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Chapter 1

Introduction

Science is not belief, but the will to find out

Anonymous

1.1 Background

Machines with moving parts give rise to vibrations and consequently noise. The set-

ting up and the status of each machine yield to a peculiar vibration signature. There-

fore, a change in the vibration signature, due to a change in the machine state, can

be used to detect incipient defects before they become critical. This is the goal of

condition monitoring, in which the informations obtained from a machine signature

are used in order to detect faults at an early stage. In general the basic condition

monitoring process is subdivided in to three main steps: firstly a relevant physical

quantity is measured, then the collected data are processed and machine state fea-

tures are extracted, finally the extracted state features are compared to reference

values. Moreover, beyond detection, condition monitoring methods can also be used

in order to diagnose the type and the evolution of certain defects.

As a matter of fact signals acquired from machines often contain contributions from

several different components as well as noise. Therefore, the major challenge of con-

dition monitoring is to point out the signal content that is related to the state of the

monitored component.

The study on incipient failure detection of gearboxes started over two decades ago,

whilst other rotating machine applications, i.e. IC engines are more recent, because

1



Chapter 1. Introduction

of the complexity of the involved process.

There are a large number of signal processing techniques that can be used in order

to extract interesting information from a measured vibration signal. In the following

the basics of these techniques are outlined.

1.1.1 Time domain

Simple statistical parameters evaluated over the measured time domain signal, can

give some interesting information about potential defects. For example the peak and

root mean square values are referred to the overall vibration level. This statistical

parameters are simple to implement, however they are rather insensitive tools for de-

fect detection. A useful technique in many defect detection is the synchronous signal

averaging technique (SSAT) [1], the result of the SSAT is the signal average, which

is the ensemble average of the angle domain signal, synchronously sampled with re-

spect to the rotation of one particular shaft. In the resulting averaged signal (SA),

the random noise as well as non-synchronous components are attenuated. The main

advantage of the SSAT is the possibility to extract from a complex gearbox vibration

signal, a more simple signal related to the gear of interest. However this technique

has a pivotal drawback that is related to the complexity of the measurement equip-

ment. As a matter of fact an additional sensor are required in order to measure the

rotational shaft speed.

In addition, the SA can be bandpass filtered at the dominant meshing harmonic,

and the application of the Hilbert transform provides both amplitude and phase mod-

ulation functions [2]. This technique is called the narrow-band demodulation tech-

nique.

1.1.2 Frequency domain

Potential defects can be analyzed by the frequency domain spectrum of the vibration

signal. In order to calculate the frequency spectrum of a sampled time signal, the

Fast Fourier Transform algorithm can be used as a numerically efficient method [3].

It is important to notice that all digital Fourier transform methods assume stationary

2



Chapter 1. Introduction

signals, peridic in the time window.

1.1.3 Time-frequency domain

As previously mentioned spectral methods such as Fourier transform assume station-

ary signals. However, localized defects generally introduce non-stationary signal com-

ponents [4], which cannot be properly described by ordinary spectral methods. This

drawback can be overcome by the use of the short-time Fourier transform (STFT) that

is a Fourier transform applied to many short time windows. However, narrow time

windows mean poor frequency resolution. This trade-off between time and frequency

resolution is the main disadvantage of the STFT, which can be solved by the use of

other time-frequecy techniques such as Wigner-Ville distribution (WVD) and Contin-

uous wavelt transform (CWT). The WVD provides better time-frequency resolutions

compared to the STFT, but produces severe interference terms.

1.1.4 Cyclostationary approach

It is well known that many conventional statistical signal processing methods treat

random signals as if they were statistically stationary. Nevertheless, in some cases

even multiple periodicities are involved. This typically requires that the random

signal is modeled as cyclostationary, i.e. the statistical parameters vary in time with

single or multiple periodicities. It can be shown that most rotating machine signals

can be treated as cyclostationary [5–10].

1.2 Research objectives

This study seeks to detect rotating machine defects using a range of techniques in-

cluding synchronous time averaging, Hilbert transform-based demodulation, contin-

uous wavelet transform, Wigner-Ville distribution and spectral correlation density

function.

The detection and the diagnostic capability of these techniques are discussed and

compared on the basis of experimental results concerning gear tooth faults, i.e. fa-

3



Chapter 1. Introduction

tigue crack at the tooth root and tooth spalls of different sizes, as well as assembly

faults in diesel engine. Moreover, the sensitivity to fault severity is assessed by the

application of these signal processing techniques to gear tooth faults of different sizes.

1.3 Overview of the thesis

Chapter 2 introduces the essential signal processing theoretical background. First of

all it highlights two time-frequency techniques, i.e. Continuous Wavelet Transform

(CWT) and Wigner-Ville Distribution (WVD), which overcome the well known prob-

lem of fixed time-frequency resolution in the Short Time Fourier Tranform. Moreover

the cross-term trouble of the WVD is explained, showing a new technique based on

the Fourier-Bessel series expansion proposed by Pachori and Sircar [11], which al-

lows cross-term cut off. Finally, the property of cyclostationary signals are described

and both probabilistic and non-probabilistic approaches are explained.

Chapter 3 concerns the diagnosis of IC engine assembly faults. Two types of faults

are considered, inverted piston and rod only pre-loaded. Firstly ,the experimental

apparatus concerning the vibration tests is explained, highlighting the pro and contra

of the could test compared to the genuine hot test. After that the vibration signal

model for these type of faults is introduced. Finally the acceleration signals acquired

from the engine block during a cold test cycle at the end of the assembly line are

analyzed, as suggested by Antoni in [6].

Chapter 4 seeks the analysis and diagnosis of gear faults. Two different types of

faults are take into account. The first one is a fatigue crack at the tooth root and

the other one are tooth spalls of different sizes. The vibration signal model of these

type of faults are analyzed explaining the differences between the two mathematical

model. The above-mentioned techniques, i.e. continuous wavelet transform, Wigner-

Ville distribution as well as techniques based on a cyclostationary signal model are

applied to the vibration signal data in order to study the effectiveness and diagnostic

capabilities of each signal processing technique.

4



Chapter 2

Non-stationary signal processing

Mathematical Analysis is as extensive as nature herself

Joseph Fourier

This chapter concerns on an essential signal processing theoretical background. De

facto this is an expected step in order to understand all the considerations about the

experimental results in the following chapters.

There are a large number of signal processing techniques that can be used to ex-

tract interesting information concerning defects from a measured vibration signal.

Therefore, the major challenge of condition monitoring is to find the most suitable

for each specific task. As a matter of fact, the type of signal to be analyzed has an

influence on the type of analysis to be carried out, and also on the choice of analysis

parameters. That is why it is a pivotal step to examine the various types of signal

that are encountered in practice.

Rigorously, random signals are described mathematically by using the theory of

probability, random variables, and stochastic processes, which are not the aim of this

work, but a complete stochastic signal analysis can be found in [12].

Figure 2.1 depicts the classical division into different signal types, which actually

is the division into stationary and non-stationary signals. For practical purposes it is

sufficient to interpret stationary functions as being those whose average properties

do not vary with time and are thus independent of the particular sample record used

to determine them. While the term “non-stationary” cover all signals which do not

5



Chapter 2. Non-stationary signal processing

Signal Types

Deterministic Random

Stationary Non-stationary

Figure 2.1: Signal schematic classification

satisfy the requirements for stationary ones.

Several signal processing techniques are applied to stationary signals in both time

and frequency domain for diagnostic purpose of rotating machines, such as time-

synchronous average (TSA), power spectral density (PSD) amplitude and phase de-

modulations and cepstrum analysis.

However, a more recent trend has been toward representation in the time–frequen-

cy analysis, such as wavelet transform and Wigner-Ville Distribution. Moreover an

emerging interest has been reported on modeling rotating machine signals as cyclo-

stationary, which embodies a particular class of non-stationary stochastic processes.

Therefore, in this work attention is focused on time-frequency techniques and on the

cyclostationary approach. Subsequently, the main theoretical background on time-

frequency analysis is reported in section 2.1, highlighting the two time-frequency

techniques, i.e. Continuous Wavelet Transform (CWT) and Wigner-Ville Distribution

(WVD), which overcome the well known problem of fixed time-frequency resolution

of the Short Time Fourier Tranform. Moreover the cross-term trouble of the WVD is

explained in section 2.1.2, showing a new technique based on the Fourier-Bessel se-

ries expansion proposed by Pachori and Sircar [11], which allows cross-term cut off.

Finally, the property of cyclostationary signals are described in section 2.2, in which

both probabilistic and non-probabilistic approaches are explained.

6



Chapter 2. Non-stationary signal processing

2.1 Non-stationary signal analysis

The aim of this section is the description of the theoretical background concerning

the continuos wavelet transform (CWT) and Wigner-Ville Distribution (WVD). These

techniques play a pivotal role in the analysis of non-stationarry signals, because they

provide an alternative to the classical Short-Time Fourier Transform. A detailed

theories on wavelet transform and Wigner-Ville distribution can be found in [4, 13–

18].

2.1.1 From Short-Time Fourier Transform to Continuos Wavelet

Transform

Time–frequency analysis offers an alternative method to signal analysis by present-

ing information simultaneously in the time domain and in the frequency one.

For stationary signals, the genuine approach is the well-known Fourier transform:

X(f) =
+∞∫

−∞

x(t)e−2jπftdt (2.1)

As long as we are satisfied with linear time-invariant operators, the Fourier trans-

form provides simple answers to most questions. Its richness makes it suitable for

a wide range of applications such as signal transmissions or stationary signal pro-

cessing. However, if we are interested in transient phenomena the Fourier transform

becomes a cumbersome tool. De facto, as one can see from equation (2.1), the Fourier

coefficients X(f) are obtained by inner products of x(t) with sinusoidal waves e2jπft

with infinite duration in time. Therefore, the global information makes it difficult to

analyze any local property of x(t), because any abrupt change in the time signal is

spread out over the entire frequency axis. As a consequence, the Fourier Transform

cannot be adapted to non-stationary signals.

In order to overcame this difficulty, a “local frequency” parameter is introduced

in the Fourier Transform, so that the “local” Fourier Transform looks at the signal

through a window over which the signal is approximately stationary.

7



Chapter 2. Non-stationary signal processing

The Fourier Transfrom was first adapted by Gabor [19] to define a two-dimensional

time-frequency representation. Let x(t) a signal which is stationary when looked

through a limited extent window g(t), which is centered at a certain time location τ ,

then the Sort-Time Fourier Transform is defined as follows:

STFT (τ, f) =
+∞∫

−∞

x(t)g∗(t− τ)e−j2πftdt (2.2)

where ∗ denotes the complex conjugate.

Even if many properties of the Fourier Transform carry over to the STFT, the sig-

nal analysis strongly depends on the choice of the window g(t). In other words, the

STFT may be seen as modulated filter bank. De facto, for a given frequency f , the

STFT filters the signal at each time instant with a bandpass filter having as impulse

response the window function modulated to that frequency [14]. From this dual in-

terpretation of the STFT, some considerations about time and frequency transform

resolutions can be granted. De facto, both time and frequency resolutions are linked

to the energy of the window g(t), therefore their product is lower bounded by the

uncertainty principle, or Heisenberg inequality, which states that:

∆t∆f ≥ 1
4π

(2.3)

So, relolution in time and frequency cannot be arbitrarily small and once a window

has been chosen, the time-frequency resolution is fixed over the entire time-frequency

plane, since the same window is used at all frequencies, Figure 2.2 (a).

In order to overcame the resolution limitation of the STFT, one can think at a filter

back in which the time resolution increases with the central frequency of the analysis

filter [14]. Therefore, the frequency resolution (∆f ) is imposed to be proportional to

f :

∆f

f
= c (2.4)

where c is a constant. In other words, the frequency response of the analysis filter

8



Chapter 2. Non-stationary signal processing

time time

frequencyfrequency (a) (b)

Figure 2.2: Time-frequency resolution of: (a) Short-Time-Fourier-Transform (STFT)
and (b) Wavelet Transform (WT)

is regularly spaced in a logarithmic scale. This way, Heisenberg inequality is still

satisfied, but the time resolution becomes arbitrarily good at high frequencies, and

the frequency resolution becomes arbitrarily good at low frequency as well, Figure

2.2 (b ).

The above idea of multiresolution analysis is followed by the CWT, therefore the

continuous wavelet transform is a signal processing technique which overcomes the

resolution limitation of the STFT and is defined as follows [13]:

CWT (s, τ) =
+∞∫

−∞

x(t)ψ∗s
( t− τ

s

)
dt (2.5)

where s and τ are the scale factor and the translation parameter respectively, whilst

ψs(t) is called the mother wavelet:

ψs(t) =
1√
s
ψ

( t

s

)
(2.6)

The term 1/
√

s of the right-end side of equation (2.6) is used for energy normalization.

Some considerations about the time-frequency resolution of the CWT can be obtained

by analyzing the Fourier transform of the mother wavelet ψ(t):

F
{

1√
s
ψ

( t

s

)}
= Ψ(sf) (2.7)

9
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Therefore, if ψ(t) has a “bandwidth” ∆f with a central frequency f0, ψ(st) has a

“bandwidth” ∆f/s with a central frequency f0/s.

