG storage tank and transfer pumps are 

located about 27 m south-west to the bunkering point. This explains the different position of the risk 

maximum for the baseline case: the highest LSIR value is shifted towards the location of the storage 

tank and transfer pumps since the flash fire scenario originating from pumps G01/02 has the highest 

occurrence frequency among all the dangerous scenarios of this case (see Section B.4 of Appendix 

B). 

LSIR=1 10-7.5

LSIR=1 10-7.0

LSIR=1 10-6.5

LSIR=1 10-6.0
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Figure 29: Comparison of maximum calculated LSIR values for different management situations as 
function of the distance from bunkering point 

Two different levels of population density were considered to estimate the number of expected 

fatalities resulting from the exposure to dangerous scenarios, referred to as “low” and “high” density 

in Table 21. This allowed to obtain a more generic risk profile which is not linked to a specific LNG 

port facility. Moreover, a distinction was made between sheltered and unsheltered fractions of people 

since sheltering affects the estimation of 𝑃𝑑. It was assumed that the fraction of indoor population for 

grid points covering the ship area is equal to unity, whereas lower fractions were considered for the 

other port zones, as specified in Table 21. A uniform population distribution was assumed. 

Table 21: Values of population density and indoor fraction considered for societal risk estimation. 
Refer to Figure 25 for the identification of the different port areas. 

 Port waiting area Jetty Ship 

Population density 
(persons/m2) 

Low 0.005 0.050 0.100 

High 0.050 0.500 1.00 

Indoor population fraction 0.25 0.75 1.00 
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Societal risk results are reported in Figure 30 as F-N curves for high and low port population density. 

The societal risk spectrum can be divided in three regions based on societal risk acceptance criteria 

provided by IMO, (2000): a negligible risk region (below green dashed line in Figure 30), an 

intolerable risk region (above red line in Figure 30) and the intermediate ALARP region. 

Under no circumstances the calculated risk exceeds the upper acceptability criterion proposed by 

the IMO, (2000). When a lower population density is assumed the societal risk level results negligible 

with the only exception of a bad management scenario. The higher dangerous scenario frequencies 

estimated in this latter case are shifting the F-N curve up, thus increasing the societal risk level, 

eventually reaching the ALARP region. As evident from Figure 30a, a higher port population density 

results in an increased number of fatalities, thus moving F-N curves to the right. Under these 

circumstances the baseline case and TEC2O-Bad situations have a significant part of their F-N 

curves within the ALARP region, whereas the TEC2O-Good maintenance situation slightly exceeds 

the lower acceptability criterion. 

 

Figure 30: F-N curves obtained for high port population density (a) and low population density (b) 
compared to upper and lower acceptability limits proposed by the IMO, (2000). 

  

a)

b)
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Different 𝑃𝐿𝐿 values were calculated according to Eq. 6.15 for each of the three management 

conditions and accounting for low and high port population densities. 𝑃𝐿𝐿 value provides a useful 

measure to compare different societal risk levels. As shown in Figure 31, the highest 𝑃𝐿𝐿 value refers 

to the badly managed bunkering operation when a high port population density is assumed. 

For such case, the 𝑃𝐿𝐿 value is about seven times greater than the baseline situation, while 

assuming a good management, 𝑃𝐿𝐿 is reduced to 40% of the baseline value. The same trend can 

be observed when a lower population density is assumed. These results clearly show how the 

societal risk is affected by the human element, particularly managerial aspects. 

Comparing the 𝑃𝐿𝐿 figures of the baseline and of the good management situations it can be noticed 

that, despite the latter situation accounts for the performance of SIMOPs, the societal risk can be 

reduced if the operations are managed prioritizing the safety culture at organizational and operational 

levels. 

 

Figure 31: Comparison of calculated PLL values. Results for low population density are detailed in 

panel b) for clarity. 

Based on the results of the consequence assessment and of the estimated death probabilities, it 

was possible to quantify the impact of single dangerous scenarios over the total expected number 

of fatalities and the LSIR figure. The impact of different dangerous scenarios on LSIR evaluated at 

the bunkering point is illustrated in Figure 32a. It is evident that the larger contribution to individual 

risk is due to flash fire events, that are responsible of more than 90% of the estimated risk for the 

baseline scenario, reaching a share up to 99% when a bad management scenario is assumed. The 

impact of jet and pool fires over the generated individual risk is ranging from 1% to 10%. As shown 

in Figure 32b, which reports the share of fatalities that may be attributed to the different dangerous 

scenarios, flash fires are responsible for the large majority of the total deaths (91% and 89% for low 

and high port population density respectively), followed by the combined consequences of jet and 

pool fires that account for 9% and 11% of the deaths. 
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Figure 32: Relative contribution of dangerous scenarios to LSIR experienced at the bunkering point 
(a) and to estimated number of fatalities (b) 

The results obtained from ETA stress the importance of managerial aspects in the evaluation of 

dangerous scenario frequencies. The adoption of safety-oriented management policies allows 

mitigating the negative impact that SIMOPs may have on risk figures: estimated dangerous scenario 

frequencies for TEC2O-Good management situation result in most of the cases lower than 

correspondent baseline scenarios. A direct consequence of the increased delayed ignition 

probability linked to SIMOPs is the high occurrence frequency of flash fire scenarios originating from 

type 4 LOC events, which increases (compared to the baseline frequency) regardless of 

management quality. Whenever safety is not a priority for the management and SIMOPs are 

ordinarily carried out while bunkering LNG, as in the case assumed for the TEC2O-Bad situation, 

LOC frequencies can be more than doubled and consequently dangerous scenarios frequencies can 

reach values as high as 9.33×10-6. 

The discussed trend is also captured by societal risk results illustrated in Figure 30, which shows 

that the risk posed by ill-managed bunkering operations should be reduced when favourable to do 

so, regardless of the port population density. Conversely, when considering the TEC2O-Good 

management situation, societal risk acceptance criteria are always met, with the exception of high 

port population density, for which, indeed, also the baseline scenario for bunkering operations might 

generate an intolerable risk (see Figure 30a). 

As reported in Figure 32, the dangerous scenario that has the greatest impact over individual and 

societal risk figures is the flash fire. Since this fire scenario may take place following the delayed 

ignition of a flammable gas cloud, it might be advisable to design bunker jetties so that predominant 

wind direction could disperse gas clouds away from the jetty itself, achieving an inherently safer 

design. For situations in which the port layout limits the possibilities to perform LNG bunkering at a 

safe distance from passengers waiting areas, the use of floating bunker hoses could be considered. 

This system, described more in detail in the study by Lagarrigue and Hermary, (2018), can be 

exploited to perform LNG bunkering away from the quay. 

b)a)
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Chapter 7. Numerical simulation of LNG tanks 

exposed to fire 

As discussed in the previous chapter, fire engulfment scenarios involving LNG storage tanks either 

on board LNG-fuelled ships or that are part of the LNG supply chain for bunkering operations may 

cause severe accidents. The storage of flammable materials in pressurized tanks is notoriously a 

source of risk in the process industry. In case of a fire incident, the resulting heat load might affect 

target equipment and lead to an escalation of the incident (the so-called domino effect). As 

highlighted by Casal and Darbra (2013) incidents involving the domino effect most commonly 

occurred in storage areas and the large majority involved flammable substances. Pressurized tanks 

exposed to fire heat loads might fail catastrophically generating a boiling liquid expanding vapour 

explosion (BLEVE) and consequently a fireball. While the BLEVE scenario can be ruled out for LNG 

carrier tanks (Woodward and Pitblado, 2010b), such an accident has occurred at least three times 

with road tanker trucks, as reported in Section 1.4. As discussed in chapter 3, lumped models may 

provide preliminary information on the credibility of a failure of an LNG tank engulfed in fire. However, 

one of the main shortcomings of the lumped parameter model mentioned in Section 3.4 is the inability 

of such approach to consider gradients in the fluid properties since each tank node is assumed as 

homogeneous. This limits the capabilities of lumped models since key aspects such as free 

convection flows and heat transfer mechanisms between the tank wall and the lading cannot be 

accurately reproduced. At the cost of increased computational resources, a CFD approach can 

overcome the said limitations allowing for the prediction of liquid thermal stratification, which is 

fundamental to the assessment of pressure build-up of tanks exposed to fire heat loads. 

In this Chapter an overview of the most relevant experimental fire performance tests of cryogenic 

storage tanks is presented. A description of the testing apparatus and used instrumentation is 

provided along with the main findings of the discussed experimental campaigns. A CFD model was 

then developed to simulate the behaviour of the fluid in an LNG tank engulfed in fire. The CFD model 

was validated using the experimental data available in the literature and described in the first part of 

the chapter. The CFD modelling approach adopted in the present study is explained in Section 7.2, 

together with a brief analysis of the thermal insulation characteristics of double-walled, vacuum-

insulated storage tanks. The CFD model proposed in this work and the simulations carried out are 

based on a bi-dimensional (2D) transversal section of the storage tank (see Figure 41). This 

simplification of the problem allows for a reduction of the required computational time even though it 

introduces some limitations in the kind of situations that can be analysed. The 2D assumption 

precludes the possibility to model fire scenarios that are not uniform along the axial direction of the 

tank or which partially affect the tank surface (such as jet fire impingement). Full engulfing pool fires 

can be approximately considered uniform along the axial direction and can thus be modelled with 

the mentioned 2D CFD approach. A preliminary investigation of the effects of distant radiation from 

hydrocarbon pool fires on cryogenic storage tanks can also be made exploiting the proposed CFD 

model. Assumptions and model setup used for this kind of simulation are also described in the 

followings. 
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7.1. Description of experimental fire test of double-walled LNG 

 tanks 

Despite the growing interest in the use of LNG as alternative energy source, promoted by the 

reduced environmental impact of such a fuel, a very limited number of experimental studies have 

been carried out to investigate the risks linked to the storage and transportation of this hazardous 

material. 

As reported in Chapter 3, the scientific literature is mainly focused on the analysis of BOG generation 

of storage tanks under normal operating conditions, thus usually considering well-insulated tanks. 

The only experimental works that investigated the consequences of a sudden catastrophic loss of 

insulating vacuum in cryogenic tanks are the tests conducted by Xie et al. (2012, 2010). They, 

however, are limited to the analysis of tank performance at ambient conditions. 

From the analysis of the literature, the results of only two studies reproducing fire scenarios affecting 

LNG tanks are publicly available: the first document reports the work carried out in 2015 by Dutch 

TNO (Kamperveen et al., 2016), and the second describes the test campaign performed by the US 

DOT‘s FRA in 2017 (Huczek et al., 2020). The aims of both experiments were to understand how 

the fire exposure affects the internal and external heating of the tank and to assess the fire heat 

loads resistance of double-walled, vacuum insulated cryogenic storage tanks. 

Experimental results are fundamental to the development and validation of numerical models. A 

description of the testing apparatus and main observations of the two experimental works is reported 

in this Chapter. The results of the TNO test, even though it has some limitations, were used in this 

work to validate the proposed CFD model. Results of FRA tests, only published in early 2020, were 

not used for model validation. However, they are reported in the following for sake of completeness. 

7.1.1. TNO test (2015) 

Kamperveen and co-workers pioneered bonfire tank tests with cryogenic contents. The main 

objectives of the experimental tests carried out in 2015 were to establish if a double-walled pressure 

tank could endure an exposure to radiation intensities of 35 kW/m2 or more without failing 

catastrophically and to determine the heat load and exposure duration necessary to tank rupture. 

The experiments took place at the Federal Institute for Materials Research and Testing (BAM), in 

Berlin, Germany. Test fire conditions reproduced a full-engulfing hydrocarbon pool fire. A heat load 

of 75 kW/m2 was applied using an array of propane burners. 

The test tank was manufactured with an outer carbon steel tank that encloses the inner stainless 

steel (AISI 304) tank, which had a capacity of 3 m3. The 0.2 m wide annular space was filled with 

perlite powder and vacuumed down to approximately 200 mbar to reproduce actual insulating 

conditions. 

Table 22: Main dimensions and features of the TNO test tank 

Quantity Value Unit 

Inner diameter 1.20 m 

Inner wall thickness 3.00 mm 

Inner tank length 2.55 m 

Outer diameter 1.60 m 

Outer wall thickness 4.00 mm 

Outer tank length 2.96 m 

PRV set point 7.60 bar 
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For safety reasons, the experimental campaign was carried out filling the tank with liquid nitrogen. 

The tank was filled up to 66% of its capacity and later set to rest for two hours to reach stable 

saturation conditions. Tank pressure was monitored throughout the fire test and several K-type 

thermocouples were installed at different positions to measure wall and lading temperatures. The 

tank was connected through a vent line to a pair of pressure relief valves located in a safe position 

behind a fire wall. The total duration of the experiment, between fire ignition and termination, was 

approximately 120 minutes. 

 

Figure 33: Impression of the vacuum insulated double-walled test tank engulfed in flames from 
Kamperveen et al., (2016). 

As illustrated in Figure 34, the initial vapour pressure in the vessel was equal to 1.8 bar and reached 

7.6 bar after two hours of flame engulfment. Tank pressure then levelled off around this value, as 

the PRV began to open and close around its set pressure. This process lasted for approximately 20 

minutes until conclusion of the test. Unfortunately, temperature measurements during the test 

resulted in a highly disturbed signal, compromising the reliability of the specific dataset obtained. 

The external wall temperature reached values over 800°C on the bottom part, whereas the top 

section of the tank was heated up to about 600°C due to the disturbing effect of wind and the 

consequent flame tilting. Weakening of the external carbon steel shell eventually resulted in serious 

structural damages and distortions on the tank shell, leading to the opening of the vacuum rupture 

disk on the outer wall and causing the partial release of a non-quantified amount of perlite. 
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Figure 34: Pressure time evolution during TNO test (a); example of highly disturbed thermocouple 
experimental measurement (b). 

  

Fire test

a)

b)
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7.1.2. US DOT’s FRA test (2017) 

The objective of the research conducted by the US FRA was to test the fire resistance of a portable 

ISO LNG tank, evaluating the performance of the PRV system. This type of tank, installed on flatcars, 

have been proposed as LNG tenders for gas-fuelled locomotives in the USA. The ISO LNG tank 

measured roughly 12 m long, 2.55 m high and 2.4 m wide (40 feet × 8.5 feet × 8 feet) and was filled 

with approximately 21,500 kg of liquid nitrogen. A total of 18 internal temperature measurements 

were taken, in addition to internal tank pressure, and annular space vacuum pressure. Nine 

thermocouples were installed externally around the tank and fire source to characterize the 

convective heat transfer rate from the fire and measure boundary layer temperatures. An additional 

nine directional flame thermometers were used to characterize the total heat flux received by the 

tank at different locations. A propane burner system was designed to simulate a full engulfing pool 

fire affecting the LNG tank. The tank was exposed to the fire source for a total of 2 hours and 35 

minutes. 

 

Figure 35: Impression of ISO LNG tank test from Huczek et al., (2020). 

The tank successfully vented its contents and did not rupture. Fire exposure to the tank was not 

uniform due to wind conditions. This resulted in a more severe exposure of specific sections of the 

tank shell. The average peak incident heat flux to the east side of the tank was 127 kW/m2, while the 

average peak incident heat flux to the west side of the tank was 207 kW/m2. 
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Figure 36: Pressure data for DOT FRA test. 

Figure 36 illustrates how the internal temperatures and pressure increased during the fire test. 

Unfortunately, the signals from all the internal thermocouples were lost after the first 45 minutes of 

the test. During this period, the thermocouples fit in the vapor space of the tank rose from 

approximately -132 °C to -38 °C due to the fire exposure. The PRV system worked properly. The 

lower PRV (set at 8 bar) opened and closed twice and then opened fully. The higher PRV opened 

at about 10 bar. The pressure continued to rise until 12.4 bar before venting stabilized. 
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7.2. CFD modelling 

The 2D CFD model was set up to analyse the response to fire engulfment scenarios of horizontal, 

double-walled cryogenic tanks. The proposed model, intended for the basic understanding of thermal 

and fluid dynamics of fire-exposed LNG vessels, does not consider BOG venting or PRV operation. 

Rather, it models a closed system that represents an extreme condition from a safety perspective, 

giving valuable information for further and more extensive safety and emergency assessment of 

LNG processes. 

7.2.1. Theoretical background  

As described by Birk and Cunningham (1996, 1994) and more recently by Abbasi and Abbasi (2007), 

the mechanical failure of the storage vessel is a required condition for BLEVE to happen: when 

pressurized tanks are exposed to high heat loads tank walls will reach temperature values well above 

their design conditions, at which the metal undergoes a degradation of its mechanical properties. At 

the same time, the pressure inside the tank will start to rise due to the absorbed heat. The combined 

effect of thermal degradation of the mechanical properties of the tank and the system pressure 

increase can lead to the catastrophic rupture of the storage vessel. 

In a cryogenic double-walled bullet tank the LNG is stored as a boiling liquid at saturation conditions 

at a pressure a few bar higher than atmospheric. The annular gap comprised between the inner and 

outer tank shells is typically filled with expanded perlite beads and maintained under vacuum 

conditions to provide the required insulation performance (Wartsila, 2018). A section view of a 

horizontal double-walled LNG tank is illustrated in Figure 37. 

 

Figure 37: Section of a double-walled LNG bullet tank showing perlite insulation (Kamperveen et al., 
2016) 

When exposed to a fire, a part of the incoming heat flux is reflected by the external wall, while the 

remaining fraction is transferred by radiation and convection, then the heat is transferred by 

conduction through tank walls and the insulating material inside the annular gap. The heat is finally 

transferred to the tank lading by convection and radiation from the vessel internal surface (Landucci 

and Birk, 2013). 
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Different regimes of boiling can establish based on the heat flux received by the LNG lading: as the 

heat flux increases the regime evolves from free convective boiling (region I in Figure 38a) to 

nucleate boiling (region II) until a maximum heat flux value (peak nucleate boiling point - PNB - in 

the figure) is reached. At this point a considerable vapour is being formed at the wall and the boiling 

mechanism enters in a transition region (III) towards film boiling regime (IV). However, a transition 

to film boiling regime for the situation under analysis can likely be excluded since it would require a 

heat flux reaching the liquid lading in the order of 300 kW/m2 as can be seen in Figure 38b, which is 

higher than the heat load conditions encountered during an hydrocarbon pool fire (Mannan, 2012b). 

 

Figure 38: a) Example of pool boiling curve. Adapted from Barron and Nellis, (2016); b) Pure 
methane pool boiling curve. Adapted from Sciance et al., (1967). Twall is the tank internal wall 
temperature; Tsat indicates the methane saturation temperature. 

The heat ingress induces free convection currents that establish close to the walls, which transfer 

warmer liquid up to the vapour-liquid interface leading to thermal stratification of the lading and 

enhancing evaporation. Such an effect is one of the primary factors determining the pressure rise 

rate inside the tank, as concluded by Gursu et al., (1993). As highlighted in Section 3.4, the main 

shortcomings of the lumped parameters approach used to model fire exposed tanks are the inability 

to reproduce the thermal stratification of the liquid and the empirical approach needed to model the 

interactions between the different zones of the model. These are the key reason for the use of CFD 

tools in the present framework, which can provide a more accurate description of the physical 

phenomena occurring during fire exposure of storage tanks. 

7.2.2. Set of governing equations 

The solution of Navier-Stokes equations and that of differential equations governing heat and mass 

transfer requires the discretization of the computational domain. In this study, the finite volume 

method was used to discretize the LNG tank domain and solve the governing equations. 

Multiphase modelling 

The problem described in 7.2.1 involves both liquid (𝐿) and vapour (𝑉) phases and thus requires the 

selection of a multiphase model. Based on the experience of other similar works performed by 

Kassemi et al., (2018) and Ovidi et al., (2019), the Volume Of Fluid (VOF) model developed by Hirt 

and Nichols (1981) was used to tackle the multiphase nature of the simulation. This model is widely 

used for the modelling of two or more immiscible fluids and allows tracking of the gas-liquid interface 

inside the tank by solving a continuity equation for the volume fraction of one (or more) of the phases. 

The VOF model needs to define a primary and secondary phase, then it solves a set of continuity 

equations for the volume fraction of all the secondary phases and calculates the volume fraction of 

the primary phase requiring that for each cell of the domain all volume fractions must sum to unity. 
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In the present work, the vapour phase was defined as primary in order to avoid convergence 

problems as suggested in the software user guide (ANSYS Inc., 2018a). Hence, the continuity 

equation for the liquid volume fraction (𝛼𝐿) is: 

𝜕

𝜕𝑡
(𝛼𝐿𝜌𝐿) + ∇ ∙ (𝛼𝐿𝜌𝐿𝒖) = �̇�𝑉→𝐿 − �̇�𝐿→𝑉 Eq. 7.1 

Consequently, the vapour volume fraction (𝛼𝑉) is calculated as: 

𝛼𝑉 = 1 − 𝛼𝐿 Eq. 7.2 

With this multiphase model, all the material properties needed in the governing equations are 

calculated as weighted averages of the single-phase property based on volume fraction. Considering 

for example a generic two-phase average property (𝜑), this is calculated using the following formula: 

𝜑 = 𝛼𝐿𝜑𝐿 + (1 − 𝛼𝐿)𝜑𝑉 Eq. 7.3 

Terms �̇�𝑉→𝐿 and �̇�𝐿→𝑉 in Eq. 7.1 represent the mass transfer rates between vapour and liquid 

phases and vice-versa, respectively. The calculation of these terms requires the use of an 

evaporation-condensation model, which is explained in the following. 

Momentum transport equation 

A single momentum equation is solved in the VOF model and the resulting velocity field is shared 

among the phases. Physical properties are the two-phase averaged properties calculated with Eq. 

7.4. 

𝜕

𝜕𝑡
(𝜌𝒖) + ∇ ∙ (𝜌𝒖𝒖) = −∇𝒑 + 𝜌𝒈 + ∇ ∙ 𝝉 Eq. 7.4 

The term 𝝉 represents the stress tensor. For a Newtonian fluid, it can be expressed as: 

𝝉 = 𝜇 [∇𝒖 + (∇𝒖)T −
2

3
∇ ∙ 𝒖𝐼] Eq. 7.5 

where the term 𝐼 is the identity tensor. 

Energy transport equation 

For energy, as for the momentum transport, the VOF model solves a single transport equation, thus 

liquid and vapour phases share the same temperature field. The energy transport in the fluid regions 

of the computational domain is governed by the following equations: 

𝜕

𝜕𝑡
(𝜌𝐸) + ∇ ∙ [𝒖(𝜌𝐸 + 𝑝)] = ∇ ∙ [(𝑘 +

𝐶𝑝𝜇𝑇

𝑃𝑟𝑇
) 𝛻𝑇] + (𝑚𝑉→𝐿 − 𝑚𝐿→𝑉) Eq. 7.6 

In which the quantity 𝑃𝑟𝑇 is the turbulent Prandtl number which depends on the specific turbulence 

model adopted. The term 𝐸 is a two-phase-averaged energy, calculated as: 

𝐸 =
𝐸𝐿𝛼𝐿𝜌𝐿 + 𝐸𝑉𝛼𝑉𝜌𝑉

𝛼𝐿𝜌𝐿 + 𝛼𝑉𝜌𝑉
 Eq. 7.7 
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While phase-specific energy is calculated in the following way: 

𝐸𝑖 = 𝐻𝑖 −
𝑝

𝜌𝑖
+

𝑢2

2
 Eq. 7.8 

Where the phase enthalpy (𝐻𝑖) is based on the specific heat of that phase and the shared 

temperature. The transport equation solved in the solid regions of the computational domain has the 

following form: 

𝜕

𝜕𝑡
(𝜌𝑠𝐶𝑝𝑠𝑇𝑠) = ∇ ∙ (𝑘𝑠𝛻𝑇𝑠) Eq. 7.9 

where the index 𝑠 indicates solid properties. 

Evaporation-condensation model 

The mass transfer rates between liquid and vapor phases were predicted using the evaporation-

condensation model based on the work by Lee (1979). The terms �̇�𝑉→𝐿 and �̇�𝐿→𝑉 used in Eq. 7.1 

are calculated with the following expressions: 

�̇�𝑉→𝐿  = 𝐶𝑐𝑜𝑛𝑑𝛼𝑉𝜌𝑉 (
𝑇𝑠𝑎𝑡 − 𝑇

𝑇𝑠𝑎𝑡
) Eq. 7.10 

 

�̇�𝐿→𝑉 = 𝐶𝑒𝑣𝑎𝑝𝛼𝐿𝜌𝐿 (
𝑇 − 𝑇𝑠𝑎𝑡

𝑇𝑠𝑎𝑡
) Eq. 7.11 

According to Eq. 7.10 and Eq. 7.11 evaporation and condensation take place in a specific domain 

cell based on its temperature (𝑇), which is calculated at the cell pressure. If the cell temperature is 

above the calculated saturation temperature (𝑇𝑠𝑎𝑡), part of the liquid phase will evaporate, otherwise 

condensation will occur. Evaporation and condensation rates calculated with the Lee model are 

proportional to coefficients (𝐶𝑐𝑜𝑛𝑑  and 𝐶𝑒𝑣𝑎𝑝) that can be defined starting from the kinetic theory of 

gases (Knudsen, 1934). In this work the default value of 0.1 was used for both 𝐶𝑐𝑜𝑛𝑑  and 𝐶𝑒𝑣𝑎𝑝 

coefficients as suggested in a similar study carried out by Ovidi et al., (2019). More information on 

the definition of the evaporation and condensation coefficients can be found in the software theory 

guide (ANSYS Inc., 2018b). 

