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Abstract

This thesis is a compilation of two papers. In the first paper we investi-
gate a class of two dimensional stochastic differential equations related to
susceptible-infected-susceptible epidemic models with demographic stochas-
ticity. While preserving the key features of the model considered in [1], where
an ad hoc approach has been utilized to prove existence, uniqueness and non
explosivity of the solution, we consider an encompassing family of models
described by a stochastic differential equation with random and Holder con-
tinuous coefficients. We prove the existence of a unique strong solution by
means of a Cauchy-Euler-Peano approximation scheme which is shown to
converge in the proper topologies to the unique solution.

In the second paper we link a general method for modeling random phe-
nomena using systems of stochastic differential equations to the class of affine
stochastic differential equations. This general construction emphasizes the
central role of the Duffie-Kan system [2] as a model for first order approx-
imations of a wide class of nonlinear systems perturbed by noise. We also
specialize to a two dimensional framework and propose a direct proof of the
Duffie-Kan theorem which does not pass through the comparison with an
auxiliary process. Our proof produces a scheme to obtain an explicit rep-
resentation of the solution once the one dimensional square root process is
assigned.

Key words and phrases: stochastic differential equations, square root
process, Feller condition, two dimensional susceptible-infected-susceptible

epidemic model, Brownian motion

AMS 2000 classification: 60H10, 60H30, 92D30
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Chapter 1

Introduction

The term Stochastic differential equation was introduced by S. Bernstein( see [3],[4])
in the limiting study of a sequence of Markov chains arising in a stochastic differential
scheme. He was only interested in the distribution of limiting processes and showed
that the latter had a density satisfying the Kolmogorov equations. However according
to Gihman and Skorohod(see [5]) it would be an exaggeration to consider Bernstein
the founder of this theory. Independently of 1td’s work, I.I. Gihman( see [6],[7] and [8])
developed a theory of stochastic differential equations complete with results on existence,
uniqueness, smooth dependence on initial conditions and Kolmogorov’s equations for the
transition density.

Since the early work of Ito and Gihman, the interest in the methodology and the
mathematical theory of Stochastic differential equations has enjoyed remarkable success.
The constructive and intuitive nature of the concept as well as the strong physical ap-
peal, has been responsible for its popularity among applied scientists. Stochastic differ-
ential equations are now one of the most popular tools to model real world phenomenon.
They have many applications in domains such epidemiology, financial modeling (interest
rate modeling, option pricing etc), target tracking and medical technology methodolo-
gies such as filtering, smoothing, parameter estimation, and machine learning. There are
also a wide range of examples of applications of SDEs arising in physics and electrical
engineering. In order to simulate and model real world phenomenon using stochastic
differential equations and draw conclusions from the solutions, it is imperative to know
the existence and uniqueness of solutions. Moreover the theory of of existence and
uniqueness of solutions of stochastic differential equations is quite deep and challenging
particularly when the coefficients of the SDE are non-regular.

The first result on strong existence and uniqueness of SDE’s was due to Ito ([9])
where he assumed that both the drift and the diffusion coefficients b and o respectively
in equation (1.0.1) were uniformly Lipschitz.

11
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dXt = b(t, Xt)dt + U(t, Xt)th (101)

In practice, one often needs stochastic differential equations with non-Lipschitz coef-
ficients to model real-world systems. It is often the case that the volatility of the
process is the square root of the solution. In other words the dispersion coefficient
is Holder-continuous in the space variable. From a mathematical point of view the anal-
ysis of existence and uniqueness for strong solutions of SDEs with Hoélder-continuous
coefficients is quite challenging. In the one dimensional case, resorting to the famous
Yamada-Watanabe principle (i.e. weak existence plus pathwise uniqueness implies strong
existence) one can prove the existence of a unique strong solution for SDEs where the
drift coefficient is locally Lipshiptz-continuous while the diffusion coefficient is of the
type o(x) = |z|* for @ € [1/2,1]. The hard part of this proof is the pathwise unique-
ness which heavily relies on an ad hoc technique introduced by Yamada and Watanabe
[10] (see also the books Ikeda and Watanabe [11] and Karatzas and Shreve [12] for
comparison theorems obtained with a similar approach).

Multi-dimensional linear SDE’s are used to model many real world phenomenon for
example in stochastic demographic models(see Mao [1]) and in interest rate modeling(see
Duffie and Kan [2] and Cairns [13]) and have a rich theory when the system of SDEs
is linear, but the moment we start working with systems of SDE’s with non-Lipschitz
diffusion and dispersion coefficients, the analysis of existence and uniqueness becomes
quite intractable. In this thesis we attempt to investigate the existence and uniqueness of
two dimensional stochastic differential equations with non-regular diffusion coefficients.

The thesis is organized as follows. In the first chapter we will give a high-level
introduction to Stochastic differential equations. In the second chapter we will give a
very detailed introduction to the tools needed to study and investigate the existence and
uniqueness of solutions of stochastic differential equations. In particular we will provide
an extensive introduction to stochastic analysis and stochastic integration using results
from the book of Karatzas and Shreve (see [12]) and the book of Tkeda and Watanabe(see
[11]). This is followed by a short section which contains some major strong existence
and uniqueness results due to It6 and Yamada and Watanabe.

The last two chapters contain two papers "On a general model system related to
affine stochastic differential equations” ([14]) and "On a class of stochastic differential
equations with random and Holder continuous coefficients arising in biological model-
ing” (see [15]). These papers are joint work with my PhD supervisor Prof Enrico Bernardi
and Prof Alberto Lanconelli. In these papers we prove existence and uniqueness results
for systems of stochastic differential equations with non Lipschitz diffusion coefficients.

I have also included for the sake of completeness a short appendix containing some
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important results on weak convergence, tightness, convergence of finite-dimensional dis-
tributions and the invariance principle. I spent a considerable amount of time on these
topics during my Phd studies and these subjects are closely related to the study of
Brownian motion which is the process driving the stochastic differential equations under
study in this thesis.

The first paper we investigate a class of two dimensional stochastic differential
equations related to susceptible-infected-susceptible epidemic models with demographic
stochasticity. While preserving the key features of the model considered in [1], where
an ad hoc approach has been utilized to prove existence, uniqueness and non explosivity
of the solution, we consider an encompassing family of models described by a stochas-
tic differential equation with random and Hoélder continuous coefficients. We prove the
existence of a unique strong solution by means of a Cauchy-Euler-Peano approximation
scheme which is shown to converge in the proper topologies to the unique solution.

In the second paper we link a general method for modeling random phenomena using
systems of stochastic differential equations to the class of affine stochastic differential
equations. This general construction emphasizes the central role of the Duffie-Kan sys-
tem [2] as a model for first order approximations of a wide class of nonlinear systems
perturbed by noise. We also specialize to a two dimensional framework and propose a
direct proof of the Duffie-Kan theorem which does not pass through the comparison with
an auxiliary process. Our proof produces a scheme to obtain an explicit representation
of the solution once the one dimensional square root process is assigned.
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Chapter 2

Preliminaries

In this chapter we will introduce some of the important tools and machinery that will
be subsequently used in the following sections and chapters. The first section on Stop-
ping times gives a number of definitions and results (without proof) which will be used
repeatedly in the text. The second section will outline some important results from
stochastic analysis, in particular the construction of stochastic integrals with respect to
local martingales. In the second section we precisely define what it means for a stochastic
differential equation to have a strong solution. We present the most important results
from literature on strong existence and uniqueness of SDEs and a comparison result
which will play a very important role later on. In the third section we introduce two
important SDEs-the square root process and the mean reverting square root process
which are used extensively in interest rate modeling and play a central role in the thesis.

2.1 Stopping Times

In this section we provide some definitions and preliminary results on stopping times
which will be used later. We skip the proofs in the section for the sake of brevity.

Definition 2.1.1. Let us consider a measurable space (0, F) equipped with the filtration
{F:}. The random time T is a stopping time of the filtration, if the event {T < t}
belongs to the sigma-field {F;}, for every t > 0. A random time T is an optional time
of the filtration , if {T <t} € F, for every t > 0.

Lemma 2.1.2. Let X be a stochastic process and T a stopping time of {F:X}. Suppose

that for the pair w,w’ € ), we have X (w) = Xy(w') for all t € [0,T(w)] N[0,00). Then
T(w) =T(Y)

15
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Proposition 2.1.3. Fvery random time equal to a nonnegative constant is a stopping
time. Every stopping time is optional, and the two concepts coincide if the filtration is
right continuous.

Corollary 2.1.4. T is an optional time of the filtration {F} if and only if it is the
stopping time of the right continuous filtration {F. }

Definition 2.1.5. Let X be a stochastic process with right-continuous paths, which is
adapted to the filtration {JF;} and consider a subset I' € B(R?) of the state space of the

process then we define the hitting time as
Hr(w) =inf{t > 0: X;(w) € T'}
Theorem 2.1.6. Hr defined in Definition 2.1.5 is a stopping time.

Lemma 2.1.7. If T is optional and 6 is a positive constant , then T + 6 is a stopping
time.

Lemma 2.1.8. IfT,S are stopping time, then so are T NS, TV S, T + S

Lemma 2.1.9. Let T, S be optional times, then T + S is optional.It is a stopping time
if one of the following condition holds

1. T>0,8>0
2. T >0,T 1s a stopping time.

Lemma 2.1.10. Let {T,,}22, be a sequence of optional times; then the random times

sup 1}, inf T,,, lim sup 7,,, lim inf T},
n>1 nz1 n—o00 n—r00

are all optional. Furthermore if the T;,’s are stopping times then so are sup,,; T;,.

Definition 2.1.11. Let T be a stopping time of the filtration {F;}. The sigma-field Fr
of events determined prior to the stopping time T consist of those events A € F for
which AN{T <t} € F; for everyt > 0.

Lemma 2.1.12. Fr is a sigma-field and T is Fr-measurable. Moreover if T'(w) =t for
some constant t > 0 and every w € §, then Fr = F;

Lemma 2.1.13. Let T be a stopping time and S a random time such that S > T on §2.
If S is Fr-measurable, then it is also a stopping time.

Lemma 2.1.14. For any two stopping times T and S, and for any A € Fg, we have
AN{S <T} € Fr. In particular if S < T on Q, we have Fs C Fr
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Lemma 2.1.15. Let T and S be stopping times. Then Frprs = Fr N Fg, and each of
the events

{T <SS <TH AT < S}AS <T}{T =5}
belongs to F N Fg.

Lemma 2.1.16. Let TS be stopping times and Z an integrable random variable. We
have

1. E[Z| Fr|=FE[Z| Fsnar|, P-a.s on {T < S}
9. B[E|Z| Frl| Fs] = E[Z | Fspr] P-as.

Proposition 2.1.17. Let X = {X;, F;;0 <t < 0o} be a progressively measurable process
and let T be a stopping time of the filtration {F,}. Then the random variable X1 defined
on the set {T < oo} € Fp by Xp(w) = Xpw)(w) is Fr-measurable random variable.,
and the "stopped process” { Xrpe, Fi1;0 <t < 0o} is progressively measurable.

Lemma 2.1.18. Under the same assumptions as in Proposition 2.1.17, and with f(t,z) :
[0,00) x RY — R a bounded, B([0,00)) ® B(R?)-measurable function, then the process
Y, = fot f(s, Xs)ds;t > 0 is progressively measurable with respect to F; and Yp is an
{Fr}-measurable random variable.

Definition 2.1.19. Let T' be an optional time of the filtration {F;}. The sigma field
Fry of events determined immediately after the optional time T consist of those events
A € F for which AN{T <t} € Fyy for everyt >0

Lemma 2.1.20. The class of sets Fr, is indeed a sigma-field with respect to which T
is measurable and it coincides with {A € F; AN{T <t} € F,,Vt > 0} and that if T is
a stopping time (so both Fr and Fry are defined), then Fpr C Fry

Lemma 2.1.21. The analogues of Lemmas 2.1.1/ and 2.1.15 hold if T and S are
assumed to be optional and Fr,Fs and Fras are replaced by Fri, Fsy and Firas)+

respectively. Moreover if S is an optional time and T is a positive stopping time with
S<T,and S<T on{S < oo}, then Fsy C Fr

Lemma 2.1.22. [f {T,,}32, is a sequence of optional times and T = inf,>1 T, then
Fri = (ory Fr,+. Besides if each T, is a positive stopping time and T < T, on
{T < oo}, then we have Fry =\ -, Fr,

Lemma 2.1.23. Given an optional time T of the filtration {F;}, consider a sequence
{T,}22, of random times given by
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forn > 1,k > 1. Obuviously T,, > Th,11 > T, for every n > 1. Moreover T,, is a
stopping time for every n and that lim,,_,.. T, = T, and that for every A € Fr,, we
have ANA{T, = (k/2")} € Fijon;n > 1,k > 1.

Definition 2.1.24. A filtration {F,} is said to satisfy the usual conditions if it is right

continuous and Fy contains all P-negligible events in JF.

2.2 Introduction to Stochastic Integration

Let us consider a continuous square-integrable martingale M = {M,;, F;;0 < t < oo}
on a probability space (2, F, P) equipped with the filtration {F;} which is assumed
throughout this chapter to satisfy the usual conditions i.e the filtration is complete and
right continuous. We assume that My = 0 a.s P. Such a process M € M( the space
of square integrable continuous martingales) is of unbounded variation on any finite

interval [0, 7] and consequently the integrals of the form

Ir(X) = /0 X, (w)dM, (w) (2.2.1)

cannot be defined pathwise( i.e for each w separately) as ordinary Lebesgue-Stieltges
integrals.Nevertheless , the martingale M has a finite second (quadratic) variation given
by the continuous increasing process (M). It is precisely this fact which allows one
to proceed in a highly non-trivial yet straightforward manner with the construction of
stochastic integral (2.2.1) with respect to a continuous square-integrable martingale M
for an appropriate class of integrands X. The construction is due to It6 (see [16] and
[17]) for the special case that M is a Brownian motion and to Kunita and Watanabe(see
[18]) for the general case.

2.2.1 Simple Processes and Approximation

In this section we will first define a class of stochastic processes(called simple processes)
for which we will define the stochastic integral. These simple processes are chosen such
that they are dense in L? and subsequently the stochastic integral will be defined for all
processes in L? as limiting operation.

Definition 2.2.1. Let L denote the set of all equivalence classes of all measurable {F;}-
adapted processes X for which [X|r < oo for all T > 0 where

(X3 = E/OT X2d(M), (2.2.2)
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We define an metric on L by [X — Y], where

- iﬂ(l A [X]n) (2.2.3)

Definition 2.2.2. Let L* denote the set of equivalence classes of progressively measur-
able processes satisfying [X|r < oo for all T > 0, and the metric on L* the same way as
wn Definition 2.2.1

Definition 2.2.3. Simple Process: A process X is called simple if there exists an in-
creasing sequence of real numbers {t,}5°, with to = 0 and lim,_, t, = 00, as well as
a sequence of random variables {£,}5°, and a non-random constant C' < oo such that

Sup,ol&n(w)|< C for every w € Q such that &, is Fy, -measurable for every n > 0 and
Xt(W) 1{[)} + Zgl t tit] ) 0 S t < oo, w € Q

The class of all simple processes will be denoted by Ly.Note that because the members of
Ly are progressively measurable and bounded we have Lo C L*(M) C L(M)

The stochastic integral of X € £y wr.t to the martingale M € M? can be defined as

a martingale transform.

-1
Z (My a1 — My,) + &0 (M, — M,,)
- (2.2.4)
Z Mt/\terl - Mt/\ti)a 0<t<oo

where n > 0 is the unique integer for which ¢,, <t < t¢,,1;. The definition is then extended
to integrands X € L£* and X € L, thanks to the crucial results which show that the
elements of £ and L£* can be approximated in a suitable sense by simple processes.
Before proceeding to the next lemma we define £ to be the class of processes X in L£*
for which X;(w) = 0,Vt > T,w € Q. For T = oo, L} is defined as the class of processes
X € £* for which E[[) X2d(M),] < oo (a condition we already have for T < oo by
virtue of its membership of £*). Note that a process X € £} can only be identified with
one defined for (¢,w) € [0,T] x Q.

Lemma 2.2.4. (Lemma 3.2.2 Shreve) For 0 < T < oo, L} is a closed subspace of Hr.

In particular L% is complete under the norm [X|r. Hy is defined as

He = L2 ([0,T] x Q,B((0,T]) ® Fr, t1n)
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where py is a measure on ([0, 00) x Q, B(]0,00)) ® F) given by

E/luw M) ()

Proof. Let {X(™}> | be a convergent sequence in L3 with the limit X € Hz(Since
X € Hr O L) and Hr is a Hilbert space and every convergent sequence has a limit).
The limit is with respect to the norm L2([0, 7] x ©, B([0,T]) ® Fr, piar). So {X™
converges in probability(wr.t the measure pys) and therefore there exists a sub-sequence
which converges almost surely i.e

par{(£,w) € [0.7] x  lim X[ (@) # X,(w)} = 0

In order to show that X € L7, we need to show that its progressively measurable. By
the virtue of its membership in Hr, it is B([0, 7)) ® F-measurable Now setting

A={(t,w) €[0,T] x  lim X" (w) exists in R}

n—o0

Since the limit of the sequence {X ™} is in Hy, we have that the L? norm of X is
finite and therefore X < oo pys a.s and hence the measure of the set A is one. Now the
process Yi(w) = 14lim, o Xt(”) (w) 4+ 01 4¢ inherits the progressive measurability since
its the product of the indicator of a progressive set A and the limit of progressively

measurable processes X . O

Lemma 2.2.5. (Lemma 3.2.4 Shreve) Let X be a bounded , measurable , {F;}- adapted
process. Then there exists a sequence {X ™ }°_, of simple processes such that

T
sup lim E/ 1X\™ — X, Pdt =0 (2.2.5)
0

T>0 m—r0o0

Proof. We shall show how to construct for each fixed 7' > 0, a sequence {X ™71} of
simple processes so that

T
lim E/ X X2t =0
0
Thus for each positive integer m, there is another integer n,, such that

i n m 1
E/ X - X2 < —
0 m

and hence the sequence {X ™1  has the desired properties since the integrand in

the last expression is positive and therefore

T m
0 <sup lim E/ |Xt(m) — Xy|?dt < lim E/ |Xt(n"“m) — X, 2dt =0
0 m—0oQ 0

T>0 m—r0o0

Henceforth | T is a fixed positive number . We proceed in three steps.



2.2 Introduction to Stochastic Integration 21

1. Suppose that X is continuous, then the sequence of simple processes

2" —1

It is obvious by the definition of Xt(n) (it takes the same value as that of X; on
intervals of the form (k7'/2", (k + 1)T/2"] which become smaller and smaller and
hence Xt(”) approximates X; ) that

lim X = X, a.s

n—oo
And since X is bounded(by assumption) so is X by construction and hence

| X — X;|?< C and therefore the bounded convergence theorem and almost sure

convergence yields.

T T
lim E/ X" — X, |2dt = E/ lim | X — X, [2dt = 0

2. Now suppose that X is progressively measurable; we consider the continuous pro-

gressively measurable processes
= / Xo(w)ds; X™ = m[F, — Fy_1ymynol;m > 1 (2.2.6)
0

for t > 0,w € Q. Since X is bounded and progressively measurable(hence it
is jointly measurable and hence for a fixed w, it is Lebesgue measurable ) , the
Lebesgue integral is well defined and Fj(w) is absolutely continuous and by the
Fundamental theorem of Lebesgue integral calculus , differentiable almost every-
where( with respect to the variable ¢) with the derivative being equal to X;(w).

Since F; is absolutely continuous, Xt(m)

is absolutely continuous and hence contin-
uous, and therefore by virtue of step 1) we can conclude the existence of a sequence

of simple processes {X(™™1% such that lim,, e F fOT|Xt(m’”) — X™)2dt = 0
Consider the set

A:={(t,w) €[0,T] x 4 lim X™(w) = X,(w)}°

m—o0

Clearly Aisin B([0,T])®F7. Indeed X; is progressive and therefore B([0, T|) ® Fr-
measurable and Xt(m) is continuous and adapted and hence progressive and so is
it limit and therefore their difference is B([0,T]) ® Fr- measurable and hence

A¢ = ( lim (X (w) — X,(w))"*(0) € B([0,T]) ® Fr

m—r0o0
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The bounded convergence theorem implies

T T
hmE/ﬁﬁm—Xﬁﬁ:E/ lim [ X™ — X,|%dt = 0
0 0 m—ro0

m—0o0

Indeed we have that

t
W@—&hm/‘(&—&m
t—1/m
t t
<m | X — Xi|lds <m 2Cds < 2C

t—1/m t—1/m

(2.2.7)

where C' is such that X;(w) < C Vt € [0,7] and w € 2

We can approximate the continuous process Xm by a sequence {)N( oo L wart
to the L? norm which we call for the sake of convenience ||.||. Similarly we can
approximate X by X(m) wrt to the same norm and therefore we can conclude
that there exists a sequence of bounded simple processes such that

=0

m— 00

T
lim £ / |Xt(m’nm) — X, PPdt = HX}(mnm) - X,
0

Indeed we have that given € > 0,¥n > N(¢) for some N(¢) € N we have
HX(”) — X” < €/2
. Similarly we have that for all n € N there exists m,, € N such that

HXWWJ—XW <¢/2

. And hence by the triangular inequality we have that

e e

+ [ & - x| <e

for all n > N(e)

Note that the assumption of progressive measurability is necessary in this step
to claim the existence of a sequence of approximating simple processes since pro-
gressivity of X implies the adaptedness of the process F' and hence X™ which is
essential in order to use part 1 of the lemma to show the existence of approximat-

ing simple processes which are adapted(a requirement for a process to be simple

).
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3.

Finally let X be measurable and adapted. We cannot guarantee immediately
that the continuous process F' = {F};0 < t < oo} is progressive.We do however
know that any measurable and adapted process has a progressively measurable
modification Y (Proposition 1.1.12 Karatzas and Shreve’s Brownian Motion and
Stochastic Calculus). We now show that progressive measurable process (proof
just like before ) {G; = ftATYds;O < t < T} is a modification of F. For the
measurable process n:(w) = 1x,(w )7,%( )}, 0<t< T w € €2, we have from Fubini:
Efo ne(w)dt = fo Eny(w)dt = fo (W) # Yi(w fo 0dt = 0 where the
second last equahty follows from the fact that X is a modlﬁcatlon of Y. Now this
implies that fo ne(w)dt = 0 P-a.e w € Q.

This implies that the event {w € € : fo n(w)dt > 0} is a measure zero set which
contains {Ft # G} Indeed we have that {F} # G} = {fMT]XS—YsH{XS (W)£Ys (W)} >
0} € {fy Lpxasriwnds > 0}

Now since G, is F;- measurable and F; contains all P-null sets we have that Fj is
also Fi- measurable(since we can add and subtract subsets of the null set { F; # G;}
from Gy to get F; ).Now adaptivity and continuity of F' implies progressivity and
we can now repeat the argument in step 2).

O

Lemma 2.2.6. (Proposition 3.2.6 Shreve) If the function t — (M)y(w) is absolutely

continuous with respect to Lebesque measure for P—a.e w € §, then Ly is dense in L

with respect to the metric

where

=3 2 (1AL -yl

=FE / X2d(M
0

Proof. (a) If X € L is bounded then Lemma 2.2.5 guarantees the existence of a

bounded sequence {X (™} of simple processes satisfying

T
sup lim E/ |Xt(m) — X, 2dt =0
0

T>0 M0
From it we can extract a subsequence {X (™)} such that the set

{(t,w) €[0,00) x Q: lim X" (w) = X,(w)}*

k—o0

has product measure zero. Now the absolute continuity of ¢t — (M);(w) with
respect to the lebesgue measure implies the existence of a density function which
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is defined almost everywhere such that d(M);(w) = (M)’ (w)dt. Now the bounded
convergence theorem implies that we can take the limit inside the integral.

lim [X (™) — X] = i 27" (1 A lim (E /O n(Xt(mk’ - Xt)2<M>’(w)dt)> =0

k—o0 k—o0
(2.2.8)

If X € L is not necessarily bounded we define
Xt(n)<w) = Xt(w)1{|Xt(w)|§n}; 0<t<oo,wef

and thereby obtain a sequence of bounded processes in £. The dominated conver-

gence theorem implies
T
(X" — X2 = E/ X7 x5y d(M); — 0 as n — 0o
0

for every T > 0 whence lim,,_o[X™ — X] = 0. Each X can be approximated
by bounded simple processes , so X can be as well. Indeed its enough to prove
this for sequences in R since the exact same argument follows for sequences in the

given norm.

So let us assume that (z,),en be a real sequence such that x, — = as n — oo
and ¥n > 1 be a sequence {27 },en such that 2" — z,, as m — oo for all n > 1.
Then Ve > 0, 3n. € N such that Vn > n, we have |z, —z|< €/2. We also have that
Vn > 1,3m, € N such that 2] — x,|< % due to the second assumption. Then
Ve > 0,dn. € N such that Vn > n. we have that

|z — x| < |amm — x| +r, —z|<€e/24+1/n <€

if we choose 7, = max (n,, [2])
]

Definition 2.2.7. An adapted process A is called increasing if for P-a.e. w € Q we

have

1.

2.

