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ABSTRACT 

The 3D reconstruction and modelling of objects has not only improved 

visualisation of digitised objects, it has also helped researchers to actively and 

easily carry out related studies. Such studies include the classification and 

reconstruction of archaeological pottery. Reconstructing, and documenting, 

pottery is significant in archaeological studies, analysis and research, but has 

been a challenging task among practitioners. For one, excavated potteries are 

hardly complete enough to provide exhaustive and useful information, hence 

archaeologists attempt to reconstruct them with available tools and methods. 

While this is the case, it is also challenging to apply existing reconstruction and 

modelling approaches, as is, in archaeological documentation. This limitation 

makes it difficult and time consuming to carry out studies within a reasonable 

space of time. Hence, interest has shifted to developing new ways of 

reconstructing archaeological artefacts with new techniques and algorithms.  

This has led to refining existing processes to solve existing challenges. 

Therefore, this study focuses on providing interventions that will ease the 

challenges encountered in reconstructing archaeological pottery. It applies a 

data acquisition approach that uses a 3D laser scanner to acquire point cloud 

data that clearly show the geometric and radiometric properties of the object’s 

surface. The acquired data is processed to remove noise and outliers before 

undergoing a coarse-to-fine registration strategy which involves detecting and 

extracting salient keypoints from the point clouds and estimating descriptions 

with them. In addition, correspondences and matches are estimated between 

point pairs of a pair of point cloud scan, leading to a pairwise and global 

registration of the acquired point clouds. While some tests and visualisations 

were carried out in CloudCompare and MATLAB, the registration process was 

implemented in C++. 
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The peculiarity of the approach of this thesis is in adapting and adjusting 

parameters as required due to the peculiar nature of the data acquired. This 

improves the efficiency, robustness and accuracy of the approach, evident in the 

final registration output. The approach and findings show that the use of real 3D 

dataset can attain good results when used with the right tools. High resolution 

lenses and accurate calibration help to give accurate results. While the 

registration accuracy attained in the study lies between 0.08 and 0.14 mean 

squared error for the data used, further studies will validate this result. The 

results obtained are nonetheless useful for further studies in 3D pottery 

reassembly.  
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CHAPTER 1: INTRODUCTION  

1.1 Introduction  

From time immemorial, people and their way of life have evolved in every 

way possible. This evolution can be seen in the craftsmanship of a people, 

leading to discoveries – some of which are lost and some discovered. In addition 

to the craftsmanship of a people, the making and remaking of objects or artefacts 

is an activity that is done by people in different communities and environment 

and passed from one generation to another. Because the objects are unique to a 

people or environment, they are usually referred to as cultural heritage.  

Cultural heritage refers to a communal bond among a people or community 

that characterises their identity and history, inherited from past generations 

(Barrère, 2016; Vecco, 2010). It involves the culture, values and traditions of a 

people. Hence, cultural heritage is usually classified into intangible and tangible 

heritage (Kreps, 2015; Vecco, 2010).  

According to UNESCO (2018), intangible heritage refers to those that are 

not physically perceived and so cannot be touched. They include language, 

values, traditions, folklore, music, dances, beliefs among others, and are 

perceived through cuisine, dressing, traditional craftsmanship, social practices, 

religious ceremonies, performing arts, storytelling and the likes (Barrère, 2016). 

On the other hand, tangible heritage refers to artefacts that can be seen and 

touched. They include architectures, monuments, landscapes, literary texts and 

documents, art, frescoes, sculptures and archaeological sites and remains, 

among others. Some of these artefacts tend to increase in value and appreciation 

over time and have been an important means of understanding past civilisation 

so that present society might learn from and improve current ways of living.  
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Understanding past civilisation is important to certain professions and 

studies, that Thurley (2005) proposed a model that could help with this process. 

The model is called the heritage cycle (Thurley, 2005), shown in Figure 1.1.  

 

Figure 1.1: The Heritage Cycle 

The heritage cycle consists of four stages namely understanding, valuing, 

caring and enjoying. The cycle focuses on making the past part of the future. It 

achieves this by increasing an understanding of the cultural heritage (first stage), 

leading to an increase in the way people value cultural heritage (second stage), 

and preserving and caring for it as a result (third stage). Thus, people enjoy and 

appreciate cultural heritage through their perception (fourth stage), and then a 

thirst to understand it more arises.  

This postulation, though unconsciously practiced in general, could be a 

veritable tool in cultural heritage studies. In addition, one thing that stands out 

from the third stage of the heritage cycle is the fact that cultural heritage must 

be preserved. For there to be any value in cultural heritage artefacts, 

UNDERSTANDING
By understanding CH, people 

value it

VALUING
By valuing CH, people want to 

care for it

CARING
By caring for CH, people enjoy 

it

ENJOYING
From enjoying CH, comes a 

desire to understand it more
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preservation is a key component. This has led to the concept of cultural heritage 

preservation or documentation. In this thesis, the terms ‘preservation’ and 

‘documentation’ are used interchangeably to convey similar meaning. 

1.2 Cultural Heritage Preservation 

The preservation of artefacts of value help a people to connect with and 

understand their origin so that they do not lose the essence of their being, which 

is their identity. The preservation of these cultural heritage artefacts is an age-

long problem. Cultural heritage preservation is the act of safeguarding cultural 

heritage artefacts of the past and present for future appreciation (Barrère, 2016; 

UNESCO, 2018). Because some people do not seem to appreciate cultural 

heritage as expected, professionals and researchers tend to educate and promote 

cultural heritage for a wider awareness and appreciation. In addition, cultural 

heritage artefacts tend to be threatened by armed conflicts and natural disasters. 

Hence, governments and nations are cooperating to preserve cultural heritage 

artefacts. Preserving these artefacts have thus led to identity cohesion, social 

cohesion, communal reconciliation and economic growth (Barrère, 2016; 

UNESCO, 2010). 

Furthermore, these artefacts undergo certain methods and processes of 

craftsmanship to become what they are. The methods can include planning, 

material gathering and production. These processes have been streamlined from 

generation to generation. In addition, the methods of preservation also evolved 

with time. One of such methods of preservation is termed digital or virtual 

heritage. 

1.2.1 Virtual Heritage 

Virtual heritage refers to the use and application of digital and information 

technologies to visualise and perceive cultural heritage (Ch’ng, 2015; Stone & 

Ojika, 2000). It is supposedly an intersection between virtual reality and cultural 
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heritage. The technological instruments applied in virtual heritage include 

websites, internet, camera, laser and lidar among others. These instruments are 

applied through computer visualisation of artefacts, digitisation of artefacts, 3D 

modelling, 3D animation, photogrammetry, virtual reality and augmented 

reality (Ch’ng, 2015; Maver, 2001). Thus, cultural heritage artefacts can be 

preserved for research purposes by researchers and appreciation purposes by 

audiences.  

Preserving cultural heritage through technology offers new possibilities and 

convenient ways to learn, convey, interpret and experience cultural heritage 

artefacts in new and exciting avenues (Ch’ng, 2015). In addition, virtual 

heritage applications are gaining popularity with the technical ability to create 

boundless possibilities in the cultural heritage field. An application area of 

virtual heritage is virtual archaeology or simply archaeology, which this study 

is based on. This chapter introduces the thesis that focuses on the application of 

technological instruments in the archaeology domain. 

1.3 Archaeological Documentation 

Archaeology is a discipline that recovers, studies and analyses ancient and 

modern artefacts and material remains from past societies of humans and closely 

related species, recording its primary data for the purpose of reusing them for 

historical understanding of human culture (Marchetti et al., 2017). The 

discipline involves surveying, excavating, observing and interpreting the 

fieldwork data to learn more about the past. In learning about the past, the 

archaeologist searches for patterns that can be observed in the evolution of 

significant cultural practices that identify a community, such as farming, 

communal practices, conflict handling – among others, for clues of how and 

why these events happened. This helps the archaeologist to contribute to the 

present, based on the findings of the past, by better predicting how cultures will 

change and how to plan better for the future. Thus, an archaeologist’s work can 
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be seen as humanistic as they focus on studying the past for the present and 

future.  

Being a cultural heritage discipline, archaeology also focuses on 

documentation or preservation of archaeological artefacts. Archaeological 

preservation is the act of safeguarding archaeological artefacts and findings of 

the past and present for future appreciation. This helps the archaeologist to have 

easier access to these artefacts for study purposes, as well as making it available 

for people to appreciate in general. Some professionals believe that studying the 

past, coupled with collecting and preserving surviving artefacts, is a good way 

of strengthening the consciousness and identity of people (Barrère, 2016). Thus, 

preserving archaeological artefacts has an influence on the perception, quality 

and way of life of a people. 

Moreover, to be able to preserve these artefacts as intended, it is necessary 

to follow processes that will make the preservation satisfactory. Usually, the 

primary challenge in archaeological work is to acquire data in a whole and 

complete condition (Addison, 2000). Ergo, archaeologists have employed 

different time-consuming means of attaining that goal of studying and 

preserving artefacts (Marchetti et al., 2017). Such methods may include 

physical examination, classification, illustration and reassembly of fractured 

artefacts physically and through drawing. These methods which are carried out 

manually have made the archaeologist’s work meaningful. Thus, artefacts are 

preserved in whatever state they are acquired because they are considered to 

inherently have a specific cultural, economic or social value that is capable of 

benefits for the present and the future (Barrère, 2016). However, these methods 

have also made the archaeologist expend time and effort to observe and possibly 

extrapolate from the observations of these artefacts (Marchetti et al., 2017). One 

of such artefacts that this study is focused on is pottery. 
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1.3.1 Pottery Preservation 

Of all the artefacts recovered from archaeological excavations, pottery is one 

of the most significant because of its ability not to decay when compared with 

other archaeological artefacts of other materials (Barclay et al., 2016). When 

archaeologists recover pottery from a site, they are hardly recovered close to 

their original state. They could be degraded due to “wear and tear” and/or 

broken to various fragmental pieces. In addition, depending on how the 

recovered pottery is preserved, it could be recovered as a complete pot on site 

or as fragments known as pottery. Most pottery, especially the ones of the 

pottery rim, usually carry information – such as the shape of the pottery, 

decoration on the pottery and colour of the pottery among others – on the inner 

and/or outer surfaces (Di Angelo, Di Stefano, & Pane, 2017). This information 

helps the archaeologist to carry out studies such as dating, and to understand the 

culture of the potter. 

However, some of the pottery may not exhibit enough information for the 

archaeologist to carry out meaningful scientific or archaeological studies. 

Hence, the archaeologist attempts to manually reassemble the available pottery 

to have a clearer picture of the excavated pottery (Oxholm & Nishino, 2013). 

Going a step further, the reassembly can also be done by drawing the pottery 

form by extrapolation from the arranged pottery (Collett, 2012), a process that 

will be referred to as reconstruction in this thesis.  

While this approach of reassembly, and reconstruction, is quite effective for 

the archaeologist, a more efficient approach that will improve the effectiveness 

of the work of the archaeologist is desired. This is because when certain basic 

tasks are not taken into consideration in the reconstruction process, there is the 

tendency to spend a long time trying to solve the puzzle of reconstruction and 

not achieving it, leading to a lack of understanding and missing valuable 

information (Barclay et al., 2016). For this reason, technology approaches have 
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been widely adopted in this field. These technologies include computer 

visualisation, computer graphics, 3D digitisation, 3D modelling, 3D animation, 

photogrammetry, virtual reality and augmented reality, among others (Ch’ng, 

2015; Maver, 2001). 

1.3.2 Technology in Pottery Preservation 

While the progress in pottery preservation has been due to improved methods 

of inquiry than the tools and instruments used, new and improved methods 

depend on these instruments for effective use and validation. For example, 

analysing ten pieces of data may be done with calculations and drawing without 

using a computer. However, analysing hundreds and thousands of data may 

require enhanced computational methods and instruments. This has led to the 

adoption of technology in archaeological studies, and pottery in particular. A 

practice usually referred to as virtual archaeology. 

Furthermore, it is worth noting that archaeologists have used technology as 

a means of making, keeping and preserving records and information to make it 

available for further research and future use (Eiteljorg, 2004; Marchetti et al., 

2017; Smith, 2004). This is to considerably reduce the likelihood of information 

degradation and loss (Smith, 2004). Hence, modern technological methods have 

been considered at various stages of archaeological works. For example, digital 

preservation of archaeological data and virtual reconstruction of archaeological 

artefacts. This is to avoid degradation of artefacts through wear and tear during 

studies. This way the artefacts can be preserved, and studies can be carried out 

with the digital copy of the artefact without incessantly resorting to the physical 

artefact. Also, because complete fragments of artefacts are mostly not 

recovered, researchers began to look at alternative ways of reconstructing these 

artefacts using technological means to aid their studies. Thus, the virtual 

reconstruction of artefacts became a desired area.  
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The virtual reconstruction of artefacts needs to be done accurately for the 

reconstruction to be good enough for study and research purposes. Hence, 

various works have been done to reconstruct artefacts in two-dimensional (2D) 

and three-dimensional (3D) views. While some of the studies performed well 

for their chosen scenarios, no study has been a “one-size-fits-all” solution. As a 

result, reconstructing whole and fragmented pottery accurately is still an open 

issue. How image analysis techniques could be useful in the archaeological 

context and how these techniques could be put to good use with pottery 

reconstruction is a focus in this study. 

This thesis approaches this challenge by presenting a path towards 

reconstructing archaeological pottery acquired in 3D point cloud data. Multiple 

views of the pottery were acquired as point clouds and aligned to form a whole 

through the registration process. To achieve this, feature detection, feature 

selection and feature extraction techniques have been utilised. Since the path to 

an optimal registration process begins with the quality of data and how it is 

collected, it was ensured that the point clouds were captured with the utmost 

accuracy. Two objects (see Figure 1.2) were virtualised and studied 

preliminarily. However, one does not have enough features on the surface while 

the other has features but require a more complex data acquisition and 

registration procedure to align the inner and outer surfaces of the point clouds. 

   
          (a)        (b) 

Figure 1.2: (a) Flower Vase (b) Flower Vase with Design 
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Due to the peculiarity of the two vases and the intended goal of this study, 

the focus of this study rested on the virtualisation of a third object with 

archaeological significance – an oil lamp fractured pottery and its sherd (see 

Figure 1.3). This is because the pottery has rich intrinsic geometric information 

on its surface for the feature extraction approach. The pottery was excavated at 

the Claterna archaeological site of the metropolitan city of Bologna.  

