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This thesis deals with the decomposition both as a solution method and as a problem
itself. A decomposition approach can be very effective for mathematical problems
that present a specific structure in which the associated matrix of coefficients is very
sparse and, in particular, it is diagonalizable in blocks. But, this kind of structure may
not be immediately evident from the most natural formulation of the problem. For
this reason, its coefficient matrix may be preprocessed by solving a structure detec-
tion problem in order to understand if a decomposition method can successfully be
applied. So, this thesis deals with the k-Vertex Cut problem, that is the problem of
finding the minimum subset of nodes whose removal disconnects a graph into at
least k components, and it models relevant applications in matrix decomposition for
solving systems of equations by parallel computing. The capacitated k-Vertex Sepa-
rator problem, instead, asks to find a subset of vertices of minimum cardinality the
deletion of which disconnects a given graph in at most k shores and the size of each
shore must not be larger than a given capacity value u. Also this problem is of great
importance for matrix decomposition algorithms. Indeed, it can be viewed as the
problem of assigning the rows of a given matrix A to k disjoint blocks, each one of
size at most u. If A is the constraint matrix of a (mixed) integer problem, once this
problem is solved and the matrix is consequently decomposed, then a decomposi-
tion technique might be applied to the original reformulated problem.

This thesis also addresses the Chance-Constrained Mathematical Program that
represents a significant example in which decomposition techniques can be success-
fully applied. This is a class of stochastic optimization problems in which the fea-
sible region depends on the realization of a random variable and the solution must
optimize a given objective function while belonging to the feasible region with a
probability that must be above a given value. In this thesis, a decomposition ap-
proach for this problem is introduced: we define a master problem containing the
chance constraint and one sub-problem for each possible realization of the random
variable. Then, we devise a Branch-and-Cut algorithm where we add cutting planes
to the master problem as outer approximation point cuts.

The thesis continues by introducing the Fractional Knapsack Problem with Penal-
ties, a variant of the knapsack problem in which items can be split at the expense of a
penalty depending on the fractional quantity, and it concludes with a real-world ap-
plication in which an optimization problem belonging to the family of the Lot Sizing
problems is formulated.

HTTP:///WWW.UNIBO.IT
http://www.dei.unibo.it
http://www.dei.unibo.it




v

Acknowledgements
First of all, I thank my supervisor Prof. Enrico Malaguti who supported me dur-

ing all the three years of my Ph.D. He gave me the opportunity to explore several
subjects of the Operations Research, he allowed me to know and to work together
with other experienced researchers coming from different part of the world and he
has always been willing to devote his time to clarify any kind of doubt.

Secondly, I am grateful to Dr. Giacomo Nannicini who agreed to be my tutor
for the five months I spent in New York as a trainee at the IBM T.J. Watson research
center. He made my experience very productive and formative.

I would also like to thank the co-authors of my first two scientific publications:
Prof. Fabio Furini, Prof. Michele Monaci, Prof. Ivana Ljubic and Prof. Ulrich Pfer-
schy. In particular, I take this opportunity to thank Fabio and Michele who also
found the time to give me important advices and recommendations for my current
and future academic career.

Thanks also to all the other professors of the group of Operations Research of the
Department of Electrical, Electronic and Information Engineering “Guglielmo Mar-
coni” (DEI) of the University of Bologna: Prof. Valentina Cacchiani, Prof. Silvano
Martello, Prof. Paolo Toth, Prof. Daniele Vigo; and thanks to all my current and
previous colleagues: Luca Accorsi, Dr. Carlos Emilio Contreras Bolton, Cristiano
Fabbri, Naga Venkata Chaitanya Gudapati, Federico Naldini, Carlos Rodrigo Rey
Barra and Dr. Dimitri Thomopulos.

Finally, a special thanks to my family and especially to my girlfriend Sara who
immediately supported me in deciding to leave my previous job to take this new
challenging and gratifying path.





vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 On Integer and Bilevel Formulations for the k-Vertex Cut Problem 7
2.1 Compact Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Representative Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Bilevel Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 A Bilevel Integer Programming Formulation . . . . . . . . . . . 15
2.4.2 Single-Level Reformulation . . . . . . . . . . . . . . . . . . . . . 16

2.5 Separation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.2 Results for Representative, Natural and Hybrid Formulations . 22
2.6.3 Comparison with state-of-the-art solution methods . . . . . . . 26

Weighted case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 The bilevel combinatorial structure of the k-Vertex Separator problem 41
3.1 A Compact Integer Programming Formulation . . . . . . . . . . . . . . 44
3.2 A canonical IP formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 A bilevel interpretation of the problem . . . . . . . . . . . . . . . . . . . 46

3.3.1 Convexification by penalization . . . . . . . . . . . . . . . . . . 47
3.3.2 Convexification by dualization . . . . . . . . . . . . . . . . . . . 49
3.3.3 Another bilevel point-of-view . . . . . . . . . . . . . . . . . . . . 50
3.3.4 Comparison between Component, Degree and Benders cuts . . 52

3.4 Cover inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Additional valid inequalities . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Separation routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.1 Separation of Degree Inequalities . . . . . . . . . . . . . . . . . . 54
3.6.2 Separation of Component Inequalities . . . . . . . . . . . . . . . 55
3.6.3 Separation of Benders Cuts . . . . . . . . . . . . . . . . . . . . . 55
3.6.4 Separation of Cover Inequalities . . . . . . . . . . . . . . . . . . 55
3.6.5 Separation of Bin Packing Inequalities . . . . . . . . . . . . . . . 56

3.7 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7.1 Determining the best configuration of the Branch-and-Cut al-

gorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.7.2 Comparison with state-of-the-art solution methods . . . . . . . 58

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



viii

4 Chance Constrained Problem with Integer Scenario Variables 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Decomposition algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.1 Case 1: separation when x̂ 6∈ ProjxCont(Cx,y) . . . . . . . . . . . 72
4.2.2 Case 2: separation when x̂ 6∈ ProjxConv(Cx,y) . . . . . . . . . . 72
4.2.3 Case 3: separation when x̂ ∈ ProjxConv(Cx,y) . . . . . . . . . . 75

Spatial branching on variable x . . . . . . . . . . . . . . . . . . . 75
Intern branching on variables y . . . . . . . . . . . . . . . . . . . 76
Extern branching on variables y . . . . . . . . . . . . . . . . . . 76

4.3 Computational enhancements . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.1 Cutting strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.2 Storing feasible points . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.3 Solving deterministic problems . . . . . . . . . . . . . . . . . . . 78

4.4 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.1 Computational Environment . . . . . . . . . . . . . . . . . . . . 78
4.4.2 Implementation details and test instances . . . . . . . . . . . . . 78
4.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Integer Optimization with Penalized Fractional Values:
The Knapsack Case 85
5.1 Structural results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.1.1 FKPP with convex objective function . . . . . . . . . . . . . . . 90
5.1.2 Penalty in terms of weight . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Mathematical models for FKPP . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.1 General model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2 An ILP model for integer weight contributions . . . . . . . . . . 93
5.2.3 Comparison between MGEN and MINT . . . . . . . . . . . . . . 94

