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Abstract
In aerospace applications 50% of the drag is due to the friction experienced in
the turbulent boundary layer. In a perspective of drag reduction, it is impor-
tant to rely on numerical codes accurate enough to correctly predict friction.
The logarithmic-law, the wall function describing the flow in the near-wall re-
gion, and in particular its governing parameter κ (Von Kármán constant), are
still object of intense debate. If throughout the years a consensus on the value
of κ for pipes has been reached around the value of 0.39, the same for other
canonical flows, the matching of wake discussed by Coles, has not received the
attention it deserves for its high impact on friction prediction. It requires that,
given the evolution of the centerline velocity over a range of Reynolds numbers
described by the logarithmic law U+

CL = 1/κCLln(Reτ )+C, with κCL being its
Von Kármán constant, κ=κCL. The requirement is violated for pipes, where
κCL has consistently remained higher than 0.42, a behaviour not accounted for
in numerical models. This thesis is aimed at shedding light on the anomalies in
the estimation of κCL. Centerline measurements were performed in Long Pipe
at CICLoPE in a Reynolds number range from 8.1× 103 to 3.9× 104, together
with a detailed uncertainty analysis. Guaranteeing the highest accuracy exper-
imentally available, the Long Pipe is perfectly suited to assess if the observed
differences between κ and κCL are due to experimental uncertainties, as be-
lieved so far, or rooted in physics. As matter of facts, the controversies around
the correct value of κCL might be due to an incomplete knowledge of the phys-
ical phenomena occurring inside the boundary layer. Despite being quintessen-
tially chaotic, it hides a hierarchy of different-size eddies whose interaction are
still not clear but challenges the classical view. Single-wire measurements were
performed at 5 Reynolds numbers in the range from 9.9×103 to 3.9×104, cov-
ering wall-normal distances from beneath the variance inner-peak (y+ ≈ 10) up
to y/R ≈ 0.93. First, the inner-scaled variance is analysed. After confirming
the Reynolds dependence, not contemplated in the classical turbulence theory,
the contributions to the broadband turbulence intensity for the different scales
is quantified. Using a spectral cut-off filter, the large scales showed a growing
streamwise variance with increasing Reynolds numbers, while the small scales
exhibited the universality stated by the classical theory. 2-point measurements,
fixing a single-wire probe at the edge of the log-region at y/R ≈ 0.2 and mak-
ing another one covering the distance from the wall, allowed to investigate the
nature of the turbulent eddies. The wall-attached and self-similar behaviour
postulated by the Townsend’s attached eddy hypothesis is observed for the
coherent structures, characterised by an aspect ratio of ≈ 20.



Key-words: Wall turbulence, pipe flow, high Reynolds number, hot-wire,
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CHAPTER 1

Introduction

1.1. Background

In the classic text ”An introduction to turbulence and its measurements”, Pe-
ter Bradshaw defined turbulence as ”the most common, the most important
and the most complicated kind of fluid motion” (Bradshaw 1971). Everyone
is in fact familiar with the wake behind a boat, the smoke coming out of a
chiminey or the clouds passing in the sky on a windy day. Everyone has at
least once took the plane, driven a car or sat on a train: their fuel consumption
is directly influence by turbulence itself. Turbulence is ubiquitous in numerous
industrial applications, such as nozzles, pipelines, heat exchangers, combustion
engines and turbo machinery, but not only. Turbulence characterises also many
natural mechanisms, such as the dynamics of the atmosphere (think about the
distribution of air pollution, linked to turbulent diffusion), of the oceans or
astrophysical phenomena, like planetary interiors for example.

The first systematic study on the onset of turbulence dates back to 1883,
when Obsorne Reynolds performed the first observations. With his pioneering
experiment, he observed the transition to turbulence of water flowing inside a
glass pipe, using black ink as tracer. He discovered that the process of transi-
tion is governed by a specific dimensionless parameter, later named Reynolds
number and defined as:

Re =
UL

ν
(1.1)

where U is the flow velocity, L the characteristic length and ν the kinematic
viscosity of the flow considered. As the Reynolds number increases past a
critical value (critical Reynolds number), the flow becomes more and more
turbulent.

Despite being object of noticeable research effort for more than a cen-
tury, its wide application and its everyday-life importance, many questions
regarding turbulence are left unaswered and the theory behind it is still not
so trivial. First, it still lacks a clear-cut definition: it appears as an irregular
three-dimensional system of eddies of different sizes continuosly growing and in-
teracting with each other. In particular, high Reynolds numbers wall-bounded
turbulence is characterised by an incredibly wide variety of scales, ranging from

1



2 1. INTRODUCTION

the big eddies, whose size is fixed with the external geometry and are domi-
nated by inertial forces, to the smallest eddies, dominated by viscosity instead.
Differently from the largest scales, the smallest ones, called Kolmogorov scales
from the scientist who first theorised them in 1941, have a size that is not fixed
with geometry. As matter of facts, the variety of turbulent scales and dimen-
sions vary with the Reynolds number: as it increases, the dissipation scales
become smaller and smaller compared to the large ones. This phenomenon,
characteristic of the high Reynolds number regimes, is called scale separation.
The interaction between the scales is particularly crucial for turbulence to be
sustained, according to the classical turbulence theory: energy must be fed to
the largest scales from the mean flow, and transferred to the smaller eddies in
a machanism called energy cascade. This process continues until the viscous
effects dominate over the inertia: the smaller eddies reach their minimum size
and turbulent kinetic energy starts to dissipate into heat.

Additional difficulties are due to the dynamics of turbulence, so rich and
complex that a detailed understanding of turbulent flows and a prediction of
their behaviour is nowadays only possible for extremely simplified cases, often
obtained with unrealistic assumptions. This is a consequence of the so-called
closure problem of turbulence. The behaviours of all fluid flows are, as matter
of facts, embodied by the Navier-Stokes equations, a set of non-linear par-
tial differential equations very difficult to solve with only few exact solutions
for simplified cases, as previously mentioned. As the governing equations are
averaged with the traditional approach of the Reynolds averaging, the nonlin-
ear terms give rise to new terms aside the mean velocity component and the
mean pressure. This leads to an unbalanced system (with more unknowns than
equations), since for every equation derived for each additional unkown, more
variables appear. In other words, a complete statistical description of turbu-
lence requires an infinite numbers of equations. Only numerically, with the
Direct Numerical Simulations (DNS), the Navier-Stokes equations can be fully
solved without invoking any sort of simplification. Unfortunately, available
technology is still not powerful enough to solve cases that can be interesting
from the engineering point of view, namely complex geometries and high Rey-
nolds numbers regimes (think of the air flowing past the wing of an airplane).
High Reynolds number turbulent regimes are not interesting only for industrial
applications, but also theoretically since most of widely accepted results on
turbulence are valid in the infinite Reynolds number limits. Therefore, gain-
ing a deeper insight on the physics underpinning the high Reynolds numbers
flows, has a two-fold advantage. First, it will lead to general conclusions about
the behaviour of turbulent flows, their nature and dynamics. Secondly, it will
benefit the development of more accurate models and predictions, favouring a
great variety of applications, for instance, friction control.
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Friction becomes particularly interesting when the flow interacts with one
or more surfaces. In the case of wall-bounded turbulent flows, in fact, tur-
bulence is produced in a thin layer attached to the wall, whose existence was
first suggested by Prandtl in 1904: the boundary layer. In this region, where
viscous effects are dominant, the fluid’s velocity will quickly decrease to zero as
the wall is approached. Despite being very thin, the importance of the bound-
ary layer is unequivocal, since it is where the friction between the wall and the
fluid starts to develop. Friction is not only the main responsible for energy
consumption in the vast majority of everyday cases, but also the driving mech-
anism of wall-bounded turbulence, making it a key parameter for the scaling
of this type of flows. Therefore, it is clear how a deep understanding of the
phenomena occurring inside the boundary layer have great consequences on
key topics, like drag reduction. As matter of facts, in aerospace applications,
where the Reynolds numbers are high and the boundary layer developing on
the surface is turbulent, the theme of drag reduction is particularly relevant.
For instance, at subsonic cruising speed, around 50% of the total drag expe-
rienced by an aircraft during landing or take-off, is due to friction, and this
figure can go up to 70% when considering cruise. This figure makes friction the
main responsible not only of fuel consumption, but consequently for the total
emissions dispersed in the atmosphere. In terms of topical interests, saving
1% in friction may save a typical long-range aircraft 4000000 litres of fuel per
year. This will benefit not only the financial side, but also the environmental
one, with 5000 kg less of emissions produced. In a context where we are asked
to reduce by 40% the CO2 emissions by 2030, it is of foremost importance to
delve into the physical root of friction. On one hand, this will boost the devel-
opment of devices and technologies aimed at friction control. On the other, it
will improve the accuracy of the models used for friction prediction.

Nowadays friction is predicted using numerical codes. Although the unde-
niable advantage of DNSs to solve up to the finest spatial and temporal scales
without making any simplifying assumption, the grid points needed as the
Reynods number increases, make them incredibly time-consuming and cost-
effective. Therefore, nowadays it is preferred to use numerical approaches such
as the Reynolds-averaged Navier-Stokes (RANS) and Large-Eddies simulations
(LES) based on wall-functions to approximate the behaviour of the flow in the
near-wall region. The wall-functions are governed by parameters whose values
are set by classical theory. In the particular case of wall-bounded turbulent
flow, the most widely accepted equation governing the mean-flow behaviour in
the near-wall region, has a logarithmic form and its characterising parameter
is κ, the Von Kármán constant, typically set at 0.40 by classical turbulence
theory, regardless of the flow considered.

As the measuring techniques and the computational power has evolved, it
seems that the consensus on the universal nature of κ has been lost. It has been
suggested (Nagib and Chauhan 2008) that κ has different values for different
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geometries and pressure gradients. The exact value of κ will greatly affect the
power of friction prediction in wall-bounded flows. As matter of fact, the value
of this parameter is delicate to the extent that a variation of 6% in κ would lead
to errors up to 2% in the prediction of skin friction coefficient (Smits, McKeon,
and Marusic 2011).

The accuracy to determine the constants of the log-law depends on two
factors. First, a higher Reynolds number allows a larger extent of the logarith-
mic region, simplifying the estimation of the parameter. Second, it depends on
how accurately we can measure the friction velocity uτ , a key parameter for
the scaling of the variables in the log-law. In the case of boundary layer, the
procedure to measure the friction velocity involves indirect methods, such as
oil-film interferometry, at the expenses of the accuracy of the results. On the
other hand, in pipe and channel flows the wall friction can be estimated just by
acquiring the static-pressure drop, guaranteeing a greater precision. Therefore,
highly accurate measurements in the high Reynolds numbers regime are key
to assess if the observed differences are due to uncertainties or are rooted in
physics. Clarifying the anomalies encountered in the estimation of κ can not
disregard a thorough description of the phenomena occurring inside the turbu-
lent boundary layer. This is not a trivial task, since the physics underpinning
the turbulent boundary layer is complex.

Despite being quintessentially chaotic, it hides a hierarchy of structures
whose dynamics is still not completely clear. These structures typically de-
velop in the streamwise direction for distances of the order of magnitude of the
boundary layer thickness (large-scale motions or LSM) or 10 times that (very-
large-scale motions or VLSM) and are seen to be one of the major contributors
to friction production (Ganapathisubramani et al. 2005). To add complexities
to an already rich dynamics, the LSMs interact with the small-scale struc-
tures inhabiting the near-wall region, superimposing their energy (Marusic and
Kunkel 2003), challenging again the classical turbulence theory that does not
take this interaction into account. Hence, characterising the dynamics and the
nature of the LSMs and VLSMs is key to deepen the knowledge about the
phenomena in the boundary layer, especially those ones connected to friction
production, and therefore useful to shape new control technologies.

For these reasons, the Long Pipe at the CICLoPE (Centre for International
Cooperation for the Long Pipe Experiment) laboratory is particularly suited for
investigating these kind of problems, where high resolution and high Reynolds
numbers need to coexist. As extensively reported in Talamelli et al. 2009, the
fundamental idea behind the construction of this facility is to achieve high
Reynolds by an increase of L (in eq.(1.1)) instead of the flow speed U or the
density, as opted in other facilities. The creation of a large-scale facility, with
a 111.5 m long test section and 0.9 m diameter, allowed to explore the high
Reynolds numbers regime while fully resolving all turbulent scales by using
standard tool of measurements, such as hot-wires, limiting the spatial resolution
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issues, which is a common problem encountered when measuring at high Re.
Given a fixed size experiment, the large scales will keep their size, fixed by
the external geometry, while the small scales will grow smaller as the Reynolds
number increases. Eventually, they will become smaller than the sensing length
of the instrument, causing an artificial attenuation of the small-scale turbulent
fluctuations. Given the size of the facility, finding a convenient location was
challenging. The two tunnels of the ex-Caproni industry in Predappio, were
found to be a very suitable installation.

1.2. Present work: objective and outline of the thesis

A more detailed delineation of the objectives of this thesis can be now out-
lined. In order to investigate the high Reynolds numbers regimes of topical
interest for a wide range of applications, the experimental approach is the only
option available. The intrinsic challenges, specifically guaranteeing a good spa-
tial resolution for the whole range of Re investigated, are overcome by the
unique characteristics of the Long Pipe that allow the use of standard hot-wire
anemometry. The general aim of this investigation is to highlight some of the
physical phenomena occurring in a fully developed turbulent pipe flows, in par-
ticular those that are related to friction prediction. Deepening the knowledge
on such phenomena, characterised by a complex dynamics, is especially useful
when developing friction control technologies. In particular the objective of the
thesis can be classified as follows:

• Estimate of the von Karman constant at the centerline. A key
input of the CFD models to predict friction for wall-bounded turbulent
flows is the von Kármán constant, κ and the logarithmic-law it gov-
erns. The von Kármán parameter is set as constant (typically around
0.40) and universal by classical turbulence theory. Moreover, the as-
ymptotic matching of the wake, in other words extending the log-law to
the centerline of the pipe governed by κCL, requires κCL = κ. This is in
contrast with experimental evidence, and therefore high-resolution data
are needed to understand if this difference is rooted in physics or just
due to experimental uncertainty, given the high impact it has on friction
prediction. The main objective is to accurately estimate κCL for a fully
developed turbulent pipe flow, to verify its statistical difference from κ.

• Investigate the interaction between small- and large scales. Re-
cent numerical and experimental work show a failure of the classical scal-
ing of streamwise turbulence intensity, highlighting a Reynolds number
dependece that suggests an interaction between the turbulent scales. In
this work we want to show that the growth of the near-wall turbulence
intensity, with increasing Reynolds number, is in fact due to an increas-
ing energy of the large scales, while the small-scale structures still follow
the classical scaling. Moreover, if the behaviour of the large-scale struc-
tures in the outer region can be somehow related to their behaviour near
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the wall, quantities in this region could be estimated by measuring in
much more accessible locations (like the outer region). The challenge
here is to provide high resolution data, since small-scale fluctuations in
the near-wall region can be source of spatial resolution issues.

• Assessment of turbulent pipe flow coherent structures. Starting
from Townsend’s attached eddy hypothesis, the self-similar and wall-
attached nature of the turbulent structures coherent with the near-wall
region is investigated through a spectral analysis. The method is applied
to a set of data resulting from simultaneous acquisition from two single-
wire hot-wire probes; one is fixed at the edge of the log-region while the
other is spanning the distance from the wall.

The thesis is outlined as follows: after a brief overview on the theoretical
background and state of the art, presented in Chapter 1, the mathematical
tools and fundamental equations for the fully developed turbulent pipe flows
are given in Chapter 2. Chapter 3 is instead focused on the characteristics of
the CICLoPE laboratory and a detailed description of the experimental set-up
and instruments used during the experimental campaigns. Chapter 4 presents
the results on the centerline measurements to estimate κCL. In Chapter 5 the
interaction between the scales is investigated, while their coherence in Chapter
6. In Chapter 7 the main conclusions of the thesis are summarised.



CHAPTER 2

Theoretical background

The following chapter consists in of an explanation of the mathemicatical defi-
nitions and statistical tools used throughtout the thesis. A brief overview of the
classical theory for wall-bounded turbulence will follow, along with a descrip-
tion of the basic physics principles underpinning the measurements techinques.
In conclusion, the main objectives of the thesis will be outlined.

2.1. Statistical principles

Although a full characterisation of wall-bounded turbulent flows is still impos-
sible, historically, the statistical approach has been taken to investigate this
type of flow. Its complex dynamics, as matter of facts, can be accurately de-
scribed as a purely random process. The statistical tools used to characterise
the turbulent flow are provided in this section.

2.1.1. Velocity averaging

A turbulent flow is often described as a random and fluctuating flow state.
Therefore, the instantanous velocity Ui(x, t) is usually separated into its mean
and fluctuating part:

Ui(x, t) =< Ui > (x, t) + ui(x, t) (2.1)

Referred to as the Reynolds decomposition. Here, Ui(x, t) is the i-th
component of the instantenous velocity U(x, t), function of time and position
x = (x, y, z), ui(x, t) is its fluctuating part and < Ui > (x, t) its mean. In tur-
bulent flows simulations and experiments multiple kinds of averaging are used
to compute the mean value of a quantity. For flow conditions that can be repli-
cated N times, the correct way to retrieve the mean would be by performing
an ensemble average, i.e. the set of samples is obtained from performing the
same exact experiment for N times. This means that if we want to completely
characterise the velocity in one point in space, x at time t, we should repeat
several experiments with the same boundary and initial conditions, and each
time we should measure at the same desired location x at the same instant t
from the star of the experiment. In this way, the velocity ensemble average at
position x and time t is computed as:

1
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< Ui > (x, t) ≡
∑N
j=1 Ui,j(x, t)

N
(2.2)

Where Ui,j(x, t) is the i-th component of the instantenous velocity mea-
sured at the j-th realisation, at the same time and position, N the total number
of experiment realisations. However, in practice the time series at the desired
location is measuring during one single experiment, with the assumption that
the flow is statistically stationary. This means that the statistics of the vari-
able are constant in time, and that the ensemble average is equal to the time
average, i.e. averaging over the number of realisations leads to the same result
as averaging over time. Therefore, for a statistically stationary turbulent flow,
the mean part of the velocity component Ui(x, t) is defined as the temporal
mean and identified here with an overbar, Ui(x):

Ui(x) =< Ui > (x) =
1

T

∫ T

0

Ui(x, t)dt (2.3)

Where T is the sampling time. The statistics shown throught the thesis
will be based on time averages.

2.1.2. Probability density function

In the case of laminar flow, to compute the velocity component U at a certain
time and space, it is possible to completely rely on theory, i.e. the Navier-
Stokes equations, knowing that the result will agree to what is obtained ex-
perimentally. For turbulent flows, theory can only estimate that value with
a certain degree of accuracy, given the unpredictable nature of the flow itself.
Therefore we aim at determining the probability of an event to occur, such as
A ≡ {U < 10} m/s.

The probability p of an event A is, for example:

p = P (A) = P{U < Va} (2.4)

where, intuitively, p is a real number included in the range [0;1] that repre-
sents the likelihood for the event A to occur (in the case above of the random
velocity variable U to assume values lower than Va). For an impossible event
p = 0, whilst p is set to unity for a sure event.

The probability of any event can be inferred from the cumulative distri-
bution function (CDF). The CDF of a random variable U(t) represents the
probability for U(t) to take on a value lower or equal to V :

F (V ) = P (U(t) < V ) (2.5)

From the definition, for every U(t), every cumulative distribution function
has the following properties: F (−∞) = 0, F (+∞) = 1. Since the probability
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of any event is non-negative, the probability the random variable has to take
on a value between Va and Vb, with Va < Vb, is expressed as:

P (Va < U(t) < Vb) = F (Vb)− F (Va) ≥ 0. (2.6)

Now, the probability density function (PDF) can be defined as:

f(U) =
dF (U)

dU
(2.7)

and from the properties of the CDF it follows that the PDF is non-negative:

f(U) ≥ 0 (2.8)

and it satifies the normalisation condition:∫ +∞

−∞
f(U)dU = 1. (2.9)

The PDF fully characterise the random variable U(t), meaning that if the
PDF (or equally the CDF) of a random variable is known, then also the n− th
order moment is.

2.1.3. Statistical moments

The first-order moment f a random variable U is the mean, defined as:

< U >=

∫ +∞

−∞
Uf(U)dU (2.10)

It represents the probability-weighthed average of all the possible values
that U can take on.

