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Introduction

This work deals with some classes of linear second order partial differ-
ential operators with non-negative characteristic form and underlying non-
Euclidean structures. These structures are determined by families of locally
Lipschitz-continuous vector fields in RY, generating metric spaces of Carnot-
Carathéodory type. The Carnot-Carathéodory metric related to a family
{X;};=1,..m is the control distance obtained by minimizing the time needed
to go from two points along piecewise trajectories of vector fields. We are
mainly interested in the causes in which a Sobolev-type inequality holds with
respect to the X-gradient, and/or the X-control distance is Doubling with
respect to the Lebesgue measure in RY. This study is divided into three
parts (each corresponding to a chapter), and the subject of each one is a

class of operators that includes the class of the subsequent one.

In the first chapter, after recalling “X-ellipticity” and related concepts
introduced by Kogoj and Lanconelli in [KL00], we show a Maximum Prin-
ciple for linear second order differential operators for which we only assume
a Sobolev-type inequality together with a lower terms summability. Adding
some crucial hypotheses on measure and on vector fields (Doubling property
and Poincaré inequality), we will be able to obtain some Liouville-type re-

sults. This chapter is based on the paper [GLO03] by Gutiérrez and Lanconelli.

In the second chapter we treat some ultraparabolic equations on Lie

groups. In this case RV is the support of a Lie group, and moreover we
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require that vector fields satisfy left invariance. After recalling some results
of Cinti [Cin07] about this class of operators and associated potential the-
ory, we prove a scalar convexity for mean-value operators of £-subharmonic

functions, where L is our differential operator.

In the third chapter we prove a necessary and sufficient condition of regu-
larity, for boundary points, for Dirichlet problem on an open subset of RY re-
lated to sub-Laplacian. On a Carnot group we give the essential background
for this type of operator, and introduce the notion of “quasi-boundedness”.
Then we show the strict relationship between this notion, the fundamental

solution of the given operator, and the regularity of the boundary points.



Contents

Introduction i

1 Maximum Principle, non-homogeneous Harnack inequality,

and Liouville theorems for X-elliptic operators 1
1.1 Introduction . . . . . . . . . .. ... 3
1.2 X-Elliptic operators . . . . . . . . .. ... ... ... .. 3
1.3 On vector fields and associated control distance . . . . . . .. 4
1.4 Conditions on the operators and on the control distance. . . . 8
1.5 Essential theory of C}(Q), Wi(Q, X), WHQ, X) . .. ... .. 9
1.6 Associated bilinear form and weak solutions . . . . . .. . .. 17
1.7 On the Dirichlet problem for L in principal form . . . . . . . . 21
1.8 A maximum principle for uniformly X-elliptic operators . . . . 22

1.8.1 Condition p < /2 is sharp for the Maximum Principle 32

1.9 Harnack inequality under doubling measure and Poincaré con-
ditions . . . . ... 35
1.10 Application to homogeneous vector fields . . . . . .. . .. .. 43

2 A notion of convexity related to sub-solutions and mean-

value operators for ultraparabolic equations on Lie groups 53

2.1
2.2
2.3

24

Introduction . . . . . ... 53
Basic L-potential theory and £-subharmonic functions . . . . 55
Representation formulas, £-harmonic and £-subharmonic func-

TIONS . . . . 59

A notion of convexity . . . .. ... 62

il



v

CONTENTS

2.5 Mean-value operator convexity of L-subharmonic functions . . 64

3 Quasi-boundedness and S-regularity for Dirichlet problem 69

3.1 Introduction . . . . . . . ... 70
3.2 Some preliminary results . . . . .. ... 72
3.3 Quasi-boundedness and S-regularity . . . . . .. .. ... . 74
3.4 Some applications . . . . . .. ... L 7

References 79



Chapter 1

Maximum Principle,
non-homogeneous Harnack
inequality, and Liouville
theorems for X-elliptic

operators

The aim of this Chapter is to prove a Maximum Principle for uniformly
X-elliptic operators under Sobolev inequality and regularity assumption on
the lower order terms. With these results at hand we obtain a Harnack in-
equality for non-homogeneous equations. As a consequence we derive a Liou-
ville inequality, for which we require in addition Doubling property, Poincaré
inequality and the dilatation invariance property. When the vector fields are
left invariant with respect to left translations on a Carnot group, and form
a basis of the first layer of its Lie algebra, then the operator (called sub-
Laplacian) satisfies Harnack inequality (Bonfiglioli and Lanconelli, [BLO1]).
These authors massively use ad hoc Green’s representation formulas.

For uniformly subelliptic operators on a Lie group (particular X-operators)

the homogeneous Harnack inequality was proved by Varopoulos ([Var87]),

1
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Saloff-Coste ([Sc90]) and Saloff-Coste with Stroock ([SS91]).

In some contexts we want to underline the crucial role of Hormander condi-
tion on dimension of generated Lie algebra from a family of vector fields, in
that case Lancia and Marchi ([LM97]) and later Cancelier with Xu ([CX00])
and Baldi with Franchi and Lu ([BFLO0]) proved Maximum Principle and
homogeneous Harnack inequalities.

Many other similar results can be found in literature, at the beginning espe-
cially in Heisenberg group and other dilation invariant operators with smooth
coefficients (Kordnyi and Stanton [KS85], Geller [Gel83]). Finally we want
to recall the case of non-smooth vector fields discussed by Franchi and Lan-
conelli ([FL83], [FL85]). Without giving a complete report of the results in

literature, we can summarise as follows:
e Sub-Laplacian on Carnot group = Harnack;
e Uniformly subelliptic operator on Lie group = Harnack;

e Operator with smooth vector fields + Hoérmander condition = Har-

nack;
e Operator with non-smooth vector fields + Ellipticity = Harnack.
We prove, for uniformly X-elliptic operators, that

e Sobolev 4+ Regularity of lower order terms + Positivity condition =

Maximum Principle;

e Sobolev + Regularity of lower order terms + Positivity condition +

Doubling + Poincaré + Invariance = Harnack and Liouville.

We finally observe that many results present in the past literature are indeed

included in our work.



1.1 Introduction

1.1 Introduction

Let {Xi,..., X,,} be a family of vector fields in RY, with locally Lipschitz
continuous coefficients in RY.

We recall that f is locally Lipschitz countinuous if
VK € RY 3cpx ¢ |f(2) — fy)| < erilr—y|, Vr,y € K.

We denote the vector field X; with the first order differential operator

N
X; = ;akj(x)ak, O = a% (1.1)
and X;I(x) represents the vector
ay; ()
X;1(x) = anl(x) . RY = RY, ay;() € Lipy,o(R", R).
an;(z)

Here we consider linear second order differential operators of the form

N N
ij=1 i=1
where b;;(z) = bj;(x), d;, b; and ¢ are measurable functions. Set B := (b;;), d :=
(dl, . ,dN) and b := (bh c. ,bN).

1.2 X-Elliptic operators

Definition 1.2.1 (X-elliptic). Let Q be an open subset of RY L be the
differential operator of the form (1.2). The operator L is X-elliptic in 2 if

following conditions are satisfied:

1. There exists a constant A € R, A > 0, such that

MY (XI(x),6)* < (B(2)6,€),  VEERY VaeQ,  (13)
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where (B(x)¢, &) is the characteristic form of L given by
N
(B(x)8,6) = ) _ biy(2)&&;; (1.4)
ij=1

2. There exists a function v : Q — R, v > 0, such that

m

(d(x),€)” + (b(x),§)* < y(x)* > (X;I(2),8)*,  VEERN, z€ QL5)

Jj=1

Definition 1.2.2 (Uniformly X-Elliptic). Let L be an X-elliptic differ-
ential operator defined as above. We say that L is uniformly X-elliptic in 2
if there exists A > 0 such that in addition the following condition is satisfied:

(B(x)¢,€) < AZ<XjI(x),£)2, veEeRY, z e Q. (1.6)

1.3 On vector fields and associated control

distance

Definition 1.3.1 (X-Gradient). Let X7,..., X,, be differential operators
as defined in (1.1), u be a function in C*(Q, R). We call X-gradient of u the

vector
Xu = (Xju,..., Xnu). (1.7)
If u & C1(Q,R), the partial derivatives shall be intented in distribution sense.

Definition 1.3.2 (Absolute continuity). Let I be an interval of R. A
function f : I — R is absolutely continuous on I if for every £ > 0, there
is an > 0 small enough so that whenever a sequence of pairwise disjoint

sub-intervals [z, yx] of I, k =1,... n satisfies

D=l <n = D |fw) - flan)ll <e,
k=1 k=1

where || - || shall be intended as Euclidean norm. Absolute continuity could
be defined in a generic metric space (whose definition is given later), but we

are not interested to do it.
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Definition 1.3.3 (X-Trajectory). Let v : [0,1] — RY be an absolutely

continuous path. v is an X-trajectory if
§=>a;(s)X;(v(s))  ae in[0,1],
j=1

with a; : [0,1] = R, j =1,...,m, are measurable functions.

Definition 1.3.4 (X-Connection and 7 (-, -)). We will call R X-connected
if for any z,y € RY there exists an X-trajectory connecting z and y (i.e.
v(0) =z, v(1) = y). By 7 (x,y) we shall denote the set of all X-trajectories

connecting x and y.

Definition 1.3.5 (Control distance). Suppose R” is X-connected and let
~v be an X-trajectory. If we set

m 1/2
[I7[lx := sup (Zﬁ(ﬂ) 7

te(0,1]

we define

dx(z,y) == inf{|[7[|x : v € T(z,y)},
called control distance.

Definition 1.3.6 (Quasi metric and metric). Given a non-empty set T,
a function d : T x T — [0,4+00) is called quasi metric if it is symmetric,

strictly positive out of {z = y} and there exists a constant 7" > 1 such that
d(z,y) < T(d(z,2) +d(y, 2))

for all z,y,2z € Y. The pair (T,d) is called quasi metric space. If T' = 1,

then d is called metric and the pair is called metric space.

Proposition 1.3.7 (dx is a metric). If RY is X -connected, then the func-

tion (x,y) — dx(x,y) is a metric on RY.

Proof.  See ([BLUO7] Proposition 5.2.3).
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O

Definition 1.3.8 (d-balls and Doubling property (D)). Let (T,d) be a
quasi metric space. The d-ball with center x € T and radius r > 0 is given
by

B(z,r) = By(x) :={y €T | d(z,y) <r}.
Let 1 be a positive measure on a o-algebra of subsets of T containing the

d-balls, then we say that p satisfies the doubling property if there exists a

positive constant D such that
0 < p(B(z,2r)) < Du(B(z,r)), VzeTandr>0. (1.8)

(T, d, u) will be consequently called doubling quasi metric space.

We recall an alternative version of the doubling property (1.8):

Q
/L(B(.CC,'I"Q)) < D(T—2) u(B(x,rl)), (1.9)
T
where 1 < ry and @ = log, D.

In a general metric space the ball measure is not necessarily continuous

with respect to d. A sufficient condition to have the continuity is the following
property.
Definition 1.3.9 (Segment property). The metric space (Y, d) has the

segment property, if for any x,y € T there exists a d-continuous curve = :
[0,1] — T such that v(0) = z,v(1) = y and

d(z,y) = d(z,7(s)) + d(v(s),y), Vse0,1].

Lemma 1.3.10 (Segment property and d-continuity). Let (T,d, i) be a
doubling metric space satisfying the segment property. Then, for each x € T,

the function r — u(B(a:, 7“)) 15 continuous with respect to d.

Proof. If weset B :=={y e Y |d(x,y) <r}and "B, := B\ B, = {y €
Y| d(z,y) = r} we have

lim u(B,) = u(B,), lim u(B,) = u(B;),

o—r~ o—rT
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and so to prove the lemma it is enough to show that p(90*B,) = 0. Suppose
by contradiction that u(0*B,) > 0. By Lebesgue’s differentiation theorem in
a doubling metric space ([Hei00] Theorem 1.8), we have
x5, (y) = lim X, (x)dp(z)  for p-a.e. y € 1.
=0/ Br(y)

In particular , if y belongs to 0* B, we have xp, (y) = 0, because of 0*B, N
B, = (). Therefore if we show that

11(B, N Br(y))

1(Br(y))

for all y € 0*B, and for all R sufficiently small we get a contradiction. Fix

>C >0 (1.10)

y € 0*B,, let xq be the center of B,., and by the segment property let v be a
d-continuous curve joining xy and y such that d(xg,y) = d(xo, z) + d(z,y) for
all z € v. Picking z € 7 such that d(z,y) = R/2, by the segment property
we have that

r=d(xg,y) = d(zo,2) +d(z,y) = d(zg,2) + R/2 = d(xg,2) =r—R/2
and so we obtain for every R €]0,r[ and for every £ € Bg/s(2) that

d(§, o) < d(§ z) +d(z,m0) <R/2+71—R[2=T,
d(&y) < d(§2)+d(z,y) <R/2+R/2=R,

so it follows that

Brja(2) C B, N Br(y). (1.11)
Moreover for every £ € Br(y) we have
A&z < dEy) vy <R+ =20
whence
Br(y) C Bsrya(2). (1.12)
Finally

(1.11) 19 1 112y 1
1(Br N Br(y)) > p(Brpa(z) > mM(B?)R/Q(Z)) > CDBQ,M(BR(Q))a

and so (1.10) follows.
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O

Proposition 1.3.11 (d-continuity w.r.t. Euclidean topology). If in the
metric space (RN, d) the function (z,y) — d(z,y) is continuous with respect

to Fuclidean topology, then it satisfies the segment property.

Proof. See ([GDMN96], Lemma 3.7) and ([FL83]), where this property was

established for the first time in a non-Euclidean space.
O

Hereafter the Lebesgue measure of a measurable subset of RY will be denoted
by | -].

1.4 Conditions on the operators and on the

control distance

Following conditions carry out a crucial role in our theory, and among

them there are well known relationships we describe later.

