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Abstract

Living organisms are the ultimate product of a series of complex processes
that take place within—and among—biological cells. Most of these pro-
cesses, such as cell differentiation, are currently poorly understood. Cell
differentiation is the process by which cells progressively specialise. Being
a fundamental process within cells, its dysregulations have dramatic impli-
cations in biological organisms ranging from developmental issues to cancer
formation.

The thesis objective is to contribute to the progress in the understanding
of cell differentiation and explore the applications of its properties for de-
signing artificial systems. The proposed approach, which relies on Boolean
networks based modelling and on the theory of dynamical systems, aims at
investigating the general mechanisms underlying cell differentiation. The re-
sults obtained contribute to taking a further step towards the formulation of
a general theoretical framework—so far missing—for cellular differentiation.

We conducted an in-depth analysis of the impact of self-loops in random
Boolean networks ensembles. We proposed a new model of differentiation
driven by a simplified bio-inspired methylation mechanism in Boolean models
of genetic regulatory networks. On the artificial side, by introducing the con-
ceptual metaphor of the “attractor landscape” and related proofs of concept
that support its potential, we paved the way for a new research direction in
robotics called behavioural differentiation robotics: a branch of robotics deal-
ing with the designing of robots capable of expressing different behaviours
in a way similar to that of biological cells that undergo differentiation.

The implications of the results achieved may have beneficial effects on
medical research. Indeed, the proposed approach can foster new questions,
experiments and in turn, models that hopefully in the next future will take
us to cure differentiation-related diseases such as cancer. Our work may
also contribute to address questions concerning the evolution of complex
behaviours and to help design robust and adaptive robots.

Keywords: Cell Differentiation, Boolean networks, Behavioural Differen-
tiation Robotics
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Introduction

The behavioural and functional differences among biological cells are emer-
gent and due to regulatory mechanisms which can turn on or off genes.
Genetic regulatory networks (GRNs) epitomise the regulatory interactions
among genes. Their dynamics drive, among other things, the biological cel-
lular differentiation. Cell differentiation is the process whereby stem cells
become progressively more specialised and by which a wide diversity of liv-
ing cells and organisms, at the last, are produced. Dysregulation of cell
differentiation is involved in many dangerous diseases, one out of all cancer.
The comprehension of the processes underlying biological differentiation and
a formulation of a general theory by which explaining, predicting and steer-
ing them are currently the main objectives of Systems Biology and Complex
Systems Science. The work carried out in this dissertation aims to provide a
contribution to the complex challenge of understanding differentiation, and
at the same time, it tries to exploit its potential to design artificial agents
able to attain not trivial tasks.

The approach adopted relies on the employment of Boolean networks-
based computational models. Using computational models and in silico
simulations, it is possible to explain biological results, make predictions and
stimulate new hypotheses to be tested in wet labs.

In Figure 1 the whole thesis work is represented by a concept map. In
the image, the original contributions proposed in this thesis are highlighted
by transparent boxes.

In particular, the thesis presents an experimental validation study of
theoretical results achievable by a recently proposed differentiation model.
Then an automatic designing procedure for attaining Boolean networks able
to express desired differentiation lineages dynamics is presented.

With the aim of capturing differentiation phenomena with higher accu-
racy, an in-depth study on the impact of the regulatory motif of self-loops has
been performed. Self-loops have, indeed, so far been neglected in Boolean
genetic networks, but they play a key role in the biological counterpart and
therefore in differentiation.

Notably, a completely new model driven by an epigenetic mechanism,
inspired by biological methylation, has been introduced.

The abstraction of these computational models finds natural application

1
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Figure 1: Concept map concerning the relationships between the original
contributions produced by the thesis work.

where different behaviours are required, and robotics is a research field in
which they can be profitably applied. A conceptual metaphor which takes
inspiration from differentiation and which proposes itself as a new paradig-
matic approach for designing robotic agents capable of expressing different
behaviours is discussed. In support of this, some proofs of concept that
support its potential are presented.
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Thesis Contributions

Although all the scientific contributions will be thoroughly discussed in Part
III and IV, the macro-objectives of this dissertation are here summarised in
order to guide the reader.

The main contributions are the following:

• a critical analysis, highlighting advantages and limitations, of some as-
pects of current Boolean network-based computational models of dif-
ferentiation;

• introduction of topological and dynamical network motifs able to re-
produce some differentiation phenomenological characteristics;

• formulation of new (Boolean network-based) computational models
that include—so far not addressed—relevant mechanisms underlying
differentiation;

• implementation of software that represents abstractions of current dif-
ferentiation models and enable networks simulation and data collection;

• designing of Boolean networks with desired differentiation lineages;

• designing of robotics agents capable of expressing different behaviours
in response, in particular, to endogenous (dynamics driven) or exoge-
nous (environmentally produced) stimuli.

Summarising, the thesis tries to achieve a more comprehensive under-
standing of properties and complexities arising from the process of differenti-
ation by applying both analytical means—such as new computational models
and statistical studies on ensembles of networks—and tools of synthesis—
such as automatic design procedures for obtaining networks able to repro-
duce the differentiation lineages phenomenology in biological and artificial
contexts.

The published works stemming from this research are presented in the
following.
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Structure of the dissertation

The dissertation is logically organised into five (macro) parts, the contents
of which are summarised in the following paragraphs.

Part I - Background and Motivations This section focuses mainly on
exploring the biological context related to the process of cellular differenti-
ation, which constitutes, at the same time, the background and the goal of
the thesis.

Chapter 1 provides an overview of the molecular mechanisms underlying
the production of protein—the complex molecules that govern the cell’s, tis-
sue’s and organism’s functions—starting from DNA. Differential production
of proteins is a result of the differentiation process—the subject of this scien-
tific investigation. Chapter 2 synthesises the methods, techniques and mod-
elling approaches applied for understanding cell differentiation phenomenon,
highlighting their differences and therefore their intrinsic potential to an-
swer the fundamental questions related to this process. The open questions,
challenges and perspectives in the comprehension of cell differentiation are
the subject of Chapter 3—which concludes this first part. Here, the objec-
tive of the thesis and the approach that was adopted to try to advance in
understanding this is presented.

Part II - Dynamical systems view of Cell This part depicts the dy-
namical systems view of cell.

In this regard, in Chapter 4 a brief mathematical discussion of dynami-
cal systems is introduced. Subsequently, in Chapter 5 the Boolean network
model—a prominent discrete dynamical system model of genetic regulatory
networks—used to investigate the differentiation process in the thesis is de-
scribed. Eventually, Chapter 6 recapitulates the main works that contributed
to the current conceptual—mathematically grounded—framework of cell dif-
ferentiation as a dynamical system, whose attractors represent cell types.

Part III - Extensions to Current Models The content of this part—
and the next one—is based on the scientific production reported on Sec-
tion List of Publications. The work presented in these chapters took the
models (based on Boolean networks) for cell differentiation as starting con-
ditions.

The automatic procedure for designing Boolean network able to attain de-
sired differentiation dynamics—described by means of tree-like structures—is
introduced in Chapter 7. Chapter 8 reports the in-depth analysis of the im-
pact of self-loops in Boolean networks models carried out during my Ph.D.
studies. Although self-loops are important in the real genetic regulatory
networks, their contribution to Boolean networks dynamics, especially in a
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context of cell differentiation, had never been addressed in a systematic way
before. Another fundamental mechanism contributes to the cell differenti-
ation phenomenology, epigenetics. This is the subject of Chapter 10: here
we introduce for the first time a methylation mechanism in Boolean net-
work model capable of reproducing some essential properties of biological
cell differentiation.

Part IV - Differentiation models in Robotics This part introduces
the works related to the application of the differentiation process metaphor
in the robotics field.

In Chapter 11 the idea—presented by Rolf Pfeifer in the book “Under-
standing Intelligence”—of using the dynamical systems approach not only
for designing and analysing robot’s behaviours but also for the actual de-
sign of artificial agents is illustrated. Subsequently, Chapter 13 goes through
the approaches presented in the literature about the use of genetic regula-
tory network models as robots controller. Finally, our contributions to the
robotic field are presented in Chapter 14. Cell differentiation metaphor finds
its natural application whenever an autonomous agent could take advan-
tage of its ability to give rise to different (specialised) behaviours, the latter
conditioned by environmental, external or internal signals.

Part V - Conclusions and Future Perspectives The dissertation con-
cludes by reporting an overall evaluation of the whole thesis work. The
evaluation is done by pointing out the strengths and weaknesses of the pro-
posed approaches, methods, and models. Chapter 15—with the proposal of
a future research agenda and the presentation of the ongoing work—begins
to face the limitations and critical points that this whole research has en-
countered.
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Background and Motivations
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Chapter 1

Biological Cell

Here, the biological context on which this entire work is based will be briefly
introduced. In this chapter, we provide an outline of the main concepts in-
volved in biological cells (focusing mainly on eukaryotic cells) and, in partic-
ular, in the cell differentiation process, the main subject of this dissertation.

This description—made at a high level of abstraction—encompasses only
the fundamental mechanisms of the biological cell that are relevant to the
purpose of the work presented in later chapters, neglecting some others
equally important details.

1.1 DNA

All living entities—organisms—are made of (and from) cells, marvellous
chemical machineries able to perform specific complex functions and with
the extraordinary ability to create copies of themselves [Alberts et al., 2013].
The higher types of organisms, such as humans, are the result of groups of
cells, each of which can perform a specific function, appropriately arranged
to create organisational levels—such as tissues—with emergent properties
and functions not ascribable to the single cells level. What makes these
emerging properties appear is given—in addition to the arrangement of the
cells—by the interactions among the cells. In the following sections we will
see that all of the incredible capabilities of which the cells—and ensembles
of them—are capable of are the direct or indirect result of the differential
production of proteins and of interactions among them. We, therefore, start
to describe what represents the blueprint of the protein production, and so,
of life, the DNA.

DNA (deoxyribonucleic acid) is a nucleic acid that encodes all the ge-
netic information necessary for life. DNA is a long polymer1 made from
repeating units called nucleotides. DNA was first identified and isolated by
Friedrich Miescher in 1869; at a later time, in the 1953 Francis Crick and

1A polymer is a large molecule composed of many repeated subunits

11



12 Chapter 1. Biological Cell

James Watson, using experimental data collected by Rosalind Franklin and
Maurice Wilkins, worked together to determine the structure of DNA at the
University of Cambridge, England. Watson and Crick proposed that DNA is
made up of two strands that are twisted around each other to form a double
helix structure [Alberts et al., 2013].

The DNA is what of which genes are compound. Genes are the heredi-
tary units that transmit information from parents to offspring (they contain
the information necessary for the production of a protein or RNA). Within
cells, DNA is organised into long structures called chromosomes. Each chro-
mosome is composed of a very long DNA molecule along which hundreds or
even thousands of genes are arranged. When a cell is preparing to divide,
the DNA of its chromosomes is duplicated so that each daughter cell gets
an identical set of genes. In each cell, the genes arranged along the DNA
molecules encoding the information to build other molecules of the cell. In
this way the DNA controls the development and maintenance of the whole
organism [Campbell et al., 2008]. In Figure 1.1 we can see a schematic
representation of a cell, the DNA, chromosomes and genes.

Figure 1.1: A schematic representation of a cell, DNA, chromosomes
and genes. Image taken from https://commons.wikimedia.org/wiki/
File:Chromosome-DNA-gene.png. Attribution: Thomas Splettstoesser
(www.scistyle.com) [CC BY-SA 4.0 (https://creativecommons.org/
licenses/by-sa/4.0)]

1.1.1 From DNA to Protein

As we have seen in the previous section, the whole heritable genetic infor-
mation of cells is preserved in the DNA (RNA in some viruses) and hence
in the specific combinations of nucleic acids. To carry out the “instructions”
coded into the DNA, cells transcribe it into RNA molecules, and afterwards,

https://commons.wikimedia.org/wiki/File:Chromosome-DNA-gene.png
https://commons.wikimedia.org/wiki/File:Chromosome-DNA-gene.png
(https://creativecommons.org/licenses/by-sa/4.0)
(https://creativecommons.org/licenses/by-sa/4.0)
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translate these last into proteins, the functional means with which cells ac-
complish their tasks.

The actual process of translation from RNA to protein is carried out
on ribosomes. Ribosomes are complex molecular machines and they are
within all living cells; they serve as the site of biological protein synthesis
More precisely, the RNA molecule (mRNA), produced by transcription from
DNA, is decoded by a ribosome to produce a specific amino acid chain or
polypeptide. The polypeptide later folds into an active protein and performs
its functions in the cell.

This process takes place only for those genes that belong to the coding
DNA (nearly one per cent of the total DNA), and are called protein-coding
genes, while the remaining part is called non-coding DNA and has mostly
roles in epigenetic activity and regulatory interactions 2.

The whole process by which the DNA instructions are converted into the
functional product is called gene expression.

Francis Crick at the end of the 50s, synthesised all the flow of information
that starts from DNA to RNA (transcription) and to the RNA to proteins
(translation) with the well-know, and controversial, “central dogma of molec-
ular biology”. The “dogma” explicitly rules out flows of information which
concern protein-DNA, protein-RNA, protein-protein interactions 3: in this
way it does not take into account fundamental processes as post-translational
modification and epigenetics by now properly considered fundamental in the
process of gene expression. It is precisely the limitations that derive from
the conceptual framework depicted by the central dogma, but above all its
incorrect declination in terms of one-to-one mapping from genotype to phe-
notype [Huang, 2012], that makes it now anachronistic and if not correctly
understood deleterious for a correct understanding of the mechanisms that
underlie the complex process of gene expression regulation.

1.2 Control of Gene Expression

All steps of gene expression can be modulated, since passage of the transcrip-
tion of DNA to RNA, to the post-translational modification of the protein
produced. Hence, gene expression is a complex process regulated at several
stages in the synthesis of proteins.

1.2.1 Regulation of Gene Expression

In [Gilbert and Barresi, 2016] the stages responsible for the gene expression
regulation are classified into four categories:

2https://en.wikipedia.org/wiki/Non-coding_DNA Date: 23/08/2019
3https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology Date:

23/08/2019

https://en.wikipedia.org/wiki/Non-coding_DNA
https://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology
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• differential gene transcription regulates the process of transcription
which leads to the creation of nuclear RNA (nRNA) from genes;

• selective nuclear RNA processing determines which of the nRNA will
enter the cytoplasm and become messenger RNAs (mRNA).

• selective messenger RNA translation modulates the process of transla-
tion from mRNA to proteins;

• differential protein modification concerns the several changes related
to the post-translational regulation that determine whether or not a
protein will be active.

Since in this discussion and in the remaining part of the dissertation we
are interested in the differential gene transcription we will not consider the
other, however important, processes.

Transcription factors (TF) are a particular kind of protein. They bind to
specific DNA sequences in order to regulate the expression of a given gene.
The power of transcription factors resides in their ability to activate and/or
repress transcription of genes. The activation of a gene is also referred to
positive regulation, while the negative regulation identifies the inhibition of
the gene.

1.2.2 Gene Regulatory Networks

The entirety of intracellular regulatory interactions—among DNA, RNA,
proteins (TF primarily) and other molecules [De Jong, 2002]—that are re-
sponsible for the up and down regulation of genes are epitomised in a complex
structure termed gene regulatory network (GRN), a term coined by David-
son’s group [Gilbert and Barresi, 2016].

The regulation of gene expression is essential for the cell, because it al-
lows to control the internal and external functions of the cell. Furthermore,
in multicellular organisms, gene regulation drives the processes of cellular
differentiation, by leading the differential gene expression: the process that
establishes the subset of genes that will be expressed. It is indeed the unique
pattern of active genes that brings to the creation of different cell types.

In turn, the ultimate product of the differential gene expression is the dif-
ferent set of proteins that a cell can synthesise; these proteins have different
ultrastructures that suit them to their functions and to the determination
of the functions and the identity of the cell from which they are originating.
Therefore, with few exceptions, all cells in an organism contain the same
genetic material [De Jong, 2002], and hence the same genome (the haploid
set of chromosomes of a cell). The difference between the cells are emergent
and due to regulatory mechanisms which can turn on or off genes. It follows
that two cells are different if they have different subsets of active genes.
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It is precisely through the study of the complex interactions of gene
regulatory networks and their consequent dynamics that we will study the
properties of the process of differentiation, whose properties are shown in
the following section.

1.2.3 Epigenetic mechanisms

Without entering into the historical and semantical debate of what we re-
fer to with the term Epigenetics,—for a more thoroughly discussion to this
regard see the work [Deans and Maggert, 2015]—we will utilize it with the
only meaning of a further means to modulate access to genes and therefore
to their regulation 4.

Eukaryotic cells are characterised by the organisation of DNA in a con-
densed structure, called chromatin. Chromatin is composed of nucleosomes,
structures of DNA wrapped around octamers of histone proteins. Histone
methylation and histone acetylation change—–by adding methyl and acetyl
groups to histones–—the degree of compactness of the chromatin, in this
way facilitating or obstructing gene expression.

Although methylation (acetylation) effects depend on the particular po-
sitions on histones on which it acts, it most often leads to tightly (loosely)
packed regions of chromatin called heterochromatin (euchromatin) [Gilbert
and Barresi, 2016, Perino and Veenstra, 2016, Schuettengruber and Cavalli,
2009]. These regions are not accessible neither by transcription factors nor
by RNA polymerases and so the expression of genes belonging to these DNA
areas is inhibited.

It is worth mentioning that methylation is tightly regulated by complex
interactions, and that epigenetic dysregulation is very common in a lot of
disorders, from cognitive, neurological and chronic diseases to cancer.

1.3 Cell Differentiation

Cell differentiation is the process whereby stem cells become progressively
more specialised. The differentiation process occurs both during the devel-
opment of a multicellular organism and during tissue repair and cell turnover
in the adulthood. Gene expression, and therefore its regulatory mechanisms,
plays a critical role in cell differentiation; as described in the previous section.

Stem cells are undifferentiated biological cells which can both reproduce
themselves, self-renewal ability, and differentiate into specialised cells, po-
tency. There are different kind of stem cells that can be classified according
to their ability to generate progeny:

4See the supplementary material of [Huang, 2012] for a more detailed discussion on how
epigenetics fits into the dynamical systems view of cell differentiation and development.
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• Totipotent stem cells can differentiate into embryonic and extra-embryonic
cell types and can construct a complete, viable organism. These cells
are produced from the fusion of an egg and sperm cell. The fertilised
egg, or zygote, is the ultimate totipotent cell because it has the capa-
bility to generate all the cell types of the body [Lodish et al., 2008];

• Pluripotent stem cells are the descendants of totipotent cells and has
the capability of generating a number of different cell types, but not
all. The cells of the embryoblast and the trophoblast are considered
pluripotent, the former is the mass of cells inside the primordial embryo
that will eventually give rise to the definitive structures of the fetus5

(they can form all types of cells that give rise to a human organism
except those that form structures such as the placenta and other sup-
port membrane needed during gestation, also called Embryonic stem
cell, ES in short [Hardin et al., 2012]), the second provide nutrients
to the embryo and develop into a large part of the placenta 6; see the
Figure 1.2 for an example of differentiation tree, in this case related to
hematopoiesis.

• Multipotent stem cells can differentiate in several cell types, but only
those of a closely related family of cells 7. The embryoblast gives rise
to the three germ layers: the endoderm which forms the internal organ
tissues (the stomach, the liver, the lungs etc.), the mesoderm which
forms muscle, bone, circulatory system etc. and finally the ectoderm
which ends up forming the skin and the nervous system 8. The cells
of the germ layers are multipotent stem cells. An example of multipo-
tent stem cells are the Hematopoietic stem cells which may develop in
different types of blood cells, hematopoiesis, but they can not develop
into brain cells or other cell types outside of the types belonging to the
blood tissue cells.

• Unipotent stem cells, found in adult tissues, divides to form a copy of
itself plus a cell that can form only one cell type [Lodish et al., 2008],
their own, but have the property of self-renewal, which distinguishes
them from non-stem cells.

By means of the cell differentiation process cells acquire the specialised
properties that distinguish different types of cells from each other. As cells
acquire these specialised traits, they generally lose the capacity to divide. In
a normal tissue, one of the two cells produced by each cell division retains

5https://en.wikipedia.org/wiki/Inner_cell_mass Date:25/02/2016
6https://en.wikipedia.org/wiki/Trophoblast Date:25/02/2016
7https://en.wikipedia.org/wiki/Stem_cellDate:25/02/2016
8https://www.boundless.com/biology/textbooks/boundless-biology-textbook/

gene-expression-16/regulating-gene-expression-in-cell-development-117/
cellular-differentiation-464-13120/Date:25/02/2016

https://en.wikipedia.org/wiki/Inner_cell_mass
https://en.wikipedia.org/wiki/Trophoblast
https://en.wikipedia.org/wiki/Stem_cell
https://www.boundless.com/biology/textbooks/boundless-biology-textbook/gene-expression-16/regulating-gene-expression-in-cell-development-117/cellular-differentiation-464-13120/
https://www.boundless.com/biology/textbooks/boundless-biology-textbook/gene-expression-16/regulating-gene-expression-in-cell-development-117/cellular-differentiation-464-13120/
https://www.boundless.com/biology/textbooks/boundless-biology-textbook/gene-expression-16/regulating-gene-expression-in-cell-development-117/cellular-differentiation-464-13120/
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Figure 1.2: Example of differentiation tree of hematopoiesis. Image
taken from https://commons.wikimedia.org/wiki/File:Hematopoiesis_
simple.png. Attribution: Mikael Häggström (no attribution required),
from original by A. Rad (requires attribution) [CC BY-SA 3.0 (http:
//creativecommons.org/licenses/by-sa/3.0/)]

the ability to divide, while the other cell loses the capacity to divide and
finally dies; this ensures that there is no increase in the number of dividing
cells. Cell division is therefore carefully balanced with cell differentiation and
death. In tumors, this balanced arrangement is disrupted and cell division is
uncoupled from cell differentiation and death. As result, some cell divisions
give rise to two cells that both continue to divide, this process progressively
increases the number of dividing cells. The tumor will grow because new cells
are produced in greater numbers than needed, so the normal organisation
and function of the tissue gradually become disrupted. Tumors are classified
as benign or malignant: benign tumors grow confined in a local area and are
rarely dangerous, whereas malignant tumors invade surrounding tissue. The
term cancer refers to any malignant tumor [Hardin et al., 2012].

In 2006, Shinya Yamanaka, and his research team, succeeded to trans-
form differentiated cells, from mice, into a pluripotent state. Such induced
pluripotent stem (iPS) cells seem to have many of the same properties as
Embryonic stem cells. To produce iPS cells Yamanaka forced cells to ex-
press four transcription factor proteins that are expressed by pluripotent
cells. Since iPS cells are quite similar to ES cells might be ideal for medical
treatments: they can be treated with various growth factors and they can
be pushed to become various types of cells. In this way they might differ-
entiate into nerve cells and then used to repair brain damage in patients
with Parkinson or Alzheimer diseases or they might be utilised to replace

https://commons.wikimedia.org/wiki/File:Hematopoiesis_simple.png
https://commons.wikimedia.org/wiki/File:Hematopoiesis_simple.png
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/


18 Chapter 1. Biological Cell

the defective pancreatic cells of patients with diabetes [Hardin et al., 2012].

1.3.1 Role of epigenetics in differentiation process

Biological cells exploit differential methylation to modulate their gene expres-
sion during development and differentiation. Remarkably, the attained con-
figurations of DNA methylation are inherited and progressively extended as
cells become more specialised [Kim and Costello, 2017]. Therefore, methyla-
tion contributes to maintain and stabilise the attained gene expressions that
ultimately characterise the identities of the various cell states. In addition,
the patterns of methylation can be inherited—see the genomic imprinting
phenomenon for an example—and so influence not only the single cell be-
havior and the organism to which it belongs, but also to its progeny.



Chapter 2

Modelling Approaches to
Cellular Processes

This chapter is devoted to the presentation of the most prominent approaches,
often complementary and interdependent, applied for studying the dynamics
of cellular processes.

As we will briefly see in the next sections, each of these approaches relies
on the use of models. The latter, even when they remain implicit in the
working assumptions, define the standpoints, the possible questions and so
the methods and the technologies employable for investigating the biological
phenomenon of interest.

After an informal presentation of the concept of model, we will go through
the main approaches used in the study of complex biological phenomena,
such as the differentiation process. The discussion of the principles and
models, along with their benefits and limitations, used by these approaches
will hopefully help the reader to frame the work and the scope of the attained
results carried out during the doctorate and here reported. Indeed, the
work here presented is mainly based on the modification and proposition of
(new) models to investigate the processes underpinning cell differentiation
by means of them.

2.1 What is a model?

I would like to start this discussion by citing some definition of what is a
model:

19
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[. . . ] It is a model, something that does not really happen in
nature, but which helps us to understand things that do happen
in nature. Models can be very simple [. . . ] and still be useful for
understanding a point, or getting an idea. Simple models can be
elaborated and gradually made more complex. If all goes well, as

they get more complex they come to resemble the real world
more.

Richard Dawkins, The Selfish Gene [Dawkins, 1976]

A model is a system we decide to use to represent another
system.

Roberto Serra, personal communication.

Remember that all models are wrong; the practical question is
how wrong do they have to be to not be useful.

George Box, Empirical Model-Building and Response
Surfaces [Box and Draper, 1987]

No substantial part of the universe is so simple that it can be
grasped and controlled without abstraction. Abstraction consists
in replacing the part of the universe under consideration by a
model of similar but simpler structure. Models, formal or

intellectual on the one hand, or material on the other, are thus
a central necessity of scientific procedure.
Arturo Rosenblueth and Norbert Wiener,

The Role of Models in Science [Rosenblueth and Wiener, 1945]

What emerges from these informal definitions is that a model is an ab-
stract and schematic representation of a system. A model emphasises only a
portion of the system, it captures only some of its features. The formulation
of a model requires an abstraction process, which involves simplification, ag-
gregation and omission of details. Therefore, the definition of a model, like
that of a system itself, requires to say what belongs to the model and what
does not, which usually depends on the observer’s point of view.

A model allows us to:

• understand and investigate some properties of a system;

• control and steer it;

• make predictions on its future.
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In “hard” sciences, models are often formal mathematical representations
of systems; however, they can be conceptual, verbal, diagrammatic, physical,
etc [Sayama, 2015].

In the following sections, we summarise the ideas, methods and models
underlying different approaches applied to the study of cell differentiation or
more in general to cellular behaviours.

2.2 Molecular biology approach

Molecular biology is a branch of biology, and as the name clearly suggests it
was from the beginning (around the 30s) concerned to the molecular basis of
cell’s functions and activities 1. In detail, it refers to the understanding of the
molecular basis of the process of replication, transcription and translation of
genetic material, i.e. genes 2.

Some sentences by William Astbury [Astbury, 1961] well synthesise the
purposes and needs that led to the birth of molecular biology:

[. . . ] not so much a technique as an approach, an approach from
the viewpoint of the so-called basic sciences with the leading idea
of searching below the large-scale manifestations of classical
biology for the corresponding molecular plan. It is concerned
particularly with the forms of biological molecules and [. . . ] is

predominantly three-dimensional and structural—which does not
mean, however, that it is merely a refinement of morphology. It

must at the same time inquire into genesis and function

So, the molecular level understanding sought by molecular biology is—
first of all—performed by identifying and reporting all the molecules or
groups of molecules that participate in a given phenomenon. The focus
is therefore mainly on the structure of the interactions between molecules
that give rise to phenomena such as cell cycle state change, fate change, etc.
Furthermore, the research often involves only isolated parts of a cell or
organism.

In addition to the discovery of chains of regulatory interactions between
genes, the major efforts of molecular biology concern the identification of sig-
nal transduction pathways. They are cascades of chemical reactions, within
cells, that occurs when a molecule, ligand, attaches to receptors on the cell
membrane. The cell’s response to this signalling cascade is a change in the
biological activity. Signal transduction pathway are of fundamental rele-
vance in molecular biology since aberrant activities of these may result in
diseases. For this reason, they are also the target for drug therapy in disease
conditions.

1https://en.wikipedia.org/wiki/Molecular_biology Date: 08/10/2019
2Obviously, there are overlaps and no clear distinctions between molecular biology and

other fields of biology, such as chemistry, genetics and biochemistry.

https://en.wikipedia.org/wiki/Molecular_biology
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2.2.1 The end of central dogma?

The entire chain of information, along with its transformation, leading from
genes to proteins, described in the Section 1.1.1, and known as “central
dogma of molecular biology”, has represented for years, albeit in a simplified
way, the goal of molecular biology.

In the last years, in light of the emerging results concerning the roles
of RNA and more in general of protein-to-protein interactions in regula-
tion, central dogma has undergone some criticisms and revisions. Indeed,
a broader (mis)interpretation of the dogma has fostered the idea that all
observable cellular changes (cell cycle, phenotype, drug response, etc.) were
a direct result of the action of independent signal transduction pathways.
This linear causal relationship between single molecules, or signalling cas-
cade of these, and cellular phenotypic manifestations 3 has been challenged
by the observations of cross-talks between many signalling pathways and
the multiple effects caused by the same cascade (see WNT pathway). But
what has more undermined the classical view of biology has been the ad-
vent of systems biology and the notion of (complex) network of regulatory
interactions between molecules. Since then, the network concept, and the
related promising results, has been superseding the (ad-hoc) explanations
of cellular characteristics based on superposition of independent signalling
cascades [Zhou et al., 2014].

2.3 Systems Biology approach

Systems biology is an interdisciplinary field of study which studies living
organisms as systems that evolve over time [Ideker et al., 2001, Aderem,
2005]. “The whole is greater than the sum of the parts” is the most used
expression to present Systems Biology’s vision. This catchy phrase tries to
communicate the change in the approach determined by systems biology in
the field of biology research. The change mentioned concerns the transition
from the more traditional reductionist paradigm typical of molecular biol-
ogy to the so-called holistic approach: a system-level understanding of
biology [Kitano et al., 2001].

The system-level understanding advocated by systems biology enlarges
the modus operandi classically pursued by molecular biology. Indeed, as
we have seen in the previous section, molecular biology is mainly devoted
to identifying all the genes and proteins and their static interaction re-
lationships involved in a particular cell’s or organism’s function. While
systems biology tries to identify how the various components, and compo-
nents of components, dynamically interact [Kitano, 2002]. For reaching
this broader comprehension, systems biology uses a combination of technolo-

3In other words, between genotype and phenotype.
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gies, from high-throughput precision measurements to sophisticated compu-
tational tools and analysis. But it is on the construction of models and
the possibility of hypothesis-based research—which is enabled by these—on
which systems biology leverages.

In this framework, systems biology guides the development of new mod-
els, technologies and computational tools and at the same time, in turn,
these revolutionise biology. This conceptual schema is well depicted in the
Figures 2.1: the global observations are matched against model predictions
(hypotheses) in an iterative manner, leading to the formation of new models,
new predictions, and new experiments to test them.

For what concerns the studies of cell’s processes, systems biology focuses
mainly on the complex structure of interactions and feedbacks between genes
and proteins and its emergent and general properties, structure represented
in Gene Regulatory Networks’ models. This approach has been called “Com-
plex Systems Biology” by Kunihiko Kaneko [Kaneko, 2006].

(a)
(b)

Figure 2.1: a: Depiction of the systems biology approach. Image
taken from [Kitano, 2002]. b: Different representation of the systems
biology approach. Image taken from https://isbscience.org/about/
what-is-systems-biology/; all credits go to Institute for Systems Biology
(Seattle, USA).

In conclusion, molecular biology and systems biology are two different—
but complementary—approaches. No understanding at the system level is
possible without knowing in detail the parts that compose it. Vice versa, the
detailed structure of a component cannot be separated from a behavioural
analysis that characterises it not only at the organisational level to which it
belongs but within the entire organism, the latter result of the organisation
in interacting levels of increasing complexity capable of revealing emergent

https://isbscience.org/about/what-is-systems-biology/
https://isbscience.org/about/what-is-systems-biology/
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properties 4. Therefore, only when both the two approaches are applied a
higher level—and more complete—understanding can be achieved. [Stevens,
2004]

2.4 Complex Systems Science approach

Complex systems science (CSS) is the ensemble of theories and methods
that deals with complex systems: the study, modelling and control of these
systems embody its purpose. Examples of complex systems are the brain,
the society, the universe, the cell.

CSS is interdisciplinary and it involves methods and tools from mathe-
matics, physics, computer science, biology, economy, philosophy, neurology
and more. Although there is no formal definition of CSS, we can certainly
recognise the properties exhibited by the systems it is interested in. The sys-
tems taken into account by this research field exhibit some of the following
properties:

• composed of many elements;

• nonlinear interactions;

• non-trivial network topology;

• positive and negative feedbacks;

• adaptiveness;

• evolvability;

• robustness;

• multiple levels of organisation;

• self-organisation;

• emergence;

• universality.

CSS tries to understand the causes of the properties listed above, prop-
erties that are often not observable in the parts that make up the system.
Hence, this field of science studies how parts of a system give rise to the
collective behaviours of the system, and how the system interacts with its
environment. It focuses on certain questions about parts, wholes and rela-
tionships.

4Emergent properties are properties not ascribable to individual parts of a system and
that cannot be predicted even with full understanding of the parts.
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From these considerations, we can see how the aims of CSS resemble
those of systems biology; indeed, systems biology can be seen as a subset of
the complex systems science applied to the understanding of biology. This
can be appreciated in the Figure 2.2, which depicts the organisational map
of CSS in seven topical areas.

Figure 2.2: Organisational map of complex systems science, image taken
from [Sayama, 2015].

The main issues addressed by CSS can thus be summarised by these
questions:

• “how do parts of a system give rise to its observable collective be-
haviours?”

• “how does the system interacts with its environment?”

• “what are—and where reside—the sources of order and self-organisation?”

As regards the study of biological processes and cellular behaviours (to
which cellular differentiation belongs), CSS provides valid theoretical and ex-
perimental tools to address the many complexities they present. Two of the
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most prominent classes of approaches applied for the study of cellular pro-
cesses and belonging to CSS are those of dynamical systems (see Chapter 4
for a more in-depth discussion) and of network theory [Barabási et al., 2016].
By way of example, cellular automata [Von Neumann et al., 1966], Boolean
networks [Kauffman, 1969b], but also differential or difference equations for
the first and threshold networks for the second have proven to reproduce
some important cellular phenomena.

In this dissertation, we will see applied various methods and concepts
coming from the typical approaches of CSS. In particular, the use of non-
linear dynamic system models together with the search for emergent
behaviours and general properties deriving from the dynamics of net-
works of many entities will be the means we use to investigate the com-
plexities underlying the differentiation process. To be more precise, all the
investigations carried out, aimed at investigating the root causes of the dif-
ferentiation process, are based on Boolean networks, well-known and promi-
nent models of gene regulatory networks. They will be described in detail in
Chapter 5. What led to the choice of this model is their ability to well rep-
resent generic properties of differentiation without resorting to fine-tuning
or fitting techniques in models construction [Geard and Willadsen, 2009]. In
addition, their Boolean nature avoids the need to maintain a high number
of kinetic parameters, otherwise necessary and computationally expensive in
simulations of continuous models of gene regulation process.

2.5 Computational approaches

In this section, we will briefly present the computational approaches to the
modelling, description and understanding of complex systems, such as bio-
logical ones.