Otherwise, by comparing the STFT (equation (2.2)) with the CWT (equation (2.5))

it is important to note that the local frequency defined in (2.2) is linked to the one

defined in (2.5). This is the reason why the terminology “scale” is often preferred

to “frequency”. However, the link between scale and frequency is straightforward,

de facto as the scale increases the wavelet becomes spread out in time and so only

long-time behavior of the signal is taken into account. On the contrary as the scale

decreases the wavelet becomes shrinked in time and only short-time behavior of the

signal is taken into account. In other words, large scales mean global views, while

very small scales mean detailed views. Figure 2.3 plots a mother wavelet for two

different values of the scale parameter s.

(a) (b)

Figure 2.3: Mother Wavelet with (a) large scale and (b) small scale

There are a number of basis functions that can be used as the mother wavelet for

Wavelet Transformation [13]. Since the mother wavelet produces all wavelet func-

tions used in the transformation through translation and scaling, it determines the

characteristics of the resulting Wavelet Transform. Therefore, the details of the par-

ticular application should be taken into account and the appropriate mother wavelet

should be chosen in order to use the Wavelet Transform effectively.

In this work two types of mother wavelets are taken into account, Morlet and Im-

10
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pulse mother wavelet. A remarkable feature of the Morlet wavelet is that its Fourier

spectrum is Gaussian, whilst the Impulse one is taken into account in this work due

to its capability for the analysis of impulse in vibration signals [20].

Morlet and Impulse mother wavelet are defined as follows:

ψ(t)morlet = e−t2/2 cos(2πf0t) (2.8a)

ψ(t)impulse =
√

2πe2πjf0t−|2πt| (2.8b)

where f0 is the central frequency of the mother wavelets. In this work f0 is equal to

0.8125 Hz for Morlet mother wavelet and 20 Hz for Impulse one.

CWT Numerical implementation

In order to solve the CWT integral of equation (2.5), the formulation proposed by

Wang and McFadden [21] is used. Because of the selected wavelets of equations (2.8a)

and (2.8b) satisfy the relation ψ(−t) = ψ∗(t), by using the convolution theorem, equa-

tion (2.5) can be written as:

CWT (s, τ) =
1√
a
F−1

{
X(f)Ψ∗(f/s)

}
(2.9)

Therefore, the CWT can be evaluated by taking the advantage of the FFT algorithm,

and can be straightforwardly implemented in Matlab code.

In the following, an illustrate example is given in order to show the effectiveness

of the two different mother wavelets (equations (2.8a) (2.8b)) considered in this work.

The simulated signal used in the example is:

x(t) = 4e−timp/0.025 sin(2πfimptimp) +
2∑

i=1

sin(2πfit) + n(t) (2.10)

where n(t) indicate a uniformly distributed random noise of mean 1 and:

timp =






t 0 ≤ t/t0 < 1

t−Nt0 N ≤ t/t0 < N + 1

11
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and N is a positive integer.

When t changes from 0 to 1 s, t0 = 0.125 s, fimp = 400 Hz and fi = i×100 Hz, the time

waveform of the signal is shown in Figure 2.4. The continuous wavelet transforms

Figure 2.4: Simulated signal: two sinusoidal components and impulse responses

of the simulated signal are plotted in Figure 2.5 (a) and (b ) in the case of Morlet

and Impuse mother wavelet respectively. According to equation (2.10), the simulated

signal contains three frequency components, i.e. 100 Hz, 200 Hz and 400 Hz. As Figure

2.5 (a) shows, only the component at 100 Hz is clearly visible in the CWT map, whilst

the component at 200 Hz is well localized in time but is spread out in frequency. In

particular the impulsive component are not well depicted with Morlet wavelet. On the

contrary, the Impulse wavelet (Figure 2.5 (b )) is able to detects continuos frequency

components as well as transient components. In fact it is possible to notice that, in

the case of Impulse mother wavelet, the time-frequency signal features become more

explicit in the CWT map.

12
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(a) (b)

Figure 2.5: CWT of the simulated signal x(t): (a) Morlet and (b) Impulse mother
wavelet

2.1.2 Wigner-Ville Distribution

Another time-frequcny characterization of a signal that overcomes the STFT draw-

back is the Wigner distribution. The genuine formulation was introduced by Wigner

in 1932 in the quantum mechanics field. In the 1948 Ville proposed its use in signal

analysis when he defined the analytical signal.

Let x(t) be a continuous signal, the Wigner distribution (WD) of the signal x(t) is

defined as [15]:

Wx(t, ω) =
+∞∫

−∞

x
(
t +

τ

2

)
x∗

(
t− τ

2

)
e−jωτdτ (2.11)

It is important to note that a similar expression exists for the spectra too:

WX(ω, t) =
1
2π

+∞∫

−∞

X
(
ω +

ξ

2

)
X∗

(
ω − ξ

2

)
ejξtdξ (2.12)

Therefore, a symmetry between time and frequency definitions exists:

WX(ω, t) = Wx(t, ω) (2.13)
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Equation (2.13) is an important relation, because it means that the Wigner distribu-

tion of a spectrum can be determined by the Wigner distribution of the related time

signal by switching time and frequency variables.

The WD has a number of useful properties, which have been extensively studied in

[15]. Subsequently are reported only the fundamental ones.

Property 1:

For any signal x(t) we have:

Wx(t, ω) = W ∗
x (t, ω) (2.14)

and so the WD is a real function.

Property 2:

The spectral density is equal to the projection of the WD on the frequency

axis, whilst the instantaneous signal power is equal to the projection on

the time axis:

+∞∫

−∞

Wx(t, ω)dt = |X(ω)|2 (2.15a)

+∞∫

−∞

Wx(t, ω)df = |x(t)|2 (2.15b)

As previously said, Ville suggests the use of the analytic signal in the assessment

of the WD. As matter of fact that, real signals have symmetric spectra. Hence only

one half of the spectrum contains important signal informations, whilst the other

half increases the redundancy of the Wigner distribution. These redundancies can be

removed by the use of the analytic signal.

Consider the case where x(t) is an analytic signal, therefore its imaginary part xI(t)
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is equal to the Hilbert transform of its real part xR(t):

xI(t) =
1
π

+∞∫

−∞

xR(τ)
t− τ

dτ (2.16)

The Wigner distribution of the analytic signal is termed the Wigner-Ville distribution

(WVD).

The WVD is a powerful tool for the time-frequency analysis of vibration signals.

Unfortunately, one of the pivotal problem concerning the WVD is its nonlinear be-

havior, arising from the product of the time-shifted analytical signal with its complex

conjugate. These interferences that can make the interpretation of the WVD diffi-

cult, can be removed by smoothing procedures or signal decomposition via perfect

reconstruction filter bank [22–25].

De facto, the WVD of a signal which is composed by M components is given by:

Wx(t, ω) =
M∑

i=1

Wxi(t, ω)

︸ ︷︷ ︸
auto−components

+
M−1∑

k=1

M∑

l=k+1

2'[Wxkxl(t, ω)]

︸ ︷︷ ︸
cross−components

(2.17)

thus, the WVD of a composite signal has M auto-components and a cross term for

every pair of auto-components. This is a pivotal drawback of the WVD, in fact the

time vibration signal which derive from a mechanical system, such as a gear systems,

contains the meshing frequency as well as additional harmonics. Therefore, some

“ghost” components at frequencies that are not related to the number of gear teeth

can arise, increasing the difficulties in the detections of possible tooth fault.

In the last year Pachori [11] proposed a new technique based on the Fourier-Bessel

(FB) expansion. This method combines the FB expansion and the WVD in order to ob-

tain a time-frequency representation without introducing cross terms. This method is

advantageous over the technique based on the filter bank approach [24, 25], because

it does not need any prior information about the signal frequency-band.
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Fourier-Bessel expansion

Let x(t) be a continuous-time signal considered over an arbitrary interval (0, a), the

Fourer-Bessel series expansion is given by [26]:

x(t) =
L∑

l=1

ClJ0

(
λl

a
t

)
(2.18)

where J0(·) are the first kind zero-order Bessel function, which are the solution of

the Bessel’s differential equation. Where the FB coefficients Cl are computed via the

following equation:

Cl =
2

∫ a
0 tx(t)J0(λl

a t)dt

a2[J1(λl)]2
(2.19)

where J1(·) is the first kind first order Bessel function, λl are the ascending positive

roots of equation J0(t) = 0 and the integral in the numerator of the right-end side of

equation (2.19) is the well-known finite Hankel transform [27]. It is possible to notice

that, as opposite to the sinusoidal basis of the Fourier series, the Bessel functions

decay within the signal range. Figure 2.6 plots the two Bessel functions of the first

kind. The bandwidth of the reconstructed signal can be obtained from the Fourier

transform of the Bessel function. As explained by Arfken in [27], the lth term approx-

imate bandwidth of the right-end side of equation (2.18) is ω ∼= λl/a. Thus, if L terms

are taken into account in the reconstruction of the signal x(t), a maximum bandwidth

of ωmax
∼= λL/a can be obtained.

For multi-component signal, i.e. a signal x(t) that is the sum of M xi(t) terms, each

component can be expansed in FB series via equation (2.18), so a multi-component

signal can be written as:

x(t) =
M∑

i=1

L∑

l=1

CliJ0

(
λl

a
t

)
(2.20)

Thus, by interchanging the summations, the FB series coefficients of a multi-
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Figure 2.6: Bessel function of the first kind of zero order J0(n) and first order J1(n)

component signal can be obtained as:

Cl =
M∑

i=1

Cli (2.21)

If each term of the composite signal is well separated in the frequency domain, then

the signal components will be associated with various distinct clusters of nonover-

lapping FB coefficients. Therefore each component of the signal can be separately

reconstructed by identifying and separating the corresponding FB coefficients.

Figure 2.7 (b ) plots the FB coefficients for a simple signal, i.e. a signal which is the

sum of two sinusoids of frequency 10 and 20 Hz (Figure 2.7 (a)). It is possible to see

from Figure 2.7 (b ) two abrupt changes in the Cl signature at 20th and 40th coefficient

respectively, which represent the two single components of which the signal is com-

posed. Therefore the two signal components (Figure 2.8) can be recovered by choosing

a proper Cl coefficient band, which overlaps the desired component and substituting

it into equation (2.18). As previously said the FB series expansion can be suitable in

order to perform WVD of multi-component signal. The basic parallel description of

the procedure is shown in Figure 2.9; it consists of tree time-sequenced stages: sig-
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(a) (b)

Figure 2.7: Time signal (a) and its FB series coefficients (b)

(a) (b)

Figure 2.8: Reconstructed signal components: (a) first component at 10 Hz, (b) second
component at 20 Hz
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nal component separations via FB series expansion, evaluation of the WVD for each

mono-component signal and summation of these distributions in order to obtain the

WVD of the composite signal.

Component 

separation 

using FB 

expansion

Multi-component 

signal

Mono-component 

signal 1

Mono-component 

signal 2

Mono-component 

signal M

WVD

WVD

WVD

!

WVD of

Multi-component 

signal

Figure 2.9: Block diagram for the WVD of multicomponent signal via FB expansion

WVD numerical implementation

Let x(n∆t) the sampled version of the continuous signal x(t), with sampling interval

∆t and observation period N∆t. The discrete Wigner-Ville distribution of x(n∆t) is

given by [28]:

WV D(n, m) =
1

2N

N−1∑

k=0

x(k∆t)x∗((n− k)∆t)e−j πm(2k−n)
N (2.22)

In order to take the advantages of the FFT algorithm, equation (2.22) can be sepa-

rated into even and odd time samples by replacing n with 2n and 2n + 1 respectively.

The even time sample series is therefore given by:

WV D(2n, m) =
1

2N

N−1∑

k=0

x((n + k)∆t)x∗((n− k)∆t)e−j 2πmk
N (2.23)

while the odd time samples:

WV D(2n + 1, m) =
1

2N
ej πm

N

N−1∑

k=0

x((n + k)∆t)x∗((n− k + 1)∆t)e−j 2πmk
N (2.24)

As an example, the WVD of the simulated signal of equation (2.10) is computed,
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and the results are plotted in Figure 2.10 (a). As plotted, several cross-terms arise

which make the interpretation of the WVD difficult. In fact, only the horizontal lines

at 100 and 200 Hz belong to the simulated signal. Moreover, it is possible identify

the presence of a series of impulses, even if, once again interferences occur and the

impulse signal components lie hidden in a cross-terms series. Therefore, in order to

remove the interferences due to the non linear behavior of the WV distribution, the

simulated signal is decomposed in its main components via FB series expansion. The

procedure shown in Figure 2.9 is applied to the simulated signal of equation (2.10)

and the results are plotted in Figure 2.10 (b ). As plotted, interferences are extremely

(a) (b)

Figure 2.10: (a) WVD of the simulated signal of equation (2.10) and (b) WVD of the
reconstructed signal via FB expansion

reduced. The two sinusoidal components are well represented by the two horizontal

lines at 100 and 200 Hz. Unfortunately, interferences occurring at 400 Hz, and the

genuine impulse signal components are not detectable. This interferences can not

be removed due to the unfeasible choice of a proper Cl coefficient band. De facto, as

Figure 2.11 shows, the two sinusoidal terms yield the two components at 200th and

400th coefficient number. Therefore, these terms can be separated form the original

signal and recovered back, by using equation (2.18). On the contrary, the impulsive

signal components yield to the cluster centered at the 800th coefficient number and

composed of several neighboring components. These component cannot be separated
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and so, the reconstructed signal contains all the impulsive content of the original

signal, as depicted in Figure 2.12.