Once the mean is defined, it is possible to introduce the fluctuation in U:

u = U− < U > (2.11)

Since the mean of the fluctuations is always zero, higher oder moments are
introduced to further describe the flow from the statistical point of view. The
second-order moment is the variance, defined as the mean-square fluctuation:

var(U) =< u2 >=

∫ +∞

−∞
u2f(U)dU (2.12)

The square-root of the variance is the standard deviation, or root-mean
square of U:

σu =
√
< u2 > (2.13)
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It quantifies the intensity of the typical fluctuations. Likewise, the n− th
central statistical moment can be defined as:

< un >=

∫ +∞

−∞
unf(U)dU (2.14)

The first and second moments have obvious importance for the charac-
terisation of the flow state, but also the third and fourth moments are often
considered. They are usually normalised with the appropriate power of the
standard deviation:

Su =
< u3 >

σ3
u

(2.15)

Fu =
< u4 >

σ4
u

(2.16)

Called skewness and flatness or kurtosis respectively. The skewness and
flatness describe particular characteristics of the PDF. The skewness is an in-
dicator of the symmetry of the PDF: a zero skewness describes a symmetric
distribution like the Gaussian, while it becomes positive if the PDF is shifted
towards values that are larger than the mean, and lower than the mean if neg-
ative. The flatness, as the name suggests, is a measure of how peaked or flat
the PDF is. For reference, a Gaussian distribution has Fu = 3.

2.1.4. Correlations

In the first section of this chapter it was enphasised that the PDF fully char-
acterise a random variable. At each instant in time, the random variable U(t)
is characterised by its PDF as:

f(U) =
dF (U)

dU
(2.17)

However, this quantity does not contain any information about the statis-
tical relations of U(t) at two different points in the flow; indeed two random
processes with the same one-time PDF can be have a radically different be-
haviour statistically. For this reason, multi- time and space statistics are used
to characterise the process. The correlation between the process in a given
point in space x at two different instants, t and t + τ is the autocovariance.
Hence, the autocovariance indicates how quickly the process forgets its past
behaviour at that particular point

R(x, τ) =< u(x, t)u(x, t+ τ) > (2.18)

Where τ is the lag time. In the case of a statistically stationary process, all
the statistics are independent of time, therefore the only important parameter
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when determining the autocovariance is the time-lag τ . When the time lag is
0, the variance is retrieved. The autocovariance is usually normalised with the
variance, obtaining the correlation function:

ρ(x, τ) ≡ < u(x, t)u(x, t+ τ) >

< u(x, t)2 >
(2.19)

it represents the correlation coefficient between the process in the point x
at the two instants t and t+τ . If the correlation is equal to 0, it means that the
fluctuations at t and t+τ are no longer correlated. Consequently, the following
properties are valid:

ρ(0) = 1 (2.20)

|ρ(τ)| ≤ 1 (2.21)

For the processes characterising turbulent flows, as the lag-time increases,
the correlation is expected to decrease. This trend is quickly enough for the
integral:

Λt ≡
∫ +∞

0

ρ(τ)dτ (2.22)

to converge, defining Λt as the integral time scale.

If instead we consider multi-space and single-time statistics, such as fluctu-
ations from different points in space but measured at the same instant in time,
the same considerations done so far can be applied using space as the parame-
ter. It is particularly useful when investigating turbulent structures developing
in space. Hence, the statistical properties become:

Ru(x, r) ≡< u(x, t)u(x + r, t) > (2.23)

ρ(x, r) ≡ < u(x, t)u(x + r, t) >

< u(x, t)2 >
(2.24)

Λl ≡
∫ +∞

0

ρu(r)dr (2.25)

As the covariance, the spatial correlation function and the integral length
scale respectively. Here, r is the vector indicating the distance between the
two points in space where fluctuations are considered. If r is parallel to the
velocity fluctuation i-th component ui, then the autocorrelation is said to be
longitudinal. On the other hand, if r is perpendicular, it is perpendicular. In
the case of statistically homogeneous process, the autocorrelation is put more
simply as:
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ρu(r) =
< u(x, t)u(x + r, t) >

< u2 >
(2.26)

because both the covariance and the spatial correlation function are inde-
pendent of space.

2.1.5. Taylor’s hypothesis

The results presented later in this thesis are obtained in the majority of cases
by using a hot-wire anemometer. The underlying assumption when deducing
quantities from the data acquired with this tool is the Taylor’s hypothesis, also
known as the frozen turbulence approximation. Taylor’s suggestion was that
the behaviours of a specific fluid-mechanic quantity Q in space and time along
the mean direction of motion, are simply related by a convection velocity UC ,
aligned with the mean velocity along an x direction:

∂Q

∂t
≈ −UC

∂Q

∂x
(2.27)

it tells us that the diffusion and the transport of the quantity Q along the
perpendicular direction to the mean flow are neglected. Generally, the local
mean velocity is used as convection velocity, meaning that the flow structures,
of any scale, behave like they are ’frozen’ and are only convected by the mean
local velocity. It may appear as a coarse approximation of real-life cases, but
its validity in most cases its confirmed by experimental studies. On the other
hand, to allow for a better approximation the key parameter to act on is the
convection velocity. For instance, it is mostly accepted to use the local mean
velocity for the advection of the large-scale structures, but a different approach
should be taken when investigating the smaller scales inhabiting the near-wall
region. In wall-bounded turbulence, as suggested by Romano 1995 Del Álamo
and Jiménez 2009, the convection velocity should be far lower than the local
mean, and usually highly dependent on the Reynolds number.

2.1.6. Spectral analysis

When analysing random processes, not all the information can be inferred from
the PDF. It is for this reason that in the previous section the correlation func-
tion is introduced, which proved to provide additional details on the relation
established between the signal at different points in time or space. Adding a
spectral analysis allows a description of how the energy of the turbulent fluc-
tuations is distributed among the different frequencies, and with the Taylor’s
hypothesis, among the scales too. This information is inferred from the power
spectral density (PSD), cby using the Fourier transform FT , transforming a
mathematical function of time f(t) into another function of angular frequency
F(ω)
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F =
1

2π

∫ +∞

−∞
e−iωτf(τ)dτ (2.28)

The PSD represents the distribution of the power of the fluctuations among
different frequencies:

S(ω) = lim
T→∞

< FT (ω) > (2.29)

Where FT (ω) is the truncated Fourier transform of the velocity fluctuation
f(t), where the integration is performed over a finite interval T:

FT (ω) =
1√
T

∫ +∞

0

f(t)e−iωtdt (2.30)

The choice of using the truncated fourier transform is due to the continuous
nature of the signals of interests. For a typical experimental signal the power
P of a signal u(t) is defined as:

P = lim
T→∞

1

T

∫ +∞

0

|u(t)|2dt (2.31)

with the Fourier transform not existing in numerous cases because of the
infinite time domain over which the signal is integrated. The problem is solved
by limiting the Fourier transform to a finite domain, as in the truncated Fourier
transform.

For the Wiener-Khinchin theorem, for a statistically stationary process,
the PSD is the Fourier transform of the corresponding autocovariance function
R(τ):

S(ω) =
1

2π

∫ +∞

−∞
e−iωτR(τ)dτ (2.32)

and it follows that:

R(τ) =

∫ +∞

−∞
eiωτS(ω)dω (2.33)

Since both the fluctuations u(t) and the autocovariance function R(τ) are
real-valued functions, their Fourier transform (the PSD) is an even function,
i.e. S(ω)=S(−ω). Because only positive frequencies will be considered in this
work, only the one-sided PSD P (ω) is used:

P (ω) =

{
2S(ω) ω ≥ 0

0 otherwise
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Figure 2.1: Power spectral density as function of frequency for Reτ = 9.9×103

at y+ = 60. Data from current measurements.

In most cases, the angular frequency is substituted with the frequency
f = ω/2π. An example of the power spectral density in double logarithmic
scaling is shown in Fig.2.1.

It is interesting to notice that for τ=0, eq.(2.1.6) becomes:

R(0) = u2 =

∫ +∞

−∞
S(ω)dω (2.34)

S(ω) can be seen as the variance, or equivalently the turbulent energy, of
the band dω and centered in ω.

Experimentally, the random signal u(t) considered for the estimation of
the power spectral density is usually a time series of finite length. Therefore,
a reliable method to estimate spectral density from a finite sequence of time
samples is required. The most intuitive way to proceed would be to apply
periodogram method, where a discrete Fourier transform (DFT) is applied
to the whole data set. However, this method has two main disadvantages:
the spectral leakage and the unacceptable noisy result. The spectral leakage
consists in the spectral bias due to the ”windowing” of the time series, causing
an abrupt truncation of the data. A finite time series can be interpreted as an
infinite signal seen through a rectangular window of the size of the sampling
time. In practice, the signal is multiplied by a rectangular window function,
whose shape causes discontinuities at the beginning and end of samples. This
effect can be attenuated by tapering the time-history using a window function
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that allows a more gradual truncation of the data set, such as the Hann or
Hamming window. On the other hand, because of the shape of the window, a
loss factor is introduced due to the artificial dampening of the data, affecting
especially those located at the beginning and end of the window.

Then, in order to make the spectral density converge with sampling time,
the Welch’s method can be applied. It consists of dividing the sampled data
u(t), consisting in n points, in N segments of length L, with a 50% overlap
between each other. To each segment, a window function w(t) (Hann or Ham-
ming) is applied in the time domain, u(t)w(t). The DFT is now separately
computed for each u(t)w(t) of every segment N, taking the square magnitude
to obtain N spectral estimates. The final result is achieved by averaging the
power spectral densities obtained for every segment. The key features of this
method are the averaging and the overlapping. The first allows to obtain a
smoother PSD, by computing the single DFT for each segment. The second
limits the loss of information related to the windowing. The spectral analysis
performed on the current measurements is based on the Welch’s method. In
some cases, instead of the frequency, the wavenumber k or the wavelength λ
will be used:

k =
2πf

U
(2.35)

λ =
2π

k
(2.36)

where U is the local mean velocity. These conversions are based on the Taylor’s
hypothesis, which will be briefly reviewed in the next section. This hypothesis,
known as the frozen turbulence is based on the assumption that the turbulent
structures are only convected by the mean local velocity. To analyse the hot-
wire data later presented, the wavenumber spectrum Φuu(k) was used in the
form:

Φuu(k) =
P (f)U

2π
(2.37)

Obtained imposing the following

u2 =

∫ +∞

0

Φuu(k)dk (2.38)

Yielding the normalised form of eq.(2.37)).

The spectra analysis can be extended to yield information about the scale-
to-scale (linear) correlation between scales at two different positions (y1 and
y2). Considering two velocity fluctuations signals, at two wall-normal locations
u(y1) and u(y2), the linear correlation can be inferred by computing the linear
coherence spectrum (LCS), which is defined as:
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Figure 2.2: Pre-multiplied form of the power spectral density as function of
frequency, for Reτ = 9.9× 103 at y+ = 60. Data from current measurements.

γ2
L =

∣∣∣〈Ũ(y;λx)Ũ∗(yref ;λx)
〉∣∣∣2∣∣∣〈Ũ(y;λx)

〉∣∣∣2 ∣∣∣〈Ũ(yref ;λx)
〉∣∣∣2 =

∣∣∣Φ′

uu(y, yref ;λx)
∣∣∣

Φuu(y;λx)Φuu(yref ;λx)
. (2.39)

(as in Baars, Hutchins, and Marusic 2016) where U(y1;λx) = F [u(y)] is the
Fourier transform of the signal at the y-location (u(y)), the asterisk denotes the
complex conjugate, the 〈〉 indicates the ensemble averaging, and || the modulus.

Φ
′

uu(y1, y2;λx) is the cross-spectrum and Φuu(y1, λx) is the energy spectra of
u(y1) (similarly for y2), with λx being the streamwise wavelength.

From the definition, since it incorporates only the magnitude of the cross-
spectrum, the value of γ2

L represents the maximum correlation for a given scale.
In other words, it can be equivalently interpreted as the common variance
shared by u(y1) and u(y2).

If information about the phase shift between the correlated scales are re-
quired, a linear stochastic estimate (LSE) of the turbulence can be used (Adrian
1979). The LSE evaluates a conditional output from an unconditional input,
by computing the stochastic transfer kernel HL. In spectral space, HL is a
complex-valued parameter indicating how the output is stochastically coupled
with the input, at each scale. Taking u(y1) as input, and u(y2) as output, the
kernel is defined as:
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HL(y1, y2;λx) =
〈U(y1;λx)U∗(y2;λx)〉
| 〈U(y1;λx)〉 |2

= |HL|ejφ (2.40)

Here, the gain squared of the kernel of eq.(2.40)) (|HL(y1, y2;λx)|2) is re-
lated to the LCS of eq.(2.39) via:

|HL(y1, y2;λx)|2 =
γ2
L(y1, y2;λx)

〈
|U(y2;λx)|2

〉
〈|U(y1;λx)|2〉

(2.41)

where φ is the phase, embedding the stochastic phase shift for the coherent
scales.

2.2. Pipe flow

Since the pioneering work of Reynolds in 1883, the pipe flow has demonstrated
to be crucial for understanding many aspects of wall-bounded turbulence. For
instance, its geometry allows an easy computation of the pressure drop, and
therefore to accurately estimate key friction quantities for the mean flow. The
main purpose of this section is to discuss the fundamental equations to describe
the phenomena in a mathematical way. The starting point are the Navier-
Stokes equations for an incompressible fluid, in Eulerian and neglecting the
body forces:

∇ ·U = 0 (2.42)

∂U

∂t
+ (U · ∇)U = −1

ρ
∇p+ ν∇2U (2.43)

Being the continuity (mass conservation) equation and the momentum bal-
ance respectively. U=(U,V,W) is the velocity vector (and U,V,W are the com-
ponent in the streamwise, wall-normal and spanwise direction respectively), ρ
is the density and for incompressible flows it is considered constant, p is the
pressure and ν = µ/ρ is the kinematic viscosity. We now implement the Rey-
nolds decomposition introduced in the first section of this chapter, exploting
the fact that we are dealing with a turbulent flow and therefore the velocity
U(x, t) is a random variable:

U(x, t) = U(x, t) + u(x, t) (2.44)

Where U(x, t) is the mean velocity, computed as in 2.1.1 and u(x, t) indi-
cates the velocity fluctuations. For all components, after the Reynolds decom-
position, the mean velocity vector is (U, V ,W ) and (u, v, w) is the fluctuating
part. The Reynolds decomposition can be extended to the Navier-Stokes equa-
tions to obtain the RANS - Reynolds averaged Navier Stokes equations. Given
the geometry of the pipe, it is convenient to change the system of coordinates
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from Cartesian (x,y,z) to cylindrical (x, r, θ). In this case, x indicates the axial
streamwise direction, r is the radial coordinate originating at the centerline
and perpendicular to the wall of the pipe and θ the angular coordinate. As a
turbulent pipe flow is statistically axial-symmetric:

W = uw = vw =
∂

∂θ
= 0 (2.45)

the set of equations 2.42 and 2.43 in the axial and radial directions become:

∂U

∂x
+

1

r

∂

∂r
(rV ) = 0 (2.46)

∂U

∂t
+ U

∂U

∂x
+ V

∂U

∂r
= −1

ρ

p

∂x
− ∂

∂x
u2 − 1

r

∂

∂r
(ruv) + ν∇2U (2.47)

∂V

∂t
+U

∂V

∂x
+V

∂V

∂r
= −1

ρ

∂p

∂r
− ∂

∂x
uv− 1

r

∂

∂r
(rv2)+

w2

r
+ν(∇2V − V

r2
) (2.48)

We now focus on statistically stationary flows, for which it holds:

∂

∂t
= 0 (2.49)

and if we concentrate on the fully developed region, where the flow is
statistically independent on the axial position:

∂U

∂x
=
∂u2

∂x
=
∂v2

∂x
= 0 (2.50)

As for the boudary conditions, the no-slip and axial-symmetry leads to
V |r=R = V |r=0. Plugging it in eq.(2.46), the following condition is retrieved:

V = 0 (2.51)

namely that the mean radial velocity should be zero everywhere. By ap-
plying the boundary conditions to the r-component of the momentum balance
equation, 2.48 becomes:

1

ρ

∂p

∂r
+
∂v2

∂r
=
w2

r
− v2

r
(2.52)

Integrating the equation above between a radial coordinate r and the pipe
radius R, taking the x derivative and remembering the hypothesis of fully de-
veloped flow 2.50:

∂p

∂x
=
∂pw
∂x

(2.53)
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since pw is the mean pressure at the wall, the relation above states that
the pressure gradient along the axial direction is uniform along the pipe radius.
Now we consider the x-component of the momentum balance of eq.(2.48), and
applying the results obtained in eq.(2.53), the boundary condition on the mean
wall-normal velocity in eq.(2.51), and the conditions on the flows in eq.(2.49)
and eq.(2.50), it becomes:

1

ρ

∂pw
∂x

= −1

r

d

dr
(ruv) +

ν

r

d

dr
(r
dU

dr
) (2.54)

Expliciting the total shear stress τ = µdUdr − ρuv, the equation above can
be rewritten in a more compact way as:

∂pw
∂x

= −1

r

d(rτ)

dr
(2.55)

leading to the convenient link between the wall-shear stress and pressure
drop along the pipe if integrated from 0 to R in the radial direction:

τw =
R

2

dpw
dx

(2.56)

Eq.(2.56) is extremely important from the experimental point of view, since
it states that to compute the wall-shear stress it is sufficient to accurately ac-
quire the pressure drop along the pipe. This is crucial for an accurate investi-
gation of the pipe flow phenomena.

2.3. Wall-bounded flows

Classical turbulence theory classifies the flows into free shear, such as wakes and
jets, and wall-bounded, which includes all the flows over one or more surfaces.
Examples of the latter are internal flows, such as the flow inside a pipe or a
duct, and external flows such as the flow over a plate. The presence of the solid
surface, in the case of wall-bounded flows, influences the onset mechanism of
turbulence. If in jets or wakes turbulence originates from the differences in the
velocity field of the flow, this is not the case for the wall-bounded. Here, due to
the presence of the wall, the boundary condition to apply is the no-slip i.e. the
velocity of the fluid at the wall is zero. Together with the viscosity of the fluid,
the onset of turbulence is triggered. In this section, the main characteristics of
wall-bounded turbulence are described.