Definition 1.4.1 (Sobolev inequality - (S)). Be Q C R" an open set, a
differential operator X satisfies (S) condition if there exists ¢ = ¢(€2) > 2
and S = S(€, X) > 0 such that

||U||Lq(Q) S SQ7X||XU||L2(Q) \V/U € C&(Q) (113)
WealsosetQ::%,so@>2andq:5—%.
Definition 1.4.2 (On lower terms - (L)). Be L a differential operator of
the form (1.2), where ¢ is a measurable function, and -~y is the function in
(1.14) that controls lower order terms behaviour. L satisfies (L) condition if

there exists p €]Q)/2, +oo[ such that
v € L*(Q), (1.14)
and

c e LP(Q). (1.15)
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Definition 1.4.3 (Poincaré inequality - (P)). Be © an bounded open sub-
set of R, where K is compact. A differential operator X satisfies (P) condi-
tion if for each compact set K C () there exist positive constants Ry, C, v > 1
such that

lu — u,| de < Cr][ | Xu|dz, Yue€CYQ), (1.16)

BT‘ vr

for any d-ball B,(z) with r < Ry, B,, C K and u, = fBT u(x)dx. For

simplicity we shall assume v = 2.

Definition 1.4.4 (Dilatation invariance - (I)). Let oy, ..., ay be positive
integers, @ := a;+...+ay, and for R > 0 we set 0gz = (R*xq,..., R*xy).
We say that the vector fields {X,}, j = 1,...,m, satisfy (I) condition w.r.t.
Og if they verify the following homogeneity property:

Following consequences are well proved:

e (D) + (P) + continuity of d = (S) on Q where ¢ is function of doubling
constant(i.e. @ = log, D),
see ([GDMN96] Theorem 1.5),([FLW96]), ([HKO00]).

e (D) + (P) + (I) = (S) on every bounded open subset of RY ([GDMN96)).

We shall underline that there exist Lipschitz vector fields for which (S) holds
but (D) does not (See [GLO3] Par. 6.2).

1.5 Essential theory of C}(Q), W, (2, X), W(Q, X)

In this section we describe underlying structure of C3(Q), Wy (22, X),
W, X). Hereafter 2 is a bounded open subset of R on which the operator
X verifies Sobolev condition (S) for some ¢ > 2 (if not different stated). To
simplify notations the Lebesgue measure and the variables functions will be

omitted.
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Theorem 1.5.1 (|| Xu||12(q) is a norm). Let u be a function of C§(82), Xu
be its X -gradient satisfying (S) condition. Then the function u — || Xu||r2q)

is a norm in C3(S).

Proof. Some steps are trivial like positivity and linearity, they are obtained
directly from definition of seminorm in L?*(2) and of X-gradient. Triangle
inequality is direct consequence of Minkowski inequality with p = 2 and lin-
earity of X-gradient. The most important step is to show that this seminorm
is a norm (i.e. [[Xul|p2q =0 < w =0). The “only if” part is due to
Sobolev condition for ¢ > 2:

0= ||Xullr2@) > ||u||ps) = u=0 ae. inQ = u=0inQ,
because u belongs to C3 ().
O

Definition 1.5.2 (W3 (2, X)). If {¢,}jen and {1, }jen are Cauchy sequences
in C§(2) with the norm introduced above we can define the following equiv-

alence relation

{eitien ~ {¥itjen & |[Xp; — X120 E_O:O’

and the space

WHQ. X) = {{pshien | 5 € CHQ) , 1X e = Xpmllzaie) ——— 0},

n,m—-+00

By consequence we call
WHQ, X) = W&(Q,X)/ ~.

Definition 1.5.3 (|| - [lwa(e.x))- Let u = [{g;}jen] € Wi(Q, X) be the

equivalence class of its sequence. We define

lullwgo.x) = lim_[[X¢)llza@). (1.18)
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It is well posed (easily seen taking the limit of the difference of two sequences
in the same class representing u), and the proof that it’s a norm is almost
identical to the one of Theorem 1.5.1.

Moreover if «, § are real numbers we can define also

al{p;j}jen] + B} jen] = {aw; + B} jen],

that gives to Wi (Q, X) a vector space structure.

Lemma 1.5.4. Let {¢;};en be a sequence in C3(Q), ¢ > 2. We recall that
Q C RY is an open bounded set. We have

p; —— uin LY(Q) = ¢; —— uin L*(Q).

j—+oo Jj—+oo

Proof. In general for every f € LP(Q2)

HinZ(Q) = /|f‘p.1_/‘f’qq_11—q§
Q Q
Holder P _p
= f1e)° - /1 -
(L) ( L)
= W - 19077, (1.19)

and so by boundedness of €2 we have proved in particular that
30,179 - R . ||(,0J — u||L2(Q) S Cq’Q ||g0] — U,||Lq(Q) Vq Z 2. (120)
O

Theorem 1.5.5 (W, (Q, X) embedded in LP(2)). Let ¢ > 2 be the constant
for which (S) is verified. Then W3 (2, X) is a Banach space and for every p
such that 2 < p < q we have

Wa(Q,X) — LP(Q).
Proof. If u=[{p;}jen] € W5 (2), from (S) there exists ¢ > 2 such that

|on = OmllLa@) < Sax|[Xen — Xomllr2@),
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but from definition of w this right-hand side tends to zero, so {;};en is a

Cauchy sequence in L?(£2). By its completeness

Ju* € LYQ) : ¢; ——u* in LY(Q).

n—-+00

We consider the map
T : Wy(Q,X) — LYQ), u— Tu:=u"

We want to prove that 7 is injective, and by its structure it is enough to
show that ker(7") = [0].
So with {¢;}jen converging to zero in L4(Q) let us prove that {Xp;} en
tends to zero in L*(Q).
{X¢;}jen has limit in L*(Q2) because it is a Cauchy sequence in a complete
space. If we take ¢ in C3°(Q2) and set h := jEIJPoo Xp;, we have
[ Xerv — [hv
Q It Ja
because of the just given definitions. Integrating by parts left-hand side
(allowed because of locally Lipschitz coefficients of X and Rademacher’s the-
orem) we get
/Qgij*@/) P 0, (X formal adjoint of X)
that tends to zero accordingly to ¢; m 0in L7(Q2) and that X*1 belongs
to LI(2), with g such that 1/¢+ 1/g = 1. Hence

Vip € C(Q) /h.z/;:o =  h=0 ae inQ,
Q

and so X, = 0 in L*(Q).
j—+oo
Now we identify W (Q, X) with 7 (W, (Q, X)) C L4(RQ), and through that

we arrive to previous definition of Wy (2, X), i.e.

Hepstien  with ¢; € C5(Q)
Xp;, —— f in L*(Q).

j—+oo

ueWy(,X) <
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By consequence of (S) and Lemma 1.5.4 we have also that

p; —— u in L2(Q),
j—+oo

and setting

Xu:= lim X¢; in L*Q)

j—+oo

we arrive to Definition 1.5.3 [|ul|wyq.x) = |[[Xul[2@0). f 2 <p < g, let us

consider the map
T : Wy (), X)— LP(), u— u,
which is still well posed because of Lemma 1.5.4. Moreover

1ZWller@) = luller@) < Cpga lullzao) <
)

< CpgaSox||Xullr2@) = CpeoSax||ullw@ox):
whence

Wi (Q,X)— LP(Q) 2<p<q

Now we shall recall a crucial result, which has been the real reason of
We (€, X) usage.

Theorem 1.5.6 (W (92, X) is complete). (Wy (2, X), || - [lwiox)) s a

complete space.

Proof.  Let {uy}nen be a Cauchy sequence in Wi (€, X), from (S) it follows
that it’s a Cauchy sequence in L?(Q) as well. If u := hl}_’l u, in L*(Q) we

want to show that

u€ Wy (Q,X) and wu, —— u in W (9, X). (1.21)

n—-+o0o

We know by convergence in L*(Q) that

VEeN dnk)eN : |lu—up|r2@) <+  Vn>n(k),
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and we obtain that

[ttty = € ill220) < % Vi > j(k),
[ Xtuny — Xonmyjllzey <+ Vi > j(k).

If we set ¥y, := @i (€ CH()) by easy computations
2
[l = Yrllza) < [lw = wnllza@) + Nuag = Yallzze) <

we get that 1y ——u in L?(2). Furthermore
— 400

| Xy — Xuml| 2@ [ X Ynvy vy — Xnqan jan| 2@ <

< X Un@n.iov) = Xun@n 2@ +

+ [ Xunvy = Xtnon || 22@) +

+ [ Xunany = Xtbnaanyjon 2@ <
11

< T g XU = Xuaonllzz@),

but if n(NN),n(M) are sufficiently great we get

[ X vy — Xunan | L20) = lunvy — tnn|lwp,x) < e

Then we have obtained that { Xy} ey is a Cauchy sequence in L*((2), and

SO we can set

hi= lim ¢y in L*(Q).

N—+4o00
Finally u € W3 (9, X) and
p; ——u in L*(Q)
Jp; € Cy(Q) - I
Xp; —— h in L*(Q).

j—+oo

We should prove the second part of (1.21) in the distribution sense, i.e. for

every ¢ € C5°(Q)
/QXu-w:/Qu-X b
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Through an integration by parts (admitted by Rademacher’s theorem, every

ay, is locally Lipschitz) we have

Jyrew = [ Xero= i [ (Nader) v -

L
~ i [_Z/Q%.amw)] =—Z/Qu-a<aw>=

« /u~X*w.
Q

and so the assertion is proved.
O

Lemma 1.5.7. Ifu € W3 (Q, X), then X;u exists in the sense of distributions
and X;u € L*(Q2), for j =1,...,m. Moreover

/Q (Xju)o = — /Q (quv + i:: ak(ajk)uv>,

for every v € Wy (22, X).

Proof. Proceeding similarly to last theorem proof (i.e. integrating by parts

and by density) it is easy to show above formula.
O

Corollary 1.5.8 (X-gradient in W, (Q, X)). The X -gradient is well defined
for any v € Wi (2, X).

Definition 1.5.9 (W!(Q, X)). We define
WHQ, X) = {ue L*(Q) | Xuec L*(Q)}
Theorem 1.5.10 (|| - |lw1(q,x))- The function
w =l + [ Xulle

is a norm in W(Q, X).



16

1. Maximum Principle, non-homogeneous Harnack inequality, and
Liouville theorems for X-elliptic operators

Theorem 1.5.11 (density in W'(Q, X)). We have

WI(Q7X) = {u - COO(Q) | u7Xu c LQ(Q)}H'”WI(Q,X)‘
Two last cited theorems are well proved and discussed in [GDMNO96].

Lemma 1.5.12 (norms in W} (Q, X)). In W (Q, X) we have that

H ) HW(}(Q,X) ~ H ) HWl(Q,X)'
Proof.  Because of (1.20) and (S) we write

1 Xullr2@) < [lullr2@) + [ Xullr2@) < (14 CoaSax)[|Xul|2q)-

Remark 1.5.13. Of course we have the following inclusions:
W(Q, X) € WHQLX) € WE (2, X)),

Lemma 1.5.14 (Chain rule in W(Q, X)). Let f € CY(R) and f' € L™(R)
and u € W(Q, X). Then we have that f(u) € W'(Q,X) and X (f(u)) =
f'(w) Xu.

If u € Wi (9, X) and f(0) =0, then f(u) € Wg(Q, X).

Proof.  The proof follows the lines of the proof of Lemma 7.5 in [GT83].
O

Definition 1.5.15 (Positive and negative functions). We define

u" = max{u, 0} u~ = min{u, 0}.

Trivial deductions are that u = u™ + v~ and |u] = ut —u".

Corollary 1.5.16. If u € W2 (Q, X) or u € WY(Q, X), the same holds for

lu| and we have

Xu ifu>0
X|u| = Xu-sgn(u) =140 ifu=0
—Xu  ifu<O0.
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In particular, if u € W3 (2, X), then ut € W} (Q,X) and

Xu ifu>0
Xut = Xu-sgn(u®) = /
0 if u < 0.

Proof. The proof follows the same lines of the one of Lemma 7.6 in [GT83].

g

1.6 Associated bilinear form and weak solu-

tions

In this section we will give the definition of weak solution to the equation
Lu = f, where L is the operator defined in (1.2). The simplified notation
will be kept.

Definition 1.6.1 (B and By). If v € C*(Q) and v € Cj(Q), with (L)

condition verified, we set following bilinear form
B(u,v) := / ((BVU, V) + (d, Vv)u — (b, Vu)v — cuv),
Q

where B, b, d, ¢ are defined in (1.2). Moreover we can simplify notations if

we introduce
By(u,v) := / ((BVU, V) — (d + b, Vu>v),
Q
that is interesting on its own. So we can write

B(u,v) = By(u,v) +/ ((d, V(uv)) — cuv).

Q

Definition 1.6.2 (Positivity condition (4) ). We tell that d and ¢ defined
in (1.2) satisfy positivity condition (+) if

/ (<d, Vo) — cgo) >0, VYeeCiQ), p>0.
Q
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Remark 1.6.3. If (+) is verified by d and ¢ then we have
B(U, U) > B(](U, U)a
for all v such that uv > 0.

Lemma 1.6.4 (B properties). If we assume (+) ,(L) and X-ellipticity of
L in Q, then the bilinear form B is well defined on (C*(2) x C§(2)) and it
can be extended continuously to (W*'(Q, X) N L"(Q)) x Wy (2, X).