       
   (a)     (b) 

Figure 1.3: (a) Oil lamp fractured pottery (b) Oil lamp sherd 

1.4 Statement of the Research Problem 

The preservation and documentation of archaeological pottery have been 

quite challenging a task (Makridis & Daras, 2012; Marchetti et al., 2017). Such 

challenge was observed in the process of classification and study of pottery, 

with respect to reconstruction of pottery by physical assembly and by drawing 

(Di Angelo et al., 2017). In addition, recovered pottery from archaeological sites 

are rarely complete enough to provide an exhaustive and useful information, 

hence archaeologists fall back on the time-consuming method of reconstructive 

drawing by extrapolation (Drucker, 2012:89). Reconstructing pottery is 

significant in the field of archaeological studies, analysis and research. Barclay 

et al. (2016) note that the excavated potteries are used as a reliable tool for 

dating, and as evidence for ancient tradition, culture, civilisation and 

technology. In fact, the use of technology and computer aided techniques have 

impacted positively on the studies on pottery and archaeology in general 
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(Collett, 2012; Pintus et al., 2016). However, pottery reconstruction coupled 

with the time, effort and cost expended make an optimal and accurate means of 

reconstruction vital. According to Barclay et al., “If the study of pottery is to 

reach its full potential, it is vital that it is recovered and analysed to a high 

standard.” This refers to recovery with high accuracy. Hence, being able to 

assemble and reconstruct pottery accurately and with ease will greatly impact 

pottery and archaeological studies. Unfortunately, there is little evidence that 

various research works have addressed this persisting issue satisfactorily 

(Oxholm & Nishino, 2013; Pintus et al., 2016; Rice, 1987:286). 

1.5 Research Aim 

While attempts have been made to virtually reconstruct archaeological 

pottery, an automatic, low-cost and high accuracy reconstruction method is still 

desired. Hence, the aim of this research is to investigate a means of 

reconstruction of archaeological pottery to and with a high accuracy. This would 

be achieved using a coarse-to-fine registration strategy. The coarse registration 

will involve extracting salient keypoints from the point clouds and estimating 

descriptions with them.  

The study focuses on reconstructing an archaeological pottery clearly 

showing the geometric and radiometric properties of the surfaces and fractured 

faces required for easy further analysis.  

1.6 Research Rationale 

Many fields of study have applied the use of 2D and 3D reconstruction. Such 

fields include architecture, medical imaging, engineering, digital humanities, 

computer vision and cultural heritage, among others. Since the goal and 

application of these studies may differ, the approach applied in the studies may 

also differ. Thus, a breakthrough in one field may not be a breakthrough in 

another. As a result, the focus in this study is on the 3D reconstruction of 
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archaeological pottery, which will be beneficial in the field of archaeology. 

Although the focus is on archaeology, the approach applies computer vision 

techniques in the investigation. Despite the unique application area, the 

underlying ideas and methods can be applied to a broad range of reconstruction 

problems. 

1.7 Research Delineation 

Virtual reconstruction of archaeological pottery is quite broad. It can refer to 

accurately virtualising and reconstructing whole or fragmented archaeological 

pottery. It can also refer to the virtual reassembly and reconstruction of 

fragmented archaeological pottery or potsherds. While this study started out to 

solve the virtual reassembly of potsherds problem, it has been restricted to the 

virtual reconstruction of archaeological pottery in general. This is because of 

specific challenges encountered with respect to 3D data acquisition and 3D 

registration of point clouds that are unique to this study. It will bode well if these 

challenges are solved first while other problems can be done in future studies. 

Thus, this study focuses on the 3D virtual reconstruction of archaeological 

pottery, aiming to improve the reconstruction process.  

1.8 Clarification of Terms 

While all terms are defined as they are used in the thesis, this section 

highlights the most prevalent terms and explains their meaning as used in this 

thesis. The most predominant terms in this study include digital heritage, virtual 

heritage, digitisation, point cloud registration, potsherd, pottery, pottery 

documentation, pottery reassembly, pottery reconstruction and virtualisation. 

1.8.1 Digital/Virtual Heritage 

Digital heritage refers to the use and application of digital and information 

technologies to visualise, perceive and preserve cultural heritage of lasting 

value and significance (Ch’ng, 2015). According to the UNESCO’s charter for 
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the preservation of digital heritage (UNESCO, 2004: 81), digital heritage 

“embraces cultural, educational, scientific and administrative resources, as well 

as technical, legal, medical and other kinds of information created digitally, or 

converted into digital form". The usage scenario in this thesis focuses on 

cultural and technical resources. That is, applying technology processes in 

cultural heritage for visualisation and preservation. Additionally, in this thesis, 

the terms ‘digital heritage’ and ‘virtual heritage’ are used synonymously. 

1.8.2 Digitisation 

Digitisation is the process of converting and representing objects or 

information in a digital form (Brennen & Kreiss, 2016; Conway, 2010; 

Roosevelt, Cobb, Moss, Olson, & Ünlüsoy, 2015). It can be done with objects 

(for example, a physical object to a digital image) or signals (for example, 

analogue signal to digital signal) using a capturing device, so that the rendered 

result reliably represents the original one. This allows for easy computer 

processing of the digital information.  

Another term that is sometimes erroneously used synonymously with 

digitisation is digitalisation. The meaning of both words has evolved over time 

to mean different things in separate scenarios. Digitalisation is the process of 

leveraging digitisation to improve work processes that will impact people and 

provide value (Bloomberg, 2018; Gobble, 2018; Orellana, 2017). For example, 

displaying artefacts for general viewing in a digital museum either online or at 

a physical location; meetings held remotely by video conference, thus bypassing 

the logistics of getting everyone together in a meeting room. In essence, 

digitisation is a part of digitalisation. Furthermore, in some instances relating to 

business and industry processes, digitalisation is used synonymously with 

automation (Bloomberg, 2018). When processes are digitalised in this instance, 

they are simply automated. In this thesis, digitisation is the process used. 



24 

1.8.3 Point Cloud Registration  

Registration is the process by which two or more datasets are brought into 

alignment. It is an important step in combining multiple datasets, which is used 

for further studies. The dataset used is mainly images, acquired with image 

sensors. Point cloud registration is the process of finding the correspondence, 

spatial transformation and best alignment between two or more point cloud data. 

The point cloud data are usually acquired with 3D scanning sensors. 

1.8.4 Potsherd 

A potsherd is a fragmented piece of pottery, or earthenware generally, with 

archaeological value. It is an invaluable part of archaeological documentation 

because it can withstand heavy weather conditions without being significantly 

degraded. Thus, archaeologists find it most useful in carrying out studies. 

1.8.5 Pottery 

Pottery is generally referred to as vessels made from clay and hardened by 

heat into desired shapes. The vessels can be hollow as in a water pot or flat as 

in a plate. Since potsherds are fragmented pottery, they are referred to as pottery 

in this thesis except where specifically stated. 

1.8.6 Pottery Documentation 

Documentation is the act of capturing, classifying and recording information 

for archiving and safe keeping (Bentkowska-Kafel, 2017; Marchetti et al., 

2017). This act, which can also be referred to as preservation, could involve 

procedures such as acquisition, processing and analysis. Preservation is simply 

the act of keeping a valued object free from damage. In the context of this study, 

the virtual documentation of pottery is the focus. Pottery documentation is the 

process of acquiring, classifying, processing, analysing and archiving the 

digitised pottery. While ‘pottery documentation’ and ‘pottery preservation’ 
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might be argued by some to portray different meanings, they are both used 

synonymously in this thesis.  

1.8.7 Pottery Reassembly 

The term reassembly as used in this thesis refers to the act of joining 

fragmented items together to form a whole, as in a puzzle. The points at which 

the items join can still be visibly seen. Reassembly was used with respect to 

potsherds. Pottery reassembly is the act of joining potsherds to form a whole 

pottery, physically or digitally, so that it looks as its original condition as much 

as possible. 

1.8.8 Pottery Reconstruction  

The term reconstruction as used in this thesis refers to the process of joining 

and remaking fragmented items back to the original specification to form a 

whole. The points at which the items join are covered and sealed such that the 

lines are not visible. Similarly, pottery reconstruction is the process of joining 

and remaking potsherds to form a whole pottery, physically or digitally, so that 

it looks as its original condition as much as possible without the point of joining 

being visible.  

1.8.9 Virtualisation 

The term virtual can be referred to as something not physically existing but 

made by software to appear to be so. It is usually a representation of the original. 

Thus, virtualisation as used in this thesis is the process of creating a virtual 

model of a physical object. It is used synonymously with digitisation. 

1.9 Structure of the Thesis 

This section contains the organisation of the thesis, which is divided into five 

chapters and followed by the references. The thesis is organised as follows: 
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Chapter one begins with an introduction that informs the reader about 

cultural heritage in general, archaeological documentation and their 

preservation. It contains the statement of the research problem, research aim, 

research rationale and research delineation. The chapter rounds off with the 

clarification of terms, thesis structure and conclusion. 

Chapter two reviews the existing literature on archaeological pottery 

reconstruction. It discusses the processes and procedures that have been adopted 

in pottery reconstruction. It further analyses the data collection methods, the 

type of data used, as well as the data analysis methods. In addition, the 

techniques, technologies and algorithms applied were discussed, stating their 

strengths and limitations in their unique scenario when implemented, and 

evolving gradually through the state-of-the-art.  

Chapter three discusses the data acquisition approach of the pottery. It 

reviews related studies and the techniques applied in the acquisition of data. 

This leads to an explanation of the acquisition approach which involved the 

calibration of the acquisition system and the data acquisition.  

Chapter four presents the registration approach of the acquired pottery data 

from the previous chapter. It reviews related studies and discusses the 

registration approach in general. This is followed by the specific registration 

approach and experiment applied in this study.  

Finally, chapter five concludes the study and presents a summary of the 

chapters, together with recommendations for future work. 

1.10 Chapter Conclusion 

The discussion in this chapter presents a general overview of the study, 

namely the need for a simple, accurate and cost-effective solution for 

reconstructing archaeological pottery. While most studies and approaches work 
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well for their specific scenario, there is no “one-size-fits-all” approach, 

prompting a necessary investigation into an appropriate approach that will be 

adequate for archaeological pottery reconstruction. Addressing errors due to 

data acquisition and accurate reconstruction of multiple data to form a whole is 

still an open issue with respect to pottery. Hence, this research focuses on 

improving accuracy and optimising the alignment process such that the 

registration error is significantly reduced. The research problem, aim, rationale, 

and delineation were highlighted. Furthermore, important terms and concepts 

used in the thesis were clarified and explained. The outline of the thesis was 

also explicitly stated. A comprehensive discussion of the research outline is 

presented in the succeeding chapters, with the background that provides a 

detailed analysis for the study presented in the following chapter, chapter two. 
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 ARCHAEOLOGICAL POTTERY RECONSTRUCTION  

2.1 Introduction 

This study aims to investigate a means of accurately reconstructing 

archaeological pottery in 3D by using a 3D laser scanner and RGB camera for 

data acquisition as point clouds, and accurately aligning the point clouds. The 

virtual reconstruction is meant to be such that broken edges of artefacts are 

reconstructed with the ridges and valleys of the broken surface visible as much 

as possible for further studies. In line with this, this chapter surveys literature of 

related studies in data acquisition methods and techniques, as well as pottery 

reconstruction. In fact, the studies on 3D reconstruction have gained significant 

interest over the years. Thus, there has been a steady rise in the research of 

virtual reconstruction of archaeological artefacts. Based on this success, the 

virtual reconstruction of archaeological pottery in 3D has garnered significant 

interest. Hence, a review of studies in this domain is presented. 

To this end, the archaeological pottery reconstruction pipeline that is 

prominent in most studies today is presented in this chapter. Section 2.2 begins 

with the prominent data acquisition methods for 3D reconstruction and their use 

in various scenarios. Section 2.3 delves into the various acquisition techniques, 

which include structured light, time-of-flight (ToF) and 3D laser scanner. Each 

of these techniques are reviewed and discussed, with a detailed information on 

their performances and challenges. The unique challenges of the various 

techniques provide the inspiration for the study presented in this thesis. Section 

2.4 presents the two major data forms or formats that pottery reconstructions 

are done. Section 2.5 discusses the various methods applied in archaeological 

pottery reconstruction. They include symmetry-based, template-based and 

feature-based reconstructions. Finally, Section 2.6 summarises the chapter and 

provides concluding remarks. 
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2.2 Data Acquisition Methods 

One of the goals of acquiring 3D data is to obtain information from digital 

images or complex image data (Shapiro & Stockman, 2001). The data can be 

expressed in photometric values or others such as 2D or 3D geometric data. A 

2D geometry is a projection of the physical universe as flat planes which have 

two values (length and width) but no depth. For example, a shadow is an 

example of a 2D appearance. On the other hand, a 3D geometry adds the 

dimension of depth or height so that they describe real-world objects with 

volume. While 3D objects can be acquired by converting 2D images to 3D, they 

can also be directly and more accurately acquired in 3D. Acquiring objects in 

3D has many advantages over acquisition in 2D. For example, 2D images give 

limited information of the physical shape and size of an object with loose 

accuracy when reconstructed in 3D, while 3D objects express the geometry in 

terms of three-dimensional coordinates more accurately. 

Furthermore, a 3D geometry can be captured using image sensing devices or 

sensors (also known as range sensors). Range sensors are devices that capture 

the 3D structure of the real world, measuring the depth to the nearest surfaces. 

The measurements could be at a single point across a scanning plane, or a full 

image with depth measurements at every point. Thus, range sensors may be 

categorised into passive or active. Passive 3D sensor systems only rely on 

reflected light, such as shape from silhouette and the stereoscopy system, made 

of a couple of sensors at a fixed known base distance (the baseline). Contrarily, 

an active sensor system is one emitting energy into the environment and 

measuring properties of the environment based on the response. Meaningful 

examples are laser-based and structured light sensor systems. While active 

sensors are more complex, from a constructive point of view, they are generally 

more robust than passive sensors since they exert some control over the 

measured signal (Christensen & Hager, 2016).  
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Having said that, only a few methods and approaches have the reliability 

needed for most 3D applications despite that 3D data can be captured in several 

ways. While these methods are good for visualisation purposes, acquiring 

images directly in 3D is preferable for studies and analysis of this nature. Some 

of the known methods of acquisition include stereoscopy (with and without 

structured light), Time-of-Flight (ToF), multiple views and laser, among others.  