Ao(&)) =0

t — Ai(w) is a nondecreasing , right continuous function, and E(A;) < oo holds
for every t € [0,00). An increasing process is called integrable if E(Ay) < oo,
where Ay = limy_oo Ay
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Lemma 2.2.8. (Lemma 3.2.7 Shreve)

Let {A;0 <t < oo} be a continuous increasing process(usual definition) adapted to
the filtration of the martingale M = {M;, F;,0 <t < oo}. If X = {X;, F;,0 <t < o0}
1S a progressively measurable process satisfying

T
0
for each T > 0, then there exists a sequence {X ™} | of simple processes such that

T

sup lim E / X" — X, 2dA, =0
T>0 n—oo 0

Proof. We may assume without loss of generality that X is bounded (if not we use the

same argumentation as in part (b) of Lemma 2.2.6) i.e

X, (w)|< C; V> 0,0 € Q (2.2.9)

As in the proof of Lemma 2.2.5, it suffices to show how to construct , for each fixed

T > 0, a sequence {X ™} of simple processes for which

T
lim E/ X" — X,|2dA, = 0 (2.2.10)
n—oo 0
Henceforth 7' > 0 is fixed, and we assume without loss of generality(as the integral above
doesn’t change ) that

Xi(w)=0; Vt > T, w e S (2.2.11)

Now we describe the time change. Since A;(w)+1 is strictly increasing in t > 0 for P-a.e
w, there exists a continuous strictly increasing inverse function 7s(w), defined for s > 0
such that

A ) (w) + Ty(w) = s; Vs >0 (2.2.12)

In particular we have T, < s since from the equation just above Ti(w) = s — Ag, () (w)
and A; is an increasing process(and hence by Definition 2.2.7 always non-negative). Its
not very hard to see that

(T, <ty ={A, +t>s}eF (2.2.13)

Indeed we have that {Ty <t} C {A;+t > s} since A, +1 is strictly increasing and hence
w e {Ts(w) <t} CH{Ap ) (w) +Ts(w) < Ay +t} = {s < A, +t} where the last equality
is a consequence of equation (2.2.12)



26 Preliminaries

On the other hand {A; +t > s} C {7, < t} is obvious. Thus for each s > 0, T}
is a bounded stopping time for {F;}. Taking s as our new time variable we define the
filtration {G,} by

Gs=Fr,; s>0

and introduce the time changed process
Yi(w) = Xnw(Ww); s 2 0,w e

which is adapted to G, because the progressive measurability of X(Lemma 1.2.18 in [12]).
On the other hand Lemma 2.2.5 implies that, given any ¢ > 0 and R > 0, there is a
simple process {Y¢,Gs,0 < s < oo} for which

R
E/ Y~ Ys|*ds < ¢/2 (2.2.14)
0

But from equation (2.2.9) and (2.2.10) it follows that

[eS) [ Ar+T
E / Yids =E / lir<ryX7.ds = E / X3, ds
0 0 0

< 02(EAT + T) < 0

(2.2.15)

where the first equality follows from the definition of of Y and the fact that we assume
Xi(w) = 0 for all £ > T" and the second inequality follows from equation (2.2.13). So
now by choosing R to be sufficiently large and setting Y = 0 for s > R we get

0o R 0o
E/ |YS€—YS|2ds:E/ |Y;—y;,|2ds+E/ Y — Y, |*ds
0 0 R

" . (2.2.16)
:E/ |Y;—YS|2ds+E/ Vi’ ds < €/2+¢€/2 =€
0 R

where the the inequality follows from equation (2.2.15) and (2.2.14).(First we choose an
R large enough and we already know that equation (2.2.15)) is true for all R > 0

Now since Y is simple and because it vanishes for s > R, there is a finite partition
0=s5y< 581 <+ -5, <R with

Y= &ol(w)lioy(s +Zﬁsjl W) 4,55](8), 0 < s <o0

where each &, is measurable with respect to Qsj = FTS], and bounded in absolute value
by a constant K. Now reverting to the original clock we observe that

)(wfE = Y;f:—At = €O(W)1{0}(t + At) + Z gsj—l(w)l(sjflysj](t + At)? 0<t<oo

j=1
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Also note that using the same argumentation as before(using (2.2.13)) we an show that
sj—1 <t+ Ay < s is the same as Ty, , <t < T}, and hence rewrite X as follows

Xi = &o(w)Lgoy(t JrZSSJ1 7,)(t), 0 <t < oo

Now recalling that a random variable Z is Fr measurable if and only if Z1i7<;y is a F;
measurable random variable for all £ > 0 Now since &, is «7:Tsj we can conclude that
&s, Lir, <ty is JFi measurable and therefore we have that &, _, Lr,  <olin, 20lin, >0 =
§sj711(Tsj_1,Tsj] € F; as the L.H.S is a product of F; measurable functions since T, is a

F; stopping time. We have

T T
E/ 1XE — X, [2dA, gE/ X6 — X, 2d(A, + 1)

= E/ ‘YA +t YAt+t| d At+t / ‘YE Y| dS
SE/ Y~ Y, |?ds < ¢
0

In order to complete the proof we need to show that X€ is a simple process. For this we
refer the reader to [12].
O

Proposition 2.2.9. (Proposition 3.2.8 Shreve) The set Ly of simple processes is dense
wn L with respect to the metric of Definition 2.2.1

Proof. Take A = (M) in Lemma 2.2.8 O

In the next section we will give the most important properties of the Stochastic
integral, many of which are used in the theory of stochastic differential equations. The
presentation style and the results are from [12].

2.2.2 Construction and Elementary Properties of the Stochas-
tic Integral

We have already defined the stochastic integral of a simple process X € Ly. Let us list
certain properties of the integral : for X,Y € £y and 0 < s <t < oo we have

Iy(X) =0, as. P (2.2.17)

E[L(X)|F.) = L(X), as. P (2.2.18)
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E(I, —E/ X2d( (2.2.19)

11(X)] = (2.2.20)

E[(L(X) - L(X) [/ x24 ] (2.2.21)
[(aX + BY) = al(X) + BI(Y); o, B €R (2.2.22)

Properties (2.2.17) and (2.2.22) are obvious for simple integrands and follows directly
from the definition of stochastic integral of simple integrands. Property 2.2.18 follows

from the fact that for any 0 < s <t < oo and any integer ¢ > 1, we have in the notation
of (2.2.4),

E [é-i(Mt/\ti+1 Mt/\t ) :| - 62( S/\t2+1 - MS/\ti)J a"S P

which can be verified easily using the properties of conditional expectation for each of
the the three cases: s <t;,t; < s <t;y; and t;;1 < s

For example when s < t; we have

B [E [éi(Mt/\tz‘H - Mt/\t') } ‘FS} =E [ng [(Mt/\tiﬂ -
- E [6@ [( tit1 Mt ) f ]

The other two cases can be proved similarly.

J 7]
F] =0= SZ( SALi+1 Ms/\tl)

Moreover it follows from construction of the stochastic integral of a simple process as
a martingale transform that it is continuous and hence I(X) = {[,(X),F;,0 <t < oo}
is a continuous martingale. Now with 0 < s < ¢t < oo and m and n chosen such that
tmo1 < s <t,andt, <t<t, 1, we have the following

E[(L(X) = I(X))* | F]

- F <5m1(th — Mj) + izl&(th — My,) + §u(M; — Mtn)> 2 | Fs
|0~ 0P+ S 0 - M 0~ V1)
oo, e, - cor v
= E|&_, (M), — (M),) + i&? (M), = (M),) + & (M), — (M)y,) Ifs—
=B Ut X2d(M —
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Where we have used the following properties of square integrable martingales for 0 <
t<u<w

1. E[(M, — M,)*|F] = E[M? — M2|F)
2. BE[M?— M2F]=E[(M), — (M),|F]

This proves (2.2.21) and establishes the fact that the continuous martingale is square
integrable (by putting s = 0 in (2.2.21) and then taking expectations and recalling
that the quadratic variation is a continuous process and hence bounded and therefore
integrable on all compact sets )

And its quadratic variation is given by

(T(X)), = / X2d(M),

because quadratic variation of 7(X) is the unique (up to indistinguishability) stochastic
process (I(X)) such that

(I(X); - <I(X)>t)t20 is a martingale

and since

E|I(X)?-I1(X)?2~ [ X3d<M>u|]:s} =0, the result follows.

Lemma 2.2.10. Let W = {W,, F;;0 <t < oo} be a standard , one-dimensional Brow-
nian Motion , and let T be a stopping time of {F;} with ET < oo. Then the following
Wald’s identities hold

E(Wr) =0 and E(W2) = E[T]

Proof. Let T be a stopping time with respect to the filtration {F;}. For a fixed
0 <t<oo,tATis alsoa Fi-stopping time(elementary fact). Since W is progres-
sively measurable(sample paths of Brownian motion are continuous almost surely and
adapted), Winr is Fiar-msb and hence Fi-msb.

Since (W2 —t)¢>o is a martingale, it follows from the optional stopping theorem that

E(W7,,) =E(T An).
This implies

m,n— 00

E((Wrpn — Wipm)?) = E(T An) — E(T Am) 0.

This shows that (Wza,)n>1 is an L2-Cauchy sequence and so Wra, — Wy in L2
Hence, in particular, Wya, — Wy in L! and so

n—o0

E(WT/\n) — E(WT)
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Obviously taking n — oo we get lim, o E [W3,,] = lim, o E[T An] = E[T]
where the last inequality follows from the monotone convergence theorem. Note that
even thought we show this for n € N, the same proof works if we chose a sequence
(tn)nen such that ¢, — oo as n — oo And therefore we can conclude

B W3] - B[7]

Also by the optional sampling theorem E [W;\r] = E[Wy] = 0 and L? convergence
implies convergence in L; we have lim; o, E [Wirr] = E [Wr] which yields

E[Wz] =0
O

Lemma 2.2.11. Let W = {W,, F;;0 <t < oo} be a standard , one-dimensional Brow-
nian Motion, let b be a real number and let T, be the first passage time to b. Show that
for b # 0 we have that E[T,] = 0o

Proof. (Proof by contradiction) Recall that the Brownian passage time T}, is defined as
T, =inf{t > 0: W, =0b}

If E[T}] < oo then by Lemma 2.2.10(Wald’s identity) E [Wr,] = 0 but by the definition
of T}, we have that E [Wrg] = E[b] > 0(Contradiction!!!). And hence we have to have
that E [T}] = oo O

2.2.3 Characterization of the Integral

Suppose that M = {M,;, F;,0 <t < oo} and N = {N;, F;,,0 < t < oo} are in M§, and
take X € L*(M),Y € L*(N). Then we will show that [M(X) := fot X dM,, IN(Y) =
fot Y,dNy are also in M§. We have already seen that

) = [ an, o= [ v,
0 0
We now propose to now establish the cross variational formula
(IM(X), IV(Y)) = /t X, Y, d{M,N),; t >0,P as (2.2.23)
0
If X and Y is simple its is straightforward to show that that for 0 < s <t < oo we have

E[(IMX)-1MX) (YY) -1)Y))|F] =E [/ X, Y, d{M, N)u\]-"s} P as
(2.2.24)
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S

CIJ

(2.2.24) is equivalent too (2.2.23) . We first show that (2.2.24) = (2.2.23).

B [(1(X) = L C0O) (1Y) = I (V) | 7]
= E[MX)E(Y) - LX) L(Y) - LN (X)L (Y)+IN Y)IgM(X) | ]
= E [ (X)) ‘ LN (X)| 7]

— LX) = LX) (Y) +
E LML Y)|F] - LWE [YX)|F] - LX) E [LY(Y)IF ]+IN(Y)1 (X) =
) = I (X)

s

E[MX)EY)F] - LX) LNX) = LN OLNY) + LY (V)L (X)
= E[IM(X)IN(Y) - I (X)L (Y)|F]
(2.2.25)
Therefore from (2.2.24) we have

t
JEWQWNm—wwwﬁm—/XMMMNMA
Now if we assume that
t
(IM(X), IV (Y)), :/ X Yyd{M,N),; t>0,P as
0

then recalling that the quadratic variation (I™(X), IV (Y')); is the unique (upto indistin-
guishability ) process which makes (IM(X), IN(Y) — (IM(X), IN(Y));)¢>0 a martingale,
we can conclude that (2.2.24) is equivalent too (2.2.23)

Now it remains to extend the result to the case when X € L*(M),Y € L*(N). In
order to do it we will need the following propositions. The following result is due to
Kunita and Watanabe(see [18])

Proposition 2.2.12. (Proposition 3.2.14 Shreve) If M|N € M5, X € L*(M),Y €
L*(N) then a.s

t t 1/2 t 1/2
/ | X,Y,|de, < (/ de(M}s) (/ de(N>S> 0<t<oo
0 0 0

where &, denotes the total variation of the process € = (M, N) on [0, s]

Proof. According to problem 1.5.7(iv), on page 31-32 in [12], £(w) is absolutely con-
tinuous with respect to ¢(w) = 3 [(M) + (N)] (w) for every w € Q with P(Q) = 1
and for every such w, the Radon-Nikodym theorem implies the existence of functions
fi(,w) 1 [0,00) — R,i = 1,2, 3, such that

(M /flSWdl/Js( : /fgswdws w)
M@ZWWMMZAE@MW&MOS<w
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Note that fi, fo > 0 but f3 is not necessarily positive. In order to see this recall that if
V is a finite variation process then the total variation of V given by S can be written

as the sum of two increasing functions as

Sy = A} + A2
where as V can be written as

V= Ay - A7
where A! and A? are defined as

SY +V; SY -V

2

Al = and A? =

In the context of this equalilty since we can write &(w) = Al(w) + A2(w) where both
Al(w) and A%(w) are both non-negative and increasing. Now since &(w) is absolutely
continuous with respect to 1 (w) so is A} (w) and A?(w)(since when v;(w) = 0 then so is
& (w) and hence A!(w) and Al(w)). Now Radon Nikodym theorem implies the existence
of a densities fi(w) and f5(w) such that

/f4swdws( ) and AZ(w /f5$bdd’¢13 w)

and moreover for the total variation process ft(w) we have

o) = [ lswvte)

Hence we can conclude that

V= 6 (w) = Al - A /h )ty (w /ﬁmmw) -

:Aumwkﬁ@ww%@

Now this implies that the f3(s,w) defined above is given by the difference of the
densities fy(s,w) and f5(s,w), that is

fS(Saw) = f4(8,td) - f5<S,OJ)
Similarly & (w) = A}(w) + A2(w) for all ¢, w implies

fﬁ(svw) = f4(s,w) + fS(va)
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Consequently for o, 5 € R and w € Qag C () satisfying P(Qaﬁ) =1, we have
0 < {(aM + BN)i(w) — (aM + BN),(w)

= / (a?fi(s,w) + 2aB f3(s,w) + B fa(s,w)) dips(w); 0<u<t<oo

Now obviously this can happen only if , for every w € Qag, there exists a set Tps(w) €
B([0, 00)) with [, o) di;(w) = 0 and such that

o2 fi(t,w) + 208 f3(t,w) + Bfa(t,w) >0 (2.2.27)

holds for every t ¢ Ta5< ).Now let 0 := Naseo Qup and T(w) = Na.peq Top(w) so that
=1 fT dipy(w) = 0;Vw € Q . Fix w € Q then (2.2.27) holds for every t ¢ T(w)
and every pair ( ,B) of rational numbers and thus also for every t ¢ T'(w), (o, 3) € R2

In particular,

?| X ()P filt, w) + 20| X (W) Ye(w) || f3(t, w) [+ Ve (w) [ fo(t, w) = 03V ¢ T(w)

Integrating with respect to di;(w) we obtain

t t t
a2/ |Xs\2d<M>s+2a/ ]XSYS||f4(s,w)—f5(s,w)|dws+/ Vi[2d(N)s > 0: 0 < t < 00
0 0 0
almost surely. And hence we have
t t t
042/ ]X5]2d<M)S+2a/ | X Ys|(fa(s,w) + f5(s,w)) dws—i-/ IY,|?d({N)s > 0; 0 <t < o0
0 0 0
and therefore
t t t
aQ/ | X |2d(M), + 204/ | X Y5 fo(s, w)dips +/ [Y,|2d(N)s > 0; 0 < t < o0
0 0 0
and hence
t
a2/|X5|2d( +2a/|XY|§8 /|Y|d s >0,0<t<co
0

Now noting that the equation above is a quadratic equation in the variable «,in order

to ensure that its aways positive , the discriminant has to be less than zero and hence

/ XY, < ( / t|Xs|2d<M>s)l/2 ( / tm|2d<N>s)

we have
1/2
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Lemma 2.2.13. (Lemma 3.2.15 Shreve) If M, N € M5, X € L*(M) and {X™}>, C
L*(M) is such that for some T >0

T
lim X" — X, [2d(M), ; a.s P

n—o0 0

then
lim <I(X(n))7N>t = <I(X)7N>t

n—oo

Proof. Problem 1.5.7(iii) on page 31-32 in [12] implies for 0 <¢ < T
T
[(1(X™) = 1(X), NP < (I(X™ = X))o(N); < / X = XuPd(M)y - (N)7
0

But when we take limits , the last term on the right is zero and hence the desired result

follows immediately by the sandwich theorem O]

Lemma 2.2.14. (Lemma 3.2.16 Shreve) If M, N € M$ and X € L*(M) then
¢
(IM(X),N), = / X d(M,N),; 0 <t < oo a.s. (2.2.28)
0

Proof. According to Lemma 2.2.8, there exists a sequence {X ™}, of simple processes
such that

T
sup lim E/ |IXW — X, [2d(M), =0
0

T>0 n—oo

and hence consequently for each T > 0, a subsequence {X (M} can be extracted for which

T
lim / X0 X, [2d(MYy = 0
0

n—oo

But since (2.2.23) holds for simple processes, so we have
~ t ~
(M (X™), NY, = / KO A(M, Ny 0 <t < T as.
0

Now letting n — oo in the equation above Lemma 2.2.13 makes the L.H.S equal to
(I(X), N

Now in order to show that the R.H.S converges to the right limit it is sufficient to
show that

lim =0
n—oo

t t
/ X™a(M, N, — / X, d(M,N),
0 0
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We have from the triangular inequality, the Kunita-Watanabe Inequality and the
assumption in the lemma that

t t
lim / (5(5”) —Xu> d(M,N),| < lm [ |X™ - x,|d(, N,
n—oo 0 n—oo 0
t . t 9 1/2
< lim [ |[X{ - X,|d¢, < lim ( / m _ X, d(M>u> (N),

2

1/2
w_x, d<M>u) (N)r =0

T
< lim (/

where the second inequality follows from the fact that if (M, N), = A} — A? then
ét = A} + A? where A' and A? are non -decreasing processes starting at 0. And hence

we have the right side which concludes the proof. O]

Proposition 2.2.15. (Proposition 3.2.17 Shreve) Let M, N € M$, X € L*(M), and
Y € L*(N), then the equivalent formulas (2.2.23) and (2.2.22) hold.

Proof. Lemma 2.2.14 states that d(M, I™(Y)), = Y,d(M, N). Replacing N in (2.2.28)
by IN(Y), we have

IM(X), IV (Y)) = /Ot X, d(M, IV (Y)), = /Ot XY d{M,N),;;t>0 P as

O

Proposition 2.2.16. (Proposition 3.2.19 Shreve) Consider a martingale M € M and
a process X € L*(M). The stochastic integral 1™ (X) is the unique martingale which
satisfies

t
(p,N)y = / Xyd{M,N),; 0<t<oo, asP (2.2.29)
0
for every N € M§

Proof. We already know from (2.2.28) that ¢ = I'™ (X)) satisfies (2.2.29) for every N €
M. Subtracting (2.2.28) from (2.2.29) we have

(p—IM(X),N),=0; 0<t< o0

Since this is true for all N € MS, by setting N = ¢ — I'M (X)), we see that the continuous
martingale ¢ — I (X) has quadratic variation zero and hence ¢ = I™M(X).This is a
direct consequence of Lemma 1.5.12 in [12]. O

Corollary 2.2.17. (Corollary 3.2.20 Shreve) Suppose M € MS§, X € L*(M), and N =
IM(X). Suppose further that Y € L*(N). Then XY € L*(M) and IN(Y) = IM(XY)
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Proof. Because (N) = fot X2d(M),, we have

T T
E / X2Y2d(M), = E / X24(NY, < o
0 0
for all T > 0, so XY € £*(M). For any N € M5, (2.2.23) gives (we take Y = 1)

d(N,N) = X,d(M, N),, and thus

Xy = [ XX, Ny, = [ YN N, = (3R,

Now uniqueness of the representation of stochastic integral in Proposition 2.2.16 implies
IM(XY) = IN(Y) which completes the proof. O

Corollary 2.2.18. (Corollary 3.2.21 Shreve) Suppose M, M € M, X € L*(M) and
X e E*(M) and there exists a stopping time T' of the common filtration for these pro-
cesses, such that for P-almost everywhere w

Xint() (@) = Xinr() (W), , Miar(o) (W) = Mypargy(w); 0 < t < oo

Then )
Itj\/{T(w) (X)(w) = It]\//\[T(w) (X)(w); 0<t<oo, for P-a.e. w
Proof. See Corollary 3.2.20 [12]. 0

2.2.4 Integration with respect to continuous semi-martingales

Corollary 2.2.18, shows that stochastic integrals are determined locally by the local
values of the integrator and the integrand. This fact allows us to broaden the classes of
both integrands and integrators , a project we now undertake.

We begin by defining a continuous local martingale

Definition 2.2.19. Let X = { X, F;;0 < t < oo} be a (continuous) process with Xo =0
a.s.. If there exists a non-decreasing sequence {T,,}°°; of stopping times of {F;} such that
{Xt(”) = Xiar,, Ft; 0 < t < o0} is a martingale for eachn > 1 and P[lim,,_,, T,, = o0] =
1, then we say X is a (continuous) local martingale and write X € M (respectively ,
X € Melc if X is continuous).

Let M = {M;, F;;0 < t < oo} be a continuous local martingale on a probability
space (2, F, P) with My = 0 as., i.e M € M. Note that {F;} satisfies the usual
assumptions. Now we define an equivalence relation on the set of measurable, {F;}-
adapted processes.
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Definition 2.2.20. We denote by P, the collection of equivalence classes of all measur-
able, adapted processes X = {X;, F;,0 <t < oo} satisfying

P {/T X2d(M); < oo} for every T' € [0, 00) (2.2.30)
0

We denote by P* the collection of all progressively measurable processes satisfying the
condition in equation (2.2.30)

We shall continue our development only for integrands in P*. If almost every path
t — (M), of the quadratic variation process (M) is absolutely continuous, we can choose
integrands from the wider class P. Because M is in M®!° there exists a localizing
sequence {7,}5°, such that 7, T oo a.s. and for every n € N we have that (Mar, )i>o is

a continuous martingale. One can then define a sequence of stopping times o,, by
o, =inf{t > 0: M; > n}.

Almost sure continuity of (M;)¢>o implies that o, T 0o a.s. Hence we can conclude that
there exists a non-decreasing sequence of stopping times {5, }°°, given by S,, = 0, A 7,
such that S,, T oo a.s. P such that {M;g, Fi,0 < t < oo} is in M§.For X € P* one
constructs a sequence of bounded stopping times by setting

o) =n it {0 <1 < oo [ ' X2(M). () > 3

It is not hard to see that R, is a non-decreasing sequence in n since both the maps
n — n and n — inf{O <t < o00; fi X2(w)d(M)(w) > n} are non-decreasing. The
latter is non-decreasing because for m > n

{0 <t<oo: /Ot Xo(w)?d{M)(w) > m} C {0 <t<oo: /Ot X,(w)*d(M)(w) > n}
implies
in {0 <t<oo /Ot X, ()2 d(M) () > m} > inf {0 <t<oo /Ot X, (w)?d(M) (w) = n}

It is also not so hard to see that R, 1 oo a.s since the map n + n increases to oo as
n — 0o. On the other hand we know know that the map

n +— inf {0 <t < o0; /Ot X2(w)d{M)(w) > n}

is non decreasing and we have the following two possibilities
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1. Either ¢t — fot X2(w)d{M)4(w) is bounded by some finite M.In this case we have
that for n > M, R,, = oo since the infimum of the empty set is infinity.

2. If there is no such finite M, right continuity of the map ¢ — [ X2(w)d(M),(w)
implies that for all n € N there exists an increasing sequence of times (t,)nen

where ¢, < oo such that [;" X?Z(w)d(M)s(w) > n and fot”_l X2(w)d({M)4(w) < n.

By equation (2.2.30) it follows that ¢, — oo and hence

t
inf {O <t<oo: / X, (w)?d{M)(w) > n} — 00
0
as n goes to infinity which implies that R,, T oo a.s P. Forn > 1,w € (), set
T, (w) = Rp(w) A Sp(w), (2.2.31)

Mt(n) (w) := Mipr, (w), Xt(n) (W) == X (W) L1, (w)>1;0 < t < 00 (2.2.32)

Then M ™ € MS since stopped square integrable continuous martingale is again a square
integrable continuous martingale by the Doob’s optional sampling theorem (martingale
variant of Problem 1.3.24 (i) in [12] ).

Also X™ ¢ £*(M™) since

T T tATy,
E/ X1z, )= d(M™), = E/ Xtz d{M)ipt, = E/ Xed(M)y <n
0 0 0

because T, < R, and by the definition of R,. Obviously the integral ™ (X™) is
well defined as a result of the construction above. Corollary 2.2.18 implies that for
1<n<m,

LM (XY = M(XM)Y for 0 <t < T, (2.2.33)

so we may define the stochastic integral as
LX) :=IM"(X™)on {0<t<T,} (2.2.34)

This definition is consistent, independent of the choice of {S,}>°, and determines a
continuous process( this part is obvious) which is a local martingale.

