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Abstract 

This work presents a detailed study of the scheduling of power and energy resources in 

renewable energy communities (RECs). The study has been developed starting from the 

analysis of a single basic unit of the community, i.e., the prosumer and its microgrid (MG), to 

the scheduling and expansion of the energy community concept with several prosumers through 

several scenarios. Both a centralized and distributed approaches have been implemented and 

compared to each other. Moreover, we have distinguished the optimization of the operation 

between two different phases: day-ahead and intra-day scheduling. A coordinated strategy has 

been proposed to integrate the two-aforementioned phases, considering the uncertainties 

associated with energy generation and demand. 

In the first part, the thesis focuses on the day-ahead scheduling problem associated with the 

operation of a single local energy system (LES) consisting of photovoltaic (PV) units, battery 

energy storage (BES) units and loads. Within this context, the relevant optimization problem 

aimed at minimizing the electricity procurement cost has been formulated. The optimization 

problem is solved by both a day-ahead deterministic approach and by a multistage stochastic 

programming (SP) approach to consider the uncertainties of PV generation and demand. The 

thesis describes the generation of the scenarios, the construction of the scenario tree based on 

the k-means algorithm, and the intra-day decision-making procedure based on the solution of 

the multistage SP model. Moreover, the daily energy procurement costs calculated by using the 

SP approach are compared with those calculated by using Monte Carlo simulations. A 

multistage scheduling approach has been also developed to provide the optimal scheduling of 

an MG, in which a PV unit has been integrated with bidirectional charging stations for electric 

vehicles (EVs) in a parking lot. 

The second part has been focused on the modelling and day-ahead scheduling of a REC. Within 

this context, this work deals first with the day-ahead operational planning of a grid-connected 

REC consisting of an internal low-voltage (LV) network and several prosumers. Each one of 

the participants in the community might be equipped with PV units, BES units, and local loads. 

The scheduling problem has been addressed by a centralized approach and by a distributed 

approach based on the alternating direction method of multipliers (ADMM). The ADMM-based 

approach is oriented to preserve, as much as possible, the confidentiality of the prosumers’ 

equipment features, as well as the energy generation and load forecasts. Both the developed 



centralized and distributed procedures provide the scheduling of the available energy resources 

to limit the balancing action of the external grid and allocate the internal network losses to the 

corresponding energy transactions. The results of the numerical tests, carried out for different 

case studies, including the presence of distributed storage units and of dispatchable units, 

confirm that the proposed approaches effectively minimize the total energy procurement cost, 

with an economic benefit for each one of its members (i.e., increasing revenues or reducing 

costs in comparison with the scenario in which the internal transactions are not allowed). 

The last part of the thesis focuses on the representation of uncertainties and the intra-day 

operation of a REC. This work presents a coordinated day-ahead and intra-day approach to 

provide the optimal scheduling of the resources. In this case, the ADMM-based procedure, 

which is aimed at minimizing the total energy procurement costs, is adapted to cope with the 

impact of the fluctuation of both the local energy generation and demand during the day. To 

achieve this, a day-ahead multistage stochastic optimization approach is combined with an 

intra-day decision-making procedure, able to adjust the scheduling of the energy resources 

according to the current operational conditions. The day-ahead multistage stochastic model of 

the REC provides the set of scenario-based solutions to the intra-day approach, which includes 

a recursive decision-making procedure and an online optimization. The effectiveness of the 

coordinated day-ahead and intra-day approach is tested by means of several numerical tests 

considering different case studies.  
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BESM  parameter for a big-M formulation associated with the BES 
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tL  losses during charging and discharging of the BES unit at t 

ch , dis   the converter efficiency factors for charges and discharges of the BES unit, 

respectively 
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tE   energy level in the battery at t 
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respectively 

t
iP , t
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Chapter 1. Introduction 

1.1 Introduction 

One of the main challenges that our society faces today is the decarbonisation of the global 

energy sector. Such a transition towards a “carbon-neutral” energy paradigm has been mainly 

supported by the alignment of smart technologies, policy frameworks and business models to 

exploit the available renewable energy sources (RES). According to (IRENA 2020a), in a 

deeper decarbonisation perspective, renewable energy (RE) and energy efficiency 

measures can potentially achieve 90% of the required carbon reductions. 

1.1.1 Prosumer unit as a cornerstone of the distributed paradigm 

With the current energy transition pushed by social, environmental, and economic factors, the 

electrical system is moving towards a distributed scheme based on RES, in which customers 

play a new active role through self-generation of electrical energy. In the past, a central power 

plant was used to generate energy for everyone. Now, electricity can be produced locally using, 

for instance, solar panels or wind farms. In this new paradigm there is a new key player: the 

prosumer, who is a consumer that uses for instance solar panels to cover part of his or her energy 

demands, stores part of this energy in batteries for moments of scarcity and, in addition, can 

exchange energy with the utility grid, not only buying but selling. 

The transformation toward the distributed paradigm has also been aligned with the development 

of smart technologies for monitoring, controlling and operating the equipment owned by the 

prosumers. Within this smart grid framework, the increasing amount of information and data 

associated with the operation of the electrical systems requires the implementation of 

communication technologies and optimization techniques to cope with crucial processing and 

decision tasks. 

To achieve this, energy management systems (EMSs) have been employed to automatically, 

and cost-effectively, operate the local energy system (LES) that corresponds to the grid-

connected prosumer during a horizon time. Through the implementation of these decision-

making tools based on mathematical modelling and optimization (Williams 2013), the 
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prosumer is able to define the scheduling of the energy storage systems (ESSs) and other 

resources if any, in accordance with the local energy generation and consumption.  

The obtained balancing effect of the local generation and consumption represents one of the 

most attractive characteristics of the prosumer’s operation, opening the door to exploit the 

possibility of selling the excess energy to the utility grid. The deployment of these technologies, 

and the corresponding business models, have been supported by regulatory support policies as 

e.g., net-metering and feed-in-tariffs (FITs) (IRENA 2019; Masson, Briano, and Baez 2016).

As a result, in the last years, the landscape of the distribution network has drastically changed, 

owing to a growing penetration of distributed energy resources (DERs). In this context, the 

corresponding appearance of prosumers connected to the low voltage (LV) network has been 

consequently boosted by the increasing deployment of integrated photovoltaic-storage systems 

and charging services for electrical vehicles (EVs). 

1.1.2 The time of prosumer-based collectives 

The recent increase in the local concentration of prosumers and distributed services, based on 

renewables (e.g., dispatchable generating units and bidirectional charging points), has gained 

special interest since the implementation of adequate policies could provide an adequate 

environment not only to increase the self-consumption capacity of a location (Masson, Briano, 

and Baez 2016), but also to favour socio-economic and technical aspects at the community 

level. 

Within this context, collective activities can provide further opportunities, adding value at 

several levels by bringing energy consumers and producers together and allowing them to 

interact actively. Governments and policy makers have understood this throughout the last 

years; for instance, the “Clean Energy for all Europeans” package approved by the European 

Union (see e.g. (EU2018/2001 2018) and (EU2019/944 2019)) determines, as a common 

directive for all the member states, the definition of a regulatory framework by 2021, in which 

fair and adequate conditions are provided for the operation and establishment of different self-

consumption schemes, including direct energy transactions between different actors (e.g., 

producers, consumers, prosumers). 

In the “Clean Energy for all Europeans” package, the following categories of collective 

activities have been recognized:  
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• Active Customer - jointly acting final customers: a final customer (or a group) who 

consumes or stores electricity generated within its premises located within confined 

boundaries or, where permitted by a Member State, within other premises, or who sells 

self-generated electricity or participates in flexibility or energy efficiency schemes, 

provided that those activities do not constitute its primary commercial or professional 

activity (EU2019/944 2019). 

• Renewables self-consumers: a final customer operating within its premises located 

within confined boundaries or, where permitted by a Member State, within other 

premises, who generates renewable electricity for its own consumption, and who may 

store or sell self-generated renewable electricity, provided that, for a non-household 

renewables self-consumer, those activities do not constitute its primary commercial or 

professional activity (EU2018/2001 2018). 

• Jointly acting renewables self-consumers: a group of at least two jointly acting 

renewables self-consumers in accordance  who are located in the same building or multi-

apartment block (EU2018/2001 2018). 

• Citizen energy community (CEC): a legal entity, based on voluntary and open 

participation, controlled by members or shareholders that are natural persons, local 

authorities, including municipalities or small enterprises. It may engage in generation 

(including from RES), distribution, supply, consumption, aggregation, energy storage, 

energy efficiency or charging services for electric vehicles or provide other energy 

services to its members of shareholders (EU2019/944 2019). 

• Renewable energy community (REC): a legal entity whose primary goal is to provide 

environmental, economic, or social community benefits for its shareholders/members 

or for the local area it operates within, instead of financial profits. It is autonomous and 

controlled by shareholders or members. The community shareholders may be natural 

persons, small or medium enterprises (SMEs) or local authorities, including 

municipalities (EU2018/2001 2018). 

However, for practical considerations, a large diversity of alternative forms could be derived 

within these concepts. Figure 1.1 shows a set of criteria defined in (Delnooz, Vanschoenwinkel, 

and Mou 2020) in order to better identify this diversity. 
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Figure 1.1 Set of criteria to categorize the collective activities; adapted from (Delnooz, Vanschoenwinkel, and 

Mou 2020). 

Different combinations or interpretations of these criteria could lead to different definitions and 

concepts for collective activities. In certain cases, the current economic and technical scenario 

is enough to enable their adoption. However, other types of collaboration could be not 

sufficiently supported and, thus, require more attention in order to provide the adequate 

environment (Delnooz, Vanschoenwinkel, and Mou 2020). 

1.1.3 Energy community: benefits and challenges 

In (Frieden, Roberts, and Gubina 2019), similarities and differences between both types of 

energy communities have been presented. Table 1.1 shows the corresponding differences, 

which are of particular interest to understand the particularities in their operation and own 

limitations. 

The economic justification for the formation of an energy community is mainly due to the 

difference between the price of the energy supplied by the external energy provider and the 
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price sold by the community to the main grid. This difference can be significant, e.g., due to 

the costs of the ancillary services (Lilla et al. 2020). 

Table 1.1 Differences between renewable energy community and citizen energy community; adapted from 

(Frieden, Roberts, and Gubina 2019). 

Adapted criteria Renewable Energy Community Citizen Energy Community 

Geographical limitation 

Effective control is limited to members 

living in proximity of the RE projects 

owned by the community. 

No geographic limitations relating to 

activities, effective control or eligibility 

for membership in a CEC. 

Membership 
Based on local control and excludes 

large enterprises from membership 

SMEs and large size enterprises can 

participate but are excluded from 

effective control. 

Energy sources All sorts of RES 
All sources of electricity, not 

necessarily renewable. 

Major purpose 

Stimulating the growth of local 

community ownership to expand the 

share of RE at the national level. 

CEC as a new ‘non-commercial’ 

energy market actor that can engage 

across the electricity market. 

Energy communities can support the operation of the main grid, according to the local 

characteristics of the collective, while providing many socio-economic benefits for 

the participants. Figure 1.2 shows the main benefits presented in (IRENA 2020b). 

Figure 1.2 Benefits associated with energy community projects; adapted from (IRENA 2020b). 
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On the other hand, a detailed review of key issues and trends associated with the energy 

community concept, as well as the corresponding implementation, has been presented in 

(Koirala et al. 2016), in which technological, socio economic, environmental, and institutional 

aspects have been considered. 

Despite the differences between different types of collectives and communities, in general, there 

are key technological issues, which are common at the energy community level. One of the 

main concerns regarding the operation of energy communities is the definition of an optimal 

scheduling of the resources able to align the daily operation and the proposed objectives; in 

other words, the effective definition and operation of a community EMS that coordinates the 

interaction (i.e., energy sharing and transactions) between participants, while considering the 

technical constraints.  

Among the several issues and challenges identified in the literature, we can list those that are 

directly related with the daily operation of the EMS. 

A. Intermittency of the renewable generation and demand

Renewable generation and energy demand are stochastic by nature. The operation of an energy 

community under the effect of uncertainties and the corresponding fluctuations, demands the 

implementation of response mechanisms to assure the balancing of renewable generation in a 

local community level, while reducing the impact of the uncertainties. 

B. Storage system management

The flexibility provided by ESSs depends on the effective scheduling of the corresponding 

discharging and charging processes since the scheduling problem scales up with the number of 

participants. An adequate EMS is required to provide an optimal operational plan, while 

guaranteeing a response in an acceptable amount of time. 

Moreover, the community EMS is expected to be suitable in dealing with the rising penetration 

of EVs. In this scenario, EVs’ flexibility is expected to provide benefits such as stability and 

reliability to the local grid, as well as to increase the desired balancing effect to support the use 

of intermittent renewable generation. 
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C. Privacy and autonomy 

In general, a common concern in energy collectives, is related to the information flow within 

the entity. According to the architecture and scheme adopted by the entity to accomplish the 

operational planning of the resources, private information might be communicated (Le Cadre 

and Bedo 2020). 

Furthermore, the implemented mechanism for defining the operational decisions of each 

participant in the community could comprise his or her autonomy and independency. 

This thesis deals with the scenario in which direct energy transactions between prosumers 

located within a REC are allowed in addition to the energy transactions with the external energy 

provider. In this framework, it seems crucial to study the definition and operation of the 

community EMS, able to achieve the goals of such an energy trading scheme. 

1.2 Contribution 

The main activities carried out have been focused on the study of the modelling and, more 

specifically, scheduling problem of RECs. 

Within this context, this thesis provides a global review of the scheduling problem associated 

with the operation of a REC, stretching from the understanding of its basic-unit (i.e., the 

prosumer) and the scheduling problem of its LES or MG to the mathematical model of the day-

ahead and intra-day operation of the energy community and the subsequent optimal definition 

of its operational planning. 

In the first part of the thesis, the individual scheduling problem of the prosumer’s grid-

connected LES has been studied as a day-ahead deterministic problem and as a multistage 

stochastic problem to consider uncertainties associated with energy generation and energy 

consumption. The performance of these solutions has been analysed by using stochastic metrics 

and comparison with Monte Carlo simulations for several case studies.  

The adoption of the multistage stochastic approach implied the implementation of scenario-

generation techniques based on a Markov-process, and, subsequently, a tree-generation 

procedure, which has been addressed by k-means clustering method. 
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Furthermore, an approach is formulated to consider the integration of bidirectional charging 

services of EVs within a local energy system with the presence of renewable generation. The 

scheduling problem is adapted to a multistage scheme able to consider uncertainties associated 

with the operation of the different units in the system. 

The second part of the thesis focuses on the mathematical model of the REC and its day-ahead 

scheduling problem. Two approaches have been developed to deal with the community 

scheduling problem, i.e., a centralized approach and a distributed optimization approach. Both 

approaches are aimed at minimizing the total energy procurement costs through the definition 

of the optimal operational plan of the available resources. 

The proposed distributed approach is based on the ADMM algorithm, and is specifically 

oriented to better preserve the privacy and autonomy of the participants in the REC.  

Since the REC is characterized by being collaborative (i.e., opposite to competitive schemes), 

both the centralized and distributed approaches provide the definition of fair prices associated 

with the exchanges of energy between participants. 

The proposed approaches include a loss-allocation procedure, preserving, in the ADMM-based 

model, the distributed behaviour. A detailed comparison of the results obtained by both the 

centralized and distributed approaches has been included. 

In the last part of the thesis the scheduling problem has been extended to consider the 

uncertainties associated with the operation of each one of the participants. To achieve this, a 

strategy that coordinates the day-ahead solution and the intra-day operation of the community 

has been proposed. 

In this case, the ADMM-based approach has been adapted to a multistage stochastic scheme, 

providing a day-ahead scenario-based solution, which is suitable for coordinating with an intra-

day decision-making procedure. The proposed approach adjusts the set values of the entire 

community according to the current conditions. The adoption of the multistage stochastic 

approach required the implementation of a routine that combines the individual stochastic 

situation of each prosumer in a common scenario tree. By using the obtained tree, the 

community can react in a coordinated way to the uncertainties, while preserving the distributed 

characteristics of the scheduling approach. 
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The intra-day decision-making procedure has been implemented as a receding horizon 

optimization based on the ADMM model of the REC. The intra-day procedure adjusts the set 

values at each time period during the day and assures that the levels of energy in the batteries 

at the end of each stage is equal to those defined by the day-ahead scheduling, which provide 

an operational framework for the online calculation. Furthermore, specific techniques are 

implemented in order to speed up the solution of the online ADMM procedure. 

1.3 Outline 

The structure of the thesis is the following: 

Chapter 2 provides a description of the day-ahead scheduling problem associated with the ESS 

in a grid-connected local energy system with the presence of PV units and local load. The 

problem is studied under the assumption of a deterministic model and a multistage stochastic 

approach to deal with the uncertainties in the energy generation and consumption.  

The second part of the chapter is devoted to the study of a multistage scheduling approach that 

provides the optimal scheduling of a grid-connected microgrid, in which a PV generating unit 

has been integrated with bidirectional charging stations for EVs in a parking lot. 

Chapter 3 introduces the mathematical formulation to solve the day-ahead scheduling problem 

in a REC with the presence of PV-storage units and local loads. In this chapter, the problem has 

been addressed by means first of a centralized, and then a distributed approach based on the 

ADMM algorithm. Moreover, a loss-allocation procedure is presented for each one of the 

approaches (i.e., centralized and ADMM-based). Numerical results are presented for several 

operational scenarios of the community. 

Furthermore, the chapter includes the study of the scenario of a community with the presence 

of dispatchable generating units. In this case, the corresponding centralized and distributed 

formulation is introduced and tested for several case studies.  

In Chapter 4, a coordinated day-ahead and intra-day approach has been proposed in order to 

deal with the uncertainties associated with the local generation and energy consumption in the 

REC. The proposed approach has been tested for different case studies. 

The first part of this chapter presents the implemented procedure for generating the 

corresponding scenario tree and the solution of the day-ahead multistage stochastic problem. 
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Next, the decision-making procedure employed to adjust the operation of the REC during the 

day is introduced. Finally, the performance of the coordinated approach is analysed by using a 

base case of prosumers in a LV network, and a second case, in which a transactive scheme in a 

medium voltage (MV) network has been adopted. 

Appendix A describes the so-called kinetic battery model (KiBaM), able to better represent the 

batteries than the one adopted in the description of the models in the various chapters. Some 

calculations of the scheduling problem of the LES from Chapter 2 have been repeated 

considering the KiBaM representation. 

Appendix B describes an additional representation of a prosumer-based community in a MV 

network. The model corresponds to a centralized approach, which is suitable for adapting a 

distributed scheme, and refers particularly to the reduction of power losses. Numerical results 

have been included to study the application of the approach. 

Finally, Appendix C lists the published work that supported the development of this thesis.
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Chapter 2. Scheduling of Local Energy Systems 

Introduction 

“The prosumer – key player in the energy-transition game” 

he increasing participation of active prosumers in the energy-grid system has been 

possible thanks to challenging steps forward in regulatory, technical, and 

economic aspects. In this process, the alignment of enabling technologies with adequate 

business models has been crucial to incentivize the implementation of self-consumption 

schemes as the one associated with prosumers (Rodríguez-Molina et al. 2014). 

This transformation of the electrical system and market conducts to the empowerment 

of  prosumers to take more control of their operational decisions, either by implementing 

mechanisms for consumption regulation or by increasing their self-supply capability, 

while obtaining an economic compensation (Lavrijssen and Parra 2017). 

In the same context, the current picture of the LV network has also been influenced by 

the current transition to electric mobility and the integration of DERs into microgrids 

(MGs). There is an increasing appearance of clusters of fast charging stations in parking 

lots, leading to the development of mainly two types of operation schemes regarding 

the interaction between plug-in electrical vehicles (PEVs) and the distribution network:  

• Grid-to-Vehicle (G2V) scheme, in which the main interest of the PEVs owners 

is to charge the vehicles as fast as possible. 

• Vehicle-to-Grid (V2G) services, in which the operation of the parking lot could 

be adapted based on the persistent presence of the connected EVs batteries. The 

V2G scheme can support the accomplishment of objectives such as load 

flattening and balancing of renewable generation services on site (Develder et 

al. 2016). In comparison with the G2V scenario, longer parking times for the 

EVs are expected.  

In the V2G scenario, a common objective for the operator of the parking lot is to obtain 

an economic benefit while offering the users the option of charging their vehicles at the 

T  
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lowest possible cost. To achieve these objectives, smart charging approaches are 

implemented to align the charging and dispatching processes of storage systems with 

the optimization objectives.  

The definition of an adequate energy management system (EMS), able to operate the 

installed equipment and to cost-effectively optimize the exploitation of the available 

energy resources, seems crucial for the achievement of the local objectives.  

This chapter is devoted to the study of the operational planning of grid-connected local 

energy systems (LES), which, in general, may refer either to a small industrial site, a 

housing unit acting as a prosumer or an MG integrating RES and fast charging stations.  

In the first part of this chapter, we deal with the day-ahead optimization of the operation 

of a LES, in which, generating units (e.g., PV units) and battery energy storage (BES) 

systems have been integrated to fully exploit the available renewable resources even for 

the case of a limited capability of the external utility network. 

Moreover, the effect of uncertainties associated with the daily local energy generation 

and consumption have been studied, under the adoption of a multistage stochastic 

scheme. To achieve this, a tree-generation technique has been proposed to model the 

stochastic problem associated with the operation of the considered LES. 

Then, an intra-day procedure is introduced in order to adapt the day-ahead solution to 

the actual operational conditions. For this purpose, the stochastic optimization problem 

has been considered as a multistage decision problem in which the battery output set 

points are decided at the beginning of the day and subsequently at the end of consecutive 

stages during the day. The performance of the proposed approach is analysed by means 

of several case studies. 

In the second part of the chapter, the scenario of an MG that integrates the operation of 

a parking lot equipped with bidirectional charging stations is studied. The considered 

case involves a central dispatching system that solves the optimization problem aimed 

at minimizing the energy procurement costs of the considered site. 

Finally, a stochastic multistage approach (like the one introduced in the first part of the 

chapter) is adopted to deal with the additional uncertainties associated with the presence 

and state of EVs in the parking lot with the presence of RES.  
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2.1 Scheduling of a local energy system with a photovoltaic-storage system 

This section is devoted to the study of a LES with the presence of RES. The considered system 

includes a PV unit capable of providing a significant part of the local energy consumption, and 

it is also equipped with a BES unit to balance the available energy and reduce the associated 

procurement costs during the day.  

In the following, the solution of the day-ahead scheduling of a LES is introduced, which is, in 

general, associated with the control of the coupled PV-storage system, as dealt with in e.g., 

(Conte et al. 2019) and (Lilla et al. 2017), where an algorithm for a LV network, based on a 

mixed integer linear programming (MILP) model, has been proposed with the goal of 

maximizing the energy provided by the integrated system. 

2.1.1 Model of the system operation 

In this case, the day-ahead scheduling of the LES is represented with an optimization problem 

aimed at minimizing the energy procurement costs. The relevant inputs for the optimization 

problem are the forecast profiles of the PV generation and energy consumption and consider an 

optimization horizon of 24 hours. 

The objective function (OF) considers the cost associated with the energy exchange with the 

external energy provider to feed the internal load for all the time horizon T:  

 ( )buy buy_Grid sell sell_Grid

t t t t

t T

OF P P t 


= −    (2.1) 

Parameters 
buy

t  and sell

t  used in (2.1) are the prices (in €/kWh) of the energy exchanged with 

the external grid (bought and sold, respectively); nonnegative variables 
buy_Grid

tP  and 
sell_Grid

tP  are 

the values of the power absorbed and injected into the external grid; parameter t  is equal to 

the 15-minute time step (i.e., 0.25 h). 

