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Abstract

This thesis is a compilation of two papers. In the first paper we investi-

gate a class of two dimensional stochastic differential equations related to

susceptible-infected-susceptible epidemic models with demographic stochas-

ticity. While preserving the key features of the model considered in [1], where

an ad hoc approach has been utilized to prove existence, uniqueness and non

explosivity of the solution, we consider an encompassing family of models

described by a stochastic differential equation with random and Hölder con-

tinuous coefficients. We prove the existence of a unique strong solution by

means of a Cauchy-Euler-Peano approximation scheme which is shown to

converge in the proper topologies to the unique solution.

In the second paper we link a general method for modeling random phe-

nomena using systems of stochastic differential equations to the class of affine

stochastic differential equations. This general construction emphasizes the

central role of the Duffie-Kan system [2] as a model for first order approx-

imations of a wide class of nonlinear systems perturbed by noise. We also

specialize to a two dimensional framework and propose a direct proof of the

Duffie-Kan theorem which does not pass through the comparison with an

auxiliary process. Our proof produces a scheme to obtain an explicit rep-

resentation of the solution once the one dimensional square root process is

assigned.

Key words and phrases: stochastic differential equations, square root

process, Feller condition, two dimensional susceptible-infected-susceptible

epidemic model, Brownian motion

AMS 2000 classification: 60H10, 60H30, 92D30
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Chapter 1

Introduction

The term Stochastic differential equation was introduced by S. Bernstein( see [3],[4])

in the limiting study of a sequence of Markov chains arising in a stochastic differential

scheme. He was only interested in the distribution of limiting processes and showed

that the latter had a density satisfying the Kolmogorov equations. However according

to Gihman and Skorohod(see [5]) it would be an exaggeration to consider Bernstein

the founder of this theory. Independently of Itô’s work, I.I. Gihman( see [6],[7] and [8])

developed a theory of stochastic differential equations complete with results on existence,

uniqueness, smooth dependence on initial conditions and Kolmogorov’s equations for the

transition density.

Since the early work of Itô and Gihman, the interest in the methodology and the

mathematical theory of Stochastic differential equations has enjoyed remarkable success.

The constructive and intuitive nature of the concept as well as the strong physical ap-

peal, has been responsible for its popularity among applied scientists. Stochastic differ-

ential equations are now one of the most popular tools to model real world phenomenon.

They have many applications in domains such epidemiology, financial modeling (interest

rate modeling, option pricing etc), target tracking and medical technology methodolo-

gies such as filtering, smoothing, parameter estimation, and machine learning.There are

also a wide range of examples of applications of SDEs arising in physics and electrical

engineering. In order to simulate and model real world phenomenon using stochastic

differential equations and draw conclusions from the solutions, it is imperative to know

the existence and uniqueness of solutions. Moreover the theory of of existence and

uniqueness of solutions of stochastic differential equations is quite deep and challenging

particularly when the coefficients of the SDE are non-regular.

The first result on strong existence and uniqueness of SDE’s was due to Itô ([9])

where he assumed that both the drift and the diffusion coefficients b and σ respectively

in equation (1.0.1) were uniformly Lipschitz.

11
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dXt = b(t,Xt)dt+ σ(t,Xt)dWt (1.0.1)

In practice, one often needs stochastic differential equations with non-Lipschitz coef-

ficients to model real-world systems. It is often the case that the volatility of the

process is the square root of the solution. In other words the dispersion coefficient

is Hölder-continuous in the space variable. From a mathematical point of view the anal-

ysis of existence and uniqueness for strong solutions of SDEs with Hölder-continuous

coefficients is quite challenging. In the one dimensional case, resorting to the famous

Yamada-Watanabe principle (i.e. weak existence plus pathwise uniqueness implies strong

existence) one can prove the existence of a unique strong solution for SDEs where the

drift coefficient is locally Lipshiptz-continuous while the diffusion coefficient is of the

type σ(x) = |x|α for α ∈ [1/2, 1]. The hard part of this proof is the pathwise unique-

ness which heavily relies on an ad hoc technique introduced by Yamada and Watanabe

[10] (see also the books Ikeda and Watanabe [11] and Karatzas and Shreve [12] for

comparison theorems obtained with a similar approach).

Multi-dimensional linear SDE’s are used to model many real world phenomenon for

example in stochastic demographic models(see Mao [1]) and in interest rate modeling(see

Duffie and Kan [2] and Cairns [13]) and have a rich theory when the system of SDEs

is linear, but the moment we start working with systems of SDE’s with non-Lipschitz

diffusion and dispersion coefficients, the analysis of existence and uniqueness becomes

quite intractable. In this thesis we attempt to investigate the existence and uniqueness of

two dimensional stochastic differential equations with non-regular diffusion coefficients.

The thesis is organized as follows. In the first chapter we will give a high-level

introduction to Stochastic differential equations. In the second chapter we will give a

very detailed introduction to the tools needed to study and investigate the existence and

uniqueness of solutions of stochastic differential equations. In particular we will provide

an extensive introduction to stochastic analysis and stochastic integration using results

from the book of Karatzas and Shreve (see [12]) and the book of Ikeda and Watanabe(see

[11]). This is followed by a short section which contains some major strong existence

and uniqueness results due to Itô and Yamada and Watanabe.

The last two chapters contain two papers ”On a general model system related to

affine stochastic differential equations” ([14]) and ”On a class of stochastic differential

equations with random and Hölder continuous coefficients arising in biological model-

ing”(see [15]). These papers are joint work with my PhD supervisor Prof Enrico Bernardi

and Prof Alberto Lanconelli. In these papers we prove existence and uniqueness results

for systems of stochastic differential equations with non Lipschitz diffusion coefficients.

I have also included for the sake of completeness a short appendix containing some
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important results on weak convergence, tightness, convergence of finite-dimensional dis-

tributions and the invariance principle. I spent a considerable amount of time on these

topics during my Phd studies and these subjects are closely related to the study of

Brownian motion which is the process driving the stochastic differential equations under

study in this thesis.

The first paper we investigate a class of two dimensional stochastic differential

equations related to susceptible-infected-susceptible epidemic models with demographic

stochasticity. While preserving the key features of the model considered in [1], where

an ad hoc approach has been utilized to prove existence, uniqueness and non explosivity

of the solution, we consider an encompassing family of models described by a stochas-

tic differential equation with random and Hölder continuous coefficients. We prove the

existence of a unique strong solution by means of a Cauchy-Euler-Peano approximation

scheme which is shown to converge in the proper topologies to the unique solution.

In the second paper we link a general method for modeling random phenomena using

systems of stochastic differential equations to the class of affine stochastic differential

equations. This general construction emphasizes the central role of the Duffie-Kan sys-

tem [2] as a model for first order approximations of a wide class of nonlinear systems

perturbed by noise. We also specialize to a two dimensional framework and propose a

direct proof of the Duffie-Kan theorem which does not pass through the comparison with

an auxiliary process. Our proof produces a scheme to obtain an explicit representation

of the solution once the one dimensional square root process is assigned.
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Chapter 2

Preliminaries

In this chapter we will introduce some of the important tools and machinery that will

be subsequently used in the following sections and chapters. The first section on Stop-

ping times gives a number of definitions and results (without proof) which will be used

repeatedly in the text. The second section will outline some important results from

stochastic analysis, in particular the construction of stochastic integrals with respect to

local martingales. In the second section we precisely define what it means for a stochastic

differential equation to have a strong solution. We present the most important results

from literature on strong existence and uniqueness of SDEs and a comparison result

which will play a very important role later on. In the third section we introduce two

important SDEs-the square root process and the mean reverting square root process

which are used extensively in interest rate modeling and play a central role in the thesis.

2.1 Stopping Times

In this section we provide some definitions and preliminary results on stopping times

which will be used later. We skip the proofs in the section for the sake of brevity.

Definition 2.1.1. Let us consider a measurable space (Ω,F) equipped with the filtration

{Ft}. The random time T is a stopping time of the filtration, if the event {T ≤ t}
belongs to the sigma-field {Ft}, for every t ≥ 0. A random time T is an optional time

of the filtration , if {T < t} ∈ Ft, for every t ≥ 0.

Lemma 2.1.2. Let X be a stochastic process and T a stopping time of {FXt }. Suppose

that for the pair ω, ω′ ∈ Ω, we have Xt(ω) = Xt(ω
′) for all t ∈ [0, T (ω)] ∩ [0,∞). Then

T (ω) = T (Ω′)

15
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Proposition 2.1.3. Every random time equal to a nonnegative constant is a stopping

time. Every stopping time is optional, and the two concepts coincide if the filtration is

right continuous.

Corollary 2.1.4. T is an optional time of the filtration {Ft} if and only if it is the

stopping time of the right continuous filtration {Ft+}

Definition 2.1.5. Let X be a stochastic process with right-continuous paths, which is

adapted to the filtration {Ft} and consider a subset Γ ∈ B(Rd) of the state space of the

process then we define the hitting time as

HΓ(ω) = inf {t ≥ 0 : Xt(ω) ∈ Γ}

Theorem 2.1.6. HΓ defined in Definition 2.1.5 is a stopping time.

Lemma 2.1.7. If T is optional and θ is a positive constant , then T + θ is a stopping

time.

Lemma 2.1.8. If T, S are stopping time, then so are T ∧ S, T ∨ S, T + S

Lemma 2.1.9. Let T, S be optional times, then T + S is optional.It is a stopping time

if one of the following condition holds

1. T > 0, S > 0;

2. T > 0, T is a stopping time.

Lemma 2.1.10. Let {Tn}∞n=1 be a sequence of optional times; then the random times

sup
n≥1

Tn, inf
n≥1

Tn, lim sup
n→∞

Tn, lim inf
n→∞

Tn

are all optional. Furthermore if the Tn’s are stopping times then so are supn≥1 Tn.

Definition 2.1.11. Let T be a stopping time of the filtration {Ft}. The sigma-field FT
of events determined prior to the stopping time T consist of those events A ∈ F for

which A ∩ {T ≤ t} ∈ Ft for every t ≥ 0.

Lemma 2.1.12. FT is a sigma-field and T is FT -measurable. Moreover if T (ω) = t for

some constant t ≥ 0 and every ω ∈ Ω, then FT = Ft

Lemma 2.1.13. Let T be a stopping time and S a random time such that S ≥ T on Ω.

If S is FT -measurable, then it is also a stopping time.

Lemma 2.1.14. For any two stopping times T and S, and for any A ∈ FS, we have

A ∩ {S ≤ T} ∈ FT . In particular if S ≤ T on Ω, we have FS ⊆ FT
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Lemma 2.1.15. Let T and S be stopping times. Then FT∧S = FT ∩ FS, and each of

the events

{T < S}, {S < T}, {T ≤ S}, {S ≤ T}, {T = S}

belongs to F ∩ FS.

Lemma 2.1.16. Let T, S be stopping times and Z an integrable random variable. We

have

1. E [Z | FT ] = E [Z | FS∧T ], P -a.s on {T ≤ S}

2. E [E [Z | FT ] | FS] = E [Z | FS∧T ] P -a.s.

Proposition 2.1.17. Let X = {Xt,Ft; 0 ≤ t <∞} be a progressively measurable process

and let T be a stopping time of the filtration {Ft}. Then the random variable XT defined

on the set {T < ∞} ∈ FT by XT (ω) := XT (ω)(ω) is FT -measurable random variable.,

and the ”stopped process” {XT∧t,Ft; 0 ≤ t <∞} is progressively measurable.

Lemma 2.1.18. Under the same assumptions as in Proposition 2.1.17, and with f(t, x) :

[0,∞) × Rd → R a bounded, B ([0,∞)) ⊗ B(Rd)-measurable function, then the process

Yt :=
∫ t

0
f(s,Xs)ds; t ≥ 0 is progressively measurable with respect to Ft and YT is an

{FT}-measurable random variable.

Definition 2.1.19. Let T be an optional time of the filtration {Ft}. The sigma field

FT+ of events determined immediately after the optional time T consist of those events

A ∈ F for which A ∩ {T ≤ t} ∈ Ft+ for every t ≥ 0

Lemma 2.1.20. The class of sets FT+, is indeed a sigma-field with respect to which T

is measurable and it coincides with {A ∈ F ;A ∩ {T < t} ∈ Ft,∀t ≥ 0} and that if T is

a stopping time (so both FT and FT+ are defined), then FT ⊆ FT+

Lemma 2.1.21. The analogues of Lemmas 2.1.14 and 2.1.15 hold if T and S are

assumed to be optional and FT ,FS and FT∧S are replaced by FT+,FS+ and F(T∧S)+

respectively. Moreover if S is an optional time and T is a positive stopping time with

S ≤ T , and S < T on {S <∞}, then FS+ ⊆ FT

Lemma 2.1.22. If {Tn}∞n=1 is a sequence of optional times and T = infn≥1 Tn then

FT+ =
⋂∞
n=1FTn+. Besides if each Tn is a positive stopping time and T < Tn on

{T <∞}, then we have FT+ =
⋂∞
n=1FTn

Lemma 2.1.23. Given an optional time T of the filtration {Ft}, consider a sequence

{Tn}∞n=1 of random times given by

Tn(ω) =

T (ω) on {ω : T (ω) = +∞}
k

2n
on
{
ω : k−1

2n
≤ T (ω) < k

2n

}
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for n ≥ 1, k ≥ 1. Obviously Tn ≥ Tn+1 ≥ T , for every n ≥ 1. Moreover Tn is a

stopping time for every n and that limn→∞ Tn = T , and that for every A ∈ FT+, we

have A ∩ {Tn = (k/2n)} ∈ Fk/2n ;n ≥ 1, k ≥ 1.

Definition 2.1.24. A filtration {Ft} is said to satisfy the usual conditions if it is right

continuous and F0 contains all P -negligible events in F .

2.2 Introduction to Stochastic Integration

Let us consider a continuous square-integrable martingale M = {Mt,Ft; 0 ≤ t < ∞}
on a probability space (Ω,F , P ) equipped with the filtration {Ft} which is assumed

throughout this chapter to satisfy the usual conditions i.e the filtration is complete and

right continuous. We assume that M0 = 0 a.s P . Such a process M ∈ Mc
2( the space

of square integrable continuous martingales) is of unbounded variation on any finite

interval [0, T ] and consequently the integrals of the form

IT (X) =

∫ T

0

Xt(ω)dMt(ω) (2.2.1)

cannot be defined pathwise( i.e for each ω separately) as ordinary Lebesgue-Stieltges

integrals.Nevertheless , the martingale M has a finite second (quadratic) variation given

by the continuous increasing process 〈M〉. It is precisely this fact which allows one

to proceed in a highly non-trivial yet straightforward manner with the construction of

stochastic integral (2.2.1) with respect to a continuous square-integrable martingale M

for an appropriate class of integrands X. The construction is due to Itô (see [16] and

[17]) for the special case that M is a Brownian motion and to Kunita and Watanabe(see

[18]) for the general case.

2.2.1 Simple Processes and Approximation

In this section we will first define a class of stochastic processes(called simple processes)

for which we will define the stochastic integral. These simple processes are chosen such

that they are dense in L2 and subsequently the stochastic integral will be defined for all

processes in L2 as limiting operation.

Definition 2.2.1. Let L denote the set of all equivalence classes of all measurable {Ft}-
adapted processes X for which [X]T <∞ for all T > 0 where

[X]2T = E

∫ T

0

X2
t d〈M〉t (2.2.2)
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We define an metric on L by [X − Y ], where

[X] :=
∞∑
n=1

2−n(1 ∧ [X]n) (2.2.3)

Definition 2.2.2. Let L∗ denote the set of equivalence classes of progressively measur-

able processes satisfying [X]T <∞ for all T > 0, and the metric on L∗ the same way as

in Definition 2.2.1

Definition 2.2.3. Simple Process: A process X is called simple if there exists an in-

creasing sequence of real numbers {tn}∞n=0 with t0 = 0 and limn→∞ tn = ∞, as well as

a sequence of random variables {ξn}∞n=1 and a non-random constant C < ∞ such that

supn≥0|ξn(ω)|≤ C for every ω ∈ Ω such that ξn is Ftn-measurable for every n ≥ 0 and

Xt(ω) = ξ0(ω)1{0}(t) +
∞∑
i=1

ξi(ω)1(ti,ti+1](t), 0 ≤ t <∞, ω ∈ Ω

The class of all simple processes will be denoted by L0.Note that because the members of

L0 are progressively measurable and bounded we have L0 ⊆ L∗(M) ⊆ L(M)

The stochastic integral of X ∈ L0 wr.t to the martingale M ∈M2
c can be defined as

a martingale transform.

It(X) :=
n−1∑
i=0

ξi(Mti+1 −Mti) + ξn(Mt −Mtn)

=
∞∑
i=1

ξi(Mt∧ti+1
−Mt∧ti), 0 ≤ t <∞

(2.2.4)

where n ≥ 0 is the unique integer for which tn ≤ t < tn+1. The definition is then extended

to integrands X ∈ L∗ and X ∈ L, thanks to the crucial results which show that the

elements of L and L∗ can be approximated in a suitable sense by simple processes.

Before proceeding to the next lemma we define L∗T to be the class of processes X in L∗

for which Xt(ω) = 0,∀t > T, ω ∈ Ω. For T =∞, L∗T is defined as the class of processes

X ∈ L∗ for which E[
∫ t

0
X2
t d〈M〉t] < ∞ (a condition we already have for T < ∞ by

virtue of its membership of L∗). Note that a process X ∈ L∗T can only be identified with

one defined for (t, ω) ∈ [0, T ]× Ω.

Lemma 2.2.4. (Lemma 3.2.2 Shreve) For 0 < T ≤ ∞, L∗T is a closed subspace of HT .

In particular L∗T is complete under the norm [X]T . HT is defined as

HT = L2 ([0, T ]× Ω,B([0, T ])⊗FT , µM)
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where µM is a measure on ([0,∞)× Ω,B([0,∞))⊗F) given by

µM(A) = E

∫ ∞
0

1A(t, ω)d(〈M〉t)(ω)

Proof. Let {X(n)}∞n=1 be a convergent sequence in L∗T with the limit X ∈ HT (Since

X ∈ HT ⊇ L∗T and HT is a Hilbert space and every convergent sequence has a limit).

The limit is with respect to the norm L2([0, T ] × Ω,B([0, T ]) ⊗ FT , µM). So {X(n)}∞n=1

converges in probability(wr.t the measure µM) and therefore there exists a sub-sequence

which converges almost surely i.e

µM{(t, ω) ∈ [0, T ]× Ω; lim
n→∞

X
(n)
t (ω) 6= Xt(ω)} = 0

In order to show that X ∈ L∗T , we need to show that its progressively measurable. By

the virtue of its membership in HT , it is B([0, T ])⊗F -measurable Now setting

A = {(t, ω) ∈ [0, T ]× Ω; lim
n→∞

X
(n)
t (ω) exists in R}

Since the limit of the sequence {X(n)}∞n=1 is in HT , we have that the L2 norm of X is

finite and therefore X <∞ µM a.s and hence the measure of the set A is one. Now the

process Yt(ω) = 1A limn→∞X
(n)
t (ω) + 01Ac inherits the progressive measurability since

its the product of the indicator of a progressive set A and the limit of progressively

measurable processes X(n).

Lemma 2.2.5. (Lemma 3.2.4 Shreve) Let X be a bounded , measurable , {Ft}- adapted

process. Then there exists a sequence {X(m)}∞m=1 of simple processes such that

sup
T>0

lim
m→∞

E

∫ T

0

|X(m)
t −Xt|2dt = 0 (2.2.5)

Proof. We shall show how to construct for each fixed T > 0, a sequence {X(n,T )}∞n=1 of

simple processes so that

lim
n→∞

E

∫ T

0

|X(n,T )
t −Xt|2dt = 0

Thus for each positive integer m, there is another integer nm such that

E

∫ m

0

|X(nm,m)
t −Xt|2dt ≤

1

m

and hence the sequence {X(nm,m)}∞m=1 has the desired properties since the integrand in

the last expression is positive and therefore

0 ≤ sup
T>0

lim
m→∞

E

∫ T

0

|X(m)
t −Xt|2dt ≤ lim

m→∞
E

∫ m

0

|X(nm,m)
t −Xt|2dt = 0

Henceforth , T is a fixed positive number . We proceed in three steps.
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1. Suppose that X is continuous, then the sequence of simple processes

X
(n)
t (ω) = X0(ω)1{0}(t) +

2n−1∑
k=0

XkT/2n(ω)1(kT/2n,(k+1)T/2n](t)

It is obvious by the definition of X
(n)
t (it takes the same value as that of Xt on

intervals of the form (kT/2n, (k + 1)T/2n] which become smaller and smaller and

hence X
(n)
t approximates Xt ) that

lim
n→∞

X
(n)
t = Xt a.s

And since X is bounded(by assumption) so is X(n) by construction and hence

|Xn
t −Xt|2≤ C and therefore the bounded convergence theorem and almost sure

convergence yields.

lim
n→∞

E

∫ T

0

|X(n)
t −Xt|2dt = E

∫ T

0

lim
n→∞
|X(n)

t −Xt|2dt = 0

2. Now suppose that X is progressively measurable; we consider the continuous pro-

gressively measurable processes

Ft(ω) :=

∫ t∧T

0

Xs(ω)ds; X̃
(m)
t := m[Ft − F(t−1/m)∧0];m ≥ 1 (2.2.6)

for t ≥ 0, ω ∈ Ω. Since X is bounded and progressively measurable(hence it

is jointly measurable and hence for a fixed ω, it is Lebesgue measurable ) , the

Lebesgue integral is well defined and Ft(ω) is absolutely continuous and by the

Fundamental theorem of Lebesgue integral calculus , differentiable almost every-

where( with respect to the variable t) with the derivative being equal to Xt(ω).

Since Ft is absolutely continuous, X̃
(m)
t is absolutely continuous and hence contin-

uous, and therefore by virtue of step 1) we can conclude the existence of a sequence

of simple processes {X̃(m,n)}∞n=1 such that limm→∞E
∫ T

0
|X̃(m,n)

t − X̃(m)
t |2dt = 0

Consider the set

A := {(t, ω) ∈ [0, T ]× Ω; lim
m→∞

X̃
(m)
t (ω) = Xt(ω)}c

Clearly A is in B([0, T ])⊗FT . Indeed Xt is progressive and therefore B([0, T ])⊗FT -

measurable and X̃
(m)
t is continuous and adapted and hence progressive and so is

it limit and therefore their difference is B([0, T ])⊗FT - measurable and hence

Ac = ( lim
m→∞

(X̃
(m)
t (ω)−Xt(ω))−1(0) ∈ B([0, T ])⊗FT
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The bounded convergence theorem implies

lim
m→∞

E

∫ T

0

|X̃(m)
t −Xt|2dt = E

∫ T

0

lim
m→∞

|X̃(m)
t −Xt|2dt = 0

Indeed we have that

|X̃(m)
t −Xt|= m

∣∣∣∣∫ t

t−1/m

(Xs −Xt)ds

∣∣∣∣
≤ m

∫ t

t−1/m

|Xs −Xt|ds ≤ m

∫ t

t−1/m

2Cds ≤ 2C

(2.2.7)

where C is such that Xt(ω) ≤ C ∀t ∈ [0, T ] and ω ∈ Ω

We can approximate the continuous process X̃m by a sequence {X̃m,n}∞n=1 w.r.t

to the L2 norm which we call for the sake of convenience ‖.‖. Similarly we can

approximate X by X̃(m) w.r.t to the same norm and therefore we can conclude

that there exists a sequence of bounded simple processes such that

lim
m→∞

E

∫ T

0

|X̃(m,nm)
t − X̃t|2dt :=

∥∥∥X̃(m,nm)
t − X̃t

∥∥∥ = 0

Indeed we have that given ε > 0, ∀n ≥ N(ε) for some N(ε) ∈ N we have∥∥∥X̃(n) −X
∥∥∥ < ε/2

. Similarly we have that for all n ∈ N there exists mn ∈ N such that∥∥∥X̃(n,mn) −X(n)
∥∥∥ < ε/2

. And hence by the triangular inequality we have that∥∥∥X̃(n,mn) −X
∥∥∥ ≤ ∥∥∥X̃(n,mn) − X̃(n)

∥∥∥+
∥∥∥X̃(n) −X

∥∥∥ < ε

for all n ≥ N(ε)

Note that the assumption of progressive measurability is necessary in this step

to claim the existence of a sequence of approximating simple processes since pro-

gressivity of X implies the adaptedness of the process F and hence X̃m which is

essential in order to use part 1 of the lemma to show the existence of approximat-

ing simple processes which are adapted(a requirement for a process to be simple

).
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3. Finally let X be measurable and adapted. We cannot guarantee immediately

that the continuous process F = {Ft; 0 ≤ t < ∞} is progressive.We do however

know that any measurable and adapted process has a progressively measurable

modification Y (Proposition 1.1.12 Karatzas and Shreve’s Brownian Motion and

Stochastic Calculus). We now show that progressive measurable process (proof

just like before ) {Gt :=
∫ t∧T

0
Ysds; 0 ≤ t ≤ T} is a modification of F . For the

measurable process ηt(ω) = 1{Xt(ω) 6=Yt(ω)}, 0 ≤ t ≤ T, ω ∈ Ω, we have from Fubini:

E
∫ T

0
ηt(ω)dt =

∫ T
0
Eηt(ω)dt =

∫ T
0
P (Xt(ω) 6= Yt(ω)) =

∫ T
0

0dt = 0 where the

second last equality follows from the fact that X is a modification of Y . Now this

implies that
∫ T

0
ηt(ω)dt = 0 P-a.e ω ∈ Ω.

This implies that the event {ω ∈ Ω :
∫ T

0
ηt(ω)dt > 0} is a measure zero set which

contains {Ft 6= Gt} .Indeed we have that {Ft 6= Gt} = {
∫ t∧T

0
|Xs−Ys|1{Xs(ω)6=Ys(ω)} >

0} ⊆ {
∫ T

0
1{Xs(ω) 6=Ys(ω)}ds > 0}

Now since Gt is Ft- measurable and Ft contains all P -null sets we have that Ft is

also Ft- measurable(since we can add and subtract subsets of the null set {Ft 6= Gt}
from Gt to get Ft ).Now adaptivity and continuity of F implies progressivity and

we can now repeat the argument in step 2).

Lemma 2.2.6. (Proposition 3.2.6 Shreve) If the function t 7→ 〈M〉t(ω) is absolutely

continuous with respect to Lebesgue measure for P−a.e ω ∈ Ω, then L0 is dense in L
with respect to the metric

d(x, y) =
∞∑
n=1

2−n (1 ∧ [x− y]n)

where

[X]2n = E

∫ n

0

X2
ud〈M〉u

Proof. (a) If X ∈ L is bounded then Lemma 2.2.5 guarantees the existence of a

bounded sequence {X(m)} of simple processes satisfying

sup
T>0

lim
m→∞

E

∫ T

0

|X(m)
t −Xt|2dt = 0

From it we can extract a subsequence {X(mk)} such that the set

{(t, ω) ∈ [0,∞)× Ω : lim
k→∞

X
(mk)
t (ω) = Xt(ω)}c

has product measure zero. Now the absolute continuity of t 7→ 〈M〉t(ω) with

respect to the lebesgue measure implies the existence of a density function which
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is defined almost everywhere such that d〈M〉t(ω) = 〈M〉′(ω)dt. Now the bounded

convergence theorem implies that we can take the limit inside the integral.

lim
k→∞

[X(mk) −X] =
∞∑
n=1

2−n
(

1 ∧ lim
k→∞

(
E

∫ n

0

(X
(mk)
t −Xt)

2〈M〉′(ω)dt

))
= 0

(2.2.8)

(b) If X ∈ L is not necessarily bounded we define

X
(n)
t (ω) := Xt(ω)1{|Xt(ω)|≤n}; 0 ≤ t <∞, ω ∈ Ω

and thereby obtain a sequence of bounded processes in L. The dominated conver-

gence theorem implies

[X(n) −X]2T = E

∫ T

0

X2
t 1{|Xt|>n}d〈M〉t → 0 as n→∞

for every T > 0 whence limn→∞[X(n) −X] = 0. Each X(n) can be approximated

by bounded simple processes , so X can be as well. Indeed its enough to prove

this for sequences in R since the exact same argument follows for sequences in the

given norm.

So let us assume that (xn)n∈N be a real sequence such that xn → x as n → ∞
and ∀n ≥ 1 be a sequence {xmn }m∈N such that xmn → xn as m → ∞ for all n ≥ 1.

Then ∀ε > 0,∃nε ∈ N such that ∀n ≥ nε we have |xn−x|< ε/2. We also have that

∀n ≥ 1,∃mn ∈ N such that |xmnn − xn|< 1
n

due to the second assumption. Then

∀ε > 0, ∃n̂ε ∈ N such that ∀n ≥ n̂ε we have that

|xmnn − x|≤ |xmnn − xn|+|xn − x|< ε/2 + 1/n < ε

if we choose n̂ε = max (nε, b2
ε
c)

Definition 2.2.7. An adapted process A is called increasing if for P -a.e. ω ∈ Ω we

have

1. A0(ω) = 0

2. t 7→ At(ω) is a nondecreasing , right continuous function, and E(At) < ∞ holds

for every t ∈ [0,∞). An increasing process is called integrable if E(A∞) < ∞,

where A∞ = limt→∞At
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Lemma 2.2.8. (Lemma 3.2.7 Shreve)

Let {At; 0 ≤ t <∞} be a continuous increasing process(usual definition) adapted to

the filtration of the martingale M = {Mt,Ft, 0 ≤ t < ∞}. If X = {Xt,Ft, 0 ≤ t < ∞}
is a progressively measurable process satisfying

E

∫ T

0

X2
t dAt <∞

for each T > 0, then there exists a sequence {X(n)}∞n=1 of simple processes such that

sup
T>0

lim
n→∞

E

∫ T

0

|X(n)
t −Xt|2dAt = 0

Proof. We may assume without loss of generality that X is bounded (if not we use the

same argumentation as in part (b) of Lemma 2.2.6) i.e

|Xt(ω)|≤ C; ∀t ≥ 0, ω ∈ Ω (2.2.9)

As in the proof of Lemma 2.2.5, it suffices to show how to construct , for each fixed

T > 0, a sequence {X(n)}∞n=1 of simple processes for which

lim
n→∞

E

∫ T

0

|X(n)
t −Xt|2dAt = 0 (2.2.10)

Henceforth T > 0 is fixed, and we assume without loss of generality(as the integral above

doesn’t change ) that

Xt(ω) = 0; ∀t > T, ω ∈ Ω. (2.2.11)

Now we describe the time change. Since At(ω)+ t is strictly increasing in t ≥ 0 for P -a.e

ω, there exists a continuous strictly increasing inverse function Ts(ω), defined for s ≥ 0

such that

ATs(ω)(ω) + Ts(ω) = s; ∀s ≥ 0 (2.2.12)

In particular we have Ts ≤ s since from the equation just above Ts(ω) = s − ATs(ω)(ω)

and At is an increasing process(and hence by Definition 2.2.7 always non-negative). Its

not very hard to see that

{Ts ≤ t} = {At + t ≥ s} ∈ Ft (2.2.13)

Indeed we have that {Ts ≤ t} ⊆ {At+ t ≥ s} since At+ t is strictly increasing and hence

ω ∈ {Ts(ω) ≤ t} ⊆ {ATs(ω)(ω) + Ts(ω) ≤ At + t} = {s ≤ At + t} where the last equality

is a consequence of equation (2.2.12)
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On the other hand {At + t ≥ s} ⊆ {Ts ≤ t} is obvious. Thus for each s ≥ 0, Ts
is a bounded stopping time for {Ft}. Taking s as our new time variable we define the

filtration {Gs} by

Gs = FTs ; s ≥ 0

and introduce the time changed process

Ys(ω) = XTs(ω)(ω); s ≥ 0, ω ∈ Ω

which is adapted to Gs because the progressive measurability of X(Lemma 1.2.18 in [12]).