Figure 2.11: Fourier Bessel series coefficient of the simulated signal of equation 2.10

Figure 2.12: Impulsive components reconstructed via FB series expansion of the sim-
ulated signal
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2.2 Cyclostationarity

This section describes the property of cyclostationarity of signals, in comparison to

stationarity, in both time and frequency domain. A detailed theory of cyclostationary

process can be found in [29–35].

Cyclostationary process are specific non-stationary process characterised by the pe-

riodical variation of the statistical moments. Therefore, in order to understand the

property of cyclostationary signals it is first necessary to describe the stationary one.

2.2.1 Stationary process

Manolakis et al. [12] define a random process x(t) to be stationary in a strict sense

(SS) if the statistical parameters determined for x(t) do not depend upon the choice

of time origin. This definition in general concerns the stationarity property of order

N . In this work, only the first and second order stationarity properties of a random

series are taken into account, because they are strictly related to the cyclostationarity

property of real mechanical signals.

First order stationarity

Mathematically, a random process x(t) is said to be stationary to the first order if:

fx(x(t)) = fx(x(t + τ)) (2.25)

where fx() defines the probability density function and t and τ are arbitrary time

instants. In other words, equation (2.25) states that the probability density function

of the first order random stationary process is invariant in time. Since for random

stationary process the shape of the probability density function does not change as a

function of time, the expected value is a constant function of time too, and is given

by:

E{x(t)} = µx (2.26)
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where E{} denotes the expected value or expectation. This means an average over an

infinite set of occurrences of x(t), where this infinite set is called ensemble. Therefore,

first order stationarity implies that the mean value is time invariant.

Second order stationarity

A random process x(t) is defined as second order stationary if its autocorrelation

function Rx(t, τ) satisfies the following relation:

Rx(τ) = E{x(t)x∗(t− τ)} (2.27)

which states that, the autocorrelation function of the second order stationary random

process x(t) is not a function of t, but only of the delay τ .

A wide sense stationary (WSS) process is both first order stationary and second or-

der stationary and therefore it is one in which the mean value and the autocorrelation

are invariant in time.

2.2.2 Cyclostationary process

Cyclocstationary process is subsequently described both in a probabilistic and non-

probabilistic manner. The probabilistic approach is based on ensemble averages,

whilst the non-probabilistic one is based on time averages. Both developments are

given because for theoretical work the probabilistic method is easier to manipulate,

whilst for experimental signal processing, the time averaging method is more useful.

A probabilistic approach

First order cyclostationary process

A random process x(t) is said to be first order cyclostationary with period T if the

following equation is true:

fx(x(t)) = fx(x(t + nT )) (2.28)
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where n is an arbitrary integer. Equation (2.28) implies that the expected value of a

first order cyclostationary process is a periodic function of time, which is:

E{x(t)} = E{x(t + nT )} (2.29)

Therefore, a first order cyclostationary random process has a mean value which is

periodic with period T as the opposite to the first order stationary process which has

a mean value invariant in time.

Second order cyclostationary process

A random process x(t) is said to be second order cyclostationary if:

Rx(t, τ) = E{x(t + nT )x∗(t + nT − τ)} = Rx(t + T, τ) (2.30)

Therefore, for a second order cyclostationary process the autocorrelation function is

periodic with period T , which is the period of the stocastic process x(t).

A wide sense cyclostationary (WSCS) process satisfied both equations (2.29) and

(2.30). It is important to notice that for a cyclostationary process the autocorrelation

function Rx(t, τ) is expressed as a function of two variables, τ is the “parametric time”,

which is the lag between the two signals, and t is the “real time”, which is the time

origin of the autocorrelation calculation.

It must be pointed out that the expectation plays a pivotal role, in the case of a

probabilistic approach of cyclostationary process. In fact, the properties of the auto-

correlation based on the probabilistic definition are of course dependent on how the

ensemble is defined. An ensemble is a set of an infinite number of instances of the

process under consideration, but it is important to be aware of the similarities and

differences between these instances. De facto, whether the instances can be taken

synchronous or not; this determines if the process is stationary or cyclostaionary. In

order to reveal the cyclostationarity of a process the autocorrelation has to be evalu-

ated over synchronized process instances. In any case, it is important to notice that,

the synchronization of a signal with no inherent periodicity (such as a white noise)
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would not result in a periodic autocorrelation function. The periodicity of the auto-

correlation is not a result of the synchronization of the process instances, but it is

necessary in order to reveal a particular signal’s cyclostationarity.

As the autocorrelation function of equation (2.30) is periodic in t with period T , it

can be expanded in Fourier series:

Rx(t, τ) =
∑

α

Rα
x(τ)ej2παt (2.31)

where α is called the cyclic frequency and is equal to 1/T . The summation can be over

all values of α, although the coefficient Rα
x will be zero unless α is equal to a period

of the autocorrelation function. If Rx(t, τ) is not periodic, then all coefficient of the

summation will be zero except for R0
x.

The quantities Rα
x are called cyclic autocorrelation functions, and are defined as the

Fourier coefficient of Rx(t, τ), such as:

Rα
x(τ) = E{Rx(t, τ)e−j2παt}

= E
{

x
(
t +

τ

2

)
x∗

(
t− τ

2

)
e−j2παt

}
(2.32)

Notice that x(t − τ/2)ej2παt is simply the signal x(t − τ/2) shifted in frequency by

α. This means that, for a cyclostationary signal with a cyclic frequency α exists a

non-zero correlation between x(t) and a shifted version of x(t) by α. This is know as

spectral correlation and is the frequency domain manifestation of cyclostationarity.

A non-probabilistic approach

As previously said the non-probabilistic approach is based on time average. In order

to analyze cyclostationary signal Gardner [34] proposes the following definition:

Rx(t, τ) = lim
N→∞

N∑

n=−N

x
(
t + nT +

τ

2

)
x∗

(
t + nT − τ

2

)
(2.33)

where n is an integer and T is the period. Equation (2.33) is the well known limit

periodic autocorrelation. As one can see, this is a synchronized average, in which the
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averaging is performed over the same signal shifted by an integer number of periods,

where this shifting is done an infinite number of times. As long as the data are

uncorrelated, this is equivalent to an infinite number of different realisations of the

signal, which is the conventional ensemble average.

Because of the autocorrelation function of equation (2.33) is periodic, it can be ex-

panded into a Fourier series. The coefficients of this decomposition are the cyclic

autocorrelation functions, given by:

Rα
x(τ) = lim

T→∞

T/2∫

−T/2

x
(
t +

τ

2

)
x∗

(
t− τ

2

)
e−j2παtdt (2.34)

where α is called the cyclic frequency.

A useful tool for displaying the cyclostationary properties of a signal is the spectral

correlation density (SCD). This function is defined as the Fourier transform of the

cyclic autocorrelation function, and is given by:

Sα
x (f) =

+∞∫

−∞

Rα
x(τ)e−j2πfτdτ (2.35)

This function depends of two frequencies: the spectral frequency f and the cyclic

frequency α. When α = 0 the SCD is equal to the power spectral density of the signal

x(t), whilst at other values of α the SCD is the cross-spectral density of the signal

x(t) and its shifted version by frequency α.

It is important to notice that, as shown in equation (2.11), the Fourier transform of

the autocorrelation function leads to the Wigner distribution. Therefore the SCD can

be obtained from the Fourier series expansion of the WD, as depicted in Figure 2.13,

which shows the relationships among the autocorrelation function, cyclic autocorre-

lation function, spectral correlation density function and the Wigner distribution.

As a first measure of the existence of cyclostationary components in a signal, the

degree of cyclostationarity (DCS) function of the signal can be used, defined for con-
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Autocorrelation 

function (t,!)

Cyclic 

autocorrelation 

function (",!)

SCD (",f)

WD (t,f)

Fτ→f

FSt→αFτ→f

FSt→α

Figure 2.13: Relationships among: Autocorrelation function, Cyclic Autocorrelation
function, Cyclic Spectral Density function and Wigner distribution (F denotes the
Fourier transform, whilst FS denotes the Fourier series expansion)

tinuous signals as follows [5]:

DCSα =

∫ +∞
−∞ |Rα

x(τ)|2dτ
∫ +∞
−∞ |R0

x(τ)|2dτ
(2.36)

The DCS function presents a non-dimensional quantity, which is a measure of the

degree of cyclostationarity of a certain frequency α.

Numerical implementation

The cyclic spectral analysis algorithms generally are subdivided into two classes,

averaging in frequency (frequency smoothing) or in time (time smoothing). Time

smoothing algorithms are considered to be computationally more efficient for gen-

eral cyclic spectral analysis, while frequency smoothing algorithms can be compu-

tationally superior to the time smoothing ones in certain restricted cases, such as

estimation of the cyclic spectrum for small time-frquency resolution product. Compu-

tationally efficient algorithms for the SCD estimation can be found in [36–38], while

non-parametric cyclic spectral estimators are explained by Antoni in [39]. The fre-

quency smoothing algorithms are FFT based time smoothing algorithms, which are

obtained via modification of the kernel transform. A particular computationally effi-

cient FFT based algorithm is the strip spectral correlation algorithm (SSCA), which
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is subsequently described.

All time smoothing algorithms, including SSCA are based on the time smoothed

cyclic cross periodogram [29]

Sα
x (n, f)T =

1
T

〈
XT0

(
n, f +

α

2

)
X∗

T0

(
n, f − α

2

)〉

T
(2.37)

where 〈·〉 is the usually time-averaging operation:

〈·〉 = lim
T←∞

T/2∫

−T/2

· dt (2.38)

The physical interpretation of equation (2.37) is the correlation of spectral compo-

nents of x(t) over time span of T seconds.

As Robert said in [36]: “the spectral component XT0

(
n, f + α

2

)
, also colled com-

plex demodulates, is the complex envelope of narrow-band, bandpass component of a

signal”.

The mathematical formulation of the complex demodulate is the following:

XT0(n, f) =
N/2∑

r=−N ′/2

a(r)x(n− r)e−j2πf(n−r)fs (2.39)

where a(r) is a data tapering window of duration T0 = N ′fs, with fs being the sam-

pling period. The value of N ′ is determined according to the desired frequency reso-

lution (∆f ) used in the algorithm, and is given by:

N ′ =
fs

∆f
(2.40)

The Fourier transform of a(r) plays the role of spectral window. The spectral win-

dow shape is of pivotal importance during data analysis. De facto, data occurring

away form the central lobe of the spectral window are attenuated with respect to the

data occurring at the aperture window center. In this work an Hamming window is

used for the input bandpass filters.
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Firstly, the complex demodulates are computed at each instant, after that they are

correlated by time averaging their conjugate product over a time interval T as follow:

Sα0
x (n, f0)T =

N∑

r=1

XT0(r, f1)X∗
T0

(r, f2)g(n− r) (2.41)

where g(n) is a data tapering window of width T = Nfs. The resulting output se-

quence is the spectral cross correlation estimate at point (f0, α0). The complex de-

modulate frequencies f1 and f2 are related to the spectrum frequency f0 and the

cyclic frequency α0 of the estimated point, by the following relations:

f0 =
f1 + f2

2
α0 = f1 − f2 (2.42)

Figure 2.14 shows a basic implementation of the discrete time smoothed cyclic cross

periodogram, where the symbol ∗ stands for complex conjugation. The SCD eval-

LPF

e−j2πf2n

e−j2πf1n

*

a[n]ej2πf1n

a[n]ej2πf2n

x[n]

x[n]

T0

T

Sα0
XT0

(n, f0)T

Figure 2.14: Flow chart of the time smoothed cyclic cross periodogram

uation using the time smoothed cyclic cross periodogram becomes extremely time-

consuming. In fact equation (2.41) converges to cyclic cross spectrum as T goes to

infinity, therefore it is necessary to keep the sample numbers N as large as possible.

Since N increases the number of complex multiplications rapidly grows as well as the

computationa effort.

The SSCA overcomes the limitations of the time smoothed cyclic cross periodogram.
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The mathematically formulation of the SSCA is the follow [38]:

Sfk+q∆α
x

(
n,

fk

2
− q

∆α

2

)

T
=

N∑

r=1

XT0(r, fk)x∗(r)g(n− r)e
−j2πqr

N (2.43)

where fk = kfs/N ′ with −N ′/2 ! fk ! N ′/2− 1.

