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Abstract

Penalized factor analysis is an efficient technique that produces a factor loading

matrix with many zero elements thanks to the introduction of sparsity-inducing

penalties within the estimation process. Penalized models are generally less prone

to instability in the estimation process and are easier to interpret and generalize

than their unpenalized counterparts. However, sparse solutions and stable model

selection procedures are only possible if the employed penalty is singular (non-

differentiable) at the origin, which poses certain theoretical and computational

challenges.

This thesis proposes a general penalized likelihood-based estimation approach

for normal linear factor analysis models. The framework builds upon differentiable

approximations of non-differentiable penalties and a theoretically founded definition

of degrees of freedom. The employed optimization algorithm exploits second-order

analytical derivative information and is integrated with an automatic tuning

parameter selection procedure that finds the optimal value of the tuning without

resorting to grid-searches. Some theoretical aspects of the penalized estimator are

discussed. The proposed approach is evaluated in an extensive simulation study

and illustrated using a psychometric data set.

As a meaningful addition, the illustrated framework is extended to multiple-

group factor analysis models, which are commonly used in cross-national surveys.

The employed penalty simultaneously induces sparsity and cross-group equality

of loadings and intercepts. The automatic procedure proves particularly useful

in this challenging context, as it allows for the estimation of the multiple tuning

parameters that compose the penalty term in a fast, stable and efficient way.

The merits of the proposed technique are demonstrated through numerical and

empirical examples.

All the necessary routines are integrated into the R package GJRM to enhance

reproducible research and transparent dissemination of results.
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1
Introduction

Factor analysis has been extensively applied in the social, behavioral and natural

sciences as a tool for summarizing the interrelationships among the observed

variables into a smaller set of latent variables (factors). For a given set of observed

variables x1, . . . , xp one would like to find a set of latent factors f1, . . . , fr, fewer

in number than the observed variables (r < p), that contain essentially the same

information. Factor analysis can be conducted in an exploratory (EFA; Mulaik,

2009) or confirmatory (CFA; Jöreskog, 1979) way. EFA analyzes a set of correlated

observed variables without knowing in advance the number of factors that are

required to explain their interrelationships. CFA postulates certain relationships

among the observed and latent variables by assuming a pre-specified pattern for

the model parameters (factor loadings, structural parameters, unique variances).

It is used for testing a hypothesis arising from past evidence and theory or after a

preliminary EFA, so the number of latent variables and the observed variables that

are used to measure them is known in advance. An intermediate step between the

two that allows one to develop more realistic solutions while remaining in the CFA

framework is E/CFA (Brown, 2014), which consists of a CFA model applying the

same number of restrictions used in EFA (i.e., all factor loadings are estimated). In

the same spirit, in exploratory structural equation modeling (ESEM; Asparouhov

& Muthén, 2009) the CFA measurement model of a structural equation model

(SEM) is replaced with an EFA.

In data reduction techniques such as factor analysis, the interest is in obtaining

factor solutions that exhibit a “simple structure” (Thurstone, 1947), which are

21



22 1. Introduction

particularly easy to interpret. Under simple structure, each factor is defined by the

subset of the observed variables that load highly on the factor (referred to as pure

measures), and each observed variable preferably has a high loading on one factor

(referred to as primary loading) and close to zero loadings on the remaining factors

(referred to as cross-loadings). In EFA this is accomplished with orthogonal or

oblique factor rotations. However, rotations often do not generate loadings precisely

equal to zero, so users have to manually set to zero those loadings that are smaller

than a threshold (e.g., 0.30; Hair et al., 2010). Secondly, because each rotation is

based on a specific optimization criterion, different rotations often lead to different

factor structures which may all be far from “simple”. In CFA and E/CFA, one

usually resorts to modification indices (Chou & Huh, 2012) instead, but, if used

extensively, they can lead to higher risks of capitalization on chance (MacCallum

et al., 1992), and a lower probability of finding the best model specification (Chou

& Bentler, 1990).

Penalized factor analysis is an alternative technique that produces parsimonious

models using largely an automated procedure. The resulting models are less prone

to instability in the estimation process and are easier to interpret and generalize

than their unpenalized counterparts. It is based on the use of penalty functions

that allow a subset of the model parameters (typically the factor loadings) to be

automatically set to zero. The penalty is usually singular at the origin (Fan &

Li, 2001), so that it produces a sparse factor structure, that is, a loading matrix

where the number of non-zero entries is much smaller than the total number of its

elements. This definition does not impose any pattern on the non-zero entries, so a

simple structure is not enforced if it is not supported by the data. These sparsity-

inducing penalties can reduce model complexity, enhance the interpretability of

the results, and produce more stable parameter estimates. These benefits come,

however, with a loss in model fit (i.e., a non-zero bias), so it is crucial to balance

goodness of fit and sparsity appropriately. This can be achieved via the selection of

a tuning parameter, which controls the amount of sparsity enforced in the model.

A grid-search over a range of tuning values is generally conducted, and the optimal
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model picked on the basis of information criteria or cross-validation.

In the last few years, several works have applied penalized estimation and

regularization methods to models with latent variables. Choi, Oehlert and Zou

(2010) used lasso (“least absolute shrinkage and selection operator”) and adaptive

lasso penalties in EFA. Since the lasso leads to biased estimates and overly dense

factor structures, Hirose and Yamamoto (2014a, 2014b) employed non-convex

penalties, such as the scad (“smoothly clipped absolute deviation”) and the mcp

(“minimax concave penalty”). Trendafilov, Fontanella and Adachi (2017) penalized

a reparameterized loading matrix, whereas Jin, Moustaki and Yang-Wallentin

(2018) considered a quadratic approximation of the objective function. Regularized

methods have also been applied to structural equation models for which CFA is a

special case. Jacobucci, Grimm and McArdle (2016) developed the regularized SEM

(RegSEM) using a reticular action model formulation and coordinate descent or

general optimization routines. Huang, Chen and Weng (2017) and Huang (in press)

examined the same problem of penalizing a SEM but employed a modification of

the quasi-Newton algorithm.

Penalized estimation can be also extended to multiple-group analyses, such as

cross-national surveys or cross-cultural assessments in psychological or educational

testing. Recently, Huang (2018) developed a penalized approach for multiple-group

SEM, showing the benefits of using regularization techniques as alternatives to

factorial invariance testing procedures (Meredith, 1993) to ascertain the differences

and similarities of the parameter estimates across groups.

This thesis proposes a penalized-estimation strategy for single and multiple-

group factor analysis models based on a carefully structured trust-region algorithm.

The penalized optimization problem requires the availability of second-order ana-

lytical derivative information and thus twice-continuously differentiable functions.

Because a sparse solution can be only achieved with non-differentiable penalties,

we employ differentiable approximations of them. We also provide a theoretically

founded definition of degrees of freedom (required when performing model selec-

tion), discuss the asymptotic properties of the penalized estimator and present an



24 1. Introduction

efficient automatic procedure for the estimation of the tuning parameters, hence

eliminating the need for computationally intensive grid-searches as done in the

literature.

The thesis is organized as follows. In the next chapter, we review the classical

linear factor analysis model and illustrate the local approximation of several convex

and non-convex penalties, including lasso, adaptive lasso, scad and mcp. The

differentiable approximations of the penalties are motivated by the necessity of

having a differentiable objective function, which is an indispensable prerequisite

for the theoretical derivation of the degrees of freedom of the model and the

computationally and theoretically founded estimation framework illustrated in

Chapter 3. A separate section is devoted to the discussion of the asymptotic

properties of the penalized estimator. In Chapter 4, we numerically and empirically

evaluate the performances of the model and compare them to other penalized

methods present in the literature through an extensive simulation study and a

psychometric application. The extension of the model and the penalized estimation

approach to the case of multiple groups are delineated in Chapter 5. In this

challenging context, a suitable penalty function should simultaneously encourage

sparsity and invariance in the factor loadings and intercepts. We then describe how

the penalized estimation framework can be adapted in presence of the multiple

tuning parameters that compose the penalty term. Numerical and empirical

examples on the penalized multiple-group factor model are given in Chapter 6. The

proposed methodology is integrated into the freely available R package GJRM (Marra

& Radice, 2019b) to enhance reproducible research and transparent dissemination

of results. For an overview of the main functions and a practical illustration of the

analyses reported in this work, refer to Chapter 7. Finally, we present a general

discussion and suggest directions for future research in Chapter 8.

Additional details on several topics (e.g., the single and multiple-group factor

analysis model, the estimation framework, and the theoretical derivations and

descriptions) are covered in Appendix A through Appendix F.
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2
Sparsity in the normal linear

factor model

After a review of the normal linear factor analysis model (Section 2.1), we illustrate

several well-known convex and non-convex penalties commonly used to introduce

sparsity in a subset of the parameters (Section 2.2). These penalties, which include

the lasso, alasso, scad and mcp, all belong to the L1-type family and are thus

singular at the origin, which is problematic for developing a coherent computational

and theoretical inferential framework. To address this issue, we propose to replace

the non-differentiable penalties with their differentiable counterparts obtained via

local approximations (Section 2.3). An example clarifying the formulation of the

employed penalties is provided in Section 2.3.1.

2.1 The normal linear factor analysis model

The classical linear factor analysis model takes the form:

x = Λf + ε, (2.1)

where x is the p × 1 vector of observed variables, Λ is the p × r factor loading

matrix, f is the r × 1 vector of common factors, and ε is the p × 1 vector of

unique factors. It is assumed that f ∼ N (0,Φ), ε ∼ N (0,Ψ) with Ψ usually a

diagonal matrix (i.e., the observed variables are conditionally independent), and f

25
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is uncorrelated with ε. The factor loadings quantify the relationship between each

observed variable and latent variable; in other words, how much each observed

variable contributes to measuring the factor. The unique variances define the

portions of variance in the observed variables not accounted for by the common

factors. From the above assumptions, it follows that x ∼ N (0,Σ), where the

model-implied covariance matrix is Σ = ΛΦΛT + Ψ.

The common factors in expression (2.1) are allowed to covary, since there

is in general no prior reason to expect substantively interesting latent variables

to be uncorrelated (Bartholomew, Knott & Moustaki, 2011). In the social and

behavioral sciences, latent factors are often intercorrelated. Typical examples are

questionnaires whose latent structures entail several interrelated dimensions of

broader constructs, mental disorders manifested by various clusters of intercon-

nected symptoms or delinquency behaviors defined by various intertwined acts

of misconduct. The estimation of the factor covariances also provides significant

information, such as the existence of redundant factors or a potential higher-order

structure (Brown, 2014). Lastly, even if the common factors are uncorrelated

in the population, due to the practical necessity of sampling individuals from a

population, it has been argued that it is always reasonable for common factors in

a model to be correlated (McArdle, 2007).

It is possible to fix certain elements in Λ,Φ and Ψ to zero based on a data

generating hypothesis. The remaining m ≤ min
(
N, p(p+1)

2

)
elements, with N

the total sample size, constitute the free parameters, and are collected in the

vector θ = (vec(Λ)T , diag(Ψ)T , vech(Φ)T )T , where the vec(·) operator converts the

enclosed matrix into a vector by stacking its columns, diag(·) extracts the diagonal

elements of the enclosed square matrix, and vech(·) vectorizes the lower-diagonal

part of the enclosed symmetric matrix. As it is common practice in these cases, we

assume that the observed variables are measured as deviations from their means,

so that the parameters only strive to reproduce the covariance matrix.

The common factors are latent variables. As such, they are unobserved and

thus have no defined metrics, which must be set by the researcher. This is usually
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done in one of two ways. In the first method, the variance of the latent variable

is fixed to a specific value, usually 1.0, which generates a standardized solution

if the observed variables are standardized. This method is particularly useful in

the following circumstances: as a parallel to traditional exploratory factor analysis;

when the observed variables have been assessed on an arbitrary metric; and when

the standardized solution is of more interest. In the second way, the researcher fixes

the metric of the latent variable to be the same as one of its observed variables. The

observed variable selected to pass its metric on to the factor is often referred to as a

“marker” or “reference” variable. This model leads to an unstandardized solution,

which is especially useful in tests of measurement invariance across groups and in

evaluations of scale reliability. A third procedure, known as effects-coding, specifies

the scale of a latent variable by constraining the corresponding set of loadings to

average 1.0. However, it is not ideal in the presence of many cross-loadings among

the observed variables (see Little, Slegers & Card, 2006 for details).

The way in which the scale of the latent variable is identified has no impact

on overall goodness of fit (i.e., the above solutions produce identical goodness of

fit indices), as each scale setting method is simply an alternative but equivalent

parameterization of the same model. However, the standard errors are not invariant

to the method used to define the scale of the latent variable. In other words, the

magnitude of the standard error and the corresponding conclusions regarding the

statistical significance of freely estimated parameters might vary based on the

selection of the marker variable, or when the scale of the latent variable is defined

by fixing its variance to 1.0 (Bollen, 1989).

In this work, we opted for the first approach and fixed the factor variances to

unity, as it is common practice in single-group analyses.

The normal linear factor model is not identified because there is an infin-

ite number of matrices (Λ,Φ,Ψ) that will reproduce the covariance structure

Σ = ΛΦΛT + Ψ. Equation (2.1) is still satisfied if we replace f by Mf , Λ by

ΛM−1 and Φ by MΦMT , where M is any nonsingular orthogonal matrix of

order r corresponding to a nonsingular transformation of the factors. This means



28 2. Sparsity in the normal linear factor model

that the parameters in Λ and Φ are not independent of one another, and to make

the estimates of Λ and Φ unique, we must impose (at least) r2 constraints on the

elements of Φ and Λ, since M has r2 elements.

When we fix the scales of the latent variables, r constraints are imposed on

either Φ or Λ. The remaining r(r − 1) constraints are imposed by requiring that

certain elements of Λ and Φ have values specified in advance. The most common

method requires that at least r−1 elements of Λ, in each column, are zero. Jöreskog

(1979) showed that in case of an oblique solution, the following set of conditions is

sufficient for uniqueness of Λ:

1. Let Φ be a symmetric positive definite matrix with diag(Φ) = I;

2. Let Λ have at least r − 1 fixed zeros in each column;

3. Let Λj have rank r − 1, where Λj, j = 1, . . . , r is the submatrix of Λ,

consisting of the rows of Λ which have fixed zero elements in the jth column.

The fixed unities in the diagonal of Φ set the unit of measurement of the factors. As

previously mentioned, an alternative way of doing this is to fix one non-zero value

in each column of Λ instead. Conditions 1–2 are therefore equivalent to requiring

that Λ has at least r− 1 fixed zeros in each column and one fixed non-zero value in

each column, the latter values being in different rows. In this work, we impose for

the normal linear factor model the set of restrictions illustrated by conditions 1–3.

It is important to notice that these conditions solve the “rotational uniqueness

problem”, but do not guarantee that the factor model is identified (Bollen &

Jöreskog, 1985). The so-called “global identification” problem has only been solved

for simple models, e.g., the congeneric model (Jöreskog, 1971), and no general

necessary and sufficient rules exist for more complex models, like the ones with

cross-loadings for all observed variables. In practice, software packages perform

several empirical checks to test for “local identification”. A more detailed treatment

of these issues is provided in Bollen (1989) and Millsap (2012).

For a random sample of deviation scores xxxN = {x1, . . . ,xN} of size N from a
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multivariate normal distribution, the likelihood function is

L(θ) =
N∏
α=1

f(xα|θ) =
N∏
α=1

1

(2π)
p
2 |Σ| 12

exp

{
−1

2
xTαΣ−1xα

}

= (2π)−
N
2
p|Σ|−N2 exp

{
−1

2

N∑
α=1

xTαΣ−1xα

}
.

The log-likelihood, which is defined as the logarithm of L(θ), takes the form (see

Appendix A.1):

`(θ) := logL(θ) = −N
2

{
log|Σ|+ tr(SΣ−1) + p log(2π)

}
, (2.2)

where S is the sample covariance matrix. The maximum likelihood estimator

(MLE) is then defined as

θ̂
MLE

= arg max
θ

`(θ).

As noticed by Jöreskog (1967), the maximum likelihood estimator resulting from

the maximization of the log-likelihood is equivalent to the one obtained by the

minimization of the fit function

F = log|Σ|+ tr(SΣ−1)− log|S| − p. (2.3)

After discarding the numerical constants in (2.2) and (2.3), the expressions of the

log-likelihood and the fit function differ by the multiplicative factor −N
2
, which

does not impact the optimization process and only produces a different value of

the objective function.

From standard asymptotic theory (Anderson, 1989; Yuan & Bentler, 1997),

θ̂
MLE is asymptotically consistent and efficient, and follows a multivariate normal

distribution with covariance matrix obtained from the inverse of the expected

Fisher information matrix J ,

√
N(θ̂

MLE
− θ0) −→ N

(
0,
[

1

N
J (θ0)

]−1
)
,
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where θ0 is the true parameter vector.

Let θq denote the qth parameter from the m-dimensional vector θ. The propos-

itions below enunciate the general expressions of the gradient of the log-likelihood

g(θ) :=
∂`(θ)

∂θ
, the Hessian matrix of the second-order derivatives H(θ) :=

∂2`(θ)

∂θ∂θT
,

and the expected Fisher information J (θ) := E[g(θ)g(θ)T ] = −E [H(θ)] for the

normal linear factor model.

Proposition 2.1 (Gradient of the normal linear factor model). The gradient of

the log-likelihood of the normal linear factor analysis model in equation (2.1) with

respect to an arbitrary scalar variable θq takes the form:

[g(θ)]q =
∂`(θ)

∂θq
= −N

2
tr
{

Σ−1(Σ− S)Σ−1∂Σ
∂θq

}
. (2.4)

Proof. See Appendix A.2.1.1. �

Proposition 2.2 (Hessian of the normal linear factor model). The Hessian matrix

of the normal linear factor analysis model in equation (2.1) with respect to two

arbitrary scalar variables θq and θq′ takes the form:

[H(θ)]qq′ =
∂2`(θ)

∂θq∂θq′

= −N
2

{
tr
(

Σ−1∂Σ
∂θq

Σ−1 ∂Σ
∂θq′

)

+ tr
[
Σ−1(Σ− S)Σ−1

(
∂2Σ
∂θq∂θq′

− 2
∂Σ
∂θq

Σ−1 ∂Σ
∂θq′

)]}
. (2.5)

Proof. See Appendix A.2.2.1. �

Proposition 2.3 (Expected Fisher information of the normal linear factor model).

The expected Fisher information matrix of the normal linear factor analysis model

in equation (2.1) with respect to two arbitrary scalar variables θq and θq′ takes the

form:

[J (θ)]qq′ = −E
[
∂2`(θ)

∂θq∂θq′

]
=
N

2
tr
(

Σ−1∂Σ
∂θq

Σ−1 ∂Σ
∂θq′

)
. (2.6)
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Proof. The Fisher information is derived by noticing that E[S] = Σ as N →∞,

and thus neglecting the second term in (2.5). �

The specific forms of these derivatives with respect to each parameter matrix are

given in propositions A.1-A.3 in Appendix A.2.

Since we are interested in introducing sparsity in the factor loading matrix,

the estimation of the factor model will involve penalized-likelihood procedures.

The next sections illustrate how such sparsity-inducing penalty functions can be

specified (Section 2.2) and suitably approximated (Section 2.3).

2.2 Sparsity-inducing penalties

Given that the primary interest of factor analysis is a sparse loading matrix, penaliz-

ation is imposed on the factor loading matrix Λ. Let us write the parameter vector

as θ = (θ1, . . . , θq? , θq?+1, . . . , θm)T , where the sub-vector (θ1, . . . , θq?)
T collects the

penalized parameters (i.e., the factor loadings), whereas (θq?+1, . . . , θm)T the un-

penalized parameters (i.e., the free elements in Ψ and Φ). Because of the presence

of fixed elements in Λ (Section 2.1), the number of penalized factor loadings q?

is smaller than p× r. Define the diagonal matrix Rq = diag(0, 0, . . . , 0, 1, 0, . . . , 0)

where the 1 on the (q, q)th entry of the matrix corresponds to the qth parameter in

θ, for q = 1, . . . , q?, and Rq = Om×m for q = q? + 1, . . . ,m.

Let Pη(θ) be a penalty function on the parameter vector θ, where η ∈ [0,∞)

is a positive tuning parameter which determines the amount of shrinkage or

penalization. The overall penalty is then given by the sum of the penalty terms

for each parameter, that is,

Pη(θ) =
m∑
q=1

Pη,q(||Rqθ||1),

where ||Rqθ||1 = |θq| if q = 1, . . . , q?, and zero otherwise. One of the best-known

penalties is the lasso (Tibshirani, 1996), which is defined as

PLη (θ) = η

q?∑
q=1

|θq|. (2.7)
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The potential problem with this penalty is that it penalizes all parameters equally,

and thus can either select an overly complicated model or over-shrink large para-

meters. An ideal penalty should induce weak shrinkage on large effects and strong

shrinkage on irrelevant effects (Tang, Shen, Zhang & Yi, 2017). To address this

issue, alternative penalties have been developed, the most common being the

adaptive lasso (alasso; Zou, 2006), scad (Fan & Li, 2001) and mcp (Zhang, 2010).

These penalties give different amounts of shrinkage to each parameter, so each

factor loading is weighted differently. Because of this, they lead to sparser solutions

and enjoy the so-called “oracle” property, that is, their estimator works as if the

true non-zero parameters were known beforehand. The alasso is defined as

PAη (θ) = η

q?∑
q=1

wq|θq| = η

q?∑
q=1

|θq|
|θ̂q|a

for a > 0. (2.8)

This penalty uses an adaptive weighting scheme based on a set of available weights

wq =
1

|θ̂q|a
(q = 1, . . . , q?), which are often taken to be the maximum likelihood

estimates, that is, wq =
1

|θ̂MLE
q |a

. The higher the exponent a, the more influential

the weights, and in turn, the larger the penalization.

Similarly, the scad and mcp use a varying weighting scheme. The scad is defined

as

PSη (θ) =

q?∑
q=1

{
η|θq|1(0 ≤ |θq| ≤ η)

−
[
θ2
q + η2 − 2ηa|θq|

2(a− 1)

]
1(η < |θq| ≤ aη)

+
η2(a+ 1)

2
1(|θq| > aη)

}
for a > 2, (2.9)

and the mcp as

PMη (θ) =

q?∑
q=1

{(
η|θq| −

θ2
q

2a

)
1(0 ≤ |θ2

q | ≤ aη)

+
η2a

2
1(|θq| > aη)

}
for a > 1, (2.10)
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where a is an additional tuning parameter. The superscripts L,A, S,M in equations

(2.7)-(2.10) refer to the lasso, alasso, scad and mcp, respectively. The derivations

of expressions (2.7)-(2.10) can be found in Appendix B.1.

While the lasso and alasso are convex penalties, the scad and mcp are non-

convex and can, therefore, make the optimization problem non-convex. In fact, a

challenge with non-convex penalties is to find a good balance between sparsity and

stability. To this end, both scad and mcp have an extra tuning parameter (a) which

regulates their concavity so that, when it exceeds a threshold, the optimization

problem becomes convex.

In the expressions of the penalties PAη (θ),PSη (θ),PMη (θ), we did not stress

their dependence on the additional tuning parameter a because this quantity is

implicitly assumed to be fixed, for instance, it has been determined from prior

trials. Common values of the shape parameter of the scad range between 2.5 and

4.5 (Huang et al., 2017), with 3.7 being the conventional level employed in the

literature and suggested by Fan and Li (2001). For the mcp, values of a between

1.5 and 3.5 are often considered (Huang, 2018), whereas the exponent of the alasso

does not typically exceed 2 (Zou, 2006).

Simplified examples of the shapes of the illustrated penalties are shown in

Figure 2.1. For all penalties η = 1, whereas the shape parameter for the scad is

a = 3.7, for the mcp is a = 3, and the exponent of the alasso is a = 1. All of the

four penalties belong to the L1-type family and are singular at θ = 0. Contrarily

to the lasso and alasso, the depicted scad and mcp penalties are concave functions.

Figure 2.2 represents the surface plot of the alasso penalty by varying the values

of the parameter θ and the estimate θ̂ appearing in the adaptive weight (equation

(2.8)). For fixed θ, the penalty has a V-shape and increases as the value of θ̂ gets

larger, with the magnitude of the penalization being inversely related to the size of

θ. As a consequence, the amount of penalization on θ̂ increases as θ approaches

zero.

Figure 2.3 illustrates the shapes of the alasso, scad and mcp by varying the

value of their additional tuning parameter a. The exponent in the expression of
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Figure 2.2: Three-dimensional surface plot of the alasso penalty (η = 1, a = 1) by
varying the parameter θ and the estimate θ̂.
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the alasso controls the importance given to the adaptive weights. As a gets higher,

the magnitude of the penalization progressively increases for small values of θ̂, and

decreases for large values. The shapes of the scad and mcp are similar, with their

degree of concavity decreasing as the shape parameter a increases. When a→∞

(see for instance, a = 50), the two penalties converge to the lasso.

The above penalties help to obtain sparse solutions, however, they are non-

differentiable at the origin, which is problematic for developing a coherent computa-

tional and theoretical inferential framework. The next section addresses this issue

by replacing the non-differentiable penalties with their differentiable counterparts

obtained via local approximations.
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Figure 2.3: The alasso, scad and mcp penalties by varying the value of their
additional tuning parameter a.
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2.3 Locally approximated penalties

Ulbricht (2010) pointed out that a good penalty function should satisfy the following

properties, for q = 1, . . . ,m:

(P.1) Pη,q : R+ → R+ and Pη,q(0) = 0;

(P.2) Pη,q(||Rqθ||1) continuous and strictly monotone in ||Rqθ||1;

(P.3) Pη,q(||Rqθ||1) continuously differentiable ∀ ||Rqθ||1 6= 0, such that

∂Pη,q(||Rqθ||1)

∂||Rqθ||1
> 0.

However, the lasso, alasso, scad and mcp are all singular at θq = 0. To address

this issue, in the same spirit as for instance Filippou, Marra and Radice (2017), we

locally approximate the non-differentiable L1-norms in (2.7)-(2.10) at their critical

point ||Rqθ||1 = 0 and combine this with ideas by Fan and Li (2001) and Ulbricht

(2010). Let ||Rqθ||1 = ||ξq||1, and assume that an approximation K1(ξq,A) of the

L1-norm ||·||1 exists such that

||ξq||1 = K1(ξq,B) = lim
A→B
K1(ξq,A),

where A represents a set of possible tuning parameters, B is the set of boundary

values for ||ξq||1 and K1(ξq,A) is at least twice differentiable. As in Koch (1996),

we use ||ξq||1 = K1(ξq,A) = (ξTq ξq + c̄)
1
2 , with c̄ a small positive real number

(e.g., 10−8) which controls the closeness between the approximation and the exact

function. For all ξq for which the derivative
∂||ξq||1
∂ξq

is defined, we assume that

∂||ξq||1
∂ξq

=
∂K1(ξq,B)

∂ξq
= lim
A→B
D1(ξq,A),

where D1(ξq,A) =
∂K1(ξq,A)

∂ξq
, and that D1(0,A) = 0. Then, the first derivative

D1(ξq,A) = (ξTq ξq + c̄)−
1
2ξq is a continuous approximation of the first-order deriv-

ative of the L1 norm. Notice that K1(ξq,A) deviates only slightly from K1(ξq,B):
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when ξq = 0 the deviation is
√
c̄, whereas for any other value of value of ξq the

deviation is less than c̄.

Penalty PTη (θ) for T = {L,A, S,M} can be locally approximated by a quadratic

function as follows. Suppose that θ̃ is an initial value close to the true value of θ.

Then, we approximate PTη (θ) by a Taylor expansion of order one at θ̃, that is,

PTη (θ) ≈ PTη (θ̃) +∇θ̃P
T
η (θ̃)T (θ − θ̃), (2.11)

where ∇θ̃PTη (θ̃) =
∂PTη (θ̃)

∂θ̃
. By applying the chain rule, the penalty PTη (θ) can

be written as

PTη (θ) ≈ PTη (θ̃) +∇θ̃P
T
η (θ̃)T (θ − θ̃)

≈ PTη (θ̃) +
∂PTη (θ̃)T

∂θ̃
(θ − θ̃)

≈ PTη (θ̃) +
m∑
q=1

[
∂PTη,q(||Rqθ̃||1)

∂θ̃

]T
(θ − θ̃)

≈ PTη (θ̃) +
m∑
q=1

[
∂PTη,q(||Rqθ̃||1)

∂||Rqθ̃||1

]T
·

[
∂||Rqθ̃||1
∂Rqθ̃

]T
·

[
∂Rqθ̃

∂θ̃

]T
(θ − θ̃).

(2.12)

Let us examine the quantities that make up each addend of expression (2.12). The

first factor represents the derivative of PTη,q(θ̃) with respect to the L1 norm of its

argument Rqθ̃. Because the expression depends on the specific form of the penalty

T , it is separately computed for each of the examined penalties in Appendix

B.2. The second factor denotes the derivative of the L1-norm with respect to its

argument, and is equal for all penalties to

∂||Rqθ̃||1
∂Rqθ̃

=
∂

∂Rqθ̃

{
m∑
s=1

[
(Rsθ̃)TRsθ̃

] 1
2

}
=

∂

∂Rqθ̃

[
(Rqθ̃)TRqθ̃

] 1
2

=
1

2

[
(Rqθ̃)TRqθ̃

]− 1
2 · 2Rqθ̃ = [(Rqθ̃)TRqθ̃]−

1
2Rqθ̃

≈ 1√
(Rqθ̃)TRqθ̃ + c̄

Rqθ̃,
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where the denominator is approximated by
√

(Rqθ̃)TRqθ̃ + c̄ to allow for the case

of θ̃ = 0. Finally, the third factor is simply ∂Rqθ̃

∂θ̃
= Rq.

By combining the local approximation (Rqθ) ≈ (Rqθ̃) (Fan & Li, 2001) with

the following approximation introduced in Ulbricht (2010):

(Rqθ)TRq(θ − θ̃) = (Rqθ)TRqθ − (Rqθ)TRqθ̃

=
1

2

{
(Rqθ)TRqθ − 2(Rqθ)TRqθ̃ + (Rqθ̃)TRqθ̃

}
+

1

2

{
(Rqθ)TRqθ − (Rqθ̃)TRqθ̃

}
=

1

2

{
(θ − θ̃)TRT

qRq(θ − θ̃)
}

+
1

2

{
(Rqθ)TRqθ − (Rqθ̃)TRqθ̃

}
≈ 1

2

(
θTRT

qRqθ − θ̃
T
RT
qRqθ̃

)
,

we have that

[
∂PTη,q(||Rqθ̃||1)

∂||Rqθ̃||1

]T
·

[
∂||Rqθ̃||1
∂Rqθ̃

]T
·

[
∂Rqθ̃

∂θ̃

]T
(θ − θ̃)

=
∂PTη,q(||Rqθ̃||1)

∂||Rqθ̃||1
·

[
∂||Rqθ̃||1
∂Rqθ̃

]T
· ∂Rqθ̃

∂θ̃
(θ − θ̃)

=
∂PTη,q(||Rqθ̃||1)

∂||Rqθ̃||1
· 1√

(Rqθ̃)TRqθ̃ + c̄
(Rqθ̃)T ·Rq(θ − θ̃)

≈
∂PTη,q(||Rqθ̃||1)

∂||Rqθ̃||1
· 1√

(Rqθ̃)TRqθ̃ + c̄

1

2

(
θTRT

qRqθ − θ̃
T
RT
qRqθ̃

)

=
1

2
θT

∂PTη,q(||Rqθ̃||1)

∂||Rqθ̃||1
1√

(Rqθ̃)TRqθ̃ + c̄
RT
qRq

θ
−1

2
θ̃
T

∂PTη,q(||Rqθ̃||1)

∂||Rqθ̃||1
1√

(Rqθ̃)TRqθ̃ + c̄
RT
qRq

 θ̃
=

1

2

[
θTSTη,q(θ̃)θ − θ̃TSTη,q(θ̃)θ̃

]
,

where STη,q(θ̃) =
∂PTη,q(||Rqθ̃||1)

∂||Rqθ̃||1
1√

(Rqθ̃)TRqθ̃ + c̄
RT
qRq.
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Let us denote STη (θ̃) =
∑m

q=1 STη,q(θ̃). Then, equation (2.12) can be rewritten as

PTη (θ) ≈ PTη (θ̃) +
m∑
q=1

[
∂PTη,q(||Rqθ̃||1)

∂||Rqθ̃||1

]T [
∂||Rqθ̃||1
∂Rqθ̃

]T [
∂Rqθ̃

∂θ̃

]T
(θ − θ̃)

= PTη (θ̃) +
m∑
q=1

1

2

[
θTSTη,q(θ̃)θ − θ̃TSTη,q(θ̃)θ̃

]

= PTη (θ̃) +
1

2
θTSTη (θ̃)θ − 1

2
θ̃
TSTη (θ̃)θ̃.

We can ignore the constant terms that do not depend on θ, namely, PTη (θ̃) and
1

2
θ̃
TSTη (θ̃)θ̃. Then, the differentiable local approximation of the penalty PTη (θ) is

PTη (θ) ≈ 1

2
θT


m∑
q=1

∂PTη,q(||Rqθ̃||1)

∂||Rqθ̃||1
1√

(Rqθ̃)TRqθ̃ + c̄
RT
qRq

θ
=

1

2
θTSTη (θ̃)θ.

The penalty matrix STη (θ̃) is an m×m block diagonal matrix of the form:

STη (θ̃) =

 MT
η (θ̃) O

O O

 . (2.13)

The first block is composed of the q?× q? diagonal matrix MT
η (θ̃) and corresponds

to the parameters to penalize, whereas the second block is an (m− q?)-dimensional

null matrix relative to the parameters unaffected by the penalization. The matrix

MT
η (θ̃) is in turn a diagonal matrix whose entries

mTq =
∂PTη,q(||Rqθ̃||1)

∂||Rqθ̃||1
1√

(Rqθ̃)TRqθ̃ + c̄
for q = 1, . . . , q?,

determine the amount of shrinkage on θ̃q controlled by the tuning η and required by

penalty T . Their expressions for the lasso, alasso, scad and mcp are (see Appendix

B.2)
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[
ML

η (θ̃)
]
qq

= mL
q =

η√
θ̃2
q + c̄

, (2.14)

[
MA

η (θ̃)
]
qq

= mA
q =

η

|θ̂q|a
√
θ̃2
q + c̄

, (2.15)

[
MS

η (θ̃)
]
qq

= mS
q =

η

[
1(|θ̃q| ≤ η) +

max(aη − |θ̃q|, 0)

(a− 1)η
1(|θ̃q| > η)

]
√
θ̃2
q + c̄

, (2.16)

[
MM

η (θ̃)
]
qq

= mM
q =

(
η − |θ̃q|

a

)
1(|θ̃q| < ηa)√

θ̃2
q + c̄

. (2.17)

Figure 2.4 shows a graphical representation of the examined penalties and their

first derivatives. On the left-hand side we have the penalty functions and their local

approximations, whereas the right-hand side reports the original discontinuous

derivatives and the continuous derivatives resulting from the local approximation

(c̄ = 10−8). The plots for the alasso are not presented as the shape of this penalty

is proportional to the one of the lasso.

Figures 2.5 and 2.6 extend the bi-dimensional plots to three-dimensional surfaces.

On the left-hand side of each figure we find the true penalty functions (or their first

derivatives), whereas their local approximations are depicted on the right-hand

side.

Although one could employ linear rather than quadratic approximations of the

penalties (see e.g., Jin et al., 2018 for a local linear approximation of the scad

in EFA), the presented method performs well in our studies, hence we keep this

possible modification as a future task to explore.
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(a) Lasso, η = 0.6.
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(b) Scad, η = 0.6, a = 3.7.
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(c) Mcp, η = 0.6, a = 3.
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Figure 2.4: The true penalty functions (left-hand side) and their first derivatives
(right-hand side) with the local approximations superimposed (c̄ = 10−8).
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Figure 2.5: The lasso, scad and mcp penalty functions (left-hand side) and their
local approximations (right-hand side; c̄ = 10−8). The tuning parameter η = 0.6;
for the scad a = 3.7 and for the mcp a = 3.
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Figure 2.6: The first derivatives of the lasso, scad and mcp penalties (left-hand side)
and their local approximations (right-hand side; c̄ = 10−8). The tuning parameter
η = 0.6, for the scad a = 3.7 and for the mcp a = 3.
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Model modifications

When a global goodness-of-fit test statistic or local-fit indices (Bollen & Long,

1993) indicate lack of fit, modification indices are used to suggest ways for model

improvement (e.g., by estimating the loadings erroneously fixed to zero). Modi-

fication indices are univariate statistics for each fixed parameter quantifying the

minimum decrease in the overall chi-square value that would be achieved if that

parameter was freely estimated. However, since model modifications are largely

guided by the results obtained from fitting an initial model to a particular sample,

they tend to capitalize on chance and yield inflated type I errors.

The presented penalized-likelihood approach bypasses the need for model

modifications by automatically recovering an optimally sparse factor structure.

2.3.1 An example

For notational clarity, we illustrate the aforementioned penalties in a simple

example. Consider the following normal linear factor analysis model with p = 6

observed variables and r = 2 common factors:

x = Λf + ε,

where it is assumed that f ∼ N (0,Φ), ε ∼ N (0,Ψ) with Ψ a diagonal matrix,

and f is uncorrelated with ε. The population parameters are as follows:

Λ =



λ11 0

λ21 λ22

λ31 λ32

0 λ42

λ51 λ52

λ61 λ62


Ψ =



ψ11 0 0 0 0 0

ψ22 0 0 0 0

ψ33 0 0 0

ψ44 0 0

ψ55 0

ψ66


Φ =

 1 φ12

1

 ,

where the elements in italic and underlined were fixed for scale setting and identi-

fication purposes, as illustrated in Section 2.1. The parameter vector θ collecting
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the free elements of the parameter matrices can be written as

θ = (vec(Λ)T , diag(Ψ)T , vech(Φ)T )T

= (λ11, λ21, λ31, λ51, λ61, λ22, λ32, λ42, λ52, λ62, ψ11, ψ22, ψ33, ψ44, ψ55, ψ66, φ12)T .

Conveniently, the parameter vector can be rewritten as

θ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10︸ ︷︷ ︸
Factor loadings

, θ11, θ12, θ13, θ14, θ15, θ16, θ17)T ,

where the sub-vector (θ1, . . . , θ10)T collects the parameters that are being penalized

(i.e., the factor loadings), whereas (θ11, . . . , θ17)T the unpenalized parameters (i.e.,

the free elements in Ψ and Φ). Let q? = 10 be the number of penalized parameters,

and m = 17 the total number of parameters. Define

Rq =

1 q 17



1 0 . . . 0 . . . . . . 0

... . . . ... ...

q 0 . . . 1 . . . . . . 0

... ... . . . ...

... ... . . . ...

17 0 . . . 0 . . . . . . 0

for q = 1, . . . , 10,

and Rq = O17×17 for q = 11, . . . , 17. Then, the sparsity-inducing penalty is

expressed as

Pη(θ) =
17∑
q=1

Pη,q(||Rqθ||1),

where ||Rqθ||1 = |θq| for q = 1, . . . , 10, and 0 for q = 11, . . . , 17.
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3
Penalized estimation framework

and theoretical aspects

In Section 3.1, we illustrate how simultaneous estimation of the model parameters

is achieved using a carefully structured trust-region algorithm. We then describe

two possible approaches for the determination of the tuning parameter of the

penalized model. The first solution is based on a grid-search over a range of tuning

values, and picks the optimal model on the basis of a generalized information

criterion (Section 3.2). Alternatively, we propose an automatic tuning parameter

selection procedure, which finds the optimal amount of sparsity without resorting

to grid-searches (Section 3.3). The chapter concludes with a discussion of the

theoretical properties of the proposed estimator (Section 3.4).

3.1 Penalized maximum likelihood estimation

The penalty functions illustrated in Chapter 2 can be directly introduced within

the estimation process by means of penalized maximum likelihood estimation

procedures. The penalized log-likelihood is given by

`p(θ) :=
N∑
α=1

`(xα|θ)−
N∑
α=1

PTη (θ) = `(θ)−N PTη (θ), (3.1)

where `(θ) is given in equation (2.2), and PTη (θ) is one of the penalties of Section

2.2 generating a sparse factor solution.

47
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Simultaneous estimation of all parameters is achieved by maximizing the

penalized log-likelihood in (3.1) and using a local approximation of PTη (θ) (Section

2.3), that is,

max
θ

`p(θ) = max
θ

{
`(θ)− N

2
θTSTη (θ̃)θ

}
, (3.2)

where the function in brackets is now twice-continuously differentiable. The

penalized maximum likelihood estimator (PMLE) is then defined as

θ̂ = arg max
θ

`p(θ).

Conveniently, the gradient of the penalized log-likelihood, the Hessian matrix of

the second-order derivatives and the expected Fisher information matrix can be

written as

gp(θ) :=
∂`p(θ)

∂θ
= g(θ)−NSTη (θ̃)θ,

Hp(θ) :=
∂2`p(θ)

∂θ∂θT
= H(θ)−NSTη (θ̃),

Jp(θ) := −E
[
∂2`p(θ)

∂θ∂θT

]
= J (θ) +NSTη (θ̃).

For a given value of η in the penalty matrix, which is hence denoted in the following

as STη̂ (θ̃), we seek to minimize the negative penalized log-likelihood −`p(θ). This

can be done via a trust-region algorithm (Conn, Gould & Toint, 2000). According

to this strategy, at iteration t, the information gathered around −`p is used to

construct a “model function” Q[t]
p whose behavior near the current point θ[t] is

similar to that of the actual objective function −`p. Because the model Q[t]
p may

not be a good approximation of −`p when θ is far away from θ[t], the search for a

minimizer of Q[t]
p is restricted to some region R[t] around θ[t]. This region is usually

the ball ||s||2 < ∆, where ||·||2 is the Euclidean norm, s the trial step vector aiming

at reducing the model function, and the scalar ∆ > 0 the trust-region radius. The

size of the trust region is critical to the effectiveness of each step: if it is too small,

the algorithm may miss the opportunity to take a step that moves it closer to
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the minimizer of the objective function; if it is too large, the minimizer of the

model may be far from the one of the objective function in the region, so it may

be necessary to reduce the region size and repeat the process.