Proof. 1f (u,v) € (C*() x C§(€2)), because of Cauchy-Schwartz inequality

and positivity of B we have

1B(u,v)| < A((BVu,Vu)é(BVv,VvﬁjL

+{d, Vo)lfu] + (b, Vu) o] + ICIIUHUI>- (1.22)

Furthermore L is uniformly X-elliptic in 2, then from (1.6)

(BVu, Vi) < A%(Z<Xj1, vu>2)E — A3 (Z(Xju)Q)5 — A3 Xul,
j=1 j=1
that is valid for v too. From (1.14) it follows that
a“ 3
[(d, ol < Jul (2 3 (GIV0)?) = fuly|Xvl,
j=1

that holds simmetrically for v and v. So from (1.22) we get

Bla,o)l <A [ 1Xullxol+ [ (1Xullol + [Xellul)y + [ fellulol, (123)
Q Q Q

and so the bilinear form B is well defined. Now if we set % = % — zip = }%

(sor €]2,q[ if p > %),We obtain from (1.23), (S) and (L) conditions (using
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Holder inequality and keeping in mind that p > %)

[B(u,v)| < Al Xul|r20)]|[X0|]L2) + [[X0[| 20 [|ullzr@) 7] 20 (@)

| Xul| 20 [|v]| e V]| 220 ) + [ul| @)l V][ 2r @) el | o) <

< (AIXullzaoy + I zznco el @) ) 1Kz
(1Ml 2o 1 Xl 20y + el lo@yllullzren ) vl @) <
<

C1 (11X ul 2y + llullzr@) ) |1 X0l 20y
+C1 (11Xull 2@ + fullir ) 191 So,x | X0l 20y <

< C(IIXulleze + fullr@ ) [1Xvll 20,

where C1 = (A + [|7||r20(0) + |I¢||zr (), and so C' = C(£2, Sq x, C1).
Whence

(u,v) +—  B(u,v)

can be extended continuously to (W*'(Q, X) N L"(Q)) x W (2, X).

Remark 1.6.5 (B, properties). Of course Lemma 1.6.4 holds for By.

Definition 1.6.6 (Weak solution). Let L be a differential operator of the
form (1.2), uniformly X-elliptic in Q2 satisfying (L) and (4+), where X satisfies
(S). u e WH(Q, X) is a weak solution to

Lu = f7 f e L%0C<Q)7
if
B(u,v) = —/fv, Vo € Cy(Q).
Q

Remark 1.6.7. We want to underline the role of Theorem 1.5.11 in the
definition of weak solution. If u € W'(Q, X) and v € C}(Q2) we can take
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{uj}jen in C=(Q)NWHQ, X) s.t. w; —— uwin WHQ, X).

j—rtoo
So for {u;};en we have

B bil

|B(u;, v) = B(ui, v)| |B(u; — wi,v)| <

(1.23)

z A/ Xu; — Xug||X0]
Q

[ (1P = Xullol + s = wl|Xol )y
Q

+ [ Jllus = wllo] ———0,
Q

Jyi——+00
since each term tends to zero,

Xu;—Xu in L2(2), XveLl?(Q)

A/ Xy — Xugl|Xo] < | Xu; — Xugllzonl| X0l
Q

Jyt——+o00
Xuj—Xu in LGP (Q), veL®(Q), vEL?P(Q)
[ s = Xy ¢ 0
Q 7,4—+00
uj—u in L2P)(Q), XveL>®(Q), yeL??(Q)
|uj — wil | Xvly — 0,
Q 7,t—+00

as the last one,

/Q|c\|uj—ui||v| < (maxv)llel| o llujo — wivl] ep o) <
< (maxv)Gygollel| o) |luv — wvl[La) <
< Gl X (u) = X (u)||r20) =
= Cif|(Xuj)v + ui(Xv) — (Xu;)v — wi(X0)]12(0) <
< Cul|(Xuj — Xug)v|| 20 + || (v — ) X0|| 12(q) <
< Cl(HXuj_XuiHLQ(Q)HUHL‘X’(Q)

+|u; — Uz’||L2(Q)HXU||L°°(Q)> o O

for the same reasons as above (Xu; m Xu and u; m u both in
12(q).

We have set C} := (maxq v)C) 405 x, and of course it’s easy to verify that
(2p) < 2, p%l < ¢q. We have finally shown that the definition is well posed
through Theorem 1.5.11.
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1.7 On the Dirichlet problem for L in princi-

pal form

Let us study the Dirichlet problem when L is in principal form.
Proposition 1.7.1. Let Q be a bounded open subset of RN, X werify (S)
and L be in the form (1.2), uniformly X -elliptic in Q, and in principal form
(c=0,d=b=(0,...,0)). If p € W' (Q, X), then the problem

Lu=0in 2

u—p € Wy(Q, X)
has a solution v € W(Q, X), and where ¢ < 0 we have u < 0.
Proof. Let us consider {u;}jeny in C(Q) N WHQ, X), with u, pavendl €
W, X). Then

|1%%]<AA§:XMYMJ = AllX w20y < +o.

k=1

Moreover

|B(uy, uj) — Blug, ug)|

IA

1B(uj, u; — ui)| + [B(uy — ui, u;)| <
A(”Xuj|’L2(Q)|’Xuj — Xuil|z2(0)

IN

+[| Xu; — Xuin(Q)HXUiHL?(Q))-

This right-hand side inequality tends to zero if 7,7 go to infinity, so by density

we can define the functional J(u) := B(u,u). This functional is coercive, i.e.

ACeR : [Jw)|=COllullfeg VueWH(QX),
indeed
= li >\ 1 (X1 =
Tl = Jlim || = Al [ Z Vi)’

= /\jETOOHXUjH%%Q) 2 )‘SQ,XjETooHujHiq(Q) >

(1.19) ‘ ) )
= CJEIEOO ||Uj||L2(Q) = C||UHL2(Q)
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where C' := ASq_x|Q[ 7.

J reaches its minimum on the closed convex subset K := ¢ + W3 (Q, X) of
W, X) in u = ¢ + v, with v € W3 (22, X). Then B(u,v) = 0 for each v €
W€, X), and solvability of the Dirichlet problem is a natural consequence.
Suppose that ¢ < 0. By consequence u = v + ¢ with v € W3 (Q, X), so
ut € W (Q, X). Then B(u,u") = 0, thus B(u*,u™) = 0. L is in principal
form, so it follows from X-ellipticity that ||[Xu™| = 0, and so from (S)

ut =0.

1.8 A maximum principle for uniformly X-

elliptic operators

In this section like previous one we work on a bounded open subset of RY,
and we assume that (S) is verified by each vector field X for j =1,... ,m.
L of the form (1.2) is uniformly X-elliptic in €. The functions 7 defined in
(1.14) and ¢ defined in (1.2), satisfy (L) conditions.

Definition 1.8.1 (supu™ on 99Q). If u € W(Q, X) and | € R, we say that
u<londQ <& (u—D"eWi(Q X),
and we define

supu’ = inf{{l eER|ut <londQ}u {+oo}}
o0

Now we can prove the main theorem.

Theorem 1.8.2 (Maximum Principle on W'(Q, X)). Let Q/2 < p <
+o0, f € LP(Q), be (+) verified. Then there exists a constant C, independent
of f and v € WH(Q, X), being u weak sub-solution of Lu = f, such that

supu” <supu’ + C||f|| L) (1.24)
Q 09
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Proof. Our first step is to prove the inequality
sgpzﬁ'ESCH(HU+HL%Q>+-HfHLWQD7
for every u € W'(Q, X) such that u < 0 on 99 and verifing

B(u,v) < —/ﬂfv dz, (1.25)

for any v € W (Q, X) such that v > 0 and wv > 0. It means that if u < 0
then v = 0, otherwise if u > 0 then v > 0. We can read this request under a
“support” argument: (1.25) has to be true for every positive v € Wy (2, X),
with suppv C suppu™. O is independent of choice of v and f. For this step
the (+) condition is not necessary.

Now we build some functions with trivial properties that we recall. Let £ be

a proper real number we will obtain later, N > k and § > 1. We define

2P — kB fk<z<N

H(z) =
BNPL(z— N)+ NP — kP if 2> N.

We have H € C*([k, +oo[) and H' € L>([k, +o0]). If we set

/t([-]'(s))2 ds ift>k
(H'(k)2(t—k) ift <k,

G(t) =

we can observe that G € C'(R), and G’ € L*(R). Let w(x) := u™(x) + k,

and

w(x)
o(z) = G(w(z)) = /k (H,(S))st.

Since w > k then ¢ > 0. If u < 0 then w = k, and by consequence ¢ = 0, so
wu > 0.

By hypotheses u < 0 on 0€2, so if we consider 1 (t) := G(t + k), we have
that v € CY(R) and ¢’ € L>(R), with ¥(0) = 0. Whence ¢p € Wy (22, X),

because of Lemma 1.5.14. Using (1.25) with ¢ as particular v we obtain

B(u, ) < —/QfG(w) dz. (1.26)
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Using again Lemma 1.5.14 with vector fields we have X;(¢) = G'(w)X;(w),
where X;(w) = X;(ut + k) = X;(u™) = 0 if uw <0, by Corollary 1.5.16.
From X-ellipticity of L and that Vi = G'(w)V(u™)

B(u,p) = /Q ((BVu, V) + (d, Vo)u — (b, Vu)p — cugo) doe =
= / (BVu, Vu)G'(w) dx—i—/ (d, Vu)G'(w)udz
QN{u>0} QN{u>0}
—/(b, Vu)G(w) dz — /cuG(w) dz >
Q 0
> / N Xul*’G'(w) dx—i—/(d, V)G (w)ut dx
QN{u>0} Q
—/fy|Xu|G(w) — /cuG(w) dz >
Q 0
> //\|Xw|2G’(w)d:13—/7|Xw|G’(w)uJr dz
Q Q
—/’y|Xu|G(w) dr — /cuG(w) dz >
Q 0
> //\|Xw]2G'(w) dx—/7|Xw|G/(w)wdx
Q Q

—/97|Xw|G(w) dz — /chG(w) da. (1.27)

By a direct computation it’s easy to prove that G(s) < sG'(s), so by (1.26)

/fG dm</|f\G dx</\f]wG’

and together with (1.27) we obtain

//\|Xw|2G’(w)dx < /|f|wG'(w) dx+2/7|Xw|G'(w)wdx
0 Q 0
—i—/cuG(w) dr =: I+ 11+ IIL (1.28)
Q

So let us estimate every right-hand side addendum. w > k£ > 0, so about the

I= /Q‘wﬂwQG’(w)dac < /Q%uﬂG’(w)d

first one
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Recalling that ab < 1/2(ga® + b?/¢) for every a,b > 0 and for every & > 0,

about the second term we have

= 2 (1Xul V&) (uy/ETw) ) de <
< S/QIXw\QG’(w) dx + é/QwQG'(w)”y2 dx.

Now the third addendum.

HI:/ cuG(w) dx:/cu+G(w) dz < /|c|wG(w) dz < /|c|w2G’(w) dz
ON{u>0} Q 0 0

Choosing € = /2 and plugging the last three estimates into (1.28) we have

> [Ixupcwas< [ (4 + 2o )ut ) de,

whence

[t < [ (G (2 + )i

We know that w > k, and then G'(w) = |H'(w)|>. By chain rule (1.5.14)
X (H(w)) = H'(w)X (w), so from above relationship we obtain

[pmnrars [0 () 2 wircoran

From v < 0 on 02 and H(k) = 0 Once more because of the chain rule
(1.5.14) it follows that H(w) € W3 (Q, X). We can use (S) together with

last inequality:

( / H<w>q¢zc>3

(1) < S I XHW) e, <
(N
H@ger S%X</<2)|\£| (27)(\x))2+¥)pdx>p

1
ol

( [t dx)p .

IN

=
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Let us estimate the second factor as follows:

([ () 2y a)
< ;(A(%)pdx)p+%</Q’y2pdx>p+§</g\c\pdx>% (1.29)

If we pick k = || f||zr(q) the right-hand side of (1.29) is equal to:

1 1
2 4 ) g
M = M(y,p, 2, A\ ¢) = X + 2 (/Q’y%dl) + X (/Q|C]pdx) , (1.30)

which is independent of u and f.

</|H(w)]qu> < SqxM:2 (/ywH'(w)Pp’ dx) .
Q Q

Now let N tend to infinity. By definition of H, {Hy(w)}yen is increasing
and H'(z) = 32°~! when 2z < N. So taking the limit we have

Hence

1

q 2p/

(/\wﬁ_kﬁ‘qu> < SQ7XM§5(/’w|26p, dx) '
Q Q

Whence by triangle inequality in L7(£2)

/wﬁde < /|wﬁ—k;ﬁ|qc1x LR <
Q Q
1 1
SaxMz 8 /\w\% dz |+ —/k?ﬁp de | Q7 <
a 2 /g

<
1 2%, 1 2%/ 1
< SaxMip /|w|2ﬁp’dx (A [ an) <
Q €2 Jo
1
1 11 , 2!
= (SaxMig+ |0 w)(/w?ﬁp d:c) <
Q
B2 1 11 / 2%0/
< ﬁ(SQ,XM5+|Q|q 2”') /wwp dx
Q
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If we set R := (SQ’XM% + \Qﬁ_?%/) we obtain for 5 > 1 the inequality
11
[wl[Lsai) < RBP B2 ||w|] 260 )

: : i — _ Q-1 Q
that, if we set in addition 6 := 2%,, (0= P E 1 because p > 3 ), becomes

1
HwHLﬁp"’(Q) < (Rﬁ)ﬁHwHLQﬁP'(Q)-

Taking g = 6™ with m =1, 2,... we have

[[wl] aroms1 () < (H(Pu@j)“> [[wll 200 ). (1.31)

=1
w = ut+k belongs to L?(Q2) (u™ belongs to L*(Q2) and k belongs to L>(Q)N
LY(92) since Q is bounded), and now letting m — oo

oo

—7 oo nN—7 _0 _
[l oy < RE=107 625097 ]| oo gy = RTFOT 0% [[u0]| o gy (1.32)

So if [|w]] pawe(qy = 400 (1.32) is trivial, if [|w|[ 200 () < +00 (1.32) is verified
through (1.31) for every m > 1.

Now we shall recall a very useful interpolation inequality, due to Gilbarg and
Trudinger [GT83] (7.10).