5.3 An FPTAS for the general case . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Dynamic Programming algorithms for the convex case . . . . . . . . . 98

5.4.1 Dynamic Programming algorithms for KP . . . . . . . . . . . . 98
5.4.2 A Dynamic Programming algorithm for FKPP . . . . . . . . . . 99
5.4.3 An improved Dynamic Programming algorithm for FKPP . . . 100

5.5 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.1 First heuristic algorithm . . . . . . . . . . . . . . . . . . . . . . . 101
5.5.2 Second heuristic algorithm . . . . . . . . . . . . . . . . . . . . . 101
5.5.3 Third heuristic algorithm . . . . . . . . . . . . . . . . . . . . . . 101

5.6 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6.2 Benchmark instances . . . . . . . . . . . . . . . . . . . . . . . . . 103

KP instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Penalty functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6.3 Results on linear instances . . . . . . . . . . . . . . . . . . . . . . 105
5.6.4 Results on convex instances . . . . . . . . . . . . . . . . . . . . . 106
5.6.5 Results on concave instances . . . . . . . . . . . . . . . . . . . . 109
5.6.6 Results of heuristic algorithms . . . . . . . . . . . . . . . . . . . 109

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



ix

6 Models and heuristic algorithms for a real-world lot sizing and distribution
problem 113
6.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 Sets and variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2.2 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 A constructive algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.4 A metaheuristic approach . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.5 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5.1 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.5.2 Comparison with MIP . . . . . . . . . . . . . . . . . . . . . . . . 127
6.5.3 Solution Structure and Scenario analysis . . . . . . . . . . . . . 127

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 Conclusions and future work 131

Bibliography 133





xi

List of Figures

2.1 A graph with 10 vertices of equal weight and an optimal 3-vertex cuts
(on the right) represented by the black vertices {v1, v2, v5}. . . . . . . . 8

2.2 Infeasible solution for k = 3, with the black vertices {v1, v2} in the
vertex cut (the remaining vertices form one connected component). . . 18

2.3 A cycle-free subgraph T ∈ T \ TG and the associated inequality (2.25):
−x1 − x2 + 2x3 + x4 + 3x5 ≥ 0 (left part). A spanning cycle-free sub-
graph T ∈ TG and the associated inequality (2.27): 3x3 + 2x4 + 3x5 ≥
2; downlifted according to (2.30) to x3 + x4 + x5 ≥ 1 (right part). . . . 18

2.4 Performance profile of exact methods for the k-Vertex Cut problem. . 30
2.5 Performance profile of exact methods for the k-Vertex Cut problem

with weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 An example graph G for the k-VSP, with 10 vertices and 13 edges.
The vertices of an optimal k-VSP solution with k = 3 and u = 3 are
shown in grey, i.e., the separator S = {v8, v9}. Dashed lines represent
the edges which are incident to the removed vertices and they do not
appear in G[V \ {v8, v9}]. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Two examples demonstrating relationships between studied inequal-
ities. a) u = 2, b) u = 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Performance profiles by class of instances: DIMACS, MIPLIB, Netlib
and Random. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Performance profiles by values of k: small → k ∈ {4, 8, 12}, medium
→ k ∈ {16, 24, 32}, large→ k ∈ {64, 128, 256} . . . . . . . . . . . . . . . 62

5.1 Example of a generic profit function that leads to an optimal solution
with all fractional items. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Linear profit functions (on the left) and convex and concave profit
functions (on the right) of FKPP compared with CKP. . . . . . . . . . . 104

5.3 Performance profile of exact methods for FKPP - Constant penalty
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Performance profile of exact methods for FKPP - Increasing penalty
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Performance profile of exact methods for FKPP - Decreasing penalty
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.6 Performance profile of exact methods for FKPP - Quadratic convex
penalty function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.7 Values of %pro f of the heuristic solutions with increasing number of
item (on the left) and with increasing range (on the right). . . . . . . . . 110

6.1 Cost of a solution as a function of the computing time for subsequent
iterations of Local Search. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Different what-if scenarios. . . . . . . . . . . . . . . . . . . . . . . . . . . 129





xiii

List of Tables

2.1 Instance features (Coloring and DIMACS) . . . . . . . . . . . . . . . . . 23
2.2 Instance features (Intersection graphs) . . . . . . . . . . . . . . . . . . . 24
2.3 Performance comparison for different configurations of the Represen-

tative, Natural and Hybrid Formulations on the first set of instances
(Vertex Coloring and DIMACS). . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Performance comparison between the Hybrid Formulation and the
state-of-the-art methods on the complete instance set (Vertex Color-
ing, DIMACS and Intersection graphs). . . . . . . . . . . . . . . . . . . 28

2.5 Performance comparison between the Hybrid Formulation and the
state-of-the-art methods on the complete instance set with weights
(Vertex Coloring, DIMACS and Intersection graphs). . . . . . . . . . . . 29

2.6 Number of vertices removed by preprocessing . . . . . . . . . . . . . . 34
2.7 Computational times (Coloring and DIMACS) . . . . . . . . . . . . . . 35
2.8 Computational times (Intersection graphs) . . . . . . . . . . . . . . . . 36
2.9 Computational times for instances with weights (Coloring and DI-

MACS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.10 Computational times for instances with weights (Intersection graphs) . 38
2.11 Optimal values of the instances with weights, instances that are infea-

sible and/or trivial for all values of k are not reported (Coloring and
DIMACS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.12 Optimal values of the instances with weights, instances that are infea-
sible and/or trivial for all values of k are not reported (Intersection
graphs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Performance comparison for different configurations of our Branch-
and-Cut algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 Performance comparison between Cplex, BP and our best Branch-
and-Cut algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Features, computational times and optimal solution values (if known)
of C+CV for the DIMACS instances. . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Features, computational times and optimal solution values (if known)
of C+CV for the MIPLIB instances. . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Features, computational times and optimal solution values (if known)
of C+CV for the Netlib instances. . . . . . . . . . . . . . . . . . . . . . . 67

3.6 Features, computational times and optimal solution values (if known)
of C+CV for the Random instances. . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Comparison of the objective values obtained with different solution
approaches (problem FIRST). . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Comparison of the objective values obtained with different solution
approaches (problem SECOND). . . . . . . . . . . . . . . . . . . . . . . 82



xiv

5.1 Average computing time (seconds) over 6 classes of instances with
linear profit function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Average computing time (seconds) over 6 classes of instances with
convex objective function. Observe that the times required by the dif-
ferent DP algorithms are almost identical to those of the linear case. . . 108

5.3 Average times (seconds) over 6 classes of instances with quadratic
concave objective function. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Average percentage profit and optimal solutions for the heuristic al-
gorithms, concave profit function (20 items). . . . . . . . . . . . . . . . 111

6.1 Main characteristics of the real-world instances. . . . . . . . . . . . . . 125
6.2 Effect of parameter ConfigParam on real-world instances. . . . . . . . . 126
6.3 Comparison of the gap obtained by our algorithm (HEUR) and CPLEX . . 128



xv

Dedicated to Sara and Capo





1

Chapter 1

Introduction

Nowadays, decomposition techniques are widely known for being a very effec-
tive approach to solve mathematical programming problems whose formulation is
too large to guarantee an exact resolution if it is attacked as a whole single prob-
lem. When the coefficient matrix of the mathematical programming problem is very
sparse and, in particular, it is (almost) diagonalizable in blocks, then the original prob-
lem can be decomposed in smaller sub-problems that, hopefully, are easier to solve.
In addition to be smaller in size, these sub-problems may also present a specific
structure for which efficient ad-hoc algorithms exist.