2.2.1 Stereoscopy Method 

Stereoscopy is a technique for creating or enhancing the illusion of depth in 

an image by triangulation to estimate the distance to points in a scene imaged 

by two cameras. It can be implemented in two ways: with or without structured 

light (Christensen & Hager, 2016). The implementation with structured light is 

also referred to as active while that without structured light is referred to as 

passive. While active systems project a pattern onto the scene and are thus less 

sensitive to scene characteristics, passive systems rely on the appearance of 

viewed surfaces when performing dense or sparse feature matching, thus 

making the active system much more accurate than the passive one, whose 

degradation in accuracy is noticeable in the 3D reconstruction image (Konolige 

& Nüchter, 2016). While the challenge of the passive system is in finding 

reliable matches for image elements in the two images that correspond to the 

same point in the scene, the active system can only be applied in controlled 

environments and industrial applications. In general, some issues with cameras 

used in stereoscopy are that there is often too little texture, especially indoors, 

to make reliable matches; and the matching uses small patches, which blurs out 

the spatial resolution. Thus, better sensors are desired since most studies with 

the sensors are done indoors. 

2.2.2 Time-of-Fight (ToF) Method 

With the challenges of the stereoscopy sensors, other sensors such as the 

Time-of-Flight (ToF) were explored for accuracy and robustness. ToF sensors 
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consist of a light source that emits a continuous waveform and a distinct imaging 

sensor that measures the phase shift of the received signal in each pixel (Blais, 

2004; Konolige & Nüchter, 2016). The depth of the sensor at each location is 

proportional to the phase shift between the outgoing and returning signals. 

Moreover, 3D ToF cameras use highly sensitive, custom-made Complementary 

Metal-Oxide-Semiconductor (CMOS) or Charge-Coupled Device (CCD) image 

sensors and measure the ToF of an emitted light wave in the near-infrared 

spectrum. Most ToF sensors transmit only a single beam, thus range 

measurements are only obtained from a single surface point. As a result, 3D 

ToF scanners are usually preferred for measurements at longer ranges because 

its sensors can theoretically have constant range accuracy and constant precision 

in depth measurement no matter how far an object is, unlike triangulation 

sensors (Blais, 2004).  

But ToF sensors cannot replicate the very fine precision of triangulation 

sensors for close objects, and hence are not used in close-range applications, 

such as small object reconstruction (Konolige & Nüchter, 2016). Limitations on 

the accuracy of these sensors are based on the minimum observation time (and 

thus the minimum distance observable), the temporal accuracy (or quantisation) 

of the receiver, and the temporal width of the laser pulse. In addition, the need 

for allocating a large portion of ToF sensors to the decoding electronics has 

made it a challenge to produce low-cost sensors at reasonable resolution. Hence, 

efforts to overcome these challenges with new innovations, such as the RGB-

D, became appealing. 

2.2.3 Red-Green-Blue-Depth (RGB-D) Camera Method 

In recent times, there has been a resurgence in range-based sensing using 

RGB-D sensors that utilise structured light and cameras to generate dense range 

maps. These RGB-D sensors enabled a new generation of full model 

reconstruction systems with an arbitrary camera motion. Thus, the development 
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of 3D RGB-D cameras has enabled the 3D tracking of full body models in large 

and partially occluded spaces, with ongoing improvements toward robustness 

in tracking (Kragic & Daniilidis, 2016). In addition, RGB-D cameras are a 

specific type of depth sensing devices which work in association with an 

RGB camera that can augment the conventional image with depth information 

(related with the distance to the sensor) in a per-pixel basis. The depth is a 

channel in which each pixel relates to a distance between the image plane and 

the corresponding object in the RGB image. Examples of the 3D RGB-D 

cameras include the Microsoft Kinect and Asus Xtion, which provide both 

colour and dense depth images.  

2.2.4 3D Laser Scanner Method 

The laser scanner method is based on a similar principle of triangulation. It 

is the most widely used triangulation-based 3D scanner because of its simplicity 

and cost (Blais, 2004). The laser beam of the scanner is projected from a known 

position to a real-world object on a targeted surface, while the surface is 

monitored by a camera sensor from a second known position; resulting in the 

detection of a complete profile of points in a single frame. In other words, the 

laser system measures the range to points on objects within their field of view, 

as well as the bearing (angles) to those points within the instrument’s coordinate 

frame. These systems usually output point clouds with 3D coordinates 

associated with each point. Knowing the relative positions and orientations of 

the laser and sensor allows the capturing of the 3D image geometry of the shape 

and/or appearance of the object at the targeted surface (Konolige & Nüchter, 

2016).  

The laser-based methods offer many advantages and have been known to be 

more reliable and accurate (Blais, 2004). This is because: they can easily 

generate bright beams with lightweight sources; infrared beams can be used 

unobtrusively; they focus well to give narrow beams; single-frequency sources 
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enable easier rejection filtering of unwanted frequencies; single-frequency 

sources do not disperse from refraction as much as full spectrum sources; 

semiconductor devices can more easily generate short pulses (Christensen & 

Hager, 2016). In addition, laser scanner results in higher resolution and accuracy 

with a very large depth of focus defined by Gaussian beam propagation 

equations and a high power in small packages at the compromise of increased 

laser speckle noise (Blais, 2004). The use of laser scanner systems is rapidly 

gaining popularity due to its efficiency in capturing the existing conditions of 

an object in great details.  

The characteristics of an optimal laser scanner or acquisition system include 

accuracy, speed, robustness and ease of use. Other characteristics to consider 

are the low cost of the system and the capability of capturing the colour 

properties of an object. In this study, the laser scanner method is the choice of 

acquisition because of the advantages it possesses. It can capture objects with 

good depth and intensity, saving the output as a point cloud. 

2.3 Data Acquisition Techniques 

The virtual acquisition of 3D data is accomplished with a variety of methods, 

techniques and algorithms, involving the use of both hardware and software 

components (Bi & Wang, 2010). Some hardware used include optical sensors 

(e.g. camera) and laser scanners. The optical sensors can be used as a single 

acquisition device (in the case of 2D images) or multi-sensor acquisition device. 

The multi-sensor acquisition setup consists of two or more optical sensors, or 

one optical sensor with another acquisition device/s (e.g. laser scanner). 

Sometimes, depth sensors are used in the multi-sensor acquisition setup for 3D 

texture acquisition as well. These sensors will need to be perfectly synchronised 

to avoid distortions and other irregularities. Acquiring the data with these 

sensors is done in two main parts. The first is the capturing of the image or data, 

while the second is the processing of the captured data with a software. 
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The software component consists of program interfaces for processing the 

acquired data. Usually, the software that is used with a data acquisition system 

is specifically written for the data acquisition hardware used. In other instances, 

the software is developed with a graphical interface such that program and 

subprogram structures and routines are represented by icons. Examples of such 

software include Cloud Compare and MeshLab. Both the hardware and 

software are synchronised during setup. 

Furthermore, 3D data acquisition as applied in this study involves the two 

main parts mentioned above. That is, capturing the data and processing the data. 

Capturing the data simply involves translating a physical scene into digital 

machine-viewable format, while processing the data is a procedure that 

eliminates data adulteration – in the form of distortion, noise etc. – to give a fine 

data for further analysis. In addition, the application approaches of 3D data 

acquisition include acquiring 3D models from 2D data (such as 

photogrammetry), and directly acquiring the 3D models using tools and devices 

meant for such purpose. This has led to various studies yielding good 3D 

acquisition systems.  

2.3.1 Structured Light 

A structured light acquisition system comprises mainly of a projector and, at 

least, a camera. Acquisition is done by projecting known light patterns onto an 

object with the projector to obtain correspondences between projected and 

recovered patterns by the camera, and determine the 3D surface information of 

the object (Christensen & Hager, 2016; Konolige & Nüchter, 2016). To 

adequately reconstruct the geometry of the object’s shape, the triangulation 

technique is used. In addition, the use of structured light in data acquisition is a 

popular approach that has been explored over the years. 

Studies such as that of Gilboa et al. (2013), Grosman et al. (2008) and Ritz 

et al. (2012) used structured light in the acquisition of 3D data because of its 
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ability to acquire an accurate depth image. While Grosman et al. and Ritz et al. 

used a two camera system, Gilboa et al. used a three camera system. The 

advantage of using more than one camera system is that it improves texture, 

depth and spatial resolution, which in turn improves the matching. To further 

improve the depth and geometry precision, Ritz et al. used a digital camera, a 

specialised industrial camera and a 1D mechanical lens shifter addon between 

the projector and the object. While the lens shifter contributed towards an 

improvement in resolution and depth precision, the addition of more equipment 

might increase system complexity, leading to a significant increase in the total 

cost of the system in general. In the case of Gilboa et al. with a projector and 

three camera system, two of the cameras were used to capture the geometry of 

the object while the third camera was used to capture the texture of the object. 

Just like the study of Ritz et al., it improved depth and texture but leads to 

system complexity and high cost.  

However, because of the susceptibility of structured light to environmental 

light interference, sensor readings and information could be distorted and lead 

to occlusion and other errors (Konolige & Nüchter, 2016). For this reason, 

structured light cannot be efficiently used in an outdoor environment. In 

addition, because some issues with cameras used in structured light are that 

there is often too little texture, especially indoors, to make reliable matches, 

more or better sensors are desired. This leads to several cameras being used to 

increase robustness and depth, often leading to a complex system setup. Thus, 

to solve these problems, other methods have been considered to improve the 

performance.  

2.3.2 Time-of-Flight 

The Time-of-Flight (ToF) technique measures the distance between a sensor 

and an object. It does this by emitting signals from the sensor towards the object, 

while the object reflects the signals back to the sensor. The time difference 
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between the emission of the signal and the return of the reflected signal 

estimates the ToF. While different signals – such as sound, radio frequency and 

light among others – can be used, the use of light is focused on in this study.  

Various studies have employed ToF. Among them are the studies of Cui et 

al. (2013), Reynolds et al. (2011) and Schober et al. (2017). Cui et al. and 

Schober et al. both used one ToF camera for acquisition while Reynolds et al. 

used two ToF cameras. The number of cameras used did not really affect the 

quality of data capture. Reynolds et al. used two ToF cameras with a supervised 

machine learning-based approach to improve depth accuracy. This approach 

used a random forest regressor to improve per-pixel confidence measure. 

However, the method may not be easily applicable to a wide range of object 

acquisition. This is because training a wide range of objects is required for 

supervised learning, thus raising a likelihood for complexity and poor 

resolution. 

On the other hand, the study of Cui et al. reduced complexity significantly. 

Cui et al. used a ToF camera to capture images of an object and applied an 

approach that results in a high-resolution 3D depth acquisition. While this 

approach sufficiently improves the resolution of the image, the quality of the 

data and accuracy remains an issue. For instance, objects with specular surfaces 

returned poor resolution data after capture. Hence, Schober et al. attempted to 

solve this problem. 

Schober et al. focused on a probabilistic approach that integrates ToF 

observations with that of previously captured information of an object using a 

dynamic ToF camera in real-time. The dynamic ToF camera uses different 

measurement patterns in two successive time steps and integrates multiple 

measurements in time to improve the depth accuracy. This approach deviates 

from the traditional operation of static ToF cameras which uses the same 

measurement patterns in each time step and uses the captured information only 
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once to estimate depth. Thus, using the dynamic method seemed to improve 

computational and data acquisition efficiency. However, managing the camera 

motion and saving previously captured image stamps might affect 

computational efficiency and lead to system complexity. 

In general, ToF sensors that use light are safe to the eyes and can attain higher 

speed and longer range. However, ToF sensors could be quite expensive, noisy 

and have low resolution. In addition, it is challenging to use them to acquire 

high-quality data as they have low spatial resolution and were not designed for 

such purposes, but for object detection and distance estimation. Hence, the laser 

scanner technique attempts to solve this challenge. 

2.3.3 3D Laser Scanner 

3D laser scanners based on triangulation are active scanners that use laser 

light to scan objects and the environment to capture information. The laser 

scanner projects a laser stripe onto the object and a camera monitors the object 

surface to locate the laser stripe. The location of the laser stripe differs as seen 

on the camera's field of view. Thus, the laser stripe, laser scanner and the camera 

form a triangle, from whence the name triangulation was derived. Knowing the 

length of one side of the triangle, the distance between the camera and the laser 

scanner and the angle of the laser scanner, other parameters can be determined 

that will aid the acquisition of a 3D geometry. These systems are very good and 

efficient methods to accurately acquire 3D point clouds of object surfaces 

(Konolige & Nüchter, 2016). 

Because of the high accuracy derived in the acquisition process, laser 

scanning has become one of the standard optical measurement methods, 

offering advantages over other methods. The rapid progress of accurate and 

low-cost laser scanning systems has encouraged more studies in this domain 

(Christensen & Hager, 2016). Among a host of studies, those that have applied 

3D laser scanners include that of Banerjee et al. (2013), Chen et al. (2013), 
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Díaz-Marín et al. (2015) and Isa and Lazoglu (2017). These studies used a 3D 

acquisition system that comprises of a camera and a laser scanner to acquire 

point cloud data of an object surface. While the accuracy of the acquisitions was 

good, the accuracy of the laser acquisition system depends on an accurate 

calibration of the camera and laser scanner. 

Generally, the technique used for 3D data acquisition depends on the 

accuracy and distance capability required by the device or sensor. For short 

distances of about a few inches, structured light could be used. Where high 

accuracy is a requirement, the laser triangulation technique is usually preferred. 

However, where the distance is beyond the range that triangulation can 

effectively work with, ToF with some system modification is employed. In this 

study, laser triangulation is used for high accuracy since work is done within a 

short distance.  

2.4 Pottery Reconstruction 

Pottery preservation is an important process in the field of archaeology. This 

is because pottery, especially the excavated ones, inherently provide valuable 

data for archaeological studies (Stamatopoulos & Anagnostopoulos, 2016). In 

addition, due to the nature of the pottery with respect to how they were made, 

they possess properties that make them resistant to decay, wear and tear 

(Barclay et al., 2016; Stamatopoulos & Anagnostopoulos, 2016). Thus, 

archaeologists can recover pottery during excavation either as a complete pot or 

fragments, but hardly in their original state.  

The preservation of pottery is mainly carried out either manually or digitally. 

The manual way involves physically reassembling the pottery and then drawing 

it. Drawing the pottery helps the architect to be able to reproduce any design on 

the body almost perfectly. But this leaves room for extrapolation to correctly 

reproduce the pottery design from observation. In addition, while the manual 

recovery makes the archaeologist’s work meaningful, it is nonetheless time and 
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effort consuming (Barrère, 2016; Marchetti et al., 2017). As a result, technology 

approaches have been utilised to digitally preserve pottery. Such technologies 

include computer visualisation, computer graphics, digitisation, modelling and 

photogrammetry among others (Ch’ng, 2015; Maver, 2001). In this study, 3D 

digitisation has been utilised, while focusing in on 3D pottery reconstruction. 