If p <7 <400, and %v: %—l— 122 with A €]0, 1] and we set

pe=(z-2) (1) (1.33)

we have for every € > 0
ull Lz < ellullrq) + e |ul|r@)- (1.34)

Choosing ¢ = 2p'0 (€]2,+00]), p = 2, ¥ = o0, the inequality (1.34) can
estimate from above right-hand side of (1.32):

|| po () < RO (] |w| |z @) + " 77| 0] | 12(0)),

1

(where ¢ := ;5 and 7 8

—(971)2). It can be minimized by ¢ = (p'0 —

=i

Sl

1)719(||w||L2(Q)/ |w|| Lo ()7, reaching the value

/

op'0 nTp’ 0 / 5 / 1%17’0 P
|y < BP0 (00 = 177 4+ (00 = 1) 57 ) [l 120,
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So if we set

1-p'o\ P

/ ’ 1 0 / / ’ ’
CO — Rap 997‘p9<(p/9 . 1)19’7 + <p/9 . 1) 70 ) — Rap 997’1) H(p/0>p 9(p/‘9 . 1)17p 97

we obtain ||w||ge~) < Col|wl|r2), and since w = u* + k,

el <l + Bl + Bllieco) = llellieiey + 11l zscey <
< Gollwl|zz2@) + [ f1lzr) <
< Colllut e + 1 1lo@IQ1F) + 1 fllzoey <
< Ci(llulza) + 1 ller)

with €y := max{Cy, Cy|Q2|2 + 1}, and we get the required result.

Now let’s approach the second step.
Let [ = supy, ut, which can be supposed finite, otherwise (1.24) is trivial
and there’s nothing to prove. If u is sub-solution, the function v — [ belongs
to W(Q, X), and so for every v > 0 in C}(Q)

Bu—Il,v) = /Q<<BVU, Vo) + (d, Vv)(u —1) — (b, Vu)v — c(u — l)v) dz =

= B(u,v) —/Q((d, Vu)l) dx—l—/g(cvl)dx <

< —Afvdx—l(/ﬁ((d,Vv)—cv)dx) <

+)
- d — — dz.
‘ léﬁjxﬁ 1}\ﬂw r

Thus the function u — [ is sub-solution of Lu = —|f|.
Suppose we have proved the assertion for [ = 0.

If supy ut = 400 there’s nothing to prove.
If supy, ut < +00 then by the above considerations ¢ := u—1 is sub-solution
of Lu = —|f], hence ¢ € W(, X). Furthermore

supy™ =sup(u — )" = sup(u — supu™)T < sup(ut —suput)T = 0.

o9 o9 o9 o9 o9 o9
Now we are in [ = 0 case, by consequence

sup(u —supu’ )" = sup " <sup P + Cf|(=|fl|zr) = ClIf||Lri)(1.35)
Q 89 Q 89
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Whence
suput = sup(u—supu’ +suput)t <
0 Q o0 o)
<  sup(u—supu)t —suput <
Q o0 a9
(1.35)

< Ol +supu®.
o0

So let us consider the case [ = 0.

In such a case supggu™ = 0, so ut € W}(Q, X). Let k be a constant to

be determined later, M := supgu® and let’s pick the test function ¢ :=
ut
—— = ) if
M+ k—ut p=put)i
s
_ if s< M
W(s) = M+k—s nes
' M? m+k .
T2 + 78 if s > M,

and also 1 belongs to W (Q, X) because of the chain rule. On the other
hand,

M+ k
(M +k —ut)?

Xp= X (u"), (1.36)

where ¢ > 0 and pu > 0. Substituting this in the definition of sub-solution
of Lu = f and keeping in mind (+), we obtain

ut ut
< < — ——dz < —dz. (1.
Bolu ) < Blug) < = [ frr—ar 4o < [ Il do (137
Moreover, from (1.36), X-ellipticity of L, and Corollary (1.5.16) we have

M+ k ut
>N\ | Xut? dr =2 [ [ Xu"|—Fr——~dz.

—ut > k, plugging (1.37) into

M+k =
the above one and dividing to M + k we obtain

X I x|
A dr < dr +2 dr <
/Q(M+k—u+)2 rs T M k—u

] Xt 3l
dx d - dz.
/ +¢ WM+ —ut)? x+697x

IN
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If we set k = || f||r(q) and € = A/2, then by Hélder inequality we get

A | Xut|? 12
— ) ———dz < QY + = dz.
2/Q(M+k—u)2 v =9 +A/97 g

: M+ k )
But if w = ln—M+k;—u+’ we obtain
9 2 1 4
Q|Xw| dz < lep +ﬁ Q'yd:v =: (. (1.38)

Since u belongs to Wy (2, X), we have that w belongs to W (€, X) too, and
by (S)

q>2 < ~
/|w|2dx z c/|w|Qd;cgch,X||Xw||iz(m <
Q Q

< CSaxCy < ChSo x. (1.39)

We claim that w satisfies the hypotheses of step 1, with respect to By instead
of B and —|f|/k instead of f, i.e.

By(w,v) < [ =—vduz, (1.40)

Q

for every v € W3 (9, X) such that v > 0 and wv > 0, or equally with

the hypotheses on supports. Of course we already know that w™ = w €
W3 (€, X). By definition of w we have

Vu™
YOS M h—
If we set
v
P Mt k-0t
its gradient is
Ve = M—i—vkv— ut + (M + kv— u+)2Vu+.



1.8 A maximum principle for uniformly X-elliptic operators 31

Since v = 0 where u < 0, then vVu™ = vVu. Applying the definition of

weak sub-solution u (to Lu = f in ) to ¢ as test function

1
+ v
—i—/Q(BVu,Vu >(M+k—u+)2dx
v
_—— <
/<d+b Vu)M+k_u+d

< i

Noticing that (BVu, Vv) = (BVu™, V) and by keeping in mind that supp v C

supp u™, the above inequality becomes

1
B(U, QO) = /Q<BVU+,VU>m dz

BYut Vut v
—l—/g( Vu', Vu >(M+k—u+)2dx

v
—dx <
/(d+b V) s do

< ————dux.
- /fM—I—k:—zﬁr

But we have that

1
M+ Fk—ut

dx—/<d+b,Vu+>; da,
Q

_ -
By(w, v) —/Q(BVU , Vu) Y —

(%

BVu', Vu* >
/Q( Vu', Vu >(M—|—k:—u+)2dx_0’

and direct consequence is that

Bo(w,v) < B(u, ¢) < —/fM+k /|f| dz.

Thus w verifies (1.40), and we get step 1 with w = w™ and supp u™ =
+

supp w™, i.e.

/]
<o 5l )
spw < Clolle + ||,
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Doing the same usual choice of k, keeping in mind (1.39) we obtain
11
supw < C4 <S’§XC'22 + 1) = C.
o :
Hence
M+ k c, + c
Taking the sup of both sides

1

Me® < Me® +ke® — M~k < M <k(e 1),
and we finally have
sgpu* < (€ = DlIfller@),
and so theorem is proved.

O

1.8.1 Condition p < @/2 is sharp for the Maximum

Principle

In this section we find out a counterexample with to the Maximum Prin-
ciple of Theorem 1.8.2 assuming p = /2. The argument is the classical

In|In| example adapted to our setting. We suppose @) > 3.

Lemma 1.8.3. Let g :]0,1] — R be a continuous function such that r —
r@=1g(r) belongs to L*((0,1/2]). Let Q be the homogeneous dimension defined
in (1.4.4), 0 : RN\ {0} — R be a positive C™ function homogeneous of degree
one w.r.t. (8y)as0. Then x — g(o(x)) belongs to L* () and

/Q g(o(w) dz = wo, | Loy

0
Proof. We have

Jotewnas = [ glew)ar

co-area % dO’(fE)
o dt g(t) =22 1.41
/0 oo " Vel A
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Since

{o(x) < r} :/ dx m::Ty/ eryer/ dy = Cr¥,
{o(z)<r} {e(dry)<r} {e(y)<1}

but at the same time

co-area " dO’(l’)
o <= [ e [ f ,
{o(z)<r} 0 o=t |Vo(z)|

and so the two right-hand sides are equal. Differentiating with respect to r

we obtain

Q-1 _ do(z)
QCT /{vg(x)—r} |v9<$>| .

Plugging it into (1.41) we have the thesis with wg , = QC'
O

Proposition 1.8.4 (A counterexample with p = Q/2). Let {X,};=1. .m
be a family of smooth vector fields verifing (I) and (S). Suppose that the
adjoint X3 of X; is equal to —X (it happens if and only if div(X;I) = 0).

Let L be the second order self-adjoint operator

L= ixf,
j=1

which is X -elliptic. Suppose that Hormander condition is verified by vector

fields, 1i.e.
rank Lie(Xy,..., X,,)(x) = N, VreRY.

Then there exists an unbounded function u € W3 (Q, X) weak solution to
Lu = h, with h € L/?(Q).

Proof. Let o : RN\ {0} — R be a positive C*° function homogeneous of

degree one w.r.t. (dy)x>0, €.8

s 1

o(x) = ((xf)ai o ()N )2
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where s is the least common multiple of ay,...,ay. Let 2 be the open set
Q= {z cRYo(z) < 1/2}

and define, for € Q \ {0},
u(@) = f(o(z)) — f(1/2),

with f(s) = In|Ins|. We have that u € C*°(Q\ {0}), u is unbounded in €,
u=0on 09, X;u= f'(0)X,0. Moreover

Lu= f"(0)|Xol* + f'(e)Lo=:h inQ\{0}. (1.42)
Once
1. ue L*();
2. Xjue L*(Q), Vje{l,...,m};
3. he L¥(Q);

are proved we reach our purpose.

Using Lemma 1.8.3, property 1 immediately follows from direct integration
if we take g = In?|In(-)|.

Property 2 can be proved noticing that the functions Xjp, for j =1,...,m
are bounded since they are smooth away from the origin and homogeneous

of degree zero w.r.t. 5. By consequence

[ Xjul =11 ()l - [ Xjel < CIf' ()],

and using one more time Lemma 1.8.3,

2

1 1
3 3 1
/|Xju|2 de < CwQ@/ rO7 ()P dr = / r@ -t ——| dr =
Q 0 0 rinr
In 1 2 In 1 2
ln;:t / 2 et(Qfl) i et dt = / 2 et(QfZ) 1 dt.
e tet e t

The result immediately follows from the hypothesis ) > 3.

To prove Property 3 we preliminarly notice that functions | X g|? and oL are
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smooth away from the origin and homogenous of degree zero w.r.t. 9, for
A > 0. Whence

bl = |f"(0)|X o>+ f'(o) Lol < C(f ()| + |f'(0)|/0) =
o ( [ SR U ) ot
B (0ng)?  @lng|  |e2lng|) = '|e?Ing

for o < % Again from Lemma 1.8.3, and using co-area formula

1
g z 1
/|h|2d:p§C’/ 7 dr < +o0,
Q o r/lnr|z

since % > 1.

1.9 Harnack inequality under doubling mea-

sure and Poincaré conditions

In this section we prove an invariant Harnack inequality for non-negative
solution to Lu = 0 in €2, where € is a bounded open subset of RY. We
suppose that (D) and (P) are satisfied. We know that these two hypotheses

together with continuity of the control distance imply Sobolev inequality, i.e.

lullracs,) < CrllXullzes,), Yu€ Cy(B), (1.43)

for every d-ball B, with center in a fixed compact set K , containing the

closure of Q2 and radius r < ro(K). We introduce following notation:

S ’ 1
Ls(Br) = (]i |ul d33> = B %|’U“LS(BT)-

The exponent ¢ in Sobolev inequality is function of Doubling constant D of
(D) , that is

[lul

q= m where @ =log, D.
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We also use the notations
1
a:= (v +c))2,  a” = sup(r|lal] 20 ,,),
I8

where the supremum is calculated on the set of » > 0 such that B C Q.
Notice that a € L*(Q).

Theorem 1.9.1 (Harnack inequality). Let {X,};—1

smooth vector fields, d be the associated control distance, L be the differential

77777 m be a family of
operator of the form (1.2). Suppose that L is uniformly X-elliptic in 2
and satisfies (+) in RY. Suppose that (D) holds on d, that (L) holds with
Q =log, D, and (P) holds too.

If u € Wik.(Q,X) is a non-negative weak solution to Lu = 0, and r <
10(Q)/4, then for any d-ball By, C Q we have

supu < C'inf u, (1.44)
B, B

with C' as (structural) constant. We mean that C' depends only on A\, A (from
X -elliptic conditions), a*, D, constant in Poincaré inequality, Lipschitz con-

stants of vector fields, and p in (L).

Proof. We suppose u bounded-below away from zero. This is not restrictive.
Indeed, if infg u = 0 it suffices to replace u by u+e¢, where € > 0, and let £ go
to zero in the final estimates. We follow now the same approach in [GT83],
Section 8.6.

For every B € R, 5 # 0, and n € C}(Q), with n > 0, set

v = n*uP. (1.45)

If 3 < 1, keeping in mind that infqgu > 0, by the chain rule v € W3 (£, X),

and so v is an admissible test function in the integral form
B(u,v) =0 in €.

The same holds when 3 > 1 if u is bounded above, as we can assume without

losing of generality. This condition can be removed by replacing v in (1.45),
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when (> 1, with the sequence of functions

u? ifu<k

up =
Bk (u — k) + k°  otherwise.

The needed result follows letting k& tend to infinity.
Let us now split the remaining part of the proof in two steps.

Step 1. So we have

0 = B(u,v) = B(u,n*u’) =
- /Q((BVU, V(n*u”)) + (d, V(n2u5)>u) dz

— [ (0.9 ?) = cutai)) o =
_ /Q (200 (BVw, Vi) + 1250 (BVu, Vi) d
+ [ (210, + 5 (0. V) o

—/ <772uﬁ<b, Vu) — cu’ ™ 2) da,
Q

hence by X-ellipticity, by (+) and by the above equality

/772ﬂuﬁ_1/\|Xu|2dx < /<n2ﬁu5_1(BVu, Vu)) dz <

Q Q

2/ (uBA%|Xu|A%|X77|17> dz + 2/ (nuﬁJrl’y]Xn]) dz
Q Q

+/Q <n2u57|Xu|(1 + ﬁ—l)m) dz + /Q(|C|uﬁ+1n2) de.