Proposition 2.2.21. (Proposition 3.2.24 Shreve) Consider a local martingale M €
Melc and a process X € P*(M). The stochastic integral IM(X) is the unique local
martingale ¢ € M which satisfies equation (2.2.35) for every N € M5 (or equivalently
for every N € M¢&le)

t
(¢, N, :/ Xod(M,N)y: 0<t<oo, as. P (2.2.35)
0
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Proof. In order to prove this proposition we refer the reader to the construction of
the stochastic integral with respect to a continuous local martingale for processes X €
P*(M). Using the same notation we have that X™ € £*(M) and M™ € M for each
n € N and hence by equation (2.2.29) it follows that for all N € M§ we have

t t
0

0 (2.2.36)

t ATy
= / Xulin, >3 d{(M,N), = / Xy d{M,N),
0 0

Now from the construction of the stochastic process, in particular equation (2.2.34) we
have that
IMX) =M (X)) for 0< ¢t < T,

and hence by together with (2.2.36) we have the following for 0 <t < T,

tATn
<IM(X)>N>t: <[M<n)(X(n))7N>t: Xud<MaN>u
0
and since by Proposition 2.2.16 the uniqueness of 1 (X™) to be the only martingale
to satisfy equation (2.2.29) for every n € N implies that I (X) is the unique local
martingale which satisfies (2.2.29) for every t € R, upto T, but as T,, T o0 a.s. P ,we
have the result for all t € R,.. [

Proposition 2.2.22. (Problem 3.2.25 Shreve) Suppose M, N € M and X € P*(M)N
P*(N). Show that for every pair (e, B) of real numbers we have

TeMEBN (X = aIM(X) + BIV(X)

Proof. Since M, N € M¢®°° it follows that aM + SN € M and hence it follows
by Proposition 2.2.21 that I*M*N(X) is the unique stochastic integral which satisfies
(I°MHON(X), Z), = [ Xud{aM + BN, Z),; 0 < t < oo, as. P for every Z € Mol
Now using the bi-linearity of the quadratic co-variation process and the linearity of the

riemann-stieltges integral
t t t
(), 20 = [ Xadtadd + 3N, 20, = [ XudtaM. 2y, + [ Xud(9N.2),
0 0 0

= [ XM, 204 5 [ XN, Z)0 = a1 (X), 2+ B (X), 2

= (al™(X) + BIY(X), Z)
(2.2.37)
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and therefore we conclude that for all Z € M¢&loc
(IMHPN(X), Z)y = (oI (X) + BIN(X), Z)

Proposition 2.2.21 immediately implies that I*M+AN(X) = oIM(X) + BIV(X) and
hence the proof is complete.
[

Lemma 2.2.23. (Proposition 3.2.26 Shreve) Let M € Me {X (M} C P*(M) and
suppose that for stopping time T of {F;} we have lim,, f0T|Xt(n) — Xi|2d(M); = 0 in

probability. Then
t t
/ XMdm, — / X,dM,
0 0

Proof. See [12]. O

sup —0

0<t<T

i probability as n — oo.

Lemma 2.2.24. (Problem 3.2.27 Shreve) Let M € M%% and choose X € P*. Show
that there exists a sequence of simple processes {X(”)}ZO:1 such that for every T > 0

n—oo

T
lim/ X" — X, Pd(M), =0
0

and
lim sup [L(X™) — L(X)|=0

n—oo OStST

holds a.s P.If M 1is a one dimensional standard Brownian Motion, then the preceding

holds with X € P

Proof. The proof is due to S. Dayanik. With X € P*(M), we construct a sequence
of bounded stopping times {7,,}5°(see equation (2.2.31) in the section discussing the
construction of stochastic integral with respect to continuous local martingales) such
that each X € £*(M™) and therefore can be approximated by a sequence of simple
processes { X"k} C L in the sense

T
lim E / X x M 12a(M ™), = 0 VT < oo
0

k—o00

by Proposition 2.2.9. Let us now fix a positive T' < oo . By the equation just above we
can find some m,, such that

T
n,Mn n n 1
B [ X0 - PPy <
0
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We claim that .
/ X)X PA(M ™Y, 550 as n— oo
0

To show this we first observe that for every n, Xt(n) = X, and (M™), = (M), for
0<t<Ton{T <T,}. Therefore for every fixed € > 0, we have

T
P l / X)X Pd(M), > e]
0
. i
<P H/ X)X Pd(M), > e} N{T <T,}| + P[T > T,]
0 i

- -
=P H/ |x ) xRy, > e} N{T <T,}| +P[T > T,
0 J

T
<P H/ | x ) — XM PR2a)y, > e} +P[T>T,
0

]' r n,m n
< —E/ | x ) — XM PRPaM™Y, + PIT > T,
€ 0

1
< —+4+P[T>T,]
ne

for every n. Since lim,,_,o, P[T,, < T| = 0(because T,, T oo a.s) and the inequality above

is true for every € we conclude

T
X - XA, 5 0 s 0 oc
0

We denote the simple process X (™) by YT to emphasize its dependence on 7.
Now the equation just above and Proposition 2.2.23 together imply, that the following

sequences of random variables

T
/ Y, = X RA(M),, sup [L(Y ) — L(X))]
0

0<t<T

converge to zero in probability and hence there exists a subsequence for which the
convergence takes place almost surely. Having done this construction for a fixed T', we
use a diagonalization argument , as in the first paragraph of the Proof of Lemma 2.2.5,
to obtain a sequence which works for all 7. In case that M is a Brownian Motion we
use Proposition 2.2.6, rather than Proposition 2.2.9 in the construction. O

Lemma 2.2.25. (Problem 3.2.28 Shreve) Let M=W be a standard Brownian Motion
and X € P. We define for 0 < s <t < o0

G0 = [ X~ 3 [t 600 = ) (22.39)
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the process {exp (;(X), Fi,0 < t < oo} is a supermartingale, it is a martingale if X € Ly

Proof. We first show that for X € Ly ,{exp((X),F;,0 < ¢t < oo} is a martingale.
Let {&,}52, be a sequence of random variables such that sup,,|&,(w)|. We only show
the martingale property since adaptedness is obvious and integrability follows from the
uniform boundedness of {,}22; and integrability of the exponential of brownian incre-
ments.

Hence we need to show that

And since
E[G(X)|Fs] = exp ((X) E [exp ¢ ()] F]

it is sufficient to show that

Elexp ¢ (2)[F] =1
Now we define V; = &(M,,, — My,) — 362 (tig1 —1:),Vs = &no1 (M, — M) — 162 (6 —
s) and V; = &, (M, — M,,) — $&2(t, — t) where 0 < s <t < 0o , m and n are chosen so
that ¢, 1 < s < t, and t,, <t < t,41. Using the definition of (f(X) and the definition

of the stochastic integral of a process X € Ly w.r.t to an integrand in M we have

n—1

exp (V;) exp (Z Vi> exp (V;)

i=m

E Fs

=K

B(E[exp (V2| (H B[B[exp <vi>rftin) B (Bl (V)17,]| 7

We conclude by showing that all the conditional expectations above are 1. We have
that

Bloxp (VI = B [oxp (0100, = M) = 565 (0 = 9) )17

where &,,_1 are Fg measurable and M, — M is independent of F; since M = W is a
standard Brownian motion.

To prove E[exp (Vi)|Fs] = 1, consider a sigma-algebra G, a random variable U
measurable with respect to G (such that U? has finite exponential moments) and a
random variable V' independent of G, centered normal with variance s, then the goal is
to show that

EM|Gl =1  M=e"V 20,

That is, since U is measurable with respect to G, E [M | G| = A(U), where

Alw) = E [euv—%u28|g] .
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One sees that
2

A(u) = e 2" E [e"V|G] = e s [e*V],

where the last equality stems from the independence of V and G. Finally, if V' is standard
normal with variance s, then E [e"v} = e2""* hence A(u) =1 for every u.

In our context U = &,,—1 , V = M,;, — M, and G = F; and the variance of V' is t,,, —
The exact same argument works for the conditional expectations of V; with respect to
the filtration F;,and V; w.r.t the filtration F;,. Now and Fatou’s lemma implies that
{G, Fi,0 <t < oo} is a supermartingale. Indeed we have

EG(X )\F]
E{exp(/XdW ;/;Xﬁdu)

el s [ s [ s
- s ([ o [
)

< lim E [exp (/ XMaw, —5/ (X2 ) | F,
n—oo
= lim eXp(/ XmMaw, ——/ (X")2du)
n—oo
= exp (lim / XMaw, — = / (X5">)2du)
n—oo J 2 Jo

S 1 S
= exp </ X dW, — —/ ngu> = (,(X)

0 2 Jo

This completes the proof 0

Lemma 2.2.26. (Ezercise 3.2.30 Karatzas and Shreve) For M € MY X € P*, and
Z an Fg-measurable random variable , show that

t t
/ Z X, dM, = Z/ X, dM,; s <t < oo, a.s. (2.2.40)
Proof. First note that for the stochastic integral fs ‘7 X.dM, to be well-defined we need

that ZX € P*ie P [fOT ZEX2A(M); < oo] = 1 for every T € [0,00). Suppose that we
have proved (2.2.40) for bounded Z then we have that for Z, = Z1;z<p

t t
/ 7, XydM,, = Zk/ X dM,; s <t < oo, a.s. (2.2.41)
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Now in order to compute limj_,q f; Zp X dM, we use the fact that Z2X? < Z?X2, for
all £ € N with fOT Z2X2d(M), < oo we can apply the Lebesgue dominate convergence
theorem to conclude that

T T
lim [ |Zu X, — ZX,|*= / lim | Z, X, — ZX;|*= 0 as.
n—oo 0 0 n—oo

And hence the convergence also holds in probability and therefore we can apply Lemma
2.2.23 to conclude that

sup —0as k — o0

0<t<T

t t
/ Zp X sd My —/ Z X dMg
0 0

in probability for the deterministic stopping time 7" > 0. And therefore there exists a
subsequence (ky)nen such that

sup — 0 a.s. asn— o

0<t<T

t t
/ L, Xsd M, —/ Z X dM,
0 0

Now taking limits in equation (2.2.41) as n — o0

t t
lim | Zy, XudM, = lim Z, / X, dM,

n—00 s n—0o0

we get
t t
/ ZXudMu:Z/ X, dM,

Now in order to complete the proof we need to show that the result holds for bounded
Fs-measurable random variable Z. For the sake of notational simplicity we prove it for
s = 0. Proposition 2.2.21 tells us that for any continuous local martingale N we have
the following

(IM(ZX),N); = /Ot ZX,d{M,N), = Z/Ot X, d{(M,N), = Z{I"(X),N), (2.2.42)

The second equality follows from the fact that the integral is computed w-wise, we can
pull Z(w) out of the integral. Since by definition

t
(IM(X),N), = </ XudMu,N> = (¢, N),
0 t
where we assume ®; = f; XudM, Using the local martingale analogue of Problem
1.5.14 in Karatzas and Shreve [12] we have that for X,Y € M®%°¢ and a partition
IT = {to,t1, -, tm} of [0,%] we have that

m

”}[i”rno (th — thil) (Y},c — Y}kfl) = (X,Y), in probability
—>
k=1
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Hence it follows by the definition of quadratic covariation that

||1111|fgo; (Zth - Zthfl) (Ytk - Yt,H) = (ZX,Y), in probability .
Moreover we have that if a sequence of random variables G,, — G in probability and F
is another random variable on the same probability space then F'G,, — F'G in probabil-
ity. In the context of this problem we have that Z > " | (th — thq) (Ytk — }/tkfl) =
S (Z2Xy, — ZXy, ) (Yy, — Yy, ) such that Z>°" (X, — X, ) (Vi — Vi, ) con-
verges to Z(X,Y), in probability whereas > ;" | (Zth — Zth_l) (Ytk — ng_l) converges
to (ZX,Y); in probability and since limit in probability is almost surely unique we get

Z(X,Y) = (ZX,Y) as P Y0<t<oo

2.2.5 The Change of Variables Formula

One of the most important tools in the study of stochastic processes of the martingale
type is the change-of-variable formula or Ito’s rule as it is better known. It provides
an integral-differential calculus for the sample paths of such processes. Let us consider
a basic probability space (€2, F, P) with an associated filtration {F;} which we always
assume to satisfy the usual conditions.

Definition 2.2.27. A continuous semi-martingale X = {X;, F;0 < t < oo} is an
adapted process which has the decomposition P a.s.,

where M = {M,;, F;0 < t < oo} is a continuous local martingale and B = {By, F;;0 <
t < oo} is the difference of continuous, nondecreasing adapted proceses { A, F1;0 <t <
o0} :

Bi=Af—A; 0<t<oo (2.2.44)
with AY =0, P a.s.

It6’s rule states that a "smooth function” of a continuous semi-martingale is a con-
tinuous semi-martingale and provides its decomposition. We state the theorem without

proof

Theorem 2.2.28. Let {M, = (M",.... M), F;:0 < t < oo} be a vector of con-
tinuous local martingales, {B; =: (Bt(l), . ,Bt(d)),}"t;() <t < oo} a vector of adapted
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processes of bounded variation with By = 0, and set X; = Xo+ My + B;;0 < t < o0,
where Xy is a Fy measurable random vector in RY. Let f(t,z) : [0,00) x R — R be of
class CY2. Then , a.s P,

_ ‘o ~ [0 ()
$10:00) = 500,50 + [ Gert6. X+ 3 [ 5056, X905

t 8 ;
+Z/O 5 fs, X )dM® (2.2.45)

X

Lemma 2.2.29. (Problem 3.3.12 Karatzas and Shreve) Suppose we have two continuous

semi-martingales
Xt:X0+Mt+Bt, K:%+Nt+0t, ,O§t<oo

where M, N € M®%%¢ and B and C are adapted continuous processes of bounded variation

with By = Cy = 0 a.s. Prove the integration by parts formula

t t
/ X,dY, = X;Y; = XoYy — / Y,dX, — (M, N),. (2.2.46)
0 0

Proof. Using the linearity of the integrator in the stochastic integral we get

d(XY) = id((X +Y)P - (X -Y)) == (dX+Y) —dX -Y)?) (2.2.47)

AN

A simple application of Ito’s lemma gives us
AX+Y)P=2X+Y)d(X+Y)+d(X +Y)

and
d(X — Y)2 =2(X -Y)d(X -Y)+dX -Y)

Now from (2.2.47) we get
1
d(XY) = 1 RIX+Y)AX +Y)+d(X -Y)+2(X -Y)d(X -Y)—d(X -Y))
which simplifies to

1 1
d(XY) = 7 (4XdY +4YdX) + 7 (X +V) — (X = Y))
= XdY +YdX +d(X,Y) = XdY +YdX + d(M, N)
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Note that (X,Y) = (Xo+ M + B, Yy + N + C) = (M, N) using the bi-linearity of the
quadratic variation , the fact that the quadratic co-variation of a finite variation process
and a martingale is zero and the quadratic covariation of two finite variation processes
is zero Now integrating the L.H.S and the R.H.S from 0 to ¢ we get

t t
Xt}/t:XO}/b_F/ Y;dXs—i_/ Xsdi/;+<M,N>t
0 0

[
Lemma 2.2.30. (3.3.25 Exercise Shreve) With W = {W,, F;;0 < t < oo} is a standard

one dimensional Brownian Motion and X 1is measurable, adapted process satisfying
T
E/ | X )™ dt < o0 (2.2.48)
0
for some real numbers T > 0 and m > 1, then

T 2m
E / X dW,
0

Proof. Applying 1t6’s lemma to the continuous semi-martingale (submartingale) |M

T
§(m(2m—1))me1E/ | X, dt (2.2.49)
0

|2m
we get

t t
M>™ = 2m / M2 YdM, 4+ m(2m — 1) / MZ"2d(M),
0 0

Taking expectations and reapplying Itd’s lemma to M?™~2 M?m=4 ... M?, using Fu-
bini’s theorem to interchange the integral and the expectation and using the fact the

expectation of the stochastic integral(which is a martingale starting at zero) is 0 we get
t t
E [Mfm} =2mkE {/ MfmldMs} +m(2m —1)E {/ MfmZd(Mﬁ}
0 0
t
— m(2m —1) / E [M2™2] d(M),
0
1 "1 -
= —2m(2m - 1) 2(2m —2)(2m —3)E M d(M),

_ :G) (2m).(2m — 1).(2m — 2). 1E// / )y
<

(m(zm = 1) B (7] = (m(zm - )" | A X?du)

Holders’s
<

[ (o

= (m(@2m —1)"t"'E K/ﬂt Xgmdu)

And hence we have the result O

(m(2m —1))"




48 Preliminaries

2.3 Introduction to Stochastic Differential Equations

In this section we will introduce the concept of strong solutions of stochastic differential
equations with respect to a Brownian motion. We will follow the presentation in the
book of (Karatzas and Shreve [12]) and provide some important results on existence and
uniqueness of SDE’s due to (It6 [9] and Yamada and Watanabe [10])

Let us start with Borel-measurable functions b;(t,z),0(¢t,2);1 <i <d,1 < j <,
from [0, 00) x R? into R, and define the (d x 1) drift vector b(t,x) = {b;(t, z)}1<i<q and

the (d xr) dispersion matrix o (¢, ) = {0;(t, x) }1<i<a. The intent is to assign a meaning
1<j<r
to a stochastic differential equation

dXt == b(t, Xt)dt + U(t, Xt)th (231)
written component wise as
dX] = bi(t, Xo)dt + Y o3;(t, Xp)dW{;  1<i<d (2.3.2)
j=1

where W = {W;;0 <t < oo} is an r-dimensional Brownian motion and X = {X;;0 <
t < oo} is as suitable stochastic process with continuous sample paths and values in
R?, the solution of the the equation. The drift vector b(t, z) and the dispersion matrix
o(t,x) are the coefficients of the equation; the (d x d) matrix a(t,z) := o(t,z)o” (¢, z)

with elements

aij(t,x) ==Y oyt x)on(t,x); 1<ik<d (2.3.3)
j=1

will be called the diffusion matrix.

In order to develop the concept of strong solution, we choose a probability space
(2, F,P) as well as a r-dimensional Brownian motion W = {W,, F/V;0 < t < oo} on
it. We assume also that this space is rich enough to accommodate a random vector &

taking values in R?, independent of F!V, and with the given distribution
u(T) = Pl eT]; T e B[R
We consider the filtration
Go=c)VFE =0, W,,0<s<t); 0<t<oo
as well as the collection of null sets

N ={NCQ 3G € G, with N C G and P(G) = 0}
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and create the augmented filtration
Fi=0(GUN), 0<t<oo; Fu=0 (U .7-",5) (2.3.4)
>0

Obviously {W;,G;;0 <t < oo} is an r-dimensional Brownian motion, and then so is
{Wy, Fi;0 <t < oo}(see Theorem 2.7.9 in [12] ). Note that the filtration thus satisfies
the usual conditions(see Theorem 2.7.7 in [12]).

2.3.1 Strong Solutions of SDE

Definition 2.3.1. A strong solution of the stochastic differential equation (2.3.1), on a
given probability space (2, F, P) and with respect to the Brownian motion W and initial
condition &, is a process X = {X;;0 <t < oo} with continuous sample paths and with
the following properties:

(i) X is adapted to the filtration Fy of (2.3.4),
(1)) P[Xo=¢ =1,
(iii) P [f(f{|bi(s,XS)|+UZ»2]-(3,XS)}ds < oo]

(iv) the integral version of (2.5.1)

¢ ¢
X = Xo +/ b(s, Xs)ds +/ o(s, X)dWg; 0<t< o0 (2.3.5)
0 0

or equation

' . ¢ Tt .
X9 = X(()z) +/ bi(s, Xs)ds + Z/ 0ij(5, X )dWY; 0<t<oo,1<i<d
0 = Jo
(2.3.6)

Remark 2.3.2. Note that the crucial requirement of this definition is captured in condi-
tion (i); it corresponds to our intuitive understanding of X as the output of a dynamical
system described by a pair of coefficients (b, o) whose input is W and which is fed by
the initial datum &. The principal of causality for dynamical systems requires that the
output Xy at time t depend only on & and the values of the input {W;0 < s <t} up to
that time. This principal finds it mathematical expression in (i)

Definition 2.3.3. Let the drift vector b(t,z) and dispersion matriz o(t,z) be given.
Suppose that, whenever W is an r-dimensional Brownian motion on some (Q, F, P),&
is an independent, d-dimensional random vector, {F,} is given by (2.5.4), and X, X are
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two strong solutions of (2.3.1) relative to W with initial condition § then P|X; = X,;;0<
t < oo] = 1. Under these conditions we say that strong uniqueness holds for the pair

(b, o).

In the early 1940’s K. It6(see [16] and [9]) proved a series of results on the existence

and uniqueness of strong solutions to stochastic differential equations with Lipschitz

drift and dispersion coefficients. I begin this program with a short help lemma:

Lemma 2.3.4. Suppose that the continuous function
¢
0<g(t) §a(t)—|—6/ g(s)ds; 0<t<T
0
with >0 and « : [0,T] — R integrable. Then
t
g(t) < alt)+ B/ a(s)eP=9ds 0<t<T
0

Proof. 1t follows from (2.3.7)

i (e_ﬁt /otg@ds) = (9“) o /0 t9<s>ds) e < aft)e

Integrating with respect to the variable ¢ we get

t t
eﬁt/ g(s)dsg/ afs)e Pods
0 0

and hence we can conclude

t t
/ g(s)ds < eﬁt/ afs)e P ds
0 0

and Gronwall’s inequality follows from (2.3.7)

(2.3.7)

(2.3.8)

]

Theorem 2.3.5. Suppose that the coefficients b(t, z), o (t, x) are locally Lipschitz-continuous

in the space variable; i.e.,for every integer n > 1 there exists a constant K, > 0 such

that for every t > 0, ||z|| <n,|ly|]| < n:
16(, ) = b, y) || + [lo(t, 2) — ot y)|| < Kn |z —yll.

Then strong uniqueness holds for equation (2.3.1)

(2.3.9)
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Proof. Let us suppose that X and X are both strong solutions defined for all ¢ > 0, of
(2.3.1) relative to the same Brownian motion W and the same initial condition &, on
some (€2, F,P). We define the stopping times 7, = inf{t > 0;||X;|| > n} for n > 1,
as well as their tilded counterparts and set S,, := 7, A 7,,. The almost sure continuity
of the the stochastic processes X, X (as a consequence of the assumption that they are
strong solutions) implies that lim, ., 7, = oo a.s P.and lim, ., 7, = 00 a.s. P. As a
consequence we have lim,,_,., S, = 0o a.s. P.

Since X and X are solutions to the SDE (2.3.1) they satisfy equation (2.3.5) and

hence we get
tASn R tASn R
Xis, = Xns, = [ (bl X) b K+ [ {olu X,) = o )aw,
0 0

Using the vector inequality [Jvy + - - - + vl|> < K2(Jor])® + -+ + ||ok]|?), the triangular
inequality ,the Holder inequality for Lebesgue integrals, the basic property of stochastic
integrals(2.2.24) and equation (2.3.9) we may write for 0 <t < T':
2
du}

) tASn
< 2°F { /
0

T tAS N 17
Z/ Uij(U,Xu) - Uz'j(u7Xu)dW15j)
0

E HXt/\Sn — Xins,

d
+22EZ

b(u, X,) — b(u, X,)

i=1 Lj=1
tASh B 2 tASh _ 2
< 4tE/ b(u, Xy) — b(u, Xy,)|| du+ 4E/ o(u, Xy) —o(u, X,,)|| du
0 0 t ) ;
< 4(T +1)K? / B||Xurs, = Kuns, | du
0

2
allows us to

Now a simple application of Lemma 2.3.4 with ¢(¢) .= F HXt/\Sn — Xmsn

conclude that {Xxg,;0 <t < 0o} and {X;ng,;0 < t < oo} are modifications of each
other and hence indistinguishable (Since X, X are strong solutions to the SDE in (2.3.1),
they are continuous almost surely ) Now letting n — oo we get that {X;;0 <t < oo}
and {Xt; 0 <t < oo} are indistinguishable and hence we have strong uniqueness.