The power balance of the energy system is represented by (2.2), where PV

tP  is the active power 

injected into the system by the PV unit, and Load

tP  is the power adsorbed by the internal loads; 

BES

tP  is the battery power output (nonnegative ch

tP  and dis

tP  are the battery power outputs during 

charges and discharges, respectively); Grid

tP  is the total power exchanged with the external 

network at each time t. BES

tL  are the losses of the battery converter. 
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 PV BES Grid Load BES 0t t t t tP P P P L− + − − =   (2.2) 

with 

 Grid buy_Grid sell_Grid

t t tP P P= −
  

(2.3)
 

 
Rated Rated

Grid Grid Grid

tP P P−  
  

(2.4) 

 
buy_Grid Grid Grid

sell_Grid Grid Grid

(1 )t t

t t

P u M

P u M

  −




  (2.5) 

 BES ch dis

t t tP P P= −   (2.6) 

 

Rated Rated

BES BES BES

tP P P−  
  

(2.7)
 

 

ch BES BES

dis BES BES

(1 )t t

t t

P u M

P u M

  −



  

(2.8) 

 BES ch dis

t t tL L L= +
  

(2.9)
 

 

( )

ch
ch ch

ch

dis dis dis

1

1

t t

t t

L P

L P







−
=


 = −

  (2.10) 

Constraint (2.4) limits the power exchanged with the grid within the maximum 
Rated

GridP . Binary 

variable Grid

tu  and parameter GridM  (equal to 
Rated

GridP ) are employed in the big-M formulation of 

constraint (2.5) to avoid simultaneous purchasing and selling processes from and to the utility 

grid, respectively. 

In constraint (2.7), the power output of the battery is limited to the maximum value 
Rated

BESP . The 

big-M formulation in (2.8) has been implemented in order to avoid concurrent charges and 

discharges ( BES

tu  is a binary variable and parameter BESM  is equal to 
Rated

BES ).P  ch

tL  and dis

tL  in 

(2.9) are losses during charging and discharging of the BES unit; In (2.10) ch  and dis  are the 

converter efficiency factors for charges and discharges. 

The operation of the installed BES unit is represented with a simple energy balance at each time 

interval t, according to the following formulation: 

 
max

BES BES

t tE E SOC=   (2.11) 

 ( )1 max

BES BES/t t tSOC SOC P t E−= +    (2.12) 
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0 0

end

t

t T

SOC SOC

SOC SOC

=

=

 =


=

(2.13) 

min maxtSOC SOC SOC  (2.14) 

BES

tE is the energy level in the battery; SOCt is the battery’s state of charge; max

BESE is the battery’s 

capacity. The energy stored in the BES unit is defined at each time period t by (2.12). SOCt  is 

constrained to the initial and final conditions in (2.13), where SOC0 and SOCend are the initial 

and required final value of the state of charge, respectively. Finally, (2.14) binds SOCt within 

the corresponding minimum and maximum state of charge (i.e., SOCmin and SOCmax , 

respectively). 

2.1.2 Deterministic day-ahead solution 

Now, let us consider a test case with a LES equipped with a 1-MW PV unit, a storage system 

of 630 kWh, a local load with a maximum power consumption equal to 1.5 MW, and a Rated

GridP

equal to 1.5 MW. Table 2.1 shows the main parameters that characterize the operation of the 

BES unit. 

Table 2.1 Parameters for the operation of the BES unit. 

Parameter Value 

max

BESE 630 kWh 

Rated

BESP 630 kW 

SOC0 1 pu 

SOCend 1 pu 

SOCmin 0.1 pu 

SOCmax 1 pu 

Figure 2.1 shows the day-ahead available profiles of the PV production, the load and the 

relevant price of buying energy from the energy provider. 
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Figure 2.1 Power profile of the PV production, load and grid price. 

The problem (2.1) is solved by using an MILP that considers a simple energy balance model 

for the battery. However, the formulation is suitable for adopting other models of the battery 

which could refine the calculation, e.g., the kinetic model for the battery (KiBaM) presented in 

Appendix A.  

The model of the LES has been implemented in AIMMS Developer modelling environment 

(Roelofs and Bisschop 2013) and solved by using the Cplex V12.9 solver in some tens of 

milliseconds, with the OF value equal to €36.70. For the numerical tests presented in this 

chapter, sell

t  is assumed to be half of 
buy

t . 

Figure 2.2 shows the deterministic solution of the optimization problem (i.e., assuming a perfect 

forecast). Figure 2.2a shows the power flow exchanged with the utility grid (positive if 

consumed by the LES). In Figure 2.2b, the state of charge of the BES unit (in pu) is shown. 
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a) 

b) 

Figure 2.2 Deterministic results for the LES: a) power exchanged with the grid; b) state of charge of the battery. 

2.1.3 Multistage stochastic optimization to considerate uncertainties associated with the 

LES operation 

We have seen that the problem associated with the scheduling of energy resources of a prosumer 

(or in a general of a LES) is suitable to be solved by means of an optimization problem. The 

corresponding optimization problem implements the action of an EMS that decides the 

operational set values for the storage units during the day, based on the day-ahead forecast 

profiles of the inputs and operational constraints. 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 6 12 18 24

Po
w

er
 p

ro
fi

le
 (

M
W

)

Time (hour)

Power flow exchanged with the grid

0

0.2

0.4

0.6

0.8

1

0 6 12 18 24

B
at

te
ry

 s
ta

te
 o

f 
ch

ar
ge

 (
p

u
)

Time (hour)

Simple battery model



Chapter 2.  Scheduling of Local Energy Systems 

39 

 

However, the forecasts of both PV production and load consumption are affected by significant 

uncertainties; hence, either stochastic optimization approaches or Monte Carlo simulations are 

typically adopted to solve this kind of problems e.g., (Reddy, Sandeep, and Jung 2017) and 

(Lazaroiu et al. 2016). 

To adapt the day-ahead solution to the intra-day operational conditions, the stochastic 

optimization problem can be formulated as a multistage decision problem in which the battery 

output setpoints are decided at the beginning of the day and, subsequently, at the end of 

predefined stages during the day. For such schemes, the problem needs to be modelled with a 

scenario tree. In this case, both the PV generation and energy consumption are uncertain, whilst, 

for the sake of simplicity, prices 
buy

t  and sell

t  are assumed to be known.  

Denoting the set of scenarios with Ω, the scenario index with ω, and the probability of scenario 

ω with πω, the deterministic equivalent of the multistage stochastic problem is the recourse 

model 

 
BES

min
tP

OF 






   (2.15) 

with constraints (2.2)-(2.14). The solution of the multistage stochastic programming (SP) 

problem implies the non-anticipativity constraints that represent the inability to anticipate the 

future. Therefore, scenarios sharing the same history in the scenario tree keep the coherency 

regarding their decisions in common past events. 

Figure 2.3 shows the relevant steps to accomplish the scheduling of the BES unit present in the 

LES by adopting a multistage approach. 

 

Figure 2.3 Multistage stochastic scheme for the resources scheduling of a local energy system. 

In the following, we describe the procedures adopted for the generation of set Ω, the 

construction of the scenario tree that is used in the recourse model, and the intra-day decision-
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making procedure able to adapt the solution of the multistage SP according to the current LES 

conditions.  

A. Generation of scenarios of the PV generation and local load 

For the scenario generation, we have applied the procedure described in e.g. (Osório et al. 

2015), which includes a Markov-process to represent the autocorrelation that exists between 

consecutive observations. Starting from the forecast profiles of PV

tP  and Load

tP , at first they are 

normalized by using the corresponding mean value and standard deviation; then, for each 

scenario ω, the normalized time series PV

ty  and Load

ty  are given by 

 

, ,

, , 1 ,

t t t

t t t

z x y

x x

 

   −

= +

=  +
  (2.16) 

where ϕ is the one-lag autocorrelation parameter, assumed to be equal to 0.999, and 
,t  is a 

Gaussian white noise with mean zero and standard deviation 21 − . The PV production and 

load profiles for each scenario ω (
,

PV

tP
 and 

,

Load

tP
, respectively) are obtained by applying the 

inverse transform method assuming a normal distribution, with the constraint that both profiles 

cannot be negative and that the difference between each profile and the corresponding forecast 

should not exceed 20% (in all the periods for the load and 75% of the periods for PV 

production). The error values employed by the scenario-generation technique are coherent with 

conditions reported, for instance, in (Nespoli et al. 2019), (Sangrody et al. 2017) and (Gerossier 

et al. 2018). 

Although the study of forecasting models is out of the scope of this work, the consideration of 

their characteristics could be of interest to adequately set the scenario-generation technique in 

a specific application. To achieve this, accuracy metrics applied to forecasting models, if 

necessary, could be employed to define a confidence interval. For instance, in (Van der Meer, 

Widén, and Munkhammar 2018), metrics like the mean absolute error (MAE) and the mean 

average percentage error (MAPE) are employed to address the assessment of the forecasting 

accuracy.  

In general, the number of scenarios for adequately describing this kind of stochastic process 

should be appropriately large. In this chapter, the multistage solution will be compared with the 

results of a Monte Carlo method (comparison presented in section 2.1.5); therefore, a set of 200 
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scenarios has been generated to limit the computational time required by the Monte Carlo 

method. Figure 2.4 illustrates the initial set of 200 scenarios obtained from the forecast profiles 

of PV

tP  and Load

tP  in Figure 2.1. 

a)  

b)  

Figure 2.4 Initial set of 200 scenarios: a) PV production; b) load. 

B. Scenario-tree construction  

In a successive step, the generated scenarios are assumed to be equiprobable and are employed 
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, ,
, PV Load

PV Load

t t
t

t t

P P

P P

 


−
=

−
 (2.17) 

In the proposed approach, the scenario tree is built by the consecutive application of the k-

means clustering method, as described in e.g., (Pranevicius and Šutiene 2007). The main steps 

of this method are the following: 

• At stage s=1 (that includes only the initial period t=0), all scenarios have the same value 

of parameter, i.e., , 0 0t = = . 

• At stage s=2 (t=1-6), the set of individual scenarios is divided into the predefined 

number K of desired clusters s

kC . For this purpose, the initial K centres t

k  are randomly 

selected; then each scenario ,t  is assigned to cluster s

kC  so to minimize the 

dissimilarity measure  

 
, ,

2
( , )    1...

s

t t t t

k k

t T

d k K    


= −  =   (2.18) 

where 
2
 indicate the Euclidean distance and Ts is the set of periods in stage s. 

• Subsequently, the centroid of each cluster is updated as the mean of all the scenarios 

assigned to the cluster, and the procedure is repeated until the centres of the clusters are 

not modified in two consecutive iterations. 

The probability of each cluster at the considered stage 
s

k  is the sum of the probabilities 

of the individual scenarios belonging to the cluster. All the scenarios of the same cluster 

are replaced by the values of the relevant centroid, i.e., 
,t t

k

 =  st T   if 
,t s

kC  . 

• At the stages following the second one, the k-means clustering algorithm is applied 

independently to each cluster defined in the previous stage. 

The above-described procedure generates the scenario tree consisting, at each stage s, of nodes 

st T

k
  with the associated probabilities and the branches that connect nodes at different stages.  

Figure 2.5 shows the scenario tree obtained for K=3, which is using three centroids. The 

structure of the tree is given by the defined number of centroids and the number of stages 

assumed for the day. In this case, we have considered five stages, with decisions every six hours 

for the decision variable BES

tP . 
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Figure 2.5 includes the probability of each one of the branches in the tree and the total 

probability for each scenario from the root-node to the relevant leaf (e.g., 64 scenarios in this 

case). 

 

Figure 2.5 Scenario tree obtained for 200 initial scenarios and three centroids. 

The first decision is made at the beginning of the day, defining the set values for all periods of 

the first six hours, and then they will be updated every six hours according to the successive 

decisions. The six-hour periods represent the stages following the first one. In the recourse 

solution (i.e., the stochastic solution based on the obtained tree), the values of the other variables 

at each period t are calculated at the end of the corresponding stage. 

As a result, the solution of the recourse model provides the optimal values for the BES unit at 

each node of the tree and for the next six-hours periods (i.e., at t=0, t=6, t=12 and t=18).  
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2.1.4 Decision-making process for an adaptive scheduling during the day 

The solution of the recourse model provides multiple possible decisions at each stage following 

the first one (i.e., during the day); therefore, a decision-making procedure is employed for the 

choice of the most appropriate decision at each stage among those indicated by the stochastic 

problem solution considering the current PV generation and load. 

 

Figure 2.6 Scenario tree with the corresponding scenarios at each node. In red, an example of the solution 

provided by the intra-day decision-making procedure. 

For instance in Figure 2.6, at the beginning of the day, the common root node dictates the set 

values for the first six hours (corresponding to Scen-195 in the example). 

stage 4stage 3stage 2stage 1

0 6 12 18 24

Time (hour)

1st decision 2nd decision 3rd decision 4th decision

(Scen-195,1)

(Scen-195,2)

(Scen-195,3)

(Scen-195,4)

(Scen-165,4)

(Scen-179,4)

(Scen-163,3)

(Scen-163,4)

(Scen-120,4)

(Scen-119,4)

(Scen-183,3)

(Scen-183,4)

(Scen-138,4)

(Scen-180,4)

(Scen-194,3)

(Scen-194,4)

(Scen-150,4)

(Scen-169,4)

(Scen-192,3)

(Scen-192,4)

(Scen-121,4)

(Scen-191,4)

(Scen-188,3)

(Scen-188,4)

(Scen-170,4)

(Scen-181,4)

(Scen-167,3)

(Scen-167,4)

(Scen-152,4)

(Scen-149,4)

(Scen-194,2)

(Scen-188,2)
(Scen-164,4)

(Scen-177,4)(Scen-177,3)

(Scen-178,3) (Scen-178,4)

(Scen-195,5)

(Scen-165,5)

(Scen-179,5)

(Scen-163,5)

(Scen-120,5)

(Scen-119,5)

(Scen-183,5)

(Scen-138,5)

(Scen-180,5)

(Scen-194,5)

(Scen-150,5)

(Scen-169,5)

(Scen-192,5)

(Scen-121,5)

(Scen-191,5)

(Scen-188,5)

(Scen-170,5)

(Scen-181,5)

(Scen-177,5)

(Scen-167,5)

(Scen-149,5)

(Scen-152,5)

(Scen-102,5)

(Scen-147,5)

(Scen-189,5)

(Scen-100,5)

(Scen-166,5)

(Scen-178,5)

(Scen-186,5)

(Scen-164,5)

(Scen-128,5)
(Scen-162,5)

(Scen-146,5)
(Scen-159,5)

(Scen-125,5)
(Scen-160,5)

(Scen-139,5)
(Scen-158,5)

(Scen-113,5)

(Scen-118,5)

(Scen-062,5)

(Scen-162,5)

(Scen-132,5)
(Scen-137,5)

(Scen-158,5)
(Scen-176,5)

(Scen-190,5)
(Scen-155,5)

(Scen-135,5)

(Scen-161,5)
(Scen-144,5)

(Scen-182,5)

(Scen-115,5)

(Scen-187,5)

(Scen-168,5)

(Scen-153,5)

(Scen-126,5)

(Scen-134,5)

(Scen-169,5)

(Scen-157,5)
(Scen-148,5)

(Scen-133,5)
(Scen-127,5)

stage 5



Chapter 2.  Scheduling of Local Energy Systems 

45 

 

At stage s=2, the decision-making procedure finds the scenario of the tree that is the nearest to 

the profile of the difference between PV generation and load in the previous six hours, by means 

of the Euclidean distance. Following this decision, the set point values of the battery power 

output are defined for each 15-minutes time intervals (i.e., the time step t ) for the following 

six hours. 

At stages s=3 and s=4, the decision-making procedure finds the scenario of the tree that is the 

nearest to the profile of the difference between PV generation and load in the previous six hours, 

only among those directly connected to the node chosen in the previous stage. 

2.1.5 Numerical tests for the scheduling of a LES under uncertainties   

As already mentioned, the optimization procedures have been implemented in AIMMS 

Developer and tested by using the Cplex V12.9 MIP solver on 2-GHz processors with 8 GB of 

RAM, running 64-b Windows.  

Table 2.2 compares the OF values of the stochastic solution for two different sizes of battery 

(630 kWh and 315 kWh) by using two different scenario trees obtained through the k-means 

clustering procedure (with the number of centroids K equal to three as the one in Figure 2.6 and 

one additional tree with K equal to four).  

Table 2.2 SP solution, VVS and EVPI metrics for both a 630-kWh and a 315-kWh battery. 

Size of the BES unit (kWh) 630 315 

Number of centroids 3 4 3 4 

OF (€) 38.02 38.25 65.97 66.13 

VSS (€) 2.59 2.84 1.95 2.09 

EVPI (€) 0.85 1.08 0.48 0.63 

Number of scenarios in the tree 64 139 64 139 

Solution time (s) 1.54 2.97 1.17 3.47 

Additionally, Table 2.2 also shows the Value of Stochastic Solution (VSS) and the Expected 

Value of Perfect Information (EVPI), which are widely used metrics in the performance of SP 

models. According to e.g., (Escudero et al. 2007), the VSS and EVPI can be calculated as 

follows:  

• VSS is the difference between the expected value solution (EEV) and the stochastic 

solution, which is the OF from the recourse problem (RP) (2.15) in this case. In order 

to calculate EEV, at first, the values of the decision variables BES

tP  for each t are obtained 
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through the solution of the deterministic model in which all random variables are 

replaced by their expected values; then, EEV is the solution of the stochastic problem in 

which the decision variables are fixed parameters. 

• EVPI is the difference between the stochastic solution and the wait-and-see (WS) 

solution. The WS solution is given by the calculation of the expected value of the set of 

deterministic solutions, each relevant to one of the tree scenarios. 

As expected, the higher the number of centroids, the longer the computational effort due to the 

enlargement of the tree, as shown by the comparison of the solution times and the number of 

scenarios in the trees reported in Table 2.2 for K=3 and K=4. However, in this instance a more 

detailed clustering increases the VSS, even with an initial set of scenarios not very large with 

respect to the final dimensions of the tree.  

Furthermore, the results in Table 2.2 show a significant increase in the OF values for the case 

with a 315kWh-sized battery, since the balancing effect of using the BES unit is less evident, 

and, additionally, we can see a decrease of both metrics, namely VSS and EVPI. 

In the following, the performance of the SP approach is compared with the Monte Carlo 

simulation technique, in which the deterministic model is solved for each initial scenario, and 

then the BES

tP  values are set to equal to the average of the corresponding values obtained by the 

deterministic solutions. For this purpose, the daily energy procurement costs calculated by the 

SP approach are compared with those calculated by the Monte Carlo method. 

Figure 2.7 shows, for each scenario in the tree obtained with three centroids, the comparison of 

the OF values calculated by using the Monte Carlo method and those given by the intra-day 

decision-making procedure based on the SP solution. The figure also includes the OF values of 

the deterministic solutions that are assuming a perfect forecast for each intra-day scenario.  

In general, the SP approach provides better results with respect to Monte Carlo, and this is 

confirmed also by Figure 2.8 that shows the same comparison for 50 different scenarios from 

those included in the initial set Ω. In the case of the 3-centroids tree, the adoption of the SP 

approach also employs a shorter solution time with respect to the Monte Carlo simulations that 

require around five seconds (without parallel computing). 
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Figure 2.7 Comparison of the OF values for each scenario of the tree obtained by applying the k-means 

clustering with three centroids (630-kWh battery). 

 

Figure 2.8 Comparison of the OF values for 50 new scenarios (630-kWh battery). 

Table 2.3 shows the average values of the following differences for three different set of 

scenarios, namely the scenarios of the tree, the initial set of 200 scenarios, and 50 scenarios 

different from those of the previous sets: 

• SP-MC: Difference between the OF values given by the intra-day decision-making 

procedure and the Monte Carlo solution. 

• SP-WS: Difference between the OF values given by the intra-day decision-making 

procedure and the deterministic solution. 
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The results in Table 2.3 show the advantage of using the SP approach and the benefit of a more 

accurate clustering procedure. For the case of the 315-kWh battery, the results confirm, in 

general, the advantages of using four centroids, although the average differences are smaller 

than for the 630-kWh battery. 

Table 2.3 Comparison between SP solutions and Monte Carlo simulations and between SP and deterministic 

solutions for both a 630-kWh and a 315-kWh battery. 

Size of the BES unit (kWh) 630 315 

Number of centroids 3 4 3 4 

Scenarios of the tree 
SP – MC -2.51 -2.55 -1.61 -1.58 

SP – WS 0.97 1.13 0.56 0.66 

Set of initial scenarios 
SP – MC -2.05 -2.47 -1.13 -1.44 

SP – WS 5.17 2.70 2.21 1.91 

Set of new scenarios 
SP – MC -2.28 -2.29 -1.12 -1.14 

SP – WS 4.85 4.84 2.81 2.79 

Finally, to test the performance of the SP approach under different conditions, the profile of the 

local load has been replaced by a new one, obtaining a new set of load scenarios that replace 

those of Figure 2.4b. Table 2.4 shows the corresponding results regarding OF values and 

metrics and Table 2.5 presents the  performance comparison of the SP solution and Monte Carlo 

simulations and of the SP and deterministic solutions for a battery of 630 kWh. 

 

Figure 2.9 Scenarios obtained for a different forecast of load profile. 
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The results confirm the advantages of the SP. Only in the case of the 50 new scenarios, and 

using three centroids, the average performance for the stochastic solution is higher than the one 

obtained by using the Monte Carlo simulations. The use of four centroids increases the VSS and 

allows for reaching improved results with respect to the Monte Carlo technique. 

Table 2.4 SP Solution, VVS and EVPI metrics (630-kWh battery and load scenarios of Figure 2.9). 

Number of Centroids 3 4 

OF (€) -2.94 -2.33

VSS (€) 1.75 2.52

EVPI (€) 2.66 3.19

Number of scenarios in the tree 74 169

Solution time (s) 1.53 4.45

Table 2.5 Performance comparison between SP solution and Monte Carlo simulations and between SP and 

deterministic solutions (630-kWh battery and load scenarios of Figure 2.9). 

Number of centroids 3 4 

Scenarios of the tree 
SP – MC -1.37 -1.84

SP – WS 3.71 3.37

Set of initial scenarios 
SP – MC -0.28 -1.06

SP – WS 7.19 6.41

Set of new scenarios 
SP – MC 0.64 -0.39

SP – WS 9.35 8.33

2.2 Scheduling of microgrids with the presence of renewables and EV 

charging stations 

This second part of the chapter is focused on the study of the operation of an MG including a 

parking lot equipped with bidirectional charging stations for PEVs. The considered MG might 

include an integrated system of renewable generation (e.g., PV panels) and stationary BES 

units, as the one illustrated in Figure 2.10. The energy procurement cost associated with the 

operation of the considered site is minimized by a central dispatching system. 

The literature on charging load modelling is becoming quite large, as shown in the recent survey 

presented in (Xiang et al. 2019). An analysis of the advantages and drawbacks of different 

approaches to the integration of EVs is presented in (García-Villalobos et al. 2014). 

Additionally, a study of the state-of-the-art of fast-charging stations including experimental test 

has been introduced in (Sbordone et al. 2015).   
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The integrated operation of parking facilities with RES as the one considered in this chapter 

has been extensively studied, as shown in, e.g., (Mwasilu et al. 2014). An evaluation of the 

integration of PEVs with PV systems, in order to cope with the fluctuation of solar irradiance, 

has been performed in (Traube et al. 2013). An additional approach that takes into account the 

uncertainties of PEVs arrival and grid power price has been presented in (T. Zhang et al. 2014). 

Furthermore, a generation scheduling method for the coordinated operation of an industrial 

microgrid, which considers electricity and heat generation, electrical loads, PV units and PEVs 

is presented in (Derakhshandeh et al. 2013). 

 

Figure 2.10 Scheme of a microgrid with both local generation and EV charging stations. 

An optimization model for the assessment of the contribution of V2G systems has been 

proposed in (Battistelli, Baringo, and Conejo 2012). The method in (Zakariazadeh, Jadid, and 

Siano 2015) contemplates the presence of an aggregator acting as an intermediate agent 

between end-users and the distribution system operators (DSOs). Moreover, a study of the 

feasibility of premium tariffs rates for V2G services similar to feed-in-tariff (FIT) programs for 

RES, has been presented in (Richardson 2013). 

To cost-effectively operate such an electric system, it is crucial to consider the uncertainties 

associated with the presence and state of the vehicles in the parking lot, the PV generation, and 

the local load. 

Therefore, in this chapter, an approach based on a multistage stochastic optimization as the one 

introduced in section 2.1.3, has been adopted. For this purpose, we make reference to the linear 

programming model presented in (Dabbagh, Sheikh-El-Eslami, and Borghetti 2016), although 
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the procedure can be suitably adapted to be used with different stochastic models for the optimal 

operation of EV parking lots in MGs (e.g., those presented in (Battistelli, Baringo, and Conejo 

2012) and (Honarmand, Zakariazadeh, and Jadid 2014)) and in power distribution systems (e.g., 

(Khodayar, Wu, and Shahidehpour 2012) and (Shafie-Khah et al. 2016)). 