Pottery reconstruction is an approach towards pottery preservation that 

utilises image processing techniques for this purpose. Over the years, the virtual 

reconstruction of pottery has been studied using a variety of algorithms, 

techniques and methods. The various approaches work optimally for the 

scenario in which they are applied, but with the possibility of modifying them 

for other scenarios. While these approaches have significantly improved studies 

in their niche, there has been no “one-size-fits-all” solution. Thus, studies in this 

area is still an open issue. 

The study on pottery reconstruction has improved over the years as a result 

of new and improved methods and approaches of inquiry and implementation. 

The study, which began with a tedious manual process, has progressed into an 

easier semi-automated and automated process that uses technology to attain its 

goals. It should be noted that to solve issues inherent in the manual process of 

pottery reconstruction, the virtual reconstruction of pottery needs to be done 

accurately for the reconstruction to be good enough for study and research 

purposes. This has directed the focus of the researches being carried out in this 

domain. Thus, technology methods mainly use 2D and 3D approaches. 

2.4.1 Reconstruction in 2D 

The reconstruction of 2D objects could be said to have been inspired by 

works on jigsaw puzzles. In fact, some methods used in the studies of Burdea 

and Wolfson (1989), Chung et al. (1998), Goldberg et al. (2004) and Nielsen et 

al. (2008), such as Euclidean transformation, matching, least squares 



40 

estimation, neighbour and similarity search, are now used in 2D reconstruction 

but with a different perspective. 

Because the reconstruction of archaeological pottery was a concern, many 

studies have attempted to solve this problem through automated methods and 

extraction of salient features and descriptors from pottery, with the aim of 

overcoming some of the practical problems related to the manual 

reconstruction. One of such studies is that of Smith et al. (2010) which 

investigated methods of classification and reconstruction of images of 

excavated archaeological ceramic fragments based on their colour and texture 

information. This was achieved by using Scale Invariant Feature Transform 

(SIFT) and a feature descriptor (Smith et al., 2010).  

Likewise, the study of Puglisi et al. (2015) proposed a system that uses SIFT 

but with a different approach. The system uses image processing techniques to 

automatically identify and analyse images of the structural components of 

pottery through “optical microscopy”. As a result, the suitable features can then 

be computed and analysed for classification purposes. Both Smith’s and 

Puglisi’s studies aim to segment the acquired images of thin artefacts and extract 

their features for classification. To achieve this, the authors chose to use SIFT 

feature point method, where the feature points are extracted and matched with 

related pairs (Puglisi et al., 2015). While this system generally improves on the 

ones before it, it falls short in providing a high and acceptable accuracy. 

Similarly, the study of Makridis and Daras (2012) explores the classification 

problem by focusing on a technique for accurate and automatic classification of 

pottery. The technique was implemented in four steps namely: feature 

extraction, feature fusion, feature selection and classification. This approach 

attempted to reduce the computational complexity problem with a “bag of 

words (BoW)” method that uses the features extracted from the images to create 

a “global descriptor” vector of the images (Makridis & Daras, 2012). However, 
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while this approach demonstrates efficiency, how it reduces computational 

complexity and increases accuracy is not clear. 

With these studies and more, it is apparent that 2D object reconstruction 

works well for low-level implementation when compared with 3D. Where fine 

details visualisation and finesse are concerned, 2D reconstruction may not be 

adequate. Thus, exploring 3D reconstruction to solve challenges that 2D 

reconstruction could not solve became desirable. 

2.4.2 Reconstruction in 3D 

One major goal in 3D reconstruction is to recover the geometric structure of 

an object from the captured images or point clouds (Moons, Gool, & 

Vergauwen, 2010). 3D reconstruction is the process of capturing the shape, 

orientation and appearance of an object. This can be done using different 

methods. As a result, there has been various studies on 3D reconstruction built 

on extracting and matching feature points with the goal of improving 

visualisation (Szeliski, 2011).  

The studies of Belenguer and Vidal (2012), Hermoza and Sipiran (2018) and 

Roman-Rangel et al. (2016) are notable in this area. Hermoza and Sipiran 

focused on the problem of incomplete and damaged archaeological objects by 

applying a novel approach with machine learning methods to repair damages on 

symmetric and asymmetric objects, as well as improving the computational time 

to do such restorations. This was addressed by proposing a shape completion 

network. The 3D encoder of the shape completion network compresses the input 

voxel grid with a series of 3D convolutional layers, and then concatenates the 

compressed values with the embedded information about the input class label. 

The 3D decoder is thus able to predict the voxel output using 3D transposed 

convolutional layers (Hermoza & Sipiran, 2018).  
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A custom-built dataset comprising 3D scanned objects, 3D CAD objects and 

ModelNet dataset was used to evaluate the network model. The results showed 

an improvement in performance on different network settings against the test 

data and a significant reduction in output loss from the input loss. In addition, 

the network model could recover most of the missing information, even when 

more than half of the voxels were missing.  

However, some unexpected shapes different from the original were 

reconstructed, and the amount of data used seems not to be adequate given the 

unexpected restorations. That some objects were restored to an unexpected form 

shows that more studies are required. Also, from the direction of the study, it 

will be difficult to reconstruct 3D data with precise geometric and photometric 

properties as the precision of the reconstruction is dependent on datasets.  

Furthermore, Roman-Rangel et al. (2016) proposed a statistical descriptive 

approach using Histogram of Spherical Orientations (HoSO), a method for the 

automatic classification and analysis of 3D surfaces of pottery. This method 

analyses the external frontal view of the pottery alone, processes 3D data by 

using only the points coordinates without using colour, texture or faces, and 

efficiently encodes the information from the points coordinates. They posit that 

the advantages include substantial time reduction in pottery organisation and a 

simple method of acquiring the image (Roman-Rangel et al., 2016). However, 

the approach does not seem to be robust and accurate for a large dataset. 

Thus, a robust 3D virtualisation of pottery at a high accuracy is an interesting 

task for pottery reconstruction and digital preservation because the fine details 

could retain information about how the artefact was made, leading to an 

understanding and improvement in the reconstruction process. Notably, the 

classification stage makes reconstruction easier and achievable, with the 

reviewed studies focusing on automatic classification. However, how these 
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automatic approaches fare with respect to classification, and reconstruction in 

general, requires validation.  

Furthermore, the complexities inherent in 3D reconstruction depend largely 

on the approach followed and the assumptions made. For example, while a ToF 

acquisition system can be used to acquire excavated pottery, it is preferable to 

consider an acquisition system like laser scanner that can acquire objects 

accurately at the required distance. This is because an accurate acquisition with 

ToF will result in a complex system in addition to other issues. Thus, the 

reconstruction process should be simplified as much as possible by considering 

the methods used and techniques applied, as well as the type and size of the data 

used. As a result, this study investigates a path towards 3D reconstruction and 

digitisation of archaeological pottery with a high and improved accuracy as a 

goal.  

2.5 Methods of Reconstruction 

Over time, various methods have been used for the virtualisation of pottery. 

The initial methods may only have attained good results within their specific 

contexts, they nonetheless form the bedrock for further and more accurate 

methods. In addition, the improved methods are as a result of advancements in 

3D acquisition and reconstruction procedures. With the advancement of these 

procedures come the challenge of large data processing and analysis. Besides, 

having more data presents an advantage of good visualisation of reconstructions 

of pottery. Some of the methods of pottery reconstruction include symmetry-

based methods, template-based methods and feature-based methods among 

others. 

2.5.1 Symmetry-based Reconstruction 

Given a geometric object S in a plane, a symmetry of S is a function f from S 

to itself such that the distance between any two points x and y of S is the same 
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as the distance between the transformed points f(x) and f(y), thereby preserving 

the distance between each pair of points (Gowers, Barrow-Green, & Leader, 

2010). In essence, a symmetry of S is a function that preserves the structure of 

S, which is the distance between any two of its points. 

Consequently, the symmetry-based reconstruction is one that estimates the 

symmetry plane of a defective object and replicates the complete part on one 

plane to the defective part on the other plane in an organised manner without 

changing the overall shape (Gregor et al., 2014). This is usually done to restore 

or repair objects with missing parts, either a priori or posteriori, without the 

need for external data. It leverages the symmetric nature of an object to 

synthesise the missing parts of the object by assuming the existence of one 

symmetry plane. 

For example, the studies of Kampel and Sablatnig (2003) and Sablatnig and 

Kampel (2002) used the symmetry-based method. Kampel and Sablatnig 

focused on the virtual reconstruction of a rotationally symmetric pottery from a 

pottery fragment only. This approach attempts to estimate the correct 

orientation of the pottery fragment to get the exact position of the fragment on 

the original pottery. Two opposite views of the fragment (outer and inner) were 

captured with a projector scanner. The projector scanner used the shape from 

structured light method to acquire the geometric data for the purpose of 

registering them into a single fragment. According to the authors, the 

registration of the two views was done with the Iterative Closest Point (ICP) 

algorithm by estimating the transformation that minimises the mean square 

distances of the corresponding points between the surfaces of the two views 

(Kampel & Sablatnig, 2003; Sablatnig & Kampel, 2002). But how this was done 

with ICP is not clear.  

While the registration of the inner and outer views of the fragment results in 

the extraction of the fragment profile for reconstruction of the pottery about the 
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axis of rotation, it can be said that the alignment of the views was done based 

on the direction of the rotational axis of symmetry. Thus, an accurate 

reconstruction of the pottery fragment cannot be said to have been effected. This 

is because two views of a pottery fragment are not enough to accurately 

reconstruct it for visualisation as certain parts will have no data due to occlusion. 

But since the goal of the authors was to extract the profile, this limitation could 

be overlooked given this consideration.  

Additionally, in the reconstruction of the pottery, the similarities of profiles 

were used to synthesise and completely reconstruct the pottery. However, the 

reconstruction of the pottery could only be performed if the type and class of 

pottery the fragment belongs to is known. This is a major concern for objects 

that are not symmetric in nature. Moreover, from the author’s conclusion, the 

registration error shows that more work is necessary. Hence, efforts to improve 

the outcome of their study with different data is and should be ongoing.  

Furthermore, due to the challenges of symmetry detection inherent in 

incomplete geometry, Sipiran et al. (2014) proposed a vote-based algorithm that 

uses a heat diffusion function to detect symmetries in 3D shapes with missing 

parts, and then selects corresponding points across two surfaces of the 3D rigid 

object. The algorithm detects local features for symmetry detection of partial data and 

uses the features to depict the local geometry in a way that it can synthesise the 

missing data. It also detects symmetry planes by computing and validating the 

veracity of the symmetry planes. It does this by using the curvature in each point 

on the object’s surface to create a voting system, then computes a support system 

that will filter the points needed for voting for a plane.  

The algorithm was tested with two sample points using the following criteria: 

points identified on both sides of the plane, points approximately equidistant 

from the plane, points orthogonal to the plane, symmetric normal and points 

geometrically similar. As demonstrated with 3D meshes, this method works best 
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with objects that have features. This is because if features are not detected on 

both planes, correspondences cannot be established, and symmetric planes cannot 

be computed. However, the symmetries are estimated and not accurate. These 

observed challenges have led to the exploration of other methods of 

reconstruction such as the template-based reconstruction method. 

2.5.2 Template-based Reconstruction 

Unlike symmetry-based reconstruction that works with only symmetric 

objects, template-based reconstruction works with both symmetric and 

asymmetric objects. It is, to a large extent, based on the principles of template 

matching, which defines a measure or cost function to find similarity between 

portions of a template image with another target image. It then estimates the 

parameters that will transform the template onto the target in a way that will 

minimise the distance between them. 

Template-based reconstruction is one that restores incomplete or defective 

objects by searching for a geometrically similar template from datasets in a 

database or repository (Gregor et al., 2014; Shu-Yu et al., 2015; Yin, Wei, Li, 

& Manhein, 2011; Zhang, Yu, Manhein, Waggenspack, & Li, 2015). The goal 

is to compute the similarity evaluation as an optimisation problem (Gregor et 

al., 2014). In searching for a geometrically similar model in the database, if an 

object is severely damaged to the point that significant parts are missing and the 

exact template object as the defective one is not available, the closest similar 

template is used (Yin et al., 2011). This is done by identifying and matching 

local features. However, a template having high geometrical similarity with the 

target is desirable. Some template-based reconstructions use one template only 

and discard the database because the target object that is meant to be 

reconstructed is known, along with its main features and information. Such 

single template reconstructions include the works of Du et al. (2016) and Yin et 

al. (2011). All these studies used the template-based method as part of a multi-
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pronged approach to reconstruction. They used information from complete and 

fractured surfaces of an object to reconstruct the fragments into a whole. In 

order to reduce high computational cost, the template-based aspect is done in 

two steps namely feature extraction and correspondence matching.  

The feature extraction step involves detecting and extracting features from 

the surface of the object. The goal is to identify salient feature points and extract 

the features of these points. In a bid to discover the best approach to extracting 

salient feature points, different techniques and approaches have been explored. 

For example, Yin et al. (2011) extracted salient feature points using the slippage 

features, a feature detection technique. The curvature of the surface of the 

extracted features was computed to increase robustness in the presence of noise, 

thereby improving the matching process. Shu-Yu et al. (2015) used the Hough 

transform to identify feature points under noise and extract features to reduce 

computational complexities. On the other hand, Zhang et al. (2015) used the 

Intrinsic Shape Signature (ISS) detector to identify and extract feature points by 

computing the covariance matrix of the surface of the object because of its 

repeatability and efficiency. In the case of Gregor et al. (2014) and Du et al. 

(2016), a feature extraction algorithm based on Heat Kernel Signature (HKS) 

was used because of its flexibility and robustness. The algorithm extracts feature 

points that have the largest changes in HKS value, since the HKS energy 

changes according to Gaussian curvature. Each of these techniques and 

approaches possess advantages in their individual implementations, but 

limitations still exist. Thus, the various techniques have been explored. 

For correspondence matching, Yin et al. used the spin image technique to 

compute and describe the surface geometry with surface normals on the 

extracted features. Feature points on the template and target objects with similar 

spin images and similar principal curvatures tend to be corresponding points. 

