
Alma Mater Studiorum
Università di Bologna

DOTTORATO DI RICERCA IN
SCIENZE STATISTICHE

CICLO XXXII

Settore Concorsuale: 13/D1
Settore Scientifico Disciplinare: SECS-S/01

MULTIPLE GRAPH STRUCTURE
LEARNING:

A COMPARATIVE ANALYSIS

Presentata da: Violetta Zoffoli

Coordinatrice Dottorato: Supervisore:
Prof.ssa Alessandra Luati Prof. Alberto Roverato

Co-supervisore:
Prof. Stefano Lodi

Esame Finale Anno 2020

Abstract

In the context of analysing multivariate Gaussian distributions under differ-
ent experimental conditions, recent studies have focused on retrieving the
patterns of the conditional independences between pairs of variables for each
condition. Given the representation of non-zero partial correlations as edges
in a graph, we refer to this domain as Multiple Graph Structure Learning.

In application problems that assume some similarity between the graph
structures, it has been suggested in the literature that learning the graphs
jointly would be advantageous with respect to learning them separately. As
an alternative, the graphs can be learnt directly from the difference of the
concentration matrices.

The aim of this thesis is to understand the advantages and limitations
of such learning methods. In order to do so, we compare these strategies
by constructing a comprehensive and detailed simulation study analysis that
includes different graph structures, different sample sizes, different dimen-
sions and different levels of similarity between the experimental conditions.
We evaluate the performance of the methods using the precision and recall
indexes.

From the results of our simulation, it is evident that the underlying limi-
tation of all the graph structure learning methods resides in the model selec-
tion, which corresponds to the choice of `1-norm penalty terms. This leads
to the identification of graphs with highly variable densities, which hinders
the method comparison.

We then impose that the models reproduce the true graph densities and
we explore how different the resulting graphs are with respect to each learning
method and simulation scenario.

Contents

1 Introduction 1

2 Graphical Models 5
2.1 Fundamentals . 5
2.2 Markov properties . 8
2.3 Gaussian Graphical Models 8
2.4 Maximum Likelihood Estimate 10
2.5 Graphical Lasso . 12

3 Multiple Graph Structure Learning 17
3.1 Developments in the Early 2000s 17
3.2 Separate Graph Structure Learning 19
3.3 Joint Graph Structure Learning 20

3.3.1 Reparametrization Joint Graphical Lasso 21
3.3.2 Fused and Group Joint Graphical Lasso 23

3.4 Differential Graph Structure Learning 25
3.4.1 Direct Estimation of Graphs of Differences 26

3.5 Comparison of methods . 27

4 Simulation Study Analysis 31
4.1 Simulation Settings . 32
4.2 Graph Structures . 33

4.2.1 Random Graph . 34
4.2.2 Markov-chain graph 34
4.2.3 Tree graph . 35
4.2.4 Scale-free graph . 36

4.3 Covariance Matrix Generation 42
4.3.1 Group Distinction . 46

4.4 Data Generation . 49
4.5 Methods . 50
4.6 Model Selection criteria . 51

4.6.1 AIC selection algorithm 55
4.7 Performance Evaluation . 57
4.8 Results . 64

4.8.1 Fixing the density . 71
4.9 Final Remarks . 77

5 Conclusions 81

References 83

A Tables 89
A.1 Model selection: CV, AIC, BIC 89
A.2 Performance results: AIC selection 92

A.2.1 Separate and Joint GSL 92
A.2.2 Differential GSL . 103

A.3 Performance results: model selection with fixed densities . . . 112
A.3.1 Separate and Joint GSL 112
A.3.2 Differential GSL . 118

B Script 123

Chapter 1

Introduction

Preface
In the recent decades, the research interest in biological, social as well as
technological matters regarding the connectivity of items has increased vastly.
According to the domain, a network of connections can be constructed in a
variety of ways, for instance based on how individuals interact with each
other, how genes in our DNA are expressed, how our brain activates, or even
how web pages are linked to each other to create the World Wide Web.

Since this problem may be applicable to a multitude of real-world situ-
ations, the study of graphical models allows analysing the way interactions
influence life as we know it. How are we connected as social beings? How do
the genes encoding our body interact with each other? How does our brain
activate under different conditions? These are all questions that may be an-
swered by investigating the object that we are inclined to model through a
graph.

Graphical models
A graph is a structure made of a set of vertices V and a set of edges E
connecting pairs of the vertices. The reason why it a useful and versatile
tool to many real-world applications is the ability to associate vertices to
random variables and edges to their interactions. In this sense, we talk about
a graphical model representing a statistical one. The focus for the statistical
analysis is on how to recover the interactions between the variables and the
graphical model comes in to associate these interactions to edges and has the
advantage of portraying these pieces of information in a visually intuitive
way.

Applications
For instance, we can think of a few examples which attribute to vertices and
edges different meanings. In the domain of social networks, vertices are indi-

1

viduals and edges can be a degree of acquaintance, such as mutual friendship
(e.g. Facebook) or one-sided following (e.g. Twitter). In the genetic field,
we can think of vertices as positions (loci) on the DNA strands, in which
expression levels for genes are recorded and the edges are to be intended as
gene co-expression levels. Furthermore, in the analysis of neuronal activity,
the vertices are associated to regions of the brain and if the interest is in
how the regions co-activate among each other, the edges are retrieved by
recording oxygenation levels in the blood.

According to the problem at hand, the type of graph associated to the
statistical model changes. Graphs where edges include directionality, for
instance, are suited for causal inference, whereas correlation is more easily-
interpretable using graphs that do not portray a direction on the edges.
Furthermore, the random variables associated to the vertices follow a specific
probability distribution. The distribution itself determines the way in which
a graph is estimated from the observed data.

High dimensional data
In the context of graphical modelling, not all applications face the same
issues. Most of them, however, share the necessity of reducing the dimen-
sionality of the data. For instance, in the analysis of DNA, a biologist may
collect thousands of variables, but only for a few individuals. And even
when the variables are less than the observed samples, there could still be
too many interactions being shown by the model, which impacts negatively
on the ability to interpret of the results of the graph estimation.

For this reason, penalized regression approaches have been largely em-
ployed in the last decades and various methods have been suggested, espe-
cially in the context of graphical models where the random variables are
assumed to be Gaussian-distributed.

Multiple Graph Structure Learning
While graphical models have been popular for decades ([Lauritzen, 1996])
and applied to several research topics, a more specific interest has recently
risen upon their employment in analyses regarding the differentiation of con-
nectivity across multiple conditions. As an example, let us consider the case
where we are interested in the interactions between six variables that are
observed under two different conditions, assuming that among the two, the
interactions are subject to modifications.

Figure 1.1 shows two graphs of six vertices and six edges each, three being
common, three being different. In the literature, there have been several
strategies in learning multiple graphs. The most immediate one is to consider
each graph separately and apply a graph learning model to each.

2

1
2

34

5
6

Graph 1

1
2

34

5
6

Graph 2

Figure 1.1: Two six-vertex graphs

Another strategy consists in learning the graphs jointly, by exploiting
the commonality of their structures. This is shown in Figure 1.2: each of
the graphs is learnt by borrowing strength from the common structure (red
edges). Alternatively, one could focus directly on the graph of the different
edges between the two conditions, as shown in Figure 1.3. This strategy does
not retrieve the single graphs, but rather their differences and for this reason
it is referred to as a differential graph structure learning procedure.

1
2

34

5
6

Graph 1

1
2

34

5
6

Graph 2

Figure 1.2: Graphs learnt jointly
(common edges in red)

1

2

34

5

6

Diff Graph

Figure 1.3: Graphs learnt
differentially

To give some context to Multiple Graph Structure Learning, we may
think of the previously-mentioned example of the analysis of DNA strands.
To investigate the co-expression of genes for one set of individuals, a single
graph is employed. However, there could be an interest in comparing the
conditional dependence structure between genes of individuals that differ
for some characteristic, such as the presence or absence of a tumor. In that
case, we can expect most of the interactions between the genes to be common
under the two conditions, but some could co-express differently. It could be

3

convenient, then, to either employ a joint learning technique or a differential
one.

Comparison through simulation
Given the variety of estimation techniques for Multiple Graph Structure
Learning models under the assumption of Gaussianity, this work aims at
giving a useful comparison of such methods under different scenarios. Since
many different applications may be characterized by varying graph structure,
as well as varying sample size and dimension, we construct a simulation that
comprehends a set of scenarios that may suit different datasets. The aim of
this simulation analysis is to understand whether there are scenarios under
which one graph structure learning method would be preferred to the others
and how well they are able to learn the different features of multiple graphs
with varying characteristics.

4

Chapter 2

Graphical Models

2.1 Fundamentals
A graph is a structure that we denote as a pair G = (V,E), where V is a
finite set of vertices and E is a set of edges. The set of edges is a subset of
V ×V , i.e. it is a set of pairs of vertices. For a pair of vertices (i, j) ∈ V ×V ,
we indicate with i ∼G j the presence of an edge between i and j under graph
G, which we also refer to as an adjacency between the pair of vertices.

It should be specified that, depending on the directionality of the edges,
there exists a variety of graph types such as directed, undirected or bidi-
rected [Lauritzen, 1996], but for the purpose of this research only undirected
graphs are relevant. We shall then refer to i ∼G j solely as a non-directional
connection between the two vertices. Furthermore, we do not consider the
effect of vertices being related to themselves, thus eliminating loops.

1

2

3

4

5

6

Figure 2.1: A simple undirected graph with six vertices

5

Figure 2.1 shows a simple undirected graph with six vertices and eight
edges. We use the term simple to indicate the property of not having multiple
edges and not having loops, i.e. no edges of the form (i, i), i ∈ V [Lauritzen,
1996]. From here onwards, we will always assume graphs to be undirected
and simple.

The interpretation of a graph is versatile to various statistical applica-
tions. In this thesis, a graph structure finds its statistical equivalent by
considering the vertices as random variables which we are able to observe
and analyse and edges as interactions. Since we do not consider directional-
ity, we may interpret the presence of an edge as a non-zero partial correlation.

Depending on the application field and on the research problem itself, the
variables may have different characteristics, mainly in terms of distributional
properties. In other words, for a set of vertices V , we observe a vector
(X1, . . . , X|V |). We then refer to its distribution as

XV = (X1, . . . , X|V |) ∼ P (2.1)

where P is some |V |-variate distribution function. Throughout this work,
we denote vectors and matrices with bold letters.

At this point, we define how these variables entail a graphical model. The
fundamental basis upon which a graphical model is built is the concept of
conditional independence.

Conditional independence: Given three random variables Xi, Xj, Xk,
{i, j, k} ⊆ V that admit a joint distribution P , we say thatXi is conditionally
independent of Xj given Xk if for any measurable set Si in the sample space
of Xi there exists a conditional probability P(Si|Xj, Xk) which is only a
function of Xk. We use the notation Xi ⊥⊥ Xj|Xk to indicate conditional
independence.

For discrete random variables, conditional independence can be expressed
as:

P(Xi = xi, Xj = xj|Xk = xk) = P(Xi = xi|Xk = xk)P(Xj = xj|Xk = xk)

Where xi, xj, xk are any realizations of Xi, Xj, Xk respectively and the
equation holds for any value xk for which P(Xk = xk) > 0.

If the variables admit joint density with respect to a product measure µ,
we can write Xi ⊥⊥ Xj|Xk if

fXiXj |Xk(xi, xj|xk) = fXi|Xk(xi|xk)fXj |Xk(xj|xk) for all xi, xj, xk

6

The equation must hold almost surely with respect to P and for any realiza-
tion xk of Xk such that fXk(xk) > 0 [Lauritzen, 1996].

We can extend the definition of conditional independence to random vec-
tors. Let A,B,C be three subsets of V . For discrete random vectors, we say
that XA ⊥⊥ XB|XC if

P(XA = xA,XB = xB|XC = xC) = P(XA = xA|XC = xC)P(XB = xB|XC = xC)

For any value of the realizations xA,xB,xC of XA,XB,XC respectively.
For continuous random vectors, we have conditional independence if:

fXAXB |XC
(xA,xB|xC) = fXA|XC

(xA|xC)fXB |XC
(xB|xC) for all xA,xB,xC

The equation must hold almost surely with respect to P .
Moreover, in regard to three subsets A,B,C of V in a graph G, we also

introduce the concept of graph separation.
Graph separation: Let us define a path (a, b) of length r as a sequence

γ0 = a, . . . , γr = b such that (γi−1, γi) ∈ E, i = 1, . . . , r. The subset C is an
(a, b)-separator if all paths from a to b intersect C. C separates A from B if
it is an (a, b)-separator for any a ∈ A, b ∈ B. We indicate graph separation
as A

G
⊥ B|C [Lauritzen, 1996].

In Figure 2.1, if A = {2, 5}, B = {1} and C = {3, 4, 6}, C separates A
from B.

In addition to this, define the concept of boundary of a vertex.
Boundary: The boundary of a vertex i, indicated as bd(i), is the set of

vertices adjacent to i. In Figure 2.1, for instance, bd(4) = {2, 3, 6}.

To conclude, we give a definition for graph density.
Graph density: For a simple undirected graph, the density corresponds

to the proportion of present edges over the total possible edges. Since loops
are not considered and the direction is not influential, this can be computed
for a graph G = (V,E) as

GD = |{(i, j) : i ∼G j; i, j = 1, . . . , V ; i < j}|
|V |(|V | − 1)/2

7

2.2 Markov properties
A graphical model is a representation, through a graph, of the set of condi-
tional dependencies between the variables associated to V . The conditional
independence between two variables Xi, Xj, ∀{i, j} ⊆ V , is represented by a
missing edge in G only if the distribution of XV satisfies the pairwise Markov
property with respect to G.

Pairwise Markov property:
{i, j} ⊆ V, i �G j =⇒ Xi ⊥⊥ Xj|XV \{i,j}

The pairwise Markov property therefore describes the conditional inde-
pendence relationship between pairs of non-adjacent vertices.

Other two Markov properties which we will refer to are the Local Markov
Property and the Global Markov Property.

Local Markov property: ∀ i ∈ V , Xi ⊥⊥ XV \cl(i)|Xbd(i)
Where cl(i) = {i} ∪ bd(i).
This property thus concerns the conditional independence between a

vertex and the set of its non-adjacent vertices.

Global Markov property: For any disjoint subsets A,B,C ⊆ V such
that A

G
⊥ B|C , it holds that XA ⊥⊥ XB|XC .

The global property then does not pertain a single vertex but rather the
conditional independence between sets of vertices.

These properties are not equivalent in general for any graph and we re-
mark that the global property implies the local, which implies the pairwise
one, while the inverse is not always true. The converse implication, however,
does hold for conditional independence when P has a positive density [Lau-
ritzen, 1996].

2.3 Gaussian Graphical Models
When it comes to the distributional assumptions of these variables, we merely
stated a joint distribution P in Equation (2.1). While there is no theoretical
constraint on P , we focus on the case where the distribution is a multivari-
ate Gaussian one. We do stress the relevance of Gaussian distributions for
biological research topics, such as gene co-expression analysis on microarray
data [Babu, 2004].

8

However, many problems do not assume gaussianity. Among these, we
mention the analysis of co-expression data arising from RNA-sequencing. In
this case, each variableXj,∀j ∈ V , is usually modelled according to a Poisson
distribution or a negative-binomial one [Anders and Huber, 2010].

Once we established our distributional interest, we may explore the advan-
tages of assuming Gaussian distribution for the variables making the vertices
of a graph.

For notation purposes, we indicate that |V | = p. Moreover, we assume
that the p-variate distribution is observed across a sample of n individuals.
Therefore, we can store the information given by the sample in a n×pmatrix,
that we indicate with x. Each row x(i) is an independent observation of the
p-variate Gaussian distribution, i = 1, . . . , n. Each column xj is a set of n
observations of the j-th random variable, j = 1, . . . , p.

We can then compute the sample covariance matrix as
S = 1

n

∑n
i=1(x(i) − x̄)T (x(i) − x̄), being x̄ the sample mean vector.

A fundamental property of the Gaussian distribution that relates to
graphical models is the correspondence between conditionally independent
pairs of variables and zero elements of the inverse of the covariance matrix.

More precisely, let us consider a p-variate normal distribution for the i-th
element of the sample, i = 1, . . . , n: X(i) ∼ Np(µ,Σ).

Let us consider two variables Xi and Xj, {i, j} ⊆ V , and define the bi-
dimensional random vector Xij = (Xi, Xj). We shall denote V \{i, j} as a
and partition the mean vector and covariance matrix as:

µ =
[
µij

µa

]
Σ =

[
Σij,ij Σij,a

Σa,ij Σa,a

]
Where Σij,ij is a 2× 2 matrix and Σa,a is a (p− 2)× (p− 2) matrix.

The conditional distribution of Xij|Xa = xa is given by

Xij|Xa = xa ∼ N2(µij|a,Σij|a)

Where µij|a = µij + Σij,a(Σa,a)−1(xa − µa) and
Σij|a = Σij,ij −Σij,a(Σa,a)−1Σa,ij.

The covariance matrix of the conditional distribution is related to the
concentration matrix of the joint distribution, Ω = Σ−1. Using the same
partitioning,

Ω =
[
Ωij,ij Ωij,a

Ωa,ij Ωa,a

]

9

By using block-matrix inversion, it is easy to prove that
Ωij,ij = [Σij,ij −Σij,a(Σa,a)−1Σa,ij]−1 = [Σij|a]−1.

Let us assume from now onwards, for simplicity, that the data is centred
around zero: X(i) ∼ Np(0p,Σ). The concentration matrix of
Xij|Xa = xa is

Ωij,ij =
[
ωii ωij
ωji ωjj

]
Keeping in mind that the matrix is symmetric, we have that:

COV (Xi, Xj|Xa) = {(Ωij,ij)−1}i,j = − ωij
ωiiωjj − ω2

ij

From which follows that ωij = 0 ⇐⇒ Xi ⊥⊥ Xj|XV \{i,j}.
In this sense we can use a graph G(Ω) based on the concentration matrix,

also known as a concentration graph [Cox and Wermuth, 1996], to represent
a multivariate Gaussian distribution, since i �G j ⇐⇒ ωij = 0. This graph
not only satisfies the pairwise Markov property, but also the global one, as
the density of the normal distribution is positive.

2.4 Maximum Likelihood Estimate
When it comes to estimating the conditional independence patterns of data
that are p-variate normally distributed, the maximum likelihood estimator for
the covariance matrix shows convenient properties that facilitate retrieving
such structure.

The maximum likelihood estimator Σ̂ for a covariance matrix Σ, given
a sample matrix S and with respect to a concentration graph G(Ω), is such
that:

{
σ̂ij = sij if i ∼G j or i = j

ω̂ij = 0 if i �G j
(2.2)
(2.3)

Where Ω = Σ−1 and consequently Ω̂ = Σ̂−1.

The MLE also satisfies two properties [Dempster, 1972]:

• Existence and uniqueness: if there exists a positive definite symmetric
matrix that satisfies (2.2) then there exists only one such matrix Σ̂
such that Σ̂−1 also satisfies (2.3).

10

• Maximum entropy: among the matrices that satisfy (2.2), the choice
Σ̂ has maximum entropy.
While in general, for a density function f(x) the entropy is defined
as −

∫
f(x) log f(x)dx, in this case, the entropy for the multivariate

normal distribution results in log det Σ.

Therefore, to find an estimate for the covariance matrix that also allows
reconstructing a graph through its inverse, one should find its maximum
likelihood estimate.

Given a number of observations n, let us express the likelihood as a func-
tion of the concentration matrix:

L(Ω) ∝ det(Ω)n2 exp
{
−1

2

n∑
i=1

x(i)TΩx(i)
}

= det(Ω)n2 exp
{
−1

2

n∑
i=1

tr(Ωx(i)x(i)T)
}

= det(Ω)n2 exp
{
−1

2tr
(

Ω
n∑
i=1

x(i)x(i)T
)}

= det(Ω)n2 exp
{
−n2 tr(ΩS)

}
= det(Ω)n2 exp

{
−n2 tr(SΩ)

}

By taking the logarithm, the function becomes:

l(Ω) = logL(Ω) ∝ n

2 log det(Ω)− n

2 tr(SΩ)

∝ log det(Ω)− tr(SΩ)

Therefore, the concentration graph G(Ω) can be retrieved by solving the
maximization problem:

Ω̂ = arg max
Ω

{log det(Ω)− tr(SΩ)} (2.4)

For the saturated model, i.e. |E| = p2, we may differentiate with respect
to each element of Ω and set the derivative to zero, which leads to:

ω−1
ij − sij = 0 ∀ i, j = 1, . . . , p (2.5)

From which it is easy to conclude that for the saturated model, the max-
imum likelihood estimate is Σ̂ = S.

In general, when |E| < p2, (2.5) does not hold for every (i, j). In order
to calculate the maximum likelihood estimate satisfying (2.2) and (2.3), one

11

needs to perform a matrix completion problem. For instance, given a graph
G = (V,E) such that {(1, 3), (2, 3), (2, p)} /∈ E, the maximum likelihood
estimate complies with the following structure:

ΣG =

s11 s12 ∗ . . . s1p
s21 s22 ∗ . . . ∗
∗ ∗ s33 . . . s3p
...
sp1 ∗ sp3 . . . spp

The elements of ΣG corresponding to an edge in G or a diagonal element

are obtained from their corresponding elements in S. The remaining ones are
not found directly in S and are indicated with ∗ to denote that their values
are to be computed.

Therefore, when G is known and S is observed, the maximum likelihood
estimation problem reduces to completing ΣG, i.e. retrieving the unknown
elements of Σ̂ in order to satisfy (2.3) as well as (2.2).

Several iterative algorithms have been developed to obtain such estimate,
many of which follow a coordinate descent approach [Uhler, 2017]. Among
the most widely-known, we mention the Iterative Proportional Scaling (IPS)
algorithm. The MLE is obtained by iterating on the cliques of the graph (i.e.
maximal complete subsets of vertices), using the reciprocal implications of the
pairwise, local and global Markov properties for multivariate Gaussian data.
After starting from an initial estimate Ω̂ = Ip whose entries are adjusted
at each step of the algorithm to satisfy both (2.2) and (2.3), the algorithm
converges to the MLE, as is proved in [Speed and Kiiveri, 1986].

On the other hand, one could perform the coordinate descent on the dual
problem, starting from the sample covariance matrix and cycling through
the entries of S that correspond to a missing edge and update their values in
order to maximize the entropy and simultaneously satisfy (2.3) [Uhler, 2017].

2.5 Graphical Lasso
As discussed in Section 2.4, the maximum likelihood estimate is found by
solving the maximization problem (2.4). In the saturated model, since
Σ̂ = S, the estimate for the concentration matrix can be found as Ω̂ = S−1,
assuming that the sample covariance matrix is invertible.

In general, for the maximum likelihood estimate to exist, the sample
covariance matrix needs to be positive definite. In practice, this condition
may not always hold, as whenever the dimension of data p is larger than the

12

sample size n the data matrix x ∈ Rn×p is almost surely not full rank. It is a
common scenario in applications such as the genomic field, where thousands
of genes are analysed simultaneously and only few observations are available
due to the cost of genome sequencing. Furthermore, even in cases where
n > p, the eigenvalues of S may be distorted to the point of making the matrix
is ill-conditioned. While this does not compromise positive-definiteness, it
does imply that the estimates tend to suffer from large estimation error
[Hannart and Naveau, 2014].

One of the first approaches to retrieve the structure of high-dimensional
graphs was suggested by [Meinshausen and Bühlmann, 2006]. The problem
they suggest is neighbourhood selection: reconstructing for each node the
set of its neighbours, i.e. its adjacent vertices, so that iteratively the whole
graph is obtained. They suggest that neighbourhood selection is performed
for each node through an `1- norm penalty. Using the fact that the missing
edges correspond to elements of the concentration matrix being zero, they
estimate for each node j the vector of coefficients θ̂j that predict Xj with a
penalty term ρ on the `1-norm, as in the following equation:

θ̂j = arg min
θ

(n−1‖Xj − xθ‖2
2 + ρ‖θ‖1)

The elements of θ̂j being non-zero correspond to neighbours of vertex j.
This is repeated for all vertices. It is clear then that neighbourhood selection
operates via a Lasso-type [Tibshirani, 1996] variable selection strategy. Fur-
thermore, they show that the neighbourhood selection estimate is consistent
for high-dimensional sparse graphs [Meinshausen and Bühlmann, 2006].

The covariance selection problem was later on analysed by [Banerjee et al.,
2008] and [Friedman et al., 2008], who proposed two iterative approaches
that start from a modification of the sample covariance matrix to ensure
positive definiteness and subsequently update the entries to satisfy (2.3), in
a coordinate-descent fashion.

The objective of both the algorithms is to retrieve the concentration ma-
trix (and consequently, graph) by maximizing the penalized log-likelihood
function:

Ω̂ = arg max
Ω

[log det(Ω)− tr(SΩ)− ρ‖Ω‖1] , (2.6)

where ρ > 0 is the penalty term, which needs to be strictly greater
than zero when p > n. While the two approaches by [Banerjee et al., 2008]
and [Friedman et al., 2008] are structurally similar, the implementation of
the latter is an iterative penalized regression problem and it has become

13

more widely-known as the Graphical Lasso.

Let us denote the iterative estimate for the Lasso as W and partition it
as

W =
[
W11 w12
wT

12 w22

]
Where W11 is a (p− 1)× (p− 1) matrix, w12 is a (p− 1)× 1 vector and

w22 is a scalar. Let us use the same partition also for the sample covariance
matrix S.

In the iterative algorithm, the objective is to estimate, for each vertex,
the corresponding entries of w12. It is to be intended that the partition shifts
according to the vertex. [Banerjee et al., 2008] find the solution as

w12 = arg min
y
{yTW−1

11 y : ‖y− s12‖∞ ≤ ρ}

This is however equivalent to solving the problem

β̂ = arg min
β

{1
2‖W

1/2
11 β −W−1/2

11 s12‖2
2 + ρ‖β‖1

}
(2.7)

And then multiplying w12 = W11β̂. Equation (2.7) is the penalized
regression approach employed by [Friedman et al., 2008]. The algorithm for
the Graphical Lasso goes as follows:

1. Initialize: W = S + ρIp

2. For j = 1, . . . , p:
Solve (2.7) and fill in the corresponding row-column using w12 = W11β̂

3. Repeat step 2 until convergence.

The first step of the algorithm ensures the positive definiteness of the
modified sample covariance matrix, provided ρ > 0. By using block coor-
dinate descent, the algorithm isolates one row-column at a time (diagonal
excluded) and fits a Lasso regression using the remaining (p − 1) × (p − 1)
block of the matrix. This maintains the positive definiteness of the estimate
at any point of the algorithm. Since the algorithm was proved to be con-
vergent [Banerjee et al., 2008] [Friedman et al., 2008], the estimate for Σ is
obtained at the conclusion of step 3.

14

As a further remark on the Graphical Lasso, we discuss the relationship
between the penalty term and the dimension of the data. As previously men-
tioned, ρ needs to be strictly greater than zero whenever dimension reduction
is to be imposed. The larger this value is, the stronger the regularization
operates on the concentration matrix, which as a consequence controls the
sparsity of the estimate. It should be also noted that the level of regular-
ization is not scale-invariant, in that the order of magnitude of the data
influences the effect that the regularization parameter has on the shrinkage
of the estimates. If we considered two sets of data that are equal other than
a multiplying factor, the larger data would require a higher regularization
parameter ρ than the smaller data to obtain the same estimate.

Moreover, it could be discussed whether the `1- norm could be substituted
to other ones, such as `0 or `2. The `0 norm does not guarantee convexity
of the objective function, while `2 does not have the parsimony property of
`1. Therefore, it is the only viable solution that guarantees variable selection
while maintaining the convexity needed for high-dimensional problems [Mein-
shausen and Bühlmann, 2006].

15

16

Chapter 3

Multiple Graph Structure
Learning

3.1 Developments in the Early 2000s
The learning of concentration graphs discussed in Chapter 2 may be applied
to a single population, but it may also be involved in the analysis of multiple
populations to be compared. More precisely, we refer to multiple experimen-
tal conditions over sets of statistical units for which we wish to learn the
p-variate conditional dependence structure.

For instance, in biology, a large quantity of studies focus on comparing a
healthy condition and a diseased one. In this case, if the aim of an analysis
were to learn the conditional independence structure of the p variables under
the two conditions, one would need to learn both graphs. In a more general
setting, this could be applied to any number of conditions for which the
dependency structure is to be compared.

This research subject originates in the early 2000s, when in application
fields such as the genomic one, researchers attempted to compare the distri-
bution of p variables (e.g. genes) observed under two settings (e.g. healthy
and tumor-affected subjects). The main concern lied in the dimension of the
problem, having a large number of variables for a small sample size, due to
the cost of retrieving the data.

Let us denote with H the number of conditions under analysis. For each
one, the same p variables are recorded over a set of nh subjects, h = 1, . . . , H.
We can also refer to these conditions as groups, since the characteristic defin-
ing the experimental condition is shared among the subjects in each one.

Therefore, we are interested in the distributions of X(1)
V , . . . ,X(H)

V , where
the pairs (X(h)

V ,X(h′)
V), h, h′ = 1, . . . , H are mutually independent. As stated

17

in Section 2.3, we do focus on the case of Gaussian distributions, therefore
we assume that

X(h)
V ∼ Np(µ(h),Σ(h)) h = 1, . . . , H (3.1)

The simplest proposition to detect variables that behave differently in
different conditions was to use a t-test for comparing means in a two-group
scenario or ANOVA for multiple groups [Cui and Churchill, 2003]. One lim-
itation of this procedure is that the t-test has a low power, especially in
cases where the amount of variables greatly exceeds the sample size [Jean-
mougin et al., 2010]. Furthermore, there is a need to correct for multiple
testing using methods such as the Bonferroni or the Benjamini-Hochberg
correction [Bogdan et al., 2015].

In the mid 2000s, other techniques developed as a complement to
analysing the difference in means between varying experimental condi-
tions. More specifically, there was a supplementary focus on the dependency
between couples of random variables conditioned on the remaining ones.

A suggestion by [Choi et al., 2005] consists in constructing a graph based
on the Pearson correlation coefficient for pairs of variables under two different
conditions (healthy against tumor), where only the top 0.5% of correlations
in absolute value are kept as significant. The graph for each experimental
condition is constructed by introducing an edge between nodes for which
the correlation coefficients are above the given threshold. This approach is
followed similarly by [Reverter et al., 2006], who join the analysis of differ-
ences in means of the variables under two conditions and the connectivity of
pairs of variables based on the Pearson correlation coefficient. Another sug-
gestion based on the correlation between variables is followed by [Hu et al.,
2009], who perform a test to compare the Fisher-transformed vectors of the
correlations between two conditions and develop a nonparametric test to
detect differentially-correlated variables. On the other hand, for Gaussian-
distributed data, another idea is given by [Schäfer and Strimmer, 2004], who
test the partial correlation between pairs of variables, exploiting the proper-
ties of the maximum likelihood estimate, as in Section 2.4.

These suggestions consider the correlation between pairs of variables un-
der different conditions and they are highly based on the threshold deter-
mining the magnitude of correlation to be considered significant. However,
they do not aim at reconstructing the dependency structure for the whole
set of variables, which is instead done in [Zhang et al., 2009] by formulating
a linear model for the local dependency structure based on the dependence
of pairs of variables conditioned on the remaining ones. The parameters for

18

the model are estimated through an `1 constrained regression. They detect
statistically-significant topological changes by comparing the variability in
prediction using the local dependency structure estimated for the two condi-
tions.

Furthermore, there have been propositions to compare the concentration
matrices between two conditions. For instance, [Massa et al., 2010] suggest
constructing a likelihood ratio test for the hypothesis that the concentration
matrices are equal among the two conditions, thus giving a global test for
differential connectivity, i.e. whether the strength of connections between
variables is different between experimental conditions. [Kiiveri, 2011] give
a detailed procedure to test for differential connectivity by evaluating the
nullity of the matrix of differences between two or more conditions.

In the case of Gaussian-distributed data, focusing on the pairs of cor-
related variables might be less informative than reconstructing the whole
network based on the concentration matrix. Furthermore, their effectiveness
highly depends on the magnitude of the correlations, as well as the dimension
of the data and the sample size, since many of these approaches are based on
fixing thresholds on the correlations to detect differentially connected pairs
of variables. However, test statistics for differential connectivity based on the
nullity of the whole concentration matrices may not be useful, as it would not
give information on which elements of the matrix are leading to differential
connectivity.

For this reason, we remark the development in the early 2010s of the idea
that identifying the different patterns of conditional dependence under two
or more experimental conditions could be done by learning their underlying
graph structures. We refer to this statistical problem as Multiple Graph
Structure Learning (MGSL). Following the development of the Graphical
Lasso algorithm [Friedman et al., 2008], this was consequently done by ob-
taining the estimate for the concentration matrices and thus identifying the
graphs. In the case where there are multiple conditions to be compared, re-
searchers have approached the issue by exploiting the nature of the problem,
either by learning the graphs jointly or by learning directly the difference
between conditions.

3.2 Separate Graph Structure Learning
Let us assume that we observe p variables over a set of H experimental
conditions. In each one, we deal with a Gaussian distribution, as in Equation
(3.1). As done for a single population, we can assume that the data is centred

19

around zero, so that for each condition, X(h)
V ∼ Np(0p,Σ(h)), h = 1, . . . , H.

Clearly the objective of a MGSL procedure is to learn the H graphs and
with Gaussian data, this amounts to estimating the concentration matrices
Ω(h) = [Σ(h)]−1. The simplest way to do so is to estimate each of the matrices
alone, as if they were H separate graph learning problems.

Let us assume that we observe the p variables nh times for each condition.
Let us then denote the nh × p centred data matrix for the h-th condition as
x(h) and the corresponding sample covariance matrix as S(h) = 1

nh
x(h)Tx(h).

Using the notions of the Graphical Lasso, as in Section 2.5, we can apply
the method for learning multiple graphs by recovering an estimate for the
concentration matrix associated to each graph.

If we wish to learn H graphs based on each S(h), h = 1, . . . , H, we will
have H separate Graphical Lasso problems of the form:

Ω̂(h) = arg max
Ω(h)

[
log det(Ω(h))− tr(S(h)Ω(h))− ρ(h)‖Ω(h)‖1

]
h = 1, . . . , H

The tuning parameters ρ(h), h = 1, . . . , H, are specific to each penalized
likelihood maximization problem. Therefore, there is no regard for the possi-
ble similarity between graphs that may happen in studies where the variables
are observed on different experimental conditions.

3.3 Joint Graph Structure Learning
In many application fields, there are situations in which there is a prior
understanding of some degree of similarity between the graphs. For instance,
if a phenomenon is observed under a healthy-patient condition against a
diseased-patient one, it is reasonable to assume that many of the conditional
dependencies between the observed variables do not vary. Such is the case
for gene expression data, as it is assumed that most gene interactions are
similar across human beings and only a few vary under different experimental
conditions [Guo et al., 2011]. Another example would be to consider the brain
activity between two patients: while it is likely that two individuals do not
share completely the same connections, it is on the other hand unlikely that
their brains function in a substantially different manner.

To overcome the limit of fitting separate graphical models that do not
consider any degree of similarity between the conditions, an idea is to operate
a joint fitting. We indicate this approach as Joint Graph Structure Learning

20

(JGSL). We consider two methods to estimate multiple graphs jointly. We
refer to the first as Reparametrization Joint Graphical Lasso, proposed by
[Guo et al., 2011]. The second one entails two procedures, the Fused Joint
Graphical Lasso and the Group Joint Graphical Lasso, both introduced by
[Danaher et al., 2014].

We remark that many applications compare the structure of two popu-
lations, due to the multitude of studies that aim at learning the difference
between healthy and diseased patients. However, the methods explained in
Sections 3.3.1 and 3.3.2 can be applied to estimate the graphs for any number
groups.

3.3.1 Reparametrization Joint Graphical Lasso
One of the first approaches that employed joint graph structure learning for
the model in (3.1) via the Graphical Lasso was suggested by [Guo et al.,
2011]. Their motivation for the joint learning of the graphs is that it is able
to exploit the common nature between them and obtain better estimates
of the graph structures by using a penalty that controls the sparsity in the
common structure and in the differentiated part.

Formally, they parametrize the off-diagonal elements of the concentration
matrices as ω(h)

ij = θijγ
(h)
ij , ∀ i 6= j, h = 1, . . . , H. The common part is

represented by θij, whereas γ(h)
ij may take on different values for each graph,

h = 1, . . . , H.
By allowing this factorization, they define a log-likelihood minimization

criterion for estimating the concentration matrices:

min
Θ,(Γ(h))H

h=1

H∑
h=1

nh
2
[
tr(S(h)Ω(h))− log(det(Ω(h)))

]
+ η1

∑
i 6=j

θij + η2
∑
i 6=j

H∑
h=1
|γ(h)
ij |

(3.2)

In this setting, the sparsity is controlled by η1 for the common components
and by η2 for the different ones. Note that they operate hierarchically, in that
elements shrunk to zero by η1 will be zero in all the graphs and those that
are not can still be shrunk to zero by η2.

