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Abstract

The development of reliable numerical tools for the simulation of non-equilibrium plasma

devices is a fundamental requirement the technological progress. The main challenge in

this context is to adequately represent multiple physical phenomena that take place over

different temporal and spatial scales, while retaining reasonable computational perfor-

mances.

In the first part of the work, a fluid methodology in which electrons are modelled us-

ing the Boltzmann relation is developed as an alternative to Full Drift-Diffusion models.

The proposed Boltzmann Drift-Diffusion methodology allows to limit the drift-diffusion

approach to the ionic species, granting substantial savings in terms of computational

performances. Both methodologies are applied to the 1D/2D simulation of a volumet-

ric Dielectric Barrier Discharge reactor, operating with air at atmospheric pressure. A

semi-implicit numerical technique for the integration of plasma kinetic processes is pre-

sented and numerically validated against a well established implicit methodology. The

Boltzmann Drift-Diffusion and Full Drift-Diffusion approaches are compared, showing a

good agreement. The obtained results are validated against experimental measurements

of the deposited surface charge on to the dielectric layers covering the electrodes.

In the second part of the work, a hybrid fluid/Particle-In-Cell approach is employed

to model a miniaturized annular Hall thruster for space propulsion. The results yielded

by two different treatments of the electron transport mechanism inside and outside the

thruster channel are compared to macroscopic and microscopic physical information

obtained through experimental measurements. These latter are then used to infer the

anomalous transport collision frequency along the axis of the thruster. It is shown that

the model can accurately predict the considered thruster performances and structure

of the acceleration region, as well the measured fraction of doubly charged ions. The

obtained efficiency of the two chemical kinetic channels for the doubly charged ions

production is discussed and correlated with the computed spatial distribution of the

species.
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1 Introduction

1.1 Non-Equilibrium plasmas

This work deals with the development of numerical models for the simulation of devices

operating with non-equilibrium plasmas. One of the most commonly employed ways

to artificially obtain a non-equilibrium plasma is through a gas discharge. An electric

field is applied across a gas, which accelerates free electrons to energies sufficiently

high to ionize other atoms by collisions. One characteristic of this process is that the

applied electric field transfers energy more efficiently to the light electrons than to the

relatively heavy ions [6]. The subsequent thermal energy transfer from electrons to the

heavy particles through collisions requires a characteristic relaxation time τ , that can

be large compared to the discharge observation time scale. In non-equilibrium (cold)

plasmas, then, the electron temperature (Te) is considerably higher than that of the ions

(Ti) and neutrals (Tn). It is worth noticing that, while a non-thermal plasma is not

sufficiently collisional to reach thermal equilibrium between the different species, the

latter can be individually at thermodynamic equilibrium. In this case, the plasma is

said to be in partial thermodynamic equilibrium, and the velocity distribution functions

of electrons and ions are both Maxwellian, albeit having different mean energies εe 6= εi.

In contrast, collisions between electrons, ions and neutrals in thermal plasmas are so

frequent that thermodynamic equilibrium conditions are obtained in very short times

from the discharge onset. Examples of thermal plasmas on earth can be constituted

by high-intensity electric arcs, plasma torches or radio frequency discharges at or above

atmospheric pressure [7].

1



1 Introduction

1.2 Technological applications

Because of the relative ease with which a non-thermal plasma can be produced on earth,

a great deal of attention has raised over the decades around the employment of such

kind of plasmas for a multitude of industrial, aerospace and medical applications.

Industry and environment

Non-thermal plasmas can be used to treat surfaces and volumes in both direct and

indirect ways. Treatments performed using non-thermal plasmas are also non-destructive

and highly energetic [8]. In addition, non-thermal plasmas produce a remarkable number

of chemically active species in economically convenient ways [9]. These are the primary

features that make plasma technologies so interesting from an industrial point of view.

Typical examples of industrial uses of non-thermal plasmas at atmospheric pressure

include the production of ozone for air cleaning [10, 11], controlled deposition of thin-

films [12, 13], and the reduction of thin oxide layers [14, 15]. The surfaces of polymers

[16], ceramic materials and metals are often treated with technologies based on non-

equilibrium plasmas [17]. Other important applications include plasma display panels

[18, 19], ultraviolet light sources [20] and plasma assisted combustion. The presence of

free radicals generated by the plasma can indeed improve engine performances, increase

the stability of flames and reduce emissions [21].

The environmental applications include treatment and conversion of Greenhouse gases

[22], electrostatic precipitation for the cleaning of air from fumes and particulates [23], as

well as exhaust gases of internal combustion engines and incinerators and contaminated

air produced variety of different sources [24].

Aeronautics and space

In the aeronautic community, plasma actuators are employed to mitigate the detrimental

effects of shock waves in supersonic/hypersonic flights. Indeed, the effective aerodynamic

shape and the efficiency [25] of aircraft can be improved through the counter-flow injec-

tion of plasmas [26]. At lower flight speeds, Dielectric Barrier Discharge (DBD) plasma

actuators are employed to perform active control of flow over aerodynamic bodies, with-

out the need of moving parts or relevant additional weight [27]. Indeed, DBD actuators

2



1 Introduction

have demonstrated their usefulness in preventing or to induce flow separation and the

possibility to reduce drag and to enhance the lift of airfoils [28].

Regarding the space applications, plasma thrusters are gradually challenging the

monopoly of chemical thrusters for the tasks of satellite/spacecraft displacement (in

space) and its attitude control [29]. Plasma propulsion uses electric energy to ionize

the gas propellant and then impart kinetic energy to the resulting plasma, generating

thrust through action and reaction principle. The reasons behind the considerable in-

terest that has been grown in recent decades around plasma propulsion is due to both

technical and economic reasons. Plasma thrusters can indeed perform complex orbital

manoeuvres since the produced thrust can be easily controlled, and attain considerably

faster exhaust speeds compared to chemical rockets [2].

Medicine

Because the ions and the neutrals of a non-thermal plasma remain relatively cold, the

plasma can come in contact with biological tissues without causing any thermal damage.

This characteristic opens up the possibility of using these plasmas for the direct and

indirect treatment of heat sensitive materials, including biological tissues [7]. Thanks to

these properties, non-equilibrium plasmas have been applied in the field of electrosurgery

[30] tissue engineering [31] and surface modification of bio-compatible materials [32,33].

Non-equilibrium plasmas at atmospheric pressure conditions are characterized by the

presence of a multitude of active chemical species such as reactive oxygen species (ROS),

reactive nitrogen species (RNS) and free radicals [34]. These species, together with the

ions and free electrons, can be conveniently exploited for sterilization of heat-sensitive

medical instruments [35]. Moreover, radicals and excited species in the plasma can be

used for pathogens inactivation, performed by directly damaging the capsid of viruses.

This kind of approach has already been successfully employed for the tasks of surface

disinfection and inactivation [36, 37], and several interesting preliminary results have

recently been obtained in the disinfection of air streams [38].

1.3 Motivation

In Sec. 1.2, a number of different applications (in different sectors) for technologies based

on non-equilibrium plasmas has been listed. The main reason behind the reported vast-

3



1 Introduction

ness and diversity of non-thermal plasma applications lies indeed in the rich physics that

characterizes this physical state. The quantity and complexity of the different phenom-

ena taking place in non-equilibrium plasmas, however, also constitutes a challenge from

the perspective of understanding, operating and optimizing technologies based on these

principles. In this context, considering the high costs associated with prototyping and

experiments, the development of reliable tools allowing to perform numerical simulations

plays a very prominent role in technological and scientific advancement.

The task of simulating the physical mechanisms involved in non-thermal plasma

physics, however, comes by no means without major challenges. From a modelling

perspective, the overall behaviour of a plasma device is influenced by the combination of

a large number of different physical contributions, that must be correctly addressed. The

charged species constituting the plasma respond – in reason of their (different) phys-

ical characteristics – to both (external and self-induced) electric and magnetic fields,

as well as density gradients. The distributions of charged and neutral species are then

subjected to chemical processes, which in turn depend on both the dynamics of the

species and their energies. In addition, non-thermal plasmas are often confined by some

kind of dielectric or metallic vessels or walls. The interaction between these latter and

the charged species constitutes another fundamental influence on the overall plasma

behaviour, involving both chemical and electromagnetic aspects.

In order to adequately capture the mentioned mechanisms taking place in a plasma

device, a key role is excerpted by whether a fluid or kinetic physical description is per-

formed. Indeed, the spectrum of different ionization rates (1× 10−10 to 1× 10−3) and

electron energies (0.1 eV to 10 eV) encountered in typical applications of non-equilibrium

plasmas is such that both approaches are commonly adopted, depending on the specific

characteristics of the considered application. A further challenge is constituted by the

fact that, as well known, the boundary between whether a fluid approach should be

employed instead of a kinetic one and vice versa is often blurred. As an example of

this, one can consider a DBD device operating at atmospheric air pressure. In reason

of the high pressure conditions and collisional regimes established in these devices, fluid

models are often employed to describe DBD devices on the time-scales of the employed

supply voltage waveforms. Contextually, streamer discharges – constituting one of the

main fundamental processes in a DBD – are also modelled with kinetic approaches (such

as Monte Carlo simulations and Particle-In-Cell (PIC) models) on considerably shorter
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time-scales [39]. The employment of kinetic approaches allow to avoid expressing the

electron energy distribution as a function of the local reduced field strength or the elec-

tron average energy, as usually performed in fluid approaches under the assumption of a

Maxwell-Boltzmann distribution. In this way, a more accurate description of the consid-

ered collisional phenomena – which play a fundamental role in the streamer development

– is obtained through a detailed representation of the velocity distribution function.

In this work, both fluid and kinetic approaches are employed to model a DBD reac-

tor operating with atmospheric air pressure and a miniaturized Hall thruster for space

propulsion. Even if the practical scopes of these two technologies are completely differ-

ent, the challenges involved in the process of modelling these devices are surprisingly

similar. In both cases, indeed, the large difference between the dynamics of the electrons

and the heavy species – leading to unpractical computational loads – is the driver for

the development of hybrid approaches, where electrons are assessed using a different

approach with respect to the ions. Moreover, in both cases a key role is played by

the physics taking place at the considered plasma region boundaries. Considering the

modelled DBD reactor, the surface charge deposited on to the dielectric layers heavily

affects the gap voltage, as well the population of the species inside the gap through

secondary emission, recombination and attachment phenomena. An equally important

role is played by the annular channel Boron Nitride inner walls of the considered Hall

thruster. Indeed, the electron-wall collisions are the main source of the so-called anoma-

lous transport inside the thruster channel, allowing the electrons to partially escape the

magnetic confinement and travel towards the thruster anode. Again, similarly to the

case of DBDs, the walls secondary emission coefficient excerpts a marked influence on

both the density of electrons inside the considered devices and their velocity distribution

function.

Summarizing, the challenges associated with the modelling of electronic transport

and the effects exerted by the walls on the charged species are common to a multitude

of different non-equilibrium plasma applications. As technological development moves

forward, the computational resources that can be devoted to the simulation of these

devices will significantly increase. In this way, thanks to the contextual development of

parallel computing techniques both on CPUs and GPUs, kinetic and hybrid approaches

will gradually be extended to the applications that are currently being modelled mainly

through fluid models.
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1.4 Thesis outline

In Chapter 2, a general fluid model (valid in one, two or three dimensions) is presented,

devoted to the numerical simulation of non-equilibrium plasma devices operating at

atmospheric pressure. The adoption of a fluid approach for the physical description

of such phenomena is justified by the highly collisional regime due to the atmospheric

pressure operation. Indeed, at such pressures the collision rates are high enough for

electrons to reach thermal equilibrium conditions corresponding to the local electric

field within picoseconds [1]. The developed approach is based on the Finite Volume

solution of the continuity equation for the charged species, written under the drift-

diffusion approximation. The operator-splitting technique is employed to separate the

integration of the two contributions to the particle fluxes from both the electrostatic

problem solution and the kinetic source terms integration. Two different approaches

are discussed, with respect to the electron transport modelling. In the first proposed

methodology, named Full Drift Diffusion (FDD) approach, the electron fluxes due to

diffusion and advection are computed with the same technique employed for the heavy

species. Hence, at each time-step, a linear Poisson electrostatic solver can be employed to

compute the electric potential distribution due to externally applied voltages, as well as

volume and charge density distributions. Conversely, in the other proposed technique –

named Boltzmann Drift Diffusion (BDD) – the electrons are assumed to instantaneously

adapt their position to the local electrostatic field caused by external applied voltages

and the motion of the (slower) heavy ions. Hence, their spatial distribution is computed

using the Boltzmann relation, leading to a non-linear electrostatic Poisson problem. The

two approaches are then compared, and the employed numerical methodologies for the

Poisson problem solution are discussed. The same is performed for the explicit time-

integration of the number density fluxes, and a semi-implicit numerical approach for the

plasma kinetic source terms integration is presented.

In Chapter 3, the fluid approach introduced in Chapter 2 is applied to the numerical

simulation of a DBD volumetric reactor, operated in atmospheric pressure air. The

development of the fundamental parts of a 1D/2D computational code implementing the

proposed approach is discussed from the perspective of two markedly different computer

languages, i.e., Matlab and Fortran 90. First, the criteria employed for the generation

of non-uniform grids allowing to resolve the Debye length in the sheaths are described.

Then, the different ways in which the distributions of charged species are injected into
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the computational domain are considered, as well as the implemented methodologies for

the computation of the macroscopic transport parameters. The latter are expressed as

a function of the local reduced electric field value under the Local Field Approximation

(LFA). The latter is adopted under the assumption that the charged species gain energy

from the electric field, and lose it locally as a result of collisions. Afterwards, the

dimensionless forms of the employed conservation equations and electrostatic formulation

are derived, and the set of reactions used to represent the source terms due to chemical

kinetic processes. The developed semi-implicit numerical scheme is compared to a well-

established implicit solver, and the methodology employed to account for the surface

charge deposition in the dielectric layers due to positive and negative charged fluxes

is presented. The remaining part of the chapter is devoted to the discussion of the

simulation results obtained using both the FDD and BDD approaches. The trends in

obtained gap voltage and deposited surface charge are shown during two cycles of the

15 kHz applied sinusoidal waveform. The detailed spatial distribution of the species

number density and obtained electric potential are discussed at several key-moments of

the considered simulation. Finally, the FDD and BDD approaches are quantitatively

compared, and the computed values of deposited surface charge density are validated by

means of experimental measurements.

In Chapter 4, kinetic numerical approaches are compared to fluid models from the per-

spective of non-equilibrium plasma modelling. It is highlighted how kinetic approaches

allow to avoid a series of physical assumptions on the energy distribution function of

the considered plasma species that are inherent to fluid models. Subsequently, the fun-

damental features of the Electrostatic Particle-In-Cell (ES-PIC) approach are presented

and discussed. This is performed aiming to provide an introduction to the following

chapter, where a hybrid fluid/Particle-In-Cell code is applied to the task of modelling

the physical behaviour of a Hall plasma thruster. The typical scheme of a simple col-

lisional ES-PIC code is firstly presented, together with a discussion on the different

schemes that can be adopted to account for the dynamics of the considered species.

Different weighting techniques – employed to gather the values of fields on to the par-

ticle positions and to scatter the particles and their velocities to the grid nodes – are

also discussed. Finally, a Monte Carlo procedure to account for the effects of collisions

between the considered particles is presented.

In Chapter 5, a hybrid fluid/Particle-In-Cell code is employed to study a miniaturized
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Hall thruster for space propulsion. The employed code – HALLIS – simulates the

plasma physics taking place both inside and outside the thruster annular channel in

two dimensions, exploiting the axial symmetry typical of these devices. The numerical

model implemented in HALLIS is hybrid, in the sense that the kinetic approach is

only employed to describe the dynamics of the heavy species, while a fluid approach is

used to solve the electron transport and energy equations. This is possible thanks to

the assumption that the electrons – magnetized by a static radial magnetic field – are

in thermodynamic equilibrium conditions along the magnetic field lines. Since a fluid

approach is employed for the physical description of the electrons, their mobility must be

expressed through empirical macroscopic transport coefficients. The code is employed

to compute the main macroscopic performances of the thruster under different discharge

voltages and gas propellant flow rates. The considered figures of merit include thrust,

discharge current, specific impulse and efficiency. The obtained thruster performances

are compared against experimental measurements. Then, thanks to the availability

of Laser Induced Fluorescence (LIF) measurements of the ions velocity distribution

function, the macroscopic electron transport coefficients are adapted to accurately match

the microscopic information on the dynamics of the ions. The obtained results are

discussed for two specific operational modes of the considered annular thruster, and

the observed production rate of doubly charged Xenon is analysed and compared to

experimental measurements.

1.5 Dielectric Barrier Discharges

Among the different kinds of non-thermal plasma sources, a particularly relevant role

is played by the Dielectric Barrier Discharges. Originally developed and employed for

ozone generation [40], the DBD is nowadays employed in broad spectrum of scientific,

industrial and biomedical applications.

The DBD shares many features with the corona discharge, although the latter term

is preferred for discharges between bare metal electrodes without dielectric (other than

the gas gap) [1]. Also, corona discharges are usually operated in DC or pulsed DC

regime, whereas DBDs require AC voltage sources (from low frequencies up to MHz)

or nanopulses. In a corona discharge, a strong electric field is produced near the high

voltage (HV) electrode, which accelerates the free electrons in the considered gas (often
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air). The electrons, in turn, ionize the surrounding gas, generating a plasma in the

electrode surroundings [41]. Although corona is employed for material surface treatments

and bacterial decontamination, its industrial use is limited by the non-uniformity of the

produced plasma, leading to non-homogeneous treatments [42]. Moreover, the discharge

volumes are rather small, limiting the use of corona treatment devices to small surfaces

[43].

In a DBD device, the non-uniformity of corona discharge is avoided introducing a

dielectric barrier in the discharge gap. As shown in Fig. 1.1, either one or both the

electrodes are covered with a dielectric layer. This has the effect of limiting the electric

current and preventing spark formation [44]. It is important to remark that the nature

of the discharge taking place in the gas gap between the electrodes depends (among

other parameters) on the kind of employed gas, on the geometry and the characteristics

of the employed dielectric layers. Hence, the characteristics of the discharge regime

produced by a DBD device can be controlled through an appropriate choice of operating

conditions, geometry and employed materials.

Another key difference between the corona and DBD discharge is the characteristic

charge accumulation process that takes place in the dielectric layers for this second kind

of device. Indeed, the electric potential due to the dielectric surface charge generates an

additional electric field with respect to the external field due to the electrodes potential.

The dielectric layers in a DBD serve a twofold purpose: it limits the amount of charged

transport by a single micro discharge, and it distributes the micro discharges over the

entire electrode surface. The displacement current can pass through the dielectric film by

an alternative electric potential source, thus the circuit is closed. However, the distinctive

feature of DBD is constituted by the accumulated charges over the dielectric layers

that excerpts the effect of reducing (or, occasionally, increasing) the local electric field

intensity, causing a self-limiting behaviour characteristic of this type of discharges [45].

1.6 Hall Thrusters

A Hall thruster belongs, along with its gridded counterpart – the ion thruster – to the

category of electrostatic thrusters. The main idea behind these devices is to accelerate

the gas propellant through the application of a body force. A stream of ions (produced

by ionization of the propellant), is accelerated by an electric field, generated between
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Figure 1.1: Basic dielectric-barrier discharge configurations, after [1]

an anode (also serving as neutral gas injector) and an external cathode. The external

cathode also provides a stream of electrons used as primary electrons to ignite the

discharge and to neutralize the ions accelerated by the electric field. In absence of

collisions, the velocity of the ions leaving the thruster is determined by the total potential

drop between the anode and the cathode and by the charge-to-mass ratio of the employed

ions. The maximum velocity that can be imparted to the ions is defined as:

vi =

√
2eVd
mi

(1.1)

where Vd is the discharge voltage and mi the mass of the considered ions. Experi-

mentally, the mean ion energy in well-developed thrusters correspond to 70 % to 90 %

of Vd [46]. The obtained thrust depends on the propellant mass flow rate and exit

speed [47], which can be approximated with mi and vi due to the velocity of the ions

greatly exceeding that of the neutral gas propellant:

T = ṁvex ≈ ṁivi (1.2)

The considerable exit speed that can be obtained in a Hall thruster (10 km s−1 to

30 km s−1) can be conveniently employed to obtain the change of speed required to

perform a given maneuver (∆v), defined as:

∆v = vex ln

(
mf

m0

)
(1.3)

In this expression, vex is the ejected propellant speed, while m0 is the mass of the

considered spacecraft at the beginning and end of the mission, respectively. In compari-

son, values of vex achieved by conventional chemical thrusters are typically one order of

magnitude lower. This peculiarity of the Hall (and on) thrusters allow to considerably
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reduce the embarked propellant mass, leading to relevant advantages in terms of mission

cost and spacecraft size.

The efficiency of a plasma thruster is defined as the ratio between the power imparted

to the expelled jet and the electric power (Pel) provided to the thruster. The efficiency

can be defined with:

η =
T 2

2ṁPel
(1.4)

This figure of merit is sometimes referred to as anode efficiency, neglecting the power

consumption of the cathode. Hence, the electric power in the denominator of Eq. (1.4)

is simply given by the product of the anode voltage Va and the discharge current Id.

Compared to ion thrusters, Hall thrusters cannot reach the same levels of specific

impulse (Isp), defined as:

Isp = vex/g, (1.5)

where g is the gravitational acceleration. Moreover, they suffer from larger plume

divergence, which can lead to highly energetic particles impacting sensitive spacecraft

parts, such as solar panels.

Conversely, Hall thrusters exhibit higher thrust at the same power level. Additionally,

Hall thrusters can be operated at lower voltages and require fewer power supplies to be

operated [2]. Finally, the ion current in a Hall thruster is proportional to the neutral

gas flow rate, and independent from the operating voltage. This is a very interesting

property, as it allows to operate the thruster at maximum thrust (for orbit insertion) or

maximum specific impulse (for station keeping), making it suitable for a large span of

different missions [29].

1.7 Hall thruster functioning principle

Figure 1.2 depicts a schematic representation of a typical annular hall thruster configu-

ration. An electrically biased metallic anode is positioned at the closed end of an annular

channel. The anode often serves the additional purpose of introducing the neutral gas

in the channel. The most common propellant for this kind of thrusters is Xenon.
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Figure 1.2: Schematic representation of a Hall thruster, after [2]

While this choice could seem counter intuitive, as the imparted ions speed decreases

with the ions mass, the reason for the popularity of the Xenon is that it features a

low ionization threshold, around 12 eV. The benefit of this choice is that it allows the

employment of lower voltages and hence less stringent requirements for the electrical

power circuit.

The channel walls can either be made of metal or a dielectric material, such as boron

nitride (BN). In the latter case, the device takes the name of Stationary Plasma Thruster

(SPT), while the name Thruster with Anode Layer (TAL) is employed when conductive

walls are used. From here onward, only thrusters with dielectric walls will be considered.

