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Abstract 
In the field of vibration qualification testing, with the popular Random Control mode of shakers, the 
specimen is excited by random vibrations typically set in the form of a Power Spectral Density (𝑃𝑃𝑆𝑆𝐷𝐷). 
The corresponding signals are stationary and Gaussian, i.e. featuring a normal distribution. 
Conversely, real-life excitations are frequently non-Gaussian, exhibiting high peaks and/or burst 
signals and/or deterministic harmonic components. The so-called kurtosis is a parameter often used 
to statistically describe the occurrence and significance of high peak values in a random process. 
Since the similarity between test input profiles and real-life excitations is fundamental for 
qualification test reliability, some methods of kurtosis-control can be implemented to synthesize 
realistic (non-Gaussian) input signals.  
Durability tests are performed to check the resistance of a component to vibration-based fatigue 
damage. A procedure to synthesize test excitations which starts from measured data and preserves 
both the damage potential and the characteristics of the reference signals is desirable. The Fatigue 
Damage Spectrum (FDS) is generally used to quantify the fatigue damage potential associated with 
the excitation. The signal synthesized for accelerated durability tests (i.e. with a limited duration) 
must feature the same FDS as the reference vibration computed for the component’s expected 
lifetime. Current standard procedures are efficient in synthesizing signals in the form of a PSD, but 
prove inaccurate if reference data are non-Gaussian.  
This work presents novel algorithms for the synthesis of accelerated durability test profiles with 
prescribed FDS and a non-Gaussian distribution. An experimental campaign is conducted to validate 
the algorithms, by testing their accuracy, robustness, and practical effectiveness. Moreover, an 
original procedure is proposed for the estimation of the fatigue damage potential, aiming to minimize 
the computational time. The research is thus supposed to improve both the effectiveness and the 
efficiency of excitation profile synthesis for accelerated durability tests. 
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Nomenclature 
The main symbols and parameters appearing throughout the dissertation are the following: 

Symbol Description 

𝐷𝐷𝐷𝐷𝐷𝐷 Device under test 

𝐷𝐷(𝑓𝑓𝑛𝑛) Expected value of the Fatigue Damage if the 𝐷𝐷𝐷𝐷𝐷𝐷 had a natural frequency equal to 𝑓𝑓𝑛𝑛 

𝐺𝐺(𝑓𝑓𝑛𝑛) 𝑃𝑃𝑆𝑆𝐷𝐷 value at the frequency 𝑓𝑓𝑛𝑛  

𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓𝑛𝑛) Root mean square of the relative displacement between the output and the input of the 
system, with the latter having natural frequency 𝑓𝑓𝑛𝑛 

𝐾𝐾 Proportionality constant between mechanical stress and relative displacement  

𝑏𝑏 Constant related to the slope of Wohler's curve1    

𝐶𝐶 Constant appearing in the Wohler's curve equation  

𝑄𝑄 Quality factor of the system  

𝑧𝑧(𝑡𝑡) Relative displacement between the output and the input of the system at time 𝑡𝑡  

ℎ(𝑡𝑡) Impulse response of the system/𝐷𝐷𝐷𝐷𝐷𝐷  

RV Random variable 

∆𝑍𝑍 RV related to the difference between a peak and its corresponding valley, 
both belonging to the relative displacement 𝑧𝑧(𝑡𝑡) 

𝑓𝑓∆𝑍𝑍(∆𝑧𝑧) The probability density of the RV ∆𝑍𝑍 when the latter assumes the value ∆𝑧𝑧 

Np Number of positive peaks of the relative displacement per unit time  

𝑛𝑛 Number of concatenated blocks that compose a signal  

𝑘𝑘𝑗𝑗 Kurtosis of the 𝑗𝑗𝑡𝑡ℎ block  

𝜎𝜎𝑗𝑗 Standard deviation of the 𝑗𝑗𝑡𝑡ℎ block  

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡 Standard deviation of the overall signal  

𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 Kurtosis of the overall signal  

𝐷𝐷𝑗𝑗 Duration of the 𝑗𝑗𝑡𝑡ℎ block  

𝐷𝐷 Duration of the overall signal   

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡 Number of samples of the overall signal  

𝑁𝑁𝑟𝑟 Sum of the number of samples contained in the:1st,2nd,…,𝑠𝑠𝑡𝑡ℎ signal/block  

𝑛𝑛𝑟𝑟 Number of samples of the 𝑠𝑠𝑡𝑡ℎ signal/block  

1 If 𝑁𝑁𝑓𝑓 is the number of cycles with sinusoidal amplitude 𝜎𝜎 that lead the 𝐷𝐷𝐷𝐷𝐷𝐷 to failure, Wohler’s curve (also known as 
S-N curve or Basquin’s law) has the form:  𝜎𝜎𝑏𝑏𝑁𝑁𝑓𝑓 = 𝐶𝐶 (where 𝐶𝐶 is a constant). By taking the logarithm of the equation 
and applying simple algebraic manipulations, one can write:  log(𝜎𝜎) = �− 1

𝑏𝑏
� log�𝑁𝑁𝑓𝑓� + 1

𝑏𝑏
log (𝐶𝐶). Therefore, in log-log 

scale, with log(𝜎𝜎) as the y coordinate and log�𝑁𝑁𝑓𝑓� as the x coordinate, the slope of the curve is given by: − 1
𝑏𝑏
.  

                                                            



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Introduction and Overview 
The main purpose of this work is to improve the current state of the art of mono-axial vibration fatigue 
tests. In order to discern the original content of the dissertation from the already available state of the 
art, a necessary contextualization will be given in the following. 
In real-life applications, components are often subjected to stochastic loads that might lead to a 
premature failure; therefore, experimental tests are needed to check resistance to environmental 
vibrations. The tests must be conducted carefully, ensuring that the failure mechanism is the same as 
that observed under normal operating conditions [1]. Since the components are expected to remain 
functional for several hundreds or even thousands of hours, it is usually required to accelerate the 
tests performed in laboratories [2]. The category of tests related to the fatigue-life estimation of 
components operating in specific applications, aims to reproduce the entire fatigue damage 
experienced by the component during its operational life, but in a shorter amount of time. These tests 
are usually referenced as fatigue-life tests or durability tests. The use of tests tailored in accordance 
with the application and/or components to be analyzed (Test Tailoring) has been consolidated over 
the years [3,4]. The synthesis of signals based on the actual environmental conditions to which the 
components are subjected is generally referred to as Mission Synthesis, which more specifically aims 
to achieve the damage potential equivalence between the environmental conditions and synthesized 
signals. This is usually preferred to Standards that propose generic test procedures and are excessively 
strict in general (e.g. MIL STD 810F, GAM EG13).  The vibrations measured in real-life applications 
are typically not replicated “as is” because their stochasticity would be lost. The specification is given 
in terms of a Power Spectral Density (𝑃𝑃𝑆𝑆𝐷𝐷) to be used for the generation of a vibratory motion. 
The shaker controller generates the physical motion through the application of the Inverse Fast 
Fourier Transform (IFFT) in combination with randomly selected phases [5,6]. The overall 
probability distribution of the input signal tends toward Gaussian, whereas distinctive peaks are often 
present in real-life random excitations (e.g. due to micro-collisions, road transportation [7,8], etc.), 
causing the probability distribution to be non-Gaussian. The statistical parameter known as kurtosis 
may be employed to quantify the feature of non-Gaussianity. Several methods have been proposed to 
control kurtosis (e.g. [9-25]), still maintaining the desired 𝑃𝑃𝑆𝑆𝐷𝐷 profile, in order to synthesize more 
realistic signals. 
The random excitations used in experimental tests, are generically ascribed to the field of vibration 
qualification testing. If the requirement to comply with a kurtosis value is added to the PSD 
specification, this type of vibration qualification testing is also referred to as kurtosis control. If the 
specification is given in terms of a target damage potential and duration, the resulting experimental 
tests belong to the category of durability tests, and the synthesized signals are generated through the 
Mission Synthesis procedure. If the target duration of durability tests is lower than the component’s 
expected lifetime (as it is usually the case), these tests might also be referenced more specifically as 
accelerated durability tests (or fatigue-life tests, as already mentioned). 
The study leading to this dissertation revolved around the search for novel Mission Synthesis 
methodologies aimed at the relatively unexplored field of non-Gaussian durability tests, possibly 
extending the work that had previously been conducted on kurtosis control. These tests not only have 
to comply with a prescribed damage potential and duration, but also with the preservation of non-
Gaussian features (e.g. kurtosis) of signals measured from the applications. The main objective of 
this work is therefore to provide novel algorithms which may aid in the synthesis of non-Gaussian 
signals, to be used in (accelerated) durability tests. The provision of such novel algorithms will 
additionally be supported by a subsequent numerical and then experimental test procedure, in order 
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to highlight the most important aspects which may be “obscured” by the quite elaborate but necessary 
theory behind these algorithms. 
In the remaining part of this introduction, an overview of the dissertation’s structure is outlined; the 
bibliographical referencing of the technical topics already described in the literature is more 
thoroughly provided in the pertinent chapters and appendices. 
Chapter 1 and section 1.1 aim to provide a thorough revision of the available references on kurtosis 
control in the literature, as well as provide a rigorous mathematical description about the 
ineffectiveness of some of the kurtosis control methods and how the bandwidth of the system plays a 
key role [26-32] in affecting the distribution of ergodic [33] signals. Despite the theory related to 
kurtosis control requires well-known concepts of signal processing, probability theory and stochastic 
processes, and despite the fact that the result is well-known, the theoretical presentation of section 
1.1 is original and offers -to the author’s knowledge- a novel perspective. The content of all the 
appendices is also original; to be more precise, the mathematical results presented in Appendices A-
D are known, but originally adapted to the theory presented. On the other hand, Appendices E-H also 
present -to the author’s knowledge- novel results. 
In section 1.2, some of the algorithms available in the literature [10-17] to effectively control kurtosis 
in random vibration tests are revised and in chapter 2 and section 2.1 a technique to extend them to 
durability tests is discussed [34]. A proper procedure, which starts from reference signals (i.e. 
measured from real applications) and preserves both the accumulated fatigue damage and the signals’ 
statistical characteristics, could potentially be more reliable than the standard approach; the 
development of such a procedure is also the main purpose of this work. In durability tests, the Fatigue 
Damage Spectrum (FDS) [35-40] is generally used to quantify the fatigue damage potential associated 
with the excitation. In Gaussian tests, this damage potential can be mathematically related to the PSD 
of the excitation; the complete mathematical description was provided by C. Lalanne et al. [36, 39-
41]. The signal synthesized for accelerated fatigue-life tests must reproduce, in a short amount of 
time, the same FDS generated by the reference vibration throughout the component’s expected 
lifetime. Despite the limited duration of the tests, one must proceed with caution in order to ensure 
that the decreased duration does not affect the failure mode; in fact, excessively short durations might 
lead to exceedingly high stress levels, possibly shifting the failure mode from a fatigue type of failure 
to a type of failure caused by exceeding the material’s yield strength [42,43]. The synthesis 
procedures currently used generate Gaussian signals that may be unrealistic in representing the 
characteristics of the usually non-Gaussian reference data. In section 2.2, this dissertation presents 
novel algorithms for the synthesis of accelerated test profiles with prescribed FDS and a non-Gaussian 
distribution. 
In addition, in Appendix F a novel procedure for the estimation of the damage is proposed. The 
standard estimation of the damage is usually obtained by adopting either the so-called time-domain 
or frequency-domain methods [44,45]. The former are valid for every type of load, whereas most of 
the latter have exact theoretical implementations only for Gaussian loads. However, the major 
downside of time-domain methods is usually the computational time required, whereas the frequency 
domain approach is generally much faster. Hence, in the literature several authors proposed novel 
frequency-domain methodologies on non-Gaussian signals as well [46-49].  However, the 
applicability of frequency-domain methods to non-Gaussian time-series is usually constrained by 
some factors such as: degree of non-stationarity of the time-series, statistical distribution of the time-
series, natural frequencies of mechanical components. Therefore, a novel time-domain methodology 
is proposed in Appendix F to bridge the gap between time and frequency-domain, seeking to limit 
the computational effort and with a wider range of applicability than frequency domain methods. 
In chapter 3, theoretical systems are modelled to test the novel algorithms numerically, whereas in 
chapter 4 an experimental campaign is conducted to test validity in actual experiments, with the aim 
to attach a practical value to the theoretical work presented. Chapter 3 and 4 comprise both accelerated 
and non-accelerated tests. 
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Finally, it is worth mentioning that the author’s collaboration with industries (Easting s.r.l.s.) led to 
the development of Graphical User Interfaces that implement all the novel algorithms proposed, as 
well as the standard methodologies. Some of the relevant features of these interfaces are summarized 
in Appendix H. 
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1 Kurtosis control 
In this chapter the theory of kurtosis control is described mathematically in the first part, where the 
mathematical formulae that relate kurtosis (and higher order moments) to the spectral phases and 
amplitudes of a vibratory signal are introduced. In section 1.1, the theory (which is worked out in 
detail in the Appendices A, B, C) is used to discuss the so-called Papoulis’ Rule.  In the rest of the 
chapter, starting from section 1.2, an overview of the current state-of-the-art kurtosis control 
algorithms is provided.  

 

 

Given a random signal 𝑥𝑥(𝑡𝑡) in the time domain, its probability density 𝑝𝑝(𝑥𝑥) (assumed to be stationary 
for simplicity) and its average value 𝑐𝑐0, the second and fourth order moments 𝑀𝑀2 and 𝑀𝑀4 can be 
defined as: 

           𝑀𝑀2 = � (𝑥𝑥 − 𝑐𝑐0)2𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝜎𝜎2
+∞

−∞
                                          (1.1) 

𝑀𝑀4 = � (𝑥𝑥 − 𝑐𝑐0)4𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥
+∞

−∞
                                                    (1.2) 

where 𝜎𝜎2 is called the variance and its square root 𝜎𝜎 is the standard deviation. If  𝑐𝑐0 = 0, which is 
usually the case for signals measured from real applications, the signal root mean square (𝑅𝑅𝑀𝑀𝑆𝑆) is 
equal to 𝜎𝜎. 
Kurtosis 𝑘𝑘 is defined as:  

𝑘𝑘 =
𝑀𝑀4

𝑀𝑀2
2 =

𝑀𝑀4

𝜎𝜎4
                                                                         (1.3) 

This parameter can be used to estimate the presence of high peaks in a signal: in fact, if 𝑥𝑥(𝑡𝑡) has high 
peaks and the latter’s weight 𝑝𝑝(𝑥𝑥(𝑡𝑡)) is relevant, the terms (𝑥𝑥 − 𝑐𝑐0)4𝑝𝑝(𝑥𝑥) can be preponderant, hence 
increasing the kurtosis value. 
For a Gaussian signal, the probability distribution has the form: 

𝑝𝑝(𝑥𝑥) =
1

𝜎𝜎√2𝜋𝜋
𝑒𝑒−

(𝑥𝑥−𝑐𝑐0)2
2𝜎𝜎2                                                            (1.4) 

If Eq.(1.4) is inserted into Eq.(1.1) moment 𝑀𝑀2 gives 𝜎𝜎2, whereas if inserted into Eq.(1.2) moment 
𝑀𝑀4 gives 3𝜎𝜎4. Hence, for a Gaussian signal kurtosis is equal to 3. 
Shaker controllers for random vibration testing can be based on the Fast Fourier Transform (𝐹𝐹𝐹𝐹𝐷𝐷) 
data processing technique; the test specification is given in the frequency domain in terms of a power 
spectral density (𝑃𝑃𝑆𝑆𝐷𝐷) and actual time histories are reconstructed from the prescribed 𝑃𝑃𝑆𝑆𝐷𝐷 by the 
Inverse Fast Fourier Transform (𝐼𝐼𝐹𝐹𝐹𝐹𝐷𝐷). It means that the shaker is driven by a multi-frequency signal 
of the type: 

𝑥𝑥(𝑡𝑡) =
𝐴𝐴0
2

+ �𝐴𝐴𝑛𝑛 cos(2𝜋𝜋 ∙ 𝑛𝑛 ∙ ∆𝑓𝑓 ∙ 𝑡𝑡 + 𝜑𝜑𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

                                        (1.5) 
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with a large number of harmonics 𝑁𝑁. The amplitudes of the harmonics are determined according to 
the given 𝑃𝑃𝑆𝑆𝐷𝐷 shape 𝐺𝐺(𝑓𝑓) that is discretized with the frequency increment ∆𝑓𝑓: 

𝐴𝐴𝑛𝑛 = �2 ∆𝑓𝑓 𝐺𝐺(𝑛𝑛∆𝑓𝑓)                                                       (1.6) 

The phase angles 𝜑𝜑𝑛𝑛 are defined as uniformly distributed random numbers ranging from –𝜋𝜋 to 𝜋𝜋 (or 
0 to 2𝜋𝜋). The random generation of the harmonics phases provides the time signal with a Gaussian 
probability distribution. 
In order to motivate that the signal is Gaussian, an expression for kurtosis could be used, which is 
derived in Appendix A (Eqs.(A.20, A.26)) from a more general formula. The following formula for 
kurtosis was derived by Steinwolf [14]: 

k = 3 + �
1
4
��𝐴𝐴𝑛𝑛2

𝑘𝑘

𝐴𝐴𝑘𝑘2

𝑛𝑛

�
−1

 �−
3
8
�𝐴𝐴𝑛𝑛4

𝑛𝑛

+ 3 � 𝐴𝐴𝑛𝑛𝐴𝐴𝑘𝑘𝐴𝐴𝑙𝑙𝐴𝐴𝑟𝑟cos(𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑘𝑘 − 𝜑𝜑𝑙𝑙 − 𝜑𝜑𝑟𝑟) +
𝑙𝑙+𝑟𝑟=𝑛𝑛+𝑘𝑘

𝑙𝑙<𝑟𝑟,𝑛𝑛<𝑘𝑘,𝑛𝑛<𝑙𝑙

+ 3 � 𝐴𝐴𝑛𝑛𝐴𝐴𝑘𝑘𝐴𝐴𝑙𝑙𝐴𝐴𝑟𝑟cos(𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑘𝑘 + 𝜑𝜑𝑙𝑙 − 𝜑𝜑𝑟𝑟) +
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟 𝑛𝑛<𝑙𝑙<𝑘𝑘

+
1
2
� 𝐴𝐴𝑘𝑘3𝐴𝐴𝑟𝑟cos(3𝜑𝜑𝑘𝑘 − 𝜑𝜑𝑟𝑟) +
3𝑘𝑘=𝑟𝑟

+
3
2

� 𝐴𝐴𝑛𝑛2𝐴𝐴𝑙𝑙𝐴𝐴𝑟𝑟cos(2𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑙𝑙 − 𝜑𝜑𝑟𝑟) +
2𝑛𝑛+𝑙𝑙=𝑟𝑟
𝑛𝑛≠𝑙𝑙

+
3
2

� 𝐴𝐴𝑛𝑛𝐴𝐴𝑘𝑘𝐴𝐴𝑟𝑟2cos(𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑘𝑘 − 2𝜑𝜑𝑟𝑟)
𝑛𝑛+𝑘𝑘=2𝑟𝑟
𝑛𝑛<𝑘𝑘

�                                                             (1.7) 

The sums must be computed with all the indices ranging from 1 to 𝑁𝑁 but only if the conditions under 
the summation symbols are verified. 
From this expression a value of 3 emerges, plus other terms. If the phases are selected randomly and 
uniformly (i.e. with uniform probability distribution) the cosine functions will produce uniformly 
random values contained in the interval [−1,1], thus the terms multiplied by the cosines will 
compensate each other making the value of k close to 3 so that the signal has a Gaussian probability 
distribution. To be more rigorous, kurtosis being equal to 3 might not be enough to assert that a signal 
is Gaussian; in fact this also depends on higher order moments. A more rigorous explanation is given 
in the next section. 
By properly choosing the phases, it is evident that kurtosis may be manipulated (without affecting the 
PSD, which is only dependent upon the amplitudes): for instance, its maximum value can be reached 
when all the phase components are set to zero. Changing the kurtosis and preserving the PSD is 
known as kurtosis control. Kurtosis control by phase manipulation is a subject which will be dealt 
with in subsection 1.2.1; other techniques will be described in subsequent subsections. 
 

1.1 Effectiveness of kurtosis control 
Any kurtosis control algorithm aims to control the kurtosis value of a vibratory signal to be generated 
by the shaker; this is input kurtosis, while the device under test (DUT) will generally show a different 
value, because between the input and the output there is the transfer function of the system. 
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A. Papoulis [26] proved that if the transfer function of the system is that of a filter with a narrow 
band and some other technical assumptions are satisfied (mainly regarding the input signal features), 
the output tends to have a Gaussian distribution as the band goes to zero, regardless of the distribution 
of the input. This theorem is often referred to as Papoulis’ rule [31,32], and it is important to stress 
that the validity of the statement depends on both the component’s and the excitation signal’s 
characteristics. Since the damping coefficient of mechanical systems is usually in the low percentage 
range, in this case the transfer function can usually be likened to that of a filter with a narrow band, 
therefore Papoulis’ rule may hold and the output probability distribution could tend towards a 
Gaussian distribution. It may therefore be not easy, in general, to transfer the same amount of kurtosis 
from the input to the output, because kurtosis usually decreases in the output2.  
Since the physical intuition may be hidden by the mathematical details contained in Papoulis’ 
derivation, a different explanation will be given in the following as to why the filtering process may 
lead towards Gaussianity. This is important in order to understand why some kurtosis control 
algorithms are effective and others are not. 
The qth moment 𝑀𝑀𝑞𝑞 of a time-series (be it the input or the output of a system) can be written in the 
following form in terms of its amplitudes and phases (see Appendix A): 

𝑀𝑀𝑞𝑞 = �
1

2𝑞𝑞
𝐴𝐴𝑛𝑛1𝐴𝐴𝑛𝑛2 …𝐴𝐴𝑛𝑛𝑞𝑞 cos �𝜑𝜑𝑛𝑛1 + 𝜑𝜑𝑛𝑛2 + ⋯+ 𝜑𝜑𝑛𝑛𝑞𝑞�

𝑛𝑛1+𝑛𝑛2+⋯+𝑛𝑛𝑞𝑞=0
𝑛𝑛1≠0,𝑛𝑛2≠0,…,𝑛𝑛𝑞𝑞≠0

                (1.8) 

where the generic index 𝑛𝑛𝑘𝑘 can assume the integer values from –𝑁𝑁 to 𝑁𝑁 with 0 excluded. 
The central moments of zeroth and first order are trivially equal to 1 and 0 respectively3, whereas that 
of second order corresponds to the variance of the signal: 

𝑀𝑀2 = �
1
4
𝐴𝐴𝑛𝑛1𝐴𝐴𝑛𝑛2cos �𝜑𝜑𝑛𝑛1 + 𝜑𝜑𝑛𝑛2�

𝑛𝑛1+𝑛𝑛2=0
𝑛𝑛1≠0,𝑛𝑛2≠0

= �
1
4
𝐴𝐴𝑛𝑛1𝐴𝐴−𝑛𝑛1cos �𝜑𝜑𝑛𝑛1 + 𝜑𝜑−𝑛𝑛1�

𝑛𝑛1≠0

= 

= �
1
4
�𝐴𝐴𝑛𝑛1�

2cos �𝜑𝜑𝑛𝑛1 − 𝜑𝜑𝑛𝑛1�
𝑛𝑛1≠0

= �
1
4
𝐴𝐴𝑛𝑛2

𝑛𝑛≠0

= �
1
2
𝐴𝐴𝑛𝑛2

𝑛𝑛>0

                                  (1.9) 

Under the narrowband assumption, it is possible to understand how the general qth moment of the 
system’s output is affected. In the following, it is assumed that the system behaves as a filter with a 
bandwidth Δ𝑓𝑓0, which is narrow enough for the amplitudes of the response to be assumed 
approximately constant over the frequencies contained in that bandwidth. Another assumption will 
be that the number of signal’s harmonics remains “large” after filtering, that is 1

𝑇𝑇
≪ Δ𝑓𝑓0 for a signal 

of duration 𝐷𝐷, with the phases being uniformly random in the interval [0,2𝜋𝜋] over the filtered 
bandwidth. Alternatively, the following considerations remain valid for the system’s input with a 
sufficiently large number of dominant harmonics and uniform random phases. 

For even values of 𝑞𝑞, the moment 𝑀𝑀𝑞𝑞 can contain both terms depending on the phases and terms 
which do not, depending therefore only on the amplitudes (i.e. when the phase terms inside the cosine 
of Eq.(1.8) cancel, and the cosine becomes equal to 1). Due to the indistinguishability of the indices 

2 However, it is noteworthy to point out that, for non-stationary signals, output kurtosis could still be higher than input 
kurtosis (see subsection 1.2.3). It is more of a “rule of thumb” than an accurate expression to say that output kurtosis is 
usually lower than input kurtosis because it is not always true. 
3 The first order central moment is assumed equal to 0 because vibration signals usually have zero mean. 
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𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑞𝑞 in Eq.(1.8) (e.g. if  𝑛𝑛1 is replaced by 𝑛𝑛2 and vice versa, the result would not be affected), 
the functional form of 𝑀𝑀𝑞𝑞 could also be expressed as: 

𝑀𝑀𝑞𝑞 = 𝐶𝐶2𝑞𝑞 ��
1
4
𝐴𝐴𝑛𝑛2

𝑛𝑛≠0

�

𝑞𝑞
2

+ 𝐶𝐶4𝑞𝑞 ��𝐴𝐴𝑛𝑛4

𝑛𝑛≠0

�

𝑞𝑞
4

+ 𝐶𝐶6𝑞𝑞 ��𝐴𝐴𝑛𝑛6

𝑛𝑛≠0

�

𝑞𝑞
6

+ ⋯+ 𝐶𝐶𝑞𝑞𝑞𝑞 ��𝐴𝐴𝑛𝑛𝑞𝑞

𝑛𝑛≠0

�
1

+ 

+𝐶𝐶2,4,𝑞𝑞 ��𝐴𝐴𝑛𝑛2

𝑛𝑛≠0

�

𝑗𝑗1
2
��𝐴𝐴𝑛𝑛4

𝑛𝑛≠0

�

𝑞𝑞−𝑗𝑗1
4

+ 𝐶𝐶4,6,𝑞𝑞 ��𝐴𝐴𝑛𝑛4

𝑛𝑛≠0

�

𝑖𝑖1
4
��𝐴𝐴𝑛𝑛6

𝑛𝑛≠0

�

𝑞𝑞−𝑖𝑖1
6

+ ⋯+ 

+𝐶𝐶2,𝑞𝑞−2,𝑞𝑞 ��𝐴𝐴𝑛𝑛2

𝑛𝑛≠0

���𝐴𝐴𝑛𝑛𝑞𝑞−2

𝑛𝑛≠0

� + 𝐶𝐶4,𝑞𝑞−4,𝑞𝑞 ��𝐴𝐴𝑛𝑛4

𝑛𝑛≠0

���𝐴𝐴𝑛𝑛𝑞𝑞−4

𝑛𝑛≠0

� + ⋯+ 

+𝐶𝐶2,4,6,𝑞𝑞 ��𝐴𝐴𝑛𝑛2

𝑛𝑛≠0

�

𝑢𝑢1
2
��𝐴𝐴𝑛𝑛4

𝑛𝑛≠0

�

𝑢𝑢2
4
��𝐴𝐴𝑛𝑛6

𝑛𝑛≠0

�

𝑞𝑞−𝑢𝑢1−𝑢𝑢2
6

+ ⋯+ 

+𝑓𝑓𝑞𝑞(𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑁𝑁,𝜑𝜑1,𝜑𝜑2, … ,𝜑𝜑𝑁𝑁)                                                 (1.10) 

where the terms raised to the powers of: 𝑞𝑞
2

, 𝑞𝑞
4

, 𝑞𝑞
6

, … , 𝑗𝑗1
2

, 𝑖𝑖1
4

, 𝑞𝑞−𝑗𝑗1
4

, 𝑞𝑞−𝑖𝑖1
6

, … , 𝑢𝑢1
2

, 𝑢𝑢2
4

, 𝑞𝑞−𝑢𝑢1−𝑢𝑢2
6

,…, etc. may 
appear only if the latter are integers. Eq.(1.10) needs further clarification: a simple example can be 
given to motivate the seemingly complicated expression. If the term, say, 𝐴𝐴32𝐴𝐴7𝑞𝑞−2 appears in 𝑀𝑀𝑞𝑞 
(multiplied by some constant, say, �̂�𝐶), then also 𝐴𝐴72𝐴𝐴3𝑞𝑞−2 must appear (multiplied by the same 
constant) due to the symmetry of the indices. This must be generalized to the other indices as well, 
not just for 3 and 7 chosen in the example. Therefore, if 𝐴𝐴32𝐴𝐴7𝑞𝑞−2 appears, it can be grouped for 
example in the term: �∑ 𝐴𝐴𝑛𝑛2𝑛𝑛≠0 ��∑ 𝐴𝐴𝑛𝑛𝑞𝑞−2𝑛𝑛≠0 �. Of course, 𝐴𝐴32𝐴𝐴7𝑞𝑞−2 could also appear in other terms, 

such as �∑ 𝐴𝐴𝑛𝑛2𝑛𝑛≠0 �
𝑞𝑞/2

; it is up to the multiplicative constants in Eq.(1.10) to add up to the right 
constant (i.e. the constants 𝐶𝐶2𝑞𝑞 , 𝐶𝐶2,𝑞𝑞−2,𝑞𝑞 and possibly others are related to �̂�𝐶). It is more convenient for 
further considerations to group together some terms of Eq.(1.10) more formally (and also relabel the 
constants differently), so that the equation could be rewritten in the following form: 
 

𝑀𝑀𝑞𝑞 = 𝐶𝐶2𝑞𝑞 ��
1
4
𝐴𝐴𝑛𝑛2

𝑛𝑛≠0

�

𝑞𝑞
2
− � 𝐶𝐶𝑗𝑗4,𝑗𝑗6,𝑗𝑗8,..,𝑗𝑗𝑞𝑞 ��𝐴𝐴𝑛𝑛2

𝑛𝑛≠0

�

𝑞𝑞
2
��

∑ 𝐴𝐴𝑛𝑛2𝑘𝑘𝑛𝑛≠0

�∑ 𝐴𝐴𝑛𝑛2𝑛𝑛≠0 �
𝑘𝑘�

𝑗𝑗2𝑘𝑘𝑞𝑞/2

𝑘𝑘=20 < ∑ 2𝑘𝑘∙𝑗𝑗2𝑘𝑘
𝑞𝑞/2
𝑘𝑘=2  ≤ 𝑞𝑞

𝑗𝑗2𝑘𝑘  ∈ ℕ,   𝑘𝑘=2,3,…,𝑞𝑞/2 

+ 

+𝑓𝑓𝑞𝑞(𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑁𝑁,𝜑𝜑1,𝜑𝜑2, … ,𝜑𝜑𝑁𝑁)                                             (1.11) 

The term 𝐶𝐶2𝑞𝑞 is obtained by dividing the 𝑞𝑞-tuple of phases 𝜑𝜑𝑛𝑛1 ,𝜑𝜑𝑛𝑛2 , … ,𝜑𝜑𝑛𝑛𝑞𝑞 in subsets of 𝑞𝑞/2 disjoint 
pairs and counting all possible arrangements of those 𝑞𝑞/2  pairs having opposite indices (thus making 
the cosine of Eq.(1.8) equal to 1); this number of arrangements is equal to 𝐶𝐶2𝑞𝑞 by definition. By doing 
so there are some terms that are over-counted, that is when the absolute value of the indices of 
different pairs is the same. In fact, for example, with 𝑞𝑞 = 4 and indices 𝑛𝑛1 = 5, 𝑛𝑛2 = −5, 𝑛𝑛3 = −5, 
𝑛𝑛4 = 5, it is clear that this combination should be counted only once, but by counting all possible 
arrangements 𝑛𝑛1 could be paired with both 𝑛𝑛2 (i.e. 𝑛𝑛3 paired with 𝑛𝑛4) and 𝑛𝑛3 (i.e. 𝑛𝑛2 paired with 𝑛𝑛4), 
therefore 𝐶𝐶2𝑞𝑞 actually counts this combination of indices twice. Hence, the coefficients 𝐶𝐶𝑗𝑗4,𝑗𝑗6,𝑗𝑗8,..,𝑗𝑗𝑞𝑞 act 
as a correction to avoid multiple counting (this is why a minus sign was put before the summation 
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symbol); for instance when 𝑞𝑞 = 4 the only contribution is given by 𝑗𝑗4 = 1, and the only coefficient 
𝐶𝐶1 is multiplied by ∑ 𝐴𝐴𝑛𝑛4𝑛𝑛≠0 = 2∑ 𝐴𝐴𝑛𝑛4𝑛𝑛>0 . Then, by comparing Eq.(1.11) when 𝑞𝑞 = 4 with 
Eq.(A.26) or Eq.(1.7), one finds that the value of 𝐶𝐶1 is 3/16. If 𝑞𝑞 = 6, then the second term in 
Eq.(1.11) gives: 𝐶𝐶1,0�∑ 𝐴𝐴𝑛𝑛4𝑛𝑛≠0 ��∑ 𝐴𝐴𝑛𝑛2𝑛𝑛≠0 � + 𝐶𝐶0,1�∑ 𝐴𝐴𝑛𝑛6𝑛𝑛≠0 �, and so on. Therefore, it should be 
clear how simple symmetry arguments about the indices may lead to the general formula for 𝑀𝑀𝑞𝑞 
written as in Eq.(1.11). The function 𝑓𝑓𝑞𝑞(𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑁𝑁,𝜑𝜑1,𝜑𝜑2, … ,𝜑𝜑𝑁𝑁)  depends on both amplitudes 
and phases because it considers all other possibilities, namely terms containing 𝑞𝑞-tuples for which at 
least one of the phase indices does not sum to zero with any of the other phase indices (the algebraic 
sum of all indices still equals zero). In this case the cosines of Eq.(1.8) will not equal 1 in general. 
However, due to the narrowband of the filter, and to the (i) assumed uniform randomness of the 
phases, (ii) small variation of the amplitudes and (iii) large number of harmonics �i.e.  1

𝑇𝑇
≪ Δ𝑓𝑓0� : 

𝑓𝑓𝑞𝑞(𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑁𝑁,𝜑𝜑1,𝜑𝜑2, … ,𝜑𝜑𝑁𝑁) ≈ 0                                                 (1.12) 

Besides, the term that multiplies the coefficient 𝐶𝐶2𝑞𝑞 is large with respect to all others, in fact, by using 
the letter 𝒪𝒪 to denote the big O notation, one can write: 

��𝐴𝐴𝑛𝑛2

𝑛𝑛≠0

�
𝑘𝑘

= 𝒪𝒪�𝐴𝐴𝑛𝑛2𝑘𝑘𝑁𝑁𝑘𝑘� ≫ 𝒪𝒪�𝐴𝐴𝑛𝑛2𝑘𝑘𝑁𝑁� = 

= �𝐴𝐴𝑛𝑛2𝑘𝑘

𝑛𝑛≠0

              where   𝑘𝑘 ≥ 2 as in 𝐸𝐸𝑞𝑞. (1.11)                         (1.13) 

Therefore, the term ∑ 𝐴𝐴𝑛𝑛2𝑘𝑘𝑛𝑛≠0

�∑ 𝐴𝐴𝑛𝑛2𝑛𝑛≠0 �
𝑘𝑘  goes to zero as 𝑁𝑁 goes to infinity. 

Hence, the error is negligible if only the first term is considered: 

    𝑀𝑀𝑞𝑞 = 𝐶𝐶2𝑞𝑞 ��
1
4
𝐴𝐴𝑛𝑛2

𝑛𝑛≠0

�

𝑞𝑞
2

           where   𝑞𝑞 = 2,4,6, …         (1.14) 

This agrees with the fact that terms that are counted multiple times in the first term of Eq.(1.11), 
which appear when the absolute value of the indices of different pairs is the same, are much less than 
the number of possibilities where the indices of disjoint pairs are different. 

According to the above considerations, the value of the coefficient 𝐶𝐶2𝑞𝑞 can be computed by counting 
the number of 𝑞𝑞-tuples of indices 𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑞𝑞 among which pairs of them have opposite value 
(neglecting over-counting). If 𝑛𝑛1 is fixed, there are 𝑞𝑞 − 1 possible indices �i.e.  𝑛𝑛2, … ,𝑛𝑛𝑞𝑞� to which 
𝑛𝑛1 can be equal in absolute value and have opposite sign. Assuming that a second index is chosen 
such that it equals −𝑛𝑛1, a third index must be fixed. At this point there are 𝑞𝑞 − 3 possible indices 
which the third index can be opposite to. By continuing this line of thought it is clear that the 
coefficient 𝐶𝐶2𝑞𝑞 can be obtained according to the formula: 

𝐶𝐶2𝑞𝑞 = (𝑞𝑞 − 1)(𝑞𝑞 − 3)(𝑞𝑞 − 5) … 3 ∙ 1 = (𝑞𝑞 − 1)‼                  (1.15) 

where the notation (𝑞𝑞 − 1)‼ indicates the double factorial. Hence, Eq.(1.14) can be recast as: 

𝑀𝑀𝑞𝑞 = (𝑞𝑞 − 1)‼𝑀𝑀2
𝑞𝑞
2           where   𝑞𝑞 = 2,4,6, …         (1.16) 
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For odd values of 𝑞𝑞, it is clear that the moment 𝑀𝑀𝑞𝑞 can contain terms depending only on the phases, 
because there is always at least one phase that remains unmatched; therefore it can be written in the 
following form: 

𝑀𝑀𝑞𝑞 = 𝑔𝑔𝑞𝑞(𝐴𝐴1,𝐴𝐴2, … ,𝐴𝐴𝑁𝑁,𝜑𝜑1,𝜑𝜑2, … ,𝜑𝜑𝑁𝑁)                                             (1.17) 

The function 𝑔𝑔𝑞𝑞 is conceptually the same as the function 𝑓𝑓𝑞𝑞 considered for even values of 𝑞𝑞, thus it is 
approximately zero under the assumptions stated above: 

𝑀𝑀𝑞𝑞 = 0                      where   𝑞𝑞 = 1,3,5, …         (1.18) 

As is well-known [33], if the signal is ergodic the moments computed in the time-domain (Appendix 
A, Eq.(A.18) ) are equal to their ensemble average counterparts; therefore, Eq.(1.16) and Eq.(1.18), 
which represent moments calculated in the time-domain, may be assumed equal to the corresponding 
moments obtained from the statistical distribution. From all the moments, the probability density 
function 𝑝𝑝(𝑥𝑥) can be derived; in fact, by considering the definition of the central moment in terms of 
ensemble averages: 

𝑀𝑀𝑞𝑞 = � (𝑥𝑥 − 𝑐𝑐0)𝑞𝑞𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥
+∞

−∞
                                         (1.19) 

it is easy to see that: 

�(−𝑗𝑗𝑗𝑗)𝑞𝑞
𝑀𝑀𝑞𝑞

𝑞𝑞!

∞

𝑞𝑞=0

= � 𝑒𝑒−𝑗𝑗𝑗𝑗(𝑥𝑥−𝑐𝑐0)𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥
+∞

−∞
                                       (1.20) 

where 𝑗𝑗 is the imaginary unit and it is assumed that the series and the integral converge, by omitting 
any mathematical rigor. 
The left side of Eq. (1.20) represents the Fourier Transform of the function 𝑝𝑝(𝑥𝑥)𝑒𝑒𝑗𝑗𝑗𝑗𝑐𝑐0, thus the 
Inverse Transform can be used to calculate 𝑝𝑝(𝑥𝑥) from its moments: 

𝑝𝑝(𝑥𝑥) =
1

2𝜋𝜋
� �(−𝑗𝑗𝑗𝑗)𝑞𝑞

𝑀𝑀𝑞𝑞

𝑞𝑞!

∞

𝑞𝑞=0

+∞

−∞
𝑒𝑒𝑗𝑗𝑗𝑗(𝑥𝑥−𝑐𝑐0)𝑑𝑑𝑗𝑗                            (1.21) 

By substituting the expressions given by Eq.(1.16) and Eq.(1.18), Eq.(1.21) yields the Gaussian 
probability density function (see Appendix B). 
Another interesting case to consider is when the narrowband filter has a bandwidth Δ𝑓𝑓0 such that 
Δ𝑓𝑓0 < 1

𝑇𝑇
 , and it is assumed that the response behaves like a sinusoid after filtering, such that there 

remains only one harmonic. In this case in Eq.(1.8), which still remains valid, the indices of the phases 
and amplitudes can only assume the values of ±𝑙𝑙 (since there is only one sinusoid), where 𝑙𝑙 is a fixed 
integer. Since the sum of the indices 𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑞𝑞 must equal zero, it is easy to see the moment of 
order 𝑞𝑞 is zero if 𝑞𝑞 is odd: 

𝑀𝑀𝑞𝑞 = 0                      where   𝑞𝑞 = 1,3,5, …         (1.22) 

because the condition under the summation symbol in Eq.(1.8) is not satisfiable. It is also 
straightforward to compute the moment of order 𝑞𝑞 when 𝑞𝑞 is even. In fact, since the indices can only 
assume the values ±𝑙𝑙, 𝑞𝑞/2 should be equal to 𝑙𝑙 and the other 𝑞𝑞/2 equal to −𝑙𝑙. The number of choices 
to achieve that is given by the binomial coefficient � 𝑞𝑞

𝑞𝑞/2�, hence: 
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𝑀𝑀𝑞𝑞 = �
𝑞𝑞
𝑞𝑞/2�

𝐴𝐴𝑞𝑞

2𝑞𝑞
                      where   𝑞𝑞 = 2,4,6, …         (1.23) 

where 𝐴𝐴 is the amplitude of the sinusoid. 
By substituting the expressions given by Eq.(1.22) and Eq.(1.23), Eq.(1.21) yields the probability 
density function of a sinusoid (see Appendix C). 
The case of the filter bandwidth being so small such that only one sinusoid is extracted is not really 
likely in practice; nevertheless, the examples given in this section emphasize that the bandwidth of a 
system plays an important role in determining the distribution of the response of the system. 
 

1.2 Kurtosis control algorithms 
There are different types of kurtosis-control algorithms: phase manipulation [14,16,20], amplitude 
modulation [17-19], Polynomial Transformation [21-23]; another more recent type of algorithm [17] 
describes how to synthesize novel non-stationary signals with prescribed kurtosis and PSD. In the 
next subsections, most of the focus will be directed to the kurtosis-control algorithms presented by E. 
Pesaresi et al. in recent works [17], which span most of the different types of kurtosis-control 
algorithms available in the literature. Some of the algorithms proposed therein are novel and not 
negatively affected by Papoulis’ Rule, as shown by means of a proper selection of input parameters. 
The algorithms are revised starting with the phase manipulation method as described by A. Steinwolf 
et al. [14] and then describing those introduced by E. Pesaresi et al. [17], with the aim to highlight 
the different characteristics in the synthesized signals. 
 

1.2.1 Phase manipulation 
By looking at one of the expressions for 𝑀𝑀4 given by Eqs.(A.21, A.23, A.26) in Appendix A, it is 
evident that 𝑀𝑀4 depends not only on the 𝑃𝑃𝑆𝑆𝐷𝐷, which is considered assigned (i.e. the amplitudes of 
the harmonics are fixed), but on the phases as well. Two approaches adopted in the literature are 
summarized in the following:  

1) Some phases are chosen so that the arguments of some cosines in 𝑀𝑀4 are equal to zero [14,24]. 
To exemplify and understand this approach, if Eq.(A.21) is considered, that is: M4 =
1
16
∑ 𝐴𝐴𝑛𝑛𝐴𝐴𝑘𝑘𝐴𝐴𝑙𝑙𝐴𝐴𝑟𝑟 cos(𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑘𝑘 + 𝜑𝜑𝑙𝑙 + 𝜑𝜑𝑟𝑟)𝑛𝑛+𝑘𝑘+𝑙𝑙+𝑟𝑟=0
𝑛𝑛≠0,𝑘𝑘≠0,𝑙𝑙≠0,𝑟𝑟≠0

 , this expression has four different indices 

𝑛𝑛, 𝑘𝑘, 𝑙𝑙,𝑚𝑚 (such that 𝑛𝑛 + 𝑘𝑘 + 𝑙𝑙 + 𝑚𝑚 = 0) associated with each term 𝐴𝐴𝑛𝑛𝐴𝐴𝑘𝑘𝐴𝐴𝑙𝑙𝐴𝐴𝑟𝑟cos(𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑘𝑘 + 𝜑𝜑𝑙𝑙 +
𝜑𝜑𝑟𝑟); for instance, if a new 𝜑𝜑𝑛𝑛 is chosen so that 𝜑𝜑𝑛𝑛 = −(𝜑𝜑𝑘𝑘 + 𝜑𝜑𝑙𝑙 + 𝜑𝜑𝑟𝑟) for three selected indices 
𝑘𝑘, 𝑙𝑙,𝑚𝑚 (considered to be fixed), the term 𝐴𝐴𝑛𝑛𝐴𝐴𝑘𝑘𝐴𝐴𝑙𝑙𝐴𝐴𝑟𝑟cos(𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑘𝑘 + 𝜑𝜑𝑙𝑙 + 𝜑𝜑𝑟𝑟) becomes equal to 
𝐴𝐴𝑛𝑛𝐴𝐴𝑘𝑘𝐴𝐴𝑙𝑙𝐴𝐴𝑟𝑟 and thus it is maximized.                                                                                                 
This process can be carried out for other quartets of indices to maximize other terms.                                                                                                       
If, instead of maximizing those terms it is required to minimize them, the same process can be carried 
out but, the argument of the cosine in this case will be set to ±𝜋𝜋 instead of 0.  
Maximizing or minimizing those terms is useful for those cases where kurtosis needs to be, 
respectively, increased or decreased. Usually, phases are randomly generated at first, thus the signal 
starts (approximately) with the Gaussian value of 3 for kurtosis and then phase manipulation is used 
to increase (by maximizing the above terms) or decrease (by minimizing the above terms) the kurtosis 
parameter. 
This procedure is not flawless: in fact, if for instance kurtosis needs to be increased and it is decided 
to maximize one term associated with a certain quartet of indices, it is not granted that the other terms 
grow as well or remain constant. Indeed, since the terms are numerous, there will be terms which 
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likely become negative, with a possible overall effect of kurtosis decrease instead of increase. Thus, 
the process is not optimal, because in order to obtain the kurtosis target value several iterations should 
be carried out.  

 
2) The second approach  [14] was conceived to improve the first one. It considers M4 in terms 
of the 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛 terms, defined in Appendix A: 

M4 = 3𝑀𝑀2
2 −

3
8
�𝐴𝐴𝑛𝑛4

𝑛𝑛

+ 

3 � ��𝑎𝑎𝑗𝑗𝑎𝑎𝑘𝑘 − 𝑏𝑏𝑗𝑗𝑏𝑏𝑘𝑘�(𝑎𝑎𝑛𝑛𝑎𝑎𝑟𝑟 − 𝑏𝑏𝑛𝑛𝑏𝑏𝑟𝑟) + �𝑎𝑎𝑗𝑗𝑏𝑏𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑏𝑏𝑗𝑗�(𝑎𝑎𝑛𝑛𝑏𝑏𝑟𝑟 + 𝑎𝑎𝑟𝑟𝑏𝑏𝑛𝑛)�
𝑗𝑗+𝑘𝑘=𝑛𝑛+𝑟𝑟

𝑗𝑗<𝑘𝑘,𝑛𝑛<𝑟𝑟,𝑛𝑛<𝑗𝑗

+ 

3 � ��𝑎𝑎𝑗𝑗𝑎𝑎𝑘𝑘 − 𝑏𝑏𝑗𝑗𝑏𝑏𝑘𝑘�(𝑎𝑎𝑛𝑛𝑎𝑎𝑟𝑟 + 𝑏𝑏𝑛𝑛𝑏𝑏𝑟𝑟) + �𝑎𝑎𝑗𝑗𝑏𝑏𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑏𝑏𝑗𝑗�(𝑎𝑎𝑛𝑛𝑏𝑏𝑟𝑟 − 𝑎𝑎𝑟𝑟𝑏𝑏𝑛𝑛)�
𝑗𝑗+𝑘𝑘+𝑛𝑛=𝑟𝑟
𝑗𝑗<𝑘𝑘<𝑛𝑛

 

          +
1
2
��𝑎𝑎𝑗𝑗𝑎𝑎𝑘𝑘�𝑎𝑎𝑘𝑘2 − 3𝑏𝑏𝑘𝑘

2� − 𝑏𝑏𝑗𝑗𝑏𝑏𝑘𝑘�𝑏𝑏𝑘𝑘
2 − 3𝑎𝑎𝑘𝑘2��

𝑗𝑗=3𝑘𝑘

                                   

+
3
2

� ��𝑎𝑎𝑗𝑗𝑎𝑎𝑘𝑘 + 𝑏𝑏𝑗𝑗𝑏𝑏𝑘𝑘��𝑎𝑎𝑛𝑛2 − 𝑏𝑏𝑛𝑛
2� − 2�𝑎𝑎𝑗𝑗𝑏𝑏𝑘𝑘 − 𝑎𝑎𝑘𝑘𝑏𝑏𝑗𝑗�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛�

𝑗𝑗=𝑘𝑘+2𝑛𝑛
𝑘𝑘≠𝑛𝑛

 

+
3
2

� ��𝑎𝑎𝑗𝑗𝑎𝑎𝑘𝑘 − 𝑏𝑏𝑗𝑗𝑏𝑏𝑘𝑘��𝑎𝑎𝑛𝑛2 − 𝑏𝑏𝑛𝑛
2� + 2�𝑎𝑎𝑗𝑗𝑏𝑏𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑏𝑏𝑗𝑗�𝑎𝑎𝑛𝑛𝑏𝑏𝑛𝑛�

𝑗𝑗+𝑘𝑘=2𝑛𝑛
𝑗𝑗<𝑘𝑘

               (1.24) 

Considering the first summation of Eq.(1.24): 

� ��𝑎𝑎𝑗𝑗𝑎𝑎𝑘𝑘 − 𝑏𝑏𝑗𝑗𝑏𝑏𝑘𝑘�(𝑎𝑎𝑛𝑛𝑎𝑎𝑟𝑟 − 𝑏𝑏𝑛𝑛𝑏𝑏𝑟𝑟) + �𝑎𝑎𝑗𝑗𝑏𝑏𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑏𝑏𝑗𝑗�(𝑎𝑎𝑛𝑛𝑏𝑏𝑟𝑟 + 𝑎𝑎𝑟𝑟𝑏𝑏𝑛𝑛)�
𝑗𝑗+𝑘𝑘=𝑛𝑛+𝑟𝑟

𝑗𝑗<𝑘𝑘,𝑛𝑛<𝑟𝑟,𝑛𝑛<𝑗𝑗

 

each member contained in the curly brackets still has its maximum value equal to 𝐴𝐴𝑗𝑗𝐴𝐴𝑘𝑘𝐴𝐴𝑛𝑛𝐴𝐴𝑟𝑟 because 
the formula derives directly from Eq.(1.7), knowing that: 𝑎𝑎𝑛𝑛 = 𝐴𝐴𝑛𝑛cos𝜑𝜑𝑛𝑛, 𝑏𝑏𝑛𝑛 = −𝐴𝐴𝑛𝑛sin𝜑𝜑𝑛𝑛. 
This maximum value is the target and it should be reached by keeping the 𝑃𝑃𝑆𝑆𝐷𝐷 fixed, as already 
mentioned. It can be achieved if, for each of the harmonics involved, the 𝑎𝑎𝑛𝑛 terms are expressed as a 
function of 𝑏𝑏𝑛𝑛 (or vice versa): 

                𝑎𝑎𝑗𝑗 = ±�𝐴𝐴𝑗𝑗2 − 𝑏𝑏𝑗𝑗
2, 𝑎𝑎𝑘𝑘 = ±�𝐴𝐴𝑘𝑘2 − 𝑏𝑏𝑘𝑘

2, 𝑎𝑎𝑛𝑛 = ±�𝐴𝐴𝑛𝑛2 − 𝑏𝑏𝑛𝑛
2, 𝑎𝑎𝑟𝑟 = ±�𝐴𝐴𝑟𝑟2 − 𝑏𝑏𝑟𝑟

2 

Thus, for a fixed quartet of indices 𝑗𝑗,𝑘𝑘 ,𝑚𝑚 ,𝑛𝑛, there are only 4 independent parameters for each term 
in the first summation of Eq.(1.24). 
The procedure of this second approach requires that a quartet of indices be chosen, for instance: 
𝑗𝑗, 𝑘𝑘 ,𝑚𝑚 ,𝑛𝑛 belonging to the first summation of Eq.(1.24), and then one index be chosen for which the 
phase should vary (for instance 𝑘𝑘) and the phases of the other 3 indices be considered fixed ( 𝑗𝑗 ,𝑚𝑚 ,𝑛𝑛). 
A mandatory condition to be satisfied is that the three fixed indices not be equal to the index for which 
the phase should vary (for the first summation this is always true). 
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Then, one can rewrite the term with indices 𝑗𝑗,𝑘𝑘 ,𝑚𝑚 ,𝑛𝑛 in the first summation as: 

𝑓𝑓(𝑏𝑏𝑘𝑘) = 𝐷𝐷𝑏𝑏𝑘𝑘 + 𝐸𝐸𝑎𝑎𝑘𝑘 = 𝐷𝐷𝑏𝑏𝑘𝑘 ± 𝐸𝐸�𝐴𝐴𝑘𝑘2 − 𝑏𝑏𝑘𝑘
2                                    (1.25) 

where: 

𝐷𝐷 = 𝑎𝑎𝑗𝑗(𝑎𝑎𝑛𝑛𝑏𝑏𝑟𝑟 + 𝑎𝑎𝑟𝑟𝑏𝑏𝑛𝑛) − 𝑏𝑏𝑗𝑗(𝑎𝑎𝑛𝑛𝑎𝑎𝑟𝑟 − 𝑏𝑏𝑛𝑛𝑏𝑏𝑟𝑟) 

and: 

𝐸𝐸 = 𝑎𝑎𝑗𝑗(𝑎𝑎𝑛𝑛𝑎𝑎𝑟𝑟 − 𝑏𝑏𝑛𝑛𝑏𝑏𝑟𝑟) + 𝑏𝑏𝑗𝑗(𝑎𝑎𝑛𝑛𝑏𝑏𝑟𝑟 + 𝑎𝑎𝑟𝑟𝑏𝑏𝑛𝑛) 

After differentiating the function given by Eq.(1.25) with respect to 𝑏𝑏𝑘𝑘 and imposing the result to be 
equal to zero, the following solution can be found for 𝑏𝑏𝑘𝑘: 

𝑏𝑏𝑘𝑘 = ±𝐴𝐴𝑘𝑘�𝐷𝐷2/(𝐷𝐷2 + 𝐸𝐸2)                                                      (1.26) 

Then 𝑎𝑎𝑘𝑘 can be calculated as already seen:  

𝑎𝑎𝑘𝑘 = ±�𝐴𝐴𝑘𝑘2 − 𝑏𝑏𝑘𝑘
2                                                               (1.27) 

With the double sign in Eq.(1.26) and another double sign in Eq.(1.27), there are 4 solutions, but only 
two of these solutions lead to the maximum and minimum of the function in Eq.(1.25). To find the 
signs for the 𝑏𝑏𝑘𝑘 and 𝑎𝑎𝑘𝑘 values corresponding to the maximum and minimum, the signs of 𝐷𝐷 and 𝐸𝐸 
must be considered: for kurtosis increase, the sign of 𝑏𝑏𝑘𝑘 should be selected to be the same as the sign 
of 𝐷𝐷 and the sign of 𝑎𝑎𝑘𝑘 the same as the sign of 𝐸𝐸. Then, the value of 𝑓𝑓(𝑏𝑏𝑘𝑘) will be maximum. For 
kurtosis decrease, the sign of 𝑏𝑏𝑘𝑘 should be selected to be the opposite to the sign of 𝐷𝐷 and the sign of 
𝑎𝑎𝑘𝑘 opposite to the sign of 𝐸𝐸. Then, the value of 𝑓𝑓(𝑏𝑏𝑘𝑘) will be minimum. 
This is the procedure described by A. Steinwolf in his article [14]. If only one term4 of the first 
summation of Eq.(1.24) is considered, the first and second approach lead to the same result but, if 
more terms are considered, the second approach leads to better results, because more sums are taken 
into consideration. Their maximum or minimum value is to be found by optimizing the function: 

𝑓𝑓(𝑏𝑏𝑘𝑘) = 𝐷𝐷′𝑏𝑏𝑘𝑘 + 𝐸𝐸′𝑎𝑎𝑘𝑘 = 𝐷𝐷′𝑏𝑏𝑘𝑘 ± 𝐸𝐸′�𝐴𝐴𝑘𝑘2 − 𝑏𝑏𝑘𝑘
2, where 𝐷𝐷′ and 𝐸𝐸′ are constant with respect to 𝑏𝑏𝑘𝑘 like 

𝐷𝐷 and 𝐸𝐸, but may depend in general on more than 3 indices5 (i.e. the case if only one term is 
considered). 
However, even the second approach is not flawless: indeed it cannot consider all the possible terms 
to be added in Eq.(1.24), because when the index 𝑘𝑘 is chosen, the other indices must not be equal to 
𝑘𝑘, otherwise the problem could not be written in the form: 𝑓𝑓(𝑏𝑏𝑘𝑘) = 𝐷𝐷′𝑏𝑏𝑘𝑘 + 𝐸𝐸′𝑎𝑎𝑘𝑘 = 𝐷𝐷′𝑏𝑏𝑘𝑘 ±

𝐸𝐸′�𝐴𝐴𝑘𝑘2 − 𝑏𝑏𝑘𝑘
2 because higher order terms would appear. Therefore, maximizing only some of the 

4What is meant by “term” is the content of the curly brackets of the first summation appearing in Eq.1.24 (for a fixed 
quartet of indices 𝑗𝑗, 𝑘𝑘 ,𝑚𝑚 ,𝑛𝑛), namely: �𝑎𝑎𝑗𝑗𝑎𝑎𝑘𝑘 − 𝑏𝑏𝑗𝑗𝑏𝑏𝑘𝑘�(𝑎𝑎𝑛𝑛𝑎𝑎𝑟𝑟 − 𝑏𝑏𝑛𝑛𝑏𝑏𝑟𝑟) + �𝑎𝑎𝑗𝑗𝑏𝑏𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑏𝑏𝑗𝑗�(𝑎𝑎𝑛𝑛𝑏𝑏𝑟𝑟 + 𝑎𝑎𝑟𝑟𝑏𝑏𝑛𝑛). 
5 The expressions for 𝐷𝐷’ and 𝐸𝐸’ can be generalized from that of 𝐷𝐷 and 𝐸𝐸. In particular, when one considers all possible 
indices, obtains: 
𝐷𝐷′ = ∑ 𝑎𝑎𝑗𝑗(𝑎𝑎𝑛𝑛𝑏𝑏𝑟𝑟 + 𝑎𝑎𝑟𝑟𝑏𝑏𝑛𝑛) − 𝑏𝑏𝑗𝑗(𝑎𝑎𝑛𝑛𝑎𝑎𝑟𝑟 − 𝑏𝑏𝑛𝑛𝑏𝑏𝑟𝑟)𝑗𝑗+𝑘𝑘=𝑛𝑛+𝑟𝑟

𝑗𝑗<𝑘𝑘,𝑛𝑛<𝑟𝑟,𝑛𝑛<𝑗𝑗
(𝑘𝑘 𝑓𝑓𝑖𝑖𝑥𝑥𝑓𝑓𝑓𝑓)

, 𝐸𝐸′ = ∑ 𝑎𝑎𝑗𝑗(𝑎𝑎𝑛𝑛𝑎𝑎𝑟𝑟 − 𝑏𝑏𝑛𝑛𝑏𝑏𝑟𝑟) + 𝑏𝑏𝑗𝑗(𝑎𝑎𝑛𝑛𝑏𝑏𝑟𝑟 + 𝑎𝑎𝑟𝑟𝑏𝑏𝑛𝑛)𝑗𝑗+𝑘𝑘=𝑛𝑛+𝑟𝑟
𝑗𝑗<𝑘𝑘,𝑛𝑛<𝑟𝑟,𝑛𝑛<𝑗𝑗

(𝑘𝑘 𝑓𝑓𝑖𝑖𝑥𝑥𝑓𝑓𝑓𝑓)
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terms does not prevent the others from having the opposite tendency, namely to create an overall 
effect that may thwart the desired one.  
3) To conclude this subsection, a third approach of manipulating phases is introduced, which has 
a straightforward implementation; hereinafter it will be referred to as PM algorithm.                                                     
The approach is not analytical and is based on the following steps: 

 

step 0) generate phases randomly; 

 

step 1) select one of the phases randomly in a pre-selected frequency range; 

 

step 2) randomly set another value for that phase, between 0 and 2𝜋𝜋; 

 

step 3) calculate the new kurtosis value in the time domain6; 

 

step 4) if the new kurtosis value is closer to the target value, keep the value of the phase changed at 
step 2, otherwise discard it and restore the former value for that phase; 

 

step 5) repeat from step 1 until the target is reached. 