The model Q[t]
p is usually a quadratic function of the form:

Q[t]
p (s) = −

{
`p(θ

[t]) + sTgp(θ
[t]) +

1

2
sTB(θ[t])s

}
, (3.3)

where gp(θ[t]) = g(θ[t])−NSTη̂ (θ̃
[t]

)θ[t] is the penalized score function. The matrix

B(θ[t]) can be the penalized Hessian Hp(θ
[t]) = H(θ[t]) − NSTη̂ (θ̃

[t]
), or some

approximation thereof, as Jp(θ
[t]) = −E

[
Hp(θ

[t])
]
. If B(θ[t]) is equal to the

penalized Hessian, Q[t]
p agrees with the Taylor-series expansion of −`p around θ[t] to

the first three terms, otherwise the agreement between the two functions is to the

first two terms. The derivation of the first and second-order derivatives is a tedious

and lengthy process; however, the availability of these quantities guarantees a better

accuracy of the algorithm since no numerical approximation is employed. Because

the Hessian for the normal linear factor model requires computing many elements

(see Appendix A.2), the Fisher information matrix is particularly convenient. If

the elements of (Σ̂− S) are small and the second derivatives not too large, which

is often the case, the information matrix is very close to the true Hessian.

Each iteration of the trust-region algorithm solves the sub-problem:

s[t] = arg min
s∈Rm

Q[t]
p (s) subject to ||s||2 ≤ ∆[t], (3.4)

θ[t+1] = θ[t] + s[t], (3.5)

where the current iteration θ[t] is updated with s[t] if this step produces an im-

provement over the objective function. In practice, the size of the region is chosen

according to the performance of the algorithm during previous iterations, and

specifically, to the agreement between the model function and the objective function

at previous iterations. Given a step s[t], define the ratio

r[t] =
−
[
`p(θ

[t])− `p(θ[t] + s[t])
]

Q[t]
p (0)−Q[t]

p (s[t])
; (3.6)
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the numerator is called the actual reduction, whereas the denominator is the

predicted reduction. If r[t] is negative, the new objective value −`p(θ[t] + s[t])

is greater than the current value −`p(θ[t]), which means that the model is an

inadequate representation of the objective function over the current trust region,

so the step s[t] is rejected, and the new problem is solved with a smaller region. If

r[t] is close to 1, there is good agreement between the model Q[t]
p and the function

−`p over this step. This means that the model can accurately predict the behavior

of the objective function along the step s[t], so the trust region is enlarged for the

next iteration. If r[t] is positive, but not close to 1, the trust region is not altered,

unless it is close to zero or negative, in which case it is shrunken.

Algorithm 1 describes the process. The term ∆max represents an overall bound

on the step lengths. The starting values of the model parameters in θ[0] are inspired

by the values used by established software for latent variable analyses, such as the R

package lavaan (Rosseel, 2012) and the commercial software Mplus (L. Muthén &

Muthén, 2020). Specifically, the starting values of the factor loadings are computed

through instrumental variables methods (Hägglund, 1982), the factor variances

and covariances are initialized at 0.05 and zero, respectively, whereas the unique

variances at half the variances of the observed variables in the data set. These

initial values can be replaced with informative user-defined values (see Chapter

7 for additional details). The solution resulting from the optimization process

undergoes admissibility checks. A solution is considered admissible if it does not

present Heywood cases (negative unique variances), the covariance matrices of the

unique factors and common factors are positive-definite, the factor loading matrix

is of full column rank and does not contain any null rows (Jöreskog & Sörbom,

1996).

It should be noticed that the trust-region radius is increased only if ||s[t]||2

reaches the boundary of the region. If the step stays strictly inside the region,

we can conclude that the current ∆[t] is not interfering with the progress of the

algorithm, so its value is left unchanged for the following iteration. The trust-region

algorithm is implemented in the R package trust.
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Algorithm 1 Trust-region algorithm
Require: ∆max > 0,∆0 ∈ (0,∆max),θ[0]

1: Compute `p(θ[0]), gp(θ
[0]),B(θ[0])

2: Set ε = .Machine$double.eps
1
2 = 1.490116× 10−8

3: while t ≤ 1000 or
∣∣∣− [`p(θ[t])− `p(θ[t+1])

] ∣∣∣ < ε do

4: s[t] = arg mins:||s||2≤∆[t] Q[t]
p (s)

5: r[t] =
−
[
`p(θ

[t])− `p(θ[t] + s[t])
]

Q[t]
p (0)−Q[t]

p (s[t])

6: if r[t] < 1
4
then

7: θ[t+1] = θ[t]

8: ∆[t+1] =
||s[t]||2

4

9: else

10: θ[t+1] = θ[t] + s[t]

11: if r[t] > 3
4
and ||s[t]||2 = ∆[t] then

12: ∆[t+1] = min(2∆[t],∆max)

13: else

14: ∆[t+1] = ∆[t]

15: end if

16: end if

17: end while
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3.1.1 Comparison to line search methods

Line search algorithms choose a direction s[t] and then search along this direction

for a new iterate with a value of the objective function lower than the one at the

previous iteration. The distance to move along s[t] is determined by ρ[t], a positive

scalar referred to as step length. The line search algorithm solves the problem

θ[t+1] = θ[t] + ρ[t]s[t]. (3.7)

Typically, the search direction is a descent direction (like steepest-descent or

Newton’s direction), whereas the step length is chosen through an inexact line

search that identifies the value among a sequence of candidate trials achieving

adequate reductions in −`p at a minimal cost.

Line search and trust-region methods differ in the order in which they choose

the direction and distance of the move to the next iterate. Line search methods

first fix the direction s[t] and then identify an appropriate distance (the step length

ρ[t]). In trust-region methods, a maximum distance (the radius ∆[t]) is first chosen

and then a direction and step that attain the best improvement subject to this

distance constraint.

If the objective function is non-convex, line search algorithms may search far

away from θ[t], but still choose θ[t+1] to be close to θ[t]. In some cases, the function

can be evaluated so far away from θ[t] that it is not finite and the algorithm fails.

On the contrary, trust-region methods never run too far from the current iteration

as the points outside the trust region are not considered. Trust-region algorithms

were shown to be more stable and faster than line search methods, particularly for

functions that are non-concave and/or exhibit regions close to flat (Radice, Marra

& Wojtyś, 2016). A detailed exposition of trust-region and line search techniques

can be found in Nocedal and Wright (2006, Ch. 3–4).

A crucial aspect of penalized models lies in the selection of the tuning parameter,

which controls the amount of sparsity introduced in the model. The next sections

propose two approaches for the selection of the tuning parameter of the penalized

model.
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3.2 Generalized Information Criterion

To select η, we elect to use the Generalized Information Criterion (GIC; Konishi &

Kitagawa, 1996), which is an extension of the Akaike Information Criterion (AIC;

Akaike, 1974) to the case where the estimation is not conducted through ordinary

maximum likelihood and is based on a theoretically founded definition of degrees of

freedom. Notice that this choice is possible because the quantities we are dealing

with are twice-continuously differentiable.

Let G be the true distribution function that generated the data xxxN = {x1, . . . ,

xN}, which are realizations of the random vector XN = (X1, . . . ,XN)T . Assume

that the distribution that generated the data is included in the class of parametric

models {f(x|θ);θ ∈ Θ ⊂ Rm}, where θ = (θ1, . . . , θm)T is the m-dimensional

vector of unknown parameters and Θ an open subset of Rm. A statistical model

f(x|θ̂) is then obtained by replacing the parameter vector θ with the PMLE

θ̂. Let us express the parameter vector as θ = T (G), where T (G) is the m-

dimensional functional vector of G defined as the solution of the implicit equations∫
ψ(x,T (G))dG(x) = 0, with

ψ(x,T (G)) =
∂

∂θ

{
log f(x|θ)− 1

2
θTSTη (θ̃)θ

} ∣∣∣∣
θ=T (G)

.

The GIC evaluating the goodness of fit of the model, when used to predict inde-

pendent future data z generated from the unknown distribution G, is

GIC(XN ; Ĝ) = −2
N∑
α=1

log f(Xα|θ̂) + 2N b(Ĝ), (3.8)

where Ĝ is the empirical distribution function based on the data, and b(Ĝ) the

bias estimate arising from using the data twice for estimating the model and the

evaluation measure of the goodness of the estimated model (details in Appendix C).

Konishi and Kitagawa (1996) showed that the asymptotic bias of the log-likelihood

can be represented as the integral of the product of the influence function of the

employed estimator and the score function of the probability model, i.e.,
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b(G) =
1

N
b1(G) + o

(
1

N

)
,

where

b1(G) = tr
{∫

T (1)(z;G)
∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

}
. (3.9)

The quantity T (1)(z;G) is the influence function of the functional T (G) at the

true distribution G, and describes the effect of an infinitesimal contamination at z.

The influence function that defines the PMLE is given by (see Appendix C)

T (1)(z;G) = R(ψ, G)−1ψ(z;T (G)), (3.10)

where R(ψ, G) is an m×m matrix defined as

R(ψ, G) = −
∫
∂ψ(z,θ)T

∂θ

∣∣∣∣
θ=T (G)

dG(z)

= −
∫
∂2 log f(z|θ)

∂θ∂θT

∣∣∣∣
θ=T (G)

dG(z)

+

∫
∂2

∂θ∂θT

(
1

2
θTSTη (θ̃)θ

) ∣∣∣∣
θ=T (G)

dG(z).

If we denote θ = (θ?, θ̌)T , where θ? collects the penalized parameters and θ̌ the

unpenalized parameters, we have that

∂ψ(z,θ)T

∂θ
=


∂2 log f(z|θ)

∂θ?∂θ?
T −MT

η (θ̃)
∂2 log f(z|θ)

∂θ?∂θ̌
T

∂2 log f(z|θ)

∂θ̌∂θ?
T

∂2 log f(z|θ)

∂θ̌∂θ̌
T

 ,

where MT
η (θ̃) is the sub-matrix of STη (θ̃) corresponding to the penalized paramet-

ers defined in Section 2.3. By substituting the expression of the influence function

of the PMLE into equation (3.9), we get the following expression of the bias

b1(G) = tr
{
R(ψ, G)−1

∫
ψ(z;T (G))

∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

}
= tr

{
R(ψ, G)−1Q(ψ, G)

}
,
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where Q(ψ, G) is an m×m matrix defined as

Q(ψ, G) =

∫
ψ(z;T (G))

∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

=

∫
∂

∂θ

{
log f(z|θ)− 1

2
θTSTη (θ̃)θ

} ∣∣∣∣
θ=T (G)

× ∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

=

∫
∂ log f(z|θ)

∂θ

∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

= −
∫
∂2 log f(z|θ)

∂θ∂θT

∣∣∣∣
θ=T (G)

dG(z) = Q(G).

Let b1(Ĝ) be a bias estimate obtained by replacing the unknown distribution G

with the empirical distribution Ĝ based on the data:

b1(Ĝ) = tr
{
R(ψ, Ĝ)−1Q(Ĝ)

}
, (3.11)

where

R(ψ, Ĝ) = − 1

N

N∑
α=1

∂ψ(xα|θ)T

∂θ

∣∣∣∣∣
θ=T (Ĝ)

= − 1

N

N∑
α=1

∂2 log f(xα|θ)

∂θ∂θT

∣∣∣∣∣
θ=T (Ĝ)

− ∂2

∂θ∂θT

(
1

2
θTSTη (θ)θ

) ∣∣∣∣∣
θ=T (Ĝ)


= − 1

N

{
H(θ̂)−NSTη (θ̂)

}
= − 1

N
Hp(θ̂),

Q(Ĝ) = − 1

N

N∑
α=1

∂2 log f(xα|θ)

∂θ∂θT

∣∣∣∣∣
θ=T (Ĝ)

= − 1

N

∂2`(θ)

∂θ∂θT

∣∣∣∣∣
θ=T (Ĝ)

= − 1

N
H(θ̂).

The estimated bias b1(Ĝ) is an estimate of the effective number or estimated

degrees of freedom (edf ) of the penalized model, that is,

edf = b1(Ĝ) = tr
{[
− 1

N
Hp(θ̂)

]−1 [
− 1

N
H(θ̂)

]}
= tr

{
Hp(θ̂)−1H(θ̂)

}
. (3.12)
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By substituting the asymptotic bias estimate in equation (3.12) into the expression

(3.8) of the GIC, one obtains:

GIC(XN ; Ĝ) = −2N

{
1

N

N∑
α=1

log f(xα|θ̂)− 1

N
b1(Ĝ)

}

= −2
N∑
α=1

log f(xα|θ̂) + 2 tr{R(ψ, Ĝ)−1Q(Ĝ)}

= −2 `(θ̂) + 2 tr
{
Hp(θ̂)−1H(θ̂)

}
. (3.13)

The GIC is an extension of the AIC, and as such, it may inherit the tendency of

the latter to select overly complex models. To avoid this issue, we can change the

constant 2 of the bias term to log(N) (used in the Bayesian Information Criterion;

Schwarz, 1978) and obtain the following Generalized Bayesian Information Criterion

(GBIC):

GBIC(XN ; Ĝ) = −2
N∑
α=1

log f(xα|θ̂) + log(N) tr{R(ψ, Ĝ)−1Q(Ĝ)}

= −2 `(θ̂) + log(N) tr
{
Hp(θ̂)−1H(θ̂)

}
. (3.14)

The tuning parameter η enters through the penalty matrix, which is included in

Hp. The determination of the tuning parameter can be viewed as a model selection

and evaluation problem. Therefore, information criteria evaluating a penalized

model can be used as tuning parameter selectors. By evaluating statistical models

determined according to a grid of values of η, we take the optimal value of the

tuning parameter η̂ to be the one minimizing the value of the GBIC (since the

BIC generally selects more sparse models than does the AIC), that is,

η̂ = arg min
η
GBIC(XN ; Ĝ).

The optimal penalized factor model is hence chosen to be the one with the lowest

BIC, which is the information criterion routinely employed in sparse settings.

However, if researchers are more interested in accuracy and achieving minimum

prediction error, then the AIC, and hence expression (3.13) is to be preferred. In
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the presence of moderate sample size and many variables, the extended BIC (EBIC;

Chen & Chen, 2008) may be more suitable.

Degrees of freedom

The edf of an unpenalized model (STη = Om×m) coincide with the dimension

of the parameter vector θ, since tr
{
Hp(θ̂)−1H(θ̂)

}
= tr

{
H(θ̂)−1H(θ̂)

}
=

tr(Im) = m, where Im is the m × m identity matrix. For a penalized model

edf = tr
{
Hp(θ̂)−1H(θ̂)

}
= m−tr

{
[−H(θ̂) +NSTη (θ̂)]−1NSTη (θ̂)

}
. This shows

that edf → m as η → 0, and edf → m− q? as η →∞, where q? is the number of

penalized elements. When 0 < η <∞, the edf ∈ [m− q?,m]. The overall edf of

a fitted model is given by the sum of the edf for each parameter; each single edf

takes a value in the range [0, 1] and quantifies precisely the extent to which each

coefficient is penalized.

Non-zero parameters

The existing penalized factor models (Choi et al., 2010; Hirose & Yamamoto, 2014a;

Jacobucci et al., 2016; Huang et al., 2017; Huang, 2018, Jin et al., 2018) compute

the degrees of freedom as the number of non-zero parameters (referred in the

following as dof ), by advocating the fact that the number of non-zero coefficients

in a lasso-penalized linear model gives an unbiased estimate of the total degrees of

freedom (Zou et al., 2007). This way of estimating the degrees of freedom implies

that each dof can be either 0 if its parameter has been shrunken to zero, or 1

otherwise. On the contrary, the edf can take any value in [0, 1].

This suggests that, while the definitions of dof and edf may produce equivalent

results (for penalties enjoying the oracle property, as the alasso, scad and mcp),

in practical situations using edf is expected to yield better-calibrated degrees of

freedom. Importantly, the definition of edf directly stems from the estimated bias

term of the GIC, which gives it a theoretically founded basis.
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3.3 Automatic tuning parameter selection

An alternative proposal to using a grid-search combined with GBIC is to estimate

η automatically and in a data-driven fashion, a development that has not been so

far considered in penalized factor analysis. To this end, we propose adapting to

the current context the automatic multiple tuning (a.k.a smoothing) parameter

selection of Marra and Radice (2019a, see also references therein), which is based

on an approximate AIC.

Assume that, near the solution, the trust-region method behaves like a classic

unconstrained Newton-Raphson algorithm (Nocedal & Wright, 2006). Suppose

also that θ[t+1] is the “true” parameter value, and thus gp(θ[t+1]) = 0. By using a

first-order Taylor expansion of gp(θ[t+1]) at θ[t] it follows that

0 = gp(θ
[t+1]) ≈ gp(θ[t]) + Hp(θ

[t])(θ[t+1] − θ[t]).

Solving for θ[t] yields, after some manipulation (see Appendix D.1),

θ[t+1] =
[
I(θ[t]) +NSTη̂ (θ̃

[t]
)
]−1

√
I(θ[t])K [t], (3.15)

where I(θ[t]) = −H(θ[t]), K [t] = µ
[t]
K + ϑ[t] with µ[t]

K =
√

I(θ[t])θ[t] and ϑ[t] =√
I(θ[t])

−1

g(θ[t]). The square root of I(θ[t]) and its inverse are obtained by

eigenvalue decomposition. If they are not positive-definite, they are corrected

as described in Appendix D.2. From standard likelihood theory, we have that

ϑ ∼ N (0, Im) and K ∼ N (µK , Im), where µK =
√
I(θ0)θ0, and θ0 the true

parameter vector.

Let µ̂K be the predicted value vector for K defined as

µ̂K =

√
I(θ̂)θ̂ =

√
I(θ̂)

[
I(θ̂) +NSTη̂ (θ̂)

]−1
√
I(θ̂)K = ATη̂K,

where ATη̂ =

√
I(θ̂)

[
I(θ̂) +NSTη̂ (θ̂)

]−1
√

I(θ̂) is the influence (or hat) mat-

rix of the fitting problem and depends on the tuning parameter. The quantity
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θ̂ =
[
I(θ̂) +NSTη̂ (θ̂)

]−1
√
I(θ̂)K denotes the PMLE. Ideally, the estimation of

the tuning parameter should suppress the model complexity unsupported by the

data. This can be achieved by minimizing the expected mean squared error of µ̂K
from its expectation µK (Appendix D.3):

E
[

1

N
||µK − µ̂K ||22

]
=

1

N
E
[
||K −ATηK||22

]
+

2

N
tr(ATη )− 1, (3.16)

where ||·||22 is the squared Euclidean norm. The quantity

tr(ATη ) = tr
{[

I(θ̂) +NSTη (θ̂)
]−1

I(θ̂)

}

can be interpreted as the edf of the penalized model, and is equivalent to the

expression of the bias term of the GBIC. The right-hand side of (3.16) depends on

the tuning parameter through ATη , whereas K is linked to the unpenalized part

of the model. The tuning parameter is estimated by minimizing an estimate of

(3.16):

V(η) =
1

N
|| ̂µK − µ̂K ||22 =

1

N
||K −ATηK||22 +

2

N
tr(ATη )− 1. (3.17)

This is equivalent to the Un-Biased Risk Estimator (UBRE; Wood, 2017, Ch. 6)

and an approximate AIC (Appendix D.4), which means that η is estimated by

minimizing what is effectively the AIC with number of parameters given by tr(ATη ).

In practice, given θ[t+1], the estimation problem is expressed as

η[t+1] = arg min
η
V [t+1](η)

= arg min
η

{
1

N
||K [t+1] −AT [t+1]

η K [t+1]||22 +
2

N
tr(AT [t+1]

η )− 1

}
, (3.18)

and solved by adapting the approach by Wood (2004) to the current context

(Appendix D.5). This approach is based on Newton’s method and can evaluate

in a stable and efficient way V(η) and its derivative with respect to log(η) (since

the tuning parameter can only take positive values). The two steps, one for the
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estimation of θ and the other for η, are iterated until the algorithm satisfies the

stopping criterion
|`(θ[t+1])− `(θ[t])|

0.1 + |`(θ[t+1])|
< 10−7.

Influence factor

Sometimes the final model could be overly dense and sparser solutions may be

desired. One way to achieve this systematically is to increase the amount that

each model edf counts, in the UBRE score, by a factor γ ≥ 1, called “influence

factor” (Wood, 2017). The slightly modified tuning criterion then is

V(η) =
1

N
||K −ATηK||22 +

2

N
γ tr(ATη )− 1. (3.19)

For smoothing spline regression models, Kim and Gu (2004) found that γ = 1.4

can correct the tendency to over-fitting of prediction error criteria. However, this

work deals with different models, and our focus is not only on fit but also on the

recovery of sparse structures, thus higher values may be more appropriate.

It is important to notice that the implementation of the automatic procedure

described above relies on the separability of the penalty matrix from the tuning

parameter. This requirement is satisfied by the lasso and alasso (thus, T = {L,A}),

but not by the scad and mcp which are therefore confined to the grid-search

approach. However, this is not problematic because in the simulation experiments

and the empirical application (see Chapter 4) the alasso generally represented the

most convenient choice of penalty based on a number of criteria.

The presented modeling framework has been implemented in the R package

GJRM (Marra & Radice, 2019b) and we refer the reader to Chapter 7 for a brief

description of the software and practical illustrations.
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3.4 Theoretical aspects of the PMLE

This section discusses some asymptotic properties of the PMLE. For notational

convenience, let Sη be the shorthand for STη , for T = {L,A, S,M}, and θ0 the

true parameter vector. The following results were derived under the regularity

conditions reported in Appendix E.1.

Theorem 3.1 (Asymptotic distribution of the PMLE (I)). Under certain regularity

conditions, the PMLE has the following asymptotic distribution:

√
NJp(θ0)

{
θ̂ − θ0 + Jp(θ0)−1NSη(θ0)θ0

}
d−→ N (0, NJ (θ0)),

and thus the asymptotic bias of θ̂ is equal to −Jp(θ0)−1NSη(θ0)θ0, and the

asymptotic covariance V θ̂ = Jp(θ0)−1J (θ0)Jp(θ0)−1, where Jp(θ0) = J (θ0) +

NSη(θ0).

Proof. See Appendix E.2 �

Furthermore (see Appendix E.3 for the derivation of these results),

θ̂ − θ0 = OP
(
N−

1
2

)
,

Bias(θ̂) = o(N−
1
2 ),

Cov(θ̂) = O(N−1).

The next theorem states that the asymptotic distribution of the PMLE coincides

with that of the MLE as the sample size increases, which is desirable, as the MLE

is the most efficient estimator.

Theorem 3.2 (Asymptotic distribution of the PMLE (II)). If max|NSη(θ0)θ0| =

o
(
N

3
2

)
, and max|NSη(θ0)| = o

(
N

3
2

)
, then

√
N(θ̂ − θ0)

d−→ N

(
0,
{

1

N
J (θ0)

}−1
)
.

Proof. See Appendix E.4. �
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Theorem 3.3 (Consistency). Suppose that η ∈ [0,∞) is fixed. Then, under the

assumption of a convex unpenalized log-likelihood, the PMLE θ̂ that minimizes

−`p(θ) is consistent, that is,

lim
N→∞

P
(
||θ̂ − θ0||22 > ε̄

)
= 0 ∀ ε̄ > 0.

Proof. See Appendix E.5. �

3.4.1 Intervals

At convergence, the covariance matrix of θ̂ is V θ̂ = Jp(θ̂)−1J (θ̂)Jp(θ̂)−1. How-

ever, for practical purposes it is more convenient to employ the alternative Bayesian

result V θ = Jp(θ̂)−1. (For an unpenalized model V θ̂ and V θ are equivalent as

there is no penalty involved in the covariance matrices.) In fact, at finite sample

sizes, V θ can produce intervals with close to nominal “across-the-function” frequent-

ist coverage probabilities (Marra & Wood, 2012) because the Bayesian covariance

matrix includes both a bias and variance component in a frequentist sense, a feature

not shared by V θ̂. This result can be justified using the distribution of K given

in Section 3.1, making the large sample assumption that H(θ) can be treated as

fixed, and making the prior Bayesian assumption of θ ∼ N (0, (NSη(θ̃))−1). The

goodness of fit of the penalized model can then be evaluated through confidence

intervals, which are available for each model parameter, obtained from the posterior

distribution

θ|xxxN , η ∼ N (θ̂,V θ).

Additional details are covered in Appendix E.6.

3.4.2 Bayesian interpretation

Introducing penalties in the estimation process is fundamentally motivated by the

belief that in the population, the factor structures are more likely to be sparse

than dense. This prior belief can be formalized by specifying the exponential prior
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exp
{
−N

2
θTSη(θ̃)θ

}
on the penalty function. This is equivalent to assuming for the

parameter vector a zero-mean improper Gaussian prior distribution with precision

matrix proportional to Sη(θ̃), i.e., θ ∝ N (0, (NSη(θ̃))−1), where Sη(θ̃)−1 is the

Moore-Penrose pseudo-inverse of Sη(θ̃) (Wood, 2017). The proposed penalized

approach can thus be viewed as an “empirical Bayes” method that gives good

frequentist properties.

The process of determining the optimal loading pattern can indeed be formulated

as a Bayesian variable selection problem (Lu, Chow & Loken, 2016). For instance,

Bayesian Structural Equation Modeling (BSEM; B. Muthén & Asparouhov, 2012) -

in which the elements that would be fixed to zero in a confirmatory analysis (usually

the cross-loadings) are replaced with approximate zeros based on informative, small-

variance priors - is a particular case where the shrinkage is achieved through an

informative ridge prior.
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4
Numerical and empirical

evaluation of the penalized

factor model

This chapter evaluates the validity of the penalized technique proposed in Chapter

3 through numerical and empirical examples. First, we illustrate a simulation study

conducted to evaluate the performances of the PMLE and compare them to the

ones of competing methods existing in the literature (Section 4.1). We investigate

and assess the impact of several conditions, including the sample size, the penalty

function, the type of second-order derivative information used in the trust-region

algorithm, the strategy for the choice of the tuning parameter, the magnitude of

the influence factor and - for some of the penalties - the value of the additional

tuning parameter. Then, the proposed model and its competitors are tested in a

classical psychometric application on students’ mental abilities (Section 4.2).

4.1 Simulation Study

An extensive simulation study was conducted to evaluate the performances of

the proposed PMLE under a broad range of scenarios. For EFA, several works

(Choi et al., 2010; Huang et al., 2017; Hirose & Yamamoto, 2014b; Jin et al.,

2018; Scharf & Nestler, 2019) already demonstrated that penalized techniques

generally outperform their unpenalized and rotated counterparts and, under certain

65
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conditions, perform similarly to the oracle MLE. For this reason, instead of con-

trasting our model (implemented in the R package GJRM) to unpenalized maximum

likelihood, we compared it to the penalized maximum likelihood solutions produced

by the methods developed by Jacobucci et al. (2016) and by Huang et al. (2017)

implemented in the R packages regsem (version 1.3.2; Jacobucci et al., 2019) and

lslx (version 0.6.8; Huang & Hu, 2019), respectively. Despite the fact that other

techniques to conduct penalized factor analysis exist (Choi et al., 2010; Hirose &

Yamamoto, 2014b, 2014a; Trendafilov et al., 2017; Jin et al., 2018), our choice fell

on regsem and lslx because they allow one to specify which parameters are fixed,

which are free and which are penalized, as well to directly estimate the structural

model.

We first illustrate the design of the study and then present the results.

4.1.1 Design and procedure

The simulation study was partly inspired by the empirical application (Section

4.2), therefore the number of variables (p = 9) and of factors (r = 3) exactly match

those of the real data analysis. The conditions that were varied are:

• Sample size: 300, 500 and 1000 observations. These values are in line with

those investigated in similar simulation studies (Huang et al., 2017; Jacobucci

et al., 2016; Jin et al., 2018; Hirose & Yamamoto, 2014b) and include

two moderate sample sizes (which are commonly found in psychometric

applications) and a large one (to mimic asymptotic behavior). Note that 300

is close to the number of observations in the empirical example;

• Penalty function: lasso, alasso, scad and mcp were examined in their ability

to shrink to zero small loadings without possibly affecting the remaining

ones;

• Information matrix: either the Hessian or the Fisher information matrix

was used in the optimization process (see Section 3.1);
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• Shrinkage parameter selection: this was achieved either by a grid-search

or through the automatic procedure. The grid-search was conducted over 200

distinct values of η and for all four penalty types, with the optimal model

being the one with the lowest GBIC. The elements of the grid were adapted

based on the specific combination of penalty type and sample size. The

automatic procedure was used with lasso and alasso;

• Influence factor: informed by the values that performed well in the ap-

plication, we investigated different values for the influence factor, namely,

γ = {1, 1.4, 2, 2.5, 3, 3.5, 4, 4.5};

• Additional tuning parameter: we tested different values of the additional

tuning parameter of the alasso, scad and mcp. For the alasso a = {1, 2},

for the scad a = {2.5, 3, 3.7, 4.5} (with 3.7 being the conventional level

employed in the literature and suggested by Fan & Li, 2001), and for the

mcp a = {2.5, 3, 3.5}.

The population parameters complied to the following structure:

Λ =



0.85 0 0

0.75 0 0

0.65 0.3 0

0 0.85 0

0 0.75 0

0 0.65 0.3

0 0 0.85

0 0 0.75

0.3 0 0.65



Φ =


1 0.3 0.3

1 0.3

1



and Ψ = Ip−ΛΦΛT , where Ip is the p× p identity matrix, which implies that the

observed variables have been standardized. Elements in italic and underlined were

fixed for scale setting and identification purposes. The specific values of the factor

loadings were inspired by the numerical example in Huang et al. (2017). As it is
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common in many factor analysis applications, a subset of the observed variables

does not load only on one factor but also presents a cross-loading.

All of the factor loadings were penalized for assessing the effectiveness of the

proposed method in recovering the underlying factor structure and not erroneously

shrinking the small cross-loadings to zero. Based on results from previous studies

(see for instance Choi et al., 2010 for the alasso, and Hirose & Yamamoto, 2014b

and Huang et al., 2017 for the mcp), the alasso and the non-convex penalties are

expected to outperform the lasso, which is known to be biased due to its tendency

to overly shrink non-zero parameters. Concerning the influence factor, higher

values favor sparsity at the expense of an increase in bias, whereas lower values

favor goodness of fit.

Data were simulated in R (version 3.5.1; R Core Team, 2018) according to the

population parameters. Each data set was column-wise centered since the normal

linear factor analysis model illustrated in Section 2.1 implicitly assumes that the

observed variables have zero-means. The resulting data matrix was then analyzed

in GJRM, regsem and lslx by estimating a factor model with the correct number

of factors, the specified fixed elements, and all of the free loadings were penalized.

Common factors were estimated to be correlated and with fixed unit variance.

Whenever present, sign reversal of the factors was accounted for to ensure that

the sign of the primary loadings matched the one of the corresponding population

parameters. Based on the availability of the respective software implementations,

lasso, alasso, scad and mcp were tried for regsem, and lasso and mcp for lslx.

For each scenario, we generated L = 1000 replications for which the unpenalized

factor model produced admissible solutions (see Section 3.1 for the definition of

admissibility).

4.1.2 Results

For the sake of clarity, we report in the following a selection of the most relevant

results for particular configurations of alasso, scad and mcp, leaving the lasso in

Section 4.1.3. Specifically, for GJRM-alasso a = 2, for GJRM-scad and GJRM-mcp
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a = 3, whereas for the automatic procedure γ = 4.5. These configurations were

found to produce the best models in terms of a number of different performance

criteria (details are given below). In the same spirit, the results of regsem and

lslx are presented for their best performing models (i.e., with the mcp for both of

them). Due to its generally higher numerical stability in comparison to the Hessian,

only GJRM models estimated with the Fisher information matrix are presented in

the following. We evaluated the performance of the methods according to the

criteria illustrated in Huang et al. (2017), which are briefly mentioned here. The

overall accuracy of each estimator was assessed using the estimated mean squared

error (MSE):

M̂SE(θ̂) =
1

L

L∑
l=1

(θ̂
(l)
− θ0)T (θ̂

(l)
− θ0), (4.1)

where θ̂(l)
= (θ̂

(l)
1 , . . . , θ̂

(l)
m )T denotes the vector of estimated parameters in replicate

l, θ0 the true parameter vector, and L the number of replications.

The degree of bias of each estimator was evaluated by the estimated squared

bias (SB):

ŜB(θ̂) = (
¯̂
θ − θ0)T (

¯̂
θ − θ0), (4.2)

where ¯̂
θ = 1

L

∑L
l=1 θ̂

(l) represents the empirical mean of θ̂.

Let F = {q | θ0q 6= 0 & θ̂q penalized} indicate the set of indices associated to

the true non-zero parameters that have been penalized (i.e., the penalized non-zero

factor loadings) and |F| the cardinality of F , which in the simulation is equal to

12. The chance of correctly identifying the true non-zero parameters was evaluated

via the estimated true positive rate (TPR):

T̂PR(θ̂) =
1

L

L∑
l=1

∑
q∈F 1

(
θ̂

(l)
q 6= 0

)
|F|

. (4.3)

Denote as F c = {q | θ0q = 0 & θ̂q penalized} the set collecting the indices of the true

zero parameters that have been penalized (i.e., the penalized zero factor loadings),

with |F c| equal to 9. The estimated false positive rate (FPR) examined the degree

to which the true zero parameters were incorrectly identified as non-zero:
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F̂PR(θ̂) =
1

L

L∑
l=1

∑
q∈Fc 1

(
θ̂

(l)
q 6= 0

)
|F c|

. (4.4)

Lastly, selection consistency was assessed via the proportion of times the true

model - for which all the true zero and non-zero factor loadings were correctly

identified as equal to zero and different from zero, respectively - was chosen over

the replicates (proportion choosing the true model; PCTM):

P̂CTM(θ̂) =
1

L

L∑
l=1

∑
q∈F 1

(
θ̂

(l)
q 6= 0

)
+
∑

q∈Fc 1
(
θ̂

(l)
q = 0

)
|F|+ |F c|

, (4.5)

where |F|+ |F c| = q?. For the computation of PCTM and FPR, the parameter

estimates were rounded to one decimal digit for all models.

By looking at the results in Table 4.1, we draw the following conclusions:

1. Overall, the low values for MSE, the bias and FPR which are very close to

zero, together with high PCTM and excellent TPR show that the examined

penalized techniques possess very good empirical performances.

2. The MSE of all methods are very similar to each other and improve as the

sample size increased.

3. The results with the lower bias were associated with the use of non-convex

penalties, although the bias of GJRM-alasso very quickly converged to zero

when the sample size increased, and hence the impact of the penalty decreased.

4. The true positive rates were always equal to 1.0, which showed that the

inspected methods never suppressed the non-zero penalized parameters (i.e.,

the primary loadings and the cross-loadings).

5. In terms of both false positive rates and selection consistency, GJRM-alasso

with automatic tuning parameter selection presented by far the best perform-

ances for all the sample sizes.

6. The mean squared error and bias of GJRM-alasso with automatic tuning

parameter selection were similar to those obtained with the same penalty
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and grid-search, but the false positives and PCTM were markedly lower

and higher, respectively. This may indicate that the presence of a sparsity-

inducing quantity (influence factor) in the optimization criterion helped the

model obtain a nicer tradeoff between goodness of fit and model complexity.

7. By comparing the quality measures of the three methods for the same penalty

function (i.e., the mcp), we notice that GJRM outperformed lslx and was

generally close to regsem for MSE and SB and superior for FPR and PCTM.

8. The examined performance criteria explored different conflicting objectives.

Ideally, one desires a model with low bias and little complexity (i.e., a sparse

solution), but the two measures cannot be minimized simultaneously. This

can be seen by looking at the performances of the GJRM-alasso model for

extreme values of the influence factor (i.e., γ = 4.5 in Table 4.1 and γ = 1 in

Table 4.4 in Section 4.1.3). The higher value of γ produced sparser solutions

(i.e., smaller FPR and larger PCTM), at the cost of a larger bias. As the

sample size increased, the discrepancies in the performances of the models

with different values of γ diminished though.

9. With reference to the exponent a in the expression of the alasso, as this

quantity increased the weights became more influential, and we observed a

general improvement in all the performance measures. The best results were

obtained for a = 2, which is why it is the value of all GJRM-alasso models

reported in Tables 4.1 and 4.4.

Computational efficiency

The investigated methods were compared in terms of their computational efficiency.

All computations were carried out on a machine with Intel(R) Core(TM) i7-5600U

2.60GHz (quad-core) processor and 16GB of RAM. Table 4.2 reports the minimum,

median and standard error of the elapsed time for estimating one penalized factor

model under every sample size scenario. The distributions of the elapsed times are

visualized through violin plots under every sample size scenario in Figure 4.1. As
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GJRM lslx regsem

ALASSO SCAD MCP MCP MCP
grid auto grid grid grid grid

MSE
N = 300 0.073 0.075 0.074 0.074 0.075 0.071
N = 500 0.041 0.041 0.042 0.042 0.042 0.041
N = 1000 0.020 0.020 0.020 0.020 0.020 0.020

SB
N = 300 0.003 0.004 0.002 0.002 0.003 0.000
N = 500 0.001 0.001 0.001 0.001 0.001 0.000
N = 1000 0.000 0.000 0.000 0.000 0.000 0.000

FPR
N = 300 0.022 0.008 0.016 0.019 0.036 0.018
N = 500 0.012 0.004 0.007 0.008 0.016 0.012
N = 1000 0.003 0.001 0.002 0.002 0.004 0.009

PCTM
N = 300 0.820 0.932 0.871 0.843 0.743 0.848
N = 500 0.898 0.962 0.936 0.925 0.877 0.897
N = 1000 0.974 0.991 0.982 0.979 0.966 0.923

Note: The values of the additional tuning parameters are a = 2
for GJRM-alasso, γ = 4.5 for the automatic procedure, a = 3 for
GJRM-scad and GJRM-mcp, and a = 3.7 for regsem-mcp as per default
software implementations. For lslx-mcp the values of both a and η
were determined on the basis of grid-searches.

Table 4.1: Performance measures of the examined models by varying the sample
size. MSE stands for mean-squared error, SB for squared bias, FPR for false
positive rate and PCTM for proportion choosing the true model.



4.1. Simulation Study 73

the number of observations increased, the computational times shortened because

the penalized models converged faster. Specifically, the models fitted through the

automatic tuning parameter procedure exhibited the lowest computational times,

with an average of nearly 0.3 seconds per model, as well as the least variability.

The GJRM models with grid-search presented comparable computational times of

about 20 seconds per replicate, which is nearly half of the time it took regsem to

fit one model. The computational times of lslx are noticeably inferior to those of

the other grid-search techniques. This is a consequence of its underlying optimizer

being implemented in C++, which significantly boosted the computations with

respect to base R routines.

Coverage probabilities

We computed 95% coverage probabilities for the parameters of all fitted models

using point-wise confidence intervals (Table 4.3). For clarity of presentation, we

only report the inferential results of the models considered in Table 4.1. The

standard errors for GJRM are based on the Bayesian result illustrated in Section

3.4.1. On the contrary, for lslx, they are computed using the frequentist expression

of the covariance matrix based on the Fisher information. No coverage probabilities

could be computed for regsem as the package does not currently provide any

measure of uncertainty.

Because of the rationale discussed in Section 3.1, GJRM provides a standard error

for every single model parameter, contrarily to lslx which does not provide this

information for the parameters shrunken to zero. However, since the main intent

of penalization is to get rid of the uninfluential elements, the inferential results

are presented for the parameters remaining in the model, which are the effective

quantities of interest. The coverage probabilities were furtherly split and averaged

between those corresponding to the penalized parameters (i.e., the non-zero factor

loadings) and the freely estimated ones (i.e., the factor covariances and unique

variances).

Overall, the values of both GJRM and lslx are close to their true nominal level,
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Elapsed
time

(seconds)

GJRM lslx regsem

ALASSO SCAD MCP MCP MCP
grid auto grid grid grid grid

N = 300
Minimum 10.70 0.20 15.07 11.81 3.38 19.77
Median 18.55 0.45 22.73 21.33 6.50 43.58
Standard error 2.81 0.31 5.30 6.63 3.86 6.17
N = 500
Minimum 12.15 0.12 13.43 12.51 3.31 18.36
Median 17.19 0.34 20.93 21.01 7.46 41.98
Standard error 2.65 0.34 3.58 4.28 3.79 6.59
N = 1000
Minimum 9.56 0.10 13.88 11.07 3.25 15.88
Median 15.29 0.23 19.59 20.22 5.90 41.04
Standard error 2.19 0.40 2.45 1.82 2.78 6.57

Table 4.2: Minimum, median and standard error of the elapsed time (seconds)
for GJRM-alasso with grid (1-dim. grid for η; a = 2) and automatic procedure
(a = 2; γ = 4.5), GJRM-scad (1-dim. grid for η; a = 3), GJRM-mcp (1-dim. grid for
η; a = 3), lslx-mcp (2-dim. grid for η and a) and regsem-mcp (1-dim grid for η,
a = 3.7 as per default software implementations) under each sample size scenario.
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Figure 4.1: Distributions of the elapsed times of the investigated methods under
each sample size scenario. The grey squares indicate the average times.
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Sample
size

GJRM lslx

ALASSO SCAD MCP MCP
grid auto grid grid grid

Pen. Free Pen. Free Pen. Free Pen. Free Pen. Free
N = 300 0.922 0.942 0.900 0.942 0.916 0.942 0.918 0.942 0.924 0.942
N = 500 0.934 0.946 0.931 0.946 0.929 0.945 0.928 0.945 0.938 0.945
N = 1000 0.940 0.946 0.940 0.946 0.941 0.945 0.940 0.945 0.945 0.946

Note: Pen. indicates the penalized non-zero parameters and free the freely
estimated parameters.

Table 4.3: Average coverage probabilities of the examined models by sample size and
parameter type. For GJRM-alasso with grid a = 2, with the automatic procedure
a = 2 and γ = 4.5, for GJRM-scad a = 3 and for GJRM-mcp a = 3.

the more so as the sample size increases, for all penalty functions, which proves

that the selected models are also valid from an inferential point of view.