On the other hand Lemma 2.2.5 implies that, given any ε > 0 and R > 0, there is a

simple process {Y ε
s ,Gs, 0 ≤ s <∞} for which

E

∫ R

0

|Y ε
s − Ys|2ds ≤ ε/2 (2.2.14)

But from equation (2.2.9) and (2.2.10) it follows that

E

∫ ∞
0

Y 2
s ds = E

∫ ∞
0

1{Ts≤T}X
2
Tsds = E

∫ AT+T

0

X2
Tsds

≤ C2(EAT + T ) <∞
(2.2.15)

where the first equality follows from the definition of of Ys and the fact that we assume

Xt(ω) = 0 for all t > T and the second inequality follows from equation (2.2.13). So

now by choosing R to be sufficiently large and setting Y ε
s = 0 for s > R we get

E

∫ ∞
0

|Y ε
s − Ys|2ds = E

∫ R

0

|Y ε
s − Ys|2ds+ E

∫ ∞
R

|Y ε
s − Ys|2ds

= E

∫ R

0

|Y ε
s − Ys|2ds+ E

∫ ∞
R

|Ys|2ds < ε/2 + ε/2 = ε

(2.2.16)

where the the inequality follows from equation (2.2.15) and (2.2.14).(First we choose an

R large enough and we already know that equation (2.2.15)) is true for all R > 0

Now since Y ε
s is simple and because it vanishes for s > R, there is a finite partition

0 = s0 < s1 < · · · sn ≤ R with

Y ε
s = ξ0(ω)1{0}(s) +

n∑
j=1

ξsj−1
(ω)1(sj−1,sj ](s), 0 ≤ s <∞

where each ξsj is measurable with respect to Gsj = FTsj and bounded in absolute value

by a constant K. Now reverting to the original clock we observe that

Xε
t := Y ε

t+At = ξ0(ω)1{0}(t+ At) +
n∑
j=1

ξsj−1
(ω)1(sj−1,sj ](t+ At), 0 ≤ t <∞
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Also note that using the same argumentation as before(using (2.2.13)) we an show that

sj−1 < t+ At ≤ sj is the same as Tsj−1
< t ≤ Tsj and hence rewrite Xε

t as follows

Xε
t = ξ0(ω)1{0}(t) +

n∑
j=1

ξsj−1
(ω)1(Tsj−1 ,Tsj ](t), 0 ≤ t <∞

Now recalling that a random variable Z is FT measurable if and only if Z1{T≤t} is a Ft
measurable random variable for all t ≥ 0 Now since ξsj is FTsj we can conclude that

ξsj1{Tsj≤t} is Ft measurable and therefore we have that ξsj−1
1{Tsj−1≤t}1{Tsj−1 6=t}1{Tsj−1≥t} =

ξsj−1
1(Tsj−1 ,Tsj ] ∈ Ft as the L.H.S is a product of Ft measurable functions since Tsj is a

Ft stopping time. We have

E

∫ T

0

|Xε
t −Xt|2dAt ≤ E

∫ T

0

|Xε
t −Xt|2d(At + t)

= E

∫ T

0

|Y ε
At+t − YAt+t|

2d(At + t) = E

∫ T

0

|Y ε
s − Ys|2ds

≤ E

∫ ∞
0

|Y ε
s − Ys|2ds < ε

In order to complete the proof we need to show that Xε is a simple process. For this we

refer the reader to [12].

Proposition 2.2.9. (Proposition 3.2.8 Shreve) The set L0 of simple processes is dense

in L∗ with respect to the metric of Definition 2.2.1

Proof. Take A = 〈M〉 in Lemma 2.2.8

In the next section we will give the most important properties of the Stochastic

integral, many of which are used in the theory of stochastic differential equations. The

presentation style and the results are from [12].

2.2.2 Construction and Elementary Properties of the Stochas-

tic Integral

We have already defined the stochastic integral of a simple process X ∈ L0. Let us list

certain properties of the integral : for X, Y ∈ L0 and 0 ≤ s < t <∞ we have

I0(X) = 0, a.s. P (2.2.17)

E [It(X)|Fs] = Is(X), a.s. P (2.2.18)
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E (It(X))2 = E

∫ t

0

X2
ud〈M〉u (2.2.19)

‖I(X)‖ = [X] (2.2.20)

E
[
(It(X)− Is(X))2 |Fs

]
= E

[∫ t

s

X2
ud〈M〉u|Fs

]
(2.2.21)

I(αX + βY ) = αI(X) + βI(Y ); α, β ∈ R (2.2.22)

Properties (2.2.17) and (2.2.22) are obvious for simple integrands and follows directly

from the definition of stochastic integral of simple integrands. Property 2.2.18 follows

from the fact that for any 0 ≤ s < t <∞ and any integer i ≥ 1, we have in the notation

of (2.2.4),

E
[
ξi(Mt∧ti+1

−Mt∧ti)|Fs
]

= ξi(Ms∧ti+1
−Ms∧ti), a.s P

which can be verified easily using the properties of conditional expectation for each of

the the three cases: s ≤ ti, ti < s ≤ ti+1 and ti+1 < s

For example when s < ti we have

E
[
E
[
ξi(Mt∧ti+1

−Mt∧ti)|Fti
]
|Fs
]

= E
[
ξiE

[
(Mt∧ti+1

−Mt∧ti)|Fti
]
|Fs
]

= E
[
ξiE

[
(Mti+1

−Mti)|Fti
]
|Fs
]

= 0 = ξi(Ms∧ti+1
−Ms∧ti)

The other two cases can be proved similarly.

Moreover it follows from construction of the stochastic integral of a simple process as

a martingale transform that it is continuous and hence I(X) = {It(X),Ft, 0 ≤ t < ∞}
is a continuous martingale. Now with 0 ≤ s < t < ∞ and m and n chosen such that

tm−1 ≤ s < tm and tn ≤ t < tn+1, we have the following

E
[
(It(X)− Is(X))2 | Fs

]
= E

(ξm−1(Mtm −Ms) +
n−1∑
i=m

ξi(Mti+1
−Mti) + ξn(Mt −Mtn)

)2

|Fs


= E

[
ξ2
m−1(Mtm −Ms)

2 +
n−1∑
i=m

ξ2
i (Mti+1

−Mti)
2 + ξ2

n(Mt −Mtn)2|Fs

]

= E

[
ξ2
m−1(M2

tm −M
2
s ) +

n−1∑
i=m

ξ2
i (M

2
ti+1
−M2

ti
) + ξ2

n(M2
t −M2

tn)|Fs

]

= E

[
ξ2
m−1 (〈M〉tm − 〈M〉s) +

n−1∑
i=m

ξ2
i

(
〈M〉ti+1

− 〈M〉ti
)

+ ξ2
n (〈M〉t − 〈M〉tn) |Fs

]

= E

[∫ t

s

X2
ud〈M〉u|Fs

]
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Where we have used the following properties of square integrable martingales for 0 ≤
t ≤ u < v

1. E [(Mu −Mv)
2|Ft] = E [M2

u −M2
v |Ft]

2. E [M2
u −M2

v |Ft] = E [〈M〉u − 〈M〉v|Ft]

This proves (2.2.21) and establishes the fact that the continuous martingale is square

integrable (by putting s = 0 in (2.2.21) and then taking expectations and recalling

that the quadratic variation is a continuous process and hence bounded and therefore

integrable on all compact sets )

And its quadratic variation is given by

〈I(X)〉t =

∫ t

0

X2
ud〈M〉u

because quadratic variation of I(X) is the unique (up to indistinguishability) stochastic

process 〈I(X)〉 such that(
I(X)2

t − 〈I(X)〉t
)
t≥0

is a martingale

and since

E
[
I(X)2

t − I(X)2
s −

∫ t
s
X2
ud〈M〉u|Fs

]
= 0, the result follows.

Lemma 2.2.10. Let W = {Wt,Ft; 0 ≤ t <∞} be a standard , one-dimensional Brow-

nian Motion , and let T be a stopping time of {Ft} with ET < ∞. Then the following

Wald’s identities hold

E(WT ) = 0 and E(W 2
T ) = E[T ]

Proof. Let T be a stopping time with respect to the filtration {Ft}. For a fixed

0 ≤ t < ∞ ,t ∧ T is also a Ft-stopping time(elementary fact). Since W is progres-

sively measurable(sample paths of Brownian motion are continuous almost surely and

adapted), Wt∧T is Ft∧T -msb and hence Ft-msb.

Since (W 2
t − t)t≥0 is a martingale, it follows from the optional stopping theorem that

E(W 2
T∧n) = E(T ∧ n).

This implies

E((WT∧n −WT∧m)2) = E(T ∧ n)− E(T ∧m)
m,n→∞−−−−→ 0.

This shows that (WT∧n)n≥1 is an L2-Cauchy sequence and so WT∧n → WT in L2.

Hence, in particular, WT∧n → WT in L1 and so

E(WT∧n)
n→∞−−−→ E(WT ).
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Obviously taking n → ∞ we get limn→∞E [W 2
T∧n] = limn→∞E [T ∧ n] = E [T ]

where the last inequality follows from the monotone convergence theorem. Note that

even thought we show this for n ∈ N, the same proof works if we chose a sequence

(tn)n∈N such that tn →∞ as n→∞ And therefore we can conclude

E
[
W 2
T

]
= E[T ]

Also by the optional sampling theorem E [Wt∧T ] = E [W0] = 0 and L2 convergence

implies convergence in L1 we have limt→∞E [Wt∧T ] = E [WT ] which yields

E [WT ] = 0

Lemma 2.2.11. Let W = {Wt,Ft; 0 ≤ t <∞} be a standard , one-dimensional Brow-

nian Motion, let b be a real number and let Tb be the first passage time to b. Show that

for b 6= 0 we have that E[Tb] =∞

Proof. (Proof by contradiction) Recall that the Brownian passage time Tb is defined as

Tb = inf{t ≥ 0 : Wt = b}

If E [Tb] <∞ then by Lemma 2.2.10(Wald’s identity) E [WTb ] = 0 but by the definition

of Tb we have that E [WTb ] = E[b] > 0(Contradiction!!!). And hence we have to have

that E [Tb] =∞

2.2.3 Characterization of the Integral

Suppose that M = {Mt,Ft, 0 ≤ t < ∞} and N = {Nt,Ft, 0 ≤ t < ∞} are in Mc
2, and

take X ∈ L∗(M), Y ∈ L∗(N). Then we will show that IMt (X) :=
∫ t

0
XsdMs, I

N
t (Y ) :=∫ t

0
YsdNs are also in Mc

2. We have already seen that

〈IM(X)〉t =

∫ t

0

X2
ud〈M〉u, 〈IN(Y )〉t =

∫ t

0

Y 2
u d〈N〉u

We now propose to now establish the cross variational formula

〈IM(X), IN(Y )〉t =

∫ t

0

XuYud〈M,N〉u; t ≥ 0, P a.s (2.2.23)

If X and Y is simple its is straightforward to show that that for 0 ≤ s < t <∞ we have

E
[(
IMt (X)− IMs (X)

) (
INt (Y )− INt (Y )

)
|Fs
]

= E

[∫ t

s

XuYud〈M,N〉u|Fs
]
P a.s

(2.2.24)
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(2.2.24) is equivalent too (2.2.23) . We first show that (2.2.24) =⇒ (2.2.23).

E
[(
IMt (X)− IMs (X)

) (
INt (Y )− INs (Y )

)
|Fs
]

= E
[
IMt (X)INt (Y )− IMt (X)INs (Y )− IMs (X)INt (Y ) + INs (Y )IMs (X)|Fs

]
= E

[
IMt (X)INt (Y )− IMt (X)INs (Y )− IMs (X)INt (Y ) + INs (Y )IMs (X)|Fs

]
=

E
[
IMt (X)INt (Y )|Fs

]
− INs (Y )E

[
IMt (X)|Fs

]
− IMs (X)E

[
INt (Y )|Fs

]
+ INs (Y )IMs (X) =

E
[
IMt (X)INt (Y )|Fs

]
− INs (Y )IMs (X)− IMs (X)INt (Y ) + INs (Y )IMs (X)

= E
[
IMt (X)INt (Y )− IMs (X)INs (Y )|Fs

]
(2.2.25)

Therefore from (2.2.24) we have

E

[
IMt (X)INt (Y )− IMs (X)INs (Y )−

∫ t

s

XuYud〈M,N〉u|Fs
]

= 0

Now if we assume that

〈IM(X), IN(Y )〉t =

∫ t

0

XuYud〈M,N〉u; t ≥ 0, P a.s

then recalling that the quadratic variation 〈IM(X), IN(Y )〉t is the unique (upto indistin-

guishability ) process which makes (IMt (X), INt (Y )−〈IM(X), IN(Y )〉t)t≥0 a martingale,

we can conclude that (2.2.24) is equivalent too (2.2.23)

Now it remains to extend the result to the case when X ∈ L∗(M), Y ∈ L∗(N). In

order to do it we will need the following propositions. The following result is due to

Kunita and Watanabe(see [18])

Proposition 2.2.12. (Proposition 3.2.14 Shreve) If M,N ∈ Mc
2, X ∈ L∗(M), Y ∈

L∗(N) then a.s∫ t

0

|XsYs|dξs ≤
(∫ t

0

X2
sd〈M〉s

)1/2(∫ t

0

Y 2
s d〈N〉s

)1/2

0 ≤ t <∞

where ξ̂s denotes the total variation of the process ξ = 〈M,N〉 on [0, s]

Proof. According to problem 1.5.7(iv), on page 31-32 in [12], ξ̂(ω) is absolutely con-

tinuous with respect to ψ(ω) = 1
2

[〈M〉+ 〈N〉] (ω) for every ω ∈ Ω̂ with P (Ω̂) = 1

and for every such ω, the Radon-Nikodym theorem implies the existence of functions

fi(., ω) : [0,∞)→ R, i = 1, 2, 3, such that

〈M〉t(ω) =

∫ t

0

f1(s, ω)dψs(ω) , 〈N〉t(ω) =

∫ t

0

f2(s, ω)dψs(ω) ,

ξt(ω) = 〈M,N〉t(ω) =

∫ t

0

f3(s, ω)dψs(ω) , 0 ≤ t <∞
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Note that f1, f2 ≥ 0 but f3 is not necessarily positive. In order to see this recall that if

V is a finite variation process then the total variation of V given by SV can be written

as the sum of two increasing functions as

SVt = A1
t + A2

t

where as V can be written as

Vt = A1
t − A2

t

where A1 and A2 are defined as

A1
t =

SVt + Vt
2

and A2
t =

SVt − Vt
2

In the context of this equalilty since we can write ξ̂t(ω) = A1
t (ω) + A2

t (ω) where both

A1
t (ω) and A2

t (ω) are both non-negative and increasing. Now since ξ̂t(ω) is absolutely

continuous with respect to ψt(ω) so is A1
t (ω) and A2

t (ω)(since when ψt(ω) = 0 then so is

ξ̂t(ω) and hence A1
t (ω) and A1

t (ω)). Now Radon Nikodym theorem implies the existence

of a densities f4(ω) and f5(ω) such that

A1
t (ω) =

∫ t

0

f4(s, ω)dψs(ω) and A2
t (ω) =

∫ t

0

f5(s, ω)dψs(ω)

and moreover for the total variation process ξ̂t(ω) we have

ξ̂t(ω) =

∫ t

0

f6(s, ω)dψs(ω)

Hence we can conclude that

Vt = ξt(ω) = A1
t − A2

t =

∫ t

0

f4(s, ω)dψs(ω)−
∫ t

0

f5(s, ω)dψs(ω)

=

∫ t

0

(f4(s, ω)− f5(s, ω)) dψs(ω)

(2.2.26)

Now this implies that the f3(s, ω) defined above is given by the difference of the

densities f4(s, ω) and f5(s, ω), that is

f3(s, ω) = f4(s, ω)− f5(s, ω)

Similarly ξ̂t(ω) = A1
t (ω) + A2

t (ω) for all t, ω implies

f6(s, ω) = f4(s, ω) + f5(s, ω)
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Consequently for α, β ∈ R and ω ∈ Ω̃αβ ⊆ Ω̂ satisfying P (Ω̃αβ) = 1, we have

0 ≤ 〈αM + βN〉t(ω)− 〈αM + βN〉u(ω)

=

∫ t

u

(
α2f1(s, ω) + 2αβf3(s, ω) + β2f2(s, ω)

)
dψs(ω); 0 ≤ u < t <∞

Now obviously this can happen only if , for every ω ∈ Ω̃αβ, there exists a set Tαβ(ω) ∈
B([0,∞)) with

∫
Tαβ(ω)

dψt(ω) = 0 and such that

α2f1(t, ω) + 2αβf3(t, ω) + β2f2(t, ω) ≥ 0 (2.2.27)

holds for every t /∈ Tαβ(ω).Now let Ω̃ :=
⋂
α,β∈Q Ω̃αβ and T (ω) =

⋂
α,β∈Q Tαβ(ω) so that

P (Ω̃) = 1,
∫
T (ω)

dψt(ω) = 0; ∀ω ∈ Ω̃ . Fix ω ∈ Ω̃ then (2.2.27) holds for every t /∈ T (ω)

and every pair (α, β) of rational numbers and thus also for every t /∈ T (ω), (α, β) ∈ R2.

In particular,

α2|Xt(ω)|2f1(t, ω) + 2α|Xt(ω)Yt(ω)||f3(t, ω)|+|Yt(ω)|2f2(t, ω) ≥ 0;∀t /∈ T (ω)

Integrating with respect to dψt(ω) we obtain

α2

∫ t

0

|Xs|2d〈M〉s + 2α

∫ t

0

|XsYs||f4(s, ω)− f5(s, ω)|dψs +

∫ t

0

|Ys|2d〈N〉s ≥ 0; 0 ≤ t <∞

almost surely. And hence we have

α2

∫ t

0

|Xs|2d〈M〉s+ 2α

∫ t

0

|XsYs|(f4(s, ω) + f5(s, ω)) dψs+

∫ t

0

|Ys|2d〈N〉s ≥ 0; 0 ≤ t <∞

and therefore

α2

∫ t

0

|Xs|2d〈M〉s + 2α

∫ t

0

|XsYs|f6(s, ω)dψs +

∫ t

0

|Ys|2d〈N〉s ≥ 0; 0 ≤ t <∞

and hence

α2

∫ t

0

|Xs|2d〈M〉s + 2α

∫ t

0

|XsYs|ξ̂s(ω) +

∫ t

0

|Ys|2d〈N〉s ≥ 0; 0 ≤ t <∞

Now noting that the equation above is a quadratic equation in the variable α,in order

to ensure that its aways positive , the discriminant has to be less than zero and hence

we have ∫ t

0

|XsYs|dξ̂s ≤
(∫ t

0

|Xs|2d〈M〉s
)1/2(∫ t

0

|Ys|2d〈N〉s
)1/2
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Lemma 2.2.13. (Lemma 3.2.15 Shreve) If M,N ∈Mc
2, X ∈ L∗(M) and {X(n)}∞n=1 ⊆

L∗(M) is such that for some T > 0

lim
n→∞

∫ T

0

|X(n)
u −Xu|2d〈M〉u ; a.s P

then

lim
n→∞
〈I(X(n)), N〉t = 〈I(X), N〉t

Proof. Problem 1.5.7(iii) on page 31-32 in [12] implies for 0 ≤ t ≤ T

|〈I(X(n))− I(X), N〉t|2≤ 〈I(X(n) −X)〉t〈N〉t ≤
∫ T

0

|X(n)
u −Xu|2d〈M〉u · 〈N〉T

But when we take limits , the last term on the right is zero and hence the desired result

follows immediately by the sandwich theorem

Lemma 2.2.14. (Lemma 3.2.16 Shreve) If M,N ∈Mc
2 and X ∈ L∗(M) then

〈IM(X), N〉t =

∫ t

0

Xud〈M,N〉u; 0 ≤ t <∞ a.s. (2.2.28)

Proof. According to Lemma 2.2.8, there exists a sequence {X(n)}∞n=1 of simple processes

such that

sup
T>0

lim
n→∞

E

∫ T

0

|X(n)
u −Xu|2d〈M〉u = 0

and hence consequently for each T > 0, a subsequence {X̃(n)} can be extracted for which

lim
n→∞

∫ T

0

|X̃(n)
u −Xu|2d〈M〉u = 0

But since (2.2.23) holds for simple processes, so we have

〈IM(X̃(n)), N〉t =

∫ t

0

X̃(n)
u d〈M,N〉u; 0 ≤ t ≤ T a.s.

Now letting n → ∞ in the equation above Lemma 2.2.13 makes the L.H.S equal to

〈I(X), N〉t
Now in order to show that the R.H.S converges to the right limit it is sufficient to

show that

lim
n→∞

∣∣∣∣∫ t

0

X̃(n)
u d〈M,N〉u −

∫ t

0

Xud〈M,N〉u
∣∣∣∣ = 0
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We have from the triangular inequality, the Kunita-Watanabe Inequality and the

assumption in the lemma that

lim
n→∞

∣∣∣∣∫ t

0

(
X̃(n)
u −Xu

)
d〈M,N〉u

∣∣∣∣ ≤ lim
n→∞

∫ t

0

∣∣∣X̃(n)
u −Xu

∣∣∣ d〈M,N〉u

≤ lim
n→∞

∫ t

0

∣∣∣X̃(n)
u −Xu

∣∣∣ dξ̂u ≤ lim
n→∞

(∫ t

0

∣∣∣X̃(n)
u −Xu

∣∣∣2 d〈M〉u)1/2

〈N〉t

≤ lim
n→∞

(∫ T

0

∣∣∣X̃(n)
u −Xu

∣∣∣2 d〈M〉u)1/2

〈N〉T = 0

where the second inequality follows from the fact that if 〈M,N〉t = A1
t − A2

t then

ξ̂t = A1
t + A2

t where A1 and A2 are non -decreasing processes starting at 0. And hence

we have the right side which concludes the proof.

Proposition 2.2.15. (Proposition 3.2.17 Shreve) Let M,N ∈ Mc
2, X ∈ L∗(M), and

Y ∈ L∗(N), then the equivalent formulas (2.2.23) and (2.2.22) hold.

Proof. Lemma 2.2.14 states that d〈M, IN(Y )〉u = Yud〈M,N〉. Replacing N in (2.2.28)

by IN(Y ), we have

〈IM(X), IN(Y )〉t =

∫ t

0

Xud〈M, IN(Y )〉u =

∫ t

0

XuYud〈M,N〉u; t ≥ 0 P a.s

Proposition 2.2.16. (Proposition 3.2.19 Shreve) Consider a martingale M ∈Mc
2 and

a process X ∈ L∗(M). The stochastic integral IM(X) is the unique martingale which

satisfies

〈φ,N〉t =

∫ t

0

Xud〈M,N〉u; 0 ≤ t <∞, a.s.P (2.2.29)

for every N ∈Mc
2

Proof. We already know from (2.2.28) that φ = IM(X) satisfies (2.2.29) for every N ∈
Mc

2. Subtracting (2.2.28) from (2.2.29) we have

〈φ− IM(X), N〉t = 0; 0 ≤ t <∞

Since this is true for all N ∈Mc
2, by setting N = φ−IM(X), we see that the continuous

martingale φ − IM(X) has quadratic variation zero and hence φ = IM(X).This is a

direct consequence of Lemma 1.5.12 in [12].

Corollary 2.2.17. (Corollary 3.2.20 Shreve) Suppose M ∈Mc
2, X ∈ L∗(M), and N =

IM(X). Suppose further that Y ∈ L∗(N). Then XY ∈ L∗(M) and IN(Y ) = IM(XY )
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Proof. Because 〈N〉 =
∫ t

0
X2
sd〈M〉s, we have

E

∫ T

0

X2
t Y

2
t d〈M〉t = E

∫ T

0

X2
t d〈N〉t <∞

for all T > 0, so XY ∈ L∗(M). For any Ñ ∈ Mc
2, (2.2.23) gives (we take Y = 1)

d〈Ñ ,N〉 = Xsd〈M, Ñ〉s, and thus

〈IM(XY )〉 =

∫ t

0

XsYsd〈M, Ñ〉s =

∫ t

0

Ysd〈N, Ñ〉s = 〈N, Ñ〉t

Now uniqueness of the representation of stochastic integral in Proposition 2.2.16 implies

IM(XY ) = IN(Y ) which completes the proof.

Corollary 2.2.18. (Corollary 3.2.21 Shreve) Suppose M, M̃ ∈ Mc
2, X ∈ L∗(M) and

X̃ ∈ L∗(M̃) and there exists a stopping time T of the common filtration for these pro-

cesses, such that for P -almost everywhere ω

Xt∧T (ω)(ω) = X̃t∧T (ω)(ω), , Mt∧T (ω)(ω) = M̃t∧T (ω)(ω); 0 ≤ t <∞

Then

IMt∧T (ω)(X)(ω) = IM̃t∧T (ω)(X̃)(ω); 0 ≤ t <∞, for P -a.e. ω

Proof. See Corollary 3.2.20 [12].

2.2.4 Integration with respect to continuous semi-martingales

Corollary 2.2.18, shows that stochastic integrals are determined locally by the local

values of the integrator and the integrand. This fact allows us to broaden the classes of

both integrands and integrators , a project we now undertake.

We begin by defining a continuous local martingale

Definition 2.2.19. Let X = {Xt,Ft; 0 < t ≤ ∞} be a (continuous) process with X0 = 0

a.s.. If there exists a non-decreasing sequence {Tn}∞n=1 of stopping times of {Ft} such that

{X(n)
t := Xt∧Tn ,Ft; 0 ≤ t <∞} is a martingale for each n ≥ 1 and P [limn→∞ Tn =∞] =

1, then we say X is a (continuous) local martingale and write X ∈ Mloc (respectively ,

X ∈Mc,loc if X is continuous).

Let M = {Mt,Ft; 0 ≤ t < ∞} be a continuous local martingale on a probability

space (Ω,F , P ) with M0 = 0 a.s., i.e M ∈ Mc,loc. Note that {Ft} satisfies the usual

assumptions. Now we define an equivalence relation on the set of measurable, {Ft}-
adapted processes.
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Definition 2.2.20. We denote by P, the collection of equivalence classes of all measur-

able, adapted processes X = {Xt,Ft, 0 ≤ t <∞} satisfying

P

[∫ T

0

X2
t d〈M〉t <∞

]
for every T ∈ [0,∞) (2.2.30)

We denote by P∗ the collection of all progressively measurable processes satisfying the

condition in equation (2.2.30)

We shall continue our development only for integrands in P∗. If almost every path

t 7→ 〈M〉t of the quadratic variation process 〈M〉 is absolutely continuous, we can choose

integrands from the wider class P . Because M is in Mc,loc, there exists a localizing

sequence {τn}∞n=1 such that τn ↑ ∞ a.s. and for every n ∈ N we have that (Mt∧τn)t≥0 is

a continuous martingale. One can then define a sequence of stopping times σn by

σn = inf{t ≥ 0 : Mt ≥ n}.

Almost sure continuity of (Mt)t≥0 implies that σn ↑ ∞ a.s. Hence we can conclude that

there exists a non-decreasing sequence of stopping times {Sn}∞n=1 given by Sn = σn ∧ τn
such that Sn ↑ ∞ a.s. P such that {Mt∧Sn,Ft, 0 ≤ t < ∞} is in Mc

2.For X ∈ P∗ one

constructs a sequence of bounded stopping times by setting

Rn(ω) = n ∧ inf

{
0 ≤ t <∞;

∫ t

0

X2
s (ω)d〈M〉s(ω) ≥ n

}
It is not hard to see that Rn is a non-decreasing sequence in n since both the maps

n 7→ n and n 7→ inf
{

0 ≤ t <∞;
∫ t

0
X2
s (ω)d〈M〉s(ω) ≥ n

}
are non-decreasing. The

latter is non-decreasing because for m ≥ n{
0 ≤ t <∞ :

∫ t

0

Xs(ω)2d〈M〉(ω) ≥ m

}
⊆
{

0 ≤ t <∞ :

∫ t

0

Xs(ω)2d〈M〉(ω) ≥ n

}
implies

inf

{
0 ≤ t <∞ :

∫ t

0

Xs(ω)2d〈M〉(ω) ≥ m

}
≥ inf

{
0 ≤ t <∞ :

∫ t

0

Xs(ω)2d〈M〉(ω) ≥ n

}
It is also not so hard to see that Rn ↑ ∞ a.s since the map n 7→ n increases to ∞ as

n→∞. On the other hand we know know that the map

n 7→ inf

{
0 ≤ t <∞;

∫ t

0

X2
s (ω)d〈M〉s(ω) ≥ n

}
is non decreasing and we have the following two possibilities
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1. Either t 7→
∫ t

0
X2
s (ω)d〈M〉s(ω) is bounded by some finite M .In this case we have

that for n ≥M,Rn =∞ since the infimum of the empty set is infinity.

2. If there is no such finite M , right continuity of the map t 7→
∫ t

0
X2
s (ω)d〈M〉s(ω)

implies that for all n ∈ N there exists an increasing sequence of times (tn)n∈N
where tn <∞ such that

∫ tn
0
X2
s (ω)d〈M〉s(ω) ≥ n and

∫ tn−1

0
X2
s (ω)d〈M〉s(ω) < n.

By equation (2.2.30) it follows that tn →∞ and hence

inf

{
0 ≤ t <∞ :

∫ t

0

Xs(ω)2d〈M〉(ω) ≥ n

}
→∞

as n goes to infinity which implies that Rn ↑ ∞ a.s P . For n ≥ 1, ω ∈ Ω, set

Tn(ω) = Rn(ω) ∧ Sn(ω), (2.2.31)

M
(n)
t (ω) := Mt∧Tn(ω), X

(n)
t (ω) := Xt(ω)1{Tn(ω)≥t}; 0 ≤ t <∞ (2.2.32)

ThenM (n) ∈Mc
2 since stopped square integrable continuous martingale is again a square

integrable continuous martingale by the Doob’s optional sampling theorem (martingale

variant of Problem 1.3.24 (i) in [12] ).

Also X(n) ∈ L∗(M (n)) since

E

∫ T

0

X2
t 1{Tn(ω)≥t}d〈M (n)〉t = E

∫ T

0

X2
t 1{Tn(ω)≥t}d〈M〉t∧Tn = E

∫ t∧Tn

0

X2
t d〈M〉t ≤ n

because Tn ≤ Rn and by the definition of Rn. Obviously the integral IM
(n)

(X(n)) is

well defined as a result of the construction above. Corollary 2.2.18 implies that for

1 ≤ n ≤ m,

IM
(m)

t (X(m)) = IM
(n)

t (X(n)) for 0 ≤ t ≤ Tn (2.2.33)

so we may define the stochastic integral as

It(X) := IM
(n)

t (X(n)) on {0 ≤ t ≤ Tn} (2.2.34)

This definition is consistent, independent of the choice of {Sn}∞n=1 and determines a

continuous process( this part is obvious) which is a local martingale.

Proposition 2.2.21. (Proposition 3.2.24 Shreve) Consider a local martingale M ∈
Mc,loc and a process X ∈ P∗(M). The stochastic integral IM(X) is the unique local

martingale φ ∈Mc,loc which satisfies equation (2.2.35) for every N ∈Mc
2(or equivalently

for every N ∈Mc,loc)

〈φ,N〉t =

∫ t

0

Xud〈M,N〉u; 0 ≤ t <∞, a.s. P (2.2.35)
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Proof. In order to prove this proposition we refer the reader to the construction of

the stochastic integral with respect to a continuous local martingale for processes X ∈
P∗(M). Using the same notation we have that X(n) ∈ L∗(M) and M (n) ∈ Mc

2 for each

n ∈ N and hence by equation (2.2.29) it follows that for all N ∈Mc
2 we have

〈IM(n)

(X(n)), N〉t =

∫ t

0

X(n)
u d〈M (n), N〉u =

∫ t

0

Xu1{Tn≥u}d〈M,N〉Tn∧u

=

∫ t

0

Xu1{Tn≥u}d〈M,N〉u =

∫ t∧Tn

0

Xud〈M,N〉u
(2.2.36)

Now from the construction of the stochastic process, in particular equation (2.2.34) we

have that

IMt (X) = IM
(n)

t (X(n)) for 0 ≤ t ≤ Tn

and hence by together with (2.2.36) we have the following for 0 ≤ t ≤ Tn

〈IM(X), N〉t = 〈IM(n)

(X(n)), N〉t =

∫ t∧Tn

0

Xud〈M,N〉u

and since by Proposition 2.2.16 the uniqueness of IM
(n)

(X(n) to be the only martingale

to satisfy equation (2.2.29) for every n ∈ N implies that IM(X) is the unique local

martingale which satisfies (2.2.29) for every t ∈ R+ upto Tn but as Tn ↑ ∞ a.s. P ,we

have the result for all t ∈ R+.

Proposition 2.2.22. (Problem 3.2.25 Shreve) Suppose M,N ∈Mc,loc and X ∈ P∗(M)∩
P∗(N). Show that for every pair (α, β) of real numbers we have

IαM+βN(X) = αIM(X) + βIN(X)

Proof. Since M,N ∈ Mc,loc, it follows that αM + βN ∈ Mc,loc and hence it follows

by Proposition 2.2.21 that IαM+βN(X) is the unique stochastic integral which satisfies

〈IαM+βN(X), Z〉t =
∫ t

0
Xud〈αM + βN,Z〉u; 0 ≤ t < ∞, a.s. P for every Z ∈ Mc,loc

Now using the bi-linearity of the quadratic co-variation process and the linearity of the

riemann-stieltges integral

〈IαM+βN(X), Z〉t =

∫ t

0

Xud〈αM + βN,Z〉u =

∫ t

0

Xud〈αM,Z〉u +

∫ t

0

Xud〈βN,Z〉u

= α

∫ t

0

Xud〈M,Z〉u + β

∫ t

0

Xud〈N,Z〉u = α〈IM(X), Z〉t + β〈IN(X), Z〉t

= 〈αIM(X) + βIN(X), Z〉
(2.2.37)
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and therefore we conclude that for all Z ∈Mc,loc

〈IαM+βN(X), Z〉t = 〈αIM(X) + βIN(X), Z〉

Proposition 2.2.21 immediately implies that IαM+βN(X) = αIM(X) + βIN(X) and

hence the proof is complete.