 

The speed of the PM algorithm is given by the fact that there is no analytical formula to compute. At 
step 1 of each loop, there is a 50% chance of increasing/decreasing kurtosis and only the operation of 
random number generation is needed, which is of no particular computational concern. Since the first 
two approaches described above usually consider only few of the terms contained in 𝑀𝑀4 in the 
maximization process, the probability may be less than 50% at each loop, with possibly no advantage 
over the simple steps proposed above. In order to maximize the probability of increasing/decreasing 
kurtosis as desired, the second approach should consider a number of terms of the order 𝒪𝒪(𝑁𝑁2) at 
each loop, where 𝑁𝑁 is the same number of harmonics as in Eq.(A.8). In fact, by considering Eq.(A.21) 
for the calculation of 𝑀𝑀4, there are 4 indices and one constraint, hence 𝒪𝒪(𝑁𝑁3) operations; the number 
of operations to be done in the first sum of Eq.(1.24) is still of the order 𝒪𝒪(𝑁𝑁3). At each loop, the 
second approach fixes one of the indices, therefore there remain two free indices and 𝒪𝒪(𝑁𝑁2) 
operations. In this case, the coefficients 𝐷𝐷′ and 𝐸𝐸′ (see footnote 5) need a number of operations 𝒪𝒪(𝑁𝑁2) 
to be computed at each loop, which is much greater than the number of operations 𝒪𝒪(𝑁𝑁) required for 
the computation of the kurtosis parameter (computed on step 3 in the PM method), with the M𝑘𝑘 
moment being defined in the discrete case as: 

M𝑘𝑘 =
1
𝑁𝑁𝑟𝑟

� (𝑥𝑥(𝑙𝑙∆𝑡𝑡) − 𝑐𝑐0)𝑘𝑘
𝑁𝑁𝑠𝑠−1

𝑙𝑙=0

                                                 (1.28) 

6 At step 3, it is necessary to perform an IFFT in order to generate the time-series. 
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where: 

𝑐𝑐0 =
1
𝑁𝑁𝑟𝑟

� 𝑥𝑥(𝑙𝑙∆𝑡𝑡)
𝑁𝑁𝑠𝑠−1

𝑙𝑙=0

                                                           (1.29) 

𝑁𝑁𝑟𝑟 = 2(𝑁𝑁 − 1)                                                                   (1.30) 

It is also true that, on step 3 of the PM method, an IFFT is required to go from the frequency domain 
of the phases back to the time domain, before performing the kurtosis computation. Therefore, the 
number of operations 𝒪𝒪(𝑁𝑁 log (𝑁𝑁)), which is distinctive of the IFFT implementation, must be added 
to the number 𝒪𝒪(𝑁𝑁) related to the kurtosis computation in the time domain, but the total number still 
remains much smaller than 𝒪𝒪(𝑁𝑁2). This implies that, after one loop of the second phase manipulation 
approach proposed by A. Steinwolf and described in this subsection, a large number of steps is 
performed by the PM method. If this number is denoted by 𝑀𝑀, the probability of having the desired 

kurtosis increase/decrease in the PM method, increases from 50% to:  ∑ �1
2
�
𝑖𝑖

𝑀𝑀
𝑖𝑖=1 = 2𝑀𝑀−1

2𝑀𝑀
≈ 1, namely 

close to 100% for even moderate values of M. 
 

1.2.2 Modulation technique 
Another technique to achieve kurtosis control is known as modulation. This approach consists in 
modulating a Gaussian signal 𝑥𝑥(𝑡𝑡) having the desired 𝑃𝑃𝑆𝑆𝐷𝐷 spectrum with an appropriate function 
𝑤𝑤(𝑡𝑡) such that: 𝑦𝑦(𝑡𝑡) = 𝑤𝑤(𝑡𝑡)𝑥𝑥(𝑡𝑡) in order to obtain a Leptokurtic signal with a desired kurtosis value 
[17-19]. This method is effective in transferring the kurtosis value to the response of the DUT if the 
signal bursts created by the modulation have greater duration than the inverse of the bandwidth of the 
lightly damped system [18]. The carrier waveform 𝑤𝑤(𝑡𝑡) introduces low frequency components in the 
spectrum of 𝑦𝑦(𝑡𝑡) compared to that of 𝑥𝑥(𝑡𝑡), albeit negligible if 𝑤𝑤(𝑡𝑡) is properly designed.  
The technique reported here was described by E. Pesaresi et al. [17]. The modulation algorithm 
therein was named “Multi-Level Variance” (𝑀𝑀𝐿𝐿𝑉𝑉); it considers the signal to be synthesized as divided 
into 𝑛𝑛𝑏𝑏 blocks of the same duration 𝐷𝐷𝑏𝑏 (with no overlap). The generated blocks have different standard 
deviation, which represents the modulation procedure, with the modulating function 𝑤𝑤(𝑡𝑡) being of 
the form: 

𝑤𝑤(𝑡𝑡) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧
𝜎𝜎1
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡

  ,                 0 ≤ 𝑡𝑡 < 𝐷𝐷𝑏𝑏                             
 .                           
.                          

𝜎𝜎𝑖𝑖
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡

  , (𝑖𝑖 − 1) ∙ 𝐷𝐷𝑏𝑏 ≤ 𝑡𝑡 < 𝑖𝑖 ∙ 𝐷𝐷𝑏𝑏              
.                        
.                        

𝜎𝜎𝑛𝑛
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡

  , (𝑛𝑛 − 1) ∙ 𝐷𝐷𝑏𝑏 ≤ 𝑡𝑡 < 𝑛𝑛 ∙ 𝐷𝐷𝑏𝑏 = 𝐷𝐷    

  

The different levels of variance 𝜎𝜎𝑖𝑖2 (𝑖𝑖 = 1, … ,𝑛𝑛𝑏𝑏) are produced in such a way that the synthesized 
signal is compliant with the kurtosis and 𝑃𝑃𝑆𝑆𝐷𝐷 constraints as it will be shown in the following. In 
general, the 𝑃𝑃𝑆𝑆𝐷𝐷 of a signal is computed by calculating the FFT over small-sized blocks, squaring 
their magnitude in order to obtain the so-called periodograms and then averaging the periodograms. 
More specifically, the periodogram could be thought of as some sort of 𝑃𝑃𝑆𝑆𝐷𝐷 computed only for the 
generic block of the signal. Therefore, instead of using the word “periodogram”, reference will be 
made hereinafter to the 𝑃𝑃𝑆𝑆𝐷𝐷 of the blocks of the signal. 

15 
 



 
 

In the algorithm, the 𝑃𝑃𝑆𝑆𝐷𝐷 𝑮𝑮𝒊𝒊 of the ith block of the signal is set to be scaled with respect to the 𝑃𝑃𝑆𝑆𝐷𝐷 
𝑮𝑮 of the reference signal: 

 𝑮𝑮𝒊𝒊 = 𝜎𝜎𝑖𝑖2

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2
𝑮𝑮,          𝑖𝑖 = 1, … ,𝑛𝑛𝑏𝑏  (1.31) 

In Eq.(1.31) 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡 is the standard deviation of the overall signal, whereas 𝜎𝜎𝑖𝑖 is the standard deviation 
of the ith block. It is to be highlighted that the 𝜎𝜎𝑖𝑖 parameters are the unknowns, whereas 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2 can be 
calculated from either the reference signal using Eq.(1.28) with 𝑘𝑘 = 2 or from the reference 𝑃𝑃𝑆𝑆𝐷𝐷 
using the equation: 

 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2 = ∫ 𝐺𝐺(𝑓𝑓)𝑑𝑑𝑓𝑓∞
0   (1.32) 

where 𝐺𝐺(𝑓𝑓) is the 𝑃𝑃𝑆𝑆𝐷𝐷 of a continuous reference signal. However, since the processed signal is 
discrete in practice, the 𝑃𝑃𝑆𝑆𝐷𝐷 is also discrete and the theoretical computation of Eq.(1.32) must be 
discretized. 
The unknown parameters 𝜎𝜎𝑖𝑖 are also related to the overall variance 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2 via the relation (see 
Appendix D): 

 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2 = 1
𝑛𝑛𝑏𝑏
∑ 𝜎𝜎𝑖𝑖2
𝑛𝑛𝑏𝑏
𝑖𝑖=1   (1.33) 

From Eqs.(1.31) and (1.33) the following relation must hold: 

 𝑮𝑮 = 1
𝑛𝑛𝑏𝑏
∑ 𝑮𝑮𝒊𝒊 
𝑛𝑛𝑏𝑏
𝑖𝑖=1   (1.34) 

Since the 𝑃𝑃𝑆𝑆𝐷𝐷 𝑮𝑮 is computed by averaging the 𝑃𝑃𝑆𝑆𝐷𝐷 of the blocks, Eq.(1.34) is automatically satisfied 
(or approximately satisfied in case of a computation of the PSD with overlap of the blocks). Hence, 
the constraint on the 𝑃𝑃𝑆𝑆𝐷𝐷 spectrum is respected if 𝑛𝑛𝑏𝑏 coefficients 𝜎𝜎𝑖𝑖 (𝜎𝜎𝑖𝑖 > 0) that comply with 
Eq.(1.33) are found. 
In addition to Eqs.(1.33) and (1.34), another relation must hold between the kurtosis values of the 
overall signal 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 and the kurtosis values of the single blocks 𝑘𝑘𝑖𝑖 (see Appendix D): 

 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 =
∑ 𝑘𝑘𝑖𝑖∙𝜎𝜎𝑖𝑖4
𝑛𝑛𝑏𝑏
𝑖𝑖=1
𝑛𝑛𝑏𝑏∙𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡4

  (1.35) 

Eq.(1.35) will be used in one of the steps of the algorithm; the first step is to randomly generate the 
𝜎𝜎𝑖𝑖 values such that 𝜎𝜎𝑖𝑖 ∈ [𝜎𝜎𝑟𝑟𝑖𝑖𝑛𝑛,𝜎𝜎𝑟𝑟𝑚𝑚𝑥𝑥] and  𝜎𝜎𝑟𝑟𝑖𝑖𝑛𝑛 < 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡 < 𝜎𝜎𝑟𝑟𝑚𝑚𝑥𝑥. The ratio 𝑟𝑟𝜎𝜎 = 𝜎𝜎𝑚𝑚𝑖𝑖𝑛𝑛

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡
∈ ]0,1[ must be 

set by the user, it being an input for the algorithm: the closer to 0 the more the variance of the 
synthesized signal will vary in time, whereas the opposite is true if closer to 1. The parameter 𝜎𝜎𝑟𝑟𝑚𝑚𝑥𝑥 
is not selectable by the user because it is adjusted throughout the algorithm iterations in order to 
approach the target kurtosis within a certain tolerance; in particular, 𝜎𝜎𝑟𝑟𝑚𝑚𝑥𝑥 starts from an empirically 
set threshold higher than 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡 and then is decreased at every loop until the algorithm converges. The 
threshold remains the same for every run of the algorithm; it should be neither too high, otherwise 
Eq.(1.33) may not be satisfied, nor too low because otherwise the target kurtosis value may not be 
reached. Besides, not only the value of 𝜎𝜎𝑟𝑟𝑚𝑚𝑥𝑥 may affect the speed of convergence of the algorithm, 
but its variation step at each loop may as well; the choice of the authors was guided by some trial and 
error runs of the algorithm and its non-uniqueness makes it difficult to give more rigorous details.  
The user can also choose the parameter 𝑛𝑛𝑝𝑝 = 0,1, … ,𝑛𝑛𝑏𝑏 intended to set the number of “bursts” of 
high amplitude excursion of the synthesized signal. The algorithm generates 𝑛𝑛𝑝𝑝 blocks with a standard 
deviation equal to 𝜎𝜎𝑟𝑟𝑚𝑚𝑥𝑥, which is greater than that of the other blocks.  
The kurtosis 𝑘𝑘𝑖𝑖 of the blocks may be calculated via the moments of Eq.(1.28) for greater accuracy, 
but it should be noted that the kurtosis values of the blocks are expected to be close to the value of 3, 
because the time-series associated with each block is (approximately) Gaussian. The overall discrete 
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signal 𝑥𝑥𝑛𝑛 is obtained by performing the IFFT on each of the blocks’ 𝑃𝑃𝑆𝑆𝐷𝐷 spectra with randomly 
generated phases; then, the blocks are concatenated. 
At an initial step of the procedure, a random integer 𝑠𝑠 representing a single block is automatically 
generated in the interval [1,𝑛𝑛𝑏𝑏]. 
After the 𝜎𝜎𝑖𝑖 levels are generated (𝑖𝑖 = 1, … ,𝑛𝑛𝑏𝑏, 𝑖𝑖 ≠ 𝑠𝑠), the standard deviation and kurtosis of the 
randomly selected sth  block are calculated via the following relations, which stem from Eqs.(1.33) 
and (1.35): 

 𝜎𝜎𝑟𝑟 = �𝑛𝑛𝑏𝑏𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2 − ∑ 𝜎𝜎𝑖𝑖2
𝑛𝑛𝑏𝑏
𝑖𝑖=1
𝑖𝑖≠𝑟𝑟

    (1.36) 

 

 𝑘𝑘𝑟𝑟 =
𝑛𝑛𝑏𝑏𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡4−∑ 𝑘𝑘𝑖𝑖𝜎𝜎𝑖𝑖4

𝑛𝑛𝑏𝑏
𝑖𝑖=1
𝑖𝑖≠𝑠𝑠

𝜎𝜎𝑠𝑠4
    (1.37) 

Eqs.(1.36) and (1.37) are used in order to verify whether the prescribed 𝑃𝑃𝑆𝑆𝐷𝐷 and target kurtosis can 
be achieved: indeed 𝜎𝜎𝑟𝑟 is required to be greater than zero and 𝑘𝑘𝑟𝑟 greater than a lower threshold (the 
lower theoretical limit of kurtosis being 1) and less than an upper threshold. The upper threshold 
should not be set excessively high, possibly leading to the undesired effect to generate unrealistic 
peaks in the sth block exceeding by far the amplitude of the peaks in the other blocks. Afterwards, in 
order to obtain the desired 𝑘𝑘𝑟𝑟 given by Eq.(1.37), some harmonics phases of the sth block are adjusted 
by means of a phase manipulation procedure. After few iterations, where the parameter 𝜎𝜎𝑟𝑟𝑚𝑚𝑥𝑥 is 
changed in order to converge towards the target kurtosis value, Eqs.(1.36) and (1.37) are usually 
satisfied. 
The final step of the algorithm is to smooth the signal at the edges of the blocks (by means of special 
windows), in order to avoid unrealistic discontinuities among them. 
In conclusion, the user has to insert:  

− the reference input signal or, alternatively, reference 𝑃𝑃𝑆𝑆𝐷𝐷 and kurtosis value; 
− the parameter 𝐷𝐷𝑏𝑏; 
− the ratio 𝑟𝑟𝜎𝜎; 
− the number of bursts 𝑛𝑛𝑝𝑝; 
− the duration 𝐷𝐷 of the signal to be synthesized; 
− the sampling frequency of the synthesized signal (usually the same as the reference signal, 

therefore not necessarily an input). 
 

1.2.3 Variable spectral density 
A novel algorithm that does not fall under any category of kurtosis control algorithms thoroughly 
discussed in the literature (e.g. phase selection [14,16,20], modulation [17-19], Polynomial 
Transformation [21-23]), was described by E. Pesaresi et al. [17] and named “Variable Spectral 
Density” (𝑉𝑉𝑆𝑆𝐷𝐷). It splits the signal to be synthesized into 𝑛𝑛𝑏𝑏 disjoint blocks of the same duration 𝐷𝐷𝑏𝑏, 
as the algorithm discussed in subsection 1.2.2. The major difference is that the 𝑃𝑃𝑆𝑆𝐷𝐷 𝑮𝑮𝒊𝒊 of the ith block 
is randomly generated. 
Let the 𝑃𝑃𝑆𝑆𝐷𝐷 matrix �𝐺𝐺′𝑖𝑖𝑗𝑗� be defined as: 

 �𝐺𝐺𝑖𝑖𝑗𝑗′ � = �
𝐺𝐺1 𝐺𝐺1 ⋯ 𝐺𝐺1
⋮ ⋮ ⋱ ⋮

𝐺𝐺𝑁𝑁ℎ 𝐺𝐺𝑁𝑁ℎ ⋯ 𝐺𝐺𝑁𝑁ℎ
�    (1.38) 

 
where Nh is the number of harmonics/PSD points. 
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This matrix has 𝑁𝑁ℎ rows and 𝑛𝑛𝑏𝑏 columns, with the jth column being the 𝑃𝑃𝑆𝑆𝐷𝐷 vector of the jth block 
of the reference signal (𝑗𝑗 = 1, … ,𝑛𝑛𝑏𝑏). Eq.(1.38), where all the columns have the same elements 
(harmonic amplitudes), refers implicitly to a signal having a stationary 𝑃𝑃𝑆𝑆𝐷𝐷. On the other hand, the 
𝑃𝑃𝑆𝑆𝐷𝐷 matrix �𝐺𝐺′′𝑖𝑖𝑗𝑗� corresponding to the signal synthesized via the 𝑀𝑀𝐿𝐿𝑉𝑉 algorithm has the following 
form: 

 �𝐺𝐺𝑖𝑖𝑗𝑗′′� =

⎣
⎢
⎢
⎢
⎡ �

𝜎𝜎1
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡

�
2
𝐺𝐺1 � 𝜎𝜎2

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡
�
2
𝐺𝐺1 ⋯ �

𝜎𝜎𝑛𝑛𝑏𝑏
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡

�
2
𝐺𝐺1

⋮ ⋮ ⋱ ⋮

� 𝜎𝜎1
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡

�
2
𝐺𝐺𝑁𝑁ℎ � 𝜎𝜎2

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡
�
2
𝐺𝐺𝑁𝑁ℎ ⋯ �

𝜎𝜎𝑛𝑛𝑏𝑏
𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡

�
2
𝐺𝐺𝑁𝑁ℎ⎦

⎥
⎥
⎥
⎤
    (1.39) 

Both the matrices in Eqs.(1.38) and (1.39) satisfy Eq.(1.34) that may be rewritten in this case, in 
conformity with the notation used in this subsection, as: 

 ∑ 𝐺𝐺𝑖𝑖𝑗𝑗
𝑛𝑛𝑏𝑏
𝑗𝑗=1 =  𝐺𝐺𝑖𝑖 𝑛𝑛𝑏𝑏          𝑖𝑖 = 1, … , Nh  (1.40) 

The 𝑉𝑉𝑆𝑆𝐷𝐷 algorithm synthesizes a signal with a variable 𝑃𝑃𝑆𝑆𝐷𝐷 over time, corresponding to a 𝑃𝑃𝑆𝑆𝐷𝐷 
matrix having the most general form: 

 �𝐺𝐺𝑖𝑖𝑗𝑗′′′� = �
𝐺𝐺11 𝐺𝐺12 ⋯ 𝐺𝐺1𝑛𝑛𝑏𝑏
⋮ ⋮ ⋱ ⋮

𝐺𝐺𝑁𝑁ℎ1 𝐺𝐺𝑁𝑁ℎ2 ⋯ 𝐺𝐺𝑁𝑁ℎ𝑛𝑛𝑏𝑏
�      (1.41) 

where the elements must comply with Eq.(1.40). 
The matrix in Eq.(1.41) is useful to generate signals whose 𝑃𝑃𝑆𝑆𝐷𝐷 varies over time. 
To comprehend the method, a few steps are illustrated to show how the generic matrix’s form of 
Eq.(1.41) can be derived from Eqs.(1.38) and (1.40). The procedure starts from the matrix shown in 
Eq.(1.38): then, as a first step, the ith row is taken and changed as follows (where 𝑝𝑝 ∈ [0,1] and 𝑙𝑙 is a 
positive integer such that 𝑙𝑙 ≤  𝑛𝑛𝑏𝑏): 

 
 
 

 �𝐺𝐺𝑖𝑖𝑗𝑗� =

⎣
⎢
⎢
⎢
⎡
𝐺𝐺1
⋮
𝐺𝐺𝑖𝑖
⋮

𝐺𝐺𝑁𝑁ℎ

⋯

𝐺𝐺1
⋮
𝑝𝑝𝐺𝐺𝑖𝑖
⋮

𝐺𝐺𝑁𝑁ℎ

⋯

𝐺𝐺1
⋮

[1 + (𝑙𝑙 − 1)(1 − 𝑝𝑝)]𝐺𝐺𝑖𝑖
⋮

𝐺𝐺𝑁𝑁ℎ

⋯

𝐺𝐺1
⋮
𝑝𝑝𝐺𝐺𝑖𝑖
⋮

𝐺𝐺𝑁𝑁ℎ

⋯

𝐺𝐺1
⋮
𝑝𝑝𝐺𝐺𝑖𝑖
⋮

𝐺𝐺𝑁𝑁ℎ

⋯

𝐺𝐺1
⋮
𝐺𝐺𝑖𝑖
⋮

𝐺𝐺𝑁𝑁ℎ⎦
⎥
⎥
⎥
⎤

     (1.42) 

Eq.(1.40) is still respected if the terms of the type 𝑝𝑝𝐺𝐺𝑖𝑖 are 𝑙𝑙 − 1 in the ith row and there is only one 
term of the form: [1 + (𝑙𝑙 − 1)(1 − 𝑝𝑝)]𝐺𝐺𝑖𝑖; the ordering of the terms in the row is unimportant and the 
remaining 𝑛𝑛𝑏𝑏 − 𝑙𝑙 terms on the same row are still equal to 𝐺𝐺𝑖𝑖. If similar operations were done not only 
on the term 𝐺𝐺𝑖𝑖𝑗𝑗 but on other terms as well and in a random manner, the 𝑃𝑃𝑆𝑆𝐷𝐷 of each block could be 
varied still preserving the overall 𝑃𝑃𝑆𝑆𝐷𝐷. The steps of the algorithm are given with more detail in the 
following: 

 

 

jth column 
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0) insert a reference input signal or, alternatively, a reference 𝑃𝑃𝑆𝑆𝐷𝐷 and kurtosis value; 
1) set the duration 𝐷𝐷 and the sampling frequency 𝐹𝐹𝑟𝑟 of the signal to be synthesized; 
2) choose 𝑝𝑝 ∈ [0,1] (user’s choice), start from a certain 𝐷𝐷𝑏𝑏 (automatically set), and set 𝑖𝑖 = 1; 
3) start from the ith row and set 𝑠𝑠 = 0; 
4) choose a random element 𝑗𝑗 of that row; 
5) generate a positive random integer 𝑙𝑙 ≤ 𝑛𝑛𝑏𝑏 − 𝑠𝑠; 
6) set: 

𝐺𝐺𝑖𝑖𝑗𝑗 = [1 + (𝑙𝑙 − 1)(1 − 𝑝𝑝)]𝐺𝐺𝑖𝑖  and  𝑠𝑠 = 𝑠𝑠 + 𝑙𝑙 ; 
7) repeat 4 − 5 − 6  with another value for 𝑗𝑗 (different from the values generated in the previous 

loops), and another value of 𝑙𝑙, until 𝑠𝑠 ≥ 𝑛𝑛𝑏𝑏 − 1; 
8) set  

𝐺𝐺𝑖𝑖𝑟𝑟 = 𝑝𝑝𝐺𝐺𝑖𝑖; 
with 𝑚𝑚 ranging over all the elements of the ith  row which have not been modified at step 6; 

9) if 𝑖𝑖 < 𝑁𝑁ℎ, set 𝑖𝑖 = 𝑖𝑖 + 1 and repeat from step 3, otherwise proceed to step 10; 
10) terminate if the kurtosis of the synthesized signal matches the target value (within a certain 

tolerance, to be preliminarily set), otherwise repeat from point 2 without changing 𝑝𝑝 but with 
a different 𝐷𝐷𝑏𝑏, automatically defined. Decreasing 𝐷𝐷𝑏𝑏 makes the kurtosis value increase and 
vice versa (this is how the algorithm converges towards target kurtosis). 

The algorithm can be implemented efficiently from a computational perspective; however, the 
bottleneck could be step 10, in which a precise calculation of kurtosis is achieved only if the IFFT’s 
are performed on the PSD spectra of the blocks (the phases are randomly generated). This could cause 
the synthesis procedure to be slow for large signals. A way to speed up the process, by loosening the 
target precision on the kurtosis value, could be that to implement a special case of Eq.(1.35) without 
performing the IFFT’s: 

𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 =
3∑ 𝜎𝜎𝑖𝑖4

𝑛𝑛𝑏𝑏
𝑖𝑖=1

𝑛𝑛𝑏𝑏∙𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡4
                            (1.43) 

Since the phases of the blocks are randomly generated, the latter’s kurtosis 𝑘𝑘𝑖𝑖 can be considered 
approximately equal to 3, thus leading from Eq.(1.35) to Eq.(1.43). This is the more accurate the 
more wide-banded the PSD of the particular block, otherwise that block’s kurtosis value would be 
closer to 1.5, typical of a sinusoid, and the calculation errors would increase. This simplified approach 
was not necessary in the simulations carried out by the authors: even with signals lasting upwards of 
10 minutes and sampled at more than 8 kHz, the synthesis procedure is completed in a few seconds 
with a standard pc. 
One of the main features of the algorithm is that the variation of the 𝑃𝑃𝑆𝑆𝐷𝐷 over time (i.e. over the 
blocks) is not controlled but randomly generated. 
As in the case of the 𝑀𝑀𝐿𝐿𝑉𝑉 algorithm, the last step is to smooth the signal at the edges of the blocks, 
in order to avoid unrealistic discontinuities. 
 
 
 
 
 
 

19 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20 
 



 
 

2 Durability tests 
In this chapter the current state of the art of durability tests is described in the first part. In particular, 
the fatigue damage spectrum is introduced, together with mathematical formulae used for its 
calculation. In section 2.1 a technique to extend kurtosis control algorithms to durability tests is 
described. This technique is already available in the literature, even though the mathematical 
formulation contained in section 2.1 is original. Then, starting from section 2.2, novel algorithms 
aimed at fatigue-life tests are proposed.  

 

 

The mechanical loads operating in real applications are often the cause of fatigue failure of 
components. Due to their expected lifetime being worth of several hundreds or even thousands of 
hours, it is usually required to accelerate the tests performed in laboratories. These tests must 
reproduce the entire fatigue damage experienced by the component during its operational life, but in 
a shorter amount of time7. 
The metric used to estimate the fatigue damage is a spectral function called “Fatigue Damage 
Spectrum” (FDS) [36-40]. Therefore, the purpose of the laboratory tests is to synthesize signals 
(Mission Synthesis) that have the same FDS as the one calculated from the signal measured in the 
real application, which is representative of the components’ operating conditions. 
The calculation of the FDS for general signals is performed in the time-domain. It starts from the 
computation of the relative displacement response8 of a single degree of freedom (SDOF) system; 
the latter is the most simplistic representation of the DUT frequently adopted. To calculate the relative 
displacement, a fast and accurate ramp-invariant filtering technique is usually employed [50]. 
Afterwards, the peaks and valleys (i.e. extrema) of the relative displacement are extracted from the 
time-series, which are then input to a time-counting algorithm (usually the Rainflow counting) in 
order to find the amplitudes of the damaging cycles. 
This procedure is looped through a diverse range of SDOF systems’ natural frequencies, which take 
into account the fact that the component to be tested is unknown in practice. 
It is well known [40] that current standard practices lead to the synthesis of signals characterized by 
a Gaussian distribution of their values, with the specification being prescribed by a target FDS and 
duration. The distribution is Gaussian because the FDS specification translates to a PSD specification, 
with the phases being generated randomly; this leads to a Gaussian distribution according to the 
discussion in chapter 1. 
How to obtain a PSD from a FDS was described by C. Lalanne [40], who proposed a methodology 
to synthesize a PSD from a target FDS. From the PSD, the actual time-series is then generated by 
performing the IFFT on the PSD as described in chapter 1.  

A most general expression for the fatigue damage’s expected value is the following [40]: 

 𝐷𝐷(𝑓𝑓𝑛𝑛) = 𝐾𝐾𝑏𝑏

𝐶𝐶
𝐷𝐷𝑁𝑁𝑝𝑝   ∫ ∆𝑧𝑧𝑏𝑏+∞

0  𝑓𝑓∆𝑍𝑍(∆𝑧𝑧)𝑑𝑑∆𝑧𝑧                                                                  (2.1)  

7 The so-called Inverse Power Law is usually employed to scale vibration data in order to obtain a desired test duration, 
by knowing the time-to-failure associated with the unscaled data. 
8 Some authors prefer to calculate the pseudo-velocity instead of relative displacements [14]. 
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When the damage is thought of as a function of 𝑓𝑓𝑛𝑛, 𝐷𝐷(𝑓𝑓𝑛𝑛) represents the FDS. Appendix E provides 
another expression for the damage, which is equivalent to Eq.(2.1). 
The integral in Eq.(2.1) is the 𝑏𝑏𝑡𝑡ℎ moment of the peak-valley amplitudes contained in the (random) 
relative displacement time-series (i.e. the RV ∆𝑍𝑍). In general, the 𝑚𝑚𝑡𝑡ℎ moment 𝑀𝑀𝑟𝑟𝑚𝑚 of a positive RV 
called 𝑋𝑋 is defined as: 

𝑀𝑀𝑟𝑟𝑚𝑚 =   � 𝑥𝑥𝑟𝑟
+∞

0
 𝑓𝑓𝑚𝑚(𝑥𝑥)𝑑𝑑𝑥𝑥                                                                               (2.2) 

If 𝑋𝑋 is a discrete process constituted by a sufficiently large number of samples 𝑁𝑁𝑟𝑟, for which the 
assumption of ergodicity holds [33], then: 

𝑀𝑀𝑟𝑟𝑚𝑚 ≈   
1
𝑁𝑁𝑟𝑟
� 𝑥𝑥[𝑗𝑗]𝑟𝑟

𝑁𝑁𝑠𝑠

𝑗𝑗=1
                                                                              (2.3) 

where 𝑥𝑥[𝑗𝑗] is the 𝑗𝑗𝑡𝑡ℎ sample of the underlying discrete stochastic process. 
With the assumption that the reference signal is Gaussian and the system narrow-banded (i.e. 
characterized by small values of 𝜁𝜁 typically in the range 1%-10%), an equation [36, 40] that relates 
the FDS to 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟 is the following: 

𝐷𝐷(𝑓𝑓𝑛𝑛) =
𝐾𝐾𝑏𝑏

𝐶𝐶
𝐷𝐷𝑓𝑓𝑛𝑛�√2 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓𝑛𝑛) �

𝑏𝑏
Γ �
𝑏𝑏
2

+ 1�                                                    (2.4)
 

where Γ is the gamma function: 

 Γ(𝑥𝑥) = ∫ 𝛼𝛼𝑥𝑥−1𝑒𝑒−𝛼𝛼𝑑𝑑𝛼𝛼   ,    ℜ(𝑥𝑥) > 0                                                      (2.5)∞
0

 

The 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟 value can be related to the PSD of the input signal9 via [40,41]: 

 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓𝑛𝑛)2 =
1

2𝜋𝜋(2𝜋𝜋𝑓𝑓𝑛𝑛)3
�

𝐺𝐺(ℎ)
(ℎ2 − 1)2 + (2𝜁𝜁ℎ)2 𝑑𝑑ℎ

∞

0
                                       (2.6)

 

Using Eqs.(2.4-2.6), it is possible to implement efficient procedures to compute the FDS from a PSD 
or vice versa [40]. 
In Eqs.(2.1,2.4,2.6) the expressions for the FDS 𝐷𝐷(𝑓𝑓𝑛𝑛) and root mean square of relative displacement 
𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓𝑛𝑛) hold true for both continuous and discrete values of the natural frequency 𝑓𝑓𝑛𝑛. This is useful 
because the expressions for these functions do not change when computed numerically, namely when 
the parameter 𝑓𝑓𝑛𝑛 assumes only discrete values. In the following, the notation 𝑥𝑥[∙] will be used to 
indicate a discrete signal 𝑥𝑥, whereas in the case of 𝑥𝑥 being continuous it will be denoted as 𝑥𝑥(∙). 
Unlike 𝐷𝐷[𝑓𝑓𝑛𝑛] and 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟[𝑓𝑓𝑛𝑛], the function 𝐺𝐺(ℎ) in Eq.(2.6) is rigorously continuous, it being an 
integrand. However, the PSD is discrete in practice; therefore, it is required to discretize the integral. 
A straightforward expression can be derived by considering 𝐺𝐺(ℎ) as a sum of Dirac deltas centered 
at different frequencies: 

𝐺𝐺(ℎ) = � 𝐺𝐺[𝑗𝑗] ∙ 𝛿𝛿(𝑗𝑗 − ℎ[𝑗𝑗])
𝑗𝑗

                                                                (2.7) 

where 𝐺𝐺[𝑗𝑗] is the 𝑗𝑗𝑡𝑡ℎ PSD point and ℎ[𝑗𝑗] is the 𝑗𝑗𝑡𝑡ℎ frequency 𝑓𝑓[𝑗𝑗] of the PSD divided by the frequency 
of the SDOF system, namely: 

9 It is worth recalling that 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟 is a displacement, whereas the input signal is an acceleration. 
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ℎ[𝑗𝑗] =
𝑓𝑓[𝑗𝑗]
𝑓𝑓𝑛𝑛

                                                                             (2.8) 

By inserting Eqs.(2.7-2.8) in Eq.(2.6), one obtains: 

 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟[𝑓𝑓𝑛𝑛]2 =
1

2𝜋𝜋(2𝜋𝜋)3
 �

𝑓𝑓𝑛𝑛 𝐺𝐺[𝑗𝑗]

�𝑓𝑓[𝑗𝑗]2 − 𝑓𝑓𝑛𝑛
2�

2
+ (2𝜁𝜁 𝑓𝑓[𝑗𝑗] 𝑓𝑓𝑛𝑛)2𝑗𝑗

                                      (2.9)
 

As an alternative to Eq.(2.9), continuous expressions of 𝐺𝐺(ℎ) could be obtained, as described by C. 
Lalanne [41], by interpolating the discrete points 𝐺𝐺[𝑗𝑗] in different ways (e.g. linearly or 
logarithmically). 
In the time-domain, the difficulty in evaluating the FDS using Eq.(2.1) is mostly due to the integral 
therein, because the statistical distribution  𝑓𝑓∆𝑍𝑍(∆𝑧𝑧) is generally unknown for real-life random 
excitations unless computed numerically, which could be done but at the expense of an increased 
number of computations at each loop.  
Another parameter to be estimated in order to evaluate Eq.(2.1) is 𝑁𝑁𝑝𝑝. In random vibration testing, its 
value is usually set equal to 𝑓𝑓𝑛𝑛 under the assumption of a narrow-banded SDOF system, implying that 
the component is lightly damped, which is usually the case in practice. For all these reasons, current 
time-domain algorithms use the following formula to compute the damage in place of Eq.(2.1):  

𝐷𝐷(𝑓𝑓𝑛𝑛) =
𝐾𝐾𝑏𝑏

𝐶𝐶
� 𝑛𝑛𝑗𝑗

𝑗𝑗
∆𝑧𝑧𝑗𝑗𝑏𝑏                                                                (2.10)  

where 𝑛𝑛𝑗𝑗 is the number of amplitude cycles ∆𝑧𝑧𝑗𝑗 extracted (by any counting algorithm) from the peaks 
and valleys of the SDOF system response 𝑧𝑧[∙] at the natural frequency 𝑓𝑓𝑛𝑛. Eq.(2.10) holds regardless 
of the bandwidth of the SDOF system. 
Since time-domain methods are expensive computational-wise, in Appendix F an improvement of 
current time-domain methods is proposed, aiming at a compromise between precision and speed. 
The standard frequency domain-approach is an alternative to time-domain methods; the former 
estimates the damage in terms of a Power Spectral Density (PSD) with the assumption of the 
distribution of the reference signal being stationary and Gaussian. 
The Gaussian distribution could be a strong limitation given the recurring non-Gaussianity of 
reference signals in practice. Non-Gaussian features are often due to high peaks/bursts located in the 
signal with a random pattern (i.e. caused by micro-collisions, road-bumps, etc.) and/or deterministic 
components (i.e. sinusoidal tones, which prevail over the background noise). If mostly bursts and 
peaks characterize a signal, its distribution is called Leptokurtic, whereas if sinusoidal tones are 
predominant, the distribution is called Platykurtic, otherwise it is Gaussian. In general, it is 
complicated to quantify non-Gaussianity with simple global parameters, because of the usual non-
stationarities being present locally in some parts of the reference signals. However, the simplest 
parameter adopted in the literature is the already discussed kurtosis, whose value allows to outline a 
boundary between Gaussian (when kurtosis equals 3), Leptokurtic (when kurtosis is larger than 3) 
and Platykurtic (when kurtosis is smaller than 3) distributions [41]. 
Since kurtosis is a simple metric that could control the “nature” of a signal (i.e. its distribution), 
several authors [9-25] proposed different procedures to synthesize signals with prescribed kurtosis 
value and Power Spectral Density (PSD). As described in chapter 1, these procedures are enclosed in 
the category of the so-called “kurtosis control” methods. They do not focus directly on preserving the 
same fatigue damage or FDS function, but rather on preserving the kurtosis of the reference signals 
and their PSD. As suggested by J. Antoni et al. [51,52], kurtosis is a global parameter and should not 
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be considered a fatigue damage metric per se. M. Troncossi et al. [53], provided cases where signals 
with the same kurtosis value could have substantially different Fatigue Damage Spectra. This is the 
reason why, together with the kurtosis parameter, it would be wise to take into consideration other 
features related to non-stationarities. This is also one of the reasons why other tools, such as the 
spectral kurtosis [51] and the kurtogram [54] (as well as FDS itself), are present in the literature. 
With these caveats highlighted, kurtosis still remains a useful tool if considered together with other 
metrics, such as the PSD (and its variation over time) and especially the FDS in the case of durability 
tests. At present, to the author’s knowledge, only F. Kihm et al. [34] proposed novel algorithms for 
non-Gaussian accelerated tests, seeking to control the FDS and kurtosis value. The aim of section 2.1 
is to revise the method proposed by F. Kihm with additional considerations; then, in section 2.2 novel 
algorithms are proposed for the synthesis of more realistic vibration tests with Leptokurtic signals.  
 

2.1 Extension of kurtosis control algorithms 
F. Kihm et al. [34] proposed a novel procedure that modifies a signal synthesized by a kurtosis-control 
algorithm so that its FDS matches a reference input one, with the aim of preserving its non-
Gaussianity as well. In order to achieve the FDS match, a filter is used. The steps of the procedure 
and the filter definition are briefly reported: 

1) calculate the FDS of the reference and synthesized signal, respectively 𝐷𝐷𝑟𝑟(𝑓𝑓𝑛𝑛) and 𝐷𝐷(𝑓𝑓𝑛𝑛); 

2) define the spectral function: 𝐺𝐺(𝑓𝑓𝑛𝑛) = �𝐷𝐷𝑟𝑟(𝑓𝑓𝑛𝑛)
𝐷𝐷(𝑓𝑓𝑛𝑛)

�
1
𝑏𝑏  ;                                                                    

3) calculate the IFFT of 𝐺𝐺(𝑓𝑓𝑛𝑛) to obtain the impulse response of the filter;  
4) convolve the so-obtained impulse response with the synthesized signal. 

 
The mathematical justification is given next.  
Eq.(2.1) could be equivalently re-written in terms of 𝑧𝑧(𝑡𝑡) in the following way (see Appendix E): 

𝐷𝐷(𝑓𝑓𝑛𝑛) =
𝑁𝑁𝑝𝑝𝐷𝐷𝐾𝐾𝑏𝑏

𝐶𝐶
� � (𝑧𝑧(𝑡𝑡2) − 𝑧𝑧(𝑡𝑡1))𝑏𝑏

∞

−∞

∞

−∞
  𝑝𝑝(𝑡𝑡1, 𝑡𝑡2) 𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2                                        ( 2.11) 

where 𝑝𝑝(𝑡𝑡1, 𝑡𝑡2) is the probability density to find a valley/trough at instant 𝑡𝑡1 and its corresponding 
peak at instant 𝑡𝑡2. Since 𝑧𝑧(𝑡𝑡) can be related to the signal 𝑥𝑥(𝑡𝑡) (which is the acceleration signal 
generated by any kurtosis control algorithm) via the latter’s convolution with the impulse response 
function ℎ(𝑡𝑡) of the system: 

𝑧𝑧(𝑡𝑡) = � 𝑥𝑥(𝜏𝜏)ℎ(𝑡𝑡 − 𝜏𝜏)𝑑𝑑𝜏𝜏
∞

−∞
                                                           ( 2.12) 

equation (2.11) can also be put in the following form: 

𝐷𝐷(𝑓𝑓𝑛𝑛) =
𝑁𝑁𝑝𝑝𝐷𝐷𝐾𝐾𝑏𝑏

𝐶𝐶
� � �� 𝑥𝑥(𝜏𝜏)[ℎ(𝑡𝑡2 − 𝜏𝜏) − ℎ(𝑡𝑡1 − 𝜏𝜏)]𝑑𝑑𝜏𝜏

∞

−∞
�
𝑏𝑏∞

−∞

∞

−∞
 𝑝𝑝(𝑡𝑡1, 𝑡𝑡2) 𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2               ( 2.13) 

It is now assumed that the Fatigue Damage Spectrum 𝐷𝐷(𝑓𝑓𝑛𝑛) of 𝑥𝑥(𝑡𝑡) has been computed and it differs 
from the reference one, symbolically written as 𝐷𝐷𝑟𝑟(𝑓𝑓𝑛𝑛). In order to simplify the mathematical details 
and arrive at simple results, it is supposed that the spectral function: 
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𝐺𝐺(𝑓𝑓𝑛𝑛) = �
𝐷𝐷𝑟𝑟(𝑓𝑓𝑛𝑛)
𝐷𝐷(𝑓𝑓𝑛𝑛) �

1
𝑏𝑏

                                                                    ( 2.14) 

can be considered relatively constant over the natural frequency axis. One should note that in 
Eq.(2.14) 𝐺𝐺(𝑓𝑓𝑛𝑛) can be considered relatively constant if the shape of 𝐷𝐷(𝑓𝑓𝑛𝑛) is similar to that of 𝐷𝐷𝑟𝑟(𝑓𝑓𝑛𝑛), 
but the same condition can also be approached as the coefficient 𝑏𝑏 related to Wohler’s curve slope 
increases. Hence, its IFFT is approximately proportional to a Dirac delta: 

𝑔𝑔(𝑡𝑡) ≈ �
𝐷𝐷𝑟𝑟(𝑓𝑓𝑛𝑛)
𝐷𝐷(𝑓𝑓𝑛𝑛) �

1
𝑏𝑏
𝛿𝛿(𝑡𝑡)                                                           ( 2.15) 

If a new signal 𝑥𝑥�(𝑡𝑡) is considered, given by the convolution between 𝑥𝑥(𝑡𝑡) and 𝑔𝑔(𝑡𝑡), its FDS 𝐷𝐷�(𝑓𝑓𝑛𝑛)  
can be easily proved to be equal to the reference one. 

Simple mathematical steps10 show that the FDS of the function 𝑥𝑥�(𝑡𝑡), obtained from convolving 𝑥𝑥(𝑡𝑡) 
with 𝑔𝑔(𝑡𝑡), is indeed equal to the reference one. Thus, the filter defined by Eq.(2.14) is effective in 
adjusting the FDS of a signal synthesized by kurtosis-control methods, provided the assumption of 

constancy of �𝐷𝐷𝑟𝑟(𝑓𝑓𝑛𝑛)
𝐷𝐷(𝑓𝑓𝑛𝑛)

�
1
𝑏𝑏 with respect to 𝑓𝑓𝑛𝑛 holds. 

After this filtering procedure, the kurtosis value and PSD are modified; nevertheless, the peaks and 
bursts, if present, may remain unaltered as it will be shown in chapter 3. It will also be shown that in 
some cases the signal tends to Gaussian after filtering, thus losing its non-Gaussian characteristics. A 
possible downside of the procedure is that the problem is tackled indirectly: namely, a signal with a 
prescribed kurtosis value and PSD is synthesized, then its FDS is computed. The computation of the 
FDS is usually time expensive computationally especially if a time domain calculation is performed 
(i.e. via Counting methods applied to long time-series). F. Kihm et. al [19,34] proposed a frequency 
domain method for the calculation of the FDS, which is renowned for its better computational 
efficiency. This could be done since the synthesized signal was assumed to be obtained by 
modulation, with the modulation defining the duration and separation of the signal’s bursts, and the 
signal to be modulated was supposed to be stationary and Gaussian. 
The distribution of the peaks of the output signal 𝑓𝑓𝑝𝑝 can be calculated using the rule to find the PDF 
of the product of two independent random variables X (representing the peaks of a stationary Gaussian 

10 The mathematical proof is obtained by making use of Eqs.(2.13, 2.15) and the definition of 𝑥𝑥�(𝑡𝑡): 
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signal) and A (representing the modulation) with distributions 𝑓𝑓𝐺𝐺 and 𝑓𝑓𝐴𝐴 respectively [19], given by 
the equation: 

𝑓𝑓𝑝𝑝(𝑠𝑠) = � 𝑓𝑓𝐺𝐺(𝑎𝑎)
1

|𝑎𝑎|

∞

−∞
𝑓𝑓𝐴𝐴 �

𝑠𝑠
𝑎𝑎
� 𝑑𝑑𝑎𝑎                                                            (2.16)

 

Eq.(2.16) requires an expression for the PDF of the modulating signal to be determined. This task is 
though straightforward for simple burst waveforms such as a sinusoid, for example. The fatigue 
damage is then calculated based on the stress peak distribution and the material Wohler’s curve. 
Kurtosis and damage can therefore be related mathematically in this case, without resorting to time 
domain methods. However, not all signals in practice can be obtained via modulation, as motivated 
in the next section. 

It has already been highlighted that some of the most sought-after characteristics that a vibration test 
should have are: the possibility of reducing the duration of the tests, the same FDS as the signals 
measured in real applications, as well as the preservation of the “nature” (i.e. distribution) of these 
signals. A step forward in the field of random fatigue vibration tests, namely to control the nature of 
the signals together with the FDS, was made by F. Kihm et al [34] as described in this section, who 
developed an algorithm that is based on the correction of a signal synthesized by kurtosis-control 
methods in order to match a target FDS. However, the PSD and kurtosis value are affected; in 
particular, the PSD is affected the more the greater the time reduction factor of the tests. In fact, as 
the duration of the synthesized signal decreases, its energy level is increased in order to contain the 
same damage potential as the reference signal. Also, the correction of the synthesized signal is 
dependent upon the computation of the FDS of the signal itself, which is time consuming. Another 
possible limitation is that the signals considered are based on modulation. The latter method is one of 
the most used since it is effective in transferring the kurtosis value to the response of the DUT if the 
signal bursts of the modulating signal have greater duration than the inverse of the bandwidth of the 
lightly damped system [18]. As it will be shown in the simulation results, the kurtosis of the system’s 
response is close to that of the input signal in the case of algorithms based on modulation; the behavior 
of the response to a signal measured in real applications may be different. The fact that the kurtosis 
of the output is similar to that of the input in the case of modulated signals can be motivated by the 
following reason: the blocks constituting the synthesized signal all have the same PSD bandwidth 
and shape [17], thus either resonance is present in each of the blocks or in none of them. In both 
cases, the shapes of the input and output signals are similar. 
On the other hand, real signals could also contain narrow-band blocks interspersed with wide-band 
ones; in this case resonance effects may occur and their occurrence could lead to high peaks in some 
blocks of the response that are not present in the input signal. This may cause the response to have a 
much higher kurtosis value than the input, which is often the case in real applications. 
In the following four novel algorithms are proposed, which all present different features and face the 
above-mentioned problems, with the purpose of expanding on the work of Kihm et al. 
 

2.2 A priori control of the Fatigue Damage Spectrum 
In this section, four novel Mission Synthesis algorithms are proposed, which achieve controlling the 
FDS in conjunction with other parameters, specific to the algorithm selected. Their commonality is 
the synthesis of Leptokurtic signals, thus extending the standard procedure described in the literature 
[39,40] and some other recent methodologies [34]. Instead of achieving the FDS control a posteriori, 
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by means of a filtering process applied to signals generated by kurtosis control algorithms as 
described in section 2.1, the FDS is controlled a priori, without resorting to the intermediate step of 
kurtosis control. 
The first algorithm that will be introduced, named kFDS, manages to control both the FDS and 
kurtosis value of a signal to be synthesized. Because of the limitations of this global parameter11, 
highlighted in the introduction of chapter 2 and section 2.1, three more algorithms are proposed. The 
second algorithm is named RF and complies with a prescribed FDS and RMS value that the 
synthesized signal is required to have, irrespective of the possible time reduction factor applied to the 
test. Subsequently, the RP algorithm will be introduced, which adds the possibility of controlling the 
PSD shape in addition to the FDS and RMS value. Finally, a modified version of the RF is shown, the 
PSF algorithm, which omits to control the RMS value and complies only with a FDS and a PSD shape 
specification. 
The main advantages of the methodologies are related to the computational efficiency due to the 
simple mathematical formulae required, which are basically the same as those found in the standard 
practice, with the necessary time-domain calculations being performed only to calculate the FDS from 
reference signals. 
 
2.2.1 kFDS algorithm 
This algorithm, hereinafter referred to as kFDS, achieves synthesizing signals with a prescribed FDS 
and kurtosis value. It is based on the observation that the overall FDS 𝐷𝐷(𝑓𝑓𝑛𝑛) of a signal is 
(approximately) equal to the sum of all the smaller blocks’ FDS spectra the signal is composed of, 
namely: 

𝐷𝐷(𝑓𝑓𝑛𝑛) =
1
𝑛𝑛
�𝐷𝐷𝑗𝑗(𝑓𝑓𝑛𝑛)                                                                         (2.17)
𝑛𝑛

𝑗𝑗=1

 

where 𝐷𝐷𝑗𝑗 is the FDS of the 𝑗𝑗𝑡𝑡ℎ block and 𝑛𝑛 is the total number of blocks which the signal is considered 
divided into, hereinafter supposed to have the same duration. In the following, the overall FDS 𝐷𝐷(𝑓𝑓𝑛𝑛) 
must be viewed as the desired FDS (i.e. the one prescribed by the specification), which should be 
characteristic of the synthesized signal(s). Eq.(2.17) is an approximation because by introducing 
blocks, possible interactions among them (e.g. due to the counting methods used in the computation) 
are neglected. Nevertheless, these effects are negligible if the ratio of the number of blocks to the 
number of points of the signal in each block is sufficiently small, which will be the case hereinafter. 
The algorithm defines 𝑛𝑛 coefficients 𝑣𝑣𝑗𝑗 such that: 

𝐷𝐷𝑗𝑗(𝑓𝑓𝑛𝑛) = 𝑣𝑣𝑗𝑗𝐷𝐷(𝑓𝑓𝑛𝑛)                                                                         (2.18) 

thereby constraining their choice to comply with the following equation: 

1
𝑛𝑛
�𝑣𝑣𝑗𝑗 = 1                                                                             (2.19)
𝑛𝑛

𝑗𝑗=1

 

11 However, it is worth highlighting that if kurtosis is controlled together with the FDS of a signal, it may become much 
more meaningful than just kurtosis considered by itself. The practical application shown in chapter 4 will exemplify the 
statement. 
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The signal to be synthesized is considered to be generated by concatenating 𝑛𝑛 different Gaussian 
blocks, whose target FDS functions are the ones given by Eq.(2.18). The “discontinuities” possibly 
arising from concatenation are smoothed out by interpolating the values close to the edges of 
adjoining blocks, without affecting the overall damage noticeably and the target kurtosis value is 
achieved as explained in the following. 
From the target FDS of the 𝑗𝑗𝑡𝑡ℎ block 𝐷𝐷𝑗𝑗(𝑓𝑓𝑛𝑛), a PSD 𝐺𝐺𝑗𝑗(𝑓𝑓𝑛𝑛) is synthesized by means of the standard 
procedure reported in chapter 2, from which the (Gaussian) time-series constituting the block is 
generated. Since the blocks are characterized by different FDS curves, some can have a higher energy 
level than others, thus leading to Leptokurtic signals. The kurtosis value can be achieved by a small 
number of iterations, each one performed with different 𝑣𝑣𝑗𝑗 coefficients; the entire procedure can be 
summarized, with all necessary details, by the following steps: 

1) start with the coefficients 𝑣𝑣𝑗𝑗 being “close to” homogeneous, thus “almost” equal to 1/𝑛𝑛. The 
words “close to” and “almost” instead of exactly “equal to” permit to spare one iteration, since 
in case the coefficients were exactly equal to 1/𝑛𝑛, a signal with kurtosis (approximately) equal 
to 3 would be obtained. 
Also choose a tolerance value ∆𝑘𝑘 for target kurtosis; 

2) calculate a PSD 𝐺𝐺 from the overall FDS according to Eqs.(2.4-2.6); 
3) set the PSD 𝐺𝐺𝑗𝑗 of each block 𝑗𝑗 according to the following equation: 

𝐺𝐺𝑗𝑗(𝑓𝑓𝑛𝑛) = 𝑣𝑣𝑗𝑗
2
𝑏𝑏𝐺𝐺(𝑓𝑓𝑛𝑛)                                                                (2.20) 

4) calculate the variance 𝜎𝜎𝑗𝑗2 of each block by integrating its PSD 𝐺𝐺𝑗𝑗; 
5) calculate the variance 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2 of the signal with the following formula (analogous to Eq.(1.33)):  

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2 =
∑ 𝜎𝜎𝑗𝑗2𝑛𝑛
𝑗𝑗=1

𝑛𝑛
                                                                 (2.21) 

6) calculate the kurtosis 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 of the signal with the following (approximated) formula (analogous 
to Eq.(1.43) ):  

𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 =
3∑ 𝜎𝜎𝑗𝑗4𝑛𝑛

𝑗𝑗=1

𝑛𝑛∙𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡4
                                                                 (2.22) 

7) compare the kurtosis of the signal 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 with the reference value 𝑘𝑘𝑟𝑟𝑓𝑓𝑓𝑓: if 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡< 𝑘𝑘𝑟𝑟𝑓𝑓𝑓𝑓 − ∆𝑘𝑘 
increase the variability of the 𝑣𝑣𝑗𝑗 coefficients (in a random manner) and go to step 3, if 
𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡> 𝑘𝑘𝑟𝑟𝑓𝑓𝑓𝑓 + ∆𝑘𝑘 decrease the variability of the 𝑣𝑣𝑗𝑗 coefficients and go to step 3, otherwise 
proceed to step 8; 

8) generate the blocks by applying the IFFT to the PSD’s 𝐺𝐺𝑗𝑗; 
9) concatenate the blocks so generated and smooth them by means of proper interpolation of the 

values close to the edges of adjoining blocks. 

The steps of the algorithm converge rapidly since there are no burdensome analytical formulae to 
compute on large vectors. 
 
2.2.2 RF algorithm 
This algorithm, hereinafter referred to as RF, achieves synthesizing signals with a prescribed RMS 
value and the FDS. The reason why it was developed is that if the duration of a vibration test is 
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reduced, the energy level (i.e. the PSD) of the signal increases. This is true for both the standard 
algorithm described in chapter 2 and for those methods that control the FDS and the kurtosis value 
(e.g. kFDS algorithm). In fact, by fixing a certain kurtosis value, if the duration of the signal is reduced 
while at the same time preserving the target FDS, the energy level has to increase. This algorithm 
manages to preserve the FDS and at the same time the energy level, namely the variance (i.e. the 
square of the RMS), with any selected time reduction. The shape of the PSD is constrained by 
Eqs.(2.4-2.6), whereas its intensity can be manipulated by adjusting the kurtosis value12 in order to 
achieve the prescribed RMS. If the target kurtosis is greater than 3, one obtains the same PSD shape 
as in the Gaussian case, but its intensity decreases because of the presence of high bursts in the signal. 
The generation of the blocks of the signal is identical to that of the kFDS algorithm, but with a 
different procedure to find the coefficients 𝑣𝑣𝑗𝑗. The steps of the algorithm are similar and reported in 
the following: 

1) start with the coefficients 𝑣𝑣𝑗𝑗 being “close to” homogeneous, thus “almost” equal to 1/𝑛𝑛. The 
words “close to” and “almost” instead of exactly “equal to” permit to spare one iteration, since 
if the coefficients were exactly equal to 1/𝑛𝑛, a signal with kurtosis equal to 3 would be 
obtained. 
Also choose a tolerance value ∆𝜎𝜎 for target RMS; 

2) calculate a PSD 𝐺𝐺 from the overall FDS according to Eqs.(2.4-2.6); 
3) set the PSD 𝐺𝐺𝑗𝑗 of each block 𝑗𝑗 according to Eq.(2.20); 
4) calculate the variance 𝜎𝜎𝑗𝑗2 of each block by integrating its PSD 𝐺𝐺𝑗𝑗; 
5) calculate the RMS 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡 of the signal to be synthesized via Eq.(2.21); 
6) compare the RMS of the signal 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡 with the reference value 𝜎𝜎𝑟𝑟𝑓𝑓𝑓𝑓 (computed from the 

reference signal): if 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡> 𝜎𝜎𝑟𝑟𝑓𝑓𝑓𝑓 + ∆𝜎𝜎 increase the variability of the 𝑣𝑣𝑗𝑗 coefficients (in a random 
manner) and go to step 3, if 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡< 𝜎𝜎𝑟𝑟𝑓𝑓𝑓𝑓 − ∆𝜎𝜎 decrease the variability of the 𝑣𝑣𝑗𝑗 coefficients and 
go to step 3, otherwise proceed to step 7; 

7) generate the blocks by applying the IFFT to the PSD’s 𝐺𝐺𝑗𝑗; 
8) concatenate the blocks so generated and smooth them by means of proper interpolation of the 

values close to the edges of adjoining blocks. 
 

2.2.3 PF algorithm 
This algorithm, hereinafter referred to as PF, manages to control: the PSD shape of a signal, its RMS 
and the FDS (i.e. it controls the PSD and the FDS). Unlike the kFDS and RF algorithm, this one does 
not use modulation. In fact, from Eq.(2.20) and step 8 in subsection 2.2.1 (or steps 3 and 8 in 
subsection 2.2.2) it is evident that the time-series of each block of the kFDS and RF algorithms was 
achieved by modulating a Gaussian time-series by 𝑣𝑣𝑗𝑗1/𝑏𝑏, with 𝑗𝑗 an integer from 1 to 𝑛𝑛 varying over 
the blocks that constitute the signal (i.e. varying over time). In addition to the features of the RF 
algorithm, the PF adds the control of the PSD shape to that of the RMS and FDS, with any time 
reduction selected. 
The first step considers the duration 𝐷𝐷 of the signal to be given by the sum of the duration 𝑡𝑡𝐵𝐵 of all 
the blocks with higher energy (bursts) and the duration 𝑡𝑡𝐿𝐿 of all the blocks with lower energy (i.e. 
𝐷𝐷=𝑡𝑡𝐵𝐵+𝑡𝑡𝐿𝐿). Then, the following assumption is made: the damage caused by the blocks with lower 

12 In this case the kurtosis parameter depends on the target RMS and is not necessarily equal to the reference signal’s 
kurtosis. 
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energy can be neglected. This assumption is reasonable if the signal is Leptokurtic and even more so 
if time reduction is applied to the test. In fact, in order to preserve the RMS value (as well as the FDS) 
and reduce the duration and/or cause the synthesized signals to be Leptokurtic, the signal must contain 
“high-energy” blocks interspersed with “low-energy” ones. It should be noted that the PF algorithm 
considers either “high-energy” or “low-energy” blocks, thus only two levels; this is a difference with 
respect to kFDS and RF, which could synthesize signals with a variable variance over 𝑛𝑛 blocks (i.e. 
𝑛𝑛 possibly different energy levels).  
The next step is the synthesis of a PSD 𝐺𝐺𝐵𝐵 from the reference FDS via Eqs.(2.4-2.6), with the latter 
being computed over the duration 𝑡𝑡𝐵𝐵 of the blocks with high energy. 
Then, the PSD 𝐺𝐺𝐿𝐿 of the blocks with low energy is computed by ensuring compliance with the 
reference PSD 𝐺𝐺𝑟𝑟𝑓𝑓𝑓𝑓(𝑓𝑓𝑛𝑛), namely: 

𝐺𝐺𝐿𝐿(𝑓𝑓𝑛𝑛) =
𝐺𝐺𝑟𝑟𝑓𝑓𝑓𝑓(𝑓𝑓𝑛𝑛) ∙ (𝑡𝑡𝐿𝐿 + 𝑡𝑡𝐵𝐵) − 𝐺𝐺𝐵𝐵(𝑓𝑓𝑛𝑛) ∙ 𝑡𝑡𝐵𝐵

𝑡𝑡𝐿𝐿
                                                  (2.23)

 

The low-energy part of the signal (characterized by duration 𝑡𝑡𝐿𝐿) is then generated by applying the 
IFFT to 𝐺𝐺𝐿𝐿, whereas the high-energy part (characterized by duration 𝑡𝑡𝐵𝐵) by applying the IFFT to 𝐺𝐺𝐵𝐵. 
The next step, after having set a number of blocks 𝑛𝑛, is to concatenate the random permutations 
obtained by splitting the low-energy and high-energy part in 𝑛𝑛 blocks. This is legitimate if Eq.(2.17) 
holds, because in doing the permutations the damage must remain the same. The permutations must 
also preserve the overall PSD of the signal, maintaining it equal to the reference one: 𝐺𝐺𝑟𝑟𝑓𝑓𝑓𝑓. This 
constraint is also respected if the number of blocks 𝑛𝑛 is chosen less than or equal to the number of 
blocks used in the computation of the reference PSD (calculated from the reference signal). In general, 
the number of blocks involved in the computation is related to the statistical error of the PSD spectrum 
[41]. The steps of the algorithms are summarized with more detail in the following: 

1) automatically set the duration 𝑡𝑡𝐵𝐵 of all the bursts of the signal and the duration 𝑡𝑡𝐿𝐿 of the low 
energy part of the signal such that 𝑡𝑡𝐵𝐵 + 𝑡𝑡𝐿𝐿 be equal to the duration 𝐷𝐷 of the signal to be 
synthesized. Also set the number of blocks 𝑛𝑛 of the signal to be synthesized. The latter should 
be set equal or smaller than the number of blocks used for the calculation of the reference 
PSD (e.g. the total number of points in the signal divided by the NFFT parameter used in the 
function pwelch in 𝑀𝑀𝑎𝑎𝑡𝑡𝑙𝑙𝑎𝑎𝑏𝑏®); 

2) compute a PSD 𝐺𝐺𝐵𝐵 from the overall FDS according to Eqs.(2.4-2.6), with the duration 𝑡𝑡𝐵𝐵 in 
place of 𝐷𝐷 in Eq.(2.4); 

3) set the PSD 𝐺𝐺𝐿𝐿 of the low-energy part in accordance with Eq.(2.23); 
If 𝐺𝐺𝐿𝐿(𝑓𝑓𝑛𝑛) < 0 for some frequency 𝑓𝑓𝑛𝑛 (this could happen because of the minus sign in 
Eq.(2.23)), restart from step 2 with a lower 𝑡𝑡𝐵𝐵, automatically set, and set 𝑡𝑡𝐿𝐿 equal to 𝐷𝐷 − 𝑡𝑡𝐵𝐵 ; 

4) construct two time-series: one generated by performing the IFFT on 𝐺𝐺𝐿𝐿 , the other by 
applying the same technique to 𝐺𝐺𝐵𝐵, and concatenate them into one signal; 

5) divide the signal so obtained into 𝑛𝑛 blocks; 
6) do a random permutation of the blocks so generated and smooth the signal by means of proper 

interpolation of the values close to the edges of adjoining blocks. 
 