2.3.1. Turbulence scaling and mean velocity profile

According to classical turbulence theory, the domain of wall-bounded turbulent
flows can be divided into two main areas: the inner region, close to the wall
where the viscous forces are dominant, and the outer region, located further
away from the solid surface and where the effect of viscous forces is smaller
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than the inertial ones. In other words, this division is made on the basis that
in the inner region the flow is influenced by viscosity and not by the external
geometry. This should lead to a similar behaviour of the flows in the near-wall
region, despite different geometries, since the external conditions should not
affect their dynamics. Close to the wall, the parameters affecting the mean
velocity U are the wall-shear stress τ , the wall-distance y and the kinematic
viscosity ν = µ/ρ. Thus, U is expected to scale on properly defined normalised
parameters (the viscous scales) based on these quantities. First, the friction
velocity uτ is defined

uτ =

√
τw
ρ

(2.57)

with ρ being the fluid density. Now, the viscous length scale l∗ can be
introduced

l∗ =
ν

uτ
(2.58)

Once these two quantities are defined, the viscous time scale t∗ can be
expressed as

t∗ =
l∗
uτ

=
ν

u2
τ

(2.59)

and the key quantity used in throught the entire thesis, the friction Rey-
nolds number, Reτ is defined for the wall-bounded flows:

Reτ =
Luτ
ν

=
R

l∗
= R+ (2.60)

where L is the characteristic length scales, the pipe radius R in the current
case of a pipe flow. It is interesting to notice how the friction Reynolds number
represents the viscous-scaled pipe radius, or equivalently, the ratio between
the outer and the inner scales. As introduced here, the superscript + will
denote from here on, the inner-scaled variables. The inner-scaled velocity, U+

is defined as:

U+ =
U

uτ
= f

(yuτ
ν

)
= f

(
y

l∗

)
(2.61)

where y/l∗ is the inner-scaled wall-normal distance, y+. Its definition re-
sembles a local friction Reynolds number. In a fundamental work, Prandtl
introduces the Prandtl’s law of the wall, where he postulates that in the inner-
region, the following relation holds:

U+ = f(y+) (2.62)
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For regions extremely close to the wall, y+ < 5, known as the viscous
sublayer, eq.(2.62) becomes:

U+ = y+ (2.63)

The part of the inner-region outside of the viscous sublayer is called buffer region,
where there is the maximum turbulence production and maximum streamwise
turbulence intensity (see Pope 2001). Further away from the wall, the viscous
stresses become negligible compared to the turbulent stresses. Here, in the
outer region (or core region for internal flows), the scaling parameters change.
The relevant length scale is now defined by the external geometry: the pipe
radius for the pipe flow, the half-height of the channel for the channel flow, and
the boundary layer thickness for the turbulent flow over a flat plate:

Y =
y

R
(2.64)

As for the velocity, uτ is still used as scaling quantity. The dimensional
analysis of the outer region, leads to the Coles velocity defect law

UCL − U
uτ

= g
( y
R

)
(2.65)

with UCL being the centerline velocity. If the Reynolds number is large
enough, we can assume the existance of a region of wall distances, called the
overlap region that have large y+ values (y+ >> 1) and small Y values (Y <<
1), or equivalently l∗ << y << R. This means that both eq.(2.62) and (2.65)
hold at the same time:

f
(uτy
ν

)
= g

( y
R

)
(2.66)

From the derivation of Millikan (Millikan 1938), in the overlap region, the
relative derivatives of the velocity profiles should be independent of the length
scale, therefore constant:

∂

∂y

(
U

uτ

)
=
uτ
ν
f ′
(yuτ
ν

)
= − 1

R
g′
( y
R

)
(2.67)

The solution of eq.(2.67) is for f ′ and g′ being inversely proportional to y+

and Y respectively. Integrating eq.(2.67) leads to a logarithmic mean velocity
profile in the overlap region:

U+ =
1

κ
ln(y+) +B (2.68)

UCL − U
uτ

= − 1

κ
ln
( y
R

)
+ C (2.69)
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Figure 2.3: Inner-scaled mean velocity profile as function of inner-scaled dis-
tance from the wall for Reτ = 9.9×103 and Reτ = 3.9×104. Data from current
measurements.

Where eq.(2.68) is known as logarithmic law of the wall or log law, first
derived by Prandtl (Prandtl 1925). The start of the logarithmic region is
still object of debate, but its lower bound it is accepted to be in the range
50 < y+ < 200, extending to around 0.15R. The constants κ and B are denoted
as the Von Kármán and additive constants. Classical turbulence theory states
their universal nature, independent from the type of wall-bounded flows that
it describes. Fig.2.3 compares the mean-velocity profile for Reτ = 9.9 × 103

and Reτ = 3.9× 104. As the Reynolds number increases, the log region is seen
to extend further from the wall in inner units. Another interesting result is
obtained by adding the inner and outer formulations of the logarithmic law,
namely eq.(2.68) and eq.(2.69):

UCL
uτ

=
1

κ
ln(Reτ ) +D (2.70)

usually referred to as the friction law, from which the friction factor Cf is
specified as:

Cf = 2

(
uτ
UCL

)2

(2.71)
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2.4. The scales of turbulence

Turbulence is characterised by a wide spectrum of eddies of different sizes. The
largest scales are limited by the external geometry of the flow: for a boundary
layer it is the boundary layer thickness δ, for a channel flow the half-height
of the channel h/2 and for the current case of the pipe flow, the radius R. in
order for the turbulence to be sustained, energy should be injected to the large
scales from the mean-flow via a production mechanism, or from an external
source of energy like heating. The interaction between the eddies enhances the
energy transfer, in a inviscid way, to gradually smaller scales until the viscous
stresses become increasingly important, and the kinetic energy is dissipated
into heat. This process is known as energy cascade and was first mentioned
by the British scientist Richardson (1922). According to Richardson, eddies
can therefore be characterised by three parameters: length l, velocity u(l)
and timescale t(l) = l/u(l). The large scale are characterised by a length
l0 comparable to the macroscopic geometric feature, generally denoted as L.
The velocity u0 is of the order of U , therefore the corresponding Reynolds
number Re0 = l0u0/ν is large since the viscous stresses are negligible. It is
only later, in 1941, that Kolmogorov suggested a novel approach based on
the dependence of velocity and time on the length: he noticed that as the
length decreases, the velocity and time behave in the same way. Three are
the main hypothesis of his theory. The first is known as the local isotropy
hypothesis, stating that the small-scale turbulence is statistically isotropic for
Reynolds numbers sufficiently large. This characteristic physically means that
the statistics of the small scales do not depend on the direction of the mean flow.
In other words the small scales ”forget” the information from the mean flow
and the boundary conditions, contrary to what happens for the large scales.
Secondly, for suffienciently high Reynolds, small-scale turbulece statistics are
universally described by the mean dissipation rate of energy ε ≈ u3/l and the
viscosity ν. This is due to the viscous process underpinning the dissipation
process at small scales, of the energy trasnferred from the big scales. From
the two parameters characterising the statistics, the Kolmogorov scale can be
defined as:

η ≡
(
ν3

ε

)1/4

(2.72)

and in the same way, the velocity and time scales of the dissipation range:

uη ≡ (εν)
1/4

(2.73)

tη ≡
(ν
ε

)1/2

(2.74)
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Figure 2.4: Schematic of the energy cascade process from Fiorini 2017.

Consequently, the Kolomogorov length scale gives the ratio between the largest
and smallest scales of turbulence i.e. the range of the size of eddies:

l0
η

=
l0ε

1/4

ν3/4
∼ l0
ν3/4

(
u3

l0

)1/4

=

(
l0u

ν

)3/4

= Re3/4 (2.75)

with u being the velocity of the large scales. Intuitively this states that
as the Reynolds number increases, the range of scales between l0 and η does
as well, explaining the difficulties encountered in the detailed description of
the turbulent flows without invoking any modelling assumption. Moreover,
it follows that for very high Reynolds numbers there is an increasing range
of scales between l0 and η: the physical difference between the large scales
and smallest scales increases almost linearly. This phenomena is known as the
scale separation. Intuitively, if the size of the external geometry is obviously
fixed, the scale separation occurs because of the progressive decrease in size of
the smaller scales, η. The third hypothesis of the Kolmogorov theory states that
for sufficiently high Reynolds numbers, in the inertial sub-range η << l << l0,
eddies are universally determined only by the mean dissipation rate ε. Fig.2.4
below captures both the energy cascade process and the scale separation.

2.5. Hot-wire anemometry

Despite the undeniable progress in experimental measuring techniques, such
as holographic methods or three-dimensional particle tracking, the hot-wire
anemometry (HWA) remains one of the most used techniques for velocity mea-
surements in turbulent flows. Its popularity, kept unchanged so long after its
first introduction by King in 1914, is mainly due to its exceptional spatial and



2.5. HOT-WIRE ANEMOMETRY 19

temporal resolution for a relativly cheap price compared to optical measure-
ments, for instance. In other words, hot-wire anemometry is able to capture the
smallest and fastest physically relevant velocity fluctuations. Of course, placing
such element in the flow will disturb the local flow field, but it has been proven
that intrusivity is limited for a well-designed probe, meaning that possible dist-
urbances are accounted for in the calibration process. As the name suggests,
the hot-wire anemometry implies the presence of a hot-wire, i.e. heated wire to
make velocity measurements. The fundamental working principle of HWA is
based on the fact that the local fluid velocity is indirectly measured by sensing
the changes in the forced heat convection by the small, electrically-heated wire
that is exposed to the flow. In the specific case of this thesis, the hot-wire
is operated in the costant temperature mode (CTA). The anemometer keeps
the temperature of the wire constant through a compensating electronic circuit
with a feedback loop, sensing the changes in heat transfer due to the velocity
fluctuations. By measuring the electrical current required to keep the tempera-
ture constant and an accurate calibration, it is possible to retrieve the velocity
of the flow.

2.5.1. Basic principles

The principle at the basis of hot-wire anemometry is the amount of cooling
that is experienced by the heated wire when exposed to the turbulent flow.
In this case, a relation between the cooling of the wire, the heat introduced
to keep the wire at the constant temperature and the local flow velocity can
be observed. Assuming that the wire is heated through the Joule’s effect, the
heating power is given by:

P = IV = I2Rw =
V 2

Rw
(2.76)

where I is the electrical current heating the wire, V is the voltage drop
across the sensor and Rw is the resistance of the wire. Multiple phenomena
can be cause of the cooling of the wire: radiation losses (accounting for only
0.1% of the convective losses), free/natural convection (negligible compared
to the forced convections in situations like the hot-wire anemometry), heat
conduction of the prongs of the probe (not negligible, but accounted for during
the calibration procedure) and forced convection. It is clear how the latter is
generally assumed to be the primary source of heat loss for the wire. Forced
convection, W is expressed as:

W = hAw(Tw − T ) = hπDL(Tw − T ) (2.77)

where h is the convective heat transfer coefficient, Aw the area of the wire
with a diameter of D and a length of L, where the forced convection takes place.
Tw and T are respectively the temperature of the wire and the one of fluid in
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contact with it. In order to express the heat transfer in a non-dimensional way,
for a cylindrical-shaped body, the Nusselt number, Nu is introduced to replace
h:

Nu =
hD

kf
(2.78)

where kf is the thermal conductivity of the fluid. Assuming incompressible
flows, ignoring free convection and using wires with a large length-to-diameter
ratio, the Nusselt number is now a function of only the wire’s Reynolds number
Rew (using the diameter of the wire D) and the temperature overheat ratio aT ,
Nu = f(Rew, aT ). The overheat ratio is a crucial parameter when operating
the hot-wire and can be defined in terms of temperature and resistance as:

aT =
Tw − T0

T0
, aR =

Rw −R0

R0
(2.79)

where the subscript w denotes quantities referring to the wire, and the 0
to the cold/reference state. If Tw − T0 < 250◦ , the working resistance of the
wire Rw varies linearly with its temperature:

Rw = R0[1 + α(Tw − T0)] (2.80)

where α is the temperature coefficient of electrical resistivity of the material
consituing the wire, typically 3.6×10−3/C for Platinum wires. In general, it is
a positive quantity for metals, meaning that the resistance increases with the
temperature. Despite the assumptions made, there is still a variety of relations
possible between the Nusselt number and the wire Reynolds number, such as
the empirical correlation:

Nu = [A1(aT ) +B1(aT )Renw](1 + aT /2)m; (2.81)

where m, A1 and B1 are temperature-dependent constants. If we now
express Rew in terms of cooling velocity, the latter becomes non-linearly de-
pendent on forced convection W , which in turn can be coupled to electrical
heating via eq.(2.76) to 2.78, yielding:

I2Rw = V 2/Rw = {πLkf (Tw − T∞)}Nu (2.82)

where, for a specific case when the wire is operated at constant overheat
ratio, the terms in brackets can be considered constant. Making the cool-
ing velocity U now explicit, subtituing the expression of the Nusselt number
of eq.(2.81) and incorporating the case-specific parameters such as α0 in the
calibration constants A2 and B2, it yields to:

V 2 = (A2 +B2U
n)(Tw − T ) (2.83)
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If the hot-wire is operated in CTA mode, like throughtout the work here
presented, for an ambient temperature of T , the quantities Rw and the differ-
ence (Tw − T ) are constant and can be included in the calibration constants A
and B, yielding to the so-called King’s law:

V 2 = A+BUn (2.84)

clearly showing the thermoelectrical principle at the basis of hot-wire anemom-
etry, where the cooling velocity U is non-linearly related to the voltage V
passing through the heated wire. Given the small sensor size (with a diameter
ranging from 0.5 − 10µm and the length 0.1 − 2mm), and the intrinsic varia-
tions of each home-made wire, the calibration procedure needs to be performed
for each hot-wire probe used, to determine the case-specific calibration param-
eters. By fitting the calibration points (U,V) with eq.(2.84), the calibration
coefficients A, B and n can be inferred. A simpler alternative to the King’s
law is to perform a 4th order polynomial fit to the data, in the form:

U =

4∑
n=0

AnV
n (2.85)

where the coefficients An are determined via least-square fitting. The 4th order
polynomial is the calibration relation chosen for every measurement presented
in this work.

2.5.2. Limitations

One of the advantages of using hot-wire anemometry in turbulence measure-
ments is the undeniable good spatial and temporal resolution. But, as the
Reynolds numbers increases, the small-scale structures in the near-wall region
(of the size of the Kolmogorov scales, η, of a few viscous units here) can become
smaller than the sensing length of the wire L. In this case the wire is unable
to capture the smaller velocity fluctuations, responding with an averaged mea-
sured value that can be expressed as:

um(t) =
1

L

∫ L

0

u(s, t)ds (2.86)

with s the coordinate along the wire direction, originating at one of the two
prongs. Fig.2.5 demonstrate the effect of insufficient spatial resolution, which is
noticeable in terms of attenuation of the inner-scaled variance of the measured
streamwise velocity fluctuations. The issue was thoroughly investigated by
Wyngaard 1968 for isotropic turbulence, where analytical considerations can
be made. On the other hand, experimental rules of thumb have been given
for wall-bounded turbulence, starting from the early works of P. M. Ligrani
and Bradshaw 1987, who identified the wire viscous length L+ = L/l∗ as
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Figure 2.5: Inner-scaled streamwise velocity variance as function of inner-scaled
wall-distance for Reτ = 3.9× 104, using a single hot-wire probe with a sensing
length of 0.5mm and a diameter of 2.5µm. l∗ ≈ 44, leading to attenuation of
the energy measured as the red symbols show. Blue symbols are the signal
corrected with the scheme proposed by Smits et al. 2011.

key parameter for spatial filtering, and further investigated by Hutchins et al.
2009. In particular, in order not to be greatly affected by insufficient spatial
resolution, it is good rule to ensure L+ ≤ 20. In cases where this is not
possible, a number of correction schemes have been put forward, such as Smits
et al. 2011 (widely used because it has been validated for a wide range of l+

and Re), P. Monkewitz, Duncan, and Nagib 2010 when small L/D wires are
used, or Miller, Estejab, and Bailey 2014 who incorporates also a correction
for the end conduction effect, and also options valid for any turbulent flows
by R. Segalini A. Ö. et al. 2011 and A. Segalini et al. 2011. In fact, not all
the heat is transferred by forced convection, but as briefly mentioned above,
part of the heat is transferred via conduction from the wire to its supporting
prongs. This is side-effect of the architecture of the probe and should be limited,
by intuituvely increasing the length of the wire. This is contrast with the
solution for spatial resolution issue, and therefore a compromise can be found
by considering that heat conduction is proportional to the cross-section of the
wire, Wc ∝ πD2/4 and heat convection is proportional to the exposed surface of
the wire instead, Wfc ∝ πD2/4L. Their ratio, proportional to ∝ L/D, identify
the length-to-diameter ratio as key parameter in minimising the end conduction
effect without compromising the spatial resolution, with P. M. Ligrani and
Bradshaw 1987 suggested a threshold of L/D > 200.
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2.6. Background

In this section a brief overview of the past key studies laying the ground for
the present work is presented. The most relevant research topics and open
questions are discussed to put the present work into context.

2.6.1. The log-law

Despite the undeniable progress in theoretical knowledge, experimental and
numerical techniques, a correct depiction of wall-bounded flows in the overlap
region is still object of intense debate.

During the 1920’s, in early days of wall-bounded turbulence research Prandtl
and von Kármán extracted the 1/7 power-law from Blasius’ data, which could
describe fairly well both the velocity profile and friction in pipe flows, across
the range of Reynolds numbers available at that time.

Not even a decade went by when the experimental investigation on pipe
flows by Nikuradse, at higher Reynolds numbers, suggested that the data were
better fitted by a sligthly modified power-law. The 1/7-power law was made
Reynolds-dependent with the power-law exponent 1/n, where n increases with
the Reynolds number. The power-law has always been fairly accepted from its
introduction, but few aspects (being the result of an extrapolation, not being
valid in the near-wall region, lacking of a physical meaning close to the center
and an annoying Reynolds number dependence of the exponenent) sparked the
interest in finding a better alternative.

The logarithmic-law for the mean velocity profile and friction was pre-
sented by von Kármán in 1930. By analysing Nikuradse data and starting
from Prandtl’s mixing length concept, he was able to prove that the inner-
scaled velocity defect in the outer region (normalised with the friction velocity)
does not depend on Reynolds number. This led to a logarithmic description
of the mean-velocity profile and friction factor, valid for the entire range of
Reynolds numbers available.

The value of von Kármán constant κ, one of the two parameters governing
the logarithmic law (the other is an additive constant, B), was set by von
Kármán to 0.36 for the mean-velocity profile and 0.38 for the friction relation.

As matter of facts, canonical flows i.e turbulent boundary layer, channel
and pipe flows, are widely believed to be similar in the inner region, and there-
fore there is no apparent reason why κ should be affected by the geometry.

Even if the form of the log-law remains unchanged today, the value of the
von Kármán constant is continuosly revaluated, ranging from 0.36-0.43. Over
the years, it reached the ”most-popular” value of 0.384 for the zero-pressure
gradient TBL (Örlü et al. 2017, Furuichi et al. 2015).

When the first results from the Superpipe in Princeton were available to
the turbulence community, they obtained κ = 0.436 (Zagarola and Smits 1998).
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Not only it was much larger that the expected, but it also resulted from a log-
law much further away from the wall than previously assumed. Even when
McKeon, Zagarola, and Smits 2005 reanalysed and corrected the data, κ low-
ered to 0.42, remaining still significantly distant from other suggested values
for different geometries and Reynolds numbers regimes.

For long, the scatter was explained by the experimental uncertainty, since
high accuracy is required to shed a final light on the matter, until Nagib and
Chauhan 2008 challenged the idea of ”constants” suggesting a von Kármán
coefficient that depends on the flow geometry.

Adding controversies to an already hot-topic, there is the skin-friction re-
lation UCL = (1/κ)ln(Reτ ) + C. For the asymptotic matching of the wake
already discussed by Coles 1956a, the value of κ in the above relation, named
κCL from here onwards, should be equal to the one extracted from the log-law
in the overlap region, but κCL has consistently remained larger than 0.42 for
the pipe flows (0.42-0.43 for the Superpipe data McKeon, Zagarola, and Smits
2005, Cantwell 2019, 0.43 for the CICLoPE facility Fiorini 2017).

Only very recently two solutions have been proposed to solve this conun-
drum, by P. A. Monkewitz 2017 and by Luchini 2017. On one hand, Luchini
confirmed the universality of the logarithmic law of the turbulent velocity pro-
file across different flow geometries, provided the effect of the pressure gradient
is considered with an additional higher order term in the formulation. On the
other, Monkewitz reanalysed the Superpipe data, introducing a ”universal” in-
ternal log-law valid for 102 < y+ < 103 with κ = 0.384, followed by an external
log-law valid for y+ < 0.05Reτ and the wake with κCL dependent on the flow
type (but kept at 0.384 for the TBL and found to be 0.42 by P. A. Monkewitz
2017 for the pipe flow). This arises the question of the statistically significance
of the difference between κ and κCL.

As previously mentioned, it is crucial to rely on accurate description of
the mean velocity profile, in particular κ matters for different reasons. First,
the log-law (whose slope is 1/κ) is used to verify the quality of the measured
profiles and it is also employed in the Clauser method (Clauser 1954) to extract
the value of the friction velocity uτ , which is a key quantity in wall-bounded
turbulence. As pointed out by Örlü, Fransson, and Alfredsson 2010, it is also
used to determine the wall-position during experiments.

Moreover, κ is an input quantity in CFD models for the law of the wall to
predict friction, and the impact that it has for a vast range of applications it
is now clear.

Reaching conclusions on the nature of the log-law has proven to be ex-
tremely challenging, due to multiple reasons. Without a standardisation of
methods to extract the value of the parameters and a common view on the
boundaries of the logarithmic region it is hard to agree on a value.
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Moreover, Örlü 2009 demonstrated the extreme sensitivity of the log-law
governing parameters on the limits of the log-region, reporting values of κ
ranging from 0.40 down to 0.34. Additionally, the differences in the departure
from the law itself are very subtle and very high is the sensitivity of the values
of κ and κCL on the errors on uτ .