4.1.3 Additional models

In this section we report the performance measures of the GJRM-alasso model

with the value of the influence factor γ = 1 (Table 4.4). As discussed in Section

4.1.2, the influence factor plays a decisive role in the final model fitting results.

Specifically, the model with the larger γ (Table 4.1) resulted in visibly higher

PCTM and lower FPR, at the expense of a slight increase in bias. This loss in

bias, however, became negligible or nonexistent as the sample size grew. In this

respect, it is interesting to look at the MSE, which encloses both the variance

and the squared bias components of an estimator. Despite the model with γ = 1

always having a smaller bias, the one with γ = 4.5 produced such a decrease in the

variability of the parameter estimates that its MSE ended up being always smaller

than the one obtained with the inferior value of the influence factor. The TPR

were equal to 1.0 for every sample size.

We complete the discussion of the simulation results by showing the perform-

ances of GJRM-lasso models when the tuning parameter was selected by grid-search

or estimated with the automatic procedure (Table 4.4). The two models gave

overall similar results, with the former having better FPR and PCTM and the
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ALASSO LASSO
auto grid auto
γ = 1 γ = 4.5

MSE
N = 300 0.083 0.109 0.102
N = 500 0.049 0.066 0.061
N = 1000 0.024 0.034 0.031

SB
N = 300 0.001 0.039 0.030
N = 500 0.000 0.024 0.017
N = 1000 0.000 0.013 0.008

FPR
N = 300 0.154 0.094 0.113
N = 500 0.114 0.060 0.074
N = 1000 0.049 0.017 0.026

PCTM
N = 300 0.256 0.409 0.321
N = 500 0.374 0.583 0.493
N = 1000 0.634 0.860 0.795

Table 4.4: Performance measures of GJRM-alasso and GJRM-lasso by sample size.
The quantity γ denotes the influence factor. MSE stands for mean-squared error,
SB for squared bias, FPR for false positive rate and PCTM for proportion choosing
the true model.

latter lower MSE and bias. The TPR were equal to 1.0 in both cases and for every

sample size. These results, however, are visibly less performing than the models

where the alasso, scad and mcp were used. As a matter of fact, it is well known

that the lasso tends to select an overfitted model, because it equally penalizes all

model parameters. Therefore, we suggest opting for the other penalties, which

have been specifically designed to improve the lasso.
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4.2 Empirical application

The Holzinger & Swineford data set (Holzinger & Swineford, 1939) is a classical

psychometric application containing the responses of N = 301 students on some

psychological tests. This data set (or subsets of it) has been often used to demon-

strate CFA (Jöreskog, 1979), EFA (Browne, 2001; Jöreskog & Sörbom, 1993) and

various penalized factor analysis techniques (Trendafilov et al., 2017; Jacobucci et

al., 2016; Huang et al., 2017; Jin et al., 2018). Following Jacobucci et al. (2016)

and Huang et al. (2017), we use a subset of p = 9 mental tests: visual perception

(VISUAL), cubes (CUBES), flags (FLAGS), paragraph comprehension (PARA-

GRAP), sentence completion (SENTENCE), word meaning (WORDM), addition

(ADDITION), counting groups of dots (COUNTING), straight and curved capitals

(STRAIGHT). These tests are thought of as measuring r = 3 correlated abilit-

ies: spatial ability (VISUAL, CUBES, FLAGS), verbal intelligence (PARAGRAP,

SENTENCE, WORDM), and speed (ADDITION, COUNTING, STRAIGHT).

The range of values of each variable is reported in the second and third column

of Table 4.5. The data set was column-wise centered since the factor model in

equation 2.1 implicitly assumes that the observed variables have zero-means. To

mitigate the scaling effect, the data set was scaled as described in Yuan and Bentler

(2006) to keep the marginal standard deviation of each variable between 1 and 2.

After the centering and scaling, the ranges of the variables were as reported in the

last two columns of Table 4.5.

The heat map of the covariance matrix of the scaled data set is presented in

Figure 4.2; small, moderate and high covariances are represented in light blue,

yellow and red, respectively. Besides the evident relationships of the tests designed

to measure the same mental ability, there seem to be some connections between

tests relative to distinct latent constructs. This may suggest that not all of the tests

are pure measures, that is, they do not load only on the ability they were designed

to measure. As a matter of fact, the CFA model assuming this simple structure

(see the path diagram in Figure 4.3) presents a poor fit to the data (p-value of the
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Observed
variables

Original ranges After centering
and scaling

Minimum Maximum Minimum Maximum
VISUAL 4 51 −4.27 3.56
CUBES 9 37 −3.84 3.16
FLAGS 2 36 −2.00 2.25
PARAGRAP 0 19 −3.06 3.27
SENTENCE 4 28 −3.34 2.66
WORDM 1 43 −2.04 3.96
ADDITION 30 171 −2.88 3.25
COUNTING 61 200 −2.48 4.47
STRAIGHT 100 333 −2.60 3.88

Table 4.5: Ranges of values of the observed variables of the Holzinger & Swineford
data set before and after centering and scaling.

chi-square goodness of fit test < 0.001), which confirms the multi-dimensionality

of some of the tests.

In these circumstances where it may be difficult to specify the correct sparsity

pattern of the loading matrix in advance, it is beneficial to resort to penalized

techniques to explore and unveil the underlying loading pattern. We hence penalize

all of the factor loadings and freely estimate the remaining model parameters. Factor

variances are fixed to one for scale setting and some elements of the loading matrix

to zero for identification purposes. As pointed out by Trendafilov et al. (2017),

inducing sparsity in a factor model, and even more so one with correlated factors,

is more complicated than for other types of models (e.g., principal component

analysis) due to the presence of other parameters (unique variances and factor

variances and covariances) affecting the overall model fit. As a result, if too large

a value for the tuning parameter is chosen, an excessive number of loadings is

shrunken, and the remaining parameters are forced to explode to compensate for

this lack of fit. This issue can be avoided if the appropriate amount of sparsity is

introduced into the model, which in turn is only possible if the tuning parameter

governing the amount of sparsity is selected according to a valid procedure, such

as the one introduced in this thesis.

We fitted a large number of models involving all four penalties. For grid-search,
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Method Penalty BIC
GJRM ALASSO 7558.03
GJRM MCP 7561.57
GJRM SCAD 7561.68
GJRM LASSO 7562.94
regsem MCP 7565.21
regsem SCAD 7565.21
lslx MCP 7565.92
regsem ALASSO 7571.39
regsem LASSO 7584.91
lslx LASSO 7585.07
CFA 7595.34
Unpenalized 7601.42

Table 4.6: BIC of the fitted models. For GJRM-alasso (automatic procedure) a = 1
and γ = 4.5, for GJRM-scad a = 4.5, for GJRM-mcp a = 1.5, and for GJRM-lasso
(automatic procedure) γ = 4.5. For all GJRM models the Fisher information was
used.

200 models corresponding to varying levels of the tuning parameter were fitted.

We also tried a sequence of values for the additional tuning parameter of the

alasso (a = {1, 1.5, 2}), scad (a = {2.5, 3.7, 4.5}) and mcp (a = {1.5, 2, 2.5, 3, 3.5}).

An effective way of “forcing” sparser solutions is increasing the value of the

influence factor in the automatic procedure. Higher values are associated with

sparser solutions, at the cost of a larger bias, which however tends to vanish

as the sample size increases. We tested different values of the influence factor

(γ = {1, 1.4, 2, 2.5, 3, 3.5, 4, 4.5}) for the automatic procedure. The data analysis

was also conducted in regsem and lslx using the available penalties (i.e., lasso,

alasso, scad, and mcp for the former, and lasso and mcp for the latter).

The BIC values were calculated for each of the fitted models and are ranked in

Table 4.6 for some of the best instances of model configurations. The proposed

method is placed at the top positions overall, showing the potential of the presen-

ted procedure. In particular, the alasso (automatic procedure, a = 1, γ = 4.5)

presented the lowest BIC, closely followed by the mcp (a = 1.5) and scad (a = 4.5).

Interestingly, the BIC of GJRM-lasso with grid-search (7567.62) decreased when

the model was fitted through the automatic procedure with an influence factor of

4.5 (7562.94). Notice that both the CFA and the unpenalized solution (correspond-
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ing to the factor analysis model in equation (2.1) with the minimum identification

restrictions) resulted in worse fits than the ones of the penalized models, probably

because of the strict assumption of no cross-loadings of the former, and the unne-

cessary complexity of the latter. This indicates that the analysis benefited from

the introduction of sparsity.

Table 4.7 reports the parameter estimates of the unpenalized model and the

best performing models for GJRM, lslx and regsem. A blank cell in the factor

loading matrix indicates that the corresponding estimate was zero after one decimal

rounding. The unpenalized model presented various cross-loadings, which resulted

in a much more complex model. The factor structures of the three penalized models

looked similar. Two penalized loadings were identified as non-zero (λ̂91, λ̂32) by all

methods. Additionally, GJRM and lslx detected other secondary loadings, which

were λ̂51 and λ̂81 for the former and λ̂51 for the latter.

As argued by Huang et al. (2017), this example shows that complex models do

not necessarily outperform simpler ones when model complexity is also taken into

account in the model selection criterion.
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Sparsity and invariance in the

multiple-group factor model

This chapter illustrates how the penalized likelihood-based approach described

through Chapters 2-3 can be extended to multiple-group analyses, such as cross-

national surveys. After an overview of the multiple-group factor analysis model

(Section 5.1), we present a penalty that suitably combines sparsity in the loading

matrices and invariance in the loadings and intercepts across groups (Section 5.2).

This is easily achieved by aggregating multiple penalty terms, each of which is

controlled by its own tuning parameter. The obtained penalty function is singular

at the origin, so it is locally approximated. An example clarifying the formulation

of the employed penalties is provided in Section 5.2.1. The estimation process and

the procedure for the selection of the multiple tuning parameters substantially

follow the rules delineated for the single-group factor analysis model and are briefly

formulated in Section 5.3.

5.1 The multiple-group factor analysis model

In studies of multiple groups of respondents, such as cross-national surveys and

cross-cultural assessments in psychological or educational testing, the interest often

lies in the comparisons of the groups with respect to their factor structures. In

this case, the model becomes

83
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xg = τ g + Λgf g + εg for g = 1, . . . , G, (5.1)

where the subscript g denotes the group, and τ g the intercept terms. It is assumed

that f g ∼ N (κg,Φg), εg ∼ N (0,Ψg), with Ψg usually a diagonal matrix, and

f g is uncorrelated with εg. Then, it follows that xg ∼ N (µg,Σg), where the

model-implied moments are µg = τ g + Λgκg and Σg = ΛgΦgΛT
g + Ψg.

For multiple-group analyses, one can apply the restrictions needed for scale

setting and identification for a single group factor model (see Section 2.1) repeatedly

within each of the G groups. The placement of these constraints is usually the

same across groups. When the mean structure is present, the origin, as well as the

scale of each latent factor, must be fixed. This implies that researchers need to

specify in each group at least r constraints on the intercepts or the factor means,

in addition to the r2 constraints required to identify the covariance structure.

Two popular approaches exist to fix the metric of the common factors and the

identification restrictions for a multiple-group factor model. The first method is

known as “marker-variable” approach and relies on the selection of a representative

variable (marker) for each factor in each group. Then, the intercepts of the markers

are fixed to zero, the loadings of the markers on the factor they measure to 1.0,

and the loadings of the markers on the remaining factors to zero. All of the other

parameters are estimated. Because each common factor inherits the mean and the

scale of the corresponding marker variable, the interpretation of the latent variable

parameters is relative to the chosen marker. The choice of the markers is crucial

and should be an accurate one (Millsap, 2001).

An alternative version of this approach proceeds as described, except that the

fixed unit elements are placed on the factor variances, instead of appearing on the

loading matrix, and the fixed zero elements are on the factor means, and not on

the intercepts. The reader is referred to Millsap (2012) and Little et al. (2006) for

an exposition of other approaches to metric setting and identification.

Given that no necessary and sufficient condition for global identification is

available, except for special cases, researchers should make sure that the model is
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locally identified, for instance, by examining whether the information matrix is

positive definite or resorting to empirical tests of identification (see Bollen, 1989).

The free parameters of each group are collected in the mg-dimensional vec-

tor θg = (vec(Λg)
T , τ Tg , diag(Ψg)

T , vech(Φg)
T ,κTg )T , for g = 1, . . . , G. Each

group parameter vector is collected in the overall m-dimensional vector θ =

(θT1 , . . . ,θ
T
g , . . . ,θ

T
G)T , where m =

∑G
g=1mg. Assume for convenience that the

same set of parameters is estimated in every group, which implies that the number

of observed variables p and common factors r is the same across groups, the fixed

elements required for model identification are placed in the same positions across

groups, and that m1 = . . . = mG, so that m = m1G. Given random samples

of sizes N1, . . . , NG, with N =
∑G

g=1Ng the total sample size across groups, the

log-likelihood of the multiple-group factor model is (see Appendix F.1):

`(θ) = −
G∑
g=1

Ng

2
{log|Σg|+ tr(W gΣ−1

g ) + p log(2π)}, (5.2)

where W g = Sg + (x̄g − µg)(x̄g − µg)T .

In multiple-group analyses, an important methodological consideration is the es-

tablishment of the comparability or “equivalence” of measurement across the groups

(e.g., countries, socio-economical groups). Measurement (or factorial) invariance

occurs when the factors have the same meaning in each group, which translates into

equal measurement models (i.e., factor loadings, intercepts and unique variances)

across groups. If non-equivalence of measurement exists, substantively interesting

group comparisons may become distorted. Testing for measurement invariance

in the parameters is, however, an intensive process. A sequence of nested tests

is progressively conducted to establish the equivalence in the factor loadings, the

intercepts, and optionally the unique variances.

The next section describes the penalty functions that can be incorporated

into the multiple-group model to obtain a technique that automatically detects

parameter equivalence across groups.
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5.2 Sparsity and invariance-inducing penalties

As in the single-group factor model, we can penalize the factor loadings to auto-

matically obtain a sparse loading matrix in each of the groups. Define the diagonal

matrix Rq = diag(0, . . . , 0, 1, 0, . . . , 0), where the 1 on the (q, q)th entry of the mat-

rix corresponds to the qth factor loading in θ, for q = (g−1)m1+1, . . . , (g−1)m1+q?

and g = 1, . . . , G, and Rq = Om×m for the remaining parameters. The quant-

ity q? represents the number of penalized loadings in each group. Then, the

sparsity-inducing penalty on the factor loadings is

PTη1(θ) =
m∑
q=1

PTη1,q(||Rqθ||1),

where η1 ∈ [0,∞) controls the overall amount of shrinkage.

In the same spirit as factorial invariance, we can specify a penalty encouraging

the equality of the loadings across groups. Conveniently, this can be achieved by

shrinking the pairwise absolute differences of every factor loading across groups.

Let DΛ
q , for q = 1, . . . , q?, be the matrix computing the differences of the factor

loading pairs (θ(g−1)m1+q, θ(g′−1)m1+q) for g < g′. It has dimension m1

(
G
2

)
× m,

where the binomial coefficient
(
G
2

)
denotes the total number of pairwise group

differences for a given factor loading. In its general form, DΛ
q is a matrix with

zeros in every position, except the ((s − 1)m1 + q, (g − 1)m1 + q) entries, which

contain a 1.0, and the entries ((s− 1)m1 + q, (g′− 1)m1 + q), which contain a −1.0,

for s = 1, . . . , G and g < g′ (see Matrix DΛ
q ). For the other parameters (i.e., the

intercepts, the unique variances and the structural parameters), DΛ
q = Om1(G2)×m

.

Then, the penalty inducing equal loadings across groups can be written as

PTη2(θ) =
m∑
q=1

PTη2,q(||D
Λ
q θ||1),

where ||DΛ
q θ||1 =

∑
g<g′ |θ(g−1)m1+q − θ(g′−1)m1+q| for q = 1, . . . , q?, and zero other-

wise.
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m1(G− 3)
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m1

 (G− 3)(G− 2)

2
− 1


m1

Matrix DΛ
q : The general structure of the matrix DΛ

q computing the pairwise

differences of the qth factor loading across G groups.
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If G = 2, the absolute difference of the qth loading across the two groups

is expressed as ||DΛ
q θ||1 = |θq − θm1+q|, where DΛ

q = [Rq − Rq]. The tuning

parameter η2 ∈ [0,∞) controls the amount of loading equality across groups. When

the loadings are truly invariant, and η2 is properly chosen, the penalized group

loading matrices “fuse”, and share the same values.

The derivation of the expression of the penalty PTη2(θ) shrinking the pairwise

group differences of the factor loadings follows the same rationale described in

Appendix B.1, with the only difference being that Rqθ is now replaced by DΛ
q θ.

The forms of the lasso, alasso, scad, and mcp penalties for the differences are:

PLη2(θ) = η2

∑
g<g′

q?∑
q=1

|θ(g−1)m1+q − θ(g′−1)m1+q|,

PAη2(θ) = η2

∑
g<g′

q?∑
q=1

|θ(g−1)m1+q − θ(g′−1)m1+q|∣∣∣θ̂(g−1)m1+q − θ̂(g′−1)m1+q

∣∣∣a ,
PSη2(θ) =

∑
g<g′

q?∑
q=1

{
η2|θ(g−1)m1+q − θ(g′−1)m1+q|1(0 ≤ |θ(g−1)m1+q − θ(g′−1)m1+q| ≤ η2)

−
[

(θ(g−1)m1+q − θ(g′−1)m1+q)
2 + η2

2 − 2η2a|θ(g−1)m1+q − θ(g′−1)m1+q|
2(a− 1)

]
× 1(η2 < |θ(g−1)m1+q − θ(g′−1)m1+q| ≤ aη2)

+
η2

2(a+ 1)

2
(|θ(g−1)m1+q − θ(g′−1)m1+q| > aη2)

}
,

PMη2 (θ) =
∑
g<g′

q?∑
q=1

{(
η2|θ(g−1)m1+q − θ(g′−1)m1+q| −

(θ(g−1)m1+q − θ(g′−1)m1+q)
2

2a

)
× 1(0 ≤ |θ(g−1)m1+q − θ(g′−1)m1+q| ≤ aη2)

+
η2

2a

2
1(|θ(g−1)m1+q − θ(g′−1)m1+q| > aη2)

}
,

where for the alasso a > 0, for the scad a > 2 and for the mcp a > 1.

Lastly, we can encourage the equality of the intercepts across groups by spe-

cifying a penalty shrinking their pairwise absolute group differences. Let k? be

the number of estimated intercepts in each group. Because of the presence of

fixed elements in τ g for model identification, k? is smaller than p. Let Dτ
q , for
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q = (g − 1)m1 + q? + 1, . . . , (g − 1)m1 + q? + k?, be a matrix of known constants

computing the differences of the intercepts across groups, whereas for all of the

other parameters (i.e., the loadings, the unique variances and the structural para-

meters) Dτ
q = Om1(G2)×m

. The penalty inducing equal intercepts across groups is

then written as

PTη3(θ) =
m∑
q=1

PTη3,q(||D
τ
qθ||1),

where η3 ∈ [0,∞) governs the amount of intercept invariance. The penalty

inducing equal intercepts across groups has precisely the same structure of the

penalty inducing equal loadings, the only difference being in the type of parameters

among which the differences are computed.

Optionally, one can encourage the invariance of the unique variances. However,

as argued by Little, Card, Slegers and Ledford (2012), these quantities contain both

random sources of errors, for which there is no theoretical reason to expect equality

across groups, and item-specific components, which can vary as a function of

various measurement factors. In light of this, we do not introduce a penalty on the

unique variances, as their cross-group equivalence would not provide any additional

evidence of comparability of the constructs because the important measurement

parameters (i.e., the factor loadings and the intercepts) are already encouraged to

be invariant by the penalties PTη2 and PTη3 .

The three aforementioned penalties can be easily combined into a single penalty

that simultaneously generates sparsity on the factor loading matrices and equivalent

loadings and intercepts

PTη (θ) = PTη1(θ) + PTη2(θ) + PTη3(θ)

=
m∑
q=1

{
PTη1,q(||Rqθ||1) + PTη2,q(||D

Λ
q θ||1) + PTη3,q(||D

τ
qθ||1)

}
, (5.3)

where η = (η1, η2, η3)T is the vector of the tuning parameters. Each penalty is

controlled by its own tuning parameter, as we do not a priori expect these values to

be equal. The penalties in (5.3) can be any of the functions illustrated in Section

2.2, including lasso, alasso, scad and mcp, and different penalty functions can be
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in principle combined.

By following the rationale described in Section 2.3, we replace each non-

differentiable penalty in (5.3) with its differentiable local approximation:

PTη1(θ) ≈ 1

2
θT


m∑
q=1

∂PTη1,q(||Rqθ̃||1)

∂||Rqθ̃||1
1√

(Rqθ̃)TRqθ̃ + c̄
RT
qRq

θ
=

1

2
θTDTη1(θ̃)θ,

PTη2(θ) ≈ 1

2
θT


m∑
q=1

∂PTη2,q(||D
Λ
q θ̃||1)

∂||DΛ
q θ̃||1

1√
(DΛ

q θ̃)TDΛ
q θ̃ + c̄

DΛT

q DΛ
q

θ
=

1

2
θTDTη2(θ̃)θ,

PTη3(θ) ≈ 1

2
θT


m∑
q=1

∂PTη3,q(||D
τ
q θ̃||1)

∂||Dτ
q θ̃||1

1√
(Dτ

q θ̃)TDτ
q θ̃ + c̄

DτT

q D
τ
q

θ
=

1

2
θTDTη3(θ̃)θ.

The matrix DTη1(θ̃) has the same form of the matrix STη (θ̃) described in equation

(2.13), with the non-zero diagonal elements being the factor loadings in each of

the groups. Let us now examine the elements that make up the matrix DTη2(θ̃),

namely,

dTq =
∂PTη2,q(||D

Λ
q θ̃||1)

∂||DΛ
q θ̃||1

1√
(DΛ

q θ̃)TDΛ
q θ̃ + c̄

.

If DΛ
q for the parameter θq is non-null, the expressions of dTq for the lasso, alasso,

scad and mcp penalties are:

dLq =
η2√∑

g<g′(θ̃(g−1)m1+q − θ̃(g′−1)m1+q)2 + c̄
,

dAq =
η2{∑

g<g′ |θ̂(g−1)m1+q − θ̂(g′−1)m1+q|
}a√∑

g<g′(θ̃(g−1)m1+q − θ̃(g′−1)m1+q)2 + c̄

,



5.2. Sparsity and invariance-inducing penalties 91

dSq =



η2√∑
g<g′(θ̃(g−1)m1+q − θ̃(g′−1)m1+q)2 + c̄

if
∑

g<g′ |θ̃(g−1)m1+q − θ̃(g′−1)m1+q| ≤ η2,

max(aη2 −
∑

g<g′|θ̃(g−1)m1+q − θ̃(g′−1)m1+q|, 0)

a− 1√∑
g<g′(θ̃(g−1)m1+q − θ̃(g′−1)m1+q)2 + c̄

if
∑

g<g′ |θ̃(g−1)m1+q − θ̃(g′−1)m1+q| > η2,

dMq =



η2 −
∑

g<g′ |θ̃(g−1)m1+q − θ̃(g′−1)m1+q|
a√∑

g<g′(θ̃(g−1)m1+q − θ̃(g′−1)m1+q)2 + c̄
if
∑

g<g′|θ̃(g−1)m1+q − θ̃(g′−1)m1+q| ≤ η2a,

0 if
∑

g<g′|θ̃(g−1)m1+q − θ̃(g′−1)m1+q| > η2a,

where for the alasso a > 0, for the scad a > 2 and for the mcp a > 1. The

specification of the matrix Dτ
q computing the pairwise differences of the intercepts

across groups and the corresponding expression of the approximated penalty matrix

DTη3(θ̃) follows the same rationale just described for DΛ
q and DTη2(θ̃).

These approximations lead to the following differentiable form of the combined

penalty:

PTη (θ) =
1

2
θT{DTη1(θ̃) + DTη2(θ̃) + DTη3(θ̃)}θ =

1

2
θTSTη (θ̃)θ,

where STη (θ̃) = DTη1(θ̃) + DTη2(θ̃) + DTη3(θ̃) is the overall penalty matrix.

Partial invariance

The adequacy of an unpenalized multiple-group factor model is usually evaluated by

testing the cross-group equality of any (set of) parameter(s) through likelihood ratio

tests or local-fit measures. If factorial invariance is rejected, model modifications

are conducted until one obtains a well-fitting model in which some, but not all,

of the parameters are invariant (“partial invariance”; Steenkamp & Baumgartner,

1998).

The process of searching the non-invariant parameters in a multiple-group
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analysis is the same as the one evaluating the plausibility of the fixed elements in

a single-group analysis, but their determination is generally more difficult, error-

prone, time-consuming in case of many observed variables and factors, and might

change depending on the order of testing.

The proposed penalized approach can serve as an automatic tool for the

detection of the optimal pattern of partial invariance, thus eluding invariance

testing procedures.

Fused penalty

The first two penalties in (5.3) shrink the factor loadings within each group as

well as their differences across groups. If T = L, such penalty can be related to

the generalized fused lasso proposed by Danaher, Wang and Witten (2014) in the

context of multiple graphical models to penalize the off-diagonal elements of the

precision matrices of different classes, as well as their differences across classes.

On a different note, that penalty can be viewed as an extension of the pairwise

fused lasso illustrated by Petry (2011) to penalize the coefficients of a general linear

model as well as their differences among any pair of regressors.

The next section provides an example clarifying the formulation of the presented

penalty functions and matrices.

5.2.1 An example

For notational clarity, we illustrate the aforedescribed penalties in a simple example.

Consider the following two-group factor model with p = 6 observed variables and

r = 2 factors:

xg = τ g + Λgf g + εg for g = 1, 2,

where f g ∼ N (κg,Φg), εg ∼ N (0,Ψg), with Ψg a diagonal matrix, and f g is

uncorrelated with εg. The parameter matrices are as follows, for g = 1, 2:
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Λg =



1 0

λ21g λ22g

λ31g λ32g

0 1

λ51g λ52g

λ61g λ62g


τ g =



0

τ2g

τ3g

0

τ5g

τ6g


Ψg =



ψ11g 0 0 0 0 0

ψ22g 0 0 0 0

ψ33g 0 0 0

ψ44g 0 0

ψ55g 0

ψ66g


,

Φg =

 φ11g φ12g

φ22g

 κg =

 κ1g

κ2g

 .
The factor loadings and intercepts of variables x1 and x4 have been fixed for metric

setting and identification purposes, as illustrated in Section 5.1. The parameters

of each group are collected in the mg-dimensional vectors:

θ1 = (vec(Λ1)T , τ T1 , diag(Ψ1)T , vech(Φ1)T ,κT1 )T

= (λ211, λ311, λ511, λ611, λ221, λ321, λ521, λ621, τ21, τ31, τ51, τ61, ψ111, ψ221, ψ331,

ψ441, ψ551, ψ661, φ111, φ121, φ221, κ11, κ21)T ,

θ2 = (vec(Λ2)T , τ T2 , diag(Ψ2)T , vech(Φ2)T ,κT2 )T

= (λ212, λ312, λ512, λ612, λ222, λ322, λ522, λ622, τ22, τ32, τ52, τ62, ψ112, ψ222, ψ332,

ψ442, ψ552, ψ662, φ112, φ122, φ222, κ12, κ22)T ,

where m1 = m2 = 23. The two group parameter vectors are combined into the

m-dimensional vector θ = (θT1 ,θ
T
2 )T , which can be conveniently expressed as

θ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8︸ ︷︷ ︸
Factor loadings
of Group 1

, θ9, θ10, θ11, θ12︸ ︷︷ ︸
Intercepts
of Group 1

, θ13, θ14, θ15, θ16, θ17, θ18, θ19, θ20,

θ21, θ22, θ23, θ24, θ25, θ26, θ27, θ28, θ29, θ30, θ31︸ ︷︷ ︸
Factor loadings
of Group 2

, θ32, θ33, θ34, θ35︸ ︷︷ ︸
Intercepts
of Group 2

, θ36, θ37, θ38,

θ39, θ40, θ41, θ42, θ43, θ44, θ45, θ46)T ,

with m = m1 + m2 = 2m1 = 46. Let q? = 8 be the number of factor loadings
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in each group, and k? = 4 the number of intercepts in each group. Notice

that the factor loadings in θ are located in the positions determined by q =

(g − 1)m1 + 1, . . . , (g − 1)m1 + q?, for g = 1, 2, that is, q = 1, . . . , 8, 24, . . . , 31.

Define the matrix Rq:

Rq =

1 q 46



1 0 . . . 0 . . . . . . 0

... . . . ... ...

q 0 . . . 1 . . . . . . 0

... ... . . . ...

... ... . . . ...

46 0 . . . 0 . . . . . . 0

for q = 1, . . . , 8, 24, . . . , 31,

and Rq = O46×46 otherwise. Then, the penalty inducing sparsity on the factor

loadings of each group is expressed as

Pη1(θ) =
46∑
q=1

Pη1,q(||Rqθ||1),

where ||Rqθ||1 = |θq| for q = 1, . . . , 8, 24, . . . , 31, and 0 otherwise.

The pairwise differences of every loading across the two groups are (θq− θm1+q),

for q = 1, . . . , 8, which consist of the set {(θ1 − θ24), (θ2 − θ25), (θ3 − θ26), (θ4 −

θ27), (θ5 − θ28), (θ6 − θ29), (θ7 − θ30), (θ8 − θ31)}. These differences can be specified

through the matrix DΛ
q , which, in case of two groups, for q = 1, . . . , 8, is equal to:

Dq = [Rq −Rq] =

1 q 23 23 + q 46



1 0 . . . 0 . . . . . . 0 . . . 0 . . . . . . 0

... . . . ... ... ... ...

q 0 . . . 1 . . . . . . 0 . . . −1 . . . . . . 0

... ... . . . ... ... . . . ...

... ... . . . ... ... . . . ...

23 0 . . . 0 . . . . . . 0 . . . 0 . . . . . . 0

,

(5.4)
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and DΛ
q = O23×46 otherwise. Then, the penalty inducing equal loadings across

groups can be written as

Pη2(θ) =
46∑
q=1

Pη2,q(||DΛ
q θ||1),

where ||DΛ
q θ||1 = |θq − θm1+q| for q = 1, . . . , 8, and 0 otherwise.

The pairwise differences of the intercepts across groups are computed similarly,

the only difference being that the index q is now shifted by q? units, that is,

q = (g − 1)m1 + q? + 1, . . . , (g − 1)m1 + q? + k? = 9, . . . , 12, 32, . . . , 35. Then, the

penalty introducing equal intercepts across groups is written as

Pη3(θ) =
46∑
q=1

Pη3,q(||Dτ
qθ||1),

where Dτ
q is equal to the matrix in (5.4) for q = 9, . . . , 12, and Dτ

q = O23×46

otherwise, and ||Dτ
qθ||1 = |θq?+q − θm1+q?+q| for q = 9, . . . , 12, and 0 otherwise.

The penalty that simultaneously generates sparsity on the factor loading

matrices and equivalent loadings and intercepts is:

Pη(θ) = Pη1(θ) + Pη2(θ) + Pη3(θ)

=
46∑
q=1

{
Pη1,q(||Rqθ||1) + Pη2,q(||DΛ

q θ||1) + Pη3,q(||Dτ
qθ||1)

}
.

5.3 Penalized maximum likelihood estimation

Similarly to what was done for the single-group factor model, we can express

the penalized log-likelihood function employing the local approximations of the

penalties described in equation (5.4) as

`p(θ) = `(θ)−N PTη (θ) =

{
`(θ)− N

2
θTSTη (θ̃)θ

}
, (5.5)

where the log-likelihood of the multiple-group factor model `(θ) is given in (5.2),

and STη (θ̃) = DTη1(θ̃) + DTη2(θ̃) + DTη3(θ̃) is the sum of the three penalty matrices
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introducing sparsity and loading and intercept invariance.

The estimation of the model parameters follows the same procedure described in

Section 3.1, with the only difference being that the scalar tuning parameter η is now

replaced with the tuning parameter vector η = (η1, η2, η3)T . Due to the presence

of parameters for the mean structure (i.e., the intercepts and the factor means) in

addition to those for the covariance structure, we only considered the penalized

Fisher information matrix Jp(θ) = J (θ) + NSTη (θ̃) as second-order derivative

information in the trust-region algorithm. The expressions of the gradient vector

and the Fisher information matrix for the multiple-group factor model are derived

in Appendix F.2.

Although one may in principle conduct a grid-search combined with GBIC (as

illustrated in Section 3.2) to determine the optimal values of the tuning parameters,

this procedure inevitably becomes computationally intensive and inefficient due to

the presence of three distinct tuning parameters, which requires fine grid-searches

in three dimensions. The automatic tuning parameter procedure described in

Section 3.3 really comes in handy here as it can be straightforwardly extended to

estimate the multiple tuning parameters that compose the penalty PTη (θ) in a fast,

stable and efficient way.

The edf of the penalized multiple-group factor model are estimated as

edf = tr
{
Jp(θ̂)−1J (θ̂)

}
= m− tr

{
[J (θ̂) +NSTη (θ̂)]−1NSTη (θ̂)

}
, (5.6)

which shows that edf → m as η → 0, and edf → m − r? as η → ∞, where

r? = G(q? + k?) is the total number of penalized elements; when 0 < η < ∞, the

edf ∈ [m− r?,m].

All of the theoretical properties of the PMLE illustrated in Section 3.4 for the

normal linear factor model (Theorems 3.1-3.3) continue to hold in the penalized

multiple-group factor model.
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6
Numerical and empirical

evaluation of the penalized

multiple-group factor model

This chapter evaluates the validity of the penalized multiple-group factor model

presented in Chapter 5 through numerical and empirical examples. First, we

describe a simulation study examining progressive levels of non-invariance in the

factor loadings and intercepts (Section 6.1). The performances of the PMLE are

evaluated and compared to the ones of a competing method. We investigate the

impact of several conditions, including the sample size, the size of the generated

difference, the magnitude of the influence factor and the value of the additional

tuning parameter. In addition, the proposed model and its competitor are tested

on a well-known psychometric data set (Section 6.2).

6.1 Simulation study

A simulation study was conducted to evaluate the ability of the proposed PMLE

technique in identifying the pattern of partial invariance in a multiple-group factor

analysis model. We first describe the design of the study and then present the

results. Since the current implementation of regsem does not allow for multiple-

group analyses, our method is only compared with lslx.

97
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6.1.1 Design and procedure

We consider a population multiple-group factor model with p = 12 variables, r = 3

factors and G = 2 groups. We explore a range of conditions, under which the factor

loading matrices and intercepts are either invariant or non-invariant, with the level

of non-invariance becoming progressively larger. Based on the findings from the

simulation study in the single-group factor model (Section 4.1.2), we employ the

alasso penalty for inducing sparsity and invariant loadings and intercepts, that is,

SA
η (θ̃) = DA

η1
(θ̃) + DA

η2
(θ̃) + DA

η3
(θ̃). The three tuning parameters (η1, η2, η3)T in

η are estimated alongside the model parameters through the automatic multiple

tuning parameter procedure. For lslx we used the mcp penalty, which had better

performances than the lasso. The optimization technique currently employed in

lslx makes use of a single penalty for both shrinking the parameters and their

differences across groups. Therefore, there is only one shrinkage parameter η,

whose optimal value is determined through a grid-search. For lslx-mcp, we carried

out a grid-search over 200 values of the shrinkage parameter η and 4 of the shape

parameter a.

The conditions that were varied are:

• Sample size: 300, 500 and 1000 observations evenly split between the two

groups, with 300 being close to the number of observations in the empirical

example (see Section 6.2);

• Difference size: either null, small, medium or large group differences in the

primary loadings and the intercepts of two variables were created (details are

given below). This condition was partly inspired by the simulation conducted

by Huang (2018);

• Influence factor: informed by the values that performed well in the simula-

tion and empirical application for the single-group factor model (Chapter 4),

we investigated three values of the influence factor, namely, γ = {3.5, 4, 4.5};

• Additional tuning parameter: two values were tested for the exponent
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Group 1 Group 2
All conditions Small Medium Large

Λ1 τ 1 Λ2 τ 2 Λ2 τ 2 Λ2 τ 2

x1 0.85 0 0 0.85 0 0 0.85 0 0 0.85 0 0
x2 0.85 0 0 0.85 0 0 0.85 0 0 0.85 0 0
x3 0.85 0 0 0.85 0 0 0.85 0 0 0.85 0 0
x4 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0 0
x5 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0 0
x6 0.75 0 0 0.65 0 −0.1 0.55 0 −0.2 0.45 0 −0.3
x7 0 0.85 0 0 0.85 0 0 0.85 0 0 0.85 0
x8 0 0.85 0 0 0.85 0 0 0.85 0 0 0.85 0
x9 0 0.85 0 0 0.85 0 0 0.85 0 0 0.85 0
x10 0 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0
x11 0 0.75 0 0 0.75 0 0 0.75 0 0 0.75 0
x12 0 0.75 0 0 0.65 −0.1 0 0.55 −0.2 0 0.45 −0.3

Note: Under the null condition, the parameters of Group 2 coincide with those
of Group 1.

Table 6.1: The factor loading matrices and intercepts of the two groups under each
difference scenario. Elements fixed for origin and scale setting and identification
purposes are italic and underlined.

in the expression of the alasso, namely a = {1, 2}.

The factor loading matrix and the vector of intercepts of Group 1 are reported on

the left-hand side of Table 6.1 and are the same under every difference scenario.

Elements in italic and underlined are fixed for metric setting and identification

purposes. The factor loadings and intercepts of Group 2 are presented by difference

scenario on the right-hand side of Table 6.1. In case of a null difference, the two

groups share the same parameter matrices. Under the small, medium and large

scenarios, the primary loadings and the intercepts of two variables (i.e., x6 and x12)

in Group 1 differ from the corresponding parameters in Group 2 by a size of 0.1, 0.2,

and 0.3, respectively. Under all conditions, the structural parameters are assumed to

be invariant across groups, that is, vech(Φ1) = vech(Φ2) = vech(Φ) = (1, 0.3, 1)T

and κ1 = κ2 = (0, 0)T , whereas Ψg = Ip −ΛgΦΛT
g , for g = 1, 2.

The factor loadings and the intercepts are penalized in the way described in

Section 5.2 (i.e., shrinkage of the loadings and of the pairwise group differences of

loadings and intercepts), whereas the remaining model parameters are estimated

without penalization.
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For each scenario, we generated L = 1000 replications for which the unpenalized

multiple-group factor model produced admissible solutions, and analyzed them as

described in the simulation for the single-group model (Section 4.1.1).

6.1.2 Results

The performances of the penalized models are evaluated through the criteria used

in the simulation study for the single-group factor model reported in expressions

(4.1)-(4.5), that is, mean-squared error (MSE), squared bias (SB), true positive

rate (TPR), false positive rate (FPR) and proportion choosing the true model

(PCTM). For the sake of conciseness, we report the results for the GJRM-alasso

model (a = 2 and γ = 4.5) that produced the best solution in terms of these

performance criteria.

By looking at the results in Table 6.2, we draw the following conclusions:

1. Overall, the low values of MSE, SB, FPR, high PCTM and excellent TPR

show that the penalized techniques possess very good empirical performances,

with all measures improving as the sample size increased.

2. Higher difference sizes were associated with higher MSE and squared bias,

with the lower values generally occurring for GJRM-alasso. We separately

computed these measures for each parameter matrix (that is, Λg, τ g, Ψg,

Φg, κg, for g = 1, 2) produced by GJRM-alasso; the results are depicted in

Figure 6.1 for MSE and Figure 6.2 for SB. The largest MSE were observed

for the factor variances and covariances, followed by the factor loadings. The

bias tended to increase for the penalized parameters (factor loadings and

intercepts) across the difference conditions, while remaining almost unaltered

for the unique variances and the structural parameters. The squared bias

quickly converged towards zero in all difference scenarios as the sample size

increased.

3. The TPR were always equal to 1.0, which showed that the examined methods

never suppressed the non-zero penalized parameters.
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Difference
scenario

Null Small Medium Large
GJRM lslx GJRM lslx GJRM lslx GJRM lslx

MSE
N = 300 0.275 0.279 0.303 0.307 0.356 0.372 0.385 0.416
N = 500 0.165 0.164 0.189 0.189 0.220 0.239 0.221 0.235
N = 1000 0.083 0.082 0.102 0.104 0.105 0.115 0.103 0.101
SB
N = 300 0.003 0.002 0.020 0.021 0.046 0.062 0.043 0.050
N = 500 0.001 0.001 0.017 0.020 0.026 0.042 0.018 0.012
N = 1000 0.000 0.000 0.012 0.018 0.007 0.007 0.005 0.001
PCTM
N = 300 0.935 0.890 0.945 0.880 0.933 0.820 0.948 0.677
N = 500 0.951 0.956 0.948 0.949 0.947 0.854 0.967 0.781
N = 1000 0.980 0.991 0.969 0.977 0.976 0.930 0.984 0.958
FPR
N = 300 0.006 0.010 0.005 0.012 0.005 0.019 0.004 0.035
N = 500 0.004 0.004 0.005 0.005 0.004 0.014 0.003 0.020
N = 1000 0.002 0.001 0.002 0.002 0.002 0.005 0.001 0.003

Table 6.2: Performance measures of GJRM-alasso and lslx-mcp models by sample
size and difference scenario. MSE stands for mean-squared error, SB for squared
bias, PCTM for proportion choosing the true model, FPR for false positive rate.

4. Whereas under the null and small scenarios the two methods produced

similar measures, GJRM-alasso markedly outperformed lslx-mcp under the

medium and large conditions, especially in terms of selection consistency

at the smallest sample size. On top of that, whereas these performance

measures for lslx noticeably degraded as the difference size increased, they

remained fairly stable for GJRM-alasso; even with the smallest sample size,

GJRM-alasso identified the true heterogeneity pattern more than 90% of the

times.