The complex demodulated sequence is directly multiplied by the signal complex

conjugate. Then, the resultant signal is smoothed in time by means of a N -point FFT,

where N is the total number of data samples. As a result, the estimated points of the

SSCA lies along frequency skewed family of lines at α = 2fk−2f , as showed if Figure

2.15 in case of N ′ = 8. As a consequence in order to obtain a proper representation of

the SCD a reordering operation is needed. The SSCA flow chart is depicted in Figure

2.16.

f

α

f3

f2

f1

f0

f−1

f−2

f−3

f−4

Figure 2.15: Bi-frequency plane for the strip spectral correlation algorithm for N ′ = 8
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Sα
XT0
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Figure 2.16: Flow chart of the strip spectrum correlation algorithm

The SSCA is an high computational efficiency algorithm only in restricted cases,

e.g. for estimating the cyclic spectrum for a few values of cycle frequency or esti-

mating the cyclic spectrum for small time-frequency resolution product. Therefore, is

subsequently investigated the uses of the WVD for the evaluation of the SCD spec-

trum.

The following amplitude modulated signal is now takes into account:

y(t) = Xn[1 + Amcos(2πfrt)]sin(2πfmt) + n(t) (2.44)

where n(t) is a normally distributed random noise of zero mean. Data are depicted in

the following table.

Table 2.1: Matlab code data
Xm 1
Am 0.3

fr [Hz] 5
fm [Hz] 20

The SCD is now evaluated via the Fourier series expansion of the WVD. The signal

of equation 2.44 is synchronously sampled over a period T = 1/fr with 1024 point

per revolutution. If the signal noise is zeroed, the SCD amplitude is shown in Figure

2.17 (a), for a frequency band of 10-30 Hz and for a cycle frequency band of 0-10 Hz.

Figure 2.17 (b) plots the SCD of the noisy signal in which no average are performed.

Therefore, in order to reduce the noisy component in the SCD spectrum, synchronous

averages have to be performed.
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Figure 2.18 shows the SCD amplitude of the signal in equation 2.44 with two dif-

ferent number of averages. It is possible to notice that increasing the number of

averages from 10 (2.18 (a)) to 40 (2.18 (b)) the amplitudes of the SCD components

decrease.

(a) (b)

Figure 2.17: SCD of the simulated signal of equation 2.44 with: (a) n(t) equal to zero
and (b) n(t) equal to a normally distributed random noise of zero mean

(a) (b)

Figure 2.18: SCD of the simulated signal of equation 2.44: (a) 10 synchronous average
are performed on the time signal and (b) 40 synchronous average are performed on
the time signal

32



Chapter 3

IC engine assembly fault diagnostics

Life is too short to spend writing do loops

Moler, 1993

This chapter concerns the diagnosis of IC engine assembly faults. The pivotal

causes of these type of faults are irregular activities during the engine assembling

operations. These irregular activities can be detected by means of a “could test”.

Nowadays, companies have introduced this test at the end of the assembly lines in

stead of a time consuming “hot test” (e.g. a test on which the engine is fairing). Unde-

niably, these two tests are different, indeed hot test aims to verify the engine perfor-

mance, whilst the cold test aims to verify the anomalies by means of torque, pressure

and vibration measurements.

At present, the hot test technology only indicates to the manufacturer which en-

gines are not good for customers, but does not give any more information regarding

the causes of the fault producing the malfunction. Furthermore, for could test the

amount of time and costs are less than for the hot one. As a matter of fact that hot

test give auxiliary costs for oil and fuel consumption, bench’s maintenance and, in

addition, a complete hot test procedure takes more than ten minutes instead of three

of the could one. Further detail about the could test can be found in [40].

In this study two types of assembly faults are considered, that are subsequently

described. The acceleration signals were acquired from the engine block during a

cold test cycle at the end of the assembly line in sound and faulty conditions. Ad-
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vanced signal processing techniques are applied on the acceleration signal, in order

to highlight the techniques sensitivity for these types of defects. The IC engine sig-

nals are analyzed as suggested by Antoni et al. in [6]. The flow chart of the condition

monitoring procedures for the considered faults is shown in Figure 3.1. Firstly the

signal

angular sampling
WVD

CWT

angular spectral 

moments

residual 

signal

WVD

CWT

{
{

1
st

 order

2
nd

 order

Figure 3.1: Condition monitoring procedure flow chart

signal is synchronously sampled and the time-synchronous average is computed over

two crankshaft rotations. All the subsequently first level techniques are evaluated

over the time-synchronous averaged signal. The Wigner-Ville distribution (WVD)

is compared with the continuous wavelet transform in order to highlight the differ-

ences of these techniques in vibration based condition monitoring. Subsequently the

residual signal is evaluated by subtracting, from the synchronized signal, the time-

synchronous average. In fact the periodicities due to the normal engine operating

conditions are zeroed in the residual signal, which can therefore points out the power

linked to the fault. Both WVD and CWT are applied on the residual signal, moreover,

this signal is analyzed by means of the WV spectrum and the mean instantaneous

power, as suggested by Antoni at al.in [6].
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3.1 Experimental apparatus and fault descriptions

Tests are carried out on a VM Motori turbocharged 2.8 L diesel engine, 4-cylinder

4-stroke with four-valve-per-cylinder (Figure 3.2).

Accelerometer

Torsiometer

Electric 

motor

Acquisition 

system

Data acquisition 

system

Figure 3.2: Could test bench: 2.8 l VM engine and acquisition system

During tests the engine is driven by an electric motor and it is maintained in a

non-firing state. The vibration signal is acquired by means of a piezoelectric general

purpose accelerometer mounted nearby bearing support of the crankshaft (Figure

3.2). The vibration signal is acquired at a constant engine operational speed of 1000

rpm, with a sample frequency of 14 KHz to an extent of 2 s.

An experimental campaign is performed over engines in sound and faulty condi-

tions. In more detail, eight engines in faulty conditions are considered, in which

different assembly faults were artificially introduced one by one in the engines. Addi-

tional details about this test campanign and assembly faults can be found in [40, 41].

In this study only two faulty engines are take in to account, which are listed and

described below:

! Inverted piston (Figure 3.3 (a)): the piston is mounted rotated in such a

way that there is a non correct positioning of the valve sites. As a matter

of fact that the intake valve site area is larger than the exhaust valve site

one, so due to the not correspondence between the valve plates and the proper
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valve sites, during the engine cycle the intake valves hit the exhaust valve sites.

! Road tight with a pre-load of only 3 kgm and not with the correct (Figure 3.3

(b)): the correct tight load of the road screws is of 9 kgm, this non-whell screws

tight causes an irregular rotation of the rod that affect the stroke of the piston,

causing incorrect engine operation and hits.

 

Valve 

sites
Screws 

for the rod 

pre-load

(a) (b)

Figure 3.3: Mechanical devices involved in faulty conditions: (a) inverted piston, (b)
rod pre-loaded

First of all, ten sound engines are tested, in order to obtain statistical parameters.

These values are used to achieve an upper threshold value (such as mean and RMS

values), distinguishing the faulty conditions from the sound one in a “pass/fail ” de-

cision procedure (see [40]). The sound RMS and peak vibration values are listed in

Tables 3.1 and 3.2 respectively.
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Table 3.1: IC engines: healthy RMS values
Engine number RMS value [g]

7331 0.1280
7332 0.0920
7333 0.0979
7356 0.0841
7357 0.0915
7358 0.1178
7421 0.1164
7422 0.1683
7423 0.1020
7518 0.1190

Mean + 3 Sigma 0.1853

Table 3.2: IC engines: peak val-
ues

Engine number peak value [g]
7331 0.694400
7332 0.563000
7333 0.504100
7356 0.449428
7357 0.338000
7358 0.869460
7421 0.549720
7422 1.062900
7423 0.527040
7518 0.361510

Mean + 3 Sigma 1.2715

3.2 IC Engine assembly faults: vibration signal model

This section concerns on the mathematical vibration signal model for IC engine as-

sembly faults. The model presented in this work was proposed by Antoni et al. in

[6], which concerns on a stochastic vibration signal model. In general the vibration

signal (x(t)) acquired from an IC engine can be expressed in the form [6]:

x(t) = xd(t) + xnd(t) + ns(t) (3.1)

where xd(t) and xnd(t) are respectively the deterministic and non-deterministic part

of the signal. The non-deterministic part takes into account the random fluctuations

around xd(t). An additional terms is also considered ns(t), which accounts for some

background noise. Let T the non-rarandom period of the engine cycle. Then xd(t) is

first order cyclostationary:

E{xd(t)} = xd(t + T ) (3.2)

and, without loss of generality, xnd(t) is set to be second order cyclostationary:

Rxndxnd(t, τ) = Rxndxnd(t + T, τ) (3.3)
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whilst ns(t), as previously said is stationary. As a matter of fact that, in order to

single out the cyclostationary content of the signal xnd(t), it is necessary to impose

that xnd(t) and ns(t) are uncorrelated processes.

As explained by Antoni et al. in [6], the vibration signature of an IC engine is

composed by a series of evanescent oscillations due to impact forces associated at

the main events, which occur during the engine operation. As a matter of fact that,

during the engine operation, impact forces arises at the openings and closures of

valves, fuel injections (in diesel engines) and rapid rising of gas pressure during the

combustion. Figure 3.4 shows the complete event diagram for a 4-stroke 4-cylinder

diesel engine, in which the arrow amplitudes are roughly proportional to the impact

force magnitudes. Therefore, in this work, the deterministic part of the expected

Figure 3.4: Engine event diagram: occurrences of combustion, fuel injection, input
valve opening (IVO) and closure (IVC) and output valve opening (OVO) and closure
(OVC)

vibration signal is set equal to a series of impulse response function, such as:

xd(t) = e−θimp/0.001Xdcos(2πfθimp) (3.4)

where θimp defines the beginning of an engine event. Each term of the left-end side

of equation 3.4 is the evanescent oscillation that occurs in the vibration signal. The

cyclostationary signal counterpart is modeled as a cyclic impulse modulated noise.

Figure 3.5 depicts the vibration signal model considering only engine pressurizations,

whilst Figure 3.6 plots the two parts in which the vibration signal model is composed.

In particular Figure 3.6 (a) shows the stationary part of the vibration signal model

concerning only the pressurization of the four cylinders, while Figure 3.6 (b ) plots the

cyclostationary one plus stationary random noise.
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Figure 3.5: IC engine vibration signal model considering only engine pressurizations

(a)

(b)

Figure 3.6: IC engine vibration signal model considering only engine pressurizations:
(a) stationary part, (b) cyclostationary part
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3.3 Inverted piston: data analysis

Figure 3.7 plots the vibration time signal acquired form the engine block. In this

case one of the four engine pistons is assembled inverted. This time signal presents

marked acceleration peaks, mainly arisen form the healthy cylinder. Firstly this sig-

Figure 3.7: Inverted piston: time signal

nal is synchronously resampled. The information about the rotational position of the

engine is generated using signal peaked up by a crank sensor with 360 pulse/rev. The

synchronous average is shown in Figure 3.8 (a), whilst Figure 3.8 (b) plots the com-

parison among RMS and Peak vibration values both in sound and faulty conditions,

where the RMS and Peak values in sound condition are obtained from Tables 3.1 and

3.2.

The vibration signal synchronous average is evaluated over two crankshaft rota-

tions because, as a matter of fact that, the periodicity of a 4-stroke engine is of two

crankshaft rotations. This synchronous average completely depicts the nature of the

signal. In fact, one can see that the signal period is mainly composed by four impulse

response, that are linked to the engine working cycle.
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The comparison showed in Figure 3.8 (b) highlights the presence of a defect. In

fact, both RMS and Peak signal values are greater than the sound ones. These re-

sults are plenty for a “pass/fail ” decision procedure. The plot of Figure 3.8 (a) is

(a) (b)

Figure 3.8: Inverted piston: time-synchronous average, faulty and healthy RMS val-
ues, faulty and healthy peak values

superabounded by two marked 360◦ spaced peaks. In order to better understand this

result, one needs to associate at the synchronous average the engine event diagram

(Figure 3.9). By this comparison one can notes that the pivotal variations in the syn-

chronous average are related to the pressurization of cylinder 1 and to the opening

of the intake valve 1. De facto, as previously said the intake valve site area is larger

than the intake valve site one, so the intake valves hit the exhaust valve site areas.

This phenomenon occurs two time per engine cycle. The first hit arise whet the piston

1 is on the top dead point (TDP) because, in diesel engine the combustion chamber

volume is narrow, in order to achieve high compression ratio, so the intake valves hit

the exhaust valve site areas on the piston. The second hit arise just before the TDP

of piston 1 while the intake valves are opened. In order to confirm the presence and

the location of the defect second order signal processing techniques are applied to this

vibration signal.

Figure 3.10 plots the mean instantaneous power of the synchronous average (see

Appendix A), highlighting the Peak value in the case of sound and faulty conditions,
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Figure 3.9: Inverted piston: time-synchronous average and engine event diagram

while in Figure 3.11 the mean instantaneous power is associated to the engine event

diagram. Figure 3.10 clearly confirm the presence of a defect, by the comparison

Figure 3.10: Inverted piston: mean instantaneous power, faulty and healthy peak
values

of the Peak values and the average of the mean instantaneous power Peak values of

sound motors. Moreover, by looking the event diagram one can notice that the largest

energy amount is localized at the pressurization of the first cylinder, which confirm

that the fault is located in the first cylinder.