Also within the field of Mathematical Programming there are many cases in
which the use of decomposition techniques brings important advantages when solv-
ing (mixed) integer problems whose natural formulation results intractable due to
a large number of variables or constraints. The two most known decomposition
techniques in the field of Mathematical Programming are the Dantzig-Wolfe decom-
position [1] and the Benders’ decomposition [2].

The first method is usually applied to formulations in which the constraint ma-
trix present a block structure with linking constraints; if these constraints were re-
moved, then each block would represent a smaller sub-problem that would be solv-
able independently. The method works by defining a master problem where only
the linking constraints are kept, while the other “blocks” of constraints are implicitly
treated by generating their extreme points and rays, by means of a Column Genera-
tion algorithm.

Benders’ decomposition can be seen as the dual of the Dantzig-Wolfe decompo-
sition and it is effectively applied to those formulations in which there is a set of
“complicating variables” the fixing of which significantly simplifies the resolution
of the problem. In this case, the master problem only contains these variables. Once
the master problem is solved, the feasibility (and the optimality) of its solution is
checked through the dual of the sub-problem. If the solution turns out infeasible (or
not optimal), then a “Benders cut” is generated and added to the master problem,
and the procedure repeats.

However, there may exist cases in which it is not immediately clear if the problem
formulation allows a decomposition approach. Chapter 2 of this thesis addresses the
k-Vertex Cut problem, that is the problem of finding the minimum subset of nodes
whose removal disconnects a graph into k components, and it models relevant appli-
cations in matrix decomposition for solving systems of equations by parallel com-
puting. Indeed, given a system of equations with a coefficient matrix A, one can
build the intersection graph associated to A by defining a vertex for each variable and
an edge between a pair of vertices if and only if there exists a row in A where both
the associated variables have a nonzero coefficient. When the system is solved by
decomposition, it is divided into smaller subsystems that are solved separately. The
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solutions of the subsystems have to be merged in a consistent way to obtain a solu-
tion of the whole system. In other words, if the same variable appears in multiple
subsystems, it must take the same value in all of them. The effort for performing this
task increases with the number of variables that appear in more than one subsystem.
If one wants to partition the equations into k subsystems, the problem of minimizing
the number of common variables can be formulated as a k-Vertex Cut problem.

In Sections 2.3 and 2.4, we introduce two new integer linear programming for-
mulations for the k-Vertex Cut problem, along with families of strengthening valid
inequalities. Both models involve an exponential number of constraints for which
polytime separation procedures are provided together with the respective Branch-
and-Cut algorithms.

In the first formulation, defined as Representative Formulation, one representative
vertex is chosen for each of the k mutually disconnected vertex subsets. This way, it
is enough to impose non-connectivity among the representatives to obtain pairwise
disconnected subsets. This condition is ensured by Path constraints imposing that at
least one vertex of each path between a pair of representatives is in the vertex cut
(thus disconnecting the two representatives). This family of constraints is exponen-
tial in size and, in section 2.5, we describe a polytime separation procedure based on
the solution of a Shortest Path problem.

In the second formulation, so-called Natural Formulation, we derive the model
from the perspective of a two-stage Stackelberg game in which a leader deletes the
vertices in the first stage, and in the second stage a follower builds a cycle-free sub-
graph in the remaining graph. The solution of the leader is feasible, if and only
if the number of connected components in the subgraph corresponding to the the
follower’s optimal response is at least k. The leader wants to find a feasible solu-
tion where the set of deleted vertices (i.e., the k-vertex cut) has minimum size. In
section 2.4.2, we present a linearization of this bilevel model obtained by reformu-
lating the follower’s subproblem in a way such that the set of its feasible solutions
does not depend on the leader. Then, we derive a single-level reformulation with
an exponential number of constraints. The separation procedure generating these
constraints (section 2.5) aims to detect a maximum-weighted cycle free subgraph
that violates the corresponding inequality, and it runs in polynomial time both for
fractional and integer solutions.

Since both the described formulations make use of the same variables to decide
which vertices are removed from the graph, we also design a hybrid model in which
valid inequalities of both formulations are combined. Computational study (section
2.6) demonstrates that this hybrid model significantly outperforms the state-of-the-
art exact methods from the literature.

Also in the case of Mixed Integer Programming (MIP) problems, it may be nec-
essary to perform a preprocessing on the constraint matrix in order to detect and
extrapolate the specific structure needed to approach the problem by means of a
decomposition technique. So, in Chapter 3 we introduce the capacitated k-Vertex
Separator problem, that is an other problem belonging to the same family of the k-
Vertex Cut problem. Given a graph, this problem asks to find a subset of vertices of
minimum cardinality the deletion of which disconnects the graph in at most k shores
and the size of each shore is not bigger than a given capacity value u. Also this prob-
lem is of great importance for matrix decomposition algorithms. Indeed, it can be
viewed as the problem of assigning the rows of a given matrix A to k disjoint blocks.
The objective is to remove a minimum number of rows from A and to assign the re-
maining rows to the blocks so that each block contains at most u rows. The problems
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are equivalent by defining a graph with a vertex for each row, and an edge for each
pair of vertices if there is at least a column in A with nonzero entries in the corre-
sponding rows. If A is the constraint matrix of a (mixed) integer problem, once the
k-Vertex Separator problem is solved and the matrix is consequently decomposed,
then a decomposition technique like those described in the first paragraph might be
applied.

Both the k-Vertex Cut problem and the capacitated k-Vertex Separator problem
belong to the family of Critical Node Detection Problems that, generally, ask for
finding a subset of vertices, deletion of which minimizes or maximizes a predefined
connectivity measure on the remaining network. They find important applications
not only in matrix decomposition problems, but also in the analysis and protection
of communication or social networks against possible viral attacks in which contest
the vertices identified by the optimal solution can be seen as the most vital or critical
vertices of a graph, with respect to connectivity.

In section 3.3, we define a new bilevel interpretation of the k-Vertex Separator
problem, and we model it as a two-player Stackelberg game, in which the leader
interdicts the vertices (i.e., decides on the separator), and the follower determines
the maximum connected component on the resulting graph. In addition, the leader
has to make sure that the connected components can be packed in at most k shores
each of the size at most u. This approach allows us to develop a computational
framework based on an Integer Programming formulation in the natural space of
the variables. Thanks to this bilevel interpretation, we define three different families
of strengthening inequalities: Component cuts (3.3.1), Benders cuts (3.3.2) and Degree
cuts (3.3.3). In section 3.3.4, we study the dominance relationship between these
three families of inequalities, and, in section 3.6, we present their separation routines
running in polynomial time.