On that note, reliable and simple methods to estimate the friction velocity
are crucial to limit the uncertainties on the von Kármán parameters, leading to
a preference for a geometry like the pipe to conduct these kind of experiments.
For this geometry the friction velocity can be readily estimated from the static-
pressure drop along the pipe, instead of more complex techniques like the oil-
interferometry used for TBL, for instance. The joint efforts of many Universities
around the world to build the large-scale experiment CICLoPE is a right step
in the direction of highly accurate measurements at high Reynolds numbers
regimes.

2.6.2. Organised motions in turbulence

Despite being intrinsically chaotic, wall-bounded turbulent flows exhibit an
internal architecture of motions. Investigating their organisation and how they
interact with each other is key for a better understanding of turbulence nature,
flow dynamics and improving control methods.

Although a clear-cut definition of organised motion is still not-existent to-
day, they can be in general terms be described as a region both in time and
space that is characterised by mass and momentum trasport. The traditional
classification (Smits, McKeon, and Marusic 2011) identifies four main struc-
tures: the near-wall streaks, the hairpin vortices, the large-scale motions and
the very-large-scale motions.

The basic units of the turbulent organised motions are the near-wall streaks,
first observed by Kline et al. 1967 who investigated down to the viscous sublayer
(for y+ < 70). The near-wall streaks, developing in the streamwise direction,
are characterised by a spanwise spacing of ≈ 100ν/uτ , by high or low mo-
mentum, and are seen to be both Reynolds and flow geometry independent.
Alternatively, the fundamental block of coherent structures are suggested to
be the hairpin/horshoe vortices (Adrian 2007). The same vision is shared by
Perry, Henbest, and Chong 1986 stating that the turbulent flows can be seen
as a forest of hairpin vortices (Perry, Henbest, and Chong 1986). Nontheless,
they were first theorised by Theodorsen 1952 as structures with a minimum
height of ≈ 100ν/uτ , originating at the wall and extending for a wide range of
scales.

Despite controversies on the more or less crucial role in the physics of co-
herent structures (Cantwell 1981, Schoppa and Hussain 2002), their importance
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and diffused presence in the boundary layers was strongly proven first by exper-
imental observation by Head and Bandyopadhyay 1981 and later corroborated
by the numerical work of Wu and Moin 2009.

Only recently with the leap in computer powers and technological advance-
ment that allowed more accurate measurements at higher Reynolds numbers,
numerical and experimental studies revealed the organisation of the aforemen-
tioned elements in larger coherent structures, called large-scale motions (LSM).

Numerous are still the open questions regarding their origin and dynamics,
but the widest consensus (Kim and Adrian 1999, Guala, Hommema, and Adrian
2006,Tomkins and Adrian 2003, Ganapathisubramani et al. 2005) believes them
to be the result of packets of hairpin vortices travelling at the same convection
velocity.

The LSMs extend to approximately 2-3 δ in the streamwise direction and
the hairpins bulding them have their heads inclined at around 20◦ to the wall
(Adrian, Meinhart, and Tomkins 2000) a feature that Adrian 2007 proved to
be crucial for the dyanmics. They are also pointed as the responsible for tur-
bulent buldges in the near-wall region, since the aligned hairpins induce low
streamwise momentum between the legs (Adrian, Meinhart, and Tomkins 2000,
Ganapathisubramani, Longmire, and Marusic 2003).

In 1999, Kim and Adrian 1999 identified long-meandering structures, char-
acterised by low stremwise-momentum regions flanked by higher-velocity flow:
the very-large-scale motions (VLSM), or superstructures in boundary layers.
Their origin is still not clear, but they are thought to be alignment of packets of
LSM (Fig.2.6), centered in the logarithmic region and extending well into the
outer region in internal flows, while they appear to break down or to weaken
in the case of turbulent boundary layers (Bailey et al. 2010). Their meander-
ing nature makes it difficult to infer their true length by single-point statistics
(spectra or correlations).

Experimental studies in boundary layers using a hot-wire rake extending in
the spanwise direction, were able to capture structures extending up to 10-20
δ (Hutchins and Marusic 2007a),whilst a similar technique applied to pipe and
channel flows by Monty et al. 2007 led to measure structures developing in the
streamwise direction for 20-30 radii or channel half heights. Spectral analysis
highlight the energetically and dynamically importance of the LSM and VLSM.
Using a feature-detection algorithm and PIV data, Ganapathisubramani, Long-
mire, and Marusic 2003 and Ganapathisubramani et al. 2005 quantified their
signficant contributions to the Reynolds shear stress as 50%, with similar per-
centage presented by Balakumar and Adrian 2007, who also added that modes
with λx/δ > 3 contributes up to 65% to the total turbulent kinetic energy.

The large wall-normal extension of the (LSM and VLSM) hints at the
possible correlation with the near-wall region. Mathis, Hutchins, and Marusic
2009 and Hutchins and Marusic 2007b showed how the larger scales interact
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Figure 2.6: Schematic of the alignment of the hairpin packets forming the large-
and very-large-scale motions. Reprinted from Kim and Adrian 1999

with the near-wall region through a combined effect of energy superimposion
and modulation of the velocity fluctuations of the small-scales. Unravelling the
nature of this interaction would help shedding light on some of the controversies
in wall-bounded turbulence scaling. For instance, the interaction between small
and large scale motions, observed in data from CICLoPE (Örlü et al. 2017) and
Klewicki and Falco 1990 Hutchins et al. 2009, challenges the classical inner-
scaling of streamwise turbulence intensity that does not take this dynamics
into account but is confirmed by experiments performed at the SuperPipe.

2.6.3. Attached eddy model

Turbulence modelling remains one of the biggest challenges of the field. How-
ever, models are extremely important because they allow for prediction and
improve physical insight of many phenomena.

The need for very accurate data both in time and space together with
a physical knowledge of the phenomena that still fails to capture the entire
richness of turbulence, are the reason behind the very few models available
today.

Even more critical is the situation for wall-bounded turbulence, where the
non-isotropy hypothesis complicates the mathematics even more. Here, the
focus is on the coherent motions characterising the logarithmic region and it is
in this context that Townsend 1976 introduced the attached eddy hypothesis
(AEH), one of the very few attempts in modelling wall-bounded turbulence.
It can be considered the starting point of more recent proposals, laying their
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fundaments on Townsend’s hypothesis, to then expand it to other regimes and
tailor it for more specific flow-case.

The AEH is a conceptual model, that can be applied to inviscid, asymptot-
ically high Reynolds numbers and throughout the years has gained more and
more support by experimental results. It simplifies the complex architecture
of the flow in the near-wall region with a system of geometrically self-similar,
randomly distributed wall-attached eddies. The density of their population, in-
creasing with Reynolds number, is inversely proportional to the distance from
the wall. This means that eddies increase their size as moving away from
the wall, but fewer and fewer as the distance increases. The consequence,
completely independent from the geometry of the attached eddy, is a loga-
rithmic behaviour of the normal Reynolds stresses u2 = A1 + B1ln(y/δ) and
w2 = A2−B2ln(y/δ) (where u2 and w2 are the streamwise and spanwise Rey-
nolds stresses. A1, B1, A2 and B2 are constants depending on the type of eddy
chosen for the random distribution).

The key property of these eddies, from Townsend itself: The velocity field
of the main eddies, regarded as persistent, organised flow patterns, extend to the
wall, and in a sense, they are attached to the wall. Townsend 1976. This is a
very crucial point in his theory. With the term ”wall-attached” Townsend
meant that for a distance from the wall, y in the log-region, the energy-
containing motions are said to be attached in the sense that they feel the
presence of the wall. In other words, the velocity field is influenced by the wall
itself without being physically connected to it.

The model can be applied to the inviscid, asymptotically high Reynolds
numbers wall-bounded flows. It does not model the viscous small-scale motions
in the near-wall region, but it concerns only the inertia-dominated energy-
containing motions inhabiting the log-layer.

The other key point of the Townsend’s theory that is still object of intense
debate is the geometry of the eddies. In his theory, Townsend is not committed
to a specific geometrical shape, but the spirit is mainly directed to a ”represen-
tative” type of eddy that allows to provide a description of as many features of
wall-bounded turbulence and an explanation to the correlations and statistics
observed.

However, this particular aspect of the theory sparked the interest of many,
putting forward different suitable candidates for the attached eddies. For in-
stance, Perry, Henbest, and Chong 1986 started from the double cone roller
proposed by Townsend (which failed to predict the correct streamwise velocity)
and following the studies of Head and Bandyopadhyay 1981, Theodorsen 1952
and Perry and Abell 1977, introduced the hairpin/Λ vortex, originating from
the wall (even if that was not required from the AEH). Using the hairpin, they
were able to reproduce the logarithmic profile of the mean velocity and the



2.6. BACKGROUND 29

spectral energy distribution characterised by the k−1
x region in the streamwise

velocity spectra (with k−1
x being the streamwise wavenumber).

The velocity fluctuations induced by the attached eddies are, as matter
of facts, the explanation of the k−1

x region Marusic and Monty 2019. Several
issues make this method not optimal: the limited extent of the k−1

x region,
the sensitivity to spectral aliasing (Davidson, Nickels, and Krogstad 2006) and
the unavoidable need of correlations with the near-wall region if the both the
wall-attached and self-similar nature want to be investigated. For this reasons,
conclusions coming from multi-point measurements are preferred: if Baidya
et al. 2019,Tutkun et al. 2009 have investigated the matter in the spanwise
direction, Baars, Hutchins, and Marusic 2017 verified the AEH for turbulent
boundary layers and surface layers in the wall-normal direction given the ease
in covering a wide distance. These type of measurements are also convenient
to assess the self-similarity of the structures (Fig.2.7).

This term implies two main features for the characteristic eddies: that
the energy density of the eddies is constant and in the geometrical sense, that
their size scales only with the distance from the wall. Given the strength of
this hypothesis, which is crucial for the mathematical description of numerous
aspects of turbulence, many studies concentrated on verifying the self-similarity
of the structures populating wall-bounded flows.

For instance,the seminal work by Baars, Hutchins, and Marusic 2016, in-
vestigated the self-similar nature of the structures in the wall-normal direction
of turbulent boundary layers for more than a decade on Reynolds numbers.
His coherence spectra showed self-similar eddies with an aspect ratio of 14.

The continuos efforts made to improve and verify the attached eddy model
are due to the already promising results that made this model widely popular.
For instance it is widely used in models to predict friction, in two-point mea-
surements to study the rate of energy dissipation in wall-bounded turbulence
Mouri 2017 and in the study of atmospheric surface layers (Katul and Vidakovic
1996, Hunt and Carlotti 2001, McNaughton 2004, Kunkel and Marusic 2006
and Hutchins et al. 2012).

These are only few examples of how it is undeniably useful in applications
of industrial interest, but there is more. It would act as a reference to validate
wall-bounded turbulence theories as it allows prediction of statistics for the en-
ergy containing motions. Further studies are required to overcome the current
limitations: it allows only the modelling of the attached eddies and as purely
kinematic model, if we want to extend it to flow control applications, then the
dynamics should definitely be incorporated.
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Figure 2.7: Conceptual for a system of self-similar attached eddies. The
blue rectangles highlight the areas where a self-similar pattern is observed.
Reprinted from Woodcock and Marusic 2015.

2.6.4. Interaction of turbulence scales

Classical turbulence therory predicts a near-wall region (0 < y+ < 30) where
the velocity statistics averaged in time and normalised with the friction ve-
locity depend universally on the distance from the wall y+ = yν/uτ . This is
known as inner-scaling and it is seen to fail for the fluctuating streamwise ve-
locity in recent numerical and experimental studies. For instance, the work by
Klewicki and Falco 1990 and Örlü et al. 2017 shows a variation of the inner-peak
that goes beyond experimental uncertainty, suggesting a Reynolds number de-
pendence. For turbulent boundary layers Marusic, Baars, and Hutchins 2017
suggested an explanation of this behaviour based on the attached eddy hypothe-
sis, where the hierarchy of attached structures centered far from the wall cause
large velocity fluctuations that superimpose their energy onto the near-wall
streaks. This further hints at the crucial role of the large-scale contributions to
the increase of the broadband turbulence intensity, completely excluding the
small scales. Marusic et al. 2010 used a cut-off spectral filtering technique,
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to decompose the fluctuations of the large and small scales. By isolating the
contributions they were able to prove that in turbulent boudary layers the
growth of the streamwise turbulent intesity can be related to an increase of
the large scales’ energy. Also the one-dimensional premultiplied energy spec-
tra long suggested the primary resposibility of the large scales (Marusic et al.
2010). Comparing the spectra of the near-wall region, the collapse for differ-
ent Reynolds numbers is observed only in high frequency domain (the small
scales range), while at lower frequencies, the energy increases for increasing
Reynolds numbers. It is important to stress the caution required when inter-
preting the data in the near-wall region at high Reynolds numbers, due to the
possible insufficient spatial and temporal resolution issues P. M. Ligrani and
Bradshaw 1987, Hutchins et al. 2009 that dampen the turbulent fluctuations.
Despite the moltitude of correction schemes suggested in literature, Smits et al.
2011, a great advancement in reaching a definitive answer can be propelled by
high-resolution/high Reynolds numbers experimental facilities like CICLoPE.

The primary effect of the scales interaction is the linear superimposition
of the large-scale energy onto the near-wall cycle. Despite being thought as
autonomous (independent of external triggering to self-sustain Jimenez and
Pinelli 1999), it is shown Hutchins and Marusic 2007b that for higher Reynolds
numbers, the near-wall streaks are influenced by an increasing amount of large-
scale energy.

The pure linear superposition is not the sole effect of the large-scale foot-
print in the near-wall region. Mathis, Hutchins, and Marusic 2009 demon-
strated that the small-scale energy is in fact modulated both in amplitude
and frequency by the superimposed footprints. Once the Reynolds number is
high enough to ensure sufficient scale-separation between the small and the
larger scales, the small structures will ”feel” the footprint of the big scales as
a modified boundary condition. For instance, large streamwise velocity fluc-
tuations will cause a quasisteady period of locally increased shear stress. The
small scales will, in turn, respond accordingly by proportionally increasing the
velocity fluctuations amplitude.

An additional evidence of the link between the inner and outer region is
the coherence spectra resulting from two-point synchronised measurements.
Baars, Hutchins, and Marusic 2017 computed the Linear Coherence Spectrum
using experimental and numerical data sets for turbulent boundary layers and
atmospheric surface layers to represent the maximum correlation for a specific
scale. This is particularly useful when verifying the validity of the classical
scaling of the streamwise velocity fluctuations. Only the portion of turbulence
in the near-wall region (the small scales) that is not coherent with the outer-
region can be described with the classical universal dependence on the inner-
scaled wall-distance y+. It is the fluctuations in the outer-region, coherent
with the inner-region (the ”wall-attached” in the sense of Townsend), that will
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grow with increasing Reynolds numbers, superimposing their energy onto the
near-wall structures.

In conclusion, improving the knowledge on the interaction between the
small and large scales would be extremely beneficial to formulate more accu-
rate models. In this way it would be possible to predict near-wall statistics
measuring in a much more accessible area, like the outer region and allow to
simulate the evolution with the Reynolds number. For instance, the model
proposed by Mathis, Hutchins, and Marusic 2009 assumes a universal near-
wall signal that is modulated by the measured large-scale signal in the outer
region.



CHAPTER 3

Facility and experimental set-up

The construction of this facility and the first set of mean flow statistics, spectral
and quadrant analysis have been exstensively presented in Fiorini 2017. The
reader is referred to this for further discussion on the design. The motivation
behind a high Reynolds facility and an overview of its layout are given in the
following chapter.

3.1. The need of a high Reynolds facility

The idea behind the construction of the CICLoPE laboratory, and in particu-
lar behind the design of the Long Pipe, is to allow to address critical research
issues within the area of wall-bounded turbulence at high Reynolds number,
combining for the first time well-established sensors and high accuracy. Despite
high Reynolds number turbulence appears in numerous applications of practi-
cal industrial and environmental interest, its richness and complexity challenge
both the numerical and experimental approach. If on one hand the current
computer power is still not sufficient to obtain good statistics, spatial resolu-
tion becomes a severe hindrance when opting for an experimental method to
investigate high Reynolds numbers regimes. The Long Pipe at CICLoPE was
designed to allow fully resolved measurements using traditional instruments,
not possible in any other facility in the world. The first requirement is to de-
fine the operational range of Reynolds numbers that should be guaranteed by
the facility, referring to two fundamental features of high Reynolds numbers
wall-bounded turbulence: a well-developed overlap region of the mean flow and
a well-developed k5/3 region. It is well-known that in wall-bounded turbulent
flows there is an overlap region where the mean flow is described by a loga-
rithmic law (eq. (2.68)). The extent of the region is commonly accepted to
be 200 < y+ < 0.15R, with the added requirement of stretching for at least a
decade to ensure sufficient spatial resolution (until y+ ≈ 2000, y = 2000l∗), the
constraint on the upper bound

2000l∗ < 0.15R (3.1)

leads to the lower bound of the operational Reynolds number(Reτ = Ruτ/ν =
R/l∗) range Reτ > 1.33× 104. In order to be able to draw conclusions on the
scaling behaviour of turbulent flows, a factor of 3 should be applied, leading

33



34 3. FACILITY AND EXPERIMENTAL SET-UP

to a minimum highest Reynolds number of 4 × 104. For the appearance in
the spectra of the k−5/3 region, according to the Kolmogorov theory and con-
firmed by numerical and experimental results, one should guarantee enough
separation between the Kolmogorov scale η and the energy containing scales
l0, which for a pipe flow is the pipe diameter R. Physically it means that it
should end at around a tenth of the wavenumber corresponding to the Kol-
mogorov scale, extending for one order of magnitude in the wavenumber-space,
down to wavenumbers one order of magnitude smaller than the energy contain-
ing scales D. By using a numerical dataset, for Reτ = 14000 the Kolmogorov
scale at the centerline is ηCL ≈ 10.6l∗. For the previous constraints, the k−5/3

region starts at around 106l∗ and stretches for a decade until 1060l∗. The k−5/3

region should end at a wavenumber smaller than the one associated with the
energy containing scales:

1060l∗ < 0.1D (3.2)

which in terms of Reτ means:

Reτ > 5.3× 103 (3.3)

which is fulfilled from the fully-developed overlap region constraint. The
conclusions of these discussions led to set the operational range to 1.3× 104 <
Reτ < 4× 104. The next step is to design the facility so it is able to reach high
Reynolds numbers. Starting from its definition:

Re =
ρUL

µ
(3.4)

multiple options exist to increase the Reynolds number. The most direct
way to achieve this would be to increase the velocity U , but two are the main
disadvantages of such method: a noticeable increase in the demand of the power
will inevitably follow and the increment of the velocity is anyway limited by
the onset of compressibility effects. A viable option is to decrease the viscosity
µ, as they do in cryogenic facilities. Another possibility is to pressurise the
facility to increase the density, as implemented at the SuperPipe in Princeton
where pressure at the test section can reach up to 187 atm and a maximum
Reτ ≈ 105. The strategy adopted in the large-scale facility at CICLoPE is to
increase the characteristic length L, that in the case of a pipe flow is the radius
R. As it will be shortly shown, this method preserves the spatial resolution that
is instead damaged if any of the above methods is implemented. By considering
the definition of the friction Reynolds number Reτ , the size of the small scales
can be linked to the characteristic size of the facility, R:

l∗ =
R

Reτ
(3.5)
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implying that, for a fixed outer dimension, an increase in the Reynolds
number will inevitably lead to a decrease in the size of the small scales, cause
of poor spatial resolution. This trend can be counterbalanced by increasing
the size of the facility to a value that ensure a minimum l∗ such that it can
be still be measured by tradional measuring methods. Standard single hot-
wire probes can be manufactured with a sensing length as short as 120µ m,
up to a maximum of 10l∗ to avoid spatial averaging. This sets a lower limit to
the viscous length scale l∗ at 12µ m. Using eq. (3.5) and remembering that
the facility needs to reach Reτ ≈ 4 × 104, we obtain that the radius of the
Long Pipe should be 0.48m. The radius of the pipe is subjected to another
constraint: the length-to-diameter ratio (L/D) of the pipe itself, a key feature
of the design of pipe flow experiments. According to Zagarola et al. 1996, this
parameter depends on two conditions that need to be verified: the length the
boundary layer needs to grow and reach the center of the pipe, and the length
required by turbulence to become fully developed. In both cases, the length
grows with increasing Reynolds number. As discussed by Zagarola et al. 1996,
a length of 100D (around 100m) is necessary to fulfill both requirements at
the regimes investigated. Fig.3.1 clarifies the need of a large-scale experiment
like CICLoPE without lowering the fluid viscosity to reach the high Reynolds
numbers regime.