The neutral Xenon injection does not only take place at the anode. Indeed, a (smaller)

part of the Xe flow rate is provided through an external cathode. The cathode completes

the electric circuit and provides a flux of electrons. Part of these electrons neutralize

the ejected ionic beam, while the remaining ones travel to the anode thanks to the axial

electric field generated by potential difference between the anode and cathode.

Given that the standard operational pressure of these devices is in the order of mtorr,

the electrons mean free path λe is too long to allow significant ionization from electron

impact in a device with typical lengths in the centimetre/tens of centimetres range. In
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order to locally reduce the mean free path of electrons, a (mainly radial) stationary

magnetic field is generated using DC coils or permanent magnets. The magnetic field

peak intensity (typically in the range 100 G to 400 G is located in proximity of the channel

exit. The maximum intensity of the magnetic field is chosen high enough to confine the

electrons, while not perturbing the motion of the ions travelling from the anode to the

cathode. Perpendicularly to the discharge current (which coincides with the direction

of the electric field E), an electron drift is generated in the E × B direction, i.e., the

azimuthal direction. This is also known as Hall current. The consequently generated

electron azimuthal drift velocity is on the order of the ratio between the electric and

magnetic field intensities:

vd,θ =
E×B

B2
≈ Er
Bz

, (1.6)

where Er and Bz are the radial electric field and axial magnetic field components, respec-

tively. The expression for the azimuthal velocity holds provided that the electron colli-

sion frequency ν is small with respect to the electron angular cyclotron frequency [48],

defined as:

Ωce =
eB

me

(1.7)

The electrons, injected from the cathode, are subjected to momentum-exchange colli-

sions with the neutral gas and the channel walls. This allows the electrons to partially

escape the magnetic confinement and progressively drift towards the anode. The result-

ing axial drift velocity can be expressed as:

vd,z = −E
B

ν

Ωce

, (1.8)

where ν is the electrons collision frequency.

Thanks to the presence of the radial magnetic field, increasing the residence time of

the electrons inside the channel, the latter can ionize the neutral gas quite effectively.

Indeed, ionization rates between 0.9 and 0.95 are achievable with this kind of devices.

Another important consequence due to the presence of the radial magnetic field is that

it leads to a strong local reduction of the plasma electrical conductivity (proportional

to 1/B2 inside the thruster channel).

This lead, in turn, to a localized voltage drop, creating an intense electric field, with
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magnitudes in the range of tens of kV m. The strong electric field accelerates the ions,

ultimately generating the thrust.

Following the path of the electrons injected from the external cathode and travelling

towards the anode, three broad regions can be defined. The acceleration zone, located

partly outside and inside the channel, corresponds with the high B region. In this zone,

the mean energy of the electrons grows due to the presence of an intense electric field.

Then, the acquired energy is partially lost to ionize the neutral gas propellant in the

ionization zone, located upstream of the electric field maximum value. In this region,

a highly collisional regime is granted due to the strong magnetic confinement. Finally,

in the anodic region the electrons are no longer trapped by the magnetic field, and they

their motion is driven by diffusion.

In this kind of thruster, the described ionization an acceleration zones overlap, causing

dispersion in the ion velocity, and angular divergence in the ion beam resulting from the

acceleration. Conversely, ion thrusters have a distinct ionization region in the plasma

chamber, separated from the acceleration region by the grid. Hence, an ion thruster will

produce a nearly mono-energetic beam, with lower angular divergence compared to its

Hall counterpart.
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2 Fluid model of an atmospheric

pressure dielectric barrier discharge

Abstract

This chapter is concerned with the development of a fluid model for the numerical simu-

lation of a barrier discharge (DBD) in high pressure conditions. In the following sections,

the mathematical formulation adopted to assess the different physical phenomena taking

place in this kind of discharges is described. In particular, two different methodologies

for the assessment of the electron transport are presented and compared. Then, the dis-

cretization of the provided physical formulation is described, along with the employed

numerical schemes.

2.1 Drift-diffusion approach

As already mentioned, this work consisted in the development of a fluid model, with

the purpose of providing a physical description the main plasma dynamics and kinetic

processes taking place in a dielectric barrier discharge. In order to ensure that such a

macroscopic physical description applies to the particular kind of plasma under exam,

two main assumptions must be verified.

The first fundamental hypothesis is that the physical system under exam behaves like

a continuum, and not an ensemble of particles in molecular free-flow. This is found

to be verified if the average distance travelled by charged particles without undergoing

collisions is small compared to the characteristic length of the system under analysis.

This condition is expressed by the Knudsen number, as detailed in Chapter 4.

The second hypothesis is that a partial local thermodynamic equilibrium (PLTE) is

established between the considered charged species. This means that the electron and
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the ion populations are - singularly - at local thermodynamic equilibrium (LTE), but

each specie is characterized by a different temperature (Te 6= Ti) [49]. The LTE state

of the considered species implies that, even if a global thermodynamic equilibrium state

is not reached, the thermodynamic equilibrium (TE) is still valid locally. Hence, the

velocity distribution function of the ionic and electronic species - in a given point in

space - is described by a Maxwellian distribution function.

One of the main requirements of a dielectric barrier discharge (DBD) model is to

adequately assess the dynamics of the different charged and neutral species of the gas

under consideration. Let’s consider the Boltzmann equation, describing the spatial and

temporal evolution of the distribution function fs = fs(r,v, t) for the particles of a given

species s:

∂fs
∂t

+ v · ∇rfs +
F

m
· ∇vfs =

(
∂fs
∂t

)
c

, (2.1)

The right hand side of the equation represents the contribution due to collisions.

Integrating Eq. (5.1) over the velocity space, a conservation equation for the species s

number density ns = ns(r, t) is obtained [50]:

∂ns
∂t

+∇ · Γs = Ωs, (2.2)

where Γs = nsus represents the flux due to the mean velocity of the s species, us.

In the right-hand side of 2.2, Ωs is the source term for s, and describes the rate at

which particles are created or destroyed due to kinetic processes. The drift-diffusion

approximation consists in expressing the flux Γs by means of two contributions, one due

to the electric field (drift) and the other due to diffusion:

Γs = ±nsµsE−Ds∇ns. (2.3)

Drift (or advection) is the transport of a scalar quantity due to the bulk motion

of the fluid carrying the given quantity (in this case, the number density). Diffusion

is the transport of the same scalar quantity due to the random motion induced by a

concentration gradient. In Eq. (2.3), µs and Ds are the electrical mobility and diffusion

coefficients for the species s. The aforementioned relation states that the flux of a species

s, i.e., the particles flow rate per unit area, is caused by electric fields and gradients of

density. The electric field E appearing in Eq. (2.3) is obtained using one of the two
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electrostatic formulations described in Sec. 2.2. Details on the derivation of the drift-

diffusion expression for the flux Γs can be found in [2] and [51].

The diffusion and mobility coefficients appearing in Eq. (2.3) are related one to each

other via the Einstein relation, as:

D

µ
=
kBT

e
, (2.4)

where e is the elementary charge, k the Boltzmann constant and T the temperature in

K. Hence, for a given charged specie, the ratio of the diffusion coefficient to the electric

mobility is proportional to the specie mean energy,

ε =
3

2
kBT (2.5)

It should be noticed that, even if in principle the relation is valid for both ions and

electrons, it is more accurate for the heavy species [52]. Nevertheless, this relation is

employed for both electrons and ions in the developed model.

It is worth noticing that the drift-diffusion equation is a special case of the advection-

diffusion equation, in which advection is caused due drift generated by the presence

of an electric field. There are cases in which it is necessary to take into account a

”true” advective term. This happens when the investigated gas is subject to a bulk

flow, characterized by a mass velocity U. In these cases, an advective term nsU should

be added to the above defined flux, giving:

Γs = ns(U + µsE)−Ds∇ns (2.6)

2.2 Electrostatics

2.2.1 Linear and nonlinear electrostatic formulations

The electric field E appearing in the Eq. (2.3) can be due to several physical phenomena.

These include externally applied voltages, volumetric charge densities resulting from the

spatial distribution of the charged species and surface charge densities accumulated on

interfaces. Under the assumption of conservative electric field, the governing equation
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for the electric potential is given by Poisson’s equation:

∇ · (εr∇ϕ) = − ρ
ε0
, (2.7)

in which ε0 is the vacuum’s electrical permittivity and εr the relative electrical permit-

tivity of the considered media. The volumetric charge density ρ at a given time instant

is given by the distribution of the charged species number densities, as:

ρ =
∑
s

qsns, (2.8)

where qs is the elementary charge (with sign) associated with the specie s.

Alternatively to the above presented linear Poisson’s equation of Eq. (2.7), a nonlinear

version of the same relation is discussed and employed in this work. Indeed, considering

that the dynamics of the electrons are much faster compared to the ions, one can assume

that the electrons adapt instantaneously to the local value of the electric field.

The momentum transport equation for a given specie is the obtained as the first

moment of the Boltzmann equation, by multiplying Eq. (5.1) by u and integrating over

the velocity space:

mn

[
∂u

∂t
+ (u · ∇)u

]
= qn(E + u×B)−∇ ·P + f

∣∣∣∣
c

. (2.9)

The first (local) term of the substantial derivative on the left-hand side of Eq. (2.9)

represents an acceleration due to time variations of u, whereas the second (convective)

term accounts for accelerations produced by spatial variations of the mean velocity u.

The right-hand side of Eq. (2.9) is constituted by force densities due to electric and

magnetic fields, by the divergence of the pressure tensor and by collisions with other

species, respectively.

The momentum equation for electrons in thermal equilibrium, in absence of electron

drifts (ue = 0), inertial, magnetic and frictional forces can be written as: [50]:

eneE +∇pe = 0, (2.10)
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where pe is the electron pressure. Setting E = −∇ϕ and pe = nkTe one obtains:

e∇ϕ =
kTe
ne
∇ne. (2.11)

The integration of the previous equation yields an expression for the electron number

density as a function of the local electric potential ϕ, known as the Boltzmann relation:

ne = ne,0 exp

(
e(ϕ− ϕ0)

kTe

)
, (2.12)

where ne,0 is the unperturbed electron number density, and ϕ0 the reference electric

potential. A more concise form of Eq. (2.12) can be obtained expressing the electron

temperature in electronvolt:

ne = ne,0 exp

(
ϕ− ϕ0

Te,eV

)
. (2.13)

Substituting Eq. (2.13) into Eq. (2.7), a nonlinear Poisson problem is defined:

∇ · (εr∇ϕ) = − 1

ε0

[∑
s∈H

qsns − ene,0 exp

(
ϕ− ϕ0

Te,eV

)]
. (2.14)

The first term in the right-hand side (RHS) of Eq. (2.14) represents the charge

density due to the heavy species (H), i.e., the positive and negative ions. The remaining

term of the RHS is the charge density contribution provided by the electrons, causing

the nonlinearity of the problem. Details on the developed procedure for the numerical

solution of Eq. (2.14) are provided in Sec. 2.4.3.

So far, two different electrostatic formulations have been presented. In the following

section, the advantages of the two different approaches are discussed from the perspective

of DBD modeling.

2.2.2 Linear and nonlinear electrostatic formulations comparison

In order to solve the linear Poisson problem (Eq. (2.7)) at a given time instant τ ,

the spatial number density distribution n = n(r, τ) of both ions and electrons must be

obtained at t = τ . This task can be performed by solving the drift-diffusion equation

(Eq. (2.2)) described in Sec 2.1 for all the considered charged species, including the

electrons. This is a fairly common adopted approach in fluid models applied to both low
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and high-pressure non equilibrium discharges, including the considered dielectric barrier

discharges [53–62]. The reason for the popularity of this approach is that it allows for a

straightforward formulation and numerical solution of the electrostatic problem.

Nevertheless, as already mentioned, the high mass ratio between ions and electrons

causes the dynamics of these two species to be very different one from each other. Hence,

from the perspective of an explicit integration (subjected to a stability condition of the

drift-diffusion equations, the employed time step must be small enough to follow the

dynamics of the fastest species, i.e., the electrons. Because of this, it not unusual for the

employed time-steps to be in the order of 1× 10−12 s to 1× 10−13 s. This fact does not

constitute a major issue, as long as a drift-diffusion model is employed to study physical

phenomena taking place in the range of nanoseconds or microseconds. A typical example

of this is constituted by the study of streamer dynamics.

Conversely, the advantage provided by the adoption of the described nonlinear Poisson

formulation Eq. (2.14) over the linear one is that, at a given time instant, the electron

number density distribution is assumed to instantaneously adapt to the heavy species

charge density distribution (and externally applied electric potentials) via the Boltzmann

relation Eq. (2.13). This allows to omit the electrons from the drift-diffusion equations,

with substantial beneficial effects in terms of achieved computational times. This is

particularly convenient for 2D and 3D models, where the computational load can become

a major issue. This is particularly relevant if one is interested in assessing the discharge

physics for time lengths dictated by the external voltage supply.

2.2.3 Charge accumulation at dielectric interfaces

If a solid dielectric material is interposed between an electrode and the region where

plasma is present (gap here onwards), a surface electric charge ρΣ may (and generally

will) accumulate at the interface between the solid dielectric and the gap. A sketch

of typical interface between a dielectric (characterized by εd > 1) and a gas gap is

reported in Fig. 2.1. In these cases, the electric field normal component experiences a

discontinuity due to the surface charge [63], that can be expressed as:

εr,dE⊥,d − E⊥,gap =
ρΣ

ε0
, (2.15)

where εr,d is the relative dielectric permittivity. E⊥,d and E⊥,gap refer to the values
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εr,d ρΣ

n̂

gap

Figure 2.1: Sketch of a plasma-dielectric interface

of the electric field normal component at the two sides of the dielectric layer interface.

This expression can be more conveniently formulated by means of the electric potential

yielding:

εr,d
∂ ϕ

∂ n

∣∣∣∣
d

− ∂ ϕ

∂ n

∣∣∣∣
gap

= −ρΣ

ε0
, (2.16)

where the subscript d and gap designate that the normal derivatives are computed in

correspondence of the dielectric and gap sides of the discontinuity, respectively. In Eq.

(2.16), the normal direction is assumed to be directed from the gap towards the dielectric

surface.

The physical above described contributions due by the surface charge density are

modelled in the same way whether the linear or nonlinear electrostatic formulation is

employed. This is performed by including the surface charge density in the RHS of

Poisson’s equation, as detailed in Sec. 2.4.

2.3 Drift-diffusion equation finite volume discretization

The differential formulation of the conservation equation in Eq. (2.2) can also be ex-

pressed by means of an integral formulation. Considering a generic volume V , bounded

by a closed surface ∂V with an outward pointing normal n̂, the integration of Eq. (2.2)

yields the following expression:

dNs

dt
=

∫
∂V

Γs · n̂dS + Ps. (2.17)
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The term on the left-hand side of Eq. (2.17) represents the time rate of change of the

number of particles (of the species s) due to the fluxes and the source terms. This latter

is defined as:

Ns =

∫
V

nsdV. (2.18)

The RHS of Eq. (2.17) comprises two terms:

1.
∫
∂V

Γs · n̂dS, i.e., the number of particles of the species s that leave the volume V

through its surface ∂V , per unit of time;

2. Ps =
∫
V

ΩsdV., i.e., the number of particles of the species s produced (or elimi-

nated) in the volume V by the kinetic processes, per unit of time.

Let’s consider a generic bidimensional physical domain, discretized via a grid of nodes.

Adopting a node centered approach, the generic volume Vi is represented in Fig. 2.2.

A finite volume discrete formulation of the drift-diffusion equation can be obtained by

applying the integral form of Eq. (2.17) to the generic control volume Vi. The following

expression is therefore obtained:

dNs,i

dt
= −

∑
Ap∈∂Vi

φAp(Γs) + Ps,i, (2.19)

where the partial flux φAp(Γs) is the integral flux of Γs over the generic face Ap with

belongs to the control volume boundary, defined as:

φAp(Γs) =

∫
Ap

Γs · ndS. (2.20)

As one can see, the integral flux of Γs through the control volume boundary surface

∂Vi is expressed as the sum of the partial fluxes through the faces constituting ∂Vi.

The number of particles of the species s in the control volume, Ns,i, is approximated

assuming a uniform number density over the control volume:

Ns,i =

∫
Vi

nsdV ≈ ns,iVi. (2.21)
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ni
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Figure 2.2: Generic node centered volume

The same approximation is adopted for the source term:

Ps,i =

∫
Vi

ΩsdV ≈ Ωs,iVi. (2.22)

Hence, dividing Eq. (2.19) by the volume Vi, a finite volume expression for the number

density conservation equation can be obtained:

dns,i
dt

= − 1

Vi

∑
Ap∈∂Vi

φAp(Γs) + Ωs,i, (2.23)

The following section is concerned with the numerical evaluation of the first term of

the RHS of Eq. (2.23), i.e., the flux due to drift and diffusion. The evaluation process

of the remaining two terms is described in Sec. 2.5 and Sec. 2.6, respectively.

2.3.1 Numerical flux evaluation

Let’s consider a generic interface Ap between two adjacent mesh nodes i and j, as

depicted in Fig. 2.3. The integral flux of Γs through Ap, can be split into a drift and a

diffusion components:

φAp(Γs) =

∫
Ap

ΓsdS =

∫
Ap

nsµsE · ndS −
∫
Ap

Ds∇ns · ndS (2.24)

The diffusive flux is discretized using a centered differencing formula for the evaluation

of the number density spatial derivative. Defining the partial integral flux due to diffusion
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as φdf,Ap(Γs), and φ̃df,Ap(Γs) as its (finite difference) approximated value, we have that:

−
∫
Ap

Ds
∂ns
∂n

dS ≈ φ̃df,Ap(Γs) = D̄s
ns,i − ns,j

∆i,j

Ap, (2.25)

where ∆i,j is the distance between the two considered adjacent nodes ( depicted in Fig.

2.3), and D̄s the average between Di and Dj, the diffusion coefficients evaluated at nodes

i and j.

For what concerns the drift flux, a centered differencing scheme is not applicable to

this task, due to well known instability issues [64]. In this work, a first order upwind-

differencing scheme is employed for the drift flux. In analogy to what has been performed

for the diffusion flux, defining φ̃dr,Ap(Γs) as the approximated value of the partial integral

flux due to advection,∫
Ap

nsµsEndS ≈ φ̃dr,Ap(Γs) = (ns,ivs,+ + ns,jvs,−)Ap, (2.26)

where:

vs,+ = max(0, µs,iEn), (2.27)

vs,− = min(0, µs,jEn). (2.28)

In Eq. (2.27) and Eq. (2.28), En denotes the electric field component perpendicular

to the interface surface Ap, while µs,i and mus,j are the values of electrical mobility for

the specie s evaluated at nodes i and j. Finally, the total approximated integral flux is

given by the sum of the obtained diffusive and drift contributions, as:

φ̃Ap(Γs) = φ̃df,Ap(Γs) + φ̃dr,Ap(Γs) (2.29)

2.4 Electrostatics finite volume discretization

The finite volume approach employed in the previous section for the approximated flux

evaluation can be be utilized to discretize the governing equation for electrostatics.

An integral formulation for the electrostatic problem can be derived starting from the
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i jn

Ap

∆i,j

Figure 2.3: Interface between two mesh nodes

Gauss law in terms of the electric displacement field D:

∇ ·D = ρ, (2.30)

and integrating it over a generic volume V . Applying the divergence theorem to the

left-hand side of Eq. (2.30), the resulting expression is:∫
∂V

D · ndS =

∫
V

ρdV (2.31)

where ∂V is the closed surface bounding the volume V in which the charge density ρ is

contained.

With reference to the generic control volume Vi in Fig. 2.2 the total integral flux of the

electric displacement vector can be expressed as the sum of the partial fluxes through

the interfaces constituting the bounding surface ∂Vi:

1

Vi

∑
Ap∈∂Vi

φAp(D) =
∑
s

qsns,i (2.32)

Considering now a generic interface with area Ap between two nodes i and j such as

the one depicted in Fig. 2.3, the (approximated) discrete expression of the integral flux
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Figure 2.4: Control volume shared between plasma and dielectric

becomes:

φAp(D) =

∫
Ap

ε
∂φ

∂n
dS ≈ φ̃Ap(D) = −εφj − φi

∆i,j

Ap, (2.33)

where D has been expressed as −ε∇φ as a result of the hypothesis of conservative field1.

2.4.1 Interface between two materials

Let’s consider the particular case depicted in Fig. 2.4, where the node i lies on the

interface between the plasma (with permittivity ε0) and another material (for instance,

a dielectric layer with relative permittivity εr,d).

With reference to Fig. 2.4, the electric displacement vector flux through faces en-

tirely within the plasma or the dielectric (such as Ai,m and Ai,j) is computed using the

expression in Eq. (2.33) with the appropriate electric permittivity value, yielding:

φ̃Ai,m
(D) = −ε0

φm − φi
∆m,i

Ai,m, (2.34)

1This assumption is justified as the electric currents are not strong enough to produce a time varying
magnetic field capable of affecting the electric field through ∇×E = −∂B

∂t .
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for the interface entirely contained in the plasma domain, and:

φ̃Ai,j
(D) = −εd

φj − φi
∆i,j

Ai,j, (2.35)

for the interface entirely contained in the dielectric domain.

The interface Ai,k is shared between the plasma region and the dielectric. Thanks

to the linearity of the problem, the approximated electric displacement flux can be

expressed as:

φ̃Ai,k
(D) = −φj − φi

∆i,k

(ε0A
′
i,k + εdA

′′
i,k). (2.36)

2.4.2 Algebraic system for electrostatics

Following the finite volume approach described in the previous section, an equation is

written for each interface expressing the integral electric displacement flux. Hence, the

equation for each node is obtained by summing the partial fluxes through the interfaces

bounding its control volume, as indicated in Eq. (2.32). The sum of the these fluxes is

equal to the net electric charge contained in the same control volume.

After assembling the equations for all the mesh nodes into a coefficient matrix [K], an

algebraic system is obtained, that can be used to obtain the stationary electric potential

at every node due to the charged carriers (and the boundary conditions):

[K] {φ} = {RHS} . (2.37)

The coefficient matrix [K] is sparse, with at most 5 non-zero coefficients for each row

in a 2D implementation, and 3 non-zero coefficients if a 1D domain is considered.

As already mentioned, the system in Eq. (2.37) is time independent. The time-varying

behavior of the physical system is driven by the drift-diffusion equations, and (at least

if an explicit time integration approach is adopted) the described algebraic system must

be solved at each time iteration of the drift-diffusion equations. The rationale behind

solving the Poisson equation independently from the plasma kinetics lies in the marked

difference between the characteristic times scales of the electric power sources and the

dynamics of the charge carriers [54]. If, for example, a DBD device is driven by a 15 kHz
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AC voltage, the period of the applied sinusoidal waveform is:

TAC =
1

15× 103 = 6.67× 10−5 s. (2.38)

The electric response of the charged species to electric forces (such as the AC power

itself) can be characterized by the drift velocity, expressed as:

vd = µE (2.39)

Let’s consider a DBD device with a 1 mm gap, powered by a 5 kV sinusoidal voltage

source with frequency fAC = 15 kHz. Assuming a linear potential drop over the gap, the

obtained electric field driving the charge carriers is E = 5× 106 Vm−1. Then, assuming

that µel = 0.7 m2 s−1 V−1, vd = 3.5× 105 m s−1. Hence, the time τd required for an

electron to drift from one side to the other of the gap due the electric field E is:

τd =
Lgap
vd

= 2.86× 10−9 s� TAC . (2.40)

As one can, see, τd is considerably smaller than TAC . For this reason, it can be

assumed that the charge carriers (in particular electrons, due to their higher electric

mobility) react instantaneously to externally supplied voltages, and the physical effects

of the electrostatics can be accounted separately from the charged particles motion and

generation.