Examples of computational approaches are rule-based systems, rewriting
systems, process algebras, agent-based systems and connectionist approaches.
Agent-based modelling (ABM), in particular, plays an important and rec-
ognized role in the modelling of complex and biological systems [Montagna
and Omicini, 2017]. The agent definition is subject of debate within the sci-
entific community that deals with ABM. For the purposes of this discussion,
we can define them as autonomous, proactive entities, capable of perceiving
and acting in an environment.

ABM are computational models that exploit the simulation of interact-
ing agents in order to investigate the relationship between the micro-scale
(agents’) and macro-scale (whole system’s) levels’ properties. Therefore, in
the same way as Complex Systems Science and Systems Biology, ABM’s in-
quiries are concerned with emergence: how system properties appear from
system’s components interactions.

The employment of ABM approaches, or any computer-based approaches
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in general, shows advantages over equation-based ones (these last typically of
Complex Systems Science methods) when we are in the following cases [Serra
and Villani, 2006]:

• the elements of which the model is composed must perform sophisti-
cated information processing capabilities;

• the entities must posses an internal structure;

• the heterogeneity among the entities—required by the problem—cannot
be resolved by choosing different parameters for the equations.

ABM approaches—and above all its multi-agent declination, multi-agent
system (MAS)—have been successfully applied for simulating multicellular
systems, i.e. organisms composed of numerous interacting cells. Here, an
agent often is the modelling counterpart of the cell. In literature we can
find agent-based models capable of reproducing in silico some spatial and
temporal strutures (e.g. pattern formation) of different biological phenom-
ena, like Drosophila melanogaster morphogenetic process [Montagna et al.,
2010b, Montagna et al., 2010a], cancer growth and invasion [Wang et al.,
2015], but also for optimising cancer cell’s reprogramming [M Biava et al.,
2011] and others [Zhang et al., 2009].

To the best of our knowledge, no agent-based approach or other compu-
tational techniques have begun to address the challenges of understanding
the whole differentiation process.





Chapter 3

Cell Differentiation: challenges
and complexities

After presenting what represents the biological background and the main
modelling approaches for cell differentiation, in this chapter, we clarify the
objective of the thesis.

3.1 Open questions and perspectives

Although many molecular mechanisms (signal transduction pathways, epige-
netic processes, network motifs and others) which enable the cells to express
different proteins are known, what is missing is an understanding of how
cells orchestrate and maintain these mechanisms in a robust way in order to
ultimately determine different cell types, each one with a defined function.
Besides, what is missing is a general theoretical framework to describe
the phenomena involved in cell differentiation. In this framework, it would
be possible to insert and contextualise the current—and future—knowledge
concerning cell differentiation.

Today the whole complex of knowledge related to differentiation is sum-
marised by some principles and observations, results of wet or in vitro ex-
periments, which have been consolidated and accepted as such over time.
But these are sometimes in opposition to each other, or together, they de-
pict an incomplete context: thus forcing the experimenter or scientist to
create ad-hoc explanations each time that the accepted principles do not ex-
plain a new experiment’s result. In conclusion, the lack of a theory prevents
hypothesis-driven experiments.

In this regard, for example, we report the following fallacy which points
out the need for a formulation of a general theory of differentiation. Although
the abundance of the phenotypes that make up multicellular organisms is the
result of the very same genetic code, DNA, why every malignant manifesta-
tion (whether this is a cancer cell type or not) is attributed—by molecular

29
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biology—to genetic mutations 1?
Many approaches belonging to those presented in Chapter 2 could rep-

resent valid means to investigate the problems and questions, still unsolved,
related to differentiation process. In this thesis, we have pursued research
in understanding biological differentiation by applying a model-based ap-
proach. However, various model-based approach and various declinations of
the concept of model exist in science [Piscopo, 2013]. To a large extent, the
discussions about which models are most appropriate for a problem concern
the philosophy of science—a treatment of the latter goes beyond the scope of
this dissertation. So we just summarise some critical aspects of the modelling
possibilities in relation to a given biological phenomenon and contextualise
our work in light of this.

In the Figure 3.1, we highlight the possible different modelling choices,
their mutual relations and their links with the target real system. The spe-
cific example in the above-mentioned figure—generalisable to any other tar-
get system—is biologically inspired by a population of cells composed of two
subpopulations each expressing a characteristic protein which distinguishes
it from the other. The distribution of the number of cells presenting each of
the two proteins is reflected in the “green level”: the so-called data model
since it could be obtained by applying statistical methods. Instead, the low-
est level contains the “continuum” of modeling approaches capable of giving
rise to the statistics represented in the green level, characteristics of the
real target system under consideration. Here, without going into fine-grain
details, we can surely identify two antipodal approaches 2:

mechanistic models: those models which strongly rely on the one-to-one
relation between model’s components and system’s ones, i.e. a sort
of isomorphic relationship between the model and its target system.
Please note, as Giere [Giere, 2004] points out, it is not the model
itself that creates the representational binding between the real’s and
model’s entities, rather it is the modeller—who owns the similarities
between the two systems in mind—which creates this link by projecting
a meaning/representation on the entities of the model.

statistical models: on the contrary, statistical models are those with no
apparent (or very loose) links between model and target system—in
some ways we can also consider these models as data models.

Following the above distinction, our approach is based on the use of
models of mechanistic type. Indeed, what will be presented in the following
chapters relies on a well-know model of genetic regulatory networks, namely

1[Huang et al., 2009b, Huang, 2012]
2This classification takes inspiration from—and to some extent reflects—the distinction

between open-box and closed-box problems made by Wiener in [Rosenblueth and Wiener,
1945]
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Figure 3.1: With this pictorial drawing, we synthesise the possible modelling
approaches, their mutual relationship and the link with the target system.
In particular, the red level describes a population of cells composed of two
subpopulations, each expressing a specific protein (red or yellow in the im-
age). The green level represents statistics of the number of cells expressing
the two proteins. Eventually, the lowest level tries to portray the continuum
of models that can give rise to the statistics mentioned above.

Boolean networks (BNs). The use of BNs is motivated by their capacity
to express relevant properties of real genetic networks 3, but also because
their nodes represent the genes of the target biological organism (or class
of organisms). By using them, we exploit the fact that the cause and effect
relationships found in these models can be reported/found, with due limita-
tions, to the actual modelled system. Therefore, they try to go beyond the
simple correlations and to investigate what could be the causalities between
the components of a system and their effects. The use of models and the
related hypotheses (obtained through simulations if they are computational
models) represent a step towards a formulation of a general theory. A theory

3See Chapter 5 for a more for a more in-depth discussion of their properties.
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that can produce verifiable predictions, and therefore be falsified or revised
if these last are not in accordance with observations.

The use of dynamical systems as a theoretical framework and of compu-
tational models based on Boolean networks as a means to put in place its
principles represent a step towards a general theory of the cell differentiation
process.

In this thesis, the computational models used for investigating biological
differentiation properties are also used for the construction of artificial com-
plex systems. Indeed, these biologically-inspired models are used as control
software in robotics. This is firstly motivated by the fascinating dynamics
and wealth of possibilities offered by the biological differentiation process.
Secondly, this approach can exploit the analogy among fully differentiated
cell types and robotic behaviours—in a context where these last can be
the emergent results of the coupling between robot and environment. This
could cope with the necessity, from the robotic perspective, to overcome
the traditional paradigms for designing robot controller, these last unable
to reproduce very different behaviours with the same controller instance.
The differentiation metaphor can, therefore, represent a valid candidate to
attain more complex robot behaviours. Here, we start exploring this pos-
sibility by introducing some fundamental abstractions for designing robots
with behavioural differentiation capacities and some proof of concepts of
their applicability.
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Chapter 4

Dynamical Systems

We have seen in the previous Chapter 2 that the dynamical systems ap-
proach, combined with methods and technologies deriving from Systems Biol-
ogy, represents one of the most promising means to investigate and reproduce
cellular dynamics. Therefore, this chapter offers a glimpse of what underlies
dynamic systems, but it will not be a complete and formal treatment of the
theory of dynamic systems. It aims at elucidating the fundamental mathe-
matical concepts that underlie all the research reported in this dissertation,
thus providing a framework and a common glossary for the remaining part
of the thesis.

Dynamical systems theory is the branch of mathematics that deals with
systems that evolve in time. Indeed, a dynamical system is a system
that it is described by means of a rule that govern the time evolution of
its state. The time-evolution rule is usually formally defined by means of
differential equations and difference equations (also known as iterated
maps). By analysing differential equations, that are the most used in physics
and engineering, we can distinguish them in ordinary or partial differential
equations, depending on whether there is only one independent variable or
more than one. A general formulation of an nth-order ordinary differential
equation (ODE) is the following one:

F (t,X(t),X
′
(t), . . . ,X(n−1)(t)) = X(n)(t) (4.1)

The Equation 4.1 contains an explicit time dependency and for this rea-
son it is said to represent nonautonomous systems, contrary to the so-called
autonomous systems which does not present it. We can always remove a time
dependence by adding an extra dimension to the system [Strogatz, 2018], and
transform it into a (n+1)-dimensional system. In addition we can always,
by introducing new variables, reduce the Equation 4.1 into this one:

F (t,Y ) =
dY

dt
(4.2)
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Differential equations that cannot be written as a linear combination of their
derivatives are called nonlinear systems. Nonlinear systems, although often
difficult to solve analytically, are very interesting because many natural phe-
nomena cannot be represented solely by linear functions. So very often they
are solved by performing approximations or relying on numerical computa-
tions. Cellular dynamics and above all gene regulation are also governed by
strong non-linearities.

The number of degrees of freedom [Hilborn et al., 2000] of a dynamical
system is the number of independent variables needed to describe its states.
The set of all possible states is called state space. A dynamical system
by starting at an initial condition (i.e. a state of the state space) and by
following the time evolution rule describes a trajectory, namely a sequence of
states. If all functions, that compose the left-hand side of the Equation 4.1,
are continuous and at least once differentiable (Lipschitz condition) then
only one solution can pass through a given point in the state space, and so
two different trajectories cannot intersect [Hilborn et al., 2000].

4.1 Attractor concept

The geometric figures in the state space that attract a number of distinct
trajectories are called attractors. The set of initial conditions that end in
a specific attractor is called basin of attraction for that attractor.

Attractors can be divided into three categories: fixed points, limit
cycles and strange attractors 1 Here the first two classes will be discussed,
while the last one will be introduced later.

A fixed point (or equilibrium point or steady state) is a point in the state
space for which all time derivatives of the state variables are 0:

F (t,Y ) = 0 (4.3)

From Equation 4.3 it is apparent that they are so-called equilibrium points
because they remain constant for all time.

X(t) = X∗ if X = X∗ initially (4.4)

It is important to note that solutions of the Equation 4.3 are not neces-
sarily attractors: to be called attractors they have to be stable equilibrium
points. Instead, a limit cycle is a periodic trajectory that is isolated from the
neighbouring trajectories. Also limit cycles are attractors if they are stable
limit cycle.

1Although the degrees of freedom influence the possible long-term behaviours of a
system, all the conditions in which they can appear, and their related properties, go
beyond the scope of this discussion.
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4.2 Stability

Often when we are dealing with complex non-linear systems there are no
analytical solutions to the equations that describe them. This means that we
cannot obtain all the fine-details regarding the time behaviour described by
the system [Serra and Villani, 2006]. However, it is possible in these cases to
make use of some theorems that give us information about their asymptotic
dynamics—i.e. when time approaches infinity [Kaplan and Glass, 2012].
Only the theorems and methods related to the stability of equilibrium points
will be here presented since from a theoretical point of view they play an
important role for the scope of our discussion and for the whole thesis work.

Stability theory study the conditions under which solutions of dynamical
systems are stable (i.e. trajectories remains in the vicinity of the solution)
under small perturbation 2. Stability can be characterised in the follow-
ing ways [Nicolis and Prigogine, 1989]—supposing that Xs represents the
equilibrium point (that is, it verifies the Equation 4.3):

Lyapounov stability if for every ε we can find a perturbation smaller than
δ—‖X(t0)−Xs‖ < δ—such that we have for every t ≥ t0 we have
‖X(t)−Xs‖ < ε;

Asymptotic stability if it is Lyapunov stable and we can find a perturba-
tion smaller than δ such that limx→∞ ‖X(t)−Xs‖ = 0

It follows that we call unstable any solution with trajectories that—under
small perturbations—move away from it.

Non-linear systems express different behaviours for different values of
their parameters. Bifurcation theory studies the situations in which a
system can exhibit qualitative changes with respect to the variation of some
control parameters. A bifurcation corresponds to the appearance or disap-
pearance of new steady states and the change of their stability. Bifurcations
can occur in both continuous systems and discrete systems.

4.3 Dynamical criticality

In complex system science there is a long-standing conjecture—i.e. the
criticality hypothesis—which states that systems in a dynamical regime be-
tween order and chaos show behaviours characterised by an optimal balance
between robustness and adaptiveness and with the highest computational
capabilities [Roli et al., 2018, Kauffman, 1993, Kauffman, 1996, Packard,
1988, Langton, 1990, Crutchfield and Young, 1990, Prokopenko, 2013, Al-
dana et al., 2007]. In the study of complex living systems, this conjecture
led Packard and Langton [Kauffman, 1993] to the formulation of the famous

2https://en.wikipedia.org/wiki/Stability_theory Date: 19/10/2019

https://en.wikipedia.org/wiki/Stability_theory
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expression “life exists at the edge of chaos”. The notion of criticality, more
precisely of critical state, stems from the study of thermodynamic systems:
it describes an abrupt change in certain system’s macroscopic properties as
some control parameters (temperature, pressure, . . . ) are changed. Systems
show interesting properties at the critical point of their control parame-
ters [Roli et al., 2018]:

• despite microscopic differences between systems the same (macro) be-
haviour can be observed (universality);

• information exchange between distant parts of the system is maximal;

• no characteristic scale of response to perturbation exists (power law);

• long time to absorb perturbations (critical slowing down).

A system is therefore defined critical if it has one of the properties mentioned
above.

To understand the meaning of criticality in dynamical systems—dynamical
criticality—and the relevance that the criticality hypothesis conjecture has
in the study of complex dynamical systems—and therefore also in fields such
as biology, computer science and many others—it is necessary to briefly in-
troduce the concepts of ordered and chaotic dynamical regimes and their
main characteristics.

Ordered and chaotic regimes The qualitative behaviours of dynamical
systems vary by acting on the parameters on which they depend. Systems
that exhibit common characteristics are classified into what are called dy-
namical regimes. There are three dynamical regimes: the ordered one, the
disordered (or chaotic) one and the critical one. Thus the parameter space
is made up of three kinds of regions, which induce very different systems
behaviours.

A dynamical system in an ordered regime shows steady states charac-
terised by regular patterns, fixed points or limit cycles. Furthermore, sys-
tems in order regime are robust against perturbations: perturbation does
not spread throughout the system.

On the contrary, systems in chaotic regime show aperiodic behaviours,
apparently random in nature, as those which own strange attractors 3.
In addition, in systems in a disordered regime, perturbations tend to grow,
causing close trajectories to diverge very fast. These systems are very sen-
sitive to initial conditions, making long-term prediction very difficult, if not
impossible.

Systems with parameters that lie between the ordered the disordered
ones are called critical systems and they show properties that are a mixture

3Attractors with a fractal structure.
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of those present in the other two regimes. In these systems, instead of dying
out or growing, perturbations on average remain constant over time.

Studies that have used information theory measures have brought to
light evidences that critical systems, at the phase transition, are those with
the highest computational capabilities. These evidences have suggested a
reformulation of the criticality hypothesis in “computation at the edge of
chaos”. On the other hand, works based mostly on Boolean models of gene
regulation networks have suggested that critical—or slightly sub-critical—
biological systems best represent cellular dynamics [Kauffman, 1993, Shmule-
vich et al., 2005, Villani et al., 2018, Serra et al., 2007]. Noteworthy, some
works suggest that also the human brain is dynamically critical [Beggs and
Timme, 2012].

This is just a, far from comprehensive, list of the works on critical hy-
pothesis and attempts to prove it. They highlight its importance for under-
standing real systems and also for designing artificial ones with capabilities
comparable to these.

For a more detailed survey, we refer the reader to this remarkable and
exhaustive study about dynamical criticality [Roli et al., 2018].

4.4 Robustness

In this discussion, we will often refer to the concept of robustness. Therefore,
a definition of it is necessary to avoid future confusions, which may especially
occur in the distinction between stability and robustness. In this section, we
will try to clarify the differences between these two related, but different,
concepts.

According to [Jen, 2003], robustness is a broader concept than stability—
which as we have seen in the previous sections is a well-defined mathematical
notion in dynamical systems. In a nutshell, it is related to feature persistence
under a wider spectrum of perturbations, possibly multiple, of different na-
ture (topological, environmental, etc.) in systems, or for systems’ features,
that are difficult to quantify with metrics.

In the remaining, by the expression “attractor robustness” we mean the
metric that synthesises the stability of attractors—probability of returning
to the very same attractor—under the influence of a multitude of perturba-
tions events. This definition is in accordance with the definition of “robust
adaptation”, which Kitano gives in his work Biological Robustness [Kitano,
2004].





Chapter 5

Boolean Networks

Boolean networks (BNs) are a prominent example of complex dynamical sys-
tems presented by Kauffman in the late sixties [Kauffman, 1969b] as a genetic
regulatory network (GRN) model. Since its introduction, they have proved
capable of reproducing relevant phenomena in gene regulation [Kauffman,
1969b, Nykter et al., 2008, Shmulevich et al., 2005, Yuan et al., 2016, Su
et al., 2017, Huang and Ingber, 2000, Helikar et al., 2012] However, Boolean
networks are not interesting only for biological modelling, but—as partly we
will see in Part IV they also offer intriguing perspectives in engineering and
computational contexts, given they can exhibit rich and complex behaviours
in spite of the compactness of their description.

From a formal mathematical perspective, a BN is a discrete-state and
discrete-time dynamical system whose structure is defined by a directed
graph of N nodes, each associated to a Boolean variable xi, i = 1, . . . , N ,
and a Boolean function fi(xi1 , . . . , xiKi

), where Ki is the number of inputs
of node i. The state of the system at time t, t ∈ N, is a N -tuple in {0, 1}N ,
(x1, . . . , xN ), defined by the array of theN Boolean variable values at time t..
Boolean networks are a generalisation of Cellular Automata (CA) [Von Neu-
mann et al., 1966], indeed nodes can have different updating functions and
these can be influenced by cells that are not necessarily in their spatial neigh-
bourhood.

A simple example of BN for illustrative purposes is showed in Figure 5.1.

The most studied BNmodels are characterised by synchronous dynamics—
i.e. nodes update their states at the same instant—and deterministic func-
tions 1. The state space is finite—2N possible states for a BN with N nodes.
Under a synchronous and deterministic dynamics every state has only one
successor and therefore starting from any initial condition after a certain
number of steps eventually a sequence of states will be repeated. Such se-

1In the remainder of the work, we will refer to these configurations if not otherwise
stated.
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Figure 5.1: Example of Boolean network with its relative set of Boolean
functions associated to its nodes, taken from [Roli and Braccini, 2018].

quences are called cycles or attractors: more precisely cyclic attractors if
their period lasts more than one step, fixed points their special cases where
the period is equal to one. An example of Boolean network with two cyclic
attractors is reported in Figure 5.2. In accordance with dynamical systems,
the succession of states traversed by the BN is called trajectory and the set
of states that leads towards an attractor is called basin of attraction.

Figure 5.2: Example of BN’s attractors computed and represented with the
DDlab software [Wuensche, 1996]. In the graphical representation typical
of DDlab each basin of attraction is depicted starting from the outside and
going inwards, thus having the garden-of-Eden states at its extremities, if
any, and the states of which the attractor is composed in the centre.

Despite their simplifications, they proved to be suitable systems to repre-
sent the dynamics of biological GRNs to many levels of abstractions [Grau-
denzi et al., 2011, Serra et al., 2006, Serra et al., 2007, Shmulevich et al.,
2005]. In addition, given their level of abstraction, they can reproduce dy-
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namics of systems belonging to very different domains, from natural to artifi-
cial or social ones. Historically, however, they have fulfilled a very important
role in the modelling of regulatory interactions among genes. In their graph
description, when we adopt them as GRN models, there is an arc from a
node to another one if the expression of this last is influenced by the product
(protein) of the previous one.

5.1 Random Boolean Networks (RBN)

In its original—–and most studied—–formulation called random Boolean net-
work (RBN) the number of incoming nodes (K) is the same for all the nodes
and the actual incoming connections are chosen randomly among the other
N − 1 nodes, without repetition and avoiding self-loops. So, the variables
that determine the next value of the Boolean function fi are the values of
the nodes whose outgoing arcs are connected to node i. In RBN also the
Boolean functions are assigned in a random fashion. Indeed, the parameter
p (called bias) defines the probability by which at each entry of the truth
tables will be assigned the value 1, obviously, the 1− p value determine the
probability of the fraction of 0s.

Since its formulation [Kauffman, 1969b] they have distinguished them-
selves for the capacity of capturing relevant phenomena involved in biological
cells and complex systems in general.

5.1.1 Dynamical regimes and criticality in RBN

The long-term behaviours of RBN are highly influenced by K and p values.
Depending on the values of K and p it is possible to distinguish two dynami-
cal regimes—in accordance with the theory of dynamical systems previously
presented 4.3—in which the dynamics of ensembles of RBNs can be found:
the ordered and the chaotic. 2 The dynamical regimes statistically affect
the dynamics under perturbations and the length and number of attractors.
In the ordered regime, RBNs are very robust against perturbations, indeed
small transient perturbations die out. While in the chaotic one, they initially
tend to grow, making the systems extremely sensitive to small perturbations.
In the ordered regime, cycles are many more in number than in the chaotic
case. Conversely, in the chaotic regime cycles are much longer.

In-depth studies [Aldana et al., 2003, Bastolla and Parisi, 1997] on the
characteristics of RBNs have led to the identification of the equation that
identifies the ensemble of networks in the critical regime, which separate the
ordered and chaotic regimes. This equation identifies the parameters K and
p that are characteristic of networks in the critical regime, networks obtained

2They are more appropriately called pseudo-chaotic since the RBN model here pre-
sented is deterministic.
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with these combinations of parameters are therefore called critical. We can
calculate the critical values of the parameter K in function of the values p
(or viceversa) with the following equation, see Figure 5.3:

Kc = [2pc (1− pc)]−1

Networks in a critical regime have shown the most interesting behaviours.
Indeed, their dynamics have properties such as robustness and adaptive-
ness, and for this reason—which is another proof in support of the broader
conjecture that states that life exists at the edge of chaos (criticality hy-
pothesis 4.3)—they have been extensively exploited to model, analyse and
also reproduce in artificial context properties of living organisms, those re-
lated to cells’ dynamics in particular [Villani et al., 2011, Shmulevich et al.,
2005, Huang and Ingber, 2000, Su et al., 2017].

Figure 5.3: Critical line for RBN, it separates ordered and chaotic regions.
Image taken from [Aldana et al., 2003].

5.1.2 Ensemble Approach

The “ensemble approach” proposed by Kauffman [Kauffman, 2004, Bornholdt
and Kauffman, 2019] in its most general meaning is a suitable and powerful
means to find sets—or sub-sets—of models whose properties match those of
the real system of interest. The ensembles are defined by setting constraints
on the parameters that control the creation of model’s instances, and which
thus characterise the latters.

In the context genetic regulatory networks models, and therefore also
in Boolean networks, this method is applied by imposing constraints in
topology—which define the regulatory interactions—or in nodes functions—
the genes’ rules. Examples of Boolean network ensembles are the following
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(examples taken from [Kauffman, 2004]): random Boolean networks (RBN),
scale free Boolean networks, “medusa” Boolean networks and others. Each
ensemble shows particular statistical features—concerning the phenomenon
under exam—, therefore the idea is to generate different ensembles and find
out which of these correspond to or are close to the features of real cells and
organisms. The ensemble(s) found in turn should predict or explain real reg-
ulatory networks behaviours or could represent a starting condition—in an
evolutionary perspective—for the evolution of models towards given target
characteristics.

It is precisely this twofold aspect that makes the “ensemble approach” an
effective tool to investigate features of complex systems/phenomena when the
knowledge about the system of interest is very limited or when the degrees
of freedom and therefore the modelling possibilities are too wide to perform
exhaustive investigations.

In the context of the study of cell differentiation by means of Boolean
network models some important goals have been achieved through the appli-
cation of this method. As an example, the generic properties of the so-called
critical ensemble of RBNs have proven to predict features typical of the
differentiation process. Very relevant is the relationship between the number
of attractors in such networks and the number of cell types, as a function
of the DNA content per cell and then of the nodes number. For this pur-
pose, a recent work [Bornholdt and Kauffman, 2019] has—in the light of new
genomic data that provided a better estimate of coding regions in DNA—
remarked how the scaling slope between nodes and attractors number found
by Kauffman [Kauffman, 1969b, Kauffman, 1993] was near to that between
DNA and cell types in many phyla.





Chapter 6

Dynamical Models of Cell
Differentiation

This chapter plays a central role in this dissertation because it tries to illus-
trate, by summarising the main works of the related literature, the concep-
tual steps that led to the current dynamic systems view of the biological cell
and to the formulation of model of differentiation based on this view.

The idea behind this approach dates back to the 40s with the “epigenetic
landscape” metaphor introduced by Waddington [Waddington, 1957]. Sub-
sequently, with Kauffman’s works, first, and with the advent of genome-level
techniques for analysing gene expression, then, the pitfalls of the classical
conception of the linear causal scheme between genotype and phenotype—
and hence also of the central dogma of biology—have begun to manifest
themselves. Therefore, attention has shifted from the phenotypic contribu-
tion of the single gene to the dynamics of the network of interactions between
regulatory genes (gene regulatory networks or GRNs). Here, the different sta-
ble asymptotic states of the GRN’s dynamics represent different cell types.
Their establishment is influenced by signals or perturbations coming from
neighbouring cells or—more in general—from the external environment but
mainly by the constraints that the nature of interactions that compose the
GRN itself imposes on its dynamics, constraints—established by the regula-
tory interactions—well depicted in the Waddington’s landscape [Capra and
Luisi, 2014, Huang, 2012].

6.1 Cells as dynamical systems

Although some specific and recurrent biological interactions—network mo-
tifs [Alon, 2006]—present in GRNs can be well explained and understood
by means of relatively simple mathematical equations, we are far from a
satisfactorily understanding of the whole long-term dynamics generated by
these complex networks. One possible explanation of this fact is that the
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cell phenotype is not the direct consequence of the superposition of isolated
genetic pathway [Huang, 2012].

Albeit abstract, a conceptual mathematical framework in which a cell is
viewed as a dynamical system and its attractor states—stable equilibrium
states of the GRN dynamics—underlie its observable phenotypes [Huang
et al., 2009b], has been proposed since the pioneering works of Kauffman [Kauff-
man, 1993, Kauffman, 1969b]. This framework, that lies on the Complex
Systems Science, aims to enrich the current understanding of cell dynam-
ics and to overcome the classical linear causation scheme which links the
genotype to phenotype (one gene → one trait).

We can therefore define a network state at a given time by means of
a vector state S(t) = [x1(t), x2(t), . . . xN (t)] where each xi(t) represents the
expression level of the i-th gene which depends on the regulatory interactions
between genes. So, if we represent a gene expression pattern by means of
this vector state, all the possible gene expression patterns constitute the
state space of the GRN and, between them, those in a stable equilibrium
condition are attractor states, and their gene expression profiles determine
the observable cell types. For any initial state S(t = 0) = S0, its trajectory
will eventually converge to an attractor state, where the interactions forces
are null.1

6.2 Waddington’s Epigenetic Landscape

Waddington, through his “epigenetic landscape" metaphor [Waddington,
1957], had already captured with the valley abstraction the idea of basins
of attraction and discrete cell fates; the marble (network state) rolls down
in the landscape topology until it reaches a local minimum (the attractor
state). In Figure 6.1 an adapted version of the original representation of the
epigenetic landscape is reported.

We can attribute to his metaphor a formal basis and in this way explain
how a network of interactions, in particular its dynamics, can give rise to
a particular landscape topography. Considering that at equilibrium not all
network states S are equally likely, due to the interactions forces that shape
the landscape, we can assign to each state a potential V (S) = − ln p(S)
where p(S) is the probability that the network is at state S when the system
is at equilibrium (see supplementary material of [Huang et al., 2009b]). The
function V (S) determines the depth of the various network states in the
landscape topography and the attractors states are the local minima of this
function. We can think of the epigenetic landscape as the projection of the
network’s state space into a plane with the valleys’ depths that represent the
values of the potential function of each state.

1Of course, as far as GRNs are concerned, not all the states might be a biologically
plausible initial condition.
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The model based on the attractor abstraction, of which the Waddington’s
landscape provides an intuitive visual representation, proved able to explain,
unify and integrate various theories concerning cell dynamics in a consistent
framework, free of ad hoc explanations.

Figure 6.1: The figure has been adapted—in order to better exemplify its
role in the context of the differentiation process—from the original taken
from [Waddington, 1957]

Epigenetic landscape vs Epigenetics The term “epigenetics” since its
introduction by Waddington have generated in the literature a lot of confu-
sion about its meaning and what it refers to.

Without entering into the historical reasons and steps which led to ascribe
the particular meanings to the term “epigenetics” and “epigenetic landscape”—
which will be beyond the scope of this discussion, and they are well described
in [Deans and Maggert, 2015] and in the guest essay by Patric Bateson in
[Capra and Luisi, 2014]—we will report the definitions to which we adhere
in order to avoid confusions and misconceptions in the remaining part of the
dissertation.

Epigenetics In a manner conforming with molecular biology, with the term
epigenetics we refer to the series of heritable mechanisms not directly
derived from changes in DNA that modify the cells’ behaviour and that
can persist across mitosis. Histone methylation and histone acetylation
are examples of epigenetic mechanisms.

Epigenetic landscape Waddington coined the term epigenetics to describe
“the branch of biology that studies the causal interactions between
genes and their products which bring the phenotype into being” [Wadding-
ton, 1942, Deans and Maggert, 2015]. So, it referred to the processes
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which a genotype undergoes during development and that ultimately
determine the phenotype [Capra and Luisi, 2014]. Subsequently, the
use of the expression “epigenetic landscape” established itself to refer
to the original meaning Waddington attributed to “epigenetics”.

Actually, by observing the above definitions from a broader view we can
state that both refer to the dynamics that take place (and the mechanisms
that shape this) during developmental processes of organisms [Capra and
Luisi, 2014].

6.3 Cell fates as attractors

The traditional approach to explain and understand cell regulation is based
on the identification of functional signalling pathways activated by the high
specificity ligand-cell surface receptor binding; this generates a cascade of
signals which in turn activate specific genes for one cell fate, or more in
general a cell behaviour. In the work [Huang and Ingber, 2000] the authors
highlight various experimental aspects not coherent with this old paradigm
because (i) a growth factor can induce—conversely to what is believed to be
true—the activation of a very large set of genes; (ii) a biochemical signal can
lead to different results depending on the cell state or the cell type itself; (iii)
“non specific” mechanical stimuli can induce the same cell fates of growth
factors that with high specificity bind to their receptors. These mechanisms
and dynamics suggest that the cell fates are organised as attractors. In
order to provide a mathematical support to this intuition and to take in
account the cell fate switch produced by mechanical stimuli, they make use
of a simple mathematical network model. They made a simple model of
the signalling system within capillary endothelial cells including the growth
factors and cell shape modulation as inputs of the model. They noticed that
shape modulation in living endothelial cells produces changes within cells,
related to both gene expression and signal transduction, very similar those
induced by growth factors and by computer simulation of their model. These
results suggested that specific molecular signals and also mechanical forces
are translated into patterns of gene expression that represent attractors of
the network model dynamics. Attractors are so the pre-programmed cell
types or behavioural modes of the cell—growth, quiescence, differentiation,
apoptosis, etc.—in which the network dynamics self-organise, relax, in the
long term, also in front of different stimuli, regardless of their nature (e.g.
chemical, mechanical, thermal fluctuations, etc.).

Based on previous theoretical and in silico results of Kauffman, Huang
and colleagues in the work [Huang et al., 2005] have tried to verify, with em-
pirical evidences, if cell types could be represented by attractor states of the
GRN. For this purpose they stimulated in vitro HL60 cells by two biochem-
ically distinct stimuli, provoking in this way initially divergent trajectories,
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and observing both sets of cells converge to a macroscopically indistinguish-
able neutrophil stable state. Although this is only a necessary condition
for the presence of an attractor state, it is particularly important because
the two sets of cells follow very different gene expression trajectories before
converging to the same stable state and we have to exclude the unique and
common differentiation pathway hypothesis.

6.4 Cancer attractors

The “cancer attractor” concept has been firstly presented by Kauffman [Kauff-
man, 1971]. In brief, its conceptualisation derives from the observation that
cancer cells are stable phenotypes and so they can be viewed as (aberrant)
cell types that are not present in regular and healthy tissues formed during
development [Huang and Kauffman, 2013]. Therefore, in the dynamical sys-
tems framework can be represented by attractor states: maybe un-evolved,
unused and normally inaccessible attractors that belong to the uncharted
regions of the epigenetic landscape.

Given their, apparent, uselessness in the contribution of the normal func-
tions of organisms some speculations have been made in an evolutionary per-
spective on their birth and permanence as possible cellular states: it could
be that they represent the price to be paid for being able to evolve new cell
types [Huang, 2012].

In [Huang et al., 2009b] the authors try to contextualise the tumorigenesis
within the developmental biology, avoiding the traditional vision of cancer
as an aberrant product of the evolutionary process, i.e. exclusive result
of genetic mutations. Explanations of cancer manifestations by means of
“plausible mutations” reveal their paradoxical nature if we consider that no
mutations are required to produce the various cell phenotypes generated
during the development of a multicellular organism. Recalling Waddington’s
metaphor, the authors propose to consider tumor types as latent cell types.
Thus, non-genetic perturbations can facilitate cells to visit them, by placing
the cell state into their basins of attractions. Remarkably this framework
does not exclude genetic mutations as possible causes of tumorigenesis but
relegate those to one of the possible causations of tumorigenesis, since they
change the network architecture they can significantly modify the attractor
landscape and facilitate the visit of cancer attractors.

6.5 A BN-based model for cell differentiation

Recently a cell differentiation model based on a noisy version of random
Boolean network model (noisy RBN ) has been proposed. This mathemat-
ical model, as we will see, is able to describe in an elegant way the most
relevant features of cell differentiation. Noise plays a key role in this model;
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the different stages of the differentiation process are emergent dynamical
configurations deriving from the control of the intracellular noise level.

The cell differentiation model we are in this section considering has been
presented in [Villani et al., 2011, Villani and Serra, 2013a, Serra et al.,
2010]. This abstract model is able to describe the most relevant features of
the differentiation process. We will refer to it with the adjective “abstract”
because it does not refer to a specific organism or cell type. The properties
of the differentiation process that which proved to be able to replicate are
the following:

1. Different degrees of differentiation: totipotent, pluripotent, multipo-
tent and fully differentiated cells.

2. Stochastic differentiation: a population of identical cells can generate
different cell types, in a stochastic way.

3. Deterministic differentiation: activation or deactivation of specific genes
or group of genes can trigger the development of a multipotent cell into
a well-defined type.

4. Limited reversibility : a cell can come back to a previous stage under
the action of appropriate signals.

5. Induced pluripotency : fully differentiated cells can come back to a
pluripotent state by modifying the expression level of some genes.