Computational efficiency

Thanks to the use of the automatic multiple tuning parameter procedure, un-

der every sample size and difference scenario, the computational time to fit a

GJRM-alasso model with three tuning parameters was much lower than the one

necessary to fit a lslx-mcp model with a single shrinkage parameter η and the

associated shape parameter a selected through a grid-search. Table 6.3 reports the
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Figure 6.1: Average mean squared error of GJRM-alasso (a = 2, γ = 4.5) by
difference scenario, sample size and parameter type.
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Figure 6.2: Average squared bias of GJRM-alasso (a = 2, γ = 4.5) by difference
scenario, sample size and parameter type.
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minimum, median and standard error of the elapsed time for estimating one penal-

ized multiple-group factor analysis model under every sample size and difference

scenario. The distributions of the elapsed times are visualized through violin plots

in function of the sample size and the difference scenario in Figure 6.3. The times

of GJRM models generally had higher standard errors, due to the larger variability

in the number of iterations required by the automatic procedure, as opposed to

the smaller variability of the times of lslx models, which were fitted through

a grid-search and thus tended to be characterized by comparable computational

times across replications. Nevertheless, GJRM-alasso was always by about 11 to

27 times faster than the competitor, depending on the condition. It is important to

stress that the higher computational times of lslx are based on a unidimensional

grid-search since the software uses a single tuning parameter for sparsity and

loading and intercept invariance. If instead one were to consider three distinct

tuning parameters, the method would require grid-searches in three dimensions.

This procedure clearly becomes inefficient and prohibitive with the growth of the

number of tuning parameters. The further problem with grid-searches is that they

are essentially arbitrary due to the subjectivity in the choice of the grid size and

the granularity (i.e., how much the elements are interspaced). On the contrary,

the automatic tuning procedure can estimate tuning parameters that can take any

positive value and scales well as the number of tuning parameters increases.

6.2 Empirical application

In Section 4.2, the Holzinger & Swineford data set was used to conduct an empirical

analysis and demonstrate the proposed penalized technique for the normal linear

factor analysis model. The data set on the mental ability tests also contains

information about the school attended by the students. One school (Pasteur)

includes students with parents who immigrated from Europe, whereas the other

(Grant-White) is composed of students coming from middle-income American

white families. Therefore, we can conduct a multiple-group analysis on these
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Difference
scenario

Null Small Medium Large
GJRM lslx GJRM lslx GJRM lslx GJRM lslx

N = 300
Minimum 0.89 25.46 1.03 26.98 1.22 24.37 1.13 26.14
Median 1.84 45.57 2.19 48.61 4.70 47.09 4.64 49.77
Standard error 8.57 3.18 11.55 8.70 16.89 4.60 15.86 17.48
N = 500
Minimum 0.86 23.73 0.81 24.59 1.06 33.03 1.00 25.70
Median 1.70 42.93 2.31 45.74 5.20 45.14 4.32 45.99
Standard error 9.06 2.21 11.56 100.03 15.32 3.93 10.37 3.01
N = 500
Minimum 0.76 22.68 0.81 29.20 1.81 25.85 1.14 30.04
Median 1.56 40.65 4.18 46.55 4.19 42.70 3.36 43.94
Standard error 7.29 2.28 12.84 27.73 9.52 10.20 10.79 1.84

Table 6.3: Minimum, median and standard error of the elapsed time (seconds) for
GJRM-alasso (a = 2; γ = 4.5) and lslx-mcp under each sample size and difference
scenario.

Null effect Small effect Medium effect Large effect

N
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 300
N
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Figure 6.3: Distributions of the elapsed times of the investigated methods under
each sample size and difference scenario. The grey squares indicate the average
times.
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Observed
variables Minimum Maximum

VISUAL 4 51
CUBES 9 37
PAPER 6 25
FLAGS 2 36
GENERAL 8 84
PARAGRAP 0 19
SENTENCE 4 28
WORDC 10 43
WORDM 1 43
ADDITION 30 171
CODE 19 118
COUNTING 61 200
STRAIGHT 100 333
WORDR 121 198
NUMBERR 68 112
FIGURER 58 119
OBJECT 0 26
NUMBERF 0 20
FIGUREW 3 20

Table 6.4: Original ranges of values of the observed variables of the Holzinger &
Swineford data set.

two sub-groups (N1 = 156, N2 = 145). Following Huang (2018), we consider the

following p = 19 mental tests: visual perception (VISUAL), cubes (CUBES), paper

from board (PAPER), flags (FLAGS), general information (GENERAL), para-

graph comprehension (PARAGRAP), sentence completion (SENTENCE), word

classification (WORDC), word meaning (WORDM), addition (ADDITION), code

(CODE), counting groups of dots (COUNTING), straight and curved capitals

(STRAIGHT), word recognition (WORDR), number recognition (NUMBERR),

figure recognition (FIGURER), object-number (OBJECT), number-figure (NUM-

BERF), figure-word (FIGUREW). These tests are thought of as measuring q = 4

correlated abilities: spatial ability (VISUAL, CUBES, PAPER, FLAGS), verbal

intelligence (GENERAL, PARAGRAP, SENTENCE, WORDC, WORDM), speed

(ADDITION, CODE, COUNTING, STRAIGHT), and memory (WORDR, NUM-

BERR, FIGURER, OBJECT, NUMBERF, FIGUREW). The ranges of values

of the observed variables are quite diverse (Table 6.4). As in Huang (2018), we

standardized the data to handle the scaling effect.
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The traditional approach to multiple-group analyses consists of the estimation

of an unpenalized multiple-group CFA in which the tests are assumed to be pure

measures, followed by factorial invariance testing procedures. The model assuming

equal loadings across groups shows an adequate fit to the data (p-value of the

chi-square goodness of fit test = 0.266), which, however, significantly worsens when

the intercepts are also equated across groups (p-value of the likelihood ratio test

comparing the model with invariant loadings and intercepts versus the one with

only invariant loadings < 0.001). Model modifications are typically conducted to

determine and freely estimate the non-invariant elements.

Alternatively, the invariance pattern can be explored via a penalized technique

employing penalties that combine sparsity and cross-group equivalence of loadings

and intercepts, such as the one introduced in this thesis. In light of its superior

performance in the single-group analysis and simulation, we employed the alasso

with the automatic multiple tuning parameter procedure, and tested various values

of the influence factor (γ = {1, 2, 3, 3.5, 4, 4.5}) and the exponent (a = {1, 2}).

The tests VISUAL, WORDM, COUNTING and NUMBERR are assumed to

be the markers, and thus have fixed factor loadings and intercepts. The data

analysis was also conducted in lslx with the mcp, but not in regsem as its current

implementation does not allow for multiple-group analyses. Note that lslx uses

only one penalty for shrinking both the parameters and their differences, hence it

has a single tuning parameter η.

The parameter estimates of GJRM-alasso and lslx-mcp are reported in Tables

6.5 and 6.6, respectively. The better fit of GJRM-alasso (BIC = 14658) as compared

to lslx-mcp (BIC = 14697.75) is also merit of the greater flexibility of the former,

which employs three distinct penalties having their own tuning parameter, with

respect to the latter, where a single tuning has to take care of the shrinkage of

the parameters as well as their cross-group differences. Both techniques produce

sparse loading matrices with many zero-entries, but the presence of a couple

of non-zero cross-loadings demonstrates that the structure hypothesized by a

multiple-group CFA is too restrictive. Contrarily to lslx-mcp, which presents
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Figure 6.4: The distributions of the factor scores on the four identified dimensions
and in the two schools for GJRM-alasso on the Holzinger & Swineford data set.

one non-invariant loading, the factor loading matrices of GJRM-alasso are fully

equivalent, in agreement to the results of invariance testing. Conversely, the

intercepts are not fully invariant, which is again in line with the findings from

factorial invariance testing.

The students of the two schools can be scaled on every uncovered dimension

through the calculation of the so-called factor scores, which are “estimates” or

“predictions” of the values of the latent factors for each individual. Figure 6.4

shows the distributions of the factor scores on the four identified dimensions (i.e.,

spatial ability, verbal intelligence, speed and memory) and in the two groups for

the GJRM-alasso model. From a visual inspection, the students from Grant-White

school seem to score on average higher on the verbal construct, whereas the students’

performances on the other factors appear comparable across schools. This result,

however, should be interpreted with caution due to the lack of invariance detected

in the intercepts as well as the indeterminacy problem that affects the factor scores

(Grice, 2001).

This example clearly shows the benefits of using properly designed penalized

techniques to explore the non-equivalence pattern of the parameter matrices in a

multiple-group factor model.
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7
Software implementation

The proposed methodology and estimation approach are implemented in the R

package GJRM (Marra & Radice, 2019b) to enhance reproducible research and trans-

parent dissemination of results. In this chapter, we describe the main functions for

fitting single and multiple-group factor analysis models according to the penalized

likelihood-based estimation framework proposed in this thesis (see Sections 7.1 and

7.2, respectively). To this end, we demonstrate how potential users can carry out

the empirical analyses presented in Sections 4.2 and 6.2 through the package GJRM.

Get started

The subsequent analyses require the R package GJRM, so we install and load this

package, and then progress with the analysis.

install.packages("GJRM", dependencies = TRUE)
library(GJRM)

7.1 Penalized estimation of a factor model

The empirical analysis presented in Section 4.2 employs the Holzinger & Swineford

data set (Holzinger & Swineford, 1939), a classical psychometric application on

students’ mental abilities. The data set, already scaled as described in Yuan and

Bentler (2006), is contained in the R package lavaan (Rosseel, 2012; Rosseel et al.,

2019). Let us load and inspect the data.

111
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data <- lavaan::HolzingerSwineford1939
summary(data)

## id sex ageyr agemo
## Min. : 1.0 Min. :1.000 Min. :11 Min. : 0.000
## 1st Qu.: 82.0 1st Qu.:1.000 1st Qu.:12 1st Qu.: 2.000
## Median :163.0 Median :2.000 Median :13 Median : 5.000
## Mean :176.6 Mean :1.515 Mean :13 Mean : 5.375
## 3rd Qu.:272.0 3rd Qu.:2.000 3rd Qu.:14 3rd Qu.: 8.000
## Max. :351.0 Max. :2.000 Max. :16 Max. :11.000
##
## school grade x1 x2
## Grant-White:145 Min. :7.000 Min. :0.6667 Min. :2.250
## Pasteur :156 1st Qu.:7.000 1st Qu.:4.1667 1st Qu.:5.250
## Median :7.000 Median :5.0000 Median :6.000
## Mean :7.477 Mean :4.9358 Mean :6.088
## 3rd Qu.:8.000 3rd Qu.:5.6667 3rd Qu.:6.750
## Max. :8.000 Max. :8.5000 Max. :9.250
## NA's :1
## x3 x4 x5 x6
## Min. :0.250 Min. :0.000 Min. :1.000 Min. :0.1429
## 1st Qu.:1.375 1st Qu.:2.333 1st Qu.:3.500 1st Qu.:1.4286
## Median :2.125 Median :3.000 Median :4.500 Median :2.0000
## Mean :2.250 Mean :3.061 Mean :4.341 Mean :2.1856
## 3rd Qu.:3.125 3rd Qu.:3.667 3rd Qu.:5.250 3rd Qu.:2.7143
## Max. :4.500 Max. :6.333 Max. :7.000 Max. :6.1429
##
## x7 x8 x9
## Min. :1.304 Min. : 3.050 Min. :2.778
## 1st Qu.:3.478 1st Qu.: 4.850 1st Qu.:4.750
## Median :4.087 Median : 5.500 Median :5.417
## Mean :4.186 Mean : 5.527 Mean :5.374
## 3rd Qu.:4.913 3rd Qu.: 6.100 3rd Qu.:6.083
## Max. :7.435 Max. :10.000 Max. :9.250
##

The data set contains information on the test scores (items x1 to x9) of N = 301

seventh-grade and eighth-grade students on p = 9 mental tests. Additional

information is available, such as the age of the students and the attended school

(i.e., Pasteur or Grant-White). Let us select and center the data subset constituted

by the nine tests.
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data <- scale(data[,7:15], center = TRUE, scale = FALSE)

The following sections describe how to specify and estimate a penalized factor

analysis model using the adaptive lasso penalization to encourage a sparse factor

loading matrix and the automatic tuning parameter procedure to select the optimal

amount of sparsity. This combination of penalty and tuning selection strategy

produced the model with the superior fit in the empirical analysis (see Table 4.6

with the BIC ranking).

7.1.1 Model specification

Before fitting the model, users should write a “model syntax” which describes

the model to be estimated and specifies the relationships between the observed

variables and the latent variables (i.e., the common factors). To facilitate its

formulation, the rules for the syntax specification follow the ones required by the

package lavaan, and are briefly reviewed below. Let us have a look at the following

syntax, which is enclosed in single quotes.

syntax <-' # Measurement model
spatial =~ x1 + x2 + x3 + 0*x4 + x5 + x6 + 0*x7 + x8 + x9
verbal =~ 0*x1 + x2 + x3 + x4 + x5 + x6 + 0*x7 + x8 + x9
speed =~ 0*x1 + x2 + x3 + 0*x4 + x5 + x6 + x7 + x8 + x9

# Unit variances for common factors
spatial ~~ 1*spatial
verbal ~~ 1*verbal
speed ~~ 1*speed '

The three common factors are referred to as spatial, verbal and speed,

whereas the observed variables names range from x1 to x9. The factors appear

on the left-hand side, whereas the observed variables on the right-hand side. The

special operator “=~” is read as “is measured by”, and is used to list the observed

variables loading on each factor. The factor variances and covariances are specified

using the double tilde operator “~~”. In order to fix a parameter to a given value,

we pre-multiply (through the symbol “*”) the corresponding variable in the formula

by the specific numerical value.
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The above syntax specifies a factor model with r = 3 common factors, where

each observed variable loads on each of the factors, apart from the ones whose

loadings are fixed to zero for identification purposes. The scales of the factors

are specified by fixing their variances to 1.0. By default, the unique variances are

automatically added to the model, and the common factors are allowed to correlate.

These specifications can be easily modified by altering the syntax according to

one’s own preferences.

7.1.2 Model fitting

We now show how to estimate the factor analysis model specified in the syntax

according to the penalized likelihood-based approach presented in this thesis. The

estimation process is demonstrated for the alasso penalty and the automatic tuning

procedure, but the rationale is similar for other choices of penalty functions. The

alasso employs a set of adaptive weights correcting the bias issue of the lasso. A

common choice for the weights is given by the maximum likelihood estimates from

the unpenalized factor model. The unpenalized model can be estimated through

the function penfa - a short form for PENalized Factor Analysis - as follows:

fit.mle <- penfa(model = syntax, data = data, information ="fisher",
shrink = "none")

The function penfa takes as first argument the user-specified model syntax, and

as second argument the data set with the observed variables. The information

argument allows users to choose between the penalized expected Fisher information

(“fisher”) or the penalized Hessian matrix (“hessian”) as second-order derivatives

to be used in the trust-region algorithm (the matrix B in expression (3.3)). In

the shrink argument, users can specify the penalty function of interest; when it

is set equal to “none”, no penalization is applied, and the model is estimated by

ordinary maximum likelihood. We can get an overview of the data set and the

optimization process by printing the fit.mle object.
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fit.mle

## GJRM reached convergence
##
## Number of observations 301
##
## Estimator MLE
## Optimization method trust-region
## Information expected
## Strategy grid
## Number of iterations 15
## Effective degrees of freedom 33.000
##

The trust-region algorithm required a small number of iterations to converge.

Since no penalization is imposed, the effective degrees of freedom coincide with

the number of model parameters, that is, edf = m = 33. The parameter estimates

can be extracted through the function coef together with their names. Each name

is composed of three parts and reflects the part of the formula in which a given

parameter was involved. The variable name appears on the left-hand side of the

formula, the operator is placed in the middle, and the variable corresponding to

the parameter on the right-hand side.

weights <- coef(fit.mle)
weights

## spatial=~x1 spatial=~x2 spatial=~x3 spatial=~x5
## 0.814 0.652 0.909 -0.134
## spatial=~x6 spatial=~x8 spatial=~x9 verbal=~x2
## 0.067 0.296 0.540 -0.118
## verbal=~x3 verbal=~x4 verbal=~x5 verbal=~x6
## -0.330 0.987 1.193 0.875
## verbal=~x8 verbal=~x9 speed=~x2 speed=~x3
## -0.158 -0.141 -0.161 -0.012
## speed=~x5 speed=~x6 speed=~x7 speed=~x8
## 0.008 -0.020 0.767 0.680
## speed=~x9 x1~~x1 x2~~x2 x3~~x3
## 0.433 0.696 1.035 0.692
## x4~~x4 x5~~x5 x6~~x6 x7~~x7
## 0.377 0.403 0.365 0.594
## x8~~x8 x9~~x9 spatial~~verbal spatial~~speed
## 0.479 0.551 0.585 0.173
## verbal~~speed
## 0.220
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The estimation of the penalized factor model is again carried out through the

function penfa, but with some new and different arguments. The alasso penalty

function is specified in the shrink argument, whereas the adaptive weights are

given in the weights argument. The value of the additional tuning parameter a

of the alasso can be assigned through the a.alasso argument, whereas the eta

argument allows users to provide a starting value for the shrinkage parameter

η. The name given to the starting value - “lambda” in this case - reflects the

parameter matrix or vector to be penalized. By default, all of its elements are

penalized, which means here that the penalization is applied to all of the factor

loadings. If “strategy” is specified equal to “grid”, then a penalized model with

the value of η given in eta is estimated, whereas the automatic tuning parameter

procedure is carried out when strategy is set equal to “auto”. Lastly, users can

choose a specific value of the influence factor γ through the gamma argument.

fit <- penfa(model = syntax, data = data, information = "fisher",
shrink = "alasso", weights = weights, a.alasso = 1,
eta = list("shrink" = c("lambda" = 0.01)),
strategy = "auto", gamma = 4.5)

fit

## GJRM reached convergence
##
## Number of observations 301
##
## Estimator PMLE
## Optimization method trust-region
## Information expected
## Strategy auto
## Number of iterations (total) 32
## Number of two-steps (automatic) 1
## Effective degrees of freedom 22.843
##
## Penalty function:
## Sparsity alasso
##

Printing the fitted object gives an overview of the optimization and penalization

processes, including the employed optimizer and penalty function, the total number

of iterations and the number of outer iterations of the automatic procedure. The
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automatic procedure is very fast, as it required a single outer iteration to reach

convergence. The number of effective degrees of freedom of the penalized model is

edf = 22.843, which is a fractional number, as opposed to the integer number that

existing penalized factor analytic techniques report for the degrees of freedom.

The summary function provides detailed information on the model characterist-

ics, the optimization and the penalization procedures, as well as the parameter

estimates with associated standard errors and confidence intervals. The optimal

value of the tuning parameter is η̂ = 0.017. The data set well supported the

introduction of sparsity, as is demonstrated by the reduction in the Generalized

Bayesian Information Criterion (GBIC) when moving from the unpenalized model

fit.mle (7601.416) to its penalized counterpart fit (7558.026). The Type column

distinguishes between the fixed parameters that have been set to specific values

for identification purposes, the free parameters that have been estimated through

ordinary maximum likelihood, and the penalized parameters (denoted as pen).

The standard errors are computed as the square root of the inverse of the pen-

alized Fisher information matrix (or alternatively, of the penalized Hessian if

information = “hessian”). The last columns report 95% confidence intervals for

the model parameters. The standard errors and the confidence intervals of the

penalized parameters that were shrunken to zero are not reported. A different

significance level can be specified through the level argument in the summary call.

summary(fit)

## GJRM reached convergence
##
## Number of observations 301
## Number of groups 1
## Number of observed variables 9
## Number of latent factors 3
##
## Estimator PMLE
## Optimization method trust-region
## Information expected
## Strategy auto
## Number of iterations (total) 32
## Number of two-steps (automatic) 1
## Influence factor 4.5
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## Number of parameters:
## Free 12
## Penalized 21
## Effective degrees of freedom 22.843
## GIC 7473.346
## GBIC 7558.026
##
## Penalty function:
## Sparsity alasso
##
## Additional tuning parameter
## alasso 1
##
## Optimal tuning parameter:
## Sparsity
## - Factor loadings 0.017
##
## Parameter Estimates:
##
## Latent Variables:
## Type Estimate Std.Err 2.5% 97.5%
## spatial =~
## x1 pen 0.829 0.073 0.685 0.972
## x2 pen 0.493 0.073 0.350 0.636
## x3 pen 0.758 0.086 0.591 0.926
## x4 fixed 0.000 0.000 0.000
## x5 pen -0.060 0.034 -0.128 0.007
## x6 pen 0.000
## x7 fixed 0.000 0.000 0.000
## x8 pen 0.124 0.059 0.008 0.239
## x9 pen 0.410 0.062 0.290 0.531
## verbal =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.000
## x3 pen -0.157 0.066 -0.286 -0.029
## x4 pen 0.960 0.055 0.852 1.069
## x5 pen 1.114 0.065 0.987 1.240
## x6 pen 0.889 0.052 0.787 0.992
## x7 fixed 0.000 0.000 0.000
## x8 pen -0.000
## x9 pen -0.000
## speed =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.013
## x3 pen 0.000
## x4 fixed 0.000 0.000 0.000
## x5 pen 0.000
## x6 pen 0.000
## x7 pen 0.697 0.078 0.544 0.850
## x8 pen 0.704 0.077 0.553 0.854
## x9 pen 0.423 0.060 0.305 0.541
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##
## Covariances:
## Type Estimate Std.Err 2.5% 97.5%
## spatial ~~
## verbal free 0.481 0.065 0.354 0.609
## speed free 0.196 0.098 0.004 0.389
## verbal ~~
## speed free 0.160 0.077 0.008 0.312
##
## Variances:
## Type Estimate Std.Err 2.5% 97.5%
## spatial fixed 1.000 1.000 1.000
## verbal fixed 1.000 1.000 1.000
## speed fixed 1.000 1.000 1.000
## .x1 free 0.623 0.095 0.438 0.809
## .x2 free 1.110 0.099 0.917 1.304
## .x3 free 0.748 0.092 0.567 0.930
## .x4 free 0.380 0.048 0.287 0.473
## .x5 free 0.418 0.059 0.303 0.533
## .x6 free 0.363 0.043 0.279 0.447
## .x7 free 0.669 0.097 0.479 0.859
## .x8 free 0.444 0.087 0.273 0.616
## .x9 free 0.560 0.059 0.444 0.676

The penalty matrix Sη̂(θ̂) at convergence is stored in the slot @Penalize. It

is a diagonal matrix with the elements on the diagonal quantifying the extent to

which each model parameter has been penalized.

round(diag(fit@Penalize@Sh.info$S.h), 2)

## spatial=~x1 spatial=~x2 spatial=~x3 spatial=~x5
## 7.64 16.02 7.47 639.57
## spatial=~x6 spatial=~x8 spatial=~x9 verbal=~x2
## 626389.20 140.69 23.27 427303.89
## verbal=~x3 verbal=~x4 verbal=~x5 verbal=~x6
## 99.47 5.44 3.88 6.62
## verbal=~x8 verbal=~x9 speed=~x2 speed=~x3
## 246589.16 347789.43 2446.04 4332622.32
## speed=~x5 speed=~x6 speed=~x7 speed=~x8
## 6419433.77 2587290.17 9.63 10.76
## speed=~x9 x1~~x1 x2~~x2 x3~~x3
## 28.16 0.00 0.00 0.00
## x4~~x4 x5~~x5 x6~~x6 x7~~x7
## 0.00 0.00 0.00 0.00
## x8~~x8 x9~~x9 spatial~~verbal spatial~~speed
## 0.00 0.00 0.00 0.00
## verbal~~speed
## 0.00
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Penalization

Penalty matrix for sparsity

Figure 7.1: Heat map of the penalty matrix SA
η̂ (θ̂) on a log-scale for GJRM-alasso

(a = 1, γ = 4.5) on the Holzinger & Swineford data set.

The values corresponding to the factor loadings are different from zero, as

these are the parameters that have been penalized, whereas the values for the

unique variances (x1~~x1 to x9~~x9) and the factor covariances (spatial~~verbal,

spatial~~speed, verbal~~speed) are zero, as these elements were not affected

by the penalization. The magnitude of the penalization varied depending on the

size of the factor loading to be penalized: small loadings received a considerable

penalty, whereas large loadings a little one. Figure 7.1 shows the heat map of the

penalty matrix SA
η̂ (θ̂) on a log-scale, given the wide range of its elements (from 0

to over 6× 106).



7.2. Penalized estimation of a multiple-group factor model 121

7.2 Penalized estimation of a multiple-group

factor model

As a followup, we consider the penalized estimation of a multiple-group factor model

with the alasso penalty and the automatic multiple tuning procedure (Section 6.2).

Interestingly, there are now multiple tuning parameters: one of them introduces

sparsity in the factor loading matrices of each of the groups, whereas the other two

encourage cross-group invariance of loadings and intercepts. For this example, we

use the complete version of the Holzinger & Swineford data set in the R package

MBESS (Kelley, 2019). An inspection at the data set structure reveals that HS.data

contains the scores on 26 tests from N = 301 students attending the Pasteur

and Grant-White schools. We analyze the subset consisting of the first p = 19

tests, which we standardized to handle the scaling effect. The variables were also

renamed for convenience when formulating the syntax.

data <- HS.data[, 6:25]
summary(data)

## school visual cubes paper
## Grant-White:145 Min. : 4.00 Min. : 9.00 Min. : 6.00
## Pasteur :156 1st Qu.:25.00 1st Qu.:21.00 1st Qu.:12.00
## Median :30.00 Median :24.00 Median :14.00
## Mean :29.61 Mean :24.35 Mean :14.23
## 3rd Qu.:34.00 3rd Qu.:27.00 3rd Qu.:16.00
## Max. :51.00 Max. :37.00 Max. :25.00
## flags general paragrap sentence
## Min. : 2 Min. : 8.00 Min. : 0.000 Min. : 4.00
## 1st Qu.:11 1st Qu.:31.00 1st Qu.: 7.000 1st Qu.:14.00
## Median :17 Median :41.00 Median : 9.000 Median :18.00
## Mean :18 Mean :40.62 Mean : 9.183 Mean :17.36
## 3rd Qu.:25 3rd Qu.:49.00 3rd Qu.:11.000 3rd Qu.:21.00
## Max. :36 Max. :84.00 Max. :19.000 Max. :28.00
## wordc wordm addition code
## Min. :10.00 Min. : 1.0 Min. : 30.00 Min. : 19.00
## 1st Qu.:23.00 1st Qu.:10.0 1st Qu.: 80.00 1st Qu.: 60.00
## Median :26.00 Median :14.0 Median : 94.00 Median : 68.00
## Mean :26.13 Mean :15.3 Mean : 96.24 Mean : 69.16
## 3rd Qu.:30.00 3rd Qu.:19.0 3rd Qu.:113.00 3rd Qu.: 79.00
## Max. :43.00 Max. :43.0 Max. :171.00 Max. :118.00
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## counting straight wordr numberr
## Min. : 61.0 Min. :100.0 Min. :121.0 Min. : 68
## 1st Qu.: 97.0 1st Qu.:171.0 1st Qu.:168.0 1st Qu.: 84
## Median :110.0 Median :195.0 Median :176.0 Median : 90
## Mean :110.5 Mean :193.4 Mean :175.2 Mean : 90
## 3rd Qu.:122.0 3rd Qu.:219.0 3rd Qu.:184.0 3rd Qu.: 96
## Max. :200.0 Max. :333.0 Max. :198.0 Max. :112
## figurer object numberf figurew
## Min. : 58.0 Min. : 0.000 Min. : 0.000 Min. : 3.00
## 1st Qu.: 98.0 1st Qu.: 5.000 1st Qu.: 6.000 1st Qu.:11.00
## Median :103.0 Median : 8.000 Median : 9.000 Median :14.00
## Mean :102.5 Mean : 8.216 Mean : 9.395 Mean :14.02
## 3rd Qu.:107.0 3rd Qu.:11.000 3rd Qu.:12.000 3rd Qu.:17.00
## Max. :119.0 Max. :26.000 Max. :20.000 Max. :20.00

data[, 2:20] <- scale(data[, 2:20])
colnames(data)[2:20] <- paste0("x", 1:19)

7.2.1 Model specification

The syntax becomes more elaborate, due to the additional specification of the

mean structure.

syntax.mg <-'
# Measurement model
spatial =~ 1*x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 0*x9 + x10 +

x11 + 0*x12 + x13 + 0*x14 + x15 + x16 + x17 + x18 + x19
verbal =~ 0*x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 1*x9 + x10 +

x11 + 0*x12 + x13 + 0*x14 + x15 + x16 + x17 + x18 + x19
speed =~ 0*x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 0*x9 + x10 +

x11 + 1*x12 + x13 + 0*x14 + x15 + x16 + x17 + x18 + x19
memory =~ 0*x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 0*x9 + x10 +

x11 + 0*x12 + x13 + 1*x14 + x15 + x16 + x17 + x18 + x19

# Estimate intercepts
x2 + x3 + x4 + x5 + x6 + x7 + x8 + x10 + x11 +

x13 + x15 + x16 + x17 + x18 + x19 ~ 1
# Fixed intercepts
x1 + x9 + x12 + x14 ~ 0*1

# Structural model
spatial ~~ NA*spatial
verbal ~~ NA*verbal
speed ~~ NA*speed
memory ~~ NA*memory
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spatial ~ NA*1
verbal ~ NA*1
speed ~ NA*1
memory ~ NA*1
'

The mean structure can be explicitly introduced by including “intercept for-

mulas” in the model syntax. These expressions are constituted by the name of

the variable, followed by the tilde operator “~”, and the number 1. If the variable

appearing in the formula is an observed variable, then the formula specifies the

intercept term for that item; if the variable is latent (i.e., a common factor), then

the formula specifies a factor mean. To avoid clutter, if users desire to introduce

intercepts for multiple variables, they can specify on the left-hand side all the

variables of interest, followed by plus (“+”) signs. By default, the factor means

are fixed to zero. Provided that identification restrictions are applied, users can

force the estimation of any model parameter by pre-multiplying the variable name

on the right-hand side by NA. This is done in the syntax for the means and the

variances of the common factors.

The syntax above specifies a factor model with r = 4 factors and p = 19 observed

variables. The metric of the factors is accommodated through the “marker-variable”

approach, with the markers being x1, x9, x12, x14. The structural model is freely

estimated. The fact that the syntax should prompt a multiple-group analysis will

be communicated to the fitting function penfa through proper arguments (see

below for details). By default, the model in the syntax is fitted to all groups.

Before carrying out the penalized estimation, we fit the unpenalized model

to obtain the maximum likelihood estimates to be used as weights for the alasso.

To facilitate the estimation process, we can provide informative starting values

to (some of) the parameters. This can be done through the pre-multiplication

mechanism employed to fix some parameter values, but the numeric constant

becomes the argument of the function start. To fix parameters or provide starting

values in case of multiple groups, we use the same pre-multiplication mechanism,

but the numeric argument is a vector of arguments, one for each group. When



124 7. Software implementation

users provide a single value instead of a vector of values, that element is applied for

all groups. The syntax below provides a starting value equal to 0.8 to the primary

loadings of all factors.

syntax.mle.mg <- '
# Measurement model + starting values
spatial =~ 1*x1 + start(0.8)*x2 + start(0.8)*x3 + start(0.8)*x4 +

x5 + x6 + x7 + x8 + 0*x9 + x10 + x11 + 0*x12 + x13 +
0*x14 + x15 + x16 + x17 + x18 + x19

verbal =~ 0*x1 + x2 + x3 + x4 + start(0.8)*x5 + start(0.8)*x6 +
start(0.8)*x7 + start(0.8)*x8 + 1*x9 + x10 + x11 +
0*x12 + x13 + 0*x14 + x15 + x16 + x17 + x18 + x19

speed =~ 0*x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 0*x9 +
start(0.8)*x10 + start(0.8)*x11 + 1*x12 +
start(0.8)*x13 + 0*x14 + x15 + x16 + x17 + x18 + x19

memory =~ 0*x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + 0*x9 + x10 +
x11 + 0*x12 + x13 + 1*x14 + start(0.8)*x15 +
start(0.8)*x16 + start(0.8)*x17 + start(0.8)*x18 +
start(0.8)*x19

# Estimate intercepts
x2 + x3 + x4 + x5 + x6 + x7 + x8 + x10 + x11 + x13 + x15 + x16 +

x17 + x18 + x19 ~ 1
# Fix intercepts
x1 + x9 + x12 + x14 ~ 0*1

# Structural model
spatial ~~ NA*spatial
verbal ~~ NA*verbal
speed ~~ NA*speed
memory ~~ NA*memory

spatial ~ NA*1
verbal ~ NA*1
speed ~ NA*1
memory ~ NA*1 '

As for the single-group analysis, the fit of the unpenalized multiple-group factor

model is carried out through the penfa function, with the specification of two new

arguments: meanstructure and group. The argument meanstructure is set to

TRUE to obtain the estimates of the means of the observed and the latent variables.
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In the group argument, we indicate the name of the group variable in the data set,

which is the “school” attended by the students.

fit.mle.mg <- penfa(model = syntax.mle.mg, data = data,
information = "fisher", meanstructure = TRUE,
group = "school", shrink = "none")

weights.mg <- coef(fit.mle.mg)
fit.mle.mg

## GJRM reached convergence
##
## Number of observations per group:
## Pasteur 156
## Grant-White 145
##
## Estimator MLE
## Optimization method trust-region
## Information expected
## Strategy grid
## Number of iterations 21
## Effective degrees of freedom 216.000
##

7.2.2 Model fitting

We can now proceed with the estimation of the penalized multiple-group factor

model with the alasso penalization and the automatic tuning procedure to find

the optimal value of the tuning parameter vector η = (η1, η2, η3)T . The penalty

function employed to shrink the pairwise group differences of the factor loadings

and the intercepts can be specified through the diff argument. The argument eta

is now a list that determines the starting values for each of the tuning parameters

on the specified parameter matrices and vectors.

fit.mg <- penfa(model = syntax.mg, data = data,
information = "fisher", meanstructure = TRUE,
group = "school", shrink = "alasso", diff ="alasso",
weights = weights.mg, a.alasso = 1,
eta = list("shrink"=c("lambda" = 0.01),

"diff" =c("lambda" = 0.1, "tau" =0.01)),
strategy = "auto", gamma = 4)
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From the summary of the fitted object, we can notice that the automatic tuning

procedure required just a couple of iterations to converge. The optimal tuning

parameters are η̂1 = 0.006, η̂2 = 16221.852 and η̂3 = 0.013. The analysis benefited

from the encouragement of sparsity and loading and intercept invariance, as it is

evident from the reduction in the GBIC after the penalization (from 15123.43 for

the unpenalized model to 14658 for the penalized model).

summary(fit.mg)

## GJRM reached convergence
##
## Number of observations per group:
## Pasteur 156
## Grant-White 145
## Number of groups 2
## Number of observed variables 19
## Number of latent factors 4
##
## Estimator PMLE
## Optimization method trust-region
## Information expected
## Strategy auto
## Number of iterations (total) 347
## Number of two-steps (automatic) 5
## Influence factor 4
## Number of parameters:
## Free 66
## Penalized 150
## Effective degrees of freedom 109.242
## GIC 14253.027
## GBIC 14657.998
##
## Penalty functions:
## Sparsity alasso
## Invariance alasso
##
## Additional tuning parameter
## alasso 1
##
## Optimal tuning parameters:
## Sparsity
## - Factor loadings 0.006
## Invariance
## - Factor loadings 16221.852
## - Intercepts 0.013
##
##
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## Parameter Estimates:
##
## Group 1 [Pasteur]:
##
## Latent Variables:
## Type Estimate Std.Err 2.5% 97.5%
## spatial =~
## x1 fixed 1.000 1.000 1.000
## x2 pen 0.583 0.082 0.423 0.744
## x3 pen 0.618 0.082 0.457 0.779
## x4 pen 0.863 0.094 0.678 1.047
## x5 pen -0.000
## x6 pen 0.000
## x7 pen -0.121 0.045 -0.210 -0.032
## x8 pen 0.000
## x9 fixed 0.000 0.000 0.000
## x10 pen -0.401 0.095 -0.588 -0.215
## x11 pen 0.000
## x12 fixed 0.000 0.000 0.000
## x13 pen 0.397 0.078 0.245 0.550
## x14 fixed 0.000 0.000 0.000
## x15 pen 0.018
## x16 pen 0.367 0.080 0.211 0.523
## x17 pen -0.231 0.077 -0.382 -0.080
## x18 pen 0.001
## x19 pen 0.059 0.042 0.024 0.142
## verbal =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.000
## x3 pen 0.000
## x4 pen -0.087 0.051 -0.187 0.013
## x5 pen 1.020 0.056 0.910 1.130
## x6 pen 0.957 0.055 0.849 1.064
## x7 pen 1.075 0.059 0.960 1.191
## x8 pen 0.839 0.058 0.725 0.952
## x9 fixed 1.000 1.000 1.000
## x10 pen 0.141 0.064 0.015 0.267
## x11 pen 0.168 0.052 0.066 0.270
## x12 fixed 0.000 0.000 0.000
## x13 pen -0.000
## x14 fixed 0.000 0.000 0.000
## x15 pen -0.143 0.055 -0.250 -0.036
## x16 pen -0.000
## x17 pen 0.000
## x18 pen 0.000
## x19 pen 0.000
## speed =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.000
## x3 pen 0.000
## x4 pen -0.000
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## x5 pen 0.000
## x6 pen -0.000
## x7 pen -0.000
## x8 pen 0.000
## x9 fixed 0.000 0.000 0.000
## x10 pen 0.988 0.113 0.765 1.210
## x11 pen 0.744 0.089 0.570 0.918
## x12 fixed 1.000 1.000 1.000
## x13 pen 0.677 0.087 0.506 0.848
## x14 fixed 0.000 0.000 0.000
## x15 pen 0.000
## x16 pen 0.000
## x17 pen 0.321 0.078 0.168 0.475
## x18 pen 0.245 0.070 0.108 0.382
## x19 pen 0.093 0.045 0.005 0.181
## memory =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.000
## x3 pen -0.000
## x4 pen 0.000
## x5 pen -0.109 0.045 -0.198 -0.020
## x6 pen 0.009
## x7 pen -0.000
## x8 pen 0.028
## x9 fixed 0.000 0.000 0.000
## x10 pen 0.145 0.073 0.002 0.288
## x11 pen 0.267 0.079 0.113 0.422
## x12 fixed 0.000 0.000 0.000
## x13 pen -0.000
## x14 fixed 1.000 1.000 1.000
## x15 pen 0.838 0.110 0.624 1.053
## x16 pen 0.632 0.100 0.435 0.828
## x17 pen 0.875 0.115 0.649 1.100
## x18 pen 0.647 0.098 0.455 0.840
## x19 pen 0.533 0.093 0.351 0.714
##
## Covariances:
## Type Estimate Std.Err 2.5% 97.5%
## spatial ~~
## verbal free 0.281 0.067 0.150 0.411
## speed free 0.158 0.062 0.037 0.278
## memory free 0.174 0.064 0.049 0.300
## verbal ~~
## speed free 0.185 0.059 0.071 0.300
## memory free 0.104 0.059 -0.012 0.220
## speed ~~
## memory free 0.075 0.057 -0.038 0.187
##
## Type Estimate Std.Err 2.5% 97.5%
## .x2 pen 0.009 0.056 -0.100 0.119
## .x3 pen 0.001 0.056 -0.108 0.110
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## .x4 pen 0.137 0.070 0.001 0.273
## .x5 pen -0.012 0.044 -0.099 0.074
## .x6 pen -0.007 0.044 -0.094 0.079
## .x7 pen -0.006 0.043 -0.091 0.079
## .x8 pen -0.081 0.055 -0.188 0.026
## .x10 pen 0.145 0.078 -0.008 0.298
## .x11 pen 0.000 0.053 -0.104 0.104
## .x13 pen -0.002 0.052 -0.104 0.099
## .x15 pen 0.000 0.060 -0.117 0.118
## .x16 pen 0.016 0.054 -0.090 0.121
## .x17 pen 0.164 0.077 0.012 0.316
## .x18 pen -0.002 0.057 -0.114 0.110
## .x19 pen -0.204 0.075 -0.352 -0.057
## .x1 fixed 0.000 0.000 0.000
## .x9 fixed 0.000 0.000 0.000
## .x12 fixed 0.000 0.000 0.000
## .x14 fixed 0.000 0.000 0.000
## spatial free -0.021 0.077 -0.173 0.130
## verbal free -0.259 0.073 -0.402 -0.116
## speed free 0.089 0.074 -0.055 0.234
## memory free -0.046 0.077 -0.198 0.105
##
## Variances:
## Type Estimate Std.Err 2.5% 97.5%
## spatial free 0.591 0.106 0.384 0.798
## verbal free 0.656 0.091 0.477 0.834
## speed free 0.441 0.087 0.271 0.612
## memory free 0.519 0.104 0.315 0.722
## .x1 free 0.437 0.079 0.283 0.591
## .x2 free 0.886 0.107 0.677 1.095
## .x3 free 0.814 0.099 0.619 1.008
## .x4 free 0.612 0.087 0.442 0.781
## .x5 free 0.257 0.038 0.183 0.331
## .x6 free 0.348 0.046 0.258 0.439
## .x7 free 0.254 0.039 0.179 0.330
## .x8 free 0.407 0.051 0.307 0.506
## .x9 free 0.230 0.035 0.162 0.298
## .x10 free 0.523 0.085 0.356 0.689
## .x11 free 0.441 0.061 0.321 0.561
## .x12 free 0.543 0.084 0.378 0.707
## .x13 free 0.617 0.082 0.456 0.778
## .x14 free 0.580 0.091 0.402 0.758
## .x15 free 0.676 0.092 0.495 0.857
## .x16 free 0.735 0.094 0.550 0.919
## .x17 free 0.625 0.089 0.450 0.800
## .x18 free 0.778 0.096 0.589 0.966
## .x19 free 0.846 0.101 0.648 1.044
##
##
##
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## Group 2 [Grant-White]:
##
## Latent Variables:
## Type Estimate Std.Err 2.5% 97.5%
## spatial =~
## x1 fixed 1.000 1.000 1.000
## x2 pen 0.583 0.082 0.423 0.744
## x3 pen 0.618 0.082 0.457 0.779
## x4 pen 0.863 0.094 0.678 1.047
## x5 pen -0.000
## x6 pen 0.000
## x7 pen -0.121 0.045 -0.210 -0.032
## x8 pen 0.000
## x9 fixed 0.000 0.000 0.000
## x10 pen -0.401 0.095 -0.588 -0.215
## x11 pen 0.000
## x12 fixed 0.000 0.000 0.000
## x13 pen 0.397 0.078 0.245 0.550
## x14 fixed 0.000 0.000 0.000
## x15 pen 0.018
## x16 pen 0.367 0.080 0.211 0.523
## x17 pen -0.231 0.077 -0.382 -0.080
## x18 pen 0.001
## x19 pen 0.059 0.042 -0.024 0.142
## verbal =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.000
## x3 pen 0.000
## x4 pen -0.087 0.051 -0.187 0.013
## x5 pen 1.020 0.056 0.910 1.130
## x6 pen 0.957 0.055 0.849 1.064
## x7 pen 1.075 0.059 0.960 1.191
## x8 pen 0.839 0.058 0.725 0.952
## x9 fixed 1.000 1.000 1.000
## x10 pen 0.141 0.064 0.015 0.267
## x11 pen 0.168 0.052 0.066 0.270
## x12 fixed 0.000 0.000 0.000
## x13 pen -0.000
## x14 fixed 0.000 0.000 0.000
## x15 pen -0.143 0.055 -0.250 -0.036
## x16 pen -0.000
## x17 pen 0.000
## x18 pen 0.000
## x19 pen 0.000
## speed =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.000
## x3 pen 0.000
## x4 pen -0.000
## x5 pen 0.000
## x6 pen -0.000
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## x7 pen -0.000
## x8 pen 0.000
## x9 fixed 0.000 0.000 0.000
## x10 pen 0.988 0.113 0.765 1.210
## x11 pen 0.744 0.089 0.570 0.918
## x12 fixed 1.000 1.000 1.000
## x13 pen 0.677 0.087 0.506 0.848
## x14 fixed 0.000 0.000 0.000
## x15 pen 0.000
## x16 pen 0.000
## x17 pen 0.321 0.078 0.168 0.475
## x18 pen 0.245 0.070 0.108 0.382
## x19 pen 0.093 0.045 0.005 0.181
## memory =~
## x1 fixed 0.000 0.000 0.000
## x2 pen -0.000
## x3 pen -0.000
## x4 pen 0.000
## x5 pen -0.109 0.045 -0.198 -0.020
## x6 pen 0.009
## x7 pen -0.000
## x8 pen 0.028
## x9 fixed 0.000 0.000 0.000
## x10 pen 0.145 0.073 0.002 0.288
## x11 pen 0.267 0.079 0.113 0.422
## x12 fixed 0.000 0.000 0.000
## x13 pen -0.000
## x14 fixed 1.000 1.000 1.000
## x15 pen 0.838 0.110 0.624 1.053
## x16 pen 0.632 0.100 0.435 0.828
## x17 pen 0.875 0.115 0.649 1.100
## x18 pen 0.647 0.098 0.455 0.840
## x19 pen 0.533 0.093 0.351 0.714
##
## Covariances:
## Type Estimate Std.Err 2.5% 97.5%
## spatial ~~
## verbal free 0.363 0.071 0.223 0.503
## speed free 0.289 0.074 0.143 0.434
## memory free 0.242 0.064 0.117 0.367
## verbal ~~
## speed free 0.231 0.067 0.100 0.362
## memory free 0.257 0.061 0.138 0.375
## speed ~~
## memory free 0.158 0.062 0.037 0.279
##
## Intercepts:
## Type Estimate Std.Err 2.5% 97.5%
## .x2 pen 0.011 0.056 -0.098 0.121
## .x3 pen 0.001 0.056 -0.108 0.110
## .x4 pen -0.163 0.067 -0.294 -0.032
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## .x5 pen -0.008 0.044 -0.095 0.079
## .x6 pen -0.007 0.044 -0.094 0.079
## .x7 pen -0.006 0.043 -0.091 0.079
## .x8 pen 0.074 0.059 -0.041 0.189
## .x10 pen -0.179 0.072 -0.319 -0.038
## .x11 pen -0.000 0.053 -0.104 0.104
## .x13 pen -0.002 0.052 -0.104 0.099
## .x15 pen -0.000 0.060 -0.118 0.117
## .x16 pen 0.016 0.054 -0.089 0.121
## .x17 pen -0.191 0.073 -0.335 -0.048
## .x18 pen -0.002 0.057 -0.114 0.110
## .x19 pen 0.235 0.068 0.102 0.369
## .x1 fixed 0.000 0.000 0.000
## .x9 fixed 0.000 0.000 0.000
## .x12 fixed 0.000 0.000 0.000
## .x14 fixed 0.000 0.000 0.000
## spatial free 0.023 0.080 -0.134 0.180
## verbal free 0.289 0.075 0.141 0.436
## speed free -0.085 0.082 -0.246 0.075
## memory free 0.052 0.075 -0.095 0.199
##
## Variances:
## Type Estimate Std.Err 2.5% 97.5%
## spatial free 0.597 0.108 0.385 0.808
## verbal free 0.625 0.092 0.445 0.805
## speed free 0.627 0.115 0.402 0.851
## memory free 0.420 0.088 0.248 0.591
## .x1 free 0.435 0.074 0.290 0.579
## .x2 free 0.683 0.086 0.515 0.851
## .x3 free 0.712 0.090 0.536 0.888
## .x4 free 0.472 0.070 0.334 0.610
## .x5 free 0.311 0.045 0.222 0.400
## .x6 free 0.313 0.044 0.226 0.400
## .x7 free 0.219 0.037 0.147 0.292
## .x8 free 0.446 0.058 0.333 0.560
## .x9 free 0.346 0.049 0.250 0.442
## .x10 free 0.335 0.067 0.203 0.467
## .x11 free 0.615 0.082 0.454 0.775
## .x12 free 0.442 0.075 0.295 0.590
## .x13 free 0.443 0.065 0.315 0.570
## .x14 free 0.556 0.084 0.392 0.719
## .x15 free 0.674 0.091 0.496 0.851
## .x16 free 0.471 0.065 0.344 0.598
## .x17 free 0.464 0.069 0.328 0.601
## .x18 free 0.649 0.083 0.487 0.812
## .x19 free 0.600 0.075 0.453 0.746