Provided that all the number density are known at a generic time (i.e., the drift-

diffusion equations are solved for both the heavy species and the electrons), the algebraic

system is linear, and its solution provides the distribution of the electric potential and

of the electric field over the calculation domain.

2.4.3 Nonlinear Poisson equation solution

In this section, the main features of the procedure developed solve the nonlinear Poisson

problem are discussed. Therefore, let’s consider the nonlinear Poisson equation, derived

in Sec. 2.2:

∇ · (εr∇ϕ) = − 1

ε0

[
ρion − ene,0 exp

(
ϕ− ϕ0

Te,eV

)]
. (2.41)
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The heavy species charge density is computed on the generic grid node k as:

ρi,k =
∑
s

nsqs, (2.42)

where s and qs refer to the generic ionic species and its electric charge, respectively.

The initial net electric charge (due to the heavy species) contained in the discretized

domain (the gap and the j considered dielectrics layers) is evaluated as:

Q0 =
∑
k

ρi,kVk +
∑
j

QΣ,j, (2.43)

where Vk is the k−th node volume, and QΣ,j the charge stored in the j−th dielectric

layer. QΣ,j is evaluated as:

QΣ,j = ρΣ,jSd, (2.44)

where ρΣ,j is the charge density obtained from the charged species flux, and Sd di-

electric layer area. This preliminary evaluation is carried out to verify if the sum of the

charge due to heavy species and to surfaces is positive. As will subsequently be clarified,

this is a necessary condition for the procedure used to determine the electric potential.

Once Q0 in Eq. (2.43) has been verified to be positive, the background electron

number density ne,0 is computed as:

ne,0 =
Q0

qeV
, (2.45)

where V is the total volume of the gap and Q0 has been defined in Eq. (2.43).

The numerical solution of the nonlinear Poisson equation (2.41) can be obtained using

the well-known Newton-Raphson algorithm. As an example, Fig. 2.5 shows the electric

potential distribution and electron number density obtained on a 2.5 mm domain, with a

uniform number density of ions (ni = 1× 1016 m−3) when Dirichlet boundary conditions

(φ1 = 5 V, φn = −5 V) are enforced at the two ends of the domain.

The Newton-Raphson method has an iterative nature. Hence, it requires a starting

electric potential distribution ϕ∗, in order to evaluate the initial electron contribution

to the charge density. The first tentative value of ϕ∗ is estimated by solving a linear

Poisson problem, with the electron number density set to the obtained value ne,0. This
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Figure 2.5: Electric potential, charge density, and electronic number densities over a
5 mm domain, obtained from the nonlinear Poisson problem solution with
uniform density of ions, φ0 = 0 V and φ1 = 5 V, φn = −5 V

choice has proven to reduce the number of iterations of the Newton-Raphson algorithm,

compared to when a null starting potential is employed.

Global electric charge conservation

At this point it worth highlighting that, so far, the presented nonlinear Poisson problem

does not imply the conservation of the electric charge in the considered domain. Indeed,

there is no guarantee that the total negative charge provided by the electrons – found

by solving the nonlinear electrostatic formulation – is neutralized by the volume and

surface charges due to the ions and the dielectric layers, respectively. In comparison,

this condition is automatically satisfied when the drift-diffusion approach is extended to

the electrons and a linear Poisson problem is solved at each iteration.

In order to preserve the charge neutrality condition when solving the nonlinear Poisson

problem, the charge conservation is added as a constraint of the nonlinear problem. For a

given value of the reference electric potential ϕ0, Eq. (2.41) yields a spatial distribution

of electrons, that can be added to the net charge due to the ions and surface charge
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Figure 2.6: Total electric charge dependence from the employed reference electric po-
tential; The minimum value of Qt, corresponding to the required charge
neutrality condition, is pointed out

distributions defined in Eq. (2.43):

Qt = Q0 −
∑
k

ρe,kVk, (2.46)

where Vk is the k−th nodal volume, and the nodal charge density due to electrons. In

this way, the reference electric potential ϕ0 is regarded as a free parameter, employed to

satisfy the desired electric neutrality condition, corresponding to Qt = 0.

This problem, i.e., finding a reference electric potential value ϕ∗0 that leads to a solution

of Eq. (2.41) which satisfies the electric neutrality, is once again nonlinear. The most

straightforward approach could seem to include the condition Qt = 0 as an additional

equation the Newton-Raphson algorithm. Indeed, the quadratic convergence rate of

this algorithm makes it one of the fastest ways to solve a generic nonlinear problem.

However, the dependence of Qt form ϕ0 makes the Newton-Raphson rather unsuited

to tackle the considered numerical problem. To clarify this, Fig. 2.6 shows the total

electric charge (Qt) as a function of ϕ0 when 800 V are applied between the two ends of

the considered domain. Except for the applied voltage, the other physical parameters
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are the same as in the example shown in Fig. 2.5. The Newton-Raphson method is

notoriously unsuited to solve problems where the unknown function exhibits near-zero

or very steep slopes. The example physical example depicted in Fig. 2.5 features both

these two critical situations, above and below the zero of the unknown function Qt.

For this reason, instead of including the Qt = 0 condition in the Newton-Raphson al-

gorithm employed to solve the electrostatic nonlinear formulation, an iterative procedure

based on the bisection method has been developed to solve the described problem ro-

bustly. The bisection method, while being significantly slower than the Newton-Raphson

algorithm, is unconditionally stable provided that appropriate initial conditions are pro-

vided. Indeed, in order to employ the bisection method, two initial values of ϕ0 must

be provided. These ϕ0,+ and ϕ0,− must yield – once used as reference potential in the

nonlinear Poisson equation – a positive and negative value for Qt, respectively.

Algorithm 1: Nonlinear poisson solver with global charge conservation

ϕ0,+ such that Qt,ϕ0,+ > 0

ϕ0,− such that Qt,ϕ0,− < 0

while Qt,φ0 > Qtol do

ϕ∗0 = ϕ0,+−ϕ0,−
2

Solve nonlinear Poisson for ϕ∗0 (NR algorithm)

Evaluate Qt,ϕ∗
0

if Qt,φ∗0 > 0 then

ϕ0,+ = ϕ0

else

ϕ0,− = ϕ0

end

end

The adopted procedure based on the bisection method is reported in pseudo-code in

Algorithm 1. Starting from ϕ0,+ and ϕ0,−, a tentative reference potential ϕ∗0 is obtained

as the midpoint of the interval [ϕ0,−;ϕ0,+]. Then, the resulting nonlinear Poisson prob-

lem is solved (using ϕ∗0 as the reference electric potential) using the Newton-Raphson
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algorithm. The resulting electron distribution yields a total electric charge Qt,ϕ∗
0
. If

Qt,ϕ∗
0
> 0, the ϕ∗0 becomes the value of ϕ0,+ that will be employed at the next iteration

of the cycle. Otherwise, if Qt,ϕ∗
0
< 0, ϕ∗0 is employed as ϕ0,−. The cycle carries on until∣∣Qt,ϕ∗

0

∣∣ is lower than the requested tolerance.

Algorithm 2: Prescan - iterative search of reference electric potential

Solve linear Poisson [K] {ϕ∗} = (ρion − qene,0)/ε0 to get ϕ∗

ϕ0 = ϕ0,− = ϕ0,+ = max(ϕ∗) ; ∆φ = TeV /5

Solve NL Poisson

if Qt,ϕ0 > 0 then

while Qt,ϕ0 > 0 do

ϕ0,− = ϕ0,− −∆ϕ

Solve NL Poisson

end

else

while Qt,ϕ0 < 0 do

ϕ0,+ = ϕ0,+ + ∆ϕ

Solve NL Poisson

end

end

Algorithm 2 shows the procedure adopted to obtain the aforementioned starting values

for the bisection method, i.e, ϕ0,+ and ϕ0,−, in pseudo-code. As previously described, in

order to provide a starting electric potential distribution (ϕ∗) for the Newton-Raphson

solver, a linear Poisson problem is solved assuming a uniform distribution of the elec-

trons. Then, using ϕ∗ as a starting point, the nonlinear Poisson problem is solved once

by setting ϕ0 as the maximum value of the previously obtained ϕ∗. Then, the obtained

value of total electric charge Qt,ϕ0 is compared to zero. If Qt,ϕ0 > 0 it means that ϕ0

can be used as ϕ0,+ for the subsequent bisection cycle, and a value of ϕ0 that yields

Qt < 0 must be found iteratively. This is performed by progressively lowering ϕ0, in

steps corresponding to Tev/5, where Tev is the electron temperature in electronvolt. The
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cycle continues until Qt < 0 is obtained, meaning that the employed ϕ0 can be used as

ϕ0,− in the bisection cycle. Conversely, if the starting value of Qt is negative, the value

of ϕ0 yielding a positive Qt, i.e., ϕ0,+, is iteratively found by increasing ϕ0 in steps of

Tev/5.

2.5 Time discretization

This section is concerned with the numerical methodologies employed for the time dis-

cretization of the system of differential equations obtained from writing the discrete

balance equation Eq. (2.19) for each considered species s. The expression is reported

here for the reader’s convenience:

dns,i
dt

= − 1

Vi

∑
Ap∈∂Vi

φAp(Γs) + Ωs,i, (2.47)

The resulting s equations are coupled, as the electric field driving the drift term of

the flux depends from the charge density. In general, two distinct methodologies can be

employed to perform a time discretization from the generic time instant t(k) to t(k+1):

� Explicit schemes, where variables at time t(k+1) are evaluated through a direct

expression, only using the known values at the preceding instant t(k);

� Implicit schemes, where variables at time t(k+1) are evaluated through a system of

equations, where both variables at time instant t(k+1) and t(k) are present.

In this work, an explicit approach was adopted due to two main reasons. First of all,

it allows a more straightforward implementation with respect to implicit approaches.

Moreover, adopting an explicit approach means that the flux discretization, electric field

computation and integration of source terms can be performed independently. This

allows experimenting with different methodologies for these three tasks with more free-

dom.

The number density time derivative in the left hand side of Eq. (2.47) can be expressed

through a forward finite difference:

dns,i
dt

∣∣∣∣(k)

≈
n

(k+1)
s,i − n(k)

s,i

∆t(k)
. (2.48)
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Consequently, the number density of the given species s can be obtained at time

instant t(k+1) using an Euler explicit scheme.

n
(k+1)
s,i = n

(k)
s,i −

∆t(k)

Vi

∑
Ap∈∂Vi

φ̃Ap(Γs
(k)) + Ω

(k)
s,i ∆t

(k). (2.49)

In order to grant the numerical stability of the Euler integrator, the time step ∆t(k)

to be employed to time-march from time instant t(k) to t(k+1) is obtained by evaluating

the Courant-Friedrichs-Lewy (CFL) condition [65] for each species:

∆t < min

[
1

|µsE/∆ + |Ds/(2∆2)|

]
, (2.50)

with:

∆ = min (∆x,∆y) .

The ∆ symbol in Eq. (2.50) represent the minimum grid spacing along both dimensions

of a generic 2D grid.

2.6 Source terms integration

The CFL stability condition is computed accounting for the convective and diffusive

terms of Eq. (2.49). Nevertheless the equation also features a source term due to

elementary processes, representing the rate per unit volume at which the particles vary

due to the reactions that take place in the plasma.

Source and loss terms due to elementary processes are usually expressed as the product

of a rate coefficient multiplied by the number densities of the reactants involved in

the process itself. Hence, differently from the diffusive and advective contributions,

the analytical expression of the source terms depend on the considered reactions. The

stable time step ∆t(k) obtained with the CFL condition has been derived assuming a

homogeneous equation, and does not account for the source terms.

In other words, the stability of the method is not guaranteed with respect to the

time integration of the source terms. As a matter of fact, the dynamics of the source

terms can be very rapid and, if not treated properly, can negatively affect the stability

of the solver. For each mesh node, the number density changes due to the source terms

in a generic time step ∆t(k) are computed by employing the semi-implicit approach
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introduced in [66]. Linearising the source term time behavior at the generic node i, one

may write:

Ωi(t) = Ω
(k)
i +

[
J

(k)
i

]
∆ni(t), (2.51)

where Ωi indicates the array of the source terms for the considered species at node

i.
[
J

(k)
i

]
is the local Jacobian matrix of the source terms, evaluated at the k−th time

instant. The entries of
[
J

(k)
i

]
are the derivatives of source terms with respect to the

species number densities. The nodal density variation array ∆n
(k)
i is then found inte-

grating Ωi(t) over time and applying the trapezoidal rule:

∆n
(k)
i =

∫ t(k+1)

t(k)
Ωi(t) ≈

Ω
(k)
i + Ω

(k+1)
i

2
∆t(k). (2.52)

Then, using Eq. (2.51) to express Ω
(k+1)
i , the following expression is obtained:

∆n
(k)
i = Ω

(k)
i ∆t(k) +

1

2

[
J

(k)
i

]
∆n

(k)
i ∆t(k). (2.53)

Rearranging, one obtains an algebraic linear system (the rank of the system is given

by the number of considered species) that yields the number density variation at each

node due to the reactions ∆n
(k)
i :(

[I]− 1

2

[
J

(k)
i

])
∆n

(k)
i = Ω

(k)
i ∆t(k), (2.54)

where [I] is the identity matrix.

The Euclidean norm of the matrix [I]− 1
2

[
J

(k)
i

]
in Eq. (2.54) is checked at the k−th

time instant using the ∆t(k) yielded by the CFL condition of Eq. (2.50). The required

stability condition is expressed as: ∣∣∣∣∣∣∣∣12 [J (k)
i

]∣∣∣∣∣∣∣∣ < βk, (2.55)

with βk = 0.01.

If the condition expressed in Eq. (2.55) is not satisfied, the semi-implicit integration is

split in the minimum required number of sub-steps to cover ∆t(k) while still satisfying the

aforementioned βk. The process is schematized in Fig. 2.7, where the sub-cycling of the
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2 Fluid model of an atmospheric pressure dielectric barrier discharge

Figure 2.7: Sub-cycling of the semi-implicit solver employed to perform the time-
integration of the plasma kinetics source terms

semi-implicit integration is represented against the time steps used in the drift-diffusion

integration, yielded by the CFL stability condition.
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3 Simulation Results

In this chapter, the results obtained from the numerical simulation of an atmospheric

pressure air volumetric DBD reactor are presented. The first part of the chapter is

devoted to the description of the developed computer code, based on the theoretical

approach discussed in Chapter 2. The developed numerical tool has been used to ob-

tain the presented results. Subsequently, the geometry and the physical properties of

the modelled physical configuration are described. Then, the modelling results are dis-

cussed, and compared to experimental measurements. Finally, the results and the code

performances obtained by including the electrons in the drift-diffusion approach are

compared to the ones yielded by the developed alternative description, where the spatial

distribution of the electrons is computed using the Boltzmann relation.

3.1 Numerical code description

The developed code can operate with either one or two physical dimensions, and has been

implemented in two different programming languages, i.e., MATLAB®and FORTRAN

90. These two languages have been selected for their rather complementary nature, the

first being interpreted and the second compiled. The MATLAB®implementation has

been employed for the prototyping and code verification. Conversely, the FORTRAN 90

implementation benefits from the execution speeds achievable thanks to the optimization

performed at compiler time [67]. Moreover, FORTRAN 90 supports both shared mem-

ory and distributed memory parallel communication protocols, such as OpenMP and

MPI. While explicit multi-core processing is supported in MATLAB®through the Par-

allel Computing Toolbox [68], the aforementioned tools available using the FORTRAN

language offer more flexibility and higher performances.

In the following sections, the fundamental features of the developed code are described.

Notable differences between the MATLAB®and FORTRAN 90 implementations are
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Figure 3.1: Example of a 2D regular non-uniform grid, with a refinement of the spacing
towards the boundaries of the discretised domain

pointed out when necessary.

3.1.1 Mesh generation

According to the selected number of nodes and dimensionality, a 1D/2D grid is generated

to perform a spatial discretization of the considered domain. The employed grid can

either be uniform or non-uniform. In the second case, the grid spacing along the x and

y directions is specified by defining – for each direction – the ratio between the length

of the given cell k and the next one, k+ 1. In this way, considering e.g. the x direction,

ks,x is defined by the following expression:

ks,x =
∆xk+1

∆xk
. (3.1)

Figure 3.1 shows an example of a non-uniform grid generated by the developed code,

with 21 and 31 nodes along the x and y directions, respectively. For the represented

example, ks,x and ks,y = 1.2 have been set to 1.1 and 1.2, respectively. Although negative

values for ks,x and ks,y are permitted, these would yield a finer grid spacing in the internal

part of the mesh. However, considering the specific case of DBD modelling, the highest

values of number density are usually found at the edges of the domain, where the different

species tend to accumulate as a consequence of the drift induced by the externally applied
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3 Simulation Results

electric field. The grid spacing is subjected to the requirement of resolving the Debye

length:

λd =

√
ε0KBTe
neq2

e

, (3.2)

where ε0 is the vacuum dielectric permittivity, KB the Boltzmann constant, Te the

electron temperature, ne the electron density and qe the elementary charge. Hence,

the maximum expected electron density constitutes a criteria for the local grid spacing

required for the numerical stability of the numerical model. Since the aforementioned

maximum number density is expected to be located at the domain boundaries, the

employment of a non-uniform grid spacing allows to meet the minimum spatial resolution

defined by Eq. (3.2), while contextually keeping a reasonable number of grid nodes.

The described procedure represents a simpler alternative to more sophisticated ap-

proaches based on adaptive mesh refinement (AMR), where the spatial distribution of

the grid nodes is dynamically adapted to increase the grid density where the physical

properties change sharply and vice versa [69]. In the field of DBD modelling, differ-

ent variations of this technique have led to performance improvements in several works

employing both structured [70,71] and non-structured meshes [8, 72].

3.1.2 Species initial distribution

Once the computational grid has been generated, a module containing the physical

information on the considered gas is loaded. At the present stage, the code can be

operated in either atmospheric pressure air or pure helium. However, since the present

study focuses on the DBD in atmospheric pressure air, only the AIR module will be

described in this section.

The heavy species accounted in the drift-diffusion model are N2
+, O2

+, O2
– , O, O–

and O3. Clearly, the flux density Γ for the neutral species in the above list is only due

to diffusion. For what concerns the electrons, these may or may not be included in the

drift-diffusion equations, depending on the electron model chosen by the user. Indeed, as

introduced in Chapter 2, instead of including the electrons in the drift-diffusion approach

the Boltzmann relation (coupled with the Poisson equation for electrostatics) can be

employed to obtain the electron spatial distribution.
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3 Simulation Results

Table 3.1: Electrical mobility coefficients for ions and electrons in dry air, from [5]; N
is the background neutrals density [m−3], T the heavy ions temperature [K]
and Te the electron temperature [K]

Species Mobility [m V−2 s−1] Reference

N2
+ N−1 min

(
0.84× 1023T−1/2, 2.35× 1012

(
E
N

)−1/2
)

[73]

O2
+ N−1 min

(
0.75× 1023T−1/2, 2.03× 1012

(
E
N

)−1/2
)

[73]

O2
– N−1 min

(
1.18× 1023T−1/2, 3.61× 1012

(
E
N

)−1/2
)

[74]

e– N−13.74× 1019 exp
(

33.5 ln(Te)
−1/2

)
[75]

Once the operating gas has been selected, an initial number density value for each

species is assigned to the generated grid nodes. For the k−th considered specie, the

initial number density distribution in the gap can be either uniform or Gaussian. In

both cases, the initial ratio between N2
+ and O2

+ is set to 3 : 1. The O2
– is set to

a 1 : 8 ratio with respect to N2
+ and the electron density is selected as to ensure the

overall electric neutrality. The physical influence of the initial ionization degree and

ratios between the charged species will be discussed quantitatively in Sec. 3.4.4.

3.1.3 Macroscopic transport parameters

The electrical mobility of N2
+, O2

+, O2
– and e– is computed using the expressions in [5].

These are reported in Table 3.1 for the reader’s convenience, along with the associated

original reference. The variable N in the expressions represents the background neutrals

density, expressed in m−3 while T and Te are the ionic and electronic temperatures in

Kelvin.

The electrical mobility coefficient values are plotted as a function of the electric field

(from 10× 10−3 Td to 5× 102 Td) in Fig. 3.2a, assuming that T = 400 K and Te = 2 eV.

As expected, the electrons show considerably higher electrical mobility values throughout

the whole considered range of applied electric field. This leads to the correspondingly

higher drift velocities shown in Fig. 3.2b.

Once the mobility coefficient is obtained with the above described procedure, the
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diffusion coefficient is derived from the Einstein relation:

D

µ
=
kBT

e
, (3.3)

where e is the elementary charge, kB the Boltzmann constant and T the temperature in

K.

3.1.4 Drift-diffusion fluxes integration

The macroscopic transport parameters obtained with the procedure described in Sec.

3.1.3 are employed to compute the number density (integral) fluxes in the continuity

equation, i.e., Eq. (5.5).

Whether the code operates in one or two dimensions, the species number densities

are stored in a single 2D array, where each column correspond to a different species. A

single array is employed for the storage of all the considered species, because it allows the

vectorization of the fluxes integration. In both MATLAB®and FORTRAN languages,

vectorized operations are automatically distributed among the available CPU threads

by the compiler, and – in general – offer substantial time savings over explicit iteration

constructs. The choice of using the rows (instead of the columns) of the employed 2D

array to store the nodal number density of a given specie is due to the column-wise

nature of both employed languages [67]. Indeed, the number of species is largely inferior

to the number of employed grid nodes, and the integration of the fluxes does not involve

and dependence between nodal values of different species. Hence, devoting each column

to a different specie maximizes the data contiguity. The above reasoning also applies to

the species velocity.