3.2. General construction

The basic assembly of the Long Pipe in CICLoPE consists in a closed-loop
wind tunnel operating at atmospheric pressure and developing on two floors
of the laboratory. The circular test section is 111.5m long (see Fig.3.2) and
has a diameter of 900mm ± 0.2mm, resulting in a length-to-diameter ratio
of L/D ≈ 123. The pipe is composed of 22 elements, each 5m long, and a
last one of only 1.5m where measurements are usually performed (3.3). Every
element of the pipe is equipped with four static pressure wall taps, positioned
in the streamwise direction and four metal access ports, azumuthally spaced
and designed to sit flush with the inner surface of the pipe. Each element is
made in carbon fiber, using the filament winding technology which allowed to
meet the requirement of smooth internal surface, with a surface roughness of
krms < 0.2µ m (corresponding to k+ < 0.02). The test-section is linked to
the return circuit, situated at the ground floor, through the shape converter,
diffusers and corners.

Mass flow through the pipe is generated by the fan group, comprising two,
two-stages counter rotating axial fans installed in series. The fan diameter is
1.8m, extending for 4.2m, absorbing a maximum power of 340kW. Each axial
fan is provided with two propellers, mounted on a shared ac-motor powered
by a frequency inverter for accurate velocity control. The fans are designed to
produce a pressure increase of 6.5kPa, at a volume flow rate of 38 m3/s, which
corresponds to a centerline velocity of 60m/s at the test-section. During the
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Figure 3.1: Range of Reynolds numbers vs viscous length scales for different
pipe flow experiments and facilities. vertical dashed line represents the lower
boound of the high-Reτ region (≈ 13300). The horizontal dashed line is the
l∗ > 10µm limit for sufficient spatial resolution. CICLoPE is designed to work
in this region. Vertical dotted line is the highest reported DNS of a pipe flow
(Reτ = 3008 by Ahn et al. 2015). Horizontal dotted line is the fully resolved
measurements for the NSTAP sensors by Bailey et al. 2010 of a sensing length
of 30µm.

experimental campaigns whose results are presented here, only one of the two
fans was operative, allowing to reach a maximum centerline velocity at the test
section of 40m/s. Noise-absorbing material coats a total length of 20m before
and after the fan group, to reduce the noice produced and allow the wake of
the fan to decay before the corner.

The closed-loop nature of the facility guarantees stable flow conditions and
low turbulence levels. Excellent temperature control (± 0.1◦C) of the air inside
the pipe is obtained via the heat-exchanger located at the end of the return
circuit and connected to the two-air conditioning systems, located just outside
the site.

The flow conditoning section is composed of a honeycomb, 4 screens, a
settling chamber and a 4:1 convergent.

3.3. Instrumentation

Measurements are performed at the test section of the Long Pipe, which is
the 1.5m-long element, located at x/D ≈ 123, just before the shape converter.
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Figure 3.2: The Long Pipe at CICLoPE, 111.5m long and with a circular cross-
section with a diameter of 0.9m.

Figure 3.3: Test section, located at x/D≈ 123 from the convergent.
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Here, the centerline velocity is usually monitored through an L-shaped Prandtl
tube, mounted on the upper access port of the test section. The total and
static ports are connected to an MKS Baratron 120AD differential pressure
transducer, with a 1333 Pa range, acquiring the dynamic pressure at a rate of
10Hz.

When higher accuracy in measuring centerline velocity is required, as in
the experimental campaign to determine κCL as discussed in chapter , a total
head probe is used, installed on a supporting system vertically spanning the
entire diameter and designed to minimise the blockage effect. In this case, the
static pressure is acquired via one of the four static-pressure taps positioned
every 90◦ around the circumference of the test section.

Given the confirmed axial-symmetry of the pipe (Fiorini 2017), any of the
four taps can be used. The static-pressure taps have a diameter of 1mm and are
placed on every pipe-element. In particular, for each 5m-element, 5 pressure
taps are located 1m apart, and the last one (furthest from the convergent), 3
additional ones are positioned azimutally every 90◦. In the test section, being
only 1.5m long, 4 taps are spaced around 30cm.

They are connencted to a 32-channel digital pressure scanner Initium to
acquire the static pressure at different locations the pipe. The pressure scanner
has a 2500 Pa range and a manufacturer reported accuracy of ±1.25Pa. The
acquisition frequency is kept at 5Hz and the results from each tap is averaged
for the entire sampling time, to compute the pressure drop and consequently,
the shear stress and the friction velocity uτ , crucial for turbulence scaling.

For the measurements presented in this thesis, as it will be detailed in
chapter 5, up to 11 channels are retained for the linear fit to estimate the pres-
sure drop, covering around 70m upstream the test section. Ambient pressure
is acquired though a MKS Baratron 120AA absolute pressure transducer, with
a 133322 Pa range. The ambient temperature is monitored through a PT 100
thermistor, secured inside the test section, used to retrieve air density.

Two types of traversing system are used to hold and move the probe used
during the measurements. Both fit the 150mm round access ports, 4 for each
pipe section, azimuthally equally spaced to allow different measuring stations,
both in streamwise and azimuthal directions. The first traversing unit, used
during the two-point correlation experimental campaign, is an hollow airfoil
made in composite material, sliding through the wall. At the edge of the air-
foil, the one inside the test section, the probe holder is mounted, and the cables
are conveyed outside the pipe to be connected to the acquisition board through
the cavity inside the airfoil. Since it was designed for near-wall measurments,
it spans from the wall to a maximum distance of around 0.3R ≈ 13cm. It is
operated with a stepper motor, with a resolution step of 10µ m, using a Ren-
ishaw Tonic T100x relative optical linear encoder to retrieve the position, with
a 0.5µ m resolution. The advantage of fixing the linear encoder on the moving
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part of the traverse system is that any play in the mechanism is accounted for
during the acquisition.

Figure 3.4: Small traversing (from Fiorini 2017). a) CAD model, b) part of
the traversing outside of the test section, c) part of the traversing inside of the
pipe.

The second traverse system was designed by Hutchins et al. 2011. The tra-
versable sting was mounted at the test section, vertically spanning the entire
diameter of the pipe and therefore requiring the access of two ports. To min-
imise the intrusivity, the sting has a NACA0012 profile, with a chord length of
69.3mm. It allows to perform wall scans from locations below the inner peak
(y+ < 10) up to 0.93R from the wall. The traversed distance is limited by the
structural stability of the system when exposed to high flow velocity. It is con-
nected to a stepper motor, allowing a minimum vertical step of 8µm, and the
position is retrieved using a Renishaw RG58C linear encoder with a resolution
of 0.1µm. In both cases, the steppers are operated with the National Instru-
ments NI-9501 modules installed on the cRIO9-68 chassis, while the ecoders
are read via a NI-9401 digital I/O module.

A third traverse system, referred to as the ”global-traverse” from here on, is
used as support during the hot-wire calibration or to hold the total-head probe
during centerline measurements. It was designed to span the entire diameter of
the pipe, offering a greater degree of flexibility and it can host multiple probes,
at the expenses of a higher blockage compared to the second traverse described,
and obviously the ”small” one. It is operated with a similar stepper motor as
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Figure 3.5: Global traverse (from Fiorini 2017). a) CAD model, b) Traverse as
mounted at the test section.

the first traverse, but the position is retrieved through an integrated rotative
encoder, mounted on the shaft.

3.3.1. Hot-wire anemometry

The hot-wire probes used are custom made single-wire boundary-layer type
of probe, with a 2.5µm Wollaston wire soldered on Dantec-style stainless steel
prongs, with a nominal sensing length of 0.5mm, as shown in Fig.3.6, to keep the
length-to-diameter ratio as close as possible to 200 as suggested by P. M. Ligrani
and Bradshaw 1987. The hot-wires are operated in constant-temperature mode
(CTA), by a Dantec StreamLiner 90N10 frame and 90C10 CTA channels with
an overheat ratio a = (Rw−R0)/R−0 = 0.8, where Rw is the working resistance
of the wire when heated at operating temperature, and R0 is at cold/reference
state. The working temperature of the wire, Tw is approximately 250◦C, and
the temperature coefficient is 0.0039 1/C for Platinum. The sampling frequency
is set at 65kHz, with a low pass filter at 10kHz for all measurements presented.
The signal is acquired through the National Instrument NI-9215 Analog Input
module, mounted on the same cRIO 9068 chassis as the traverse system.

Calibration of the wire is performed in-Situ, mounting the probe on the
global traverse at the test section, placed horizontally, and the hot-wire probe is
positioned at the centerline of the pipe. The centerline velocity is monitored via
the L-shaped Prandtl tube, mounted at the test-section using the upper access
port, in order to place it as close as possible to the hot-wire without being
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Figure 3.6: Single-wire, boundary-layer type of probe. Sensing length of the
wire, L=0.5mm, diameter d=2.5µm

excessively intrusive. The temperature of the flow is acquired as described
above. The reference calibration temperature Tref is obtained averaging the
temperature during the entire process, while hot-wire voltage V, centerline flow
velocity U and temperature are acquired for each point. Moreover, the voltage
for each calibration point is corrected for possible temperature variation with
respect to the mean temperature of the i-th point Ti, using the expression from
Bruun 1995.

Vcorr(Tref ) = Vm(Ti)(1−
Ti − Tref
a/α

)−1/2 (3.6)

where Vm is the voltage measured and Vcorr is the corrected one. The
calibration velocity range depends on the type of measurement and the max-
imum speed that will be reached. Where possible, the entire velocity range
offered by the facility was spanned, acquiring more than ten points. The cal-
ibration coefficients and curve are obtained performing a least-square fitting
with a fourth-order polynomial to the n calibration points:

U = c0 + c1V + c2V
2 + c3V

3 + c4V
4 (3.7)

where c0...c4 are the five calibration coefficients. Given the difficulties as-
sociated with calibrating at low speeds when ex-situ calibration is not possible,
the voltage at zero speed is acquired and used as first point.





CHAPTER 4

Scaling of centerline velocity

In order to estimate the accuracy of the pressure drop along the pipe and
its effects on the friction velocity and Von Kármán constant at the centerline
κCL, measurements using a Pitot probe and a set of static pressure taps are
performed. Instead of adopting an empirical approach, like in the work of
Fiorini 2017 for the same facility, a systematic analysis is carried out. This
chapter presents the results related to the pressure drop along the pipe and
mean flow behaviour at the centerline for Reτ ranging from 8.9×103 to 3.9×104.

4.1. Experimental set-up

The pressure drop along the pipe is estimated by acquiring the static pressure
at different streamwise locations along the pipe. The 1mm-diameter wall taps
are connected to the digital pressure scanner Initium, with a reported accuracy
of ∆p = ±1.25Pa, uncorrelated between the channels. A total of 19 channels
are acquired at a sampling frequency of 5Hz for a one-minute period. The
centerline velocity is monitored placing a Pitot-probe at the centerline of the
test section, with an accuracy of 1mm, connected to the MKS Baratron 120AD
differential pressure transducer. The final set-up is pictured in Fig.4.1 For a
detailed description of the instruments used the reader is referred to chapter 2,
while table 4.1 below reports the parameters characterising the flow for the Reτ
investigated. Given the high accuracy required for this kind of experiments,
extreme care is paid in choosing which pressure taps to retain to compute
the pressure drop and which Pitot probe to use. The procedure is thoroughly
described in 4.1.1 and in 4.2.1 respectively.

4.1.1. Choice of the ports

Since the static pressure follows a linear decay for a fully developed turbulent
pipe flow, the pressure drop can be estimated by linearly fitting the experi-
mental data points. An important parameter is the length over which the fit
is applied, i.e. the number of points that are considered in the fit. A detailed
analysis on the effect of the number of taps on the pressure drop estimate can be
found in Fiorini 2017, where 8 taps are used in the linear fit, covering a distance
of about 40m upstream of the test section, corresponding to x/D=44. For the
current experiment, up to 19 channels are acquired, exending to approximately
70m upstream the test section.
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Figure 4.1: Left: a portion of Long Pipe in CICLoPE, where the location of
the wall-taps and pitot probe are indicated.

Among the numerous methods to remove outliers when performing a linear
fit, a ”modified” version of the Montecarlo method is implemented. Instead of
randomly perturb the data choosing a random value in the range [-1.25, +1.25],
the ”distorted” static pressure from the i-th wall tap (p(xi)) is obtained by
considering all possible combinations of the transducer accuracy: 0, ±1.25Pa,
for a total of 3N cases (N number of taps). For each combination the pressure
drop is computed using the linear-square fit:

dp

dx
=

∑
xip

1+α
fit

∑
pαfit −

∑
xip

α
fit

∑
pα+1
fit∑

x2
i p
α
fit − (

∑
xipαfit)

2
(4.1)

where xi is the location of the i-th pressure tap, pfit is the value of the static
pressure at the i-th location and α is the weight of the least-square method, set
to 1 as it has proven not to influence the results. The procedure is applied for all
nine Reynolds numbers. To choose which ports to discard, the deviation from
the linear fit is computed as the difference between the experimental pressure
data and the value of the linear fit at the same location xi:

pdev(xi) = p(xi)− pfit(xi) (4.2)

Fig.4.2 shows the deviation from the linear fit of the static pressure from
15 of the 19 ports that are initially considered for the determination of the
pressure drop. The taps located at 69.25m and 94.225m from the inlet of the
Long Pipe are discarded in the first iteration, since their deviation is noticeably
larger than the specified transducer accuracy ∆p, for all nine Reynolds numbers
investigated. The itearation continues until the resulting mean value of the
pressure drop of the current iteration is within the standard deviation of the
previous one, suggesting that the choice of the pressure taps and their location
is not critical. The results for 11 and 7 taps are summarised in Table 4.1. Based
on these observations, it is decided to retain 11 taps for the computation of the
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Reτ Mean Standard deviation
7 taps 11 taps 7 taps 11 taps

8.1 ×103 0.402 0.407 0.032 0.0275
1.3 ×104 0.9485 0.951 0.0325 0.028
1.6 ×104 1.656 1.659 0.0325 0.0275
2.1×104 2.6355 2.636 0.0326 0.028
2.5×104 3.752 3.752 0.0325 0.028
2.9×104 5.135 5.133 0.0325 0.0275
3.3×104 6.699 6.699 0.0325 0.0275
3.7×104 8.485 8.483 0.0325 0.0275
3.9×104 9.725 9.720 0.0325 0.0275

Table 4.1: Comparison between mean and standard deviation of pressure drop
when 7 and 11 taps are retained for the linear fit.

pressure drop along the pipe, whose deviation from the fit is shown in 4.3. In
Fig.4.4 it is shown the mean pressure measured for each of the 11 taps used
for the fit, for the 9 Reynolds numbers investigated. The ∆p reported on the
y-axis refers to differential static pressure measured along the pipe, using the
first pressure tap after the test section as reference. The dashed lines represent
the linear fit obtained with the least-square method, to compute the pressure
drop.

From the standard deviation of the error of the fit, the 95% confidence
interval for the slope of the linear regression pfit = xi

dp
dx + b can be computed;

for a distribution of n points, 11 in this case, with coordinates (xi, pi), in
absolute value [Pa/m] (from Bendat and Piersol 2011):

95CI =

√∑N
i=1(pi − pfit)2

N − 2
·
√

1∑N
i=1(xi − x̄i)2

· tN−2,α/2 (4.3)

The results are then normalised with the mean value of the pressure drop
for each Reynolds number to obtain the percentage variation:

95% =
95CI

µdp/dx
(4.4)

Results for the nine Reynolds numbers are shown in Fig.4.5. The error is
seen to be constantly around 0.5% except for the two lowest Reynolds numbers,
where transducer accuracy has a greater impact.

4.2. Centerline velocity measurements

From the derivation of the pressure gradient it is possible to estimate the fric-
tion velocity uτ exploiting the geometry of the pipe, yielding:
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Figure 4.2: Deviation from the linear fit for each of the 15 taps retained for
the 9 Reτ .

uτ =

√
τw
ρ

(4.5)

with τw being the wall shear stress, defined as in eq.(2.56). The friction
Reynolds is now introduced as:

Reτ =
uτR

ν
(4.6)

By combining the log-law and the velocity-defect law introduced in 1, the
centerline relation can be obtained in the form:

U+
cl =

1

κcl
ln(Reτ ) + C (4.7)

Where U+
cl = Ucl/uτ is the inner-scaled centerline velocity, C is the sum of

the additive constants of the two equations. The asymptotic matching of the
inner and outer region through the logarithmic region discussed in Coles 1956b,
requires κ = κcl, with κ being the Von Kármán constant governing the logar-
tihmic law. As extensively reported in the literature review in chapter 2, κcl
for the pipe flow from different facilities has constantly remained larger than
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Figure 4.3: Deviation from the linear fit for each of the 11 taps retained for
the 9 Reτ .

0.42. This value is still considerably higher than the Von Kármán constant cal-
culated by fitting the mean velocity profile in the logarithmic region, which for
the Long Pipe is reported by Fiorini 2017 to be κ = 0.39. To assess whether it
has a physical signifiace or it is solely due to experimental uncertainty, pressure
drop acquisitions and centerline velocity measurements are simultaneously per-
formed. First, the value of κcl for the Long Pipe is computed. Then, a detailed
uncertainty analysis is performed on the pressure measurements, to assess the
influence of the uncertainty of uτ on the value of κcl, and therefore the statis-
tically significant difference between κcl and κ.

4.2.1. Pitot probes

The centerline velocity Ucl is estimated as:

Ucl =

√
2∆p

ρ
(4.8)

where ρ is the air density and ∆p = ptot−pstatic, acquired through a Pitot probe
connected to a MKS Baratron AD differential pressure transducer. In order to
improve the Pitot probe measurements of the centerline velocity, in terms of
probe deflection and vibrations when exposed to the highest flow speeds, three
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Figure 4.4: Differential pressure measured at each of the 11 taps along the pipe,
using the first tap after the test section as reference, for the range of Reynolds
numbers investigated. Only the taps retained in the linear fit are shown. The
dashed lines are the linear fit obtained with the least-square method.

Type of probe Outer diameter [mm] Inner diameter [mm]
Pitot-static #1 6 1.8
Total-head #2 1 0.2
Total-head #3 3 1

Table 4.2: Geometrical charcteristics of the three probes tested.

types of probes (in Fig.4.6) are tested. Geometrical characteristics are listed
in table 4.2 above.

In the case of the Pitot tubes, the static pressure is acquired from the tap
located at the bottom of the pipe circumference at the same location as the
probe, as detailed in Nagib et al. 2017. Each probe is mounted at the test
section of the Long Pipe, at x/D = 122, since Fig.4.7 shows that placing the
probe at the test section or 5.5D upstream does not affect the results. The first
probe is mounted on a supporting system designed to minimise the blockage
effect, whereas the other two are installed on a traverse system spanning the
entire diameter of the pipe. A preliminary investigation on the behaviour
of the probes and their support systems is carried out, to look for possible
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Figure 4.5: 95% confidence intervals, in [%] for the pressure drop acquired for
9 Reτ .

Figure 4.6: Left: probe #1. Bottom right: probe #2, top right: probe #3.

vibrations and deflections, monitored through a glass window mounted at the
probe location. Probe #1 is seen to vibrate at the highest velocities, therefore
a stabilising brace is added to the stem, which is in turn periodically thickened
with tape to reduce the Von Kármán vortex shedding, without compromising
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Fan speed [%] Pitot static Top Front Bottom Back
40 % 16.89m/s 16.81m/s 16.83m/s 16.81m/s 16.81m/s
100 % 43.60m/s 43.34m/s 43.36m/s 43.36m/s 43.40m/s

Table 4.3: Comparison of the centerline velocities obtained using the Pitot-
static and the four wall taps.

the blockage. Contrary to the Pitot-static, the two total-head probes show no
sign of vibration nor deflection. Subsequently, the axi-symmetry of the flow is
verified by alternatively acquiring the static pressure from each of the four taps
around the test section. The symmetry of the pipe is confirmed by variations
of less than 0.15% between the resulting velocities obtained by using the four
taps, and around 0.5% compared to the Pitot static port, as reported in table
4.3.