Turbulence modelling 

The heating of tank walls due to fire exposure is responsible for the establishment of natural 

convection flows inside the tank. Both vapour and liquid in contact with the tank internal will have 

higher temperatures than bulk fluid due to the heat received from the wall, thus generating density 

gradients that drive the natural convection flows. A correct modelling of the near-wall fluid region has 

great importance in the prediction of pressurization rate of fire-exposed storage tanks, as pointed 

out by Birk (1988). Based on the estimation of the Rayleigh number of the system (𝑅𝑎 = 𝑔𝛽∆𝑇 𝛿3 𝛼⁄ ), 

the natural convection phenomena occurring inside the tank can be deemed laminar if 𝑅𝑎 is lower 

than the critical value that marks the transition to turbulent flow, which is typically assumed as 109. 

The term 𝛿 is the characteristic length, assumed here as the internal diameter of the tank, 𝛽 is the 

thermal expansion coefficient, 𝛼 the thermal diffusivity, 𝑔 is the gravity acceleration and ∆𝑇 is the 

temperature difference between tank wall and liquid bulk. For all the evaluated case studies the 

estimated 𝑅𝑎 resulted higher than 1010, hence the free convection boundary layer can be considered 

turbulent. A widely used computational method for solving turbulent flows is the Reynolds-Averaged 
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Navier-Stokes (RANS) approach that allows the calculation of solutions with reasonable use of 

computational resources compared to most accurate Direct Numerical Simulation approach which 

involves the solution of Navier-Stokes’s equations. 

Using the RANS approach, the solution variables in the instantaneous (i.e., non-averaged) Navier-

Stokes’s equations are decomposed into a mean and a fluctuating component. The decomposition 

for a generic variable (𝜑) can be expressed as: 

𝜑 = 𝜑 − 𝜑′ Eq. 7.12 

where the terms 𝜑 and 𝜑′express the mean and fluctuating component, respectively. 

As an example, substituting expressions of this form for the velocity into the instantaneous continuity 

and momentum equations and taking a time average (indicated by the overbar) it is possible to obtain 

the RANS equations. 

 [
𝜕

𝜕𝑡
(𝛼𝐿𝜌𝐿) + ∇ ∙ (𝛼𝐿𝜌𝐿𝒖)] = �̇�𝑉→𝐿 − �̇�𝐿→𝑉 Eq. 7.13 

 
𝜕

𝜕𝑡
(𝜌𝒖) + ∇ ∙ (𝜌𝒖𝒖) = −∇𝒑 + 𝜌𝒈 + 𝛁 ∙ 𝝉 − 𝛁 ∙ 𝝉′ Eq. 7.14 

The obtained RANS equations have the same general form as the instantaneous Navier-Stokes’s 

equations Eq. 7.1 and Eq. 7.4, with the velocities and other solution variables now representing time-

averaged values. The additional term 𝝉′ in Eq. 7.14 is the so-called Reynolds stresses tensor that 

represent the effects of turbulence. Reynolds stresses are function of the position and turbulence 

intensity and they are modelled in terms of known quantities, such as mean velocity gradients. A 

common method used for the modelling of Reynolds stresses is based on the Boussinesq 

approximation to relate the turbulent stresses to the mean velocity gradients: 

𝝉′ = 𝜇𝑇 [(∇𝒖 + ∇𝒖′)] −
2

3
(𝜌𝐾 + 𝜇𝑇∇ ∙ 𝒖𝐼) Eq. 7.15 

The term 𝜇𝑇 is a scalar quantity called turbulent viscosity, while 𝐾 represents the turbulent kinetic 

energy, which is calculated as: 

𝐾 =
1

2
((𝑢′

𝑥)2 + (𝑢′
𝑦)2 + (𝑢′

𝑧)2) Eq. 7.16 

The calculation of 𝜇𝑇 and 𝐾 requires the use of a RANS-based turbulence model. Among the several 

models developed, the k-ω SST turbulence model developed by Launder and Spalding (1972) was 

selected in this work to reproduce the turbulent natural convection regime. This turbulence model 

was already proven valid in previous studies dealing with similar systems (Ovidi et al., 2019; 

Scarponi et al., 2018a). 

Flow characteristics are greatly influenced by the presence of the walls. Velocity field and turbulence 

are affected by the no-slip condition that must be satisfied at the wall (i.e., zero velocity at the wall). 

An accurate representation of the flow in the near-wall region is fundamental for the successful 

prediction of wall-bounded turbulent flows since in this region the solution variables have the largest 

gradients, and the momentum and heat transport phenomena occur most vigorously. 
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Two dimensionless quantities are introduced to ease the characterization of the flow regime: 𝑦+, 

which is a measure of the distance to the wall, and 𝑢+ representing a dimensionless velocity, defined 

according to Eq. 7.17 and Eq. 7.18, respectively. 

𝑦+ =
𝜌𝑢𝜏𝑦

𝜇
 Eq. 7.17 

 

𝑢+ =
𝑢

𝑢𝜏
 Eq. 7.18 

Were the term 𝑢𝜏, having velocity dimensions, is called friction velocity, and is defined as: 

𝑢𝜏 = √
𝜏𝑤

𝜌
 Eq. 7.19 

Here 𝑦 indicates the distance from the wall, and 𝜏𝑤 the wall shear stress. 

Several experimental studies showed that the near-wall region can be subdivided into three layers, 

as illustrated in Figure 39: 

 

Figure 39: Subdivisions of the near-wall region 

In the viscous sublayer (𝑦+ < 5) the flow is almost laminar, and transfer mechanisms are mainly 

dominated by viscous forces. Here the dimensionless velocity equals the 𝑦+. Farther from the wall, 

in the fully turbulent region, the flow is controlled by turbulence and the dimensionless velocity can 

be expressed as a function of 𝑦+ according to the following logarithmic law (Bird et al., 2006): 

𝑦+ = 2.5 ln 𝑦+ + 5.5 Eq. 7.20 
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The buffer layer is an intermediate region where the transition from viscous to turbulent layer occurs. 

No analytical expressions are available to express the relationship between 𝑢+ and 𝑦+ and empirical 

curve fits are usually used. Outside the near wall region, inertial forces strongly overcome viscous 

forces. 

CFD tools rely on two approaches to model the near-wall region: the wall function and the near-the-

wall approaches. In the former approach, viscous and buffer layers are modelled using semi-

empirical formulae (the wall functions) that bridge the viscosity-affected region between the wall and 

the fully turbulent region, simplifying the turbulence model. In the near-the-wall approach the 

turbulence models are modified, allowing the numerical solution of the viscous and buffer layers. 

The k-ω SST turbulence model used in this work, which is based on this latter approach, allows the 

integration of the model transport equation for the turbulent specific dissipation rate 𝜔 through the 

viscous sublayer without the need for wall functions. 

The turbulent kinetic energy 𝐾 and specific dissipation rate 𝜔 are calculated using the following 

equations: 

𝜕

𝜕𝑡
(𝜌𝐾) + ∇ ∙ (𝜌𝐾𝒖) = ∇ ∙ (𝛤𝐾𝛻𝐾) + 𝐺𝐾 − 𝑌𝐾 Eq. 7.21 

 
𝜕

𝜕𝑡
(𝜌𝜔) + ∇ ∙ (𝜌𝜔𝒖) = ∇ ∙ (𝛤𝜔∇𝜔) + 𝐺𝜔 − 𝑌𝜔 Eq. 7.22 

In these equations, 𝛤𝐾 and 𝛤𝜔 indicate the effective diffusivity of 𝐾 and 𝜔 respectively; 𝐺𝐾  and 𝐺𝜔 are 

generative terms for 𝐾 and 𝜔, and 𝑌𝐾 and 𝑌𝜔 represent dissipative terms of the indexed quantities. 

Finally, the turbulent viscosity can be calculated according to Eq. 7.28: 

𝜇𝑇 =
𝜌𝐾

𝜔𝐿
 Eq. 7.23 

The term 𝐿 is a limiting function whose definition can be found elsewhere together with a complete 

description of the turbulence model (ANSYS Inc., 2018b). 

Material properties 

Methane and nitrogen (for the model validation case V66 – see Table 24) properties were retrieved 

from the NIST database of thermophysical properties (Lemmon et al., n.d.). Liquid densities, vapour 

specific heat and thermal conductivity were expressed as function of temperature, whereas all the 

other fluid properties were kept constant. The NIST dataset was also used to define a piecewise-

linear correlation to account for the variation of saturation pressure with liquid temperature, 

necessary for the evaporation/condensation model. Vapour phase density was calculated using the 

Peng-Robinson equation of state (Peng and Robinson, 1976), whereas stainless steel thermal 

conductivity and specific heat were collected from a NIST cryogenic material properties collection 

(NIST, n.d.) and relevant EN 10088:2014 (European committee for standardization, 2014). 
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7.2.3. Tank insulation 

Thermal properties of the insulation material were calculated according to the modelling approach 

proposed by Beikircher and Demharter (2013), who measured the effective thermal conductivity of 

perlite samples under vacuum conditions for average temperatures up to 150°C at mid-section of 

the specimens and for pressures ranging from 0.01 to 1,000 mbar. Perlite effective thermal 

conductivity is influenced by material temperature and by pressure inside the annular gap. Three 

main fundamental mechanism govern the heat transport in dry, evacuated perlite: solid conduction 

(𝑘𝑠𝑜𝑙𝑖𝑑), gaseous conduction (𝑘𝑔𝑎𝑠), and radiation (𝑘𝑟𝑎𝑑). The solid conduction depends on the 

structure and material properties. Gaseous conduction by residual gases trapped inside pores 

depends on the vacuum pressure, while thermal radiation is influenced by the radiative properties of 

the material. The total effective conductivity (𝑘𝑡𝑜𝑡) of the insulation material is calculated as the sum 

of the three aforementioned mechanisms contributing to heat transfer and of an additional coupling 

term (𝑘𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 ) that accounts for interactions among the heat transfer mechanisms. 

A specific analysis was carried out to determine the value of effective thermal conductivity of perlite 

in vacuum conditions, in order to properly set the boundary and initial conditions considered in the 

CFD model developed. The relative importance of the three abovementioned heat transfer 

mechanisms and the effect of different parameters, such as perlite bulk density, particle and pore 

sizes, on 𝑘𝑡𝑜𝑡, was assessed applying the model equations described in the original work by 

Beikircher and Demharter (2013).  

The main parameter affecting 𝑘𝑠𝑜𝑙𝑖𝑑  is the bulk density of the insulating powder (𝜌𝑏𝑢𝑙𝑘). The powder 

compression method largely influences how 𝑘𝑠𝑜𝑙𝑖𝑑  varies with perlite bulk density. In the present 

work it was assumed that perlite grains are compressed by the mechanical force resulting from tank 

wall deformation due to fire exposure. A fitting equation for solid thermal conductivity of mechanically 

compressed perlite grains was derived from the experimental measures reported in a previous work 

by Demharter (2011), obtaining the following expression:  

𝑘𝑠𝑜𝑙𝑖𝑑 = 0.326 ∙ 𝜌𝑏𝑢𝑙𝑘 − 15.4 Eq. 7.24 

in which the solid thermal conductivity is expressed in mW/(m K). Radiation contribution is as well 

function of perlite bulk density, 𝜌𝑏𝑢𝑙𝑘, and it can be estimated as follows:  

𝑘𝑟𝑎𝑑 =
16 𝜎 𝑛2𝑇𝑟

3

3 𝜌𝑏𝑢𝑙𝑘  𝑒∗
 Eq. 7.25 

where 𝜎 is the Stefan-Boltzmann constant, the term 𝑛 is the refractive index, considered equal to 1, 

and 𝑒∗represents the total mass-specific extinction coefficient, which is function of 𝑇𝑟, a mean value 

of the perlite boundary temperatures, calculated as follows:  

𝑇𝑟 = √
1

4
(𝑇1

2 + 𝑇2
2)(𝑇1 + 𝑇2)

3

 Eq. 7.26 

in which 𝑇1 and 𝑇2 are the inner and outer boundary temperatures, respectively. Further details 

regarding the calculation of the different terms are reported elsewhere for sake of brevity (Demharter, 

2011). 
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Gas conduction and coupling terms are both function of air thermal conductivity (𝑘𝑎𝑖𝑟), the material-

specific half-value pressures (𝑝1/2
𝑔

 and 𝑝1/2
𝑐 ), and a fitting parameter (𝛷), estimated equal to 0.54 on 

the basis of experimental results obtained by Beikircher and Demharter, (2013). Half-value pressures 

are the only terms dependent on the vacuum pressure (𝑝) of the insulation material. The sum of 𝑘𝑔𝑎𝑠 

and 𝑘𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 terms is calculated as follows: 

𝑘𝑔𝑎𝑠 + 𝑘𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 =
𝑘𝑎𝑖𝑟

1 +
𝑝1/2

𝑔

𝑝

+ 𝛷
𝑘𝑎𝑖𝑟

1 +
𝑝1/2

𝑐

𝑝

 
Eq. 7.27 

The half-value pressures are material-specific quantities that can be estimated according to Eq. 7.28 

and Eq. 7.29, which express 𝑝1/2
𝑔

 and 𝑝1/2
𝑐  , respectively:  

𝑝1/2
𝑔

≈
230

𝑑𝑝𝑜𝑟𝑒
∙

(𝑇1 + 𝑇2)

2
∙

1

300
 Eq. 7.28 

 

𝑝1/2
𝐶 ≈

230

𝑑𝑔𝑎𝑝
∙

(𝑇1 + 𝑇2)

2
∙

1

300
 Eq. 7.29 

in which the half-value pressures are expressed in mbar, boundary temperatures 𝑇1 and 𝑇2 in K; 

𝑑𝑝𝑜𝑟𝑒  is the perlite pores diameter (in µm), and 𝑑𝑔𝑎𝑝 is the particle gap dimension (in µm). For the 

present parametric analysis a pore diameter of 30 µm was considered, which is the average value 

of the range suggested by Beikircher and Demharter (2013). A mean value of the particle gap 

dimension of 305 µm was calculated as a function of particle size, according to the model reported 

by Demharter (2011). 

Perlite thermal conductivity values under different conditions, calculated with the above-described 

approach, are reported in Figure 40. The 𝑘𝑠𝑜𝑙𝑖𝑑  value was found to increase linearly with bulk density, 

with a slope depending on the type of compression process to which perlite grains are subjected 

(Beikircher and Demharter, 2013). Thus, the structural integrity of perlite grains has an important 

effect on the value of 𝑘𝑡𝑜𝑡, since damaged particles (smaller in size) allow for higher bulk density 

values and higher solid conductivity, 𝑘𝑠𝑜𝑙𝑖𝑑. In the case of cryogenic vessels with annular evacuated 

perlite insulation, when considering fire exposure, it may be assumed that mechanical compression 

of perlite grains may occur due to both external tank deformation (following the thermal distortion of 

the steel work induced by the fire) and compressive forces caused by annular vacuum loss. 
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Figure 40: Contribution of the different heat transfer mechanisms and variation of overall perlite 
thermal conductivity (ktot) with bulk density for 1,013 mbar (a) and 1 mbar (b) pressure; (c) Variation 
of ktot with absolute pressure for different boundary temperatures (T1: inner boundary temperature; 
T2: outer boundary temperature) assuming a bulk density value of 140 kg/m3; ksolid: contribution of 
solid conduction, kgas: contribution of gaseous conduction; krad: contribution of heat radiation; kcoupling: 
coupling term among the heat transfer mechanisms. 

As shown in Figure 40a, when vacuum insulation is lost, the contributions of 𝑘𝑔𝑎𝑠 and 𝑘𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔  

become more important. On the other hand, radiation and solid conduction are the dominant heat 

transfer mechanisms for granular perlite under vacuum conditions (see Figure 40b). The variation of 

𝑘𝑡𝑜𝑡 with vacuum pressure at different boundary temperatures is shown in Figure 40c. The curves 

were obtained considering the bulk density value adopted for CFD modelling, equal to 140 kg/m3. 

The maximum theoretical value that can be obtained when vacuum inside the tank’s annular gap is 

lost and insulation boundary temperatures are of 1,200 K on the side of the fire and of 120 K on the 

side of the lading, thus representative of fire engulfment conditions, was estimated of about 150 

mW/(m K) as reported in Figure 40c. 

To account for the deterioration of insulation performance occurring during fires, the insulation 𝑘𝑡𝑜𝑡 

value used in the CFD simulations was increased to a value of 300 mW/(m K), which is 

conservatively doubled with respect to the maximum value for complete loss of vacuum insulation 

estimated using the model by Beikircher and Demharter (2013). This augmented thermal 

conductivity value is intended to be representative of a seriously compromised cryogenic tank 

insulation for which part of the perlite is displaced following the abrupt and rapid pressurization 

ensuing the loss of vacuum in the annular gap. To support this choice, a one-dimensional transient 

heat conduction analysis was performed to understand the thermal response of an undamaged 

insulation layer. The results of this analysis, reported and discussed in Appendix C, show that 

considering the properties of undamaged insulation, the tank lading will start to heat up only after 

about 48 minutes, thus much later than what observed during the experimental test described in 

Section 7.1.1, suggesting that an intact vacuumed perlite insulation might not be reasonably 

assumed for long-lasting full engulfing fires. Further supporting simulations, summarized in Table 

23, were carried out to investigate a wider range of possible insulation layer conditions and prove 

the validity of the assumption made for the thermal conductivity value used in the CFD setup. 

(b)

(a) (c)
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Three different insulation conditions were assessed: one assuming an undamaged tank insulation, 

with a 𝑘𝑡𝑜𝑡value compatible with a vacuum pressure of about 200 mbar, a second simulation 

considering a compromised tank insulation, and an unrealistic case simulating a tank without 

insulation, which provides an extreme upper credibility limit. For sake of comparison, all the 

simulations were run considering the same geometry, meshing parameters, initial and boundary 

conditions of the validation case V66 which reproduces the experimental test conditions described 

in Section 7.1.1. 

Table 23: Short description of simulations supporting the CFD model validation 

ID 
Insulation ktot 
[mW/ (m K)] 

Description 

Insulated 
tank 

92 
Undamaged tank insulation assumed for the entire duration of the 
simulation 

Damaged 
insulation 

300 Damaged insulation assumed since the beginning of the simulation 

V66 92 / 300 
Undamaged tank insulation considered for the first 30 minutes; 
then damaged status is assumed 

Bare tank - No insulation present – comparative case 

 

7.2.4. Case study definition 

The proposed CFD model was validated against data collected from the experimental bonfire test 

described in Section 7.1.1. The accuracy of the CFD model was assessed reproducing the results 

of the experimental test, setting up a dedicated validation simulation (case V66 in Table 24). Once 

the model was proven satisfactory, the proposed numerical setup was used to evaluate the 

consequences of engulfing fire exposure of a larger LNG storage tank, used for maritime fuel storage 

(identified as case A in the following), and a typical road trailer tank used for LNG transportation 

(case B in the following). Three different tank filling degrees were considered for cases A and B to 

assess how this parameter affects the thermal response of the tanks. A summary of tank main 

features for all the three reference simulation cases is reported in Table 24. 

Table 24: Main features of the tanks and initial conditions assumed for the simulation cases 
considered. MAWP: maximum allowable working pressure. 

Case 
ID 

Filling 
degree 

Inner 
diameter 

[m] 

Insulation 
thickness 

[m] 

Length 
[m] 

Initial 
pressure 

[bar] 

Initial 
temperature 

[°C] 

MAWP 
[bar] 

Nominal 
capacity 

[m3] 

Validation case 

V66 66% 1.2 0.20 2.55 2.0 -189.52 7.0 3.0 

Open-deck ship-fuel tank 

A85 85% 

4.3 0.25 16.5 6.0 -134.42 11.0 240 A50 50% 

A15 15% 

Road tanker 

B85 85% 

2.3 0.12 13.8 1.0 -161.49 3.0 58.0 B50 50% 

B15 15% 
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Real scale open-deck LNG tank for naval propulsion 

Most LNG-fuelled vessels (other than LNG carriers) are designed to use IMO Type C tanks (IMO, 

2016), which are independent (i.e., not integrated into the ship structure) pressure vessels featuring 

vacuum insulation and a double wall structure exactly as the bullet tanks described in Section 2.3 

for use in SSLNG terminals. Type C tanks can be installed either within the ship or on the deck: in 

the first case, a gas-tight tank room is required, while the latter arrangement does not need any 

particular provision. Open deck installations have capacities ranging from few hundreds of cubic 

meters up to 1,000 m3. The annular space enclosed between inner and outer shell contains perlite 

grains as insulating media, combined with vacuum conditions. To facilitate the comparison with 

experimental data, a full engulfment fire scenario with two-hour duration was assumed. As reported 

in Table 24, a damaged perlite insulation layer was assumed to allow an easier comparison with the 

experimental data. 

LNG road tanker 

Cryogenic tanks built for road transport application are designed according to prescription given in 

the ADR regulation (UNECE, 2018) and technical standard EN 13530-2:2002 (European committee 

for standardization, 2008). LNG storage tanks used for this purpose can either be double-walled 

vacuum or single-walled polyurethane insulated vessels. For sake of comparison, the tank concept 

considered for the CFD modelling is identical to type C tanks installed on ships in which the perlite 

insulation is kept under vacuum conditions in the annular gap of the double-walled structure. A two-

hour full engulfment condition with damaged insulation layer was assumed. 

7.2.5. Mesh generation and numerical setup 

The solution of the governing equations described in Section 7.2.2 requires the construction of a 

computational grid. An unstructured mesh was built using the ANSYS® Meshing™ software and it 

was adopted for each simulation case listed in Table 24. The use of the k-ω turbulence model 

requires a fine grid resolution for the near wall region that was achieved through the creation of 

inflation layers starting from the internal wall boundary (see Figure 41c). Further details of the used 

computational grid are reported in Table 25. 

The transient nature of the analysis was modelled using a first-order implicit scheme, with a fixed 

time step of 0.01 s. Specific grid and time-step independence studies were carried out, as detailed 

in Section 7.3.1. 

In order to reproduce the operating conditions of cryogenic storage tanks, the fluid was considered 

to be at saturated conditions at the initial pressure value, whereas a linear temperature gradient was 

considered between cryogenic lading temperature and ambient temperature (assumed equal to 

16°C for all cases). Fluid was assumed to be initially motionless, hence no velocity field was 

initialized. Moreover, turbulent kinetic energy and specific dissipation rate were initialized at the 

lowest allowable values (10−9 m2/s2 and 10−3 s-1 for 𝐾 and 𝜔 respectively). No-slip condition was 

imposed at the tank inner wall. 

Typically, LNG consists almost entirely of methane (between 85 to more than 95%), along with a few 

percent of ethane, propane and butane, and trace amounts of nitrogen. The exact composition of 

the LNG mixture varies according to its source and processing history. However, pure methane was 

considered in the CFD simulation setup to avoid uncertainties associated with LNG composition. 
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Figure 41: Representation of the computational domain: a) tank section considered for the 2D CFD 
analysis; b) mesh overview; c) detailed view of the mesh in proximity of the internal wall of the tank, 
highlighting the different material layers (i.e., insulation, tank inner wall and tank lading). 

Simulation of full-engulfing pool fire scenario was achieved setting a variable heat-flux boundary 

condition at the outer shell wall. The heat flux absorbed by the tank was calculated according to the 

Stefan-Boltzmann law: 

�̇�′′ = 𝜎𝜀𝑤𝑎𝑙𝑙(𝑇𝑓,𝐵𝐵
4 − 𝑇𝑤𝑎𝑙𝑙

4 ) Eq. 7.30 

where 𝑇𝑓,𝐵𝐵 is the flame blackbody temperature, assumed equal to 860°C based on experimental 

measurements (Kamperveen et al., 2016). The subscript 𝑤𝑎𝑙𝑙 refers to wall properties, thus 𝜀𝑤𝑎𝑙𝑙 

and 𝑇𝑤𝑎𝑙𝑙 are defined as the wall surface emissivity (here conservatively considered equal to 1) and 

temperature, respectively. This modelling approach has been proven successful in a different range 

of applications (Landucci et al., 2016; Scarponi et al., 2018b) and allows a satisfactory reproduction 

of actual engulfing fire boundary conditions, since radiation in hydrocarbon fires may be responsible 

of up to 80% of the total heat transferred (Birk et al., 2016). 
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Table 25: Details of numerical setup. Values of under-relaxation factor are reported together with 
discretization schemes used and main mesh features. 