After an extensive computational analysis on the the relative computational per-
formance of each family of inequalities and their computational interaction when
separated in a Branch-and-Cut fashion (section 3.7), we determine the best configu-
ration of a newly developed Branch-and-Cut algorithm. This exact method is com-
petitive against the state-of-the-art algorithms for the k-Vertex Separator problem,
and is able to improve the best known results for several difficult classes of instances.

One of the most significant example in which decomposition techniques can be
successfully applied is represented by the Chance-Constrained Mathematical Pro-
gram (CCP), that we address in Chapter 4. CCP is a class of stochastic optimization
problems in which the feasible region depends on the realization of a random vari-
able and the solution must optimize a given objective function while belonging to
the feasible region with a probability that must be above a given value, defined by
the decision maker. Under specific assumptions, this problem can be modeled as a
Mixed Integer Not Linear Problem (MINLP).

In the case of the CCP, the applicability of a decomposition method in the ap-
proach of the problem is quite natural and intuitive due to the problem structure
that usually presents a set of variables that represents the decision to be taken in
the first stage of a considered time window and other sets of variables that, instead,
play a role only in the following stages and only if the possible related realization
actually takes place. For this reason, in the problem formulation the former set of
variables is shared by all the existing constraints, while the latter sets of variables
only appear in some specific subsets of constraints. The result is a model in which
the coefficient matrix has a blocks structure and its intersection graph is a graph in
which the removal of the vertices associated with the first stage variables (i.e., the
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assignment of these vertices to the separator) leads to a partition having a shore for
each different scenario. Hence, the application of a decomposition method is very
appealing and promising.

In Section 4.2, we propose a decomposition approach for the MINLP reformula-
tion of CCP whereby we define a single master problem and one sub-problem for
each possible realization of the random variable. We devise a Branch-and-Cut al-
gorithm where we generate cutting planes as outer approximation point cuts, when
possible. This approach generalizes the one proposed by Lodi et al. [3] that only
applies to the case in which the scenario variables are continuous. Given an infeasi-
ble solution of the master problem, we distinguish between three different cases: a
first case in which the method proposed by Lodi et al. can be applied to generate a
valid cutting plane, after the integrality constraint on the scenario variables has been
relaxed; a second case that we address by mean of a novel procedure that returns a
valid cut, when it exists; and a last case in which some kind of spatial branching is
required in order to discard the infeasible solution proposed by the master problem.

In Chapter 5, we consider integer problems where variables can potentially take
fractional values, but this occurrence is penalized in the objective function. This
general situation has relevant examples in scheduling (preemption), routing (split
delivery), cutting and telecommunications, just to mention a few. However, the gen-
eral case in which variables integrality can be relaxed at cost of introducing a general
penalty was not discussed before. As a case study, we consider the possibly simplest
combinatorial optimization problem, namely the classical Knapsack Problem. We
introduce the Fractional Knapsack Problem with Penalties (FKPP), a variant of the
knapsack problem in which items can be split at the expense of a penalty depending
on the fractional quantity.In addition to the possible applications mentioned above,
FKPP also arises as the subproblem to be solved in Dantzig-Wolfe decomposition
approaches for packing problems where item fragmentation is allowed, as the one
considered in [4].

In Section 5.1, we introduce relevant properties of this problem and we show
that, when the functions describing the penalties are concave, then an optimal solu-
tion exists in which at most one item is taken at a fractional level.

Then, we present alternative mathematical models (Section 5.2) and we discuss
the relation between them. The first general model has a linear number of variables
and constraints, but a non-linear objective function; the second model restricts the
weight contribution of each variable to integers and it is equivalent to a Multiple-
Choice Knapsack problem (MCKP).

In Section 5.3, we introduce a Fully Polynomial Time Approximation Scheme
(FPTAS) for the approximate solution of the general problem, and, in Section 5.4,
we devise a new dynamic programming approach that computes the optimal solu-
tion when the previously described condition on the penalty functions holds. Our
dynamic programming algorithm has an improved computational complexity with
respect to the procedure proposed in [4].

In Section 5.5, we also present three simple heuristic algorithms that provide
approximate solutions for the general FKPP.

We conclude the chapter by computationally testing the proposed models and
algorithms on a large set of instances derived from benchmarks from the literature
(Section 5.6). The experiments show that we are able to effectively solve medium-
sized FKPP instances and they highlight the improvement in term of computing
time that we obtain by means of our improved dynamic programming algorithm.
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Finally, in Chapter 6, motivated by a real-world application, we consider an op-
timization problem belonging to the family of the Capacitated Lot Sizing Problems
(CLSP). Given the amount of an independent demand that varies over time, the
lot sizing problem aims to determine in which period the production must be per-
formed in order to satisfy the demand, while minimizing the total required cost.
Typically, the problem involves variable production costs, that increase as the pro-
duced quantity does, fixed set up costs, that occur any time a machine starts the
production of an item in some period, and holding costs, that occur when a product
is stored in the inventory from a period to the next one.

The case study we deal with includes several products (multi-item), whose pro-
duction must be scheduled on machines belonging to different plants (multi-plant),
and the demands come from different customers. Then, each plant has an associated
internal inventory, with finite capacity, as well as an uncapacitated external inven-
tory, that can be used at the expense of an extra cost. Furthermore, each demand can
remain partially unsatisfied by paying a penalty for each undelivered product. So,
in addition to the traditional production and inventory costs, our problem also takes
into account the transportation costs from the plants to the customers, the external
inventory costs and the out of stock costs. Moreover, the problem is further com-
plicated by the minimum lot size condition that imposes a minimum quantity to be
produced when an order is assigned to some machine.

In Section 6.2, we give a formal definition of the problem at hand and introduce
a mathematical model based on a Mixed Integer Linear Program (MILP).

In Section 6.3, we present a fast heuristic algorithm based on an iterative con-
structive method. This procedure considers one demand at a time and determines
the best policy, according to a greedy strategy. More precisely, the algorithm decides
which is the line and time period in which production must take place, the amount
of items to be produced, and updates the production schedule accordingly.

Since the constructive heuristic algorithm may produce solutions in which the
use of some lines is not fully optimized, in Section 6.4 we also propose a metaheuris-
tic approach based on the ruin-and-recreate paradigm (see, Schrimpf et al. [5]). The
idea of a ruin-and-recreate algorithm is to determine improving solutions by (i) de-
stroying a considerable part of a feasible solution (ruin phase), and (ii) applying a
rebuilding procedure (recreate phase) to complete the solution. In our case, the ini-
tial feasible solution is produced by the constructive heuristic algorithm and we use
three different procedures to destroy and repair the solution.