The temporal and spatial discretization process of the continuity equation (expressed

in drift-diffusion form) for the number density has been described in Chapter 2. In

the developed code, the described numerical procedures are applied to a dimensionless

version of the drift and diffusion equation. The latter is reported here in its dimensional

form for the reader’s convenience:

∂n

∂t
=∇ · (D∇n)−∇ · (nu) + Ω, (3.4)

where u = µE is the drift velocity due to the electric field. In order to obtain a

dimensionless version of Eq. (3.4) , some reference quantities must be defined. These
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Figure 3.2: Electrical mobility for ions and electrons in atmospheric pressure dry air
computed with the expressions in Table 3.1 for T = 400 K and Te = 2 eV
(a), and corresponding drift velocity (b)
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are the reference length (L0) time (t0), number density (n0) and macroscopic diffusion

coefficient (D0). A reference value for the velocity (u0) can be conveniently obtained

from L0 and t0. Using the obtained reference values, the quantities in Eq. (3.4) can be

normalized, such that:

L∗ =
L

L0

; t∗ =
t

t0
;n∗ =

n

n0

;u∗ =
u

u0

;D∗ =
D

D0

. (3.5)

The spatial and temporal derivatives are are also expressed in the same way:

∂

∂t∗
= t0

∂

∂t
;∇∗ = L0∇. (3.6)

Hence, the time derivative in the left-hand side of Eq. (3.4) can be expressed as:

∂n

∂t
=
n0

t0

∂n∗

∂t∗
. (3.7)

The two components of the integral flux are:

∇ · (D∇n) =
D0

L2
0

n0∇∗ · (D∗∇∗n∗) (3.8)

∇ · (nu) =
n0

t0
∇∗ · (n∗u∗). (3.9)

The source terms are then expressed as:

Ω =
n0

t0
Ω∗. (3.10)

Finally, substituting the four different obtained terms in Eq. (3.5), the dimensionless

continuity expression is obtained:

∂n∗

∂t∗
=

D0

L0u0

∇∗ · (D∗∇∗n∗)−∇∗ · (n∗u∗) + Ω∗ (3.11)

Finally, it should be highlighted that the coefficient multiplying the diffusive term in

Eq. (3.11) represent the inverse of the Peclet number:

D0

L0u0

=
1

Pe
, (3.12)

The Peclet number, representing the ratio of the advective and diffusive transport of
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the number density [76].

The use of a dimensionless form grants two practical advantages in the context of

numerical modeling:

1. The number of computer operations is reduced, speeding up the computation time.

This is particularly relevant when considering time-critical operations that are

executed multiple times, such as the fluxes integration process under exam;

2. The round-off errors, inherent to the use of a finite number of digits in the floating

point computer representation of numbers, are minimized. This is particularly rel-

evant in the context of high-pressure plasma modeling, since the number densities

can span over several orders of magnitude.

3.1.5 Linear and non-linear Poisson solvers

Coherently to the procedure adopted for the continuity equation in Sec. 3.1.4, the

discretization process described in Chapter 2 is applied to a dimensionless version of

Poisson’s equation. Starting from the dimensional form of the equation:

∇ · (εr∇ϕ) = − ρ
ε0
, (3.13)

the reference length L0, charge density ρ0 and electric potential φ0 are defined so that:

L∗ =
L

L0

; ρ∗ =
ρ

ρ0

;ϕ∗ =
ϕ

φ0

;∇∗ = L0∇. (3.14)

Substituting the defined dimensionless quantities in Eq. , a dimensionless Poisson equa-

tion is obtained:

ϕ0ε0
ρ0L2

0

∇∗ · (εr∇∗ϕ∗) = −ρ∗. (3.15)

When Eq. (3.15) is discretized on a one-dimensional domain, the employed Finite Vol-

ume approach yields a tridiagonal matrix [K]. In the FORTRAN 90 implementation of

the code, the matrix [K] is stored in three column arrays ddu, dd and ddl representing

the matrix’ upper, main and lower diagonals. In order to solve the corresponding linear

system, the Intel Math Kernel Library (MKL) implementation of the gtsv LAPACK rou-

tine is employed in double precision. The dgtsv routine performs a Gaussian elimination
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with partial pivoting [77].

Differently from the 1-D case, in 2 dimensions the Poisson’s problem finite volume

discretization yields a pentadiagonal coefficient matrix [K]. The matrix is largely sparse,

since the matrix has rank equal to the number of grid nodes, with at most 5 non-null

entries on each row. Hence, some kind of compression must be employed to store only

the non-null entries of the coefficient matrix. In the developed code, the three-array

variation of the Compressed Sparse Row (CSR) format is employed to perform this

task. In this work, the Intel MKL Parallel Direct Sparse Solver Interface (PARDISO)

library is employed [78] for the task of solving the sparse linear system. The PARDISO

routine benefits from a parallel implementation, and can be employed both in shared

and distributed memory modes. Given the limited amount of considered nodes, in this

work only the parallel shared memory functionality has been employed.

3.1.6 Plasma kinetics

The focus of this present work is the development of a numerical tool for the study

of the plasma dynamics and charge deposition mechanisms in DBD reactors in atmo-

spheric pressure air. The kinetic processes are essential to this process, constituting

the source for the observed charged species populations. A detailed assessment of the

kinetic processes in atmospheric air plasma would require to assess a large amount of re-

actions, especially if the neutral species are taken into account [7]. Because of the heavy

computational burden associated with such an approach, detailed kinetic models of this

kind are hardly applicable to one and two dimensional codes devoted to the solution

of the species transport equations. Hence, simplified air kinetic models are commonly

employed in drift-diffusion models [80–85].

The developed numerical code implements the kinetic model in [5], which can be

optionally expanded to include several ozone production kinetic channels, from [79].

The considered elementary processes that have been modelled in this work are listed in

Table 3.2. The employed reaction rates can be found in [5] or [79], as indicated the right

column of the table.
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Table 3.2: List of considered kinetic processes, along with the relevant reference

Process Reactants Products Source
Ionization N2 + e– −−→ N2

+ + 2 e– [5]
O2 + e– −−→ O2

+ + 2 e– [5]
Recombination N2

+ + e– −−→ N2 [5]
O2

+ + e– −−→ O2 [5]
N2

+ + O2
– −−→ N2 + O2 [5]

O2
+ + O2

– −−→ 2 O2 [5]
N2 + N2

+ + O2
– −−→ 2 N2 + O2 [5]

N2 + O2
+ + O2

– −−→ N2 + 2 O2 [5]
O2 + N2

+ + O2
– −−→ N2 + O2 + O2 [5]

O2 + O2
+ + O2

– −−→ O2 + O2 + O2 [5]
Attachment N2 + O2 + e– −−→ N2 + O2

– [5]
O2 + O2 + e– −−→ O2 + O2

– [5]
O2 + O + e– −−→ O2 + O– [79]

O3 + e– −−→ O2 + O– [79]
O3 + e– −−→ O2

– + O [79]
Detachment O2 + O2

– −−→ O2 + O2 + e– [5]
O2 + O– −−→ O3 + e– [79]

Dissociation O2 + e– −−→ O + O + e– [79]
O3 + e– −−→ O2 + O + e– [79]

O3 formation O + O2 + N2 −−→ O3 + N2 [79]
O + O2 + O2 −−→ O3 + O2 [79]
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Numerical validation the semi-implicit integration scheme

The developed semi-implicit scheme employed for the integration of the source terms in

the right-hand side of Eq. (3.4) has been tested against the well established TR-BDF2

scheme. The TR-BDF2 method is an implicit scheme, employing a combination of a

trapezoidal rule and backwards differentiation [3, 4]. The considered reactions are the

ones corresponding to reference [5] in Table 3.2. A constant electric field of 160 Td has

been applied during a time-span of 0.05µs. The results of the comparison are summarized

in Fig. 3.3. As can be noticed, the employed time span is considerably larger than the

usual time-steps employed in the simulations performed for this work. This choice was

purposely made to test the numerical methodology under more restrictive conditions

than those actually encountered in the results that will be presented and discussed in

the following sections. The initial number densities at time t0 = 0 s of the considered

species are N2
+
∣∣
t0

= 0.75·n0, O2
+
∣∣
t0

= 0.25·n0, O2
−∣∣
t0

= 0.09·n0, e−
∣∣
t0

= 0.91·n0, where

n0 = 1× 1016 m−3. For what concerns the neutral species, their initial number densities

have been set to N2

∣∣
t0

= 0.75 · 2.686× 1025 m−3 and O2

∣∣
t0

= 0.25 · 2.686× 1025 m−3,

respectively.

The results of the described comparison are shown in Fig. 3.3. Continuous lines are

employed in the picture to indicate the results obtained with the semi-implicit method-

ology, while markers of matching colours are used for the TR-BDF2 method. The

comparison shows that the results obtained using the semi-implicit technique are well

compatible with the results yielded by the TR-BDF2 routine. The highest relative per-

cent difference between the two approaches, obtained for the O2
−∣∣ density, is 1.03 %.

An important requirement that must be respected in the source terms integration

process is the conservation the total electric charge. With reference to the test depicted

in Fig. 3.3, the initial number densities have been selected to yields a null initial electric

charge density (ρ0 = 0). The latter can be obtained summing the product of each species

number density and charge, as:

ρ =
Ns∑
s

nsqs, (3.16)

where Ns is the total number of considered species. The net charge densities (normalized

to n0 and the elementary charge qe) obtained at the end of the integration time with

the semi-implicit methodology is ρ∗s−i = 2.6× 10−13. The same quantity, obtained at
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Figure 3.3: Comparison between the described semi-implicit numerical scheme and the
TR-BDF2 [3, 4] integration method; Time evolution of the charged species
considered in [5], with |E| = 200 Td

.

the end of the adopted time-span with the TR-BDF2 was ρ∗s−i = −1.76× 10−5. Hence,

the proposed semi-implicit methodology appears to better preserve the global charge

neutrality of the species involved in the kinetic processes.

3.1.7 Plasma-wall interaction

The time rate change of surface charge density on a dielectric layer due to an incident

flux of particles belonging to the charged specie s is given by the following expression:

dρΣ,s

dt
= qs|usns|γ, (3.17)

where qs is the electric charge associated with the specie s, us the specie velocity

and ns its number density evaluated at the grid node adjacent to the dielectric layer.

If the incident particle is a positive ion, the quantity γ represents the dielectric layer

secondary emission coefficient γSEE. The secondary emission coefficient is defined as

the average number of electrons emitted per incident ion. Conversely, if the impacting
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Figure 3.4: Sketch of the control volume Vi, shared between the generic dielectric layer
and the gap; ∆y and d are the dielectric layer width and thickness, respec-
tively; the spacing between the nodes in the gap is ∆x

species is negative, and if the considered dielectric layer is positively charged, γ represents

a recombination coefficient. Otherwise, if the dielectric layer is not charged, or charged

with a negative ρΣ, γ represents an attachment coefficient.

Positive charge fluxes

When positive ions impact a dielectric layer, providing a positive contribution to the

deposited ρΣ, the electrons number density in the node adjacent to the dielectric layer

is correspondingly increased to account for the secondary electron emission phenomena.

With reference to the schematic representation of Fig. 3.4, the electron number density

to be injected in the gap (due to secondary emission) can be determined by equating

the variation of electric charge in the dielectric layer and in the control volume Vi:

∆ρΣ = 1/2∆ρ∆x. (3.18)

In Eq. (3.18), ρ is the electric charge density in the control volume Vi. The total charge

in Vi is obtained multiplying by 1/2∆x, since the control volume is shared between and

gap and the dielectric layer. The (electron) number density to be injected in in Vi at a

given time step is then computed as:

∆ne =
2∆ρΣ

∆xqe
. (3.19)

50



3 Simulation Results

Figure 3.5: Schematic representation of the modeled Dielectric Barrier Discharge reactor
volumetric reactor

Negative charge fluxes

When a flux of negative ions or electrons is directed towards a dielectric layer, the

latter is subjected to a ∆ρΣ < 0. In contrast to the case of positive charge fluxes, no

secondary emission phenomena has been considered when a dielectric layer is subjected

to a negative charge flux. Nevertheless, in order to grant the electrical neutrality of the

modeled system, the total electric charge transferred to the layer at each time step must

be removed from the gap. This is performed analogously to the above described case

of positive charge fluxes, computing the ∆n corresponding to the accumulated surface

charge with Eq. (3.19), and then subtracting it from the control volume Vi.

3.2 Simulation of a DBD volumetric reactor

In this section, the numerical simulation of a volumetric DBD reactor is carried out using

the code described in Sec. 3.1. After a description of the physical characteristics of the

modeled reactor, the temporal trend of the voltage and accumulated surface charge

density are discussed. Then, the obtained spatial distribution of the species number

density is shown and discussed at several time instants during a cycle of the externally

applied voltage.
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Table 3.3: Physical characteristics of the modeled Dielectric Barrier Discharge reactor

Quantity Value Unit measure
Gap - thickness 4.0× 10−4 m

Dielectric layer - thickness 2.0× 10−4 m
Dielectric layer - surface 1.6× 10−3 m2

Dielectric layer - εr 3.4 [–]
External voltage - amplitude 4.8 kV
External voltage - frequency 15 kHz

Temperature - ions 400 K
Temperature - electrons 2 eV

3.2.1 DBD reactor description

The modelled device – sketched in Fig. 3.5 – consists of a symmetric DBD reactor,

constituted by two parallel metal electrodes separated one from each other by and air gap

and two Kapton dielectric layers. The thickness of the air gap is 4× 10−4 m, while each

of the two dielectric layers has a thickness of 2× 10−4 m and a 1.6× 10−3 m2 surface.

The configuration is assumed to be powered by a 4.8 kV sinusoidal voltage, operated

at a frequency of 15 kHz. The temperature of all ionic species is set to 400 K, while

the electron temperature is assumed to be 2 eV. The discussed characteristics of the

simulated configuration are summarized in Sec. 3.3.

With reference to Fig. 3.5, the gap thickness is considerably shorter than the width of

the electrodes. Hence, at least in the central part of the gap, it is reasonable to assume

that the electric field lines (directed from the positive to the negative electrode) are

straight. For this reason, the one dimensional version of the code described in Sec. 3.1

has been employed to obtain the results that will be discussed in this section.

3.2.2 Applied voltage and surface charge density

Figure 3.6 shows the externally applied voltage (Vext), alongside the computed electric

potential difference over the gap during the simulation (∆φgap). With reference to Fig.

3.5, Vext is enforced between the two electrodes, marked respectively as HV and GND.

∆φgap is computed as the difference between the electric potential (yielded by Poisson’s

equation) on the first and last nodes of the grid. Hence, if the nodes are numbered from
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1 to n, the gap voltage is defined as:

∆φgap = φ1 − φn. (3.20)

From a physical standpoint, ∆φgap represent the voltage to which the air gap is effec-

tively subjected. This is in general different from the externally applied voltage, because

of three distinct physical mechanisms:

1. Each dielectric layer causes a voltage drop, determined by its thickness and relative

permittivity (εr,d);

2. The charged species in the gap are free charges, subjected to drift caused by

the presence of external electric fields. The local electric field generated by such

volumetric charge densities opposes the external field;

3. Analogously to the physical role played by free charges in the gap, the (bound)

charges accumulated in the dielectric layers also contribute to screen the gap from

the electric field generated by the high-voltage source.

In Fig. 3.6, the combination of the three listed mechanisms causes ∆φgap to reach a

maximum value of 475 V during the first quarter of the (first) cycle, after 2.5 µs from

the beginning of the simulation. Then, while Vext continues to increase, ∆φgap starts to

progressively decrease, reaching a null value in the second quarter.

During the first half of the cycle, a positive voltage is enforced on the HV electrode,

adjacent to dielectric layer I. An electric field is consequently generated in the gap,

causing the negative charges (negative ions and free electrons) to drift towards the anode

(the HV electrode). Similarly, the positive ions are pushed towards the GND electrode,

which acts as the cathode. Hence, the two dielectric layers I and II are subjected to a

flux of negative and positive charges, respectively.

The surface charge accumulated in the dielectric layers during the considered two

cycles of the external waveform is depicted in Fig. 3.7. As one can see by comparing

Figs. 3.6 and 3.7, both dielectrics start to accumulate charges (of opposite sign) as soon

as a voltage is applied to the reactor. With reference to Fig. 3.7, the first charging front

ends at 16.8 µs, when the external voltage reaches its maximum value. At this point,

as can be verified in Fig. 3.6, the external voltage has been almost completely screened
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Figure 3.6: Electric potential difference over the gap (∆φgap) during the first two cycles
of the externally applied voltage (Vext); The spatial distribution of the species
number densities and electric potential is discussed at time-instants τ1−4

out by the surface charge. The reversal of the gap voltage during the second quarter

of the external voltage (after 20 µs) is caused by the surface charge, which retains its

(maximum) value when Vext starts to decrease after its peak at 16.8 µs.

One peculiarity that can be observed in Fig. 3.7 is that the charging process of the

two dielectric layers is almost symmetrical. This fact might seem surprising, since the

described model for the charge accumulation process (in Sec. 3.1.7) depends on the

velocity of the incident species. While the electrons have a markedly higher mobility

with respect to positive ions, the charging process of the two dielectric layers appears

to take place approximately at the same rate. This physical behavior can be explained

considering the combination of two factors.

Firstly, the surface charge deposition process due to ionic species is markedly faster

than the considered rate of change of the external voltage. In order to verify this,

a series of parametric simulations has been performed, progressively raising the high

voltage source frequency. The conducted test showed that only above frequencies in the

MHz range the charge deposition effect due to the positive ions was not fast enough to
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Figure 3.7: Surface charge density deposited onto dielectric layers I and II (see Fig. 3.5),
over two cycles of the externally applied voltage (Vext)
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(a) (b)

Figure 3.8: Electric potential difference over the gap (a) and surface charge accumulated
on the dielectric layers (b) when a a frequency of 10 MHz is employed

follow the dynamics of the external voltage. As an example of this, Fig. 3.8 shows the

obtained potential difference over the gap and the deposited charge over one period of

the external voltage at 1 MHz. As can be observed, at this higher frequency the rate

of charge deposition due to the ions is not sufficiently fast to follow the dynamics of

the externally applied voltage. This results both in an asymmetric charge accumulation

profile over time (with respect to the contribution of the electrons) and in a marked

increase of ∆φgap.

Secondly, while the effect of the surface charge is to screen the plasma from the external

electric field, the latter is also the driver of the charge accumulation. Hence, at least for

applied voltages in the kHz range, the surface charge accumulation acts as a negative

feedback mechanism with respect to the externally applied electric field.

3.2.3 Spatial distribution of the charged species

The distribution of three charged species, i.e., N2
+, O2

– and e−, is shown and discussed

at four specific time instants of the described simulation. These time instants, denoted

as τ1−4 are marked in Fig. 3.6.

The reason for selecting τ1−4 in the second cycle is that – from that moment – the

dynamics of the charged species reach a periodic regime, which is consistently repeated
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Figure 3.9: (τ1) - number density and electric potential over the air gap after 67µs since
the beginning of the simulation

in the following cycles. Hence, the charged species distribution in τ1−4 is not influenced

by the transient phenomena taking place during the first cycle.

Figure 3.9 shows the number densities of N2
+, O2

– and e− at τ1, i.e., at the beginning

of the second cycle of the externally applied voltage Vext. While at τ1 the externally

applied voltage is 0 V, the gap is subjected to a ∆φgap of 241 V. The reason for this can

be observed in Fig. 3.7: at 67 µs, part of the charge accumulated on the dielectric layers’

surfaces during the firs cycle is still present. That ρΣ has been accumulated during the

third quarter of the first cycle, to screen out the gap from the negative Vext, and only

partially removed during the fourth quarter. Hence, in τ1, the positive electric field

created by the negative gradient of ∆φgap causing a drift of the negative species towards

dielectric I, in the left side of the represented domain. Conversely, both N2
+ and O2

+

(not shown in Fig. 3.9) are pushed towards the cathode, adjacent to dielectric II. Since

a null flux boundary condition has been enforced on the edges of the physical domain,

positive and negative charges are accumulated on both ends of the gap. Because of this,

while quasi-neutrality is achieved in the central part sheaths of opposite polarity are

formed at the two ends of the gap.

The second among the instants highlighted in Fig. 3.6, τ2 takes place after a quarter of
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cycle from τ1, i.e., when Vext reaches its peak value, 4.8 kV. The results obtained in τ2 are

shown in Fig. 3.10. Comparing the latter to Fig. 3.9, a few aspects can be pointed out.

Despite the fact that the external voltage increased from 0 to 4.8 kV during between

τ1 and τ2, ∆φgap progressively decreased from 241 to 162 V. Once again, this shows

the negative feedback excerpted by the surface charge density deposited in the dielectric

layers. The surface charge deposited on layer I at τ1 was ρΣ,I

∣∣
τ1

= 5.5× 10−5 C m−2.

During the time between τ1 and τ2, ρΣ,I changed sign because of the negative flux of

electrons and O2
– ions directed against layer I. The deposited charge in τ2 reaches its

maximum (negative) value of ρΣ,I

∣∣
τ2

= −2.9× 10−4 C m−2. In a dual way, the same

process takes place at the cathodic side of the gap due to a flux of positive charges.

An interesting difference that can be noticed comparing the results in τ1 and τ2 is

that, while the maximum value of N2
+ number density did not change significantly, the

electron density decreased during the observed quarter of cycle. The main phenomena

causing the observed reduction of e– at the left side of the gap is the attachment of

electrons to O2 molecules, forming O2
– ions. Another mechanism that contributes to

the observed decrease is constituted by the losses of electrons associated with the surface

charge deposition discussed in Sec. 3.1.7. Conversely, on the cathodic side of the gap,

the number density of electrons is higher than O2
– thanks to the secondary emission

due to the incident flux of N2
+ ions.

The next considered time-instant, τ3, takes place during the second quarter of the

second cycle, at 87µs. At this point, the external voltage has decreased from its peak

value (τ2) to 4.47 kV. τ3 corresponds to the moment when ∆φgap, shown in Fig. 3.11,

changes its sign. While the external voltage is still relatively close to the its peak value,

the memory effect created by the surface charge accumulated during the first quarter

of the second cycle causes the observed gap voltage inversion. Because of this, the

charged species start to drift in the opposite direction with respect to Fig. 3.10. Another

mechanism that is worth highlighting consist in the marked reduction of electron density

throughout the whole gap taking place in the relatively short time between τ2 and τ3.

This is due to a reduction of the maximum local electric field value in the gap between

the considered two time instants. Indeed while the maximum value of the electric field

(Emax,gap) during the first quarter of the second cycle always remains above 100 Td,

Emax,gap drops to nearly one quarter of that value between τ2 and τ3, when the sign of

∆φgap changes. The local electric field constitutes the main source of free electrons, via
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Figure 3.10: (τ2) - number density and electric potential over the air gap after 83µs since
the beginning of the simulation

the ionization processes reported in Table 3.2. In the absence of a sufficiently intense

electric field, the ionization stops, while the recombination and electron attachment

processes still take place, causing the observed depletion of e– density.