O

Theorem 2.3.6. Suppose that the coefficients b(t, x),o(t,x) satisfy the global Lipschitz

and linear growth conditions

lo((t, 2)I* + llo (¢, @) " < K*(1+ ), (2.3.11)
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for every0 <t < 0o,z € R y € RY, where K is a positive constant. On some probability
space (Q, F, P), let & be an R¥-values random vector, independent of the r-dimensional
Brownian motion W = {W,, F}V;0 <t < oo}, with a finite second moment

E|€|? < oo (2.3.12)

Let F; be asin (2.3.4). Then there exists a continuous adapted process X = {X;, F;0 <
t < oo} which is a strong solution of equation (2.3.1) relative to W with the initial
condition £&. Moreover, this process is square-integrable: for every T > 0, there exists a
constant C', depending only on K and T such that

EIX|* <C+E|¢)e”; 0<t<T (2.3.13)

Proof. The idea of the proof is to mimic the deterministic situation and construct re-
: . : o . o)
cursively a sequence with successive approximations by setting X, = £ and

t t
XF =g+ / b(s, X{V)ds + / o(s, XMWy 0<t < o9 (2:3.14)
0 0

The processes {X*)}2° are obviously continuous and adapted to the filtration {F;}.
The hope is that the sequence {X*®)}2°  will converge to solution of the equation (2.3.1)

Before continuing let us first establish that for every T" > 0, there exists a positive
constant C' depending only on K and 7" such that for the iterations in (2.3.14) we have

2
E HXWH <O+ EEfP)e; 0<t<T, k>0 (2.3.15)

We first check that each Xt(k) is well defined for all ¢ > 0. In particular we must show
that for all £ > 0,

¢
/ (Hb(s,ng))H + Ha(s,Xf)W) ds <oo; 0<T <00
0
In light of (2.3.11) this will follow immediately if one demonstrates the following

2
sup E HXt(k) <oo; 0<T < o0 (2.3.16)

0<t<T

Equation (2.3.16) can be proved using induction. For k = 0 , it is a simple consequence
of (2.3.12). Now assume that (2.3.16) holds for some value of k. Proceeding similarly to
the proof of Theorem 2.3.5, we obtain the following bound for 0 < ¢ < T"

t
E HX§’““> < OB ¢+ (T + 1)K2/ (1+E||x®]) (2.3.17)
0
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which gives us (2.3.16) for k + 1. From (2.3.17) it follows

E HXt(k+1)

t
2 <C(1+EEP) +C/ E|X®| ds; o<t<T
0

where C' depends only on K and T'. Iteration of this inequality gives

(Ct)2 (Ct)k+1
TR

<C(1+E|g)) e

E HXt(k:H)

2
<C(1+ B {1 +Ct +

and thus we have shown (2.3.15) holds.
From (2.3.14) we have that X(kH) — X(k) = B; + M;, where

Bt.—/{bsX(k b(s, XN hds, M, := /{Ust))—U(s XE 1 aw,

Thanks to the inequalities (2.3.11), (2.3.15), the process {M; = (Mt(l) """ t(d)),}"t;O <
t < oo},is seen to be a vector of square-integrable martingales. Using a variant of the
Burkholder-Davis-Gundy-Inequality(see Problem 3.3.29 and Remark 3.3.30 on page 166
n [12] ) to we get

t
E [max 1M, } < AlE/ o(s, X)) = o(s, XPD)|* ds
0

0<s<
t
SAlKQE/ HXék) _ng_l)“QdS
0

where the last inequality is a consequence of (2.3.10). Again using (2.3.10) we get

t
BB < K* [ BX® - X0 ds
0

and therefore using |a + b|*< 2(|a|>*+|b|?) we get

t
E {max | 4D —X§k>||1 < L/ E|X® - XD ds; 0<t<T  (23.18)
0

0<s<t
Iterating the inequality (2.3.18) we get to yield successive upper bounds we get

Lt)*

L 0<t<T (2.3.19)

E {max | X+ — Xﬁk)||2} <o
0<s<t

2
where C* = maxo<;<r F HXt(l) — fH a finite quantity because of (2.3.15) and (2.3.12) .
Relation (2.3.19) and the Chebyshev inequality now give

k1) _ y®(2 < L L (4Lt)* _
P[gg?éHX XM >W} 40— k=12, (2.3.20)
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and this upper bound is a general term in a convergent series. From the Borel-Cantelli
lemma, we conclude that there exists an event Q* € F with P(2*) = 1 and an integer-
valued random variable N (w) such that for every w € Q* : maxo<;<7 HXt(kH) (w) — x® (w) H <

2=+ 'k > N(w).Consequently

mnax, HXt(Hm)(w) —x® (w)H <27% ¥m > 1,k > N(w) (2.3.21)
We see that the sequence of sample paths {Xt(k) (w);0 <t < T}2, is convergent in
the supremum norm on continuous functions, from which follows the existence of a
continuous limit {X;(w);0 < ¢ < T} for all w € Q. Since T is arbitrary, we have
the existence of a continuous process X = {X;;0 < t < oo} with the property that
for P-a.e. w , the sample paths X = {X®(w)}, converge to X(w), uniformly on
compact subsets of [0,00). Inequality (2.3.13) is an immediate consequence of (2.3.15)
and Fatou’s lemma. From (2.3.13) and (2.3.11) we have condition #ii) of Definition 2.3.1.
Conditions i) and i) are clearly satisfied by X. For condition iv) of Definition 2.3.1
refer to Problem 5.2.11 on page 290 in [12]. O

In the one-dimensional case the Lipschitz condition was relaxed considerably by
Yamada and Watanabe in 1971(see [10]). They proved pathwise uniqueness of solutions

which implies the existence of a unique strong solution via weak existence(see [19] and

20]).
Theorem 2.3.7. (Yamada and Watanabe 1971) Let us suppose that the coefficients of
the one-dimensional equation(d=r=1)
dXt = b(t, Xt)dt + U(t, Xt)th
satisfy the conditions
b(t, 2) — b(t, y)|< K(|lz —yl]) (2.3.22)
o(t,z) — ot y)|< h(lz —yl) (2.3.23)

for every 0 < t < oo and v € R,y € R, where K is a positive constant and we
assume that h : [0,00] — [0,00) is strictly increasing and concave with h(0) = 0 and

f((],e) (du/h?*(u)) = oo for every € > 0. Then strong uniqueness holds for equation (2.5.1)

Example 2.3.8. One can take the function h in this proposition to be h(u) = u® for
a>(1/2)

Proof. Because of the conditions imposed on the function h, there exists a decreasing
sequence {a, };2; C (0,1] with ag = 1, lim,, o @, = 0 and [ h™*(u)du = n for every
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n > 1. For each n > 1, there exists a continuous function p, on R with support in
(@n; an—1) so that 0 < p,(x) < (2/nh*(x)) holds for every z >0 and [;"~" p,(z)dz = 1.
Then the function

lz|  ry
= / / pn(uw)dudy; z € R (2.3.24)
o Jo

is even and twice continuously differentiable with |¢/ (2)|< 1 and lim, . ¥, (z) = |z|.
Furthermore the sequence {5 1 is non-decreasing. Now let us suppose that there are
two strong solutions XM and X of (2.3.1) with Xél) = X(SQ) a.s.

It suffices to prove the indistinguishability of X and X® under the assumption

/|0 X)|2ds < 00;0 <t < 00,i=1,2, (2.3.25)

otherwise, we may use condition (4i7) of Definition 2.3.1 and a localization argument to
reduce the situation to one in which (2.3.25) holds. We have

t t

A= x _x® = / {by(5, XD) — by(s, XO)}ds + / {0(s, X) — o(s, XP)}aw,
0 0

(2.3.26)

:/Otwg(As)[bl(s, WY — by(s, X ) ds+/ Ul ( XM = o(s, XP)]dWw,

+§/0 Un(A)[o(s, X)) — a(s, XEN)Pds
(2.3.27)

Now taking expectation and recalling that the expectation of the stochastic integral
is zero and as a consequence of assumption 2) the third integral is bounded above by
E [ l(A)R*(|As|)ds < 2t/n. We can therefore conclude that

1) — (2)

< KE|A|+t/n t>0,n>0

A passage to the limit as n — oo yields E|A;|< EfOt|As|ds; t > 0 and the conclusion
follows from Gronwall’s inequality and sample path continuity. O

Example 2.3.9. (Girsanov 1962) From what we have just proved, it follows that strong
uniqueness holds for the one-dimensional stochastic equation

t
Xt:/\XS\O‘dWS; 0<t< o0 (2.3.29)
0
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as long as a > (1/2) and it is obvious that the unique solution is the trivial one X; = 0.
This is also the solution when 0 < o < (1/2) but is no longer the only solution.

Proposition 2.3.10. Suppose that on a certain probability space (2, F, P) equipped with
a filtration {F;} which satisfies the usual conditions, we have standard, one-dimensional
Brownian motion {Wy; F1;0 < t < oo} and two continuous, adapted processes XV j =
1,2 such that for 7X" = inf{t > 0: XV (t) = 0}

X = xg + / (XD / (XD 0< 1 < (2:3.30)
0 0
holds a.s. for j =1,2. We assume that
1. the coefficients o(x),b;(x) are continuous, real-valued functions on R
2. the dispersion matriz o(x) satisfies the condition
|o(z) — o(y)|< bz —yl])

where h : [0,00) — [0,00) is a strictly increasing function with h(0) = 0 and it
satisfies the following condition

/ h™%(u)du = oo, Ve > 0
(0,¢)

3. Xél) = Xé2) a.s.,
4. bi(z) <by(x),r €R
5. either by(x) or by(x) satisfies the following condition

|b;(z) — b;(y)|< K|z —y| fori=1,2

Then
PIXMY < x®P vo<t <X =1

Proof. For concreteness let us assume that b () satisfies condition 5). We assume
t .
E/ lo(XD))2ds < 00;0 < t < 00,i=1,2, (2.3.31)
0

otherwise we may use a localization argument to reduce the situation to the one in
(2.3.31). We have for 0 < t < 72"
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A =X (1) / {bl X 1 — b2 X 2 }ds—{—/ {0 X 1 X (2) )}dW (2332)

Because of the conditions imposed on the function A, there exists a decreasing se-
quence {a,}5°, C (0,1] with ag = 1, lim,,_,» a, = 0 and faa:’l h=2(u)du = n for every
n > 1. For each n > 1, there exists a continuous function p, on R with support in
(@n; an-1) so that 0 < p,(x) < (2/nh*(x)) holds for every > 0 and [;"~" p,(z)dz = 1.
Then the function

lz|  ry
= / / pn(uw)dudy; z € R (2.3.33)
o Jo

is even and twice continuously differentiable with |¢/ (2)|< 1 and lim,, ., ¥, (z) = |z|.
Furthermore the sequence {1, }52 , is non-decreasing. Now we create a new sequence of
auxillary functions ¢, () = ¥ (7)1(0,00)(z). From a simple application of It6’s rule we
get for 0 <t < 7, X(l)

a0 = [ ABIICD) ~ X+ [ VB0 — (X,

+y [ A = X))
(2.3.34)

Now taking expectation and recalling that the expectation of the stochastic integral
is zero and as a consequence of assumption 2) the third integral is bounded above by
E [ @h(A)R*(JAs|)ds < 2t/n. We can therefore conclude that

Elp.(a)] - L < B [ [ eaamxe - b2<X§2>>1ds}

— | [ i) - noeojas] + | [ @) - el

Now using the fact that {1, }°2; is non- decreasing we get that {,, }52 , is non-decreasing

and hence ¢! is non- negatlve We can therefore conclude that for all 0 < s < 75° W

we have E [fo o ( S)[bl(Xs )— bg(X§2 )]ds} < 0 and hence we can conclude using
assumption (5) and ¢, (x) = ¥n(2)1(,x)(x) that for 0 <t < 7 o

Blea(d] - £ < B | [ @06t - n(xi®)as

—F Uotso’n(Xé” — XN by(XMH) — by (X P )]ds} < K/ E(AH)ds
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since ¢!, (x) = 0 for x < 0 Now taking n — oo we get

lim Elp,(A)] — % < K/tE(Aj)ds

n—oo

and a simple application of Gronwall’s inequality implies E[A;] = 0 for all 0 < ¢ < 72°"

and hence XV < X? for 0 < t < 7% O

2.4 Some important one dimensional SDEs

In this section I will introduce some important one dimensional SDE’s in literature which
are going to later play an important role in the subsequent chapters. The reference for
the material of this section is the book of Mao and Cairns (see [21]) and [13] respectively)

2.4.1 The square root process

Anl close to the geometric Brownian motion is the square root process:

dr(t) = pur(t) + o/r(t)dW(t) (2.4.1)

Here the mean is made to follow an exponential trend while the standard deviation is
made a function of the square root of r(t). This makes the "variance” of the error term
proportional to r(¢). Hence, if we are modeling asset prices using the SDE in (2.4.1),
if asset price volatility does not increase "too much” when r(t) increases (greater than
1, of course), this model may be more appropriate. For equation (2.4.1), one may ask
whether r(¢) will become negative. If so, r(t) would become a complex number and this
would not make sense in most practical modeling situations. This is impossible and a
simple proof can be found on page 307-308 of in the book of Mao([21]). A discussion
about positivity of solutions of the SDE (2.4.1) is quite meaningless without ascertaining
if the solutions actually exists. In the case of a square root one has the existence and
uniqueness of a strong solution due to Theorem 2.3.7(path wise uniqueness) and weak

existence(for more details see Yamada and Watanabe [10] )

2.4.2 Mean Reverting Square Root Process

Combining the square root idea with the mean reverting one gives us the model of the

mean reverting square root process:

dr(t) = alp — r(t)) + o/r()dW (t) (2.4.2)
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This process has a unique strong solution because its coefficients satisfy the same prop-
erties as the coefficients of the square root process. This SDE is used in modeling the
evolution of interest rate and is popularly known as the CIR SDE(Cox-Ross-Ingersoll
see [22]). The parameter a corresponds to the speed of adjustment, p , to the mean
and o to volatility. The drift factor, a(u — r(t)) in the SDE (2.4.2) which is the same
as in the Vasicek SDE(see [23]) ensures mean reversion of the interest rate towards the
long run value p, with speed of adjustment governed by the strictly positive parameter
«. Just as in the case of the square root SDE, one can show that the solution of the
mean reverting square root is almost surely non-negative. We conclude this section with
a very important result due to Feller(see [24]). The detailed proof has been taken from
Cairns (see [13]).

Theorem 2.4.1. Given the one-dimensional square root mean reverting SDE

dry = op — r(t))dt + o/r(t)dW (t)

Assume that r(0) = r > 0, let U = inf{t : r(t) < 0}( where inf ¢ = oo0) Then 2ua >
0> = QU =) =1 and 2ua < 0> = Q(U < o0) = 1 where Q is the probability
measure under which W is a Brownian motion.

Proof. The key steps of the proof will be stated first followed by a detailed development

filling out these initial statements
(i) Define the function s(r) = ;" €2/7*y=2#/7*qy for 0 < r < co. Then

ds 1 , 0s
alp— T)E + QUQTw =0

(ii) For each t, and given r(0) = r,

bds
s(r(t)) = s(r(0)) +/O 5 (r(@))ovr(u)dW (u)
In particular s(r(t)) is a local a local martingale under Q.

(iii) Define 7, = inf{t > 0 : r(t) = z}, and p A ¢ = inf{p,q}. Let ¢, M be such
that 0 < € < r(0) < M < oo. Then we exploit the local-martingale properties
of s(r(t)) and the boundedness of %, where ¢ < r < M to demonstrate that
Pro(te Ny < 00) =1

(iv) The martingale property then implies that

s(r(0)) = s(e)Pro(te < mar) + s(M)Prg(1e > Tar)
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(v) If 2ap > o2 then s(e) — —oo as € — 0. This implies Prg(my < 7as) = 0 for all
0<7r(0) <M < oo. Hence Prg(m < 00) =0

(vi) If 0 < 2ap < 02 with a, i, 02 > 0, then —oo < lim._,qs(e) < 0. Hence s(r(0)) =
s(0)Prg(mo < Tar) +s(M)Prg(ta < 70), where s(0) is defined as lim,_,¢ s(€). Since
in addition, s(M) — 400 as M — +o00, Pro(m < 00) = 1.

Now we work through the steps more rigorously Consider the twice continuously differ-
entiable function s(r). By a simple application of 1td’s lemma we get

s(r(t) = Darr) + L 22 d(r)
= %(a(u —r(t))dt + U\/@dW(lf)) + %%o%(z&)dt
0s

= 5((%(# —r(t))dt + %g—jjUQT(t)dt + o+/r(t)dW (t)

Now since r(t) is a continuous semi-martingale , 1t6’s lemma implies that s(r(t)) is
a continuous semi-martingale and it follows from the definition of a continuous semi-

martingale that s(r(¢)) is a continuous local martingale iff the drift term is zero i.e

Js 19%s
E(a(u —r(t)) + 5%0 r(t)=0

Now with drift equal to zero, the new SDE becomes

ds(r(t)) = s'(r(t))o/r(t)dW (t)

which can be reformulated in the integral form as

s(r(t)) = 8(7’(0))+/0 s/ (r(8))o/r(t)dW (u)

where §'(r(t)) = & = & [T ¢2av/o%y=2an/7" gy = ¢2or/o* =20/ and hence in this form
s(r(t)) is a continuous local martingale. For 0 < ¢ < r(0) < M < oo and since
s'(r) = e2er/o*p=20m/7” s positive for all » > 0, s(r) is non decreasing and hence it

follows that s(e) < s(r) < s(M) for e <r < M.

It not so hard to see that for 0 < ¢ < r(0) < M, §'(r) is bounded below by § =
M—201/7" where § > 0. Indeed for for r > 0,a,pu, 0% > 0 we have 1 < 27/° and
M—2en/0® < p=20m/0% which together yield

N -2an/o? < g2ar/o? . ~20p/o?

Let us now consider the stopped process

s(r(t ANt A7ar)) = s(r(0)) +/0 I(u)s' (r(u))o/r(u)dW (u)
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where 7, = inf{t > 0:7(t) = x},p A ¢ = inf{p, ¢} and

1 u<t. AT
I(U): € M
0 u>71.N71m

Now s(r(tAT.ATpr)) is not just a local martingale but a martingale since I(u)s'(r(u))o/r(u)
is bounded (we have already established the boundedness of §'(r)) since 0 < I(u) <1

ans /e < oy/r(u) < ov M.
And since fot I(u)s'(r(u))o+/r(u)dW (u) is a martingale starting at 0, taking expec-
tations we get

Eq (s(r(t Ae Aar))) = Eq(s(r(0))) + Eq (/0 I(u)s'(r(u))o T(U)dW(U))

which finally yields
s(r(0)) = Eg (s(r(t Ame A7ar)))

Varg(s(r(t Ae Au)) = Eq [(s(r(t A e ATar) — Egls(r(t AT. Aman)))?] =
Eq K /O t [(u)s’(r(u))ade(u)Q)} = Ey, [ /0 e §'(r(u))?o?r(u)du (2.4.3)
> §%0%E, [ /0 s du] — 8202 Eo[t AT, A o]

where the third equality is a consequence of It6’s Isometry. But we also have Varg(s(r(tA
e ATr)) < (s(M) — 5(€))* < oo since the random variable takes values in [s(e), s(M)].
Hence we have that 6%02¢Eg[t A 7. A Ta] < (s(M) — 5(€))? < oo for all t > 0, implying
that

Eglt NTe NTy| < oo forall t > 0

and monotone convergence theorem implies E[7. ATy < oo and, therefore , that Prg[rA
v < 00] = 1. Now

s(r(0)) = Eg[s(r(t A1c A7)
= EQls(r(t A 7e A7ar))(Lre<inray + Loy<inn, + Licronna)]
= s(e)Pro(1e <t A1)+

S(M)Pro(tar <tAT) 4+ Eg[s(r(t A 7e Aar)) Licrnry ) (2.4.4)
= s(e)Pro(te <t A7y)+
s(M)Pro(tam <t A7)+
Eqls(rt ATe Nmar) |t < Te ATag] Pro(t < e A Tag)]
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Now in the limit ¢ — oo, Eg[s(r(t)) | t < 7. A Ty is bounded below and above by s(e)
and s(M) respectively, while Prg(t < 7. A Tar) — 0 since E[r. A Tay] < 00, Pro(r. <
t AN7a) — Pro(te < ) and Pro(mar < t A7) — Pro(ta < 7.) because probability
measures are continuous from below and above.

Hence we have
s(r(0)) = s(e)Pro(te < mar) + s(M)Pro(ta < 7e)

Now suppose that 2apu > 0% and 0 < € < 1. Then

1 1 1

1 1
—s(e) = / e2ew/o®y—2an/a® gy, > / e20v/o* Z iy > / —dv — o0 ase— 0
€ € v € U

since for v € (¢,1) with € > 0 and 2au > 0 we have

l < 1620411/02 < U—Qa,u,/0262ow/a2
v v o

So we have the two results s(r(0)) = s(e)Pro(re < ma) + s(M)Pro(ty < 7) and
s(e) — —oo as € — 0. Hence it follows that for a fixed M, as ¢ — 0 we must have
Prg(r. < ) — 0. And since {7, < 7y} C {7, < Tar} for €2 < ¢ and continuity from
above implies Prg(my < 7ar) = 0 for all M such that 0 < r(0) < M < co.Now consider
the event that r(¢) hits zero in finite time:

Qy=qw:7(w) <oo, sup 7(t)(w)< o0
0<t<To(w)
Note that we have excluded from €y the sample path | r(¢)(w), which explode before
To(w); that is

Q. = {w tTo(w) < oo, sup r(t)(w)= oo}
0<t<0(w)
Theorem 2.4 on page 177 of Ikeda and Watanabe’s Stochastic differential equations
and diffusion processes(second edition) implies that the stochastic differential equation
dry = a(p — r(t))dt + o+/r(t)dW(t) does not explode with probability 1. And thus
Prg(£2.) = 0.

Now let , for integers n,

0<t<to(w)

Q, = {w tTo(w) < T(w), sup r(t)(w) < oo}

Clearly 7,y € (70,7,) and hence 7, < 7,41 which allows us to immediately conclude
that for all n € N we have {7y < 7,,} C {79 < 7,41} and hence Q,, C Q,,,1.
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For each w € € there exists ng(w) such that 7,(w) > 79(w) for all n > ny(w) where
no(W) 1= SUPg<i<ry(w) T(t)(w). This statement can be mathematically expressed as

QU = [_OJ Qn
n=1

But since Prg(my < 7as) = 0 for all co > M > r(0) > 0
Pro(2,) < Pro({w: 1o(w) < 1p(w)}) =0

Countable sub-additivity implies
Pr(Q0) <Y Pro(Q,) =0

and finally Prg(my < 00) = Prg(Qe) + Pro(Q0) =0
Now we study the case where 0 < 2au < 0. Now for 0 < e < 1

1 1
0> S(E) — _/ e2av/02vf2a,u/02dv > _/ €2a/021j72a”/02d1j

€

because for v € (¢, 1) we have ¢2*/7° > ¢2ov/o?
But the limit as ¢ — 0 of [ v=2”dy is finite since 2aj1/0® < 1. Thus , the limit
as € tends to zero of s(e) lies strictly between —oo and 0. Define

s(0) = lim s(e)
e—0
We have already shown earlier that for 0 < e < r(0) < M < oo

s(r(0)) = s(e)Pro(te < i) + s(M)Prg(ta < 7o)

We now modify out arguments above to show that this is true for s(e) replaced by
5(0)(which we just defined above) when 1 < 2apu/0? < 1
Recall that from equation (2.4.3)

tATeNTM
Varg(s(r(t ANme Ama)) = Eg [/ s’(r(u))202r(u)du]
0
Now recalling that §'(r) = e207/op=200/7" e get

tATeNTAL
Varg(s(r(t AN 1e ATu)) = Eqg [/ 64ar(u)/g2T(u)—4au/g2+lo_2du:|
0
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Let
f(?’) _ S/(T)QT _ e4ar/0'2rlfd _ edr/urlfd

where d = 4apu/o?. We have already specified that % < 2au/o?* < 1 which is the same as
1 <d<2 Nowifl<d<2,then f(r) is minimized( the minimum of this continuously
differentiable function can be computed by setting the derivative equal to zero) in the
range 0 <r < oo at 7 = (d — 1)p/d with

f(7) = et (@)M >0

If d =1, then f(r) is minimized in the range 0 < r < co at 7 = 0 with f(0) = 1 Let 0
be the minimum value of f(7) in either case. Hence

0?8’ (r(u))*r(u) > o?§ forall 0 < u <t A 7o ATug

which yields the following inequality
tATeANTM
Varg(s(r(t N1e ATar)) = Eg {/ s'(r(u)?o?r(u)du| > o*5Eg[t A 1o A Ta
0

But as we saw before Varg(s(r(t A e A1ar)) < (s(M) — s(€))?, so

(s(M) — 5(€))”

EQ[t/\To/\TM]S 0‘25

< oo for all t,

And hence the monotone convergence theorem implies
Eglto A i) < 00
and therefore we can conclude
Pro(to ANty < 00) =1

And hence taking the limits as ¢ — oo in

s(r(0)) = Eq[s(r(t Ao ATm))] = Eqls(r(t Ao A ) (Ly<tnry + Loy <tnny + Licronra )]
just as in (2.4.4) we get
s(r(0)) = s(0)Pro(ro < 7ar) + (M) Pro(mar < 7o)

: M
Moreover since 200/7°y=201/9* _5 o6 ag v — 00, and therefore so does s(M) = [, g0/ =20
oo as M — oo. As s(r(0)) is finite , we must have Prgo[ry < 7] — 0 and hence

Prg[to < 7] — 1 as M — oo. Thus we get Prg(m < oo) = 1.
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Finally, suppose that 0 < 2au/c? < 3(or equivalently 0 < d < 1). Let X (¢) = \/r(t).
After a simple application of It6’s Lemma and substituting X (t) = /7 (t) we get

1 1 -1

X = 5t + 5

1 ) 1 , ;

= gy (@l = X@O7))dt + o X (D)W (1)) - S X(t)
[ e 2ap 1 aX(t) o

B [4X(t) (7 B 5) T } dt + S dW (1)

Now let Y (¢) be the Ornstein-Uhlenbeck process governed by the SDE :

1 1
dY (t) = —EaY(t)dt + §adW(t), Y (0) = X(0) (2.4.5)
Define
o =inf{t >0: X(t) =0} and 77 = inf{t > 0:Y(t) = 0}
For each outcome, w, for all 0 < t < 735 (w),

o? aX(t)(w) aX(t)(w)

8X(t)(w)(d_l)_ 5 T 2

This is because WQ)M(CZ— 1) is strictly negative for 0 < d < 1 for all 0 < ¢ < 73* (w) since
X (t),0? is strictly positive for these ¢ and all outcomes w. Now it follows from Proposi-
tion 5.2.18 in Brownian Motion and Stochastic calculus by Karatzas and Shreve(modified
with 0 < ¢ < 73%) that X (¢) < Y (¢) for 0 < ¢t < 7. A detailed proof is given in Propo-
sition 2.3.10

This implies that if we can show that 7} < oo then we can immediately conclude
¥ < oo and therefore 79 < 0o a.s. However we know from the basic properties of the
Ornstein-Uhlenbeck process that Pro(rd < oo) = 1. Hence this implies Pro(rg¥ <

o0) = 1:, that is the same as saying r(¢) will hit zero with probability 1 under Q. O

Before I end this section I would like to mention that the square-root type SDEs
dealt above and in the following two chapters are the subject of recent research on SDEs
with non-Lipschitz coefficients. A possible avenue for further study could be to establish
a relationship between the existence results in the following two chapters to the many
existence and approximation results by [25],[26], [27] and [28].
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Chapter 3

On a class of stochastic differential
equations with random and Holder
continuous coefficients arising in

biological modeling

3.1 Introduction

Susceptible-infected-susceptible (SIS) epidemic model is one of the most popular models
for how diseases spread in a population. In such a model an individual starts off being
susceptible to a disease and at some point of time gets infected and then recovers after
some time becoming susceptible again. The literature of such mathematical models is
very rich: for probabilistic/stochastic models one may look for instance at Allen [29],
Allen and Burgin [30], A. Gray et al. [31], Hethcote and van den Driessche [32], Kryscio
and Lefvre [33], McCormack and Allen [34] and Nasell [35]. We also refer the reader
to the detailed account presented in Greenhalgh et al. [1] for an overview on both
deterministic and stochastic models.

The focus of the present paper is on the model presented in [1]. One of its distinguishing
features is the nature of the births and deaths that are regarded as stochastic processes
with per capita disease contact rate depending on the population size. Contrary to many
other previously proposed models, this stochasticity produces a variable population size
which turns out to be a reasonable assumption for slowly spreading diseases.

From a mathematical point of view, the SIS model proposed in [1] amounts at the
following two dimensional stochastic differential equation for the vector (S, I;) where S;
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and [; stand for the number of susceptible and infected individuals at time ¢, respectively:

45 = [=20050 (ot ) T] 42+ (i) + 245

(3.1.1)
ar = [—W]VV)SI — (p +7)1} dt + \/A(NT)SI + () LdWs.