Discretization scheme Under relaxation factor 

Equation/quantity Scheme Variable Value 

Density 2nd order upwind Pressure 0.3 

Momentum 2nd order upwind Density 0.7 

Energy 2nd order upwind Body forces 0.7 

K & ω 2nd order upwind Momentum 0.5 

Pressure PRESTO! Vaporization mass 0.7 

Volume Fraction Geo-Reconstruction Turbulent kinetic energy 0.8 

Pressure-velocity 
coupling 

SIMPLEC Turbulent dissipation rate 0.8 

Gradients Turbulent viscosity 1.0 

Least square cell-based Energy 0.8 

Mesh features 

Case ID Mesh elements 
First layer 

thickness [m] 
Inflation 
layers 

Maximum 
cell size [m] 

V66 18,961 

7.0×10-5 50 0.010 A15-A50-A85 163,382 

B15-B50-B85 69,533 

7.2.6. Safety Key Performance Indicators (KPIs) 

The predictions from CFD simulations provide a detailed time-varying description of the tank 

pressure and of the other variables of interest, such as tank wall temperature values, which represent 

essential information to understand the response of tanks under fire attack. To facilitate the 

evaluation of the tank safety profile and provide an indication of potentially hazardous situations, 

selected CFD quantities were used to define three different KPIs, reported in Table 26. 

All the KPIs are defined as positive quantities, and values higher than unity indicate potentially 

unsafe conditions. The first KPI, 𝑇𝐼, gives a measure of the thermal stresses to which the internal 

surface of a fire-exposed double-walled cryogenic tank can be subject. The parameter 𝑆𝑚𝑎𝑥  is the 

extent of the internal surface that results heated by the fire at a temperature higher than the maximum 

design temperature. Annex B of European standard EN 13458-2:2002 (CEN, 2002b) states that for 

static vacuum insulated austenitic steel vessels, the maximum design temperature is 50°C. The 

parameter 𝐴𝑑,𝐶  is the value of the “critical size” of the overheated surface, that is, the critical extent 

of the wall surface that, when heated above the maximum design temperature, becomes sufficient 

to jeopardize the integrity of the tank shell (Scarponi et al., 2018b). The “critical size” of zones in the 

tank shell able to compromise the mechanical integrity of a pressurized storage vessel were 

investigated by Scarponi et al. (2017) for LPG tanks. As a working assumption, the extent of 𝐴𝑑,𝐶  

obtained through numerical investigations based on finite elements modelling in the original work 

(Scarponi et al., 2017) and reported in Table 26 was considered for the estimation of 𝑇𝐼. Thus, the 

value of the indicator should be 0 in normal operating conditions (absence of a fire), and equal to 1 

when a portion of the inner wall area with same extension as 𝐴𝑑,𝐶  is heated by the external fire to 

temperatures higher than 50°C. 
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As expressed by Eq. 7.32, the indicator 𝐼𝑃𝐼 depends on the dynamic evaluation of the pressure 

inside the tank, providing a measure for the change in the safety margin with respect to the tank 

MAWP, which is considered equal to tank design pressure. 

As for the previous case, the KPI value equals 0 in normal operating conditions. In the presence of 

an external fire, leading to a pressurization of the tank, the value of the KPI progressively approaches 

1, i.e., the limit value at which the internal pressure equals the MAWP. Values above 1 indicate that 

the internal pressure exceeds MAWP and suggest the possibility of a mechanical failure of the tank. 

Table 26: KPIs defined for the assessment of safety performance of pressurized cryogenic vessels. 
Specific parameters used in KPI definition are also defined. 

KPI 
symbol 

Equation Definition 
Equation 

ID 

𝑇𝐼 
𝑆𝑚𝑎𝑥

𝐴𝑑,𝐶
 

Quantification of thermal-induced stresses on tank 
structure 

7.31 

𝐼𝑃𝐼 1 −
𝑀𝐴𝑊𝑃 − 𝑃𝑡

𝑀𝐴𝑊𝑃 − 𝑃0
 

Quantification of the reduction of design safety 
margins with respect to stresses induced by internal 
pressure 

7.32 

𝐸𝐼 
𝐸𝑉𝐵

𝐸0
 

Amount of energy released in case of tank failure 
with respect to a reference value 

7.33 

Parameter Value/Equation  
Equation 

ID 

𝐴𝑑,𝐶 0.48 
Critical size of tank insulation defect [m2] (Scarponi 
et al., 2017) 

- 

𝑆𝑚𝑎𝑥  * 
Surface of tank inner wall with a temperature greater 
than the maximum design temperature [m2] 

- 

𝑀𝐴𝑊𝑃 See Table 24 Tank maximum allowable working pressure [bar] - 

𝑃0 See Table 24 Tank initial pressure [bar] - 

𝑃𝑡 * Tank pressure at time t [bar] - 

𝐸𝑉𝐵 
𝑑�̂�

∆�̂�𝑇𝑁𝑇

×  𝜂 × 2 Energy released in case of vessel burst at ground 
level, expressed in TNT equivalent mass [kg] 

7.34 

𝑑�̂� * 
Variation of tank specific internal energy between 
initial conditions and the considered time step [kJ/kg] 

- 

∆�̂�𝑇𝑁𝑇  4,680 TNT specific explosion energy [kJ/kg] - 

𝜂 0.50 Fraction of 𝑑�̂� converted into blast wave - 

𝐸0 0.52 
Energy needed to generate a blast wave able to 
damage pressurized equipment at 5 m distance, 
expressed in TNT equivalent mass [kg] 

- 

* Values to be calculated for each time step considered. 

While 𝑇𝐼 and 𝐼𝑃𝐼 indicators refer to the inherent safety of the storage tank, 𝐸𝐼 was defined to provide 

a quantification of the damage potential following the catastrophic rupture of the vessel that might 

lead to accident escalation (Cozzani et al., 2013). Following the vessel burst, the internal energy 

accumulated inside the tank is suddenly released to the surroundings. A fraction of this energy (the 

quantity 𝜂 reported in Table 26) is converted into a blast wave, with a potential damage to the 

equipment surrounding the LNG tank. A reference minimum energy required to generate a blast 

wave able to damage the surrounding equipment, 𝐸0, is defined. The value of 𝐸0 is assumed equal 

to a peak static overpressure of 0.2 bar at 5 m from the explosion centre, indicated by Cozzani et 

al.,(2013) as the reference overpressure threshold to damage pressurized equipment. As prescribed 

in the EN 1473:2016 (CEN, 2016), the separation distance between two LNG tanks must be at least 

equal to half the diameter of the secondary container of the larger tank. The 5 m limit used for the 

definition of 𝐸𝐼 avoids considering an unrealistic too short distance between adjacent tanks. 
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Thus, as defined by Eq. 7.33, 𝐸𝐼 represents the ratio between the explosion energy resulting from 

vessel burst (𝐸𝑉𝐵) and the reference value for escalation, 𝐸0. Among the different models available 

in the literature for the estimation of explosion effects, the TNT-equivalence model was used in the 

present work for the sake of simplicity. Using this model, the explosion energy (thus, both 𝐸0 and 

𝐸𝑉𝐵) can be expressed as an equivalent amount of TNT, as mentioned in Table 26. Detailed 

descriptions of the TNT equivalence model can be found in the literature (Kinney and Graham, 1985). 

In accordance with the other defined KPIs, a value of 𝐸𝐼 > 1 indicates that blasts following the LNG 

tank rupture might have the potential to start a domino accident sequence. 

7.3. Modelling results 

7.3.1. Validation of the model 

Pressure profiles obtained for two-hour engulfing fire simulations for the validation case V66 are 

reported in Figure 42 together with the data obtained from the experimental test and the supporting 

simulations listed in Table 23. A drastic change of the experimental pressurization rate can be 

observed roughly 30 minutes after the start of fire exposure. The sudden pressure increase started 

immediately after the opening of the vacuum rupture disk and the partial release of perlite insulation 

material, as described in Section 7.1.1. 

 

Figure 42: (a) Comparison between experimental and modelled pressurization profiles for the 
validation case assuming different conditions of the insulation; (b) detail of the pressure build up 
obtained for bare tank simulation. 

Considering the extreme and unrealistic situation of a bare LNG tank reported in Figure 42b, it can 

be noted that under these conditions the tank will reach the final test pressure level in less than 2 

minutes, following a pressurization transient similar to fire-engulfed LPG storage tanks reported in 

the work by Scarponi et al., (2018b). 

When assuming an undamaged insulating layer, the pressurization rate is well predicted for the first 

30 minutes, but afterwards the model underestimates the pressurization rate as can be seen in 

Figure 42a. The undamaged insulation thermal conductivity was estimated according to the model 

described in Section 7.2.3 considering the vacuum pressure value in the annular gap of the tank 

used in the experimental test (Kamperveen et al., 2016). The worsening of insulation performance 

experienced during the bonfire test was likely to be caused by loss of vacuum insulation together 

with displacement of granular perlite, possibly explaining the sudden increase of pressurization rate 

shown by the experimental data curve in Figure 34a.  

 

(a) (b)
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As stated in the experiment report of the validation test (Kamperveen et al., 2016), after 30 minutes 

a complete loss of vacuum and partial discharge of perlite occurred in the insulation layer of the tank. 

In order to account for this event, the properties of the damaged insulation layer considered in the 

simulation were calculated according to the model described in Section 7.2.3 (see Table 24). 

Simulations showing the performance of such damaged insulation in the validation test are reported 

in Figure 42a. When the damage is assumed to occur at the beginning of the experimental test, a 

significant overestimation of the internal pressure is evident. Conversely, when the damage of the 

insulation is assumed to occur 30 minutes after the fire ignition, as happened during the experimental 

test, the model shows a good agreement with experimental data: predicted pressure values are 

comprised in a range between -5% and +5% deviation from measured test data. 

As mentioned in Section 7.1.1, unstable temperature measurements were obtained during the test 

campaign. However, as indicated in the test report (Kamperveen et al., 2016), the thermocouples 

provided stable and reliable values immediately before fire ignition and after fire was stopped. 

Therefore, to obtain at least an indicative representation of the transient heat-up process, a linear 

trend between the unbiased experimental thermocouple readings at the beginning and at the end of 

the fire test was considered. 

The CFD model performance in reproducing time evolution of liquid and vapour temperatures was 

assessed following the method proposed by Hanna et al. (1991). This approach requires the 

calculation of the geometric mean bias (𝑀𝐺) and the geometric mean variance (𝑉𝐺) of both 

measured (𝑇𝑒𝑥𝑝) and predicted (𝑇𝐶𝐹𝐷) values. Temperature data from the experimental test and CFD 

simulation were compared considering 5 minutes intervals. For each time step (identified by index 

𝑖), 𝑇𝑒𝑥𝑝,𝑖 and 𝑇𝐶𝐹𝐷,𝑖 were used to calculate the quantities in Eq. 7.35 and Eq. 7.36. 

𝑀𝐺 = 𝑒𝑥𝑝[ ln(𝑇𝑒𝑥𝑝)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − ln(𝑇𝐶𝐹𝐷)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅] Eq. 7.35 

 

𝑉𝐺 = 𝑒𝑥𝑝[ (ln(𝑇𝑒𝑥𝑝) − ln(𝑇𝐶𝐹𝐷))2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ] Eq. 7.36 

Where the terms ln(𝑇𝑒𝑥𝑝,)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, ln(𝑇𝐶𝐹𝐷,)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and (ln(𝑇𝑒𝑥𝑝) − ln(𝑇𝐶𝐹𝐷))2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ are calculated as follows: 

ln(𝑇𝑒𝑥𝑝,)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  ∑ ln(𝑇𝑒𝑥𝑝,𝑖)𝑖 ∑ 𝑖⁄   Eq. 7.37 

 

ln(𝑇𝐶𝐹𝐷,)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =  ∑ 𝑙𝑛(𝑇𝐶𝐹𝐷,𝑖)𝑖 ∑ 𝑖⁄   Eq. 7.38 

 

(ln(𝑇𝑒𝑥𝑝) − ln(𝑇𝐶𝐹𝐷))2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  ∑ (ln(𝑇𝑒𝑥𝑝,𝑖) − ln(𝑇𝐶𝐹𝐷,𝑖))2
𝑖 ∑ 𝑖⁄   Eq. 7.39 

The bias in model predictions, i.e., its tendency to systematically over or under-predict temperature 

values, is expressed by 𝑀𝐺, whereas the 𝑉𝐺 value is a measure of the scatter in the model 

predictions around a mean value. Points located to the left of 𝑀𝐺 = 1 suggest a model over 

prediction, whereas points to the right of this value indicate under prediction. Confidence levels of 

𝑀𝐺 = 0.5 and 𝑀𝐺 = 2 (representing a factor of two for over and under-prediction respectively) are 

also reported, defining a range for an “acceptable” model. Note that in Figure 43 a perfect model 

would be represented by a point at the vertex of the parabola. 
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Figure 43: (a) Geometric mean bias (MG) and variance (VG) of model-predicted temperature values 
compared against experimental measures. (b) Position of thermocouples used for experimental 
temperature measurement and liquid-vapour interface for the validation case V66. 

As illustrated in Figure 43, the vapour temperature (thermocouple TC2, located on the top part of 

vapour ullage) shows a good agreement with experimental data, whereas liquid temperature (TC5 

on the tank bottom) and vapour temperature 8.5 cm above the liquid interface (TC15) experience 

more important deviations from test data, even if they remain below the 𝑀𝐺 = 2 limit. 

The results of all the four validation simulations were proven to be independent from computational 

grid, time step size and convergence criteria of governing equations. The model grid independence 

was studied using a finer mesh created by reducing the maximum element size and length, while 

the dimension of the first cell close to tank inner wall was held constant. This resulted in a mesh 

having around 2.3 times the number of elements reported in Table 25. Since the meshing parameters 

used for the proposed model, listed in Table 25, are similar to those adopted by Scarponi et al., 

(2018a, 2018b), who validated his 2D CFD model for several filling degrees, such analysis was not 

replicated in this work, hence the same meshing strategy was used for all the different tank filling 

degrees analysed. To investigate the effects of the selected time step size on modelling results, a 

transient simulation with a time step of 0.02 s (twice the size of the original value) was run. The last 

parameters analysed were the convergence criteria. To prove that modelling results are independent 

from the selected convergence criteria, an additional simulation was run with more stringent criteria. 

The sum of scaled residual for continuity, momentum and energy equations was required to be one 

order of magnitude lower than previous setting (from 10-3 to 10-4 for continuity and momentum; 10-6 

to 10-7 for energy equation).  
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The results of model independence study are reported in Figure 44, in which the variation of pressure 

prediction from different model setups is plotted against the benchmark setup used for the validation 

case V66. It is possible to notice that the differences with the original setup are always comprised in 

the ±5% range, indicating good robustness and stability of the adopted numerical setup. 

 

 

Figure 44: Parity plot for numerical model independence analysis. 

7.3.2. Analysis of the results of the case studies 

The pressurization profiles obtained for the case studies analysed are shown in Figure 45. 

Considering case-study A (the ship fuel tank), Figure 45a shows that even assuming a degraded 

thermal insulation layer since the beginning of the simulation, the PRV opening pressure (considered 

equal to the MAWP value reported in Table 24) can only be reached for low tank filling degrees 

(15%, see Table 24). The analysis of simulation results clearly indicates that higher tank filling 

degrees result in slower pressurization rates due to the slower heat-up of the tank lading. 
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Figure 45: Pressurization profiles for 200 m3 type C tank (a) and 58 m3 road tanker (b) engulfed in 
fire. For the description of simulation cases refer to Table 24. 

The relationship between tank filling degree and pressurization rate observed in the simulations is 

in accordance with the experimental results obtained by Van Drew et al. (1992) and the numerical 

results reported by Seo and Jeong (2010), obtained for liquid hydrogen and liquid nitrogen 

respectively, considering heat leaks in the order of 10 W/m2. After an initial period (approximately 

the first 10 minutes of simulation), in which the pressure build-up is limited, the pressurization rate 

starts to constantly increase, reaching overall average values of about 0.512, 0.337, and 0.271 

bar/10 min for cases A15, A50, and A85, respectively. As illustrated in Figure 45a, the increase in 

the pressurization rate occurs approximately 20 minutes after the start of fire exposure. 

Similar results were obtained for the case-study B, representative of a road tanker engulfed by 

flames. As for the previous case, a higher pressurization rate is observed when the filling degree is 

lower. However, in this case-study, the exposure to full engulfment conditions results critical for all 

the three filling degrees analysed. In simulation case B15, the tank MAWP is reached 30 minutes 

before case A15, whereas in cases B50 and B85 this value is reached about half an hour later than 

case B15. An average pressurization rate value of about 0.593 bar/10 min can be estimated for case 

B15, while cases B50 and B85 have pressurization rates of 0.270 and 0.249 bar/10 min, respectively. 

Furthermore, comparing Figure 45a and Figure 45b, it is possible to notice that cases B50 and B85 

follow an almost identical pressurization trend, different to that observed for case A, where the tank 

size is larger. 

Besides the pressurization effect related to the thermal expansion of the vapour, pressure rise inside 

the tank is directly related to the mass of the liquid evaporated during fire exposure as well. Regions 

of condensation and evaporation inside the tanks are represented in Figure 46. 
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Figure 46: Time evolution of condensation and evaporation regions inside tank lading for simulation 
cases A50 (panels A1-A3) and B50 (panels B1-B3). Table 24 reports the details of the two simulation 
cases. 

After more than one hour of fire exposure evaporation takes place only in a very thin region in contact 

with tank walls as can be seen in panels A2 and B2 of Figure 46. Condensation zones can be found 

close to the liquid-vapour interface regions, farther from the tank walls, where the vapour is being 

cooled down by the liquid, eventually condensing it. As the time passes, the size of the evaporation 

clusters in the proximity of the interface and in contact with the tank wall starts to grow. Small residual 

condensation regions are still present close to the tank bottom: these are zones where the small 

vapour pockets detaching from bottom walls reach the colder liquid bulk, promptly condensing. 

Comparing the results obtained for case-studies A and B, it can be noticed that the extension of the 

evaporating regions at the interface is more limited for case B. Such an effect might be caused by 

different initial conditions between the two cases or by the different tank sizes. 

The liquid phase temperature distribution along the vertical profile perpendicular to the tank axis is 

reported in Figure 47 for different time steps. For the case-study A, a noticeable temperature 

difference between the liquid bulk and interface zones develops for higher filling degrees, whereas 

A2

30 min

A1

30 min

B1

75 min

75 min

B2

Evaporation

Condensation

A3

120 min

B3

120 min



111 
 

for lower values of the filling degree the liquid temperature appears to be more homogeneous. This 

effect generally intensifies with time and becomes more significant closer to the liquid-vapour 

interface. A prolonged fire exposure of the vessel results in the gradual amplification of liquid thermal 

stratification: after 2 hours of heating, the liquid temperature spans from a minimum of 146 K 

measured close to the bottom of the tank, up to a maximum of around 147.5 K at the interface region 

(see case A85 at 120 min – Figure 47a), with a maximum difference of 1.5 K. The maximum 

temperature value of the liquid phase, which is obtained at the interface, ranges from about 147.5 K 

for case A85 to 153 K for case A15. These values equal the saturation temperature at the current 

pressure value of simulation case. 

 

Figure 47: Liquid thermal stratification for 200 m3 type C tank (a) and 58 m3 road tanker (b) engulfed 
in fire. Temperature profile evolution on the vertical line perpendicular to tank axis is reported at 
different times after fire ignition. The liquid-vapour interface for the different simulation cases is 
represented by a dash-dotted line. 

The liquid temperature stratification for case-study B follows a similar trend: the results reported in 

Figure 47b show that also for smaller tank diameters and lower pressure levels, the temperature 

gradient of the liquid is larger for higher filling degrees. For case B15, after 120 minutes since the 

fire start, the maximum temperature difference between bulk and interface region is about 1 K. At 

the end of the simulations, this case shows a liquid temperature about 13 K higher than simulation 

case B50, and 17 K higher than case B85. As observed for case-study A, the maximum liquid 

temperature value is equal to the saturation temperature for the pressure reached at the considered 

time step. Contour plots showing the extent of liquid temperature stratification are presented in 

Figure 48. Comparing the results for cases A and B, it can be noted that for the latter warmer liquid 

regions tend to be located closer to the interface than for case A and that these regions have a more 

limited extension through the tank liquid lading. 

Focusing on case A results, it is possible to notice that the warmer liquid regions tend to be organized 

as layers, with a visible wall effect that slightly distorts the region shape. 
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Figure 48: Liquid temperature contours for simulation cases A50 (A1-A3) and B50 (B1-B3) at 
different times. Panel C1 shows the dynamic evolution of tank inner wall temperature measured by 
thermocouple TC2. 

The dynamic evolution of tank inner wall temperature is reported in panel C1 of Figure 48. This is 

the temperature value predicted by simulations for the point TC2 that corresponds to the top part of 

tank vapour ullage space. Here predicted wall temperature results are the highest due to the absence 

of the “cooling” effect promoted by the liquid.  

As can be seen from the Figure, the temperature threshold equal to 323 K will be exceeded for all 

the cases, with tank B reaching the limit around 20 minutes earlier than case A. 
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As described in Section 7.2.1, flame engulfment is also responsible for the formation of natural 

convective cells inside the tank lading, as shown in Figure 49 that reports the calculated velocity 

fields. The pressurization rate increase described previously occurs simultaneously to the 

establishment of liquid motion inside the tank. Looking at panels A1 and B1 of Figure 49, it can be 

noticed that recirculation eddies are already developed after 30 minutes of fire engulfment. 

Regardless of tank size and filling degree, the warmer liquid layer that is present along tank walls 

starts to flow upward towards the vapour-liquid interface due to the development of a density 

gradient. This liquid motion results in the formation of the recirculation eddies, that enhance both 

mixing and progressive heating of the liquid layer at the interface, which controls the pressurization 

dynamics. The warmer fluid at the interface has a prevalent radial direction, towards the axis of the 

tank: here it mixes with the cold liquid and recirculates downwards to the bottom part of the tank, 

creating a macroscopic free convection cell inside the tank (clearly visible in panels A2-A3 and B2-

B3 of Figure 49). 

 

Figure 49: Velocity magnitude path-lines for simulation cases A50 (A1-A3) and B50 (B1-B3) at 
different time steps. 
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The velocity field features observed in Figure 49 are closely related to the shape and extent of 

warmer liquid regions of Figure 48. The numerous recirculation eddies characterizing case B might 

be a possible explanation for the more limited thermal stratification observed due to the enhanced 

mixing of the liquid lading. 

The extents of the free convective layer and thermal boundary layer are reported in Table 27. Time 

evolution of temperature and vertical velocity profiles for cases A50 and B50 are illustrated in Figure 

50 to support the discussion, while results for other cases are reported in Appendix D. For each case 

study, boundary data were extracted at the horizontal centreline (horizontal red line in Figure 50) at 

30 and 120 min. The extent of the velocity boundary layer formed in proximity of the wall is of few 

centimetres for the tank considered in case-study A. In the case of tank B, the liquid velocity 

boundary layer is reduced by 30-60%, whilst vapour velocity boundary layer has an extension 

comparable to the other case. Comparing the results of case studies A and B, it can be noted that 

the thickness of fluid layer that is affected by natural convection in proximity of the wall increases 

with both the tank filling degree and diameter. However, when the thickness of velocity free 

convective layer is normalised with respect to the tank diameter, case-study B shows larger 

normalised convective layers. This is due also to the higher velocity magnitude values, which exhibits 

an increment of 20% and 80% respectively after 30 and 120 min since the start of the fire in case 

B50 when compared to case A50.  

Table 27: Extent of velocity and thermal free convection layers evaluated at the horizontal centreline 
of the tank. Boundary layer thickness is normalised with respect to tank diameter. 

Case 
ID 

Velocity free convection layer Thermal free convection layer Maximum 
velocity 

magnitude 
[m/s] 

Thickness 
[mm] 

Normalised 
thickness 

Thickness 
[mm] 

Normalised 
thickness 

30 min 

Open-deck tank 

A85 121.3 2.820×10-2 20.9 4.866×10-3 0.178 

A50 118.2 2.749×10-2 29.3 6.808×10-3 0.086 

A15 72.6 1.689×10-2 109.6 2.549×10-2 0.357 

Road tanker 

B85 82.6 3.593×10-2 26.8 1.165×10-2 0.248 

B50 68.1 2.963×10-2 24.9 1.082×10-2 0.155 

B15 22.0 9.575×10-3 81.1 3.527×10-2 0.263 

120 min 

Open-deck tank 

A85 99.0 2.302×10-2 18.4 7.994×10-3 0.183 

A50 246.7 5.738×10-2 26.0 1.130×10-2 0.283 

A15 18.4 4.276×10-3 30.2 1.311×10-2 0.187 

Road tanker 

B85 67.0 2.911×10-2 13.4 5.831×10-3 0.162 

B50 104.9 4.560×10-2 10.7 4.645×10-3 0.339 

B15 7.3 3.159×10-3 22.0 9.575×10-2 0.184 
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The results obtained for the thermal boundary layer show that the previous behaviour is also present 

when dealing with the analysis of temperature profiles. The thermal boundary layer thickness, in fact, 

is higher for the larger diameter tank, with thickness values ranging between 10 and 120 mm. 