Finally, in Section 6.5 we give the outcome of computational experiments for
the proposed approaches on two real-world test-cases and on a large set of realistic
instances that are derived from the real ones. The results show that, in all cases, the
approximations obtained in short computing time are very close to those that can be
achieved by running a state-of-the-art commercial solver on the mathematical model
for a very long computing time.
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Chapter 2

On Integer and Bilevel
Formulations for the k-Vertex Cut
Problem

1

In the analysis of networks, their correct functioning frequently depends on a
small number of important vertices whose malfunctioning can significantly degrade
the performance of the whole network. Depending on the crucial properties that
need to be maintained (or achieved) in the network, different vertices may be con-
sidered as important. So, for example, if the major concern of a decision maker is the
way how information is diffused in the network, we might be interested in finding
the key-player vertices or the most influential vertices in the network (see [7]). Sim-
ilarly, if the decision maker wants to protect the network against malicious attacks
that may affect or destroy connectivity, we are talking about the detection of criti-
cal vertices of a network. Although there may be some vertices that remain critical
no matter which connectivity measure is considered, very often the importance of a
vertex changes with the definition of the connectivity measure (see, e.g. [8], [9]).

The family of Critical Node Detection Problems asks for finding a subset of ver-
tices, deletion of which minimizes or maximizes a predefined connectivity measure
on the remaining network (see, e.g., [9] for a recent survey). Related to CNDPs is
the family of problems in which we are searching for a subset of vertices of mini-
mum weight, deletion of which changes the predefined connectivity measure of the
remaining network by a certain value, specified by the decision maker in advance.
In this chapter we study the k-Vertex Cut Problem, which belongs to the latter family
of problems, and which is defined as follows.

Definition 0 (k-Vertex-Cut) A vertex cut is a set of vertices whose removal disconnects
the graph into several connected components. If the number of connected components is at
least k, this set is called a k-vertex cut. Given a graph G = (V, E), a positive weight wu for
each vertex u ∈ V, and an integer k ≥ 2, the k-vertex cut problem is to find a k-vertex cut
of minimum weight.

Besides applications in the analysis of networks, the k-vertex cut problem also
models relevant applications in matrix decomposition for solving systems of equa-
tions by parallel computing [10]. Given a system of equations with the coefficient
matrix A, the intersection graph associated to A has one vertex for each column and
an edge between a pair of vertices if and only if there exists a row in A where both

1The results of this chapter appears in: F. Furini, I. Ljubić, E. Malaguti, and P. Paronuzzi, “On integer
and bilevel formulations for the k-vertex cut problem", Mathematical Programming Computation, 1-32,
2019. [6]
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variables have a nonzero coefficient. When the system is solved by decomposition,
it is divided into smaller subsystems that are solved separately. The solutions of
the subsystems have to be merged in a consistent way to obtain a solution of the
whole system (i.e., if the same variable appears in multiple subsystems, it must take
the same value in all of them). The effort for performing this task increases with
the number of variables that appear in more than one subsystem. If one wants to
partition the equations into k subsystems, the problem of minimizing the number
of common variables can be formulated as a k-Vertex Cut problem. Figure 2.1 il-
lustrates an example of a graph with 10 vertices, all with the same weight, along
with an optimal solution for the 3-vertex-cut problem: a vertex-cut is of size 3 (given
in black), and removal of these vertices results in 3 connected components in the
remaining graph.

v8
v3

v7

v2

v6
v1

v9

v4

v10

v5

FIGURE 2.1: A graph with 10 vertices of equal weight and an op-
timal 3-vertex cuts (on the right) represented by the black vertices

{v1, v2, v5}.

By the equivalence with the vertex k-multiclique problem on the complement
graph, it has been shown that for any fixed k ≥ 3, even with unitary weights, the
problem is NP-hard [11]. On the other hand, for k = 2, the problem can be solved in
polynomial time: For uniform vertex weights, the problem is equivalent to calculat-
ing the vertex-connectivity of the graph; For the more general case of non-uniform
weights, the problem boils down to calculating O(n2) maximum flows, see [12].

Our Contribution. In this chapter, we study exact solution approaches to the k-
Vertex-Cut problem. We first provide two new Integer Linear Programming (ILP)
formulations, along with some families of strengthening valid inequalities. Both
models involve an exponential number of constraints for which we provide separa-
tion procedures and implement branch-and-cut algorithms. The first formulation, to
which we refer to as Representative Formulation, asks to choose one representative for
each of the k mutually disconnected subsets of the remaining graph. In the second,
so-called Natural Formulation, we derive the model from the perspective of a two-
stage Stackelberg game in which a leader deletes the vertices in the first stage, and
in the second stage a follower builds connected components in the remaining graph.
In our computational study, we implement these models, compare them with the
state-of-the-art approach from [11] and report results of a Hybrid approach in which
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the Representative and Natural formulations are combined, to provide the new best
performing method for the k-vertex cut problem.

The chapter is organized as follows: in the remainder of this section, we intro-
duce the notation, we provide a detailed literature overview, and we recall a compact
formulation for the problem that was introduced in [11], [13]. In Section 2.2, we de-
rive theoretical properties that allow us to fix some vertices in the optimal solution.
The Representative Formulation, along with valid inequalities is given in Section 2.3,
and the bilevel modeling approach is shown in Section 2.4. Separation procedures
for both models are provided in Section 2.5. Finally, a detailed computational study
is provided in Section 2.6 and conclusions are drawn in Section 2.7.

Notation. Let K denote the set of integers {1, ..., k}. Given a simple undirected
graph G = (V, E) with |V| = n and |E| = m, for an edge uv ∈ E, we say that u
and v are neighbours. The complement of graph G = (V, E) is a graph G = (V, E),
where E = {uv : uv /∈ E}. Let N(u) = {v ∈ V|uv ∈ E} denote the neighborhood of u
and N(u) = V \ (N(u) ∪ {u}) denote the anti-neighborhood of u. A subset of vertices
W ⊂ V is a clique of G, if any two vertices of W are neighbours. A subset of vertices
W ⊂ V is a stable set if it is a clique in G; the cardinality of the largest stable set of G,
called the stability number of G, is denoted as α(G).

We indicate by degG(v) the number of edges incident on v in graph G.
Given a subset of edges E′ ⊆ E of G, we say that E′ is spanning if for every vertex

v of G there is at least an edge in E′ incident with v. We denote by component of a
graph G a connected subgraph, while a generic subset of vertices of G can induce
several components. This distinction is relevant because the removal of a k-vertex
cut from a graph G can disconnect G in more than k components, and we may need
to refer instead to exactly k subgraphs, induced by k subsets of vertices.

We will use the observation that a k-vertex cut V0 is a set of vertices such that
V \V0 can be partitioned into k non-empty subsets V1, ..., Vk that are pairwise discon-
nected, i.e., there is no edge between two subsets Vi and Vj for all i 6= j ∈ {1, . . . , k}.
A necessary and sufficient condition for G to have a k-vertex cut is given in the fol-
lowing

Observation 1 A graph G = (V, E) admits a k-vertex cut if and only if α(G) ≥ k.

Without loss of generality we will assume the condition of Proposition 1 to be satis-
fied (otherwise, the input instance can be discarded as infeasible). If q is the number
of (connected) components of G, we will also assume that q < k, otherwise the prob-
lem can be trivially solved (empty vertex cut).