Lemma 2.2.23. (Proposition 3.2.26 Shreve) Let M ∈ Mc,loc, {X(n)}∞n=1 ⊆ P∗(M) and

suppose that for stopping time T of {Ft} we have limn→∞
∫ T

0
|X(n)

t −Xt|2d〈M〉t = 0 in

probability. Then

sup
0≤t≤T

∣∣∣∣ ∫ t

0

X(n)
s dMs −

∫ t

0

XsdMs

∣∣∣∣→ 0

in probability as n→∞.

Proof. See [12].

Lemma 2.2.24. (Problem 3.2.27 Shreve) Let M ∈ Mc,loc and choose X ∈ P∗. Show

that there exists a sequence of simple processes {X(n)}∞n=1 such that for every T > 0

lim
n→∞

∫ T

0

|X(n)
t −Xt|2d〈M〉t = 0

and

lim
n→∞

sup
0≤t≤T

|It(X(n))− It(X)|= 0

holds a.s P .If M is a one dimensional standard Brownian Motion, then the preceding

holds with X ∈ P

Proof. The proof is due to S. Dayanik. With X ∈ P∗(M), we construct a sequence

of bounded stopping times {Tn}∞n=1(see equation (2.2.31) in the section discussing the

construction of stochastic integral with respect to continuous local martingales) such

that each X(n) ∈ L∗(M (n)) and therefore can be approximated by a sequence of simple

processes {Xn,k}∞k=1 ⊆ L0 in the sense

lim
k→∞

E

∫ T

0

|X(n,k)
t −X(n)

t |2d〈M (n)〉t = 0 ∀T <∞

by Proposition 2.2.9. Let us now fix a positive T <∞ . By the equation just above we

can find some mn such that

E

∫ T

0

|X(n,mn)
t −X(n)

t |2d〈M (n)〉t <
1

n
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We claim that ∫ T

0

|X(n,mn)
t −Xt|2d〈M (n)〉t

P→ 0 as n→∞

To show this we first observe that for every n, X
(n)
t = Xt and 〈M (n)〉t = 〈M〉t for

0 ≤ t ≤ T on {T ≤ Tn}. Therefore for every fixed ε > 0, we have

P

[∫ T

0

|X(n,mn)
t −Xt|2d〈M〉t > ε

]
≤ P

[{∫ T

0

|X(n,mn)
t −Xt|2d〈M〉t > ε

}
∩ {T ≤ Tn}

]
+ P [T > Tn]

= P

[{∫ T

0

|X(n,mn)
t −X(n)

t |2d〈M (n)〉t > ε

}
∩ {T ≤ Tn}

]
+ P [T > Tn]

≤ P

[{∫ T

0

|X(n,mn)
t −X(n)

t |2d〈M (n)〉t > ε

}]
+ P [T > Tn]

≤ 1

ε
E

∫ T

0

|X(n,mn)
t −X(n)

t |2d〈M (n)〉t + P [T > Tn]

≤ 1

nε
+ P [T > Tn]

for every n. Since limn→∞ P [Tn < T ] = 0(because Tn ↑ ∞ a.s) and the inequality above

is true for every ε we conclude∫ T

0

|X(n,mn)
t −X(n)

t |2d〈M (n)〉t
P→ 0 as n→∞

We denote the simple process X(n,mn) by Y (T,n) to emphasize its dependence on T .

Now the equation just above and Proposition 2.2.23 together imply, that the following

sequences of random variables∫ T

0

|Y (T,n)
t −X(n)

t |2d〈M〉t, sup
0≤t≤T

|It(Y (T,n))− It(X)|

converge to zero in probability and hence there exists a subsequence for which the

convergence takes place almost surely. Having done this construction for a fixed T , we

use a diagonalization argument , as in the first paragraph of the Proof of Lemma 2.2.5,

to obtain a sequence which works for all T . In case that M is a Brownian Motion we

use Proposition 2.2.6, rather than Proposition 2.2.9 in the construction.

Lemma 2.2.25. (Problem 3.2.28 Shreve) Let M=W be a standard Brownian Motion

and X ∈ P. We define for 0 ≤ s < t <∞

ζst (X) :=

∫ t

s

XudWu −
1

2

∫ t

s

X2
udu; ζt(X) := ζ0

t (X) (2.2.38)
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the process {exp ζt(X),Ft, 0 ≤ t <∞} is a supermartingale, it is a martingale if X ∈ L0

Proof. We first show that for X ∈ L0 ,{exp ζt(X),Ft, 0 ≤ t < ∞} is a martingale.

Let {ξn}∞n=1 be a sequence of random variables such that supn≥1|ξn(ω)|. We only show

the martingale property since adaptedness is obvious and integrability follows from the

uniform boundedness of {ξn}∞n=1 and integrability of the exponential of brownian incre-

ments.

Hence we need to show that

E [ζt(X)|Fs] = ζs(X)

And since

E [ζt(X)|Fs] = exp ζs(X)E [exp ζst (x)|Fs]

it is sufficient to show that

E [exp ζst (x)|Fs] = 1

Now we define Vi = ξi(Mti+1
−Mti)− 1

2
ξ2
i (ti+1−ti),Vs = ξm−1(Mtm−Ms)− 1

2
ξ2
m−1(tm−

s) and Vt = ξn(Mt −Mtn)− 1
2
ξ2
n(tn − t) where 0 ≤ s < t < ∞ , m and n are chosen so

that tm−1 ≤ s < tm and tn ≤ t < tn+1. Using the definition of ζst (X) and the definition

of the stochastic integral of a process X ∈ L0 w.r.t to an integrand in Mc
2 we have

E

[
exp (Vs) exp

(
n−1∑
i=m

Vi

)
exp (Vt)

∣∣∣∣Fs
]

= E

[
E [E [exp (Vs)|Fs]]

(
n−1∏
i=m

E [E [exp (Vi)|Fti ]]

)
E [E [exp (Vs)|Ftn ]]

∣∣∣∣Fs
]

We conclude by showing that all the conditional expectations above are 1. We have

that

E [exp (Vs)|Fs] = E

[
exp

(
ξm−1(Mtm −Ms)−

1

2
ξ2
m−1(tm − s)

)
|Fs
]

where ξm−1 are Fs measurable and Mtm −Ms is independent of Fs since M = W is a

standard Brownian motion.

To prove E [exp (Vs)|Fs] = 1, consider a sigma-algebra G, a random variable U

measurable with respect to G (such that U2 has finite exponential moments) and a

random variable V independent of G, centered normal with variance s, then the goal is

to show that

E [M | G] = 1, M = eUV−
1
2
U2s.

That is, since U is measurable with respect to G, E [M | G] = A(U), where

A(u) = E
[
euV−

1
2
u2s|G

]
.
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One sees that

A(u) = e−
1
2
u2sE

[
euV |G

]
= e−

1
2
u2sE

[
euV
]
,

where the last equality stems from the independence of V and G. Finally, if V is standard

normal with variance s, then E
[
euV
]

= e
1
2
u2s, hence A(u) = 1 for every u.

In our context U = ξm−1 , V = Mtm−Ms and G = Fs and the variance of V is tm−s.
The exact same argument works for the conditional expectations of Vi with respect to

the filtration Ftiand Vt w.r.t the filtration Ftn . Now and Fatou’s lemma implies that

{ζt,Ft, 0 ≤ t <∞} is a supermartingale. Indeed we have

E [ζt(X)|Fs]

= E

[
exp

(∫ t

0

XudWu −
1

2

∫ t

0

X2
udu

)∣∣∣∣Fs]
= E

[
exp

(
lim
n→∞

∫ t

0

X(n)
u dWu −

1

2

∫ t

0

(X(n)
u )2du

)∣∣∣∣Fs]
= E

[
lim
n→∞

exp

(∫ t

0

X(n)
u dWu −

1

2

∫ t

0

(X(n)
u )2du

)∣∣∣∣Fs]
≤ lim

n→∞
E

[
exp

(∫ t

0

X(n)
u dWu −

1

2

∫ t

0

(X(n)
u )2du

)∣∣∣∣Fs]
= lim

n→∞
exp

(∫ s

0

X(n)
u dWu −

1

2

∫ s

0

(X(n)
u )2du

)
= exp

(
lim
n→∞

∫ s

0

X(n)
u dWu −

1

2

∫ s

0

(X(n)
u )2du

)
= exp

(∫ s

0

XudWu −
1

2

∫ s

0

X2
udu

)
= ζs(X)

(2.2.39)

This completes the proof

Lemma 2.2.26. (Exercise 3.2.30 Karatzas and Shreve) For M ∈ Mc,loc, X ∈ P∗, and

Z an Fs-measurable random variable , show that∫ t

s

ZXudMu = Z

∫ t

s

XudMu; s ≤ t <∞, a.s. (2.2.40)

Proof. First note that for the stochastic integral
∫ t
s
ZXudMu to be well-defined we need

that ZX ∈ P∗ i.e P
[∫ T

0
Z2X2

t d〈M〉t <∞
]

= 1 for every T ∈ [0,∞). Suppose that we

have proved (2.2.40) for bounded Z then we have that for Zk = Z1{Z≤k}∫ t

s

ZkXudMu = Zk

∫ t

s

XudMu; s ≤ t <∞, a.s. (2.2.41)
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Now in order to compute limk→∞
∫ t
s
ZkXudMu we use the fact that Z2

kX
2
u ≤ Z2X2

u, for

all k ∈ N with
∫ T

0
Z2X2

ud〈M〉u < ∞ we can apply the Lebesgue dominate convergence

theorem to conclude that

lim
n→∞

∫ T

0

|ZkXt − ZXt|2=

∫ T

0

lim
n→∞
|ZkXt − ZXt|2= 0 a.s.

And hence the convergence also holds in probability and therefore we can apply Lemma

2.2.23 to conclude that

sup
0≤t≤T

∣∣∣∣ ∫ t

0

ZkXsdMs −
∫ t

0

ZXsdMs

∣∣∣∣→ 0 as k →∞

in probability for the deterministic stopping time T > 0. And therefore there exists a

subsequence (kn)n∈N such that

sup
0≤t≤T

∣∣∣∣ ∫ t

0

ZknXsdMs −
∫ t

0

ZXsdMs

∣∣∣∣→ 0 a.s. as n→∞

Now taking limits in equation (2.2.41) as n→∞

lim
n→∞

∫ t

s

ZknXudMu = lim
n→∞

Zkn

∫ t

s

XudMu

we get ∫ t

s

ZXudMu = Z

∫ t

s

XudMu

Now in order to complete the proof we need to show that the result holds for bounded

Fs-measurable random variable Z. For the sake of notational simplicity we prove it for

s = 0. Proposition 2.2.21 tells us that for any continuous local martingale N we have

the following

〈IM(ZX), N〉t =

∫ t

0

ZXud〈M,N〉u = Z

∫ t

0

Xud〈M,N〉u = Z〈IM(X), N〉t (2.2.42)

The second equality follows from the fact that the integral is computed ω-wise, we can

pull Z(ω) out of the integral. Since by definition

〈IM(X), N〉t =

〈∫ t

0

XudMu, N

〉
t

= 〈Φ, N〉t

where we assume Φt =
∫ t

0
XudMu Using the local martingale analogue of Problem

1.5.14 in Karatzas and Shreve [12] we have that for X, Y ∈ Mc,loc and a partition

Π = {t0, t1, · · · , tm} of [0, t] we have that

lim
‖Π‖→0

m∑
k=1

(
Xtk −Xtk−1

) (
Ytk − Ytk−1

)
= 〈X, Y 〉t in probability
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Hence it follows by the definition of quadratic covariation that

lim
‖Π‖→0

m∑
k=1

(
ZXtk − ZXtk−1

) (
Ytk − Ytk−1

)
= 〈ZX, Y 〉t in probability .

Moreover we have that if a sequence of random variables Gn → G in probability and F

is another random variable on the same probability space then FGn → FG in probabil-

ity. In the context of this problem we have that Z
∑m

k=1

(
Xtk −Xtk−1

) (
Ytk − Ytk−1

)
=∑m

k=1

(
ZXtk − ZXtk−1

) (
Ytk − Ytk−1

)
such that Z

∑m
k=1

(
Xtk −Xtk−1

) (
Ytk − Ytk−1

)
con-

verges to Z〈X, Y 〉t in probability whereas
∑m

k=1

(
ZXtk − ZXtk−1

) (
Ytk − Ytk−1

)
converges

to 〈ZX, Y 〉t in probability and since limit in probability is almost surely unique we get

Z〈X, Y 〉t = 〈ZX, Y 〉t a.s P ∀0 ≤ t <∞

2.2.5 The Change of Variables Formula

One of the most important tools in the study of stochastic processes of the martingale

type is the change-of-variable formula or Itô’s rule as it is better known. It provides

an integral-differential calculus for the sample paths of such processes. Let us consider

a basic probability space (Ω,F , P ) with an associated filtration {Ft} which we always

assume to satisfy the usual conditions.

Definition 2.2.27. A continuous semi-martingale X = {Xt,Ft; 0 ≤ t < ∞} is an

adapted process which has the decomposition P a.s.,

Xt = X0 +Mt +Bt; 0 ≤ t <∞, (2.2.43)

where M = {Mt,Ft; 0 ≤ t < ∞} is a continuous local martingale and B = {Bt,Ft; 0 ≤
t <∞} is the difference of continuous, nondecreasing adapted proceses {A±t ,Ft; 0 ≤ t <

∞} :

Bt = A+
t − A−t ; 0 ≤ t <∞ (2.2.44)

with A±0 = 0, P a.s.

Itô’s rule states that a ”smooth function” of a continuous semi-martingale is a con-

tinuous semi-martingale and provides its decomposition. We state the theorem without

proof

Theorem 2.2.28. Let {Mt =: (M
(1)
t , . . . ,M

(d)
t ),Ft; 0 ≤ t < ∞} be a vector of con-

tinuous local martingales, {Bt =: (B
(1)
t , . . . , B

(d)
t ),Ft; 0 ≤ t < ∞} a vector of adapted
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processes of bounded variation with B0 = 0, and set Xt = X0 + Mt + Bt; 0 ≤ t < ∞,

where X0 is a F0 measurable random vector in Rd. Let f(t, x) : [0,∞) × Rd → R be of

class C1,2. Then , a.s P ,

f(t,Xt) = f(0, X0) +

∫ t

0

∂

∂t
f(s,Xs)ds+

d∑
i=1

∫ t

0

∂

∂xi
f(s,Xs)dB

(i)
s

+
d∑
i=1

∫ t

0

∂

∂xi
f(s,Xs)dM

(i)
s

+
1

2

d∑
i=1

d∑
j=1

∫ t

0

∂2

∂xi∂xj
f(s,Xs)d〈M (i),M (j)〉s, 0 ≤ t <∞

(2.2.45)

Lemma 2.2.29. (Problem 3.3.12 Karatzas and Shreve) Suppose we have two continuous

semi-martingales

Xt = X0 +Mt +Bt, Yt = Y0 +Nt + Ct; ; 0 ≤ t <∞

where M,N ∈Mc,loc and B and C are adapted continuous processes of bounded variation

with B0 = C0 = 0 a.s. Prove the integration by parts formula∫ t

0

XsdYs = XtYt = X0Y0 −
∫ t

0

YsdXs − 〈M,N〉t. (2.2.46)

Proof. Using the linearity of the integrator in the stochastic integral we get

d(XY ) =
1

4
d((X + Y )2 − (X − Y )2) =

1

4

(
d(X + Y )2 − d(X − Y )2

)
(2.2.47)

A simple application of Itô’s lemma gives us

d(X + Y )2 = 2(X + Y )d(X + Y ) + d〈X + Y 〉

and

d(X − Y )2 = 2(X − Y )d(X − Y ) + d〈X − Y 〉

Now from (2.2.47) we get

d(XY ) =
1

4
(2(X + Y )d(X + Y ) + d〈X − Y 〉+ 2(X − Y )d(X − Y )− d〈X − Y 〉)

which simplifies to

d(XY ) =
1

4
(4XdY + 4Y dX) +

1

4
(〈X + Y 〉 − 〈X − Y 〉)

= XdY + Y dX + d〈X, Y 〉 = XdY + Y dX + d〈M,N〉
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Note that 〈X, Y 〉 = 〈X0 + M + B, Y0 + N + C〉 = 〈M,N〉 using the bi-linearity of the

quadratic variation , the fact that the quadratic co-variation of a finite variation process

and a martingale is zero and the quadratic covariation of two finite variation processes

is zero Now integrating the L.H.S and the R.H.S from 0 to t we get

XtYt = X0Y0 +

∫ t

0

YsdXs +

∫ t

0

XsdYs + 〈M,N〉t

Lemma 2.2.30. (3.3.25 Exercise Shreve) With W = {Wt,Ft; 0 ≤ t <∞} is a standard

one dimensional Brownian Motion and X is measurable, adapted process satisfying

E

∫ T

0

|Xt|2mdt <∞ (2.2.48)

for some real numbers T > 0 and m ≥ 1, then

E

∣∣∣∣∫ T

0

XtdWt

∣∣∣∣2m ≤ (m(2m− 1))m Tm−1E

∫ T

0

|Xt|2mdt (2.2.49)

Proof. Applying Itô’s lemma to the continuous semi-martingale (submartingale) |M |2m

we get

M2m
t = 2m

∫ t

0

M2m−1
s dMs +m(2m− 1)

∫ t

0

M2m−2
s d〈M〉s

Taking expectations and reapplying Itô’s lemma to M2m−2,M2m−4, · · · ,M2, using Fu-

bini’s theorem to interchange the integral and the expectation and using the fact the

expectation of the stochastic integral(which is a martingale starting at zero) is 0 we get

E
[
M2m

t

]
= 2mE

[∫ t

0

M2m−1
s dMs

]
+m(2m− 1)E

[∫ t

0

M2m−2
s d〈M〉s

]
= m(2m− 1)

∫ t

0

E
[
M2m−2

s

]
d〈M〉s

=
1

2
2m(2m− 1)

∫ t

0

1

2
(2m− 2)(2m− 3)E

[∫ s

0

M2m−4
u d〈M〉u

]
= · · · =

(
1

2

)m
(2m).(2m− 1).(2m− 2) . . . 1E

∫ t

0

∫ s

0

· · ·
∫ u

0

〈M〉vd〈M〉v

≤ (m(2m− 1))mE [〈M〉mt ] = (m(2m− 1))mE

[(∫ t

0

X2
udu

)m]
Holders’s
≤ (m(2m− 1))mE

[(∫ t

0

X2m
u du

)m/m(∫ t

0

du

)m(1− 1
m

)
]

= (m(2m− 1))m tm−1E

[(∫ t

0

X2m
u du

)]
And hence we have the result
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2.3 Introduction to Stochastic Differential Equations

In this section we will introduce the concept of strong solutions of stochastic differential

equations with respect to a Brownian motion. We will follow the presentation in the

book of (Karatzas and Shreve [12]) and provide some important results on existence and

uniqueness of SDE’s due to (Itô [9] and Yamada and Watanabe [10])

Let us start with Borel-measurable functions bi(t, x), σij(t, x); 1 ≤ i ≤ d, 1 ≤ j ≤ r,

from [0,∞)×Rd into R, and define the (d× 1) drift vector b(t, x) = {bi(t, x)}1≤i≤d and

the (d×r) dispersion matrix σ(t, x) = {σij(t, x)}1≤i≤d
1≤j≤r

. The intent is to assign a meaning

to a stochastic differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt (2.3.1)

written component wise as

dX i
t = bi(t,Xt)dt+

r∑
j=1

σij(t,Xt)dW
j
t ; 1 ≤ i ≤ d (2.3.2)

where W = {Wt; 0 ≤ t < ∞} is an r-dimensional Brownian motion and X = {Xt; 0 ≤
t < ∞} is as suitable stochastic process with continuous sample paths and values in

Rd, the solution of the the equation. The drift vector b(t, x) and the dispersion matrix

σ(t, x) are the coefficients of the equation; the (d × d) matrix a(t, x) := σ(t, x)σT (t, x)

with elements

aij(t, x) :=
r∑
j=1

σij(t, x)σkj(t, x); 1 ≤ i, k ≤ d (2.3.3)

will be called the diffusion matrix.

In order to develop the concept of strong solution, we choose a probability space

(Ω,F ,P) as well as a r-dimensional Brownian motion W = {Wt,FWt ; 0 ≤ t < ∞} on

it. We assume also that this space is rich enough to accommodate a random vector ξ

taking values in Rd, independent of FW∞ , and with the given distribution

µ(T ) = P [ξ ∈ Γ]; Γ ∈ B(Rd)

We consider the filtration

Gt := σ(ξ) ∨ FWt = σ(ξ,Ws, 0 ≤ s ≤ t); 0 ≤ t <∞

as well as the collection of null sets

N = {N ⊆ Ω,∃G ∈ G∞ with N ⊆ G and P (G) = 0}
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and create the augmented filtration

Ft := σ(Gt ∪N ), 0 ≤ t <∞; F∞ = σ

(⋃
t≥0

Ft

)
(2.3.4)

Obviously {Wt,Gt; 0 ≤ t ≤ ∞} is an r-dimensional Brownian motion, and then so is

{Wt,Ft; 0 ≤ t ≤ ∞}(see Theorem 2.7.9 in [12] ). Note that the filtration thus satisfies

the usual conditions(see Theorem 2.7.7 in [12]).

2.3.1 Strong Solutions of SDE

Definition 2.3.1. A strong solution of the stochastic differential equation (2.3.1), on a

given probability space (Ω,F , P ) and with respect to the Brownian motion W and initial

condition ξ, is a process X = {Xt; 0 ≤ t < ∞} with continuous sample paths and with

the following properties:

(i) X is adapted to the filtration Ft of (2.3.4),

(ii) P [X0 = ξ] = 1,

(iii) P
[∫ t

0
{|bi(s,Xs)|+σ2

ij(s,Xs)}ds <∞
]

(iv) the integral version of (2.3.1)

Xt = X0 +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs; 0 ≤ t <∞ (2.3.5)

or equation

X
(i)
t = X

(i)
0 +

∫ t

0

bi(s,Xs)ds+
r∑
j=1

∫ t

0

σij(s,Xs)dW
(j)
s ; 0 ≤ t <∞, 1 ≤ i ≤ d

(2.3.6)

Remark 2.3.2. Note that the crucial requirement of this definition is captured in condi-

tion (i); it corresponds to our intuitive understanding of X as the output of a dynamical

system described by a pair of coefficients (b, σ) whose input is W and which is fed by

the initial datum ξ. The principal of causality for dynamical systems requires that the

output Xt at time t depend only on ξ and the values of the input {Ws; 0 ≤ s ≤ t} up to

that time. This principal finds it mathematical expression in (i)

Definition 2.3.3. Let the drift vector b(t, x) and dispersion matrix σ(t, x) be given.

Suppose that, whenever W is an r-dimensional Brownian motion on some (Ω,F , P ), ξ

is an independent, d-dimensional random vector, {Ft} is given by (2.3.4), and X, X̃ are
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two strong solutions of (2.3.1) relative to W with initial condition ξ then P [Xt = X̃t; 0 ≤
t < ∞] = 1. Under these conditions we say that strong uniqueness holds for the pair

(b, σ).

In the early 1940’s K. Itô(see [16] and [9]) proved a series of results on the existence

and uniqueness of strong solutions to stochastic differential equations with Lipschitz

drift and dispersion coefficients. I begin this program with a short help lemma:

Lemma 2.3.4. Suppose that the continuous function

0 ≤ g(t) ≤ α(t) + β

∫ t

0

g(s)ds; 0 ≤ t ≤ T (2.3.7)

with β ≥ 0 and α : [0, T ] 7→ R integrable. Then

g(t) ≤ α(t) + β

∫ t

0

α(s)eβ(t−s)ds 0 ≤ t ≤ T (2.3.8)

Proof. It follows from (2.3.7)

d

dt

(
e−βt

∫ t

0

g(s)ds

)
=

(
g(t)− β

∫ t

0

g(s)ds

)
e−βt ≤ α(t)e−βt

Integrating with respect to the variable t we get

e−βt
∫ t

0

g(s)ds ≤
∫ t

0

α(s)e−βsds

and hence we can conclude ∫ t

0

g(s)ds ≤ eβt
∫ t

0

α(s)e−βsds

and Gronwall’s inequality follows from (2.3.7)

Theorem 2.3.5. Suppose that the coefficients b(t, x), σ(t, x) are locally Lipschitz-continuous

in the space variable; i.e.,for every integer n ≥ 1 there exists a constant Kn > 0 such

that for every t ≥ 0, ‖x‖ ≤ n, ‖y‖ ≤ n :

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ Kn ‖x− y‖ . (2.3.9)

Then strong uniqueness holds for equation (2.3.1)
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Proof. Let us suppose that X and X̃ are both strong solutions defined for all t ≥ 0, of

(2.3.1) relative to the same Brownian motion W and the same initial condition ξ, on

some (Ω,F ,P). We define the stopping times τn = inf{t ≥ 0; ‖Xt‖ ≥ n} for n ≥ 1,

as well as their tilded counterparts and set Sn := τn ∧ τ̃n. The almost sure continuity

of the the stochastic processes X, X̃(as a consequence of the assumption that they are

strong solutions) implies that limn→∞ τn = ∞ a.s P .and limn→∞ τ̃n = ∞ a.s. P . As a

consequence we have limn→∞ Sn =∞ a.s. P .

Since X and X̃ are solutions to the SDE (2.3.1) they satisfy equation (2.3.5) and

hence we get

Xt∧Sn − X̃t∧Sn =

∫ t∧Sn

0

{b(u,Xu)− b(u, X̃u)}du+

∫ t∧Sn

0

{σ(u,Xu)− σ(u, X̃u)}dWu

Using the vector inequality ‖v1 + · · ·+ vk‖2 ≤ k2(‖v1‖2 + · · · + ‖vk‖2), the triangular

inequality ,the Hölder inequality for Lebesgue integrals, the basic property of stochastic

integrals(2.2.24) and equation (2.3.9) we may write for 0 ≤ t ≤ T :

E
∥∥∥Xt∧Sn − X̃t∧Sn

∥∥∥2

≤ 22E

[∫ t∧Sn

0

∥∥∥b(u,Xu)− b(u, X̃u)
∥∥∥ du]2

+22E
d∑
i=1

[
r∑
j=1

∫ t∧Sn

0

σij(u,Xu)− σij(u, X̃u)dW
(j)
u

]2

≤ 4tE

∫ t∧Sn

0

∥∥∥b(u,Xu)− b(u, X̃u)
∥∥∥2

du+ 4E

∫ t∧Sn

0

∥∥∥σ(u,Xu)− σ(u, X̃u)
∥∥∥2

du

≤ 4(T + 1)K2
n

∫ t

0

E
∥∥∥Xu∧Sn − X̃u∧Sn

∥∥∥2

du

Now a simple application of Lemma 2.3.4 with g(t) := E
∥∥∥Xt∧Sn − X̃t∧Sn

∥∥∥2

allows us to

conclude that {Xt∧Sn ; 0 ≤ t < ∞} and {X̃t∧Sn ; 0 ≤ t < ∞} are modifications of each

other and hence indistinguishable (Since X, X̃ are strong solutions to the SDE in (2.3.1),

they are continuous almost surely ) Now letting n → ∞ we get that {Xt; 0 ≤ t < ∞}
and {X̃t; 0 ≤ t <∞} are indistinguishable and hence we have strong uniqueness.

Theorem 2.3.6. Suppose that the coefficients b(t, x), σ(t, x) satisfy the global Lipschitz

and linear growth conditions

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ K ‖x− y‖ , (2.3.10)

‖b((t, x)‖2 + ‖σ(t, x)‖2 ≤ K2(1 + ‖x‖2), (2.3.11)
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for every 0 ≤ t <∞, x ∈ Rd, y ∈ Rd, where K is a positive constant. On some probability

space (Ω,F , P ), let ξ be an Rd-values random vector, independent of the r-dimensional

Brownian motion W = {Wt,FWt ; 0 ≤ t <∞}, with a finite second moment

E ‖ξ‖2 <∞ (2.3.12)

Let Ft be as in (2.3.4). Then there exists a continuous adapted process X = {Xt,Ft; 0 ≤
t < ∞} which is a strong solution of equation (2.3.1) relative to W with the initial

condition ξ. Moreover, this process is square-integrable: for every T > 0, there exists a

constant C, depending only on K and T such that

E ‖Xt‖2 ≤ C(1 + E ‖ξ‖2)eCt; 0 ≤ t ≤ T (2.3.13)

Proof. The idea of the proof is to mimic the deterministic situation and construct re-

cursively a sequence with successive approximations by setting X
(0)
t = ξ and

X
(k+1)
t := ξ +

∫ t

0

b(s,X(k)
s )ds+

∫ t

0

σ(s,X(k)
s )dWs; 0 ≤ t <∞ (2.3.14)

The processes {X(k)}∞k=1 are obviously continuous and adapted to the filtration {Ft}.
The hope is that the sequence {X(k)}∞k=1 will converge to solution of the equation (2.3.1)

Before continuing let us first establish that for every T > 0, there exists a positive

constant C depending only on K and T such that for the iterations in (2.3.14) we have

E
∥∥∥X(k)

t

∥∥∥2

≤ C(1 + E ‖ξ‖2)eCt; 0 ≤ t ≤ T, k ≥ 0 (2.3.15)

We first check that each X
(k)
t is well defined for all t ≥ 0. In particular we must show

that for all k ≥ 0,∫ t

0

(∥∥b(s,X(k)
s )
∥∥+

∥∥σ(s,Xk
s )
∥∥2
)
ds <∞; 0 ≤ T <∞

In light of (2.3.11) this will follow immediately if one demonstrates the following

sup
0≤t≤T

E
∥∥∥X(k)

t

∥∥∥2

<∞; 0 ≤ T <∞ (2.3.16)

Equation (2.3.16) can be proved using induction. For k = 0 , it is a simple consequence

of (2.3.12). Now assume that (2.3.16) holds for some value of k. Proceeding similarly to

the proof of Theorem 2.3.5, we obtain the following bound for 0 ≤ t ≤ T :

E
∥∥∥X(k+1)

t

∥∥∥2

≤ 9E ‖ξ‖2 + 9(T + 1)K2

∫ t

0

(
1 + E

∥∥X(k)
s

∥∥) (2.3.17)
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which gives us (2.3.16) for k + 1. From (2.3.17) it follows

E
∥∥∥X(k+1)

t

∥∥∥2

≤ C
(
1 + E ‖ξ‖2)+ C

∫ t

0

E
∥∥X(k)

s

∥∥2
ds; 0 ≤ t ≤ T

where C depends only on K and T . Iteration of this inequality gives

E
∥∥∥X(k+1)

t

∥∥∥2

≤ C
(
1 + E ‖ξ‖2) [1 + Ct+

(Ct)2

2!
+ · · ·+ (Ct)k+1

(k + 1)!

]
≤ C

(
1 + E ‖ξ‖2) eCt

and thus we have shown (2.3.15) holds.

From (2.3.14) we have that X
(k+1)
t −X(k)

t = Bt +Mt, where

Bt :=

∫ t

0

{
b(s,X(k)

s )− b(s,X(k−1)
s )

}
ds, Mt :=

∫ t

0

{
σ(s,X(k)

s )− σ(s,X(k−1)
s )

}
dWs

Thanks to the inequalities (2.3.11), (2.3.15), the process {Mt = (M
(1),...,M

(d)
t

t ),Ft; 0 ≤
t < ∞},is seen to be a vector of square-integrable martingales. Using a variant of the

Burkholder-Davis-Gundy-Inequality(see Problem 3.3.29 and Remark 3.3.30 on page 166

in [12] ) to we get

E

[
max
0≤s≤t

‖Ms‖2

]
≤ Λ1E

∫ t

0

∥∥σ(s,X(k)
s )− σ(s,X(k−1)

s )
∥∥2
ds

≤ Λ1K
2E

∫ t

0

∥∥X(k)
s −X(k−1)

s

∥∥2
ds

where the last inequality is a consequence of (2.3.10). Again using (2.3.10) we get

E ‖Bt‖2 ≤ K2

∫ t

0

E
∥∥X(k)

s −X(k−1)
s

∥∥2
ds

and therefore using |a+ b|2≤ 2(|a|2+|b|2) we get

E

[
max
0≤s≤t

∥∥X(k+1)
s −X(k)

s

∥∥2
]
≤ L

∫ t

0

E
∥∥X(k)

s −X(k−1)
s

∥∥2
ds; 0 ≤ t ≤ T (2.3.18)

Iterating the inequality (2.3.18) we get to yield successive upper bounds we get

E

[
max
0≤s≤t

∥∥X(k+1)
s −X(k)

s

∥∥2
]
≤ C∗

(Lt)k

k!
; 0 ≤ t ≤ T (2.3.19)

where C∗ = max0≤t≤T E
∥∥∥X(1)

t − ξ
∥∥∥2

a finite quantity because of (2.3.15) and (2.3.12) .