IN

We obtain
2 B-1 2 2A 3
nu” | Xul*dr < n| Xu|| Xn|u” de
o AlBlJe
1
11, (U1 DIBIP Xl + 2007 X )y

cln?u®* dz.
A|ﬁ|/ ln
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If w:=u"* when 8 # —1, and w := Inu when § = 1, by similar computa-

tions as above we obtain

/Q|77Xw|2 de < C(B+ 1)2/ﬂ<(a77)2 + |X77|2>w2 dz (1.46)

if 3 # 1, and

/Jande < C’/Q((cm)2 + |X77|2) dz (1.47)

if 3 = —1. C'is a constant strictly greater than zero, only depending on A, A,

1+]8]
18l -

If B, is a d-ball of radius r such that the ball B,, with same center is contained

in 2, and 7 is a function belonging to C§(Bj,), combining (1.43) with (1.46)

and the quotient

and keeping in mind the triangle inequality we obtain

< Cir(1 +|ﬁ+1|(

) <

B4r)) (148>

B4r
in the case § # 1. In particular, using interpolation inequality (1.34),

<

) |77w||L3p/<p—1)(B4r) <
) (¢

We shall recall that the above inequalities are possible because of 2 < % <

q = Q 2, giving p > % € is strictly greater than zero and p is given by

IA

2(Byy))- (1.49)

(1.33), in this case u = %. We now choose ¢ = -, and plugging

201(1+W+1|
(1.49) into (1.48) we obtain for 5 # 1
() < CL+ (B4 1)1 ). (1.50)
where we remark C depends only on structural constants and on B “ | This

inequality can be extended to every cut-off function n € W (Ba,).

Now let us take two radii r; and r5 such that
r<r<rqg<2r

and a cut-off function 7 such that
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®nE W()l(Bm)Q
e n(x) =1, Vx € B,;
o [ Xn|<C(ry—ry)t C>0.

The constant C' only depends on Lipschitz constants of X; in Q. The ex-
istence of such cut-off function was proved in [FSSC98] and in [GDMN9S].
Then, from (1.50) and keeping in mind relationship among radii we obtain

for every q > 2

|w]

r
LY(B,,) < C(l + |ﬁ + 1)1+“ (1 + - 7“1) ||wHL3(Br2). (151)

Now following almost the same technique of Gilbarg and Trudinger in [GT83]
at page 197, we get the desired estimates of the supremum and the infimum

of u in B,. In particular, for first iteration of (1.51) we take
e B+1=0%, withs>1,0=q/2, (so = (q/2)Fs—1);

o 1y =71(1+27k), with k>0, (so {rx}ren is decreasing, o = 2r and

limg . yoo i = 7).

With £ =0

|wllLess,) = <][ Iw!qu) —<][ ]u\esdx> <
1
1 2
< Co(1+ )14 ][ wffds |
1_5 BZT‘

and powering both sides to ¢ we get first step iteraction.

Q|

Therefore for every k we have

[%
20(1+p) 20
f |u|6k+15 dl’ S Ck’<1 +0/€S> <1 +2k+1) <][ |u|9ks dl’) ,
B By,

Tk+1
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and substituting in the right-hand side step k£ — 1 we obtain

1 20(1+p) 20
][ | rde < Gy <1 + 9k3> g <1 + 2’““)
Brk-o-l
20(1+4) 20
- (Ck_l(l n 0’“—15) 8 (1 n 2’“)

o\ 0
. ][ uf® edz |
Bry,_y

and so iterating until £k = 0 we get

k . N\ 2091 (14 p) N 209t
][ |u|9k+15 da S H (ng_] (1 + 9k—]8> (1 + 2k—]+1>

9k+1

(f% |uyde> . (1.52)

Now we shall power both sides to 91“_113‘ The right-hand side iterated product

Tk+1

is bounded for every k, and to prove it we can proceed as follows, e.g. for
the first factor

(H C’,fjj> = <exp Z <9j In Ck_j)> =
=0 =0
_ exp <Z?o <0j In ij)) -

Pk+1lg

1 Z?:o (93“ In Ckﬂ")
< exp (g) exp R <

ICR|<C, VkeN Sh
2 oo (S2)-
1—gk+!
= C’exp(elk_f1>§0 Vk e N,

and almost identically for

1

k CN209T (1) | T k o\ 2001
(1160 )™ (M2

j=0
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So (1.52) becomes

T :
(7[ u|? dx) < C; <][ |ul® dx) . (1.53)
BrkJrl Bay

Now if we consider the left-hand side of the last inequality we have

1 1
6k+18 gk+1g 1 9k+1s gk+1g
|ul dz = _ |ul dz
B |B,, ., |¥Ts \ /B

Tk+1

1
Bch"'k-&-l 1 ok+1s
> ) de|
|B |(9k+1s B,

Tk41

v

Tk+1 Tk+1

Now letting k tend to infinity we get

1
]_ 9k+15 ohtLs
R Nul oo (8,),
B o . |ul dx PR 1 |ull
Thg1 0 s -

because u is bounded above, so the first crucial inequality we obtain is

supu < O (7[ u® dx) ) (1.54)
Br BQT

The constant Cs > 0 depends only on s and structural constants.

In the second iteration of (1.51) we take

o 3+1=—py* with py > 0 small enough, § = %,
k
(so By = —po(%) —1);

and the radius sequence will be kept the same. Acting as before we obtain

1

infu > C,, (][ u P da:) : (1.55)
Br BS’!‘

The structural constant C,,, depends also on py.

The third iteration of (1.51) has to be done with

e B+1=s0""" withs>1,0=1% (sof= 3(%)_k_1 —1);
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so we obtain
1

: 7o
][ wdr | < Csp, ][ u P de , (1.56)
B27‘ BSr

of course in non-trivial case of s > py.
Step 2. Keeping the same notation we prove now the existence of py > 0,

small enough, such that

1 1

PO ~po
<][ uP? dx) < C(][ u P dx) VB, C Q, (1.57)
B37‘ B3r

where, C' > 0 is, as it always is, a structural constant depending on py (which
is structural too). So let w := Inwu. For any d-ball B, such that By, C Q we

pick a cut-off function n about which we require
e n e WO, X);
e n(z)=1 Vze B,
o n(z) =0 VreQ\ By,;

e | Xn| < C/o.

So we get

By

IN

C’/ a*n® + 2X329>dx—0/ )dz + = ]BQQ\:

= C’/ (an)dx+—2|ng|§C’/ ader |ng|
Ba, 0 Ba,

Dividing the above inequality to |B,| we get

B C|Bsy,| (D) 1
|X'lU|2dl’ S C| 2@’ Qd + 2’ 2@‘ S C ][ a2dx+—2 _
B, Ba, 0% B,| Ba, %

%( adx—l—l) C<Q2<][ a2pdx> +1>:
BQQ Q BQQ

_ (1.47)
| Xwl|?da = / \an|2dx§/]77Xw|2da: < C/((an)2+]X77]2> dz <
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Moreover d-balls support (P), and so using last inequality and (D) we obtain

P) :
][ lw—w,|dz < CQ][ | Xw|dz < Cp f | Xw|*dz
Bg B2Q BQQ

< Co(G(@)+1)" =Cl@r+ 1)t =c

where C'is a structural constant. Buckey [Buk98| proved that John-Nirenberg’s

estimate holds in Doubling spaces, i.e.

][ exp (polw — ws,|) dv < M, ws, :][ wdzx
Bse Bsr.

holds for every d-ball B, such that By, C €2, where M and py are ad hoc

positive structural constants. Whence

(]iST u PO dx) (]i&. uPo dx) =
w=lnu <]£3T exp(—pow) dm) (7{9% exp(pow) dg:) _
- (]{BST exp (= po(w — ws,)) dx) (7{% exp (po(w — wy,)) dx) <

2
< (][ exp (pofw - w3r|) dil?) < M?,
B3r

and this proves (1.57). Now

1 1 1

(1.54) 5 (1.56) PO (1.57) PO (1.55)
supu < C ][ v’ dz < O ][ uPo < O ][ u Po < Cinfu,
By Ba, B3 B3, B

and so the theorem follows.

1.10 Application to homogeneous vector fields

In this section we prove a Maximum Principle that holds uniformly on

d-rings when L is of the form (1.2), and that holds uniformly on balls when
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L is in principal form. d is control distance defined through {X;}72,, family
of vector fields that satisfy (I). This condition implies homogeinity of degree
one of d (i.e. d(0rx,dry) = Rd(z,y)), and that ay;, coefficients of Jj, in every
X, are homogeneous of degree aj, — 1. Of course in the whole chapter when
we talk about homogeinity we refer to g-homogeneity in (I), and we suppose

(D) and (P) and by consequence (S) verified, as recalled in Section 1.4.
Theorem 1.10.1 (Maximum Principle on rings). Let ay,...,ay € N,
Q= Zjvzl aj, { X5}, be a family of vector fields satisfying (I). Suppose L
is of the form (1.2) and it is uniformly X -elliptic and it satisfies (+) in RY.
Let p > Q/2, and let u be a weak solution to Lu = f in the ring

Ag(a,b) == {z € RY | aR < d(v) < bR},

where d(z) := d(z,0) and 0 < a < 1 < b. Moreover suppose that v and c

satisfy the following conditions:
][ v dr < CR™%, ][ c[Pdz < CR™?, (1.58)
A, A,

uniformly in R, i.e. C does not depend on R (but it can depend on a and b
for example).
Then

_Q
supu™ < supu + CR* 7 || f||1oan), (1.59)
Ag DAR

where C'is a constant independent of R.
Moreover, if vy =0 (sob=0 and d =0) and ¢ =0, and Lu = f in the ball
Bg(0), then

_Q
sup ut < sup ut + OR* # || f|| o (Br0), (1.60)
By (0) 9B(0)

where C is a constant independent of R. We would like to recall that in this

second case L is called in principal form.
Proof. By homogeneity of d we have that

Ar(a,b) = 0g{z € RY | a < d(x) < b}.
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The aim is to show the Maximum Principle on the unit ring (ring with R =
1) independently of radius using Theorem 1.8.2 and (1.58), and afterwards
using a rescaling argument through homogeneity we extend the result to any
radius. Henceforth we prefere to show arguments of functions because of

many variable substitutions. So

B(u(z),v(z)) = /A ((B(x)Vu(x),Vv(a:))+<d(m),vv(g;)>u($)> da
~ /A ((b(@), Vue))v(e) - cl)u(e)o(z)) de =
= = f(x)v(x)dz

AR

for every v with suppv C Ag. Multiplying the above identity by R? and

doing a change of variable x = dzy we get

| (Bal)Vunlo). Vor(w) + (da(y). Vorln)hun(v)) dy
- /A ((bR(y),VuR(y)MR(y) - cR(y)uR(y)vR(y)) dy=—/ fr(y)vr(y) dy

where notations are due to a changing of variable, i.e.

BR(y) o <R2R alR anZJ((SRy)>1<ij<N;
dR(y) - <R2 %d 5Ry >1<i<N;

bR(y) - <R2 %b 6Ry )1<i<N;

cr(y) = R*c(dry);

fR(y) = R2f(5Ry);

ur(y) = u(dry).

Thus up is a weak solution to the equation Lrur = fr in the ring A;, where
Lg is a obvious notation for the operator of the same form of L but with

rescaled coefficients instead. Whence Ly is uniformly X-elliptic with same
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constants. Indeed, switching to a matrix representation, if

R 0 .- 0

0 R ... 0
-DR*1 = )

0 0 0

0 0 ... Row

then

Br(y) = R*- D1 - B(6gy) - Dp-1.

Hence first X-ellipticity condition for Br with any ¢ € RV, and any y € A,

by the following computations is verified:

(Br(y)§,&) = <R2DR 1B(0ry)Dr-1€,&) = 2<B(5Ry)DR 1§, (Dp-1)"€) >

> RQ)\Z (X;1(0RY), Dp1£)? R2)\Z I DrX;1(y), Dp-1£)* =

7j=1
N

=AY (X1().6)"

J=1

Acting in the same way it’s easy to prove other X-ellipticity conditions, and

which one with dg(y) and bg(y) becomes

(dr(y), &) + (br(),£)* <)) (X1([),€)° VEERY, ye AL

Jj=1

where vg(y) = Ry(d0ry). Whence we can apply Theorem 1.8.2 to the function

ur on Ap, and we obtain

sup(ur)” < sup(ug) " Crl|frl|Lr(ay)- (1.61)
Ay 0A1
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Cg shall be estimated through estimating M in (1.30) and Cj in (1.38).
1 1
2 4 P P2 !
Moo= gl | (Raewr) ay) <5 [ Einpay
A A2 Ay A Ay
Q 1 Q 1
2  4R* w | 2R b\
- 2 </ARW) dx) + £ / (@) dz
o 1
2 4R ’ RQ“
= —+ RY|A,| y(x)* dz RQ|A1| c(x)|P dz
A A2 An

1
9 AR|A| P OR2A, b
— __1_# ][ v(x)%dz 4 A ’ 1| ][ |pdx
A A2 .

05 2 ARYAY o\ 2RALY ;
23 A ) U o)
< S+ (CR) 2 (R <
uniformly in R. Analogously with C}
14
Ci=ll + 5 [ o)y < C.

Thus Cf is bounded and doesn’t depend on R, and so we can rewrite (1.61)
obtaining (1.59). The proof of (1.60) is almost identical, where the ball
should be normalized to unit ball (i.e. Bg(0) = dr(B1(0)), and Theorem
1.8.2 should be applied on the set B;(0).

i

Using the rescaling argument as in previous proof we can prove following

invariant (w.r.t. a,b, R) Harnack inequality on rings.
Theorem 1.10.2. Suppose L is of the form (1.2) and it is uniformly X -

elliptic and it satisfies () in RN with N > 2. Letp > Q/2, 0 < d < a <
1 <b< b <400 and suppose that v and ¢ satisfy the following condition:

£, (P o) o<y

uniformly in R > 0, 0 < r < % and z € Ag(a’,V'). Then there exists a

constant C' > 0 independent of R such that

sup u < C inf wu,
Ag(a,b) Ar(a,b)

S
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for any non-negative solution to Lu =0 in A,(a’, V).