2.2.4 PSF algorithm 
This algorithm, hereinafter referred to as PSF, achieves controlling the PSD shape of a signal and the 
FDS. Unlike the PF algorithm, the PSF does not control the RMS in case time reduction is applied; 
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in fact, the energy level would increase in place of the kurtosis value as occurs with the PF algorithm, 
but the shape of the reference PSD would remain preserved. If no time reduction is applied, the PF 
and the PSF algorithm are conceptually identical.  The detailed steps are reported in the following: 

1) let 𝑟𝑟 be the reduction factor of the test (𝑟𝑟 ≥ 1): set the target FDS 𝐷𝐷(𝑓𝑓𝑛𝑛) according to: 
  𝐷𝐷(𝑓𝑓𝑛𝑛) = 𝐷𝐷𝑟𝑟𝑓𝑓𝑓𝑓(𝑓𝑓𝑛𝑛)/ 𝑟𝑟 where 𝐷𝐷𝑟𝑟𝑓𝑓𝑓𝑓(𝑓𝑓𝑛𝑛) is the FDS prescribed by the specification; 

2) automatically set the duration 𝑡𝑡𝐵𝐵 of all the bursts of the signal and the duration 𝑡𝑡𝐿𝐿 of the low 
energy part of the signal such that 𝑡𝑡𝐵𝐵 + 𝑡𝑡𝐿𝐿 be equal to the duration 𝐷𝐷 of the signal to be 
synthesized. Also set the number of blocks 𝑛𝑛 of the signal to be synthesized. The latter should 
be set equal or smaller than the number of blocks used for the calculation of the reference 
PSD (e.g. the total number of points in the signal divided by the NFFT parameter used in the 
function pwelch in 𝑀𝑀𝑎𝑎𝑡𝑡𝑙𝑙𝑎𝑎𝑏𝑏®); 

3) calculate a PSD 𝐺𝐺𝐵𝐵 from the target FDS 𝐷𝐷(𝑓𝑓𝑛𝑛) according to Eqs.(2.4-2.6), with the 
duration 𝑡𝑡𝐵𝐵 in place of 𝐷𝐷 in Eq.(2.4); 

4) set the PSD 𝐺𝐺𝐿𝐿 of the low-energy part in accordance with Eq.(2.23); 
If 𝐺𝐺𝐿𝐿(𝑓𝑓𝑛𝑛) < 0 for some frequency 𝑓𝑓𝑛𝑛 (this could happen because of the minus sign in 
Eq.(2.23)), restart from step 2 with a lower 𝑡𝑡𝐵𝐵, automatically set, and set 𝑡𝑡𝐿𝐿 equal to T-tb. 

5) construct two time-series: one generated by performing the IFFT on 𝐺𝐺𝐿𝐿 , the other by 
applying the same technique to 𝐺𝐺𝐵𝐵, and concatenate them into one signal; 

6) divide the signal so obtained into 𝑛𝑛 blocks; 
7) do a random permutation of the blocks so generated and smooth the signal by means of proper 

interpolation of the values close to the edges of adjoining blocks; 
8) multiply the time-series so obtained by 𝑟𝑟1/𝑏𝑏. 

Most of the steps of the PSF algorithm are the same as those for the PF with the only difference being 
given by steps 1 and 8. 
 

2.3 Accelerated tests: caveats 
The algorithms presented in chapters 1 and 2 can be used to generate signals having a duration which, 
a priori, could be different from that of the reference signal. The reference signal is one representative 
measurement from the application considered. For durability tests, this measurement is then usually 
thought to be replayed in sequence until fatigue failure of the DUT occurs; the motivation is due to 
the fact that measurements representing the thousands of hours’ lifetime of the components are 
unfeasible. 
In the case of kurtosis control algorithms, the PSD and kurtosis of the reference signal are usually 
taken as specifications for the Mission Synthesis procedure, whereas in the case of algorithms aimed 
at durability tests, the specification is the FDS. As for the latter category, it may be required to 
accelerate the tests, namely to shorten the duration of the synthesized signals with respect to that of 
the reference signals. The signals are generated via a shaker that can be employed in different modes: 
one mode is the random mode, which generates a (Gaussian) signal starting from a PSD. Another 
mode, which is applicable to the algorithms presented so far, is the waveform replication mode. The 
latter consists in replicating an already available signal on a shaker; this signal could be measured 
either from a real environment or synthesized by algorithms. As regards accelerated tests, one has to 
deal with caveats that do not usually arise in tests preserving the same duration as that of the reference 
signal. In fact, when reducing the duration, since the FDS should be preserved, the severity of the test 
could be such that the failure mechanism of the DUT is not anymore fatigue-related and turns into a 
yield-type of failure [42,43]; this is obviously undesirable in durability tests. The spectral function 
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that is usually investigated when evaluating whether the test falls under the fatigue or yield test 
category is the Maximum Response Spectrum (MRS) [40]. The MRS represents the maxima of the 
absolute value of the relative displacement responses 𝑧𝑧(𝑡𝑡) of independently excited SDOF 
systems; the latter have a different natural frequency 𝑓𝑓𝑛𝑛 and the maxima of the responses are plotted 
against 𝑓𝑓𝑛𝑛 and multiplied by (2𝜋𝜋𝑓𝑓𝑛𝑛)2 in order to obtain the units of acceleration. In accelerated tests, 
the general rule of thumb is that the 𝑀𝑀𝑅𝑅𝑆𝑆 of the reference signal should not be much lower than the 
MRS of the test, otherwise one would incur the risk of possibly switching from fatigue failure to a 
yield failure mechanism. The extent to which the MRS of the test can exceed the reference one is not 
clearly outlined. This is due to the uncertainties related to the simplifying assumptions used in the 
calculation: for instance, the knowledge of the material of the DUT, its shape (which may affect the 
single degree of freedom assumption), nonlinearities, and the experience of the user may play an 
important role. 
Besides, as the duration decreases, the test becomes more sensitive to parameters such as the 
coefficient 𝑏𝑏 related to Wohler’s curve slope for instance, whose knowledge is definitely not precise. 
All these aspects should be considered when reducing the duration of a test.  
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3 Simulation results 
In this chapter, the algorithms previously presented in chapters 1 and 2 are tested, starting from the 
synthesis results of kurtosis control algorithms, which are shown in section 3.1, then moving on to 
synthesis results related to durability test profiles in section 3.2. As regards kurtosis control, in 
section 3.1 it is described how to properly select the input parameters for the algorithms. In addition, 
the PSD plots and kurtosis values of the reference and synthesized profiles are compared, and the 
response kurtosis of a generic lowly-damped system is also calculated to garner the first visual 
information about what has only been discussed theoretically so far, that is the so-called Papoulis’ 
Rule. Then, both the fatigue damage spectra associated with the reference profile and with the profile 
synthesized by kurtosis control are compared; the difference in the FDS is highlighted in order to 
clarify the necessity of durability tests. Durability tests are addressed in subsection 3.1.1 and section 
3.2, by adopting a similar approach to section 3.1, namely comparing the PSD plots and statistical 
parameters (such as kurtosis), albeit focusing more on the fatigue damage in this case (the FDS 
curves). In subsection 3.1.1 the kurtosis control algorithms of section 3.1 are simply extended by 
means of Kihm’s filtering technique [34], whereas in section 3.2 the profiles are synthesized by using 
the algorithms that control the FDS a priori, which were introduced in section 2.2. 
The algorithms were tested starting from numerous reference input profiles. For the sake of brevity, 
only the results of some applications will be shown for each section dedicated to results. Nevertheless, 
some general considerations can be inferred from the particular cases. 

3.1 Kurtosis control 
The starting reference signals, here denoted as RS1 and RS2, are field data with a sample rate of 1000 
Hz and 300 Hz respectively, with durations of about 660 seconds. The signals’ plots and PSD are 
shown in Fig. 3.1, whereas some statistical parameters are listed in Table 3.1, in particular: RMS, 
kurtosis, crest factor. One should note that both reference signals are Leptokurtic. The kurtosis values 
of the responses of SDOF systems having different natural frequencies and a damping coefficient 𝜁𝜁 
of 2%, are also graphed in Fig. 3.2 to check the sensitivity to the Papoulis’ Rule. The responses were 
obtained in terms of acceleration [𝑚𝑚/𝑠𝑠2], by implementing the well-known convolution between the 
impulse response of the system and the reference signal. 

The PM, 𝑀𝑀𝐿𝐿𝑉𝑉 and 𝑉𝑉𝑆𝑆𝐷𝐷 algorithms are first applied to the reference signal RS1. The input parameters 
for the PM algorithm are: 

− duration of the synthesized signal: 𝐷𝐷 = 660 𝑠𝑠 (the same as for the reference signal); 
− sampling frequency of the synthesized signal: 𝐹𝐹𝑟𝑟 = 1000 𝐻𝐻𝑧𝑧; 
− phases manipulated in the frequency range: [200 Hz, 400 Hz]; 
− duration of the synthesized blocks that compose the signal: 𝐷𝐷𝑏𝑏= 3 s (i.e. the number of 

blocks is equal to: 𝑛𝑛𝑏𝑏 = 𝑇𝑇
𝑇𝑇𝑏𝑏

= 220). 
The input parameters for the 𝑀𝑀𝐿𝐿𝑉𝑉 algorithm are: 

− duration of the synthesized signal 𝐷𝐷 = 660 𝑠𝑠 (the same as for the reference signal); 
− sampling frequency of the synthesized signal 𝐹𝐹𝑟𝑟 = 1000 𝐻𝐻𝑧𝑧; 
−  𝑟𝑟𝜎𝜎 = 0.3; 
− duration of the synthesized blocks that compose the signal: 𝐷𝐷𝑏𝑏= 3 s   �𝑛𝑛𝑏𝑏 = 𝑇𝑇

𝑇𝑇𝑏𝑏
= 220�; 

− number of bursts: 𝑛𝑛𝑝𝑝= 5; 
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The input parameters for the 𝑉𝑉𝑆𝑆𝐷𝐷 algorithm are13: 

− duration of the synthesized signal: T = 660 s 
− sampling frequency of the synthesized signal 𝐹𝐹𝑟𝑟 = 1000 𝐻𝐻𝑧𝑧; 
− p=0.2. 

The choice for the interval of frequencies over which the phases were varied in the PM algorithm was 
due to most of the energy content of the signal being contained in the band [200 Hz, 400 Hz] as it can 
be inferred from the PSD of RS1 plotted in Fig.3.1c. 

By inspecting the plot of the signal RS1, several distinctive peaks appear. The parameter related to 
the number of bursts was arbitrarily chosen equal to 5 for the 𝑀𝑀𝐿𝐿𝑉𝑉 algorithm. In addition, the signal 
shows a visible amount of variability of the standard deviation over time; hence, the parameter 𝑟𝑟𝜎𝜎 has 
been chosen equal to 0.3.  

The signals synthesized by the three algorithms are reported in Fig.3.3 along with their 𝑃𝑃𝑆𝑆𝐷𝐷s. The 
𝑃𝑃𝑆𝑆𝐷𝐷 spectra plotted in Fig.3.3d-f were computed with a 50% overlap among the 𝑛𝑛𝑏𝑏 blocks and using 
a Hamming window. The resolution in frequency of the PSD curves was therefore chosen equal to 
the inverse of the 𝐷𝐷𝑏𝑏 parameter of the algorithms. On the other hand, one should note that the MLV 
and VSD algorithms theoretically consider 0% overlap and rectangular windows. It is also worth 
mentioning that the PSD curves in Fig.3.3d-f depend on the 𝐷𝐷𝑏𝑏 parameter used by the algorithm 
selected; since the curves are plotted with the same 𝐷𝐷𝑏𝑏 used by the algorithm, when this parameter is 
different, the curves could also be visually different (this difference is not conspicuous, but it can be 
noticed). 

The parameter 𝑝𝑝 of the 𝑉𝑉𝑆𝑆𝐷𝐷 algorithm has a similar meaning to the parameter 𝑟𝑟𝜎𝜎 of the 𝑀𝑀𝐿𝐿𝑉𝑉 
algorithm. Nevertheless, in order to give the same amount of variability it requires to be set to a lower 
value14.  
The statistical parameters of the synthesized signals are shown in Table 3.2.  

The kurtosis values of the responses are plotted15 versus the SDOF systems’ natural frequencies in 
Fig.3.4a-c. The FDS and MRS are also computed by assuming 𝑏𝑏 = 6 in Fig.3.4d-i; these curves will 
be considered in section 3.1, when the filtering procedure described in section 2.1 is used to change 
the FDS curves so that they match the reference ones. The frequency resolution of the MRS and MRS 
curves is logarithmic (1/12th of an octave). 
The results of the PM, MLV and VSD algorithms applied to the reference signal RS2 are now shown.  

The input parameters for the PM algorithm are: 

− duration of the synthesized signal 𝐷𝐷 = 660 𝑠𝑠 (the same as for the reference signal); 
− sampling frequency of the synthesized signal 𝐹𝐹𝑟𝑟 = 300 𝐻𝐻𝑧𝑧; 
− phases manipulated in the frequency range [50 Hz, 100 Hz]; 
− 𝐷𝐷𝑏𝑏= 10 s   �𝑛𝑛𝑏𝑏 = 𝑇𝑇

𝑇𝑇𝑏𝑏
= 66�. 

 
 

13 It is worth noting that, in the case of the VSD algorithm, the duration of the synthesized blocks that compose the signal 
is not an input, as explained in subsection 1.2.3. 
14 This is motivated by the different definitions of the parameters 𝑟𝑟𝜎𝜎 and 𝑝𝑝 given in subsections 1.2.2 and 1.2.3, but 
especially on anecdotal evidence obtained from simulations. 
15 It should be noted that the kurtosis of the response to the VSD signal reaches much higher values than the responses 
to the PM and MLV signals.  
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The input parameters for the MLV algorithm are: 

− duration of the synthesized signal 𝐷𝐷 = 660 𝑠𝑠 (the same as for the reference signal); 
− sampling frequency of the synthesized signal 𝐹𝐹𝑟𝑟 = 300 𝐻𝐻𝑧𝑧; 
−  𝑟𝑟𝜎𝜎 = 0.5; 
− 𝐷𝐷𝑏𝑏= 20 s   �𝑛𝑛𝑏𝑏 = 𝑇𝑇

𝑇𝑇𝑏𝑏
= 33�; 

− number of bursts: 𝑛𝑛𝑝𝑝= 4. 
 

The input parameters for the VSD algorithm are: 

− duration of the synthesized signal: T = 660 s 
− sampling frequency of the synthesized signal 𝐹𝐹𝑟𝑟 = 300 𝐻𝐻𝑧𝑧; 
− p=0.1. 

 
The choice for the interval of frequencies over which the phases were varied was chosen because 
most of the energy content of the signal is contained in the band [50 Hz, 100 Hz] as it can be inferred 
from the PSD of RS2 plotted in Fig.3.1d. 
By inspecting the plot of the signal RS2, few distinctive “peaks” appear. Consequently, the parameter 
related to the number of bursts was chosen equal to 4 for the 𝑀𝑀𝐿𝐿𝑉𝑉 algorithm. In addition, the signal 
shows some variability of the standard deviation16 over time; hence, the parameter 𝑟𝑟𝜎𝜎 has been chosen 
equal to 0.5.  

The signals synthesized by the two algorithms are displayed in Fig.3.5 along with their 𝑃𝑃𝑆𝑆𝐷𝐷s. The 
𝑃𝑃𝑆𝑆𝐷𝐷 spectra plotted in Fig.3.5d-f were computed with a 50% overlap among the 𝑛𝑛𝑏𝑏 blocks and using 
a Hamming window. Therefore, the resolution in frequency of the PSD curves was chosen equal to 
the inverse of the 𝐷𝐷𝑏𝑏 parameter. It is also worth mentioning that the PSD curves in Fig.3.5d-f depend 
on the 𝐷𝐷𝑏𝑏 parameter used by the algorithm selected; since the curves are plotted with the same 𝐷𝐷𝑏𝑏 used 
by the algorithm, when this parameter is different, the curves could also be visually different (this 
difference is not conspicuous, but it can be noticed).  

The statistical parameters of the synthesized signals are shown in Table 3.3.  

The kurtosis values of the responses are plotted versus the SDOF systems’ natural frequencies in 
Fig.3.6a-c. The FDS and MRS are computed with Wohler’s curve slope 𝑏𝑏 = 6 in Fig.3.6d-i. The 
frequency resolution of the FDS and MRS curves is logarithmic (1/12th of an octave). 

 
 
 
 
 
 
 
 
 

16 It is also worth recalling that the RMS value is nearly coincident with the standard deviation in the case of zero-mean 
signals. 
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Table 3.1: Statistical parameters of the reference signals RS1 and RS2 
 RS1 RS2 

RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 8.28 32.9 
Kurtosis [-] 7.36 4.16 

Crest factor [-] 10.6 4.81 
 

 

 

 
                                     (a)                                         (b)  

 

 

 
                                     (c)                                         (d)  

Figure 3.1: Reference signals and their PSD plots used in the two applications: a) RS1, b) RS2, c) 
PSD of signal RS1, d) PSD of signal RS2. 

 

  
(a) (b) 

Figure 3.2: Kurtosis of the SDOF systems’ responses to the signals RS1 (a) and RS2 (b) from 0 to 
their corresponding Nyquist frequencies. The damping coefficient 𝜁𝜁 of the SDOF systems was set 
equal to 2%. 
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   (b) 

 

 

        (d) 

 

 

               (f) 

Figure 3.3: Synthesis results starting from the reference input profile RS1. Signal synthesized by the: 
a) PM, b) MLV, c) VSD algorithms. PSD comparison between RS1 and the: d) PM. e) MLV, f) VSD 
algorithms. 

Table 3.2: Statistical parameters of the signals synthesized starting from the reference profile RS1 
 PM signal MLV signal VSD signal 

RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 8.30 8.28 8.28 
Kurtosis [-] 7.29 7.14 7.14 

Crest factor [-] 10.2 10.9 7.45 
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                          (g)  

 

                               (h)  

 

                         (i)    

 

Figure 3.4: Synthesis results starting from the reference input profile RS1. Kurtosis of SDOF systems’ 
responses, with 𝜁𝜁 = 2%, to the signal synthesized by the: a) PM, b) MLV, c) VSD algorithms. FDS 
comparison, with 𝑏𝑏 = 6 and 𝜁𝜁 = 2%, between RS1 and the: d) PM, e) MLV, f) VSD algorithms. MRS 
comparison, with 𝜁𝜁 = 2%, between RS1 and the: g) PM, h) MLV, i) VSD algorithms. 
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   (f) 

Figure 3.5: Synthesis results starting from the reference input profile RS2. Signal synthesized by the: 
a) PM, b) MLV, c) VSD algorithms. PSD comparison between RS2 and the: d) PM. e) MLV, f) VSD 
algorithms. 

Table 3.3: Statistical parameters of the signals synthesized starting from the reference input profile 
RS2 

 PM signal MLV signal VSD signal 
RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 33.2 32.9 32.9 
Kurtosis [-] 4.10 4.16 4.01 

Crest factor [-] 6.14 6.38 6.25 
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Figure 3.6: Synthesis results starting from the reference input profile RS2. Kurtosis of the SDOF 
systems’ responses, with 𝜁𝜁 = 2%, to the signal synthesized by the: a) PM. b) MLV, c) VSD 
algorithms. FDS comparison, with 𝑏𝑏 = 6 and 𝜁𝜁 = 2%, between RS2 and the: d) PM, e) MLV, f) VSD 
algorithms. MRS comparison, with 𝜁𝜁 = 2%, between RS2 and the: g) PM algorithm, h) MLV , i) VSD 
algorithms. 

3.1.1 Extension to durability tests 
In this subsection, durability tests are considered. The test profiles are obtained through the filtering 
procedure described in section 2.1. In order to assess the filter’s suitability to match the reference 
FDS and simultaneously affect the signals’ characteristics as little as possible, a sizeable time 
reduction of the test would only amplify the difference between the original and filtered signals, 
making it harder to judge solely the filter’s behavior. Therefore, the duration of the tests was chosen 
to be the same for both the reference and synthesized signals. The durability test profiles are obtained 
by means of the filtering procedure applied to the synthesized signals from section 3.1. 
After filtering the signals obtained by considering the signal RS1 as the reference (Fig.3.3a-c), the 
resulting profiles are plotted in Fig.3.7a-c, whereas their PSD are plotted in Fig.3.7d-f. Their 
statistical parameters are shown in Table 3.4.  

The kurtosis values of the responses to the filtered signals are plotted versus the SDOF systems natural 
frequencies in Fig.3.8a-c. The FDS and MRS curves were computed with 𝑏𝑏 = 6 and are plotted in 
Fig.3.8d-i. The frequency resolution of the FDS and MRS curves is logarithmic (1/12th of an octave). 
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In the case of the filtering procedure applied to the signal RS2, the durability test profiles obtained 
are plotted in Fig.3.9a-c and their PSD in Fig.3.9d-f. Their statistical parameters are shown in Table 
3.5. 
The kurtosis values of the responses to the filtered signals are plotted versus the SDOF systems’ 
natural frequencies in Fig.3.10a-c. The FDS and MRS are computed with 𝑏𝑏 = 6 in Fig.3.10d-i. The 
frequency resolution of the FDS and MRS curves is logarithmic (1/12th of an octave). 

 

                               (a) 

 

   (d) 

 

                               (b) 

 

   (e) 

 

                               (c) 

 

   (f) 

Figure 3.7: Synthesis results starting from the reference input profile RS1. Signal synthesized by the: 
a) PM,  b) MLV, c) VSD algorithms, as they appear after filtering. PSD comparison between RS1 and 
the: d) PM, e) MLV, f) VSD algorithms after filtering 
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Table 3.4: Statistical parameters of the signals synthesized starting from the reference input profile 
RS1, after the application of the filtering procedure that corrects the FDS 

 PM signal MLV signal VSD signal 
RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 12.8 10.7 7.14 
Kurtosis [-] 3.01 6.35 8.07 

Crest factor [-] 4.55 12.3 8.28 
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Figure 3.8: Synthesis results starting from the reference input profile RS1. Kurtosis of SDOF systems’ 
responses, with 𝜁𝜁 = 2%, to the signal synthesized by the: a) PM, b) MLV, c) VSD algorithms, after 
filtering. FDS comparison, with 𝑏𝑏 = 6 and 𝜁𝜁 = 2%, between RS1 and the: d) PM, e) MLV, f) VSD 
algorithms after filtering. MRS comparison, with 𝜁𝜁 = 2%, between RS1 and the: g) PM, h) MLV, i) 
VSD algorithms after filtering. 
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   (d) 

 

                                      (b) 

 

   (e) 

 

                                     (c) 
 

      (f) 

Figure 3.9: Synthesis results starting from the reference input profile RS1. Signal synthesized by the: 
a) PM, b) MLV, c) VSD algorithms after filtering. PSD comparison between RS1 and the: d) PM, e) 
MLV, f) VSD algorithms after filtering. 

Table 3.5: Statistical parameters of the signals synthesized starting from the reference input profile 
RS2, after the application of the filtering procedure that corrects the FDS 

 PM signal MLV signal VSD signal 
RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 47.7 43.1 37.8 
Kurtosis [-] 3.00 4.02 4.46 

Crest factor [-] 4.42 6.20 6.54 
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Figure 3.10: Synthesis results starting from the reference input profile RS2. Kurtosis of SDOF 
systems’ responses, with 𝜁𝜁 = 2%, to the signal synthesized by the: a) PM, b) MLV, c) VSD algorithms 
(all filtered). FDS comparison, with 𝑏𝑏 = 6 and 𝜁𝜁 = 2%, between RS2 and the: d) PM, e) MLV, f) 
VSD algorithms after filtering. MRS comparison, with 𝜁𝜁 = 2%, between RS2 and the: g) PM, h) MLV, 
i) VSD algorithms after filtering. 

3.1.2 Discussion 
As it can be observed from Fig.3.4a and Fig.3.6a, the kurtosis values of the responses to the signals 
synthesized by the PM algorithm are close to 3 in a wide range of frequencies; this suggests that 
Papoulis’ Rule may hamper the algorithm effectiveness, thus the high peaks present in the input signal 
may be filtered out by the SDOF system. As it can be observed from Fig.3.4b and Fig.3.6b, the 
kurtosis values of the responses to the signals synthesized by the 𝑀𝑀𝐿𝐿𝑉𝑉 algorithm are closer to the 
kurtosis of the reference input profile (except at low frequencies), whereas the kurtosis of the 
responses to the signals synthesized by the VSD algorithm can take much larger values (Fig.3.4c and 
Fig.3.6c). These values highlight an important difference between the MLV and VSD algorithms: the 
VSD algorithm can generate signals whose system response has a (much) higher kurtosis than the 
input one. This is the reason why the reference signal RS1 has been considered particularly significant 
to illustrate the special feature of the 𝑉𝑉𝑆𝑆𝐷𝐷 algorithm. In fact, as it can be observed from Fig.3.2a, the 
kurtosis values of the system responses are higher than those of the input excitation. This is due not 
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only to the variation of the variance of the signal over time, but mainly to the variation of the 𝑃𝑃𝑆𝑆𝐷𝐷. 
The high kurtosis values of the responses are due to a resonance effect: in particular, some blocks of 
the reference signals present a sharp 𝑃𝑃𝑆𝑆𝐷𝐷 around the natural frequency of one of the SDOF systems. 
This implies that in those blocks the signal is approximately a sinusoid with the same frequency as 
the system, causing the system to resonate. Unlike the 𝑉𝑉𝑆𝑆𝐷𝐷 algorithm, the resonance effect does not 
occur by using the 𝑀𝑀𝐿𝐿𝑉𝑉 algorithm, because all the blocks of the signal have the same PSD shape and 
a wide band (the same as the reference signal’s overall PSD).  
The resonance effect may be used effectively also in the PM algorithm: the main problem of phase 
selection is that, especially if the phases are manipulated in a wide range of frequencies, the high 
peaks are easily filtered because of their sparsity and therefore cannot excite the system long enough 
for it to respond with correspondingly high excursions.  
There is still an alternative way of selecting the phases such that Papoulis’ Rule does not negatively 
affect the 𝑃𝑃𝑀𝑀 algorithm, in the case of only a narrow band being of interest. The idea is to change the 
phases in a small interval in the narrow band, in order to align those harmonics with frequencies in 
that range so that they constructively interfere. Their interference generates high peaks whose 
frequencies are contained in the narrow band of interest, thus capable of making a system with 
frequencies reasonably close to the band resonate17. 
As regards the MLV algorithm, one can motivate why the kurtosis computed for the responses of the 
excited SDOF linear systems has relatively small fluctuations around a value close to the excitation 
signal kurtosis (see Fig.3.4b and Fig.3.6b). In fact, as already hinted at, the blocks constituting the 
synthesized signal all have a wide-band PSD, so that unexpected resonant effects are unlikely to 
occur. However, one should note that the setup parameters might significantly affect the results. In 
particular, if the bursts’ duration is not long enough, the system may not have time to respond, thus 
preventing high excursions to appear in the response (as is the case for the PM algorithm).  
Finally, it is worth recalling that randomness in the synthesized profiles is guaranteed since the 
algorithms: (i) manipulate only some of the phases (PM algorithm), (ii) randomly generate the 
modulating function and manipulate the phases of only one block (MLV algorithm), (iii) randomly 
generate the phases, as well as randomly vary the PSD over time (VSD algorithm). Different runs of 
the algorithms– with unchanged setup parameters –provide the synthesis of different profiles (all 
complying with the target PSD and kurtosis).  
From the observation of Fig.3.4d-f and Fig.3.6d-f, it is clear that the three kurtosis control algorithms 
could lead to signals with markedly different FDS curves from that of the excitation (note that the y 
axis is reported in logarithmic scale), since they do not directly control the FDS. If the Mission 
Synthesis is performed for durability testing purposes, the filter proposed by Kihm et al. [34] can be 
effectively applied to correct the FDS of the signals generated by the algorithms.  
As shown by Figs.(3.7-3.10) presented in subsection 3.1.1, the filtered 𝑀𝑀𝐿𝐿𝑉𝑉 and 𝑉𝑉𝑆𝑆𝐷𝐷 signals feature 
similar Leptokurtic distributions as their unfiltered versions, with some differences – due to the filter 
action – observed in the PSDs and the statistical parameters. On the other hand, the filtered PM signal 
is close to Gaussian, showing no difference with respect to the standard methodology that synthesizes 
Gaussian signals in (accelerated) fatigue life tests. 
The combination of the VSD algorithm with the subsequent FDS correction appears particularly 
promising whenever the loads acting on the shaker are required to be as low as possible, compatibly 
with the FDS specification and duration of the test. In fact, the synthesized excitations are 

17 For example, Fig.3.4a exemplifies this statement in the relatively “narrow” band [200 Hz, 400 Hz], where the phases 
were manipulated. Outside of that bandwidth, in the interval [0 Hz, 200 Hz], Papoulis’ Rule seems to affect output kurtosis 
more severely than in the case of the other algorithms. On the other hand, for those intervals containing frequencies which 
are higher than 400 Hz, the system becomes more responsive, therefore the response kurtosis resumes values which are 
closer to input’s kurtosis. 
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characterized by a relatively low RMS value (Tables 3.4 and 3.5), but still able to generate responses 
with (noticeably) high kurtosis (i.e. with high amplitude peaks) and with the prescribed FDS, 
therefore subjecting the shaker to moderate loads. However, the high peaks in the response might as 
well constitute a non-negligible problem shifting the type of failure from fatigue-related to yield-
related; therefore, all pros and cons should be evaluated with caution. 
In general, the filtering technique proposed by Kihm et al. increases the RMS value (i.e. the energy) 
of the signal the more the duration of the test decreases.  
 

3.2 Durability tests with a priori FDS control 
In section 3.1 two reference signals were considered. Nevertheless, for the sake of conciseness, in 
this section only one reference signal is chosen to display results, from which considerations could 
be drawn without loss of generality.  
The reference profile, sampled at 500 Hz with a duration of 287 s, is shown in Fig.3.11.  The life of 
the component to be tested is supposed to be 2300 h, which implies that the signal is considered to be 
replayed approximately 28850 times. 
At first no time reduction factor is applied, which implies the same duration as the component’s life 
(2300 h) for the output signals. Due to memory limitations, the duration of the synthesized signals 
was automatically limited to approximately 4.44 h by the kFDS and RF algorithms and to 2.246 h by 
the PF and PSF (for reasons due to their implementations), with the signals considered to be replayed 
until 2300 h are reached (518 and 1024 times respectively). 
The following values of the parameters are chosen: 

- 𝑏𝑏 = 7 (constant related to the slope of Wohler’s curve) 
- 𝜁𝜁 = 2.5% (damping coefficient of the SDOF system model considered) 

The frequency range for the calculation of the FDS is chosen to be from 5 to 250 Hz with a constant 
resolution of 0.5 Hz and the same resolution is used in the calculation of the PSD. The reference’s 
and the synthesized signals’ FDS curves are calculated in the time domain. 
In the following, four different plots are shown for each of the four algorithms presented. Let X be a 
number equal to an integer between 12 and 15 (with 12 and 15 included). When reference is made in 
this section to “algorithm X”: algorithm 12 represents the kFDS algorithm, algorithm 13 the RF 
algorithm, algorithm 14 the PF algorithm and algorithm 15 the PSF algorithm.  
Fig.3.Xa shows the plot of the time-series synthesized by algorithm X; in order to appreciate some of 
the details better, only the first 2500 s are shown. Fig.3.Xb shows its corresponding PSD versus that 
of the reference signal, whereas Fig.3.Xc shows the corresponding FDS versus that of the reference 
signal. Finally, Fig.3.Xd shows the kurtosis of the system response to the synthesized signal versus 
that to the reference signal, plotted in the frequency range 5-250 Hz with 1/12th of an octave 
resolution. 
Some statistical parameters of the reference and the synthesized signals are shown in Table 3.6. 
In Fig.3.16 the MRS curves of the four algorithms are plotted together with the MRS of the reference 
signal of Fig.3.11.  
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Fig.3.11: reference signal 
 
 
 
 

 

                                        (a)                                                                        (b) 
 

 

                                             (c)                                                            (d) 
 

Fig.3.12: a) signal synthesized by the kFDS algorithm; b) PSD of the synthesized signal vs 
reference PSD; c) FDS of the synthesized signal vs reference FDS; d) kurtosis of the response to the 
synthesized signal vs kurtosis of the response to the reference signal  
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                              (a)                               (b) 
 

 

                               (c)                                                                  (d) 
Fig.3.13: a) signal synthesized by the RF algorithm; b) PSD of the synthesized signal vs reference 
PSD; c) FDS of the synthesized signal vs reference FDS; d) kurtosis of the response to the 
synthesized signal vs kurtosis of the response to the reference signal 

 
 

                                                 (a)                                                        (b) 
 

 

                                    (c)                                                          (d) 
Fig.3.14: a) signal synthesized by the PF algorithm; b) PSD of the synthesized signal vs reference 
PSD; c) FDS of the synthesized signal vs reference FDS; d) kurtosis of the response to the 
synthesized  signal vs kurtosis of the response to the reference signal  
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                                    (a)                                                           (b) 
 

 

                                       (c)                                                       (d) 
 
Fig.3.15: a) signal synthesized by the PSF algorithm; b) PSD of the synthesized signal vs 

reference PSD; c) FDS of the synthesized signal vs reference FDS; d) kurtosis of the response to the 
synthesized signal vs kurtosis of the response to the reference signal  

 
Table 3.6: Time-domain characteristics of the reference and synthesized signals  

 Reference 
signal kFDS RF        PF        PSF        

RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 8.41 9.81 8.72 8.41 8.41 
Kurtosis [-] 6.52 6.54 9.75 7.16 7.08 

Crest factor [-] 7.26 10.3 12.6 12.1 13.8 
Signal Duration [𝒔𝒔] 287 15985 15985 8086 8086 

replays 28850                     518 518 1024 1024 

 
 

Fig.3.16: MRS curves of the algorithms compared with that of the reference signal 
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In the case of accelerated tests, the same reference signal as the one displayed in Fig.3.11 is chosen 
to display results.  
The life of the component to be tested is still supposed to be 2300 h, which implies that the signal is 
considered to be replayed approximately 28850 times. 
In order to show the effects of time reduction, a factor of 5 is used, implying a duration of 460 h of 
the synthesized signals. Due to memory limitations, the duration of 460 h was automatically limited 
to approximately 4.423 h by the kFDS and RF algorithms and to 3.594 by the PF and PSF, with the 
signals considered to be replayed until 460 h are reached (104 and 128 times respectively). 
The following values of the parameters are chosen: 
- 𝑏𝑏 = 7 
- 𝜁𝜁 = 2.5% 
The frequency range for the calculation of the FDS is chosen to be from 5 to 250 Hz with a constant 
resolution of 0.5 Hz and the same resolution is used in the calculation of the PSD. The reference’s 
and the synthesized signals’ FDS curves are calculated in the time domain. 
In the following, four different plots are shown for each of the four algorithms presented. Let now X 
be a number equal to an integer between 17 and 20 (with 17 and 20 included). When reference is 
made in the next part of this section to “algorithm X”: algorithm 17 represents the kFDS algorithm, 
algorithm 18 the RF algorithm, algorithm 19 the PF algorithm and algorithm 20 the PSF algorithm.  
As in the case of non-accelerated tests, Fig.3.Xa shows the plot of the time-series synthesized by 
algorithm X; in order to appreciate some of the details better, only the first 2500 s are shown. Fig.3.Xb 
shows its corresponding PSD versus that of the reference signal, whereas Fig.3.Xc shows the 
corresponding FDS versus that of the reference signal. Finally, Fig.3.Xd shows the kurtosis of the 
system response to the synthesized signal versus that to the reference signal, plotted in the frequency 
range 5-250 Hz with 1/12th of an octave resolution. 
Some statistical parameters of the reference and the synthesized signals are shown in Table 3.7. 
In Fig.3.21 the MRS curves of the four algorithms are plotted together with the MRS of the reference 
signal of Fig.3.11.  

 

                                                    (a)                                                 (b) 
 

                                                    (c)                                                (d) 
Fig.3.17: (a) signal synthesized by the kFDS algorithm; (b) PSD of the synthesized signal vs 
reference PSD; (c) FDS of the synthesized signal vs reference FDS; (d) kurtosis of the response to 
the synthesized signal vs kurtosis of the response to the reference signal  
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                                         (a)                            (b) 
 

 

                                          (c)                                                    (d) 
 

Fig.3.18: (a) signal synthesized by the RF algorithm; (b) PSD of the synthesized signal vs reference 
PSD; (c) FDS of the synthesized signal vs reference FDS; (d) kurtosis of the response to the 
synthesized signal vs kurtosis of the response to the reference signal  
 

 
 

                                        (a)                                                      (b) 
 

 

                                       (c)                                                        (d) 
 

Fig.3.19: (a) signal synthesized by the PF algorithm; (b) PSD of the synthesized signal vs reference 
PSD; (c) FDS of the synthesized signal vs reference FDS; (d) kurtosis of the response to the 
synthesized signal vs kurtosis of the response to the reference signal  
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                                       (a)                                                      (b) 
 

 

                                      (c)                                                       (d) 
 

Fig.3.20: (a) signal synthesized by the PSF algorithm; (b) PSD of the synthesized signal vs 
reference PSD; (c) FDS of the synthesized signal vs reference FDS;(d) kurtosis of the response to 
the synthesized signal vs kurtosis of the response to the reference signal  

 
 

Table 3.7: Time-domain characteristics of the reference and synthesized signals  

 Reference 
signal kFDS RF        PF        PSF        

RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 8.41 12.7 8.66 8.42 10.6 
Kurtosis [-] 6.52 6.28 19.9 15.4 7.35 

Crest factor [-] 7.26 11.4 17.2 18.3 14.6 
Signal Duration [𝒔𝒔] 287 15923 15923 12932 12932 

replays 28850                     104 104 128 128 

 
 

Fig.3.21: MRS curves of the algorithms compared with that of the reference signal 
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3.2.1 Discussion 
The results in section 3.2 show a precise match between the reference’s and the synthesized signals’ 
FDS, even more precise than the matching obtained in subsection 3.1.1. Moreover, the distribution 
of the generated time-series is Leptokurtic and not Gaussian, thus generalizing standard procedures. 
It must be highlighted that when the test duration is reduced, before performing actual tests on 
specimens, the maximum values of the system response (in terms of either displacement or velocity 
or acceleration) should be checked, in order to assess whether the type of failure is still fatigue related 
and not due to exceeding the yield strength of the material. This assessment was carried out by plotting 
the MRS associated with the profiles synthesized by the different algorithms. As regards the non-
accelerated tests, the MRS of the synthesized profiles are higher in some frequency ranges. However, 
one should note that the synthesized profiles were several hours long compared with the 287 s 
duration of the reference profile; this definitely affects the MRS since the longer the duration, the 
more likely it is to find higher peaks. Besides, the MRS may also be affected by the non-stationarity 
of the reference profile’s distribution; this aspect highlights the importance of choosing reference 
vibrations that are representative of the application.  
Because of the large difference in duration between the synthesized and reference profile, the amount 
by which the MRS of the synthesized profile exceeds the MRS of the reference profile is not of great 
concern. When the duration of the test is the same as the life of the DUT, it is usually the case that 
the MRS of a synthesized signal is more or less of the same order of magnitude as the reference’s 
MRS. In order to exemplify the dependence of the MRS upon the duration of the signal, the reference 
signal’s MRS is compared with that of a signal synthesized by the kFDS algorithm in Fig.3.22, with 
the duration of the synthesized signal being the same as that of the reference signal (about 287 s). It 
is evident that the two curves are closer this time, and it is also noteworthy to point out that the 
randomness of the algorithm and the choice of the algorithm itself (in this case the kFDS), might 
produce different results even with the same input parameters. 
Also in the case of accelerated tests, the amount by which the MRS of the synthesized profiles exceed 
the MRS of the reference profile is partly explained by the large difference in duration between the 
synthesized and reference profiles. Nevertheless, because there is a time reduction factor of 5 applied 
to reduce the test duration, the MRS associated with the synthesized profiles increase with respect to 
the ones shown in Fig.3.16. It should be noted that the increase in the MRS is much less than the time 
reduction factor of 5; in fact, the points in the vicinity of the maxima of the curves are about just 1.4 
times higher than the corresponding ones where no acceleration of the tests is performed. This 
suggests that in the case shown, the test had the potential to be accelerated. This is the case for many 
practical applications: often, there are periods of time when the loads are below a threshold such that 
no amount of damage accumulates; therefore, if these periods are extracted from the signal the test 
would become conceptually and automatically accelerated. The main problem is that it is usually not 
easy to determine these low amplitude loads and whether or not they can be considered to be below 
the fatigue limit. 
Besides controlling precisely the FDS and other parameters such as: RMS, PSD shape, kurtosis, 
depending on the algorithm selected, it can be observed that another characteristic is that, for the 
kFDS and RF algorithms, the kurtosis of the linear system’s response is relatively constant when 
plotted against natural frequency. This is not the case for the PF and PSF algorithms, where the shape 
of the curve becomes closer to that of the reference signal. In general, as already discussed, this occurs 
when the PSD of the signals changes not only in scale but also in shape over time, and this happens 

53 
 



 
 

only for the RF and PSF algorithms. When signals are synthesized by modulation (as is the case for 
kFDS and RF), the response kurtosis curve remains relatively flat because every block is wide-
banded, therefore there is no possibility that some may cause greater bursts in the responses due to 
resonance as it may occur in the case of the RF and PSF algorithms.  
The algorithms that control the RMS and/or the PSD shape, namely the RF and the PF, might cause 
greater bursts in the response than the kFDS and the PSF algorithms, especially when the test duration 
is reduced. This suggests a greater sensitivity to the Wohler’s curve slope (related to parameter 𝑏𝑏) on 
the part of the RF and the PF algorithms, which might make it more difficult to carry out reliable 
tests, mainly because of the uncertainty on the value of 𝑏𝑏. Besides, since the PSF and PF algorithms 
only allow of two energy levels in the synthesized signals, the amount of randomness that can be 
generated is less than in the case of the kFDS and the RF algorithms. According to these 
considerations, the most promising algorithm among the ones proposed is the kFDS, which was 
therefore chosen in the experimental campaign described in the next chapter. 
For the sake of convenience, Table 3.8 concisely lists some of the possible uses that can be made of 
the algorithms proposed in this work. 
 

 

Fig.3.22: MRS curves of a signal synthesized by the kFDS algorithm compared with that of the   
reference signal. No time reduction is applied: the duration of the synthesized signal is the same as 
that of the reference signal 
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Table 3.8: some of the possible uses that could be made of both the kurtosis control algorithms and 
of those aimed at durability tests. 

Kurtosis control 

PM 
 
 

Suitable for: (i) qualification tests, (ii) maximizing randomness 
for the entire test duration by avoiding signal replications. In 
fact, even if the waveform replication mode is used, the 
algorithm can synthesize a signal having any desired duration 
in principle. 
 
Not suitable for: (i) durability tests, (ii) properly transferring 
input kurtosis through to the output, since easily affected by 
Papoulis’ Rule. 

MLV 
 

Suitable for: (i) qualification tests, (ii) maximizing randomness 
for the entire test duration by avoiding signal replications, (iii) 
controlling the output burst level. 
 
Not suitable for durability tests. 

VSD 
 
 

Suitable for: (i) qualification tests, (ii) maximizing randomness 
for the entire test duration by avoiding signal replications, (iii) 
a wise employment of the shaker by minimizing the current 
intensity level required (possible resonance effects) to achieve 
high kurtosis at the output. 
 
Not suitable for durability tests. 

Extension to 
durability tests 

MLV after 
filtering 

Suitable for: (i) durability tests with Leptokurtic signals, (ii) 
controlling the output burst level. 

VSD after 
filtering 

Suitable for: (i) durability tests with Leptokurtic signals, (ii) 
minimizing the current intensity level of the shaker to match a 
prescribed FDS. 

Algorithms aimed 
at durability tests 

kFDS, RF, 
PF and PSF 

Suitable for durability tests with Leptokurtic signals thanks to 
a more precise FDS match than the extended kurtosis control 
algorithms. 
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4 Experimental tests 
The purpose of this chapter is to describe (more specifically in sections 4.1 and 4.2) how the 
experimental test rig was set up, in terms of: choice of the material used, design of the specimens and 
the fixture, characteristics of the shaker and software, choice of relevant synthesis parameters such 
as the coefficients 𝜁𝜁 and 𝑏𝑏. The experimental campaign is finally addressed in section 4.3, in which 
non-accelerated tests are treated, whereas accelerated tests are handled in section 4.4. The ultimate 
aim of this work is to verify whether the novel algorithms presented might constitute a tangible 
improvement of the already available standard procedure. Therefore, sections 4.3 and 4.4 represent 
the core of the chapter. 

4.1 Design of experiment 
The design of experiment (DOE) considered a series of factors, among which:  

• the choice of one reference profile to be used as the benchmark in all synthesis procedures; 
• the choice of the material, the geometry and dimensions of the specimen; 
• the fixture to be used to fix the specimens to the shaker. 

 

4.1.1 Reference profile 
The measured signal shown in Fig.3.11, adopted as reference profile in Section 3.2, was targeted as 
particularly appropriate to cast light onto the possible critical aspects of the standard Mission 
Synthesis, mainly due to its non-stationary spectrum. In addition, its PSD presents the highest values 
in a bandwidth (about 155-160 Hz) which is not very narrow. However, two significant alterations 
were required for the experimental testing feasibility. Firstly, in spite of the real sampling frequency 
and duration of the measured signal (500 Hz and 287 s, respectively) the profile considered as 
reference for the experimental campaign was artificially assumed to be sampled at 130 Hz (for a 
corresponding duration of 1105 s, approximately), thus bringing the maximum values of the PSD 
down in the range 40-42 Hz. This was necessary in order to have a reasonable time to failure (TTF) 
of the specimens, by taking advantage of the increase in the damage at lower frequencies due to higher 
relative displacements. Another reason for this choice to bring the frequency spectrum in the range 
40-42 Hz was to avoid the possible disturbance caused by the utility frequency of 50 Hz and its integer 
multiples. In addition, the profile was scaled down to 16% the original signal after some initial tests 
performed on the specimens (as designed in the next subsections) served to target a reasonable TTF. 
The reference profile is re-plotted in Fig.4.1 with its new duration, whereas its main statistical 
properties are shown in Table 4.1.  

 

 
        Fig.4.1: reference signal for experiments 

 
 
Table 4.1: statistical properties of the 
reference signal 
 

        RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 1.35 
Kurtosis [-] 6.52 

Crest factor [-] 7.26 
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4.1.2 Material    
The aluminum alloy 7075 (also known by the trade name Ergal) was chosen to carry out the 
experimental tests. Its main mechanical properties were calculated to be the following: 

• 𝜎𝜎𝑦𝑦 = 518 𝑀𝑀𝑃𝑃𝑎𝑎 (yield strength) 
• 𝜎𝜎𝑏𝑏 = 554 𝑀𝑀𝑃𝑃𝑎𝑎 (ultimate tensile strength) 
• 𝐸𝐸 = 82200 𝑀𝑀𝑃𝑃𝑎𝑎 (Young modulus) 

The mechanical properties were computed from the stress-strain curves obtained by tensile testing; 
some of these curves are plotted in Fig.4.2. Several specimens were subjected to a controlled tension 
until failure and the three values reported in this subsection come from an averaging process over all 
samples. 

 
                                          Fig.4.2: Stress-strain curves  
 

4.1.3 Specimen geometry 
The main target of the specimen design was to locate the first natural frequency in the band where 
the maxima of the reference signal’s PSD occurred. Therefore, the target frequency was chosen to be 
41 Hz, so that after the specimens get damaged during the tests, their subsequent decrease in 
frequency still corresponded to the highest values of the PSD. When the specimens were fixed to the 
shaker through the fixture (described in subsection 4.1.4), their disposition was horizontal and 
conceptually identical to cantilever beams subjected to bending. The presence of a rounded notch 
allowed for both shorter TTF and localization of failure.  The geometry and size of the specimens are 
illustrated in Fig. 4.3.  
Besides, additional masses were located near the tip of the specimens to get closer to the target natural 
frequency of 41 Hz. A thorough description of these masses and their arrangement on the specimens 
is given in section 4.2. 
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Fig.4.3: illustration of the specimens’ geometry and dimensions  

 

4.1.4   Fixture 
The fixture was designed such that the specimens could be positioned horizontally. Its most important 
requirement had to be high stiffness so that the high frequency modes would be far from the natural 
frequency of the specimens, located at 41 Hz. It would allow five specimens to be fixed at a time due 
to the same number of slots available. However, as explained in the next section (section 4.2), only 
three slots at a time were used during the tests. An illustration of the fixture is shown in Fig.4.4. 

 
Fig.4.4: illustration of the fixture’s geometry and dimensions 
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4.2 Setup and test procedures 
The vibration signals were measured by means of four mono-axial accelerometers. Since the shaker’s 
acquisition system only allowed measuring four signals at a time, the accelerometer measuring the 
shaker’s base acceleration was placed on the fixture, whereas the other three accelerometers were 
placed on the specimens. The three specimens were arranged symmetrically on three out of the five 
slots of the fixture, with additional masses located near the tip to get closer to the target natural 
frequency of 41 Hz. The masses added to each of the specimens consisted of: two bolts glued to each 
other and also to the tip of the specimens, plus a parallelepiped-shaped iron mass of about 18 gr. The 
parallelepiped-shaped iron mass had a threaded hole which would allow its fastening to the specimens 
via the slotted hole. The latter would constitute a further possibility of adjusting the natural frequency 
of the specimens. The specimens, the fixture, the additional masses, and the accelerometers’ 
arrangement are shown in Fig.4.5. 
Besides, in order to comply with the shaker’s operative conditions, a high-pass filter with 5 Hz cutoff 
frequency was used because displacements at low frequencies are too extreme for the shaker to 
handle. The characteristics of the latter are shown in Table 4.2, whereas a picture of the shaker 
(Dongling ES-2-150/DA-2) is shown in Fig.4.6. 

 

 

 
Fig.4.5: a picture of the setup showing: the head of the shaker, the fixture, the three specimens, the 
additional masses, the four accelerometers (three for the specimens, one for base acceleration) 
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Fig.4.6: Shaker Dongling ES-2-
150/DA-2 

 
Table 4.2: functional constraints of the shaker 
 

Maximum frequency 4000 Hz 
Resonance frequency 3621 Hz 
Maximum displacement 12.5 mm 
Maximum velocity 200 cm/s 
Maximum acceleration 100 g 
Maximum mass applicable to the armature 70 kg 

      
 
 

 

4.3 Non-accelerated tests   
Before starting the experimental campaign to test the results presented in this work, it was essential 
to determine the parameters involved in the synthesis procedure such as the coefficient 𝑏𝑏 related to 
Wohler’s curve slope and damping coefficient 𝜁𝜁. The former was calculated to be approximately 
equal to 9.00 thanks to ad-hoc random tests performed with different RMS levels as explained in 
Appendix G, whereas the latter was estimated to be about 1% by comparing numerical SDOF system 
responses with actual ones measured by accelerometers (Fig.4.7). In the case of non-stationary signals 
with narrow-banded blocks such as the reference signal chosen in subsection 4.1.1 (Fig. 4.1), the 
damping coefficient may play an important role in the synthesis procedure because sinusoids cause a 
greater damage if damping is smaller. Therefore, since the synthesis procedure starts from the FDS 
of the signal, it is of great import not to overestimate 𝜁𝜁, because it could lead to undertesting if the 
usual PSD is synthesized (this issue is better addressed in section 4.5).  
The tests were performed by using three different acceleration profiles: (i) the reference signal chosen 
in subsection 4.1.1, (ii) a Gaussian signal synthesized according to the standard Mission Synthesis 
procedure, (iii) a Leptokurtic signal synthesized according to the kFDS algorithm. For each of the 
three profiles, three runs were performed; therefore, the total number of specimens to be analyzed 
was equal to nine (three specimens for each run). The nine times to failure were calculated to be those 
times at which the natural frequency of the specimens dropped by 5 % its initial value, which was 
approximately 41 Hz. The value of 41 Hz was the target value for the natural frequencies of all 
specimens, but the real experiments’ setup led to unavoidable but acceptable fluctuations/errors in 
the initial value (the slotted hole in the specimens helped greatly to reduce this error, with the natural 
frequency always being in the range 40-42 Hz). In principle, these fluctuations might affect the 
definition of the TTF of each specimen if the value of its initial frequency is set to 41 Hz a priori and 
the frequency at which failure occurs is defined to be 5% of 41 Hz, which is approximately 39 Hz. In 
order to test the robustness of the conclusions that could be drawn from just one definition, the results 
were verified using two different TTF definitions. The first definition, hereinafter referred to as 
definition 1, was that failure occurs at the frequency 39 Hz for each specimen, whereas the second 
definition, hereinafter referred to as definition 2, was taken to be that failure occurs when the actual 
initial frequency drops by 5%. The natural frequencies were computed in this way:  the time interval 
that defined the total life of the specimen was split into several blocks over which the frequency 
response function (FRF) of the system was computed and the frequency at which the FRF reached 
its maximum was taken to be the natural frequency of the specimen. The FRF is a transmissibility 
function which was calculated by using input and output acceleration signals. In Appendix G, failure 
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is defined as the time at which the tangent to the specimens’ natural frequency curve (which was 
obtained by polynomial interpolation) reached a certain (negative) slope. In the following tests, this 
definition was not appropriate because the behavior of the natural frequency over time happened to 
be more irregular. This irregularity might be due to the shape of the PSD (no longer constant/flat as 
the one used in Appendix G), as well as the non-Gaussianity of the vibration profiles used. Since the 
frequency drop occurred in a much shorter amount of time compared to the lifetime of the specimens, 
the tests performed in Appendix G would not have been affected severely by the different possible 
definitions of failure. However, the accelerated tests that are performed in subsection 4.4 have shorter 
times to failure. 
 

 
                                       (a) 

 
                                     (b) 

Fig.4.7: (a) one of the specimens’ measured response to the reference profile of Subsection 4.3.1, 
(b) SDOF system’s numerical response to the same reference profile. The SDOF system’s damping 
coefficient was set to 1%, whereas its natural frequency was set to 41 Hz. The reference signal used 
in the experimental tests, whose initial sampling frequency was equal to 130 Hz, was upsampled 
by the software to the sampling frequency of 800 Hz. Therefore, also the numerical response was 
calculated with 𝐹𝐹𝑟𝑟 = 800 𝐻𝐻𝑧𝑧. 

 

4.3.1 Reference profile 
The reference profile shown in Fig.4.1 was replicated by means of the waveform replication mode, 
until all specimens reached failure. The signal, having sampling frequency equal to 130 Hz, was 
upsampled by the software to the sampling frequency of 800 Hz. A high-pass filter removed the first 
5 Hz from the signal. The nine times to failure, calculated by using the two different definitions of 
failure, are reported in Tables 4.3 and 4.4. One of the replays of the signal executed by the shaker is 
displayed in Fig. 4.8, whereas its statistical parameters are reported in Table 4.5. By comparing Table 
4.5 with Table 4.1, it is clear that the shaker is capable of reproducing the reference signal accurately 
with negligible error. This is even more so if the FDS and MRS of both the reference signal and the 
one reproduced by the shaker are compared (Fig.4.10). The specimen’s response to one of the replays 
of the reference signal generated by the shaker is shown in Fig.4.9. The response shown is related to 
the signal which led to the mean TTF according to definition 1. The statistical parameters of the 
response are shown in Table 4.6. 
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Table 4.3: TTF’s and meaningful statistical parameters of the nine specimens calculated according to 
definition 1 

Definition 1 of failure Run #1    Run #2 Run #3 
Specimen #1 1.82 h 1.07 h 2.70 h 
Specimen #3 2.65 h 1.72 h 1.06 h 
Specimen #5 0.91 h 0.93 h 2.06 h 
Mean TTF: 1.66 h 
Median TTF: 1.72 h 
Standard deviation of TTF’s: 0.712 h 
 

 

Table 4.4: TTF’s and meaningful statistical parameters of the nine specimens calculated according to 
definition 2 

Definition 2 of failure Run #1 Run #2 Run #3 
Specimen #1 1.80 h 1.07 h 2.54 h 
Specimen #3 2.76 h 1.70 h 1.06 h 
Specimen #5 1.11 h 0.936 h 2.04 h 
Mean TTF: 1.67 h 
Median TTF: 1.70 h 
Standard deviation of TTF’s: 0.679 h 
 

 

 
Fig.4.8: one of the replays of the reference signal generated 
by the shaker 

 
Table 4.5: statistical properties of 
the reference signal 
 

   RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 1.33 
Kurtosis [-] 6.79 

Crest factor [-] 7.22 
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Fig.4.9: response to one of the replays of the reference signal 
generated by the shaker. The response shown here is related 
to the signal which led to the mean TTF according to 
definition 1. 

 
Table 4.6: statistical properties of 
the response to one of the replays of 
the reference signal 
 

    RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 27.4 
Kurtosis [-] 19.2 

Crest factor [-] 9.72 
 
 
 
 
 

 

 
(a) 

 
(b) 

Fig.4.10:  comparison between the target reference signal and the one reproduced by the shaker in 
terms of: a) FDS, b) MRS. The curves are calculated by considering the parameters of the model to 
be: 𝑏𝑏 = 9, 𝜁𝜁 = 0.01 
 

4.3.2 Gaussian profile #1    
In order to test the standard Mission Synthesis procedure, a Gaussian signal having the same duration 
(approximately 1105 seconds) and FDS as the reference signal was synthesized. The FDS equivalence 
was imposed over the mean TTF displayed in Table 4.3, namely 1.66 hours. Also in this case the 
waveform replication mode was used, so that the signal would be repeated until failure occurred. The 
nine times to failure, calculated by using the two different definitions of failure, are reported in Tables 
4.7 and 4.8. Since the shaker was capable of reproducing the signals accurately with negligible error 
as shown in subsection 4.3.1, in this and the following subsections only the signals synthesized by 
the algorithms are displayed. The Gaussian signal synthesized is shown in Fig. 4.11, whereas its 
statistical parameters are reported in Table 4.9. The FDS and MRS of both the reference and the 
synthesized Gaussian signals are compared in Fig.4.13. The specimen’s response to one of the replays 
of the reference signal generated by the shaker is shown in Fig.4.12. The response shown is related 
to the signal which led to the mean TTF according to definition 1. The statistical parameters of the 
response are shown in Table 4.10. 
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Table 4.7: TTF’s and meaningful statistical parameters of the nine specimens calculated according to 
definition 1 

Definition 1 of failure Run #1    Run #2 Run #3 
Specimen #1  1.46 h  0.84 h 0.29 h 
Specimen #3  2.00 h  1.44 h 1.49 h 
Specimen #5  1.12 h  0.88 h 0.59 h 
Mean TTF:  1.12 h 
Median TTF:  1.12 h 
Standard deviation of TTF’s:  0.529 h 
 

Table 4.8: TTF’s and meaningful statistical parameters of the nine specimens calculated according to 
definition 2 

Definition 2 of failure Run #1 Run #2 Run #3 
Specimen #1  1.46 h  0.840 h  0.281 h 
Specimen #3  1.97 h  1.44 h  1.49 h 
Specimen #5  1.12 h  0.877 h  0.592 h 
Mean TTF:  1.12 h 
Median TTF:  1.12 h 
Standard deviation of TTF’s:  0.524 h 
 

 

 
Fig.4.11: signal synthesized according to the Standard 
Mission Synthesis procedure 

 
Table 4.9: statistical properties of the 
Gaussian signal 
 

        RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 2.70 
Kurtosis [-] 3.01 

Crest factor [-] 4.40 
 
 
 
 
 

 
Fig.4.12: response to one of the replays of the signal 
generated by the shaker. The response shown here is related 
to the signal which led to the mean TTF according to 
definition 1. 

 
Table 4.10: statistical properties of 
the response to one of the replays of 
the signal 
 

    RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 66.6 
Kurtosis [-] 3.09 

Crest factor [-] 4.12 
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(a) 

 
(b) 

Fig.4.13:  comparison between the target reference signal and the Gaussian one in terms of: a) FDS, 
b) MRS. The curves are calculated by considering the parameters of the model to be: 𝑏𝑏 = 9, 𝜁𝜁 = 0.01 

 

4.3.3 kFDS profile #1 
The kFDS algorithm, described in subsection 2.2.1, was selected among the algorithms proposed in 
chapter 2. The signal synthesized by this algorithm had the same duration (approximately 1105 
seconds) and FDS as the reference signal. The FDS equivalence was imposed over the mean TTF 
displayed in Table 4.3, namely 1.66 hours. The waveform replication mode was used, so that the 
signal would be repeated until failure occurred. The nine times to failure, calculated by using the two 
different definitions of failure, are reported in Tables 4.11 and 4.12. The signal synthesized by the 
kFDS algorithm is shown in Fig. 4.14, whereas its statistical parameters are reported in Table 4.13. 
The specimen’s response to one of the replays of the reference signal generated by the shaker is shown 
in Fig.4.15. The response shown is related to the signal which led to the mean TTF according to 
definition 1. The statistical parameters of the response are shown in Table 4.14 
 The FDS and MRS of both the reference and the synthesized Gaussian signals are compared in 
Fig.4.16. 