The last of the four considered time instants, τ4, corresponds to 90µs from the begin-

ning of the simulation. With respect to the value at τ3, the external voltage is further

reduced in Fig. 3.12 , reaching 3.6 kV. Conversely, as can be verified form Fig. 3.7,

the surface charge deposited in the dielectric did not significantly change from the peak

level reached in τ2 and τ3. This is due to the very low number density – at the gap edges

– of the actors involved in the charge deposition mechanism, i.e., the positive ions and

the electrons. Therefore, the negative electric potential difference applied to the gap

(previously, −43 V in τ3) reached in τ4 is −480 V. Together with ∆φgap, the maximum

electric field increases too, up to a peak value of 165 Td near the positive electrode,

adjacent to dielectric layer II. The localized intense electric field triggers the observed

fast generation of electrons (until this moment almost disappeared from the gap) at the

anode. The newly generated number density of electrons, combined with the intense

local electric field results in the marked generation of N2
+ ions towards the anode that

can be observed in Fig. 3.12 (through ionization). The fast production of electrons

and positive ions at the anode takes place multiple times, generating a series of waves
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Figure 3.11: (τ3) - number density and electric potential over the air gap after 87 µs from
the beginning of the simulation

of N2
+ travelling from the anode to the cathode. Three N2

+ peaks generated by this

mechanism can be observed in Fig. 3.12. The observed repetitive fast generation of ions

at the anode eventually stops when a sufficiently large flux of positive ions reaches the

cathode, causing the fast change in ρΣ,I and ρΣ,II that can be observed starting from

95 µs onward.

Figure 3.13 shows the computed current density in the midpoint of the gap during

the performed simulation. The current density, J , has been obtained as the sum of the

conduction and displacement currents:

J = Jc +
∂D

∂t
. (3.21)

In Eq. (3.21), the conduction current Jc is obtained by summing the local fluxes of the

charged species:

Jc =
Ns∑
s

qsnsus, (3.22)

where Ns is the number of considered charged species, while ns and us are the local

number density and velocity of the given specie s.
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Figure 3.12: (τ4) - number density and electric potential over the air gap after 90 µs from
the beginning of the simulation

For what concerns the displacement current term in Eq. (3.21), this is obtained from

the electric field at a generic time instant k and the electric field at k − 1, divided by

the ∆t between the two considered instants:

∂D

∂t

∣∣∣∣
k

= ε0
Ek − Ek−1

∆tk,k−1

. (3.23)

Alternatively, the total current can also be computed using the total displacement cur-

rent over one of the dielectric layers. Considering e.g. dielectric layer I, the total displace-

ment current over the layer can be obtained using Eq. (3.23), where the displacement

vector is evaluated with the following expression:

DI = ε0εr,d
Vext − φi

d
, (3.24)

where (using the notation of Fig. 3.4) φi is defined as the electric potential of the grid

node adjacent to the dielectric layer, and d is the thickness of dielectric layer I.

The spikes in the temporal profile of J depicted in Fig. 3.13 correspond to events

analogous to the multiple ionic avalanche-like events discussed in the description of Fig.

3.12. Overall, the obtained values of current density are compatible with usual ranges
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Figure 3.13: Total current density (J) computed at the midpoint of the gap during the
first two cycles of the performed simulation, plotted against the externally
applied voltage (Vext) and the electric potential difference applied to the
gap (∆φgap)

typical of atmospheric pressure dielectric barrier discharges [80].

3.3 Comparison between different electron models

The results discussed in the previous section have been obtained using the first among the

two different numerical approaches presented in Chapter 2. This approach, denominated

here onwards Full Drift-Diffusion (FDD) for the sake of simplicity, consists in solving

the transport of electrons in with the same technique employed for the ions. In this way,

a drift-diffusion equation is written for each charged species, and the local volumetric

electric charge density resulting from the dynamics of the species is employed at each

time step as the source term for a (linear) electrostatic Poisson equation.

The second approach described in Chapter 2 has been developed to overcome the main

drawback of the above described FDD methodology, i.e., the low time-steps (≈1× 10−13 s)

yielded by the CFL stability condition when the explicit time integration process is re-

quired to follow the dynamics of the electrons. The proposed Boltzmann Drift-Diffusion

(BDD) methodology is based on exploiting the Boltzmann relation to relate the electron
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Figure 3.14: Simulation of the volumetric Dielectric Barrier Discharge reactor described
in Sec. 3.2 with two different numerical methodologies; Comparison be-
tween the gap voltage obtained with the Full Drift-Diffusion (FDD) and
Boltzmann Drift-Diffusion (BDD) approaches
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density to the local electric potential. In this way, at each time-instant of the simulation,

a drift diffusion equation is solved for each charged species except the electrons. The

resulting charge density, only due to the (heavy) ionic species, is then employed to define

a non-linear Poisson problem, such as the one in Eq. (2.14). In this way, the electrons

are assumed to instantaneously react to the electric fields produced by external sources

and the ions.

In this section, the results obtained using the developed Boltzmann Drift-Diffusion

(BDD) methodology are compared to the ones yielded by the Full Drift-Diffusion (FDD)

approach, discussed in Sec. 3.2. The same physical configuration described in Sec. 3.2,

with the geometric and electric parameters listed in Table 3.3, has been simulated using

the BDD methodology. Using this numerical technique the minimum length of the

employed time-steps is typically increased of 2− 3 orders of magnitude. Because of this,

multi-dimensional simulations of relatively long time-scales (such as multiple periods of

applied voltages in the kHz range) can be carried out in reasonable times [86]. While Sec.

3.4 will deal with a 2D application of the developed BDD methodology, the comparison

with the FDD technique is carried out in 1D.

Figure 3.14 shows the gap voltage (∆φgap) during the first two cycles of the power

supply waveform (Vext), using the two methodologies. The results marked as FDD are

the same reported in 3.6, discussed in 3.2. In this case, the applied external voltage

has been normalized to highlight the differences yielded by the two approaches. As one

can see, the two methodologies yield a qualitatively compatible trend of the gap voltage

over time. In particular, once past the first half cycle, the amplitude of the ∆φgap

peaks are approximately coincident. Nevertheless, from the second quarter of the first

cycle onward, the peaks of ∆φgap obtained with the FDD method show a time delay of

approximately 1µs with respect to the results yielded by the BDD method. This is due to

the assumption of the electrons instantaneously adapt their spatial distribution according

to the Boltzmann relation, as a reaction to the external electric field and changes in the

ions number density. Besides the small temporal shift between the two gap voltage

trends, the main difference between the two approaches appears to be constituted by

the lower ∆φgap obtained when the BDD methodology is employed. This means that

the mechanism by which the charged species spontaneously screen out the externally

applied electric field is not exactly equal in the two examined cases.

As previously discussed, the most influential among the different physical mechanisms
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determining the difference between the applied voltage and the potential difference ap-

plied to the air gap is the electric charge deposition onto the surfaces of the dielectric

layers covering the powered electrodes. Figure 3.15 shows the surface charge accumu-

lated onto the two considered dielectric over two cycles of the 15 kHz applied sinusoidal

voltage, obtained with the two approaches. While, overall, the results yielded by the

two approaches are in good qualitative agreement, a difference can be noticed in the

negative charging process, mainly due to electrons. Indeed, as previously pointed out

in Sec. 3.2, the positive and negative charging fronts yielded by the FDD methodology

are slightly asymmetric. Conversely, the positive and negative surface charge deposition

dynamics appear to be completely symmetric when the electrons are excluded from the

drift-diffusion approach (BDD). As a result of this, a higher amount of negative charge

is stored in the dielectric layers in this way, exerting a stronger screening effect with

respect to the externally applied field, causing the lower shown in Fig. 3.14.

Finally, the number density distribution over the gas gap yielded by the two considered

methodologies after 57.7 µs from the beginning of the simulation is shown in Fig. 3.16.

The results corresponding to the Boltzmann Drift-Diffusion approach have been shifted

0.9 µs forward in time to compensate for the time-lag shown in Fig. 3.14. As one

can see, the obtained distribution of heavy ions is comparable over the whole gap. A

more apparent difference can be observed in the computed electrons number density,

which drops below 1× 105 m−3 in the quasi-neutral bulk of the gas gap when the BDD

approach is employed. Nevertheless, for both species, the obtained values in the sheaths

at the edges of the domain are well compatible. In particular, the values of N2
+ number

density at the right-edge of the domain (cathodic side) are N2
+
∣∣
FDD

= 2.43× 1018 m−3

and N2
+
∣∣
BDD

= 2.24× 1018 m−3. Similarly, the obtained values for the electron number

density et the left-edge (anodic side) of the gap are e−
∣∣
FDD

= 1.44× 1017 m−3 and

e−
∣∣
BDD

= 1.41× 1017 m−3. This agreement is particularly relevant, since – for both

considered species – the number density values at the two edges of the gap are orders

of magnitude higher than in the bulk. In addition, as already discussed in Sec. 3.1, the

charged species fluxes directed towards the walls – responsible for the surface charge

accumulation process – are computed using the number density in the control volumes

shared between the dielectric layers and the gap, i.e., first and last nodes of a 1D grid.

Hence, the discussed agreement between the computed number densities is coherent with

the compatibility shown by the surface charge trends over time in Fig. 3.15. In order
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Figure 3.16: Spatial distribution of N2
+ and e– (left) and electric potential (right)

yielded by the Full Drift-Diffusion (FDD, solid lines) and Boltzmann Drift-
Diffusion (BDD, dashed lines) approaches at τ =57µs

to have similar incident wall fluxes, a similar electric field at the gap edges must also

be present. The right axis in Fig. 3.16 shows the obtained electric potential using the

two methodologies. The electric potential obtained with the Boltzmann Drift-Diffusion

methodology (which depends on the reference electric potential φ0) has been increased

by a constant value of 410 V, in order to allow its comparison to φFDD. The two obtained

electric potentials are well compatible in the whole gap, satisfying the aforementioned

condition on the electric field at the gap’s edges.

3.4 Surface charge density experimental measurements

This section constitutes an attempt to provide a numerical validation of the developed

approach. The latter has been described in Chapter 2 and employed to obtain the results

presented in Sec. 3.2. A volumetric DBD reactor with the same geometrical shape and

employed materials as the one modelled in Sec. 3.2 has been built and operated, aiming

to measure the charge deposited by the charged species on the surface of the dielectric

layers [87].
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Figure 3.17: Geometry of the employed Dielectric Barrier Discharge reactor

A sketch of the considered DBD reactor geometry is reported in Fig. 3.17. The device

is constituted by two parallel plane electrodes, connected to a high-voltage power source.

The HV and GND electrodes are covered by two 0.2 mm thick Kapton layers. As can be

noticed in Fig. 3.17, two insulating spacers create an air gap between the two dielectric

surfaces. The air gap has a thickness of 0.4 mm. With reference to the geometrical

measurements given in Fig. 3.17, the volume of the air gap is 20× 20× 0.4 mm3.

As already anticipated, the aim of the performed experiment is to measure the charge

deposited by the charged species in a configuration close to the one presented in Sec.

3.2, in order to compare the measured charge density with the values predicted using

the developed code. As highlighted in the Sec. 3.2, the sign and quantity of electric

charge density deposited onto a dielectric layer depends on both the magnitude and the

phase of the applied external voltage. For this reason – in order to obtain replicable

experimental results – the applied waveform must be turned off in proximity of the zero

crossing, avoiding uncontrolled oscillations of the electric field in the gap that could alter

the charge deposition mechanism.

3.4.1 High-voltage multilevel generator

Conventional power supplies employed in the context of operating DBD-based devices are

either power amplifiers with high voltage transformers or resonant switching converters.

In general, high voltage transformers that can be used to power a DBD device are

originally built for high power applications. Hence, these technologies are often inefficient

when coupled with capacitive loads. On the other hand, resonant converters require to be

tuned in order to achieve reasonable performances. The optimum operating frequency

is fixed by the impedance of the load that – when dealing with a DBD device – can
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significantly change during operation. For the aforementioned reasons, together the

fact that none of the two different technologies allow to directly control the generated

waveform, conventional high voltage power supplies are not suitable for the purpose of

measuring the charge deposited on the surface of the dielectric layers of a DBD reactor.

In order to meet the previously discussed technical requirements, the high-voltage

high-frequency multilevel voltage generator described in [88–90] has been employed to

power the DBD reactor employed to perform the described experimental measurements.

The high-voltage generator is realized by cascading 24 H-bridge modules, individually

supplied by insulated flyback converters. The generator can deliver 49 output voltage

levels. Each individual H-bridge module has a 600 V DC supply, powered by a flyback

converter fed from a 12 V DC battery, allowing a maximum output voltage of ±14.4

kV (600 V×24) with frequencies up to 20 kHz. The voltage generator can then produce

arbitrary voltage waveforms. This topology allows the applied voltage to be stopped at

a desired value, avoiding the presence of oscillations that could produce changes in the

amount of deposited surface charge density leading to inaccurate measurements.

3.4.2 Surface charge density measurement procedure

The electric potential induced by the electric charge charge density accumulated on

the surface of the dielectric layers is measured with an electrostatic 341B 20 kV TREK

voltage probe, with the following procedure:

1. 10 cycles of a 4.8 kV (pseudo) sinusoidal waveform at 15 kHz are applied between

the HV and GND electrodes of the DBD device. At the end of the 10 cycles

burst, the applied voltage is stopped upon reaching 0 V, both after a positive and

negative half-cycle. These two situations correspond to a 0-crossing with negative

and positive time-derivative of the applied voltage, respectively;

2. After the discharge extinction, the HV electrode is removed and the electrostatic

probe depicted in Fig. 3.18 is moved along the z-direction over the dielectric

surface (while being held at a constant vertical distance of 2 mm). In this way, the

electric potential induced by the electrostatic surface charge density accumulated

on the dielectric is measured;
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Figure 3.18: Handling of the electrostatic probe employed to perform the described mea-
surements of deposited charge on surfaces of the dielectric layers

3. The surface of the dielectric layer is wiped and heated to eliminate possible traces

of humidity;

4. The potential probe is once again used to check the absence of stored charges on

the dielectric layer.

3.4.3 Comparison between simulations and experimental results

Following the procedure described in Sec. 3.4.2, two different tests have been carried

out. In Test I, a symmetric configuration with both the HV and GND electrodes covered

by dielectric layers has been considered. Conversely, Test II focused on an asymmetric

configuration with only the HV electrode covered by a dielectric layer, leaving the GND

electrode exposed to the plasma in the air gap.

The observed potential distribution presents a uniform region of about 1.5 cm, corre-

sponding to the inner part of the air gap volume. The measured electric potential in

that region of space, averaged on 5 different measurements, has been reported in Table

3.4 for both Test I and Test II.

The numerical simulation of the considered DBD configuration has been performed

using the described Boltzmann Drift-Diffusion (BDD) methodology. The numerical

technique has been applied to a bidimensional domain, where a structured non-uniform
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Table 3.4: Measurements of the electrostatic potential induced by the surface charge
deposited on the dielectric layers of a symmetric (Test I) and asymmetric
(Test II) Dielectric Barrier Discharge volumetric reactor

Test Configuration dV/dt
∣∣
V=0

Electric potential [V] Standard deviation

I Symmetric > 0 -800 < 10 %
Symmetric < 0 800 < 10 %

II Asymmetric > 0 -1250 < 10 %
Asymmetric < 0 1250 < 10 %

grid of the same kind as the one shown in Fig. 3.1. The numerical values of the main

physical quantities considered in the code are listed in Table 3.3. For what concerns

atmospheric air plasma kinetics, all the reactions listed in Table 3.1.6 have been consid-

ered. In contrast, only the process marked with reference [5] have been considered to

obtain the results discussed in Sec. 3.1.5.

The developed BDD methodology has been employed to simulate both the symmetric

and asymmetric configurations corresponding to Test I and Test II in Table 3.4. The

employed grid for the 2D domain finite volume discretization consisted of 111 nodes

in the y−direction, corresponding to the air gap, and 41 nodes in the x−direction. A

non-uniform grid spacing has been enforced along the y−direction, so that the spacing

between nodes gradually increased from the gap ends (4µm) to the gap central region

(12 µm). Since the experiments have been conducted in atmospheric pressure air, the

number densities of neutral molecular nitrogen and oxygen have been initially set to

1.88× 1025 m−3 and 0.63× 1025 m−3, respectively. For what concerns the ionic species

and the electrons, the simulation was started with a uniform distribution of the charged

species in the whole gap, with a ionization rate of 1× 10−9.

Figure 3.19 shows one cycle of the externally applied voltage (black, solid line), the

electric potential difference ∆φgap across the gap (black, dotted line) and the surface

charge density accumulated on dielectrics I and II. As in Fig. 3.5, dielectric layer I and

II cover the HV and GND electrodes, respectively. The HV electrode is located at the

left edge of Fig. 3.19. Coherently with the results yielded by the application of the

BDD methodology on a one-dimensional domain in Fig. 3.15, the computed positive

and negative surface charging trends are symmetric, i.e., the same peak values surface

charge are yielded by positive and negative charge fluxes against the dielectric layers.

In order to compare the simulation results to the experimental measurements reported
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in Table 3.4, the electrical potential produced by the charge deposited onto the surface

of the dielectric layers (φd) was computed at the zero-crossings of the external voltage,

taking place at τ1 = 33.3 µs and τ2 = 67.7 µs. Since the external voltage is positive before

τ1, dV/dt
∣∣
τ1
> 0, while (for the opposite reason) dV/dt

∣∣
τ2
< 0. The values of φd in τ1

and τ2 were inferred from the computed surface density using the following expression:

φd =
ρΣd

ε0εr,d
, (3.25)

where d is the thickness of the layer, and εr,d the relative permittivity of the employed

dielectric material, i.e., Kapton.

The obtained results φd
∣∣
τ1

(positive time-derivative of the external voltage) and φd
∣∣
τ2

(negative derivative) are 638 V and 716 V, respectively. These results, obtained using

the Boltzmann Drift-Diffusion methodology, exhibit a reasonable agreement with the

experimental measurements (reported in Table 3.4), obtained by scanning the electric

potential on the dielectric surface of the specimen. Another interesting feature that

can be found in both experimental and numerical results is the symmetry between

the maximum (positive and negative) surface charge values. This is notable, since –

in reason of the different transport parameters and coefficients regulating the charge

deposition mechanisms – one could expect the positive and negative charging processes

to be completely different one from the other. The highlighted symmetry is a further

evidence that the charge accumulation process on the dielectric layers should be regarded

as a negative feedback mechanism exerted by the charged species.

Figure 3.20 shows the results obtained from the numerical simulation of the physical

configuration employed to perform Test II. All the electrical and geometrical quantities

employed for the analysis of Test I have been retained, with the exception of dielectric

II, which has been removed. The results depicted in Fig. 3.20 show that, analogously to

what has been observed in Test I, the charge deposited onto the dielectric layer surface

strongly influences the difference between the external voltage and the electric potential

difference which the gap is subjected to. As in the previously discussed symmetric (1D

and 2D) cases, this deposited surface charge is responsible for reducing ∆φgap in the

first quarter of the external waveform cycle. Indeed, the electrostatic potential φd due

to the charge deposited during the first quarter has the same polarity of the exposed

electrode, located located on the opposite side of the gap. Then, after reaching the peak
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Figure 3.19: Numerical results for Test I, configuration with two dielectrics; Externally
applied voltage, gap voltage and surface charge deposited on the dielectric
layers obtained with the Boltzmann drift-diffusion methodology

value of Vext, the delay in the neutralization of the deposited charge (also discussed for

a symmetric configuration in Sec. 3.2) is responsible for the observed polarity inversion,

since Vext decreases faster than φd. It should be highlighted that the obtained ∆φgap

profile reflects the asymmetry of this considered configuration. Indeed, now the charge

deposition (during each quarter) is due to either the heavy positive ions or the electrons,

allowing their different physical properties and macroscopic transport parameters to be

reflected in the charge deposition mechanism. Moreover, it is worth noticing that the

maximum and minimum values of ρΣ are now approximately doubled with respect to the

values obtained in Test I. The computed values of ρΣ

∣∣ τ1 and ρΣ

∣∣ τ2 correspond to 493 V

and −241 V, respectively. Hence, unfortunately, the agreement with the experimental

results is not as satisfactory as the one observed for Test I. Possible reasons for this can

be an inadequate modeling of the plasma-electrode interaction, leading to inaccuracies

in the charge deposition dynamics.

Finally, as an example of the spatial number distributions yielded by the BDD code

in two dimensions is provided in Fig. 3.21. The figure shows the ozone number density

obtained in Test I, after 86 µs of simulation, computed using the set of reactions listed in

Table 3.2. As one can see, the peaks of ozone number density are found at the domain’s
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Figure 3.20: Numerical results for Test II, configuration with one dielectric (covering the
HV electrode); Externally applied voltage, gap voltage and surface charge
deposited on the dielectric layer obtained with the Boltzmann drift-diffusion
methodology

edges, diffusing towards the gap bulk. This is caused by the highest values of reduced

electric field and number densities of the species (involved in the ozone creation kinetic

mechanism) taking place in the (positive or negative) sheaths at the edges of the gap.

3.4.4 Influence of the initial ionization degree

Finally, a parametric test is conducted in this section, in order to assess the influence

of different initial ionization degrees on the dynamics of the charged species. The same

configuration employed in the previous sections has been simulated – using the Full

Drift-Diffusion approach – for a range of different values of n0. The constant n0 is

employed to define the initial number densities injected in the domain, with the ratios

described in Sec. 3.1.2. In this way, e.g., if n0 = 1× 1016 m−3 the initial distribution of

N2
+ and O2

+ is set to 0.75× 1016 m−3 and 0.25× 1016 m−3, respectively.

Figure 3.22 depicts the temporal evolution of the average number density of N2
+,

O2
+ and e– over one period of the external voltage, starting from two different values

of the above defined n0 parameter. The external voltage frequency is set to 15 kHz,

and the two employed values of n0 are 10× 1014 m−3 in Fig. 3.22a and 10× 1018 m−3
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Figure 3.21: Distribution of O3 number density (log(n03)) obtained from the simulation
of the symmetric configuration corresponding to Test I, after 86 µs

Fig. 3.22b. In this way, the same configuration is simulated starting from two markedly

different levels of gas ionization. The obtained results show that – regardless of the

considered initial ionization degree – the considered number densities (averaged over the

gap) reach the same values within the first 6 µs from the beginning of the simulation.

Afterwards, a periodic regime is established, consistently retained in the following cycles

of the externally applied voltage. The right axes in Fig. 3.22 shows the maximum value

(over the gap) of the electric field over time. The electric field constitutes the main driver

of the kinetic processes that lead to the observed regime of the number densities. Indeed,

comparing the two presented cases, the rapid initial growth of the number densities in

Fig. 3.22a is associated to a corresponding intense electric field, over 200 Td.

Finally, it is worth specifying that – although only two different cases have been shown

here – n0 was changed from 1× 1010 m−3 to 1× 1018 m−3. The results are quantitatively

consistent with the above described trend over the whole considered range of initial

number densities. This means that the results shown in the previous sections (including

the experimental validation) have a weak dependence on the initial conditions enforced

on the number species, and show a good consistency of the proposed modeling approach.
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(a) n0 = 1× 1014 m−3
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Figure 3.22: Left Axis: temporal evolution over one period at 15 kHz of the average
number density in the gap, starting from two different initial ionization
rates; Right Axis: maximum electric field in the gap during the same time
interval.
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The fluid approach presented in the previous chapter provides a macroscopic physical

description of a plasma. The main hypothesis behind such kind of approach is that the

(charged) gas under analysis behaves like a continuum, and hence can be represented

as a fluid. This characteristic is closely related to how frequently the gas particles are

subjected to collisions. Indeed, collisions tend to thermalize the gas, driving the species

velocity distribution function towards a Maxwellian [91].