The authors then restrain from the computational cost of tuning two
parameters and reformulate (3.2) by inducing a penalty η = η1η2 only on
differentiated elements.

min
Θ,(Γ(h))H

h=1

H∑
h=1

nh
2
[
tr(S(h)Ω(h))− log(det(Ω(h)))

]
+
∑
i 6=j

θij + η
∑
i 6=j

H∑
h=1
|γ(h)
ij |

(3.3)

21

For computational advantages, they search for the local minimizer

min
(Ω(h))H

h=1

H∑
h=1

nh
2
[
tr(S(h)Ω(h))− log(det(Ω(h)))

]
+ ρ

∑
i 6=j

(
H∑
h=1
|ωij|

) 1
2

 ,
(3.4)

where ρ = 2√η. Finally, they solve the local minimization problem by
approximating (3.4) in an iterative form and decomposing it in H optimiza-
tion problems. At each step t, to estimate the h-th concentration matrix for
step t+ 1, the minimization problem is:

(Ω(h))(t+1) = arg min
Ω(h)

H∑
h=1

nh
2
[
tr(S(h)Ω(h))− log(det(Ω(h)))

]
+ ρ

∑
i 6=j

τ
(t)
ij |ω

(h)
ij |

 ,
(3.5)

where τ (t)
ij = {∑H

h=1 |(ω
(h)
ij)(t)|}− 1

2 . The penalty ρ is therefore multiplied,
at each step, by an element-wise penalty based on the entries (ω(h)

ij)(t) of the
concentration matrix at the previous step. Since these can be very small
numbers, their minimum value is set to 10−10 for numerical stability.

When it comes to the implementation of this method, the procedure is
structured as an iterative Graphical Lasso with updated penalizations, as in
Algorithm 1.
Algorithm 1: Reparametrization Joint Graphical Lasso

Initialize: (Σ̂(h))(0) = S(h) + νI, (Ω̂(h))(0) = [(Σ̂(h))(0)]−1, ∀ h
τ

(0)
ij = {∑H

h=1 |(ω̂
(h)
ij)(0)|}− 1

2 , T(0) = [τ (0)
ij]i,j=1,...,p

while not convergent do
Obtain Graphical Lasso estimate (Ω̂(h))(t) following (3.5)
with penalty ρT(t−1),
Update: τ (t)

ij = {∑H
h=1 |(ω̂

(h)
ij)(t)|}− 1

2 , T(t) = [τ (t)
ij]i,j=1,...,p

end while

Convergence is achieved when
∑

h
‖(Ω̂(h))(t)−(Ω̂(h))(t−1)‖1∑

h
‖(Ω̂(h))(t−1)‖1

< 10−5.

The initialization (Σ̂(h))(0) = S(h) + νI is made, for some ν > 0, to ensure
positive definiteness at the beginning of the algorithm. At the conclusion of
the algorithm, H estimates for the H concentration matrices are obtained.

In order to determine which level of regularization ρ is more suited to the

22

data, the authors suggest two model selection criteria. The first chooses the
parameter ρ that minimizes the Bayes Information Criterion:

BICρ =
H∑
h=1

{
nh
2
[
tr(S(h)Ω̂(h)

ρ)− log(det(Ω̂(h)
ρ))

]
+ log(nh)df (h)

ρ

}
, (3.6)

where nh is the sample size for the h-th group, Ω̂(h)
ρ is the estimate for

the h-th concentration matrix with penalty ρ and df (h)
ρ are the degrees of

freedom for the h-th graph with penalty ρ. The degrees of freedom are to be
understood as the number of non-zero elements in the estimated concentra-
tion matrix. More formally, df (h)

ρ = |{(i, j) : i < j, [Ω̂(h)
ρ]ij 6= 0}|.

The second method they suggest to select the model is to use crossvali-
dation, by splitting the dataset into D segments of equal size. For the d-th
segment, they recover the sample covariance matrix for each group, S(h,d).
The concentration matrix is estimated on the remaining data using tuning
parameter ρ, which is denoted as Ω̂(h,−d)

ρ . The optimal parameter is chosen
to minimize the average predictive negative log-likelihood:

CVρ =
D∑
d=1

H∑
h=1

[
tr(S(h,d)Ω̂(h,−d)

ρ)− log(det(Ω̂(h,−d)
ρ))

]
(3.7)

The advantage in choosing the crossvalidation selection method comes
from its accuracy with respect to the BIC. On the other hand, the latter is
computationally more intensive.

3.3.2 Fused and Group Joint Graphical Lasso
The method proposed by [Danaher et al., 2014] for the distribution model
in (3.1) is based on finding the estimates for the concentration matrices
{Ω} = {Ω(1), . . . ,Ω(H)} by maximizing a penalized log-likelihood function.
This method is based on similar premises as the one by [Guo et al., 2011],
as shown in Section 3.3.1. The regularization is required especially in cases
where the number of variables exceeds the number of observations, but also
when the number of observations is not large enough to have stable estimates.
Moreover, this method is built to possibly improve the performance of fitting
H graphical Lasso models separately, by exploiting the similarity between
the H conditions.

The estimates for the concentration matrices {Ω} are found by finding

23

the maximum of the penalized log-likelihood:

{Ω̂} = arg max
{Ω}

{
H∑
h=1

nh
2
[
log(det(Ω(h)))− tr(Σ̂(h)Ω(h))

]
− P ({Ω}))

}
(3.8)

Where P ({Ω}) denotes a convex penalty function, so that the maximiza-
tion problem is strictly concave with respect to {Ω}. The authors choose a
penalty function of the form P ({Ω}) = ρ1

∑H
h=1

∑
i 6=j |ω

(h)
ij | + P̃ ({Ω}). The

first element of this function imposes a traditional `1-norm regularization on
the elements of each of the concentration matrices and when P̃ ({Ω}) = 0,
this corresponds to performing H separate Graphical Lasso problems. They
suggest two possibilities for P̃ ({Ω}): a fused Lasso penalty [Tibshirani et al.,
2005] and a group Lasso one [Yuan and Lin, 2006].

Fused Joint Graphical Lasso.
The Fused Joint Graphical Lasso (Fused JGL) is a method that aims at
solving Equation (3.8) with penalty

P ({Ω}) = ρ1

H∑
h=1

∑
i 6=j
|ω(h)
ij |+ ρ2

∑
h<h′

∑
i,j

|ω(h)
ij − ω

(h′)
ij | (3.9)

In the Fused Graphical Lasso, ρ1 controls the general sparsity of the esti-
mates for the H concentration matrices Ω̂(h) and the parameter ρ2 controls
the similarity of edge values. When ρ1 is large, the H matrices will be sparse
and furthermore, when ρ2 is large, many elements of the matrices will be
equal across the groups.

Group Joint Graphical Lasso.
The Group Joint Graphical Lasso (Group JGL) is the solution to Equation
(3.8) with penalty

P ({Ω}) = ρ1

H∑
h=1

∑
i 6=j
|ω(h)
ij |+ ρ2

∑
i 6=j

√√√√ H∑
h=1

ω
(h)2

ij (3.10)

Here again, ρ1 controls the sparsity of the concentration matrices, whereas
ρ2 regulates the similarity of pattern across the H matrices. As ρ1 increases,
they become overall sparser and as ρ2 increases, the elements of each matrix
tend to be all either zero or non-zero. When ρ1 = 0 and ρ2 > 0, the H
concentration matrices will all have the same sparsity structure. In other
words, the Group JGL induces a similar sparsity pattern, whereas the Fused
JGL induces similar values and therefore promotes a stronger similarity.

As for the method to select the regularization parameters, we remark that
the characteristic of having two parameters to tune allows a large flexibility of

24

the model, but it implies a much heavier computational effort. This was the
motivation to re-parametrize η = η1η2 in Section 3.3.1. In [Danaher et al.,
2014], the authors select the optimal model in terms of Akaike’s Information
Criterion:

AIC(ρ1,ρ2) =
H∑
h=1

{
nh
2
[
tr(S(h)Ω̂

(h)
(ρ1,ρ2))− log det(Ω̂(h)

(ρ1,ρ2))
]

+ 2df (h)
(ρ1,ρ2)

}
,

(3.11)
where Ω̂

(h)
(ρ1,ρ2) is the h-th matrix estimated with penalties (ρ1, ρ2) and the

degrees of freedom df
(h)
(ρ1,ρ2) = |{(i, j) : i < j, [Ω̂(h)

(ρ1,ρ2)]ij 6= 0}| correspond to
the number of non-zero values in such estimated concentration matrices.

Selecting over plausible ranges for ρ1 and ρ2 would imply a grid search
which quickly becomes infeasible for high-dimensional datasets. The authors
suggest performing a dense search over ρ1 with fixed low ρ2 and then a quick
search over ρ2 at the selected value for ρ1.

3.4 Differential Graph Structure Learning
A different approach to graph structure learning problems based on the model
in (3.1) consists in estimating directly the graphs of differences between the
two (or more) populations to be compared. We refer to this as Differential
Graph Structure Learning (DGSL).

For instance, given two concentration matrices Ω(1) and Ω(2) we can
construct the conditional independence graphs associated to them as G1 =
(V,E1) and G2 = (V,E2). We clearly have E1 = {(i, j) : ω(1)

ij 6= 0; i, j ∈
V ; i < j} and similarly for E2. We can then construct a graph of differences
as Gd = (V,Ed), where Ed = {(i, j) : ω(1)

ij − ω
(2)
ij 6= 0; i, j ∈ V ; i < j}.

The main advantage of this kind of methods is in the lack of sparsity
assumption for the individual concentration matrices associated to each of the
graphs. Since only the concentration matrix of differences is estimated, the
sparsity to retrieve the estimates is needed only on the graph of differences.

The key point when choosing between a joint learning method and a dif-
ferential one is the possibility to recover estimates for each of the population
graphs that is given by the former, as opposed to the single estimate that is
produced by the latter.

We show a DGSL method proposed by [Zhao et al., 2014], that essentially
performs an `1-norm regularization on the concentration matrix of differences
between two populations. Another suggestion by [Liu et al., 2014] consists

25

in estimating the ratio between the probability density functions of the two
groups. The latter is applicable to any distribution of the random variables
to be analysed, but we do focus only on the former, since this work mainly
deals with Gaussian-distributed data.

3.4.1 Direct Estimation of Graphs of Differences
This method proposed by [Zhao et al., 2014] relies on the estimation of the
differences between the concentration matrices of multiple populations. Even
though a multi-group expansion is mentioned, the method is built primarily
for comparing two groups.

Therefore, we focus on two concentration matrices Ω(1) and Ω(2). Let
us define ∆0 = Ω(1) − Ω(2), which will be the object of estimation in this
procedure.

Let us also define a few operators on matrices. Given a n× p matrix A,
we indicate as vec(A) the vectorization, i.e. the operation of stacking the
columns of A to obtain a np-dimensional vector. Similarly, for a symmetric
p× p matrix B we define the half-vectorization operator vech(B) that stacks
the columns of the lower-triangular part of B (diagonal included) onto a
p(p+ 1)/2-dimensional vector.

Furthermore, for a pair of matricesC,D, we defineC⊗D as the Kronecker
product of the two matrices. Finally, we indicate |A|∞ as the sup-norm of
any matrix A.

In order to find the estimate for ∆0, given the sample covariance matrices,
the objective is to find a solution ∆̂ to the following equation:

S(1)∆S(2) − (S(1) − S(2)) = 0 for ∆

Notice that the equation always holds for ∆ = ∆0. However, we incur in
the same existence issues when n < p, since there would be infinite solutions
to this problem. Therefore, an `1-norm constrained minimization is proposed.
A formulation as a linear problem is also operated so that the minimization
becomes

∆̂ = arg min |∆|1 s.t. |(S(2)⊗S(1))vec(∆)−vec(S(1)−S(2))|∞ ≤ ρn (3.12)

Note that the kind of regularization in Equation (3.12) imposes sparsity
directly on ∆0 rather than on Ω(1) and Ω(2) individually.

Furthermore, we define a p2 × p(p + 1)/2 duplication matrix D and a
vector β = vech(∆). The authors suggest exploiting the equality (S(2) ⊗
S(1))vec(∆) = (S(2) ⊗ S(1))Dβ. Equation (3.12) is then reformulated as:

β̂ = arg min |β|1 s.t. |DT (S(2) ⊗ S(1))Dβ −DTvec(S(1) − S(2))|∞ ≤ ρn

26

Finally, they modify the regularization strategy by dividing two cases, for
the off-diagonal elements of the matrices and the diagonal ones, the latter
having halved constraints:

β̂ = arg min |β|1, s.t.

|DTS(2) ⊗ S(1)Dβ −DTvec(S(1) − S(2))|O∞ ≤ ρn

|DTS(2) ⊗ S(1)Dβ −DTvec(S(1) − S(2))|D∞ ≤ ρn
2

where the norms | · |O∞ and | · |D∞ denote the sup-norm of the entries
corresponding to off-diagonal and diagonal elements respectively.

It should be noted that this procedure is currently developed and imple-
mented for DGSL analyses involving only two groups, though the expansion
two multiple group comparison is considered by [Zhao et al., 2014]. While
it could be possible to perform all the pairwise comparisons, it could be
time consuming as the number of variables p increases. Therefore, they
suggest comparing each of the populations to a common one built on a
pooled covariance matrix. They define the pooled sample covariance ma-
trix S(P) = ∑H

h=1 whS(h) as a weighted average of the H sample covariance
matrices with weights wh, h = 1, . . . , H.

The problem to be solved for each group h = 1, . . . , H becomes

∆̂(h) = arg min |∆|1 s.t. |S(h)∆S(P) − S(h) − S(P)|∞ ≤ ρn

The graph of differences between two groups h and h′ is estimated as
∆̂(h) − ∆̂(h′).

3.5 Comparison of methods
The methods described in Sections 3.2-3.4 are built with theoretically dif-
ferent purposes, which may result in different performances when applied to
data.

First of all, the simplest approach to learning H graphs consists in fit-
ting H separate Graphical Lasso models. The advantage in doing so resides
primarily in the lower computational complexity of the Graphical Lasso algo-
rithm, which treats every graph as a separate one. Another possible advan-
tage is the ability to choose a different regularization parameter for each of
the graphs, which would be beneficial to learn graphs considerably different
from one another. However, in the case of highly similar structures, it may
not be convenient to use this approach.

When it comes to the JGSL methods, the main distinction lies in the
choice of reformulating the optimization problem either by using a single

27

tuning parameter ([Guo et al., 2011]) or a double penalty ([Danaher et al.,
2014]). In the former, the reparametrization reduces the computational cost
of tuning two parameters: while this is certainly advantageous, [Danaher
et al., 2014] argue that it impacts negatively on the flexibility of the model.
Furthermore, the reformulation (3.4) that the algorithm by [Guo et al., 2011]
is built on uses a non-convex penalty function. This might make the com-
putation slower and the iterative approximation is needed to avoid the op-
timization of a non-convex function. On the other hand, the penalties in
(3.9) and (3.10) avoid this issue, even though the disadvantage of tuning two
parameters is not negligible in terms of computational cost.

The main difference between joint graph structure learning methods and
differential ones is the object of estimation. While JSGL methods estimate
the concentration matrices associated to each of the graphs, the Direct es-
timation method only estimates the graph of differences. This may be a
disadvantage if the aim of the analysis is to reconstruct the graphs for all the
experimental conditions, but it may be advantageous if the focus is merely
on the distinction between them. The benefit of learning the graph of dif-
ferences resides in the need of sparsity only for the difference between the
concentration matrices, rather than for the individual ones.

As a matter of fact, [Zhao et al., 2014] prove that their estimator can
correctly identify the structure of the graph of differences if the matrix of
differences have constant sparsity (which is a reasonable assumption when the
individual graphs have a similar structure) and the covariances between the
variables are not too high. They are weaker restrictions than assuming that
the individual concentration matrices are sparse. In this regard, [Guo et al.,
2011] prove that their estimators for the individual concentration matrices
are consistent if each of the Ω(h), h = 1, . . . , H, is well conditioned and their
non-zero elements are bounded away from zero. Given additional bounds on
the regularization parameter ρ, they also prove sparsistency, i.e. the ability
to recover the set of zero elements of each of the concentration matrices.

Given the different features of each of these methods, it remains to under-
stand which of these approaches is more suitable to a given MGSL problem.
What we could expect is that, theoretically, the Separate Graphical Lasso
would be a better fit when the graph structures differ more significantly. On
the other hand, we would expect the JGSL and especially the DGSL meth-
ods to be better performing when the structures are more similar. In regard
to the joint procedures, we wish to understand whether the choice of re-
parametrizing using one tuning parameter is effectively a limiting approach
with respect to the Joint and Group JGL or if, on the other hand, the cost
of two tuning parameters has a significant impact on the computation of the

28

estimates. As the similarity between the graphs increases, we could expect
the method by [Zhao et al., 2014] to be outperforming the remaining ones,
although its objective would be to reconstruct only the graph of differences,
rather than the individual ones.

It is certainly of interest to understand the variation in performance be-
tween these methods for different scenarios with respect to the dimension of
the data. Theoretically, we could expect that the larger the data, the worse
the methods are at reconstructing the graphs. In addition to this, we would
like to explore the influence that the sample size has on the quality of the
estimates for the concentration matrices, in terms of how well the methods
are able to adjust for the tuning parameters as n decreases with respect to p
and viceversa.

Furthermore, it would be useful to understand how the graph structures
themselves influence the performance of each method, so that we could out-
line a set of application strategies that may suit a variety of data sets.

For this reason, we construct a comprehensive simulation that includes a
variety of scenarios for the dimension of the data, the sample size, the degree
of dissimilarity between conditions, the sparsity and the graph structure.
This process, which is the main body of this thesis, is thoroughly explained
in Chapter 4.

29

30

Chapter 4

Simulation Study Analysis

Given the variety of multiple graph structure learning methods, as discussed
in Chapter 3, the aim of this Chapter is to construct a simulation that in-
cludes a collection of scenarios under which the methods are fitted to datasets.
For each scenario, the ability of each method to perform model selection for
the underlying graph is evaluated. The objective of this collective analysis
is to determine whether one method is systematically the best performing
or if certain conditions favour specific learning methods. The key element of
this work is the multiplicity of settings to be adjusted in order to cover the
diversity of real-data applications, with the intent of understanding under
which conditions one learning method would be preferred to the others.

For this reason, we discuss the simulation settings in Section 4.1. We give
an outline of the steps of this simulation, for each of these settings. Each
step is discussed in more detail in the indicated Sections.

1. Generating different graph structures (Section 4.2);

2. Generating a common covariance matrix (Section 4.3);

3. Distinguishing the covariance matrix according to each condition (Sec-
tion 4.3.1);

4. Generating the data (Section 4.4);

5. Applying each of the learning methods (Section 4.5) and selecting the
model with respect to the regularization parameters (Section 4.6);

6. Establishing the performance measures to be evaluated on the methods
(Section 4.7);

31

7. Evaluating the performance results of each method under the given
settings (Section 4.8).

We specify that this simulation is built in R [R Core Team, 2018]. The
functions that we implemented to accomplish each step of it are reported in
the Appendix (Section B).

4.1 Simulation Settings
The set of simulations that will be run varies according to a set of parameters
determining different scenarios.

We recall that for multiple graph structure learning, we deal with a set of
experimental conditions - which we also refer to as groups- that are indexed
by h, h = 1, . . . , H. In this simulation, we set the number of groups to
H = 2, due to the fact that the vast majority of this type of analyses aims
at comparing the features of healthy and diseased subjects.

Furthermore, we will simulate different graph structures as will be dis-
cussed in Section 4.2 and we index them by g, g = 1, . . . , G. In this simula-
tion, we have G = 4 types of graphs.

In addition to the graph structures, the simulations vary according to the
following parameters:

• p: the number of variables,

• n: the number of observations,

• δ: the dissimilarity degree, i.e. the portion of edges changing between
the two groups.

We will perform simulations for two different values for p: first a small
number of variables, p = 30, which allows performing visual exploratory
analyses on the graphs, than a larger one, p = 100. The interest of the latter
is to understand how the methods are able to deal with higher dimensions.

The second varying element is the sample size n. We begin by stating
that, while we could allow for different group sizes nh, we choose to have
equal group sample sizes, i.e. nh = n, for h = 1, 2. This is due to the focus
of this analysis not being the case of imbalanced classes, which may happen
for instance when the data available for healthy patients is much easier to
retrieve than for diseased ones. We consider this a particular case that is not
the primary objective of this work.

32

The focus is rather put on the relationship between the sample size and
the dimension of the data. It is interesting to understand how the learning
methods react to the number of observations being smaller than the number
of variables (n < p), in contrast with the cases where n > p, but n ≈ p,
and n >> p. Using the two choices for dimensionality, we construct five
combinations for p and n, which we order from best-case (small p and n >> p)
to worst-case (large p and n < p):

• p = 30, n = 200

• p = 30, n = 40

• p = 30, n = 20

• p = 100, n = 400

• p = 100, n = 60

Finally, we discuss the choices for the dissimilarity degree δ.
Given a pair of graphs G = (V,E) and Gh = (V,Eh), we define the

dissimilarity degree δh as:

δh = |{(i, j) : (i ∼G j ∧ i �Gh j) ∨ (i �G j ∧ i ∼Gh j); i, j = 1, . . . , V ; i 6= j}|
|E|

As will be discussed in Section 4.3.1, we start from a common graph G,
which is then distinguished into two graphs G1 and G2 with a dissimilarity
degree δh, h = 1, 2. However, we choose to keep the degree constant, i.e.
δ1 = δ2 = δ.

This parameter then corresponds to the portion of edges changing from
present to absent, or viceversa, from a common structure in order to construct
a group distinction. The higher δ is, the larger the dissimilarity between the
two groups will be. We explore two possibilities: δ = 0.05 and δ = 0.20.
The reason for these two choices arises from the consideration that some of
the learning methods may work better for highly similar graphs, namely the
direct estimation method as discussed in Section 3.4.1, and others for less
similar ones, as discussed for the Separate Graphical Lasso in Section 3.2.

4.2 Graph Structures
The first part of the simulation consists in choosing a variety of graph struc-
tures for the underlying conditional independence pattern. The decision was

33

to select four types of structures, in order to understand whether the per-
formance of the methods was influenced by the structure of the graph. The
four structures are the random graph, the Markov-chain graph, the tree, and
the scale-free graph.

In this Section, we report also some visual examples of the graph struc-
tures for p = 30.

4.2.1 Random Graph
This graph is based on the assumption that each edge has a probability π
of existence. This is also referred to as the Erdős-Rényi Model [Erdős and
Rényi, 1959].

We indicate as G(p, π) the probability distribution corresponding to
graphs such that each of the p nodes has on average (p − 1)π connected
nodes. For a node j, we refer to its degree as the number of nodes adjacent
to it. Formally, deg(j) = |bd(j)|. It can be seen that the degree for a node j
follows a binomial distribution:

P (deg(j) = k) =
(
p− 1
k

)
πk(1− π)p−1−k

It is straightforward that a graph following G(p, π) has on average
(
p
2

)
π

edges. Therefore, the parameter π implicitly controls the density of the
graph.

The graph is created in R using the sample_gnp(p,pi) function, available
in the igraph package.

The example in Figure 4.1 with 30 nodes shows how the density parameter
influences the structure of the graph.

In this simulation, we choose π = 0.1 as the probability of edge existence
that regulates the density of the random graph. The reason for this choice
lies in the relevance of sparse settings for most real data applications.

4.2.2 Markov-chain graph
This structure can be thought of as the representation of an autoregressive
process of order one for a p-variate distribution. Let XV ∼ Np(0p,C). A
Markov-chain graph structure is generated when C is such that its elements
associated to pairs of variables (Xi, Xj) are:

cij = exp
−1

2

max(i,j)−1∑
k=min(i,j)

uk

 for i, j = 1, . . . , p

34

1

2

3

4

5

6

7

8 9

1011

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

29

30

π=0.05

1

2
3

4

5

6

7

8
9

10

11
12

13

14

15

16
17

18

19

20

21
22

23

24

25

26

27

28

29

30

π=0.25

1
2

3

4
56

7

8
9

10
11

12

13

14

15

16

17

18

19

20

21
22

23

24

25
2627

28

29

30

π=0.55

Figure 4.1: Random graphs with increasing density, π = 0.05, 0.25, 0.55 from
left to right, over 30 vertices

where u = (u1, . . . , up−1) is a (p − 1)-dimensional vector with each ele-
ment randomly generated by a uniform distribution: uk

iid∼ Unif(0.5, 1),
k = 1, . . . , p−1, following the approach pursued by [Fan et al., 2009] and [Guo
et al., 2011]. This implies that the pairs of random variables (Xi, Xj) asso-
ciated to entries cij such that |j − i| = 1 are dependent on one another
conditioned on the remaining variables. On the other hand, pairs of vari-
ables (Xi, Xj) associated to entries cij such that |j − i| > 1 are retrieved as
a combination of the other ones. The diagonal elements cii are set to 1.

The Markov-chain structure arises from the inverse of such C matrix,
which is a tridiagonal matrix, with the only nonzero entries being in the
main diagonal and the upper and lower ones.

Let us define AG = [aG,ij]i,j=1,...,p as the adjacency matrix associated to a
graph G, such that aG,ij = 1 ⇐⇒ i ∼G j ∨ i = j and aG,ij = 0 ⇐⇒ i �G j.

In order to generate the Markov-chain graph structure, then, it is suffi-
cient to generate a tridiagonal adjacency matrix. We implemented this in R
with the function tridiag_1(), which can be found in Appendix B.

As an example, creating a Markov-chain graph for 30 vertices will be done
with graph_from_adjacency_matrix(tridiag_1(30),mode="undir",diag=F),
as shown in Figure 4.2.

4.2.3 Tree graph
The third structure is a tree graph. Even though we only deal with undirected
graphs, the construction of a tree is more easily-explainable by referring to
directed graphs.

35

1

2

3

4

5

6 7

8

9

10

11

12 13

14

15

16

17

18 19

20

21

22

23

24 25

26

27

28

29

30

Markov−chain graph

Figure 4.2: Markov-chain graph from tridiagonal matrix, 30 vertices.

The main characteristic of this object is that there are no cycles, i.e. no
paths that connect a vertex to itself. The graph we construct in this step of
the simulation study is a tree such that all vertices have the same number
of children, except for the terminating ones (leaves). In this case, the degree
distribution for the graph takes on three values: k for the root vertex of the
tree (k being the number of children), k + 1 for the intermediate nodes and
1 for the leaves.

The implementation is straightforward in R with the dedicated function
in the igraph package.

For instance, running make_tree(30, children=2, mode="undirected")
will produce the graph reported in Figure 4.3. We remark that if the pa-
rameter children were to be set to 1, this procedure would produce the a
graph equal to the Markov-chain shown in Figure 4.2.

4.2.4 Scale-free graph
We choose to include this type of graph in this simulation due to its resem-
blance to the connectivity found in several types of biological networks [Jeong
et al., 2000], [Babu et al., 2004], [Chen and Sharp, 2004], [Van Noort et al.,
2004]. The characteristic of this graph is that the degrees of its nodes follow
a power-law distribution [Barabási and Albert, 1999].

A vertex has degree k with probability 1
kα
, where the exponent α usually

ranges between 2 and 4, regardless of the size of the network [Barabási and
Albert, 1999]. For this reason, it is referred to as scale-free network.

36

1
2

3

4

5

6

7
8

9

10

11

12

13

14

1516

17

1819

2021

22

23

24

25

26
27

28
29

30

Tree graph

Figure 4.3: A tree graph, 30 vertices, with each non-leaf vertex having two
children.

The power-law degree distribution generating the graph induces the pres-
ence of a few hub nodes, i.e. vertices with high degree, and a large amount
of satellites, nodes with low degrees.

It should be noted that scale-free networks have two main properties
which differentiate them from the general Erdős-Rényi model.

The first one is the growing nature of the graph. It is thought of as an
expanding structure, starting with a set of nodes and progressively adding
nodes and edges to the existing ones. An example would be the World Wide
Web graph: new pages are created continuously and, as of their creation, they
may influence the edges (in this case, hyper-links) of the overall network.

The second one is the preferential attachment that induces a new node
to prevalently form interactions with vertices that already have a high con-
nectivity. More precisely, for scale-free graphs, the probability Π that a new
node connects to a node i depends on its degree ki: Π(ki) = ki∑p−1

j=1 kj
.

In general, the preferential attachment follows a power-law distribution
Π(k) ∼ kφ. For scale-free graphs, the dependency is linear, i.e. φ = 1. It
has been observed that for some real networks, the preferential attachment

37

may depend on the degree of a node sub-linearly (φ < 1) or super-linearly
(φ > 1) [Albert and Barabási, 2002]. However, the scaling property of the
graph is only guaranteed for linear preferential attachment [Krapivsky et al.,
2000].

The algorithm to construct a scale-free graph follows a sequential pro-
cedure. First, the graph is created with m0 vertices. Then, at each step
t a new vertex is added and m edges are formed with the existing graph.
This implies that at each time point t there are m × t edges. The param-
eter m then implicitly regulates the density of the graph. Such a model is
proved to converge to a stationary degree distribution following a power law
P (k) ∼ k−3, i.e. α = 3.

Let us now construct a scale-free graph with 30 vertices. The R function
sample_pa() in the igraph package produces a Barabási-Albert game with
the following specifications:

• p: the number of vertices for the graph

• power: the power for preferential attachment. The default is 1 for
linear attachment

• m: the number of edges to add at each step of the algorithm

• directed: logical value to indicate whether the graph is directed or
undirected (default is TRUE)

The graphs that may be built using this R function vary largely based
on the choices for the number of edges m and the power of preferential
attachment φ. We report an exploratory analysis on graphs with 30 vertices.

First, we analyse the impact of the power for preferential attachment.
Figure 4.4 shows four graphs with 30 vertices, built with the sample_pa()
function, with m = 1 (i.e. 29 edges) and varying values for the power φ.

For φ = 0.5, the graph almost resembles a tree, but as the power increases,
the structures rely more and more on hub nodes. In fact, when φ = 2.5, the
majority of the nodes are satellites to one node. We remark that only a
preferential attachment power between φ = 1 and φ = 1.5 results in an
accurate representation of a scale-free graph. We fix this value from now
onwards at φ = 1.1, to maintain linearity in preferential attachment while
giving a slight incentive to hub nodes.

Secondly, we compare the structures resulting from different values for m.
With 30 vertices and a fixed value φ = 1.1, we construct four graphs, with

38

1

2

3

4

56

7

8

9

10
11

12

13

14 1516

17

18

19
20

21
22

23

24

25

26

27

28

29

30

φ=0.5

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23
24

25
26

27

28
29

30

φ=1

1
2

3

4

5

6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

φ=1.5

1

2

3

4
5

6

7 8

9

10

11

12

13

14
15

16

17 18

19

2021
22

23 2425

26
27

28

29

30

φ=2.5

Figure 4.4: Scale-free graphs for 30 vertices, with varying power for prefer-
ential attachment (φ = {0.5, 1, 1.5, 2.5})

m = {1, 2, 3, 5}. From Figure 4.5, the hub structure emerges clearly when
m = 1. At each step, single edges are attached to already highly-connected
nodes, feeding the so-called rich get richer mechanism. This is progressively

39

less obvious whenm increases, making the graph on the right (m = 5) similar
to a random graph.

1

2

3

45

6

7
8

9

10

11

12
13

14

15

16

17

1819

20

2122

23

24

25

26
27

28

29

30

m=1

12
3

4

5 6

7
8

9

10

11

12

13 14

15

16

17

18

19

20
21

22

23

24

25

26

27

28

29

30

m=2

12
3

4

5
6

7
8

9

10
11

12

13

14
15

16 17

1819
20

21

22

2324 25
26

27

28 29
30

m=3

123

4

56

7

8

9

10

11

12

13

14
15

16

17

18
19

20 21

22

23

24 25

26

27

28

29

30

m=5

Figure 4.5: Scale-free graphs for 30 vertices, with φ = 1.1 and varying number
of edges added at each step of the BA algorithm (m = {1, 2, 3, 5})

Evidently, the number of edges added at each step of the algorithm influ-

40

ences directly the density of the graph. More formally, we define the graph
density as:

GD = |E|
|V |(|V | − 1)/2

Since the sample_pa() function initializes the graph with m0 = 1 nodes,
we automatically have that for m = 1, GD = 29

30×29/2 = 0.067 and for m = 5,
GD = 29×5

30×29/2 = 0.333. It is clear that as the dimension of the vertex set
increases, a fixed value for m will result in a sparser graph. For instance, for
the scenario p = 100, keeping m = 5 would result in GD = 0.098.

We keep in mind that for many application purposes, such as biological
networks, the graphs have low density and for this reason we choose m = 1
for p = 30 and m = 4 for p = 100. Moreover, by choosing a parameter φ
that promotes the hub structure emerging in sparser scale-free graphs, we
conclude this exploratory analysis by opting for the following choices in our
simulation:

• sample_pa(30, power=1.1, m=1, directed=F)

• sample_pa(100, power=1.1, m=4, directed=F)

In both cases, we produce graphs for which GD u 0.07.

To conclude on the graph structures, we make a comparison of the degree
distribution between the Erdős-Rényi (ER) model and the Barabási-Albert
(BA) model. For this analysis, we use a much larger graph, p = 10000.

In theory, what we expect is that the BA model gives larger opportunity
to higher degrees, whereas the ER model would show a distribution concen-
trated on small degrees and with zero frequency of higher connectivities. To
have the same density for the two models, we use:
er<- sample_gnp(p,1/p)
ba<- sample_pa(p,m=1,directed=F)

The graphs will have approximately the same number of edges: exactly
p− 1 on the BA model and expectedly p− 1 in the ER one.

As we see from Figure 4.6, the random graph does not allow degrees
greater than 7. On the other hand, the scale-free model has a large amount
of small degrees, but also the presence of nodes that are highly connected,
having up to circa 150 adjacencies. The shape of the degree distribution for
the BA model clearly reconnects to the power-law distribution, whereas for
the ER model, the distribution clearly follows a Poisson, more precisely a
Poi(1).

41

1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

ER model

0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

BA model

P
(k

)

Figure 4.6: Degree distribution for Random Graph and Scale-free Graph,
with 10000 vertices and 9999 edges.

4.3 Covariance Matrix Generation
The next step in the simulation is to generate a covariance matrix for each
graph structure. The first step is to construct a starting base, a covariance
matrix that can then be fitted to each graph structure, in terms of zero
patterns.

Generation of Σ

The data that we will generate for this simulation is Gaussian-distributed,
as mentioned in Section 2.3. We assume that the data is centred around
zero and thus we generate, for each simulation scenario, n observations from
the p-variate distribution XV ∼ Np(0p,Σ). In this Section, we discuss how
to construct the population covariance matrix Σ from which the data are
generated.

Given that he main characteristics for generating a covariance matrix are
that it needs to be a square p× p, symmetric and positive-definite matrix we
explore four generation strategies. The first starts from the equicorrelation
matrix; the second generates entries of the correlation matrix from a Beta
distribution; the third imposes bounds on the eigenvalues; the fourth relies
on a Wishart distribution.

42

Equicorrelation Matrix
One way to generate such a matrix can be to start from an equicorrelation
matrix Ω, i.e. a matrix of the form

Ω =

1 ω ω . . . ω
ω 1 ω . . . ω
ω ω 1 . . . ω
...
ω ω ω . . . 1

Where ω ∈

(
− 1
p−1 , 1

]
, to ensure positive-definiteness.

The covariance matrix Σ is then obtained by inverting such Ω.
Beta Distribution

An alternative approach would be to construct a correlation matrix R by
drawing its entries from a Beta distribution, as suggested in [Joe, 2006].
Each correlation has a Beta(α, α) distribution on the (-1,1) interval, where
α = a + p−2

2 . Setting a = 1 leads to a random matrix which is uniform over
space of positive definite correlation matrices. The Beta distribution for the
correlations complies with the distributional constraints given in [Joe, 2006]
to ensure positive definiteness of the correlation matrix.

In order to obtain the covariance matrix Σ we generate p variances
(σ2

1, . . . , σ
2
p). Then Σ = diag(σ2

1, . . . , σ
2
p)×R × diag(σ2

1, . . . , σ
2
p).

This matrix can be constructed using the genPositiveDefMat() com-
mand from the clusterGeneration package. This function includes a vari-
ety of methods to generate positive definite covariance matrices. In this case,
we use the following specification:
genPositiveDefMat(p,covMethod="unifcorr", rangeVar= c(1.5,10))

The method covMethod="unifcorr" generates the correlation matrix ac-
cording to [Joe, 2006] and then generates p covariances randomly ranging
within the rangeVar interval. The covariance matrix is obtained by multi-
plying the correlation matrix by the random covariances.

Bounded Eigenvalues
Another option consists in drawing p random eigenvalues (λ1, . . . , λp) and a
random orthogonal matrix Q. The covariance matrix is the constructed as
Σ = Q× diag(λ1, . . . , λp)×QT .

This method corresponds to a different specification for the genPositiveDefMat()
function in the clusterGeneration package. Therefore, the covariance ma-
trix can be obtained by running the following:

43

genPositiveDefMat(p,covMethod="eigen", lambdaLow=2)

Where lambdaLow=2 gives a lower bound for the smallest eigenvalue to
be generated.

Wishart Distribution
Lastly, we explore the possibility of generating the covariance matrix accord-
ing to a Wishart distribution [Mardia et al., 1979].

Let us have a m× p data matrix Z, following Z ∼ Np(0p,V).
Let Σ = ZTZ. Then, Σ ∼ Wp(m,V), i.e. Σ is a p × p Wishart-distributed
matrix withm degrees of freedom and scale matrix V. The degrees of freedom
m are such that m > p, for positive definiteness. If V = Ip, the distribution
is said to be in standard form.

We can then draw the positive definite Wishart-distributed covariance
matrix using the rWishart() function. We draw one element from such
distribution in standard form, by executing:
rWishart(1, df=500, diag(p))

The degrees of freedom df=500 are set greater than the number of vari-
ables p and the scale matrix is the identity matrix Ip.