A scenario tree obtained by means of the scenario reduction technique is employed by the EMS 

to model and solve the day-ahead scheduling of the energy resources in the site. The use of the 

initial energy in the EVs entering the parking is limited. The model considers other typical 

constraints (such as maximum number of available charging stations, size of the EV batteries, 

and the power ratings of charging stations). Moreover, a procedure aimed at guaranteeing a 

feasible solution for the operation of the site is introduced. 

2.2.1 Multistage stochastic model for the day-ahead scheduling problem 

The model described in this section is aimed at defining the day-ahead scheduling of the global 

charging and discharging of the EV batteries connected to the charging stations in order to 

minimize the energy procurement cost. The considered site is connected to the external utility 

grid and includes a PV unit and local loads. 

The linear programming model presented in (Dabbagh, Sheikh-El-Eslami, and Borghetti 2016) 

is characterized by the introduction of specific operating rules relevant to the initial energy 

available in the EVs entering the parking lot. In the following, the two-stage stochastic model 

proposed in (Dabbagh, Sheikh-El-Eslami, and Borghetti 2016) will be extended into a 

multistage stochastic programming model, following the approach of (Borghetti et al. 2017).  

The stochastic optimization problem considered by the dispatching centre is represented by 

(2.19) with an optimization horizon corresponding to the next day (divided into one-hour 

periods): 

 min C 



   (2.19) 

with 

 ( ), , ,

TOU buy_Grid sell_Grid

t t t t

S

t

C E rE C    = − +
    (2.20) 

the cost associated with scenario ω is represented by C  and TOU

t  corresponds to the Time-

of-Use (TOU) tariff for purchasing energy from the grid in period t. Value r is the ratio between 

sale and purchase tariffs. ,

buy_Grid

tE  and ,

sell_Grid

tE  correspond to the energy bought and sold from 
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and to the utility grid, respectively. ,t

SC is the total cost associated with the use of the V2G 

parking lot. 

For the V2G parking lot, the decision variables ,

V2G

tP  represents the power exchange of the V2G 

parking lot calculated for each node of the scenario tree (positive when selling to the grid), and  

,t is the nonnegative utilization coefficient of the total energy initially stored in the EVs that 

arrive in the parking lot at time t ( ,t

SE

+ ).

The constraints that represent the behaviour of the V2G parking lot are: 

, , ,

V2Gmin V2G V2Gmax

t t tP P P    (2.21) 

, ,( 1) , , ,

V2G(1 )t t t t t

S S S SE E P t E E     −

+ −= − −  + − (2.22) 

, ,

max

t t

S SE E  (2.23) 

( )
( )

, , Rated

min in EV, , , Rated

min in EV,
0

t t

St t t

St

S

E e N E
u E e N E

E

 

  




+

+

+

−
   − (2.24) 

,

V2G

,( 1) , , , , , , ,

V2G V2G

0

(1 ) (1 )
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t
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S S
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E

E P t E E E


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  −

+ −

=
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, , ,

dis V2G,

, , ,

ch V2G

t t t

St

S t t t

S

c P t c E
C

c P t c E

  


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





+

+

  +
 

−  +

(2.27) 

Constraint (2.21) binds the power exchange of the V2G parking lot within its maximum and 

minimum value, represented with ,

V2Gmax

tP  and ,

V2Gmin

tP , respectively. The energy stored by the 

EV’s batteries at the end of period t, i.e., 
,t

SE
, is determined by (2.22). Constraint (2.23) limits

the maximum value of the storage capability, where ,

max

t

SE  represents the corresponding 

maximum. 

When EVs reach the parking lot, their energy adds to the total energy of the V2G parking lot 

,t

SE
. Constraint (2.24) limits the maximum value of ,t so that initial charge of the battery
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may be used only for the amount exceeding a predefined minimum fraction emin of the rated 

energy size Rated

EVE . Additionally, this constraint avoids deep discharge conditions. Function u(·) 

in (2.24) represents the step function with value 0 for negative arguments and 1 for positive 

arguments. 

Constraint (2.25) is introduced to calculate the available energy for dispatching services ,

V2G .tE

To achieve this, the dispatching centre determines the exploitation factor ,t of the total

energy ,t

SE  . , ,j tE

  corresponds to the initial energy of the EVs arriving in period j and leaving 

in time period t (j=0 indicates the EVs already parked when the optimization horizon begins). 

This scheme permits the implementation of the battery-to-battery charging strategy in a V2G 

system. The total cost ,t

SC  considers the cost of this retrieval according to price c . Such a 

cost is considered at the arriving time of the EVs, whilst the associated energy can be retrieved 

in all the period during the parking time. 

Variable ,tl , in (2.26), corresponds to the power losses associated with charging/discharging 

processes, with ch  and dis  equal to the average efficiency of the EV’s batteries and charging 

stations during charging and discharging, respectively. In (2.27), the prices associated with the 

charging and discharging processes (i.e., chc  and disc , respectively) are also considered for the 

calculation of 
,t

SC 
. 

Disregarding network power losses, the energy balance in each period of the microgrid is 

, , ,

sell_Grid buy_Grid

t t t

u

u

P t E E   = − (2.28) 

where 
,t

uP
indicates the net active power provided or absorbed by unit u (positive if provided 

to the MG), which corresponds, in the considered case, to the parking lot, the PV unit and the 

local load in the MG. Both tl   and 
,t

SC 
 (nonnegative variables according to (2.26) and (2.27)

, respectively) are minimized as a result of the minimization of the objective function in (2.19)

. The net power of the V2G parking lot 
,

V2G net

t

uP

=  is given by 

, , ,

V2G net V2G

t t t

uP P l  

= = − (2.29) 

In this model, the power values associated with the PV unit and the local loads cannot be 

dispatched. 
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2.2.2 Scenarios and tree generation procedures 

Following the scheme introduced in section 2.1.3, a set of equiprobable scenarios is obtained 

and used as input for the scenario-tree generation. This section includes the considerations for 

the scenario generation of the V2G parking lot and the scenario generation for the power profile 

associated with the PV unit and the local loads. 

A. Conditions for the scenarios associated with the V2G parking lot

For each scenario ω of the V2G parking lot, a population of Ntot EVs willing to enter the parking 

lot is generated according to chosen statistical distributions (e.g., a normal distribution with the 

mean value equal to the forecasted number of potential users of the parking lot).  

In this approach, the number of available charging stations is limited. Hence, the amount of 

EVs from the total Ntot that can be connected to a charging station will depend on the available 

parking-spots. Each i-th EV is characterized by the parameters: time of entrance ( it
+

), initial

charge (
0

iE ) and staying time in the parking lot ( is ). For illustrative purposes in this chapter, 

these parameters are also generated according to a normal distribution with mean value equal 

to the forecasted value. Although the rated capacity of the batteries is considered constant and 

equal for all the EVs, it could also be assumed as a variable. 

The energy stored iE −
 is equal to 1 pu if the time of stay is is long enough to get a full recharge,

otherwise is set to ratio between is and the time needed for a full recharge. For scenario ω, the 

procedure builds two sets: 
, tS

+ , which considers the EVs incoming at time t, and 
, tS

− , which

consider the EVs leaving at time t. 

On the basis of these sets, the procedure calculates the parameters needed in (2.21)-(2.27): 

• the increase of the energy stored in the parking lot due to arrivals at time t

( ),

, 0
t

t

S ii S
E E



+
+ 
=

• the decrease of the energy stored in the parking lot due to departures at time t

( ),

,
t

t

S ii S
E E



−

−

− 
=

• the decrease of the energy stored in the parking lot at time t due to the initial charge of

the EVs entered at time j and leaving at t 
 ( ), ,

, , 0
j t

j t

ii S S
E E 




+ − 

= . 
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B. Conditions for the scenarios associated with the PV unit and local loads

The scenario generation for the PV unit and of the local loads are generated by using the day-

ahead forecasts and the probability distributions that characterize the expected deviations with 

respect to the forecasts following the scheme in section 2.1.3A. 

To avoid unrealistic scenarios for the PV unit power output, all the ,

PV

tP  profiles do not differ 

by more than 10% from the forecasted profile for at least 90% of the time. In the case of  local 

loads and the amount of EVs at the charging stations (i.e., added load associated with G2V 

service),  the profiles are obtained by multiplying the forecasted profile by 1 ( )k t+ , where ( )k t  

is generated by using a normal distribution with mean value equal to 0 and standard deviation 

( )
2

1 t = − , and ( )t is a decreasing function of t in order to represent the increase of the 

incertitude with time.

C. Tree generation by using k-means

Following the procedure adopted in (Orozco et al. 2018), after the generation of the set of initial 

scenarios, a k-means clustering method is employed in order to aggregate the set of initial 

scenarios and build the corresponding scenario tree. 

In the studied case, and for illustrative purposes, the 24-hour optimization horizon is divided 

into four decision stages (with decisions every six hours). The relevant parameters considered 

by the clustering procedure are the number of parked EVs, PV generation and the non-

dispatchable load in the MG. Figure 2.11 shows the main steps of the implemented method 

based on the k-means clustering procedure and described in detail in section 2.1.3. 

Each scenario ,t  corresponds to a realization of the stochastic parameters of number of EVs 

in the parking lot, PV generation, and total load (i.e., considering local load and charge of EVs 

at the charge station G2V) in the form: 

, , , ,

EV PV Load, ,t t t tN P P     =   (2.30) 

At each defined stage, each scenario is grouped to one of the centroids of the algorithm based 

on the average value of the number of parked EVs, PV output and total local load in the six-

hour. 
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Figure 2.11 Implemented k-means algorithm. 

All the values of the parameters of the scenarios grouped together are averaged in order to 

assign a unique value to each of them for each hour of the stage. At each period j, the values of 

, ,j tE

 for all the scenarios in the same group are averaged for all t > j.  

Moreover, a matrix that contains the number of EVs that arrive in period j and leave in period 

t is defined and averaged as done for , ,j tE

 . In order to guarantee the existence of a feasible 

solution of the optimization problem of the V2G parking lot, this matrix is used to define the 

averaged values of the number of parked EVs, and therefore of ,

max

t

SE , whilst , ,j tE

  is used to 

define the average values of 
,t

SE

+  and of
,t

SE

− . 

2.2.3 Case study of a microgrid with the presence of renewable and EV charging stations 

For illustrative purposes, let us consider a grid-connected MG composed of a parking lot with 

100 charging points, each with 7 kW rated power, a 3.5-MWp photovoltaic system, and local 

loads up to 3 MW. For the considered case study, the parking lot is assumed empty at time t=0, 
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the energy capacity of the EVs batteries is 24 kWh, efficiencies ch  and dis are equal to 0.96, 

c is 1.8 €/MWh, minimum energy value emin is equal to 0.2 pu, price TOU

t is equal to 72.39 

€/MWh from 7am to 11pm and is equal to 51.62 €/MWh in the other hours, ratio r between 

selling and buying price of electric energy is equal to 0.5, and   is neglected. 

An initial set with 60 scenarios has been generated for all the stochastic variables that model 

the operation of the site. Table 2.6 shows the parameters that characterize the normal 

distributions (i.e., mean value and standard deviation) employed by the scenario generation of 

TotN , it
+ , 0

iE and is . 

Table 2.6 Parameters of the normal distribution functions for the V2G scenario generation. 

Population parameters Mean value Standard deviation 

Time of entrance 
it
+

9 2 

Initial charge (pu) 0

iE 0.3 0.3 

Time of stay si 8 2 

Number of entrances NTot 100 10 

Figure 2.12 shows the resulting profiles for EVs in the parking lot ,

EV

tN . 

Figure 2.12 Number of parked EVs in the parking lot 
,

EV

tN
. 

Figure 2.13 shows the profiles of the PV obtained by assuming ϕ = 0.999. Figure 2.14 shows 

the profiles of the total load in the MG by assuming   linearly, decreasing from one at t =1 to 

0.99 at t = 24. 
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Figure 2.13 PV output profiles. 

 

Figure 2.14 Total load profiles. 
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Figure 2.15 shows the structure of the scenario tree obtained by the implemented k-means 

procedure. 

 

Figure 2.15 Multistage scenario tree for the microgrid with the presence of bidirectional charging stations. 

Figure 2.16 - Figure 2.20 show the profiles obtained after the clustering procedure (i.e., 26 

aggregated scenarios in the scenario tree of Figure 2.15). Figure 2.16 shows the number of 

parked EVs 
,

EV

tN
 and Figure 2.17 shows the total energy entering the parking lot associated 

with EV arrivals at each time period t 
,t

SE

+ . 
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Figure 2.16 Selected scenarios of number of parked EVs ,

EV

tN . 

 

Figure 2.17 Selected scenarios of total energy 
,t

SE

+
 entering the parking lot due to EVs arrivals. 
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Figure 2.18 shows the total energy leaving the parking lot due to EV departures at each time 

period t that is ,t

SE

− , Figure 2.19 shows the PV power outputs and Figure 2.20 shows the local 

load profiles. 

 

Figure 2.18 Selected scenarios for the total energy 
,t

SE

−
 leaving the parking lot due to EVs departures. 

 

Figure 2.19 Selected scenarios for the power delivered by the photovoltaic system. 
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Figure 2.20 Selected scenarios for the power consumptions of the local loads of the microgrid. 

2.2.4 Solution of the multistage stochastic model 

The optimization procedures have been implemented in AIMMS Developer modelling 

environment and solved in around 15 s by using the Cplex V12.9 MIP solver. 

Figure 2.21 shows the dispatched power of the V2G parking lot.  

 

Figure 2.21 Power delivered by the parking lot calculated by the stochastic optimization model in the selected 

scenarios. 
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60 scenarios before grouping. In particular, Figure 2.21 illustrates the effect of the energy stored 

during the hours of maximum production of the PV unit and the power contribution of the 

parking lot during the evening load-peak hours. 

 

Figure 2.22 Uncontrolled charge at the EV charging station for the 60 initial scenarios. 

Figure 2.23 shows the profile of ,t  for the scenario tree in Figure 2.15.  

 

Figure 2.23 Utilization coefficient calculated by the stochastic optimization model in the selected scenarios 

(emin=0.2 pu). 
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low value of the ratio between sale and purchase utility tariffs) and in late afternoon although 

the effect is limited due to the few EVs entering in those hours. 

Figure 2.24 shows the total energy stored in the parking lot, and Figure 2.25 shows the power 

exchange between the microgrid and the external utility grid. 

 

Figure 2.24  Energy stored in the parking lot. 

 

Figure 2.25 Power exchanged between the microgrid and the external grid (positive if exported from the 

microgrid). 
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the vehicle arriving in the parking lot. As expected, Table 2.7 shows that larger values of emin 

cause the increase of the objective function values. Furthermore, Figure 2.26 shows the effect 

of the different emin values on the profile of utilization coefficient ,t . For emin values equal 

and exceeding 0.5 pu, the resulting ,t  is always 0. 

Table 2.7 Objective function of the recourse problem for different values of emin 

emin (pu) 0.1 0.15 0.2 0.3 0.4 0.5 

RP (€) 864.38 864.52 864.74 865.46 867.29 867.30 

 

Figure 2.26 Profiles of utilization coefficient 
, t  calculated by the stochastic optimization model for different 

values of emin: a) 0.1 pu; b) 0.15 pu; c) 0.3 pu; d) 0.4 pu. 
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problem RP, and  WS, according to the definition introduced in section 2.1.5. Additionally, it 
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Table 2.8 Performance evaluation for the multistage stochastic solution. 
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For a further comparison, the value of the objective function obtained from the deterministic 

problem, which uses, as input, the average values of the stochastic parameters ,

EV

tN , ,

PV

tP  and 

,

Load

tP  is € 907.55. The average value of the deterministic solution for an initial set of 60 

scenarios, which does not provide a unique profile of charges, discharges, and utilization 

coefficient ,t , is € 851.62. 

In view of these results, the adoption of the multistage stochastic model is expected to allow a 

significant improved flexibility and cost reduction for many scenarios with respect to the 

adoption of the solution provided by the forecast-based deterministic model. 

2.3 Conclusions of the chapter 

With the current energy transition towards a distributed scheme, the increasing appearance of 

prosumers in the electrical system will be expected. The establishment of such a prosumer-

based paradigm demands the alignment of technologies that will allow the operation of the 

installed equipment, coupling the effective exploitation of the available energy resources and 

the economic benefit. 

Consequently, the cost-effective operation of such systems requires the implementation of an 

energy management system that optimize the scheduling of the resources during the day. 

The first part of this chapter deals with the scheduling of a local energy system equipped with 

an integrated PV-storage system in order to cover the local energy demand and minimize the 

daily energy procurement cost.   

For the considered case, a deterministic solution has been proposed and subsequently extended 

to a multistage stochastic approach in order to consider the uncertainties associated with the 

energy generation and consumption. 

The multistage stochastic approach represents an attractive method for the day-ahead 

scheduling in local energy systems and provides improved results with respect to the application 

of the Monte Carlo method, which is another widely used method to deal with uncertainties. 

The adoption of a multistage approach requires the proper construction of a scenario tree to 

represent the outcome of the stochastic events. To that end, a clustering procedure based on the 

k-means algorithm has been adopted for the corresponding scenario tree generation. The k-
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means clustering procedure provides appropriate results even with a limited number of 

centroids, in addition to a reasonable computational effort for the considered multistage 

stochastic programming problem. 

To adapt the day-ahead multistage stochastic solution to the current operational conditions, an 

intra-day decision making procedure has been introduced. Such a procedure adapts the set 

values of the power output of the battery choosing at the end of each stage during the day the 

most similar scenario among those defined in the tree.  

The numerical results have confirmed the economic benefit by using the intra-day decision-

making procedure in comparison with a day-ahead deterministic model based only on the 

forecast of the stochastic parameters. Additionally, to evaluate the performance of the 

multistage stochastic optimization, the value of the stochastic solution (VSS) and the expected 

valued of perfect information (EVPI) have been calculated, confirming the advantage of the 

multistage stochastic approach over the solution given by the mentioned forecast-based model. 

Next, the second part of the chapter dealt with the operation of a microgrid with a parking lot 

that allows bidirectional charging services. The optimization problem minimizes the daily cost 

of the microgrid by means of a multistage stochastic problem. To that end, the uncertainties 

associated with the number of parked EVs, the PV generation and the non-dispatchable loads 

in the microgrid are represented by the relevant scenario tree. 

The proposed formulation for the dispatchable problem of the parking lot is suitable to be 

modelled by means of a scenario tree. The one described in this chapter is obtained by means 

of the k-means clustering procedure. The implemented clustering procedure allows the solution 

of the scenario-based multistage optimization model with a reasonable computational effort. 

As expected, in this case, the calculation of the VVS and EVPI metrics confirms the advantage 

of the multistage scenario-based approach over the solution given by a deterministic model 

based only on the forecast of the stochastic parameters. 

This chapter shows that the appropriate scheduling of the parking lot, especially if it is provided 

with bidirectional charging stations, facilitates the integration of renewable generation inside 

the microgrid and reduces the need of dedicated stationary storage units.
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Chapter 3. Day-Ahead Scheduling of a Renewable 

Energy Community  

Introduction 

“When mathematical optimization meets cooperation” 

n recent years, the regulation of several countries has been shaping the conditions for 

allowing direct energy transactions between electricity end-users and their 

neighbours, within a so-called energy community.  

In this context, renewable energy communities equipped with both distributed 

generation units based on renewable resources, and storage units will favour the local 

balance between production and consumption during the day, while reducing congestion 

and efficiency issues for the network.  Moreover, from the participants point of view, 

an economic justification for the establishment of a REC is the expected gap between 

the prices of buying and selling energy from and to the external electricity provider, 

respectively, which can further be increased by various factors, e.g., due to costs of the 

ancillary services. 

Regulatory challenges and opportunities for such collectives are analysed in e.g., (Inês 

et al. 2020) and (Sokoøowski 2018), which also refers to the recent legal framework 

called “Clean Energy for all Europeans” approved by the European Union (see e.g., 

(EU2018/2001 2018) and (EU2019/944 2019)). 

In the literature, there are several studies dedicated to practical case studies of local 

energy market (LEM) schemes between end-users, e.g., (C. Zhang et al. 2017) and 

references therein. One of the main references, among real implementations, is the 

Brooklyn microgrid project (Mengelkamp et al. 2018). 

This chapter deals with the scenario in which energy transactions are allowed not only  

with the external energy provider, but also between participants in a REC. The members 

of the community can be residential or small commercial/industrial sites connected to 

the same distribution network. Each participant can, in general, consume or produce 

I 
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electricity during different time periods, i.e., can act as a prosumer. Furthermore, each 

prosumer may be equipped with local generation units (PV panels in this chapter) and 

BES units to cover the local demand.  

The community scheme considered in this chapter is characterized by being local and 

cooperative that is all the prosumers are connected to the same LV distribution network 

and collaborate, without any competitive behaviour, for the common goal of minimizing 

the costs related to the exchanges with the utility grid.  

The peer-to-peer (P2P) transactive scenario, such as in, e.g., (Le Cadre et al. 2020), 

(Paudel et al. 2019) and references therein, is aligned with different characteristics as 

the ones considered in this chapter. Since, in those schemes the self-interested users 

exploit their own resources in a noncooperative scheme. (Guerrero, Chapman, and 

Verbič 2019) presents a properties comparison between a P2P and a community-based 

approach, which implement LEMs in LV networks. 

In general, the energy community concept implies the implementation of an EMS to 

achieve the prosumers’ common goals and the optimal operation of the installed energy 

resources (Belli et al. 2017). According to several approaches presented in the literature 

(e.g., (Yan et al. 2018), (Liu et al. 2019) and references therein), a day-ahead scheduling 

procedure is convenient for minimizing the energy procurement costs of the community. 

Typically, such scheduling problem of resources can effectively be addressed by 

centralized models. Nevertheless, distributed approaches have gained special interest: 

e.g., (Lee et al. 2015) proposes a distributed mechanism based on game theory to define 

a competitive trading scheme among several microgrids, in (Zhao et al. 2018) a primal 

Benders decomposition approach has been used, whilst (Moret and Pinson 2019) and 

(Kargarian et al. 2018) employ the alternating direction method of multipliers (ADMM). 

Indeed, ADMM is one of the most frequently adopted consensus algorithms (see, e.g., 

(Boyd et al. 2010; H. Wang and Huang 2018; Dvorkin et al. 2018), and references 

therein), and it has been recently investigated for the solution of scheduling problems 

in MGs, as well as for the more general problem of the optimal operation of multi-

microgrids and active distribution networks.  

With respect to a centralized approach, a distributed approach appears more suitable to 

define the scheduling of the community, in which the participants will collaborate to a 
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common goal while preserving their privacy and independence, and it can exploit the 

implementation of blockchain or, in general, distributed ledger technologies (e.g., 

(Vangulick, Cornelusse, and Ernst 2018),(Di Silvestre et al. 2018),(van Leeuwen et al. 

2020)). 

In its first part, this chapter focuses on the day-ahead centralized model to deal with the 

scheduling problem of a REC. Then, the distributed approach is introduced, in which 

the centralized problem is decomposed by means of the ADMM. 

Moreover, in a subsequent section, a procedure that seeks an allocation of the losses 

associated with the energy transactions in the REC is introduced, for both a centralized 

and ADMM-based approach. The results of such procedures are compared considering 

different scenarios. 

Several publications in the field have pointed out a lack in the consideration of network 

constraints for the modelling of local energy markets specifically in low-voltage 

networks (e.g., (Guerrero, Chapman, and Verbic 2018)). The approaches presented in 

this chapter are also oriented to contribute to close the gap by providing optimization 

and modelling insights of the renewable energy community network, specifically in the 

losses-allocation field. 

Finally, to close the chapter, the scheduling of communities that integrate dispatchable 

generating units is studied. In such a scheme, an additional increase in the energy self-

consumption rate and a peak-demand reduction will be expected. Furthermore, the 

exploitation of renewable resources represents an attractive aspect of the integration of  

dispatchable generators; for instance, by using anaerobic digestion (AD) technologies, 

which allows the electricity generation from waste generated by e.g., agriculture activity 

(Thimsen 2004). 
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3.1 Centralized approach for the day-ahead scheduling of the community 

The scheduling function of the community can be formulated as a centralized optimization 

problem, in which the set values for the operation of all the participants are defined by a central 

control unit. In this scenario, the central unit collects all the characteristics of the available 

equipment in the community, as well as the data regarding forecast profiles of the local energy 

generation and consumption and keeps all of the information updated. 