Thus, a coarse matching between corresponding points is effected by 

transforming the template object to the target object. Shu-Yu et al. used “the 
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thresholding of the Otsu algorithm” to improve accuracy, while Zhang et al. 

used the Signature of Histograms of OrienTations (SHOT) shape descriptor to 

compare feature points on the surface of the template and target objects. In 

addition, Zhang et al. used the RANSAC algorithm for correspondence 

matching to pair detected corresponding feature points on the template and 

target objects by computing the Euclidean distance between corresponding 

points. Gregor et al. and Du et al. used the HKS algorithm to describe the 

objects’ salient features. Two points are correspondent if their HKS curves 

match well, which means that their treads are nearly equal. The variance of the 

Euclidean distance of corresponding pair of points is finally used to evaluate the 

differences between two HKS curves, to find the closest curve or the best match 

for a given point. In all these cases, the point pairs without similarity are 

removed because they are not corresponding pairs.  

Furthermore, the use of machine and deep learning in template-based 

reconstruction attempts to solve some problems inherent in the afore-discussed 

studies. The studies of Dai et al. (2017), Hermoza and Sipiran (2018) and Yang 

et al. (2017) used Convolutional Neural Networks (CNNs) and Generative 

Adversarial Networks (GANs) to reconstruct damaged objects in their 

approach. The idea was to develop a shape completion network (3D encoder 

and 3D decoder) that represents 3D objects as a voxel grid, and an adversarial 

network architecture (generator and discriminator). To train the network, pairs 

of complete objects were captured while fractured objects were simulated from 

the complete objects. The simulated fractured object then served as input while 

the network predicts the complete object as output. To improve the restoration 

process, the completion network loss and the adversarial loss were combined 

during training to aid the outputs of the network. 

The main strength of this approach is the improvement in performance and 

computational time to do restorations. The network can predict accurate 3D 

shapes and structures with fine details (Hermoza & Sipiran, 2018). Also, it can 
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learn 3D shape restoration using an end-to-end completion method. This leads 

to an improvement in accuracy for shape retrieval tasks (Yang et al., 2017). 

However, the accuracy of the reconstruction itself needs improvement because 

unexpected shapes different from the original template were reconstructed. 

Also, a large amount of dataset is required because the performance and 

evaluation of the network relies on having a large amount of data. The data used 

in these studies are synthetic datasets from virtually scanned 3D CAD models 

instead of real-world datasets (Hermoza & Sipiran, 2018; Yang et al., 2017). 

This makes it hard for the network to work accurately with real datasets with 

features. To then improve the performance, it might require low resolution data. 

Increasing the output resolution might result in significant increase in 

computational costs, making the optimisation of the training process more 

difficult (Dai et al., 2017). 

While template-based reconstruction has its strong points, it also has some 

limitations. For example, for template-based reconstruction to have a good 

output, it has to be used in conjunction with other techniques or methods. This 

might lead to system complexity. Although, it can be used alone, but only for a 

low-level output. Another major challenge with template-based reconstruction 

is that it requires a high computational power, which can be time-consuming. 

As a result, other approaches of reconstruction are being explored. 

2.5.3 Feature-based Reconstruction 

Feature-based reconstruction is one that extracts an object’s features, such as 

shapes, edges, textures, colours, keypoints, to match with a target object in order 

to restore the complete object. The features provide rich information that can 

help in distinguishing between object surfaces and used as descriptions for 

matching and alignment. Feature-based reconstruction involves feature 

detection, feature extraction, feature description, correspondence matching and 

registration. These steps are exhaustively discussed in chapter four of this thesis.  
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Some of the studies discussed in the template-based reconstruction also 

applied feature-based reconstruction alongside. They include Shu-Yu et al. 

(2015), Yin et al. (2011) and Zhang et al. (2015). Feature-based reconstruction 

is robust and efficient. However, its main limitation is that it cannot work 

efficiently when an object’s surface have fewer features than required.  

2.6 Chapter Conclusion  

This chapter presents a detailed review of archaeological pottery 

reconstruction, providing a comprehensive overview of state-of-the-art in 

acquisition methods, acquisition techniques and methods of performing pottery 

reconstruction. The use of state-of-the-art methods to acquire object data is quite 

accurate but only within their context of usage and makeup. While some 

methods can acquire objects at a distance accurately, they fall short in doing 

same for objects in proximity. However, each method provides different and 

unique benefits in their distinct and dynamic scenario. This unique benefit is 

dependent on the acquisition technique(s) used. The acquisition techniques 

reviewed were structured light, time-of-flight and 3D laser scanner. One or more 

of these techniques are applied in data acquisition to have robust data for 

processing. But it is not always the case as the accuracy and robustness of the 

data is dependent on the quality of the equipment used and the accuracy of the 

calibration done.  

Furthermore, the data reconstruction approaches were discussed based on 2D 

and 3D reconstructions. The techniques and approaches used, as well as the data 

differ significantly in some cases. In addition, the methods of reconstruction as 

classified in this thesis were discussed. They are symmetry-based, template-

based and feature-based reconstructions. Their strengths and limitations were 

presented based on previous work in the areas. While some of the reconstruction 

methods work well in a given scenario, they nonetheless have unique 

challenges. For example, symmetry-based reconstruction can only successfully 
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reconstruct symmetric objects and failing if the object is not symmetric. It is on 

this background that a discussion of 3D acquisition of pottery is based. This is 

discussed in the subsequent chapter, chapter three. 
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 3D DATA ACQUISITION OF POTTERY 

3.1 Introduction 

Building from the background on archaeological pottery reconstruction in 

chapter 2, this chapter outlines the data acquisition approach and the techniques 

used. It presents the acquisition system and its specification and how the 

technical details may determine a lot of the data output. It culminates with the 

data that was acquired for this study.   

To this effect, the chapter begins with an outline of the acquisition system, 

stating the laser scanner and camera, as well as the setup employed, in section 

3.2. This is followed, in section 3.3, by the discussion of the calibration of the 

various components and devices of the acquisition setup. At this point, 

presenting the process involved with acquiring data with the acquisition system 

is provided in section 3.4. The chapter ends with a conclusion in section 3.5.  

3.2 The Acquisition System 

The data acquisition stage is critical to the entire stages of a 3D 

reconstruction task. At this stage, objects are scanned and virtualised into 3D 

point clouds. The precision of the process goes a long way to determine the 

accuracy of further procedures such as reconstruction and reassembly. 

Virtualising objects to reflect majority of its original information is important 

in carrying out studies.  As noted by Gilboa et al. (2013), when objects are 

virtualised without key information, data may be lost. In addition, it is important 

to use the right instruments and tools for this process. Some tools are good for 

virtualising objects just for visualisation purposes. Others will require that the 

fine details of the objects be captured, thus enhancing analysis and further 

processes. Using appropriate tools and instruments is good for the acquisition 

process as it could lead to a high accuracy virtualisation output. As a result, laser 

scanners are widely used to acquire data with high accuracy within an 

acceptable distance. The laser scanners will generate dense unstructured point 



 
 

53 

clouds of an object. To attain the virtualisation process in this study, a low-cost 

off-the-shelf acquisition setup, consisting of a line laser, RGB camera, Arduino 

UNO and other embedded devices and components, was used. 

3.2.1 Z-laser Line Laser and Mercury RGB Camera 

The line laser used is a standard and focusable Z-laser Z15M18S3-F-640-

LP60 series with an output power of 15mW, wavelength of 640nm, intensity 

control of 32 steps and an LP60 optics that projects a single line optical pattern. 

The projected optical pattern has a homogeneous distribution of intensity along 

the line. The intensity can be adjusted by means of a simultaneous analogue 

modulation and digital Transistor-Transistor-Logic (TTL) trigger with a 

switching frequency of up to 1kHz. This allows an adjustment of the intensity 

and switching of the laser at intervals. The use of TTL modulation promises a 

convenient and standardised method for switching or triggering the laser on and 

off, thereby yielding clean data.  

Additionally, a compact Mercury RGB camera MER-231-41U3C-L with 

resolution of 1920x1200, frame rate of 41 frames per second (fps) at full 

resolution and power consumption below 2.5W, was used. The camera is 

equipped with an infrared filter with a cut-off frequency of 700nm, making it 

easier to synchronise the camera with the line laser via a software. In addition, 

the camera is precise in operation with extremely low noise and perfect colour 

conversion.  

3.2.2 Acquisition Setup 

The line laser and the camera can be mounted in four ways namely ordinary, 

reversed-ordinary, specular and look-away (SICK, 2011), as shown in Figure 

3.1. The ordinary setup has the camera mounted perpendicular to the object 

mount while the laser is mounted at an angle to the side. This method has the 

highest resolution but results in miss-registration during operation. On the other 
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hand, the reversed-ordinary setup has the laser mounted perpendicular to the 

object mount while the camera is mounted at an angle to the side. This method 

does not result in miss-registration but has a slightly lower resolution than the 

ordinary setup. Another setup is the specular one that has both camera and laser 

mounted on opposite sides of the normal. Because it requires less illumination 

than the other setups, it can be used to capture objects with dark or dull surfaces 

quite well during operation. Lastly, the look-away setup has both camera and 

laser mounted on the same side of the normal, unlike the specular one. This 

method is useful in the avoidance of unwanted reflection. However, it requires 

more illumination than the other methods, as well as resulting in a lower 

resolution.  
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Figure 3.1: Main setup orientations for the camera and laser 
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In this study, the reversed-ordinary setup, shown in Figure 3.2, was adopted 

since a better accuracy in registration is desired. As the lowered resolution does 

not impact the registration, the setup then allows for flexibility resulting in an 

improved pottery virtualisation and registration process.  

40.5°

18
9

221   

Figure 3.2: Reversed-ordinary setup for the camera and laser 

A representation of the acquisition setup is shown in Figure 3.3. The setup, 

which was used for a different project in our research group, was modified to 

suit its use in this study. The line laser and the camera were mounted on an 

aluminium frame, with the line laser perpendicular to the horizontal sliding table 

while the camera was set up at an angle and facing the sliding table. The sliding 

table is driven by a stepper motor beneath it. The stepper motor, camera and line 

laser were synchronously controlled by the Arduino circuitry. The camera and 

the Arduino circuitry were connected to a laptop via USB, with illumination 

positioned in a way that it does not flash into the lens of the camera. While 

illumination was provided by a lamp, it was ensured that the setup was in a 

controlled light room or environment and not directly under sunlight, as sunlight 
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can influence the quality and accuracy of the scans, leading to noise and 

occlusion. Exposure to uniform and homogeneous light is preferred. But for the 

system to work synchronously, it had to be calibrated first, as this would also 

simplify the reconstruction process. 

 

Figure 3.3: Data acquisition setup 

3.3 Calibration 

Camera calibration is the process of estimating some desired parameters of 

a camera to capture accurate images. To estimate these parameters, 3D world 

points and their corresponding 2D image points are required. These 

correspondences can be gotten by using multiple images of a calibration pattern, 

such as a squared checkerboard or circular chessboard. The camera parameters 

can be estimated with the correspondences. The desired parameters to be 

estimated include camera intrinsics, extrinsics and distortion coefficients. These 

parameters are used to correct lens distortion, measure the size of an object in 

world units, or determine the location of the camera. To evaluate the accuracy 

of the estimated parameters, the relative locations of the camera and the 

calibration pattern can be plotted, the reprojection errors and the parameter 

estimation errors can be estimated. Then, the calibrated camera can be used to 

acquire images of different views for 3D reconstruction.  
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To calibrate the system, a 1920x1200 pixels Mercury U3V camera, a cyclic 

chessboard pattern and a sawtooth image were used to estimate camera 

intrinsics, extrinsics and lens distortion parameters using the Brown’s distortion 

model (Brown, 1966). Twenty chessboard images and four sawtooth images 

were captured with the camera and saved in PNG format, ensuring that they are 

within the working distance of the camera and not blurry. This is because the 

precision of the calibration depends on the camera parameters. The input 

parameters include the camera pixel resolution, working distance (WD), focal 

length, field of view (FOV) and angle of view (AOV), derived using the 

following equations: 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐚𝐚𝐒𝐒𝐒𝐒𝐚𝐚 𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰 (𝐦𝐦𝐦𝐦) = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒘𝒘𝒊𝒊𝒘𝒘𝒘𝒘𝒘𝒘 ∗ 𝒑𝒑𝒊𝒊𝒑𝒑𝒊𝒊𝒑𝒑 𝒔𝒔𝒊𝒊𝒔𝒔𝒊𝒊 (3.1) 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 𝐚𝐚𝐒𝐒𝐒𝐒𝐚𝐚 𝐰𝐰𝐒𝐒𝐰𝐰𝐡𝐡𝐰𝐰𝐰𝐰 (𝐦𝐦𝐦𝐦) = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒘𝒘𝒊𝒊𝒊𝒊𝒊𝒊𝒘𝒘𝒘𝒘 ∗ 𝒑𝒑𝒊𝒊𝒑𝒑𝒊𝒊𝒑𝒑 𝒔𝒔𝒊𝒊𝒔𝒔𝒊𝒊 (3.2) 

𝐅𝐅𝐅𝐅𝐅𝐅 𝐖𝐖 (𝐦𝐦𝐦𝐦) = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒘𝒘𝒊𝒊𝒘𝒘𝒘𝒘𝒘𝒘 ∗ 𝒑𝒑𝒊𝒊𝒑𝒑𝒊𝒊𝒑𝒑 𝒓𝒓𝒊𝒊𝒔𝒔𝒓𝒓𝒑𝒑𝒓𝒓𝒘𝒘𝒊𝒊𝒓𝒓𝒓𝒓  (3.3) 

𝐅𝐅𝐅𝐅𝐅𝐅 𝐇𝐇 (𝐦𝐦𝐦𝐦) = 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒘𝒘𝒊𝒊𝒊𝒊𝒊𝒊𝒘𝒘𝒘𝒘 ∗ 𝒑𝒑𝒊𝒊𝒑𝒑𝒊𝒊𝒑𝒑 𝒓𝒓𝒊𝒊𝒔𝒔𝒓𝒓𝒑𝒑𝒓𝒓𝒘𝒘𝒊𝒊𝒓𝒓𝒓𝒓  (3.4) 

𝐀𝐀𝐅𝐅𝐅𝐅 𝐖𝐖 (°) = 𝟐𝟐𝒘𝒘𝒊𝒊𝒓𝒓−𝟏𝟏(𝑭𝑭𝑭𝑭𝑭𝑭 𝑾𝑾
𝟐𝟐𝑾𝑾𝟐𝟐

)     (3.5) 

𝐀𝐀𝐅𝐅𝐅𝐅 𝐇𝐇 (°) = 𝟐𝟐𝒘𝒘𝒊𝒊𝒓𝒓−𝟏𝟏(𝑭𝑭𝑭𝑭𝑭𝑭 𝑯𝑯
𝟐𝟐𝑾𝑾𝟐𝟐

)     (3.6) 

where FOV W is the width of the field of view, FOV H is the height of 

the field of view, AOV W is the width of the angle of view, AOV H is 

the height of the angle of view and WD is the working distance from the 

lens to the object. 