Compared to the thickness of velocity free convection layer, the thermal boundary is generally 

thinner, as expected (Bird et al., 2006). In fact, when Prandtl number (𝑃𝑟) is greater than unity the 

temperature boundary layer usually lies inside the velocity boundary layer, whereas for 𝑃𝑟 < 1 the 

relative thicknesses are reversed. Results for cases A15 and B15 reported in Table 27 refer to vapor 

phase, since the liquid interface is below the horizontal centreline of the tank. In these cases, 𝑃𝑟 is 

about 0.5, which explains the larger thickness of the thermal free convective layer compared to the 

velocity layer. Moreover, the velocity free convection layer is much smaller when compared to that 

of the liquid phase (see cases A85, A50 and B85, B50). This difference is reversed when considering 

the thermal boundary layer extent. 

 

Figure 50: Comparison of thermal and vertical velocity profiles at different time steps for cases A50 
(panels A1 and A2) and B50 (panels B1 and B2). Data refer to the tank horizontal centreline 
(horizontal segment in the sketch). The dashed segment indicates the tank filling degree. 
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7.3.3. Assessment of safety Key Performance Indicators 

The results of 2D CFD simulations were used to evaluate the KPIs defined in Section 7.2.6, in order 

to explore the safety margins with respect to critical conditions of the LNG tanks exposed to fire. The 

definition of safety KPIs based on CFD simulation results allowed obtaining preliminary indications 

about the possible damage state of pressurized cryogenic vessels subject to hydrocarbon fire heat 

loads. Figure 51 reports the values of the KPIs obtained for the different simulation cases after 60, 

90 and 120 minutes since the fire start.  

Based on the threshold values defined for each KPI, three different volumes were determined in the 

space defined by the three safety KPIs: 

1. a safe region, where all the KPI values considered are within the safety margin (green zones in 

Figure 51);  

2. an intermediate region, in which at least one indicator expresses a potentially dangerous 

situation (yellow zone in Figure 51);  

3. an unsafe region, in which all the KPI values fall over the relevant safety limits (red zone in Figure 

51). 

Figure 51a reports the values obtained for 𝐼𝑃𝐼 and 𝑇𝐼 in the different simulation cases. Given the 

relatively high wall temperatures obtained in the simulations, none of the 𝑇𝐼 values fall in the safe 

region except for the case A85 at 60 min of fire exposure. This is due to the combined effect of high 

thermal inertia of the liquid lading (i.e., due to the high filling degree) and the limited time of fire 

exposure. The results obtained provide a simplified indication of the tank mechanical integrity 

reduction induced by the thermal weakening. Figure 51a also shows that most of the results are in 

the yellow intermediate region, due to the low 𝐼𝑃𝐼 values obtained associated with the limited 

pressurization (see Figure 45). Only after very long fire exposures do simulation results fall in the 

unsafe region. This confirms that the risk of tank structural failure is enhanced by a thermal 

weakening of the steel. The thermal weakening is particularly relevant for tanks having lower filling 

degrees, due to the higher extension of the vapour space, in which higher temperature values are 

obtained. In the simulation case B15, after 60 minutes of fire exposure all KPIs fall inside the red 

area. 

The values of 𝐸𝐼 and 𝐼𝑃𝐼 are shown in Figure 51b. The results show that after 60 minutes of fire 

exposure, 𝐸𝐼 values are always in the unsafe region. This indicates that after 60 minutes of fire 

exposure, the energy released by a catastrophic failure of the tank would always be sufficient to case 

a domino effect, escalating the accident. 
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Figure 51c shows the six cases identified as having the most critical conditions, as all the three KPIs 

fall in the unsafe region. Five of the cases are related to case-study B, whilst for the larger tank 

(case-study A) just case A15 falls in the unsafe region, only after two hours of fire exposure. This 

indicates that the more critical cases feature lower values of LNG inventories. This is due to 

combined effect of thermal weakening, which affects a higher portion of tank surface in contact with 

the vapour, and sufficient energy accumulation, able to lead to relevant escalation effects in case of 

tank failure, due limited thermal inertia of the tank lading. 

 

 

Figure 51: Comparison of safety KPIs for fire-engulfed cryogenic pressure tanks: a) 𝑇𝐼 (Temperature 

index) versus 𝐼𝑃𝐼 (Internal Pressure index); b) 𝐸𝐼 (Energy index) versus 𝐼𝑃𝐼 (Internal Pressure 
index); c) 3D representation of the unsafe volume where all the three KPIs are above the safe 
threshold. 
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7.4. LNG tanks exposed to distant pool fires 

A further application of the CFD model described above is the prediction of pressurization rate of 

double-walled pressurized cryogenic tanks receiving heat loads from distant pool fires. Such a 

scenario, representative of a possible accident outcome in an LNG storage facility, introduces an 

element of non-uniformity in the boundary condition to which LNG tanks are subject, the effects of 

which are worth being assessed. A set of 2D CFD simulations was carried out considering the same 

tank geometries and initial conditions as case studies A and B listed in Table 24. 

7.4.1. Definition of boundary condition  

The same model setup detailed in Section 7.2.5 was used for the current simulations, with the 

exception of the boundary condition that needs to account for the geometrical effects due to relative 

positions of pool fire and storage tank. The distant fire heat load is principally transferred to the tank 

by radiation, while a smaller fraction is attributed to natural convection, generally less than 10% 

(Landucci and Birk, 2013). 

Neglecting the amount of radiation absorbed by the atmosphere and assuming the fire as an emitting 

surface with a constant equivalent black body temperature (𝑇𝑓,𝐵𝐵, that was set to a value of 860 °C), 

the incident radiation (𝐼𝑃) at point P on the tank surface can be expressed as:  

𝐼𝑃 = 𝜎 × (𝑓𝑃→𝑓 × 𝑇𝑓,𝐵𝐵
4 + (1 − 𝑓𝑃→𝑓) × 𝑇𝑎𝑚𝑏

4 ) Eq. 7.40 

where σ is the Stefan-Boltzmann constant and 𝑇𝑎𝑚𝑏 is the ambient temperature (set to 16 °C for the 

analysis). The term 𝑓𝑃→𝑓 is the view factor between point P and the fire. Prior to the characterization 

of boundary condition, it is fundamental to define a reference pool fire scenario, delineating its 

geometrical features. For the present analysis it was assumed to simulate the thermal effects 

produced by a pool fire resulting from a 3” (76.2 mm) diameter LNG transfer hose spillage. Using 

well-established source models (Van Den Bosh and Weterings, 2005) the spilled LNG mass was 

calculated and used as input for the pool fire model. The resulting pool fire, located 15 m from the 

tank centre, has a diameter of 3.2 m, and a flame height of 11.9 m. To account for the effect of the 

wind on the flame shape, the fire was modelled as a tilted cylinder following the solid flame approach. 

Assuming a wind velocity of 5 m/s, the flame resulted tilted by an angle of 57° in the direction of the 

tank (to reproduce a worst-case scenario). The numerical evaluation of view factors required the 

discretization of both fire and tank outer wall surfaces. These were discretized using grid elements 

with a maximum edge size of 0.1 and 0.2 m, for the tank and the fire surfaces, respectively. Referring 

to Figure 52a, the analytical expression of the view factor between a tank element 𝑇𝑖 with area 𝑑𝐴1 

and an element 𝐹𝑗 on the surface of the pool fire, with area 𝑑𝐴2 is:  

𝐹𝑇𝑖𝐹𝑗
=

1

𝐴1
∫ ∫

cos 𝛼1 cos 𝛼2

𝜋 𝑆2
𝐴1𝐴2

𝑑𝐴1𝑑𝐴2 Eq. 7.41 

where 𝛼1 and 𝛼2 indicate the angle between the segment 𝑆 (connecting 𝑇𝑖 and 𝐹𝑗) and surface normal 

vectors 𝑛1 and 𝑛2 respectively. 
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Figure 52: Meshed 3D geometries of pool fire and tank used for view factor calculation (a). Panel (b) 
shows the variation of the incident radiation as a function of the angular coordinate θ on the central 
circular section. 

The numerical solution of Eq. 7.41 was achieved approximating the integral with a summation over 

all mesh elements of the fire using a MATLAB® script. In this way, view factors were calculated for 

each mesh element on the tank surface. Thus, using Eq. 7.40, it was possible to obtain the values 

of the incident radiation over the red dashed circumference reported in Figure 52a, representing the 

external boundary of the 2D computational domain considered for the CFD simulations. The 

estimated incident radiation values for the two tanks under analysis are reported in Figure 52b. 

At this point, it was possible to calculate an equivalent black body temperature, 𝑇𝐵𝐵,𝑒𝑞, representative 

of the incident radiation hitting the tank wall, as expressed by the following equation: 

𝑇𝐵𝐵,𝑒𝑞.
4 =

𝐼𝑃

𝜎
 Eq. 7.42 

A profile file was then created and passed to the CFD solver to define the boundary condition. 

Knowing the value of 𝑇𝐵𝐵,𝑒𝑞for all the points lying on the tank circumference, the solver calculates 

the entering heat flux (�̇�𝑃
′′) for each point P on the tank circumference according to Eq. 7.43. 

�̇�𝑃
′′ = 𝜎 × 𝜀𝑤𝑎𝑙𝑙 × (𝑇𝐵𝐵,𝑒𝑞.

4 − 𝑇𝑤𝑎𝑙𝑙
4 ) Eq. 7.43 

Where, 𝜀𝑤𝑎𝑙𝑙 is the tank outer wall emissivity (assumed equal to unity to account for worst case 

conditions, as done in Section 7.2.5), and 𝑇𝑤𝑎𝑙𝑙 is the tank outer wall temperature. To avoid 

introducing uncertainties due to the lack of specific measurements, the influence of natural 

convection on heat transfer from distant sources was neglected during the analysis. This approach 

was also followed by Scarponi et al. (2018c) in a similar work, avoiding the necessity of an empirical 

estimation of natural convection heat transfer coefficient.  
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7.4.2. Main results 

Figure 53 reports the dynamic evolution of tank pressure for both case studies A and B for the 

different filling degrees considered. As predicted in case of full engulfing pool fires, the pressurization 

rate is higher for tanks with lower liquid levels. However, the pressure increase is limited to 1 bar 

above the initial pressure value for both the analysed cases: after two hours of pool fire exposure, 

both tanks reach a pressure level significantly lower than the MAWP reported in Table 24. Comparing 

Figure 53a and Figure 53b, it can be noticed how different operating conditions and tank size affect 

the pressure build-up: while case A show a significant time lag of about 45 minutes before the 

pressure starts to rise, pressurization for case B appears not to be delayed. 

 

Figure 53: Pressurization curves obtained for the open-deck ship-fuel tank (a) and road tanker (b) 
exposed to distant pool fire. 

As explained in Section 7.2.6, another important parameter for the assessment of integrity is the wall 

temperature. Figure 54 compares the variation of tank inner wall temperatures with the angular 

position for the case studies at two different time steps. It is clear how the higher heat transfer 

coefficients for the liquid phase contribute to keep the wetted part of tank wall at lower temperatures 

than the wall portion in contact with the vapour, possibly inducing thermal stresses. Moreover, the 

temperature predicted for the road tanker (case B) is far greater than the correspondent case A. This 

effect could be linked to the thinner insulation layer of Case B, that increases the heat flux reaching 

the inner wall, and to a higher surface-to-volume ratio characteristic of smaller diameter tanks. 

However, the maximum temperature reached by the wall section in contact with the vapour region 

is always lower than 323 K, regardless of the tank filling degree. As explained in Section 7.2.6, this 

value is taken as the maximum design temperature for static vacuum insulated austenitic steel 

vessels. A similar trend is predicted for the external wall temperatures that are about 120-250 °C 

higher than those of inner walls, reaching a maximum value of about 330 °C after two hours of fire 

exposure and at an angular coordinate close to 45°. 

a) b)
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Figure 54: Inner wall temperature profiles at 90 min (a) and 120 min (b) as a function of the angular 
coordinate θ. 

Liquid temperature values for different simulation time steps of case study B are reported in Figure 

55. The convective flows that develop following the exposure to distant pool fire promote the mixing 

of warmer liquid at the wall with the colder liquid bulk. Predicted liquid temperatures are measured 

on the central axis of the tank (shown in red in the figure). It is possible to notice that liquid 

stratification occurs for 50% and 85% filling degrees, for which the temperature differences between 

the bulk of the liquid and the vapor-liquid interface are in the order of 1 K, while for lower liquid level, 

the liquid tends eventually to de-stratify and approaches a uniform temperature value. A similar 

behaviour is predicted for case A with a maximum liquid temperature difference of about 0.5 K along 

the centreline axis. 

 

Figure 55: Liquid temperature variation with axial position at three different time steps. Solid lines: 
Case B85; dashed lines: Case B50; dotted lines: Case B15. 
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The further analysis of the CFD modelling results involved the calculation of the safety KPI defined 

in Section 7.2.6. When exposed to distant fire sources, under the conditions described in Section 

7.4.1, the calculated value of the 𝐼𝑃𝐼 safety KPI results always below the safety threshold as the tank 

internal pressure will not exceed the MAWP value under any circumstance. Similarly, the 𝑇𝐼 KPI will 

be always comprised within the safety margins since the tank internal wall temperature will not 

exceed 314 K in the worst situation (Case B15, after 2h of distant fire exposure). According to its 

definition, 𝑇𝐼 KPI for the condition considered in this analysis will be always equal to zero. A different 

situation is observed for the Energy Indicator, 𝐸𝐼 as shown in Figure 56. Calculated values for Case 

study A (see Figure 56a) give results higher than the safety threshold, thus all the points 

corresponding to different filling degrees fall in the intermediate safety region, as the resulting internal 

pressure level does not compromise tank structural integrity. Conversely, all the results of Case 

study B lie in the safe region (see Figure 56b) thanks to the combination of low 𝐸𝐼 and 𝐼𝑃𝐼 indicators. 

Comparing these results with those addressing a full engulfment scenario, reported in Figure 51b, it 

is possible to notice that the same trend for 𝐸𝐼 values is maintained, with Case B showing lower 

values than correspondent Case A. Unlike what observed for the full engulfment condition, for which 

𝐸𝐼 value results were higher than the safety threshold for the most part of considered time step and 

filling degree combinations, when assuming a distant radiation scenario all 𝐸𝐼 values for Case B fall 

below the safety threshold. This could be linked to the effect of relative position between the fire 

source and receiving tank, which considerably lowers the amount of energy received by Case B 

tank, as confirmed by the modest values of the pressure KPI. Furthermore, the lower amount of LNG 

stored in the smaller Case B tank contributes to maintain 𝐸𝐼 in the safe region. 

 

Figure 56: 𝐸𝐼 (Energy index) versus 𝐼𝑃𝐼 (Internal Pressure index) safety KPIs for cryogenic pressure 
tanks exposed to a distant pool fire: a) Case A (Open-deck ship-fuel tank); b) Case B (Road Tanker). 

a)

b)
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7.5. Conclusions 

The two-dimensional CFD model described in this Chapter laid the basis for a more accurate 

investigation of the thermal response of LNG tanks engulfed in fires. The developed model was 

exploited to simulate the response of double-walled cryogenic storage tanks of industrial interest 

under different fire attack conditions. The proposed case studies were aimed at investigating the 

behaviour of vacuum insulated horizontal bullet tanks with granular perlite filling in the annular gap. 

The predicted pressurization rate showed very good agreement with pressure data collected during 

experimental bonfire test and allowed validation of the developed CFD model, supported also by 

satisfactory temperature predictions of liquid and vapour phases.  

Some uncertainty is related to the dearth of reliable experimental temperature measurements and 

to the lack of a detailed characterization of vacuumed perlite insulation operating in such extreme 

conditions. To cope with this latter aspect, a dedicated analysis was carried out to quantify the effect 

of relevant parameters on the thermal conductivity of the insulation. This allowed determination of 

the predominant heat transfer mechanisms inside granular perlite under vacuum conditions, 

supporting the detailed definition of boundary conditions for the 2D CFD simulations. Further 

experimental testing campaigns will be fundamental for the further development and validation of 

the CFD model, providing additional valuable data needed for an accurate description of boundary 

conditions experienced during a full engulfing fire and a sound validation of temperature predictions. 

The results obtained in the present study provided insights into the pressurization rate, temperature, 

and velocity fields development, along with the spatial distribution of evaporation regions, advancing 

the simulation capabilities offered by lumped parameter models. In accordance with thermodynamics 

and with earlier experimental data, the predicted tank pressurization rate was found to be higher for 

tanks with lower filling degrees. However, a prolonged fire exposure is required to reach critical 

values of pressure-build up in the vessels. From the comparison of simulation results of the different 

case studies, the influence of thermodynamic and geometrical features over the spatial distribution 

of evaporating zones and velocity fields inside cryogenic tanks results is clear. 

CFD predictions represent a fundamental input for the definition of a set of safety KPIs. The 

indicators were specifically designed to provide a tool for a holistic assessment of tank safety in case 

of fire exposure, encompassing different aspects such as loss of integrity and potential for domino 

effects resulting in accident escalation. The estimated KPI values highlighted the relationship 

between hazards originating from pressure-build up and thermal weakening of the tank structure. 

Moreover, despite the greater escalation potential of storage tanks with higher filling degrees, critical 

safety conditions are reached more rapidly for tanks with a lower liquid level. Tank safety KPIs may 

provide a useful support for future safety studies allowing for the identification of critical trends and 

unsafe conditions during fire exposure of LNG tanks. 

Finally, some limitations of the proposed modelling approach must be remarked upon, apart from 

the uncertainties linked to insulation performance during fire incidents. A main restriction of the model 

lies in its bi-dimensional setup, which precludes the simulations of fire scenarios having variable 

characteristics along the longitudinal direction of the tank. As a consequence, the axial component 

of the flow field cannot be modelled, and the effect of tank ends over the development of flow and 

temperature fields inside the vessel must be neglected. Lastly, the 2D approach does not allow to 

simulate the fluid behaviour following the opening of the PRV, since this event is governed by three-

dimensional effects. For these reasons, further research work is needed for the development of CFD 

modelling of cryogenic tanks exposed to fire scenarios, encompassing experimental test campaigns 

as well as progressing on numerical simulations. A future development of the described CFD 

approach would be to progress towards the setup of a more complete three-dimensional model as 

done by Scarponi et al., (2019) for LPG tanks. 
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Chapter 8. Safety of fuel preparation room on-

board LNG fuelled ships 

Regardless of the gas engine technology used on board a ship, lay-out and space limitations may 

force to locate the fuel gas supply system process equipment inside a specific enclosed space: the 

fuel preparation room (FPR), usually sited below deck. Such an arrangement represents an 

inherently unsafe design solution that needs to be compensated by adequate safety measures and 

systems, especially on passenger ships, for which safety aspects are of utmost importance. A 

consequence assessment study for the credible accident scenarios of interest is presented in this 

Chapter. A case-study was considered, to provide a geometrical reference to the problem. Two 

different LNG pool fire scenarios, originating from onboard process equipment are analysed. The 

dynamic characteristics of the considered LNG pool fires are reproduced using a CFD software, 

exploiting the capabilities of such tools for the accurate estimation of dangerous scenario 

consequences. NIST’s Fire Dynamics Simulator (FDS) was selected as the CFD solver for the 

present analysis since it has been extensively validated for large hydrocarbons pool fires and 

cryogenic fuel combustion applications (McGrattan et al., 2015a). The modelling results obtained, 

such as the radiation heat flux and the rate of heat generated, are presented. This data provides 

valuable information to assess the possibility of accident propagation inside an onboard enclosed 

space and may also support the evaluation of FPR structural resistance in case of fire. 

Enclosure fires represent a scenario of interest for the nuclear industry and civil engineering field. 

Theoretical basis necessary for the understanding of enclosure fires phenomena can be found in the 

works by Quintiere, (2006, 1989) and in the Handbook of Fire Protection Engineering (Hurley et al., 

2016). A consistent number of experimental studies were carried out to understand the peculiar 

characteristics of such events and the expected consequences. A summary of the principal 

enclosure fire tests is found in the report issued by the US Nuclear Regulatory Commission (Stroup 

et al., 2016), that presents key results of the experimental studies as well. A general summary of 

experimental fire tests in confined and ventilated multi-compartments is presented by Audouin et al., 

(2013). Several numerical and experimental studies are focused on the consequence modelling of 

large LNG spills occurring in an open environment, either on land or water, while others estimated 

the consequence of smaller LNG pool fires (Pio et al., 2019). A review of recent applications of CFD 

for enclosure fire modelling is presented by Shen et al., (2020). However, the reviewed literature 

lacks a study aimed at evaluating the consequences of small-scale LNG pool fires occurring inside 

confined spaces. The present study is thus a first attempt to fill this gap, providing a preliminary 

consequence assessment of enclosure LNG pool fires occurring in a ventilated compartment. 
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8.1. Description of the case study 

To determine the safety level of an LNG FPR, a typical roll on/roll off (RORO) ferry ship was selected 

as a case study. As highlighted in Section 2.2, this ship type is currently the most common LNG-

fuelled vessel and in case of accidents affecting the FGSS it can also potentially expose a higher 

number of people to harmful situations than cargo or other ship classes. General specifications of 

the ship are summarised in Table 28. 

Table 28: General specifications of the case ship 

Item Value Unit 

Deadweight tonnage 1,273 t 

Breadth 25 m 

Length 102 m 

Passenger number 1,000 - 

Car capacity 135 - 

Power 6 (2×3,000 kW) MW 

LNG capacity 140 m3 

Approximate total gas fuel consumption 2,900 kg/h 

The ship features a type C LNG storage tank that feeds the fuel system installed on board. Such 

types of RORO ferry can be fuelled by either LPDF or HPDF systems, therefore a comparison 

between these types of FGS systems is presented in this analysis. Two dual fuel main engines 

provide the necessary power. The FPR of the reference case ship is 23 m long, 5.1 m high and 5.5 

m wide. Side walls of the FPR were assumed to be protected from fire by class A-60 material, 

following the requirements set by the IGF code. 

 

Figure 57: Example of general arrangement of LNG fuel system 

Such spaces can alternatively be designed either as “gas safe”, for which any failure within the fuel 

system cannot lead to release of fuel gas, or as “ESD-protected”. In this latter case a single failure 

may result in a gas release into the space and subsequent activation of the ESD system. As required 

by the IMO IGF code, the fuel is supplied from the FPR to the engine room through double wall 

pipes. For such reasons, the present analysis was focused only on accidents occurring inside an 

ESD-protected FPR, for which double-walled pipes are not mandatory and, as a consequence, 

release events cannot be excluded. Among the minimum safety systems required by the IGF code 

for ESD-protected spaces, all confined spaces must be fitted with mechanical ventilation systems 

providing at least 30 air changes per hour. As stated in Section 13.6 of the IGF code, FPR ventilation 

systems shall be operative when pumps or compressors are working and can be therefore assumed 

as constantly in operation as long as ship’s engines are running. 
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The capacity of the FGSS was estimated based on the fuel gas consumption reported in Table 28. 

Process units featured by the high-pressure (HP) and low-pressure (LP) systems are illustrated in 

Figure 5a and Figure 5b, respectively. The FPR also accommodates the BOG heaters and BOG 

compressors that provide gas feed to the combustion systems at the necessary temperature and 

pressure values. The principal characteristics of the gas fuel systems considered in this study are 

summarised in Table 29. 

Table 29: Main specifications and operating conditions of the FGSS. 

Process unit 
Parameter 

Vol. Flowrate [m3/s] Pressure [bar] Temperature [K] Phase 

HP FGSS 

HP Fuel gas pump 7.19 300 146 Liquid 

HP LNG Vaporizer 15.06 300 318 Vapour 

Gas Heater 579.65 7 273 Vapour 

BOG Compressor 590.88 7 278 Vapour 

LP FGSS 

LNG Vaporizer 7.49 7 133 Liquid 

HP Fuel gas heater 624.41 7 293 Vapour 

Gas Heater 1,365.81 3 273 Vapour 

BOG Compressor 590.88 7 278 Vapour 

8.2. Detailed modelling of on-board LNG pool fires 

The first steps of the approach followed to evaluate the safety level of FPR were identical to those 

illustrated in Chapter 6 for the quantitative risk assessment of bunkering operations. Firstly, the main 

process data was collected, providing the basis for the loss of containment (LOC) categorization, 

which was carried out considering the possible release events reported in Table 6. 