Relation (2.3.19) and the Chebyshev inequality now give

P

[
max
0≤s≤t

∥∥X(k+1)
s −X(k)

s

∥∥2
>

1

2k+1

]
≤ 4C∗

(4Lt)k

k!
; k = 1.2, . . . , (2.3.20)
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and this upper bound is a general term in a convergent series. From the Borel-Cantelli

lemma, we conclude that there exists an event Ω∗ ∈ F with P (Ω∗) = 1 and an integer-

valued random variableN(ω) such that for every ω ∈ Ω∗ : max0≤t≤T

∥∥∥X(k+1)
t (ω)−X(k)

t (ω)
∥∥∥ <

2−(k+1),∀k ≥ N(ω).Consequently

max
0≤t≤T

∥∥∥X(k+m)
t (ω)−X(k)

t (ω)
∥∥∥ < 2−k,∀m ≥ 1, k ≥ N(ω) (2.3.21)

We see that the sequence of sample paths {X(k)
t (ω); 0 ≤ t ≤ T}∞k=1 is convergent in

the supremum norm on continuous functions, from which follows the existence of a

continuous limit {Xt(ω); 0 ≤ t ≤ T} for all ω ∈ Ω∗. Since T is arbitrary, we have

the existence of a continuous process X = {Xt; 0 ≤ t < ∞} with the property that

for P -a.e. ω , the sample paths X = {X(k)(ω)}∞k=1 converge to X(ω), uniformly on

compact subsets of [0,∞). Inequality (2.3.13) is an immediate consequence of (2.3.15)

and Fatou’s lemma. From (2.3.13) and (2.3.11) we have condition iii) of Definition 2.3.1.

Conditions i) and ii) are clearly satisfied by X. For condition iv) of Definition 2.3.1

refer to Problem 5.2.11 on page 290 in [12].

In the one-dimensional case the Lipschitz condition was relaxed considerably by

Yamada and Watanabe in 1971(see [10]). They proved pathwise uniqueness of solutions

which implies the existence of a unique strong solution via weak existence(see [19] and

[20]).

Theorem 2.3.7. (Yamada and Watanabe 1971) Let us suppose that the coefficients of

the one-dimensional equation(d=r=1)

dXt = b(t,Xt)dt+ σ(t,Xt)dWt

satisfy the conditions

|b(t, x)− b(t, y)|≤ K(|x− y|) (2.3.22)

|σ(t, x)− σ(t, y)|≤ h(|x− y|) (2.3.23)

for every 0 ≤ t < ∞ and x ∈ R, y ∈ R, where K is a positive constant and we

assume that h : [0,∞] 7→ [0,∞) is strictly increasing and concave with h(0) = 0 and∫
(0,ε)

(du/h2(u)) =∞ for every ε > 0. Then strong uniqueness holds for equation (2.3.1)

Example 2.3.8. One can take the function h in this proposition to be h(u) = uα for

α ≥ (1/2)

Proof. Because of the conditions imposed on the function h, there exists a decreasing

sequence {an}∞n=1 ⊆ (0, 1] with a0 = 1, limn→∞ an = 0 and
∫ an−1

an
h−2(u)du = n for every
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n ≥ 1. For each n ≥ 1, there exists a continuous function ρn on R with support in

(an, an−1) so that 0 ≤ ρn(x) ≤ (2/nh2(x)) holds for every x > 0 and
∫ an−1

an
ρn(x)dx = 1.

Then the function

ψn(x) =

∫ |x|
0

∫ y

0

ρn(u)dudy;x ∈ R (2.3.24)

is even and twice continuously differentiable with |ψ′n(x)|≤ 1 and limn→∞ ψn(x) = |x|.
Furthermore the sequence {ψn}∞n=1 is non-decreasing. Now let us suppose that there are

two strong solutions X(1) and X(2) of (2.3.1) with X
(1)
0 = X

(2)
0 a.s.

It suffices to prove the indistinguishability of X(1) and X(2) under the assumption

E

∫ t

0

|σ(s,X(i)
s )|2ds <∞; 0 ≤ t <∞, i = 1, 2, (2.3.25)

otherwise, we may use condition (iii) of Definition 2.3.1 and a localization argument to

reduce the situation to one in which (2.3.25) holds. We have

∆t := X
(1)
t −X

(2)
t =

∫ t

0

{b1(s,X(1)
s )− b2(s,X(2)

s )}ds+

∫ t

0

{σ(s,X(1)
s )− σ(s,X(2)

s )}dWs

(2.3.26)

ψn(∆t) =

∫ t

0

ψ′n(∆s)[b1(s,X(1)
s )− b2(s,X(2)

s )]ds+

∫ t

0

ψ′n(∆s)[σ(s,X(1)
s )− σ(s,X(2)

s )]dWs

+
1

2

∫ t

0

ψ′′n(∆s)[σ(s,X(1)
s )− σ(s,X(2)

s )]]2ds

(2.3.27)

Now taking expectation and recalling that the expectation of the stochastic integral

is zero and as a consequence of assumption 2) the third integral is bounded above by

E
∫
ψ′′n(∆s)h

2(|∆s|)ds ≤ 2t/n. We can therefore conclude that

Eψn(∆t) ≤ E

∫ t

0

ψ′n(∆s)[b1(s,X(1)
s )− b2(s,X(2)

s )]ds+ t/n

≤ KE|∆s|+t/n t ≥ 0, n ≥ 0

(2.3.28)

A passage to the limit as n→∞ yields E|∆t|≤ E
∫ t

0
|∆s|ds; t ≥ 0 and the conclusion

follows from Gronwall’s inequality and sample path continuity.

Example 2.3.9. (Girsanov 1962) From what we have just proved, it follows that strong

uniqueness holds for the one-dimensional stochastic equation

Xt =

∫ t

0

|Xs|αdWs; 0 ≤ t <∞ (2.3.29)
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as long as α ≥ (1/2) and it is obvious that the unique solution is the trivial one Xt ≡ 0.

This is also the solution when 0 < α < (1/2) but is no longer the only solution.

Proposition 2.3.10. Suppose that on a certain probability space (Ω,F , P ) equipped with

a filtration {Ft} which satisfies the usual conditions, we have standard, one-dimensional

Brownian motion {Wt;Ft; 0 ≤ t <∞} and two continuous, adapted processes X(j), j =

1, 2 such that for τX
(1)

0 = inf{t ≥ 0 : X(1)(t) = 0}

X
(j)
t = X

(j)
0 +

∫ t

0

bj(X
j
s )ds+

∫ t

0

σ(Xj
s )dWs; 0 ≤ t < τX

(1)

0 (2.3.30)

holds a.s. for j = 1, 2. We assume that

1. the coefficients σ(x), bj(x) are continuous, real-valued functions on R

2. the dispersion matrix σ(x) satisfies the condition

|σ(x)− σ(y)|≤ h(|x− y|)

where h : [0,∞) → [0,∞) is a strictly increasing function with h(0) = 0 and it

satisfies the following condition∫
(0,ε)

h−2(u)du =∞,∀ε > 0

3. X
(1)
0 = X

(2)
0 a.s.,

4. b1(x) ≤ b2(x), x ∈ R

5. either b1(x) or b2(x) satisfies the following condition

|bi(x)− bi(y)|≤ K|x− y| for i = 1, 2

Then

P [X
(1)
t ≤ X

(2)
t ,∀0 ≤ t < τX

(1)

0 ] = 1

Proof. For concreteness let us assume that b1(x) satisfies condition 5). We assume

E

∫ t

0

|σ(X(i)
s )|2ds <∞; 0 ≤ t <∞, i = 1, 2, (2.3.31)

otherwise we may use a localization argument to reduce the situation to the one in

(2.3.31). We have for 0 ≤ t < τX
(1)

0
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∆t := X
(1)
t −X

(2)
t =

∫ t

0

{b1(X(1)
s )− b2(X(2)

s )}ds+

∫ t

0

{σ(X(1)
s )− σ(X(2)

s )}dWs (2.3.32)

Because of the conditions imposed on the function h, there exists a decreasing se-

quence {an}∞n=1 ⊆ (0, 1] with a0 = 1, limn→∞ an = 0 and
∫ an−1

an
h−2(u)du = n for every

n ≥ 1. For each n ≥ 1, there exists a continuous function ρn on R with support in

(an, an−1) so that 0 ≤ ρn(x) ≤ (2/nh2(x)) holds for every x > 0 and
∫ an−1

an
ρn(x)dx = 1.

Then the function

ψn(x) =

∫ |x|
0

∫ y

0

ρn(u)dudy;x ∈ R (2.3.33)

is even and twice continuously differentiable with |ψ′n(x)|≤ 1 and limn→∞ ψn(x) = |x|.
Furthermore the sequence {ψn}∞n=1 is non-decreasing. Now we create a new sequence of

auxillary functions ϕn(x) = ψn(x)1(0,∞)(x). From a simple application of Itô’s rule we

get for 0 ≤ t < τX
(1)

0

ϕn(∆t) =

∫ t

0

ϕ′n(∆s)[b1(X(1)
s )− b2(X(2)

s )]ds+

∫ t

0

ψ′n(∆s)[σ(X(1)
s )− σ(X(2)

s )]dWs

+
1

2

∫ t

0

ϕ′′n(∆s)[σ(X(1)
s )− σ(X(2)

s )]]2ds

(2.3.34)

Now taking expectation and recalling that the expectation of the stochastic integral

is zero and as a consequence of assumption 2) the third integral is bounded above by

E
∫
ϕ′′n(∆s)h

2(|∆s|)ds ≤ 2t/n. We can therefore conclude that

E[ϕn(∆t)]−
t

n
≤ E

[∫ t

0

ϕ′n(∆s)[b1(X(1)
s )− b2(X(2)

s )]ds

]
= E

[∫ t

0

ϕ′n(∆s)[b1(X(1)
s )− b1(X(2)

s )]ds

]
+ E

[∫ t

0

ϕ′n(∆s)[b1(X(2)
s )− b2(X(2)

s )]ds

]
Now using the fact that {ψn}∞n=1 is non- decreasing we get that {ϕn}∞n=1 is non-decreasing

and hence ϕ′n is non-negative. We can therefore conclude that for all 0 ≤ s < τX
(1)

0

we have E
[∫ t

0
ϕ′n(∆s)[b1(X

(2)
s )− b2(X

(2)
s )]ds

]
≤ 0 and hence we can conclude using

assumption (5) and ϕn(x) = ψn(x)1(0,∞)(x) that for 0 ≤ t < τX
(1)

0

E[ϕn(∆t)]−
t

n
≤ E

[∫ t

0

ϕ′n(∆s)[b1(X(1)
s )− b1(X(2)

s )]ds

]
= E

[∫ t

0

ϕ′n(X(1)
s −X(2)

s )[b1(X(1)
s )− b1(X(2)

s )]ds

]
≤ K

∫ t

0

E(∆+
s )ds
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since ϕ′n(x) = 0 for x ≤ 0 Now taking n→∞ we get

lim
n→∞

E[ϕn(∆t)]−
t

n
≤ K

∫ t

0

E(∆+
s )ds

and a simple application of Gronwall’s inequality implies E[∆+
t ] = 0 for all 0 ≤ t < τX

(1)

0

and hence X
(1)
t ≤ X

(2)
t for 0 ≤ t < τX

(1)

0 .

2.4 Some important one dimensional SDEs

In this section I will introduce some important one dimensional SDE’s in literature which

are going to later play an important role in the subsequent chapters. The reference for

the material of this section is the book of Mao and Cairns (see [21]) and [13] respectively)

2.4.1 The square root process

Anl close to the geometric Brownian motion is the square root process:

dr(t) = µr(t) + σ
√
r(t)dW (t) (2.4.1)

Here the mean is made to follow an exponential trend while the standard deviation is

made a function of the square root of r(t). This makes the ”variance” of the error term

proportional to r(t). Hence, if we are modeling asset prices using the SDE in (2.4.1),

if asset price volatility does not increase ”too much” when r(t) increases (greater than

1, of course), this model may be more appropriate. For equation (2.4.1), one may ask

whether r(t) will become negative. If so, r(t) would become a complex number and this

would not make sense in most practical modeling situations. This is impossible and a

simple proof can be found on page 307-308 of in the book of Mao([21]). A discussion

about positivity of solutions of the SDE (2.4.1) is quite meaningless without ascertaining

if the solutions actually exists. In the case of a square root one has the existence and

uniqueness of a strong solution due to Theorem 2.3.7(path wise uniqueness) and weak

existence(for more details see Yamada and Watanabe [10] )

2.4.2 Mean Reverting Square Root Process

Combining the square root idea with the mean reverting one gives us the model of the

mean reverting square root process:

dr(t) = α(µ− r(t)) + σ
√
r(t)dW (t) (2.4.2)
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This process has a unique strong solution because its coefficients satisfy the same prop-

erties as the coefficients of the square root process. This SDE is used in modeling the

evolution of interest rate and is popularly known as the CIR SDE(Cox-Ross-Ingersoll

see [22]). The parameter α corresponds to the speed of adjustment, µ , to the mean

and σ to volatility. The drift factor, α(µ − r(t)) in the SDE (2.4.2) which is the same

as in the Vasicek SDE(see [23]) ensures mean reversion of the interest rate towards the

long run value µ, with speed of adjustment governed by the strictly positive parameter

α. Just as in the case of the square root SDE, one can show that the solution of the

mean reverting square root is almost surely non-negative. We conclude this section with

a very important result due to Feller(see [24]). The detailed proof has been taken from

Cairns (see [13]).

Theorem 2.4.1. Given the one-dimensional square root mean reverting SDE

drt = α(µ− r(t))dt+ σ
√
r(t)dW (t)

Assume that r(0) = r > 0, let U = inf{t : r(t) ≤ 0}( where inf φ = ∞) Then 2µα ≥
σ2 =⇒ Q(U = ∞) = 1 and 2µα < σ2 =⇒ Q(U < ∞) = 1 where Q is the probability

measure under which W is a Brownian motion.

Proof. The key steps of the proof will be stated first followed by a detailed development

filling out these initial statements

(i) Define the function s(r) =
∫ r

1
e2αv/σ2

v−2αµ/σ2
dv for 0 < r <∞. Then

α(µ− r)∂s
∂r

+
1

2
σ2r

∂2s

∂r2
= 0

(ii) For each t, and given r(0) = r,

s(r(t)) = s(r(0)) +

∫ t

0

ds

dr
(r(u))σ

√
r(u)dW (u)

In particular s(r(t)) is a local a local martingale under Q.

(iii) Define τx = inf{t ≥ 0 : r(t) = x}, and p ∧ q = inf{p, q}. Let ε,M be such

that 0 < ε < r(0) < M < ∞. Then we exploit the local-martingale properties

of s(r(t)) and the boundedness of ds
dr

, where ε < r < M to demonstrate that

PrQ(τε ∧ τM <∞) = 1

(iv) The martingale property then implies that

s(r(0)) = s(ε)PrQ(τε < τM) + s(M)PrQ(τε > τM)
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(v) If 2αµ ≥ σ2 then s(ε) → −∞ as ε → 0. This implies PrQ(τ0 < τM) = 0 for all

0 < r(0) < M <∞. Hence PrQ(τ0 <∞) = 0

(vi) If 0 < 2αµ < σ2 with α, µ, σ2 > 0, then −∞ < limε→0 s(ε) < 0. Hence s(r(0)) =

s(0)PrQ(τ0 < τM)+s(M)PrQ(τM < τ0), where s(0) is defined as limε→0 s(ε). Since

in addition, s(M)→ +∞ as M → +∞, P rQ(τ0 <∞) = 1.

Now we work through the steps more rigorously Consider the twice continuously differ-

entiable function s(r). By a simple application of Itô’s lemma we get

ds(r(t)) =
∂s

∂r
dr(t) +

1

2

∂2s

∂r2
d〈r〉t

=
∂s

∂r
(α(µ− r(t))dt+ σ

√
r(t)dW (t)) +

1

2

∂2s

∂r2
σ2r(t)dt

=
∂s

∂r
(α(µ− r(t))dt+

1

2

∂2s

∂r2
σ2r(t)dt+ σ

√
r(t)dW (t)

Now since r(t) is a continuous semi-martingale , Itô’s lemma implies that s(r(t)) is

a continuous semi-martingale and it follows from the definition of a continuous semi-

martingale that s(r(t)) is a continuous local martingale iff the drift term is zero i.e

∂s

∂r
(α(µ− r(t)) +

1

2

∂2s

∂r2
σ2r(t) = 0

Now with drift equal to zero, the new SDE becomes

ds(r(t)) = s′(r(t))σ
√
r(t)dW (t)

which can be reformulated in the integral form as

s(r(t)) = s(r(0)) +

∫ t

0

s′(r(t))σ
√
r(t)dW (u)

where s′(r(t)) = ds
dr

= d
dr

∫ r
1
e2αv/σ2

v−2αµ/σ2
dv = e2αr/σ2

r−2αµ/σ2
and hence in this form

s(r(t)) is a continuous local martingale. For 0 < ε < r(0) < M < ∞ and since

s′(r) = e2αr/σ2
r−2αµ,/σ2

is positive for all r > 0, s(r) is non decreasing and hence it

follows that s(ε) ≤ s(r) ≤ s(M) for ε ≤ r ≤M .

It not so hard to see that for 0 < ε < r(0) < M , s′(r) is bounded below by δ =

M−2αµ/σ2
where δ > 0. Indeed for for r ≥ 0, α, µ, σ2 > 0 we have 1 ≤ e2αr/σ2

and

M−2αµ/σ2 ≤ r−2αµ/σ2
which together yield

M−2αµ/σ2 ≤ e2αr/σ2
r−2αµ/σ2

Let us now consider the stopped process

s(r(t ∧ τε ∧ τM)) = s(r(0)) +

∫ t

0

I(u)s′(r(u))σ
√
r(u)dW (u)



2.4 Some important one dimensional SDEs 61

where τx = inf{t ≥ 0 : r(t) = x}, p ∧ q = inf{p, q} and

I(u) =

1 u < τε ∧ τM
0 u ≥ τε ∧ τM

Now s(r(t∧τε∧τM)) is not just a local martingale but a martingale since I(u)s′(r(u))σ
√
r(u)

is bounded (we have already established the boundedness of s′(r)) since 0 ≤ I(u) ≤ 1

ans σ
√
ε ≤ σ

√
r(u) ≤ σ

√
M .

And since
∫ t

0
I(u)s′(r(u))σ

√
r(u)dW (u) is a martingale starting at 0, taking expec-

tations we get

EQ (s(r(t ∧ τε ∧ τM))) = EQ(s(r(0))) + EQ

(∫ t

0

I(u)s′(r(u))σ
√
r(u)dW (u)

)
which finally yields

s(r(0)) = EQ (s(r(t ∧ τε ∧ τM)))

V arQ(s(r(t ∧ τε ∧ τM)) = EQ
[
(s(r(t ∧ τε ∧ τM)− EQ[s(r(t ∧ τε ∧ τM)])2] =

EQ

[(∫ t

0

I(u)s′(r(u))σ
√
r(u)dW (u)2

)]
= EQ

[∫ t∧τε∧τM

0

s′(r(u))2σ2r(u)du

]
≥ δ2σ2εEQ

[∫ t∧τε∧τM

0

du

]
= δ2σ2εEQ[t ∧ τε ∧ τM ]

(2.4.3)

where the third equality is a consequence of Itô’s Isometry. But we also have V arQ(s(r(t∧
τε ∧ τM)) ≤ (s(M)− s(ε))2 <∞ since the random variable takes values in [s(ε), s(M)].

Hence we have that δ2σ2εEQ[t ∧ τε ∧ τM ] ≤ (s(M)− s(ε))2 < ∞ for all t ≥ 0, implying

that

EQ[t ∧ τε ∧ τM ] <∞ for all t ≥ 0

and monotone convergence theorem implies E[τε∧τM ] <∞ and, therefore , that PrQ[τε∧
τM <∞] = 1. Now

s(r(0)) = EQ[s(r(t ∧ τε ∧ τM))]

= EQ[s(r(t ∧ τε ∧ τM))(1τε≤t∧τM + 1τM≤t∧τε + 1t<τε∧τM )]

= s(ε)PrQ(τε ≤ t ∧ τM)+

s(M)PrQ(τM ≤ t ∧ τε) + EQ[s(r(t ∧ τε ∧ τM))1t<τε∧τM ]

= s(ε)PrQ(τε ≤ t ∧ τM)+

s(M)PrQ(τM ≤ t ∧ τε)+
EQ[s(r(t ∧ τε ∧ τM) | t < τε ∧ τM ]PrQ(t < τε ∧ τM)]

(2.4.4)
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Now in the limit t → ∞, EQ[s(r(t)) | t < τε ∧ τM ] is bounded below and above by s(ε)

and s(M) respectively, while PrQ(t < τε ∧ τM) → 0 since E[τε ∧ τM ] < ∞, PrQ(τε <

t ∧ τM) → PrQ(τε < τM) and PrQ(τM < t ∧ τε) → PrQ(τM < τε) because probability

measures are continuous from below and above.

Hence we have

s(r(0)) = s(ε)PrQ(τε < τM) + s(M)PrQ(τM < τε)

Now suppose that 2αµ ≥ σ2 and 0 < ε < 1. Then

−s(ε) =

∫ 1

ε

e2αv/σ2

v−2αµ/σ2

dv ≥
∫ 1

ε

e2αv/σ2 1

v
dv ≥

∫ 1

ε

1

v
dv →∞ as ε→ 0

since for v ∈ (ε, 1) with ε > 0 and 2αµ ≥ σ2 we have

1

v
≤ 1

v
e2αv/σ2 ≤ v−2αµ/σ2

e2αv/σ2

So we have the two results s(r(0)) = s(ε)PrQ(τε < τM) + s(M)PrQ(τM < τε) and

s(ε) → −∞ as ε → 0. Hence it follows that for a fixed M , as ε → 0 we must have

PrQ(τε < τM)→ 0. And since {τε1 < τM} ⊆ {τε2 < τM} for ε2 < ε1 and continuity from

above implies PrQ(τ0 < τM) = 0 for all M such that 0 < r(0) < M < ∞.Now consider

the event that r(t) hits zero in finite time:

Ω0 =

{
ω : τ0(ω) <∞, sup

0<t<τ0(ω)

r(t)(ω) <∞

}

Note that we have excluded from Ω0 the sample path , r(t)(ω), which explode before

τ0(ω); that is

Ωe =

{
ω : τ0(ω) <∞, sup

0<t<τ0(ω)

r(t)(ω) =∞

}
Theorem 2.4 on page 177 of Ikeda and Watanabe’s Stochastic differential equations

and diffusion processes(second edition) implies that the stochastic differential equation

drt = α(µ − r(t))dt + σ
√
r(t)dW (t) does not explode with probability 1. And thus

PrQ(Ωe) = 0.

Now let , for integers n,

Ωn =

{
ω : τ0(ω) < τn(ω), sup

0<t<τ0(ω)

r(t)(ω) <∞

}

Clearly τr(0) ∈ (τ0, τn) and hence τn ≤ τn+1 which allows us to immediately conclude

that for all n ∈ N we have {τ0 < τn} ⊆ {τ0 < τn+1} and hence Ωn ⊆ Ωn+1.
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For each ω ∈ Ω0 there exists n0(ω) such that τn(ω) > τ0(ω) for all n ≥ n0(ω) where

n0(ω) := sup0<t<τ0(ω) r(t)(ω). This statement can be mathematically expressed as

Ω0 =
∞⋃
n=1

Ωn

But since PrQ(τ0 < τM) = 0 for all ∞ > M > r(0) > 0

PrQ(Ωn) ≤ PrQ({ω : τ0(ω) < τn(ω)}) = 0

Countable sub-additivity implies

Pr(Ω0) ≤
∞∑
n=

PrQ(Ωn) = 0

and finally PrQ(τ0 <∞) = PrQ(Ωe) + PrQ(Ω0) = 0

Now we study the case where 0 < 2αµ < σ2. Now for 0 < ε < 1

0 > s(ε) = −
∫ 1

ε

e2αv/σ2

v−2αµ/σ2

dv > −
∫ 1

ε

e2α/σ2

v−2αµ/σ2

dv

because for v ∈ (ε, 1) we have e2α/σ2
> e2αv/σ2

But the limit as ε → 0 of
∫ 1

ε
v−2αµσ2

dv is finite since 2αµ/σ2 < 1. Thus , the limit

as ε tends to zero of s(ε) lies strictly between −∞ and 0. Define

s(0) = lim
ε→0

s(ε)

We have already shown earlier that for 0 < ε < r(0) < M <∞

s(r(0)) = s(ε)PrQ(τε < τM) + s(M)PrQ(τM < τε)

We now modify out arguments above to show that this is true for s(ε) replaced by

s(0)(which we just defined above) when 1
2
≤ 2αµ/σ2 < 1

Recall that from equation (2.4.3)

V arQ(s(r(t ∧ τε ∧ τM)) = EQ

[∫ t∧τε∧τM

0

s′(r(u))2σ2r(u)du

]
Now recalling that s′(r) = e2αr/σ2

r−2αµ/σ2
we get

V arQ(s(r(t ∧ τε ∧ τM)) = EQ

[∫ t∧τε∧τM

0

e4αr(u)/σ2

r(u)−4αµ/σ2+1σ2du

]
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Let

f(r) = s′(r)2r = e4αr/σ2

r1−d = edr/µr1−d

where d = 4αµ/σ2. We have already specified that 1
2
≤ 2αµ/σ2 < 1 which is the same as

1 ≤ d < 2. Now if 1 < d < 2, then f(r) is minimized( the minimum of this continuously

differentiable function can be computed by setting the derivative equal to zero) in the

range 0 ≤ r <∞ at r̂ = (d− 1)µ/d with

f(r̂) = ed−1

(
(d− 1)µ

d

)1−d

> 0

If d = 1, then f(r) is minimized in the range 0 ≤ r < ∞ at r̂ = 0 with f(0) = 1 Let δ

be the minimum value of f(r̂) in either case. Hence

σ2s′(r(u))2r(u) ≥ σ2δ for all 0 < u < t ∧ τ0 ∧ τM

which yields the following inequality

V arQ(s(r(t ∧ τε ∧ τM)) = EQ

[∫ t∧τε∧τM

0

s′(r(u))2σ2r(u)du

]
≥ σ2δEQ[t ∧ τ0 ∧ τM ]

But as we saw before V arQ(s(r(t ∧ τε ∧ τM)) ≤ (s(M)− s(ε))2, so

EQ[t ∧ τ0 ∧ τM ] ≤ (s(M)− s(ε))2

σ2δ
<∞ for all t,

And hence the monotone convergence theorem implies

EQ[τ0 ∧ τM ] <∞

and therefore we can conclude

PrQ(τ0 ∧ τM <∞) = 1

And hence taking the limits as t→∞ in

s(r(0)) = EQ[s(r(t ∧ τ0 ∧ τM))] = EQ[s(r(t ∧ τ0 ∧ τM))(1τ0≤t∧τM + 1τM≤t∧τ0 + 1t<τ0∧τM )]

just as in (2.4.4) we get

s(r(0)) = s(0)PrQ(τ0 < τM) + s(M)PrQ(τM < τ0)

Moreover since e2αv/σ2
v−2αµ/σ2 →∞ as v →∞, and therefore so does s(M) =

∫M
1
e2αv/σ2

v−2αµ/σ2
dv →

∞ as M → ∞. As s(r(0)) is finite , we must have PrQ[τM < τ0] → 0 and hence

PrQ[τ0 < τM ]→ 1 as M →∞. Thus we get PrQ(τ0 <∞) = 1.
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Finally, suppose that 0 < 2αµ/σ2 < 1
2
(or equivalently 0 < d < 1). Let X(t) =

√
r(t).

After a simple application of Itô’s Lemma and substituting X(t) =
√
r(t) we get

dXt =
1

2
√
r(t)

dr(t) +
1

2

−1

4r(t)3/2
d〈r〉(t)

=
1

2X(t)
(α(µ−X(t)2))dt+ σX(t)dW (t))− 1

8X(t)3σ
2X(t)2

=

[
σ2

4X(t)

(
2αµ

σ2
− 1

2

)
− αX(t)

2

]
dt+

σ

2
dW (t)

Now let Y (t) be the Ornstein-Uhlenbeck process governed by the SDE :

dY (t) = −1

2
αY (t)dt+

1

2
σdW (t), Y (0) = X(0) (2.4.5)

Define

τX0 = inf{t ≥ 0 : X(t) = 0} and τY0 = inf{t ≥ 0 : Y (t) = 0}

For each outcome, ω, for all 0 < t < τX0 (ω),

σ2

8X(t)(ω)
(d− 1)− αX(t)(ω)

2
< −αX(t)(ω)

2

This is because σ2

8X(t)(ω)
(d−1) is strictly negative for 0 < d < 1 for all 0 < t < τX0 (ω) since

X(t), σ2 is strictly positive for these t and all outcomes ω. Now it follows from Proposi-

tion 5.2.18 in Brownian Motion and Stochastic calculus by Karatzas and Shreve(modified

with 0 < t < τX0 ) that X(t) ≤ Y (t) for 0 < t < τX0 . A detailed proof is given in Propo-

sition 2.3.10

This implies that if we can show that τY0 < ∞ then we can immediately conclude

τX0 < ∞ and therefore τ0 < ∞ a.s. However we know from the basic properties of the

Ornstein-Uhlenbeck process that PrQ(τY0 < ∞) = 1. Hence this implies PrQ(τX0 <

∞) = 1:, that is the same as saying r(t) will hit zero with probability 1 under Q.

Before I end this section I would like to mention that the square-root type SDEs

dealt above and in the following two chapters are the subject of recent research on SDEs

with non-Lipschitz coefficients. A possible avenue for further study could be to establish

a relationship between the existence results in the following two chapters to the many

existence and approximation results by [25],[26], [27] and [28].
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Chapter 3

On a class of stochastic differential

equations with random and Hölder

continuous coefficients arising in

biological modeling

3.1 Introduction

Susceptible-infected-susceptible (SIS) epidemic model is one of the most popular models

for how diseases spread in a population. In such a model an individual starts off being

susceptible to a disease and at some point of time gets infected and then recovers after

some time becoming susceptible again. The literature of such mathematical models is

very rich: for probabilistic/stochastic models one may look for instance at Allen [29],

Allen and Burgin [30], A. Gray et al. [31], Hethcote and van den Driessche [32], Kryscio

and Lefvre [33], McCormack and Allen [34] and Nasell [35]. We also refer the reader

to the detailed account presented in Greenhalgh et al. [1] for an overview on both

deterministic and stochastic models.

The focus of the present paper is on the model presented in [1]. One of its distinguishing

features is the nature of the births and deaths that are regarded as stochastic processes

with per capita disease contact rate depending on the population size. Contrary to many

other previously proposed models, this stochasticity produces a variable population size

which turns out to be a reasonable assumption for slowly spreading diseases.

From a mathematical point of view, the SIS model proposed in [1] amounts at the

following two dimensional stochastic differential equation for the vector (St, It) where St

67
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and It stand for the number of susceptible and infected individuals at time t, respectively: dS =
[
−λ(N)SI

N
+ (µ+ γ)I

]
dt+

√
λ(N)SI
N

+ (µ+ γ)I + 2µSdW3

dI =
[
λ(N)SI
N
− (µ+ γ)I

]
dt+

√
λ(N)SI
N

+ (µ+ γ)IdW4.
(3.1.1)

Here, N := S+ I denotes the total population size while µ, γ and λ : [0,+∞[→ [0,+∞[

are suitably chosen parameters. The system (3.1.1) is driven by the two dimensional

correlated Brownian motion (W3,W4) resulting from a certain application of the martin-

gale representation theorem (see Section 3.2.1 below for technical details). The system

(3.1.1) is then shown to be equivalent to the triangular system dI =
[
λ(N)
N

(N − I)I − (µ+ γ)I
]
dt+

√
λ(N)
N

(N − I)I + (µ+ γ)IdW4

dN =
√

2µNdW5

(3.1.2)

where now the second equation, the so-called square root process (see for instance the

book by Mao [21] for the properties of this process), is independent of the first one. To

prove the existence of a solution to the first equation in (3.1.2) the authors resort to

Theorem 2.2 in Chapter IV of Ikeda and Watanabe [11] while for the uniqueness they

need to construct a localized version of Theorem 3.2, Chapter IV in [11]. The equation

for I in (3.1.2) exhibits random (for the dependence on the process N) and Hölder con-

tinuous (for the presence of the square root in the diffusion term) coefficients resulting in

a stochastic differential equation for which the issue of the existence of a unique solution

has not been addressed in the literature yet.

