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Abstract
COMPUTATIONAL RESOURCES FOR
STRUCTURAL AND METAGENOMIC

CHARACTERIZATION OF FUNCTIONS IN
BACTERIA AND BACTERIAL COMMUNITIES

ANTIMICROBIAL RESISTANCE, PATHWAYS FOR XENOBIOTIC DEGRADATION AND

RELATIONSHIP BETWEEN GUT MICROBIOME AND AGEING

by Teresa TAVELLA

Prokaryotic organisms are one of the most successful forms of life, they are present
in all known ecosystems. The deluge diversity of bacteria reflects their ability to
colonise every environment. Also, human beings host trillions of microorganisms in
their body districts, including skin, mucosae, and gut. This symbiosis is active for
all other terrestrial and marine animals, as well as plants. With the term holobiont
we refer, with a single word, to the systems including both the host and its sym-
biotic microbial species. The coevolution of bacteria within their ecological niches
reflects the adaptation of both host and guest species, and it is shaped by complex
interactions that are pivotal for determining the host state. Nowadays, thanks to
the current sequencing technologies, Next Generation Sequencing (NGS), we have
unprecedented tools for investigating the bacterial life by studying the prokaryotic
genome sequences. This is feasible at large scale because of the increase of through-
put and decrease of sequencing costs. NGS revolution has been sustained by the
advancements in computational performance, in terms of speed, storage capacity,
algorithm development and hardware costs decreasing following the Moore’s Law.
Bioinformaticians and computational biologists design and implement ad hoc tools
able to analyse high-throughput data and extract valuable biological information.
Metagenomics requires the integration of life and computational sciences and it is
uncovering the deluge diversity of the bacterial world.

The present thesis work focuses mainly on the analysis of prokaryotic genomes
under different aspects. Being supervised by two groups at the University of Bologna,
the Biocomputing group and the group of Microbial Ecology of Health, I investigated
three different topics: i) antimicrobial resistance, particularly with respect to mis-
sense point mutations involved in the resistant phenotype, ii) bacterial mechanisms
involved in xenobiotic degradation via the computational analysis of metagenomic
samples, and iii) the variation of the human gut microbiota through ageing, in elderly
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and longevous individuals. During my work, I addressed these topics with specific
computational approaches described in the following chapters.

Chapter 1 provides an introduction to the antimicrobial resistance and briefly
reviews the molecular mechanisms involved and the state-of-the-art of experimental
and computational approaches implemented to study this phenomenon.

Chapter 2 describes PVAR3D, an open-source database of protein variations
involved in antibiotic resistance. PVAR3D provides a tool for analysing variations in
the context of 3D-structure, integrating functional annotation from different sources.
Major features characterising variations involved in antibiotic resistance are analysed.

Chapter 3 introduces the main ideas and techniques of metagenomics, a science
that is determining a paradigm shift in the microbiological field.

Chapter 4 describes XenoPath, an open-source tool for analysing whole-genome
shotgun metagenomic data (WGS), uncovering the xenobiotic degradation potential
associated with the communities of bacteria identified in a given sample. XenoPath
reports the functional profile of an environmental or host community.

Chapter 5 summarises the current knowledge on the human gut microbiota, with
a focus on the composition of the different niches of the gastrointestinal tract, its role
in the pathophysiology of the host, and its development in humans at different life
stage.

Chapter 6 and 7 describe two studies on the analysis of the gut microbiota in
elderly and centenarians. The first project aims to relate the health status of elder-
lies with visceral fat and their gut microbiota. The study involves an Italian cohort
from the European project NU-AGE, analysed through 16S rRNA gene-based NGS.
The second original work is devoted to the characterization of fecal samples from
long-lived individuals, centenarians and semi-supercentenarians (i.e., people aged
105 years or older), specifically unveiling their antibiotic resistance profile, in com-
parisons to younger individuals. In this case, we analysed WGS data of an Italian
cohort.

Chapter 8 regards a published study on the latter cohort, investigating the xeno-
biotic degradation potential of metagenomic communities from the stool of centenar-
ians. Lastly, Chapter 9 presents the overall conclusions of this thesis work.
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Chapter 1

Antimicrobial resistance

1.1 Antimicrobial vs Antibiotic definition
Antimicrobial resistance (AMR) is the ability of bacteria to survive to the bacterici-

dal effects of certain drugs. Under the broad definition of antimicrobial, here we both
consider antibiotic and antimicrobial drugs. Specifically, antibiotics are molecules
of natural origin synthetized by bacteria and fungi against other populations of co-
resident prokaryotes (i.e., penicillin), while antimicrobial drugs identify compounds
of synthetic (i.e., quinolones) and semi-synthetic (i.e., methicillin) origin. Often and
for sake of simplicity, the term “antibiotic” is used as a synonymous of antimicrobial
and can include the compounds of synthetic and semi-synthetic origin (Blair et al.,
2015).

1.2 Milestones in antimicrobials discoveries
Long before the discovery of the first antibacterial agent, the adoption of mi-

crobes/fungi able to produce antibiotics has been traced back to 2000 years ago
in human populations, in remedies involving mouldy bread and soil (Aboelsoud,
2010). Antibiotic-producing bacteria were also hypothesized by Louis Pasteur, and
in the 1890s Emmerich and Löw adopted an extract from Pseudomonas aeruginosa
to threat infections. In 1907 in the laboratory of Paul Ehrlich the first screening of
synthetized molecules led to the discovery of salvarsan, a compound with antimicro-
bial activity against the bacterium Treponema pallidum, responsible for the syphilis
disease. Starting from the accidental discovery of penicillin, by Alexander Fleming
in 1928, and up to the ’60, we identify a period defined as the golden age of antibiotic
discoveries, important for the finding of novel natural compounds with antimicrobial
effect. In this context, an important role was played by the Oxford group, includ-
ing Norman Heatley, Howard Florey, Ernst Chain and colleagues. In 1945 Dorothy
Hodgkin solved the penicillin structure, identifying the characteristic beta-lactam
ring. Following these findings, Selman Waksman started a systematic study of soil
bacteria. In particular, he focused on Actinomycetes, leading to the discovery of
streptomycin and neomycin, the former used against tuberculosis. Remarkably, 64%
of known natural compounds come from Actinomycetes (Hutchings, Truman, and
Wilkinson, 2019).

Antibacterial compounds have contributed to cure pneumonia and other infec-
tious diseases, and are at the basis of modern medicine. They have extended the life
expectancy, reducing mortality rate in childhood, in post-surgery and traumas, being
also pivotal for chemotherapeutic treatments and transplants. Combined to the clini-
cal practice, antibiotics are also administered in animal farming, for both therapeutic
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and non-therapeutic purposes, such as promoting animal growth, prophylaxis after
surgery, and methaphilaxis for preventing a potential outbreak (Munita and Arias,
2016).

1.3 Increasing antimicrobial resistance
Bacteria have an extremely variable genetic material, they can successfully over-

take the action of antimicrobials, evading their mechanism of action, by shifting their
phenotype from susceptible to resistant. Antimicrobial resistance was first observed
in clinical environments. Initially, it involved only penicillin and the discovery of
methicillin in 1960 lowered the alarm on this phenomenon. Later on, the resistance
towards methicillin promptly emerged, leaving us today to face methicillin-resistant
Staphylococcus aureus (MRSA), among other threatening pathogens (Hutchings, Tru-
man, and Wilkinson, 2019).

By the year 2050, a UK survey has estimated a high mortality rate due to antibiotic
resistance, with the death of ten million people per year (O’Neill, 2016). It has
been described a high correlation between antibiotic usage and increasing antibiotic
resistance, and countries with higher administering and usage in farms and medicine,
show higher levels of resistance (Kollef and Fraser, 2001; Christiaens, Digranes, and
Baerheim, 2002; Chokshi et al., 2019). Furthermore, in our interconnected world, any
effort made by countries promoting a moderate drug usage could be vain, due the
ability of resistance to spread in the environment. To avoid the emergence of new
types of resistance, we need to use antimicrobial in a better and systematic manner.
The current medical practice should treat the infections identifying the microbes
first and then administering the antibiotic best tailored to kill the infection causing
bacteria. However, before the results of microbiological tests, infections are treated
using the empirical medical knowledge. To keep the pace with the emergence of new
resistant pathogens, there is a need to efficiently developing drugs. The production
of synthetic antibiotic can be costly and requires a continuous effort: it is estimated
that one out of five antibiotics tested finally passes successfully all the phases of the
clinical trials.

1.3.1 Superbugs
Of great interest is the development of drugs against the ESKAPE pathogens.

Bacteria under this definition are six Gram-negative pathogens responsible for noso-
comial infections. Notably this are: Enterococcus faecium, Staphylococcus aureus, Kleb-
siella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter
spp. These pathogens are a critical threat since they can present a multidrug re-
sistance phenotype and an extended spectrum of resistance to b-lactamase (ESBL)
and carbapenemase. Multidrug resistant pathogens, are more dangerous, with en-
hanced morbidity and mortality, requiring often higher antibiotic dosage, the usage
of multiple compounds and an extended period of treatment in clinical care.
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1.4 Recent discoveries of natural compounds
Besides the discovery of synthetic antibiotic with clinical effect, another research

field regards the discovery of antimicrobial compounds from natural origin. Interest-
ingly, unexplored environmental niches, from a bacteria taxonomic perspective, have
been proved to be a resource of new natural products. To cite one unexpected source,
Staphylococcus lugdunensis isolated from the nasal microbiota, produces lugdunin,
which prevents S. aureus colonization of the nasal tract (Zipperer et al., 2016).

Many of the natural compounds produced by bacteria in their ecological niche are
switched off in vitro. In this setting, bacteria are in a different artificial environment,
where they do not receive the same stimuli, and most of the pathways are repressed.
For instance, Clostridium cellulolyticum isolated from a decaying grass compost, when
cultivated in laboratory does not produces the antibiotic closthioamide, except when
an acqueous solution extracted from the same niche is added to the cultivated isolate
(Lincke et al., 2010). This underlies the difficulties in identify new natural compounds,
and another major problem is the limitation concerning the possibility of growing
microbes in standard laboratory conditions (Hutchings, Truman, and Wilkinson,
2019).

1.5 Antimicrobial Susceptibility testing and AMR de-
tection methods

Antimicrobial susceptibility testing and AMR detection methods are important
for the identification of resistance and help clinicians in the appropriate choice of
antimicrobial drugs. Rapid methods are of utmost importance since they can limit the
empiric administration of antimicrobial therapy. However, many methods require
overnight incubation and can need up to 72h to give a result.

Thanks to the high generation rate of bacterial populations, laboratory experi-
ments as the antimicrobial susceptibility testing (AST) can assess in vitro the antibiotic
dosage tolerated by the clones and identify the resistant phenotypes. The measure
test is the Minimal Inhibitory Concentration (MIC) of an antibiotic preventing bacte-
rial growth in vitro. The Clinical and Laboratory Standards Institute (CLSI) and the
European Committee on AST (EUCAST) define standards procedures for performing
these tests. Beside the quantitative methods, other qualitative assays have been
developed, such as the disk diffusion and broth dilution assays. In these cases, it is
possible to visually identify the growth of colonies in the medium (i.e., solid agar,
broth) divided in zone and characterized by different concentration of the antibi-
otic. Interestingly, different automated instruments can perform high-throughput
screenings via qualitative assays.

An intrinsic bottleneck of the phenotypic assay, both quantitative and qualitative,
is due to the growth time needed for bacteria - lag phase and log phase - and their
response time to the antimicrobial drug. Importantly, cell quantification in the
inoculum is another limiting factor affecting the detection of MIC (Smith and Kirby,
2018)

Detection of resistance can be also performed with rapid detection methods,
based on molecular, genetic, and genomic assays. Immunochromatographic assay
is a molecular diagnostic test that detects proteins putatively involved in AMR (see
next section) by means of protein arrays with immobilized specific antibodies. On
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this basis, several lateral flow assays (LFAs) have been developed, in particular for
the detection of beta-lactamases proteins. At a larger scale, matrix-assisted laser
desorption ionization time-of-flight mass spectroscopy (MALDI- TOF-MS) allows a
complete profiling of the proteome (Belkum et al., 2020).

Genetic methods aim at detecting the presence of specific genes and gene variants
in the bacterial genome: DNA amplification (PCR) and sequencing are the basic
techniques. Genotypic AMR detection methods have the advantage to be faster than
phenotypic methods, since there is no necessity of growing bacteria (Bayot ML, 2020).
In recent years, whole-genome shotgun sequencing (WGS) technology has become a
powerful tool for the identification of resistance genes, since it enables to investigate
the whole genome at the same time, instead of few genes. Genomics allows a rapid
and deep characterization of isolates and Bioinformatics allows their characterization
by mining specific AMR databases. Despite the technological advancement offered
by AMR detection methods, these in silico characterizations of resistance need to be
further characterized in vitro.

Notably, rapid test are fluorescence in situ hybridization (FISH) and microfluidics-
based techniques (Yilmaz and Demiray, 2007; Choi et al., 2014).

Recently, metagenomics led to the discovery of resistance determinants from
uncultured soil bacteria. In details, DNA-libraries are generated from non-cultured
mixed bacterial samples and fragments are packed within lambda phage that me-
diates the transduction of the vectors into a susceptible strain. The deriving strains
are then selected for AMR on selective media. By sequencing the surviving recombi-
nant strains, it is possible to select sequences possibly carrying AMR determinants
(Torres-Cortés et al., 2011).

1.6 Antimicrobials spectrum and cellular targets
Based on the bacterial targets, antimicrobials are classified as broad spectrum

when they are effective against both Gram-positive and Gram-negative bacteria
(i.e., fluoroquinolones, tetracyclines and others), and narrow spectrum, when their
bactericidal action is restricted to specific bacteria (i.e., glycopeptides, bacitracin
drugs).

Antimicrobials can also be classified on the basis of their mode of action, deter-
mined by their chemical structure and affinity with a target site. The main targets of
antimicrobial resistance are cell wall, DNA, and ribosomes. In detail, these drugs can
be classified as:

i. Inhibitors of cell wall synthesis. Drugs, such as penicillins, cephalosporins,
bacitracin and vancomycin are inhibitors of cell wall synthesis. One of the
major differences between the cells of animal eukaryotes and prokaryotes is
the presence of an external cell wall. As an example, the group of penicillins, a
type of beta-lactams antibiotic, characterized by a beta-lactam and thiazolidine
ring, inactivates DD-transpeptidase (EC 3.4.16.4) by covalently binding a serine
residue that participate to the active site of this enzyme end that is essential for
crosslinking peptidoglycans of the cell wall.
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ii. Inhibitors of Cell membrane function. Many peptide antibiotics interfere with
the cell membrane permeability. For instance, colistin, effective against Gram-
negative bacteria, is characterized by both hydrophilic and hydrophobic func-
tional groups. Colistin works by disrupting the cell permeability and causing
the cell lysis.

iii. Inhibitors of the synthesis of nucleic acids. Quinolones, metronidazole, and
rifampin, are examples of inhibitors of enzymes involved in synthesis of nucleic
acids, such as DNA gyrase, RNA polymerase. These compounds hamper the
replication process of the cell.

iv. Protein synthesis inhibitors. Aminoglycosides, macrolides, lincosamides, strep-
togramins, chloramphenicol, tetracyclines inhibit protein synthesis, by targeting
either the 30S or 50S subunits of the intracellular ribosomes. Sulfonamides and
trimethoprim inhibit the folic acid pathway, the first by binding to the dihy-
dropteroate synthase, while the second by inhibiting dihydrofolate reductase.

1.7 The genetic basis of antibiotic resistance
Antibacterial compounds attack core functions of the bacterial cell. Resistance

is the microbial defence: different types of responses emerge within a population
undergoing selective pressure and these mechanisms can lead to bacterial adaptation.
There are two types of genomic changes at the basis of antimicrobial resistance:
horizontal gene transfer (HTG) and genome variations, both types can result in an
alteration of the gene expression.

1.7.1 Horizontal gene transfer
HGT is a mechanisms discovered in 1940s and corresponds to the acquisition of

genetic material not inherited from parent to child cells. In prokaryotes this transfer
of genetic material between cells can occur via conjugation, transformation, or trans-
duction. The first mechanism requires a recipient and a donor cell, able to transfer
the genetic material via a conjugation pilus. Transformations is the acquisition of ex-
ogenous genetic material from the environment, and the third method, transduction,
concerns the delivery of DNA via a phage. The presence of new genetic material
could be beneficial and could confers an advantageous phenotype to the beneficiary
cell (Soucy, Huang, and Gogarten, 2015).

1.7.2 Variation
In absence of antibiotics, the variations (single nucleotide substitutions or small

indels) occur at each cell division. Variations arising spontaneously, can be selected
in a population of bacteria if they increase the fitness of the cell when exposed to
stressing environment, including antibiotics (Woodford and Ellington, 2007). Con-
versely, if the population is not facing antibiotic pressure, the presence of variations
within the population is regulated by natural selection and genetic drift. The rate of
insurgence of AMR mutations is then dependent on the antibiotic dose, and even
sublethal concentrations can boost the selection of resistant variants in a population.
Some genes, as those encoding for the ribosomal subunit, are present in multiple
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copies in the bacterial genome. If by chance, the population carries a copy with a
variation beneficial upon the exposure to linezolid, the population could be selected
to carry more mutated copies of the gene. This is the case of some known variations
in S. pneumoniae and S. aureus (Durão, Balbontín, and Gordo, 2018).

Non synonymous single nucleotide variations determining protein variants are
characterized by diverse mechanisms of resistance. Residue variations on proteins
can: i) alter the binding affinity of an antibiotic for its protein target, affecting the
activity of the compound, without altering the protein function; ii) influence the
drug uptake of the cell, when occurring in transport proteins; iii) influence the
expression of other proteins, such as the efflux pump transporters able to extrude the
antimicrobial molecule (Munita and Arias, 2016).

Of particular interest are the variations that decrease the affinity of the drug for
the binding site while not affecting the catalytic activity of the enzyme (Floss and
Yu, 2005). One of the best-known examples, is the resistance related to the rifampin
antibiotic class. Ryfamicin, a rifampin type of antibiotic, blocks the wild-type form
of the rpoB gene encoding for the b-subunit of the RNA polymerase, and therefore
hampers bacterial transcription. Variations in the rpoB, does not affect the normal
function of the enzyme, essential for the cell function, but drastically decreases the
affinity of ryfamicin for the protein. Similar mechanisms are at the basis of the
resistance to fluoroquinolones, molecule that target DNA gyrase (gyrA-gyrB) and
the topoisomerase IV (parC-parE), both essential for DNA replication (Hooper, 2002).
It is of upmost importance the analysis of AMR variations in the context of the 3D
structure of a protein, in relation to its active and binding sites and to interactions
with other molecules.

1.8 Resistance mechanisms: intrinsic vs. acquired
Bacteria can be intrinsically resistant because of the presence/absence of a specific

target gene, or can become resistant after acquiring a genetic element. Organism
like Mycobacterium tuberculosis and Pseudomonas aeruginosa, are resistant to several
antimicrobials, making it difficult to clinically treat these bacterial infections. For
instance, members of the genus Pseudomonas, Gram-negative bacteria, are intrinsi-
cally resistant to the triclosan targeting the Enoyl-ACP reductase (FabI), an enzyme
involved in the fatty acid biosynthesis, by encoding a mutated FabI protein. Another
case of intrinsic resistance relies on the composition of the outer membrane, defining
the Gram-positive and negative bacteria. Few examples are the drug daptomycin,
a lipopeptide, and the vancomycin, a glycopeptide antibiotic, which are not effec-
tive against Gram-negative bacteria, being unable to diffuse through their outer
membrane.

Acquired resistance can be mainly categorized in i) mechanisms that tend to
extrude the antibiotic, minimizing its concentration inside the cell, ii) the presence
of genetic mutation in the targeted protein or new gene, iii) other translational
modification of the antibiotic target, iv) inactivation of the antibiotic, by hydrolysis
or other modifications.

Antimicrobial extrusion determines a reduced permeability. Gram-negative bac-
teria are less permeable to antibiotics because of the presence of an outer membrane,
however hydrophilic compounds can diffuse through the presence of protein mem-
branes. Study in the Enterobacteriaceae family, have shown how downregulating the



1.9. The Antibiotic Resistance Ontology (ARO) 7

expression of porin channels contributes to certain type of resistance, this is the case
of carbapenems, and cephalosporins. Accumulation of mutations in the porin genes
and in the genes that regulate their expression, has been associate with antibiotic
exposure to carbapenems in E. coli, Enterobacter spp. and in Klebsiella pneumoniae
(Blair et al., 2015). Another mechanism preventing the antibiotic to reach its target,
involves the presence of efflux-pump proteins, transporting the antibiotic compound
out of the cell. Efflux pumps specificity goes from being able to target a compound
(tetracycline-specific pumps, Tet) to a broader type of substrate (multidrug resistance
- MDR efflux pumps) and their overexpression plays a crucial role in the resistance.
In the case of Escherichia coli, the AcrB efflux pump presents two binding pockets
allowing the interaction with different type of chemical substrates.

Furthermore, resistance due to the transport of antimicrobials out of the cell, can
be due to the presence of mutations emerging within the network regulating the
expression of the transporters. While example of modification and protection of the
target protein is the erythromycin ribosome methylase (erm) able to methylate the 16S
rRNA, thus altering the binding site for the MLS antibiotics macrolides, lincosamides
and streptogramins (Leclercq, 2002).

Lastly, direct modification of antibiotic can be due to hydrolysis. An example are
beta-lactamases which can break the beta-lactam ring. Another type of antibiotic
modification is the modification due to the addition of a chemical group to the antibi-
otic (i.e., acyl groups, nucleotidyl, phosphate). These additions result in changing
the drug affinity of the antibiotic for its binding target site. A know case are the
aminoglycoside antibiotics, that can be targeted on the exposed hydroxyl and amide
groups by the acetyltransferases, phosphotransferases and nucleotidyltransferase
enzymes (Munita and Arias, 2016).

In chapter 7, it is described the resistome of the gut microbiota of an Italian cohort,
also in relation to the mechanisms of resistance annotated from the metagenomic
sequences analysed.

1.9 The Antibiotic Resistance Ontology (ARO)
Owing the necessity to comprehensively describe the complex phenomenon

of antibiotic resistance and the related mechanisms, in the 2013 an ontology was
generated for providing a controlled vocabulary of all the concepts (components
and phenomena) involved in AMR and for describing the logical relations among
these concepts by means of a graph (McArthur AG et al., 2013). The increasing
volume of studies and data generated on this subject requires an rigorous and flexible
approach for collecting and classifying the current biological knowledge, and for
supplementing new information leveraging already defined concepts or creating
new ones whenever a new molecular mechanism or antibiotic class is discovered.
The ontology is an organized schema, a resource readily explorable, in general
representing semantically the knowledge over a bioscientific topic, and in this specific
case describing the molecular properties of the antibiotic resistance (Antezana E. et al,
2009). Ontologies can be represented as hierarchical graphs, directed (a is_parent node
of b), and acyclic, with nodes representing the terms, and the edges representing
the different types of relation connecting them. The Antibiotic Resistant Ontology,
collects terms on genes, organism, resistant phenotypes, mechanisms of resistance,
families of resistant genes. It formalizes these terms under a hierarchical schema
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controlled by rules. All the terms within the bio-ontology are associated to a unique
identifier. This is crucial when querying a term in different databases, for ensuring
that concepts maintain the same meaning in different resources: this ensures their
cross-interoperability (Bard JB. et al., 2004). The ontology not only contains the
words and the definitions, as a vocabulary, but it also describes the relationships
between different terms. The ARO follows the standard format of Open Biological
Ontologies (.obo) as archiving design. An example of annotation for the gyrA
gene, with accession ARO_3000733, is formalized as: is_a, antibiotic sensitive DNA
topoisomerase subunit gyrA - ARO_3003254, targeted_by fluoroquinolone antibiotic -
ARO_0000001.

The mechanisms of antibiotic resistance introduced earlier in this chapter are
formalized in seven terms within the ontology. Here, the terms are briefly reported
with a description and a known case of encoded protein exhibiting the molecular
mechanisms of resistance annotated:

i. antibiotic target alteration (ARO:0001001). This definition includes the presence
of missense mutations, discussed earlier in this chapter, resulting in an altered
gene product as well as modification of the protein target which results in
antibiotic resistance. Cases are, modified antibiotic targets resulting in lower
binding affinities for the antibiotic, the deactivation of repressors that result
in increased expression of genes that pump out antibiotics. The mechanism of
antibiotic target alteration is one of most widespread mechanisms of resistance
extended to different antimicrobial compounds.

ii. antibiotic target replacement (ARO:0001002). Replacement of the antibiotic
target refers to the expression of a protein performing the same function as the
target, but with a lower affinity to the antibiotic; an example is an alternative
dihydrofolate reductase (ARO:3003425), plasmid encoded, and less sensitive to
trimethoprim (Brolund et al., 2010). Other relevant clinical cases are the methi-
cillin resistant phenotype in S. aureus due to the expression of an alternative
penicillin binding protein (PBP2a) encoded by mecA gene, exhibiting low affin-
ity for some beta-lactams penicillin, some cephalosporins and carbapenems
(Fuda et al., 2004).

ii. antibiotic target protection (ARO:0001003). Protection of the target proteins
from antibiotic binding, resulting in antibiotic resistance. These proteins are
mostly plasmid mediated, few examples are tetracycline resistance determi-
nants ribosomal protection protein Tet(M), Tet(O) and others, quinolone resis-
tant protein (Qnr) (Hegde et al., 2005) and fusidic acid resistant determinant
(FusB and FusC/D/F) (Chen et al., 2011).

iii. antibiotic inactivation (ARO:0001004). Enzymatic modification on the antibi-
otic compound, by the addition of chemical moieties, via phosphorylation
(aminoglycosides, chloramphenicol), acetylation (aminoglycosides, chloram-
phenicol, streptogramins), adenylation (aminoglycosides, lincosamides) which
result in changing its chemical structure and thus inactivating the drug, or by
hydrolysing bonds breaking the antimicrobial molecule. Beta-lactamases are
enzymes (EC 3.5.2.6), discussed earlier, are part of this category, they act by
breaking the amide bond of the four-atom beta-lactam ring (De Pascale and
Wright, 2010).
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iv. antibiotic efflux (ARO:0010000). Efflux pump proteins on the membrane are
responsible for transporting the antibiotic out of the cell. An example is tetracy-
cline resistance mediated by efflux pump of the major facilitator superfamily
(MFS) class. This mechanism of resistance is also broad, since it can affect
different types of antimicrobials, tetracyclines, fluoroquinolones, b-lactams,
carbapenems and polymyxins and others (Li and Nikaido, 2009).

v. reduced permeability to antibiotic (ARO:3000244). Lower expression of porins
decreases the uptake of the antibiotic which need to be located in the intra-
cellular compartment to exert the antimicrobial effect. This mechanism is
effective against hydrophilic molecules, some fluoroquinone, tetracycline and
beta-lactam entering through the water channel (Delcour, 2009).

vi. resistance by absence (ARO:3003764). Deletion and silencing of genes encoding
for porins, reducing the cell permeability to antibiotic. This can occur by
insertion sequences (IS) within a target gene or promoter (Poirel et al., 2015).

These strategies have evolved within bacteria in order to encompass the killing
purpose of antimicrobial molecules. Lack of susceptibility can be due to multiple
types of mechanisms, that can also have an additive effect. The Gram-negative and
Gram-positive bacteria activate different biochemical pathways to withstand to beta-
lactam compounds: in Gram-negative bacteria this is achieved via the expression
of b-lactamases, while the preferred resistance mechanism in Gram-positive is the
target site modification acquired with mutations in the penicillin-binding proteins
(PBPs).

An example of diverse resistance mechanisms evolved for the same compound
regard fluoroquinolones. In this case, resistance can occur via mutations in the DNA
gyrase and topoisomerase IV, it can be due to an increasing expression of the efflux
pumps transporters, and also via protection of the target site thanks to the presence
of the qnr coding gene. Another interesting case of resistance is the presence of
proteins carrying out double enzymatic reactions, as is the case of the bifunctional
enzyme AAC(6’)-APH(2”), with 6’-N-acetyltransferase and 2”-O-phosphotransferase
activities, conferring resistance to various aminoglycoside substrates (Smith et al.,
2014).

1.10 Resources to study antimicrobial resistance
Advancements in sequencing technologies and bioinformatics methods have

created a new field of clinical metagenomics aiming at the identification of AMR
genes. The sequenced short reads can be either annotated towards a reference
database or first assembled into contiguous fragments (contigs) before annotation
(see Chapter 3 for metagenomics). Reads or contigs are searched for Open Reading
Frames (ORFs) for gene prediction. Among the plethora of tools available for this
task the most accredited is the JGI pipeline using a combination of gene-prediction
tools (GeneMark.hmm, MetaGeneAnnotator, Prodigal and FragGeneScan) aiming
at reducing the false discoveries (Huntemann et al., 2016). The predicted ORFs can
be aligned with BLAST (Altschul et al., 1990a) and DIAMOND (Buchfink, Xie, and
Huson, 2015) algorithms against a database of resistance determinants. The choice
of the reference database should be guided by the type of sample under analysis.
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Many databases focus on human pathogens and thus their adoption ends up in an
underestimation of the environmental resistance determinants.

There are web-tools with in-house database that can accept both short reads and
contigs for the annotation. Cases are ResFinder, and Pointfinder which is also able to
detect mutations for a set of pathogens (Campylobacter, Escherichia coli, Mycobacterium
tuberculosis, Neisseria gonorrhoeae, Plasmodium falciparum and Salmonella. Another
relevant database in this field, is CARD presenting the Resistance Gene Identifier
(RGI) tool for reads annotation and the identification of mutation (Jia et al., 2017).

A strategy for the identification of remote homologous sequences is the use
Hidden Markov Models. ResFams is a derived database of annotated resistant
proteins with an associated profile HMM for each protein-family obtained (Gibson,
Forsberg, and Dantas, 2015). ResFams can be adopted for the study of the human
gut as well as the soil, and water resistome.

Machine learning based methods, aiming at identifying resistance have also being
developed in the recent years. One of the earliest is Rapid Annotation using Subsys-
tem Technology (RAST), an AdaBoost classifiers based on the k-mer substring derived
from the contigs of the genomes deposited in PATRIC database (Davis et al., 2016).
The classifiers are built on a binary matrix reporting the k-mers presence/absence in
antibiotic susceptible/resistant strains, an information derived from antimicrobial
susceptibility test and collected in the PATRIC database. Another tool is DeepArgs
applying deep learning for the identification of resistance determinants in both short
reads and assembled contigs (Arango-Argoty et al., 2018). These machine learning
based approaches can be used for the annotation of resistance determinants, yet they
are not meant to substitute the experimental AST as a diagnostic tool.