 

Table 4.11: TTF’s and meaningful statistical parameters of the nine specimens calculated according 
to definition 1 

Definition 1 of failure Run #1    Run #2 Run #3 
Specimen #1  2.00 h  1.64 h  1.68 h 
Specimen #3  2.74 h  2.25 h  1.60 h 
Specimen #5  1.00 h  0.871 h  1.82 h 
Mean TTF:  1.73 h 
Median TTF:  1.68 h 
Standard deviation of TTF’s:  0.578 h 
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Table 4.12: TTF’s and meaningful statistical parameters of the nine specimens calculated according 
to definition 2 

Definition 2 of failure Run #1 Run #2 Run #3 
Specimen #1  2.00 h  1.71 h  1.69 h 
Specimen #3  2.74 h  2.25 h  1.60 h 
Specimen #5  1.08 h  0.871 h  1.82 h 
Mean TTF:  1.75 h 
Median TTF:  1.71 h 
Standard deviation of TTF’s:  0.564 h 
 

 

 
Fig.4.14: signal synthesized by the kFDS algorithm 

 
Table 4.13: statistical properties of 
the signal synthesized by the kFDS 
algorithm 
 

        RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 1.67 
Kurtosis [-] 6.55 

Crest factor [-] 8.82 
 
 
 
 
 

 
Fig.4.15: response to one of the replays of the signal 
generated by the shaker. The response shown here is related 
to the signal which led to the mean TTF according to 
definition 1. 

 
Table 4.14: statistical properties of 
the response to one of the replays of 
the signal 
 

    RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 35.0 
Kurtosis [-] 6.11 

Crest factor [-] 7.66 
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(a) 

 
(b) 

Fig.4.16:  comparison between the target reference signal and the one synthesized by the kFDS 
algorithm in terms of: a) FDS, b) MRS. The curves are calculated by considering the parameters of 
the model to be: 𝑏𝑏 = 9, 𝜁𝜁 = 0.01 
 

4.3.4 Discussion 
The results show that the difference between the two definitions of failure, in terms of mean and 
median TTF’s, is at the most 0.03 hours (i.e. less than 2 minutes). The Gaussian synthesis led to 
overtesting the specimens, because the mean TTF was about 32 % less than the expected 1.66 hours. 
This could be expected by looking at the RMS level of tables 4.9 and 4.10 and comparing them to the 
other profiles; nevertheless, those values are the product of the synthesis procedure, which is also 
affected by the choice of the parameters 𝑏𝑏 and 𝜁𝜁. Besides, in order to compensate for the lack of high 
peaks which are present in the non-Gaussian reference signal, the only possibility for the Gaussian 
synthesis is to increase the overall energy level (RMS) in order to match the FDS. On the other hand, 
the kFDS algorithm’s mean TTF is much closer: in fact, the estimation is off by approximately 5%. 
This better match might be due to such factors as the small amplitudes’ contribution in the reference 
signal, which are below the fatigue limit of the material. In fact, these low amplitudes are still 
damaging according to the model, even if to a small degree, still contributing to the FDS and therefore 
possibly leading to overtesting the material when the Gaussian signal is synthesized from the FDS. 
On the other hand, the kFDS algorithm synthesizes a signal with the same kurtosis value and FDS as 
the reference signal, thus characterized approximately by the same amount of downtime, possibly 
‘cancelling’ the effect of damage overestimation that may occur when Gaussian tests are performed. 

4.4 Accelerated tests 
In this section accelerated tests are addressed. In analogy with section 4.3, the tests were performed 
by using three different acceleration profiles: the reference signal shown in Fig. 4.1 was scaled up by 
a factor of 1.25 and the test results were used to determine the new mean TTF in subsection 4.4.1. 
This mean TTF so obtained was then used to synthesize a Gaussian signal according to the standard 
Mission Synthesis procedure, which is described in subsection 4.4.2, whereas a Leptokurtic signal 
was synthesized according to the kFDS algorithm and the resulting test results described in subsection 
4.4.3. For each of the three profiles, three tests were performed; therefore, the total number of 
specimens to be analyzed was equal to nine (three specimens for each test). The nine times to failure 
were calculated according to the two different definitions given in section 4.3. 
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4.4.1 Amplified reference profile  
The reference profile shown in fig.4.1, was multiplied by a factor of 1.25 and replicated by means of 
the waveform replication mode, until all specimens reached failure. The signal, sampled at 130 Hz, 
was upsampled by the software to the sampling frequency of 800 Hz. A high-pass filter removed the 
first 5 Hz from the signal. The nine times to failure, calculated by using the two different definitions, 
are reported in Tables 4.15 and 4.16. Due to the scaling factor, the standard deviation is also scaled 
accordingly (i.e. the one reported in Table 4.5 is multiplied by 1.25), whereas the crest factor and 
kurtosis value remain unaffected. The FDS is simply scaled by a factor exactly equal to 1.25𝑏𝑏 and 
the MRS by a factor of 1.25. The measured response to one of the replays of the reference signal 
generated by the shaker is shown in Fig.4.17, and its statistical parameters in Table 4.17. 

 

Table 4.15: TTF’s and meaningful statistical parameters of the nine specimens calculated according 
to definition 1 

Definition 1 of failure Run #1    Run #2 Run #3 
Specimen #1  0.381 h 0.503 h  0.684 
Specimen #3  0.379 h 0.431 h  0.441 
Specimen #5  0.534 h 0.585 h 0.295 
Mean TTF:  0.470 h 
Median TTF:  0.441 h 
Standard deviation of TTF’s:  0.119 h 
 

 

 

Table 4.16: TTF’s and meaningful statistical parameters of the nine specimens calculated according 
to definition 2 

Definition 2 of failure Run #1 Run #2 Run #3 
Specimen #1  0.421 h  0.503 h 0.684 
Specimen #3  0.472 h  0.464 h 0.443 
Specimen #5  0.569 h  0.662 h 0.319 
Mean TTF:  0.504 h 
Median TTF:  0.472 h 
Standard deviation of TTF’s:  0.117 h 
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Fig.4.17: response to one of the replays of the reference 
signal generated by the shaker. The response shown here is 
related to the signal which led to the mean TTF according to 
definition 1. 

 
Table 4.17: statistical properties of 
the response to one of the replays of 
the signal 
 

    RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 37.05 
Kurtosis [-] 13.6 

Crest factor [-] 8.28 
 
 
 
 
 

 

4.4.2 Gaussian profile #2 
In order to test the standard Mission Synthesis procedure while performing accelerated tests, a 
Gaussian signal having a duration of 0.470 hours and same FDS as the reference signal (the one 
described in subsection 4.1.1) was synthesized. The FDS equivalence was imposed over the mean 
TTF displayed in Table 4.15, namely 0.470 hours18. Also in this case, the waveform replication mode 
was used, so that the signal would be repeated until failure occurred, still taking into account that 
failure was expected to occur (ideally) near the final part of the first replay. The nine times to failure, 
calculated by using the two different definitions of failure, are reported in Tables 4.18 and 4.19. Since 
the shaker was capable of reproducing the signals accurately with negligible error as shown in 
subsection 4.3.1, in this and the following subsection only the signals synthesized by the algorithms 
are displayed. The synthesized Gaussian signal is shown in Fig. 4.18, whereas its statistical 
parameters are reported in Table 4.20. The measured response to one of the replays of the reference 
signal generated by the shaker is shown in Fig.4.19, and its statistical parameters in Table 4.21. 
The FDS and MRS of both the amplified reference signal and the synthesized Gaussian signal are 
compared in Fig.4.20. It should be noted that the equivalence between the two FDS curves in Fig.4.20 
is not to be taken for granted in this case, unlike it was in section 4.3. This is because the TTF (0.470 
h) related to the amplified reference signal of subsection 4.4.1 is experimental, whereas the TTF 
(0.470 h) associated with the synthesized signal is theoretical and contingent on the model employed 
to estimate damage accumulation, whose assumptions lead to the definition of the FDS. In fact, the 
model is characterized by uncertainties, especially in the parameter 𝑏𝑏 (assumed to be equal to 9), 
which could lead to different results than expected. The scaling factor of 1.25 used to amplify the 
reference signal of subsection 4.4.1, together with the experimental TTF’s of 0.470 h and 1.66 h, are 
theoretically relatable to the parameter 𝑏𝑏 of the model. In particular, by imposing the equivalence 
between the unamplified reference signal’s FDS, computed over a duration of 1.66 h, and the 
amplified reference signal’s FDS, computed over a duration of 0.470 h, from Eqs.(2.11, 2.12) it can 
be easily inferred that 𝑏𝑏 must satisfy: 

18 In this case, the duration of the synthesized signal coincides with the theoretical TTF, but it might be useful to recall 
that this might not always necessarily be the case, as suggested by section 4.3.  
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1.66
0.470

= 1.25𝑏𝑏                                                                      (4.1) 

The solution of Eq.(4.1) in terms of 𝑏𝑏, gives about 5.6, instead of the value 9 used by the model. This 
calculation is only meant to highlight that it might be challenging to attribute a sound numerical value 
to parameter 𝑏𝑏; the value of 9 is retained in the synthesis procedure both in section 4.4.2 and 4.4.3. 
Therefore, with the assumption that 𝑏𝑏 = 9 and 𝜁𝜁 = 0.01, it is granted that the FDS of the 
(unamplified) reference signal, computed over a duration of 1.66 hours, is (approximately) the same 
as that of the synthesized signal, computed over a duration of 0.470 hours. However, it is not granted 
that the same would hold for the FDS of the amplified signal, calculated over a duration of 0.470 
hours and compared with that of the signal synthesized in this subsection (still calculated over a 
duration of 0.470 hours), because the uncertainties in the model, especially in the parameter 𝑏𝑏, could 
lead to different results as mentioned. 
In fact, the FDS mismatch is slightly more noticeable in this case, but still acceptable19, with the FDS 
of the Gaussian signal lying slightly below the one of the amplified reference profile. Nevertheless, 
the mean TTF’s in Tables 4.13 and 4.14 are still lower by an amount respectively equal to 41.9 % and 
41.7 % than the theoretical 0.470 hours. This excessive overtesting suggests that this standard Mission 
Synthesis procedure might not be accurate in this situation, with the synthesis starting from this 
particular type of reference signals. 

Table 4.18: TTF’s and meaningful statistical parameters of the nine specimens calculated according 
to definition 1 

Definition 1 of failure Run #1    Run #2 Run #3 
Specimen #1  0.210 h  0.215 h 0.437 
Specimen #3  0.186 h  0.177 h 0.157 
Specimen #5  0.461 h  0.274 h 0.337 
Mean TTF:  0.273 h 
Median TTF:  0.215 h  
Standard deviation of TTF’s:  0.114 h 
 

 

Table 4.19: TTF’s and meaningful statistical parameters of the nine specimens calculated according 
to definition 2 

Definition 2 of failure Run #1 Run #2 Run #3 
Specimen #1  0.210 h  0.205 h 0.460 
Specimen #3  0.186 h  0.177 h 0.165 
Specimen #5  0.457 h  0.250 h 0.354 
Mean TTF:  0.274 h 
Median TTF:  0.210 h 
Standard deviation of TTF’s:  0.119 h 
 

19 It is worth recalling that the FDS curve represents the mean value of the damage (at a certain frequency), which implies 
the damage also has a standard deviation associated with it. This standard deviation, together with the assumptions at the 
basis of the simplistic model adopted, allows a margin of error in reaching a target FDS. C. Lalanne [13] provides more 
details in quantifying fatigue damage’s standard deviation. 
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Fig.4.18: signal synthesized according to the Standard 
Mission Synthesis procedure for accelerated tests 

 
Table 4.20: statistical properties of 
the Gaussian signal 
 

        RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 3.08 
Kurtosis [-] 2.99 

Crest factor [-] 4.57 
 
 
 
 
 
 

 
Fig.4.19: response to one of the replays of the signal 
generated by the shaker. The response shown here is related 
to the signal which led to the mean TTF according to 
definition 1. 

 
Table 4.21: statistical properties of 
the response to one of the replays of 
the signal 
 

    RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 62.2 
Kurtosis [-] 3.15 

Crest factor [-] 4.63 
 
 
 
 
 

 

 
(a) 

 
(b) 

Fig.4.20:  comparison between the amplified reference signal and the Gaussian one: a) FDS, b) MRS. 
The curves are calculated by considering the parameters of the model to be: 𝑏𝑏 = 9, 𝜁𝜁 = 0.01 
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4.4.3 kFDS profile #2 
The kFDS algorithm was used to synthesize a signal having a duration of 0.470 hours and the same 
FDS as the reference signal described in subsection 4.1.1. The FDS equivalence was imposed over 
the mean TTF displayed in Table 4.15, namely 0.470 hours. Also in this case, the waveform 
replication mode was used, so that the signal would be repeated until failure occurred, still taking into 
account that failure was expected to occur (ideally) at the final part of the first replay. The nine times 
to failure, calculated by using the two different definitions of failure, are reported in Tables 4.22 and 
4.23. The synthesized signal is shown in Fig. 4.21, whereas its statistical parameters are reported in 
Table 4.24. The measured response to one of the replays of the reference signal generated by the 
shaker is shown in Fig.4.22, and its statistical parameters in Table 4.25. 
The FDS and MRS of both the amplified reference signal and the synthesized signal are compared in 
Fig.4.23. It should be noted that the comparison between the FDS curves in Fig.4.23 is not to be taken 
for granted in this case, for the exact same reason explained in subsection 4.4.2. The FDS curves are 
sufficiently close to each other, even though the synthesized signal’s FDS is still slightly below the 
reference one. However, unlike the mean TTF’s shown in subsection 4.4.2, the mean TTF’s values 
presented in Tables 4.22 and 4.23 are much closer to the target value of 0.470 h; in fact, the maximum 
error is approximately 3.2 %, suggesting a greater accuracy on the part of the kFDS algorithm.  

Table 4.22: TTF’s and meaningful statistical parameters of the nine specimens calculated according 
to definition 1 

Definition 1 of failure Run #1    Run #2 Run #3 
Specimen #1  0.487 h  0.373 h 0.558 
Specimen #3  0.652 h  0.319 h 0.511 
Specimen #5  0.589 h  0.515 h 0.357 
Mean TTF:  0.485 h 
Median TTF:  0.511 h 
Standard deviation of TTF’s:  0.113 h 
 

 

 

Table 4.23: TTF’s and meaningful statistical parameters of the nine specimens calculated according 
to definition 2 

Definition 2 of failure Run #1 Run #2 Run #3 
Specimen #1  0.490 h  0.360 h 0.558 
Specimen #3  0.654 h  0.326 h 0.502 
Specimen #5  0.599 h  0.521 h 0.363 
Mean TTF:  0.486 h 
Median TTF:  0.502 h 
Standard deviation of TTF’s:  0.114 h 
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Fig.4.21: signal synthesized by the kFDS algorithm 

 
Table 4.24: statistical properties of 
the signal synthesized by the kFDS 
algorithm 
 

        RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 2.15 
Kurtosis [-] 6.47 

Crest factor [-] 8.61 
 
 
 
 
 
 

 
Fig.4.22: response to one of the replays of the signal 
generated by the shaker. The response shown here is related 
to the signal which led to the mean TTF according to 
definition 1. 

 
Table 4.25: statistical properties of 
the response to one of the replays of 
the signal 
 

    RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 44.9 
Kurtosis [-] 6.09 

Crest factor [-] 7.61 
 
 
 
 
 

 

 
(a) 

 
(b) 

Fig.4.23:  comparison between the amplified reference signal and the one synthesized by the kFDS 
algorithm: a) FDS, b) MRS. The curves are calculated by considering the parameters of the model to 
be: 𝑏𝑏 = 9, 𝜁𝜁 = 0.01 
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4.4.4 Discussion 
The results show that the difference between the two definitions of failure, in terms of mean and 
median TTF’s, is at the most 0.034 hours (i.e. approximately 2 minutes). The Gaussian synthesis led 
to overtesting the specimens, because the mean TTF was about 42 % less than the expected 0.470 
hours. The kFDS algorithm’s mean TTF is much closer: in fact, the estimation is off by about 3 %. 
This standard method’s mismatch might be due to the overestimation of the small amplitudes’ 
contribution to damage that are present in the reference signal, as already described in subsection 
4.3.4. 
 

4.5 Influence of damping ratio and Wohler's curve slope 
The most influential parameters in the fatigue model used are the coefficient related to Wohler’s curve 
slope and damping coefficient, denoted as usual by 𝑏𝑏 and 𝜁𝜁 respectively. In the system considered in 
chapter 4, parameter 𝜁𝜁 was not difficult to evaluate, because the SDOF system model accurately 
approximated the specimens. In practice this might not always be the case for complicated DUT’s, 
but for SDOF systems the evaluation of 𝜁𝜁 is straightforward. Even though in the literature it is 
recommended to set this coefficient 𝜁𝜁 to a standard 5% [40], it might be useful to show that this choice 
is not uninfluential in all cases. In fact, as already mentioned in section 4.3, in the case of non-
stationary signals with narrow-banded blocks such as the reference signal chosen in subsection 4.1.1, 
the damping coefficient may play an important role in the synthesis procedure because sinusoids 
cause a greater damage if damping is smaller. Therefore, since the synthesis procedure starts from 
the FDS of the signal, it is of great import not to overestimate 𝜁𝜁, because it could lead to undertesting 
if the usual PSD is synthesized20.  
In order to show an example of the influence of 𝜁𝜁, two acceleration profiles were synthesized with 
the same procedure used in section 4.3, that is, the profiles have the same FDS as that of the reference 
signal of subsection 4.1.1 computed over 1.66 hours. However, in this case the parameter 𝜁𝜁 was set 
to 5% instead of 1%, whereas the same value of 𝑏𝑏 was preserved, therefore the value of 9.00 was 
used in the synthesis. The first of the two profiles was synthesized according to the standard 
procedure, leading to the Gaussian signal shown in Fig. 4.24, whose main statistical characteristics 
are reported in Table 4.26. The second one was synthesized by the VSD algorithm and the Kihm’s 
filtering technique (discussed in section 2.1) was applied a posteriori in order to match the FDS curves 
over a duration of 1.66 hours. The VSD signal is shown in Fig.4.25 and its statistical properties in 
Table 4.27.  
In order to see how the two signals would fare in real experiments, for each of the two profiles, one 
test was performed with the setup already described in chapter 4 (where 𝜁𝜁 is approximately equal to 
1%). Therefore, the total number of specimens to be analyzed was equal to three (three specimens for 
each test). The number of tests was chosen to be the bare minimum because this was not the major 
focus of the work; rather, the only test was used as a way of possibly corroborating what should 
already be known theoretically, namely the influence of an overestimation of parameter 𝜁𝜁. The three 
times to failure were calculated and are shown in Table 4.28. The results show that the overestimation 
of 𝜁𝜁 lead to an underestimation of the mean TTF (which was expected to be close to 1.66 hours 
theoretically if parameter 𝜁𝜁 were approximately equal to 1%). The test performed with the Gaussian 
signal leads to a greater underestimation of the damage (i.e. the mean TTF), whereas the signal 

20 if 𝜁𝜁 is unknown, its underestimation would be more appropriate since it would cause an overestimation of the damage, 
thus leading to more conservative results. 
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generated by the VSD algorithm and a posteriori application of Kihm’s filtering technique (with 𝜁𝜁 =
5%) leads to a less conspicuous underestimation of the damage.  

As regards parameter 𝑏𝑏, its estimation is more difficult to make than in the case of 𝜁𝜁 without 
performing experiments. Besides, even if experiments are done, an accurate estimation is unlikely 
due to the intrinsic indeterministic nature of fatigue-related phenomena, as well as the simplifying 
assumption that Wohler’s curve accurately describes the behavior of the material. In fact, Wohler’s 
curve parameters can be influenced by many factors such as: the type of load (sinusoidal, Gaussian, 
etc.), temperature, corrosion, residual stresses, the presence of notches, etc. All these factors 
combined account for the great number of different values of 𝑏𝑏 given in the literature [36], even for 
the same material. In order to test the robustness of the algorithms presented in this work, the FDS of 
the two acceleration profiles shown in subsections 4.3.2 and 4.3.3 are calculated with a different value 
for the parameter 𝑏𝑏21. In particular, the value of 𝑏𝑏 was set equal to 4, whereas 𝜁𝜁 was maintained at 
1%; with this value of 𝑏𝑏, the FDS of the signal of Fig.4.11 is displayed in Fig.4.26a, together with 
that of the reference signal of Fig.4.1. The FDS of the signal of Fig.4.14 is shown in Fig.4.26b, 
together with that of the reference signal of Fig.4.1. It is clear how the kFDS algorithm is not affected 
as much as the standard Mission Synthesis; in fact, the FDS is still close to the target one in the former 
case, whereas not the same can be said in the latter. Something similar could be said if, instead of 
setting 𝑏𝑏 equal to 4, the latter is set to a value greater than 9. In Fig.4.27 the two 𝐹𝐹𝐷𝐷𝑆𝑆 curves are 
plotted in a similar fashion to the one described for Fig.4.26, with the only difference being the value 
of parameter 𝑏𝑏, which is set to 14. In this case it is harder to appreciate the difference between the 
curves because the y-axis spans a larger range than in the case where 𝑏𝑏 was equal to 4, nevertheless 
the FDS of the profile synthesized by the kFDS algorithm is closer to that of the reference profile 
especially in the bandwidth of interest (near 40 Hz). 

 
Fig.4.24: signal synthesized by the standard Mission 
Synthesis procedure with 𝜁𝜁 = 5% 

 
Table 4.26: statistical properties of the 
Gaussian signal synthesized with 𝜁𝜁 
=5% 
 

       RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 2.30 
Kurtosis [-] 3.01 

Crest factor [-] 6.24 
 
 

 
Fig.4.25: signal synthesized by the VSD algorithm with 𝜁𝜁 =
5% 

 

 
Table 4.27: statistical properties of the 
signal synthesized by the VSD 
algorithm with 𝜁𝜁 =5% 
 

        RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 1.44 
Kurtosis [-] 5.21 

Crest factor [-] 5.99 
 
 
 
 
 

21 It should be recalled that the profiles were synthesized with 𝑏𝑏 = 9. 
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Table 4.28: TTF’s and meaningful statistical parameters of the Gaussian and VSD test calculated 
according to definition 2 

Definition 2 of failure Gaussian Test VSD Test 
Specimen #1  3.53 h  2.78 h 
Specimen #3  4.39 h  2.20 h 
Specimen #5  10.1 h  3.61 h 

Mean TTF:  6.01 h 
Median TTF:  4.39 h 
Standard deviation of TTF’s: 3.57 h 
 

Mean TTF:  2.86 h 
Median TTF:  2.78 h 
Standard deviation of TTF’s: 0.709 h 
 

 
 

 
(a) 

 
 

 
(b) 

Fig.4.26: comparison between the FDS of the reference signal of subsection 4.1.1 and that of the 
signal synthesized by a) the standard practice as described in subsection 4.3.2 b) the kFDS algorithm 
as described in subsection 4.3.3. The curves are calculated by considering the parameters of the model 
to be: 𝑏𝑏 = 4, 𝜁𝜁 = 0.01 

 
(a) 

 
(b) 

Fig.4.27: comparison between the FDS of the reference signal of subsection 4.1.1 and that of the 
signal synthesized by a) the standard practice as described in subsection 4.3.2 b) the kFDS algorithm 
as described in subsection 4.3.3. The curves are calculated by considering the parameters of the model 
to be: 𝑏𝑏 = 14, 𝜁𝜁 = 0.01 

 

 

 

 

77 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

78 
 



 
 

5 Conclusions  
In this work kurtosis control algorithms were first revised. As is, kurtosis control does not take into 
account a signal’s damage potential, which is estimated via the FDS, but only controls the PSD and 
kurtosis value; therefore, different signals with same kurtosis value and PSD may have a different 
FDS. In fact, it was shown that this is usually the case. However, this difference could be corrected, 
by using a filter described in the literature, therefore extending kurtosis control to durability tests (or 
fatigue life tests). The profiles so obtained not only had a target FDS, but also similar probability 
distributions to those generated by kurtosis control algorithms. The PSD and the statistical parameters 
changed to some extent but in return, the FDS was closer to that of the application.  
In addition, four novel Mission Synthesis algorithms were proposed, which achieved to control the 
FDS (a priori, without filtering) and other parameters specific to the particular algorithm selected. 
Their commonality was the synthesis of leptokurtic signals, thus extending the Standard Procedure 
and the other methodology based on the filtering technique described in the literature. 
A first algorithm, named kFDS, managed to control both the FDS and kurtosis value of a signal to be 
synthesized. Other three algorithms were devised and proposed: an algorithm named RF complied 
with a prescribed FDS and RMS value of a synthesized signal, irrespective of the possible time 
reduction factor applied to the test. Next, the PF algorithm was introduced, which added the 
possibility of controlling the PSD shape in addition to the FDS and RMS value. Finally, the PSF 
algorithm was a modified version of the PF algorithm, which omitted to control the RMS value and 
complied only with an FDS and a PSD shape specification. 
The simulation results showed that the algorithms complied with the constraints they were designed 
to satisfy. 
The main advantages of the methodologies are related both to their effectiveness and to the 
computational efficiency due to the simple mathematical formulae required, with the time-domain 
calculations being performed only to generate the time-series at the end of the procedure and calculate 
the FDS. 
Another important aspect to highlight is the randomness of the synthesized profiles; in fact, the 
generation of Gaussian blocks implied that the phases were randomly selected. In addition, other 
features adding to the randomness of the profiles were: the modulation coefficients 𝑣𝑣𝑗𝑗 in the kFDS 
and RF algorithms, selected randomly as well, and the random permutation of the blocks which are 
then concatenated and smoothed. 
A possible limitation is related to the maximum values of the system response, which are greater than 
those reached in Gaussian tests. This problem becomes more and more evident when the duration of 
the test is reduced, especially for those algorithms that control the RMS value (RF and PF), therefore 
before performing the actual tests it is essential to check whether the type of failure does not change 
from fatigue related to yield strength related. In general, there is certainly less room to reduce the test 
duration with respect to Gaussian tests, but one must also consider reliability of the tests, which may 
be increased if the distribution of signals measured from real applications (often non-Gaussian) is 
preserved. The possible increase in reliability was exemplified by the experimental tests described, 
where an extensive experimental campaign was conducted to test the validity of one of the algorithms 
in actual experiments. In particular, the kFDS algorithm was selected for the tests. The Gaussian 
synthesis led to overtesting the specimens, because the mean TTF was about 32 % less than the 
expected theoretical value. On the other hand, the kFDS algorithm’s mean TTF was much closer: in 
fact, the estimation was off by 5% approximately. This better match might be due to such factors as 
the small amplitudes’ contribution in the reference signal, which were possibly below the fatigue limit 
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of the material. In fact, these low amplitudes are still damaging according to the model, even if to a 
small degree, therefore still contributing to the FDS and possibly leading to overtesting the material 
when the Gaussian signal is synthesized from the FDS. On the other hand, the kFDS algorithm 
synthesizes a signal with the same kurtosis value and FDS as the reference signal, thus characterized 
approximately by the same amount of downtime, possibly ‘cancelling’ the effect of damage 
overestimation that may occur when Gaussian tests are performed. The experimental results were 
promising, therefore supporting the idea that the preservation of the reference signal’s nature and 
damage potential can make accelerated tests increasingly realistic and reliable. 

The kFDS algorithm was chosen for the experimental tests because among the algorithms presented, 
it is the one which has the lowest probability of generating signals having exceedingly high MRS 
levels (especially when tests are accelerated). Besides, very high peaks may not only change the 
failure mechanism, but also render the synthesis procedure more sensitive to the accuracy of Wohler’s 
curve parameters, due to the exponential relation between the signals and the damage according to 
the theory adopted.  

Notwithstanding the hope that the results presented in this work might be helpful to the current state 
of the art, there are still several algorithms presented in this work which can be experimentally tested. 
The possibility of optimizing the synthesis procedure, by considering both the algorithms and the 
sensitivity to the synthesis parameters, is a tangible and foreseeable possibility.  

Another important result obtained in this work was a novel time-domain method for the estimation 
of the fatigue damage (Appendix F). It aimed to bridge the gap between time-domain and frequency-
domain approaches, in order to exploit the advantages of the frequency-domain approach (i.e. fast 
computations) in the time-domain, which, on its part, has the advantage of being more reliable and 
boasts a greater range of applicability. 
The results proved to be satisfactory both in terms of precision and computational requirements, 
improving the speed with respect to the standard methodology, with the improvement being 
emphasized for long time-series. 
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Appendix A: formulae for moments  
Every periodic signal 𝑥𝑥(𝑡𝑡) can be expanded in a Fourier series: 

 

𝑥𝑥(𝑡𝑡) =
𝑎𝑎0
2

+ �(𝑎𝑎𝑛𝑛

∞

𝑛𝑛=1

cos𝑗𝑗𝑛𝑛𝑡𝑡 + 𝑏𝑏𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑗𝑗𝑛𝑛𝑡𝑡)                                          (𝐴𝐴. 1) 

 

or if the series is truncated to 𝑁𝑁 terms, as for shaker drive signals: 

 

𝑥𝑥(𝑡𝑡) =
𝑎𝑎0
2

+ �(𝑎𝑎𝑛𝑛

𝑁𝑁

𝑛𝑛=1

cos𝑗𝑗𝑛𝑛𝑡𝑡 + 𝑏𝑏𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑗𝑗𝑛𝑛𝑡𝑡)                                         (𝐴𝐴. 2) 

 

𝑗𝑗𝑛𝑛 = 2𝜋𝜋Δ𝑓𝑓𝑛𝑛 =
2𝜋𝜋𝑛𝑛
𝐷𝐷

                                                                   (𝐴𝐴. 3) 

 

where Δ𝑓𝑓 = 1
𝑇𝑇
 is the frequency resolution and 𝐷𝐷 is the duration of the signal, which is considered to 

be extended periodically outside the interval [0,𝐷𝐷]. 

The coefficients are expressible in terms of the signal 𝑥𝑥(𝑡𝑡) according to the relations: 

 

𝑎𝑎𝑛𝑛
2

=
1
𝐷𝐷
� 𝑥𝑥(𝑡𝑡)cos𝑗𝑗𝑛𝑛𝑡𝑡 𝑑𝑑𝑡𝑡 
𝑇𝑇

0
                                                              (𝐴𝐴. 4) 

 

𝑏𝑏𝑛𝑛
2

=
1
𝐷𝐷
� 𝑥𝑥(𝑡𝑡)sin𝑗𝑗𝑛𝑛𝑡𝑡 𝑑𝑑𝑡𝑡 
𝑇𝑇

0
                                                              (𝐴𝐴. 5) 

 

𝑛𝑛 ∈  {𝑘𝑘 ∈  ℕ |0 ≤ 𝑘𝑘 ≤ 𝑁𝑁} 

 

If other coefficients 𝐴𝐴𝑛𝑛,𝜑𝜑𝑛𝑛 are defined such that: 

 

𝑎𝑎𝑛𝑛 = 𝐴𝐴𝑛𝑛cos𝜑𝜑𝑛𝑛                                                                               (𝐴𝐴. 6) 

 

𝑏𝑏𝑛𝑛 = −𝐴𝐴𝑛𝑛sin𝜑𝜑𝑛𝑛                                                                            (𝐴𝐴. 7)  
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the series can be easily written as: 

 

𝑥𝑥(𝑡𝑡) =
𝑎𝑎0
2

+ �𝐴𝐴𝑛𝑛

𝑁𝑁

𝑛𝑛=1

cos(𝑗𝑗𝑛𝑛𝑡𝑡 + 𝜑𝜑𝑛𝑛)                                                       (𝐴𝐴. 8) 

 

Besides, it can be written in complex form as well: 

𝑎𝑎𝑛𝑛cos𝑗𝑗𝑛𝑛𝑡𝑡 + 𝑏𝑏𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑗𝑗𝑛𝑛𝑡𝑡 = 𝑎𝑎𝑛𝑛
e𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡 + e−𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡

2
+ 𝑏𝑏𝑛𝑛

e𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡 − e−𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡

2𝑗𝑗

=
𝑎𝑎𝑛𝑛 − 𝑗𝑗𝑏𝑏𝑛𝑛

2
e𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡 +

𝑎𝑎𝑛𝑛 + 𝑗𝑗𝑏𝑏𝑛𝑛
2

e−𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡 = 𝑐𝑐𝑛𝑛e𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡 + 𝑐𝑐∗𝑛𝑛e−𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡 

 

where: 

 

𝑐𝑐𝑛𝑛 =
𝑎𝑎𝑛𝑛 − 𝑗𝑗𝑏𝑏𝑛𝑛

2
                                                                            (𝐴𝐴. 9) 

 

and 𝑐𝑐∗𝑛𝑛 is its complex conjugate, which is also equal to 𝑐𝑐−𝑛𝑛 because for a real-valued signal 𝑥𝑥(𝑡𝑡): 

𝑎𝑎−𝑛𝑛 = 𝑎𝑎𝑛𝑛                                                                                   (𝐴𝐴. 10) 

𝑏𝑏−𝑛𝑛 = −𝑏𝑏𝑛𝑛                                                                                 (𝐴𝐴. 11) 

𝐴𝐴−𝑛𝑛 = 𝐴𝐴𝑛𝑛                                                                                   (𝐴𝐴. 12) 

𝜑𝜑−𝑛𝑛 = −𝜑𝜑𝑛𝑛                                                                               (𝐴𝐴. 13) 

With the above definition of  𝑐𝑐𝑛𝑛, the series can be written as: 

 

𝑎𝑎0
2

+ �(𝑎𝑎𝑛𝑛

𝑁𝑁

𝑛𝑛=1

cos𝑗𝑗𝑛𝑛𝑡𝑡 + 𝑏𝑏𝑛𝑛𝑠𝑠𝑖𝑖𝑛𝑛𝑗𝑗𝑛𝑛𝑡𝑡) = 𝑐𝑐0 + �(
𝑁𝑁

𝑛𝑛=1

𝑐𝑐𝑛𝑛e𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡 + 𝑐𝑐∗𝑛𝑛e−𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡)

= 𝑐𝑐0 + �𝑐𝑐𝑛𝑛e𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡
𝑁𝑁

𝑛𝑛=1

+ �𝑐𝑐−𝑛𝑛e−𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡
𝑁𝑁

𝑛𝑛=1

= 𝑐𝑐0 + �𝑐𝑐𝑛𝑛e𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡
𝑁𝑁

𝑛𝑛=1

+ � 𝑐𝑐𝑛𝑛e𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡
−1

𝑛𝑛=−𝑁𝑁

= � 𝑐𝑐𝑛𝑛e𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡
𝑁𝑁

𝑛𝑛=−𝑁𝑁

 

Hence: 
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𝑥𝑥(𝑡𝑡) = � 𝑐𝑐𝑛𝑛e𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡
𝑁𝑁

𝑛𝑛=−𝑁𝑁

                                                                    (𝐴𝐴. 14) 

 

where: 

 

𝑐𝑐0 =
𝑎𝑎0
2

=
𝐴𝐴0
2

                                                                           (𝐴𝐴. 15) 

𝜑𝜑0 = 0, 𝑏𝑏0 = 0                                                                        (𝐴𝐴. 16) 

𝑐𝑐𝑛𝑛 =
1
𝐷𝐷
� 𝑥𝑥(𝑡𝑡)e−𝑗𝑗𝑗𝑗𝑛𝑛𝑡𝑡 𝑑𝑑𝑡𝑡 
𝑇𝑇

0
=
𝐴𝐴𝑛𝑛
2
𝑒𝑒𝑗𝑗𝜑𝜑𝑛𝑛                                                 (𝐴𝐴. 17) 

It should be noted that the indices could be defined either to assume both negative and positive values 
as in Eq.(A.14) or only positive values Eq.(A.1). 
In the time domain the central moment of order 𝑞𝑞 (where q is a non-negative integer) is: 

M𝑞𝑞 =
1
𝐷𝐷
� (𝑥𝑥(𝑡𝑡) − 𝑐𝑐0)𝑞𝑞
𝑇𝑇

0
 𝑑𝑑𝑡𝑡                                                        (𝐴𝐴. 18) 

Its calculation in terms of the amplitudes and phases of the signal yields: 

M𝑞𝑞 =
1
𝐷𝐷
� (𝑥𝑥(𝑡𝑡) − 𝑐𝑐0)𝑞𝑞
𝑇𝑇

0
 𝑑𝑑𝑡𝑡 =

1
𝐷𝐷
� � � 𝑐𝑐𝑛𝑛𝑘𝑘e𝑗𝑗𝑗𝑗𝑛𝑛𝑘𝑘𝑡𝑡

𝑛𝑛𝑘𝑘≠0

𝑞𝑞

𝑘𝑘=1

 𝑑𝑑𝑡𝑡 =  
𝑇𝑇

0
 

=
1
𝐷𝐷
� � ��𝑐𝑐𝑛𝑛𝑘𝑘

𝑞𝑞

𝑘𝑘=1

� e𝑗𝑗 ∑ 𝑗𝑗𝑛𝑛𝑘𝑘
𝑞𝑞
𝑘𝑘=1 𝑡𝑡

𝑛𝑛1≠0,𝑛𝑛2≠0,…,𝑛𝑛𝑞𝑞≠0

 𝑑𝑑𝑡𝑡 =  
𝑇𝑇

0
 

� ��𝑐𝑐𝑛𝑛𝑘𝑘

𝑞𝑞

𝑘𝑘=1

�
1
𝐷𝐷
� e𝑗𝑗 ∑ 𝑗𝑗𝑛𝑛𝑙𝑙

𝑞𝑞
𝑙𝑙=1 𝑡𝑡𝑑𝑑𝑡𝑡

𝑇𝑇

0𝑛𝑛1≠0,𝑛𝑛2≠0,…,𝑛𝑛𝑞𝑞≠0

 

which, for the periodicity of the complex exponentials and after substituting the expressions for 𝑗𝑗𝑛𝑛𝑙𝑙 
becomes:  

M𝑞𝑞 = � �𝑐𝑐𝑛𝑛𝑘𝑘

𝑞𝑞

𝑘𝑘=1𝑛𝑛1+𝑛𝑛2+⋯+𝑛𝑛𝑞𝑞=0
𝑛𝑛1≠0,𝑛𝑛2≠0,…,𝑛𝑛𝑞𝑞≠0

= � ��
𝐴𝐴𝑛𝑛𝑘𝑘

2
𝑒𝑒𝑗𝑗𝜑𝜑𝑛𝑛𝑘𝑘�

𝑞𝑞

𝑘𝑘=1𝑛𝑛1+𝑛𝑛2+⋯+𝑛𝑛𝑞𝑞=0
𝑛𝑛1≠0,𝑛𝑛2≠0,…,𝑛𝑛𝑞𝑞≠0

= 

= � ��
𝐴𝐴𝑛𝑛𝑘𝑘

2

𝑞𝑞

𝑘𝑘=1

�
𝑛𝑛1+𝑛𝑛2+⋯+𝑛𝑛𝑞𝑞=0
𝑛𝑛1≠0,𝑛𝑛2≠0,…,𝑛𝑛𝑞𝑞≠0

𝑒𝑒𝑗𝑗 ∑ 𝜑𝜑𝑛𝑛𝑙𝑙
𝑞𝑞
𝑙𝑙=1 = 

= � ��
𝐴𝐴𝑛𝑛𝑘𝑘

2

𝑞𝑞

𝑘𝑘=1

�
𝑛𝑛1+𝑛𝑛2+⋯+𝑛𝑛𝑞𝑞=0
𝑛𝑛1≠0,𝑛𝑛2≠0,…,𝑛𝑛𝑞𝑞≠0

ℜ �𝑒𝑒𝑗𝑗 ∑ 𝜑𝜑𝑛𝑛𝑙𝑙
𝑞𝑞
𝑙𝑙=1 � = 
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= �
1

2𝑞𝑞 �
�𝐴𝐴𝑛𝑛𝑘𝑘

𝑞𝑞

𝑘𝑘=1

�
𝑛𝑛1+𝑛𝑛2+⋯+𝑛𝑛𝑞𝑞=0
𝑛𝑛1≠0,𝑛𝑛2≠0,…,𝑛𝑛𝑞𝑞≠0

cos ��𝜑𝜑𝑛𝑛𝑙𝑙

𝑞𝑞

𝑙𝑙=1

� = 

= �
1

2𝑞𝑞
𝐴𝐴𝑛𝑛1𝐴𝐴𝑛𝑛2 …𝐴𝐴𝑛𝑛𝑞𝑞cos �𝜑𝜑𝑛𝑛1 + 𝜑𝜑𝑛𝑛2 + ⋯+ 𝜑𝜑𝑛𝑛𝑞𝑞�

𝑛𝑛1+𝑛𝑛2+⋯+𝑛𝑛𝑞𝑞=0
𝑛𝑛1≠0,𝑛𝑛2≠0,…,𝑛𝑛𝑞𝑞≠0

 

Hence: 

M𝑞𝑞 = �
1

2𝑞𝑞
𝐴𝐴𝑛𝑛1𝐴𝐴𝑛𝑛2 …𝐴𝐴𝑛𝑛𝑞𝑞cos �𝜑𝜑𝑛𝑛1 + 𝜑𝜑𝑛𝑛2 + ⋯+ 𝜑𝜑𝑛𝑛𝑞𝑞�

𝑛𝑛1+𝑛𝑛2+⋯+𝑛𝑛𝑞𝑞=0
𝑛𝑛1≠0,𝑛𝑛2≠0,…,𝑛𝑛𝑞𝑞≠0

        (𝐴𝐴. 19) 

If 𝑞𝑞 = 2: 

M2 =
1
4
� 𝐴𝐴𝑛𝑛𝐴𝐴𝑘𝑘cos (𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑘𝑘)

𝑛𝑛+𝑘𝑘=0
𝑛𝑛≠0

=
1
4
�𝐴𝐴𝑛𝑛2
𝑛𝑛

𝑛𝑛≠0

=
1
4
�𝐴𝐴𝑛𝑛2

𝑛𝑛>0

+
1
4
�𝐴𝐴𝑛𝑛2

𝑛𝑛<0

= 

=
1
2
�𝐴𝐴𝑛𝑛2

𝑛𝑛>0

                                                (𝐴𝐴. 20) 

 

If 𝑞𝑞 = 4 one obtains: 

M4 =
1

16
� 𝐴𝐴𝑛𝑛𝐴𝐴𝑘𝑘𝐴𝐴𝑙𝑙𝐴𝐴𝑟𝑟cos(𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑘𝑘 + 𝜑𝜑𝑙𝑙 + 𝜑𝜑𝑟𝑟)

𝑛𝑛+𝑘𝑘+𝑙𝑙+𝑟𝑟=0
𝑛𝑛≠0,𝑘𝑘≠0,𝑙𝑙≠0,𝑟𝑟≠0

                  (𝐴𝐴. 21) 

In Eq.(A.21) the sum of the indices can give zero only if: (i) two indices are positive and the other 
two negative, (ii) three are positive and one negative, (iii) three are negative and one positive. 
Depending on which indices are positive and which are negative there are different combinations of 
signs: condition (i) contains �42� = 4!

2! 2!
= 6 such combinations, whereas conditions (ii) and (iii) 

considered together (in fact, they lead to the same expression) give �41� + �43� = 2�41� = 8 different 
possibilities. Hence: 

 

� …  =   8 � …  +
𝑛𝑛+𝑘𝑘+𝑙𝑙+𝑟𝑟=0

𝑛𝑛>0,𝑘𝑘>0,𝑙𝑙>0,𝑟𝑟<0

  6 � …                (𝐴𝐴. 22)
𝑛𝑛+𝑘𝑘+𝑙𝑙+𝑟𝑟=0

𝑛𝑛>0,𝑘𝑘>0,𝑙𝑙<0,𝑟𝑟<0
𝑛𝑛+𝑘𝑘+𝑙𝑙+𝑟𝑟=0

𝑛𝑛≠0,𝑘𝑘≠0,𝑙𝑙≠0,𝑟𝑟≠0

 

 

M4 = �
1
2
𝐴𝐴𝑛𝑛𝐴𝐴𝑘𝑘𝐴𝐴𝑙𝑙𝐴𝐴𝑟𝑟cos(𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑘𝑘 + 𝜑𝜑𝑙𝑙 − 𝜑𝜑𝑟𝑟)

𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟
𝑛𝑛>0,𝑘𝑘>0,𝑙𝑙>0,𝑟𝑟>0

+  

+ �
3
8
𝐴𝐴𝑛𝑛𝐴𝐴𝑘𝑘𝐴𝐴𝑙𝑙𝐴𝐴𝑟𝑟cos(𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑘𝑘 − 𝜑𝜑𝑙𝑙 − 𝜑𝜑𝑟𝑟)

𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛>0,𝑘𝑘>0,𝑙𝑙>0,𝑟𝑟>0

            (𝐴𝐴. 23) 
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In Eq.(A.23), the indices can only assume positive values, for this reason the condition 𝑛𝑛 > 0,𝑘𝑘 >
0, 𝑙𝑙 > 0,𝑚𝑚 > 0 under every summation symbol will be omitted in order to lighten the notation, but it 
will remain valid henceforth in this appendix.  
The summation symbols in Eq.(A.23) can be manipulated further. It can be proved that the following 
relations hold: 

� …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟

= 2 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑘𝑘=𝑙𝑙=𝑟𝑟

+ 4 � …
𝑛𝑛+𝑘𝑘=2𝑟𝑟
𝑛𝑛<𝑘𝑘

+ 8 � …
𝑙𝑙+𝑟𝑟=𝑛𝑛+𝑘𝑘

𝑙𝑙<𝑟𝑟,𝑛𝑛<𝑘𝑘,𝑛𝑛<𝑙𝑙

     (𝐴𝐴. 24) 

 

� …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

= � …
3𝑘𝑘=𝑟𝑟

+ 3 � …
2𝑛𝑛+𝑙𝑙=𝑟𝑟
𝑛𝑛≠𝑙𝑙

+ 6 � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟
𝑛𝑛<𝑙𝑙<𝑘𝑘

                (𝐴𝐴. 25) 

The following mathematical steps can be used to prove Eq.(A.24): 

� …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟

= � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
(𝑘𝑘=𝑙𝑙)

+ � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟
(𝑘𝑘≠𝑙𝑙)

= 2 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
(𝑘𝑘=𝑙𝑙)

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
(𝑘𝑘=𝑙𝑙)

+ � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟
(𝑘𝑘≠𝑙𝑙)

= 

= 2 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
(𝑘𝑘=𝑙𝑙)

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
𝑘𝑘=𝑙𝑙=𝑟𝑟

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
𝑘𝑘=𝑙𝑙≠𝑟𝑟

+ � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟
(𝑘𝑘≠𝑙𝑙)

= 

= 2 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
(𝑘𝑘=𝑙𝑙)

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
𝑘𝑘=𝑙𝑙=𝑟𝑟

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
𝑘𝑘=𝑙𝑙≠𝑟𝑟

+ � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟
𝑛𝑛≠𝑙𝑙

(𝑘𝑘≠𝑙𝑙)

+ � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟
𝑛𝑛=𝑙𝑙

(𝑘𝑘≠𝑙𝑙,   𝑘𝑘=𝑟𝑟)

= 

= 2 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
(𝑘𝑘=𝑙𝑙)

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
𝑘𝑘=𝑙𝑙=𝑟𝑟

+ � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟
𝑛𝑛≠𝑙𝑙

(𝑘𝑘≠𝑙𝑙)

= 

= 2 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
(𝑘𝑘=𝑙𝑙)

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
𝑘𝑘=𝑙𝑙=𝑟𝑟

+ � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟
𝑛𝑛≠𝑙𝑙
𝑛𝑛=𝑘𝑘

(𝑘𝑘≠𝑙𝑙)

+ � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟
𝑛𝑛≠𝑙𝑙
𝑛𝑛≠𝑘𝑘

(𝑘𝑘≠𝑙𝑙)

= 

= 2 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
(𝑘𝑘=𝑙𝑙)

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
𝑘𝑘=𝑙𝑙=𝑟𝑟

+ � …
2𝑛𝑛=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟

(𝑛𝑛≠𝑙𝑙,   𝑙𝑙≠𝑟𝑟)

+ � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟
𝑛𝑛≠𝑙𝑙
𝑛𝑛≠𝑘𝑘
𝑙𝑙=𝑟𝑟

(𝑘𝑘≠𝑙𝑙)

+ � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟
𝑛𝑛≠𝑙𝑙
𝑛𝑛≠𝑘𝑘
𝑙𝑙≠𝑟𝑟

(𝑘𝑘≠𝑙𝑙)

= 
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= 2 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
(𝑘𝑘=𝑙𝑙)

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
𝑘𝑘=𝑙𝑙=𝑟𝑟

+ � …
2𝑛𝑛=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟

(𝑛𝑛≠𝑙𝑙,   𝑙𝑙≠𝑟𝑟)

+ � …
𝑛𝑛+𝑘𝑘=2𝑟𝑟
𝑛𝑛≠𝑟𝑟

(𝑘𝑘≠𝑟𝑟,   𝑛𝑛≠𝑘𝑘)

+ � … =
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟
𝑛𝑛≠𝑘𝑘
𝑙𝑙≠𝑟𝑟

(𝑘𝑘≠𝑙𝑙,   𝑛𝑛≠𝑙𝑙,   𝑘𝑘≠𝑟𝑟 )

 

= 2 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
(𝑘𝑘=𝑙𝑙)

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟
𝑘𝑘=𝑙𝑙=𝑟𝑟

+ 2 � …
2𝑛𝑛=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟

(𝑛𝑛≠𝑙𝑙,   𝑙𝑙≠𝑟𝑟)

+ � … =
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟
𝑛𝑛≠𝑘𝑘
𝑙𝑙≠𝑟𝑟

(𝑘𝑘≠𝑙𝑙,   𝑛𝑛≠𝑙𝑙,   𝑘𝑘≠𝑟𝑟)

 

= 2 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟=𝑙𝑙=𝑘𝑘

+ 2 � …
2𝑛𝑛=𝑙𝑙+𝑟𝑟
𝑛𝑛<𝑟𝑟

+ 2 � …
2𝑛𝑛=𝑙𝑙+𝑟𝑟
𝑛𝑛>𝑟𝑟

+ � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛≠𝑟𝑟
𝑛𝑛≠𝑘𝑘
𝑙𝑙≠𝑟𝑟

(𝑘𝑘≠𝑙𝑙,   𝑛𝑛≠𝑙𝑙,   𝑘𝑘≠𝑟𝑟)

= 

= 2 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟=𝑙𝑙=𝑘𝑘

+ 4 � …
2𝑛𝑛=𝑙𝑙+𝑟𝑟
𝑛𝑛<𝑟𝑟

+ 8 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛<𝑙𝑙<𝑟𝑟<𝑘𝑘

=       

= 2 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟=𝑙𝑙=𝑘𝑘

+ 4 � …
2𝑛𝑛=𝑙𝑙+𝑟𝑟
𝑙𝑙<𝑟𝑟

+ 8 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟

𝑙𝑙<𝑟𝑟,   𝑛𝑛<𝑘𝑘,   𝑛𝑛<𝑙𝑙

=  

= 2 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟

− � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟
𝑛𝑛=𝑟𝑟=𝑙𝑙=𝑘𝑘

+ 4 � …
2𝑟𝑟=𝑘𝑘+𝑛𝑛
𝑛𝑛<𝑘𝑘

+ 8 � …
𝑛𝑛+𝑘𝑘=𝑙𝑙+𝑟𝑟

𝑙𝑙<𝑟𝑟,   𝑛𝑛<𝑘𝑘,   𝑛𝑛<𝑙𝑙

 (Q. E. D) 

 

The following mathematical steps can be used to prove Eq.(A.25): 

� …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

= � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛=𝑘𝑘

+ � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛≠𝑘𝑘

= 

= � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛=𝑘𝑘
𝑘𝑘=𝑙𝑙

+ � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛=𝑘𝑘
𝑘𝑘≠𝑙𝑙

+ � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛≠𝑘𝑘
𝑘𝑘=𝑙𝑙

+ � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛≠𝑘𝑘
𝑘𝑘≠𝑙𝑙

= 

= � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛=𝑘𝑘
𝑘𝑘=𝑙𝑙

+ 2 � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛=𝑘𝑘
𝑘𝑘≠𝑙𝑙

+ � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛≠𝑘𝑘
𝑘𝑘≠𝑙𝑙

= 

= � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛=𝑘𝑘
𝑘𝑘=𝑙𝑙

+ 2 � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛=𝑘𝑘
𝑘𝑘≠𝑙𝑙

(𝑛𝑛≠𝑙𝑙)

+ � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛≠𝑘𝑘
𝑘𝑘≠𝑙𝑙
𝑛𝑛=𝑙𝑙

+ � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛≠𝑘𝑘
𝑘𝑘≠𝑙𝑙
𝑛𝑛≠𝑙𝑙

= 

= � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛=𝑘𝑘
𝑘𝑘=𝑙𝑙

+ 3 � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛=𝑘𝑘
𝑘𝑘≠𝑙𝑙

(𝑛𝑛≠𝑙𝑙)

+ � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛≠𝑘𝑘
𝑘𝑘≠𝑙𝑙
𝑛𝑛≠𝑙𝑙

= 
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= � …
3𝑘𝑘=𝑟𝑟

+ 3 � …
2𝑘𝑘+𝑙𝑙=𝑟𝑟
𝑘𝑘≠𝑙𝑙

+ � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟

𝑛𝑛≠𝑘𝑘
𝑘𝑘≠𝑙𝑙
𝑛𝑛≠𝑙𝑙

= 

= � …
3𝑘𝑘=𝑟𝑟

+ 3 � …
2𝑘𝑘+𝑙𝑙=𝑟𝑟
𝑘𝑘≠𝑙𝑙

+ 3! � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟
𝑛𝑛<𝑙𝑙<𝑘𝑘

=   

= � …
3𝑘𝑘=𝑟𝑟

+ 3 � …
2𝑛𝑛+𝑙𝑙=𝑟𝑟
𝑛𝑛≠𝑙𝑙

+ 6 � …
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟
𝑛𝑛<𝑙𝑙<𝑘𝑘

  (Q. E. D) 

 

Substituting Eqs.(A.24, A.25) into Eq.(A.23): 

 

M4 = 3𝑀𝑀2
2 −

3
8
�𝐴𝐴𝑛𝑛4

𝑛𝑛

+ 3 � 𝐴𝐴𝑛𝑛𝐴𝐴𝑘𝑘𝐴𝐴𝑙𝑙𝐴𝐴𝑟𝑟cos(𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑘𝑘 − 𝜑𝜑𝑙𝑙 − 𝜑𝜑𝑟𝑟)
𝑙𝑙+𝑟𝑟=𝑛𝑛+𝑘𝑘

𝑙𝑙<𝑟𝑟,𝑛𝑛<𝑘𝑘,𝑛𝑛<𝑙𝑙

+ 3 � 𝐴𝐴𝑛𝑛𝐴𝐴𝑘𝑘𝐴𝐴𝑙𝑙𝐴𝐴𝑟𝑟cos(𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑘𝑘 + 𝜑𝜑𝑙𝑙 − 𝜑𝜑𝑟𝑟)
𝑛𝑛+𝑘𝑘+𝑙𝑙=𝑟𝑟
𝑛𝑛<𝑙𝑙<𝑘𝑘

+
1
2
� 𝐴𝐴𝑘𝑘3𝐴𝐴𝑟𝑟cos(3𝜑𝜑𝑘𝑘 − 𝜑𝜑𝑟𝑟)
3𝑘𝑘=𝑟𝑟

                   

+
3
2

� 𝐴𝐴𝑛𝑛2𝐴𝐴𝑙𝑙𝐴𝐴𝑟𝑟cos(2𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑙𝑙 − 𝜑𝜑𝑟𝑟)
2𝑛𝑛+𝑙𝑙=𝑟𝑟
𝑛𝑛≠𝑙𝑙

 

+
3
2

� 𝐴𝐴𝑛𝑛𝐴𝐴𝑘𝑘𝐴𝐴𝑟𝑟2cos(𝜑𝜑𝑛𝑛 + 𝜑𝜑𝑘𝑘 − 2𝜑𝜑𝑟𝑟)
𝑛𝑛+𝑘𝑘=2𝑟𝑟
𝑛𝑛<𝑘𝑘

                                                                  (𝐴𝐴. 26) 

 

which is equivalent to Eqs.(A.21, A.23). 
One should remember that in Eq.(A.21) the indices range from –𝑁𝑁 to 𝑁𝑁 while in Eqs.(A.23, A.26)  
from 1 to 𝑁𝑁. 
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Appendix B: Gaussian distribution from 
its moments 
The probability density function can be recovered from the knowledge of its moments, according to 
Eq.(1.21), recalled in the following for convenience: 

𝑝𝑝(𝑥𝑥) =
1

2𝜋𝜋
� �(−𝑗𝑗𝑗𝑗)𝑞𝑞

𝑀𝑀𝑞𝑞

𝑞𝑞!

∞

𝑞𝑞=0

+∞

−∞
𝑒𝑒𝑗𝑗𝑗𝑗(𝑥𝑥−𝑐𝑐0)𝑑𝑑𝑗𝑗 

If the moments are given by Eqs.(1.16, 1.18), namely: 

�    𝑀𝑀𝑞𝑞 = (𝑞𝑞 − 1)‼𝑀𝑀2
𝑞𝑞
2                    𝑖𝑖𝑓𝑓 𝑞𝑞 𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛       

𝑀𝑀𝑞𝑞 = 0                                            𝑖𝑖𝑓𝑓 𝑞𝑞 𝑜𝑜𝑑𝑑𝑑𝑑       
        

then, the calculation of 𝑝𝑝(𝑥𝑥) yields: 

𝑝𝑝(𝑥𝑥) =
1

2𝜋𝜋
� �(−𝑗𝑗𝑗𝑗)𝑞𝑞

𝑀𝑀𝑞𝑞

𝑞𝑞!

∞

𝑞𝑞=0

+∞

−∞
𝑒𝑒𝑗𝑗𝑗𝑗(𝑥𝑥−𝑐𝑐0)𝑑𝑑𝑗𝑗 = 

=
1

2𝜋𝜋
� � (−𝑗𝑗2)

𝑞𝑞
2

(𝑞𝑞 − 1)‼𝑀𝑀2
𝑞𝑞
2

𝑞𝑞!
𝑞𝑞 𝑓𝑓𝑒𝑒𝑓𝑓𝑛𝑛

+∞

−∞
𝑒𝑒𝑗𝑗𝑗𝑗(𝑥𝑥−𝑐𝑐0)𝑑𝑑𝑗𝑗 

For well-known properties of the double factorial: 

(𝑞𝑞 − 1)‼ =
𝑞𝑞!

2
𝑞𝑞
2 �𝑞𝑞2� !

      𝑖𝑖𝑓𝑓 𝑞𝑞 𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛 

The former relation is trivial to prove, in fact: 

(𝑞𝑞 − 1)‼ = (𝑞𝑞 − 1)(𝑞𝑞 − 3)(𝑞𝑞 − 5) … 3 ∙ 1 =
𝑞𝑞(𝑞𝑞 − 1)(𝑞𝑞 − 2)(𝑞𝑞 − 3)(𝑞𝑞 − 4)(𝑞𝑞 − 5) … 3 ∙ 2 ∙ 1

𝑞𝑞(𝑞𝑞 − 2)(𝑞𝑞 − 4) … 2
= 

=
𝑞𝑞!

2 ∙  𝑞𝑞2 ∙ 2 ∙  �𝑞𝑞2 − 1� ∙ 2 ∙  �𝑞𝑞2 − 2�… 2 ∙  1
=

𝑞𝑞!

2
𝑞𝑞
2  𝑞𝑞2 �

𝑞𝑞
2 − 1� �𝑞𝑞2 − 2�… 1

=
𝑞𝑞!

2
𝑞𝑞
2 �𝑞𝑞2� !

 (𝑄𝑄.𝐸𝐸.𝐷𝐷) 

Hence: 

𝑝𝑝(𝑥𝑥) =
1

2𝜋𝜋
� �

�−𝑗𝑗
2𝑀𝑀2
2 �

𝑞𝑞
2

�𝑞𝑞2� !𝑞𝑞 𝑓𝑓𝑒𝑒𝑓𝑓𝑛𝑛

+∞

−∞
𝑒𝑒𝑗𝑗𝑗𝑗(𝑥𝑥−𝑐𝑐0)𝑑𝑑𝑗𝑗 = 

=
1

2𝜋𝜋
� 𝑒𝑒

−𝑗𝑗2𝑀𝑀2
2

+∞

−∞
𝑒𝑒𝑗𝑗𝑗𝑗(𝑥𝑥−𝑐𝑐0)𝑑𝑑𝑗𝑗 = 

=
1

2𝜋𝜋
� 𝑒𝑒

−�𝑗𝑗�𝑀𝑀2
2  − 𝑗𝑗(𝑥𝑥−𝑐𝑐0)

�2𝑀𝑀2
�
2
− (𝑥𝑥−𝑐𝑐0)2

2𝑀𝑀2
+∞

−∞
𝑑𝑑𝑗𝑗 = 
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=
1

2𝜋𝜋
�

2
𝑀𝑀2

𝑒𝑒− (𝑥𝑥−𝑐𝑐0)2
2𝑀𝑀2 � 𝑒𝑒−𝜒𝜒2

+∞

−∞
𝑑𝑑𝑑𝑑 

The last integral is known to be equal to √𝜋𝜋, in fact: 

� 𝑒𝑒−𝜒𝜒2𝑑𝑑𝑑𝑑 =
+∞

−∞
�� 𝑒𝑒−𝑡𝑡2𝑑𝑑𝑡𝑡

+∞

−∞
�
1/2

�� 𝑒𝑒−𝑧𝑧2𝑑𝑑𝑧𝑧
+∞

−∞
�
1/2

 

= �� � 𝑒𝑒−�𝑧𝑧2+𝑡𝑡2�
+∞

−∞
𝑑𝑑𝑧𝑧𝑑𝑑𝑡𝑡

+∞

−∞
�
1/2

= �� � 𝑒𝑒−𝜌𝜌2
+∞

0
𝜌𝜌𝑑𝑑𝜌𝜌𝑑𝑑𝜌𝜌

2𝜋𝜋

0
�
1/2

= 

= �� �
𝑒𝑒−𝜌𝜌2

−2 �
0

+∞

𝑑𝑑𝜌𝜌
2𝜋𝜋

0
�

1/2

= √𝜋𝜋 

Hence: 

𝑝𝑝(𝑥𝑥) =
1

�2𝜋𝜋𝑀𝑀2
𝑒𝑒− (𝑥𝑥−𝑐𝑐0)2

2𝑀𝑀2           

which is the well-known Gaussian probability density function. 
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Appendix C: distribution of a sinusoid 
from its moments 
The probability density function of a sinusoid can be recovered from the knowledge of its moments, 
given by Eqs,(1.22, 1.23), recalled in the following for convenience: 

�    𝑀𝑀𝑞𝑞 = �
𝑞𝑞
𝑞𝑞/2�

𝐴𝐴𝑞𝑞

2𝑞𝑞
                          𝑖𝑖𝑓𝑓 𝑞𝑞 𝑒𝑒𝑣𝑣𝑒𝑒𝑛𝑛       

𝑀𝑀𝑞𝑞 = 0                                          𝑖𝑖𝑓𝑓 𝑞𝑞 𝑜𝑜𝑑𝑑𝑑𝑑        
        

and by using Eq.(1.21) with 𝑐𝑐0 = 0, 𝑝𝑝(𝑥𝑥) is given by: 

𝑝𝑝(𝑥𝑥) =
1

2𝜋𝜋
� �(−𝑗𝑗𝑗𝑗)𝑞𝑞

𝑀𝑀𝑞𝑞

𝑞𝑞!