Literature review. The k-Vertex Cut problem is polynomially solvable for k = 2
[12], and it is NP-hard for k ≥ 3, when k is part of the input [14]. Only very re-
cently, in [11] the authors show that even for a fixed value of k, the problem remains
NP-hard for k ≥ 3. In addition, the first study on exact methods for the vertex k-
cut problem is given in [11]. The authors provide a compact integer programming
formulation and a formulation with an exponential number of variables, for which
a branch-and-price algorithm is implemented and tested on benchmark instances
with up to 200 vertices.

A well studied problem in combinatorial optimization is a closely related prob-
lem of finding the minimum-weight edge k-cut. The problem consists of finding a
subset of edges (instead of vertices) of minimum weight, whose removal separates
the graph in at least k connected components. Mainly complexity results are known
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about this problem: in [15], the author exploits submodularity property to obtain a
poly-time lower bound for the problem. For a fixed value of k, the problem reduces
to O(nk2

) minimum cut problems [16]. Better running times for a fixed value of k are
given in [17]. Very recently in [18] an FPT algorithm is given in which the value of
k is used as a parameter and which improves the 2-approximation results from e.g.,
[19].

Another well-studied problem variant is the multiway cut problem (sometimes
also called the multiterminal cut problem), in which a set of terminal vertices T is given
and one has to find a minimum-weight subset of edges that separates each terminal
from all others. For this problem, complexity is studied in [20] where the authors
show that for |T| ≥ 3 the problem is already NP-hard, and that for a fixed size of T,
the problem is solvable in polynomial time on planar graphs. A polyhedral study is
given in [21]. There also exists the vertex-counterpart of the multiway cut problem,
called the multi-terminal vertex k-cut problem, in which one searches for the minimum-
weight subset of vertices to remove from a graph, so that every pair of terminals is
disconnected (here k = |T|). Clearly, a vertex multiway cut exists only if the ter-
minals form an independent set. For this problem, the authors of [22], [23] give an
approximation preserving reduction from the vertex cover problem, and provide a
2-approximation algorithm. In [24] the W[1]-hardness of this problem is shown. A
path-based integer programming formulation along with some valid inequalities is
given in [25]. In addition, a polyhedral analysis is also performed and an efficient
branch-and-cut algorithm is developed.

Finally, there also exist problem variants in which cardinality bounds on each
component/vertex set are imposed. In the k-separator problem the goal is to find a
vertex cut whose removal results in a disconnected graph such that the maximum
size of each connected component is bounded by k. A bound on the number of com-
ponents may also be imposed. This problem is introduced in [13] and motivated
by matrix decomposition. The authors propose a model (with binary variables in-
dicating the assignment of vertices to the partitions), which is solved by a tailored
branch-and-cut algorithm. The complexity of this problem is studied in [26], where
also an approximation algorithm is given, along with a integer programming formu-
lations and a polyhedral study. Recently, the authors of [27] present an exponential
size integer programming formulation which they solve by branch-and-price, and
perform an extensive computational study, in particular on graphs coming from
matrix decomposition. The proposed approach consistently solves instances with
a large bound on the number of components, and thus complements previous ex-
act approaches that work better/only for smaller number of components. A closely
related problem is the one where the cardinality constraints are imposed not on the
size of the connected components but on vertex sets. More precisely, the problem
consists in finding a subset of vertices to remove from G so that the remaining graph
can be partitioned into two sets of cardinality at most k with no edge being incident
to both sets. Observe that each set may contain several connected components. This
problem is NP-hard even for planar graphs [28] or maximum degree 3 graphs [29].
A first polyhedral study on this problem is done in [30] from which a branch-and-cut
algorithm is derived [10].

2.1. Compact Formulation

In this section, we recall the compact formulation, which has been introduced in [11]
(for the case where wu = 1 for all v ∈ V). The formulation exploits the fact that
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a k-vertex cut V0 is a set of vertices such that V \ V0 can be partitioned into k non-
empty subsets V1, ..., Vk that are pairwise disconnected. This formulation is similar
to the one introduced in [13] for the the k-separator problem, in particular, it uses the
same variables: for each vertex v ∈ V and each integer i ∈ K, a binary variable yi

v is
defined, such that

yi
v =

{
1 if vertex v belongs to subset i
0 otherwise

i ∈ K, v ∈ V.

The vertices that remain unassigned to any of the subsets Vk (i.e., for which yi
v = 0,

for all i ∈ K), are the ones defining the k-vertex cut. This is why instead of min-
imizing the weight of the k-vertex cut, one can equivalently maximize the sum of
the weights of vertices out of the vertex cut (i.e., the weight of vertices in the union
∪i∈KVi).
This compact ILP formulation (denoted as COMP) reads as follows:

(COMP) min ∑
v∈V

wv −∑
i∈K

∑
v∈V

wvyi
v (2.1)

∑
i∈K

yi
v ≤ 1 v ∈ V (2.2)

yi
u + ∑

j∈K\{i}
yj

v ≤ 1 i 6= j ∈ K, uv ∈ E (2.3)

∑
v∈V

yi
v ≥ 1 i ∈ K (2.4)

yi
v ∈ {0, 1} i ∈ K, v ∈ V. (2.5)

Constraints (2.2) impose that each vertex belongs to at most one of the subsets Vi,
i ∈ K. Constraints (2.3) ensure that the subsets are pairwise disconnected, i.e., when-
ever there is an edge between a pair of vertices u and v, these two vertices are not
permitted to belong to two different subsets Vi and Vj, i, j ∈ K, i 6= j. Finally, con-
straints (2.4) avoid having empty subsets in a feasible solution.

The model COMP has some serious drawbacks. First the number of variables
increases linearly with the value of k, and the LP relaxation bound of this model is
always equal to zero (we can obtain an optimal LP-solution by setting yi

v = 1/k,
for all v ∈ V, i ∈ K, see [11]). Second, the model suffers from symmetries, as the
variables can be permuted by obtaining an equivalent solution. This is why an alter-
native modeling approach has been considered in [11]. A model with an exponential
number of variables has been proposed, in which each column represents one of the
subsets Vi, i ∈ K, and the corresponding branch-and-price algorithm has been im-
plemented. In what follows, we derive two alternative ways to model the problem
after having presented some preprocessing techniques.

2.2. Preprocessing

In this section we discuss necessary conditions under which a vertex must belong to
any optimal k-vertex cut and, de facto, the size of the input graph can be reduced.

Assume that a vertex u ∈ V is not in a k-vertex cut, so that all the vertices in
its neighbourhood N(u) either belong to the same subset as u, or are in the k-vertex
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cut. Therefore, the size of the anti-neighbourhood of u gives an upper bound on the
number of disconnected non-empty components that can be obtained.

Proposition 1 In any feasible solution to the k-vertex cut problem, if for a vertex u ∈ G we
have k ≥ |N(u)|+ 2, then vertex u must belong to any optimal k-vertex cut.