Here, N := S+ I denotes the total population size while p, v and A : [0, 4+00[— [0, +00[
are suitably chosen parameters. The system (3.1.1) is driven by the two dimensional
correlated Brownian motion (W3, W,) resulting from a certain application of the martin-
gale representation theorem (see Section 3.2.1 below for technical details). The system
(3.1.1) is then shown to be equivalent to the triangular system

= [%(N—I)I— (u+7)l} dt + \/W(N—I)Fr (1 +7)IdW,

(3.1.2)
AN = /2uNdWs

where now the second equation, the so-called square root process (see for instance the
book by Mao [21] for the properties of this process), is independent of the first one. To
prove the existence of a solution to the first equation in (3.1.2) the authors resort to
Theorem 2.2 in Chapter IV of Tkeda and Watanabe [11] while for the uniqueness they
need to construct a localized version of Theorem 3.2, Chapter IV in [11]. The equation
for I in (3.1.2) exhibits random (for the dependence on the process N) and Holder con-
tinuous (for the presence of the square root in the diffusion term) coefficients resulting in
a stochastic differential equation for which the issue of the existence of a unique solution
has not been addressed in the literature yet.

Our aim in the present paper is to propose a more general approach allowing for the
investigation of a richer family of models characterized by the same distinguishing fea-
tures of the model analyzed in [1].

The paper is articulated as follows: In Section 2 we present a general review using the
exposition in the book by Allen (see [36]) of a two-state dynamics leading to a Fokker-
Planck partial differential equation and its associated stochastic system. This is followed
by Section 2.1 where we consider the more specific situation of a bio-demographic model
like the one presented in [1]. Our idea is to embed the rather special system of SDE’s of
the model in a slightly more encompassing class, like the one in (3.3.9) below, in order to
establish a general proof of strong existence and uniqueness. Our technique relies on the
construction of an explicit approximating sequence of stochastic processes (inspired by
the work of Zubchenko [37]) in such a way that all the relevant features of the solution
appear to be directly constructed from scratch. In Section 3 we give a detailed proof of
existence and uniqueness of the SDE (3.3.9). We would like to point out that systems
of SDE’s with non-Lipschitz or Hélder coefficients exhibit non-standard difficulties as
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far as general results for existence and uniqueness are concerned. This model conforms
to the aforementioned difficulties and that is what has motivated us in approaching the
problem. Our idea has been to how we could encase the model proposed in [1] within
a more general framework , thus bypassing some of the computations done there, and

hopefully allowing for larger class of models to be treated.

3.2 A general two-state system

In this section we review the construction of a general two-state system presented in the
book by Allen ([36]). The model will then be made concrete through the assumptions
contained in the paper by Greenhalgh et al. ([1]) and this will lead to the class of
stochastic differential equations investigated in the present manuscript.

(1) , > R Sy(t)
) 6
1 [2 31

s

Figure 3.1: A two-state dynamical process

We begin by considering a representative two-state dynamical process which is il-
lustrated in Figure 3.1. Let S;(t) and Sy(t) represent the values of the two states of
the system at time ¢. It is assumed that in a small time interval At, state S; can
change by —A{, 0 or A; and state S5 can change by —\y, 0 or Ay, where A, Ao > 0. Let
AS = [AS;, ASy]T be the change in a small time interval At. As illustrated in Figure
3.1 , there are eight possible changes for the two states in the time interval At not
including the case where there is no change in the time interval. The possible changes
and the probabilities of these changes are given in Table 3.1. It is assumed that the
probabilities are given to O((At)?). For example, change 1 represents a loss of A; in
S with probability d;At, change 5 represents a transfer of A\; out of state S; with a
corresponding transfer of s into state Sy with probability mi5At and change 7 repre-
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sents a simultaneous reduction in both states S; and S;. As indicated in the table, all
probabilities may depend on Si(t), Sa(t) and the time ¢. Also notice that it is assumed
that the probabilities for the changes are proportional to the time interval At.

Table 3.1: Possible changes in the representative two-state system with the correspond-
ing probabilities

Change Probability

ASW = [-1,0]T p1 = di(t, S, S9) At
AS® = [1,0]" P2 = bi(t, S1, So) At
AS®) = [0, —1]" ps = do(t, S1, So) At
AS® = [0, 1]T pa = by(t, S1, So) At
AS®) = [-1,1]T mlg(t Sy, Sp) At
AS©® =[1,-1]" Moy (t, S, So) At
ASD = [-1,-1]F mll(t Sy, So) At
AS® =[1,1]T ps = mao(t, S1, So) At
AS® = [0,0]” po=1-3"31p;

It is useful to calculate the mean vector and covariance matrix for the change AS =
[ASy, AS,]” fixing the value of S at time ¢. Using the table below,

9
_ Z ijS(j) _
j=1

(—dy 4 by — maa + may + maa — map) M

—dy + by + Mz — Moy + Mag — M) Ae

At

9
EIAS(AS)"] = ) pi(ASD) (AT
j=1
[ (dy + by + ma)A% (—maa — may + Mag + mi1) A Ao
(

) At
—Mmyy — May + Mag + My1) A1 Ay (dy + by + mg) A5

where we set m, := my2 + mo; + My + Mag. Notice that the covariance matrix is set

equal to E(AS(AS)T)/At because E(AS)(E(AS))T = O((At)?). We now define

and we denote by B(t, 51, 5) the symmetric square root matrix of V. A forward Kol-
mogorov equation can be determined for the probability distribution at time ¢t + At
in terms of the distribution at time ¢. If we write p(t, z1,x9) for the probability that
Si(t) = 1 and S3(t) = xo, then referring to Table 3.1 we get

10

p(t + At,z1,29) = p(t, z1, 22) + At Z T; (3.2.2)

i=1
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where

Ty = p(t,xy,xe)(—di(t, z1,22) — bi(t, 21, 22) — dao(t, 21, 23) — bo(t, 1, 29))
T2 == pt ﬁCl,.TQ)( mCL(t? .Tl,lUQ))
T3 = pt 331—|->\1,:B2 dl(t CB1+)\1,$2

(t,

(

( ) )

( )b1(t, 1 — A1, w2)
T5 = p(t, v, 12 — A2) A2)

( )

(t,

(

(

(

Ty = p(t,z1 — A, 22
bo(t, x1, 29 —

Ts = plt, 1,0 + Xo)da(t, 1,22 + A2)

T: = p(t,xy 4+ A, we — No)maa(t, x1 + A, 23 — Ag)

Ts = p(t,xy — A, @9 + Ao)mor (t, 11 — A, o + Ag)

Ty = p(t,xy 4+ A, xo + Ao)mar(t, 1 + Ap, 22 + Ag)

)1 ( A2)

Ty = p(t,xy — A, 22 — Ag)maa(t, 1 — A1, 22 —

Now, expanding out the terms 73 through 7' in second order Taylor polynomials around
the point (¢, z1, ), it follows that

19? pdy
T3 ~ pdl + 0901 (pd1)>\1 + 5 a( )A%
9(pb:) 1 02(1?61) >
T, =~ —
A N
3(pb2) 107 (pbz) >
T =~
( ) 1 32(pd2) >
Ty =~ =
a(pmlz) 8 pmlz pm12>
T7 X~ pmis + )\1 Z Z H_j—)\ )\
O, p O0x;0x;
8( ) 8(1) ) 0? (pmm)
Ty = pma — AL+ Ao+ = 1)1 =2
8 pma1 o, ory ;; O0x;0x;
a(pmll) 8 Pmn pmll)
Ty =~ pmq+ A+ Ao+ = ZJ”—/\ Aj
9 pmiy oz, Ory 2 ; ; 0,0,
- 8(pm22) 8 pm22 H— pm22)
Ty =~ pmas — 0z, AL — 07+ ; le ]W)\ A

Substituting these expressions into (3.2.2) and assuming that At, \; and Ay are small,
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then it is seen that p(t, x1, z9) approximately solves the Fokker-Planck equation

2

ap t,iL’ ,sz Z (9 6
1: : E E t U Zj t 1 2
=1 ]— :Zlé'/‘ J k= blk‘( 7x17x2)bjk( 71’ ’x2) ( 7x 71} ) ’ 3)

where p = (g1, p2) and B = {b;j}1<ij<2. On the other hand, it is well known that
the probability distribution p(t,zq,x2) that solves equation (3.2.3) coincides with the
distribution of the solution at time t to the following system of stochastic differential
equations

dS = u(t,S)dt + B(t, S)dW(t),

S(0) = Sy (3.2.4)

where W is a two-dimensional standard Brownian motion and S is a given determin-
istic initial condition. The stochastic differential equation (3.2.4) describes the random
evolution of the two-state system S related to the changes described in Table 3.1.

3.2.1 The Greenhalgh et al. [1] model

We now specialize the general model introduced in the previous section to the case
investigated in Greenhalgh et al. [1] (where the process (Si,S2) is denoted as (S, 1)).
The values of the parameters in Table 3.1 are chosen as follows:

Table 3.2: Probabilities in Greenhalgh et al.’s paper

Change Probability
ASM = [—1,0)7 1Sy At
AS® =[1,0]" uNAt
AS®) = [0, —1)7 (Sa At
AS™ = [0, 1]" 0

AS®) = [—1,1]7 ANIEL52 At
AS®) =1, —1]" Sy At
AS =[-1,-1]T 0

AS®) = [1,1)7 0

AS®) = [0, 0] 1= p;

where N := 51+ Ss, A : [0, +oo[— [0, +00] is a continuous monotone increasing function
and p and v are positive constants. We refer to the paper [1] for the biological interpre-
tation of these quantities. Now, according to Table 3.2 the vector p and matrix V' in
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(3.2.1) read
u(t, Si, Sa) = _% TS
S8 = e s,
and

where to ease the notation we set

AN)SLS
a = %+(u+7)52+2u51
o A(N)S1Ss
A(N)S1S
¢ = %HHV)S}
Therefore,
1 1l ja+w b
B(t, S1,5%) =V(t,S1,5)2 = =
(7 1 2) (7 1, 2) d b c+w
with

w:=VvVac—"0> and d:=+vVa+c+2uw.

We are then lead to study the following two dimensional system of stochastic differential

equations
ds, = |- 2SS 7)52} dt + =2V, + LIV, 325)
52— [958 15+ a5 58, §

where W = (Wy, Ws) is a standard two dimensional Brownian motion. We observe that

() () -

Therefore, by the martingale representation theorem (see for instance Theorem 3.9 Chap-

by construction

ter V in [38]) there exists a Brownian motion W3 such that the first equation in (3.2.5)

can be rewritten as

AN)SLS ANN)S S
( ])Vl 2+(u+’7)82:| dt+\/%+(u+7)52+2/ﬁ51dw3

sy = |-
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(5) + (=5 -

by the martingale representation theorem there exists a Brownian motion W, such that

Similarly, since

the second equation in (3.2.5) can be rewritten as

AMN)SLS AMN)S.S
s = |22~ o s+ AR (s

This implies that the system (3.2.5) is equivalent to

ds, — [——“N}VS@ + o+ v)Sg] dt + \/% + (e + 7)o + 28, AWy
S, = [% —(p+ 7)52} dt + \/% + (1 +7) S2dWy.

(3.2.6)

We remark that by construction the Brownian motions W3 and W, are now correlated.
Moreover, if we notice that the drift of the first equation in (3.2.5) is the opposite of the
one in the second equation in (3.2.5), recalling that N = S; + S we may write

b b
dN = del + #dWQ

and, exploiting the definitions of a, b, ¢, d and w, we conclude as before that there exists
a Brownian motion Wj5 such that

AN = \/2uNdWs. (3.2.7)

Hence, instead of studying the system (3.2.5), the authors in [1] study the equivalent
system

dS, = [%(N —S59)Sy — (p+ 7)52] dt + \/%(N — 52)Ss + (p + 7)S2dW4t

3.2.8)
AN = \/2uNdWs

where the Brownian motions Wy and W are correlated. In the system (3.2.8) the
equation for N does not depend on S5 and it belongs to the family of the square root
processes ([21]). Once the equation for N is solved, the equation for Sy contains random
(for the presence of N') Holder continuous coefficients. Moreover, due to the presence of
the square root in the diffusion coefficient of S, the authors of [1] consider a modified
version of the first equation in (3.2.8) to make the coefficients defined on the whole real
line. They consider

dSs(t) = a(t, N(t), Sa(t))dt + G(t, N(t), So(t))dWy(t) (3.2.9)
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where
0 for z < 0
altya) = 2y —2) = (ur)e for0<z <y (1+43)
eon(es))  weos(t)
and
0 for x <0
gty a) =4 Uy —2) + (e for0 <z <y(1+453)
0 forx>y(1+/;\(_+y’;>

The existence of a unique non explosive strong solution to equation (3.2.9) is obtained
through a localization argument in terms of stopping times and comparison inequalities
to control the non explosivity of the solution. In the next section we will consider a class
of stochastic differential equations, which includes equation (3.2.9), allowing for more
general models where the existence of a unique non explosive strong solution is proved

via a standard Caychy-Euler-Peano approximation method.

3.3 Main theorem

Motivated by the discussion in the previous sections, we are now ready to state and
prove the main result of our manuscript. We begin by specifying the class of coefficients
involved in the stochastic differential equations under investigation.

Let g : [0, +00[xR x R — R be a function of the form

g(t.y.x) = V=22 +alt,y)z + B(t,y) (3.3.1)
where «, 3 : [0, 400[XR — R are measurable functions satisfying the condition
alt,y)* +46(t,y) >0 for all (t,y) € [0, +oo[xR. (3.3.2)
We observe that condition (3.3.2) implies that
—z? +a(t,y)r + B(t,y) >0 ifand only if 7 (t,y) < 2 < ro(t,y)

where we set

a(t,y) —v/alt,y)? +46(t,y)
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and

TQ(t, y) = &(t’ y> + \/Oé(t, y)2 + 45@7 y) )

2
Now, we define
if  x<rty)
gty z) =< gty,z) if nity) <z <r(y) (3.3.3)
0 if x> mr(ty)

The function g will be the diffusion coefficient of our stochastic differential equation.
Assumption 3.3.1. There exist a positive constant M such that
alt, )< M1+ lyl)  and Bty M1+ [y) (3.3.4)

for all (t,y) € [0,00[xR. Moreover, there exists a positive constant H such that

1G(t, y1,21) — G(t, Y2, 22)|< H(V |y1 — yo| + V|21 — 22)) (3.3.5)

for allt € [0,00[ and y1,ya, x1, T2 € R.

We observe that assumption (3.3.4) implies the bound

9(t,y,x)| < I;lgglﬁ(t,y,x)l

= \/% +B(t7y)

< M(1+|y))

for all t € [0,00[ and y € R. Here the constant M may differ from the one appearing
in (3.3.4); we will adopt this convention for the rest of the paper. We also remark that
by construction inequality (3.3.5) for y; = v, is satisfied with a constant H = +/|a(t, y1)|.

We now introduce the drift coefficient of our SDE. We start with a measurable function
a: [0, +00[xR x R — R with the following property.
Assumption 3.3.2. There exists a positive constant M such that
la(t, y, 2)|< M1+ [y|+|z|) (3.3.6)
for allt € [0,00[ and x,y € R. Moreover, there exists a positive constant L such that
la(t, y1, 1) — a(t,ya, 2)|< L(|y1 — yo|+|z1 — 22]) (3.3.7)

for all t € [0,00[ and y1,y2, x1, 22 € R.
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Then, we set

a(t7yarl(tay)> if T < Tl(tuy>
a(t,y,x) =< a(t,y,x) it ity <z <ryty) (3.3.8)

a(t7y7702(ta/y)) if T > T?(tay)

Observe that by construction also the function a satisfies Assumption 3.3.2.

We now consider the following one dimensional stochastic differential equation
dX, = a(t,Y;, X,)dt + g(t,Y;, X;)dW?, Xo=z€R (3.3.9)
where {Y;}:>¢ is the unique strong solution of the stochastic differential equation
dY, = m(t,Y,)dt + o(t,Y;)dW}!, Yo=y€eR. (3.3.10)

Here {(W}', W?)}1>0 is a two dimensional correlated Brownian motion defined on a com-
plete filtered probability space (€2, F, P, {F; }+>0) where the filtration {F; }+>0 is generated
by the process {(W}', W?)}i>0. Strong solutions are meant to be {F;};>o-adapted.
Regarding equation (3.3.10), the coefficients m and o are assumed to entail existence
and uniqueness of a strong solution {Y;};>¢ such that

E[ sup ]Ytﬂ is finite for all 7" > 0.
te[0,7)

Equations (3.3.9) and (3.3.10) describe a class of equations which includes equations
(3.2.9) and (3.2.7) as a particular case.

Remark 3.3.3. If ri(t,y) = ra(t,y) for all (t,y) € [0,00[ xR, which is equivalent to say
that a(t,y)* + 48(t,y) = 0, then the diffusion coefficient g is identically zero and the

drift coefficient becomes a(t,y,x) = a(t,y,a(t,y)/2). Therefore, in this particular case
the SDE (3.53.9) takes the form

dX; = a(t,Y,,a(t,Y,)/2)dt, Xo==x
whose solution is explicitly given by the formula
t
Xi=z+ / a(s,Ys, a(s,Ys)/2)ds.
0

Theorem 3.3.4 (Strong existence and uniqueness). Let Assumption 3.3.1 and Assump-
tion 3.5.2 be fulfilled. Then, the stochastic differential equation (3.5.9) possesses a unique
strong solution {X;}i>o-
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Proof. To ease the notation we consider the time-homogeneous case and hence we drop
the explicit dependence on t from all the coefficients.
We fix an arbitrary 7' > 0 and prove existence and uniqueness of a solution for the SDE

t t
Xt:x+/ a(YS,XS)der/ g(Ys, X )dW?2, Xy = . (3.3.11)
0 0

on the time interval ¢ € [0, T]. The proof for the existence is rather long and proceeds as
follows: using a Cauchy-Euler-Peano approximate solutions technique we define, associ-
ated to a partition A, of [0, 7] a stochastic process X". We will, at the beginning, prove
a convergence result for X™ in the space L'([0,T] x ), then we will prove a convergence
result for X™ in the space C[0,7] with the norm of the uniform convergence and this
will eventually yield the result.

Existence: We consider a sequence of partitions {A,},>; of the interval [0,7] with
A, € Any1. Each partition A, will consist of a set of N, + 1 points {t7,7,....t% }
satisfying

0=ty <ty <--- <ty =T.

We denote by ||A,||:= maxo<r<n,—1]t;,, — 17|, the mesh of the partition A, and assume
that lim, oo ||An||= 0. In the sequel, we will write ¢, instead of ¢} when the membership
to the partition A, will be clear from the context.

For a given partition A, we construct a continuous and {F;};>o-adapted stochastic

process { X} }icpo,r) as follows: for ¢t = 0 we set X[ = x while for ¢ €]ty, t;41] we define
XP = X7 4 a(Yey, XP)(t— t) + g(Yi, X7)(Wh — Wiy ), (3.3.12)

It is useful to observe that, denoting n,,(t) = t;, when t €|tx, tx11], we may represent X}*
in the compact form:

t t
0 0

Step one: E|X§n(t)| 1s uniformly bounded with respect to n and t

We begin with equation (3.3.12). Using the triangle inequality and upper bounds for a
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and g we get

E[1 X, 1]

tp4+1

E[ X5 1]+ Ella(Ye,, Xi)) (e — t)]

+E[g(Ys,, X7 Wy — Wi )]

E[| X7 1]+ Mltypr — tolE 1+ Vi ] + Mltea — ] E [| X ]
+ME [(1 4 (Y5, )[Wey,, — W]

(1 + M[JALDE[XG ] + Mtgrr — thE[L+ [V ]

IN

IN

M
t (E[(1+ Y3, 1)?] +E [[We,, — W, P])
(1+ M||ADE[IXE [} + M[|A,]] sup E[1+ Y]

t€[0,T]

IN

M M
+— sup E [(1+ |Y3])?] + = |tr1 — t
2 te[0,7) 2

(4 MIAUDEIXE | + MIA| sup B[1+ [V
S )

IN

M M
+5 sup B[(1+Yi])’] + (1A
te[0,7

M
< (L MIADEIXE [ + 5 sup E[(1+[Yi])°] +e.
te[0,7)

Here we used the fact that || A, || tends to zero as n tends to infinity and that sup,cjo 71 E [1 + [Yi]]
is finite: we can therefore choose n big enough to make

M
M|[Anl sup E[1+ [Vi]] + —-[1Aq]
t€[0,T]

smaller than a given positive e. Comparing the first and last terms of the previous chain
of inequalities we get for all k£ € {0, ..., N, — 1}

1<+ MIADEIXE ]+ 2 sup E[(1+ W)?] +e

El| X"
H 2 te[0,7

tet1

which by recursion implies

k Vf —1
BIXAI) < b+ B,
M
N,
n—1
< ’va"\%H%—_l%

where for notational convenience we set

M
= 1+ MIA | and = o sup E[(L+[¥;,])7] +e.
t€[0,T]
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Since 7, (t) is a step function in [0, 7] with values {t¢, 1, ..., tn, }, the previous estimate

for k € {0, ..., N, — 1} entails the boundedness of the function [0,T] > ¢ = E[|X} |-
We now obtain an estimate for E{|X} ] which is also uniform with respect to n. Using

|

] (3.3.14)

the triangle inequality in (3.3.13) we can write

M (t)
BIXG o) < B || [T a0 Xods

nn(t)
+E / T(Y (), X () AW?
0

For the first expected value on the right hand side above we employ the assumptions on

a:

M (1)
E / a(Yy, (), Xy, (s))ds
0

t
] < E[/O |a(%n(s>7Xr7n<s))ld8}

< ME [/ (L 1XD [ Y ) ]
= M/ [1X s |]ds+M/ [1+ Y, 9] ds
< M/ 1X7 o lds + MT sup E[1+ Y]]

te[0,T]

Using the Ito isometry and the assumptions on g we can treat the second expected value

| < 2
< (/OtE[!Q(Kyn(s)vXﬁn(s))IQ]dS)%
< M(/t [(1+|Yn(s)|)2]d8)%

< M¢ sup E[(1+ [Vi])?]

te[0,T)

as follows:

N[

2

M (t) 9
/ g(}/ﬁn (s)s X;yln(s) )dWs
0
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Plugging the last two estimates in (3.3.14) gives

M (t)
BIXG o) < lebB || [T a0, X5

|
|

t
]:EH—M/ ]EHX;L”(S)Hds + MT sup E[1+ |Yy]
0 te[0,T

7n (t)
+E / g(Ynn(S)a )(7?71(5))611/1/52
0

IN

—|—M\/T sup E[(1+ |Y;])?]

te[0,7)

t
0

where

G = |z|+MT sup E[1+|Yi|]+ M /T sup E[(1+ [Y])?].
te[0,T] t€[0,T7]

By the Gronwall inequality (we proved before that ¢t — E[|X] .|| is a non negative,
bounded and measurable function) we conclude that

E[I X ] < GeM* < GeMT (3.3.15)

which provides the desired uniform bound (with respect to n and t) for E[|.X} ).

Step two: E[| X — X"

nn(t)H tends to zero as n tends to infinity, uniformly with respect
tote[0,T]
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We proceed as in step one. Recalling the identity (3.3.13) we can write

t t
B - Xl = B[ e Xpst [ gt Xan]
M (t) 7 (t)
t t
< [ Blathe Xpolds B || [ a0 an]
M (1) 7 (t)
t
< M [ E[(1+ X7 o[+ D]ds
M (t)
t 2 %
+(E / 9V (a), X)) AW ])
()
< M(t=m(t) (GeMT+ sup E[Hmu)
te[0,7)
t 3
# ([ Bl Xi0)Plds)
(1)
< M- () (GeMT+ sup E[1+|Yt|]>
t€[0,T]
+MA/t —n,(t) | sup E[(1+ |Y;])?]
t€[0,7]
<

[PANS| (GeMT + sup E[1+ |Y]] + \/ sup E[(1 + |Yt|)2]> .

t€[0,7) t€[0,7]

Here, in the third equality, we utilized the uniform upper bound (3.3.15). We have
therefore proved that

E[[ X" = X 0ll < MyIA] (GBMT+ sup E[1 + V3] + \/ sup E[(1+ |Yt|)2]>

t€[0,7) t€[0,7]

= M HAnH

This in turn implies that E[[X;" — X} ,[] tends to zero as n tends to infinity, uniformly
with respect to t € [0,7.

Step three: {X"},>; is a Cauchy sequence in L'([0,T] x Q).
We need to prove that for any ¢ > 0 there exists n. € N such that

T
]E[/ |Xf—Xtm|dt}<5 for all n,m > n..
0
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We have:
t
XpoXp = / (Y0 X2 ) — 6V (e, X 0] s
t

We now aim to apply the Ito formula to the stochastic process { X" — X["}icjor) for a

suitable smooth function that we now describe.