∞

𝑞𝑞=0

+∞

−∞
𝑒𝑒𝑗𝑗𝑗𝑗𝑥𝑥𝑑𝑑𝑗𝑗 

The calculation of 𝑝𝑝(𝑥𝑥) yields: 

𝑝𝑝(𝑥𝑥) =
1

2𝜋𝜋
� � (−𝑗𝑗𝑗𝑗)𝑞𝑞

� 𝑞𝑞
𝑞𝑞/2�

𝐴𝐴𝑞𝑞
2𝑞𝑞

𝑞𝑞!
𝑞𝑞 𝑓𝑓𝑒𝑒𝑓𝑓𝑛𝑛

+∞

−∞
𝑒𝑒𝑗𝑗𝑗𝑗𝑥𝑥𝑑𝑑𝑗𝑗 = 

=
1

2𝜋𝜋
� � (−𝑗𝑗𝑗𝑗)𝑞𝑞

𝐴𝐴𝑞𝑞

�(𝑞𝑞/2)!�22𝑞𝑞𝑞𝑞 𝑓𝑓𝑒𝑒𝑓𝑓𝑛𝑛

+∞

−∞
𝑒𝑒𝑗𝑗𝑗𝑗𝑥𝑥𝑑𝑑𝑗𝑗 = 

=
1

2𝜋𝜋
� �

�−𝑗𝑗
2𝐴𝐴2
4 �

𝑞𝑞/2

�(𝑞𝑞/2)!�2𝑞𝑞 𝑓𝑓𝑒𝑒𝑓𝑓𝑛𝑛

+∞

−∞
𝑒𝑒𝑗𝑗𝑗𝑗𝑥𝑥𝑑𝑑𝑗𝑗 

The series inside the integral is related to the Bessel function of order zero, in particular: 

𝐽𝐽0(𝐴𝐴𝑗𝑗) ≜ �
�− (𝐴𝐴𝑗𝑗)2

4 �
𝑞𝑞
2

��𝑞𝑞2� !�
2

𝑞𝑞 𝑓𝑓𝑒𝑒𝑓𝑓𝑛𝑛

= �
�− (𝐴𝐴𝑗𝑗)2

4 �
𝑞𝑞

(𝑞𝑞!)2

∞

𝑞𝑞=0

                          (𝐶𝐶. 1) 

The Bessel function of order zero also has a useful integral representation: 

𝐽𝐽0(𝐴𝐴𝑗𝑗) ≜ �
1
𝜋𝜋

𝐴𝐴

−𝐴𝐴

𝑒𝑒−𝑗𝑗𝑗𝑗𝑥𝑥

√𝐴𝐴2 − 𝑥𝑥2
𝑑𝑑𝑥𝑥                                          (𝐶𝐶. 2) 

It can be proved that Eq.(𝐶𝐶. 2) coincides with the series representation given by Eq.(𝐶𝐶. 1); in fact, by 
making the substitution 𝑥𝑥 = 𝐴𝐴 𝑐𝑐𝑜𝑜𝑠𝑠(𝑡𝑡): 

𝐽𝐽0(𝐴𝐴𝑗𝑗) = � −
1
𝜋𝜋

0

𝜋𝜋

𝑒𝑒−𝑗𝑗𝑗𝑗𝐴𝐴 𝑐𝑐𝑡𝑡𝑟𝑟(𝑡𝑡)

𝐴𝐴 𝑠𝑠𝑖𝑖𝑛𝑛(𝑡𝑡)
𝐴𝐴 𝑠𝑠𝑖𝑖𝑛𝑛(𝑡𝑡)𝑑𝑑𝑡𝑡 = 

=
1
𝜋𝜋
� 𝑒𝑒−𝑗𝑗𝑗𝑗𝐴𝐴 𝑐𝑐𝑡𝑡𝑟𝑟(𝑡𝑡)
𝜋𝜋

0
𝑑𝑑𝑡𝑡                                               (𝐶𝐶. 3) 
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Then, by expanding the integrand 𝑒𝑒−𝑗𝑗𝑗𝑗𝐴𝐴cos (𝑡𝑡) according to the theory of complex variables: 

𝐽𝐽0(𝐴𝐴𝑗𝑗) =
1
𝜋𝜋
� 𝑒𝑒−𝑗𝑗𝑗𝑗𝐴𝐴cos (𝑡𝑡)
𝜋𝜋

0
𝑑𝑑𝑡𝑡 =

1
𝜋𝜋
� �

(−𝑗𝑗𝑗𝑗𝐴𝐴 𝑐𝑐𝑜𝑜𝑠𝑠(𝑡𝑡))𝑞𝑞

𝑞𝑞!

∞

𝑞𝑞=0

𝜋𝜋

0
𝑑𝑑𝑡𝑡 = 

= ��
(−𝑗𝑗𝑗𝑗𝐴𝐴)𝑞𝑞

𝑞𝑞!
�

1
𝜋𝜋
� 𝑐𝑐𝑜𝑜𝑠𝑠𝑞𝑞(𝑡𝑡)
𝜋𝜋

0
𝑑𝑑𝑡𝑡��

∞

𝑞𝑞=0

                       (𝐶𝐶. 4) 

The integral is zero when 𝑞𝑞 is odd because the negative contribution in the interval [𝜋𝜋/2,𝜋𝜋] cancels 
the positive one in the interval [0,𝜋𝜋/2]. For even values of 𝑞𝑞 the function 𝑐𝑐𝑜𝑜𝑠𝑠𝑞𝑞(𝑡𝑡) is definitely 
periodic with period 𝜋𝜋, therefore the integral of 𝑐𝑐𝑜𝑜𝑠𝑠𝑞𝑞(𝑡𝑡), which is none other than the moment of 
order 𝑞𝑞 of cos(𝑡𝑡), can be evaluated by using Eq.(A.19). In fact, the integral is the same as the one 
given by Eq.(A.18) with 𝐷𝐷 = 𝜋𝜋 and only one harmonic contained in the signal given by Eq.(A.8) 
(with 𝑎𝑎0 = 0 and the amplitude of the harmonic being equal to 1). It can be evaluated by using the 
same reasoning as in section 1.1: in fact, since there is only one sinusoid, the indices of the amplitudes 
and phases appearing in Eq.(A.19) can only assume the values ±𝑙𝑙 where 𝑙𝑙 is an integer, implying that 
𝑞𝑞/2 indices should be equal to 𝑙𝑙 and the other 𝑞𝑞/2 equal to −𝑙𝑙. The number of choices to achieve that 
is obviously given by the binomial coefficient � 𝑞𝑞

𝑞𝑞/2�, hence: 

1
𝜋𝜋
� 𝑐𝑐𝑜𝑜𝑠𝑠𝑞𝑞(𝑡𝑡)
𝜋𝜋

0
𝑑𝑑𝑡𝑡 = �

𝑞𝑞
𝑞𝑞/2�

1
2𝑞𝑞

            where   𝑞𝑞 = 0,2,4,6, …     (𝐶𝐶. 5) 

Eq.(𝐶𝐶. 5) may as well be simply obtained by replacing the amplitude of the sinusoid 𝐴𝐴 with the 
value 1 in Eq.(1.1.16). Hence, Eq.(C.4) becomes: 

𝐽𝐽0(𝐴𝐴𝑗𝑗) = �
(−𝑗𝑗𝑗𝑗𝐴𝐴)𝑞𝑞

𝑞𝑞!
𝑞𝑞 𝑓𝑓𝑒𝑒𝑓𝑓𝑛𝑛

�
𝑞𝑞
𝑞𝑞/2�

1
2𝑞𝑞

= �
(−𝑗𝑗𝑗𝑗𝐴𝐴)𝑞𝑞

�(𝑞𝑞/2)!�22𝑞𝑞𝑞𝑞 𝑓𝑓𝑒𝑒𝑓𝑓𝑛𝑛

= 

= �
�− (𝑗𝑗𝐴𝐴)2

4 �
𝑞𝑞/2

�(𝑞𝑞/2)!�2𝑞𝑞 𝑓𝑓𝑒𝑒𝑓𝑓𝑛𝑛

                                          (𝐶𝐶. 6) 

Eq.(C.6) coincides with Eq.(C.1), thus Eqs.(C.2-C.3) are equivalent to Eq.(C.1). Therefore, returning 
to the computation of 𝑝𝑝(𝑥𝑥): 

𝑝𝑝(𝑥𝑥) =
1

2𝜋𝜋
� �

�−𝑗𝑗
2𝐴𝐴2
4 �

𝑞𝑞
2

��𝑞𝑞2� !�
2

𝑞𝑞 𝑓𝑓𝑒𝑒𝑓𝑓𝑛𝑛

+∞

−∞
𝑒𝑒𝑗𝑗𝑗𝑗𝑥𝑥𝑑𝑑𝑗𝑗 = 

=
1

2𝜋𝜋
� �

1
𝜋𝜋

𝐴𝐴

−𝐴𝐴

𝑒𝑒−𝑗𝑗𝑗𝑗𝑡𝑡

√𝐴𝐴2 − 𝑡𝑡2
𝑑𝑑𝑡𝑡

+∞

−∞
𝑒𝑒𝑗𝑗𝑗𝑗𝑥𝑥𝑑𝑑𝑗𝑗 = 

=
1

2𝜋𝜋
� �� 𝑒𝑒𝑗𝑗𝑗𝑗(𝑥𝑥−𝑡𝑡)

∞

−∞
𝑑𝑑𝑗𝑗�

+𝐴𝐴

−𝐴𝐴

1
𝜋𝜋

1
√𝐴𝐴2 − 𝑡𝑡2

𝑑𝑑𝑡𝑡 

As is well known, the integral ∫ 𝑒𝑒𝑗𝑗𝑗𝑗(𝑥𝑥−𝑡𝑡)∞
−∞ 𝑑𝑑𝑗𝑗 is proportional to the Dirac delta function 𝛿𝛿(𝑥𝑥 − 𝑡𝑡). 

More specifically: 
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� 𝑒𝑒𝑗𝑗𝑗𝑗(𝑥𝑥−𝑡𝑡)
∞

−∞
𝑑𝑑𝑗𝑗 = 2𝜋𝜋𝛿𝛿(𝑥𝑥 − 𝑡𝑡)                                        (𝐶𝐶. 7) 

Therefore: 

1
2𝜋𝜋

� �� 𝑒𝑒𝑗𝑗𝑗𝑗(𝑥𝑥−𝑡𝑡)
∞

−∞
𝑑𝑑𝑗𝑗�

+𝐴𝐴

−𝐴𝐴

1
𝜋𝜋

1
√𝐴𝐴2 − 𝑡𝑡2

𝑑𝑑𝑡𝑡 = 

=
1

2𝜋𝜋
� 2𝜋𝜋𝛿𝛿(𝑥𝑥 − 𝑡𝑡)
+𝐴𝐴

−𝐴𝐴

1
𝜋𝜋

1
√𝐴𝐴2 − 𝑡𝑡2

𝑑𝑑𝑡𝑡 = 

= � 𝛿𝛿(𝑥𝑥 − 𝑡𝑡)
+𝐴𝐴

−𝐴𝐴
𝑑𝑑𝑡𝑡

1
𝜋𝜋

1
√𝐴𝐴2 − 𝑥𝑥2

= �
1
𝜋𝜋

1
√𝐴𝐴2 − 𝑥𝑥2

     𝑖𝑖𝑓𝑓 𝑥𝑥 𝜖𝜖 ]−𝐴𝐴,𝐴𝐴[

0                        𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒
 

The final expression for the probability density function 𝑝𝑝(𝑥𝑥) is: 

𝑝𝑝(𝑥𝑥) = �
1
𝜋𝜋

1
√𝐴𝐴2 − 𝑥𝑥2

     𝑖𝑖𝑓𝑓 𝑥𝑥 𝜖𝜖 ]−𝐴𝐴,𝐴𝐴[

0                        𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒
                                       (𝐶𝐶. 8) 

which is the correct result for a sinusoid. 
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Appendix D: proof of Eqs.(1.33,1.35) 
The Formulae for kurtosis and variance of a time-series that is considered to be composed of 𝑛𝑛 blocks 
can be written in the following forms: 

𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 =
∑ 𝑘𝑘𝑗𝑗 ∙  𝐷𝐷𝑗𝑗 ∙ 𝜎𝜎𝑗𝑗4𝑛𝑛
𝑗𝑗=1

𝐷𝐷 ∙ 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡4
                                                                      (𝐷𝐷. 1) 

 

𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2 =
∑ 𝐷𝐷𝑗𝑗 ∙ 𝜎𝜎𝑗𝑗2𝑛𝑛
𝑗𝑗=1

𝐷𝐷
                                                                         (𝐷𝐷. 2) 

 
These formulae are a generalization of Eqs.(1.33, 1.35); in that case the blocks had the same duration. 
The proof of Eqs.(𝐷𝐷. 1,𝐷𝐷. 2) is given next. 
 
Proof: 
Without loss of generality, the assumption is made that a discrete signal 𝑥𝑥𝑗𝑗 has zero mean. From the 
definition of the 𝑠𝑠𝑡𝑡ℎ statistical moment 𝑀𝑀𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 of the signal 𝑥𝑥𝑗𝑗: 

𝑀𝑀𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡 =
∑ 𝑥𝑥𝑗𝑗𝑟𝑟
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡
𝑗𝑗=1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡
                                                                                     

 
Eq.(𝐷𝐷. 1) can be derived from the following equalities: 

𝑀𝑀4𝑡𝑡𝑡𝑡𝑡𝑡 =
∑ 𝑥𝑥𝑗𝑗4
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡
𝑗𝑗=1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡
=
∑ ∑ 𝑥𝑥𝑗𝑗4

𝑁𝑁𝑠𝑠−1+𝑛𝑛𝑠𝑠
𝑗𝑗=𝑁𝑁𝑠𝑠−1+1

𝑛𝑛
𝑟𝑟=1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡
= �

𝑛𝑛𝑟𝑟
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡

�
𝑥𝑥𝑗𝑗4

𝑛𝑛𝑟𝑟

𝑁𝑁𝑠𝑠−1+𝑛𝑛𝑠𝑠

𝑗𝑗=𝑁𝑁𝑠𝑠−1+1

= �
𝐷𝐷𝑟𝑟
𝐷𝐷 �

�
𝑥𝑥𝑗𝑗4

𝑛𝑛𝑟𝑟

𝑁𝑁𝑠𝑠−1+𝑛𝑛𝑠𝑠

𝑗𝑗=𝑁𝑁𝑠𝑠−1+1

�
𝑛𝑛

𝑟𝑟=1

𝑛𝑛

𝑟𝑟=1

= 

= �
𝐷𝐷𝑟𝑟
𝐷𝐷
𝑀𝑀4𝑟𝑟

𝑛𝑛

𝑟𝑟=1

 

In the last step, 𝑀𝑀4𝑟𝑟 represents the 4𝑡𝑡ℎ statistical moment of the 𝑠𝑠𝑡𝑡ℎ block. By substituting the 
definition for kurtosis: 

�
𝑀𝑀4𝑟𝑟 = 𝑘𝑘𝑟𝑟 ∙ 𝜎𝜎𝑟𝑟4

𝑀𝑀4𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 ∙ 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡4
 

Eq.(𝐷𝐷. 1) is found. 
Similarly, Eq.(𝐷𝐷. 2) can be derived in the following way: 

𝑀𝑀2𝑡𝑡𝑡𝑡𝑡𝑡 =
∑ 𝑥𝑥𝑗𝑗2
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡
𝑗𝑗=1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡
=
∑ ∑ 𝑥𝑥𝑗𝑗2

𝑁𝑁𝑠𝑠−1+𝑛𝑛𝑠𝑠
𝑗𝑗=𝑁𝑁𝑠𝑠−1+1

𝑛𝑛
𝑟𝑟=1

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡
= �

𝑛𝑛𝑟𝑟
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡

�
𝑥𝑥𝑗𝑗2

𝑛𝑛𝑟𝑟

𝑁𝑁𝑠𝑠−1+𝑛𝑛𝑠𝑠

𝑗𝑗=𝑁𝑁𝑠𝑠−1+1

= �
𝐷𝐷𝑟𝑟
𝐷𝐷 �

�
𝑥𝑥𝑗𝑗2

𝑛𝑛𝑟𝑟

𝑁𝑁𝑠𝑠−1+𝑛𝑛𝑠𝑠

𝑗𝑗=𝑁𝑁𝑠𝑠−1+1

�
𝑛𝑛

𝑘𝑘=1

𝑛𝑛

𝑟𝑟=1

= 

 

= �
𝐷𝐷𝑟𝑟
𝐷𝐷
𝑀𝑀2𝑟𝑟

𝑛𝑛

𝑟𝑟=1

 

By substituting the definition for the second order moments: 

�
𝑀𝑀2𝑟𝑟 = 𝜎𝜎𝑟𝑟2

𝑀𝑀2𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑡𝑡𝑡𝑡2
 

Eq.(𝐷𝐷. 2) is found. 
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Appendix E: equivalence of Eqs.(2.1, 
2.11) 
 

This appendix serves to show how one can formally prove the equivalence between Eq.(2.1) and 
Eq.(2.11). Uppercase letters will be used to indicate RVs (e.g. 𝐷𝐷1,𝐷𝐷2), whereas lowercase ones to refer 
to some specific values they assume (e.g. 𝑡𝑡1, 𝑡𝑡2).  
Eqs. (2.1, 2.11) are rewritten in the following, only for the sake of convenience: 

𝐷𝐷(𝑓𝑓𝑛𝑛) =
𝑁𝑁𝑝𝑝𝐷𝐷𝐾𝐾𝑏𝑏

𝐶𝐶
  � ∆𝑧𝑧𝑏𝑏

+∞

0
 𝑓𝑓∆𝑍𝑍(∆𝑧𝑧)𝑑𝑑∆𝑧𝑧                                                                 (𝐸𝐸. 1) 

𝐷𝐷(𝑓𝑓𝑛𝑛) =
𝑁𝑁𝑝𝑝𝐷𝐷𝐾𝐾𝑏𝑏

𝐶𝐶
� � (𝑧𝑧(𝑡𝑡2) − 𝑧𝑧(𝑡𝑡1))𝑏𝑏 

∞

−∞

∞

−∞
𝑓𝑓 𝑇𝑇1 𝑇𝑇2  (𝑡𝑡1, 𝑡𝑡2) 𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2                                ( 𝐸𝐸. 2) 

In Eq.(E.2), the function 𝑝𝑝(𝑡𝑡1, 𝑡𝑡2) of Eq.(2.11) is rewritten as 𝑓𝑓 𝑇𝑇1 𝑇𝑇2(𝑡𝑡1, 𝑡𝑡2) just to make it clear that it 
represents the joint probability density of the RVs 𝐷𝐷1,𝐷𝐷2.  
It is worth mentioning that the function  𝑓𝑓 𝑇𝑇1 𝑇𝑇2 has to comply with some constraints. In particular, a 
simple property of the function  𝑓𝑓 𝑇𝑇1 𝑇𝑇2  (𝑡𝑡1, 𝑡𝑡2) is such that  𝑓𝑓 𝑇𝑇1 𝑇𝑇2  (𝑡𝑡1, 𝑡𝑡2) = 0 when 𝑡𝑡1 > 𝑡𝑡2. This 
property holds because a valley always occurs at an earlier time than its corresponding peak by 
definition. Besides, the function  𝑓𝑓 𝑇𝑇1 𝑇𝑇2  (𝑡𝑡1, 𝑡𝑡2) should be equal to 0 also when 𝑧𝑧(𝑡𝑡1) > 𝑧𝑧(𝑡𝑡2), because 
a valley should never exceed the value of its corresponding peak. 
It is convenient to define the following two new RVs: 

𝑍𝑍𝑒𝑒 = 𝑧𝑧(𝐷𝐷1)                                                                            (𝐸𝐸. 3) 

𝑍𝑍𝑝𝑝 = 𝑧𝑧(𝐷𝐷2)                                                                            (𝐸𝐸. 4) 

In Eqs.(E.3, E.4), 𝑍𝑍𝑒𝑒, 𝑍𝑍𝑝𝑝 are the RVs corresponding to the relative displacement valleys and peaks. 
According to these two equations, the joint probability density of the variables 𝐷𝐷1 and 𝐷𝐷2 can be 
written in terms of the joint probability density of  𝑍𝑍𝑝𝑝,𝑍𝑍𝑒𝑒 [33]: 

 𝑓𝑓 𝑇𝑇1 𝑇𝑇2  (𝑡𝑡1, 𝑡𝑡2) = �𝜕𝜕(𝑧𝑧𝑝𝑝,𝑧𝑧𝑣𝑣)
𝜕𝜕(𝑡𝑡1,𝑡𝑡2)

�  𝑓𝑓𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣(𝑧𝑧(𝑡𝑡2), 𝑧𝑧(𝑡𝑡1))                                     (𝐸𝐸. 5)  

where �𝜕𝜕(𝑧𝑧𝑝𝑝,𝑧𝑧𝑣𝑣)
𝜕𝜕(𝑡𝑡1,𝑡𝑡2)

� is the absolute value of the Jacobian of the transformation which maps the variables 

𝐷𝐷1,𝐷𝐷2 into 𝑍𝑍𝑒𝑒,𝑍𝑍𝑝𝑝. Eqs.(E.3-E.5) lead to: 

 𝑓𝑓 𝑇𝑇1 𝑇𝑇2  (𝑡𝑡1, 𝑡𝑡2) = � 𝑓𝑓
𝑓𝑓𝑡𝑡2

(𝑧𝑧(𝑡𝑡2)) 𝑓𝑓
𝑓𝑓𝑡𝑡1

(𝑧𝑧(𝑡𝑡1))�  𝑓𝑓𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣(𝑧𝑧(𝑡𝑡2), 𝑧𝑧(𝑡𝑡1))                              (𝐸𝐸. 6)  

If Eq.(E.6) is substituted into Eq.(E.2), one obtains: 

𝐷𝐷(𝑓𝑓𝑛𝑛) =
𝑁𝑁𝑝𝑝𝐷𝐷𝐾𝐾𝑏𝑏

𝐶𝐶
� � (𝑧𝑧(𝑡𝑡2) − 𝑧𝑧(𝑡𝑡1))𝑏𝑏

∞

−∞

∞

−∞
   𝑓𝑓 𝑇𝑇1 𝑇𝑇2  (𝑡𝑡1, 𝑡𝑡2) 𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2 =

=
𝑁𝑁𝑝𝑝𝐷𝐷𝐾𝐾𝑏𝑏

𝐶𝐶
� � (𝑧𝑧(𝑡𝑡2) − 𝑧𝑧(𝑡𝑡1))𝑏𝑏

∞

−∞

∞

−∞
   𝑓𝑓𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣(𝑧𝑧(𝑡𝑡2), 𝑧𝑧(𝑡𝑡1)) |𝑑𝑑𝑧𝑧(𝑡𝑡2)𝑑𝑑𝑧𝑧(𝑡𝑡1)| =  

=
𝑁𝑁𝑝𝑝𝐷𝐷𝐾𝐾𝑏𝑏

𝐶𝐶
� � �𝑧𝑧𝑝𝑝 − 𝑧𝑧𝑒𝑒�

𝑏𝑏∞

−∞

∞

−∞
   𝑓𝑓𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣�𝑧𝑧𝑝𝑝, 𝑧𝑧𝑒𝑒� 𝑑𝑑𝑧𝑧𝑝𝑝𝑑𝑑𝑧𝑧𝑒𝑒                              (𝐸𝐸. 7) 
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If the substitution 𝑧𝑧𝑝𝑝 = 𝑧𝑧𝑒𝑒 + Δ𝑧𝑧 is made22 in one of the two integrals contained in Eq.(E.7), one 
obtains: 

𝐷𝐷(𝑓𝑓𝑛𝑛) =
𝑁𝑁𝑝𝑝𝐷𝐷𝐾𝐾𝑏𝑏

𝐶𝐶
� � Δ𝑧𝑧𝑏𝑏

∞

−∞

∞

−∞
   𝑓𝑓𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣(𝑧𝑧𝑒𝑒 + Δ𝑧𝑧, 𝑧𝑧𝑒𝑒) 𝑑𝑑Δ𝑧𝑧𝑑𝑑𝑧𝑧𝑒𝑒                       (𝐸𝐸. 8) 

Eq.(E.8) may be rewritten more conveniently as: 

𝐷𝐷(𝑓𝑓𝑛𝑛) =
𝑁𝑁𝑝𝑝𝐷𝐷𝐾𝐾𝑏𝑏

𝐶𝐶
� Δ𝑧𝑧𝑏𝑏 ��  𝑓𝑓𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣(𝑧𝑧𝑒𝑒 + Δ𝑧𝑧, 𝑧𝑧𝑒𝑒) 𝑑𝑑𝑧𝑧𝑒𝑒

∞

−∞
�𝑑𝑑Δ𝑧𝑧

∞

−∞
                      (𝐸𝐸. 9) 

The term contained in the parentheses of Eq.(E.9) has the following three properties: 

 1) it is a function of Δ𝑧𝑧; 

 2) it is positive for any Δ𝑧𝑧; 

 3) integrates to 1 over all possible values of Δ𝑧𝑧, that is: 

� ��  𝑓𝑓𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣(𝑧𝑧𝑒𝑒 + Δ𝑧𝑧, 𝑧𝑧𝑒𝑒) 𝑑𝑑𝑧𝑧𝑒𝑒
∞

−∞
�𝑑𝑑Δ𝑧𝑧 = 1

∞

−∞
                                    (𝐸𝐸. 10) 

The second and third property hold because the function  𝑓𝑓𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣 is a joint probability density. These 
properties imply that the distribution  𝑓𝑓Δ𝑍𝑍 of Δ𝑧𝑧 may be defined as: 

 𝑓𝑓Δ𝑍𝑍(Δ𝑧𝑧) = �  𝑓𝑓𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣(𝑥𝑥 + Δ𝑧𝑧, 𝑥𝑥) 𝑑𝑑𝑥𝑥
∞

−∞
                                           (𝐸𝐸. 11) 

Eqs.(E.9, E.11) lead to:  

𝐷𝐷(𝑓𝑓𝑛𝑛) =
𝑁𝑁𝑝𝑝𝐷𝐷𝐾𝐾𝑏𝑏

𝐶𝐶
  � ∆𝑧𝑧𝑏𝑏

+∞

−∞
 𝑓𝑓∆𝑍𝑍(∆𝑧𝑧)𝑑𝑑∆𝑧𝑧                                          (𝐸𝐸. 12) 

It should be noted that the region of integration extends over all ℝ in Eq.(E.12), whereas it extends 
over ℝ+ in Eq.(E.1). However, because  𝑓𝑓 𝑇𝑇1 𝑇𝑇2  (𝑡𝑡1, 𝑡𝑡2) is zero when 𝑡𝑡1 > 𝑡𝑡2, from Eq.(E.6) it is clear 
that  𝑓𝑓𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣�𝑧𝑧𝑝𝑝, 𝑧𝑧𝑒𝑒�  is zero when 𝑧𝑧𝑒𝑒 > 𝑧𝑧𝑝𝑝, and therefore Eq.(E.11) implies that  𝑓𝑓Δ𝑍𝑍(Δ𝑧𝑧) is zero when 
∆𝑧𝑧 < 0. Eq.(E.12) and these considerations prove that Eq.(E.1) is equivalent to Eq.(E.2). 

 

 

 

 

 

22 In the substitution 𝑧𝑧𝑝𝑝 = 𝑧𝑧𝑒𝑒 + Δ𝑧𝑧, 𝑧𝑧𝑒𝑒 should be considered fixed, because 𝑧𝑧𝑝𝑝 and 𝑧𝑧𝑒𝑒 are independent. Therefore, the 
differential  𝑑𝑑𝑧𝑧𝑝𝑝 is equal to dΔ𝑧𝑧, and the new set of independent variables becomes 𝑧𝑧𝑒𝑒 and Δ𝑧𝑧.  
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Appendix F: novel method for the 
calculation of the FDS 
In those applications where it is necessary to assess whether a component can withstand variable 
loads throughout its expected lifetime, the fatigue damage must be evaluated. The latter is usually 
estimated by means of the FDS spectral function. The DUT is identified with SDOF systems, 
independently excited and characterized by different natural frequencies 𝑓𝑓𝑛𝑛 and same damping 
coefficient 𝜁𝜁. According to the time-domain approach, a representative sample of the load measured 
from the application (i.e. reference signal) is considered an excitation applied to each SDOF system; 
then, each SDOF system generates a response that can be computed in terms of relative displacement. 
Subsequently, each relative displacement is: (i) analyzed in the time domain in order to extract the 
peaks and valleys and (ii) the resulting peaks and valleys are employed to compute the amplitudes 
and number of cycles to estimate the damage. The alternative to this time-domain methodology is the 
standard frequency domain-approach [44,45], which estimates the damage in terms of a PSD with the 
assumption that the distribution of the reference signal is stationary and Gaussian.  
The latter is faster than the time-domain approach computational-wise, because the time-series may 
be worth of millions of points, whereas the PSD is usually composed of hundreds of them. 
In order to exploit the advantages of the spectral-domain methods, several authors [46-49] directed 
their efforts towards extending the latter to non-Gaussian loads, which are more frequent in practical 
applications. 
F. Cianetti et al. [46] empirically proposed useful correction coefficients to evaluate the damage 
caused by a non-Gaussian signal. These coefficients are given both for stationary and non-stationary 
applications and depend on the skewness and kurtosis of the system’s output. 
The range of applicability of these coefficients depends on the values of kurtosis and skewness, as 
well as the “degree” of non-stationarity [55] of the signals considered. In general, in assessing the 
damage at different natural frequencies in the time-domain, the response (expressed in terms of 
relative displacement) changes its distribution. Hence, these parameters could be affected by the 
natural frequency of the SDOF system as well. Besides, the computational time required by the 
calculation of kurtosis and skewness of the system’s output is not negligible. 
As far as both time and frequency domain methods are concerned, other important factors to keep 
into consideration are the assumptions of: linear accumulation of the damage [56], linear 
proportionality between stress and relative displacement and the linearity of the system. The linearity 
assumption is considered a staple throughout this work and will not be abandoned; however, one 
should be aware that non-linearities may play an important role in applications and possibly affect 
the results if disregarded. 
The aim of this appendix is to bridge the gap between time-domain and frequency-domain approaches 
in the computation of the FDS, by moving towards the advantageous computational speed of the 
frequency-domain approach, still using a time-domain approach; the latter has the advantage of being 
more reliable and boasts a greater range of applicability. 
A novel methodology in the time-domain is proposed in the following; then, some numerical results 
are shown in terms of precision and speed. 

As described in chapter 2, the calculation of the FDS in the time-domain starts from the computation 
of the relative displacement response of the first SDOF system. To this end, a fast and accurate ramp-
invariant filtering technique is usually adopted [39,50], whose output is indeed the relative 
displacement signal computed at the SDOF system’s natural frequency. Then, the peaks and valleys 
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(i.e. extrema) are extracted from the relative displacement, which are then input to a time-counting 
algorithm (usually the Rainflow counting) in order to find the amplitudes and number of damaging 
cycles. 
This procedure is then looped through all the SDOF systems’ natural frequencies. 
A methodology that avoids the extraction of the peaks and valleys and the subsequent time-counting 
technique is introduced next. As it will be motivated both by theoretical and numerical inquiries, the 
methodology does not affect the precision of the damage estimation sensibly. 
Let the RVs 𝑍𝑍𝑝𝑝,𝑍𝑍𝑒𝑒 represent the relative displacement peak and corresponding valley respectively, 
which are related to the (peak-to-peak) amplitude ∆𝑍𝑍 by means of the following equation: 

 ∆𝑍𝑍 = 𝑍𝑍𝑝𝑝 − 𝑍𝑍𝑒𝑒                                                                                 (𝐹𝐹. 1) 

The peaks and valleys are counted from the SDOF system’s response to a reference signal and their 
stochasticity depends on the randomness of the reference signal. 
In the following, uppercase letters will be used to indicate RVs (e.g. 𝑍𝑍𝑝𝑝), whereas lowercase ones to 
refer to some specific values they assume (e.g. 𝑧𝑧𝑝𝑝).  
The probability density 𝑓𝑓∆𝑍𝑍(∆𝑧𝑧) of ∆𝑍𝑍 can be related to the joint probability density 𝑓𝑓 𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣�𝑧𝑧𝑝𝑝, 𝑧𝑧𝑒𝑒�. 
To that end, let 𝐴𝐴 be an auxiliary RV defined as: 

𝐴𝐴 = 𝑍𝑍𝑝𝑝 + 𝑍𝑍𝑒𝑒                                                                                  (𝐹𝐹. 2) 

Then, according to Eqs.(F.1, F.2), the joint probability density of the variables A and ∆𝑍𝑍 can be 
written in terms of the joint probability density of  𝑍𝑍𝑝𝑝,𝑍𝑍𝑒𝑒 [33]: 

 𝑓𝑓∆𝑍𝑍 𝐴𝐴(∆𝑧𝑧,𝑎𝑎) = �𝜕𝜕(𝑧𝑧𝑝𝑝,𝑧𝑧𝑣𝑣)
𝜕𝜕(∆𝑧𝑧,𝐴𝐴)

�  𝑓𝑓 𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣 �𝑧𝑧𝑝𝑝(∆𝑧𝑧,𝑎𝑎), 𝑧𝑧𝑒𝑒(∆𝑧𝑧,𝑎𝑎)�                                      (𝐹𝐹. 3)  

where �𝜕𝜕(𝑧𝑧𝑝𝑝,𝑧𝑧𝑣𝑣)
𝜕𝜕(∆𝑧𝑧,𝐴𝐴)

� is the absolute value of the Jacobian of the linear transformation which maps the 

variables 𝑍𝑍𝑝𝑝,𝑍𝑍𝑒𝑒 into ∆𝑍𝑍 and 𝐴𝐴. Eqs.(F.1-F.3) lead to: 

  𝑓𝑓∆𝑍𝑍 𝐴𝐴(∆𝑧𝑧,𝑎𝑎) = 1
2

 𝑓𝑓 𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣 �𝑧𝑧𝑝𝑝(∆𝑧𝑧,𝑎𝑎), 𝑧𝑧𝑒𝑒(∆𝑧𝑧,𝑎𝑎)�                                             (𝐹𝐹. 4)  

Hence,  𝑓𝑓∆𝑍𝑍(∆𝑧𝑧) is obtained as a marginal density from 𝑓𝑓∆𝑍𝑍 𝐴𝐴(∆𝑧𝑧,𝑎𝑎): 

 𝑓𝑓∆𝑍𝑍(∆𝑧𝑧) = ∫  𝑓𝑓∆𝑍𝑍 𝐴𝐴(∆𝑧𝑧, 𝑎𝑎)𝑑𝑑𝑎𝑎+∞
−∞ = 1

2 ∫  𝑓𝑓 𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣 �𝑧𝑧𝑝𝑝(∆𝑧𝑧, 𝑎𝑎), 𝑧𝑧𝑒𝑒(∆𝑧𝑧, 𝑎𝑎)� 𝑑𝑑𝑎𝑎+∞
−∞                  (𝐹𝐹. 5)  

Eq.(F.5) may then be rewritten as: 

 𝑓𝑓∆𝑍𝑍(∆𝑧𝑧) = 1
2 ∫  𝑓𝑓 𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣 �

𝑚𝑚+∆𝑧𝑧
2

, 𝑚𝑚−∆𝑧𝑧
2
� 𝑑𝑑𝑎𝑎+∞

−∞                                              (𝐹𝐹. 6)  

By setting  𝑧𝑧𝑝𝑝 = 𝑚𝑚+∆𝑧𝑧
2

 , from Eq.(F.6) one obtains: 

 𝑓𝑓∆𝑍𝑍(∆𝑧𝑧) = ∫  𝑓𝑓 𝑍𝑍𝑝𝑝 𝑍𝑍𝑣𝑣�𝑧𝑧𝑝𝑝, 𝑧𝑧𝑝𝑝 − ∆𝑧𝑧�𝑑𝑑𝑧𝑧𝑝𝑝
+∞
−∞                                                    (𝐹𝐹. 7)  

By the definition of conditional probability [33, 57-61], Eq.(F.7) can also be written in the following 
form: 

 𝑓𝑓∆𝑍𝑍(∆𝑧𝑧) = �  𝑓𝑓 𝑍𝑍𝑝𝑝|𝑍𝑍𝑣𝑣�𝑧𝑧𝑝𝑝|𝑧𝑧𝑝𝑝 − ∆𝑧𝑧� 𝑓𝑓 𝑍𝑍𝑣𝑣�𝑧𝑧𝑝𝑝 − ∆𝑧𝑧�𝑑𝑑𝑧𝑧𝑝𝑝
+∞

−∞
                                   (𝐹𝐹. 8) 
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where 𝑓𝑓 𝑍𝑍𝑝𝑝|𝑍𝑍𝑣𝑣
�𝑧𝑧𝑝𝑝|𝑧𝑧𝑒𝑒� indicates the conditional probability density that the RV 𝑍𝑍𝑝𝑝 takes the value 𝑧𝑧𝑝𝑝 

given the variable 𝑍𝑍𝑒𝑒 assumes the value 𝑧𝑧𝑒𝑒. 
Alternatively, an equally valid form is still obtained using conditional probabilities: 

   𝑓𝑓∆𝑍𝑍(∆𝑧𝑧) = ∫  𝑓𝑓 𝑍𝑍𝑣𝑣|𝑍𝑍𝑝𝑝�𝑧𝑧𝑝𝑝 − ∆𝑧𝑧|𝑧𝑧𝑝𝑝� 𝑓𝑓 𝑍𝑍𝑝𝑝�𝑧𝑧𝑝𝑝�𝑑𝑑𝑧𝑧𝑝𝑝
+∞
−∞                                                  (𝐹𝐹. 9)  

Eqs.(F.8,F.9) serve to show the relations between the probability densities given by:  𝑓𝑓∆𝑍𝑍, 𝑓𝑓 𝑍𝑍𝑝𝑝, 𝑓𝑓 𝑍𝑍𝑣𝑣 . 
According to some preliminary numerical results, the integral in Eq.(2.1), which is used to evaluate 
the FDS, yielded satisfactory results if it was approximated as in the following expression: 

 ∫ ∆𝑧𝑧𝑏𝑏+∞
0  𝑓𝑓∆𝑍𝑍(∆𝑧𝑧)𝑑𝑑∆𝑧𝑧 ≈ ∫ 𝑧𝑧𝑝𝑝𝑏𝑏

+∞
0  𝑓𝑓𝑍𝑍𝑝𝑝�𝑧𝑧𝑝𝑝�𝑑𝑑𝑧𝑧𝑝𝑝                                          (𝐹𝐹. 10) 

From the assumption of ergodicity, one could also write:  

� 𝑧𝑧𝑝𝑝𝑏𝑏
+∞

0
 𝑓𝑓𝑍𝑍𝑝𝑝�𝑧𝑧𝑝𝑝�𝑑𝑑𝑧𝑧𝑝𝑝 =

1
𝑁𝑁𝑝𝑝

�𝑧𝑧𝑝𝑝[𝑗𝑗]𝑏𝑏
𝑁𝑁𝑝𝑝

𝑗𝑗=1

                                             (𝐹𝐹. 11) 

where 𝑧𝑧𝑝𝑝[∙] is the discrete signal containing the peaks (all supposed to be positive for simplicity) 
obtained by time-domain counting methods. The possibility of replacing the integral in Eq.(2.1) by 
the sum on the right-hand side of Eq.(F.11) allows bypassing the step at which the amplitudes ∆𝑧𝑧 are 
computed via a counting method, starting from the peaks 𝑧𝑧𝑝𝑝 and valleys 𝑧𝑧𝑒𝑒 obtained from the time 
history. Another obvious advantage is that only the peaks are required, not the valleys.  
As a step further, in order to avoid searching for the peaks by using ad-hoc functions that store the 
peaks and troughs in floating-point vectors, an alternative faster and precise method is now explained, 
which allows finding the peaks using vectors of binary numbers, more sparing in terms of memory 
allocations.  
Without knowing precisely where the peaks are located, only the maximum value 𝑧𝑧𝑟𝑟𝑚𝑚𝑥𝑥 of the signal 
is extracted from the SDOF system’s output 𝑧𝑧[∙] (i.e. the signal that contains the peaks 𝑧𝑧𝑝𝑝[∙] and 𝑧𝑧𝑒𝑒[∙] 
and other points in between). All the other peaks are contained between this upper value and another 
lower value, considered a percentage 𝑝𝑝 of the maximum value of the signal; its choice will be 
empirical and shown in the results. It is assumed (and later motivated) that only the values of the 
time-series 𝑧𝑧[∙] contained in the range [ 𝑝𝑝 ∙ 𝑧𝑧𝑟𝑟𝑚𝑚𝑥𝑥, 𝑧𝑧𝑟𝑟𝑚𝑚𝑥𝑥] contribute to the damage; therefore the 
summations will be performed only over those values. Obviously, the parameter 𝑝𝑝 ∙ 𝑧𝑧𝑟𝑟𝑚𝑚𝑥𝑥 should be 
set to low enough values in order that all the relevant peaks be included in the computations, but also 
as high as possible in order to reduce the number of computations.  
The points of the time-series 𝑧𝑧[∙] included in the interval: [ 𝑝𝑝 ∙ 𝑧𝑧𝑟𝑟𝑚𝑚𝑥𝑥, 𝑧𝑧𝑟𝑟𝑚𝑚𝑥𝑥] are assumed to contain all 
the peaks 𝑧𝑧𝑝𝑝[∙] and, in the neighborhood of each peak, it is assumed that the non-negligible terms 
�𝑧𝑧𝑝𝑝[𝑗𝑗]𝑏𝑏� are symmetric with respect to the peak, with the latter being the maximum value in that 
neighborhood. Therefore, according to this hypothesis, the non-negligible terms start from a lower 
value, increase till the maximum, then decrease till the same lower value is reached; the number of 
points contained between the lower value and the peak where the signal 𝑧𝑧[∙] is increasing is denoted 
by the number 𝑁𝑁𝑧𝑧. 𝑁𝑁𝑧𝑧 is considered to be independent from the peak considered and another 
simplifying assumption is the following: the 𝑧𝑧[∙] values in the neighborhood of the 𝑗𝑗𝑡𝑡ℎ peak 𝑧𝑧𝑝𝑝[𝑗𝑗] 
differ by integer multiples of ∆𝑗𝑗 (i.e. the signal grows linearly23 in the left neighborhood of the peak 

23 Because ∆𝑗𝑗 does not depend on the index k, the signal is assumed to behave linearly in the neighborhood of the peak. 
This assumption is convenient for the sake of simplicity, but the subsequent considerations can be extended to the more 
general case where ∆𝑗𝑗 also depends on k. 
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and then decreases symmetrically). ∆𝑗𝑗 is to be considered “small” with respect to 𝑁𝑁𝑧𝑧 and the product 
𝑁𝑁𝑧𝑧∆𝑗𝑗 is negligible with respect to the peaks 𝑧𝑧𝑝𝑝.  
To summarize, the complete set of assumptions is the following: 

1) Only the values of 𝑧𝑧[∙] contained in the range [ 𝑝𝑝 ∙ 𝑧𝑧𝑟𝑟𝑚𝑚𝑥𝑥, 𝑧𝑧𝑟𝑟𝑚𝑚𝑥𝑥] will appear in the summations 
of terms of the kind: 𝑧𝑧[𝑗𝑗]𝑏𝑏, assumed to be positive and related to the damage. 

2) Around each peak 𝑧𝑧𝑝𝑝 contained in the interval [ 𝑝𝑝 ∙ 𝑧𝑧𝑟𝑟𝑚𝑚𝑥𝑥, 𝑧𝑧𝑟𝑟𝑚𝑚𝑥𝑥], there are 2𝑁𝑁𝑧𝑧 values 
symmetrically distributed between the peak’s left (where the signal 𝑧𝑧[∙] increases till it reaches 
the peak) and right (where the signal 𝑧𝑧[∙] decreases symmetrically with respect to the 
increasing part). 

3) The 𝑁𝑁𝑧𝑧 values of 𝑧𝑧[∙] in the left neighborhood of the 𝑗𝑗𝑡𝑡ℎ peak 𝑧𝑧𝑝𝑝[𝑗𝑗] differ by integer multiples 
of ∆𝑗𝑗. 

4) The sampling frequency is high enough for the signal 𝑧𝑧[𝑗𝑗] to be considered continuous (i.e. 
𝑁𝑁𝑧𝑧 is “large” and ∆𝑗𝑗 is “small”). The product 𝑁𝑁𝑧𝑧∆𝑗𝑗 can be finite but considered negligible with 
respect to the peaks 𝑧𝑧𝑝𝑝.  

A graphical representation of the assumptions is shown in Fig.F.1, where the points of the SDOF 
system output 𝑧𝑧[∙] above the threshold value 𝑝𝑝 ∙ 𝑧𝑧𝑟𝑟𝑚𝑚𝑥𝑥, on the left of the peaks 𝑧𝑧𝑝𝑝[𝑗𝑗] and 𝑧𝑧𝑝𝑝[𝑗𝑗+1], are 
plotted to emphasize their comparison. Both the points close to 𝑧𝑧𝑝𝑝[𝑗𝑗] and the points close to 𝑧𝑧𝑝𝑝[𝑗𝑗+1] 
amount to the same number of points 𝑁𝑁𝑧𝑧 (for sake of visual simplicity 𝑁𝑁𝑧𝑧 was set equal to 5). 
According to the assumptions, those points lie on two lines whose slope is proportional to ∆𝑗𝑗 and 
∆𝑗𝑗+1.  
Under assumptions 1, 2 and 3, the summations performed which are related to the damage are the 
following: 

𝛾𝛾 = ���𝑧𝑧𝑝𝑝[𝑗𝑗] − 𝑘𝑘∆𝑗𝑗�
𝑏𝑏

𝑁𝑁𝑝𝑝

𝑗𝑗=1

                                                                  (𝐹𝐹. 12)
𝑁𝑁𝑧𝑧

𝑘𝑘=0

 

In order to motivate it, according to assumption 4, the summation over index 𝑘𝑘 may be replaced by 
an integral: 

𝛾𝛾 ≈ � ��𝑧𝑧𝑝𝑝[𝑗𝑗] − 𝜉𝜉∆𝑗𝑗�
𝑏𝑏𝑑𝑑𝜉𝜉

𝑁𝑁𝑝𝑝

𝑗𝑗=1

𝑁𝑁𝑧𝑧

0
                                                            (𝐹𝐹. 13) 

Eq.(F.13) yields: 

𝛾𝛾 ≈�
𝑧𝑧𝑝𝑝[𝑗𝑗]𝑏𝑏+1 − �𝑧𝑧𝑝𝑝[𝑗𝑗] − 𝑁𝑁𝑧𝑧∆𝑗𝑗�

𝑏𝑏+1

∆𝑗𝑗(𝑏𝑏 + 1)

𝑁𝑁𝑝𝑝

𝑗𝑗=1

                                                    (𝐹𝐹. 14) 

Since 𝑁𝑁𝑧𝑧∆𝑗𝑗 is small compared to 𝑧𝑧𝑝𝑝[𝑗𝑗], a Taylor series expansion of the numerator truncated after two 
terms gives: 

𝛾𝛾 ≈ 𝑁𝑁𝑧𝑧��𝑧𝑧𝑝𝑝[𝑗𝑗]𝑏𝑏 − 𝑏𝑏𝑧𝑧𝑝𝑝[𝑗𝑗]𝑏𝑏−1
𝑁𝑁𝑧𝑧∆𝑗𝑗

2 �

𝑁𝑁𝑝𝑝

𝑗𝑗=1

                                                  (𝐹𝐹. 15) 

By assuming: 𝑧𝑧𝑝𝑝[𝑗𝑗] ≫ 𝑏𝑏 𝑁𝑁𝑧𝑧∆𝑗𝑗
2

  (𝑁𝑁𝑧𝑧∆𝑗𝑗 is small with respect to 𝑧𝑧𝑝𝑝[𝑗𝑗]), one obtains: 
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𝛾𝛾 ≈ 𝑁𝑁𝑧𝑧�𝑧𝑧𝑝𝑝[𝑗𝑗]𝑏𝑏
𝑁𝑁𝑝𝑝

𝑗𝑗=1

                                                                 (𝐹𝐹. 16) 

After denominating by 𝑁𝑁 the total number of points of the system’s output 𝑧𝑧[∙] and defining the 
parameter ℎ[𝑓𝑓𝑛𝑛] as in the following expression:  

ℎ[𝑓𝑓𝑛𝑛] ≝
𝑁𝑁

𝑁𝑁𝑧𝑧𝑁𝑁𝑝𝑝
                                                                       (𝐹𝐹. 17) 

Eq.(F.16) can be rewritten as: 

1
𝑁𝑁𝑝𝑝

�𝑧𝑧𝑝𝑝[𝑗𝑗]𝑏𝑏
𝑁𝑁𝑝𝑝

𝑗𝑗=1

≈
1
𝑁𝑁
ℎ[𝑓𝑓𝑛𝑛]𝛾𝛾                                                               (𝐹𝐹. 18) 

It must be highlighted that ℎ[𝑓𝑓𝑛𝑛] is a function “reasonably” independent of the particular time-series 
𝑧𝑧[∙]. In fact, 𝑁𝑁𝑧𝑧 is related to the density of points around any peak, which is assumed to be constant; 
this is strictly true if the signal 𝑧𝑧[∙] reaches any peak 𝑧𝑧𝑝𝑝[𝑗𝑗] from the value 𝑝𝑝 ∙ 𝑧𝑧𝑟𝑟𝑚𝑚𝑥𝑥 in a fixed amount 
of time equal to 𝑁𝑁𝑧𝑧/𝐹𝐹𝑟𝑟. In Eq.(F.17) the ratio 𝑁𝑁𝑝𝑝/𝑁𝑁 is also “reasonably” independent of the time-
series 𝑧𝑧[∙], because the larger the number of points 𝑁𝑁 of the time-series, the proportionally larger 𝑁𝑁𝑝𝑝. 
Rather, ℎ[𝑓𝑓𝑛𝑛] depends on the natural frequency of the SDOF system, since that affects the parameter 
𝑁𝑁𝑝𝑝: in fact, as 𝑓𝑓𝑛𝑛 increases, it is intuitive to hypothesize that the number of peaks 𝑁𝑁𝑝𝑝 will increase as 
well. This would lead ℎ[𝑓𝑓𝑛𝑛] to have a tendency to decrease with 𝑓𝑓𝑛𝑛. A more detailed motivation will 
be given in the last part of this appendix dedicated to simulation results; in fact, the validity of the 
assumptions altogether can only be inferred from simulation results. 
Instead of using the definition of Eq.(F.17), ℎ[𝑓𝑓𝑛𝑛] will be computed numerically only one time, by 
taking advantage of its independence from the time-series. 
The integral in Eq.(2.1) can finally be written as: 

 ∫ ∆𝑧𝑧𝑏𝑏+∞
0  𝑓𝑓∆𝑍𝑍(∆𝑧𝑧)𝑑𝑑∆𝑧𝑧 ≈ 1

𝑁𝑁
ℎ[𝑓𝑓𝑛𝑛] 𝛾𝛾                                                    (𝐹𝐹. 19) 

Hence, the approximated value of the Fatigue Damage Da[𝑓𝑓𝑛𝑛] can be computed as in the following: 

𝐷𝐷𝑚𝑚[𝑓𝑓𝑛𝑛]  =
𝐾𝐾𝑏𝑏

𝐶𝐶
𝑛𝑛𝑝𝑝 ℎ[𝑓𝑓𝑛𝑛]

𝐷𝐷
𝑁𝑁
���𝑧𝑧𝑝𝑝[𝑗𝑗] − 𝑘𝑘∆𝑗𝑗�

𝑏𝑏
𝑁𝑁𝑝𝑝

𝑗𝑗=1

𝑁𝑁𝑧𝑧

𝑘𝑘=0

                                          (𝐹𝐹. 20) 

Knowing that the sampling frequency 𝐹𝐹𝑟𝑟 is equal to 𝑁𝑁 ∙ 𝐷𝐷−1, the expression can also be formulated 
as: 

𝐷𝐷𝑚𝑚[𝑓𝑓𝑛𝑛]  =
𝐾𝐾𝑏𝑏

𝐶𝐶
𝑛𝑛𝑝𝑝 ℎ[𝑓𝑓𝑛𝑛]

1
𝐹𝐹𝑟𝑟
���𝑧𝑧𝑝𝑝[𝑗𝑗] − 𝑘𝑘∆𝑗𝑗�

𝑏𝑏
𝑁𝑁𝑝𝑝

𝑗𝑗=1

𝑁𝑁𝑧𝑧

𝑘𝑘=0

                                          (𝐹𝐹. 21) 

The strategy that will be used to calculate ℎ[𝑓𝑓𝑛𝑛]  will be the following: 

1) After choosing a reference profile, set ℎ[𝑓𝑓𝑛𝑛]  = 1 for every  𝑓𝑓𝑛𝑛 and compute the damage 𝐷𝐷𝑚𝑚[𝑓𝑓𝑛𝑛] 
as in Eq.(F.21); 

2) compute the damage 𝐷𝐷[𝑓𝑓𝑛𝑛]  with the “standard” time domain procedure; 
3) set ℎ[𝑓𝑓𝑛𝑛] = 𝐷𝐷[𝑓𝑓𝑛𝑛] 

𝐷𝐷𝑎𝑎[𝑓𝑓𝑛𝑛] 
 for every 𝑓𝑓𝑛𝑛. 
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As already highlighted, ℎ[𝑓𝑓𝑛𝑛]  should not “strongly” depend on the particular reference profile chosen. 
Once it is known, it can be used in every other application, with the only (possible) additive step 
being the interpolation of its values in case the FDS of another application had a different number of 
points from the one used to calculate ℎ[𝑓𝑓𝑛𝑛]. In any case, the latter operation would not be troublesome 
since it could be done outside the main loop. The reference profile chosen to calculate ℎ[𝑓𝑓𝑛𝑛] should 
have a sampling frequency high enough to span all the frequencies of interest of any other application. 

  

 

 

Fig. F.1. Graphical representation of the points of 
time-series  𝑧𝑧[∙] on the left of peak 𝑧𝑧𝑝𝑝[𝑗𝑗] (continuous 
line) and 𝑧𝑧𝑝𝑝[𝑗𝑗+1] (dashed line). On the y-axis relative 
displacements are plotted, whereas on the x-axis one 
could represent either time or number of points 

 
The theoretical considerations presented in this appendix are now tested. The standard time-domain 
procedure accepted in the literature will be compared in terms of speed and precision to the proposed 
method. 
The selected platform to do the required computations to display the results is Matlab®. The time 
counting technique adopted is the Rainflow algorithm, considered as the most reliable [62-64]. 
The algorithms implemented in the standard procedure are optimized to achieve fast computations in 
order to make fair comparisons with the novel method. To the author’s knowledge, one of the most 
used Matlab® implementations of the Rainflow algorithm can be found on the Matlab® Central File 
Exchange [65], which boasts more than 39000 downloads as of October 2020. 
Before the comparison, the first step is to compute the function ℎ[𝑓𝑓𝑛𝑛], by choosing a reference signal.  
The starting reference signal, here denoted as RS1, represents field data sampled at 8192 Hz, with a 
duration of 23.3 seconds. Fig.F.2 shows its plot, whereas some statistical parameters are listed in 
Table F.1, in particular: standard deviation, kurtosis, crest factor. It can be observed that the reference 
signal is Leptokurtic, i.e. its kurtosis is greater than 3.0 as numerous peaks and/or bursts are present 
in the time-series.     