The Knudsen number relates the particles mean free path λ to the characteristic length

L of the physical system under consideration:

Kn =
λ

L
, (4.1)

where the mean free path λ = 1/(σn) is a function of the cross section (σ) and the

number density (n). If Kn � 1, which often happens at high pressures, the particles

will undergo a high number of collisions over a distance L. In these cases, the velocity

distribution of the gas will likely be Maxwellian and the flow is said to be in continuum.

On the other hand, if Kn � 1 collisions between particles are so infrequent that can

be ignored. Such a regime is is commonly referred to as free molecular flow. Finally, if

Kn ≈ 1, the distance between collisions is comparable to the characteristic length. In

this case, corresponding to a rarefied gas, the particles velocity distribution function is

not guaranteed to be Maxwellian.

While fluid approaches are more frequently employed for the modelling of physical

systems characterized by low Knudsen numbers, kinetic models are often employed for

cases where Kn � 1, or in general when a priori knowledge of the velocity distribution

function of the particles cannot be assumed.

Through the years, this kind of approach has been applied to a wide spectrum of

different applications. In astrophysics, for the study of planetary and stellar magneto-
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sphere [92], as well as solar wind [93,94]. In the electronics industry, kinetic models are

often employed to simulate dynamics of the charge carriers in semiconductor devices [95].

In the nuclear fusion field, kinetic approaches are adopted for modeling negative ion ex-

traction in the context of neutral beam injection [96,97] and high energy particle-surface

interactions [98, 99]. Finally, kinetic (and hybrid) models are largely employed in the

field of plasma propulsion, both for the study of basic physical phenomena and as a tool

for the thrusters design [100].

The core concept of kinetic approaches is to provide a microscopic representation of the

ionized gas, composed of a finite number of charged ions, electrons and neutrals. In this

spirit, instead of solving a set of differential equations corresponding to the moments of

the Boltzmann equation (5.1), particle methods such as Particle-In-Cell employ a finite

number of macro-particles to discretize the velocity distribution function for each of the

considered species.

f(r,v, t) ≈
N∑
p=1

wpfp(r,v, t), (4.2)

where N is the number of employed macro-particles, and wp the statistical weight, i.e.,

the number of gas particles corresponding to a macro-particle:

wp =
Ngas

N
. (4.3)

A proper choice of this quantity is a key point of a particle simulation. In fact,

the statistical weight has to be low enough to maintain the number of macro particles

reasonable (for performance reasons), while still providing an accurate discretization

of the specie distribution function. Indeed, the numerical noise associated with the

discretization of the VDF is proportional to 1/
√
N , where N is the number of macro-

particles [38]. As the charge to mass ratio of the macro-particle is the same as the real

particles, their trajectories are the same. A macro-particle with specific weight wp and

charge qp corresponds to wp particles per unit of volume when the number density is

evaluated. The momentum of the particle p can be computed from its mass (mp) and

velocity vp, as wpmpvp.

It is worth highlighting that, while a a single (uniform) specific weight is assigned to

all employed macro-particles, this is not the only possibility. Indeed, employing different
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weights allows a better resolution of the high-velocity tail of the distribution function.

The latter is responsible for several key physical mechanisms, such as ionizations, erosion

of walls etc. The disadvantage of such a choice, however, is that it leads to an increased

complexity of the code. When variable specific weights are employed, indeed, the injec-

tion of particles is less straightforward, and the implementation of particle joining and

splitting algorithms is often required [101] to grant an optimal number (between 10 and

50) of macro-particles per cell [39].

4.1 Electrostatic Particle-in-Cell

The Particle-In-Cell (PIC) method has been developed from the late 50’s through the

works of Buneman [102] and Dawson [103, 104]. In the following decades, the method-

ology has been formalized and popularized by Hockney [105], Birdsall [106] and others.

In this section, the main features of an Electrostatic (non-relativistic) Particle-in-Cell

(ES-PIC) code are presented, as the foundations for the hybrid ES-PIC code employed

in Chapter 5 for the study of low-power Hall thrusters.

As outlined in Fig. 4.1, an ES-PIC code is composed of several operations involving

the employed macro-particles. These are cyclically repeated over each time-step used to

advance the simulation time. Given a set of macro-particles, in the scatter phase the

electric charge densities due to the distribution of charged species are evaluated at the

nodes of a computational grid. Then, the charge density at every grid node is employed

to compute the electric field (subjected to the boundary conditions), which is then

interpolated (gathered) at the macro-particles positions. In this way, the electrostatic

force acting on each particle due to external and self electric fields is obtained, and used

in the move phase to integrate the particles trajectories over a time step, to complete

the cycle.

The following sections are devoted to a brief discussion of the above mentioned fun-

damental parts of an ES-PIC, starting from a collisionless case. Afterwards, the Monte

Carlo Collision PIC (MCC-PIC) – a commonly employed extension of the PIC method

used to account for plasma kinetic processes – is briefly discussed and compared against

a an alternative methodology, i.e., the Direct Simulation Monte Carlo PIC (DSMC-PIC).
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MOVE
F → v → x

SCATTER
x → ρ

POISSON
ρ → ϕ → E

GATHER
(E;B) → F

Figure 4.1: Typical scheme of a collisionless electrostatic PIC simulation cycle

4.1.1 Particle Mover

Let’s consider a collection of macro-particles, each characterized by a position r and

velocity v. At the k−th time instant, assuming that the force Fk acting on a given

macro-particle p is known, the particle position and velocity can be time-integrated over

a time-step, ∆t by integrating the following two first-order differential equations:

m
dv

dt
= F (4.4)

dr

dt
= v (4.5)

In this way, rk and vk are advanced to the following time instant k + 1.

The Leapfrog scheme

Although a simple forward Euler method could theoretically be applied to follow the

trajectory of a particle, in practice higher order schemes such as Runge-Kutta methods or

the Leapfrog method are employed. Figure 4.2 depicts the conceptual scheme behind the

Leapfrog scheme, i.e., the particles positions and velocities are computed at interleaved

time-instants, allowing to perform a centred time-discretization (hence the second order

accuracy). Starting from the k−th time instant, the velocity at k + 1/2 is computed
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from the velocity at the previous time instant and ak, the particle acceleration computed

at time k.

vk+1/2 = vk−1/2 + ak∆t, (4.6)

where ak is obtained from the Lorentz force evaluated at k. Let’s assume, for the

moment, that no magnetic field is present. Hence, given the considered particle mass

mp and charge qp, the aforementioned Lorentz force at time instant k writes as:

ak =
Fk

mp

=
qp
mp

E. (4.7)

Then, the particle position at the k + 1−th instant is obtained by inserting the com-

puted acceleration in Eq. (4.6), yielding:

rk+1 = rk + vk+1/2∆t. (4.8)

Since the position x and velocities v of the particles are not computed at the same

time-instant, some sort of synchronization must be enforced between the two quantities.

This is generally performed at the first execution of the cycle, by rewinding the particle

velocities by half a time step, from v0 to v−1/2.

In the Leapfrog scheme, the particles position and velocities are computed using ex-

clusively physical information pertaining to the previous time-step. Hence, the scheme

is explicit and its stability is subjected to the Courant-Friedrich-Levy (CFL) condi-

tion [107]. The latter has been already discussed in Chapter 2 for the forward Euler

integration scheme. In the case of a PIC code, the CFL condition is satisfied when the

particles do not travel more than a single grid cell per time step:

∆t ≤ ∆x

|v|
(4.9)

The described Leapfrog scheme presents several advantages over Runge-Kutta meth-

ods. Firstly, it is a symplectic integrator, meaning that they cause a bounded energy

error [108]. Also, the Leapfrog is more computationally efficient than its corresponding

order Runge-Kutta counterpart, and is time-reversible. On the other hand, Runge-Kutta

methods can be easily extended to higher order of accuracy (the Leapfrog scheme is sec-

ond order accurate). Moreover, unlike the Leapfrog, it does not require the time-step to
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velocity

tvk−1/2 vk+1/2

position

trk rk+1

tk−1/2 tk tk+1/2 tk+1

Figure 4.2: Scheme of the Leapfrog integrator

be constant.

The Boris scheme

In order to retain the discussed numerical properties, the provided expressions Eq. (4.8)

and Eq. (4.6) for the Leapfrog scheme must be modified when a magnetic field is

considered in the Lorentz force:

F =
q

m
(E + v×B). (4.10)

Under the aforementioned assumption of electrostatic PIC, the contribution of the

self-induced magnetic field is neglected in Eq. (4.10). This is justified considering that

the current densities produced by the charge carriers are not sufficient to produce a

significant magnetic field. Hence, the quantity B in Eq. (4.10) represents external

magnetic fields, such as the static radial magnetic field used to magnetically confine the

electrons in E×B devices.

When in presence of a sufficiently strong magnetic field, the charged particles are said

to be magnetized. In this case, the particles describe a helix motion along the mag-

netic field lines, which can be described with a circular motion around an instantaneous

center of gyration (guiding center). The magnitude of the resulting angular velocity is
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commonly called cyclotron frequency, and writes as:

ωc =
|q|B
m

, (4.11)

where |q| and m are the considered particle charge and mass, and B the magnetic field

magnitude. As can be noticed, ωc is directly proportional to B, but also depends on

the charge to mass ratio of the given particle. Hence, the electrons are more easily

magnetized than the ions. The radius of the circular orbit (also known as gyroradius)

is given by:

rc =
mv⊥
|q|B

, (4.12)

where v⊥ is the tangential velocity of the charged particle along the orbit described

around the magnetic field lines. If, for a given specie, rc is considerably larger than the

characteristic length of the considered physical domain, i.e., rc � L0, that specie can be

considered unmagnetized. The ions in a Hall thruster constitute a classic example of such

a physical condition, as the magnetic field intensity is specifically selected to magnetize

the electrons, while leaving the ions unmagnetized. From a modeling perspective, the

cyclotron frequency is an important parameter, as it yields a criteria that can be used

to determine if collisions must be modeled. In general, indeed, the requirement for a

collisionless plasma is that the average time between collisions must be greater than the

cyclotron period [6].

The so-called Boris method [109, 110] extends the Leapfrog method for the case of

magnetized particles, by splitting the integration in 4 distinct parts. Starting from the

particle velocity at time instant k− 1/2, the new velocity v− resulting from the electric

field acceleration over half a time-step is computed as:

v− = vk−1/2 +
1

2

qp
mp

E∆t. (4.13)

Then, half of the first half of the rotation due to the magnetic field is added to v−:

v′ = v− + v−× t, (4.14)

where t is the rotation vector, that can be obtained as:

t =
1

2

qp
mp

B. (4.15)
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So far, only half of the rotation has been computed. Effect of the second half-rotation

is directly added to the half-accelerated velocity of Eq. (4.13):

v+ = v− + v′× s, (4.16)

where s is obtained from a scaling of the rotation vector t, such that the magnitude

of the velocity is preserved:

s =
2t

1 + t2
. (4.17)

Finally, the contribution of the second half-acceleration is added to the velocity v+

obtained with Eq. (4.16):

vk+1/2 = v+ +
1

2

qp
mp

B. (4.18)

The described procedure allows to extend the aforementioned symplectic properties

of the Leapfrog integrator for the case of a magnetized plasma, with the addition of a

moderate computational burden.

In this overview, only the practical application of the Boris method has been presented

for the sake of conciseness. Further details on its derivation can be found in [91] and [106].

4.1.2 Scattering and Gathering

In the PIC scheme, the particles are followed with a Lagrangian approach, and their

position and velocities are are defined in the continuum space. However, for several

reasons that will be discussed in this section and the following ones, the use of a spatial

grid has become customarily in this kind of computer codes. While the particles move

freely in the cells, the macroscopic quantities at the grid nodes (computed from the

particles positions and velocities) are employed for the evaluation of fields and particle

interactions.

In particular, charge densities at the grid nodes are employed as the source term for

the Poisson equation, yielding the electric field at each grid node. This is has two main

advantages over calculating the Coulombian interaction between each pair of macro-

particles. The first is computational efficiency, reducing the order of computer operations

to be performed at each step from N2 to N log(N) [105], where N is employed the
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number of macro-particles. Moreover, the interactions at small separation distances are

automatically smoothed, eliminating the problems arising from the divergent character

of the Coulomb interaction.

Weighting schemes

In order to compute the number density at each grid node, a criteria must be selected

to distribute the particle quantities (such as their number, charge or speed) among the

nodes bounding the cells in which the particles are located at a given time instant.

The first weighting technique that has historically been employed in this kind of

simulations is the so-called Nearest-Grid-Point (NGP) weighting. With reference to Fig.

4.3a, macro-particles located within ±∆x/2 from a j−th node are counted, and scattered

(assigned) to the grid node. All macro-particles are multiplied by a unity weight. Hence,

if Nj is the counted number of macro-particles, the nodal number density is obtained as:

nj =

Nj∑
p=1

wp/Vj, (4.19)

where wp is the p−th macro-particle specific weight and Vj is the j−th cell volume. For

what concerns the gathering operation, the same electric field Ej computed at the j−th

grid point is assigned to all particles within the cell.

The main advantage of this technique consists is its simplicity and computational

efficiency, requiring no interpolation. However, referencing again to Fig. 4.3a, a parti-

cle traveling from cell j− to cell j + 1 causes an instantaneous jump in nj and nj+1.

This behavior generates noise in the spatial and temporal distribution of the computed

number densities and electric fields.

In order to overcome the discussed limitations of the NGP weighting scheme, a fist-

order interpolation technique called Cloud-In-Cell (CIC) is commonly implemented in

modern PIC codes. When employing the CIC technique, summarized in 4.3b, each

particle contributes to the grid quantities of the two nearest nodes at its left and right,

respectively. The physical value assigned to the nodes j and j + 1 is proportional to

the distance of the macro-particle from j and j + 1. Hence, e.g., the density assigned to
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node j from an ensemble of Nj particles ∈ [xj, xj+1] is:

nj =

Nj∑
p=1

wpdp/Vj, (4.20)

where dp is defined as the distance separating the macro-particle p form the j−th grid

node, normalized to the grid spacing:

dp =
xp − xj

∆x
. (4.21)

The CIC scheme offers substantial advantages with respect to the described zero-order

NGP technique, yielding smoother densities and forces. This result in a reduction of the

artificial heating of the particles that inevitably takes place due to the charge density

discontinuities created by the particles traveling between the grid cells.

As already mentioned, the weighting operation must also be performed to compute

the force excerpted by the (electric and magnetic) fields on each particle. Both NGP

and CIC schemes - as well as higher order schemes - can be used, under the condition

that the same scheme is employed for both the scattering and gathering operations.

More details on the mentioned weighting schemes and a generalization to two and

three dimensions can be found in [106] and [111].

4.1.3 Field Solution

As previously mentioned, one of the main parts of an electrostatic PIC code is constituted

by the electric field solver. Indeed, the electrostatic assumption grants that the electric

field is irrotational:

∇× E = 0, (4.22)

allowing to express the electric field by means of a scalar potential ϕ, defined such

that ∇ϕ. In this way a Poisson problem is defined, whose solution yields the spatial

distribution of the electric scalar potential at a given time-instant:

∇ · (εr∇ϕ) = − ρ
ε0

(4.23)

The electric field E, derived from the scalar potential, can then be interpolated at each

particle position – together with the magnetic field B – to compute the Newton-Lorentz
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xj−1 xj xj+1 xj+2

∆x/2

1

(a)

xj−1 xj xj+1 xj+2

∆x

1

(b)

Figure 4.3: Schematic representation of the NGP (a) and CIC (b) weighting schemes,
applied to a 1D spatial grid
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force acting on each particle using Eq. (4.10).

The electrostatic problem defined in Eq. (4.23) can be solved performing a discretiza-

tion of the Laplacian operator, leading to a (sparse) linear system of equations such as

Eq. (2.37), described in Chapter 2.

The finite differences discretization of the Laplace operator in 1D yields a tridiagonal

matrix, which can be efficiently solved with O(n) operations using the direct Thomas

tridiagonal algorithm [112]. When 2D and 3D domains are considered, either direct

or iterative solvers might be the most appropriate choice, depending on the problem

size. Indeed, while direct solvers based on lower-upper (LU) decomposition or fast

Fourier transform (FFT) are generally faster, they require more memory. Conversely,

the performances of sparse methods such as the successive overrelaxation method (SOR)

or the generalized minimal residual method (GMRES) are heavily affected by the choice

of the employed pre-conditioner [113]. Nevertheless, iterative solvers can be particularly

useful in the context of PIC codes, since the solution obtained at the k−th time-step

can be used as the initial estimate of the new solution at instant k + 1 [114]. The

benefits of this, however, strongly depend on fluctuations of the density evolving from

one time-instant to the other [115].

Hybrid PIC codes

Alternatively to the previously described approach – based on the representation of both

ions and electrons with super-particles – the kinetic approach can be restricted to the

ions, while a fluid model can be employed for the electrons. Indeed, as discussed in

Chapter 2, the fast dynamics of the electrons – under appropriate physical conditions –

allow to assume that the electrons are thermalized and instantaneously respond to the

electric potential changes caused by external sources or ions. These considerations allow

to relate the spatial distribution of electron number density to the local electric potential

via the Boltzmann relation (2.12), which results in a nonlinear Poisson problem described

by the same formalism employed in Chapter 2. Since PIC codes are often applied to low-

pressure physical scenarios, the resulting lower number densities (and voltages required

to ignite the discharges) are extremely beneficial in the context of numerically solving

the aforementioned nonlinear Poisson problem.
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MOVE
F → v → x

MCC
v → v′

SCATTER
x → ρ

POISSON
ρ → ϕ → E

GATHER
(E;B) → F

Figure 4.4: Typical scheme of a an electrostatic Particle-In-Cell code including a Monte
Carlo Collision (MCC) module

4.1.4 Collisions

Up to this point, the provided description of the Particle-In-Cell methodology has been

carried out assuming the absence of collisional phenomena. Nevertheless, many of the

actual physical situations that can be modeled trough a particle approach are collision

dominated. From the perspective of a PIC code, the collisional processes (appearing

in the right-hand side of the Boltzmann equation) change the particle velocities and

act as a source or sink for the different species. The different phenomena that must

be modeled in this context are collisions between neutrals and both electrons (elastic

scattering, excitation, ionization) and ions (scattering, charge exchange), as well as

collisions between charged particles (Coulombian). In the case of molecular gases, such

as air, electron-ion recombination can also significantly influence the considered plasma

dynamics. The two main methodologies that are commonly implemented to account for

collisions are the Monte Carlo Collision (MCC) and the Direct Simulation Monte Carlo

(DSMC). Here only the first method – applied for the first times to the PIC method

in [116,117] and later formalized in [118–121] – will be discussed, since it is employed in

the code that will be described in Chapter 5.

The MCC method consist in providing a statistical description (in contrast with the

rather deterministic nature of the PIC algorithm) of the collisional phenomena. As

outlined in Fig 4.4, It is usually integrated in PIC codes before the evaluation of the
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nodal number densities. For a given particle p, the probability of undergoing a collisional

event during the time ∆t is obtained from the total collisional cross section σt (which

depends on the incident particle kinetic energy εi), the target number density nt and

the relative velocity of the incident particle with respect to the target vi,t:

Pp = 1− exp(−ntσk(εi)vi,t∆t), (4.24)

where εi is computed using the incident particle velocity, vi, as:

εi =
1

2
mv2

i . (4.25)

Since the considered macro-particle p can be involved in h different collisional process,

the total collisional cross section σt appearing in Eq. (4.24) is obtained by summing the

different cross sections associated to the h considered collisional processes:

σt =
h∑
j

σj(εi). (4.26)

Once the collision probability Pp is evaluated for each considered macro-particle, the

number of collisions taking place during the selected ∆t is obtained by comparing Pp

with a random number, R1. For the macro-particles having Pp > R1, the comparison

with a second random number R2 is employed to determine which of the considered h

collisional phenomena takes place, based on the relative weight of the partial cross section

σt with respect to the total cross section σt. Finally, the incident species velocities and

number densities are updated depending on the given collisional process (further details

can be found in [121]), and the PIC cycle is continued using the post-collision physical

values.

At this point, it is useful to remark that in the MCC approach the incident particles

are assumed to collide with a target cloud, at least in its original formulation. Indeed –

except from the number density – the properties of the target specie are not accounted in

Eq. (4.24). This one of the main differences between the MCC and the aforementioned

DSMC approach, in which the incident particles collide with the actual target popula-

tion. The main consequence of this feature of the MCC is that the total momentum

cannot be conserved. Conversely, the employment of the MCC over the DSMC allows

to substantial savings in terms of computational performances.
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annular Hall thruster

5.1 Chapter Overview

This chapter is devoted to the description of the numerical simulation of two different

operational modes of a 20W miniaturized Hall thruster, developed by the Gas Dis-

charge Physics Laboratory of the Korea Advanced Institute of Science and Technology

(KAIST). In the first section, a brief description of the hybrid Particle-In-Cell code em-

ployed for the simulations is provided. The main features and limitations of the employed

numerical tools are described, focusing on the physical treatment of the anomalous cross-

field electron transport. In the following section, the considered thruster geometry and

global performances are discussed, together with the thruster simulation process per-

formed with the HALLIS code. In particular, the results obtained from the application

of two different methodologies for the modeling of electron anomalous cross-field anoma-

lous transport are presented and compared with the measured thruster performances.

5.2 Numerical Methodology

HALLIS is a 2D axially symmetric code, developed by the GREPHE group at the

LAPLACE laboratory (Toulouse, FR) for the simulation of Hall thrusters [122–125]. The

numerical methodology implemented in HALLIS is a hybrid, i.e., a different approach

is employed for the modelling of electrons and the heavy (neutral and ionic) species.

5.2.1 Ions and neutrals

The transport of the heavy species (neutrals, singly and doubly charged ions) is assessed

using the Particle-In-Cell (PIC) methodology. As discussed in Chapter 4, the adoption
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5 Numerical simulations of a 20 W annular Hall thruster

of a kinetic approach (instead of a fluid one) for the ionic and neutral species presents the

fundamental advantage of requiring no assumptions on the species velocity distribution

function (VDF) f = f(r,b, t) in the Boltzmann equation:

∂fs
∂t

+ v · ∇rfs +
F

m
· ∇vfs =

(
∂fs
∂t

)
c

, (5.1)

Indeed, each employed macro-particle is characterized by a position r∗ and a velocity

v∗ at the given time instant τ . Therefore, a macro-particle can also be seen both as an

ensemble of real particles and as a single sample of the VDF (of the considered specie)

in the phase space. In this spirit, an appropriate number of macro-particles can be used

to provide an discrete representation of f = f(r,b, t):

f(r,b, t) ≈
∑
p

fp(r,b, t) (5.2)

The right-hand side of Eq. (5.1) represents the effect of collisions on the VDF. The

modelled collisional phenomena include collisions between ions and neutrals - computed

with with a Monte Carlo Collision (MCC-PIC) approach - as well as interactions with

the thruster walls.