Since the objective of the analysis is limited to the consequence evaluation of LNG pool fires, the 

LOC categorization was focused on liquid releases only. Therefore, this kind of release event was 

only applicable to the HP Fuel gas pump of the HPDF system and to the inlet section of the LNG 

Vaporizer featured in the LP FGSS. More specifically, LOC types R4 and R5 were considered for 

the mentioned process units. Release events were assumed to remain undetected for at least 90 s, 

as this was considered as the required timeframe for ESD system intervention, in accordance with 

assumptions reported in Section 6.2.3. The estimated release rates and total spilt mass for the 

considered LOC events, modelled as continuous releases using Eq. 6.22 are reported in Table 30. 

Table 30: Release rate and total released mass for assessed LOC events 

Process unit LOC Type Release rate [kg/s] Released mass [kg] 

HP FGSS 

HP Fuel gas pump 
R4 1.215* 109.35 

R5 1.215* 109.35 

LP FGSS 

LNG Vaporizer 
R4 1.018 91.62 

R5 1.215* 109.35 
* Assumed as 150% of ordinary mass flowrate. 

In the absence of more detailed specifications, release rates from the HP pump and full-bore rupture 

of the vaporizer inlet were limited to up 150% of the ordinary mass flow rate to approximatively 

account for the loss of pressure head in the line and the consequent shift of the pump operating point 

as suggested by Uijt de Haag and Ale (2005). 
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8.2.1. Pool characteristics 

When considering liquid releases, it is fundamental to estimate the pool evaporation rate which will 

be needed as a source term for the pool fire modelling. The dimension of the LNG pool and thus 

those of the fire depend both on the liquid spread and on the simultaneous vaporisation due to 

different heat sources, e.g., such as the heat received from the surface on which the pool is formed, 

and heat exchange due convection with air. Liquid pool thickness and radius can be calculated 

combining heat and mass balances. For continuous liquid releases, the pool will eventually reach a 

specific depth, for which surface evaporation balances the discharge flowrate. The pool will spread 

until the liquid release stops. Several pool evaporation models are available in the literature, 

accounting for different situations. A brief description of the model developed by Briscoe and Shaw 

(1980), which was used for the present analysis, is given in the following. 

Following the spillage of LNG onto soil or water surfaces, a liquid pool will be formed and 

subsequently will spread until a balance among the release rate and vaporisation rate is reached. In 

general, vaporization from a pool is a mass and heat transfer limited process. Several heat transfer 

modes are involved in pool vaporisation, such as heat transfer by convection between the liquid 

surface and the atmosphere, and by radiation. However, for cryogenic spills, it is the heat conduction 

between the liquid and the ground that controls the rate of vaporisation (Mannan, 2012c). The 

dimension of the pool is determined by the spreading of the liquid and the concurrent vaporization 

due to the above-mentioned heat sources, as shown in Figure 58. 

 

Figure 58: Illustration of heat contributions to pool evaporation. 

Important aspects for the estimation of pool vaporisation are the liquid temperature of the pool, the 

heat received from the surroundings, and the heat removed from the liquid itself to provide the heat 

of vaporisation. Considering cryogenic pools, following a short period of very rapid vaporization, a 

relatively steady lower rate of vaporization is observed, as reported by Mannan, (2012b). For an 

unconfined release of LNG spilt over ground, the vaporisation rate (�̇�𝑒𝑣) can be estimated on the 

basis of the heat transferred to the pool. The following relationship, proposed by Briscoe and Shaw, 

(1980) was used: 

�̇�𝑒𝑣 = 2𝜋𝜃 ∫
𝑟1

(𝑡2 − 𝑡1)1 2⁄

𝑟2

0

𝑑𝑟 Eq. 8.1 

where 𝑟1 is the pool radius at time 𝑡1,  𝑟2 is the radius at time 𝑡2 > 𝑡1 and 𝜃 is a parameter expressed 

as follows: 

𝜃 =  
𝜒𝑔𝑘𝑔(𝑇𝑔 − 𝑇𝑝𝑜𝑜𝑙 )

∆𝐻𝑣𝑎𝑝√𝜋𝛼𝑔

 Eq. 8.2 
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The term 𝜒𝑔 accounts for the surface roughness, while 𝛼𝑔 is the ground thermal diffusivity. 𝑇𝑔 and 

𝑇𝑝𝑜𝑜𝑙 represent the ground and pool temperatures respectively, whereas 𝑘𝑔 is the thermal 

conductivity value of the ground and ∆𝐻𝑣𝑎𝑝 is the latent heat of vaporization. 

As reported by Pio et al., (2019), the heat release rate (𝐻𝑅𝑅) generated by LNG pool fires can be 

approximated using the Hottel's correlation (Babrauskas, 1983), expressed by Eq. 8.3, which 

requires the knowledge of some characteristics pool quantities. 

𝑚′′ =
𝐻𝑅𝑅

∆𝐻𝑐 ∙ 𝑆𝑝
= 𝑚∞

′′ ∙ (1 − 𝑒−𝑘𝛽𝐷) Eq. 8.3 

Here the term 𝑚∞
′′  indicates the mass burning rate (𝑚′′) obtained for a pool having an “infinite” 

diameter. Term 𝐷 is the pool diameter, 𝑆𝑝 represents the pool surface and ∆𝐻𝑐 the heat of 

combustion, while terms 𝑘 and 𝛽 are the absorption-extinction and the beam length correction 

coefficients, respectively. As reported by Zhang et al., (2018), these two parameters are frequently 

aggregated for small and medium scale LNG pool fires. The majority of the reported values for 𝑘𝛽 

range between 0.14 and 0.46 m-1. Concerning the values of 𝑚′′, there is a certain variability among 

the experimental values since the mass burning rate depends on geometrical features of the pool 

and on the weather conditions (Zhang et al., 2018). 

The amount of LNG evaporating from the pool, i.e., the evaporation rate �̇�𝑒𝑣, is another crucial 

parameter to assess the effects of pool fires. For this study, the evaporation rate estimated with Eq. 

8.1 was assumed equal to the burning rate, as suggested by Wahlqvist and van Hees, (2016). This 

allowed for the preliminary estimation of the quantities, �̇�, the peak heat release rate of the fire, and 

the non-dimensional ratio 𝐷∗ 𝛿𝑥⁄  that provides guidance for the determination of mesh resolution. 

The quantity 𝐷∗ is a characteristic fire diameter calculated according to the following criterion defined 

by Ma and Quintiere, (2003): 

𝐷∗ = (
�̇�

𝜌∞ ∙ 𝐶𝑝 ∙ 𝑇∞ ∙ √𝑔
)

2
5

 Eq. 8.4 

Where 𝛿𝑥 is the nominal size of a mesh cell; 𝑔 is the gravity constant and 𝜌∞, 𝐶𝑝 and 𝑇∞ indicates 

air density, specific heat, and temperature at infinite distance from the fire. 

When a fire occurs inside an enclosure, the expansion of gases within the confined volume due to 

heat addition pressurizes the enclosure. Only a part of the heat released by the fire contributes to 

pressurization: in fact, a fraction is lost by heat transfer to the boundaries or to other surfaces within 

the enclosure. As a fire in a closed compartment diminishes due to oxygen depletion, the rate of 

heat losses to enclosure boundaries will become greater than the rate of heat addition due to the 

fire. This will cool down the smoke, causing the depressurization of the enclosure. 

An energy balance for the enclosure control volume illustrated in Figure 59 can be written as: 

𝑑𝑈

𝑑𝑡
= �̇�𝑛𝑒𝑡 + 𝑚𝑖̇ �̂�𝑖 + 𝑚𝑜̇ �̂�𝑜 − 𝑝

𝑑𝑉

𝑑𝑡
 Eq. 8.5 

where 𝑈 is the total internal energy in the control volume and �̇�𝑛𝑒𝑡 is the net rate of heat addition into 

the space, equal to the difference between the actual 𝐻𝑅𝑅 of the fire and the rate of heat losses. 
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Figure 59: Control volume and streams considered for enclosure fire energy balance 

For a perfectly sealed compartment, the inlet and outlet mass flowrates (𝑚𝑖̇  and 𝑚𝑜̇ ) will be equal to 

zero and the volume will remain constant. Assuming ideal gas behaviour, Eq. 8.5 can be rewritten 

as:  

𝐶𝑣

𝑅
𝑉

𝑑𝑝

𝑑𝑡
= �̇�𝑛𝑒𝑡 + 𝑚𝑖̇ �̂�𝑖 + 𝑚𝑜̇ �̂�𝑜 Eq. 8.6 

Integrating between initial conditions (marked by subscript 0) and time 𝑡, a simplified expression for 

the estimation of enclosure pressurization can be obtained: 

∆𝑝

𝑝0
=

∫ �̇�𝑛𝑒𝑡𝑑𝑡
𝑡

0

𝜌0𝐶𝑣𝑉𝑇0
 Eq. 8.7 

Methane combustion reaction was modelled using a two-step Simple Chemistry kinetic model as 

suggested by Lock et al. (2008), who conducted experimental studies of under-ventilated 

compartment fires. The two-step scheme basically converts all of the carbon in the fuel molecule to 

𝐶𝑂 and Soot in the first step, and then oxidizes most of the 𝐶𝑂 and Soot to form 𝐶𝑂2 in the second 

step. The fuel hydrogen atoms can either form 𝐻2 or 𝐻2𝑂 in the first step as well. 

1) 𝐶𝑥𝐻𝑦 + 𝜈𝑂2,1𝑂2 → 𝜈𝐻2𝑂,1𝐻2𝑂 + 𝜈𝐶𝑂,1𝐶𝑂 + 𝜈𝑆,1𝑆𝑜𝑜𝑡 

2) 𝜈𝐻2𝑂,1𝐻2𝑂 + 𝜈𝐶𝑂,1𝐶𝑂 + 𝜈𝑆,1𝑆𝑜𝑜𝑡 + 𝜈𝑂2,2𝑂2 → 𝜈𝐻2𝑂,1𝐻2𝑂 + 𝜈𝐶𝑂2
𝐶𝑂2 + 𝜈𝐶𝑂,2𝐶𝑂 + 𝜈𝑆,2𝑆𝑜𝑜𝑡 

Eq. 8.8 

The post-flame yields of 𝐶𝑂, 𝐻2 and Soot were all set equal to the default value of zero for the present 

analysis, in the absence of more detailed data. However, it should be remarked that the two-step 

model acknowledges the fact that 𝐶𝑂 and Soot are present at much higher concentrations within the 

flame envelope than their post-flame yields would suggest (McGrattan et al., 2019). 
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In order to consider the fire suppression due to oxygen depletion inside the FPR, the FDS Flame 

Extinction model was used. Between the two options available, the simpler “Extinction 1” model was 

chosen. It determines whether combustion occurs at computational cell level on the basis of a Critical 

Flame Temperature (𝐶𝐹𝑇), which is a parameter taking into account the calculation cell oxygen 

concentration as expressed by the following equation:  

 𝐶𝐹𝑇 = 𝑇0 + 𝑦 𝑂2,𝑙𝑖𝑚  
∆�̃�𝑐, 𝑂2

𝑛𝐶𝑝
̅̅ ̅

 Eq. 8.9 

where 𝑇0 is the initial temperature of the fuel/air mixture, 𝑦 𝑂2,𝑙𝑖𝑚 is the limiting oxygen volume fraction 

which values can be found in the FDS user’s guide (McGrattan et al., 2019), ∆�̃�𝑐, 𝑂2
 indicates the 

heat of combustion per mole of oxygen consumed, 𝑛 is the number of moles of combustion products 

per mole of fuel/air mixture, and 𝐶𝑝
̅̅ ̅ is the average heat capacity of combustion products in the 

temperature range 𝑇0 to 𝐶𝐹𝑇. 

The extinction model prevents the solver to model combustion inside cells with an oxygen 

concentration below a lower limiting value. Further details of the model and definition of 𝐶𝐹𝑇 can be 

found in the FDS Technical Reference Guide (McGrattan et al., 2015b) and in the chapter by Beyler, 

(2016) of the SFPE Handbook of Fire Protection Engineering. 

8.2.2. Definition of simulation cases and numerical setup 

Following the release categorization, two different pool fire scenarios were modelled using FDS: a 

larger pool resulting from LOC events with higher release rate affecting the HP pump, and a slightly 

smaller pool formed ensuing the R4 LOC event affecting the vaporiser inlet. Furthermore, the 

influence on pool fire development of fresh air inlet brought by the ventilation system inside the FPR 

was modelled, leading to the definition of four different simulation cases as summarised in Table 31. 

The effect of inlet air was assessed comparing the results of a case with shut air inlets and the sole 

exhaust vents operative (cases HP-1 and LP-1) against the results obtained assuming a normal-

operating ventilation system (i.e., with both inlet and outlet streams). 

Table 31: Main characteristics of the cases analysed and location of pool and vents inside the FPR 

Case ID Pool diameter [m] Ventilation Cell number 

HP - 1 
2.36 

No (exhaust only) 

322,575 
HP - 2 Yes (in/out) 

LP - 1 
2.12 

No (exhaust only) 

LP - 2 Yes (in/out) 

Turbulence characteristics were reproduced using the large eddy simulation (LES) model, which is 

a popular technique in CFD studies for fire related flows since it allows to resolve the large-scale 

flow unsteadiness and buoyancy effects that play an important role in fire modelling (Merci, 2016). 

The LES model is more accurate than the RANS approach since the large eddies contain most of 

the turbulent energy and are responsible for most of the momentum transfer and turbulent mixing, 

and LES captures these eddies in full detail directly whereas they are modelled in the RANS 

approach (Zhiyin, 2015). 
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Since FDS is a LES-based model, uniform meshing is preferred (McGrattan et al., 2015b), thus the 

computational domain was subdivided into uniform cells having a size 𝛿𝑥, chosen accordingly to the 

value of the 𝐷∗ 𝛿𝑥⁄  ratio. As suggested by the U.S. Nuclear Regulatory Commission (2016) in their 

report on the verification and validation of selected fire models, the cell size was defined in order to 

have a 𝐷∗ 𝛿𝑥⁄  ratio comprised in a range from 16 to 40. All simulations were run using a variable time 

step, initially set at 0.01 s which size was limited by a stability constraint on the Courant-Friedrichs-

Lewy number (see McGrattan et al. (2015b) for additional details). Initial temperature and pressure 

inside the FPR were set at 15°C and 1 atm respectively, considering normal operating onboard 

conditions. The maximum duration considered for simulation cases HP-1 and LP-1 was set to 90 s 

to avoid numerical stability problems related to significant pressure decrease due to the lack of air 

ingress in the enclosure. On the other hand, additional 10 minutes of simulation (equal to 5 air 

changes) prior to fire ignition were considered for cases HP-2 and LP-2 to ensure reasonable steady 

state conditions for the air velocity field. To reproduce generic conditions inside the FPR, five exhaust 

vents with a surface of 1 m2 each were assumed to be located on the longitudinal midsection of the 

FPR ceiling, equally distanced. Similarly, two 1 m2 ventilation supply vents were placed at the 

transversal midsection of the FPR, at 1 m height. Supply and exhaust vent boundary conditions were 

defined specifying volumetric flowrates that reproduce the required 30 air changes per hour (i.e., 

3,760 m3/h and 9,400 m3/h for each exhaust and supply vents, respectively). The exact location of 

FPR features and pool fire are reported in Table 32, whereas a schematic overview of the 

computational domain is shown in Figure 60. 

Table 32: Coordinates of pool fire centre and mechanical ventilation items for the modelled FPR. 
Refer to Figure 60 for additional reference. 

Item 
Domain coordinates [m] 

x-axis y-axis z-axis 

Pool Centre 2.725 3.000 0.000 

Exhaust vent #1 2.725 2.875 5.100 

Exhaust vent #2 2.725 7.188 5.100 

Exhaust vent #3 2.725 11.500 5.100 

Exhaust vent #4 2.725 15.813 5.100 

Exhaust vent #5 2.725 20.125 5.100 

Supply vent #1 0.000 11.500 1.000 

Supply vent #2 5.500 11.500 1.000 

In accordance with the assessment carried out in the previous Chapters, LNG was modelled as pure 

methane. A more detailed analysis of the effects of different LNG compositions over thermal 

characteristics of small-scale pool fires can be found elsewhere (Pio et al., 2019). 
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Figure 60: Schematic view of the FPR modelled in FDS. Green dots represent the location of heat 
flux measuring points. Only two arrays of measuring points are illustrated for ease of comprehension. 
The pool fire surface, even if displayed as a square, was modelled using a circular vent. 

Since the determination of a pool spread rate could be influenced by numerous factors for the specific 

cases under analysis, such as the ship movements, a simplified approach was followed to reproduce 

the spreading of the LNG pools in the simulations. The pool fires were defined using a circular vent 

surface having the same area as the maximum pool area estimated by the previously described pool 

evaporation model. To replicate the time variation of the pool evaporation rates, a prescribed time 

ramp of �̇�𝑒𝑣 values was used, based on the rates estimated with Eq. 8.10. The values used in the 

simulations, expressed per unit surface of the pool, are reported in Figure 61. 

 

Figure 61: Time ramp considered for the pool vaporisation flux in the FDS model. 
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8.3. Modelling results 

A preliminary evaluation of FDS results was performed reproducing a 1.0 m and a 2.12 m diameter 

LNG pool fire scenarios, comparing the results with a 3.0 m LNG pool fire investigated in the work 

by Pio et al. (2019). In particular, the spatial distribution of the radiative heat flux generated by pool 

fires having different diameters was compared, as illustrated in Figure 62. The L/D ratio represents 

a dimensionless distance from the pool centre: here D indicates the pool diameter and L is a distance 

value. The original study investigated pool fires occurring in an open field, therefore the 1.0 m 

diameter and the 2.12 m diameter fires were simulated as located on open ground for sake of 

comparison. As can be seen from Figure 62, larger pool diameters tend to shift the radiative heat 

flux curve towards the bottom left corner of the chart, in line with the results by Pio et al. (2019). 

Moreover, the open pool fire curve follows the same trend as the original curve from the cited work 

(green, dot-dashed in Figure 62). The same diameter pool fire was also modelled considering it as 

occurring inside the above described FPR (referred to as Compartment pool fire in Figure 62). In this 

case the radiative heat flux curve does not present any maximum and appears to be shifted towards 

lower heat flux values, possibly because of wall and ceiling confinement. However, a decreasing 

trend can still be observed in this case, and the obtained results can be deemed comparable to those 

obtained in open field simulations. It must be remarked that the discussed simulations were only 

intended to qualitatively compare modelling results with similar small-scale pool fire scenarios. As 

mentioned, several compartment fire experiments are reported in the literature. However, tested 

conditions were generally far different from those modelled in the present study. 

 

Figure 62: Variation of radiative heat flux with dimensionless distance from the pool center for 
different cases. 
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8.3.1. Grid independence 

The independence of simulation results from the chosen calculation grid was evaluated comparing 

the modelled 𝐻𝑅𝑅 for finer and coarser grids obtained from the base case calculation domain. As 

described in Section 8.2.2, the domain cell size was calculated on the basis of the 𝐷∗ 𝛿𝑥⁄  ratio. To 

determine this value, the maximum 𝐻𝑅𝑅 was preliminary estimated using the �̇�𝑒𝑣 resulting from pool 

evaporation modelling, which maximum value was 0.287 𝑘𝑔/𝑚2𝑠. Considering the methane specific 

heat of combustion which is approximately 50,000 kJ/kg as reported by Woodward and Pitblado 

(2010) a burning 2.12 m diameter pool of LNG has an ideal 𝐻𝑅𝑅 of more than 56,000 kW. This 

resulted in a 𝐷∗ value of 4.8 m that allowed to use cells having 𝛿𝑥 = 0.15 𝑚 for the base case 

(corresponding to 
𝐷∗

𝛿𝑥
~32). Finer and coarser grids dimension is 33% smaller or larger than the base 

case, respectively. 

Figure 63 shows the results obtained that evidence the grid independence of the FDS setup. As 

shown in the figure, the predicted 𝐻𝑅𝑅 for the three cases follows an identical trend, except for some 

minor spikes, with average differences ranging between 1% and 4%. The agreement between results 

obtained using different calculation grids can be deemed satisfactory, therefore a uniform grid with 

𝛿𝑥 = 0.15 𝑚 was used to model the cases listed in Table 31. 

 

Figure 63: Comparison of the HRR estimated for different mesh cell sizes of case LP-1. 
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8.3.2. Pool fire consequences and gas species concentration inside FPR 

Modelling results are reported here for cases LP–1 and LP–2 focusing on the influence of the 

ventilation system on fire effects. Results relative to cases HP–1 and HP–2 are reported in Appendix 

D.3.  

Some clear differences can be noted observing the time evolution of gas concentration profiles of 

relevant species involved in the combustion reaction reported in Figure 64. Focusing on the oxygen 

concentration, it can be observed that in general this value decreases with time, as oxygen is 

consumed by the combustion reaction. This decreasing trend is similarly observed for both cases 

LP–1 (Exhaust only) and LP–2 (Ventilation On) for the first 30 seconds of combustion, then the 

oxygen rate of consumption decreases and stabilises for case LP–2, reaching an apparent steady 

state, while without fresh air inlet the concentration continues to drop until reaching values 

approaching zero after around 70 seconds from the fire ignition. This is an evident consequence of 

the combined effect of fire consumption and air extraction from the compartment and a key factor 

governing the evolution of the pool fire inside the FPR. As reflected by the methane concentration 

value, operational air inlets provide the necessary amount of oxygen for the combustion reaction 

thus keeping the methane concentration inside the room practically around zero. On the other hand, 

the limiting oxygen concentration eventually halts the combustion leading to the build-up of methane 

concentration, which enters in the flammability range around 70 second after fire start, creating a 

potentially explosive atmosphere, provided that oxygen re-enters the FPR before methane is 

completely vented out by the ventilation system. 

 

Figure 64: Comparison of the concentration profiles of different gas species involved in the 
combustion process for cases LP-1 and LP–2. 

Lastly, the carbon dioxide concentration appears to be less affected by the working conditions of the 

ventilation system: the increasing trend reaches a stationary state in around 50 seconds for both 

cases. Carbon dioxide concentration results on average 20% lower when air is introduced in the 

FPR, compared to the LP–1 estimated concentration. 
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The decreasing trend showed by the 𝐻𝑅𝑅 curve of case LP–1 reported in Figure 65 confirms that 

the oxygen concentration plays a determinant role in the evolution of an enclosure fire. For the case 

analysed, the pool fire starts to grow weaker when O2 concentration drops below 6% vol. (around 35 

seconds from fire ignition). As evident from the comparison with case LP-2, the oxygen depletion is 

the cause of fire self-extinction, which does not occur in presence of air inlets, even if a sensible 

reduction of the 𝐻𝑅𝑅, about 40% lower than the modelled peak value of 50,000 kW, can be observed 

during the simulation for this latter case. 

 

Figure 65: Comparison of the HRR for cases LP-1 and LP-2. The secondary y-axis shows the oxygen 
concentration. 

Lastly, the time-averaged incident heat flux measured on some significant planes of the FPR is 

reported in Figure 66. More specifically, the figure compares the contour plots relative to the ceiling 

(panels a and b) and to the room end wall, opposite to the pool fire (see Figure 60) in panels c and 

d. As it can be observed, incident radiation fluxes received by FPR boundaries are significantly 

higher for the case LP-2, when air inlets are working, and the pool fire lasts for the whole duration of 

the simulation. Values as high as 500 kW/m2 can be reached on the FPR ceiling, right above the 

location of the pool fire, while fluxes in a range between 150 and 100 kW/m2 are reached as far as 

23 metres from the fire (see Figure 66b). Lower heat fluxes were predicted for case LP-1, as depicted 

in Figure 66a, ranging between 240 and 80 kW/m2. 
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Figure 66: Comparison of time-averaged contours of incident radiation heat flux (in kW/m2) for FPR 
ceiling (panels a and b for cases LP-1 and LP-2 respectively) and for the XZ plane at Y=23 m 
(opposite wall from pool fire location) (panels c and d for cases LP-1 and LP-2 respectively). 

Similarly, the incident heat flux received by the end wall of the FPR resulted higher for the case LP-

2 then for case LP-1, as reported in panels c and d of Figure 66. It can be noted that for both cases 

the wall regions subjected to the highest flux are located in the upper half of the wall, closer to the 

ceiling of the FPR. Lower heat flux values are predicted close to the floor, with values below 50 

kW/m2 for heights of less than 1 metre. Comparing panels c and d, it can be noted that for the latter 

situation, referring to case LP-2, a zone with a slightly higher radiation flux can be observed at the 

ground level, approximately at the mid-section of the FPR. The presence of this region, not predicted 

for case LP-1, might be explained on the basis of pool fire duration, that for case LP-2 lasts for the 

entire simulation, thus contributing to increase the time-averaged heat fluxes around ground level. 