6. Induced change of cell type: the expression of few transcription factors
can convert one cell type into another.

This differentiation model, as we have said in brief before, is based on
the so-called noisy random Boolean networks.

The kind of noise that this differentiation model takes into account is only
the intracellular one. Indeed, it makes the following abstraction: a single cell
is conceptualised as a closed system. It is generic and in principle can support
different definitions of noise; however in its original formulation [Serra et al.,
2010, Villani et al., 2011]—and in all our following works that are based on
it—the noise type is what we will illustrate in the following.

6.5.1 Attractor transition matrix (ATM)

We investigate the asymptotic dynamics of BNs subject to noise modelled
by the transient flip of a randomly chosen node which lasts for a single
time step (a logic negation of node’s state). After the transient flip the BN
evolves according to its usual deterministic rules until an attractor is found.
This working hypothesis is made legitimate by the fact that, as reported
in [Villani et al., 2011], the transitions between two different attractors very
often require a small number of steps and so it is negligible the influence of the
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transients: an alternative definition of “attractor” it is not necessary and we
make use of the deterministic ones. This greatly simplifies the otherwise very
complex dynamics that could arise, for example, by a different formulation of
the concept of noise, as we will see later in 7.2. So, this noise type represents
the smallest stochastic perturbation that can affect a Boolean network; even
in this configuration we can observe jumps from an attractor to another one.
By perturbing each node of each phase of each attractor found (one at a
time), and checking in which attractor the dynamics lead we can compute
the Attractor Transition Matrix (ATM). This procedure is described
in [Paroni et al., 2016, Villani et al., 2011, Villani and Serra, 2013a]. The
ATM summarises the observed transitions between attractors and gives us
an estimate of the probabilities with which such transitions can occur; a
measure of the system’s robustness respect to a random flip of an arbitrary
state.

6.5.2 Threshold Ergodic Set (TES)

The Threshold Ergodic Set (TES) is the key concept introduced in this
model: indeed, cell types are modelled by TESs. A TESθ is a set of attractors
in which the dynamics of the network remains trapped, under the hypothe-
sis that attractor transitions with probability less than threshold θ are not
feasible 2. TESs are computed from the ATM, by iteratively removing the
entries with value less than a threshold θ, which is progressively increased
from 0 to 1. The TES-trees are constructed following this procedure: TES0
represents the level 0 and each subsequent level is created if the current
threshold applied to the ATM produces a different TES-landscape with re-
spect to the previous one. In this way we capture, in a static representation,
all the possible differentiation dynamics of a BN subject to noise. The static
global picture of the all possible differentiation pathways that it can express
and so the main characteristics of the differentiation are captured by TES-
based differentiation trees, also called TES-trees. In Figure 7.4 we can find
an example of a TES-tree.

The threshold abstraction is the principal concept introduced with this
model and it plays an important role. Indeed, it is a mathematical concept
strictly related with the noise level in the cell: it scales with the reciprocal
of the noise level. High levels of noise (low threshold values) correspond to
pluripotent cell states, where the BN trajectory can wander freely among the
attractors; conversely, low levels of noise (high thresholds) induce low proba-
bilities to jump between attractors, thus representing the case of specialised
cells [Serra et al., 2010, Villani et al., 2011].

2This hypothesis is supported by the observation that cells have a finite lifetime, which
enables their dynamics to explore only a portion of the possible attractor transitions.
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Chapter 7

Extensions to BN-based
differentiation models

This chapter presents a collection of works based on the powerful cell differen-
tiation model presented in Section 6.5. In particular, we propose: automatic
techniques for the design of Boolean networks capable of expressing desired
differentiation dynamics, expressed through tree-like structures; evaluation
of some theoretical predictions of this model (strictly related to the creation
of differentiation trees) by means of stochastic simulations of BN and finally
a software based on the concepts of this model for the simulation and analysis
of Boolean networks.

7.1 Automatic Design of Boolean Networks for Cell
Differentiation

The generic abstract properties of the model based on noisy version of RBN
have been already shown to match those of the real biological phenomenon,
see 6.5. A direct comparison with specific cell differentiation processes would
require to design a BN (i.e. topology and node transition functions) such that
its dynamics gives origin to a differentiation tree matching the properties
of the real case at hand. The BN differentiation tree is characterised by
the attractor set of the BN and the transitions between them, as well as
their probabilities. Not surprisingly, attaining such a complex dynamics by
designing a BN by hand is not possible and an approach based on brute
force is definitely impractical; indeed, the number of N nodes networks with
exactly k inputs per node is (22

k
)N . Notably, each candidate solution, i.e.

a BN, is evaluated by computing its ATM, which is a highly demanding
computational operation. Therefore, an automatic design method able to
efficiently explore the search space is required. To the best of our knowledge,
the only current method for attempting to attack this problem is a random
generate and test procedure [Paroni et al., 2016], which draws BNs at random
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until either an acceptable solution is found or the time limit is reached.
In this work we present an automatic design method for this purpose,

based on metaheuristic algorithms [Blum and Roli, 2003]. This approach
maps the BN design into an optimisation problem, where functions and
topology of the BN are considered as decision variables and a measure of
the matching between the BN differentiation tree generated by its ATM and
a target differentiation tree is used as objective function. The objective
function we defined for our algorithms is a combination of two tree distance
measures: the edit distance, E, and the histogram distance, H (both dis-
tance measures have been mentioned in [Paroni et al., 2016]). The tree edit
distance between two trees is the minimum cost sequence of node edit oper-
ations (node deletion, node insertion, node rename) that transforms one tree
into the other1. The histogram distance is a similarity measure between the
current tree (C ) and the desired tree (D), and is defined as:

d =
l∗∑
l=0

k∗∑
k=0

| nC(k, l)− nD(k, l) | (7.1)

where l∗ denotes the maximum depth and k∗ the maximum number of chil-
dren nodes in both trees. The function nC(k, l) computes the number of
nodes at the level l with k children in the current tree, and nD(k, l) respec-
tively for the desired tree [Paroni et al., 2016]. In this way the histogram
distance gives us a measure of the structural similarity, level by level, be-
tween the two trees; obviously, the lower the histogram distance is, the more
similar two trees are. However the histogram distance might result null even
if the two trees in exam are different: this may occur because this mea-
sure takes into consideration one level at a time. Several combinations of
the two distances have been tested; the one leading to the best results is
F = E + (E ×H), which was used for the final experiments. The intuition
supporting the success of this combined function is that the product between
E and H initially prevails and guides the search towards regions of the land-
scape characterised by differentiation trees close to the target one; once this
product becomes negligible, the search is then guided by E and refines the
solution. A thorough landscape analysis, which would provide insights on
the effectiveness of this specific combination, is subject of future work.

We devised two variants of the method, each based on a different meta-
heuristic algorithm; a simpler one is based on adaptive walk, designed mainly
for test purposes and a more advanced one is implemented according to a
strategy called variable neighbourhood search, which is capable of efficiently
exploring the search space and escaping from local minima. It is important
to stress that a BN whose ATM can be used to obtain a given target dif-
ferentiation tree just represents one possible model for the real system to

1http://tree-edit-distance.dbresearch.uni-salzburg.at/

http://tree-edit-distance.dbresearch.uni-salzburg.at/
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be matched. For this reason, randomised techniques are of great help as
they make it possible to explore different solutions and provide an ensemble
of hypotheses. To this aim, (stochastic) metaheuristic methods are indeed
particularly effective as they can be easily adapted so as to provide a wide
coverage of the solutions space, e.g. by penalising already visited search
space areas or by defining proper re-initialisation mechanisms that make use
of some sort of memory so as to start the new search from search space areas
not yet explored.

As a first step, we devise algorithms to search in the space of Boolean
functions, keeping the topology of BNs constant. We consider BNs with
exactly k inputs per node with random topology (without self-arcs). As ex-
perimentally shown in [Benedettini et al., 2013], this choice is not restrictive.

In the following, we illustrate the search algorithms. For more detail
see [Braccini, 2016].

7.1.1 Adaptive walk algorithm

Algorithm 1 Adaptive Walk
Input: N number of nodes, K incoming degree for each node, p bias, thresh-
olds thresholds list, searchTree desired tree, maxIterations number of the
maximum iterations.
1: bn← generateRandomNetwork(N,K, p)
2: bestNetwork ← bn
3: tesTree← createTesTree(bn, thresholds)
4: distance← computeDistance(tesTree, searchTree)
5: i← 0
6: while i < maxIterations & distance > 0 do
7: randomFlip← generateFlip()
8: bn← modifyNetwork(bn, randomFlip)
9: tesTree← createTesTree(bn, thresholds)

10: newDistance← computeDistance(tesTree, searchTree)
11: if newDistance > distance then
12: bn←modifyNetwork(bn, randomFlip)
13: else
14: distance← newDistance
15: bestNetwork ← bn
16: end if
17: i← i+ 1
18: end while
19: return bestNetwork

The AW algorithm (see Algorithm 1) performs a stochastic descent: it
starts from a randomly generated BN and after the execution of each move
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the resulting solution is accepted if it is not worse—w.r.t. the objective
function—than the current solution. A move consists in a flip, from 0 to
1 or vice versa, of a random entry in the truth table of a randomly chosen
node. So, a flip changes the genome of the gene regulatory network since it
modifies the Boolean function of a node and therefore the response of a gene
to certain stimuli.

Observe that this algorithm allows moves that produce solutions with
values of the objective function equal to the current one, called sideways
moves. In this way, the search is able to explore search landscape plateaus.
From a biological modelling point of view, sideways moves accomplish the
possibility of exploring path in the search space composed of neutral net-
works, i.e. different networks with the same objective function evaluation, a
concept also related to genetic robustness.

The algorithm has been also optimised with a bit of memory: in order to
avoid the repeated evaluation of the same network, we forbid to repeat the
flip of the previous step.

The search process terminates when the objective function reaches zero
(the differentiation tree found corresponds to the target one) or when the
number of maximum iterations is reached.

7.1.2 VNS-like algorithm

The second algorithm we present is a metaheuristic technique inspired by
Variable Neighbourhood Search (VNS).2 This algorithm is a variant of the
previously presented algorithm. AW starts with a randomly chosen network
and applies an intensification strategy by making a flip to one output entry
at a time. However in this way the search process, depending on the starting
solution, might get trapped into local minima with no possibilities to escape
or into areas of the search landscape that does not contain “good” quality
solutions. For this reason we have added a diversification strategy to our
algorithm. The process of diversification is implemented by increasing the
number of flips if the search process does not find a solution better than the
current one for a given number of steps. A better solution corresponds to
a BN able to express a differentiation dynamics more similar to the desired
one, i.e. with a lower value of objective function than to the one obtained
by the current network. Increasing the number of random flips helps the
search process to escape from local minima and it is similar to the change
of neighbourhood in case of no improvements that is present in the classical
VNS. As soon as a better solution is found, the number of flips is brought
back to 1 and so the intensification process restarts until the objective func-
tion reaches zero or the number of maximum iterations is reached. When
the number of flips is equal to 1, this algorithm behaves exactly like AW.

2See [Hansen and Mladenović, 2001, Blum and Roli, 2003] for details on this technique.
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Algorithm 2 Variable Neighbourhood Search
Input: N number of nodes, K incoming degree for each node, p bias,
thresholds thresholds list, searchTree desired tree, maxIterations number
of the maximum iterations, maxNoImpovement number of iterations max
without improvements.

1: bn← generateRandomNetwork(N,K, p)
2: bestNetwork ← bn
3: tesTree← createTesTree(bn, thresholds)
4: distance← computeDistance(tesTree, searchTree)
5: noImprovement← 0
6: numFlip← 1
7: i← 0
8: while i < maxIterations & distance > 0 do
9: if noImprovement = maxNoImpovement then

10: noImprovement← 0
11: numFlip← numFlip+ 1
12: if numFlip > N then
13: return bestNetwork
14: end if
15: end if
16: randomFlips← generateFlips(numFlip)
17: bn← modifyNetwork(bn, randomFlips)
18: tesTree← createTesTree(bn, thresholds)
19: newDistance← computeDistance(tesTree, searchTree)
20: if newDistance > distance then
21: bn←modifyNetwork(bn, randomFlips)
22: else
23: distance← newDistance
24: bestNetwork ← bn
25: if newDistance = distance then
26: noImprovement← noImprovement+ 1
27: else
28: noImprovement← 0
29: numFlip← 1
30: end if
31: end if
32: i← i+ 1
33: end while
34: return bestNetwork
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1 2 3

4 5 6

7 8 9

Figure 7.1: Differentiation tree structures used as target for the search pro-
cess.

See Algorithm 2 for a pseudocode description of the VNS algorithm.

7.1.3 Results

We evaluated the performance of AW and VNS on target differentiation trees
that were defined on the basis of common differentiation tree features, such
as the hematopoietic lineage [Alberts et al., 2013]. We defined nine different
tree structures, trying to capture the main features. Target trees are depicted
in Figure 7.1. The threshold values at which the TESs were split have been
chosen so as to be distributed in the interval [0, 1] so as to capture changes
in the differentiation tree corresponding to significantly different noise levels,
and also to require a high probability to return to the same TESs when at
a leaf of the tree. For comparison purposes, thresholds have been set to
0.2, 0.4, 0.6. The evaluation of cases with different choices for the threshold
values is subject of ongoing work.

As a baseline comparison, we also run a random search that simply gen-
erates random BNs. This algorithm was allowed to generated as many net-
works as the maximum number of evaluations allowed to AW and VNS. For
trees 1 to 7, a maximum of 104 evaluations has been allowed, while for trees
8 and 9, which are deeper than the previous ones, we set the maximum num-
ber of evaluations to 5× 104.

Experiments were run on 10 nodes BNs with k = 2 and with k = 3.
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Initial RBNs with k = 2 were generated with Boolean function bias equal
to 0.5, so as to start with BNs in the so-called critical regime [Bastolla
and Parisi, 1997]. Conversely, initial RBNs with k = 3 were generated so
that ordered, chaotic and critical regions were sampled. More precisely, we
generated networks with Boolean function bias equal to 0.1, 0.5 and 0.79,
respectively.

As algorithms are stochastic, 30 independent runs for each case were
run and statistics were collected in case the algorithm attained at least 20
successes out of 30. Results are shown in Figures 7.2 and 7.3 by means of
boxplots, which provide a visual representation of the distributions.

Trees 1, 2 and 3 are quite trivial, as they are composed of a root and
some children nodes. Results on these trees are qualitatively similar: AW
and VNS perform better than Random and they are equivalent in terms of
number of iterations. It is interesting to observe that if initial solutions are
sampled in the ordered regime, more iterations are required to design the
target BNs; this fact can be explained by considering that ordered BNs have
typically very few attractors, so the search has first to find networks with a
sufficient number of attractors and then to modify the attractors landscape.

Trees 4 to 7 have depth 2 and are generally more difficult to be obtained,
and the depth 3 of trees 8 and 9 are even more demanding. We first ob-
serve that random search is much less effective than AW and VNS, if not
completely unable to find the target tree. Moreover, we note that there is
no clear winner between AW and VNS. This result is a bit surprising, as
we would expect VNS to be superior to AW; we conjecture that the cause
of this behaviour has to be found in the structure of the search landscape,
which is likely to be quite uncorrelated, which makes gradual exploration
search strategies quite ineffective. An investigation of the search landscape
is subject of future work.

To sum up, we observed, in general, that the success rate and the num-
ber of evaluations of the random algorithm for the most biological interesting
differentiation trees are far from those reached by the other two algorithms.
For this reason, we believe that additional statistical tests, which compare
these two classes of algorithms, are unnecessary. As for the comparison be-
tween AW and VNS, as will be highlighted in the next section, it was not
our intention to find the best algorithm, but instead, to start an analysis
of possible techniques to explore the search space and find networks with
common properties related to the differentiation phenomenon. For this rea-
son, no further statistical tests were conducted to verify whether the small
differences observed were due to random fluctuations.

7.1.4 Conclusion and future work

The techniques presented have shown to be superior to random search and
able to robustly find BNs matching target differentiation trees with differ-
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Figure 7.2: Boxplot summarising the results for differentiation trees 1 to 4.
Boxplots are drawn only in those cases in which the algorithm attained at
least a success ratio of 20/30. The success ratio is reported at the top of the
plots.
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Figure 7.3: Boxplot summarising the results for differentiation trees 5 to 9.
Boxplots are drawn only in those cases in which the algorithm attained at
least a success ratio of 20/30. The success ratio is reported at the top of the
plots.
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ent characteristics. However, this work is just the first step towards the
development of efficient techniques for the automatic design of BNs for cell
differentiation. Since the computation of the ATM is the most costly com-
putational operation in this process, we are trying to improve the methods
so as to reduce the number of evaluations as much as possible. This may
be achieved, for example, by introducing heuristics in the choice of the local
moves, with the aim of performing an evaluation only for relevant moves. To
tackle this problem, further metaheuristic algorithms can also be used besides
AW and VNS. For example, one may want to use evolutionary computation
techniques or also model-based search methods [Zlochin et al., 2004], which
may be adapted so as to provide an estimation of the probability of finding a
solution. Moreover, the link between differentiation tree structure and search
landscape (of course depending on the objective function) has to be investi-
gated. In fact, information on the properties of the landscape may be used
to choose the solver most suited for a given tree. The approach presented
in this work will also enable us to identify common features among the BNs
able to produce some biological plausible differentiation trees, with the aim
to find generic properties in gene regulatory networks of real organisms. In
addition, following the ensemble approach proposed by Kauffman [Kauffman,
2004] we can generate and study different network instances and detect the
properties of the ensemble that shows statistical features that match those
of real cells. The techniques we propose are particularly suitable for this
task as they perform a guided sampling in the BN search space and they are
more efficient than random search. Finally, this approach may be extended
by adding specific constraints motivated by biological plausibility, such as
forcing specific activation patterns among genes.

7.2 A comparison between TESs and stochastic sim-
ulation of Boolean networks

The main contribution introduced by the model presented in the Section 6.5
is that the differentiation process is strongly correlated with the intracellu-
lar noise level. From the model point of view we know how the threshold
is related to noise, see [Serra et al., 2010], and in addition we know that
pluripotent cells have a higher intrinsic noise level than the more specialised
ones [Peláez et al., 2015, Pujadas and Feinberg, 2012]. But the thresh-
old and above all its variation mechanism introduced in the model (with
which we model the differentiation process) are externally controlled. In fact
the threshold represents an abstraction of the mechanisms implemented by
the real cell to control noise. The identification of autogenous mechanisms,
somehow bound to cell’s dynamics, through which achieve a threshold self-
regulation is subject of ongoing work. As first step to identify the biological
mechanisms that affect noise level, and in turn the threshold, we can take
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in exam a system with different types of noise and noise levels and we can
verify if the system is able to reproduce the TES phenomenology. In fact,
the approach to cell differentiation previously presented might not capture
the real asymptotic configurations of real cells if the cellular system is sub-
ject to a noise implemented in a different way with respect to the original
model. For example, a real cell dynamics might quickly diverge from the
TES model’s prevision if its dynamics is such that:

• more than one noise events can occur simultaneously in an asymptotic
state;

• noise events occur in its transients.

In addition, the TES-based differentiation trees are constructed following
a specific process of threshold variation on the ATM. This process allows
us to observe all the differentiation pathways the GRN model is capable of
expressing, under a particular noise setting.

To verify to what extent can the TES model predict the entire spectrum
of scenarios produced by the dynamics of a system subject to intrinsic noise,
we perform time evolutions of Boolean networks subject to different noise
levels and we compare these two approaches. Noise levels are represented
by distinct frequencies of random perturbations. In such a way, we have the
means for counting—for each noise level—the number of differences between
the outcomes obtained with the TES model and the stochastic simulations.
In the following we call a story a single time evolution of a BN subject to
random perturbations. Considering that we are interested in the asymptotic
behaviour of the BN dynamics we count the jumps between attractors ob-
tained in each story and we compare them with each level of the TES-based
differentiation tree, computed using the TES-model approach on the same
BN. We call an incompatibility a jump between attractors that would not be
allowed given the TES-landscape of a tree’s level.

7.2.1 Experimental setting

The Boolean networks used in the experiments have n = 100 nodes and
k = 2 distinct inputs per node assigned randomly (self-loops are not allowed).
Boolean functions have been set by assigning a 1 in the node truth table so as
to attain exactly a frequency of 0.5 across all the truth tables (for k = 2, this
corresponds to the critical value [Bastolla and Parisi, 1997]). The rationale
behind this choice is that in preliminary results, by setting the bias for each
Boolean function, in some instances the average overall bias calculated on
all nodes could have a non-negligible standard deviation from the desired
mean value. Because we want to estimate the differences between the model
and the stochastic simulations, we did not want the results to be affected
by variance in network dynamic regime. So we use an exact bias, following
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this procedure for generating networks: we generate a vector of length equal
to the sum of the number of Boolean functions’ entries of all nodes in the
network (2k ∗ n), we assign half the values to 1 and half to 0 and we use a
random permutation of this vector to define the Boolean functions.

The BN is subject to a synchronous dynamics, i.e. all nodes update
their state in parallel and functions are applied deterministically. Given
that the typical time needed to transcribe a gene is equal to 25 - 50 sec
in yeasts and 2 - 3 min in mammalians (see reference BNID 111611 [Milo
et al., 2009]); we assume 1 minute as a plausible mean value for a BN’s
synchronous step of update. In addition, analysing the cell’s average life
span in humans (see reference BNID 101940 [Milo et al., 2009]) we set to
5×104 the number of steps for a BN run, in order to model an upper bound of
plausible mean cell lifetimes (approximately one month). The only stochastic
component resides in the noise, which has been simulated as a temporary flip
of the value of a node applied with probability ν; hence, at each step of the
temporal evolution of the network, νn nodes are flipped on average. We
ran experiments with ν so as to have on average one flip every τ steps, with
τ ∈ {1, 5, 10, 15, 20, 50, 100, 200, 500, 103, 5×103, 104, 2×104, 5×104}. In the
following, we will denote the corresponding noise probabilities as ντ . Note
that the higher τ , the lower the probability ν applied to each node. This noise
mechanism emulates possible temporary fluctuations in the expression level
of genes and may occur both during stationary phases (i.e. along attractors of
the BN) and transients. We run experiments with 30 random BNs; for each of
them we compute the ATM and then the TES-tree, following the procedures
mentioned in Section 6.5. A typical TES-tree is depicted in Figure 7.4.
The time evolution of each BN was also simulated 100 times (100 stories),
each one of them starting from a random initial state. We collected the
trajectories of the BNs and computed statistics on the compatibility between
the stories and the TES-tree, besides other ancillary statistics on the overall
dynamics of the BNs.

7.2.2 Results

In this section we provide the results obtained. The comparison between
TES-trees and simulations with stochastic noise is mainly based on counting
the transitions between attractors that are observed in the stochastic simu-
lation but that are not allowed by the ATM, given a probability threshold
θ. That is, the analysis of what we have called incompatibilities between the
two approaches for modelling cell differentiation. For each value of ντ , we
counted the incompatibilities observed in all the 100 stories w.r.t. the lowest
non-zero value of θ (level 1 of the TES-tree) and the highest one, where all
TESs are single attractors (level n of the TES-tree). These two particular
levels are taken as representative elements able to summarise the trend of
incompatibilities since level 1 represents the first TES with not trivial con-
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Figure 7.4: An example of a TES-tree. Levels are numbered from 0, the
topmost, to n, the lowermost; n = 6 in this example. TES of level 1 has
a diamond shape whereas TESs of level n have an hexagonal one. Labels
on the edges indicate the minimum threshold value at which any TESs of
the previous level splits or reduces. Continuous lines denote paths along
the differentiation tree that can be followed by increasing the threshold at
minimum steps (these values are directly obtained by the ATM). Dashed
lines denote the paths that can instead be followed if the threshold was
increased by larger steps.
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straints and level n is the most constrained one. Results are summarised in
Figures 7.5, 7.6 and 7.7. In these figures the boxplots graphically represent
distributions of the median values of the overall incompatibilities (computed
on all 30 BNs) with respect to a particular noise level; different noise levels
are represented by distinct colours. For each noise level two boxplots are
plotted, one for the incompatibilities with respect to the level 1 and one for
the level n.

As expected, the higher ντ (corresponding to low values of τ), the higher
the number of these incompatibilities. Moreover, this increases with θ; which
corresponds to the increase of the TES-tree’s depth. Despite the discrepancy
which is apparent at high noise levels, we observe that already for medium
noise levels, i.e. not higher than ν200, the incompatibilities are limited and
tend to be negligible towards low noise levels.

As previously stated, we could observe marked differences between model
and simulations if the actual noise presents in the stories is different from
that hypothesised by the model. Hence, we analyse the dynamics of the
stochastic simulations and we count the number of noise events occurred
during transients and the multiple flips in attractors. With multiple flips
we mean the occurrence of more than one node value change at a time.
Situations both not covered in the model and which could represent the
main causes of divergence between the two approaches. In Figures 7.8, 7.9,
7.10 and 7.11 each distribution summarises the median values of the property
in exam; the median value for each BN computed across the 100 stories of
a particular noise level. Hence, we have one boxplot for each distribution of
medians. These statistics show that noise events in transients and multiple
flips decrease in an exponential way as noise decreases. This trend is more
evident in figures 7.9 and 7.11, which have logarithmic scales. We can note
that under noise level ν100 the number of multiple flips and noise during
transients become negligible with respect to the number of steps considered
in the stories (i.e. 5×104). We must remark that although the flip of a gene
is the smallest stochastic perturbation that can affect a Boolean network it
biologically reproduces a fairly intense event, much stronger than molecular
fluctuations. Hence, the noise level ν200 (250 noise events on average in a
story) identified as the convergence point between the two approaches could
even be a too high noise level for a real cell’s life span. This observation
contextualises the results obtained in a biological framework and it highlights
the relevant noise levels in which a real cell can operate.

The results obtained support the statement that there exists a significant
noise level under which the two models are in agreement. Therefore, (i) under
this threshold they can be both used to model differentiation phenomena—
and their observations can be combined—and (ii) the new dynamic simula-
tions may add interesting pieces of information on the heterogeneities of the
possible individual configurations.
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Figure 7.5: Distribution of the median values of the incompatibilities between
the level 1 and level n of the TES-trees and stochastic simulations with the
probabilities to flip a node ν so as to have on average one flip every 1, 5, 10,
15, 20 steps. Noise probabilities ντ expressed with different colours.

7.2.3 Conclusion

In this work we have compared two approaches for modelling cell differ-
entiation, both based on random Boolean networks subject to noise. One
approach is represented by the well-known model based on TES concept, the
other is grounded in time evolutions of BNs subject to different noise levels.
The analysis of the emerging differences between these two approaches sug-
gests that there is a specific noise level under which the two models produce
similar results. This result has important implications because it shows that
both approaches can be used to model cell differentiation and in addition
their outcomes can be, at least in part, complementary. Indeed, the new
approach could be used to determine the distribution of the extra-cellular
noise, due to the intra-cellular events. Moreover this work produced, on
the one hand, another proof of robustness of the TES-based differentiation
model and, on the other, since the stochastic simulations of BN require less
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Figure 7.6: Distribution of the median values of the incompatibilities between
the level 1 and level n of the TES-trees and stochastic simulations with the
probabilities to flip a node ν so as to have on average one flip every 50, 100,
200, 500 steps. Noise probabilities ντ expressed with different colours.

computational cost than the TES model they can be used as an alterna-
tive and exploitable approach to conceive more performing automatic pro-
cedure for generating biologically plausible cell differentiation model based
on BNs [Braccini et al., 2017, Benedettini et al., 2014].
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Figure 7.7: Distribution of the median values of the incompatibilities between
the level 1 and level n of the TES-trees and stochastic simulations with
the probabilities to flip a node ν so as to have on average one flip every
1000, 5000, 10000, 20000, 50000 steps. Noise probabilities ντ expressed with
different colours.
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Figure 7.8: Distribution of the median values of the number of noise events
occurred during transients in stochastic simulations (stories), for different
noise levels. Noise levels expressed by the ντ values in the x axis.

Figure 7.9: Detail of Figure 7.8 on logarithmic scale.
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Figure 7.10: Distribution of the median values of the number of multiple flips
occurred in the attractors in stochastic simulations (stories), for different
noise levels. Noise levels expressed by the ντ values in the x axis.

Figure 7.11: Detail of Figure 7.10 on logarithmic scale.
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7.3 A software library: diffeRenTES

So far the dynamical model for cell differentiation introduced in [Serra et al.,
2010, Villani et al., 2011, Villani and Serra, 2013b] and summarised in Sec-
tion 6.5 has been implemented only in CABeRNET [Paroni et al., 2016],
a Cytoscape application. But since more and more biologists—and in gen-
eral scientists without a computer science background—are approaching the
world of biological modeling, it is necessary to provide them with software
and tools that are simple to use but at the same time effective for the prob-
lems tackled. Since R is a statistical software very used by computational
biologists and with a very good package for Boolean networks simulation
and analysis, namely BoolNet, we thought that it was important to provide
to the R community a package for modeling cell differentiation with BN.

Hence, diffeRenTES (from French various, different, separate) is a pack-
age written in R for computing, starting from a Boolean network, the main
abstractions on which the dynamical model for cell differentiation is based
on. In particular, the package is able to compute the ATM (Attractor Transi-
tion Matrix) structure and tree-like structures based on the TES (Threshold
Ergodic Sets) concept that describe the process of differentiation.

The main functions of the library are here reported, accompanied by
their signature:

• getATM <− function ( net , syncAttractors , MAX_STEPS_TO_FIND_ATTRACTORS = 1000)

• getTESs <− function (ATM)

• getDi f f e rent iat ionTreeAsDOTStr ing <− function (TESs)

The getATM function is the starting point of all computation that it is
possibile to carry out with this library. For computational reasons, it relies
on the previously computed set of attractors with a synchronous updating
scheme (syncAttractors parameter) of a specified Boolean network (net pa-
rameter) by means of the well-known BoolNet [Müssel et al., 2010] library,
also available in R. In addition it defines a formal parameter MAX_STEPS_-
TO_FIND_ATTRACTORS with a default value of 1000 with which it specifies
the limit number of steps before interrupting the search of the reachable
attractor after a perturbation event.

The getTESs function produce a static global picture of the differenti-
ation process, summarising all the possible outcomes of the BN dynamics
under a particular noise setting, the same noise setting used for computing
the ATM (ATM parameter). The TESs returned are constructed following
a specific process of threshold variation on the ATM: the cell differentiation
dynamics is expressed as the time evolution of BNs subject to progressively
decreasing noise. This process allows us to observe all the differentiation
pathways the GRN model is capable of expressing.
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The getDifferentiationTreeAsDOTString method produces a string—in
DOT format 3—that represents the TES-based differentiation tree.

Here, a simple example of usage of the package is presented: the R listing
makes explicit use of the BoolNet library for the Boolean network random
generation and for the attractors’ computation.
net <− BoolNet : : generateRandomNKNetwork (10 , 2)
a t t r a c t o r s <− BoolNet : : g e tAt t r a c t o r s ( net )
atm <− getATM( net , a t t r a c t o r s )
t e s <− getTESs (ATM)
s <− getDi f f e rent iat ionTreeAsDOTStr ing ( t e s )

# Writing a f i l e con ta in ing the DOT rep r e s en t a t i on o f
# the TES−based d i f f e r e n t i a t i o n t r e e
write ( s , "example . gv" )

At the time of this writing, the library is released under GPL-3 license
and it is available on GitHub at the following link https://github.com/
mbraccini/diffeRenTES. In the future, we would like to publish the package
in the CRAN repository https://cran.r-project.org/ in order to make
available to a greater number of scientists. To this extent, the package has
been developed following the state-of-the-art software engineering techniques
and technologies, like continuous integration software (Travis CI in this case)
and software for teamwork (Git).

3https://www.graphviz.org/doc/info/lang.html

https://github.com/mbraccini/diffeRenTES
https://github.com/mbraccini/diffeRenTES
https://cran.r-project.org/
https://www.graphviz.org/doc/info/lang.html




Chapter 8

A network motif in BN:
Self-loops

8.1 The impact of self-loops in RBN dynamics: A
simulation analysis

Since completely random networks are unrealistic, some work has been done
to extend the original model with structural and functional properties ob-
served in biological networks. Among recurring motifs identified by experi-
mental studies, auto-regulation seems to play a significant role in gene regu-
latory networks. We, therefore, have introduced a model of auto-regulatory
mechanisms by introducing self-loops in RBNs. By means of in silico ex-
periments we analysed the impact of self-loops in the RBNs asymptotic be-
haviour. In particular, we performed different simulation experiments where
a RBN created completely random is incrementally modified introducing
one self-loop at a time until every node has one. Different configurations, in
terms of network topology and functions, are evaluated.

8.1.1 Motivation and goal

When generic properties are sought, the typical approach consists in studying
ensembles of Boolean networks generated according to a given, biologically
plausible, model, such as the one proposed by Kauffman [Kauffman, 1993].
In this model a Random Boolean Network (RBN) is initialised completely
random both in the topology and in the functions, possibly defining the
number of inputs each node has. Variants of this model have also been con-
sidered, for example by restricting the set of Boolean functions to canalising
ones, or by imposing a scale-free topology. These variants are inspired by
biological plausibility and are often suggested by the identification of crucial
properties and mechanisms observed in GRNs reconstructed from biological
data.

79
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Extensions investigated, for instance, the role of noise in the stability of
the asymptotic states [Villani et al., 2011, Hoffmann et al., 2008], since it
plays a crucial role in cellular regulatory networks [McAdams and Arkin,
1997]. Other works [Harris et al., 2002, Kauffman et al., 2003] discuss
whether Boolean rules, if selected randomly among all the possible Boolean
functions of k inputs, are an acceptable approximation to model gene regu-
lation. Their conclusion states that canalising rules reproduce experimental
observation more accurately. Finally, the distribution of GRNs is analysed,
observing that they mainly exhibit a scale-free topology [Albert, 2005], and
simulation experiments with scale-free RBNs are performed, suggesting that
nor pure random neither scale-free are likely the best approximation for GRN
topology and that further studies are worthy [Aldana, 2003, Serra et al.,
2004a, Serra et al., 2008].

The contribution here presented has the long term goal of identifying
basic mechanisms and common motifs of GRNs underlying fundamental cel-
lular processes [Yeger-Lotem et al., 2004, Shen-Orr et al., 2002] that can be
modelled as structural and functional elementary bricks in BNs, thus making
it possible to study generic properties of cell dynamics by means of ensem-
bles of more realistic BNs models. We believe that analysing common motifs
of GRNs, and identifying the best solution for modelling them as structural
and functional elementary bricks in RBNs, would support a more aware
analysis and understanding of the emergent dynamics obtained with the
simulation [Ahnert and Fink, 2016, Yeger-Lotem et al., 2004]. Furthermore,
this repertoire of bricks may be used inside algorithms for the automatic
generation of BNs endowed with specific dynamical properties [Benedettini
et al., 2014, Braccini et al., 2017]. Such networks may also be exploited
for designing and controlling the behaviour of artificial entities [Francesca
et al., 2014]. Our long term goal is to build a catalogue of bricks—similarly
from the BioBricksTM idea of Synthetic Biology [Shetty et al., 2008]—whose
function and role inside a GRN is known. The expected impact of this bricks
catalogue is twofold. On one side the analysis of GRNs dynamics via simu-
lation will provide an in depth clue on the link between the function of the
parts and the emergent behaviour observed. On the other side, the engi-
neering and design of RBNs with specific behaviours will then be possible
by composing known bricks. This work represent a first step towards this
challenging result.