A developed calibrator adapted from the approach of Heikkilä and Silvén 

(1997), Scaramuzza and Siegwart (2007), Urban et al. (2015) and Zhang (1999) 
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was used to estimate the desired values of the input parameters. To compute the 

intrinsic parameters, the chessboard images were added to the calibrator, 

ensuring that the width and height of the pattern and image, as well as the 

distortion coefficient types were inserted (2 radial and 2 tangential coefficients). 

The radial and tangential distortions can be computed using equations (3.7) and 

(3.8) respectively (Heikkilä & Silvén, 1997; Z. Zhang, 1999): 

�
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�   (3.8) 

where k1, k2 = coefficients of radial distortion; p1, p2 = coefficients of 

tangential distortion; u, v = image coordinates; ũ, ṽ = image projection; 

δu, δv = u – u0, v – v0; u0, v0 = image centre/principal point; r = 

√𝑢𝑢�2 + 𝑣𝑣�2; i = number of the images (i.e. 1, 2, 3, …). 

The calibrator detects the centre of each circular pattern for all the images 

(see Figure 3.4) and computes the reprojection errors (see Figure 3.5). Three 

images were discarded for having high reprojection errors while 17 images were 

used to compute the intrinsic parameters.  

  

Figure 3.4: Projected points on the chessboard and sawtooth images 
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Figure 3.5: Computed reprojection error in pixels 

With the intrinsic parameters computed, the report was exported as an XML 

file and added to the calibrator along with the sawtooth images to compute the 

extrinsic parameters. The pose estimation parameters (width and height of 

sawtooth) were inserted. The calibrator detects the tangents of the sawtooth 

images (see Figure 3.4) and computes the extrinsic parameters. The calibration 

report was exported as an XML file, which contains the computed parameters. 

The computed parameters include the orientation of the camera at 40.5°, the 

baseline at 221mm, the height of the camera to the sliding table level at 189mm 

and the working distance, which is the distance between the lens and the object 

mount, at 291mm (see Figure 3.2). Also, the Root Mean Squared Error (RMSE), 

which is the metric used for the reprojection error, along the X and Y coordinates 

of the image are 0.0015mm and 0.0009mm respectively. The mean RMSE of 

reprojection is 0.0018mm. As a rule, the mean reprojection errors of less than 

0.2mm are considered acceptable. These parameters are used to compensate the 

effects of lens distortion during the pottery scanning process. 
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3.4 Acquiring the Pottery  

With the calibration completed and the line laser and camera synchronised, 

the system was ready for acquiring the data. It was ensured that the laser line 

was parallel to the edge of the sliding table as it reduces distortion and aids the 

alignment process. The goal was to acquire the pottery’s geometry as the sliding 

table moves from one end to another in order to get every viewing angle as much 

as possible as shown in Figure 3.6.  

    

    

Figure 3.6: Samples of the scanned pottery 

Placing the pottery on the object mount, multiple exposures of the pottery’s 

complete surface were acquired using the acquisition setup with a 16GB RAM 

Core i7-6500U laptop @ 2.50GHz. The scanning and the conversion of the data 

to point cloud was carried out by a script written for the virtualisation software 

of the camera. Due to occlusion occurring, many exposures of different 

viewpoints were acquired so that the occluded parts will be compensated for 

after registering the point clouds. While many exposures were acquired, about 

24 were used for the reconstruction process. An illumination source was 

directed at the pottery at about 400mm distance to ensure that colour and shape 

information were well captured. 
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3.5 Chapter Conclusion  

In this chapter, the data acquisition approach employed in this study to acquire 

the pottery was discussed. Since the nature of the problem under investigation 

pertained to technical innovations, the acquisition system is a bedrock of the 

whole reconstruction process. The laser scanner and camera used for the 

acquisition were presented, along with their specifications. The laser scanner 

technique was chosen for this study because of its accuracy and robustness in 

proximity. The setup of the equipment was discussed, highlighting the various 

parts that make the setup. In addition, the four various setups that can be used 

for the line laser and the camera to be mounted for laser scanner acquisitions 

were highlighted. They are the ordinary, reversed-ordinary, specular and look-

away setups. The various setups were explained and the choice of using the 

reversed-ordinary setup was highlighted. Furthermore, to be able to carry out 

experiments, a calibration of the system was necessary, highlighting the various 

steps in the process. This therefore paved the way for acquiring the pottery used 

in this study. Multiple views were acquired, ensuring that there was appropriate 

illumination. Thus, the registration of these views are implemented and 

presented in the following chapter, chapter 4. 
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 REGISTRATION OF POTTERY ACQUISITIONS 

4.1 Introduction  

This chapter focuses on 3D registration of pottery point clouds in relation to 

object pose, transformation and reconstruction. While different methods exist 

to register point clouds, only the methods relevant to this study are considered. 

The scope of this work is on rigid alignment of 3D geometry of pottery. The 

geometric and photometric information of the pottery point cloud were 

considered in the registration process. The remaining sections follow with a 

presentation of the process of registration from a general point of view and 

narrows it to its specific use with point clouds in Section 4.2. This is followed 

by a description of the methods applied in point cloud registration in section 

4.3. Section 4.4 highlights the registration process and experiment which 

involves data processing, feature detection and extraction, feature description, 

correspondence estimation and registration, as well as the results of the 

experiment. Section 4.5 discusses the evaluation and results of the previous 

section. The chapter ends with the summary and conclusion in section 4.6. 

4.2 Point Cloud Registration 

The study on point set registration has significantly progressed over the years 

using various methods. While much of the interest in the study is linked to the 

works of Besl and McKay (1992), Chen and Medioni (1991) and Wolfson 

(1990), its origins can be linked to works such as that of Arun et al (1987), Horn 

(1987), Huang et al (1986), Lin et al (1986) and similar works before theirs, as 

expected, due to increase in knowledge. These studies are either non-iterative 

(for example, Lin et al. and Arun et al.) or iterative (for example, Huang et al. 

and Besl and McKay). While non-iterative methods are computationally faster 

and less sensitive to parameter settings than iterative methods in general, its 

accuracy and performance is still an open issue when compared with iterative 
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approaches during the registration process. Hence, studies on the iterative 

methods have gained more interest in point set registration. 

Registration is the process of transforming datasets into a common 

coordinate system, allowing useful integration and alignment of the relative 

pose between the datasets. The datasets can be 2D or 3D datasets such as 

images, triangular or polygonal meshes, volumetric data and point clouds. 

Suitable datasets are used in various experimentations with volumetric data 

mainly used in medical imaging. On the other hand, point clouds are a collection 

of data points in a given coordinate system, while meshes are derived from point 

clouds and connectivity information between the points. Registration is a 

technique that is applied in various fields such as medical imaging, architecture 

and image analysis (such as image restoration, scene reconstruction, shape 

retrieval and cultural heritage reconstruction). Since this study focuses on works 

done with 3D point clouds, the discussion will be mainly on point cloud 

registration.  

Point cloud registration is the process by which point set data or point clouds 

are spatially transformed into a common coordinate system. It is also referred 

to as point set registration. The registration can be attained by determining and 

applying the transformation that aligns the point clouds into a common 

coordinate system. For the alignment to be robust, the point clouds should 

substantially overlap and possess common features in the areas of overlap. 

Detecting these features will require methods such as nearest neighbour search 

to establish correspondences between keypoints or feature descriptors of the 

point clouds. The features can then be extracted for registration purposes.  

Furthermore, there are two types of registration that can be performed on 

point sets, namely rigid registration and non-rigid registration. A rigid 

registration is one that transforms a point set, at a given location and orientation 

in space, to another point set’s location and orientation without changing the 
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distance between any two points of a point set. The ICP algorithm is the most 

popular and accurate method for rigid registration. On the other hand, a non-

rigid registration is one that nonlinearly transforms a reference point set to a 

target point set by deforming the target point set to align with the reference point 

set. In this study, the focus is on the rigid registration of point clouds of a 

pottery. 

4.3 Methods of Performing Registration 

Point cloud registration can be categorised into two methods namely coarse 

registration and fine registration. Coarse registration returns a rough and fast 

initial alignment of the input point clouds without prior proximity assumptions 

of the point cloud positions (Díez, Roure, Lladó, & Salvi, 2015). This involves 

processes such as feature detection, feature description and correspondence 

search. On the other hand, fine registration assumes that the input point clouds 

are roughly aligned and fine-tunes the alignment between the point cloud 

coordinate systems, thus reducing the proximity error to as close to zero as 

possible (Elbaz, Avraham, & Fischer, 2017). 

Furthermore, there are generally two approaches to performing 3D alignment 

namely, local registration and global registration. Local registration estimates a 

transformation that aligns two point clouds around overlapping regions with 

very minimal error. It is sometimes also referred to as pairwise alignment. On 

the other hand, global registration estimates transformations that align multiple 

point clouds into an object, while the alignment error between two point clouds 

are minimised by sharing the error among the whole point clouds.  

These approaches of point cloud registration rely on the accuracy of the 

scanners to capture point clouds with less distortion and noise so that the rate of 

convergence of the point clouds would be optimal. Capturing these point clouds 

is attained by scanning the visible part of the target object. Hence, occlusion 

occurs due to the blocking of certain parts of the target object from the scanner. 
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To solve this problem, multiple scans of the target object are made from 

different views and aligned together in a common coordinate system by 

registration. Performing registration of the point clouds require an estimation of 

the transformation parameters, and the application of these parameters in a 

coarse registration. Both coarse and fine registration can be applied in local and 

global registration. In registering point clouds, accuracy is an important 

consideration because an inaccurate alignment will result in a wrong 

impression. 

4.4 The Registration Process 

The goal of the registration process is to find the correspondence, rigid 

transformation and best alignment between point clouds. Given two point 

clouds, model P = {p1, p2, …, pm} and target Q = {q1, q2, …, qn}, in 3D space 

which contain m and n points respectively. If p ⊂ P and q ⊂ Q are the 

overlapping points between the two point clouds, then a rigid transformation T 

applied to P such that the distance between P and Q is minimised, results in the 

best alignment between the point clouds and is expressed as:  

y = Rx + t        (4.1) 

where x ∈ p, y ∈ q, R is the 3x3 rotation matrix and t is the 3x1 translation 
vector. 

A rigid registration can thus be found by minimising the following objective 

function or error metric: 

∑ ||𝑻𝑻𝒑𝒑𝒊𝒊 − 𝒒𝒒𝒊𝒊||𝟐𝟐𝑴𝑴
𝒊𝒊=𝟏𝟏 ,      𝒒𝒒𝒊𝒊 = 𝐚𝐚𝐒𝐒𝐡𝐡 𝐦𝐦𝐰𝐰𝐒𝐒

𝒒𝒒∈𝑸𝑸
||𝑻𝑻𝒑𝒑𝒊𝒊 − 𝒒𝒒||   (4.2) 

where p is the model point set and q is the target point set. 

The registration process can be achieved with different techniques and 

methods as discussed by Bellekens et al. (2015) and Tam et al. (2013). But the 

most popular method that has formed the foundation for more improved ones is 
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the ICP algorithm (Besl & McKay, 1992). However, it tends to be susceptible 

to local minima. Rusinkiewicz and Levoy (2001) categorise the ICP process 

into selection of points, matching of points, weighting of corresponding pairs, 

rejecting pairs, error metric and minimisation of the error metric. This 

categorisation represents the stages point clouds must go through during 

registration. The only difference would be the approach and methods applied. 

For example, the approach applied on two point sets that are roughly aligned 

would be different from the ones that are not roughly aligned. Hence, coarse 

registration is employed to first roughly align point clouds in this study. 

In addition, because of the differences in objects to be registered – such as 

their geometry – and the unique challenges that befall them, as well as the huge 

point sets that might be involved, it is usually difficult to develop a “one-size-

fits-all” solution for point cloud registration in general. Hence, certain works 

are refined or improved to suit the needs of the data that is involved (Glira, 

Pfeifer, Christian, & Camillo, 2015; Rusinkiewicz & Levoy, 2001). This has led 

to this study’s implementation with C++ and the Point Cloud Library (PCL), 

among others. The following sub-sections discusses the coarse registration 

steps, shown in Figure 4.1. 
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Point Cloud Data Acquisition

Data preprocessing

Fine Registration

Global Registration

Feature Detection

Feature Description

Correspondence Estimation

Data Acquisition

Coarse Registration

Downsampling
Denoising
Normal estimation

Surface curvature estimation
Nearest neighbour computation
Keypoint extraction

Local Reference Frame estimation
Descriptor computation

Descriptor matching
Rejection and filtering
Correspondence grouping

Refinement with ICP algorithm

Correspondence update
Rigid transformation

 

  Figure 4.1: Flow diagram of the registration method 

4.4.1 Data Processing 

The scanned point clouds, from section 3.4, were processed with the publicly 

available CloudCompare software to obtain cleaner point clouds. The denoising 

and segmentation of the point clouds was carried out to remove unusable parts 

of the cloud, such as background points that were not part of the pottery itself, 

from the useful pottery part. In addition, the number of points of the point clouds 

were reduced by down-sampling. Down-sampling of the point clouds was based 

on space sampling, ensuring that the points are uniformly distributed to get a 
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good estimation that contains only inliers. This was to ensure that points that do 

not have finite normal and enough neighbours in a certain radius (outliers) were 

removed. The outliers were removed based on the number of neighbours around 

a point and within a radius of 0.2mm.  

Also, normal of the point clouds was computed for surface correspondence, 

thus ensuring a better alignment process. This was achieved using the Principal 

Component Analysis (PCA) algorithm (Shlens, 2014). The algorithm was used 

to determine the normal vectors of the point clouds because PCA can analyse 

the variation of points in three directions x, y, z. The normal vector corresponds 

to the direction with minimum variation. To estimate the normal vector, the 

covariance matrix, Mcov, can be calculated from the following equation: 

𝑴𝑴𝒄𝒄𝒓𝒓𝜹𝜹 = 𝟏𝟏
𝒌𝒌
� (𝒑𝒑𝒊𝒊 − 𝒑𝒑�)(𝒑𝒑𝒊𝒊 − 𝒑𝒑�)𝑻𝑻𝒌𝒌

𝒊𝒊=𝟏𝟏     (4.3) 

where k is the number of nearest neighbours in the vicinity of pi and 𝑝𝑝� is the 

mean or centroid of all k neighbours denoted as: 

 𝒑𝒑� = 𝟏𝟏
𝒌𝒌
∑ 𝒑𝒑𝒊𝒊𝒌𝒌
𝒊𝒊=𝟏𝟏        (4.4) 

Nearest neighbour search is an optimisation problem which finds the set of 

nearest points k that is in proximity to a given point according to its Euclidean 

distance metric. The Euclidean distance is the straight-line distance between 

two points in Euclidean Space and is the square root of the sum of the squared 

differences of the points which can be represented as: 

�∑ (𝒑𝒑𝒊𝒊 − 𝒒𝒒𝒊𝒊)𝟐𝟐𝒓𝒓
𝒊𝒊=𝟏𝟏          (4.5) 

The k-nearest neighbours can be found by computing the Euclidean distance 

of the model point from a set of target points. The target points are then arranged 

in an increasing order of distance and the nearest neighbours determined based 

on the k-th minimum distance. The value of k is chosen based on the number of 
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points within a certain radius from the model point, in this case between 0.1mm 

and 0.3mm. In this study, the FLANN library which performs fast and 

approximate nearest neighbour searches in high dimensional spaces was used 

in C++ to compute nearest neighbours. 