 
Fig. F.2. Reference signal used for the computation of 
ℎ[𝑓𝑓𝑛𝑛] 

Table F.1. Statistical parameters of the  
reference signal RS1 

Statistical parameters of 
the reference signal RS1 

RMS [𝒎𝒎/𝒔𝒔𝟐𝟐] 
 

139 
 

Kurtosis [-] 
 

5.73 
 

Crest factor [-] 9.02 
 

In order to perform the computation of Eq.(F.20) (or Eq.(F.21)), the percentage 𝑝𝑝 of the maximum 
value of the relative displacement time-series 𝑧𝑧[∙] should be set. The choice, after a trial and error 
procedure, was made to set 𝑝𝑝 = 400−1/𝑏𝑏. The exponent – 1/𝑏𝑏 is present because the lower 𝑏𝑏, the less 
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negligible terms there are in the neighborhood of the peaks (damage is proportional to the values 
𝑧𝑧𝑝𝑝[𝑗𝑗]𝑏𝑏). Vice versa, the higher the Wohler’s curve slope 𝑏𝑏, the (usually) lower number of points can 
be used in the computation of the damage via Eq.(F.21), because more of them become negligible 
with respect to the highest peaks (in absolute value), which are raised to the 𝑏𝑏𝑡𝑡ℎ power. The 
summations in Eq.(F.21) are performed by using the Matlab command: sum(z(z>p*zmax).^b), where 
z is the output of the SDOF system and zmax its maximum value. The operation has to be looped 
through each frequency 𝑓𝑓𝑛𝑛. 
As expounded at the beginning of this appendix, the advantages should be: (i) the time-consuming 
extraction of the peaks and valleys stored in a floating point vector and the subsequent time-counting 
are avoided, (ii) the number of points over which the summation is carried out is minimized. 
The floating point vector of the standard procedure computed in every loop is replaced by the logical 
operation z>p*zmax, which is a vector containing either zeroes or ones and consequently allows faster 
computations. 
The most important parameters involved in the computation of the damage, 𝑏𝑏 and 𝜁𝜁, are set to the 
values of 5 and 2.5% respectively. The other parameters, namely the expected lifetime 𝐷𝐷 and the 
constants 𝐶𝐶 and 𝐾𝐾, are chosen respectively equal to one in their corresponding units of measurement. 
𝐶𝐶 and 𝐾𝐾 are often set to the value of one because usually unknown [40]. Nevertheless, what is 
essential is not the magnitude of the damage, rather the relative difference between the FDS of 
different applications. This led the term “damage” to be usually replaced by “pseudo-damage”. 
The resolution in the calculation of the FDS was set to 4 𝐻𝐻𝑧𝑧, with the natural frequencies of the SDOF 
systems ranging from 4 Hz to the Nyquist frequency 4096 Hz. 
With the input to the SDOF systems being the reference signal RS1, the parameter ℎ[𝑓𝑓𝑛𝑛] results as in 
Fig.F.3. From an inspection of the curve, it has a tendency to decrease when the natural frequency 
increases, the more so at lower frequencies; this behavior was expected as previously discussed. 
The calculation of ℎ[𝑓𝑓𝑛𝑛] is used to compute the FDS of another reference signal. The latter, here 
denoted as RS2, represents field data sampled at 8192 Hz, with a duration of 660 seconds. Fig.F.4 
contains its plot, whereas some statistical parameters are listed in Table F.2, in particular: standard 
deviation, kurtosis, crest factor.  
The FDS of the signal of Fig.F.4 is computed with the following new set of parameters, in order to 
test the theoretical results in different conditions: 𝑏𝑏=9, 𝜁𝜁=4%, T=1 h. The FDS curves are calculated 
by both the novel method and the standard procedure (by means of Eqs.(2.10,F.21) respectively as 
the last step) and are displayed in Fig.F.5. It can be observed that the matching of the curves is precise, 
and the computational time required by the method proposed in this appendix proved to be more than 
13 times faster as shown in Table F.3.  
In the case of other profiles the results are similar; it may be worth showing another example. 
The starting reference signal, here denoted as RS3, represents field data sampled at 500 Hz, with a 
duration of 1200 seconds. Fig.F.6 contains its plot, whereas some statistical parameters are listed in 
Table F.4.  
The FDS of the signal of Fig.F.6 is computed with the following new set of parameters, in order to 
test the theoretical results in yet different conditions: 𝑏𝑏=4.5, 𝜁𝜁=1.5%, T=10 h. The FDS curves are 
calculated by both the novel method and the standard procedure and are displayed in Fig.F.7. It can 
be observed that the matching of the curves is precise, and the computational time required by the 
method proposed in this appendix proved to be 12 times faster as shown in Table F.5.  
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           Fig. F.3. ℎ[𝑓𝑓𝑛𝑛] calculated by setting:            Fig.F.4. Reference signal RS2 
            𝑏𝑏 = 5 , 𝜁𝜁=2.5% 

Table F.2. Statistical parameters of the reference signal RS2 

 RMS (ms–2)  Kurtosis (-) Crest factor (-) 

Ref.    14.3             7.05                            11.9 

   

 
Fig. F.5. FDS of the signal RS2 calculated by the two 
different methods 

 
Table F.3. Computational time 
required by the two methods to 
compute the FDS of the signal RS2. 
(Processor: AMD A6-5200 APU with 
Radeon (TM) HD graphics 2 GHz) 

Computation Time [s] 

Standard method 
 

2093 
 

Proposed method 
 

153 
 

 

 
Fig. F.6. Reference signal RS3 

Table F.4. Statistical parameters of the  
reference signal RS3 

Statistical parameters of 
the reference signal RS1 

Std deviation [𝑚𝑚/𝑠𝑠2] 
 

8.42 
 

Kurtosis [-] 
 

6.42 
 

Crest factor [-] 8.12 
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Fig. F.7. FDS of the signal RS3 calculated by the two 
different methods 

 
Table F.5. Computational time 
required by the two methods to 
compute the FDS of the signal RS3 
(Processor: AMD A6-5200 APU with 
Radeon (TM) HD graphics 2 GHz) 

Computation Time [s] 

Standard method 
 

120 
 

Proposed method 
 

10 
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Appendix G: determination of 𝑏𝑏 
The value of Wohler’s curve slope (related to parameter 𝑏𝑏) was determined by performing random 
tests with different RMS levels and flat PSD. As is well known, if 𝑁𝑁𝑓𝑓 is the number of cycles with 
sinusoidal stress amplitude 𝜎𝜎 that lead the 𝐷𝐷𝐷𝐷𝐷𝐷 to failure, Wohler’s curve (also known as S-N curve24 
or Basquin’s law) has the form: 
 

𝜎𝜎𝑏𝑏𝑁𝑁𝑓𝑓 = 𝐶𝐶                                                                                  (𝐺𝐺. 1) 
 
In case of non-sinusoidal stress histories, stress amplitudes can still be obtained from counting 
techniques as explained in chapter 2, where it is assumed that each of those amplitudes satisfies 
Eq.(G.1). If the stresses are lower than the material’s yield strength, the relationship between stresses 
and relative displacements (function 𝑧𝑧(𝑡𝑡) in chapter 2) may be considered linear. The relative 
displacement 𝑧𝑧(𝑡𝑡) is simply the difference between the system’s output 𝑦𝑦(𝑡𝑡) (i.e. response of the 
DUT excited by the shaker’s physical motion) and the input 𝑥𝑥(𝑡𝑡) (i.e. physical motion of the shaker), 
where both 𝑦𝑦(𝑡𝑡) and 𝑥𝑥(𝑡𝑡) are displacements. From Eq.(2.6), if the SDOF system has a natural 
frequency 𝑓𝑓𝑛𝑛 and the (acceleration) signal �̈�𝑥(𝑡𝑡) has a flat PSD denoted by 𝐺𝐺, it is easy to see that the 
square of the RMS of 𝑧𝑧(𝑡𝑡) is proportional to the PSD, that is: 
 

 𝑧𝑧𝑟𝑟𝑟𝑟𝑟𝑟(𝑓𝑓𝑛𝑛)2 = 𝐿𝐿(𝑓𝑓𝑛𝑛, 𝜁𝜁) ∙ 𝐺𝐺                                                             (𝐺𝐺. 2) 
 
In Eq.(G.2) 𝐿𝐿 is simply a proportionality constant which depends on both the frequency and damping 
coefficient of the system, given by the relationship: 
 

𝐿𝐿(𝑓𝑓𝑛𝑛, 𝜁𝜁) =
1

2𝜋𝜋(2𝜋𝜋𝑓𝑓𝑛𝑛)3 �
1

(ℎ2 − 1)2 + (2𝜁𝜁ℎ)2 𝑑𝑑ℎ
∞

0
                                 (𝐺𝐺. 3) 

 
Due to the assumed linearity between stress and relative displacements, the square of the RMS of the 
stress time history is then proportional to the PSD G, which, on its part, is proportional to the square 
of the RMS of the input signal �̈�𝑥(𝑡𝑡) due to the constancy of G. Therefore: 
 

 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑐𝑐𝑜𝑜𝑛𝑛𝑠𝑠𝑡𝑡 ∙  �̈�𝑥𝑟𝑟𝑟𝑟𝑟𝑟                                                         (𝐺𝐺. 4) 
 
Eq.(G.4) would also hold in the particular case the stress signal is a sinusoid (in this case the PSD of 
the signal would be a Dirac delta function), therefore in principle the stress 𝜎𝜎 in Eq.(G.1) could be 
replaced by  �̈�𝑥𝑟𝑟𝑟𝑟𝑟𝑟 and the constant 𝐶𝐶 would simply be replaced by a different constant �̃�𝐶. It is worth 
mentioning that the “constant” would depend on the natural frequency of the system as it should be 
evident from Eq.(G.3) ( which leads to Eq.(G.4) ), therefore it is not actually a constant if 𝑓𝑓𝑛𝑛 is not 
fixed (as in the case of the FDS concept). Nevertheless, the FDS of every signal would be affected 
by the same factor, meaning that the concept of relative damage would still be preserved25 if, for sake 
of simplicity, it is assumed that the constant in Eq.(G.4) remains constant regardless of any possible 
change in 𝑓𝑓𝑛𝑛. If the signal �̈�𝑥(𝑡𝑡) were not sinusoidal, by analogy with stresses, Eq.(G.1) could be still 
considered a relationship satisfied by each of its amplitudes extracted by time-counting methods. 
Besides, if it is assumed that the number of cycles to failure 𝑁𝑁𝑓𝑓 is proportional to the time to failure 
(denoted by 𝐷𝐷) of the DUT subjected to the acceleration �̈�𝑥(𝑡𝑡), Eq.(G.1) may be rewritten as: 
 

24 This type of curve is widely plotted for many different materials, e.g. [66-68]. 
25 In fact, the ratio of FDS curves is unaffected by the factor. 
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( �̈�𝑥𝑟𝑟𝑟𝑟𝑟𝑟)𝑏𝑏 𝐷𝐷 = �̃�𝐶                                                                                  (𝐺𝐺. 5) 
 
Since the relation between the amplitudes extracted by time-counting methods and the overall RMS 
of the signal  �̈�𝑥𝑟𝑟𝑟𝑟𝑟𝑟 is simply linear if other conditions are fixed (such as the shape of the PSD is flat 
and the signal’s distribution is Gaussian), then in Eq.(G.5)  �̈�𝑥𝑟𝑟𝑟𝑟𝑟𝑟 could simply be considered as the 
overall RMS of the signal. Scaling the RMS would simply imply scaling the amplitudes if the 
distribution is fixed. In fact, if two random signals are generated from a PSD (i.e. their distribution is 
Gaussian) with two different RMS levels, their amplitudes will have the same distribution and their 
values will differ approximately by a factor equal to the ratio of the two different RMS values.  
The purpose of the tests mentioned at the beginning of this appendix was to determine a value for 
parameter 𝑏𝑏 through the use of Eq.(G.5). When experimental tests were performed, points with 
coordinates (l𝑜𝑜𝑔𝑔(𝐷𝐷), 𝑙𝑙𝑜𝑜𝑔𝑔( �̈�𝑥𝑟𝑟𝑟𝑟𝑟𝑟)) were drawn and, since Wohler’s curve is simply a line in log-log 
scale, the slope of the line was determined according to the Least Squares method.  
Considering that the natural frequency of a specimen decreases as damage accumulates, failure was 
defined to occur at the time 𝐷𝐷 where the tangent to the curve 𝑓𝑓𝑛𝑛 reached a certain (negative) slope. It 
is worth mentioning that since the curves defining natural frequencies were obtained numerically 
from real measurements, adequate polynomials were used to interpolate the curves and properly 
define tangents. This approach was used because of its simple numerical automation. It was made 
simple by the fact that curves had the same shape in all tests: frequency remained constant (up to 
small unavoidable numerical fluctuations) until it suddenly started decreasing when close to the point 
of failure. This regularity pattern did not occur when non-Gaussian tests were performed, as explained 
in sections 4.3 and 4.4, so the definition of failure was different in that case. However, it should be 
highlighted, especially in this case where the decrease in frequency is steep, that any reasonable 
definition of failure should lead to similar results. An example of the curves mentioned above is 
shown in Fig.G.1: this particular test was performed at 0.4 g on specimen number 3. 
 

 
Fig.G.1: test performed at 0.4 g on specimen #3: the blue curve represents the natural frequency 
computed from the real measurements; the red one is the polynomial interpolation, whereas the 
green one is the tangent that defines the TTF. 

 
 
The software used for the tests was TestLab, in particular the Random mode module. The flat PSD 
was defined in the interval [20 Hz,48 Hz], and as exemplified by the test performed on the same 
specimen reported in Fig.F.1, the RMS level was controlled precisely, as shown in Fig.G.2a. A 500 
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points PSD is shown in Fig.G.2b; the Nyquist frequency is 400 Hz because Testlab defined the 
sampling frequency of shaker drive signals to be equal to 800 Hz. 

 
(a) 

 
(b) 

 
Fig.G.2: test performed at 0.4 g on specimen #3: the shaker controller is able to follow the a) RMS 
and b) PSD specification 

 
The tests were performed at the following levels (expressed in g): 0.3, 0.4, 0.5 and 0.6 and for each 
level the median TTF was taken. Each single test consisted of three specimens and those having the 
shortest TTF values were repeated twice, therefore the median value was extracted either from three 
or six samples. Both the RMS levels and TTF values are summarized concisely in the first two rows 
of Table G.1. Using the Least Squares method, the values of Table G.1 lead to a value of 
approximately 9.17 for parameter 𝑏𝑏. In order to gather more information about dispersion of data, the 
mean, minimum and maximum values for the TTF’s are reported in the remaining three rows of Table 
G.1. Wohler’s curve is usually defined as the curve that coincides with 50% probability that the 
specimen reaches failure at the specific stress level considered on the curve. Therefore, it makes sense 
to consider the median values for the TTF. Nevertheless, in principle one might as well obtain 
Wohler’s curves associated with different probabilities of failure: for instance, the maximum TTF 
values correspond to 100% probability that the specimens fail, etc. The curves that correspond to the: 
median, mean, minimum, maximum TTF’s were obtained via Least Squares as well; they are plotted 
in Fig.G.3, with their corresponding values of 𝑏𝑏. Since the values for the parameter 𝑏𝑏 were calculated 
to be reasonably similar for the different curves (8.89 for maximum TTF’s, 9.38 for minimum TTF’s, 
9.02 for mean TTF’s, 9.17 for median TTF’s), any choice of the value of 𝑏𝑏 in the range 8.89 and 9.38 
would be acceptable. Due to the intrinsic uncertainty of both the model used and the phenomenon 
studied, the parameter 𝑏𝑏 was chosen to be equal to exactly 9.00 for the sake of simplicity.  

Table G.1: median times to failure associated with each individual RMS level 

RMS levels [g] 0.3 0.4 0.5 0.6 
Median TTF [h] 97.0 9.17 0.422 0.396 
Mean TTF [h] 87.6 10.7 0.474 0.366 
Minimum TTF [h] 53.6 2.87 0.191 0.163 
Maximum TTF [h] 112 21.2 0.810 0.538 
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Fig.G.3: Wohler’s curves estimated via Least Squares and associated with different probabilities 
of failure 
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Appendix H: GUI implementing the 
algorithms 
The author’s collaboration with industries led to the development of Graphical User Interfaces 
(GUI’s) that implement all the novel algorithms proposed, as well as the standard methodologies. 
This appendix is not intended to serve as a step-by-step manual for the use of these GUI’s, since its 
purpose is only to highlight some of the main auxiliary characteristics – not usually available in 
standard software – arisen from the collaboration with interested companies. Three independent 
GUI’s are shown in Fig.H.1, where the main external buttons outline some basic functionalities. 
Fig.H.1a shows the front end of the GUI related to kurtosis control, Fig.H.1b shows the one related 
to Standard Mission Synthesis, whereas Fig.H.1.c shows the GUI implementing the algorithms 
presented in section 2.2. Several other functionalities appear in the form of dialogue boxes while 
running the GUI’s; among them, it is worth mentioning the possibility of: pre-processing signals by 
filtering, plotting the time-series and their PSD’s, dealing with multiple situations26 (either in parallel 
or in series), as well as synthesizing multiple time-series at a time.  
Aside from the synthesis of signals, one of the most useful features implemented in the GUI’s is the 
possibility of inserting specifications and make comparisons with measured data. In fact, in evaluating 
whether a component may withstand the loads distinctive of a particular application, it might be useful 
to compare the FDS derived from a given specification with the FDS computed from representative 
signals that are measured from the application. The analysis should then be performed on the 
frequency range of interest for the component: the FDS derived from the specification should be 
higher than the measurement’s FDS, because specifications outline the domain of proper functioning 
that manufacturers guarantee. Usually, the specification is derived from both random tests and sweep 
tests. Therefore, the manufacturer might specify both a PSD and the characteristics of a sweep test 
on the component’s catalogue. The PSD information should be paired with the important information 
of the test duration, whereas the most relevant characteristics of the sweep tests are: duration of the 
test, sweep rate, sweep amplitudes at different time instants. The PSD is usually defined in a chart, 
where the magnitudes at some relevant frequency points are reported; an example is given in 
Fig.H.2a, whereas Fig.H.2b helps visualize an example of a sweep test specification.  
In the GUI’s front end, by clicking on the “insert specification” button, it is possible to insert all the 
necessary inputs written on the catalogue. At the end of the procedure, this specification is translated 
to an FDS that can be visualized and compared with the reference signal’s FDS. Fig.H.3 shows the 
steps that need to be performed to insert the random specification, whereas Fig.H.4 is analogous but 
the steps refer to the sweep specification.  
The FDS derived from the PSD specification is computed from the PSD according to the frequency 
domain method, whereas the FDS derived from the sweep specification is computed from the sweep 
signal according to the time domain method. The sweep signal is obtained from the specification; an 
example is the sweep defined by Fig.H.2b, which is plotted in Fig.H.5. 

26 The phrase “multiple situations” refers to a subdivision of a product’s life cycle into multiple dynamic events such as: 
handling, transport, storage, etc., in which the product is subjected to different vibrations. If different events take place 
during the life of the product, it is said that the events are in series; sometimes the latter can be in parallel, i.e. only one 
of them occurs, for example when it is not known whether the product will be transported by air or by sea. In this case, 
the damage estimation via the FDS function consists in measuring representative signals from each situation, compute 
the FDS, then sum the FDS curves of events that are in series and/or envelope FDS curves of events that are in parallel. 
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Fig.H.1: the GUI’s front ends showing the main buttons: GUI related to (a) kurtosis control 
algorithms, (b) Standard Mission Synthesis, (c) novel algorithms with a priori FDS control 
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Fig.H.2: (a) random test specification, (b) sweep test specification 
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Fig.H.3: after clicking on the “Insert specification” button, the PSD specification is selected (a). 
Then, the PSD is input (b) and the parameters that lead to the calculation of the FDS are inserted 
(c). Finally, the FDS of the specification is compared with the FDS of the reference signal (in this 
case the comparison is made only in the range 0-50 Hz). 
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Fig.H.4: after clicking on the “Insert specification” button, the sweep specification is selected (a). 
Then, the sweep amplitudes are input (b) and the parameters that lead to the calculation of the 
FDS are inserted (c). Finally, the FDS of the sweep and PSD specifications are compared with the 
FDS of the reference signal (in this case the comparison is made only in the range 0-50 Hz). 
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Fig.H.5: sweep specification in the time domain. According to the specification, this signal is 
repeated until 96 hours are reached. 
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Abstract

In the field of vibration qualification testing, with the popular Random Control mode of shakers, the specimen is excited by random vibrations typically set in the form of a Power Spectral Density (𝑃𝑆𝐷). The corresponding signals are stationary and Gaussian, i.e. featuring a normal distribution. Conversely, real-life excitations are frequently non-Gaussian, exhibiting high peaks and/or burst signals and/or deterministic harmonic components. The so-called kurtosis is a parameter often used to statistically describe the occurrence and significance of high peak values in a random process. Since the similarity between test input profiles and real-life excitations is fundamental for qualification test reliability, some methods of kurtosis-control can be implemented to synthesize realistic (non-Gaussian) input signals. 

Durability tests are performed to check the resistance of a component to vibration-based fatigue damage. A procedure to synthesize test excitations which starts from measured data and preserves both the damage potential and the characteristics of the reference signals is desirable. The Fatigue Damage Spectrum (FDS) is generally used to quantify the fatigue damage potential associated with the excitation. The signal synthesized for accelerated durability tests (i.e. with a limited duration) must feature the same FDS as the reference vibration computed for the component’s expected lifetime. Current standard procedures are efficient in synthesizing signals in the form of a PSD, but prove inaccurate if reference data are non-Gaussian. 

This work presents novel algorithms for the synthesis of accelerated durability test profiles with prescribed FDS and a non-Gaussian distribution. An experimental campaign is conducted to validate the algorithms, by testing their accuracy, robustness, and practical effectiveness. Moreover, an original procedure is proposed for the estimation of the fatigue damage potential, aiming to minimize the computational time. The research is thus supposed to improve both the effectiveness and the efficiency of excitation profile synthesis for accelerated durability tests.

























































Acknowledgments



The research was financially supported by Easting s.r.l.s. (Trieste, Italy), which the author gratefully acknowledges.



































Contents
Nomenclature
Introduction and Overview	1
1 Kurtosis control	5
1.1 Effectiveness of kurtosis control	6
1.2 Kurtosis control algorithms	11
1.2.1 Phase manipulation	11
1.2.2 Modulation technique	15
1.2.3 Variable spectral density	17
2 Durability tests	21
2.1 Extension of kurtosis control algorithms	24
2.2 A priori control of the Fatigue Damage Spectrum	26
2.2.1 kFDS algorithm	27
2.2.2 RF algorithm	28
2.2.3 PF algorithm	29
2.2.4 PSF algorithm	30
2.3 Accelerated tests: caveats	31
3 Simulation results	33
3.1 Kurtosis control	33
3.1.1 Extension to durability tests	40
3.1.2 Discussion	44
3.2 Durability tests with a priori FDS control	46
3.2.1 Discussion	53
4 Experimental tests	57
4.1 Design of experiment	57
4.1.1 Reference profile	57
4.1.2 Material	58
4.1.3 Specimen geometry	58
4.1.4   Fixture	59
4.2 Setup and test procedures	60
4.3 Non-accelerated tests	61
4.3.1 Reference profile	62
4.3.2 Gaussian profile #1	64
4.3.3 kFDS profile #1	66
4.3.4 Discussion	68
4.4 Accelerated tests	68
4.4.1 Amplified reference profile	69
4.4.2 Gaussian profile #2	70
4.4.3 kFDS profile #2	73
4.4.4 Discussion	75
4.5 Influence of damping ratio and Wohler's curve slope	75
5 Conclusions	79
6 References	81
Appendix A: formulae for moments	87
Appendix B: Gaussian distribution from its moments	95
Appendix C: distribution of a sinusoid from its moments	97
Appendix D: proof of Eqs.(1.33,1.35)	101
Appendix E: equivalence of Eqs.(2.1, 2.11)	103
Appendix F: novel method for the calculation of the FDS	105
Appendix G: determination of 	115
Appendix H: GUI implementing the algorithms	119














































[bookmark: _Toc47600798]









[bookmark: _Toc64275078]Nomenclature

The main symbols and parameters appearing throughout the dissertation are the following:

		Symbol

		Description



		

		Device under test



		

		 



		

		 



		

		 



		

		 



		

		Constant related to the slope of  



		

		 



		

		 



		

		 



		

		 



		

		Random variable



		

		 



		

		The probability density of the RV  when the latter assumes the value 
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The main purpose of this work is to improve the current state of the art of mono-axial vibration fatigue tests. In order to discern the original content of the dissertation from the already available state of the art, a necessary contextualization will be given in the following.

In real-life applications, components are often subjected to stochastic loads that might lead to a premature failure; therefore, experimental tests are needed to check resistance to environmental vibrations. The tests must be conducted carefully, ensuring that the failure mechanism is the same as that observed under normal operating conditions [1]. Since the components are expected to remain functional for several hundreds or even thousands of hours, it is usually required to accelerate the tests performed in laboratories [2]. The category of tests related to the fatigue-life estimation of components operating in specific applications, aims to reproduce the entire fatigue damage experienced by the component during its operational life, but in a shorter amount of time. These tests are usually referenced as fatigue-life tests or durability tests. The use of tests tailored in accordance with the application and/or components to be analyzed (Test Tailoring) has been consolidated over the years [3,4]. The synthesis of signals based on the actual environmental conditions to which the components are subjected is generally referred to as Mission Synthesis, which more specifically aims to achieve the damage potential equivalence between the environmental conditions and synthesized signals. This is usually preferred to Standards that propose generic test procedures and are excessively strict in general (e.g. MIL STD 810F, GAM EG13).  The vibrations measured in real-life applications are typically not replicated “as is” because their stochasticity would be lost. The specification is given in terms of a Power Spectral Density (𝑃𝑆𝐷) to be used for the generation of a vibratory motion.

The shaker controller generates the physical motion through the application of the Inverse Fast Fourier Transform (IFFT) in combination with randomly selected phases [5,6]. The overall probability distribution of the input signal tends toward Gaussian, whereas distinctive peaks are often present in real-life random excitations (e.g. due to micro-collisions, road transportation [7,8], etc.), causing the probability distribution to be non-Gaussian. The statistical parameter known as kurtosis may be employed to quantify the feature of non-Gaussianity. Several methods have been proposed to control kurtosis (e.g. [9-25]), still maintaining the desired 𝑃𝑆𝐷 profile, in order to synthesize more realistic signals.

The random excitations used in experimental tests, are generically ascribed to the field of vibration qualification testing. If the requirement to comply with a kurtosis value is added to the PSD specification, this type of vibration qualification testing is also referred to as kurtosis control. If the specification is given in terms of a target damage potential and duration, the resulting experimental tests belong to the category of durability tests, and the synthesized signals are generated through the Mission Synthesis procedure. If the target duration of durability tests is lower than the component’s expected lifetime (as it is usually the case), these tests might also be referenced more specifically as accelerated durability tests (or fatigue-life tests, as already mentioned).

The study leading to this dissertation revolved around the search for novel Mission Synthesis methodologies aimed at the relatively unexplored field of non-Gaussian durability tests, possibly extending the work that had previously been conducted on kurtosis control. These tests not only have to comply with a prescribed damage potential and duration, but also with the preservation of non-Gaussian features (e.g. kurtosis) of signals measured from the applications. The main objective of this work is therefore to provide novel algorithms which may aid in the synthesis of non-Gaussian signals, to be used in (accelerated) durability tests. The provision of such novel algorithms will additionally be supported by a subsequent numerical and then experimental test procedure, in order to highlight the most important aspects which may be “obscured” by the quite elaborate but necessary theory behind these algorithms.

In the remaining part of this introduction, an overview of the dissertation’s structure is outlined; the bibliographical referencing of the technical topics already described in the literature is more thoroughly provided in the pertinent chapters and appendices.

Chapter 1 and section 1.1 aim to provide a thorough revision of the available references on kurtosis control in the literature, as well as provide a rigorous mathematical description about the ineffectiveness of some of the kurtosis control methods and how the bandwidth of the system plays a key role [26-32] in affecting the distribution of ergodic [33] signals. Despite the theory related to kurtosis control requires well-known concepts of signal processing, probability theory and stochastic processes, and despite the fact that the result is well-known, the theoretical presentation of section 1.1 is original and offers -to the author’s knowledge- a novel perspective. The content of all the appendices is also original; to be more precise, the mathematical results presented in Appendices A-D are known, but originally adapted to the theory presented. On the other hand, Appendices E-H also present -to the author’s knowledge- novel results.

In section 1.2, some of the algorithms available in the literature [10-17] to effectively control kurtosis in random vibration tests are revised and in chapter 2 and section 2.1 a technique to extend them to durability tests is discussed [34]. A proper procedure, which starts from reference signals (i.e. measured from real applications) and preserves both the accumulated fatigue damage and the signals’ statistical characteristics, could potentially be more reliable than the standard approach; the development of such a procedure is also the main purpose of this work. In durability tests, the Fatigue Damage Spectrum (FDS) [35-40] is generally used to quantify the fatigue damage potential associated with the excitation. In Gaussian tests, this damage potential can be mathematically related to the PSD of the excitation; the complete mathematical description was provided by C. Lalanne et al. [36, 39-41]. The signal synthesized for accelerated fatigue-life tests must reproduce, in a short amount of time, the same FDS generated by the reference vibration throughout the component’s expected lifetime. Despite the limited duration of the tests, one must proceed with caution in order to ensure that the decreased duration does not affect the failure mode; in fact, excessively short durations might lead to exceedingly high stress levels, possibly shifting the failure mode from a fatigue type of failure to a type of failure caused by exceeding the material’s yield strength [42,43]. The synthesis procedures currently used generate Gaussian signals that may be unrealistic in representing the characteristics of the usually non-Gaussian reference data. In section 2.2, this dissertation presents novel algorithms for the synthesis of accelerated test profiles with prescribed FDS and a non-Gaussian distribution.

In addition, in Appendix F a novel procedure for the estimation of the damage is proposed. The standard estimation of the damage is usually obtained by adopting either the so-called time-domain or frequency-domain methods [44,45]. The former are valid for every type of load, whereas most of the latter have exact theoretical implementations only for Gaussian loads. However, the major downside of time-domain methods is usually the computational time required, whereas the frequency domain approach is generally much faster. Hence, in the literature several authors proposed novel frequency-domain methodologies on non-Gaussian signals as well [46-49].  However, the applicability of frequency-domain methods to non-Gaussian time-series is usually constrained by some factors such as: degree of non-stationarity of the time-series, statistical distribution of the time-series, natural frequencies of mechanical components. Therefore, a novel time-domain methodology is proposed in Appendix F to bridge the gap between time and frequency-domain, seeking to limit the computational effort and with a wider range of applicability than frequency domain methods.

In chapter 3, theoretical systems are modelled to test the novel algorithms numerically, whereas in chapter 4 an experimental campaign is conducted to test validity in actual experiments, with the aim to attach a practical value to the theoretical work presented. Chapter 3 and 4 comprise both accelerated and non-accelerated tests.

Finally, it is worth mentioning that the author’s collaboration with industries (Easting s.r.l.s.) led to the development of Graphical User Interfaces that implement all the novel algorithms proposed, as well as the standard methodologies. Some of the relevant features of these interfaces are summarized in Appendix H.
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In this chapter the theory of kurtosis control is described mathematically in the first part, where the mathematical formulae that relate kurtosis (and higher order moments) to the spectral phases and amplitudes of a vibratory signal are introduced. In section 1.1, the theory (which is worked out in detail in the Appendices A, B, C) is used to discuss the so-called Papoulis’ Rule.  In the rest of the chapter, starting from section 1.2, an overview of the current state-of-the-art kurtosis control algorithms is provided. 





Given a random signal  in the time domain, its probability density  (assumed to be stationary for simplicity) and its average value , the second and fourth order moments  and  can be defined as:





where  is called the variance and its square root  is the standard deviation. If  , which is usually the case for signals measured from real applications, the signal root mean square () is equal to .

Kurtosis  is defined as:	



This parameter can be used to estimate the presence of high peaks in a signal: in fact, if  has high peaks and the latter’s weight  is relevant, the terms  can be preponderant, hence increasing the kurtosis value.

For a Gaussian signal, the probability distribution has the form:



If Eq.(1.4) is inserted into Eq.(1.1) moment  gives , whereas if inserted into Eq.(1.2) moment . Hence, for a Gaussian signal kurtosis is equal to .

Shaker controllers for random vibration testing can be based on the Fast Fourier Transform () data processing technique; the test specification is given in the frequency domain in terms of a power spectral density () and actual time histories are reconstructed from the prescribed  by the Inverse Fast Fourier Transform (). It means that the shaker is driven by a multi-frequency signal of the type:



with a large number of harmonics . The amplitudes of the harmonics are determined according to the given  shape  with the frequency increment :



The phase angles  are defined as uniformly distributed random numbers ranging from to  (or  to ). The random generation of the harmonics phases provides the time signal with a Gaussian probability distribution.

In order to motivate that the signal is Gaussian, an expression for kurtosis could be used, which is derived in Appendix A (Eqs.(A.20, A.26)) from a more general formula. The following formula for kurtosis was derived by Steinwolf :



The sums must be computed with all the indices ranging from  to  but only if the conditions under the summation symbols are verified.

From this expression a value of  emerges, plus other terms. If the phases are selected randomly and uniformly (i.e. with uniform probability distribution) the cosine functions will produce uniformly random values contained in the interval , thus the terms multiplied by the cosines will compensate each other making the value of  close to  so that the signal has a Gaussian probability distribution. To be more rigorous, kurtosis being equal to  might not be enough to assert that a signal is Gaussian; in fact this also depends on higher order moments. A more rigorous explanation is given in the next section.

By properly choosing the phases, it is evident that kurtosis may be manipulated (without affecting the , which is only dependent upon the amplitudes): for instance, its maximum value can be reached when all the phase components are set to zero. Changing the kurtosis and preserving the PSD is known as kurtosis control. Kurtosis control by phase manipulation is a subject which will be dealt with in subsection 1.2.1; other techniques will be described in subsequent subsections.
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Any kurtosis control algorithm aims to control the kurtosis value of a vibratory signal to be generated by the shaker; this is input kurtosis, while the device under test (DUT) will generally show a different value, because between the input and the output there is the transfer function of the system.

A. Papoulis  proved that if the transfer function of the system is that of a filter with a narrow band and some other technical assumptions are satisfied (mainly regarding the input signal features), the output tends to have a Gaussian distribution as the band goes to zero, regardless of the distribution of the input. This theorem is often referred to as Papoulis’ rule , and it is important to stress that the validity of the statement depends on both the component’s and the excitation signal’s characteristics. Since the damping coefficient of mechanical systems is usually in the low percentage range, in this case the transfer function can usually be likened to that of a filter with a narrow band, therefore Papoulis’ rule may hold and the output probability distribution could tend towards a Gaussian distribution. It may therefore be not easy, in general, to transfer the same amount of kurtosis from the input to the output, because kurtosis usually decreases in the output[footnoteRef:2].  [2:  However, it is noteworthy to point out that, for non-stationary signals, output kurtosis could still be higher than input kurtosis (see subsection 1.2.3). It is more of a “rule of thumb” than an accurate expression to say that output kurtosis is usually lower than input kurtosis because it is not always true.] 


Since the physical intuition may be hidden by the mathematical details contained in Papoulis’ derivation, a different explanation will be given in the following as to why the filtering process may lead towards Gaussianity. This is important in order to understand why some kurtosis control algorithms are effective and others are not.

The qth moment  of a time-series (be it the input or the output of a system) can be written in the following form in terms of its amplitudes and phases (see Appendix A):



where the generic index  can assume the integer values from  to  with 0 excluded.

The central moments of zeroth and first order are trivially equal to 1 and 0 respectively[footnoteRef:3], whereas that of second order corresponds to the variance of the signal: [3:  The first order central moment is assumed equal to 0 because vibration signals usually have zero mean.] 






Under the narrowband assumption, it is possible to understand how the general qth moment of the system’s output is affected. In the following, it is assumed that the system behaves as a filter with a bandwidth , which is narrow enough for the amplitudes of the response to be assumed approximately constant over the frequencies contained in that bandwidth. Another assumption will be that the number of signal’s harmonics remains “large” after filtering, that is  for a signal of duration , with the phases being uniformly random in the interval  over the filtered bandwidth. Alternatively, the following considerations remain valid for the system’s input with a sufficiently large number of dominant harmonics and uniform random phases.

For even values of , the moment  can contain both terms depending on the phases and terms which do not, depending therefore only on the amplitudes (i.e. when the phase terms inside the cosine of Eq.(1.8) cancel, and the cosine becomes equal to 1). Due to the indistinguishability of the indices  in Eq.(1.8) (e.g. if   is replaced by  and vice versa, the result would not be affected), the functional form of  could also be expressed as:











where the terms raised to the powers of: ,…, etc. may appear only if the latter are integers. Eq.(1.10) needs further clarification: a simple example can be given to motivate the seemingly complicated expression. If the term, say,  appears in  (multiplied by some constant, say,), then also  must appear (multiplied by the same constant) due to the symmetry of the indices. This must be generalized to the other indices as well, not just for 3 and 7 chosen in the example. Therefore, if  appears, it can be grouped for example in the term: . Of course,  could also appear in other terms, such as ; it is up to the multiplicative constants in Eq.(1.10) to add up to the right constant (i.e. the constants ). It is more convenient for further considerations to group together some terms of Eq.(1.10) more formally (and also relabel the constants differently), so that the equation could be rewritten in the following form:







The term  is obtained by dividing the -tuple of phases  in subsets of  disjoint pairs and counting all possible arrangements of those pairshaving opposite indices (thus making the cosine of Eq.(1.8) equal to 1); this number of arrangements is equal to  by definition. By doing so there are some terms that are over-counted, that is when the absolute value of the indices of different pairs is the same. In fact, for example, with  and indices ,, , , it is clear that this combination should be counted only once, but by counting all possible arrangements  could be paired with both  (i.e.  paired with ) and  (i.e.  paired with ), therefore  actually counts this combination of indices twice. Hence, the coefficients  act as a correction to avoid multiple counting (this is why a minus sign was put before the summation symbol); for instance when  the only contribution is given by  and the only coefficient  is multiplied by . Then, by comparing Eq.(1.11) when  with Eq.(A.26) or Eq.(1.7), one finds that the value of  is . If , then the second term in Eq.(1.11) gives: , and so on. Therefore, it should be clear how simple symmetry arguments about the indices may lead to the general formula for  written as in Eq.(1.11). The function  depends on both amplitudes and phases because it considers all other possibilities, namely terms containing -tuples for which at least one of the phase indices does not sum to zero with any of the other phase indices (the algebraic sum of all indices still equals zero). In this case the cosines of Eq.(1.8) will not equal  in general.

However, due to the narrowband of the filter, and to the (i) assumed uniform randomness of the phases, (ii) small variation of the amplitudes and (iii) large number of harmonics  :



Besides, the term that multiplies the coefficient  is large with respect to all others, in fact, by using the letter  to denote the big O notation, one can write:





Therefore, the term   goes to zero as  goes to infinity.

Hence, the error is negligible if only the first term is considered:



This agrees with the fact that terms that are counted multiple times in the first term of Eq.(1.11), which appear when the absolute value of the indices of different pairs is the same, are much less than the number of possibilities where the indices of disjoint pairs are different.

According to the above considerations, the value of the coefficient  can be computed by counting the number of -tuples of indices  among which pairs of them have opposite value (neglecting over-counting). If  is fixed, there are  possible indices  to which  can be equal in absolute value and have opposite sign. Assuming that a second index is chosen such that it equals , a third index must be fixed. At this point there are  possible indices which the third index can be opposite to. By continuing this line of thought it is clear that the coefficient  can be obtained according to the formula:



where the notation  indicates the double factorial. Hence, Eq.(1.14) can be recast as:



For odd values of , it is clear that the moment  can contain terms depending only on the phases, because there is always at least one phase that remains unmatched; therefore it can be written in the following form:



The function  is conceptually the same as the function  considered for even values of , thus it is approximately zero under the assumptions stated above:



As is well-known [33], if the signal is ergodic the moments computed in the time-domain (Appendix A, Eq.(A.18) ) are equal to their ensemble average counterparts; therefore, Eq.(1.16) and Eq.(1.18), which represent moments calculated in the time-domain, may be assumed equal to the corresponding moments obtained from the statistical distribution. From all the moments, the probability density function  can be derived; in fact, by considering the definition of the central moment in terms of ensemble averages:



it is easy to see that:



where  is the imaginary unit and it is assumed that the series and the integral converge, by omitting any mathematical rigor.

The left side of Eq. represents the Fourier Transform of the function , thus the Inverse Transform can be used to calculate  from its moments:



By substituting the expressions given by Eq.(1.16) and Eq.(1.18), Eq.(1.21) yields the Gaussian probability density function (see Appendix B).

Another interesting case to consider is when the narrowband filter has a bandwidth  such that  , and it is assumed that the response behaves like a sinusoid after filtering, such that there remains only one harmonic. In this case in Eq.(1.8), which still remains valid, the indices of the phases and amplitudes can only assume the values of  (since there is only one sinusoid), where  is a fixed integer. Since the sum of the indices  must equal zero, it is easy to see the moment of order  is zero if  is odd:



because the condition under the summation symbol in Eq.(1.8) is not satisfiable. It is also straightforward to compute the moment of order  when  is even. In fact, since the indices can only assume the values ,  should be equal to  and the other  equal to . The number of choices to achieve that is given by the binomial coefficient , hence:



where  is the amplitude of the sinusoid.

By substituting the expressions given by Eq.(1.22) and Eq.(1.23), Eq.(1.21) yields the probability density function of a sinusoid (see Appendix C).

The case of the filter bandwidth being so small such that only one sinusoid is extracted is not really likely in practice; nevertheless, the examples given in this section emphasize that the bandwidth of a system plays an important role in determining the distribution of the response of the system.
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There are different types of kurtosis-control algorithms: phase manipulation [14,16,20], amplitude modulation [17-19], Polynomial Transformation [21-23]; another more recent type of algorithm [17] describes how to synthesize novel non-stationary signals with prescribed kurtosis and PSD. In the next subsections, most of the focus will be directed to the kurtosis-control algorithms presented by E. Pesaresi et al. in recent works [17], which span most of the different types of kurtosis-control algorithms available in the literature. Some of the algorithms proposed therein are novel and not negatively affected by Papoulis’ Rule, as shown by means of a proper selection of input parameters. The algorithms are revised starting with the phase manipulation method as described by A. Steinwolf et al. [14] and then describing those introduced by E. Pesaresi et al. [17], with the aim to highlight the different characteristics in the synthesized signals.
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By looking at one of the expressions for  given by Eqs.(A.21, A.23, A.26) in Appendix A, it is evident that  depends not only on the , which is considered assigned (i.e. the amplitudes of the harmonics are fixed), but on the phases as well. Two approaches adopted in the literature are summarized in the following: 

1) Some phases are chosen so that the arguments of some cosines in are equal to zero . To exemplify and understand this approach, if Eq.(A.21) is considered, that is: , this expression has four different indices  associated with each term ; for instance, if a new  is chosen so that  for three selected indices  (considered to be fixed), the term  becomes equal to  and thus it is maximized.                                                                                                

This process can be carried out for other quartets of indices to maximize other terms.                                                                                                      

If, instead of maximizing those terms it is required to minimize them, the same process can be carried out but, the argument of the cosine in this case will be set to  instead of . 

Maximizing or minimizing those terms is useful for those cases where kurtosis needs to be, respectively, increased or decreased. Usually, phases are randomly generated at first, thus the signal starts (approximately) with the Gaussian value of  for kurtosis and then phase manipulation is used to increase (by maximizing the above terms) or decrease (by minimizing the above terms) the kurtosis parameter.

This procedure is not flawless: in fact, if for instance kurtosis needs to be increased and it is decided to maximize one term associated with a certain quartet of indices, it is not granted that the other terms grow as well or remain constant. Indeed, since the terms are numerous, there will be terms which likely become negative, with a possible overall effect of kurtosis decrease instead of increase. Thus, the process is not optimal, because in order to obtain the kurtosis target value several iterations should be carried out. 



2) The second approach   was conceived to improve the first one. It considers  in terms of the  terms, defined in Appendix A:













Considering the first summation of Eq.(1.24):



each member contained in the curly brackets still has its maximum value equal to  because the formula derives directly from Eq.(1.7), knowing that: .

This maximum value is the target and it should be reached by keeping the  fixed, as already mentioned. It can be achieved if, for each of the harmonics involved, the  terms are expressed as a function of  (or vice versa):

,,,

Thus, for a fixed quartet of indices , there are only  independent parameters for each term in the first summation of Eq.(1.24).

The procedure of this second approach requires that a quartet of indices be chosen, for instance:  belonging to the first summation of Eq.(1.24), and then one index be chosen for which the phase should vary (for instance ) and the phases of the other  indices be considered fixed (). A mandatory condition to be satisfied is that the three fixed indices not be equal to the index for which the phase should vary (for the first summation this is always true).

Then, one can rewrite the term with indices  in the first summation as:



where:



and:



After differentiating the function given by Eq.(1.25) with respect to  and imposing the result to be equal to zero, the following solution can be found for :



Then  can be calculated as already seen: 



With the double sign in Eq.(1.26) and another double sign in Eq.(1.27), there are  solutions, but only two of these solutions lead to the maximum and minimum of the function in Eq.(1.25). To find the signs for the  and  values corresponding to the maximum and minimum, the signs of  and  must be considered: for kurtosis increase, the sign of  should be selected to be the same as the sign of  and the sign of  the same as the sign of . Then, the value of  will be maximum. For kurtosis decrease, the sign of  should be selected to be the opposite to the sign of  and the sign of  opposite to the sign of . Then, the value of  will be minimum.

This is the procedure described by A. Steinwolf in his article . If only one term[footnoteRef:4] of the first summation of Eq.(1.24) is considered, the first and second approach lead to the same result but, if more terms are considered, the second approach leads to better results, because more sums are taken into consideration. Their maximum or minimum value is to be found by optimizing the function: , where  and  are constant with respect to  like  and , but may depend in general on more than  indices[footnoteRef:5] (i.e. the case if only one term is considered). [4: What is meant by “term” is the content of the curly brackets of the first summation appearing in Eq.1.24 (for a fixed quartet of indices ), namely: .]  [5:  The expressions for  and  can be generalized from that of  and . In particular, when one considers all possible indices, obtains:
, 
] 


However, even the second approach is not flawless: indeed it cannot consider all the possible terms to be added in Eq.(1.24), because when the indexis chosen, the other indices must not be equal to , otherwise the problem could not be written in the form:  because higher order terms would appear. Therefore, maximizing only some of the terms does not prevent the others from having the opposite tendency, namely to create an overall effect that may thwart the desired one. 

3) To conclude this subsection, a third approach of manipulating phases is introduced, which has a straightforward implementation; hereinafter it will be referred to as PM algorithm.                                                     The approach is not analytical and is based on the following steps:



step  generate phases randomly;



step  select one of the phases randomly in a pre-selected frequency range;



step randomly set another value for that phase, between  and ;



step calculate the new kurtosis value in the time domain[footnoteRef:6]; [6:  At step 3, it is necessary to perform an IFFT in order to generate the time-series.] 




step if the new kurtosis value is closer to the target value, keep the value of the phase changed at step , otherwise discard it and restore the former value for that phase;



step repeat from step  until the target is reached.



The speed of the PM algorithm is given by the fact that there is no analytical formula to compute. At step 1 of each loop, there is a 50% chance of increasing/decreasing kurtosis and only the operation of random number generation is needed, which is of no particular computational concern. Since the first two approaches described above usually consider only few of the terms contained in  in the maximization process, the probability may be less than 50% at each loop, with possibly no advantage over the simple steps proposed above. In order to maximize the probability of increasing/decreasing kurtosis as desired, the second approach should consider a number of terms of the order  at each loop, where  is the same number of harmonics as in Eq.(A.8). In fact, by considering Eq.(A.21) for the calculation of , there are  indices and one constraint, hence  operations; the number of operations to be done in the first sum of Eq.(1.24) is still of the order . At each loop, the second approach fixes one of the indices, therefore there remain two free indices and  operations. In this case, the coefficients  and  (see footnote 5) need a number of operations  to be computed at each loop, which is much greater than the number of operations  required for the computation of the kurtosis parameter (computed on step 3 in the PM method), with the  moment being defined in the discrete case as:



where:





It is also true that, on step 3 of the PM method, an IFFT is required to go from the frequency domain of the phases back to the time domain, before performing the kurtosis computation. Therefore, the number of operations , which is distinctive of the IFFT implementation, must be added to the number  related to the kurtosis computation in the time domain, but the total number still remains much smaller than . This implies that, after one loop of the second phase manipulation approach proposed by A. Steinwolf and described in this subsection, a large number of steps is performed by the PM method. If this number is denoted by , the probability of having the desired kurtosis increase/decrease in the PM method, increases from 50% to:  , namely close to 100% for even moderate values of M.



[bookmark: _Toc64275084]1.2.2 Modulation technique

Another technique to achieve kurtosis control is known as modulation. This approach consists in modulating a Gaussian signal  having the desired 𝑃𝑆𝐷 spectrum with an appropriate function  such that: in order to obtain a Leptokurtic signal with a desired kurtosis value [17-19]. This method is effective in transferring the kurtosis value to the response of the DUT if the signal bursts created by the modulation have greater duration than the inverse of the bandwidth of the lightly damped system [18]. The carrier waveform  introduces low frequency components in the spectrum of  compared to that of , albeit negligible if  is properly designed. 

The technique reported here was described by E. Pesaresi et al. [17]. The modulation algorithm therein was named “Multi-Level Variance” (𝑀𝐿𝑉); it considers the signal to be synthesized as divided into blocks of the same duration  (with no overlap). The generated blocks have different standard deviation, which represents the modulation procedure, with the modulating function  being of the form:

		

		





The different levels of variance  are produced in such a way that the synthesized signal is compliant with the kurtosis and 𝑃𝑆𝐷 constraints as it will be shown in the following. In general, the 𝑃𝑆𝐷 of a signal is computed by calculating the FFT over small-sized blocks, squaring their magnitude in order to obtain the so-called periodograms and then averaging the periodograms. More specifically, the periodogram could be thought of as some sort of 𝑃𝑆𝐷 computed only for the generic block of the signal. Therefore, instead of using the word “periodogram”, reference will be made hereinafter to the 𝑃𝑆𝐷 of the blocks of the signal.

In the algorithm, the 𝑃𝑆𝐷  of the  block of the signal is set to be scaled with respect to the 𝑃𝑆𝐷  of the reference signal:

		 (1.31)

In Eq.(1.31)  is the standard deviation of the overall signal, whereas  is the standard deviation of the  block. It is to be highlighted that the  parameters are the unknowns, whereas  can be calculated from either the reference signal using Eq.(1.28) with  or from the reference  using the equation:

		 (1.32)

where  is the 𝑃𝑆𝐷 of a continuous reference signal. However, since the processed signal is discrete in practice, the 𝑃𝑆𝐷 is also discrete and the theoretical computation of Eq.(1.32) must be discretized.

The unknown parameters  are also related to the overall variance  via the relation (see Appendix D):

		 (1.33)

From Eqs.(1.31) and (1.33) the following relation must hold:

		 (1.34)

Since the 𝑃𝑆𝐷  is computed by averaging the 𝑃𝑆𝐷 of the blocks, Eq.(1.34) is automatically satisfied (or approximately satisfied in case of a computation of the PSD with overlap of the blocks). Hence, the constraint on the 𝑃𝑆𝐷 spectrum is respected if  coefficients  () that comply with Eq.(1.33) are found.

In addition to Eqs.(1.33) and (1.34), another relation must hold between the kurtosis values of the overall signal  and the kurtosis values of the single blocks  (see Appendix D):

		 (1.35)

Eq.(1.35) will be used in one of the steps of the algorithm; the first step is to randomly generate the  values such that    and  . The ratio  must be set by the user, it being an input for the algorithm: the closer to 0 the more the variance of the synthesized signal will vary in time, whereas the opposite is true if closer to 1. The parameter  is not selectable by the user because it is adjusted throughout the algorithm iterations in order to approach the target kurtosis within a certain tolerance; in particular, starts from an empirically set threshold higher than  and then is decreased at every loop until the algorithm converges. The threshold remains the same for every run of the algorithm; it should be neither too high, otherwise Eq.(1.33) may not be satisfied, nor too low because otherwise the target kurtosis value may not be reached. Besides, not only the value of  may affect the speed of convergence of the algorithm, but its variation step at each loop may as well; the choice of the authors was guided by some trial and error runs of the algorithm and its non-uniqueness makes it difficult to give more rigorous details. 

The user can also choose the parameter  intended to set the number of “bursts” of high amplitude excursion of the synthesized signal. The algorithm generates  blocks with a standard deviation equal to , which is greater than that of the other blocks. 

The kurtosis  of the blocks may be calculated via the moments of Eq.(1.28) for greater accuracy, but it should be noted that the kurtosis values of the blocks are expected to be close to the value of 3, because the time-series associated with each block is (approximately) Gaussian. The overall discrete signal  is obtained by performing the IFFT on each of the blocks’ 𝑃𝑆𝐷 spectra with randomly generated phases; then, the blocks are concatenated.

At an initial step of the procedure, a random integer  representing a single block is automatically generated in the interval .

After the  levels are generated (), the standard deviation and kurtosis of the randomly selected   block are calculated via the following relations, which stem from Eqs.(1.33) and (1.35):

		 (1.36)



		 (1.37)

Eqs.(1.36) and (1.37) are used in order to verify whether the prescribed 𝑃𝑆𝐷 and target kurtosis can be achieved: indeed  is required to be greater than zero and  greater than a lower threshold (the lower theoretical limit of kurtosis being 1) and less than an upper threshold. The upper threshold should not be set excessively high, possibly leading to the undesired effect to generate unrealistic peaks in the  block exceeding by far the amplitude of the peaks in the other blocks. Afterwards, in order to obtain the desired  given by Eq.(1.37), some harmonics phases of the  block are adjusted by means of a phase manipulation procedure. After few iterations, where the parameter  is changed in order to converge towards the target kurtosis value, Eqs.(1.36) and (1.37) are usually satisfied.

The final step of the algorithm is to smooth the signal at the edges of the blocks (by means of special windows), in order to avoid unrealistic discontinuities among them.

In conclusion, the user has to insert: 

· the reference input signal or, alternatively, reference 𝑃𝑆𝐷 and kurtosis value;

· the parameter ;

· the ratio ;

· the number of bursts ;

· the duration  of the signal to be synthesized;

· the sampling frequency of the synthesized signal (usually the same as the reference signal, therefore not necessarily an input).
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A novel algorithm that does not fall under any category of kurtosis control algorithms thoroughly discussed in the literature (e.g. phase selection [14,16,20], modulation [17-19], Polynomial Transformation [21-23]), was described by E. Pesaresi et al. [17] and named “Variable Spectral Density” (𝑉𝑆𝐷). It splits the signal to be synthesized into disjoint blocks of the same duration , as the algorithm discussed in subsection 1.2.2. The major difference is that the 𝑃𝑆𝐷  of the  block is randomly generated.

Let the 𝑃𝑆𝐷 matrix be defined as:

		 (1.38)



where .

This matrix has  rows and  columns, with the  column being the 𝑃𝑆𝐷 vector of the block of the reference signal . Eq.(1.38), where all the columns have the same elements (harmonic amplitudes), refers implicitly to a signal having a stationary 𝑃𝑆𝐷. On the other hand, the 𝑃𝑆𝐷 matrix  corresponding to the signal synthesized via the 𝑀𝐿𝑉 algorithm has the following form:

		 (1.39)

Both the matrices in Eqs.(1.38) and (1.39) satisfy Eq.(1.34) that may be rewritten in this case, in conformity with the notation used in this subsection, as:

	        	 (1.40)

The 𝑉𝑆𝐷 algorithm synthesizes a signal with a variable 𝑃𝑆𝐷 over time, corresponding to a 𝑃𝑆𝐷 matrix having the most general form:

		 (1.41)

where the elements must comply with Eq.(1.40).

The matrix in Eq.(1.41) is useful to generate signals whose 𝑃𝑆𝐷 varies over time.

To comprehend the method, a few steps are illustrated to show how the generic matrix’s form of Eq.(1.41) can be derived from Eqs.(1.38) and (1.40). The procedure starts from the matrix shown in Eq.(1.38): then, as a first step, the  row is taken and changed as follows (where   and  is a positive integer such that ):

 column







		 (1.42)

Eq.(1.40) is still respected if the terms of the type  are  in the ith row and there is only one term of the form:; the ordering of the terms in the row is unimportant and the remaining  terms on the same row are still equal to . If similar operations were done not only on the term  but on other terms as well and in a random manner, the  of each block could be varied still preserving the overall . The steps of the algorithm are given with more detail in the following:









0) insert a reference input signal or, alternatively, a reference  and kurtosis value;

1) set the duration  and the sampling frequency of the signal to be synthesized;

2) choose   (user’s choice), start from a certain  (automatically set), and set ;

3) start from the  row and set ;

4) choose a random element  of that row;

5) generate a positive random integer ;

6) set:

  and  

7) repeat   with another value for  (different from the values generated in the previous loops), and another value of  until ;

8) set 



with  ranging over all the elements of the   row which have not been modified at step 6;

9) if , set  and repeat from step , otherwise proceed to step ;

10) terminate if the kurtosis of the synthesized signal matches the target value (within a certain tolerance, to be preliminarily set), otherwise repeat from point 2 without changing  but with a different , automatically defined. Decreasing  makes the kurtosis value increase and vice versa (this is how the algorithm converges towards target kurtosis).

The algorithm can be implemented efficiently from a computational perspective; however, the bottleneck could be step 10, in which a precise calculation of kurtosis is achieved only if the IFFT’s are performed on the PSD spectra of the blocks (the phases are randomly generated). This could cause the synthesis procedure to be slow for large signals. A way to speed up the process, by loosening the target precision on the kurtosis value, could be that to implement a special case of Eq.(1.35) without performing the IFFT’s:

        	           (1.43)

Since the phases of the blocks are randomly generated, the latter’s kurtosis  can be considered approximately equal to , thus leading from Eq.(1.35) to Eq.(1.43). This is the more accurate the more wide-banded the PSD of the particular block, otherwise that block’s kurtosis value would be closer to 1.5, typical of a sinusoid, and the calculation errors would increase. This simplified approach was not necessary in the simulations carried out by the authors: even with signals lasting upwards of 10 minutes and sampled at more than 8 kHz, the synthesis procedure is completed in a few seconds with a standard pc.

One of the main features of the algorithm is that the variation of the 𝑃𝑆𝐷 over time (i.e. over the blocks) is not controlled but randomly generated.

As in the case of the 𝑀𝐿𝑉 algorithm, the last step is to smooth the signal at the edges of the blocks, in order to avoid unrealistic discontinuities.
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In this chapter the current state of the art of durability tests is described in the first part. In particular, the fatigue damage spectrum is introduced, together with mathematical formulae used for its calculation. In section 2.1 a technique to extend kurtosis control algorithms to durability tests is described. This technique is already available in the literature, even though the mathematical formulation contained in section 2.1 is original. Then, starting from section 2.2, novel algorithms aimed at fatigue-life tests are proposed. 





The mechanical loads operating in real applications are often the cause of fatigue failure of components. Due to their expected lifetime being worth of several hundreds or even thousands of hours, it is usually required to accelerate the tests performed in laboratories. These tests must reproduce the entire fatigue damage experienced by the component during its operational life, but in a shorter amount of time[footnoteRef:7]. [7:  The so-called Inverse Power Law is usually employed to scale vibration data in order to obtain a desired test duration, by knowing the time-to-failure associated with the unscaled data.] 


The metric used to estimate the fatigue damage is a spectral function called “Fatigue Damage Spectrum” (FDS) [36-40]. Therefore, the purpose of the laboratory tests is to synthesize signals (Mission Synthesis) that have the same FDS as the one calculated from the signal measured in the real application, which is representative of the components’ operating conditions.

The calculation of the FDS for general signals is performed in the time-domain. It starts from the computation of the relative displacement response[footnoteRef:8] of a single degree of freedom (SDOF) system; the latter is the most simplistic representation of the DUT frequently adopted. To calculate the relative displacement, a fast and accurate ramp-invariant filtering technique is usually employed [50]. Afterwards, the peaks and valleys (i.e. extrema) of the relative displacement are extracted from the time-series, which are then input to a time-counting algorithm (usually the Rainflow counting) in order to find the amplitudes of the damaging cycles. [8:  Some authors prefer to calculate the pseudo-velocity instead of relative displacements [14].] 


This procedure is looped through a diverse range of SDOF systems’ natural frequencies, which take into account the fact that the component to be tested is unknown in practice.

It is well known [40] that current standard practices lead to the synthesis of signals characterized by a Gaussian distribution of their values, with the specification being prescribed by a target FDS and duration. The distribution is Gaussian because the FDS specification translates to a PSD specification, with the phases being generated randomly; this leads to a Gaussian distribution according to the discussion in chapter 1.

How to obtain a PSD from a FDS was described by C. Lalanne [40], who proposed a methodology to synthesize a PSD from a target FDS. From the PSD, the actual time-series is then generated by performing the IFFT on the PSD as described in chapter 1. 

A most general expression for the fatigue damage’s expected value is the following [40]:

 

When the damage is thought of as a function of , represents the FDS. Appendix E provides another expression for the damage, which is equivalent to Eq.(2.1).

The integral in Eq.(2.1) is the  moment of the peak-valley amplitudes contained in the (random) relative displacement time-series (i.e. the RV ). In general, the  moment  of a positive RV called  is defined as:



If  is a discrete process constituted by a sufficiently large number of samples , for which the assumption of ergodicity holds [33], then:



where  is the  sample of the underlying discrete stochastic process.

With the assumption that the reference signal is Gaussian and the system narrow-banded (i.e. characterized by small values of  typically in the range 1%-10%), an equation [36, 40] that relates the FDS to  is the following:



where  is the gamma function:

 

The  value can be related to the PSD of the input signal[footnoteRef:9] via [40,41]: [9:  It is worth recalling that  is a displacement, whereas the input signal is an acceleration.] 




Using Eqs.(2.4-2.6), it is possible to implement efficient procedures to compute the FDS from a PSD or vice versa [40].

In Eqs.(2.1,2.4,2.6) the expressions for the FDS  and root mean square of relative displacement hold true for both continuous and discrete values of the natural frequency . This is useful because the expressions for these functions do not change when computed numerically, namely when the parameter  assumes only discrete values. In the following, the notation  will be used to indicate a discrete signal , whereas in the case of  being continuous it will be denoted as . Unlike  and , the function  in Eq.(2.6) is rigorously continuous, it being an integrand. However, the PSD is discrete in practice; therefore, it is required to discretize the integral. A straightforward expression can be derived by considering  as a sum of Dirac deltas centered at different frequencies:



where  is the  PSD point and  is the  frequency  of the PSD divided by the frequency of the SDOF system, namely:



By inserting Eqs.(2.7-2.8) in Eq.(2.6), one obtains:



As an alternative to Eq.(2.9), continuous expressions of  could be obtained, as described by C. Lalanne [41], by interpolating the discrete points  in different ways (e.g. linearly or logarithmically).

In the time-domain, the difficulty in evaluating the FDS using Eq.(2.1) is mostly due to the integral therein, because the statistical distribution  is generally unknown for real-life random excitations unless computed numerically, which could be done but at the expense of an increased number of computations at each loop. 

Another parameter to be estimated in order to evaluate Eq.(2.1) is . In random vibration testing, its value is usually set equal to  under the assumption of a narrow-banded SDOF system, implying that the component is lightly damped, which is usually the case in practice. For all these reasons, current time-domain algorithms use the following formula to compute the damage in place of Eq.(2.1): 



where  is the number of amplitude cycles  extracted (by any counting algorithm) from the peaks and valleys of the SDOF system response  at the natural frequency . Eq.(2.10) holds regardless of the bandwidth of the SDOF system.

Since time-domain methods are expensive computational-wise, in Appendix F an improvement of current time-domain methods is proposed, aiming at a compromise between precision and speed.

The standard frequency domain-approach is an alternative to time-domain methods; the former estimates the damage in terms of a Power Spectral Density (PSD) with the assumption of the distribution of the reference signal being stationary and Gaussian.

The Gaussian distribution could be a strong limitation given the recurring non-Gaussianity of reference signals in practice. Non-Gaussian features are often due to high peaks/bursts located in the signal with a random pattern (i.e. caused by micro-collisions, road-bumps, etc.) and/or deterministic components (i.e. sinusoidal tones, which prevail over the background noise). If mostly bursts and peaks characterize a signal, its distribution is called Leptokurtic, whereas if sinusoidal tones are predominant, the distribution is called Platykurtic, otherwise it is Gaussian. In general, it is complicated to quantify non-Gaussianity with simple global parameters, because of the usual non-stationarities being present locally in some parts of the reference signals. However, the simplest parameter adopted in the literature is the already discussed kurtosis, whose value allows to outline a boundary between Gaussian (when kurtosis equals 3), Leptokurtic (when kurtosis is larger than 3) and Platykurtic (when kurtosis is smaller than 3) distributions [41].

Since kurtosis is a simple metric that could control the “nature” of a signal (i.e. its distribution), several authors [9-25] proposed different procedures to synthesize signals with prescribed kurtosis value and Power Spectral Density (PSD). As described in chapter 1, these procedures are enclosed in the category of the so-called “kurtosis control” methods. They do not focus directly on preserving the same fatigue damage or FDS function, but rather on preserving the kurtosis of the reference signals and their PSD. As suggested by J. Antoni et al. [51,52], kurtosis is a global parameter and should not be considered a fatigue damage metric per se. M. Troncossi et al. [53], provided cases where signals with the same kurtosis value could have substantially different Fatigue Damage Spectra. This is the reason why, together with the kurtosis parameter, it would be wise to take into consideration other features related to non-stationarities. This is also one of the reasons why other tools, such as the spectral kurtosis [51] and the kurtogram [54] (as well as FDS itself), are present in the literature.

With these caveats highlighted, kurtosis still remains a useful tool if considered together with other metrics, such as the PSD (and its variation over time) and especially the FDS in the case of durability tests. At present, to the author’s knowledge, only F. Kihm et al. [34] proposed novel algorithms for non-Gaussian accelerated tests, seeking to control the FDS and kurtosis value. The aim of section 2.1 is to revise the method proposed by F. Kihm with additional considerations; then, in section 2.2 novel algorithms are proposed for the synthesis of more realistic vibration tests with Leptokurtic signals. 



[bookmark: _Toc64275087]2.1 Extension of kurtosis control algorithms

F. Kihm et al. [34] proposed a novel procedure that modifies a signal synthesized by a kurtosis-control algorithm so that its FDS matches a reference input one, with the aim of preserving its non-Gaussianity as well. In order to achieve the FDS match, a filter is used. The steps of the procedure and the filter definition are briefly reported:

1) calculate the FDS of the reference and synthesized signal, respectively  and ;

2) define the spectral function: 

3) calculate the IFFT of  to obtain the impulse response of the filter; 

4) convolve the so-obtained impulse response with the synthesized signal.



The mathematical justification is given next. 

Eq.(2.1) could be equivalently re-written in terms of  in the following way (see Appendix E):



where  is the probability density to find a valley/trough at instant  and its corresponding peak at instant . Since  can be related to the signal  (which is the acceleration signal generated by any kurtosis control algorithm) via the latter’s convolution with the impulse response function  of the system:



equation  can also be put in the following form:



It is now assumed that the Fatigue Damage Spectrum  of  has been computed and it differs from the reference one, symbolically written as . In order to simplify the mathematical details and arrive at simple results, it is supposed that the spectral function:



can be considered relatively constant over the natural frequency axis. One should note that in Eq.(2.14)  can be considered relatively constant if the shape of  is similar to that of , but the same condition can also be approached as the coefficient  related to Wohler’s curve slope increases. Hence, its IFFT is approximately proportional to a Dirac delta:



If a new signal  is considered, given by the convolution between  and , its FDS  can be easily proved to be equal to the reference one.