Matrix Completion

Once the covariance matrix is generated, it needs to be adjusted in order to
comply with each graph G, whose structure in built as discussed in Section
4.2. For instance, given a graph G = (V,E) such that {(1, 3), (2, 3), (2, p)} /∈
E, the covariance matrix will then have the form:

ΣG =

σ11 σ12 ∗ . . . σ1p
σ21 σ22 ∗ . . . ∗
∗ ∗ σ33 . . . σ3p
...
σp1 ∗ σp3 . . . σpp

This process is calledmatrix completion, as discussed in Section 2.4. Since

the starting point for the completion is a positive-definite matrix by con-
struction, we can perform the operation either via the IPS algorithm or via a
Graphical Lasso with ρ = 0, which corresponds to a non-penalized maximum
likelihood problem.

This is implemented in the glasso function of the corresponding pack-
age. When rho=0, the function requires specifying a list of missing edges,
which we obtain from the four graphs created in Section 4.2 (see the
get_zero_structure() function in Appendix B). In the implementation

44

of the glasso function, this corresponds to setting a p × p regularization
matrix, where ρij = 0 if the element corresponds to a present edge and
ρij = 109 if the element corresponds to a missing edge.

Therefore, using the Graphical Lasso algorithm, we obtain the completed
covariance matrices for each of the graphs (see the completed_matrices_H1()
function in the Appendix).

In order to choose which method is the most suitable to generate the
completed covariance matrices, we perform an exploratory analysis on the
distribution of the non-zero elements of the corresponding concentration ma-
trices, based on the random graph with π = 0.1, for p = 30.

The reason for this analysis lies in the advantage of dealing with well-
defined concentration matrices, having bounded eigenvalues and non-zero
entries bounded away from zero, as discussed in [Guo et al., 2011].

Equicorrelation

ω

F
re

qu
en

cy

0.0 0.2 0.4

0
20

40
60

80
10

0
12

0

Beta Correlation

ω

F
re

qu
en

cy

0.0 0.2 0.4 0.6

0
10

20
30

40

Sigma Eigen

ω

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4

0
20

40
60

80
10

0
12

0

Wishart

ω

F
re

qu
en

cy

0.0000 0.0010 0.0020

0
20

40
60

80

Figure 4.7: Distribution of non-zero entries of concentration matrices gener-
ated with four methods

Figure 4.7 shows the frequencies for values of the concentration matrices
obtained, after completion, for each of the four generation strategies dis-

45

cussed. As we see, the main issue with the equicorrelation approach is that
the non-zero elements are clearly concentrated only on two values. The Beta
correlation approach seems the most viable, as the entries are sensibly dif-
ferentiated and, moreover, they do not take on extremely low values. The
eigenvalue approach does show a very large amount of values that are highly
close to zero. As for the Wishart distribution, all entries of the corresponding
concentration matrix are smaller than 0.0025.

Table 4.1: Minimum absolute non-zero values (min(|Ω|)), minimum eigen-
values (φmin(Ω)) and maximum eigenvalues (φmax(Ω)) for the concentration
matrices obtained via the equicorrelation, the Beta distribution, the bounded
eigenvalues and the Wishart distribution generation strategies

.

EQUICORR BETA EIGEN WISHART
min(|Ω|) 0.0111306 0.0000619 0.0000220 0.0000011
φmin(Ω) 0.2880298 0.0695605 0.0500301 0.0016816
φmax(Ω) 0.4058412 0.7310866 0.4045617 0.0025630

From Table 4.1, we remark that the Wishart distribution produces a con-
centration matrix with very small values and eigenvalues very close to each
other and close to zero. The equicorrelation approach has larger eigenvalues,
but as seen from Figure 4.7, the values concentrate only on two points. Both
the processes of generating the covariance matrix from Beta-distributed en-
tries and from random eigenvalues show large enough minimum eigenvalues
and non-zero elements on the completed concentration matrices. We con-
clude by choosing the correlation matrix with Beta-distributed entries both
for the wider variety of values in the corresponding concentration matrix
(Figure 4.7) and for the minimum eigenvalue being farther away from zero.

4.3.1 Group Distinction
In Section 4.3, we generated one covariance matrix for each type of graph.
However, we need to perform a distinction between the groups constituting
the basis for the multiple graph structure learning. In practice, we focus on a
two-group setting, indicated as H = 2, although the functions are generalized
to any choice for H.

The procedure for the group distinction starts by choosing the portion
of changed edges from common graphs, δ. Here we choose δ = {0.05, 0.20},
i.e. each of the G graphs will be distinguished in H ways, with a portion
δ of edges changed from present to absent or viceversa. A representation

46

of the scheme is shown in Figure 4.8. The graphs obtained after the group
distinction are the object of this simulation analysis. Having G = 4 graph
structures and H = 2 groups, each scenario of the simulation will involve the
learning of eight graphs.

δ δ δ δ δ δ δ δ

G11

G1

G12 G21

G2

G22 G31

G3

G32 G41

G4

G42

Figure 4.8: Scheme of the generation of graphs for each structure, with a
portion δ of changed edges in each distinction.

The distinction process operates through the adjacency matrices associ-
ated to each graph, i.e. by changing the zero or non-zero elements of each
adjacency matrix and thus resulting in adding or removing edges to their
corresponding graph. For simplicity, we first transform the lower triangu-
lar part of each adjacency matrix, diagonal excluded, and we subsequently
symmetrize.

We randomly generate edge identifiers which correspond to elements of
the adjacency matrix to be changed, from missing to present edge and vicev-
ersa. For each graph structure and for each dissimilarity degree δ, we gener-
ate two vectors of length dδ p(p−1)

2 e, where d·e indicates the ceiling function.
Each of the vectors contains elements in the

{
1, . . . , p(p−1)

2

}
integer inter-

val, corresponding to the positions on the vectorized lower triangular part of
the adjacency matrix to be changed. We indicate each of these vectors as
nh, h = 1, 2.

In R, this is done by drawing elements from the
{

1, . . . , p(p−1)
2

}
interval

using the sample() function, implemented in the Base package, with specifi-
cation replace=FALSE, indicating that each element can only be drawn once.

47

While there is a different generation of n1 and n2 for each graph structure
and each dissimilarity degree, we explain the procedure keeping g and δ fixed
for notation purposes.

Since the adjacency matrix contains 0-1 elements, to obtain its opposite
for the elements corresponding to changing edges it suffices to create its
complement to 1. Let us denote the common adjacency matrix as A. The
new adjacency matrices Ah are obtained using the following:

[vechd(Ah)]i = 1− [vechd(A)]i ∀ i ∈ nh, h = 1, 2
We indicate as vechd(·) the operator vectorizing the lower triangular part

of a matrix, main diagonal excluded. After changing the elements in the po-
sitions indicated by nh, the matrix is symmetrized. Ah is the new adjacency
matrix in the h-th distinction. The R implementation for this procedure is
in the group_zeros() function, which can be found in Appendix B.

At this point, we are able to distinguish two graphs G1 and G2, associated
to the modified adjacency matrices A1 and A2.

After this process, the next step is to perform once again a completion
procedure on the covariance matrix Σ, using the new edge patterns for each
Gh. As previously discussed, we perform the matrix completion by applying
a Graphical Lasso method with penalization ρ = 0 and edge patterns given
by the now diversified groups with graphs Gh, h = 1, 2. It is implemented in
the completed_matrices_H() function, reported in Appendix B.

After performing the matrix completion, we obtain two covariance ma-
trices for each graph structure and for each dissimilarity degree, which we
indicate as Σ(1) and Σ(2).

To summarize and formalize the group distinction procedure, we report
Algorithm 2.
Algorithm 2: Group Distinction

1) Starting point: a p× p covariance matrix Σ and a graph G
associated to a p× p adjacency matrix A
2) Set a dissimilarity degree δ ∈ [0, 1]
3) Generate randomly vectors nh of length dδ p(p−1)

2 e of integers
between 1 and p(p−1)

2
4) Obtain new adjacency matrices using
[vechd(Ah)]i = 1− [vechd(A)]i, ∀i ∈ nh, ∀h
5) Associate each new adjacency matrix to a graph Gh
6) Perform matrix completion on Σ based on Gh

48

Minimum Spanning Tree

One issue with this group distinction method is that it changes edges regard-
less of the graph structure. This is not relevant for random graphs, and it
is marginally of interest for scale-free ones, but it does change the nature of
Markov-chain and tree graphs.

The Markov-chain graph can not easily be adapted to the group distinc-
tion, since the only way to maintain the chain structure is to swap node
labels. We can then simply accept a variation of the graph, which has the
same core, but a few alterations.

On the other hand, the tree graph can be slightly modified after the group
distinction by recovering its Minimum Spanning Tree, i.e. a graph as close as
possible that satisfies the property of the tree (no cycles). This is operated
by scanning the nodes and removing any edges that form a cycle. It is easily
applied in R via the mst() function in the igraph package. See also the
make_mst() function in Appendix B.

However, it should be remarked that using this procedure, the dissimilar-
ity degree δ for trees is very likely to be different from the other structures.
From a set of 1000 simulations on p = 30 nodes, it appears that in this case,
even though δ was set to 20%, the actual dissimilarity resulted in 10%. This
is a consequence of the fact that regardless of the change, this type of graphs
tends to be more similar after the group distinction in order to maintain the
tree structure, e.g. the same edges have to be removed.

4.4 Data Generation
In this step of the simulation, we generate the data on which the MGSL
procedures are evaluated. As previously discussed, we assume that the data
follow a p-variate Gaussian distribution, centred around zero.

The covariance matrices for each group are the Σ(h) matrices obtained in
Section 4.3.1, keeping in mind that they also vary for each graph structure
and each dissimilarity degree.

Therefore, we generate H samples of size n from the corresponding p-
variate Gaussian distributions:

(X(i)
1 , . . . , X(i)

p) iid∼ N (0p,Σ(h)
p) i = 1, . . . , n; h = 1, 2

Since we already have the population covariance matrices, in R it suf-
fices to generate the multivariate distributions using the rmvnorm() function
(mvtnorm package) to draw the n observations for each group from a p-variate

49

Gaussian. We assume n remains constant across the groups. We indicate
each of the generated n× p data matrices as x(h), h = 1, 2.

4.5 Methods
This Section concerns the application of the methods described in Chapter
3 to the data generated in Section 4.4.

Since the learning methods are based on the sample covariance matrices,
we calculate them based on the data generated for the h-th group as S(h) =
1
n
x(h)Tx(h).
We then apply the Graphical Lasso separately on S(1) and S(2) for each

graph structure and each dissimilarity degree using the glasso function, with
regularization parameters chosen through AIC (see Section 4.6).

For the Rarametrization Joint Graphical Lasso ([Guo et al., 2011]), we
implemented an R function that takes in the sample covariance matrices S(1)

and S(2) and computes the joint estimates for the concentration matrices
following Algorithm 1 (Section 3.3.1). To estimate the coefficients of the
penalized linear regression needed for each step (i.e. row-column) of the
estimation of the covariance matrices in the Joint Graphical Lasso Equation
(3.5), we use a coordinate descent method as indicated in [Friedman et al.,
2007]. This implementation can be found in Appendix B as guo_glasso().

We specify that the initial scalar ν added to the diagonal of sample co-
variance matrices for positive-definiteness does not coincide with the regu-
larization parameter ρ. While we do focus on the tuning of the latter in
Section 4.6, we choose to keep ν reasonably small (e.g. ν = 0.05), so as to
have negligible impact on the final estimates.

As for the joint learning methods using the Fused and Group Lasso penal-
ties, we employ the dedicated JGL() function (JGL package) with specifica-
tions penalty="fused" and penalty="group" respectively. For the choice
of penalization parameters, see Section 4.6.

The method based on the direct estimation of differential networks ([Zhao
et al., 2014]) is implemented for a two-group application in the dpm() function
(https://github.com/sdzhao/dpm). This function takes as input the data
x(1) and x(2), for each of our graph structures and dissimilarity degrees,
and the number nlambda of values to be considered for the constraint. It
also allows different model selection criteria, such as AIC, BIC and cross
validation.

50

https://github.com/sdzhao/dpm

All criteria are based on loss functions obtained with different norms such
as:

L∞(ρn) = |S(1)∆̂ρnS(2) − (S(1) − S(2))|∞,

where ∆̂ρn is the estimate for the difference of concentration matrices
associated the graph of differences and computed with penalty term equal to
ρn.

Six options are given for the norm: sup-norm, element-wise l1, matrix L1,
spectral, Frobenius and nuclear norm. The model selection criterion is then
evaluated, for instance, as:

AICρn = 2nL∗(ρn) + 2dfρn ,

where L∗(·) is the chosen loss function, dfρn = |{(i, j) : i < j, [∆̂ρn]ij 6= 0}|.

The dpm() function gives as output a list of nlambda matrices ∆̂ esti-
mating ∆0 = Ω(1) − Ω(2), which we apply to each graph structure for each
dissimilarity degree. The optimal one can be chosen according to the pre-
ferred loss function in the $opt object of the output.

We report the result of learning the structure of the graph of differences
for the random graph model, with p = 30, n = 200 and δ = 0.05. We
compare the optimal estimates ∆̂ according to each of the loss functions.
The loss function based on the sup-norm chooses a regularization parameter
ρ = 2.03, whereas the remaining ones all choose ρ = 0.14. The selection is
operated through AIC.

Figure 4.9 shows seven graphs: in each of them, an edge represents a
conditional dependence between two variables that differs in terms of edge
values among the two groups. The graph on the left is the true graph of
differences, i.e. having an edge only for elements of ∆0 different from zero.
The remaining ones correspond to the estimated ∆̂, based on each of the loss
functions. As we see, only the sup-norm is able to reconstruct a graph that
is similar to the true one, whereas the remaining ones produce graphs that
are not comparable to the true one. For this reason, we choose to employ
the sup-norm in our set of simulations, as the other options appear to be
producing extremely dense graphs.

4.6 Model Selection criteria
The methods for learning the graphs rely heavily on the choice of the regu-
larization parameters, which is discussed in this Section. Since these control

51

●

● ●

●
●

●
●●

●

●●

●

●

●

●

●

●
●

●

●●
●

●

●
●●●

●

●

●

1

2 3

4
5

6

7 8

9

1011

12

13

14

15

16

17

18

19

20 21

22

23

24

2526
27

28

29

30

True

●
●●●

●
●

●

●
●

●●

●

●

●
●●

●

●

●●

●

●
● ●

●

●

●

● ●

●

1
23

4
5

6

7

8

9
10

11

12

13

14

15
16

17

18

1920

21

22
23 24

25

26

27

28 29

30

Sup

●
● ●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●● ●

●

●●

●●
●●

●

●

●

1

2 3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18
19 20

21

2223

24
25

2627

28

29

30

Element l1

●

●
●

●

●
●

●

●
●

●

●●

● ●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
1

2

3

4

5

6

7

8
9

10

1112

13 14

15

16

17

18

19
20

21

22

23
24

25

26

27

28

29

30

Matrix l1

●

●

●

●

●●●

●

●
●

●
●

●

●

●

●

● ●
●

●
●

●

●●

●
●

●

●

●

●

1

2

3

4

56
7

8

9

10
11

12

13

14

15

16

17
18

19

20
21

22

23
24

25

26

27

28

29

30

Spectral

●
●
●

●●
●

●

●

●

●
●●

●●

●
●

●

●

●
●

●

●
●

●

●●

●
●

●

●
1

2

3

4
5

6

7

8

9

10
1112

1314

15
16

17

18

19
20

21

22
23

24

2526

27
28

29

30

Frobenius

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●●

●

●

●●

●
●

1

2

3
4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

22
2324

25

26

27
28

29

30

Nuclear

Figure 4.9: Graphs representing differential conditional dependence patterns
for the Erdős-Rényi model, on the population (left) and using the direct
estimation method with loss functions based on sup, element-wise `1, matrix
`1, spectral, Frobenius and nuclear norms

the sparsity of the graphs, it is straightforward that two graphs obtained by
imposing different penalty terms result in different edge patterns. For this
reason, in regard to choosing the regularization parameter, we refer to model
selection.

In the literature, the most common choices for model selection criteria for

52

MGSL problems are the cross-validation, the AIC and the BIC (e.g. [Danaher
et al., 2014], [Guo et al., 2011]). All these methods are based on the log-
likelihood evaluated for the estimated concentration matrices.

The cross-validation and the information criteria differ on more than one
level. Since the cross-validation (see e.g. Equation (3.7) for Reparametriza-
tion JGL) requires evaluating the log-likelihood on segments of the data, it is
clearly more time-consuming. The advantage would theoretically be that the
estimates should produce better-fitting graphs. Furthermore, the AIC and
the BIC are highly dependent on the degrees of freedom of the model, which
are calculated as the number of present edges in the chosen graph. See, for
instance, Equations (3.11) for AIC and (3.6) for BIC.

Given the theoretical differences between these model selection strategies,
we explored the empirical performance of each of these, based on two aspects:
the computing time and the ability to reproduce a graph density as close as
possible to the true one.

We report a few results comparing these features for the Separate Graph-
ical Lasso and the Reparametrization JGL for two scenarios: p = 30, n =
20, δ = 0.2 and p = 100, n = 400, δ = 0.05.

We specify the same grid of values to choose from for all methods. For
the Separate Graphical Lasso, we notice that the regularization parameter
usually lies between 0.2 and 1.6, therefore we generate in R a vector of possible
penalization levels as:
rho<- seq(from=1e-2, to=1.6, length.out=30)

From which all the selection criteria evaluate their candidate for the op-
timal regularization parameter.

For the Reparametrization JGL, we find that the chosen optimal values
for ρ usually lie between the 10−6 and 10−4 interval. For this reason, we
specify the vector of candidates in R as:
rho<- seq(from=1e-6, to=1e-4, length.out=30)

For all the selection criteria.
We refer to Table 4.2 for the results on the first scenario for the

Reparametrization Joint Graphical Lasso. As we see in Table 4.2a, the
5-fold cross validation requires a much larger time to compute the estimates
for the concentration matrices. However, as reported in Tables 4.2b-4.2e,
the estimated densities of the learnt graphs are extremely similar among
the three criteria. More precisely, the AIC produces slightly denser graphs,
which are to be preferred, since closer to the true densities.

53

Table 4.2: Comparison of model selection methods for Reparametrization
Joint Graphical Lasso, p = 30, n = 20, δ = 0.2. CV is 5-fold.

(a) Computing times (in seconds)

CV AIC BIC
TIME 1825.46 332.36 325.91

(b) Density of random
graph (π = 0.05)

h=1 h=2
TRUE 0.22 0.23

CV 0.03 0.02
AIC 0.06 0.05
BIC 0.03 0.02

(c) Density of Markov
chain graph

h=1 h=2
TRUE 0.25 0.23

CV 0.06 0.06
AIC 0.03 0.03
BIC 0.03 0.03

(d) Density of tree graph

h=1 h=2
TRUE 0.07 0.06

CV 0.03 0.03
AIC 0.04 0.05
BIC 0.03 0.04

(e) Density of scale-free graph

h=1 h=2
TRUE 0.25 0.23

CV 0.04 0.06
AIC 0.04 0.06
BIC 0.04 0.06

For the second scenario, we show results for the Separate Graphical Lasso.
Table 4.3a shows that the 10-fold cross-validation requires approximately 9
times as much computational time as the other selection methods. In spite
of this, the regularization parameter chosen are not closer to reproducing the
true graph densities than the AIC. From Tables 4.3b through 4.3e we gather
that, as a matter of fact, the AIC is able to choose parameters that construct
graphs with densities close to the true ones. The BIC, on the other hand,
tends to lead to much sparser graphs. Other reports for these two scenarios
can be found in the Appendix (Tables A.1 and A.2).

These results give us evidence that, while the cross-validation is undeni-
ably more computationally-expensive than the AIC and the BIC, there is no
remarkable improvement in the fit of the estimates, in terms of reproducing
the density of the true graphs.

Given the tendency of the BIC to estimate larger regularization param-
eters than needed, we choose the AIC as the preferred model selection cri-
terion from here onwards. We remark that the AIC is implemented in the

54

Table 4.3: Comparison of model selection methods for Separate Graphical
Lasso, p = 100, n = 400, δ = 0.05. CV is 10-fold.

(a) Computing times (in seconds)

CV AIC BIC
TIME 17.84 2.09 2.01

(b) Density of random
graph (π = 0.05)

h=1 h=2
TRUE 0.09 0.09

CV 0.14 0.10
AIC 0.11 0.07
BIC 0.01 0.02

(c) Density of Markov
chain graph

h=1 h=2
TRUE 0.07 0.07

CV 0.11 0.10
BIC 0.08 0.07
AIC 0.01 0.01

(d) Density of tree graph

h=1 h=2
TRUE 0.02 0.02

CV 0.10 0.10
AIC 0.06 0.10
BIC 0.01 0.01

(e) Density of scale-free graph

h=1 h=2
TRUE 0.12 0.12

CV 0.10 0.10
AIC 0.06 0.10
BIC 0.01 0.01

dpm() function for the method of Direct Estimation of Differential Networks
([Zhao et al., 2014]). Furthermore, we remind that a bi-dimensional grid
search would be needed to identify the optimal regularization parameters ρ1
and ρ2 for the Fused and Group JGL ([Danaher et al., 2014]), but that this
is simplified with a double line search, as discussed in Section 3.3.2.

4.6.1 AIC selection algorithm
Given the choice of the AIC as model selection criterion for the regularization
parameters, the issue when fixing the range of values among which to choose
the optimal one lies in the lack of a-priori knowledge of the order of magnitude
of the parameter itself. While an ideal solution would be to set a grid as large
as possible, while keeping the intervals between values as small as possible,
this could be very time-consuming.

Therefore, we think that it is more sensible to select a broad initial range
and update its extrema based on the values for the parameters found as
optimal based on the AIC. This allows a precise individuation of the optimal
parameters, by progressively narrowing the intervals between candidates.

55

It should be reminded, though, that when p > n there is a lower bound
for the penalty term under which the starting points for the Graphical Lasso
algorithms are not positive-definite matrices. The procedure for updating the
range of penalization candidates then should not allow for these values to be
employed in the computation of candidate estimates for the concentration
matrices.

To take this element into consideration, we include a check on the positive
definiteness of the starting point for the Graphical Lasso procedures. For
instance, for the separate Graphical Lasso, we know that if S + ρI is not
positive definite, the algorithm does not converge.

Algorithm 3: Select regularization parameters minimizing the AIC
Initialize extrema for the parameter range ρ(0)

L and ρ(0)
R and generate

a vector of length l of equally-spaced values between ρ(0)
L and ρ(0)

R

while S + ρ
(0)
L I is not positive definite do

Increase ρ(0)
L

end while
for i = 1, . . . , it.max do
Fit l models with varying parameters and calculate their AIC
Find the minimum AIC and its corresponding parameter ρ(i)

min
if ρ(i)

min = ρ
(i−1)
L then

Update the range with extrema 1
c
· ρ(i−1)

L and 1
c
· ρ(i−1)

R ,
where c > 0 is some defined constant

else if ρ(i)
min = ρ

(i−1)
R then

Update the range with extrema c · ρ(i−1)
L and c · ρ(i−1)

R ,
where c > 0 is some defined constant

else
Update the extrema for the new range to be centred around ρ(i)

min
end if
while S + ρ

(i)
L I is not positive definite do

Increase ρ(i)
L

end while
end for

Algorithm 3 gives the outline of the model selection procedure and it
is implemented slightly differently according to the learning method, each
having different output structure. We remark that for the Reparametrization
JGL the check on positive definiteness is made only once at the beginning of

56

the algorithm with S+νI, as ν is not subject to tuning. Moreover, we mention
that even though the algorithm converges in a finite number of iterations,
we fix a maximum number it.max, since fitting l models at each step can be
very time-consuming.

The R functions can be found in Appendix B as AIC_sep_lasso(),
AIC_guo() and AIC_jgl(). For the Direct learning method, we kept the
implementation for the AIC selection as set in the dpm() function.

While the application of this procedure operates automatically regardless
of the scenario, in terms of relationship between p and n and of dissimilarity
degree given by δ, we do give a slight computational advantage to the AIC
selection algorithm by setting the initial ranges higher when p > n. The
comprehensive indication of the parameter settings employed in the model
selection procedure described in Algorithm 3 for our set of simulations can
be found in Table A.3.

4.7 Performance Evaluation
In this Section, we display the criteria for comparing the models fitted using
each of the methods discussed in Section 4.5.

The evaluation of the performance of each method consists in sets of
indexes aimed at understanding how accurately each graphical model is able
to reconstruct the underlying true model, which is known in the simulation
setting.

In order to do construct these indexes, we preface by defining what we
will refer to as positive and negative values. We consider as positive an entry
of the concentration matrix that is different from zero or, in other words, a
present edge in the corresponding graph. The complementary definition for
negative outcomes refers to entries of the concentration matrix that are equal
to zero, i.e. corresponding to missing edges in the graph.