The scheme shown in Figure 3.1 corresponds to a community with an internal LV distribution 

network, which is connected to a point of common coupling, through an MV/LV transformer, 

to the external utility grid. In the considered scenario, each prosumer uses the available energy 

resources in cooperation with the other participants to minimize the energy procurement cost 

of the entire REC. Since the considered collective of prosumers has been characterized for a 

collaborative behaviour, the participants cannot act as producer and as consumer 

simultaneously. 

Figure 3.1 Scheme of the renewable energy community; adapted from (Lilla et al. 2020). 

The grid meter Mg in Figure 3.1, positioned at the point of common coupling with the external 

utility grid, is bidirectional and measures the energy exchanged during each time interval. In 

section 3.2 a distributed alternative will be introduced, in which the presence of the bidirectional 

meter Mi owned by each prosumer i will be relevant for measuring the energy that the specific 

prosumer exchanges with the internal network during each time interval. 
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As already mentioned, the operation of such a collective of prosumers requires the 

implementation of an EMS for the optimal exploitation of the available resources; hence, this 

chapter deals with the day-ahead scheduling of the community to define the optimal scheduling 

during the following day. The resulting operational plan is especially oriented to provide set 

values for the BES units and energy transactions between participants in the community. For 

illustrative purposes, in this chapter the prices associated with energy transactions with the 

external energy provider are assumed predefined, although they vary according to the time of 

day. 

The electricity billing procedure can be described according to the following steps. 

I. During each time interval, if the community buys energy from the utility grid (measured 

by Mg), the relevant cost is allocated to each consumer i (i.e., to each prosumer who 

consumes energy more than the local generation during that time interval) 

proportionally to the ratio between its consumption measured by Mi and the total 

consumption in the community (i.e., the sum of the measured energies by all the 

prosumers acting as consumers).  

II. If the community sells energy to the utility grid (measured by Mg), the corresponding 

revenue is allocated to each producer j (i.e., to each prosumer that produces energy more 

than the local load during that time interval) proportionally to the contribution of j to 

the total REC production (i.e., to the ratio between the energy measured by Mj and the 

sum of the measurements of all the prosumers acting as producers). 

III. Each consumer i is also charged for the energy bought from the producers of the 

community (i.e., for the difference between the measurement of Mi and the energy 

allocated to consumer i in step I). The corresponding revenue of producer j is estimated 

proportionally to the contribution of j to the total community production as in step II. 

The day-ahead scheduling procedure calculates the energy prices for each producer j 

during each time interval. 

3.1.1 Mathematical model of the centralized scheduling    

Now, let us introduce the formulation of the optimization problem, which minimizes the total 

energy procurement cost by defining the optimal scheduling of the energy resources for the 

following day. For this purpose, the set of participants in the community has been denoted as 

Ω = {1, 2, …, N}, the set of time intervals t in the 24-hour horizon as Τ = {1, 2, …, tend}, and B 

= {1, 2, …, bend} corresponds to the set of branches b in the internal network of the community.  
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The objective function (3.1) corresponds to a typical minimization of the total energy 

procurement cost given by the costs associated with the exchanges of electricity with the 

external electricity provider during the day 

 ( )buy buy_Grid sell sell_Grid

t t t t

i i

t T
i

OF P P t 



= −    (3.1) 

where 
buy_Grid

t

iP  represents the power bought from the utility grid by prosumer i at time period t 

and 
sell_Grid

t

iP  corresponds to the power sold to the external utility grid by prosumer i at time 

period t. The power profiles included in this chapter are expressed in kW. 

The prices when buying and selling energy from and to the external utility grid (in €/kWh), i.e., 

buy

t  and sell

t , respectively, are assumed deterministic for the next day. Time step t  is equal 

to 0.25 h within an optimization horizon of 24 hours (i.e., divided into 96 periods).  

The constraints considered by the community model are the following: 
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max max

dis BES ch BES0 0t t

i i i iP P P P i     (3.10) 

min max

BES BES BES

t

i i iE E E i   (3.11) 

Constraint (3.2) represents the equilibrium between non-negative variable 
buy ,

t

j iP , which is the 

power bought by prosumer j from i at time period t, and non-negative variable 
sell ,

t

i jP , which is 

the power sold by prosumer i to j. Constraint (3.2) couples all the selling transactions between  

prosumer i and the other participants in the community, so that the price is the same for all the 

selling transaction of the participants during time interval t.  

Constraint (3.3) corresponds to the power balance for prosumer i in time interval t: where the 

forecast profiles of PV generation and load are given by parameters 
PV

t

iP  and 
Load

t

iP ; the 

charging and discharging power of the battery owned by prosumer i are represented with the 

non-negative variables 
ch

t

iP and 
dis

t

iP , respectively;
,

t

b iL represents an estimation of the losses in 

branch b originated from the energy transactions concerning the i-th prosumer. Since each 

transaction is between two prosumers, only half of the power loss is attributed to each prosumer. 

The omission of the concurrent presence of the transactions of all the prosumers is an 

approximation justified by the lack of counter-flows due to the assumed non-competitive 

behaviour of the participants in the community. 

,

t

b iL in (3.3) is defined by the following constraints 
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In (3.12), Rb corresponds to the resistance of branch b, Vn is the line-to-line rated voltage value, 

and 
,

t

b iF is the three-phase power flow in branch b due to the transaction that involves i-th 

prosumer. The relative transactions are assumed positive when directed from the substation to 

the end of the feeder, and negative in the opposite direction. Constraint (3.12) assumes rms bus 

voltage values equal to the rated value; the same constraint considers a balanced LV network 

and neglects reactive power flows. 
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In (3.13), the position of each branch with respect to the buses where the prosumers are 

connected are described by 2-D matrix AGrid and 3-D array A, assuming a radial configuration: 

• AGrid b,i is the b,i element of matrix AGrid. When the power flow due to the energy 

transaction between the i-th prosumer and the external energy provider crosses the 

branch b, it takes the value 1; in any other case, it takes the value 0. 

• Ab.i,j is the b,i,j element of array A. If the power flow created when i buys from j, crosses 

the branch b in the assumed positive direction, then the value of the element is equal to 

1. If the corresponding power flow crosses in the negative direction, the value of the 

element is -1. The value is 0 if the branch b is not crossed by the power flow created by 

the corresponding energy transaction between prosumers i and j. 

Indicator constraints (3.4) employ the binary variable 
t

iu , to prevent simultaneous purchases 

and sales by the prosumer i. 

Constraints (3.5) and (3.6) limit the energy bought and sold by prosumer i at each period t. If   

max

PV Load BES 

t t

i i iP P P− +  is above 0, then 
max

sell iP  takes that value; if it is lower or equal to 0, 
max

sell iP  is 

equal to 0. If max

Load PV BES 

t t

i i iP P P− +  is above 0, then max

buy iP  takes that value; if it is lower or equal 

to 0, max

buy iP  is equal to 0. max

BES iP  is the maximum power output of the BES unit owned by prosumer 

i. 

The state of energy (SoE) of the battery of prosumer i is given by (3.7) and (3.8), which 

represent a simple energy balance model, where BES 

t

iE  is the SoE at time t (in kWh) and 
max

BES iE  

is the maximum storage capacity. The non-negative parameters ηch i and ηdis i are values lower 

than 1 and represent the charging and discharging efficiencies, respectively. In (3.8) the BES 

units are assumed fully charged at the beginning and at the end of the day. The binary variable 

BES 

t

iu  in indicator constraints (3.9) prevents the concurrent charging and discharging processes 

of the batteries. In (3.10), the discharging and charging power of the BES units are bound within 

the maximum value 
max

BES iP . Constraint (3.11) limits the value of the SoE between minimum level 

min

BES iE  and maximum 
max

BES iE . 

In the proposed MILP model for the centralized scheduling of the REC, constraint (3.12) is 

replaced by its piecewise linear approximation described in, e.g., (Williams 2013). For such 

linearization, a set L of segments has been created. Each segment is defined by breakpoints 
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Flow ,

t

b lH , obtained by dividing the allowed range of t

bF  into |L| intervals. Each breakpoint 

Flow ,

t

b lH  defines a breakpoint 
Loss ,

t

b lH  of the piecewise representation of t

bL , which is given by 

 
, Flow ,

t t t

b b l b l

l L

F a H


=   (3.14) 

 
, Loss ,

t t t

b b l b l

l L

L a H


=   (3.15) 

 
, 1    t

b l

l L

a l L


=    (3.16) 

where 
,

t

b la  are SOS2 variables, i.e., they are linked with a special ordered set of type 2 

constraints, so that, at most two and consecutive variables can be non-zero. Since the losses are 

calculated separately for each transaction, the model (3.14)-(3.16) is applied for each prosumer 

i by using the power flow defined by (3.13). 

3.1.2 Case study of a renewable energy community with centralized scheduling 

Now, let us consider a REC composed of two LV feeders, like the one illustrated in Figure 3.1. 

Each feeder consists of five lines, each with resistance bR  = 189 mΩ.  Five prosumers are 

connected to each feeder (numbered from the beginning of the feeder to the end): prosumers 1-

5 to a feeder and prosumers 6-10 to the other. Each prosumer may be equipped with a PV-

storage system and a load.  

The load profiles adopted for each prosumer are shown in Figure 3.2. For all the PV units we 

assumed the same profile of the ratio between power output and panel surface, shown in Figure 

3.3. The area of the PV unit of each prosumer is given in Table 3.1. Figure 3.3 also shows the 

price profile of the energy bought from the utility grid (i.e., 
buy

t ). We assume that the price of 

the energy sold by the community to the utility grid (i.e., sell

t ) is half of 
buy

t . The total daily 

consumption of the community is 313 kWh and the corresponding PV production is 231 kWh 

(73.8% of the load). 
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Figure 3.2 Load profile of each prosumer. 

 

Figure 3.3 Profile of the PV production and Grid purchase price. 

Table 3.1 PV panel surface for each prosumer. 

Prosumer 1 2 3 4 5 6 7 8 9 10 

Area (m2) 32 14 21 32 28 14 42 32 14 42 

Sizes 
max

BESE  of the BES units are shown in Table 3.2 and the corresponding 
max

BESP  values are 

assumed to be equal to the ratio 
max

BES /E t . The total capacity of the BES units is 30 kWh (13% 

of the daily PV production). 
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Table 3.2 Sizes of the BES units in the community. 

Prosumer 1 2 3 4 5 6 7 8 9 10 

Size (kWh) 5 3 4 2 3 1 2 2 2 6 

To test the proposed centralized formulation, the MILP model of the community has been 

implemented in the AIMMS Developer modelling environment and solved by using the Cplex 

V12.9 solver. As already mentioned, all the calculations refer to a time window of one day, 

divided into 96 periods of 15 minutes each.  

Figure 3.4 shows the total power flow at the connection of the community with the external 

energy provider. The total OF value of (3.1) obtained by means of the centralized scheduling 

of the resources in the community, is €18.06. The solution of the centralized model requires 

around 10 s. 

The power profiles from each prosumer when it exchanges energy with the others i.e., when 

selling and buying, are presented in Figure 3.5 and Figure 3.6, respectively. 

 

Figure 3.4 Power flow exchanged with the external energy provider (positive if consumed by the community), 

obtained using the centralized approach. 
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Figure 3.5 Power flows from every prosumer when it sells to the others (excluding the utility grid), obtained 

using the centralized approach. 

 

Figure 3.6 Power flows from every prosumer when it buys from the others (excluding the utility grid), obtained 

using the centralized approach. 
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Figure 3.7 shows the detail of the SoE profiles of each BES unit, whilst Figure 3.8 provides the 

profiles of the total energy contained in the BES units of the community. 

 

Figure 3.7 Battery SoE for each prosumer, obtained using the centralized approach. 

 

Figure 3.8 Total energy in the batteries of the community, obtained using the centralized approach. 

Figure 3.9 shows the energy prices for the participants in the community at time period t. For 

the case of the centralized model, the prices correspond to the Lagrangian multiplier associated 
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to constraint (3.2). In Figure 3.9, the dotted lines correspond to the prices of the energy 

purchased from and sold to the utility grid (i.e., 
buy

t  and sell

t , respectively), whilst the solid 

round markers represent the prices of prosumers when acting as producers and selling energy to 

any other participant in the community. The comparison of Figure 3.9 and Figure 3.4 shows that 

the prices of the energy transactions in the community are not equal to 
buy

t  or sell

t  when there 

is no power exchange with the utility grid, that is during the time interval starting just after 6 

am. 

 

Figure 3.9 Energy prices of selling prosumers, obtained using the centralized approach. 

Table 3.3 and Table 3.4 compare the individual energy procurement costs of each member of 

the REC, taking into account: the exchanges with the external energy provider; the exchanges 

with other prosumers; and the prices of  Figure 3.9. Furthermore, the tables show the 

corresponding values obtained by preventing the transactions between prosumers. The total 

energy procurement cost of the community is around 16% less than the corresponding cost 

without energy transactions between prosumers.  

Table 3.3 Energy procurement cost in € (negative values indicate revenues) for each prosumer in feeder 1, 

obtained using the centralized solution. 

Prosumer 1 2 3 4 5 

Cooperative – Centralized 5.23 0.08 0.96 -0.99 -0.65 

Without internal exchanges 5.46 0.28 1.10 -0.82 -0.46 

0

0.1

0.2

0.3

0.4

0 6 12 18 24

En
er

gy
 p

ri
ce

 (
€

/k
W

h
)

Time (hour)

Prosumer π_buy π_sell
buy

t sell

t



Chapter 3.  Day-Ahead Scheduling of a Renewable Energy Community 

 

82 

 

Table 3.4 Energy procurement cost in € (negative values indicate revenues) for each prosumer in feeder 2, 

obtained using the centralized solution. 

Prosumer 6 7 8 9 10 

Cooperative – Centralized -0.21 14.79 1.63 -0.47 -2.30 

Without internal exchanges -0.15 16.38 1.71 -0.30 -1.67 

3.2 Distributed approach for the day-ahead scheduling of the community 

In this section, we consider the scheduling function for the community structured as a 

distributed optimization algorithm, which is aimed at minimizing the energy procurement cost. 

Compared to a centralized approach, the use of a distributed approach, limits the information 

that every prosumer needs to communicate.  

In the following, we introduce a distributed procedure based on the ADMM algorithm to solve 

the scheduling problem associated with the operation of the community. The formulation 

follows the proposed approach of (Orozco et al. 2019) and  (Lilla et al. 2020). The main inputs 

of the decisions of each participant in the community are the forecast of his or her own PV 

production and local load. 

In the ADMM algorithm, OF (3.1) is decomposed into local subproblems, one for each 

prosumer i, by means of the Lagrangian decomposition. The objective function of each 

subproblem is given by 

 
buy_Grid sell_Grid

buy i , sell ,

buy buy_Grid sell sell_Grid

, buy i, sell ,

,

min
t t

i i

t t
j i j

t t t t

i i

t t t t ti
P P j j i i j it T

j j
P P

j i j i

P t P t

OF
P t P t

 

 


 
 

  −  +
 

=  
 −  +

 
  

  
  (3.17) 

where 

 
2 2

buy , sell , buy , sell ,
ˆ ˆ[ ( ) ( ) ]t t t t t

i j i i j i j j i

j j
j i j i

m P P P P
 
 

=   − + −    (3.18) 

Equation (3.17) represents the summation of three terms:  

i. costs and revenues associated with exchanges of energy with the external energy 

provider, considering the respective prices; 
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ii. costs and revenues for the energy transactions of prosumer i with the other prosumers, 

where t

i  and t

j  are the Lagrangian multipliers of the equilibrium between power sold 

and bought in each internal transaction; 

iii. the squared norm of the imbalance of each energy transaction between prosumer i and 

every other prosumer j. 

In this scenario, the prosumers’ decisions are coordinated by means of a distributed procedure 

that iteratively updates the multipliers. This procedure only requires the information regarding 

energy exchanges between prosumers, as shown in (Lilla et al. 2020). Furthermore, a distributed 

procedure is more appropriate when the implementation of new transaction methods based, e.g., 

on blockchain (Munsing, Mather, and Moura 2017; Di Silvestre et al. 2018), or, more generally, 

on distributed ledger technologies is required. 

At the beginning of the procedure, Lagrange multipliers t

i , penalization parameter ρ, and scale 

factor m are initialized. Then, at each iteration ν, the local subproblem (3.17) is solved by each 

one of the prosumers considering the set of constraints (3.3)-(3.11) and (3.14)-(3.16) for each 

prosumer i (i.e., the set introduced for the operation model of the community in section 3.1). 

As we can see, constraint (3.2) (from the centralized model) is not present, since the problem 

has been decoupled by means of the augmented Lagrangian function in (3.17). 

Subsequently, the prosumers communicate to each other values 
buy ,

t

i jP  and 
sell ,

t

i jP  obtained at 

the end of their own optimization problem. Then, each prosumer i updates the Lagrangian 

multipliers 
t

i  (i.e., the prices associated with the internal energy exchanges in the community) 

based on the imbalance between their local variables and the values communicated by the others 

prosumers, and denoted by a hat in (3.18), such that: parameters 
buy_Grid 
ˆ t

iP  and 
sell_Grid 
ˆ t

iP  are the 

values in the previous iteration of power bought and sold by prosumer i from and to the utility 

grid, respectively; parameters 
buy ,
ˆ t

i jP  and 
sell ,
ˆ t

i jP  are the values in the previous iteration of power 

exchange between prosumers i and j (i.e., bought and sold respectively). At each iteration, the 

corresponding imbalances will be reflected in the primal residual 
t

ir . 

Furthermore, the convergence of the ADMM procedure is improved by adding the following 

constraints, starting from the second iteration, as they provide a coordination between the 

selling and purchasing decisions of prosumer i with respect to those of the other prosumers: 
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 sell , buy_Grid buy ,
ˆ ˆ    andt t t

i j j j k

i
k j

P P P j k



 +   (3.19) 

 buy , sell_Grid sell ,
ˆ ˆ    andt t t

i j j j k

i
k j

P P P j k



 +    (3.20) 

In order to speed up the convergence of the distributed procedure, the value of penalization 

parameter ρ and scale factor m are adjusted at each iteration according to Figure 3.10, which 

shows the iterative procedure that implements the ADMM procedure, where 
2

   is the 

Euclidian norm and is  is the |T|-dimensional vector of the dual residual elements. 

 

Figure 3.10 Implemented ADMM algorithm with parameter update scheme. 
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according to the case and the characteristics of the REC to accelerate the convergence of the 

algorithm. 

Then, the distributed procedure is iteratively repeated until the absolute values of all residuals 

t

ir  are less than a small tolerance ε. 

Once the procedure converges, t

i  tends to zero, and the value OF for the community is equal 

to the summations of the prosumer’s objectives: 

 i

i

OF OF


=   (3.21) 

As described in (Boyd et al. 2010), the convergence of ADMM to a global optimal point is not 

guaranteed when it is applied to nonconvex problems. However, it will possibly have better 

convergence than other local optimization methods, and it has been successfully applied to 

large-scale mixed integer problems as shown in, e.g.,(Zheng et al. 2018). 

In the models considered in this chapter, the binary variables are used only in indicator 

constraints (3.4) and (3.9). These constraints do not affect the optimal value of the OF but are 

useful for finding the solution among those with the optimal value of OF, which can be more 

easily applied, i.e., avoiding the occurrence of prosumers who buy and sell energy without 

benefit (i.e., at the same price). Furthermore, these constraints, together with (3.19) and (3.20)  

make the ADMM convergence significantly faster. 

In literature, there is a wide range of studies that examine the convergence of the ADMM 

algorithm e.g., (Moret and Pinson 2019) and (Crespo-Vazquez et al. 2020). 

3.2.1 Implementation and numerical tests for the day-ahead ADMM approach 

The distributed approach has been implemented and tested in the AIMMS Developer 

modelling. For this purpose, the MIQP (mixed integer quadratic programming) solver has been 

used for the ADMM model by using the Cplex V12.9 solver. For the test cases considered in 

this chapter, the tolerance parameter ε is assumed to be equal to 15 W. 

For the same case study introduced in the previous section, the total OF value of (3.21) is, 

€18.12. Figure 3.11 shows the total power flow at the connection of the community with the 

utility grid obtained, by means of the distributed procedure.  
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Figure 3.11 Power flow exchanged with the utility grid (positive if consumed by the community): obtained using 

the ADMM approach. 

The power profiles from each prosumer when it exchanges energy with the others i.e., when 

selling and buying, are shown in Figure 3.12 and Figure 3.13, respectively. 

 

Figure 3.12 Power flows from every prosumer when it sells to the others (excluding the utility grid), obtained 

using the ADMM approach. 
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Figure 3.13 Power flows from every prosumer when it buys from the others (excluding the utility grid), obtained 

using the ADMM approach 

Figure 3.14 shows the detail of the SoE profiles of each BES unit in the community and Figure 

3.15 provides the profile of the total energy stored in the BES units of the REC.  

 

Figure 3.14 Battery SoE for each prosumer in the community, obtained using the ADMM approach. 
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Figure 3.15 Total energy in the batteries of the community, obtained using the ADMM approach. 

Figure 3.16 shows the energy prices 
t

i  of each prosumer i. The dotted lines correspond to the 

prices associated with energy transactions with the external provider (i.e., 
buy

t  and sell

t ), while 

the black solid marks represent the transaction prices of the various prosumers when they sell 

energy to any other member of the community. Again, the comparison of Figure 3.16 and Figure 

3.11 also confirm for the distributed approach that the prices of the internal transactions tend to 

be different from 
buy

t  and sell

t  only if there is no power exchange with the utility grid. 

 

Figure 3.16 Energy prices of selling prosumers, obtained using the ADMM approach. 
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Table 3.5 and Table 3.6 compare the individual energy procurement costs of each participant 

in the community, considering: the energy exchanges with the external grid, the internal energy 

transactions and the prices of Figure 3.16; in addition, the tables show the corresponding values 

obtained by preventing the transactions between prosumers. The total energy procurement cost 

of the REC is around 16% less than the corresponding cost without internal transaction among 

the participants. 

Table 3.5 Energy procurement cost in € (negative values indicate revenues) for each prosumer in feeder 1, 

obtained using the ADMM approach. 

Prosumer 1 2 3 4 5 

Cooperative – ADMM 5.24 0.08 0.96 -0.98 -0.65 

Without internal exchanges 5.46 0.28 1.10 -0.82 -0.46 

Table 3.6 Energy procurement cost in € (negative values indicate revenues) for each prosumer in feeder 2, 

obtained using the ADMM approach. 

Prosumer 6 7 8 9 10 

Cooperative - ADMM -0.21 14.80 1.63 -0.47 -2.29 

Without internal exchanges -0.15 16.38 1.71 -0.30 -1.67 

3.2.2 Scalability of the distributed approach  

To perform an analysis of the implemented distributed approach’s scalability, three different 

configurations have been considered for the community, namely:  

• Scenario 1: Two feeders with five prosumers each. The characteristics of the 10 

prosumers correspond to the model considered in the previous case study (i.e., PV-BES 

system and load characteristics) and illustrated in Figure 3.1. 

• Scenario 2: One feeder with 10 prosumers, illustrated in Figure 3.17a. The 

characteristics of the prosumers are the same as in Scenario 1. 

• Scenario 3: Two feeders with 10 prosumers each, as shown in Figure 3.17b. The 10 

prosumers connected to the first feeder are the same considered in Scenario 1 and 

Scenario 2. The additional 10 prosumers of the second feeder are characterized by the 

load profiles shown in Figure 3.18, by the PV panel surfaces shown in Table 3.7 and the 

sizes of the BES units shown in Table 3.8. 
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a)  

b)  

Figure 3.17 Additional configurations considered in the analysis: a) 1 feeder with 10 prosumers; b) 2 feeders 

with 10 prosumers each. Each prosumer is equipped with PV generation, local load and a battery storage system. 

 

Figure 3.18 Load profiles of the 10 prosumers connected to the second feeder in Scenario 3. 
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For all the configurations, the profile of the ratio between power output and panel surface, and 

the price profile of the energy bought from the utility grid, are those shown in Figure 3.3, where 

sell

t is assumed to be half of
buy

t .