At each cycle of the PIC algorithm, neutral atoms are generated with random ra-

dial position between the internal and external radiuses of the thruster anode. The

VDF of the neutrals is supposed to be Maxwellian, at a temperature of 500 K. While

travelling towards the channel exit, the injected neutral atoms can collide against the

thruster walls. HALLIS allows two different treatments of this phenomena, i.e., assum-

ing specular or isotropic reflections of the neutrals. Modeling the reflections as specular

correspond to assuming that the walls are perfectly smooth. In contrast, perfectly rough

walls yield isotropic reflection. In both models, the magnitude of the particle speed is

unchanged by the collision (differently from the angle). It is worth pointing out that the

isotropic model allows the neutral particles to diffuse towards the anode, hence increas-

ing the residence time of the gas propellant in the discharge channel. Throughout this

work, only the isotropic model has been employed.
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5.2.2 Electrons

Conversely, HALLIS employs a fluid approach for the physical description of the elec-

trons. The main physical assumption justifying the adoption of a fluid description of

electrons is that their VDF is Maxwellian along each magnetic field line. This is reason-

able, as the electrons mean free path λel in Hall thrusters is considerably less than the

characteristic length L0 of these devices, thanks to the magnetic confinement. Assuming

that the magnetic field is static1, a scalar function λ can be defined from the magnetic

field spatial distribution with the following expressions:

∂λ

∂x
= rBr, (5.3)

∂λ

∂x
= −rBx (5.4)

where Br and Bx are the radial and axial magnetic field components, respectively.

The function λ monotonically increases from the anode until reaching the magnetic

field line intersecting the cathode and can be used to define a quasi-1D grid such as the

one shown in Fig. 5.1.

The first three moments of Eq. (5.1), i.e., the conservation equations for mass, momen-

tum and energy are solved for the electrons, under the hypothesis of quasi-neutrality.

Hence, the ionic and electronic number densities are equal in every point of the do-

main, except in the sheaths. The continuity equation is then expressed by means of the

following expression:

∇ · Γe = Nnki −
∂n

∂t
=∇ · Γi, (5.5)

where Γe and Γi represent electron and ion fluxes, the latter of which is known at

each time step thanks to the kinetic treatment of the heavy particles. In Eq. (5.5),

N and n represent the neutrals and charged species number densities, respectively; ki

is the ionization rate coefficient, which depends on the mean electron energy ε. The

product of these three terms gives the number of ions generated per unit of volume and

time. At each time step, this physical contribution is modelled by introducing in the

1The current densities due to motion of the charged species are low enough to assume that the magnetic
field coincides with the one produced by the external magnetic circuit.
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Figure 5.1: 2D (r-z) example of grid for ions and neutrals (left) and 1D (λ) grid for the
electrons, from [6]. Both grids are delimited by the anode position and the
magnetic field line intersecting the cathode

computational domain a corresponding number of macro particles representative of the

generated ions.

The considered kinetic channels for the production of singly and doubly charged ions

are depicted in Fig. 5.2a, along with the associated cross sections. These are the sin-

gle [126] and double [127] ionization from the ground state, and the stepwise ionization of

singly charged ions [128]. The generic ionization reaction rate ki, representing the num-

ber of reactions per unit of time and volume associated with the given kinetic process,

is obtained from the following expression:

ki =

∫ +∞

−∞
f(v)σvrdv, (5.6)

where f(v) is the electrons velocity distribution function (supposedly Maxwellian), σ the

cross section associated to the given kinetic process, and vr the relative velocity of the

electrons with respect to the ions. The latter is safely assumed to be coincident with the

electron velocity, given the markedly lower dynamics of the heavy species. The obtained

reaction rates are shown in Fig. 5.2b in the same energy range of the cross sections.

The first-order moment of the Boltzmann equation, i.e., the momentum continuity
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(a)

(b)

Figure 5.2: Singly and doubly charged Xe ions electron impact cross sections (a); corre-
sponding rate coefficients (b)
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equation, is expressed as:

Γe = µEn− 2

3e
µ∇(nε), (5.7)

where µ, E and ε represent the electron mobility, the electric field and the electron

mean energy, respectively. As it can be noticed, this equation is written in a drift and

diffusion form, meaning that changes of electron momentum are due to the force per

unit of charge excerpted by an electric field (drift term) and gradients of electron mean

energy (diffusion).

Finally, the second-order moment, i.e., the electron energy conservation, is expressed

as:

∂(nε)

∂t
+

5

3
∇ · (Γeε) +∇ · qe = −eE · Γe −Nnκ− nW, (5.8)

where qe is the heat flux. In the right-hand side of the energy equation, the first term

represents the electron energy gain due to the electric field, while the two coefficients

κ = κ(ε) and W = W (ε) multiplying the following terms represent electron energy losses

due to collisions with neutrals and with walls.

Following Morozov’s thermalized potential approximation, the force exerted by the

electric field and the electron pressure gradient in Eq. (5.7) are assumed to be balanced

along the magnetic field lines, giving:

µEn =
2

3e
µ∇(nε) (5.9)

Hence, under the assumption that the electron mean energy remains constant along

the magnetic field lines, the integration of the previous expression along a magnetic field

line yields a constant electric potential:

V ∗(λ) = V (z, )− 2

3e
ε(λ) ln

(
n(z, r)

n0

)
. (5.10)

This relation allows to obtain the electric potential at each point of the grid as a function

of the electric potential V ∗(λ) and the electron mean energy ε(λ) along a given magnetic

field line. These two quantities are constant (along a given line) and depend only on the

scalar function λ.

Regarding the electric field computation, as anticipated HALLIS employs a quasi-
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neutral plasma model, i.e., the electric field is obtained from the current continuity

equation ∇ · (Γi− Γe) = 0 coupled with the electrons momentum conservation equation

rather than the Poisson equation, and the physical effects of the sheaths are accounted

by employing an analytical sheath model.

The adoption of a fluid approach for the physical description of the electrons grants a

substantial advantage in terms of the code computational performances. Indeed, at each

code iteration, the time step required for the stability of the macro-particles trajectories

integration is no longer limited by the fast dynamics of the electrons. This allows to

simulate relatively large time scales (up to milliseconds) in reasonable times using a

sequential code implementation on a standard workstation. The drawback of such an

approach is that appropriate expressions for the collisional phenomena appearing in the

electron continuity and energy equations Eq. (5.7) and Eq. (5.8) must be provided.

5.2.3 Anomalous transport

Accurate modeling of the axial electron transport in the direction perpendicular to the

magnetic field is a challenging task when fluid models are employed. The classical

expression for the axial electron conductivity is defined as:

µ⊥ =
e

m

ν

ν2 + Ω2
ce

, (5.11)

where ν is the total electron momentum-exchange collision frequency and Ωce the elec-

tron cyclotron frequency. Unfortunately, this expression does not yield results in accor-

dance with experimental measurements if the electron-neutral and electron-ion collisions

are took into account exclusively [48]. In particular, the main discrepancies between sim-

ulations and experiments are found in the computed electron energy and in the electronic

contribution to the discharge current. For these reasons, an equivalent electron collision

frequency accounting for additional physical effects is employed instead of the classical

one in HALLIS, defined as:

ν = νe−n + νC + νB + νw, (5.12)

where νe−n and νC are the electron-neutral and electron-ion Coulomb momentum

exchange collision frequencies, respectively; νB accounts for instabilities and turbulence

outside of the channel while νw represents the effects of interactions between walls and
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electrons. Regarding the anomalous contributions to the electron collision frequency,

two different approaches are implemented in HALLIS.

The first among the two available approaches consist in using empirical expressions to

obtain νB and νw. Inside the thruster channel, one of the main mechanisms responsible

for the anomalous cross-field transport of electrons is the momentum-transfer collisions

between the electrons and the thruster walls [129, 129, 130]. Sufficiently energetic elec-

trons can pass the potential barrier created by the sheaths, colliding against the walls

and losing a fraction of their kinetic energy, causing in turn a transport towards the

anode. This collision frequency is estimated with the following expression:

νw = α107s−1, (5.13)

yielding the following associated electron mobility:

µα =
me

eB2
να. (5.14)

The range of usual values for the empirical coefficient α is discussed in the following

section.

Outside the thruster channel, the experimentally observed anomalous transport phe-

nomena are usually associated with the so-called anomalous Bohm diffusion, where the

cross-field transport is considered due to plasma fluctuations. The anomalous collision

frequency associated with the Bohm diffusion is written as:

νB =
eB

me

k

16
, (5.15)

leading to the following anomalous contribution to the electron mobility:

µk =
me

eB2
νk. (5.16)

Other physical mechanisms invoked as possible explanations to the observed trans-

port outside the thruster channel include azimuthal plasma waves [131] and azimuthal

turbulence phenomena [132].

As an alternative to the above presented approach based on empirical parameters,

HALLIS allows to manually enforce the anomalous collision frequency along the axis

of the thruster. This can be useful when experimental data on the considered thruster

98



5 Numerical simulations of a 20 W annular Hall thruster

is available, allowing to adjust the anomalous frequency profile to match the measured

physical quantities of interest.

The electron-wall collisions play a relevant physical effect on the electron momen-

tum and mean energy losses. These effects are modelled by means of the methodology

introduced in [133], based on a semi-analytical description of the sheath and the electron-

sheath interactions.

5.2.4 Magnetic field calculation

The static magnetic field distribution produced by the thruster external magnetic circuit

is computed using a freely available software, Finite Element Method Magnetic (FEMM)

[134]. FEMM allows to define magnetostatic axisymmetric problems, solved using the

Finite Element Method (FEM).

Considering the Ampère-Maxwell law:

∇×H = J +
∂D

∂t
, (5.17)

a magnetostatic problem is obtained by retaining the sole conduction current distri-

bution, and using the constitutive relation B = µH:

∇×B = µJ, (5.18)

where µ is the magnetic permeability of the considered material. Thanks to the

solenoidal nature of B, the magnetic field can be expressed as the curl of a (magnetic)

vector potential A:

B =∇×A, (5.19)

and the magnetic field distribution produced by the current density J can be obtained

by solving the diffusion equation for the magnetic vector potential (MVP) over the

considered physical domain:

∇×
(

1

µ
∇×A

)
= J. (5.20)

It is worth highlighting that the azimuthal MVP component yielded by FEMM, Aθ,
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is scaled with respect to the radius in the following way:

As = 2πrAθ. (5.21)

In HALLIS, the axial and radial components of the magnetic field are obtained from

the following expressions, employed for the axial and radial components, respectively:

Bz =
1

2πr

∂As
∂r

, (5.22)

Br = − 1

2πr

∂As
∂x

. (5.23)

Figure 5.3 shows the magnetic field obtained for the KmHT-20 thruster. A few relevant

features of this magnetic configuration can be noticed. Firstly, the magnetic field is

mostly radial, with maximum value in in correspondence with the thruster channel

exit. Also, the magnetic field lines are convex in the internal part of the thruster,

forming a so-called convex-lens structure. This, along with the previously mentioned

predominance of the radial magnetic field component, is a distinctive characteristic of

annular thrusters [100]. The shape of the magnetic field lines in proximity of the channel

is particularly relevant as these latter are approximately coincident with the electric

potential iso-lines. Because of this, the described convex property of the magnetic field

lines indirectly ensures that the electric field will excerpt a focalizing effect towards the

positively charged ions exiting from the channel.

As can be observed in Fig. 5.3d, the magnetic field starts to increase after 10 mm

from the closed end of the thruster channel. For this reason, the anode position for

all the performed simulation has been displaced 10 mm towards the channel exit, un-

der the assumption that no relevant gas ionization can take place without the electron

confinement excerpted by the magnetic field.

5.3 Simulation Results

This section is concerned with the numerical simulation of the KmHT-20 annular Hall

thruster. Depending on the gas flow rate and the anode voltage, two different opera-

tional modes have been observed [135], that will be referred to as mode A and mode B,

respectively.

100



5 Numerical simulations of a 20 W annular Hall thruster

(a) (b)

(c) (d)

Figure 5.3: KmHT-20 magnetic field; (a) magnetic field magnitude and magnetic field
lines in proximity of the channel exit; (b) magnetic field radial component;
(c) magnetic field axial component; (d) magnetic field along the channel axis
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Figure 5.4: Mean ion velocity outside the KmHT-20 channel exit, obtained with LIF
measurements (courtesy of KEPL research group)

The operational mode A is observed when low gas flow rates (ṁ <0.37 mg s−1) are

employed. With respect to mode B, mode A is associated with higher values of plume

divergence +18 % and discharge current. Specifically, the observed increase in the dis-

charge current is mainly due the electronic current component +30 % , while the ionic

current increase is only +5 %. Hence, when the thruster is operated in mode A signifi-

cantly lower values of anode efficiency are obtained.

In addition, higher fractions of multiply charged Xe ions are observed in mode A

+30 % with respect to mode B (+15 %). The measured Ion Energy Distribution Function

(IEDF) in mode A exhibits a larger Full Width at Half Maximum (FWHM) and, as can

be observed in Fig. 5.4, the ions acceleration outside the channel exit takes place over

a considerably longer region.

Based on the available experimental data, two flow rate/anodic voltage settings have

been selected as representative of the two observed operational modes. In particular, a

Xe injection of 0.32 mg s−1with anode voltage set to 160 V corresponds to mode A, while

operational mode B is observed when the flow rate is increased to 0.42 mg s−1, and the

anode voltage to 200 V.
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Table 5.1: Target experimental results for Mode A and Mode B

Mode [mg/s] [V] P [W] Id[A] T [N] Isp [s] Anode Eff [-]
A 0.32 160 58.4 0.365 3.10E-03 820 0.21
B 0.42 200 58 0.27 3.30E-03 840 0.22

Table 5.2: Settings employed for the performed simulations

Physical quantity Value Unit of measurement
Anode Voltage 160/200 V
Xe flow rate 0.32/0.42 mg s−1

Backpressure 1× 10−3 Pa
Neutral gas temperature 500 K
Neutrals/Walls collision model Isotropic -
Electron energy at anode 2 eV
Electron energy at cathode 5 eV

For each of the two selected flow rate/anodic voltage configurations, several target

thruster macroscopic performances have been selected from the experimental data, to

be compared with the ones yielded by the HALLIS code. These include the discharge

current (given by the sum of the ionic and electronic currents, Id = Ie + Ii), the thrust,

the specific impulse and the anode efficiency. The considered figures of merit, along with

their measured values for the two operational modes are reported in Table 5.1.

Table summarizes the physical quantities and the settings that have been employed

as input data for the simulations, as well as their numerical value. All the reported

quantities have been kept constant throughout the different numerical simulations that

will be discussed in the following sections.

5.3.1 Mode B

This section deals with the simulation process of operational mode B. Two different

approaches have been adopted, following the two different treatments of the anomalous

transport implemented in the HALLIS code. Firstly, the results of a parametric analysis

performed by exploring a range of different values for the empirical electron transport

parameters (described in the previous section) are reported and discussed. Then, the

results obtained by manually enforcing the anomalous transport collision frequency for

the electrons along the thruster channel axis are shown and compared to the previous
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approach.

Empirical anomalous collision frequency

Using the HALLIS code, several parametric simulations have been carried out to test

the computed thruster macroscopic performances for different values of the empirical

coefficients α and kb described in the previous section.

The coefficient α accounts for the electron momentum losses inside the thruster chan-

nel. This coefficient was found to be realistic in the range α ∈ [0.1 − 1] in a previous

study on the well-known SPT-100 thruster [136]. In this work, the range of α has been

extended to [0− 4]. This is justified by the fact that the KmHT-20 channel has a width

of 5mm, while the SPT-100 channel measures 15mm. Because of this, the walls surely

play a more prominent physical role for the KmHT-20 thruster geometry. For what

concerns νB – the anomalous collision frequency outside the channel due to turbulent

effects – the coefficient kb in the expression for νB (Eq. (5.12)) was varied in the range

[0− 1].

Figure 5.5 shows the computed thrust (a), discharge current (b) and anode efficiency

(c) obtained for α and kb varying in the discussed ranges, respectively. For all the

performed simulations, the anode voltage has been set to 200 V, and the Xe flow rate

to 0.42 mg s−1. All the other employed physical quantities, along with the boundary

conditions for the voltage and the electron mean energy, can be found in Table 5.2.

Looking at the computed thrust, discharge current and efficiency, it can be noticed

that the sharpest variations are obtained when either one of the two empirical parameters

α and kb is increased from 0 to roughly 1/4 or its explored range. Above these values

(α > 1, kb > 0.2), the thruster performance dependence on the empirical transport

parameters decreases significantly. This finding is consistent with the results obtained

in previous studies performed on the consolidated SPT-100 geometry [136], and shows

that – once a sufficiently large cross-field electron transport is reached – the macroscopic

performances are mainly established by the thruster geometry, magnetic configuration

and operational conditions (such as flow rate and anode voltage).

Compared to the thrust and discharge current, the computed anode efficiency exhibits

a different behaviour when the anomalous transport associated with the channel walls is

increased. Indeed, for α > 2 the efficiency starts to progressively decrease. This feature
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can be explained recalling that the discharge current is constituted by a ionic and an

electronic component (Id = Ii + Ie), but only the ionic component contributes to the

thrust, i.e., the numerator of the anode efficiency in Eq. (1.4). The results show that,

when α > 2, the increase in Ie due to the anomalous transport is not accompanied by

a corresponding increase of Ii, leading to the observed decrease of the thruster anode

efficiency. The described physical behaviour of the two components of the discharge

current can be verified in Fig. 5.5d, where the ratio between the ion current and the

total current decreases for increasing values of the electron anomalous transport inside

and outside the thruster channel.

The macroscopic thruster performances yielded by two different pairs of values for α

and kb (denoted as CASE I and CASE II here onward) are compared to the experimental

measurements in Table 5.3. CASE I (α = 3, kb = 0.25) corresponds to the simulation

result with the best agreement in terms of computed discharge current (and power). Case

II correspond to the result that minimizes the sum of the relative differences in terms

of computed discharge current (Id), thrust (T) and anode efficiency (η) with respect to

the measurements:

CASE I = min(∆Id), (5.24)

CASE II = min(∆Id + ∆T + ∆η), (5.25)

where, e.g.:

∆Id =
|I∗d − Id|

I∗d
. (5.26)

In the previous expression, I∗d and Id are the measured and computed values of dis-

charge current, respectively.

The comparison between the measurements and the results obtained for CASE I and

CASE II in Table 5.3 shows a reasonable agreement, particularly for what concerns the

thrust (hence specific impulse) and the discharge current. Conversely, a larger disagree-

ment is observed for both considered cases in the obtained values for the anode efficiency.

Overall, the global thruster performances obtained with the presented analysis appear

to be compatible with the available experimental data.

Nevertheless, the additional information provided by the LIF measurements does not

105



5 Numerical simulations of a 20 W annular Hall thruster

1.51.7251.952.175
2.175

2.175

2.
17

5

2.4
2.4

2.4 2.4

2.625
2.625

2.625

2.85
2.85

2.85

3.075
3.075

3.075

3.3
3.3

3.3

3.525

3.525

3.525

3.
75

3.75

0 1 2 3 4
,

0

0.2

0.4

0.6

0.8

1

k b

1.5

2

2.5

3

3.5T [mN]

(a)

0.10.125
0.15

0.15
0.15

0.175
0.175

0.175

0.2
0.2

0.2

0.225

0.225

0.225

0.25

0.25

0.25

0.275

0.275

0.3

0.3

0.325

0.35

0 1 2 3 4
,

0

0.2

0.4

0.6

0.8

1

k b

0.1

0.15

0.2

0.25

0.3

0.35

I
d
 [A]

(b)

0.150.1750.2
0.2

0.225
0.225

0.225
0.225

0.25

0.25
0.25

0.25

0.275
0.275

0.275

0.275

0.275

0.3
0.3

0.3

0.3

0 1 2 3 4
,

0

0.2

0.4

0.6

0.8

1

k b

0.15

0.2

0.25

0.3

2

(c)

0.6

0.65

0.7

0.7

0.75

0.75

0.8

0.8

0.8

0.85

0.85

0.85

0.9
0.9

0.9

0.95
0.95

0.95

1

0 1 2 3 4
,

0

0.2

0.4

0.6

0.8

1

k b

0.6

0.7

0.8

0.9

1

I
i
/I

d

(d)

Figure 5.5: Mode B (200V; 0.42 mg s−1) – computed values of thrust (a), discharge cur-
rent (b), anode efficiency (c) and ratio between the ion and electron current
at the cathode (d) as a function of empirical parameters α (wall momentum
losses) and kb (Bohm anomalous transport)

Table 5.3: Comparison between the measured (EXPER) and computed (HALLIS )
thruster performances for operational mode B, using empirical parameters
for the electron anomalous transport

Mode B α kb P [W] Id [A] T [mN] Isp [s] Anode Eff [-]
EXPER - - 58 0.29 3.3 840 0.22
HALLIS – CASE I 3 0.25 57.4 0.29 3.74 908 0.29
HALLIS – CASE II 4 0.125 52.3 0.26 3.47 842 0.27
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match with the results obtained with the described empirical description of the anoma-

lous collisional phenomena. In order to illustrate this, the measured values of mean

ion velocity along the thruster channel centreline (vi,LIF ) are plotted against the results

of CASE I and CASE II in Fig. 5.6a and Fig. 5.6c, respectively. As one can see, in

both cases the obtained ion velocity is not compatible with the LIF measurements. The

different ion velocities obtained in Figs. 5.6a and Fig. 5.6c are due to a different electric

potential distribution along the channel length. Considering CASE I, a larger part of

the potential drop takes place inside the channel. This leads to a spatial displacement

of the electric field maximum towards the internal part of the thruster, resulting in an

increased ions velocity at the thruster exit.

The two different voltage drop profiles observed in CASE I and CASE II are linked to

the corresponding electron anomalous collision frequencies, reported in Figs. 5.6b and

5.6d, respectively.

Comparing the two plots, the electron-neutral and electron-ion (Coulomb) frequencies

(νC) are roughly equal. This result is expected, considering that the neutrals flow rate

and backpressure are the same for the two cases. The small differences in the obtained

thrust and anode efficiency allow to assume that the achieved ionization rates are similar,

justifying the observed similarity in the Coulomb collision distribution along the channel

axis. While the Coulomb collisions do not constitute a relevant contribution to the total

collision frequency (νC � ν), the electron-neutral collisions become predominant in the

appurtenances of the anode, where ionization is low.

Conversely, moving from the anode towards the ionization zone and the channel exit,

the anomalous terms of the electron collision frequency rapidly become dominant over

the described classical effects, due to the progressive decrease of the neutral gas density.