Importantly, the feasibility of sequencing at large-scale have enabled large com-
parative studies of human and environmental samples. These studies have been
important in characterizing the sample resistomes (i.e., the set of resistance determi-
nant sequence) and in monitoring the transmission of resistance between different
ecological niches, giving an unprecedent mean to inspect the spreading of AMR
globally. Identifying the presence of specific resistance determinants and the rise
of new mutations is pivotal for monitoring the spreading of resistance. Organizing
accurately the data obtained on AMR is an extremely important task.

1.11 Summary and perspectives
Antibiotic resistance is a natural ecological event driven by evolution. Being

antibiotic compounds naturally synthetized by bacteria against other cells, - in-
dependently from human activity and intensive usage of such compounds after
industrialization - prokaryotes have started to early evolve mechanisms able to es-
cape the drugs activity, as studies on pristine sites have confirmed (Dcosta et al., 2011).
This is a on ongoing natural example of evolution following Darwin’s principles.
Antibiotic resistance was identified even in permafrost, in remote caves and in the
gut of non-industrialized human population (Clemente et al., 2015a; Rampelli et al.,
2015). Competing different species of microorganism, have divergently evolved the
ability to produce different compounds with antimicrobial activity. On the other
side, bacteria have evolved the ability to evade these drugs that impact the core
machinery of the cell. Horizontal gene transfer causes a larger spreading of this
ability to other cell in the same population, or even to different species. Horizontal
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transfer of resistant genes is possible even between different ecological niches, since
it has been found a high matching profile between the resistome from environmental
sources - soil, indoor spaces – and the human gut microbiota. Because of the intensive
use and misuse of antibacterials in many sectors of our industrialized society - from
medicine, to animal farm and horticulture - the evolutionary pressure is rising, and
the resistance mechanisms are becoming widespread.

The rapid evolution of the strategies put in act by bacteria to circumvent the
antimicrobial action is the one of the more threatening public issues of the 21st century,
further exacerbated by the recent coronavirus outbreak, given the antibiotic use in the
first stages, when the virus went undetected. The advancement in the genomic and
structural biology field have contributed at pinpointing the resistance mechanism at
a molecular level, this knowledge is pivotal for the medical practice. In this setting,
it is important to research towards the development of new compounds. A pivotal
issue is the need to archive the information, organize the resources collecting the
available knowledge. Moreover, computational data analysis is required to dig
out the mechanisms at the molecular level and computational tools are required to
analyse new data in relation to the available information. Extensive biocuration and
creation of standards is needed for facilitating investigation. This effort requires the
development and update of databases and ontologies, focused on different aspects
of this complex system. Interoperability is a major issue when different resources
and tools have to be integrated. To this aim it is relevant to mention the effort of
research groups within the ELIXIR EU infrastructure to define guidelines and tools
to improve interoperability of computational resources in computational Biology.

Interestingly, many tools and database available are focusing only on the identifi-
cation of resistance sequence, not reporting the rise of resistance mechanisms due to
de novo mutations.

To date, no resource is available to analyse the AMR mechanisms in the context
of the 3D structure of proteins. However, this is an important level to be investigated,
in particular in the case of protein variations: as said, variations often change the
3D interaction with the drug. In order to fill this gap we developed PVAR3D a
new database for the curation of sequences, structures and resistance phenotypes
associated to protein variations and presented in the next chapter.
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Chapter 2

PVAR3D: a bioinformatic resource on
Proteins with missense Variations
driving Antimicrobial Resistance and
mapped on 3D structures

2.1 Abstract
Antimicrobial resistance (AMR) is an emerging issue in public health and increas-

ing efforts are devoted to discover genomic mechanisms involved in the acquisition
of AMR traits. A relevant role is played by polymorphisms promoting single residue
variations (SRV) in bacterial proteins. CARD and UniProtKB databases collect differ-
ent variations at the sequence level. We integrated information from these resources
in PVAR3D (Proteins with missense Variations driving Antimicrobial Resistance
with 3D structures) with the specific aim to contextualize variations on protein struc-
tures. Currently, PVAR3D includes 1178 variations on 241 proteins. Variations are
involved in the phenotypic resistance to 113 different compounds (16 drug classes)
in 97 organisms (36 genera). 3D structures are available in PDB for 56 proteins
covering 552 variations, 125 comparative models have been built and cover another
409 variations. Proteins are annotated at the functional level with Gene Ontology
(GO) terms and Enzyme Commission (EC) classification. PVAR3D is available at
http://pvar3d.biocomp.unibo.it. It supports queries by gene name, UniProtKB or
NCBI protein accession, species or genera, antibiotic name, GO term, and EC number.
PVAR3D interface provides a user-friendly visualization of variations in the context
of 3D structures, highlighting active sites and, when available in PDB, ligands and
functional quaternary structure. In the present work we describe the resource, how
to retrieve the information and the analysis we performed on the data.
Keywords: antimicrobial resistance, antibiotics, pathogens, resistome, resistant
mutation, homology modelling, functional annotation, modified target-site, target-
alteration.

2.2 Introduction
Antibiotic resistance due to single residue variations (SRV) occur in proteins

interacting directly or indirectly with the antimicrobial compound, hampering the
protein-ligand or protein-nucleic acids interactions. As introduced in chapter 1, pro-
teins conferring resistance to some antibiotic upon SRV belong to different classes,
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including enzymes, transporters, efflux pumps and regulatory proteins (i.e., tran-
scription factors). The last class is peculiar since proteins does not directly interact
with antibiotic compounds but they can influence the expression of protein directly
involved in antibiotic influx, efflux or metabolism. This is the case of variation on
MarA transcription factor that regulates the expression of an efflux pump (Wood-
ford and Ellington, 2007). For a SRV to confer resistance and to be maintained in a
population, it must be permissive and should not significantly hamper its function,
resulting then non-lethal to the cell. This constraint determines different mutation
probabilities associated to each position along the protein sequence. When analysed
at the level of the coding DNA sequence, the nucleotide variation can be influenced
by its context surrounding (i.e., presence of repeated stretches of nucleotide enhances
the variation probability). Furthermore, bacteria growth condition has a determinant
role for the rise of novel variations. It has been suggested that missense changes can
occur not only due to DNA replication error, but also as an adaptive response in
non-dividing cells (Martinez and Baquero, 2000).

Thanks to NGS is now possible to analyse a community of bacteria in a high-
throughput manner, without the need to isolate and culture each single microor-
ganism in a specific medium. Organizing, analyzing and updating the data gen-
erated is essential to keep up with the knowledge of the biochemical activity of
compounds also in relation to the mechanism, spreading and evolution of new re-
sistances (Boolchandani, D’Souza, and Dantas, 2019). Multiple efforts in organizing
data on antimicrobial resistance have been released as freely available resources on
the web. Some of them are summarized in Table 2.1. Each one focuses on different
aspects and levels of investigation. Besides general purpose databases (e.g. CARD,
MEGARes (Jia et al., 2017; Lakin et al., 2017)) specific resources are devoted to a
single protein families (e.g. CBMAR for beta-lactamase; Srivastava et al., 2014 or
a single pathogens e.g. UCARE for Pseudomonas Genome DB, (Saha, Uttam, and
Verma, 2015; Winsor et al., 2016)).

One of the first efforts in the collection and classification of antibiotic resistance
sequencing data, was the ARDB database (Liu and Pop, 2009). Presently the database
is not maintained, but the data are curated under the CARD database. CARD pro-
vides curated annotations on resistance gene, covering also the ones involved in the
target alteration via mutations, and contains both DNA and protein sequences. Other
databases are MEGARes reporting nucleic acids sequences involved in antibiotic
resistance mechanisms and PATRIC a resource collecting the pathogens genome and
their AMR phenotype (Wattam et al., 2017).

TABLE 2.1: Summary of antimicrobial resistance databases.

Database No. entities Antibiotic class Availability
CARD 3057 sequences 29 Updated monthly

ResFams 177 profile HMM 18 Last updated 2015
MEGARes 8,000 sequences 27 Last update 2016

BLDB 6971 enzymes 1 (beta-lactams) Last update 2020
PATRIC 382137 genomes 18 Last update 2020
CBMAR 2390 sequences 1 Last update 2014
UCARE 57 strains 15 Last update 2015

Information on SRV causing resistance is then sparse in different resources, also
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due to past experimental limitations, that allowed assaying only a small number of
genes. Nowadays, analyses are performed at the genome scale and they are crucial
to monitor the emergence of new mutations, responsible for resistance phenotype.
A first goal of this work is therefore to collect all the available knowledge on SRVs
in a single repository, called PVAR3D. It is worth noticing that none of the available
resources, but Beta-Lactamase DataBase – BLDB (Naas et al., 2017) and CBMAR,
integrate structural information of proteins. However, mechanisms of resistance
induced by SRVs strongly relies on structural determinants, since in most cases the
molecular effect reside in a different interaction between the target protein and the
antibiotic or other molecules influencing the antibiotic action. For this reason, we
provided whenever possible the structural context where the SRV occurs.

Here we describe PVAR3D, an open-access database reporting the 3D structures
of protein with a resistant/wild type profile to antimicrobial drugs: It allows to
localise SRV in protein structure, harmonizing the knowledge already available and
integrating new data. The database conveys information not only on the altered
sites, and active sites but also on functional and structural features of the protein,
thus offering a biological view on different level of biological complexity from the
variation on the protein sequences to their structure.

2.3 Materials and methods

2.3.1 Data sources
The list of proteins and relative SRVs involved in antibiotic resistance derives

from merging the information comprised in UniprotKB (The UniProt Consortium,
2017), CARD (Alcock et al., 2020), and Protein Data Bank (PDB) (Berman et al., 2000).

2.3.1.1 Uniprot

We collected from UniProtKB (version 2020_04) sequences, by querying queried
for bacterial protein, filtering for the mutagenesis and natural variant field in order to
gather the highest number of sequences and related positions annotated in Uniprot.

2.3.1.2 CARD

We collected from CARD (release 2020_04) sequences with single and multi-
ple resistance mutations annotated. We collected also the associated Antibiotic
resistance Ontology (ARO) terms, relative to the branches ‘confers_resistance_to’,
‘confers_resistance_to_drug’. In order to group all the SRVs of a protein and to avoid
redundant information with records deriving from UniProt, the Refseq/GenBank
identification code was used as sorting key. Furthermore, we manually curated a set
of 226 variations from CARD showing inconsistencies on SRV position and/or wild
type residue respect to the reported sequences.

2.3.2 Annotation of proteins included in PVAR3D
PVAR3D integrates different functional and structural annotations from different

resources. In particular, we collected the following information:
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i. Gene Ontology terms (GO) (Ashburner et al., 2000), from all the sub-ontologies
molecular function, biological process and cellular component; each one links
to the database QuickGo (Binns et al., 2009);

ii. Protein family domain (Pfam) (El-Gebali et al., 2019), for the presence of func-
tional and structural domains in the protein;

iii. Metabolic pathways information as derived from link to: KEGG pathways
(Kanehisa et al., 2017), Biocyc (Karp et al., 2018), Metacyc (Caspi et al., 2018)
and Ecocyc (Keseler et al., 2017);

iv. Enzymatic classification through the Enzyme Commission number;

v. Protein-protein interaction, annotation through the database STRING (Szk-
larczyk et al., 2017), MINT (Zanzoni et al., 2002) and INTACT (Aranda et al.,
2009);

vi. Information on the active sites and binding sites, obtained from UniprotKB;

vii. PubMed link for each relation antibiotic/resistance to a specific antibiotic;

viii. NCBI id (RefSeq/EMBL/GenBank/DDBJ);

ix. Link to the identification of Patric database (Wattam et al., 2017);

x. Antimicrobial resistance ontology (ARO) for the protein coming from CARD;

xi. Link to DrugBank, a chemoinformatic database (Wishart et al., 2018), Chembl
(Mendez et al., 2019);

xii. 3D protein structure, as collected from PDB or modelled (see section 2.3.2) , All
available structures for a protein are retained to offer an exhaustive information
on possible conformational changes in different conditions.

2.3.3 Modelling 3D structure
Experimentally determined structures are present in the PDB only for 56 proteins,

out of the 241 included in PVAR3D. To supplement the structural information, we
adopted a comparative modelling procedure that allowed to compute the probable
three-dimensional of another 125 proteins. The modelling workflow is depicted in
Figure 2.1.
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FIGURE 2.1: Workflow of the comparative modelling procedure.

In details, for each protein without PDB structure:

i. we searched for a suitable template in the PDB (version nov-2019), considering
only structures of bacterial proteins. The Diamond software (Buchfink B et
al., 2015) was adopted for database search and sequence alignment. Hits were
further analysed and a template was chosen only if fulfilling the following
criteria: a sequence identity � 30% with a coverage � 80% . Whenever more
than a template meet the conditions, the one with the lowest resolution is
considered.

ii. All the models were obtained with Modeller (version 9.17) (Webb and Sali,
2016). Five models were generated for each query and the one reporting the
lowest Modeller objective function score was retained.

The quality of the models were assessed in different ways:

i. structural superimposition between the model and the template 3D structure
performed with JCE (Prlić et al., 2010): if the RMSD was lower than 3 Å the
model was accepted (Figure 2.6).

ii. The stereochemical configurations was validated through the Ramachandran
plot as computed by PROCHECK (Laskowski, MacArthur, and Thornton, 1992)
(Figure 2.7).

These data can be downloaded together with the model itself. All proteins
important sites retrieved from the corresponding Uniprot association where mapped
to the model, exceptions are the presence of gap in the template structure.

2.3.4 Clustering of structures
Groups of similar proteins were obtained by structurally aligning pairwise the

PDB-chains associated to each proteins (JCE version) and identifying cluster of
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proteins within 3.0 Å and z-score > 3. The cluster were manually checked for
inconsistency with respect to the EC number in the same cluster and domain.

2.3.5 Protein family domain characterization of proteins in PVAR3D
The hidden Markov models of the known protein families domains (Pfam32.0,

https://pfam.xfam.org) were used to scan the protein sequences within PVAR3D
database. Hmmer version 3.2 was adopted with E-value cut-off 0.001, non-overlapping
and significant Pfam domains were detected for each query protein. From this result,
we mapped the mutated position falling within each identified domain.

2.3.6 Multiple sequence alignments
Each protein in the database has been aligned with the bacterial sequences re-

trieved from Uniprot, retaining the sequences with at least the 60% of sequence
identity, and 80% of coverage, generating a graph where a node represents a sin-
gle protein in the database and the edge the sequence identity. For each protein it
was possible to identify a connected component, For each connected component, a
multiple sequence alignment (MSA) is generated, mapping the mutation from the
sequence seed on the MSA.

2.3.7 Analysis of secondary structure and solvent accessibility
The DSSP program (Kabsch and Sander, 1983) was adopted to compute secondary

structure and the solvent accessibility area of protein residues. Secondary structures
were grouped as follow: helix (including alpha-helices, 3-10 helices and pi-helices),
Beta (b-sheet, b-bridge) and coil (b-turn, bend, loops and irregular structures). Rela-
tive solvent accessibility values were obtained by dividing the Solvent accessible area
by the residue-specific maximal area as reported in (Rost and Sander, 1994) as in 2.1.

RSA_ri = ACC_ri/MaxAcc_r (2.1)

Where ACC is the solvent accessibility measure of the residue r in position i,
calculated with DSSP, and MaxAcc (Å2) is the accessibility value in the Sander scale.
A threshold of 20% relative solvent accessibility was used to classify residues as
buried or exposed.

2.3.8 Database and web server implementation
PVAR3D data are organized in a relational database implemented in PostgreSQL.

The web server is built with Django Python Web framework (https://www.djangoproject.
com) and adopts JavaScript library jQuery and Bootstrap (version 4) for generating a
user friendly interface. The tables in the web pages are visualized with DataTable
library enabling sorting and searching.
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2.4 Results and Discussion

2.4.1 Database content
PVAR3D integrates the biological knowledge for sequences with missense residue

variations and offers a framework for the visualization of the variations within the
protein. It reports the protein functional annotation and protein-protein interaction
via cross-references to STRING. Each protein is associated to the antibiotic(s) it confer
resistance to. A summary statistic of the PVAR3D content is reported in Table 2.2.

TABLE 2.2: Summary statistic of PVAR3D.

#proteins #SRVs
Proteins with PDB structure 50 552

Proteins with modelled structure 125 409
Proteins without structure 60 217

Total 241 1178

Overall, PVAR3D includes 1178 variations on 241 proteins out of 97 organisms (36
genera). Different proteins are encoded by orthologous genes in different organisms:
the total number of genes is 101. Variations are involved in the phenotypic resistance
to 113 different compounds (16 drug classes). 3D structures are available in PDB for
56 proteins covering 552 variations, 125 comparative models have been built and
cover another 409 variations.

2.4.2 Complexity of the relationship between organisms, drugs and
genes involved in resistance upon mutation

The relationship between genes and compounds is complex. Different drugs
are available for the same compound and drugs with different targets are known.
The genes conferring resistance to the highest number of drugs are parE, parC, gyrA
and gyrB, nalD, nalC, folP, mexR and soxS. Fig 2.2 depicts this complexity. The more
connected drugs are fluoroquinolone, tetracycline, monobactam, phenicol, peptide,
carbapenem, cephalosporin and cephamycin. The relationship between organisms
and drug is also complex as depicted in Supplementary Figure S1.
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FIGURE 2.2: Relationship between the gene name and the drug in
PVAR3D. Entities, in the gene (left) and drug (right) groups, are de-
picted as nodes and linked if in the database, proteins with a given
gene name are annotated as resistant to the drug. The resistance is
due to the presence of SRVs. The size of each node is proportional
to the node degree. By means of this representation, the resistance is
highlighted by drug-gene specific associations. GyrA, gyrB, parE and
parC are the most connected nodes (interactive graph on the web site:

http://pvar3d.biocomp.unibo.it/statistics/).

2.4.3 Distribution of the SRVs per protein and per gene
In general the large majority of proteins carries only few resistance related SRVs.

When grouping different proteins with respect to the orthologous gene, the distri-
bution of the number of SRVs per gene is showed in Figure 2.3. The number of
variations per gene is highly variable ranging from 1 to 150. When analysing the
distribution of variations, 84% of the proteins have less than 10 resistance related
SRVs. All but two gene are associated to less than 30 variations. katG and pncA
are outliers, totalizing more than 100 resistance related SRVs each. katG is a gene
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encoding for catalase-preoxidase (E.C. 1.11.1.21), associated to one entry in PVAR3D.
Many of these mutations are associated to loss of function, thus conferring resistance
by their inability to activate the prodrug isoniazid in one case and pyrazinamide in
the case of the second protein (Ando et al., 2010; Lemaitre et al., 1999).

FIGURE 2.3: Number of mutation per gene. The plot depicts the num-
ber of mutations per protein in the PVAR3D database.

2.4.4 PDB structures
706 PDB identifiers are associated to 56 proteins (and 45 genes) in our database.

260 unique compounds co-crystalized in the PDBs and with studied antimicrobial ac-
tivity are contained in the retrieved files. 65% (168) can be identified in known drugs
already adopted as therapeutic, as in the case of quinolones (CPF - ciprofloxacin,
GFN - gatifloxacin), beta-lactams (i.e., AXL - amoxicillin, AIX - ampicillin, CB9 - car-
benicillin), and antimicrobial agent (i.e., 6KA, GSK625). 35% (92) of the compounds
in the crystalized structure are novel lead compounds (i.e., EEH, 841, 9NU, 5T0, 6G9)
investigated for their antimicrobial activity.

This analysis gives a bound to intra-protein variability. We compared the struc-
tures in our dataset, selecting one representative PDB chain for each one of the 56
proteins endowed with experimental structure: in particular, the highest coverage
and best resolution structure was retained. We pairwise superimposed all the repre-
sentative structures and computed the corresponding RMSD. As shown in Figure
2.4 different groups of proteins can be superimposed with RMSD lower than 3 Å. 36
clusters were identified. In particular, different proteins corresponding to the same
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gene in different species cluster together. The structural analysis is based on the
structures with lover resolution, identifying unique PDBs chains associated to the
proteins in our database. Cluster of pairwise similar crystal structures are organized
in 36 groups (Figure2.4 and Supplementary Table 1).

FIGURE 2.4: Pairwise structural comparison. Heatmap showing the
similarity between structures experimentally determined and included
in PVAR3D. One structure for each protein was selected. Clusters of
similar structures were obtained by means of hierarchical clustering
computed with average linkage method. Specular dendograms are
shown in horizontal and vertical axes. Each structure is colored by
protein name, reporting the legend on the right of the plot. The most
populated group is the number 15 (no. proteins 5, gyrA-parC). Differ-
ent domains in the same protein, crystalized in different PDB chains
are organized in different clusters. Pairwise structural alignment was
computed between each pair of structure, chosen from a non-redundant

set of proteins and with the lower resolution.

2.4.5 Modelled structures
In total we modelled the 3D structure of 125 protein sequences. in order to assess

the functional characterization we remapped the active sites, DNA binding sites and
metal binding sites annotated from the template structure. The 75% of the PDBs
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used as template was not included in the database of proteins with experimental
structures.

We built models for 125 proteins whose 3D structure is not available. They are
based on 90 PDB chains. Figure 2.5 shows the sequence identity and the coverage
of the alignment used for building the models. We retained only models showing
less than 3 Å RMSD with respect to the template. Average RMSD is 0.89 Å(Figure
2.6). Moreover quality check performed with PROCHECK shows that modelling
procedure was successful, being the rate of residues in the favoured regions higher
than 80% in all but few cases (Figure 2.7)

FIGURE 2.5: Models coverage and percentage of sequence identity.
Scatterplot depicting the target percentage sequence identity and cov-
erage respect to the template sequence for each model in the PVAR3D

database.
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FIGURE 2.6: Barplot showing the calculated root mean Square devi-
ation between the model and the template backbone, calculate via
structural superimposition (JCE). The 70% of the retained models have
a RMSD below 2 Å. Only RMSD below 3 Å are finally retained in the

database

FIGURE 2.7: Percentage of residues in the favourable regions.
Barplot showing the number of models with a given percent-
age of residues falling in the favourable protein secondary re-
gions, as calculated by PROCHECK (https://www.ebi.ac.uk/thornton-
srv/software/PROCHECK/) and reported in the Ramachandran plot.
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2.4.6 PVAR3D native vs. mutated structural comparison
In order to investigate the structural effects of variations responsible of AR, we

collected a set of six proteins for which crystallographic structure of both the wild-
type and the variant forms are available in PDB (and reported in PVAR3D, Table 2.3).

TABLE 2.3: Summary statistic of PVAR3D.

protein position wild type SRV
BAE77595.1 136 R H
CCP42728.1 90 A S
CCP44244.1 148 D G
CCP44244.1 21 I V
CCP44244.1 47 I T
CCP44244.1 94 S A
NP_415449.1 119 G D
NP_415449.1 132 R A
NP_415449.1 132 R P
NP_415804.1 93 G A
NP_415804.1 93 G S
NP_415804.1 93 G V

WP_003703066.1 501 A T
WP_003703066.1 551 P S

The pairwise comparisons between a native and a mutated PDB for the same
protein lead to an average RMSD of 0.53 Å. We investigated the differences under
several aspects:

i. Change of solvent accessibility (Table 2.4, Table 2.5): in total, 11 positions can be
retrieved for this analysis (with 14 variations, i.e., D115S, D115A) and mapped
on 165 PDBs (of which 27 mutated and 138 non-mutated), considering in total
434 chains. None of the investigated positions is annotated as active site or
binding site. The variations have been studied considering the relative solvent
accessibility (Rost and Sander, 1994).

ii. Change of secondary structure: on the same dataset it is possible to assess that
also secondary structure is only slightly affected by the variations. Together
with the previous findings, it seems that also local variations promoted by the
variation are limited.

Previous findings confirm the high complexity of the mechanisms at the basis of
antibiotic resistance, that must investigated at the level of local structure variability
and difference in interactions with other proteins or ligands.
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TABLE 2.4: Differences in the mean RSA of the native versus the RSA
from mutated structure.

Protein id and position RSA native - RSA mutated WT_POS_SRV
NP_415449.1_141 -0.51 G141D
CCP44244.1_94 -0.04 S94A

CCP44244.1_148 -0.08 D148G
CCP42728.1_90 -0.01 A90S

NP_415449.1_154 0.04 R154P, R154A
BAE77595.1_136 0.16 R136H
CCP44244.1_47 0.01 I47T
CCP44244.1_21 0.03 I21V
NP_415804.1_93 0.05 G93A, G93S, G93V

WP_003703066.1_501 0.24 A501T
WP_003703066.1_551 0.27 P551S

TABLE 2.5: Table of changes in the RSA, considering 0.2 as the thresh-
old for exposed residues.

#positions Protein_position
WT exposed to SRV buried 2 (18.18%) BAE77595.1_136, WP_003703066.1_501
WT buried to SRV exposed 1 (9.09%) NP_415449.1_141

WT exposed to SRV exposed 3 (27.27%) CCP42728.1_90, NP_415804.1_93, WP_003703066.1_551
WT buried to SRV buried 5 (45.45%) NP_415449.1_154, CCP44244.1_94,_148,_47,_21

tot 11

2.4.7 Functional important sites.
We evaluated if the mutations known were mapped on functionally important

site for the protein and found that only in the case of catalase-peroxidase (katG –
R104L) and 3-ketoacyl-acyl carrier protein reductase (fabG – Y151V) the variations
fall on active sites. Notably, for the following proteins: soxR, acrR, nalD, AxyZ, mexZ,
the variations can occur in DNA binding site.

2.4.8 Variation frequency
The most frequent variation types, involved in antibiotic resistance, are character-

ized by substitution of apolar with polar residues and vice-versa, also apolar with
apolar residues, with a change in steric hindrance (Figure 2.8).
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FIGURE 2.8: Antibiotic resistant variations from PVAR3D. The
heatmap shows the frequency of each variation type in the collection on
antibiotic resistant amino acid changes from the database. The residues
are listed in order from the groups: apolar (G,A,V,P,L,I,M), aromatic
(F,W,Y), polar (S,T,C,N,Q) and charged (D,E,K,R). Other changes are

found too, apolar to charged, charged to apolar/polar.

2.4.9 Protein families
By annotating the Pfam domains within the sequences in our database we obtain

a total number of 675 Pfams, and 96 Pfam with at least a mapped mutated position,
which can be assigned to 1772 pdb-chain unique list. The protein family domain with
an high number of mapped mutation (freq � 0.01) are here reported (Supplementary
Figure S2):

i. PF00141.23 PEROXIDASE (apolar to apolar, apolar to charged, apolar to polar,
polar to apolar);

ii. PF00521.20 DNA topoisoIV (apolar to apolar, apolar to polar, charged to apolar,
polar to apolar);

iii. PF00857.20 Isochorismatase (apolar to apolar);

iv. PF00905.22 Transpeptidase (apolar to apolar);

v. PF04565.16 RNA pol Rpb2_3 (apolar to apolar, charged to polar, polar to apolar,
polar to polar);

vi. PF04602.12 Arabinose trans (apolar to apolar, apolar to charged, apolar to
apolar).

2.4.10 Web interface and data visualization
PVAR3D database has a user-friendly interface and can be queried through differ-

ent biological identifiers code. The web site main pages are Home, Browse, Statistics
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Tutorial and Download, from each page is accessible the search bar. The database
allows queries by gene symbol, Genus (obtaining all the pathogenic member at lower
taxonomic levels), drug, Uniprot, NCBI, Antimicrobial Resistance Ontology identi-
fier of the sequence, Gene Ontology terms, KEGG, pathway, Enzyme Commission
number (EC) and String identifier. The query outcome is reported in a responsive
table with all the entry bearing the queried term and the respective link to the single
record page.

For each pathogen it is possible to retrieve the relative resistome, referring to
the set of proteins involved in the mechanism of resistance to antibiotic, due to
point mutation. The Home view offer a short path to the proteins for the ESKAPE
pathogens via a link. The database visualization is composed of:

i. the protein entry panel with the protein identification code from CARD, through
the Antibiotic Resistance Ontology (ARO), NCBI, Uniprot ID;

ii. the cross-references panel with link to other databases;

iii. the structural visualization;

iv. the mutation panel;

v. the sequence feature panel with mutations and their phenotype;

vi. the multiple sequence alignment panel, with the cluster of orthologous se-
quences.

vii. table of mutations remapped on the MSA.

The view of 3D structure and the ligand is integrated via the application web
NGL Viewer (Rose et al., 2018). Mapping the variations directly on the structure
(functional biological unit), is possible via the ’Mutation panel’ of the entry page.
The annotated active sites can be mapped on the structure, alone or together with the
mutations annotated. The visualization of the primary sequence and of the mutations
with relative phenotype is possible via the application Feature Viewer (Paladin et al.,
2020). On the page bottom, it is visualized the multiple sequence alignment of the
protein sequence in PVAR3D database and the pool of orthologous sequences, via
the application MSA viewer (Yachdav et al., 2016). (Figure 2.3)

For each entry it is possible to download the related information about the resis-
tance and the variations associated, as found in the ‘Mutation panel’ of the single
entries, as well as the fasta file of the sequence and MSA if available. In case where
the three dimensional structure was obtained via homology modelling, it is possible
to download the model, the .pir file and the alignment with the respective template,
the superimposition data and the PROCHECK statistics on the model. Furthermore,
a fasta file of the whole database is also accessible in the Download page. Each
sequence reports the name of the dataset of origin from which it was retrieved.
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FIGURE 2.9: PVAR3D page visualization. Example of a gyrB belonging
to Escherichia coli. On the left, the protein structure visualization, the
protein description and the cross-references annotated. On the right the
multiple sequence alignment (MSA), using as seed sequence the gyrB,

and mapping the mutated position on the MSA (in red).

2.4.11 Application of PVAR3D
The database is freely consultable, and the data are accessible for downloading.

The repository offers a comprehensive resource of variation resulting in antibiotic
resistance. It can be used to design new experimental tests for resistance, and together
with other bioinformatic resources, these data can be the starting point for the analysis
of new antimicrobial molecules via docking and through the analysis of engineered
mutations. This curated database can also be a dataset for sequencing data, mapping
the resistome from environmental source or host.