To benchmark the different probes performances and evaluate the corre-
sponding centerline velocity measurements, the bulk velocities Ubulk estimated
from the pressure drop at the contraction entrance to the pipe are used. The
bulk velocity is computed by employing the Bernoulli’s theorem, valid for in-
compressible and irrotational flows:

p1 +
1

2
ρv2

1 = p2 +
1

2
ρv2

2 ; (4.9)

with the indeces 1 and 2 denoting the entrance and the exit of the convergent,
respectively. Therefore, p1 and p2 are the static pressures and v1 and v2 the
mean velocities of the two sections, since the viscous losses can be considered
negligible in the convergent, any variation in pressure can be regarded as solely
caused by a velocity variation:

v1

v2
=
A2

A1
; (4.10)

with A1 and A2 being the cross-sectional areas. Since the contraction ratio of
the convergent of the Long Pipe in CICLoPE is CR = A1/A2 = 4, v1 = 1

4v2.
Substituing in eq.(4.9), it yields to:

v2 =

√
32(p1 − p2)

15ρ
; (4.11)

Since v2 is the mean velocity at the exit section of the convergent, for mass
conservation considerations it is the bulk velocity Ubulk at the test section. The
trend of the bulk velocity with the centerline velocity at the test section for the
three probes is shown in Fig.4.8, where a problem with probe #2 is highlighted,
given the lower value of UCL.
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Figure 4.7: Ratio of centerline to bulk velocity versus fan speed.

Therefore, the results presented here are from probe #3, since from Fig.4.7
it has a lower blockage and its inner viscous-scaled diameter is such not to fall
into the range of sizes that requires a correction. According to Mckeon et
al. 2004 and Chue 1975, the geometry of the probe itself can influence the
data. In the case of probe #2, yielding a considerable lower ratio of Ucl/Ubulk
despite being mounted on the same traverse system as #3, the inner-diameter
of d+ = 20 falls inside the range where viscous corrections are required. In Fig.
4.9 the inner-scaled centerline velocity is reported as function of the friction
Reynolds number. The experimental data acquired for a range of Reynolds
numbers from 8.1 × 103 to 3.9 × 104 are seen to follow the logarithmic decay.
By fitting the data points in eq.(4.7), considering the entire range of Reynolds
numbers acquired, the following relation is obtained:

U+
cl =

1

0.429
ln(Reτ ) + 7.25 (4.12)

Comparing the present result with the panorama of pipe flow experiments
in Fig.4.9, the value is in agreement with the recent work on the SuperPipe
data by Cantwell Cantwell 2019, with κCL = 0.4311 and C=7.3442. Except
for the data by Monty 2005, obtained in another facility and at lower Reynolds
numbers (up to a maximum of Reτ = 4000), data are seen to agree well with
results from other pipe flow facilities. On the other hand, it is worth to point
out that Zanoun, Durst, and Nagib 2003 proposed values of κCL ranging from
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Figure 4.8: Bulk velocity as function of centerline velocity for the three probes
tested.

Figure 4.9: Inner-scaled centerline velocity vs friction Reynolds number. CI-
CLoPE data fit, from Reτ = 8.1 × 103; CICLoPE data fit, from Reτ > 104;
SuperPipe data fit from McKeon, Zagarola, and Smits 2005; Monty 2005; Su-
perPipe data fit from Cantwell 2019
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0.33 to 0.43. To verify the significant statistical difference between the κs found
with the fit of the logarithmic region of the mean velocity profile and the one
obtained with the friction relation, a detailed uncertainty analysis is carried
out. Since both U+

CL and Reτ are functions of uτ , the it is interesting to verify
the sensitivity of the error on uτ for the estimation of the slope of their linear
fit, κCL. Moreover, since the uncertainty on uτ can increase noticeably at low
Reynolds numbers, its effect will be investigated. In this case, considering only
Reτ > 104, κCL = 0.446.

4.3. Uncertainty analysis

4.3.1. Experimental data

A detailed uncertainty analysis is required to estimate how the experimental
error on the pressure drop acquisition affects the uτ estimation, and therefore
the value of κCL. In this way, we can investigate if it is possible to exclude the
experimental uncertainty as cause of the difference between and the κ found
with the fit of the mean velocity profile in the log-region (referred from here on
with κwall). Referring to the centerline logarithmic relation and the definition
of uτ expressed in eq.(4.7), it is clear how the uncertainty on κCL is introduced
by the uncertainties affecting the pressure drop along the pipe.

The sources of the uncertainty are essentially two: the random errors due to
the accuracy of the Initium pressure scanner, reported by the manufacturer to
be ±1.25 Pa, and statistical convergence. Since the static pressure is acquired
during the whole test, the dominating uncertainty is the one connected to the
pressure scanner accuracy.

Among all possible methods to perform the uncertainty analysis, the Monte
Carlo method is chosen, since it allows to explore the influence of the error dis-
tribution. Both a continous and discrete error distributions are tested. In
the case of the discrete error distribution, the extreme values of the trans-
ducer accuracy are taken (±1.25Pa and 0) in order to investigate all possible
combinations required to examine the worst case scenario. The two cases are
discussed in the following:

• Monte Carlo with continuos error distribution: A random error
in the range [-1.25; 1.25]Pa is added to the static pressure from each tap,
iterating the process for Niter = 104. The error distributions tested are
gaussian and boxcar. The error changes with the tap considered and
with the Reynolds number, since the pressure scanner used has N sen-
sors and was re-zeroed after every acquisition. For each iteration i and
for each Reynolds number tested j, the pressure drop dp

dx ij
, the friction

velocities uτij and the Reynolds numbers Reτij are computed from the
”perturbed” data. An example of the pressure drop distribution result-
ing from a gaussian error distribution for N iterations is shown in Fig.

53



Figure 4.10: Pressure drop distribution for Reτ = 3.1× 104 after applying the
Gaussian error distribution,

4.10. For each iteration, the nine pairs of (U+
clij

;Reτij ) are linearly fit-

ted to compute κCLij , shown for a gaussian error distribution Fig. 4.19,
centered at κCL ' 0.435.

• Monte Carlo with discrete error distribution: All the possible
permutations of the extreme values ±1.25Pa and 0 Pa are computed,
considering 11 pressure taps along the pipe and 9 Reτ , as described in
4.1.1, resulting in 9 matrices 311×11. Each line of the matrix is the error
to be added to the static pressure from each tap. Each line then becomes
the ”perturbed” static pressure, now used to computed the ”distorted”
pressure drop dp

dx ij
. The resulting distribution for a Reynolds number is

shown in Fig. 4.11.
Once all permutations are considered, the relative error of the pres-

sure drop is computed as:

edpdxj =
σdpdxj
µdpdxj

(4.13)

where µdpdxj and σdpdxj are the mean value and the standard devia-
tion of the pressure drop for the j − th Reynolds number, respectively.
Following the error propagation theory, the error on uτ is defined as:

euτ =
edpdx

2
(4.14)

and it propagates respectively on Reτ and and U+
CL as:

Reτ,pert = Reτ (1 +A · euτ ) (4.15)
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Figure 4.11: Pressure drop distribution for Reτ = 3.1× 104 after applying the
discrete error distribution method.

and

U+
CLpert

= U+
CL(1−A · euτ ) (4.16)

where A is the matrix composed of ±1 and 0 to consider all the cases
where the error is added (1), subtracted (-1) or 0 (0).

4.3.1a. Friction velocity. From the centerline relation 4.7, where U+
CL = UCL/uτ ,

it is clear of uτ is a key parameter for the estimation of the κCL. Therefore,
here we want to estimate the error in uτ to see later how it propagates on κCL.
The methods described above are applied on the uτ resulting, for each itera-
tion or permutation, from the ”perturbed” pressure drop. For a fixed Reynolds
number of 3.3× 104, an example of PDF of uτ is shown in Fig.4.13. The PDF
of uτ is seen to be indifferent to the shape of error distribution implemented in
the continuos method, and the discrete method giving a broader distribution of
value, since it considers all the possible cases. A detailed overview of the mean,
standard deviation and errors affecting uτ in the three cases is reported from
Fig.4.14 to Fig.4.16. It is confirmed that for the whole Reynolds number range
the mean is not affected by the method used, and the percentage error ob-
tained when the error analysis is performed with the discrete error distribution
is slightly higher that with the continuos error distribution.

Fig.4.17 and Fig.4.18 simulate the results if a more accurate pressure scan-
ner is used. If for the current case of reported accuracy±1.25Pa, for Reτ > 104,
the error is solidly lower than 1% when a continuos error distribution is ap-
plied, or slightly higher for the discrete error distribution, great improvements
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Figure 4.12: Comparison of the mean of the κCL obtained for each method
described above. AR=all Reynolds numbers are considered, NL= the lowest
Reynolds number is discarded.

on estimating uτ are seen already when using a pressure transducer with half
of the uncertainty, for the error is well below 1% even at the lowest Reτ .

4.3.1b. Centerline κ. For each ”perturbed” uτ , the inner-scaled centerline ve-
locity U+

CL and logarithm of the friction Reynolds Reτ are computed, and the
slope of linear fit of the two quantities is estimated. Its inverse represents the
value of κCL. The error analysis is conducted in same way as the previous
sections, and the resulting PDF distributions for the two methods are repre-
sented in Fig.4.19 and Fig.4.20, for the Gaussian and discrete error distribution
respectively.

Particularly interesting is the resulting κCL distribution obtained with the
discrete error distribution, shown in Fig.4.20. It presents a three-lobed PDF:
one central ”hump” at κCL ' 0.443, close to the one found for the continuous
error method, and two symmetric humps at 0.37 and 0.53. As pointed out
in Nagib et al. 2017, the three-lobed PDF reflects the dominance of the low-
est Reynolds number in the least-square fit to determine κCL. In general, as
shown in Fig. 4.12 the mean of κCL is not considerably affected by the choice of
method implemented for the analysis, leading to a mean κCL = 0.4409±0.0054,
corresponding to a variation of less than 1.5% between all the methods imple-
mented.
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Figure 4.13: PDF of uτ resulting when appliyng the Montecarlo method with
a Gaussian and boxcar error distribution, and discrete error distribution.

Unlike the mean, the standard deviation is instead influenced by the choice
of method implemented, with a variation of around 15% between the cases
(mean standard deviation of 0.0624 ± 0.009), with the discrete error distribu-
tion, that considers all possible cases, leading to the highest standard devia-
tion. As reported in Fiorini 2017, the uncertainty on friction measurements
greatly affects the low-speed case, as show in Fig.4.21 where the static pres-
sure measured along the pipe is plotted with ±1.25 Pa error bars, reporting
the transducer accuracy for Reτ = 3.1 × 104. On the other hand, the effect
is nearly absent in the high Reynolds numbers regime, where the uncertainty
of the pressure scanner of ±1.25 Pa becomes negligible. For these reasons, the
effect of dropping the lowest Reynolds number is investigated, by repeating the
analysis without considering it in the linear fit.

In this case, the mean value of κcl = 0.443±0.013 is still inside the range of
κCLs obtained considering all Reynolds numbers, and no clear pattern is visible
in the behaviour of the magnitude of κCL when the lowest Reτ is neglected.
The reason behind the decrease for the discrete error distribution is still not
clear, but the value is still in the uncertainty range of the method. On the other
hand, Fig. 4.22 highlights how dropping the lowest Reynolds number decreases
noticeably the standard deviation in all cases, leading to a decrease of nearly
50% of the mean standard deviation, and therefore on the error on κCL that
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Figure 4.14: Mean of uτ for the 9 Reynolds numbers investigated applying
the Monte Carlo method with a continous (Gaussian and boxcar) and discrete
error distribution.

Table 4.4: Comparison of mean and standard deviation of κCL

Method All Reynolds No lowest Reτ

µκCL σκCL error % µκCL σκCL error %
Gaussian 0.4353 0.0536 12.3 % 0.4517 0.0338 7.4 %
Boxcar 0.446 0.0619 13.9 % 0.4506 0.0381 7.4 %
Discrete 0.4413 0.0717 16.2 % 0.4283 0.0331 7.7 %

drops from around 14% to 7%, as seen in table 4.4. Moreover, the standard
deviation becomes basically independent from the method used. The reason
behind the low-Reynolds number effect, besides being linked to a not sufficient
scale separation, could be the combination of log-scale and non-logarithmic
spacing of the tested Reτ , making the error even larger at low values. The
results are compared and summarised in table 4.4. Therefore, considering the
range Reτ > 104, leads to a κCL well higher than the one found by fitting the
logarithmic region of the mean velocity profile that does not follow inside the
uncertainty range.
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Figure 4.15: Standard deviation of uτ for the 9 Reynolds numbers investi-
gated applying the Monte Carlo method with a continous and discrete error
distribution.

Figure 4.16: Percentage error on uτ for the 9 Reynolds numbers investigated
applying the discrete error distribution and the Gaussian and boxcar error
distribution.
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Figure 4.17: Percentage error on uτ applying a continuous gaussian error dis-
tribution, for three values of transducer accuracy.

Figure 4.18: Percentage error on uτ applying the discrete errror distribution,
for the three values of transducer accuracy.

In conclusion, if we consider a range of Reynolds numbers ensuring a suf-
ficient scale separation, for CICLoPE κCL = 0.44± 0.03. This range excludes
the value of κwall.
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Figure 4.19: PDF of κCL resulting from a gaussian error distribution for the 9
Reτ .

4.3.2. Influence of transducer accuracy and Reynolds number range

In this section we want to investigate the effect of the pressure scanner accuracy
and the range of Reynolds number considered, on the overall uncertainty. To do
so, the error analysis is applied to artificially cretated data from the centerline
fit obtained in the section above and the value of κCL = 0.42 found by P. A.
Monkewitz 2017 reanalising the SuperPipe data. This allows to extend the
investigation also on the initial guess of κCL. Starting from an arbitrary interval
of friction Reynolds numbers, ranging from 5 · 104 to 105, the pressure drop
along the pipe is retrieved. Using the wall taps locations, also the static pressure
from each of the 11 taps retained in 4.1.1. Then, the inner-scaled centerline
velocity is retrieved by inputting the value of κCL and the constant C found by
fitting the experimental data. The functions, detailed below and represented
in Fig. 4.23, are two pure logarithmic laws. The two sets of data created using
the value of κCL found by fitting the experimental data and the value found
by P. A. Monkewitz 2017 will be called Fit 1 and Fit 2 from here onwards:

• Fit 1: κCL = 0.429 and the constant C = 7.25 resulting from the linear
fit of the experimental data.

• Fit 2: κCL = 0.42, according to the results by P. A. Monkewitz 2017.
Minimising the error from the fit yields a C = 6.7.
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Figure 4.20: PDF of κCL resulting from the discrete error distribution for the
9 Reτ .

Figure 4.21: Static pressure acquired along the pipe for Reτ = 3.1×104. Error
bars report the ±1.25Pa transducer accuracy.
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Figure 4.22: Comparisono of the standard deviations of the κCL for each
method described above. AR=all Reynolds numbers are considered, NL= the
lowest Reynolds number is discarded.

Figure 4.23: UCL vs Reτ for the four synthetic set of data resulting from the
four different fitting functions.
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Fit #1 Fit #2
All Reτ 0.0567 0.0613

No lowest Reτ 0.0546 0.0646

Table 4.5: RMSE for the four fits.

The deviation of the experimental data from each fit, efit is expressed in
the form:

efit =
ln(Reτ )

κCL
+ C − U+

CL; (4.17)

where h is a parameter resulting from the fit. The results are reported in
Fig.4.24 below and from which the root mean-squared error is computed as:

RMSE =

√∑
(efit)2

N − 3
; (4.18)

with N the number of points considered in the experimental linear fit (N =
9 for the case of all Reτ ). The result for each fit is reported in table 4.5.

Figure 4.24: Deviation of the experimental data from the synthetic fit, for the
four cases tested.
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Figure 4.25: Comparison of the mean values of κCL vs pressure transducer
error, for the two fits when the boxcar (B) and gaussian (G) error distributions
are used. All Reynolds numbers are used in the fit to compute the κCL.

Each of thw two resulting data set is subjected to the uncertainty analysis.
The static pressures are perturbed as for the continuos error distribution de-
tailed in the previous sections, using three different error magnitude: ±1.25Pa,
±0.625Pa and ±0.125Pa. As with the experimental data the effect of the low-
est Reynolds number is assessed.

The choice of the error distribution is seen not to influence the value of the
mean nor the standard deviation, even when the lowest Reynolds number is
neglected in the linear fit to estimate κCL, as Fig.4.25 to 4.28 show. Hence, the
gaussian distribution is chosen to carry further on the error analysis. Dropping
the lowest Reynolds number, the mean value of κCL becomes independent of
the transducer accuracy, as Fig.4.29 exhibits. As for the standard deviation, it
is seen to drop noticeably, constantly below the 0.02 for all transducer’s error
values, as in Fig. 4.30. A summary of the results for a transducer accuracy
of ±1.25 Pa, is reported in table 4.6. The analysis leads to the conclusion
that if a sufficient scale separation is guaranteed, then the initial guess is seen
not to influence the output. Moreover, the value of κCL is independent of the
transducer accuracy and the error noticeably drops compared to a wider range
of Reynolds that includes lower Reynolds numbers.
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Figure 4.26: Comparison of the mean values of κCL vs pressure transducer
error, for the four fits when the boxcar (B) and gaussian (G) error distributions
are used. The lowest Reynolds number is discarded when computing κCL.

Table 4.6: Comparison of mean and standard deviation of κCL

Method All Reynolds No lowest Reτ

µκCL σκCL error % µκCL σκCL error %
Fit 1 - G 0.4411 0.0556 12.6 % 0.4302 0.0154 3.6 %
Fit 2 - G 0.4341 0.0555 12.7 % 0.4216 0.0148 3.5 %
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Figure 4.27: Comparison of the standard deviations of κCL vs pressure trans-
ducer error, for the four fits when the boxcar (B) and gaussian (G) error dis-
tributions are used. All Reynolds numbers are used in the fit to compute the
κCL.
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Figure 4.28: Comparison of the standard deviations of κCL vs pressure trans-
ducer error, for the four fits when the boxcar (B) and gaussian (G) error distri-
butions are used. The lowest Reynolds number is discarded when computing
κCL.
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Figure 4.29: Effect of the lowest Reynolds number on the mean value of κCL
for the four fits. AR=all Reynolds numbers are considered, NL= the lowest
Reynolds number is discarded.

Figure 4.30: Effect of the lowest Reynolds number on the standard deviation
of κCL for the four fits. AR=all Reynolds numbers are considered, NL= the
lowest Reynolds number is discarded.
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CHAPTER 5

Structures interaction

A characterising feature of turbulence is the presence of a wide range of scales.
Small-scale motions, of the order of the viscous length scale l∗ are found in
the near-wall region. On the other hand, large-scale structures are centered far
from the wall and they are seen to develop in the streamwise direction for more
than 10 outer length scales, namely in the case of a pipe the radius R. Starting
from a careful selection of the cut-off frequency to separate the small scales
from the large, this chapter focuses on two aspects. First on investigating the
individual contribution to the full-signal variance across a range of Reynolds
numbers, and then on evaluating the interaction between the scales, since it
existance would challenge the classical turbulence theory.