Table 3.7 PV panel surface for each prosumer of the second feeder in Scenario 3. 

Prosumer 11 12 13 14 15 16 17 18 19 20 

Area (m2) 36 20 22 25 34 35 15 13 22 33 

Table 3.8 Sizes of the BES units of the second feeder in Scenario 3. 

Prosumer 11 12 13 14 15 16 17 18 19 20 

Size (kWh) 4 3 3 3 5 6 2 1 3 4 

Energy transactions are also allowed between prosumers connected to different feeders. For 

each scenario, the corresponding distributed model has been solved based on the application of 

the ADMM procedure. Table 3.9 compares the computational effort (number of iterations and 

CPU time) for each scenario, where the optimization problems of the prosumers are solved in 

sequence, without considering delays or limitations in the communication channels. 

Table 3.9 Comparison of the computational effort for the three scenarios considered in the scalability analysis. 

Scenario Total prosumers Iterations solution time (s) 

1 10 46 600 

2 10 21 900 

3 20 19 3000 

Furthermore, as expected, the computational effort decreases if a longer Δt is adopted. For 

example, if Δt=30 min, the distributed model of scenario 1 requires 350 s. If Δt=1 h, the solution 

of the same model requires 150 s. 

To illustrate the convergence behaviour of the ADMM procedure, Figure 3.19 shows the 

augmented OF according to (3.17), the OF value of (3.21) and the corresponding average value 

of the primal residuals 
t

ir (denoted by R) at each iteration, for the considered scenarios.

In Scenario 2, the solution of the centralized model needs around 300 s, whilst, for Scenario 3, 

which represents a particularly challenging configuration, due to the presence of 20 BES units 

in two different feeders, the centralized model does not reach the solution in the considered 

maximum time limit equal to 1.5 hours. 
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a)  

b)  

c)  

Figure 3.19 ADMM convergence - Augmented OF; OF value corresponding to the exchanges with the utility 

grid; average value R of primal residuals at each iteration for: a) Scenario 1, b) Scenario 2, and c) Scenario 3. 
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3.3 Allocation of losses associated with the energy exchanges in the 

community 

The proposed approaches considered an estimation of the internal network losses to allocate 

them to each energy transaction between two prosumers or between a prosumer and the utility 

grid. In the following, we describe an additional procedure that improves the estimation of the 

power loss in the internal network for both the centralized and the distributed approaches. 

For both centralized and ADMM-based approaches, in the so-called first stage, the optimization 

is performed by using the already introduced estimation of the power loss, separately for each 

prosumer. Next, in the second stage, the optimization will be carried out a second time in order 

to refine the calculation and the corresponding allocation of the network power loss, this time 

due to all transactions. 

3.3.1 Centralized allocation procedure 

The second stage refines the estimation of the power loss in the internal network by considering 

the concurrent presence of the flows of all the transactions in each branch. Moreover, the second 

stage allocates the losses to each transaction.  

By using the results of the first stage, flow 
t

bF  in each branch, due to all the transactions is 

calculated as 

 Grid , buy_Grid Grid , sell_Grid , , buy ,

t t t t

b b i i b i i b i j i j

i i i j

F A P A P A P
   

= − +     (3.22) 

The total value of power loss 
t

bL  in branch b at time t is calculated by replacing 
,

t

b iF  with 
t

bF  in 

(3.12). In (Conejo et al. 2002), a typical formulation has been considered in which the losses in 

each branch b are proportionally attributed to the transactions that create flows in said branch 

by using coefficients 
buy_Grid ,

t

b iK , 
sell_Grid ,

t

b iK  and 
buy , ,

t

b i jK  (if 
t

bF ≠0): 

 
buy_Grid , Grid , buy_Grid /t t t

b i b i i bK A P F=   (3.23) 

 
sell_Grid , Grid , sell_Grid /t t t

b i b i i bK A P F= −   (3.24) 

 
buy , , , , buy , /t t t

b i j b i j i j bK A P F=   (3.25) 

The optimization is then repeated by using an MILP model for the second stage, in which 

constraints (3.3) are replaced by 
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PV BES_dis buy_Grid buy_Grid , buy ,

Load BES_ch, sell_Grid sell_Grid ,

sell , buy , ,

t t t t t

i i i b i i j
jb B
j i

t t t t

i i i b i

b B

t t

i j b j i

j j b B
j i j i

P P P L P

P P P L

P L






  
 

+ + − + =

+ + + +

+





 

  (3.26) 

where 
buy_Grid ,

t

b iL , 
sell_Grid ,

t

b iL  and 
buy , ,

t

b j iL  are the losses in branch b, attributed to the power 

bought by i from the utility grid, to the power sold by i to the utility grid and to the power sold 

by i to j, respectively. The losses attributed to each transaction are obtained by the product of 

the corresponding coefficient, given by (3.23), (3.24), and (3.25), with the total value of power 

loss 
t

bL  in branch b: 

     buy_Grid , buy_Grid ,

t t t

b i b i bL K L i=    (3.27) 

  

    sell_Grid , sell_Grid ,

t t t

b i b i bL K L i=    (3.28) 

  

       buy , , buy , ,

t t t

b i j b i j bL K L i=    (3.29) 

  

According to (3.26), each prosumer i compensates for losses due to its transactions with the 

utility grid and sale transactions with other prosumers. In fact, we assume that both 
buy ,

t

i jP  and 

sell ,

t

i jP   (which corresponds to 
buy ,

t

j iP ) are measured at the buyer’s connection. 

Constraints (3.22) are included in the second stage model of the centralized approach for each 

branch b and time interval t, and the corresponding power loss, namely 
t

bL , is represented by 

using the piecewise linear approximation of (3.12) given by (3.14)-(3.16).  

In addition to the constraints of the first stage, the model of the second stage includes constraints 

that avoid not-present transactions in the first stage solution: 

 

buy_Grid buy_Grid

sell_Grid sell_Grid

buy , buy ,

0

0

0 and ,  

t t

i i

t t

i i

t t

i j i j

P T i

P T i

P T i j i j

 = 


= 


=  

 (3.30) 

Parameters 
buy_Grid

t

iT , 
sell_Grid

t

iT , and 
buy ,

t

i jT  are equal to 0 if, in the first stage solution, prosumer i 

buys from the utility grid, sells to the utility grid and buys from j, respectively; otherwise, these 
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parameters are equal to 1, under the assumption that transaction decisions are not significantly 

affected by the losses. 

3.3.2 Distributed allocation procedure 

In the ADMM-based approach, we want to preserve the distributed scheme; therefore, we avoid 

constraint (3.22), in which all the purchase and sales decisions of all the participants in the 

community are coupled. 

In (Lilla et al. 2020), an additional procedure, which improves the estimation of the power loss 

in the internal network, has been proposed for the distributed scheduling of a local energy 

community. Following the mentioned procedure, efficiency parameters of each transaction 

(between prosumer i and the grid, or between prosumers i and j) have been included in the 

energy balance of i, as follows: 

 

PV dis buy_Grid buy_Grid buy ,

sell_Grid sell ,

Load ch i

sell_Grid buy ,

and

t t t t t

i i i i i j

j
j i

t t

i i jt t

i t t
ji j i
j i

P P P P

i j
P P

P P



 







+ + + =



+ + +




  (3.31) 

where 
buy_Grid

t

i , 
sell_Grid

t

i , and 
buy i,

t

j  are efficiency parameters assigned to each transaction 

between prosumer i and the grid (i.e., when i buys from or sells to the utility grid) or between 

prosumer i and j (i.e., prosumer j sold to i), respectively. These efficiencies are given by: 

 
buy_Grid ,

buy_Grid

buy_Grid

1

t

b i
t b B

i t

i

L

P
 = −



  (3.32)
 

 
sell_Grid

sell_Grid

sell_Grid sell_Grid ,

t

it

i t t

i b i

b B

L

P

P


+



=


 (3.33)
 

 
buy ,

buy ,

buy , buy , ,

,

t

i jt

i j t t

i j b i j

b B

j i j
L

P

P


+



 =


 (3.34)
 

where 
buy_Grid ,

t

b iL , 
sell_Grid ,

t

b iL , and 
buy , ,

t

b j iL , according to the same definition of the previous section 

(allocation for the centralized approach), correspond to the losses in branch b attributed to: the 

power bought by prosumer i from the utility grid, the power sold by prosumer i to the utility 

grid and the power sold by prosumer i to prosumer j, respectively.  



Chapter 3.  Day-Ahead Scheduling of a Renewable Energy Community 

96 

Following the same rules as in the centralized approach, the corresponding losses are calculated 

at the end of a distributed optimization defined, as in section 3.2 (i.e., optimization in the first 

stage).  

The η calculation can be carried out by a central coordinator that knows the topology and 

parameters of the network and collects the information regarding power exchanges of the first 

stage (i.e., the values 
buy ,

t

i jP , 
buy_Grid 

t

iP , 
sell_Grid 

t

iP  from each member i of the community). In the 

REC, the corresponding calculation could also be done by each prosumer following a 

distributed scheme, to achieve this, the resistance values of the branches, matrix 
Grid ,b iA  and 

arrange 
, ,b i jA , are assumed to be known for every member of the community, and assuming that 

each prosumer communicates its energy transactions to the other members in the community. 

Ultimately, as mentioned, the distributed optimization is repeated considering constraint (3.31) 

as the power balance constraint. 

3.3.3 Results after the loss-allocation procedure for both centralized and distributed 

approaches 

Now, let us consider the introduced procedures to refine the calculation and corresponding 

allocation of the losses to solve the scheduling problem of the community.  

We will consider two different scenarios: the first one corresponds to the case described in 

section 3.1.2, with two feeders and 10 prosumers, each one equipped with a PV-storage system, 

and a second scenario, in which the participants in the same community do not have storage 

systems.  

For both scenarios, the corresponding scheduling profiles and results obtained by the 

centralized and the ADMM-based approaches will be compared.   

A. Case study including BES units in the community

Figure 3.20 shows the total power flow exchanged by the community with the utility grid, after 

the allocation of losses. Figure 3.20 includes the results for both centralized and distributed 

approaches.  

The power profiles from each prosumer when it sells to the other participants in the community 

(excluding the power sold to the utility grid) have been illustrated in Figure 3.21, for both 
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centralized and ADMM approaches. Figure 3.22 compares the corresponding power profiles 

from each prosumer when it buys from the other participants in the REC (excluding the power 

bought from the utility grid). 

 

Figure 3.20 Comparison of the power flow exchanged with the utility grid (positive if consumed by the 

community): scenario with BES units (solid red line: centralized solution, dashed line: ADMM solution). 

Centralized ADMM
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Figure 3.21 Comparison of the power flow from every prosumer when it sells to the other participants in the 

community: scenario with BES units (solid red line: centralized solution, dashed line: ADMM solution). 

 

Figure 3.22 Comparison of the power flow from every prosumer when it buys from the other participants in the 

community: scenario with BES units (solid red line: centralized solution, dashed line: ADMM solution). 

Figure 3.23 shows the profiles of the energy stored in each BES unit, whilst Figure 3.24 

illustrates the total energy stored in the community’s storage systems. 

Centralized ADMM

Centralized ADMM
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Figure 3.23 State of Energy for each BES unit in the community (solid red line: centralized solution, dashed line: 

ADMM solution). 

 

Figure 3.24 Comparison of the total energy stored in the batteries of the community obtained by the centralized 

and the ADMM approach. 

Table 3.10 includes a comparison of the OF values for both stages (i.e., estimation of losses for 

each transaction, and calculation of total losses and allocation, respectively), and the total 

network losses over the 24 hours, obtained for the scenario that includes the BES units.  
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In this case, the distributed approach employs around 220 s / 82 iterations to solve stage two, 

which are added to the solution time of the first stage. The solution of the centralized model 

needs around 8 s for stage two. It is important to notice, that the main purpose of adopting the 

distributed approach instead of the centralized one is not to improve the computational 

performance but to better preserve the privacy and independency of the participants in the 

community. 

In order to present a complete comparison of the proposed distributed approach and the 

centralized one, an additional representation of the centralized model denoted as centralized-η 

has been considered, in which the calculation of the second stage is carried out by the 

centralized model replacing (3.26) with (3.31). 

Table 3.10 Comparison between centralized and ADMM approaches, including the respective total losses 

calculation for the day (scenario with BES units). 

 
OF (€) Losses (kWh) 

Stage 1 Stage 2 Stage 2 

Centralized 18.06 18.35 3.41 

Centralized-η 18.06 18.34 3.35 

ADMM 18.12 18.39 3.44 

The reasonable accuracy of the power-loss representation in the second stage, of both the 

centralized and distributed optimization models, is confirmed by the maximum percentage 

difference of a few percent between the power loss calculated at the end of the second stage for 

each period and the corresponding values obtained by (3.12), with 
,

t

b iF  replaced with 
t

bF .  

Table 3.11 and Table 3.12 compare the energy procurement cost for each participant in the 

community. As already introduced in the previous sections, the cost for each one considers both 

the exchanges with the external grid and the internal exchanges, as well as the corresponding 

prices of the centralized approach in Figure 3.9 and the ADMM approach in Figure 3.16. 

Table 3.11 and Table 3.12 include the procurement cost for each prosumer, assuming that 

energy transactions are not allowed in the community (i.e., without internal exchanges). 
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Table 3.11 Energy procurement cost in € (negative values indicate revenues) for each prosumer in feeder 1, 

obtained after the allocation of losses in the scenario with BES units. 

Prosumer 1 2 3 4 5 

Cooperative – Centralized 5.25 0.08 0.97 -0.96 -0.62

Cooperative – Centralized-η 5.25 0.09 0.98 -0.97 -0.63

Cooperative – ADMM 5.26 0.10 0.99 -0.96 -0.61

Without internal exchanges 5.47 0.29 1.12 -0.79 -0.43

Table 3.12 Energy procurement cost in € (negative values indicate revenues) for each prosumer in feeder 2, 

obtained after the allocation of losses in the scenario with BES units. 

Prosumer 6 7 8 9 10 

Cooperative – Centralized -0.21 14.85 1.67 -0.45 -2.25

Cooperative – Centralized-η -0.21 14.86 1.66 -0.45 -2.23

Cooperative – ADMM -0.20 14.85 1.66 -0.44 -2.24

Without internal exchanges -0.14 16.47 1.74 -0.29 -1.63

The effect of the energy transactions between prosumers is compensated in both solutions given 

by (3.1) and (3.21) (i.e., centralized and distributed, respectively), leading to the total value of 

the OF reported in Table 3.10. 

In general, the comparison of the results given by the centralized and the distributed approaches 

shows a reasonable match, notwithstanding the differences in the individual profiles obtained 

for each prosumer, as shown in Figure 3.21, Figure 3.22 and Figure 3.23. From the results 

reported in Table 3.11 and Table 3.12, the total energy procurement cost of the community is 

around 16% less than the corresponding cost without internal transaction among the 

prosumers. 

B. Case study without BES units

In the scenario in which BES units are not present in the community, Figure 3.25 shows the 

total power flow exchanged by the community with the external energy provider, obtained by 

both the centralized and distributed approaches.  

The profiles of the power flow for each prosumer when selling and buying energy in the 

community are illustrated in Figure 3.26 and Figure 3.27, respectively. 
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Figure 3.25 Comparison of the power flow exchanged with the utility grid (positive if consumed by the 

community): scenario without BES units (solid red line: centralized solution, dashed line: ADMM solution). 

 

Figure 3.26 Comparison of the power flow from every prosumer when it sells to the other participants in the 

community: scenario without BES units (solid red line: centralized solution, dashed line: ADMM solution). 

Centralized ADMM

Centralized ADMM
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Figure 3.27 Comparison of the power flow from every prosumer when it buys from the other participants in the 

community: scenario without BES units (solid red line: centralized solution, dashed line: ADMM solution). 

The OF values for both stages, and the total network losses in the 24 hours, for the centralized, 

the denominated centralized-η and the ADMM approaches for the community scenario without 

batteries are reported in Table 3.13. In the scenario without BES units, the distributed 

optimization problem employs around 60 s/ 13 iterations for the first stage and 80 s/ 8 iterations 

for the second stage. The centralized solution needs around 1s for each stage. 

Table 3.13 Comparison between centralized and ADMM approaches, including the respective total losses 

calculation for the day (scenario without BES units). 

 
OF (€) Losses (kWh) 

Stage 1 Stage 2 Stage 2 

Centralized 26.85 27.19 3.65 

Centralized-η 26.85 27.18 3.62 

ADMM 26.87 27.18 3.63 

Table 3.14 and Table 3.15 compares the individual energy procurement costs of each member 

of the community, taking into account the energy transactions with the utility grid and with the 

other participants. To achieve this, the cost calculation considers the prices obtained by the 

centralized and the distributed approaches for the scenario without BES units and is illustrated 

in  Figure 3.28 and Figure 3.29, respectively.  

Centralized ADMM
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Furthermore, the procurement costs for each prosumer obtained when preventing transactions 

between prosumers are also included in Table 3.14 and Table 3.15. As expected, the comparison 

of these values with the procurement cost obtained by both the centralized and the ADMM 

solutions confirms that each participant in the community has an economic benefit (e.g., 

increasing revenues or reducing costs). The total procurement cost of the community is reduced 

(by about 11%) with respect to the total cost when the energy transactions are not allowed 

between participants. 

 

Figure 3.28 Energy prices of selling prosumers, obtained using the centralized approach (scenario without BES 

units). 

 

Figure 3.29 Energy prices of buying prosumers, obtained using the ADMM approach (scenario without BES 

units). 
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Table 3.14 Energy procurement cost in € (negative values indicate revenues) for each prosumer in feeder 1, 

obtained after the allocation of losses in the scenario without BES units. 

Prosumer 1 2 3 4 5 

Cooperative – Centralized 6.81 0.87 2.09 -0.43 0.23 

Cooperative – Centralized-η 6.82 0.87 2.09 -0.43 0.22 

Cooperative – ADMM 6.83 0.89 2.08 -0.44 0.19 

Without internal exchanges 7.36 1.03 2.16 -0.20 0.37 

Table 3.15 Energy procurement cost in € (negative values indicate revenues) for each prosumer in feeder 2, 

obtained after the allocation of losses in the scenario without BES units. 

Prosumer 6 7 8 9 10 

Cooperative – Centralized 0.08 15.90 2.17 0.10 -0.65 

Cooperative – Centralized-η 0.08 15.90 2.17 0.10 -0.65 

Cooperative – ADMM 0.08 15.95 2.17 0.09 -0.66 

Without internal exchanges 0.16 17.45 2.40 0.18 -0.22 

Appendix B introduces a specific representation of a prosumer-based community in a MV 

network. The referred model corresponds to a centralized approach, which minimizes the 

energy cost and is particularly oriented to reduce the power losses. 

3.4 Integration of dispatchable generating units 

The operation of electrical systems that integrate biogas power generation, non-dispatchable 

renewable generation and energy storage systems has been widely studied as in e.g.,  (Zhou et 

al. 2018; España et al. 2020; X. Zhang, Sharma, and He 2012). In (Lai et al. 2017), a techno-

economic analysis of an off-grid hybrid system including PV-Storage systems and AD-biogas 

power plant has been presented, where the biogas consumption per kWh has  been represented 

by the quadratic function included in (Engine and Data 2009). 

The  scheduling problem for electrical systems including dispatchable units can be addressed 

by means of centralized and distributed approaches, as in e.g., (Xu et al. 2019), where a 

Lagrangian dual approach has been adopted in order to solve the scheduling problem of a 

multicarrier energy system for interconnected microgrids. 

This section is focused on the expansion of the introduced models (i.e., centralized and 

distributed) of the REC to consider one or more participants equipped with a dispatchable 

generator, specifically a biogas-powered generator. 
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In the following, the corresponding formulation to deal with the scheduling problem of the 

community that also considers the cost of energy generation from biogas will be introduced. In 

this context, we will study the impact of the presence of biogas power production on the prices 

of the energy transactions between community participants. The corresponding problem will be 

addressed by both a centralized and distributed approach and analysed for several case studies. 

3.4.1 Biogas-powered producer formulation 

One of the main characteristics of the community model in this section is that the total energy 

procurement cost considers those associated with the biogas-powered generation i.e., 

specifically with the fuel consumption.  

Following  (Lai et al. 2017), the cost of the biogas power generation of a i-th member of the 

community has been defined by (3.35), where the fuel consumption per kWh has been 

represented by the quadratic function included in (Engine and Data 2009) 

 

2

biogas biogas biogas

biogas gas

[ ( ) ]t t t

i i it

i i

P a P bP c
C C

LHV

+ +
=   (3.35) 

with parameters a, b and c equal to 0.0016 (btu/kW3h), -3.935 (btu/kW2h) and 10641 (btu/kWh) 

respectively (according to (Lai et al. 2017)). 

In (3.35) , 
biogas

t

iP  (in kW) corresponds to the power output of the dispatchable generator owned 

by i in time interval t and gas iC  is the AD gas cost (in €/ ft3). The lower heating value (LHV) has 

been considered equal to 905 btu/ft3. 

In order to include (3.35) into an MILP model of the community’s operation, the corresponding 

cost is replaced by its piece-wise linear approximation according to equations (3.36)-(3.38). For 

this purpose, the allowed range of the biogas power output is divided into Nx intervals, each one 

defined by breakpoints xu, such that U = {1, 2, …, Nx} denotes the set of segments. At each 

interval of the power output, breakpoints xu define a corresponding interval of associated costs, 

where u  and u  represent the linearization parameters of the u-th segment. The allowed range 

is defined by max

biogasP  and min

biogasP  (in kW), which are the maximum and minimum power output, 

respectively. 

 
gas

biogas biogas( )
it t t

i u i u i

C
C P w u U

LHV
  +    (3.36) 
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3 2

1 1 1 1u u u u u ua x b x c x x u U − − − −= + + −    (3.38) 

with 
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if 1

if 1,
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u

x
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N
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

  (3.39) 

Constraints (3.40)-(3.44) complete the model of the biogas power plant owned by prosumer i. 

 
min max
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Constraint (3.40) limits the power output of the biogas unit within its minimum and maximum 

value (i.e., min

biogasiP  and max

biogasiP , respectively). In (3.41), the daily amount of fuel consumption (in 

ft3) is bound by maximum value maxday

fueliC . In (3.42), the non-negative variable 
t

iSU   is used to 

indicate whether the biogas power plant owned by i starts up at time interval t or not, whilst  

(3.43) allows each biogas power plant to be started-up only once during the following day. 

Constraint (3.44) includes binary variable 
t

iw , which indicates whether the biogas power plant 

owned by prosumer i is on or off during time interval t. 

The case studies included in this chapter consider a biogas power generator with max

biogas iP  equal 

to 20kW; min

biogasiP  is assumed equal to 20% of max

biogas iP . Since the size of the considered biogas 

power plant is quite small, start-up and shut-down costs are neglected. 
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3.4.2 Centralized and distributed approaches to solve the scheduling problem 

In order to consider the participation in the community of producers that own biogas-fuelled 

generators, the centralized and the ADMM models proposed in section 3.1 and section 3.2, 

respectively, are extended to include the relevant cost and operational constraints associated to 

such units. 

A. Objective function and formulation for the centralized model

In the centralized model, the OF (3.1) is modified by including the piece-wise linearization of 

cost (3.35); thus, the total objective function minimizes the total energy cost given by 

buy buy_Grid sell sell_Grid biogas min t t t t t

i i i

t T
i

OF P P C t 



 = − +   (3.45) 

Then, the scheduling problem is solved considering the set of constraints (3.2)-(3.16) and (3.35)

-(3.44). 

For the community with dispatchable generation, the power balance constraint (3.3) is replaced 

with (3.46), in which the power output at time period t of the available biogas-power generators 

are included 
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

 
 (3.46) 

The maximum power that a biogas-powered producer i can sell (i.e., 
max

sell iP ) corresponds to 

max

biogasiP . 

B. Objective function and formulation for the distributed model

The scheduling problem is suitable to be represented with a distributed optimization model 

based on the ADMM procedure. In this case, the OF (3.45) is decomposed into sub problems 

for each participant i in the community  

buy buy_Grid sell sell_Grid biogas

buy i, sell ,

min

t t t t t

i i i

t t t t ti
j j i i j it T

j j
j i j i

P P C
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P P
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 


 
 

 − +
 
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+ − +
 
  

  
(3.47) 
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where 
biogas

t

iC  corresponds to the piece-wise linearization of cost (3.35) for the i-th member of 

the community that owns a generator (otherwise it will be equal to zero); t

i , defined by (3.18)

, penalizes the imbalances between the intended energy transactions of i and the other 

participants. 