Our aim in the present paper is to propose a more general approach allowing for the

investigation of a richer family of models characterized by the same distinguishing fea-

tures of the model analyzed in [1].

The paper is articulated as follows: In Section 2 we present a general review using the

exposition in the book by Allen (see [36]) of a two-state dynamics leading to a Fokker-

Planck partial differential equation and its associated stochastic system. This is followed

by Section 2.1 where we consider the more specific situation of a bio-demographic model

like the one presented in [1]. Our idea is to embed the rather special system of SDE’s of

the model in a slightly more encompassing class, like the one in (3.3.9) below, in order to

establish a general proof of strong existence and uniqueness. Our technique relies on the

construction of an explicit approximating sequence of stochastic processes (inspired by

the work of Zubchenko [37]) in such a way that all the relevant features of the solution

appear to be directly constructed from scratch. In Section 3 we give a detailed proof of

existence and uniqueness of the SDE (3.3.9). We would like to point out that systems

of SDE’s with non-Lipschitz or Hölder coefficients exhibit non-standard difficulties as
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far as general results for existence and uniqueness are concerned. This model conforms

to the aforementioned difficulties and that is what has motivated us in approaching the

problem. Our idea has been to how we could encase the model proposed in [1] within

a more general framework , thus bypassing some of the computations done there, and

hopefully allowing for larger class of models to be treated.

3.2 A general two-state system

In this section we review the construction of a general two-state system presented in the

book by Allen ([36]). The model will then be made concrete through the assumptions

contained in the paper by Greenhalgh et al. ([1]) and this will lead to the class of

stochastic differential equations investigated in the present manuscript.

S1(t) S2(t)
5

6

1 2 3 4

7 8

Figure 3.1: A two-state dynamical process

We begin by considering a representative two-state dynamical process which is il-

lustrated in Figure 3.1. Let S1(t) and S2(t) represent the values of the two states of

the system at time t. It is assumed that in a small time interval ∆t, state S1 can

change by −λ1, 0 or λ1 and state S2 can change by −λ2, 0 or λ2, where λ1, λ2 ≥ 0. Let

∆S := [∆S1,∆S2]T be the change in a small time interval ∆t. As illustrated in Figure

3.1 , there are eight possible changes for the two states in the time interval ∆t not

including the case where there is no change in the time interval. The possible changes

and the probabilities of these changes are given in Table 3.1. It is assumed that the

probabilities are given to O((∆t)2). For example, change 1 represents a loss of λ1 in

S1 with probability d1∆t, change 5 represents a transfer of λ1 out of state S1 with a

corresponding transfer of λ2 into state S2 with probability m12∆t and change 7 repre-
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sents a simultaneous reduction in both states S1 and S2. As indicated in the table, all

probabilities may depend on S1(t), S2(t) and the time t. Also notice that it is assumed

that the probabilities for the changes are proportional to the time interval ∆t.

Table 3.1: Possible changes in the representative two-state system with the correspond-

ing probabilities

Change Probability

∆S(1) = [−1, 0]T p1 = d1(t, S1, S2)∆t

∆S(2) = [1, 0]T p2 = b1(t, S1, S2)∆t

∆S(3) = [0,−1]T p3 = d2(t, S1, S2)∆t

∆S(4) = [0, 1]T p4 = b2(t, S1, S2)∆t

∆S(5) = [−1, 1]T p5 = m12(t, S1, S2)∆t

∆S(6) = [1,−1]T p6 = m21(t, S1, S2)∆t

∆S(7) = [−1,−1]T p7 = m11(t, S1, S2)∆t

∆S(8) = [1, 1]T p8 = m22(t, S1, S2)∆t

∆S(9) = [0, 0]T p9 = 1−
∑8

j=1 pj

It is useful to calculate the mean vector and covariance matrix for the change ∆S =

[∆S1,∆S2]T fixing the value of S at time t. Using the table below,

E[∆S] =
9∑
j=1

pj∆S
(j) =

[
(−d1 + b1 −m12 +m21 +m22 −m11)λ1

(−d2 + b2 +m12 −m21 +m22 −m11)λ2

]
∆t

E[∆S(∆S)T ] =
9∑
j=1

pj(∆S
(j))(∆S(j))T

=

[
(d1 + b1 +ma)λ

2
1 (−m12 −m21 +m22 +m11)λ1λ2

(−m12 −m21 +m22 +m11)λ1λ2 (d2 + b2 +ma)λ
2
2

]
∆t

where we set ma := m12 + m21 + m11 + m22. Notice that the covariance matrix is set

equal to E(∆S(∆S)T )/∆t because E(∆S)(E(∆S))T = O((∆t)2). We now define

µ(t, S1, S2) = E[∆S]/∆t and V (t, S1, S2) = E[∆S(∆S)T ]/∆t (3.2.1)

and we denote by B(t, S1, S2) the symmetric square root matrix of V . A forward Kol-

mogorov equation can be determined for the probability distribution at time t + ∆t

in terms of the distribution at time t. If we write p(t, x1, x2) for the probability that

S1(t) = x1 and S2(t) = x2, then referring to Table 3.1 we get

p(t+ ∆t, x1, x2) = p(t, x1, x2) + ∆t
10∑
i=1

Ti (3.2.2)
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where

T1 = p(t, x1, x2)(−d1(t, x1, x2)− b1(t, x1, x2)− d2(t, x1, x2)− b2(t, x1, x2))

T2 = p(t, x1, x2)(−ma(t, x1, x2))

T3 = p(t, x1 + λ1, x2)d1(t, x1 + λ1, x2)

T4 = p(t, x1 − λ1, x2)b1(t, x1 − λ1, x2)

T5 = p(t, x1, x2 − λ2)b2(t, x1, x2 − λ2)

T6 = p(t, x1, x2 + λ2)d2(t, x1, x2 + λ2)

T7 = p(t, x1 + λ1, x2 − λ2)m12(t, x1 + λ1, x2 − λ2)

T8 = p(t, x1 − λ1, x2 + λ2)m21(t, x1 − λ1, x2 + λ2)

T9 = p(t, x1 + λ1, x2 + λ2)m11(t, x1 + λ1, x2 + λ2)

T10 = p(t, x1 − λ1, x2 − λ2)m22(t, x1 − λ1, x2 − λ2).

Now, expanding out the terms T3 through T10 in second order Taylor polynomials around

the point (t, x1, x2), it follows that

T3 ≈ pd1 + ∂x1(pd1)λ1 +
1

2

∂2(pd1)

∂x2
1

λ2
1

T4 ≈ pb1 −
∂(pb1)

∂x1

λ1 +
1

2

∂2(pb1)

∂x2
1

λ2
1

T5 ≈ pb2 −
∂(pb2)

∂x2

λ2 +
1

2

∂2(pb2)

∂x2
2

λ2
2

T6 ≈ pd2 +
∂(pd2)

∂x2

λ2 +
1

2

∂2(pd2)

∂x2
2

λ2
2

T7 ≈ pm12 +
∂(pm12)

∂x1

λ1 −
∂(pm12)

∂x2

λ2 +
1

2

2∑
i=1

2∑
j=1

(−1)i+j
∂2(pm12)

∂xi∂xj
λiλj

T8 ≈ pm21 −
∂(pm21)

∂x1

λ1 +
∂(pm21)

∂x2

λ2 +
1

2

2∑
i=1

2∑
j=1

(−1)i+j
∂2(pm21)

∂xi∂xj
λiλj

T9 ≈ pm11 +
∂(pm11)

∂x1

λ1 +
∂(pm11)

∂x2

λ2 +
1

2

2∑
i=1

2∑
j=1

(−1)i+j
∂2(pm11)

∂xi∂xj
λiλj

T10 ≈ pm22 −
∂(pm22)

∂x1

λ1 −
∂(pm22)

∂x2

λ2 +
1

2

2∑
i=1

2∑
j=1

(−1)i+j
∂2(pm22)

∂xi∂xj
λiλj

Substituting these expressions into (3.2.2) and assuming that ∆t, λ1 and λ2 are small,



72On a class of stochastic differential equations with random and Hölder continuous coefficients arising in biological modeling

then it is seen that p(t, x1, x2) approximately solves the Fokker-Planck equation

∂p(t, x1, x2)

∂t
= −

2∑
i=1

∂

∂xi
[µi(t, x1, x2)p(t, x1, x2)]

+
1

2

2∑
i=1

2∑
j=1

∂

∂xi∂xj

[
2∑

k=1

bik(t, x1, x2)bjk(t, x1, x2)p(t, x1, x2)

]
(3.2.3)

where µ = (µ1, µ2) and B = {bij}1≤i,j≤2. On the other hand, it is well known that

the probability distribution p(t, x1, x2) that solves equation (3.2.3) coincides with the

distribution of the solution at time t to the following system of stochastic differential

equations

dS = µ(t, S)dt+B(t, S)dW (t), S(0) = S0 (3.2.4)

where W is a two-dimensional standard Brownian motion and S0 is a given determin-

istic initial condition. The stochastic differential equation (3.2.4) describes the random

evolution of the two-state system S related to the changes described in Table 3.1.

3.2.1 The Greenhalgh et al. [1] model

We now specialize the general model introduced in the previous section to the case

investigated in Greenhalgh et al. [1] (where the process (S1, S2) is denoted as (S, I)).

The values of the parameters in Table 3.1 are chosen as follows:

Table 3.2: Probabilities in Greenhalgh et al.’s paper

Change Probability

∆S(1) = [−1, 0]T µS1∆t

∆S(2) = [1, 0]T µN∆t

∆S(3) = [0,−1]T µS2∆t

∆S(4) = [0, 1]T 0

∆S(5) = [−1, 1]T λ(N)S1S2

N
∆t

∆S(6) = [1,−1]T γS2∆t

∆S(7) = [−1,−1]T 0

∆S(8) = [1, 1]T 0

∆S(9) = [0, 0]T 1−
∑8

j=1 pj

where N := S1 +S2, λ : [0,+∞[→ [0,+∞[ is a continuous monotone increasing function

and µ and γ are positive constants. We refer to the paper [1] for the biological interpre-

tation of these quantities. Now, according to Table 3.2 the vector µ and matrix V in



3.2 A general two-state system 73

(3.2.1) read

µ(t, S1, S2) =

[
−λ(N)S1S2

N
+ (µ+ γ)S2

λ(N)S1S2

N
− (µ+ γ)S2

]
and

V (t, S1, S2) =

[
a b

b c

]
where to ease the notation we set

a :=
λ(N)S1S2

N
+ (µ+ γ)S2 + 2µS1

b := −λ(N)S1S2

N
− γS2

c :=
λ(N)S1S2

N
+ (µ+ γ)S2.

Therefore,

B(t, S1, S2) = V (t, S1, S2)
1
2 =

1

d

[
a+ w b

b c+ w

]
with

w :=
√
ac− b2 and d :=

√
a+ c+ 2w.

We are then lead to study the following two dimensional system of stochastic differential

equations  dS1 =
[
−λ(N)S1S2

N
+ (µ+ γ)S2

]
dt+ a+w

d
dW1 + b

d
dW2

dS2 =
[
λ(N)S1S2

N
− (µ+ γ)S2

]
dt+ b

d
dW1 + c+w

d
dW2

(3.2.5)

where W = (W1,W2) is a standard two dimensional Brownian motion. We observe that

by construction (
a+ w

d

)2

+

(
b

d

)2

= a.

Therefore, by the martingale representation theorem (see for instance Theorem 3.9 Chap-

ter V in [38]) there exists a Brownian motion W3 such that the first equation in (3.2.5)

can be rewritten as

dS1 =

[
−λ(N)S1S2

N
+ (µ+ γ)S2

]
dt+

√
λ(N)S1S2

N
+ (µ+ γ)S2 + 2µS1dW3
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Similarly, since (
b

d

)2

+

(
c+ w

d

)2

= c

by the martingale representation theorem there exists a Brownian motion W4 such that

the second equation in (3.2.5) can be rewritten as

dS2 =

[
λ(N)S1S2

N
− (µ+ γ)S2

]
dt+

√
λ(N)S1S2

N
+ (µ+ γ)S2dW4.

This implies that the system (3.2.5) is equivalent to dS1 =
[
−λ(N)S1S2

N
+ (µ+ γ)S2

]
dt+

√
λ(N)S1S2

N
+ (µ+ γ)S2 + 2µS1dW3

dS2 =
[
λ(N)S1S2

N
− (µ+ γ)S2

]
dt+

√
λ(N)S1S2

N
+ (µ+ γ)S2dW4.

(3.2.6)

We remark that by construction the Brownian motions W3 and W4 are now correlated.

Moreover, if we notice that the drift of the first equation in (3.2.5) is the opposite of the

one in the second equation in (3.2.5), recalling that N = S1 + S2 we may write

dN =
a+ b+ w

d
dW1 +

b+ c+ w

d
dW2

and, exploiting the definitions of a, b, c, d and w, we conclude as before that there exists

a Brownian motion W5 such that

dN =
√

2µNdW5. (3.2.7)

Hence, instead of studying the system (3.2.5), the authors in [1] study the equivalent

system dS2 =
[
λ(N)
N

(N − S2)S2 − (µ+ γ)S2

]
dt+

√
λ(N)
N

(N − S2)S2 + (µ+ γ)S2dW4

dN =
√

2µNdW5

(3.2.8)

where the Brownian motions W4 and W5 are correlated. In the system (3.2.8) the

equation for N does not depend on S2 and it belongs to the family of the square root

processes ([21]). Once the equation for N is solved, the equation for S2 contains random

(for the presence of N) Hölder continuous coefficients. Moreover, due to the presence of

the square root in the diffusion coefficient of S2, the authors of [1] consider a modified

version of the first equation in (3.2.8) to make the coefficients defined on the whole real

line. They consider

dS2(t) = ā(t, N(t), S2(t))dt+ ḡ(t, N(t), S2(t))dW4(t) (3.2.9)
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where

ā(t, y, x) =


0 for x < 0
λ(y)x
y

(y − x)− (µ+ γ)x for 0 ≤ x ≤ y
(

1 + µ+γ
λ(y)

)
ā
(
t, y, y

(
1 + µ+γ

λ(y)

))
for x > y

(
1 + µ+γ

λ(y)

)
and

ḡ(t, y, x) =


0 for x < 0√

λ(y)x
y

(y − x) + (µ+ γ)x for 0 ≤ x ≤ y
(

1 + µ+γ
λ(y)

)
0 for x > y

(
1 + µ+γ

λ(y)

)
The existence of a unique non explosive strong solution to equation (3.2.9) is obtained

through a localization argument in terms of stopping times and comparison inequalities

to control the non explosivity of the solution. In the next section we will consider a class

of stochastic differential equations, which includes equation (3.2.9), allowing for more

general models where the existence of a unique non explosive strong solution is proved

via a standard Caychy-Euler-Peano approximation method.

3.3 Main theorem

Motivated by the discussion in the previous sections, we are now ready to state and

prove the main result of our manuscript. We begin by specifying the class of coefficients

involved in the stochastic differential equations under investigation.

Let g : [0,+∞[×R× R→ R be a function of the form

g(t, y, x) =
√
−x2 + α(t, y)x+ β(t, y) (3.3.1)

where α, β : [0,+∞[×R→ R are measurable functions satisfying the condition

α(t, y)2 + 4β(t, y) ≥ 0 for all (t, y) ∈ [0,+∞[×R. (3.3.2)

We observe that condition (3.3.2) implies that

−x2 + α(t, y)x+ β(t, y) ≥ 0 if and only if r1(t, y) ≤ x ≤ r2(t, y)

where we set

r1(t, y) :=
α(t, y)−

√
α(t, y)2 + 4β(t, y)

2
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and

r2(t, y) :=
α(t, y) +

√
α(t, y)2 + 4β(t, y)

2
.

Now, we define

ḡ(t, y, x) :=


0 if x < r1(t, y)

g(t, y, x) if r1(t, y) ≤ x ≤ r2(t, y)

0 if x > r2(t, y)

(3.3.3)

The function ḡ will be the diffusion coefficient of our stochastic differential equation.

Assumption 3.3.1. There exist a positive constant M such that

|α(t, y)|≤M(1 + |y|) and |β(t, y)|≤M(1 + |y|) (3.3.4)

for all (t, y) ∈ [0,∞[×R. Moreover, there exists a positive constant H such that

|ḡ(t, y1, x1)− ḡ(t, y2, x2)|≤ H(
√
|y1 − y2|+

√
|x1 − x2|) (3.3.5)

for all t ∈ [0,∞[ and y1, y2, x1, x2 ∈ R.

We observe that assumption (3.3.4) implies the bound

|ḡ(t, y, x)| ≤ max
x∈R
|ḡ(t, y, x)|

=

√
α(t, y)2

4
+ β(t, y)

≤ M(1 + |y|)

for all t ∈ [0,∞[ and y ∈ R. Here the constant M may differ from the one appearing

in (3.3.4); we will adopt this convention for the rest of the paper. We also remark that

by construction inequality (3.3.5) for y1 = y2 is satisfied with a constant H =
√
|α(t, y1)|.

We now introduce the drift coefficient of our SDE. We start with a measurable function

a : [0,+∞[×R× R→ R with the following property.

Assumption 3.3.2. There exists a positive constant M such that

|a(t, y, x)|≤M(1 + |y|+|x|) (3.3.6)

for all t ∈ [0,∞[ and x, y ∈ R. Moreover, there exists a positive constant L such that

|a(t, y1, x1)− a(t, y2, x2)|≤ L(|y1 − y2|+|x1 − x2|) (3.3.7)

for all t ∈ [0,∞[ and y1, y2, x1, x2 ∈ R.
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Then, we set

ā(t, y, x) :=


a(t, y, r1(t, y)) if x < r1(t, y)

a(t, y, x) if r1(t, y) ≤ x ≤ r2(t, y)

a(t, y, r2(t, y)) if x > r2(t, y)

(3.3.8)

Observe that by construction also the function ā satisfies Assumption 3.3.2.

We now consider the following one dimensional stochastic differential equation

dXt = ā(t, Yt, Xt)dt+ ḡ(t, Yt, Xt)dW
2
t , X0 = x ∈ R (3.3.9)

where {Yt}t≥0 is the unique strong solution of the stochastic differential equation

dYt = m(t, Yt)dt+ σ(t, Yt)dW
1
t , Y0 = y ∈ R. (3.3.10)

Here {(W 1
t ,W

2
t )}t≥0 is a two dimensional correlated Brownian motion defined on a com-

plete filtered probability space (Ω,F ,P, {Ft}t≥0) where the filtration {Ft}t≥0 is generated

by the process {(W 1
t ,W

2
t )}t≥0. Strong solutions are meant to be {Ft}t≥0-adapted.

Regarding equation (3.3.10), the coefficients m and σ are assumed to entail existence

and uniqueness of a strong solution {Yt}t≥0 such that

E
[

sup
t∈[0,T ]

|Yt|2
]

is finite for all T > 0.

Equations (3.3.9) and (3.3.10) describe a class of equations which includes equations

(3.2.9) and (3.2.7) as a particular case.

Remark 3.3.3. If r1(t, y) = r2(t, y) for all (t, y) ∈ [0,∞[×R, which is equivalent to say

that α(t, y)2 + 4β(t, y) = 0, then the diffusion coefficient ḡ is identically zero and the

drift coefficient becomes ā(t, y, x) = a(t, y, α(t, y)/2). Therefore, in this particular case

the SDE (3.3.9) takes the form

dXt = a(t, Yt, α(t, Yt)/2)dt, X0 = x

whose solution is explicitly given by the formula

Xt = x+

∫ t

0

a(s, Ys, α(s, Ys)/2)ds.

Theorem 3.3.4 (Strong existence and uniqueness). Let Assumption 3.3.1 and Assump-

tion 3.3.2 be fulfilled. Then, the stochastic differential equation (3.3.9) possesses a unique

strong solution {Xt}t≥0.
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Proof. To ease the notation we consider the time-homogeneous case and hence we drop

the explicit dependence on t from all the coefficients.

We fix an arbitrary T > 0 and prove existence and uniqueness of a solution for the SDE

Xt = x+

∫ t

0

ā(Ys, Xs)ds+

∫ t

0

ḡ(Ys, Xs)dW
2
s , X0 = x. (3.3.11)

on the time interval t ∈ [0, T ]. The proof for the existence is rather long and proceeds as

follows: using a Cauchy-Euler-Peano approximate solutions technique we define, associ-

ated to a partition ∆n of [0, T ] a stochastic process Xn. We will, at the beginning, prove

a convergence result for Xn in the space L1([0, T ]×Ω), then we will prove a convergence

result for Xn in the space C[0, T ] with the norm of the uniform convergence and this

will eventually yield the result.

Existence: We consider a sequence of partitions {∆n}n≥1 of the interval [0, T ] with

∆n ⊆ ∆n+1. Each partition ∆n will consist of a set of Nn + 1 points {tn0 , tn1 , ..., tnNn}
satisfying

0 = tn0 < tn1 < · · · < tnNn = T.

We denote by ‖∆n‖:= max0≤k≤Nn−1|tnk+1−tnk |, the mesh of the partition ∆n, and assume

that limn→∞‖∆n‖= 0. In the sequel, we will write tk instead of tnk when the membership

to the partition ∆n will be clear from the context.

For a given partition ∆n we construct a continuous and {Ft}t≥0-adapted stochastic

process {Xn
t }t∈[0,T ] as follows: for t = 0 we set Xn

t = x while for t ∈]tk, tk+1] we define

Xn
t := Xn

tk
+ ā(Ytk , X

n
tk

)(t− tk) + g(Ytk , X
n
tk

)(Wt −Wtk). (3.3.12)

It is useful to observe that, denoting ηn(t) = tk when t ∈]tk, tk+1], we may represent Xn
t

in the compact form:

Xn
t = x+

∫ t

0

ā(Yηn(s), X
n
ηn(s))ds+

∫ t

0

ḡ(Yηn(s), X
n
ηn(s))dW

2
s . (3.3.13)

Step one: E|Xn
ηn(t)| is uniformly bounded with respect to n and t

We begin with equation (3.3.12). Using the triangle inequality and upper bounds for ā
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and ḡ we get

E[|Xn
tk+1
|] ≤ E[|Xn

tk
|] + E[|ā(Ytk , X

n
tk

)(tk+1 − tk)|]
+E[|ḡ(Ytk , X

n
tk

)(Wtk+1
−Wtk)|]

≤ E[|Xn
tk
|] +M |tk+1 − tk|E [1 + |Ytk |] +M |tk+1 − tk|E

[
|Xn

tk
|
]

+ME
[
(1 + |Ytk |)|Wtk+1

−Wtk |
]

≤ (1 +M‖∆n‖)E[|Xn
tk
|] +M |tk+1 − tk|E [1 + |Ytk |]

+
M

2

(
E
[
(1 + |Ytk |)2

]
+ E

[
|Wtk+1

−Wtk |2
])

≤ (1 +M‖∆n‖)E[|Xn
tk
|] +M‖∆n‖ sup

t∈[0,T ]

E [1 + |Yt|]

+
M

2
sup
t∈[0,T ]

E
[
(1 + |Yt|)2

]
+
M

2
|tk−1 − tk|

≤ (1 +M‖∆n‖)E[|Xn
tk
|] +M‖∆n‖ sup

t∈[0,T ]

E [1 + |Yt|]

+
M

2
sup
t∈[0,T ]

E
[
(1 + |Yt|)2

]
+
M

2
‖∆n‖

≤ (1 +M‖∆n‖)E[|Xn
tk
|] +

M

2
sup
t∈[0,T ]

E
[
(1 + |Yt|)2

]
+ ε.

Here we used the fact that ‖∆n‖ tends to zero as n tends to infinity and that supt∈[0,T ] E [1 + |Yt|]
is finite: we can therefore choose n big enough to make

M‖∆n‖ sup
t∈[0,T ]

E [1 + |Yt|] +
M

2
‖∆n‖

smaller than a given positive ε. Comparing the first and last terms of the previous chain

of inequalities we get for all k ∈ {0, ..., Nn − 1}

E[|Xn
tk+1
|] ≤ (1 +M‖∆n‖)E[|Xn

tk
|] +

M

2
sup
t∈[0,T ]

E
[
(1 + |Yt|)2

]
+ ε

which by recursion implies

E[|Xn
tk
|] ≤ γk1 |x|+

γk1 − 1

γ1 − 1
γ2

≤ γNn1 |x|+
γNn1 − 1

γ1 − 1
γ2

where for notational convenience we set

γ1 := 1 +M‖∆n‖ and γ2 :=
M

2
sup
t∈[0,T ]

E
[
(1 + |Ytk |)2

]
+ ε.
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Since ηn(t) is a step function in [0, T ] with values {t0, t1, ..., tNn}, the previous estimate

for k ∈ {0, ..., Nn − 1} entails the boundedness of the function [0, T ] 3 t→ E[|Xn
ηn(t)|].

We now obtain an estimate for E[|Xn
ηn(t)|] which is also uniform with respect to n. Using

the triangle inequality in (3.3.13) we can write

E[|Xn
ηn(t)|] ≤ |x|+E

[∣∣∣∣∣
∫ ηn(t)

0

ā(Yηn(s), X
n
ηn(s))ds

∣∣∣∣∣
]

+E

[∣∣∣∣∣
∫ ηn(t)

0

ḡ(Yηn(s), X
n
ηn(s))dW

2
s

∣∣∣∣∣
]
. (3.3.14)

For the first expected value on the right hand side above we employ the assumptions on

ā:

E

[∣∣∣∣∣
∫ ηn(t)

0

ā(Yηn(s), X
n
ηn(s))ds

∣∣∣∣∣
]
≤ E

[∫ t

0

|ā(Yηn(s), X
n
ηn(s))|ds

]
≤ ME

[∫ t

0

(1 + |Xn
ηn(s)|+|Yηn(s)|)ds

]
= M

∫ t

0

E[|Xn
ηn(s)|]ds+M

∫ t

0

E
[
1 + |Yηn(s)|

]
ds

≤ M

∫ t

0

E[|Xn
ηn(s)|]ds+MT sup

t∈[0,T ]

E [1 + |Yt|] .

Using the Itô isometry and the assumptions on ḡ we can treat the second expected value

as follows:

E

[∣∣∣∣∣
∫ ηn(t)

0

ḡ(Yηn(s), X
n
ηn(s))dW

2
s

∣∣∣∣∣
]
≤

E

∣∣∣∣∣
∫ ηn(t)

0

ḡ(Yηn(s), X
n
ηn(s))dW

2
s

∣∣∣∣∣
2
 1

2

≤
(∫ t

0

E[|ḡ(Yηn(s), X
n
ηn(s))|2]ds

) 1
2

≤ M

(∫ t

0

E[(1 + |Yηn(s)|)2]ds

) 1
2

≤ M
√
T sup
t∈[0,T ]

E[(1 + |Yt|)2].
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Plugging the last two estimates in (3.3.14) gives

E[|Xn
ηn(t)|] ≤ |x|+E

[∣∣∣∣∣
∫ ηn(t)

0

ā(Yηn(s), X
n
ηn(s))ds

∣∣∣∣∣
]

+E

[∣∣∣∣∣
∫ ηn(t)

0

ḡ(Yηn(s), X
n
ηn(s))dW

2
s

∣∣∣∣∣
]

≤ |x|+M
∫ t

0

E[|Xn
ηn(s)|]ds+MT sup

t∈[0,T ]

E [1 + |Yt|]

+M
√
T sup
t∈[0,T ]

E[(1 + |Yt|)2]

= G+M

∫ t

0

E[|Xn
ηn(s)|]ds

where

G := |x|+MT sup
t∈[0,T ]

E [1 + |Yt|] +M
√
T sup
t∈[0,T ]

E[(1 + |Yt|)2].

By the Gronwall inequality (we proved before that t → E[|Xn
ηn(t)|] is a non negative,

bounded and measurable function) we conclude that

E[|Xn
ηn(t)|] ≤ GeMt ≤ GeMT (3.3.15)

which provides the desired uniform bound (with respect to n and t) for E[|Xn
ηn(t)|].

Step two: E[|Xn
t −Xn

ηn(t)|] tends to zero as n tends to infinity, uniformly with respect

to t ∈ [0, T ]
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We proceed as in step one. Recalling the identity (3.3.13) we can write

E[|Xn
t −Xn

ηn(t)|] = E
[∣∣∣∣∫ t

ηn(t)

ā(Yηn(s), X
n
ηn(s))ds+

∫ t

ηn(t)

ḡ(Yηn(s), X
n
ηn(s))dW

2
s

∣∣∣∣]
≤

∫ t

ηn(t)

E[|ā(Yηn(s), X
n
ηn(s))|]ds+ E

[∣∣∣∣∫ t

ηn(t)

ḡ(Yηn(s), X
n
ηn(s))dW

2
s

∣∣∣∣]
≤ M

∫ t

ηn(t)

E[(1 + |Xn
ηn(s)|+|Yηn(s)|)]ds

+

(
E

[∣∣∣∣∫ t

ηn(t)

ḡ(Yηn(s), X
n
ηn(s))dW

2
s

∣∣∣∣2
]) 1

2

≤ M(t− ηn(t))

(
GeMT + sup

t∈[0,T ]

E[1 + |Yt|]

)

+

(∫ t

ηn(t)

E[|ḡ(Yηn(s), X
n
ηn(s))|2]ds

) 1
2

≤ M(t− ηn(t))

(
GeMT + sup

t∈[0,T ]

E[1 + |Yt|]

)
+M

√
t− ηn(t)

√
sup
t∈[0,T ]

E[(1 + |Yt|)2]

≤ M
√
‖∆n‖

(
GeMT + sup

t∈[0,T ]

E[1 + |Yt|] +
√

sup
t∈[0,T ]

E[(1 + |Yt|)2]

)
.

Here, in the third equality, we utilized the uniform upper bound (3.3.15). We have

therefore proved that

E[|Xn
t −Xn

ηn(t)|] ≤ M
√
‖∆n‖

(
GeMT + sup

t∈[0,T ]

E[1 + |Yt|] +
√

sup
t∈[0,T ]

E[(1 + |Yt|)2]

)
=: M1

√
‖∆n‖

This in turn implies that E[|Xn
t −Xn

ηn(t)|] tends to zero as n tends to infinity, uniformly

with respect to t ∈ [0, T ].

Step three: {Xn}n≥1 is a Cauchy sequence in L1([0, T ]× Ω).

We need to prove that for any ε > 0 there exists nε ∈ N such that

E
[∫ T

0

|Xn
t −Xm

t |dt
]
< ε for all n,m ≥ nε.
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We have:

Xn
t −Xm

t =

∫ t

0

[
ā(Yηn(s).X

n
ηn(s))− ā(Yηm(s), X

m
ηm(s))

]
ds

+

∫ t

0

[
ḡ(Yηn(s), X

n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s))

]
dW 2

s

We now aim to apply the Itô formula to the stochastic process {Xn
t − Xm

t }t∈[0,T ] for a

suitable smooth function that we now describe.

Consider the decreasing sequence of real numbers {ah}h≥0 defined by induction as follows:

a0 = 1 and for h ≥ 1,

∫ ah−1

ah

1

u
du = h.

It is easy to see that ah = e−
h(h+1)

2 and therefore that limh→+∞ ah = 0. Define the

function Φh(u) for u ∈ [0,∞) such that Φh(0) = 0, Φh(u) ∈ C2([0,∞[) and

Φ′′h(u) =


0, 0 ≤ u ≤ ah

a value between 0 and 2
hu
, ah < u < ah−1

0, u ≥ ah−1

(3.3.16)

such that Φ′′h is continuous and ∫ ah−1

ah

Φ′′h(u)du = 1.