Subsequently, the Wigner-Ville distribution (WVD) is evaluated on the synchronous

averaged signal and on the residual signal. As previously said, the residual signal is

obtained by subtracting the synchronous average from the time signal, highlighting
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Figure 3.11: Inverted piston: mean instantaneous power and engine event diagram

so the cyclostationary signal content. The goal of this analysis is twofold: firstly the

WVD can express the frequency content and location of the fault at the same time;

secondly the WVD of the residual signal is clearer than the synchronous average one,

because the deterministic part of the signal is zeroed and so largest energy content

is localized at the fault position. At the end the WVD is compared with the continuos

wavelet transform (CWT), in order to emphasize the differences of these techniques

in vibration based condition monitoring. Figure 3.12 (a) plots the WVD of the syn-

(a) (b)

Figure 3.12: Inverted piston: Wigner-Ville distribution of the time-syncrhronous av-
erage, Wigner-Ville distribution of the residual signal

chronous average, on which the energy content is localized in two marked 360◦ spaced

vertical lines. As previously said these are the energy contents due to the impacts at

the first cylinder pressurization and at the closures of the first cylinder intake valves.

Moreover, the fault location and its frequency content is well established from the
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WVD of the residual signal, Figure 3.12 (b). As one can see, both WVD shown the

presence and the location of the fault, however the WVD of the residual signal clearly

evinces the fault frequency content.

(a) (b)

Figure 3.13: Inverted piston: CWT of the time-syncrhronous average, CWT of the
residual signal

The CWT (impulse mother wavelt is used) of both synchronous average and resid-

ual signal are computed (Figures 3.13 (a) and (b)). The CWT detects the fault location

even if, the frequency content is further spread in angle than the WVD. In spite of

this one can clearly see that the CWT map is more clear than the WVD map due to

the low level of the other frequency components (there are not cross-terms), yielding

the fault detection straightforwardly. Moreover, the CWT map of the residual signal

shows different engine events. In fact, the straight vertical line at about 553◦ can

be related to the pressurization of the cylinder two, while the slightly visible vertical

lines at about 188◦ and 225◦ can be related to the opening of the output valve and to

the pressurization of the third cylinder respectively.

Therefore, both WVD and CWT are able to detect the assembly fault location and

its frequency content. In addition CWT map of the residual signal is shown to be

more sensitive that the WVD in engine event locations.

Finely, as proposed by Antoni at al. in [6], the Wigner-Ville spectrum (WVS) of the

residual signal is computed and the results are shown in Figure 3.14. As defined by
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Antoni the Wigner-Ville spectrum is the expected value of the WVD. As previously

Figure 3.14: Inverted piston: Wigner-Ville spectrum

explained, the two clearly vertical lines concerning the pressurization of the first

cylinder and the opening of the first cylinder intake valve are related to the mechan-

ical fault. In addition further engine events are shown in the WVS. In particular the

vertical lines at about 115◦, 294◦, 475◦ and 654◦ are related to the closure of the intake

valves of the cylinders 3, 4, 2 and 1 respectively.

The two vertical lines around 193◦ and 216◦ are related to the opening of the first

cylinder output valve and to the pressurization of the third cylinder, while the vertical

lines at about 552 and 576 degrees correspond to the opening of the fourth cylinder

output valve and to the pressurization of the second cylinder.

The small angular shift that occurs among the vertical lines of the WVS and the

corresponding intake valve closure arrows in the event diagram is due to ordinary

delay time of valve closure, which take place in practice.

3.4 Pre-loaded rod: data analysis

Figure 3.15 plots the vibration time signal acquired form the engine block. In this

case one of the four engine rods is only pre-loaded and not completely tights. The time
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signal present further acceleration peaks spread in the signal, just at the opposite of

the foregoing case. As previously achieved the signal is synchronously resampled and

Figure 3.15: Connecting rod tight with a pre-load of only 3 kgm: time signal

the synchronous average is computed over two crankshaft rotations (Figure 3.16 (a))

and a comparison among sound and faulty RMS and Peak values is pointed out (Fig-

ure 3.16 (b)). In this case, the comparison among sound and faulty RMS and Peak

(a) (b)

Figure 3.16: Connecting rod tight with a pre-load of only 3 kgm: (a) time-synchronous
average, (b) faulty and healthy RMS values, faulty and healthy peak values
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values (see Figure 3.16 (b)) does not reveal the presence of any defect. As it happens

both healthy RMS and Peak signal values are under the sound one. Nevertheless,

the acceleration peaks of the synchronous average can be physically explained by

inspecting the engine event diagram (Figure 3.17). As shown in Figure 3.17, accel-

Figure 3.17: Connecting rod tight with a pre-load of only 3 kgm: time-synchronous
average and engine event diagram

eration peaks are present on the pressurization of each cylinder. Moreover other

acceleration peaks appear at the closure of the intake valves. In fact, due to the low

tight of the rod screws, there are wide clearances between rod and crankshaft. These

clearances are abruptly retrieved whereas there is a change in the resultant force

acting on rod. The angular mismatch in the acceleration peaks and the closure of the

intake valves of cylinders 3 and 4, are due to the ordinarily delay on the closure of

the intake valves, which take place in practice.

Therefore, this type of analysis is inadequate to predict the presence and position

of the fault. For that reason, a second order analysis is performed on the time-

synchronous average. The mean instantaneous power of the synchronous average

is evaluated and plotted in Figure 3.18, which also displays the healthy Peak value

compared with the sound one. As one can clearly see, the presence of the defect is

confirmed by the differences in the Peak values, the Peak value of the synchronous

average mean instantaneous power is approximately ten times the sound one. More-

over, by the comparison with the engine event diagram (Figure 3.19), one can notice
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Figure 3.18: Connecting rod tight with a pre-load of only 3 kgm: mean instantaneous
power, faulty and healthy peak values

that the largest energy amount is related to the closure of the third cylinder intake

valves, which point out the defect location. So, the analysis of the mean instantaneous

power makes know that the not correctly tight rod is located in the third cylinder.

Figure 3.19: Connecting rod tight with a pre-load of only 3 kgm: mean instantaneous
power and engine event diagram

As in the previous section the WVD of the synchronous average and the residual

signal are computed and compared with the CW transforms respectively.

Figures 3.20 (a) and (b ) plot the WV distributions of the synchronous average and

residual signal respectively. The WVD of the synchronous average is of difficult inter-
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pretation. De facto, according to Figure 3.16 (a), vertical lines appear at the pressur-

ization of each cylinder and at the closure of the intake valves. Unfortunately, because

of the acceleration amplitude associated to the engine events are about two times the

background noise (see Figure 3.19), the vertical lines associated to the engine events

are not clearly visible in the WVD, and in addition several cross-terms of relevant

amplitude arise in the distribution. Therefore, the fault presence and its location con

not be established from Figure 3.20 (a). For that reason the WVD of the residual

(a) (b)

Figure 3.20: Connecting rod tight with a pre-load of only 3 kgm: Wigner-Ville dis-
tribution of the time-syncrhronous average, Wigner-Ville distribution of the residual
signal

signal is computed (see Figure 3.20 (b )). As previously said, the residual signal take

into account the cyclostationary content of the signal, and so by computing the WVD

of this signal one can obtain a distribution in which the energy content is mainly

restricted at the fault location. In fact, Figure 3.20 (b ) have only a vertical line at

the closure of the intake valves of the third cylinder where the rod is only pre-loaded.

The CWT (impulse mother wavelt is used) of both synchronous average and residual

signal are computed (Figures 3.21 (a) and (b )). As it happens before, the CWT map

is more clear than the WVD. In particular the CWT map of the synchronous average

(Figure 3.21 (a)) detects the four cylinder pressurization and the intake valve closure

of the third cylinder, Figure 3.22. Even if a remarkable vertical line corresponding

to the IVC3 is present in the CWT map of the synchronous average (Figure 3.22), it
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is not enough in order to assure the presence of a mechanical fault. Therefore, the

CWT of the residual signal is an expected step for the mechanical fault localization.

As depicted in Figure 3.21 (b ) the presence of the pre-loaded rod is highlighted by the

marked vertical line at about 100◦.

Hence, as previously observed in WVD analysis, the fault location can by only

achieved by the analysis of the residual signal.

Finally, the last proof of the mechanical fault presence can be obtained by the WVS

of the residual signal. De facto, Figure 3.23 shows only a vertical line corresponding

to the IVC3 highlighting so the fault location.

(a) (b)

Figure 3.21: Connecting rod tight with a pre-load of only 3 kgm: CWT of the time-
syncrhronous average, CWT of the residual signal
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four cylinder 

pressurization

IVC3

Figure 3.22: Connecting rod tight with a pre-load of only 3 kgm: CWT of the time-
syncrhronous average

Figure 3.23: Connecting rod tight with a pre-load of only 3 kgm: Wigner-Ville spec-
trum
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Gear fault diagnositcs

Life is too short to spend writing do loops

Moler, 1993

The goal of this chapter is the analysis and diagnosis of gear faults. On this work

two different types of faults are take into account. The first one is a fatigue crack at

the tooth root and the other one are tooth spalls of different sizes. As previously said,

only the test campaign concerning the tooth spalls is carried out in this work, whilst

the data concerning the fatigue crack are obtained from a previous work of Dalpiaz

et al. [42].

In the work carried out by Dalpiaz et al., tests were performed on a power circulat-

ing gear testing machine composed of two identical single-stage gear units mounted

back to back, with a locked-in torque. Each gear unit contains a spur gear pair com-

posed by a 28 teeth (pinion) and by a 55 teeth (wheel). Further data about gears and

testing machine can be found in [42, 43]. A real fatigue crack is introduced in one

of the wheel teeth mounted in one gear unit. The whole tooth flank is affected by

the crack, which is extended between the two wheel faces. The experimental data

concerning this work deal with two crack lengths, corresponding to about 20% (small

crack) and 45% (large crack) of whole fracture surface after breakage, and are rela-

tive to a nominal pinion torque of 385Nm and nominal pinion speed of 1000rpm; thus

the meshing frequency is 466.67Hz.

The test campaign carried out in this work concerns the tooth spalls in helical gear.
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The tooth spalls are mechanically introduced on the gear via a drilling process. In

order to compare the sensitivity of different signal processing techniques to faults

detection, different spall sizes were mechanically introduced along the gear tooth

face. The spall position on the tooth face is chosen in such a way that, during the

faulted gear tooth engagement, the tooth spall is crossed by the line of contact. In

more detail, five different spall lengths are taken into account in this work, four of

these are located at the mean point of the gear tooth face, whilst the last one is located

nearby the beginning of the tooth face in such a way that, the smack affects only the

beginning of the teeth contact during the gear meshing period. The spall dimensions

are given with respect to the tooth length and are listed in Table 4.1, whilst some of

these spalls are shown in Figure 4.1. A clamp device is build up in order to the well

Table 4.1: Dimensions of gear tooth spalls

ID Fault description
Smack 2 mm along the tooth profile, 0.6 mm depth, 0.8 mm at the beginning of

the tooth face
Sp12.5% 2 mm along the tooth profile, 0.6 mm depth, 2mm across the tooth face

(12.5% of the tooth face width)
Sp25% 2 mm along the tooth profile, 0.6 mm depth, 4 mm across the tooth face

(25% of the tooth face width)
Sp50% 2 mm along the tooth profile, 0.6 mm depth, 7.8 mm across the tooth face

(50% of the tooth face width)
Sp100% 2 mm along the tooth profile, 0.6 mm depth, 15.5 mm across the tooth face

(100% of the tooth face width)

positioning of pieces in the CNC drilling machine. Figure 4.2 (a) shows the drilling

process, whilst Figure 4.2 (b ) plots the clamp device. The correct position of gears

during the drilling process is a pivotal goal for the process repeatability. As a matter

of fact that the spall position with respect the gear tooth face have to be the same for

all the tested gears. In order to achieve that, a gear tooth is built-up on the clamp

device surface, which assures, by the engagement with the gear, the relative position

of the gear tooth face with respect to the drill.

After the drilling process, the faulted gears are mounted in the first stage of a gear

unit, which contains two spur gear pairs mounted back to back. The experimental

apparatus is subsequently described in section 4.3.
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(a) (b)

(d)(c)

Figure 4.1: Gear tooth spall: (a) Smack, (b) Sp12.5%, (c) Sp25%, (d) Sp100%

(a) (b)

Figure 4.2: Gear tooth spall: (a) drilling process, (b) clamp device
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The structure of the chapter is the follows: first of all the data concerning fatigue

crack in gear tooth are analyzed, a vibration signal model for this type of fault is

presented in section 4.1, whilst the analysis results are described in section 4.2; fi-

nally tooth spalls are taken into account, section 4.3 concerns the description of the

“experimental model” used in order to carry out tests on faulty gears, while sections

4.4 and 4.5 describe respectively the vibration signal model and the analysis results

for this type of fault.

4.1 Fatigue cracks: vibration signal model

In this section a mathematical explanation of the vibration produced by a spur gear

pair affected by the presence of a fatigue crack in a tooth gear is presented. Several

investigators focused their attention in this vibration signal model, such as [2, 42, 44,

45].