The diagonal elements of the penalty matrix SA
η̂ (θ̂) are roughly in the range

[−3× 1012, 3× 1012]. In Figure 7.2a, we find the heat map of the penalty matrix
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DA
η̂1

(θ̂), which shrinks the small factor loadings of each group to zero. Because the

range of the diagonal elements of the penalty matrix is very wide, we employed the

log-scale. The non-zero diagonal elements correspond to the factor loadings of the

two groups. All of the remaining entries of the penalty matrix are equal to zero.

Figure 7.2b represents the heat map of the penalty matrix DA
η̂2

(θ̂), which shrinks

the pairwise group differences of the factor loadings towards zero. Similarly, the

heat map of the penalty matrix DA
η̂3

(θ̂) shrinks the pairwise group differences of

the intercepts, and is depicted in Figure 7.2c.

Further details and options can be found in the documentation of the R package

GJRM (https://cran.r-project.org/web/packages/GJRM/GJRM.pdf).

https://cran.r-project.org/web/packages/GJRM/GJRM.pdf
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(a) Heat map of DA
η̂1
(θ̂) on a log-scale.
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(c) Heat map of DA
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(θ̂) on a log-scale.
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Figure 7.2: Representation of the penalty matrices for sparsity of the factor loadings
and loading and intercept invariance on a log-scale for GJRM-alasso (a = 1, γ = 4)
on the Holzinger & Swineford data set.
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Discussion

Penalized factor analysis is an efficient estimation technique that produces a factor

loading matrix with many zero elements thanks to the introduction of sparsity-

inducing penalty functions within the estimation process. In order to achieve

sparse solutions and stable model selection procedures, the penalty functions must

be singular at the origin, and thus non-differentiable. In this thesis, we adopted

suitable local approximations of them. In this way, in the optimization process

it was possible to employ a trust-region algorithm, which required analytical

information on the score vector and the Hessian matrix (or a good approximation

thereof). The use of differentiable penalties allowed us to recast the problem in

a theoretically founded framework, where a precise definition of effective degrees

of freedom was obtained, based on the bias term of the Generalized Information

Criterion, or equivalently, the influence matrix of the model. This represents a

novelty, as the existing proposals compute the degrees of freedom of a penalized

factor model as the number of non-zero parameters. As an alternative to the

usually time-consuming grid-searches, we also illustrated an efficient automatic

technique for the estimation of the tuning parameter alongside the parameters of

the factor model.

The simulations showed that the proposed approach produced trustworthy

models with high accuracy, selection consistency, low bias and false positives. This

indicates that the method is a valuable alternative to the existing techniques.

Furthermore, it often generated the best tradeoff between goodness of fit and

135
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model complexity when compared to such models, as in the empirical application.

As a result of this delicate balance, the proposed method may not necessarily

provide the sparsest factor solution, but if more sparsity is desired, researchers

can manually and subjectively increase the value of the tuning parameter or the

influence factor for the automatic procedure.

Notably, we extended the illustrated framework to multiple-group factor models

by employing a penalty that simultaneously induced sparsity and cross-group

equality of loadings and intercepts. As such, it revealed as a worthy alternative

to invariance testing procedures. In this context, the automatic procedure proved

particularly useful as it allowed for the estimation of the multiple tuning parameters

composing the penalty term in a fast, stable and efficient way.

The presented framework allows one to easily and efficiently combine multiple

penalty terms (like in the multiple-group model), as the automatic procedure scales

well with the number of tuning parameters. In the empirical application, the alasso

penalty was considered for all three penalty terms, but different penalty functions

can also be combined if desired.

Another interesting modification pertains to the type of parameters that are

penalized. Given the general estimation framework proposed in this work, also

residual covariances (i.e., the off-diagonal elements of the covariance matrix of

the unique factors) can be penalized to examine the assumption of conditional

independence (that is, detect which pairs of variables are conditionally dependent).

This model is known in the econometric literature as “sparse approximate factor

model” (Bai & Liao, 2016).

We envisage several interesting lines of future research. Firstly, the results

described in this work were derived under the N > p scenario with p a moderate

number of indicators, as it is the case for many applications from the social and

behavioral sciences. We tested the methodology in the frameworks common to

confirmatory analyses, with the advantage of letting the zero loadings - as well

as group-invariant measurement model parameters in the multiple-group case -

freely emerge as a result of the penalization, as opposed to fixing their values
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or constraining them to equivalence. Therefore, researchers are requested to

have already an idea about the number of underlying factors and the observed

variables serving as proper indicators of such latent constructs. However, penalized

techniques can also be extremely useful in presence of many observed variables

or in the high-dimensional case. Under the latter scenario, the sample covariance

matrix of the observed variables is not positive-definite, which makes maximum

likelihood estimation infeasible. Consequently, weights other than the maximum

likelihood estimates should be used for the computation of the alasso penalty.

It would be interesting to review and adapt the presented methodology in this

demanding set-up.

Secondly, the proposed approach can be applied to structural equation models

in which, in addition to the measurement model, a structural model (usually a

mediation model for the factors) is tested.

Finally, the observed variables were assumed to follow a multivariate normal

distribution. When this is not reasonable, one can resort to pseudo maximum like-

lihood (Arminger & Schoenberg, 1989) or, for categorical data, pairwise maximum

likelihood (Katsikatsou et al., 2012). Further studies are needed to extend this

work to the non-normal case, as this setting poses additional challenges since the

asymptotic covariance matrix of the PMLE is no longer consistently estimated by

the inverse Fisher information but by a “sandwich-type” covariance matrix (Yuan

& Bentler, 1997).
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A
Details on the normal linear

factor analysis model

A.1 Log-likelihood

For a random sample of deviation scores xxxN = {x1, . . . ,xN} of size N from a

multivariate normal distribution, the likelihood function is:

L(θ) =
N∏
α=1

f(xα|θ) =
N∏
α=1

1

(2π)
p
2 |Σ| 12

exp

{
−1

2
xTαΣ−1xα

}

= (2π)−
N
2
p|Σ|−N2 exp

{
−1

2

N∑
α=1

xTαΣ−1xα

}
,

where Σ = Σ(θ) = ΛΦΛT + Ψ. The log-likelihood, which is defined as the

logarithm of L(θ), takes the following form:

`(θ) := logL(θ) = −N
2
p log(2π)− N

2
log|Σ| − 1

2

N∑
α=1

xTαΣ−1xα

= −N
2
p log(2π)− N

2
log|Σ| − 1

2

N∑
α=1

tr
{
xTαΣ−1xα

}

= −N
2
p log(2π)− N

2
log|Σ| − 1

2
tr
{

N∑
α=1

xαx
T
αΣ−1

}

= −N
2
p log(2π)− N

2
log|Σ| − N

2
tr
{
SΣ−1

}
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= −N
2

{
log|Σ|+ tr(SΣ−1) + p log(2π)

}
, (A.1)

where S =
1

N

∑N
α=1 xαx

T
α is the sample covariance matrix which could be estimated

by maximum likelihood. Since S is a sufficient statistic for θ, it suffices the sample

covariance matrix, and not the individual x1, . . . ,xN , to estimate the parameter

vector and its covariance matrix.

The log-likelihood is made up by the determinant and the trace, which sum-

marize important information about the matrices S and Σ. The determinant is a

single number that reflects a generalized measure of variance for the entire set of

variables contained in the matrix, whereas the trace of a matrix is the sum of the

values on the diagonal. The objective of maximum likelihood is to minimize these

matrix summaries.

The derivation of the log-likelihood function was established under the multivari-

ate normality assumption of the observed variables. An alternative formulation,

especially employed in the early days of factor analysis, starts with the assumption

of a Wishart distribution for the unbiased sample covariance matrix.
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A.2 Gradient, Hessian and Fisher information

Propositions 2.1-2.3 in Section 2.1 state the general expressions of the gradient of

the log-likelihood g(θ) :=
∂`(θ)

∂θ
, the Hessian matrix of the second-order derivatives

H(θ) :=
∂2`(θ)

∂θ∂θT
, and the expected Fisher information J (θ) := E[g(θ)g(θ)T ] =

−E [H(θ)] for the normal linear factor model. We now enunciate the specific forms

of these derivatives with respect to each parameter matrix.

Proposition A.1 (First-order derivatives of the normal linear factor model with

respect to the parameter matrices). The matrix expressions of the first-order

derivatives of the log-likelihood of the normal linear factor analysis model in equation

(2.1) with respect to the parameter matrices are:

∂`(θ)

∂Λ = −N Σ−1(Σ− S)Σ−1ΛΦ, (A.2)

∂`(θ)

∂Φ =


−N ΛTΣ−1(Σ− S)Σ−1Λ non-diagonal elements,

−N
2

ΛTΣ−1(Σ− S)Σ−1Λ diagonal elements,
(A.3)

∂`(θ)

∂Ψ = −N
2
diag(Σ−1(Σ− S)Σ−1). (A.4)

Proof. See Appendix A.2.1.2. �

Define the following matrices:

ω = Σ−1, α = Σ−1Λ, β = Σ−1ΛΦ,

γ = ΛTΣ−1Λ, δ = ΦΛTΣ−1Λ, ζ = ΦΛTΣ−1ΛΦ,

M = Σ−1SΣ−1, Ω = Σ−1 −M .
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Proposition A.2 (Second-order derivatives of the normal linear factor model

with respect to the parameter matrices). The Hessian of the normal linear factor

analysis model in equation (2.1) is a symmetric block matrix of the form:

H(θ) =


H11 H12 H13

HT
12 H22 H23

HT
13 HT

23 H33

 , (A.5)

where, for i, t = 1, . . . , p and g, h, j, l, q, s = 1, . . . , r, the sub-matrices are:

[H11](ij,ts) =
∂2`(θ)

∂λij∂λts
= −N

{
[Ω]ti[Φ− ζ]sj + ωti[ΦΛTMΛΦ]sj

− [ΩΛΦ]isβtj + βis[MΛΦ]tj

}
, (A.6)

[H12](ij,tt) =
∂2`(θ)

∂λij∂ψtt
= −N {[M ]itβtj − ωit[ΩΛΦ]tj} , (A.7)

[H13](ij,gh) =
∂2`(θ)

∂λij∂φgh

= −N
2

{
(2− [I]gh)

(
[ΩΛ]ig[I − δT ]hj + [ΩΛ]ih[I − δT ]gj

+ αig[ΛTMΛΦ]hj + αih[ΛTMΛΦ]gj

)}
, (A.8)

[H22](ii,tt) =
∂2`(θ)

∂ψii∂ψtt
= −N

2
{ωit[2M − ω]it} , (A.9)

[H23](tt,gh) =
∂2`(θ)

∂ψtt∂φgh
= −N

2

{
(2− [I]gh)

(
αth[MΛ]tg − αtg[ΩΛ]th

)}
, (A.10)

[H33](gh,lq) =
∂2`(θ)

∂φgh∂φlq

= −N
2

{
(2− [I]lq − [I]gh + [I]lq[I]gh)([α

TSα]hlγqg − γhl[ΛTΩΛ]qg)

+ (2− [I]lq − [I]gh)([ΛTMΛ]glγqh − γgl[ΛTΩΛ]qh)

}
. (A.11)

Proof. See Appendix A.2.2.2. �
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The above exact expressions for the second-order derivatives have a complicated

form, and a considerable amount of computation is required to evaluate them

all at each iteration of the optimization algorithm. Despite the complexity in

getting their exact expressions, it is easy to find good approximations of them by

employing the expected Fisher information matrix. We shall henceforth assume

that N is reasonably large.

Proposition A.3 (Elements of the expected Fisher information of the normal

linear factor model with respect to the parameter matrices). The expected Fisher

information matrix of the normal linear factor analysis model in equation (2.1) is

a block matrix of the form:

J (θ) =


J11 J12 J13

JT12 J22 J23

JT13 JT23 J33

 , (A.12)

where, for i, t = 1, . . . , p and g, h, j, l, q, s = 1, . . . , r, the sub-matrices are:

[J11](ij,ts) = −E
[
∂2`(θ)

∂λij∂λts

]
= N(βisβtj + ωitζjs), (A.13)

[J12](ij,tt) = −E
[
∂2`(θ)

∂λij∂ψtt

]
= Nωitβtj, (A.14)

[J13](ij,gh) = −E
[
∂2`(θ)

∂λij∂φgh

]
=
N

2
(2− [I]gh)(αigδjh + αihδjg), (A.15)

[J22](ii,tt) = −E
[
∂2`(θ)

∂ψii∂ψtt

]
=
N

2
ω2
it, (A.16)

[J23](tt,gh) = −E
[
∂2`(θ)

∂ψtt∂φgh

]
=
N

2
(2− [I]gh)αtgαth, (A.17)

[J33](gh,lq) = −E
[
∂2`(θ)

∂φgh∂φlq

]
(A.18)

=
N

4
(2− [I]gh)(2− [I]lq)(γglγhq + γgqγhl). (A.19)

Proof. See Appendix A.2.3.1. �
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Alternatively, the Fisher information matrix can be formulated more compactly as

follows. Let vec(B) be the vector stacking the columns of a p× p matrix B, and

vech(B) the vector that contains only the p? =
p(p+ 1)

2
non duplicated elements

of B by leaving out the elements above the diagonal. Let D be the p2 × p?

duplication matrix (Magnus & Neudecker, 2019) such that vec(B) = Dvech(B).

Denote σ = σ(θ) = vech(Σ), s = vech(S), E = 1
2
DT (Σ−1 ⊗Σ−1)D, where ⊗ is

the Kronecker product, and ∆ =
∂σ(θ)

∂θT
the p?×m Jacobian matrix of the partial

derivatives of the model with respect to the parameters. Then, the expected Fisher

information can be written as (Yuan & Bentler, 2006):

J (θ) = N∆TE∆. (A.20)

The propositions on the form of the gradient, the Hessian matrix and the expected

Fisher information are proved in Appendices A.2.1-A.2.3, respectively.

A.2.1 Gradient vector

A.2.1.1 Proof of proposition 2.1

Proof. Consider the first-order partial derivative of the log-likelihood function in

equation (2.2) with respect to an arbitrary scalar variable θq:

∂`(θ)

∂θq
= −N

2

∂

∂θq

[
log|Σ|+ tr(SΣ−1) + p log(2π)

]

= −N
2

{
∂

∂θq
log|Σ|+ ∂

∂θq
tr(SΣ−1) +

���
����∂

∂θq
p log(2π)

}

= −N
2

{
tr
[
Σ−1

(
∂Σ
∂θq

)]
− tr

[
Σ−1SΣ−1

(
∂Σ
∂θq

)]}

= −N
2
tr
{

(Σ−1 −Σ−1SΣ−1)

(
∂Σ
∂θq

)}

= −N
2
tr
{

Σ−1(Σ− S)Σ−1∂Σ
∂θq

}
= −N

2
tr
{

Ω∂Σ
∂θq

}
, (A.21)

where Ω = Σ−1(Σ− S)Σ−1. �
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A.2.1.2 Proof of Proposition A.1

Proof. To find the expressions in equations (A.2)-(A.4), we need the partial deriv-

atives of the matrix Σ with respect to the model parameter matrices Λ, Φ and Ψ.

These quantities are:

∂Σ
∂λij

=
∂(ΛΦΛT + Ψ)

∂λij
=
∂ΛΦΛT

∂λij
+

�
�
��∂Ψ

∂λij
= ΛΦ∂ΛT

∂λij
+
∂ΛΦ
∂λij

ΛT

= ΛΦ1ji +

[
�
�

��Λ ∂Φ
∂λij

+
∂Λ
∂λij

Φ
]

ΛT = ΛΦ1ji + 1ijΦΛT , (A.22)

∂Σ
∂φgh

=
∂(ΛΦΛT + Ψ)

∂φgh
=
∂ΛΦΛT

∂φgh
+
�

�
��∂Ψ

∂φgh
=

�
�
�

�
�

ΛΦ∂ΛT

∂φgh
+
∂ΛΦ
∂φgh

ΛT

=

[
Λ ∂Φ
∂φgh

+
�
�

�
�∂Λ

∂φgh
Φ
]

ΛT = Λ ∂Φ
∂φgh

ΛT

= Λ [1gh + 1hg − 1ghI1gh] ΛT , (A.23)

∂Σ
∂ψii

=
∂(ΛΦΛT + Ψ)

∂ψii
=

�
�

�
��∂ΛΦΛT

∂ψii
+
∂Ψ
∂ψii

= 1ii, (A.24)

where 1ab is a matrix with zeros in every position, except the entry (a, b), which

contains a 1.0. By substituting expressions (A.22), (A.23) and (A.24) in equation

(A.21), we get the following set of first-order derivatives of `(θ) with respect to

the factor loadings, the factor variances and covariances, and the unique variances,

respectively (Mulaik, 1971):

∂`(θ)

∂λij
= −N

2
tr
{

Ω ∂Σ
∂λij

}
= −N

2
tr
{
Ω(ΛΦ1ji + 1ijΦΛT )

}
= −N

2
tr
{
ΩΛΦ1ji + Ω1ijΦΛT

}
= −N

2

{
tr [ΩΛΦ1ji] + tr

[
Ω1ijΦΛT

]}
= −N

2

{
tr [ΩΛΦ1ji] + tr

[
1ijΦΛTΩ

]}
= −N

2

{
tr [ΩΛΦ1ji] + tr

[
(1ijΦΛTΩ)T

]}
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= −N
2
{tr [ΩΛΦ1ji] + tr [ΩΛΦ1ji]}

= −N tr [ΩΛΦ1ji] = −N [ΩΛΦ]ij

= −N
[
Σ−1(Σ− S)Σ−1ΛΦ

]
ij
, (A.25)

∂`(θ)

∂φgh
= −N

2
tr
{

Ω ∂Σ
∂φgh

}
= −N

2
tr
{
ΩΛ [1gh + 1hg − 1ghI1gh] ΛT

}
= −N

2
tr
{
ΩΛ [1gh + 1hg − 1ghI1gh] ΛT

}
= −N

2
tr
{
ΩΛ1ghΛT + ΩΛ1hgΛT −ΩΛ1ghI1ghΛT

}
= −N

2

{
tr
[
ΩΛ1ghΛT

]
+ tr

[
ΩΛ1hgΛT

]
− tr

[
ΩΛ1ghI1ghΛT

]}
= −N

2

{
tr
[
ΛTΩΛ1gh

]
+ tr

[
1hgΛTΩΛ

]
− tr

[
ΛTΩΛ1ghI1gh

]}
= −N

2

{
2 tr

[
ΛTΩΛ1gh

]
− tr

[
ΛTΩΛ1ghI1gh

]}
= −N

{[
ΛTΩΛ

]
gh
− 1

2

[
ΛTΩΛ

]
hg

[I]hg

}

= −N
(

1− 1

2
[I]gh

)[
ΛTΩΛ

]
gh

= −N
(

1− 1

2
[I]gh

)[
ΛTΣ−1(Σ− S)Σ−1Λ

]
gh
, (A.26)

∂`(θ)

∂ψii
= −N

2
tr
{

Ω ∂Σ
∂ψii

}
= −N

2
tr {Ω1ii} = −N

2
[Ω]ii = −N

2
[Σ−1(Σ− S)Σ−1]ii. (A.27)

The analytical first-order derivatives in matrix expression are then:

∂`(θ)

∂Λ = −N Σ−1(Σ− S)Σ−1ΛΦ, (A.28)

∂`(θ)

∂Φ =


−N ΛTΣ−1(Σ− S)Σ−1Λ non-diagonal elements,

−N
2

ΛTΣ−1(Σ− S)Σ−1Λ diagonal elements,
(A.29)

∂`(θ)

∂Ψ = −N
2
diag(Σ−1(Σ− S)Σ−1), (A.30)
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with the understanding that the elements of the three matrices on the left corres-

ponding to the positions of fixed elements of Λ,Φ and Ψ are taken to be zero. For

instance, if the factors were chosen to have unit variance, the diagonal elements of
∂`(θ)

∂Φ would be zero. �

A.2.2 Hessian matrix

A.2.2.1 Proof of proposition 2.2

Proof. The second partial derivative of `(θ) with respect to two arbitrary scalar

variables θq and θq′ is:

∂2`(θ)

∂θq∂θq′
=

∂

∂θq

(
∂`(θ)

∂θq′

)
=

∂

∂θq

{
−N

2
tr
[
Ω ∂Σ
∂θq′

]}
= −N

2
tr
{
∂[Σ−1(Σ− S)Σ−1]

∂θq

∂Σ
∂θq′

+ Ω ∂2Σ
∂θq∂θq′

}

= −N
2

{
tr
[
∂[Σ−1 −Σ−1SΣ−1]

∂θq

∂Σ
∂θq′

]
+ tr

[
Ω ∂2Σ
∂θq∂θq′

]}

= −N
2

{
tr
[
∂Σ−1

∂θq

∂Σ
∂θq′

]
− tr

[
∂[Σ−1SΣ−1]

∂θq

∂Σ
∂θq′

]
+ tr

[
Ω ∂2Σ
∂θq∂θq′

]}

= −N
2

{
− tr

[
Σ−1∂Σ

∂θq
Σ−1 ∂Σ

∂θq′

]
− tr

[
Σ−1S

∂Σ−1

∂θq

∂Σ
∂θq′

]

− tr
[
∂Σ−1

∂θq
SΣ−1 ∂Σ

∂θq′

]
+ tr

[
Ω ∂2Σ
∂θq∂θq′

]}

= −N
2

{
− tr

[
Σ−1∂Σ

∂θq
Σ−1 ∂Σ

∂θq′

]
+ tr

[
Σ−1SΣ−1∂Σ

∂θq
Σ−1 ∂Σ

∂θq′

]

+ tr
[
Σ−1∂Σ

∂θq
Σ−1SΣ−1 ∂Σ

∂θq′

]
+ tr

[
Ω ∂2Σ
∂θq∂θq′

]}

= −N
2

{
tr
[
Σ−1∂Σ

∂θq
Σ−1 ∂Σ

∂θq′

]
− 2tr

[
Σ−1∂Σ

∂θq
Σ−1 ∂Σ

∂θq′

]
+ tr

[
Σ−1SΣ−1∂Σ

∂θq
Σ−1 ∂Σ

∂θq′

]
+ tr

[
Σ−1SΣ−1∂Σ

∂θq
Σ−1 ∂Σ

∂θq′

]
+ tr

[
Ω ∂2Σ
∂θq∂θq′

]}
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= −N
2

{
tr
[
Σ−1∂Σ

∂θq
Σ−1 ∂Σ

∂θq′

]
+ tr

[
Ω ∂2Σ
∂θq∂θq′

]
− 2tr

[
Ω∂Σ
∂θq

Σ−1 ∂Σ
∂θq′

]}

= −N
2

{
tr
(

Σ−1∂Σ
∂θq

Σ−1 ∂Σ
∂θq′

)

+ tr
[
Ω
(

∂2Σ
∂θq∂θq′

− 2
∂Σ
∂θq

Σ−1 ∂Σ
∂θq′

)]}
, (A.31)

where Ω = Σ−1(Σ− S)Σ−1. �

A.2.2.2 Proof of proposition A.2

Proof. To find expressions (A.6)-(A.11), we need the second partial derivatives of

Σ with respect to the model parameters, which are as follows, for i, t = 1, . . . , p

and g, h, j, l, q, s = 1, . . . , r:

∂2Σ
∂λij∂λts

=
∂

∂λij

(
∂Σ
∂λts

)
=

∂

∂λij

(
ΛΦ1st + 1tsΦΛT

)
=

∂

∂λij
(ΛΦ1st) +

∂

∂λij

(
1tsΦΛT

)
=

∂Λ
∂λij

(Φ1st) + (1tsΦ)
∂ΛT

∂λij

= 1ijΦ1st + 1tsΦ1ji = 1tiφsj + 1itφjs, (A.32)

∂2Σ
∂λij∂φgh

=
∂

∂λij

(
∂Σ
∂φgh

)
=

∂

∂λij

(
Λ [1gh + 1hg − 1ghI1gh] ΛT

)
= Λ [1gh + 1hg − 1ghI1gh]

∂ΛT

∂λij
+
∂(Λ [1gh + 1hg − 1ghI1gh])

∂λij
ΛT

= Λ [1gh + 1hg − 1ghI1gh] 1ji +
∂Λ
∂λij

[1gh + 1hg − 1ghI1gh] ΛT

= Λ [1gh + 1hg − 1ghI1gh] 1ji + 1ij [1gh + 1hg − 1ghI1gh] ΛT ,(A.33)

∂2Σ
∂λij∂ψtt

=
∂

∂λij

(
∂Σ
∂ψ2

tt

)
=

∂

∂λij
1tt = 0, (A.34)

∂2Σ
∂φgh∂φlq

=
∂

∂φgh

(
∂Σ
∂φlq

)
=

∂

∂φgh

(
Λ [1lq + 1ql − 1lqI1lq] ΛT

)
= 0, (A.35)

∂2Σ
∂φgh∂ψtt

=
∂

∂φgh

(
∂Σ
∂ψ2

tt

)
=

∂1tt
∂φgh

= 0, (A.36)

∂2Σ
∂ψii∂ψtt

=
∂

∂ψii

(
∂Σ
∂ψ2

tt

)
=
∂1tt
∂ψii

= 0. (A.37)
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We now have the necessary quantities to obtain the second derivatives of the

log-likelihood function. For simplicity, we compute the second-order derivatives of

the function F = − 2

N
`(θ), that is,

F = log|Σ|+ tr(Σ−1S) + p log(2π);

the second-order derivatives of `(θ) are then easily found by multiplying the

resulting expressions by the factor −N
2
. Based on the result in (2.5) and after

some computations, we have that

∂2F

∂θq∂θq′
= tr

[
Ω ∂2Σ
∂θq∂θq′

]
− tr

[
Ω ∂Σ
∂θq′

Σ−1∂Σ
∂θq

]
+ tr

[
Σ−1 ∂Σ

∂θq′
M

∂Σ
∂θq

]
. (A.38)

The derivation of each second-order derivative is carried out by substituting the

respective matrix expressions of the first and second derivatives of Σ into (A.38)

and simplifying the resulting expressions. The traces of the resulting matrix

expressions are obtained by application of the properties of the trace and, in

particular, its invariance under cyclic permutations. After taking the traces of

these expressions and simplifying the result, we obtain the following set of second

partial derivatives of F with respect to the model parameters, for i, t = 1, . . . , p

and g, h, j, l, q, s = 1, . . . , r (Mulaik, 1971).

Factor loadings

∂2F

∂λij∂λts
= tr

{
Ω ∂2Σ
∂λij∂λts

}
− tr

{
Ω ∂Σ
∂λts

Σ−1 ∂Σ
∂λij

}
+ tr

{
Σ−1 ∂Σ

∂λts
M

∂Σ
∂λij

}
= tr(Ω[1tiφsj + 1itφjs])− tr{Ω[ΛΦ1st + 1tsΦΛT ]Σ−1[ΛΦ1ji + 1ijΦΛT ]}

− tr{Σ−1[ΛΦ1st + 1tsΦΛT ]M [ΛΦ1ji + 1ijΦΛT ]}

= tr(Ω1ti)φsj + tr(1itΩ)φjs − tr{ΩΛΦ1stΣ−1ΛΦ1ji} − tr{ΩΛΦ1stΣ−11ijΦΛT}

− tr{Ω1tsΦΛTΣ−1ΛΦ1ji} − tr{Ω1tsΦΛTΣ−11ijΦΛT}

+ tr{Σ−1ΛΦ1stMΛΦ1ji}+ tr{Σ−1ΛΦ1stM1ijΦΛT}

+ tr{Σ−11tsΦΛTMΛΦ1ji}+ tr{Σ−11tsΦΛTM1ijΦΛT}
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= 2tr(Ω1ti)φsj − tr{ΩΛΦ1stΣ−1ΛΦ1ji} − tr{Σ−11ijΦΛTΩΛΦ1st}

− tr{Ω1tsΦΛTΣ−1ΛΦ1ji} − tr{ΦΛTΣ−11ijΦΛTΩ1ts}

+ tr{Σ−1ΛΦ1stMΛΦ1ji}+ tr{M1ijΦΛTΣ−1ΛΦ1st}

+ tr{Σ−11tsΦΛTMΛΦ1ji}+ tr{ΦΛTM1ijΦΛTΣ−11ts}

= 2[Ω]it[Φ]sj − [ΩΛΦ]is[Σ−1ΛΦ]tj − [Σ−1]ti[ΦΛTΩΛΦ]js

− [Ω]it[ΦΛTΣ−1ΛΦ]sj − [ΦΛTΣ−1]si[ΦΛTΩ]jt + [Σ−1ΛΦ]is[MΛΦ]tj

+ [M ]ti[ΦΛTΣ−1ΛΦ]js + [Σ−1]it[ΦΛTMΛΦ]sj + [ΦΛTM ]si[ΦΛTΣ−1]jt

= 2[Ω]it[Φ]sj − [ΩΛΦ]is[Σ−1ΛΦ]tj − [Σ−1]ti[ΦΛTΣ−1ΛΦ]js

+ [Σ−1]ti[ΦΛTMΛΦ]js − [Ω]it[ΦΛTΣ−1ΛΦ]sj − [ΦΛTΣ−1]si[ΦΛTΩ]jt

+ [Σ−1ΛΦ]is[MΛΦ]tj + [M ]ti[ΦΛTΣ−1ΛΦ]js

+ [Σ−1]it[ΦΛTMΛΦ]sj + [ΦΛTM ]si[ΦΛTΣ−1]jt

= 2[Ω]it[Φ]sj − [ΩΛΦ]is[Σ−1ΛΦ]tj − 2[Ω]ti[ΦΛTΣ−1ΛΦ]sj

+ 2[Σ−1]ti[ΦΛTMΛΦ]sj − [ΦΛTΣ−1]si[ΦΛTΩ]jt

+ [Σ−1ΛΦ]is[MΛΦ]tj + [ΦΛTM ]si[ΦΛTΣ−1]jt

= 2[Ω]it[Φ]sj − [ΩΛΦ]is[Σ−1ΛΦ]tj − 2[Ω]ti[ΦΛTΣ−1ΛΦ]sj

+ 2[Σ−1]ti[ΦΛTMΛΦ]sj − [ΦΛTΣ−1]si[ΦΛTΣ−1]jt + [ΦΛTΣ−1]si[ΦΛTM ]jt

+ [Σ−1ΛΦ]is[MΛΦ]tj + [ΦΛTM ]si[ΦΛTΣ−1]jt

= 2[Ω]it[Φ]sj − [ΩΛΦ]is[Σ−1ΛΦ]tj − 2[Ω]ti[ΦΛTΣ−1ΛΦ]sj

+ 2[Σ−1]ti[ΦΛTMΛΦ]sj − [ΦΛT (Σ−1 −M )]si[ΦΛTΣ−1]jt

+ [ΦΛTΣ−1]si[ΦΛTM ]jt + [Σ−1ΛΦ]is[MΛΦ]tj

= 2[Ω]it[Φ]sj − 2[Ω]ti[ΦΛTΣ−1ΛΦ]sj + 2[Σ−1]ti[ΦΛTMΛΦ]sj

− 2[ΩΛΦ]is[Σ−1ΛΦ]tj + 2[Σ−1ΛΦ]is[MΛΦ]tj

= 2[Ω]ti[Φ−ΦΛTΣ−1ΛΦ]sj + 2[Σ−1]ti[ΦΛTMΛΦ]sj

− 2[ΩΛΦ]is[Σ−1ΛΦ]tj + 2[Σ−1ΛΦ]is[MΛΦ]tj. (A.39)
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Factor loading and factor covariance

∂2F

∂λij∂φgh
= tr

{
Ω ∂2Σ
∂λij∂φgh

}
− tr

{
Ω ∂Σ
∂φgh

Σ−1 ∂Σ
∂λij

}
+ tr

{
Σ−1 ∂Σ

∂φgh
M

∂Σ
∂λij

}

= tr
{

Ω
[
Λ [1gh + 1hg − 1ghI1gh] 1ji + 1ij [1gh + 1hg − 1ghI1gh] ΛT

]}
− tr

{
ΩΛ [1gh + 1hg − 1ghI1gh] ΛTΣ−1[ΛΦ1ji + 1ijΦΛT ]

}
+ tr

{
Σ−1Λ [1gh + 1hg − 1ghI1gh] ΛTM [ΛΦ1ji + 1ijΦΛT ]

}
= tr

{
ΩΛ [1gh + 1hg − 1ghI1gh] 1ji

}
+ tr

{
Ω1ij [1gh + 1hg − 1ghI1gh] ΛT

}
− tr

{
ΩΛ1ghΛTΣ−1ΛΦ1ji

}
− tr

{
ΩΛ1ghΛTΣ−11ijΦΛT

}
− tr

{
ΩΛ1hgΛTΣ−1ΛΦ1ji

}
− tr

{
ΩΛ1hgΛTΣ−11ijΦΛT

}
+ tr

{
ΩΛ1ghI1ghΛTΣ−1ΛΦ1ji

}
+ tr

{
ΩΛ1ghI1ghΛTΣ−11ijΦΛT

}
+ tr

{
Σ−1Λ1ghΛTMΛΦ1ji

}
+ tr

{
Σ−1Λ1ghΛTM1ijΦΛT

}
+ tr

{
Σ−1Λ1hgΛTMΛΦ1ji

}
+ tr

{
Σ−1Λ1hgΛTM1ijΦΛT

}
− tr

{
Σ−1Λ1ghI1ghΛTMΛΦ1ji

}
− tr

{
Σ−1Λ1ghI1ghΛTM1ijΦΛT

}
= tr{ΩΛ(1gh + 1hg)1ji}+ tr{1ij(1gh + 1hg)ΛTΩ} − tr{ΩΛ1ghI1gh1ji}

− tr{Ω1ij1ghI1ghΛT} − [ΩΛ]ig[ΛTΣ−1ΛΦ]hj

− tr
{
ΛTΣ−11ijΦΛTΩΛ1gh

}
− [ΩΛ]ih[ΛTΣ−1ΛΦ]gj

− tr
{
ΛTΣ−11ijΦΛTΩΛ1hg

}
+ tr

{
ΩΛ1ghI1ghΛTΣ−1ΛΦ1ji

}
+ tr

{
I1ghΛTΣ−11ijΦΛTΩΛ1gh

}
+ [Σ−1Λ]ig[ΛTMΛΦ]hj

+ tr
{
ΛTM1ijΦΛTΣ−1Λ1gh

}
+ [Σ−1Λ]ih[ΛTMΛΦ]gj

+ tr
{
ΛTM1ijΦΛTΣ−1Λ1hg

}
− tr

{
Σ−1Λ1ghI1ghΛTMΛΦ1ji

}
− tr

{
I1ghΛTM1ijΦΛTΣ−1Λ1gh

}
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= 2tr{ΩΛ(1gh + 1hg)1ji} − tr{ΩΛ1ghI1gh1ji} − tr{Ω1ij1ghI1ghΛT}