Consider the decreasing sequence of real numbers {ay, } >0 defined by induction as follows:
an-1 1

ag=1 andfothl,/ —du = h.
u

Qap

. _h(ht1) .
It is easy to see that a, = e g and therefore that lim, ., a, = 0. Define the

function ®(u) for u € [0, 00) such that ®;,(0) = 0, ®,(u) € C*([0, oo[) and

OJ 0 S u S ap
Y (u) = ] a value between 0 and %, ap < U < ap_1 (3.3.16)
0, u > ap_1

such that @} is continuous and
Gh—1
/ O (u)du = 1.
ap,

Integrating @} we get

07 0 S u S ap,
P, (u) = < a value between 0 and 1, aj < u < ap_1 (3.3.17)
L, (=

Finally we choose 0, (u) = ®p(|u|). Then, we have:

t
On(X] — X[") = /0 (X3 = X [a(Yi0)- X 6) = @Yt X ()] ds
t
+/0 (XS = XT) [V Xor(s)) = G(Yapie)s X ()] W2

]‘ ! 24 n m — n — m 2
+§/O 0 (Xs _Xs ) [Q(Y;?n(s)’ nn(s)) _g<Y;7m(s)’X77m(S))} ds
= [1(9h> +—]é(9h) +']S(9h)
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Since for any A > 0 and u € R we have by construction that |u|—as_1 < 0,(u), we can

write

E[| X — X["] < an1 +E[0u(X] — X))
= ap-1+E[L1(0n) + Lo(0n) + 13(01)]
= ap—1 T E[L1(0,)] + E[I5(64)]. (3.3.18)

Let us now estimate E[|I1(6)]]:

EllL(0n)] = E

|

t
0 = ) 80005, 0) = V0 X)) s
0

r t
S E /|9h(X" Xm)||a’(K7n(S)Xgn(s))_a(nm(s)’Xg:n(S)”ds}
< E / a(Y,, . X s>—a<m<s>,ngn(s>>|ds}
t
< / E[|XT . — X7 [lds + L / El[Yy ) — Yo [Jds
0 0

In the second inequality we utilized the bound |0} (u)|< 1 which is valid for all ~ > 0
and u € R. By means of the estimate obtained in step two we can write

E[| X)) — Xomell < E[X) o — X{ + E[|X” — X'+ E[X = XG0 o]
Mi(V 1Al + VAR + E[XT — X[

IN

Similarly we get

CW A+ VAR

<
<

where the last inequality is due to well known estimates for strong solutions of stochastic
differential equations. Combining the last two bounds we conclude that

t
EIhO) < L [ BIXG 0~ Xghlds + L [ BV~ Yacollds

IN

TLOM; + O)(V [ Au]l + V[ An]) +L/0 B[ XS — X("|ds(3.3.19)
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We now treat E[I3(6))]; by the assumption (3.3.5) and properties of 6, we get:

E[13(0n)]

IN

IN

IN

1 ' n m\(~ n e m
§E |:\/0 Q;Z(Xs - Xs )(g(K]n(SﬁXnn(s)) - g(Y;]m(S)7X77m(s)))2dS:|

H? t 2
" n m n m
e[ - (P 3l s o) ]

t
HE [ / 0 (X7 — X (IXD g — X [V — Yarcol) ds]

t 2

t
| 6E [ / (X2 — XPJHIXT ) X;”|>ds]

t
|6 [ / (1Y) — Vil 1Y, — nm<s>|>ds]

2H?T
h

HONTH (M + CY VA + VI AmD.- (3.3.20)

Here ||07|| denotes the supremum norm of ¢ while in the last inequality we used the
same bound to obtain inequality (3.3.19). Now, let us fix ¢ > 0. For this ¢ let h be
such that 0 < ap—; < € and % < e. With this h being so chosen and fixed, ||#}] is
bounded. Then, there exists n. € N such that

(My + ONT + OITH*) (VAN + VI Awl) < €

for all n,m > n.. We can now insert estimates (3.3.19) and (3.3.20) in (3.3.18) to obtain

E[lX7 = X7)

< ap—1 +E[L(0h)] + E[13(0,)]

t
< anr + TLOM, + O (/TAM + VAR + L / E[|IXT — X™[ds
0

2H?T

+ IO TH? (M + OV AL + VI Awl)

t
< 35+L/ E[|X" — X™||ds.
0

By Gronwall’s inequality we conclude then that

E[| X" — X™|] < 3eMe < 3eM7e,

for all n,m > n. and all ¢ € [0,T]. Hence,

T T
E {/ | X{ — XZ"|dt] = / E[|X] — X["||dt
0 0

< T sup E[|X]" — X{"]]
te[0,T

< 3Tel e,
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The claim of step three is proved.
Step four: {X"},>; is a Cauchy sequence in L'(2; C([0,T1])).

We know that {X"},>1 is a Cauchy sequence in L'(]0, T] x Q) which is a complete space.
We can therefore conclude that there exists a stochastic process X € L'([0,T] x Q) such
that

T
lim E U X7 — Xt]dt} —0.
0

n—oo

From Step two we can also deduce that

T
lim E [/ X2 0 — Xt|dt] — 0.
0

n—oo

Hence, there exists a subsequence (we keep the same indexes though for easy notations)
such that

lim X'(w) = lim X, ;) (w) = Xy(w) dt x dP-almost surely.

n—o0 n—o0

Since the process { X} }icor) is {Fi}iep,m-adapted for any n € N and almost sure con-
vergence preserves measurability, we deduce that {X;}ico1 is also {F; }ieom-adapted.
To prove the continuity of {Xt}te[ng] we need to check the convergence in the uniform
topology, i.e. we need to estimate E [Supte[O,T”th - X

As before we employ the representation (3.3.13):

E

te[0,T] t€[0,T

sup IXZL—XZ”|] < E

t
sup /Ia(Kynu),X?n(s))—a(%m(sz;fn(s)”dS]
0
t

+E | sup

te[0,7)

T
/O ElJa(Yy, (0, X7 o)) — @Yo X ) |ds

/ GV X2 1)) — GV X))V
0

|
:

IN

+E | sup

t€[0,T]

= Jl +J2

t
/0 GV Xo ) — g(Kym(s)an:n(s)))dWsz
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To treat J; we proceed as before; using inequality (3.3.19) we obtain

T
o= [l X0) - a0 X lds
0

T T
0 0

< TL(M; + C) (/T + VA + L / E[|X7 — X7[|ds

Since we proved in Step three that {X"},>; is a Cauchy sequence in L'([0, T[x2) and
by assumption ||A,|| tends to zero as n tends to infinity, we can find n and m big enough
to make the last row of the previous chain of inequalities smaller than any positive ¢.

We now evaluate J;. Invoking the Doob maximal inequality, i.e.

2
E ( sup Xt> < 2’E[X}] where {X;}c(oy i & non negative submartingale

te(a,b]

(see for instance Karatzas and Shreve [12] page 14) and It6 isometry we can write

- )
) )
= 2(&[ [ a0 X :;n(s»—go@m(s),X:;;@»Fds})é

ot ([ [ (0 =Xl + o~ Yawcl) 5]

0
3
2\/—H< [/ X ?ﬁw(s)’*‘yn(s)—ynm(s)\dsp

2
= 23 [ B — X+ EIYio ~ Yacollds)
0

N

sup
t€[0,T]

t
0000 X5) = 900 X V2

T
(V) X7 (o)) = G(Vn(s), X () ) AW

N|=

IN

IN

If we now observe that the last member above is equivalent to (3.3.21), we can proceed
as before and conclude that for any € > 0 there exists n. € N such that

E

sup | X[ — X["|| <e forall n,m > n..
te[0,7
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This proves that {X,,},>1 is a Cauchy sequence in L'(Q; C([0,7]) and thus

lim E

n—oo

sup | X' — X[ | =0
te[0,7

where {Xt}te[O,T] is the stochastic process obtained in Step three. Moreover, we can find

a subsequence (we keep the same indexes though for easy notations) such that

lim sup | X}'(w) — X¢(w)|=0 dP-almost surely.

=0 ¢e(0,T)
Since the processes {X/'}ic0,1] are continuous by construction for each n € N, we de-
duce that the process {X;}¢co,r) is also continuous being a uniform limit of continuous
functions.

Step five: The stochastic process { X, }iepo,m solves equation (5.5.9).

Finally we show that

t t
]P(X(t) ::1:+/ a(Ys,Xs)der/ G(Yo, X)W for all t € [O,T]> _1
0 0

]:0

t t
Xt—x—/ a(Ys,Xs)ds—/ G(Ys, X,)dW?2
0 0

This in turn will be proven by showing that

E | sup

te[0,T

t t
Xt—x—/ a(YS,XS)ds—/ G(Ys, X, )dW?
0 0

In fact, the equality

t
= Xt — X’:]In(t) + / &(}/;7»@(8)7 Xn (s)) — &(}/;, Xs)ds
0

Mn
t
+/ .g(YUn(S)a X;n(s)) - 9(3{97X8>dWs2
0
implies

sup
te[0,7

t t
Xt—m—/ a(YS,XS)ds—/ G(Ys, X )dW?
0 0

T
< sup ’Xt - X;L(t)‘_‘_/ |&(Ynn(8)7 X,:;n(s)) - d(YSa Xs)|d8
te[0,7 0

+ sup
te[0,7

t
0
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If we take the expectation and use the technique utilized in Step four to bound the terms
in the right hand side of the previous inequality we get

t t
B | sup X -2 [ a(v,x)ds - [ g(¥. x)dw?
te[0,T] 0 0
¢ ¢
= lim E | sup Xt—x—/ a(YS,XS)ds—/ G(Ys, X, )dW?
n—o0 tG[O,T} 0 0
T
te[0,7 0
t
+ lim E | sup / (Y5 X)) — g(Ys, X,)dW? ]
n—0o0 teo, 7] |Jo
= 0.

Uniqueness: We use a standard approach. Let {X;}.co.71 and {Z; }iejo.1) be two strong
solutions of equation (3.3.9). Setting,

5= X 2= [ a0 X0 — (v Zlds + [ lgv X,) — 900 Z0JaW? (3..2)

we get by the It6 formula
t
0,(6,) = / 0,(6,)[a(Ya, X.) — (Ve Z.))ds
0

T / 0,(6,)[3(Ye, X,) — §(Vi, Z,)]dW?

i / t 07 (5:)[G(Ys, Xs) — G(Ys, Zs)]*ds

2 Jo
where {0}, } >0 is the collection of functions defined in Step three. Using the assumptions
on a and g and the bounds |6}, (u)|< 1 and |6} (u)|< % we get

2

E[0,(0)] < E[ [ a6ty x) — atvi. zas| + 45

t tH2
< L/ E[|0,|]ds + —
0 h
If we let h — o0, the function 6, approaches the absolute value function; hence, Gron-
wall’s inequality and sample path continuity imply that {X;}icpo,r and {Z;}icpm are
indistinguishable. []
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Chapter 4

On a general model system related
to affine stochastic differential
equations

4.1 Introduction

Stochastic differential equations (SDEs, for short) with Hélder-continuous coefficients
appear in the modeling of several evolutionary systems perturbed by noise. The most
important instance is probably the so-called square root process defined to be the unique
strong solution of the following one dimensional SDE

dX, = (aX, + b)dt + o/ X, dW,, Xo =2z (4.1.1)

where a,b € R, 0,2 €]0, 400 and {W};}+>( denotes a standard one dimensional Brownian
motion. This equation is very popular in interest rate modeling due to the properties of
its solution. We refer the reader to the book Cairns [13] for a detailed analysis of this
topic (see also Mao [21]). SDEs with Hélder-continuous coefficients appear in the de-
scription of certain epidemic models as well: in this case the solution process represents
the number of susceptible individuals in a given population. We mention the papers
Greenhalgh et al. [1] and Bernardi et al. [15] which consider models described by SDEs

with random and Holder-continuous coeflicients.

From a mathematical point of view the analysis of existence and uniqueness for
strong solutions of SDEs with Holder-continuous coefficients is quite challenging. In the
one dimensional case, resorting to the famous Yamada-Watanabe principle (i.e. weak
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existence plus pathwise uniqueness implies strong existence) one can prove the existence
of a unique strong solution for SDEs where the drift coefficient is locally Lipshiptz-
continuous while the diffusion coefficient is of the type o(z) = |z|* for a € [1/2,1].
The hard part of this proof is the pathwise uniqueness which heavily relies on an ad
hoc technique introduced by Yamada and Watanabe [10] (see also the books Ikeda and
Watanabe [11] and Karatzas and Shreve [12] for comparison theorems obtained with a
similar approach). When we move to systems of SDEs with Holder-continuous coeffi-
cients, then only few particular cases can be found in the literature; in fact, the lack of a
multidimensional version of the Yamada-Watanabe technique to prove pathwise unique-
ness forced the authors of those papers to consider equations that can be investigated
with a slight modification of the one dimensional approach. The most important paper
in this stream of results is certainly Duffie and Kan [2] where the authors, motivated
by financial applications, consider a multidimensional version of the square root process
(4.1.1). They prove existence, uniqueness and positivity for the strong solution of an
SDE where the components of the drift vector are affine functions of the solution and
the diffusion matrix is a constant matrix times a diagonal matrix with entries being
square roots of affine functions of the solution. Their proof is based on a suitable appli-
cation of the comparison theorem mentioned above, which we recall is based on the one
dimensional Yamada-Watanabe technique. We now mention a series of results where
the Yamada-Watanabe approach has been utilised in some multidimensional problems:
Graczyk and J. Malecki [39] and Kumar [40] consider SDEs where for i € {1,...,m} the
1-th row of the diffusion matrix depends only on the i-th component of the solution;
Luo [41] investigates a nested system of SDEs where the i-th row of the diffusion matrix
depends only on the first i components of the solution; Wand and Zhang [42] introduce
an integrability condition involving the determinant of the diffusion matrix and an aux-
iliary function fulfilling certain requirements.

The aim of the present paper is to link the general method presented in the book
Allen [36] for modeling random phenomena using SDEs to the multidimensional system
studied in Duffie and Kan [2]. More precisely, in Allen [36] pages 138-139 it is shown
how, assigning probabilities to the possible changes of a general two dimensional system,
one can deduce a Fokker-Planck partial differential equation for the candidate density of
the system and from that a suitable SDE describing the random motion of the system.
Following this procedure we consider an m-dimensional system with some prescribed
admissible (i.e. with positive probability) changes and we deduce after some simplifying
assumptions an m-dimensional SDE with Holder continuous coefficients. Then, Taylor-
expanding up to the first order the coefficients of the SDE around the initial condition,
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we end up with the multidimensional SDE investigated in Duffie-Kan [2] for which the
existence of a unique strong solution is guaranteed under proper restrictions (we also
present a detailed proof of this result, elaborating some technical aspects missing in the
original proof). Therefore, this general construction emphasises the central role of the
Duffie-Kan SDE as a model for first order approximations of a wide class of nonlinear
systems perturbed by noise. We also remark that the positivity property guaranteed by
the Duffie-Kan theorem entails the consistency of our procedure: in fact, such property
will ensure the positivity of the probabilities originally assigned to the m-dimensional
system according to the Allen’s method. We then specialise to the two dimensional
case and we suggest a direct proof of the Duffie-Kan theorem which does not passes
through the comparison with an auxiliary process. Our proof is based on the sole prop-
erties of the one dimensional square root process (4.1.1) and produces a scheme to obtain
an explicit solution of the two dimensional system once the process in (4.1.1) is assigned.

The paper is organised as follows: in Section 2 we adapt the Allen’s procedure to an
m-~dimensional system assigning probabilities of admissible changes and making some
simplifying assumptions; Section 3 contains the description of the first order approx-
imation, link to the Duffie-Kan SDE, statement and detailed proof of the Duffie-Kan
theorem; lastly, in Section 4 we specialise to the two dimensional framework and propose
a constructive alternative proof of the Duffie-Kan theorem.

4.2 A general m-dimensional system

Let us consider a model system with m € N different states evolving in time according

to some probabilistic rules specified below. We write
Sy =(SH, 8% ..., smT  t>0
to represent the values of the m states of the system at time t.

1 7"2

_)
-
il ml Tuwld

al e

[

Figure 4.1: An m-state dynamical process
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It is assumed that in a small time interval [t,t + At] every state can change by —1, 0
or +1. This produces a total of 3™ possible different changes (the number of vectors of
length m with components taking values in the set {—1,0,1}). We let AS; := Syt — Sy
be the global change of the system in the time interval [t,¢ + At]; for instance, AS; =
(—1,0,1,0,...,0)T means that in the time interval [t, t+ At] state S* has decreased of one
unit, state S3 has increased of one unit while all the other states remained unchanged.
As illustrated in Figure 4.1, we denote

ri(t,z) = P(AS; = —e; +e1|Si=x)/At, je{l,...,m—1} (42.1)
Li(t,x) = P(AS, =—ej+e€;1|S =x)/At, je{2,...,m} (4.2.2)
di(t,z) = P(AS, = —e¢;|S; =x)/At, je{l,...,m} (4.2.3)
u;(t,z) = P(AS; =e¢j|Si=x)/At, je€{l,...,m} (4.2.4)
polt,m) = L—At-> (rj(t, )+ L(t,2) + d;(t,z) + uy(t, ) (4.2.5)

where {ey, ..., e, } denotes the canonical base of R™ and r,,(t,z) = l;(t,z) = 0. We
remark that the probabilities associated to those changes not specified by (4.2.1)-(4.2.5)
are identically zero. We also observe that po(t, ) represents the probability of no changes
during the interval [t, ¢ + At] given that S; = x. According to Figure 4.1 the evolution of
the states of the system is determined by interaction between the neighboring states(r;’s
and [;’s) and exchanges with the outside world( u;’s and d,’s).

Given the probabilities (4.2.1)-(4.2.5) one can introduce, following Allen [36] pages 137-
139, a Fokker-Planck equation solved by the density p(t,z) := P(S; = z) of the system
which in turn is related to the stochastic differential equation

(4.2.6)

dS, = p(t, S,)dt + B(t, Sy)dW,
S():S

where {W;}+>¢ is an m-dimensional standard Brownian motion,
wu(t,x) == E[AS|S; = x] /At

is the mean vector and B(¢,x) denotes the symmetric square root of the covariance

matrix
According to equations (4.2.1)-(4.2.4) we can write

pt,z) = (—r(t,x) + Lt z) +u(t,z) —di(t,z)) e
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3
L

+ > (rja(tz) —ri(t,z) + Lt z) — Lt ) +ui(t,x) — di(t, @) e

[\

TN S

+ (rp1(t, ) — Ut o) + up(t, ) — dp(t, ) e (4.2.7)
and
V(t,x) = Z(uj(t, z) +di(t,z))e; ® e; + i(rj(t,x) + 1 (t, @) M; (4.2.8)

where for j € {1,...,m — 1} we set M; := (e; —ej11) ® (e; — €j11). We remark that the
previous general system has been proposed in Bernardi et al. [43] as a model to study
risks aggregation in a Bonus-Malus migration system. To proceed in the analysis of the
SDE (4.2.6) we need to find the symmetric square root of the matrix V(¢,z). To this

aim we assume the following.
Assumption 4.2.1. For anyi,j € {1,...,m} we have
wi(t,x) +di(t,x) = ui(t,x) + d;(t,x) = ~(t, )
and for any i,5 € {1,...,m — 1} we have
ri(t,x) + L (t,x) = r(t,2) + [ (¢ x) =: (L, x).

Assumption 4.2.1 introduces some symmetries in the evolution of our system. More
precisely, the first condition implies that each state has the same probability of an
exchange with the outside, while the second condition means that the probability of
exchanges between neighboring states does not depend on the specific states considered.
As a result we can now rewrite equation (4.2.8) in the simplified form

V(t,z) =~(t,x)] +0(t,z) M (4.2.9)

where I is the m x m identity matrix while M is the m x m matrix defined as

1 -1 0 0 o --- 0

-1 2 -1 0 o --- 0

o -1 2 -1 0 0
M=

0 o -1 2 -1 0
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According to Theorem 4 page 73 in Yueh [44] (with a = c= -1, a = f = /ac =1 and
b = 2) the matrix M has m distinct eigenvalues of the form

A, =24 2cos(km/m), k=1,...m (4.2.10)
and hence there exists an orthogonal matrix > such that
M =3YMET  with M =diag[\,..., \nl.
Therefore, setting y(t,z) := 6(t,x)/v(t, z) from equation (4.2.9) we deduce that

Vit,z) = ~(tz) (I +y(t,z)M)
= A(t,x)- (I +y(t,z)ZMET)
= At z) - (I +y(t,z)M)ST.

Since

(I +y(t,2)M)Y? = diag [\/1 +y(t, )\, /1 +y(t,:1:)/\m]

we conclude that

B(t,x) = /V(t,x)
= /7(t,x) - X diag [\/ 1T+y(t,x)A, ...,/ 1+ y(t,a:))\m} »T

= Y diag [\/’y(t, $)+0(t, )M, ..., \/Y(t, ) + O(t, x))\m} »T. (4.2.11)

To sum up, given the probabilities (4.2.1)-(4.2.5) together with Assumption 4.2.1 our
model system evolves according to the stochastic differential equation

+z diag [m (6, 50) + 0L, S)Ars oo /A Sp) + 00, Sy | STdW,
S() - S

or equivalently

—i—Z diag [\/fyt Sy) 4+ 0(t, Sp) A, ..., \/fyt Sy) + 0(t, St)Am] AW, (4.2.12)
So = S

where Wt = YTW, is a new m-dimensional standard Brownian motion (recall that by
construction X7 is orthogonal) while u(t,S;) and the \;’s are defined in (4.2.7) and
(4.2.10), respectively.
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4.3 First order approximation and the Duffie-Kan’s

theorem

The aim of the present section is to prove the existence of a unique strong solution for
an SDE of the type (4.2.12) under suitable regularity assumptions on the coefficients of
the equation. First of all we observe that according to equation (4.2.7) and Assumption
4.2.1 the components of the drift coefficient  and the scalar functions v and [ are linear
combinations of the functions r;’s, [;’s, u;’s and d;’s defined in (4.2.1)-(4.2.4).

If we assume for simplicity that the functions r;’s, [;’s, u;’s and d;’s are time independent
and we expand each of them into its first order Taylor polynomial around the point s
(which is the initial condition of the SDE (4.2.12)), then we obtain a corresponding
family of affine functions on R™. Linear combinations of these affine functions will
result in new affine functions representing the components of the drift coefficient p and
the scalar functions v and 6. More precisely, introducing the notation f* to denote the

first order Taylor polynomial around s of the smooth function f : R™ — R, i.e
ff:R™ = R
= fH(x) = f(s) +(V[(s),z —s),

we approximate the functions r;’s, [;’s, u;’s and d;’s with 77

j )
tively. This results in the first order approximation of i, v and 6 transforming equation

(4.2.12) into

9 * ) % )
s, I7’s, u}’s and d}’s, respec-

dSt = M*(St)dt
‘|‘E dlag |:\/’}/*(St) + 9*(515))\17 ceey \//7*<St> -+ Q*(St))\m th (431)
S(] = S

The SDE (4.3.1) now falls into the class of affine stochastic differential equations which
is a class of equations having a relevant role in the theory of interest rate models (see
for instance Cairns [13]). Existence, uniqueness and positivity for affine SDEs have been
investigated in the remarkable paper Duffie and Kan [2]. Here we recall their main
theorem together with a detailed proof.

Theorem 4.3.1 (Duffie and Kan [2]). Consider the m-dimensional stochastic differential
equation

dS, = (aS; + b)dt + % diag (Wn(St), NONEARS vm(St)> AW, (4.3.2)

where a, X € Myysm, b € R™ and vi(x) := a;+ (6, x) with oy, ..., & € R and By, ..., By €
R™. Assume that
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1. If x € R™ is such that v;(z) = 0, then
(B, az +b) > [T B[ /2

2. Forallj € {1,...m} if (X76;); #0, then vi(x) = vj(x) for all x € R™.
Then, for any initial condition Sy = s € R™ belonging to
D :={x e R™:v(x) >0 foralliec{l,,,.m}}

the SDE (4.3.2) admits a unique global strong solution. Moreover, such solution satisfies
forallie{l,...m} andt >0

v;(St) > 0 almost surely.
Proof. We first consider the case in which
vi(z) =v(x) =a+ (B,x) forallie{l,..,m}

making the second assumption trivially satisfied. In this case equation (4.3.2) reduces
to

dSt = (CLSt + b)dt + v 'U(St)Zth (433)

Let {e, }n>1 be a positive strictly decreasing sequence of numbers converging to zero. For
each n > 1, let {Sﬁn)}tzo be the unique solution of the stochastic differential equation
defined by (4.3.3) for t < 7, = inf{r > 0 : v(S™) = £,} and by 5" = S for
t > 7,. This is the process satisfying (4.3.3) that is absorbed at the boundary {z € R™ :
v(x) = €,}. Since the coefficient functions defining (4.3.3) are uniformly Lipschitz on
the domain {z € R™ : v(z) > ¢,}, the process {St(n)}tzo is well defined and is a strong
Markov process by standard SDE results.

With 7 = 0 we can now define a unique process {S;}:>o on the closed time interval
0, +00] by S; = St(n) for ,_1 <t < 71,and by S; = sfort > 7 := lim,_, o 7,. If
T = +o0o almost surely, then {S;}:>o uniquely solves (4.3.3) on [0, +o0], as desired, and
is strong Markov. To prove that 7 = 400 almost surely we will construct an auxiliary

positive process that lower bounds v(S;). We begin by considering the scalar process
Vii=o(S) =a+(B,5), t=0
which clearly satisfies

AV, = (8, aS; + bYdt + \/V; - (8, SdW,). (4.3.4)
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If we set
W, = (578, W) /IS8, t>0

we see that {W;},0 is a one dimensional Brownian motion and equation (4.3.4) can be

rewritten as
AV, = (B,aS, + bydt + |7 8]\/VidW,. (4.3.5)
According to the first assumption the inequality
(Bi,az +b) — [S1B]*/2 > 0

holds on the hyper-plane v(xz) = 0. Therefore, by continuity there exists ¢ > 0 such that
the previous inequality is valid on the strip {x € R™ : 0 < v(z) < e}. We can assume
without loss of generality that such e coincides with ;. In particular, we can find a
0 > 0 such that

(Biyaz +b) — |XTB12/2 > 6 (4.3.6)

holds for all  belonging to the aforementioned strip. Denoting by 7 := |[S73|2/2 + 6 we
have that

(Bi,az +b) > 7 > [S 57 /2 (4.3.7)

on the set {x € R™: 0 < w(z) < e1}. We can also assume that V > ¢;.
We now introduce the excursions of the process V' from e5 to £1. We set 7*(0) = 0 and
for kK > 1 we define

Tk) =inf{t >T*(k—1):Vy=e9} and T*(k):=inf{t >T(k):V,=¢1}.
These stopping times realize a partition of [0, +ool:
0=T"0)<T(1)<T (1) <T2)<T*(2) <"

In addition, we consider the auxiliary process {V;}1>o defined as follows:

A T T A ~
o= et [ ndse [ TR VAL, it (200, 7(0)
T (k) T(k)
Vi = Vi, ift€]T*(k), T(k+1)[
The process {V;};o satisfies

0<V, <V, foralltel0,+ool. (4.3.8)
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In fact, when ¢ €]T*(k), T(k)[ then V; = V; and by the construction of the stopping
times V; > €9 > 0 on that time interval. On the other hand, when t € [T'(k), T*(k)] then
V; is a one dimensional square root process satisfying the Feller condition 77 > |27 [2/2
(compare with the second inequality in (4.3.7)). This gives the positivity of V;. Moreover,
recalling the dynamic of the process {V;};>o in (4.3.5), the first inequality in (4.3.7)
together with Theorem 1.1 page 437 in Ikeda and Watanabe [11] implies V, <V,

We now consider the general case: let {¢,},>1 be a positive strictly decreasing sequence
of numbers converging to zero and define as before for each n > 1 the process {St(n)}tzo
to be the solution of the stochastic differential equation defined by (4.3.2) for t < 7, :=

77777

-----

.....

a strong Markov process by standard SDE results.