We can therefore construct a contingency table for the true underlying
graph and the estimated one, regardless of the method, as shown in Table
4.4.

``````````````̀Estimated
Population Positive Negative

Positive TP FP
Negative FN TN

Table 4.4: Contingency table for comparing two graphs

57



For instance, the true positives are the edges that are present both in
the population graph and the in the estimated one. Due to the symmetry of
the concentration matrices, we evaluate these measures only on their upper
triangular portion, diagonal excluded. More formally,

TP = |{(i, j) : ωij 6= 0 ∧ ω̂ij 6= 0; i, j ∈ V, i < j}|

Traditionally, these measures are combined in the specificity (or True
Negative Rate) and sensitivity (True Positive Rate) indexes:

TNR = TN

TN + FP
(4.1)

TPR = TP

TP + FN
(4.2)

However, in this context, the graphs can be very sparse, which results in a
large number of true negatives. Therefore, the specificity of the estimates
may not be an informative measure, since the positive values may be a very
small proportion of the entries, hence inflating the index regardless of the
learning method. In light of this issue, it would be appropriate to consider an
alternative measure that is not as influenced by the amount of true negative
results.

For this reason, we refer to the precision (or Positive Predictive Value)
and recall (TPR) indexes. The former is defined as:

PPV = TP

TP + FP
(4.3)

This quantifies the proportion of estimated positive values that are truly
positive. On the other hand, the recall measure is equivalent to the sensitivity
(TPR) and it measures the proportion of population positive values that is
correctly estimated as positive by the learning method.

In addition to the precision and recall, we consider as an auxiliary indica-
tor for the performance of each method the comparison between the density
of the population graph and the estimated graph. We define as Graph Den-
sity (GD) the proportion of present edges in a graph. More formally:

GD =
|{(i, j) : ω∗ij 6= 0; i, j ∈ V, i < j}|

p(p− 1)/2 (4.4)

Where ω∗ij corresponds either to the population concentration matrix or
to the estimated one. In the first case, when ω∗ij = ωij, we label this index as

58



Population Graph Density (PGD). On the other hand, when ω∗ij = ω̂ij, we
refer to this index as Estimated Graph Density (EGD).

We now discuss the purpose of these indexes. As presented in Chapter
3, there are different strategies to learning multiple graphs. We believe that
the indexes evaluating the performance of the methods should take into con-
sideration the variety of learning strategies. Therefore, we distinguish three
categories of performance evaluation: separate, joint and differential indexes.

Indexes for Separate Graph Structure Learning

The first set of indexes that we consider is aimed at evaluating the abil-
ity to correctly learn each of the graphs as if they were considered sepa-
rately. This can be suited to methods that do not borrow any strength
from the common structure of the graphs, such as the Separate Graphical
Lasso method. However, we also evaluate these indexes for the joint learning
methods (Reparametrization, Fused and Group Joint Graphical Lasso).

The way that these indexes are calculated consists in disregarding any
commonality between the two groups and evaluating the overall precision
and recall. For instance, we compute the precision as:

PPV = TP1 + TP2

(TP1 + FP1) + (TP2 + FP2)
Using the same approach, we evaluate the recall.
We remark that these indexes cannot be computed for the output pro-

duced by the Direct Estimation method, as we do not have any information
on the estimates of the single concentration matrices.

As for the GD indexes, we consider as an aggregate measure the average
GD over the H conditions, both for the population and estimated graph. For
instance, the Population Average Graph Density will be computed as:

PAGD = 1
H

H∑
h=1

|{(i, j) : ω(h)
ij 6= 0; i, j ∈ V, i < j}|
p(p− 1)/2 (4.5)

The EAGD is computed accordingly based on the estimated concentration
matrices.

59



Indexes for Joint Graph Structure Learning

As opposed to evaluating the indexes separately, we consider the performance
of the methods by calculating them on the graphs that consider the common
and different structure between the two groups.

In order to analyse the common structure of the graphs, we consider
the evaluation of the indexes on the set of edges that are present in both
conditions, which we refer to as matching present. Formally, the graph of
matching present edges can be defined as G∗mp = (V,E∗mp), where
E∗mp = {(i, j) : ω∗(1)

ij 6= 0 ∧ ω∗(2)
ij 6= 0; i, j ∈ V ; i < j}. For ω∗(h)

ij = ω
(h)
ij ∀h we

have the corresponding population graph and ω∗(h)
ij = ω̂

(h)
ij ∀h corresponds to

the estimated one.

Figure 4.10: Estimated and population graphs of matching present edges (in
red)

Figure 4.10 shows the graphs of matching present edges between the two
estimated graphs (above) and the two population ones (below). Once the
graph of matching present edges is built the PPV and TPR indexes are
evaluated.

In this case, a positive value is an edge that is present in both conditions.
As a consequence, the TPR is to be interpreted as the portion of the edges
present in both population groups that are estimated as present in both

60



groups by the learning method under analysis. The same reasoning applies
to the PPV index.

The second part of this evaluation consists in considering the edges that
differ in presence or absence between the two conditions, which we refer to
as mismatching edges. We define this as G∗m = (V,E∗m), where
E∗m = {(i, j) : (ω∗(1)

ij = 0∧ω∗(2)
ij 6= 0)∨ (ω∗(1)

ij 6= 0∧ω∗(2)
ij = 0); i, j ∈ V ; i < j}.

The population and estimated variants are retrieved with ω∗(h)
ij = ω

(h)
ij ∀h and

ω
∗(h)
ij = ω̂

(h)
ij ∀h respectively. Figure 4.11 shows the construction of graphs of

mismatching edges.

Figure 4.11: Estimated and Population graphs of mismatching edges (in red)

The PPV and TPR are then evaluated on the mismatching graph. For
instance, then, the PPV on mismatching edges corresponds to the proportion
of estimated mismatching edges that are truly mismatching in the population
graphs.

It should be kept in mind that these indexes cannot be computed for the
Direct Estimation method, as we do not have any information on each of the
graphs. We compute these for the JGSL methods as well as the Separate
Graphical Lasso. In theory, we would expect the separate learning method
to show worse performance than the joint ones for these indexes, as it is not

61



built with the consideration of accounting for the common structure of the
graphs.

We remark that the evaluation of the Graph Density is equivalent to that
of Separate Graph Structure Learning. Therefore, we retrieve the Popula-
tion Average Graph Density as in Equation (4.5) and the Estimated one
accordingly.

Indexes for Differential Graph Structure Learning

This last set of indexes refers to the ability of learning the graphs of dif-
ferences. It is suited to evaluating the performance of the Direct estimation
method by [Zhao et al., 2014], where the graphs are learnt based on S(1)−S(2).

We perform this evaluation also on the other learning methods, with the
awareness that this conveys a slightly different information than considering
the matching and mismatching edges as done for the JGSL indexes. We
use the term different edges to indicate a non-zero difference in edge values.
Using the definition in Section 3.4, the graphs of differences are G∗d = (V,E∗d),
with E∗d = {(i, j) : ω∗(1)

ij − ω
∗(2)
ij 6= 0; i, j ∈ V ; i < j}. The population and

estimated ones correspond again to ω
∗(h)
ij = ω

(h)
ij ∀h and ω

∗(h)
ij = ω̂

(h)
ij ∀h

respectively.
As we see from Figure 4.12, the graph constructed from the non-zero

entries of the difference between concentration matrices is denser than that
produced by the discrepancy in absence/presence of edges that was shown
in Figure 4.11. This is due to the fact that while the edges may be present
in both conditions, the corresponding element in the concentration matrices
may be different, thus resulting in an edge in the right-hand side of Figure
4.12.

We make the distinction between these two types of graphs due to the
fact that for the Direct Estimation method we only have an estimate ∆̂ for
∆0 = Ω(1) − Ω(2). This is not directly comparable to the other methods,
which produce the single estimates Ω̂(1) and Ω̂(2). However, for the other
learning methods, we can obtain a comparison by using the difference of the
estimates: ∆̂ = Ω̂(1) − Ω̂(2).

In regard to the interpretation of the PPV and TPR for edges in graphs
of differences, we explain as an example that PPV = 0.25 would mean that
among the elements of the concentration matrices that are estimated to have
different value between the two conditions, 25% of them have truly different
value in the population.

62



Figure 4.12: Comparison between mismatching graphs (left) and graphs of
differences (right). The additional edges resulting from different edge values
are shown in red.

It should be noted that in the graphs obtained by differences in edge val-
ues, the index for the Graph Density does not need averaging, since there is
directly one graph of differences. Therefore, the PGD and EGD are calcu-
lated as in Equation (4.4), with the notion that the concentration matrices
of reference are in this case ∆0 for the PGD and ∆̂ for the EGD.

The interpretation of these measures varies consequently: in this case, an
edge means a different partial correlation and therefore PGD = 0.1 would
mean that 10% of the entries of the upper triangular concentration matrices
have different values.

Table 4.5 shows a summary of the indexes used to evaluate the perfor-
mance of the methods that produce as output each of the concentration
matrices. Table 4.6, on the other hand, refers to the indexes computed on
the difference of concentration matrices.

63



Table 4.5: Summary of performance measures for separate and joint learning
methods, [Danaher et al., 2014])

SEPARATE INDEXES

PPV Proportion of correctly present edges
among the estimated ones

TPR Proportion of correctly present edges
among the truly present

JOINT INDEXES

MATCHING PRESENCE: PPV Proportion of correctly matching present
edges among the estimated ones

MATCHING PRESENCE: TPR Proportion of correctly matching present
edges among the truly matching present

MISMATCHING: PPV Proportion of correctly mismatching edges
among the estimated ones

MISMATCHING: TPR Proportion of correctly mismatching edges
among the truly mismatching

DENSITY

EAGD Average proportion of estimated present edges

PAGD Average proportion of truly present edges

Table 4.6: Summary of performance measures for graph of differences

DIFFERENTIAL INDEXES

DIFFERENCE: PPV Proportion of correctly different edges
among the truly different ones

DIFFERENCE: TPR Proportion of correctly different edges
among the truly different ones

DENSITY

EGD Proportion of non-zero edges in the esti-
mated graph of differences

PGD Proportion of non-zero edges in the true
graph of differences

4.8 Results
In this section, we show the results for the set of simulations run as described
in Sections 4.2-4.7. The analysis of the results for each scenario includes a

64



large amount of tables whose features are here summarized by reporting some
exemplary ones. The totality of the performance results can be found in the
Appendix (Tables A.4-A.108).

For each scenario, the simulations were run 20 times. Therefore, the
results that we show are the averages of the 20 repetitions. For each index,
we also report its standard deviation in brackets, calculated with respect to
the 20 repetitions.

In the comparison of the results, the references to each method will be
done using the following abbreviations:

• Sep-GL: Separate Graphical Lasso (Section 3.2),

• R-JGL: Reparametrization Joint Graphical Lasso (Section 3.3.1),

• Fused JGL: Fused Joint Graphical Lasso (Section 3.3.2),

• Group JGL: Group Joint Graphical Lasso (Section 3.3.2),

• Direct: Direct Estimation method (Section 3.4.1).

The first simulation scenario we report refers to the case p = 30, n = 200,
with dissimilarity degree δ = 0.20. Table 4.7 shows the performance of
the learning methods that produce estimates of each concentration matrix
constructed on the random graph model, with π = 0.1 probability of edge
presence in the common structure. The first piece of information we retrieve
from Table 4.7 is that the four methods produce graphs with varying average
density, from 0.351 (Fused JGL) to 0.608 (Sep-GL). None of them, however,
is close to the true one. The JGSL methods have a higher precision than
the separate one, but the Sep-GL shows higher recall. This is influenced
by the estimated average densities, since identifying denser graphs results
in estimating more positive values. Overall, it seems that the Fused JGL
and the R-JGL are able to reconstruct the concentration matrices based
on the random graphs most closely to the population ones. The former
shows a higher precision on mismatching edges, but the latter is more precise
in determining the matching present ones and in the graphs overall when
considered separately.

To follow this evaluation, we report the results for learning tree graphs in
the same simulation scenario (p = 30, n = 200), but with a smaller portion
of changed edges, δ = 0.05. Table 4.8 shows that the average density of the
true graphs is much lower, which some of the learning methods are not able to
correctly identify. For instance, the Sep-GL estimates around 28% of present

65



Table 4.7: Performance on random graphs (π = 0.1), p=30, n=200, δ = 0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.351 ( 0.025 ) 0.473 ( 0.049 ) 0.457 ( 0.041 ) 0.432 ( 0.040 )
TPR 0.807 ( 0.042 ) 0.642 ( 0.061 ) 0.600 ( 0.090 ) 0.651 ( 0.062 )

MATCHING PRESENCE: PPV 0.184 ( 0.040 ) 0.249 ( 0.058 ) 0.245 ( 0.055 ) 0.219 ( 0.051 )
MATCHING PRESENCE: TPR 0.677 ( 0.088 ) 0.594 ( 0.103 ) 0.646 ( 0.102 ) 0.606 ( 0.090 )

MISMATCHING: PPV 0.330 ( 0.029 ) 0.449 ( 0.049 ) 0.575 ( 0.084 ) 0.466 ( 0.043 )
MISMATCHING: TPR 0.456 ( 0.049 ) 0.303 ( 0.030 ) 0.238 ( 0.077 ) 0.307 ( 0.048 )

EAGD 0.608 ( 0.057 ) 0.363 ( 0.058 ) 0.351 ( 0.074 ) 0.400 ( 0.056 )
PAGD 0.264 ( 0.014 ) 0.264 ( 0.014 ) 0.264 ( 0.014 ) 0.264 ( 0.014 )

edges, as opposed to the true 6.6%. Once again, the Fused JGL shows higher
precision than the other methods, but clearly the recall is lower, especially
on mismatching edges; by identifying sparser graphs than the other methods,
it results in estimating fewer positive values.

Furthermore, it can be seen how overall all the methods have worse per-
formance with respect to Table 4.7, which may be due mainly to the lower
average density of the underlying population graphs.

Table 4.8: Performance on tree graphs, p=30, n=200, δ = 0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.151 ( 0.022 ) 0.245 ( 0.063 ) 0.507 ( 0.178 ) 0.349 ( 0.099 )
TPR 0.630 ( 0.096 ) 0.583 ( 0.083 ) 0.331 ( 0.131 ) 0.414 ( 0.115 )

MATCHING PRESENCE: PPV 0.147 ( 0.048 ) 0.186 ( 0.082 ) 0.362 ( 0.221 ) 0.267 ( 0.127 )
MATCHING PRESENCE: TPR 0.503 ( 0.164 ) 0.549 ( 0.146 ) 0.428 ( 0.186 ) 0.414 ( 0.172 )

MISMATCHING: PPV 0.114 ( 0.030 ) 0.177 ( 0.073 ) 0.652 ( 0.250 ) 0.308 ( 0.112 )
MISMATCHING: TPR 0.525 ( 0.071 ) 0.325 ( 0.055 ) 0.097 ( 0.044 ) 0.264 ( 0.078 )

EAGD 0.280 ( 0.057 ) 0.167 ( 0.048 ) 0.051 ( 0.030 ) 0.086 ( 0.037 )
PAGD 0.066 ( 0.001 ) 0.066 ( 0.001 ) 0.066 ( 0.001 ) 0.066 ( 0.001 )

When it comes to learning graphs with dimension larger than the sam-
ples size, we notice a common pattern for p = 30, n = 20, which we report,
for instance, in Tables 4.9 and 4.10. In both the Markov-chain graphs and
the scale-free ones, the Fused JGL and Group JGL methods estimate lower
average densities than the true ones, whereas the R-JGL estimates greater
ones. Furthermore, it can be seen that the regularization parameters esti-
mated by the R-JGL are more variable than the other methods, presenting
larger standard deviation for the average densities.

These examples from the p = 30, n = 20 scenario show that the Sep-GL
is the most suitable candidate to reproduce graphs with average densities

66



Table 4.9: Performance on Markov-chain graphs, p=30, n=20, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.171 ( 0.050 ) 0.168 ( 0.046 ) 0.215 ( 0.329 ) 0.195 ( 0.350 )
TPR 0.174 ( 0.076 ) 0.285 ( 0.222 ) 0.064 ( 0.141 ) 0.009 ( 0.018 )

MATCHING PRESENCE: PPV 0.151 ( 0.176 ) 0.123 ( 0.082 ) 0.234 ( 0.365 ) 0.017 ( 0.073 )
MATCHING PRESENCE: TPR 0.053 ( 0.054 ) 0.225 ( 0.241 ) 0.075 ( 0.155 ) 0.002 ( 0.009 )

MISMATCHING: PPV 0.127 ( 0.046 ) 0.125 ( 0.033 ) 0.029 ( 0.080 ) 0.029 ( 0.073 )
MISMATCHING: TPR 0.240 ( 0.111 ) 0.159 ( 0.058 ) 0.004 ( 0.009 ) 0.008 ( 0.023 )

EAGD 0.116 ( 0.060 ) 0.215 ( 0.221 ) 0.043 ( 0.107 ) 0.004 ( 0.008 )
PAGD 0.108 ( 0.005 ) 0.108 ( 0.005 ) 0.108 ( 0.005 ) 0.108 ( 0.005 )

comparable to the true ones. However, it should be noted that the R-JGL
shows a precision comparable to the former and with higher recall. This
may indicate that if the R-JGL were able to identify a regularization param-
eter that reproduces the correct graph densities, it could be more precise in
identifying the true graphs.

Table 4.10: Performance on scale-free graphs, p=30, n=20, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.153 ( 0.043 ) 0.158 ( 0.043 ) 0.182 ( 0.275 ) 0.319 ( 0.348 )
TPR 0.188 ( 0.081 ) 0.337 ( 0.260 ) 0.023 ( 0.042 ) 0.016 ( 0.018 )

MATCHING PRESENCE: PPV 0.180 ( 0.126 ) 0.117 ( 0.066 ) 0.167 ( 0.266 ) 0.192 ( 0.347 )
MATCHING PRESENCE: TPR 0.076 ( 0.054 ) 0.282 ( 0.264 ) 0.034 ( 0.058 ) 0.014 ( 0.025 )

MISMATCHING: PPV 0.120 ( 0.037 ) 0.126 ( 0.062 ) 0.025 ( 0.109 ) 0.162 ( 0.307 )
MISMATCHING: TPR 0.255 ( 0.102 ) 0.151 ( 0.070 ) 0.001 ( 0.005 ) 0.013 ( 0.022 )

EAGD 0.131 ( 0.051 ) 0.274 ( 0.269 ) 0.009 ( 0.025 ) 0.005 ( 0.006 )
PAGD 0.108 ( 0.004 ) 0.108 ( 0.004 ) 0.108 ( 0.004 ) 0.108 ( 0.004 )

67



Since the graphs analysed and reported in Tables 4.9 and 4.10 have equal
average densities, it is interesting to investigate whether there is some re-
markable difference in estimation only depending on the graph structure.
For instance, we gather that the Sep-GL and the R-JGL have similar perfor-
mance among the two graph types, with larger TPR in the scale-free graphs
due to larger estimated densities. In this occurrence, the Fused JGL is more
suited to the Markov-chain graph, whereas the Group JGL is preferable for
the scale-free ones. These differences, however, are very subtle and we cannot
conclude that the fitting is remarkably different between these two structures.
Throughout the set of simulations, we do not witness a significant distinc-
tion in the performance of the learning methods, which can be assessed by
inspecting the Tables in Appendix A.2.1.

When the dimension of the problem increases, such as the p = 100 scenar-
ios, the Sep-GL loses its ability to closely estimate the regularization param-
eters reproducing the true graph densities. Since the densities reproduced by
this method are either much larger or much smaller than the true ones, this
indicates that the model selection procedure is not able to identify a correct
value for ρ, either shrinking too much or too little the model parameters. By
analysing the Tables in Appendix A.2.1 for large p and n >> p, it is not
straightforward to conclude whether one method is evidently preferable to
the other ones since there is no remarkable peak in performance from any of
them. The main difference lies in the better ability of the R-JGL and Group
JGL methods to retrieve graph densities comparable to the population ones,
followed closely by the Fused JGL.

We show for instance the results on the scale-free graphs, for p = 100,
n = 400, δ = 0.05. As we see from Table 4.11, the Group JGL is able to
best identify graphs with EAGD close to the true ones; the Sep-GL and the
R-JGL produce denser ones and the Fused JGL sparser ones. The Fused
JGL has better ability in identifying matching present edges, but it is not
ideal for mismatching edges, for which it presents lowest recall, as seen in
the previous occasions.

In what can be considered the worst-case scenario, i.e. when the dimen-
sion of the data is large and the sample size is smaller (p = 100, n = 60),
the learning methods appear to have weaker ability to reconstruct the true
graphs. Only the R-JGL is able to recover an EAGD that is close to the
true one, whereas the other methods identify extremely sparse graphs, which
compromises their whole performance. As previously mentioned, when the
dimension of the problem is greater than the sample size, the Fused JGL
and Group JGL estimate larger regularization parameters than needed and

68



Table 4.11: Performance on scale-free graphs, p=100, n=400, δ = 0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.254 ( 0.015 ) 0.320 ( 0.014 ) 0.503 ( 0.043 ) 0.378 ( 0.035 )
TPR 0.555 ( 0.031 ) 0.533 ( 0.017 ) 0.324 ( 0.049 ) 0.394 ( 0.044 )

MATCHING PRESENCE: PPV 0.304 ( 0.035 ) 0.297 ( 0.019 ) 0.409 ( 0.044 ) 0.338 ( 0.035 )
MATCHING PRESENCE: TPR 0.399 ( 0.033 ) 0.475 ( 0.024 ) 0.397 ( 0.055 ) 0.373 ( 0.051 )

MISMATCHING: PPV 0.143 ( 0.008 ) 0.176 ( 0.010 ) 0.538 ( 0.099 ) 0.248 ( 0.030 )
MISMATCHING: TPR 0.501 ( 0.030 ) 0.312 ( 0.020 ) 0.074 ( 0.019 ) 0.233 ( 0.028 )

EAGD 0.265 ( 0.026 ) 0.201 ( 0.008 ) 0.079 ( 0.016 ) 0.128 ( 0.024 )
PAGD 0.121 ( 0.001 ) 0.121 ( 0.001 ) 0.121 ( 0.001 ) 0.121 ( 0.001 )

when the dimension is large, this happens for the Sep-GL as well. This can
be assessed thoroughly from the Tables in Appendix A.2.1.

We show, for instance, the attempt at learning tree graphs, with dissim-
ilarity degree δ = 0.20 (Table 4.12). In this instance, it is evident that none
of the methods are able to give plausible estimates of the population graphs,
identifying at best 10% of the positive values.

Table 4.12: Performance on tree graphs, p=100, n=60, δ = 0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.046 ( 0.017 ) 0.042 ( 0.010 ) 0.025 ( 0.109 ) 0.078 ( 0.127 )
TPR 0.075 ( 0.033 ) 0.129 ( 0.035 ) 0.000 ( 0.001 ) 0.007 ( 0.012 )

MATCHING PRESENCE: PPV 0.006 ( 0.018 ) 0.009 ( 0.007 ) 0.000 ( 0.000 ) 0.000 ( 0.000 )
MATCHING PRESENCE: TPR 0.009 ( 0.027 ) 0.098 ( 0.064 ) 0.000 ( 0.000 ) 0.000 ( 0.000 )

MISMATCHING: PPV 0.061 ( 0.019 ) 0.056 ( 0.015 ) 0.000 ( 0.000 ) 0.094 ( 0.149 )
MISMATCHING: TPR 0.102 ( 0.052 ) 0.112 ( 0.028 ) 0.000 ( 0.000 ) 0.008 ( 0.013 )

EAGD 0.034 ( 0.016 ) 0.062 ( 0.018 ) 0.000 ( 0.001 ) 0.001 ( 0.002 )
PAGD 0.020 ( 0.000 ) 0.020 ( 0.000 ) 0.020 ( 0.000 ) 0.020 ( 0.000 )

Graphs of differences.
Since the Direct method learns the graphs based on differences between

edge values in the two conditions, its results cannot be comparable to the
estimates produced by the other methods for multiple reasons. First of all,
there can be no distinction between edges that are both missing or both
present with the same value under the the two conditions. Moreover, the
edges in the graphs of differences are present even when they are present
in both conditions, but with different value. As discussed in Section 4.7,
we compare the estimates ∆̂ with the estimates Ω̂(1) − Ω̂(2) produced by
non-differential learning methods.

69



We begin by showing the scenario p = 30, n = 200. Table 4.13 displays
as an example scale-free graphs, with dissimilarity degree δ = 0.20. As we
see, the Sep-GL and the Direct methods estimate regularization parameters
producing denser graphs in terms of differences, with values being double the
true densities. On the other hand, the Fused JGL identifies sparser graphs.
The two methods that are able to produce adequate graphs are the R-JGL
and the Group JGL. In the scenario example considered in Table 4.13, the
R-JGL is best performing, not only reproducing graphs of differences close
in density to the true ones, but also with a good precision and recall on
different edges. From the Tables in Appendix A.2.2, the same conclusions
can be drawn for all graph structures.

Table 4.13: Performance on differences of scale-free graphs, p=30, n=200,
δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.443 ( 0.018 ) 0.601 ( 0.041 ) 0.689 ( 0.056 ) 0.541 ( 0.039 ) 0.413 ( 0.031 )
DIFFERENCE: TPR 0.891 ( 0.047 ) 0.665 ( 0.061 ) 0.296 ( 0.067 ) 0.677 ( 0.051 ) 0.830 ( 0.260 )

EGD 0.797 ( 0.052 ) 0.440 ( 0.055 ) 0.173 ( 0.047 ) 0.498 ( 0.056 ) 0.811 ( 0.270 )
PGD 0.396 ( 0.011 ) 0.396 ( 0.011 ) 0.396 ( 0.011 ) 0.396 ( 0.011 ) 0.396 ( 0.011 )

The behaviour of the Direct method changes when the sample size de-
creases, for instance with p = 30 and n = 40. It is able to estimate the
graph densities more closely, though with large variability. Moreover, it is
worth noting that when δ = 0.05, the Direct method tends to learn graphs
of differences that are closer in density to the true ones than when δ = 0.20.

Table 4.14 shows an example for the random graphs in this simulation
scenario, with probability π = 0.1 of edge presence in the graph generation
and probability δ = 0.05 of edges changing between the two conditions.
As we see from Table 4.14, the Direct method has the closest EGD to the
population one. However, it still appears that the R-JGL produces better
estimates, having higher precision and recall on different edges. The other
methods either present estimates than are too sparse (Fused and Group JGL)
or too dense (Sep-GL).

For large dimensions with larger sample size (p = 100, n = 400), we
observe similar behaviours as the case for low dimensions (p = 30, n = 200).
The R-JGL and the Group JGL are preferable, with similar performance both
in terms of estimated densities and in terms of precision and recall evaluated
on different edges. The Sep-GL produces denser graphs of differences than
the population ones, whereas the Fused JGL and the Direct estimate sparser
ones.

70



Table 4.14: Performance on differences of random graphs (π = 0.1), p=30,
n=40, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.251 ( 0.037 ) 0.289 ( 0.049 ) 0.312 ( 0.323 ) 0.356 ( 0.289 ) 0.108 ( 0.104 )
DIFFERENCE: TPR 0.495 ( 0.123 ) 0.400 ( 0.086 ) 0.019 ( 0.021 ) 0.104 ( 0.105 ) 0.176 ( 0.256 )

EGD 0.377 ( 0.113 ) 0.261 ( 0.063 ) 0.009 ( 0.011 ) 0.050 ( 0.059 ) 0.166 ( 0.235 )
PGD 0.186 ( 0.014 ) 0.186 ( 0.014 ) 0.186 ( 0.014 ) 0.186 ( 0.014 ) 0.186 ( 0.014 )

We consider as an example the differences of random graphs, with δ =
0.05 (Table 4.15). In this instance, the Direct method is not able to identify
graphs of differences similar to the population ones, showing and average
density of 0.2%. It would appear, then, the Direct method is not favoured
by sample sizes larger than the dimension of the graph.

Table 4.15: Performance on differences of random graphs (π = 0.1), p=100,
n=400, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.280 ( 0.017 ) 0.370 ( 0.015 ) 0.573 ( 0.086 ) 0.404 ( 0.028 ) 0.076 ( 0.171 )
DIFFERENCE: TPR 0.673 ( 0.048 ) 0.578 ( 0.019 ) 0.091 ( 0.021 ) 0.457 ( 0.052 ) 0.003 ( 0.010 )

EGD 0.451 ( 0.053 ) 0.291 ( 0.011 ) 0.031 ( 0.009 ) 0.213 ( 0.037 ) 0.002 ( 0.008 )
PGD 0.187 ( 0.005 ) 0.187 ( 0.005 ) 0.187 ( 0.005 ) 0.187 ( 0.005 ) 0.187 ( 0.005 )

To conclude, we explore the scenario for p = 100 and n = 60. It is con-
firmed that the Fused JGL and Group JGL do not perform adequately when
the dimension exceeds the sample size. In this case as well, they produce
estimates that are too sparse with respect to the true graphs. The R-JGL
is to be preferred throughout this simulation scenario, as confirmed by the
corresponding Tables in Appendix A.2.2.

For instance, we show the results for the difference of Markov-chain
graphs, with δ = 0.05, as displayed in Table 4.16. The Direct method again
shows better performance than in the case with n > p. However, we re-
mark that this method has the largest variability in the estimates and shows
inconsistent performance as the graph structures vary.

4.8.1 Fixing the density
The main observation that can be drawn from the results of our set of sim-
ulations is that in most cases the methods are not able to reproduce the

71



Table 4.16: Performance on differences of Markov-chain Graph, p=100,
n=60, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.178 ( 0.021 ) 0.180 ( 0.020 ) 0.000 ( 0.000 ) 0.181 ( 0.226 ) 0.063 ( 0.070 )
DIFFERENCE:TPR 0.110 ( 0.030 ) 0.168 ( 0.034 ) 0.000 ( 0.000 ) 0.003 ( 0.006 ) 0.162 ( 0.249 )

EGD 0.070 ( 0.019 ) 0.106 ( 0.026 ) 0.000 ( 0.000 ) 0.001 ( 0.002 ) 0.164 ( 0.251 )
PGD 0.112 ( 0.001 ) 0.112 ( 0.001 ) 0.112 ( 0.001 ) 0.112 ( 0.001 ) 0.112 ( 0.001 )

correct densities of the graphs. This clearly impacts on their performance,
as both the precision and the recall measures depend on the density itself.
Clearly we cannot have a high precision for graphs that are denser than the
population ones and viceversa we cannot obtain a large recall for sparser
graphs. If we wish to compare the performance of each method without the
impact of the density, we can impose the regularization parameters to be as
close as possible to those that reproduce the true density.

In order to do so, we use a modified model selection procedure with
respect to Algorithm 3, discussed in Section 4.6.1. Instead of choosing the
parameter that minimizes the AIC, we choose the parameter that minimizes
|EAGD − PAGD|:

Algorithm 4: Select regularization parameters that reproduce the
true graph densities

Initialize extrema for the parameter range ρ(0)
L andρ(0)

R and generate a
vector of length l of equally-spaced values between ρ(0)

L and ρ(0)
R

for i = 1, . . . , it.max do
Fit l models and calculate their EAGD
Find the minimum |EAGD − PAGD| and its corresponding
parameter ρ(i)

min
if ρ(i)

min = ρ
(i−1)
L then

Update the range with extrema 1
c
· ρ(i−1)

L and 1
c
· ρ(i−1)

R ,
where c > 0 is some defined constant

else if ρ(i)
min = ρ

(i−1)
R then

Update the range with extrema c · ρ(i−1)
L and c · ρ(i−1)

R ,
where c > 0 is some defined constant

else
Update the extrema for the new range to be centred around ρ(i)

min
end if

end for

72



Algorithm 4 is implemented for each of the learning methods. The
corresponding functions rho_finder_sep_lasso(), rho_finder_guo() and
rho_finder_jgl() can be found in Appendix B. As opposed to the results
reported in Section 4.8, the performance of the methods in this Section does
not include information on the standard deviation of the indexes, since the
regularization parameters reproduce the population densities with very little
fluctuation by construction.

We report, for instance, the results on Markov-chain graphs, for
p = 30, n = 40 and with δ = 0.20, in Table 4.17. The Fused JGL produces
graphs for which the true positive rate for mismatching edges is lower than the
other methods, but higher for matching present edges. The Group JGL shows
similar characteristics, but less emphasized. The opposite behaviour goes for
the Sep-GL: highest TPR on mismatching, but lowest on matching present.
Though these traits were already detected in Section 4.8, it is confirmed that
it is not only a consequence of the different estimated densities, but of the
learning methods themselves.

As a common feature that can be observed from the Tables in Appendix
A.3.1, the R-JGL shows the best performance on the graphs considered sep-
arately, which is also confirmed in Table 4.17.

Table 4.17: Performance on Markov-chain graphs with fixed densities, p=30,
n=40, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.361 0.377 0.362 0.360