As a first step, we have analysed the role and the impact of self-loops,
which abounds in biological genetic networks, in RBNs dynamics. Indeed,
within a GRN, a self-loop models the property of a gene producing some
chemical substances that contribute at the regulation of its own gene. In
particular we focus here on positive self-loops, whose effect in Boolean models
is to maintain the activation state of the gene. The network motif under
study here is self-loop, also known as auto-regulation mechanism, i.e., the
gene regulation motif where a transcription factor regulates the transcription
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of its own gene. Self-loops abound in biological genetic networks [Hermsen
et al., 2010]. In this work we focus on positive self-loops responsible for the
up-regulation of their own genes. This mechanism is particularly evident
in the differentiation process, where cells, from a stem state, choose a fate
towards specific specialised cells. For example, from the Drosophila GRN
shown in Fig. 8 of [Montagna et al., 2015], all the four main genes responsible
for the patterning of gap genes expression during embryo development are
involved in autocatalytic reactions. To the best of our knowledge, the impact
of self-loops has only preliminarily been studied in RBNs. A first work is
presented in [Pinho et al., 2014], where the relation between the sign of
the regulation (positive or negative) and the robustness of the network is
investigated.

8.1.2 Methods

The impact of the introduction of self-loops into a RBN has been studied
through simulation. In particular the goal was to observe how the asymp-
totic behaviour of the network, namely the number of attractors and their
stability, changes as a function of the fraction of self-loops added. As in the
RBN model introduced by Kauffman [Kauffman, 1969b], we suppose that
one node in the RBN corresponds to one gene in the GRN. For simulation
purposes, we modified a randomly generated Boolean network in different
ways; we have:

AUGM-RND: added a self-loop and extended the truth table randomly
(with the same bias used for generating the original RBN);

AUGM-OR: added a self-loop and changed the node Boolean function into
an OR between the node value and the previous function;

CONST-RND: removed an incoming link and replaced the input with a
self-loop, without changing the node Boolean function;

CONST-OR: removed an incoming link and replaced the input with a self-
loop, and changed the node Boolean function into an OR.

In Figure 8.1 we elucidate how a single network node is modified to obtain
the experiments configurations previously mentioned. We thus explore the
role of self-loops in both the cases of maintaining a random Boolean function
and of adopting a canalising function (OR). The choice to explore canalising
functions is motivated by the focus on self-loops with self-activating effect.
Indeed, according to the role they have in biological networks, a positive
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(a) (b) (c)

Figure 8.1: a: Typical generic node generated following the original RBN
model with k = 2, self-loops are not allowed. b: Example of a node modified
for experiments with a self-loop added. c: Example of a node modified for
experiments with an incoming link removal and self-loop addition. Outcom-
ing arcs are not drawn since both the RBN model and our models do not
impose constraints on them.

self-loop should model the property of a gene producing some chemical sub-
stances that contribute maintaining the activation state of that gene. This
means, within a RBN, that the function should keep the node value. It is
worth mentioning that, since within a RBN we do not associate 0 with gene
off and 1 with gene on, but we are interested in maintenance and transition
of states, using an OR function or an AND function is conceptually the same.

For each of these experiments, self-loops are introduced incrementally to
the original RBN. In this way we have a fraction of self-loops varying from
0 to 1 (no node has a self-loop – all nodes have a self-loop) and we are able
to observe how the behaviour of the network is modified step-by-step.

In all experiments, each RBN is simulated following a synchronous dy-
namics update scheme—i.e., nodes update their states at the same instant—
and with deterministic functions. Since the state space is finite, the BN after
a transient eventually reaches a fixed point or a cyclic attractor ; these are
the only achievable asymptotic states in this setting.

Statistics are taken across 50 different RBNs with n = 20 nodes. Ini-
tial RBNs are created with k = 2 and function bias p equal to 0.5. The
value of the k parameter is chosen for its biological plausibility [Kauffman,
1969b, Kauffman, 1969a, Serra et al., 2004b]. The ensemble of RBNs having
these bias and k values are in critical dynamic regime [Bastolla and Parisi,
1997]. We sampled from this networks ensemble because, statistically, they
exhibit robustness and adaptiveness similar to real genetic regulatory net-
works [Villani et al., 2011, Shmulevich et al., 2005]. In the experiments, we
explored all the possible initial states (220) of the RBN, to obtain the whole
attractors landscape. Since we did not want the results of comparisons be-
tween models to be affected by the variance of the network dynamic regime,
we set an exact bias to initial RBNs (before any modification). To do this,
we computed a random permutation of a vector with length equal to the sum
of all Boolean functions entries (2k ∗ n) with half of the values to 1 and the
remaining to 0; we take a portion of this vector to populate the truth table
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of a node. To estimate the dynamic robustness of a network we introduced
noise, modelled by a random flip of a randomly chosen node (logic negation
of a node state). We have flipped each node of each state of each attractor
in order to compute the ATM 6.5.1. In particular, to compute our statis-
tics measuring the network robustness, we examine the main diagonal of the
ATM: each diagonal entry give us the estimate probability of returning in
the same attractor as a result of a random node perturbation.

8.1.3 Results

Results reveal that self-loops massively affect the number of attractors and
their robustness. Figure 8.2, 8.3, 8.4 and 8.5 show how the average number of
attractors and the probability of returning to an attractor vary as a function
of the fraction of self-loops. In particular, on the left side of Figure 8.2,
8.3, 8.4 and 8.5, each point corresponds to the average number of attractors
obtained across the 50 networks with a particular fraction of self-loops. On
the right side, we have the robustness trend as a function of the fraction of
self-loops; each boxplot represents the distribution of the ATMmain diagonal
values from all 50 BNs.

Generally speaking, we can observe that the number of attractors is
higher in the networks with self-loops.

It grows quasi-exponentially, thus the effect observed is gradually more
evident with increasing number of self-loops. In particular under around 30%
of self-loops, the number of attractors slowly grows, not impacting too much
the network dynamics, while afterwords it sharply increases, strongly recon-
figuring the attractor landscape. At the same time, attractors’ robustness
tends to be smaller than in classical RBNs. This result is quite intuitive:
since the number of attractors is significantly higher, the size of the basins
of attraction should on average be smaller, thus making less likely to return
to the same attractor after a flip, while easier to move in an other attrac-
tor. Moreover, the impact is even more striking when Boolean functions
are changed into an OR between the previous function and the node value
involved in the self-loop.

Even though we have found that the results are qualitatively the same
for all the four variants we considered for introducing self-loops (as discussed
in Section 8.1.2), in the following we detail the main differences we observed.

AUGM-RND: the number of attractors varies quasi-exponentially until
around 70 attractors for networks with a self-loop in each node. Con-
versely the median value of the returning probability decreases from
around 0.6 to 0.3. However the distribution of the ATM main diagonal
values is widely distributed between the extreme values of the range;

AUGM-OR: the peculiar characteristic of this experiment is that the num-
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Figure 8.2: Average number of attractors (i.e., both cycles and fixed points)
as a function of the fraction of self-loops added in RBNs originally with k = 2
(8.2a). Distribution of the probabilities of returning to an attractor after one
node flip (8.2b).

ber of attractors raises exponentially until around 2000 attractors. We
used a logarithmic scale to zoom the plot to just a few nodes with
self-loops; we motivate this significative difference in the attractors
number, with respect to the previous configuration, noting that the
OR function increases the probability that one node is in the 1 state,
and it assures that it remains at that value;

CONST-RND: the number of attractors varies approximately exponen-
tially until around 400 attractors, i.e., more than the max number of
attractors we have in experiments where we add a self-loop;

CONST-OR: the number of attractors varies exponentially until around
600 attractors. Peculiar in this setting is the median value of the
returning probability graph where the probabilities of returning to an
attractor, after one node flip, decreases until around 0.1, which is the
lowest value we have in all the settings we considered.

8.1.4 RBNs with OR functions

A question may be asked as to what extent the observed results depend on
OR functions rather than self-loops. To address this question we first observe
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Figure 8.3: Average number of attractors (i.e., both cycles and fixed points)
as a function of the fraction of self-loops added with an OR function in RBNs
originally with k = 2 (8.3a). Distribution of the probabilities of returning to
an attractor after one node flip (8.3b).
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Figure 8.4: Average number of attractors (i.e., both cycles and fixed points)
as a function of the fraction of self-loops added in RBNs originally with
k = 2 (self-loops are introduced by rewiring a randomly chosen input) (8.4a).
Distribution of the probabilities of returning to an attractor after one node
flip (8.4b).
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Figure 8.5: Average number of attractors (i.e., both cycles and fixed points)
as a function of the fraction of self-loops added in RBNs with k = 2 (self-
loops are introduced by rewiring a randomly chosen input and substituting
the Boolean function with an OR) (8.5a). Distribution of the probabilities
of returning to an attractor after one node flip (8.5b).

that in a BN with random topology and all OR functions it is very likely
to have two attractors corresponding to two fixed points S0 = (00 . . . 0) and
S1 = (11 . . . 1), characterised by a basin of attraction of 1 and 2n − 1, re-
spectively. Therefore, in the limit case the number of attractors decreases—
instead of increasing as in the case with self-loops—and so we expect ex-
perimentally. Results of—statistics over 50—experiments are summarised in
Figure 8.6.

We observed that the average number of attractors tends to decrease until
almost 80% of OR functions within the network. This result is consistent
with literature findings: from theoretical results is known that canalising
functions move the RBN with k = 2 from a critical dynamic regime towards
an ordered regime where we observed that the mean number of attractors is
one. Thereafter, we observe a final increasing trend. We conjecture that it is
due to the growing prevalence of network with two fixed points. In particular
with all OR functions we measure an average number of attractors slightly
bigger than two. We think that this result is owing to network topology that
prevents the signal to be propagated to the whole network.

8.1.5 Discussion and Conclusion

If we want to stay close to Kauffman’s interpretation of attractors, during
the process of differentiation a RBN evolves and passes through different at-
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Figure 8.6: Average number of attractors (i.e., both cycles and fixed points)
as a function of the number of nodes with an OR function (8.6a). Distri-
bution of the probabilities of returning to an attractor after one node flip
(8.6b).

tractors that represent different cellular states, from stem cells to terminally
differentiated cells. In this vision, the number of attractors models cellular
diversity, while attractor stability models how strong must a signal be to
move from one cell type to another. A tight balance between diversity and
robustness ensures the perfect homeostasis known in multicellular organisms.

By analysing the impact of positive self-loops in RBN attractor land-
scape, we observed that they have an important role in network dynamics,
and particularly on the number and stability of attractors. On one side they
bring diversification, on the other side they seem to be responsible for in-
stability. An operating point, where the balance is perfect as in biological
world, is worth to be found.

More than that, biological research identified, for each differentiation
state, a set of markers that characterise and identify the differentiation state.
In RBNs, within each attractor, only a subset of nodes maintains its state
(on/off). We here speculate that these nodes can model the concept of mark-
ers —an in-depth analysis of this claim is devoted to future work. In the
model presented in this work, self-loops are the mechanism that contributes
maintaining the node state. This is particularly true considering those net-
works were self-loops are introduced with the OR function. There, their role
is exactly to keep the local stability on a subset of nodes, representing the
marker genes. If the network is in the operating point, “some self-loops but
not too many”, they have the crucial role to cause diversification, i.e., differ-
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ent cell types, without harming attractors stability, i.e., cell type robustness.
Finding this operating point is thus crucial. However not trivial, es-

pecially because homeostasis in multicellular organisms is the result of a
number of different mechanisms. This means that, including in the model
also other phenomena and bricks, can change the dynamic described in this
work. In particular we draw the reader attention to auto-inhibitory pro-
cesses, epigenetics and cell-to-cell interactions. Auto-inhibition negatively
regulate gene expression. Epigenetics affects gene expression by changing
the chromatin accessibility. As a consequence, cells with the same set of
genes respond differently to the same signal. Cellular interactions influence
the intracellular GRN dynamic by means of signals crosscutting cell mem-
branes and whose effect is typically to activate or inhibit the expression of
the target gene.

We conclude that results shown in this work suggest to study the advan-
tage of having self-loops in genetic networks during differentiation processes.
However, further investigation is necessary to provide a more complete anal-
ysis and understanding of the results observed in this work, supporting our
findings with theoretical verification and estimation. Moreover, future work
will be devoted to investigate what mechanisms counterbalance the effect
of self-loops on attractor robustness, which is, as discussed previously, a
fundamental property for modelling cell dynamics.

Finally, as mentioned in the Introduction section, we can think that this
catalogue of bricks we are building, and whose functions we are analysing,
are elementary building blocks that can be combined to face the reverse
engineering problem of reconstructing real GRNs or designing GRN model
with desired dynamics properties for artificial purposes. In addition, this
approach can give us insights of the evolutionary processes that biological
GRNs have undergone.

8.2 Self-loops favour diversification and asymmet-
ric transitions between attractors

Changes in network topology and functions strongly impact characteristics
of Boolean networks attractor landscape. With this contribution, we studied
how self-loops influence diversified robustness and asymmetry of transitions.
The purpose of this study is to identify the best configuration for a network
owning these properties.

Our results show that a moderate amount of self-loops make random
Boolean networks more suitable to reproduce differentiation phenomena.
This is a further evidence that self-loops play an important role in genetic
regulatory networks.



8.2. Self-loops favour diversification and asymmetry 89

8.2.1 Motivation and goal

As we have repeatedly stressed in previous chapters, Boolean network (BN)
models provide a suitable generic model for cell differentiation [Villani et al.,
2011, Furusawa and Kaneko, 2012, Huang et al., 2009b]. The main assump-
tion in this modelling perspective is that attractors, or sets of attractors,
represent cell types. In multicellular systems differentiation is characterised
by differential expression of genes, meaning that each cell type expresses only
a subset of genes called markers. In the same way, at each attractor of the
BN corresponds the dynamic activation of only a subset of nodes. Accord-
ingly, transitions between attractors epitomise cell differentiation stages that
bring changes in the pattern of active/inactive genes. During the process of
cell differentiation, cell responds differently to external cues, such as epige-
netic modifications. By that we mean robustness of cell states being not the
same during the whole process of differentiation. Zhou et al. [Zhou et al.,
2016] calls this property of gene regulatory network as relative stability. In
this view, for a network to be a suitable model for cell differentiation, one
would require to have attractors characterised by different degrees of robust-
ness, such that some of them are more responsive to external stimuli and
perturbations, while others are rather insensitive to external perturbations
and so more stable. This property can be expressed as diversification in
attractor robustness. In addition, as pointed out by Zhou et al. [Zhou et al.,
2016] in a recent work on Boolean models for pancreas cell differentiation, a
further requirement of the model is to be characterised by asymmetric tran-
sition probabilities between attractors. This further property accounts for a
preferential directionality of the differentiation process, that anyway does
not exclude reversibility. These two dynamical properties are the combined
result of topological and functional settings of the network model instance.
It is therefore important to identify specific settings that favour the aris-
ing of such properties. With this work we tackle this issue addressing the
question as to whether self-loops in Boolean network models may positively
contribute to attaining dynamics with diversified attractor robustness and
asymmetric transitions.

Results show that, ceteris paribus, networks in which few nodes have
self-loop are more likely to exhibit the properties mentioned above.

8.2.2 Methods

Attractors in BNs are unstable with respect to perturbations (i.e. temporary
node value flips), therefore after a node flip the trajectory either returns to
the same attractor or it reaches another one. Attractor transition probabil-
ities can be computed on the basis of the perturbation mechanism adopted.
In this work we suppose that only one node at a time can be perturbed and
that only states belonging to an attractor can be subject of such perturba-
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tion. In practice, we apply a logic negation to each node of each state of
each attractor in turn and we check in which attractor the dynamics relaxes.
This hypothesis is based on the assumption that perturbations are non fre-
quent and so the probability of affecting more than one node at a time is
negligible, and the same holds for perturbations occurring during transients,
which usually occupy a tiny fraction of time with respect to attractors along
BN trajectory. As shown in [Braccini et al., 2018], these hypotheses are
quite loose and results obtained in this setting are comparable to stochastic
simulation of perturbed BNs. Under these assumptions, the probability of a
transition between attractor A and attractor B can be computed in principle
by taking the frequency of transitions between A and B among all the possi-
ble node flips along attractor A. When networks are large, we often resort to
sampling instead of enumerating all the possibilities. The probability transi-
tion matrix is usually named Attractor Transition Matrix (ATM) 6.5.1. The
diagonal of the ATM account for the robustness of attractors, as diagonal
values represent the probability of returning to the same attractor after one
flip. Moreover, in general, transition probabilities are not symmetric, i.e.
p(A → B) 6= p(B → A). We observe that its diagonal values may be corre-
lated with the attractor basins, but it is important to note that a high value
in the ATM diagonal does not necessarily correspond to an attractor with a
large basin of attraction, because the values in the ATM are computed by
considering single perturbations occurring along the attractor states, while
the attractor basin is defined in terms of a fraction of the entire state space.

8.2.3 Diversification and Asymmetry

A BN suitable to represent a differentiation process should exhibit different
degrees of robustness, in the same way as cells at different differentiation
stages are more or less sensitive to external perturbations. This property
can be evaluated by quantifying the different values along the ATM diagonal
and their range. Furthermore, in a recent work [Zhou et al., 2016], Zhou
and collaborators add another important requirement: the dynamics among
attractors should be asymmetric, i.e. p(A → B) and p(B → A) should
be different enough to observe a significant degree of irreversibility. This
property can be evaluated by quantifying the distribution of values along
the ATM rows.

To quantitatively evaluate these two properties, we defined two functions.
They are not meant to be a formal definition for the properties themselves,
but in our view they provide a good quantitative approximation of their
quality and make it possible to compare different network configurations.
Given the ATM, whose values are denoted by Ti,j—where i is the index of
rows, and j the index for columns—we order rows so that values on the main
diagonal are in ascending order. The matrix is by definition square of size
m, where m is the number of attractors. In the following, with ATM, we
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will refer to this sorted matrix.

Diversification in attractor robustness is estimated on the basis of the fol-
lowing function:

f1 =

m∑
i=2

(Ti,i − Ti−1,i−1) = Tm,m − T1,1 (8.1)

This function estimates the range of attractor robustness. We observe that
0 ≤ f1 ≤ 1, but in general—and mainly in random models—it decreases
with m as the more are the options to escape from an attractor, the lower
the probability of returning to it after a perturbation.

Asymmetry in transition probabilities is defined in terms of the sum of tran-
sition probabilities in the triangle above (Qa) and below (Qb) the main di-
agonal:

f2 = Qa −Qb =
m−1∑

i=1,j=i+1

Ti,j −
m∑

i=2,j=i−1
Ti,j (8.2)

The intuition behind this definition is that high values of f2 characterise
asymmetric transitions between attractors. Moreover, as the transition ma-
trix is sorted by main diagonal values, the function estimates the extent to
which transitions from less robust to more robust attractors are favoured.
In principle, f2 may range in [−m+ 1,m− 1] but the actual distribution of
values strongly depends upon the models used.

In general, we may assume that the higher f1 and f2 computed on an
ATM of a Boolean network the higher the potential of that network to model
a differentiation process.

8.2.4 Self-loops

Network topology and functions impact the BN attractors landscape [Ah-
nert and Fink, 2016]. In the Section 8.1 we have reported the obtained
results related to the impact of self-loops in RBNs [Montagna et al., 2018].
A self-loop in graph theory is defined as an arc that connects a vertex to
itself, and in the context of BNs this implies that the state of a node with a
self-loop at time t depends also on the state of the very same node at time
t−1. There, we have shown that a major effect of incrementally adding self-
loops in RBNs is that (i) the number of attractors increases (in some cases
exponentially) and (ii) the probability of returning to the same attractor
after a perturbation decreases with the fraction of nodes with self-loops. In
fact, this last effect might be detrimental to cell dynamic if generalised to all
attractors. Therefore, as self-loops have been observed in genetic networks
reconstructed from real data, this effect should be limited to few attractors
and anyway be compensated by other positive effects, maybe concerning cell
differentiation itself. In this work we investigate the impact of self-loops on
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the properties mentioned above, with a twofold aim: identify possible struc-
tural network characteristics that favour their use as differentiation models
and find support to the appearance of self-dependencies in biological genes.

8.2.5 Results

We initially sampled RBNs with n = 15, k = 2 and p = 0.5—following the
long standing hypothesis according to which real GRNs operate in a critical
regime (or ordered but not chaotic) [Shmulevich et al., 2005]—subsequently
modified with self-loops according to the four different schemas already de-
scribed in Section 8.1.2.

In all the listed cases, the choice of the incoming link to be substituted
and the node to which to add the self-loop was performed in a random fash-
ion, choosing with uniform probability among the nodes. For computational
reasons, we limited both the maximal number of nodes with self-loops and of
nodes in the BNs so as to make feasible the exhaustive exploration of BNs’
state space, as well as the perturbations for generating the ATM. Statis-
tics on larger BNs, requiring a sampling of the possible initial states and
perturbations, are subject of future work.

Note that in our models there is actually no semantics associated to 0
and 1. However, since for the sake of simplicity we chose a specific canalis-
ing function, the OR function, this implies that if 1 is associated with the
active state of the node, OR acts as a canalising activating function—and,
clearly, OR with self-loops means self-activation. As originally introduced
by Kauffman [Kauffman, 1993], a canalising function is a Boolean function
in which there exists an input value that fully determines the output value,
regardless the values of other inputs. To be coherent in the discussion of
the results, we stick to this choice and hereafter we designate 1 as the active
state. Anyway, the fact that we observe a specific effect of OR functions
just means that this effect can be achieved by any canalising function of
this kind. Moreover, as we have shown in [Montagna et al., 2018], the ef-
fect is produced by the combination of self-loops and OR functions together,
rather than being the consequence of an increased fraction of OR functions
alone. As f1 and f2 depend on the number of attractors and in an ongoing
work we have observed that the distribution of the number of attractors is
not uniform among RBNs of a given size, in light of this we have sampled
the BNs space until the desired fixed number of nets had reached and then
the statistics we computed are based on the same number of nets (30) per
number of attractors, from 1 to 20—hence, statistics are computed over 600
networks. Indeed, we believe that the advantage of self-loops should be ob-
served ceteris paribus, i.e. evolutionarily speaking, once the network has
reached its minimal configuration in terms of attractors. In addition, when
BNs are used for modelling real cells, the first step is usually to configure a
network with a given number of attractors (cell types), as done for example
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Figure 8.7: Boxplot (left) and main statistics of f1 (right), in the case with
k = 2 and self-loops combined in OR.

in [Zhou et al., 2016]. Results are shown by means of boxplots, so as to have
a visual reckon of the distribution, and a plot with maximum, mean and
median (the minimum value is omitted as it is the same for all the statistics
for each function). On the x-axis we find the number of self-loops and on the
y-axis either f1 or f2. Generic statistics on attractors are omitted because
not relevant for this contribution; however, the interested reader can find
such statistics in our previous work [Montagna et al., 2018]. An in-depth
analysis of attractors number distribution in this class of BNs is subject of
ongoing work.

Results concerning robustness diversification (measured by means of f1)
are summarised in Figures 8.7–8.10. We first note that, in all the cases,
mean and median are almost overlapping, meaning that the distribution is
symmetrical. Moreover, as the maximum (shown also in the right plots for
clarity) is always much higher than the mean and follows approximately the
same shape, we can conclude that the distribution is quite wide—a prop-
erty that favours evolutionary processes. We observe that in those cases in
which self-loops play a self-activating function (OR cases), the diversifica-
tion steadily increases (CONST-OR) or reaches a maximum at a moderate
amount of nodes with self-loops (AUGM-OR). We observe that, when the
self-loop may play any functional role – i.e. when it is combined in a random
function – this effect is limited, if not negative.

Results concerning the asymmetry of transitions between attractors are
summarised in Figures 8.11–8.14. Results are analogous to the previous
case: when self-loops play a self-activating function (OR cases), the asym-
metry increases steadily (CONST-OR) or up to a point after which it starts
to decrease (AUGM-OR). Conversely, when the self-loop is associated to a
random function, the average impact on asymmetry is negligible.
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Figure 8.8: Boxplot (left) and main statistics of f1 (right), in the case with
self-loops added to the nodes in OR.
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Figure 8.9: Boxplot (left) and main statistics of f1 (right), in the case with
k = 2 and self-loops combined as a random function.
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Figure 8.10: Boxplot (left) and main statistics of f1 (right), in the case with
self-loops added to the nodes in a random function.
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Figure 8.11: Boxplot (left) and main statistics of f2 (right), in the case with
k = 2 and self-loops combined in OR.
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Figure 8.12: Boxplot (left) and main statistics of f2 (right), in the case with
self-loops added to the nodes in OR.
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Figure 8.13: Boxplot (left) and main statistics of f2 (right), in the case with
k = 2 and self-loops combined as a random function.
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Figure 8.14: Boxplot (left) and main statistics of f2 (right), in the case with
self-loops added to the nodes in a random function.

Summarising, these results support the conjecture that, in BN models, a
small fraction of node with self-loops associated to a canalising function may
favour both robustness diversification and asymmetry in transition prob-
abilities. This result observed in a computational model is indeed comple-
mented by experimental evidence in real cells where self-activation/inhibition
schemes are found in a limited, but not negligible, number of genes [Raj et al.,
2010].

8.3 Conclusion

According to the ensemble approach [Kauffman, 2004], it is important to
identify structural and functional properties of genetic regulatory network
models that make them more suitable for reproducing typical cell dynamics.
In this perspective, we have investigated the effect of self-loops on RBNs ad-
dressing the question as to whether they may provide a positive contribution
to modelling cell differentiation. Attractors in BNs epitomise cell types and
transitions between attractors occur when attractor states are perturbed,
either by specific signals or perturbations. We have defined two functions
as proxies for measuring two prominent properties acknowledged to play an
important role in BN models for differentiation: diversification in attractor
robustness and attractor transition asymmetry. Results show that a small
fraction of canalising self-loops (approximately between 0.25 and 0.3) favours
higher values of these functions. This result sheds light on the positive role of
self-loops in BNs for modelling cell dynamics. Moreover, by the outcome of
this study we contribute answering the question raised in [Montagna et al.,
2018] concerning the existence of a specific fraction of self-loops enabling an
optimal balance between robustness and flexibility. In addition, this inves-
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tigation may provide insights on the evolutionary processes that biological
cells have undergone. This contribution is just another step in the direction
of detecting structural and functional characteristics (bricks) in GRN models
that make them suitable for modelling cell differentiation processes. Further
goals in our research agenda involve the identification of other bricks to be
used as elementary building blocks in the problem of designing GRNs for
biological as well as artificial purposes. Moreover, since our measures are
based on a particular procedure to assess the attractors’ robustness reca-
pitulated by the ATM, is of paramount importance the comparison of this
last with other ways to characterise their relative stability, as done in [Joo
et al., 2018]. In addition, given the preliminary nature of the work, a com-
parative study between different metrics (e.g. the Gini index [Gini, 1912])
which could characterise the diversification and asymmetry properties of the
attractor landscape have not yet been done. Still, it is already scheduled for
future work.

8.4 The impact of self-loops on BN attractor land-
scape and implications for cell differentiation
modelling

In the work [Montagna et al., 2018] presented in Section 8.1, we have found
that the impact of self-loops in random Boolean networks is to increase the
average number of attractors and reduce their average robustness. This last
result is not in agreement with biological networks, which are undoubtedly
robust and yet contain self-loops.

With this work we have shed light on this conundrum by investigating in
more depth the impact of self-loops in Boolean networks on both the number
of attractors and their robustness. We first showed that the number of nodes
with a self-loop is indeed positively correlated with the average number of
attractors and we provide a formal model for this relation. Subsequently,
we showed that, if we restrict statistics to networks with the same number
of attractors, the maximal robustness of the attractors increases with the
fraction of nodes with a self-loop. In other words, the advantage of self-loops
is still observable in Boolean models but by comparing attractor robustness
ceteris paribus. In addition, our results show that the variability of attractor
robustness tends to increase with the fraction of nodes with self-loops. This
outcome suggests that direct autoregulation may provide an advantage in
the evolution of the basic dynamic mechanisms of cells.

These results provide further support to the use of Boolean networks for
modelling cell dynamics (e.g. differentiation processes) and suggest that self-
loops have to be taken into account in the ensemble approach [Kauffman,
2004], which aims at identifying generic properties so as to match some
statistical features of the target biological systems.
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8.4.1 Motivation and Goal

Being the asymptotic states of the system, attractors play a prominent
role in BNs [Kauffman, 1993, Kauffman, 2000]. In particular, by follow-
ing the recently proposed dynamical systems view of cell differentiation (see
the works [Huang et al., 2005, Furusawa and Kaneko, 2012, Huang et al.,
2009b, Villani et al., 2018] and Part II for more details), attractors—or sub-
sets of attractors—represent cell types. Accordingly, transitions between
attractors epitomise cell differentiation stages that bring changes in the pat-
tern of active/inactive genes. In this view, for a network to be a viable
model for cell differentiation, one would require to have a suitable number
of attractors characterised by varying degrees of robustness, so as to be able
to reproduce the transitions between cell types.

In [Montagna et al., 2018] we presented a preliminary study that analyses
whether adding self-loops in RBNs affects attractor number and type and,
possibly, their robustness. We observed that the number of attractors is
higher in networks with self-loops and grows quasi-exponentially with the
number of self-loops. At the same time, attractor robustness tends to be
smaller than in RBNs without self-loops.

These results are not completely coherent with the role self-loops have in
biological systems. Indeed, autoregulatory circuits—biological components
that are (in)directly influenced by their very product—are pervasive in bi-
ological organisms and they are actively involved in conferring mutational,
environmental, recombinational, or behavioural robustness. The effects of
these circuits manifest themselves as emergent properties on multiple scales,
in time (development/evolution), in space (populations) and on different
levels of the biological organisation (from molecular up to entire organisms).
Buffering of noise and incomplete penetrance [Chalancon et al., 2012], au-
tocatalysis, homeostasis and buffering gene dosage [Thomas et al., 1995],
genetic switches—like Sxl gene in sex determination of Drosophila [Thomas,
2002] and Cl protein in lytic or lysogenic phase control in bacteriophage
lambda [Crews and Pearson, 2009]—and chromatin mediated autoregula-
tion [Fisher, 2002] are just some of the most prominent examples of the ob-
servable effects of positive or negative, direct or indirect autoregulatory cir-
cuits. Autoregulation patterns assume particular relevance in transcriptional
regulation. Indeed, in the works by Alon and colleagues [Alon, 2006, Alon,
2007, Milo et al., 2002], autoregulatory circuits have been identified in tran-
scription networks as network motifs, i.e. recurring building-block patterns
found in complex networks. Just to mention an example of their amount in
a real organism, E. coli presents 40 transcription factors that regulate the
transcription of their own genes, out of a total of 420 transcription factor
encoding genes.1

Particularly noteworthy to the purpose of this work are the functions that
1according to [Alon, 2006]
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positive autoregulations carry out in differentiation, and therefore in devel-
opment. According to [Alon, 2007], positive (negative) autoregulation occurs
when a transcription factor enhances (represses) its own rate of production.
It is the memory capacity typical of positive circuits made by maintaining
gene expression, and so acting as genetic switches, that makes them im-
portant in biological development. Therefore, autoregulation of important
developmental regulatory proteins can lock-in their expression and so in-
duce the maintaining of attained cell fates or developmental states [Crews
and Pearson, 2009]. Thomas in his works [Thomas, 2002, Thomas et al.,
1995, Thomas et al., 1976] remarks the key role of autoregulation in the
context of cell differentiation firstly by demonstrating that a positive loop is
necessary for multistationarity and subsequently, following the hypothesis of
Delbrück, that differentiation represents the biological aspect of the latter.
In addition, Alon [Alon, 2006] addresses a mathematical systematic study
of the mechanisms characterising autoregulation generic dynamical proper-
ties: negative autoregulation speeds-up transcription response time, whilst
positive ones slow down the transcription factors response time and are able
to create bi-stability. Huang et al. [Huang et al., 2007] study the interac-
tions between two key transcription factors in blood differentiation, namely
GATA1 and PU.1, to understand the discrete cell fate decisions that multipo-
tent cells undergo during development. These two transcription factors pro-
mote the erythroid or myelomonocytic lineage respectively. In a dynamical
systems vision of cell differentiation, the authors formulate a minimal math-
ematical model of the functional interactions of the two above-mentioned
transcription factors that in a qualitatively way reproduce—in the GATA1
and PU.1 plane—the observed experimental genome-wide trajectories of the
transcriptome during differentiation. In addition to mutual inhibition, auto-
stimulation of GATA1 and PU.1 turned out to be fundamental to give rise
to the metastable state characterised by the promiscuous expression of both
transcription factors and representing the progenitor cells.

In the light of the previous—non-exhaustive—list of biological and mod-
elling examples in which autoregulations play relevant roles in the organism
functions, especially in transcription networks, we cannot ignore their roles
also in Boolean models of GRN. In fact, Boolean reconstructed models of
GRNs, obtained by making use of consolidated biological knowledge of tran-
scription factors interactions or following ad-hoc procedures for synthesising
models able to reproduce observed data, are characterised by autoregula-
tions. As an example we cite the reconstructed Boolean network represent-
ing the core endogenous network of early myeloid cell-fate determination [Su
et al., 2017] that presents nearly 10% of nodes with self-loops. In [Joo et al.,
2018] the authors have reconstructed a BN model of the control mecha-
nisms that drive the epithelial-to-mesenchymal transition (EMT). In that
minimal GRN model autoregulations are necessary to create the required
stable attractor states and, in particular, the hybrid cell state that presents
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in the gene expression profile both the epithelial and mesenchymal features.
Moreover, by analysing the database (https://cellcollective.org/#) of
Boolean-rule based computational models of large-scale biological networks
available at the Cell Collective website [Helikar et al., 2012], we have ascer-
tained that the 54% of networks has self-loops. Nevertheless, a systematic
study aimed at identifying generic properties and qualitatively character-
ising the impact of nodes with self-loops in BNs is missing. Indeed, mod-
elling and analysing specific genetic circuits is a valuable and necessary step
to pursue an ever-increasing understanding of the mechanisms that underlie
biological organisms, but it suffers from limitations because these circuits
are not actually functionally independent [Huang et al., 2007]. Therefore,
in order to frame up their effects in the dynamics of the complex networks
of which they belong, it is necessary to address also this study in terms of
generic properties. Our work is in the track of the long-term research aiming
at constructing a synthetic network biology theory since self-loop may
represent a possible functional bricks.

Figure 8.15: Average number of attractors in 2 ∗ 104 RBNs with 15 nodes as
a fraction of self-loop varying from 0 to 1. Results are shown for each of the
four configurations.

8.4.2 Methods

The experiments we performed concern RBNs in which the main factor we
control is the fraction of nodes with a self-loop. Starting from a RBN with
n nodes denoted by integer values V = {1, 2, . . . , n}, k inputs per node
and bias b, a self-loop can be introduced in a node either by rewiring an
input or by adding a new one. The function of nodes with self-loops may be

https://cellcollective.org/#
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arbitrarily altered or left random. Two are the main reasons for investigating
the impact of autoregulation as self-loops in random Boolean models: the
first is that BNs are among the most used GRNmodels and a wealth of results
on RBNs is already available, therefore we can compare our findings against
an established and well known literature. The second reason is that if self-
loops make RBNs somehow more adapt to model differentiation processes,
then they should be taken into account in artificial evolution experiments
and RBNs with self-loops may be provide a promising initial condition for
such studies.