An overview of the incident radiation heat flux evaluated at the boundaries of the enclosure is 

reported in Figure 67. Here, data obtained at different time steps for cases LP-1 and LP-2 are 

compared, together with flame visualization, to better understand the fire dynamics. It must be noted 

that smoke was not represented in the figure for the sake of clarity. As expected, the FPR ceiling, 

impinged in flames, receive the highest amounts of radiation. Furthermore, the effect of hot gases 

layering can be inferred by looking at radiation contours on the Z-Y plane: higher radiation values 

are predicted closer to the ceiling, where hot combustion gases accumulate. Additional results for 

cases HP-1 and HP-2 are reported in Appendix D.3. 
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Figure 67: Overview of the incident radiation heat flux evaluated at FPR boundaries at various time 
steps for cases LP-1 (panels a & b) and LP-2 (panels c & d). Flame soot density is not displayed to 
facilitate reading of heat flux contours. 
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Variation of the incident radiation heat flux with height is shown in Figure 68, comparing results 

obtained for pool fires originating from LPDF and HPDF systems. Little difference can be observed 

for the heat flux predictions relative to HPDF and LPDF: for the latter case, heat flux values are 

always lower than correspondent values modelled for HP systems, possibly due to the slightly 

smaller pool fire dimension. It can be noted that in general the incident heat flux tends to increase 

with height, with the exception of the first two measurement locations: in particular, the heat flux 

measured at a height of 0.3 m gives results higher than the flux predicted at 1.0 m. 

 

Figure 68: Comparison of time-averaged radiation heat flux measured at different locations for cases 
HP-1 and LP-1. See Figure 60 for the distribution scheme of measuring devices used in the 
simulations. 

At this height, the average heat flux reaches a maximum value of around 63 kW/m2 corresponding 

to the pool fire centre (located at Y=3 m). It then decreases to values around 25 kW/m2 for most of 

the FPR length, to finally increase again close to the end wall of the room. For the other curves, the 

maximum in the radiation heat flux is reached generally at Y=2 m. However, the same trend observed 

at 1 m height is maintained, with a small increase of the heat flux predicted near the end of the FPR. 

The sole exception to this behaviour is represented by the curve referring to values measured at 4 

m height, for which the radiation heat flux is constantly decreasing from the maximum value of about 

200 kW/m2 predicted at Y=2 m. Results obtained for simulation cases HP-2 and LP-2, reported in 

Appendix D.3, show analogous characteristics, with average heat fluxes in the “constant region” 

spanning from approximately 6 to 18 metres that are around 50 kW/m2 higher than those reported 

in Figure 68, whereas the maxima values predicted near the pool fire centre can be up to 100 kW/m2 

higher than those relative to cases HP-1 and LP-1. Features similar to those described in Figure 64 

and Figure 65 can be also observed for the HPDF system, for which the larger pool dimension give 

rise to slightly higher 𝐻𝑅𝑅. At the same time, methane concentration predicted afterwards the fire 

self-extinguishment for case HP-1 results about 33% higher than that relative to case LP-1, and the 

LFL is reached roughly 10 seconds earlier. 
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8.4. Conclusions 

The effects of accidental LNG releases occurring inside an ESD-protected FPR were investigated 

defining a case study that considered both high- and low-pressure dual fuel systems. Pool fires with 

two different diameters were considered, resulting from releases affecting the HP fuel pumps and 

the LNG vaporiser featured in the LPDF system. Findings of the CFD modelling showed little 

differences between consequences stemming from HPDF and LPDF systems, since LNG pools 

having similar sizes will be formed. Conversely, substantial differences in the dynamic evolution of 

the enclosure pool fire were observed when comparing the results obtained assuming different 

operating modes of the FPR mechanical ventilation system. A strong reduction of the pool fire 𝐻𝑅𝑅 

was observed around 35 seconds after fire ignition, with a simultaneous depletion of the oxygen 

concentration inside the FPR that eventually led to the self-extinction of the pool fire when no fresh 

air inlet was considered, as opposed to the case considering normally operating conditions of the 

mechanical ventilation system. In this latter case the oxygen concentration reaches an equilibrium 

value sufficient to maintain the combustion process for the entire duration of the simulation. 

Regardless of the operating profile of the ventilation system, the modelled pool fires can generate 

incident heat fluxes high enough to undermine the structural integrity of exposed surfaces of the FPR 

and of the process equipment installed therein, possibly leading to accident escalation. 

It can thus be concluded that release events occurring inside the FPR, even if deemed infrequent, 

might generate hazardous situations, affecting the safety of both passengers and ship structures 

due to the severity of accident consequences. The results of this assessment may provide a starting 

point from which parametric risk assessment studies aimed at evaluating the influence of structural 

design choices and operational profiles on the safety level of LNG-fuelled ships’ FPRs can be 

developed. Lastly, safety recommendations can be drawn from the outcomes of this analysis, further 

improving the existing regulatory provisions. 
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Conclusions 

The shift towards the use of alternative marine fuels, among which LNG represents the most 

technologically ready and widespread solution, has fostered new investments in this field. Several 

gas-fuelled ships have been built, are under construction or are due to be built in the coming years, 

and many existing vessels have already been retrofitted. In order to support this expansion of the 

marine LNG market, an extensive small-scale LNG distribution chain is being developed. 

At the same time, natural gas is a hazardous substance: although it has been safely traded for almost 

60 years, its use as alternative fuel introduces safety challenges that should not be overlooked. To 

this end, a comprehensive study aimed at the assessment of different safety aspects of the supply 

chain of marine LNG fuel was carried out in this thesis, together with the evaluation of the 

sustainability fingerprint of existing LNG-based fuel systems for ship propulsion. 

The sustainability assessment methodology described in Chapter 5 allowed definition of a framework 

for the comparison of alternative ship fuel systems during the early design phases. A tiered system 

of KPIs was defined to quantify the environmental, economic, and societal aspects of sustainability, 

integrating the inherent safety indicators that will be further developed in the inherent safety 

assessment of the LNG supply chain. A selection of the most relevant environmental impact 

indicators was made to capture the aspects related to pollutant emissions, and a profitability index 

was also defined to evaluate the economic attractiveness of the assessed alternatives. By 

performing a weighted aggregation of the multi-target impact indicators, an overall sustainability 

index was defined, providing a synthetic measure of the sustainability fingerprint. The proposed 

methodology was applied to a case study considering alternative fuel systems for cruise ships, 

allowing comparison of the sustainability performance of different LNG-based technologies against 

conventional diesel propulsion systems. The robustness of the obtained alternatives ranking was 

ultimately proven by a Monte Carlo sensitivity analysis. 

The inherent safety assessment methodology developed for the analysis of alternative ship 

bunkering technologies allowed investigation of the hazard level of novel concepts proposed for LNG 

operations, making a comparison with the bunkering process of conventional marine fuels. The 

approach developed relies on a scoring system based on the quantification of KPIs calculated 

considering the expected consequences of accident scenarios, estimated using integral models, and 

credit factors that allowed the identification of the most credible LOC events associated with each 

process unit. Multiple targets were considered in the analysis, as specific KPIs were calculated 

addressing the human and escalation hazards independently, providing a comprehensive measure 

of the safety performance of bunkering processes. The methodology developed was applied to a 

case study, allowing the definition of a ranking of alternatives based on overall hazard indexes. This 

helped to identify the safety criticalities of the assessed bunkering technologies, highlighting the 

importance of inherent safety principles. In particular, the higher process complexity, and more 

severe operating conditions of the LNG transfer operations, together with the higher flammability of 

natural gas compared to IFO or MGO, resulted in a penalization of the expected safety performance 

of the LNG-based concepts. The proposed approach represents a starting point that may be used 

in different assessment methodologies, as it can be integrated into a wider analysis providing a 

metric of safety aspects or it can be used as a standalone tool for comparative inherent safety studies 

of bunkering activities. 
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The safety of LNG bunkering systems was also examined quantifying the risks associated with port-

to-ship operations. Location-specific individual risk and societal risk levels of LNG bunkering 

operations were estimated following the QRA framework as recommended by relevant ISO 

standards. A novel approach to risk evaluation of LNG operations was developed in the present 

thesis to include managerial aspects in the risk analysis since they are rarely considered in this type 

of studies. The standard QRA procedure was combined with a methodology for the modification of 

process release frequency, which introduces organizational and operational factors in the 

assessment. Special attention was devoted to the definition of management quality levels and to the 

influence of simultaneous operations over the risk profile of bunkering activities. A case study 

reproducing the characteristics of a small-scale port serving an LNG-fuelled passenger ferry was 

used to demonstrate the application of the approach. The baseline risk level of PTS bunkering was 

evaluated assuming different population densities inside the port area. Individual and societal risks 

were thus calculated considering the influence of relevant operational and organizational factors. 

The weighted scoring system adopted for the estimation of frequency modification factors due to 

managerial aspects was the object of a dedicated sensitivity analysis aimed at evaluating the 

robustness of the calculated MMF with respect to the variation of the set of weights used in the 

assessment. The results demonstrated that managerial aspects significantly impact on risk profiles 

of bunkering operations. It was also concluded that the risk modification induced by simultaneous 

port operations, such as passenger boarding, will not raise the societal risk to intolerable levels 

provided that a safety-oriented management of bunkering operations is pursued. The approach 

developed can represent a useful tool to include a time-effective simplified evaluation of managerial 

aspects in a preliminary safety assessment of onshore LNG bunkering facilities, also supporting the 

decisional process required to authorise simultaneous port operations during LNG bunkering. 

A relevant part of the present thesis was dedicated to analysis of LNG double-walled storage tanks 

involved in fire scenarios. The introduction to Chapter 7 reports a summary of the experimental 

investigations carried out for this topic that are still limited to a couple of fire tests, evidencing the 

need for additional experimental work overcoming the difficulties experienced with the mentioned 

tests. However, the data collected provided valuable information for the development of a CFD 

modelling setup used to simulate the response of cryogenic storage tanks completely engulfed in 

hydrocarbon fires. To clear out uncertainties related to the tank insulation performance, a dedicated 

parametric analysis of the thermal conductivity was carried out preliminarily to define the of the CFD 

model boundary conditions. This proved that loss of vacuum insulation and consequent discharge 

of granular insulating material is likely to determine a significant reduction of insulating properties 

during flame engulfment of double-walled storage tanks. The developed model showed good 

agreement with experimental pressure and temperature data and was thus used to study the effects 

induced by engulfing fires over two cases of interest for the bunker LNG supply chain. By using CFD 

tools, it was possible to overcome the main limitations of previous modelling approaches based on 

lumped parameters and to predict the liquid thermal stratification that controls the evaporation rate. 

The results obtained highlighted the influence of thermodynamic and geometrical features over the 

spatial distribution of evaporating zones and temperature fields inside fire-engulfed cryogenic tanks. 

Furthermore, the outputs of the CFD simulations provided fundamental values for the definition of a 

set of tank safety indicators, specifically designed to provide a rapid screening of tank safety in case 

of fire exposure. The defined KPIs addressed multiple aspects such as the loss of physical integrity 

and potential for accident escalation. The analysis of tank KPI values highlighted the relationship 

between hazards originating from pressure-build up and thermal weakening of the tank structure and 

showed that critical safety conditions are approached more rapidly for tanks with lower filling 

degrees. At the same time, KPIs addressing tank safety represent a valid support to emergency 

responders dealing with fire-engulfed pressurized cryogenic tanks. 
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The same modelling approach was exploited to simulate the exposure of double-walled cryogenic 

tanks to distant fires. A pool fire scenario, representative of a possible accident outcome in an LNG 

storage facility, was reproduced to define asymmetrical boundary conditions upon calculation of view 

factors between the fire and the tank. Wall temperatures, tank pressurization rates and liquid 

temperature stratification were estimated, assessing the influence of different tank dimensions and 

filling degrees. The analysis of tank safety KPIs demonstrated that critical safety conditions were not 

met for the modelled scenario, especially in case of a long-lasting exposure to the fire source.  

Lastly, CFD simulations of small-scale LNG pool fires occurring on board gas-fuelled ships were 

performed to enhance the generic understanding of risks related to gas fuelling, providing a more 

detailed estimate of fire consequences. The case of a FPR located below deck was taken as 

reference to simulate different enclosure fire conditions, also considering the effect of the mechanical 

ventilation system. Following the estimation of pool diameter and evaporation rate with a well-

established consequence model, initial and boundary conditions for the CFD setup were determined. 

The results of this simplified modelling approach described the dynamic evolution of LNG pool fires 

occurring inside confined spaces, also providing valuable information about the incident radiation 

received by the ship structure and process equipment inside the FPR. 

Summarising, it can be concluded that the methodologies and approaches developed within the 

present work represent helpful tools for a comprehensive safety assessment of the LNG supply chain 

during the earliest phases of design. KPI-based methods offer a simple solution to evaluate the 

safety profile of LNG bunkering concepts and the overall sustainability of alternative ship fuel 

systems, supporting and orienting the selection of the most suitable solution throughout the 

decisional process. Additionally, CFD tools were proven to be a fundamental improvement for the 

detailed assessment of accident scenario consequences. The developed CFD model for the 

assessment of fire exposed cryogenic tanks represents an advancement in the field of safety for the 

small-scale LNG sector. The application of such tool represents a valuable help to deepen the 

understanding of LNG fire dynamics occurring onboard ships. More generally, the proposed works 

pave the way for the development of improved models, providing at the same time essential data for 

safety assessment studies. 
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Limitations and suggestions for future research 

There are some limitations of the present work, and aspects that deserve further attention in future 

research on the topic. 

In general, it should be noted that in this thesis LNG was always assumed to be pure methane, 

following a simplified approach for consequence assessment. This assumption does not impair the 

general validity of the obtained results. However, it would be worthwhile to investigate the sensitivity 

of results to the actual composition of the LNG mixture. 

Efforts should be directed towards the improvement of KPI-based metrics, especially aimed at 

getting better estimates of damage distances. The use of more detailed models, such as CFD, can 

enhance the prediction of flammable clouds extension and consequently increase the precision of 

the damage distances evaluation, thus allowing for the calculation of more realistic KPI values. The 

approaches that require the selection of indicators subsets and aggregation procedures, such as 

that outlined in Section 6.2, would be improved introducing the assessment by a panel of experts 

formed by port authorities’ representatives, academics, and industry experts. In perspective, this 

may help the elicitation of weights and may lead to the definition of an ad hoc set of operational and 

organisational factors relevant for port and bunkering activities. 

The literature review clearly showed the need for additional experimental campaigns aimed at the 

evaluation of LNG tank behaviour during fire scenarios. Particular attention should be given to the 

characterisation of the insulation performance and temperature fields of the tank lading during full 

engulfing fires. Such aspects would provide fundamental information for the improvement of future 

CFD analyses, strongly supporting their validation. Furthermore, an integration of CFD results with 

Finite Element Modelling would be desirable to deepen the understanding of tank structural response 

to the strong thermal gradients that develop inside the inner tank wall in proximity of the liquid-vapour 

interface. 

Finally, the consequence evaluation of LNG pool fires occurring inside FPR could be further 

improved by investigating the pressurization induced by enclosure fires, along with the possibility of 

flow inversion in the forced ventilation system. Further simulations should be carried out enabling 

the FDS liquid pyrolysis model instead of prescribing a ramped fuel inlet condition to account for the 

heat transferred to the LNG pool by the flame. A parametric investigation of the influence of forced 

ventilation system may also be carried out to assess how vents position, number and flow rates will 

affect the enclosure fire dynamics. Moreover, the evaluation of the selected radiation model and 

material properties influence on the simulation results may be beneficial for a broader consequence 

assessment analysis aimed at the performance-based design of LNG-fuelled ships’ fuel preparation 

rooms. Last but not least, an experimental campaign of small-scale LNG pool fire tests occurring 

inside confined spaces would be advisable to support the validation of CFD simulations. This would 

expand the collection of enclosure fire tests which currently do not cover the conditions encountered 

during FPR LNG pool fires, both in terms of enclosure arrangement and simulated heat release 

rates. 
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Nomenclature 

𝐴𝑑,𝐶  Critical size of tank insulation defect  

𝐴ℎ𝑜𝑙𝑒 Hole area   

𝐵 Investment benefits  

𝐵𝐻𝐷 Block domino hazard index  

𝐵𝐻𝐼 Block inherent hazard index   

𝐵𝑃𝐷 Block domino potential hazard index  

𝐵𝑃𝐼 Block potential hazard index  

𝐶 Investment costs  

𝐶𝑐𝑜𝑛𝑑  Condensation coefficient in the Lee model Eq. 7.10 

𝐶𝐷 Discharge coefficient  

𝐶𝑒𝑣𝑎𝑝 Evaporation coefficient in the Lee model Eq. 7.11 

𝐶𝑓 Credit factor  

𝐶𝑝 Specific heat  

𝑑 Traffic density value  Eq. 6.24 

𝑑𝑔𝑎𝑝 Particle gap dimension  

𝑑𝑝𝑜𝑟𝑒 Perlite pores diameter  

𝐸 Energy Eq. 7.6, Eq. 7.7, Eq. 7.8 

𝐸 Emission amount Eq. 5.1 

𝑒 Escalation distance   

𝑒∗ Total mass-specific extinction coefficient  

𝐸0 Blast wave energy threshold  Eq. 7.33 

𝐸𝑉𝐵 Vessel burst released energy   

𝑒𝑓 emission factor  

𝐸𝐼 Tank energy Safety KPI  

𝐸𝑛𝑣𝐼 Environmental index  

𝐸𝑈 Eutrophication impact indicator   

𝑓 Event frequency  

𝑓′ Modified event frequency  

𝑓
𝑃→𝑓

 View factor between point P and the fire  

𝑓𝑆 Modified dangerous scenario frequencies Eq. 6.25 

𝒈 Gravity acceleration  

𝐺𝐾 Generation of turbulent kinetic energy  

𝐺𝜔 Generation of specific turbulent dissipation rate  

𝐺𝑊 Global warming impact indicator  

ℎ Damage distance  

𝐻 Specific enthalpy  

𝐻𝐷 Overall domino inherent hazard index  

𝐻𝐼 Overall inherent hazard index   

𝐻𝑇 Human toxicity impact indicator   
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𝐼 Identity tensor Eq. 7.5, Eq. 7.15 

𝐼 Generic indicator Eq. 5.2, Eq. 5.7, Eq. 5.8 

𝐼𝑐 
Score of the environmental indicator for impact 

category c 
Eq. 5.2 

𝐼𝑃 Incident radiation at point P on tank surface  

𝐼𝑃𝐼 Tank internal pressure Safety KPI  

𝐾 turbulent kinetic energy  

𝑘 Thermal conductivity   

𝑘𝑎𝑖𝑟 Air thermal conductivity  

𝑘𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔  
Coupling component of total effective thermal 

conductivity 
 

𝑘𝑔𝑎𝑠 
Gaseous conduction component of total 

effective thermal conductivity 
 

𝑘𝑟𝑎𝑑 
Radiation component of total effective thermal 

conductivity 
 

𝑘𝑠𝑜𝑙𝑖𝑑 
Solid conduction component of total effective 

thermal conductivity 
 

𝑘𝑡𝑜𝑡 Total effective thermal conductivity  

𝐿 Limiting function  Eq. 7.23 

𝐿𝐹 Engine load factor  

LSIR Location-Specific Individual Risk  

𝑀 Molecular weight   

�̇� Leak release rate   

�̇�𝐿→𝑉 Mass transfer rate from liquid to vapour phase  

�̇�𝑉→𝐿 Mass transfer rate from vapour to liquid phase  Eq. 7.1 

𝑀𝐺 Geometric mean bias  

𝑀𝑀𝐹 Management modification factor  

𝑁 Expected number of fatalities  

𝑁𝑐 Assumed cell population  

𝑁𝐹 Normalisation factor  

𝑁𝑃𝑉 Net Present Value  

𝑂𝑃 Operational subfactor  

𝑂𝑅 Organizational subfactor  

𝑂𝑆𝐼 Overall sustainability index  

𝑂𝑆𝐼𝑁  Normalised overall sustainability index  

𝑝 Pressure   

𝑝
1/2
𝑐  

Half-value pressure for coupling conductivity 

term 
 

𝑝
1/2

𝑔
 Half-value pressure for gas conductivity term  

𝑃𝐻𝑢𝑚 𝐸𝑟𝑟. Operator failure probability  

𝑃𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒  Leak isolation failure probability  

𝑃𝑑 Death probability  

𝑃𝐷𝐼 Average delayed ignition probability  
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𝑃𝐸𝑆𝐷 ESD system failure probability  

𝑃𝑖 Dangerous scenario probability  

𝑃𝑗 Engine power Eq. 5.1 

𝑃𝑤 Weather class and direction probability  

𝑃𝐷 Overall domino potential hazard index  

𝑃𝐹 Potential factor Eq. 5.2 

𝑃𝐼 Overall potential hazard index   

𝑃𝐿𝐿 Potential Loss of Lives  

𝑃𝑟 Prandtl number  

𝑃𝑟𝑇 Turbulent Prandtl number Eq. 7.6 

𝑃𝑟𝐼 Profitability index  

𝑃𝑈𝐼 Process unit inventory Eq. 5.4 

�̇�
′′
 Heat flux  

𝑅 Universal gas constant   

𝑟 Discount rate  

𝑅𝐴 Rain Acidification impact indicator   

𝑆 Distance  

𝑆𝑚𝑎𝑥 
Tank surface above maximum design 

temperature 
 

𝑆𝑂𝑃 Operational indicator score   

𝑆𝑂𝑅 Organizational indicator score  

𝑇 Temperature  

𝑇 Navigation activity duration Eq. 5.1 

𝑡 Time  

𝑇𝐵𝐵,𝑒𝑞 Equivalent black body temperature  

𝑇𝑓,𝐵𝐵 Fire black body temperature  

𝑇1, 𝑇2 Insulation boundary temperatures Eq. 7.26, Eq. 7.28, Eq. 7.29 

𝑇𝐶𝐹𝐷 Calculated temperature 
Eq. 7.35, Eq. 7.36,Eq. 7.37, 
Eq. 7.38, Eq. 7.39 

𝑇𝑒𝑥𝑝 Measured temperature 
Eq. 7.35, Eq. 7.36,Eq. 7.37, 
Eq. 7.38, Eq. 7.39 

𝑇𝑟 Insulation mean temperature value Eq. 7.25, Eq. 7.26 

𝑇𝑤𝑎𝑙𝑙 Tank wall temperature  

𝑇𝐼 Temperature Safety KPI   

𝒖 Velocity vector  

�̂� Specific internal energy  

𝑢′
𝑥 , 𝑢′

𝑦 , 𝑢′
𝑧 Velocity components fluctuations  

𝑢+ Non dimensional velocity  

𝑢𝜏 friction velocity  

𝑈𝐻𝐷 Unit domino hazard index  

𝑈𝐻𝐼 Unit inherent hazard index  

𝑈𝑃𝐷 Unit domino potential hazard index  

𝑈𝑃𝐼 Unit potential hazard index  
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�̇� Volumetric flow rate Eq. 5.4 

𝑉𝐺 Geometric mean variance  

𝑤𝑂𝑝 Operational indicator weight   

𝑤𝑂𝑟 Organizational indicator weight  

𝑦+ Non-dimensional wall distance  

𝑌𝐾 Dissipation of turbulent kinetic energy  

𝑌𝜔 Dissipation of specific turbulent dissipation rate  

∆�̂�𝑇𝑁𝑇 TNT specific explosion energy   

ΔIR𝐿,𝑤,𝑖 Scenario contribution to the overall LSIR  
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Greek letters 

𝛼 Phase volume fraction Eq. 7.1 

𝛾 Specific heats ratio Eq. 6.23 

𝛤 Ignition effectiveness Eq. 6.24 

𝛤𝐾 Diffusivity of turbulent kinetic energy  

𝛤𝜔 Diffusivity of specific turbulent dissipation rate  

𝛿 Characteristic dimension  

𝜀𝑤𝑎𝑙𝑙 Tank wall surface emissivity  

𝜂 Fraction of internal energy converted into blast wave Eq. 7.34 

𝜃 Angular coordinate  

𝜇 Viscosity  

𝜇 Overall management score Eq. 6.19 

𝜇
𝑇
 Turbulent viscosity  

𝜌 Density  

𝜌
𝑏𝑢𝑙𝑘

 Bulk density of powder insulation  

𝜎 Stefan-Boltzmann constant Eq. 7.25 

𝝉 Stress tensor  

𝝉′ Reynolds stresses tensor  

𝜏𝑤 Wall shear stress  

𝜑 Generic material property Eq. 7.3 

𝜑 Generic variable Eq. 7.12 

𝜑′ Fluctuation of the generic variable Eq. 7.12 

𝜑 Mean component of the generic variable Eq. 7.12 

𝛷 Fitting parameter Eq. 7.27 

𝜔 Turbulent specific dissipation rate  

 Weight factor Eq. 6.19 

 

Subscripts 

0 Initial conditions 

𝑎𝑚𝑏 Ambient conditions 

𝐵 Block index 

𝑐 Impact category index 

𝑒𝑛𝑔 Engine type index 

𝐿𝑂𝐶 Loss of Containment type index 

𝑃 Point-specific index 

𝑝 Pollutant species index 

𝑆 Dangerous scenario index 

𝑠 Solid 

𝑆𝑎𝑡 Saturation conditions 
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Acronyms 

ALARP As Low As Reasonably Possible 

BOG Boil-Off Gas 

DOT U.S. Department of Transportation 

ECA Emission Control Area 

EGR Exhaust Gas Recirculation 

ESD Emergency shutdown system 

ETA Event Tree Analysis 

EU European Union 

FDS Fire Dynamic Simulator 

FGSS Fuel Gas Supply System 

FPR Fuel Preparation Room 

FRA Federal Railroad Administration 

GHG Greenhouse Gas 

HPDF High-Pressure Dual Fuel 

IMO International Maritime Organization 

LNG Liquefied Natural Gas 

LOC Loss of Containment 

LPDF Low-Pressure Dual Fuel 

LPG Liquefied Petroleum Gas 

MAWP Maximum Allowable Working Pressure 

MGO Marine Gas Oil 

MMBtu Millions of British Thermal Units 

MMF Managerial Modification Factor 

MTPA Million Tonnes Per Annum 

NIST National Institute of Standards and Technology 

PM Particulate Matter 

PRV Pressure Relief Valve 

PTS Port-to-Ship 

QRA Quantitative Risk Assessment 

SCR Selective Catalytic Reduction 

SFPE Society of Fire Protection Engineers 

SIMOP Simultaneous Operation 

SSLNG Small-scale LNG 

STS Ship-to-Ship 

TNO Netherlands Organization for Applied Scientific Research 

TTS Truck-to-Ship 

VCE Vapor Cloud Explosion 

VOC Volatile Organic Compounds 
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Appendix A - Details of sustainability assessment 

The main process conditions needed for the quantification of inherent safety KPI of each alternative 

fuelling technology are reported in Table A1 and Table A2 for LNG-based and conventional MGO 

options, respectively. Schematic process flow diagrams of each fuelling technologies are represented 

in Figure 9. 