With 75 = 0 we can now define a unique process {S:}:>o on the closed time interval
[0, +00] by S; = Slfn) for 7,1 <t < 71,and by S; = s for t > 7 1= lim,_ 0o 7. If
T = +oo almost surely, then {S; }+>0 uniquely solves (4.3.2) on [0, +o00[. Fori € {1,...,m}
let

Vii=wi(S) = ai + (i, Se), t>0

which clearly satisfies

d‘/tl = <Blv aSt + b>dt + <5Z, Z dlag (\/ ‘/tl, \ ‘/tQ, Y ‘/td> th>
— (B;,aS, + b)dt + <2Tﬁi, diag (\/th, VVE, . v;d) th>
= (B;,aS; + b)dt + Z(ZT@)J‘ A Viaw}
j=1

= (Bi,aS +b)dt + > (S78,); -/ Vi dW]

J€Ci
where
Ci={je{l,.m}: (Z73); #0}.

According to the second assumption of the theorem, we have that V/ = Vi for all j € C
and t > 0. Therefore,

AVl = (Bi,aS, +b)dt+ Y (57B); -/ ViAWY

JeC;
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= (B, aS, + b)dt + \/VE S (STB,);aW}

JeC;
= (B, aS, + bydt + \/VidW}
with
Wi =" (576:),W7 /157 il
JEC;
being a one dimensional Brownian motion (observe that [S76;[*= 3", (X7 3;)7 by the

definition of C;). One can now proceed as before introducing m auxiliary process Vi
which satisfy 0 < V;/ <V} for all i € {1,...,m} and t > 0. This completes the proof. [J

By means of the previous theorem we can now set concrete assumptions on the proba-
bilities (4.2.1)-(4.2.4) for the existence of a unique strong solution for the SDE (4.3.1).
These assumptions will also guarantee the non negativity of the probabilities in our orig-
inal model system making the whole construction consistent. Before stating the result
we recall that by Assumption 4.2.1 we have

v(z) = u;j(z) +dj(x) foralljel, .. m.
Corollary 4.3.2. If 0* =0, v(s) > 0 and the inequality
(V(s), *(z)) > |Vy(s)[?/2  holds true on the set {x € R™ : y(x) =0} (4.3.9)

then equation (4.3.1) admits a unique strong solution {S; }+>o such that v*(S;) > 0 almost
surely for all t > 0.

Proof. We have simply to verify that our assumptions imply those of Theorem 4.3.1.
First of all, 0* = 0 is by Assumptions 4.2.1 equivalent to 75 +15 = 0 for all j € {1,...,m}
and hence 7§ =[5 = 0. With §* = 0 the system (4.3.1) reduces to

{dstz §5(S)dt+ /7 (S AW, (£3.10)
So = S o

Observe that LW, = W, by definition of W, and orthogonality of 3. Equation (4.3.10)
trivially satisfies the second assumption of Theorem 4.3.1 since, in the notation of that
theorem, vy(x) = - - - = v, (x). We are left with the verification of the first assumption
in Theorem 4.3.1. We note that

(@) =(8) +(V(s),x —s) =a+ (B, )

if 8 := V~(s) and a := 7y(s) — (V7(s), s). Since u*(x) corresponds to ax + b using the
orthogonality of ¥ we get that (4.3.9) is equivalent to the first assumption of Theorem
4.3.1. ]
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We observe that from the previous corollary we get the positivity of
Y (St) = wi(Sy) + di(S:), j€{l,..,m}

which is the aggregated probability of an increase and a decrease for each single state.

4.4 Two dimensional system

We now focus our attention on the two dimensional version of the general model system
presented above. For the sake of clarity we schematise in Figure 4.2 below the dynamic

investigated in the present section

1L)2
s P
(—

0l o wl e

Figure 4.2: Two dimensional system

and we set

(AS; = (—1,1)|S; = z)/At

: (AS; = (1,-1)|S; = z)/At

= P(AS; = (—1,0)|S; = z)/At
(AS; = (1,0)|S; = z) /At

: ( =(0,-1)|S; =z)/At

= P(AS; = (0,1)|S; = z)/At.

In addition, we denote

po(t,z) = P(AS,=(0,0)|S; =x)
= 1-At-(r(t,z) +U(t,x) + di(t,x) + ui(t, ) + do(t, x) + us(t, x))

implying that

According to the scheme presented in the previous sections, if we employ the first order
Taylor approximation of the functions defined above (which are assumed to be time
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independent), then the stochastic differential equation under investigation takes now
the form

ds, = wp*(Sy)dt+ B*(S,)dW,

. [ ’Ul(St) O T

- m&+er+Z_ i W“m]EdW;

(St Vot O L |a @)
i 0 65} + <527 St>

where for suitable choices of a € Mays, b, 51, B2 € R? and aq, as € R we find that

(aS;+b)1 = ui(Sy) — di(Sy) — r*(Sy) + 1*(Sy)
(aS;+0b)s = u5(Sy) — d5(Sy) +r*(Se) — 1*(S)

(this follows from equation (4.2.7)) and

oy + (B, Sr) = di(Sy) +ui(Sy) 4 2(r*(Sy) + 17 (S)) (4.4.8)
g+ (B2, ) = di(Si) + ui(St)

(which follows from equation (4.2.11)). We remark that in the present case
M =2 =0, (z)=di(z)+uj(x) and 0%(x)=1r"(x)+*(x).
and Assumption 4.2.1 reduces to
di(x) + ui(z) = d3(x) + uz(x).

Moreover, we have

1|1 1
¥ = — .
b
If we look through the proof of Theorem 4.3.1, we see that the second assumption in the
statement of the theorem, namely

for all j € {1,....m} if (X783;); # 0, then vi(z) = v;(z) for all z € R™  (4.4.10)

serves to reduce the diffusion matrix

diag <\/v1(5t), \/U2(5t>7 cery Um(St)>
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to one of the form 4/v;(S;)I where I stands for m x m identity matrix. Therefore, there
is no loss of generality in considering only the case

vi(z) = ve(x) =+ = vy(2).
The next result is the two dimensional version of Theorem 4.3.1 for the case
vi(x) = ve(x) = a+ (B, x). (4.4.11)

The proof is, however, different: it is based on a direct approach rather than the Yamada-
Watanabe comparison method utilised in the proof of Theorem 4.3.1. This direct ap-
proach has the advantage of providing an explicit representation of the solution. Let us
also point out that condition (4.4.11) together with (4.4.8) and (4.4.9) implies

With reference to Figure 4.2 this means that the interactions between the two states
of the system take place in the probabilities w1, us, d; and dy rather than from direct
exchanges.

Theorem 4.4.1. Consider the two dimensional stochastic differential equation

dSt = (aSt + b)dt + \V/ & + <5, St>th, S() =S € RQ (4412)
where a € Mayo, b, 3 € R? and o € R. If the inequality
(B,ax +b) > |B|*/2 holds true on the set {x € R?: o+ (B,7) =0}  (4.4.13)

then for any initial condition s satisfying o + (f,s) > 0 the SDE (4.4.12) admits a
unique strong solution {S;}i>o0 with the property that o + (f,S;) > 0 almost surely for
allt > 0.

Proof. The idea of the proof is to reduce via an orthogonal transformation the system
(4.4.12) to a system where the equation describing the first component is independent
of the second. The first component will turn out to be a one dimensional square root
process while the equation for the second component will be explicitly solvable once the
first is known.

We may assume without loss of generality that 5 # 0 (if 5 = 0 then equation (4.4.12)
admits a unique strong solution for any a > 0). Let K € Msy5 be the unique orthogonal
matrix such that K = |f5|e; and define the stochastic process Y; := KS;, t > 0. Then,
by the linearity of the Ito differential we can write

dY, = (KaS,+ Kb)dt + /o + (B, S)dKW,
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= (KaK'KS, + Kb)dt + v/a+ (8, K-LKS,)dW,

= (aY;, +b)dt + \/a + (KB, Y,)dW,
= (Y, + b)dt + \/a + | BV, dW, (4.4.14)

where @ := KaK ™', b := Kb and W, := KW, being a new two-dimensional standard
Brownian motion. The initial condition is Yy = KSy = Ks =: §. We observe that
condition (4.4.13) corresponds to

G11Y1 + G12ys + by > |B]/2  holds true on the set {y € R? : o+ |B|yr = 0} (4.4.15)

Indeed,
at(B,2) = a+ (8K 'Kz
~ a+ (KB Kz)
and

(Byax +b) = (K'KpB,ar+0)
= |Bl{e1, Kax + Kb)
= |Bl{er, KaK 'y + b)
= |Bl(er, ay +b)
= |5’<51191 + a12y2 + Bl) :

Since the set {y € R? : a+ |B|yy = 0} in (4.4.15) coincides with {y € R? : y; = —a/|B|},
a substitution of the last condition in the inequality of (4.4.15) gives

a12Yo + by > 181/2 + (adi1)/]8].

The last inequality has to be true for all y, € R; hence, we get that a;» = 0 and

by > [81/2 + (adn)/ 5. (4.4.17)

Therefore, we can write equation (4.4.14) as

dY}' = (anY;' 4+ by)dt + /o + ||V, dW]E, Y =5 (4.4.18)
Y = (an Y, + Y, +bo)dt +/a+ BV dW? Y3 =3 h

Let us study the first equation in (4.4.18). Setting Y; := |B|Y;' + a and applying the Ito
formula we get

dy, = (dllyt + 61|5|_045l11> dt + |5|\/37tth17 Yo = |Bl51 + a.
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The previous SDE has a unique positive solution (see e.g. Cairns [13]) if
b|Bl—adn > |8]*/2

which corresponds to (4.4.17). The positivity of ), is equivalent to the positivity of
18], + o which in turn is equivalent by (4.4.16) to the positivity of a + (S, ). We
can now solve the equation for Y;? in (4.4.18), namely

dy? = (athl +anY? + 82) dt + \/a+ | BV, dW?
=AY dt+ {(51213/;1 + Bz) dt + /o + |ﬁ\Y;lth21 :

Its solution is give by the formula

T

Y;Q = 6622t§2 + / 6&22(t_s) [(dglnl + Bz) ds + VvV + |B|Y;1dW82] .

0

Setting S; = K'Y, we obtain the solution of the original system completing the proof.
O

We now summarise the construction of the solution of the system (4.4.12) suggested in
the previous proof:

e define the orthogonal matrix K imposing that K3 = |B|e; and set a := KaK ™!,
b= Kb, §:= Ks and V~Vt = KW,

e let {Vi}i>0 to be unique positive strong solution of the (one dimensional) square
root SDE

aYs = (and + bl —aan ) dt + |8 VVdW}, Vo = |13 +a

(note that the driving noise is th)

e set V! := () — a)/|B| and

¢
Y2 = 22, 4 / ez (t=9) [(amY; + bQ> ds +va+ |ﬁ|Y;dW3}
0
(note that the driving noise is W2)

e the process Sy := K'Y solves (4.4.12).

In the following example we show that Theorem 4.3.1 without its second assumption no
longer holds in general.
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Example 4.4.2. We consider the system

dX} =2/XZ— 1dW}, X}!=u

(4.4.19)
dX? = 3dt + 24/X2dW?2, X2 = 5.

In the notation of Theorem J.5.1 it corresponds to
m=2 a=0 b=(0,37 =2 a=(-1,00" g =(0,1)" p=(0,1)".
Recalling that v;(x) = a; + (B, ) fori=1,2 we get
v(r)=—-142z2 and vo(z) = 2o

Since the second component of B1 is not zero and vy # vy, the second condition of

Theorem 4.53.1 does not hold. However, since a = 0 the first condition reduces to

(Bi,0) > 1Bil*/2, i=1,2

which is clearly true. The positivity region D is now given by D = {x € R? : o > 1}. If
the result of Theorem 4.5.1 were true we should be able to get a unique strong solution
of (4.4.19) lying in D for all t > 0 almost surely.

We observe that the process X? in (4.4.19) falls in the class of the squared Bessel pro-

cesses, t.e. processes that are strong solutions of SDEs of the form

¢
Zt:z+2/ V ZsdBs + 0t
0

where z,6 > 0 (see Revuz and Yor [38] for a deep analysis of this family of processes).
The parameters 6 and v := g — 1 are called dimension and index of Z, respectively. It
1s well known that the transition density of Z is given by the formula

1 ry\z =zt V7Y
ff(z,y) = % <;> e 2 [1/ (T) 1{y>0}

where 1,(z) stands for the modified Bessel function of the first kind of order v, i.e.

o0 (g)y+2n
]V = : ) ) C.
(2) ;nlf(n~|—y+1) vz e

From this we see that P(0 < X? < 1) > 0, even starting with o > 1. For instance,

taking xo = 2 and t = 1 we have

1
PO< X;<1)= / f(2,y)dy =~ 0.08.
0

This violates the positivity condition defined by D = {x € R? : x5 > 1} which ensures

VX? =1 to be well defined.
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Appendix A

The space C|0, ), Weak
Convergence and the Wiener

measure

The ”canonical” space for Brownian motion, is C[0,00), the space of all continuous
real-valued functions on [0, c0) with the metric

o0

1
plwr,ws) = o &1&);(@1(15) — ws(t)|AL). (A.0.1)
n=1 -

In this appendix we show how to construct a measure, called the Wiener measure on this
space so that the coordinate mapping process is Brownian Motion. This construction
is given as the Donsker’s invariance principle(also known as the functional central limit
theorem) and involves the notion of weak convergence of random walks to brownian

motion.

A.1 Weak Convergence

Definition A.1.1. Let (S,p) be a metric space with a Borel sigma-field B(S). Let
{P.}22, be a sequence of probability measures on (S,B(S)), and let P be another proba-
bility measure on this space. We say that { P,}>°, converges weakly to P and P, Lp
if and only if

iim [ f(s)aP.(s) = [ F(s)aP(s)
S
for every bounded, continuous, real-valued function f on S.
One can show that in particular from the definition above that the weak limit P is

a probability measure and is unique.

111



112 The space C[0,00), Weak Convergence and the Wiener measure

Definition A.1.2. Let {(Q,, F,, P,)} —, be a sequence of probability spaces and on
each of them consider a random variable X,, with values i the metric space (S, p). Let
(Q, F, P) be another probability space on which a random variable X with values in (S, p)
is giwen. We say that {X,}>2, converges to X in distribution, and write X, LN X, if
the sequence of measures { P, X, '}°°, converges weakly to the measure PX .
Equivalently X, END'S if and only if
lim E,(f(X,)) = E(f(X))

n—oo

for every bounded continuous function f on S, where F, and E denote expectations
with respect to P, and P, respectively. Indeed since { P, X, '}°°, converges weakly to the
measure PX ™1 we have by definition that for all bounded continuous functions f on S
that

lim [ f(s)dP,X,'(s) = lim f(X,(w))dP,(w) = lim E,(f(X,))

and ’
/S F(5)dPX 1 (s) = / F(X(w)dP(w) = E(f(X))

which together imply convergence in distribution

lim E,(f(Xn)) = E(f(X)).

n—oo

The other direction is easily proven by a similar argument.

Recall that if S in Definition A.1.2 is R, then X, 2, X if and only if the sequence of
characteristic functions ¢, (u) := E,(expi(u, X,)) converges to p(u) := FE(expi(u, X)),
for every u € R?. This is called the Cramer Wold device and is a simple consequence of
the celebrated Levy Continuity theorem.

The most important example of convergence in distribution is that provided by the
central limit theorem. In the Lindeberg-Levy form used here, the theorem asserts that

if {1,,}°2, is an i.i.d sequence of random variables with mean zero and variance o2, then

{S,} defined by
1 n
Su= ; U

converges in distribution to a standard normal random variable. It is this fact that dic-
tates that a properly normalized sequence of random walks will converge in distribution

to a Brownian motion(Donsker’s invariance principal).

Lemma A.1.3. Suppose {X,}°2, is a sequence of random wvariables taking values in
a metric space (S1,p1) and converging in distribution to X. Suppose (Sa, p2) is another
metric space, and ¢ : S; — Sy is continuous. Show that Y, = ¢(X,) converges in
distribution to Y := p(X).
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Proof. In order to show Y, 2y ¥ it is sufficient to show that(by definition of convergence
in distribution) for all bounded continuous functions f we have that

lim E,(f(p(Xn))) = E(f(#(X)))

n—oo

Observe that the composition function f¢ is bounded and continuous since f is bounded
and continuous and ¢ is continuous.The assumption that X, 2, X which implies that
lim, 00 En(9(Xn)) = E(g(X)) for all bounded continuous ¢. In particular it is true for
g = fy. This completes the proof.

O

A.2 Tightness

Definition A.2.1. Let (S,p) be a metric space and let 11 be a family of probability
measures on (S, B(S)). We say that 11 is relatively compact if every sequence of elements
of Il contains a weakly convergent subsequence. We say that 11 is tight if for every e > 0,
there ezists a compact set K C S such that P(K) > 1 — € for every P € II.

If {Xo}aea is a family of random wvariables , each defined on a probability space
(Qa Fo, Po) and taking values in S, we say that this family is relatively compact or tight
if the family of induced measures { P, X'} oca has the appropriate property.

Theorem A.2.2. Let Il be a family of probability measures on a complete separable
metric space S. This family is relatively compact if and only if its tight

Proof. For the proof refer to Convergence of Probability Measures by Billingsley(1968)
pp-35-40 [

We are interested in the case S = C[0,00). For this case we shall provide a charac-
terization for tightness.To do so we will need the following definition

Definition A.2.3. For each w € C[0,00),T > 0, and 6 > 0 the modulus of continuity
on [0,T] is defined as
m?(w,6) = ‘5111356 lw(s) — w(t)] (A.2.1)
0<s5t<T
Lemma A.2.4. (Problem 2.4.8 Shreve) Show that m™ (w, d) is continuous in w € C0, 00)
under the metric p defined in (A.0.1), is non decreasing in § and lims;om* (w,d§) = 0 for
each w € C[0, 00).
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Proof. We first show that w + m7T(w, ) is continuous with respect to the metric p i.e
given a fixed 6 > 0 and 7" > 0 we can find a n > 0 such that

whenever p(wy,ws) < n then |m” (wy, ) — m’ (ws, )| < e

p(wi,ws) < n yields by the definition of p and choosing an n* € N such that T+ 1 >
n*>T

max
0<t<n*

wi(t) — wa(t)[< Crn

and hence we can choose n such that

orél%}grwl(t) —wy(t)|< Crn < €/3

Now we have by the triangular inequality that

|wi(s) — wi(t)]= |wi(s) — wa(s) + wa(s) — wal(t) + wa(t) — wi(t)]

(A.2.2)
< Jwi(s) = wa(s)|+|wa(s) — wa(t)[+|wa(t) — wi(t)]

And hence we have

wi(s) = wi(t)[< |wi(s) — wals)[+]wa(s) = walt)|+]wa(t) —wi(t)]

. (A.2.3)
< €/3 + |wa(s) — wa(t)|+€/3 = 2/3e + |wa(s) — wa(t)|< 2/3¢ +m” (wo, )

and therefore we have
|wi(s) — wi(t)|—mT (wa, 0) < 2/3¢

which yields after taking maximum on both the LHS and RHS
m?T (wy,6) —m? (wy,6) < 2/3e < ¢

and a similar argument (by using triangular inequality on |ws(s)—ws(t)|) we can conclude
that

Im™ (w1, 8) — m” (wy, 6)|< €

In order to show that given a fixed w € C[0,00) and T' > 0 the map § — m” (w,d) is
non decreasing in d we let §; < 9, and then observe that

_ < —_
brgglw(s) w(t)|< |s‘3?§%2|“<5> w(t)]
0<s,t<T 0<s,t<T

since



A.2 Tightness 115

|s—t|<d1 |s—t|<d2
{OSS,tST} g {Ogs,tST

Now since w € C[0, 00) it is uniformly continuous on [0, 7] and hence uniform conti-
nuity of w implies
lim max |w(s) —w(t)|=0
i max |w(s) — w(t)
0<s;t<T

which completes the proof.

In the sequel we will need the following version of the Arzela-Ascoli theorem

Theorem A.2.5. (Theorem 2.4.9 Shreve) A set A C C[0,00) ha s a compact closure if
and only if the following conditions hold:

sup|w(0)|< oo (A.2.4)
weA
limsupm?’ (w,d) = 0 for every T > 0. (A.2.5)

o0 wea

Proof. Assume the closure of A is denoted by A, is compact. A is contained in the union
of open sets

Gp={weC0,0):w0)<n}n=12,...

Indeed we have that w € A = w € C[0,0) and hence by continuity Vw € A3n € N
such that w(0) < n and hence {G,}>>, covers A. Each G, is open because it is a
cylinder set which are by definition open. By the definition of compactness of A we
know that every open cover of A has a finite sub-cover and since G; C Gy C ---, we
have that A C U ,G; = G,, And hence this means w € A = w € G, and hence by
the definition of ,, above we have sup,,c, w(0) < sup, cq, w(0) <n < oo and hence we
have shown (A.2.4).

Now for each ¢, let K5 = {w € A;mT(w,8) > €}. Since w — mT(w,d) is continuous,
the set {w € C[0,00) : m*(w,d) > €} is closed as the inverse image of a closed set by a
continuous function. Since closed subset of compact sets are compact, Ks is compact.
Indeed K5 = AN {w € C[0,0) : m¥(w,d) > €}.

Lemma A.2.4 implies Ns~o K5 = ¢ since for a fixed € > 0 there exists a 6(w) > 0 for
which m”(w,d) < € as limsyom? (w,d) = 0 for all w € C[0,00). So for some §(¢) > 0,
we must have Ks) = ¢. That is to say that for every e > 0 we have that there exists a
d(€) > 0 such that sup,. s m” (w,d(€)) < e. And hence we have shown (A.2.5).

We now assume (A4.2.5) and (A.2.4) and prove the compactness of A. Since C[0, 00)
is a metric space, it suffices to prove that every sequence {w,}>>, C A has a weakly
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convergent subsequence. We fix T > 0 and note that some §; > 0, we have m” (w, d;) < 1
by lemma (A.2.4) for each w € A, so for a fixed integer m > 1 and ¢t € (0,7 with
(m—1)0; <t <mdy AT, we have

m—1

w(t)|= w(0) + D _[w(kdr) — w((k = 1)) |[+[w(t) — w((m — 1)é)]
< |w(0)|+ Z_: 14+ 1= |w(0)]+m

where we have used the fact that
lw(kor) —w((k—1)5)|< mT(w,51)|§ 1 and |w(t) —w((m—1)d) < mT(w,51) <1
And hence by equation (A.2.4) it follows that

supw(t) < supw(0) + m.
w€eA w€eA

So if we consider a sequence {w, }°2; C A, then for each r € Q", the set of non-negative
rationals, {w,(r)}>2, is bounded above by sup,., w(0) + m as shown above. Now let
{ro,r1,72,...,} be an enumeration of Q. The Bolzano Weierstrass theorem implies
that we can choose a subsequence {w’r(lo)}ZO:1 of {w,}>, with wi) (ro) converging to a
limit w(rg). Now again from {wfmo)}fle, we can choose a further subsequence {wg)};’;l
such that w,(ll)(rl) converging to a limit w(r;). We can continue this process ad-infinitum
in a diagonal way i.e by letting {©,}°°, = {w,(f‘)};;;l to be the diagonal sequence. We
have that @, (r) — w(r) for each r € Q*. It follows from equation (A.2.5) that for every
n > 1 given an € > 0, 3 a §(¢) > 0 such that |0,(s) — @, (t)|< € whenever 0 < s,t < T
and |s — t|< d(e). Indeed this a a consequence of the fact that the limit as 6 | 0 of
sup, e m’ (w,d) is zero, {@,}22; C A and the definition of modulus of continuity. The
same inequality therefore holds for w when we impose the additional condition that
s,t € QT since W, (k) — w(k), for all k£ € QT and we can take the limits as n goes to 0o
in @, (s) — @n(t)|< € to get |w(s) —w(t)|< e It follows that w is continuous and hence
uniformly continuous on [0,7] N Q™ so has an extension to a continuous function called
w’ on [0,7] and furthermore |w(s) — w(t)|< ewhenever 0 < s,¢t < T and |s — t|< d(e).
Indeed for ¢t € [0, T]NQ" set w(t) = w'(t) and for ¢ € [0, T]N(QT) there exists sequence
{t,}5°, such that ¢, — t as n — oo. Uniform continuity implies that {w(,)}>2, is a
cauchy sequence since whenever |t,, —t,,|< d(€)(this is always possible for a large enough
n,m € N since ¢, — t) then |w(t,) — w(tm)|< €

[
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Theorem A.2.6. (Theorem 2.4.10 Shreve) A sequence {P,}>° | of probability measures
on (C10,00), B(C[0,00)) is tight if and only if

lim sup P, [w; |w(0)|> A] =0 (A.2.6)
AToo p>1
lim sup P, [w;m” (w,d) > €] =0; for all T > 0,e >0 (A.2.7)

010 n>1

Proof. See Theorem 2.4.10 on page 63 in [12]
[

Lemma A.2.7. Suppose { P, }5° is a sequence of probability measures on (C[0,00), B(C[0,0)))
which converges weakly to a probability measure P. Suppose, in addition that { f,}>2, is

a uniformly bounded sequences of real-valued, continuous functions on C[0,00) converg-

ing to a continuous function f, the convergence being uniform on compacts of C10, oc].