− [ΩΛ]ig[ΛTΣ−1ΛΦ]hj − [ΛTΣ−1]hi[ΦΛTΩΛ]jg − [ΩΛ]ih[ΛTΣ−1ΛΦ]gj

− [ΛTΣ−1]gi[ΦΛTΩΛ]jh + [ΩΛ]ig[I]hg[ΛTΣ−1ΛΦ]hj

+ tr
{
I1ghΛTΣ−11ijΦΛTΣ−1Λ1gh

}
− tr

{
I1ghΛTΣ−11ijΦΛTMΛ1gh

}
+ [Σ−1Λ]ig[ΛTMΛΦ]hj + [ΛTM ]hi[ΦΛTΣ−1Λ]jg

+ [Σ−1Λ]ih[ΛTMΛΦ]gj + [ΛTM ]gi[ΦΛTΣ−1Λ]jh

− [Σ−1Λ]ig[I]hg[ΛTMΛΦ]hj − [I]hg[ΛTM ]hi[ΦΛTΣ−1Λ]jg

= 2tr{ΩΛ1gh1ji}+ 2tr{ΩΛ1hg1ji} − tr{ΩΛ1ghI1gh1ji} − tr{Ω1ij1ghI1ghΛT}

− [ΩΛ]ig[ΛTΣ−1ΛΦ]hj − [ΛTΣ−1]hi[ΦΛTΣ−1Λ]jg + [ΛTΣ−1]hi[ΦΛTMΛ]jg

− [ΩΛ]ih[ΛTΣ−1ΛΦ]gj − [ΛTΣ−1]gi[ΦΛTΣ−1Λ]jh + [ΛTΣ−1]gi[ΦΛTMΛ]jh

+ [ΩΛ]ig[I]hg[ΛTΣ−1ΛΦ]hj + [I]hg[ΛTΣ−1]hi[ΦΛTΣ−1Λ]jg

− [I]hg[ΛTΣ−1]hi[ΦΛTMΛ]jg + [Σ−1Λ]ig[ΛTMΛΦ]hj

+ [ΛTM ]hi[ΦΛTΣ−1Λ]jg + [Σ−1Λ]ih[ΛTMΛΦ]gj + [ΛTM ]gi[ΦΛTΣ−1Λ]jh

− [Σ−1Λ]ig[I]hg[ΛTMΛΦ]hj − [I]hg[ΛTM ]hi[ΦΛTΣ−1Λ]jg

= 2[ΩΛ]ig[I]hj + 2[ΩΛ]ih[I]gj − [ΩΛ]ig[I]hg[I]hj − [ΩΛ]ih[I]gh[I]gj

− [ΩΛ]ig[ΛTΣ−1ΛΦ]hj − [ΛT (Σ−1 −M )]hi[ΦΛTΣ−1Λ]jg

+ [ΛTΣ−1]hi[ΦΛTMΛ]jg − [ΩΛ]ih[ΛTΣ−1ΛΦ]gj

− [ΛT (Σ−1 −M )]gi[ΦΛTΣ−1Λ]jh + [ΛTΣ−1]gi[ΦΛTMΛ]jh

+ [ΩΛ]ig[I]hg[ΛTΣ−1ΛΦ]hj + [I]hg[ΛT (Σ−1 −M )]hi[ΦΛTΣ−1Λ]jg

− [I]hg[ΛTΣ−1]hi[ΦΛTMΛ]jg + [Σ−1Λ]ig[ΛTMΛΦ]hj

+ [Σ−1Λ]ih[ΛTMΛΦ]gj − [Σ−1Λ]ig[I]hg[ΛTMΛΦ]hj
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= 2[ΩΛ]ig[I]hj + 2[ΩΛ]ih[I]gj − [ΩΛ]ig[I]hg[I]hj − [ΩΛ]ih[I]gh[I]gj

− [ΩΛ]ig[ΛTΣ−1ΛΦ]hj − [ΛTΩ]hi[ΦΛTΣ−1Λ]jg + [ΛTΣ−1]hi[ΦΛTMΛ]jg

− [ΩΛ]ih[ΛTΣ−1ΛΦ]gj − [ΛTΩ]gi[ΦΛTΣ−1Λ]jh + [ΛTΣ−1]gi[ΦΛTMΛ]jh

+ [ΩΛ]ig[I]hg[ΛTΣ−1ΛΦ]hj + [I]hg[ΛTΩ]hi[ΦΛTΣ−1Λ]jg

− [I]hg[ΛTΣ−1]hi[ΦΛTMΛ]jg + [Σ−1Λ]ig[ΛTMΛΦ]hj

+ [Σ−1Λ]ih[ΛTMΛΦ]gj − [Σ−1Λ]ig[I]hg[ΛTMΛΦ]hj

= 2[ΩΛ]ig[I]hj − 2[ΩΛ]ig[ΛTΣ−1ΛΦ]hj + 2[ΩΛ]ih[I]gj − 2[ΩΛ]ih[ΛTΣ−1ΛΦ]gj

+ 2[Σ−1Λ]ig[ΛTMΛΦ]hj + 2[Σ−1Λ]ih[ΛTMΛΦ]gj

− [I]gh[ΩΛ]ig[I]hj + [I]gh[ΩΛ]ig[ΛTΣ−1ΛΦ]hj − [I]gh[ΩΛ]ih[I]gj

+ [I]gh[ΩΛ]ih[ΛTΣ−1ΛΦ]gj − [I]gh[Σ−1Λ]ig[ΛTMΛΦ]hj

− [I]gh[Σ−1Λ]ih[ΛTMΛΦ]gj

= 2[ΩΛ]ig[I −ΛTΣ−1ΛΦ]hj + 2[ΩΛ]ih[I −ΛTΣ−1ΛΦ]gj

+ 2[Σ−1Λ]ig[ΛTMΛΦ]hj + 2[Σ−1Λ]ih[ΛTMΛΦ]gj

− [I]gh[ΩΛ]ig[I −ΛTΣ−1ΛΦ]hj − [I]gh[ΩΛ]ih[I −ΛTΣ−1ΛΦ]gj

− [I]gh[Σ−1Λ]ig[ΛTMΛΦ]hj − [I]gh[Σ−1Λ]ih[ΛTMΛΦ]gj

= (2− [I]gh)

(
[ΩΛ]ig[I −ΛTΣ−1ΛΦ]hj + [ΩΛ]ih[I −ΛTΣ−1ΛΦ]gj

+ [Σ−1Λ]ig[ΛTMΛΦ]hj + [Σ−1Λ]ih[ΛTMΛΦ]gj

)
. (A.40)

Factor loading and unique variance

∂2F

∂λij∂ψtt
= tr

{
Ω ∂2Σ
∂λij∂ψtt

}
− tr

{
Ω ∂Σ
∂ψtt

Σ−1 ∂Σ
∂λij

}
+ tr

{
Σ−1 ∂Σ

∂ψtt
M

∂Σ
∂λij

}
= ����tr(Ω0)− tr{Ω1ttΣ−1(ΛΦ1ji + 1ijΦΛT )}

+ tr{Σ−11ttM (ΛΦ1ji + 1ijΦΛT )}

= − tr{Ω1ttΣ−1ΛΦ1ji + Ω1ttΣ−11ijΦΛT}+ tr{Σ−11ttMΛΦ1ji

+ Σ−11ttM1ijΦΛT}
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= − tr{Ω1ttΣ−1ΛΦ1ji} − tr{Σ−11ijΦΛTΩ1tt}+ tr{Σ−11ttMΛΦ1ji}

+ tr{M1ijΦΛTΣ−11tt}

= − [Ω]it[Σ−1ΛΦ]tj − [Σ−1]ti[ΦΛTΩ]jt + [Σ−1]it[MΛΦ]tj

+ [M ]it[ΦΛTΣ−1]jt

= − [Σ−1]it[Σ−1ΛΦ]tj + [M ]it[Σ−1ΛΦ]tj − [Σ−1]it[ΦΛTΩ]jt

+ [Σ−1]it[MΛΦ]tj + [M ]it[Σ−1ΛΦ]tj

= 2[M ]it[Σ−1ΛΦ]tj − [Σ−1]it[Σ−1ΛΦ−MΛΦ]tj − [Σ−1]it[ΩΛΦ]tj

= 2[M ]it[Σ−1ΛΦ]tj − 2[Σ−1]it[ΩΛΦ]tj

= 2

(
[M ]it[Σ−1ΛΦ]tj − [Σ−1]it[ΩΛΦ]tj

)
. (A.41)

Factor covariances

∂2F

∂φgh∂φlq
= tr

{
Ω ∂2Σ
∂φgh∂φlq

}
− tr

{
Ω ∂Σ
∂φlq

Σ−1 ∂Σ
∂φgh

}
+ tr

{
Σ−1 ∂Σ

∂φlq
M

∂Σ
∂φgh

}

= ����tr{Ω0} − tr{ΩΛ(1lq + 1ql − 1lqI1lq)ΛTΣ−1Λ(1gh + 1hg − 1ghI1gh)ΛT}

+ tr{Σ−1Λ(1lq + 1ql − 1lqI1lq)ΛTMΛ(1gh + 1hg − 1ghI1gh)ΛT}

= − tr{ΩΛ1lqΛTΣ−1Λ1ghΛT} − tr{ΩΛ1lqΛTΣ−1Λ1hgΛT}

+ tr{ΩΛ1lqΛTΣ−1Λ1ghI1ghΛT} − tr{ΩΛ1qlΛTΣ−1Λ1ghΛT}

− tr{ΩΛ1qlΛTΣ−1Λ1hgΛT}+ tr{ΩΛ1qlΛTΣ−1Λ1ghI1ghΛT}

+ tr{ΩΛ1lqI1lqΛTΣ−1Λ1ghΛT}+ tr{ΩΛ1lqI1lqΛTΣ−1Λ1hgΛT}

− tr{ΩΛ1lqI1lqΛTΣ−1Λ1ghI1ghΛT}+ tr{Σ−1Λ1lqΛTMΛ1ghΛT}

+ tr{Σ−1Λ1lqΛTMΛ1hgΛT} − tr{Σ−1Λ1lqΛTMΛ1ghI1ghΛT}

+ tr{Σ−1Λ1qlΛTMΛ1ghΛT}+ tr{Σ−1Λ1qlΛTMΛ1hgΛT}

− tr{Σ−1Λ1qlΛTMΛ1ghI1ghΛT} − tr{Σ−1Λ1lqI1lqΛTMΛ1ghΛT}

− tr{Σ−1Λ1lqI1lqΛTMΛ1hgΛT}+ tr{Σ−1Λ1lqI1lqΛTMΛ1ghI1ghΛT}
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= − tr{ΛTΣ−1Λ1ghΛTΩΛ1lq} − tr{ΛTΣ−1Λ1hgΛTΩΛ1lq}

+ tr{ΛTΣ−1Λ1ghI1ghΛTΩΛ1lq} − tr{ΛTΣ−1Λ1ghΛTΩΛ1ql}

− tr{ΛTΣ−1Λ1hgΛTΩΛ1ql}+ tr{ΛTΣ−1Λ1ghI1ghΛTΩΛ1ql}

+ tr{I1lqΛTΣ−1Λ1ghΛTΩΛ1lq}+ tr{I1lqΛTΣ−1Λ1hgΛTΩΛ1lq}

− tr{I1lqΛTΣ−1Λ1ghI1ghΛTΩΛ1lq}+ tr{ΛTMΛ1ghΛTΣ−1Λ1lq}

+ tr{ΛTMΛ1hgΛTΣ−1Λ1lq} − tr{ΛTMΛ1ghI1ghΛTΣ−1Λ1lq}

+ tr{ΛTMΛ1ghΛTΣ−1Λ1ql}+ tr{ΛTMΛ1hgΛTΣ−1Λ1ql}

− tr{ΛTMΛ1ghI1ghΛTΣ−1Λ1ql} − tr{I1lqΛTMΛ1ghΛTΣ−1Λ1lq}

− tr{I1lqΛTMΛ1hgΛTΣ−1Λ1lq}+ tr{I1lqΛTMΛ1ghI1ghΛTΣ−1Λ1lq}

= − [ΛTΣ−1Λ]qg[ΛTΩΛ]hl − [ΛTΣ−1Λ]qh[ΛTΩΛ]gl

+ [ΛTΣ−1Λ]qg[I]hg[ΛTΩΛ]hl − [ΛTΣ−1Λ]lg[ΛTΩΛ]hq

− [ΛTΣ−1Λ]lh[ΛTΩΛ]gq + [ΛTΣ−1Λ]lg[I]hg[ΛTΩΛ]hq

+ [I]ql[ΛTΣ−1Λ]qg[ΛTΩΛ]hl + [I]ql[ΛTΣ−1Λ]qh[ΛTΩΛ]gl

− [I]ql[ΛTΣ−1Λ]qg[I]hg[ΛTΩΛ]hl + [ΛTMΛ]qg[ΛTΣ−1Λ]hl

+ [ΛTMΛ]qh[ΛTΣ−1Λ]gl − [ΛTMΛ]qg[I]hg[ΛTΣ−1Λ]hl

+ [ΛTMΛ]lg[ΛTΣ−1Λ]hq + [ΛTMΛ]lh[ΛTΣ−1Λ]gq

− [ΛTMΛ]lg[I]hg[ΛTΣ−1Λ]hq − [I]ql[ΛTMΛ]qg[ΛTΣ−1Λ]hl

− [I]ql[ΛTMΛ]qh[ΛTΣ−1Λ]gl +[I]ql[ΛTMΛ]qg[I]hg[ΛTΣ−1Λ]hl
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= − [ΛTΣ−1Λ]qg[ΛTΣ−1Λ]hl + [ΛTΣ−1Λ]qg[ΛTMΛ]hl

− [ΛTΣ−1Λ]qh[ΛTΣ−1Λ]gl + [ΛTΣ−1Λ]qh[ΛTMΛ]gl

+ [ΛTΣ−1Λ]qg[I]hg[ΛTΣ−1Λ]hl − [ΛTΣ−1Λ]qg[I]hg[ΛTMΛ]hl

− [ΛTΣ−1Λ]lg[ΛTΩΛ]hq − [ΛTΣ−1Λ]lh[ΛTΩΛ]gq

+ [ΛTΣ−1Λ]lg[I]hg[ΛTΩΛ]hq + [I]ql[ΛTΣ−1Λ]qg[ΛTΣ−1Λ]hl

− [I]ql[ΛTΣ−1Λ]qg[ΛTMΛ]hl + [I]ql[ΛTΣ−1Λ]qh[ΛTΣ−1Λ]gl

− [I]ql[ΛTΣ−1Λ]qh[ΛTMΛ]gl − [I]ql[I]hg[ΛTΣ−1Λ]qg[ΛTΣ−1Λ]hl

+ [I]ql[I]hg[ΛTΣ−1Λ]qg[ΛTMΛ]hl + [ΛTMΛ]qg[ΛTΣ−1Λ]hl

+ [ΛTMΛ]qh[ΛTΣ−1Λ]gl − [ΛTMΛ]qg[I]hg[ΛTΣ−1Λ]hl

+ [ΛTMΛ]lg[ΛTΣ−1Λ]hq + [ΛTMΛ]lh[ΛTΣ−1Λ]gq

− [ΛTMΛ]lg[I]hg[ΛTΣ−1Λ]hq − [I]ql[ΛTMΛ]qg[ΛTΣ−1Λ]hl

− [I]ql[ΛTMΛ]qh[ΛTΣ−1Λ]gl + [I]ql[I]hg[ΛTMΛ]qg[ΛTΣ−1Λ]hl

= − [ΛTΣ−1Λ]hl[ΛT (Σ−1 −M )Λ]qg + [ΛTMΛ]hl[ΛTΣ−1Λ]qg

− [ΛTΣ−1Λ]gl[ΛT (Σ−1 −M )Λ]qh + [ΛTMΛ]gl[ΛTΣ−1Λ]qh

+ [I]gh[ΛTΣ−1Λ]hl[ΛT (Σ−1 −M)Λ]qg − [I]gh[ΛTMΛ]hl[ΛTΣ−1Λ]qg

− [ΛTΣ−1Λ]gl[ΛTΩΛ]qh − [ΛTΣ−1Λ]hl[ΛTΩΛ]qg

+ [I]gh[ΛTΣ−1Λ]gl[ΛTΩΛ]qh + [I]lq[ΛTΣ−1Λ]hl[ΛTΩΛ]qg

− [I]lq[ΛTMΛ]hl[ΛTΣ−1Λ]qg + [I]lq[ΛTΣ−1Λ]gl[ΛTΩΛ]qh

− [I]lq[ΛTMΛ]gl[ΛTΣ−1Λ]qh − [I]lq[I]gh[ΛTΣ−1Λ]hl[ΛTΩΛ]qg

+ [I]lq[I]gh[ΛTMΛ]hl[ΛTΣ−1Λ]qg + [ΛTMΛ]gl[ΛTΣ−1Λ]qh

+ [ΛTMΛ]hl[ΛTΣ−1Λ]qg − [I]gh[ΛTMΛ]gl[ΛTΣ−1Λ]qh
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= 2[ΛTMΛ]hl[ΛTΣ−1Λ]qg + 2[ΛTMΛ]gl[ΛTΣ−1Λ]qh − 2[ΛTΣ−1Λ]gl[ΛTΩΛ]qh

− 2[ΛTΣ−1Λ]hl[ΛTΩΛ]qg + [I]gh[ΛTΣ−1Λ]hl[ΛTΩΛ]qg

− [I]gh[ΛTMΛ]hl[ΛTΣ−1Λ]qg + [I]gh[ΛTΣ−1Λ]gl[ΛTΩΛ]qh

+ [I]lq[ΛTΣ−1Λ]hl[ΛTΩΛ]qg − [I]lq[ΛTMΛ]hl[ΛTΣ−1Λ]qg

+ [I]lq[ΛTΣ−1Λ]gl[ΛTΩΛ]qh − [I]lq[ΛTMΛ]gl[ΛTΣ−1Λ]qh

− [I]lq[I]gh[ΛTΣ−1Λ]hl[ΛTΩΛ]qg + [I]lq[I]gh[ΛTMΛ]hl[ΛTΣ−1Λ]qg

− [I]gh[ΛTMΛ]gl[ΛTΣ−1Λ]qh

= (2− [I]lq − [I]gh + [I]lq[I]gh)([ΛTMΛ]hl[ΛTΣ−1Λ]qg − [ΛTΣ−1Λ]hl[ΛTΩΛ]qg)

+ (2− [I]lq − [I]gh)([ΛTMΛ]gl[ΛTΣ−1Λ]qh − [ΛTΣ−1Λ]gl[ΛTΩΛ]qh).

(A.42)

Factor covariance and unique variance

∂2F

∂φgh∂ψtt
= tr

{
Ω ∂2Σ
∂φgh∂ψtt

}
− tr

{
Ω ∂Σ
∂ψtt

Σ−1 ∂Σ
∂φgh

}
+ tr

{
Σ−1 ∂Σ

∂ψtt
M

∂Σ
∂φgh

}
= ����tr(Ω0)− tr{Ω1ttΣ−1Λ [1gh + 1hg − 1ghI1gh] ΛT}

+ tr{Σ−11ttMΛ [1gh + 1hg − 1ghI1gh] ΛT}

= − tr{Ω1ttΣ−1Λ1ghΛT} − tr{Ω1ttΣ−1Λ1hgΛT}

+ tr{Ω1ttΣ−1Λ1ghI1ghΛT}+ tr{Σ−11ttMΛ1ghΛT}

+ tr{Σ−11ttMΛ1hgΛT} − tr{Σ−11ttMΛ1ghI1ghΛT}

= − tr{Σ−1Λ1ghΛTΩ1tt} − tr{Σ−1Λ1hgΛTΩ1tt}

+ tr{Σ−1Λ1ghI1ghΛTΩ1tt}+ tr{MΛ1ghΛTΣ−11tt}

+ tr{MΛ1hgΛTΣ−11tt} − tr{MΛ1ghI1ghΛTΣ−11tt}

= − [Σ−1Λ]tg[ΛTΩ]ht − [Σ−1Λ]th[ΛTΩ]gt

+ [Σ−1Λ]tg[I]hg[ΛTΩ]ht + [MΛ]tg[ΛTΣ−1]ht

+ [MΛ]th[ΛTΣ−1]gt − [MΛ]tg[I]hg[ΛTΣ−1]ht
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= − [Σ−1Λ]tg[ΛTΩ]ht − [Σ−1Λ]th[ΛT (Σ−1 −M )]gt

+ [Σ−1Λ]tg[I]hg[ΛTΩ]ht + [MΛ]tg[ΛTΣ−1]ht

+ [MΛ]th[ΛTΣ−1]gt − [MΛ]tg[I]hg[ΛTΣ−1]ht

= − [Σ−1Λ]tg[ΛTΩ]ht − [Σ−1Λ]th[ΛTΣ−1]gt + [Σ−1Λ]th[ΛTM ]gt

+ [Σ−1Λ]tg[I]hg[ΛTΩ]ht + [MΛ]tg[ΛTΣ−1]ht

+ [MΛ]th[ΛTΣ−1]gt − [MΛ]tg[I]hg[ΛTΣ−1]ht

= − [Σ−1Λ]tg[ΛTΩ]ht − [(Σ−1 −M )Λ]th[ΛTΣ−1]gt

+ [Σ−1Λ]th[ΛTM ]gt + [Σ−1Λ]tg[I]hg[ΛTΩ]ht

+ [MΛ]tg[ΛTΣ−1]ht − [MΛ]tg[I]hg[ΛTΣ−1]ht

= − [Σ−1Λ]tg[ΛTΩ]ht − [ΩΛ]th[ΛTΣ−1]gt + [Σ−1Λ]th[ΛTM ]gt

+ [Σ−1Λ]tg[I]hg[ΛTΩ]ht + [MΛ]tg[ΛTΣ−1]ht

− [MΛ]tg[I]hg[ΛTΣ−1]ht

= 2[Σ−1Λ]th[MΛ]tg − 2[Σ−1Λ]tg[ΩΛ]th − [I]gh[Σ−1Λ]th[MΛ]tg

+ [I]gh[Σ−1Λ]tg[ΩΛ]th

= (2− [I]gh)

(
[Σ−1Λ]th[MΛ]tg − [Σ−1Λ]tg[ΩΛ]th

)
. (A.43)

Unique variances

∂2F

∂ψii∂ψtt
= tr

{
Ω ∂2Σ
∂ψii∂ψtt

}
− tr

{
Ω ∂Σ
∂ψtt

Σ−1 ∂Σ
∂ψii

}
+ tr

{
Σ−1 ∂Σ

∂ψtt
M

∂Σ
∂ψii

}
= ����tr(Ω0)− tr(Ω1ttΣ−11ii) + tr(Σ−11ttM1ii)

= −[Ω]it[Σ−1]ti + [Σ−1]it[M ]ti = [Σ−1]it (−[Ω]it + [M ]ti)

= [Σ−1]it
(
−[Σ−1]it + [M ]it + [M ]ti

)
= [Σ−1]it[2M −Σ−1]it. (A.44)

The expressions in (A.6)-(A.11) are obtained by using the fact that ∂2`(θ)

∂θq∂θq′
=

−N
2

∂2F

∂θq∂θq′
. �
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A.2.3 Fisher information matrix

A.2.3.1 Proof of Proposition A.3

Proof. We now compute the approximate second-order derivatives which coincide

with the elements of the expected Fisher information matrix, for i, t = 1, . . . , p and

g, h, j, l, q, s = 1, . . . , r (Jöreskog, 1969).

Factor loadings

−E
[
∂2`(θ)

∂λij∂λts

]
=
N

2
tr
{

Σ−1 ∂Σ
∂λij

Σ−1 ∂Σ
∂λts

}
=
N

2
tr
{
Σ−1(ΛΦ1ji + 1ijΦΛT )Σ−1(ΛΦ1st + 1tsΦΛT )

}
=
N

2
tr
{
Σ−1ΛΦ1jiΣ−1ΛΦ1st

}
+
N

2
tr
{
Σ−1ΛΦ1jiΣ−11tsΦΛT

}
+
N

2
tr
{
Σ−11ijΦΛTΣ−1ΛΦ1st

}
+
N

2
tr
{
Σ−11ijΦΛTΣ−11tsΦΛT

}
=
N

2
[Σ−1ΛΦ]tj[Σ−1ΛΦ]is +

N

2
[Σ−1]it[ΦΛTΣ−1ΛΦ]sj

+
N

2
[Σ−1]ti[ΦΛTΣ−1ΛΦ]js +

N

2
[ΦΛTΣ−1]jt[ΦΛTΣ−1]si

= N [Σ−1ΛΦ]tj[Σ−1ΛΦ]is +N [Σ−1]it[ΦΛTΣ−1ΛΦ]sj

= N(βtjβis + ωitζjs).

Factor loading and unique variance

−E
[
∂2`(θ)

∂λij∂ψtt

]
=
N

2
tr
{

Σ−1 ∂Σ
∂λij

Σ−1 ∂Σ
∂ψtt

}
=
N

2
tr
{
Σ−1(ΛΦ1ji + 1ijΦΛT )Σ−11tt

}
=
N

2
tr
{
Σ−1ΛΦ1jiΣ−11tt

}
+
N

2
tr
{
Σ−11ijΦΛTΣ−11tt

}
=
N

2
[Σ−1ΛΦ]tj[Σ−1]it +

N

2
[Σ−1]ti[ΦΛTΣ−1]jt = Nωitβtj.
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Factor loading and factor covariance

−E
[
∂2`(θ)

∂λij∂φgh

]
=
N

2
tr
{

Σ−1 ∂Σ
∂λij

Σ−1 ∂Σ
∂φgh

}
=
N

2
tr
{
Σ−1(ΛΦ1ji + 1ijΦΛT )Σ−1Λ [1gh + 1hg − 1ghI1gh] ΛT

}
=
N

2
tr
{
Σ−1ΛΦ1jiΣ−1Λ1ghΛT

}
+
N

2
tr
{
Σ−1ΛΦ1jiΣ−1Λ1hgΛT

}
− N

2
tr
{
Σ−1ΛΦ1jiΣ−1Λ1ghI1ghΛT

}
+
N

2
tr
{
Σ−11ijΦΛTΣ−1Λ1ghΛT

}
+
N

2
tr
{
Σ−11ijΦΛTΣ−1Λ1hgΛT

}
− N

2
tr
{
Σ−11ijΦΛTΣ−1Λ1ghI1ghΛT

}
=
N

2
[Σ−1Λ]ig[ΛTΣ−1ΛΦ]hj +

N

2
[Σ−1Λ]ih[ΛTΣ−1ΛΦ]gj

− N

2
[Σ−1Λ]ig[I]hg[ΛTΣ−1ΛΦ]hj +

N

2
[ΦΛTΣ−1Λ]jg[ΛTΣ−1]hi

+
N

2
[ΦΛTΣ−1Λ]jh[ΛTΣ−1]gi −

N

2
[ΦΛTΣ−1Λ]jg[I]hg[ΛTΣ−1]hi

= N [Σ−1Λ]ig[ΛTΣ−1ΛΦ]hj +N [Σ−1Λ]ih[ΛTΣ−1ΛΦ]gj

− N

2
[Σ−1Λ]ig[I]hg[ΛTΣ−1ΛΦ]hj −

N

2
[ΦΛTΣ−1Λ]jg[I]hg[ΛTΣ−1]hi

=
N

2

{
(2− [I]gh)([Σ−1Λ]ig[ΦΛTΣ−1Λ]jh

+ [Σ−1Λ]ih[ΦΛTΣ−1Λ]jg)

}
=
N

2
(2− [I]gh)(αigδjh + αihδjg).

Unique variances

−E
[
∂2`(θ)

∂ψii∂ψtt

]
=
N

2
tr
{

Σ−1 ∂Σ
∂ψii

Σ−1 ∂Σ
∂ψtt

}
=
N

2
tr
{
Σ−11iiΣ−11tt

}
=
N

2
[Σ−1]ti[Σ−1]it =

N

2
ω2
it.

Unique variance and factor covariance

−E
[
∂2`(θ)

∂ψtt∂φgh

]
=
N

2
tr
{

Σ−1 ∂Σ
∂ψtt

Σ−1 ∂Σ
∂φgh

}

=
N

2
tr
{
Σ−11ttΣ−1Λ [1gh + 1hg − 1ghI1gh] ΛT

}
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=
N

2
tr
{
Σ−11ttΣ−1Λ1ghΛT

}
+
N

2
tr
{
Σ−11ttΣ−1Λ1hgΛT

}
− N

2
tr
{
Σ−11ttΣ−1Λ1ghI1ghΛT

}
=
N

2
[Σ−1Λ]tg[ΛTΣ−1]ht +

N

2
[Σ−1Λ]th[ΛTΣ−1]gt

− N

2
[Σ−1Λ]th[I]gh[ΛTΣ−1]gt

= Nαtgαth −
N

2
[I]ghαtgαth =

N

2
(2− [I]gh)αtgαth.

Factor covariances

−E
[
∂2`(θ)

∂φgh∂φlq

]
= −E

[
∂

∂φlq

∂`(θ)

∂φgh

]

= −E
[
∂

∂φlq

{
−N

2
(2− [I]gh)[ΛΣ−1(Σ− S)Σ−1Λ]gh

}]

=
N

2
(2− [I]gh)

[
ΛTΣ−1

(
Σ
∂φlq

)
Σ−1Λ

]
gh

=
N

2
(2− [I]gh)

[
ΛTΣ−1Λ(1lq + 1ql − 1lqI1lq)ΛTΣ−1Λ

]
gh

=
N

2
(2− [I]gh) tr(ΛTΣ−1Λ1lqΛTΣ−1Λ1hg)

+
N

2
(2− [I]gh) tr(ΛTΣ−1Λ1qlΛTΣ−1Λ1hg)

− N

2
(2− [I]gh) tr(ΛTΣ−1Λ1lqI1lqΛTΣ−1Λ1hg)

=
N

2
(2− [I]gh)[ΛTΣ−1Λ]gl[ΛTΣ−1Λ]qh

+
N

2
(2− [I]gh)[ΛTΣ−1Λ]gq[ΛTΣ−1Λ]lh

− N

2
(2− [I]gh)[ΛTΣ−1Λ]gl[I]ql[ΛTΣ−1Λ]qh

=
N

2

1

2
(2− [I]gh)(2− [I]lq)([ΛTΣ−1Λ]gl[ΛTΣ−1Λ]hq

+ [ΛTΣ−1Λ]gq[ΛTΣ−1Λ]hl)

=
N

4
(2− [I]gh)(2− [I]lq)(γglγhq + γgqγhl).

�
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B
Locally approximated penalties

Appendix B.1 contains the derivations of the expressions of the penalty functions

examined in this work (i.e., lasso, alasso, scad and mcp), whereas Appendix B.2

reports the associated penalty matrices resulting from the local approximations of

the non-differentiable penalties.

B.1 The penalty functions

We consider the case where the interest lies in the shrinkage of the factor loadings,

although other model parameters could be in principle penalized. Let us write

the parameter vector as θ = (θ1, . . . , θq? , θq?+1, . . . , θm)T , where the sub-vector

(θ1, . . . , θq?)
T collects the penalized parameters (i.e., the factor loadings), whereas

(θq?+1, . . . , θm)T the unpenalized parameters (i.e., the free elements in Φ and Ψ).

Define the diagonal matrix Rq = diag(0, 0, . . . , 0, 1, 0, . . . , 0) for q = 1, . . . , q?

where the 1 on the (q, q)th entry of the matrix corresponds to the qth parameter in

θ, and Rq = Om×m for q = q? + 1, . . . ,m. Let eq = (0, . . . , 0, 1, 0, . . . , 0)T be the

canonical vector with a 1 in the qth position for q = 1, . . . , q?, and the null vector

otherwise.

The overall penalty T is given by the sum of the penalty terms for each

parameter, that is,

PTη (θ) =
m∑
q=1

PTη,q(||Rqθ||1),

where T = {L,A, S,M} stands for lasso, alasso, scad, and mcp, respectively. The
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term ||Rqθ||1 = |eTq θ| = |θq| for q = 1, . . . , q?, and is equal to zero otherwise. Let

us detail the expression of the penalty term for each of these penalties.

Lasso

PLη (θ) =
m∑
q=1

PLη,q(||Rqθ||1) =
m∑
q=1

η||Rqθ||1

= η
m∑
q=1

{
(Rqθ)T (Rqθ)

} 1
2 = η

m∑
q=1

{
(eTq θ)2

} 1
2

= η

m∑
q=1

|eTq θ| = η

q?∑
q=1

|θq|.

Alasso

PAη (θ) =
m∑
q=1

PAη,q(||Rqθ||1) = η
m∑
q=1

||Rqθ||1
||Rqθ̂||a1

= η
m∑
q=1

{
(Rqθ)T (Rqθ)

} 1
2{(

Rqθ̂
)T (

Rqθ̂
)}a

2

= η
m∑
q=1

{
(eTq θ)2

} 1
2{(

eTq θ̂
)2
}a

2

= η
m∑
q=1

|eTq θ|∣∣∣eTq θ̂∣∣∣a = η

q?∑
q=1

|θq|
|θ̂q|a

,

where θ̂ is generally the maximum likelihood estimator θ̂MLE and a > 0 an

additional tuning parameter.

Scad

PSη (θ) =
m∑
q=1

PSη,q(||Rqθ||1)

=
m∑
q=1

{
η||Rqθ||11 (0 ≤ ||Rqθ||1 ≤ η)

−
[

(Rqθ)T (Rqθ) + η2 − 2ηa||Rqθ||1
2(a− 1)

]
× 1 (η < ||Rqθ||1 ≤ aη) +

η2(a+ 1)

2
1 (||Rqθ||1 > aη)

}
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=
m∑
q=1

η
[
(Rqθ)T (Rqθ)

] 1
2 1

(
0 ≤

[
(Rqθ)T (Rqθ)

] 1
2 ≤ η

)

−

(Rqθ)T (Rqθ) + η2 − 2ηa
[
(Rqθ)T (Rqθ)

] 1
2

2(a− 1)


× 1

(
η <

[
(Rqθ)T (Rqθ)

] 1
2 ≤ aη

)

+
η2(a+ 1)

2
1

([
(Rqθ)T (Rqθ)

] 1
2 > aη

)
=

m∑
q=1

η
[
(eTq θ)2

] 1
2 1

(
0 ≤

[
(eTq θ)2

] 1
2 ≤ η

)

−

(eTq θ)2 + η2 − 2ηa
[
(eTq θ)2

] 1
2

2(a− 1)

1(η < [(eTq θ)2
] 1

2 ≤ aη
)

+
η2(a+ 1)

2
1

([
(eTq θ)2

] 1
2 > aη

)
=

m∑
q=1

{
η|eTq θ|1

(
0 ≤ |eTq θ| ≤ η

)
−

[
(eTq θ)2 + η2 − 2ηa|eTq θ|

2(a− 1)

]
1
(
η < |eTq θ| ≤ aη

)
+
η2(a+ 1)

2
1
(
|eTq θ| > aη

)}

=

q?∑
q=1

{
η|θq|1(0 ≤ |θq| ≤ η)−

[
θ2
q + η2 − 2ηa|θq|

2(a− 1)

]
1(η < |θq| ≤ aη)

+
η2(a+ 1)

2
(|θq| > aη)

}
,

where a > 2 is an additional tuning parameter.
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Mcp

PMη (θ) =
m∑
q=1

PMη,q(||Rqθ||1)

=

q?∑
q=1

{(
η||Rqθ||1 −

(Rqθ)T (Rqθ)

2a

)
1 (0 ≤ ||Rqθ||1 ≤ aη)

+
η2a

2
1 (||Rqθ||1 > aη)

}

=
m∑
q=1

{(
η
[
(Rqθ)T (Rqθ)

] 1
2 − (Rqθ)T (Rqθ)

2a

)
1

(
0 ≤

[
(Rqθ)T (Rqθ)

] 1
2 ≤ aη

)
+
η2a

2
1

([
(Rqθ)T (Rqθ)

] 1
2 > aη

)}

=
m∑
q=1

{(
η
[
(eTq θ)2

] 1
2 −

(eTq θ)2

2a

)
1

(
0 ≤

[
(eTq θ)2

] 1
2 ≤ aη

)
+
η2a

2
1

([
(eTq θ)2

] 1
2 > aη

)}

=
m∑
q=1

{(
η|eTq θ| −

(eTq θ)2

2a

)
1
(
0 ≤ |eTq θ| ≤ aη

)
+
η2a

2
1
(
|eTq θ| > aη

)}

=

q?∑
q=1

{(
η|θq| −

θ2
q

2a

)
1(0 ≤ |θq| ≤ aη) +

η2a

2
1(|θq| > aη)

}
,

where a > 1 is an additional tuning parameter.

B.2 The penalty matrices

Based on the approximation derived in Section 2.3, the penalty matrix STη (θ̃) is

defined as

STη (θ̃) =
m∑
q=1

∂PTη,q(||Rqθ̃||1)

∂||Rqθ̃||1
1√

(Rqθ̃)TRqθ̃ + c̄
RT
qRq,

for T = {L,A, S,M}. Recall that Rq = diag(0, 0, . . . , 0, 1, 0, . . . , 0) for q =

1, . . . , q? where the 1 on the (q, q)th entry of the matrix corresponds to the qth

parameter in θ, and Rq = Om×m for q = q? + 1, . . . ,m. Therefore, the penalty
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matrix STη (θ̃) is an m×m block diagonal matrix of the form:

STη (θ̃) =

 MT
η (θ̃) O

O O

 .

The first block is composed by the q?×q? diagonal matrix MT
η (θ̃) and corresponds

to the penalized parameters (i.e., the q? factor loadings), whereas the second block

is an (m − q?)-dimensional null matrix relative to the unpenalized parameters

(i.e., the factor variances and covariances and the unique variances). The matrix

MT
η (θ̃) has the following structure

MT
η (θ̃) =



mT1 . . . 0 . . . 0

... . . . ...

0 . . . mTq . . . 0

... . . . ...

0 . . . 0 . . . mTq?


,

where the diagonal entries

mTq =
∂PTη,q(||Rqθ̃||1)

∂||Rqθ̃||1
1√

(Rqθ̃)TRqθ̃ + c̄
for q = 1, . . . , q? (B.1)

determine the amount of shrinkage on θ̃q controlled by the tuning η and required

by penalty T . We now derive their expressions for the lasso, alasso, scad and mcp.

Lasso

The derivative of the lasso penalty with respect to the L1 norm of its argument is

simply the tuning parameter, that is,

∂PLη,q(||Rqθ̃||1)

∂||Rqθ̃||1
=
∂
(
η||Rqθ̃||1

)
∂||Rqθ̃||1

= η.
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Therefore,

[
ML

η (θ̃)
]
qq

= mL
q =

∂PLη,q(||Rqθ̃||1)

∂||Rqθ̃||1
1√

(Rqθ̃)TRqθ̃ + c̄

=
η√

(Rqθ̃)TRqθ̃ + c̄
=

η√
θ̃2
q + c̄

.

Alasso

Similarly, the derivative of the alasso penalty with respect to the L1 norm of its

argument is the tuning parameter multiplied by the adaptive weight, that is,

∂PAη,q(||Rqθ̃||1)

∂||Rqθ̃||1
=

∂

∂||Rqθ̃||1

η ||Rqθ̃||1∣∣∣∣∣∣Rqθ̂
∣∣∣∣∣∣a

1


= η

1∣∣∣∣∣∣Rqθ̂
∣∣∣∣∣∣a

1

= η
1

|θ̂q|a
= η wq.

Therefore,

[
MA

η (θ̃)
]
qq

= mA
q =

∂PAη,q(||Rqθ̃||1)

∂||Rqθ̃||1
1√

(Rqθ̃)TRqθ̃ + c̄

= η wq
1√

(Rqθ̃)TRqθ̃ + c̄

=
η

|θ̂q|a
√
θ̃2
q + c̄

,

where θ̂ is generally the maximum likelihood estimator θ̂MLE.

Scad

The derivative of the scad penalty with respect to the L1 norm of its argument

has the form:

∂PSη,q(||Rqθ̃||1)

∂||Rqθ̃||1
= η

{
1(||Rqθ̃||1 ≤ η) +

max(aη − ||Rqθ̃||1, 0)

(a− 1)η
1(||Rqθ̃||1 > η)

}
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=


η if |θ̃q| ≤ η,

max(aη − |θ̃q|, 0)

a− 1
if |θ̃q| > η,

which leads to the following expression

[
MS

η (θ̃)
]
qq

= mS
q =

∂PSη,q(||Rqθ̃||1)

∂||Rqθ̃||1
1√

(Rqθ̃)TRqθ̃ + c̄

= η

{
1(||Rqθ̃||1 ≤ η) +

max(aη − ||Rqθ̃||1, 0)

(a− 1)η
1(||Rqθ̃||1 > η)

}
× 1√

(Rqθ̃)TRqθ̃ + c̄

=

η

[
1(|θ̃q| ≤ η) +

max(aη − |θ̃q|, 0)

(a− 1)η
1(|θ̃q| > η)

]
√
θ̃2
q + c̄

.

Mcp

The derivative of the mcp penalty with respect to the L1 norm of its argument is

∂PMη,q(||Rqθ̃||1)

∂||Rqθ̃||1
=

(
η − ||Rqθ̃||1

a

)
1(||Rqθ̃||1 < ηa)

=


η − |θ̃q|

a
if |θ̃q| ≤ ηa,

0 if |θ̃q| > ηa,

which implies that

[
MM

η (θ̃)
]
qq

= mM
q =

∂PMη,q(||Rqθ̃||1)

∂||Rqθ̃||1
1√

(Rqθ̃)TRqθ̃ + c̄

=

(
η − ||Rqθ̃||1

a

)
1(||Rqθ̃||1 < ηa)

1√
(Rqθ̃)TRqθ̃ + c̄

=

(
η − |θ̃q|

a

)
1(|θ̃q| < ηa)√

θ̃2
q + c̄

.
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C
Generalized Information

Criterion

This appendix illustrates how the degrees of freedom of the penalized model can

be found by deriving the bias term of the Generalized Information Criterion (GIC;

Konishi & Kitagawa, 1996), an extension of the Akaike Information Criterion (AIC;

Akaike, 1974) to the case where the estimation is not conducted through ordinary

maximum likelihood. We follow the exposition in Konishi and Kitagawa (2008)

and adapt it to the current context.

Suppose that N observations xxxN = {x1, . . . ,xα, . . . ,xN} generated from the

unknown true distribution function G(x) having density function g(x) are realiza-

tions of the random vector XN = (X1, . . . ,Xα, . . . ,XN)T . In order to capture the

structure of the given phenomena, we assume a parametric model that consists of a

family of parametric distributions {f(x|θ);θ ∈ Θ ⊂ Rm}, where θ = (θ1, . . . , θm)T

is the m-dimensional vector of unknown parameters and Θ an open subset of Rm.

We assume that the distribution g(x) that generated the data is included in the

class of parametric models, that is, there exists a parameter vector θ0 ∈ Θ such

that g(x) = f(x|θ0). A statistical model f(x|θ̂) is then obtained by replacing the

parameter vector θ with the penalized maximum likelihood estimator (PMLE) θ̂.