Integrating Φ′′h we get

Φ′h(u) =


0, 0 ≤ u ≤ ah

a value between 0 and 1, ah < u < ah−1

1, u ≥ ah−1

(3.3.17)

Finally we choose θh(u) = Φh(|u|). Then, we have:

θh(X
n
t −Xm

t ) =

∫ t

0

θ′h(X
n
s −Xm

s )
[
ā(Yηn(s).X

n
ηn(s))− ā(Yηm(s), X

m
ηm(s))

]
ds

+

∫ t

0

θ′h(X
n
s −Xm

s )
[
ḡ(Yηn(s), X

n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s))

]
dW 2

s

+
1

2

∫ t

0

θ′′(Xn
s −Xm

s )
[
ḡ(Yηn(s), X

n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s))

]2
ds

=: I1(θh) + I2(θh) + I3(θh)
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Since for any h ≥ 0 and u ∈ R we have by construction that |u|−ah−1 ≤ θh(u), we can

write

E[|Xn
t −Xm

t |] ≤ ah−1 + E[θh(X
n
t −Xm

t )]

= ah−1 + E[I1(θh) + I2(θh) + I3(θh)]

= ah−1 + E[I1(θh)] + E[I3(θh)]. (3.3.18)

Let us now estimate E[|I1(θh)|]:

E[|I1(θh)|] = E
[∣∣∣∣∫ t

0

θ′h(X
n
s −Xm

s )
[
ā(Yηn(s).X

n
ηn(s))− ā(Yηm(s), X

m
ηm(s))

]
ds

∣∣∣∣]
≤ E

[∫ t

0

|θ′h(Xn
s −Xm

s )|·|ā(Yηn(s).X
n
ηn(s))− ā(Yηm(s), X

m
ηm(s))|ds

]
≤ E

[∫ t

0

|ā(Yηn(s).X
n
ηn(s))− ā(Yηm(s), X

m
ηm(s))|ds

]
≤ L

∫ t

0

E[|Xn
ηn(s) −Xm

ηm(s)|]ds+ L

∫ t

0

E[|Yηn(s) − Yηm(s)|]ds

In the second inequality we utilized the bound |θ′h(u)|≤ 1 which is valid for all h ≥ 0

and u ∈ R. By means of the estimate obtained in step two we can write

E[|Xn
ηn(s) −Xm

ηm(s)|] ≤ E[|Xn
ηn(s) −Xn

s |] + E[|Xn
s −Xm

s |] + E[|Xm
s −Xm

ηm(s)|]

≤ M1(
√
‖∆n‖+

√
‖∆m‖) + E[|Xn

s −Xm
s |].

Similarly we get

E[|Yηn(s) − Yηm(s)|] ≤ E[|Yηn(s) − Ys|] + E[Ys − Yηm(s)|]
≤ C(

√
‖∆n‖+

√
‖∆m‖)

where the last inequality is due to well known estimates for strong solutions of stochastic

differential equations. Combining the last two bounds we conclude that

E[|I1(θh)|] ≤ L

∫ t

0

E[|Xn
ηn(s) −Xm

ηm(s)|]ds+ L

∫ t

0

E[|Yηn(s) − Yηm(s)|]ds

≤ TL(M1 + C)(
√
‖∆n‖+

√
‖∆m‖) + L

∫ t

0

E[|Xn
s −Xm

s |]ds.(3.3.19)
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We now treat E[I3(θh)]; by the assumption (3.3.5) and properties of θh we get:

E[I3(θh)] =
1

2
E
[∫ t

0

θ′′h(X
n
s −Xm

s )(ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s)))

2ds

]
≤ H2

2
E
[∫ t

0

θ′′h(X
n
s −Xm

s )
(√
|Xn

ηn(s) −Xm
ηm(s)|+

√
|Yηn(s) − Yηm(s)|

)2

ds

]
≤ H2E

[∫ t

0

θ′′h(X
n
s −Xm

s )
(
|Xn

ηn(s) −Xm
ηm(s)|+|Yηn(s) − Yηm(s)|

)
ds

]
≤ H2E

[∫ t

0

2

h|Xn
s −Xm

s |
|Xn

s −Xm
s |ds

]
+H2‖θ′′h‖E

[∫ t

0

(|Xn
ηn(s) −Xn

s |+|Xm
ηm(s) −Xm

s |)ds
]

+H2‖θ′′h‖E
[∫ t

0

(|Yηn(s) − Ys|+|Ys − Yηm(s)|)ds
]

≤ 2H2T

h
+ ‖θ′′h‖TH2(M1 + C)(

√
‖∆n‖+

√
‖∆m‖). (3.3.20)

Here ‖θ′′h‖ denotes the supremum norm of θ′′h while in the last inequality we used the

same bound to obtain inequality (3.3.19). Now, let us fix ε > 0. For this ε let h be

such that 0 < ah−1 < ε and 2H2T
h

< ε. With this h being so chosen and fixed, ‖θ′′h‖ is

bounded. Then, there exists nε ∈ N such that

(M1 + C)(T + ‖θ′′h‖TH2)(
√
‖∆n‖+

√
‖∆m‖) < ε

for all n,m ≥ nε. We can now insert estimates (3.3.19) and (3.3.20) in (3.3.18) to obtain

E[|Xn
t −Xm

t |] ≤ ah−1 + E[I1(θh)] + E[I3(θh)]

≤ ah−1 + TL(M1 + C)(
√
‖∆n‖+

√
‖∆m‖) + L

∫ t

0

E[|Xn
s −Xm

s |]ds

+
2H2T

h
+ ‖θ′′h‖TH2(M1 + C)(

√
‖∆n‖+

√
‖∆m‖)

≤ 3ε+ L

∫ t

0

E[|Xn
s −Xm

s |]ds.

By Gronwall’s inequality we conclude then that

E[|Xn
t −Xm

t |] ≤ 3eLtε ≤ 3eLT ε,

for all n,m ≥ nε and all t ∈ [0, T ]. Hence,

E
[∫ T

0

|Xn
t −Xm

t |dt
]

=

∫ T

0

E[|Xn
t −Xm

t |]dt

≤ T sup
t∈[0,T ]

E[|Xn
t −Xm

t |]

≤ 3TeLT ε.
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The claim of step three is proved.

Step four: {Xn}n≥1 is a Cauchy sequence in L1(Ω;C([0, T ])).

We know that {Xn}n≥1 is a Cauchy sequence in L1([0, T ]×Ω) which is a complete space.

We can therefore conclude that there exists a stochastic process X ∈ L1([0, T ]×Ω) such

that

lim
n→∞

E
[∫ T

0

|Xn
t −Xt|dt

]
= 0.

From Step two we can also deduce that

lim
n→∞

E
[∫ T

0

|Xn
ηn(t) −Xt|dt

]
= 0.

Hence, there exists a subsequence (we keep the same indexes though for easy notations)

such that

lim
n→∞

Xn
t (ω) = lim

n→∞
Xn
ηn(t)(ω) = Xt(ω) dt× dP-almost surely.

Since the process {Xn
t }t∈[0,T ] is {Ft}t∈[0,T ]-adapted for any n ∈ N and almost sure con-

vergence preserves measurability, we deduce that {Xt}t∈[0,T ] is also {Ft}t∈[0,T ]-adapted.

To prove the continuity of {Xt}t∈[0,T ] we need to check the convergence in the uniform

topology, i.e. we need to estimate E
[
supt∈[0,T ]|Xn

t −Xm
t |
]
.

As before we employ the representation (3.3.13):

E

[
sup
t∈[0,T ]

|Xn
t −Xm

t |

]
≤ E

[
sup
t∈[0,T ]

∫ t

0

|ā(Yηn(s), X
n
ηn(s))− ā(Yηm(s), X

m
ηm(s))|ds

]

+E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s)))dW

2
s

∣∣∣∣
]

≤
∫ T

0

E[|ā(Yηn(s), X
n
ηn(s))− ā(Yηm(s), X

m
ηm(s))|]ds

+E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s)))dW

2
s

∣∣∣∣2
] 1

2

=: J1 + J2
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To treat J1 we proceed as before; using inequality (3.3.19) we obtain

J1 =

∫ T

0

E[|ā(Yηn(s), X
n
ηn(s))− ā(Yηm(s), X

m
ηm(s))|]ds

≤ L

∫ T

0

E[|Xn
ηn(s) −Xm

ηm(s)|]ds+

∫ T

0

E[|Yηn(s) − Yηm(s)|]ds (3.3.21)

≤ TL(M1 + C)(
√
‖∆n‖+

√
‖∆m‖) + L

∫ T

0

E[|Xn
s −Xm

s |]ds.

Since we proved in Step three that {Xn}n≥1 is a Cauchy sequence in L1([0, T [×Ω) and

by assumption ‖∆n‖ tends to zero as n tends to infinity, we can find n and m big enough

to make the last row of the previous chain of inequalities smaller than any positive ε.

We now evaluate J2. Invoking the Doob maximal inequality, i.e.

E

( sup
t∈[a,b]

Xt

)2
 ≤ 22E[X2

b ] where {Xt}t∈[a,b] is a non negative submartingale

(see for instance Karatzas and Shreve [12] page 14) and Itô isometry we can write

J2 =

(
E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

(ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s)))dW

2
s

∣∣∣∣2
]) 1

2

≤ 2

(
E

[∣∣∣∣∫ T

0

(ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s)))dW

2
s

∣∣∣∣2
]) 1

2

= 2

(
E
[∫ T

0

|ḡ(Yηn(s), X
n
ηn(s))− ḡ(Yηm(s), X

m
ηm(s))|2ds

]) 1
2

≤ 2H

(
E
[∫ T

0

(√
|Xn

ηn(s) −Xm
ηm(s)|+

√
|Yηn(s) − Yηm(s)|

)2

ds

]) 1
2

≤ 2
√

2H

(
E
[∫ T

0

|Xn
ηn(s) −Xm

ηm(s)|+|Yηn(s) − Yηm(s)|ds
]) 1

2

= 2
√

2H

(∫ T

0

E[|Xn
ηn(s) −Xm

ηm(s)|] + E[|Yηn(s) − Yηm(s)|]ds
) 1

2

.

If we now observe that the last member above is equivalent to (3.3.21), we can proceed

as before and conclude that for any ε > 0 there exists nε ∈ N such that

E

[
sup
t∈[0,T ]

|Xn
t −Xm

t |

]
< ε for all n,m ≥ nε.
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This proves that {Xn}n≥1 is a Cauchy sequence in L1(Ω;C([0, T ]) and thus

lim
n→∞

E

[
sup
t∈[0,T ]

|Xn
t −Xt|

]
= 0

where {Xt}t∈[0,T ] is the stochastic process obtained in Step three. Moreover, we can find

a subsequence (we keep the same indexes though for easy notations) such that

lim
n→∞

sup
t∈[0,T ]

|Xn
t (ω)−Xt(ω)|= 0 dP-almost surely.

Since the processes {Xn
t }t∈[0,T ] are continuous by construction for each n ∈ N, we de-

duce that the process {Xt}t∈[0,T ] is also continuous being a uniform limit of continuous

functions.

Step five: The stochastic process {Xt}t∈[0,T ] solves equation (3.3.9).

Finally we show that

P
(
X(t) = x+

∫ t

0

ā(Ys, Xs)ds+

∫ t

0

ḡ(Ys, Xs)dW
2
s for all t ∈ [0, T ]

)
= 1.

This in turn will be proven by showing that

E

[
sup
t∈[0,T ]

∣∣∣∣Xt − x−
∫ t

0

ā(Ys, Xs)ds−
∫ t

0

ḡ(Ys, Xs)dW
2
s

∣∣∣∣
]

= 0

In fact, the equality

Xt − x−
∫ t

0

ā(Ys, Xs)ds−
∫ t

0

ḡ(Ys, Xs)dW
2
s

= Xt −Xn
ηn(t) +

∫ t

0

ā(Yηn(s), X
n
ηn(s))− ā(Ys, Xs)ds

+

∫ t

0

ḡ(Yηn(s), X
n
ηn(s))− ḡ(Ys, Xs)dW

2
s

implies

sup
t∈[0,T ]

∣∣∣∣Xt − x−
∫ t

0

ā(Ys, Xs)ds−
∫ t

0

ḡ(Ys, Xs)dW
2
s

∣∣∣∣
≤ sup

t∈[0,T ]

|Xt −Xn
ηn(t)|+

∫ T

0

|ā(Yηn(s), X
n
ηn(s))− ā(Ys, Xs)|ds

+ sup
t∈[0,T ]

∣∣∣∣∫ t

0

ḡ(Yηn(s), X
n
ηn(s))− ḡ(Ys, Xs)dW

2
s

∣∣∣∣ .
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If we take the expectation and use the technique utilized in Step four to bound the terms

in the right hand side of the previous inequality we get

E

[
sup
t∈[0,T ]

∣∣∣∣Xt − x−
∫ t

0

ā(Ys, Xs)ds−
∫ t

0

ḡ(Ys, Xs)dW
2
s

∣∣∣∣
]

= lim
n→∞

E

[
sup
t∈[0,T ]

∣∣∣∣Xt − x−
∫ t

0

ā(Ys, Xs)ds−
∫ t

0

ḡ(Ys, Xs)dW
2
s

∣∣∣∣
]

≤ lim
n→∞

(
E

[
sup
t∈[0,T ]

|Xt −Xn
ηn(t)|

]
+ E

[∫ T

0

|ā(Yηn(s), X
n
ηn(s))− ā(Ys, Xs)|ds

])

+ lim
n→∞

E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

ḡ(Yηn(s), X
n
ηn(s))− ḡ(Ys, Xs)dW

2
s

∣∣∣∣
]

= 0.

Uniqueness: We use a standard approach. Let {Xt}t∈[0,T ] and {Zt}t∈[0,T ] be two strong

solutions of equation (3.3.9). Setting,

δt := Xt − Zt =

∫ t

0

[ā(Ys, Xs)− ā(Ys, Zs)]ds+

∫ t

0

[ḡ(Ys, Xs)− ḡ(Ys, Zs)]dW
2
s (3.3.22)

we get by the Itô formula

θh(δt) =

∫ t

0

θ′h(δs)[ā(Ys, Xs)− ā(Ys, Zs)]ds

+

∫ t

0

θ′h(δs)[ḡ(Ys, Xs)− ḡ(Ys, Zs)]dW
2
s

+
1

2

∫ t

0

θ′′h(δs)[ḡ(Ys, Xs)− ḡ(Ys, Zs)]
2ds

where {θh}h≥0 is the collection of functions defined in Step three. Using the assumptions

on ā and ḡ and the bounds |θ′h(u)|≤ 1 and |θ′′h(u)|≤ 2
hu

we get

E[θh(δt)] ≤ E
[∫ t

0

θ′h(δs)[ā(Ys, Xs)− ā(Ys, Zs)]ds

]
+
tH2

h

≤ L

∫ t

0

E[|δs|]ds+
tH2

h

If we let h → ∞, the function θh approaches the absolute value function; hence, Gron-

wall’s inequality and sample path continuity imply that {Xt}t∈[0,T ] and {Zt}t∈[0,T ] are

indistinguishable.
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Chapter 4

On a general model system related

to affine stochastic differential

equations

4.1 Introduction

Stochastic differential equations (SDEs, for short) with Hölder-continuous coefficients

appear in the modeling of several evolutionary systems perturbed by noise. The most

important instance is probably the so-called square root process defined to be the unique

strong solution of the following one dimensional SDE

dXt = (aXt + b)dt+ σ
√
XtdWt, X0 = x (4.1.1)

where a, b ∈ R, σ, x ∈]0,+∞[ and {Wt}t≥0 denotes a standard one dimensional Brownian

motion. This equation is very popular in interest rate modeling due to the properties of

its solution. We refer the reader to the book Cairns [13] for a detailed analysis of this

topic (see also Mao [21]). SDEs with Hölder-continuous coefficients appear in the de-

scription of certain epidemic models as well: in this case the solution process represents

the number of susceptible individuals in a given population. We mention the papers

Greenhalgh et al. [1] and Bernardi et al. [15] which consider models described by SDEs

with random and Hölder-continuous coefficients.

From a mathematical point of view the analysis of existence and uniqueness for

strong solutions of SDEs with Hölder-continuous coefficients is quite challenging. In the

one dimensional case, resorting to the famous Yamada-Watanabe principle (i.e. weak

91
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existence plus pathwise uniqueness implies strong existence) one can prove the existence

of a unique strong solution for SDEs where the drift coefficient is locally Lipshiptz-

continuous while the diffusion coefficient is of the type σ(x) = |x|α for α ∈ [1/2, 1].

The hard part of this proof is the pathwise uniqueness which heavily relies on an ad

hoc technique introduced by Yamada and Watanabe [10] (see also the books Ikeda and

Watanabe [11] and Karatzas and Shreve [12] for comparison theorems obtained with a

similar approach). When we move to systems of SDEs with Hölder-continuous coeffi-

cients, then only few particular cases can be found in the literature; in fact, the lack of a

multidimensional version of the Yamada-Watanabe technique to prove pathwise unique-

ness forced the authors of those papers to consider equations that can be investigated

with a slight modification of the one dimensional approach. The most important paper

in this stream of results is certainly Duffie and Kan [2] where the authors, motivated

by financial applications, consider a multidimensional version of the square root process

(4.1.1). They prove existence, uniqueness and positivity for the strong solution of an

SDE where the components of the drift vector are affine functions of the solution and

the diffusion matrix is a constant matrix times a diagonal matrix with entries being

square roots of affine functions of the solution. Their proof is based on a suitable appli-

cation of the comparison theorem mentioned above, which we recall is based on the one

dimensional Yamada-Watanabe technique. We now mention a series of results where

the Yamada-Watanabe approach has been utilised in some multidimensional problems:

Graczyk and J. Malecki [39] and Kumar [40] consider SDEs where for i ∈ {1, ...,m} the

i-th row of the diffusion matrix depends only on the i-th component of the solution;

Luo [41] investigates a nested system of SDEs where the i-th row of the diffusion matrix

depends only on the first i components of the solution; Wand and Zhang [42] introduce

an integrability condition involving the determinant of the diffusion matrix and an aux-

iliary function fulfilling certain requirements.

The aim of the present paper is to link the general method presented in the book

Allen [36] for modeling random phenomena using SDEs to the multidimensional system

studied in Duffie and Kan [2]. More precisely, in Allen [36] pages 138-139 it is shown

how, assigning probabilities to the possible changes of a general two dimensional system,

one can deduce a Fokker-Planck partial differential equation for the candidate density of

the system and from that a suitable SDE describing the random motion of the system.

Following this procedure we consider an m-dimensional system with some prescribed

admissible (i.e. with positive probability) changes and we deduce after some simplifying

assumptions an m-dimensional SDE with Hölder continuous coefficients. Then, Taylor-

expanding up to the first order the coefficients of the SDE around the initial condition,
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we end up with the multidimensional SDE investigated in Duffie-Kan [2] for which the

existence of a unique strong solution is guaranteed under proper restrictions (we also

present a detailed proof of this result, elaborating some technical aspects missing in the

original proof). Therefore, this general construction emphasises the central role of the

Duffie-Kan SDE as a model for first order approximations of a wide class of nonlinear

systems perturbed by noise. We also remark that the positivity property guaranteed by

the Duffie-Kan theorem entails the consistency of our procedure: in fact, such property

will ensure the positivity of the probabilities originally assigned to the m-dimensional

system according to the Allen’s method. We then specialise to the two dimensional

case and we suggest a direct proof of the Duffie-Kan theorem which does not passes

through the comparison with an auxiliary process. Our proof is based on the sole prop-

erties of the one dimensional square root process (4.1.1) and produces a scheme to obtain

an explicit solution of the two dimensional system once the process in (4.1.1) is assigned.

The paper is organised as follows: in Section 2 we adapt the Allen’s procedure to an

m-dimensional system assigning probabilities of admissible changes and making some

simplifying assumptions; Section 3 contains the description of the first order approx-

imation, link to the Duffie-Kan SDE, statement and detailed proof of the Duffie-Kan

theorem; lastly, in Section 4 we specialise to the two dimensional framework and propose

a constructive alternative proof of the Duffie-Kan theorem.

4.2 A general m-dimensional system

Let us consider a model system with m ∈ N different states evolving in time according

to some probabilistic rules specified below. We write

St = (S1
t , S

2
t , ..., S

m
t )T , t ≥ 0

to represent the values of the m states of the system at time t.

S1
t S2

t Sm−1
t Smt

r1

l2

d1 u1

r2

l3

d2 u2

rm−2

lm−1

rm−1

lm

dm−1 um−1 dm um

Figure 4.1: An m-state dynamical process
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It is assumed that in a small time interval [t, t + ∆t] every state can change by −1, 0

or +1. This produces a total of 3m possible different changes (the number of vectors of

length m with components taking values in the set {−1, 0, 1}). We let ∆St := St+∆t−St
be the global change of the system in the time interval [t, t + ∆t]; for instance, ∆St =

(−1, 0, 1, 0, ..., 0)T means that in the time interval [t, t+∆t] state S1 has decreased of one

unit, state S3 has increased of one unit while all the other states remained unchanged.

As illustrated in Figure 4.1, we denote

rj(t, x) := P(∆St = −ej + ej+1|St = x)/∆t, j ∈ {1, ...,m− 1} (4.2.1)

lj(t, x) := P(∆St = −ej + ej−1|St = x)/∆t, j ∈ {2, ...,m} (4.2.2)

dj(t, x) := P(∆St = −ej|St = x)/∆t, j ∈ {1, ...,m} (4.2.3)

uj(t, x) := P(∆St = ej|St = x)/∆t, j ∈ {1, ...,m} (4.2.4)

p0(t, x) := 1−∆t ·
m∑
j=1

(rj(t, x) + lj(t, x) + dj(t, x) + uj(t, x)) (4.2.5)

where {e1, ..., em} denotes the canonical base of Rm and rm(t, x) = l1(t, x) ≡ 0. We

remark that the probabilities associated to those changes not specified by (4.2.1)-(4.2.5)

are identically zero. We also observe that p0(t, x) represents the probability of no changes

during the interval [t, t+∆t] given that St = x. According to Figure 4.1 the evolution of

the states of the system is determined by interaction between the neighboring states(rj’s

and lj’s) and exchanges with the outside world( uj’s and dj’s).

Given the probabilities (4.2.1)-(4.2.5) one can introduce, following Allen [36] pages 137-

139, a Fokker-Planck equation solved by the density p(t, x) := P(St = x) of the system

which in turn is related to the stochastic differential equation{
dSt = µ(t, St)dt+B(t, St)dWt

S0 = s
(4.2.6)

where {Wt}t≥0 is an m-dimensional standard Brownian motion,

µ(t, x) := E [∆St|St = x] /∆t

is the mean vector and B(t, x) denotes the symmetric square root of the covariance

matrix

V (t, x) := E
[
(∆St)(∆St)

T |St = x
]
/∆t.

According to equations (4.2.1)-(4.2.4) we can write

µ(t, x) = (−r1(t, x) + l2(t, x) + u1(t, x)− d1(t, x)) e1
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+
m−1∑
j=2

(rj−1(t, x)− rj(t, x) + lj+1(t, x)− lj(t, x) + uj(t, x)− dj(t, x)) ej

+ (rm−1(t, x)− lm(t, x) + um(t, x)− dm(t, x)) em (4.2.7)

and

V (t, x) =
m∑
j=1

(uj(t, x) + dj(t, x))ej ⊗ ej +
m−1∑
j=1

(rj(t, x) + lj+1(t, x))Mj (4.2.8)

where for j ∈ {1, ...,m− 1} we set Mj := (ej − ej+1)⊗ (ej − ej+1). We remark that the

previous general system has been proposed in Bernardi et al. [43] as a model to study

risks aggregation in a Bonus-Malus migration system. To proceed in the analysis of the

SDE (4.2.6) we need to find the symmetric square root of the matrix V (t, x). To this

aim we assume the following.

Assumption 4.2.1. For any i, j ∈ {1, ...,m} we have

ui(t, x) + di(t, x) = uj(t, x) + dj(t, x) =: γ(t, x)

and for any i, j ∈ {1, ...,m− 1} we have

ri(t, x) + li+1(t, x) = rj(t, x) + lj+1(t, x) =: θ(t, x).

Assumption 4.2.1 introduces some symmetries in the evolution of our system. More

precisely, the first condition implies that each state has the same probability of an

exchange with the outside, while the second condition means that the probability of

exchanges between neighboring states does not depend on the specific states considered.

As a result we can now rewrite equation (4.2.8) in the simplified form

V (t, x) = γ(t, x)I + θ(t, x)M (4.2.9)

where I is the m×m identity matrix while M is the m×m matrix defined as

M =



1 −1 0 0 0 · · · 0

−1 2 −1 0 0 · · · 0

0 −1 2 −1 0 · · · 0

0 0 −1 2 −1 · · · 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · −1 1
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According to Theorem 4 page 73 in Yueh [44] (with a = c = −1, α = β =
√
ac = 1 and

b = 2) the matrix M has m distinct eigenvalues of the form

λk = 2 + 2 cos(kπ/m), k = 1, ...,m (4.2.10)

and hence there exists an orthogonal matrix Σ such that

M = ΣMΣT with M = diag [λ1, . . . , λm] .

Therefore, setting y(t, x) := θ(t, x)/γ(t, x) from equation (4.2.9) we deduce that

V (t, x) = γ(t, x) · (I + y(t, x)M)

= γ(t, x) · (I + y(t, x)ΣMΣT )

= γ(t, x) · Σ(I + y(t, x)M)ΣT .

Since

(I + y(t, x)M)1/2 = diag
[√

1 + y(t, x)λ1, ...,
√

1 + y(t, x)λm

]
we conclude that

B(t, x) =
√
V (t, x)

=
√
γ(t, x) · Σ diag

[√
1 + y(t, x)λ1, ...,

√
1 + y(t, x)λm

]
ΣT

= Σ diag
[√

γ(t, s) + θ(t, x)λ1, ...,
√
γ(t, x) + θ(t, x)λm

]
ΣT . (4.2.11)

To sum up, given the probabilities (4.2.1)-(4.2.5) together with Assumption 4.2.1 our

model system evolves according to the stochastic differential equation
dSt = µ(t, St)dt

+Σ diag
[√

γ(t, St) + θ(t, St)λ1, ...,
√
γ(t, St) + θ(t, St)λm

]
ΣTdWt

S0 = s

or equivalently
dSt = µ(t, St)dt

+Σ diag
[√

γ(t, St) + θ(t, St)λ1, ...,
√
γ(t, St) + θ(t, St)λm

]
dW̃t

S0 = s

(4.2.12)

where W̃t := ΣTWt is a new m-dimensional standard Brownian motion (recall that by

construction ΣT is orthogonal) while µ(t, St) and the λj’s are defined in (4.2.7) and

(4.2.10), respectively.
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4.3 First order approximation and the Duffie-Kan’s

theorem

The aim of the present section is to prove the existence of a unique strong solution for

an SDE of the type (4.2.12) under suitable regularity assumptions on the coefficients of

the equation. First of all we observe that according to equation (4.2.7) and Assumption

4.2.1 the components of the drift coefficient µ and the scalar functions γ and β are linear

combinations of the functions rj’s, lj’s, uj’s and dj’s defined in (4.2.1)-(4.2.4).

If we assume for simplicity that the functions rj’s, lj’s, uj’s and dj’s are time independent

and we expand each of them into its first order Taylor polynomial around the point s

(which is the initial condition of the SDE (4.2.12)), then we obtain a corresponding

family of affine functions on Rm. Linear combinations of these affine functions will

result in new affine functions representing the components of the drift coefficient µ and

the scalar functions γ and θ. More precisely, introducing the notation f ? to denote the

first order Taylor polynomial around s of the smooth function f : Rm → R, i.e

f ? : Rm → R
x 7→ f ?(x) := f(s) + 〈∇f(s), x− s〉,

we approximate the functions rj’s, lj’s, uj’s and dj’s with r?j ’s, l
?
j ’s, u

?
j ’s and d?j ’s, respec-

tively. This results in the first order approximation of µ, γ and θ transforming equation

(4.2.12) into
dSt = µ?(St)dt

+Σ diag
[√

γ?(St) + θ?(St)λ1, ...,
√
γ?(St) + θ?(St)λm

]
dW̃t

S0 = s

(4.3.1)

The SDE (4.3.1) now falls into the class of affine stochastic differential equations which

is a class of equations having a relevant role in the theory of interest rate models (see

for instance Cairns [13]). Existence, uniqueness and positivity for affine SDEs have been

investigated in the remarkable paper Duffie and Kan [2]. Here we recall their main

theorem together with a detailed proof.

Theorem 4.3.1 (Duffie and Kan [2]). Consider the m-dimensional stochastic differential

equation

dSt = (aSt + b)dt+ Σ diag
(√

v1(St),
√
v2(St), ...,

√
vm(St)

)
dWt (4.3.2)

where a,Σ ∈Mm×m, b ∈ Rm and vi(x) := αi+〈βi, x〉 with α1, ..., αm ∈ R and β1, ..., βm ∈
Rm. Assume that
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1. If x ∈ Rm is such that vi(x) = 0, then

〈βi, ax+ b〉 > |ΣTβi|2/2

2. For all j ∈ {1, ...,m} if (ΣTβi)j 6= 0, then vi(x) = vj(x) for all x ∈ Rm.

Then, for any initial condition S0 = s ∈ Rm belonging to

D := {x ∈ Rm : vi(x) > 0 for all i ∈ {1, , , .m}}

the SDE (4.3.2) admits a unique global strong solution. Moreover, such solution satisfies

for all i ∈ {1, ...,m} and t ≥ 0

vi(St) > 0 almost surely.

Proof. We first consider the case in which

vi(x) = v(x) = α + 〈β, x〉 for all i ∈ {1, ...,m}

making the second assumption trivially satisfied. In this case equation (4.3.2) reduces

to

dSt = (aSt + b)dt+
√
v(St)ΣdWt. (4.3.3)

Let {εn}n≥1 be a positive strictly decreasing sequence of numbers converging to zero. For

each n ≥ 1, let {S(n)
t }t≥0 be the unique solution of the stochastic differential equation

defined by (4.3.3) for t ≤ τn := inf{r ≥ 0 : v(S
(n)
r ) = εn} and by S

(n)
t = S

(n)
τn for

t ≥ τn. This is the process satisfying (4.3.3) that is absorbed at the boundary {x ∈ Rm :

v(x) = εn}. Since the coefficient functions defining (4.3.3) are uniformly Lipschitz on

the domain {x ∈ Rm : v(x) ≥ εn}, the process {S(n)
t }t≥0 is well defined and is a strong

Markov process by standard SDE results.

With τ0 = 0 we can now define a unique process {St}t≥0 on the closed time interval

[0,+∞] by St = S
(n)
t for τn−1 ≤ t ≤ τn and by St = s for t ≥ τ := limn→+∞ τn. If

τ = +∞ almost surely, then {St}t≥0 uniquely solves (4.3.3) on [0,+∞[, as desired, and

is strong Markov. To prove that τ = +∞ almost surely we will construct an auxiliary

positive process that lower bounds v(St). We begin by considering the scalar process

Vt := v(St) = α + 〈β, St〉, t ≥ 0

which clearly satisfies

dVt = 〈β, aSt + b〉dt+
√
Vt · 〈β,ΣdWt〉. (4.3.4)
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If we set

Ŵt := 〈ΣTβ,Wt〉/|ΣTβ|, t ≥ 0

we see that {Ŵt}t≥0 is a one dimensional Brownian motion and equation (4.3.4) can be

rewritten as

dVt = 〈β, aSt + b〉dt+ |ΣTβ|
√
VtdŴt. (4.3.5)

According to the first assumption the inequality

〈βi, ax+ b〉 − |ΣTβ|2/2 > 0

holds on the hyper-plane v(x) = 0. Therefore, by continuity there exists ε > 0 such that

the previous inequality is valid on the strip {x ∈ Rm : 0 ≤ v(x) ≤ ε}. We can assume

without loss of generality that such ε coincides with ε1. In particular, we can find a

δ > 0 such that

〈βi, ax+ b〉 − |ΣTβ|2/2 > δ (4.3.6)

holds for all x belonging to the aforementioned strip. Denoting by η̄ := |ΣTβ|2/2 + δ we

have that

〈βi, ax+ b〉 > η̄ > |ΣTβ|2/2 (4.3.7)

on the set {x ∈ Rm : 0 ≤ v(x) ≤ ε1}. We can also assume that V0 > ε1.

We now introduce the excursions of the process V from ε2 to ε1. We set T ?(0) = 0 and

for k ≥ 1 we define

T (k) := inf {t ≥ T ?(k − 1) : Vt = ε2} and T ?(k) := inf {t ≥ T (k) : Vt = ε1} .

These stopping times realize a partition of [0,+∞[:

0 = T ?(0) < T (1) < T ?(1) < T (2) < T ?(2) < · · ·

In addition, we consider the auxiliary process {V̂t}t≥0 defined as follows:

V̂t = ε2 +

∫ T

T (k)

η̄ds+

∫ T

T (k)

|ΣTβ|
√
V̂sdŴs, if t ∈ [T (k), T ?(k)]

V̂t = Vt, if t ∈]T ?(k), T (k + 1)[

The process {V̂t}t≥0 satisfies

0 < V̂t ≤ Vt for all t ∈ [0,+∞[. (4.3.8)
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In fact, when t ∈]T ?(k), T (k)[ then V̂t = Vt and by the construction of the stopping

times Vt ≥ ε2 > 0 on that time interval. On the other hand, when t ∈ [T (k), T ?(k)] then

V̂t is a one dimensional square root process satisfying the Feller condition η̄ > |ΣTβ|2/2
(compare with the second inequality in (4.3.7)). This gives the positivity of V̂t. Moreover,

recalling the dynamic of the process {Vt}t≥0 in (4.3.5), the first inequality in (4.3.7)

together with Theorem 1.1 page 437 in Ikeda and Watanabe [11] implies V̂t ≤ Vt.