With reference to Figure 7 (b) and (d), the total collision frequency ν is substantially dif-

ferent between CASE I and II – especially outside the channel exit – due to the different

values of the empirical parameters α and kb. The ratio α/kb plays a prominent role, as

it directly influences the plasma conductivity discontinuity that generates the potential

drop. Decreasing the value of this ratio (such as in CASE I with respect to CASE II)

leads to a displacement of the voltage drop inside the channel, ultimately changing the

relative positioning of the ionization and acceleration regions. The described dependence

of the voltage drop repartition from the α/kb ratio is consistent with the numerical study

performed in [136] for a full-scale SPT-100 Hall thruster, and can be verified in Fig. 5.7
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(a) (b)

(c) (d)

Figure 5.6: (a,c) electric potential and mean ion velocity along the thruster channel axis,
comparison between the computed velocities and the LIF measurements;
(b,d) electron collision frequency along the channel axis; (a,b) refer to CASE
I (α = 3, kb = 0.25), (c,d) correspond to CASE II (α = 4, kb = 0.125); the
black, dashed line in (a) and (c) marks the channel exit
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Figure 5.7: Ratio between the voltage drop after the channel exit and the total voltage
drop Vext/(Vext + Vin) as a function of empirical parameters α and k for
operational mode B

in the same range of α and kb employed in Fig. 5.5.

The comparison of the presented results with the LIF measurements leads to the

conclusion that, although capable of roughly reproducing the macroscopic thruster per-

formances, the modeling approach employed so far does not allow to fully capture the

physical features of the considered thruster (operated in Mode B). In addition, the

provided discussion highlights the intimate dependence of the gas ionization and ac-

celeration mechanisms from the anomalous electron collision frequency (and associated

mobility). In the following sections a different approach is adopted to account for the

effects of the anomalous electron collision frequency.

Enforced anomalous collision frequency profile

In this section, a different methodology has been applied to the study of the same

operational mode (B) described in the previous section. The adopted strategy consisted

in enforcing the anomalous electron collision frequency profile along the axis of the

thruster, aiming to obtain a simulated average velocity profile of the ions (vi) consistent

with the LIF measurements shown in Figure 5. With reference to Eq. (19), the two
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(a) (b)

Figure 5.8: (a) electric potential and mean ion velocity along the thruster channel axis,
comparison between the computed velocities and the LIF measurements;
(b,d) electron collision frequency enforced along the channel axis

anomalous contributions inside and outside the channel exit (νw,νB) are unified into a

single contribution, denoted here onward as νan. For the sake of simplicity, the value of

νan enforced at a given point is extended from the channel axis to the walls, so that the

anomalous collision frequency depends only on the axial position.

Starting from the best-fitting anomalous collision frequency profile obtained with the

methodology based on empirical parameters, the enforced collision frequency has been

iteratively changed until a satisfactory agreement with the measured mean ion velocity

has been reached. The obtained velocity is plotted against the measurements in Fig.

5.8a, while Fig. 5.8b shows the associated classical and anomalous contributions to the

momentum-exchange frequency.

As it can be observed, the enforcement of the anomalous collision frequency profile νan

allowed to accurately match the experimental results, especially in the first 5 mm after

the channel exit. The observed discrepancy between the computed mean ion velocity

(vi) and the LIF measurements (vi,LIF ) after 5 mm from the channel exit is due to an

intrinsic limitation of the employed methodology, and will be discussed in more detail

in the next section.

As anticipated, Fig. 5.8b shows the different (classic and anomalous) contributions

to the total momentum-exchange collision frequency of the electrons (ν). Starting from
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the classic terms, coherently with the results in Fig. 5.6, the electron-ion momentum

exchange collision frequency (νC) is at least one order of magnitude lower compared

to νe−n (collisions between electrons and neutrals inside the channel). Hence, νe−n is

the dominant classical contribution to the total collision rate. The same is valid in the

anodic zone, where the density of neutrals is particularly intense. Comparing the νe−n

term in 5.8b with the results in Figs. 5.6b and 5.6d, a noticeable increase can be noticed

in the results in 5.8b. This feature can be explained considering that – for this latter

case – a considerably lower ionization of the neutral gas is achieved, leading to a higher

availability of neutral atoms towards the end of the channel, which results in an increase

of νe−n. Nevertheless, the inefficiency of the ionization mechanism ultimately results in

a general decrease of the main figures of merit of the thruster.

Focusing on the anomalous contribution νan, a different trend can be observed compar-

ing Fig. 5.8 to the results of Figs. 5.6 and 5.5, obtained using the empirical parameters

α and kb. Thanks to the manually enforced contribution provided by νan, the total

anomalous frequency in Fig. 5.8b is higher than its counterparts in Figs. 5.6b and 5.6d

at each point along the thruster channel axis, except for the appurtenances of the anode

and in the high magnetic field region towards the end of the channel. The decrease

of anomalous collision frequency in the latter area ensures that the potential drop is

not displaced too deeply into the discharge channel due to the gradient of electrical

conductivity between the inside and the outside.

Despite the good agreement obtained in Fig. 5.8 between vi and vi,LIF , the achieved

performances in terms of thrust, specific impulse, discharge current and anode efficiency

are not compliant with the experimental measurement. For this reason, the above de-

scribed procedure – consisting of enforcing the axial anomalous collision frequency until

reaching vi = vi,LIF – was iteratively repeated with the additional constraint of match-

ing Id and I∗d , the computed and measured discharge currents. The results achieved by

enforcing νan such that vi = vi,LIF and Id = I∗d are reported in Fig. 5.9. In addition,

a quantitative comparison between the measured thruster performances and the results

obtained enforcing νan with and without the additional constraint on Id can be found in

Table 5.4.

Comparing Fig. 5.8 and Fig. 5.9, a similar axial distribution of the electric voltage

drop is obtained by enforcing two different collision frequency profiles. However, except

for the high-B zone located at the channel end, the anomalous frequency enforced in
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(a) (b)

Figure 5.9: (a) electric potential and mean ion velocity along the thruster channel axis,
comparison between the computed velocities and the LIF measurements for
the same conditions of Fig. 5.8, with the additional constraint of Id = I∗d ; (b)
employed anomalous collision frequency values along the channel axis (νan)

Table 5.4: Thruster performances of the KmHT-20 AHT with Va =200 V, flow rate =
0.42 mg s−1. The three rows correspond to the experimental results and the
HALLIS results obtained using the two anomalous collision frequency profiles
of Fig. 5.8b and 5.9b, respectively.

Mode B [V] P [W] Id [A] T [N] Isp [s] Anode Eff [-]
EXPER 200 58 0.29 3.30E-03 840 0.22
HALLIS 200 22.4 0.11 1.55E-03 377 0.13
HALLIS CONSTR 200 61.0 0.31 3.15E-03 764 0.19
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Fig. 5.9b is higher than its counterpart in Figure 9 (b). The increased collisionality

inside the channel causes the growth of Id reported in Table 5.4.

For the above discussed reasons, increasing only the momentum-transfer due to the

walls would lead to a displacement of the voltage drop outside the channel. Hence, the

increase of νan inside the channel is balanced by a corresponding increment of νan outside

the thruster open end.

In order to clarify the physical consequences of the different numerical treatment of

the anomalous electron collision frequency performed in this section, the ion energy

distribution function (IEDF) at the cathode line is shown in Fig. 5.10 for three different

cases. The results obtained using the empirical parameters corresponding to CASE I

and CASE II (Fig. 5.5) are indicated with a solid black line and a dashed black line,

respectively. The two cases feature different values of the α/kb ratio. For both cases low

and high energy peaks can be observed, which can be correlated to the presence of low-

frequency oscillations and doubly charged ions, respectively. In addition, another high

peak of the IEDF can be noticed close to 200 eV, corresponding to the anode voltage.

The full width at half maximum (FWHM) of the distribution is significantly lower for

CASE I, where a lower α/kb ratio is employed. This feature is expected, as in CASE

II the voltage drop occurs over a longer distance, generating a lower, extended electric

field.

The same reasoning can be applied to the IEDF yielded by the enforced anomalous

collision frequency profile of Fig. 5.9b, depicted in green. Indeed, in this case the

voltage drop occurs on a shorter distance with respect to CASE I, causing the observed

narrowing of the IEDF in proximity of 200 eV.

The thruster performances reported in Table 5.4 show that – along with the discharge

current – all the other figures of merit have substantially changed when the additional

constraint on Id has been enforced. The simulated values of thrust, Isp, and anode effi-

ciency are well compatible with the corresponding measures performed on the KmHT-20

thruster. This also means that, thanks to the increased electron momentum losses, a

larger fraction of propellant is ionized inside the channel, generating a population of

singly and doubly charged Xe ions. Fig. 5.11a shows the spatial evolution of the ioniza-

tion term along the thruster channel axis, along with electron mean energy distribution.

The latter exhibits its maximum value at the point where the radial magnetic field is

highest, see Fig. 5.3b. The peak of the source term – for both single and double ions —
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Figure 5.10: Ion energy distribution function computed at the cathode line; the black
(solid and dashed) lines have been obtained with the empirical methodology
described in the previous section, based on empirical coefficients for the
anomalous electron transport; the green line correspond to the manually
enforced anomalous frequency profile in Fig 5.9b
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is displaced towards the inside of the channel with respect to the electron energy max-

imum, meaning that a satisfactory separation between the acceleration and ionization

zone is reached. As expected, the main contribution to the generation of ionic species

is given by single ions. This is due to the lower threshold energy (12eV) compared to

processes involving double ions (32eV for Xe −−→ Xe++, and 21eV for Xe+ −−→ Xe++).

For what concerns the multiply charged ions, it can be noticed that – despite a larger

threshold energy required to produce a doubly charged ion from the ground state – the

two considered kinetic channels yield a comparable contribution. Specifically, 56 % of

the doubly charged ions current at the cathode line is produced from Xe −−→ Xe++ and

the remaining percentage from Xe+ −−→ Xe++. This is due to the lower reaction rate

of the double ionization from ground state being compensated by a higher availability

of neutrals with respect to the Xe+ ions necessary for the stepwise ionization process.

The number density of the heavy species is depicted in Fig. 5.11b along the thruster

channel axis.

One of the physical peculiarities associated with this kind of miniaturized thrusters

is the presence of a higher doubly charged ions fraction with respect to full scale Hall

thruster designs. Using the described numerical methodology, a 10.05 % doubly charged

ions fraction current was observed in the results achieved with the additional constraint

on Id. This is compatible with the data reported in [137] for the annular Hall thruster

configurations and with the results obtained in [138] for a different low power cylindrical

Hall thruster. This means that the simulated kinetic processes and the range of electron

mean energies obtained in the simulations are realistic.

Finally, the anomalous frequency profile ν shown in Fig. 5.9b was employed to com-

pute the I-V characteristic of the thruster, by progressively changing the anode voltage

from 160 V to 240 V while retaining the same flow rate. The results are depicted in Fig.

5.12, alongside the corresponding measured values for the discharge current. Unfortu-

nately, the I-V characteristic does not show the same trend of the measurements. In

particular, the model cannot predict the change of mode (from mode B to mode A) ex-

hibited by the real thruster when a 160 V anode voltage is applied, as well as the decrease

of discharge current above 220 V. Nevertheless, the obtained discharge current values are

compatible with the measurements if the comparison is restricted to operational mode

B, for anode voltages above 160 V.
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(a)

(b)

Figure 5.11: (a) ionization source terms and mean electron density along the thruster
channel axis when the anomalous electron collision frequency in Fig. 5.9b
is enforced; (b) corresponding axial distribution of neutral and ionized Xe
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Figure 5.12: Experimental (red) and simulated (black) I-V characteristic for the KmHT-
20 annular Hall thruster; The simulated results have been obtained with the
anomalous collision frequency profile νan shown in Fig. 5.9, using a fixed
flow rate of 0.42 mg s−1
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5.3.2 Mode A

Unfortunately, the applicability of HALLIS to the simulation of Mode A is strongly lim-

ited by an intrinsic feature of the code. As anticipated, HALLIS employs the magnetic

field line that intersects the cathode as the right end of the quasi-one dimensional grid

(λ) used to solve the transport of electrons. Unfortunately, the magnetic topology of the

KmHT-20 yields a magnetic field distribution where the cathodic magnetic field line is

located close to the channel exit. Thus, the domain end is forcefully located 8 mm after

the channel exit. In addition, the electric potential – which must obey to the Dirichlet

boundary condition enforced at the cathodic line – starts to exhibit a non-physical be-

haviour after 6 mm from the channel exit. This explains the discrepancies between the

computed and calculated mean ion velocity mentioned in the discussion of Fig. 5.8 and

Fig. 5.9.

For the above reasons, the analysis conducted with this thruster magnetic topology is

limited to the first millimetres after the channel exit. The LIF measurements provided

in Figure 5 show that, while 8 mm from the channel exit are sufficient to capture the

majority of the Xe ions acceleration in Mode B, the same cannot be stated for Mode A,

where acceleration of the ions takes place over several centimetres from the channel exit.

Nevertheless, the same procedure employed for the analysis of the operational mode B

was adopted for mode A.

Figure 5.13 shows the global thruster performances as a function of empirical param-

eters α and kb for a thruster operated in mode A, i.e., with 160 V anode voltage and

0.32 mg s−1of Xe flow rate. The range for α and kb is the same that has been discussed

and employed in the previous section for the analysis of operational mode B. As one can

see from Fig. 5.13a, 5.13b and 5.13c, while the employed range of empirical parameters

allowed to reach anode efficiency levels comparable to the measurements, the computed

discharge current and thrust are lower than the measurements in Table 5.1.

Analogously to what has been performed in the Mode B analysis, the result that

minimizes the sum of the relative differences in terms of computed discharge current

(Id), thrust (T ) and anode efficiency (η) with respect to the measurements, is given

by α = 4 and kb = 0.875. The obtained thrust is 1.94 mN (with Isp=618s), while the

discharge current and anode efficiency are 0.20 A and 0.19, respectively.

From the analysis of Fig. 5.13a, 5.13b and 5.13d, the maximum values of Id ant T are

118



5 Numerical simulations of a 20 W annular Hall thruster

0.2
0.2

0.2

0.4

0.4

0.4

0.6

0.6

0.6

0.8

0.8

0.8

1

1

1

1.2

1.2

1.4

1.4

1.6

1.6

1.8

0 1 2 3 4
,

0

0.2

0.4

0.6

0.8

1

k b

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6T [mN]

(a)

0.02
0.02

0.02

0.04

0.04

0.04

0.06

0.06

0.06

0.08

0.08

0.08

0.1

0.1

0.12

0.12

0.14

0.14

0.16

0.18

0 1 2 3 4
,

0

0.2

0.4

0.6

0.8

1

k b

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16I
d
 [A]

(b)

0.01 0.01

0.03
0.03

0.03

0.05
0.05

0.05

0.07

0.07

0.07

0.09

0.09

0.09

0.11

0.11

0.11

0.13

0.13

0.13

0.15

0.15

0.17

0.17

0.19

0.19

0 1 2 3 4
,

0

0.2

0.4

0.6

0.8

1

k b

0.05

0.1

0.15

2

(c)

0.
1

0.
1

0.
15

0.
15

0.
2

0.
2

0.
25

0.
25

0.
3

0.
3

0.
35

0.35

0.4

0.4

0.45

0.5

0.55

0 1 2 3 4
,

0

0.2

0.4

0.6

0.8

1

k b

0.1

0.2

0.3

0.4

0.5

0.6

%V
ext

(d)

Figure 5.13: Mode A (160V; 0.32 mg s−1) – thrust (a), discharge current (b), efficiency
(c) and ratio between the voltage drop after the channel exit and the total
voltage drop along the thruster channel axis (d) as a function of empirical
parameters α (wall momentum losses) and kb (Bohm anomalous transport).
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(a) (b)

Figure 5.14: Simulation of mode A using empirical parameters for anomalous electron
transport (α = 4,kb = 0.875); (a) electric potential and mean ion velocity
along the thruster channel axis, comparison between the computed veloci-
ties and the LIF measurements; (b) employed anomalous collision frequency
values along the channel axis

found for values of α and kb causing a consistent part of the voltage drop to take place

inside the thruster channel. This, as previously discussed, leads to a high mean ion ve-

locity at the channel exit. Figure 5.14a shows a comparison between the computed and

measured ion velocity, along with the momentum-exchange collision frequency in Fig.

5.14b. The latter features a sharp discontinuity between the inner and outer channel

collision frequencies, causing the described marked voltage drop inside the channel. Un-

fortunately, while the best thruster performances are achieved with such an acceleration

structure, the obtained vi profile is not compatible with the measured velocity, which

exhibits a more gradual acceleration.

For the sake of completeness, the considered mode A has been also analysed with

the second methodology employed for the analysis of mode B in the previous section.

The anomalous collision frequency profile depicted in Fig. 5.15b has been enforced

along the channel axis in in order to obtain a mean ion velocity compliant with the LIF

measurements. The latter is shown Fig. 5.15a, along with the corresponding voltage

drop across the thruster exit.

As can be noticed, a reasonable accuracy between the simulated and experimental

mean ion velocity axial profiles has been achieved. Nevertheless, it has not been possible
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(a) (b)

Figure 5.15: Simulation of mode A enforcing the anomalous collision frequency along
the thruster channel axis; (a) electric potential and mean ion velocity along
the channel axis, comparison between the computed velocities and the LIF
measurements; (b) employed anomalous collision frequency values

Table 5.5: Mode A, comparison between the measured thruster performances and results
obtained enforcing the anomalous frequency profileνan depicted in Fig. 5.15b.

Mode A [V] P [W] Id[A] T [N] Isp [s] Anode Eff [-]
EXPER 160 58.4 0.365 3.10E-03 820 0.21
HALLIS 160 9.87 0.049 6.70E-04 162 0.07

to match the target discharge current I∗d while respecting the constraint on vi provided

by the LIF measurements. A quantitative overview of the results obtained with the νan

profile depicted in Fig. 5.15b is provided in Table 5.5.

5.4 Summary

In this chapter, two different operational modes of a miniaturized annular Hall thruster

have been assessed with the hybrid code HALLIS. The analysis has been carried out

by comparing the results yielded by two different treatments of the anomalous electron

transport with experimental measurements. In particular, the information provided by

LIF spectroscopic measurements of the mean ion velocities, combined with the measured

thruster performances, has been used to infer the anomalous transport collision frequency

along the axis of the thruster. Whenever the limitations on the size of the computational
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grid employed in the code allowed to capture a substantial part of the acceleration of the

(singly and doubly) ions, the simulated results show a satisfactory agreement with the

available experimental data. Overall, the study shows that – in the context of modelling

this kind of devices with non self-consistent methodologies, i.e., that rely on empirical

parameters – the macroscopic information provided by the measurements of the thruster

performances is not sufficient to provide an exhaustive representation of the detailed

physics involved in such devices. In this spirit, thanks to the microscopic information

provided by LIF measurements, the enforcement of the anomalous collision frequency

allowed to accurately predict the acceleration structure of the KmHT-20 thruster, as

well as the fraction of doubly charged ions produced when the thruster is operated in

Mode B. Finally, the respective efficiency of the two kinetic channels (double ionization

from the ground state and stepwise ionization) for the doubly charged ions production

has been assessed and correlated with the computed spatial distribution of the species.
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6 Conclusion

This work focused on the numerical modelling of non-equilibrium plasma devices, through

the development of computational codes based on fluid and kinetic approaches.

A fluid model has been developed for the assessment of the plasma dynamics taking

place in devices operating at atmospheric pressure. The adopted macroscopic description

of the charged species transport allowed to perform simulations over time-lengths in the

order of milliseconds. Two different fluid methodologies have been presented. In the

Full Drift Diffusion (FDD) approach, the continuity equation for the number density

of each specie is solved to obtain the electric charge density distribution. This is in

turn employed as the source term of a linear Poisson problem. The solution of the

latter yields the electric potential distribution over the considered domain. The fluxes

are expressed in the drift-diffusion form and are discretised using the Finite Volume

method. Conversely, in the developed Boltzmann Drift Diffusion (BDD) approach, the

electrons are assumed to instantaneously adapt to the local electrostatic field caused by

external applied voltages and the motion of the heavy ions. The electrons are therefore

excluded from the drift-diffusion approach, and their spatial distribution is computed

using the Boltzmann relation, leading to a non-linear electrostatic Poisson problem. In

both approaches, the contribution of the chemical kinetic processes in the continuity

equation is computed using a semi-implicit methodology. The latter has been validated

against a well-known implicit numerical integrator.

The developed computational code implementing the FDD and BDD approaches has

been applied to the simulation of a Dielectric Barrier Discharge (DBD) volumetric reac-

tor, operating with atmospheric pressure air. The results yielded by the FDD approach

over several cycles of the applied high-voltage waveform showed how the overall physics

taking place in the gas gap is dominated by the electric charge deposition phenomena. A

charge density distribution can indeed be deposited on the of the surfaces of the dielec-

tric layers covering the electrodes, due to incident fluxes of the different charged species.

The BDD approach allows a dramatic reduction of the computational burden associated
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with the explicit integration of the electron transport dynamics. The comparison be-

tween the simulation results yielded by the two (BDD and FDD) methodologies shows

that the two approaches are in reasonable agreement. Furthermore, the electric surface

charge density accumulated on the dielectric layers computed with the proposed BDD

approach has been positively compared with experimental measurements. These latter

have been performed by measuring the electric potential induced on the dielectric layers

with an electrostatic probe. Finally, while in this work the developed fluid model has

been applied to the simulation of DBDs, the adopted approach can be easily extended

to other devices. Indeed, the same code – with a different set of chemical reactions and

macroscopic parameters – is currently being employed to simulate atmospheric pressure

plasma jets in pure helium.

In the second part of this work, a hybrid fluid/Particle-In-Cell code has been em-

ployed to study a miniaturized Hall thruster for space propulsion. The code operates

on a 2D axially symmetric geometry. The ionic species are modelled using the Particle-

In-Cell technique on a Cartesian grid. The electron transport and energy conservation

equations are solved with a fluid model on a quasi 1-D grid along the magnetic field

lines, under the Morozov thermalized potential approximation. The analysis has been

carried out by comparing the results yielded by two different treatments of the anoma-

lous electron transport with experimental measurements. In particular, the information

provided by Laser Induced Fluorescence (LIF) spectroscopic measurements of the mean

ion velocities – combined with the measured thruster performances – has been used to

infer the anomalous transport collision frequency along the axis of the thruster. The

obtained results showed a satisfactory agreement with the available experimental data

when an appropriately extended grid has been employed. Indeed, it has been shown

that the computational grid must be large enough to capture a substantial part of the

acceleration of the (singly and doubly) ions. Overall, the study highlights that – in

the context of modelling this kind of devices with non self-consistent methodologies,

i.e., that rely on empirical parameters – the macroscopic information provided by the

measurements of the thruster performances is not sufficient to provide an exhaustive

representation of the detailed physics involved in such devices. In this spirit, thanks

to the microscopic information provided by LIF measurements, the enforcement of the

anomalous collision frequency allowed to accurately predict the acceleration structure

of the considered Hall thruster, as well as the obtained fraction of doubly charged ions.
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6 Conclusion

Finally, the respective efficiency of the two kinetic channels for the doubly charged ions

production – double ionization from the ground state and stepwise ionization – has been

assessed and correlated with the computed spatial distribution of the species.
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