2.4.12 Conclusions and future directions
Antimicrobial resistance due to target alterations is one of the major pathogenicity

drivers. PVAR3D is a curated resource targeting protein coding genes and presenting
the literature-based, variational landscape of antibiotic resistance. The database, visu-
alized by an interactive and dynamic interface, provides a compact overview of the
resistance phenotype, protein variants and related structural data. The information
in the database can be recovered and used to characterize, in silico, microbial resistant
phenotypes, thus narrowing further experimental testing needed to assess the drug
resistance. The database will be updated regularly, also integrating the possibility
for the user to research a protein sequence. PVAR3D aims to fill the gap between
experimentally identified variation and the resistant phenotype, in the context of
studying the physical-chemical changes induced by the variations at the protein 3D
level.
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Chapter 3

Metagenomics: sequencing technology
and computational approaches

3.1 Bacteria shape life
Bacteria are one of the most ancient and diverse living forms, inhabiting the

extreme ecological niches of this planet. In addition to be the most adaptable cell
type, outperforming multicellular animals, except probably for tardigrades, bacte-
ria are important for many aspects concerning life. Microbes are involved in the
chemical cycles of the key elements of the biosphere - carbon, nitrogen, oxygen, and
sulfur (Pedros-Ali, Carlos, 2006). Notably, microbes can perform bioremediation of
contaminated environments from anthropic activities (Jansson and Hofmockel, 2018).
Furthermore, animal metabolism relies on microbial metabolism for the uptake of
nutrients, and also in plants microbes are important for the host health (Sekirov
et al., 2010; Berendsen, Pieterse, and Bakker, 2012). These activities are conducted
by complex communities of bacteria that by living in symbiosis, interact with the
different ecosystems, creating distinct networks of plant-microbes, insect-microbes,
soil-microbes, and animal/human-microbes interactions. However, in the past we
have struggled to define the interactions between bacteria and their role with re-
spect to their ecological niche. It has been estimated that we could study only 1%
of microbial species with respect to the deluge diversity of bacteria, by means of
classical microbiology. In this regard, a mathematical modelling approach of syn-
thetic microbial communities can be used to predict these interactions (Medlock
et al., 2018). Other experimentally based techniques regard microfluidic assays that
by mimicking a micro-niche are also useful to reduce the complexity of the web of
associations (Massalha et al., 2017). Despite these advancing approaches, profiling
a microbial community at both taxonomical and functional level is extremely chal-
lenging, and in order to deconvolute these layers of complexities, metagenomics and
other omics techniques in association with computational approaches can help in the
interpretation of these interactions.

3.1.1 Studying bacteria has revolutionized molecular biology
The study of bacteria is not only important to disclose their role within an ecosys-

tem, but more often discoveries from bacterial genomics have led to important
applications in molecular biology. One of the most important advancements in
this field is due to the extremophile Thermus aquaticus, isolated in 1969 from hot
springs at Yellowstone Park. Extremophiles are bacteria able to live in unimaginable
conditions, and known cases are methanogenic bacteria found in the permafrost
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(Rivkina et al., 2004). Due to the evolutionary circumstances, the enzymes of this
bacterium are extremely thermostable and this has revealed its DNA polymerase as
a perfect candidate for dealing with recurrent cycles of DNA denaturation. In 1983
Kary B. Mullis invented the Polymerase Chain Reaction (PCR) for the amplification
of DNA fragments. The protocol relied on the DNA polymerase of E. coli and due
to the necessity of increasing the temperature for inducing DNA denaturation, the
enzyme needed to be introduced at each cycle. The purification of the thermostable
DNA polymerase from T. acquaticus in 1986, also known as Taq polymerase, greatly
simplified the PCR protocol.

3.2 Microbiology milestones
One of the first attempts to understand microorganisms’ physiology was made

by Robert Koch who first tried to isolate and cultivate them on potato slices and
on solid phase of gelatine (Blevins and Bronze, 2010). In 1876, his discovery of the
anthrax bacillus posed the basis of the medical bacteriology field. Other pathogen
discoveries (Mycobacterium tuberculosis, Staphylococcus, Vibrio cholerae) are due to his
studies as well as the pathogenicity concept, and the implication of microbes in
infectious disease affecting both human and animal health. With the study of cell
morphology, he advanced the hypothesis of bacterial species.

Isolation of bacteria made possible the visualization of the cells, by means of a mi-
croscope. A great contribution to the microbial visualization and characterization was
achieved with the implementation of staining techniques (i.e., Gram, Ziehl–Neelsen,
and Schaeffer and Fulton) (Beveridge, 2001). Having noticed a difference in the
number of bacteria counted from a sample and the number of clones achieved after
plating and cultivation, the idea that bacteria need specific media for an optimal
growth condition soon started. This observation is known as the ‘Great Plate Count
Anomaly’ (Staley and Konopka, 1985). In this context, the scientist Sergei Winograd-
sky initiated his pioneering work on selective media. An important contribution was
made by Robert Hungate and colleagues cultivating anaerobic microbes, from the
cattle rumen ecosystem, they posed the base for the development of the microbial
ecology field.

3.2.1 From morphology to genotyping
The early study of microorganisms was limited to their morphological profile,

their growth rate, and their metabolism. In 1977 Carl Woese moved the concept of
microorganism classification by morphology to their genotypic classification. He
proposed the gene coding for the ribosomal RNA (i.e., 16S, 18S rRNA), a ubiquitous
gene in the domains of life, as a marker gene for the computation of phylogenetic
trees. The 16S rRNA genes are considered the molecular clock of life, due to the
presence of highly conserved nucleic acid regions interspersed within 9 hypervari-
able regions (V1-V9). Another important reason for it being a marker gene, is the
conserved function in the different domains of life, from prokaryotes to eukaryotes
and archaea, being the assembly of proteins at the base of life (Woese and Fox, 1977).
In particular, the 16S rRNA subunit became soon a staple gene for the classification of
bacteria, representing a new classification method with respect to the morphological
assay, by means of it now expanded to uncultured bacteria. Furthermore, it has
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become subsequently cheap for sequencing and suitable for the analysis of a bacterial
community.

3.2.2 Technological breakthroughs
An important breakthrough was the DNA sequencing technique developed by

Frederick Sanger in 1977, that in combination with Woese’s idea of adopting rRNA as
a marker gene, revolutionized microorganism classification. In particular, Sanger’s
protocol for determining DNA sequences was based on the chain termination method.
The principal elements of the sequencing mixture were the DNA polymerase, the
fragments to be sequenced, and chemically modified nucleic acids, dideoxyribonu-
cleotides (ddNTPs). Dideoxyribonucleotides, by missing the 3’-OH group, block the
formation of a phosphodiester bond between the free hydroxyl of the last nucleotide
and the 5’-phosphate group of the next, generating sequencing fragments of variable
lengths. The four mixtures, containing one of the four different ddNTPs (A, C, T,
G) where the polymerase reaction had occurred, are then loaded in four channels
of a gel matrix and chain-terminated oligonucleotides could be separated by size
via gel electrophoresis. The sequenced fragments could then be read considering
the gel bands for the four channels (Sanger, Nicklen, and Coulson, 1977). Later, an
automated version of the Sanger machine enabled to perform the reaction in one
mixture containing all the fluorescently-labelled ddNTPs. The fragments are then
separated by capillary gel electrophoresis and detected by laser excitation, reading
the sequencing output from a chromatogram.

Subsequent important discoveries included the aforementioned PCR boosting
the efficiency of Sanger sequencing. Improved versions of Sanger sequencing can
yield 102 sequences with length in the range of 600-900 bp, which can be useful for
metagenomics studies (Logares et al., 2012). Other key technological breakthroughs
were the rRNA gene cloning and sequencing techniques, fluorescent in situ hy-
bridization (FISH), denaturing gradient gel electrophoresis (DGGE and its variant,
temperature gradient gel electrophoresis - TGGE), and restriction fragment length
polymorphism (RFLP) (Escobar-Zepeda, Leon, and Sanchez-Flores, 2015). However,
with the introduction of high-throughput sequencing approaches and in silico func-
tional characterization by sequence similarity, all the aforementioned techniques are
outdated.

3.2.3 Sequencing generation
The first genome platform after Sanger was 454 Roche, representing the beginning

of the second-generation technologies. The 454 machine has been slowly dismissed
since the end of 2016. This technology is cheaper than Sanger and yields a higher
number of sequences per run, but shorter in length. In a nutshell, this technique
relies on the light emission after the incorporation of labelled pyrophosphate during
the DNA polymerase reaction. When a nucleotide is integrated into the newly
synthesized chain, the pyrophosphate is released and by interacting with luciferin,
it generates visible light. These emissions are recorded in a pyrogram (Margulies
et al., 2005). Another technology in the second-generation series is Ion torrent. It
relies on a similar concept, without labelling the nucleotide, but recording the pH
change each time a hydrogen ion is released by nucleotide incorporation during the
chain synthesis (Rusk, 2011).
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One of the most popular second-generation technologies is the Illumina platform,
based on reversible terminated chemistry and adopting fluorescent nucleotides.
DNA fragments are ligated to the flow cell and the fluorescence is detected by a
charged coupled device (CCD) when then nucleotide is incorporate on the newly
synthesized chain (Bentley et al., 2008). The synthesis can occur from one side of the
complementary DNA, determining single-end reads, or both ends of the fragment,
generating a couple of read fragments, paired-end reads. All the aforementioned
techniques are widely used for metagenomics studies.

The third-generation sequencing technology, in particular Oxford nanopore and
PacBio technologies, by reading single DNA molecules can lead to longer sequences.
Importantly, they avoid the biases induced by the amplification step. In the nanopore
sequencing, a DNA polymerase is allocated within a protein nanopore embedded in
a synthetic membrane. Without labelling the nucleotides, the change in the electronic
potential recorded due to the nucleotide incorporation is detected by a sensor chip.
The second technology relies on the Single-Molecule Real-Time (SMRT) sequencing
method. In brief, a zero-mode waveguide (ZMW) is able to detect the fluorescence
of the tag cleaved at each nucleotide incorporation. The synthesis reaction occurs
at the bottom of the ZMW, where a DNA polymerase is attached and works by
reading a single molecule of DNA as a template (Niedringhaus et al., 2011). The main
advantage of these new technologies is the length of the sequences obtained. Longer
sequences yield to higher coverage of the genomic portion of interest, in this way it is
possible to reconstruct more confidently a genome. One pitfall of these technologies
is the higher error rate with respect to second-generation sequencing (Gupta, 2008).

3.2.4 Sequencing quality control
Assessing the quality of the sequences is a crucial step in the analysis. Differ-

ent biases of the technologies are imputable to the way each platform detects the
incorporation of the nucleotide in the newly synthesized chain. In general, it is good
practice to check the output of the reads sequenced in terms of length, GC percentage,
number of sequences per sample and presence of overrepresented reads, trimming
low-quality bases at the ends of the reads, and filtering low-quality reads.

3.2.5 The study of microbial communities
Starting from the definition by Begon et al. (1986), microbial communities are

organisms that share the same space and coexist at a given time. In 1988 Whipps and
colleagues working on the plant rhizosphere, defined the composite term microbiome
(Whipps, Karen, and Cooke, 1988). In such a term, micro stands for the community
of microscopic organisms, and biome, living together in the same environment with
defined physico-chemical properties, biotic and abiotic factors, also accounting for
their activities defining the entire ecological niche. These organisms can be bacteria,
but it is widely accepted by researchers that fungi, archaea, algae and protists are part
of this definition, while phages, viruses, plasmids, prions and viroids are not consid-
ered living organisms. There are other views on the definition of the microbiome but
the first reported is the one that continues to be vastly accepted.

In the current definition, we further distinguish between the microbiota, as the
members of a community, and the metagenome as their genetic material. However,
sometimes microbiome and metagenome are interchangeably used. As an example,
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the gut microbiome is the ensemble of the genomes of the microbiota, the living
members inhabiting the intestinal tract.

The study of microbial communities can be addressed at different molecular levels
via omics techniques (i.e., meta-genomics, -transcriptomics, -proteomics, -lipidomics)
and other types of metadata (Berg et al., 2020). Exploiting the microbiome has
gained the spotlight since the advancement of sequencing technologies, in relation
to the promising applications in medicine. In addition, the study of environmental
microbiomes and the possibility to engineer them is a new frontier of bioremediation,
food processing and safety regarding agriculture and aquaculture.

3.3 Metagenomics
Metagenomics analysis has been developed in order to identify the type of mi-

croorganisms in a community, which type of bacteria can be identified in a sample? Later
on, with the improvement of the sequencing technology and of computational ap-
proaches, we were also able to identify which type of genes they are coding for and
which type of enzymatic activity these bacteria possess. By means of sequencing
technologies relying on different molecular techniques, we can address both topics,
regarding taxonomy and function, by i) amplicon sequencing and ii) whole-genome
shotgun (WGS) metagenomics.

3.3.1 Amplicon sequencing profiling
Often we find this technique defined as metagenomics, even though it is targeting

one or few marker genes, a more precise definition would be metaprofiling. Ac-
cording to this approach, specific marker genes are amplified, usually 16S rRNA for
prokaryotes, 18S rRNA for eukaryotes, and internal transcribed spacer (ITS) region
for the specific characterization of fungi. Furthermore, instead of sequencing the
full gene, for the taxonomic task it is necessary to target only informative regions.
Metaprofiling is feasible with all the aforementioned sequencing techniques and
platforms, and it is a means for researchers to study the taxonomy and phylogenetic
profile of a sample, also feasible and cheap for longitudinal studies. The first soft-
ware aimed at analysing 16S rRNA sequences were Mothur and QIIME (Schouls,
Schot, and Jacobs, 2003; Caporaso et al., 2010). Since the adoption of this marker
gene in phylogenetic studies by Carl Woese, the scientific community has worked in
collecting and organizing these sequences, creating databases such as Greengenes,
SILVA and the Ribosomal Database Project (DeSantis et al., 2006; Pruesse et al., 2007;
Cole et al., 2005). These databases collect both prokaryotic and eukaryotic data.

Once assessed the reads quality, the sequences are grouped by similarity in order
to identify the set of ‘species’ in the analysed sample. For a long time the taxonomic
classification in ecology relied on the concept of Operational Taxonomic Unit (OTUs).
OTUs are obtained by grouping similar sequences with the same feature up to
97% of sequence identity, which conceptually identifies the same taxon (at least the
same genus), and choosing one representative sequence for each cluster. Nowadays,
Amplicon Sequence Variants (ASVs) are the preferable standard unit for defining the
concept of species through a marker gene. ASVs contrary to OTUs resolve taxonomy
discriminating up to single nucleotide differences.
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Once sequences redundancy has been reduced, the information is summarized
by counting the number of each sequence artifact (OTU, ASV) found in each of the
samples sequenced, producing a table of counts. Next, each of these features is
going to be assigned to a taxon. For this classification task, different computational
approaches have been adopted, such as BLAST (Altschul et al., 1990b), the RDP clas-
sifier, a naïve Bayesian classifier trained on genus-level oligonucleotide frequencies
(Wang et al., 2007), and UCLUST algorithm (Edgar, 2010).

From the table of counts it is possible to characterize the diversity of a microbial
community. The characterization of diversity is a problem that can be posed in
different views, alpha diversity is defined within the community, while beta diversity
between communities. The former can be simply described by the number of species
found in a sample, also referred to as the species richness (number of observed
species, Chao1 measure of diversity). Another way to estimate alpha diversity is
by taking into account the structure of the composition, the evenness, considering
how even is the estimated presence of the counted species within a sample (e.g.
Shannon’s index). Furthermore, alpha diversity measures can take into account
phylogeny (Faith’s phylogenetic diversity) (Knight et al., 2018). On the other side,
beta diversity measures pairwise the similarity between communities, generating a
matrix of distances. Also in this case, it can be defined by different approaches. It
can be computed by taking into account the phylogeny of the community and thus
the presence or absence of a taxon (i.e., unweighted Unifrac) or by considering the
taxon abundances in the calculation (i.e., weighted Unifrac, Bray-Curtis). Ordination
techniques, such as Principal Component Analysis (PCA) and Principal Coordinate
Analysis (PCoA) can be adopted for visualizing beta diversity. By condensing the
distance matrix into a two/three-dimensional plot, it is possible to depict individual
samples and consider their proximity to identify a similar trend in the composition
of the OTUs/ASVs found.

3.3.2 Whole-genome shotgun (WGS) metagenomic
In this approach, there is no need for the use of specific primers targeting specific

genes. Once extracted, DNA is randomly fragmented and sequenced, which allows
identifying both coding and non-coding regions of the genome and their metabolic
potential. This is a powerful way to analyse microbial diversity in different types
of habitat, and can uncover new species, identifying clusters of genes with specific
functions, also by studying sequence evolution in a whole microbial community.
In addition to providing information on all genomes within a sample, WGS data
can also be specifically looked up for ribosomal genes, they can be mapped to a
reference database for phylogenetic reconstruction, alone or by choosing multiple
marker genes.

3.3.2.1 Assembly-based versus read-based approach

By assembly it is meant the in silico reconstruction of a genome, which starts
from the generation of contigs from the sequenced reads. It can be obtained in the
presence of a reference sequence, or can occur de novo, without a guiding sequence.
The most used strategies rely on the De Bruijn graph method (Miller, Koren, and
Sutton, 2010), which infers reads overlapping by using k-mer substrings to speed
the computation. The choice of the substring length is pivotal in the construction of
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the assembly, and can be chosen based on different parameters (i.e., the reads error
rate, genome size and coverage, repetitive sequences). The assembly generation is
a highly challenging task, especially in metagenomics, requiring the construction
of many genomes found in the same sample. The field is blooming with tools
for metagenomics data analysis, well-known software developed for this task are
MEGAHIT (Li and Nikaido, 2009), metaSPADES (Nurk et al., 2017), and IDBA-UD
(Peng et al., 2012). Some advantages of analysing metagenomic data with assemblies
are the increased possibility of finding full genes and operons, these are even more
advantageous with long reads. By grouping together the contigs, we obtain bins that
can be classified both taxonomically and functionally. The binning method can be
achieved either by using a reference genome, therefore identifying similar contigs in
a supervised way, or by grouping together contigs based on the sequences features
(i.e., GC content and oligonucleotide frequencies). In alternative, there are algorithms
that use a combination of both methods. Refined bins, filtered from host contaminant
sequences are called Metagenome-Assembled Genomes (MAGs).

Functional annotation can be achieved by sequence homology with respect to a
database collecting a wide set of functions, cases can be Pfam (El-Gebali et al., 2019)
and InterPro (Mitchell et al., 2019). From the functional annotation assignment, it is
possible to retrieve the pathways where the proteins are known to operate and to
reconstruct metabolic pathways from metagenomic data. Known tools are MinPath
(Ye and Doak, 2011) and MetaPath (Liu and Pop, 2011)(Liu B et al., 2011), using
metabolic information from databases as KEGG (Kanehisa et al., 2017) and Metacyc
(Caspi et al., 2018).

The assembly free-method has the advantage of being faster and less computa-
tionally expensive than the assembly approach. High-quality metagenomic reads can
be looked up for taxonomic assignments by software as Centrifuge (Kim et al., 2016)
and Kaiju (Menzel, Ng, and Krogh, 2016), which use a different implementation of
the Burrows–Wheeler transform FM index method (Ferragina and Manzini, 2005)
for matching query reads to a reference database. Also for the read-based approach,
there is a plethora of tools available for the taxonomic and functional annotation of
reads (Pérez-Cobas, Gomez-Valero, and Buchrieser, 2020).

3.3.3 The dark metagenome
One of the main limitations of the metagenomic annotation based on homology

search is the narrow possibility to identify sequences based on the reference databases
available. A large part of these reads will be unutilized because of missed hit match-
ing. Unassigned sequences are referred to as orphans, many of which can be due
to short sequences unable to find a homologous in the reference database (Sberro
et al., 2019). In order to confirm a novel gene, it is possible to first take into account
the secondary and tertiary structure of the translated protein. However, in order to
confirm its function, more experimental procedures are requested. The unknown
domain functions are estimated to outnumber the acknowledged functional domain
over time (Baric et al., 2016).
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3.4 Technological limitations
The advancement in new sequencing techniques and the specialization in other

fields (chemical, informatic) has defined the transition between classical and modern
microbiology, led by genomics techniques. NGS technologies have made a concrete
contribution to microbial genomic research by defining a new paradigm shift. Notable
advancements have been the simplification of the DNA library preparation, the
discarded necessity of a DNA cloning vector and a bacterial host, decreasing the
problem of contamination from the host organism DNA, and the ability to parallelize
at high-throughput many samples.

Nevertheless, there are several limiting factors to metagenomics approaches,
from the extraction of microbial DNA to the informatic pre-processing and analysis.
From the data preparation point of view, there are a series of technical biases, from
designing adapters and barcodes to samples handling. Despite the effort in the
implementation of pipeline/software freely available, there are several limitations
due to reproducibility.

One of the pitfalls of the 16S rRNA technique is the difficulty of obtaining re-
producible results when sequencing different hypervariable regions within the 16S
rRNA gene. Furthermore, amplicon sequencing does not provide resolution at the
species level, it does not take into account the possibility of horizontal gene transfer
of the 16S rRNA gene, nor the difference in the gene copy number between organisms.
Another limitation occurs when sequencing samples with low-abundance genomes,
considering that ribosomal genes represent only a small fraction of the total bacterial
genome (Schouls, Schot, and Jacobs, 2003).

The choice of the different reference databases, filtering cut-offs and algorithms
strongly influences the data analysis results. Furthermore, a classification bias can
reside on relic DNA, which is extracellular DNA not part of a living microbe that can
be sampled and sequenced, and is estimated to comprise up to 40% in soil. Moreover,
under-sampled taxa that might play an important role in a bacterial community, are
often filtered out and neglected in the analysis. In the process of generating data,
computational resources and bioinformatics are the bottlenecks of the investigation,
requiring dedicated infrastructure and personnel.

3.4.1 Conclusions and perspectives
Omics techniques have impacted many biological fields. Importantly, the integra-

tion of several omics techniques (i.e., transcriptomics, metabolomics, proteomics) can
mine different layers of biological complexity. The amount of data generated requires
informatics expertise in order to answer questions related to microbiome research.
Metagenomics has outdated the classical culturing techniques, marking the entrance
of microbiology into the generation of big data, where astronomical science is still at
the top. In brief, metagenomics approaches can picture a microbial community at
a given time, by profiling the taxonomy and genomic function from the microbial
DNA of the collected samples. Metagenomics science is becoming a useful tool
for monitoring environments and wastewater for potential outbreaks. Importantly,
mining the genomic and functional information of microbial communities associated
with hosts, as well as the complex interactions between their members, can uncover
the settings that define the hosts’ health (Berg et al., 2020).
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Chapter 4

XenoPath: tool for profiling the
bacterial species with xenobiotic
metabolizing enzymes from
sequenced data

4.1 Abstract
In recent years, the adoption of culture independent approaches has led to a

size escalation of the biological data collected, expanding the knowledge over the
microbial diversity. These approaches offer new means to identify microbial bioreme-
diation processes, known as the ability of bacteria to participate in the degradation of
xenobiotic compounds, by encoding in their genome, and potentially express, xeno-
biotic metabolizing enzymes. In this respect, computational methods can support the
expansion of the microbial genomics field, with discoveries that range from the iden-
tification of species and genes present within a microbial community. With XenoPath
we propose to adopt an advantageous computational framework to screen metage-
nomic samples, targeting taxa and xenobiotic degradation functions, by defining the
meta-phenotype of the community analysed. XenoPath has been benchmarked, by
means of in silico metagenomics communities, and with respect to the state-of-the-art
of available tools with similar aim. We reported its usability in analysing a soil
metagenomic community, in a study case. Furthermore, we provided a module for
the visualization of the meta-phenotype at species level. The tool can be used for an
accurate identification of new microbial partners, and their functions from metage-
nomics data and for these reasons it represents a key opportunity for accelerating the
discovery of novel bioremediation solutions. Finally, the proposed framework, facili-
tates the analysis of metagenomics data, by allowing the identification of untapped
bacteria and their potential role in the degradation of xenobiotics.
Keywords: xenobiotics, bioremediation, metagenomics, environment, meta-phenotype

4.2 Introduction
The microbial genomics is an expanding research field, aiming to characterize

microbial communities within a niche, organism or environment, for the identifica-
tion of key components and functions in relation to the changes investigated. The
identification of bacterial species within contaminated environments, where the
bacterial activity is responsible of a variety of enzymatic functions with biodegra-
dation potential, is of particular interest in the microbial ecology area (Haiser and
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Turnbaugh, 2013; Koppel, Rekdal, and Balskus, 2017). In this context, xenobiotics are
compounds not normally produced or found in an organism or in an environment.
These compounds are outsider to the enzymatic system of a determined niche and
potentially harmful when accumulating.

Remediation mediated by biological entities, can transform hazardous to less
harmful compound, using natural biological activity, and thus reverting the accumu-
lation of these compound in the environment. Nevertheless, the activity of degrada-
tive microbes, is subjected to a series of factors (aerobic or anaerobic conditions, pH,
substrate as electron donor or acceptors, temperatures and the presence of other
inhibitory compounds), that together can determine favourable or unfavourable
physicochemical conditions. For instance, the degradation of the benzenoid aromatic
ring compounds are described by different pathways based on the presence/absence
of oxygen. Also the aerobic and anaerobic metabolism differs for the BTEX com-
pounds (benzene, toluene, ethylbenzene and xylenes). In other cases, some reaction
have been identified in aerobic bacteria, but could hypothetically be carried out also
otherwise (Ellis and Wackett, 2012).

For many reactions we still lack the metabolic information. The key to the bio-
decontamination process is the presence of microbes harbouring specific enzymatic
activities, although in some cases, new intermediate compounds are generated by
spontaneous chemical reaction. The ability to degrade certain compounds in bacteria
could be already encoded in their genome, or as in case of molecules of anthropogenic
nature, as atrazine, it is most probable new enzymatic function have evolved over
relatively recent time under the selective pressure of the pesticide (Russell et al., 2011).
The process of adaptation makes bacteria initially not able to degrade a compound
to later acquire or to alter enzymes with novel metabolic activities. This can occur
mostly by acquisition of mutations or new genetic material. Interestingly, these
enzymes have been extensively found in plasmids (Van Der Meer et al., 1992).

There is a knowledge gap, between all the chemical compounds that can be
synthesized and the known degradative ability of the microbial diversity. Despite the
increasing need of finding novel bioremediation solution and contextually to identify
the chemistry of biodegradation, these is a shortcoming of computational approaches.
We propose XenoPath as a tool for mining the metagenomes and leading to the
characterization of sample’s molecular signatures, with the possibility of enzymes
and species identification.

4.3 Material and methods
XenoPath is a free and opensource pipeline, written in bash and python 3, tailored

for shotgun metagenomics data type. The software accepts pre-processed reads
both for single, paired-end type or a combination of both. The .fastq/.fna can be
in compressed format and the software can processes multiple samples. XenoPath
is composed of three modules, in the first, the software identifies the taxonomy for
each read and in the second retrieves the enzymatic function associated, enriching
the xenobiotic degradation pathways (Table 4.1) present in the XenoPath database.
Finally, the visualization module allows to generate the maps of pathways enriched
in the dataset, also summarizing the information regarding the EC number associated
to a given species.
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TABLE 4.1: List of xenobiotics and pathways name included in
XenoPath

Xenobiotics and pathways name
Food conservatives and antiseptic (i.e., benzoate, aminoben-
zoate and
fluorobenzoate producing carcinogenic compounds)
Pharmaceutical additives and solvents (i.e., chloroalkane
and chloroalkene, toluene also found in petroleum)
Insecticides (i.e., chlorocyclohexane and chlorobenzene)
Herbicides (i.e., atrazine)
Pesticides (i.e., nitrotoluene also in plastic, pharmaceuticals
and explosives, dioxin)
Plastics, paints additives (i.e., stryrene, ethylbenzene, capro-
lactam, bisphenol, dioxin)
Refrigerants, insulation (dioxin)
Insecticides (naphthalene)
Combustion products (i.e., polycyclic aromatic hydrocar-
bons, anthracene)
Product of fermentations (i.e., furfural)

The bacterial classification task is obtained by means of Kaiju algorithm (Menzel,
Ng, and Krogh, 2016), with the advantage of choosing one of the database provided
by software. The software parameters can be tailored based on a configuration file.
As result the tool gives table by Phylum/Family/Genus and Species level with the
total number of reads counted per taxon. Diamond is adopted for the local alignment
of the Open Reading Frames translated from the reads, with respect to the database
of degradation enzyme constructed from (Swissprot release 2020-06), filtering for
reads profiled with at least the 40% of sequence identity and the 80% query coverage.
An enzymatic function is not exclusively associated to a single degradation pathway,
for this reason the tool adopts the minimum pathways algorithm from MinPath tool
(Ye and Doak, 2011) assigning the EC numbers to an enriched pathway of the KEGG
database (Kanehisa et al., 2017). The final tables can be filtered setting a minimum
threshold.

XenoPath visualization module, relies on biojs-kegg, and is tailored to annotate
all the degradation pathways as shown in KEGG. For each of the pathway identified
in the analysed community, it is generated an HTML file visually summarizing the
EC number stratified by the species found in the dataset.

The metabolic network, based on KEGG, gives a species-specific annotation per
mapped enzyme. The enzymes are highlighted by species in the pathway, but the
information is also summarized at the level of a table and other graphs. Furthermore,
a list of species co-occurring in the same pathways is given in output.
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4.4 Performance evaluation
For the bacterial community (Table 4.3) we randomly generated 10 million in silico

synthesized reads randomly for the mock community tested, setting reads length of
100 bases (BBmap - sourceforge.net/projects/bbmap). The annotation of each reads
produced in silico was obtained from the organism respective gff file. We evaluated
the functional annotation of the mock community, thus the correct number of entries
in the community annotated with their correct name (TP,TN,FP,FN). We evaluated
the accuracy of the method by calculating the accuracy (F1) with the formula:

1. Recall or Sensitivity=TP/(TP+FN)

2. Precision=TP/(TP+FP)

3. F1 = 2*(precision*recall)/(precision + recall)

4.5 Results and Discussion
An in silico metagenomic community was created, retrieving the genome of 22

organisms from RefSeq and randomly selecting sequences fragments of 100 bases,
generating 10 million reads. The ability of XenoPath to correctly identify a read, both
at the taxonomic and functional level, was retrospectively considered, taking into
account the correct number of entries correctly annotated (True positive - TP, True
Negative - TN, False Positive - FP, False Negative - FN). We evaluated the accuracy of
the method by calculating the accuracy (F1) calculated as described in the methods
section. The tool was further benchmarked against HUMAnN 2.0. The benchmarking
of the taxonomy classification task leads to an higher degree of accuracy in the case of
XenoPath, in particular XenoPath correctly identified 12/22 species with F1 � 0.5, on
the other hand HUMAnN only 8/22 species with F1 � 0.5 (Figure 4.1). At the genus
level, XenoPath identified 9/17 genera with F1 � 0.5 and 5 of the remaining with F1
� 0.25. On the other side, HUMAnN classified 6/17 genera with F1 � 0.5 and 1 of
the remaining with F1 � 0.25 (Figure 4.1 a). Regarding the functional annotation of
the reads, HUMAnN 2.0 identified only 10479 reads (55% of the total reads in the
mock community known to be in a xenobiotic pathway), while XenoPath identified
16459 reads (87% of the total reads). Notably, XenoPath correctly detected 39 EC
numbers against the 29 identified by HUMAnN 2.0 (Figure 4.1 b).
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FIGURE 4.1: Benchmarking of XenoPath at the taxonomic and func-
tional level.

a. Accuracy of classification at species and genus level reported as F1,
for each member of the prototypical microbial community. b. Perfor-
mance evaluation of XenoPath and HUMAnN 2.0 at the functional level,
reporting the F1 value calculated for each enzyme commission number

associated to the reads of the in silico metagenomic community.