Proof. N > 2 and so the ring A;(a’,V’) is connected with respect to the
Euclidean topology. The closed ring A, (a, b) is a compact subset of A;(a’, ).

Using the same notations of the last theorem by a rescaling argument we have
][ (’yR(x)Zp + |cR(x)\p> de < Cor2F
B(z,r)

uniformly in R for every ball B(z,r) with 0 < r < %/ and z € Ai(d, V).

We can choice a finite sequence of these balls covering the ring A;(a’, ') and
therefore we obtain that vz € L (A;(d/,V')) and cg € LP(A;(d,b')). By

consequence using Theorem 1.9.1 with ring A;(a’, V') we get

sup v < C inf v
B(x,r) B(z,r)

for any non-negative solution to L,v = 0 in A;(a’,V’), and for every ball
B(z,r) such that z € Ai(a,b) and 0 < 4r < min{a — ', ' — b}. The same
holds if v = ug. Since d induce the same topology as the Euclidean one, from
connectness and compactness of A;(a,b), it follows by a standard covering

argument that

sup ug < C inf wug,
Ai(ab) Ar(ab)

where C' does not depend on R. The result follows from a rescaling argument.
O

Remark 1.10.3. It’s easy to see that (1.62) can be consequence of

d(z)(v*(x) + |e(2)])

Remark 1.10.4. In the case N = 1 the Theorem 1.62 is false. A coun-

terexample can be found defining u = 7/2 + arctanx. Such function does

N

<O, VreRY.

not satisfy thesis of Theorem 1.62, however it is positive, bounded and non-

constant global solution to

d%u 2x du
+ — =0.
da? (1+2%)) da
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If we deal with operators in principal form, combining Proposition 1.7.1,
Theorem 1.9.1 and the just proved theorems, we can prove non-homogeneous

Harnack inequality.

Theorem 1.10.5. Suppose the operator L is uniformly X -elliptic and in
principal form. If u is a global solution (i.e. on every bounded open subset
of RN) to Lu = f, then we have the following non-homogeneous Harnack
inequality on metric balls:

: ~ 29 Q
supu < C infu + CR* 7 || fllra), P> 2 (1.63)
R
4

Br
4
where the constants C, C do not depend of R and u.

Proof. Because of Proposition 1.7.1 we know there exists v solution to Lv = 0
in Br(0) with v —u € W3 (Br(0), X). But u > 0, and the same proposition
proves that v > 0 in Bg(0). For any R > 0 we pick vg(z) := v(dgx), which
is solution to the equation Lgvg = 0 in By(0), and Ly is an operator in
principal form uniformly X-elliptic, with constants independent of R (same
situation met in Theorem 1.10.1). Thus, by Theorem 1.9.1

sup vg < C' inf wg,

B1(0) B1(0)
and for v it becomes:
sup v < C inf v. (1.64)
By (0) B R (0)

Of course C' is always independent of R.
So we have L(u —v) = 0 in Bg(0) and v — v=0 on 0B,(0) in the sense of
W¢(Bg(0), X). This means that (u —v)™ = 0 on dB,(0), and then by (1.60)
o)
;U(P)(U — ) < CR" 7 ||fllo(Baioy- (1.65)
(0

From (1.60), with v = v — u + u we obtain

inf v < sup (v—u)+ inf u< sup(v—u)+ inf u

BR(0) By (0) BR(0) Bg(0) B R (0)

_Q .
< CR* 7 ||f|lo(Bro) + Bl;l(fo)u. (1.66)
4
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Instead, if we write u = u — v + v we get

(1.64)
sup u < sup(u—wv)+ sup v < sup(u—wv)+C inf v
B%(O) B%(O) B%(O) Br(0) B%(O)

“ﬁs) C’RQ’Q||f|| + inf
4 1n u
< LP(Br(0)) By

_Q _Q .
< CR pHJ”HLp(BR(o>)+C<032 Pl ey + nf U>
%( )
~ Q
= CR* 7 C inf
| fl e Broy + Blél(o) u,

so theorem is proved.

U

Remark 1.10.6. The inequality (1.63) is false for operators which are not
in principal form. E.g. let us consider the operator in Proposition 1.8.4 and

u(x) = 1+ o(x)% From (1.42) it follows that u solves Lu + cu = 0, where

c= m, h = 2|Xo|? + 20Lo. So h is bounded, but u doesn’t satisfy
0
(1.63).

By arguing as in the classical case from Theorem 1.10.5 we deduce a Liouville-

type theorem for operators in principal form.

Corollary 1.10.7. Suppose the operator L is uniformly X -elliptic and in
principal form. If u is a global solution (i.e. on every bounded open subset
of RY) to Lu =0, and u > 0, then u is constant.

Combining Theorem 1.8.2 with Theorem 1.10.1 we get another Liouville

type theorem for X-elliptic operators that aren’t in principal form.

Theorem 1.10.8. If hypotheses of Theorem 1.10.2 are satisfied, if d = 0
and ¢ =0, if v > 0 is a solution to the equation Lv =0 in RN (N >2) and

if u is a non-negative global weak solution to Lu = 0, then

w=C-vinRY,
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where C' > 0 is a constant.

Proof. For every R > 0 we set
ag :=sup{a >0 | u(z) —av(z) > 0, Vo € 0B4(0, R)}.

Because of linearity of L, L(u — agrv) = 0 in the open set Qg := {d(z) < R},

and
u—ary >00ndQr < agv—u<0ondNr <& (agv—u)" € Wy (Qg, X).

Because of the definition of ag there exists a sequence {a,}nen /" agr for
n — 400, where for each a,, we have u — a, > 0 on 9B4(0,R). By this
(a,v —u)T € Wi(By(0, R), X) and letting n tend to infinity we have (agv —
u)t € Wi (Qg, X).

Then by the Maximum Principle (Theorem 1.8.2) u — a,v > 0 in Qg. In
particular if R< R, then v —agv > 0 in 15, and so aj > ag. Then we can
define

a:= lim ap = inf ap
R—+o00 R>0

By definition 0 < a < 400 and u — av > 0 in RY. Since L(u — av) = 0, by

the Harnack inequality on rings (Theorem 1.10.2) we obtain

sup (u—av) <C inf (u— av),
AR(%,2) AR(%Q)

with C' independent of R. Keeping in mind that (v — av)* = u — av, by the

Maximum Principle

sup (u—av)= sup (u—av).
d(z)<2R d(z)=2R
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Moreover, again by Harnack inequality on rings and the maximum principle,

inf (u—av) < inf (u—av)= inf (u— asrv + asgv —av) <
AR(%Q)( ) - d(z):2R( ) d(x)ZQR( 2R 2h ) -
< inf — —a) =
< d(ggl:m(u aspv) + d(i;l:%R/U(aQR a)
= sup v(agg —a) < sup v(agg —a) <
d(z)=2R AR(3,2)
< C inf vlaggr—a) <C inf wv(agg —a) <
< O vl @) SC il (o) <
< C inf v(agg —a).
d(z)<2R

By consequence
sup (u—av) <C? inf v(agr — a),
d(z)<2R d(z)<2R
Letting R tend to infinity we now deduce that

uw—av=0in RY,

since © — av > 0, and so the Theorem is proved.



Chapter 2

A notion of convexity related to
sub-solutions and mean-value
operators for ultraparabolic

equations on Lie groups

In this chapter we prove a scalar convexity for mean-value operators ap-
plied to sub-solutions of ultraparabolic equations on Lie groups. We will use
a potential theory approach, which has been already investigated by Cinti
in [Cin07], where L£-subharmonic functions have been characterized in terms
of mean-value operators and representation formulas. The class of opera-
tors we treat is contained in a wider class about which the related potential

theory and an invariant Harnack inequality were singled out by Kogoj and
Lanconelli in [KLO04].

2.1 Introduction

Let {X,..., X,,} be a family of smooth vector fields in RY, i.e. with C*°

coefficients in R™. So, using the same notation as in the previous chapter,

93
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we have that
N
X; = ;akj(:c)ﬁk, O = FI (2.1)
and denoting z := (x,t) an element of RV*! we define

Y = X() —375,

vector field in RVt With this notation we set

L= > X +Y, (2.2)
j=1
j=1

Our main assuptions are:

e (Left invariance)
there exists a homogeneous Lie group LL := (R¥*! o, §,) such that
(i) X1,...,Xm, Y are left invariant on L;
(i) X7y, ..., X, are dy-homogeneous of degree one and Y is d-homogeneous

of degree two;

e (L-admissible path)
for every (z,t), (&,7) € RVT! with ¢ > 7 there exists an L-admissible
path 7 : [0, 7] — R¥*! such that 7(0) = (z,t) and n(T) = (&, 7).

We recall that a vector field X is called left invariant if for every a € I we

have
X(gp(a o x)) = (Xy)(aox), Vpe C'OO(RNH,R),

(where we consider our vector fields as vector fields in RN¥*1), and dy-homogeneous

of degree o € N if

X ((0r(2)) ) = A7(X¢) (3r().
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We also recall that an L-admissible path is a strictly related concept to

Definition (1.3.3), i.e. 1 is called L-admissible if it is absolutely continuous

and
7(s) = _1i(5)X;(n(s)) +lo(s)Y (n(s)), a.e. in[0,7],
j=1
where [, ..., 1l,, are piecewise constant real functions with [y > 0.

2.2 Basic L-potential theory and £-subharmonic

functions

First of all we shall recall some consequences of our main assumptions,
all proved in [KLO04].

e Hormander condition is satisfied, i.e.
rank Lie{X1,..., X, }(2) = N+1, Vze RVt
whence £ and L are hypoelliptic in R¥*! and in RY respectively;
e Composition law is Euclidean in the last variable component,
(z,t) 0 (§,7) = (S(z,t,&,7),t+7), Y(z,1),(§ 7)€ RV
with S smooth function;
e Dilatation form for all A > 0 is the following one:

Sa(z,t) = A\ '2q, ..., AN, A%t), o1,...,0n €EN;

e Homogeneous dimension of LL is

N
Q=Y or+2
k=1

and we suppose that () > 5, and hence the homogeneous dimension of
RY (i.e. Q — 2), with respect to dilatations of first N components of

RN+ will be greater than 3;
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¢ )y-homogeneous norm exists on L and it is of degree one i.e.:

L[ [:RY = [0, 400, |-] € C®RY\{0,0}) UCRN);
2. 10x(2)] = Alz], |27 = |2|, Vz e RNt
3. |¢/=0 & 2z=0;
e Global fundamental solution (=: I') to £ exists and it belongs
to C°(RN*1\ {0,0}), such that (by definition) LI' = §. Moreover
[(z,t) > 0if and only if £ > 0. We can define I'(z2,¢) := T'({"'0z), and

because of the left translation invariance we have LI'(-,{) = 0, with
C c RN+

We stress that global fundamental solution is d)-homogeneous of degree
2 — @ (Proposition 2.8 in [KL04]).
Throughout whole chapter we will keep the just explained notations, and in

addition 2 will denote an open subset of RV*! if not different stated.

Definition 2.2.1 (£-harmonic function). Let v : 2 — R a smooth func-

tion such that
Lu=0.

Then w will be called £-harmonic.

Definition 2.2.2 (Linear space H*). We denote by H*(Q) the linear space

of L-harmonic functions in 2.

Definition 2.2.3 (L-regular set). A bounded open set V C RY¥*! is said
to be L-regular if, for any ¢ € C(9V), there exists a (unique) function such
that

Hg(x) = p(zg), Vo€ IV,

and H;f > (0 whenever ¢ > 0.

Because of maximum principle (proved in [KL04|, Proposition 2.1), we

can consider the map

C(OV,R) 3 ¢ — HJ(z) € R,
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for every fixed x € V', whenever V is L-regular. This map defines a positive

linear functional on C(9V'), thus following definition is a consequence.

Definition 2.2.4 (£-harmonic measure). The Radon measure y! sup-
ported in 0V, such that

G = [ el0aul Q. veecoy)
will be called £-harmonic measure related to V and z.

Definition 2.2.5 (£-hypoharmonic functions). Let u : Q — [—o00, +00|

be a function. If

1. w is upper semi-continuous (u.s.c.);
2. u(z) < / u(¢)dp (¢), V¥V such that V C Q, V L-regular;
av

then we say that the function u is £-hypoharmonic in (2.

We denote the set of all L-hypoharmonic functions in € by S(€2).

Definition 2.2.6 (L-subharmonic functions). Let u : Q@ — [—o00, +0o0|

be a function. If

1. w is L-hypoharmonic in © (u € §(Q));

2. w is finite in a dense subset of (2;

then we say that the function u is £-subharmonic in 2.
We denote the set of all £-subharmonic functions in €2 by S(2).

Definition 2.2.7 (L-hyperharmonic (L£-superharmonic) functions).
Let w a function such that —u € éﬁ(Q) (—u € 8%(2)). Then we shall
call u L-hyperharmonic (u L-superharmonic). We denote the set of all £-
hyperharmonic (£-superharmonic) functions in €2 by g(Q) (E(Q))

Proposition 2.2.8. Let u : Q — [—00,4+00] be an u.s.c. function. Then, if
u € S(Q), we have u € Ly (Q) and Lu > 0 in the distribution sense.

loc
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This proposition can be proved following the same steps of [NS84] The-
orem 1 proof. Because of this proposition we can give definition of £-Riesz

measure related to w.

Definition 2.2.9. If u € S“(), then there exists a Radon measure u sup-
ported in €2 such that Lu = u. We will call u the £-Riesz measure related

to u.

Remark 2.2.10. Of course we have H%(Q) = S*(Q) N SL(Q).