TPR 0.354 0.392 0.363 0.363

MATCHING PRESENCE: PPV 0.276 0.209 0.180 0.149
MATCHING PRESENCE: TPR 0.242 0.424 0.485 0.333

MISMATCHING: PPV 0.393 0.465 0.400 0.394
MISMATCHING: TPR 0.404 0.274 0.096 0.178

EAGD 0.239 0.253 0.245 0.246
PAGD 0.244 0.244 0.244 0.244

Another case we consider is the scenario where p = 100 and n = 400.
Table 4.18 shows the results for random graphs with δ = 0.05. It is interesting
to compare these results to the same scenario with AIC selection, as in Table
4.11. From this comparison, it is evident that the performance indexes highly
depend on the estimated density. For the Sep-GL and the R-JGL, in Table
4.18 the TPR is lower, but the PPV is higher. The opposite goes for the
Fused JGL.

73



Table 4.18: Performance on scale-free graphs with fixed densities, p=100,
n=400, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.387 0.418 0.403 0.402
TPR 0.389 0.435 0.406 0.400

MATCHING PRESENCE: PPV 0.547 0.392 0.309 0.353
MATCHING PRESENCE: TPR 0.244 0.361 0.457 0.370

MISMATCHING: PPV 0.202 0.250 0.366 0.280
MISMATCHING: TPR 0.373 0.305 0.110 0.256

EAGD 0.120 0.125 0.121 0.119
PAGD 0.120 0.120 0.120 0.120

In the same simulation scenario, we explore the ability of the learning
methods to identify the correct edge patterns for graphs with lower densities,
which is the case for tree graphs. Table 4.19 shows this as an example for
p = 100, n = 400 and dissimilarity degree δ = 0.05. Although the EAGDs
are equal to the population ones, by comparing Table 4.19 with Table 4.18,
it is clear that the performance is overall weaker for all the learning methods.
The R-JGL still shows better overall precision and recall, especially on the
graphs considered separately.

From this observation, it is confirmed that not only a low density is hard
to identify, but it also negatively impacts on the overall graph structure
learning.

Table 4.19: Performance on tree graphs with fixed densities, p=100, n=400,
δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.216 0.257 0.151 0.214
TPR 0.212 0.268 0.141 0.217

MATCHING PRESENCE: PPV 0.200 0.138 0.057 0.093
MATCHING PRESENCE: TPR 0.091 0.364 0.455 0.364

MISMATCHING: PPV 0.196 0.236 0.556 0.200
MISMATCHING: TPR 0.205 0.199 0.028 0.131

EAGD 0.020 0.021 0.019 0.020
PAGD 0.020 0.020 0.020 0.020

Graphs of Differences.
In regard to the comparison of learning methods for graphs of differences,

we use a modification of Algorithm 4 to choose the regularization parameters,

74



by minimizing |EGD−PGD| on the graphs of differences instead. The cor-
responding R functions can be found in Appendix B as rho_finder_diff()
and rho_finder_jgl_diff().

Figure 4.13 shows a comparison of the estimated differences of tree graphs
for the p = 30, n = 200 simulation scenario, with δ = 0.05. Although the
regularization parameters are set to be reproducing the true density of the
graphs of differences, we see that the graphs are not that similar. In partic-
ular, the graph identified with the Direct method tends to find a few nodes
with large connectivity (e.g. nodes 3 and 26), leaving many nodes uncon-
nected. The Sep-GL and Group JGL seem to select very similar models,
which is also reflected in highly similar performance indexes in Table 4.20.
The Fused JGL shows many pairwise connections between nodes 14 to 24
that are not in the true graph of differences, which confirms the lower TPR
and PPV in Table 4.20. Overall, the R-JGL is undoubtedly the best per-
forming on the difference of tree graphs in this instance, showing larger TPR
and PPV for different edges.

1

2

3

4

5
6

78910
11

12

13

14

15

16

17

18

19

20
21

22 23 24 25
26

27

28

29

30

True Graph

1

2

3

4

5
6

78910
11

12

13

14

15

16

17

18

19

20
21

22 23 24 25
26

27

28

29

30

Sep−GL

1

2

3

4

5
6

78910
11

12

13

14

15

16

17

18

19

20
21

22 23 24 25
26

27

28

29

30

R−JGL

1

2

3

4

5
6

78910
11

12

13

14

15

16

17

18

19

20
21

22 23 24 25
26

27

28

29

30

Fused JGL

1

2

3

4

5
6

78910
11

12

13

14

15

16

17

18

19

20
21

22 23 24 25
26

27

28

29

30

Group JGL

1

2

3

4

5
6

78910
11

12

13

14

15

16

17

18

19

20
21

22 23 24 25
26

27

28

29

30

Direct

Figure 4.13: Comparison of graphs of differences for tree graphs, p = 30,
n = 200, δ = 0.05. Regularization parameters are imposed to reproduce true
graph density.

75



Table 4.20: Performance on differences of tree graphs with fixed densities,
p=30, n=200, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.258 0.290 0.233 0.267 0.036
DIFFERENCE: TPR 0.267 0.300 0.233 0.267 0.033

EGD 0.071 0.071 0.069 0.069 0.064
PGD 0.069 0.069 0.069 0.069 0.069

To conclude the assessment on the graphs of differences with fixed densi-
ties, we present the opposite simulation scenario, with p = 100, n = 60, δ =
0.20. When the graphs are more different, the performance of the learning
methods improves greatly. We remark that the improvement in performance
happens in spite of the less-favourable relationship between the dimension
and the sample size and regardless of the graph structure. From this ob-
servation, we conclude that the ability in learning the graphs, when the
regularization parameters are set to reproduce the PGD, depends primarily
on the densities of the graphs of differences.

The Table 4.21 shows the results on the differences of scale-free graphs:
the Direct method still shows lower precision and recall; the R-JGL and
Group JGL appear to be the best methods in identifying the different edges,
which is confirmed in all the simulation scenarios reported in Appendix A.3.2.

Table 4.21: Performance on differences of scale-free graphs with fixed densi-
ties, p=100, n=60, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.445 0.451 0.429 0.451 0.400
DIFFERENCE: TPR 0.447 0.450 0.427 0.452 0.401

EGD 0.405 0.403 0.402 0.405 0.404
PGD 0.404 0.404 0.404 0.404 0.404

It is interesting to observe that, with the estimated densities out of con-
sideration, the Fused JGL shows worse performance than the Group one in
identifying the different edges. Theoretically, the Fused penalty imposes a
constraint on the similarity of the entries of the concentration matrices, which
would lead to a closer approximation of the matrix of differences. In spite of
this, we see that it is the Group penalty that is better able to identify the
differences that are non-zero between the two groups.

76



4.9 Final Remarks
After investigating the results in Section 4.8, we draw some final remarks
related to our comparative analysis.

Overall performance.
The first observation we raise is that there is a commonly low ability to

correctly identify the population graphs among all the considered learning
methods. In the majority of cases, none of them is even able to select half
of the true conditional dependencies between couples of random variables.
As the density of the population graphs decreases, the performance decays
as well, both because the model selection tends to lead the method towards
models that do not match the true density and because even with the right
regularization parameter, the methods do not identify correctly most of the
edges.

Performance assessment.
Evaluating the performance of these Multiple Graph Structure Learning

methods can be done by comparing the precision and recall indexes. Nev-
ertheless, we remark that this comparison is not straightforward when the
methods also vary in terms of average density of the learnt graphs, since
these measures highly depend on the density itself. If a graph is estimated
as denser than the true one, it will tend to have larger TPR. Viceversa, if
a graph is learnt as sparser, it will tend to show larger PPV. The graphs
should therefore be compared either by also portraying the information on
the density (EGD and PGD) or by allowing the methods to reproduce the
true density, so that the precision and recall can be compared directly with-
out any direct responsibility of the density. This gives further information on
how differently the graphs are estimated in terms of which edges are identified
as present rather than how many.

Graph structures.
From our set of simulations, there does not appear to be a significant and

systematic difference in the ability to learn the graphs with respect to the
graph structures.

When comparing graphs that experienced a low changing proportion of
edges between the two conditions (δ = 0.05), two different graph structures
such as the Markov-chain graph and the scale-free graph do not show any
preference among learning methods. Even so, it would be difficult to assess
whether the ability or inability to correctly estimate the graphs is due to the
graph structure or to the density in the first place.

77



We remark the shared limited ability to correctly estimate the tree graph,
which is mainly due to its lower density with respect to the other graph struc-
tures. In this regard, we observe that if the right regularization parameter is
chosen, the R-JGL shows slightly better performance than the other meth-
ods.

Method comparison.
Across this set of simulations, it appeared that the R-JGL is preferable in

order to reproduce a density that is not excessively far from the true one, even
though it tends to identify denser graphs than needed when the dimension
of the data is larger than the sample size. When p increases, this method, as
well as the Group JGL, is the closest to estimating the true graph densities.

Furthermore, when the regularization parameter is set so that the re-
sulting graphs have the same densities as the true ones, the R-JGL shows
evidence of being the most suitable method in identifying the graph of dif-
ferences in edge values.

In terms of performance indexes, this method shows largest precision and
recall systematically when computed on the graphs as if they were separate.

It should be noted that the R-JGL can lead to estimates showing more
variability in performance, especially when p > n.

The Sep-GL has the main advantage of low computational effort com-
pared to the other methods. It is the only method that is able to learn the
graphs in few seconds even with p = 100. Secondly, it is the method that is
able to best identify the graph density when p > n, especially in the scenario
p = 30, n = 20. On the other hand, it is not recommended when learning
graphs with higher dimension, such as the p = 100 scenarios.

We remark that when the regularization parameters are imposed to be
reproducing the true graph densities, the Sep-GL is similar to the other
methods, if not preferable. On many scenarios, it shows the best precision in
identifying matching present edges and highest recall for mismatching edges.

As for the Fused JGL, we notice that this is the method that is the least
able to learn graphs without any knowledge of their densities. In particular,
it tends to identify graphs that are sparser than the true ones, especially
when p > n, which also results is low recall. On the other hand, when the
regularization parameters are fixed, this method shows the best precision in
identifying mismatching edges and the best sensitivity for matching present
ones.

The Group JGL shares this inability to correctly estimate the regulariza-
tion parameters when the dimension of the data is larger than its sample size,
by identifying graphs that are sparser than the population ones. The Group

78



JGL, as opposed to the Fused, is the best at reproducing the true densities
when n >> p, especially for the graphs of differences. Furthermore, it does
not suffer from the low TPR on mismatching edges that can be frequently
seen for the Fused JGL.

Both these methods rely on a joint evaluation of the estimates and thus
require a larger application time than the Sep-GL, but lower than the R-JGL.

When it comes to estimating the graphs of differences, we do not consider
the Direct method to be competitive with respect to the Sep-GL and the JGL
methods evaluated on the differences of their estimates. This conclusion
comes from the fact that in most cases, the Direct Estimation, as proposed
by [Zhao et al., 2014], is not able to learn graphs of differences that are close
in density to the true ones. Furthermore, we remark that when the portion
δ of changed edges is large, this method is less able to learn the true graphs
of differences. Even when the regularization parameter is set so as to be
compared with the other methods with equal density, this method shows
systematically worse performance than its competitors.

In addition to this, it is the method that requires more computing time
when the dimension increases.

Computational load.
Even though the primary focus of this comparative analysis is the ability

to learn the graphs correctly and not the amount of time required to do
so, it is worth considering briefly a comparison of the computational load
involved in each of their applications. Table 4.22 shows the computation
times (in seconds) needed by each method in order to complete an AIC
selection procedure, as described in Section 4.6.1 (Algorithm 3).

Table 4.22: Comparison of computing times (in seconds) for model selec-
tion with AIC using five different methods, under five simulation scenarios.
Operated on i7-7700K CPU

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
p = 30, n = 200 0.45 94.33 123.33 107.50 4.47
p = 30, n = 40 0.48 117.56 175.47 144.61 14.54
p = 30, n = 20 9.42 674.50 210.56 194.09 35.44
p = 100, n = 400 19.40 1676.35 812.57 844.00 4655.89
p = 100, n = 60 6.61 2215.77 404.34 263.77 10133.18

Among these methods, the Sep-GL is the least demanding in terms of
computational time required to fit the models. This aspect should be taken
into consideration if the analysis were to be expanded to larger dimensions.
The JGL methods all required much longer than the Sep-GL. The R-JGL

79



was more demanding than the other JGL methods, especially with a larger
dimension (p = 100).

The Direct method is considerably limited when it comes to its imple-
mentation. It is extremely slow with larger dimension, e.g. almost three
hours for p = 100, n = 60. Furthermore, this method could not be applied
in an average Personal Computer - with 8GB of RAM - for any number of
variables greater than 150 due to insufficient memory. While this limitation
could be overcome with a more powerful machine, we do consider its limited
scalability to problems with much larger dimension.

Separate Graph Structure Learning.
One of the questions that motivated this set of simulations concerned the

possible improvements in estimating graphs jointly rather than separately,
by exploiting the common structure of the graphs. We analysed two different
degrees of similarity: a portion δ = 0.05 of edges changing between the two
conditions and a portion δ = 0.20. Overall, we can not conclude that the
Joint Graph Structure Learning methods are substantially better than the
Separate Graphical Lasso in learning the graphs. In most cases, the Sep-GL
is not inferior to the R-JGL or the Fused or Group JGL. It was interest-
ing to discover that when the regularization parameters were set in order
to reproduce the true graph densities, the Sep-GL showed higher precision
in identifying the matching present edges, while the R-JGL showed higher
precision and recall on the graphs when evaluated separately.

Model selection.
From this set of simulations, it is evident that the main limitation of

these methods is the unpredictability of the density of the learnt graphs.
While we do conclude that the R-JGL appears to oscillate more closely to
the true graph densities than the other methods, it does not provide with
any certainty of high similarity to the true graphs.

It was our goal to give the best possibility in finding the correct regular-
ization parameters to all the methods, by implementing an automatic AIC
selection algorithm that progressively gets closer to the minimum AIC in the
most accurate way, while not compromising its possible application to data
with larger dimensions. Among the common model selection criteria, such
as the cross validation and the BIC, the AIC resulted as preferable as a good
trade-off between the proximity to the true regularization parameters and
the rapidity in application.

Even so, in most cases, the multiple graph structure learning methods
were not able to learn graphs with densities -and thus edge patterns- similar
to the population ones.

80



Chapter 5

Conclusions

The aim of this thesis was to give an understanding of different graph struc-
ture learning strategies applied to research problems that include a distinc-
tion between multiple experimental conditions for Gaussian-distributed data.
In particular, the research interest lies in the possibility to borrow strength
from the similarity of the graph structures by operating a joint estimation
or a differential one.

In order to perform our comparison, we built a simulation study analysis
that we designed in order to control a variety of scenarios, giving an overview
of the strengths and weaknesses of each learning method. The scenarios
diversify in terms of dimensionality, relationship between number of variables
and sample sizes, level of differentiation between experimental conditions and
underlying graph structure.

We compared graph structure learning methods that are based on esti-
mating the edge patterns for each condition separately, jointly or differen-
tially by using an `1-norm penalty on the maximum likelihood estimate for
the concentration matrices. In order to compare the proximity of each learnt
graph to its population equivalent, we calculated the precision and recall in-
dexes. Therefore, we were able to understand whether a strategy was able
to effectively reconstruct the population graphs or not.

The most notable differences arising from the results of our simulation
analysis consist in the reduced ability of the joint learning methods proposed
by [Danaher et al., 2014] to learn graphs with no knowledge of their density
when the dimension of the problem exceeds the sample size. In addition to
this, we found the Direct Estimation method proposed by [Zhao et al., 2014]
to be the least suitable to learning graphs of differences in most scenarios, in
terms of retrieving the true structures, having higher variability and requiring
greater computational load.

Overall, the Reparametrization Joint Graphical Lasso ( [Guo et al., 2011])

81



showed slightly better performance in many scenarios, especially in terms of
estimating regularization parameters producing graphs with density closer to
the true one.

Moreover, a surprising result was that the Separate Graphical Lasso was
highly competitive with respect to the other learning methods, even with a
large level of similarity between the graphs. It can be then considered as
a valid alternative for MGSL problems, also due to its lower computational
complexity.

As far as the graph structures were concerned, there did not appear to be a
systematic and significant difference in performance with respect to different
graph types. The only observation we reported was a subtle advantage of
the Reparametrization JGL in learning tree-structured graphs.

As the main common feature of the methods under analysis, we observed
a shared low performance in terms of precision and recall. This phenomenon
was emphasized for population graphs with few edges, as the methods es-
timated regularization parameters that produced graphs with density not
comparable to the true one.

The emphasis that we convey on the graph densities is motivated by the
fact that the ability or inability of a method to learn a graph can be decom-
posed in two tasks. The first is the ability to choose the correct regularization
parameters. The second is the effectiveness in identifying the correct edges
with respect to the population graphs. The second task relies heavily on the
first one, since a graph that is too dense may contaminate the results with
many false positives and viceversa a sparser graph may not identify the true
positives.

We believe that the main limitation of these graph structure learning
procedures is the identification of the regularization parameters, which we
chose to select through AIC, as commonly suggested in the literature. We
believe that relying on the evaluation of the degrees of freedom of the model,
estimated as number of edges in the learnt graphs, often does not lead to
choosing the right parameter. However, we did not observe any improvement
with cross validation, which on the other hand is more computationally-
demanding.

Given all our considerations, we suggest that an alternative strategy could
be to set a desired level of graph density. For instance, for studies that
involve the comparison of two experimental conditions, it can be interesting
to perform model selection for graphs that identify the differences between
the elements of the concentration matrices, imposing as much dissimilarity

82



as can be assumed in a specific application domain. In this case, we suggest
learning the graphs of differences with the Reparametrization JGL method.

For studies involving more conditions or for which each graph needs to
be recovered, the choice of learning method can be operated with respect to
the objective of the analysis. If the focus is on the mismatching edges, the
Separate Graphical Lasso tends to identify more of them. If the researcher
wants to select the matching present ones, the Fused JGL is preferred. Fi-
nally, if there is no regard for the commonality of the structures, we believe
that the Reparametrization JGL is the most suitable one.

83



84



Bibliography

[Albert and Barabási, 2002] Albert, R. and Barabási, A.-L. (2002). Statisti-
cal mechanics of complex networks. Reviews of modern physics, 74(1):47.

[Anders and Huber, 2010] Anders, S. and Huber, W. (2010). Differential
expression analysis for sequence count data. Genome biology, 11(10):R106.

[Babu, 2004] Babu, M. M. (2004). Introduction to microarray data analysis.
Computational genomics: Theory and application, 225:249.

[Babu et al., 2004] Babu, M. M., Luscombe, N. M., Aravind, L., Gerstein,
M., and Teichmann, S. A. (2004). Structure and evolution of tran-
scriptional regulatory networks. Current opinion in structural biology,
14(3):283–291.

[Banerjee et al., 2008] Banerjee, O., Ghaoui, L. E., and d’Aspremont, A.
(2008). Model selection through sparse maximum likelihood estimation
for multivariate gaussian or binary data. Journal of Machine learning
research, 9(Mar):485–516.

[Barabási and Albert, 1999] Barabási, A.-L. and Albert, R. (1999). Emer-
gence of scaling in random networks. science, 286(5439):509–512.

[Bogdan et al., 2015] Bogdan, M., Van Den Berg, E., Sabatti, C., Su, W.,
and Candès, E. J. (2015). Slope—adaptive variable selection via convex
optimization. The annals of applied statistics, 9(3):1103.

[Chen and Sharp, 2004] Chen, H. and Sharp, B. M. (2004). Content-rich
biological network constructed by mining pubmed abstracts. BMC bioin-
formatics, 5(1):147.

[Choi et al., 2005] Choi, J. K., Yu, U., Yoo, O. J., and Kim, S. (2005). Dif-
ferential coexpression analysis using microarray data and its application
to human cancer. Bioinformatics, 21(24):4348–4355.

85



[Cox and Wermuth, 1996] Cox, D. and Wermuth, N. (1996). Multivariate
Dependencies: Models, Analysis and Interpretation, volume 67. CRC
Press.

[Cui and Churchill, 2003] Cui, X. and Churchill, G. A. (2003). Statistical
tests for differential expression in cdna microarray experiments. Genome
biology, 4(4):210.

[Danaher et al., 2014] Danaher, P., Wang, P., and Witten, D. M. (2014).
The joint graphical lasso for inverse covariance estimation across multi-
ple classes. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 76(2):373–397.

[Dempster, 1972] Dempster, A. P. (1972). Covariance selection. Biometrics,
pages 157–175.

[Erdős and Rényi, 1959] Erdős, P. and Rényi, A. (1959). On random graphs
i. Publ. Math. Debrecen, 6:290–297.

[Fan et al., 2009] Fan, J., Feng, Y., and Wu, Y. (2009). Network exploration
via the adaptive lasso and scad penalties. The annals of applied statistics,
3(2):521.

[Friedman et al., 2007] Friedman, J., Hastie, T., Höfling, H., Tibshirani, R.,
et al. (2007). Pathwise coordinate optimization. The Annals of Applied
Statistics, 1(2):302–332.

[Friedman et al., 2008] Friedman, J., Hastie, T., and Tibshirani, R. (2008).
Sparse inverse covariance estimation with the graphical lasso. Biostatistics,
9(3):432–441.

[Guo et al., 2011] Guo, J., Levina, E., Michailidis, G., and Zhu, J. (2011).
Joint estimation of multiple graphical models. Biometrika, 98(1):1–15.

[Hannart and Naveau, 2014] Hannart, A. and Naveau, P. (2014). Estimat-
ing high dimensional covariance matrices: A new look at the gaussian
conjugate framework. Journal of Multivariate Analysis, 131:149–162.

[Hu et al., 2009] Hu, R., Qiu, X., Glazko, G., Klebanov, L., and Yakovlev,
A. (2009). Detecting intergene correlation changes in microarray analysis:
a new approach to gene selection. BMC bioinformatics, 10(1):20.

[Jeanmougin et al., 2010] Jeanmougin, M., De Reynies, A., Marisa, L., Pac-
card, C., Nuel, G., and Guedj, M. (2010). Should we abandon the t-test in

86



the analysis of gene expression microarray data: a comparison of variance
modeling strategies. PloS one, 5(9):e12336.

[Jeong et al., 2000] Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N., and
Barabási, A.-L. (2000). The large-scale organization of metabolic networks.
Nature, 407(6804):651.

[Joe, 2006] Joe, H. (2006). Generating random correlation matrices based on
partial correlations. Journal of Multivariate Analysis, 97(10):2177–2189.

[Kiiveri, 2011] Kiiveri, H. T. (2011). Multivariate analysis of microarray
data: differential expression and differential connection. BMC bioinfor-
matics, 12(1):42.

[Krapivsky et al., 2000] Krapivsky, P. L., Redner, S., and Leyvraz, F.
(2000). Connectivity of growing random networks. Physical review let-
ters, 85(21):4629.

[Lauritzen, 1996] Lauritzen, S. L. (1996). Graphical models, volume 17.
Clarendon Press.

[Liu et al., 2014] Liu, S., Quinn, J. A., Gutmann, M. U., Suzuki, T., and
Sugiyama, M. (2014). Direct learning of sparse changes in markov networks
by density ratio estimation. Neural computation, 26(6):1169–1197.

[Mardia et al., 1979] Mardia, K., Kent, J., and Bibby, J. (1979). Multivariate
analysis. Probability and mathematical statistics. Academic Press Inc.

[Massa et al., 2010] Massa, M. S., Chiogna, M., and Romualdi, C. (2010).
Gene set analysis exploiting the topology of a pathway. BMC systems
biology, 4(1):121.

[Meinshausen and Bühlmann, 2006] Meinshausen, N. and Bühlmann, P.
(2006). High-dimensional graphs and variable selection with the lasso.
The annals of statistics, pages 1436–1462.

[R Core Team, 2018] R Core Team (2018). R: A Language and Environ-
ment for Statistical Computing. R Foundation for Statistical Computing,
Vienna, Austria.

[Reverter et al., 2006] Reverter, A., Ingham, A., Lehnert, S. A., Tan, S.-H.,
Wang, Y., Ratnakumar, A., and Dalrymple, B. P. (2006). Simultaneous
identification of differential gene expression and connectivity in inflamma-
tion, adipogenesis and cancer. Bioinformatics, 22(19):2396–2404.

87



[Schäfer and Strimmer, 2004] Schäfer, J. and Strimmer, K. (2004). An em-
pirical bayes approach to inferring large-scale gene association networks.
Bioinformatics, 21(6):754–764.

[Speed and Kiiveri, 1986] Speed, T. P. and Kiiveri, H. T. (1986). Gaussian
markov distributions over finite graphs. The Annals of Statistics, pages
138–150.

[Tibshirani, 1996] Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society: Series B (Method-
ological), 58(1):267–288.

[Tibshirani et al., 2005] Tibshirani, R., Saunders, M., Rosset, S., Zhu, J.,
and Knight, K. (2005). Sparsity and smoothness via the fused lasso. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology),
67(1):91–108.

[Uhler, 2017] Uhler, C. (2017). Gaussian graphical models: An algebraic and
geometric perspective. arXiv preprint arXiv:1707.04345.

[Van Noort et al., 2004] Van Noort, V., Snel, B., and Huynen, M. A. (2004).
The yeast coexpression network has a small-world, scale-free architecture
and can be explained by a simple model. EMBO reports, 5(3):280–284.

[Yuan and Lin, 2006] Yuan, M. and Lin, Y. (2006). Model selection and
estimation in regression with grouped variables. Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology), 68(1):49–67.

[Zhang et al., 2009] Zhang, B., Li, H., Riggins, R. B., Zhan, M., Xuan, J.,
Zhang, Z., Hoffman, E. P., Clarke, R., and Wang, Y. (2009). Differen-
tial dependency network analysis to identify condition-specific topological
changes in biological networks. Bioinformatics, 25(4):526–532.

[Zhao et al., 2014] Zhao, S. D., Cai, T. T., and Li, H. (2014). Direct estima-
tion of differential networks. Biometrika, 101(2):253–268.

88



Appendix A

Tables

A.1 Model selection: CV, AIC, BIC

Table A.1: Comparison of model selection methods for Separate Graphical
Lasso, p = 30, n = 20, δ = 0.2. CV is 5-fold.

(a) Computing times

CV AIC BIC
TIME(s) 1.58 0.42 0.42

(b) Density of Random
Graph (π = 0.05)

h=1 h=2
TRUE 0.22 0.23

CV 0.21 0.17
AIC 0.16 0.12
BIC 0.16 0.12

(c) Density of Markov
Chain Graph

h=1 h=2
TRUE 0.25 0.23

CV 0.22 0.28
AIC 0.14 0.16
BIC 0.14 0.16

(d) Density of Tree Graph

h=1 h=2
TRUE 0.07 0.06

CV 0.17 0.21
AIC 0.13 0.15
BIC 0.13 0.15

(e) Density of Scale-free Graph

h=1 h=2
TRUE 0.25 0.23

CV 0.19 0.24
AIC 0.14 0.23
BIC 0.14 0.20

89



Table A.2: Comparison of model selection methods for Reparametrization
Joint Graphical Lasso, p = 100, n = 400, δ = 0.05. CV is 10-fold.

(a) Computing times

CV AIC BIC
TIME(s) 10252.48 1867.55 1880.36

(b) Density of Random
Graph (π = 0.05)

h=1 h=2
TRUE 0.09 0.09

CV 0.00 0.00
AIC 0.10 0.09
BIC 0.00 0.00

(c) Density of Markov
Chain Graph

h=1 h=2
TRUE 0.07 0.07

CV 0.00 0.00
AIC 0.10 0.09
BIC 0.00 0.00

(d) Density of Tree Graph

h=1 h=2
TRUE 0.02 0.02

CV 0.00 0.00
AIC 0.09 0.08
BIC 0.00 0.00

(e) Density of Scale-free Graph

h=1 h=2
TRUE 0.12 0.12

CV 0.00 0.00
AIC 0.09 0.10
BIC 0.00 0.00

90



Table A.3: Parameters for AIC selection algorithm on each simulation set-
ting, for each method. s indicates length of range of values to choose from, c
is the multiplying/dividing factor to update the range, L is the left endpoint
of the range, R is the right endpoint, it.max is maximum number of itera-
tions for updating the range, ν is the initial penalization parameter for the
R-JGL by [Guo et al., 2011], nlambda is the number of penalization values
in the AIC implemented in the dpm function

p n method s c L R it.max ν nlambda
30 200

Sep-GL 15 2 0.05 2 15
R-JGL 5 2 9× 10−5 5× 10−4 7 0.01
Fused and Group JGL 10 5 0.05 2 5
Direct 10

30 40
Sep-GL 15 2 0.5 2 15
R-JGL 5 2 9× 10−5 5× 10−4 7 0.01
Fused and Group JGL 10 2 0.5 1.2 5
Direct 15

30 20
Sep-GL 10 2 0.7 2 15
R-JGL 5 2 5× 10−4 5× 10−3 5 0.05
Fused and Group JGL 10 2 0.2 0.7 5
Direct 15

100 400
Sep. G-lasso 10 2 0.05 2 15
R-JGL 5 2 9× 10−5 5× 10−4 5 0.1
Fused and Group JGL 10 2 0.5 1.5 5
Direct 10

100 60
Sep-GL 10 2 0.7 2 15
R-JGL 5 2 1× 10−4 1× 10−3 5 0.5
Fused and Group JGL 10 2 0.5 2 5
Direct 10

91



A.2 Performance results: AIC selection

A.2.1 Separate and Joint GSL

Table A.4: Performance on random graphs (π = 0.1), p=30, n=200, δ = 0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.234 ( 0.030 ) 0.377 ( 0.072 ) 0.465 ( 0.100 ) 0.409 ( 0.151 )
TPR 0.703 ( 0.074 ) 0.589 ( 0.073 ) 0.493 ( 0.113 ) 0.517 ( 0.135 )