4.6 Study case
In order to test and to describe the potential of XenoPath, we identified a re-

cent metagenomic dataset from Weigold et al. (2016), specifically studying soil
(de)halogenation potential of a German forest site. Halogenated compounds are
naturally produced compounds, by some plants, macroalgae and wood root fungi.
These data were evaluated looking at a broader spectrum of xenobiotic degradation
potential in the three soil layers (Of 0-1 cm, Ah 1-15 cm and II.P 15-40 cm of depth).
The sequences were retrieved from MGRast (ID number 11442), already filtered for
adapters and eventual contaminant DNA. Paired and unpaired reads were stored
in different files and prepared to be analysed by XenoPath pipeline. The first task
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was to check the taxonomic composition of the dataset, looking for similar microbial
compositional patterns to what obtained in the aforementioned study. Protobacteria,
as already revealed by the original work, are the predominant Phylum in the soil
niche, followed by Actinobacteria and Acidobacteria. Firmicutes, are less abundant
respect to a human gut sample.

FIGURE 4.2: Taxonomic annotation by soil layers (Of 0-1 cm, Ah 1-15
cm and II.P 15-40 cm of depth).

Soil stratification image taken from the work of Weigold et al. (2016),
while the pie chart data were obtained from Kaiju results

As in the work of Weigold et al. (2016), haloalkane dehalogenase enzyme (EC:
3.8.1.5 - dhaA) was identified to be highly abundant in the two more profound soil
horizons. The second most abundant function identified by XenoPath corresponds
to the enzyme 1.2.7.1 participating in the nitrotoluene degradation pathways, while
the third most relevant function in the deepest soil layer is acetophenone carboxylase
(EC: 6.4.1.8) annotated for ethylbenzene degradation.

4.7 Conclusions
XenoPath was implemented with the aim of enhancing our knowledge over

bacteria metabolism related to a set of compounds (i.e., pesticides, insecticides), also
seeking promising bioremediation applications. In light of the promising results
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achieved benchmarking the tool with the method available in literature, for which
we aim to further test the tool with more randomly generated mock communities,
this framework offers new opportunities in identifying bioremediation microbial
partners. XenoPath allows to uncover both the taxonomy and the metabolism of the
microbial community under investigation. The functional profile limitations regard
the actual expression of the enzymes in the microbial community and the initial
annotation bounded by the current database adopted as reference.

TABLE 4.3: List species in the mock community

Species
Akkermansia muciniphila ATCC BAA-835
Alistipes finegoldii DSM 17242
Bacteroides thetaiotaomicron VPI-5482
Bifidobacterium adolescentis ATCC 15703
Bifidobacterium longum subsp. longum GT15
Blautia hansenii DSM 20583
Christensenella sp. Marseille-P2437 strain
Marseille-P2437T
Clostridium perfringens F262
Collinsella aerofaciens ATCC 25986
Coprococcus catus GD/7
Desulfovibrio sp. FW1012B
Dorea formicigenerans ATCC 27755
Escherichia coli str. K-12 substr. MG1655
Eubacterium rectale ATCC 33656
Faecalibacterium prausnitzii SL3/3
Prevotella copri DSM 18205
Roseburia intestinalis XB6B4
Ruminococcus albus 7
Ruminococcus bromii strain L2-36
Ruminococcus gnavus AGR2154
Ruminococcus obeum A2-162
Ruminococcus torques L2-14
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Chapter 5

The human gut microbiota

5.1 Gut microbiota 101
Since the technological advancement of microbiome research over the past 20

years, we are accumulating valuable insights into the structure and function of
microbiotas in different ecosystems (Garrido-Cardenas and Manzano-Agugliaro,
2017). Among the multiple fields of application, a great effort has regarded the
characterization of the human being. As for other animals, humans host trillions of
bacteria, networking with each other and with the host. Among the internal and
external surfaces covered by these microbes, the gastrointestinal tract is the most
colonized compartment, with an estimated presence of up to 1014 prokaryotic cells
(Rajilić-Stojanović, Smidt, and De Vos, 2007). Following this number, more than one
million is the estimated number of genes present in the cumulative genome of the gut
microbiota, about 150 times higher than those coded in the human genome (Lepage
et al., 2013). This tremendous difference indicates a set of metabolic characteristics of
exclusive bacterial prerogative, which complement and confer to the host important
new functions, possibly determining a higher adaptability and resilience potential.
Notably, the gut dwelling bacteria share the gastrointestinal tract with members
of other domains of life - Eukarya and Archaea - that are contemplated within the
microbiota definition as given previously in Chapter 3.

5.2 Hallmarks of gut microbiota ecology
Distinct physiological conditions along the gastrointestinal tract determine the

presence of compartmentalized microbial habitats (Donaldson, Lee, and Mazmanian,
2016). Starting from the oral cavity, down to the esophagus and the stomach, bacteria
can already encounter different environmental settings. The stomach, once believed
to be a sterile niche, is highly challenging for bacterial life, due to the low pH of the
gastric juice. The stomach in fact exhibits the lowest diversity and abundance in
terms of bacterial species. Helicobacter pylori can colonize the gastric mucosa, but it
is possible to encounter other commensal bacteria, members of the following phyla,
Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Fusobacteria (Ferreira
et al., 2018).

Interestingly, several other factors influence the presence of bacteria colonizing
distinct niches of the gastrointestinal tract - including the small intestine, the cecum
and the large intestine. In this respect, the availability of glycans and the presence
of antimicrobials peptides (AMPs) play an import role (El Kaoutari et al., 2013).
Shifts in chemicals, presence of digestive enzymes and nutrient gradients, as well as
the host immunity response and the presence of mucus, vastly contribute to shape
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this variation along the small intestine down to the colon. Importantly, the time of
transit of the chyme from the stomach to the first tract of the small intestine, the
duodenum, is significantly shorter compared to its permanence in the colon. This
aspect is believed to be pivotal for bacterial colonization. Furthermore, the small
intestinal tract is characterized by a higher level of oxygen and bile acids. Notably,
primary bile acids, produced by the liver and reversed in the duodenum through the
bile duct, are able to dissolve the outer membrane of certain bacterial species. Given
the limiting physiological configurations of the small intestine, the dominant families
in this tract are Lactobacillaceae and Enterobacteriaceae (Sengupta et al., 2013).

On the other hand, the cecum and colon are densely colonized, representing
the most populated tracts of the human body, also characterized by a high species
diversity. Human metabolism also influences the gut microbiota biogeography.
Being simple sugars and fatty acids absorbed in the small intestine, polysaccharide
fermentative bacteria colonize the large intestine. Furthermore, a set of features of the
colon, namely the slower transit time of digested food, the decreased presence of AMP
and primary bile acids, contribute to the growth of anaerobic bacteria specialized in
the degradation of complex polysaccharides. Bacteria with this fermentative potential
mainly belong to the families Bacteroidaceae and Clostridiaceae (Saffarian A et al., 2019).

5.2.1 Gut microhabitats and colonization
The mucus acts as a physical barrier. It is produced by specialized cells, the goblet

cells, and forms a layer covering the epithelium of the small and large intestine. In
this respect, the difference regarding these two macro-areas lies in the thickness of
the mucus layer. A mono-stratum protects the epithelium of the small intestine,
whereas two layers are present in the colon, one packed on the other, shielding the
epithelium. In the colon, the inner mucus layer, in contact with the lamina propria,
is almost devoid of bacteria compared to the outer layer, as seen with FISH tech-
nique (Johansson et al., 2008). Together with the mucus, also the presence of AMPs,
secretory immunoglobulins A (sIgAs) and a high oxygen concentration concur to
the selection of bacteria able to grow in these conditions. Typically, small intestine
colonizers are adherent species, namely Helicobacter spp. and Lactobacillaceae. In the
colon, we can find mucin-degrading species as Bacteroides acidifaciens, Bacteroides frag-
ilis, Akkermansia muciniphila, Ruminococcus gnavus and members of Bifidobacteriaceae
(Donaldson, Lee, and Mazmanian, 2016).

The crypts of the colon, as well as the inner mucus and the appendix, serve as a
protective barrier for microbial cells, primarily against fecal stream, and also against
different types of perturbations, which can be due to changes in diet, intestinal motil-
ity and antibiotic intake. Such perturbations can deplete the lumen from bacteria,
whereas these micro-niches represent a reservoir of species capable of recolonizing
the lumen, providing a means for the recovery of the gut microbiota.

Regarding gut colonization, bacteria have evolved several mechanisms to evade
the host immune response. Haemophilus influenzae, known to cause respiratory
infections, is also responsible for gastrointestinal diseases. Like the chameleon, H.
influenzae is capable of shielding its cellular surface with host sialic acids, reducing
the possibility of being spotted by the host immune system (Severi et al., 2005). Gram
positive and Gram negative bacteria use different strategies to evade the bactericidal
effect of antimicrobial peptides. In both cases, they act modifying the external cellular



5.3. Host-bacteria crosstalk 49

surface, overall eliminating the potential electrostatic interaction with antimicrobial
peptides (Lysenko et al., 2000; Saar-Dover et al., 2012).

5.3 Host-bacteria crosstalk
The gut microbiota is considered as the ‘forgotten organ’, able to modulate the

host health. The host-microbiota symbiotic relationship is important for regulating
host metabolism, for interaction with the immune system and for communicating
with human cells, at both the enteric and systemic level (Rooks and Garrett, 2016).
This interaction is highly dynamic and shaped by different factors that determine on
the one hand the fate of bacterial colonization of the gastrointestinal tract and on the
other hand, the maintenance or vice versa the disruption of human homeostasis.

Notably, the gut microbiota can be seen as an endocrine system, due to its ability
to produce and regulate metabolites that can reach other distal organs and systems
through the bloodstream. A relevant case are short-chain fatty acids (e.g., butyrate
and propionate), products of the carbohydrate metabolism by the gut microbiota,
which perform key signalling functions, discussed later in this chapter. Furthermore,
the gut microbiota can modulate tryptophan plasma concentrations, important for
the synthesis of the neurotransmitter serotonin. Many of the chemicals produced by
the gut microbiota are neuroactive, as the main inhibitory transmitter of the brain,
g-aminobutyric acid (GABA), and in addition, dopamine, noradrenaline and sero-
tonin, collectively defining a gut-brain communication axis. Overall, the biochemical
possibility and complexity of the gut microbiota far exceed those of our endocrine
system and are still not fully elucidated (Clarke et al., 2014).

5.3.1 Immunomodulation
The gut microbiota plays a central role in the development of the immune sys-

tem by training it to identify commensal and pathogenic bacteria. In the first case,
by suppressing the inflammatory reaction, and in the second case by promoting it,
thus refining the adaptative responses of our immune system during the course of
our life. When this fine tuning is impaired, as in a dysbiotic state (occurring for a
variety of reasons, e.g., antibiotic intake, diet change, reduced colonization of the
gastrointestinal tract, pathologies, etc.), our immune responses are compromised,
and this can lead to an increased risk of disease. In particular, alterations of this fine
balance can induce the breakdown of the mucosal barrier with consequent transloca-
tion of microorganisms in the lamina propria underneath the epithelium. Secretory
immunoglobulin A (sIgAs) are one of the sentinels of our immune system in the gut.
sIgAs are highly present in mucus monitoring the microbiota and mediating host
homeostasis. Certain pathogenic bacteria are entirely coated by sIgAs (Palm et al.,
2014). This assemblage could contribute to the formation of a biofilm, acting as a
barrier against the adherence of bacteria to the epithelium (Mathias and Corthésy,
2011). Non-pathogenic strains B. fragilis and Bifidobacterium breve are well-studied
cases of specific immunomodulation. These bacteria have evolved mechanisms to
stimulate the production of the anti-inflammatory cytokine IL-10 by immune regu-
latory T cells. As a result of avoiding a pro-inflammatory reaction, they make their
way through the mucus layer of the colon (Round et al., 2011). Another sophisticated
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mechanism evolved by commensal bacteria for ensuring gut colonization by modula-
tion of the host immune response, is the stimulation of a set of T helper cells, Th17
cells, playing an important protective role against pathogens (Ivanov et al., 2009).
On the other hand, also pathogenic bacteria have evolved mechanisms to reduce the
host pro-inflammatory response by limiting the immune response (Monack, Mueller,
and Falkow, 2004).

5.3.2 Gut microbiota metabolism
In addition to stimulating and alerting our immune system, commensal bacteria

provide an invaluable extension to our catabolic activities, with special regard to
complex carbohydrates that our gut would otherwise be unable to digest, thus
complementing our saccharolytic activity. This function is performed by specific
degradation enzymes encoded in the bacterial genome, known as Carbohydrate-
Active enZYmes (CAZymes) (Huang et al., 2017). Bacteria belonging to the genus
Bacteroides are the most involved in these metabolic pathways (Koropatkin, Cameron,
and Martens, 2012). In particular, B. thetaiotaomicron has the ability to metabolize
both diet and host-derived glycans from intestinal mucus. Furthermore, bacteria are
involved in the anabolism and absorption of secondary bile acids, lipids, amino acids
and vitamins (Flint et al., 2015).

5.3.2.1 Short-chain fatty acids

From the fermentation of polysaccharides, occurring in the colon, bacteria produce
short-chain fatty acids (SCFAs). These end-products of the anaerobic fermentation
of sugars, particularly butyrate, propionate and acetate, are important signaling
molecules that play a key multifactorial role in human physiology. For example,
they are known to stimulate the expansion and differentiations of regulatory T cells
(Tregs) (Smith et al., 2013; Atarashi et al., 2013; Arpaia et al., 2013). This interaction
can be an indirect way for the immune system to assess, through the sensing of
fermentation end-products, the presence of commensal bacteria, while otherwise
acting against pathogens. Well-studied effects of SCFA chemical communication
are inhibition of histone deacetylases (HDACs) and activation of G protein-coupled
receptors (GPCRs). Notably, GPCRs are involved in the regulation of metabolism,
inflammation and neurological homeostasis - with a series of cascading consequences,
some of which are not yet well disclosed (Sivaprakasam, Prasad, and Singh, 2016;
Sun et al., 2017).

5.3.2.2 Bile acids

Bile acids (BAs) are hydroxylated steroids synthesized from cholesterol in the liver.
BAs are a component of bile and they facilitate the solubilization of fat molecules,
lipids and fat-soluble vitamins. Only 5% of BAs is lost daily, and the rest is reabsorbed
in the ileum and transported back to the liver. Bacteria in the colon have evolved
bile acid metabolism. From the hydrolysis of primary bile acids, through bile salt
hydrolase (BSH), hydroxyl group dehydrogenation and 7-dehydroxylation, bacteria
can generate secondary bile acids, of which the two most important are deoxycholic
and lithocholic acid (Ridlon, Kang, and Hylemon, 2006). Metagenomics analysis has
revealed an enrichment of enzymes catalysing these reactions in the gut microbiota
in comparison to other ecosystems. Importantly, in a study in mice, increased levels
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of deoxycholic acid have been associated with obesity and cancer (Yoshimoto et al.,
2013). BAs are important signaling molecules, by binding to the cytoplasmic G
protein-coupled receptor TGR5 (TGR5/M-BAR) and nuclear farnesoid X receptor
(FXR), they participate in glucose regulation and lipid metabolism (Ramírez-Pérez
et al., 2017). FXR is expressed by many tissues and its ability to ligate to several BAs,
including secondary ones, reveals the role of the gut microbiota in the modulation
of FXR signaling. The study of BAs has also highlighted the role of this receptor
in many diseases, and the importance of diet for the host physiopathological state
(Wahlström et al., 2016).

5.4 Onset of colonization of the human gastrointestinal
tract

The gut is at the center of human health, whose connection with other organs
determines the gut-brain, gut-lung and gut-liver axes. This complex and dynamic
ecosystem is shaped since human birth (Milani et al., 2017). However, the very
starting point of bacterial colonization in humans is still somehow debated. Few
studies, supporting the theory of prenatal colonization, have identified traces of
bacterial DNA in the amniotic fluid, umbilical cord blood and placenta (Bearfield,
2002; Jiménez et al., 2005; Aagaard et al., 2014). In this debate, a difference is
undoubtedly detected in the gut microbiota composition of naturally born babies
compared to those delivered by C-section (Dominguez-Bello et al., 2010). Overall,
the infant microbiome is largely shaped by the maternal microbiota. Disruption of
the maternal-offspring microbiota exchange, either via C-section delivery or via the
usage of antibiotics during pregnancy, is associated with a series of health-related
issues. Particularly, these include asthma, increased risk of obesity, celiac disease and
type 1 diabetes (Kero et al., 2002; Huh et al., 2012; Decker, Hornef, and Stockinger,
2011; Algert et al., 2009). After birth, the gut microbiota is shaped by a milk-based
diet, enriching the intestinal community with Bifidobacterium species able to degrade
milk polysaccharides (Marques et al., 2010).

Most of the development of the gut microbiota occurs when the infant changes
the diet to solid food, marking an increase in bacterial richness, with increased
abundance of the genera Bacteroides, Clostridium and Ruminococcus (Marques et al.,
2010; Bäckhed et al., 2015; Arrieta et al., 2014). These changes are also mirrored by
the metabolism, updated from simple to complex carbohydrate degradation, and the
integrated ability to synthetize SCFAs as fermentation end-products. A major shaping
of the gut microbiota occurs in the early years of infant life up to the age of three,
with a prominent impact from the environment and lifestyle, but its development
continues even during adolescence (Agans et al., 2011; Derrien, Alvarez, and Vos,
2019).

5.5 Characterization of adult-like gut microbiota
The shaping of an adult-like microbiota begins with the transition to solid food.

The gut ecosystems is different from any other habitat, with several bacterial species
exclusively living in our gut. The gastrointestinal tract is estimated to be colonized
by one thousand different bacterial species (Bäckhed, 2012). The vast majority has



52 Chapter 5. The human gut microbiota

been determined only by in silico characterization of the 16S rRNA gene, thus lacking
a classical microbiological approach of isolation and cultivation (Rajilić-Stojanović,
Smidt, and De Vos, 2007). Despite the high diversity revealed at the species level,
these taxa are classified within ten major phyla of the hundred known (Peterson et al.,
2008). Importantly, the main components belong to Firmicutes and Bacteroidetes,
constituting more than 80% of the human gut microbiota.

5.5.1 Gut microbiota stability and variability
In 1998, a study on sixteen adults, based on 16S rRNA gene amplification and

TGGE, demonstrated the uniqueness of the human gut microbiota. Furthermore,
by studying the microbiota of two of those individuals at two time points, the
researchers found that the microbiota constituted a stable fingerprint for at least six
months (Zoetendal, Akkermans, and De Vos, 1998). Subsequent researches, extended
to the characterization and monitoring of the microbiota of other body sites, have
since then improved our understanding of microbiota diversity in adulthood. In
2005, another milestone study regarded the analysis of 13,335 16S rRNA sequences
amplified from multiple samplings of the colonic mucosa and also from the feces of
three individuals. This was the first step in the adoption of stools as a proxy for the
characterization of the gut microbiota (Eckburg et al., 2005). The results from this
work confirmed the inter-individual variation, highlighting the dominant presence
of members of the phyla Firmicutes and Bacteroidetes, followed by other minor
components, such as Actinobacteria, Proteobacteria and Verrucomicrobia.

In the following years, another study focused on 27 different body sites, in seven
individuals sampled at four time points, adding another important piece to our
understanding of the composition of the human microbiota. In this work, the in-
terpersonal variability across body niches was highlighted, thus stressing the high
variability of the bacterial composition between and within the human host (Costello
et al., 2009). With regards to intra-individual variability, distinct phases of human life
are characterized by specific microbiota configurations. Overall, various endogenous
and exogenous factors contribute in shaping the individual gut microbiota, these can
be lifestyle - also considering the variability due to ethnicity and geography – the
use of antibiotics and medications, diet and the inevitable ageing process, and only
minimally the host genotype. In particular, diet is one of the strongest influences in
modeling bacterial composition and function (Zmora, Suez, and Elinav, 2019).

5.5.2 Metagenomics milestone studies
Since 2005, researchers have progressed from the study of three, to seven up

to 124 fecal samples and 576.6 Gb of sequences, as in 2010 with the international
project MetaHIT (Metagenomes of the Human Intestinal Tract). The MetaHIT project
aimed to characterize the diversity of the human gut microbiota, at an unprecedented
higher sampling scale, and also to identify a core human microbiota. This project
published a gene catalogue of the gut microbiota, identifying 18 species shared in the
whole cohort. However, further studies have highlighted the presence of common
key functionality in the gut microbiome of humans rather than key species (Qin et al.,
2010).

In this context, it is important to mention the Human Microbiome Project (HMP)
Consortium (Consortium et al., 2010) that, by doubling the number of individuals
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and sampling eighteen body sites, further confirmed the previous hypotheses. Mi-
crobiota stability was also evaluated for the first time by reconstructing the longest
trajectory, from two individuals across multiple body sites for one year, confirming
individual variability across months (Caporaso et al., 2010). A second phase of this
study, the HMP 2.0 (Integrative et al., 2019), has focused on following the dynamics
of the gut microbiota in health and diseased states (i.e., pregnancy and preterm birth,
inflammatory bowel disease (IBD), dietary perturbations and infectious diseases that
affect individuals with prediabetes). Importantly, in this second phase, the project is
based on a multiomics approach, with the inclusion of metagenomics, metatranscrip-
tomics, metaproteomics, metabolomics as well as host genomics, epigenomics and
antibody profile.

Another important longitudinal study evaluated the long-term stability of the gut
microbiota across five years (Faith et al., 2013). In this time span, the authors identified
60% of the gut microbiota to remain stable over time. This data was confirmed
by 16S rRNA amplicon analysis and by strain isolation and genome sequencing
from fecal samples, showing the individual stability of the strains cultured over
5 years of sampling. Furthermore, this study highlighted the higher stability of
members of the phylum Bacteroidetes and Actinobacteria, compared to Firmicutes
and Proteobacteria.

These milestone studies have strengthened the idea of a human microbiota finger-
print. Microbiota configuration in adults tends to be stable (Faith et al., 2013; M. and
W.M., 2014; Franzosa et al., 2015; Palleja et al., 2018), but dynamic enough to adapt
to major changes, e.g. changes in diet or other environmental factors (David et al.,
2014), antibiotics and immune system response.

More recently, several studies, aimed at investigating the changes and the sig-
nature features of the gut microbiota in health and disease (i.e., type 2 diabetes,
metabolic syndrome, obesity and fatty liver), have pinpointed a higher predomi-
nance of envinomental factors (such as geography and lifestyle habits) in shaping
the gut microbiota composition, rather than the genetic component (Rothschild et al.,
2018; He et al., 2018; Deschasaux et al., 2018).

Further large and longitudinal studies will be needed to enhance our knowledge
over the physiological changes shaping the gut microbiota through ageing, including
elderhood and longevity, aiming to discriminate bacterial functions and species that
characterize a healthy microbiota.

5.6 Gut microbiota alterations
Dysbiosis is defined as an altered composition of the gut microbiota with a

detrimental effect on the host pathophysiology. Overall, a dysbiotic state is usually
characterized by a reduced diversity of the microbiota, with a decreased presence
of health-associated commensals and an increase in pathogens or pathobionts. The
administration of antibiotics is another major factor shaping the gut microbiota,
creating opportunities for pathogen colonization (Antonopoulos et al., 2009).

A common signature of any metabolic disorder is the unbalanced abundance of
the Firmicutes and Bacteroidetes phyla. Known cases of an altered gut microbiota
are inflammatory bowel disease (IBD) (Franzosa et al., 2019), type 1 and 2 diabetes
(Han et al., 2018; Sharma and Tripathi, 2019), and obesity (Gomes, Hoffmann, and
Mota, 2018). The early definition regarding pathogenicity in all ‘black’ or all ‘white’ is
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changing as new studies have highlighted the importance of host-bacteria interactions
in the emergence of pathogenicity (J.S. et al., 2017). The host genetics, as well as
the environment, play a crucial role. In this context, a known case is represented
by Chron’s disease (Cho, 2008). Dysfunctional Paneth cells, responsible for host
production of AMPs, are one of the proposed causes contributing to the Chron’s
dysbiotic state (Bevins and Salzman, 2011).

Previous findings suggested that the rise of a pathogenic state is induced by the
presence of bacteria in direct contact with the epithelial cells of the intestine. In
particular, pathogens can cause the disruption of the mucosal barrier by secreting
toxins capable of breaking cell junctions. This causes reduced growth of epithelial
cells with a consequent decrease in mucus production. The breakdown of the mucosal
barrier allows pathogens to translocate into the lamina propria. However, recent
works have established the ability of certain bacteria to penetrate the mucosal barrier
and get in contact with the epithelial cells even in healthy individuals (Swidsinski
et al., 2005). Both commensal and pathogenic bacteria can reach the epithelium by
degrading mucus with mucinases and proteases, and adhere to the tissue through
pili, lectins and other outer-membrane proteins. Certain bacteria are also able to use
the glycans in the mucus to facilitate their attachment, as in the case of some E. coli
strains expressing the fimbrial protein FimH, able to interact with mannose residues
in glycans (Krogfelt, Bergmans, and Klemm, 1990).

5.7 Conclusions and perspectives on ageing and gut mi-
crobiota

To summarize, the gut microbiota is stratified both horizontally and vertically in
micro-niches and its composition is highly influenced by nutrients, chemical gradient
and host immune response. The mucus itself represents an important reservoir of
bacteria, also providing the necessary nutrients to bacterial species, through its gly-
can components, scavenged in case of limited food resources. Given the importance
of the gut microbiota in shaping human health and disease, metagenomics studies
have gained an important place in deciphering host physiology. Being non-invasive,
fecal microbiota profiling though omics techniques provides a valuable tool for deter-
mining composition, function and dynamics of the microbiota community associated
with a specific state. Several metagenomics studies on the gut microbiota have con-
tributed to highlight the main microbial actors in health and disease. This chapter
has emphasized the gut microbiota composition of human beings and, importantly,
how it is shaped by the ageing process. Many age-related lifestyle changes have
been found to contribute to the re-configuration of the gut microbiota, with potential
health consequences (Kim and Jazwinski, 2018), first of all, changes in nutrition
and usage of medications. Contributing factors are also a decrease in locomotion,
leading to a frailty state, and changes in the host immune response. Importantly,
the residential status and long stay in facilities have a detrimental impact on the
microbiota configurations, as well as hospitalization (O’Toole and Jeffery, 2015; Araos
et al., 2019). The microbiota configuration is even more challenged at its core in
extremely longevous individuals after 100 years of symbiotic relationship. Although
this topic is of relevant importance to our society, limited studies have been con-
ducted for the characterization of the gut microbiota and its importance in healthy
ageing. The following chapters regard three original studies The first describing
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the gut microbiota of an elderly cohort in relation to the health state, particularly
visceral adiposity, the second characterizing the gut resistome over the course of life,
including centenarians and semi-supercentenarians, and the last investigating the
gut metagenome of the aforementioned cohort in relation to the metabolic pathways
involved in xenobiotic degradation.
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Chapter 6

Gut microbiota in elderly. Elevated
gut microbiome abundance of
Christensenellaceae,
Porphyromonadaceae and
Rikenellaceae is associated with
reduced visceral adipose tissue and
healthier metabolic profile in Italian
elderly

6.1 Abstract
Ageing is accompanied by physiological changes affecting body composition and

functionality, including accumulation of fat mass at the expense of muscle mass, with
effects upon morbidity and quality of life. The gut microbiome has recently emerged
as a key environmental modifier of human health that can modulate healthy ageing
and possibly longevity. However, its associations with adiposity in old age are still
poorly understood. Here we profiled the gut microbiota in a well-characterized
cohort of 201 Italian elderly subjects from the NU-AGE study, by 16S rRNA amplicon
sequencing. We then tested for association with body composition from dual-energy
X-ray absorptiometry (DXA), with a focus on visceral and subcutaneous adipose
tissue. Dietary patterns, serum metabolome and other health-related parameters
were also assessed. This study identified distinct compositional structures of the
elderly gut microbiota associated with DXA parameters, diet, metabolic profiles and
cardio-metabolic risk factors.
Keywords: microbiota, ageing, visceral adipose tissue, inflammaging, diet, serum
metabolome

6.2 Introduction
The gut microbiome is a crucial component of the individual health, by means

of its impact on food degradation, energy intake, and regulation of immune system
functionality (Cani et al., 2019; Spanogiannopoulos et al., 2016; Kim, Zeng, and
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Núñez, 2017). Recently, the human gut microbiome has also been proposed as a
determinant of healthy ageing, by counteracting inflammaging (i.e., the low-grade
chronic inflammation characterizing the advancement of age), immunosenescence,
intestinal permeability, and the decline in cognitive and bone health, thus helping
to preserve homeostasis (Claesson et al., 2012; Biagi et al., 2010; Ventura et al., 2017;
Nicoletti, 2015; Villa, Ward, and Comelli, 2017; Leung and Thuret, 2015).

Overall, the aged-type gut microbiome is reported to be characterized by al-
tered diversity, with increased representation of opportunistic bacteria and potential
pathobionts, and reduced relative abundance of microbes capable of producing
short-chain fatty acids (SCFAs), key signalling molecules for host metabolic and
immunological homeostasis (Biagi et al., 2010; Rampelli et al., 2013). Interestingly,
while the aforementioned microbiome modifications have been found to persist in
longevity, in those individuals who reach the extreme limit of human lifespan (i.e.,
semi-supercentenarians, aged >105 years), some peculiarities have emerged, that is
an enrichment and/or greater prevalence of health-associated taxa, Bifidobacterium,
Akkermansia and Christensenellaceae (Biagi et al., 2016). Though it is not yet clear
how and especially when these age-related microbiome structures are established,
it is worth noting that the increased representation of health-promoting microbes
in extremely old people appears to be robust to geography, as a sort of universal
microbiome signature of healthy ageing and longevity (Santoro et al., 2018b).

Ageing involves a series of changes in body composition, which generally result
in higher levels of fat mass at the expense of muscle mass, with critical implications
in terms of morbidity and quality of life (Santoro et al., 2018a; St-Onge and Gallagher,
2010; Reinders, Visser, and Schaap, 2017; Bazzocchi et al., 2013; Ponti et al., 2020).
Previous works, exploring how ageing affects body mass distribution, have shown
that muscle tissue and high-metabolic rate organs such as brain, kidneys, liver and
spleen, decrease in mass with increasing age, while the abdominal area is more prone
to fat deposits (St-Onge and Gallagher, 2010; Conte et al., 2019).

The elderly indeed tend to accumulate fat in the muscles, liver and viscera as lipid
droplets, while losing subcutaneous fat mass (Reinders, Visser, and Schaap, 2017).
The age-related accumulation of fat deposition has been associated with an increase
in a pro-inflammatory state that may contribute to the onset of cardiovascular disease,
insulin resistance and type 2 diabetes (Fried, Bunkin, and Greenberg, 1998; Kanda
et al., 2006). In particular, evidence has shown that excess visceral adipose tissue
(VAT) rather than accumulation of subcutaneous adipose tissue (SAT), represents the
cause of atherosclerotic cardiovascular events and is the key contributor to metabolic
syndrome (Sato et al., 2018; Gómez et al., 2019).