We performed the experiments according to the following experimental
setting. Initial RBNs were created with k = 2 and function bias b equal to
0.5—the value of these parameters grounds on biological plausibility [Kauff-
man, 1969b, Kauffman, 1969a, Serra et al., 2004b]. These networks have
been modified by selecting at random ns nodes in which rewiring or adding
a link in self-loop. For brevity, let’s denote by Vs ⊆ V the nodes with a
self-loop. When self-loops are introduced by rewiring, all nodes in V have
exactly k inputs; conversely, when self-loops are added, the distribution of
node in-degree changes as ns nodes out of n have k + 1 inputs. We decided
to test both variants so to have a wider picture of the effects of self-loops
inserted in RBNs. Besides adding self-loops, a decision has to be taken
concerning the functions of nodes in Vs: since we started from RBNs, the
function may still be random (with bias kept to b also in the case k + 1)
or it can be set to a specific Boolean function. This latter case is the most
relevant for GRN modelling, as self-loops found in biological cells have usu-
ally a canalising role [Raj et al., 2010] instead of playing any function. As
originally introduced by Kauffman [Kauffman, 1993], a canalising function
is a Boolean function in which there exists an input value that fully deter-
mines the output value, regardless of the values of other inputs. We then
chose to test also the case in which the Boolean function of nodes in Vs is
a either logical OR between the value of the node itself and the other input
(k constant case) or the OR between node value and the random function
initially set, for the k + 1 case. Formally, let i be a node in Vs and fi the
original function; then, the new Boolean function f̂i is defined as follows:

• case k constant: f̂i = xi ∨ xj , where j is the other input of i;

• case k + 1: f̂i = xi ∨ fi.

Note that in BN models there is actually no semantics associated to 0 and
1. However, since for the sake of simplicity we chose one specific canalising
function—the logical OR—this implies that if 1 is associated with the active
state of the node, OR acts as a canalising activating function—and, clearly,
OR with self-loops means self-activation. Anyway, if we observe a specific
effect of the OR function, it just means that this effect can be achieved by
any canalising function of this kind. Our main interest is indeed on this
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canalising functional role, whilst the case with random functions is kept just
for comparison. The set of BN variants used in the experiments we performed
are described in Section 8.1.2.

Attractors in BNs are unstable with respect to perturbations (i.e. tem-
porary node value flips), therefore after a node flip the trajectory either
returns to the same attractor or it reaches another one [Ribeiro and Kauff-
man, 2007, Villani and Serra, 2013b]. Attractor transition probabilities are
computed by exerting perturbations to each attractor and the probability of
returning to an attractor after a perturbation is taken as an estimation of at-
tractor robustness. According to [Jen, 2003], robustness is a broader concept
than stability—which is a well-defined mathematical notion in dynamical
systems—as it is related to feature persistence under a wider spectrum of
perturbations of different nature. The notion of attractor robustness used in
this work, which is related to the concept of robust adaptation defined by Ki-
tano in [Kitano, 2004], is not limited to determine single attractor’s stability
since it provides a quantitative measure, i.e., the probability of returning to
the same attractor.

This metric is clearly a function of the kind of perturbation exerted.
In this work we suppose that only one node at a time can be perturbed
and that only states belonging to an attractor can be subject to such a
perturbation. This approach is common in dynamical systems, in which
stability is indeed evaluated in stationary states. Moreover, the single flip
hypothesis is based on the assumption that perturbations are not frequent
with respect to network updates, so the probability of affecting more than one
node at a time is negligible; the same consideration holds for perturbations
occurring during transients, which typically last a tiny fraction of time with
respect to attractors along BN trajectories. This assumption is reasonable
in particular when BNs are used to model cell dynamics [Serra et al., 2010,
Villani et al., 2011, Villani and Serra, 2013b].

In practice, we apply a logic negation to each node of each state of each
attractor in turn and we check in which attractor the dynamics relaxes. The
probability of a transition between attractor A and attractor B is computed
by taking the frequency of transitions between A and B among all the pos-
sible node flips along attractor A.2 As shown in [Braccini et al., 2018], the
results obtained in this setting are equivalent to stochastic simulation of
perturbed BNs. This procedure produces the probability transition matrix
called ATM 6.5.1. As already stated, the diagonal of the ATM accounts
for attractor robustness, as diagonal values represent the probability of re-
turning to the same attractor after a perturbation. To get a more accurate
evaluation of attractor robustness, in this work we focus on minimum and
maximum values of the ATM diagonal, rather than one single statistics such

2For large size networks one has to resort to sampling, instead of enumerating all the
possibilities.
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Figure 8.16: Comparison between the mathematical model and experimental
results. Self-loop in OR inserted by adding an input (left), and by rewiring
one input (right). Logarithmic scale for the y axis.

as the average that might obfuscate the actual features of the distribution.
To this purpose we define the two following variables:

δmin = min diag(ATM) (8.3)

δmax = max diag(ATM) (8.4)

8.4.3 Results

In this section, we will first show the results on the number of attractors.
Subsequently, we will analyse statistics on attractor robustness.

We run experiments for each of the four configurations described in Sec-
tion 8.1.2. In this work, we aim at providing a detailed picture of the impact
of self-loops on BNs and so we choose completeness over statistics in the
large. Therefore, the number of nodes n is set to 15 so as to be able to
perform an exact computation of the ATM for every possible number of
nodes with self-loops ns ∈ {0, 1, . . . , n}. The outcome of our study can be
anyway generalised to large size networks. However, small and medium-size
networks are often used to model the relations among a limited number of
genes, related to a specific function (e.g., the hematopoietic cell differentia-
tion). RBNs are generated with k = 2 and bias b = 0.5. For each value of
ns and for each variant, we took statistics across 2 ∗ 104 randomly sampled
RBNs.
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8.4.4 Average number of attractors as a function of self-loops

In this section we show how the average number of attractors is affected by
self-loops. Figure 8.15 is composed of four plots, each referring to one of the
four configurations in Section 8.1.2. In each graph, the average number of
attractors is plotted as a function of the fraction of nodes with self-loops,
along with the average number of fixed points. The outcome of these exper-
iments confirms the results presented in our previous work [Montagna et al.,
2018]: the average number of attractors increases with ns/n. Curves follow
the same trend in the four plots and are well approximated by an exponen-
tial function. However, we can observe two main differences between OR
(canalising functions) and RND functions:

1. The number of attractors increases much more in networks with self-
loops in OR than in those with RND functions. The difference is
roughly of an order of magnitude: we can observe that with OR they
vary from an average value of 2.59 in all the networks without self-
loops until averages of 209.8 (CONST-OR), 436.9 (AUGM-OR), 58.6
(CONST-RND) and 19.6 (AUGM-RND) in networks with 15 self-loops.

2. For CONST-OR and AUGM-OR, almost all attractors are fixed points
even at low values of ns/n; conversely, in the RND cases, is the average
number of cyclic attractors that grows with ns/n.

An analytical model

To generalising the previous results and being able to make predictions for
any value of n, ns and bias b, we complemented this analysis with a theo-
retical estimation of the average number of attractors as a function of these
parameters. The model we provide in this section is related to the OR cases,
as they are more significant for biological cell modelling than the RND ones.
As previously observed, in the OR cases even for few nodes with self-loops
almost all attractors are fixed points. Therefore, as we want to have a gener-
alisation for any n, we estimate the number of attractors in terms of number
of fixed points. For ease of the proof, we first focus on AUGM-OR and we
subsequently modify the model for the CONST-OR case. Our goal is then
to estimate the probability that a randomly chosen state s = (x1, x2, . . . , xn)
is a fixed point in the case in which self-loops are added to nodes. In the
following, we use fi(·) to denote the application of the function of node i to
its inputs values.
Hence we want to estimate:

p∗(s) = P{s is a fixed point | s is randomly chosen} (8.5)

s is a fixed point iff s = F (s), i.e. (x1, x2, . . . , xn) = (f1(·), f2(·), . . . , fn(·)).
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Figure 8.17: Density function of the number of attractors for the CONST-OR
configuration. It has been computed from experimental data on 2 ∗ 104 runs
with same ns. The sixteen plots show how it changes with ns ∈ {0, 1, . . . , 15}
(the number of self-loops ns is reported in bold letters in the title of each
plot). Logarithmic scale for the x axis.

Let us focus on node i with two external inputs corresponding to a Boolean
function with bias b and a self-loop in OR and estimate the probability
p∗i = P{xi = fi(·)}. We have two cases: (a) xi = 1 and (b) xi = 0.

a) P{xi = 1 ∧ fi(·) = 1} = P{fi(·) = 1 | xi = 1} P{xi = 1} = 1 · q = q,
where q is the probability of assigning 1 to value xi.

b) P{xi = 0∧fi(·) = 0} = P{fi(·) = 0 | xi = 0} P{xi = 0} = (1−b)(1−q),
because b is the probability that—on average—f(·) = 1.

Hence, p∗(xi) = q+(1−b)(1−q). We suppose that initial states are randomly
chosen, thus q = 1

2 . Moreover, in our experiments we have b = 1
2 , therefore

p∗(xi) =
3
4 . For a node without self-loops we apply an analogous argument

and obtain p∗(xi) = bq + (1 − b)(1 − q); in our experiments p∗(xi) = 1
2 .

Finally, we can derive a formula for the probability of a fixed point of a
network with n nodes and ns nodes with a self-loop added in OR under the
hypothesis that all p∗i are independent:

p∗(s) = [q + (1− b)(1− q)]ns [bq + (1− b)(1− q)](n−ns) (8.6)

For b = 1
2 = q we have p∗(s) = (34)

ns (12)
n−ns .

The comparison between the theoretical value of fixed points and its experi-
mental estimation—based on the statistics on BNs we have performed from
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Figure 8.18: Empirical cumulative distribution function (ECDF) of the num-
ber of attractors for the CONST-OR configuration. It has been computed
from experimental data on 2∗104 runs with same ns, with ns ∈ {0, 1, . . . , 15}
(see legend).

simulations of RBNs—is shown in Figure 8.16 (left). The model predicts
with high precision the number of fixed points, which is a good estimation
of the overall number of attractors. The model slightly overestimates the
number of fixed points because we suppose that nodes are independent—in
fact, the functional dependence among nodes might rule out some configu-
rations that can, in principle, be fixed points. However, this discrepancy is
negligible in this case.

Following a similar reasoning we can derive an analogous formula for the
CONST-OR case, in which self-loops are inserted by rewiring an incoming
arc and substituting the Boolean function with an OR. In this case we have:

p∗(s) = [q +
1

2
(1− q)]ns [bq + (1− b)(1− q)](n−ns) (8.7)

For b = 1
2 = q we have p∗(s) = (34)

ns 1
2

(n−ns).
The constant value 1

2 in Equation 8.7 represents the probability that—on
average—variable xi with value 0 does not change its value after the appli-
cation of the OR function.
The comparison between the theoretical value of fixed points and its exper-
imental estimation is shown in Figure 8.16 (right, dotted line with squares).
As we can observe, in this case the hypothesis of independence introduces
an error, especially when the number of nodes with self-loop is high. For
this case we should apply the chain rule for computing the conjunct prob-
ability that every node is constant. Let us denote by xi the event that
xi does not change its value after the update. Thus we have: p∗(s) =
P{x1 ∧ x2 ∧ . . . ∧ xn} =
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P{x1} P{x2 | x1} P{x3 | x2 ∧ x1} · · ·P{xn | xn−1 ∧ . . . ∧ x1}.
The dependence among nodes can be simplified because in this topology the
nodes with self-loop depend only on one other node as in a ring topology.
Hence: p∗(s) ≈ P{x1} P{x2 | x1}ns−1 = 3

4 (23)
ns−1(12)

n−ns , as in the most
constrained case x2 depends on x1 and, in this case, x2 is constant in two
out of the three cases in which x1 is constant. In this way, we can provide
also a lower bound on the number of fixed points, as depicted in Figure 8.16
(right).

To generalise analytical model results, Figures A.17 and A.18—present in
the appendix A—report model predictions varying the bias for the analysed
topological OR configurations (CONST-OR, AUGM-OR). We can observe
that in the CONST-OR configuration the bias value does not impact the
model prediction, while in the AUGM-OR case predictions change with bias
values.

As a final note, we observe that the model indeed capture an exponential
relation between the average number of attractors and the fraction of nodes
with self-loops, as empirically noted in Figure 8.15.

For the sake of completeness, the analytical model for the estimation of
the average number of fixed points for the RND cases can be reduced to the
following formula [bq + (1 − b)(1 − q)]n since all nodes have random func-
tions we can not make a distinction between nodes with a self-loop ns and
those without. Since the average outcome of the Boolean functions in RBN
ensembles of random functions follows the bias parameter, in Figure A.16
we report the theoretical estimations of the average number of fixed points
varying bias values for the RND cases (CONST-RND, AUGM-RND). Note-
worthy it is that for both the RND cases the theoretical average number of
fixed points is 1—regardless of the bias—and the experimental value reported
in Figure 8.15 is perfectly in agreement with it.

8.4.5 Distribution of attractor number

To providing a more detailed picture of the overall attractor number trend we
analysed the distribution of the number of attractors of the BNs across the
2∗104 networks with same configuration and number of self-loops. Moreover,
this analysis is useful to study attractor robustness, which is influenced by
the number of attractors, i.e. by the ATM size: in BNs a higher number of
attractors is likely to correspond to a lower probability of returning to the
same attractor after a perturbation, as on average the more the attractors,
the smaller their basin of attraction.3 For the sake of brevity, we discuss
here the case of CONST-OR, and we refer to the appendix A for additional
data and results on the other three configurations.

3In fact, this is a rough reckon that holds on average, because the values in the ATM
are computed by considering single perturbations occurring along attractor states, while
the attractor basin is defined in terms of a fraction of the entire state space.
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Figure 8.19: δmin and δmax as a function of the number of attractors m for
the CONST-OR configuration. They have been computed from experimental
data on 2 ∗ 104 runs with same ns. The sixteen plots show how they change
with ns ∈ {0, 1, . . . , 15} (the number of self-loops ns is reported in bold
letters in the title of each plot). x axis limits change with ns from 1 to the
largest number of attractors for which at least 30 sampled BNs have been
found.

Figure 8.17 and Figure 8.18 show the density and the empirical cumula-
tive distribution of the number of attractors, respectively, for each possible
value of the number of self-loops in the network.

Density functions in plots of Figure 8.17 are computed with the algo-
rithm implemented in ksdensity of Matlab (R2018a). The function returns
a probability density estimate for the vector data containing the attractor
number from our 2 ∗ 104 experimental results. The result is somehow sur-
prising: for each network setting with at least one self-loop, the density is
non-monotonic and a peak can be identified; in other terms, the probability
of randomly sampling a network with a given number of attractors is not
uniformly distributed, but rather most networks have a number of attrac-
tors close to the value corresponding to the maximal density. This peak
varies with the number of nodes with self-loops. For instance, in networks
without self-loops the value of the density function for a landscape with only
one attractor is 0.79, while, once rewiring one node input with a self-loop,
two attractors constitute the most common landscape and we have a value
of 0.56. Peak value and position for the 16 experiments are summarised in
Table 8.1. Peaks of density functions move right as self-loops are added to
the network: the probability to have few attractors decreases while the prob-
ability to have a large number of attractors increases. Moreover, the peak
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Table 8.1: Density function max values and corresponding position, i.e. num-
ber of attractors.

ns density fun. max value x ≡ no. attractors

no self-loops 0.7904 1

1 self-loop 0.5619 2

2 self-loops 0.4673 2

3 self-loops 0.1857 2

4 self-loops 0.1187 4

5 self-loops 0.0861 4

6 self-loops 0.0603 5

7 self-loops 0.0435 4

8 self-loops 0.0315 8

9 self-loops 0.0228 10

10 self-loops 0.0165 16

11 self-loops 0.0119 25

12 self-loops 0.0086 34

13 self-loops 0.0064 45

14 self-loops 0.0049 67

15 self-loops 0.0039 102

Table 8.2: Max number of attractors as a function of self-loops ns

ns 0 1 2 3 4 5 6 7

Amax 48 104 66 136 120 123 192 216

ns 8 9 10 11 12 13 14 15

Amax 212 384 480 560 1200 1050 1545 1601

gets lower while tails of density function get higher and longer. Generally
speaking the peak moves to the right while it drops down. Accordingly, we
extracted the maximum number of attractors observed (Amax) as a function
of the number of self-loops ns (see Table 8.2).

A similar qualitative behaviour is obtained with the other three configu-
rations (AUGM-OR, CONST-RND, AUGM-RND), has shown respectively
in Figure A.1, Figure A.6 and Figure A.11 of the appendix A.

A different perspective is shown in Figure 8.18 where we plotted the
empirical cumulative distribution function (ECDF) of each of the 16 differ-
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ent attractors number distributions related to the CONST-OR configuration
presented in Figure 8.17 with ns ∈ {0, 1, . . . , 15}. Figure 8.18 supports our
previous analyses showing that 95% of networks are under the ECDF curve
for attractor number gradually bigger. As extreme examples: if ns = 0 then
ECDF <= 0.95 for i <= 6, while if ns = 15 then ECDF <= 0.95 for
i <= 512.

A generalisation of this pattern can be attained by finding a fit between
the ECDF of attractor number and a known discrete distribution. Indeed,
for few self-loops the distribution is well fitted by a Poisson distribution.
Unfortunately, this fit considerably degrades with increasing number of self-
loops; in this latter case, we found a good match with a geometric distribu-
tion which tends to reproduce with more accuracy the tail of the attractor
number distribution. Nevertheless, the geometric distribution completely
misses the peak of the density. Even though continuous, the Weibull distri-
bution [Johnson et al., 1995] provides an overall good trade-off, being defined
as a function of two parameters. This result would suggest that the distri-
bution of the number of attractors of the BNs is a mixture of exponential
and Rayleigh distribution. A formal study of this issue is planned for future
work.

8.4.6 Attractor robustness

The second relevant feature affected by the number of nodes with self-loops
is attractor robustness. In our previous preliminary study [Montagna et al.,
2018] we observed that the median value of attractor robustness decreases
with the number of self-loops. In fact, the distribution of these values is
rather wide and a single statistical parameter might miss important features
of the phenomenon. Moreover, as the distribution of the number of attractors
of the BNs is not uniform, a fair comparison should be achieved by comparing
robustness among BNs with the same number of attractors. Therefore, we
look here at the minimum and maximum values of robustness—δmin and
δmax—averaged across networks with the same number of attractors. In this
way we have more balanced results across the 16 different settings, on top
of which we can make a comparison and discussion: are self-loops affecting
attractor robustness in networks with a different setting but same number
of attractors? We computed averages of δmin and δmax on 30 networks
randomly selected from the sampled pool of BNs with a given number of
attractors; in case 30 networks are not available, statistics are not computed.4

We stop computing the averages at the largest number of attractors for which
at least 30 sampled BNs have been found.

4Indeed, as for some topological configurations and ranges of ns the computational
cost for finding a RBN with a given number of attractors might be extremely high, we
considered as statistical significant only averages computed across 30 samples, which is
the minimal number suggested by a commonly applied rule of thumb [Cohen, 1995].
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Figure 8.20: δmin, δmax and ATM diagonal values as a function of the number
of attractors for CONST-OR configuration. Results are shown for ns ∈
{0, 4, 8, 12} (see title in each plot).

Figure 8.21: δmin (left) and δmax (right) as a function of the fraction of
nodes with a self-loop for CONST-OR configuration. Each plot refers to the
average values of δmin (left) and δmax (right) on 30 networks with the same
number of attractors m, where m ∈ {1, . . . , 20} (see legend).
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Figure 8.19 shows the trend of δmin and δmax as a function of the num-
ber of attractors across all 16 configurations of self-loops. We can observe
that, in each plot, attractor robustness decreases with an increasing number
of attractors: both δmin and δmax follow a quasi-monotonically decreasing
function (with few local exceptions). This confirms the overall picture we
got in our previous work. Results obtained for 15 self-loops has to be inter-
preted with a bit of ingenuity. In this case, δmin = 0 for all the networks
and δmax = 1, independently of the number of attractors. The reason of this
phenomenon is that in these peculiar networks in which every node regulates
itself in OR, there are at least two fixed point attractors: (0, 0, . . . , 0) and
(1, 1, . . . 1). The first is unstable, as any node flip will switch to 1 at least
one node which will keep this value forever; whilst the second is stable for
every possible single flip, as any node perturbation 1 → 0 will be immedi-
ately reverted at the subsequent update step. In general, we can observe a
tendency of δmin to decrease, while δmax increases with the number of self-
loops, denoting that variability in attractor robustness increases. This trend
is shown in Figure 8.20.

If we restrict the analysis to a limited number of attractors feasible for
BNs with any number of self-loops and we consider δmax at a given number
of attractors m, we observe a notable fact: the maximum robustness grows
with the number of self-loops (see Figure 8.21, right—the trend is shown for
1 ≤ m ≤ 20). The picture emerging from the analysis of δmin (Figure 8.21,
left) is somewhat more complicated: the trend of minimum robustness is
increasing for BNs with few attractors and it decreases in networks with more
than 12 attractors, while it does not significantly vary for an intermediate
number of attractors. Analogous results, even if less striking, hold for the
AUGM-OR. Conversely, the RND cases do not show this behaviour. Figures
summarising results for these settings can be found in Figure A.3 (AUGM-
OR), Figure A.8 (CONST-RND) and Figure A.13 (AUGM-RND) of the
appendix A.

8.5 Discussion and Conclusion

The overall outcome of our analysis is that the addition of self-loops with
canalising function to RBNs affects:

(a) the distribution of the number of attractors, mainly by gradually in-
creasing the maximum number, moving right the peak of the density
function and making the distribution flatter; in particular as the frac-
tion of self-loops increases, density function peak becomes gradually
less substantial and tails longer;

(b.1) the maximum attractor robustness in two ways: it decreases with
the number of attractors, but gradually increases adding self-loops if
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compared across BNs with the same number of attractors;

(b.2) the minimum attractor robustness in two ways: it decreases with the
number of attractors, and exhibits a composite behaviour if compared
across BNs with the same number of attractors but different number
of self-loops (it grows for BNs with few attractors and decreases for
many attractors, while it is approximately steady for an intermediate
number).

Given these experimental results, we claim that self-loops in BNs can pos-
itively influence their dynamic behaviour—according to the characteristics
required for modelling cell differentiation—but the fraction of self-loops must
be accurately chosen to guarantee the best balance between number of at-
tractors (cell types) and attractor robustness (cell type stability). Our claim
is that in the range 25–45% of nodes with a self-loop in the network, we
can observe a substantial advantage in robustness without exceeding in the
amount of attractors. From the analysis we conducted on the Cell Collec-
tive [Helikar et al., 2012] database, we found that, among the GRNs with
self-loops (54% of the networks available, as discussed in Section 8.4.1), the
average value of the fraction of self-loops is 0.2100 with a standard deviation
of 0.2104. Details on the distribution are shown in Figure 8.22. This analysis
on real networks confirms our hypothesis and leads to the conclusion that a
fraction of about 30% self-loops can bring an evolutionary advantage to BN
dynamic, especially once modelling cellular differentiation processes.

In particular, simulation results enable us to formulate an evolutionary
hypothesis that may be tested in silico by means of BNs. Let us suppose
that attractors—or sets of attractors—represent cell types. Our conjecture is
that autoregulation may have appeared in evolution as a functional compo-
nent that makes it straightforward to (i) increasing the number of attractors
(i.e. cell types) without severely perturbing the other dynamical properties
of the network and (ii) consolidating dynamical attractors, e.g. by increasing
the robustness of some of them (in other words, to increasing the maximum
attractor robustness in a BN with m attractors, a moderate rewiring adding
self-loops would be a quite effective procedure). Indeed, a system is evolvable
if, subject to mutations on its structure, it exhibits variability in phenotypic
traits that may undergo selection. Besides this, by being quite simple and
local modifications, self-loops are good candidates as mutation perturba-
tions in evolutionary schemes. As a future work, we plan to investigate this
evolutionary hypothesis.

Some questions may be raised concerning the properties of the model we
studied in comparison with RBN models studied in the current literature.
A first question may arise about the dynamical regime—ordered, disordered
or critical—of RBNs with self-loops.5 To the best of our knowledge, this

5The topic of BNs dynamical regime is rather wide and out of the scope of this work;
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Figure 8.22: Distribution of the fraction of nodes with a self-loop in real
networks from the Cell Collective [Helikar et al., 2012] database.

property has not yet been studied so far and we are currently investigating
it. However, it should be observed that in the case in which OR functions are
introduced with self-loops, the canalising effects are very likely to keep the
networks in an ordered regime. Moreover, one may ask to what extent the
results obtained for CONST-OR and AUGM-OR differ from those that can
be attained in classical RBNs in which the function of some nodes is forced
to be an OR. In fact, we addressed this question in a previous work [Mon-
tagna et al., 2018] and found that the two models produce strikingly different
results. Therefore, the effect of self-loops in RBNs can not solely be ascribed
to the specific Boolean function used, but it crucially depends on the topo-
logical feature of autoregulation.

we refer the interested reader to specialised literature in dynamical criticality [Roli et al.,
2018, Villani et al., 2018, Villani et al., 2017].





Chapter 9

Wrap-up

In this chapter, we briefly report the theoretical and experimental evidences
concerning the effects of self-loops in random Boolean networks (RBN) en-
sembles 1 and we try to draw some general implications deriving from them.
In the following, we will refer to robustness as the returning probability to
the very same attractor after a perturbation.

1. In RBN ensembles, attractors number statistically increases as fraction
of nodes having self-loops increases (see Figure 8.5a);

(a) this can also be deduced from the Figure 8.17 where probability
density estimate of attractors number as self-loops are added to
the network is reported: it is clear that the probability of having
few attractors decreases while the probability of having a large
number of attractors increases.

2. the median of robustness decreases as the number of self-loops increases
(see Figure 8.5b);

3. at the same time, also the mean of the difference between MAX and
MIN robustness increases with self-loops (see Figure 8.7);

(a) this can be observed also in the Figure 8.19;

4. in addition, when we keep the number of attractors fixed the average
MAX of robustness increases with self-loops (see Figure 8.21);

Since the state space is finite—2N possible states for a BN with N nodes—
there is a trend of inverse proportionality between basin sizes and the number
of attractors, this trend is more evident in RBN ensembles. From points
1, 1a and 2, we can infer that there is a correlation relationship between

1In particular, this discussion refers to RBN ensembles with self-activating functions,
such as logic OR, this is indeed the ensemble presenting the more striking effects that will
be showed.
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the attraction basins size and the robustness on average 2. Based on this
hypothesis and the increase of the diversification parameter 3—reported in
3 and 3a—we can say that in RBN ensembles an increment in the number
of nodes with self-loops leads to a decrease of the MIN value of robustness,
on average. The previous statement seems to be true even if the MAX
of robustness tends to be larger in networks with a higher number of self-
loops—if we compare BNs with the same amount of attractors. Indeed as
we can clearly see in Figure 8.19 the MIN negative slope is larger than the
positive slope of the MAX.

Therefore, for what concerns the impact of self-loops with self-activation
effects (e.g. OR) on ensembles of RBNs we can say that—statistically—some
attractors (at least one) tend to be fairly unstable while some others assume
stronger attractive capabilities, respectively by lowering or increasing the
transition barriers between them.

2Actually there is a correlation between basin sizes and the specific definition of ro-
bustness we have adopted.

3See Section 8.2.3 for the definition of the diversification parameter.



Chapter 10

Epigenetics-driven
differentiation in BN models

Epigenetic mechanisms play a crucial role on the gene expression regulation
(see Section 1.2.3) and—as we have briefly reported in Section 1.3.1—this
highly affects the differentiation process itself. For this reason, after intro-
ducing the state of the art related to the modelling approaches of epigenetic
processes for understanding their role in cell’s dynamics, our contributions
about the introduction of epigenetics in a Boolean model of differentiation
will be presented.

10.1 State of the art

Several mathematical approaches have been proposed with the aim of dis-
entangling the effects of epigenetics in development, differentiation and also
in the establishment of aberrant cellular states—like cancer. Noteworthy is
the work [Miyamoto et al., 2015] in which the authors investigate the mecha-
nisms of differentiation and cellular reprogramming introducing a continuous
model of a minimal gene regulatory network (GRN) able to give rise to both
pluripotent and differentiated states. In their modelling approach, an epi-
genetic process—introduced as a gene expression fixation—turns out to be
important to increase the stability of the attained differentiated states and
to reproduce with more accuracy the phenomenology of the reprogramming
process.

In the works [Turner et al., 2017, Turner et al., 2013], the authors have
ascertained that the addition of an epigenetic layer—in the form of Boolean
switches that dynamically change the actual network topology—within re-
current neural networks lead to better performance in the achievement of
certain target tasks, as compared to models without it.

To the best of our knowledge, the specific role of epigenetics in the dy-
namics of discrete models of GRN has been addressed only by [Bull, 2014].
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The author does not focus on the differentiation process as such, but in-
stead, he evaluates the potential of Random Boolean networks (RBNs) with
epigenetic control—which is interpreted as additional nodes that change the
regular transcription dynamics—in NK landscapes [Kauffman and Levin,
1987].

10.2 A simplified model of chromatin dynamics drives
differentiation process in Boolean models of
GRN

As we already know, eukaryotic cells are characterised by the organisation of
DNA in a condensed structure, called chromatin. Methylation, a well stud-
ied epigenetic mechanism, influence the gene regulation process by acting on
the compactness of the chromatin structure. It most often leads to tightly
packed regions of chromatin called heterochromatin [Gilbert and Barresi,
2016, Perino and Veenstra, 2016, Schuettengruber and Cavalli, 2009]. These
regions are not accessible neither by transcription factors nor by RNA poly-
merases and so the expression of genes belonging to these DNA areas is
inhibited. Biological cells exploit differential methylation to modulate their
gene expression during development and differentiation. It is important to
note that, along lineages, the attained configurations of DNAmethylation are
inherited and progressively extended as cells become more specialised [Kim
and Costello, 2017]. Therefore, methylation contributes to maintain and sta-
bilise the attained gene expressions that ultimately characterise the identities
of the various cell states.

Kauffman and Huang [Kauffman, 1969b, Huang et al., 2009b, Huang
et al., 2005, Huang and Ingber, 2000] have laid the foundations for a rig-
orous mathematical description of GRN dynamics in terms of dynamical
systems, with attractors that model cell types. Serra and Villani [Villani
et al., 2011, Villani and Serra, 2013a, Serra et al., 2010], subsequently, have
raised the abstraction level bringing the attention to the relations among
attractors—-and set of attractors—under noise influence, describing the cell
specialisation process by a progressive decrease in noise. The detailed dif-
ferentiation properties that the model is able to reproduce are reported in
Section 6.5.

The model focuses on the dynamics of a single cell represented as an
autonomous system1 subject to intracellular noise. Cell types are defined as
the portions of the space of states in which the dynamics remains trapped,
under a specific noise level. Changes in the intracellular level of noise drive
the differentiation process: high noise levels correspond to pluripotent cells

1Here we adopt the terminology of dynamical systems in which the adjective au-
tonomous is used to denote systems that are not subject to inputs, therefore their state
may change in time only owing to internal mechanisms.
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while the low levels to fully differentiated ones. Experimental analysis on
RBNs subject to stochastic dynamics [Braccini et al., 2018] and the success-
ful evolution of networks able to attain not trivial differentiation dynam-
ics [Braccini et al., 2017, Benedettini et al., 2014] proved the expressiveness
and plausibility of this model.

Differentiation represents a major challenge for every model of gene regu-
latory networks that, like RBNs, is based on deterministic dynamical systems
which asymptotically reach stable attractor states, to be identified with the
different cell types. Indeed, under the action of the deterministic dynamics,
a stable attractor does not change any longer so it must represent a fully dif-
ferentiated cell type. Therefore cells which are found at intermediate differ-
entiation levels (e.g. pluripotent cells) should be associated to transients—an
unsatisfactory proposal, since it is known that there exist long-lived pluripo-
tent cells, which should rather be represented by metastable states.

The way out of this conundrum requires a mechanism to escape from the
deterministic attractors. While this mechanism is provided in our previously
described model by means of intracellular noise, in this work we want to ex-
plore an alternative—complementary—possibility, i.e. that it is due to an
external signal. In this way, the system is no longer autonomous, and escap-
ing from the attractors of the corresponding deterministic system becomes
possible. External signals are indeed known to affect embryo evolution, and
the simplest way to describe their effect in a GRN model is that of clamping
the values of some network nodes to fixed values.

10.2.1 The model

As previously discussed, methylation—even if it is not the only phenomenon
in place—has a non negligible impact on cell fate determination and main-
tenance. Here we are especially interested in its abstract role in simplified
models of GRNs, namely in Boolean networks. Indeed, borrowing the idea
of a progressive methylation state of the chromatin along the development
and differentiation of biological cells, we propose an analogous mechanism
in BN models. Similarly to what happens in the heterochromatin condition,
the expression of some BN nodes is blocked to value 0; these nodes will be
referred to as frozen in the following.

Theoretically, the formulation of this peculiar methylation mechanism
implies a sort of simplification of the network, as it reduces the nodes that
are actually subject to a dynamic update, and so restricting the number of
combinations that the system itself can assume. Therefore, it is not a priori
clear whether this mechanism can accommodate path dependent differ-
entiation: cell types determined by the specific sequences of methylated
genes.

This model relies on the hypothesis—to be verified in RBNs—that the
progression of frozen nodes imposes the arrow of time of the differentiation
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process and, at the same time, different patterns of methylated nodes give
rise to distinct lineages, and so cell types. Indeed, biological differentiation
is characterised by the presence of different stages of differentiation and by
progressively specialisation of cells.

Figure 10.1: Schematic representation of the methylation mechanism intro-
duced. Grey nodes represent frozen nodes (nodes constrained to assume the
value 0, regardless of the actual values of its inputs). The specific patterns of
frozen nodes in the ennuples that represent the state of the BN over time have
no other meaning than to exemplify the methylation process introduced.

A schematic representation of this Boolean methylation-inspired mecha-
nism is depicted in Figure 10.1. In this work we undertake an experimental
analysis of the main dynamical properties of RBNs subject to this process
of progressive methylation. For this mechanism to be useful in a plausible
BN differentiation model, it should (i) progressively stabilise the network
and (ii) give origin to different lineages depending on the nodes chosen to
be frozen. If these properties are attained in RBN ensembles, then we could
suppose that evolution may act to tune the dynamics of the network so as to
achieve a specific differentiation lineage tree. The choice of setting to 0 the
nodes to be frozen is motivated by the inhibition effect of most methylation
mechanisms and introduces an asymmetry in the RBNs model, as it progres-
sively bias the Boolean functions to 0. However, this is not a limitation of
the model, which can be extended to take into account also actions in which
nodes are clamped to 1 and so provide even more variability in the lineages.
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10.2.2 Results

The random Boolean networks used in these experiments are subject to a
synchronous and deterministic dynamics, therefore fixed points and cycles
are possible asymptotic states. For all the experiments, statistics are taken
across 100 RBN with n = 500 and k = 2. We focused only on networks
with k = 2 because the size of the network, combined with the other cho-
sen parameters, would have made the experimental analysis computationally
prohibitive. The Boolean functions are defined on the basis of the bias pa-
rameter p, which defines the probability to assign value 1 in a row of a node
truth table. The variation of the parameter p makes it possible to determine
the dynamical regime of the system (ordered, critical or chaotic) [Bastolla
and Parisi, 1997]: so, the limitation due to the choice of a specific connec-
tivity is thus eliminated. Since we want to analyse the emerging generic
properties induced only by the proposed methylation mechanism in ensem-
bles of RBNs, we used an exact bias. Exact bias is computed by generating
each time a random permutation of a vector of Boolean values with a length
equal to the number of nodes in the network and a fraction p of 1’s, and by
using partitions of this vector to define the output values of Boolean func-
tions. In this way, we remove from the statistics any possible contribution
produced by a variance in network dynamic regime. We generated RBNs
with p = 0.1, i.e. in the ordered regime, and p = 0.5, corresponding to the
critical regime. As results with ordered RBNs are rather uninformative, we
only show results for critical RBNs.