MATCHING PRESENCE: PPV 0.256 ( 0.069 ) 0.369 ( 0.092 ) 0.376 ( 0.095 ) 0.373 ( 0.161 )
MATCHING PRESENCE: TPR 0.563 ( 0.120 ) 0.545 ( 0.105 ) 0.542 ( 0.122 ) 0.496 ( 0.143 )

MISMATCHING: PPV 0.114 ( 0.018 ) 0.183 ( 0.048 ) 0.440 ( 0.184 ) 0.254 ( 0.185 )
MISMATCHING: TPR 0.503 ( 0.071 ) 0.309 ( 0.059 ) 0.137 ( 0.057 ) 0.254 ( 0.101 )

EAGD 0.418 ( 0.079 ) 0.222 ( 0.053 ) 0.160 ( 0.074 ) 0.202 ( 0.094 )
PAGD 0.137 ( 0.014 ) 0.137 ( 0.014 ) 0.137 ( 0.014 ) 0.137 ( 0.014 )

Table A.5: Performance on Markov-chain graphs, p=30, n=200, δ = 0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.214 ( 0.019 ) 0.338 ( 0.057 ) 0.455 ( 0.096 ) 0.351 ( 0.050 )
TPR 0.675 ( 0.081 ) 0.580 ( 0.083 ) 0.426 ( 0.126 ) 0.494 ( 0.094 )

MATCHING PRESENCE: PPV 0.230 ( 0.048 ) 0.303 ( 0.085 ) 0.338 ( 0.099 ) 0.300 ( 0.075 )
MATCHING PRESENCE: TPR 0.539 ( 0.124 ) 0.536 ( 0.114 ) 0.494 ( 0.150 ) 0.469 ( 0.118 )

MISMATCHING: PPV 0.129 ( 0.021 ) 0.216 ( 0.048 ) 0.504 ( 0.226 ) 0.253 ( 0.055 )
MISMATCHING: TPR 0.529 ( 0.065 ) 0.354 ( 0.066 ) 0.130 ( 0.070 ) 0.306 ( 0.091 )

EAGD 0.348 ( 0.060 ) 0.196 ( 0.056 ) 0.111 ( 0.055 ) 0.160 ( 0.054 )
PAGD 0.109 ( 0.003 ) 0.109 ( 0.003 ) 0.109 ( 0.003 ) 0.109 ( 0.003 )

Table A.6: Performance on Markov-chain graphs, p=30, n=200, δ = 0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.336 ( 0.015 ) 0.460 ( 0.047 ) 0.436 ( 0.036 ) 0.410 ( 0.033 )
TPR 0.774 ( 0.040 ) 0.620 ( 0.042 ) 0.576 ( 0.073 ) 0.635 ( 0.062 )

MATCHING PRESENCE: PPV 0.159 ( 0.032 ) 0.216 ( 0.045 ) 0.201 ( 0.042 ) 0.175 ( 0.044 )
MATCHING PRESENCE: TPR 0.635 ( 0.083 ) 0.583 ( 0.074 ) 0.642 ( 0.077 ) 0.574 ( 0.093 )

MISMATCHING: PPV 0.342 ( 0.027 ) 0.452 ( 0.061 ) 0.584 ( 0.095 ) 0.458 ( 0.057 )
MISMATCHING: TPR 0.487 ( 0.057 ) 0.297 ( 0.035 ) 0.204 ( 0.044 ) 0.298 ( 0.035 )

EAGD 0.553 ( 0.043 ) 0.328 ( 0.046 ) 0.320 ( 0.058 ) 0.376 ( 0.061 )
PAGD 0.240 ( 0.006 ) 0.240 ( 0.006 ) 0.240 ( 0.006 ) 0.240 ( 0.006 )

92



Table A.7: Performance on tree graphs, p=30, n=200, δ = 0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.159 ( 0.024 ) 0.233 ( 0.044 ) 0.401 ( 0.119 ) 0.355 ( 0.138 )
TPR 0.626 ( 0.079 ) 0.556 ( 0.088 ) 0.264 ( 0.123 ) 0.391 ( 0.109 )

MATCHING PRESENCE: PPV 0.067 ( 0.059 ) 0.078 ( 0.055 ) 0.130 ( 0.117 ) 0.177 ( 0.234 )
MATCHING PRESENCE: TPR 0.498 ( 0.250 ) 0.521 ( 0.201 ) 0.386 ( 0.205 ) 0.413 ( 0.218 )

MISMATCHING: PPV 0.173 ( 0.030 ) 0.249 ( 0.061 ) 0.682 ( 0.271 ) 0.431 ( 0.143 )
MISMATCHING: TPR 0.555 ( 0.080 ) 0.357 ( 0.067 ) 0.089 ( 0.076 ) 0.275 ( 0.091 )

EAGD 0.268 ( 0.055 ) 0.167 ( 0.050 ) 0.051 ( 0.033 ) 0.087 ( 0.042 )
PAGD 0.067 ( 0.000 ) 0.067 ( 0.000 ) 0.067 ( 0.000 ) 0.067 ( 0.000 )

Table A.8: Performance on scale-free graphs, p=30, n=200, δ = 0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.221 ( 0.039 ) 0.328 ( 0.069 ) 0.448 ( 0.107 ) 0.376 ( 0.066 )
TPR 0.692 ( 0.062 ) 0.614 ( 0.061 ) 0.474 ( 0.112 ) 0.515 ( 0.099 )

MATCHING PRESENCE: PPV 0.251 ( 0.081 ) 0.311 ( 0.097 ) 0.354 ( 0.113 ) 0.334 ( 0.080 )
MATCHING PRESENCE: TPR 0.578 ( 0.086 ) 0.588 ( 0.075 ) 0.561 ( 0.125 ) 0.516 ( 0.104 )

MISMATCHING: PPV 0.133 ( 0.030 ) 0.191 ( 0.052 ) 0.464 ( 0.162 ) 0.266 ( 0.076 )
MISMATCHING: TPR 0.542 ( 0.058 ) 0.337 ( 0.050 ) 0.146 ( 0.057 ) 0.295 ( 0.091 )

EAGD 0.355 ( 0.071 ) 0.218 ( 0.060 ) 0.127 ( 0.050 ) 0.160 ( 0.061 )
PAGD 0.110 ( 0.004 ) 0.110 ( 0.004 ) 0.110 ( 0.004 ) 0.110 ( 0.004 )

Table A.9: Performance on scale-free graphs, p=30, n=200, δ = 0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.331 ( 0.020 ) 0.457 ( 0.042 ) 0.447 ( 0.031 ) 0.396 ( 0.039 )
TPR 0.79 ( 0.050 ) 0.629 ( 0.055 ) 0.535 ( 0.066 ) 0.644 ( 0.049 )

MATCHING PRESENCE: PPV 0.154 ( 0.027 ) 0.221 ( 0.053 ) 0.208 ( 0.029 ) 0.175 ( 0.036 )
MATCHING PRESENCE: TPR 0.656 ( 0.084 ) 0.601 ( 0.066 ) 0.636 ( 0.105 ) 0.616 ( 0.079 )

MISMATCHING: PPV 0.350 ( 0.021 ) 0.466 ( 0.058 ) 0.592 ( 0.077 ) 0.458 ( 0.062 )
MISMATCHING: TPR 0.505 ( 0.063 ) 0.325 ( 0.049 ) 0.177 ( 0.038 ) 0.315 ( 0.050 )

EAGD 0.569 ( 0.060 ) 0.330 ( 0.051 ) 0.287 ( 0.053 ) 0.390 ( 0.053 )
PAGD 0.237 ( 0.009 ) 0.237 ( 0.009 ) 0.237 ( 0.009 ) 0.237 ( 0.009 )

93



Table A.10: Performance on random graphs (π = 0.1), p=30, n=40, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.245 ( 0.040 ) 0.281 ( 0.051 ) 0.482 ( 0.244 ) 0.358 ( 0.290 )
TPR 0.362 ( 0.088 ) 0.349 ( 0.065 ) 0.105 ( 0.086 ) 0.094 ( 0.096 )

MATCHING PRESENCE: PPV 0.315 ( 0.118 ) 0.272 ( 0.073 ) 0.403 ( 0.233 ) 0.382 ( 0.348 )
MATCHING PRESENCE: TPR 0.181 ( 0.073 ) 0.282 ( 0.064 ) 0.126 ( 0.106 ) 0.078 ( 0.089 )

MISMATCHING: PPV 0.118 ( 0.027 ) 0.128 ( 0.034 ) 0.298 ( 0.318 ) 0.188 ( 0.160 )
MISMATCHING: TPR 0.377 ( 0.106 ) 0.207 ( 0.071 ) 0.025 ( 0.026 ) 0.062 ( 0.064 )

EAGD 0.220 ( 0.071 ) 0.184 ( 0.049 ) 0.032 ( 0.033 ) 0.036 ( 0.046 )
PAGD 0.143 ( 0.012 ) 0.143 ( 0.012 ) 0.143 ( 0.012 ) 0.143 ( 0.012 )

Table A.11: Performance on random graphs (π = 0.1), p=30, n=40, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.349 ( 0.030 ) 0.395 ( 0.046 ) 0.539 ( 0.244 ) 0.541 ( 0.142 )
TPR 0.415 ( 0.122 ) 0.358 ( 0.067 ) 0.114 ( 0.128 ) 0.144 ( 0.104 )

MATCHING PRESENCE: PPV 0.228 ( 0.078 ) 0.199 ( 0.042 ) 0.342 ( 0.246 ) 0.337 ( 0.184 )
MATCHING PRESENCE: TPR 0.226 ( 0.116 ) 0.289 ( 0.091 ) 0.152 ( 0.142 ) 0.129 ( 0.091 )

MISMATCHING: PPV 0.353 ( 0.038 ) 0.396 ( 0.069 ) 0.382 ( 0.392 ) 0.412 ( 0.175 )
MISMATCHING: TPR 0.436 ( 0.077 ) 0.216 ( 0.038 ) 0.018 ( 0.025 ) 0.085 ( 0.064 )

EAGD 0.319 ( 0.117 ) 0.243 ( 0.065 ) 0.066 ( 0.089 ) 0.082 ( 0.073 )
PAGD 0.262 ( 0.009 ) 0.262 ( 0.009 ) 0.262 ( 0.009 ) 0.262 ( 0.009 )

Table A.12: Performance on Markov-chain graphs, p=30, n=40, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.221 ( 0.051 ) 0.221 ( 0.041 ) 0.576 ( 0.247 ) 0.424 ( 0.228 )
TPR 0.309 ( 0.087 ) 0.337 ( 0.076 ) 0.092 ( 0.078 ) 0.101 ( 0.088 )

MATCHING PRESENCE: PPV 0.281 ( 0.161 ) 0.188 ( 0.062 ) 0.500 ( 0.287 ) 0.347 ( 0.330 )
MATCHING PRESENCE: TPR 0.168 ( 0.097 ) 0.273 ( 0.080 ) 0.126 ( 0.097 ) 0.088 ( 0.103 )

MISMATCHING: PPV 0.133 ( 0.038 ) 0.137 ( 0.030 ) 0.144 ( 0.304 ) 0.257 ( 0.216 )
MISMATCHING: TPR 0.322 ( 0.106 ) 0.220 ( 0.070 ) 0.009 ( 0.017 ) 0.065 ( 0.050 )

EAGD 0.168 ( 0.070 ) 0.174 ( 0.047 ) 0.027 ( 0.033 ) 0.035 ( 0.044 )
PAGD 0.111 ( 0.003 ) 0.111 ( 0.003 ) 0.111 ( 0.003 ) 0.111 ( 0.003 )

94



Table A.13: Performance on Markov-chain graphs, p=30, n=40, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.334 ( 0.037 ) 0.378 ( 0.031 ) 0.476 ( 0.239 ) 0.492 ( 0.144 )
TPR 0.448 ( 0.155 ) 0.363 ( 0.075 ) 0.082 ( 0.074 ) 0.109 ( 0.057 )

MATCHING PRESENCE: PPV 0.181 ( 0.070 ) 0.169 ( 0.037 ) 0.335 ( 0.238 ) 0.236 ( 0.126 )
MATCHING PRESENCE: TPR 0.270 ( 0.179 ) 0.314 ( 0.115 ) 0.135 ( 0.118 ) 0.096 ( 0.071 )

MISMATCHING: PPV 0.350 ( 0.042 ) 0.385 ( 0.059 ) 0.310 ( 0.387 ) 0.552 ( 0.156 )
MISMATCHING: TPR 0.430 ( 0.075 ) 0.205 ( 0.035 ) 0.009 ( 0.012 ) 0.071 ( 0.039 )

EAGD 0.331 ( 0.142 ) 0.231 ( 0.057 ) 0.043 ( 0.045 ) 0.053 ( 0.033 )
PAGD 0.238 ( 0.008 ) 0.238 ( 0.008 ) 0.238 ( 0.008 ) 0.238 ( 0.008 )

Table A.14: Performance on tree graphs, p=30, n=40, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.144 ( 0.034 ) 0.163 ( 0.034 ) 0.391 ( 0.374 ) 0.323 ( 0.334 )
TPR 0.268 ( 0.076 ) 0.308 ( 0.105 ) 0.056 ( 0.072 ) 0.055 ( 0.049 )

MATCHING PRESENCE: PPV 0.190 ( 0.286 ) 0.106 ( 0.062 ) 0.254 ( 0.398 ) 0.190 ( 0.348 )
MATCHING PRESENCE: TPR 0.096 ( 0.103 ) 0.229 ( 0.152 ) 0.075 ( 0.106 ) 0.045 ( 0.060 )

MISMATCHING: PPV 0.108 ( 0.018 ) 0.128 ( 0.028 ) 0.131 ( 0.310 ) 0.181 ( 0.293 )
MISMATCHING: TPR 0.320 ( 0.117 ) 0.219 ( 0.088 ) 0.006 ( 0.013 ) 0.033 ( 0.048 )

EAGD 0.131 ( 0.049 ) 0.133 ( 0.056 ) 0.016 ( 0.028 ) 0.014 ( 0.016 )
PAGD 0.066 ( 0.000 ) 0.066 ( 0.000 ) 0.066 ( 0.000 ) 0.066 ( 0.000 )

Table A.15: Performance on tree graphs, p=30, n=40, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.145 ( 0.036 ) 0.163 ( 0.045 ) 0.160 ( 0.218 ) 0.365 ( 0.262 )
TPR 0.269 ( 0.092 ) 0.286 ( 0.098 ) 0.024 ( 0.036 ) 0.043 ( 0.053 )

MATCHING PRESENCE: PPV 0.085 ( 0.119 ) 0.041 ( 0.040 ) 0.114 ( 0.176 ) 0.113 ( 0.254 )
MATCHING PRESENCE: TPR 0.151 ( 0.176 ) 0.239 ( 0.223 ) 0.099 ( 0.171 ) 0.068 ( 0.166 )

MISMATCHING: PPV 0.162 ( 0.033 ) 0.182 ( 0.059 ) 0.075 ( 0.238 ) 0.324 ( 0.296 )
MISMATCHING: TPR 0.295 ( 0.091 ) 0.204 ( 0.064 ) 0.002 ( 0.006 ) 0.033 ( 0.039 )

EAGD 0.127 ( 0.040 ) 0.125 ( 0.052 ) 0.005 ( 0.011 ) 0.010 ( 0.013 )
PAGD 0.067 ( 0.000 ) 0.067 ( 0.000 ) 0.067 ( 0.000 ) 0.067 ( 0.000 )

95



Table A.16: Performance on scale-free graphs, p=30, n=40, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.201 ( 0.033 ) 0.215 ( 0.034 ) 0.422 ( 0.286 ) 0.413 ( 0.205 )
TPR 0.331 ( 0.114 ) 0.342 ( 0.093 ) 0.075 ( 0.084 ) 0.086 ( 0.067 )

MATCHING PRESENCE: PPV 0.206 ( 0.097 ) 0.162 ( 0.048 ) 0.323 ( 0.283 ) 0.188 ( 0.179 )
MATCHING PRESENCE: TPR 0.158 ( 0.122 ) 0.253 ( 0.114 ) 0.105 ( 0.126 ) 0.068 ( 0.077 )

MISMATCHING: PPV 0.128 ( 0.029 ) 0.132 ( 0.042 ) 0.05 ( 0.130 ) 0.316 ( 0.280 )
MISMATCHING: TPR 0.364 ( 0.112 ) 0.211 ( 0.064 ) 0.006 ( 0.018 ) 0.056 ( 0.042 )

EAGD 0.190 ( 0.080 ) 0.184 ( 0.065 ) 0.023 ( 0.032 ) 0.026 ( 0.025 )
PAGD 0.111 ( 0.003 ) 0.111 ( 0.003 ) 0.111 ( 0.003 ) 0.111 ( 0.003 )

Table A.17: Performance on scale-free graphs, p=30, n=40, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.343 ( 0.039 ) 0.383 ( 0.048 ) 0.558 ( 0.287 ) 0.546 ( 0.140 )
TPR 0.379 ( 0.107 ) 0.335 ( 0.065 ) 0.073 ( 0.081 ) 0.114 ( 0.065 )

MATCHING PRESENCE: PPV 0.208 ( 0.070 ) 0.180 ( 0.062 ) 0.386 ( 0.272 ) 0.316 ( 0.231 )
MATCHING PRESENCE: TPR 0.191 ( 0.090 ) 0.274 ( 0.102 ) 0.124 ( 0.124 ) 0.104 ( 0.072 )

MISMATCHING: PPV 0.350 ( 0.036 ) 0.391 ( 0.064 ) 0.365 ( 0.422 ) 0.513 ( 0.118 )
MISMATCHING: TPR 0.408 ( 0.104 ) 0.204 ( 0.025 ) 0.011 ( 0.014 ) 0.076 ( 0.042 )

EAGD 0.274 ( 0.096 ) 0.215 ( 0.056 ) 0.033 ( 0.044 ) 0.058 ( 0.042 )
PAGD 0.241 ( 0.007 ) 0.241 ( 0.007 ) 0.241 ( 0.007 ) 0.241 ( 0.007 )

Table A.18: Performance on random graphs (π = 0.1), p=30, n=20, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.218 ( 0.031 ) 0.235 ( 0.056 ) 0.237 ( 0.280 ) 0.221 ( 0.189 )
TPR 0.192 ( 0.077 ) 0.280 ( 0.165 ) 0.040 ( 0.073 ) 0.067 ( 0.080 )

MATCHING PRESENCE: PPV 0.238 ( 0.128 ) 0.198 ( 0.075 ) 0.184 ( 0.265 ) 0.254 ( 0.320 )
MATCHING PRESENCE: TPR 0.059 ( 0.035 ) 0.208 ( 0.173 ) 0.047 ( 0.086 ) 0.047 ( 0.068 )

MISMATCHING: PPV 0.112 ( 0.028 ) 0.118 ( 0.048 ) 0.045 ( 0.136 ) 0.105 ( 0.115 )
MISMATCHING: TPR 0.243 ( 0.128 ) 0.150 ( 0.057 ) 0.004 ( 0.011 ) 0.043 ( 0.053 )

EAGD 0.128 ( 0.061 ) 0.202 ( 0.187 ) 0.019 ( 0.040 ) 0.034 ( 0.045 )
PAGD 0.143 ( 0.012 ) 0.143 ( 0.012 ) 0.143 ( 0.012 ) 0.143 ( 0.012 )

96



Table A.19: Performance on random graphs (π = 0.1), p=30, n=20, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.341 ( 0.048 ) 0.307 ( 0.060 ) 0.259 ( 0.255 ) 0.354 ( 0.283 )
TPR 0.275 ( 0.102 ) 0.499 ( 0.256 ) 0.061 ( 0.098 ) 0.051 ( 0.058 )

MATCHING PRESENCE: PPV 0.169 ( 0.128 ) 0.130 ( 0.067 ) 0.135 ( 0.183 ) 0.166 ( 0.293 )
MATCHING PRESENCE: TPR 0.068 ( 0.047 ) 0.421 ( 0.252 ) 0.071 ( 0.099 ) 0.027 ( 0.039 )

MISMATCHING: PPV 0.351 ( 0.030 ) 0.347 ( 0.081 ) 0.055 ( 0.146 ) 0.286 ( 0.237 )
MISMATCHING: TPR 0.392 ( 0.187 ) 0.149 ( 0.031 ) 0.002 ( 0.005 ) 0.037 ( 0.039 )

EAGD 0.219 ( 0.105 ) 0.463 ( 0.276 ) 0.044 ( 0.081 ) 0.032 ( 0.037 )
PAGD 0.260 ( 0.012 ) 0.260 ( 0.012 ) 0.260 ( 0.012 ) 0.260 ( 0.012 )

Table A.20: Performance on Markov-chain graphs, p=30, n=20, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.337 ( 0.040 ) 0.289 ( 0.041 ) 0.252 ( 0.200 ) 0.410 ( 0.307 )
TPR 0.250 ( 0.111 ) 0.446 ( 0.262 ) 0.055 ( 0.079 ) 0.043 ( 0.086 )

MATCHING PRESENCE: PPV 0.191 ( 0.227 ) 0.101 ( 0.042 ) 0.112 ( 0.145 ) 0.080 ( 0.226 )
MATCHING PRESENCE: TPR 0.076 ( 0.064 ) 0.385 ( 0.291 ) 0.062 ( 0.091 ) 0.025 ( 0.066 )

MISMATCHING: PPV 0.358 ( 0.043 ) 0.364 ( 0.063 ) 0.157 ( 0.316 ) 0.390 ( 0.284 )
MISMATCHING: TPR 0.316 ( 0.136 ) 0.152 ( 0.030 ) 0.004 ( 0.009 ) 0.030 ( 0.049 )

EAGD 0.188 ( 0.099 ) 0.405 ( 0.273 ) 0.038 ( 0.058 ) 0.028 ( 0.063 )
PAGD 0.242 ( 0.007 ) 0.242 ( 0.007 ) 0.242 ( 0.007 ) 0.242 ( 0.007 )

Table A.21: Performance on tree graphs, p=30, n=20, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.105 ( 0.034 ) 0.123 ( 0.051 ) 0.177 ( 0.199 ) 0.131 ( 0.241 )
TPR 0.174 ( 0.087 ) 0.282 ( 0.184 ) 0.064 ( 0.133 ) 0.019 ( 0.036 )

MATCHING PRESENCE: PPV 0.086 ( 0.128 ) 0.082 ( 0.077 ) 0.115 ( 0.188 ) 0.065 ( 0.155 )
MATCHING PRESENCE: TPR 0.064 ( 0.072 ) 0.222 ( 0.190 ) 0.075 ( 0.138 ) 0.017 ( 0.034 )

MISMATCHING: PPV 0.094 ( 0.039 ) 0.091 ( 0.045 ) 0.112 ( 0.298 ) 0.134 ( 0.262 )
MISMATCHING: TPR 0.233 ( 0.138 ) 0.138 ( 0.062 ) 0.011 ( 0.026 ) 0.027 ( 0.059 )

EAGD 0.114 ( 0.053 ) 0.186 ( 0.191 ) 0.039 ( 0.117 ) 0.008 ( 0.021 )
PAGD 0.066 ( 0.001 ) 0.066 ( 0.001 ) 0.066 ( 0.001 ) 0.066 ( 0.001 )

97



Table A.22: Performance on tree graphs, p=30, n=20, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.107 ( 0.027 ) 0.105 ( 0.036 ) 0.125 ( 0.250 ) 0.176 ( 0.355 )
TPR 0.180 ( 0.076 ) 0.332 ( 0.251 ) 0.022 ( 0.051 ) 0.006 ( 0.013 )

MATCHING PRESENCE: PPV 0.021 ( 0.044 ) 0.019 ( 0.023 ) 0.002 ( 0.009 ) 0.000 ( 0.000 )
MATCHING PRESENCE: TPR 0.043 ( 0.092 ) 0.232 ( 0.304 ) 0.020 ( 0.087 ) 0.000 ( 0.000 )

MISMATCHING: PPV 0.128 ( 0.035 ) 0.123 ( 0.055 ) 0.142 ( 0.313 ) 0.174 ( 0.354 )
MISMATCHING: TPR 0.226 ( 0.073 ) 0.137 ( 0.053 ) 0.004 ( 0.009 ) 0.007 ( 0.012 )

EAGD 0.109 ( 0.032 ) 0.260 ( 0.255 ) 0.013 ( 0.035 ) 0.002 ( 0.003 )
PAGD 0.066 ( 0.000 ) 0.066 ( 0.000 ) 0.066 ( 0.000 ) 0.066 ( 0.000 )

Table A.23: Performance on scale-free graphs, p=30, n=20, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.328 ( 0.048 ) 0.287 ( 0.047 ) 0.411 ( 0.37 ) 0.366 ( 0.294 )
TPR 0.251 ( 0.123 ) 0.532 ( 0.269 ) 0.022 ( 0.031 ) 0.021 ( 0.020 )

MATCHING PRESENCE: PPV 0.213 ( 0.163 ) 0.126 ( 0.063 ) 0.319 ( 0.389 ) 0.204 ( 0.259 )
MATCHING PRESENCE: TPR 0.099 ( 0.076 ) 0.479 ( 0.265 ) 0.039 ( 0.060 ) 0.02 ( 0.024 )

MISMATCHING: PPV 0.355 ( 0.046 ) 0.319 ( 0.062 ) 0.078 ( 0.191 ) 0.294 ( 0.332 )
MISMATCHING: TPR 0.317 ( 0.163 ) 0.142 ( 0.048 ) 0.007 ( 0.020 ) 0.012 ( 0.017 )

EAGD 0.195 ( 0.108 ) 0.487 ( 0.280 ) 0.013 ( 0.019 ) 0.012 ( 0.014 )
PAGD 0.241 ( 0.007 ) 0.241 ( 0.007 ) 0.241 ( 0.007 ) 0.241 ( 0.007 )

Table A.24: Performance on random graphs (π = 0.1), p=100, n=400, δ =
0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.281 ( 0.021 ) 0.358 ( 0.016 ) 0.492 ( 0.038 ) 0.383 ( 0.030 )
TPR 0.553 ( 0.044 ) 0.526 ( 0.019 ) 0.372 ( 0.052 ) 0.432 ( 0.051 )

MATCHING PRESENCE: PPV 0.344 ( 0.050 ) 0.345 ( 0.025 ) 0.412 ( 0.036 ) 0.349 ( 0.038 )
MATCHING PRESENCE: TPR 0.393 ( 0.046 ) 0.457 ( 0.029 ) 0.427 ( 0.054 ) 0.395 ( 0.056 )

MISMATCHING: PPV 0.140 ( 0.010 ) 0.176 ( 0.015 ) 0.448 ( 0.103 ) 0.225 ( 0.024 )
MISMATCHING: TPR 0.500 ( 0.040 ) 0.310 ( 0.031 ) 0.090 ( 0.022 ) 0.249 ( 0.033 )

EAGD 0.280 ( 0.037 ) 0.208 ( 0.008 ) 0.109 ( 0.023 ) 0.161 ( 0.031 )
PAGD 0.141 ( 0.005 ) 0.141 ( 0.005 ) 0.141 ( 0.005 ) 0.141 ( 0.005 )

98



Table A.25: Performance on random graphs (π = 0.1), p=100, n=400, δ =
0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.376 ( 0.014 ) 0.482 ( 0.047 ) 0.494 ( 0.022 ) 0.446 ( 0.020 )
TPR 0.679 ( 0.029 ) 0.533 ( 0.057 ) 0.412 ( 0.045 ) 0.516 ( 0.045 )

MATCHING PRESENCE: PPV 0.212 ( 0.018 ) 0.260 ( 0.037 ) 0.271 ( 0.019 ) 0.230 ( 0.018 )
MATCHING PRESENCE: TPR 0.519 ( 0.035 ) 0.485 ( 0.061 ) 0.509 ( 0.043 ) 0.487 ( 0.048 )

MISMATCHING: PPV 0.360 ( 0.016 ) 0.450 ( 0.050 ) 0.639 ( 0.039 ) 0.472 ( 0.025 )
MISMATCHING: TPR 0.503 ( 0.018 ) 0.281 ( 0.010 ) 0.120 ( 0.020 ) 0.263 ( 0.021 )

EAGD 0.468 ( 0.037 ) 0.292 ( 0.063 ) 0.217 ( 0.033 ) 0.301 ( 0.040 )
PAGD 0.258 ( 0.003 ) 0.258 ( 0.003 ) 0.258 ( 0.003 ) 0.258 ( 0.003 )

Table A.26: Performance on Markov-chain graphs, p=100, n=400, δ = 0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.200 ( 0.018 ) 0.197 ( 0.009 ) 0.454 ( 0.045 ) 0.334 ( 0.037 )
TPR 0.471 ( 0.032 ) 0.529 ( 0.019 ) 0.169 ( 0.041 ) 0.292 ( 0.033 )

MATCHING PRESENCE: PPV 0.166 ( 0.036 ) 0.098 ( 0.014 ) 0.254 ( 0.052 ) 0.187 ( 0.038 )
MATCHING PRESENCE: TPR 0.317 ( 0.058 ) 0.467 ( 0.053 ) 0.283 ( 0.070 ) 0.294 ( 0.051 )

MISMATCHING: PPV 0.177 ( 0.017 ) 0.178 ( 0.009 ) 0.771 ( 0.087 ) 0.344 ( 0.039 )
MISMATCHING: TPR 0.448 ( 0.026 ) 0.320 ( 0.017 ) 0.038 ( 0.015 ) 0.194 ( 0.025 )

EAGD 0.162 ( 0.022 ) 0.183 ( 0.007 ) 0.026 ( 0.008 ) 0.060 ( 0.012 )
PAGD 0.068 ( 0.001 ) 0.068 ( 0.001 ) 0.068 ( 0.001 ) 0.068 ( 0.001 )

Table A.27: Performance on Markov-chain graphs, p=100, n=400, δ = 0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.342 ( 0.016 ) 0.452 ( 0.012 ) 0.482 ( 0.029 ) 0.419 ( 0.019 )
TPR 0.637 ( 0.036 ) 0.487 ( 0.017 ) 0.291 ( 0.049 ) 0.456 ( 0.031 )

MATCHING PRESENCE: PPV 0.140 ( 0.016 ) 0.176 ( 0.015 ) 0.203 ( 0.029 ) 0.153 ( 0.017 )
MATCHING PRESENCE: TPR 0.465 ( 0.056 ) 0.445 ( 0.032 ) 0.425 ( 0.063 ) 0.435 ( 0.039 )

MISMATCHING: PPV 0.374 ( 0.017 ) 0.491 ( 0.012 ) 0.746 ( 0.045 ) 0.503 ( 0.027 )
MISMATCHING: TPR 0.514 ( 0.010 ) 0.297 ( 0.010 ) 0.084 ( 0.018 ) 0.257 ( 0.016 )

EAGD 0.395 ( 0.042 ) 0.228 ( 0.011 ) 0.129 ( 0.026 ) 0.231 ( 0.025 )
PAGD 0.211 ( 0.001 ) 0.211 ( 0.001 ) 0.211 ( 0.001 ) 0.211 ( 0.001 )

99



Table A.28: Performance on tree graphs, p=100, n=400, δ = 0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.080 ( 0.013 ) 0.076 ( 0.021 ) 0.406 ( 0.225 ) 0.293 ( 0.071 )
TPR 0.368 ( 0.038 ) 0.453 ( 0.044 ) 0.044 ( 0.041 ) 0.131 ( 0.043 )

MATCHING PRESENCE: PPV 0.038 ( 0.020 ) 0.019 ( 0.009 ) 0.122 ( 0.112 ) 0.099 ( 0.075 )
MATCHING PRESENCE: TPR 0.229 ( 0.126 ) 0.404 ( 0.110 ) 0.117 ( 0.116 ) 0.154 ( 0.112 )

MISMATCHING: PPV 0.085 ( 0.012 ) 0.083 ( 0.022 ) 0.616 ( 0.460 ) 0.326 ( 0.079 )
MISMATCHING: TPR 0.371 ( 0.034 ) 0.305 ( 0.027 ) 0.010 ( 0.013 ) 0.101 ( 0.027 )

EAGD 0.094 ( 0.014 ) 0.129 ( 0.039 ) 0.002 ( 0.003 ) 0.010 ( 0.004 )
PAGD 0.020 ( 0.000 ) 0.020 ( 0.000 ) 0.020 ( 0.000 ) 0.020 ( 0.000 )

Table A.29: Performance on tree graphs, p=100, n=400, δ = 0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.082 ( 0.013 ) 0.082 ( 0.019 ) 0.434 ( 0.294 ) 0.275 ( 0.067 )
TPR 0.387 ( 0.045 ) 0.447 ( 0.065 ) 0.050 ( 0.045 ) 0.151 ( 0.060 )

MATCHING PRESENCE: PPV 0.041 ( 0.027 ) 0.023 ( 0.015 ) 0.237 ( 0.333 ) 0.093 ( 0.066 )
MATCHING PRESENCE: TPR 0.253 ( 0.103 ) 0.464 ( 0.160 ) 0.143 ( 0.127 ) 0.204 ( 0.109 )

MISMATCHING: PPV 0.087 ( 0.014 ) 0.090 ( 0.019 ) 0.560 ( 0.473 ) 0.322 ( 0.063 )
MISMATCHING: TPR 0.388 ( 0.055 ) 0.304 ( 0.047 ) 0.014 ( 0.016 ) 0.116 ( 0.045 )

EAGD 0.097 ( 0.023 ) 0.118 ( 0.041 ) 0.003 ( 0.003 ) 0.012 ( 0.006 )
PAGD 0.020 ( 0.000 ) 0.020 ( 0.000 ) 0.020 ( 0.000 ) 0.020 ( 0.000 )

Table A.30: Performance on scale-free graphs, p=100, n=400, δ = 0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.372 ( 0.015 ) 0.492 ( 0.038 ) 0.489 ( 0.021 ) 0.447 ( 0.018 )
TPR 0.667 ( 0.029 ) 0.516 ( 0.045 ) 0.398 ( 0.050 ) 0.497 ( 0.040 )

MATCHING PRESENCE: PPV 0.203 ( 0.021 ) 0.260 ( 0.035 ) 0.253 ( 0.019 ) 0.223 ( 0.021 )
MATCHING PRESENCE: TPR 0.509 ( 0.036 ) 0.478 ( 0.039 ) 0.501 ( 0.051 ) 0.474 ( 0.040 )

MISMATCHING: PPV 0.369 ( 0.015 ) 0.481 ( 0.041 ) 0.657 ( 0.042 ) 0.490 ( 0.022 )
MISMATCHING: TPR 0.517 ( 0.015 ) 0.291 ( 0.011 ) 0.117 ( 0.023 ) 0.271 ( 0.022 )

EAGD 0.443 ( 0.035 ) 0.261 ( 0.048 ) 0.202 ( 0.034 ) 0.274 ( 0.031 )
PAGD 0.246 ( 0.002 ) 0.246 ( 0.002 ) 0.246 ( 0.002 ) 0.246 ( 0.002 )

100



Table A.31: Performance on random graphs (π = 0.1), p=100, n=60, δ =
0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.241 ( 0.028 ) 0.235 ( 0.017 ) 0.28 ( 0.307 ) 0.332 ( 0.348 )
TPR 0.089 ( 0.044 ) 0.170 ( 0.033 ) 0.005 ( 0.007 ) 0.005 ( 0.007 )

MATCHING PRESENCE: PPV 0.284 ( 0.095 ) 0.196 ( 0.021 ) 0.257 ( 0.288 ) 0.240 ( 0.356 )
MATCHING PRESENCE: TPR 0.018 ( 0.009 ) 0.107 ( 0.029 ) 0.006 ( 0.009 ) 0.003 ( 0.005 )

MISMATCHING: PPV 0.125 ( 0.014 ) 0.124 ( 0.013 ) 0.025 ( 0.109 ) 0.135 ( 0.182 )
MISMATCHING: TPR 0.122 ( 0.066 ) 0.131 ( 0.020 ) 0.000 ( 0.000 ) 0.004 ( 0.006 )

EAGD 0.054 ( 0.034 ) 0.101 ( 0.022 ) 0.001 ( 0.002 ) 0.002 ( 0.003 )
PAGD 0.139 ( 0.003 ) 0.139 ( 0.003 ) 0.139 ( 0.003 ) 0.139 ( 0.003 )

Table A.32: Performance on random graphs (π = 0.1), p=100, n=60, δ =
0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.411 ( 0.036 ) 0.394 ( 0.025 ) 0.325 ( 0.314 ) 0.653 ( 0.303 )
TPR 0.096 ( 0.029 ) 0.169 ( 0.020 ) 0.005 ( 0.007 ) 0.008 ( 0.017 )

MATCHING PRESENCE: PPV 0.275 ( 0.106 ) 0.204 ( 0.026 ) 0.215 ( 0.259 ) 0.288 ( 0.349 )
MATCHING PRESENCE: TPR 0.019 ( 0.009 ) 0.116 ( 0.016 ) 0.008 ( 0.012 ) 0.005 ( 0.010 )

MISMATCHING: PPV 0.385 ( 0.020 ) 0.386 ( 0.016 ) 0.050 ( 0.218 ) 0.442 ( 0.28 )
MISMATCHING: TPR 0.129 ( 0.045 ) 0.132 ( 0.016 ) 0.000 ( 0.000 ) 0.005 ( 0.012 )

EAGD 0.062 ( 0.025 ) 0.112 ( 0.016 ) 0.002 ( 0.003 ) 0.004 ( 0.011 )
PAGD 0.259 ( 0.004 ) 0.259 ( 0.004 ) 0.259 ( 0.004 ) 0.259 ( 0.004 )

Table A.33: Performance on Markov-chain graphs, p=100, n=60, δ = 0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.140 ( 0.018 ) 0.136 ( 0.018 ) 0.130 ( 0.247 ) 0.174 ( 0.247 )
TPR 0.075 ( 0.021 ) 0.133 ( 0.027 ) 0.003 ( 0.006 ) 0.003 ( 0.005 )

MATCHING PRESENCE: PPV 0.097 ( 0.086 ) 0.059 ( 0.023 ) 0.117 ( 0.247 ) 0.040 ( 0.102 )
MATCHING PRESENCE: TPR 0.015 ( 0.011 ) 0.082 ( 0.031 ) 0.007 ( 0.018 ) 0.002 ( 0.005 )

MISMATCHING: PPV 0.147 ( 0.022 ) 0.146 ( 0.018 ) 0.000 ( 0.000 ) 0.166 ( 0.193 )
MISMATCHING: TPR 0.103 ( 0.029 ) 0.116 ( 0.019 ) 0.000 ( 0.000 ) 0.003 ( 0.005 )

EAGD 0.036 ( 0.010 ) 0.067 ( 0.018 ) 0.001 ( 0.001 ) 0.001 ( 0.001 )
PAGD 0.068 ( 0.001 ) 0.068 ( 0.001 ) 0.068 ( 0.001 ) 0.068 ( 0.001 )

101



Table A.34: Performance on Markov-chain graphs, p=100, n=60, δ = 0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.362 ( 0.032 ) 0.322 ( 0.015 ) 0.265 ( 0.297 ) 0.611 ( 0.28 )
TPR 0.086 ( 0.017 ) 0.163 ( 0.023 ) 0.004 ( 0.005 ) 0.005 ( 0.005 )

MATCHING PRESENCE: PPV 0.192 ( 0.091 ) 0.113 ( 0.021 ) 0.171 ( 0.246 ) 0.273 ( 0.368 )
MATCHING PRESENCE: TPR 0.019 ( 0.007 ) 0.113 ( 0.025 ) 0.009 ( 0.012 ) 0.005 ( 0.007 )

MISMATCHING: PPV 0.399 ( 0.027 ) 0.387 ( 0.018 ) 0.125 ( 0.311 ) 0.548 ( 0.296 )
MISMATCHING: TPR 0.114 ( 0.022 ) 0.133 ( 0.019 ) 0.000 ( 0.000 ) 0.004 ( 0.003 )

EAGD 0.051 ( 0.011 ) 0.107 ( 0.017 ) 0.002 ( 0.002 ) 0.002 ( 0.002 )
PAGD 0.211 ( 0.001 ) 0.211 ( 0.001 ) 0.211 ( 0.001 ) 0.211 ( 0.001 )

Table A.35: Performance on tree graphs, p=100, n=60, δ = 0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.046 ( 0.014 ) 0.040 ( 0.008 ) 0.104 ( 0.299 ) 0.058 ( 0.158 )
TPR 0.077 ( 0.032 ) 0.124 ( 0.031 ) 0.002 ( 0.003 ) 0.002 ( 0.004 )

MATCHING PRESENCE: PPV 0.015 ( 0.033 ) 0.012 ( 0.011 ) 0.100 ( 0.300 ) 0.050 ( 0.218 )
MATCHING PRESENCE: TPR 0.019 ( 0.041 ) 0.106 ( 0.082 ) 0.007 ( 0.022 ) 0.004 ( 0.017 )

MISMATCHING: PPV 0.057 ( 0.013 ) 0.054 ( 0.013 ) 0.050 ( 0.218 ) 0.073 ( 0.226 )
MISMATCHING: TPR 0.101 ( 0.037 ) 0.113 ( 0.027 ) 0.000 ( 0.001 ) 0.001 ( 0.003 )

EAGD 0.033 ( 0.008 ) 0.063 ( 0.016 ) 0.000 ( 0.001 ) 0.000 ( 0.001 )
PAGD 0.020 ( 0.000 ) 0.020 ( 0.000 ) 0.020 ( 0.000 ) 0.020 ( 0.000 )

Table A.36: Performance on scale-free graphs, p=100, n=60, δ = 0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.234 ( 0.024 ) 0.218 ( 0.021 ) 0.340 ( 0.398 ) 0.335 ( 0.328 )
TPR 0.077 ( 0.018 ) 0.162 ( 0.035 ) 0.004 ( 0.007 ) 0.005 ( 0.006 )

MATCHING PRESENCE: PPV 0.327 ( 0.136 ) 0.181 ( 0.034 ) 0.307 ( 0.376 ) 0.354 ( 0.417 )
MATCHING PRESENCE: TPR 0.017 ( 0.008 ) 0.105 ( 0.034 ) 0.006 ( 0.009 ) 0.003 ( 0.004 )

MISMATCHING: PPV 0.131 ( 0.017 ) 0.125 ( 0.015 ) 0.025 ( 0.109 ) 0.126 ( 0.146 )
MISMATCHING: TPR 0.097 ( 0.021 ) 0.124 ( 0.021 ) 0.000 ( 0.000 ) 0.004 ( 0.005 )

EAGD 0.039 ( 0.007 ) 0.091 ( 0.024 ) 0.001 ( 0.002 ) 0.001 ( 0.002 )
PAGD 0.121 ( 0.001 ) 0.121 ( 0.001 ) 0.121 ( 0.001 ) 0.121 ( 0.001 )

102



Table A.37: Performance on scale-free graphs, p=100, n=60, δ = 0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.401 ( 0.024 ) 0.368 ( 0.014 ) 0.224 ( 0.319 ) 0.490 ( 0.317 )
TPR 0.094 ( 0.030 ) 0.174 ( 0.015 ) 0.003 ( 0.006 ) 0.005 ( 0.007 )

MATCHING PRESENCE: PPV 0.317 ( 0.179 ) 0.179 ( 0.023 ) 0.189 ( 0.282 ) 0.105 ( 0.172 )
MATCHING PRESENCE: TPR 0.020 ( 0.011 ) 0.121 ( 0.016 ) 0.006 ( 0.012 ) 0.003 ( 0.006 )

MISMATCHING: PPV 0.383 ( 0.022 ) 0.379 ( 0.016 ) 0.025 ( 0.109 ) 0.471 ( 0.292 )
MISMATCHING: TPR 0.125 ( 0.043 ) 0.135 ( 0.007 ) 0.000 ( 0.000 ) 0.004 ( 0.005 )

EAGD 0.059 ( 0.022 ) 0.117 ( 0.010 ) 0.001 ( 0.002 ) 0.002 ( 0.003 )
PAGD 0.247 ( 0.002 ) 0.247 ( 0.002 ) 0.247 ( 0.002 ) 0.247 ( 0.002 )

A.2.2 Differential GSL

Table A.38: Performance on differences of random graphs (π = 0.1), p=30,
n=200, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.233 ( 0.024 ) 0.373 ( 0.062 ) 0.572 ( 0.176 ) 0.414 ( 0.148 ) 0.212 ( 0.027 )
DIFFERENCE: TPR 0.822 ( 0.064 ) 0.629 ( 0.074 ) 0.169 ( 0.067 ) 0.533 ( 0.142 ) 0.586 ( 0.279 )

EGD 0.629 ( 0.092 ) 0.305 ( 0.065 ) 0.063 ( 0.046 ) 0.259 ( 0.110 ) 0.521 ( 0.304 )
PGD 0.177 ( 0.018 ) 0.177 ( 0.018 ) 0.177 ( 0.018 ) 0.177 ( 0.018 ) 0.177 ( 0.018 )

Table A.39: Performance on differences of random graphs (π = 0.1), p=30,
n=200, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.464 ( 0.020 ) 0.617 ( 0.040 ) 0.666 ( 0.061 ) 0.578 ( 0.039 ) 0.438 ( 0.031 )
DIFFERENCE: TPR 0.907 ( 0.041 ) 0.682 ( 0.059 ) 0.375 ( 0.103 ) 0.686 ( 0.065 ) 0.832 ( 0.224 )

EGD 0.828 ( 0.053 ) 0.470 ( 0.062 ) 0.243 ( 0.078 ) 0.504 ( 0.063 ) 0.813 ( 0.238 )
PGD 0.422 ( 0.014 ) 0.422 ( 0.014 ) 0.422 ( 0.014 ) 0.422 ( 0.014 ) 0.422 ( 0.014 )

103



Table A.40: Performance on differences of Markov-Chain graphs, p=30,
n=200, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.203 ( 0.018 ) 0.325 ( 0.043 ) 0.600 ( 0.173 ) 0.342 ( 0.052 ) 0.173 ( 0.034 )
DIFFERENCE: TPR 0.780 ( 0.063 ) 0.620 ( 0.094 ) 0.168 ( 0.090 ) 0.512 ( 0.106 ) 0.621 ( 0.260 )

EGD 0.545 ( 0.074 ) 0.277 ( 0.072 ) 0.044 ( 0.034 ) 0.218 ( 0.070 ) 0.547 ( 0.290 )
PGD 0.141 ( 0.008 ) 0.141 ( 0.008 ) 0.141 ( 0.008 ) 0.141 ( 0.008 ) 0.141 ( 0.008 )

Table A.41: Performance on differences of Markov-Chain graphs, p=30,
n=200, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.449 ( 0.016 ) 0.611 ( 0.049 ) 0.683 ( 0.067 ) 0.562 ( 0.034 ) 0.418 ( 0.025 )
DIFFERENCE: TPR 0.878 ( 0.031 ) 0.659 ( 0.043 ) 0.346 ( 0.088 ) 0.670 ( 0.064 ) 0.854 ( 0.207 )

EGD 0.779 ( 0.040 ) 0.433 ( 0.051 ) 0.206 ( 0.065 ) 0.479 ( 0.066 ) 0.827 ( 0.221 )
PGD 0.398 ( 0.008 ) 0.398 ( 0.008 ) 0.398 ( 0.008 ) 0.398 ( 0.008 ) 0.398 ( 0.008 )

Table A.42: Performance on differences of tree graphs, p=30, n=200, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.119 ( 0.031 ) 0.191 ( 0.073 ) 0.654 ( 0.250 ) 0.267 ( 0.103 ) 0.098 ( 0.018 )
DIFFERENCE: TPR 0.711 ( 0.116 ) 0.575 ( 0.111 ) 0.163 ( 0.076 ) 0.393 ( 0.126 ) 0.552 ( 0.210 )

EGD 0.456 ( 0.078 ) 0.240 ( 0.063 ) 0.019 ( 0.010 ) 0.121 ( 0.049 ) 0.440 ( 0.237 )
PGD 0.074 ( 0.010 ) 0.074 ( 0.010 ) 0.074 ( 0.010 ) 0.074 ( 0.010 ) 0.074 ( 0.010 )

Table A.43: Performance on differences of tree graphs, p=30, n=200, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.178 ( 0.027 ) 0.272 ( 0.052 ) 0.765 ( 0.173 ) 0.388 ( 0.116 ) 0.145 ( 0.025 )
DIFFERENCE: TPR 0.707 ( 0.095 ) 0.586 ( 0.100 ) 0.157 ( 0.104 ) 0.393 ( 0.126 ) 0.534 ( 0.19 )

EGD 0.449 ( 0.075 ) 0.250 ( 0.066 ) 0.026 ( 0.020 ) 0.126 ( 0.057 ) 0.428 ( 0.203 )
PGD 0.112 ( 0.010 ) 0.112 ( 0.010 ) 0.112 ( 0.010 ) 0.112 ( 0.010 ) 0.112 ( 0.010 )

104



Table A.44: Performance on differences of scale-free graphs, p=30, n=200,
δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.21 ( 0.034 ) 0.318 ( 0.059 ) 0.575 ( 0.185 ) 0.371 ( 0.067 ) 0.188 ( 0.026 )
DIFFERENCE: TPR 0.781 ( 0.064 ) 0.638 ( 0.064 ) 0.188 ( 0.071 ) 0.518 ( 0.103 ) 0.557 ( 0.149 )

EGD 0.553 ( 0.095 ) 0.305 ( 0.076 ) 0.053 ( 0.024 ) 0.214 ( 0.076 ) 0.444 ( 0.158 )
PGD 0.146 ( 0.006 ) 0.146 ( 0.006 ) 0.146 ( 0.006 ) 0.146 ( 0.006 ) 0.146 ( 0.006 )

Table A.45: Performance on differences of random graphs (π = 0.1), p=30,
n=40, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.480 ( 0.030 ) 0.546 ( 0.047 ) 0.457 ( 0.402 ) 0.645 ( 0.124 ) 0.200 ( 0.225 )
DIFFERENCE: TPR 0.583 ( 0.139 ) 0.425 ( 0.075 ) 0.025 ( 0.035 ) 0.160 ( 0.118 ) 0.152 ( 0.297 )

EGD 0.515 ( 0.142 ) 0.330 ( 0.069 ) 0.015 ( 0.022 ) 0.114 ( 0.093 ) 0.151 ( 0.298 )
PGD 0.420 ( 0.012 ) 0.420 ( 0.012 ) 0.420 ( 0.012 ) 0.420 ( 0.012 ) 0.420 ( 0.012 )

Table A.46: Performance on differences of Markov-chain graphs, p=30, n=40,
δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.218 ( 0.042 ) 0.233 ( 0.041 ) 0.297 ( 0.421 ) 0.419 ( 0.245 ) 0.098 ( 0.071 )
DIFFERENCE: TPR 0.414 ( 0.124 ) 0.396 ( 0.094 ) 0.011 ( 0.019 ) 0.110 ( 0.085 ) 0.138 ( 0.161 )

EGD 0.291 ( 0.115 ) 0.251 ( 0.066 ) 0.004 ( 0.007 ) 0.049 ( 0.054 ) 0.141 ( 0.155 )
PGD 0.145 ( 0.008 ) 0.145 ( 0.008 ) 0.145 ( 0.008 ) 0.145 ( 0.008 ) 0.145 ( 0.008 )

Table A.47: Performance on differences of Markov-chain graphs, p=30, n=40,
δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.457 ( 0.041 ) 0.524 ( 0.038 ) 0.335 ( 0.359 ) 0.653 ( 0.117 ) 0.137 ( 0.189 )
DIFFERENCE: TPR 0.596 ( 0.170 ) 0.415 ( 0.078 ) 0.012 ( 0.015 ) 0.120 ( 0.061 ) 0.091 ( 0.146 )

EGD 0.528 ( 0.180 ) 0.316 ( 0.067 ) 0.008 ( 0.010 ) 0.076 ( 0.047 ) 0.090 ( 0.145 )
PGD 0.396 ( 0.009 ) 0.396 ( 0.009 ) 0.396 ( 0.009 ) 0.396 ( 0.009 ) 0.396 ( 0.009 )

105



Table A.48: Performance on differences of tree graphs, p=30, n=40, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.112 ( 0.018 ) 0.139 ( 0.037 ) 0.181 ( 0.361 ) 0.184 ( 0.292 ) 0.032 ( 0.043 )
DIFFERENCE: TPR 0.366 ( 0.132 ) 0.356 ( 0.132 ) 0.008 ( 0.014 ) 0.048 ( 0.059 ) 0.084 ( 0.139 )

EGD 0.239 ( 0.086 ) 0.196 ( 0.076 ) 0.002 ( 0.005 ) 0.022 ( 0.022 ) 0.086 ( 0.126 )
PGD 0.074 ( 0.009 ) 0.074 ( 0.009 ) 0.074 ( 0.009 ) 0.074 ( 0.009 ) 0.074 ( 0.009 )

Table A.49: Performance on differences of tree graphs, p=30, n=40, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.162 ( 0.033 ) 0.195 ( 0.044 ) 0.075 ( 0.238 ) 0.318 ( 0.266 ) 0.046 ( 0.079 )
DIFFERENCE: TPR 0.328 ( 0.101 ) 0.320 ( 0.104 ) 0.003 ( 0.010 ) 0.040 ( 0.044 ) 0.040 ( 0.073 )

EGD 0.231 ( 0.070 ) 0.190 ( 0.071 ) 0.000 ( 0.001 ) 0.016 ( 0.018 ) 0.043 ( 0.067 )
PGD 0.112 ( 0.008 ) 0.112 ( 0.008 ) 0.112 ( 0.008 ) 0.112 ( 0.008 ) 0.112 ( 0.008 )

Table A.50: Performance on differences of scale-free graphs, p=30, n=40,
δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.217 ( 0.033 ) 0.244 ( 0.037 ) 0.118 ( 0.198 ) 0.425 ( 0.213 ) 0.038 ( 0.061 )
DIFFERENCE: TPR 0.464 ( 0.137 ) 0.416 ( 0.100 ) 0.010 ( 0.017 ) 0.093 ( 0.066 ) 0.117 ( 0.262 )

EGD 0.329 ( 0.121 ) 0.262 ( 0.079 ) 0.004 ( 0.007 ) 0.038 ( 0.033 ) 0.123 ( 0.271 )
PGD 0.150 ( 0.006 ) 0.150 ( 0.006 ) 0.150 ( 0.006 ) 0.150 ( 0.006 ) 0.150 ( 0.006 )

Table A.51: Performance on differences of scale-free graphs, p=30, n=40,
δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.406 ( 0.035 ) 0.524 ( 0.050 ) 0.509 ( 0.439 ) 0.664 ( 0.114 ) 0.157 ( 0.268 )
DIFFERENCE: TPR 0.524 ( 0.143 ) 0.388 ( 0.066 ) 0.014 ( 0.017 ) 0.128 ( 0.076 ) 0.149 ( 0.317 )

EGD 0.461 ( 0.148 ) 0.300 ( 0.066 ) 0.008 ( 0.011 ) 0.083 ( 0.056 ) 0.146 ( 0.317 )
PGD 0.399 ( 0.009 ) 0.399 ( 0.009 ) 0.399 ( 0.009 ) 0.399 ( 0.009 ) 0.399 ( 0.009 )

106



Table A.52: Performance on differences of random graphs (π = 0.1), p=30,
n=20, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.241 ( 0.033 ) 0.269 ( 0.065 ) 0.123 ( 0.269 ) 0.222 ( 0.179 ) 0.068 ( 0.094 )
DIFFERENCE: TPR 0.300 ( 0.130 ) 0.345 ( 0.175 ) 0.006 ( 0.015 ) 0.082 ( 0.093 ) 0.189 ( 0.338 )

EGD 0.231 ( 0.106 ) 0.266 ( 0.195 ) 0.002 ( 0.005 ) 0.049 ( 0.058 ) 0.186 ( 0.336 )
PGD 0.184 ( 0.012 ) 0.184 ( 0.012 ) 0.184 ( 0.012 ) 0.184 ( 0.012 ) 0.184 ( 0.012 )

Table A.53: Performance on differences of random graphs (π = 0.1), p=30,
n=20, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.481 ( 0.042 ) 0.467 ( 0.062 ) 0.170 ( 0.330 ) 0.463 ( 0.344 ) 0.259 ( 0.215 )