The accumulation of fat mass is also well known to be linked to the gut microbiota.
Landmark studies in animal models revealed that microbial transplantation from
obese to lean mice was able to induce weight gain (Turnbaugh et al., 2006; Turnbaugh
et al., 2008). More recently, findings in human subjects showed that lean and obese
individuals have a particular gut microbial signature in terms of composition and
diversity with also differences between men and women (Ridaura VK et al., 2013;
Rampelli et al., 2018; Cancello et al., 2019; Min et al., 2019). Furthermore, in one of
the largest gut microbiota-obesity studies to date, conducted in a cohort of twins, the
authors suggested the existence of heritable microbes that could play a major role
in components of adiposity relevant for cardiovascular risk (Beaumont et al., 2016).
However, these studies have mostly dealt with individuals with a wide age range,
so the associations between microbiome and fat distribution in the elderly are still
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poorly understood.
Measures specifically assessing visceral fat could help better explore the con-

tribution of the gut microbiome to abdominal adiposity. In this regard, different
imaging methods such as ultrasound, computed tomography (CT) and magnetic
resonance, are able to assess VAT and SAT, being CT the “gold standard” technique
for assessing this. However, CT is limited by radiation exposure and availability
and MRI is limited in terms of availability. Dual energy X-ray absorptiometry (DXA)
is considered the “gold standard” technique for body composition assessment at
molecular level – translated into a 3-compartment model of fat mass, non-bone lean
mass and bone mineral content, and certain DXA devices have embedded algorithms
to specifically estimate the amount of VAT and SAT in the android region (Ponti
et al., 2020; Guglielmi and Bazzocchi, 2020). Unlike indirect measures, such as the
body mass index (BMI), DXA allows rapid, sensitive and accurate, yet non-invasive,
characterization of body composition, including levels of fat and lean mass, and
bone density (Messina et al., 2020). In an attempt to better reveal the associations
between abdominal adiposity and gut microbiome in old age, here we analysed
the multivariate relationship between DXA-derived measures of VAT and SAT and
the gut microbiota structure, as profiled by 16S rRNA gene-based sequencing, in a
cohort of 201 Italian seniors, enrolled within the EU FP7 NU-AGE project. Dietary
data, collected by 7-day food records, and serum metabolomics data, generated by
ultra-performance liquid chromatography coupled to quadrupole-time-of-flight mass
spectrometer, were also analysed to explore associations of macro/micronutrients
and metabolites with abdominal adiposity-related microbiota profiles. We find that
distinct gut bacterial taxa are associated with reduced VAT, as well as with peculiar
profiles of circulating metabolites and food intake. Monitoring and possibly modulat-
ing the gut microbiota, in addition to promoting healthy eating habits, could therefore
represent an additional tool to support healthy ageing and possibly longevity.

6.3 Materials and Methods

6.3.1 Study cohort
NU-AGE (https://cordis.europa.eu/project/id/266486) is a multicentre EU FP7

project, ended in 2016, which involved 30 partners from 16 European countries,
working in the field of nutrition, gerontology, immunology and molecular biology.
NU-AGE objective was to study the effects of a 12-month customized Mediterranean
diet (registered with clinicaltrials.gov, NCT01754012) on the ageing process, includ-
ing cognitive decline, bone density, muscle mass, digestive health, immune and
cardiovascular systems. Enrolment of participants has been described in detail
previously (Santoro et al., 2014; Marseglia et al., 2019). Briefly, after screening for
inclusion/exclusion criteria, 1,279 free-living healthy elderly aged 65 to 79 years were
enrolled across five EU countries (Poland, Netherlands, UK, France, Italy) and thor-
oughly characterized for anthropometry, nutritional status, body composition, health
and medical status, cognitive and physical functions, and a series of biochemical and
inflammatory measures (Fried et al., 2001). Participants were classified according to
their frailty status based on the five criteria proposed by Fried and colleagues, includ-
ing weight loss, weakness (i.e., poor handgrip strength), self-reported exhaustion,
slowness (i.e., slow gait speed), and low physical activity. Only non-frail (absence of
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all the above 5 criteria) and pre-frail (presence of 1 or 2 of the criteria) subjects were
included in the study (Marseglia et al., 2018).

Written informed consent was collected from all participants prior to their in-
clusion in the study, in accordance with the Declaration of Helsinki. NU-AGE was
approved by the ethics committee of the coordinator centre — the Independent
Ethics Committee of the S. Orsola-Malpighi Hospital Bologna (Italy) — and by the
local/national ethics committees of all the other four recruiting centres.

As the analysis of VAT and SAT by DXA was only available for the Italian elderly,
here we focused only on this cohort, of which we profiled the faecal microbiome by
means of next-generation sequencing, and sought correlations with DXA variables,
especially VAT and SAT, as well as with dietary habits and circulating metabolites
(please see the paragraphs below). As for stool collection, each participant was
asked to collect a faecal sample. The samples were immediately stored at -20°C and
delivered to the Department of Experimental, Diagnostic and Specialty Medicine
(University of Bologna, Bologna, Italy) where they were stored at -80°C until process-
ing.

6.3.2 Anthropometric, physical, cardiovascular, clinical and cogni-
tive function assessment

Height was measured by a stadiometer to the nearest 0.1 cm. Weight was mea-
sured to the nearest 0.1 kg with a calibrated scale while wearing light clothes. Body
Mass Index (BMI) was calculated as weight/height2 (kg/m2). Waist circumference
was measured either at the narrowest circumference of the torso or at the midpoint
between the lower ribs and the iliac crest. Hip circumference was measured horizon-
tally at the level of the largest lateral extension of the hips or over the buttocks. Hand
grip strength was measured three times in the dominant hand using the Scandidact
Smedley’s Hand Dynamometer® (Odder, Denmark) to the nearest 0.1 kg. Physical
performance was evaluated by the sum score of 6-minute walking distance, Activities
of Daily Living (ADL) scale, Instrumental Activities of Daily Living (IADL) scale
and PASE questionnaire. Cognitive function was assessed by the administration of
the Cambridge Mental Disorders of the Elderly Examination (CAMDEX) subjective
memory score, the Geriatric Depression Scale (GDS) score and Mini Mental State
Examination (MMSE) score as previously reported (Jennings et al., 2019). Blood
pressure and heart rate were measured using the automated and calibrated electronic
monitor Omron, M2 compact (Milan, Italy) as previously reported (Santoro et al.,
2019). The use of prescribed medicines and supplements and the clinical history
were collected by a questionnaire and verified by interviewers. All measures and
questionnaires were taken by trained research assistants.

6.3.3 Body composition assessment
Direct measurements of total and regional body composition were obtained by

performing whole body DXA scan (Lunar iDXA, GE Healthcare, Madison, WI –
enCORETM 2011 software version 13.6 and upgrade to estimate VAT and SAT).
The scanners are compliant with standard quality control procedures and were
re-calibrated daily following the manufacturers’ instructions. DXA scans were per-
formed by trained personnel, removing all metal items prior to densitometry and
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placing the subjects in supine position with arms resting on the side of the partici-
pant’s body, leaving some space with respect to the trunk and centred on the scanning
field. DXA scanned the following regions: total body, trunk, upper limbs, lower
limbs, android region (from the two superior iliac crests and extended cranially
and covering 20% of the distance to the chin) and gynoid region (from the greater
trochanter of the femur directed caudally and covering two times the distance in
the android region). For each scanned region, the weight (in g) of the total mass, fat
mass, non-bone lean mass and bone mineral content were obtained. Measurements
of VAT and SAT were obtained at android level with CoreScan software.

This work includes variables related to total fat and lean mass distribution and
bone mineral content, with a focus on fat measures of the abdominal area including
subcutaneous and visceral adiposity: whole body fat mass (FM, g), whole body fat
mass index (FMI, g/m2), whole body fat mass to lean mass ratio (FM/LM), whole
body non-bone lean mass (LM, g), whole body non-bone lean mass index (LMI,
g/m2), skeletal mass index (SMI, i.e., the appendicular lean mass to total body mass
ratio), whole body bone mineral content (BMC, g), whole body bone mineral density
(BMD, g/cm2), whole body T-score (T-score), android fat mass to android lean mass
ratio (AF/AL), android fat mass to gynoid fat mass ratio (AF/GF), VAT (g) and SAT
(g) and their ratio.

6.3.4 Blood sampling and biochemical parameters
Blood samples were obtained after participants had fasted (at least 8 h) and had

avoided heavy exercise and alcohol in the prior 24 h. Samples were centrifuged
after sitting for 30 min at room temperature and separated into plasma and serum
according to a standardized operating procedure, then aliquoted and stored at -80°C
until analysis.

Methods for inflammatory parameters assessment are reported in Santoro et al.
(Santoro et al., 2019). Briefly, C-reactive protein (CRP), leptin and adiponectin were
measured by ProcartaPlexTM Immunoassay (Thermo Fisher Scientific, Waltham, MA,
USA), performed using Luminex 200 instrumentation (Luminex Corporation, Austin,
TX, USA), according to the manufacturer’s instructions. Ghrelin and Pentraxin-3
were measured in multiplex with Bio-Plex Pro human diabetes and Pro human
inflammation assay (Bio-Rad, Hercules, CA, USA), respectively. Plates were read
and analysed by Bio-Plex Manager Software (Bio-Rad). Plasma homocysteine was
measured by an enzymatic assay using an Olympus AU400 clinical chemistry plat-
form (Beckman Coulter, High Wycombe, UK). Serum glucose and serum insulin
were determined by biochemical assay and chemiluminescent immunoassay, re-
spectively. Insulin resistance status was calculated according to the homeostasis
model assessment of insulin resistance (HOMA-IR) using the following formula:
insulin (mIU/mL) × glucose (mmol/L)/22.5 (Matthews et al., 1985). Plasma albumin
was analysed using the VITROS ALB slides (Ortho-Clinical Diagnostics, UK) on a
VITROS 5.1/FS analyzer. Plasma total, High Density Lipoprotein (HDL) and Low
Density Lipoprotein (LDL) cholesterol and triglycerides were measured on a konelab
system and reagents were from Thermo Scientific (Asnières sur Seine, France). All
the other biochemical analyses, including creatinine, uric acid, alkaline phosphatase
(ALP), gamma-glutamyl transpeptidase (GGT), aspartate aminotransferase (AST)
and alanine transaminase (ALT) were measured on frozen blood and frozen urine
(urea) in a centralized centre with standard methodologies.
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6.3.5 Dietary intake data
Dietary intake was assessed by 7-day food records as reported elsewhere (Ostan

et al., 2018). Briefly, participants were trained one to one by the interviewer receiving
exhaustive instructions to correctly fill in the food diary. Food records were provided
in a structured format, with tables for each day and eating occasion, time/hour, loca-
tion, foods and drinks consumed, quantity and recipes in order to record all details of
the meals. Participants were recommended to record data at the time the foods were
eaten/consumed and not to change eating habits during the week of registration.
At the end of the recorded period, the 7-day food records were accurately checked
to obtain more detailed information about types of foods, dressings, preparation
methods and recipes, to estimate portion sizes by using real-life models and pictures
and to probe the possible consumption of forgotten foods. Consumed foods were
coded according to standardized procedures and translated into nutrients by the use
of WinFood® software exploiting local food composition tables: INRAN (National
Institute for Research on Food and Nutrition, Italy) and IEO (European Institute of
Oncology, Italy). Energy (kcal), total carbohydrate (g), total protein (g), animal and
plant protein (g), total, saturated and unsaturated fat (g), fibre (g) cholesterol (g),
water (g), vitamin (mg: biotin, B1, B2, B3, B6, C, E; µg: folic acid, b-carotene, A, B12,
D), and calcium (mg) intake normalized on body weight (g/kg BW), were used in
the analysis together with the intake of food groups (white and whole grains, fruits
and vegetables, legumes, dairy products, cheese, red and processed meat, white
meat, nuts and seeds, potatoes, eggs and egg products, butter and animal fat, olive
oil, other vegetable oils, sugar and sweetened beverages, sugar, honey and artificial
sweeteners, sweet, chocolate and snacks) (g/day) normalized on body weight. The
dietary intakes from the 7-day food records were added/summed to the intakes of
related dietary supplements as assessed by a specific vitamin/mineral supplements
questionnaire.

6.3.6 Serum metabolomics analysis
Untargeted metabolomics was performed following the procedure described

in Pujos-Guillot et al. (Pujos-Guillot et al., 2019). Briefly, serum samples (100 µL)
were deproteinized using cold methanol. After evaporation under nitrogen, the dry
residues were redissolved in 50/50 (v/v) acetonitrile/water containing 0.1% formic
acid. Pooled quality-control samples were prepared by mixing 20 µL from each of
the serum samples and prepared similarly. Metabolic profiles were then determined
using an ultra-performance liquid chromatography coupled to quadrupole-time-
of-flight mass spectrometer (Bruker Impact HD2), equipped with an electrospray
source. Separations were carried out using an Acquity HSS T3 column (Waters).
Data were acquired in positive and negative ion modes with a scan range from 50 to
1,000 mass-to-charge ratio (m/z). Data were processed under the Galaxy web-based
platform Worflow4metabolomics using first XCMS, followed by quality checks and
signal drift correction (Giacomoni et al., 2015). The remaining unknown compounds
were identified on the basis of their exact masses which were compared to those
registered in the Human Metabolome Database (HMDB) or in Kyoto Encyclopedia
of Genes and Genomes (KEGG) database. Database results were confirmed using
appropriate standards when available, isotopic patterns, and mass fragmentation
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analyses, performed on a Thermo Scientific LTQ Orbitrap Velos hybrid mass spec-
trometer (Thermo Fisher Scientific, San José, CA, USA) using high resolution, at
100,000 resolving power.

6.3.7 Microbial DNA extraction
Microbial DNA was extracted from 250 mg of faecal material using the repeated

bead-beating plus column method (Yu and Morrison, 2004). Briefly, samples were
suspended in 1 mL of lysis buffer (500 mM NaCl, 50 mM Tris-HCl pH 8, 50 mM
EDTA, and 4% SDS) and bead-beaten three times in the presence of four 3-mm glass
beads and 0.5 g of 0.1-mm zirconia beads (BioSpec Products, Bartlesville, OK, USA),
in a FastPrep instrument (MP Biomedicals, Irvine, CA, USA) at 5.5 movements/s for
1 min. Afterwards, the samples were incubated at 95°C for 15 min and subsequently
centrifuged for 5 min at 13,000 rpm. The supernatant was added with 260 µL of 10 M
ammonium acetate and incubated in ice for 5 min. After a further centrifugation step,
one volume of isopropanol was added to the supernatant and incubated in ice for 30
min. Precipitated DNA was washed with 70% ethanol and resuspended in 100 µL of
TE buffer. The samples were depleted of RNA and proteins with 2 µL of 10 mg/mL
DNase-free RNase at 37°C for 15 min and 15 µL of proteinase K (QIAGEN, Hilden,
Germany) at 70°C for 10 min, respectively. Final DNA purification was performed
using the QIAamp DNA Stool Mini Kit (QIAGEN). The purified nucleic acids were
quantified with the NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies,
Wilmington, DE, USA).

6.3.8 16S rRNA gene amplification and sequencing
The V3–V4 hypervariable region of the 16S rRNA gene was PCR amplified with

341F and 805R primers with Illumina overhang adapter sequences as previously
reported (Barone et al., 2019). The PCR thermal cycle was as follows: denaturation at
95 °C for 3 min, followed by 25 cycles of denaturation at 95°C for 30 s, annealing at
55°C for 30 s, then extension at 72°C for 30 s, and the last extension step at 72°C for 5
min. The Agencourt AMPure XP magnetic beads (Beckman Coulter, Brea, CA, USA)
were used to clean PCR amplicons. Indexed libraries were obtained by limited-cycle
PCR using Nextera technology. After a second clean-up as described above, libraries
were pooled at equimolar concentration, denatured with 0.2 N NaOH and diluted to 6
pM. For sequencing, an Illumina MiSeq (Illumina, San Diego, CA, USA) platform was
used with a 2 x 250 bp paired-end protocol, following the manufacturer’s instructions.
Sequencing data are available at NCBI SRA under the BioProject ID: PRJNA661289.

6.3.9 Bioinformatics and biostatistics
Sequencing read quality was assessed with Fastqc tool. High-quality read couples

were joined together in a single read with PANDAseq tool and the resultant reads
with length lower than 350 bp and greater than 500 bp were filtered out. Single-
end reads were further pre-processed with DADA2, in order to reduce the noise of
the dataset, eliminating chimera sequences and duplicates, and cluster them into
amplicon sequence variants (ASVs) (Masella et al., 2012; Callahan et al., 2016). The al-
gorithm VSEARCH was applied to scan the representative feature sequences against
the precomputed clusters from SILVA database (128 version) at 99% of sequence
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identity, and to assign the taxonomy with a confidence score > 0.5 (Quast et al., 2013).
The ASVs table was normalized by the minimum number of feature sequences in a
sample. Read pre-processing and taxonomic classification were performed in QIIME
2 (release 2018) framework (Bolyen et al., 2019). The R packages Phyloseq and Vegan
were used for statistical analysis. Beta diversity was calculated with unweighted,
weighted and generalized UniFrac metrics (GUniFrac package), and the function
adonis was used to test the significance of beta diversity-based sample separation
in Principal Coordinates Analysis (PCoA) (McMurdie and Holmes, 2013; Philip,
2003). The separation of the three microbiome groups (G1 to G3) as found in the
unweighted UniFrac-based PCoA was verified by means of hierarchical clustering
with Ward as the linkage method. The stability of the clusters was assessed by using
average Jaccard similarities from the clusterboot function in the R package fpc. Alpha
diversity was estimated using the number of observed ASVs and Chao1 index. Power
calculation was computed with micropower R package (Kelly et al., 2015); we found
that the size of G1 to G3 microbiome groups allowed 90% power to detect an w2 of
0.014.

To find associations between the gut microbiota profiles and host characteristics,
we adopted the sparse partial least square (sPLS) regression analysis as implemented
in the mixOmics package in R, modelling the genus-level relative abundances to the
DXA measures or metabolite classes via multiple regressions (Lê Cao et al., 2009). The
number of components was tuned to 2, retaining all DXA/metabolomic variables
and all taxa in the model. Bacterial abundances were transformed as Centered
Log Ratio (CLR). The associations between genera and DXA/metabolomic matrices
were visualized projecting the variables inside a correlation circle plot (plotVar),
with associated variables projected in the same direction (González et al., 2012).
Hierarchical clustering (cim function) on the sPLS regression model was plotted
with Pearson correlation as distance and complete linkage method. As for diet, the
food groups most contributing to the PCoA ordination space were identified using
the function “envfit” of vegan. Significant differences among the microbiota groups
identified by PCoA in taxon relative abundance as well as in measures of DXA-related
variables, dietary and metabolomics data and other health-related parameters, were
assessed using the Kruskal-Wallis test. Wilcoxon test was adopted as a post-hoc
test to check for differences between each pair of groups, adjusting p values for
multiple testing via Benjamini–Hochberg method. A p value  0.05 was considered
statistically significant.

6.4 Results
To explore microbiome links to abdominal adiposity in the elderly, we profiled the

faecal microbiome and searched for its correlations with DXA-derived parameters
describing fat, in particular visceral and subcutaneous adiposity, and lean mass
composition, in a cohort of 201 elderly subjects (101 females, 100 males; age range,
65-79 years, mean age, 71.2 years) from the Emilia-Romagna region (Italy), in the
context of the NU-AGE FP7 EU project (see Table 6.1 for cohort description). Our
microbiota dataset was composed of 15,167,630 high-quality reads with an average
of 75,460 (± 64,658, SD) 300-bp paired-end reads per sample.
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6.4.1 Taxonomic profile
Overall, the gut microbial profiles showed a high representation of the phylum

Firmicutes (mean relative abundance, 80%), along with Bacteroidetes (8.9%) and Acti-
nobacteria (7.4%). The Ruminococcaceae (37.5%) and Lachnospiraceae (27.6%) families,
both belonging to Firmicutes, were the most represented in the dataset. At the genus
level, Subdoligranulum (12.5%), Faecalibacterium (7.8%) and Bifidobacterium (4.6%) were
identified as the most abundant taxa.
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TABLE 6.1: Demographic, anthropometric, biochemical and other
health-related parameters in a cohort of 201 Italian elders.

Data are shown for the entire cohort as well as for the three microbiome
groups (G1 to G3), as identified by PCoA of unweighted UniFrac dis-
tances (see Figure 6.1 a). Values are expressed as mean (SD), unless
otherwise indicated. P values were determined by Kruskal-Wallis test,
followed by post-hoc Wilcoxon test. HOMA-IR, homeostasis model

assessment of insulin resistance. ns, not significant.

All G1 G2 G3
(no.=201) (no.=147) (no.=20) (no.=34)

Age (years) 71.2 (3.8) 71.2 (3.7) 70.9 (3.8) 71.4 (4) ns

Gender 
(M/F)

101/100 67/80 43/6 20/14 ns

Frailty 
status (Pre-
frail/Non-

frail)

46/155 32/115 4/16 20/24 ns

Weight (kg) 

#§
72.9 (13) 73.5 (13) 64.3 (11.3) 75.8 (13) 0.007

Height (m) 1.64 (0.1) 1.65 (0.1) 1.61 (0.1) 1.63 (0.1) ns

Body Mass 
Index (BMI, 

kg/m2) #§

27.04 (3.7) 27.04 (3.60) 24.68 (3.25) 28.48 (4.18) 0.002

Waist 
circumferen

ce (cm) #§

92.74 
(11.63)

93.12 
(11.63)

84.75 (9.31)
95.79 

(11.05)
0.003

Hip 
circumferen

ce (cm) §^

101.63 
(7.78)

101.43 
(7.75)

97.58 (7.36)
104.75 
(7.04)

0.004

Waist/hip 

ratio #
0.91 (0.09) 0.92 (0.09) 0.86 (0.07) 0.91 (0.08) 0.023

Hand grip 
strength 

(kg)
31.13 (9.69) 31.71 (9.19) 28.59 (7.88)

30.14 
(12.37)

ns

Activities of 
Daily Living 

(ADLs) 
score

5.83 (0.38) 5.84 (0.37) 5.90 (0.31) 5.74 (0.45) ns

Instrumental 
Activities of 
Daily Living 

(IADLs) 
score

6.51 (1.50) 6.37 (1.50) 7.10 (1.41) 6.76 (1.50) ns

p  value 

Anthropometry 

Physical function



Physical 
Activity 

Scale for the 
Elderly 
(PASE) 
score

117.71 (71)
118.22 
(51.57)

125.03 
(45.69)

110.99 
(48.49)

ns

c-Reactive 
Protein 

(CRP, log 
odds)

0.20 (0.97) 0.23 (0.99) 0.08 (1.05) 0.12 (0.83) ns

Pentraxin-3 
(log odds)

0.11 (1.03) 0.09 (1.07) 0.45 (0.69) 0.07 (1.00) ns

Adiponectin 

(log odds) #§
0.19 (0.91) 0.12 (0.87) 0.89 (0.66) 0.09 (1.03) 0.001

Leptin (log 
odds)

-0.03 (0.92) -0.07 (0.92) -0.22 (0.91) 0.24 (0.89) ns

Ghrelin (log 
odds)

-0.29 (0.94) -0.35 (0.96) 0.01 (0.78) -0.19 (0.94) ns

Insulin 
(mcU/mL)

9.65 (6.88) 9.91 (7.28) 7.45 (4.96) 9.79 (5.92) ns

Glucose 
(mmol/L)

5.77 (0.79) 5.80 (0.77) 5.61 (0.98) 5.74 (0.75) ns

HOMA-IR 2.54 (1.98) 2.64 (2.13) 1.83 (1.19) 2.53 (1.60) ns

Total 
cholesterol 

(g/L)
1.98 (0.33) 1.96 (0.33) 2.02 (0.37) 2.02 (0.34) ns

High-
Density 

Lipoprotein 
(HDL, g/L)

0.56 (0.15) 0.56 (0.16) 0.63 (0.15) 0.54 (0.14) ns

Low-
Density 

Lipoprotein 
(LDL, g/L)

1.21 (0.28) 1.19 (0.28) 1.22 (0.29) 1.27 (0.28) ns

Triglyceride
s (g/L)

1.04 (0.41) 1.06 (0.42) 0.88 (0.36) 1.04 (0.35) ns

Total 
cholesterol/
HDL ratio

3.72 (1.04) 3.74 (1.07) 3.31 (0.79) 3.88 (0.98) ns

Inflammation

Glucose metabolism

Lipid metabolism
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Systolic 
pressure 
(mmHg)

133.25 
(16.36)

133.65 
(16.43)

129.68 
(15.98)

133.64 
(16.51)

ns

Diastolic 
pressure 

(mmHg) #

73.43 (9.23) 74.43 (9.43) 69.32 (7.71) 71.51 (8.35) 0.014

Heart rate 
(bpm)

68.77 (9.59) 68.70 (9.86) 69.78 (8.24)
68.48 

(10.14)
ns

Homocystei
ne (μmol/L)

15.06 (8.51) 14.37 (3.57) 14.36 (3.55)
18.44 

(19.01)
ns

Albumin 
(g/L)

43.84 (2.61) 44.05 (2.49) 42.73 (3.05) 43.60 (2.71) ns

Creatinine 

(µmol/L) #

77.35 
(18.21)

79.09 
(17.89)

69.45 
(16.98)

74.56 
(19.21)

0.022

Uric acid 

(mg/24 h) #§

312.07 
(69.99)

320 .09 
(66.57)

254.83 
(56.77)

311.51 
(76.98)

0.000

Alkaline 
phosphatase 

(ALP, 
μkat/L)

1.24 (0.29) 1.23 (0.30) 1.21 (0.25) 1.30 (0.25) ns

Gamma-
glutamyl 

transpeptida
se (GGT, 
μkat/L)

0.43 (0.24) 0.42 (0.23) 0.44 (0.35) 0.43 (0.21) ns

Aspartate 
aminotransf
erase (AST, 

μkat/L)

0.43 (0.10) 0.44 (0.11) 0.44 (0.09) 0.42 (0.08) ns

Alanine 
transaminas

e (ALT, 
μkat/L)

0.57 (0.15) 0.58 (0.16) 0.57 (0.13) 0.55 (0.11) ns

Cardiovascular function

Renal function

Liver function

Cognitive function
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Cambridge 
Mental 

Disorders of 
the Elderly 

Examination 
(CAMDEX
), subjective 

memory 
score

3.83 (1.96) 3.86 (1.99) 3.85 (2.35) 3.68 (1.61) ns

Geriatric 
Depression 

Scale 
(GDS) 
score

2.34 (2.37) 2.19 (2.13) 2.30 (2.54) 3.00 (3.10) ns

Mini Mental 
State 

Examination 
(MMSE) 

score

28.44 (1.38) 28.38 (1.39) 28.90 (1.12) 28.41 (1.48) ns

Post-hoc Wilcoxon test: #G1 vs G2, p value < 0.05; §G2 vs G3, p value < 0.05; ^G1 vs G3, p value < 0.05.
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6.4.2 Beta-diversity of NU-AGE cohort
When examining the beta diversity of microbial communities by PCoA of un-

weighted UniFrac distances, we identified three distinct groups of individuals, i.e.,
G1 to G3 (Figure 6.1 a). Within a range of microbiota profiles, these groups represent
clusters of subjects who have a significantly different microbiota structure from each
other, as demonstrated by the permutation multivariate analysis of variance (permu-
tational test with pseudo-F ratio, R2 = 0.25, p value = 0.0001). The separation of the
three groups was further verified by hierarchical clustering with Ward as the linkage
method. The stability of the clusters was supported by average Jaccard similarities
from 1000 bootstrapping of 0.96 (G1), 0.95 (G2) and 0.92 (G3). The groupings were
also evaluated by weighted and generalized UniFrac metrics, by verifying rejection
of the null hypothesis (i.e., no difference between the three pre-defined clusters) (p
value = 0.0001).

6.4.3 Alpha diversity
The three groups were also found to differ in alpha diversity, with G2 and G3

samples showing the highest values, according to the number of observed Amplicon
Sequence Variants (ASVs) and the Chao1 index (Kruskal-Wallis test, p value = 0.05;
post-hoc Wilcoxon test, p value = 0.045 for both G1 vs G2, and G1 vs G3). Such values
were associated with the microbiome space, meaning that the sample coordinates on
the PCoA plot of Figure 6.1 a also mirrored the differences in diversity among the
three groups (linear regression analysis, p value = 0.02 for the number of observed
ASVs, and p value = 0.01 for Chao1 index). In particular, we observed a gradual
increase in diversity along PCo1, from the lowest values in G1 microbiomes to the
highest values in the samples belonging to the G2-G3 clusters.

6.4.4 Taxonomic profile at family level
As mentioned above for the entire cohort, the faecal microbiota of all groups was

largely dominated by only two families, Ruminococcaceae and Lachnospiraceae, even if
with different proportions (Figure 6.1 b). The relative abundance of Ruminococcaceae
was in fact significantly greater in G3 compared to G1, while that of Lachnospiraceae
was lower in G2 compared to G1 (Wilcoxon test, p value  0.01). The three groups
were also found to differ in subdominant families. In particular, G2 showed an
enrichment in Christensenellaceae and Rikenellaceae compared to G1, as well as in
Porphyromonadaceae compared to G3 (p value  0.05).

6.4.5 Cohort description
It is important to note that the stratification in the three groups was independent of

gender and frailty (pairwise Fisher’s exact test, p value > 0.05) as well as age (Kruskal-
Wallis test, p value > 0.05) (see Table 6.1 and Figure 6.2). Moreover, as shown in Table
6.1, the three groups were similar for the majority of the measured parameters related
to physical function, glucose and lipid metabolism, liver and cognitive function
(p value > 0.05). However, the elderly subjects in G2 group compared to G1 and
G3 showed significantly lower values for anthropometric measures (i.e., BMI, waist
and hip circumference and waist to hip ratio), cardiovascular risk factors (diastolic
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FIGURE 6.1: Gut microbiome profiles in Italian elders.
a. Principal Coordinates Analysis (PCoA) plot based on the unweighted
UniFrac distances of the faecal microbiota profiles of 201 elderly Italians.
Three groups with a significantly different microbial community struc-
ture were identified (permutational test with pseudo-F ratio, p value =
0.0001). We refer to them as G1, G2, G3 based on their self-organization
in the PCoA space (i.e., left, right upper and lower right quadrant, respec-
tively). The pie charts in the plot summarize the family-level relative
abundances in the three groups, considering only the taxa present in
at least 20% of the samples (i.e., 40 individuals) with � 0.1% relative
abundance. The arrow at the bottom of the PCoA plot represents the
alpha diversity gradient, estimated as number of observed ASVs. b.
Box-and-whisker plots of relative abundances of families differentially
represented among the three microbiome groups. **,* respectively p

value < 0.01 and < 0.05, Wilcoxon test.
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FIGURE 6.2: Age, gender and frailty status distribution in the three
microbiome groups (G1 to G3).