We now consider the general case: let {εn}n≥1 be a positive strictly decreasing sequence

of numbers converging to zero and define as before for each n ≥ 1 the process {S(n)
t }t≥0

to be the solution of the stochastic differential equation defined by (4.3.2) for t ≤ τn :=

inf
{
r ≥ 0 : mini∈{1,...,d} vi(S

(n)
r ) = εn

}
and by S

(n)
t = S

(n)
τn for t ≥ τn. This is the process

satisfying (4.3.2) that is absorbed at the boundary
{
x ∈ Rm : mini∈{1,...,d} vi(x) = εn

}
.

Since the coefficient functions defining (4.3.2) are uniformly Lipschitz on the domain{
x ∈ Rm : mini∈{1,...,d} vi(x) ≥ εn

}
, the process {S(n)

t }t≥0 is uniquely well defined and is

a strong Markov process by standard SDE results.

With τ0 = 0 we can now define a unique process {St}t≥0 on the closed time interval

[0,+∞] by St = S
(n)
t for τn−1 ≤ t ≤ τn and by St = s for t ≥ τ := limn→+∞ τn. If

τ = +∞ almost surely, then {St}t≥0 uniquely solves (4.3.2) on [0,+∞[. For i ∈ {1, ...,m}
let

V i
t := vi(St) = αi + 〈βi, St〉, t ≥ 0

which clearly satisfies

dV i
t = 〈βi, aSt + b〉dt+

〈
βi,Σ diag

(√
V 1
t ,
√
V 2
t , ...,

√
V d
t

)
dWt

〉
= 〈βi, aSt + b〉dt+

〈
ΣTβi, diag

(√
V 1
t ,
√
V 2
t , ...,

√
V d
t

)
dWt

〉
= 〈βi, aSt + b〉dt+

m∑
j=1

(ΣTβi)j ·
√
V j
t dW

j
t

= 〈βi, aSt + b〉dt+
∑
j∈Ci

(ΣTβi)j ·
√
V j
t dW

j
t

where

Ci :=
{
j ∈ {1, ...,m} : (ΣTβi)j 6= 0

}
.

According to the second assumption of the theorem, we have that V j
t = V i

t for all j ∈ Ci
and t ≥ 0. Therefore,

dV i
t = 〈βi, aSt + b〉dt+

∑
j∈Ci

(ΣTβi)j ·
√
V j
t dW

j
t
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= 〈βi, aSt + b〉dt+
√
V i
t

∑
j∈Ci

(ΣTβi)jdW
j
t

= 〈βi, aSt + b〉dt+
√
V i
t dŴ

i
t

with

Ŵ i
t :=

∑
j∈Ci

(ΣTβi)jW
j
t /|ΣTβi|

being a one dimensional Brownian motion (observe that |ΣTβi|2=
∑

j∈Ci(Σ
Tβi)

2
j by the

definition of Ci). One can now proceed as before introducing m auxiliary process V̂ i

which satisfy 0 < V̂ i
t ≤ V i

t for all i ∈ {1, ...,m} and t ≥ 0. This completes the proof.

By means of the previous theorem we can now set concrete assumptions on the proba-

bilities (4.2.1)-(4.2.4) for the existence of a unique strong solution for the SDE (4.3.1).

These assumptions will also guarantee the non negativity of the probabilities in our orig-

inal model system making the whole construction consistent. Before stating the result

we recall that by Assumption 4.2.1 we have

γ(x) = uj(x) + dj(x) for all j ∈ 1, ...,m.

Corollary 4.3.2. If θ? ≡ 0, γ(s) > 0 and the inequality

〈∇γ(s), µ?(x)〉 > |∇γ(s)|2/2 holds true on the set {x ∈ Rm : γ(x) = 0} (4.3.9)

then equation (4.3.1) admits a unique strong solution {St}t≥0 such that γ?(St) > 0 almost

surely for all t ≥ 0.

Proof. We have simply to verify that our assumptions imply those of Theorem 4.3.1.

First of all, θ? ≡ 0 is by Assumptions 4.2.1 equivalent to r?j + l?j ≡ 0 for all j ∈ {1, ...,m}
and hence r?j = l?j ≡ 0. With θ? ≡ 0 the system (4.3.1) reduces to{

dSt = µ?(St)dt+
√
γ?(St)dWt

S0 = s
(4.3.10)

Observe that ΣW̃t = Wt by definition of W̃t and orthogonality of Σ. Equation (4.3.10)

trivially satisfies the second assumption of Theorem 4.3.1 since, in the notation of that

theorem, v1(x) = · · · = vm(x). We are left with the verification of the first assumption

in Theorem 4.3.1. We note that

γ?(x) = γ(s) + 〈∇γ(s), x− s〉 = α + 〈β, x〉

if β := ∇γ(s) and α := γ(s) − 〈∇γ(s), s〉. Since µ?(x) corresponds to ax + b using the

orthogonality of Σ we get that (4.3.9) is equivalent to the first assumption of Theorem

4.3.1.
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We observe that from the previous corollary we get the positivity of

γ?(St) = u?j(St) + d?j(St), j ∈ {1, ...,m}

which is the aggregated probability of an increase and a decrease for each single state.

4.4 Two dimensional system

We now focus our attention on the two dimensional version of the general model system

presented above. For the sake of clarity we schematise in Figure 4.2 below the dynamic

investigated in the present section

S1
t S2

t

d1 u1 d2 u2

r

l

Figure 4.2: Two dimensional system

and we set

r(t, x) := P(∆St = (−1, 1)|St = x)/∆t (4.4.1)

l(t, x) := P(∆St = (1,−1)|St = x)/∆t (4.4.2)

d1(t, x) := P(∆St = (−1, 0)|St = x)/∆t (4.4.3)

u1(t, x) := P(∆St = (1, 0)|St = x)/∆t (4.4.4)

d2(t, x) := P(∆St = (0,−1)|St = x)/∆t (4.4.5)

u2(t, x) := P(∆St = (0, 1)|St = x)/∆t. (4.4.6)

In addition, we denote

p0(t, x) := P(∆St = (0, 0)|St = x)

= 1−∆t · (r(t, x) + l(t, x) + d1(t, x) + u1(t, x) + d2(t, x) + u2(t, x))

implying that

P(∆St = (−1,−1)|St = x) = P(∆St = (1, 1)|St = x) = 0.

According to the scheme presented in the previous sections, if we employ the first order

Taylor approximation of the functions defined above (which are assumed to be time
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independent), then the stochastic differential equation under investigation takes now

the form

dSt = µ?(St)dt+B?(St)dWt

= (aSt + b)dt+ Σ

[√
v1(St) 0

0
√
v2(St)

]
ΣTdWt

= (aSt + b)dt+ Σ

[√
α1 + 〈β1, St〉 0

0
√
α2 + 〈β2, St〉

]
dW̃t (4.4.7)

where for suitable choices of a ∈M2×2, b, β1, β2 ∈ R2 and α1, α2 ∈ R we find that

(aSt + b)1 = u?1(St)− d?1(St)− r?(St) + l?(St)

(aSt + b)2 = u?2(St)− d?2(St) + r?(St)− l?(St)

(this follows from equation (4.2.7)) and

α1 + 〈β1, St〉 = d?1(St) + u?1(St) + 2(r?(St) + l?(St)) (4.4.8)

α2 + 〈β2, St〉 = d?1(St) + u?1(St) (4.4.9)

(which follows from equation (4.2.11)). We remark that in the present case

λ1 = 2, λ2 = 0, γ?(x) = d?1(x) + u?1(x) and θ?(x) = r?(x) + l?(x).

and Assumption 4.2.1 reduces to

d?1(x) + u?1(x) = d?2(x) + u?2(x).

Moreover, we have

Σ =
1√
2

[
1 1

1 −1

]
.

If we look through the proof of Theorem 4.3.1, we see that the second assumption in the

statement of the theorem, namely

for all j ∈ {1, ...,m} if (ΣTβi)j 6= 0, then vi(x) = vj(x) for all x ∈ Rm (4.4.10)

serves to reduce the diffusion matrix

diag
(√

v1(St),
√
v2(St), ...,

√
vm(St)

)
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to one of the form
√
vi(St)I where I stands for m×m identity matrix. Therefore, there

is no loss of generality in considering only the case

v1(x) = v2(x) = · · · = vm(x).

The next result is the two dimensional version of Theorem 4.3.1 for the case

v1(x) = v2(x) = α + 〈β, x〉. (4.4.11)

The proof is, however, different: it is based on a direct approach rather than the Yamada-

Watanabe comparison method utilised in the proof of Theorem 4.3.1. This direct ap-

proach has the advantage of providing an explicit representation of the solution. Let us

also point out that condition (4.4.11) together with (4.4.8) and (4.4.9) implies

r(x) = l(x) = 0.

With reference to Figure 4.2 this means that the interactions between the two states

of the system take place in the probabilities u1, u2, d1 and d2 rather than from direct

exchanges.

Theorem 4.4.1. Consider the two dimensional stochastic differential equation

dSt = (aSt + b)dt+
√
α + 〈β, St〉dWt, S0 = s ∈ R2 (4.4.12)

where a ∈M2×2, b, β ∈ R2 and α ∈ R. If the inequality

〈β, ax+ b〉 ≥ |β|2/2 holds true on the set {x ∈ R2 : α + 〈β, x〉 = 0} (4.4.13)

then for any initial condition s satisfying α + 〈β, s〉 > 0 the SDE (4.4.12) admits a

unique strong solution {St}t≥0 with the property that α + 〈β, St〉 > 0 almost surely for

all t ≥ 0.

Proof. The idea of the proof is to reduce via an orthogonal transformation the system

(4.4.12) to a system where the equation describing the first component is independent

of the second. The first component will turn out to be a one dimensional square root

process while the equation for the second component will be explicitly solvable once the

first is known.

We may assume without loss of generality that β 6= 0 (if β = 0 then equation (4.4.12)

admits a unique strong solution for any α ≥ 0). Let K ∈M2×2 be the unique orthogonal

matrix such that Kβ = |β|e1 and define the stochastic process Yt := KSt, t ≥ 0. Then,

by the linearity of the Itô differential we can write

dYt = (KaSt +Kb)dt+
√
α + 〈β, St〉dKWt
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= (KaK−1KSt +Kb)dt+
√
α + 〈β,K−1KSt〉dW̃t

= (ãYt + b̃)dt+
√
α + 〈Kβ, Yt〉dW̃t

= (ãYt + b̃)dt+
√
α + |β|Y 1

t dW̃t (4.4.14)

where ã := KaK−1, b̃ := Kb and W̃t := KWt being a new two-dimensional standard

Brownian motion. The initial condition is Y0 = KS0 = Ks =: s̃. We observe that

condition (4.4.13) corresponds to

ã11y1 + ã12y2 + b̃1 > |β|/2 holds true on the set {y ∈ R2 : α + |β|y1 = 0} (4.4.15)

Indeed,

α + 〈β, x〉 = α + 〈β,K−1Kx〉
= α + 〈Kβ,Kx〉
= α + |β|y1 (4.4.16)

and

〈β, ax+ b〉 = 〈KTKβ, ax+ b〉
= |β|〈e1, Kax+Kb〉
= |β|〈e1, KaK

−1y + b̃〉
= |β|〈e1, ãy + b̃〉

= |β|
(
ã11y1 + ã12y2 + b̃1

)
.

Since the set {y ∈ R2 : α+ |β|y1 = 0} in (4.4.15) coincides with {y ∈ R2 : y1 = −α/|β|},
a substitution of the last condition in the inequality of (4.4.15) gives

ã12y2 + b̃1 > |β|/2 + (αã11)/|β|.

The last inequality has to be true for all y2 ∈ R; hence, we get that ã12 = 0 and

b̃1 > |β|/2 + (αã11)/|β|. (4.4.17)

Therefore, we can write equation (4.4.14) as{
dY 1

t = (ã11Y
1
t + b̃1)dt+

√
α + |β|Y 1

t dW̃
1
t , Y 1

0 = s̃1

dY 2
t = (ã21Y

1
t + ã22Y

2
t + b̃2)dt+

√
α + |β|Y 1

t dW̃
2
t Y 2

0 = s̃2

(4.4.18)

Let us study the first equation in (4.4.18). Setting Yt := |β|Y 1
t +α and applying the Itô

formula we get

dYt =
(
ã11Yt + b̃1|β|−αã11

)
dt+ |β|

√
YtdW̃ 1

t , Y0 = |β|s̃1 + α.
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The previous SDE has a unique positive solution (see e.g. Cairns [13]) if

b̃1|β|−αã11 ≥ |β|2/2

which corresponds to (4.4.17). The positivity of Yt is equivalent to the positivity of

|β|Y (1)
t + α which in turn is equivalent by (4.4.16) to the positivity of α + 〈St, β〉. We

can now solve the equation for Y 2
t in (4.4.18), namely

dY 2
t =

(
ã21Y

1
t + ã22Y

2
t + b̃2

)
dt+

√
α + |β|Y 1

t dW̃
2
t

= ã22Y
2
t dt+

[(
ã21Y

1
t + b̃2

)
dt+

√
α + |β|Y 1

t dW̃
2
t

]
.

Its solution is give by the formula

Y 2
t = eã22ts̃2 +

∫ T

0

eã22(t−s)
[(
ã21Y

1
s + b̃2

)
ds+

√
α + |β|Y 1

s dW̃
2
s

]
.

Setting St = K−1Yt we obtain the solution of the original system completing the proof.

We now summarise the construction of the solution of the system (4.4.12) suggested in

the previous proof:

• define the orthogonal matrix K imposing that Kβ = |β|e1 and set ã := KaK−1,

b̃ := Kb, s̃ := Ks and W̃t := KWt

• let {Yt}t≥0 to be unique positive strong solution of the (one dimensional) square

root SDE

dYt =
(
ã11Yt + b̃1|β|−αã11

)
dt+ |β|

√
YtdW̃ 1

t , Y0 = |β|s̃1 + α

(note that the driving noise is W̃ 1
t )

• set Y 1
t := (Yt − α)/|β| and

Y 2
t := eã22ts̃2 +

∫ t

0

eã22(t−s)
[(
ã21Y

1
s + b̃2

)
ds+

√
α + |β|Y 1

s dW̃
2
s

]
(note that the driving noise is W̃ 2

t )

• the process St := K−1Yt solves (4.4.12).

In the following example we show that Theorem 4.3.1 without its second assumption no

longer holds in general.
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Example 4.4.2. We consider the systemdX1
t = 2

√
X2
t − 1dW 1

t , X1
0 = x1

dX2
t = 3dt+ 2

√
X2
t dW

2
t , X2

0 = x2.
(4.4.19)

In the notation of Theorem 4.3.1 it corresponds to

m = 2 a = 0 b = (0, 3)T Σ = 2I α = (−1, 0)T β1 = (0, 1)T β2 = (0, 1)T .

Recalling that vi(x) = αi + 〈βi, x〉 for i = 1, 2 we get

v1(x) = −1 + x2 and v2(x) = x2.

Since the second component of β1 is not zero and v1 6= v2, the second condition of

Theorem 4.3.1 does not hold. However, since a = 0 the first condition reduces to

〈βi, b〉 > |βi|2/2, i = 1, 2

which is clearly true. The positivity region D is now given by D = {x ∈ R2 : x2 > 1}. If

the result of Theorem 4.3.1 were true we should be able to get a unique strong solution

of (4.4.19) lying in D for all t ≥ 0 almost surely.

We observe that the process X2 in (4.4.19) falls in the class of the squared Bessel pro-

cesses, i.e. processes that are strong solutions of SDEs of the form

Zt = z + 2

∫ t

0

√
ZsdBs + δt

where z, δ ≥ 0 (see Revuz and Yor [38] for a deep analysis of this family of processes).

The parameters δ and ν := δ
2
− 1 are called dimension and index of Z, respectively. It

is well known that the transition density of Z is given by the formula

f δt (z, y) =
1

2t

(y
z

) ν
2
e−

z+y
2t Iν

(√
zy

t

)
1{y>0}

where Iν(z) stands for the modified Bessel function of the first kind of order ν, i.e.

Iν(z) =
∞∑
n=0

( z
2
)ν+2n

n! Γ(n+ ν + 1)
, ν, z ∈ C.

From this we see that P(0 < X2
t < 1) > 0, even starting with x2 > 1. For instance,

taking x2 = 2 and t = 1 we have

P(0 < X2
1 < 1) =

∫ 1

0

f 3
1 (2, y)dy ≈ 0.08.

This violates the positivity condition defined by D = {x ∈ R2 : x2 > 1} which ensures√
X2
t − 1 to be well defined.
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Appendix A

The space C[0,∞), Weak

Convergence and the Wiener

measure

The ”canonical” space for Brownian motion, is C[0,∞), the space of all continuous

real-valued functions on [0,∞) with the metric

ρ(ω1, ω2) :=
∞∑
n=1

1

2n
max
0≤t≤n

(|ω1(t)− ω2(t)|∧1) . (A.0.1)

In this appendix we show how to construct a measure, called the Wiener measure on this

space so that the coordinate mapping process is Brownian Motion. This construction

is given as the Donsker’s invariance principle(also known as the functional central limit

theorem) and involves the notion of weak convergence of random walks to brownian

motion.

A.1 Weak Convergence

Definition A.1.1. Let (S, ρ) be a metric space with a Borel sigma-field B(S). Let

{Pn}∞n=1 be a sequence of probability measures on (S,B(S)), and let P be another proba-

bility measure on this space. We say that {Pn}∞n=1 converges weakly to P and Pn
w−→ P

if and only if

lim
n→∞

∫
S

f(s)dPn(s) =

∫
S

f(s)dP (s)

for every bounded, continuous, real-valued function f on S.

One can show that in particular from the definition above that the weak limit P is

a probability measure and is unique.

111
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Definition A.1.2. Let {(Ωn,Fn, Pn)}∞n=1 be a sequence of probability spaces and on

each of them consider a random variable Xn with values i the metric space (S, ρ). Let

(Ω,F , P ) be another probability space on which a random variable X with values in (S, ρ)

is given. We say that {Xn}∞n=1 converges to X in distribution, and write Xn
D−→ X, if

the sequence of measures {PnX−1
n }∞n=1 converges weakly to the measure PX−1.

Equivalently Xn
D−→ X if and only if

lim
n→∞

En(f(Xn)) = E(f(X))

for every bounded continuous function f on S, where En and E denote expectations

with respect to Pn and P , respectively. Indeed since {PnX−1
n }∞n=1 converges weakly to the

measure PX−1 we have by definition that for all bounded continuous functions f on S

that

lim
n→∞

∫
S

f(s)dPnX
−1
n (s) = lim

n→∞

∫
Ωn

f(Xn(ω))dPn(ω) = lim
n→∞

En(f(Xn))

and ∫
S

f(s)dPX−1(s) =

∫
Ω

f(X(ω))dP (ω) = E(f(X))

which together imply convergence in distribution

lim
n→∞

En(f(Xn)) = E(f(X)).

The other direction is easily proven by a similar argument.

Recall that if S in Definition A.1.2 is Rd, then Xn
D−→ X if and only if the sequence of

characteristic functions ϕn(u) := En(exp i(u,Xn)) converges to ϕ(u) := E(exp i(u,X)),

for every u ∈ Rd. This is called the Cramer Wold device and is a simple consequence of

the celebrated Levy Continuity theorem.

The most important example of convergence in distribution is that provided by the

central limit theorem. In the Lindeberg-Levy form used here, the theorem asserts that

if {ψn}∞n=1 is an i.i.d sequence of random variables with mean zero and variance σ2, then

{Sn} defined by

Sn =
1

σ
√
n

n∑
k=1

ψk

converges in distribution to a standard normal random variable. It is this fact that dic-

tates that a properly normalized sequence of random walks will converge in distribution

to a Brownian motion(Donsker’s invariance principal).

Lemma A.1.3. Suppose {Xn}∞n=1 is a sequence of random variables taking values in

a metric space (S1, ρ1) and converging in distribution to X. Suppose (S2, ρ2) is another

metric space, and ϕ : S1 → S2 is continuous. Show that Yn := ϕ(Xn) converges in

distribution to Y := ϕ(X).
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Proof. In order to show Yn
D−→ Y it is sufficient to show that(by definition of convergence

in distribution) for all bounded continuous functions f we have that

lim
n→∞

En(f(ϕ(Xn))) = E(f(ϕ(X)))

Observe that the composition function fϕ is bounded and continuous since f is bounded

and continuous and ϕ is continuous.The assumption that Xn
D−→ X which implies that

limn→∞En(g(Xn)) = E(g(X)) for all bounded continuous g. In particular it is true for

g = fϕ. This completes the proof.

A.2 Tightness

Definition A.2.1. Let (S, ρ) be a metric space and let Π be a family of probability

measures on (S,B(S)).We say that Π is relatively compact if every sequence of elements

of Π contains a weakly convergent subsequence. We say that Π is tight if for every ε > 0,

there exists a compact set K ⊆ S such that P (K) ≥ 1− ε for every P ∈ Π.

If {Xα}α∈A is a family of random variables , each defined on a probability space

(Ωα,Fα, Pα) and taking values in S, we say that this family is relatively compact or tight

if the family of induced measures {PαX−1
α }α∈A has the appropriate property.

Theorem A.2.2. Let Π be a family of probability measures on a complete separable

metric space S. This family is relatively compact if and only if its tight

Proof. For the proof refer to Convergence of Probability Measures by Billingsley(1968)

pp.35-40

We are interested in the case S = C[0,∞). For this case we shall provide a charac-

terization for tightness.To do so we will need the following definition

Definition A.2.3. For each ω ∈ C[0,∞), T > 0, and δ > 0 the modulus of continuity

on [0, T ] is defined as

mT (ω, δ) := max
|s−t|≤δ
0≤s;t≤T

|ω(s)− ω(t)| (A.2.1)

Lemma A.2.4. (Problem 2.4.8 Shreve) Show that mT (ω, δ) is continuous in ω ∈ C[0,∞)

under the metric ρ defined in (A.0.1), is non decreasing in δ and limδ↓0m
T (ω, δ) = 0 for

each ω ∈ C[0,∞).
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Proof. We first show that ω 7→ mT (ω, δ) is continuous with respect to the metric ρ i.e

given a fixed δ > 0 and T > 0 we can find a η > 0 such that

whenever ρ(ω1, ω2) < η then |mT (ω1, δ)−mT (ω2, δ)| < ε

.

ρ(ω1, ω2) < η yields by the definition of ρ and choosing an n∗ ∈ N such that T + 1 >

n∗ ≥ T

max
0≤t≤n∗

|ω1(t)− ω2(t)|< CTη

and hence we can choose η such that

max
0≤t≤T

|ω1(t)− ω2(t)|< CTη < ε/3

Now we have by the triangular inequality that

|ω1(s)− ω1(t)|= |ω1(s)− ω2(s) + ω2(s)− ω2(t) + ω2(t)− ω1(t)|
≤ |ω1(s)− ω2(s)|+|ω2(s)− ω2(t)|+|ω2(t)− ω1(t)|

(A.2.2)

And hence we have

|ω1(s)− ω1(t)|≤ |ω1(s)− ω2(s)|+|ω2(s)− ω2(t)|+|ω2(t)− ω1(t)|
≤ ε/3 + |ω2(s)− ω2(t)|+ε/3 = 2/3ε+ |ω2(s)− ω2(t)|≤ 2/3ε+mT (ω2, δ)

(A.2.3)

and therefore we have

|ω1(s)− ω1(t)|−mT (ω2, δ) ≤ 2/3ε

which yields after taking maximum on both the LHS and RHS

mT (ω1, δ)−mT (ω2, δ) ≤ 2/3ε < ε

and a similar argument (by using triangular inequality on |ω2(s)−ω2(t)|) we can conclude

that

|mT (ω1, δ)−mT (ω2, δ)|< ε

In order to show that given a fixed ω ∈ C[0,∞) and T > 0 the map δ 7→ mT (ω, δ) is

non decreasing in δ we let δ1 ≤ δ2 and then observe that

max
|s−t|≤δ1
0≤s,t≤T

|ω(s)− ω(t)|≤ max
|s−t|≤δ2
0≤s,t≤T

|ω(s)− ω(t)|

since
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{|s−t|≤δ10≤s,t≤T} ⊆ {
|s−t|≤δ2
0≤s,t≤T}

Now since ω ∈ C[0,∞) it is uniformly continuous on [0, T ] and hence uniform conti-

nuity of ω implies

lim
δ↓0

max
|s−t|≤δ
0≤s;t≤T

|ω(s)− ω(t)|= 0

which completes the proof.

In the sequel we will need the following version of the Arzelà-Ascoli theorem

Theorem A.2.5. (Theorem 2.4.9 Shreve) A set A ⊆ C[0,∞) ha s a compact closure if

and only if the following conditions hold:

sup
ω∈A
|ω(0)|<∞ (A.2.4)

lim
δ↓0

sup
ω∈A

mT (ω, δ) = 0 for every T > 0. (A.2.5)

Proof. Assume the closure of A is denoted by Ā, is compact. Ā is contained in the union

of open sets

Gn = {ω ∈ C[0,∞) : ω(0) < n} n = 1, 2, . . .

Indeed we have that ω ∈ Ā =⇒ ω ∈ C[0,∞) and hence by continuity ∀ω ∈ Ā∃n ∈ N
such that ω(0) < n and hence {Gn}∞n=1 covers Ā. Each Gn is open because it is a

cylinder set which are by definition open. By the definition of compactness of Ā we

know that every open cover of Ā has a finite sub-cover and since G1 ⊆ G2 ⊆ · · ·, we

have that A ⊆ ∪ni=1Gi = Gn And hence this means ω ∈ A =⇒ ω ∈ Gn and hence by

the definition of Gn above we have supω∈A ω(0) ≤ supω∈Gn ω(0) < n <∞ and hence we

have shown (A.2.4).

Now for each ε, let Kδ = {ω ∈ Ā;mT (ω, δ) ≥ ε}. Since ω 7→ mT (ω, δ) is continuous,

the set {ω ∈ C[0,∞) : mT (ω, δ) ≥ ε} is closed as the inverse image of a closed set by a

continuous function. Since closed subset of compact sets are compact, Kδ is compact.

Indeed Kδ = Ā ∩ {ω ∈ C[0,∞) : mT (ω, δ) ≥ ε}.
Lemma A.2.4 implies ∩δ>0Kδ = φ since for a fixed ε > 0 there exists a δ(ω) > 0 for

which mT (ω, δ) < ε as limδ↓0m
T (ω, δ) = 0 for all ω ∈ C[0,∞). So for some δ(ε) > 0,

we must have Kδ(ε) = φ. That is to say that for every ε > 0 we have that there exists a

δ(ε) > 0 such that supω∈Ām
T (ω, δ(ε)) < ε. And hence we have shown (A.2.5).

We now assume (A.2.5) and (A.2.4) and prove the compactness of Ā. Since C[0,∞)

is a metric space, it suffices to prove that every sequence {ωn}∞n=1 ⊆ A has a weakly
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convergent subsequence. We fix T > 0 and note that some δ1 > 0, we have mT (ω, δ1) ≤ 1

by lemma (A.2.4) for each ω ∈ A, so for a fixed integer m ≥ 1 and t ∈ (0, T ] with

(m− 1)δ1 < t ≤ mδ1 ∧ T , we have

|ω(t)|= |ω(0) +
m−1∑
k=1

|ω(kδ1)− ω((k − 1)δ1)|+|ω(t)− ω((m− 1)δ1)|

≤ |ω(0)|+
m−1∑
k=1

1 + 1 = |ω(0)|+m

where we have used the fact that

|ω(kδ1)− ω((k − 1)δ1)|≤ mT (ω, δ1)|≤ 1 and |ω(t)− ω((m− 1)δ1) ≤ mT (ω, δ1) ≤ 1

And hence by equation (A.2.4) it follows that

sup
ω∈A

ω(t) ≤ sup
ω∈A

ω(0) +m.

So if we consider a sequence {ωn}∞n=1 ⊆ A, then for each r ∈ Q+, the set of non-negative

rationals, {ωn(r)}∞n=1 is bounded above by supω∈A ω(0) + m as shown above. Now let

{r0, r1, r2, . . . , } be an enumeration of Q+. The Bolzano Weierstrass theorem implies

that we can choose a subsequence {ω(0)
n }∞n=1 of {ωn}∞n=1 with ω

(0)
n (r0) converging to a

limit ω(r0). Now again from {ω(0)
n }∞n=1, we can choose a further subsequence {ω(1)

n }∞n=1

such that ω
(1)
n (r1) converging to a limit ω(r1). We can continue this process ad-infinitum

in a diagonal way i.e by letting {ω̃n}∞n=1 = {ω(n)
n }∞n=1 to be the diagonal sequence. We

have that ω̃n(r)→ ω(r) for each r ∈ Q+. It follows from equation (A.2.5) that for every

n ≥ 1 given an ε > 0, ∃ a δ(ε) > 0 such that |ω̃n(s) − ω̃n(t)|≤ ε whenever 0 ≤ s, t ≤ T

and |s − t|≤ δ(ε). Indeed this a a consequence of the fact that the limit as δ ↓ 0 of

supω∈Am
T (ω, δ) is zero, {ω̃n}∞n=1 ⊆ A and the definition of modulus of continuity. The

same inequality therefore holds for ω when we impose the additional condition that

s, t ∈ Q+ since ω̃n(k)→ ω(k), for all k ∈ Q+ and we can take the limits as n goes to ∞
in |ω̃n(s)− ω̃n(t)|≤ ε to get |ω(s)− ω(t)|≤ ε. It follows that ω is continuous and hence

uniformly continuous on [0, T ]∩Q+ so has an extension to a continuous function called

ω′ on [0, T ] and furthermore |ω(s) − ω(t)|≤ εwhenever 0 ≤ s, t ≤ T and |s − t|≤ δ(ε).

Indeed for t ∈ [0, T ]∩Q+ set ω(t) = ω′(t) and for t ∈ [0, T ]∩ (Q+)c there exists sequence

{tn}∞n=1 such that tn → t as n → ∞. Uniform continuity implies that {ω(tn)}∞n=1 is a

cauchy sequence since whenever |tn− tm|< δ(ε)(this is always possible for a large enough

n,m ∈ N since tn → t) then |ω(tn)− ω(tm)|< ε
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Theorem A.2.6. (Theorem 2.4.10 Shreve) A sequence {Pn}∞n=1 of probability measures

on (C[0,∞),B(C[0,∞)) is tight if and only if

lim
λ↑∞

sup
n≥1

Pn[ω; |ω(0)|> λ] = 0 (A.2.6)

lim
δ↓0

sup
n≥1

Pn[ω;mT (ω, δ) > ε] = 0; for all T > 0, ε > 0 (A.2.7)

Proof. See Theorem 2.4.10 on page 63 in [12]

Lemma A.2.7. Suppose {Pn}∞n=1 is a sequence of probability measures on (C[0,∞),B(C[0,∞)))

which converges weakly to a probability measure P . Suppose, in addition that {fn}∞n=1 is

a uniformly bounded sequences of real-valued, continuous functions on C[0,∞) converg-

ing to a continuous function f , the convergence being uniform on compacts of C[0,∞].

Then

lim
n→∞

∫
C[0,∞)

fn(ω)dPn(ω) =

∫
C[0,∞)

f(ω)dP (ω) (A.2.8)

Proof. First note that since the sequence {fn}∞n=1 is uniformly bounded means that

supω∈C[0,∞) supn≥1|fn(ω)|< K for some K > 0. We have that

lim
n→∞

∣∣∣∣ ∫ fndPn −
∫
fdP

∣∣∣∣ = lim
n→∞

∣∣∣∣ ∫ (fn − f)dPn +

∫
fdPn −

∫
fdP

∣∣∣∣
≤ lim

n→∞

∣∣∣∣ ∫ (fn − f)dPn

∣∣∣∣+ lim
n→∞

∣∣∣∣ ∫ fdPn −
∫
fdP

∣∣∣∣
Since the limits of uniformly bounded functions is bounded. Indeed fn(ω) → f(ω)

means that ∀ω ∈ C[0,∞) we have that |fn(ω)− f(ω)|< 1 and since since the sequence

{fn}∞n=1 is uniformly bounded by K we have that |f |< K + 1. We already know f is

continuous, and we just showed that its bounded and since by assumption Pn
weak−−−→ P

we have that limn→∞ |
∫
fdPn −

∫
fdP | = 0

Now since {Pn}∞n=1 weakly convergent and hence compact and therefore tight by the

Theorem A.2.2 i.e for every ε > 0 there exists a compact set K ⊆ C[0,∞) such that for

all n ≥ 1 we have Pn(K) ≥ 1 − ε =⇒ −Pn(K) ≤ ε − 1 =⇒ 1 − Pn(K) ≤ ε =⇒
Pn(Kc) ≤ ε.