The principal source of vibratory excitation of a pair of involute gears is relative to

the meshing forces. For a pair of gears that mesh under a constant load and speed,

one of which has z teeth and is rotating with frequency of fr Hz, the fundamental

meshing vibration is given by fm = zfr Hz. The meshing vibration x(t) may than be

expressed as a sum of N harmonics, each of amplitude Xn:

x(t) =
N∑

n=0

Xncos(2πnfmt + φn) (4.1)

where φn is the phase angle of the nth meshing harmonic. Assuming that the gear as

a local defect such as a tooth fatigue crack, which effects the stiffness of the tooth and

so produces changes in the vibration as the affected tooth meshes. These changes in

vibration signal are defined by the amplitude and phase modulations [2]. Therefore

the modulated gear meshing vibration y(t) is given by:

y(t) =
N∑

n=0

Xn[1 + an(t)]cos[2πnfmt + φn + bn(t)] (4.2)

where an(t) and bn(t) are the amplitude and phase modulations, respectively. As the
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modulation functions are periodic with the gear shaft rotation, they may be expanded

in Fourier series:

an(t) =
M∑

m=0

Anmcos(2πmfrt + αnm) (4.3a)

bm(t) =
M∑

m=0

Bnmcos(2πmfrt + βnm) (4.3b)

The spectrum of y(t) is composed by the fundamental frequency fm and its har-

monics surrounded by modulation sidebands. Both amplitude and phase modulation

sidebands are spaced at intervals of the modulating function frequencies (e.g. fr).

If there is a single frequency modulating function, such as the frequency rotation,

amplitude modulation produces a single pair of sidebands, on the contrary, phase

modulation produces a family of sidebands. Usually, in gears systems, there are both

amplitude and phase modulation. Even though amplitude and phase modulation pro-

duce symmetrical families of sidebands when acting alone, the phase relationships on

either side of the carrier frequency are different and the combination of the two fam-

ilies of sidebands can either reinforce or cancel. So, this results in an asymmetrical

family of sidebands.

In order to better understand this phenomenon, the foregoing signal model is herein

implemented in Matlab code. Three examples are subsequently show, which concerns

a signal with only the fundamental frequency fm with: amplitude modulation at fre-

quency fr (e.g. 1), phase modulation at frequency fr (e.g. 2) and both amplitude and

phase modulation at frequency fr (e.g. 3). Data are listed in table 4.2.

Table 4.2: Vibration signal model of tooth fatigue crack: Matlab code data

e.g. 1 e.g. 2 e.g. 3
Amplitude Modulation Phase Modulation Amplidute and Phase Modulations

fm[Hz] 466.66 466.66 466.66
fr[Hz] 8.4848 8.4848 8.4848

X1 1 1 1
A11 0.5 0 0.5
α11 0 0 0
B11 0 0.5 0.5
β11 0 0 0
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Examples one and two consist on amplitude and phase modulation respectively,

only the first term of the right end side of equations (4.3a) and (4.3b) is considered.

On second thought in the third example both amplitude and phase modulation are

considered.

Figure 4.3 (a) and (b) show the time signal in case of amplitude and phase modula-

tion respectively, whilst Figure 4.4 (a) and (b) plot the own spectrums. These figures

highlight as previously said, which state that for an amplitude modulation only a pair

of sidebands arise instead of a sideband family in case of phase modulation. In case

of both amplitude and phase modulations, Figure 4.5, these sidebands are combined

and they result in an asymmetrical family of sidebands.

(a) (b)

Figure 4.3: Signal model for a fatigue crack in gear tooth, time signal: (a) amplitude
modulation and (b) phase modulation
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(a) (b)

Figure 4.4: Signal model for a fatigue crack in gear tooth, FFT of time signal: (a)
amplitude modulation and (b) phase modulation

(a) (b)

Figure 4.5: Signal model for a fatigue crack in gear tooth: (a) time signal with am-
plitude and phase modulations, (b) FFT of time signal with amplitude and phase
modulations
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4.2 Fatigue cracks: data analysis

The goal of this section is the analysis of fatigue crack in gear tooth. The former

vibration signal processing techniques described in Chapter 2, i.e. continuous wavelet

transform, Wigner-Ville distribution as well as techniques based on a cyclostationary

signal model are applied to the gearbox vibration signals.

Two vibration velocity signals are take into account in this work. These signals

are obtained via integration of the vibration acceleration signals measured form the

casing of the damaged gearbox unit, by means of tho Brüel & Kjær 4369 piezoelectric

accelerometers, more details on the acquisition data procedure can be found in [42].

The two accelerometers were mounted one, with the sensitivity axis parallel to the

shaft axis (“axial” accelerometer), and the other close to the wheel bearing in a radial

direction (“radial” accelerometer). In addition one-per-wheel revolution tachometer

signal was taken using an inductive proximity probe.

Figure 4.6 shows the time-synchronous averages (TSA) of the four velocity vibra-

tion signals under consideration, namely the axial and radial vibration velocity for

both crack lengths, which are computed over 28 wheel rotation (cracked gear). As

one can see small alterations in vibration pattern can be noted in some of the experi-

mental data, but this indication is not very clear, in addition no visible variations can

be observed by comparing the small crack with the large one, for both axial and ra-

dial vibration velocities. The corresponding amplitude spectra are plotted in Figure

4.7 with a large-amplitude scale in order to better show sidebands. The analysis is

limited to the wheel order range 0-500, which includes the most meaningful mesh-

ing harmonics. As expected, the fundamental and harmonic of the tooth meshing

frequency dominate the spectra, moreover the family of the wheel sidebands appear

very clearly in the spectra. Due to the strong influence of transfer function within

meshing gear teeth and accelerometer positions, a different relative amplitude be-

tween harmonics for axial and radial vibrations can be noted.

The presence of sidebands at meshing harmonics is a consequence of a wheel tooth

fault, but this type of analysis is insensitive to the damage severity. Therefore further
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(a) (b)

(d)(c)

Figure 4.6: Time-synchronous average of the velocity signals. Axial vibration veloc-
ity: (a) small and (b) large cracks. Radial vibration velocity: (c) small and (d) large
cracks
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(a) (b)

(c) (d)

Figure 4.7: Amplitude spectrum of the time-synchronous average evaluated on one
wheel rotations. Axial vibration velocity: (a) small and (b) large cracks. Radial vibra-
tion velocity: (c) small and (d) large cracks
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investigation is needed.

In the following, time-frequency techniques, such as continuous wavelet transform

(CWT) and Wigner-Ville distribution (WVD) are applied to the synchronized signals.

The use of time-frequency techniques are suggested by the signal nature. As a matter

of fact that the presence of local faults, such as a crack in one of the gear teeth, intro-

duces short-duration changes in the vibration signal. Therefore the non-stationary

signal characteristic can be well detected by time-frequency techniques.

In order to investigate the sensitivity of the method, the CWT was applied to the

radial vibration signal in the case of small crack, because, as highlighted in [42] this

signal seems to be scarcely affected by the fault.

Two types of mother wavelet are taken into account in this work, the Morlet and

the Impulse mother wavelets. The reason of this choice is related to the nature of the

signal. De facto, as previously said, the presence of local faults, such as a crack in

one of the gear teeth, introduces short-duration changes in the vibration signal and

so, the Impulse wavelet can be more sensitive to the fault localization whit respect

to the Morelt one. Morlet wavelet is chosen as comparison parameter, because of the

large use in literature of this type mother wavelet for gear fault diagnosis procedures

[46, 47].

The changes in the vibration signal due to the cracked tooth take-over, causes an in-

crement of the CWT amplitude of short-duration over a wide frequency range. There-

fore, the fault location can be pointed out by an abrupt time-change in the CWT

amplitude map.

The CWT of the TSA is computed using both Morlet and Impulse mother wavelets

and the nalysis is carried out in a 50-400 wheel order band, which includes the most

important meshing harmonics. Figure 4.8 (a) and (b) shows the results of this anal-

ysis. A slightly change in the CWT map can be noted for Morlet mother wavelet

(Figure 4.8 (a)), at about 150◦ nearby the 270th wheel order, whilst this transition

becomes evident in case of Impulse mother wavelet (Figure 4.8 (b)). Moreover the

Impulse mother wavelet is able to show the fundamental meshing frequency and its

harmonics, at 55th, 110th and 165th wheel orders.
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As explained in [42], the presence and the location of the faulted tooth can be ob-

tained by a careful inspection of the CWT cross-section. As plotted in Figures 4.9

and 4.10, it is possible to clearly distinguish the transient effects introduced by the

cracked tooth, at about 150◦.

Therefore, the foreign analysis shows that the choice of the analyzing mother

wavelet plays a pivotal role in the detection of transient faults. In particular, by

the use of an Impulse mother wavelet, local faults that introduce small transient

events in the vibration signal, can be well detected. Moreover the analysis of the

CWT cross-section is helpful in the vibration based diagnostic procedures.

(a) (b)

Figure 4.8: Continuous wavelet transform of the time-synchronous-averaged radial
vibration velocity in the case of small crack: (a) Morlet mother wavelet, (b) Impulse
mother wavelet

The CWT map is followed compared to the Wigner-Ville distribution of the time-

shynchronous average, Figure 4.11.

Several horizontal dashed lines are present in the WVD, some of them are related

to the harmonics of the fundamental meshing frequency, i.e. 110th, 165th, 220th and

255th wheel order, the others are cross-terms that are due to the non-linear behavior

of the transformation. Moreover this energy distribution does not clearly reveal the

presence of the defect.

As explained in Chapter 2, these cross-terms can be removed by the combination of

the WV with the Fourier-Bessel (FB) series expansion, which decomposes the multi-
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(a) (b)

270
th

 wheel order

270
th

 wheel order

Figure 4.9: Continuous wavelet transform of the time-synchronous-averaged radial
vibration velocity in the case of small crack: (a) Morlet mother wavelet, (b) corre-
sponding cross section at 270th wheel order

(a)

270
th

 wheel order

270
th

 wheel order

(b)

Figure 4.10: Continuous wavelet transform of the time-synchronous-averaged radial
vibration velocity in the case of small crack: (a) Impulse mother wavelet, (b) corre-
sponding cross section at 270th wheel order
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Figure 4.11: Wigner-Ville distribution of the time-synchronous-averaged radial vi-
bration velocity in the case of small crack

component input signal into its constituents.

The signal is firstly decomposed in its fundamental components and than the WVD

of each component is evaluated and the total WVD is obtained by the summation of

the partial WVD.

Figure 4.12 depicts the Fourier-Bessel series coefficient. By this plot one can see

the meshing frequency and its fundamental harmonics, which are depicted by the

seven clusters in the FB coefficient plot. In addition this plot confirm the presence

of the tooth fault, in fact each of this clusters is composed by a distinct oscillation

surrounded by several neighboring components. Each of these seven main oscillation

is a sinusoidal component, which are the fundamental meshing frequency and its

harmonics respectively. The other neighbouring components composing the clusters

are due to the amplitude and phase modulations.

Figure 4.13 plots the WVD of the signal decomposed into Fourier-Bessel series ex-

pansion. As one can see, this energy distribution is unaffected by cross-terms. More-

over the meshing frequency harmonics are clearly depicted, and a localized incre-

ment of the WVD amplitude is visible at the 275th wheel order, at about 150 degrees.
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Figure 4.12: Fourier-Bessel of the time-synchronous-averaged radial vibration veloc-
ity

Figure 4.13: Wigner-Ville distribution of the time-synchronous-averaged radial vi-
bration velocity after the Fourier-Bessel signal decomposition
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However the transient event occurring in the WVD amplitude at the 5th meshing

harmonic is not enough for the complete fault detection. So, in order to look for local

alterations, one can observe the fundamental signal component obtained from the FB

series decompositions, which contains informations about the amplitude alteration

in the reconstructed WVD. As described in [42], by analyzing the phase modulation

Figure 4.14: 5th meshing harmonic reconstructed from Fourier-Bessel series expan-
sion of the time-synchronous-averaged radial vibration velocity

of the time-synchronous-averaged radial vibration velocity, the 5th meshing harmonic

was the most sensitive to the local defect. In fact (see Figure 4.14), the 5th meshing

harmonic extracted from the time-synchronous-averaged radial vibration velocity, via

FB decomposition, give rise to an abrupt fall at about 150 degrees, which correspond

to the cracked tooth engagement.

Therefore, the WVD is inadequate for the fault localization in vibration signal com-

posed of several strong harmonic components, due to the cross-terms that limit the

usefulness of the representation. However, this difficulty can be overcome by the FB

decomposition of the input signal.