Unweighted UniFrac-based Principal Coordinates Analysis showing
the age (a), gender (b), and frailty.

pressure), renal function markers (creatinine and uric acid) and higher values for
adiponectin (an adiposity-related cytokine with anti-inflammatory effects) (post-hoc
Wilcoxon test, p value < 0.05) (Table 6.1). The number of subjects taking medicines
was similar for antihypertensive drugs (G1: 77.5%, G2: 80.0% and G3: 73.5%) in the
three groups, while a higher number of elderly in the G3 group had taken statins
(G1: 17.0%, G2: 15.0% and G3: 26.5%), and no elderly in the G2 group had taken
anti-diabetic drugs (G1: 8.8%, G2: 0% and G3: 5.9%).

6.4.6 Association between Genera and DXA variables
We then explored the associations between the three microbiome profiles and the

DXA-derived body composition variables, with a specific focus on abdominal fat.
The elderly in G2 group showed significantly lower levels of VAT than G1 and G3
subjects (p value = 0.003) while no differences were observed with respect to SAT (p
value = 0.2) (Figure 6.2 a). Accordingly, the VAT/SAT ratio was significantly lower in
G2 compared to G1 and G3 subjects (p value < 0.05) (Figure 6.2 a). Consistent results
were also observed for the other DXA variables related to adiposity. Correlations
between DXA metadata and relative abundances of genus-level taxa were then
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specifically sought by means of sPLS regression (Figure 6.2 b and 6.2 c). Genera
belonging to Christensenellaceae (Christensenellaceae R7 group), Porphyromonadaceae
(Parabacteroides) and Rikenellaceae (Alistipes), i.e., the families found to be enriched in
the faecal microbiota of G2 subjects, were inversely associated with a number of DXA
variables, including VAT. On the other hand, members of the Lachnospiraceae family
(Eubacterium rectale group, Fusicatenibacter and Blautia), whose proportions were far
lower in the G2 group, were positively correlated with the vast majority of the
considered DXA measures, including especially those related to fat mass distribution
(i.e., whole body fat mass (FM), whole body fat mass index (FMI), android fat mass
to android lean mass ratio (AF/AL), android fat mass to gynoid fat mass ratio
(AF/GF) and VAT). Discordant data were instead observed for Ruminococcaceae, an
overrepresented family in the G3 group, with three genera (Ruminococcaceae UCG 014,
002, 005) negatively and three others (Faecalibacterium, Subdoligranulum positively
correlated with most of the adiposity-related DXA variables. Finally, it should be
noted that the lean mass parameter SMI (skeletal mass index, i.e., the appendicular
lean mass to total body mass ratio) differed from all the others, both for the position
in the correlation circle plot and for the direction of correlations. In particular, a
direct correlation was observed for Christensenellaceae R7 group, as well as for three
Ruminococcaceae genera (Ruminococcaceae UCG 014, 002, 005). On the other hand,
consistent with the observations above, Ruminococcus 2, Subdoligranulum and the
Lachnospiraceae members Fusicatenibacter and Blautia negatively correlated with SMI.

6.4.7 Diet
Seven-day food records were used to assess dietary intake. The results were

normalized to the body weight of the individuals, facilitating a comparison among
the three microbiome groups. The dietary intakes of nutrients for G1, G2 and G3
are shown in Table 6.2. No significant differences were found for the total intake
of energy, saturated and unsaturated fatty acids, protein and fibre, and also for the
majority of vitamins and calcium, as normalized by body weight. Interestingly, the
elderly belonging to the G2 group showed a significantly higher carbohydrate intake
(Kruskal-Wallis test, p value = 0.025; post-hoc Wilcoxon test, p value < 0.05 for G1 vs
G2 and G2 vs G3) and a trend to higher levels of water (Kruskal-Wallis test, p value
= 0.055), b-carotene (p value = 0.052) and vitamin C (p value = 0.054). Moreover, by
comparing the average daily intake (normalized to body weight) of different food
groups among the three microbiome clusters, the elderly in the G2 group showed
a significantly lower intake of potatoes than G1 (0.10 g/day vs 0.27 g/day for G1,
post-hoc Wilcoxon test, p value < 0.05) and a trend to higher intake of fruit plus
vegetables when compared with G3 (9.41 g/day vs 6.20 g/day for G3; Wilcoxon
test, p value = 0.058). A superimposition analysis of the average daily intakes of
food groups on the PCoA plot of Figure 6.1 a confirmed an association between the
microbiota profile of the G2 group and a lower consumption of potatoes along with
cheese (permutational correlation test, p value  0.025).
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FIGURE 6.3: Associations between the elderly gut microbiome and
body composition.

a. Box-and-whisker plots of visceral adipose tissue (VAT, g) and subcu-
taneous adipose tissue (SAT, g) measures, and their ratio, for the three
microbiome groups identified by unweighted UniFrac-based PCoA of
Figure 6.1a (i.e., G1 to G3). **,* respectively p value < 0.01 and 0.05,
Wilcoxon test. b. Sparse partial least square (sPLS) regression of micro-
bial abundances at the genus level and DXA variables. Correlation circle
plot for the first two sPLS components with correlations depicted for
< -0.2 and > 0.2. The two circumferences show correlation coefficient
radii at 0.5 and 1.0. The farther from the centre a bacterial genus or
DXA measure is, the greater the association with the component. Vari-
ables projected in the same direction of the plot are positively correlated,
while variables in diametrically opposite position are negatively corre-
lated. Variables located perpendicular to each other are not correlated.
The variance explained by the genera is 10% on the first component
and 5% on the second component, while the variance explained by the
DXA variables is 37% on the first component and 42% on the second
component. c. Hierarchical clustering obtained with complete linkage
method and Pearson correlation as distance, was performed on the sPLS
regression model retaining the variables shown in the correlation circle
plot. For each genus, family level assignment is also shown (see colour
legend). The abbreviated names of the DXA variables correspond to
whole body fat mass (FM), whole body fat mass index (FMI), whole
body fat mass to lean mass ratio (FM/LM), whole body lean mass (LM),
appendicular lean mass to total body mass ratio (SMI), whole body
bone mineral content (BMC), whole body bone mineral density (BMD),
android to gynoid fat mass ratio (AF/GF), android fat mass to lean mass
ratio (AF/AL), visceral adipose tissue (VAT), and subcutaneous adipose

tissue (SAT).
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TABLE 6.2: Average daily intake of energy and nutrients.
All values were normalized to body weight (kg). Data are shown for
the entire cohort as well as for the three microbiome groups (G1 to G3),
as identified by PCoA of unweighted UniFrac distances (see Figure
1a). Values are expressed as mean (SD). P values were determined
by Kruskal-Wallis test, followed by post-hoc Wilcoxon test. MUFA,
monounsaturated fatty acids; PUFA, polyunsaturated fatty acids. ns,

not significant.

All G1 G2 G3
(no.=201) (no.=147) (no.=20) (no.=34)

Total energy 
(kcal)

24.44 (6.14) 24.25 (5.94) 27.41 (7.54) 23.52 (5.75) ns

Total 
carbohydrat
es (g)#§

3.15 (0.95) 3.11 (0.87) 3.76 (1.23) 2.99 (0.95) 0.025

Total fats 
(g)

0.87 (0.24) 0.87 (0.24) 0.90 (0.26) 0.87 (0.25) ns

Total 
saturated 
fatty acids 
(g)

0.27 (0.08) 0.27 (0.08) 0.28 (0.08) 0.27 (0.08) ns

Total 
MUFA (g)

0.39 (0.12) 0.38 (0.12) 0.43 (0.15) 0.39 (0.10) ns

Total PUFA 
(g)

0.12 (0.05) 0.12 (0.05) 0.12 (0.05) 0.12 (0.06) ns

omega 3 
PUFA (g)

0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) ns

omega 6 
PUFA (g)

0.07 (0.04) 0.07 (0.04) 0.08 (0.03) 0.08 (0.05) ns

Total 
proteins (g)

0.95 (0.22) 0.95 (0.22) 1.00 (0.24) 0.90 (0.21) ns

Animal 
proteins (g)

0.46 (0.14) 0.46 (0.15) 0.45 (0.13) 0.44 (0.13) ns

Vegetal 
proteins (g)

0.35 (0.14) 0.35 (0.15) 0.39 (0.16) 0.32 (0.11) ns

Total dietary 
fiber (g)

0.31 (0.15) 0.31 (0.15) 0.34 (0.16) 0.28 (0.14) ns

1.43
(0.55)

Cholesterol 
(g)

2.89 (0.97) 2.91 (0.99) 2.96 (1.10) 2.77 (0.84) ns

Water (g) 26.37 (9.41) 0.23 (0.99)
32.45 

(12.19)
25.06 (7.93) 0.055

Biotin (mg) 0.25 (0.16) 0.26 (0.16) 0.23 (0.08) 0.24 (0.17) ns
Folic acid 
(µg)

3.97 (1.76) 3.99 (1.68) 4.84 (2.53) 3.40 (1.36) ns

b-carotene 
(µg)

25.10 
(19.27)

24.72 
(19.38)

34.41 
(24.41)

21.26 
(13.30)

0.052

Vitamin B1 
(mg)

0.01 (0.01) 0.01 (0.01) 0.02 (0.01) 0.01 (0.01) ns

p  value 

Starch (g) 1.42 (0.56) 1.64 (0.61) 1.31 (0.45) ns



Vitamin B2 
(mg) 

0.02 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) ns

Vitamin B3 
(mg)

0.28 (0.15) 0.27 (0.14) 0.34 (0.23) 0.26 (0.14) ns

Vitamin B5 
(mg)

0.03 (0.01) 0.03 (0.01) 0.04 (0.02) 0.03 (0.01) ns

Vitamin B6 
(mg)

0.02 (0.01) 0.02 (0.01) 0.03 (0.01) 0.02 (0.01) ns

Vitamin 
B12 (µg)

0.06 (0.06) 0.06 (0.06) 0.05 (0.06) 0.06 (0.08) ns

Vitamin A 
(µg)

13.82 
(10.23)

13.80 
(10.19)

15.73 
(10.61)

12.77 
(10.32)

ns

Vitamin C 
(mg)

1.83 (1.16) 1.86 (1.10) 2.34 (1.82) 1.40 (0.76) 0.054

Vitamin D 
(µg)

0.03 (0.03) 0.03 (0.03) 0.04 (0.04) 0.03 (0.02) ns

Vitamin E 
(mg)

0.13 (0.05) 0.13 (0.05) 0.15 (0.05) 0.13 (0.05) ns

Calcium 
(mg)

10.44 (3.85) 10.34 (3.89) 11.45 (3.97) 10.26 (3.61) ns

Post-hoc Wilcoxon test: #G1 vs G2, p value < 0.05; §G2 vs G3, p value < 0.05.
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6.4.8 Metabolomics data
Finally, serum metabolomics data were analysed in order to find out metabolites

that discriminated gut microbiome structures. The G2 group was characterized by
significantly lower circulating levels of some serum metabolites, including mineral
(sulphur), BCAAs (isoleucine, leucine and valine), fatty acids (myristic acid - C14:0)
and methyl ester fatty acids (methyl-hexadecenoic acid, and tetramethyl-dihydroxy-
octadecahexaenoic acid) (post-hoc Wilcoxon test for G2 vs G1 and/or G3, p value
leq 0.05), and a tendency to lower levels of primary bile acid, chenodeoxycholic acid
(p value > 0.05). On the other hand, methyl-heptadecadienoic acid was found to be
significantly higher in G2 compared to G3, but also in G1 compared to G3 (p value leq
0.05). Based on a sPLS regression analysis of relative abundances at the genus level
and metabolites (Fig. 6.4), genera belonging to the families identified as signatures of
the G2 group, i.e., Christensenellaceae R7 group, Alistipes and Parabacteroides, inversely
correlated with BCAAs, while some Lachnospiraceae and Ruminococcaceae members,
distinctive of the G1 and G3 profiles, showed opposite correlations. Similarly, for
fatty acids, we observed negative correlations between Christensenellaceae R7 group
or Alistipes and the majority of systemic fatty acids retained in the sPLS regression
model. In contrast, mostly positive correlations were found with Lachnospiraceae taxa,
along with Bifidobacterium, Streptococcus, Ruminococcus 1 and Erysipelotrichaceae UCG
003.

6.4.9 Discussion
In the present study, we identified three significantly different groups (G1 to G3)

of elderly Italian individuals harbouring distinct gut microbiome structures, which
correlate with body composition and other health-related parameters. In particular,
the G1 group was characterized by higher abundance of Lachnospiraceae, the G2 group
was enriched in Christensenellaceae, Porphyromonadaceae and Rikenellaceae, and G3 in
Ruminococcaceae. The three profiles were also characterized by different biodiversity,
with G2 and G3 showing the highest level followed by G1. When we explored the
connections between the gut microbiome and body composition, we found that the
G2 microbiome cluster had the lowest median value of VAT, a specific measure of
abdominal obesity.

Unlike a recent study in a Chinese adult population, which reported a sex-specific
association between the gut microbiome layout and fat distribution, using DXA data
for android and gynoid fat, the microbial communities defining the three elderly
groups in our work are neither sex-related nor age-driven (Min et al., 2019). However,
it should be noted that our dataset is constrained to old age and characterized by
a lower range of android/gynoid to whole fat mass ratio (the lowest and highest
value in our cohort, 4.1 and 21.9, respectively; in the Chinese cohort, 6.6 and 26.6,
respectively).

In line with the available literature, the microbial footprints of the G2 group (i.e.,
the greater proportion of Christensenellaceae, Porphyromonadaceae and Rikenellaceae)
could contribute to a reduced amount of visceral fat mass (Beaumont et al., 2016;
Tamura et al., 2017). Indeed, the family Christensenellaceae has been consistently
reported as negatively related to visceral fat mass and indicated as a marker of lean
phenotype, (Beaumont et al., 2016; Tamura et al., 2017; Goodrich et al., 2014) as
also shown by our sPLS regression. On the other hand, Porphyromonadaceae and
Rikenellaceae members, both belonging to the Bacteroidetes phylum, could play a role
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FIGURE 6.4: Associations between the elderly gut microbiome and
the serum metabolome.

Sparse partial least square (sPLS) regression of microbial abundances at
the genus level and metabolites (a-b, amino acids; c-d, fatty acids; e-f,
minerals). Left, Correlation circle plot for the first two sPLS components.
The two circumferences show correlation coefficient radii at 0.5 and
1.0. The farther from the centre a bacterial genus or metabolite is, the
greater the association with the component. Variables projected in the
same direction of the plot are positively correlated, while variables in
diametrically opposite position are negatively correlated. Variables
located perpendicular to each other are not correlated. The variance
explained by the genera is 10% on the first component and 5% on the
second component. The variance explained by the metabolites is as
follows: amino acids, 49% on component 1 and 30% on component 2;
fatty acids, 34% on component 1 and 9% on component 2; minerals, 11%
on component 1 and 7% on component 2. Right, Hierarchical clustering
obtained with complete linkage method and Pearson correlation as
distance, was performed on the sPLS regression model retaining the
variables shown in the correlation circle plot. For each genus, family

level assignment is also shown (see colour legend).
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as adiposity modulators through the production of the SCFAs acetate and propionate
(Lu et al., 2016). Specifically, it has been shown that acetate contributes to adiposity
reduction in mice, by upregulating the genes involved in fatty acid oxidation in the
liver (Kondo et al., 2009). Furthermore, the abundances of Christensenellaceae and
Rikenellaceae have recently been found to be highly correlated with each other and
significantly higher in lean than obese subjects (Oki et al., 2016).

Conversely, the family Lachnospiraceae, found to be distinctive of the low-diverse,
higher VAT-related microbiome profile G1, has been connected to dietary lipid
metabolism, and genera belonging to this family, e.g. Blautia, have been associ-
ated with higher amounts of VAT, (Beaumont et al., 2016; Just et al., 2018; Ozato et al.,
2019), as in our correlation analysis. On the other hand, for members of Ruminococ-
caceae (marker of the high-diverse but VAT-related G3 group) we found conflicting
trends of association with visceral fat, which are however generally consistent with
what is available in the literature. For example, Faecalibacterium, which in our cohort
positively correlated with VAT, has sometimes been found at increased levels in obese
subjects, despite the known anti-inflammatory and immunomodulating properties,
probably due to its ability to increase energy harvesting from otherwise unabsorbable
carbohydrates (Balamurugan et al., 2010; Del Chierico et al., 2018).

In contrast, the genera Ruminococcaceae UCG 014 and Ruminococcaceae UCG 005
have both been negatively associated with adiposity (Wutthi-in et al., 2020; Zhao et al.,
2017), in line with our sPLS regression. It is also worth noting that Subdoligranulum,
which in our dataset showed positive associations with all DXA-related variables
considered except SMI (a lean mass parameter), has recently been identified as one
of the few key species associated with both faecal and blood metabolic profiles,
therefore likely to play a major role in the gut-systemic metabolic interplay (Visconti
et al., 2019).

Interestingly, while the entire cohort is composed of apparently healthy elderly
subjects with almost all risk parameters in their normal range, the elderly in the G2
group, compared to G1 and G3, have a significantly lower level of several anthro-
pometric, metabolic, cardiovascular and renal risk factors, such as BMI, waist and
hip circumference and waist to hip ratio, diastolic pressure, creatinine and uric acid,
and higher levels of adiponectin, an adipose-related cytokine with anti-inflammatory
effects. These findings are of particular interest, also because Christensenellaceae,
specifically enriched in G2 subjects, are considered an important component of the
gut microbiome of centenarians and semi-supercentenarians, and of a healthier pro-
file in general, thus potentially representing a marker of healthy ageing and longevity
since the early old age (60-70 years) (Biagi et al., 2016; Waters and Ley, 2019; Le Roy
et al., 2019).

Furthermore, compared to G1 and G3 groups, the elderly in G2 showed lower
serum levels of BCAAs, which are known to be associated with insulin-deficient and
-resistant disorders and have already been shown to correlate positively with VAT
(Holeček, 2018; Rietman et al., 2016; Lackey et al., 2013).

The G2 group was also characterized by lower circulating levels of methyl ester
fatty acids and myristic acid, for which an inverse association with HDL cholesterol
levels was demonstrated in an Italian population following a Mediterranean diet
(Noto et al., 2016). Although cholesterol levels are not discrete in the three groups,
the mean values are lower for G2. As expected, both fatty acid and BCAA levels
were found to inversely correlate with genera belonging to the families identified
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as signatures of the G2 group, i.e., Christensenellaceae R7 group, Alistipes and Parabac-
teroides, while positively with some Lachnospiraceae and Ruminococcaceae members,
distinctive of the G1 and G3 profiles. It is also worth noting that the elderly in the G2
group showed a tendency to lower levels of chenodeoxycholic acid, whose impact on
cholesterol metabolism is not yet conclusive but could be unfavorable (Porez et al.,
2012). This could suggest a greater capacity of production of secondary bile acids
by the G2-related gut microbiota. Although this ability must be verified by appro-
priate methods, including metagenomics, metatranscriptomics and, not least, stool
metabolomics, previous reports have shown that G2 discriminating taxa, especially
Bacteroidetes members, are capable of deconjugation and metabolism of primary bile
acids into secondary ones (Hirano and Masuda, 1982; Ishii et al., 2014; Gu et al., 2017;
Yao et al., 2018). Further strengthening this hypothesis, a strong positive correlation
has recently been found between secondary bile acid metabolism and Christensenel-
laceae, another distinctive taxon of the G2 profile (Alemán et al., 2018). Based on a
search in the PFAM and NCBI database, Christensenellaceae species actually exhibit
both bile salt hydrolase (EC 3.5.1.24) and bile-acid 7-alpha-dehydratase (EC 4.2.1.106)
activity, participating in the 7-dehydroxylation process associated with bile acid
degradation (El-Gebali et al., 2019; Sayers et al., 2010).

Consistent with the above assumptions of better metabolic health for the elderly
in the G2 group, their dietary pattern was also healthier, with lower consumption of
potatoes and a trend to higher average daily intake of fruit and vegetables than the
other groups. Interestingly, it has been demonstrated that increasing the consumption
of fruit and vegetables and reducing the intake of potatoes can reduce the risk of
ischemic stroke (Hansen et al., 2020). Furthermore, the G2-related microbiota profile
was found to be associated with a lower intake of cheese, another well-known product
to increase cardiovascular risk through adiposity and lipid pathways (Trichia et al.,
2020).

In summary, here we advance the hypothesis that distinctive high-diverse struc-
tures of the gut microbiome of the elderly may contribute to a reduced amount
of VAT. In particular, our results suggest the relevance of high amounts of Chris-
tensenellaceae, Porphyromonadaceae and Rikenellaceae as protective of cardiovascular
and metabolic diseases related to visceral fat and, thus, potential markers of healthy
ageing and, possibly, longevity. This hypothesis is supported by a healthier dietary
intake and metabolic profile, and overall better health for the elderly harbouring
this microbial layout. We can therefore argue that favourable compositions of the
gut microbiota of older people could contribute to reduce metaflammation, a spe-
cific metabolism-induced inflammation, mostly overlapping with inflammaging,
triggering obesity-induced insulin resistance and type 2 diabetes (Franceschi et al.,
2018).

Further studies in larger cohorts, possibly from different geographical locations,
via shotgun metagenomics combined with metabolomics, will be needed to confirm
our findings and provide insights on the mechanisms underlying the relationship
between gut microbes and VAT, and their role in modulating adiposity and promoting
a healthy life. Such mechanisms should possibly be validated in an animal model.
Similarly, additional work, possibly also through culturomics approaches, is required
to better understand the dynamics and ecological rules within the gut microbiota
that lead to the establishment of different networks. It is reasonable to expect that
in the near future the targeted manipulation of the elderly intestinal microbiota,
the feasibility of which has been recently demonstrated in the context of NU-AGE
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(Ghosh et al., 2020), will become an integral component of current strategies aimed
at contrasting age-related deterioration in body composition and multiple bodily
functions, thus supporting healthy ageing.
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Chapter 7

Longevity and antibiotic resistance.
The human gut resistome up to
extreme longevity

7.1 Abstract
Antibiotic resistance (AR) is indisputably a major health threat, which has drawn

much attention in recent years. In particular, the gut microbiome has been shown
to act as a pool of AR genes, potentially available to be transferred to opportunistic
pathogens. Herein, we investigated for the first time, changes in the human gut
resistome across ageing, up to extreme longevity, including an exceptional cohort
of individuals aged till 109 years. According to our findings, some AR genes are
similarly represented in all subjects regardless of age, potentially forming part of
the core resistome. Interestingly, ageing was found to be associated with an overall
higher burden of AR genes, including especially proteobacterial genes encoding
multidrug efflux pumps. Our results warn of possible health implications and pave
the way for further investigations aimed at containing AR accumulation, with the
ultimate goal of promoting healthy ageing.
Keywords: ageing; extreme longevity; metagenome; microbiome; antibiotic resis-
tance, resistome

7.2 Introduction
Infection rates with antibiotic-resistant microorganisms continue to rise world-

wide (Hashiguchi et al., 2019). In Italy, 2015 data showed that over 30% of infec-
tions were caused by bacteria resistant to antimicrobial treatment for eight priority
antibiotic-bacterium combinations, with more than 10,000 of 33,000 attributable
deaths in Europe per year (Cassini et al., 2019). Antibiotic resistance (AR) is therefore
considered a critical public health threat (OECD, 2018). Antibiotics use and abuse are
a major cause of spread and increase in AR (WHO, 2014), together with their routine
usage in the food industry, for both the veterinary sector and agriculture, as they are
essential in controlling the state of infestation (Hendriksen et al., 2019; Munk et al.,
2018).

An important evidence of the impact of antibiotic misuse/abuse and environ-
mental exposure on the development of AR was provided by the comparison of the
gut resistome (i.e., the set of genes/proteins conferring AR in the gut microbiome)
of Western populations with that of traditional communities (Rampelli et al., 2015;
Clemente et al., 2015b). Interestingly, while some AR genes are shared among all
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sampled populations regardless of lifestyle, natural environments being the first un-
questionable reservoir of AR (Allen et al., 2010), the Western-type resistome pattern
supports a “farm to fork” aetiology of resistance transmission. In other words, the
habitual use of antibiotics in food production and medicine in the Western world
strongly affects the AR profiles of the gut microbiome, favouring the emergence of
new resistances (not limited to the antibiotics to which we are exposed) and boosting
their expansion through horizontal gene transfer (Rampelli et al., 2015; Forslund
et al., 2014; Huddleston, 2014). This has profound implications for health, because
the acquisition of AR genes by the gut microbiome may also involve pathobionts,
i.e., minor microbiome components with pathogenic potential, which can cause or
promote disease under certain circumstances (Escudeiro et al., 2019; Francino, 2016;
Jochum and Stecher, 2020).

The relevance of antibiotic-resistant gut bacteria as an immediate and long-lasting
threat to human health is well recognized, especially in compromised individuals
such as preterm infants receiving early-life antibiotics (Gasparrini et al., 2019), elderly
people with a debilitated immune system (Araos et al., 2019) and patients with
cancer or autoimmune disorders (D’Amico et al., 2019). However, little information
is available to date on the variation of the human intestinal resistome along healthy
ageing.

In an attempt to bridge this gap, here we profiled the human gut resistome of an
exceptional cohort of semi-supercentenarians, i.e., extremely long-lived individuals
over the age of 105, compared to young adults, elderly and centenarians. Specifically,
we characterized type and target of resistances, and related bacterial taxa. In addition
to providing a fine characterization of antibiotic resistance within the gut microbiome
at distinct times of life, our study emphasizes a progressive age-related burden in
AR genes assigned to potential pathobionts, possibly as a result of life-long exposure
to antibiotics.

7.3 Materials and Methods

7.3.1 Subjects and study groups
Herein, we analysed shotgun metagenomics reads of 62 faecal samples from

Italian subjects, generated in (Rampelli et al., 2020).All subjects were enrolled from
the same geographic area (Emilia Romagna region, Italy). The subjects’ age ranged
from 22 to 109 years, with an average age of 85 years. In line with previous studies
(Biagi et al., 2016; Rampelli et al., 2020), subjects were stratified into four age groups:
semi-supercentenarians over 105 (group S: 23 subjects), centenarians aged 99 to 105
(group C: 15 subjects), elderly individuals aged 65 to 98 (group E: 13 subjects), and
younger adults aged 22 to 48 (group Y: 11 subjects).

7.3.2 Quality assessment: reads pre-processing, quality filtering
and contaminant removal

For DNA extraction and library preparation, please refer to Rampelli et al. (2020)
(Rampelli et al., 2020). Sequencing data is available at the SRA repository (https:
//www.ncbi.nlm.nih.gov/bioproject/PRJNA553191). Reads were in silico depleted
of host DNA, using the NCBI Homo sapiens assembly19 as a reference genome,
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identified with bmtagger software (ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/
bmtagger) and removed with BBMap tool (http://sourceforge.net/projects/bbmap/).
Raw reads were processed with Trimmomatic (Bolger, Lohse, and Usadel, 2014) for
adapter removal (Nextera adapters) and quality trimming. Reads were scanned
by evaluating the sequences over a 4-base sliding window and setting the average
quality score below Q20 for trimming. We set Trimmomatic parameters enabling
reads dropping if their length was less than 35 bp. Moreover, PCR duplicates were
estimated and removed with the Picard tool EstimatedLibraryComplexity (version
used by the International Human Microbiome Standards project and described in
their standard operating procedures). The quality of the reads was inspected before
and after the pre-processing steps (FastQC) (Andrews, 2010).

7.3.3 Bioinformatics and statistical analysis
The taxonomic classification of high-quality reads was performed with Kaiju

(Menzel, Ng, and Krogh, 2016) (version 1.6.3, greedy algorithm) using as a reference
NCBI RefSeq (March 2019 release). On the other hand, we identified resistance
proteins in our dataset with Diamond (Buchfink, Xie, and Huson, 2015), using
the taxonomically assigned reads and the Deeparg dataset (Arango-Argoty et al.,
2018) (14,957 entries) as a reference, which contains Swissprot, Trembl, (Bateman
et al., 2017), CARD (Jia et al., 2017) and ARDB (Liu and Pop, 2009). Antibiotic-
resistant protein families were curated from Antibiotic Resistance Ontology (ARO)
obtained by CARD database. The member of each read couple showing at least
35% sequence identity and 80% read coverage against hit sequence and e-value <
0.001, was annotated as the respective mapped protein in the Deeparg dataset. A
table of counts was generated, summarizing the read counts per million (CPM) for
each identified protein, normalized by sequencing depth. Similarly, the taxa-level
CPM were computed. The taxonomic classification of reads assigned to resistant
determinants was summarized at phylum, family, genus and species level, retaining
only taxa with a relative abundance of at least 0.1% in 20% of the dataset. The Kruskal-
Wallis test followed by Wilcoxon test was adopted to test for differences in relative
abundance between the four age groups. Bonferroni correction for multiple testing
was applied. A corrected p value  0.05 was considered statistically significant.

The PCoAs were obtained in R (R Core Team, 2013) with the function cmdscale
(vegan package) (Oksanen et al., 2018) and the ordination was computed with the
Bray-Curtis dissimilarities. Age group-specific antibiotic resistance determinants
(ARDs) were identified by Wald test as implemented in the DEseq2 package (Love,
Huber, and Anders, 2014) in R, on the AR counts mapped per sample. Hits with
less than 10 reads across the dataset were removed from the final table. Differences
were assessed for each pair of groups, considering as differentially abundant proteins
with log2 fold change  -2 and � 2 and a p value threshold of 0.05 corrected with
Bonferroni. The hierarchical clustering, showing the ARD relative abundances in the
samples (rlog function in DEseq2), was computed with the Ward linkage method
over the Euclidean distances (pheatmap package) (Kolde, 2019).

Correlation analysis was performed between ARDs and the taxonomic profile of
the gut resistome at the species level, retaining only species with a minimum relative
abundance of 0.1% in 20% of the dataset. The table of correlations, obtained with
Spearman method (hmisc package) (Harrell Jr, Charles Dupont, and others., 2019),
retaining only associations with rho greater than 0.8 and adjusted p values of 0.001



86 Chapter 7. Longevity and antibiotic

(Bonferroni method), was visualized as a network (R package igraph, gephi v. 0.9.2)
(Bastian, Heymann, and Jacomy, 2009).

7.4 Results
We previously identified considerable taxonomic and functional variability in

the gut microbiome structure of 62 individuals, including 11 young adults (Y, mean
age: 32 years), 13 younger elderly (E, mean age: 73 years), 15 centenarians (C, mean
age: 100 years), and 23 semi-supercentenarians (S, mean age: 106 years) (Rampelli
et al., 2020). Here, we profiled their gut resistome by analysing 1 billion metagenomic
reads from shotgun sequencing of faecal samples, with an average of 16 million
(± 4 million SD) reads per subject. The reads were mapped to a collection of AR
proteins, which summarize and organize the resistance databases of Uniprot, CARD
and ARDB (see Materials and Methods). A total of 1,746 proteins were returned as
best hits (from 12,567,041 mapped reads with an average of 202,694 ± 60,145 SD reads
per sample), then reduced to 377 after eliminating those with less than 10 counts and
filtering for subject prevalence of at least 40%.