Proof. Observe that |N(u)| is a straight-forward upper bound on the number of
components in the anti-neighborhood of u, assuming that the anti-neighborhood
defines a stable set, i.e., α(N(u)) = |N(u)|. Vertex u, if not in the k-vertex cut, makes
at most a single component along with the vertices in its neighborhood, which leads
to at most k− 1 components, and hence, such a solution would be infeasible.�

We can strengthen this upper bound by analyzing the connected components in
the graph induced by the anti-neighborhood of u ∈ V. Let nC be the number of
connected components (C1, . . . , CnC) in the subgraph G[N(u)] induced by N(u). Let

m(Ci) = max
S⊂V(Ci)

{ number of connected components of G[V(Ci) \ S]}

(where V(Ci) is the vertex set of the component Ci). Therefore we have:

Proposition 2 Consider u ∈ V and let (C1, . . . , CnC) be connected components in G[N(u)].
If we have

k ≥
nC

∑
i=1

m(Ci) + 2,

then vertex u must belong to the k-vertex cut.

Proof. Same reasoning as for Proposition 1.�

The following proposition allows us to compute the exact values of m(C) for each
of the nC components:

Proposition 3 The maximum number of components that can be obtained by deleting some
vertices from a connected component C of G is equal to the stability number of C, that is,
m(C) = α(C).

Proof. If C contains a stable set of cardinality α(C), we have α(C) non-empty com-
ponents composed by the vertices of the stable set, so m(C) ≥ α(C). Viceversa, if C
can be decomposed in m(C) non-empty components, each of these components con-
tains vertices that are not adjacent to any vertex of the other components. By picking
a vertex per component, we define a stable set of cardinality m(C), so m(C) ≤ α(C),
i.e., m(C) = α(C).�

See the computational Section 2.6, for further implementation details concerning
the preprocessing and its effectiveness in reducing the size of input graphs.

2.3. Representative Formulation

We now propose a novel, alternative formulation for the k-Vertex Cut Problem which
is based on the idea of identifying a vertex that is the representative of each subset Vi,
i ∈ K. This way, it is enough to impose non-connectivity among the representatives
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to obtain pairwise disconnected subsets. Connected components that are discon-
nected from any representative can be feasibly assigned to any subset.

The non-connectivity of the representatives can be obtained via an exponential
number of path inequalities, similarly to what was done by [25], [31] for the multi-
terminal vertex k-cut problem, where each representative is denoted as terminal and
it is fixed as an input. We consider two sets of binary variables associated with the
vertices, denoting whether a vertex is a representative, and whether a vertex is in
the k-vertex cut, respectively. We have

zv =

{
1 if vertex v is the representative of a subset
0 otherwise

v ∈ V,

xv =

{
1 if vertex v is in the k-vertex cut
0 otherwise

v ∈ V,

and the corresponding Representative Formulation reads as follows:

(REP) min ∑
v∈V

wvxv (2.6)

∑
v∈V

zv = k v ∈ V (2.7)

zu + zv ≤ 1 uv ∈ E (2.8)

∑
t∈V(P)\{u,v}

xt ≥ zu + zv − 1 u, v ∈ V, P ∈ Πuv, uv 6∈ E (2.9)

xv, zv ∈ {0, 1} v ∈ V. (2.10)

In this model, P denotes a simple path in G, V(P) are the vertices connected by
P, and Πuv is the set of all simple paths between vertices u and v. The objective
function (2.6) minimizes the weight of the vertices in the k-vertex cut. Constraint
(2.7) ensures that exactly k representative vertices are selected, and constraints (2.8)
impose the set of representative vertices to be a stable set. Path constraints (2.9), in
exponential number, impose that at least one vertex of each path P ∈ Πuv between a
pair of representative u and v is in the vertex cut (thus disconnecting the two repre-
sentatives). Note that condition uv 6∈ E in (2.9) serves to remove redundant inequal-
ities for which the right-hand-side is equal to zero due to (2.8).

Proposition 4 For k ≤ n/2, the LP relaxation bound of the formulation (2.6)-(2.10) is
equal to zero.

Proof. It can be checked that for k ≤ n/2, setting zv = k/n results in a feasible
solution in which xv = 0, for all v ∈ V. �

Strengthening Inequalities. Constraints (2.9) can be lifted by observing that, each
time a path in Πuv includes a representative vertex, an additional vertex of the path
must be in the vertex-cut:

∑
t∈V(P)\{u,v}

xt ≥ zu + zv + ∑
t∈V(P)\{u,v}

zt − 1,

u, v ∈ V, P ∈ Πuv, uv 6∈ E. (2.11)
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Other families of constraints in polynomial number can be considered in order to
strengthen the linear relaxation of the representative model.

Given a vertex u and its neighbourhood N(u), if u is not in a k-vertex cut, then
together with (some of) its neighbors it belongs to the same connected component,
and hence, at most one of the vertices from N(u) ∪ {u} can be chosen as representa-
tive. Alternatively, if u is in the k-vertex cut, at most degG(u) = |N(u)| vertices can
be representatives, which can be expressed by the following neighborhood constraints:

zu + ∑
v∈N(u)

zv ≤ 1 + (degG(u)− 1)xu u ∈ V, (2.12)

paired with the additional condition that a vertex u cannot be a representative
and be in the vertex cut at the same time:

xu + zu ≤ 1 u ∈ V. (2.13)

Note that an integer solution violating (2.13) cannot be optimal, so these con-
straints are not necessary for the correctness of formulation REP. Indeed, consider
a solution where for a vertex u we have xu = zu = 1: by (2.9) any path from u to an-
other representative vertex w must be disconnected, so u cannot be the (only) vertex
disconnecting a path from w to a third representative vertex v. As a consequence,
we can set xu = 0 and reduce the cost of the solution while keeping feasibility.

2.4. Bilevel Approach

We now provide a bilevel point-of-view to the problem, which will allow us to derive
a valid ILP formulation in the natural space of the xv, v ∈ V, variables only.

We can see the k-Vertex Cut problem as a sequential two-player Stackelberg game
in which there are two players: a leader and a follower. In the first step, the leader
“interdicts” the follower by deleting some vertices from the graph, and in the fol-
lowing step, the follower looks for the largest cycle-free subgraph problem in the
remaining graph. The solution of the leader is feasible, if and only if the number of
connected components in the subgraph corresponding to the the follower’s optimal
response is at least k. The leader wants to find a feasible solution where the set of
deleted vertices (i.e., the k-vertex cut) has minimum weight.

In the following, we first provide a bilevel integer programming formulation
(BILP), which follows the description of the two sequential steps described above.
We start by describing a graph property that allows us to model the follower’s sub-
problem as an ILP. It is well known that a graph G is connected if and only if it
contains a spanning tree, i.e., the number of edges in its spanning cycle-free sub-
graph is |V| − 1. If G contains multiple connected components, this property can be
generalized as follows:

Observation 2 A graph G has at least k connected components if and only if any cycle-free
subgraph of G contains at most |V| − k edges.