Remark 2.2.11. In the sense of abstract potential theory (see, e.g. [CCT2]),
the map

R 5 Qs HE(Q)

is a harmonic sheaf and (RN 'HX) is a B-harmonic space. We recall this

second statement is due to the following properties:

e the L-regular sets form a basis of Euclidean topology ([Bon69] Corollary
5.2);

o H* satisfies Doob convergence property, i.e. if the pointwise limit of any
increasing sequence of L-harmonic functions on any open set is finite
in a dense set then this limit is £-harmonic ([KL00] Proposition 7.4 for
proof, [CCT72] for theory about);

o for every fixed ¢ = (¢,7) € RV the functions

2z =Tt o2), (x,t)H—/OOOF(f_lox,t)dt

are L-subharmonic in RY™! and their images (with ¢ € R¥*! and

¢ € RY respectively as variables) separate the points of RVF1,
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2.3 Representation formulas, £L-harmonic and

L-subharmonic functions

Definition 2.3.1 (£-ball). Let z € R¥*! and r > 0, we define the £-ball of

center z and radius 7 as follows:

0(z) = {Ce R T2 > )

Proposition 2.3.2. For every z € RN* the L-balls centered in z have the
following properties:

1. for every r >0, Q.(z) is a bounded non-empty set;

2. Q,(2) shrinks to {z} when r — 0, or equivalenty ﬂ Q.(2) = {2},

r>0
3. we have that

OO
e =0

4. for almost every r > 0, 0Q,(z) is a N-dimensional C*> manifold;

5. if z=(x,t), then U Q,(2) = RV x]—o00, t].

r>0

This proposition describes geometry induced by the operator through the

fundamental solution, that has been used to define the £-ball.

Proposition 2.3.3 (Representation formulas). Let Q C RY™! be an open
set, u € C?(,R). Let Q be the homogeneous dimension of RN+, Then

u(z) = M,(u)(z) — N, (Lu)(z), VQ.(2) Cz0Q; (2.4)
u(z) = M, (u)(2) — N, (Lu)(2), VQ(2) C z0Q; (2.5)
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where

Mo(w)(z) = / o KO0 0dr(0),

M) = g [ Ko@) dc
New)) = [ (T o) =it w0

M) = L / 0% Ny (Lu)(2) dg

If we use the same notation as (1.7), and V := (0y,--- ,0n), we have
|XT0.9”
K :
© = Wreor
K -1 o = ’XF(Z7C)|2
e = e

Proof can be found in [Cin07].

Proposition 2.3.4 (The kernel K). Let 2 € RVt be a fived point. Let us

summarize properties of the kernel K :

o K is left invariant with respect to the left translations on L (unlike K);

K is §x-homogeneous of degree —2;

o K(z,-) >0 in RNVFL;

K(z,-) € C"X’({(g,T) ERNL | 7 < t}));

Yi={(=(&7) e RV | 7 <t K(2,() =0} has an empty interior.

Corollary 2.3.5. If u € C*(Q,R) then

M (u)(2) = % /0 oM, () (=) do,  WEL(2) C .
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Proof. It is enough to multiply both sides of (2.4) by ¢9~® and integrate

between 0 and r with respect to g to obtain
TQ72 T T
g = [ M e o [ 2N L)) de
0 0

Comparing result with (2.5) we reach the purpose.

U
Corollary 2.3.6. If u € H*(Q), then for every z € Q and r > 0 such that
Q,.(2) C Q we have
w(z) = M, (u)(z) and u(z) = M,(u)(2).

Vice versa holds true, if u € C(Q,R).

Theorem 2.3.7 (Koebe Theorem). Let u € C(2,R) be such that
u(x) = Mo@)(z)  or u(z) = My(u)(s), V() C 9.
Then
u € H(Q).

Let us define the Friedrichs’ e-mollifier adapted to our setting, which
can be used to prove the above theorem, through building families of L£-
subharmonic smooth functions that tend to £-subharmonic non-smooth ones.

Proof of following lemma is the same of the classic case.

Lemma 2.3.8 (s-mollifier). Let J € CP(RNTY), J > 0 be such that
suppJ C B(0,1) and fﬂéVHJ =1, u € L (). Fore > 0, we define
the e-L-mollified of u in €2 the function

u. : D% —R z»—>/u(()J(dE-1(zoC1)&thg,
0

where DSt := {¢ € RN+ | B((71,¢e) € Q7 '}. We have that

Ll (9
Uz € C’OO(D?), Ue _)100( )

e—0
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Lemma 2.3.9. Let u : Q — [—o00,+00[ be an w.s.c. function, u € Ll ().

loc

The following statement holds true:

u(z) < M, (u)(2), VQ.(2) CQ = ue(z) < My(us)(z), VQ.(2) C D2

Proof of this lemma can be found in [Cin07], Lemma 3.3.

Corollary 2.3.10. Let u € S*(Q). There exists a sequence of smooth L-

subharmonic functions which tends to u in Li. ().

2.4 A notion of convexity

Let us introduce a new notion of (scalar) convexity, because the Euclidean
one we will recall is obviously unappropriate.
Indeed, let I be an interval of R and ¢ : I — R. We say that ¢ is convex if|
for all s1,s9 € 1,

S — S s — 81

o(s1) + ©(s2), Vs € [s1,89].

<
90(8) - S9 — 51 S9 — 8§51

So this usual notion has to be extended in the following sense:

Definition 2.4.1 (y-convexity). Let ¢» € C(I,R), be strictly monotone.
A function ¢ € C(I,R) is ¢-convex if, for all sq, s9 € I we have

¢<S2> B ¢<S) 1/)(‘9) B 1/}(31) (,0(52)
Y(s2) — ¥(s1) Y(s2) — ¥(s1) 7

We explicitly note that right-hand side of (2.6) is of the form ai(s) + b,
where a e b are constants such that ¢(s;) = ap(s;) +b, (j = 1,2). It follows
that

o(s) < Vs € [s1,82].  (2.6)

p(s1) +

_ Ps) —e(s2) o p(s2)v(s) — pls1)v(se)
Y(s1) — U(s2)’ Y(s1) — P(s2) '

The meaning of such definition is a natural generalisation of the Euclidean

one: the graph of ¢ between s; and s, lies below the graph of ¥. To ensure
that 1 pass through the same two points we need the contribute of a and b.
The classic definition coicindes with this one when ¢ is affine.

We need now a lemma that will play a crucial role in the following pages.
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Lemma 2.4.2. Let 0 <1 <719, 1 <, f € CYJry,m[,R). If

d
re {yf(r)} non-decreasing (2.7)
= fis (r'"®)-convex, r €)ry,rof. (2.8)

Proof. If we define V,,(r) := r'=%, then we have

dVv,
dr

ot dr
— (1 — « @ _ (1 — B
G-ap B e g-a

that plugged into (2.7) gives

d

(1—a) A

f(r).

dr{d

dva Ef(r)] chai;rule (1 . a)

d d
Whence v f(+) is non-increasing with respect to r. By consequence T 1)

is non-decreasing with respect to V,,. Let V,(r) €]V, (r2), Va(r1)[. Because of

the Lagrange mean-value Theorem there exist 1, and 15 such that,

d ~ flr) = f(r) )
dvaf<yl> - Va(Tl) . Va<r)7 Vl e [VQ(T)7 VCM(TI)L (29)
d _f(r) = flr2)
d—vaf(w) RACEA) vy €|Vo(r2), Va(r)]. (2.10)

We have that V,(ry) < vo < V,(r) <1y < V,(r1) and that f is non-decreasing
with respect to V,,; we obtain that left-hand side of (2.9) is greater or equal
to left-hand side of (2.10), so the same holds between right-hand sides:

f(r)

D I0) L S0)— S
Va(rl)

Va(r) = Va(r) = Va(ra)’

1.e.
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2.5 Mean-value operator convexity of £L-subharmonic

functions

Definition 2.5.1. Let z € Q C R+ 7.7, € R such that ro > r; > 0 and
Q,,(2) C Q. We define L-ring of center z:

Az, ri,re) = {CeRVT | 2% <T((loz) <P ¥}
= QT‘Q(Z> \ﬁﬁ(z)'

Proposition 2.5.2. Let Q C R" be an open set, u € S(Q) N C*(Q,R). If
z € ), and if

R(z) :==sup{o >0 | Q,(z) C Q},
then

r — M (u)(z) and
F oo N(w)(2)

belong to C*(]0, R(2)[,R). Analogously

r — M.(u)(z) and
ro—= No(u)(2)

belong to C*(]0, R(2)[,R).

Proof. We have
1

MWE) = g ) K esul)d
¢=208,(n) Ql_z K (6:(n7"))u(z 0 6,(n)rdn
r Q1(0)
234 K(n "u(z06,(n)) dn.
21(0)

Thus

d2 . 62
I E) = [ Ko guoa ) dn



2.5 Mean-value operator convexity of L-subharmonic functions

65

and first statement follows from hypotheses and by (2.5). By Corollary 2.3.5

L)) = (@-2) [ M) do, Y €0, RE)
0
and differentiating both sides with respect to r we obtain

(@~ 29 M, (u)(2) + 792 M()(2) = (@ — 2)r9 M, ()2
2

5 M) = TR (M w)() — M) (2)). (2.11)

By regularity of M, (u)(z) it follows that M, (u)(z) belongs to C*(]0, R(2)[,R).

Finally from (2.4) we get same regularity for N, (u)(z).
U
Proposition 2.5.3. Let z € Q, u € C*(,R). Then
d
T Mr()(z) = TQ : / Lu(¢) d¢,
for every r such that r €]0, R(2)[.

Proof. Because of Proposition 2.5.2 we can differentiate (2.4), with respect

to r, then for every r €]0, R(z)[ we have

d d
0= EMT(U)(Z) - E/\/}(Lu)(z).
Whence
d d -1 2—
FME =g [ rete —rcu¢ ac

waes 4 f7 (¢t o2) —129) Lu )d
dr Jo (/{<;1‘(<—loz)21Q:g} ‘X( (C 1, >%)| (C) 0
L2 (D(¢Co2) —r*9)Lu

/0 or </{Cr I(¢~loz)2-Q =g} |X( (¢~ 102)#@>
_ [ # (0 o2) =) Lu(Q) |
/0 </{C1F(Cloz)21€?:g} |X( (& 102)7Q)| do(C)

o ["2-Q Lu(C) do )d
/0 rQ-1 (/{(:F(c—loz)l’—leg} |X(F(§*1 ° Z)%Q)| (€) 0

co-area Q - 2 / /
e X2 . Lu)(¢)d¢ = 2= Lu(¢)dC.
ro-t {<zr<<-loz)m>r2-¢?}( ) rot Ja, )

6
N—
o,
s




2. A notion of convexity related to sub-solutions and mean-value
66 operators for ultraparabolic equations on Lie groups

And now the main result.

Theorem 2.5.4. Let Q C R be an open set, u € S“(Q). We have:

1.V2e€Q, 0<r <71y : A(z,r1,72) CQ,

r = M, (u)(z) is a r*"9-conver function on Jri,rsl;

2.¥z2€Q, 0<r; <ry : Alz,r,m) CQ,

r = r9M,(u)(x) is a 797 %-convex function on ry,ry|.

Proof. 1. At first we will show that the theorem is true for every u €
S*(Q) N C?*(Q,R), and after through Proposition 2.3.10 we will prove the
assertion.

Let u € S(Q) N C%*Q,R). A(x,ri,m2) C Q, as a consequence u belongs to
S(A(z,r1,75)). Since (@ —2) > 0 and Lu > 0 in A(z,71,72) (Proposition
2.2.8), we get

0 < (@—2>A( £u(c)ac

- ©-2 [ | euoac- £u<<>d¢]
o (2) Qry (2)
2 | GMe)| e [ ]
This proves that
s [ o)

is non-decreasing in |ry,73[. Thus by Lemma 2.4.2 M, (u)(z) is a convex

function of 1= (@-1 = y2-Q in such interval.

L ) flat)dt = o (@) f (2, 0(2) — (@) (2 u(@) + L) 2 f bt
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Let u € S(Q). By Proposition 2.3.10 there exists (ty, )neny where u,, € S“(Q)N

C*>(Q,R) such that liIJP u, =win L (Q). We have
lim M,(u,)(z) = lim K(Q)un(z 0 ¢)do(¢)
n—400 ntee J9,.(0)
— lim K(Q)u(z o ¢) do(C)
n=+%0 J90,.(0)
= M, (u)(x).

Moreover every u, is a r>~@-convex function, then letting this inequality go

to infinity with respect to n

Tng_rz—Q
l. r n < 1 “o_0O  9_0O r1 n
S M n)(@) S g g Ma()(2)
r2—Q _ p27¢
+ lim |5 My, (1) (2) |
[ M)

we have the obvious result which completes this step.
2. We shall proceed like 1., considering u € S(Q)NC?*(Q, R), with r €]ry, ro].
Beginning from (2.11),
d Q-2
— M (u)(z) = (Mo (u)(2) = My (u)(2)),

dr r

multiplying both sides by 792 we obtain

S(ONME) = Q-2 M W) ()
equivalently
rg_Q%<rQ_2Mr(u)(z)> = (Q - 2)M,(u)(2). (2.12)
Form Proposition 2.5.3
d . Lu>0
FM@E =@ [ rugacEo

and so M, (u)(z) is a non-decreasing function of r, and the same holds for
left-hand side of (2.12). By Lemma 2.4.2 (and noticing that r1=3+@ = y@=2)
we get that

r972 M, (u)(z) is a r9 %-convex function.

With same proceedure as before, we can extend the result to u € S(Q).
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Chapter 3

Quasi-boundedness and
S-regularity for Dirichlet

problem

The aim of this chapter is to extend to the sub-Laplacians on stratified Lie
groups the following theorem by Ulkii Kuran [Ku79].
Let © be a bounded open subset of RV, N > 2. A point # € 95 is regular

for the classical Dirichlet problem if and only if the function

y—T(y—a)
is quasi-bounded in €.
Here I' denotes the fundamental solution with pole at the origin of the usual
Laplace operator A. We recall that a point x € 0f is said to be regular for
the classical Dirichlet problem if denoting by “H, 3 the Perron-Wiener-Brelot

solution to
{ Au=0 in €,
ulpn= ¢
one has
lim “HS = p(x) VYo e C(0Q,R).