Simple mathematical steps[footnoteRef:10] show that the FDS of the function , obtained from convolving  with , is indeed equal to the reference one. Thus, the filter defined by  is effective in adjusting the FDS of a signal synthesized by kurtosis-control methods, provided the assumption of constancy of  with respect to holds. [10:  The mathematical proof is obtained by making use of Eqs.(2.13, 2.15) and the definition of 




] 


After this filtering procedure, the kurtosis value and PSD are modified; nevertheless, the peaks and bursts, if present, may remain unaltered as it will be shown in chapter 3. It will also be shown that in some cases the signal tends to Gaussian after filtering, thus losing its non-Gaussian characteristics. A possible downside of the procedure is that the problem is tackled indirectly: namely, a signal with a prescribed kurtosis value and PSD is synthesized, then its FDS is computed. The computation of the FDS is usually time expensive computationally especially if a time domain calculation is performed (i.e. via Counting methods applied to long time-series). F. Kihm et. al [19,34] proposed a frequency domain method for the calculation of the FDS, which is renowned for its better computational efficiency. This could be done since the synthesized signal was assumed to be obtained by modulation, with the modulation defining the duration and separation of the signal’s bursts, and the signal to be modulated was supposed to be stationary and Gaussian.

The distribution of the peaks of the output signal  can be calculated using the rule to find the PDF of the product of two independent random variables X (representing the peaks of a stationary Gaussian signal) and A (representing the modulation) with distributions  and  respectively [19], given by the equation:



Eq.(2.16) requires an expression for the PDF of the modulating signal to be determined. This task is though straightforward for simple burst waveforms such as a sinusoid, for example. The fatigue damage is then calculated based on the stress peak distribution and the material Wohler’s curve. Kurtosis and damage can therefore be related mathematically in this case, without resorting to time domain methods. However, not all signals in practice can be obtained via modulation, as motivated in the next section.

It has already been highlighted that some of the most sought-after characteristics that a vibration test should have are: the possibility of reducing the duration of the tests, the same FDS as the signals measured in real applications, as well as the preservation of the “nature” (i.e. distribution) of these signals. A step forward in the field of random fatigue vibration tests, namely to control the nature of the signals together with the FDS, was made by F. Kihm et al [34] as described in this section, who developed an algorithm that is based on the correction of a signal synthesized by kurtosis-control methods in order to match a target FDS. However, the PSD and kurtosis value are affected; in particular, the PSD is affected the more the greater the time reduction factor of the tests. In fact, as the duration of the synthesized signal decreases, its energy level is increased in order to contain the same damage potential as the reference signal. Also, the correction of the synthesized signal is dependent upon the computation of the FDS of the signal itself, which is time consuming. Another possible limitation is that the signals considered are based on modulation. The latter method is one of the most used since it is effective in transferring the kurtosis value to the response of the DUT if the signal bursts of the modulating signal have greater duration than the inverse of the bandwidth of the lightly damped system [18]. As it will be shown in the simulation results, the kurtosis of the system’s response is close to that of the input signal in the case of algorithms based on modulation; the behavior of the response to a signal measured in real applications may be different. The fact that the kurtosis of the output is similar to that of the input in the case of modulated signals can be motivated by the following reason: the blocks constituting the synthesized signal all have the same PSD bandwidth and shape [17], thus either resonance is present in each of the blocks or in none of them. In both cases, the shapes of the input and output signals are similar.

On the other hand, real signals could also contain narrow-band blocks interspersed with wide-band ones; in this case resonance effects may occur and their occurrence could lead to high peaks in some blocks of the response that are not present in the input signal. This may cause the response to have a much higher kurtosis value than the input, which is often the case in real applications.

In the following four novel algorithms are proposed, which all present different features and face the above-mentioned problems, with the purpose of expanding on the work of Kihm et al.
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In this section, four novel Mission Synthesis algorithms are proposed, which achieve controlling the FDS in conjunction with other parameters, specific to the algorithm selected. Their commonality is the synthesis of Leptokurtic signals, thus extending the standard procedure described in the literature [39,40] and some other recent methodologies [34]. Instead of achieving the FDS control a posteriori, by means of a filtering process applied to signals generated by kurtosis control algorithms as described in section 2.1, the FDS is controlled a priori, without resorting to the intermediate step of kurtosis control.

The first algorithm that will be introduced, named kFDS, manages to control both the FDS and kurtosis value of a signal to be synthesized. Because of the limitations of this global parameter[footnoteRef:11], highlighted in the introduction of chapter 2 and section 2.1, three more algorithms are proposed. The second algorithm is named RF and complies with a prescribed FDS and RMS value that the synthesized signal is required to have, irrespective of the possible time reduction factor applied to the test. Subsequently, the RP algorithm will be introduced, which adds the possibility of controlling the PSD shape in addition to the FDS and RMS value. Finally, a modified version of the RF is shown, the PSF algorithm, which omits to control the RMS value and complies only with a FDS and a PSD shape specification. [11:  However, it is worth highlighting that if kurtosis is controlled together with the FDS of a signal, it may become much more meaningful than just kurtosis considered by itself. The practical application shown in chapter 4 will exemplify the statement.] 


The main advantages of the methodologies are related to the computational efficiency due to the simple mathematical formulae required, which are basically the same as those found in the standard practice, with the necessary time-domain calculations being performed only to calculate the FDS from reference signals.



[bookmark: _Toc64275089]2.2.1 kFDS algorithm

This algorithm, hereinafter referred to as kFDS, achieves synthesizing signals with a prescribed FDS and kurtosis value. It is based on the observation that the overall FDS of a signal is (approximately) equal to the sum of all the smaller blocks’ FDS spectra the signal is composed of, namely:



where  is the FDS of the  block and  is the total number of blocks which the signal is considered divided into, hereinafter supposed to have the same duration. In the following, the overall FDS must be viewed as the desired FDS (i.e. the one prescribed by the specification), which should be characteristic of the synthesized signal(s). Eq.(2.17) is an approximation because by introducing blocks, possible interactions among them (e.g. due to the counting methods used in the computation) are neglected. Nevertheless, these effects are negligible if the ratio of the number of blocks to the number of points of the signal in each block is sufficiently small, which will be the case hereinafter. The algorithm defines  coefficients  such that:



thereby constraining their choice to comply with the following equation:



The signal to be synthesized is considered to be generated by concatenating  different Gaussian blocks, whose target FDS functions are the ones given by Eq.(2.18). The “discontinuities” possibly arising from concatenation are smoothed out by interpolating the values close to the edges of adjoining blocks, without affecting the overall damage noticeably and the target kurtosis value is achieved as explained in the following.

From the target FDS of the  block , a PSD  is synthesized by means of the standard procedure reported in chapter 2, from which the (Gaussian) time-series constituting the block is generated. Since the blocks are characterized by different FDS curves, some can have a higher energy level than others, thus leading to Leptokurtic signals. The kurtosis value can be achieved by a small number of iterations, each one performed with different  coefficients; the entire procedure can be summarized, with all necessary details, by the following steps:

1) start with the coefficients  being “close to” homogeneous, thus “almost” equal to . The words “close to” and “almost” instead of exactly “equal to” permit to spare one iteration, since in case the coefficients were exactly equal to , a signal with kurtosis (approximately) equal to 3 would be obtained.

Also choose a tolerance value  for target kurtosis;

2) calculate a PSD  from the overall FDS according to Eqs.(2.4-2.6);

3) set the PSD  of each block  according to the following equation:

     	                                                   (2.20)

4) calculate the variance  of each block by integrating its PSD ;

5) calculate the variance  of the signal with the following formula (analogous to Eq.(1.33)): 

       	                                                  (2.21)

6) calculate the kurtosis  of the signal with the following (approximated) formula (analogous to Eq.(1.43) ): 

         	                                                (2.22)

7) compare the kurtosis of the signal  with the reference value : if < increase the variability of the  coefficients (in a random manner) and go to step 3, if > decrease the variability of the  coefficients and go to step 3, otherwise proceed to step 8;

8) generate the blocks by applying the IFFT to the PSD’s ;

9) concatenate the blocks so generated and smooth them by means of proper interpolation of the values close to the edges of adjoining blocks.

The steps of the algorithm converge rapidly since there are no burdensome analytical formulae to compute on large vectors.
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This algorithm, hereinafter referred to as RF, achieves synthesizing signals with a prescribed RMS value and the FDS. The reason why it was developed is that if the duration of a vibration test is reduced, the energy level (i.e. the PSD) of the signal increases. This is true for both the standard algorithm described in chapter 2 and for those methods that control the FDS and the kurtosis value (e.g. kFDS algorithm). In fact, by fixing a certain kurtosis value, if the duration of the signal is reduced while at the same time preserving the target FDS, the energy level has to increase. This algorithm manages to preserve the FDS and at the same time the energy level, namely the variance (i.e. the square of the RMS), with any selected time reduction. The shape of the PSD is constrained by Eqs.(2.4-2.6), whereas its intensity can be manipulated by adjusting the kurtosis value[footnoteRef:12] in order to achieve the prescribed RMS. If the target kurtosis is greater than 3, one obtains the same PSD shape as in the Gaussian case, but its intensity decreases because of the presence of high bursts in the signal. The generation of the blocks of the signal is identical to that of the kFDS algorithm, but with a different procedure to find the coefficients . The steps of the algorithm are similar and reported in the following: [12:  In this case the kurtosis parameter depends on the target RMS and is not necessarily equal to the reference signal’s kurtosis.] 


1) start with the coefficients  being “close to” homogeneous, thus “almost” equal to . The words “close to” and “almost” instead of exactly “equal to” permit to spare one iteration, since if the coefficients were exactly equal to , a signal with kurtosis equal to 3 would be obtained.

Also choose a tolerance value  for target RMS;

2) calculate a PSD  from the overall FDS according to Eqs.(2.4-2.6);

3) set the PSD  of each block  according to Eq.(2.20);

4) calculate the variance  of each block by integrating its PSD ;

5) calculate the RMS  of the signal to be synthesized via Eq.(2.21);

6) compare the RMS of the signal  with the reference value  (computed from the reference signal): if > increase the variability of the  coefficients (in a random manner) and go to step 3, if < decrease the variability of the  coefficients and go to step 3, otherwise proceed to step 7;

7) generate the blocks by applying the IFFT to the PSD’s ;

8) concatenate the blocks so generated and smooth them by means of proper interpolation of the values close to the edges of adjoining blocks.
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This algorithm, hereinafter referred to as PF, manages to control: the PSD shape of a signal, its RMS and the FDS (i.e. it controls the PSD and the FDS). Unlike the kFDS and RF algorithm, this one does not use modulation. In fact, from Eq.(2.20) and step 8 in subsection 2.2.1 (or steps 3 and 8 in subsection 2.2.2) it is evident that the time-series of each block of the kFDS and RF algorithms was achieved by modulating a Gaussian time-series by , with  an integer from to varying over the blocks that constitute the signal (i.e. varying over time). In addition to the features of the RF algorithm, the PF adds the control of the PSD shape to that of the RMS and FDS, with any time reduction selected.

The first step considers the duration  of the signal to be given by the sum of the duration  of all the blocks with higher energy (bursts) and the duration  of all the blocks with lower energy (i.e. =+). Then, the following assumption is made: the damage caused by the blocks with lower energy can be neglected. This assumption is reasonable if the signal is Leptokurtic and even more so if time reduction is applied to the test. In fact, in order to preserve the RMS value (as well as the FDS) and reduce the duration and/or cause the synthesized signals to be Leptokurtic, the signal must contain “high-energy” blocks interspersed with “low-energy” ones. It should be noted that the PF algorithm considers either “high-energy” or “low-energy” blocks, thus only two levels; this is a difference with respect to kFDS and RF, which could synthesize signals with a variable variance over  blocks (i.e.  possibly different energy levels). 

The next step is the synthesis of a PSD  from the reference FDS via Eqs.(2.4-2.6), with the latter being computed over the duration  of the blocks with high energy.

Then, the PSD  of the blocks with low energy is computed by ensuring compliance with the reference PSD , namely:



The low-energy part of the signal (characterized by duration ) is then generated by applying the IFFT to , whereas the high-energy part (characterized by duration ) by applying the IFFT to . The next step, after having set a number of blocks , is to concatenate the random permutations obtained by splitting the low-energy and high-energy part in  blocks. This is legitimate if Eq.(2.17) holds, because in doing the permutations the damage must remain the same. The permutations must also preserve the overall PSD of the signal, maintaining it equal to the reference one:. This constraint is also respected if the number of blocks  is chosen less than or equal to the number of blocks used in the computation of the reference PSD (calculated from the reference signal). In general, the number of blocks involved in the computation is related to the statistical error of the PSD spectrum [41]. The steps of the algorithms are summarized with more detail in the following:

1) automatically set the duration of all the bursts of the signal and the duration  of the low energy part of the signal such that  be equal to the duration  of the signal to be synthesized. Also set the number of blocks  of the signal to be synthesized. The latter should be set equal or smaller than the number of blocks used for the calculation of the reference PSD (e.g. the total number of points in the signal divided by the NFFT parameter used in the function pwelch in );

2) compute a PSD  from the overall FDS according to Eqs.(2.4-2.6), with the duration in place of  in Eq.(2.4);

3) set the PSD  of the low-energy part in accordance with Eq.(2.23);

If  < 0 for some frequency  (this could happen because of the minus sign in Eq.(2.23)), restart from step 2 with a lower , automatically set, and set equal to ;

4) construct two time-series: one generated by performing the IFFT on  , the other by applying the same technique to , and concatenate them into one signal;

5) divide the signal so obtained into  blocks;

6) do a random permutation of the blocks so generated and smooth the signal by means of proper interpolation of the values close to the edges of adjoining blocks.



[bookmark: _Toc64275092]2.2.4 PSF algorithm

This algorithm, hereinafter referred to as PSF, achieves controlling the PSD shape of a signal and the FDS. Unlike the PF algorithm, the PSF does not control the RMS in case time reduction is applied; in fact, the energy level would increase in place of the kurtosis value as occurs with the PF algorithm, but the shape of the reference PSD would remain preserved. If no time reduction is applied, the PF and the PSF algorithm are conceptually identical.  The detailed steps are reported in the following:

1) let  be the reduction factor of the test (): set the target FDS  according to:

   where  is the FDS prescribed by the specification;

2) automatically set the duration of all the bursts of the signal and the duration  of the low energy part of the signal such that  be equal to the duration  of the signal to be synthesized. Also set the number of blocks  of the signal to be synthesized. The latter should be set equal or smaller than the number of blocks used for the calculation of the reference PSD (e.g. the total number of points in the signal divided by the NFFT parameter used in the function pwelch in );

3) calculate a PSD  from the target FDS  according to Eqs.(2.4-2.6), with the duration in place of  in Eq.(2.4);

4) set the PSD  of the low-energy part in accordance with Eq.(2.23);

If  < 0 for some frequency  (this could happen because of the minus sign in Eq.(2.23)), restart from step 2 with a lower , automatically set, and set equal to T-tb.

5) construct two time-series: one generated by performing the IFFT on  , the other by applying the same technique to , and concatenate them into one signal;

6) divide the signal so obtained into  blocks;

7) do a random permutation of the blocks so generated and smooth the signal by means of proper interpolation of the values close to the edges of adjoining blocks;

8) multiply the time-series so obtained by .

Most of the steps of the PSF algorithm are the same as those for the PF with the only difference being given by steps 1 and 8.
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The algorithms presented in chapters 1 and 2 can be used to generate signals having a duration which, a priori, could be different from that of the reference signal. The reference signal is one representative measurement from the application considered. For durability tests, this measurement is then usually thought to be replayed in sequence until fatigue failure of the DUT occurs; the motivation is due to the fact that measurements representing the thousands of hours’ lifetime of the components are unfeasible.

In the case of kurtosis control algorithms, the PSD and kurtosis of the reference signal are usually taken as specifications for the Mission Synthesis procedure, whereas in the case of algorithms aimed at durability tests, the specification is the FDS. As for the latter category, it may be required to accelerate the tests, namely to shorten the duration of the synthesized signals with respect to that of the reference signals. The signals are generated via a shaker that can be employed in different modes: one mode is the random mode, which generates a (Gaussian) signal starting from a PSD. Another mode, which is applicable to the algorithms presented so far, is the waveform replication mode. The latter consists in replicating an already available signal on a shaker; this signal could be measured either from a real environment or synthesized by algorithms. As regards accelerated tests, one has to deal with caveats that do not usually arise in tests preserving the same duration as that of the reference signal. In fact, when reducing the duration, since the FDS should be preserved, the severity of the test could be such that the failure mechanism of the DUT is not anymore fatigue-related and turns into a yield-type of failure [42,43]; this is obviously undesirable in durability tests. The spectral function that is usually investigated when evaluating whether the test falls under the fatigue or yield test category is the Maximum Response Spectrum (MRS) [40]. The MRS represents the maxima of the absolute value of the relative displacement responses  of independently excited SDOF systems;the latter have a different natural frequency  and the maxima of the responses are plotted against  and multiplied by  in order to obtain the units of acceleration. In accelerated tests, the general rule of thumb is that the  of the reference signal should not be much lower than the MRS of the test, otherwise one would incur the risk of possibly switching from fatigue failure to a yield failure mechanism. The extent to which the MRS of the test can exceed the reference one is not clearly outlined. This is due to the uncertainties related to the simplifying assumptions used in the calculation: for instance, the knowledge of the material of the DUT, its shape (which may affect the single degree of freedom assumption), nonlinearities, and the experience of the user may play an important role.

Besides, as the duration decreases, the test becomes more sensitive to parameters such as the coefficient  related to Wohler’s curve slope for instance, whose knowledge is definitely not precise.

All these aspects should be considered when reducing the duration of a test. 
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In this chapter, the algorithms previously presented in chapters 1 and 2 are tested, starting from the synthesis results of kurtosis control algorithms, which are shown in section 3.1, then moving on to synthesis results related to durability test profiles in section 3.2. As regards kurtosis control, in section 3.1 it is described how to properly select the input parameters for the algorithms. In addition, the PSD plots and kurtosis values of the reference and synthesized profiles are compared, and the response kurtosis of a generic lowly-damped system is also calculated to garner the first visual information about what has only been discussed theoretically so far, that is the so-called Papoulis’ Rule. Then, both the fatigue damage spectra associated with the reference profile and with the profile synthesized by kurtosis control are compared; the difference in the FDS is highlighted in order to clarify the necessity of durability tests. Durability tests are addressed in subsection 3.1.1 and section 3.2, by adopting a similar approach to section 3.1, namely comparing the PSD plots and statistical parameters (such as kurtosis), albeit focusing more on the fatigue damage in this case (the FDS curves). In subsection 3.1.1 the kurtosis control algorithms of section 3.1 are simply extended by means of Kihm’s filtering technique [34], whereas in section 3.2 the profiles are synthesized by using the algorithms that control the FDS a priori, which were introduced in section 2.2.

The algorithms were tested starting from numerous reference input profiles. For the sake of brevity, only the results of some applications will be shown for each section dedicated to results. Nevertheless, some general considerations can be inferred from the particular cases.

[bookmark: _Toc64275095]3.1 Kurtosis control

The starting reference signals, here denoted as RS1 and RS2, are field data with a sample rate of 1000 Hz and 300 Hz respectively, with durations of about 660 seconds. The signals’ plots and PSD are shown in Fig. 3.1, whereas some statistical parameters are listed in Table 3.1, in particular: RMS, kurtosis, crest factor. One should note that both reference signals are Leptokurtic. The kurtosis values of the responses of SDOF systems having different natural frequencies and a damping coefficient of 2%, are also graphed in Fig. 3.2 to check the sensitivity to the Papoulis’ Rule. The responses were obtained in terms of acceleration , by implementing the well-known convolution between the impulse response of the system and the reference signal.

The PM, 𝑀𝐿𝑉 and 𝑉𝑆𝐷 algorithms are first applied to the reference signal RS1. The input parameters for the PM algorithm are:

· duration of the synthesized signal:  (the same as for the reference signal);

· sampling frequency of the synthesized signal: ;

· phases manipulated in the frequency range: [200 Hz, 400 Hz];

· duration of the synthesized blocks that compose the signal: = 3 s (i.e. the number of blocks is equal to: )

The input parameters for the 𝑀𝐿𝑉 algorithm are:

· duration of the synthesized signal  (the same as for the reference signal);

· sampling frequency of the synthesized signal ;

· ;

· duration of the synthesized blocks that compose the signal: = 3 s   ;

· number of bursts: = 5;



The input parameters for the 𝑉𝑆𝐷 algorithm are[footnoteRef:13]: [13:  It is worth noting that, in the case of the VSD algorithm, the duration of the synthesized blocks that compose the signal is not an input, as explained in subsection 1.2.3.] 


· duration of the synthesized signal: T = 660 s

· sampling frequency of the synthesized signal ;

· p=0.2.

The choice for the interval of frequencies over which the phases were varied in the PM algorithm was due to most of the energy content of the signal being contained in the band [200 Hz, 400 Hz] as it can be inferred from the PSD of RS1 plotted in Fig.3.1c.

By inspecting the plot of the signal RS1, several distinctive peaks appear. The parameter related to the number of bursts was arbitrarily chosen equal to 5 for the 𝑀𝐿𝑉 algorithm. In addition, the signal shows a visible amount of variability of the standard deviation over time; hence, the parameter  has been chosen equal to 0.3. 

The signals synthesized by the three algorithms are reported in Fig.3.3 along with their 𝑃𝑆𝐷s. The  spectra plotted in Fig.3.3d-f were computed with a 50% overlap among the  blocks and using a Hamming window. The resolution in frequency of the PSD curves was therefore chosen equal to the inverse of the  parameter of the algorithms. On the other hand, one should note that the MLV and VSD algorithms theoretically consider 0% overlap and rectangular windows. It is also worth mentioning that the PSD curves in Fig.3.3d-f depend on the  parameter used by the algorithm selected; since the curves are plotted with the same  used by the algorithm, when this parameter is different, the curves could also be visually different (this difference is not conspicuous, but it can be noticed).

[bookmark: _Hlk62121969]The parameter  of the 𝑉𝑆𝐷 algorithm has a similar meaning to the parameter of the 𝑀𝐿𝑉 algorithm. Nevertheless, in order to give the same amount of variability it requires to be set to a lower value[footnoteRef:14].  [14:  This is motivated by the different definitions of the parameters  and  given in subsections 1.2.2 and 1.2.3, but especially on anecdotal evidence obtained from simulations.] 


The statistical parameters of the synthesized signals are shown in Table 3.2. 

The kurtosis values of the responses are plotted[footnoteRef:15] versus the SDOF systems’ natural frequencies in Fig.3.4a-c. The FDS and MRS are also computed by assuming  in Fig.3.4d-i; these curves will be considered in section 3.1, when the filtering procedure described in section 2.1 is used to change the FDS curves so that they match the reference ones. The frequency resolution of the MRS and MRS curves is logarithmic (1/12th of an octave). [15:  It should be noted that the kurtosis of the response to the VSD signal reaches much higher values than the responses to the PM and MLV signals. ] 


The results of the PM, MLV and VSD algorithms applied to the reference signal RS2 are now shown. 

The input parameters for the PM algorithm are:

· duration of the synthesized signal  (the same as for the reference signal);

· sampling frequency of the synthesized signal ;

· phases manipulated in the frequency range [50 Hz, 100 Hz];

· = 10 s   .





The input parameters for the MLV algorithm are:

· duration of the synthesized signal  (the same as for the reference signal);

· sampling frequency of the synthesized signal ;

· ;

· = 20 s   ;

· number of bursts: = 4.



The input parameters for the VSD algorithm are:

· duration of the synthesized signal: T = 660 s

· sampling frequency of the synthesized signal ;

· p=0.1.



The choice for the interval of frequencies over which the phases were varied was chosen because most of the energy content of the signal is contained in the band [50 Hz, 100 Hz] as it can be inferred from the PSD of RS2 plotted in Fig.3.1d.

By inspecting the plot of the signal RS2, few distinctive “peaks” appear. Consequently, the parameter related to the number of bursts was chosen equal to 4 for the 𝑀𝐿𝑉 algorithm. In addition, the signal shows some variability of the standard deviation[footnoteRef:16] over time; hence, the parameter  has been chosen equal to 0.5.  [16:  It is also worth recalling that the RMS value is nearly coincident with the standard deviation in the case of zero-mean signals.] 


The signals synthesized by the two algorithms are displayed in Fig.3.5 along with their 𝑃𝑆𝐷s. The  spectra plotted in Fig.3.5d-f were computed with a 50% overlap among the  blocks and using a Hamming window. Therefore, the resolution in frequency of the PSD curves was chosen equal to the inverse of the  parameter. It is also worth mentioning that the PSD curves in Fig.3.5d-f depend on the  parameter used by the algorithm selected; since the curves are plotted with the same  used by the algorithm, when this parameter is different, the curves could also be visually different (this difference is not conspicuous, but it can be noticed). 

The statistical parameters of the synthesized signals are shown in Table 3.3. 

The kurtosis values of the responses are plotted versus the SDOF systems’ natural frequencies in Fig.3.6a-c. The FDS and MRS are computed with Wohler’s curve slope  in Fig.3.6d-i. The frequency resolution of the FDS and MRS curves is logarithmic (1/12th of an octave).



















Table 3.1: Statistical parameters of the reference signals RS1 and RS2

		

		RS1

		RS2



		RMS []

		8.28

		32.9



		Kurtosis 

		7.36

		4.16



		Crest factor 

		10.6

		4.81
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Figure 3.1: Reference signals and their PSD plots used in the two applications: a) RS1, b) RS2, c) PSD of signal RS1, d) PSD of signal RS2.
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Figure 3.2: Kurtosis of the SDOF systems’ responses to the signals RS1 (a) and RS2 (b) from 0 to their corresponding Nyquist frequencies. The damping coefficient  of the SDOF systems was set equal to 2%.
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Figure 3.3: Synthesis results starting from the reference input profile RS1. Signal synthesized by the: a) PM, b) MLV, c) VSD algorithms. PSD comparison between RS1 and the: d) PM. e) MLV, f) VSD algorithms.

Table 3.2: Statistical parameters of the signals synthesized starting from the reference profile RS1

		

		PM signal

		MLV signal

		VSD signal



		RMS []

		8.30

		8.28

		8.28



		Kurtosis 

		7.29

		7.14

		7.14



		Crest factor 

		10.2

		10.9

		7.45
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Figure 3.4: Synthesis results starting from the reference input profile RS1. Kurtosis of SDOF systems’ responses, with , to the signal synthesized by the: a) PM, b) MLV, c) VSD algorithms. FDS comparison, with  and , between RS1 and the: d) PM, e) MLV, f) VSD algorithms. MRS comparison, with , between RS1 and the: g) PM, h) MLV, i) VSD algorithms.
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Figure 3.5: Synthesis results starting from the reference input profile RS2. Signal synthesized by the: a) PM, b) MLV, c) VSD algorithms. PSD comparison between RS2 and the: d) PM. e) MLV, f) VSD algorithms.

Table 3.3: Statistical parameters of the signals synthesized starting from the reference input profile RS2

		

		PM signal

		MLV signal

		VSD signal



		RMS []

		33.2

		32.9

		32.9



		Kurtosis 

		4.10

		4.16

		4.01



		Crest factor 

		6.14

		6.38

		6.25
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Figure 3.6: Synthesis results starting from the reference input profile RS2. Kurtosis of the SDOF systems’ responses, with , to the signal synthesized by the: a) PM. b) MLV, c) VSD algorithms. FDS comparison, with  and , between RS2 and the: d) PM, e) MLV, f) VSD algorithms. MRS comparison, with , between RS2 and the: g) PM algorithm, h) MLV , i) VSD algorithms.

[bookmark: _Toc64275096]3.1.1 Extension to durability tests

In this subsection, durability tests are considered. The test profiles are obtained through the filtering procedure described in section 2.1. In order to assess the filter’s suitability to match the reference FDS and simultaneously affect the signals’ characteristics as little as possible, a sizeable time reduction of the test would only amplify the difference between the original and filtered signals, making it harder to judge solely the filter’s behavior. Therefore, the duration of the tests was chosen to be the same for both the reference and synthesized signals. The durability test profiles are obtained by means of the filtering procedure applied to the synthesized signals from section 3.1.

After filtering the signals obtained by considering the signal RS1 as the reference (Fig.3.3a-c), the resulting profiles are plotted in Fig.3.7a-c, whereas their PSD are plotted in Fig.3.7d-f. Their statistical parameters are shown in Table 3.4. 

The kurtosis values of the responses to the filtered signals are plotted versus the SDOF systems natural frequencies in Fig.3.8a-c. The FDS and MRS curves were computed with  and are plotted in Fig.3.8d-i. The frequency resolution of the FDS and MRS curves is logarithmic (1/12th of an octave).

In the case of the filtering procedure applied to the signal RS2, the durability test profiles obtained are plotted in Fig.3.9a-c and their PSD in Fig.3.9d-f. Their statistical parameters are shown in Table 3.5.

The kurtosis values of the responses to the filtered signals are plotted versus the SDOF systems’ natural frequencies in Fig.3.10a-c. The FDS and MRS are computed with  in Fig.3.10d-i. The frequency resolution of the FDS and MRS curves is logarithmic (1/12th of an octave).
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Figure 3.7: Synthesis results starting from the reference input profile RS1. Signal synthesized by the: a) PM,  b) MLV, c) VSD algorithms, as they appear after filtering. PSD comparison between RS1 and the: d) PM, e) MLV, f) VSD algorithms after filtering



Table 3.4: Statistical parameters of the signals synthesized starting from the reference input profile RS1, after the application of the filtering procedure that corrects the FDS

		

		PM signal

		MLV signal

		VSD signal



		RMS []

		12.8

		10.7

		7.14



		Kurtosis 

		3.01

		6.35

		8.07



		Crest factor 

		4.55

		12.3

		8.28
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Figure 3.8: Synthesis results starting from the reference input profile RS1. Kurtosis of SDOF systems’ responses, with , to the signal synthesized by the: a) PM, b) MLV, c) VSD algorithms, after filtering. FDS comparison, with  and , between RS1 and the: d) PM, e) MLV, f) VSD algorithms after filtering. MRS comparison, with  between RS1 and the: g) PM, h) MLV, i) VSD algorithms after filtering.
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Figure 3.9: Synthesis results starting from the reference input profile RS1. Signal synthesized by the: a) PM, b) MLV, c) VSD algorithms after filtering. PSD comparison between RS1 and the: d) PM, e) MLV, f) VSD algorithms after filtering.

Table 3.5: Statistical parameters of the signals synthesized starting from the reference input profile RS2, after the application of the filtering procedure that corrects the FDS

		

		PM signal

		MLV signal

		VSD signal



		RMS []

		47.7

		43.1

		37.8



		Kurtosis 

		3.00

		4.02

		4.46



		Crest factor 

		4.42

		6.20

		6.54
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Figure 3.10: Synthesis results starting from the reference input profile RS2. Kurtosis of SDOF systems’ responses, with  to the signal synthesized by the: a) PM, b) MLV, c) VSD algorithms (all filtered). FDS comparison, with  and , between RS2 and the: d) PM, e) MLV, f) VSD algorithms after filtering. MRS comparison, with , between RS2 and the: g) PM, h) MLV, i) VSD algorithms after filtering.

[bookmark: _Toc64275097]3.1.2 Discussion

As it can be observed from Fig.3.4a and Fig.3.6a, the kurtosis values of the responses to the signals synthesized by the PM algorithm are close to 3 in a wide range of frequencies; this suggests that Papoulis’ Rule may hamper the algorithm effectiveness, thus the high peaks present in the input signal may be filtered out by the SDOF system. As it can be observed from Fig.3.4b and Fig.3.6b, the kurtosis values of the responses to the signals synthesized by the 𝑀𝐿𝑉 algorithm are closer to the kurtosis of the reference input profile (except at low frequencies), whereas the kurtosis of the responses to the signals synthesized by the VSD algorithm can take much larger values (Fig.3.4c and Fig.3.6c). These values highlight an important difference between the MLV and VSD algorithms: the VSD algorithm can generate signals whose system response has a (much) higher kurtosis than the input one. This is the reason why the reference signal RS1 has been considered particularly significant to illustrate the special feature of the 𝑉𝑆𝐷 algorithm. In fact, as it can be observed from Fig.3.2a, the kurtosis values of the system responses are higher than those of the input excitation. This is due not only to the variation of the variance of the signal over time, but mainly to the variation of the 𝑃𝑆𝐷. The high kurtosis values of the responses are due to a resonance effect: in particular, some blocks of the reference signals present a sharp  around the natural frequency of one of the SDOF systems. This implies that in those blocks the signal is approximately a sinusoid with the same frequency as the system, causing the system to resonate. Unlike the 𝑉𝑆𝐷 algorithm, the resonance effect does not occur by using the 𝑀𝐿𝑉 algorithm, because all the blocks of the signal have the same PSD shape and a wide band (the same as the reference signal’s overall PSD). 

The resonance effect may be used effectively also in the PM algorithm: the main problem of phase selection is that, especially if the phases are manipulated in a wide range of frequencies, the high peaks are easily filtered because of their sparsity and therefore cannot excite the system long enough for it to respond with correspondingly high excursions. 

There is still an alternative way of selecting the phases such that Papoulis’ Rule does not negatively affect the  algorithm, in the case of only a narrow band being of interest. The idea is to change the phases in a small interval in the narrow band, in order to align those harmonics with frequencies in that range so that they constructively interfere. Their interference generates high peaks whose frequencies are contained in the narrow band of interest, thus capable of making a system with frequencies reasonably close to the band resonate[footnoteRef:17]. [17:  For example, Fig.3.4a exemplifies this statement in the relatively “narrow” band [200 Hz, 400 Hz], where the phases were manipulated. Outside of that bandwidth, in the interval [0 Hz, 200 Hz], Papoulis’ Rule seems to affect output kurtosis more severely than in the case of the other algorithms. On the other hand, for those intervals containing frequencies which are higher than 400 Hz, the system becomes more responsive, therefore the response kurtosis resumes values which are closer to input’s kurtosis.] 


As regards the MLV algorithm, one can motivate why the kurtosis computed for the responses of the excited SDOF linear systems has relatively small fluctuations around a value close to the excitation signal kurtosis (see Fig.3.4b and Fig.3.6b). In fact, as already hinted at, the blocks constituting the synthesized signal all have a wide-band PSD, so that unexpected resonant effects are unlikely to occur. However, one should note that the setup parameters might significantly affect the results. In particular, if the bursts’ duration is not long enough, the system may not have time to respond, thus preventing high excursions to appear in the response (as is the case for the PM algorithm). 

Finally, it is worth recalling that randomness in the synthesized profiles is guaranteed since the algorithms: (i) manipulate only some of the phases (PM algorithm), (ii) randomly generate the modulating function and manipulate the phases of only one block (MLV algorithm), (iii) randomly generate the phases, as well as randomly vary the PSD over time (VSD algorithm). Different runs of the algorithms– with unchanged setup parameters –provide the synthesis of different profiles (all complying with the target PSD and kurtosis). 

From the observation of Fig.3.4d-f and Fig.3.6d-f, it is clear that the three kurtosis control algorithms could lead to signals with markedly different FDS curves from that of the excitation (note that the y axis is reported in logarithmic scale), since they do not directly control the FDS. If the Mission Synthesis is performed for durability testing purposes, the filter proposed by Kihm et al. [34] can be effectively applied to correct the FDS of the signals generated by the algorithms. 

As shown by Figs.(3.7-3.10) presented in subsection 3.1.1, the filtered  and  signals feature similar Leptokurtic distributions as their unfiltered versions, with some differences – due to the filter action – observed in the PSDs and the statistical parameters. On the other hand, the filtered PM signal is close to Gaussian, showing no difference with respect to the standard methodology that synthesizes Gaussian signals in (accelerated) fatigue life tests.

The combination of the VSD algorithm with the subsequent FDS correction appears particularly promising whenever the loads acting on the shaker are required to be as low as possible, compatibly with the FDS specification and duration of the test. In fact, the synthesized excitations are characterized by a relatively low RMS value (Tables 3.4 and 3.5), but still able to generate responses with (noticeably) high kurtosis (i.e. with high amplitude peaks) and with the prescribed FDS, therefore subjecting the shaker to moderate loads. However, the high peaks in the response might as well constitute a non-negligible problem shifting the type of failure from fatigue-related to yield-related; therefore, all pros and cons should be evaluated with caution.

In general, the filtering technique proposed by Kihm et al. increases the RMS value (i.e. the energy) of the signal the more the duration of the test decreases. 



[bookmark: _Toc64275098]3.2 Durability tests with a priori FDS control

In section 3.1 two reference signals were considered. Nevertheless, for the sake of conciseness, in this section only one reference signal is chosen to display results, from which considerations could be drawn without loss of generality. 

The reference profile, sampled at 500 Hz with a duration of 287 s, is shown in Fig.3.11.  The life of the component to be tested is supposed to be 2300 h, which implies that the signal is considered to be replayed approximately 28850 times.

At first no time reduction factor is applied, which implies the same duration as the component’s life (2300 h) for the output signals. Due to memory limitations, the duration of the synthesized signals was automatically limited to approximately 4.44 h by the kFDS and RF algorithms and to 2.246 h by the PF and PSF (for reasons due to their implementations), with the signals considered to be replayed until 2300 h are reached (518 and 1024 times respectively).

The following values of the parameters are chosen:

-  (constant related to the slope of Wohler’s curve)

-  (damping coefficient of the SDOF system model considered)

The frequency range for the calculation of the FDS is chosen to be from 5 to 250 Hz with a constant resolution of 0.5 Hz and the same resolution is used in the calculation of the PSD. The reference’s and the synthesized signals’ FDS curves are calculated in the time domain.

In the following, four different plots are shown for each of the four algorithms presented. Let X be a number equal to an integer between 12 and 15 (with 12 and 15 included). When reference is made in this section to “algorithm X”: algorithm 12 represents the kFDS algorithm, algorithm 13 the RF algorithm, algorithm 14 the PF algorithm and algorithm 15 the PSF algorithm. 

Fig.3.Xa shows the plot of the time-series synthesized by algorithm X; in order to appreciate some of the details better, only the first 2500 s are shown. Fig.3.Xb shows its corresponding PSD versus that of the reference signal, whereas Fig.3.Xc shows the corresponding FDS versus that of the reference signal. Finally, Fig.3.Xd shows the kurtosis of the system response to the synthesized signal versus that to the reference signal, plotted in the frequency range 5-250 Hz with 1/12th of an octave resolution.

Some statistical parameters of the reference and the synthesized signals are shown in Table 3.6.

In Fig.3.16 the MRS curves of the four algorithms are plotted together with the MRS of the reference signal of Fig.3.11. 
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Fig.3.11: reference signal
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Fig.3.12: a) signal synthesized by the kFDS algorithm; b) PSD of the synthesized signal vs reference PSD; c) FDS of the synthesized signal vs reference FDS; d) kurtosis of the response to the synthesized signal vs kurtosis of the response to the reference signal 
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Fig.3.13: a) signal synthesized by the RF algorithm; b) PSD of the synthesized signal vs reference PSD; c) FDS of the synthesized signal vs reference FDS; d) kurtosis of the response to the synthesized signal vs kurtosis of the response to the reference signal
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Fig.3.14: a) signal synthesized by the PF algorithm; b) PSD of the synthesized signal vs reference PSD; c) FDS of the synthesized signal vs reference FDS; d) kurtosis of the response to the synthesized  signal vs kurtosis of the response to the reference signal 
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Fig.3.15: a) signal synthesized by the PSF algorithm; b) PSD of the synthesized signal vs reference PSD; c) FDS of the synthesized signal vs reference FDS; d) kurtosis of the response to the synthesized signal vs kurtosis of the response to the reference signal 



Table 3.6: Time-domain characteristics of the reference and synthesized signals 

		

		Reference signal

		kFDS

		RF       

		PF       

		PSF       



		RMS []

		8.41

		9.81

		8.72

		8.41

		8.41



		Kurtosis 

		6.52

		6.54

		9.75

		7.16

		7.08



		Crest factor 

		7.26

		10.3

		12.6

		12.1

		13.8



		Signal Duration 

		287

		15985

		15985

		8086

		8086



		replays

		28850                    

		518

		518

		1024

		1024
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Fig.3.16: MRS curves of the algorithms compared with that of the reference signal



In the case of accelerated tests, the same reference signal as the one displayed in Fig.3.11 is chosen to display results. 

The life of the component to be tested is still supposed to be 2300 h, which implies that the signal is considered to be replayed approximately 28850 times.

In order to show the effects of time reduction, a factor of 5 is used, implying a duration of 460 h of the synthesized signals. Due to memory limitations, the duration of 460 h was automatically limited to approximately 4.423 h by the kFDS and RF algorithms and to 3.594 by the PF and PSF, with the signals considered to be replayed until 460 h are reached (104 and 128 times respectively).

The following values of the parameters are chosen:

- 

- 

The frequency range for the calculation of the FDS is chosen to be from 5 to 250 Hz with a constant resolution of 0.5 Hz and the same resolution is used in the calculation of the PSD. The reference’s and the synthesized signals’ FDS curves are calculated in the time domain.

In the following, four different plots are shown for each of the four algorithms presented. Let now X be a number equal to an integer between 17 and 20 (with 17 and 20 included). When reference is made in the next part of this section to “algorithm X”: algorithm 17 represents the kFDS algorithm, algorithm 18 the RF algorithm, algorithm 19 the PF algorithm and algorithm 20 the PSF algorithm. 

As in the case of non-accelerated tests, Fig.3.Xa shows the plot of the time-series synthesized by algorithm X; in order to appreciate some of the details better, only the first 2500 s are shown. Fig.3.Xb shows its corresponding PSD versus that of the reference signal, whereas Fig.3.Xc shows the corresponding FDS versus that of the reference signal. Finally, Fig.3.Xd shows the kurtosis of the system response to the synthesized signal versus that to the reference signal, plotted in the frequency range 5-250 Hz with 1/12th of an octave resolution.

Some statistical parameters of the reference and the synthesized signals are shown in Table 3.7.

In Fig.3.21 the MRS curves of the four algorithms are plotted together with the MRS of the reference signal of Fig.3.11. 
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Fig.3.17: (a) signal synthesized by the kFDS algorithm; (b) PSD of the synthesized signal vs reference PSD; (c) FDS of the synthesized signal vs reference FDS; (d) kurtosis of the response to the synthesized signal vs kurtosis of the response to the reference signal 
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                                          (c)                                                    (d)



Fig.3.18: (a) signal synthesized by the RF algorithm; (b) PSD of the synthesized signal vs reference PSD; (c) FDS of the synthesized signal vs reference FDS; (d) kurtosis of the response to the synthesized signal vs kurtosis of the response to the reference signal 
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                                        (a)                                                      (b)
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                                       (c)                                                        (d)



Fig.3.19: (a) signal synthesized by the PF algorithm; (b) PSD of the synthesized signal vs reference PSD; (c) FDS of the synthesized signal vs reference FDS; (d) kurtosis of the response to the synthesized signal vs kurtosis of the response to the reference signal 
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                                       (a)                                                      (b)
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                                      (c)                                                       (d)



Fig.3.20: (a) signal synthesized by the PSF algorithm; (b) PSD of the synthesized signal vs reference PSD; (c) FDS of the synthesized signal vs reference FDS;(d) kurtosis of the response to the synthesized signal vs kurtosis of the response to the reference signal 





Table 3.7: Time-domain characteristics of the reference and synthesized signals 

		

		Reference signal

		kFDS

		RF       

		PF       

		PSF       



		RMS []

		8.41

		12.7

		8.66

		8.42

		10.6



		Kurtosis 

		6.52

		6.28

		19.9

		15.4

		7.35



		Crest factor 

		7.26

		11.4

		17.2

		18.3

		14.6



		Signal Duration 

		287

		15923

		15923

		12932

		12932



		replays

		28850                    

		104

		104

		128

		128
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Fig.3.21: MRS curves of the algorithms compared with that of the reference signal



[bookmark: _Toc64275099]3.2.1 Discussion

The results in section 3.2 show a precise match between the reference’s and the synthesized signals’ FDS, even more precise than the matching obtained in subsection 3.1.1. Moreover, the distribution of the generated time-series is Leptokurtic and not Gaussian, thus generalizing standard procedures.

It must be highlighted that when the test duration is reduced, before performing actual tests on specimens, the maximum values of the system response (in terms of either displacement or velocity or acceleration) should be checked, in order to assess whether the type of failure is still fatigue related and not due to exceeding the yield strength of the material. This assessment was carried out by plotting the MRS associated with the profiles synthesized by the different algorithms. As regards the non-accelerated tests, the MRS of the synthesized profiles are higher in some frequency ranges. However, one should note that the synthesized profiles were several hours long compared with the 287 s duration of the reference profile; this definitely affects the MRS since the longer the duration, the more likely it is to find higher peaks. Besides, the MRS may also be affected by the non-stationarity of the reference profile’s distribution; this aspect highlights the importance of choosing reference vibrations that are representative of the application. 

Because of the large difference in duration between the synthesized and reference profile, the amount by which the MRS of the synthesized profile exceeds the MRS of the reference profile is not of great concern. When the duration of the test is the same as the life of the DUT, it is usually the case that the MRS of a synthesized signal is more or less of the same order of magnitude as the reference’s MRS. In order to exemplify the dependence of the MRS upon the duration of the signal, the reference signal’s MRS is compared with that of a signal synthesized by the kFDS algorithm in Fig.3.22, with the duration of the synthesized signal being the same as that of the reference signal (about 287 s). It is evident that the two curves are closer this time, and it is also noteworthy to point out that the randomness of the algorithm and the choice of the algorithm itself (in this case the kFDS), might produce different results even with the same input parameters.

Also in the case of accelerated tests, the amount by which the MRS of the synthesized profiles exceed the MRS of the reference profile is partly explained by the large difference in duration between the synthesized and reference profiles. Nevertheless, because there is a time reduction factor of 5 applied to reduce the test duration, the MRS associated with the synthesized profiles increase with respect to the ones shown in Fig.3.16. It should be noted that the increase in the MRS is much less than the time reduction factor of 5; in fact, the points in the vicinity of the maxima of the curves are about just 1.4 times higher than the corresponding ones where no acceleration of the tests is performed. This suggests that in the case shown, the test had the potential to be accelerated. This is the case for many practical applications: often, there are periods of time when the loads are below a threshold such that no amount of damage accumulates; therefore, if these periods are extracted from the signal the test would become conceptually and automatically accelerated. The main problem is that it is usually not easy to determine these low amplitude loads and whether or not they can be considered to be below the fatigue limit.

Besides controlling precisely the FDS and other parameters such as: RMS, PSD shape, kurtosis, depending on the algorithm selected, it can be observed that another characteristic is that, for the kFDS and RF algorithms, the kurtosis of the linear system’s response is relatively constant when plotted against natural frequency. This is not the case for the PF and PSF algorithms, where the shape of the curve becomes closer to that of the reference signal. In general, as already discussed, this occurs when the PSD of the signals changes not only in scale but also in shape over time, and this happens only for the RF and PSF algorithms. When signals are synthesized by modulation (as is the case for kFDS and RF), the response kurtosis curve remains relatively flat because every block is wide-banded, therefore there is no possibility that some may cause greater bursts in the responses due to resonance as it may occur in the case of the RF and PSF algorithms. 

The algorithms that control the RMS and/or the PSD shape, namely the RF and the PF, might cause greater bursts in the response than the kFDS and the PSF algorithms, especially when the test duration is reduced. This suggests a greater sensitivity to the Wohler’s curve slope (related to parameter ) on the part of the RF and the PF algorithms, which might make it more difficult to carry out reliable tests, mainly because of the uncertainty on the value of . Besides, since the PSF and PF algorithms only allow of two energy levels in the synthesized signals, the amount of randomness that can be generated is less than in the case of the kFDS and the RF algorithms. According to these considerations, the most promising algorithm among the ones proposed is the kFDS, which was therefore chosen in the experimental campaign described in the next chapter.

For the sake of convenience, Table 3.8 concisely lists some of the possible uses that can be made of the algorithms proposed in this work.
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Fig.3.22: MRS curves of a signal synthesized by the kFDS algorithm compared with that of the   reference signal. No time reduction is applied: the duration of the synthesized signal is the same as that of the reference signal





























Table 3.8: some of the possible uses that could be made of both the kurtosis control algorithms and of those aimed at durability tests.

		Kurtosis control

		PM





		Suitable for: (i) qualification tests, (ii) maximizing randomness for the entire test duration by avoiding signal replications. In fact, even if the waveform replication mode is used, the algorithm can synthesize a signal having any desired duration in principle.



Not suitable for: (i) durability tests, (ii) properly transferring input kurtosis through to the output, since easily affected by Papoulis’ Rule.



		

		MLV



		Suitable for: (i) qualification tests, (ii) maximizing randomness for the entire test duration by avoiding signal replications, (iii) controlling the output burst level.



Not suitable for durability tests.



		

		VSD





		Suitable for: (i) qualification tests, (ii) maximizing randomness for the entire test duration by avoiding signal replications, (iii) a wise employment of the shaker by minimizing the current intensity level required (possible resonance effects) to achieve high kurtosis at the output.



Not suitable for durability tests.



		Extension to durability tests

		MLV after filtering

		Suitable for: (i) durability tests with Leptokurtic signals, (ii) controlling the output burst level.



		

		VSD after filtering

		Suitable for: (i) durability tests with Leptokurtic signals, (ii) minimizing the current intensity level of the shaker to match a prescribed FDS.



		Algorithms aimed at durability tests

		kFDS, RF, PF and PSF

		Suitable for durability tests with Leptokurtic signals thanks to a more precise FDS match than the extended kurtosis control algorithms.













































































[bookmark: _Toc64275100]4 Experimental tests

The purpose of this chapter is to describe (more specifically in sections 4.1 and 4.2) how the experimental test rig was set up, in terms of: choice of the material used, design of the specimens and the fixture, characteristics of the shaker and software, choice of relevant synthesis parameters such as the coefficients  and . The experimental campaign is finally addressed in section 4.3, in which non-accelerated tests are treated, whereas accelerated tests are handled in section 4.4. The ultimate aim of this work is to verify whether the novel algorithms presented might constitute a tangible improvement of the already available standard procedure. Therefore, sections 4.3 and 4.4 represent the core of the chapter.

[bookmark: _Toc64275101]4.1 Design of experiment

The design of experiment (DOE) considered a series of factors, among which: 

· the choice of one reference profile to be used as the benchmark in all synthesis procedures;

· the choice of the material, the geometry and dimensions of the specimen;

· the fixture to be used to fix the specimens to the shaker.



[bookmark: _Toc64275102]4.1.1 Reference profile

The measured signal shown in Fig.3.11, adopted as reference profile in Section 3.2, was targeted as particularly appropriate to cast light onto the possible critical aspects of the standard Mission Synthesis, mainly due to its non-stationary spectrum. In addition, its PSD presents the highest values in a bandwidth (about 155-160 Hz) which is not very narrow. However, two significant alterations were required for the experimental testing feasibility. Firstly, in spite of the real sampling frequency and duration of the measured signal (500 Hz and 287 s, respectively) the profile considered as reference for the experimental campaign was artificially assumed to be sampled at 130 Hz (for a corresponding duration of 1105 s, approximately), thus bringing the maximum values of the PSD down in the range 40-42 Hz. This was necessary in order to have a reasonable time to failure (TTF) of the specimens, by taking advantage of the increase in the damage at lower frequencies due to higher relative displacements. Another reason for this choice to bring the frequency spectrum in the range 40-42 Hz was to avoid the possible disturbance caused by the utility frequency of 50 Hz and its integer multiples. In addition, the profile was scaled down to 16% the original signal after some initial tests performed on the specimens (as designed in the next subsections) served to target a reasonable TTF. The reference profile is re-plotted in Fig.4.1 with its new duration, whereas its main statistical properties are shown in Table 4.1. 
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        Fig.4.1: reference signal for experiments

		



Table 4.1: statistical properties of the reference signal



		        RMS []

		1.35



		Kurtosis 

		6.52



		Crest factor 

		7.26











[bookmark: _Toc64275103]4.1.2 Material   

The aluminum alloy 7075 (also known by the trade name Ergal) was chosen to carry out the experimental tests. Its main mechanical properties were calculated to be the following:

·  (yield strength)

·  (ultimate tensile strength)

·  (Young modulus)

The mechanical properties were computed from the stress-strain curves obtained by tensile testing; some of these curves are plotted in Fig.4.2. Several specimens were subjected to a controlled tension until failure and the three values reported in this subsection come from an averaging process over all samples.
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                                          Fig.4.2: Stress-strain curves 







[bookmark: _Toc64275104]4.1.3 Specimen geometry

The main target of the specimen design was to locate the first natural frequency in the band where the maxima of the reference signal’s PSD occurred. Therefore, the target frequency was chosen to be 41 Hz, so that after the specimens get damaged during the tests, their subsequent decrease in frequency still corresponded to the highest values of the PSD. When the specimens were fixed to the shaker through the fixture (described in subsection 4.1.4), their disposition was horizontal and conceptually identical to cantilever beams subjected to bending. The presence of a rounded notch allowed for both shorter TTF and localization of failure.  The geometry and size of the specimens are illustrated in Fig. 4.3. 

Besides, additional masses were located near the tip of the specimens to get closer to the target natural frequency of 41 Hz. A thorough description of these masses and their arrangement on the specimens is given in section 4.2.
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Fig.4.3: illustration of the specimens’ geometry and dimensions 







[bookmark: _Toc64275105]4.1.4   Fixture

The fixture was designed such that the specimens could be positioned horizontally. Its most important requirement had to be high stiffness so that the high frequency modes would be far from the natural frequency of the specimens, located at 41 Hz. It would allow five specimens to be fixed at a time due to the same number of slots available. However, as explained in the next section (section 4.2), only three slots at a time were used during the tests. An illustration of the fixture is shown in Fig.4.4.
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		Fig.4.4: illustration of the fixture’s geometry and dimensions







[bookmark: _Toc64275106]4.2 Setup and test procedures

The vibration signals were measured by means of four mono-axial accelerometers. Since the shaker’s acquisition system only allowed measuring four signals at a time, the accelerometer measuring the shaker’s base acceleration was placed on the fixture, whereas the other three accelerometers were placed on the specimens. The three specimens were arranged symmetrically on three out of the five slots of the fixture, with additional masses located near the tip to get closer to the target natural frequency of 41 Hz. The masses added to each of the specimens consisted of: two bolts glued to each other and also to the tip of the specimens, plus a parallelepiped-shaped iron mass of about 18 gr. The parallelepiped-shaped iron mass had a threaded hole which would allow its fastening to the specimens via the slotted hole. The latter would constitute a further possibility of adjusting the natural frequency of the specimens. The specimens, the fixture, the additional masses, and the accelerometers’ arrangement are shown in Fig.4.5.

Besides, in order to comply with the shaker’s operative conditions, a high-pass filter with 5 Hz cutoff frequency was used because displacements at low frequencies are too extreme for the shaker to handle. The characteristics of the latter are shown in Table 4.2, whereas a picture of the shaker (Dongling ES-2-150/DA-2) is shown in Fig.4.6.
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		Fig.4.5: a picture of the setup showing: the head of the shaker, the fixture, the three specimens, the additional masses, the four accelerometers (three for the specimens, one for base acceleration)
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Fig.4.6: Shaker Dongling ES-2-150/DA-2

		

Table 4.2: functional constraints of the shaker



		Maximum frequency

		4000 Hz



		Resonance frequency

		3621 Hz



		Maximum displacement

		12.5 mm



		Maximum velocity

		200 cm/s



		Maximum acceleration

		100 g



		Maximum mass applicable to the armature

		70 kg





     











[bookmark: _Toc64275107]4.3 Non-accelerated tests  

Before starting the experimental campaign to test the results presented in this work, it was essential to determine the parameters involved in the synthesis procedure such as the coefficient  related to Wohler’s curve slope and damping coefficient . The former was calculated to be approximately equal to 9.00 thanks to ad-hoc random tests performed with different RMS levels as explained in Appendix G, whereas the latter was estimated to be about 1% by comparing numerical SDOF system responses with actual ones measured by accelerometers (Fig.4.7). In the case of non-stationary signals with narrow-banded blocks such as the reference signal chosen in subsection 4.1.1 (Fig. 4.1), the damping coefficient may play an important role in the synthesis procedure because sinusoids cause a greater damage if damping is smaller. Therefore, since the synthesis procedure starts from the FDS of the signal, it is of great import not to overestimate , because it could lead to undertesting if the usual PSD is synthesized (this issue is better addressed in section 4.5). 

The tests were performed by using three different acceleration profiles: (i) the reference signal chosen in subsection 4.1.1, (ii) a Gaussian signal synthesized according to the standard Mission Synthesis procedure, (iii) a Leptokurtic signal synthesized according to the kFDS algorithm. For each of the three profiles, three runs were performed; therefore, the total number of specimens to be analyzed was equal to nine (three specimens for each run). The nine times to failure were calculated to be those times at which the natural frequency of the specimens dropped by 5 % its initial value, which was approximately 41 Hz. The value of 41 Hz was the target value for the natural frequencies of all specimens, but the real experiments’ setup led to unavoidable but acceptable fluctuations/errors in the initial value (the slotted hole in the specimens helped greatly to reduce this error, with the natural frequency always being in the range 40-42 Hz). In principle, these fluctuations might affect the definition of the TTF of each specimen if the value of its initial frequency is set to 41 Hz a priori and the frequency at which failure occurs is defined to be 5% of 41 Hz, which is approximately 39 Hz. In order to test the robustness of the conclusions that could be drawn from just one definition, the results were verified using two different TTF definitions. The first definition, hereinafter referred to as definition 1, was that failure occurs at the frequency 39 Hz for each specimen, whereas the second definition, hereinafter referred to as definition 2, was taken to be that failure occurs when the actual initial frequency drops by 5%. The natural frequencies were computed in this way:  the time interval that defined the total life of the specimen was split into several blocks over which the frequency response function (FRF) of the system was computed and the frequency at which the FRF reached its maximum was taken to be the natural frequency of the specimen. The FRF is a transmissibility function which was calculated by using input and output acceleration signals. In Appendix G, failure is defined as the time at which the tangent to the specimens’ natural frequency curve (which was obtained by polynomial interpolation) reached a certain (negative) slope. In the following tests, this definition was not appropriate because the behavior of the natural frequency over time happened to be more irregular. This irregularity might be due to the shape of the PSD (no longer constant/flat as the one used in Appendix G), as well as the non-Gaussianity of the vibration profiles used. Since the frequency drop occurred in a much shorter amount of time compared to the lifetime of the specimens, the tests performed in Appendix G would not have been affected severely by the different possible definitions of failure. However, the accelerated tests that are performed in subsection 4.4 have shorter times to failure.
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                                       (a)
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                                     (b)



		Fig.4.7: (a) one of the specimens’ measured response to the reference profile of Subsection 4.3.1, (b) SDOF system’s numerical response to the same reference profile. The SDOF system’s damping coefficient was set to 1%, whereas its natural frequency was set to 41 Hz. The reference signal used in the experimental tests, whose initial sampling frequency was equal to 130 Hz, was upsampled by the software to the sampling frequency of 800 Hz. Therefore, also the numerical response was calculated with .







[bookmark: _Toc64275108]4.3.1 Reference profile

The reference profile shown in Fig.4.1 was replicated by means of the waveform replication mode, until all specimens reached failure. The signal, having sampling frequency equal to 130 Hz, was upsampled by the software to the sampling frequency of 800 Hz. A high-pass filter removed the first 5 Hz from the signal. The nine times to failure, calculated by using the two different definitions of failure, are reported in Tables 4.3 and 4.4. One of the replays of the signal executed by the shaker is displayed in Fig. 4.8, whereas its statistical parameters are reported in Table 4.5. By comparing Table 4.5 with Table 4.1, it is clear that the shaker is capable of reproducing the reference signal accurately with negligible error. This is even more so if the FDS and MRS of both the reference signal and the one reproduced by the shaker are compared (Fig.4.10). The specimen’s response to one of the replays of the reference signal generated by the shaker is shown in Fig.4.9. The response shown is related to the signal which led to the mean TTF according to definition 1. The statistical parameters of the response are shown in Table 4.6.









Table 4.3: TTF’s and meaningful statistical parameters of the nine specimens calculated according to definition 1

		Definition 1 of failure

		Run #1   

		Run #2

		Run #3



		Specimen #1

		1.82 h

		1.07 h

		2.70 h



		Specimen #3

		2.65 h

		1.72 h

		1.06 h



		Specimen #5

		0.91 h

		0.93 h

		2.06 h



		Mean TTF: 1.66 h

Median TTF: 1.72 h

Standard deviation of TTF’s: 0.712 h









Table 4.4: TTF’s and meaningful statistical parameters of the nine specimens calculated according to definition 2

		Definition 2 of failure

		Run #1

		Run #2

		Run #3



		Specimen #1

		1.80 h

		1.07 h

		2.54 h



		Specimen #3

		2.76 h

		1.70 h

		1.06 h



		Specimen #5

		1.11 h

		0.936 h

		2.04 h



		Mean TTF: 1.67 h

Median TTF: 1.70 h

Standard deviation of TTF’s: 0.679 h
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Fig.4.8: one of the replays of the reference signal generated by the shaker

		

Table 4.5: statistical properties of the reference signal



		   RMS []

		1.33



		Kurtosis 

		6.79



		Crest factor 

		7.22
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Fig.4.9: response to one of the replays of the reference signal generated by the shaker. The response shown here is related to the signal which led to the mean TTF according to definition 1.

		

Table 4.6: statistical properties of the response to one of the replays of the reference signal



		    RMS []

		27.4



		Kurtosis 

		19.2



		Crest factor 

		9.72
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(a)

		[image: ]

(b)





Fig.4.10:  comparison between the target reference signal and the one reproduced by the shaker in terms of: a) FDS, b) MRS. The curves are calculated by considering the parameters of the model to be: , 



[bookmark: _Toc64275109]4.3.2 Gaussian profile #1   

In order to test the standard Mission Synthesis procedure, a Gaussian signal having the same duration (approximately 1105 seconds) and FDS as the reference signal was synthesized. The FDS equivalence was imposed over the mean TTF displayed in Table 4.3, namely 1.66 hours. Also in this case the waveform replication mode was used, so that the signal would be repeated until failure occurred. The nine times to failure, calculated by using the two different definitions of failure, are reported in Tables 4.7 and 4.8. Since the shaker was capable of reproducing the signals accurately with negligible error as shown in subsection 4.3.1, in this and the following subsections only the signals synthesized by the algorithms are displayed. The Gaussian signal synthesized is shown in Fig. 4.11, whereas its statistical parameters are reported in Table 4.9. The FDS and MRS of both the reference and the synthesized Gaussian signals are compared in Fig.4.13. The specimen’s response to one of the replays of the reference signal generated by the shaker is shown in Fig.4.12. The response shown is related to the signal which led to the mean TTF according to definition 1. The statistical parameters of the response are shown in Table 4.10.