For convenience, we assume that each parameter θq in θ can be expressed in

the form of a real-valued function of the distribution of G, that is, the functional

Tq(G), where Tq(G) is a function defined on the set of all distributions on the
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sample space and does not depend on the sample size N . Then, given data

xxxN = {x1, . . . ,xα, . . . ,xN}, the estimator θ̂q for the qth parameter θq is given by

θ̂q = θ̂q(x1, . . . ,xα, . . . ,xN) = Tq(Ĝ) for q = 1, . . . ,m,

in which the unknown probability distribution G has been replaced with the

empirical distribution function Ĝ based on the data. The empirical distribution

function is the distribution function for the probability function ĝ(xα) =
1

N
(α =

1, . . . , N) that gives the equal probability 1

N
for each of the N observations

{x1, . . . ,xα, . . . ,xN}. Because the estimator θ̂q = Tq(Ĝ) depends on the data only

through the empirical distribution function Ĝ, the functional is referred to as

statistical functional.

Let us write the m-dimensional functional vector with Tq(G) as the qth element

as

T (G) = (T1(G), . . . , Tq(G), . . . , Tm(G))T ,

where T (G) is defined as the solution of the implicit equations

∫
ψ(x,T (G))dG(x) = 0. (C.1)

The function ψ = (ψ1, . . . , ψm)T collects the real-valued functions ψq(x,T (G))

defined on the product space of the sample space and the parameter space Θ. The

ψ-function ψ(x,T (G)) of the PMLE defined in Section 3.1 is

ψ(x,T (G)) =
∂

∂θ

{
log f(x|θ)− PTη (θ)

} ∣∣∣∣
θ=T (G)

=
∂

∂θ

{
log f(x|θ)− 1

2
θTSTη (θ̃)θ

} ∣∣∣∣
θ=T (G)

,

where the penalty term PTη (θ) =
1

2
θTSTη (θ̃)θ is a twice-continuously differentiable

function, T = {L,A, S,M} and θ̃ is an initial value close to the true value of

θ. In case of the normal linear factor model (Section 2.1), the log-likelihood

of the sample is as in equation (2.2), the vector of the tuning parameters η
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reduces to the scalar η, and STη (θ̃) is as in equation (2.13). In case of the

multiple-group factor model (Section 5.1), the log-likelihood of the sample is as

in (5.2), the vector of tuning parameters η is equal to the triplet (η1, η2, η3)T , and

STη (θ̃) = DTη1(θ̃) + DTη2(θ̃) + DTη3(θ̃). Then, the m-dimensional PMLE θ̂ can be

expressed as

θ̂ = T (Ĝ) = (T1(Ĝ), . . . , Tq(Ĝ), . . . , Tm(Ĝ))T ,

where T (Ĝ) is defined as the solution of the system of penalized likelihood equations

N∑
α=1

ψ(xα,T (Ĝ)) =
N∑
α=1

ψ(xα, θ̂) = 0,

with

ψ(xα, θ̂) =
∂

∂θ

{
log f(xα|θ)− 1

2
θTSTη (θ)θ

} ∣∣∣∣∣
θ=θ̂

.

Once the model has been constructed, the interest usually lies in its evaluation from

the standpoint of making a prediction. The idea is thus to evaluate the expected

goodness of the estimated model f(z|θ̂) when it is used to predict the independent

future data Z = z generated from the unknown true distribution g(z). Specifically,

the goodness of the statistical model f(z|θ̂) can be assessed by evaluating its

closeness to the true distribution g(z) in terms of the Kullback-Leibler (K-L)

information

I(g(z); f(z|θ̂)) := EG(z)

[
log

{
g(Z)

f(Z|θ̂)

}]
=

∫
log

{
g(z)

f(z|θ̂)

}
g(z)dz

=

∫
g(z) log g(z)dz −

∫
g(z) log f

(
z|θ̂
)
dz, (C.2)

where the expectation is taken with respect to the unknown true probability

distribution function G(z). Because the first term on the right-hand side of

equation (C.2) is a constant that depends solely on the true model g, in order to

compare different models it is sufficient to consider only the second term on the

right-hand side, called the expected log-likelihood:
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ϕ(XN ;G) := EG(z)[log f(Z|θ̂(XN))] =

∫
g(z) log f(z|θ̂)dz

=

∫
log f(z|θ̂)dG(z). (C.3)

The larger this value is for a model, the smaller its K-L information and the closer

the model is to the true one. The expected log-likelihood still depends on the true

distribution g and is an unknown quantity that eludes explicit computation. A

good estimate of the expected log-likelihood can be obtained from the data by

replacing G with Ĝ, that is,

ϕ(XN ; Ĝ) = EĜ[log f(Z|θ̂)] =

∫
log f(z|θ̂)dĜ(z)

=
N∑
α=1

ĝ(xα) log f(xα|θ̂) =
1

N

N∑
α=1

log f(xα|θ̂). (C.4)

According to the law of large numbers, when the number of observations N tends

to infinity, the mean of the random variables Y α = log f(Xα) (α = 1, . . . , N)

converges in probability to its expectation, that is,

ϕ(XN ; Ĝ) =
1

N

N∑
α=1

log f(Xα)

=
1

N
log f(XN |θ̂(XN))

N→∞−−−−→ EG[log f(Z|θ̂)] = ϕ(XN ;G).

Therefore, the estimate based on the empirical distribution function is a natural

estimate of the expected log-likelihood. The estimate of the expected log-likelihood

multiplied by N is the log-likelihood of the statistical model f(z|θ̂(xxxN))

N

∫
log f(z|θ̂)dĜ(z) =

N∑
α=1

log f(xα|θ̂(xxxN)) = log f(xxxN |θ̂(xxxN)) = `(θ̂).

It is worth noting that the estimator of the expected log-likelihood EG[log f(Z|θ̂)]

is 1

N
`(θ̂) and that the log-likelihood `(θ̂) is an estimator of N EG[log f(Z|θ̂)].

In this procedure, the log-likelihood in (C.4) was obtained by estimating the
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expected log-likelihood EG[log f(Z|θ̂)] by reusing the data xxxN that were initially

used to estimate the model f(Z|θ̂) in place of the future data. The use of the same

data twice for estimating the parameters and the evaluation measure (expected

log-likelihood) of the goodness of the estimated model gives rise to bias. Specifically,

the bias of the log-likelihood as an estimator of the expected log-likelihood given

in (C.3) is defined as

b(G) := EG{ϕ(XN ; Ĝ)− ϕ(XN ;G)}

= EG(xxxN )

[
1

N
log f(XN |θ̂(XN))− EG(z)[log f(Z|θ̂(XN))]

]
,

where the expectation EG(xxxN ) is taken with respect to the joint distributionG(xxxN) =∏N
α=1G(xα) of the sample XN . The prerequisite for a fair comparison of models

is thus the evaluation of and the correction for this bias term. The general form

of the Generalized Information Criterion, which is defined as a bias-corrected

log-likelihood, can be constructed by evaluating the bias and correcting for it as

follows:

GIC(XN ; Ĝ) = −2N

(
1

N

N∑
α=1

log f(Xα|θ̂)− b(Ĝ)

)

= −2
N∑
α=1

log f(Xα|θ̂) + 2N b(Ĝ). (C.5)

The GIC represents an extension of the AIC (see Konishi & Kitagawa, 2008 for a

full exposition on the topic). In the same spirit, we can formulate a Generalized

Bayesian Information Criterion (GBIC) as an extension of the Bayesian Information

Criterion (BIC; Schwarz, 1978)

GBIC(XN ; Ĝ) = −2
N∑
α=1

log f(Xα|θ̂) + log(N)N b(Ĝ), (C.6)

by changing the weight given to the bias term b(Ĝ) from 2 to log(N) used in the

BIC.

Konishi and Kitagawa (1996) showed that the asymptotic bias of the log-
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likelihood in the estimation of the expected log-likelihood can be represented as

the integral of the product of the influence function of the employed estimator and

the score function of the probability model, i.e.,

EG[ϕ(XN ; Ĝ)− ϕ(XN ;G)] =

[
1

N

N∑
α=1

log f(Xα|θ̂)−
∫

log f(z|θ̂)dG(z)

]

=
1

N
b1(G) + o

(
1

N

)
,

where

b1(G) = tr
{∫

T (1)(z;G)
∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

}
. (C.7)

The quantity T (1)(z;G) is the influence function of the m-dimensional func-

tional T (G) at the true distribution G. The influence function T (1)(z;G) =

(T
(1)
1 (z;G), . . . , T

(1)
q (z;G), . . . , T

(1)
m (z;G))T describes the effect of an infinitesimal

contamination at z. Its components T (1)
q (z, G) (q = 1, . . . ,m) are defined in terms

of the directional derivative of the functional Tq(G) with respect to G, that is,

lim
ε→0

Tq((1− ε)G+ εδz)− Tq(G)

ε
=

∂

∂ε
{Tq((1− ε)G+ εδz)}

∣∣∣∣
ε=0

=

∫
T (1)
q (z;G)dδz := T (1)

q (z;G),

where δz is a point mass at z.

The expression of the influence function of the PMLE can be found by calculating

the derivative of the corresponding functional. Firstly, substitute (1− ε)G+ εδz

for G in equation (C.1):

∫
ψ(x,T ((1− ε)G+ εδz))d{(1− ε)G(x) + εδz(x)} =

∫
∂

∂θ

[
log f(x|θ)− 1

2
θTSTη (θ̃)θ

] ∣∣∣∣∣
θ=T ((1−ε)G+εδz)

d{(1− ε)G(x) + εδz(x)} = 0.
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Secondly, differentiate both sides of the equation with respect to ε:

∫
∂

∂ε

{
∂

∂θ

[
log f(x|θ)− 1

2
θTSTη (θ̃)θ

]∣∣∣∣∣
θ=T ((1−ε)G+εδz)

d{(1− ε)G(x) + εδz(x)}

}
= 0

∫
∂

∂θ

[
log f(x|θ)− 1

2
θTSTη (θ̃)θ

]∣∣∣∣∣
θ=T ((1−ε)G+εδz)

∂

∂ε
d{(1− ε)G(x) + εδz(x)}

+

∫
∂

∂ε

{
∂

∂θ

[
log f(x|θ)− 1

2
θTSTη (θ̃)θ

]∣∣∣∣∣
θ=T ((1−ε)G+εδz)

}
d{(1− ε)G(x) + εδz(x)} = 0

∫
∂

∂θ

[
log f(x|θ)− 1

2
θTSTη (θ̃)θ

]∣∣∣∣∣
θ=T ((1−ε)G+εδz)

d{−G(x) + δz(x)}

+

∫
∂

∂θT
∂

∂θ

[
log f(x|θ)− 1

2
θTSTη (θ̃)θ

]∣∣∣∣∣
θ=T ((1−ε)G+εδz)

× ∂

∂ε
{T ((1− ε)G+ εδz)}d{(1− ε)G(x) + εδz(x)} = 0.

Then set ε = 0:

∫
∂

∂θ

[
log f(x|θ)− 1

2
θTSTη (θ̃)θ

]∣∣∣∣∣
θ=T (G)

d{δz(x)−G(x)}

+

∫
∂

∂θ

∂

∂θT

[
log f(x|θ)− 1

2
θTSTη (θ̃)θ

]∣∣∣∣∣
θ=T (G)

∂

∂ε
{T ((1− ε)G+ εδz)}

∣∣∣∣
ε=0

dG(x) = 0

∫
∂

∂θ

[
log f(x|θ)− 1

2
θTSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

dδz(x)

−
∫

∂

∂θ

[
log f(x|θ)− 1

2
θTSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

dG(x)

︸ ︷︷ ︸
=0 by eq. (C.1)

+

∫
∂2

∂θ∂θT

[
log f(x|θ)− 1

2
θTSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

dG(x)
∂

∂ε
{T ((1− ε)G+ εδz)}

∣∣∣∣
ε=0

= 0
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∫
∂

∂θ

[
log f(x|θ)− 1

2
θTSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

dδz(x)

+

∫
∂2

∂θ∂θT

[
log f(x|θ)− 1

2
θTSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

dG(x)
∂

∂ε
{T ((1− ε)G+ εδz)}

∣∣∣∣
ε=0

= 0

∂

∂θ

[
log f(z|θ)− 1

2
θTSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

+

∫
∂2

∂θ∂θT

[
log f(x|θ)− 1

2
θTSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

dG(x)
∂

∂ε
{T ((1− ε)G+ εδz)}

∣∣∣∣
ε=0︸ ︷︷ ︸

=T (1)(z;G)

= 0.

Consequently, the influence function T (1)(z;G) that defines the PMLE is given by

T (1)(z;G) :=
∂

∂ε
{T ((1− ε)G+ εδz)}

∣∣∣∣
ε=0

= −


∫

∂2

∂θ∂θT

[
log f(z|θ)− 1

2
θTSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)

dG(z)


−1

×

 ∂

∂θ

[
log f(z|θ)− 1

2
θTSTη (θ̃)θ

] ∣∣∣∣∣
θ=T (G)


= R(ψ, G)−1ψ(z;T (G)), (C.8)

where R(ψ, G) is an m×m matrix defined as

R(ψ, G) = −
∫
∂ψ(z,θ)T

∂θ

∣∣∣∣
θ=T (G)

dG(z)

= −
∫
∂2 log f(z|θ)

∂θ∂θT

∣∣∣∣
θ=T (G)

dG(z) +

∫
∂2

∂θ∂θT

(
1

2
θTSTη (θ̃)θ

) ∣∣∣∣
θ=T (G)

dG(z).

More specifically, for the normal linear factor model, if we denote θ = (θ?, θ̌)T ,

where θ? collects the penalized parameters and θ̌ the unpenalized parameters, we

have that:
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∂ψ(z,θ)T

∂θ
=


∂2 log f(z|θ)

∂θ?∂θ?
T −MT

η (θ̃)
∂2 log f(z|θ)

∂θ?∂θ̌
T

∂2 log f(z|θ)

∂θ̌∂θ?
T

∂2 log f(z|θ)

∂θ̌∂θ̌
T

 ,

where MT
η (θ̃) is the sub-matrix of STη (θ̃) corresponding to the penalized paramet-

ers defined in Section 2.3, and the tuning parameter vector η reduces to the scalar

η.

By substituting the expression of the influence function of the PMLE into

equation (C.7), we get the following expression of the bias:

b1(G) = tr
{∫

T (1)(z;G)
∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

}

= tr
{∫

R(ψ, G)−1ψ(z,T (G))
∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

}

= tr
{
R(ψ, G)−1

∫
ψ(z;T (G))

∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

}

= tr
{
R(ψ, G)−1Q(ψ, G)

}
,

where Q(ψ, G) is an m×m matrix defined as

Q(ψ, G) =

∫
ψ(z;T (G))

∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

=

∫
∂

∂θ

{
log f(z|θ)− 1

2
θTSTη (θ̃)θ

} ∣∣∣∣
θ=T (G)

∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

=

∫
∂ log f(z|θ)

∂θ

∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

−
∫

STη (θ̃)T (G)
∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

=

∫
∂ log f(z|θ)

∂θ

∂ log f(z|θ)

∂θT

∣∣∣∣
θ=T (G)

dG(z)

= −
∫
∂2 log f(z|θ)

∂θ∂θT

∣∣∣∣
θ=T (G)

dG(z) = Q(G).
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The fourth line follows from the fact that as N → ∞ (see the conditions in

Appendix E.1)

0 =

∫
∂

∂θ

[
log f(z|θ)−

(
1

2
θTSTη (θ̃)θ

)] ∣∣∣∣
θ=T (G)

dG(z) =

∫
∂ log f(z|θ)

∂θ

∣∣∣∣
θ=T (G)

dG(z).

Let b1(Ĝ) be a bias estimate obtained by replacing the unknown distribution G

with the empirical distribution Ĝ:

b1(Ĝ) = tr
{

1

N

N∑
α=1

T (1)(xα, Ĝ)
∂ log f(xα|θ)

∂θT

∣∣∣∣
θ=T (Ĝ)

}
= tr

{
R(ψ, Ĝ)−1Q(Ĝ)

}
. (C.9)

The quantity T (1)(xα, Ĝ) represents the vector of empirical influence functions,

whose components T (1)
q (xα, Ĝ) are defined as the derivative of Tq(Ĝ) with respect

to the probability measure δxα being the point mass at xα, that is,

T (1)
q (xα, Ĝ) = lim

ε→0

Tq((1− ε)Ĝ+ εδxα)− Tq(Ĝ)

ε
.

The matrices R(ψ, Ĝ) and Q(Ĝ) are as follows:

R(ψ, Ĝ) = − 1

N

N∑
α=1

∂ψ(xα|θ)T

∂θ

∣∣∣∣∣
θ=T (Ĝ)

= − 1

N

N∑
α=1

∂2 log f(xα|θ)

∂θ∂θT

∣∣∣∣∣
θ=T (Ĝ)

− ∂2

∂θ∂θT

(
1

2
θTSTη (θ)θ

) ∣∣∣∣∣
θ=T (Ĝ)


= − 1

N

 ∂2

∂θ∂θT
`(θ)

∣∣∣∣∣
θ=T (Ĝ)

−N ∂2

∂θ∂θT

(
1

2
θTSTη (θ)θ

) ∣∣∣∣∣
θ=T (Ĝ)


= − 1

N

{
H(θ̂)−NSTη (θ̂)

}
= − 1

N
Hp(θ̂),

Q(Ĝ) = − 1

N

N∑
α=1

∂2 log f(xα|θ)

∂θ∂θT

∣∣∣∣∣
θ=T (Ĝ)

= − 1

N

∂2`(θ)

∂θ∂θT

∣∣∣∣∣
θ=T (Ĝ)

= − 1

N
H(θ̂).

The estimated bias b1(Ĝ) is an estimate of the effective degrees of freedom (edf ) of

the penalized model, that is,
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edf = b1(Ĝ) = tr
{[
− 1

N
Hp(θ̂)

]−1 [
− 1

N
H(θ̂)

]}
= tr

{
Hp(θ̂)−1H(θ̂)

}
. (C.10)

By substituting the asymptotic bias estimate in equation (C.10) into the expressions

of the GIC (eq. C.5) and the GBIC (eq. C.6), the following generalized information

criteria are obtained:

GIC(XN ; Ĝ) = −2N

{
1

N

N∑
α=1

log f(xα|θ̂)− 1

N
b1(Ĝ)

}

= −2
N∑
α=1

log f(xα|θ̂) + 2 tr{R(ψ, Ĝ)−1Q(Ĝ)}

= −2 `(θ̂) + 2 tr
{
Hp(θ̂)−1H(θ̂)

}
,

GBIC(XN ; Ĝ) = −2 `(θ̂) + log(N) tr
{
Hp(θ̂)−1H(θ̂)

}
.

The vector of tuning parameters η enters through the penalty matrix, which is

included in Hp. The determination of the tuning parameter(s) can be viewed as a

model selection and evaluation problem. Therefore, information criteria evaluating

a penalized model can be used as tuning parameter selectors. By evaluating

statistical models determined according to grid(s) of values of η, we take the

optimal vector of the tuning parameter η̂ to be the one minimizing the value of

the GBIC (since the BIC generally selects more sparse models than does the AIC),

that is,

η̂ = arg min
η
GBIC(XN ; Ĝ).
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D
Details on the penalized

estimation framework

This appendix covers the theoretical derivations necessary for the development of

the penalized likelihood-based estimation framework proposed in Chapter 3. We

maintain a general viewpoint and assume that the vector η collects multiple tuning

parameters. This tuning vector reduces to the scalar η in the case of the normal

linear factor model (Section 2.1), and the triplet (η1, η2, η3)T in the multiple-group

extension (Section 5.1).

D.1 A general expression for the PMLE

To avoid notational clutter, we omit the superscript T = {L,A, S,M} in the

expression of the penalty matrix. By using a first-order Taylor expansion of

gp(θ
[t+1]) at θ[t] it follows that

0 = gp(θ
[t+1]) ≈ gp(θ[t]) + Hp(θ

[t])(θ[t+1] − θ[t]),

where gp(θ[t]) = g(θ[t])−NSη̂(θ̃
[t]

)θ[t] and Hp(θ
[t]) = H(θ[t])−NSη̂(θ̃

[t]
). Define

I(θ[t]) = −H(θ[t]), then

0 = gp(θ
[t]) +

[
−I(θ[t])−NSη̂(θ̃

[t]
)
]

(θ[t+1] − θ[t]).

183
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By rearranging the above equation, we get:

gp(θ
[t]) =

[
I(θ[t]) +NSη̂(θ̃

[t]
)
]

(θ[t+1] − θ[t])

g(θ[t])−NSη̂(θ̃
[t]

)θ[t] =
[
I(θ[t]) +NSη̂(θ̃

[t]
)
]
θ[t+1] − I(θ[t])θ[t] −NSη̂(θ̃

[t]
)θ[t]

θ[t+1][I(θ[t]) +NSη̂(θ̃
[t]

)] = I(θ[t])θ[t] + g(θ[t])

θ[t+1][I(θ[t]) +NSη̂(θ̃
[t]

)] =

√
I(θ[t])

[√
I(θ[t])θ[t] +

√
I(θ[t])

−1

g(θ[t])

]
.

Therefore, the vector parameter estimator can be expressed as

θ[t+1] =
[
I(θ[t]) +NSη̂(θ̃

[t]
)
]−1

√
I(θ[t])K [t],

where K [t] = µ
[t]
K + ϑ[t] with µ[t]

K =
√
I(θ[t])θ[t] and ϑ[t] =

√
I(θ[t])

−1

g(θ[t]). The

square root of I(θ[t]) and its inverse are obtained via eigenvalue decomposition

(see Appendix D.2).

D.2 Correction for positive-definiteness

An eigenvalue decomposition is a technique that allows one to express an m×m

symmetric matrix B as

B = UDUT ,

where U is an orthogonal matrix with the eigenvectors in its columns, and D

is a diagonal matrix with the corresponding eigenvalues d11, . . . , dqq, . . . , dmm in

the main diagonal, sorted in descending order. If all the eigenvalues are strictly

positive, the matrix is said to be positive-definite, and its inverse is found as

B−1 = UD−1UT .

However, if at least one of its eigenvalues is null or negative, the matrix is

non-positive definite, and it must be corrected before its inversion takes place.

An effective procedure that adjusts the problematic eigenvalues of a non-positive

definite matrix, and eventually makes the matrix positive-definite, is the following.
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Without loss of generality, assume that all the eigenvalues of B are strictly

positive except for the last one, i.e., dqq > 0 for q = 1, . . . ,m − 1 and dmm ≤ 0.

Define l =
∑m

q=2 dqq and t = 100l2 + 1. The non-positive eigenvalue dmm is then

substituted with the positive quantity

d̃mm = dm−1,m−1
(l − dmm)2

t
,

where dm−1,m−1 is the smallest positive eigenvalue of B. By defining D̃ = diag(d11,

. . . , dqq, . . . , d̃mm), the corrected positive-definite matrix B̃ can be found as

B̃ = UD̃UT ,

and its inverse as

B̃
−1

= UD̃
−1
UT .

We employed this procedure to compute and, if necessary, to correct the square

root of I(θ) and its inverse.

D.3 Derivation of the UBRE criterion

Let Aη =

√
I(θ̂)

[
I(θ̂) +NSη(θ̂)

]−1
√

I(θ̂), where Aη is used as a shortcut for

ATη for T = {L,A, S,M}. Based on the derivation in Appendix D.1, we can work

out the expression of the UBRE criterion, i.e., the expectation of the average

squared distance of µ̂K = AηK from its expected value µK :

E
[

1

N
||µK − µ̂K ||22

]
= E

[
1

N
||(K − ϑ)−AηK||22

]
= E

[
1

N
||(K −AηK)− ϑ||22

]
=

1

N
E
[
||K −AηK||22 + ϑTϑ− 2ϑT (K −AηK)

]
=

1

N
E
[
||K −AηK||22

]
+

1

N
E
[
ϑTϑ

]
− 2

N
E
[
ϑT [µK + ϑ−Aη(µK + ϑ)]

]
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=
1

N
E
[
||K −AηK||22

]
− 1

N
E
[
ϑTϑ

]
− 2

N
E
[
ϑTµK

]
+

2

N
E
[
ϑTAηµK

]
+

2

N
E
[
ϑTAηϑ

]
.

We now use the following results (Wood, 2017, Section 1.8.6)

E
[
ϑTϑ

]
= E

[
N∑
α=1

ϑ2
i

]
= N,

E
[
ϑTµK

]
= E

[
ϑT
]
µK = 0,

E
[
ϑTAηµK

]
= E

[
ϑT
]
AηµK = 0,

E
[
ϑTAηϑ

]
= E

[
tr{ϑTAηϑ}

]
= E

[
tr{Aηϑϑ

T}
]

= tr{E
[
Aηϑϑ

T
]
}

= tr
{
AηE

[
ϑϑT

]}
= tr{AηI} = tr(Aη).

Then the expression of the UBRE criterion is:

E
[

1

N
||µK − µ̂K ||22

]
=

1

N
E
[
||K −AηK||22

]
+

2

N
tr(Aη)− 1.

D.4 Equivalence to the AIC

This section shows that V(η) is approximately proportional to the Akaike informa-

tion criterion (AIC). The AIC of a model is defined as

AIC := −2`(θ) + 2m,

where m is the number of estimated parameters in the model. Consider the

following Taylor expansion of −2`(θ̂) about −2`(θ):

−2`(θ̂) ≈ −2`(θ) + (θ̂ − θ)T∇θ[−2`(θ)] +
1

2
(θ̂ − θ)T∇θ∇θT [−2`(θ)](θ̂ − θ)

≈ −2`(θ)− 2(θ̂ − θ)Tg − (θ̂ − θ)TH(θ̂ − θ), (D.1)

where we wrote g := g(θ) and H := H(θ) for simplicity of notation. By denoting
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I = −H and recalling that K =
√
Iθ +

√
I−1

g, we have that

(θ̂ − θ)Tg = (θ̂ − θ)T
√
I
√
I
−1
g =

[√
I(θ̂ − θ)

]T √
I
−1
g

=
[√

Iθ̂ −
√
Iθ
]T √

I
−1
g =

[√
Iθ̂ −K +

√
I
−1
g
]T √

I
−1
g

= −
[
K −

√
Iθ̂
]T √

I
−1
g + gT

√
I
−1√

I
−1
g

= −
[
K −

√
Iθ̂
]T √

I
−1
g + ||

√
I
−1
g||22

= −
〈
K −

√
Iθ̂,
√
I
−1
g
〉

+ ||
√
I
−1
g||22, (D.2)

−(θ̂ − θ)TH(θ̂ − θ) = (θ̂ − θ)TI(θ̂ − θ) = ||
√
I(θ̂ − θ)||22

= ||
√
Iθ̂ −

√
Iθ||22 = ||

√
Iθ̂ −K +

√
I
−1
g||22

= ||
(
K −

√
Iθ̂
)
−
√
I
−1
g||22

= ||K −
√
Iθ̂||22 + ||

√
I
−1
g||22 − 2

〈
K −

√
Iθ̂,
√
I
−1
g
〉
,(D.3)

where we used the fact that ||a||22 = ||−a||22 for any vector a, and 〈·, ·〉 represents

the inner product. By substituting equations (D.2) and (D.3) into expression (D.1),

we obtain:

−2`(θ̂) ≈ −2`(θ) + 2
〈
K −

√
Iθ̂,
√
I
−1
g
〉
− 2||

√
I
−1
g||22

+ ||K −
√
Iθ̂||22 + ||

√
I
−1
g||22 − 2

〈
K −

√
Iθ̂,
√
I
−1
g
〉

= −2`(θ)− ||
√
I
−1
g||22 + ||K −

√
Iθ̂||22.

It then follows that

AIC = −2`(θ) + 2m ≈ −2`(θ)− ||
√
I
−1
g||22 + ||K −

√
Iθ̂||22 + 2m

≈ −2`(θ)− ||
√
I
−1
g||22 + ||K −

√
Iθ̂||22 + 2tr(Aη), (D.4)

where tr(Aη) denotes the number of estimated parameters in the model, and thus,
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m = tr(Aη). Since we want to optimize the criterion with respect to the tuning

parameter vector η, we ignore any terms that are not affected by it, like −2`(θ) and

||
√
I−1

g||22. After dropping these constants, expression (D.4) becomes proportional

to the AIC, that is,

AIC = ||K −
√
Iθ̂||22 + 2tr(Aη) ∝ V(η),

where ||K−
√
Iθ̂||22 is a quadratic approximation of −2`(θ̂) and tr(Aη) represents

the effective degrees of freedom of the model.

D.5 Automatic multiple tuning parameter

estimation

This section describes how the approach by Wood (2004) for multiple smoothing

parameter estimation of generalized additive models and the like can be adapted

to the current context. We are interested in estimating the tuning parameters in η

controlling the amount of penalization. The vector η reduces to the scalar η for

the normal linear factor model, and the triplet (η1, η2, η3)T for the multiple-group

extension. This procedure implements a Newton’s method that evaluates in a stable

and computationally efficient way the components in V(η) (see equation (3.17))

and their first and second derivatives with respect to the tuning parameters. This

numerical strategy for estimating the tuning parameters is called “performance

iteration” (Gu, 2013) and consists of the minimization of the UBRE score and the

selection of the tuning parameters of the penalized model in each iteration. The

technique uses a series of pivoted QR and singular value decompositions (SVD)

which make the evaluations of the quantities involving A[t+1]
η , for a new trial value

of η, cheap and derivative calculations efficient and stable.

In the following, we follow the exposition in Wood (2017, Section 6.5.1) and

refer interested readers to it for additional details. Given a tuning parameter vector
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value for η, we can rewrite the iterative equation

θ[t+1] =
[
I [t] +NSη̂(θ̃

[t]
)
]−1√

I [t]K [t]

in a penalized iteratively re-weighted least squares form, that is,

||K −Aη̂K||22 +
N

2
θTSη̂(θ̃)θ.

The superscript [t] has been suppressed from the quantities above and is omitted

to avoid clutter; Sη is a shortcut for STη for T = L,A. The presented approach

approximates the UBRE/AIC criterion V(η) =
1

N
||K −AηK||22 +

2

N
γ tr(Aη)− 1

in the vicinity of the current best estimate of the tuning parameters with the

quadratic function

V(η) ≈ V(η[t]) + (η − η[t])Tz +
1

2
(η − η[t])TZ(η − η[t]),

where z =
∂V(η)

∂η
and Z =

∂2V(η)

∂η∂ηT
are the first derivative vector and second

derivative matrix of V with respect to the tuning parameters. It can be shown

that the minimum of the approximating quadratic function is at

η[t+1] = arg min
η
V(η) = η[t] −Z−1z,

which can be used as the next estimate of the tuning parameters. A new approx-

imating quadratic is then found by expansion about η[t+1], and this is minimized

to find η[t+2], with the process being repeated until convergence. This procedure

may occasionally fail to converge. Consider the case where, at some iteration, a set

of tuning parameter estimates and coefficient estimates, {η̃, θ̃} is obtained; this

set in turn implies a certain model and an UBRE score which yield the new set of

estimates {η̌, θ̌}; this new set of estimates itself yields a new model and UBRE

score, which yield a new set of estimates, but these turn out to be {η̃, θ̃}. If this

happens cyclically, convergence never occurs. Similar problems may involve cycling
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through a larger number of sets of estimates. This might happen in the presence

of multicollinearity, so users should carefully specify all the dependencies present

in the model.

If Z is not positive definite, the quadratic approximation has no unique min-

imum. In this case, it is advised to search in the steepest descent direction, −z, for

parameter values that will reduce the score. Also, if the quadratic approximation

is poor, stepping to its minimum actually increases the real V. In this case, it is

worth trying to successively half the length of the step until a step is found that

decreases V ; if this fails, then steepest descent can be tried.

Since the expensive part of evaluating the UBRE/AIC criterion is the evaluation

of the trace of the influence matrix Aη =
√
Î
[
Î +N Ŝη

]−1√
Î , where Î = I(θ̂)

and Ŝη = Sη(θ̂), it is this influence matrix that must be considered first. The first

step consists of a QR decomposition of
√
Î, i.e.,

√
Î = QR, where the columns

of Q are columns of an orthogonal matrix and R is upper triangular. Wood (2017)

suggests the use of a pivoted QR decomposition for maximum stability.

Define B any matrix square root of N Ŝη, such that BTB = N Ŝη. The matrix

B can be obtained efficiently by pivoted Choleski decomposition or eigendecom-

position of the symmetric matrix Ŝη. Augmenting R with B, a singular value

decomposition is then obtained as

 R
B

 = UDV T .

The columns of U are columns of an orthogonal matrix, whereas V is an orthogonal

matrix. D is the diagonal matrix of singular values: the examination of these is

the most reliable way of detecting numerical rank deficiency of the fitting problem

(Golub & Van Loan, 2012). Rank deficiency of the fitting problem is dealt with

at this stage by removing from D the rows and columns containing the singular

values that are “too small”, along with the corresponding columns of U and V .

This has the effect of recasting the original fitting problem into a reduced space in

which the model parameters are identifiable. “Too small” is judged with reference
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to the largest singular value: for example, singular values less than the largest

singular value multiplied by the square root of the machine precision might be

deleted.

Now let U 1 be the sub-matrix of U such that R = U 1DV
T . This implies that√

Î = QU 1DV
T , while Î +N Ŝη = V DUT

1Q
TQU 1DV

T = V DV T , and

Aη =
√

Î
[
Î +NŜη

]−1√
Î = QU 1DV

TV D−2V TV DUT
1Q

T

= QU 1U
T
1Q

T .

Hence the trace of the influence matrix is efficiently computed as

tr(Aη) = tr{QU 1U
T
1Q

T} = tr{U 1U
T
1Q

TQ} = tr(U 1U
T
1 ).

Notice that the main computational cost is the QR decomposition, but thereafter

the evaluation of tr(Aη) is relatively cheap for new trial values of η.

For efficient minimization of the tuning selection criterion, we also need the

expressions of the derivatives of the criterion with respect to the tuning parameters.

To this end, it is helpful to write the influence matrix as Aη =
√
ÎG−1

√
Î where

G = Î + N Ŝη = V D2V T and hence G−1 =
[
Î +N Ŝη

]−1

= V D−2V T . Since

the tuning parameters must be positive, we can avoid the algorithm to step to

negative values by using ρi = log ηi as the optimization parameters. We then have

that
∂G−1

∂ρi
= −G−1∂G

∂ρi
G−1 = −ηiV D−2V T ŜηiV D−2V T ,

and so,

∂Aη

∂ρi
=

√
Î ∂G

−1

∂ρi

√
Î = −ηiQU 1DV

TV D−2V T ŜηiV D−2V TV DUT
1Q

= −ηiQU 1D
−1V T ŜηiV D−1UT

1Q.

Turning to the second derivatives, we have:

∂2G−1

∂ρi∂ρj
= G−1∂G

∂ρj
G−1∂G

∂ρi
G−1G−1−G−1 ∂2G

∂ρi∂ρj
G−1 +G−1∂G

∂ρi
G−1∂G

∂ρj
G−1G−1,
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and then,

∂2Aη

∂ρi∂ρj
=

√
Î ∂

2G−1

∂ρi∂ρj

√
Î

= ηiηjQU 1D
−1V T [ŜηjV D−2V T Ŝηi ]‡V D−1UT

1Q
T + δij

∂Aη

∂ρi
,

where B‡ ≡ B + BT and δij = 1 if i = j and zero otherwise. Writing α =

||K−AηK||22, we can now find convenient expressions for the component derivatives

needed to find the derivatives of the UBRE score. Define y1 = UT
1Q

TK, Zi =

D−1V T ŜηiV D−1, Ci = ZiU
T
1U 1. Some manipulation then shows that:

tr
(
∂Aη

∂ρi

)
= −ηi tr(Ci),

tr
(
∂2Aη

∂ρi∂ρj

)
= 2ηiηjtr(ZjCi)− δijηitr(Ci),

∂α

∂ρi
= 2ηi[y

T
1Ziy1 − yT1Ciy1],

∂2α

∂ρi∂ρj
= 2ηiηjy

T
1 [ZiCj +ZjCi −ZiZj −ZjZi +KiZj]y1 + δij

∂α

∂ρi
.

These derivatives are used to find the derivatives of V(η) with respect to ρi. Define

W = N − γtr(Aη), so that V(η) =
1

N
α− 2

N
W + 1, then

[z]i =
∂V(η)

∂ρi
=

1

N

∂α

∂ρi
− 2

N

∂W
∂ρi

,

[Z]ij =
∂2V(η)

∂ρi∂ρj
=

1

N

∂2α

∂ρi∂ρj
− 2

N

∂2W
∂ρi∂ρj

.

For each trial η, these derivatives are obtained at a reasonable computational

cost, so that Newton’s method backed up with steepest descent is used to find the

optimum η fairly efficiently. Given the estimated η̂, the best fit vector θ is simply

θ̂ = V D−1y1 = V D−1UT
1Q

TK.
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E
Theoretical aspects

In this appendix, we discuss and derive some asymptotic properties of the PMLE.

For notational convenience, let Sη be the shorthand for STη , for T = {L,A, S,M},

and θ0 the true parameter vector. We maintain a general viewpoint and assume

that the vector η collects multiple tuning parameters. This tuning vector reduces

to the scalar η in the case of the normal linear factor model (Section 2.1), and the

triplet (η1, η2, η3)T in the multiple-group extension (Section 5.1).

E.1 Regularity conditions

In all of the theorems derived in this work, we consider the following assumptions:

(A1) θ0 ∈ Θ which is a compact subset of Rm.

(A2) β(θ) = β(θ0) only when θ = θ0, where β(θ) = (µT ,σT )T and σ = vech(Σ).

For the normal linear factor model, β(θ) reduces to σ due to the absence of

a mean-structure (see equation 2.1).

(A3) β(θ) is twice continuously differentiable.

(A4) ∂β

∂θT
is of full rank.

(A5) (xTα , vechT{(xα − µ0)(xα − µ0)T})T has a covariance matrix that is of full

rank.

193
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(A6) Let ḡ(θ0) denote the normalized score defined as ḡ(θ0) = 1
N
g(θ0)−E[g(θ0)] =

1
N
g(θ0) for E[g(θ0)] ≈ 0. Assume that g(θ0) ≡

√
N ḡ(θ0) = OP

(
N

1
2

)
,

where ḡ(θ0) = OP (1).

(A7) E [H(θ0)] = −J (θ0) = O(N). For independent and identically distributed

random variables, J (θ0) ≡ NJα(θ0) and H(θ0) ≡ NHα(θ0) (α = 1, . . . , N)

where Jα(θ0) and Hα(θ0) denote the expected and observed Fisher informa-

tion for a single observation, respectively. It then follows that Jα(θ0) = O(1).

(A8) H(θ0)− E [H(θ0)] = OP
(
N

1
2

)
. This results by decomposing H(θ0) in its

mean and stochastic part, that is, H(θ0) = E[H(θ0)] + ε, where we assume

that ε = OP
(
N

1
2

)
(Kauermann, 2005).

(A9) η → 0 and
√
Nη →∞ as N →∞, or equivalently, NSη(θ0) = o

(
N

3
2

)
.

Assumption (A1) and (A3) are the standard regularity conditions and are generally

satisfied in practice. Assumption (A2) implies that the model structure is identified.

If the model is properly parameterized, assumption (A4) is satisfied. Conditions

(A1) and (A2) are for consistency of parameter estimates, whereas (A3) and (A4)

are needed to establish asymptotic normality. Assumption (A5) is needed in

order for the parameter estimates to have proper asymptotic distributions, and

is satisfied when xα ∼ N (µ(θ0),Σ(θ0)) and Σ(θ0) is full rank (Yuan & Bentler,

2006). Furthermore, assumptions (A6)-(A8) are the classical conditions for the

consistency of the MLE (Barndorff-Nielsen & Cox, 1994, Ch. 3, pp. 82–83), while

assumption (A9) ensures that, as the sample size increases, the tuning parameter

vector gets larger and the penalty function vanishes. In Appendices E.2, E.3,

E.4, E.5 we derive three usual theorems on the PMLE by adapting to the current

context the results exposed in Fan and Li (2001), Oelker and Tutz (2013) and

Filippou et al. (2017).
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E.2 Asymptotic distribution of the PMLE (I)

Theorem 1 (Asymptotic distribution of the PMLE (I)). Under certain regularity

conditions, the PMLE has the following asymptotic distribution:

√
NJp(θ0)

{
θ̂ − θ0 + Jp(θ0)−1NSη(θ0)θ0

}
d−→ N (0, NJ (θ0)),

and thus the asymptotic bias of θ̂ is equal to −Jp(θ0)−1NSη(θ0)θ0, and the

asymptotic covariance V θ̂ = Jp(θ0)−1J (θ0)Jp(θ0)−1, where Jp(θ0) = J (θ0) +

NSη(θ0).

Proof. The proof involves a Taylor expansion of the score in the neighbourhood of

θ0. For simplicity of notation, we omit all terms of order higher than 1 and assume

that higher-order derivatives of the log-likelihood behave in a similar manner as

those defined in the regularity conditions in Appendix E.1. The first-order Taylor

expansion of gp(·) around θ0 implies

gp(θ̂) = gp(θ0) + Hp(θ0)(θ̂ − θ0) + higher order terms (E.1)

≈ gp(θ0) + Hp(θ0)(θ̂ − θ0).

By using the fact that gp(θ̂) = 0, and by multiplying all terms by
√
N , we have

that
√
Ngp(θ0) +

√
NHp(θ0)(θ̂ − θ0) = 0.

Inverting the above series results in

√
N(θ̂ − θ0) = − [Hp(θ0)]−1

√
Ngp(θ0).

We now divide both gp(θ0) and Hp(θ0) by N , that is,

√
N(θ̂ − θ0) = −

[
Hp(θ0)

N

]−1√
N
gp(θ0)

N
. (E.2)

Let us now consider the set of random variables {gp,1(θ0), . . . , gp,N(θ0)}, such that
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gp(θ0) =
∑N

α=1 gp,α(θ0). They are independent and identically distributed random

variables, with common expectation and variance given by

E[gp,α(θ0)] = E[gα(θ0)− Sη(θ0)θ0] = E[gα(θ0)]− Sη(θ0)θ0 = −Sη(θ0)θ0,

Cov(gp,α(θ0)) = V ar(gα(θ0)− Sη(θ0)θ0) = V ar(gα(θ0)) = E[gα(θ0)gα(θ0)T ]

= −E[Hα(θ0)] = Jα(θ0).