By using PCA to perform eigen decomposition on the covariance matrix of 

equation 4.3, three eigenvalues, λ1, λ2, λ3, and their corresponding eigenvectors, 

e1, e2, e3, were obtained. Hence, the eigenvector corresponding to the smallest 

eigenvalue estimates and represents the surface normal vector ni at point pi. 

Algorithm 4.1 shows how the normals are computed with PCA. 

Algorithm 4.1: Principal Component Analysis 
1:   Input: d dimensional point cloud, number of neighbours 

2:      Output: vector normal 

3:      Initialize: vector normal, vector neighbours, vector neighbours mean, covariance matrix 

4:      For each point p in P: 

5:  Extract the neighbours using nearest neighbour search – (equation 4.5) 

6:  Calculate the centroid of the neighbours – (equation 4.4) 

7:  Compute the covariance matrix – (equation 4.3) 

8:  Compute eigenvectors and corresponding eigenvalues – (equation 4.6) 

9:   Sort eigenvectors by decreasing eigenvalues 

10:  Extract the normal 

11:    Return Normals 

12:   End 

 
4.4.2 Feature Detection 

While the oil lamp, vase with design and vase without design were processed, 

only the oil lamp and vase with design were used for further work as the vase 

without design had no feature on its surface that could be detected. Feature 

detection involves selecting repeatable and salient feature points (keypoints) of 

3D point clouds that are more distinct than other points based on the geometry, 

colour and curvature of the surface normal. The keypoints, which describe 
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geometrical shapes based on information around the points, are detected from 

the source and target point clouds. The surface curvature of the point cloud is 

used to estimate the keypoints that characterise the point cloud’s surface. The 

change of surface curvature Cλ is estimated from the eigenvalues as follows: 

𝑪𝑪𝛌𝛌 = 𝛌𝛌𝟏𝟏
𝛌𝛌𝟏𝟏+𝛌𝛌𝟐𝟐+𝛌𝛌𝟑𝟑

       (4.6) 

where  λ1< λ2< λ3 

To calculate the surface curvature, a quadratic surface is fitted to the nearest 

neighbours in the vicinity of pi, for example. The maximum and minimum of 

the normal curvature k1 and k2 at a given point pi on a surface are called the 

principal curvatures of the surface, which are in the principal directions. The 

mean curvature H of the surface at pi is the arithmetic mean of the principal 

curvatures, while the total or Gaussian curvature K is the (square of the) 

geometric mean of the principal curvatures. The relationship between H and K 

in relation to k1 and k2 is represented by: 

𝑯𝑯 = 𝟏𝟏
𝟐𝟐

(𝒌𝒌𝟏𝟏 + 𝒌𝒌2)       (4.7) 

𝑲𝑲 = 𝒌𝒌𝟏𝟏𝒌𝒌𝟐𝟐        (4.8) 

With some algebraic manipulations, equations (4.7) and (4.8) can be written 

as a quadratic equation as follows: 

𝒌𝒌𝟐𝟐 − 𝟐𝟐𝑯𝑯𝒌𝒌 + 𝑲𝑲 = 𝟎𝟎      (4.9) 

The quadratic equation has solutions as follows: 

𝒌𝒌𝟏𝟏 = 𝑯𝑯 + √𝑯𝑯𝟐𝟐 − 𝑲𝑲       (4.10) 

𝒌𝒌𝟐𝟐 = 𝑯𝑯− √𝑯𝑯𝟐𝟐 − 𝑲𝑲      (4.11) 
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For the point pi, keypoints are computed with the eigenvalues and 

eigenvectors derived from PCA, in the neighbourhood of pi with radius ri. The 

largest value of the RGB components is computed by finding the products of 

two curvature to get the local maxima. With the local maxima of the curvature 

obtained, the keypoints were computed as shown in Figure 4.2. Table 4.1 shows 

the number of keypoints detected on the vase and oil lamp pottery. 

 
  Figure 4.2: Detected keypoints based on the principal curvature of the 

vase and pottery surface normal 
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Table 4.1: Registration values (keypoints, correspondences, time) of the 
vase and oil lamp 

Point 

Cloud 

Number of 

Geometric 

Points 

Number of 

Keypoints 

Number of 

Correspondences 

Matching 

Time (sec) 

Vase Scan 1 

(V1) 
250570 4813 

850 1470.59 
Vase Scan 2 

(V2) 
255224 5180 

Oil Lamp 1 

(P1) 
249929 5477 

1490 1950.84 
Oil Lamp 2 

(P2) 
276882 3402 

 

In essence, by analysing nearest neighbours around the point of interest pi 

within a certain radius ri and curvature threshold Cλ, the principal curvature for 

all points were computed and the covariance matrix established as stated in 

equation (4.3). For the oil lamp for example, the curvature was computed using 

points in a radius of 0.8mm, and local maxima within a radius of 1mm. these 

values were chosen based on the distance between the points after 

downsampling the point clouds. 

4.4.3 Feature Description 

Having computed the keypoints, local descriptors are required for 

correspondence determination and matching. The descriptors should be 

inherently descriptive and robust. Thus, they are computed using the 

neighbourhood features in the vicinity of the detected keypoints, as shown in 

Figure 4.3. The corresponding keypoints of two point clouds would then have 

matching descriptors in proximity. The keypoints are found on both views with 

descriptor distances (Euclidean distance) smaller than a threshold. The 

keypoints that had small distances compared to most keypoints are not 
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considered. For example, two keypoints with few points around them will both 

have descriptors full of zeros but are not necessarily the same keypoint. Also, 

empty descriptor spatial bins were not considered when computing descriptor 

distances, mostly because it should make this step a little more robust to 

occlusion. 

 
Figure 4.3: Computed description based on detected keypoints 

The eigenvalues and eigenvectors derived via decomposition earlier, 

describe the neighbourhood features of the keypoint that were computed using 

the 3D SHOT descriptor (Salti et al., 2014). SHOT is chosen for its robustness 

and performance (Alexandre, 2012; Salti et al., 2014). A Local Reference Frame 

(LRF) is computed for the keypoints at a radius of 4mm. The normal at the 

keypoint was used as Z axis of the LRF, the X axis as the principal curvature 

direction, while the Y axis is the cross product of the Z and X axes. This leaves 

the problem of "inverted" reference frames since curvature directions do not 

truly have a sign. However, the sign of the axis was chosen as the one where 

points are further away from the tangent plane defined by the normal at the 

keypoint. This approach results in 20% of the keypoints with reference frames 

inverted and, on average, 1.5° of error on the Z axis and 7 – 8° on the X and Y 

axes. These increases of views have a very small overlap area with large 

occlusion. For the oil lamp, the local reference frame was computed using points 
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around the keypoint with a maximum distance of 1.2mm. this value was chosen 

based on the distance between the points after downsampling of the point 

clouds. For the sherd, the number of keypoints to be extracted were increased. 

4.4.4 Correspondence Estimation 

Correspondence estimation involves identifying regions of two point clouds 

that correspond to each other. With the descriptors computed from the keypoints 

of the point clouds, they are compared with their Euclidean distance and 

matched to establish point correspondences using nearest neighbour search in 

the feature space of the keypoints. Also, angular vectors between the normal of 

the descriptors are defined and correspondences are clustered into groups. 

Because of the existence of poor or no matches and wrong correspondences, a 

matching criterion is used to reject these correspondences. This is achieved 

through RANSAC-based filtering. The filtering approach usually improves the 

convergence rate of the point cloud during registration. Tables 4.1 and 4.2 show 

the derived values of the correspondence grouping, filtering and overlap of the 

point cloud of the vase with design and oil lamp pottery. 

Table 4.2: Values for the correspondences, filtering and overlap of the 
vase with design scans 

Group After Grouping After Filtering Outliers (%) Overlap (%) 

1 831 737 27 49 

2 783 680 32 49 

3 778 683 28 49 

4 763 636 35 49 

5 738 649 26 49 

6 688 605 48 47 

7 668 589 50 47 

8 585 511 53 45 

9 533 467 58 39 

10 520 433 60 43 



 
 

75 

11 478 416 58 38 

12 435 365 66 35 

13 428 350 67 35 

14 405 347 51 46 

15 389 340 52 46 

16 376 314 72 30 

17 368 314 72 32 

18 333 264 65 44 

 

Table 4.3: Values for the correspondences, filtering and overlap of the oil 
lamp scans 

Group After Grouping After Filtering Outlier (%) Overlap (%) 

1 1477 1344 24.10 75.20 

2 1477 1343 25.64 75.18 

3 1476 1342 24.24 75.21 

4 1476 1303 25.82 75.17 

5 1475 1341 24.26 75.18 

6 1474 1271 24.57 75.22 

7 1473 1337 24.31 75.18 

8 1473 1338 24.43 75.18 

9 1473 1338 24.13 75.21 

10 1473 1336 24.91 75.20 

11 1473 1336 25.51 75.18 

12 1473 1233 24.44 75.15 

13 1472 1274 23.49 75.15 

14 1472 1332 24.49 75.18 

15 1472 1335 24.18 75.14 

16 1472 1339 24.35 75.18 

17 1471 1334 24.27 75.20 

18 1471 1309 24.27 75.19 
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About 1,000 correspondences were established before filtering between 

views with large overlaps for both the vase and the oil lamp. After filtering, the 

correspondences for the vase became 649 while that of the oil lamp became 

1274, with about 150 correspondences being correct. Likewise, about 400 

correspondences are established between views with small overlaps, with about 

6 – 7 correspondences being correct. To attempt to improve this, some geometry 

consistency criteria is imposed by forcing the same distances between 

correspondences to create groups from them. For example, for two point pairs 

(pi, qi) and (pj, qj), distance d = ||pi - pj|| = ||qi - qj|| for the pairs to be valid. By 

creating all the possible groups with about 1,000 correspondences, this step 

becomes slow. Hence, the best correspondences were used to create a 

completely new group and then look for compatible correspondences among the 

others. With this, if there are some correct correspondences, there should be at 

least a couple of them among the best correspondences. Figure 4.4 shows 

correspondences between point clouds of the vase with design and oil lamp 

pottery. 
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Figure 4.4: Correspondences between the vase and oil lamp point clouds 

4.4.5 Global Registration 

With correspondences established, the point clouds are roughly aligned. In 

other words, a global registration that transforms and aligns all point clouds into 

an object was made. Thus, the alignment error between two point clouds are 

minimised by sharing the error among the whole point clouds. The ICP 

algorithm is used to do a fine registration on the pairs of point clouds. Figures 

4.5 and 4.6 show two pairs of point clouds and their pairwise registration. Figure 

4.7 shows a global registration of all point clouds of the vase with design, oil 

lamp pottery and its potsherd. 
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Figure 4.5: Point cloud data of the vase and oil lamp pottery 

 
Figure 4.6: Pairwise registration of the vase and oil lamp point clouds 
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Figure 4.7: Global registration of vase, oil lamp pottery and its potsherd 

4.5 Evaluation and Discussion 

While one solution may not solve all problems, as stated earlier, this work 

intended to bridge a gap that exists specifically with archaeological pottery. As 

was seen from the extraction of keypoints from the vase, lamp and its sherd, 

flexibility played a role. When present parameters did not satisfy the same goal 

for lamp and sherd, the parameter was adjusted so that more keypoints could be 

extracted from the sherd, as much as possible. This section presents an 

evaluation of the results of the registration of the pottery. 

4.5.1 Dataset  

Synthetic datasets were not considered in this study since the study is geared 

towards a specific challenge existing in the archaeological domain. Moreover, 

there has been a lot of studies with synthetic dataset. It thus bodes well to focus 
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on the data type that will suit this study. The datasets used in this study are real 

3D point cloud data obtained from two vases and an excavated pottery. While 

the vase without design underwent preliminary processing, feature points could 

not be extracted from it. The C++ program terminated without an output. On 

the other hand, the vase with external design was used for this study, as well as 

the excavated pottery and its sherd. Figure 4.8 shows a plot of outlier against 

correspondence group with percentage of outliers detected and removed. 

 
Figure 4.8: Plot of Outlier against Correspondence Group showing 

percentage of outliers detected 

From Figure 4.8, it can be seen that a large percentage of outliers were 

detected and eventually removed from the vase, while the oil lamp’s outliers 

have a low percentage detected. This will affect the number of correct 

correspondences that would be computed, with the oil lamp having a better 

chance than the vase based on the graph. Over 50 scans each of the vase with 

design and oil lamp pottery were acquired. About 16 scans of the vase with 

design and 24 scans of the oil lamp were used eventually for the registration 
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experiment. Likewise, about 30 scans of the potsherd were captured while 12 

were used for the registration experiment. The reduction in the quantity used 

was also due to occlusion, noise and inadequate illumination for the pottery 

during acquisition.  

Some of the very problematic acquisitions were not used at all while others 

were used because the errors were due to the angle of acquisition, which can 

only be resolved by getting a better camera lens. Figure 4.9 shows some blurry 

acquisitions and one lacking adequate illumination. These kinds of acquisitions 

make the keypoint extraction and description estimation stages quite 

challenging, which reduces accuracy and robustness. To then improve the 

acquisitions, the position of the lighting was adjusted, the parameters of the 

camera setup were adjusted, and the calibration redone. 

 

Figure 4.9: Poorly illuminated and blurry point clouds 

Given that the captured point clouds range between 385,968 and 1,594,059 

points, which was too large for further work due to computation limitations, it 

was pertinent to downsample the point clouds for further studies and analyses. 