Attractor number distribution To providing the trend of the number
of attractors as the fraction of frozen nodes increases we generated 100 RBNs
and for each number of frozen nodes we performed a search of the attractors
starting from 104 random initial states. The range of frozen nodes considered
varies from 0 to 200 with a step of 5 nodes. Boxplots showing the distribution
of the number of attractors as a function of the number of frozen nodes
are depicted in Figure 10.2, along with the mean of these distributions.
As expected, the number of attractors decreases with the number of frozen
nodes, even though it remains non negligible up to one fifth of frozen nodes.
A question may arise as to how many attractors are fixed points, as one
expects an increasing number of fixed points as the RBNs become more
ordered. This expectation is indeed confirmed, as shown in Figure 10.3.

Derrida parameter With the aim of assessing the intuition suggesting a
progressive shift towards an ordered regime of the ensemble of RBNs subject
to the methylation mechanism, we computed the distribution of the Derrida
parameter [Bastolla and Parisi, 1997] λ, computed after one step. This pa-
rameter is evaluated by taking, for each state considered (103 in total), the
means of the Hamming distances after one update between the state and
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Figure 10.2: Distribution of the number of attractors for the configuration
n = 500, k = 2, p = 0.5 as the number of frozen nodes increases from 0 to
200 with a frozen step of 5 nodes at a time. The continuous line illustrates
the trend of the mean.

the perturbed one (a logic negation of a single node value) in all not frozen
nodes, taken one at a time. In particular, statistics report the distributions
of the 100 means of the means, one parameter value for each RBN which
summarises the overall behaviour observed along the 103 random states. For
this investigation, we consider a number of frozen nodes represented by a
percentage of {0, 10, 20, 50} of all nodes. Figure 10.4 depicts the boxplots
summarising the distribution of λ for the ensembles sampled; the trend to-
wards an increasing order is confirmed (the results for p = 0.1, on the left in
Figure 10.4, are provided as a comparison)2.

2According to [Chambers et al., 1983], although it does not represent a formal test,
if the notches of two boxplots do not overlap, the difference between the medians of the
relative distributions can be considered significant, or there is “strong evidence” (95%
confidence) that their medians differ. Since the formula for calculating the notch value
is the following median ± 1.57 × IQR/n0.5, we can conclude that when the number of
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Figure 10.3: Distribution of the number of fixed points over the number of
attractors for the configuration n = 500, k = 2, p = 0.5 as the number of
frozen nodes increases from 0 to 200 with a frozen step of 5 nodes at a time.
The continuous line illustrates the trend of the mean.

The results shown so far support the conjecture that a progressive freez-
ing pushes RBNs towards order. One may argue that a result not in agree-
ment with this expectation might indeed sound surprising, nevertheless it is
important to assess it experimentally in particular because this trend is not
trivial at all in finite-size RBNs. While in infinite-size RBNs just a tiny frac-
tion of frozen nodes leads to a complete stasis of the network3, in finite-size
RBNs we observe that the number of attractors and the Derrida parameter
are kept at significant values even in the presence of a non-negligible fraction

samples n is greater than or equal to four, it remains inside the IQR, and therefore inside
the rectangle. Having said that and observing that there is no overlap between the boxplot
rectangles we can conclude that there is statistical evidence in favour of rejecting the null
hypothesis: the differences between the medians are not very likely due to chance.

3A formal model of this behaviour is subject of ongoing work.
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Figure 10.4: Distribution of the Derrida parameters as the number of frozen
nodes increases, for both ordered and critical ensembles of 100 RBNs with
N = 500.

of frozen nodes. This result suggests that in finite-size RBNs, while a pro-
gressive freezing tends to increase order in network dynamics, it may still be
open to variability. This last characteristic is relevant especially with respect
to the possible paths across attractors that are feasible as the consequence
of different choices in the nodes to be frozen.

Diversity estimation In previous sections we have summarised with path
dependent differentiation the property of generating different cell types as
a result of different sequences of methylated genes. We can characterise
the tendency of this mechanism to give rise to this property by inspecting
the diversity caused by different combinations of methylated genes at any
attained differentiation stage. For this purpose, we generate for each state
of the methylation process (state represented by the already frozen nodes
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Figure 10.5: The trend of the number of equal reached asymptotic states
considered in pairs and after removing the part of the already frozen nodes
(x-values) and the set of nodes that constitute the triplets. (a) Triplets ran-
domly chosen among all the non-frozen nodes, (b) triplets randomly chosen
among the non-frozen nodes with value 1.

and the attractor reached) 102 couples of triplets of nodes,4 among the non-
already methylated nodes. This triplet is frozen while the network is in
an asymptotic state, therefore after this perturbation the BN dynamics is
subject to a transient and subsequently the network can either return to an
attractor equal to the current one—except for the frozen triplet—or reach
a different one. The freezing step may be taken at any state—i.e. phase—
of the current attractor; as the phase of the attractor may be a source of
variability and here we want to assess the contribution of the choice of frozen

4The choice of 3 nodes is somehow arbitrary, but motivated by the requirement of
involving a small number of nodes to be frozen, while keeping the possibility of significantly
perturbing the attractor. However, previous preliminary experiments on different network
size and number of frozen nodes confirm the qualitative behaviour we show in this work.
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Figure 10.6: The trend of the number of diversities caused by 200 triplets of
frozen nodes. The triplets are randomly chosen among the non-
already frozen nodes. Diversities are measured by considering if the
reached attractors are different (all tuples case) or by means of randomly
chosen patterns (of sizes equal to 10, 50, 100) which select the nodes on
which perform the comparison between the reached attractors.

nodes only, once the attractor is reached after freezing a triplet of nodes, its
minimum state according to the lexicographic order is chosen. As networks
are random, this choice does not introduce any bias and in this way we rule
out any possible contribution of attractor phase in the diversity of paths
originated by freezing steps. 5 The diversity is then measured depending
on the characteristics of the new asymptotic states on which the dynamics
settles after the triplet is frozen. As we aim at providing general results, not
bound to a specific definition of phenotype 6, which should be supported by
motivations on a concrete biological case, we analyse the arising diversities

5In other words, we pose us in the condition of minimal diversity.
6See the following parts of the text for a more detailed discussion.
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Figure 10.7: The trend of the number of diversities caused by 200 triplets
of frozen nodes. The triplets are randomly chosen among nodes that
have value 1, in the chosen phase of the starting attractor.. Diver-
sities are measured by considering if the reached attractors are different (all
tuples case) or by means of randomly chosen patterns (of sizes equal to 10,
50, 100) which select the nodes on which perform the comparison between
the reached attractors.

in various condition. Particularly, we count:

• the number of equal reached asymptotic states considered in pairs and
after removing the part of the already frozen nodes and the set of nodes
that constitute the triplets;

• the differences among all the reached attractors caused by the gener-
ated triplets, by considering subset of genes (patterns in the following)
of different sizes (10, 50, 100) randomly chosen;

• the differences among all the reached attractors caused by the gener-
ated triplets, by considering the states vectors in their entirety.
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By doing so we will have an overall picture of how this mechanism behaves
in ensembles of RBNs, without limiting ourselves to particular points of
view. As for the attractors distribution analysis, the range of frozen nodes
considered varies from 0 to 200 with a step of 5 nodes. We stress that in this
model the various degrees of differentiation are characterised by a distinct
number of frozen nodes: the higher the number of frozen nodes the more
differentiated the cell types. The triplets to be frozen are chosen at random
among all the non already frozen nodes; we also made experiments with
conditioning this choice to nodes that assume value 1 in the attractor state
chosen for the perturbation. In this way, we can assess the highest level of
variability that can be attained, as all the three nodes are actually perturbed
by freezing.

The distribution of the frequency of equal pairs of attractors is shown in
Figure 10.5; we observe that the median frequency of equal pairs increases
from about 7/100 to 20/100 with the number of frozen nodes, while it is
limited to low percentages when frozen nodes are chosen among the active
ones (value 1). This result shows that the probability of choosing two dif-
ferent triplets7 leading to the same asymptotic state after being frozen is
rather low; therefore, at least for RBNs with at most 2/5 of frozen nodes,
the different paths generated by freezing are a significant fraction of all the
possible ones, despite the tendency towards a more ordered regime. This
observation is confirmed also by the statistics involving the total number of
different patterns. With the term pattern we refer to a projection of the
network dynamics in subset of nodes. So, patterns in this context define the
observable phenotypes in a way strongly related to the concept of macrostate
introduced in [Borriello et al., 2018, Moris et al., 2016]. These latter results
are shown in Figures 10.6 and 10.7. It is worth observing that, even when
differences are estimated on the basis of 10 nodes, the fraction of overall
different patterns is still non-negligible up to 100 frozen nodes out of 500.

These results support the hypothesis that different freezing patterns in
RBNs are very likely to produce different trajectories along attractors, and
therefore variability in differentiation paths can be attained also by means
of this mechanism.

10.2.3 Conclusion

We have explored the possibility of incorporating epigenetic mechanisms—
methylation in particular—into BN models of GRNs. We focused on those
processes responsible for high chromatin compaction, that influences gene
transcription by controlling the accessibility of DNA to transcription factors
and RNA polymerases. Accordingly, in our model we progressively freeze—
i.e. clamp to 0—a subset of nodes and analyse the impact of this modification

7As triplets are chosen at random among at least 300 nodes, the fraction of equal ones
is negligible.
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on network dynamical features, namely on attractor number—in analogy
with the number of cell types—, on the Derrida parameter—to assess the
extent to which RBNs with frozen nodes tend to an ordered regime—and on
attractor diversity as attained by different combinations of frozen nodes.

We observed that the number of attractors in RBNs decreases with the
number of frozen nodes and the same does the Derrida parameter, suggest-
ing that, from an ensemble point of view, the larger the fraction of frozen
nodes the more ordered the RBNs. These results are in agreement with the
intuition that, by clamping to 0 a fraction of RBN nodes, not only the state
space is reduced with respect to the original network, but frozen nodes ab-
sorb perturbations and so they favour network stability. These properties
are to some extent the abstract counterpart of progressive reduced alterna-
tives and stability along differentiation stages. Moreover, results show a very
interesting property of RBNs: they maintain diversity in terms of possible
asymptotic states originating from different combinations of frozen nodes,
both during the process of progressive freezing itself and in the final reached
states. We assessed this diversity by means of three metrics, so as to at-
tain general results. We found that different choices in nodes to be frozen
are very likely to lead to different asymptotic states, implying that diverse
differentiation paths can be generated. As expected, this diversity tends to
decrease with the fraction of frozen nodes in the network.

10.2.4 Future work

As future work, we plan to add in our model mechanisms to reproducing
open chromatin structure, where genes are made more accessible and their
transcriptions eased. The combined effects of both closing and opening chro-
matin structure on attractors and other relevant features of BNs will be
consequently analysed. Moreover, since epigenetic is expected to have an
impact on cell type stability, we are devising a set of experiments to mea-
sure how attractor robustness changes along the path of differentiation, for
example by measuring the impact of external signals—possibly modulated—
during different stages of differentiation. To conclude, epigenetic is only one
of the factors that are responsible for cell type transitions and definitions.
Signalling cues, typically generated by other cells, are another crucial ac-
tor in the process of differentiation. In this perspective, we are planning to
study models involving networks of BNs, so as to explore the possibility of
modelling differentiation in a multi-cellular setting.
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10.3 The effects of a simplified model of chromatin
dynamics on attractors robustness in RBNs
with self-loops

The methylation mechanism that we have proposed statistically produces—
on random Boolean networks (RBNs) ensembles—a decrease of the attractor
number and a dynamics that tends to behaviours resembling ordered RBNs.
However, this mechanism does not preclude the possibility of generating
path dependent differentiation, i.e. cell types determined by the specific
sequence of methylated genes.

In [Braccini et al., 2019b], we analyse the effects of the number of methy-
lated (frozen) nodes on attractors robustness, defined as the probability of
returning to the same attractor after a temporary node perturbation. Fur-
thermore, since self-loops perform important functions in processes of real
biological GRNs [Raj et al., 2010] and given that lately some works have
begun to shed light on their role in Boolean model of GRN [Montagna
et al., 2018, Montagna et al., 2020]—especially related to differentiation
phenomenon [Braccini et al., 2019a]—we investigate the change of attractors
robustness as a function of the combined effects of the methylation process
and the presence of activating self-loops.

The motivation supporting this study is to extend classical RBN mod-
els so as to capture differentiation phenomena more accurately and provide
a model suitable for comparisons with real data. On the one hand, the
methylation mechanism based on clamping nodes at 0 has the main effect
of stabilising the network; on the other hand, self-loops may increase the
number of attractors in a RBN8 and may reduce the average probability of
returning to the same attractor after a perturbation. Therefore, the main
question is whether these two mechanisms tend to compensate each other
and a balanced combination of the individual effects is attained and, if so,
under which conditions this happens.

10.3.1 Experimental settings

For all the experiments, statistics are taken across 100 RBNs with n ∈
{20, 50}, k = 2 and p = 0.5. The BNs used in these experiments are sub-
ject to a synchronous and deterministic dynamics. In BN models, cell types
may be represented by attractors—or sets of attractors, depending on the
interpretation chosen. We measure the robustness of an attractor as the
probability of returning to it after a temporary flip of the value of a ran-
domly chosen node, also called robust adaptation. In our experiments we
sampled the possible transitions between attractors after a perturbation and

8This happens in particular when the self-regulation is modelled by a canalising func-
tion, such as the logical OR.
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Table 10.1: Summary of the experimental parameters.

Number of nodes (n) Number of self-loops (Nsl) Number of frozen nodes (Nf)
20 0 , 3 , 6 0 , 3 , 6 , 9
50 0 , 5 , 10 0 , 5 , 10 , 20

recorded the returning probability to each of the attractors sampled.
For each network we took the average returning probability computed

across all the attractors—omitting the cases with only one attractor. Exper-
iments were performed for a varying number of frozen nodes and number of
self-loops Nsl, depending on the size of the network (see Table 10.1). The
number of self-loops considered for n = 50 had to be limited due to the ex-
ponential increase of attractors number, which might make the computation
of the attractor returning probability computationally impractical. Accord-
ing to previous experimental settings [Montagna et al., 2020], nodes with
self-loops are chosen at random and ruled by OR, AND or random (RND)
logical functions (i.e. p = 0.5).

10.3.2 Results
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Figure 10.8: Mean attractor number in BNs with 20 (left) and 50 (right)
nodes for several combinations of number of self-loops and frozen nodes.
Self-loops added in OR.

The first subject of our analysis is the number of attractors. Indeed, at-
tractors play a fundamental role in BNmodels of differentiation, as attractors—
or sets of thereof—are associated to cell types. Moreover, the number of
attractors of a BNs is a reckon of the possible equilibrium states the sys-
tem has and so the possible ‘answers’ it provides to perturbations: as stated
by Kauffman [Kauffman, 2000], a real cell should be able to discriminate
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Figure 10.9: Mean fraction of fixed points in BNs with 20 (left) and 50
(right) nodes for several combinations of number of self-loops and frozen
nodes. Self-loops added in OR.

among a number of classes that provides the optimal balance between clas-
sification of the environmental stimuli and reliable and robust classification.
Figure 10.8 shows the trend of the average number of attractors in the case
of self-loops in OR. We observe that for a fixed number of frozen nodes, the
number of attractors increases with self-loops. This result confirms previous
results on RBNs with self-loops. The trend at fixed number of self-loops is
instead quite informative: frozen nodes tends to compensate the increase of
the attractors number. This result is striking in the case of 20 nodes RBNs,
whilst for n = 50 the effect is less marked even though the containment of
the number of attractors is anyway clear.

It has also been observed that the fraction of fixed points among the
attractors increases with the number of frozen nodes or the number of self-
loops, see sections 8.4 and 10.2. Figure 10.9 shows the fraction of fixed
points, averaged across all the attractors. As expected, the net effect is that
fixed points increase both with the number of frozen nodes and the number
of self-loops.

These results on the number of attractors are obtained in the case of
self-loops in OR, which have the property of keeping indefinitely the value
of a node at 1 after it has reached this value during the regular updates
of the network. On the other side, freezing a node means setting it to 0
forever. One may ask what is the effect of using different Boolean functions
in the nodes with self-loop, in particular in the case of AND functions which,
in a sense, impose the same bias as freezing towards zero. Results of this
latter case are summarised in Figures 10.10 and 10.11, where we can observe
that the combined effect is to drastically reduce the number of attractors.
A similar trend, although somehow diluted, is obtained when self-loops are



10.3. The effects of a chromatin model on attractors robustness 135

●

●

● ●

2
4

6
8

10
12

no
. o

f a
ttr

ac
to

rs

●

●

●

●

●

●

●

●

20 nodes − AND

sl_0
sl_3
sl_6

0 3 6 9

no. of frozen

●

●

●

●

5
10

15
20

25

no
. o

f a
ttr

ac
to

rs

●

●

●

●

● ●

●

●

50 nodes − AND

sl_0
sl_5
sl_10

0 5 10 20

no. of frozen

Figure 10.10: Mean attractor number in BNs with 20 (left) and 50 (right)
nodes for several combinations of number of self-loops and frozen nodes.
Self-loops added in AND.
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Figure 10.11: Mean fraction of fixed points in BNs with 20 (left) and 50
(right) nodes for several combinations of number of self-loops and frozen
nodes. Self-loops added in AND.

associated to random functions (see Figures 10.12 and 10.13).
Results on average attractor robustness are shown in Figure 10.14, in the

case of self-loops in OR, where the mean robustness is plotted against Nf

for all the values of Nsl. If we focus on the trend of a single curve, we ob-
serve that the average robustness monotonically increases with the number
of frozen nodes. This result is probably not surprising but it is the first time
it is experimentally assessed. When we consider the trend as a function of
the number of nodes with self-loops we observe a non-monotonic behaviour:
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Figure 10.12: Mean attractor number in BNs with 20 (left) and 50 (right)
nodes for several combinations of number of self-loops and frozen nodes.
Self-loops added with a random function.
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Figure 10.13: Mean fraction of fixed points in BNs with 20 (left) and 50
(right) nodes for several combinations of number of self-loops and frozen
nodes. Self-loops added with a random function.

a moderate number of self-loops is further reinforcing the effect of frozen
nodes, but a greater one has detrimental effects on robustness. This result is
in agreement with previous ones [Montagna et al., 2018], where it was shown
that a fraction of nodes with self-loops higher than about 20% makes average
robustness drop. These results support the hypothesis that a mild fraction of
nodes with self-loops is beneficial for RBNs attractor robustness, especially
if combined with freezing mechanisms that model methylation. Current bi-
ological cells are the result of evolution, therefore Boolean models of them
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are not random; nevertheless, if random BNs with our variants are proven
to exhibit features closer to the ones of real cells than simple RBNs, then
this enriched RBN model is likely to be a more accurate model of real cells
and capture relevant phenomena with higher accuracy. Moreover, in an evo-
lutionary perspective, RBNs with self-loops and methylation mechanisms
provide a more suitable starting condition for the evolution of models to-
wards given target characteristics. The case of self-loops with AND function
provides a somewhat different picture, because the tension between frozen
nodes and self-loops is no longer present and the average robustness tends
to increase (see Figure 10.15). Analogous considerations hold for self-loops
with random functions, even though less marked (see Figure 10.16).
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Figure 10.14: Mean attractor robustness in BNs with 20 (left) and 50 (right)
nodes for several combinations of number of self-loops and frozen nodes.
Self-loops added in OR.



138 Chapter 10. Epigenetics-driven differentiation in BN models

●

●

●

●

0.
62

0.
64

0.
66

0.
68

0.
70

0.
72

0.
74

0.
76

M
ea

n 
of

 r
et

ur
ni

ng
 p

ro
ba

bi
lit

y

●

●

●

●

●

●

●

●

20 nodes − AND

sl_0
sl_3
sl_6

0 3 6 9

no. of frozen

●

●

●

●

0.
65

0.
70

0.
75

0.
80

0.
85

M
ea

n 
of

 r
et

ur
ni

ng
 p

ro
ba

bi
lit

y

●

●

●

●

●

●

●

●

50 nodes − AND

sl_0
sl_5
sl_10

0 5 10 20

no. of frozen

Figure 10.15: Mean attractor robustness in BNs with 20 (left) and 50 (right)
nodes for several combinations of number of self-loops and frozen nodes.
Self-loops added in AND.

●

●

●

●

0.
60

0.
65

0.
70

M
ea

n 
of

 r
et

ur
ni

ng
 p

ro
ba

bi
lit

y

●

●

●

●

●

●

●

●

20 nodes − random

sl_0
sl_3
sl_6

0 3 6 9

no. of frozen

●
●

●

●

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

M
ea

n 
of

 r
et

ur
ni

ng
 p

ro
ba

bi
lit

y

●

●

●

●

●

●

●

●

50 nodes − random

sl_0
sl_5
sl_10

0 5 10 20

no. of frozen

Figure 10.16: Mean attractor robustness in BNs with 20 (left) and 50 (right)
nodes for several combinations of number of self-loops and frozen nodes.
Self-loops added with a random function.
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Chapter 11

Dynamical Systems Robotics

As we have seen in the previous chapters in relation to biological cells—
especially regarding the description of their behaviours—dynamical systems
could represent a general unifying framework also for robotics. This chap-
ter explains the reasons and motivations for which this approach could be
promising for robot design.

11.1 Dynamical systems in robot control design

Pfeifer and Scheier in the book “Understanding intelligence” [Pfeifer and
Scheier, 1999] present the dynamical systems approach to designing au-
tonomous agents in the “Other approaches” chapter, after the classical meth-
ods like the subsumption architecture, neural networks and others.

Dynamical systems (see Chapter 4) is a general mathematical framework,
not specific for a particular field. For this reason, there is more than one
possibility of applying it to a particular problem domain like that of robotics.
Indeed, the metaphors introduced by dynamical systems are suitable for
analysing and describing a robot’s behaviour, but—more interestingly—
also for designing artificial agents. The generation of behaviour can be, for
example, achieved by defining differential or difference equations that govern
the robot’s variables; they can also specify the relationships among sensors
and internal variables and eventually these to actuators variables. See also
Section 12.1.1 for a discussion on the role of attractors (steady states of the
system) in robotics.

But, as pointed out by Pfeifer and Scheier, it is much easier to use dynam-
ical systems tools to describe the robot’s observed behaviours rather than
write down the equations and integrating them for obtaining the solutions
which then guide robotic agents. In this regard, in the following chapters,
we will present our contribution which is rooted and based on dynamic sys-
tems robotics 1 and the first successful explorations carried out on the use

1We will refer to this expression to intend the applications of dynamical systems tools
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of Boolean networks (i.e. discrete dynamical systems) as robot controllers.

for designing a robot’s behaviour.



Chapter 12

On the design of robots with
behavioural differentiation
capabilities

To overcome the difficulties of robot controller design but at the same time
exploit and put into practice the powerful tools and metaphors made avail-
able by the dynamic systems framework, we introduced the “attractor land-
scape” metaphor as a first-class abstraction for robot controller design. In
our vision, the attractor landscape concept, especially its topology, aims to
be the ultimate goal of any procedure for robot controller design. On the
top of it, as we shall see, we could map robot behaviours or let the attrac-
tors that compose it describe its behavior through the values of the variables
that determine the state vector of the system. Just for example purposes, in
the context of Boolean network-based robotic, the attractor landscape can
be subject to optimisation or evolution employing any automatic method in
order to obtain the desired landscape, appropriate for the given task to be
solved.

The additional conceptual step we want to take in the field of robotics
is to bring the richness of differentiation dynamics into robotic controllers.
The tools and methods developed in the understanding of cell differentia-
tion would allow robots to express various specialised behaviours, the latter
triggered by signals or internal dynamics, and the ability to switch between
them while maintaining a single controller, just as the cells are capable of
it with a unique set of genetic instructions (DNA). The methods developed
in the study of differentiation can allow us to model the attractor landscape
according to need and at the same time to analyse its resulting complex
dynamics to provide us with a composition of behaviours (attractors) suit-
able for accomplishing complex tasks, hopefully, comparable to those of real
biological cells.

In the next sections, we go through the details of our conceptual propos-
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als, here only sketched. We also provide some proof of concepts for testing
their potentiality and applicability.

12.1 Attractor landscape as metaphor for designing
robot controller

From a robotics perspective, GRNs are extremely interesting because they
are capable of producing complex behaviours. As we have stressed in many
chapters, cell differentiation can be modeled using GRNs and the dynamics of
this process can be studied by means of dynamical systems methods. In this
scenario, the state of a cell is represented by an attractor in the state space
of a dynamical system and the transitions between cell states correspond to
transitions between attractors. This view suggests a visionary approach: ap-
ply the metaphor of landscape attractor to design specific cell dynamics that
can match the attractor landscape required for attaining a target behavior in
a robotic system. The constraints prescribed by the robotic application are
just the correspondence between behavioural attractors in the robot and cell
attractors in the cell, along with specific transitions between attractors. This
perspective may lead to applications in bio-robotics and it may also help syn-
thetic biology systems design, which may benefit from methods developed
for complex dynamical systems. We believe that this level of abstraction
can provide a common vocabulary and a shared set of categories between
researchers in robotics and synthetic biology.

With this contribution we proposed some guidelines for making this ap-
proach viable, illustrating these concepts with examples and case studies in
bio-robotics, case studies will be described in Section 14.1.

The complex behavior exhibited by cell dynamics can be interpreted
from a robotics viewpoint, suggesting the possibility of achieving robust and
adaptive behaviours in robots—and group of robots—by exploiting the dy-
namical properties of GRN models. These models can be effectively used as
robot programs1. The key motivation of this idea lies in the possibility of ap-
plying dynamical system theory to robotics [Pfeifer and Scheier, 1999, Pfeifer
and Bongard, 2006, Beer, 1995], exploiting the tight link between artificial
intelligence and dynamical systems, that consists primarily in the fact that
information processing can be seen as the evolution in time of a dynamical
system [Serra and Zanarini, 1990, Bar–Yam, 1997]. The archetypal case of
this approach consists in associating the initial conditions of the dynamical
system to the input of the problem and let evolve the system in time until
it reaches a steady state, which is then interpreted as the output, i.e. the
answer to the problem. An example in theoretical computer science is the

1According to [Russell and Norvig, 2009], we call robot program the computational
model of the system that maps the percepts of the robot to the actions it takes, possibly
according to an utility function and a goal.
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solution of the satisfiability problem through Boolean networks [Milano and
Roli, 2000], while a typical example in robotics is represented by the differ-
ent gait patterns in a quadruped robot, each corresponding to one specific
attractor in the sensory-motor system of the robot (see [Pfeifer and Bongard,
2006], chap. 4).

Preliminary results in this direction have been achieved in controlling
robots by means of Boolean networks. The effectiveness of this approach was
demonstrated through experiments on both simulated and real robots [Roli
et al., 2011a, Garattoni et al., 2013, Roli et al., 2013, Roli et al., 2015]. These
experiments showed that BNs can be successfully used to control robots and
therefore that a non-trivial behavior can be attained by a system sharing
some similarities with biological cells. The imagination would then run to
the synthesis of specific cells controlling micro-robots, produced by synthetic
biology (SB) approaches: given the GRN designed in silico by means of an
automatic procedure,2 a synthetic cell is produced by composing elementary
cellular bricks. The most natural way to achieve this goal would be either
to reproduce a given GRN by means of biological material, i.e. composing a
circuit composed of wet logical gates, or to synthesise a cell characterised by
a given low-level dynamics, corresponding to the target GRN. Unfortunately,
this low-level approach might introduce too many constraints on the design
process and turn out to be extremely complicated, if not impossible.3 We
believe that a different strategy can be successfully applied, which lies on
raising the abstraction level of the analogy from the details of the dynamics
to that of attractor landscape. Indeed, an in-depth analysis of the GRN-
controlled robot dynamics showed that robot’s behavior can be decomposed
into elementary behaviours, represented by attractors in the network state
space, connected by trajectories that can be controlled by specific inputs.

This result suggests the visionary approach we propose, for the first time,
in this contribution: apply the metaphor of landscape attractor to design
specific cell dynamics that can match the attractor landscape required for
attaining a target behavior for a robot. Indeed, the constraint prescribed
by the robotic application is just the correspondence between behavioural
attractors in the robot and cell attractors in the cell, along with some spe-
cific transitions between attractors. Let us suppose we have to design a
micro-robot controlled by a (synthetic) cell—or a populations of cells—whose
dynamics in terms of attractors and transitions among them is sufficiently
known. A correspondence between cell attractors and robot elementary be-
haviours can be defined and the chemical signals that force the transitions
between cell states can be used as inputs to the robot for changing its ele-

2Preliminary results on automatic design of GRNs for cell differentiation have been
recently achieved [Braccini et al., 2017]. Results on automatic design of Boolean networks
have also been presented in [Benedettini et al., 2013].

3Anyway, should this be possible in the future, the approach proposed in this contri-
bution would still be useful.
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mentary behavior.

12.1.1 Attractors in robotics behavior

The concept of attractor in robotics has been introduced in the context
of a dynamical systems approach to design robotic systems in the early
’90s (see [Pfeifer and Scheier, 1999], Chap. 9). Here the rationale is the
one already proposed in cybernetics and cognitive complex systems, which
states that the steady states of the system (i.e. its attractors) represent its
typical behaviours. A prototypical example is that of different kinds of gait
shown by a robot: despite the fact that the controller is always the same,
different environmental conditions influence the final attractor of the system,
which converge to a steady state that fits the environment (e.g. walking or
trotting).4

Along this line are the experiments in Boolean network robotics [Roli
et al., 2011a, Garattoni et al., 2013, Roli et al., 2013, Roli et al., 2015].

In BN-robotics, the robot is controlled by means of a Boolean network:
the value of some nodes of the BN are imposed from the robot sensor read-
ings and the actuators of the robot take the value of some BN nodes. The
BN is trained by means of a learning algorithm that manipulates the Boolean
functions (and possibly also node connections). The algorithm employs as
learning feedback a measure of the performance of the BN-controlled robot
(in the following, BN-robot) on the task to perform, such as in evolution-
ary robotics [Nolfi and Floreano, 2000]. For example, it was shown that
a BN-robot can learn a composite mission, in which the first task is to
perform phototaxis; then, after a sharp sound is perceived, the robot per-
forms anti-phototaxis [Roli et al., 2011a, Garattoni et al., 2013, Roli et al.,
2013, Roli et al., 2015]. A dynamical systems’ analysis shows that the be-
havior of the robot is mainly composed of three attractors: in the first the
robot steadily rotate and in the second the robot goes straight. When the
frontal light sensor switches on, the BN trajectory exits from a ‘rotate’ at-
tractor and jumps into a ‘go straight’ attractor. Subsequently, when the
sound is perceived, the trajectory exits from this attractor and moves to
a third attractor, the one corresponding to the action ‘escape from light’.
This dynamics emerges from the learning (evolutionary) process that shaped
the BN. The results achieved in BN-robotics are still preliminary, yet quite
promising as they show that a GRN model can be effectively used to con-
trol a robot that has to attain a non-trivial goal. Further results on GRN
models used in robotics are summarised in a survey by one of the authors of
this work [Braccini, 2017]. Related to BN-robotics are works in evolution-
ary robotics, where robots are controlled by artificial neural networks, which
are designed by means of evolutionary computation techniques [Nolfi and

4See [Pfeifer and Bongard, 2006], page 98.
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Floreano, 2000]. An important research line in evolutionary robotics that
is quite relevant for BN-robotics and the perspective presented in this work
is the one that emphasises the role of embodiment in evolved robot [Beer,
1995, Beer and Williams, 2015]. Indeed, the behavior of a BN-robot emerges
from the interaction among its sensors and actuators (and the body of the
robot itself), the BN dynamics and the environment. In a sense, the experi-
ments in BN-robotics are an instance of the evolution of minimally cognitive
behaviours [Beer, 1996, Ziemke, 2005]. The problem of programming and
re-programming evolved GRNs has been recently addressed from the per-
spective of algorithmic complexity and causality [Zenil et al., 2018]. This
study proposes a causal interventional calculus that makes it possible to
steer complex evolved systems. Such an approach may be extremely useful
in the context of GRNs controlled robots. For the sake of completeness, we
also mention the fact that the automatic design of control software for robots
is currently a prominent topic in robotics research, especially when swarms
of robots are involved [Francesca and Birattari, 2016].

Following these recent advancements and mainly the achievements in BN-
robotics, in the Section 14.1 we will illustrate the use of attractor landscape
to bridge robotics and SB.





Chapter 13

Biological Models in Robotics

In order to evolve robots, or sets of robots, capable of increasingly com-
plex tasks, we need to apply to the robotics field more and more powerful
models, techniques and methodologies. Natural systems exhibit properties
like robustness, adaptiveness, flexibility, scalability and reliability; and they
represent a source of interest for the construction of artificial systems. In
particular, natural systems like insect colonies and flocking birds exhibit
intelligent emergent collective behaviours. We are interested in the dynam-
ical mechanisms at the basis of these systems that lead to the creation of
such global level structures, like self-organisation behaviours, from interac-
tions among lower-level components. Complex system science deals with
the study of how these low-level parts of a system give rise to the collective
behaviours and how the system interact with its environment.

As we have seen in the Chapter 4.3, real living cells show properties
typical of critical systems: robustness, adaptiveness and high computational
capabilities. Since the optimal balance between robustness and adaptiveness
and high computational capabilities are mandatory requirements for attain-
ing complex behaviours also in artificial context, we believe that concepts
and mechanisms underlying of the living cells are exploitable, hopefully, to
design agent’s behaviours as complex as these. As we have already seen, ge-
netic regulatory networks model the interaction and dynamics among genes
and they are considered complex dynamical systems able to produce a wide
diversity of living cells and organisms. In particular, GRNs describe the
complex interactions that ultimately affect the determination of the cellular
types. Because of their ability to give rise to different “emerging” cell types
depending on their internal dynamics and the external stimuli received, these
GRN can be engineered and used to control or to evolve robots.

Here, the most relevant examples of adoption of GRN models in robotic
will be presented. In certain case the dynamics of the GRN-based models are
used to directly control robots, in others the GRN mechanisms are adopted,
similarly to the biological morphogenesis, to develop the robot’s neural net-
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work control, the robot’s morphology or the pattern formation for swarm of
robots.

Below, the examples are grouped so as to reflect how the models are used
in robotics: automatically evolve a robot controller, automatically design a
robot morphology, generate pattern for swarm robotics and automatically
co-evolve morphology and controller for robot.