5.1. Experimental set-up

Hot-wire anemometry measurements are performed at the test section of the
Long Pipe, at x/D ≈ 123. A boundary-layer-type of probe is mounted on
the ”second” traverse described in chapter 3, to scan the boundary layer from
beneath the inner-peak (y+ < 10) to around 0.93R. The sensing length of the
wire is L=0.5mm with a diameter of 2.5µm. The inner-scaled sensing leng-
ths of the wire, together with all acquisition and run parameters of the cases
tested, are reported in table 5.1 below. It shows that the higher Reynolds num-
bers cases are affected by spatial resolution issues, and a posteriori correction
scheme needs to be applied. The wire is operated by the Dantec StreamLiner
Pro in constant temperature mode, at an overheat ratio of 0.8. The wire is cali-
brated in situ against a Pitot tube placed at the centerline of the pipe. Data are
acquired with a 16-bit Data Translation DT9836 card. tsUCL/R ≤ 5000 cen-
terline eddy-turnovers are acquired for Npts ≤ 31 wall normal locations for all
Reynolds numbers investigated (where ts is the sampling time). The sampling
frequency is kept at fs = 65kHz, ensuring that the non-dimensional sampling
frequency is kept f+

s ≥ 1/3 as for Hutchins et al. 2009. The initial position
of the wire cannot be directly estimated through the encoder due to the slight
deflection of the probe when exposed to high speeds. For this reason, an inter-
ative procedure is implemented by using the the diagnostic plot by Alfredsson
and Örlü 2010, where the local mean velocity is compared to the centerline one.
The friction quantities are computed by acquiring the static pressure drop along
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Reτ 9.9× 103 2.2× 104 3.2× 104 3.5× 104 3.9× 104

UCL 9.8 22.9 34.33 38.5 45.5 m/s
Ub 8.4 20 30.2 33.5 38.4 m/s
uτ 0.34 0.74 1.1 1.19 1.36 m/s

dp/dx 0.6 2.9 6.2 7.53 9.73 Pa/m
l∗ 4.55e−5 2.1e−5 1.42e− 5 1.29e− 5 1.38e− 5 m
τ 0.13 0.65 1.4 1.7 2.2 Pa
L+ 11 22 33 38 44
Npts 31 34 37 34 34
κ 0.39 0.39 0.39 0.39 0.39
B 4.5 4.5 4.5 4.5 4.5
fs 65 65 65 65 65 kHz

Table 5.1: Acquisition and flow parameters for all Reynolds numbers tested.

the pipe via the Initium digital pressure scanner, at a sampling frequency of
5Hz. The centerline velocity is monitored through the Pitot probe, connected
to an MKS Baratron differential pressure transducer, located 11R upstream
the test section since it proved not to influence the measurements at the test
location. The temperature is acquired with a PT 100 thermistor, fixed at the
test section. Since measurements can take up to 10 hours, static pressure and
centerline measurements are repeated during each test. Measurements were
performed at 5 Reynolds numbers in the range 9.9× 103 to 3.9× 104.

5.2. Filtering procedure

To evaluate the contribution of the scales to the broadband turbulence intensity,
the full fluctuating velocity signal is decomposed into a its small-scale and large-
scale part, using a spectral filter to divide the small scales from the large scales.
The procedure implemented, and further discussed in the next sections, can be
summarised by the following steps:

• Choice of the cut-off frequency to separate the small-scale from the large-
scale contribution to the full-signal streamwise velocity variance. As it
will be detailed later, the frequency is chosen as the minimum frequency
where the collapse of the streamwise, one-dimensional energy spectra for
different Reynolds numbers is seen to hold, at different wall-normal lo-
cations. For this reason, the scales are actually separated into Reynolds-
dependent and Reynolds-independent, but for sake of simplicity, they
will be called from here onwards large and small scales respectively. As
it will be clear later in this section, the Reynolds-independency of the
small scales does not hold for the entire high-frequency range, due to
the spatial filtering effects on the small scales.
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• Correction for spatial filtering effects. The small scales can be affected
by insufficient spatial resolution as the Reynolds number increases.

• Scaling for the small- and large-scale structures. After the signal has
been corrected for the spatial filtering issues, we want to see if for the
small scales the Reynolds-independency still holds for the entire range
of wall-normal locations, and if so, which trend it has.

The value of the cut-off frequency is chosen on the basis of the ”law-of-the-wall”
for the streamwise energy spectra, recently proposed by Ganapathisubramani in
Ganapathisubramani 2018. The quest of a scaling law for the turbulent energy
spectra has seen numerous suggestions and approaches put forward throughout
the years, ranging from the dimensional analysis approach of Perry and Abell
1977, where the choice of the velocity and length scales was based on the at-
tached eddy hypothesis, to model-free scaling relations for different regions of
the turbulent energy spectra by Zúñiga Zamalloa et al. 2014. It is specifically
thanks to the latter that it was proven the existence of a law-of-the-wall in
the high-wavenumber region of energy spectra for pipes and channels. Gana-
pathisubramani 2018 reinterpreted the dimensional analysis carried out in the
two works mentioned above, and instead of relying on the attached eddy hy-
pothesis to determine the appropriate velocity and length scales, he postulates
the presence of a law-of-the-wall for the small-scale velocity fluctuations, an
analogous of the Prandtl’s law of the mean flow:

u2
s(y

+)

u2
τ

= gw(y+) (5.1)

where u2
s is the small-scale variance of the streamwise velocity fluctuations in

the high-frequency regime, following the law of the wall represented by gw(y+).
This results in a universal form, depending only on inner scales and independent
on the outer ones. To nondimensionalise the turbulent energy kxΦuu(kx, y)
contained at a certain wavenumber kx at a given wall-normal location y, the
quantities needed are a velocity and two length scales for kx and y. Following
the Prandtl’s law of the wall, the friction velocity uτ and the viscous length scale
are chosen as relevant scales for the energy and for the wall-normal location y.
The choice of the second length scale is what differentiate Ganapathisubramani
2018 from the previous studies, choosing the viscous length scale instead of the
wall-normal distance y (as would result from the attached eddy hypothesis).
The choice follows from the law-of-the-wall for the small-scale fluctuations,
independent of the outer influence and affected only by the inner scales, as
l∗ = ν/uτ . This makes the law of the wall, for the streamwise energy spectrum:

kxΦuu(kx, y)

u2
τ

= F (k+
x , y

+) (5.2)
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Therefore, remembering that the integral over the entire wavenumber range
of the power spectral density is equal to the turbulent energy of the streamwise
velocity component: ∫ ∞

0

Φuudkx = u2(y) (5.3)

Recalling eq.(5.1), the universal function in the inner region gw(y+) will
be represented by:

gw(y+) =

∫ ∞
M+

F (k+
x , y

+)dln(k+
x ) (5.4)

is a universal function, across different Reynolds numbers, in the inner region.
In particular, for a given y+ close enough to the wall, eq.(5.4) indicates a
universal value of wavenumber M+, independent of the wall-normal location.

In the present case, analogous to what presented in Ganapathisubramani
2018, the spectra and therefore the filtering procedure is carried out in the
frequency domain instead of the wavenumber. The need to invoke the Taylor’s
hypothes may lead to incorrect assumptions regarding the collapse of the spec-
tra, since it is based on the local mean velocity. In this case, the appropriate
quantities to nondimensionalise the energy, the wall-normal location and the
frequency are still the friction velocity and the viscous length scale for the first
two, while the inner-scaled time (T=ν/uτ ) is the relevant scale for frequency.
The universal function gw(y+) is now found by seeking the collapse in the
streamwise energy spectra across a range of Reynolds numbers such that:

gw(y+) =

∫ ∞
A+

F (f+, y+)dln(f+) (5.5)

such that it is universal in the inner region and A+ is equivalent to M+. In
particular, A+ is the inner-scaled frequency that will be chosen as cut-off to
separate the small- and large-scale contributions to the full-signal inner-scaled
variance.

Therefore, we start by comparing the spectra at similar wall-normal loca-
tions in Fig.5.1 over a range of Reynolds numbers, against the inner-normalised
frequency. The furthest location is chosen to be close to the outer-edge of the
logarithmic region for the lowest Reynolds number. Assuming the bounds of
the logarithmic region to be 3

√
Reτ < y+ < 0.15Reτ as in Marusic et al. 2013,

for the lowest Reynolds 300 < y+ < 1483.

Despite guaranteeing one of the highest accuracies experimentally avail-
able, the data are still slightly affected by spatial filtering. For Reτ = 3.2×104

and Reτ = 3.8 × 104, L+ = 35 and L+ = 44 respectively. The effects of poor
spatial resolution on the pre-multiplied power spectral densities have been thor-
oughly investigated by Fiorini in Fiorini 2017 and shown in Fig.5.2. The peak
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Figure 5.1: 1-dimensional spectra at different wall normal locations for the 5
Reτ investigated. Dashed vertical line is the cut-off frequency later chosen for
separating large scales from small scales.
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Figure 5.2: Pre-multiplied inner-scaled power spectral density at the wall nor-
mal location of the spectrum inner-peak, at Reτ = 1.4×104, for different sensor
lengths. Figure 5.12 taken from Fiorini 2017

attenuation with L+ is clear at the high wavenumbers while the curve collapse
at the lowest wavenumbers which corresponds to the large-scale regime that is
not affected by spatial resolution. This produces an artificial shift of the spec-
tra peak at lower wavenumbers, compatible with the Reynolds number trend
observed in the streamwise spectra shown in Fig.5.1. For these reasons, to set
the cut-off frequency, the collapse is not sought in the entire high-frequency,
but in an intermediate one, where frequencies are still high enough, but not to
the extent to be greatly affected by spatial resolution issues. Based on these
assumptions, A+ = f+ = 0.001 is chosen as threshold.

5.3. Correction scheme

Before separating the small- and large-scale contributions to the broadband
turbulence intensity, the semi-empirical correction scheme proposed by Smits
et al. 2011 is applied to the inner-normalised variance of the full signal u2+.
This method is based on eddy-scaling: using the attached eddy hypothesis it
predicts the energy attenuation due to spatial filtering effects across the entire
boundary layer. Differently from the majority of other correcting schemes (P.
Ligrani and Bradshaw 1987, P. Monkewitz, Duncan, and Nagib 2010), it shows
accurate results for a wide variety of Reynolds numbers and wire lengths, most
probably for its peculiar feature of using the distance from the wall for scaling,
contrary to the viscous length scale as many other do.
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Figure 5.3: Inner-scaled streamwise velocity variance without any correction
applied.

The inner-scaled streamwise variance u2+ = u2/u2
τ is shown in Fig.5.3 for

all the Reynolds numbers acquired, presented without applying any correction-
scheme. In agreement with measurements by Fiorini 2017 and Willert et al.
2017 (using hot-wires and PIV in the same facility, respectively) and measure-
ments in the Princeton SuperPipe by Hultmark et al. 2013, the uncorrected
profiles show both an inner and outer peak in the variance for Reτ > 3× 104.

It is possible now to correct the streamwise Reynolds stress found using a
finite length wire (measured value) to the value it would have if acquired with
an infinitesimally small sensor (true or corrected value). The corrected value is
found by multiplying the the measured value u2+

m with a function of the length
of the wire in viscous units L+, the inner-scaled wall-distance y+ and the value
of the inner-scaled variance measured at the inner-peak location y+ = 15:

u2+ = u2+
m [f(y+)M(L+, u2+

m |y+=15) + 1] (5.6)

where M is seen to be constant for all wall distances, therefore it needs to be
defined at only one location, which is usually the inner-peak one (y+ = 15):
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M(L+, u2+
m |y+=15) =

Atanh(αL+)tanh(βL+ − E)

u2+
m |y+=15

. (5.7)

with the fitting parameters (with no particular physical meaning) being α =
5.6 × 10−2, β = 8.6 × 10−3, A = 6.13 and E = −1.26 × 10−2. In many cases,
especially at high Reynolds numbers, it can be rather challenging to measure at
y+ = 15. In that case, the alternative formulation of M through a regeression
fit can be used:

M(L+) = 0.0091L+ − 0.069 (5.8)

with a note of caution, since it hides the implication that a wire of L+ ≤ 8
could fully resolve the flow, while in practice L+ ≤ 4 is more likely. Then, the
term f(y+) is defined as:

f(y+) =
15ln(2)

y+ + ln(e15−y++1)
(5.9)

The data resulting from the application of this correction scheme are presented
in Fig.5.4.

As already noticed by Fiorini 2017 the variance shows an evident increase of
the inner-peak for the highest Reynolds numbers, after the energy attenuation
due to the insufficient spatial resolution is solved with the correction scheme.
The corrected inner-peak values are compared in Fig.5.5 to the results for the
turbulent boundary layer by Vallikivi, Ganapathisubramani, and Smits 2015,
and other pipe-flow experiments from Superpipe, by Hultmark et al. 2012, and
from CICLoPE itself by Willert et al. 2017 using PIV, where data are not
affected by insufficient spatial resolution.

The difference between the corrected and uncorrected data is computed in
the form:

∆u2+ = u2+
c − u2+

m (5.10)

where u2+
c is the corrected streamwise variance and u2+

m is the measured
one. Based on the assumption that only the small scales are affected by poor
spatial resolution, they should be the only involved in the correction process.
Therefore, the corrected small-scale variance is found:

u2+
s = ∆u2+ + u2+

s,m (5.11)

where u2+
s,m is the not-corrected small-scale contribution to the broadband

turbulence intensity.
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Figure 5.4: Inner-scaled streamwise velocity variance. Data are corrected using
the correction proposed in Smits et al. (2011b)

5.4. Data validation

The quality of the data is assessed on the basis of the data from previous
experiments from the same facility for a similar range of Reynolds numbers.
Single-wire and X-wire hot-wire measurements (with a sensing length of 1mm
and a diameter of 2.5µm and 5µm respectively) were performed by Fiorini

2017 and Örlü et al. 2017 from the wall up to y ≈ 0.3R. The inner-scaled mean
velocity profiles for the five cases investigated are provided in Fig.5.7. In the
logarithmic region the data are fitted using the values of κ = 0.39 and B=4.5
suggested by Fiorini 2017 and Örlü et al. 2017 for the same facility. The value
agrees well with κ = 0.39± 0.02 found by Marusic et al. 2013 using a database
of high-Reynolds-numbers wall-bounded turbulent flows experiments. Another
logarithmic trend is confirmed by Örlü et al. 2017 and Fiorini 2017 for the
streawise velocity variance in the log-region, converging for different Reynolds

numbers and exhibiting a universal slope following: u2
+

= C−Aln(y/R), with
A = 1.26 (Townsend-Perry constant) and C = 1.81. The quality of this fit is
assessed in Fig.5.6 where data are plotted in compensated form.
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Figure 5.5: Inner peak of the viscous-scaled streamwise velocity variance.
Coloured symbols represent data corrected for spatial resolution, while grey
symbols are uncorrected data.

Figure 5.6: Log-law fits to the streamwise variance in wall-units. Curves
are shown compensated for by the log-law with the Townsend-Perry constant
A=1.26 and C=1.81, taken from Fiorini 2017.
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Figure 5.7: Mean streamwise velocity profile in viscous units for the five cases
investigated. The straight dashed line is the logarithmic law implemented.

The quality of the log-law fit is verified through plots of the data compen-
sated for by the expected log-law fits as shown in Fig.5.8. Good agreement in
noticed throughout the entire y+ range of the log-region.

The correction scheme described in the previous section is applied to the
data and the results, plotted in inner-scaling, for the 5 Reynolds numbers are
shown in Fig.5.9. The data are seen to agree well for the entire range of Reτ ,
except for an anomalous behaviour at Reτ = 2.2 × 104, where the variance is
suspiciously higher than the reference data set by Fiorini 2017. For this reason,
the analysis is carried on discarding this set of measurements.

5.5. Small-scale variance

The small-scale contributions are presented in Fig.5.10 and Fig.5.11. They are
separated from the large scales using a spectral cut-off filter, with an inner-
scaled cut-off frequency of f+ = 0.001. The correction is computed in two
steps: first, the Smits et al. 2011 scheme is applied to the full signal, obtaining
the difference between the corrected and uncorrected signal, ∆u+. Secondly it
is assumed that only the small scales are affected by spatial filtering, therefore
the ∆u+ is applied only to the small-scale contribution, as detailed in the
section above. The data are presented in the uncorrected and corrected form
respectively for the retained Reτ after the data validation.

The small-scale fluctuations are seen to collapse for nearly the entire range
of wall-normal locations, up to y+ ≈ 6000, well past the logarithmic region
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Figure 5.8: Log-law fit to the streamwise mean velocity in wall units. Curves
are compensated for by the expected log-law using κ = 0.39 and B=4.5, taken
from Fiorini 2017.

Figure 5.9: Inner-scaled streamwise velocity variance from CICLoPE, dashed
lines are measurements from Fiorini (2017), while diamond symbols is data from
current measurements. Both data sets are corrected using the same correction
scheme proposed by Smits et al (2011b).
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Figure 5.10: Inner-scale streamwise velocity variance for the small scales only.
Data are shown without any correction applied.

for the lowest Reτ , which is located at around y+ ≈ 1500. As a conservative
estimation of the bounds of the log-region of the mean flow, it was followed
Marusic, Baars, and Hutchins 2017 suggesting:

√
Reτ < y+ < 0.15Reτ . In

particular,over a range of Reynolds numbers, the small-scale variance appears
to follow a logarithmic decay with the inner-scaled distance from the wall for
y+ > 500. This logarithmic trend extends beyond the traditional logarithmic
region for the mean profile and has the form:

u2
s(y

+)

u2
τ

= −αln(y+) + β = −0.67ln(y+) + 6.65; (5.12)

Where α = −0.67 ± 0.009 and β = 6.62 ± 0.07 (where uncertainties are
computed as the 95% confidence intervals of the linear regression). The log-
arithmic trend is further confirmed when the small-scale variance is plotted
in the compensated form in Fig.5.12. Here, the logarithmic fit of eq.(5.12)
is subtracted from the experimental data, similarly to an indicator function
where the gradient are plotted. The data show a residual close to zero for a
wide range of y+ locations, compatible with the existence of a universal law-
of-the-wall for the small-scale turbulene intensity of a pipe flow, in the form of
eq.(5.12). The physical implications of the value of the two constants, the slope
of -0.66 and the intercept at 6.62, still needs to be further investigated. Their
magnitude could be dependent on the geometry of the flow considered, since
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Figure 5.11: Inner-scaled streamwise velocity variance for the small scales only.
Data are corrected with the procedure described in the previous section, 5.3.
Dashed black line shows the logarithmic decay of the small-scale variace from
y+ = 600.

despite sharing the same logarithmic decay, the constants differ from the ones
found for turbulent boundary layers (α = −0.15 ± 0.002 and β = 1.59 ± 0.01
Ganapathisubramani 2018), suggesting a geometry dependence of the law of
the wall for the small-scale turbulence intensity. On the other hand, their value
is expected to depend on the the cut-off frequency f+, setting the amount of
energy retained after the filtering process. Fig.5.13 shows the logarithmic decay
for f+ = 0.05, f+ = 0.01 and f+ = 0.005 for the turbulent boundary layer.
Both the values of α and β are seen to decrease in absolute value as the cut-off
frequency increases, tending to a behaviour similar to the turbulent boundary
layer. Physically it means that as the cut-off frequency increases, less energy
is retained for the small-scales, but it decreases more slowly moving away from
the wall.

5.6. Large-scale variance

The inner-scaled variance contribution from the large-scale only is shown in
Fig.5.14. As expected, the large scales’ contribution increases with the Rey-
nolds number for the entire range of wall-distances, differently to the small-
scales’. In Fig.5.15 the value of the contributions at the inner-peak location
y+ = 15 of the small and large scales are compared to the behaviour of the full

84



Figure 5.12: Compensated form of small-scale streamwise velocity vari-
ance. The logarithmic fit is subtracted from the experimental data (dia-
monds).Dashed coloured lines are the bounds of the logarithmic region of the
mean flow (3

√
Reτ < y+ < 0.15Reτ ), for matching colours.

Figure 5.13: Logarithmic decay of the inner-scaled small scale variance, for cut
off frequencies of f+ = 0.001, f+ = 0.005, f+ = 0.01 and f+ = 0.005 for the
turbulent boundary layer.
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Figure 5.14: Inner-scaled streamwise velocity variance for the large scales only.
Dashed line is positioned at y+ = 15, where the maximum of the inner-scaled
streamwise velocity variance is usually located.

signal. The increase of the peak of the inner-scaled variance of the full signal
u+2|m, described by the linear fit:

u+2|m = 0.54ln(Reτ ) + 4.49 (5.13)

seems to be linked with an increase of the contributions of the large scales,
described by

u+2
LS |m = 0.39ln(Reτ )− 1.24 (5.14)

with an increase of around 25% between the lowest and highest Reynolds’
peak, in contrast to the a rise of nearly 3% for the small-scales’ peak, which
can be considered therefore constant with the Reynolds.

To relate the behaviour of the large scales in the near-wall region to the
outer region, we can use as parameter the ratio between their value at y+ = 15
and the outer peak, u2+

LS |IP /u
2+
LS |OP . Given the scatter of the data, the outer

peak is taken as the maximum value of the 2nd order polynomial fit of the
nearby region. Fig.5.16 shows that this ratio can be considered constant with
the Reynolds number.