Problem (3.47) is iteratively solved by each one of the members of the community, individually 

considering, for each participant i, constraints (3.4)-(3.16), power balance (3.46) and 

constraints (3.35)-(3.44) relevant to the operation of a dispatchable generator owned by i. 

Following the implementation of the ADMM approach of section 3.2, the values of t

i  are 

iteratively updated to reduce the imbalances associated with the energy transactions that 

involves i. For this purpose, at each iteration, all the participants share with the others the 

resulting values of their local values, namely 
buy ,
ˆ t

i jP  and 
sell ,
ˆ t

i jP  in (3.18).

The ADMM procedure reaches the convergence when the values that reflect the imbalances are 

below a defined tolerance ε (assumed equal to 20 W in the case studies included in this section). 

The implemented approach follows the updating scheme for the penalization parameter ρ and 

scale factor m at each iteration (introduced in section 3.2) to speed up the convergence of the 

distributed solution.  

Once the procedure converges, 
t

i  tends to zero, and the value of the total OF for the community 

is equal to the summations of the resulting values of every i-th sub problem. 

3.4.3 Case studies for the integration of PV-storage systems and dispatchable generation 

In the following, we describe the case studies that have been adopted to test the performance of 

both centralized and distributed approaches. For comparative purposes, the case studies 

preserve total values of the daily-energy generated by PV units, the daily-energy demand and 

installed storage capacity (i.e., 231 kWh, 313 kWh and 30 kWh, respectively) of the base case 

introduced in section 3.1.2. 

• Case I – considers a REC with a biogas-powered plant owned by one of the participants

(with max

biogasiP  = 20 kW, gas iC = 9.97 €/mcf and maxday

fueliC =3300 ft3), together with nine 

prosumers equipped with PV units, BES units and local loads each. The corresponding 

scheme has been illustrated in  Figure 3.30a. 



Chapter 3.  Day-Ahead Scheduling of a Renewable Energy Community 

 

110 

 

• Case II – same scheme as Case I, but without any BES unit. 

• Case III – same scheme as Case I, but considering a more restricted fuel consumption 

availability in the biogas unit ( maxday

fueliC =1000 ft3). 

• Case IV – considers a community of eight prosumers equipped with PV units and 

batteries (other than loads and, in addition, two biogas-powered plants, as in Figure 

3.30b).  The maximum power output, and the gas cost of both biogas power plants, are 

set equal to 20kW and 9.97 €/mcf, respectively. 

• Case V – same scheme as Case IV, but with different gas costs gas iC  for each biogas-

powered generator (9.97 €/mcf for Biogas 1 and 10.97 €/mcf for Biogas 2). The 

maximum power output is equal to 20 kW for both generators. 

a)  b)  

Figure 3.30 Scheme of the community that includes biogas-powered producers: a) Cases with a biogas unit; b) 

Cases with two biogas units. 

Table 3.16 shows the OF value, total daily fuel consumption and percentage of the community 

self-consumption for each case study. The reported results have been obtained by employing 

both the centralized and the ADMM approaches. Moreover, Table 3.16 shows the total solution 

time needed from each approach and the total number of iterations of the distributed solution. 

In general, the results in Table 3.16 for the centralized and the ADMM approaches are similar 

and confirm that the scheduling problem of the community with dispatchable units is suitable 

to adopt both approaches. It is important to notice that the ADMM approach is oriented to limit 

the information that participants share in the community and not directly oriented to improve 

the solution time in the case studies. 
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Table 3.16 Case-Studies results for the community with the presence of dispatchable generation. 

Approach Case I Case II Case III Case IV Case V 

OF (€) 
Centralized 5.2 11.4 7.0 1.7 3.2 

ADMM 5.5 11.4 7.3 1.8 3.6 

Total fuel consumption (103·ft3) 
Centralized 2.0 2.0 1.0 3.4 2.7 

ADMM 2.0 2.0 1.0 3.4 3.4 

Self-consumption (%) 
Centralized 72 70 69 73 73 

ADMM 70 70 66 73 73 

Solution time (s) 
Centralized 35 15 48 62 30 

ADMM 910 400 920 940 935 

Iterations ADMM 41 26 51 64 38 

Some details of the solutions are illustrated by Figure 3.31-Figure 3.39 obtained by using the 

centralized approach. For Case I, Figure 3.31 shows the energy prices of the prosumers and the 

biogas-powered producers when selling energy in the community (excluding transactions with 

the external provider); Figure 3.32 also shows marginal cost for the Biogas unit and the energy 

price when buying and selling energy to the external grid. The total power flow exchanged with 

the external grid (assumed positive if it is consumed by the community) and the power output 

of the biogas unit are shown in Figure 3.32. 

Figure 3.31 Energy prices in the community and marginal cost for the biogas unit in Case I. 
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Figure 3.32 Total power flow exchanged by the community with the external grid (positive if consumed by the 

community) and power output of the biogas unit in Case I. 

From Figure 3.31 and Figure 3.32, we can see that the prices of the energy in the community 

(i.e., associated with transactions between participants) are, in general, aligned with the 

marginal cost of the biogas unit for those moments when the REC does not exchange energy 

with the utility grid.  

At the end of the day (around 9 pm and 10 pm), the prices in the community are higher than the 

marginal cost of the biogas unit, even during the period without exchange of energy with the 

external grid. In this period, energy production from the biogas-powered generator, as well as 

charging and discharging processes in the prosumers BES units, occurs simultaneously.  

This effect on the prices is reasonably related to the activity of the BES units that, at the end of 

the day, are constrained to reach the same energy level as at the beginning of the day. To see 

such an effect of the BES units’ operation on the prices, Figure 3.33 and Figure 3.34 show the 

corresponding results for Case II (without any BES unit).  

In Figure 3.33, for the scenario without BES units, the prices of the energy transactions in the 

community are aligned; to 
buy

t  if the community globally imports energy, to sell

t  if the 

community is globally exporting energy and to the biogas marginal price if there are not energy 

exchanges with the external grid while the biogas unit is operating. 
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Figure 3.33 Energy prices in the community and marginal cost for the biogas unit in Case II. 

 

Figure 3.34 Total power flow exchanged by the community with the external grid (positive if consumed by the 

community) and power output of the biogas unit in Case II. 
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being at minimum power during the midday hours. On the other hand, if the total fuel 

consumption is limited to a lower value (Case III), the biogas power plant is used for a shorter 
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Figure 3.35 Daily profile of the fuel consumed by the Biogas unit in Case I with 
max day

fuel iC =3300 ft3 (black line) 

and Case III with 
max day

fuel iC =1000 ft3 (red dashed line). 

In Case IV and V, with two biogas units, with equal and different gas costs, respectively, the 

selling prices of both biogas units are aligned with a common value. The corresponding prices 

for Case IV are illustrated in Figure 3.36, and in Figure 3.37 for Case V. 

 

Figure 3.36 Energy prices in the community and marginal cost for the biogas units in Case IV. 
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Figure 3.37 Energy prices in the community and marginal cost for the Biogas units in Case V. 

Figure 3.38 shows the daily profile of fuel consumed by the two dispatchable units in Case IV, 

in which the same gas cost has been assumed for both generators, while Figure 3.39 shows the 

fuel consumption profiles for the biogas units in Case V (assuming different gas costs).  

 

Figure 3.38 Daily profile of the fuel consumed by the biogas units in Case IV: Biogas 1 (black line) and Biogas 2 

(red dashed line), both with the same gas iC = 9.97 €/mcf. 
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Figure 3.39 Daily profile of the fuel consumed by the biogas units in Case V: Biogas 1 with 
gas iC = 9.97 €/mcf 

(black line) and Biogas 2 with 
gas iC = 10.97 €/mcf (red dashed line). 

The comparison between Figure 3.38 and Figure 3.39 shows that the higher cost for the Biogas 

unit 2 in Case V limits its use to a shorter time period than the one defined for the Biogas unit 

1. Consequently, in that case, the operation of Biogas 2 is limited to a period between 6 pm and 

10 pm, in which the conditions seem to be the most convenient to reduce the procurement cost, 

as previously discussed. 

3.5 Conclusions of the chapter 

This chapter has been focused on the study of the day-ahead scheduling of resources in 

renewable energy communities.  

The grid-connected community considered in this study is characterized as being local and 

cooperative; that is, the participants in the community have agreed to cooperate in order to share 

their energy resources with the common goal of minimizing the total energy procurement costs. 

The participants in this REC might be equipped with generating units, ESSs and local loads. 

To define a solution for this scheduling problem, which is consistent with the billing scheme 

and the metering units of the community, a centralized approach and then a distributed 

approach, based on the ADMM algorithm, have been formulated. 
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As already mentioned, the objective function for both approaches seeks the minimization of the 

energy procurement cost during the day. However, compared to a centralized approach, the 

distributed one, like ADMM, has been oriented to better preserve the privacy and decisional 

independency of the participants in the community. In fact, the information that each participant 

must communicate with the community is limited to those actions/decisions that compromise 

the other members, such as the intended transactions of energy with the other members. 

For the base case included in this chapter, the results obtained by using the proposed distributed 

optimization have been compared with those from a centralized approach based on an MILP 

model. 

As a result, both the centralized approach and the distributed one provide comparable results 

with an acceptable computational effort. Moreover, we found in detail that each prosumer in 

the community was able to make the cost optimal decisions, regarding optimal moments to 

charge and discharge the batteries, the energy transactions with other prosumers, and the 

exchange of energy with the external grid, leading to a match between the objective function 

values of both approaches. 

The centralized approach couples the exchanges of energy between the members of the REC, 

assuring the balance between such transactions (from the point of view of the seller and the 

buyer); hence, the prices of the energy transactions between participants correspond to the 

Lagrangian multiplier of the constraint, which couples every transaction between members, 

obtaining a common value for everyone at each time period. 

On the other hand, in the distributed procedure, the prices are updated at each iteration to reduce 

the mismatch between the energy sold by each participant i and the energy bought by the other 

members that bought from i; notwithstanding the difference with the centralized scheme, the 

profiles of the prices are similar. 

In a detailed analysis of the procurement cost for each member of the community, we have 

confirmed that by means of both centralized and ADMM optimizations, it is possible to 

guarantee an economic benefit (increasing revenues or reducing costs according to the 

characteristics of the participant) for each prosumer that joins the community with respect to 

the case in which the individuals can exchange energy only with the external provider. 

A further analysis of the scalability shows that the proposed day-ahead ADMM procedure can 

be applied to realistic configurations with a large number of prosumers, without compromising 
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the overall performance and keeping an acceptable computational effort over the corresponding 

situation in a centralized approach.  

Moreover, in the second section of the chapter, the community picture has been extended to a 

REC that integrates dispatchable units, specifically biogas-powered units. 

The obtained results for the considered cases confirm that the proposed formulation is suitable 

to adopt either a centralized or a distributed approach with similar results.  

Several case studies have been considered, and the results obtained by using the proposed model 

formulation show that the adoption of a biogas power plant can ensure high percentages of self-

consumption. Moreover, if the biogas production is somehow restricted, the optimization model 

schedules the biogas power plant operation according to the most convenient time period of the 

day. 

Finally, we have seen that the introduction of a biogas power plant in the community modifies 

the prices of the internal energy transactions between prosumers, which, in this case, can also 

be aligned with the marginal cost of the biogas units. 
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Chapter 4. Uncertainties and Intra-Day Operation 

of the Renewable Energy Community 

Introduction

“Adaptative operation and flexibility in front of future events” 

ince the forecasts for generation from RE and energy demand are affected by

significant uncertainties, the scheduling approaches of RECs are getting more 

oriented each time to consider such uncertainties in order to exploit the energy resources 

in the community in the most cost-effective and technically feasible way. 

As already mentioned in a previous chapter, stochastic optimization approaches are 

widely used for day-ahead scheduling of electrical systems (e.g.,(Bhattacharya, 

Kharoufeh, and Zeng 2018) and (S. Wang et al. 2019)). In (Orozco et al. 2020), we 

studied the adoption of a day-ahead multistage stochastic approach for the scheduling 

of a small community. In this approach, the solution of the stochastic problem is 

employed to make decisions during day (e.g., at the end of each stage), updating the 

scheduling according to an intra-day procedure that finds the best fit between the actual 

PV and load profile and the scenarios considered in the day-ahead procedure. 

To deal with the impact that uncertainties and fluctuations have on the performance of 

the EMS of electrical systems, and specifically of energy communities, several studies 

in the literature have been focused on the integration of day-ahead and intra-day 

scheduling approaches. 

The best integration of day-ahead and intra-day scheduling of energy systems is 

achieved by hierarchical and online control approaches able to respond to the variations 

in the operational conditions as dealt with in, e.g., (De Filippo 2020) and references 

therein. For instance, (Fan, Ai, and Piao 2018) presents a hierarchical EMS for a 

microgrid, including energy storage and demand response applications, which considers 

a multi-time scale link between the day-ahead scheduling and the intra-day operation. 

In (Bao et al. 2015a) and (Bao et al. 2015b), the day-ahead scheduling model of a multi-

S 
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energy microgrid considers the uncertainty of RE generation, while a real-time 

dispatching model is employed to smooth out the fluctuations of generation and demand 

during the day. Moreover, in (Shi et al. 2017) an online EMS employs a stochastic model 

to solve the optimal power flow of an MG. 

In (Crespo-Vazquez et al. 2020), clearing decisions for an energy community are made 

day-ahead by an ADMM-based two-stage approach in order to consider uncertainties in 

the model. Subsequently, a real time model, which has been assumed deterministic, is 

employed by each agent (i.e., participant in the community) to make new decisions, 

while keeping day-ahead commitments in the REC. 

Furthermore, model predictive control (MPC) (see e.g., (Scattolini 2009)) techniques 

have been proposed to coordinate, in real time, the response of controllable resources 

of multi networked microgrids (e.g., Parisio et al. 2017). 

This chapter focuses on the study of a coordinated day-ahead and intra-day multistage 

stochastic strategy to deal with the distributed optimal scheduling of a community.  

In this case, the day-ahead scheduling of the community is defined by means of a 

multistage stochastic optimization. To achieve this, the uncertainties associated with the 

PV generation and energy consumption are represented by a scenario tree that combines 

the scenarios of all the participants in the REC. Next, the intra-day decision-making 

procedure is implemented as a recursive receding horizon optimization in order to 

mitigate the effect of the fluctuations in energy generation and demand.  

This framework is suitable for the implementation in the automatic EMS of a REC and 

is characterized by some original aspects with respect to those already presented in the 

literature, since it allows a close coordination between day-ahead and intra-day 

scheduling, the use of the distributed approach in all the phases of the optimization 

procedure, and the definition of the fair prices of the internal transactions. 

In the first part of this chapter, we present the implemented procedure for generating the 

corresponding scenario tree and the solution of the day-ahead multistage stochastic 

problem. Subsequently, the decision-making procedure, employed to adjust the 

operation of the REC during the day, is introduced. Finally, the performance of the 

coordinated approach is analysed by using a base case of prosumers in a LV network 

and a second case, in which a transactive scheme in an MV network has been adopted.  
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4.1 Day-ahead multistage approach to consider the uncertainties 

In this chapter, we propose to extend the distributed scheduling approach to a coordinated day-

ahead and intra-day strategy to deal with the scheduling problem of the REC considering 

uncertainties.  

The scheme proposed has been illustrated in Figure 4.1, in which the solutions provided by the 

day-ahead multistage model are used as an operational framework for the intra-day decision-

making procedure, which is carried out by the REC at each time t during the day (divided into 

stages). 

 

Figure 4.1 Scheme for the scheduling of the REC, employing a coordinated day-ahead and intra-day strategy. 

To achieve this, first, we adopted a day-ahead scenario-based approach to determine a set of 

possible solutions (i.e., scheduling plans), which flexibly respond to the current operation of 

the community; therefore, the ADMM community model has been extended to a multistage 

stochastic model.  

The second chapter, specifically section 2.1.3, introduced the concept of multistage stochastic 

optimization to deal with the uncertainties in a scheduling problem limited to a single LES 

equipped with a PV-Battery system. By applying the proposed multistage scheme, the LES can 

adjust the set values of the battery at the end of each stage during the day, choosing the most 

convenient option from a set of day-ahead calculated solutions.  

Following the scheme presented in (Orozco et al. 2020), we can extend the ADMM scheduling 

of the REC, proposed in section 3.2, to take into account the uncertainties associated with the 
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day-ahead forecasts of the PV generation and loads consumption, adopting a multistage 

stochastic scheme.  

Let us consider, in this section, four stages to represent the realization of the stochastic 

processes. In this scheme, the day-ahead multistage solution provides the corresponding set 

values of decision variables at the beginning of the day and, subsequently, every eight hours. 

In this case, the power output of the BES units in the community (i.e., ch 

t

iP  and dis 

t

iP ) are 

assumed as the decision variables of the model; the other variables are calculated at the end of 

each stage for all time intervals in the stage. 

As we already know, the multistage stochastic optimization needs a scenario tree, which 

represents the realization of the considered stochastic processes during the day (i.e., PV 

generation and energy consumption). In this approach, the scenario tree for the entire REC will 

be obtained by using a structure that considers the individual situation of each participant.  

In the following, we present the procedure adopted to generate a set of initial scenarios for each 

prosumer i. Next, the routine implemented to obtain a common scenario tree for the entire 

community is described. 

4.1.1 Scenario generation for each participant 

We adopt a scenario generation technique that applies a Markov-process considering the 

autocorrelation between consecutive observations starting with the forecast PV 

t

iP  and Load 

t

iP  

(i.e., PV generation and load, respectively), as described in (Orozco et al. 2018) and used in the 

case of a single LES in Chapter 2.  

To achieve this, let us define a set of scenarios for each prosumer i denoted with Φi. Index φi 

denotes the scenario index corresponding to prosumer i. A maximum deviation has been defined 

so that the obtained scenario does not exceed the ±20% band with respect to both Load

tP  (for all 

the 24 hours) and to PV

tP  (for 75% of the periods). As we already know (from 2.1.3), the 

definition of these limits avoids unrealistic scenarios and guarantees that the scenarios are 

coherent with the day-ahead forecast profiles. 

We have considered the base case of a REC composed of 10 prosumers organized in two 

internal feeders (i.e., five prosumers in each feeder) and connected to the same LV feeder, as 

the one considered e.g., in Figure 3.1.  
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In this case, for each one of those prosumers, equipped with a PV unit and a local load, a set of 

200 scenarios has been obtained (i.e., |Φ|=200). For illustrative purposes, in the results reported 

for the base case (section 4.3.1), an example of the initial set of scenarios of the PV generation 

and load for one of the prosumers in the REC has been included (seen Figure 4.4).  

From this initial set of scenarios, we denote a scenario 
i

t

  of prosumer i as the normalized 

difference between PV production and load for prosumer i, for each period t, namely 

 
PV Load 

PV Load 

        i i

i

t t

t

t t

i i

P P

P P

 


−

=
−

 (4.1) 

4.1.2 Construction of the common scenario tree for the community 

Since we want to achieve a coordinated response to the uncertainties in the community, a 

procedure that considers the stochastic information of each prosumer in a common tree has 

been defined. 

In (Orozco et al. 2020), a routine that merges the individual scenario tree of each participant by 

means of a combinatorial definition of possible scenarios has been presented. However, the 

computational effort limits the number of stages and size of the community (i.e., the number of 

participants).  

In this chapter, we consider that the prosumers are able to share their initial set of scenarios 
i

t

  

with the community without comprising private information. Since 
i

t

  is given by (4.1), 

neither the value of the PV generation nor the energy demand will be directly readable. 

In order to deal with the problem of scalability and computational effort, an N-dimensional 

(with N equal to the number of prosumers) set Г of scenarios is conformed to generate a tree by 

means of a k-means clustering procedure. Each one of these scenarios is defined by the structure 

 
1 2 , ,...,  

N

t t t t

       =     (4.2) 

In the base case considered, N=10 and index φ has a value between 1 and 200. 

With the introduction of this structure, the community can coordinate a response to the 

uncertainties associated to the operational conditions, while preserving the distributed nature of 

the scheduling approach. 
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Ultimately, the scenario tree for the community is obtained by a clustering procedure based on 

the k-means algorithm, like the one introduced in section 2.1.3, and applied to the total set of 

initial scenarios Г.  

The k-means clustering might be carried out by a coordinator unit and then communicated 

within the REC, or by each one of the prosumers, locally, obtaining a common scenario tree for 

all the participants. 

The so-called elbow method and silhouette coefficient are direct methods used to determine the 

number of centroids (e.g., (Yuan and Yang 2019) and references therein). The first one looks 

for a reduction in the average distance of the aggregated data to the relevant centroid (i.e., the 

average value of sum of the squared errors SSE calculated for each scenario), and the second 

one reflects the relationship between the mean intra-cluster distance (i.e., distance from a 

sample to the other samples in the cluster) and the mean nearest-cluster distance (i.e., distance 

from a sample to all the samples in the nearest-cluster) of each sample.  

The silhouette coefficient for each scenario   is given by 

 

( )
( ) ( )

( )
max ( ), ( )

b a
s

a b

 



 

 


 

−
=   (4.3) 

where ( )a   is the mean intra-cluster and ( )b   the mean nearest-cluster distance of each 

scenario. The average value of ( )s   shows how well the scenarios have been classified. A 

high coefficient value is desired in order to reduce the intra-cluster dissimilarities (i.e., good 

cohesion) and to increase the inter-cluster dissimilarities (i.e., avoiding the presence of outliers). 

Table 4.1 shows the values obtained for the average SSE and the average of the silhouette 

coefficient for the first eight hours of the day and for several number of clusters in the base 

case. 

Table 4.1 Elbow method and silhouette coefficient for the selection of the number of centroids: Base case. 

Number of centroids 3 4 5 6 7 8 9 

Average SSE 98.91 79.14 72.15 63.95 52.54 47.10 40.41 

Average ( )s    0.54 0.53 0.52 0.50 0.53 0.50 0.51 

The goal is to reduce the average distance reported by the elbow method, employing a 

reasonable number of centroids, and increasing the accuracy (i.e., silhouette coefficient). 
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However, when considering the silhouette coefficient, we can see that the accuracy of the 

aggregation could be undermined by a higher number of centroids, depending on the considered 

application. As a result, the number of centroids is influenced by the data structure (i.e., 

complexity and structure of the samples) and the search for reasonable solution time and 

computational effort. The numerical results presented in this chapter for the base case, have 

been obtained assuming three centroids for the k-means procedure. Figure 4.2 shows the 

scenario tree obtained by the community in the base case (starting from 200 initial scenarios). 

4.1.3 Multistage stochastic solution

The solution from the scenario-based multistage scheduling provides the optimal set values of 

the decision variables in each node of the scenario tree. 

To achieve this, an ADMM procedure, like the one introduced in section 3.2, is employed to 

solve the scheduling problem for each one of the final scenarios in the tree, where the values of 

PV 

t

iP  and Load 

t

iP  are given by the corresponding scenario in the tree  . A tolerance ε equal to 

25 W has been assumed for the day-ahead ADMM calculations of the base case, and t equal 

to 0.25 h. 

In the referred ADMM procedure, the local subproblem (3.17) is solved by i considering set of 

constraints (3.3)-(3.11) and (3.14)-(3.16). The charging and discharging efficiencies limit the 

advantage of a simultaneous occurrence of these processes in the batteries. In this chapter, we 

have modified the set of constraints, excluding indicator constraint (3.9), and the binary 

variable  associated with the operation of the BES unit BES 

t

iu . Leading to a reduction in the

number of binary variables of the model, this modification has been especially oriented to speed 

up the solution time of the coordinated solution that also includes an online calculation. 

However, at some iteration, the optimization of i could eventually provide a solution that 

charges and discharges the battery at the same time period t, allocating some excess of energy 

without generating losses associated with transactions. When this occurs, the binary variable 

BES 

t

iu is activated, and the local optimization of i is repeated including constraint  (3.9).

Once the situation has been corrected, the iterative process continues without BES 

t

iu and  (3.9).

Based on the numerical tests in this chapter, this correction occurs in less than 0.1% of the total 

number of local optimizations performed in the implemented ADMM algorithm. Additionally, 

the OF value of the relevant prosumer is slightly corrected in the process. 
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Figure 4.2 Scenario tree for the community using three centroids. In red, an example of the corresponding 

decision given by the intra-day decision-making procedure at the beginning of the day, and, subsequently, at the 

end of each stage. 