Qoz—x ®
We also recall that a non-negative harmonic function h : 2 — R is said to be

quasi-bounded if it is the supremum of an increasing sequence of non-negative

69
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bounded harmonic functions in 2. Kuran explicitly avoided Boulingand reg-
ularity criterion in his proof: he used some deep properties of the réduite
and the balayage of the fundamental solution.

Here we adopt a different and easier approach, relaying on some properties of
the Green functions and the Perron-Wiener-Brelot solutions to the Dirichlet
problem 1.

We underline that some notions of this chapter will be the same as previous

ones, because of the harmonic space structure.

3.1 Introduction

Keeping in mind notation (2.1), we only consider m smooth vector fields
on RY. Given a stratified Lie group G = (RY,0,d,) we denote by § its

sub-Laplacian, i.e.

S = zm: X;.
j=1

So § is contained in the classes studied in the previous chapters. For our pur-
poses it is crucial to recall the existence ([Fol75], [Gal81]) of a homogeneous

norm | - | on G such that

_ 2-Q
[(z,y) = |z~ oyl

is the fundamental solution for S, where @) is the homogeneous dimension of
G (Q > 3 in our paper). We also know that

o I'(z,y) =T(y,2) Vz,yeRY;
o I'(,) € O*({(z,y) € RN xRV |z # ¢y}, R).
For every open set  C RY analogously we define

H(Q) :=={u e C®(Q) | Su=0}.

!Brelot in [Brl], had already observed that some steps of Kuran proof could be easier

obtained from some results in [Br44].
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In [BLUO7] it is proved that (G,H) is a G-harmonic space in the sense of
[CCT2].

Every definition about regularity, S-harmonic measure and so on has been
inherited from Chapter 2 consequently. It holds that u is S-harmonic if it is
both S-subharmonic and S-superharmonic, then H(Q) = S(Q) N S() (see
e.g. [BLO3] Theorem 3.1).

It is worth to recall the definition of Perron-Wiener-Brelot solution to the
Dirichlet problem for S in ©Q with boundary ¢ : 9Q — [—00, +00].

The sets of upperfunctions and lowerfunctions of ¢ in §2 are defined respec-

tively as follows:

H? ={u|ue ?(Q), liminf u(y) > p(z) Yo € 01, igfu > —00};

Yy—x

Q._ .
U, = {u|ueSQ), limsupu(y) < p(z) Vo € 09, sgpu < 4o0}.

Yy—x

The real extended functions Fg := inf US and H 8 = sup Qg are called
upper solution and lower solution respectively to
{ Su=0 in
u |3Q: 90
ItH 8 = FS and are S-harmonic then ¢ is called resolutive. In this case one
denotes H, 3 =H 2 = ﬁg. We know from Wiener resolutivity Theorem (see

e.g. [BLUO7] Theorem 6.10.4) that all the continuous functions are resolutive.

Moreover, for every x in €2 the map,
C(OLR) > ¢ — HY(z) €R

is linear and positive so that there exists a unique Radon measure pSt with

support in 02 such that
Q Q
) = [ et
80

called S-harmonic measure of 2 at . When (2 is S-regular this definition

gives back the previous one.
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Definition 3.1.1 (S-regular point). A point = € 99 is called S-regular
for € if

lim Hy =(z) Vo€ COUR).

Qo3z—z
Definition 3.1.2 (Quasi-boundedness). A non-negative S-harmonic func-
tion h in € is said to be quasi-bounded in €2 if there exists an increasing
sequence (hy,)nen of non-negative bounded S-harmonic functions in €2 such

that

h= lim h, in .

n—-+o0o
Next section 3.2 contains some preliminary results with some intent in them-

selves.

3.2 Some preliminary results

To begin with we recall the definition of S-Green function.

Definition 3.2.1. Let 2 be an open subset of G. A S-Green function for €2

is a lower semicontinuous function Gg : 2 x Q —] — 00, +00] s.t.

(1). Galz,") =To() +ke(-) Vze€Q, ky € H(Q);

(2). Ga(x,y) >0 Vz,ye

(3). HzeQ, v, €S (Q), valy) =Tuly) + L(y), Lo € S(Q), then
vz(y) = Galz,y) Vy € Q.

Remark 3.2.2. Properties (1) and (3) imply the uniqueness of Gg. Moreover
Go(z,y) =Tu(y) — Hy (y), Galz,y) = Ga(y,x),

and Gg > 0 if and only if x and y belong to the same connected component
of Q. See Chapter 9.2 of [BLUOT].

Theorem 3.2.3. Let Gq as above and x € 0S). Then,

x is S-reqular & lim Gq(y,z) =0 Vye.

OSz—zx
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Proof.  Assume lelzn_l)z Gal(y, z) = 0 for every y in Q. Let O be a connected
component of 2 whose boundary contains x, and choose a point y € O.
Then

O3z Galy,2)

is a S-barrier function for O at z. Thus, by Boulingand’s Theorem (see
e.g. [BLUO7] Theorem 6.12.2) z is S-regular for O. Since O is an arbitrary
connected component of €2 with 92 > z, this proves the S-regularity of = for
Q.

Vice versa, if = is S-regular, for every fixed y € (2 we have that

lim Go(y,z) = Ty(r) — lim H{(2) =0,

OSz—zx O>Sz—x Y
because I'y is continuous on 0f2.

g

Theorem 3.2.4. Let 2 € G be a bounded open set and let h € H(2), h > 0.
Suppose h
h:0Q —[0,00], h(z)=limh(z)

Z—T

is well defined. Then
h is quasi-bounded in ) & h is resolutive and h = H»}?.

Proof.

(=) If h is quasi-bounded in 2 there exists an increasing sequence (h,) of
non-negative and bounded S-harmonic functions such that lim,, ., h, = h.
Every h,, belongs to Q%, and h belongs to H% . By consequence

h= lim h, <H?<H; <h

n—-—+00
in €.
(<) The function h, : 92 — R, h, = min{h(z),n} is resolutive. Then, for
every z in €2, we have

Beppo— Levi ~

HE () = /mhn@)du?(y) 7 | Rt = B G) = hee),
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The family (Hp,)nen is S-harmonic and increasing in €2 since (hy,)nen is
increasing on 9. Moreover, H;! < n in Q since the constant functions are
S-harmonic in 2 and h,, < n on 0f2. This proves that h is quasi-bounded

and completes the proof.

3.3 Quasi-boundedness and S-regularity

We are ready now to prove our main result, that links the quasi-boundedness

of fundamental solution for § and the S-regularity of the boundary points.

Theorem 3.3.1. Let G = (RY,0,6,) be a stratified Lie group, S its sub-
laplacian and T, the fundamental solution of S with pole x. If 2 C G s a
bounded open set and x € 0S) then

x is S-reqular < T, is quasi-bounded on €.
Proof. (<) From Theorem 3.2.4 we have that
Lu(y) = H (y)  VyeQ.

Let Gq(+,-) be S-Green function of Q. Let y € Q and let (z,)nen be a

sequence in €2 such that x,, — = as n goes to infinity. We have

0 < liminfGq(y,x,) < limsup Go(y, z,) <

n—-+oo n—-+oo
< limsupl',, (y) — liminf HE (y).
n—+o0 n—100 "

We have

limsup Iz, (y) = Ta(y)
n—-+00
since z — I';(y) is continuous, being y € Q. Moreover

hminf[—[&n(y) = liminf/ an(z)d,uiz(z)z
o0

n—-+o00 n—-+00

> /liminfl“xn(z)duéf(z):
0

Q n—-+o0o

— /a ) To(z)dp () = HE (y) = Tu(y).
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Then lim G(y,z,) = 0. By Theorem 3.2.3 we get S-regularity of .
(=). Suppose that Q is connected, and let y € Q and z € RY. Define

o0:2) = Tly) = [ TL0dS).
o0
If » € RV\Q then I, is S-harmonic in a neighborhood of Q. As a consequence

/8 TL(Dd(E) = ().

and ¢(y, z) = 0.
If z € Q then g(y,2) = G(z,y) = G(y,z) > 0. At any S-regular boundary
point ¢ by Theorem 3.2.3 we have

lim g(y,2) = lim G(y,z) =0,

O>z—t

and hence

li — 0.
Q;ngtg(y,Z) 0

Now, let 0€); be the set of the S-irregular boundary points of 2. We know
that 0€; is an S-polar set ([BC05] Theorem 3.1). Then there exists an

S-subharmonic function p on R such that

p(z) = —o0 if z € 0y,

p(z) > —oo  otherwise.

It is not restrictive to assume p strictly negative on 0€). For every € > 0
define

9:(2) == g(y, 2) + ep(z), zeRY.
Then, since g(y, z) < T'.(y) =Ty(z) and I'; is smooth of {z}, we have

limsup g-(z) <0 Vt € 08.
0QFz—t

This inequality extends to all 02 thanks to (3.1).
Thus for every t € 99 there exists a connected neighborhood B; of ¢ such
that

g:(2) <0 Vze B\ 0.



76

3. Quasi-boundedness and S-regularity for Dirichlet problem

Then, since 02 is compact, there exists an open set B D 02 such that

g:-(2) <0 Vze B\ oM.

Since g. is S-subharmonic in B the Strong Maximum Principle for S-subharmonic

functions ([BLO3] Theorem 3.2) implies that we also have

g:(2) <0 Vze o,

for otherwise g. would attain a non-negative maximum at an interior point

of B and, as a consequence, it would be constant and non-negative in some

B;. In particular

g-(x) <0, ie. gy, z)< —ep(x).

Since ¢ is arbitrary we deduce that g(y,z) < 0.
On the other hand ¢(y,z) > 0 since

0 = limsupg(y,z) = limsup (Fz(y) — /89 Fz(t)dug(t)) <

Q>z—x O>z—zx

Qoz—z

gm@qmm/me@g
o0
< ) - [ TS0 = 9(v.)
o0
Thus, we have proved that

0= g(y.x) = Tuly) / L), Ve

Then 0Q >t I',(t) € ]0,00] is resolutive and

HP (y) =T.(y) Vy € 0Q.

Since T',(t) = QlithI(,z) and z — I';(z) is S-harmonic and non-negative
Sz—
in €2, by Theorem 3.2.4 this implies that I', is quasi-bounded in §2. The proof

is complete.
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3.4 Some applications

In this section we will show some applications of Theorem 3.3.1 to Carnot

Groups.

Lemma 3.4.1. Let G = (RV~! x R,0) be a Carnot group, Q and dg be its
homogeneous dimension and its homogeneous norm respectively. Let O =
{(z,7) € G | T < 0}. If for every (z,7) € O

f:]0,+00[ — R, t i+ dg((0,t) " o (z,7))

is monotone increasing then (0,0) is S-reqular for every Q bounded open
subset of O such that (0,0) € 09Q.

Proof. Notice that

Lo,1)( %) = dg (0, ~) o (%))

belongs to H(£2), moreover it is positive and bounded in €. It follows from
monotonicity of f that (F(o, 1 ))neN is an increasing sequence of non-negative
bounded harmonic functions in € which tends to I'( ).

Hence I'(g,0) in quasi-bounded in © and by Theorem 3.3.1 the result follows.
O
Example 3.1.

Theorem 3.4.2. Let HY = (R?*N x R, 0) be the Heisenberg group. Denoting
by (2,7) a point of HY, z € R?N, 7 € R, we know that for some ¢ > 0
dgn (2,7) := c/]2[* + 72 is a homogeneous norm on HN that satisfies (3.1).
The function

fan :]0, 400 — R, t — dHN((O,t)_l o (z, T))

is monotone strictly increasing for every fized (z,7) € RV x] — 00, 0.



78

3. Quasi-boundedness and S-regularity for Dirichlet problem

Proof. By hypotheses

fan(t) = dign((2,7) 710 (0,1)) =
= dyn((=2,—7) 0 (0,1)) =
= dyn ((—z,t — ’7')) = c4(|z|4 + (t — 7)2)

and the assertion follows.

O

As consequence the point = := (0,0) is Agw~-regular for the ball with radius

. 2 .
rin HY and center (0, —%), i.e. for

D, ={(z,7) e Y : *(|z|* + (7 + 2—2)2) <t}

Proof. The set O := {(2,7) € HY | 7 < 0} and f := fy~ satisfy Lemma

3.4.1 so we get immediately the assertion.

r2

Doing an opportune translation this proves also that the point (0,%) is

regular for the ball in HY with radius r and center at the origin.

Example 3.2.

Another example can be done with Carnot group of step two in [BT02], for

which Balogh and Tyson have explicitly found a homogeneous norm.

Theorem 3.4.3. Let G, := (R*xR,0). For every x = (11, T2, T3, 74,t), y =
(Y1, Y2, Y3,Ys, 7) € Gy let the composition and the dilatation be defined as
follow:

e roy = (xl + Yy, .., Ty F Y, LT F %(@yl — 1Yo + 224Y3 — 2x3y4)),
o 0\(7) == (A\1y, Ao, Ax3, A1y, N2H).

Gy 1s a homogenous Carnot group of step two with homogeneous dimension

Q =6. Ifa:= (5a1+321) and b := (30} + 521 +a3+a3) then a homogeneous
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norm on G s

do () = of (6% + 12)(a2 + VB2 + 12)3
R b+ V2 +¢2 ’

such that satisfies (3.1) for some ¢ > 0. Moreover the function
fG1 :]07 +OO[ = R) l— dGl ((yla Y2,Y3, Y4, 7—)_1 o (07 07 07 Oa t))

is monotone strictly increasing for every fived (y1, y2, y3, ya, T) € Rix]—00,0].

Proof. Computing the derivative of fél it’s easy to show that it’s always

strictly positive for every ¢ > 0.
g

Let Gy be the Carnot group and dg, its homogeneous norm in Theorem
3.4.3. So the point z := (0,0, 0,0, Z—j) is Ag,-regular for the ball with radius
r in Gy, i.e. for

D, ={re€Gy : dg,(z) <r}.

Proof.  Traslating D, of (0,0,0,0,—%) we can apply Lemma 3.4.1 with
O = {(21’227Z37Z477—) S Gl | T < 0} and f = fGl’

i
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