Hence, the point clouds were downsampled to an average of 245,000 points for 

all the point clouds using an iterative spatial method.  
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4.5.2 Registration Accuracy 

Figure 4.10 shows the registration results of the pottery and its sherd. While 

the potsherd used all 12 point cloud scans, the pottery did not use all of its own. 

Although 24 pottery point clouds were applied, 6 were removed due to 

misalignment while 18 were used for registration. Despite that, the coarse 

registration completed accurately so that the fractured areas could be viewed 

and used for further studies. This is important for pottery reassembly purposes. 

A fractured surface that is well registered such that the fine details of the ridges, 

corners and cracks are visible will make it easier to perform an accurate 

reassembly process. Notwithstanding, the accuracy could still be improved with 

higher resolution camera lens and calibration accuracy. Table 4.4 shows the 

computed average values of the reference frame and alignment errors of the vase 

and oil lamp after coarse registration.  

Table 4.4: Average reference frame and alignment errors after coarse 
registration 

Point Cloud X (mm) Y (mm) Z (mm) Alignment (%) 

Vase 0.2110 0.2002 0.0573 18.55 

Oil Lamp 0.1665 0.1578 0.0349 21.83 

 

From Table 4.4, the average reference frame error of the vase is higher than 

that of the oil lamp. This has probably affected the global registration of the 

vase as seen in Figure 4.7. The global registration of the vase could not be 

completed with all the point clouds. The scans of the inner part of the vase could 

not register with the outer part. Hence, only the outer part of the vase was 

registered. Solving this problem will require using a higher resolution camera 

and possibly considering a more complex setup that will capture the inner part 

of the vase with an improved accuracy. In addition, the alignment error of the 

oil lamp is higher than that of the vase. This is because the number of 
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correspondences computed for the oil lamp is almost double that of the vase, as 

seen in Table 4.1. 

 

 
Figure 4.10: Registered point clouds showing the fractured areas 

Furthermore, another factor that contributes to an improved registration 

process is the overlap between point cloud pairs. Figure 4.11 shows a plot of 

overlap against correspondence group showing percentage of overlap between 

point cloud pairs of the vase and the oil lamp. While the oil lamp has a relatively 

high overlap that improves correspondence estimation and registration, the vase 

has a relatively low overlap. This shows that the same parameters that worked 

for the oil lamp might not be enough for the vase. Hence, the system should be 

improved in such a way that will make it flexible for parameter adjustments. 

While this will improve the accuracy, it might increase the system complexity.  
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Figure 4.11: Plot of Overlap against Correspondence Group showing 
percentage of overlap between point cloud pairs 

4.5.3 Performance Comparison with the Oil Lamp 

A laptop running Windows Operating System (OS) with 16GB RAM Core 

i7-6500U @ 2.50GHz and another with Ubuntu Linux 19.10, 8GB RAM Core 

i5 @ 1.90GHz were used for the experiment. In addition, cmake was installed 

to configure and generate the source code on Microsoft Windows. The original 

source code written in C++ used the Microsoft visual studio compiler. On 

Ubuntu Linux, the open source clang compiler was used. 

 For the pairwise registration of Figure 4.6, the registration process of the oil 

lamp completed in 223 seconds on an Ubuntu Linux laptop and 1950 seconds 

on a Windows laptop with an accuracy of 0.08 mean-squared error. The 

registration process of the vase completed in 1470 seconds on a Windows laptop 
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with an accuracy of 0.14 mean-squared error. Compared with the method of Lei 

et al. (2017), which completed in 1,116 seconds with the same pair of point 

clouds (see Figure 4.12), the time complexity is tolerable.  

 

Figure 4.12: Pairwise registration of two point clouds using Lei et al.’s 
method 

In addition, from applying the method of Cirujeda et al. (2015) (see Figure 

4.13), it can be seen that though their method worked for their study, it did not 

attain accurate result with the data used in this study. 

 

Figure 4.13: Pairwise registration of two point clouds using Cirujeda et 
al.’s method 
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Furthermore, the global registration of the whole point cloud took 192 

minutes to complete on Windows. This prompted a need to improve the 

efficiency of the C++ code and make it compatible with both Windows and 

Linux, since it was initially written for Windows alone. The following 

optimisations were made on the code: 

• C++17, optimization flags and extra warning flags were added to the 

cmakelists file. 

• ConfigMap was optimised by removing redundant member functions 

and changing ConfigMap copies to immutable references. All 

ConfigMap repeated copies were removed as well. 

• “Include” guards were added for header files. 

• Windows and Linux compatibility was added. 

• String copies was minimised by using string_views. 

• Vector copies was replaced with const references. 

• Move return semantics (copy elision) for vectors was added. 

• Header file declaration signatures was changed to match equivalent 

definitions. 

• Redundant std::endl output was replaced with std::cout with \n. 

• Eigen vector copies were optimised, as well as other optimisations. 

After making these optimisations to the code, global registration of the point 

clouds was run on Windows and Linux OS. On Windows, global registration 

completed in 168 minutes, and 90 minutes on Linux. This was a marked 

improvement as compared with Windows. Thus, performance across platforms 

have been improved. Although, this will need more testing and validation. 

4.6 Chapter Conclusion  

This chapter discussed the point cloud registration process, the findings and 

evaluation of the study, as well as their implication on archaeological pottery 

reconstructions, especially in relation to existing literature and knowledge. The 
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registration process, which involve data processing, feature detection, feature 

description, correspondence estimation and global registration, was clearly 

discussed. The findings show that the use of real 3D dataset can attain 

impressive results when used with the right tools. High resolution lenses and 

accurate calibration help to give accurate results. The results obtained are useful 

for further studies such as 3D pottery reassembly. In addition, while the 

accuracy attained in the study is generally acceptable, there are rooms for 

improvement still. This will help in managing the local minimum problem to a 

reasonable extent as a result of doing a coarse registration, which improved 

efficiency and robustness. However, the performance of the hardware and 

software shows that the time complexity of this study needs improvement and 

will be an area of focus on subsequent studies. The conclusion of this thesis is 

presented in the following chapter, chapter 5. 
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 CONCLUSION 

The process of virtualising artefacts using point cloud data was presented in 

this chapter. The artefact was acquired as point cloud and pre-processed to have 

a clean cloud. The pre-processing step includes segmentation, normal 

computation, down-sampling and boundary point computation. Thereafter, 

keypoints were detected and extracted from the point clouds, and descriptors 

computed using point and colour information. The approach presented in this 

paper focuses on improving accuracy and optimising the cost function to have 

an optimal result for the pottery’s profile. However, while the final registration 

for the pottery was successful, it was observed that the robustness of the 

descriptor dropped due to occlusion. 

5.1 Introduction 

The aim of this study was to investigate and evaluate a means of 

reconstruction of archaeological pottery considering accuracy and robustness as 

important metrics. The accuracy and robustness of such reconstruction is 

important in the archaeology discipline. The study focused on reconstructing an 

archaeological pottery clearly showing the geometric and radiometric properties 

of the surfaces and fractured faces required for easy further analysis. Thus, this 

study undertook to develop and evaluate an approach towards solving the 

archaeological pottery reconstruction challenge. In carrying out the study, 

coarse registration of point clouds using detected keypoints and estimated 

descriptors was chosen as a notable direction. Coarse registration of point 

clouds demonstrates that using object features to approximate a rough alignment 

of point clouds can be beneficial with archaeological pottery. The registration 

experiment and evaluation showed that adopting coarse registration in the 

overall process of accurate point cloud registration, especially for 

archaeological pottery, is a promising direction. Hence, further work in this 
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research area stands to solidify the gains made in archaeological reconstruction 

and reassembly researches. 

In this final chapter, section 5.2 summarises each chapter by stating the goals 

and the outcomes discussed in each chapter. This is followed by the unique and 

specific contributions made to this research in section 5.3. The areas for future 

work, that could provide the next steps along the path to an improved 

reconstruction and reassembly of archaeological pottery, concluded this chapter 

and thesis in section 5.4. 

5.2 Summary of Chapters 

In general, cultural heritage is an area of study that interests humanists. But 

this area of study should interest every discipline as it has to do with the roots 

of human origin in most cases. The study and understanding of cultural heritage 

have helped in the evolution of the way of life of a people, as people appreciate 

the past and innovate to preserve this legacy. Specifically, and with respect to 

archaeology, the preservation of archaeological artefacts is an important study. 

Because these artefacts tend to undergo both natural and human threats, 

governments around the world have gotten involved with the preservation of the 

artefacts. One of these artefacts is pottery. It attracts the attention of 

archaeologists because it carries significant archaeological value for studies. 

Thus, the recovery of pottery from archaeological sites and its preservation is 

paramount for archaeologists. 

 In recovering archaeological pottery, various methods have been adopted. 

They include manual methods, which is time and effort consuming, and 

technological approaches, which has provided new layers for archaeologists to 

carry out productive work. In addition, various technological approaches have 

been carried out. They include symmetry-, template- and feature-based 

approaches among others. Because symmetry- and template-based approaches 

hardly reconstruct pottery with its surface features, feature-based approach has 



 
 

90 

attracted attention. The feature-based approach has the potential to handle the 

limitations that exist in other approaches. This is because it has the potential to 

reconstruct objects with their surface features with the advantage of accuracy 

and robustness.  

These highlights were presented in details as a background to the research 

problem that was presented in chapter 1, highlighting the limitations and 

challenges that exist in archaeological pottery reconstruction and reassembly. 

This led to the research problem statement, which highlighted the problem, its 

impact, the hypothesis and the gap that the research intends to investigate. The 

hypothesis for this study is that archaeological pottery can be accurately 

reconstructed virtually with existing and new knowledge. Validating will 

therefore require the investigation process. Following, the aim of the research, 

as well as the rationale for the research were presented. The research delineation 

and contributions were also highlighted. Furthermore, the important terms and 

concepts prevalent in this thesis were clarified and explained, leading to the 

elaboration of the layout of this thesis. This introduction in chapter one laid a 

good foundation for the existing literature that was reviewed. 

Chapter 2 covered a detailed review of archaeological pottery reconstruction, 

providing a comprehensive overview of state-of-the-art in acquisition methods, 

acquisition techniques and methods of performing pottery reconstruction. The 

use of state-of-the-art methods to acquire object data is quite accurate but only 

within their context of usage and makeup. While some methods can acquire 

objects at a distance accurately, they fall short in doing same for objects in 

proximity. However, each method provides different and unique benefits in 

their distinct and dynamic scenario. This unique benefit is dependent on the 

acquisition technique(s) used. The acquisition techniques reviewed were 

structured light, time-of-flight and 3D laser scanner. One or more of these 

techniques are applied in data acquisition to have robust data for processing. 

But it is not always the case as the accuracy and robustness of the data is 
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dependent on the quality of the equipment used and the accuracy of the 

calibration done.  

Furthermore, the data reconstruction approaches were discussed based on 2D 

and 3D reconstructions. The techniques and approaches used, as well as the data 

differ significantly in some cases. In addition, the methods of reconstruction as 

classified in this thesis were discussed. They are symmetry-based, template-

based and feature-based reconstructions. Their strengths and limitations were 

presented based on previous work in the areas. While some of the reconstruction 

methods work well in a given scenario, they nonetheless have unique 

challenges. For example, symmetry-based reconstruction can only successfully 

reconstruct symmetric objects and failing if the object is not symmetric. 

 Chapter 3 discussed the data acquisition approach employed in this study to 

acquire the pottery. Since the nature of the problem under investigation 

pertained to technical innovations, the acquisition system is a bedrock of the 

whole reconstruction process. The laser scanner and camera used for the 

acquisition were presented, along with their specifications. The laser scanner 

technique was chosen for this study because of its accuracy and robustness in 

proximity. The setup of the equipment was discussed, highlighting the various 

parts that make the setup. In addition, the four various setups that can be used 

for the line laser and the camera to be mounted for laser scanner acquisitions 

were highlighted. They are the ordinary, reversed-ordinary, specular and look-

away setups. The various setups were explained and the choice of using the 

reversed-ordinary setup was highlighted. Furthermore, to be able to carry out 

experiments, a calibration of the system was necessary, highlighting the various 

steps in the process. This therefore paved the way for acquiring the pottery used 

in this study. Multiple views were acquired, ensuring that there was appropriate 

illumination. 
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Chapter 4 presented the core of this study, which is the registration of the 

pottery acquisitions, by building on what was done in chapter 3. The chapter 

began with a general discussion on point cloud registration and climaxing with 

the coarse and fine methods of performing registration. While these methods 

can be used independently, they can also be used complementarily as applied in 

this study. The registration process began with the pre-processing of the data. 

This involved downsampling, denoising and normal estimation. The normal 

estimation was done using the PCA algorithm. The normalised data was then 

used in the feature detection stage. The feature detection stage involved surface 

curvature estimation, nearest neighbour computation and keypoint extraction. 

The surface curvature estimation was done using the eigenvalues obtained from 

the normal computation. Estimating the surface curvature of the point cloud aids 

the keypoints extraction process. Thus, by analysing the computed nearest 

neighbours around a point of interest, the keypoints were computed.  

The computed keypoints were then used in the feature description stage for 

correspondence determination and matching. This stage involved estimating the 

LRF and computing the descriptor itself. Having computed the descriptor, the 

descriptors were matched using a distance threshold. The descriptors were 

filtered using RANSAC and outliers were removed. This made the 

correspondence grouping more efficient, and thus the correspondences were 

established between the point clouds. Correctly establishing correspondences 

make for an easier transformation of the point clouds, thereby minimising the 

distance errors between them. The transformation of the point clouds is the 

highlight of the coarse or global registration. Fine registration with the ICP 

algorithm was then used to obtain a finer result. 

5.3 Future Work 

A significant body of knowledge dealing with the issues and challenges of 

pottery reconstruction has emerged. These works focused on several issues 
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related to accuracy and robustness of point cloud acquisition and registration. 

Various design complexities, hardware and software level analyses, tests and 

evaluation have been undertaken to consolidate these works. This research has 

provided a groundwork for studying more efficient ways and methods of virtual 

pottery reconstruction. Hence, this section describes the future research 

possibilities that will extend and improve the results of this research.  

In this study, the various approaches necessary for virtual reconstruction of 

archaeological pottery have been presented. Some of the approaches have 

limitations that will be considered for future work. Firstly, the acquisition 

system will be upgraded with a lens with a higher resolution. This is to ensure 

that point clouds are captured without in such a way that the registration process 

will not be restricted in distance minimisation.  In addition, the algorithm will 

be improved and extended to accommodate multi-system usage. Consideration 

will also be given to using it with synthetic data, and more data will be used for 

validation. Finally, a major future work will be to reassemble the potsherd and 

the pottery to form a whole piece.  
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