We have that

lim
n→∞

∣∣∣∣ ∫
C[0,∞)

(fn − f)dPn

∣∣∣∣ ≤ lim
n→∞

∫
C[0,∞)

|fn − f |dPn

= lim
n→∞

∫
K

|fn − f |dPn + lim
n→∞

∫
Kc

|fn − f |dPn

≤ lim
n→∞

sup
ω∈K
|fn(ω)− f(ω)|Pn(K) + (2K + 1)Pn(Kc) ≤ (2K + 1)ε
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and since this is true for all ε > 0, the result follows immediately.

A.3 Convergence of Finite-dimensional distributions

Suppose that X is a continuous process on some (Ω,F , P ). For each ω, the function

t 7→ Xt(ω) is a member of C[0,∞), which we denote by X(ω). Since B(C[0,∞))

is generated by 1-dimensional cylinder sets and Xt(.) is F measurable for each t, the

random variable X : Ω→ C[0,∞) is F/B(C[0,∞))-measurable. This is the consequence

of Problem 2.4.2 in [12] and that in order to show that X is a F/B(C[0,∞))-measurable

random variable, it is sufficient to show(by Theorem 8.1 in Probability essentials by

Jacod and Protter [45]) that X is a F/C-measurable random variable where C is the

collection of finite-dimensional cylinder sets of the form

C = {ω ∈ C[0,∞); (ω(t1), . . . , ω(tn)) ∈ A}, n ≥ 1, A ∈ B(Rn)

where for all i = 1, . . . , n, ti ∈ [0,∞).

Thus if {Xn}∞n=1 is a sequence of continuous processes(with each X(n) defined on

perhaps a different probability space (Ωn,Fn), Pn) we can ask whether X(n) D−→ X in dis-

tribution in the sense of Definition A.1.2. We can also ask whether the finite-dimensional

distributions of {X(n)}∞n=1 converge to those of X, i.e whether

(X
(n)
t1 , X

(n)
t2 , . . . , X

(n)
td

)
D−→ (Xt1 , Xt2 , . . . , Xtd)

The latter question is considerably easy to answer than the former , since the convergence

in distribution of finite-dimensional random vectors can be resolved by studying their

characteristic functions.

For any finite subset {t1, t2, . . . , td} of [0,∞), let us define the projection mapping

πt1,......,td : C[0,∞)→ Rd as

πt1,......,td(ω) = (ω(t1), . . . , ω(td))

If the function f : Rd → R is bounded and continuous, then the composite mapping

f ◦ πt1,......,td : C[0,∞) → R enjoys the same properties; thus X(n) D−→ X as n → ∞
implies

lim
n→∞

En(f(X
(n)
t1 , . . . , X

(n)
td

)) = lim
n→∞

En(f ◦ πt1,......,td)(X(n))

= E(f ◦ πt1,......,td)(X) = Ef(Xt1 , . . . , Xtd)

where the second equality is a consequence of the definition of weak-convergence. In

other words this tells us that if the sequence of processes {X(n)}∞n=1 converges in distri-

bution to the process X, then all the finite dimensional distributions converge as well.
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The converse holds in the presence of tightness but not in general and this failure is

illustrated by the following example.

Theorem A.3.1. (Theorem2.4.15 Shreve) Let {X(n)}∞n=1 be a tight sequence of con-

tinuous processes with the property that, whenever 0 ≤ t1 < · · · < td < ∞, then the

sequence of random vectors {(X(n)
t1 , . . . , X

(n)
td

)}∞n=1 converges in distribution. Let Pn be

the measure induced on (C[0,∞),B(C[0,∞))) by X(n). Then {Pn}∞n=1 converges weakly

to a measure P , under which the coordinate mapping process Wt(ω) := ω(t) on C[0.∞)

satisfies

(X
(n)
t1 , . . . , X

(n)
td

)
D−→ (Wt1 . . . . ,Wtd), 0 ≤ t1 < · · · < td <∞, d ≥ 1

Proof. Every subsequence {X̃(n)} of {X(n)} is tight (by the definition of tightness of

a sequence of random variables) and so has a further subsequence {X̂(n)} such that

the measures induced on C[0,∞) by {X̂(n)} converge weakly to a probability measure

P , by Prohorov’s theorem A.2.2. Indeed since the measures {Pn} is tight and hence

has a weakly convergent subsequence {P̃n}(say converges to the probability measure

P ) and hence the so does the further subsequence P (X̂(n))−1 of probability measures

corresponding to the sequence {X(n)} of random variables. Similarly if a different sub-

sequence {X̄(n)} of {X(n)} induces a measure on C[0,∞) converging to a probability

measure Q, then P and Q must have the same finite-dimensional distribution. Indeed

since (X
(n)
t1 , . . . , X

(n)
td

)
D−→ (Wt1 . . . . ,Wtd) , any subsequence (X̃

(n)
t1 , . . . , X̃

(n)
td

) will also

converge in distribution to the same random vector . In other words any subsequence of

(X
(n)
t1 , . . . , X

(n)
td

) induces a sequence of measures on B(Rd) which converge to the same

probability measure induced by the random vector on (X
(n)
t1 , . . . , X

(n)
td

) on B(Rd).

P [ω ∈ C[0,∞); (ω(t1), . . . , ω(td)) ∈ A] = Q[ω ∈ C[0,∞); (ω(t1), . . . , ω(td)) ∈ A]

whenever 0 ≤ t1 < t2 < · · · < td <∞, A ∈ B(Rd), d ≥ 1

This means P = Q, since the probability measure induced by a continuous process

is determined by its finite-dimensional distributions.

Now suppose the sequence of measures {Pn}∞n=1 induced by {X(n)}∞n=1 did not con-

verge weakly to P. Then there must be a bounded and continuous function f : C[0,∞)→
R such that limn→∞

∫
f(ω)dPn(ω) does not exist, or else this limit exists but is different

from
∫
f(ω)dP (ω) In either case we an choose a subsequence( since {Pn}∞n=1 is tight

and hence relatively compact) {P̃n}∞n=1 for which limn→∞
∫
f(ω)dP̃n(ω) exists but is dif-

ferent from
∫
f(ω)dP (ω). This is true because if

∫
f(ω)dPn(ω) does not converge to∫

f(ω)dP (ω), its subsequence
∫
f(ω)dP̃n(ω) must converge to the same value and hence
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cannot converge to
∫
f(ω)dP (ω). This subsequence cannot cannot have a further sub-

sequence {P̂n}∞n=1 such that P̂
w−→ P , and this contradicts the conclusion of the previous

paragraph which says that every sub subsequence converges weakly to the probability

measure P .

.

Lemma A.3.2. (Problem 2.4.16 Shreve) Let {X(n)}∞n=1, {Y (n)}∞n=1 and X be ran-

dom variables with values in a separable metric space (S, ρ);we assume that for each

n ≥ 1, X(n) and Y (n) are defined on the same probability space. If X(n) D−→ X and

ρ(X(n), Y (n))→ 0 in probability, as n→∞, then Y (n) D−→ X as n→∞

Proof. Let (Ωn,Fn, Pn) denote the space on which Xn and Yn are defined, and let En
denote expectation with respect to Pn. Let X be defined on (Ω,F , P ). We are given

that limn→∞En(f(X(n))) = E(f(X)) for every bounded continuous function f : S → R
and that limn→∞ Pn(ρ(X(n), Y (n)) ≥ ε) = 0 for all ε > 0.To prove Y (n) D−→ X, it suffices

to show that

lim
n→∞

E[f(X(n))− f(Y (n))] = 0

whenever f is bounded and continuous as limn→∞En(f(X(n))) = E(f(X)) and Y (n) D−→
X is the same as showing limn→∞En(f(Y (n))) = E(f(X)) Let such an f be given and

set M = supx∈S|f(x)|< ∞. Since Xn converges to X in distribution and therefore its

relatively compact(since the induced probabillity measures PnX
−1
n converge and hence

have a convergent subsequence). By the Prohorov’s theorem its tight and hence for

all ε > 0 there exists a compact set K ⊆ S such that Pn(X(n) ∈ K) ≥ 1 − ε/6M

for all n ≥ 1. Since f is continuous and hence uniformly continuous on the compact

set K we have that there exists a δ such that 0 < δ < 1 so that |f(x) − f(y)|< ε/3

whenever ρ(x, y) < δ and x ∈ K. We also choose a positive integer N large enough so

that Pn(ρ(X(n), Y (n)) ≥ δ) ≤ ε/6M for all n ≥ N . We can do this since ρ(X(n), Y (n))

converge in probability to 0.

Putting all the above together we have that∣∣∣∣ ∫
Ωn

[
f(X(n))− f(Y (n))

]
dPn

∣∣∣∣ =

∣∣∣∣ ∫
Ωn∩{X(n)∈K,ρ(X(n),Y (n))<δ}

[
f(X(n))− f(Y (n))

]
dPn

∣∣∣∣
+

∣∣∣∣ ∫
Ωn∩{X(n)∈K,ρ(X(n),Y (n))<δ}c

[
f(X(n))− f(Y (n))

]
dPn

∣∣∣∣ ≤ ε/3

∫
Ωn∩{X(n)∈K,ρ(X(n),Y (n))<δ}

dPn

+2M

∫
Ωn∩{X(n)∈K,ρ(X(n),Y (n))<δ}c

dPn = ε/3Pn(X(n) ∈ K, ρ(X(n), Y (n)) < δ)

+2MPn({X(n) ∈ K, ρ(X(n), Y (n)) < δ}c)
≤ ε/3 + 2MP (X(n) ∈ Kc) + 2MP (ρ(X(n), Y (n)) ≥ δ) ≤ ε
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And since this is true for any epsilon the proof is complete.

A.4 The invariance principal and the Wiener measure

Let us consider a sequence {ξj}∞j=1 of independent identically distributed random vari-

ables with mean 0 and variance σ2, 0 < σ2 <∞, as well as the sequence of partial sums

S0 = 0, Sk =
∑k

j=1 ξj, k ≥ 1. A continuous time process Y = {Yt, t ≥ 0} can be obtained

from the sequence {Sk}∞k=0 by linear interpolation; i.e,

Yt = Sbtc + (t− btc)ξbtc+1, t ≥ 0 (A.4.1)

where btc denotes the greatest integer less or equal to t. Scaling appropriately both time

and space , we obtain from Y a sequence of processes {X(n)} :

X
(n)
t =

1

σ
√
n
Ynt, t ≥ 0 (A.4.2)

Note that with s = k/n and t = (k + 1)/n, the increment

X
(n)
t −X

(n)
s = Ynt−Yst

σ
√
n

= Yk+1−Yk
σ
√
n

= Sk+1−Sk
σ
√
n

= ξk+1

σ
√
n

, which is obviously independent of

FX(n)

s = σ(ξ1, . . . , ξk). Furthermore, X
(n)
t −X

(n)
s has zero mean and variance t− s. This

suggests that {X(n); t ≥ 0} is approximately a Brownian motion. We now show that

, even though , the random variables ξj are not necessarily normal , the central limit

theorem dictates that the limiting distribution of the increments of X(n) are normal

Theorem A.4.1. With {X(n)} defined by (A.4.2) and 0 ≤ t1 < · · · < td <∞ we have

(X
(n)
t1 , . . . , X

(n)
td

)
D−→ (Bt1 . . . . , Btd) as n→∞

where {Bt,FBt t ≥ 0} is a standard one dimensional Brownian motion

Proof. We take the case d = 2; the other cases differ from this one only by being

notationally more cumbersome. Set s = t1, t = t2. We wish to show that

(X(n)
s , X

(n)
t )

D−→ (Bs, Bt)

We have that∣∣∣∣X(n)
t −

1

σ
√
n
Sbtnc

∣∣∣∣ =

∣∣∣∣ 1

σ
√
n
Ynt −

1

σ
√
n
Sbtnc

∣∣∣∣ =

∣∣∣∣ 1

σ
√
n

(nt− bntc)ξbntc+1

∣∣∣∣ ≤∣∣∣∣ 1

σ
√
n
ξbntc+1

∣∣∣∣
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And hence Chebyshev’s inequality implies

P

[
|X(n)

t −
1

σ
√
n
Sbtnc| > ε

]
≤ 1

ε2
E

[
|X(n)

t −
1

σ
√
n
Sbtnc|2

]
≤ 1

σ2nε2
E
[
|ξbtnc+1|2

]
=

1

nε2

Now taking the limits we get

lim
n→∞

P

[
|X(n)

t −
1

σ
√
n
Sbtnc| > ε

]
= 0

It is not so hard to see that
∥∥∥(X

(n)
s , X

(n)
t )− 1

σ
√
n
(Sbsnc, Sbtnc)

∥∥∥→ 0 in probability. Indeed

P

[∥∥∥∥(X(n)
s , X

(n)
t )− 1

σ
√
n

(Sbsnc, Sbtnc)

∥∥∥∥ > ε

]

= P

√(X(n)
s −

1

σ
√
n
Sbsnc

)2

+

(
X

(n)
t −

1

σ
√
n
Sbtnc

)2

> ε


= P

[(
X(n)
s −

1

σ
√
n
Sbsnc

)2

+

(
X

(n)
t −

1

σ
√
n
Sbtnc

)2

> ε2

]

≤ P

[(
X(n)
s −

1

σ
√
n
Sbsnc

)2

> ε2/2

]
+ P

[(
X

(n)
t −

1

σ
√
n
Sbtnc

)2

> ε2/2

]

= P

[
|X(n)

s −
1

σ
√
n
Sbsnc| > ε/

√
2

]
+ P

[
|X(n)

t −
1

σ
√
n
Sbtnc| > ε/

√
2

]
And now taking the limits we get the desired result. Now Lemma A.3.2 implies that in

order to prove

(X
(n)
t1 , X

(n)
t2 )

D−→ (Bt1 , Bt2)

it is sufficient to show that

1

σ
√
n

bsnc∑
j=1

ξj,

btnc∑
j=bsnc+1

ξj

 D−→ (Bs, Bt −Bs)

In order to show this we use the Levy-continuity theorem(which says that Xn
D−→ X iff

ϕXn(t) → ϕX(t) for all t ∈ Rn if Xn, X are n-dimensional random vectors. In other

words we need to show that

lim
n→∞

E

exp

i〈u, 1

σ
√
n

bsnc∑
j=1

ξj,

btnc∑
j=bsnc+1

ξj

〉
= E [exp (i 〈u, (Bs, Bt −Bs)〉)]
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Expanding the inner product we need to show

lim
n→∞

E

exp

iu1
1

σ
√
n

bsnc∑
j=1

ξj

 exp

iu2
1

σ
√
n

btnc∑
j=bsnc+1

ξj


= E [exp (iu1Bs) exp (iu2(Bt −Bs))]

(A.4.3)

Now using the independence of Bs, Bt − Bs and
∑bsnc

j=1 ξj,
∑btnc

j=bsnc+1 ξj , it suffices to

show the following

lim
n→∞

E

exp

iu1
1

σ
√
n

bsnc∑
j=1

ξj

E
exp

iu2
1

σ
√
n

btnc∑
j=bsnc+1

ξj


= E [exp (iu1Bs)]E [exp (iu2(Bt −Bs))]

We compute the following limit

lim
n→∞

E

exp

iu1
1

σ
√
n

bsnc∑
j=1

ξj


and

E

exp

iu2
1

σ
√
n

btnc∑
j=bsnc+1

ξj


can be computed similarly. It is not hard to see that

lim
n→∞

P

∣∣∣∣ 1

σ
√
n

bsnc∑
j=1

ξj −
√
s

σ
√
bsnc

bsnc∑
j=1

ξj

∣∣∣∣ > ε

 ≤ lim
n→∞

1

ε2
E

∣∣∣∣ 1

σ
√
n

bsnc∑
j=1

ξj −
√
s

σ
√
bsnc

bsnc∑
j=1

ξj

∣∣∣∣2


= lim
n→∞

1

ε2
E

∣∣∣∣ 1

σ
√
n
−

√
s

σ
√
bsnc

∣∣∣∣2∣∣∣∣ bsnc∑
j=1

ξj

∣∣∣∣2
 = lim

n→∞

1

ε2

∣∣∣∣ 1

σ
√
n
−

√
s

σ
√
bsnc

∣∣∣∣2E
∣∣∣∣ bsnc∑

j=1

ξj

∣∣∣∣2


= lim
n→∞

1

ε2

∣∣∣∣
√
bsnc −

√
sn

σ
√
n
√
bsnc

∣∣∣∣2E
∣∣∣∣ bsnc∑

j=1

ξj

∣∣∣∣2
 ≤ lim

n→∞

1

ε2σ2nbsnc
E

bsnc∑
j=1

ξ2
j

 = lim
n→∞

σ2bsnc
ε2σ2nbsnc

= 0

Now using Lemma A.3.2 with X(n) =
√
s

σ
√
bsnc

∑bsnc
j=1 ξj, Y

(n) = 1
σ
√
n

∑bsnc
j=1 ξj and X =

N (0, s). Now the Lindeberg-Levy version of the Central Limit Theorem implies X(n) D−→
X and since we have already shown that ρ(X(n), Y (n)) −→ 0 in probability with ρ(x, y) =

|x − y| i.e the euclidean distance on R1 we get that Y (n) D−→ X or in other words
1

σ
√
n

∑bsnc
j=1 ξj

D−→ N (0, s). Therefore the Levy Cramer continuity theorem implies

lim
n→∞

E

exp

iu1
1

σ
√
n

bsnc∑
j=1

ξj

 = E [exp (iu1N (0, s))] = exp
(
−u2

1s/2
)
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Using a similar argument we can show that

lim
n→∞

E

exp

iu2
1

σ
√
n

btnc∑
j=bsnc+1

ξj

 = exp
(
iu2(t− s)/2

)
and hence we have shown A.4.3 since using the properties of Brownian motion we have

E [exp (iu1Bs)] = exp (−u2
1s/2) and E [exp (iu2(Bt −Bs))] = exp (iu2(t− s)/2)

Actually the sequence {X(n)} of linearly interpolated and normalized random walks

given by equation (A.4.2) converges to Brownian Motion in distribution. For the tight-

ness required to carry out such and extension we shall need the following to auxiliary

results.

Lemma A.4.2. (Lemma 2.4.18 Shreve) Set Sk =
∑k

j=1 ξj where {ξj}∞j=1 is a sequence

of independent and identically distributed random variables , with mean zero and finite

variance σ2 > 0. Then for any ε > 0,

lim
δ↓0

lim sup
n→∞

1

δ
P

[
max

1≤j≤bnδc+1
|Sj|> εσ

√
n

]
= 0

Proof. By the central limit theorem, we have for each δ > 0 that 1

σ
√

1+bnδc
Sbnδc+1 con-

verges in distribution to a standard normal random variable Z. Using the exact same

argument as in Theorem A.4.1 we can show that∣∣∣∣ 1

σ
√

1 + bnδc
Sbnδc+1 −

1

σ
√
nδ
Sbnδc+1

∣∣∣∣→ 0 in probability

and therefore just as in Theorem A.4.1 we can apply Lemma A.3.2 to conclude that

1

σ
√
nδ
Sbnδc+1

D−→ N (0, 1)

Now fix λ > 0 and let {ϕk}∞k=1 be a sequence of bounded continuous functions on R with

ϕk ↓ 1{(−∞,λ]∪[λ,∞)} We have for each k

lim sup
n→∞

P
[
|Sbnδc+1|≥ λσ

√
nδ
]
≤ lim

n→∞
E

[
1{
|Sbnδc+1

σ
√
nδ
|≥λ

}
]

≤ lim
n→∞

E

[
ϕk

(
Sbnδc+1

σ
√
nδ

)]
= E [ϕk(Z)]

where Z is a standard normal random variable. The second inequality is a consequence of

the fact that ϕk ↓ 1{(−∞,λ]∪[λ,∞)} and the linearity of the expectation operator. The last

equality is a consequence the definition of convergence in distribution (of |Sbnδc+1|
D−→ Z)
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in Definition A.1.2 and the boundedness and continuity of ϕk. Now letting k → ∞
and using the monotone convergence theorem for decreasing positive sequences and

ϕk ↓ 1{(−∞,λ]∪[λ,∞)} and the Chebyshev’s inequality we get

lim sup
n→∞

P
[
|Sbnδc+1|≥ λσ

√
nδ
]
≤ lim

k→∞
E [ϕk(Z)]

= E
[

lim
k→∞

ϕk(Z)
]

= P [|Z|≥ λ] ≤ 1

λ3
E
[
|Z|3

] (A.4.4)

Now we define τ = min {j ≥ 1; |Sj|> εσ
√
n} Now with 0 < δ < ε2/2, we have the

following {
max

0≤j≤bnδc+1
|Sj|> εσ

√
n

}
⊆
{
|Sbnδc+1|≥ σ

√
n(ε−

√
2δ)
}⋃

bnδc+1⋃
j=1

{
|Sbnδc+1|< σ

√
n(ε−

√
2δ), τ = j

}

Note that for j = bnδc + 1,
{
|Sbnδc+1|< σ

√
n(ε−

√
2δ), τ = j

}
is empty so the union

above is only until j = bnδc which is reflected in the sequel Now taking probabilities of

these sets and using sub-additivity we get

P

[{
max

0≤j≤bnδc+1
|Sj|> εσ

√
n

}]
≤ P

[{
|Sbnδc+1|≥ σ

√
n(ε−

√
2δ)
}]

+

bnδc+1∑
j=1

P
[{
|Sbnδc+1|< σ

√
n(ε−

√
2δ), τ = j

}] (A.4.5)

or equivalently using conditional probabilities we can write the inequality above as

P

[{
max

0≤j≤bnδc+1
|Sj|> εσ

√
n

}]
≤ P

[{
|Sbnδc+1|≥ σ

√
n(ε−

√
2δ)
}]

+

bnδc+1∑
j=1

P
[{
|Sbnδc+1|< σ

√
n(ε−

√
2δ)|τ = j

}]
P [τ = j]

But if τ = j then |Sbnδc+1|< σ
√
n(ε −

√
2δ) implies(by simple observation ) that |Sj −

Sbnδc+1|> σ
√

2nδ or more precisely{
|Sbnδc+1|< σ

√
n(ε−

√
2δ), τ = j

}
⊆
{
|Sj − Sbnδc+1|> σ

√
2nδ, τ = j

}
Now monotonicity and Chebychev’s inequality and independence of {ξj}∞j=1 implies the
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following

P
[{
|Sbnδc+1|< σ

√
n(ε−

√
2δ), τ = j

}]
≤ P

[{
|Sj − Sbnδc+1|> σ

√
2nδ, τ = j

}]
≤ 1

2nδσ2
E
[(
Sj − Sbnδc+1

)2 |τ = j
]

=
1

2nδσ2
E

bnδc+1∑
i=j+1

ξ2
i


=

1

2nδσ2
σ2(bnδc − j) ≤ 1

2nδσ2
σ2(bnδc) ≤ 1

2

And hence we have the following (in the last inequality below we use the definition of τ

and monotonicity)

P

[{
max

0≤j≤bnδc+1
|Sj|> εσ

√
n

}]
≤ P

[{
|Sbnδc+1|≥ σ

√
n(ε−

√
2δ)
}]

+

bnδc∑
j=1

1

2
P [τ = j]

= P
[{
|Sbnδc+1|≥ σ

√
n(ε−

√
2δ)
}]

+
1

2
P [τ ≤ bnδc]

≤ P
[{
|Sbnδc+1|≥ σ

√
n(ε−

√
2δ)
}]

+
1

2
P

[{
max

0≤j≤bnδc+1
|Sj|> εσ

√
n

}]
from which follows

P

[{
max

0≤j≤bnδc+1
|Sj|> εσ

√
n

}]
≤ 2P

[{
|Sbnδc+1|≥ σ

√
n(ε−

√
2δ)
}]

(A.4.6)

Now setting λ = (ε −
√

2δ)/
√
δ in equation (A.4.4) and apply Chebyshev’s inequality

we get

lim
δ↓0

lim sup
n→∞

1

δ
P

[{
max

0≤j≤bnδc+1
|Sj|> εσ

√
n

}]
≤ lim

δ↓0

2
√
δ

(ε−
√

2δ)3
E[|Z|3] = 0

Lemma A.4.3. (Lemma2.4.19 Shreve) Under the assumption of Lemma A.4.2 we have

that for T > 0,

lim
δ↓0

lim sup
n→∞

P

 max
1≤j≤bnδc+1
0≤k≤bnT c+1

|Sj+k − Sk|> εσ
√
n

 = 0

Proof. For 0 < δ ≤ T ,let m = m(δ) ≥ 2 be the unique integer satisfying T/m < δ ≤
T/(m− 1). Since

lim
n→∞

bnT c+ 1

bnδc+ 1
=
T

δ
< m
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we have that bnT c+1 ≤ (bnδc+1)m for sufficiently large n. For such a large n, suppose

|Sj+k − Sk|> εσ
√
n for some 0 ≤ k ≤ bnT c + 1 and some j, 1 ≤ j ≤ bnδc + 1. Then

there exists a unique integer p, 0 ≤ p ≤ m− 1, such that

(bnδc+ 1) p ≤ k < (bnδc+ 1) (p+ 1)

Since k is an integer between 0 and (bnδc + 1)m and [0, (bnδc + 1)m] =
⊔m−1
p=0 [(bnδc +

1)p, (bnδc+ 1)(p+ 1)] Now clearly for a k given a p such that 0 ≤ p ≤ m− 1

(bnδc+ 1)p ≤ k + j ≤ (bnδc+ 1)(p+ 2)

And hence it follows that there are two possibilities for k + j. The first being

(bnδc+ 1) p ≤ k + j ≤ (bnδc+ 1) (p+ 1)

in which case either |Sk − S(bnδc+1)p|> 1
3
εσ
√
n , or else |Sk+j − S(bnδc+1)p|> 1

3
εσ
√
n.

Indeed if both of the quantities were less than 1
3
εσ
√
n we would have a contradiction in

the following sense

εσ
√
n < |Sj+k − Sk|= |Sk − S(bnδc+1)p + S(bnδc+1)p − Sk+j|

≤ |Sk − S(bnδc+1)p|+|S(bnδc+1)p − Sk+j|≤
2

3
εσ
√
n

The second possibility is that

(bnδc+ 1) (p+ 1) ≤ k + j ≤ (bnδc+ 1) (p+ 2)

in which case either |Sk−S(bnδc+1)p|> 1
3
εσ
√
n,|S(bnδc+1)p−S(bnδc+1)(p+1)|> 1

3
εσ
√
n,|S(bnδc+1)(p+1)−

Sk+j|> 1
3
εσ
√
n which can again be proved as by contradiction using the triangular in-

equality just as before. In conclusion we see that max
1≤j≤bnδc+1
0≤k≤bnT c+1

|Sj+k − Sk|> εσ
√
n

 ⊆
m⋃
p=0

{
max

1≤j≤bnδc+1
|Sj+p(bnδc+1) − S(bnδc+1)p|>

1

3
εσ
√
n

}
(A.4.7)

The set inequality above is seen to be true both the cases classified above i.e when

(bnδc+ 1) p ≤ k + j ≤ (bnδc+ 1) (p + 1) or when (bnδc+ 1) (p + 1) ≤ k + j ≤
(bnδc+ 1) (p+ 2).

But independence of {ξj}∞j=1 implies that

P

[
max

1≤j≤bnδc+1
|Sj+p(bnδc+1) − S(bnδc+1)p|>

1

3
εσ
√
n

]
= P

[
max

1≤j≤bnδc+1
|Sj|>

1

3
εσ
√
n

]
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and since m ≤ (T/δ) + 1 thus we have

P

 max
1≤j≤bnδc+1
0≤k≤bnT c+1

|Sj+k − Sk|> εσ
√
n


 ≤ (m+ 1)P

[
max

1≤j≤bnδc+1
|Sj|>

1

3
εσ
√
n

]

≤ ((T/δ) + 2)P

[
max

1≤j≤bnδc+1
|Sj|>

1

3
εσ
√
n

]
Now on taking the limits and using the result of Lemma A.4.2 and equation A.4.6 we

have

lim
δ↓0

lim sup
n→∞

P

 max
1≤j≤bnδc+1
0≤k≤bnT c+1

|Sj+k − Sk|> εσ
√
n


≤ T lim

δ↓0
lim sup
n→∞

1

δ
P

[
max

1≤j≤bnδc+1
|Sj|>

1

3
εσ
√
n

]
+ lim

δ↓0
lim sup
n→∞

2P

[
max

1≤j≤bnδc+1
|Sj|>

1

3
εσ
√
n

]
= 0 + 0

lim
δ↓0

lim sup
n→∞

P

 max
1≤j≤bnδc+1
0≤k≤bnT c+1

|Sj+k − Sk|> εσ
√
n

 = 0

We are now in a position to establish the main result of this section , namely the

convergence in distribution of the sequence of normalized random walks in equation

(A.4.2) to Brownian motion. This result is known as the invariance principle.

Theorem A.4.4. (Theorem 2.4.20 Shreve) Let (Ω,F , P ) be a probability space on which

a given sequence {ξj}∞j=1 of independent, identically distributed random variables with

mean zero and finite variance σ2 > 0. Defined X(n) = {X(n)
t , t ≥ 0} by equation

(A.4.2 and let P (n) be the measure induced by X(n) on (C[0,∞),B(C[0,∞))). Then

{Pn}∞n=1 converges weakly to a measure P∗ under which the coordinate mapping process

Wt(ω) := ω(t) on C[0,∞) is a standard one dimensional Brownian Motion.

Proof. In light of Theorem A.3.1 which says that convergence is finite dimensional dis-

tribution of a continuous stochastic process implies convergence in distribution of prob-

ability measures induced by these continuous process on C[0,∞) under tightness and

Theorem A.4.1 which proves that the finite dimensional distributions of linearly in-

terpolated normalized random walks converge to the finite dimensional distribution of

Brownian motion, we just need to show the tightness of the sequence {X(n)}∞n=1 of lin-

early interpolated and normalized random walks defined in equation (A.4.2). In order
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to show tightness we use A.2.6. Since by definition X
(n)
0 = 0 a.s for every n, equation

(A.2.6) follows immediately since Pn (ω(0) = 0) for all n ≥ 1. In order to show tightness

of the sequence {X(n)}∞n=1 we need to establish equation (A.2.7) i.e for an arbitrary ε > 0

and T > 0, the convergence

lim
δ↓0

sup
n≥1

P

 max
|s−t|≤δ
0≤s,t≤T

|X(n)
s −X

(n)
t |> ε

 = 0 (A.4.8)

We may replace supn≥1 in this expression by lim supn→∞,since for a finite number of

integers n we can make the probability appearing in (A.4.8) as small as we choose by

reducing δ. Indeed we have that

limδ↓0
[
supn≥1 an,δ

]
=⇒ ∀ε > 0∃δε > 0,∀0 < δ < δε

0 ≤ supn≥1 an,δ < ε

On the other hand limδ↓0 lim supn→∞ an,δ = 0 implies that for all ε > 0 there exists a δε
such that for all 0 < δ < δε we have 0 ≤ lim supn→∞ an,δ < ε or 0 ≤ infn≥1 supk≥n ak,δ < ε.

Now by the definition of infimum and the fact that its strictly less that ε we have that

there exists a nε such that for all n ≥ nε we have supk≥n ak,δ < ε. This together with

the fact that for a finite number of integers n we can make the probability appearing in

(A.4.8) as small as we choose by reducing δ explains why we can replace the sup and

the lim sup.

But by definition of X(n) in equation (A.4.2)

P

 max
|s−t|≤δ
0≤s,t≤T

|X(n)
s −X

(n)
t |> ε

 = P

 max
|s−t|≤nδ
0≤s,t≤nT

|Ys − Yt|> εσ
√
n



and

max
|s−t|≤nδ
0≤s,t≤nT

|Ys − Yt|≤ max
|s−t|≤bnδc+1
0≤s,t≤bnT c+1

|Ys − Yt|≤ max
|s−t|≤bnδc+1
0≤s,t≤bnT c+1

|Sk+j − Sk|

where the first inequality is a consequence of the fact that the maximum is taken over

a larger set and the last inequality follows from the fact that Y is piecewise linear

constructed by interpolating the discrete process S and hence changes slope only at
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integral values of t. Now equation (A.4.8) follows from Lemma A.4.3 . Indeed

lim
δ↓0

sup
n≥1

P

 max
|s−t|≤δ
0≤s,t≤T

|X(n)
s −X

(n)
t |> ε

 = lim
δ↓0

lim sup
n→∞

P

 max
|s−t|≤δ
0≤s,t≤T

|X(n)
s −X

(n)
t |> ε


= lim

δ↓0
lim sup
n→∞

P

 max
|s−t|≤nδ
0≤s,t≤nT

|Ys − Yt|> εσ
√
n

 ≤ lim
δ↓0

lim sup
n→∞

P

 max
|s−t|≤bnδc+1
0≤s,t≤bnT c+1

|Ys − Yt|> εσ
√
n


≤ lim

δ↓0
lim sup
n→∞

P

 max
1≤j≤bnδc+1
0≤k≤bnT c+1

|Sj+k − Sk|> εσ
√
n

 = 0
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