In addition, as we know, a feasible multistage stochastic solution requires the implementation 

of non-anticipativity constraints, to assure the coherence of the stochastic variables during the 

day, in scenarios with common nodes in the tree. In other words, for those scenarios in the tree 

that share common nodes in their path from the root to the leaf, the non-anticipativity 

constraints, bind their decision variables to be equal at every common node (i.e., values 

regarding 
ch

t

iP  and 
dis

t

iP  for the relevant stage). 

4.2 Intra-day decision-making procedure including online optimization 

Until now, the implementation of a multistage decision-making procedure allows the 

community to more flexibly respond to the fluctuations of the PV generation and the load 

Time (hour)
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throughout the day. However, for practical considerations, the definition of a finite number of 

stages, and the corresponding number of periods aggregated in each one of them, limits the 

system to more accurately follow the intra-day optimal solution considering significant 

deviations in a higher time resolution. 

Therefore, in the proposed coordinated approach, the scenario-based solution of the day-ahead 

scheduling is employed to provide a framework for the intra-day operation. Next, it is exploited 

by using an intra-day decision making-procedure at every time period t, which coordinates the 

multistage solution with an online calculation that adjusts the operational set values also inside 

the stages 

In general, while the decision-making procedure introduced for a LES in  section 2.1.4 aims at 

identifying the most suitable decision at the beginning of each stage with the corresponding set 

values for all the periods in the stage, in this section, the decision-making occurs at every time 

period (i.e., every 15 minutes), adjusting the set values in the REC, based on the considered 

time step t . 

By means of the Euclidean distance, the intra-day decision-making procedure is able to identify, 

using the common tree of the community, the scenario that best matches up to time t, the profile 

of the difference between the local generation and the energy demand from the previous 

observations (i.e., measurements of PV generation and energy demand).  Each prosumer 

performs its own comparison of the local profiles and shares the corresponding distance with 

the others in order to make a joint decision based on the structure of the common scenario tree. 

In Figure 4.2, the red dots represent an example of the decisions provided by the intra-day 

decision-making procedure at the end of each stage.  

Since there is a common root node, the starting decision (without any previous knowledge of 

events) implies only one possible state of charge for the BES units at the end of the first eight 

hours, which depends on each prosumer. From the tree in Figure 4.2, at the beginning of the 

day, the REC considers, for the first eight hours, the operational framework associated with the 

node referred to Scen-196.  

Then, based on what occurred during the first eight hours, the community updates the 

operational framework,  in a coordinated way, to the solution of the most similar and, in a 

certain way, expected scenario for the following eight hours (i.e., Scen-174 in the example).  
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Afterward, in the example, a decision updates the operational framework again for the last eight 

hours, choosing the node referred to Scen-155. 

Once the community has identified the corresponding operational framework from the tree, the 

online calculation is carried out at each time period in the relevant stage in order to adjust the 

set values for the operation of the REC (i.e., the power output of the BES units and the energy 

transactions between prosumers). 

4.2.1 Online calculation: implementation and characteristics 

Figure 4.3 illustrates the time scheme adopted to deal with the scheduling problem at each one 

of the stages.  

• At first, as already described,  the decision-making procedure defines the corresponding 

operational scenario for the stage in a coordinated action for all the prosumers. The 

procedure provides the expected profiles of PV 

t

iP  and Load 

t

iP  for the stage and the 

corresponding set values for the BES units, based on the day-ahead multistage solution.  

• Next, the online calculation is carried out at each time period tm by using the available 

measure of the energy generation and load.  

Adopting an online calculation, like receding horizon control or MPC strategies, a 

distributed optimization, with horizon time from the current tm until the last period in 

Ts, is carried out by the REC.  

• Finally, the resulting values for the first corresponding t  are implemented. The 

calculation is repeated at each period until the end of the stage. 

 

Figure 4.3 Scheme for the coordinated scheduling of the REC at each stage. 
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The online optimization of the REC employs a distributed procedure based on the ADMM 

model, like the one employed by the multistage solution, and described in detail in section 3.2, 

adding the following characteristics: 

A. Implementation of a parallel scheme 

To obtain a low time calculation in comparison with the duration of each t , a parallel scheme 

of the consensus algorithm ADMM has been adopted. In the online calculation,  (3.18) is 

replaced by (4.4). 

 
2 2

exc , exc ,sell , buy ,[ ( ) ( ) ]
t t

t t t
j i i ji i j i j

j j
j i j i

m P P P P
 
 

=   − + −    (4.4) 

where 

 exc , buy , sell ,

1 ˆ ˆ( )
2

t t t
i j i j j iP P P= +   (4.5) 

B. SoE at the end of each stage as an operational condition 

The SoE of the BES units at the end of the current stage (i.e., at the end of the optimization 

horizon of the online calculation) are fixed according to the result of the decision (i.e., chosen 

scenario) at the end of the previous stage. This allows us to reduce the number of variables (i.e., 

the associated computational effort), while keeping a good performance of the OF. For this 

purpose, (3.8) is replaced by (4.6) in the intra-day implementation. 

 

1 1 1

end

nitial

BES BES ch ch dis 

final

BES BES 

dis ( / )
s s ss

s s

t t t t t ti

i i i i i

t t

i i

iE E P P t

E E

= = =

=

 = + 


=

−
  (4.6) 

where 1

st  corresponds to the first time period of stage s; end

st  represents the last period of stage 

s; nitial

BES 

si

iE  and final

BES 

s

iE  represent the initial and final SoE of BES unit i in stage s, respectively. 

C. Intra-stage update of the expected profiles of PV 

t

iP  and Load 

t

iP  

Each local subproblem (3.17) at period tm employs the predicted profile of power generation 

and load for the remaining time in the stage (i.e., st T   such that mt t ) together with the 

current measurements to define the optimal set values. 

The scheme could be adapted to consider a new forecast profile, if any is available during the 

day, as an input of the online optimization; otherwise, the available stochastic information of 
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the scenario tree is used. In that case, the expected profiles PV 

t

iP  and Load 

t

iP  are chosen from 

those associated with the possible scenarios (i.e., branches in the stage) that follow the last 

decision node in the tree. The selection of the scenario at each period results from the decision-

making (e.g., based on the Euclidean distance) occurring inside the stage at each period. 

D. Warm start for the online calculation   

A warm-start scheme in the online ADMM (e.g., (Boyd et al. 2010)) is adopted to initialize .t

i  

Instead of using a default initialization of the Lagrangian multipliers for all the periods tm, the 

procedure uses the prices t

i  obtained by the day-ahead scenario-based solution. The same 

principle is applied to define initial values of 
buy ,
ˆ t

i jP  and 
sell ,
ˆ t

j iP  to obtain a starting value for 

exc ,

t

i jP . The mentioned initialization at each tm depends on the result of the intra-stage evaluation 

of the most suitable scenario of the tree, providing a good enough approximation to determine 

the initial values at the first iteration and resulting in fewer iterations. 

As a result, considering the mentioned characteristics, each prosumer in the REC updates, in a 

coordinated, cost-effective way, at each period t, the scheduling of the BES unit, the exchange 

of energy with other prosumers and the corresponding transactions with the external provider. 

4.3 Case studies and numerical results  

The procedures have been implemented and tested in an AIMMS Developer environment and 

tested by using the solver Cplex V12.9. The numerical results have been obtained on a 2.60-

GHz Intel Xeon two-processor computer with 64 GB of RAM, running 64-bit Windows 10. We 

have considered two different case studies.  

4.3.1 Base case study: prosumers in the same LV network 

As already mentioned, the base case study corresponds to a set of 10 prosumers distributed in 

two feeders connected to the same LV distribution network. The characteristics of these 

prosumers, regarding the area of the installed PV unit and size of the BES unit, are equal to 

those in section 3.1.2. and reported in Table 3.1 and Table 3.2, respectively. Furthermore, the 

profiles of the ratio between power output and the panel surface (assumed equal for all the PV 

units) and the prices of the energy bought from the utility grid 
buy

t  correspond to those 
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illustrated in Figure 3.3 (for the numerical tests 
buy0.5t t

sell = ). Figure 3.2 shows the 

corresponding load profile for each prosumer. The considered optimization horizon 

corresponds to one day, which is divided into 96 periods of 15 minutes each.  

Figure 4.4 shows an example of the initial set of scenarios obtained by prosumer 1. From these 

profiles, the corresponding scenarios 
1

t

  have been defined, which, subsequently, have been 

communicated to the community, and have been employed together with the corresponding 

scenarios of the other prosumers in order to apply the k-means routine that constructs the 

scenario tree in Figure 4.2. 

a)  

b)  

Figure 4.4 Initial set of 200 scenarios obtained by prosumer 1: a) PV production; b) load. 
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To test the intra-day operation of the community, an MILP solver has also been implemented 

to perform the calculations, where the variables are fixed to a certain value. In that case, each 

prosumer implements the corresponding ch 

t

iP , dis 

t

iP , 
sell ,

t

i jP  and 
buy ,

t

i jP , and then solves the 

problem (3.17) with 0t

i =  and the corresponding set of constraints (3.3)-(3.13) for the operation 

of each prosumer and the community. The differences are compensated by the exchange of 

energy with the external utility grid 
buy_Grid( t

iP  and 
sell_Grid )t

iP  in order to satisfy the local power 

balance given by (3.3). 

As already introduced in Chapter 2, the value of stochastic solution (VSS) and the expected 

value of perfect information (EVPI) are typical performance metrics used to study the 

effectiveness of a stochastic solution. Table 4.2 shows the VSS and EVPI metrics calculated for 

the base case and the scenario tree in Figure 4.2. 

Table 4.2 Stochastic metrics VSS and EVPI for the base case. 

Solution OF Value (€) VVS (€) EVPI (€) 

EEV 17.07 

0.52 0.09 RP 16.55 

WS 16.46 

The resulting VSS shows the potential advantage of using the multistage solution over the 

implementation of the day-ahead forecast-based solution (i.e., EEV). A small EVPI gives an 

idea of how close the implementation of the stochastic solution, and a solution assuming perfect 

forecast (e.g., WS), could be. 

For each scenario of the tree in Figure 4.2, Figure 4.5 shows the comparison between the OF 

values calculated by using a decision-making procedure that defines the set values at the 

beginning of the stage for all the periods associated with that stage (i.e., based on the day-ahead 

multistage solution) and those given by the day-ahead scheduling that takes into account only 

the forecast profiles (forecast-based). As expected, the multistage scheduling provides better 

results with respect to a forecast-based solution. Figure 4.5 also shows the OF values of the 

solution of (3.17) assuming a perfect forecast.  

Furthermore, Figure 4.5 includes the OF values of the operational situation in which the 

prosumers are only allowed to exchange energy with the external energy provider (i.e., energy 



Chapter 4. Uncertainties and Intra-Day Operation of the Renewable Energy Community 

133 

 

exchanges inside of the community are prohibited). As expected, the obtained costs confirm the 

advantage of exploiting the cost-optimization of the REC. 

In order to test the OF performance of such a decision-making procedure, the values of the BES 

charges and discharges ( ch 

t

iP  and dis 

t

iP ) and the energy exchanges among the prosumers (
sell ,

t

i jP  

and 
buy ,

t

i jP ) have been fixed to the resulting values of the procedure (i.e., set values associated 

with the most similar node of the scenario tree). Then, the MILP model has been employed to 

find the total OF.  

 

Figure 4.5 Comparison of the community’s total OF values for each scenario of the tree: Base case. 

To test the coordinated strategy proposed in this section, a set with 20 new intra-day scenarios 

(i.e., operational conditions during the day different from those included in the scenario tree) 

has been generated following the technique employed in section 2.1.3A (based on a Markov-

process). These scenarios represent measurement values at each period for PV 

t

iP  and Load 

t

iP .  

For this set of new scenarios, the implementation of the day-ahead ADMM scheduling 

described in section 3.2, and based only on the forecast profiles, is, on average, 4.25% higher 

than the deterministic OF (i.e., calculated assuming perfect forecast), while the implementation 

of a multistage solution based only on the day-ahead scenario-based solution and with decisions 

only at the end of each stage, gives, on average, an increase of 3.69% over the same 

deterministic solution. 
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In addition to the advantage of the multistage solution over the so-called forecast-based 

solution, the coordinated approach more accurately reacts to the fluctuations in each period 

during the day, and not only to the cumulative deviations in each stage. Figure 4.6 shows the 

total energy in the BES units of the community by implementing the solution of the decision 

making-procedure (based only on the day-ahead multistage solution), and then by adding the 

online calculation scheme (Figure 4.6a and Figure 4.6b, respectively) for each one of the 20 

new scenarios. Figure 4.6 makes evident the advantage of adopting the coordinated strategy.  

a)  

b)  

Figure 4.6 Total energy stored in the community during the day for the base case: a) possible solutions according 

to the day-ahead scenario-based solution; b) profiles obtained using the coordinated strategy that includes online 

optimization. 
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Figure 4.6a shows that the decision making-procedure based only on the day-ahead multistage 

solution gives some flexibility for reacting to the fluctuations during the day, but it is limited 

by the structure of the scenario tree, whilst Figure 4.6b shows that the online calculation is able 

to react more flexibly at each perturbation in t even in the first part of the day.  

For the set of 20 new scenarios, Figure 4.7 shows the OF values obtained using: the 

deterministic model (assuming a perfect forecast), the multistage solution and the coordinated 

day-ahead and intra-day strategy. In general, the results of Figure 4.7 confirm the improved 

performance of the coordinated scheduling strategy with respect to the multistage solution. 

Additionally, the OF performance illustrated in Figure 4.7 confirms that the coordinated 

strategy effectively tackles the problem associated with uncertainties in the community, while 

maintaining a cost-effective result (i.e., considering, as a reference, the deterministic solution).  

Moreover, Figure 4.7 also includes, for the 20 new intra-day scenarios, the OF value obtained 

without the optimization of the REC (i.e., without internal exchanges). The results confirm the 

economic advantage for the intra-day scenarios as well. 

 

Figure 4.7 Comparison of the community’s total OF values for 20 intra-day scenarios: Base case. 

Since the number of variables and time horizon decrease constantly until the end of each stage 

(from the characteristics of the online calculation), the time employed by the online 

optimization at each time period varies, on average, from around 20 seconds to around a second 

depending on the corresponding time at which it occurs. 
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With respect to the day-ahead tolerance of the ADMM procedure, a lower value of tolerance ε 

might be implemented in the intra-day optimization. For the online calculations of the base case 

a tolerance ε equal to 10W has been used. 

4.3.2 Second case: scheduling of prosumers in MV network 

The second test system considers the 14-bus network illustrated in Figure 4.8, in which three 

feeders are connected to the same substation bus. The MV side of the substation has constant 

rated voltage equal to 23 kV. Each prosumer might be equipped with a PV system, a load, and 

a BES unit. All the calculations refer to a time window of one day, divided into 24 periods of 

one hour each. In this case, the tolerance ε has been defined equal to 1 kW for both the day-

ahead and intra-day calculations. 

 
Figure 4.8 Second case configuration. Circles indicate the location of the prosumers. Adapted from (Cinvalar et 

al. 1988). 

Figure 4.9 shows the profile of the ratio between power output and the panel surface (reported 

in Table 4.3), which is assumed equal for all the PV units in the community. Figure 4.9 also 

shows the price profile of the energy bought from the utility grid 
buy

t  (for the numerical test 

buy0.5t t

sell = ). Table 4.3 also shows the value of sizes 
max

BESE  of the BES units, with energy to 

power ratio equal to 1 h. Additionally, the resistance values associated with each branch in 

Figure 4.8 are reported in Table 4.3. The load profiles adopted for each prosumer are shown in 

Figure 4.10. 
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Figure 4.9 Profile of the PV production and grid purchase price buy

t  for the second case. 

 
Figure 4.10 Load profile for each prosumer in the second case. 
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Table 4.3 Characteristics of the community in the second case. 

Prosumer PV area (103·m2) BES Size (MWh) Branch Resistance (mΩ) 

1 1.12 
0.5 1 0.397 

2 2.56 
0.3 2 0.423 

3 11.2 
0.4 3 0.212 

4 25.6 
0.2 4 0.476 

5 2.24 
0.3 5 0.212 

6 0 
1 6 0.582 

7 0 
0.5 7 0.423 

8 0 
1 8 0.423 

9 6.72 
0.2 9 0.582 

10 5.12 
0.6 10 0.476 

11 4.48 
0.1 11 0.212 

12 3.36 
0.2 12 0.423 

13 3.36 
0.2 13 0.212 

Table 4.4 shows the resulting values of the elbow method and the silhouette coefficient 

calculations. The reported values have been calculated for the first eight hours of the day and 

for several number of centroids. As a result, a number of three centroids has been selected to 

generate the scenario tree. The structure of the obtained three is similar to the one illustrated in 

Figure 4.2 (i.e., with 27 final scenarios). 

Table 4.4 Elbow method and silhouette coefficient for the selection of the number of centroids: Second case. 

Number of centroids 3 4 5 6 7 8 9 

Average SSE 1.82 1.74 1.65 1.63 1.58 1.54 1.52 

Average ( )s   0.43 0.40 0.38 0.39 0.36 0.37 0.38 

Table 4.5 shows the VSS and EVPI values calculated for the second case and a scenario tree 

obtained with three centroids, confirming the advantage of the stochastic solution over the 

forecast-based solution. 

Table 4.5 Stochastic metrics VSS and EVPI for the second case. 

Solution OF Value (k€) VVS (k€) EVPI (k€) 

EEV 45.29 

0.13 0.02 RP 45.16 

WS 45.14 
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Figure 4.11 shows for each one of the scenarios in the tree, the comparison of the total OF 

values calculated by using the intra-day decision-making procedure (based on the multistage 

solution) and those given by the forecast-based solution. As expected, the multistage scheduling 

provides better results with respect to the forecast-based solution. Figure 4.11 also shows the 

OF value of (3.17)  (distributed problem that minimizes the energy procurement cost) assuming 

a perfect forecast. 

Furthermore, Figure 4.11 includes the OF values obtained for each scenario in the tree, when 

the prosumers are not allowed to exchange energy inside of the REC. For the second case, the 

obtained costs also confirm the advantage of implementing the REC and the associated cost-

optimization. 

 
Figure 4.11 Comparison of the community’s total OF values for each scenario of the tree: Second case 

For a set of 20 new scenarios different from those in the tree, the implementation of the day-

ahead scheduling described in section 3.2, and based only on the forecast profiles, is, on 

average, 0.73% higher than the deterministic OF, while the implementation of the decision 

making-procedure (based on the multistage solution) gives, on average, an increase of 0.62% 

over the same deterministic solution. 

Figure 4.12 shows the total energy in the BES units obtained when applying the coordinated 

strategy for each test scenario (i.e., for each one of the 20 new scenarios). Like for the base 

case, the proposed strategy is suitable to implement an adaptable scheduling for a REC even 

when considering different topologies and size of the installed equipment. 
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Figure 4.12 Total energy stored in the community during the day for the second case: profiles obtained using the 

coordinated strategy that includes online optimization. 

In Figure 4.13, the obtained OF values, using: a deterministic solution (i.e., assuming a perfect 

forecast), intra-day solution (i.e., coordinated strategy) and multistage solution (based only on 

day-ahead calculations and decisions only at the end of each stage), are compared. 

As expected, the results of Figure 4.13 show the advantages of the coordinated day-ahead and 

intra-day approach over the multistage solution. In comparison with the deterministic solution 

for several scenarios, the proposed strategy effectively adapts the scheduling of the community 

to deal with the uncertainties while minimizing the energy procurement cost. 

 
Figure 4.13 Comparison of the community’s total OF values for 20 new intra-day scenarios: Second case. 
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Moreover, Figure 4.13 also includes the OF value obtained without the optimization of the REC 

(i.e., without internal exchanges). As expected, the results once again confirm the economic 

benefit of allowing the cooperative operation of the REC. 

In the second case, with a time step equal to 1h, the time employed by the online optimization 

at each time period varies, on average, from around eight seconds to less than a second 

depending on the corresponding time at which it occurs. 

4.4 Conclusions of the chapter 

A significant issue in the operation of the community concerns the uncertainties associated with 

the distributed generation and loads consumption. 

In this chapter, we have presented a coordinated day-ahead and intra-day strategy to define a 

cost-oriented scheduling of a REC. The scheduling of the energy resources is implemented by 

means of a distributed scheme based on the ADMM algorithm. The proposed strategy has been 

suitably conceived to consider the uncertainties of the PV generation and energy consumption.  

In the first part of this chapter, we have adapted the day-ahead ADMM-based scheduling 

procedure defined for a REC in order to consider the uncertainties of local generation (PV in 

this case) and energy consumption. To achieve this, a multistage stochastic approach has been 

adopted to define a scenario-based solution for the resources in the community. The 

implementation of such a scheme demands the representation of the stochastic processes (i.e., 

PV generation and load) with the corresponding scenario tree. In this approach, a tree generation 

method based on the k-means algorithm has been employed to deal with the problem of merging 

the stochastic information of the several prosumers in a common tree for the community.  

The obtained tree is employed to define the day-ahead multistage stochastic solution that 

provides the set values for the batteries of the community corresponding to each stage of the 

day and at each node of the tree. 

From the presented numerical results, we have confirmed that the proposed multistage 

scheduling provides, in general, improved results with respect to the corresponding forecast-

based solution of the community, owing to the chance to adapt the set values of the BES units 

and the energy transactions among the prosumers according to the current operational 

conditions of the day. 
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Furthermore, the proposed multistage day-ahead scheduling has been employed to provide an 

operational framework for an intra-day decision-making procedure, in which an online 

optimization calculates new set values for the operation of the community. The online decisions 

concern the power output of the BES units, energy transactions between prosumers, and energy 

transactions with the external energy provider.  

To achieve this, the decisions made at the end of each stage bring an operational framework to 

the online intra-day scheduling, in which several characteristics have been implemented to 

speed up the solution time, while maintaining good accuracy. 

This coordinated approach accurately reacts to the fluctuations of energy generation and local 

load during the day, not only to the cumulative deviations of each stage. Furthermore, a reduced 

tolerance value for the ADMM procedure can be used in the online calculations with an 

acceptable solution time. 

As a result, the coordinated approach effectively minimizes the total energy procurement cost 

for the community, considering the current operational conditions of the participants and 

adjusting the scheduling of the set values in a distributed and coordinated way.
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Chapter 5. Concluding remarks 

This thesis presents a detailed study of resources scheduling in renewable energy communities. 

The analysis has considered quite a few technical problems, from the operation of the basic unit 

of the community, i.e., the prosumer, to the mathematical formulation, scheduling and 

expansion, for several scenarios, of the energy community concept. This has been achieved 

through the implementation of both a centralized and a distributed approach. Moreover, the 

thesis presents an integration of day-ahead and intra-day optimization. 

The second chapter of this thesis has been dedicated to the scheduling problem of local energy 

systems acting as prosumers, with the possibility of exploiting their installed renewable 

resources (e.g., PV-Storage systems) by covering the local energy demand and enabling the 

energy exchange with the provider (i.e., buying and selling). The operation of such a system 

requires the implementation of an energy management system to exploit the economic potential 

of the resources, while also considering the technical constraints relevant to the operation of the 

equipment.  

The considered formulation deals with day-ahead scheduling decisions. The problem has been 

extended to consider uncertainties associated with energy generation and demand by adopting 

a multistage stochastic scheme. Several comparisons between the two approaches (i.e., without 

and with uncertainties) have been presented. Within this framework, the multistage stochastic 

approach represents an attractive method for the day-ahead scheduling and provided improved 

results in comparison to other stochastic-based method, such as e.g., Monte Carlo simulations. 

One of the key-steps in defining the multistage stochastic solution is the adequate representation 

of the stochastic behaviour of the variables in the problem by means of a scenario tree. For the 

study, a tree-generation technique based on the k-means clustering algorithm, which provides 

appropriate results even with a limited number of centroids, has been implemented. The time 

employed by the multistage solution is reasonable for several cases with different number of 

clusters. 

The approach presented in the second chapter can be coupled with an intra-day decision-making 

procedure that adjust the operation of the energy system according to the current conditions of 

energy generation and consumption. Furthermore, the stochastic approach is also suitable for 
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application in models that include a detailed representation of the battery (e.g., KiBaM), 

assuming that the MILP characteristics of the model are preserved. 