Finally, the Spectral Correlation Density (SCD) function is considered. As a first

measure of the existence of cyclostationary components in a signal, the degree of cy-

67



Chapter 4. Gear fault diagnositcs

clostationarity (DCS) function of the signal can be used, which shows the degree of

cyclostationarity of a given frequency α. A further advantage of the DCS function

raises from the fact that it presents a non-dimensional quantity, which can be used

more effectively for fault trend analysis, especially in case of bearing fault diagno-

sis [5]. Figures 4.15 and 4.16 plot the DCS for axial and radial vibration velocities

for both small and large cracks, which are characterized by the presence of a num-

ber of non-zero cycle frequencies. In particular the DCS functions over the 0 ÷ 150

frequency band show several non-zero cycle frequencies corresponding to the wheel

rotation frequency and its harmonics for both axial and radial vibration velocities

(Figures 4.15 and 4.16 (a) and (b )). This provides a first indication that a modulation

effect is present in the signals. Moreover, by looking the DCS function in a wide fre-

quency band, i.e. 0 ÷ 4000 Hz, several non-zero cycle frequency arise at the meshing

frequency harmonics, as well as at cycle frequencies relating to the correlation among

them (Figures 4.15 and 4.16 (c) and (d )). The SCD functions of both small and large

cracks are computed over the synchronously resampled signals, in order to eliminate

speed irregularities. In this analysis the SCD function is evaluated via Fourier se-

ries expansion of the WVD. In order to reduce noisy components in the SCD plot,

the signal is synchronously averaged. The time synchronous average is performed

over four wheel rotations in order to obtain a cycle frequency resolution of 2.12 Hz.

Figures 4.17 and 4.18 plot the SCD magnitude of the bifrequency plane (f, α), using

a three-dimensional diagram, in which only the positive quadrant of the diagram is

considered. In depth, for axial vibration velocities the relationships among the third

meshing harmonic and its first upper modulating sidebands relative to both the pin-

ion and the wheel are investigated, whilst for radial vibration velocities the links

among the fifth meshing frequency harmonic and its lower modulating sidebands rel-

ative to both the pinion and the wheel are taken into account. Whereupon, the SCD
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(a) (b)

(c) (d)

Figure 4.15: Axial vibration velocity: DCS in the 0÷ 150 frequency band for (a) small
and (b) large cracks; DCS in the 0 ÷ 4000 frequency band for (c) small and (d) large
cracks
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(a) (b)

(c) (d)

Figure 4.16: Radial vibration velocity: DCS in the 0÷150 frequency band for (a) small
and (b) large cracks; DCS in the 0 ÷ 4000 frequency band for (c) small and (d) large
cracks
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components (f ,α) considered in this analysis are the follows:

Axial vibration velocities

third meshing frequency harmonic 1400Hz

first upper modulating sidebands relative to the wheel 1408.4Hz





⇒ (1404.2, 8.4)

third meshing frequency harmonic 1400Hz

first upper modulating sidebands relative to the pinion 1417Hz





⇒ (1408.4, 16.8)

Radial vibration velocities

fifth meshing frequency harmonic 2333Hz

first lower modulating sidebands relative to the wheel 2342Hz





⇒ (2329.8, 8.4)

fifth meshing frequency harmonic 2333Hz

first upper modulating sidebands relative to the pinion 2348.8Hz





⇒ (2341, 16.8)

Data cursors depict the amplitude and the location in the bifrequency plane of the

foreign components.

As one can see from Figures 4.17 and 4.18 peaks that correspond to the wheel shows

an increment with the crack severity, whilst the pinion correlation peak only exhibits

slight changes. These changes are related to the different tests conditions
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(a) (b)

Figure 4.17: Spectral correlation density function among the third meshing harmonic
and its sidebands. Axial vibration velocity: (a) small and (b) large cracks

(a) (b)

Figure 4.18: Spectral correlation density function among the fifth meshing harmonic
and its sidebands. Radial vibration velocity: (a) small and (b) large cracks
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4.3 Tooth spalls: experimental apparatus

The effects of tooth spalls on gear vibrations are investigated with an “experimental

model” designed and build up at the Engineering Department of the Univerity of

Ferrara. This test bench was developed as a tool for the experimental analysis of

the vibro-acoustical behaviour of rotating machineries and the investigation of the

vibration effects both in sound and faulty conditions, further details about the test

bench can be found in [48].

The test bench consists of a base, including an induction driving motor controlled

by inverter, and three different rotor kits. These kits are designed in order to carry

out a great number of experiments concerning the vibrations produced by gears and

rolling bearings in sound conditions and with different types of faults, as well as

misalignments between shafts, static and dynamic unbalance and critical speeds.

In this work only the first kit is taken into account, and it deals with two induction

motors controlled by inverters and a gear unit (Figure 4.19). The layout of the kit

is depicted in Figure 4.20. In more detail, the driving induction motor BN80C2 is

controlled in a feedback speed loop by the inverter ACT400-014; its speed is evalu-

ated by an encoder with 360 pulses per revolution. The induction motor BN132MB4

is used to apply the load and is controlled in a feedback torque loop by the inverter

ACT400-040, while the speed is evaluated by an encoder with 3600 pulses per revo-

lution. Table 4.3 lists the data of the induction motors. The gear unit C312 contains

two spur gear pairs, one having 18 and 71 teeth, the other one 12 and 55 teeth, for

a global speed reduction ratio of 18.1. The connection among the induction motor

shafts and the gear unit shafts is performed by Giflex elastic joints, allowing parallel

and angular misalignments between shafts. In addition an auxiliary fan is mounted

on the load motor in order to avoid the overheating condition due to its work at low

speed and high torque.

As explained before gear tooth spalls are mechanically introduced on the first stage

wheel (71 teeth) of the gearbox, via a drilling process.

During tests the vibration signal is acquired by means of a PCB piezoelectric ac-
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Load 

motor

Driving 

motor

Gear 

unit

Figure 4.19: Test bench for gear tooth spall experiments

Driving motor
BN80C2

Gear unit
C312

Motor (load)
BN132MB4

Inverter
ACT400-040

Inverter
ACT400-014

push-pull
ENCODER

360pulse/rev

push-pull
ENCODER

3600pulse/rev

Speed control loop Torque control loop

Figure 4.20: Kit for tests on gear tooth spall vibrations: layout

Table 4.3: Induction motor date

BN80C2 BN132MB4
Nominal power [kW ] 1.5 9.2
Nominal torque [Nm] 5.1 61
Nominal speed [rpm] 2800 1440
Number of poles per phase
winding

2 4
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celerometer mounted in radial direction nearby bearing support of the first stage

pinion. The results presented in this work are relative to a nominal driving motor

speed of 3600 rpm (60 Hz) and nominal torque of 48.8 Nm, with a sample frequency

of 104.2 KHz to an extent of 50 s.

The signals were acquired using LMS SCADAS 310 front-end and controlled by the

software LMS Test.Lab.

4.4 Tooth spalls: vibration signal model

This section concerns the explanation of the main vibration phenomena in gear sys-

tem due to the presence of a spall in a gear tooth. One can think that, this vibration

signal model is likely the same as the previous one. However this assumption is

not completely true. In fact, as explained by Randall in [49], this type of fault give

rise to components over a wide frequency range. Components are due to amplitude

and frequency modulation which cause sidebands at the gear meshing frequency and

in addition additive impulses, which arise one time per revolution and can excite

gearbox resonances. Therefore the vibration signal can be described as a sum of N

harmonic components such as:

y(t) =
N∑

n=0

[
Xn[1+ an(t)]cos[2πnfmt+φn + bn(t)]+ e−tn/σimpXimpcos(2πfimpt)

]
(4.4)

where Xn is the amplitude of each harmonic, Ximp, σimp and fimp are respectively the

amplitude, damping coefficient and carrier frequency of the impulse response, whilst

an(t) and bn(t) are respectively the amplitude and phase modulating functions:

a(t) = Ae−
(t−t0)2

σ2 (4.5a)

b(t) = Be−
(t−t0)2

σ2 (4.5b)

These functions describe the local change of the meshing vibration due to the engage-

ment of the faulted tooth. The parameter σ is related to the width of the Gaussian

shape windows. Moreover, going deeply through the phenomena that arise during

75



Chapter 4. Gear fault diagnositcs

the engagement of the faulted tooth, one can notice that for narrow spall sizes only a

small portion of the contact is affected by the fault presence. Whereas, the contact is

entirely affects by the fault, in the case of broad spall sizes, Figure 4.21. These differ-

ences change the impulsive contents of the vibration signal. In fact, for the smallest

spall sizes a strong impulsive component arises which give up to an higher frequency

content, due to the excitation of gearbox natural frequencies. On the contrary, for the

wider spall sizes, the impulsive signal content is smoothed. This behavior can be well

described by the SCD function.

In order to better understand this phenomenon, the foregoing signal model is herein

implemented in Matlab code. Two examples are subsequently show, which concerns

two signal with: fundamental frequency fm, amplitude and frequency modulation

at frequency fr, high damped impulse response (e.g. 1.) and low damped impulse

response (e.g.2). Data are listed in table 4.4.

Table 4.4: Vibration signal model of tooth spall: Matlab code data

e.g.1 e.g.2
fm [Hz] 534.5 534.5
fr [Hz] 8.4848 8.4848
fimp [Hz] 3800 3800
A 0.2 0.2
B 0.2 0.2
σ 10 10
σimp 10 40

Figure 4.22 shows the amplitude signal for a portion of the shaft rotation. In par-

ticular is highlighted the effect on the vibration signal due to the engagement of the

faulted tooth. It possible to notice that a local alteration in the vibration signal is

obtained by the uses of equations 4.5a and 4.5b, moreover an impulsive component

is added during the meshing of the faulted tooth. Figure 4.23 plots the SCD in the

positive region of the bifrequency plane in case of: (a) large spall size and (b ) nar-

row spall size. In Figure 4.23 (b ) it is possible to notice the comparison of an higher

frequency content due to the low damped impulse response.
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Line of actions

Figure 4.21: Gear tooth spalls: comparison among differt spall sizes and contact line

Figure 4.22: Vibration signal model for gear tooth spall: time signal
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(a) (b)

Figure 4.23: Vibration signal model for gear tooth spall, SCD contour plot: (a) large
spall size and (b ) narrow spall size

4.5 Tooth spalls: data analysis

The aim of this section is the analysis of spalls in gear tooth. As previously said, in

this work different spall sizes are investigated, which are listed in table 4.1.

First of all, the acceleration signal acquired from the gearbox is synchronously re-

sampled, with 1024 points per wheel revolution, and the time-synchronous average

is computed over 200 wheel revolutions. The results are plotted in Figure 4.24. No

evident alteration in the vibration patterns can be noted for the smallest spall sizes,

whilst for the Sp50% and Sp100% an high-amplitude transient vibration can be noted

during the engagement of the faulted tooth. In fact, the vibration signatures seem to

be bounded in the range −4 ÷ 4 m/s2, whilst the engagement of faulted tooth yields

a transient vibration pattern up to −7 ÷ 7 m/s2 (see Figure 4.24 (e) and (f)). By the

comparison between Figure 4.24 (e) and (f) it is possible to notice that, this transient

vibration occurs at a different angle position. This is due to the different angular

position of the faulted tooth with respect the one-per-wheel revolution tachometer

reference. The corresponding amplitude spectra are plotted in Figure 4.25, in the

50-250 wheel order band, which include the most important meshing harmonics. In

particular, the gear meshing frequency (71th order) dominates the spectra. In all cases
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the fundamental meshing frequency is the highest one. Several wheel sidebands ap-

pear in the spectra. De facto these sidebands are not only generated by spalls, but

also from misalignments arise during the gearbox reassembly operations. Never-

theless, by looking through a frequency band around the gear meshing frequency,

which is depicted in Figure 4.26, it can be noted that the amplitude of the first up-

per sidebands of the meshing frequency increase with the spall dimensions, while

the amplitude of the first lower sidebands of the meshing frequency do not shown

any clear-cut course. Therefore, this behavior can be described by relating the first

upper sidebands to spalls and the lower sidebends to misalignments. In fact, due to

the gearbox reassembly operations, the wheel misalignments are different for every

tooth spall dimensions. Ergo, in this case, the FFT analysis seems to be practically

ineffective for spalls detection and so further investigations are needed.

Consequently the demodulation technique is applied to synchronized signals of

Figure 4.24, via filtering around the fundamental meshing frequency (71th order),

which seems to show the strongest modulation sidebands. In more detail 72 side-

bands around the meshing frequency are considered in the analysis. The amplitude

modulation (AM) of the vibration signals are shown in Figure 4.27. As one can see,

the amplitude modulation can localize the damaged tooth only in the cases of Sp50%

and Sp100%, whose engagement is characterized by a maximum value of the AM

function. Whilst for the smaller spall sizes, the AM seems to be insensitive to fault

detections. As shown in [42], the AM technique is strongly influenced by the pro-

cessed frequency band. Therefore, different bands are taken into account in order to

improve the technique sensitivity.

Figure 4.28 shows the AM concerning 31 upper sideband around the meshing fre-

quency, for Sp12.5% and Sp25%, which seem to be related to the tooth spalls. In

fact lower sidebands could be related to the wheel misalignments and so can cause

poor results. Unfortunately the faulted tooth still non-localized, because of significant

changes in he AM functions of Figure 4.28 are not detected. So, this analysis confirm

the insensitiveness of AM technique to fault detections in the case of small spall sizes.