DIFFERENCE: TPR 0.446 ( 0.191 ) 0.563 ( 0.255 ) 0.003 ( 0.007 ) 0.065 ( 0.070 ) 0.218 ( 0.322 )

EGD 0.400 ( 0.200 ) 0.533 ( 0.274 ) 0.003 ( 0.005 ) 0.046 ( 0.052 ) 0.217 ( 0.324 )
PGD 0.419 ( 0.013 ) 0.419 ( 0.013 ) 0.419 ( 0.013 ) 0.419 ( 0.013 ) 0.419 ( 0.013 )

Table A.54: Performance on differences of Markov-chain graphs, p=30, n=20,
δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.189 ( 0.053 ) 0.181 ( 0.051 ) 0.034 ( 0.091 ) 0.125 ( 0.246 ) 0.045 ( 0.062 )
DIFFERENCE: TPR 0.272 ( 0.114 ) 0.331 ( 0.219 ) 0.005 ( 0.012 ) 0.013 ( 0.030 ) 0.180 ( 0.280 )

EGD 0.210 ( 0.101 ) 0.276 ( 0.225 ) 0.003 ( 0.008 ) 0.006 ( 0.012 ) 0.183 ( 0.276 )
PGD 0.138 ( 0.009 ) 0.138 ( 0.009 ) 0.138 ( 0.009 ) 0.138 ( 0.009 ) 0.138 ( 0.009 )

Table A.55: Performance on differences of Markov-chain graphs, p=30, n=20,
δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.471 ( 0.040 ) 0.454 ( 0.046 ) 0.199 ( 0.331 ) 0.483 ( 0.322 ) 0.165 ( 0.187 )
DIFFERENCE: TPR 0.382 ( 0.173 ) 0.510 ( 0.265 ) 0.006 ( 0.014 ) 0.054 ( 0.107 ) 0.249 ( 0.365 )

EGD 0.331 ( 0.162 ) 0.472 ( 0.274 ) 0.005 ( 0.012 ) 0.039 ( 0.083 ) 0.254 ( 0.369 )
PGD 0.401 ( 0.009 ) 0.401 ( 0.009 ) 0.401 ( 0.009 ) 0.401 ( 0.009 ) 0.401 ( 0.009 )

107



Table A.56: Performance on differences of tree graphs, p=30, n=20, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.094 ( 0.035 ) 0.102 ( 0.038 ) 0.161 ( 0.354 ) 0.126 ( 0.239 ) 0.053 ( 0.040 )
DIFFERENCE: TPR 0.262 ( 0.149 ) 0.309 ( 0.191 ) 0.022 ( 0.063 ) 0.032 ( 0.074 ) 0.295 ( 0.346 )

EGD 0.205 ( 0.090 ) 0.244 ( 0.197 ) 0.015 ( 0.052 ) 0.012 ( 0.032 ) 0.302 ( 0.343 )
PGD 0.076 ( 0.009 ) 0.076 ( 0.009 ) 0.076 ( 0.009 ) 0.076 ( 0.009 ) 0.076 ( 0.009 )

Table A.57: Performance on differences of tree graphs, p=30, n=20, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.134 ( 0.035 ) 0.138 ( 0.038 ) 0.192 ( 0.362 ) 0.178 ( 0.355 ) 0.047 ( 0.092 )
DIFFERENCE: TPR 0.255 ( 0.087 ) 0.376 ( 0.255 ) 0.005 ( 0.009 ) 0.008 ( 0.016 ) 0.197 ( 0.335 )

EGD 0.204 ( 0.058 ) 0.322 ( 0.262 ) 0.001 ( 0.002 ) 0.003 ( 0.005 ) 0.194 ( 0.333 )
PGD 0.106 ( 0.007 ) 0.106 ( 0.007 ) 0.106 ( 0.007 ) 0.106 ( 0.007 ) 0.106 ( 0.007 )

Table A.58: Performance on differences of scale-free graphs, p=30, n=20,
δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.180 ( 0.042 ) 0.188 ( 0.044 ) 0.050 ( 0.218 ) 0.252 ( 0.354 ) 0.081 ( 0.077 )
DIFFERENCE: TPR 0.290 ( 0.114 ) 0.391 ( 0.263 ) 0.002 ( 0.007 ) 0.016 ( 0.024 ) 0.218 ( 0.303 )

EGD 0.234 ( 0.088 ) 0.332 ( 0.271 ) 0.000 ( 0.001 ) 0.008 ( 0.010 ) 0.224 ( 0.311 )
PGD 0.146 ( 0.007 ) 0.146 ( 0.007 ) 0.146 ( 0.007 ) 0.146 ( 0.007 ) 0.146 ( 0.007 )

Table A.59: Performance on differences of scale-free graphs, p=30, n=20,
δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.457 ( 0.048 ) 0.442 ( 0.049 ) 0.130 ( 0.279 ) 0.483 ( 0.359 ) 0.116 ( 0.178 )
DIFFERENCE: TPR 0.377 ( 0.188 ) 0.592 ( 0.271 ) 0.006 ( 0.017 ) 0.023 ( 0.023 ) 0.221 ( 0.386 )

EGD 0.342 ( 0.188 ) 0.557 ( 0.279 ) 0.005 ( 0.016 ) 0.016 ( 0.018 ) 0.224 ( 0.387 )
PGD 0.400 ( 0.009 ) 0.400 ( 0.009 ) 0.400 ( 0.009 ) 0.400 ( 0.009 ) 0.400 ( 0.009 )

108



Table A.60: Performance on differences of random graphs (π = 0.1), p=100,
n=400, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.484 ( 0.012 ) 0.620 ( 0.042 ) 0.726 ( 0.033 ) 0.590 ( 0.019 ) 0.000 ( 0.000 )
DIFFERENCE: TPR 0.799 ( 0.029 ) 0.575 ( 0.063 ) 0.172 ( 0.030 ) 0.546 ( 0.048 ) 0.000 ( 0.000 )

EGD 0.690 ( 0.041 ) 0.391 ( 0.072 ) 0.100 ( 0.021 ) 0.388 ( 0.046 ) 0.000 ( 0.000 )
PGD 0.417 ( 0.003 ) 0.417 ( 0.003 ) 0.417 ( 0.003 ) 0.417 ( 0.003 ) 0.417 ( 0.003 )

Table A.61: Performance on differences of Markov-chain graphs, p=100,
n=400, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.217 ( 0.018 ) 0.238 ( 0.009 ) 0.827 ( 0.067 ) 0.386 ( 0.038 ) 0.092 ( 0.219 )
DIFFERENCE: TPR 0.542 ( 0.036 ) 0.568 ( 0.018 ) 0.052 ( 0.018 ) 0.295 ( 0.037 ) 0.012 ( 0.019 )

EGD 0.284 ( 0.035 ) 0.269 ( 0.010 ) 0.007 ( 0.003 ) 0.087 ( 0.016 ) 0.011 ( 0.018 )
PGD 0.112 ( 0.001 ) 0.112 ( 0.001 ) 0.112 ( 0.001 ) 0.112 ( 0.001 ) 0.112 ( 0.001 )

Table A.62: Performance on differences of Markov-chain graphs, p=100,
n=400, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.452 ( 0.014 ) 0.600 ( 0.010 ) 0.799 ( 0.037 ) 0.573 ( 0.018 ) 0.000 ( 0.000 )
DIFFERENCE: TPR 0.748 ( 0.038 ) 0.524 ( 0.019 ) 0.123 ( 0.029 ) 0.480 ( 0.035 ) 0.000 ( 0.000 )

EGD 0.614 ( 0.052 ) 0.324 ( 0.014 ) 0.058 ( 0.016 ) 0.311 ( 0.031 ) 0.000 ( 0.000 )
PGD 0.370 ( 0.002 ) 0.370 ( 0.002 ) 0.370 ( 0.002 ) 0.370 ( 0.002 ) 0.370 ( 0.002 )

Table A.63: Performance on differences of tree graphs, p=100, n=400, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.086 ( 0.011 ) 0.092 ( 0.021 ) 0.729 ( 0.424 ) 0.315 ( 0.075 ) 0.028 ( 0.048 )
DIFFERENCE: TPR 0.414 ( 0.034 ) 0.484 ( 0.051 ) 0.016 ( 0.020 ) 0.129 ( 0.038 ) 0.009 ( 0.018 )

EGD 0.171 ( 0.024 ) 0.197 ( 0.055 ) 0.001 ( 0.001 ) 0.015 ( 0.006 ) 0.007 ( 0.013 )
PGD 0.035 ( 0.001 ) 0.035 ( 0.001 ) 0.035 ( 0.001 ) 0.035 ( 0.001 ) 0.035 ( 0.001 )

109



Table A.64: Performance on differences of tree graphs, p=100, n=400, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.088 ( 0.013 ) 0.097 ( 0.018 ) 0.672 ( 0.448 ) 0.299 ( 0.069 ) 0.016 ( 0.032 )
DIFFERENCE: TPR 0.433 ( 0.064 ) 0.466 ( 0.078 ) 0.020 ( 0.020 ) 0.145 ( 0.057 ) 0.020 ( 0.041 )

EGD 0.178 ( 0.042 ) 0.182 ( 0.058 ) 0.001 ( 0.001 ) 0.019 ( 0.010 ) 0.011 ( 0.018 )
PGD 0.036 ( 0.002 ) 0.036 ( 0.002 ) 0.036 ( 0.002 ) 0.036 ( 0.002 ) 0.036 ( 0.002 )

Table A.65: Performance on differences of scale-free graphs, p=100, n=400,
δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.258 ( 0.011 ) 0.339 ( 0.013 ) 0.637 ( 0.093 ) 0.403 ( 0.035 ) 0.042 ( 0.138 )
DIFFERENCE: TPR 0.667 ( 0.038 ) 0.579 ( 0.002 ) 0.075 ( 0.021 ) 0.410 ( 0.044 ) 0.001 ( 0.003 )

EGD 0.432 ( 0.040 ) 0.285 ( 0.010 ) 0.020 ( 0.006 ) 0.172 ( 0.031 ) 0.000 ( 0.001 )
PGD 0.167 ( 0.002 ) 0.167 ( 0.002 ) 0.167 ( 0.002 ) 0.167 ( 0.002 ) 0.167 ( 0.002 )

Table A.66: Performance on differences of scale-free graphs, p=100, n=400,
δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.478 ( 0.011 ) 0.631 ( 0.034 ) 0.734 ( 0.034 ) 0.592 ( 0.014 ) 0.000 ( 0.000 )
DIFFERENCE: TPR 0.785 ( 0.033 ) 0.554 ( 0.051 ) 0.168 ( 0.032 ) 0.527 ( 0.044 ) 0.000 ( 0.000 )

EGD 0.665 ( 0.040 ) 0.358 ( 0.055 ) 0.093 ( 0.022 ) 0.361 ( 0.038 ) 0.000 ( 0.000 )
PGD 0.405 ( 0.002 ) 0.405 ( 0.002 ) 0.405 ( 0.002 ) 0.405 ( 0.002 ) 0.405 ( 0.002 )

Table A.67: Performance on differences of random graphs (π = 0.1), p=100,
n=60, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.267 ( 0.028 ) 0.27 ( 0.019 ) 0.025 ( 0.109 ) 0.354 ( 0.336 ) 0.105 ( 0.117 )
DIFFERENCE:TPR 0.143 ( 0.078 ) 0.221 ( 0.039 ) 0.000 ( 0.000 ) 0.006 ( 0.010 ) 0.198 ( 0.331 )

EGD 0.101 ( 0.065 ) 0.152 ( 0.030 ) 0.000 ( 0.000 ) 0.003 ( 0.005 ) 0.198 ( 0.331 )
PGD 0.185 ( 0.003 ) 0.185 ( 0.003 ) 0.185 ( 0.003 ) 0.185 ( 0.003 ) 0.185 ( 0.003 )

110



Table A.68: Performance on differences of random graphs (π = 0.1), p=100,
n=60, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.532 ( 0.030 ) 0.533 ( 0.023 ) 0.050 ( 0.218 ) 0.678 ( 0.299 ) 0.102 ( 0.178 )
DIFFERENCE: TPR 0.145 ( 0.049 ) 0.211 ( 0.026 ) 0.000 ( 0.000 ) 0.009 ( 0.021 ) 0.072 ( 0.203 )

EGD 0.116 ( 0.047 ) 0.166 ( 0.023 ) 0.000 ( 0.000 ) 0.006 ( 0.017 ) 0.073 ( 0.204 )
PGD 0.418 ( 0.005 ) 0.418 ( 0.005 ) 0.418 ( 0.005 ) 0.418 ( 0.005 ) 0.418 ( 0.005 )

Table A.69: Performance on differences of Markov-chain graphs, p=100,
n=60, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.481 ( 0.029 ) 0.469 ( 0.013 ) 0.133 ( 0.323 ) 0.688 ( 0.286 ) 0.184 ( 0.214 )
DIFFERENCE: TPR 0.125 ( 0.025 ) 0.205 ( 0.030 ) 0.000 ( 0.000 ) 0.005 ( 0.005 ) 0.046 ( 0.089 )

EGD 0.096 ( 0.021 ) 0.162 ( 0.024 ) 0.000 ( 0.000 ) 0.003 ( 0.003 ) 0.045 ( 0.087 )
PGD 0.370 ( 0.002 ) 0.370 ( 0.002 ) 0.370 ( 0.002 ) 0.370 ( 0.002 ) 0.370 ( 0.002 )

Table A.70: Performance on differences of tree graphs, p=100, n=60, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.057 ( 0.012 ) 0.053 ( 0.010 ) 0.050 ( 0.218 ) 0.071 ( 0.226 ) 0.017 ( 0.019 )
DIFFERENCE: TPR 0.105 ( 0.038 ) 0.151 ( 0.037 ) 0.000 ( 0.001 ) 0.001 ( 0.003 ) 0.095 ( 0.183 )

EGD 0.063 ( 0.015 ) 0.100 ( 0.022 ) 0.000 ( 0.000 ) 0.000 ( 0.001 ) 0.096 ( 0.179 )
PGD 0.035 ( 0.001 ) 0.035 ( 0.001 ) 0.035 ( 0.001 ) 0.035 ( 0.001 ) 0.035 ( 0.001 )

Table A.71: Performance on differences of tree graphs, p=100, n=60, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.06 ( 0.020 ) 0.056 ( 0.013 ) 0.000 ( 0.000 ) 0.093 ( 0.148 ) 0.023 ( 0.026 )
DIFFERENCE:TPR 0.107 ( 0.056 ) 0.152 ( 0.040 ) 0.000 ( 0.000 ) 0.008 ( 0.014 ) 0.144 ( 0.227 )

EGD 0.065 ( 0.031 ) 0.099 ( 0.025 ) 0.000 ( 0.000 ) 0.002 ( 0.003 ) 0.146 ( 0.232 )
PGD 0.036 ( 0.001 ) 0.036 ( 0.001 ) 0.036 ( 0.001 ) 0.036 ( 0.001 ) 0.036 ( 0.001 )

111



Table A.72: Performance on differences of scale-free graphs, p=100, n=60,
δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.266 ( 0.025 ) 0.254 ( 0.020 ) 0.075 ( 0.238 ) 0.36 ( 0.337 ) 0.124 ( 0.083 )
DIFFERENCE: TPR 0.120 ( 0.025 ) 0.209 ( 0.040 ) 0.000 ( 0.000 ) 0.006 ( 0.007 ) 0.231 ( 0.331 )

EGD 0.075 ( 0.013 ) 0.139 ( 0.033 ) 0.000 ( 0.000 ) 0.002 ( 0.003 ) 0.227 ( 0.332 )
PGD 0.167 ( 0.002 ) 0.167 ( 0.002 ) 0.167 ( 0.002 ) 0.167 ( 0.002 ) 0.167 ( 0.002 )

Table A.73: Performance on differences of scale-free graphs, p=100, n=60,
δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.519 ( 0.021 ) 0.510 ( 0.014 ) 0.025 ( 0.109 ) 0.599 ( 0.329 ) 0.161 ( 0.272 )
DIFFERENCE: TPR 0.141 ( 0.048 ) 0.218 ( 0.016 ) 0.000 ( 0.000 ) 0.006 ( 0.008 ) 0.076 ( 0.187 )

EGD 0.112 ( 0.042 ) 0.174 ( 0.012 ) 0.000 ( 0.000 ) 0.004 ( 0.004 ) 0.074 ( 0.185 )
PGD 0.406 ( 0.003 ) 0.406 ( 0.003 ) 0.406 ( 0.003 ) 0.406 ( 0.003 ) 0.406 ( 0.003 )

A.3 Performance results: model selection
with fixed densities

A.3.1 Separate and Joint GSL

Table A.74: Performance on random graphs (π = 0.1) with fixed densities,
p=30, n=200, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.453 0.500 0.469 0.460
TPR 0.453 0.511 0.482 0.460

MATCHING PRESENCE: PPV 0.609 0.469 0.373 0.458
MATCHING PRESENCE: TPR 0.286 0.469 0.510 0.449

MISMATCHING: PPV 0.204 0.205 0.556 0.233
MISMATCHING: TPR 0.463 0.220 0.122 0.244

EAGD 0.160 0.163 0.164 0.160
PAGD 0.160 0.160 0.160 0.160

112



Table A.75: Performance on Markov-chain graphs with fixed densities, p=30,
n=200, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.440 0.495 0.500 0.467
TPR 0.449 0.531 0.500 0.439

MATCHING PRESENCE: PPV 0.667 0.515 0.419 0.448
MATCHING PRESENCE: TPR 0.414 0.586 0.621 0.448

MISMATCHING: PPV 0.219 0.205 0.583 0.294
MISMATCHING: TPR 0.350 0.200 0.175 0.250

EAGD 0.115 0.121 0.113 0.106
PAGD 0.113 0.113 0.113 0.113

Table A.76: Performance on tree graphs with fixed densities, p=30, n=200,
δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.316 0.509 0.439 0.361
TPR 0.414 0.466 0.431 0.379

MATCHING PRESENCE: PPV 0.857 0.471 0.320 0.389
MATCHING PRESENCE: TPR 0.429 0.571 0.571 0.500

MISMATCHING: PPV 0.177 0.421 0.571 0.280
MISMATCHING: TPR 0.367 0.267 0.133 0.233

EAGD 0.087 0.061 0.066 0.070
PAGD 0.067 0.067 0.067 0.067

Table A.77: Performance on scale-free graphs with fixed densities, p=30,
n=200, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.423 0.495 0.441 0.475
TPR 0.431 0.451 0.441 0.461

MATCHING PRESENCE: PPV 0.714 0.462 0.362 0.500
MATCHING PRESENCE: TPR 0.323 0.387 0.548 0.484

MISMATCHING: PPV 0.224 0.317 0.625 0.333
MISMATCHING: TPR 0.425 0.325 0.125 0.325

EAGD 0.120 0.107 0.117 0.114
PAGD 0.117 0.117 0.117 0.117

113



Table A.78: Performance on random graphs (π = 0.1) with fixed densities,
p=30, n=40, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.388 0.394 0.370 0.376
TPR 0.367 0.396 0.379 0.383

MATCHING PRESENCE: PPV 0.250 0.190 0.188 0.159
MATCHING PRESENCE: TPR 0.191 0.319 0.404 0.298

MISMATCHING: PPV 0.374 0.398 0.477 0.391
MISMATCHING: TPR 0.397 0.226 0.144 0.185

EAGD 0.261 0.277 0.283 0.282
PAGD 0.276 0.276 0.276 0.276

Table A.79: Performance on tree graphs with fixed densities, p=30, n=40,
δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.186 0.231 0.235 0.203
TPR 0.190 0.207 0.207 0.207

MATCHING PRESENCE: PPV 0.000 0.000 0.095 0.083
MATCHING PRESENCE: TPR 0.000 0.000 1.000 0.500

MISMATCHING: PPV 0.204 0.233 0.444 0.229
MISMATCHING: TPR 0.185 0.130 0.074 0.148

EAGD 0.068 0.060 0.059 0.068
PAGD 0.067 0.067 0.067 0.067

Table A.80: Performance on scale-free graphs with fixed densities, p=30,
n=40, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.321 0.322 0.286 0.299
TPR 0.320 0.345 0.284 0.299

MATCHING PRESENCE: PPV 0.030 0.048 0.087 0.048
MATCHING PRESENCE: TPR 0.038 0.115 0.269 0.115

MISMATCHING: PPV 0.392 0.425 0.361 0.408
MISMATCHING: TPR 0.352 0.255 0.090 0.200

EAGD 0.225 0.243 0.225 0.226
PAGD 0.226 0.226 0.226 0.226

114



Table A.81: Performance on random graphs (π = 0.1) with fixed densities,
p=30, n=20, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.270 0.277 0.321 0.281
TPR 0.266 0.266 0.282 0.290

MATCHING PRESENCE: PPV 0.357 0.171 0.295 0.171
MATCHING PRESENCE: TPR 0.119 0.143 0.310 0.167

MISMATCHING: PPV 0.149 0.082 0.190 0.109
MISMATCHING: TPR 0.350 0.100 0.100 0.125

EAGD 0.140 0.137 0.125 0.147
PAGD 0.143 0.143 0.143 0.143

Table A.82: Performance on Markov-chain graphs with fixed densities, p=30,
n=20, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.183 0.143 0.159 0.167
TPR 0.186 0.127 0.167 0.167

MATCHING PRESENCE: PPV 0.167 0.043 0.114 0.057
MATCHING PRESENCE: TPR 0.032 0.032 0.161 0.065

MISMATCHING: PPV 0.152 0.111 0.263 0.125
MISMATCHING: TPR 0.350 0.125 0.125 0.100

EAGD 0.120 0.105 0.123 0.117
PAGD 0.117 0.117 0.117 0.117

Table A.83: Performance on tree graphs with fixed densities, p=30, n=20,
δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.155 0.153 0.123 0.158
TPR 0.158 0.228 0.123 0.158

MATCHING PRESENCE: PPV 0.000 0.045 0.038 0.067
MATCHING PRESENCE: TPR 0.000 0.083 0.083 0.083

MISMATCHING: PPV 0.160 0.098 0.000 0.111
MISMATCHING: TPR 0.242 0.121 0.000 0.091

EAGD 0.067 0.098 0.066 0.066
PAGD 0.066 0.066 0.066 0.066

115



Table A.84: Performance on scale-free graphs with fixed densities, p=30,
n=20, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.181 0.194 0.272 0.207
TPR 0.185 0.207 0.272 0.207

MATCHING PRESENCE: PPV 0.000 0.120 0.243 0.111
MATCHING PRESENCE: TPR 0.000 0.115 0.346 0.115

MISMATCHING: PPV 0.122 0.083 0.167 0.053
MISMATCHING: TPR 0.250 0.100 0.075 0.050

EAGD 0.108 0.113 0.106 0.106
PAGD 0.106 0.106 0.106 0.106

Table A.85: Performance on random graphs (π = 0.1) with fixed densities,
p=100, n=400, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.407 0.446 0.436 0.414
TPR 0.410 0.452 0.423 0.409

MATCHING PRESENCE: PPV 0.589 0.451 0.350 0.364
MATCHING PRESENCE: TPR 0.259 0.380 0.458 0.352

MISMATCHING: PPV 0.208 0.217 0.437 0.247
MISMATCHING: TPR 0.429 0.290 0.147 0.254

EAGD 0.136 0.138 0.132 0.134
PAGD 0.136 0.136 0.136 0.136

Table A.86: Performance on Markov-chain graphs with fixed densities,
p=100, n=400, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.333 0.388 0.317 0.317
TPR 0.336 0.372 0.327 0.332

MATCHING PRESENCE: PPV 0.419 0.292 0.159 0.170
MATCHING PRESENCE: TPR 0.176 0.343 0.480 0.314

MISMATCHING: PPV 0.277 0.331 0.564 0.343
MISMATCHING: TPR 0.350 0.286 0.094 0.239

EAGD 0.068 0.065 0.070 0.071
PAGD 0.068 0.068 0.068 0.068

116



Table A.87: Performance on random graphs (π = 0.1) with fixed densities,
p=100, n=60, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.319 0.316 0.307 0.320
TPR 0.319 0.319 0.311 0.317

MATCHING PRESENCE: PPV 0.138 0.125 0.135 0.133
MATCHING PRESENCE: TPR 0.117 0.225 0.304 0.231

MISMATCHING: PPV 0.339 0.339 0.384 0.353
MISMATCHING: TPR 0.370 0.180 0.100 0.191

EAGD 0.258 0.260 0.260 0.256
PAGD 0.258 0.258 0.258 0.258

Table A.88: Performance on Markov-chain graphs with fixed densities,
p=100, n=60, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.277 0.275 0.274 0.272
TPR 0.278 0.269 0.272 0.274

MATCHING PRESENCE: PPV 0.099 0.084 0.096 0.071
MATCHING PRESENCE: TPR 0.117 0.215 0.324 0.198

MISMATCHING: PPV 0.342 0.334 0.367 0.321
MISMATCHING: TPR 0.325 0.164 0.093 0.145

EAGD 0.212 0.206 0.209 0.212
PAGD 0.211 0.211 0.211 0.211

Table A.89: Performance on scale-free graphs with fixed densities, p=100,
n=60, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.312 0.313 0.315 0.313
TPR 0.311 0.313 0.317 0.313

MATCHING PRESENCE: PPV 0.129 0.120 0.132 0.131
MATCHING PRESENCE: TPR 0.111 0.221 0.327 0.252

MISMATCHING: PPV 0.343 0.343 0.387 0.335
MISMATCHING: TPR 0.367 0.192 0.091 0.172

EAGD 0.244 0.244 0.246 0.244
PAGD 0.244 0.244 0.244 0.244

117



Table A.90: Performance on tree graphs with fixed densities, p=100, n=60,
δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL
PPV 0.025 0.024 0.020 0.026
TPR 0.121 0.247 0.035 0.061

MATCHING PRESENCE: PPV 0.000 0.000 0.000 0.000
MATCHING PRESENCE: TPR 0.000 0.000 0.000 0.000

MISMATCHING: PPV 0.031 0.033 0.029 0.034
MISMATCHING: TPR 0.129 0.144 0.005 0.036

EAGD 0.097 0.210 0.036 0.046
PAGD 0.020 0.020 0.020 0.020

A.3.2 Differential GSL

Table A.91: Performance on differences of random graphs (π = 0.1) with
fixed densities, p=30, n=200, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.455 0.535 0.317 0.453 0.151
DIFFERENCE: TPR 0.465 0.535 0.302 0.453 0.151

EGD 0.202 0.198 0.189 0.198 0.198
PGD 0.198 0.198 0.198 0.198 0.198

Table A.92: Performance on differences of Markov-chain graphs with fixed
densities, p=30, n=200, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.397 0.476 0.279 0.397 0.156
DIFFERENCE: TPR 0.397 0.476 0.270 0.397 0.159

EGD 0.145 0.145 0.140 0.145 0.147
PGD 0.145 0.145 0.145 0.145 0.145

118



Table A.93: Performance on differences of scale-free graphss with fixed den-
sities, p=30, n=200, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.424 0.492 0.333 0.439 0.167
DIFFERENCE: TPR 0.431 0.492 0.338 0.446 0.169

EGD 0.152 0.149 0.152 0.152 0.152
PGD 0.149 0.149 0.149 0.149 0.149

Table A.94: Performance on differences of random graphs (π = 0.1) with
fixed densities, p=30, n=40, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.508 0.518 0.492 0.508 0.437
DIFFERENCE: TPR 0.508 0.523 0.492 0.508 0.860

EGD 0.444 0.448 0.444 0.444 0.874
PGD 0.444 0.444 0.444 0.444 0.444

Table A.95: Performance on differences of Markov-chain graphs with fixed
densities, p=30, n=40, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.472 0.508 0.448 0.475 0.409
DIFFERENCE: TPR 0.472 0.511 0.455 0.478 0.393

EGD 0.409 0.411 0.416 0.411 0.393
PGD 0.409 0.409 0.409 0.409 0.409

Table A.96: Performance on differences of tree graphs with fixed densities,
p=30, n=40, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.204 0.236 0.218 0.208 0.208
DIFFERENCE: TPR 0.204 0.241 0.222 0.204 0.204

EGD 0.124 0.126 0.126 0.122 0.122
PGD 0.124 0.124 0.124 0.124 0.124

119



Table A.97: Performance on differences of scale-free graphs with fixed den-
sities, p=30, n=40, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.465 0.468 0.419 0.468 0.421
DIFFERENCE: TPR 0.462 0.474 0.421 0.468 0.421

EGD 0.391 0.398 0.395 0.393 0.393
PGD 0.393 0.393 0.393 0.393 0.393

Table A.98: Performance on differences of random graphs (π = 0.1) with
fixed densities, p=30, n=20, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.282 0.282 0.256 0.325 0.213
DIFFERENCE: TPR 0.282 0.282 0.256 0.321 0.167

EGD 0.179 0.179 0.179 0.177 0.140
PGD 0.179 0.179 0.179 0.179 0.179

Table A.99: Performance on differences of Markov-chain graphs with fixed
densities, p=30, n=20, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.234 0.222 0.206 0.254 0.158
DIFFERENCE: TPR 0.238 0.222 0.206 0.254 0.048

EGD 0.147 0.145 0.145 0.145 0.044
PGD 0.145 0.145 0.145 0.145 0.145

Table A.100: Performance on differences of tree graphs with fixed densities,
p=30, n=20, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.125 0.212 0.152 0.189 0.156
DIFFERENCE: TPR 0.121 0.212 0.152 0.212 0.212

EGD 0.074 0.076 0.076 0.085 0.103
PGD 0.076 0.076 0.076 0.076 0.076

120



Table A.101: Performance on differences of scale-free graphs with fixed den-
sities, p=30, n=20, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.234 0.238 0.177 0.226 0.138
DIFFERENCE: TPR 0.242 0.242 0.177 0.226 0.145

EGD 0.147 0.145 0.143 0.143 0.149
PGD 0.143 0.143 0.143 0.143 0.143

Table A.102: Performance on differences of random graphs (π = 0.1) with
fixed densities, p=100, n=400, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.432 0.485 0.320 0.439 0.197
DIFFERENCE: TPR 0.435 0.469 0.329 0.442 0.186

EGD 0.181 0.174 0.185 0.181 0.170
PGD 0.180 0.180 0.180 0.180 0.180

Table A.103: Performance on differences of Markov-chain graphs with fixed
densities, p=100, n=400, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.343 0.395 0.308 0.347 0.141
DIFFERENCE: TPR 0.350 0.404 0.279 0.341 0.137

EGD 0.113 0.114 0.100 0.109 0.107
PGD 0.111 0.111 0.111 0.111 0.111

Table A.104: Performance on differences of tree graphs with fixed densities,
p=100, n=400, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
MISMATCHING: PPV 0.214 0.251 0.185 0.210 0.073
MISMATCHING: TPR 0.210 0.256 0.188 0.210 0.062

EGD 0.035 0.036 0.036 0.036 0.030
PGD 0.036 0.036 0.036 0.036 0.036

121



Table A.105: Performance on differences of scale-free graphs with fixed den-
sities, p=100, n=400, δ=0.05

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.411 0.469 0.312 0.412 0.177
DIFFERENCE: TPR 0.418 0.453 0.306 0.416 0.182

EGD 0.167 0.159 0.161 0.166 0.169
PGD 0.165 0.165 0.165 0.165 0.165

Table A.106: Performance on differences of random graphs (π = 0.1) with
fixed densities, p=100, n=60, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.458 0.455 0.442 0.460 0.422
DIFFERENCE: TPR 0.457 0.457 0.441 0.459 0.429

EGD 0.417 0.419 0.417 0.418 0.425
PGD 0.418 0.418 0.418 0.418 0.418

Table A.107: Performance on differences of Markov-chain graphs with fixed
densities, p=100, n=60, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.414 0.410 0.380 0.415 0.374
DIFFERENCE: TPR 0.414 0.407 0.383 0.413 0.377

EGD 0.370 0.368 0.374 0.369 0.374
PGD 0.371 0.371 0.371 0.371 0.371

Table A.108: Performance on differences of tree graphs with fixed densities,
p=100, n=60, δ=0.20

SEP-GL R-JGL FUSED JGL GROUP JGL DIRECT
DIFFERENCE: PPV 0.042 0.058 0.036 0.046 0.019
DIFFERENCE: TPR 0.041 0.057 0.036 0.046 0.015

EGD 0.038 0.039 0.039 0.040 0.033
PGD 0.039 0.039 0.039 0.039 0.039

122



Appendix B

Script

# graph_conc: makes graph from concentration matrix
# input #
# K: a concentration matrix
# dec: the decimals for rounding
# output #
# an undirected graph
graph_conc<- function(K, dec=4){

return(graph_from_adjacency_matrix(round(K,dec)!=0, diag=F,
↪→ mode="undir"))

}

# plot_conc: makes plot for graph associated to a
↪→ concentration matrix

# input #
# K: a concentration matrix
# dec: the decimals for rounding
plot_conc<-function(K,dec=4){

plot(graph_conc(K, dec=4))
}

# initialization: publicly initializes empty lists that are
↪→ needed during the simulation

# input #
# diff: logical value, TRUE if the simulation includes a

↪→ comparison of differences across methods
# set to default as FALSE since currently the simulation does

↪→ not focus on comparison of differences

123



# output #
# no output. the objects are initialized publicly, when

↪→ initialization() is run on the main script
initialization<- function(diff=FALSE){
tot_sep_performance<<- list(list())
tot_guo_performance<<- list(list())
tot_jgl_fused_performance<<- list(list())
tot_jgl_grouped_performance<<- list(list())
tot_zhao_performance<<- list(list())

sep_performance<<- list(list())
guo_performance<<- list(list())
jgl_fused_performance<<- list(list())
jgl_grouped_performance<<- list(list())
zhao_performance<<- list(list())

mean_sep_performance<<- list(list())
mean_guo_performance<<- list(list())
mean_jgl_fused_performance<<- list(list())
mean_jgl_grouped_performance<<- list(list())
mean_zhao_performance<<- list(list())

sd_sep_performance<<- list(list())
sd_guo_performance<<- list(list())
sd_jgl_fused_performance<<- list(list())
sd_jgl_grouped_performance<<- list(list())
sd_zhao_performance<<- list(list())

if(diff){
sep_diff_performance<<- list(list())
guo_diff_performance<<- list(list())
jgl_fused_diff_performance<<- list(list())
jgl_grouped_diff_performance<<- list(list())

tot_sep_diff_performance<<- list(list())
tot_guo_diff_performance<<- list(list())
tot_jgl_fused_diff_performance<<- list(list())
tot_jgl_grouped_diff_performance<<- list(list())

mean_sep_diff_performance<<- list(list())
mean_guo_diff_performance<<- list(list())

124



mean_jgl_fused_diff_performance<<- list(list())
mean_jgl_grouped_diff_performance<<- list(list())

sd_sep_diff_performance<<- list(list())
sd_guo_diff_performance<<- list(list())
sd_jgl_fused_diff_performance<<- list(list())
sd_jgl_grouped_diff_performance<<- list(list())

}

}

# tridiag_1: creates a tridiagonal matrix with 1s on the main
↪→ , lower and upper diagonal

# input #
# p: dimension of the pxp matrix
tridiag_1<- function(p){

mat<- matrix(0,p,p)
diag(mat)<- 1
indx <- seq.int(p-1)
mat[cbind(indx+1,indx)]<- mat[cbind(indx,indx+1)]<- 1
return(mat)

}

# generate_graph_structures: generates four (or less if
↪→ specified) graph structures

# input #
# p: number of vertices
# pi: parameter for random graph sparsity. default to 1/p
# m: multiplier for the number of edges in the scale-free

↪→ model
generate_graph_structures<- function(p, pi=1/p){
random_graph<- sample_gnp(p,pi)
chain_network<- graph_from_adjacency_matrix(tridiag_1(p),mode

↪→ ="undir",diag=F)
tree_network<- make_tree(p, children=2, mode="und")
scale_free<- sample_pa(p,power=1.1,m=(p%/%30+sum(p%%30!=0)),

↪→ directed=FALSE)

return(list(ER=random_graph,CHAIN=chain_network,TREE=tree_
↪→ network,BA=scale_free))

}

125



# get_zero_structure: recovers the zero structure of graphs
↪→ as a list of zero edges

# input #
# graphs: a list of graphs
# output #
# zeros: a list of edgelists
get_zero_structure<- function(graphs,p){
FULL<- make_full_graph(p)
zeros<- lapply(graphs, function(x) get.edgelist(difference(

↪→ FULL,x)))
return(zeros)

}

# generate_Sigma: generates a covariance matrix Sigma
# input #
# p: dimension of covariance matrix
# mode: method for generating Sigma
# rho: parameter of equi-correlation
# set to default to a random number between -1/(p-1) and 1 (

↪→ required for positive definiteness)
generate_Sigma<- function(p,mode=c("equicorr","beta","eigen","

↪→ wishart"),rho=runif(1,-1/(p-1),1)){
if(mode=="equicorr"){
K<- matrix(rho,p,p)
diag(K)<- 1
Sigma<- solve(K)

}
else if(mode=="beta")
Sigma<-genPositiveDefMat(p,covMethod="unifcorrmat",

↪→ rangeVar= c(1.5,10))
else if(mode=="eigen")
Sigma<-genPositiveDefMat(p,covMethod="eigen", lambdaLow=2)

else if(mode=="wishart")
Sigma<- rWishart(1, df=500, diag(p))

else stop("Invalid␣mode")
return(Sigma)

}

# completed_matrices_H1: completes a covariance matrix using
↪→ a given zero structure

126



# it uses the Lasso method with lambda = 0 (possible since
↪→ the zero structure is given and Sigma is constructed to
↪→ be positive-definite)

# input #
# Sigma: the covariance matrix
# zeros: the list of zero edgelists
# output #
# completion: a list of completed covariance matrices (W) and

↪→ their inverse (K)
completed_matrices_H1<- function(Sigma,zeros){
out<- lapply(zeros, function(x,Sigma1) glasso(Sigma1, 0, x)

↪→ [1:2], Sigma1=Sigma)
return(out)

}

# changed_edges: generates random edges IDs by sampling
↪→ change_prop*p*(p-1)/2 elements as a vector.

# These will be the IDs on the upper/lower triangular
↪→ adjacency matrix

# input #
# p: the dimension of the adjacency matrix
# change_prop: the probability of an edge changing
# H: the number of groups (i.e. networks)
# output #
# out: a list of H vectors of change IDs
changed_edges<- function(p, change_prop, H=2){
no_changed_edges<- ceiling(p*(p-1)/2*change_prop)
out<- list()
for(h in 1:H)
out[[h]]<- sample(1:(p*(p-1)/2),no_changed_edges,replace=F)

return(out)
}

# group zeros: constructs edgelists for zero edges given the
↪→ IDs for changed edges in each group

# input #
# graphs: a list of graphs (length 4)
# changed_edges: a list (length H) of ID vector for the lower

↪→ -tri adjacency matrix elements to be changed
# output #
# zeros: the list (4xH) of new edgelists corresponding to

127



↪→ zero elements in the adjacency matrices
group_zeros<- function(graphs,changed_edges){
zeros<- list()
group<- list()
for(l in 1:length(graphs)){

for(h in 1:length(changed_edges)){
adj<- as.matrix(get.adjacency(graphs[[l]]))
adj[lower.tri(adj)][changed_edges[[h]]]<- 1- adj[lower.

↪→ tri(adj)][changed_edges[[h]]]
adj[upper.tri(adj)]<-t(adj)[upper.tri(adj)]
z<- allEdges(1-diag(p)-adj)
group[[h]]<- z

}
zeros[[l]]<- group

}
names(zeros)<-names(graphs)
return(zeros)

}

# completed_matrices_H: completes covariance matrices (for
↪→ each group) using a given a list of lists of zero
↪→ structures

# it uses the Lasso method with lambda = 0 (possible since
↪→ the zero structure is given and Sigma is constructed to
↪→ be positive-definite)

# input #
# Sigma: the covariance matrix
# zeros: the list of lists of zero edgelists
# output #
# completion: a list of lists of completed covariance

↪→ matrices (W) and their inverse (K)
completed_matrices_H<- function(Sigma,zeros){
out<- lapply(zeros, function(out_list, Sigma1) lapply(out_

↪→ list, function(x,Sigma1) glasso(Sigma1, 0, x)$w,
↪→ Sigma1=Sigma))

return(out)
}

# make_mst_graph: finds the minimum spanning trees
# input #
# tree_zeros: a list containing the zero edgelists for the

128



↪→ group-distincted tree graphs (as many as H)
# output #
# graph: a list of msts
make_mst_graph<- function(tree_zeros){
FULL<- make_full_graph(p)
graph<- lapply(tree_zeros, function(x) mst(difference(FULL,

↪→ graph_from_edgelist(x,directed = F))))
return(graph)

}

# make_mst_matrices: reconstructs the covariance and its
↪→ inverse for all the tree graphs

# input #
# graph: a list of tree graphs
# Sigma: the common covariance matrix
# output #
# matrices: a list of cov/inv matrices after for the mst for

↪→ each group (length H)
make_mst_matrices<- function(graph,Sigma){
FULL<- make_full_graph(p)
zeros<- lapply(graph, function(x) get.edgelist(difference(

↪→ FULL,x)))
matrices<- lapply(zeros, function(x, Sigma1) glasso(Sigma1,

↪→ 0, x)$w,Sigma1=Sigma)
return(matrices)

}

# AIC calculation
# df_graph: it calculates the degrees of freedom of a model

↪→ based on its estimated inverse covariance matrix
# input #
# K: the estimated inv-cov matrix for the model
df_graph<- function(K){
entries<- round(K[lower.tri(K)],4)
return(sum(entries!=0))

}

# SL_AIC: calculates the AIC for a model, based on the sample
↪→ cov and the estimated inv-cov

# input #
# estimated_k: the estimated inv-cov by the model

129



# sample_s: the sample cov matrix
# n: the number of observations
SL_AIC<- function(estimated_k,sample_s,n){

return((-log(det(estimated_k))+sum(diag(sample_s%*%estimated
↪→ _k)))*n+2*df_graph(estimated_k))

}

SL_BIC<- function(estimated_k,sample_s,n){
return((-log(det(estimated_k))+sum(diag(sample_s%*%estimated

↪→ _k)))*n+log(n)*df_graph(estimated_k))
}
# guo_glasso: estimates the covariance matrices and their

↪→ inverse using method by guo (2011)
# input #
# S: a list of H sample covariance matrices (H=number of

↪→ groups)
# rho: the penalization parameter, default = 0.05
# nu: the initial penalization on the diagonal, default= 0.05
# tol: threshold for determining convergence, default=1e-5
# it.max: maximum number of iterations allowed, default=1e+3
# output #
# w: a list of H estimated covariance matrices
# wi: a list of H estimated inverse covariance matrices
guo_glasso<- function(S, rho=0.05, nu=0.05, tol=1e-5, it.max=1