7.4.1 The resistome taxonomic composition
The four age groups show separation in the Principal Coordinates Analysis

(PCoA) based on the Bray-Curtis distance between the taxonomic profiles of the gut
resistome at both family and genus level (p value = 0.0015 and 0.001, respectively,
permutation test with pseudo-F ratios) (Figure 7.1a and d). The family-level core
structure of the faecal resistome is dominated by a few taxa that normally abound in
the human gut microbiota, i.e., Lachnospiraceae (mean Counts per Million (CPM) in
percentage per group ± SD, 25.8% ± 9.8% in Y, 28.2% ± 13.7% in E, 17.9% ± 8.9% in C
and 17.6% ± 13.6% in S) and Ruminococcaceae (15.2% ± 7.2% in Y, 13.1% ± 5.6% in E,
12.6% ± 7.0% in C, 8.5% ± 6.7% in S), as well as Bifidobacteriaceae (16% ± 12.4% in Y,
8.9% ± 12.8% in E, 13.0% ± 11.9% in C, 20.5% ± 19.5% in S) (Figure 7.1b). Compared
to younger individuals, extremely long-lived people show decreased contribution of
AR reads assigned to Bacteroidaceae, Eubacteriaceae, Prevotellaceae and Veillonellaceae,
along with a progressive increase in AR reads assigned to Enterobacteriaceae (p value
leq 0.01, Kruskal-Wallis test) (Figure 7.1c). The age-related decrease in AR reads
assigned to Bacteroidetes members was already evident at the phylum level (p value
= 0.018) (Supplementary Figure S4).

At the genus level, the core resistome structure is essentially dominated by Bi-
fidobacterium (18.4% ± 13.4% in Y, 11.0% ± 15.8% in E, 15.1% ± 13.0% in C, 22.5% ±
21.9% in S), Faecalibacterium (13.9% ± 7.8% in Y, 10.0% ± 6.6% in E, 7.7% ± 4.9% in C,
6.1% ± 7.8% in S) and Collinsella (7.4% ± 5.2% in Y, 3.2% ± 2.2% in E, 4.4% ± 4.6% in C,
4.7% ± 5.6% in S), but with a decreased proportion of Faecalibacterium-assigned AR
reads along with ageing (S vs Y, p value = 0.02, Wilcoxon test) (Figure 7.1e and f).
Compared to younger subjects, the semi-supercentenarian group also shows reduced
contribution of AR reads assigned to other typically health-associated, short-chain
fatty acid-producing taxa, i.e., Roseburia and Ruminococcus, as well as to Eubacterium,
and Megasphaera (p value  0.03). On the other hand, the faecal resistome of ex-
tremely long-lived people is enriched in AR reads assigned to Eggerthella (p value =
0.01) (Figure 7.1f).
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FIGURE 7.1: Age-related variation in the taxonomic composition of
the human gut resistome. Principal Coordinates Analysis of the Bray-
Curtis dissimilarities between the family (a) and genus-level (d) profiles
of the gut resistome of young adults (Y), younger elderly (E), cente-
narians (C) and semi-supercentenarians (S). Significant separation was
found at both phylogenetic levels (p value = 0.0015 and p value = 0.001
respectively family and genus, permutation test with pseudo-F ratios).
Pie charts of the 25 most abundant families (b) and genera (e) for each
group (Y, E, C, S). Boxplots showing the relative abundance distribu-
tion of significantly differentially represented families (c) and genera
(f) between age groups (Wilcoxon test, Bonferroni corrected p value).
Statistical significance is reported as "***", "**", "*", corresponding to the

following p value thresholds 0.0001, 0.001, 0.05.

7.4.2 Mechanism of resistance annotated in the gut resistome
Consistent with taxonomic data, the Bray-Curtis PCoA on protein-level resistome

profiles provides evidence of an age-related trajectory (p value= 0.012, permutation
test with pseudo-F ratios) (Figure 7.2a), suggesting the presence of age group-specific
AR determinants (ARDs). As for the resistome profiling, a summary of the results in
terms of mechanisms of resistance (using the Antibiotic Resistance Ontology – ARO)
and antibiotics is shown in Figure 7.2b. In particular, antibiotic efflux (ARO:0010000)
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constitutes the prevailing resistance mechanism accounting for 44.1% of the mech-
anisms identified. Alteration of the antibiotic target (ARO:0001001) is the second
most represented mechanism (29.1%), including both mutations and enzymatic
modification of the target site. Finally, antibiotic inactivation by bacterial enzymes
(ARO:0001004) is the third most represented mechanism, accounting for 12.3% of the
total. A core set of 8 ARDs, with mean relative abundance above 2% across all groups,
was then identified (Figure 7.2c). In particular, 6 core ARDs encode for ATP-binding
cassette (ABC) antibiotic efflux pumps (macB, bcrA, efrA, efrB, sav1866, msbA), 1 for
a quinolone resistance protein (mfd) and 1 for an isoleucyl-tRNA synthetase (ileS)
conferring resistance to mupirocin.
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FIGURE 7.2: The human gut resistome across ageing. (a) Principal Co-
ordinates Analysis of the Bray-Curtis dissimilarities between the gut
resistome profiles of young adults (Y), younger elderly (E), centenarians
(C) and semi-supercentenarians (S). A significant separation was found
(p value = 0.012, permutation test with pseudo-F ratios). (b) Hierarchi-
cal pie plot, the external pie chart depicts the resistance mechanisms of
the whole gut-resistome dataset, while the internal donut recalls the type
of antibiotics for each mechanism, annotation obtained from the Antibi-
otic Resistance Ontology. (c) The core human gut resistome consists of 8
antibiotic resistance determinants with mean relative abundance above

2% across all age groups.

7.4.3 The resistome profile of the cohort
A total of 39 age group-specific ARDs were next identified, intended as AR

determinants that were differentially represented in at least one comparison between
two age groups (with log2 fold change  -2 and � 2) (Figure 7.3). Twenty-nine of
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these discriminating ARDs were annotated as coding for efflux pumps, 7 as antibiotic-
inactivating, 2 as antibiotic target-modifying, and 1 as target-protecting. The full list
of age group-specific ARDs, including a description of their mechanisms, is reported
in Supplementary Table S2. Interestingly, compared to the younger group, the faecal
resistome of elderly, centenarians and semi-supercentenarians shows an overall
higher amount of ARDs for sulfonamide (leuO) and multidrug, particularly bcr,
emrD, emrY, mdfA, mdtG, mdtL, robA and tolC (p value  0.03, Wald test) (Figure
3). Seven multidrug ARDs are specifically discriminatory for semi-supercentenarians
(cpxA, mdtA, mdtB, mdtC, mdtD, mdtK and mdtN) (p value  0.008). Furthermore,
the semi-supercentenarian group shows higher levels of ARDs conferring resistance
to rifampin (rphB) and tetracycline (tcr3 and tetD) (p value  0.02). On the other
hand, compared to semi-supercentenarians, the resistome of young adults is enriched
in ARDs for beta-lactam antibiotics (Bl2e_cepa, cblA-1, OXA-34), whereas that of
elderly subjects in ARDs for macrolide-lincosamide-streptogramin (ermB, ermF) (p
value  0.05).

log2 normalized abundance

FIGURE 7.3: Age group-specific antibiotic resistance determinants.
The heatmap is computed on the abundances of counts normalized by
library size and log2 scaled. The colour code ranges from blue (low abun-
dance) to red (high abundance). The samples are in column while on the
rows there are the gene names of the ARDs significantly differentially
represented between age groups as identified by the Wald test (Bonfer-
roni corrected p value  0.05). Clustering is computed over Euclidean
distances with Ward linkage method. For more information on age
group-specific antibiotic resistance determinants, see Supplementary

Table S2
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7.4.4 Co-occurrence patterns among ARDs and species
When looking at the taxonomic classification of these ARDs, we found that they

were differently assigned even at the phylum level, depending on the age group
(Figure 7.4), hinting at the establishment of age group-specific topological patterns in
the gut resistome. In particular, we observed a higher contribution of ARDs from
Proteobacteria (S vs Y, p value = 0.002; S vs E, p value = 0.02, Wilcoxon test) and a
lower contribution of ARDs from Bacteroidetes (S vs Y, p value = 0.01; S vs E, p value
= 0.02) in semi-supercentenarians than in younger adults. It is worth noting that
46.3% of proteobacterial ARDs encode for multidrug efflux pumps of the species
Escherichia coli. On the other hand, the most represented ARDs in the faecal resistome
of young adults are beta-lactamases from Bacteroidetes species (Y vs S, p value =
0.03). These findings were further highlighted by a correlation network analysis,
showing associations between microbial species and ARDs. Specifically, the network
in Figure 7.5 shows the co-occurrence patterns between the age group-specific ADRs
as identified above, and the resistome relative abundances summarized at species
level. The nodes represent the ARD entities or the species. Six connected components
(i.e., nodes interconnected by edges and spatially separated by other groups of nodes
and edges) with more than two nodes were identified. The most populated connected
component contains 87% of nodes resistant to multidrug, of which 96% are annotated
with antibiotic efflux mechanism and 4% (arnD) with antibiotic target protection
mechanism (ARO:0001003). The AR protein families linked to E. coli are the major
facilitator superfamily (MFS), accounting for 91.3% of E. coli links, and the resistance-
nodulation-cell division (RND) antibiotic efflux pump family (4.3% for acrD). E.
coli was found to have the highest diversity in terms of ARDs, with links also to
determinants conferring resistance to sulfonamide and glicopeptide drugs. On the
other hand, Bacteroidetes species, including Alistipes (from Rikenellaceae family), are
linked to beta-lactamases, with Bl2e_cepa, cblA-1 and OXA-34 accounting for 80% of
the nodes, and to the RND antibiotic efflux pump family (mexW), accounting for the
remaining 20%.
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Bar plots showing the normalized abundance (read counts per million
normalized by sequencing depth) of age group-specific resistance de-
terminants (ARDs) in the gut resistome of young adults (Y, panel a),
younger elderly (E, b), centenarians (C, c) and semi-supercentenarians
(S, d). Phylum-level assignment of ARD reads is also shown. ARDs are

organized by drug to which resistance is conferred.

7.5 Discussion
To the best of our knowledge, this is the longest metagenomic trajectory of the

human gut resistome along with ageing, up to extreme longevity, which includes data
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from the gut microbiome of semi-supercentenarians (>105 years of age). Our cohort
is representative of the population of the Emilia Romagna region (Northern Italy),
whose gut microbiome has previously been characterized in terms of taxonomic and
functional structure (Biagi et al., 2016; Rampelli et al., 2020).

We found that the taxonomic structure of the resistome largely overlaps with that
of the microbiome, as antibiotic resistance (AR)-coding genes are mainly harboured
by the dominant families of the gut microbial ecosystem, such as Lachnospiraceae and
Ruminococcaceae, along with Bifidobacteriaceae. As recently argued (Schaik, 2015), this
could be the result of extensive microorganism-microorganism crosstalk within the
gut microbiome, with the spread of AR genes via horizontal gene transfer, potentially
fuelled by antibiotic exposure. On the other hand, in line with gut microbiota data
(Biagi et al., 2016), the resistome of extremely long-lived people was found to be
depleted in AR reads assigned to beneficial, short-chain fatty acid-producing taxa
while enriched in those assigned to potential pathobionts, such as Enterobacteriaceae
members and Eggerthella. In light of the increased vulnerability of older people to
infectious diseases (Liang and Mackowiak, 2007), the emergence of resistant taxa
with pathogenic potential could pose a serious threat to health, as well as stress the
need for resistome mapping in clinical practice, for improved efficacy of antimicrobial
treatments, as has recently been discussed (D’Amico et al., 2019).

As for resistance mechanisms, the gut resistome is mainly composed of genes
conferring resistance through antibiotic efflux, along with alteration of the antibiotic
target and antibiotic inactivation by bacterial enzymes. In particular, 6 AR determi-
nants (ARDs) involved in antibiotic efflux are similarly represented in all subjects
regardless of age, likely being part of the core human gut resistome. Fascinatingly,
we found that ageing is associated with an overall increasing abundance of AR genes,
including in particular ARDs for multidrug and sulfonamide. This is especially true
for semi-supercentenarians, who showed the highest load of multidrug ARDs as well
as ARDs conferring resistance to rifampin and tetracycline. We speculate that this
may represent an adaptive response of the human holobiont to lifelong exposure
to antibiotics, including those used through the food chain and for health reasons.
Although they are a model of healthy ageing, long-lived people are indeed very likely
to have been more exposed to antimicrobials, also due to ageing-related physiological
processes, such as immunosenescence, which contributes to increased susceptibility
to infections, potentially implying a greater need of medicines, including antibiotics
(Franceschi et al., 2018). On the other hand, AR is an ancient and inherent bacterial
trait that predates the human use of antibiotics (Dcosta et al., 2011), and AR genes
are well known to be widely distributed in any environment inhabited by bacteria,
including soil, air and even household dust (Schaik, 2015; Li et al., 2018; Maamar
et al., 2020). In particular, built environments have recently been appointed as an
overlooked reservoir for AR, with exposure to cleaning chemicals leading to accumu-
lation of AR genes, especially those involved in antibiotic efflux, along with loss of
microbial diversity and an overall higher level of virulence (Hartmann et al., 2016;
Mahnert et al., 2019). It is thus tempting to speculate that the greater abundance of
AR genes in the gut microbiome of centenarians and semi-supercentenarians, i.e.,
people with reduced mobility who spend more time at home (Rampelli et al., 2020),
is the result of a top-down selection process connected not only to health status
and past medical history, but also to lifestyle habits, including stable and constant
living settings within homes, with longer and more extensive exposure to various
chemicals.
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Consistently, we previously found that their gut microbiome is enriched in several
pathways of degradation of pervasive xenobiotics in Western societies, including
those contained in common consumer and other indoor products (Rampelli et al.,
2020).On the other hand, it is worth noting that a higher abundance of AR genes for
beta-lactam antibiotics, mainly harboured by Bacteroidetes members, characterizes
the gut resistome of young adults. As previously discussed, genes conferring beta-
lactam resistance are frequently present in Bacteroides spp. and among the most
abundant AR genes in the human gut microbiome (Forslund et al., 2013; Hu et al.,
2013). Interestingly, these genes do not appear to transfer to opportunistic pathogens,
such as Enterobacteriaceae (Sommer, Dantas, and Church, 2009), possibly explaining
their poor representation in the gut resistome of older people.

In conclusion, our work for the first time sheds some light on the trajectory of the
human intestinal resistome along ageing and draws attention to the progressive age-
related accumulation of AR genes with potentially severe repercussions on human
health. In addition to stressing the relevance of resistome surveys for more effective
therapies, our results pave the way for further studies aimed at reconsidering our
behaviours with the ultimate goal of containing the spread of AR, thus supporting
healthy ageing.
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ABSTRACT The gut microbiome of long-lived people display an increasing abun-
dance of subdominant species, as well as a rearrangement in health-associated bac-
teria, but less is known about microbiome functions. In order to disentangle the
contribution of the gut microbiome to the complex trait of human longevity, we
here describe the metagenomic change of the human gut microbiome along with
aging in subjects with up to extreme longevity, including centenarians (aged 99 to
104 years) and semisupercentenarians (aged 105 to 109 years), i.e., demographically
very uncommon subjects who reach the extreme limit of the human life span. Ac-
cording to our findings, the gut microbiome of centenarians and semisupercentenar-
ians is more suited for xenobiotic degradation and shows a rearrangement in meta-
bolic pathways related to carbohydrate, amino acid, and lipid metabolism.
Collectively, our data go beyond the relationship between intestinal bacteria and
physiological changes that occur with aging by detailing the shifts in the potential
metagenomic functions of the gut microbiome of centenarians and semisupercente-
narians as a response to progressive dietary and lifestyle modifications.

IMPORTANCE The study of longevity may help us understand how human beings
can delay or survive the most frequent age-related diseases and morbidities. In this
scenario, the gut microbiome has been proposed as one of the variables to monitor
and possibly support healthy aging. Indeed, the disruption of host-gut microbiome
homeostasis has been associated with inflammation and intestinal permeability as
well as a general decline in bone and cognitive health. Here, we performed a met-
agenomic assessment of fecal samples from semisupercentenarians, i.e., 105 to
109 years old, in comparison to young adults, the elderly, and centenarians, shed-
ding light on the longest compositional and functional trajectory of the human
gut microbiome with aging. In addition to providing a fine taxonomic resolution
down to the species level, our study emphasizes the progressive age-related in-
crease in degradation pathways of pervasive xenobiotics in Western societies,
possibly as a result of a supportive process within the molecular continuum
characterizing aging.
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Longevity has been described as the result of a complex combination of variables,
deriving from genetics, lifestyle, and environment (1, 2). In this context, the intes-

tinal microbiome has been proposed as a possible mediator of healthy aging that
preserves host-environment homeostasis by counteracting inflammaging (3, 4), intes-
tinal permeability (5), and deterioration of cognitive and bone health (5, 6). Correlations
have been previously found between age-related gut microbiota dysbioses and levels
of proinflammatory cytokines, hospitalization, poor diet, and frailty in the elderly (7).
More recently, the longest human gut microbiota trajectory with aging has been built
by comparing the fecal bacterial taxa from healthy adults and older individuals,
including semisupercentenarians, i.e., people aged 105 to 109 years (8, 9). However, the
functional changes that occur in the gut microbiome along with aging are still largely
unexplored. In an attempt to provide some glimpses in this direction and to advance
our knowledge on whether and how the gut microbiome may support the mainte-
nance of health in extreme aging, we here characterized the fecal microbiome of 62
individuals, with ages ranging from 22 to 109 years, by shotgun metagenomics. Ac-
cording to our findings, aging is characterized by an increased number of genes
involved in xenobiotic degradation, as well as by rearrangements in metabolic path-
ways related to carbohydrate, amino acid, and lipid metabolism. These microbiome
features are boosted even more in semisupercentenarians, probably representing the
result of a lifelong remodeling response to progressive changes in diet and lifestyle.

RESULTS
We previously found considerable age-related variability in fecal microbiota com-

position of 69 people, including centenarians and semisupercentenarians, from the
Emilia Romagna region of Italy and the surrounding area (8). In an attempt to go
further, unraveling the functional and species-level taxonomic links between the gut
microbiome and extreme aging, we applied shotgun metagenomics to a subset of 62
DNA samples derived from the same data set previously analyzed (8). Specifically, we
characterized the gut microbiome from 11 young adults (group Y, 6 females and 5
males, aged 22 to 48 years [mean age, 32.2 years]), 13 younger elderly (group K, 6
females and 7 males, aged 65 to 75 years [mean age, 72.5 years]), 15 centenarians
(group C, 14 females and 1 male, aged 99 to 104 years [mean age, 100.4 years]), and 23
semisupercentenarians (group S, 17 females and 6 males, aged 105 to 109 years [mean
age, 106.3 years]). A total of 1.3 billion sequences were generated, with an average of
20 million reads (!5 million reads standard deviation [SD]) per subject.

We first confirmed that the fecal microbiota in all age groups is dominated by a few
bacterial families (i.e., Bifidobacteriaceae, Bacteroidaceae, Lachnospiraceae, and Rumino-
coccaceae) whose relative abundance decreases with age (mean relative abundance !
SD: group Y, 73% ! 3%; group K, 65% ! 4%; group C, 62% ! 4%; group S, 58% ! 6%).
When focusing our attention at the species level, we found that these contributions
were mainly accounted for by 13 bacterial species: Bifidobacterium adolescentis, Bifido-
bacterium longum, Bacteroides uniformis, Faecalibacterium prausnitzii, Ruminococcus
bromii, Subdoligranulum sp., Anaerostipes hadrus, Blautia obeum, Ruminococcus torques,
Coprococcus catus, Coprococcus comes, Dorea longicatena, and Roseburia sp. Bray-Curtis
principal-coordinate analysis (PCoA) of species-level relative abundance profiles pro-
vided evidence of an age-related trajectory (P " 0.05, permutation test with pseudo-F
ratios), involving the establishment of age group-specific topological patterns in the
taxonomic and functional microbiome structure, as shown by network plots (Fig. 1) and
bar plots (see Fig. S1 in the supplemental material). However, the species-level com-
positional structure of the gut microbiota from the younger elderly group overall
matches that from young adults (P # 0.2), suggesting that the physiology of the aging
process may not involve gross changes in gut microbiome species and their relative
abundance. On the other hand, gut microbiota from centenarians and semisupercen-
tenarians feature a distinctive rearrangement in their taxonomic configurations
(Fig. 2A). In particular, compared with younger individuals, long-lived people show a
decreased contribution of B. uniformis, Eubacterium rectale, C. comes, and F. prausnitzii,
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along with a progressive increase of Escherichia coli, Methanobrevibacter smithii, Akker-
mansia muciniphila, and Eggerthella lenta (P " 0.05, Kruskal-Wallis test). These trends
have already been reported in previous 16S rRNA gene-based microbiome works in the
same subjects (3, 8), as well as in Chinese centenarians (10), further strengthening that
the observed gut microbiome variations may be part of the extreme aging process,
regardless of environmental variables, such as geographical origin and cultural habits
(i.e., diet and lifestyle) (11).

Interestingly, when we focused our analysis at a functional scale, we found a
progressive age-related increase in the number of reads for genes devoted to xenobi-
otic biodegradation and metabolism, and a simultaneous decrease in genes involved in
carbohydrate metabolism (Fig. 2B and C; Fig. S2). This functional rearrangement is even
more pronounced in the gut microbiome of centenarians and semisupercentenarians,
where we observed a reduced contribution of pathways for starch and sucrose (KEGG
pathway no. ko00500), pentose phosphate (ko00030), and amino sugar and nucleotide
sugar (ko00520) metabolism and a concomitant increase in toluene (ko00623), ethyl-
benzene (ko00642), caprolactam (ko00930), and chlorocyclohexane and chlorobenzene
(ko00361) degradation pathways. While the changes related to carbohydrate metabo-
lism have already been reported in previous studies and suggested to be associated
with age-related changes in dietary habits (7, 9), the increase in genes for xenobiotic
metabolism is reported here for the first time and appears particularly intriguing.

Ethylbenzene, chlorobenzene, chlorocyclohexane, and toluene are pervasive chem-
icals mainly deriving from industrial manufacturing and municipal discharges and are

FIG 1 Gut microbiome variation with aging. (Top) Network plots showing the taxonomic and functional configurations of the gut microbiome of four age
groups: 11 young adults (aged 22 to 48 years; group young), 13 younger elderly (aged 65 to 75 years; group elderly), 15 centenarians (aged 99 to 104 years;
group centenarian), and 23 semisupercentenarians (aged 105 to 109 years; group semisupercentenarian). Disc sizes indicate species or functional pathway
overabundances relative to the average abundance of the whole cohort. Lines indicate significant positive correlations between the values of the discs. (Bottom)
PCoA plot of Bray-Curtis dissimilarity between the species-level relative abundance data sets of the four age groups.
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under monitoring all over the world as part of the main environmental contaminants
of the atmosphere, due to their toxic effects (12–14). The primary man-made sources of
these molecules are indeed the emissions from motor and exhaust vehicles, as well as
cigarette smoke. Furthermore, they are known to be generated during the processing
of refined petroleum products, such as plastics, and to be contained in common
consumer products, such as paints and lacquers, thinners, and rubber products (14). As
regards caprolactam, it is the raw material of nylon, used for the production of many
indoor products, such as synthetic fibers, resins, synthetic leather, and plasticizers.
Previous studies have demonstrated the higher indoor burden of these molecules than
in the outdoor environment and emphasized the exceptional importance of indoor
exposure on human health (15, 16). It is a matter of fact that living in environments
under strong anthropic pressures, such as the Emilia Romagna region in Italy (17, 18),
results in the continuous and constant exposure to these pervasive xenobiotic sub-
stances, favoring their maintenance and progressive accumulation in body tissues,
including the gut (19–22). We believe that this could create the appropriate conditions
for the human host to select for gut microbiome components capable of detoxifying
such chemical compounds, with a mutual benefit in terms of microbiome and host
fitness in anthropic environments. Indeed, recent works have shown that the human-
associated microbial communities of urban Western populations are functionally suited
to the degradation of xenobiotic molecules, including caprolactam (23–25). Further
supporting the importance of human microbiomes in providing a response to xeno-
biotic exposure, in another recent work the upper airway microbiome of nonasthmatic
individuals has been found to possess greater ability to metabolize caprolactam than
that of asthmatic people (25). According to the authors, the selection of caprolactam-
degrading microbes in the airway microbiome would decrease host exposure to indoor
air pollutants, providing an ultimate impact on human health.

FIG 2 Aging-related trajectories of gut microbiome species and functional pathways. (A) Box plots of the normalized relative abundances of bacterial species
differentially represented among the four age groups (Y, young adults; K, younger elderly; C, centenarians; S, semisupercentenarians) (P " 0.05, Kruskal-Wallis
test). (B) Box plots of the normalized abundance (assigned reads per million sequences, i.e., counts per million [CPM]) of KEGG pathways differentially
represented among age groups (P " 0.05, Kruskal-Wallis test). (C) Bar plots at the top show the KEGG pathway-classified metabolic configurations for amino
acid, carbohydrate, lipid, and xenobiotic metabolism as the mean relative contribution of each pathway to the total normalized number of reads assigned to
each specific metabolism. At the bottom of the panel, the average number of normalized reads (CPM ! standard error of the mean [SEM error bar]) assigned
to each specific metabolism is shown. Significant differences among age groups are shown on the graphs.
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Centenarians and semisupercentenarians are long-lived individuals who, as such,
may boast an important history of exposure to xenobiotic stressors. Furthermore, as
they have reduced mobility, these subjects tend to spend more time in their own
houses than younger people (Fig. S3), with increased exposure to indoor pollutants. It
is thus tempting to speculate that their microbiome is better equipped for the
degradation of these xenobiotics as a result of a process driven by the more lasting and
assiduous exposure to these chemicals. It is also worth noting that these metabolic
functionalities are possessed by commensal bacteria belonging to the human core
microbiome, i.e., microbial taxa that have been found to be shared by the microbiome
of all human populations sampled to date (26–30) (Fig. 3). This raises important open
questions on the biological mechanisms that lead to the consolidation and enrichment
of xenobiotic-degrading abilities in centenarian and semisupercentenarian gut micro-
biomes. Here, we speculate that the highest contribution to xenobiotic degradation by
commensals in long-lived people might be the result mainly of a top-down selection
process related to the lifestyle habits of these exceptionally old individuals, i.e., stable
and constant living settings within their own homes, together with a longer exposure
and consequent accumulation of these chemicals in the host tissues due to their longer
life.

Besides xenobiotic-degrading genes and those involved in carbohydrate metabo-
lism, we also found age-related differences in other metabolic pathways, including
those associated with lipid metabolism. In particular, centenarians and semisupercen-
tenarians show more reads for alpha-linoleic acid (KEGG pathway no. ko00592) and
glycerolipid (ko00561) metabolism; on the other hand, younger people show a greater
contribution of genes involved in sphingolipid (ko00600) and glycerophospholipid
(ko00564) metabolism. Given that glycerophospholipids and sphingolipids are known
to be more abundant in animal-derived foods (31, 32), while alpha-linoleic acid is
derived mainly from plant foods (33), these profiles may be related to eating habits and,
in particular, to the higher intake of plant-derived fats than animal fats by long-lived
individuals than by younger people (Fig. S4). Moreover, when looking at functional
pathways involved in amino acid metabolism, we found a progressive increase with age
in genes for the metabolism of tryptophan (ko00380), tyrosine (ko00350), glycine,
serine, and threonine (ko00260). On the other hand, genes for alanine, aspartate, and
glutamate metabolism (ko00250) were found to be more abundant in younger indi-
viduals. These evidences are in agreement with our previous study (9), in particular with
regard to the metabolism of tryptophan and tyrosine as an indicator of enhanced
proteolytic metabolism. Furthermore, these findings fit with metabolite measures in the
centenarians of our cohort, i.e., the decrease of the bioavailability of tryptophan in
serum (34), as well as the increased urinary levels of phenolic metabolites, deriving from
the metabolism of tyrosine (35). Finally, we found a progressive increase with aging of
genes for lipopolysaccharide biosynthesis (ko00540), which can be associated with the

FIG 3 The contribution of commensal bacteria to xenobiotic degradation is significantly higher in
long-lived individuals. Box plots show the percentages of bacteria of the human core gut microbiome
that harbor genes for xenobiotic degradation. Members of the core microbiome were defined based on
previous works (26–30).
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presence of pathobionts (i.e., members of the Enterobacteriaceae family) and the low
levels of chronic inflammation (i.e., inflammaging), as previously demonstrated in
long-lived people (3, 8, 9).

DISCUSSION
Here we described—as far as we know, for the first time—the metagenomic

changes of the human gut microbiota that occur with aging, up to extreme longevity,
by characterizing the microbiome of semisupercentenarians, i.e., demographically very
uncommon subjects who reach the extreme limit of the human life span ($105 years
of age). In addition to confirming the known taxonomic features of an aging microbi-
ota, we extended the definition of the human core gut microbiota down to the species
level and provided an accurate depiction of the functional changes occurring along
with aging. In a sort of continuum line with our previous study, where we demon-
strated that the intestinal microbiome of Italian adults is equipped for the degradation
of xenobiotics, probably as a functional response to exposure to these compounds (24),
we here advance the fascinating hypothesis that aging in Western urban environments
progressively selects for commensal microbiome strains with metabolic abilities toward
specific xenobiotics. We speculate that this could represent an adaptive response of the
human holobiont to the increased exposure to, and accumulation of, xenobiotic
substances along the aging process. As recently discussed (36), future studies should be
aimed at better understanding the complex interplay between xenobiotic exposure
and the human gut microbiome. The individual gut microbiome structure will have to
be matched with the personal exposure level, with the latter being dissected by
monitoring xenobiotics in feces and body fluids. Long-term longitudinal studies must
be conceived, with the aim of highlighting the mechanisms underlying this potential
microbiome adaptive variation, as a result of a top-down selection process of micro-
biome functions for xenobiotic detoxification and the ultimate impact in terms of host
health protection. Given that the xenobiotics that emerged in the present study are
now ubiquitous in modern urban areas, it would also be interesting to assess the
xenobiotic degradation capacity of ancient microbial communities by analyzing sam-
ples from the preindustrial era, in order to fully understand the effects of these
molecules on the evolutionary history of the human holobiont. Studies of this type
would help to shed light on whether the peculiar functional profiles of the gut
microbiome of extremely long-lived hosts, as found in our work, are the result of an
adaptive and remodeling process inherent to the physiology of human aging in
modern urban societies and thus capable of supporting a new homeostasis.