13.1 GRN-based Models for Designing Robot Con-
trol

First Example

Eggenberger in the paper “Cell Interactions as a Control Tool of Develop-
mental Processes” [Eggenberger, 1996] suggests that biological concepts as
developmental processes are useful and applicable to the field of evolutionary
robotics. With the proposed model the length of the genome can be reduced,
because no explicit data about the connectivity pattern of the neural net are
stored in the genome. The connectivity is not directly encoded in the genome
itself but it’s mainly determined by the developmental processes. The arti-
ficial evolutionary system (AES) includes the following biological concepts
and mechanisms:

• Regulatory Units and Transcription Factors, Cell Adhesion Molecules
(CAM) and Cell Receptors;

• Cell Differentiation;

• Cell Division;

• Cell Adhesion.

The artificial genome is implemented as a string of integers and it is com-
posed by regulatory units and structural genes. Regulatory Units are used to
activate or inhibit the activity of the structural genes, the latter (if active)
modulate the developmental processes producing a substance among these
four: transcription factors, cell adhesion molecules, receptors or artificial
functions (class that is used to define whether a cell should divide or not).

Regulation of Gene Activity If a cell contains a transcription factor, its
code is compared with the code of all regulatory unit in this cell. Depending
on a defined affinity function the regulatory unit is the activated or inhibited.
If a regulatory unit is activated also its structural genes will be activated.
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Cell Differentiation Two cells are different if they contain different subset
of active genes in the genome. The implemented mechanisms to obtain
different cells are: cell lineage and cell induction. The cell lineage is an
autonomous mechanism in which cell differentiation depends on intracellular
factors, which are unevenly distributed in different cells. In the cell induction
the cells become different because they get different signaling from other
cells. To simulate this mechanism the author implemented three different
pathway to exchange information between cells: first, there are substances
which don’t leave the cell and which regulate the activity of genes; second,
there are substances which can penetrate the cell wall and activate all cells
which are near by; third, there are specific receptors on the cell surface which
can be stimulated by substances. If a transcription factor has a high enough
affinity to the receptor, a gene or group of genes is turned on or off. Only
those cells which have a specific receptor on the cell surface will respond to
a certain substance. After the process of cell differentiation is finished, the
different active genes will determine which substances are produced in a cell.

Cell Division The proposed model is able to simulate cell growth. If the
structural genes for cell division in a cell is active, the cell divides itself. The
gene activity is dependent, in addition to the affinity function, also on the
concentration of the transcription factor. At a certain moment, due to its
increased concentration, the transcription factor will turn off the gene for
cell division and the growth will stop.

This model has been used to evolve a neural control structure for an
autonomous agent. The artificial neurons are the standard ones, with a
sigmoidal activation function. As cells can become different, they will express
also different substances. To connect two cells or neurons, there are two
different types of adhesion molecules and these are stored in lists in the cell.
The members of the first list of one neuron are compared with the list of
another neuron: if two adhesion molecules of the two different lists have
a high affinity to each other a link from the first cell to the second cell is
established (if two or more links to the same cell are possible, the substance
with the greatest affinity is chosen). The developed neural network has to
be linked to the sensors and motors of a real robot, and in order to leave
this task to the algorithm implemented, Eggenberger has defined sensory
and motors cells with a list of adhesion molecules, in this way other cells can
connect to them.

In this work two experiments are presented and the neural controller is
evolved by means of a genetic algorithm that is at the basis of the AES. In
the first experiment the robot has to accomplish an object avoidance task
(the corresponding fitness is increased if the robot sees an object but avoids
a collision) and the second task is a phototaxis plus object avoidance (in this
case the fitness is the same of the first task, in addition is increased if the
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robot moves away from its initial position and if the robot is near the light
source). For both tasks the number of initial cells are the same (thus the
length of the genome is fixed) and by means of the mechanisms introduced in
the AES the neurons can grow and multiply. Therefore, the neural network
is evolved and the number of cells is multiplied even though the genome
length was fixed.

The purpose of this work is to show that the introduced AES, with the
gene regulatory mechanisms, can control the main developmental processes
and can evolve functioning neural networks for autonomous agents with num-
ber of neurons and patterns of connections not explicitly stored in the arti-
ficial genome.

Second Example

Another example of design of neural network controller, in addition to that
previously presented, can be found in the following papers: “Morphogenesis
of neural networks” [Michel and Biondi, 1995b] and “From the Chromosome
to the Neural Network” [Michel and Biondi, 1995a], both of the same authors.
In these papers it is proposed a model, inspired from biology, of morphogen-
esis process with the aim to synthesise an artificial neural network to lead
an autonomous robot. Both structure and weights of the neural network are
defined by the morphogenesis process. The model was inspired to the bio-
logical principle of the proteins synthesis regulation 1. The morphogenesis
process starts on a single cell enclosing a chromosome and a message list;
this list corresponds to the set of proteins available in the biological cell.
Cells can divide and establish connections among them by means of a sort of
production system that uses and produces messages (representing proteins),
through rules. Each rule can be divided in three parts, two conditions and
one action part: a set of messages whose absence in the cell message list
is necessary for the rule to be fired (corresponding to the biological repres-
sors), a set of messages whose presence is necessary for the rule to be fired
(corresponding to the biological activators) and a set of produced messages
which are added to the cell message list when the rule is fired (correspond-
ing to the biological synthesised proteins). This morphogenesis process is
general: it is able to create any kind of neural network. It allows recurrent
connections, different kinds of neurons with different transfer functions and
different kinds of links with different learning rules. Thus the space of neural
networks explored is theoretically unlimited [Michel and Biondi, 1995a].

To evolve chromosomes classical genetic algorithms have been used with
a single point crossover, random mutations and a genetic operator which

1Protein synthesis is the final stage of gene expression. Once synthesised, most proteins
can be regulated in response to extracellular signals and in addition, the levels of proteins
within cells can be controlled by differential rates of protein degradation. http://www.
ncbi.nlm.nih.gov/books/NBK9914/

http://www.ncbi.nlm.nih.gov/books/NBK9914/
http://www.ncbi.nlm.nih.gov/books/NBK9914/
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can add or remove a random element in one of three parts of a rule, or add
or remove whole rule at the end of the chromosome. Natural selection uses
a binary fitness function (life or death); the evolution is progressive and in
order to obtain more complex and powerful systems it is necessary evolve
the environment (once a large enough population is able to survive, the
environment get a bit more hostile, so that only the elite of this population
can survive, and so on, until the individuals develop elaborate behaviours).
A simple goal go towards food was chosen; a kind of robot metabolism was
introduced (a variable represents the internal energy of the robot and it is
increased each time the robot eats food and decreased when it moves or
it is motionless; if it reaches zero the robot “dies” and is eliminated from
the population). After around 300 generations of the genetic algorithm, the
population of the neural networks evolved were able to produce the desired
behaviour, the robots were attracted by food.

This proposed method, inspired mainly to the biological morphogene-
sis, has demonstrated to be able to produce neural networks (structure and
weights) that generate remarkable, even if simple, task (as the attraction by
food).

Others Relevant Examples in the Literature

Another interesting example of evolution of a neural network controller using
biological principles can be found in the article “Evolving the morphology of
a neural network for controlling a foveating retina - and its test on a real
robot” [Hotz et al., 2003]. The proposed model combines artificial evolution-
ary techniques with bio-inspired developmental processes in order to evolve
a neural network that acts as an artificial foveating retina (that is, move the
“eye” in such a way that an incoming peripheral sensory stimulus falls in the
center of the eye, the eye has to learn to foveate on the stimulus). In particu-
lar, this system exploits mechanisms like gene regulation and developmental
mechanisms like cell division, axonal outgrowth, synaptogenesis and learning
for controlling the structure of the neural network and the synaptic weights.
After the simulation, the evolved controller was tested in a real robot arm
equipped with a CCD camera and the arm has proved to be able to foveate
considerably well.

In the paper “Harnessing Morphogenesis” [Jakobi, 2003] is presented an-
other fascinating example of controller design making use of a biologically
inspired developmental model. This system is able to develop a multicellular
organism, starting from a single cell, exploiting similarities with biological
morphogenesis. The behaviour of the cell, during development, is controlled
by a GRN that can be thought as a dynamical system. The product of this
developmental process is interpreted as a recurrent neural network robot con-
troller; this model was able to evolve controllers for accomplish a corridor
following and an object avoidance task.
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The paper “Evolving Embodied Genetic Regulatory Network-Driven Con-
trol Systems” [Quick et al., 2003] presents experiments in which a GRN-based
controller is embodied in artificial organisms. In this model, called Biosys,
the interplay between the dynamics of the embodied GRN controller (the
suitable genome is evolved through a genetic algorithm) and the environ-
ment gives rise to coherent observable emergent behaviours. It’s presented
a successful experiment of a simulated robot, guided by its GRN controller,
able to fulfil phototaxis, but the key point of this work it’s to remark the
importance of the role of the environment in the generation of observed be-
haviour; the environment “selects” the cell dynamics able to produce the
desired behaviour.

13.1.1 BN-based robot controller

In the paper “On the Design of Boolean Networks Robots” [Roli et al., 2011b]
it was presented the use of Boolean networks for controlling robot’s be-
haviour. The approach proposed consists in using one or more BNs as robot
program so that the robot dynamics can be described in terms of trajec-
tories in a state space. The authors propose a design methodology based
on metaheuristics in which the design of a BN is modelled as a constrained
combinatorial optimisation problem: the algorithm manipulates the decision
variables which encode structure and Boolean functions of a BN. A complete
assignment to those variables defines an instance of a BN. This technique
uses an evaluator that produces an objective function value that represents
the performance of the current BN and the feedback to the metaheuristics
algorithm, that, in turn, proceeds with the search. Another possible way,
suggested in this article and that can be combined with the previous pre-
sented, to design the BN for a robot program is to exploit its dynamics in
order to satisfy given requirements. For example, the attractors with largest
basins of attraction may correspond to the high-level robot’s behaviours and
the transitions between attractors to the transitions between behaviours.

The case study presented consists of a robot that must be able to perform
two different behaviours: going towards the light (phototaxis) and subse-
quently moving away from it (antiphototaxis) after perceiving a sharp sound
(like an hand clapping). The environment, in which the robot is simulated
and later tested in reality, consists of a square (1m×1m) with a light source
positioned in one corner. The robot, in the beginning of the experiment, is
located in random position close to the opposite corner of the arena with
respect to the light and the performance measure used to evaluate the robot
behaviour is an error function that has to be minimised (smaller is the error,
better is the robot performance). The BN implementing the robot program
is subject to a synchronous and deterministic update and the number of net-
work nodes is has been set to 20 (sensors and actuators have been mapped
onto some node of the BN). The Boolean network was designed with a lo-
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cal search techniques, that is a simple stochastic descent in which a move
can change one value in a node function’s truth table; a random entry in
the truth table of a randomly chosen node is chosen and accepted if the
corresponding BN has an evaluation not worse than the current one. The
initial connections among nodes are randomly generated with K = 3 (no
self-connections) and are kept fixed during the search; the initial Boolean
functions are generated by setting the 0/1 values in the truth tables uni-
formly at random. The BN-robot is trained in two sequential phases: in the
first, the learning feedback is an evaluation of the robot’s performance in
achieving only phototaxis and in the second the performance measure takes
into account both the phototaxis and antiphototaxis. In this way, it become
possible to study the properties of the evolution of the BN-robot when its
behaviour must be adapted to a new operational requirement.

The results obtained from this experiment were presented in the pa-
per [Roli et al., 2012]. Analysing the dynamics of BN-robots trained, using
concepts of dynamical systems theory and complexity science, they have
found that the successful performing robots, which show the capability of
robustly attaining the learned behaviours while adapting to new tasks to
perform, are characterised by both number of fixed points and complexity
higher than those of unsuccessful ones. The number of fixed points is an
indicator of the generalisation capabilities of the system as they represent
micro-behaviour which are combined to achieve a global behaviour and the
measure of the complexity used is the LMC complexity 2. These results are
in accordance with the conjecture that artificial systems able to balance ro-
bustness and evolvability work at the border between order and chaos as the
living systems, an example are cells.

In the papers “A Developmental Model for the Evolution of Complete
Autonomous Agents” [Dellaert and Beer, 1996] and “Co-evolving Body and
Brain in Autonomous Agents using a Developmental Model” [Dellaert and
Beer, 1994] it is presented a model for neural development in which a random
Boolean Network is used as an abstraction of the genetic regulatory network
inside a cell. The introduced developmental process has showed to be able to
successfully evolve agents than can execute simple tasks (i.e. line following).

13.2 GRN-based Models for Evolving Robot Mor-
phology

The paper “Evolving Morphologies of Simulated 3d Organisms Based on
Differential Gene Expression” [Eggenberger, 1997] reports a biologically in-
spired model used to evolve 3d shapes of simulated, multicellular organisms.
The model has the same concepts and biological mechanisms introduced in

2LMC complexity is defined as C = HD, where H is the entropy and D is the disequi-
librium of the BN states in the trajectories.
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the previously presented article of the same author [Eggenberger, 1996], in
addition introduces the positional information and pattern formation in de-
velopment. With this last mechanism the cells acquire positional identities
as in a coordinate system and then interpret this information according to
their genetic constitution and developmental history. An example of such
mechanism is a concentration of gradient of a morphogen which every cell
is able to read. A morphogen is a substance governing the pattern of tissue
development in the process of morphogenesis, and the positions of the vari-
ous specialised cell types within a tissue 3. In the implementation proposed
by Eggenberger the morphogen is just a kind of transcription factor (TF)
which can diffuse to other cells and can change the state of some genes in
cells able to read this message. This mechanism, already implemented by
the regulatory mechanism in the AES, is not just a simple signalling, because
the reading mechanism (the cis-regulators, which are binding sites for tran-
scription factors) is controlled by the AES. Therefore the same morphogen
can have very different effects on different cell. Some examples of such effects
are changes in cell type, cell division rate or motility. Using the proposed

Figure 13.1: Examples of evolved forms by means of the AES; the fitness
function evaluated only the number of the cells and the bilaterally of the
found organisms. Image taken from [Eggenberger, 1997].

AES, Eggenberger was able to evolve three dimensional shapes that could be
used as projects for three-dimensional robot. Some examples, taken by the
original paper [Eggenberger, 1997], of these evolved forms are represented in
Figure 13.1.

3https://en.wikipedia.org/wiki/Morphogen Date: 04/01/2016

https://en.wikipedia.org/wiki/Morphogen
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13.3 GRN-based Models for Pattern Generation in
Swarm Robotics

Inspired by the biological morphogenesis and the evolution and structure
of networks motifs, in the paper “Evolving Network Motifs based Mor-
phogenetic Approach to Self-Organizing Robotic Swarms” [Meng and Guo,
2012] it’s presented a GRN-based control model. This model has the aim to
autonomously generate dynamic pattern for swarm robot in complex environ-
ment. Network motifs are pattern of interconnections occurring in complex
networks at numbers that are significantly higher than those in randomised
networks [Milo et al., 2002]; therefore they represent building blocks for most
complex networks. The authors propose a developmental method where the
artificial GRN-based controller will be automatically evolved by an evolu-
tionary algorithm using some predefined network motifs as basic building
blocks.

The aim of this model is to generate suitable shapes so that swarm of
robots (with limited sensing and communication capabilities) can traverse
an unknown environment with various constraints. Inspired by the biolog-
ical morphogenesis, in which the morphogen gradients are either obtained
from the mother cells or generated by a few cells known as organizers, an
organising robot is selected in order to generate the final target shape (con-
sidering the current environmental constraints) for the swarm robot. The
regulation of gene expression is used to model the base concepts of the gen-
eral GRN-framework. This framework will be embedded into each robot of
the system, but only the organising robots will activate the framework and
generate the suitable shapes virtually in its own mind. Then, the generated
shape will be sent to all the other robots through local communication so
that they can merge to this shape automatically. In the framework, the
transcription factors (TFs) are used to denote the input of the GRN frame-
work: TF1 measures the minimal distance from the current robot to the
nearest obstacle and TF2 is used to maintain the number of robots. Two
genes, G1 and G2, can be thought as the processors of the robots: they are
responsible to process the inputs of the GRN-framework and send signals
to trigger the outputs. Three proteins represent the output (actions) of the
framework: P1 grow into an area; P2 skip an area and try to grow into an-
other area; and P3 stop growing. Five basic network motifs, that represent
the regulations (building blocks) to constructing the GRN-framework, are
proposed: positive, negative, OR, AND and XOR 4. Then, using the prede-
fined network motifs as building blocks, an evolutionary algorithm is applied
to evolve structure and parameters of the GRN-framework. In this manner
each link in the GRN framework can be modeled by one of the basic net-

4The precise mathematical formulation of these types of regulations can be found in
the paper [Meng and Guo, 2012].



158 Chapter 13. Biological Models in Robotics

work motifs. By means of the evolutionary algorithm we need to optimize
the parameters of the general GRN-framework in order to instantiate a GRN
framework able to generate suitable shapes for swarm robots to adapt to un-
known environments (therefore the fitness function depends on the distance
from nearest obstacle and from the number of the robots within the shape).
The evolved GRN framework, presented in this work, is able to generate the
final target shape, starting from a single robot, for different environments.
Moreover, a case study is conducted in which the robots have to traverse
a complex unknown environment with different constraints along the path.
The swarm of robots was able to adapt its shapes, using the GRN-based
framework developed, during the traverse of a complex environment.

In the paper “Evolving Hierarchical Gene Regulatory Networks for Mor-
phogenetic Pattern Formation of Swarm Robots” [Oh and Jin, 2014] it is
presented an approach to pattern formation for swarm robots, inspired by
biological morphogenesis, that uses a hierarchical gene regulatory network
(EH-GRN) evolved using network motifs.

An interesting European project relating to swarm of GRN-controlled
agents whose goal is collectively organise themselves into complex spatial
arrangements is Swarm-Organ (visit http://www.swarm-organ.eu/).

13.4 GRN-based Models for Co-Evolving Body and
Brain

In “Evolving Complete Agents using Artificial Ontogeny” [Bongard and Pfeifer,
2003] it is presented an artificial evolutionary system, Artificial Ontogeny
(AO), that combines an ontogenetic development with a genetic algorithm
in order to evolve complete agents, that is both the morphologies and con-
trollers of robots. Each genome, evolved using a genetic algorithm, is treated
as genetic regulatory networks, in which genes produce gene products that
either have a direct phenotypic effect or regulate the expression of other
genes. In this model there is a translation from a genome (genotype) into a
three-dimensional agent (phenotype), later evaluated in a physically-realist
virtual environment, that takes place via ontogenetic processes: the differ-
ential gene expression and the diffusion of gene products transforms a single
structural unit into an articulated three-dimensional multi-unit agent com-
posed of several structural units that can contain sensors, actuators and a
neural network structure. Therefore, each agent begins its ontogenetic de-
velopment as a single structural unit; structural units (spheres) which are
the basic building blocks from which the agent’s morphology is constructed.
Depending on the concentrations of gene products within a unit, the unit
may grow in size and even split into two units. Each structural unit contains
at most six joints (to which other units can attach to them), a copy of the
genome and six diffusion sites. Each diffusion site contains zero or more dif-

http://www.swarm-organ.eu/
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fusing gene products and zero or more sensor, motor and internal neurons.
Three types of sensor can be embedded, by the artificial evolution, within a
structural unit: touch sensors, proprioceptive sensors and light sensors. The
neurons at a diffusion site may be connected to other neurons within the
same unit or in other units. After a unit splits from its parent unit, the two
units are attached with a rigid connector. In addition to the morphology
of the agent, neural structure may grow within the developing agent. Each
genome of population is represented by 100 floating-point values (between
0.00 and 1.00) and is scanned by a parser in order to find the promotors;
promotor sites indicate the starting position of a gene along the genome.
During the growth phase, the genes may emit gene products: the gene prod-
ucts are treated as chemicals which spread to neighbouring diffusion sites,
and to a lesser degree, into neighbouring structural units. There are 24 dif-
ferent types of gene products: 2 affect the growth of the unit in which they
diffuse, 17 affect the growth of the agent’s neural network and 5 have no
phenotypic effect, but rather may only affect the expression of other genes
(enhance or repress). In the AO a cellular encoding has been incorporated to
achieve the correlated growth of morphology and neural structure. Cellular
encoding is a method for evolving both the architecture and synaptic weights
of a neural network, by starting with a simple neural network (embedded in
each new structural unit) and iteratively applying a set of graph rewrite rules
to transform it into a more complex network. If the concentration of one
of the 17 gene products, responsible for neural development, at a diffusion
site exceeds a concentration of 0.8, and there is a neural structure at that
site, the corresponding rewrite rule is applied to the neural structure. This
neural development scheme is able to evolve dynamic, recurrent neural net-
work that propagate neural signals from sensor neurons to motor neurons.
In order to evolve the complete agents a genetic algorithm (with mutation
and crossover) is applied with 200 generations and a population size of 200.
Each genome is evaluated (according to a task-specific fitness function) as
follows: the genome is copied into a single structural unit and placed in a
virtual, three-dimensional environment; morphological and neural develop-
ment is allowed to proceed for 300 time steps; after this the neural network
is activated and the agent is allowed to operate in its noisy environment for
1000 time steps. The agent is the regrown and re-evaluated nine more times,
and the agent’s fitness values are averaged. Using the AO system, agents
able to perform directed locomotion and block pushing (see Figure 13.2 for
an example) in a noisy environment were evolved. Another example of a
GRN-based evolution of complete autonomous agents can be found in [Del-
laert and Beer, 1996]; but in this last model the nervous system develops
after the development of the agent morphology.
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Figure 13.2: An example of evolved agent for block pushing. Image taken
from [Bongard and Pfeifer, 2003].

13.5 Morphogenetic Robotics

The term morphogenetic robotics has been first introduced in the pa-
per “Morphogenetic Robotics: An Emerging New Field in Developmental
Robotics” [Jin and Meng, 2011]. Morphogenetic robotics is an emerging new
field in developmental robotics that consist of a class of methodologies in
robotics for designing self-organising, self-reconfigurable and self-repairable
single or multi robot systems, using genetic and cellular mechanisms gov-
erning biological morphogenesis [Jin and Meng, 2011]. Biological morpho-
genesis is the biological process in which cells divide, grow and differentiate,
and finally resulting in the mature morphology of a biological organism.
Morphogenesis is under the governance of a developmental gene regulatory
network and the influence of the environment [Gilbert and Barresi, 2016].
They categorize these methodologies into three areas:

• morphogenetic swarm robotic systems: deal with the self-organisation
of swarm robots using genetic and cellular mechanisms underlying the
biological early morphogenesis;

• morphogenetic modular robots: modular robots adapt their configu-
rations autonomously based on the current environmental conditions
using morphogenetic principles;

• morphogenetic body and brain design for robots: include the develop-
mental approaches to the design of the body or body parts, includ-
ing sensors and actuators and/or design of the neural network-based
controller of robots. The neural structure is the product of neural
morphogenesis (neurogenesis).

The authors claim that the developmental robotics should include both mor-
phogenetic robotics and epigenetic robotics 5: the first is mainly concerned
with the physical development of the body and neural control, whereas the

5For a comprehensive survey of Epigenetic Robotics, and more in general, of Develop-
mental Robotics see [Lungarella et al., 2003].
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second focuses on the cognitive and mental development. The body morphol-
ogy, as well as the neural structure of the robots is a result of morphogenetic
development, on which mental development is based through interaction with
the environment [Jin and Meng, 2011]. In Figure 13.3 we can see the relation-
ship between morphogenetic robotics, epigenetic robotics and developmental
robotics. The authors of this paper introduce these three categories; below

Figure 13.3: Morphogenetic and Epigenetic Robotics are closely coupled not
only directly in that the body plan and nervous system are the basis of
cognitive development, but also indirectly through the environment. Image
taken from [Jin and Meng, 2011].

briefly summarised.

Morphogenetic swarm robotics A swarm robotic system is a multi-
robot system consisting of a large number of homogeneous simple robots. In
order to apply genetic and cellular mechanisms in biological morphogenesis
to self-organised control of swarm robots, it is necessary establish a metaphor
between a cell and a robot. The movement of each robot can be modelled by
the regulatory dynamics of a cell. In particular Guo Meng and Jin (in some
works [Guo et al., 2009, Meng et al., 2013]) have described the movement
dynamics of each robot by means of a GRN model, where the concentration
of two proteins represents the position of a robot and the concentration
of another protein represents its velocity. In this gene regulatory model,
the target shape information is provided in terms of morphogen gradients.
This morphogenetic approach to swarm robotic systems has the advantage
that the target shape can be embedded in the robot dynamics in the form
of morphogen gradients, in this way the GRN model can generate implicit
local interactions rules automatically to generate the global behaviour. In
addition, this model is robust to perturbations in the system and in the
environment.

Others examples of morphogenesis-inspired models for swarm robotics is
presented in 13.3.
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Morphogenetic modular robots Self-reconfigurable modular robots con-
sist of a number of modules. They are able to adapt their shape by rearrang-
ing their modules to changing environments. Each module has its “body”
and its controller and each can be seen as a cell. In fact, there are sim-
ilarities in control, communication and physical interactions between cells
in multicellular organisms and modules in modular robots. The control, in
both cases, is decentralised and the global behaviour emerges through local
interactions of the units. Therefore, it is a natural idea to develop control
algorithms for self-reconfigurable modular robots using biological morpho-
genetic mechanisms [Jin and Meng, 2011]. The authors present an example,
taken from [Meng et al., 2010], of morphogenetic approach to designing con-
trol algorithms for reconfigurable modular robots. Similar to morphogenetic
swarm robotic systems, each unit of the modular robot contains a chro-
mosome consisting of several genes that can produce different proteins; the
proteins can diffuse into neighbouring modules. The target configuration
of the modular robot is also defined by morphogen gradients. Morphogen
gradient that each module is able to modify in order to attract or repel neigh-
bouring modules and so adapt the global configuration to the environment
or task. The attraction and repellent behaviour of the modules are regulated
by a GRN-based controller. Particularly, it is used a hierarchical approach
to self-reconfiguration of modular robots: one layer defines the desired con-
figuration of the modular robots while the other layer organizes the modules
autonomously to achieve it. This hierarchical structure is similar to those
of the biological gene regulatory networks [Jin and Meng, 2011]. This hier-
archical controller, inspired by the embryonic development of multi-cellular
organism, is resulted efficient and robust in reconfiguring modular robots to
adapt to the changing environment.

Morphogenetic body and brain design for robots This category, ac-
cording the authors, comprises models for neural 6 and morphological devel-
opment in designing intelligent robots. It is also important reproduce the
natural co-evolution of development of body and brain in which the cogni-
tive and mental development is influenced by the morphological development
(and by the environment) and vice versa. In the paper [Jin and Meng, 2011]
it is cited an example of co-evolution in development of robot hand morphol-
ogy and controller, see Figure 13.4. In this way the shape, the number of
fingers and finger segments can be evolved together with their controller in
a task-dependent way: different hand morphologies will emerge by evolving
the system for different behaviours [Jin and Meng, 2011].

Another example of morphogenesis-inspired co-evolution of body and

6The analogy between neural development and biological neurogenesis is here reported
but there is no a truly morphogenesis process because the evolution of the formal model
which controls the robot is simulated.
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Figure 13.4: Conceptual diagram for coevolving the development of arm and
control. Image taken from [Jin and Meng, 2011].

brain is presented in 13.4.
An example of a morphogenesis-inspired body development is presented

in 13.2.

13.6 Conclusion

The work synthesised in the previous sections represents a survey of the
most relevant examples in the literature concerning the application of genetic
regulatory network models in robotics. Examples of GRN-based models are
presented for designing robot control, for evolving robot morphology, for
pattern generation in swarm robotics and for co-evolving body and brain.
Moreover, an introduction to another kind of classification, inspired by the
biological morphogenesis, is given with the Morphogenetic Robotics.

Some of the introduced models are biologically plausible, in other words
the ideas introduced in the developed artificial system can be equated with
the relative biological concepts. Others instead exploit the similarities with
the cell’s mechanisms but they prefer to be more abstract and therefore
more computationally tractable. The majority of the examples found in the
literature concerns the design of robot controller, and this is reflected in
the paper. This is so far due, in part, to the lack of technological support
(modular robotics is an example) and to the needed computational resources
(see co-evolution of the body and brain).

Nevertheless, this approach has proven to be an efficient tool for the evo-
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lution of robot capable of interesting not trivial behaviours and it represents
a field of study with not yet fully explored potential.



Chapter 14

Robotics applications

14.1 Case study I – Attractor landscape: proofs of
concept

The abstraction of attractor landscape is the space where robotics meets
Synthetic Biology. In this section we illustrate this vision by discussing two
paradigmatic examples in which a genetic network is used as control software
for robots.

14.1.1 BN model of a simple genetic network

An illustrative example of BN modelling the basic cellular states of a cell is
provided by Huang in [Huang and Ingber, 2000]. This BN is a minimalistic
example of a biologically plausible GRN, as the genes regulating functions
consist of Boolean encoding of relations that can be typically found among
genes in real cells. Here we introduce the model and discuss the properties
that are relevant for the purpose of this contribution. The network is com-
posed of four genes, named A, B, C and D. In Figure 5.1 (in Chapter 5)
the relations among genes and their functions are illustrated.

The state of the network is given by a binary vector of four compo-
nents, representing the activation state of the genes. For example, state
0001 represents a situation in which genes A, B and C are inactive, while
gene D is active. The network is supposed to update its node synchronously,
therefore—in absence of external perturbations—each state has a unique suc-
cessor. Under this updating scheme, the dynamics of the network starting
from any initial state (i.e. gene activation profile) is a trajectory composed
of a transient—if any—and a cyclic attractor, which may be a degenerate
cycle involving only one state, i.e. a fixed point.

The graph representing all the possible transitions between network states
is depicted in Figure 14.1. We observe that the dynamics is characterised
by four attractors: three fixed points 0000, 0100 and 1110 and a cycle of
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Figure 14.1: State graph of the network defined in Figure 5.1. Note the four
attractors: three fixed points 0000, 0100 and 1110 and a cycle of period 2
(1100, 0110).

period 2, (1100, 0110). The attractors represent the main cell states, as they
constitute the steady states in the dynamics of the cell. For this reason, they
assume a particular importance, as also shown in the original example by
Huang, who associate one specific cell behavior to each attractor. The state
space (i.e. the space of all possible gene configurations) can be partitioned
into basins of attraction, each containing all the states that, if assumed as
initial condition, leads to one specific attractor. For example, the basin
of attraction of the cyclic attractor (1100, 0110) is composed of the states
{1010, 1011, 0111, 1100, 0110}.

In absence of perturbations, after a (possibly empty) transient, a cell rests
in one attractor. However, when the network in an attractor is perturbed,
it might exit from the basin of attraction of the current steady state and
move to another one. Usually, in these models a perturbation affects just
one node at a time [Serra et al., 2010], therefore it is possible to draw the
attractor graph, which represents the possible transitions between steady
states. The attractor graph of the example we are discussing is depicted in
Figure 14.2. The graph is obtained by perturbing each node of each attractor
and connecting attractor α to attractor β with an arrow from α to β if the
perturbation in α produces a trajectory ending in β—or, equivalently, if the
perturbation on α produces a state in the basin of attraction of β. In the case
of the cyclic attractor of period two, we numbered the states and denoted by
a subscript the perturbed genes as a function of the state. We can observe
that it is possible that the same gene, if perturbed, leads the trajectory to
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Figure 14.2: Attractor graph of the network defined in Figure 5.1. For clarity,
the transients are omitted and only macro transitions between attractors
are depicted. A transition occurs after the transitory flip of the value of a
gene. The labels on the edges denote the genes which, if flipped, cause the
transition.

different steady states depending on the attractor state in which the gene is
perturbed. For example, gene A leads to attractor 1110 if perturbed in state
0110 and to attractor 0100 if flipped in state 1100.

The network described above models a typical case of cell dynamics and
it was used in [Huang and Ingber, 2000] to illustrate the notion of attractors
in cell dynamics. In the following subsections we show how this network can
be used to control a robot performing minimal yet not trivial cognitive task.
The key idea is that attractors are associated to robot behaviours, in the
same way as they represent cell behaviours in the biological interpretation.

14.1.2 Example 1: Controlled phototaxis

In this first example, we exploit the properties of the attractor landscape to
control the speed of a robot performing phototaxis, i.e. moving towards a
light source. Here and in the following case studies we have directly intro-
duced a mapping between attractors and robot behaviours. However, this
mapping can be the result of an adaptive process, as indeed done in nature
where the interactions between a system (e.g., a cell or even an organism)
and the environment emerge as an adaptive process that exploits some reg-
ularities in the environment. This process is analogous to the emergence
of sensors in nature, where regularities, correlations and sufficiently robust
patterns are captured by organisms’ parts that assume the role of sensor
devices—see [Olsson et al., 2006, Cariani, 1992, Cariani, 1993, Balakrishnan
and Honavar, 1996] for a discussion on the evolution of sensors, both in na-
ture and in robotics. Intermediate situations are possible between these two
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extreme possibilities, such as in the case studies in BN-robotics that we have
previously mentioned (see Section 12.1.1). In those BN-robots, some nodes
of the network are directly connected to a sensor (e.g. a light or a proximity
sensor) and their value is imposed by sensor readings and actuators are di-
rectly controlled by the values of some predefined node. Despite this a priori
setting, nothing is imposed on the way the network will use the information
set on its inputs nor the way it will control the robot actuators, as the con-
nections among nodes and node functions are the result of an evolutionary
process. In a sense, we may say that this evolutionary process defines the
semantics of the information received and elaborated by the robot.

The attractors of the network are characterised by a different number of
active genes, from 0 to 3; this property can be easily exploited as a control
factor for the speed of the robot: the more the number of active genes in
the state, the higher the speed of the robot. The control genes are D, which
is temporarily switched on when the robot sees the light, and gene B which
temporarily is deactivated whenever the luminescence gradient perceived by
the light sensors exceeds a given threshold. As an aside comment, we observe
that, whilst we are using the terminology typical of robotics, we are just
describing a dynamical system interacting with the environment, like a cell.
The network starts in attractor 0000, which represents the quiescent state
where robot’s wheels do not move. When the robot perceives the light, gene
D is switched on—as if it was activated by an external molecule. At each
control step of the robot, the network updates its state; therefore, after the
perturbation occurring on gene D, the network enters the basin of attraction
of fixed point 1110, which is reached in few steps. Then the robot moves
towards the light and progressively slows down, as an effect exerted by gene
B, which is temporarily suppressed (i.e. set to 0) as soon as the light intensity
detected exceeds a fixed value. Eventually, the robot stops when it is close
to the light source. Note that the stop state corresponds to fixed point 0000,
which is reached from attractor 0100 just by setting B to 0. The video of a
representative run is available online at http://www.lia.disi.unibo.it/
~aro/download/attractors/ as video-01. The same network can be used
to control a group of robots performing the same task. We performed this
and the following experiments in a simulated environment by the means of
ARGoS [Pinciroli et al., 2012], which is one of the most widespread robotics
simulators. The main steps of this dynamics are depicted in Figure 14.3 and
a video of the simulation is available as video-02.