↪→ e+3){
p<- nrow(S[[1]])
W<- lapply(S, function(x,nu1,p1) x+nu1*diag(p1), nu1=nu, p1=

↪→ p)
delta<- Inf
K_old<- lapply(W, solve)
sum_ab<- Reduce("+", lapply(K_old, abs)) # this does abs(K_

↪→ old[[1]][i,j])+abs(K_old[[2]][i,j])
Tau<- ifelse(sum_ab^(1/2)<10e-9,10e+9,sum_ab^(-1/2))
it<- 0
while(delta>tol & it<it.max){
RHO<- rho*Tau
update<- lapply(W, function(x,RHO1) glasso(x, rho=RHO1),

↪→ RHO1=RHO)
W<- lapply(update, function(x) x$w)
K<- lapply(update, function(x) x$wi)
delta<- Reduce("+",mapply(function(x,x_old) norm(x-x_old,"1

130



↪→ "), K, K_old)) / Reduce("+", lapply(K_old, function(
↪→ x_old) norm(x_old,"1")))

K_old<- K
sum_ab<- Reduce("+", lapply(K_old, abs))
Tau<- ifelse(sum_ab^(1/2)<10e-9,10e+9,sum_ab^(-1/2))
it<- it+1

}
return(list(w=W,wi=K))

}

# JOINT_AIC: calculates the joint AIC, as sum of individual
↪→ AICs

# input #
# estimated_k: a list of H estimated inverse covariance

↪→ matrices
# sample_s: a list of H sample covariance matrices
# n: the number of observation for the data (assumed equal

↪→ across groups)
# output #
# sum(l): the sum of individual likelihoods
JOINT_AIC<- function(estimated_k,sample_s,n){
l<- mapply(function(x,y, n1) (-log(det(x))+sum(diag(y%*%x)))

↪→ *n1+2*df_graph(x), estimated_k, sample_s, MoreArgs =
↪→ list(n1=n))

return(sum(l))
}

JOINT_BIC<- function(estimated_k,sample_s,n){
l<- mapply(function(x,y, n1) (-log(det(x))+sum(diag(y%*%x)))

↪→ *n1+log(n)*df_graph(x), estimated_k, sample_s,
↪→ MoreArgs = list(n1=n))

return(sum(l))
}

# lower_tri_adjacency: it takes the inverse of a covariance
↪→ matrix x as input and returns the lower triangle of the
↪→ adjacency matrix

# the adjacency matrix is considered the matrix having 1
↪→ where x!=0 and 0 where x=0

# input #
# x: the inv-cov matrix

131



# dec: the precision (decimal digit) for a value to be
↪→ considered zero

# output #
# lo_tri: a vector of elements of the lower triangle of the

↪→ adjacency matrix (does not include main diagonal)
lower_tri_adjacency<- function(x,dec=4){
adj_matrix<- round(x,dec)!=0
lo_tri<- adj_matrix[lower.tri(adj_matrix)]
return(lo_tri)

}

# dens: calulates the density of a given graph
# input #
# K: inverse covariance matrix associated to the graph
# output #
# sum(lower_tri_adjacency(K))/d: a scalar, the density

↪→ associated with the graph
# notice it’s not the same as df_graph, this is relative

↪→ frequency
dens<- function(K,dec=4){
d<- ncol(K)*(ncol(K)-1)/2
return(sum(lower_tri_adjacency(K,dec))/d)

}

# precision_recall: computes the precision (PPV), recall (TPR
↪→ ) and sensitivity (TNR) for a couple of logical vectors
↪→ , corresponding to population and estimated matrices

# a TRUE value in the input corresponds to a present edge, a
↪→ FALSE value to a missing edge (after a chosen rounding)

# input #
# population: a (p(p-1)/2)x1 logical vector of population

↪→ edge presence (according to some criterion)
# estimated: a (p(p-1)/2)x1 logical vector of estimated edge

↪→ presence (according to some criterion)
# output #
# a list of precision, recall and specificity
# notice that when the denominator is zero, the value for the

↪→ index is set to zero
precision_recall<- function(population, estimated){
population_pos_id<- which(population==TRUE)
population_neg_id<- which(population==FALSE)

132



# precision
TP<- sum(estimated[population_pos_id])
FP<- sum(estimated[population_neg_id])
precision<- TP/(TP+FP)
if(is.nan(precision))
precision<-0

# recall
FN<- sum(!estimated[population_pos_id])
recall<- TP/(TP+FN)
if(is.nan(recall))
recall<-0

return(list(precision,recall))
}

# joint_precision_recall: calculates the joint precision (PPV
↪→ ), recall (TPR) and specificity (TNR) for a set of H
↪→ estimated and population inverse covariance matrices

# input #
# true_adj: a list of H (p(p-1)/2)x1 logical vectors of

↪→ population edge presence
# est_adj: a list of H (p(p-1)/2)x1 logical vectors of

↪→ estimated edge presence
# ouput #
# list of either:
# - matching_presence (list of 3 indexes), matching_absence (

↪→ list of 3 indexes), mismatching (list of 3 indexes)
# - matching (list of 3 indexes), mismatching (list of 2

↪→ indxes)
# the former is for SL, GUO, JGL fused/group. the latter is

↪→ for zhao
# NOTICE: the input must be in form of list. if coming from

↪→ zhao, call the function with list(x),list(y)
joint_precision_recall<- function(true_adj,est_adj){

if(length(true_adj)>1){
# precision-recall for matching presence
PP<- apply(as.data.frame(true_adj), 1, function(x) all(x))
EP<- apply(as.data.frame(est_adj), 1, function(x) all(x))

133



matching_presence<- precision_recall(PP,EP)

# precision-recall for matching absence
PA<- apply(as.data.frame(true_adj), 1, function(x) all(!x)

↪→ )
EA<- apply(as.data.frame(est_adj), 1, function(x) all(!x))
matching_absence<- precision_recall(PA,EA)

# precision-recall for mismatch
PM<- apply(as.data.frame(true_adj), 1, function(x) sum(x)

↪→ ==1)
EM<- apply(as.data.frame(est_adj), 1, function(x) sum(x)

↪→ ==1)
matching_mismatching<- precision_recall(PM,EM)

}

else{
matching<- precision_recall(!(unlist(true_adj)),!(unlist(

↪→ est_adj)))
mismatching<- precision_recall(unlist(true_adj),unlist(est_

↪→ adj))
}
if(length(true_adj)>1)

return(list(matching_presence,matching_absence,matching_
↪→ mismatching))

else
return(list(matching,mismatching))

}

# simple_precision_recall: calculates precision (PPV), recall
↪→ (TPR) and specificity (TNR) for graphs considered
↪→ separately

# input #
# true_adj: a list of H (p(p-1)/2)x1 logical vectors of

↪→ population edge presence
# est_adj: a list of H (p(p-1)/2)x1 logical vectors of

↪→ estimated edge presence
# ouput #
# list of precision, recall, specificity (scalars)
# notice that when the denominator is zero, the value for the

↪→ index is set to zero

134



simple_precision_recall<- function(true_adj,est_adj){
# True Positives
TP<- mapply(function(x,y) sum(x & y),true_adj,est_adj)
# True Negatives
TN<- mapply(function(x,y) sum(!(x) & !(y)),true_adj,est_adj)
# False Positives
FP<- mapply(function(x,y) sum(!(x) & y),true_adj,est_adj)
# False Negatives
FN<- mapply(function(x,y) sum(x & !(y)),true_adj,est_adj)

precision<- sum(TP)/(sum(TP)+sum(FP))
if(is.nan(precision))
precision<-0

recall<- sum(TP)/(sum(TP)+sum(FN))
if(is.nan(recall))
recall<-0

return(list(precision,recall))
}

# performance: wrapper function to calculate joint and
↪→ separate PPV,TPR,TNR and density

# input #
# TrueOmega: a list of H population inverse covariance

↪→ matrices
# EstOmega: a list of H estimated inverse covariance matrices
# dec: the decimal position after which a small entry is to

↪→ be rounded to zero
# output #
# out: a vector containing 6 or 9 indexes for Joint

↪→ performance (zhao or not), 3 indexes for separate
↪→ performance, 1 estimated average density, 1 population
↪→ average density

performance<- function(TrueOmega,EstOmega,dec=4){
true_adj<- lapply(TrueOmega,function(x,dec1) lower_tri_

↪→ adjacency(x,dec1),dec1=dec)
est_adj<- lapply(EstOmega,function(x,dec1) lower_tri_

↪→ adjacency(x,dec1),dec1=dec)

jpr<- unlist(joint_precision_recall(true_adj, est_adj))
spr<- unlist(simple_precision_recall(true_adj, est_adj))

135



EGD<- Reduce("+",lapply(EstOmega, function(x,dec1) dens(x,
↪→ dec1),dec1=dec))/length(est_adj)

# Population Non-zeros
PGD<- Reduce("+",lapply(TrueOmega, function(x,dec1) dens(x,

↪→ dec1),dec1=dec))/length(true_adj)

out<- c(jpr,spr,EGD,PGD)
return(out)

}

# AIC_sep_lasso: given a list of sample covariance matrices
↪→ and setting an initial range of values for the
↪→ regularization parameters, finds the optimal values for
↪→ rho based on the AIC, by iteratively updating the
↪→ range of values to choose from and fitting separate
↪→ graphical lassos

# input #
# s_cov: a list of H sample covariance matrices
# n: the sample size
# len: the length of the range of values
# update_factor: a multiplicative/divisive factor to update

↪→ the range extrema
# left: the initial range minimum
# right: the initial range maximum
# it.max: the maximum number of iterations to compute
# output #
# opt_rho: a list of H optimal values for the regularization

↪→ parameters
AIC_sep_lasso<- function(s_cov, n, len=10, update_factor=10,

↪→ left=5e-2, right=3, it.max=10){
opt_rho<- list()
H<- length(s_cov)
i<-1
delta<- Inf
I<- list(diag(p), diag(p))
lasso<- list()
aic_rho<- matrix(0,len,H)
old_rho_min_aic<- numeric(H)
dist<-numeric(H)
from<- rep(left,H)

136



to<- rep(right,H)

rho<- mapply(function(x,y,len1) list(seq(x, y, len=len1)), x=
↪→ from, y=to, MoreArgs = list(len))

rhoI<- mapply(function(x,y) x*y, x=rho, y=I, SIMPLIFY = F)
cond<- mapply(function(x,y) ifelse(is.positive.definite(x+y),

↪→ 1, 0), x=s_cov, y=rhoI)

while(sum(cond)!=H){ # if my starting interval has values too
↪→ small

from<- apply(from, function(x) x*2)
rho<- mapply(function(x,y,len1) list(seq(x, y, len=len1)), x=

↪→ from, y=to, MoreArgs = list(len))
rhoI<- mapply(function(x,y) x*y, x=rho, y=I, SIMPLIFY = F)
cond<- mapply(function(x,y) ifelse(is.positive.definite(x+y)

↪→ , 1, 0), x=s_cov, y=rhoI)
}

while(delta>1e-10 & i<it.max){
for(r in 1:len){
lasso<- mapply(function(x,y) glasso(x,rho=y[r])[1:2],x=s_

↪→ cov,y=rho, SIMPLIFY = FALSE)
aic_rho[r,]<- mapply(function(x,s,nn) SL_AIC(x$wi,s,nn),

↪→ x=lasso,s=s_cov, MoreArgs=list(n))
}
rho_min_aic<- mapply(function(x,y) x[which.min(y)],rho, y=

↪→ apply(aic_rho,2,as.list))
for(h in 1:H){
dist[h]<- min(rho_min_aic[h]-from[h], to[h]-rho_min_aic[h

↪→ ])
if(rho_min_aic[h]==from[h]){
from[h]<- from[h]/update_factor
to[h]<- to[h]/update_factor

} else if(rho_min_aic[h]==to[h]){
from[h]<- from[h]*update_factor
to[h]<- to[h]*update_factor

} else{
from[h]<- rho_min_aic[h]-dist[h]
to[h]<- rho_min_aic[h]+dist[h]

}
rho[[h]]<- seq(from[h], to[h], len=len)

137



}

rhoI<- mapply(function(x,y) x*y, x=rho, y=I, SIMPLIFY = F)
cond<- mapply(function(x,y) ifelse(is.positive.definite(x+y

↪→ ), 1, 0), x=s_cov, y=rhoI)

while(sum(cond)!=H){ # if my starting interval has values
↪→ too small

from<- apply(from, function(x) x*2)
rho<- mapply(function(x,y,len1) list(seq(x, y, len=len1))

↪→ , x=from, y=to, MoreArgs = list(len))
rhoI<- mapply(function(x,y) x*y, x=rho, y=I, SIMPLIFY = F

↪→ )
cond<- mapply(function(x,y) ifelse(is.positive.definite(x

↪→ +y), 1, 0), x=s_cov, y=rhoI)
}

delta<- norm(as.matrix(rho_min_aic-old_rho_min_aic),"1")
old_rho_min_aic<- rho_min_aic
i<- i+1

}
opt_rho<- rho_min_aic
return(opt_rho)

}

# AIC_sep_lasso: given a list of sample covariance matrices
↪→ and setting an initial range of values for the
↪→ regularization parameters, finds the optimal values for
↪→ rho based on the AIC, by iteratively updating the
↪→ range of values to choose from and fitting the
↪→ reparametrization Joint Graphical Lasso

# input #
# s_cov: a list of H sample covariance matrices
# n: the sample size
# nu: the initial scalar added as S+nuI to ensure positive

↪→ definiteness
# len: the length of the range of values
# update_factor: a multiplicative/divisive factor to update

↪→ the range extrema
# left: the initial range minimum
# right: the initial range maximum

138



# it.max: the maximum number of iterations to compute
# output #
# opt_rho: a scalar of the optimal value for the

↪→ regularization parameter
AIC_guo<- function(s_cov, n, nu=0.05, len=10, update_factor

↪→ =10, left=5e-5, right=5e-3, it.max=10){
from<- left
to<- right
rho<- seq(from, to, len=len)
aic_rho<- numeric(len)
old_rho_min_aic<- 0
H<- length(s_cov)
delta<-Inf
it<-1
I<- list(diag(p),diag(p))
nuI<- mapply(function(x,y) x*y, x=list(nu,nu), y=I, SIMPLIFY

↪→ = F)
cond<- mapply(function(x,y) ifelse(is.positive.definite(x+y)

↪→ , 1, 0), x=s_cov, y=nuI)

while(sum(cond)!=H){ # if my starting interval has values
↪→ too small

nu<- apply(nu, function(x) x*2)
nuI<- mapply(function(x,y) x*y, x=nu, y=I, SIMPLIFY = F)
cond<- mapply(function(x,y) ifelse(is.positive.definite(x+y

↪→ ), 1, 0), x=s_cov, y=nuI)
}

while(delta>1e-12 & it<it.max){
for(r in 1:len){
guo_lasso<- guo_glasso(s_cov,rho=rho[r],nu=nu)
aic_rho[r]<- JOINT_AIC(guo_lasso$wi,s_cov,n)

}
rho_min_aic<- rho[which.min(aic_rho)]
dist<- min(rho_min_aic-from, to-rho_min_aic)
if(rho_min_aic==from){
from<- from/update_factor
to<- to/update_factor

} else if(rho_min_aic==to){
from<- from*update_factor
to<- to*update_factor

139



} else{
from<- rho_min_aic-dist
to<- rho_min_aic+dist

}
rho<- seq(from, to, len=len)
delta<- abs(rho_min_aic-old_rho_min_aic)
old_rho_min_aic<- rho_min_aic
# print(list(aic_rho, rho))
it<- it+1

}
opt_rho<- rho_min_aic
return(list(rho=opt_rho, nu=nu))

}

# AIC_sep_lasso: given a list of sample covariance matrices
↪→ and setting an initial range of values for the
↪→ regularization parameters, finds the optimal values for
↪→ rho based on the AIC, by iteratively updating the
↪→ range of values to choose from and fitting the Fused or
↪→ Group Joint Graphical Lasso

# input #
# data: a list of H nxp data matrices
# n: the sample size
# mode: the penalty for the JGL (accepted: "fused" or "group

↪→ ")
# len: the length of the range of values
# update_factor: a multiplicative/divisive factor to update

↪→ the range extrema
# left: the initial range minimum
# right: the initial range maximum
# it.max: the maximum number of iterations to compute
# output #
# opt_rho: a vector of the 2 optimal values for the

↪→ regularization parameters rho1 and rho2

AIC_jgl_fixed<- function(data, n, mode=c("fused","group"),len
↪→ =10, update_factor=10, left=5e-2, right=3, it.max=10){

opt_rho<- list()
H<- length(data)
it<-1
delta<- Inf

140



from<- rep(left,2)
to<- rep(right,2)
rho1<- seq(from[1], to[1], len=len)
rho2<- seq(from[2], to[2], len=len)
rho2_min_aic<- left
aic_rho<- numeric(len)
old_rho_min_aic<- 0
s_cov<- lapply(data, function(x,n1) cov(x)*(n1-1)/n1,n1=n)
# positive definiteness is given by step size

while(delta>1e-10 & it<it.max){
for(r1 in 1:len){

jgl<- JGL(data,penalty=mode,lambda1=rho1[r1],lambda2 =
↪→ rho2_min_aic,return.whole.theta=TRUE)

aic_rho[r1]<- JOINT_AIC(jgl$theta,s_cov,n)
}
rho1_min_aic<- rho1[which.min(aic_rho)]
for(r2 in 1:len){
jgl<- JGL(data,penalty=mode,lambda1=rho2[r2],lambda2 = rho1

↪→ _min_aic,return.whole.theta=TRUE)
aic_rho[r2]<- JOINT_AIC(jgl$theta,s_cov,n)

}
rho2_min_aic<- rho2[which.min(aic_rho)]
rho_min_aic<- c(rho1_min_aic,rho2_min_aic)
dist<- c(min(rho_min_aic[1]-from[1], to[1]- rho_min_aic[1]),

↪→ min(rho_min_aic[2]-from[2], to[2]-rho_min_aic[2]))
for(j in 1:2){

if(dist[j]==0){
if(rho_min_aic[j]==from[j]){
from[j]<- from[j]/update_factor
to[j]<- to[j]/update_factor

} else {
from[j]<- from[j]*update_factor
to[j]<- to[j]*update_factor

}
} else{
from[j]<- rho_min_aic[j]-dist[j]
to[j]<- rho_min_aic[j]+dist[j]

}
}
rho1<- seq(from[1],to[1],length.out = len)

141



rho2<- seq(from[2],to[2],length.out = len)
delta<- norm(as.matrix(rho_min_aic-old_rho_min_aic),"1")
old_rho_min_aic<- rho_min_aic
it<- it+1

}
opt_rho<- rho_min_aic
return(opt_rho)
}

AIC_jgl_grid<- function(data, n, mode=c("fused","group"),len
↪→ =10, update_factor=10, left=5e-2, right=3, it.max=10){

opt_rho<- list()
H<- length(data)
i<-1
delta<- Inf
from<- rep(left,2)
to<- rep(right,2)
rho1<- seq(from[1], to[1], len=len)
rho2<- seq(from[2], to[2], len=len)
aic_rho<- matrix(0,len,len)
old_rho_min_aic<- numeric(2)
s_cov<- lapply(data, function(x,n1) cov(x)*(n1-1)/n1,n1=n)
# positive definiteness is given by step size

while(delta>1e-10 & i<it.max){
for(r1 in 1:len){

for(r2 in 1:len){
jgl<- JGL(data,penalty=mode,lambda1=rho1[r1],lambda2 =

↪→ rho2[r2],return.whole.theta=TRUE)
aic_rho[r1,r2]<- JOINT_AIC(jgl$theta,s_cov,n)

}}
ind<- arrayInd(which.min(aic_rho),c(len,len))
rho_min_aic<- c(rho1[ind[1]], rho2[ind[2]])
dist<- c(min(rho_min_aic[1]-from[1], to[1]- rho_min_aic[1])

↪→ , min(rho_min_aic[2]-from[2], to[2]-rho_min_aic[2]))
for(j in 1:2){

if(dist[j]==0){
if(rho_min_aic[j]==from[j]){
from[j]<- from[j]/update_factor
to[j]<- to[j]/update_factor

} else {

142



from[j]<- from[j]*update_factor
to[j]<- to[j]*update_factor

}
} else{
from[j]<- rho_min_aic[j]-dist[j]
to[j]<- rho_min_aic[j]+dist[j]

}
}
rho1<- seq(from[1],to[1],length.out = len)
rho2<- seq(from[2],to[2],length.out = len)
delta<- norm(as.matrix(rho_min_aic-old_rho_min_aic),"1")
old_rho_min_aic<- rho_min_aic
i<- i+1

}
opt_rho<- rho_min_aic
return(opt_rho)

}

# rho_finder_sep_lasso: finds the regularization parameters
↪→ that reproduce a given density and evaluates the
↪→ corresponding separate graphical Lasso estimates

# input #
# sample_cov: a list of H sample covariance matrices
# true_dens: a list of H densities to reproduce
# left: a scalar determining the initial left extremum of the

↪→ range from which to choose the parameters from
# right: a scalar determining the initial right extremum of

↪→ the range from which to choose the parameters from
# s: the length of the range
# it.max: the maximum number of iterations after which to

↪→ stop the program
# output #
# rho: a list of the H chosen regularization parameters
# model: a list of H concentration matrices, fit using opt_

↪→ rho
rho_finder_sep_lasso<- function(sample_cov, true_dens, left,

↪→ right, s, it.max){
H<- length(sample_cov)
rho<- list(as.list(seq(left,right,len=s)),as.list(seq(left,

↪→ right,len=s)))
fit<- mapply(function(x,r) lapply(r, function(xx,rr) glasso(

143



↪→ xx, rho=rr)$wi, xx=x), sample_cov, rho, SIMPLIFY=FALSE
↪→ )

est_dens<- lapply(fit, function(x) lapply(x, dens))
distances<- mapply(function(true,est) lapply(est, function(

↪→ tt,ee) abs(tt-ee), tt=true), true_dens, est_dens,
↪→ SIMPLIFY = FALSE)

closest<- lapply(distances, which.min)

it<- 1
while(it < it.max){
for(h in 1:H){

if(distances[[h]][closest[[h]]]!=0){
if(closest[[h]]==1)
rho[[h]]<- as.list(seq(left*0.8, left*1.1, len=s))

else if(closest[[h]]==s)
rho[[h]]<- as.list(seq(right*0.9, right*1.2, len=s))

else
rho[[h]]<- as.list(seq(as.numeric(rho[[h]][closest[[h

↪→ ]]])*0.9, as.numeric(rho[[h]][closest[[h]]])*1.1,
↪→ len=s))

} else next
}
fit<- mapply(function(x,r) lapply(r, function(xx,rr) glasso

↪→ (xx, rho=rr)$wi, xx=x), sample_cov, rho, SIMPLIFY=
↪→ FALSE)

est_dens<- lapply(fit, function(x) lapply(x, dens))
distances<- mapply(function(true,est) lapply(est, function(

↪→ tt,ee) abs(tt-ee), tt=true), true_dens, est_dens,
↪→ SIMPLIFY = FALSE)

closest<- lapply(distances, which.min)
it<- it+1

}
opt_rho<- mapply(function(x,r) r[x], closest, rho)
opt_fit<- mapply(function(x,r) glasso(x,rho=r)$wi, sample_

↪→ cov, opt_rho, SIMPLIFY = F)
return(list(model=opt_fit, rho=opt_rho))

}

# revert_list: given a nested list, reverts the structure of
↪→ the list. It does so by attributing names to the object
↪→ of the sublist, using an initial letter and subsequent

144



↪→ numbering. The letter can be chosen by the user
# input #
# x: a nested list
# letter: the letter to attribute to the sub-elements of the

↪→ list, in order to revert its structure
# output #
# x with reverted nestedness and outer layer of list named
# example: if x is a list of s elements, each being a list of

↪→ H elements, the output is a list of H, each being a
↪→ list of s

revert_list<- function(x, letter="H"){
s<- length(x)
H<- length(x[[1]])
hnames<- sapply(1:H, function(x) paste(letter,x))
for(ss in 1:s) names(x[[ss]])<- hnames
temp <- lapply(x, ‘[‘, names(x[[1]])) ## Get sub-elements in

↪→ same order
return(apply(do.call(rbind, temp), 2, as.list))

}

# revert_list_with_names: reverts a list, when each element
↪→ of the list already has a name

# input #
# x: a nested list
# output #
# x with reverted nestedness
revert_list_with_names<- function(x){
xx <- lapply(x, ‘[‘, names(x[[1]]))
return(apply(do.call(rbind, xx), 2, as.list))

}

# rho_finder_guo: finds the regularization parameters that
↪→ reproduce a given density and evaluates the
↪→ corresponding reparametrization JGL estimates

# input #
# sample_cov: a list of H sample covariance matrices
# true_dens: a list of H densities to reproduce
# nu: the initial scalar to ensure positive definiteness
# left: a scalar determining the initial left extremum of the

↪→ range from which to choose the parameters from
# right: a scalar determining the initial right extremum of

145



↪→ the range from which to choose the parameters from
# s: the length of the range
# it.max: the maximum number of iterations after which to

↪→ stop the program
# output #
# rho: a list of the H chosen regularization parameters
# model: a list of H concentration matrices, fit using opt_

↪→ rho
rho_finder_guo<- function(sample_cov, true_dens, nu, left,

↪→ right, s, it.max){
rho<- as.list(seq(left,right,len=s))
fit<- revert_list(lapply(rho, function(x, r, nn) guo_glasso(

↪→ x, nu=nn, rho=r)$wi, x=sample_cov, nn=nu))
est_dens<- lapply(fit, function(x) lapply(x, dens))
distances<- mapply(function(true,est) lapply(est, function(

↪→ tt,ee) abs(tt-ee), tt=true), true_dens, est_dens,
↪→ SIMPLIFY = FALSE)

closest<- lapply(distances, which.min)
closest_one<- closest[[1]]
it<- 1
while(it < it.max){

if(distances[[1]][closest_one]!=0){
if(closest_one==1)
rho<- as.list(seq(left*0.7, left*1.1, len=s))

else if(closest_one==s)
rho<- as.list(seq(right*0.9, right*1.3, len=s))

else
rho<- as.list(seq(as.numeric(rho[[closest_one]])*0.9,

↪→ as.numeric(rho[[closest_one]])*1.1, len=s))
}

fit<- revert_list(lapply(rho, function(x, r, nn) guo_glasso
↪→ (x, nu=nn, rho=r)$wi, x=sample_cov, nn=nu))

est_dens<- lapply(fit, function(x) lapply(x, dens))
distances<- mapply(function(true,est) lapply(est, function(

↪→ tt,ee) abs(tt-ee), tt=true), true_dens, est_dens,
↪→ SIMPLIFY = FALSE)

closest<- lapply(distances, which.min)
closest_one<- closest[[1]]
it<- it+1
}

146



opt_rho<- rho[[closest_one]]
opt_fit<- guo_glasso(sample_cov,rho=opt_rho,nu=nu)$wi
return(list(model=opt_fit, rho=opt_rho))

}

# rho_finder_jgl: finds the regularization parameters that
↪→ reproduce a given density and evaluates the
↪→ corresponding fused/group JGL estimates

# input #
# data: a list of H nxp data matrices
# true_dens: a list of H densities to reproduce
# mode: the penalty for the JGL (accepted "fused" or "group")
# left: a scalar determining the initial left extremum of the

↪→ range from which to choose the parameters from
# right: a scalar determining the initial right extremum of

↪→ the range from which to choose the parameters from
# s: the length of the range
# it.max: the maximum number of iterations after which to

↪→ stop the program
# output #
# rho: a list of the H chosen regularization parameters
# model: a list of H concentration matrices, fit using opt_

↪→ rho
rho_finder_jgl<- function(data, true_dens, mode, left, right,s

↪→ , it.max){
rho<- revert_list(list(as.list(seq(left,right,len=s)),as.

↪→ list(seq(left,right,len=s))), letter="s")
fit<- revert_list(lapply(rho, function(x, r) JGL(x,penalty=

↪→ mode, lambda1= r[[1]], lambda2= r[[2]], return.whole.
↪→ theta = TRUE)$theta, x=data))

est_dens<- lapply(fit, function(x) lapply(x, dens))
distances<- mapply(function(true,est) lapply(est, function(

↪→ tt,ee) abs(tt-ee), tt=true), true_dens, est_dens,
↪→ SIMPLIFY = FALSE)

closest<- lapply(distances, which.min)

it<- 1
while(it < it.max){
rho<- revert_list(rho) # now it’s a 2 x s list
for(h in 1:2){

if(distances[[h]][closest[[h]]]!=0){

147



if(closest[[h]]==1)
rho[[h]]<- as.list(seq(left*0.8, left*1.1, len=s))

else if(closest[[h]]==s)
rho[[h]]<- as.list(seq(right*0.9, right*1.2, len=s))

else
rho[[h]]<- as.list(seq(as.numeric(rho[[h]][closest[[h

↪→ ]]])*0.9, as.numeric(rho[[h]][closest[[h]]])*
↪→ 1.1, len=s))

} else next
}
rho<- revert_list(rho, letter="s") # now it’s an s x 2

fit<- revert_list(lapply(rho, function(x, r) JGL(x, penalty
↪→ =mode, lambda1= r[[1]], lambda2= r[[2]], return.whole
↪→ .theta = TRUE)$theta, x=data))

est_dens<- lapply(fit, function(x) lapply(x, dens))
distances<- mapply(function(true,est) lapply(est, function(

↪→ tt,ee) abs(tt-ee), tt=true), true_dens, est_dens,
↪→ SIMPLIFY = FALSE)

closest<- lapply(distances, which.min)
it<- it+1

}
rho<- revert_list_with_names(rho)
opt_rho<- mapply(function(id,r) as.numeric(r[id]),id=closest

↪→ , r=rho)
opt_fit<- JGL(data, penalty=mode, lambda1= opt_rho[1],

↪→ lambda2= opt_rho[2], return.whole.theta = TRUE)$theta
return(list(model=opt_fit, rho=opt_rho))

}

# rho_finder_diff: finds the regularization parameters that
↪→ reproduce a given density for a graph of differences
↪→ and evaluates the corresponding estimates

# input #
# data: a list of H nxp data matrices
# true_dens_diff: a scalar, the density to reproduce
# mode: the fitting method (accepted "separate", "guo", "zhao

↪→ ")
# left: a scalar determining the initial left extremum of the

↪→ range from which to choose the parameters from
# right: a scalar determining the initial right extremum of

148



↪→ the range from which to choose the parameters from
# s: the length of the range
# nu: the initial scalar to ensure positive definiteness
# it.max: the maximum number of iterations after which to

↪→ stop the program
# output #
# rho: a list of the H chosen regularization parameters (H =

↪→ 1 if mode="zhao")
# model: a list of H concentration matrices, fit using opt_

↪→ rho (H = 1 if mode="zhao")
rho_finder_diff<- function(data, true_dens_diff, mode, left,

↪→ right, s, nu, it.max){
n<- nrow(data[[1]])
p<- ncol(data[[1]])
rho<- as.list(seq(left,right,len=s))
sample_cov<- lapply(data, function(x, nn) cov(x)*(nn-1)/nn,

↪→ nn=n)

if(mode=="separate"){
fit<- lapply(rho, function(x, r) lapply(x, function(xx,rr)

↪→ glasso(xx, rho=rr)$wi,rr=r), x=sample_cov)
est_dens<- lapply(fit, function(x) dens(x[[1]]-x[[2]]))

} else if(mode=="guo"){
fit<- lapply(rho, function(xx,rr,nn) guo_glasso(xx, rho=rr,

↪→ nu=nn)$wi,xx=sample_cov, nn=nu)
est_dens<- lapply(fit, function(x) dens(x[[1]]-x[[2]]))

} else if(mode=="zhao"){
fit<- lapply(rho, function(x,r) dpm(x[[1]],x[[2]], lambda=r

↪→ )$dpm, x=data)
est_dens<- lapply(fit, function(x,pp) dens(matrix(unlist(x

↪→ ), ncol=p, byrow=TRUE)), pp=p) # list of s
}

distances<- lapply(est_dens, function(tt,ee) abs(tt-ee), tt=
↪→ true_dens_diff)

closest<- which.min(unlist(distances))

it<- 1
while(it < it.max){

if(distances[[closest]]!=0){
if(closest==1)

149



rho<- as.list(seq(left*0.8, left*1.1, len=s))
else if(closest==s)
rho<- as.list(seq(right*0.9, right*1.2, len=s))

else
rho<- as.list(seq(rho[[closest]]*0.9, rho[[closest]]*

↪→ 1.1, len=s))
}

if(mode=="separate"){
fit<- lapply(rho, function(x, r) lapply(x, function(xx,rr

↪→ ) glasso(xx, rho=rr)$wi,rr=r), x=sample_cov)
est_dens<- lapply(fit, function(x) dens(x[[1]]-x[[2]]))

} else if(mode=="guo"){
fit<- lapply(rho, function(xx,rr,nn) guo_glasso(xx, rho=

↪→ rr, nu=nn)$wi,xx=sample_cov, nn=nu)
est_dens<- lapply(fit, function(x) dens(x[[1]]-x[[2]]))

} else if(mode=="zhao"){
fit<- lapply(rho, function(x,r) dpm(x[[1]],x[[2]], lambda

↪→ =r)$dpm, x=data)
est_dens<- lapply(fit, function(x,pp) dens(matrix(unlist(

↪→ x), ncol=p, byrow=TRUE)), pp=p) # list of s
}

distances<- lapply(est_dens, function(tt,ee) abs(tt-ee), tt
↪→ =true_dens_diff)

closest<- which.min(unlist(distances))
it<- it+1

}
opt_rho<- as.numeric(rho[[closest]])
opt_fit<- fit[[closest]]
return(list(model=opt_fit, rho=opt_rho))

}

# rho_finder_JGL_diff: finds the regularization parameters
↪→ that reproduce a given density for a graph of
↪→ differences and evaluates the corresponding JGL
↪→ estimates

# input #
# data: a list of H nxp data matrices
# true_dens_diff: a scalar, the density to reproduce
# mode: the penalty to be used (accepted "fused" and "group")

150



# left: a scalar determining the initial left extremum of the
↪→ range from which to choose the parameters from

# right: a scalar determining the initial right extremum of
↪→ the range from which to choose the parameters from

# s: the length of the range
# it.max: the maximum number of iterations after which to

↪→ stop the program
# output #
# rho: a list of the H chosen regularization parameters
# model: a list of H concentration matrices, fit using rho
rho_finder_JGL_diff<- function(data, true_dens_diff, mode,

↪→ left, right, s, it.max){
rho1<- as.list(seq(left,right,len=s))
rho2<- as.list(seq(left,right,len=s))
rho2_fixed<- rho2[[as.integer(s/2)]]
fit<- lapply(rho1, function(x,r,r2) JGL(x, penalty=mode,

↪→ lambda1=r, lambda2=r2, return.whole.theta = TRUE)$
↪→ theta, x=data, r2=rho2_fixed)

est_dens<- lapply(fit, function(x) dens(x[[1]]-x[[2]]))
distances1<- mapply(function(tt,ee) abs(tt-ee), tt=true_dens_

↪→ diff, ee=est_dens)
closest1<- which.min(distances1)
rho1_fixed<- as.numeric(rho1[[closest1]])
fit<- lapply(rho2, function(x,r,r1) JGL(x, penalty=mode,

↪→ lambda1=r1, lambda2=r, return.whole.theta = TRUE)$
↪→ theta, x=data, r1=rho1_fixed)

est_dens<- lapply(fit, function(x) dens(x[[1]]-x[[2]]))
distances2<- mapply(function(tt,ee) abs(tt-ee), tt=true_dens_

↪→ diff, ee=est_dens)
closest2<- which.min(distances2)
rho2_fixed<- as.numeric(rho2[[closest2]])

it<- 1
while(it < it.max){

if(distances1[closest1]!=0){
if(closest1==1)
rho1<- as.list(seq(as.numeric(rho1[[1]])*0.8,as.numeric

↪→ (rho1[[1]])*1.1,len=s))
else if(closest1==s)
rho1<- as.list(seq(as.numeric(rho1[[s]])*0.9,as.numeric

↪→ (rho1[[s]])*1.2,len=s))

151



else
rho1<- as.list(seq(as.numeric(rho1[[closest1]])*0.9,as.

↪→ numeric(rho1[[closest1]])*1.1,len=s))
}
if(distances2[closest2]!=0){

if(closest2==1)
rho2<- as.list(seq(as.numeric(rho2[[1]])*0.8,as.numeric

↪→ (rho2[[1]])*1.1,len=s))
else if(closest2==s)
rho2<- as.list(seq(as.numeric(rho2[[s]])*0.9,as.numeric

↪→ (rho2[[s]])*1.2,len=s))
else
rho2<- as.list(seq(as.numeric(rho2[[closest2]])*0.9,as.

↪→ numeric(rho2[[closest2]])*1.1,len=s))
}

rho2_fixed<- rho2[[as.integer(s/2)]]
fit<- lapply(rho1, function(x,r,r2) JGL(x, penalty=mode,

↪→ lambda1=r, lambda2=r2, return.whole.theta = TRUE)$
↪→ theta, x=data, r2=rho2_fixed)

est_dens<- lapply(fit, function(x) dens(x[[1]]-x[[2]]))
distances1<- mapply(function(tt,ee) abs(tt-ee), tt=true_

↪→ dens_diff, ee=est_dens)
closest1<- which.min(distances1)
rho1_fixed<- as.numeric(rho1[[closest1]])
fit<- lapply(rho2, function(x,r,r1) JGL(x, penalty=mode,

↪→ lambda1=r1, lambda2=r, return.whole.theta = TRUE)$
↪→ theta, x=data, r1=rho1_fixed)

est_dens<- lapply(fit, function(x) dens(x[[1]]-x[[2]]))
distances2<- mapply(function(tt,ee) abs(tt-ee), tt=true_

↪→ dens_diff, ee=est_dens)
closest2<- which.min(distances2)
rho2_fixed<- as.numeric(rho2[[closest2]])

it<- it+1
}
opt_rho<- c(rho1_fixed,rho2_fixed)
opt_fit<- JGL(data, penalty=mode, lambda1 = rho1_fixed,

↪→ lambda2 = rho2_fixed, return.whole.theta = TRUE)$theta
return(list(model=opt_fit, rho=opt_rho))

}

152


	Introduction
	Graphical Models
	Fundamentals
	Markov properties
	Gaussian Graphical Models
	Maximum Likelihood Estimate
	Graphical Lasso

	Multiple Graph Structure Learning
	Developments in the Early 2000s
	Separate Graph Structure Learning
	Joint Graph Structure Learning
	Reparametrization Joint Graphical Lasso
	Fused and Group Joint Graphical Lasso

	Differential Graph Structure Learning
	Direct Estimation of Graphs of Differences

	Comparison of methods

	Simulation Study Analysis
	Simulation Settings
	Graph Structures
	Random Graph
	Markov-chain graph
	Tree graph
	Scale-free graph

	Covariance Matrix Generation
	Group Distinction

	Data Generation
	Methods
	Model Selection criteria
	AIC selection algorithm

	Performance Evaluation
	Results
	Fixing the density

	Final Remarks

	Conclusions
	References
	Tables
	Model selection: CV, AIC, BIC
	Performance results: AIC selection
	Separate and Joint GSL
	Differential GSL

	Performance results: model selection with fixed densities
	Separate and Joint GSL
	Differential GSL


	Script