Table A1: Process conditions for LNG-based fuelling technologies. Process units and line tags are 
shown in Figure 9. 

1) Low Pressure dual fuel 

Parameter 

Process unit 

Storage 
tank D01-
D03  

LNG 
Vaporizer 
E01-E02 

Fuel gas 
heater 
E03-E04 

BOG pre-
heater 
E05-E06 

BOG 
compressor 
P01-P02 

MGO 
tank 
T01-
T02 

MGO 
booster 
pump 
G01-G02 

Nominal 
capacity (m3) 

1,200 - - - - 10 - 

Inventory (t) 495 - - - - 7.34 - 

Flowrate (kg/s) - 0.81 0.81 2.78 ×10-4  - 1.80 ×10-2 

Pressure (MPa) 0.30 0.70 0.70 0.31 0.60 0.12 0.80 

Temperature (K) 130 131 131 153  318 318 

State Liquid Liquid Liquid Vapor  Liquid Liquid 

2) High Pressure dual fuel 

Parameter 

Process unit 

Storage 
tank 
D01-D03 

High 
pressure 
pump 
G01-G02 

High 
pressure 
Vaporizer 
E01-E02 

BOG 
compressor 
P01-P02 

BOG pre-
heater E03-
E04 

MGO 
tank 
T01-
T02 

MGO 
booster 
pump 
G03-G04 

Nominal 
capacity (m3) 

1,200 - - - - 10 - 

Inventory (t) 495 - - - - 7.34 - 

Flowrate (kg/s) - 0.81 0.81 2.78 ×10-4 2.78 ×10-4 - 1.80 ×10-2 

Pressure (MPa) 0.30 30 30 0.60 0.60 0.12 0.80 

Temperature (K) 130 146 318 278 293 318 318 

State Liquid Liquid Vapor Vapor Vapor Liquid Liquid 

3) Lean Burn Spark Ignition 

Parameter 

Process unit 

Storage tank 
D01-D03  

Pressure 
Build-up Unit 
E01-E03 

LNG Vaporizer 
E04-E05 

Fuel gas heater 
E06-E07 

BOG pre-
heater E08-
E09 

Nominal 
capacity (m3) 

1,200 - - - - 

Inventory (t) 495 - - - - 

Flowrate (kg/s) - 0.20 0.81 0.81 3.48 ×10-3 

Pressure (MPa) 0.60 0.60 0.60 0.60 0.60 

Temperature (K) 140 143 150 293 293 

State Liquid Vapor Vapor Vapor Vapor 
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Table A2: Process conditions for conventional MGO technology. Process units and line tags are shown 
in Figure 9. 

Parameter 

Process unit 

Storage 
tank 
D01-
D05 

Transfer 
pump 
G01-G02 

Settling 
tank 
D06-D07 

Feed 
pump 
G03-
G04 

Heater 
E01-
E02 

Service 
tank 
D08-D09 

Heater 
E03-
E04 

Booster 
pump 
G07-G08 

Nominal 
capacity (m3) 

400 - 25 - - 25 - - 

Inventory (t) 293.4 - 20.0 - - 20.0 - - 

Flowrate (kg/s) - 0.89 - 0.89 0.89 - 0.89 0.89 

Pressure (MPa) 0.12 0.35 0.35 0.50 0.50 0.50 0.50 0.80 

Temperature (K) 318 318 318 318 333 333 373 373 

State Liquid Liquid Liquid Liquid Liquid Liquid Liquid Liquid 

The key consequence assessment results and calculated values of the unit inherent safety KPI are 

summarized in Table A3 and Table A4 for calculated for LNG-based and MGO fuelling technologies, 

respectively. For each process unit, the considered LOC events and related 𝐶𝑓 are reported, together 

with resulting damage distance (ℎ). LOC event categories are described in Table 6. 
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Table A3: Calculated damage distances (h), and unit HIs for each LOC and process unit for LNG-
based fuelling technologies. Equipment tags and features refer to Figure 9 and Table A1, respectively. 

1) Low Pressure dual fuel 

Process Unit 
Parameter 

LOC Cf (1/y) h (m) UHI (m2/y) 

Storage tank D01-D03 

R1 1.00 × 10-5 80.83 

3.10 R2 5.00  10-7 1,622.92 

R3 5.00 × 10-7 1,855.95 

LNG vaporizer E01-E02 
R1 1.00 × 10-3 55.96 

3.51 
R3 5.00 × 10-5 86.49 

Fuel gas heater E03-E04 
R1 1.00 × 10-3 6.69 

0.12 
R3 5.00 × 10-5 38.60 

BOG pre-heater E05-E06 
R1 1.00 × 10-3 5.00 

0.13 
R3 5.00 × 10-5 46.50 

BOG compressor P01-P02 
R4 5.00 × 10-4 7.29 

0.37 
R5 1.00 × 10-4 56.32 

MGO tank T01-T02 

R1 1.00 × 10-4 25.28 

0.09 R2 5.00  10-6 47.11 

R3 5.00 × 10-6 45.24 

MGO booster pump G03-G04 
R4 5.00 × 10-4 7.32 

0.09 
R5 1.00 × 10-4 25.64 

2) High Pressure dual fuel 

Process Unit 
Parameter 

LOC Cf (1/y) h (m) UHI (m2/y) 

Storage tank D01-D03 

R1 1.00 × 10-5 80.83 

3.10 R2 5.00  10-7 1,622.92 

R3 5.00 × 10-7 1,855.95 

High pressure pump G01-G02 
R4 5.00 × 10-4 105.94 

7.27 
R5 1.00 × 10-4 128.81 

High pressure vaporizer E01-E02 
R1 1.00 × 10-3 32.35 

1.13 
R3 5.00 × 10-5 40.85 

BOG pre-heater E03-E04 
R1 1.00 × 10-3 5.00 

0.03 
R3 5.00 × 10-5 5.00 

BOG compressor P01-P02 
R4 1.00 × 10-3 7.29 

0.37 
R5 1.00 × 10-4 56.32 

MGO tank T01-T02 

R1 1.00 × 10-4 25.28 

0.09 R2 5.00  10-6 47.11 

R3 5.00 × 10-6 45.24 

MGO booster pump G03-G04 
R4 5.00 × 10-4 7.32 

0.09 
R5 1.00 × 10-4 25.64 

3) Lean Burn Spark Ignition 

Process Unit 
Parameter 

LOC Cf (1/y) h (m) UHI (m2/y) 

Storage tank D01-D03 

R1 1.00 × 10-5 80.83 

3.10 R2 5.00  10-7 1,622.92 

R3 5.00 × 10-7 1,855.95 

Pressure Build-up unit E01-E03 
R1 1.00 × 10-3 10.17 

0.21 
R3 5.00 × 10-5 46.11 

LNG vaporizer E04-E05 
R1 1.00 × 10-3 55.96 

3.51 
R3 5.00 × 10-5 86.49 

Fuel gas heater E06-E07 
R1 1.00 × 10-3 7.20 

0.13 
R3 5.00 × 10-5 38.60 

BOG pre-heater E08-E09 
R1 1.00 × 10-3 5.00 

0.03 
R3 5.00 × 10-5 5.00 
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Table A4: Calculated damage distances (h), and unit HIs for each LOC and process unit for 
conventional MGO technology. Equipment tags and features refer to Figure 9 and Table A2, 
respectively. 

Process Unit 
Parameter 

LOC Cf (1/y) h (m) UHI (m2/y) 

Storage tank D01-D05 

R1 1.00 × 10-4 44.00 

0.53 R2 5.00  10-6 188.90 

R3 5.00 × 10-6 178.76 

Transfer pump G01-G02 
R4 5.00 × 10-4 27.63 

0.93 
R5 1.00 × 10-4 73.91 

Settling tank D06 – D07 

R1 1.00 × 10-5 51.96 

0.04 R2 5.00 × 10-7 116.07 

R3 5.00 × 10-7 106.15 

Feed pump G03-G04 
R4 5.00 × 10-4 32.14 

1.06 
R5 1.00 × 10-4 73.91 

Heater E01-E02 
R1 1.00 × 10-3 32.07 

1.38 
R3 5.00 × 10-5 83.25 

Daily tank D08 – D09 

R1 1.00 × 10-5 58.67 

0.04 R2 5.00 × 10-7 68.70 

R3 5.00 × 10-7 98.26 

Heater E03-E04 
R1 1.00 × 10-3 36.36 

1.61 
R3 5.00 × 10-5 76.50 

Booster pump G07-G08 
R4 5.00 × 10-4 52.64 

1.99 
R5 1.00 × 10-4 77.48 
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Appendix B – Detailed results of inherent safety 

assessment  

B.1 Main features of reference schemes 

The calculation of inherent safety KPIs is based on the quantitative consequence assessment of 

accident scenarios originating from process units. The characterization of operating conditions is 

necessary for the correct evaluation of the spilled amount of hazardous substance and subsequent 

accident scenario modelling. Process conditions considered for Concepts A and B, based on LNG 

technologies, are reported in Table B1, while data for Concept C (IFO bunkering) and Concept D (MGO 

bunkering) are reported in Table B2 and Table B3, respectively. 

Process conditions and equipment features of the S-LNG block in concept A are representative of a 

10,000 m3 small scale LNG terminal based on data retrieved from Gas Infrastructure Europe, (2020). 

A storage tank size of 1450 m3 was selected as representative for double-walled bullet tanks, thus 

obtaining seven storage units (D01-D07). In this concept, part of the stored LNG may be devoted to 

feed other end-users, such as truck loading bays and/or regasification units, with direct delivery to the 

natural gas network. In Concept B, the storage portion devoted to other users, which is about 30% 

considering the average value for current LNG medium- or small-scale terminals in Europe (Gas 

Infrastructure Europe, 2020), is not considered. Thus, the stored volume is reduced by 30%, obtaining 

a storage facility with only five tanks of 1,450 m3 capacity (D01-D05). Material balances for the B-LNG 

bunker vessel and V-LNG fuel system onboard ship are based on fuel gas consumption data retrieved 

from technical documentation of installed dual fuel engines (DNV-GL, 2015b). 

Process data for shore-based installation processing conventional marine fuels (both S-IFO and S-

MGO) is taken from available process flow diagram of typical fuel depots sites on the western Italian 

coastline. The operating conditions for the on board fuel oil supply system for V-IFO and V-MGO blocks 

are retrieved from technical documentation of installed engines, such as that made available by 

Caterpillar Motoren GmbH & Co. KG, (2018). 
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Table B1: Process conditions for the reference schemes considered for the storage and supply blocks 
of LNG fuelled vessels (Concepts A and B of Figure 16). Process units and line tags are shown in 
Figure 17 

a) S-LNG shore-based storage facility 

Process 
unit 

Parameter 

Nominal 
capacity 

(m3) 

Inventory 
(t) 

Line 
diameter 

(mm) 

Flowrate 
(kg/s) 

Pressure 
(bar) 

Temperature 
(K) 

State 

Storage tank 
D01-D07 
(Concept A) 
D01-D05 
(Concept B) 

1,450 649 - - 3.5 130 Liq. 

Loading 
pumps G01 
A/B 

- - - 31.5 4.0 131 Liq. 

LNG transfer 
arm S02 

- - 254 31.5 4.0 131 Liq. 

BOG transfer 
arm S01 

- - 203.2 0.5 4.0 153 Vap. 

b) B-LNG bunker vessel 

Process 
unit 

Parameter 

Nominal 
capacity 

(m3) 

Inventory 
(t) 

Line 
diameter 

(mm) 

Flowrate 
(kg/s) 

Pressure 
(bar) 

Temperature 
(K) 

State 

Storage tank 
D01 

3,400a 1,155 - - 5.5 137 Liq. 

Storage tank 
D02 

2,700a 906 - - 5.5 137 Liq. 

Vaporizer 
E01 

- - - 0.11 8.5 140 Liq. 

Fuel gas 
heater E02 

- - - 0.14 6.5 293 Vap. 

BOG pre-
heater E03 

- - - 0.04 5.6 273 Vap. 

BOG 
compressor 
P01 

- - - 0.04 7 278 Vap. 

LNG bunker 
line S04 

- - 203.2 52.7 6 128 Liq. 

BOG bunker 
line S03 

- - 152.4 1.24 6 145 Vap. 

c) V-LNG fuel system onboard ship 

Process 
unit 

Parameter 

Nominal 
capacity 

(m3) 

Inventory 
(t) 

Flowrate 
(kg/s) 

Pressure 
(bar) 

Temperature 
(K) 

State 

Storage tank 
D01 

500a 190.2 - 2.0 121 Liq. 

Vaporizer 
E01 

0 - 1.83 8.5 133 Liq. 

Fuel gas 
heater E02 

- - 1.83 6.5 293 Vap. 

BOG pre-
heater E03 

- - 0.0035 2.1 273 Vap. 

BOG 
compressor 
P01 

- - 0.0035 7.0 278 Vap. 
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Table B2: Process conditions for the reference schemes considered for the storage and supply blocks 
of IFO fuelled vessels (Concept C of Figure 16). Process units and line tags are shown in Figure 18. 

a) S-IFO shore-based storage facility 

Process 
unit 

Parameter 

Nominal 
capacity 

(m3) 

Inventory 
(t) 

Line 
diameter 

(mm) 

Flowrate 
(kg/s) 

Pressure 
(bar) 

Temperature 
(K) 

State 

Storage 
tank T01-
T06 

2,550 2,527 - - 1.2 318 Liq. 

Bunker 
pumps 
G01/02 

- - - 35.4 2.0 318 Liq. 

Bunker 
hose S01 

- - 254 70.8 2.0 318 Liq. 

b) B-IFO auxiliary bunker vessel 

Process 
unit 

Parameter 

Nominal 
capacity 

(m3) 

Inventory 
(t) 

Line 
diameter 

(mm) 

Flowrate 
(kg/s) 

Pressure 
(bar) 

Temperature 
(K) 

State 

Storage 
tank T01-
T06 

100 96 - - 1.2 318 Liq. 

Bunker 
pumps 
G01/02 

- - - 27.5 2.0 318 Liq. 

Bunker 
hose S01 

- - 76.2 27.5 2.0 318 Liq. 

c) V-IFO fuel system onboard ship 

Process 
unit 

Parameter 

Nominal 
capacity 

(m3) 

Inventory 
(t) 

Flowrate 
(kg/s) 

Pressure 
(bar) 

Temperature 
(K) 

State 

Storage 
tank D01-
D02 

80 71 - 1.2 318 Liq. 

Transfer 
pump G01 

- - 1.91 3.5 318 Liq. 

Settling 
tank D03-
D04 

25 22.3 - 3.5 333 Liq. 

Feed pump 
G02 

- - 1.91 5.0 333 Liq. 

Heater E01 - - 1.91 5.0 353 Liq. 
Daily tank 
D05-D06 

25 22.3 - 5.0 353 Liq. 

Heater E02 - - 1.91 5.0 373 Liq. 
Booster 
pump G03 

- - 1.91 8.0 373 Liq. 
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Table B3: Process conditions for the reference schemes considered for the storage and supply blocks 
of MGO fuelled vessels (Concept D of Figure 16). Process units and line tags are shown in Figure 18. 

a) S-MGO shore-based storage facility 

Process 
unit 

Parameter 

Nominal 
capacity 

(m3) 

Inventory 
(t) 

Line 
diameter 

(mm) 

Flowrate 
(kg/s) 

Pressure 
(bar) 

Temperature 
(K) 

State 

Storage tank 
T01-T06 

2,550 2,282 - - 1.2 318 Liq. 

Bunker 
pumps 
G01/02 

- - - 33.1 2.0 318 Liq. 

Bunker hose 
S01 

- - 152.4 66.2 2.0 318 Liq. 

b) B-MGO auxiliary bunker vessel 

Process 
unit 

Parameter 

Nominal 
capacity 

(m3) 

Inventory 
(t) 

Line 
diameter 

(mm) 

Flowrate 
(kg/s) 

Pressure 
(bar) 

Temperature 
(K) 

State 

Storage tank 
T01-T07 

100 77.5 - - 1.2 318 Liq. 

Bunker pump 
G01 

- - - 22.6 2.0 318 Liq. 

Bunker hose 
S02 

- - 76.2 22.6 2.0 318 Liq. 

c) V-MGO fuel system onboard ship 

Process 
unit 

Parameter 

Nominal 
capacity 

(m3) 

Inventory 
(t) 

Flowrate 
(kg/s) 

Pressure 
(bar) 

Temperature 
(K) 

State 

Storage tank 
D01-D02 

80 61.2 - 1.2 318 Liq. 

Transfer 
pump G01 

- - 1.91 3.5 318 Liq. 

Settling tank 
D03-D04 

25 20 - 3.5 318 Liq. 

Feed pump 
G02 

- - 1.91 5.0 318 Liq. 

Heater E01 - - 1.91 5.0 333 Liq. 
Daily tank 
D05-D06 

25 20 - 5.0 333 Liq. 

Heater E02 - - 1.91 5.0 373 Liq. 
Booster 
pump G03 

- - 1.91 8.0 373 Liq. 

 

B.2 Consequence evaluation for inherent safety assessment 

A summary of the main consequence assessment results and calculated KPI values for the units 

included in all the process schemes considered are presented in this section. Results for Concepts A 

and B systems are reported in Table B4, while results for Concept C and Concept D are reported in 

Table B5 and Table B6, respectively. Equipment tags are descried in Sections 6.1.1 and 6.1.2. For 

each concept considered, table entries report the LOC types associated with each single process unit 

in each block, and related credit factors (𝐶𝑓), hazard and escalation distances (ℎ and 𝑒, respectively) 

and the calculated values of unit indexes: 𝑈𝑃𝐼, 𝑈𝐻𝐼, 𝑈𝐷𝐼, and 𝑈𝐻𝐷. 
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Table B4: Calculated damage distances (h), escalation distances (e) and unit KPIs for each LOC and 
process unit in each block of Concepts A and B, based on LNG technologies. Equipment tags and 
features are reported in Figure 17 and Table B1 respectively. 

a) S-LNG shore-based storage facility 

Process Unit 

Parameter 

LOC Cf (1/y) 
h 

(m) 
e 

(m) 
UPI (m2) 

UHI  
(m2/y) 

UPD (m2) 
UHD  

(m2/y) 
Storage tanks 
D01-D07 
(Concept A), 
D01-D05 
(Concept B) 

R1 1.00 × 10-5 45 44 

4.80 × 106 3.01 4.78 × 106 2.99 
R2 5.00 × 10-7 2190 2185 

R3 5.00 × 10-7 1086 1077 

Loading pump 
G01 A/B 

R4 5.00 × 10-4 196 190 
2.40 × 105 43.30 2.23 × 105 40.36 

R5 1.00 × 10-4 490 473 

LNG Transfer 
arm S02  

R4 6.00 × 10-4 153 147 
1.84 × 105 25.05 1.71 × 105 23.28 

R5 6.00 × 10-5 429 414 

BOG Transfer 
arm S01  

R4 6.00 × 10-4 14 5 
4.94 × 104 3.09 4.70 × 104 2.83 

R5 6.00 × 10-5 222 217 

b) B-LNG bunker vessel 

Process Unit 

Parameter 

LOC Cf (1/y) 
h 

(m) 
e 

(m) 
UPI (m2) 

UHI  
(m2/y) 

UPD (m2) 
UHD  

(m2/y) 

Storage tank D01 

R1 1.00 × 10-5 139 134 

8.04 × 106 6.53 7.87 × 106 6.41 R2 5.00 × 10-7 2836 2805 

R3 5.00 × 10-7 2153 2143 

Storage tank D02 

R1 1.00 × 10-5 45 44 

6.52 × 106 5.17 6.44 × 106 5.06 R2 5.00 × 10-7 2554 2538 

R3 5.00 × 10-7 1941 1906 

LNG vaporizer 
E01 

R1 1.00 × 10-3 15 12 
2.13 × 102 0.22 1.33 × 102 0.14 

R3 5.00 × 10-5 15 12 

Fuel gas heater 
E02 

R1 1.00 × 10-3 7 5 
4.06 × 103 0.25 9.49 × 102 0.07 

R3 5.00 × 10-5 64 31 

BOG pre-heater 
E03 

R1 1.00 × 10-3 7 5 
4.59 × 103 0.27 4.33 × 103 0.24 

R3 5.00 × 10-5 68 66 

BOG compressor 
P01 

R4 1.00 × 10-3 7 5 
3.17 × 103 0.37 3.00 × 103 0.33 

R5 1.00 × 10-4 56 55 

LNG bunker line 
S04 

R4 6.00 × 10-4 131 126 
3.05 × 105 28.59 2.86 × 105 26.62 

R5 6.00 × 10-5 553 535 

BOG bunker line 
S03 

R4 6.00 × 10-4 14 5 
4.41 × 103 0.38 3.88 × 103 0.25 

R5 6.00 × 10-5 66 62 

c) V-LNG fuel system onboard ship 

Process Unit 

Parameter 

LOC Cf (1/y) 
h 

(m) 
e 

(m) 
UPI (m2) 

UHI  
(m2/y) 

UPD (m2) 
UHD  

(m2/y) 

Storage tank D01 

R1 1.00 × 10-5 81 78 

4.00 × 106 3.53 3.92 × 106 3.45 R2 5.00 × 10-7 1714 1690 

R3 5.00 × 10-7 2000 1980 

LNG vaporizer 
E01 

R1 1.00 × 10-3 58 55 
1.03 × 104 3.88 9.76 × 103 3.49 

R3 5.00 × 10-5 102 99 

Fuel gas heater 
E02 

R1 1.00 × 10-3 7 5 
4.06 × 103 0.25 1.27 × 103 0.09 

R3 5.00 × 10-5 64 36 

BOG pre-heater 
E03 

R1 1.00 × 10-3 5 5 
2.16 × 103 0.13 1.97 × 103 0.12 

R3 5.00 × 10-5 47 44 

BOG compressor 
P01 

R4 1.00 × 10-3 7 5 
3.17 × 103 0.37 3.00 × 103 0.33 

R5 1.00 × 10-4 56 55 

  



183 
 

Table B5: Calculated damage distances (h), escalation distances (e) and unit KPIs for each LOC and 
process unit in each block of Concept C, based on the utilization of IFO. Equipment tags and features 
are reported in Figure 18 and Table B2 respectively. 