Then

lim fo(w)dP,(w) = /C[o )f(w)dP(w) (A.2.8)

Proof. First note that since the sequence {f,}22; is uniformly bounded means that
SUD,eC0,00) SUPp>1] fn (w)[|< K for some K > 0. We have that

Ji_)rgo'/fndP /fdP‘ lim ‘/ f)dp, +/fdP /fdP‘
< lim ’/(fn—f)dPn +nli_>r£10’/fdpn—/fdP‘

Since the limits of uniformly bounded functions is bounded. Indeed f,(w) — f(w)

means that Yw € C[0,00) we have that |f,(w) — f(w)|< 1 and since since the sequence

{fn}22, is uniformly bounded by K we have that |f|< K + 1. We already know f is

continuous, and we just showed that its bounded and since by assumption P, e_ak> P

we have that lim, | [ fdP, — [ fdP| =0

Now since {P,}7°, weakly convergent and hence compact and therefore tight by the
Theorem A.2.2 i.e for every ¢ > 0 there exists a compact set K C C|0, c0) such that for
all n > 1 we have P,(K) > 1—¢ = —P,(K)<e—1 = 1-F,(K)<e =
P,(K°) <e

We have that

/ (fo— il < im [ |fa— fldP
C10,00) e Jelo,00)

hm/|fn fldP, + lim |fr — fldP,
n—00 e

< lim sup|fp(w) — f(W)|P.(K) + (2K + 1)P,(K¢) < (2K + 1)e

n—oo weK

lim
n—oo
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and since this is true for all € > 0, the result follows immediately.
O

A.3 Convergence of Finite-dimensional distributions

Suppose that X is a continuous process on some (€2, F, P). For each w, the function
t — Xi(w) is a member of C[0,00), which we denote by X(w). Since B(C|0,0))
is generated by 1-dimensional cylinder sets and X,(.) is F measurable for each ¢, the
random variable X : Q — C[0, 00) is F/B(C0, 00))-measurable. This is the consequence
of Problem 2.4.2 in [12] and that in order to show that X is a F/B(C]0, c0))-measurable
random variable, it is sufficient to show(by Theorem 8.1 in Probability essentials by
Jacod and Protter [45]) that X is a F/C-measurable random variable where C is the
collection of finite-dimensional cylinder sets of the form

C ={w e C[0,00); (w(ty),...,w(t,)) € A}, n>1 A€ B[R")

where for all i = 1,...,n,t; € [0,00).

Thus if {X,,}>°, is a sequence of continuous processes(with each X defined on
perhaps a different probability space (2, F,,), P,) we can ask whether X () 2y X in dis-
tribution in the sense of Definition A.1.2. We can also ask whether the finite-dimensional
distributions of {X™}2°  converge to those of X, i.e whether

n n n)y D
(X25(1)7Xt(2)7"‘7Xt(d)> — (Xt17Xt27"'7Xtd>

The latter question is considerably easy to answer than the former , since the convergence
in distribution of finite-dimensional random vectors can be resolved by studying their
characteristic functions.

For any finite subset {¢1,ts,...,t4} of [0,00), let us define the projection mapping
¢, C[0,00) — R as

........

Ty, td(w) = (w(t1),...,w(ta))

If the function f : R? — R is bounded and continuous, then the composite mapping
fomy. ..ty o Cl0,00) — R enjoys the same properties; thus X 2 X oasn — oo
implies

lim E,(f(X™,.., X)) = lim E,(fom,

t1 2 t
n—o0 L d

:E(fowtl ........ td)(X):Ef<Xt17"'7Xtd>

where the second equality is a consequence of the definition of weak-convergence. In
other words this tells us that if the sequence of processes {X (™1} | converges in distri-
bution to the process X, then all the finite dimensional distributions converge as well.
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The converse holds in the presence of tightness but not in general and this failure is
illustrated by the following example.

Theorem A.3.1. (Theorem2.4.15 Shreve) Let {X™}>° | be a tight sequence of con-
tinuous processes with the property that, whenever 0 < t; < --- < tg < oo, then the
sequence of random vectors {(Xt(ln), . ,Xt(;))};’le converges in distribution. Let P, be
the measure induced on (C[0,00), B(C[0,00))) by X™. Then {P,}>>, converges weakly
to a measure P, under which the coordinate mapping process Wi(w) := w(t) on C[0.00)
satisfies

(XX B (W W), 0< by < -- <ty < 00,d > 1

Proof. Every subsequence {X™} of {X™} is tight (by the definition of tightness of
a sequence of random variables) and so has a further subsequence {X (M} such that
the measures induced on C[0,00) by {X(} converge weakly to a probability measure
P, by Prohorov’s theorem A.2.2. Indeed since the measures {P,} is tight and hence
has a weakly convergent subsequence {pn}(say converges to the probability measure
P) and hence the so does the further subsequence P(X’ (M)=1 of probability measures
corresponding to the sequence {X (™} of random variables. Similarly if a different sub-
sequence {X™} of {X™} induces a measure on C[0,00) converging to a probability
measure (), then P and () must have the same finite-dimensional distribution. Indeed
since (Xt(ln), . ,Xt(:)) N (Wy....,W,) , any subsequence (X't(ln), . ,)N(t(:)) will also
converge in distribution to the same random vector . In other words any subsequence of
(Xlt(1 ooy X (n)) induces a sequence of measures on B(RY) which converge to the same
probablhty measure induced by the random vector on (Xt(ln ). 7Xt(:)) on B(R?).

Plw € C[0,00); (w(t1),...,w(tqs)) € A] = Qw € C[0,00); (w(t1),...,w(ty)) € A

whenever 0 <t <ty < - - <ty <00, A€ BRY,d>1

This means P = @, since the probability measure induced by a continuous process
is determined by its finite-dimensional distributions.

Now suppose the sequence of measures {P,}°%, induced by {X™}>  did not con-
verge weakly to P. Then there must be a bounded and continuous function f : C[0,00) —
R such that lim,_, [ f(w)dP,(w) does not exist, or else this limit exists but is different
from [ f(w)dP(w) In either case we an choose a subsequence( since {P,}2, is tight
and hence relatively compact) {P,}22, for which lim,, .., [ f(w)dP,(w) exists but is dif-
ferent from f f(w)dP(w). This is true because if [ f(w)dP,(w) does not converge to
[ flw , its subsequence [ fw d]5n (w) must converge to the same value and hence
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cannot converge to [ f(w)dP(w). This subsequence cannot cannot have a further sub-
sequence {P,}2° | such that P T, P, and this contradicts the conclusion of the previous
paragraph which says that every sub subsequence converges weakly to the probability

measure P.
O]

Lemma A.3.2. (Problem 2.4.16 Shreve) Let {X™}  {Y(™1>  and X be ran-
dom wvariables with values in a separable metric space (S, p);we assume that for each
n>1,X"™ and Y™ are defined on the same probability space. If X™ 2 X and

p(X™ . YY) — 0 in probability, as n — oo, then Y™ DX asn — 0o

Proof. Let (£, F,, P,) denote the space on which X,, and Y,, are defined, and let E,
denote expectation with respect to P,. Let X be defined on (2, F, P). We are given
that lim,, . E,(f(X™)) = E(f(X)) for every bounded continuous function f : S — R
and that lim,, . P,(p(X™,Y®)) > €) = 0 for all € > 0.To prove Y™ By X, it suffices
to show that

lim E[f(X®) — f(y®)] =0

whenever f is bounded and continuous as lim,_, E,(f(X™)) = E(f(X)) and Y™ LN
X is the same as showing lim,, ., E,(f(Y ™)) = E(f(X)) Let such an f be given and
set M = sup,cq|f(x)|< co. Since X, converges to X in distribution and therefore its
relatively compact(since the induced probabillity measures P, X! converge and hence
have a convergent subsequence). By the Prohorov’s theorem its tight and hence for
all € > 0 there exists a compact set K C S such that P,(X™ € K) > 1 — ¢/6M
for all n > 1. Since f is continuous and hence uniformly continuous on the compact
set K we have that there exists a  such that 0 < § < 1 so that |f(x) — f(y)|< €¢/3
whenever p(z,y) < § and x € K. We also choose a positive integer N large enough so
that P,(p(X™,Y™) > §) < ¢/6M for all n > N. We can do this since p(X ™ Y ™)
converge in probability to 0.
Putting all the above together we have that

/ [F(X™) — f(Y™)] dP,

n

[F(X™) = f(Y™)] dP,

/Qnm{XW) €K, p(X (M) Y ()<}

[F(X™) = fY™)] ap, ap,

—l—‘ / <e€/3 /
QuN{X MK p(X (M) Y (M)<s}e Q2 {XMeK,p(X™) Y (M))<5}

+2M dP, = €/3P,(X™ € K, p(X™ Y") <)
QM {XMeK p(X (™ Y (n)<s}e

+2MP,({X™ € K, p(X™, y™) < §}°)
<€e/3+2MP(X™ € K¢+ 2MP(p(X™,Y™) > §) < ¢



A.4 The invariance principal and the Wiener measure 121

And since this is true for any epsilon the proof is complete.

A.4 The invariance principal and the Wiener measure

Let us consider a sequence {¢; 52, of independent identically distributed random vari-
ables with mean 0 and variance 02,0 < 02 < 00, as well as the sequence of partial sums
So=0,5, = E?Zl &,k > 1. A continuous time process Y = {Y}, ¢ > 0} can be obtained
from the sequence {Sy}72, by linear interpolation; i.e,

Ye=5u+ (= [t])&e+, 120 (A41)

where |t]| denotes the greatest integer less or equal to t. Scaling appropriately both time
and space , we obtain from Y a sequence of processes { X} :

1
X" =V, t>0 A4.2
t U\/ﬁ t - ( )

Note that with s = k/n and t = (k + 1)/n, the increment
XM x (M = YuYe Yo=Y _ Sen=Se _ &1 which is obviousl independent of
3 s ov/n ov/n ovn o/n ? Y

FXU = o(&1, ..., &). Furthermore, X{™ — X{™ has zero mean and variance ¢ — s. This

suggests that {X(:¢ > 0} is approximately a Brownian motion. We now show that
, even though , the random variables &; are not necessarily normal , the central limit

theorem dictates that the limiting distribution of the increments of X ™ are normal

Theorem A.4.1. With {X™} defined by (A.4.2) and 0 < t; < --- <ty < oo we have

(X(n)

n)y D
M ,...,Xt(d))—>(Bt1....,Btd) asn — oo

where { By, F2 t > 0} is a standard one dimensional Brownian motion

Proof. We take the case d = 2; the other cases differ from this one only by being
notationally more cumbersome. Set s = t1,t = t5. We wish to show that

(XM, x{") 2 (B,, By)

We have that
1

X(n) S "
t o\vn Lin]

<

1 1
— Yy, - —
‘0\/7_1 ‘

1
a\/ﬁSLt”J = ‘a—ﬁ(nt — [nt])Entj+1

Le
0_\/5 |_ntJ+1
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And hence Chebyshev’s inequality implies

1 1 1
PlX™ - = S, >el <=E[|X™ - —_5,.,* <
| X, O_\/ﬁmlﬁ_ez | X, a\/ﬁ“”—

Now taking the limits we get

1
21 _
O_2n€2E USLth+1| :| = w

- m _
nh_)riloP []Xt \/—SLtn > 61 0
_f

It is not so hard to see that H (X ), Xt(n)) - (Sisn)s Siin) H — 0 in probability. Indeed
1

o]

1 ? 1 2]
— (n) (n)
= [\/(Xs - O_—\/ESLan) + (Xt - U—\/ﬁSLth) > €
P

(Ssn)» Stn))

1 2 1 2
Xm - _—_g. XM = 5, >é
<s UﬁLJ)+(t U\/ﬁLtJ €

1 2 1 2
XM= 5. ) >e2/2 XM 5,1 > €2
(S m/ﬁ“) “ C oyt ) el

1 1 1
=PlIX"W_- — 2| + P ||X — —— 2
|:| s O'\/HSLS”” > 6/\/_:| + |:’ t O_\/ESLtn” > 6/\/__

And now taking the limits we get the desired result. Now Lemma A.3.2 implies that in

<P

+ P

order to prove
n n D
(Xt(l )7 Xt(2 )) — (Bt17 Bt2)

it is sufficient to show that

|sn] [tn]

U\F ij, > & | = (BB -B)

j=lsn]+1

In order to show this we use the Levy-continuity theorem(which says that X, DX iff
vx, (t) = px(t) for all t € R™ if X,,, X are n-dimensional random vectors. In other

words we need to show that

lsn] [tn]
o (002 (S 3 o))

j=lsn]+1

=F [exp (i (u, (Bs, By — By)))]
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Expanding the inner product we need to show

Lsn)

1
J\/ﬁ;

lim F |exp | tuy

n—o0

= F [exp (iuy Bs) exp (zug(Bt -

& | exp iuQ

123

[tn]

Z 3

il (A.4.3)
BS))]

Now using the independence of B, B, — B, and ZLSM fj,Z]LtannJ &5, it suffices to

show the following

Lsn)

Z@

lim E |exp iul

n—o0

= E [exp (iu1 Bs)] E [exp (iug(B; —

We compute the following limit

lim F

n—oo

exp

and

E exp | tus

E |exp z'ug

Lsn

1y \/_ij

[tn]

Y og

j=|sn]+1

1
o\/n

can be computed similarly. It is not hard to see that

[sn] lsn]
lim P f ng Z@
1 1 Vs P
= lim —F —
n—oo € ovn oy Lsnj
. LSTL |sn|

Now using Lemma A.3.2 with X =

< lim —
n—oo 62

[sn]

Z@

1
= lim

< lim
n—oo €202n snj

g\/_ Z lsn] 6] :

[tn]

Z 3

] lsn]+1
Bs))]

Lsn)

sz

[sn]

T 2

Lsn)

O'

2

n—oo 62

1
o\/Nn B O A /
S o?|sn]

lim —— 7
Z 5 = 2D 202n | sn|

UIZLS"J & and X =

N(0, s). Now the Lindeberg-Levy version of the Central Limit Theorem implies X ™ —
X and since we have already shown that p(X ™, Y ™) — 0 in probability with p(z,y) =

|$ — vyl ie the cuclidean distance on R! we get that Y™ 2 X or in other words

- f ZLMJ & 5N (0, s). Therefore the Levy Cramer continuity theorem implies

Lsn)

iU —= \/— Zé}

lim F |exp

n—o0

= E [exp (iusN(0,5))] = exp (—uis/2)

2.5

=0
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Using a similar argument we can show that

[tn]
. . o Y
T}E&E exp | ity LE Hlfj = exp (i’(t — 5)/2)
] sn

and hence we have shown A.4.3 since using the properties of Brownian motion we have
E [exp (1u1 B,)] = exp (—u?s/2) and F [exp (tuz(B; — Bs))] = exp (1u?(t — 5)/2) O

Actually the sequence {X ™} of linearly interpolated and normalized random walks
given by equation (A.4.2) converges to Brownian Motion in distribution. For the tight-
ness required to carry out such and extension we shall need the following to auxiliary

results.

Lemma A.4.2. (Lemma 2.4.18 Shreve) Set Sy = Z?Zl §; where {£;}52, is a sequence
of independent and identically distributed random variables , with mean zero and finite

variance o> > 0. Then for any € > 0,

hmhmsupéP[ max  |S;[> ea\/ﬁ} =0

010 noo 1<j<|nd]+1

Proof. By the central limit theorem, we have for each § > 0 that ﬁs |nd|+1 COn-

verges in distribution to a standard normal random variable Z. Using the exact same
argument as in Theorem A.4.1 we can show that

! S - S
o 1+ Ln(SJ |_TL5J+1 O_m LH5J+1

and therefore just as in Theorem A.4.1 we can apply Lemma A.3.2 to conclude that

— 0 in probability

U\/_SLW;J+1 —)N(O 1)

Now fix A > 0 and let {¢x}72, be a sequence of bounded continuous functions on R with
Yk 4 1f(—oo\Upr 00y We have for each &

lim sup P [’SWUHP Aovn } < lim F

n—00 n—oo

s

< lim B [% (%)] — Blu(2)

where Z is a standard normal random variable. The second inequality is a consequence of
the fact that ¢, | 1{(—so U ,00)} and the linearity of the expectation operator. The last

equality is a consequence the definition of convergence in distribution (of |S|,s J+1|2> Z)
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in Definition A.1.2 and the boundedness and continuity of ¢,. Now letting k& — oo
and using the monotone convergence theorem for decreasing positive sequences and
Yk 4 1f(—so AU 00)y and the Chebyshev’s inequality we get

limsup P |:|SLn5j+1’Z Aa\/né} < klim Eor(2)]
ne - (A.4.4)
_ ; — — 3
=F L}ggowk(Z)] = P[22 N < ZE[|2]]

Now we define 7 = min{j > 1;|5;|> eo/n} Now with 0 < § < €*/2, we have the
following

{ max  |S;[> ea\/ﬁ}g{|SLn5J+1|Z a\/ﬁ(e—\/%)}u

0<j<[nd]+1
[nd|+1
U {|Stn5j+1|< ovnle —V20), 7= j}
j=1

Note that for j = |nd| + 1, {‘SLn5J+1’< ovn(e —V20), 1= j} is empty so the union
above is only until j = |nd| which is reflected in the sequel Now taking probabilities of
these sets and using sub-additivity we get

P _mas 151> covil] < P [{iS0alz ovite - a9}

0<j<ndé|+1
Al (A.4.5)
* Z P H’SWJHK ov/n(e — V20), 1 = ]}]
Jj=1

or equivalently using conditional probabilities we can write the inequality above as

P H max  |S;|> ea\/ﬁH <P H|5Lnaj+1|2 ov/n(e— \/%)H

0<j<[nd|+1
[nd]+1

+ Y P[{ISusal< ovile~ vEir = i}] Plr =i

But if 7 = j then |S|n5)41|< oy/n(e — v20) implies(by simple observation ) that |.S; —
Sinsj+1|> 0V2nd or more precisely

{|5Ln5J+1|< av/n(e - \/%>77' = J} - {|Sj - SLH5J+1|> ov22no, T = j}

[e.e]

Now monotonicity and Chebychev’s inequality and independence of {¢; 521 implies the
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following

P[{|SW5J+1|< Jﬁ(e—@),TZj}] [{|S Sinsj+1|> 0\/_7'—J ]

1 |_n5j+l
<~ FE [ S — 8 51) | = ]
~ 2ndo? ( J . 5H1) T =1 2n502
1
)< =

B 1
© 2ndo?

(8] ) < 5501

And hence we have the following (in the last inequality below we use the definition of 7
and monotonicity)

P H max |S,[> ea\/ﬁ}]

0<j<|nd|+1
[nd]

<Pt it S0

= P [{ISpsal2 ovitle — V3D }| + 5P I < [nd)]
<P H|SLH5J+1|Z ov/n(e — \/%)H + %P H max  |S;[> ea\/ﬁH

0<5<[né+1

from which follows

; < > — 4.
P |:{0§jr£|?z§J+l|Sj|> ea\/ﬁH <2P H|Stn5J+1|— ov/n(e \/%)H (A.4.6)
Now setting A = (e — v/26)/V/4 in equation (A.4.4) and apply Chebyshev’s inequality
we get

2v/6

1
. . L 4 <lim Yo 31 _
lgfghgfogp 5P [{Ogjrélﬁ%(HJSJb 60’\/5}:| < 1;{51 o \/%)SEHZ\ ]=0

[]

Lemma A.4.3. (LemmaZ2.4.19 Shreve) Under the assumption of Lemma A.4.2 we have
that for T > 0,

lim li P —
PRI P 2 1Sk = Sl eovin ) =
0<k<|nT|+1
Proof. For 0 < 6 < T let m = m(d) > 2 be the unique integer satisfying T'/m < § <
T/(m —1). Since
InT|+1 T
m—— = —
n—oo [nd| 4 1 )
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we have that |nT'| +1 < (|né ]| +1)m for sufficiently large n. For such a large n, suppose
|Sj4x — Sk|> eoy/n for some 0 < k < [nT| + 1 and some j,1 < j < [nd] + 1. Then
there exists a unique integer p,0 < p < m — 1, such that

(|nd] +)p<k<(|nd]+1)(p+1)

Since k is an integer between 0 and (|nd] 4+ 1)m and [0, (|nd| + 1)m] = |_|;:01[( [nd| +

)p, (|nd] + 1)(p+ 1)] Now clearly for a k given a p such that 0 <p <m —1
([nd] +p < k+j < ([nd] +1)(p+2)

And hence it follows that there are two possibilities for £ + j. The first being
([nd] +)p<k+j<([nd]+1)(p+1)

in which case either |Si — S(|ns|+1)p|> %eo\/ﬁ , or else |Spij — S(nsj+1)p|> %ea\/ﬁ.

Indeed if both of the quantities were less than %ea n we would have a contradiction in

the following sense
eo/n < |k = Skl= ISk = S(ina+1)p + S(ina)+1)p = Sk
< ISk = S(ins 1yl HS(ns41)p = Sras|< 260\/5
The second possibility is that
(Ind] + 1) (p+1) <k+j < (|[ns] +1) (p+2)

in which case either ‘Sk_S(Ln5j+1)p‘> %ﬂjﬁy’S(Ln§J+1)p_S(Ln5J+1)(p+1)’> %Eaﬁ,‘S(Ln5J+1)(p+1)—
Sktj]> %ea\/ﬁ which can again be proved as by contradiction using the triangular in-
equality just as before. In conclusion we see that

" 1
L max Sk = Sk|> eov/n p € {Kjrggigm\sﬁp(mﬂﬂ) — S(lns)+1)p|> 560\/5}
0<k<[nT|+1 p=

(A.4.7)

The set inequality above is seen to be true both the cases classified above i.e when
(Ind] +1)p < k445 < ([nd]+1)(p +1) or when ([nd] +1)(p+1) < k+j <
([né] +1) (p+2).

But independence of {fj}]o‘;l implies that

1 1
P 1§j?ﬁ§J+1|Sj+p(L”5J+l) = S(lnsj+1)p|> 35‘7\/5} =P LSJ’ISIIL%{HJSjb gea\/ﬁ
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and since m < (T/0) + 1 thus we have

1
P e mes 1Sk = Skl> eov/n | < (m+1)P [1§jr§n§z§J+1|Sj|> 360\/5}
0<k<|nT)+1

1
< I~ =
< ({(T/)o)+2)P ng?@?ﬁleb 360\/5}
Now on taking the limits and using the result of Lemma A.4.2 and equation A.4.6 we

have

lim lim sup P max |Siip — Sp|> eov/n
510 mnel 1§j§Ln5J+1’ o = Sl eon/n
0<k<|nT|+1

1
< Thmhmsude{ max |S;|> —ea\/_]

60 oo 1<j<[nd|+1

—i—hmhmsup2P { max |S;[> 560\/51 =0+0

610 pooo 1<j<[né]+1

lim lim sup P max |S;4r — Sk|> eav/n
T R 1Sj§Ln5J+1| " | v
0<k<|nT|+1

[]

We are now in a position to establish the main result of this section , namely the
convergence in distribution of the sequence of normalized random walks in equation
(A.4.2) to Brownian motion. This result is known as the invariance principle.

Theorem A.4.4. (Theorem 2.4.20 Shreve) Let (Q, F, P) be a probability space on which
a given sequence {§; }] , of independent, identically dzstmbuted random variables with
mean zero and ﬁmte variance o> > 0. Defined X = {X, ) .t > 0} by equation
(A.4.2 and let P™ be the measure induced by X™ on (C[0,00),B(C[0,00))). Then
{P,}5°, converges weakly to a measure P, under which the coordinate mapping process
Wi(w) :=w(t) on C[0,00) is a standard one dimensional Brownian Motion.

Proof. In light of Theorem A.3.1 which says that convergence is finite dimensional dis-
tribution of a continuous stochastic process implies convergence in distribution of prob-
ability measures induced by these continuous process on C[0,00) under tightness and
Theorem A.4.1 which proves that the finite dimensional distributions of linearly in-
terpolated normalized random walks converge to the finite dimensional distribution of
Brownian motion, we just need to show the tightness of the sequence {X™}>  of lin-
early interpolated and normalized random walks defined in equation (A.4.2). In order
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to show tightness we use A.2.6. Since by definition Xé”) = 0 a.s for every n, equation
(A.2.6) follows immediately since P, (w(0) = 0) for all n > 1. In order to show tightness
of the sequence {X(™}2° | we need to establish equation (A.2.7) i.e for an arbitrary € > 0
and T" > 0, the convergence

limsup P || max XM — x> e| =0 (A.4.8)
n s—t|<
=1 Ags,lST

We may replace sup,~; in this expression by limsup, .. since for a finite number of
integers n we can make the probability appearing in (A.4.8) as small as we choose by
reducing ¢. Indeed we have that

limso [suanI an,g} — Ve > 035, > 0,V0 < 0 < 6,
0 < sup,>pans <€

On the other hand lims|o lim sup,,_, . @, s = 0 implies that for all € > 0 there exists a J.
such that for all 0 < § < 6, we have 0 < limsup,,_,, ans < €or 0 < inf, 51 supys, ars < €.
Now by the definition of infimum and the fact that its strictly less that ¢ we have that
there exists a n. such that for all n > n. we have sup,,, ars < €. This together with
the fact that for a finite number of integers n we can make the probability appearing in
(A.4.8) as small as we choose by reducing 0 explains why we can replace the sup and
the lim sup.

But by definition of X ™ in equation (A.4.2)

P| max [X™ - X"|>¢| =P | max |V, —Y|>eovn
[s—t[<d [s—t|<nd
0<s,t<T 0<s,t<nT

and

max |Y; —Y[<  max |V, —-Y<  max  |Sky; — Sk
[s—t|<nd [s—t|<[nd]+1 [s—t|<[nd]+1
0<s,i<nT 0<s,t< [nT|+1 0<s,t<[nT | +1

where the first inequality is a consequence of the fact that the maximum is taken over
a larger set and the last inequality follows from the fact that Y is piecewise linear
constructed by interpolating the discrete process S and hence changes slope only at
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integral values of . Now equation (A.4.8) follows from Lemma A.4.3 . Indeed

limsup P | max |X{™ — Xt(n)|> €| =limlimsup P | max |X{™ — Xt(n)|> €
510 n>1 [s—t|<d 00 noo [s—t|<d
0<s,t<T 0<s,t<T i

=limlimsup P | max |Y; —Y;|> eov/n| <limlimsup P max |V, — Y{|> eav/n
00 nooo |s—t|<nd 00 nooo |s—t|<|nd|+1
0<s,t<nT 0<s,t<|[nT|+1

< lim lim sup P max |Siip — Sg|> eov/n| =0
=500 et 1§j§Ln5J+1’ e = Sil> eov/n
0<k<|nT|+1

]
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