Concluding, the demodulation technique gives good results only in the case of large
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(e) (f)

(c) (d)

(a) (b)

Figure 4.24: Time-synchronous average of the acceleration signals: (a) sound gear,
(b) Smack, (c) Sp12.5%, (d) Sp25%, (e) Sp50%, (f) Sp100%
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(e) (f)

(c) (d)

(a) (b)

Figure 4.25: FFT of the time-synchronous average of the acceleration signals: (a)
sound gear, (b) Smack, (c) Sp12.5%, (d) Sp25%, (e) Sp50%, (f) Sp100%
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(e) (f)

(c) (d)

(a) (b)

Figure 4.26: FFT of the time-synchronous average of the acceleration signals in the
61-81 wheel order band: (a) sound gear, (b) Smack, (c) Sp12.5%, (d) Sp25%, (e) Sp50%,
(f) Sp100%
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(e) (f)

(c) (d)

(a) (b)

Figure 4.27: Amplitude modulation in the 35-107 order band: (a) sound gear, (b)
Smack, (c) Sp12.5%, (d) Sp25%, (e) Sp50%, (f) Sp100%
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spall sizes, and its seems to be insensitive to fault presence for the smallest ones,

thus the AM technique can not gives any information about fault severities.

(a) (b)

Figure 4.28: Amplitude modulation in the 71-101 wheel order band: (a) Sp12.5%, (b)
Sp25%

As done before, the CWT and WVD techniques are now applied to vibration signal,

in order to detect the non-stationary signal characteristic produced by the faulted

tooth. Both WVD and CWT are evaluated in 50-400 wheel order band, which include

the main meshing harmonics as shown before in the FFT plots. Figure 4.29 depicts

the WVD for the spall vibration signals. For the sound gear (Figure 4.29 (a)), one can

see the meshing frequency and its second and third harmonics at 71th, 142th and 213th

order respectively, whilst the other horizontal lines are due to the wide frequency

components that are depicted in the FFT spectrum of Figure 4.25 (a). In addition, for

each couple of spectrum components a cross term arise and so, the distributions is of

difficult interpretation. In particular, this behavior can be noted in Figures 4.29 (b ),

(c) and (d ). However, the presence of the faulted tooth can be detected in Figures 4.29

(e) and (f ), which are relative to Sp50% and Sp100% respectively. De facto, the loca-

tion of the faulted tooth is highlighted by the changes in the WVD around 20 degrees

in the 50-100 wheel order band for Sp50%, while for Sp100% around 340 degrees for

the same order band. Therefore, the Fourier-Bessel expansion of the synchronous

averages are needed in order to obtain a WVD suitable for fault detection.
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Figure 4.30 shows the results of the foreign operation. Firstly the distribution

becomes of clear interpretation, de facto, the gear meshing frequency remains the

strongest (horizontal dark line at 71th order), but it is now possible to distinguish

several modulation sidebands around this component. The presence of the sidebands

is depicted by the dashed horizontal lines occurring around the 71th order in Figures

4.30 (b ), (d ), (e) and (f ). In particular, by analyzing Figure 4.30 (d ), the location of

the faulted tooth can be detected by the amplitude change of the dashed horizontal

line around 150 degrees. Unfortunately this is not enough for a sure fault detection,

therefore other investigations are needed.

The CWT of the TSA is computed using Impulse mother wavelet and the analysis is

carried out in a 50-400 wheel order band such as WVD. The results are plotted in Fig-

ure 4.31. As it happens before, the meshing frequency dominate the maps. A localize

change in the CWT maps can be seen in the cases of Sp50% and Sp100%, Figures 4.31

(e) and (f ) respectively. These changes confirm the location of the defect as it happens

before for WVD. More in details, comparing Figure 4.31 (d ) whit Figure 4.29 (d ), it

is possible to highlight the presence of the faulted tooth for Sp25%. De facto, the

analysis of the single Figure 4.31 (d ) is not sufficient for a clear fault localization, in

fact the change of the CWT map around 150 degrees is not strong enough for a confi-

dent fault detection, but from the correlation of this map with it corresponding WVD

yields to an higher confidence, and the faulted tooth engagement can be detected.

Finally, the cyclostationary analysis of tooth spalls is performed. As done before,

the SCD function is evaluated via Fourier series expansion of the WVD. In order to

reduce noisy components in the SCD plot, the signal is synchronously averaged. The

time synchronous average is performed over four wheel rotations in order to obtain

a cycle frequency resolution of 3, 80 Hz. As a first indication of cyclostationary signal

content, the DCS function is evaluated and the results are plotted in Figure 4.32, over

the 0-100 frequency band. The DCS functions show several non-zero cycle frequencies

corresponding to the wheel ration frequency and its harmonics for all spall sizes. As

a matter of fact that, this provides a first indication of a modulation effect, which is

present in the signals, but this effect can not be related to the faulted tooth take-over.
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(e) (f)

(c) (d)

(a) (b)

Figure 4.29: WVD of the time-synchronous average of the acceleration signals: (a)
sound gear, (b) Smack, (c) Sp12.5%, (d) Sp25%, (e) Sp50%, (f) Sp100%
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(e) (f)

(d)(c)

(a) (b)

Figure 4.30: WVD of the time-synchronous average of the acceleration signals: (a)
sound gear, (b) Smack, (c) Sp12.5%, (d) Sp25%, (e) Sp50%, (f) Sp100%
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(e) (f)

(c) (d)

(a) (b)

Figure 4.31: CWT of the time-synchronous average of the acceleration signals: (a)
sound gear, (b) Smack, (c) Sp12.5%, (d) Sp25%, (e) Sp50%, (f) Sp100%
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In fact, as previously explained, modulations are related to both misalignments and

fault, therefore the DCS function can be used, in this case, in order to assure the

presence of a cyclostationry content. Notwithstanding this information is not a proof

of a possible tooth spall.

Figure 4.33 plots the SCD magnitude of the bifrequency plane (f ,α), using a three-

dimensional diagram, in which only a frequency range around the gear meshing fre-

quency is considered. In depth, because of the first modulating sidebands seems re-

lated to the tooth spall, the relationships between the gear meshing frequency (1080

Hz) and its first upper modulating sidebands (1095.21 Hz), relative to the wheel, is

investigated. Therefore the SCD component considered in this analysis is the follows:

gear meshing frequency 1080 Hz

first upper modulating sidebands relative to the wheel 1095.21 Hz





⇒ (1087.6, 15.21)

Data cursors depict the amplitude ant the location in the bifrequency plane of the

foreign component. As one can see from Figure 4.33 peak that corresponds to the

correlation between the gear meshing frequency and its upper modulating sidebands

shows an increment with the spall sizes. In other words, going through the sound

gear to the Sp100% the SCD component concerning the faulted tooth rise. This re-

sults confirm that the rise of the upper sidebands shown in Figure 4.26 is related to

the tooth spall sizes.

In addition the SCD can well describe the physical nature of this type of fault,

in fact as depicted in the contour plots of Figure 4.34 the effects of the impulsive

components, which arise during the faulted tooth engagement, are described.
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(e) (f)

(d)(c)

(a) (b)

Figure 4.32: Degrees of cyclostationary of the acceleration signals: (a) sound gear, (b)
Smack, (c) Sp12.5%, (d) Sp25%, (e) Sp50%, (f) Sp100%
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(e) (f)

(d)(c)

(a) (b)

Figure 4.33: WVD of the time-synchronous average of the acceleration signals: (a)
sound gear, (b) Smack, (c) Sp12.5%, (d) Sp25%, (e) Sp50%, (f) Sp100%
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(b)(a)

Figure 4.34: Contour plots of the SCD in range concerning the meshing frequency:
(a) Sp12.5%, (b) Sp100%
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Conclusions

Tanto ch’i vidi de le cose belle

che porta’l ciel, per un pertugio tondo;

e quindi uscimmo a riveder le stelle.

Dante Alighieri XXXIV Inferno vv.137-139

This thesis addresses the application of several signal processing techniques for the

diagnostics of mechanical faults in rotating machines. In particular the sensitivity

and effectiveness of non-stationary signal processing techniques are compared.

The numerical implementation of these techniques is investigated. In particular

highlighting pro and contra of different spectral correlation algorithms and review-

ing the use of the Wigner-Ville distribution of the time synchronous average for the

evaluation of the spectral correlation density. As shown in Chapter 2, the combined

use of the time synchronous average and WVD for the evaluation of the SCD function

gives rise to an efficient algorithm that allows a faster SCD estimation. However, the

result are strongly influenced by the number of synchronous averages performed on

the time signal. In fact, the component amplitude of the resulting function strongly

depends on the average number, therefore the effectiveness of this technique to fault

localization can be widely affected.

The advantages and the limitations of a new method that combines the Fourier-

Bessel series expansion and the Wigner-Ville distribution are investigated, by means

of the results of different mechanical fault analysis. As shown in Chapter 2 this
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method gives coarse results, if the vibration signal contains impulsive components

with the same carrier frequency. In fact, as shown in Figure 2.10 the single impulse

signal component cannot be extracted. Hence cross-terms cannot be removed form the

WVD. Notwithstanding, the FB decomposition can be an useful tool in vibration based

diagnostics, in fact as shown in Chapter 3, the amplitude and frequency modulations

due to the cracked tooth engagement, are well extracted from the vibration signal

and, the reconstructed meshing harmonic gives rise to an abrupt fall corresponding

to the cracked tooth engagement (Figure 4.14).

Moreover, an experimental characterization of the vibrational behaviour of spalls

in gear tooth is presented in this work. In more detail, time and time-frequency

analysis of this type of fault is performed showing pro and contra of Wigner-Ville

distribution and Continuous Wavelet transform. As depicted in Figures 4.29 and

4.31 these techniques can localize the engagement of the faulted tooth only in the

cases of large spall sizes Sp50% and Sp100%. However, no information about the

fault severity can be obtained from these techniques. A vibration signal processing

technique that overcomes this problem is the SCD function. In fact, cyclostationary

analysis of the gear tooth faults highlight the sensitivity and the effectiveness of this

technique to fault severity. De facto, as plotted in Figures 4.17, 4.18 and 4.33 the

SCD component concerning the link between the meshing frequency and its upper

modulating sidebands increase with the fault severity. In particular, the SCD results

concerning tooth spalls confirm the results obtained by the FFT analysis of the TSA.

In fact, as shown in Figure 4.26, the upper modulating sidebands of the gear meshing

frequency can be related to the faulted tooth engagement.

Finally, a mathematical model concerning tooth spalls is produced. The mathe-

matical model is composed by a sum of N harmonics. Local amplitude and phase

modulation functions as well as additive impulses are introduced in order to taken

into account the main physical phenomena that arise during the engagement of the

faulted tooth. By comparing model and experimental results, Figures 4.23 and 4.34,

it is possible to explain the vibration effects of different spall sizes.

From the analysis of experimental data, it is found that no one technique alone pro-
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vides a reliable diagnosis, but that all the methods could be included in the diagnostic

procedure.
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tool for time-frequency signal analysis. part I: Continuous-time signals. Philips

J. Res., 35:217–250, 1980.

[16] T. A. C. M . Claasen and W. F. G. Mecklenbräuker. The wigner distribution - a
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Appendix A

As expalined by Antoni et al. in [6, 7], several statistical tools can be derived form

the WVD, and used in diagnosis of IC engine. In this work the mean instantaneous

power is taken into account, which can be estimated by the first spectral moment of

the autocorrelation function.

As explained in [12] the moments of a random variable are defined as:

r(m)
x =

+∞∫

−∞

xmfx(x)dx (A.1)

where fx(x) is the probability density function of the random variable and rm
x is the

mth-order moment of the considered random variable.

Spectral moments can also be obtained from the moment generating function,

which is defined by:

Φx(s) = E{esx} =
+∞∫

−∞

fx(x)esxdx (A.2)

where s is a complex variable and E is the expectation. Equation (A.2) can be in-

terpreted as the Laplace transform of fx(x) with sign reversal. Expanding esx of the

left-end side of equation (A.2) in a Taylor series at s = 0, one obtain:

Φx(s) = E{esx} = E
{

1 + sx +
(sx)2

2!
+ · · · + (sx)m

m!
+ · · ·

}
(A.3)

= 1 + sµx +
s2

2!
r(2)
x + · · · + (sx)m

m!
r(m)
x + · · ·

Therefore the mth-order moment can be obtained by differentiating equation (A.3)
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with respect to s:

r(m)
x =

dm(Φx(s))
(ds)m

∣∣∣
s=0

(A.4)

The mean instantaneous power was introduced by Antoni at al. in [6], by point-

ing out the similarities between the WV spectrum (WVS) and the probability density

function. Where the Wigner-Ville spectrum is the expected value of the Wigner-Ville

distribution. In order to link the WVS to a probability density function, distribu-

tion values must be positive. Hence the analytical signal is used during distribution

evaluation. Therefore, by viewing the WVS as a probability density function of the

frequency variable f conditioned to the angular variable θ, from equation (A.4) the

mth-order spectral moment can be defined by using the autocovariance function for

moment generating function [6]:

r(m)
x (θ) = (2πj)−m ∂mRxx

(∂τ)m
(θ, 0) (A.5)

where the first moment r0
xis the mean instantaneous power.
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