In case this network is used to control the behaviour of a swarm of robots,
one may want to attain a final situation in which robots are evenly distributed
across the light sources, similarly to clustering phenomena in cell biology. To
attain this goal, the very same network can be used and gene D is activated
as long as the robot density perceived by a robot (through its proximity
sensors) exceeds a given threshold. In this way, the temporary activation of
gene D moves the network to the attractor corresponding to the maximal

http://www.lia.disi.unibo.it/~aro/download/attractors/
http://www.lia.disi.unibo.it/~aro/download/attractors/
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Figure 14.3: Main phases of the phototaxis behaviour of a group of robots
(from top to bottom and left to right). Robot colours denote their at-
tractor (and consequently, their speed): black→ 0000, yellow→ 1110,
red→ (0110, 1100), blue→ 0100.
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speed so that the robot has the chance to move and find another less crowded
light source. The main phases of this dynamics are depicted in Figure 14.4,
while the video of a typical simulation is available as video-03.

Although this has been introduced purely by way of example, we reserve
the right to make a comparison of the proposed approach against other
techniques [Amé et al., 2006], present in the literature, concerning robot
swarm aggregation in the future.

Figure 14.4: Main phases of the phototaxis behaviour of a group of robots
(from top to bottom and left to right), trying to gather around a light source
so as to split into approximately equal groups. Also in this case, robot
colours denote their attractor (and consequently, their speed): black→ 0000,
yellow→ 1110, red→ (0110, 1100), blue→ 0100. Note that robots in a dense
group are coloured yellow, i.e. they are moving at a high speed. Therefore,
in this case the equilibrium reached at the end of the run is dynamics, rather
than static.

14.1.3 Example 2: Actions triggered by an external stimulus

As a second example of the use of the dynamical properties of a cell model, we
show an alternative approach to encode inputs and outputs in the network.
In the previous example, the mapping between cell model and robot has been
achieved by temporarily setting some gene to a specific activation state and
using the entire genetic profile to decide the actions the robot should take
(in the previous case, the speed of the robot). Another approach consists in
directly connecting some genes of the network to external inputs—i.e. treat
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Figure 14.5: Corridor scenario: the robot points towards a goal and its
movement triggered by an external stimulus.

them as receptors—and using the value of some specific genes to directly
control some low-level robot actions. In the example we discuss here, we
consider a simple scenario in which a robot is placed in a corridor that has
to be traversed so as to reach a target. In Figure 14.5 the initial situation is
depicted; the target is represented by a light source, but it may be any source
of a signal that the robot can perceive, such as sound or temperature. On the
biological side, this source can be any chemical source and the phenomenon
would be chemotaxis. The network controlling the robot is the same as the
one used in the previous example, just with a different encoding of inputs
and outputs. Here we suppose that an input gene is clamped to 0 or 1 as
a consequence of an external signal; when a network node is forced to a
constant value, the network state graph changes and some transitions (along
with some states) do not longer exist. To adhere the biological framework
depicted by Huang, we suppose that signal exert their effect on the network
to condition the transitions from an attractor to another one; in this way,
attractors still represent the main behaviours of the robot and the transitions
between them are achieved by clamping a node to a constant value so as to
control the transient from an attractor to another one. In the scenario we
discuss in this example, the control gene is again D and the output gene is
A, which acts as a binary selector: if A = 0, then the robot holds, otherwise
it moves straightforward. The initial state is the quiescent one (0000) and,
when an external signal is performed (e.g. a sound) and during the time
interval it is perceived by the robot, gene D is clamped to 1. As shown in
Figure 14.6, as soon as D is set to 1, the network state moves to 0001 and,
while D = 1, the network trajectory eventually reaches 1111, which is a fixed
point as long asD = 1. We may call this particular steady state a conditional
attractor, i.e. an attractor conditioned to an external conditioning on some
genes, to distinguish this case from that of original attractors which are
the ones characterising the autonomous1 dynamics of the network. Once
this conditional attractor is reached, the external stimulus can be detached

1In the context of dynamical systems, an autonomous system has no inputs and it is
subject to an internal dynamics.
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Figure 14.6: State graph of the network controlling the robot. Whilst the
network is the same as the one in the previous example, its state graph is
different because some genes are clamped either to 0 or 1 from an attractor
until a new attractor is found.

from D and the network freely reaches the original fixed point 1110. Along
this trajectory, gene A is always 1 and so the robot moves straight. The
possibilities opened by clamping one or more genes to a specific value until
a new attractor is reached make it possible to introduce also a stopping
condition to this behavior: when we want the robot to stop, both C and D
have to be clamped to 0 and so after two steps a new conditional attractor
is reached with A = 0 and the robot stops. At this point, the plasticity of
the network enables us to control again the movements of the robot toward
the light source by keeping C clamped to 0 and activating or inhibiting D,
which then will act as a switch to make the robot moving and resting.2

2Videos of these behaviours can be watched at http://www.lia.disi.unibo.it/~aro/
download/attractors/ as video-04 and video-05.

http://www.lia.disi.unibo.it/~aro/download/attractors/
http://www.lia.disi.unibo.it/~aro/download/attractors/
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14.1.4 Conclusion: Implications on robotics and synthetic
biology

We believe that the notion of attractor landscape provides an effective ab-
straction level for cross-fertilisation between robotics and SB. On the one
hand, robotics may exploit advances in SB so as to devise unconventional
control systems. Indeed, the examples we have presented in the previous
section illustrate a viable approach to combine robotics and SB, which con-
sists in exploiting synthetic cellular circuits to control robots. This “under-
standing by building" cross-discipline methodology can produce unforeseen
developments in both fields; indeed, results obtained from the evaluation—
in simulation or in real world—of robots designed exploiting these cellular
synthetic bricks may provide biological insights and hypotheses to motivate
new experiments, that in turn may lead to the construction of new bricks.
In addition, this approach opens the possibility of designing and building
hybrid robots, made also of biological components. Typical scenarios of
such creatures are environments where human exploration is not possible,
such as oceans and human and animal body and also plants, where swarms
of micro-robots may collectively accomplish a mission. On the other hand,
the design of synthetic cellular systems may be formalised in terms of an
embedded agent perceiving the environment and acting on it—as done in
robotics—and design techniques for control software in robots may be used
in SB design.

We are aware that the approach we have sketched is more a vision, rather
than an actual research project. However, we strongly advocate the use
of high-level concepts from dynamical systems, and mainly attractor land-
scapes, not just as metaphors but as design guidelines. In addition, we
believe that this level of abstraction can provide a common vocabulary and
a shared set of categories between researchers in AI and SB, and that this
bridge between cell and robot dynamics is worth to be pursued in the future.

14.2 Case study II: Engineering behavioural differ-
entiation in BN controlled robots

14.2.1 Vision

By exploiting the analogy with cell differentiation phenomenology, we want
to devise an automatic procedure for the generation of robot controllers able
to express behavioural differentiation. With behavioural differentiation, we
refer to the robot ability to express different specialised behaviours triggered
by different signals with the further possibility of switchback to unspecialised
behaviour(s).
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14.2.2 Methodology

We decided to control robot agents via Boolean networks (BNs). This choice
has been motivated by the promising results reported in 13.1.1 which have
laid the groundwork for the use of BN in the robotic field, and the whole
literature, to which this dissertation contributes, which refers to the use of
them to reproduce cellular phenomena.

Given the ambitious and challenging objective, we decided to split the
problem into two, more tractable, ones:

Subproblem I Development of algorithms for the generation of BNs capa-
ble of performing specialised behaviours when used as robot controller.
We call this networks behaviour-BNs.

Subproblem II Development and engineering of a BN able to express the
desired differentiation dynamics and on which the specialised behaviours
obtained with the previous point will be mapped. We call this networks
control-BNs.

In Figure 14.7 we can see a schematic representation of the adopted ap-
proach to face the behavioural differentiation problem; moreover, it clarifies
the relationship between the two identified subproblems.

Behaviour B

Behaviour A

Y

X

Y

X

Noise

BN dynamics

= Attractor

mapping

mapping
Control BN

Figure 14.7: This is a schematic representation of the devised approach for
reaching robot capable of behavioural differentiation.

After various experimental analyses and improvement phases by trial and
error, we came to the formulation of an algorithm for the generation of BN
able to satisfy the requirements expressed in the first subproblem. The pro-
cedure above is based on the VNS algorithm presented 7.1.2, developed in the
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context of reproduction of cellular differentiation phenomenology. The al-
gorithm has successfully produced two BNs capable of expressing phototaxis
and anti-phototaxis, which will represent the specialised behaviours. We re-
fer the reader to the thesis [Cevoli, 2019] for a description of the preliminary
results obtained.

We translated the second subproblem into the following requirements.
This specific problem formulation has been the result of the necessity of
providing a significative but at the same time tractable proof of concept of
the proposed vision: Thus, a network that fulfils all the requirements for the
second subproblem must present us:

• two attractors;

• a dynamics that wander between these two attractors when (intrinsic)
noise is present (this can be formally defined by means of the already
presented TES0 concept 6.5),

• while it settles down on a specific attractor upon signal receipt (de-
terministically associated with the specific destination attractor) and
noise disappearance 3;

• it must also be able to wander again between the two attractors upon
noise re-introduction.

The search for the control-BN has been successfully achieved by means of a
generate-and-test algorithm, given the modest requirements to be fulfilled.

Lastly, we have linked the three obtained BNs (two behaviour-BNs and
one control-BN ) by mapping onto the two attractors of the control-BN the
two behaviour-BNs capable of expressing phototaxis and anti-phototaxis.
In this way, the control-BN logically determine the robot behaviour but
actually the robot behaviour is put in place by the behaviour-BNs dynamics.
For reasons related to computational costs, we choose among the different
specialised behaviour in a random fashion if the network dynamics is in states
not belonging to its attractors (transient states).

14.2.3 Results and Conclusion

The Boolean network-based control software has been tested in a simulated
environment by means of Webots [Michel, 2004], an open source robot sim-
ulator.

The simulated environment dynamics have been subdivided into these
phases:

3A similar process can be obtained by thinking to a TES0 composed by only two
attractors that split upon threshold increment—and so noise reduction—into two TESs
each one composed by one of these attractors.
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(a) (b) (c)

Figure 14.8: a: Noise condition. b: Phototaxis specialised behaviour. c:
Anti-phototaxis specialised behaviour. Summary by images of the overall
behaviour observed by one of the compositions of networks that have proved
to be able to meet the required requirements. The video of the robot be-
haviour is reported online at this web address https://www.youtube.com/
watch?v=lTyco4cEFRI&feature=youtu.be The experiment, the subject of
the video, was carried out by the student Alessandro Cevoli [Cevoli, 2019].

1. noise;

2. the signal that triggers phototaxis behaviour;

3. noise;

4. the signal that triggers anti-phototaxis behaviour.

The Figure 14.8 shows a sequence of screenshots related to the behaviour
of one of the compound networks (two behaviour-BNs and one control-BN )
that met the requirements. This robot behaviour was obtained through the
simulated environmental conditions described above.

Much work still needs to be done to achieve the declared vision. In
our vision, a single network, in analogy with the genome in biology, can
show the complex dynamics observed in this case study. More complex
optimisation techniques than those presented here or evolutionary algorithms
can represent valid candidates to achieve this goal. But the success of this
case study has the quality of demonstrating that robotics can really benefit
from the conceptual, analysis and simulation tools developed in the context
of the study of cellular differentiation. So, although this is a starting point,
it leads us to believe that the direction taken is the right one.

14.3 Case study III: Online adaptiveness or adap-
tive semantics?

— Even without Shapirov’s coma, we all knew the time would
come when a trip through a bloodstream would become necessary.

https://www.youtube.com/watch?v=lTyco4cEFRI&feature=youtu.be
https://www.youtube.com/watch?v=lTyco4cEFRI&feature=youtu.be
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We’ve been planning something like this for a long time and we
knew that this skill of mine would be needed.

— You might have planned an automated crewless ship.

— Someday, perhaps, we will, but not yet. We cannot, even now,
make the automation equivalent to the versatility and ingenuity
of a human brain. From Isaac Asimov, “Fantastic Voyage II –

Destination Brain”, 1987.

The discussion taking place inside the miniaturised ship of the 1987
Asimov’s novel about the possibility of devising a crewless ship, i.e. an
autonomous unmanned vehicle, hits one of the main objectives of present-
day research agendas in artificial intelligence (AI). In the novel, the argu-
ment supporting the choice of miniaturising both ship and human crew is
that available autonomous artificial systems are not sufficiently versatile and
smart to accomplish a mission inside a human body. Recent technologi-
cal advances have made it possible to build incredibly small robots, till the
size of tens of nanometers. The current smallest robots—built by biologi-
cal matter—can perform only a few predetermined actions, therefore they
can not attain the level of adaptivity and robustness needed for a complex
mission. On the other hand, AI software has recently made tremendous
advancements and has been proved capable of learning and accomplishing
difficult tasks with a high degree of reliability. This software, however, can
not be run onto small robots. A viable way for filling this gap is provided
by control programs based on unconventional computation, such as the ones
derived from cell dynamics models [Roli and Braccini, 2018].

In this chapter we summarise an experiment in BN-robotics4 in which
the BN controller adapts online to the mission the robot has to accomplish.
As the inspiring vision is that of a micro-robot used for medical applications,
the adaptation mechanism used in the experiment is minimalistic, so as to
facilitate the construction of such a robot for real applications. The key idea
is that BNs—mainly critical ones—produce rather complex dynamics [Roli
and Braccini, 2018], which can be exploited for producing different kinds of
behaviours in the robot.

14.3.1 Experimental setting

In our experiments we used a robot model equipped with 24 proximity sensors
(placed evenly along its main circumference) and controlled by two motorised
wheels (see Figure 14.9). The robot moves inside a squared arena, delimited
by walls, with a central box (see Figure 14.10). The goal we want the robot

4Robots whose control software is based on Boolean networks
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Figure 14.9: The robot used in the experiments.

to achieve is to move as fast as possible around the central box without
colliding against walls and the box itself. The robot is controlled by a BN.
The coupling between the BN and the robot is as follows: two nodes are
randomly chosen and their value is taken to control the two motors. The
sensor readings return a value in [0, 1] and so are binarised by a simple
step function (with threshold equal to 0.1). The 24 sensors are randomly
associated to 24 randomly chosen nodes in the network: at each network
update, the binarised values from the sensors are overridden to the current
values of the corresponding nodes, so as to provide an external signal to the
BN.

The adaptive mechanism is a kind of adaptive random walk. It consists
in randomly rewiring up to 6 connections between sensors and BN nodes
(excluding output nodes, of course). The robot is then run for 1200 steps
(corresponding to 120 seconds of real time, enough for evaluating the robot);
if the current binding enables the robot to perform better, then it is kept,
otherwise it is rejected and the previous one is taken as the basis for a new
perturbation. We remark that the binding between proximity sensors and
BN “input” nodes is the only change made to the network: in this way we
address the question as to what extent a random BN can indeed provide
a sufficient bouquet of behaviours to enable a robot to adapt to a given
(minimally cognitive) task.

BNs generated with n nodes, k = 3 inputs per node and random Boolean
functions defined by means of the bias b.5 In the experiments we tested

5The bias is the probability of assigning a 1 a truth table entry.
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Figure 14.10: The arena used in the experiments.

n ∈ {100, 1000} and b ∈ {0.1, 0.21, 0.5, 0.79, 0.9}.6
The performance is evaluated by an objective function that is accumu-

lated along the robot execution steps and then normalised. The function is
defined as follows:

F = (1− pmax) (1−
√
|bl − br|) (bl+br)

2

where pmax is the maximal value returned among the proximity sensors, and
bl and br are the binarised values used to control the left and right motor,
respectively. The intuition of the function is to favour fast and as much
straight as possible trajectories far from the obstacles [Nolfi and Floreano,
2000]. Experiments are run in simulations with ARGoS [Pinciroli et al.,
2012].

14.3.2 Results

We run 1000 random replicas for each configuration of BN parameters and
collected statistics on the best performance attained after a trial of 1.44×104
seconds. As we can observe in Figure 14.11, despite the simple adaptation
mechanism, a large fraction of BN attains a good performance.7 Notably,
critical networks attains the best performance—this result is striking for
large BNs (n = 1000). This is a further evidence of the conjecture stating
that critical systems provide the best trade-off between adaptivity and ro-
bustness [Roli et al., 2018]. Observe, however, that just one of the two bias

6According to [Luque and Solé, 1997], random BNs with k = 3 generated with bias
equal to 0.1 or 0.9 are likely to be ordered, with bias equal to 0.5 are likely to be chaotic
and bias equal to 0.21 and 0.79 characterises criticality.

7Given the evaluation function, for values of F greater than 0.7 the performance is
good enough.
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Figure 14.11: Boxplots summarising the performance as a function of BN
bias for BNs with n = 100 (left) and n = 1000 (right).

values corresponding to the critical regime provide good performance. The
reason is that in our experiment the symmetry between 0 and 1 is broken,
because a 1 means that an obstacle is detected and that motors are on. In-
deed, we ran the same experiments with a negative (dual) convention on the
values. As expected, results (see Figure 14.12) are perfectly specular to the
previous ones.

14.3.3 Conclusion

This experiment represents an attempt to answer some open questions that
are also extremely relevant for the origin of life and the evolution of complex
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Figure 14.12: Boxplots summarising the performance as a function of BN
bias for BNs with n = 100 (left) and n = 1000 (right) for robots controlled
by BNs with a negative encoding (i.e., 0 activate the motor wheels).

organisms. Indeed we believe than the circuits that compose the biological
organisms did not appear, during evolution, with a precise and defined se-
mantics. There was no innate “amino acid metabolism pathway” but this
firstly has been a working circuit, result of physical constraints and random
mutations. Then, the coupling of what we can consider a set of circuits that
constituted the embryonic form of those present in today’s cells with the en-
vironment has given a meaning to this circuit, a precise meaning caused by
the cell system to which it belongs and by the precise coupling of the latter
with its specific environment. Its meaning would have most likely been dif-
ferent if the circuit in question had emerged at a different time, organism or
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planet. So, we have exploited the above mentioned idea in robotics, trying
to verify if online adaptiveness in the form of interpretation of raw material
(network) that a robot/organism possesses can be successfully exploited to
accomplish a given task. It turned out that networks in the critical dynamic
regime were able to accomplish the obstacle avoidance task more success-
fully, thus providing further evidence regarding the criticality hypothesis 4.3.
In conclusion, we conjecture that the creation of the semantics of its own
circuits, through the environmental coupling and the subsequent refinement
of this through the process of evolution itself that acts by strengthening cer-
tain mechanisms, can be considered a fundamental step before that which
will bring novelties in the organisms. The last mentioned step brings new
genetic material into the organism and therefore probably a more suitable
substrate on which to build more complex dynamics and functions 8.

8See the Section 6.4 on “cancer attractors” to grasp the analogy with cell biology
evolution counterpart.
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Chapter 15

Ongoing and future work

This dissertation can be somehow considered a starting point of a research
direction in the study of differentiation employing more and more realistic
and biologically grounded computational models based on Boolean networks.
Needless to say, further exploration is needed. Here we propose work in
progress and the future one resulting from this research.

A less simplistic noise formulation in BN models for cell differ-
entiation Noise plays a key role in cell processes [Pujadas and Feinberg,
2012, Zwaka, 2006, Huang, 2009], therefore also in cell differentiation. Hence,
whatever model we choose (Boolean or not) to represent and simulate cell
differentiation dynamics, the influence of noise shouldn’t be neglected. In
most of the theoretical metaphors or in the dynamical systems view of cell,
noise is a fundamental but abstract actor in cell dynamics, i.e. a consid-
ered but not formally defined aspect. In order to face the problem of the
formulation of a computational model for cell differentiation we have to pre-
cisely characterise the various noise typologies (intracellular, extracellular,
epigenetic, etc.) and their specific implications. In the TES-model 6.5 the
differentiation process is strongly correlated with the intracellular noise
level (modelled by the threshold concept). But the threshold and above
all its variation mechanism are externally controlled. In fact the threshold
represents an abstraction of the mechanisms implemented by the real cell
to control noise. Therefore, it is important to try to identify—guided by
experimental data—some autogenous mechanisms, somehow bound to cell’s
dynamics, through which achieve a noise self-regulation.

An attempt we are currently exploring is to introduce a type of noise
determined by the topological regulatory network configuration, this latter
determined by the real modelled genome. Indeed, we believe that within
a cell the events induced by certain genes (RNAs or proteins production,
RNA splicing, etc.) can be considered as simultaneous. Others instead can
be perceived by them with variable delays depending on the noise that may
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have intervened during the propagation of information between one region
and another in the regulatory network. The noise to which we refer with the
previous statement can be caused for example by a low number of molecules
involved in the information transmission process, aberrant production of
nuclear RNA, messenger RNA or protein structures. So we’re trying to
model this possible phenomenon in Boolean networks.

To put this idea into practice, we have devised a hybrid update scheme:
a fraction of nodes are updated in a synchronous way while the remaining
fraction is updated in a concurrent way. In detail, with each update of the
synchronously updated fraction of nodes, there will be a different update
sequence of those updated concurrently. The concurrent fraction is in our
vision the modelling counterpart of the unpredictable nature of fine-grain
molecular noise that can be found in a biological cell. In Figure 15.1 we can
see a partial example of this updating scheme in Boolean models of GRN.

Time  (differentiation process unfolds) 

subpopolation already primed? 

high variance

Cell type A

Cell type BPopulation snapshot

Population snapshot

Population snapshot

0 1 0 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0

0 1 0 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0

SYNCHRONOUS

0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0

0 1 0 1 0 0 1 1 1 0 0 1 1 0 0 0 0 0

CONCURRENT

CONCURRENT

SYNCHRONOUS

…

Tim
e 

Figure 15.1: This figure is a schematic representation of the hybrid updating
scheme proposed with one of its possible phenotypic manifestation in cell
populations. In particular, we believe that the employment of this model
in populations of Boolean networks can give rise to cells already primed, as
observed in recent works, and ultimately to various subpopulations which
represent different cell types with no necessity of any external mechanisms.

Preliminary experiments, in progress, are aimed at verifying if this up-
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dating scheme can reproduce some phenomena observed during the differ-
entiation process in cell populations. Following the ensemble approach and
using random Boolean networks we are now testing whether this model can
give rise, in Boolean models, to the same peak of cellular variability observed
during the differentiation process just before cell fate decision. The last cited
phenomenon is observed with single-cell resolution technologies in two recent
noteworthy works [Mojtahedi et al., 2016, Richard et al., 2016].

The experimental attempts we are undertaking are aimed at observing
whether with certain fractions of synchronous nodes it is possible to obtain
a relative peak of variability in gene expression similar to that reported in
the above mentioned works, measured with Shannon entropy as in [Richard
et al., 2016], and at the same time check if:

• primed cells—cells enriched for specific lineages [Mojtahedi et al., 2016] 1—
exist during the commitment phase;

• there are similarities between the expression vectors of the attractors
that represent the cell type(s) before the differentiation step and the
reachable cell types after the peak of variability.

Indeed, regarding the second point, we have reasons to believe that a
completely asynchronous updating scheme can in principle generate a peak of
variability in gene expression similar to those observed in real differentiating
populations. Still, the similarities in gene expression among one cell types
and the next one typical of differentiation lineages might be lacking.

A Java-based software for BN simulation and analysis During my
Ph.D. studies, I have been developing a software tool used to perform the
whole set of in silico experiments—simulations and analysis—reported in
this dissertation. The software—now in a prototype version—is written in
Java and is specifically designed for efficient simulation of Boolean network
models of genetic regulatory networks. Compared to the already existing
software—which most are limited to the simulation of synchronous or asyn-
chronous updating schemes—in our implementations we wanted to raise the
abstraction level and support cells dynamics with different updating schemes
and different network motifs and topologies (e.g. self-loops), with a support
to various biological grounded types of noise—like those above presented.

In the next future, we intend to release it—as done with the software
library diffeRenTES 7.3—in a stable version under an open-source license.
Indeed, we believe that the use of computational tools can be beneficial also
for biologists, physicist, and whoever has not a computer science background.

1Experimentally, different populations of primed cells may be mistakenly believed to be
in the same state because they exhibit the same cell surface markers even if they are already
directed towards distinct cell fates by means of the expression of other genes [Huang et al.,
2009a, Cahan and Daley, 2013].
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These tools can be necessary to simulate their hypotheses and to guide the
design of in vitro experiments. Lastly, it may provide an extremely useful
tool also in the process of models refinement: it would be a means to test
and formulate new hypotheses in front of the availability of new experimental
data on cell dynamics and then drive the formation of new more accurate
models, in an iterative process.

Match of model predictions against real data In the era of single-cell
technology [Wilson and Göttgens, 2018, Wagner et al., 2018, Farrell et al.,
2018, Zheng et al., 2017], we need to check whether Boolean models can
be adequate abstractions for the study of cell differentiation and cellular
processes in general. We know that Boolean models in principle can pro-
vide adequate abstractions for cell differentiation with regard to its generic
properties; however, it is necessary to match models previsions against ex-
perimental data. To this end, it may be necessary to include further mech-
anisms into current models or devise new ones. Indeed, in the light of the
latest evidence regarding the cell-to-cell variability and the absence of a
single “textbook-model” [Pelkmans, 2012] cell, it is necessary to introduce
mechanisms that cause this population-level heterogeneity in modelling. For
this purpose, new models capable of giving rise to the intrinsic heterogeneity
of cell populations, such as the hybrid updating scheme previously outlined,
can uncover their origins and causes.

Robotics In the light of the preliminary but promising results obtained
using models and abstractions related to the differentiation process in the
field of robotics, we intend to investigate them further. Robotics—and
swarm robotics in particular given its natural analogy with biological cell
populations—represents an invaluable and affordable testbed for all the hy-
potheses, conjectures and implications of the works here presented. Indeed,
wet or in vitro experiments can be really expensive while robots, in simulated
or in physical environments, can be the place to combine the whole set of
our modelling contributions, contributions which investigate specific—often
orthogonal—aspects of the differentiation process.

In addition, for what concerns the behavioural differentiation of robotic
agents, behaviours assessment in real-world and the design of a more refined
engineering process which can include an online adaptation process like the
one proposed in Section 14.3 are in our agenda of future works.



Conclusion

The main objective of this thesis is the progress in the understanding of the
complex dynamics that give rise to the phenomenology of cell differentiation.
The scientific interest on which this analysis is based primarily originates as
a consequence of the lack of a general theoretical framework for cell differ-
entiation. The approach proposed in this dissertation, based on modelling
and dynamical systems theory, had the objective to investigate mechanisms
underpinning cell differentiation. This thesis contributes to make a further
step towards a formulation of a general theory of cell differentiation.

Although there are issues that require further investigation, this thesis,
on the one hand, has made progresses in already (partially) beaten lines
of research in complex systems biology, expanding, refining and proposing
models of cell differentiation mechanisms, while on the other, it has paved
the way for a new research direction in robotics.

In particular, we have verified theoretical predictions of a recently in-
troduced model for cell differentiation by means of stochastic simulations of
Boolean networks.

In addition, we proposed a thorough study of the impact of self-loops
in random Boolean networks ensembles. Self-loops contribute to the re-
production of differentiation dynamics in modelling. Given their effects on
the dynamics of Boolean networks, we also hypothesise that they may have
represented evolutionary advantages by providing a better balance between
robustness and flexibility.

Moreover, we proposed a new dynamical model of differentiation based on
a simplified bio-inspired methylation mechanism in Boolean models of GRNs.
This mechanism imposes an arrow of time to the differentiation process by
stabilising and limiting the network dynamics. Studies of the combined
effects of self-loops and epigenetics—two of the most important mechanisms
for controlling differentiation for molecular biologists—have been carried out.
Particular combinations of the two mechanisms, when the self-loops have
a self-activating effect, bring in BNs not-trivial dynamics, resembling the
biological counterparts.

Furthermore, we introduced automatic techniques for the design of Boolean
networks capable of expressing the desired differentiation dynamics. Then,
these algorithms represented the starting point for the generation of robot
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control software in the context of what we called behavioural differentiation
robotics. Behavioural differentiation robotics is a new branch of research in
robotics—proposed by us for the first time—that deals with the designing of
robotic agents with the ability to specialise their behaviours in a way similar
to that of cells that undergo differentiation. This result is an indirect conse-
quence of our vision, which proposes a paradigm shift in the design of robot
behaviours. Indeed, we propose to exploit the conceptual metaphor repre-
sented by the attractor landscape for the design of robot controllers—but
given their generality, it is not limited to them. This idea takes inspiration
from the studies conducted in the context of cellular differentiation, but it
finds natural application in the design of robotic agents capable of expressing
different behaviours.

Finally, we have developed software for the simulation and analysis of
Boolean networks, always relating to the reproduction of differentiation phe-
nomena.

The contributions of this work can be considered part of a broader med-
ical research which hopefully in the next future will be able to uncover the
origins of differentiation-related diseases. Advancement in drug design and
differentiation therapies able to induce cancer cells to switch back towards
normal conditions are some of the ambitious objectives of this research line.
As we started showing, this research has implications in robotics too. In a fu-
turistic yet feasible scenario, we can imagine micro-robotic agents equipped
with differentiation-inspired controller able to perform complex tasks, too
risky or impossible for humans. Swarms of agents for fires management, mi-
crorobots for space explorations and inoculable nanorobots that can cure ill
human organisms by becoming part of them are just some visionary appli-
cations of this unconventional bio-inspired computation.
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Appendix A

The impact of self-loops on BN
attractor landscape

For the sake of clarity, in Section 8.4, we only presented the results concern-
ing the CONST-OR configuration. Here, results for the other experimental
configurations—namely AUGM-OR, CONST-RND and AUGM-RND—are
reported.

Figure A.1: Density function of the number of attractors for the AUGM-OR
configuration. It has been computed from experimental data on 2 ∗ 104 runs
with same ns. The sixteen plots show how it changes with ns ∈ {0, 1, . . . , 15}
(see plot title). Logarithmic scale for the x axis.
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Figure A.2: Empirical cumulative distribution function (ECDF) of the num-
ber of attractors for the AUGM-OR configuration. It has been computed
from experimental data on 2∗104 runs with same ns, with ns ∈ {0, 1, . . . , 15}
(see legend). With respect to the CONST-OR configuration, we can observe
that, if we compare curves with same ns, 95% of networks are under the
ECDF curve for a higher (almost doubled) number of attractors. For instance
with ns = 15 we have 95% of networks with m ∈ [1, 1200] for AUGM-OR,
against m ∈ [1, 600] for CONST-OR.
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Figure A.3: δmin and δmax as a function of the number of attractors m for
the AUGM-OR configuration. They have been computed from experimental
data on 2 ∗ 104 runs with same ns. The sixteen plots show how they change
with ns ∈ {0, 1, . . . , 15} (see plot title). x axis limit changes with ns from 1
to the largest number of attractors for which at least 30 sampled BNs have
been found. Differently from the case of CONST-OR, we do not observe here
a substantial increase of δmax with gradually increasing number of self-loops
in the network.
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Figure A.4: δmin, δmax and ATM diagonal values as a function of the
number of attractors for AUGM-OR configuration. Results are shown for
ns ∈ {0, 4, 8, 12} (see title in each plot).

Figure A.5: δmin (left) and δmax (right) as a function of the fraction of nodes
with a self-loop for AUGM-OR configuration. Each plot refers to the average
values of δmin (left) and δmax (right) on 30 networks with the same number
of attractors m, where m ∈ {1, . . . , 20} (see legend).
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Figure A.6: Density function of the number of attractors for the CONST-
RND configuration. It has been computed from experimental data on 2 ∗
104 runs with same ns. The sixteen plots show how it changes with ns ∈
{0, 1, . . . , 15} (see plot title). Logarithmic scale for the x axis.

Figure A.7: Empirical cumulative distribution function (ECDF) of the num-
ber of attractors for the CONST-RND configuration. It has been computed
from experimental data on 2∗104 runs with same ns, with ns ∈ {0, 1, . . . , 15}
(see legend). With respect to the CONST-OR configuration, we can observe
that, if we compare curves with same ns, 95% of networks are under the
ECDF curve for a lower (about one third) number of attractors. For instance
with ns = 15 we have 95% of networks with m ∈ [1, 200] for CONST-RND,
against m ∈ [1, 600] for CONST-OR.
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Figure A.8: δmin and δmax as a function of the number of attractorsm for the
CONST-RND configuration. They have been computed from experimental
data on 2 ∗ 104 runs with same ns. The sixteen plots show how they change
with ns ∈ {0, 1, . . . , 15} (see plot title). x axis limit changes with ns from
1 to the largest number of attractors for which at least 30 sampled BNs
have been found. If compared across networks with the same number of
attractors—but different ns—maximum and minimum values of the ATM
diagonal do not change, meaning that adding self-loops with the CONST-
RND configuration does not provide neither an advantage nor a disadvantage
in terms of attractor robustness.
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Figure A.9: δmin, δmax and ATM diagonal values as a function of the number
of attractors for CONST-RND configuration. Results are shown for ns ∈
{0, 4, 8, 12} (see title in each plot).

Figure A.10: δmin (left) and δmax (right) as a function of the fraction of
nodes with a self-loop for CONST-RND configuration. Each plot refers to
the average values of δmin (left) and δmax (right) on 30 networks with the
same number of attractors m, where m ∈ {1, . . . , 20} (see legend).
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Figure A.11: Density function of the number of attractors for the AUGM-
RND configuration. It has been computed from experimental data on 2 ∗
104 runs with same ns. The sixteen plots show how it changes with ns ∈
{0, 1, . . . , 15} (see plot title).
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Figure A.12: Empirical cumulative distribution function (ECDF) of the num-
ber of attractors for the AUGM-RND configuration. It has been computed
from experimental data on 2∗104 runs with same ns, with ns ∈ {0, 1, . . . , 15}
(see legend). Even though adding self-loops results in an increased number
of attractors also in the case of AUGM-RND configuration, changes in the
distribution of the number of attractors are less substantive with respect to
the previous configurations.
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Figure A.13: δmin and δmax as a function of the number of attractors m for
the AUGM-RND configuration. They have been computed from experimen-
tal data on 2 ∗ 104 runs with same ns. The sixteen plots show how they
change with ns ∈ {0, 1, . . . , 15} (see plot title). x axis limit changes with
ns from 1 to the largest number of attractors for which at least 30 sampled
BNs have been found. If compared across networks with the same number of
attractors—but different ns—maximum and minimum values of the ATM di-
agonal do not change, meaning that adding self-loops with the AUGM-RND
configuration does not provide neither an advantage nor a disadvantage in
terms of attractor robustness.
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Figure A.14: δmin, δmax and ATM diagonal values as a function of the
number of attractors for AUGM-RND configuration. Results are shown for
ns ∈ {0, 4, 8, 12} (see title in each plot).

Figure A.15: δmin (left) and δmax (right) as a function of the fraction of
nodes with a self-loop for AUGM-RND configuration. Each plot refers to
the average values of δmin (left) and δmax (right) on 30 networks with the
same number of attractors m, where m ∈ {1, . . . , 20} (see legend).
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Figure A.16: Analytical model results for AUGM-RND and CONST-RND
cases with varying bias as a function of the fraction of self-loops. Since
the average outcome of the Boolean functions in RBN ensembles of random
functions follows the bias parameter, the analytical model for the estimation
of the average number of fixed points for the RND cases can be reduced to
the following formula [bq+(1− b)(1− q)]n (b = bias, n = nodes number, q =
probability of assigning the value 1 to a node).

Figure A.17: Analytical model results for the CONST-OR case with varying
bias as a function of the fraction of self-loops.
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Figure A.18: Analytical model results for the cases AUGM-OR with varying
bias as a function of the fraction of self-loops.
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