a) S-IFO shore-based storage facility 

Process Unit 

Parameter 

LOC Cf (1/y) 
h 

(m) 
e 

(m) 
UPI (m2) 

UHI  
(m2/y) 

UPD (m2) 
UHD  

(m2/y) 

Storage tank 
T01 – T06 

R1 1.00 × 10-4 35 16 

4.02 × 105 4.11 9.08 × 104 0.92 R2 5.00 × 10-6 634 301 

R3 5.00 × 10-6 629 297 

Bunker pumps 
G01 – G02 

R4 5.00 × 10-4 93 32 
2.95 × 104 7.27 5.36 × 103 1.05 

R5 1.00 × 10-4 172 73 

Bunker hose 
S01 

R4 6.00 × 10-4 94 35 
8.57 × 104 10.46 1.74 × 104 1.79 

R5 6.00 × 10-5 293 132 

b) B-IFO auxiliary bunker vessel 

Process Unit 

Parameter 

LOC Cf (1/y) 
h 

(m) 
e 

(m) 
UPI (m2) 

UHI  
(m2/y) 

UPD (m2) 
UHD  

(m2/y) 

Storage tank 
T01 – T07 

R1 1.00 × 10-4 35 16 

3.63 × 104 0.48 4.79 × 103 0.07 R2 5.00 × 10-6 191 69 

R3 5.00 × 10-6 189 67 

Bunker pump 
G01 

R4 5.00 × 10-4 31 5 
5.18 × 104 5.66 7.73 × 103 0.79 

R5 1.00 × 10-4 228 88 

Bunker hose 
S02 

R4 6.00 × 10-4 78 27 
7.69 × 104 8.23 1.42 × 104 1.30 

R5 6.00 × 10-5 277 119 

c) V-IFO fuel system onboard ship 

Process Unit 

Parameter 

LOC Cf (1/y) 
h 

(m) 
e 

(m) 
UPI (m2) 

UHI  
(m2/y) 

UPD (m2) 
UHD  

(m2/y) 

Storage tank 
D01 – D02 

R1 1.00 × 10-4 29 10 

5.16 × 104 0.59 1.06 × 104 0.11 R2 5.00 × 10-6 237 107 

R3 5.00 × 10-6 235 105 

Transfer pump 
G01 

R4 5.00 × 10-4 26 9 
5.79 × 103 0.93 7.05 × 102 0.11 

R5 1.00 × 10-4 76 27 

Settling tank 
D03 – D04 

R1 1.00 × 10-5 51 20 

1.30 × 104 0.04 1.97 × 103 0.01 R2 5.00 × 10-7 114 44 

R3 5.00 × 10-7 89 28 

Feed pump G02 
R4 5.00 × 10-4 33 5 

6.20 × 103 1.16 7.38 × 102 0.09 
R5 1.00 × 10-4 79 27 

Heater E01 
R1 1.00 × 10-3 33 13 

6.14 × 103 1.42 7.27 × 102 0.2 
R3 5.00 × 10-5 78 27 

Daily tank D05 – 
D06 

R1 1.00 × 10-5 59 25 

1.51 × 104 0.05 2.85 × 103 0.01 R2 5.00 × 10-7 123 53 

R3 5.00 × 10-7 104 33 

Booster pump 
G03 

R4 5.00 × 10-4 59 5 
6.26 × 103 2.37 7.93 × 102 0.09 

R5 1.00 × 10-4 79 28 

Heater E02 
R4 1.00 × 10-3 34 5 

6.09 × 103 1.48 7.31 × 102 0.06 
R5 5.00 × 10-5 78 27 
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Table B6: Calculated damage distances (h), escalation distances (e) and unit KPIs for each LOC and 
process unit in each block of Concept D, based on the utilization of MGO. Equipment tags and features 
are reported in Figure 18 and Table B3 respectively. 

a) S-MGO shore-based storage facility 

Process Unit 

Parameter 

LOC Cf (1/y) 
h 

(m) 
e 

(m) 
UPI (m2) 

UHI  
(m2/y) 

UPD (m2) 
UHD  

(m2/y) 

Storage tank 
T01 – T06 

R1 1.00 × 10-4 27 5 

5.00 × 105 5.05 1.02 × 105 1.01 R2 5.00 × 10-6 707 319 

R3 5.00 × 10-7 703 315 

Bunker pumps 
G01/G02 

R4 5.00 × 10-4 65 21 
7.60 × 104 9.74 9.01 × 103 1.12 

R5 1.00 × 10-4 276 95 

Bunker hose 
S01 

R4 6.00 × 10-4 139 49 
1.89 × 105 22.92 3.32 × 104 3.41 

R5 6.00 × 10-5 435 182 

b) B-MGO auxiliary bunker vessel 

Process Unit 
Parameter 

LOC Cf (1/y) 
h 

(m) 
e 

(m) 
UPI (m2) 

UHI  
(m2/y) 

UPD (m2) 
UHD  

(m2/y) 

Storage tank 
T01 – T07 

R1 1.00 × 10-4 27 5 

3.54 × 104 0.42 4.24 × 103 0.04 R2 5.00 × 10-6 188 65 

R3 5.00 × 10-6 186 62 

Bunker pump 
G01 

R4 5.00 × 10-4 32 5 
4.74 × 104 5.26 6.12 × 103 0.62 

R5 1.00 × 10-4 218 78 

Bunker hose 
S02 

R4 6.00 × 10-4 76 26 
3.01 × 104 5.31 4.27 × 103 0.67 

R5 6.00 × 10-5 173 65 

c) V-MGO fuel system onboard ship 

Process Unit 

Parameter 

LOC Cf (1/y) 
h 

(m) 
e 

(m) 
UPI (m2) 

UHI  
(m2/y) 

UPD (m2) 
UHD  

(m2/y) 

Storage tank 
D01 – D02 

R1 1.00 × 10-4 23 5 

2.79 × 104 0.33 3.14 × 103 0.03 R2 5.00 × 10-6 167 56 

R3 5.00 × 10-6 166 54 

Transfer pump 
G01 

R4 5.00 × 10-4 28 5 
6.65 × 103 1.05 6.82 × 102 0.08 

R5 1.00 × 10-4 82 26 

Settling tank 
D03 – D04 

R1 1.00 × 10-5 52 20 

1.35 × 104 0.04 1.89 × 103 0.01 R2 5.00 × 10-7 116 43 

R3 5.00 × 10-7 106 32 

Feed pump G02 
R4 5.00 × 10-4 32 5 

6.72 × 103 1.19 7.12 × 102 0.08 
R5 1.00 × 10-4 82 27 

Heater E01 
R1 1.00 × 10-3 32 5 

6.56 × 103 1.36 6.95 × 102 0.06 
R3 5.00 × 10-5 81 26 

Daily tank D05 – 
D06 

R1 1.00 × 10-5 59 25 

1.48 × 104 0.05 2.55 × 103 0.01 R2 5.00 × 10-7 122 51 

R3 5.00 × 10-7 106 32 

Booster pump 
G03 

R4 5.00 × 10-4 53 5 
6.00 × 103 1.99 6.98 × 102 0.08 

R5 1.00 × 10-4 77 26 

Heater E02 
R4 1.00 × 10-3 36 5 

5.85 × 103 1.61 6.31 × 102 0.06 
R5 5.00 × 10-5 77 25 
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B.3 Sensitivity analysis for the management modification factor 

Monte Carlo method (Metropolis and Ulam, 1949) was hereby applied to assess how the variation of 

weight factors needed for the combination of TEC2O scores (see Eq. 6.17 and Eq. 6.18) affected the 

calculated 𝑓𝐿
′ values and, eventually, the risk figures. The sensitivity analysis was carried out 

considering a beta distribution of random weight values for the operational and organizational 

indicators scores (terms 𝑤𝑂𝑝𝑛 and 𝑤𝑂𝑟𝑝 in Eq. 6.17 and Eq. 6.18), considering a ±50% variation from 

the equalitarian weight initially assigned. A total of 104 combinations was considered (the analysis was 

also repeated considering 105 combinations to ensure results convergence). Following the variation of 

operational and organizational score weights, 𝑀𝑀𝐹 values were re-calculated, obtaining new 𝑓𝐿
′ 

frequency values. The weight value of term 𝜓 in Eq. 6.19 was kept constant, thus giving the same 

relevance to operational and organizational aspects. 

Different combinations of 𝑤𝑂𝑝𝑛 and 𝑤𝑂𝑟𝑝 weights were explored for the sensitivity analysis, with values 

ranging between 0.125 and 0.375, to account for a different priority of the managerial aspects 

considered. The effects of such modifications are reported in the box plots of Figure B1 for TEC2O-

Good and TEC2O-Bad management situations. Frequency modification factors were calculated for the 

process units considered in Table 15. 

It can be noted that differences from the frequency modification factor obtained considering an equal 

set of weights are limited to a maximum 0.02 difference (see Figure B1a, for TEC2O-Good case), 

whereas this difference is larger for the modification factor relative to the transfer hoses when 

considering the TEC2O-Bad management situation (see Figure B1b), for which a maximum 0.634 

positive difference can be achieved. The variability range of the frequency modification factor reported 

in Figure B1a results the same for all the four process units assessed since operational and 

organizational indicators scores were assumed identical for the TEC2O-Good management situation. 

Conversely, the different score of factor #1 (that considers the number of SIMOPs performed in a 

month) attributed to transfer hoses S01/S02 and bunker manifolds S3/S4 is responsible for the diverse 

range of values that the frequency modification factor can get considering the TEC2O-Bad situation, 

since it negatively affects the operational subfactor of the hoses. 

Considering this latter management situation, the maximum positive deviations from original frequency 

modification factor values are about 27% for transfer hoses and manifolds and 22% for storage tank 

and transfer pumps, as illustrated in Figure B1b. Nevertheless, up to 75% of the estimated frequency 

modification factor values for storage tank and transfer pumps will be just 6% greater than the 

modification factor calculated with equal weights (i.e., 1.189 as reported in Table 20) while for the 

transfer hoses and manifolds 75% of the estimated values will have a positive difference from the 

original modification factor value up to 0.16. Considering the ideal management situation, the 

probability of having a positive difference is again around 50%, and up to 75% of the estimated 

frequency modification factor values will be lower than 0.175 as can be seen in Figure B1a. For this 

management situation, the maximum increase of the modification factor is slightly higher than 10% 

with respect to the original value calculated considering an equal value for 𝑤𝑂𝑝𝑛 and 𝑤𝑂𝑟𝑝 weights. 
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Figure B1: Results of Monte Carlo sensitivity analysis. Panel a) refers to TEC2O – Good management 
situation; panel b) refers to TEC2O – Bad management situation. Bottom and top edges of the blue 
box indicate the 25th and 75th percentiles respectively. The whiskers extend to the most extreme data 
points. 

 

  

b)

a)
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B.4 Dangerous scenario frequencies 

The complete list of dangerous scenario frequencies calculated with Eq. 6.25 is reported in Table B7 

and Table B8 for limited and unlimited releases, respectively. The tables report scenario frequencies 

calculated for the baseline bunkering case and for TEC2O Good and TEC2O Bad management 

situations. 

Table B7: Calculated dangerous scenario frequencies for limited releases. JF: Jet Fire; FF: Flash Fire. 

Process unit LOC Type Scenario 
TEC2O - Good Baseline TEC2O - Bad 

Frequency [ev./y] 

Tank T1 R1 
JF 1.453×10-11 8.640×10-11 1.027×10-10 

FF 2.179×10-9 1.296×10-8 1.541×10-8 

Transfer pump 
G01 A/B 

R4 
JF 2.317×10-8 1.378×10-7 1.638×10-7 

FF 4.930×10-7 2.931×10-6 3.486×10-6 

R5 
JF 8.864×10-9 5.270×10-8 6.268×10-8 

FF 2.187×10-7 1.300×10-6 1.547×10-6 

LNG hose S1 

R4 
JF 4.185×10-9 2.488×10-8 6.086×10-8 

FF 3.738×10-7 5.295×10-7 9.296×10-6 

R5 
JF 2.092×10-9 1.244×10-8 3.043×10-8 

FF 2.023×10-7 3.567×10-7 4.873×10-6 

BOG hose S2 

R4 
JF 4.185×10-10 2.488×10-9 6.086×10-9 

FF 3.126×10-7 1.642×10-7 8.410×10-6 

R5 
JF 2.092×10-8 1.244×10-7 3.043×10-7 

FF 2.005×10-7 3.535×10-7 2.916×10-6 

LNG manifold 
S3 

R4 
JF 4.375×10-10 2.602×10-9 6.363×10-9 

FF 3.635×10-7 3.902×10-7 9.327×10-6 

R5 
JF 9.901×10-10 5.887×10-9 1.440×10-8 

FF 9.575×10-8 1.688×10-7 2.306×10-6 

BOG manifold 
S4 

R4 
JF 4.375×10-10 2.602×10-9 6.363×10-9 

FF 3.023×10-7 2.601×10-8 8.436×10-6 

R5 
JF 9.901×10-10 5.887×10-9 1.440×10-8 

FF 8.843×10-8 1.253×10-7 2.199×10-6 
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Table B8: Calculated dangerous scenario frequencies for unlimited releases. JF: Jet Fire; FF: Flash 
Fire; PF: Pool Fire. 

Process unit LOC Type Scenario 
TEC2O - Good Baseline TEC2O - Bad 

Frequency [ev./y] 

Tank T1 R1 
PF 2.287×10-12 1.360×10-11 1.617×10-11 

FF 3.431×10-10 2.040×10-9 2.426×10-9 

Transfer 
pump G01 
A/B 

R4 
PF 3.647×10-9 2.168×10-8 2.579×10-8 

FF 7.760×10-8 4.614×10-7 5.487×10-7 

R5 
PF 1.395×10-9 8.296×10-9 9.866×10-9 

FF 3.443×10-8 2.047×10-7 2.434×10-7 

LNG hose S1 

R4 
PF 6.587×10-10 3.917×10-9 9.579×10-9 

FF 5.883×10-8 8.334×10-8 1.463×10-6 

R5 
PF 3.294×10-10 1.958×10-9 4.790×10-9 

FF 3.185×10-8 5.615×10-8 7.670×10-7 

BOG hose S2 

R4 
PF 6.587×10-11 3.917×10-10 9.579×10-10 

FF 4.920×10-8 2.585×10-8 1.324×10-6 

R5 
PF 3.294×10-9 1.958×10-8 4.790×10-8 

FF 3.362×10-8 6.786×10-8 7.900×10-7 

LNG manifold 
S3 

R4 
PF 6.887×10-11 4.095×10-10 1.002×10-9 

FF 5.723×10-8 6.142×10-8 1.468×10-6 

R5 
PF 1.559×10-10 9.267×10-10 2.266×10-9 

FF 1.507×10-8 2.657×10-8 3.630×10-7 

BOG manifold 
S4 

R4 
JF 6.887×10-11 4.095×10-10 1.002×10-9 

FF 4.758×10-8 4.095×10-9 1.328×10-6 

R5 
JF 1.559×10-10 9.267×10-10 2.266×10-9 

FF 1.392×10-8 1.972×10-8 3.462×10-7 

 



189 
 

Appendix C - One-dimensional transient heat 

conduction analysis 

A one-dimensional transient model was used to calculate the temperature profile evolution inside 

the vacuumed perlite insulation of cryogenic bullet tanks studied in Chapter 7. The main objective of 

this analysis was to understand the dynamics of heat transfer across an undamaged layer of 

insulating material, estimating the time needed for the temperature effects generated by a full 

engulfing fire to cross all the tank insulating layer. The initial and boundary conditions are the same 

considered for the setup of case V66 (see Table 24) i.e., a linear temperature gradient between 

ambient condition (16 °C) and saturation temperature of nitrogen at 2 bar. The flame temperature is 

considered equal to 860°C.  

As can be seen from Figure C1, a thermal steady state inside the insulation is not reached even after 

1 hour of fire exposure. By applying the penetration theory for a semi-infinite slab (see Eq. C1), it is 

possible to express the time (t) needed for temperature effects to cross all the insulation thickness 

(𝛿) as follows: 

𝑡 =
𝛿2

16 ∙ 𝛼
 Eq. C1 

where 𝛼 is the thermal diffusivity of perlite, considered equal to 1.314×10-6 m2/s. Substituting the 

insulation thickness of the experimental tank, reported in Section 7.1.1, the required time is estimated 

in 2,900 s (around 48 minutes). This result supports the assumption made in Section 7.2.3 for which 

a degradation of insulation performance is one possible explanation for the increased pressurization 

rate exhibited by the tank during the experimental fire test. 

 

Figure C1: Transient thermal profile inside vacuumed perlite insulation (200 mbar) exposed to fire 
conditions. Vertical dashed lines delimit the extent of insulating material. 
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Appendix D - Additional CFD results 

D.1 Cases A85 and B85 

The results reported in this appendix are analogous to those presented in Section 7.3.2 for the cases 

A50 and B50. The extent of evaporation and condensation clusters inside the tank lading are shown 

in Figure D1 for three reference time steps (panels A1-A3 for case A85 and B1-B3 for case B85). 

The evaporation regions appear to be smaller than those highlighted in Figure 46 for both case A85 

and B85. These results may be linked to the slower pressurization rate of storage tanks with a higher 

filling degree, as seen in Figure 45. A reduction of condensation zones in the bulk region of case 

B85 (panel B2) can be observed compared to analogous results of case B50. 

The dynamic evolution of the velocity field inside the tank is illustrated in panels A1-A3 and B1-B3 

of Figure D2. The macroscopic flow patterns identified in Figure 48can still be found in cases A85 

and B85. Compared to results from cases A50 and B50, the maximum predicted velocity magnitude 

is about 20% higher for case A85 and 30% lower for case B85. 

Liquid temperature contour plots are reported in panels A1-A3 and B1-B3 of Figure D3 while 

temperature and velocity profiles are illustrated in Figure D4. 

D.2 Cases A15 and B15 

The evaporation and condensation regions inside the tank lading are depicted in Figure D1 for three 

reference time steps (panels A4-A6 and B4-B6). Compared to the situation reported in Figure 46, 

the extent of evaporation zones for lower filling degrees is much higher and an evaporation cluster 

can be found in proximity of tank wall, close to the interface, already after 30 minutes of fire exposure. 

Process conditions of case B15 seems to be more favourable for the evaporation process than those 

encountered in case A15. The greater extension of evaporating regions for lower liquid levels can 

be correlated to the faster pressurization dynamic observed for these cases. 

The dynamic evolution of the velocity field inside the tank is illustrated in Figure D2 (panels A4-A6 

for case A15 and B4-B6 for case B15). The lower liquid level induces the formation of one or two 

macroscopic recirculation eddies. A radial flow from the tank walls toward the axis can still be 

observed at vapour-liquid interface as well as a bigger recirculation swirl located close to the tank 

bottom. Compared to results from cases A50 and B50, the maximum predicted velocity magnitude 

is about 20% higher for case A15 and 30% lower for case B15. 

Figure D5 shows the time evolution of temperature and velocity profiles, whereas relevant contour 

plots showing the liquid temperature stratification are shown in panels A4-A6 and B4-B6 of Figure 

D3 for case A15 and B15, respectively. From the comparison of the different cases reported in Figure 

D3, it is evident how a lower tank filling degree results in a less thermal-stratified lading. Regardless 

of the amount of stratification, liquid temperature gradients measured along the tank axis do not 

exceed 1.3 K, while warmer liquid tends to accumulate at the vapour-liquid interface close to tank 

wall. In this spot, next to the tank wall, liquid temperatures can be up to 15 degrees higher than the 

colder bulk. 

 



191 
 

 

Figure D1: Time evolution of condensation and evaporation regions inside tank lading for cases A85 (A1-A3); B85 (B1-B3); A15 (A4-A6) and B15 
(B4-B6). 
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Figure D2: Velocity magnitude path-lines for cases A85 (A1-A3); B85 (B1-B3); A15 (A4-A6) and B15 (B4-B6) at different times. 
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Figure D3: Liquid temperature contour plots for cases A85 (A1-A3); B85 (B1-B3); A15 (A4-A6) and B15 (B4-B6) at different times. 
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Figure D4: Comparison of thermal and vertical velocity profiles at different time steps for cases A85 
(panels A1 and A2) and B85 (panels B1 and B2). Data refer to the tank horizontal centreline (horizontal 
segment in the sketch). The dashed segment indicates the tank filling degree. 
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Figure D5: Comparison of thermal and vertical velocity profiles at different time steps for cases A15 
(panels A1 and A2) and B15 (panels B1 and B2). Data refer to the tank horizontal centreline (horizontal 
segment in the sketch). The dashed segment indicates the tank filling degree. 
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D.3 FDS modelling results for cases HP-1 and HP-2 

Results showed in this Section refer to the CFD modelling of LNG pool fires occurring inside gas fuelled 

FPR as described in Chapter 8. More in detail, the results reported are relative to cases HP-1 and HP-

2 (see Table 31) that describe the dynamics of pool fires originating following a release involving the 

HP fuel pumps featured in the HPDF fuel system. 

The time variation of gas species concentration inside the FPR is illustrated in Figure D6. As can be 

seen, oxygen concentration steadily decreases with time for case HP-1, whereas an equilibrium value 

seems to be reached for case HP-2 (Ventilation On) after around 55 seconds from fire ignition. Looking 

at the methane concentration value, it can be noted that for case HP-1, the concentration grows 

constantly, entering in the flammability range around 60 second after fire start, about 10 seconds earlier 

than the analogous case LP-1 (see Figure 64). This result suggests that for case HP-1 the pool fire 

self-extinguishes due to oxygen deprivation, as no fresh air inlet from the ventilation system is 

considered in this case, nevertheless LNG continues to evaporate from the pool, thus raising the 

methane concentration inside the FPR. In line with results from cases LP-1 and LP-2, the CO2 

concentration appears to be less influenced by the operating mode of the ventilation system. 

 

Figure D6: Comparison of the concentration profiles of different gas species involved in the combustion 
process for cases HP-1 and HP–2. 

As expected, slightly higher 𝐻𝑅𝑅 values were predicted for cases HP-1 and HP-2 because of bigger 

pool dimensions.  
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As showed in Figure D7, when the oxygen concentration plunges below 6% vol., the enclosure pool 

fire begins to grow weaker, eventually dying out before 90 seconds. Conversely, for case HP-2, for 

which air is introduced inside the FPR, the 𝐻𝑅𝑅 decreases progressively, until reaching an equilibrium 

value around 35,000 kW that is about 54% of the modelled peak value of 65,000 kW reached during 

the initial phases of combustion. 

 

Figure D7: Comparison of the HRR for cases HP-1 and HP-2. The secondary y-axis shows the oxygen 
concentration. 

Time-averaged values of the incident radiation heat flux predicted for a mechanically ventilated FPR 

are illustrated in Figure D8. Heat flux results evaluated at different heights obtained for LPDF and 

HPDF systems are compared. Generally, LPDF values are lower than correspondent measures for 

HPDF, possibly because of the smaller dimensions of LP-2 pool fire. Except for values predicted below 

3 m height (excluded), the time-averaged radiation heat flux initially decreases with distance starting 

from Y=0, while at lower heights the heat flux value increases as it gets closer to the pool fire centre 

(located at Y=3 m), then it stabilises in a range between 25 and 75 kW/m2, eventually to slightly rise 

again approaching the end of the FPR. As a general trend, the predicted heat flux increases with height 

as hot combustion gases form a layer in proximity of the FPR ceiling, contributing to increase thermal 

radiation at higher locations. The exception is represented by the array of measuring points located 0.3 

metres above the ground, which predicted higher fluxes than points 1 metre high. 
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Figure D8: Comparison of time-averaged radiation heat flux measured at different locations for cases 
HP-2 and LP-2. See Figure 60 for the distribution scheme of measuring devices used in the simulations. 

Additional incident radiation heat flux values evaluated at the boundaries of the enclosure are reported 

in Figure D9. Data for cases HP-1 and HP-2, obtained at different time steps, are reported, together 

with flame visualization, to better understand the fire dynamics. It must be noted that smoke was not 

represented in the figure for ease of illustration. As expected, the FPR ceiling, impinged in flames, 

receive the highest amounts of radiation. Furthermore, the effect of the ventilation systems is evident 

from the comparison of panels a and c: in this latter case, which considers fresh air inlet, the better 

combustion results in a higher 𝐻𝑅𝑅 and higher heat fluxes received by the boundaries as a 

consequence. On the other hand, the effects of oxygen deprivation can be noted looking at panel b 

that clearly shows a smaller fire if compared to case HP-2 shown in panel d. Lastly, the effect of hot 

gases layering can be inferred by looking at radiation contours on the Z-Y plane: higher radiation values 

are predicted closer to the ceiling, where hot combustion gases tend to accumulate. 
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Figure D9: Overview of the incident radiation heat flux evaluated at FPR boundaries at various time 
steps for cases HP-1 (panels a & b) and HP-2 (panels c & d). 
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