In particular, the value of the ratio around 0.5 means that the outer peaks
increases at around double the rate as the inner peak, both keeping the same
rate as the Reynolds number grows. The outer-peak trend with the Reynolds
number is in fact described by the linear fit:
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Figure 5.15: Near-wall maxima of the inner-scaled streamwise velocity variance.
The contributions from the small scales and large scales are separated. Dashed
lines are the least-square fit.

u+2|m,op = 0.9ln(Reτ )− 5.45 (5.15)

To conclude, the Reynolds-independency of the small-scale streamwise ve-
locity variance is observed after the correction scheme is applied, and it is seen
to hold for the entire range of wall-normal locations investigated, showing a
logarithmic decay. On the other hand, the large scales, with their Reynolds
dependency, are seen to be the responsible for the increase of the inner peak of
the inner-scaled streamwise velocity variance.
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Figure 5.16: Inner-scaled inner and outer peak of the streamwise vari-
ance for the large-scale contributions. The black symbols show the ratio
u2+
LS |IP /u

2+
LS |OP . Dashed lines are the linear fits.
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CHAPTER 6

Linear Coherence Spectra analysis

Wall-bounded turbulence is known to be organised in large- and very-large-scale
motions. The most accepted theory describing their internal architecture is the
pioneering work of Townsend (Townsend 1976). His attached eddies hypothe-
sis suggests a hierarchical organisation of the self-similar vortices in the wall-
normal direction, attached to the wall and developing in the streamwise direc-
tion for numerous lifetimes. In order to investigate the wall-attached, the self-
similar and inner dynamics, two-point hot-wire measurements are performed in
CICLoPE at two Reynolds numbers, Reτ = 1.2×104 and Reτ = 3.2×104. The
resulting coherence spectra will reveal the presence of self-similar wall-attached
structures, and how their behaviour evolves with the Reynolds number.

6.1. Experimental set-up

To investigate the nature of the small and large-scale structures and how their
coherence varies with the distance from the wall, two-point measurements are
performed at the test section of the Long Pipe, at x/D ≈ 123. One single-
wire with a sensing length of 0.5mm and a diameter of 2.5 µm, is fixed on
the ”global” traverse (see chapter 3) at a distance from the lower wall of the
test section y = 0.2R which corresponds to the outer edge of the logarithmic
region. The other one, with the same characteristics and mounted on the ”small
traverse” (see chapter 2), spans the region comprised between the wall and the
fixed probe. The initial position of the moving probe is retrieved using the
diagnostic plot following the method described in chapter 5. Both probes were
simultaneously calibrated in situ, symmetrically placed at y=0.02m from the
centerline, where U = UCL. Data are acquired with the National Instrument
NI-9215 Analog Input Module, installed on the cRIO 9068 chassis system.
Two Reynolds numbers are tested: Reτ = 1.2 × 104 and Reτ = 3 × 104. As
in the experiment described in the previous chapter 5, the sampling frequency
is set at fs = 65kHz. Friction quantities are estimated by acquiring the static
pressure from the wall taps along the pipe using the Initium digital pressure
scanner described in 3. The temperature of the flow is acquired with a PT 100
thermistor to correct the hot-wire output voltage and compute the density. The
centerline velocity is acquired with a Pitot probe mounted at y = 11D, since
tests confirmed not to influence the measurements at the test section, connected
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Reτ UCL[m/s] uτ [m/s] dp/dx[Pa/m] l∗[µm] Npts
1.2× 104 11.4 [m/s] 0.41 0.87 3.77e− 5 22
3× 104 33.5[m/s] 1.03[m/s] 5.5 1.47e− 5 32

Table 6.1: Acquisition and flow parameters for the two Reynolds numbers
tested.

d [µm] L [mm] L+ OHR fs[kHz]
2.5 0.5 13 0.8 65
2.5 0.5 34 0.8 65

Table 6.2: Wire and acquisition parameters for the two Reynolds numbers
tested.

to the differential pressure transducer MKS Baratron 120AD (fs = 5Hz for one
minute). The friction quantities used for inner-scaling are computed acquiring
the static pressure along the pipe using the Initium digital pressure scanner, at
a sampling frequency of 5Hz for a period of one minute. Since measurements
can last for more than two hours, static pressure acquisitions are repeated
throughout the tests. Run and flow parameters are listed in table 6.1 above.

6.2. Linear coherence spectrum

To investigate the scale-dependent (linear) coupling between the velocity signal
in the log-region u(yref , t)and the fluctuations in the inner region u(y, t) of the
pipe flow, the linear coherence spectrum (LCS) γ2

L is used as a parameter:

γ2
L =

∣∣∣〈Ũ(y;λx)Ũ∗(yref ;λx)
〉∣∣∣2∣∣∣〈Ũ(y;λx)

〉∣∣∣2 ∣∣∣〈Ũ(yref ;λx)
〉∣∣∣2 =

∣∣∣Φ′

uu(y, yref ;λx)
∣∣∣

Φuu(y;λx)Φuu(yref ;λx)
. (6.1)

Where Ũ(y;λx) = F |u(y)| is the Fourier transform of u(y), the asterisk ∗
indicates the complex conjugate, 〈〉 denotes ensemble averaging and || refers to

the modulus. In the case of the second right-hand-side of eq.(6.1), Φ
′

uu denotes
the cross-spectrum, while the denominator comprises the two energy spectra
for the reference signal: Φuu(yref , λx) and the one at y distance from the wall
Φuu(y, λx). In order to obtain a physical interpretation of the scales using
temporal data, the frequencies are transformed into wavelength λx = Um/f
invoking Taylor’s hypothesis, where local mean velocity is taken as the convec-
tion velocity. By definition, 0 ≤ γ2

L ≤ 1 (where 0 is absence of coherence and 1
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is perfect coherence) and it can be physically interpreted as the fraction of com-
mon variance shared by the fluctuations measured at the fixed location u(yref )
and the one in the inner region u(y). Equivalently, as pointed out by Baars,
Hutchins, and Marusic 2017, as the square of the correlation coefficient be-
tween two specific scales. In eq.(6.1) only the magnitude of the cross-spectrum
is comprised, making it impossible to infer a consistent stochastic phase shift
between the reference signal u(yref ) and u(y) from the value of γ2

L. The infor-
mation about the phase of a specific scale is, in fact, embedded in the phase
of the cross-spectrum Φ

′

uu. Nonetheless, the linear coherence spectrum can
indirectly measure the phase consistency across ensembles of pairs of u(yref )
and u(y): if each pair used to compute the cross-spectrum contains a random
phase shift for a given scale, that specific scale is not correlated and therefore
γ2
L is zero.

6.3. The influence of probe distance

To clarify the LCS, we consider an arbitrary pair u(y) − u(yref ) for a given
Reynolds number. For instance, the signal at the reference position y+

ref ≈ 5835

(yref = 0.2R) and a signal in the log region y+ = 4000. The energy spectra
and the LCS are shown in Fig.6.1 (black dashed line for the reference signal,
and green line for the inner-region one) and Fig.6.2.

Figure 6.1: Premultiplied energy spectra as function of the inner-scaled wave-
length. Dashed line is at reference position, solid lines are two different probe
distances, for Reτ = 1.2× 104
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Figure 6.2: LCS as function of inner-scaled wavelength for two different probe
distances, for Reτ = 1.2× 104.

Plotting the parameter reveals that, for this specific probe distance y+ −
y+
ref , the largest scales are correlated to a degree of around 0.9, while it sen-

sibly drops below 0.1 when λ+
x ≤ 104. The effect of probe separation is in-

vestigated by combining the signal at yref with a signal in the inner-region
(represented with the blue lines in Fig.6.1 and Fig.6.2 ). This trend of in-
creasing coherence with increasing wavelength is already anticipated by Baars,
Hutchins, and Marusic 2017, who justified it for any two-point measurements
separated in space in a turbulent flow. Here, because of the smaller integral
time scales of the smaller eddies, the correlation across a fixed distance be-
tween the two measuring points is lower. By increasing the distance between
the probes (from ∆y+ ≈ 1759 in the first case, to ∆y+ ≈ 5824 in the second
one), the correlation decreases noticeably at all scales, with the largest energetic
scales still being more correlated than the small ones. By extending eq.(6.1)
to the full range of wall-distances y explored (from beneath the inner-peak for
both Reynolds numbers investigated, up to y/R < 0.2), the LCS for each pair
u(y) − u(yref ) is provided. In Fig.6.3 and Fig.6.4 the coherence spectogram
for the Reτ = 1.2 × 104 and Reτ = 3 × 104 are represented as a iso-contour
map of γ2

L(y, rref ;λx) as a function of the inner-scaled wavelength λ2
x. In both

cases only the large-scale motions remain coherent with the near-wall region as
the distance from the wall increases (in this case corresponding to deacresing
distance between the probes).
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Figure 6.3: Coherence spectogram γ2
L(y, yref ;λx) relative to the reference lo-

cation yref = 0.09R. Levels are 0.1:0.1:0.9, for Reτ = 1.2× 104.

In both Fig.6.3 and Fig.6.4 the dashed black line represents the line of
unitary slope, reflecting the self-similar nature of the structures as suggested
by Baars, Hutchins, and Marusic 2017 (where self-similar is intended in the
geometrical sense). For both Reynolds numbers, the slope of the iso-contours
does not agree perfectly with the line of slope 1, and this can be due to the
different reference used in this experiment compared to Baars, Hutchins, and
Marusic 2017. In his experimental work on turbulent boundary layers, the
fixed probe is placed in the near-wall region while the moving one ranges from
close to the wall to the outer region. Nonetheless, even in the present work it
is possible to distinguish a region where the LCS iso-contours lines align with
lines of contant λ+

x or equivalently λx/∆y. In this area γ2
L increases linearly

with the wavelength. This is particularly clear when the parameter is plotted
against the streamwise wavelength normalised with the distance between the
two probes (∆y) in Fig.6.5 and Fig.6.6 for both Reynolds.

For a fixed wall-distance y, γ2
L increases linearly with log(λx) and decreases

with ∆y for a constant wavelength, reflecting the self-similar nature of the
structures. The the increase of γ2

L is quantified by the following relation: (from
Baars, Hutchins, and Marusic 2017):
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Figure 6.4: Coherence spectogram γ2
L(y, yref ;λx) relative to the reference lo-

cation yref = 0.09R. Levels are 0.1:0.1:0.9, for Reτ = 3× 104.

γ2
L = C1ln(

λx
∆y

) + C2 (6.2)

, where ∆y is the distance between the two probes. The relation describes
the coherent structure in the area 20 < λx/∆y < 100 (visually inspected).
As for the limits in terms of wall-distance, the behaviour is observed inside

the logarithmic region for 3Re
1/2
τ < y+ < 0.06Reτ . If the bounds are set as

suggested by Marusic et al. 2013 at 3Re
1/2
τ < y+ < 0.15Reτ , the area is slightly

smaller than the one resulting in Baars, Hutchins, and Marusic 2017. This
difference could be due to the different references taken in the two experiments
(Baars, Hutchins, and Marusic 2017 and the current one) and the different
geometry of the flow as well.

The representation of coherence spectrum for a specific combination of
u(yref ) and u(y) in iso-contours is obtained by slicing the γ2

L graph at the
inner-region location y. In Fig. 6.7 and 6.8 the LCS for different wall-normal
positions are represented for the two Reynolds numbers in normalised form.
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Figure 6.5: Linear coherence spectra γ2
L(y, yref ;λ+

x ) for Reτ = 1.2×104. Black
solid line represents the linear variation of γ2

L with the λx/∆y.

Here, γ2
L is normalised with the value at the plateau so to have each curve

ranging from 0 to 1. For both Reynolds numbers the same pattern appears,
γ2
L peels off from zero at larger λ+

x as the distance between the two probes
decreases (moving the probe further and further away from the wall) until the
probe enters the logarithmic layer. From here on, as the probe moves closer
to the fixed one, the behaviour is inverted, with γ2

L peels off from zero at
decreasing λ+

x . This is because as the probe distance increases, only the largest
scales will remain coherent. As expected, as the probes move closer to each
other, the coherence increases as the higher value of the plateau shows. The
behaviour of λ+

x with the probe-distance is represented in Fig.6.9, where the
peel-off λ+

x (taken as the value where γ2
L is 20% of the plateau)is represented in

function of ∆y. Physically it means that from the logarithmic region, moving
away from the wall, the correlation increases for smaller and smaller scales,
despite remaining still way larger for the large scales. The peel-off λ2

x decreases
exponentially with the distance between the two probes (and inversely with the
distance from the wall) following:

λ2
x = eα∆y+β (6.3)

Considering the same range of probe-distances, if the constants of the fit α
and β nearly doubles as the Reynolds number increases (α from ≈ -43 to -105,
β from ≈ 18 to ≈ 31), the exponential nature of the behaviour does not.
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Figure 6.6: Linear coherence spectra γ2
L(y, yref ;λ+

x ) for Reτ = 3× 104. Black
solid line represents the linear variation of γ2

L with the λx/∆y.

Figure 6.7: γ2
L normalised with its value at its plateau for different probe-

distances as function of inner-scaled wavelength, λ+
x , for Reτ = 1.2× 104.
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Figure 6.8: γ2
L normalised with its value at its plateau for different probe-

distances as function of inner-scaled wavelength, λ+
x , for Reτ = 3× 104.

6.4. Influence of Reynolds number

In order to see the effect of the Reynolds number on the linear-coupling of the
scales, the LCS is compared in Fig.6.11. The comparison is in outer units (y/R
and λx/∆y) since for a fixed inner-scaled distance from the wall, increasing the
Reynolds number has the same effect as decreasing the physical distance from
the wall. This is confirmed by Fig.6.10 where the coherence at y+ ≈ 1500 is
shown: as the Reynolds decreases, the curve is shifted to the lower λ+

x as when
the probe is moved away from the wall. When outer-scaled the LCS is seen
to collapse for the entire range of wall distances, with the only difference that
at larger wavelengths, the highest Reynolds number shows the same coherence
for location slightly further from the wall. The small discrepancies can be due
to the smoothing of the data presented.

As for the influence of the Reynolds on the increase of γ2
L, a linear-square

fitting of eq.(6.2) to the data inside the domain leads to C1 ≈ 0.30 and
C2 ≈ −0.9, for both Reynolds numbers. As matter of facts, the profiles of γ2

L

taken inside the aforementioned boundaries, show a Reynolds number univer-
sality described by eq.(6.2) substituing the values of C1 and C2. This suggests
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Figure 6.9: Peel-off zero λ+
x as function of probe distance, for the two Reynolds

numbers investigated. Dashed lines are the linear fit.

that, as for the turbulent boundary layer, also the coherent wall-attached struc-
tures are self-similar, consistent with the attached eddy hypothesis theorised
by Townsend 1976. It is now possible to introduce the streamwise/wall-normal
aspect-ratio of the self-similar eddy, defined by Baars, Hutchins, and Marusic
2017 as:

AR ≡ λx
∆y
|γ2
L=0 = exp

(−C2

C1

)
≈ 20 (6.4)

which represents also the inner-limit of the region where the self similar
behaviour is observed. Being different from the value for turbulent boundary
layer of ≈ 14, it suggests a geometry dependency.
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Figure 6.10: γ2
L as function of inner-scaled wavelength λ+

x at y+ ≈ 1500 for
Reτ = 1.2× 104 and Reτ = 3× 104.

Figure 6.11: Iso-contour lines (0.1:0.1:0.9) of LCS as function of y/R and
λx/Deltay for Reτ = 1.2× 104 (red) and Reτ = 3× 104 (blue).
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CHAPTER 7

Conclusions

The aim of this thesis was to investigate the phenomena related to friction for
a fully developed turbulent pipe flow and expanding the knowledge on turbu-
lent pipe flows at high Reynolds numbers. The topic is of particular interest
for a vast range of industrial applications, since friction is the main responsi-
ble of energy consumption. In order to do so, three experimental campaigns
were performed in the Long Pipe at the CICLoPE laboratory of University of
Bologna. Thanks to its unique size, the facility guarantees accuracy so high to
fully resolve all scales of turbulence using standard measurements tools. The
thesis includes first the estimate and detailed uncertainty analysis of the κCL, a
key parameter for CFD models used to predict friction, through measurements
with a Pitot probe and the acquisition of static pressure drop along the pipe.
Secondly, single-wire high-resolution measurements are performed at the test
section to investigate the nature and dynamics of the structures responsible for
friction, in the Reynolds number range 9.9 × 103 up to 3.9 × 104. The main
results are summarised mirroring the thesis objectives outlined in section 1.2.

• Centerline and static pressure measurements, for a range of Reτ from
8.1 × 103 to 3.9 × 104, were performed together with a detailed uncer-
tainty analysis to assess the statistical difference between κ and κCL.
Since their value is closely related to the accuracy of the static pres-
sure drop, we started from the empirical approach of Fiorini 2017 and
conducted a systematic analysis. An iterative and robust procedure to
choose the wall taps to retain in the linear fit to estimate the dp/dx
is therefore performed, leading to a choice of 11 taps covering a dis-
tance of ≈ 70m upstream the test section. The uncertainty analysis was
based on a Monte Carlo method with two error distributions, a contin-
uos (Gaussian and boxcar) and discrete (considering the extreme errors
of the pressure transducer). If the lowest Reynolds number is dropped,
considering only a regime where there is a sufficient scale separation
(for Reτ > 104), it results that for CICLoPE κCL = 0.44 ± 0.03. In
this case the accuracy is enough to shed light on the possible statistical
difference between κCL and κwall. Interestingly enough, the range of
κCL = 0.44± 0.03 includes the value of κCL = 0.438 found by Zagarola
and Smits 1998 for the Superpipe data. Despite the low uncertainty on
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uτ , solidly lower than 1% when the lowest Reynolds number is dropped,
the uncertainty on κCL is seen to be strongly affected.

• The interaction between the small and large scales is investigated in
the context of the inner-scaled streamwise velocity. The full fluctuat-
ing velocity signal is filtered into its large and small scales parts, using
a spectral cut-off filter to separate the contribution to the broadband
turbulence intensity of the small and large-scale structures. The value
of the cut-off frequency is chosen on the basis of the work by Ganap-
athisubramani 2018. The present work, in line to what is showed for the
boundary layers by Ganapathisubramani 2018, showed that the inner-
scaled premultiplied spectra collapse after a certain frequency, that when
inner-scaled is seen to be independent of the wall-distance. For the range
of Reynolds numbers investigated here, from 9.9× 103 to 3.9× 104 the
spectra are seen to collapse down to f+ = 0.001. The growth of the
inner peak is confirmed and linked to the linear increase large-scale’
inner-peak with the logarithm of Reτ . As matter of facts, the inner-
scaled small-scale streamwise velocity variance follows a universal scal-
ing for the entire range of y+, as contemplated by the classical theory.
Further from the wall, in the overlap region the profile is seen to fol-
low a logarithmic decay. A comparison with the behaviour of turbulent
boundary layer, suggests that its constants are geometry dependent. In
conclusion, the behaviour at the outer-peak location of the large-scale
variance is related to the behaviour at the inner-peak by computing their
ratio, observed to be constant at ≈ 0.5 for the entire range of Reynolds
numbers.

• Universal, self-similar and wall-attached structures are identified in the
turbulent pipe flow for a range of Reτ = 1.2×104 to Reτ = 3×104. They
are explained through the wall-attached eddies theory by Townsend in
his attached eddy model. These structures are characterised by an as-
pect ratio of ≈ 20, larger than what is observed by Baars, Hutchins, and
Marusic 2016 for turbulent boundary layers. The results follow from the
coherence spectra analysis from 2-point simultaneous single-wire mea-
surements of fluctuating velocity. While one probe is fixed at y/R = 0.2,
the other covers the range of wall-distances in between. This behaviour
is observed in a region that is limited by λx/∆y ≈ 20.

Overall, the results of the experimental campaigns described in this thesis
give their contributions in settling some long-lasting controversies in the field,
such as the universality of the von Kármán constant and the wall-attached self-
similar structures in fully developed turbulent flows. Desirable future works
includes the comparison with the results by Alfredsson, Örlü, and A. Segalini
2012, Klewicki, Chini, and Gibson 2017, Castro, A. Segalini, and Alfredsson
2013 on the outer peaks behaviour, by using the diagnostic plot. Moreover,
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since CICLoPE is a large-scale facility, the data acquired could be used to
propose a new correction scheme for the streamwise variance.
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