Table 4.7: TTF’s and meaningful statistical parameters of the nine specimens calculated according to definition 1

		Definition 1 of failure

		Run #1   

		Run #2

		Run #3



		Specimen #1

		 1.46 h

		 0.84 h

		0.29 h



		Specimen #3

		 2.00 h

		 1.44 h

		1.49 h



		Specimen #5

		 1.12 h

		 0.88 h

		0.59 h



		Mean TTF:  1.12 h

Median TTF:  1.12 h

Standard deviation of TTF’s:  0.529 h







Table 4.8: TTF’s and meaningful statistical parameters of the nine specimens calculated according to definition 2

		Definition 2 of failure

		Run #1

		Run #2

		Run #3



		Specimen #1

		 1.46 h

		 0.840 h

		 0.281 h



		Specimen #3

		 1.97 h

		 1.44 h

		 1.49 h



		Specimen #5

		 1.12 h

		 0.877 h

		 0.592 h



		Mean TTF:  1.12 h

Median TTF:  1.12 h

Standard deviation of TTF’s:  0.524 h
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Fig.4.11: signal synthesized according to the Standard Mission Synthesis procedure

		

Table 4.9: statistical properties of the Gaussian signal



		        RMS []

		2.70



		Kurtosis 

		3.01



		Crest factor 

		4.40
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Fig.4.12: response to one of the replays of the signal generated by the shaker. The response shown here is related to the signal which led to the mean TTF according to definition 1.

		

Table 4.10: statistical properties of the response to one of the replays of the signal



		    RMS []

		66.6



		Kurtosis 

		3.09



		Crest factor 

		4.12
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Fig.4.13:  comparison between the target reference signal and the Gaussian one in terms of: a) FDS, b) MRS. The curves are calculated by considering the parameters of the model to be: , 



[bookmark: _Toc64275110]4.3.3 kFDS profile #1

The kFDS algorithm, described in subsection 2.2.1, was selected among the algorithms proposed in chapter 2. The signal synthesized by this algorithm had the same duration (approximately 1105 seconds) and FDS as the reference signal. The FDS equivalence was imposed over the mean TTF displayed in Table 4.3, namely 1.66 hours. The waveform replication mode was used, so that the signal would be repeated until failure occurred. The nine times to failure, calculated by using the two different definitions of failure, are reported in Tables 4.11 and 4.12. The signal synthesized by the kFDS algorithm is shown in Fig. 4.14, whereas its statistical parameters are reported in Table 4.13. The specimen’s response to one of the replays of the reference signal generated by the shaker is shown in Fig.4.15. The response shown is related to the signal which led to the mean TTF according to definition 1. The statistical parameters of the response are shown in Table 4.14

 The FDS and MRS of both the reference and the synthesized Gaussian signals are compared in Fig.4.16.



Table 4.11: TTF’s and meaningful statistical parameters of the nine specimens calculated according to definition 1

		Definition 1 of failure

		Run #1   

		Run #2

		Run #3



		Specimen #1

		 2.00 h

		 1.64 h

		 1.68 h



		Specimen #3

		 2.74 h

		 2.25 h

		 1.60 h



		Specimen #5

		 1.00 h

		 0.871 h

		 1.82 h



		Mean TTF:  1.73 h

Median TTF:  1.68 h

Standard deviation of TTF’s:  0.578 h













Table 4.12: TTF’s and meaningful statistical parameters of the nine specimens calculated according to definition 2

		Definition 2 of failure

		Run #1

		Run #2

		Run #3



		Specimen #1

		 2.00 h

		 1.71 h

		 1.69 h



		Specimen #3

		 2.74 h

		 2.25 h

		 1.60 h



		Specimen #5

		 1.08 h

		 0.871 h

		 1.82 h



		Mean TTF:  1.75 h

Median TTF:  1.71 h

Standard deviation of TTF’s:  0.564 h
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Fig.4.14: signal synthesized by the kFDS algorithm

		

Table 4.13: statistical properties of the signal synthesized by the kFDS algorithm



		        RMS []

		1.67



		Kurtosis 

		6.55



		Crest factor 

		8.82
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Fig.4.15: response to one of the replays of the signal generated by the shaker. The response shown here is related to the signal which led to the mean TTF according to definition 1.

		

Table 4.14: statistical properties of the response to one of the replays of the signal



		    RMS []

		35.0



		Kurtosis 

		6.11



		Crest factor 

		7.66
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Fig.4.16:  comparison between the target reference signal and the one synthesized by the kFDS algorithm in terms of: a) FDS, b) MRS. The curves are calculated by considering the parameters of the model to be: , 



[bookmark: _Toc64275111]4.3.4 Discussion

The results show that the difference between the two definitions of failure, in terms of mean and median TTF’s, is at the most 0.03 hours (i.e. less than 2 minutes). The Gaussian synthesis led to overtesting the specimens, because the mean TTF was about 32 % less than the expected 1.66 hours. This could be expected by looking at the RMS level of tables 4.9 and 4.10 and comparing them to the other profiles; nevertheless, those values are the product of the synthesis procedure, which is also affected by the choice of the parameters  and . Besides, in order to compensate for the lack of high peaks which are present in the non-Gaussian reference signal, the only possibility for the Gaussian synthesis is to increase the overall energy level (RMS) in order to match the FDS. On the other hand, the kFDS algorithm’s mean TTF is much closer: in fact, the estimation is off by approximately 5%. This better match might be due to such factors as the small amplitudes’ contribution in the reference signal, which are below the fatigue limit of the material. In fact, these low amplitudes are still damaging according to the model, even if to a small degree, still contributing to the FDS and therefore possibly leading to overtesting the material when the Gaussian signal is synthesized from the FDS. On the other hand, the kFDS algorithm synthesizes a signal with the same kurtosis value and FDS as the reference signal, thus characterized approximately by the same amount of downtime, possibly ‘cancelling’ the effect of damage overestimation that may occur when Gaussian tests are performed.

[bookmark: _Toc64275112]4.4 Accelerated tests

In this section accelerated tests are addressed. In analogy with section 4.3, the tests were performed by using three different acceleration profiles: the reference signal shown in Fig. 4.1 was scaled up by a factor of 1.25 and the test results were used to determine the new mean TTF in subsection 4.4.1. This mean TTF so obtained was then used to synthesize a Gaussian signal according to the standard Mission Synthesis procedure, which is described in subsection 4.4.2, whereas a Leptokurtic signal was synthesized according to the kFDS algorithm and the resulting test results described in subsection 4.4.3. For each of the three profiles, three tests were performed; therefore, the total number of specimens to be analyzed was equal to nine (three specimens for each test). The nine times to failure were calculated according to the two different definitions given in section 4.3.



[bookmark: _Toc64275113]4.4.1 Amplified reference profile 

The reference profile shown in fig.4.1, was multiplied by a factor of 1.25 and replicated by means of the waveform replication mode, until all specimens reached failure. The signal, sampled at 130 Hz, was upsampled by the software to the sampling frequency of 800 Hz. A high-pass filter removed the first 5 Hz from the signal. The nine times to failure, calculated by using the two different definitions, are reported in Tables 4.15 and 4.16. Due to the scaling factor, the standard deviation is also scaled accordingly (i.e. the one reported in Table 4.5 is multiplied by 1.25), whereas the crest factor and kurtosis value remain unaffected. The FDS is simply scaled by a factor exactly equal to  and the MRS by a factor of 1.25. The measured response to one of the replays of the reference signal generated by the shaker is shown in Fig.4.17, and its statistical parameters in Table 4.17.



Table 4.15: TTF’s and meaningful statistical parameters of the nine specimens calculated according to definition 1

		Definition 1 of failure

		Run #1   

		Run #2

		Run #3



		Specimen #1

		 0.381 h

		0.503 h

		 0.684



		Specimen #3

		 0.379 h

		0.431 h

		 0.441



		Specimen #5

		 0.534 h

		0.585 h

		0.295



		Mean TTF:  0.470 h

Median TTF:  0.441 h

Standard deviation of TTF’s:  0.119 h











Table 4.16: TTF’s and meaningful statistical parameters of the nine specimens calculated according to definition 2

		Definition 2 of failure

		Run #1

		Run #2

		Run #3



		Specimen #1

		 0.421 h

		 0.503 h

		0.684



		Specimen #3

		 0.472 h

		 0.464 h

		0.443



		Specimen #5

		 0.569 h

		 0.662 h

		0.319



		Mean TTF:  0.504 h

Median TTF:  0.472 h

Standard deviation of TTF’s:  0.117 h
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Fig.4.17: response to one of the replays of the reference signal generated by the shaker. The response shown here is related to the signal which led to the mean TTF according to definition 1.

		

Table 4.17: statistical properties of the response to one of the replays of the signal



		    RMS []

		37.05



		Kurtosis 

		13.6



		Crest factor 

		8.28
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In order to test the standard Mission Synthesis procedure while performing accelerated tests, a Gaussian signal having a duration of 0.470 hours and same FDS as the reference signal (the one described in subsection 4.1.1) was synthesized. The FDS equivalence was imposed over the mean TTF displayed in Table 4.15, namely 0.470 hours[footnoteRef:18]. Also in this case, the waveform replication mode was used, so that the signal would be repeated until failure occurred, still taking into account that failure was expected to occur (ideally) near the final part of the first replay. The nine times to failure, calculated by using the two different definitions of failure, are reported in Tables 4.18 and 4.19. Since the shaker was capable of reproducing the signals accurately with negligible error as shown in subsection 4.3.1, in this and the following subsection only the signals synthesized by the algorithms are displayed. The synthesized Gaussian signal is shown in Fig. 4.18, whereas its statistical parameters are reported in Table 4.20. The measured response to one of the replays of the reference signal generated by the shaker is shown in Fig.4.19, and its statistical parameters in Table 4.21. [18:  In this case, the duration of the synthesized signal coincides with the theoretical TTF, but it might be useful to recall that this might not always necessarily be the case, as suggested by section 4.3. ] 


The FDS and MRS of both the amplified reference signal and the synthesized Gaussian signal are compared in Fig.4.20. It should be noted that the equivalence between the two FDS curves in Fig.4.20 is not to be taken for granted in this case, unlike it was in section 4.3. This is because the TTF (0.470 h) related to the amplified reference signal of subsection 4.4.1 is experimental, whereas the TTF (0.470 h) associated with the synthesized signal is theoretical and contingent on the model employed to estimate damage accumulation, whose assumptions lead to the definition of the FDS. In fact, the model is characterized by uncertainties, especially in the parameter  (assumed to be equal to 9), which could lead to different results than expected. The scaling factor of 1.25 used to amplify the reference signal of subsection 4.4.1, together with the experimental TTF’s of 0.470 h and 1.66 h, are theoretically relatable to the parameter  of the model. In particular, by imposing the equivalence between the unamplified reference signal’s FDS, computed over a duration of 1.66 h, and the amplified reference signal’s FDS, computed over a duration of 0.470 h, from Eqs.(2.11, 2.12) it can be easily inferred that  must satisfy:



The solution of Eq.(4.1) in terms of , gives about 5.6, instead of the value 9 used by the model. This calculation is only meant to highlight that it might be challenging to attribute a sound numerical value to parameter ; the value of 9 is retained in the synthesis procedure both in section 4.4.2 and 4.4.3. Therefore, with the assumption that  and , it is granted that the FDS of the (unamplified) reference signal, computed over a duration of 1.66 hours, is (approximately) the same as that of the synthesized signal, computed over a duration of 0.470 hours. However, it is not granted that the same would hold for the FDS of the amplified signal, calculated over a duration of 0.470 hours and compared with that of the signal synthesized in this subsection (still calculated over a duration of 0.470 hours), because the uncertainties in the model, especially in the parameter , could lead to different results as mentioned.

In fact, the FDS mismatch is slightly more noticeable in this case, but still acceptable[footnoteRef:19], with the FDS of the Gaussian signal lying slightly below the one of the amplified reference profile. Nevertheless, the mean TTF’s in Tables 4.13 and 4.14 are still lower by an amount respectively equal to 41.9 % and 41.7 % than the theoretical 0.470 hours. This excessive overtesting suggests that this standard Mission Synthesis procedure might not be accurate in this situation, with the synthesis starting from this particular type of reference signals. [19:  It is worth recalling that the FDS curve represents the mean value of the damage (at a certain frequency), which implies the damage also has a standard deviation associated with it. This standard deviation, together with the assumptions at the basis of the simplistic model adopted, allows a margin of error in reaching a target FDS. C. Lalanne [13] provides more details in quantifying fatigue damage’s standard deviation.] 


Table 4.18: TTF’s and meaningful statistical parameters of the nine specimens calculated according to definition 1

		Definition 1 of failure

		Run #1   

		Run #2

		Run #3



		Specimen #1

		 0.210 h

		 0.215 h

		0.437



		Specimen #3

		 0.186 h

		 0.177 h

		0.157



		Specimen #5

		 0.461 h

		 0.274 h

		0.337



		Mean TTF:  0.273 h

Median TTF:  0.215 h	

Standard deviation of TTF’s:  0.114 h









Table 4.19: TTF’s and meaningful statistical parameters of the nine specimens calculated according to definition 2

		Definition 2 of failure

		Run #1

		Run #2

		Run #3



		Specimen #1

		 0.210 h

		 0.205 h

		0.460



		Specimen #3

		 0.186 h

		 0.177 h

		0.165



		Specimen #5

		 0.457 h

		 0.250 h

		0.354



		Mean TTF:  0.274 h

Median TTF:  0.210 h

Standard deviation of TTF’s:  0.119 h
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Fig.4.18: signal synthesized according to the Standard Mission Synthesis procedure for accelerated tests

		

Table 4.20: statistical properties of the Gaussian signal



		        RMS []

		3.08



		Kurtosis 

		2.99



		Crest factor 

		4.57
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Fig.4.19: response to one of the replays of the signal generated by the shaker. The response shown here is related to the signal which led to the mean TTF according to definition 1.

		

Table 4.21: statistical properties of the response to one of the replays of the signal



		    RMS []

		62.2



		Kurtosis 

		3.15



		Crest factor 

		4.63
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Fig.4.20:  comparison between the amplified reference signal and the Gaussian one: a) FDS, b) MRS. The curves are calculated by considering the parameters of the model to be: , 



[bookmark: _Toc64275115]4.4.3 kFDS profile #2

The kFDS algorithm was used to synthesize a signal having a duration of 0.470 hours and the same FDS as the reference signal described in subsection 4.1.1. The FDS equivalence was imposed over the mean TTF displayed in Table 4.15, namely 0.470 hours. Also in this case, the waveform replication mode was used, so that the signal would be repeated until failure occurred, still taking into account that failure was expected to occur (ideally) at the final part of the first replay. The nine times to failure, calculated by using the two different definitions of failure, are reported in Tables 4.22 and 4.23. The synthesized signal is shown in Fig. 4.21, whereas its statistical parameters are reported in Table 4.24. The measured response to one of the replays of the reference signal generated by the shaker is shown in Fig.4.22, and its statistical parameters in Table 4.25.

The FDS and MRS of both the amplified reference signal and the synthesized signal are compared in Fig.4.23. It should be noted that the comparison between the FDS curves in Fig.4.23 is not to be taken for granted in this case, for the exact same reason explained in subsection 4.4.2. The FDS curves are sufficiently close to each other, even though the synthesized signal’s FDS is still slightly below the reference one. However, unlike the mean TTF’s shown in subsection 4.4.2, the mean TTF’s values presented in Tables 4.22 and 4.23 are much closer to the target value of 0.470 h; in fact, the maximum error is approximately 3.2 %, suggesting a greater accuracy on the part of the kFDS algorithm. 

Table 4.22: TTF’s and meaningful statistical parameters of the nine specimens calculated according to definition 1

		Definition 1 of failure

		Run #1   

		Run #2

		Run #3



		Specimen #1

		 0.487 h

		 0.373 h

		0.558



		Specimen #3

		 0.652 h

		 0.319 h

		0.511



		Specimen #5

		 0.589 h

		 0.515 h

		0.357



		Mean TTF:  0.485 h

Median TTF:  0.511 h

Standard deviation of TTF’s:  0.113 h











Table 4.23: TTF’s and meaningful statistical parameters of the nine specimens calculated according to definition 2

		Definition 2 of failure

		Run #1

		Run #2

		Run #3



		Specimen #1

		 0.490 h

		 0.360 h

		0.558



		Specimen #3

		 0.654 h

		 0.326 h

		0.502



		Specimen #5

		 0.599 h

		 0.521 h

		0.363



		Mean TTF:  0.486 h

Median TTF:  0.502 h

Standard deviation of TTF’s:  0.114 h
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Fig.4.21: signal synthesized by the kFDS algorithm

		

Table 4.24: statistical properties of the signal synthesized by the kFDS algorithm



		        RMS []

		2.15



		Kurtosis 

		6.47



		Crest factor 

		8.61
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Fig.4.22: response to one of the replays of the signal generated by the shaker. The response shown here is related to the signal which led to the mean TTF according to definition 1.

		

Table 4.25: statistical properties of the response to one of the replays of the signal



		    RMS []

		44.9



		Kurtosis 

		6.09



		Crest factor 

		7.61
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Fig.4.23:  comparison between the amplified reference signal and the one synthesized by the kFDS algorithm: a) FDS, b) MRS. The curves are calculated by considering the parameters of the model to be: , 





[bookmark: _Toc64275116]4.4.4 Discussion

The results show that the difference between the two definitions of failure, in terms of mean and median TTF’s, is at the most 0.034 hours (i.e. approximately 2 minutes). The Gaussian synthesis led to overtesting the specimens, because the mean TTF was about 42 % less than the expected 0.470 hours. The kFDS algorithm’s mean TTF is much closer: in fact, the estimation is off by about 3 %. This standard method’s mismatch might be due to the overestimation of the small amplitudes’ contribution to damage that are present in the reference signal, as already described in subsection 4.3.4.



[bookmark: _Toc64275117]4.5 Influence of damping ratio and Wohler's curve slope

The most influential parameters in the fatigue model used are the coefficient related to Wohler’s curve slope and damping coefficient, denoted as usual by  and  respectively. In the system considered in chapter 4, parameter  was not difficult to evaluate, because the SDOF system model accurately approximated the specimens. In practice this might not always be the case for complicated DUT’s, but for SDOF systems the evaluation of  is straightforward. Even though in the literature it is recommended to set this coefficient  to a standard 5% [40], it might be useful to show that this choice is not uninfluential in all cases. In fact, as already mentioned in section 4.3, in the case of non-stationary signals with narrow-banded blocks such as the reference signal chosen in subsection 4.1.1, the damping coefficient may play an important role in the synthesis procedure because sinusoids cause a greater damage if damping is smaller. Therefore, since the synthesis procedure starts from the FDS of the signal, it is of great import not to overestimate , because it could lead to undertesting if the usual PSD is synthesized[footnoteRef:20].  [20:  if  is unknown, its underestimation would be more appropriate since it would cause an overestimation of the damage, thus leading to more conservative results.] 


In order to show an example of the influence of , two acceleration profiles were synthesized with the same procedure used in section 4.3, that is, the profiles have the same FDS as that of the reference signal of subsection 4.1.1 computed over 1.66 hours. However, in this case the parameter  was set to 5% instead of 1%, whereas the same value of  was preserved, therefore the value of 9.00 was used in the synthesis. The first of the two profiles was synthesized according to the standard procedure, leading to the Gaussian signal shown in Fig. 4.24, whose main statistical characteristics are reported in Table 4.26. The second one was synthesized by the VSD algorithm and the Kihm’s filtering technique (discussed in section 2.1) was applied a posteriori in order to match the FDS curves over a duration of 1.66 hours. The VSD signal is shown in Fig.4.25 and its statistical properties in Table 4.27. 

In order to see how the two signals would fare in real experiments, for each of the two profiles, one test was performed with the setup already described in chapter 4 (where  is approximately equal to 1%). Therefore, the total number of specimens to be analyzed was equal to three (three specimens for each test). The number of tests was chosen to be the bare minimum because this was not the major focus of the work; rather, the only test was used as a way of possibly corroborating what should already be known theoretically, namely the influence of an overestimation of parameter . The three times to failure were calculated and are shown in Table 4.28. The results show that the overestimation of  lead to an underestimation of the mean TTF (which was expected to be close to 1.66 hours theoretically if parameter  were approximately equal to 1%). The test performed with the Gaussian signal leads to a greater underestimation of the damage (i.e. the mean TTF), whereas the signal generated by the VSD algorithm and a posteriori application of Kihm’s filtering technique (with  leads to a less conspicuous underestimation of the damage. 

As regards parameter , its estimation is more difficult to make than in the case of  without performing experiments. Besides, even if experiments are done, an accurate estimation is unlikely due to the intrinsic indeterministic nature of fatigue-related phenomena, as well as the simplifying assumption that Wohler’s curve accurately describes the behavior of the material. In fact, Wohler’s curve parameters can be influenced by many factors such as: the type of load (sinusoidal, Gaussian, etc.), temperature, corrosion, residual stresses, the presence of notches, etc. All these factors combined account for the great number of different values of  given in the literature [36], even for the same material. In order to test the robustness of the algorithms presented in this work, the FDS of the two acceleration profiles shown in subsections 4.3.2 and 4.3.3 are calculated with a different value for the parameter . In particular, the value of  was set equal to 4, whereas  was maintained at 1%; with this value of , the FDS of the signal of Fig.4.11 is displayed in Fig.4.26a, together with that of the reference signal of Fig.4.1. The FDS of the signal of Fig.4.14 is shown in Fig.4.26b, together with that of the reference signal of Fig.4.1. It is clear how the kFDS algorithm is not affected as much as the standard Mission Synthesis; in fact, the FDS is still close to the target one in the former case, whereas not the same can be said in the latter. Something similar could be said if, instead of setting  equal to 4, the latter is set to a value greater than 9. In Fig.4.27 the two  curves are plotted in a similar fashion to the one described for Fig.4.26, with the only difference being the value of parameter , which is set to 14. In this case it is harder to appreciate the difference between the curves because the y-axis spans a larger range than in the case where  was equal to 4, nevertheless the FDS of the profile synthesized by the kFDS algorithm is closer to that of the reference profile especially in the bandwidth of interest (near 40 Hz).
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Fig.4.24: signal synthesized by the standard Mission Synthesis procedure with 

		

Table 4.26: statistical properties of the Gaussian signal synthesized with  =5%



		       RMS []

		2.30



		Kurtosis 

		3.01



		Crest factor 

		6.24
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Fig.4.25: signal synthesized by the VSD algorithm with 



		

Table 4.27: statistical properties of the signal synthesized by the VSD algorithm with  =5%



		        RMS []

		1.44



		Kurtosis 

		5.21



		Crest factor 

		5.99



















Table 4.28: TTF’s and meaningful statistical parameters of the Gaussian and VSD test calculated according to definition 2

		Definition 2 of failure

		Gaussian Test

		VSD Test



		Specimen #1

		 3.53 h

		 2.78 h



		Specimen #3

		 4.39 h

		 2.20 h



		Specimen #5

		 10.1 h

		 3.61 h



		Mean TTF:  6.01 h

Median TTF:  4.39 h

Standard deviation of TTF’s: 3.57 h



		Mean TTF:  2.86 h

Median TTF:  2.78 h

Standard deviation of TTF’s: 0.709 h
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Fig.4.26: comparison between the FDS of the reference signal of subsection 4.1.1 and that of the signal synthesized by a) the standard practice as described in subsection 4.3.2 b) the kFDS algorithm as described in subsection 4.3.3. The curves are calculated by considering the parameters of the model to be: , 
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Fig.4.27: comparison between the FDS of the reference signal of subsection 4.1.1 and that of the signal synthesized by a) the standard practice as described in subsection 4.3.2 b) the kFDS algorithm as described in subsection 4.3.3. The curves are calculated by considering the parameters of the model to be: , 
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In this work kurtosis control algorithms were first revised. As is, kurtosis control does not take into account a signal’s damage potential, which is estimated via the FDS, but only controls the PSD and kurtosis value; therefore, different signals with same kurtosis value and PSD may have a different FDS. In fact, it was shown that this is usually the case. However, this difference could be corrected, by using a filter described in the literature, therefore extending kurtosis control to durability tests (or fatigue life tests). The profiles so obtained not only had a target FDS, but also similar probability distributions to those generated by kurtosis control algorithms. The PSD and the statistical parameters changed to some extent but in return, the FDS was closer to that of the application. 

In addition, four novel Mission Synthesis algorithms were proposed, which achieved to control the FDS (a priori, without filtering) and other parameters specific to the particular algorithm selected. Their commonality was the synthesis of leptokurtic signals, thus extending the Standard Procedure and the other methodology based on the filtering technique described in the literature.

A first algorithm, named kFDS, managed to control both the FDS and kurtosis value of a signal to be synthesized. Other three algorithms were devised and proposed: an algorithm named RF complied with a prescribed FDS and RMS value of a synthesized signal, irrespective of the possible time reduction factor applied to the test. Next, the PF algorithm was introduced, which added the possibility of controlling the PSD shape in addition to the FDS and RMS value. Finally, the PSF algorithm was a modified version of the PF algorithm, which omitted to control the RMS value and complied only with an FDS and a PSD shape specification.

The simulation results showed that the algorithms complied with the constraints they were designed to satisfy.

The main advantages of the methodologies are related both to their effectiveness and to the computational efficiency due to the simple mathematical formulae required, with the time-domain calculations being performed only to generate the time-series at the end of the procedure and calculate the FDS.

Another important aspect to highlight is the randomness of the synthesized profiles; in fact, the generation of Gaussian blocks implied that the phases were randomly selected. In addition, other features adding to the randomness of the profiles were: the modulation coefficients  in the kFDS and RF algorithms, selected randomly as well, and the random permutation of the blocks which are then concatenated and smoothed.

A possible limitation is related to the maximum values of the system response, which are greater than those reached in Gaussian tests. This problem becomes more and more evident when the duration of the test is reduced, especially for those algorithms that control the RMS value (RF and PF), therefore before performing the actual tests it is essential to check whether the type of failure does not change from fatigue related to yield strength related. In general, there is certainly less room to reduce the test duration with respect to Gaussian tests, but one must also consider reliability of the tests, which may be increased if the distribution of signals measured from real applications (often non-Gaussian) is preserved. The possible increase in reliability was exemplified by the experimental tests described, where an extensive experimental campaign was conducted to test the validity of one of the algorithms in actual experiments. In particular, the kFDS algorithm was selected for the tests. The Gaussian synthesis led to overtesting the specimens, because the mean TTF was about 32 % less than the expected theoretical value. On the other hand, the kFDS algorithm’s mean TTF was much closer: in fact, the estimation was off by 5% approximately. This better match might be due to such factors as the small amplitudes’ contribution in the reference signal, which were possibly below the fatigue limit of the material. In fact, these low amplitudes are still damaging according to the model, even if to a small degree, therefore still contributing to the FDS and possibly leading to overtesting the material when the Gaussian signal is synthesized from the FDS. On the other hand, the kFDS algorithm synthesizes a signal with the same kurtosis value and FDS as the reference signal, thus characterized approximately by the same amount of downtime, possibly ‘cancelling’ the effect of damage overestimation that may occur when Gaussian tests are performed. The experimental results were promising, therefore supporting the idea that the preservation of the reference signal’s nature and damage potential can make accelerated tests increasingly realistic and reliable.

The kFDS algorithm was chosen for the experimental tests because among the algorithms presented, it is the one which has the lowest probability of generating signals having exceedingly high MRS levels (especially when tests are accelerated). Besides, very high peaks may not only change the failure mechanism, but also render the synthesis procedure more sensitive to the accuracy of Wohler’s curve parameters, due to the exponential relation between the signals and the damage according to the theory adopted. 

Notwithstanding the hope that the results presented in this work might be helpful to the current state of the art, there are still several algorithms presented in this work which can be experimentally tested. The possibility of optimizing the synthesis procedure, by considering both the algorithms and the sensitivity to the synthesis parameters, is a tangible and foreseeable possibility. 

Another important result obtained in this work was a novel time-domain method for the estimation of the fatigue damage (Appendix F). It aimed to bridge the gap between time-domain and frequency-domain approaches, in order to exploit the advantages of the frequency-domain approach (i.e. fast computations) in the time-domain, which, on its part, has the advantage of being more reliable and boasts a greater range of applicability.

The results proved to be satisfactory both in terms of precision and computational requirements, improving the speed with respect to the standard methodology, with the improvement being emphasized for long time-series.
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[bookmark: _Toc64275120]Appendix A: formulae for moments 

Every periodic signal  can be expanded in a Fourier series:







or if the series is truncated to  terms, as for shaker drive signals:











where  is the frequency resolution and  is the duration of the signal, which is considered to be extended periodically outside the interval .

The coefficients are expressible in terms of the signal  according to the relations:















If other coefficients  are defined such that:











the series can be easily written as:







Besides, it can be written in complex form as well:





where:







and  is its complex conjugate, which is also equal to  because for a real-valued signal :









With the above definition of  , the series can be written as:





Hence:





where:









It should be noted that the indices could be defined either to assume both negative and positive values as in Eq.(A.14) or only positive values Eq.(A.1).

In the time domain the central moment of order  (where q is a non-negative integer) is:



Its calculation in terms of the amplitudes and phases of the signal yields:







which, for the periodicity of the complex exponentials and after substituting the expressions for  becomes: 











Hence:



If :







If  one obtains:



In Eq.(A.21) the sum of the indices can give zero only if: (i) two indices are positive and the other two negative, (ii) three are positive and one negative, (iii) three are negative and one positive. Depending on which indices are positive and which are negative there are different combinations of signs: condition (i) contains  such combinations, whereas conditions (ii) and (iii) considered together (in fact, they lead to the same expression) give  different possibilities. Hence:













In Eq.(A.23), the indices can only assume positive values, for this reason the condition  under every summation symbol will be omitted in order to lighten the notation, but it will remain valid henceforth in this appendix. 

The summation symbols in Eq.(A.23) can be manipulated further. It can be proved that the following relations hold:







The following mathematical steps can be used to prove Eq.(A.24):



























The following mathematical steps can be used to prove Eq.(A.25):



















Substituting Eqs.(A.24, A.25) into Eq.(A.23):









which is equivalent to Eqs.(A.21, A.23).

One should remember that in Eq.(A.21) the indices range from  to  while in Eqs.(A.23, A.26)  from  to .









































































[bookmark: _Toc64275121]Appendix B: Gaussian distribution from its moments

The probability density function can be recovered from the knowledge of its moments, according to Eq.(1.21), recalled in the following for convenience:



If the moments are given by Eqs.(1.16, 1.18), namely:



then, the calculation of  yields:





For well-known properties of the double factorial:



The former relation is trivial to prove, in fact:





Hence:









The last integral is known to be equal to , in fact:







Hence:



which is the well-known Gaussian probability density function.































[bookmark: _Toc64275122]Appendix C: distribution of a sinusoid from its moments

The probability density function of a sinusoid can be recovered from the knowledge of its moments, given by Eqs,(1.22, 1.23), recalled in the following for convenience:



and by using Eq.(1.21) with ,  is given by:



The calculation of  yields:







The series inside the integral is related to the Bessel function of order zero, in particular:



The Bessel function of order zero also has a useful integral representation:



It can be proved that Eq. coincides with the series representation given by Eq.; in fact, by making the substitution :





Then, by expanding the integrand  according to the theory of complex variables:





The integral is zero when  is odd because the negative contribution in the interval  cancels the positive one in the interval . For even values of  the function  is definitely periodic with period , therefore the integral of , which is none other than the moment of order  of , can be evaluated by using Eq.(A.19). In fact, the integral is the same as the one given by Eq.(A.18) with  and only one harmonic contained in the signal given by Eq.(A.8) (with  and the amplitude of the harmonic being equal to 1). It can be evaluated by using the same reasoning as in section 1.1: in fact, since there is only one sinusoid, the indices of the amplitudes and phases appearing in Eq.(A.19) can only assume the values  where  is an integer, implying that  indices should be equal to  and the other  equal to . The number of choices to achieve that is obviously given by the binomial coefficient , hence:



Eq. may as well be simply obtained by replacing the amplitude of the sinusoid  with the value 1 in Eq.(1.1.16). Hence, Eq.(C.4) becomes:





Eq.(C.6) coincides with Eq.(C.1), thus Eqs.(C.2-C.3) are equivalent to Eq.(C.1). Therefore, returning to the computation of :







As is well known, the integral  is proportional to the Dirac delta function . More specifically:



Therefore:







The final expression for the probability density function  is:



which is the correct result for a sinusoid.





















































































[bookmark: _Toc64275123]Appendix D: proof of Eqs.(1.33,1.35)

The Formulae for kurtosis and variance of a time-series that is considered to be composed of  blocks can be written in the following forms:









These formulae are a generalization of Eqs.(1.33, 1.35); in that case the blocks had the same duration. The proof of  is given next.



Proof:

Without loss of generality, the assumption is made that a discrete signal  has zero mean. From the definition of the  statistical moment of the signal :





Eq. can be derived from the following equalities:





represents the  statistical moment of the block. By substituting the definition for kurtosis:



Eq.() is found.

Similarly, Eq.() can be derived in the following way:







By substituting the definition for the second order moments:



Eq.( is found.







































[bookmark: _Toc64275124]Appendix E: equivalence of Eqs.(2.1, 2.11)



This appendix serves to show how one can formally prove the equivalence between Eq.(2.1) and Eq.(2.11). Uppercase letters will be used to indicate RVs (e.g. ), whereas lowercase ones to refer to some specific values they assume (e.g. ). 

Eqs. (2.1, 2.11) are rewritten in the following, only for the sake of convenience:





In Eq.(E.2), the function  of Eq.(2.11) is rewritten as just to make it clear that it represents the joint probability density of the RVs . 

It is worth mentioning that the function  has to comply with some constraints. In particular, a simple property of the function  is such that  when . This property holds because a valley always occurs at an earlier time than its corresponding peak by definition. Besides, the function  should be equal to 0 also when , because a valley should never exceed the value of its corresponding peak.

It is convenient to define the following two new RVs:





In Eqs.(E.3, E.4), , are the RVs corresponding to the relative displacement valleys and peaks. According to these two equations, the joint probability density of the variables  and  can be written in terms of the joint probability density of   [33]:

 

where  is the absolute value of the Jacobian of the transformation which maps the variables  into . Eqs.(E.3-E.5) lead to:

 

If Eq.(E.6) is substituted into Eq.(E.2), one obtains:





If the substitution  is made[footnoteRef:22] in one of the two integrals contained in Eq.(E.7), one obtains: [22:  In the substitution ,  should be considered fixed, because  are independent. Therefore, the differential   is equal to d and the new set of independent variables becomes  and . ] 




Eq.(E.8) may be rewritten more conveniently as:



The term contained in the parentheses of Eq.(E.9) has the following three properties:

 1) it is a function of ;

 2) it is positive for any ;

 3) integrates to 1 over all possible values of , that is:



The second and third property hold because the function  is a joint probability density. These properties imply that the distribution  of  may be defined as:



Eqs.(E.9, E.11) lead to:	



It should be noted that the region of integration extends over all  in Eq.(E.12), whereas it extends over  in Eq.(E.1). However, because  is zero when , from Eq.(E.6) it is clear that  is zero when , and therefore Eq.(E.11) implies that  is zero when . Eq.(E.12) and these considerations prove that Eq.(E.1) is equivalent to Eq.(E.2).











[bookmark: _Toc64275125]Appendix F: novel method for the calculation of the FDS

In those applications where it is necessary to assess whether a component can withstand variable loads throughout its expected lifetime, the fatigue damage must be evaluated. The latter is usually estimated by means of the FDS spectral function. The DUT is identified with SDOF systems, independently excited and characterized by different natural frequencies  and same damping coefficient . According to the time-domain approach, a representative sample of the load measured from the application (i.e. reference signal) is considered an excitation applied to each SDOF system; then, each SDOF system generates a response that can be computed in terms of relative displacement. Subsequently, each relative displacement is: (i) analyzed in the time domain in order to extract the peaks and valleys and (ii) the resulting peaks and valleys are employed to compute the amplitudes and number of cycles to estimate the damage. The alternative to this time-domain methodology is the standard frequency domain-approach [44,45], which estimates the damage in terms of a PSD with the assumption that the distribution of the reference signal is stationary and Gaussian. 

The latter is faster than the time-domain approach computational-wise, because the time-series may be worth of millions of points, whereas the PSD is usually composed of hundreds of them.

In order to exploit the advantages of the spectral-domain methods, several authors [46-49] directed their efforts towards extending the latter to non-Gaussian loads, which are more frequent in practical applications.

F. Cianetti et al. [46] empirically proposed useful correction coefficients to evaluate the damage caused by a non-Gaussian signal. These coefficients are given both for stationary and non-stationary applications and depend on the skewness and kurtosis of the system’s output.

The range of applicability of these coefficients depends on the values of kurtosis and skewness, as well as the “degree” of non-stationarity [55] of the signals considered. In general, in assessing the damage at different natural frequencies in the time-domain, the response (expressed in terms of relative displacement) changes its distribution. Hence, these parameters could be affected by the natural frequency of the SDOF system as well. Besides, the computational time required by the calculation of kurtosis and skewness of the system’s output is not negligible.

As far as both time and frequency domain methods are concerned, other important factors to keep into consideration are the assumptions of: linear accumulation of the damage [56], linear proportionality between stress and relative displacement and the linearity of the system. The linearity assumption is considered a staple throughout this work and will not be abandoned; however, one should be aware that non-linearities may play an important role in applications and possibly affect the results if disregarded.

The aim of this appendix is to bridge the gap between time-domain and frequency-domain approaches in the computation of the FDS, by moving towards the advantageous computational speed of the frequency-domain approach, still using a time-domain approach; the latter has the advantage of being more reliable and boasts a greater range of applicability.

A novel methodology in the time-domain is proposed in the following; then, some numerical results are shown in terms of precision and speed.

As described in chapter 2, the calculation of the FDS in the time-domain starts from the computation of the relative displacement response of the first SDOF system. To this end, a fast and accurate ramp-invariant filtering technique is usually adopted [39,50], whose output is indeed the relative displacement signal computed at the SDOF system’s natural frequency. Then, the peaks and valleys (i.e. extrema) are extracted from the relative displacement, which are then input to a time-counting algorithm (usually the Rainflow counting) in order to find the amplitudes and number of damaging cycles.

This procedure is then looped through all the SDOF systems’ natural frequencies.

A methodology that avoids the extraction of the peaks and valleys and the subsequent time-counting technique is introduced next. As it will be motivated both by theoretical and numerical inquiries, the methodology does not affect the precision of the damage estimation sensibly.

Let the RVs  represent the relative displacement peak and corresponding valley respectively, which are related to the (peak-to-peak) amplitude  by means of the following equation:

 

The peaks and valleys are counted from the SDOF system’s response to a reference signal and their stochasticity depends on the randomness of the reference signal.

In the following, uppercase letters will be used to indicate RVs (e.g. ), whereas lowercase ones to refer to some specific values they assume (e.g. ). 

The probability densityof  can be related to the joint probability density. To that end, let  be an auxiliary RV defined as:



Then, according to Eqs.(F.1, F.2), the joint probability density of the variables A and  can be written in terms of the joint probability density of   [33]:

 

where  is the absolute value of the Jacobian of the linear transformation which maps the variables  into . Eqs.(F.1-F.3) lead to:

 

Hence,  is obtained as a marginal density from:

 

Eq.(F.5) may then be rewritten as:

 

By setting   , from Eq.(F.6) one obtains:

 

By the definition of conditional probability [33, 57-61], Eq.(F.7) can also be written in the following form:



where indicates the conditional probability density that the RV  takes the value  given the variable .

Alternatively, an equally valid form is still obtained using conditional probabilities:

 

Eqs.(F.8,F.9) serve to show the relations between the probability densities given by: ,, 

According to some preliminary numerical results, the integral in Eq.(2.1), which is used to evaluate the FDS, yielded satisfactory results if it was approximated as in the following expression:

 

From the assumption of ergodicity, one could also write: 



where  is the discrete signal containing the peaks (all supposed to be positive for simplicity) obtained by time-domain counting methods. The possibility of replacing the integral in Eq.(2.1) by the sum on the right-hand side of Eq.(F.11) allows bypassing the step at which the amplitudes  are computed via a counting method, starting from the peaks  and valleys  obtained from the time history. Another obvious advantage is that only the peaks are required, not the valleys. 

As a step further, in order to avoid searching for the peaks by using ad-hoc functions that store the peaks and troughs in floating-point vectors, an alternative faster and precise method is now explained, which allows finding the peaks using vectors of binary numbers, more sparing in terms of memory allocations. 

Without knowing precisely where the peaks are located, only the maximum value  of the signal is extracted from the SDOF system’s output  (i.e. the signal that contains the peaks  and  and other points in between). All the other peaks are contained between this upper value and another lower value, considered a percentage of the maximum value of the signal; its choice will be empirical and shown in the results. It is assumed (and later motivated) that only the values of the time-series  contained in the range [ contribute to the damage; therefore the summations will be performed only over those values. Obviously, the parameter  should be set to low enough values in order that all the relevant peaks be included in the computations, but also as high as possible in order to reduce the number of computations. 

The points of the time-series  included in the interval: [ are assumed to contain all the peaks  and, in the neighborhood of each peak, it is assumed that the non-negligible terms  are symmetric with respect to the peak, with the latter being the maximum value in that neighborhood. Therefore, according to this hypothesis, the non-negligible terms start from a lower value, increase till the maximum, then decrease till the same lower value is reached; the number of points contained between the lower value and the peak where the signal  is increasing is denoted by the number .  is considered to be independent from the peak considered and another simplifying assumption is the following: the  values in the neighborhood of the  peak  differ by integer multiples of  (i.e. the signal grows linearly[footnoteRef:23] in the left neighborhood of the peak and then decreases symmetrically).  is to be considered “small” with respect to  and the product  is negligible with respect to the peaks .  [23:  Because  does not depend on the index k, the signal is assumed to behave linearly in the neighborhood of the peak. This assumption is convenient for the sake of simplicity, but the subsequent considerations can be extended to the more general case where  also depends on k.] 


To summarize, the complete set of assumptions is the following:

1) Only the values of  contained in the range [ will appear in the summations of terms of the kind: , assumed to be positive and related to the damage.

2) Around each peak  contained in the interval [, there are  values symmetrically distributed between the peak’s left (where the signal  increases till it reaches the peak) and right (where the signal  decreases symmetrically with respect to the increasing part).

3) The values of  in the left neighborhood of the  peak differ by integer multiples of .

4) The sampling frequency is high enough for the signal  to be considered continuous (i.e.  is “large” and  is “small”). The product  can be finite but considered negligible with respect to the peaks . 

A graphical representation of the assumptions is shown in Fig.F.1, where the points of the SDOF system output  above the threshold value , on the left of the peaks  and  are plotted to emphasize their comparison. Both the points close to  and the points close to  amount to the same number of points  (for sake of visual simplicity  was set equal to ). According to the assumptions, those points lie on two lines whose slope is proportional to  and . 

Under assumptions 1, 2 and 3, the summations performed which are related to the damage are the following:



In order to motivate it, according to assumption 4, the summation over index  may be replaced by an integral:



Eq.(F.13) yields:



Since  is small compared to , a Taylor series expansion of the numerator truncated after two terms gives:



By assuming:   ( is small with respect to ), one obtains:



After denominating by  the total number of points of the system’s output  and defining the parameter  as in the following expression: 



Eq.(F.16) can be rewritten as:



It must be highlighted that  is a function “reasonably” independent of the particular time-series . In fact,  is related to the density of points around any peak, which is assumed to be constant; this is strictly true if the signal  reaches any peak  from the value  in a fixed amount of time equal to . In Eq.(F.17) the ratio  is also “reasonably” independent of the time-series , because the larger the number of points  of the time-series, the proportionally larger . Rather,  depends on the natural frequency of the SDOF system, since that affects the parameter : in fact, as  increases, it is intuitive to hypothesize that the number of peaks  will increase as well. This would lead  to have a tendency to decrease with . A more detailed motivation will be given in the last part of this appendix dedicated to simulation results; in fact, the validity of the assumptions altogether can only be inferred from simulation results.

Instead of using the definition of Eq.(F.17), will be computed numerically only one time, by taking advantage of its independence from the time-series.

The integral in Eq.(2.1) can finally be written as:

 

Hence,  can be computed as in the following:



Knowing that the sampling frequency  is equal to , the expression can also be formulated as:



The strategy that will be used to calculate  will be the following:

1) After choosing a reference profile, set  for every  and compute the damage  as in Eq.(F.21);

2) compute the damage  with the “standard” time domain procedure;

3) set  for every .

As already highlighted,  should not “strongly” depend on the particular reference profile chosen. Once it is known, it can be used in every other application, with the only (possible) additive step being the interpolation of its values in case the FDS of another application had a different number of points from the one used to calculate . In any case, the latter operation would not be troublesome since it could be done outside the main loop. The reference profile chosen to calculate  should have a sampling frequency high enough to span all the frequencies of interest of any other application.

[image: ] 





Fig. F.1. Graphical representation of the points of time-series   on the left of peak  (continuous line) and  (dashed line). On the y-axis relative displacements are plotted, whereas on the x-axis one could represent either time or number of points



The theoretical considerations presented in this appendix are now tested. The standard time-domain procedure accepted in the literature will be compared in terms of speed and precision to the proposed method.

The selected platform to do the required computations to display the results is . The time counting technique adopted is the Rainflow algorithm, considered as the most reliable [62-64].

The algorithms implemented in the standard procedure are optimized to achieve fast computations in order to make fair comparisons with the novel method. To the author’s knowledge, one of the most used  implementations of the Rainflow algorithm can be found on the  Central File Exchange [65], which boasts more than 39000 downloads as of October 2020.

Before the comparison, the first step is to compute the function , by choosing a reference signal. 

The starting reference signal, here denoted as RS1, represents field data sampled at 8192 Hz, with a duration of 23.3 seconds. Fig.F.2 shows its plot, whereas some statistical parameters are listed in Table F.1, in particular: standard deviation, kurtosis, crest factor. It can be observed that the reference signal is Leptokurtic, i.e. its kurtosis is greater than 3.0 as numerous peaks and/or bursts are present in the time-series.  		
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Fig. F.2. Reference signal used for the computation of 

		Table F.1. Statistical parameters of the 

reference signal RS1

		Statistical parameters of the reference signal

		RS1



		RMS []



		139





		Kurtosis 



		5.73





		Crest factor 

		9.02











In order to perform the computation of Eq.(F.20) (or Eq.(F.21)), the percentage  of the maximum value of the relative displacement time-series  should be set. The choice, after a trial and error procedure, was made to set . The exponent  is present because the lower , the less negligible terms there are in the neighborhood of the peaks (damage is proportional to the values ). Vice versa, the higher the Wohler’s curve slope , the (usually) lower number of points can be used in the computation of the damage via Eq.(F.21), because more of them become negligible with respect to the highest peaks (in absolute value), which are raised to the  power. The summations in Eq.(F.21) are performed by using the Matlab command: sum(z(z>p*zmax).^b), where z is the output of the SDOF system and zmax its maximum value. The operation has to be looped through each frequency .

As expounded at the beginning of this appendix, the advantages should be: (i) the time-consuming extraction of the peaks and valleys stored in a floating point vector and the subsequent time-counting are avoided, (ii) the number of points over which the summation is carried out is minimized.

The floating point vector of the standard procedure computed in every loop is replaced by the logical operation z>p*zmax, which is a vector containing either zeroes or ones and consequently allows faster computations.

The most important parameters involved in the computation of the damage,  and , are set to the values of 5 and 2.5% respectively. The other parameters, namely the expected lifetime  and the constants  and , are chosen respectively equal to one in their corresponding units of measurement.  and  are often set to the value of one because usually unknown [40]. Nevertheless, what is essential is not the magnitude of the damage, rather the relative difference between the FDS of different applications. This led the term “damage” to be usually replaced by “pseudo-damage”.

The resolution in the calculation of the FDS was set to , with the natural frequencies of the SDOF systems ranging from 4 Hz to the Nyquist frequency 4096 Hz.

With the input to the SDOF systems being the reference signal RS1, the parameter  results as in Fig.F.3. From an inspection of the curve, it has a tendency to decrease when the natural frequency increases, the more so at lower frequencies; this behavior was expected as previously discussed.

The calculation of  is used to compute the FDS of another reference signal. The latter, here denoted as RS2, represents field data sampled at 8192 Hz, with a duration of 660 seconds. Fig.F.4 contains its plot, whereas some statistical parameters are listed in Table F.2, in particular: standard deviation, kurtosis, crest factor. 

The FDS of the signal of Fig.F.4 is computed with the following new set of parameters, in order to test the theoretical results in different conditions: , =4%, T=1 h. The FDS curves are calculated by both the novel method and the standard procedure (by means of Eqs.(2.10,F.21) respectively as the last step) and are displayed in Fig.F.5. It can be observed that the matching of the curves is precise, and the computational time required by the method proposed in this appendix proved to be more than  times faster as shown in Table F.3. 

In the case of other profiles the results are similar; it may be worth showing another example.

The starting reference signal, here denoted as RS3, represents field data sampled at 500 Hz, with a duration of 1200 seconds. Fig.F.6 contains its plot, whereas some statistical parameters are listed in Table F.4.	

The FDS of the signal of Fig.F.6 is computed with the following new set of parameters, in order to test the theoretical results in yet different conditions: =4.5, =1.5%, T=10 h. The FDS curves are calculated by both the novel method and the standard procedure and are displayed in Fig.F.7. It can be observed that the matching of the curves is precise, and the computational time required by the method proposed in this appendix proved to be  times faster as shown in Table F.5. 
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           Fig. F.3.  calculated by setting:   	        Fig.F.4. 

             , =2.5%

Table F.2. Statistical parameters of the reference signal RS2

		

		RMS (ms–2)

		

		Kurtosis (-)

		Crest factor (-)



		Ref.

		   14.3

		            7.05                            11.9
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Fig. F.5. FDS of the signal RS2 calculated by the two different methods

		

Table F.3. Computational time required by the two methods to compute the FDS of the signal RS2. (Processor: AMD A6-5200 APU with Radeon (TM) HD graphics 2 GHz)

		Computation Time

		[s]



		Standard method

		

2093





		Proposed method



		153
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Fig. F.6. Reference signal RS3

		Table F.4. Statistical parameters of the 

reference signal RS3

		Statistical parameters of the reference signal

		RS1



		Std deviation []



		8.42





		Kurtosis 



		6.42





		Crest factor 

		8.12
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Fig. F.7. FDS of the signal RS3 calculated by the two different methods

		

Table F.5. Computational time required by the two methods to compute the FDS of the signal RS3 (Processor: AMD A6-5200 APU with Radeon (TM) HD graphics 2 GHz)

		Computation Time

		[s]



		Standard method

		

120





		Proposed method



		10

















































































































































































[bookmark: _Toc64275126]Appendix G: determination of 

The value of Wohler’s curve slope (related to parameter ) was determined by performing random tests with different RMS levels and flat PSD. As is well known, if  is the number of cycles with sinusoidal stress amplitude that lead the  to failure, Wohler’s curve (also known as S-N curve[footnoteRef:24] or Basquin’s law) has the form: [24:  This type of curve is widely plotted for many different materials, e.g. [66-68].] 








In case of non-sinusoidal stress histories, stress amplitudes can still be obtained from counting techniques as explained in chapter 2, where it is assumed that each of those amplitudes satisfies Eq.(G.1). If the stresses are lower than the material’s yield strength, the relationship between stresses and relative displacements (function  in chapter 2) may be considered linear. The relative displacement  is simply the difference between the system’s output  (i.e. response of the DUT excited by the shaker’s physical motion) and the input  (i.e. physical motion of the shaker), where both  and  are displacements. From Eq.(2.6)if the SDOF system has a natural frequency  and the (acceleration) signal  has a flat PSD denoted by , it is easy to see that the square of the RMS of  is proportional to the PSD, that is:







In Eq.(G.2)  is simply a proportionality constant which depends on both the frequency and damping coefficient of the system, given by the relationship:







Due to the assumed linearity between stress and relative displacements, the square of the RMS of the stress time history is then proportional to the PSD G, which, on its part, is proportional to the square of the RMS of the input signal  due to the constancy of G. Therefore:







Eq.(G.4) would also hold in the particular case the stress signal is a sinusoid (in this case the PSD of the signal would be a Dirac delta function), therefore in principle the stress  in Eq.(G.1) could be replaced by  and the constant  would simply be replaced by a different constant . It is worth mentioning that the “constant” would depend on the natural frequency of the system as it should be evident from Eq.(G.3) ( which leads to Eq.(G.4) ), therefore it is not actually a constant if  is not fixed (as in the case of the FDS concept). Nevertheless, the FDS of every signal would be affected by the same factor, meaning that the concept of relative damage would still be preserved[footnoteRef:25] if, for sake of simplicity, it is assumed that the constant in Eq.(G.4) remains constant regardless of any possible change in . If the signal  were not sinusoidal, by analogy with stresses, Eq.(G.1) could be still considered a relationship satisfied by each of its amplitudes extracted by time-counting methods. Besides, if it is assumed that the number of cycles to failure  is proportional to the time to failure (denoted by ) of the DUT subjected to the acceleration , Eq.(G.1) may be rewritten as: [25:  In fact, the ratio of FDS curves is unaffected by the factor.] 








Since the relation between the amplitudes extracted by time-counting methods and the overall RMS of the signal  is simply linear if other conditions are fixed (such as the shape of the PSD is flat and the signal’s distribution is Gaussian), then in Eq.(G.5)  could simply be considered as the overall RMS of the signal. Scaling the RMS would simply imply scaling the amplitudes if the distribution is fixed. In fact, if two random signals are generated from a PSD (i.e. their distribution is Gaussian) with two different RMS levels, their amplitudes will have the same distribution and their values will differ approximately by a factor equal to the ratio of the two different RMS values. 

The purpose of the tests mentioned at the beginning of this appendix was to determine a value for parameter  through the use of Eq.(G.5). When experimental tests were performed, points with coordinates (l) were drawn and, since Wohler’s curve is simply a line in log-log scale, the slope of the line was determined according to the Least Squares method. 

Considering that the natural frequency of a specimen decreases as damage accumulates, failure was defined to occur at the time  where the tangent to the curve  reached a certain (negative) slope. It is worth mentioning that since the curves defining natural frequencies were obtained numerically from real measurements, adequate polynomials were used to interpolate the curves and properly define tangents. This approach was used because of its simple numerical automation. It was made simple by the fact that curves had the same shape in all tests: frequency remained constant (up to small unavoidable numerical fluctuations) until it suddenly started decreasing when close to the point of failure. This regularity pattern did not occur when non-Gaussian tests were performed, as explained in sections 4.3 and 4.4, so the definition of failure was different in that case. However, it should be highlighted, especially in this case where the decrease in frequency is steep, that any reasonable definition of failure should lead to similar results. An example of the curves mentioned above is shown in Fig.G.1: this particular test was performed at 0.4 g on specimen number 3.
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Fig.G.1: test performed at 0.4 g on specimen #3: the blue curve represents the natural frequency computed from the real measurements; the red one is the polynomial interpolation, whereas the green one is the tangent that defines the TTF.









The software used for the tests was TestLab, in particular the Random mode module. The flat PSD was defined in the interval [20 Hz,48 Hz], and as exemplified by the test performed on the same specimen reported in Fig.F.1, the RMS level was controlled precisely, as shown in Fig.G.2a. A 500 points PSD is shown in Fig.G.2b; the Nyquist frequency is 400 Hz because Testlab defined the sampling frequency of shaker drive signals to be equal to 800 Hz.
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(a)
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(b)







Fig.G.2: test performed at 0.4 g on specimen #3: the shaker controller is able to follow the a) RMS and b) PSD specification







The tests were performed at the following levels (expressed in g): 0.3, 0.4, 0.5 and 0.6 and for each level the median TTF was taken. Each single test consisted of three specimens and those having the shortest TTF values were repeated twice, therefore the median value was extracted either from three or six samples. Both the RMS levels and TTF values are summarized concisely in the first two rows of Table G.1. Using the Least Squares method, the values of Table G.1 lead to a value of approximately 9.17 for parameter . In order to gather more information about dispersion of data, the mean, minimum and maximum values for the TTF’s are reported in the remaining three rows of Table G.1. Wohler’s curve is usually defined as the curve that coincides with 50% probability that the specimen reaches failure at the specific stress level considered on the curve. Therefore, it makes sense to consider the median values for the TTF. Nevertheless, in principle one might as well obtain Wohler’s curves associated with different probabilities of failure: for instance, the maximum TTF values correspond to 100% probability that the specimens fail, etc. The curves that correspond to the: median, mean, minimum, maximum TTF’s were obtained via Least Squares as well; they are plotted in Fig.G.3, with their corresponding values of . Since the values for the parameter  were calculated to be reasonably similar for the different curves (8.89 for maximum TTF’s, 9.38 for minimum TTF’s, 9.02 for mean TTF’s, 9.17 for median TTF’s), any choice of the value of  in the range 8.89 and 9.38 would be acceptable. Due to the intrinsic uncertainty of both the model used and the phenomenon studied, the parameter  was chosen to be equal to exactly 9.00 for the sake of simplicity. 

Table G.1: median times to failure associated with each individual RMS level

		RMS levels [g]

		0.3

		0.4

		0.5

		0.6



		Median TTF [h]

		97.0

		9.17

		0.422

		0.396



		Mean TTF [h]

		87.6

		10.7

		0.474

		0.366



		Minimum TTF [h]

		53.6

		2.87

		0.191

		0.163



		Maximum TTF [h]

		112

		21.2

		0.810

		0.538
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Fig.G.3: Wohler’s curves estimated via Least Squares and associated with different probabilities of failure





































[bookmark: _Toc64275127]Appendix H: GUI implementing the algorithms

The author’s collaboration with industries led to the development of Graphical User Interfaces (GUI’s) that implement all the novel algorithms proposed, as well as the standard methodologies. This appendix is not intended to serve as a step-by-step manual for the use of these GUI’s, since its purpose is only to highlight some of the main auxiliary characteristics – not usually available in standard software – arisen from the collaboration with interested companies. Three independent GUI’s are shown in Fig.H.1, where the main external buttons outline some basic functionalities. Fig.H.1a shows the front end of the GUI related to kurtosis control, Fig.H.1b shows the one related to Standard Mission Synthesis, whereas Fig.H.1.c shows the GUI implementing the algorithms presented in section 2.2. Several other functionalities appear in the form of dialogue boxes while running the GUI’s; among them, it is worth mentioning the possibility of: pre-processing signals by filtering, plotting the time-series and their PSD’s, dealing with multiple situations[footnoteRef:26] (either in parallel or in series), as well as synthesizing multiple time-series at a time.  [26:  The phrase “multiple situations” refers to a subdivision of a product’s life cycle into multiple dynamic events such as: handling, transport, storage, etc., in which the product is subjected to different vibrations. If different events take place during the life of the product, it is said that the events are in series; sometimes the latter can be in parallel, i.e. only one of them occurs, for example when it is not known whether the product will be transported by air or by sea. In this case, the damage estimation via the FDS function consists in measuring representative signals from each situation, compute the FDS, then sum the FDS curves of events that are in series and/or envelope FDS curves of events that are in parallel.] 


Aside from the synthesis of signals, one of the most useful features implemented in the GUI’s is the possibility of inserting specifications and make comparisons with measured data. In fact, in evaluating whether a component may withstand the loads distinctive of a particular application, it might be useful to compare the FDS derived from a given specification with the FDS computed from representative signals that are measured from the application. The analysis should then be performed on the frequency range of interest for the component: the FDS derived from the specification should be higher than the measurement’s FDS, because specifications outline the domain of proper functioning that manufacturers guarantee. Usually, the specification is derived from both random tests and sweep tests. Therefore, the manufacturer might specify both a PSD and the characteristics of a sweep test on the component’s catalogue. The PSD information should be paired with the important information of the test duration, whereas the most relevant characteristics of the sweep tests are: duration of the test, sweep rate, sweep amplitudes at different time instants. The PSD is usually defined in a chart, where the magnitudes at some relevant frequency points are reported; an example is given in Fig.H.2a, whereas Fig.H.2b helps visualize an example of a sweep test specification. 

In the GUI’s front end, by clicking on the “insert specification” button, it is possible to insert all the necessary inputs written on the catalogue. At the end of the procedure, this specification is translated to an FDS that can be visualized and compared with the reference signal’s FDS. Fig.H.3 shows the steps that need to be performed to insert the random specification, whereas Fig.H.4 is analogous but the steps refer to the sweep specification. 

The FDS derived from the PSD specification is computed from the PSD according to the frequency domain method, whereas the FDS derived from the sweep specification is computed from the sweep signal according to the time domain method. The sweep signal is obtained from the specification; an example is the sweep defined by Fig.H.2b, which is plotted in Fig.H.5.
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(c)





		Fig.H.1: the GUI’s front ends showing the main buttons: GUI related to (a) kurtosis control algorithms, (b) Standard Mission Synthesis, (c) novel algorithms with a priori FDS control
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		Fig.H.2: (a) random test specification, (b) sweep test specification
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Fig.H.3: after clicking on the “Insert specification” button, the PSD specification is selected (a). Then, the PSD is input (b) and the parameters that lead to the calculation of the FDS are inserted (c). Finally, the FDS of the specification is compared with the FDS of the reference signal (in this case the comparison is made only in the range 0-50 Hz).
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Fig.H.4: after clicking on the “Insert specification” button, the sweep specification is selected (a). Then, the sweep amplitudes are input (b) and the parameters that lead to the calculation of the FDS are inserted (c). Finally, the FDS of the sweep and PSD specifications are compared with the FDS of the reference signal (in this case the comparison is made only in the range 0-50 Hz).
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		Fig.H.5: sweep specification in the time domain. According to the specification, this signal is repeated until 96 hours are reached.
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