In the second chapter, we have also considered an additional scenario where a microgrid 

integrates bidirectional EV charging stations in a parking lot and PV units. The operation model 

of the microgrid has been adapted to a multistage stochastic approach, obtaining an adaptative 

response to the uncertainties. In this case, which is particularly oriented to exploiting the 

benefits of V2G services, additional uncertainties associated with the behaviour of the EVs in 

the parking lot (e.g., time of entrance, leaving time, number of vehicles) have been included in 

the formulation proposed.  In general, the solution confirms the characteristics and advantages 

of adopting a multistage stochastic scheme to deal with uncertainties.  

Next, in the third chapter, we have extended the prosumer concept within a so-called renewable 

energy community. To achieve this, we considered a set of prosumers that agreed to cooperate 

in order to minimize the total energy procurement costs. This collective entity is characterized 

by being local and having a common objective for all their members, which is different than 

other approaches in which each participant might define a self-interest strategy to exploit their 

own available resources.  

The potential of the energy community has been gaining special interest in the last years, since 

the regulation framework in several countries is opening the door to allowing direct energy 

transactions between neighbours (e.g., residential units, industrial/commercial sites). Apart 

from the relevant legal and socio-economic aspects, the establishment of these communities 

represents an important challenge from a technical point of view. 

In this context, one of the main aspects to be considered is the adequate coordination of the 

decisions in the community to cost-effectively share the energy resources while guaranteeing 

fairness for all the participants. To achieve this, the concept of REC requires the implementation 

of an automatic energy management system that provides the optimal scheduling of the energy 

resources. 

In this thesis, the definition of such a scheduling approach for the REC has been studied, first, 

by formulating the mathematical model that represents the components and interactions of the 

prosumers within the community and with the external energy provider, and then by analysing 

the day-ahead scheduling under the assumption of both a centralized and a distributed approach. 
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In the centralized approach the prosumers communicate all the details of the equipment features 

as well as the load and production forecasts. In the distributed version of the EMS, based on the 

use of the ADMM algorithm, the prosumers are autonomous in identifying the cost optimal 

decisions based on the forecasts of energy generation and consumption. Only the actions that 

affect the other members, such as the internal exchanges of energy, must be mutually agreed 

on. In this case, the information that each prosumer must share within the community is limited, 

preserving the autonomy and privacy of each member. 

The so-called ADMM-based approach has been characterized as follows: 

• it aims at minimizing the energy procurement cost of the community, considering the 

power loss in the internal network 

• a loss-allocation procedure has been adopted in order to assign the corresponding losses 

to each energy transaction between two prosumers or between a prosumer and the 

external energy provider 

• the structure of the proposed scheduling procedure is consistent with the billing 

procedure and the metering systems typically installed in an energy community. 

The comparison of the results obtained by the centralized and the ADMM approach confirm 

that the scheduling problem of the community is suitable for adopting either a centralized or a 

distributed scheme. However, as already mentioned, the distributed approach is oriented to 

better preserve the privacy of the participants in the community and allows the scalability of 

the scheduling approach to communities of many prosumers.  

As a result, it has been confirmed that the proposed approaches effectively minimize the energy 

procurement cost for the community, and with an economic benefit for each one of its members. 

The definition of energy prices in the community is an important aspect of the procedure, since 

one of the main objectives of the community is to assure the definition of fair prices that align 

the economic-benefit goals with the non-competitive nature assumed by the participants.  

The additional scenario in which dispatchable generating units are integrated as participants in 

the community shows the extent up to which the presence of dispatchable power plants can 

ensure high percentages of self-consumption in different operational scenarios. In this scenario, 

the marginal prices associated with the operation of the biogas influence the price definition in 

the community.  
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The last chapter of this thesis presents a coordinated day-ahead and intra-day strategy in order 

to define a cost-oriented scheduling of the community. The scheduling of the energy resources 

is implemented by means of a distributed scheme based on the ADMM algorithm. The proposed 

strategy has been suitably conceived to consider the uncertainties associated with the energy 

generation (PV generation in the considered case studies) and energy consumption.  

In the day-ahead stage, a scenario-based scheduling solution is provided for the operation of 

the community during the next day. To achieve that, the scheduling approach based on the 

ADMM algorithm has been adapted to a multistage stochastic scheme, with decisions 

associated with each stage during the optimization horizon (i.e., a day). The adoption of such 

an approach requires the implementation of a scenario-generation technique for each prosumer, 

and subsequently, the construction of a scenario tree for the entire community. In this case, the 

tree-generation procedure, which is based on the k-means algorithm, combines the situation of 

each participant in the community to obtain a common tree that allows a coordinated response 

of all the prosumers at each scenario. 

During the day, a decision-making procedure is implemented as an online optimization at each 

time period and following the basic scheme of a receding horizon approach. The goal is to 

adjust the set values in the community according to the current operation conditions (i.e., 

fluctuations of the PV generation and energy demand), while exploiting the available day-ahead 

calculations by using them as an operational framework for the optimization during the day. 

As expected, the multistage day-ahead scheduling generally provides improved results with 

respect to the corresponding forecast-based solution of the community (in terms of energy 

procurement costs), exploiting the possibility of adapting the set values of the BES units and 

the energy transactions among the prosumers according to the current operational conditions of 

the day.  

During the day, the decisions made at the end of each stage bring an operational framework to 

the online intra-day scheduling, in which several techniques have been implemented to speed 

up the solution time while keeping a good accuracy. This proposed approach accurately reacts 

to the fluctuations of generation and local load during the day and not only to the cumulative 

deviations of each stage. Furthermore, a reduced tolerance value for the ADMM procedure can 

be used in the online calculations, with an acceptable solution time. 
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As a result, the coordinated day-ahead and intra-day strategy effectively minimizes the total 

energy procurement cost for the community, considering the current operational conditions 

during the day and adjusting the scheduling of the set values in a distributed and coordinated 

way. 

On the basis of the work carried out in this thesis, some topics have been identified as 

particularly interesting for the further development and implementation of RECs. 

A relevant concern in the field of scheduling and operation of BES units is associated with 

degradation and aging conditions. Thus, considering the crucial role that the storage systems 

play in the successful achievement of the community goals, it will be worthwhile to incorporate 

the consideration of battery-aging conditions in the modelling and scheduling of the REC’s 

resources. 

In addition, in a future project, we plan to address a refined representation of the REC’s network 

into the ADMM-based approach in which voltage, current and technical constraints of the 

network will be incorporated. The development of such a model will allow us to study 

additional state-of-the-art questions, such as voltage issues and violation of capacity-constraints 

in the network due to the energy transacted by the prosumers. 

Moreover, as a further extension, we would like to develop a specific procedure to adapt the 

operation of the REC in case of operational failures, such as the temporary or permanent non-

availability of a given resource or a communication link during the optimization horizon. 

 



Appendix A. Alternative Representation of the Battery: Kinetic Battery Model 

148 

 

Appendix A. Alternative Representation of the 

Battery: Kinetic Battery Model  

The representation of the batteries employed in Chapter 2-Chapter 4 correspond to a simple 

energy balance, which is widely employed to study the operation of energy systems while 

providing a good enough approximation corresponding to the operation of the storage units; 

however, it is important to notice that the formulation of the considered systems is suitable for 

considering more detailed, or refined, MILP models of the battery. 

For instance in (Sakti et al. 2017), several models have been presented to represent the battery 

model and enhance their use in MILP. In several studies e.g., (Manwell and McGowan 1993; 

Daniil, Drury, and Mellor 2015; Bordin et al. 2017) the so-called kinetic battery model (KiBaM) 

has been considered, in order to provide a more detailed representation.   

According to (Daniil, Drury, and Mellor 2015), in the KiBaM representation, the total charge 

in the battery is modelled with two tanks separated by a conductance, distinguishing between 

available energy and chemically bound energy (not immediately available), illustrated in Figure 

A.1 

 

Figure A.1 Hydraulic scheme for the kinetic battery model; adapted from (Daniil, Drury, and Mellor 2015). 

For illustrative purposes, some of the base-case calculations corresponding to the optimization 

of the LES in Chapter 2 have been repeated by using a KiBaM representation of the BES unit. 

To achieve this, constraint (2.12), which corresponds to the simple energy balance at time 

period t in the battery, is replaced with the following constraints: 
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where 
1 ( 1 )k t

qk c k t e− =  − +  and 
2 (1 )( 1 )k t

qk c k t e− = −  − + . 

The constraints (A.1)-(A.4) consider the definitions of readily available charge 1tq  and bound 

charge 2tq at each time interval t. The battery power outputs during charging and discharging 

phases are limited by constraints (A.5)-(A.7); BES  is the battery’s efficiency factor for charging 

and discharging, k is the battery rate constant, c is the battery’s capacity ratio and a is the 

battery’s maximum charge rate. Table A.1 shows the corresponding parameters value indicated 

in (Bordin et al. 2017). 

Table A.1 Parameters for the kinetic battery model (KiBaM) adapted from (Bordin et al. 2017). 

Parameter Value 

BES   0.9 pu 

k 9.51 h-1 

a 0.61 

c 2 A/Ah 

The obtained deterministic OF value (2.1), by using the KiBaM representation of the 630-kWh 

battery is equal to €61.21. Figure A.2 shows the comparison of the stage of charge by using the 

simple model and the KiBaM.  
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Figure A.2 Comparison of the stage of charge by the simple model and the KiBaM. 

Table A.2 shows the OF values of the stochastic solution and metrics for the base case in section 

2.1.2 by using the KiBaM representation. The solutions reported in Table A.2 correspond to the 

case with a 630-kWh battery, as well as to the case with a 315-kWh battery. Moreover, two 

different scenarios trees have been considered (with K=3 as the one in Figure 2.6  and one 

additional tree with K=4 centroids).  

Table A.2 Stochastic solution, VVS and EVPI metrics by using the KiBaM representation for a case with a 630-

kWh battery and a case with a 315-kWh battery. 

Size of the BES unit (kWh) 630 315 

Number of centroids 3 4 3 4 

OF (€) 61.67 61.80 80.69 80.80 

VSS (€) 1.11 1.12 0.98 0.98 

EVPI (€) 0.47 0.56 0.43 0.52 

Number of scenarios in the tree 64 139 64 139 

Solution time (s) 3.47 8.26 2.97 7.39 

The comparison of Table 2.2 (results obtained by the simple model) and Table A.2  shows that 

the use of the more refined battery model increases both the OF values and the computation 

time, as expected. 

We have repeated the comparison showed in Table 2.3  (i.e., SP-MC and SP-WS) by using the 

KiBaM representation. The results in Table A.3 confirm, as expected, the advantage of using 
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the SP approach and the benefit of a more accurate clustering procedure, especially in the case 

of a smaller battery, even for a more detailed representation of the battery.  

Table A.3 Comparison between SP and Monte Carlo simulations and between SP and deterministic solutions 

(630-kWh battery) by using the KiBaM representation. 

Size of the BES unit (kWh) 630 315 

Number of centroids 3 4 3 4 

Scenarios of the tree 
SP – MC -0.71 -0.69 -0.60 -1.58 

SP – WS 0.55 0.60 0.49 0.55 

Set of initial scenarios 
SP – MC -0.23 -0.34 -0.26 -0.35 

SP – WS 1.81 1.70 1.60 1.50 

Set of new scenarios 
SP – MC -0.26 -0.24 -0.30 -1.14 

SP – WS 1.91 1.92 1.67 2.79 
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Appendix B. Exchange of Energy for Prosumers in 

Medium Voltage Network 

The optimization problem that minimizes the procurement costs in a community, like the one 

in (3.1), gets harder to solve if power loss and typical operational constraints (such as bus 

voltage and branch current limits) are considered, e.g., (Madani, Ashraphijuo, and Lavaei 2014) 

and references therein. This appendix describes an alternative for dealing with such a 

minimization, which follows the approach introduced in (Gambini et al. 2020). 

The procedure is characterized by being based on the classical second order cone programming 

(SOCP) formulation for the distribution optimal power flow in radial networks described in, 

e.g., (Gan et al. 2015) and (Wei et al. 2017). In (Low 2014b, 2014a), the conditions for 

achieving relaxation exactness have been presented, whilst (Molzahn and Hiskens 2016) 

presents an analysis of topologies for which it is not possible to guarantee the conditions for 

exactness. 

Furthermore, the procedure distinguishes between the power exchanged with the external grid 

and the power exchanges between the prosumers, in order to prioritize the use of local energy 

resources. 

The approach introduced in (Gambini et al. 2020) corresponds to a centralized approach  and 

has been conceived as suitable for adaptation to a distributed optimization procedure, like the 

one considered in Chapter 3. The considered case corresponds to a community composed of a 

set of MV prosumers connected to the same, or different, feeders of the same primary 

substation, like the case described in section 4.3.2. 

Figure B.1 illustrates the model of the community, in which the internal network, connected to 

the utility grid, is divided into elements corresponding to the prosumers. Each prosumer is 

characterized by a single connection point to the network. The prosumer element imports and 

exports power; additionally, it incorporates the losses of the branch that connects its coupling 

bus with the coupling bus of the previous prosumer closest to the substation.  
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Figure B.1 Model of the community (the arrows indicate the positive directions assumed in the equations); 

adapted from (Gambini et al. 2020). 

The attribution of the entire losses in each branch to the prosumer at the end of the branch is 

used only in the scheduling optimization procedure, whilst the billing procedure is aligned with 

a fair repartition of the branch losses to all the prosumers in the feeder, like the one introduced 

in (Lilla et al. 2020) and described in Chapter 3. This procedure is justified by the cooperative 

nature of the REC, in which the participants collaborate to minimize the community 

procurement costs. 

As in (3.1), the objective minimizes the total energy procurement costs of the community, 

considering the exchange of energy with the external grid (i.e., 
buy_Grid 

t

iP  and 
sell_Grid 

t

iP ) and the 

associated prices (i.e., 
buy

t  and sell

t , respectively). The mathematical formulation corresponds 

to a day-ahead scheduling with an optimization horizon equal to one day dived into one-hour 

periods.  

Figure B.1 illustrates the connection constraints between each branch (and the relevant 

prosumer) and the next one in the feeder. According to  the usual convention of the Distflow or 

branch flow model (Baran and Wu 1989):  

• the values of vout, Pout, Qout, and PGrid_out of i are constrained to be equal to the values of 

vin, Pin, Qin, and PGrid_in of prosumer i+1 

• for the prosumers located at one of the feeder’s ends, Pout, Qout, and PGrid_out are 

constrained to be equal to 0 

• in case of branching, for active and reactive power, the equality is replaced by the 

balancing constraints at the branching node, as in (Baran and Wu 1989). 
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• values vin of the branches connected to the substation (assumed to be the slack bus) are 

constrained to be the square of the known value of the slack bus voltage (V0
2). 

For each prosumer i at time t, the links between vin and vout, Pin and Pout and Qin and Qout are 

represented by: 

 
in out

t t t

i i iP P P+ =   (B.1) 

 
in out

t t t

i i iQ Q Q− =   (B.2) 

 ( )2 2

in out in in2 2t t t t t

i i i i i i i i iv v r P x Q r x u− =  +  − +    (B.3) 

 ( ) ( )
2 2

in in in

t t t t

i i i iP Q v u+ =    (B.4) 

The square of the branch current’s rms value, u, is constrained to be lower than the square of 

the maximum current limit, and P=Puser+r·u and Q= Quser+x·u also include the branch active 

and reactive power losses (shunt capacitances of the branches are neglected). Constraint (B.4) 

corresponds to the usual rotated second order cone convex relaxation of the branch flow model. 

Considering that each participant in the community might be equipped with a generating unit 

(PV panels in this case) and a storage unit, in addition to its load, net powers at the coupling 

bus are given by 

 
user Load PV BES

t t t t

i i i iP P P P= − −   (B.5) 

 
user Load PV

t t t

i i iQ Q Q= −   (B.6) 

where PBES represents the power output of the storage unit and is considered positive if supplied 

by the battery. The PV units are assumed to operate at the unity power factor (QPV=0). PBES is 

the main control variable together with the trade decisions in the community (i.e., energy 

exchanges between participants). 

The operation of the BES unit is represented by the following constraints, which correspond to 

a simple model considering charging and discharging efficiencies (ηch and ηdis, respectively)  

 
BES dis ch

t t t

i i iP P P= −   (B.7) 

 ( )ch ch ch1t t

i i iL P= −   (B.8) 

 dis dis
dis

1 1t t

i i
i

L P


 
= − 
 

  (B.9) 
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Nonnegative variables 
ch

t

iP  and 
dis

t

iP  are constrained by the maximum power limit of the 

battery. The energy level EBES inside each battery is constrained to be between 10% and 100% 

of the battery rating and is calculated by 

 ( )1

BES BES BES ch dis

t t t t t

i i i i iE E P L L t−= − + +    (B.10) 

The BES units have been assumed fully charged at the beginning and at the end of the day. 

The direct exchanges with the utility grid are described by variable PGrid (and the corresponding 

variables at the boundaries, namely PGrid_in, and PGrid_out): 

 
Grid buy_Grid sell_Grid

t t t

i i iP P P= −   (B.11) 

 
Grid_in Grid_out Grid

t t t

i i iP P P− =   (B.12) 

 
t t t

i i iP P P+ −= −   (B.13) 

 
t t t

i i iP P P+ −= +   (B.14) 

where nonnegative variables t

iP+
 and t

iP−
,  defined by (B.13) and (B.14), are used to constrain 

nonnegative variables Pbuy_Grid and Psell_Grid, respectively; Pbuy_Grid ≤ t

iP+
 and Psell_Grid ≤ t

iP−
. 

For each prosumer i and time interval t, the transactions inside the community are calculated 

by the difference between P and 
Grid

t

iP ; t

iP+
- Pbuy_Grid is the power bought from other prosumers 

and t

iP−
- Psell_Grid

  is the power sold to other prosumers. The modulus of the dual values 

associated to constraints (B.12) are used as the prices for the transactions between prosumers 

in the community. 

The following constraint allows exchanges between different feeders connected to the same 

substation: 

 

0 0

_in in

t t

Grid k k

k k

P P
 

=    (B.15) 

where Ω0 is the set of branches connected to the slack bus. 

In a feasible solution, (B.4) is verified as equality, and powers chP  and disP  of (B.7) can never 

be simultaneously different from zero for the same prosumer. Specific checks are included in 

the implementation of the model, and additional penalization terms are added to the total energy 

procurement costs (3.1), with increasing weights if needed. For each i and t, the penalization 
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term relevant to (B.4) is r u   (branch power loss), and the penalization term for the battery 

model is ch disL L+  (losses in the storage unit). In the case study, the penalization terms are 

negligible with respect to the cost terms considered in (3.1). 

Ultimately, the optimization problem is composed of the augmented objective function (3.1), 

constraints (B.1)-(B.15) and the limits of each variable (i.e., upper and lower values). 

As already mentioned, the case study corresponds to the case described in section 4.3.2, in 

which a transactive scheme between a set of prosumers in a MV network has been considered. 

Figure 4.9 shows the profile of the ratio between power output and panel surface, which has 

been assumed equal for all the prosumers. Figure 4.9 also shows the price profile of the energy 

bought from the utility grid 
buy

t  ( sell

t  is assumed to be half of 
buy

t ). Table 4.3 shows additional 

characteristics of the community, such as e.g., PV area for each prosumer, size of the BES units 

and branch resistances. The load profiles correspond to those illustrated in Figure 4.10. 

The introduced model has been implemented in Matlab and tested by using the Gurobi 9.0 

solver (MIQCP model) on an Intel-i7 computer with 8 GB of RAM, running 64-bit Windows 

10.  

Figure B.2 shows the prices associated with the energy transactions in the community (black 

solid marks). Since the model contains integer variables due to the modulus in constraint (B.15) 

and Gurobi provides the dual values only for continuous models, the solution is repeated 

without constraint (B.15) and by fixing t

iP+
 or t

iP−
 to zero, according to the first solution. As 

expected, the solutions of the continuous and mixed integer models are the same. 

Moreover, price profiles 
buy

t  and sell

t  are also represented in Figure B.2 by the dotted blue and 

red line, respectively. 
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Figure B.2 Prices associated to the energy exchanges in the community  

The optimization problem considered in the case study, has been solved assuming three 

different operational models for the community, namely: 

• Community: in which transactions between all the participants are allowed 

• Without internal exchanges: the model in which internal transactions are forbidden, 

i.e., PGrid = P for each i and t 

• Community with separated feeders: a community in which energy transactions 

between prosumers connected to different feeders (separated feeders) are not allowed, 

i.e., constraint (B.15) is replaced by 

 
Grid_in in

t t

k kP P=   (B.16) 

for each branch k connected to the substation. 

Table B.1 shows the comparison of: the obtained OF value (3.1), the OF augmented with the 

weighted penalization of network and battery losses, the value of power loss in the network 

inside the community and the computational time, considering the three different models. The 

community model allows for a reduction in the total procurement costs and reduces the power 

loss in the internal network. The community model that couples all the feeders achieves the 

lowest total costs. Furthermore, in all the considered models, the computational time is low.  

The solutions have been obtained by using the default values of Gurobi parameters. 
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Table B.1 Comparison of the solutions for the case study. 

 OF (k€) Augmented OF Losses (MWh) CPU time (s) 

Community 45.7 45.7·103 3.19 9.9 

Without internal exchanges 49.2 49.2·103 3.48 4.9 

Community with separated feeders 47.1 47.1·103 3.34 6.51 

Figure B.3 shows the profiles of the power flow exchanged with the utility grid (positive if 

consumed by the community) given by the three different models, whilst Figure B.4 shows the 

comparison of the total energy stored in the BES units. 

 

Figure B.3 Power flow exchanged with utility grid (positive if consumed by the community). 

 

Figure B.4 Profile of the total energy in the community’s batteries given by the three considered models. 

-5

0

5

10

15

20

0 6 12 18 24

Po
w

er
 p

ro
fi

le
 (

M
W

)

Time (hour)

Community Without internal exchanges Community separated feeders

0

1

2

3

4

5

6

0 6 12 18 24

To
ta

l e
n

e
rg

y 
in

 t
h

e
 B

ES
 u

n
it

s 
(M

W
h

)

Time (hour)

Community Without internal exchanges Community separated feeders



Appendix B. Exchange of Energy for Prosumers in Medium Voltage Network 

159 

 

Figure B.5 shows the profiles of the total energy injected into the community network by the 

producers. Moreover, Figure B.5 shows the profile of the energy directly sold by the producers 

to other participants in the community. The total energy absorbed by the consumers at each 

time t has been illustrated in Figure B.6. 

 

Figure B.5 Total energy injected in the community network by the producers and the energy sold directly to 

other participants in the community. 

 

Figure B.6 Profiles of the total energy consumed by the users in the community. 
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Table B.2 shows the total cost for each participant in the community. The results confirm the 

economic benefit for each one of the participants in the community model over the case without 

direct energy transactions. The results are obtained by allocating the losses in each feeder to the 

prosumers connected to the same feeder proportionally to the power injection or consumption. 

Table B.2 Energy procurement costs in the thousands of euros for each prosumer. 

Prosumer Feeder Community 
Without internal 

exchanges 

Community 

separated feeders 

1 a 4.20 4.56 4.20 

2 a 6.54 6.91 6.54 

3 a 1.47 1.80 1.47 

4 a 0.77 1.34 0.78 

5 a 3.05 3.07 3.05 

6 b 8.82 9.30 9.30 

7 b 8.12 8.56 8.54 

8 b 6.96 7.36 7.36 

9 c 0.48 0.69 0.64 

10 c 0.44 0.49 0.47 

11 c 1.36 1.37 1.24 

12 c 1.16 1.37 1.18 

13 c 2.33 2.34 2.30 

Comparing the results from the community model with separated feeders with those of the 

community model that allows transactions between different feeders, some of the prosumers 

have reduced costs and some increased costs. The prosumers connected to feeder b obtain 

increased costs in the model with three separate feeders since none of them is equipped with 

PV units, although some advantages in the community’s participation could be achieved due to 

a presence of the batteries. 

The model provides an indication of the optimal prices of the transactions between prosumers 

of the community. The comparison between the results obtained with the same model with and 

without the possibility of direct transactions among the prosumers shows that each prosumer 

has an advantage by the participating in the community without cross-subsidization between 

active and non-active customers.
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