Since the quantity
gp(θ0)

N
in expression (E.2) can be seen as the mean of the

random sample {gp,1(θ0), . . . , gp,N(θ0)}, we can apply the central limit theorem

and conclude that:

√
N

{
gp(θ0)

N
+ Sη(θ0)θ0

}
d−→ N

(
0, 1

N
J (θ0)

)
,

and thus,
√
N
gp(θ0)

N

d−→ N
(
−
√
NSη(θ0)θ0,

1

N
J (θ0)

)
.

By the law of large numbers, the penalized observed information Hp(θ0) con-

verges to the penalized expected Fisher information NE[Hp,α(θ0)] = E[Hp(θ0)] =

−Jp(θ0) as the sample size increases, and thus,

−
[
Hp(θ0)

N

]−1
d−→
[
Jp(θ0)

N

]−1

.

Therefore, we have that:

√
N(θ̂ − θ0) = −

[
Hp(θ0)

N

]−1√
N
gp(θ0)

N

d

−−−→

N

([
Jp(θ0)

N

]−1 [
−
√
NSη(θ0)θ0

]
,

[
Jp(θ0)

N

]−1 J (θ0)

N

[
Jp(θ0)

N

]−1
)
.(E.3)

From the above result, we can find an expression for the asymptotic bias and

covariance matrix of the estimator θ̂, that is,
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BIAS(θ̂) = E[θ̂ − θ0] =
1√
N
E[
√
N(θ̂ − θ0)] ≈ 1√

N

[
Jp(θ0)

N

]−1 [
−
√
NSη(θ0)θ0

]
= −NJp(θ0)−1Sη(θ0)θ0 = −N {−E [H(θ0)−NSη(θ0)]}−1 Sη(θ0)θ0

= −N {J (θ0) +NSη(θ0)}−1 Sη(θ0)θ0,

Cov(θ̂) =
1

N
Cov(

√
N θ̂) ≈ 1

N

[
Jp(θ0)

N

]−1 J (θ0)

N

[
Jp(θ0)

N

]−1

= Jp(θ0)−1J (θ0)Jp(θ0)−1

= {−E [H(θ0)−NSη(θ0)]}−1J (θ0){−E [H(θ0)−NSη(θ0)]}−1

= {J (θ0) +NSη(θ0)}−1J (θ0){J (θ0) +NSη(θ0)}−1

= Jp(θ0)−1J (θ0)Jp(θ0)−1,

where Jp(θ0) = J (θ0)+NSη(θ0) and J (θ0) = −E [H(θ0)] is the expected Fisher

information of the unpenalized model.

After some manipulation expression (E.3) becomes

√
N(θ̂ − θ0)

d−→ N

(
−
√
NNJp(θ0)−1Sη(θ0)θ0, NJp(θ0)−1J (θ0)Jp(θ0)−1

)

√
NJp(θ0)(θ̂ − θ0)

d−→ N

(
−
√
NNSη(θ0)θ0, NJ (θ0)

)
√
NJp(θ0)(θ̂ − θ0) +

√
NNSη(θ0)θ0

d−→ N (0, NJ (θ0)).

Therefore, the final asymptotic distribution of the estimator is

√
NJp(θ0)

[
(θ̂ − θ0) + Jp(θ0)−1NSη(θ0)θ0

]
d−→ N (0, NJ (θ0)),

which completes the proof. �
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E.3 Asymptotic orders

Asymptotic order of θ̂ − θ0

Under the assumptions of Appendix E.1 the asymptotic consistency of θ̂ is of order

N−
1
2 , that is,

θ̂ − θ0 = OP
(
N−

1
2

)
as N →∞.

Proof. By rearranging expression (E.1), noticing that gp(θ̂) = 0, and inverting the

series, we have that:

θ̂ − θ0 = −[Hp(θ0)]−1gp(θ0) + . . .

= −[H(θ0)−NSη(θ0)]−1(g(θ0)−NSη(θ0)θ0) + . . .

= −[H(θ0)− E[H(θ0)] + E[H(θ0)]−NSη(θ0)]−1(g(θ0)−NSη(θ0)θ0) + . . .

= −
{
OP
(
N

1
2

)
+O(N)− o

(
N

3
2

)}−1 {
OP
(
N

1
2

)
− o

(
N

3
2

)}
= [OP (N)]−1OP

(
N

1
2

)
= OP (N)−1OP

(
N

1
2

)
= OP

(
N−

1
2

)
as N →∞.

�

Asymptotic order of Bias(θ̂)

Under the assumptions of Appendix E.1, the asymptotic bias of θ̂ has order N− 1
2 .

Proof.

BIAS(θ̂) ≈ −{−E [H(θ0)] +NSη(θ0)}−1NSη(θ0)θ0

= −
{
−O(N) + o

(
N

3
2

)}−1

o
(
N

3
2

)
= O(N−1)o

(
N

3
2

)
= o

(
N−

1
2

)
.

�
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Asymptotic order of Cov(θ̂)

Under the regularity conditions of Appendix E.1, the asymptotic covariance matrix

of θ̂ has order N−1.

Proof.

Cov(θ̂) ≈ {−E[H(θ0)] +NSη(θ0)}−1{−E[H(θ0)]}{−E[H(θ0)] +NSη(θ0)}−1

=
{
O(N) + o

(
N

3
2

)}−1

O(N)
{
O(N) + o

(
N

3
2

)}−1

= O(N−1)O(N)O(N−1) = O(N−1).

�

When J (θ0) is near singular, Cov(θ̂
MLE

) → ∞ and Cov(θ̂) → 0. This verifies

that asymptotically the PMLE has smaller variance than the MLE, and thus may

perform better.

E.4 Asymptotic distribution of the PMLE (II)

The next theorem shows that the asymptotic distribution of the PMLE coincides

with the one of the MLE as the sample size increases, which is desirable, as the

MLE is the most efficient estimator.

Theorem 2 (Asymptotic distribution of the PMLE (II)). If max|NSη(θ0)θ0| =

o
(
N

3
2

)
, and max|NSη(θ0)| = o

(
N

3
2

)
, then

√
N(θ̂ − θ0)

d−→ N

(
0,
{

1

N
J (θ0)

}−1
)
.

Proof. If max|NSη(θ0)θ0| = o
(
N

3
2

)
and max|NSη(θ0)| = o

(
N

3
2

)
, it follows

that 1
N
√
N

max|NSη(θ0)θ0| → 0, and 1
N
√
N

max|NSη(θ0)| → 0 as N →∞. Given

these two conditions, we have that

E[
√
N(θ̂ − θ0)] ≈

{
J (θ0) +NSη(θ0)

N

}−1 (
−
√
NSη(θ0)θ0

)



200 E. Theoretical aspects

=

{
J (θ0) +NSη(θ0)

N

}−1(
− 1√

N
NSη(θ0)θ0

)

=

{
J (θ0) +NSη(θ0)

N2

}−1(
−NSη(θ0)θ0

N
√
N

)

−→
{
J (θ0) +NSη(θ0)

N2

}−1

· 0 = 0,

Cov(
√
N(θ̂ − θ0)) ≈

{
J (θ0) +NSη(θ0)

N

}−1{J (θ0)

N

}{
J (θ0) +NSη(θ0)

N

}−1

= N {J (θ0) +NSη(θ0)}−1 J (θ0) {J (θ0) +NSη(θ0)}−1

=
1

N

{
J (θ0) +NSη(θ0)

N
√
N

}−1

J (θ0)

{
J (θ0) +NSη(θ0)

N
√
N

}−1
1

N

=
1

N

{
J (θ0)

N
√
N

+
NSη(θ0)

N
√
N

}−1

J (θ0)

{
J (θ0)

N
√
N

+
NSη(θ0)

N
√
N

}−1
1

N

−→ 1

N

{
J (θ0)

N
√
N

+ 0
}−1

J (θ0)

{
J (θ0)

N
√
N

+ 0
}−1

1

N

−→ N
√
N

N
{J (θ0)]}−1 J (θ0) {J (θ0)}−1 N

√
N

N

−→ NJ (θ0)−1 =

[
1

N
J (θ0)

]−1

.

Therefore,
√
N(θ̂ − θ0)

d−→ N

(
0,
{

1

N
J (θ0)

}−1
)
.

�

E.5 Consistency

Theorem 3 (Consistency). Suppose that η ∈ [0,∞) is fixed. Then, under the

assumption of a convex unpenalized log-likelihood, the PMLE θ̂ that minimizes

−`p(θ) is consistent, that is,

lim
N→∞

P
(
||θ̂ − θ0||22 > ε̄

)
= 0 ∀ ε̄ > 0.
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Proof. If θ̂ minimizes −`p(θ), then it also minimizes −`p(θ)

N
. Similarly, θ̂MLE

minimizes −`(θ), as well as −`(θ)

N
. Because η is fixed, −`p(θ̂)

N
→ −`(θ̂

MLE
)

N
,

and −`p(θ̂)

N
→ −`(θ̂)

N
; thus, −`(θ̂)

N
→ −`(θ̂

MLE
)

N
holds as well. Since θ̂MLE is a

unique minimizer of −`(θ)

N
, and −`(θ)

N
is convex, it follows that θ̂ → θ̂

MLE. The

consistency of θ̂ follows from the consistency of θ̂MLE. �

E.6 Confidence intervals

As illustrated in Section 3.4, point-wise confidence intervals for each model para-

meter can be obtained using θ ∼ N (θ̂,V θ(θ̂)), where V θ(θ̂) = Jp(θ̂)−1 =

(J (θ̂) +NSη̂(θ̂))−1 is the covariance matrix of the PMLE based on the Bayesian

result derived in Marra and Wood (2012). Confidence intervals for non-linear

functions of the parameter vector θ can be conveniently obtained by simulation

from the posterior of θ as follows. Let T (θ) be any function of the parameters,

then

Step 1 Draw Nsim random vectors θ?h (for h = 1, . . . , Nsim) from N (θ̂,V θ(θ̂));

Step 2 Compute T ?h := T (θ?h)∀h, and define T ?α to be the [Nsim · α]th smallest

value of the ordered sample {T ?1 , . . . , T ?Nsim}, with [a] denoting the integer

part of a ∈ R;

Step 3 Obtain an approximate (1− α)% confidence interval for T (θ̂) using[
T ?α

2
, T ?1−α

2

]
.

Small values of Nsim are typically tolerable. The quantity α is usually set to 0.05.
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F
Details on the multiple-group

factor analysis model

F.1 Log-likelihood

Given random samples of sizes N1, . . . , NG from a multivariate normal distribution,

with N =
∑G

g=1Ng the total sample size across groups, the likelihood of the

multiple-group factor model is:

L(θ) =
G∏
g=1

Ng∏
α=1

f(xαg;µg,Σg)

=
G∏
g=1

Ng∏
α=1

1

(2π)
p
2 |Σg|

1
2

exp

{
−1

2
(xαg − µg)TΣ−1(xαg − µg)

}

=
G∏
g=1

(2π)−
Ng
2
p|Σg|−

Ng
2 exp

{
−1

2

Ng∑
α=1

(xαg − µg)TΣ−1
g (xαg − µg)

}
.

The log-likelihood, which is defined as the logarithm of L(θ), takes the form:

`(θ) := logL(θ)

= −
G∑
g=1

{
Ng

2
p log(2π) +

Ng

2
log|Σg|+

1

2

Ng∑
α=1

(xαg − µg)TΣ−1
g (xαg − µg)

}

= −
G∑
g=1

{
Ng

2
p log(2π) +

Ng

2
log|Σg|+

1

2

Ng∑
α=1

tr
[

(xαg − µg)TΣ−1
g (xαg − µg)

]}

203
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= −
G∑
g=1

{
Ng

2
p log(2π) +

Ng

2
log|Σg|+

1

2
tr
[

Ng∑
α=1

(xαg − µg)(xαg − µg)TΣ−1
g

]}

= −
G∑
g=1

{
Ng

2
p log(2π) +

Ng

2
log|Σg|

+
1

2
tr
[

Ng∑
α=1

[(xαg − x̄g) + (x̄g − µg)][(xαg − x̄g) + (x̄g − µg)]TΣ−1
g

]}

= −
G∑
g=1

{
Ng

2
p log(2π) +

Ng

2
log|Σg|

+
1

2
tr
[ [
NgSg +Ng(x̄g − µg)(x̄g − µg)T

]
Σ−1
g

]}

= −
G∑
g=1

Ng

2

{
log|Σg|+ tr(SgΣ−1

g ) + (x̄g − µg)TΣ−1
g (x̄g − µg) + p log(2π)

}

= −
G∑
g=1

Ng

2

{
log|Σg|+ tr(W gΣ−1

g ) + p log(2π)
}
, (F.1)

where W g = Sg + (x̄g − µg)(x̄g − µg)T , Σg = Σg(θg) = ΛgΦgΛT
g + Ψg and

µg = µg(θg) = τ g + Λgκg.

F.2 Gradient and Fisher information

Before deriving the gradient and Fisher information matrix for a multiple-group

factor model, it is more convenient to first examine these formulas for a (single-

group) mean and covariance structure factor model (Appendix F.2.1). Note that

the resulting expressions differ from those derived in Appendix A.2 as the model

now involves a mean structure µ(θ) and a covariance structure Σ(θ). The gradient

and Fisher information for the multiple-group factor model are then easily found

by combining the obtained results across groups (Appendix F.2.2).
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F.2.1 Mean and covariance structure factor model

Consider the mean and covariance structure factor model:

x = τ + Λf + ε. (F.2)

It is assumed that f ∼ N (κ,Φ), ε ∼ N (0,Ψ), with Ψ usually a diagonal matrix,

and f is uncorrelated with ε. The log-likelihood of the model in (F.2) is

`(θ) = −N
2

{
log|Σ|+ tr(WΣ−1) + p log(2π)

}
,

whereW = S+(x̄−µ)(x̄−µ)T , µ = µ(θ) = τ+Λκ and Σ = Σ(θ) = ΛΦΛT +Ψ.

The propositions below enunciate the expressions of the gradient g(θ) :=
∂`(θ)

∂θ
and the expected Fisher information matrix J (θ) := E[g(θ)g(θ)T ] = −E [H(θ)]

of the mean and covariance structure factor model in (F.2).

Proposition F.1 (Gradient of the mean and covariance structure factor model).

The gradient of the log-likelihood of the mean and covariance structure factor model

in equation (F.2) with respect to an arbitrary scalar variable θq takes the form:

[g(θ)]q =
∂`(θ)

∂θq
= −N

2
tr
{

Σ−1(Σ−W )Σ−1∂Σ
∂θq

}
+N(x̄− µ)TΣ−1 ∂µ

∂θq
. (F.3)

Proof. See Appendix F.2.1.1. �

Proposition F.2 (First-order derivatives of the mean and covariance structure

factor model with respect to the parameter matrices). The matrix expressions of

the first-order derivatives of the log-likelihood of the mean and covariance structure

factor model in equation (F.2) with respect to the parameter matrices are:

∂`(θ)

∂Λ = −NΣ−1(Σ−W )Σ−1ΛΦ +NΣ−1(x̄− µ)κT , (F.4)

∂`(θ)

∂Φ =


−NΛTΣ−1(Σ−W )Σ−1Λ, non-diagonal elements,

−N
2

ΛTΣ−1(Σ−W )Σ−1Λ, diagonal elements,
(F.5)
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∂`(θ)

∂Ψ = −Ndiag(Σ−1(Σ−W )Σ−1), (F.6)

∂`(θ)

∂τ
= NΣ−1(x̄− µ), (F.7)

∂`(θ)

∂κ
= NΛTΣ−1(x̄− µ). (F.8)

Proof. See Appendix F.2.1.2. �

Define the following matrices: ω = Σ−1,α = Σ−1Λ,β = Σ−1ΛΦ,γ = ΛTΣ−1Λ,

δ = ΦΛTΣ−1Λ, ζ = ΦΛTΣ−1ΛΦ,Ω = Σ−1(Σ−W )Σ−1,Ωµ = Σ−1(x̄− µ).

Proposition F.3 (Expected Fisher information of the mean and covariance struc-

ture factor model). The expected Fisher information matrix of the mean and

covariance structure factor model in equation (F.2) with respect to two arbitrary

scalar variables θq and θq′ takes the form:

[J (θ)]qq′ =
N

2
tr
(

Σ−1∂Σ
∂θq

Σ−1 ∂Σ
∂θq′

)
+N

∂µT

∂θq
Σ−1 ∂µ

∂θq′
. (F.9)

Proof. See Appendix F.2.1.3. �

Proposition F.4 (Elements of the expected Fisher information of the mean and

covariance structure factor model with respect to the parameter matrices). The

expected Fisher information of the mean and covariance structure factor model

matrix in equation (F.2) is a block matrix of the form:

J (θ) =



J11 J12 J13 J14 J15

JT12 J22 J23 J24 J25

JT13 JT23 J33 J34 J35

JT14 JT24 JT34 J44 J45

JT15 JT25 JT35 JT45 J55


, (F.10)

where, for i, t = 1, . . . , p and g, h, j, l, q, s = 1, . . . , r, the sub-matrices are:
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[J11](ij,ts) = −E
[
∂2`(θ)

∂λij∂λts

]
= N(βisβtj + ωit[ζ + κκT ]js]), (F.11)

[J12](ij,t) = −E
[
∂2`(θ)

∂λij∂τt

]
= Nωitκj, (F.12)

[J13](ij,tt) = −E
[
∂2`(θ)

∂λij∂ψtt

]
= Nωitβtj, (F.13)

[J14](ij,gh) = −E
[
∂2`(θ)

∂λij∂φgh

]
=
N

2
(2− [I]gh)(αigδjh + αihδjg), (F.14)

[J15](ij,g) = −E
[
∂2`(θ)

∂λij∂κg

]
= Nαigκj, (F.15)

[J22](i,t) = −E
[
∂2`(θ)

∂τi∂τt

]
= Nωit, (F.16)

[J23](i,tt) = −E
[
∂2`(θ)

∂τi∂ψtt

]
= 0, (F.17)

[J24](i,gh) = −E
[
∂2`(θ)

∂τi∂φgh

]
= 0, (F.18)

[J25](i,g) = −E
[
∂2`(θ)

∂τi∂κg

]
= Nαig, (F.19)

[J33](ii,tt) = −E
[
∂2`(θ)

∂ψii∂ψtt

]
=
N

2
ω2
it, (F.20)

[J34](tt,gh) = −E
[
∂2`(θ)

∂ψtt∂φgh

]
=
N

2
(2− [I]gh)αtgαth, (F.21)

[J35](ii,g) = −E
[
∂2`(θ)

∂ψii∂κg

]
= 0, (F.22)

[J44](gh,lq) = −E
[
∂2`(θ)

∂φgh∂φlq

]
(F.23)

=
N

4
(2− [I]gh)(2− [I]lq)(γglγhq + γgqγhl), (F.24)

[J45](gh,l) = −E
[
∂2`(θ)

∂φgh∂κl

]
= 0, (F.25)

[J55](g,h) = −E
[
∂2`(θ)

∂κg∂κh

]
= Nγgh. (F.26)

Proof. See Appendix F.2.1.4. �
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Alternatively, the Fisher information matrix of the factor model with a mean

structure µ(θ) and a covariance structure Σ(θ) can be formulated more compactly

as follows. Denote σ = vech(Σ), s = vech(S), β = (µT ,σT )T , β̂ = (x̄T , sT )T ,

and D the p2 × p(p+1)
2

duplication matrix such that vec(B) = Dvech(B) for a

p × p matrix B. Define the block diagonal matrix E = diag(Σ−1,Ec), where

Ec = 1
2
DT (Σ−1 ⊗Σ−1)D. Let ∆ =

∂β(θ)

∂θT
be the p(p+ 3)

2
×m Jacobian matrix

of the partial derivatives of the model with respect to the parameters. Then, the

expected Fisher information matrix can be expressed as (Yuan & Bentler, 2006):

J (θ) = N∆TE∆. (F.27)

F.2.1.1 Proof of proposition F.1

Proof. Let us consider the function:

F =
1

2

{
log|Σ|+ tr(SΣ−1) + tr

[
(x̄− µ)(x̄− µ)TΣ−1

]
+ p log(2π)

}
. (F.28)

The first-order partial derivative of F with respect to an arbitrary scalar variable

θq is:

∂F

∂θq
=

1

2

∂

∂θq

{
log|Σ|+ tr(SΣ−1) + tr

[
(x̄− µ)(x̄− µ)TΣ−1

]
+ p log(2π)

}

=
1

2

{
∂

∂θq
log|Σ|+ ∂

∂θq
tr(SΣ−1) +

∂

∂θq
tr
[
(x̄− µ)(x̄− µ)TΣ−1

]
+

��
���

��∂

∂θq
p log(2π)

}

=
1

2

{
tr
[
Σ−1

(
∂Σ
∂θq

)]
− tr

[
Σ−1SΣ−1

(
∂Σ
∂θq

)]

+ tr
[
∂

∂θq

[
(x̄− µ)(x̄− µ)TΣ−1

]]}

=
1

2

{
tr
[
Σ−1(Σ− S)Σ−1

(
∂Σ
∂θq

)]
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+ tr
[
−(x̄− µ)(x̄− µ)TΣ−1∂Σ

∂θq
Σ−1 − 2(x̄− µ)TΣ−1 ∂µ

∂θq

]}

=
1

2

{
tr
[
Σ−1(Σ− S)Σ−1

(
∂Σ
∂θq

)]

− tr
[
(x̄− µ)(x̄− µ)TΣ−1∂Σ

∂θq
Σ−1

]
− 2tr

[
(x̄− µ)TΣ−1 ∂µ

∂θq

]}

=
1

2

{
tr
[
Σ−1(Σ− S)Σ−1

(
∂Σ
∂θq

)]

− tr
[
Σ−1(x̄− µ)(x̄− µ)TΣ−1∂Σ

∂θq

]
− 2tr

[
(x̄− µ)TΣ−1 ∂µ

∂θq

]}

=
1

2
tr
[
Σ−1(Σ− S − (x̄− µ)(x̄− µ)T )Σ−1

(
∂Σ
∂θq

)]
− tr

[
(x̄− µ)TΣ−1 ∂µ

∂θq

]

=
1

2
tr
[
Σ−1(Σ−W )Σ−1

(
∂Σ
∂θq

)]
− (x̄− µ)TΣ−1 ∂µ

∂θq

=
1

2
tr
[
Ω
(
∂Σ
∂θq

)]
−ΩT

µ

∂µ

∂θq
, (F.29)

where Ω = Σ−1(Σ−W )Σ−1 and Ωµ = Σ−1(x̄−µ). Given that F = − 1

N
`(θ), it

follows that the gradient of the log-likelihood is:

[g(θ)]q =
∂`(θ)

∂θq
= −N ∂F

∂θq
= −N

2
tr
{

Ω∂Σ
∂θq

}
+NΩT

µ

∂µ

∂θq
. (F.30)

If the mean structure is absent, W = S, Ω = Σ−1(Σ− S)Σ−1, Ωµ = 0, and we

get expression (2.4). �

F.2.1.2 Proof of proposition F.2

Proof. In order to compute equations (F.4)-(F.8), we need the derivatives of the

matrix Σ and the vector µ with respect to each model parameter. Let us find

the partial derivatives of the model-implied moments taken with respect to the

elements of Λ, Φ, Ψ, τ and κ, respectively:

∂Σ
∂λij

= ΛΦ1ji + 1ijΦΛT by equation (A.22), (F.31)
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∂Σ
∂φgh

= Λ [1gh + 1hg − 1ghI1gh] ΛT by equation (A.23), (F.32)

∂Σ
∂ψii

= 1ii by equation (A.24), (F.33)

∂Σ
∂τi

=
∂(ΛΦΛT + Ψ)

∂τi
= 0, (F.34)

∂Σ
∂κj

=
∂(ΛΦΛT + Ψ)

∂κj
= 0, (F.35)

∂µ

∂λij
=

∂(τ + Λκ)

∂λij
=
∂Λκ
∂λij

= 1ijκ, (F.36)

∂µ

∂φgh
=

∂(τ + Λκ)

∂φgh
= 0, (F.37)

∂µ

∂ψii
=

∂(τ + Λκ)

∂ψii
= 0, (F.38)

∂µ

∂τi
=

∂(τ + Λκ)

∂τi
=
∂τ

∂τi
= 1i1, (F.39)

∂µ

∂κj
=

∂(τ + Λκ)

∂κj
=
∂Λκ

∂κj
= Λ1j1, (F.40)

where 1ab is a matrix with zeros in every position, except the entry (a, b), which

contains a 1.0, and 1a1 is a column vector with zeros in every position, except

the entry a, which contains a 1.0. By substituting expressions (F.31)-(F.40) into

equation (F.29), we get the following set of first-order derivatives of F with respect

to the model parameters:

∂F

∂λij
=

1

2
tr
[
Ω
(
∂Σ
∂λij

)]
−ΩT

µ

∂µ

∂λij
=

1

2
tr
[
Ω
(
ΛΦ1ji + 1ijΦΛT

)]
−ΩT

µ1ijκ

=
1

2
tr [ΩΛΦ1ji] +

1

2
tr
[
Ω1ijΦΛT

]
− tr(ΩT

µ1ijκ)

=
1

2
tr [ΩΛΦ1ji] +

1

2
tr [ΩΛΦ1ji]− tr(κT1jiΩµ)

= tr [ΩΛΦ1ji]− tr(Ωµκ
T1ji) = [ΩΛΦ]ij[Ωµκ

T ]ij,

∂F

∂φgh
=

1

2
tr
[
Ω
(
∂Σ
∂φgh

)]
−ΩT

µ

∂µ

∂φgh
=

1

2
tr
[
ΩΛ [1gh + 1hg − 1ghI1gh] ΛT

]
=

=
1

2
tr
[
ΩΛ1ghΛT

]
+

1

2
tr
[
ΩΛ1hgΛT

]
− 1

2
tr
[
ΩΛ1ghI1ghΛT

]
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=
1

2
tr
[
ΛTΩΛ1gh

]
+

1

2
tr
[
1hgΛTΩΛ

]
− 1

2
tr
[
ΛTΩΛ1ghI1gh

]
= tr

[
ΛTΩΛ1gh

]
− 1

2
[ΛTΩΛ]hg[I]hg

=

(
1− 1

2
[I]gh

)
[ΛTΩΛ]gh,

∂F

∂ψii
=

1

2
tr
[
Ω
(
∂Σ
∂ψii

)]
−ΩT

µ

∂µ

∂ψii
=

1

2
tr [Ω1ii] =

1

2
[Ω]ii,

∂F

∂τi
=

1

2
tr
[
Ω
(
∂Σ
∂τi

)]
−ΩT

µ

∂µ

∂τi
= −ΩT

µ1i1 = −[ΩT
µ]i,

∂F

∂κj
=

1

2
tr
[
Ω
(
∂Σ
∂κj

)]
−ΩT

µ

∂µ

∂κj
= −ΩT

µΛ1j1 = −tr(1j1ΛTΩµ)

= −tr(ΛTΩµ1j1) = −[ΛTΩµ]j.

The analytical first-order derivatives of the log-likelihood `(θ) = −N F in matrix

expression are then:

∂`(θ)

∂Λ = −NΩΛΦ +NΩµκ
T ,

∂`(θ)

∂Φ =


−NΛTΩΛ, non-diagonal elements,

−N
2

ΛTΩΛ, diagonal elements,

∂`(θ)

∂Ψ = −Ndiag(Ω),

∂`(θ)

∂τ
= NΩµ,

∂`(θ)

∂κ
= NΛTΩµ,

with the understanding that the elements of the parameter matrices on the left

corresponding to the positions of fixed elements of Λ,Φ, Ψ, τ and κ are taken to

be zero. �
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F.2.1.3 Proof of proposition F.3

Proof. The second partial derivative of F with respect to two arbitrary scalar

variables θq and θq′ is:

∂2F

∂θq∂θq′
=

∂

∂θq′

{
1

2
tr
[
Σ−1(Σ− S)Σ−1

(
∂Σ
∂θq

)]
− 1

2
tr
[
Σ−1(x̄− µ)(x̄− µ)TΣ−1∂Σ

∂θq

]
− tr

[
(x̄− µ)TΣ−1 ∂µ

∂θq

]}

=
∂

∂θq′

{
1

2
tr
[
Σ−1(Σ− S)Σ−1

(
∂Σ
∂θq

)]}
− ∂

∂θq′

{
1

2
tr
[
Σ−1(x̄− µ)(x̄− µ)TΣ−1∂Σ

∂θq

]}
− ∂

∂θq′
tr
{

(x̄− µ)TΣ−1 ∂µ

∂θq

}

= T 1 + T 2 + T 3. (F.41)

Due to the presence of the mean structure as well as the covariance structure, the

derivation of the exact second-order derivatives is a lengthy and tedious process. We

will thus employ approximate second-order derivatives by disregarding the terms

involving the second-order derivatives of Σ and µ. Then, given that E[x̄− µ] = 0

and E[S −Σ] = O as N →∞, the resulting quantities coincide with the expected

Fisher information matrix. Let us examine the terms in (F.41):

T 1 =
∂

∂θq′

{
1

2
tr
[
Σ−1(Σ− S)Σ−1

(
∂Σ
∂θq

)]}

=
1

2

{
tr
[
Σ−1 ∂Σ

∂θq′
Σ−1∂Σ

∂θq

]

+ tr
[
Σ−1(Σ− S)Σ−1

(
∂2Σ
∂θq′∂θq

− 2
∂Σ
∂θq′

Σ−1∂Σ
∂θq

)]}
by equation (A.31)

≈ 1

2
tr
(

Σ−1 ∂Σ
∂θq′

Σ−1∂Σ
∂θq

)
=

1

2
tr
(

Σ−1∂Σ
∂θq

Σ−1 ∂Σ
∂θq′

)
,
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T 3 = − ∂

∂θq′
tr
[
(x̄− µ)TΣ−1 ∂µ

∂θq

]
= −tr

{
∂

∂θq′

[
(x̄− µ)TΣ−1 ∂µ

∂θq

]}

= −tr
{
∂
[
(x̄− µ)TΣ−1

]
∂θq′

∂µ

∂θq
+ (x̄− µ)TΣ−1 ∂2µ

∂θq′∂θq

}

= −tr
{

(x̄− µ)TΣ−1 ∂2µ

∂θq′∂θq

}
− tr

{[
(x̄− µ)T

∂Σ−1

∂θq′
+
∂(x̄− µ)T

∂θq′
Σ−1

]
∂µ

∂θq

}

= −tr
{

(x̄− µ)TΣ−1 ∂2µ

∂θq′∂θq

}
+ tr

{
(x̄− µ)TΣ−1 ∂Σ

∂θq′
Σ−1 ∂µ

∂θq

}
+ tr

{
∂µT

∂θq′
Σ−1 ∂µ

∂θq

}

= −tr
{

(x̄− µ)TΣ−1

[
∂2µ

∂θq′∂θq
− ∂Σ
∂θq′

Σ−1 ∂µ

∂θq

]}
+ tr

{
∂µT

∂θq′
Σ−1 ∂µ

∂θq

}

≈ tr
(
∂µT

∂θq′
Σ−1 ∂µ

∂θq

)
= tr

(
∂µT

∂θq
Σ−1 ∂µ

∂θq′

)
.

The expected Fisher information matrix is then easily obtained as

J (θ) = −E
[
∂2`(θ)

∂θq∂θq′

]
= −E

[
−N ∂2F

∂θq∂θq′

]

=
N

2
tr
(

Σ−1∂Σ
∂θq

Σ−1 ∂Σ
∂θq′

)
+Ntr

(
∂µT

∂θq
Σ−1 ∂µ

∂θq′

)
.

since the term involving T 2 vanishes given that E[x̄− µ] = 0. �

F.2.1.4 Proof of proposition F.4

Proof. By using the results in Appendix A.2.3.1 and equations (F.31)-(F.40), we

obtain the following expressions of the sub-matrices of the Fisher information

matrix, for i, t = 1, . . . , p and g, h, j, l, q, s = 1, . . . , r:

[J11](ij,ts) = −E
[
∂2`(θ)

∂λij∂λts

]
=
N

2
tr
(

Σ−1 ∂Σ
∂λij

Σ−1 ∂Σ
∂λts

)
+Ntr

(
∂µT

∂λij
Σ−1 ∂µ

∂λts

)
= N(βisβtj + ωitζjs) +Ntr(κT1jiΣ−11tsκ)

= N(βisβtj + ωitζjs) +Ntr(Σ−11tsκκT1ji)

= N(βisβtj + ωitζjs) +N [Σ−1]it[κκ
T ]sj

= N(βisβtj + ωitζjs) +Nωit[κκ
T ]sj = N(βisβtj + ωit[ζ + κκT ]js]),
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[J12](ij,t) = −E
[
∂2`(θ)

∂λij∂τt

]
= Ntr

(
∂µT

∂λij
Σ−1∂µ

∂τt

)
= Ntr

{
κT1jiΣ−11t1

}
= N [κT ]1j[Σ−1]it = Nωitκj,

[J13](ij,tt) = −E
[
∂2`(θ)

∂λij∂ψtt

]
=
N

2
tr
(

Σ−1 ∂Σ
∂λij

Σ−1 ∂Σ
∂ψtt

)
= Nωitβtj,

[J14](ij,gh) = −E
[
∂2`(θ)

∂λij∂φgh

]
=
N

2
tr
(

Σ−1 ∂Σ
∂λij

Σ−1 ∂Σ
∂φgh

)
=

N

2
(2− [I]gh)(αigδjh + αihδjg),

[J15](ij,g) = −E
[
∂2`(θ)

∂λij∂κg

]
= Ntr

(
∂µT

∂λij
Σ−1 ∂µ

∂κg

)
= Ntr

(
κt1jiΣ−1Λ1g1

)
= [κT ]1j[Σ−1Λ]ig = Nαigκj,

[J22](i,t) = −E
[
∂2`(θ)

∂τi∂τt

]
= Ntr

(
∂µT

∂τi
Σ−1∂µ

∂τt

)
= Ntr

(
11iΣ−11t1

)
= Ntr(I11iΣ−11t1) = Nωit,

[J23](i,tt) = −E
[
∂2`(θ)

∂τi∂ψtt

]
= 0,

[J24](i,gh) = −E
[
∂2`(θ)

∂τi∂φgh

]
= 0,

[J25](i,g) = −E
[
∂2`(θ)

∂τi∂κg

]
= Ntr

(
∂µT

∂τi
Σ−1 ∂µ

∂κg

)
= Ntr

(
11iΣ−1Λ1g1

)
= Ntr(I11iΣ−1Λ1g1) = Nαig,

[J33](ii,tt) = −E
[
∂2`(θ)

∂ψii∂ψtt

]
=
N

2
tr
(

Σ−1 ∂Σ
∂ψii

Σ−1 ∂Σ
∂ψtt

)
=
N

2
ω2
it,

[J34](tt,gh) = −E
[
∂2`(θ)

∂ψtt∂φgh

]
=
N

2
tr
(

Σ−1 ∂Σ
∂ψtt

Σ−1 ∂Σ
∂φgh

)
=
N

2
(2− [I]gh)αtgαth,

[J35](ii,g) = −E
[
∂2`(θ)

∂ψii∂κg

]
= 0,
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[J44](gh,lq) = −E
[
∂2`(θ)

∂φgh∂φlq

]
=
N

2
tr
(

Σ−1 ∂Σ
∂φgh

Σ−1 ∂Σ
∂φlq

)
=

N

4
(2− [I]gh)(2− [I]lq)(γglγhq + γgqγhl),

[J45](gh,l) = −E
[
∂2`(θ)

∂φgh∂κl

]
= 0,

[J55](g,h) = −E
[
∂2`(θ)

∂κg∂κh

]
= Ntr

(
∂µT

∂κg
Σ−1 ∂µ

∂κh

)
= Ntr

(
11gΛTΣ−1Λ1h1

)
= Ntr(I11gΛTΣ−1Λ1h1) = Nγgh.

�

F.2.2 Multiple-group factor model

We now generalize to the case of multiple groups the results derived in Appendix

F.2.1. Consider G independent groups, each of size Ng, with N =
∑G

g=1Ng

the total sample size across groups. Let σg = vech(Σg) be the vector of non-

duplicated elements of the implied covariance matrix in group g, that is, Σg =

Σg(θg) = ΛgΦgΛT
g + Ψg, where θg is the corresponding parameter vector. The

mean structure µg = µg(θg) = τ g + Λgκg and the covariance structure σg are

gathered in the vector βg = βg(θg) = (µTg ,σ
T
g )T . The non-duplicated elements of

the sample covariance matrix sg = vech(Sg) and the sample mean vector x̄g are

collected in β̂g = β̂g(θg) = (x̄Tg , s
T
g )T . We also define Ωg = Σ−1

g (Σg −W g)Σ−1
g ,

where W g = Sg + (x̄g − µg)(x̄g − µg)T , Ωµg = Σ−1
g (x̄g − µg), ∆g =

∂βg

∂θTg
,

Eg = diag(Σ−1
g , 1

2
DT (Σ−1

g ⊗Σ−1
g )D), and V g = NgEg.

The log-likelihood of group g is

`g(θg) = −Ng

2

{
log|Σg|+ tr(W gΣ−1

g ) + p log(2π)
}

;

the gradient gg(θg) is obtained by concatenating the free elements in

∂`g(θg)

∂Λg

= −NgΩgΛgΦg +NgΩµgκ
T
g ,
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∂`g(θg)

∂Φg

=


−NgΛT

g ΩgΛg, non-diagonal elements,

−Ng

2
ΛT
g ΩgΛg, diagonal elements,

∂`g(θg)

∂Ψg

= −Ngdiag(Ωg),

∂`g(θg)

∂τ g
= NgΩµg,

∂`g(θg)

∂κg
= NgΛT

g Ωµg;

the expected Fisher information matrix is Jg(θg) = ∆T
g V g∆g. We can define the

following quantities by assembling the group-specific elements over groups:

θ =
(
θT1 , . . . ,θ

T
g , . . . ,θ

T
G

)T
,

σ =
(
σT1 , . . . ,σ

T
g , . . . ,σ

T
G

)T
,

µ =
(
µT1 , . . . ,µ

T
g , . . . ,µ

T
G

)T
,

β =
∂β

∂θT
=
(
βT1 (θ1), . . . ,βTg (θg), . . . ,β

T
G(θG)

)T
=
(
µT ,σT

)T
,

s =
(
sT1 , . . . , s

T
g , . . . , s

T
G

)T
,

x̄ =
(
x̄T1 , . . . , x̄

T
g , . . . , x̄

T
G

)T
,

β̂ =
(
β̂
T

1 (θ1), . . . , β̂
T

g (θg), . . . , β̂
T

G(θG)
)T

=
(
x̄T , sT

)T
,

∆ = diag
(
∂β1

∂θT1
, . . . ,

∂βg

∂θTg
, . . . ,

∂βG
∂θTG

)
= diag(∆1, . . . ,∆g, . . . ,∆G),

E = diag(E1, . . . ,Eg, . . . ,EG),

V = diag(N1E1, . . . , NgEg, . . . , NGEG),

where diag(B1,B2, . . . ,BG) denotes a block diagonal matrix with blocks B1,B2,

. . . ,BG. Then, the log-likelihood of the multiple-group factor model in equa-

tion (5.1) is `(θ) =
∑G

g=1 `g(θg) (see equation (F.1)), the gradient is g(θ) =(
g1(θ1)T , . . . , gg(θg)

T , . . . , gG(θG)T
)T , and the expected Fisher information is

J (θ) = ∆TV∆ = diag (J1(θ1), . . . ,Jg(θg), . . . ,JG(θG)).
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Adaptive lasso, 32, 164, 168
AIC, see Akaike Information Criterion
Akaike Information Criterion, 186
Alasso, see Adaptive Lasso
Automatic tuning parameter selection,

58, 111–133, 188–192

CFA, see Confirmatory factor analysis
Computational time, 71, 101
Confidence intervals, 62, 201
Confirmatory factor analysis, 21, 77, 106
Coverage probability, 73

Degrees of freedom, 57
effective, 55, 96

EFA, see Exploratory factor analysis
Exploratory factor analysis, 21, 77

False positive rate, 70, 100
FPR, see False positive rate
Functional, 53, 171

statistical, 172
Fused penalty, 92

Generalized Information Criterion, 53,
171–181

GBIC, 56, 175, 181
GJRM, 111–133

Holzinger & Swineford data set, 77, 103

Implicit equation, 172
Influence factor, 60
Influence function, 54, 176
Invariance, 86

measurement, 85
partial, 91

Kullback-Leibler information, 173

Lasso, 31, 164, 167
Line search algorithm, 52
Locally approximated penalty, 36, 86,

163

Mcp, see Minimax concave penalty
Mean squared error, 69, 100
Minimax concave penalty, 32, 166, 169
Model modification, 44
Modification index, 44
MSE, see Mean squared error
Multiple-group factor analysis model, 83

Fisher information, 216
gradient, 216
identification, 84
log-likelihood, 203
metric setting, 84

Normal linear factor model, 25
Fisher information, 159
gradient, 144
Hessian, 147
identification, 27
log-likelihood, 29, 139
rotational freedom, 27
scale setting, 26

PCTM, see Proportion choosing true
model

Penalized maximum likelihood estimator,
47, 48, 183–184

asymptotic distribution, 195, 199
Bayesian connection, 62
consistency, 200
covariance matrix, 62
Fisher information, 48
gradient, 48
Hessian matrix, 48

PMLE, see Penalized maximum likeli-
hood estimator

Positive definiteness, 184–185
Proportion choosing true model, 70, 100

Rotation, 22

SB, see Squared bias
Scad, see Smoothly clipped absolute de-

viation
Simple structure, 21
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Smoothly clipped absolute deviation, 32,
164, 168

Sparsity, 22, 31, 86
Squared bias, 69, 100

TPR, see True positive rate
True positive rate, 69, 100
Trust-region algorithm, 47–50

UBRE, see Un-Biased Risk Estimator
Un-Biased Risk Estimator, 59, 185
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