MATERIALS AND METHODS
Subjects and study groups. The study used genomic DNA from 62 fecal samples collected for a

study by Biagi et al. (8). Subjects were enrolled in the Emilia Romagna region (Italy) and categorized as
follows: 11 young adults (group Y, 6 females and 5 males, aged 22 to 48 years [mean age, 32.2 years]),
13 younger elderly (group K, 6 females and 7 males, aged 65 to 75 years [mean age, 72.5 years]), 15
centenarians (group C, 14 females and 1 male, aged 99 to 104 years [mean age, 100.4 years]), and 23
semisupercentenarians (group S, 17 females and 6 males, aged 105 to 109 years [mean age, 106.3 years]).
See Table S1 in the supplemental material for further information about the cohort. The study protocol
was approved by the Ethics Committee of Sant’Orsola-Malpighi University Hospital (Bologna, Italy) under
EM/26/2014/U (with reference to 22/2007/U/Tess).

Evaluation of the time spent indoors and outdoors by the elderly. Elderly participants signed the
informed consent before undergoing the questionnaires with an interviewer as previously described (37).
The participants were asked how often they left their homes (daily, weekly, monthly, etc.) and based on
seven different answers were assigned a score: those who never went out, the lowest frequency, were
given a score of 1, while those who left their homes “daily,” the highest frequency, were given a score
of 7. The answers, treated as a continuous scale (arbitrary scores of 1 to 7), were used to determine the
frequency of movement outside home (FMOH) score.

Library preparation and shotgun sequencing. DNA libraries were prepared using the QIAseq FX
DNA library kit (Qiagen, Hilden, Germany) in accordance with the manufacturer’s instructions. Briefly,
total microbial DNA was quantified by a Qubit fluorometer (Invitrogen, Waltham, MA, USA), and 100 ng
of each sample was fragmented to a 450-bp size, end-repaired, and A-tailed using FX enzyme mix with
the following thermal cycle: 4°C for 1 min, 32°C for 8 min, and 65°C for 30 min. Samples were then
incubated at 20°C for 15 min in the presence of DNA ligase and Illumina adapter barcodes for adapter
ligation. After two purification steps with Agencourt AMPure XP magnetic beads (Beckman Coulter, Brea,
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CA, USA), a 10-cycle PCR amplification and a further step of purification as described above, the final
library was obtained by pooling the samples at equimolar concentrations of 4 nM. Sequencing was
performed on an Illumina NextSeq platform using a 2 % 150-bp paired-end protocol, in accordance with
the manufacturer’s instructions (Illumina, San Diego, CA, USA). High-quality paired-end sequences were
uploaded to the SRA repository.

Bioinformatics and biostatistics. The functional annotation of the sequences deriving from the 62
genomic DNA samples (8) was conducted as previously described (9). In brief, shotgun reads were first
filtered by quality and human sequences. This last step was achieved using the human sequence removal
pipeline and the WGS read processing procedure of the Human Microbiome Project (HMP) (38). The
obtained reads were taxonomically characterized at the species level by MetaPhlAn2 (39) and assigned
for functionality at different levels of the KEGG database (40), using Metagenome Composition Vector
(MetaCV) with default parameters (41). The resulting table consisted of multiple matrices, with sample
identification numbers (IDs) in the columns and annotations at the species level or at different levels of
the KEGG database in the rows.

PCoA analysis was carried out using vegan (https://cran.r-project.org/web/packages/vegan/index
.html) in R. Significance testing and permutation analysis were performed using the R package stats and
vegan. Data separation in the PCoA was tested using a permutation test with pseudo-F ratios (function
adonis in the vegan package). When appropriate, P values were adjusted for multiple comparisons using
the Benjamini-Hochberg correction. A false discovery rate (FDR) of "0.05 was considered statistically
significant.

Network plots were determined as previously described (24). In brief, associations between KEGG
pathway abundances were evaluated by the Kendall correlation test, displayed with hierarchical Ward
linkage clustering based on the Spearman correlation coefficients, and then used to define pathway
groups (circles with the same color). Significant associations were verified for multiple testing using the
q value method (http://www.bioconductor.org/packages/release/bioc/html/qvalue.html) (P " 0.05). Per-
mutational multivariate analysis of variance was used to determine whether the pathway groups were
significantly different from each other. The network plots were created using Cytoscape software (42).
Circle size represents the normalized overabundance of the pathway relative to the background.
Connections between nodes represent significant positive Kendall correlations between KEGG pathways
(FDR " 0.05).

Assignment of functions for xenobiotic degradation to commensal bacteria. Reads with assign-
ment to xenobiotic degradation functions were further inspected for taxonomy. Where present, the
species-level classification of MetaCV (41) was retrieved, and the taxon ID in the NCBI taxonomy database
was obtained using the web interface of the NCBI Taxonomy Browser tool (https://www.ncbi.nlm.nih
.gov/Taxonomy/TaxIdentifier/tax_identifier.cgi). In order to retrieve the entire phylogeny of the assign-
ment, we transformed the NCBI taxonomy IDs into the full lineage by using the ETE3 toolkit (43). Hits for
xenobiotic degradation were then split based on their taxonomy and collected in a new table containing
the values for each sample. We finally identified the proportion of functions assigned to commensal
bacteria of the human core gut microbiome, i.e., microbial taxa that have been found to be shared by
all human populations sampled to date (26–30), by specifically looking for their abundance across
samples and visualizing them by box plots using the R software.

Analysis of nutritional data. Dietary information for the elderly subjects of groups K, C, and S were
provided and discussed in our previous publications (1, 8). As regards group Y, the subjects were asked
to compile 24-h dietary recalls to retrieve information on the composition of their diet, as previously
reported by Barone and colleagues (44). Dietary data for semisupercentenarians (8) were converted to a
numeric frequency, in order to infer the daily consumption of each food category. Total daily calorie
intake as well as macro- and micronutrient contributions for individuals in groups Y and S were estimated
through the MètaDieta software version 3.7 (Meteda, Rome, Italy).

Data availability. High-quality paired-end sequences were uploaded to the SRA repository under
BioProject number PRJNA553191.
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Chapter 9

Conclusions

The study of bacteria and their interactions with the host/environment is central
in the matter of circular health. In order to decipher the different aspects of the nature
of these symbiosis, we can benefit from omics techniques for unveiling the bacteria
genotypes, transcripts, proteins, metabolites. Furthermore, we can use computational
resources for extensively annotating both sequences and protein structures. Central
to this context is the implementation of databases and tools for both the functional
annotation of biological entities and the biocuration of this assembled knowledge.

The first two chapters of this dissertation present the topic of antimicrobial re-
sistance. In particular, the second chapter focuses on point variations involved in
antibiotic-resistant bacteria. Given the gap between sequences and the structural
annotations of these proteins, I developed the database PVAR3D to study in 3D
the variations inducing antimicrobial resistance. The database provides informa-
tion on sequences, variations, structures, pathogens, antibiotics, and the literature.
Furthermore, PVAR3D is annotated with functional features derived from other
databases among which Pfam, GO, String, Kegg, EC. In the fight against pathogenic
bacteria, structural information is pivotal. From this we can understand the proteins
mechanisms of action and interactions with other molecules, aiding in the design of
new means/drugs able to counteract and interfere with the evolved mechanisms of
resistance. The study of bacteria within different ecological niches has revealed the
huge taxonomic diversity and functional profiles characteristic of each ecosystem.
In chapter 4, we presented XenoPath a pipeline for the analysis of metagenomic
data aiming at uncovering the xenobiotic degradation potential of the bacterial com-
munity. Xenobiotics are compounds non normally found in an ecosystem: drugs,
food conservatives, additives, and also hydrocarbons, plastic and dyes, oil, and in
general hazardous waste. Certain bacteria can degrade these compounds thanks to
the expression of specific enzymes. Presently, we lack a complete overview of the
degradation potential of microorganisms, and in this XenoPath can help to describe
the meta-phenotype of a community. In particular, it identifies the microbial taxa, the
functions, and pathways involved in the bioremediation processes.

In chapters 5-8, the thesis focus goes on the study of the gut microbiota in ageing,
with an emphasis with respect to human health. Particularly, chapter 6 studies the
Italian cohort of the European project NU-AGE. The associations between the gut
microbiome and fat distribution in the elderly are still poorly characterized, despite
the recognized importance of these factors in determining healthy aging. This study
shows that specific gut microbial consortia with distinct compositional traits are
associated with healthier metabolic profiles, low visceral adiposity, and diet habits.
The presented findings represent a step forward in understanding the role of the gut
microbiota in supporting healthy living.
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The study of antimicrobial resistance, in chapter 7, is viewed with respect to the
gut microbiota. In this study, it has been analyzed the resistome of an Italian cohort
of an extremely aged population (> 105 years). Antibiotic resistance is widespread
among different ecosystems, and in human it plays a key role in reshaping the
composition of the gut microbiota, enhancing the ecological fitness of certain bacterial
populations when exposed to antibiotics. A considerable component of the definition
of healthy aging and longevity is associated to the structure of the gut microbiota. In
this respect, the presence of antibiotic-resistant bacteria is critical to many pathologies
befalling with ageing. In this regard, the characterization of the resistome has not
been sufficiently elucidated. The results of this work revealed specific host-gut
resistome compositionality through longevity.

In chapter 8, it is presented a published paper investigating the xenobiotic degra-
dation potential of centenarians’ gut microbiota. Particularly, we confirmed a de-
creased taxonomic diversity along with ageing. Furthermore, we found a marked
difference between the functional profile between the young and the centenarians mi-
crobial community. The latter being characterized by a higher presence of sequences
annotated in the ethylbenzene, chlorobenzene, chlorocyclohexane, and toluene degra-
dation pathways.

In conclusion, this thesis work has focused on developing and adopting computa-
tional resources aiming at investigating protein structures in pathogens and profiling
taxonomy and functions of bacterial communities, with a focus over human and en-
vironmental health. Importantly, the database, available through the web server, can
be adopted for structural and functional characterization on antimicrobial-resistant
variations. Taken together, these data provide an unprecedented hub of annotation
over structures and missense variations, that are freely downloadable and can be
adopted by independent researchers. This work also describes how the metagenomic
approaches have determined a paradigm shift in the characterization of microbial
communities. In this respect, the focus was on the gut microbiota in ageing and
longevity. Furthermore, here is presented a tool for the analysis of metagenomic
data and specifically for describing the set of enzymes involved in the xenobiotic
degradation pathways in metagenomic sequences.

Given the blast of big data in biology, Bioinformatics and Computational biology
can successfully face the current challenge by providing computational means: algo-
rithms, databases, and tools. To this aim, it is highly relevant the role of biocuration,
data mining and statistics, able to extract, associate and reveal different types of
biological information. Taken together these approaches can span different layers of
biological complexity: going from genotype to phenotype, from structure to function,
helping researchers in organizing the biological information, annotating biological
entities, and formulating new hypothesis.
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Appendix A

Appendix - Supplementary material

FIGURE S1: Drug-Genus specific associations for proteins with target
alterations. The color code shows the number of associations for mu-
tated proteins of a given Genus, with respect to the drug they have been
annotated as resistant. The heatmap gives an overview on the type of

resistance per Genus based on the data in PVAR3D.
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FIGURE S2: Heatmap showing the frequency of the type of variations
mapped within each protein family domain identified in PVAR3D.
Domains are on the rows and the type of amino acid changes on the

columns, high frequency is depicted by increasing tones of red.

TABLE S1: List of protein in the clusters defined by pairwise struc-
tural alignment with PDB in PVAR3D.

clusters protein Accession-PDB
1 rpoB CCP43410.1-6FBV_C
1 rpoB P37870-2LY7_A
1 rpoB P60281-6FED_C
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Table S1 continued from previous page
clusters protein Accession-PDB
2 gyrA AAC75291.1-1ZI0_A
2 gyrA CCP42728.1-4G3N_A
3 embR CCP44023.1-2FF4_A
4 parC AAC76055.1-4MN4_A
5 acrR NP_414997.1-3BCG_A
5 mexZ NP_250710.1-2WUI_A
5 nalD NP_252264.1-5H9T_A
6 ethR WP_003399797.1-6HO4_A
7 dprE1 A0R607-4F4Q_A
7 dprE2 P9WJF1-6HFW_A
8 rplD P60723-6QUL_E
9 katG NP_216424.1-4C51_A
10 thyA NP_217280.1-4FQS_A
11 ahpC WP_003412529.1-2BMX_A
12 ileS CAA52296.1-1QU3_A
13 soxR AAC77033.1-2ZHH_A
14 marR AAC74603.2-5H3R_A
14 mexR NP_249115.1-1LNW_A
15 gyrA AAC75291.1-3NUH_A
15 gyrA CCP42728.1-3IFZ_A
15 gyrA NP_708120.1-2Y3P_A
15 gyrA P20831-5BS3_B
15 parC AAK74984.1-4I3H_A
16 gyrB BAE77595.1-3NUH_B
17 EF-Tu NP_417798.1-5JBQ_A
18 folC NP_216963.1-2VOS_A
19 npmA A8C927-4OX9_Y
19 kamB P25920-3MQ2_A
20 tlyA AAK46002.1-5EOV_A
21 fabG NP_415611.1-1Q7C_A
21 fabI NP_415804.1-5CG2_A
21 inhA CCP44244.1-6EP8_A
22 pncA CCP44816.1-3PL1_A
23 embC P9WNL5-3PTY_A
24 ribD NP_217187.1-6DE5_A
25 folP WP_000764731.1-1AJZ_A
26 kasA CCP45025.1-2WGG_A
27 rpsL P0A7S3-6C4I_l
27 rpsL P17293-4V8X_AL
27 rpsL P21472-6HA8_l
27 rpsQ P0AG63-6Q98_v
28 rpsA CCP44394.1-4NNG_A
29 omp36 AAK11270.1-5O9C_A
29 ompF NP_415449.1-3HWB_A
30 oprD NP_249649.1-4FOZ_A
31 blaC P9WKD3-3ZHH_A
31 blaF Q59517-2CC1_A
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Table S1 continued from previous page
clusters protein Accession-PDB
32 PBP2b NP_359110.1-2WAF_A
32 pbpX P59676-5OJ1_A
32 penA WP_003703066.1-5KSH_A
33 rpsE P0A7W1-6Q98_j
33 rpsE P21467-6HA8_e
34 parE WP_000195296.1-1S16_A
34 gyrB P9WG45-3ZM7_A
34 gyrB BAE77595.1-6ENG_A
35 nfsA NP_415372.1-1F5V_A
35 rdxA O25608-3QDL_A
36 thrS P0A8M3-1QF6_A

FIGURE S3: Analysing xenobiotic pathways in a microbial commu-
nity. A) DNA extracted from samples is B) sequenced and the reads
are pre-processed, the tool XenoPath C) can give in output the reads

taxonomy, the functional annotation and the metabolic pathways.
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TABLE S2: Age group-specific antibiotic resistant determinants
(ARDs).

For each ARD, identified by the Wald test (Bonferroni corrected p value
 0.05), the name of the gene, the family, the resistance mechanism
and the antibiotic to which the resistance is conferred are reported.
The annotation was manually curated from the Antibiotic Resistant

Ontology (ARO) from the CARD database.

Genes AR family name AR mechanism antibiotic
aad(6) Aminoglycoside nucleotidyltransferase antibiotic inactivation aminoglycoside
acrD resistance-nodulation-cell division (RND) antibiotic efflux pump antibiotic efflux aminoglycoside
acrE resistance-nodulation-cell division (RND) antibiotic efflux pump antibiotic efflux multidrug
ANT(9)-Ia Aminoglycoside nucleotidyltransferase ANT(9) antibiotic inactivation aminoglycoside
arnD hydrolase (lipopolysaccharide biosynthesis) antibiotic target protection glycopeptide
bcr transmembrane transporter activity antibiotic efflux multidrug
Bl2e_cepa Beta-lactamase antibiotic inactivation beta_lactam
cblA-1 Beta-lactamase antibiotic target alteration beta_lactam
cpxA membrane-localized sensor kinase promoting efflux complex expression antibiotic efflux multidrug
emrB translocase of antibiotic efflux pump: in the emrB -TolC efflux protein antibiotic efflux multidrug
emrD antibiotic efflux pump: major facilitator superfamily (MFS) antibiotic efflux multidrug
emrY antibiotic efflux pump: major facilitator superfamily (MFS) antibiotic efflux multidrug
ermB antibiotic efflux pump: major facilitator superfamily (MFS) antibiotic efflux macrolide-lincosamide-streptogramin
ermF erm 23S ribosomal RNA methyltransferase antibiotic target alteration macrolide-lincosamide-streptogramin
gadW AraC-family regulator of mdtEF/resistance-nodulation-cell division (RND) antibiotic efflux pump antibiotic efflux multidrug
gadX AraC-family regulator of mdtEF/resistance-nodulation-cell division (RND) antibiotic efflux pump antibiotic efflux multidrug
leuO transcriptional activator: LySR family transcriptot factor, activator of the MdtNOP efflux pump antibiotic efflux sulfonamide
lnuA lincosamide nucleotidyltransferase (LNU) antibiotic inactivation macrolide-lincosamide-streptogramin
mdfA transmembrane transport antibiotic efflux multidrug
mdtA resistance-nodulation-cell division (RND) antibiotic efflux pump antibiotic efflux multidrug
mdtB resistance-nodulation-cell division (RND) antibiotic efflux pump antibiotic efflux multidrug
mdtC resistance-nodulation-cell division (RND) antibiotic efflux pump antibiotic efflux multidrug
mdtD transmembrane transporter activity antibiotic efflux multidrug
mdtG antibiotic efflux pump: major facilitator superfamily (MFS) antibiotic efflux multidrug
mdtH antibiotic efflux pump: major facilitator superfamily (MFS) antibiotic efflux multidrug
mdtK transmembrane transporter activity antibiotic efflux multidrug
mdtL transmembrane transporter activity antibiotic efflux multidrug
mdtN antibiotic efflux pump: major facilitator superfamily (MFS) antibiotic efflux multidrug
mdtO antibiotic efflux pump: major facilitator superfamily (MFS) antibiotic efflux multidrug
mdtP antibiotic efflux pump: major facilitator superfamily (MFS) antibiotic efflux multidrug
mdtQ transmembrane transporter activity antibiotic efflux multidrug
mexW resistance-nodulation-cell division (RND) antibiotic efflux pump antibiotic efflux multidrug
OXA-34 Beta-lactamase antibiotic inactivation beta_lactam
robA positive regulator of acrAB efflux antibiotic efflux multidrug
rphB phosphotransferase antibiotic inactivation rifampin
SAT-4 Streptothricine-acetyl-transferase antibiotic inactivation aminoglycoside
tcr3 tetracycline efflux pump antibiotic efflux tetracycline
tetD antibiotic efflux pump: major facilitator superfamily (MFS) antibiotic efflux tetracycline
tolC transmembrane transporter activity antibiotic efflux multidrug
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FIGURE S4:
Relative abundance of AR reads assigned to the Bacteroidetes phylum across ageing. Box-
plots showing the relative abundance distribution of AR reads assigned to Bacteroidetes
in the gut resistome of young adults (Y), younger elderly (E), centenarians (C) and semi-
supercentenarians (S). An age-related decrease was found (Wilcoxon test, Bonferroni cor-
rected p value = 0.05, "*").
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Holeček, Milan (2018). “Branched-chain amino acids in health and disease: Metabolism,
alterations in blood plasma, and as supplements”. In: Nutrition and Metabolism
15.1. ISSN: 1743-7075. DOI: 10.1186/s12986-018-0271-1.

Rietman, Annemarie et al. (2016). “Associations between plasma branched-chain
amino acids, b-aminoisobutyric acid and body composition”. In: Journal of Nutri-
tional Science 5. ISSN: 20486790. DOI: 10.1017/jns.2015.37.

Lackey, Denise E. et al. (2013). “Regulation of adipose branched-chain amino acid
catabolism enzyme expression and cross-adipose amino acid flux in human obe-
sity”. In: American Journal of Physiology - Endocrinology and Metabolism 304.11. ISSN:
01931849. DOI: 10.1152/ajpendo.00630.2012.

Noto, Davide et al. (2016). “Myristic acid is associated to low plasma HDL cholesterol
levels in a Mediterranean population and increases HDL catabolism by enhanc-
ing HDL particles trapping to cell surface proteoglycans in a liver hepatoma
cell model”. In: Atherosclerosis 246, pp. 50–56. ISSN: 18791484. DOI: 10.1016/j.
atherosclerosis.2015.12.036.

Porez, Geoffrey et al. (2012). “Bile acid receptors as targets for the treatment of dyslipi-
demia and cardiovascular disease”. In: Journal of Lipid Research 53.9, pp. 1723–1737.
ISSN: 00222275. DOI: 10.1194/jlr.R024794.

Hirano, S. and N. Masuda (1982). “Enhancement of the 7a-dehydroxylase activity
of a gram-positive intestinal anaerobe by Bacteroides and its significance in the
7-dehydroxylation of ursodeoxycholic acid”. In: Journal of Lipid Research 23.8,
pp. 1152–1158. ISSN: 00222275. DOI: 10.1016/S0022-2275(20)38052-4.

Ishii, Makoto et al. (2014). “Gastrectomy increases the expression of hepatic cy-
tochrome P450 3A by increasing lithocholic acid-producing enteric bacteria in



130 Bibliography

mice”. In: Biological and Pharmaceutical Bulletin 37.2, pp. 298–305. ISSN: 09186158.
DOI: 10.1248/bpb.b13-00824.

Gu, Yanyun et al. (2017). “Analyses of gut microbiota and plasma bile acids enable
stratification of patients for antidiabetic treatment”. In: Nature Communications 8.1.
ISSN: 20411723. DOI: 10.1038/s41467-017-01682-2.

Yao, Lina et al. (2018). “A selective gut bacterial bile salt hydrolase alters host
metabolism”. In: eLife 7. ISSN: 2050084X. DOI: 10.7554/eLife.37001.

Alemán, José O. et al. (2018). “Fecal microbiota and bile acid interactions with sys-
temic and adipose tissue metabolism in diet-induced weight loss of obese post-
menopausal women”. In: Journal of Translational Medicine 16.1. ISSN: 14795876. DOI:
10.1186/s12967-018-1619-z.

Sayers, Eric W. et al. (2010). “Database resources of the National Center for Biotech-
nology Information.” In: Nucleic acids research 38.Database issue. ISSN: 13624962.
DOI: 10.1093/nar/gkp967.

Hansen, Mette Damborg et al. (2020). “Substitutions between potatoes and other
vegetables and risk of ischemic stroke”. In: European Journal of Nutrition, pp. 1–9.

Trichia, Eirini et al. (2020). “The associations of longitudinal changes in consumption
of total and types of dairy products and markers of metabolic risk and adiposity:
Findings from the European Investigation into Cancer and Nutrition (EPIC)-
Norfolk study, United Kingdom”. In: American Journal of Clinical Nutrition 111.5,
pp. 1018–1026. ISSN: 19383207. DOI: 10.1093/ajcn/nqz335.

Franceschi, Claudio et al. (2018). “Inflammaging: a new immune–metabolic viewpoint
for age-related diseases”. In: Nature Reviews Endocrinology 14.10, pp. 576–590. ISSN:
17595037. DOI: 10.1038/s41574-018-0059-4.

Ghosh, Tarini Shankar et al. (2020). “Mediterranean diet intervention alters the gut
microbiome in older people reducing frailty and improving health status: The
NU-AGE 1-year dietary intervention across five European countries”. In: Gut 69.7,
pp. 1218–1228. ISSN: 14683288. DOI: 10.1136/gutjnl-2019-319654.

Hashiguchi, Tiago Cravo Oliveira et al. (2019). “Resistance proportions for eight
priority antibiotic-bacterium combinations in OECD, EU/EEA and G20 countries
2000 to 2030: A modelling study”. In: Eurosurveillance 24.20. ISSN: 15607917. DOI:
10.2807/1560-7917.ES.2019.24.20.1800445.

Cassini, Alessandro et al. (2019). “Attributable deaths and disability-adjusted life-
years caused by infections with antibiotic-resistant bacteria in the EU and the
European Economic Area in 2015: a population-level modelling analysis”. In: The
Lancet Infectious Diseases 19.1, pp. 56–66. ISSN: 14744457. DOI: 10.1016/S1473-
3099(18)30605-4.

OECD (2018). “Stemming the Superbug Tide: Just A Few Dollars More, OECD Health
Policy Studies”. In: OECD Publishing, Paris,

WHO (2014). “Antimicrobial resistance: global report on surveillance 2014”. In: pp. 1–
257. ISSN: 0019-6061. DOI: 9789241564748.

Hendriksen, Rene S. et al. (2019). “Global monitoring of antimicrobial resistance
based on metagenomics analyses of urban sewage”. In: Nature Communications
10.1, p. 1124. DOI: 10.1038/s41467-019-08853-3.

Munk, P et al. (2018). “Abundance and diversity of the faecal resistome in slaughter
pigs and broilers in nine European countries”. In: Nature Microbiology 3.8, pp. 898–
908. DOI: 10.1038/s41564-018-0192-9.

Clemente, Jose C et al. (2015b). “The microbiome of uncontacted Amerindians”. In:
Science advances 1.3, e1500183.



Bibliography 131

Allen, Heather K. et al. (2010). “Call of the wild: Antibiotic resistance genes in natural
environments”. In: Nature Reviews Microbiology 8.4, pp. 251–259. ISSN: 17401526.
DOI: 10.1038/nrmicro2312.

Forslund, Kristoffer et al. (2014). “Metagenomic insights into the human gut resistome
and the forces that shape it”. In: BioEssays 36.3, pp. 316–329. ISSN: 02659247. DOI:
10.1002/bies.201300143.

Huddleston, Jennifer R. (2014). “Horizontal gene transfer in the human gastrointesti-
nal tract: Potential spread of antibiotic resistance genes”. In: Infection and Drug
Resistance 7, pp. 167–176. ISSN: 11786973. DOI: 10.2147/IDR.S48820.

Escudeiro, Pedro et al. (2019). “Antibiotic resistance gene diversity and virulence
gene diversity are correlated in human gut and environmental microbiomes”. In:
mSphere 4.3. DOI: 10.1101/298190.

Francino, M. P. (2016). “Antibiotics and the human gut microbiome: Dysbioses and
accumulation of resistances”. In: Frontiers in Microbiology 6. DOI: 10.3389/fmicb.
2015.01543.

Jochum, Lara and Bärbel Stecher (2020). “Label or Concept – What Is a Pathobiont?”
In: Trends in Microbiology 28.10, pp. 789–792. ISSN: 18784380. DOI: 10.1016/j.tim.
2020.04.011.

Gasparrini, Andrew J. et al. (2019). “Persistent metagenomic signatures of early-
life hospitalization and antibiotic treatment in the infant gut microbiota and
resistome”. In: Nature Microbiology 4.12, pp. 2285–2297. DOI: 10.1038/s41564-
019-0550-2.

D’Amico, Federica et al. (2019). “Gut resistome plasticity in pediatric patients un-
dergoing hematopoietic stem cell transplantation”. In: Scientific Reports 9.1. ISSN:
20452322. DOI: 10.1038/s41598-019-42222-w.

Rampelli, Simone et al. (2020). “Shotgun Metagenomics of Gut Microbiota in Humans
with up to Extreme Longevity and the Increasing Role of Xenobiotic Degradation”.
In: mSystems 5.2. ISSN: 2379-5077. DOI: 10.1128/msystems.00124-20.

Bolger, Anthony M., Marc Lohse, and Bjoern Usadel (2014). “Trimmomatic: A flexible
trimmer for Illumina sequence data”. In: Bioinformatics. ISSN: 14602059. DOI: 10.
1093/bioinformatics/btu170.

Andrews, S. (2010). FastQC: A Quality Control Tool for High Throughput Sequence Data.
URL: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Bateman, Alex et al. (2017). “UniProt: The universal protein knowledgebase”. In:
Nucleic Acids Research 45.D1, pp. D158–D169. ISSN: 13624962. DOI: 10.1093/nar/
gkw1099.

R Core Team (2013). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. Vienna, Austria. URL: http://www.R-
project.org/.

Oksanen, Jari et al. (2018). vegan: Community Ecology Package. R package version 2.5-3.
URL: https://CRAN.R-project.org/package=vegan.

Love, Michael I, Wolfgang Huber, and Simon Anders (2014). “Moderated estimation
of fold change and dispersion for RNA-seq data with DESeq2.” In: Genome biology
15.12, p. 550. ISSN: 1474-760X. DOI: 10.1186/s13059-014-0550-8.

Kolde, Raivo (2019). pheatmap: Pretty Heatmaps. R package version 1.0.12. URL: https:
//CRAN.R-project.org/package=pheatmap.

Harrell Jr, Frank E, with contributions from Charles Dupont, and many others. (2019).
Hmisc: Harrell Miscellaneous. R package version 4.2-0. URL: https://CRAN.R-
project.org/package=Hmisc.



132 Bibliography

Bastian, Mathieu, Sebastien Heymann, and Mathieu Jacomy (2009). “Gephi: An
Open Source Software for Exploring and Manipulating Networks”. In: URL: http:
//www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154.

Schaik, Willem van (2015). “The human gut resistome.” In: Philosophical transactions
of the Royal Society of London. Series B, Biological sciences 370.1670, p. 20140087. ISSN:
1471-2970. DOI: 10.1098/rstb.2014.0087.

Liang, Stephen Y. and Philip A. Mackowiak (2007). “Infections in the Elderly”. In:
Clinics in Geriatric Medicine 23.2, pp. 441–456. ISSN: 07490690. DOI: 10.1016/j.
cger.2007.01.010.

Li, Jing et al. (2018). “Global Survey of Antibiotic Resistance Genes in Air”. In:
Environmental Science and Technology 52.19, pp. 10975–10984. ISSN: 15205851. DOI:
10.1021/acs.est.8b02204.

Maamar, Sarah Ben et al. (2020). “Mobilizable antibiotic resistance genes are present
in dust microbial communities”. In: PLoS Pathogens 16.1. ISSN: 15537374. DOI:
10.1371/journal.ppat.1008211.

Hartmann, Erica M. et al. (2016). “Antimicrobial Chemicals Are Associated with
Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome”. In: En-
vironmental Science and Technology 50.18, pp. 9807–9815. ISSN: 15205851. DOI: 10.
1021/acs.est.6b00262.

Mahnert, Alexander et al. (2019). “Man-made microbial resistances in built environ-
ments”. In: Nature Communications 10.1. ISSN: 20411723. DOI: 10.1038/s41467-
019-08864-0.

Forslund, Kristoffer et al. (2013). “Country-specific antibiotic use practices impact the
human gut resistome”. In: Genome Research 23.7, pp. 1163–1169. ISSN: 10889051.
DOI: 10.1101/gr.155465.113.

Hu, Yongfei et al. (2013). “Metagenome-wide analysis of antibiotic resistance genes
in a large cohort of human gut microbiota”. In: Nature Communications 4. ISSN:
20411723. DOI: 10.1038/ncomms3151.

Sommer, Morten O.A., Gautam Dantas, and George M. Church (2009). “Functional
characterization of the antibiotic resistance reservoir in the human microflora”. In:
Science 325.5944, pp. 1128–1131. ISSN: 00368075. DOI: 10.1126/science.1176950.