Clearly, a graph G contains at least k connected components if and only if any
maximum cycle-free subgraph (with respect to the number of edges) contains at most
|V| − k edges. By exploiting this property, the k-vertex cut problem can be seen as a
Stackelberg game in which the leader searches the smallest subset of vertices V0 to
delete from G, and the follower maximizes the size of the cycle-free subgraph on the
remaining graph.
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Observation 3 The solution V0 ⊂ V of the leader is feasible if and only if the value of the
optimal follower’s response (i.e., the maximum number of edges of a cycle-free subgraph in
the remaining graph) is at most |V| − |V0| − k.

2.4.1 A Bilevel Integer Programming Formulation

The leader decisions are encoded by the same x variables used for the Representa-
tive Formulation, where xv is one if vertex v is “interdicted” (e.g., vertex v is in the
k-vertex cut), and zero otherwise. To model the decisions of the follower, we use
additional binary variables associated with the edges of G:

euv =

{
1 if edge uv is selected to be in the cycle-free subgraph
0 otherwise

uv ∈ E,

The BILP formulation of the k-vertex cut problem reads as follows:

(BILP) min ∑
v∈V

wvxv (2.14)

Φ(x) ≤ n− k− ∑
v∈V

xv (2.15)

xv ∈ {0, 1} v ∈ V. (2.16)

Constraint (2.15) ensures Observation 3, i.e., it guarantees the feasibility of the
solution x of the leader. Thereby, Φ(x) is the solution value of the follower subprob-
lem, in which the follower searches for cycle-free subgraph on the remaining graph
having the largest number of edges. For a solution x∗ of the leader, which represents
an incidence vector of a set V0 of interdicted vertices, the follower’s subproblem is:

Φ(x∗) = max ∑
uv∈E

euv (2.17)

e(S) ≤ |S| − 1 S ⊆ V, |S| ≥ 3 (2.18)

euv ≤
{

1− x∗v
1− x∗u

uv ∈ E (2.19)

euv ∈ {0, 1} uv ∈ E, (2.20)

where e(S) = ∑uv∈E;u,v∈S euv. In this model, the subtour elimination constraints
(2.18) ensure that solution of the follower contains no cycles, where constraints (2.19)
guarantee that the follower cannot use the edges that are adjacent to interdicted
(deleted) vertices.

It is straightforward to see that any optimal solution of the follower spans the
subgraph G∗ = G[V \ V0] (except for the vertices with a completely interdicted
neighborhood). Indeed, assume that there is a vertex which is not isolated in G∗

but has a degree of zero in an optimal follower solution; then adding a random edge
adjacent to this vertex improves the value of the follower solution without creating
any cycle, fact that leads to a contraction. Hence, the only vertices not spanned by
an optimal follower solution are the isolated vertices in the interdicted graph G∗.
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The BILP formulation (2.14)-(2.16) is non-continuous and non-linear, hence it
cannot be plugged into a general purpose solver. Instead, we propose a lineariza-
tion of the BILP model that results in a new formulation to which we refer as Natural
Formulation, since it lays in the space of the natural xv, v ∈ V, variables.

2.4.2 Single-Level Reformulation

In the following, we propose a linearization of the BILP model (2.14)-(2.16), by re-
formulating the follower’s subproblem in such a way that the set of its feasible so-
lutions does not depend on the leader. We then derive a single-level reformulation
with an exponential number of constraints, associated to extreme points of the fol-
lower’s polytope. This idea, which resembles the Benders decomposition approach
for mixed ILPs, is often applied to (network) interdiction problems [32], [33]. The
major challenge of this approach is in finding the tightest possible way to reformu-
late the follower’s subproblem, since this reformulation directly affects the quality
of the LP relaxation bounds of the associated single-level model. It is known that a
tight reformulation is possible in some special cases. For example, if the leader inter-
dicts vertices (edges), and the follower’s subproblem admits a hereditary property2

for its vertex (resp., edge) induced subgraphs, a tight single-level reformulation is
possible (see [8], [33]). However, there is no clear rule on how to derive a tight
reformulation in general.

In our setting, the leader interdicts vertices, but the follower’s subproblem is
hereditary with respect to edge-induced subgraphs, so that the results from [33] can-
not be directly applied. Instead, we have the following result:

Proposition 5 The follower subproblem can be equivalently restated as

Φ(x∗) = max ∑
uv∈E

euv ·
(
1− x∗u − x∗v

)
(2.21)

e(S) ≤ |S| − 1 S ⊆ V, |S| ≥ 3 (2.22)
euv ∈ {0, 1} uv ∈ E. (2.23)

Proof. Any optimal solution e∗ of (2.17) -(2.20) corresponds to a maximum cycle-free
subgraph in the interdicted graph G∗. Instead, notice that in (2.21) -(2.23) the follower
solves the maximum weighted cycle free subgraph problem on the original graph G, with
edge weights wuv := 1− x∗u − x∗v . However, the weights of an edge uv in E are posi-
tive if and only if this edge is not adjacent to any interdicted vertex in V∗. Otherwise,
the weight of an edge is zero or -1 (if both its end points are interdicted). Hence, any
optimal solution in G∗ can be mapped to an optimal solution on G (with the same
weight). On the contrary, there always exists an optimal solution on G of the prob-
lem (2.21)-(2.23) with positive edge weights only, which corresponds to an optimal
solution on G∗.�

Observe that the space of feasible solutions of the redefined follower subproblem
does not depend on the leader anymore; the only dependence to the solution of
the leader is through the objective function. Hence, we can enumerate all feasible
solutions of the follower and restate the whole problem as a single-level formulation.
This formulation has an exponential number of constraints, one for each extreme
point of the follower polytope.

2A hereditary property is a property of a graph which also holds for its induced subgraphs.
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Let T denote the set of all cycle-free subgraphs of G corresponding to extreme
points of the polytope defined as the convex hull of all points satisfying constraints
(2.22) and (2.23). The non-linear constraint (2.15) from the BILP formulation can now
be replaced by the following exponential family of inequalities:

∑
uv∈E(T)

(
1− xu − xv

)
≤ n− ∑

v∈V
xv − k T ∈ T . (2.24)

Since every vertex v is counted degT(v) many times in the above constraints
(2.24), they can also be restated as:

∑
v∈V

(
degT(v)− 1

)
xv ≥ k− n + |E(T)| T ∈ T . (2.25)

The following result shows that constraints (2.25) do not have to be imposed
for any extreme point from T , it is namely sufficient to concentrate on spanning
subgraphs from T only. Let TG denote the subset of extreme points from T being
spanning subgraphs in G. The following result holds:

Proposition 6 The following single-level formulation, denoted as Natural Formulation, is
a valid model for the k-vertex cut problem:

(NAT) min ∑
v∈V

wvxv (2.26)

∑
v∈V

(
degT(v)− 1

)
xv ≥ k− n + |E(T)| T ∈ TG (2.27)

xv ∈ {0, 1} v ∈ V. (2.28)

Proof. It is sufficient to show that any inequality associated to a subgraph T ∈ T \
TG can be replaced by an inequality associated to some T′ ∈ TG. Let us assume for
a moment that |T| = n− 2 and let v 6∈ V(T). To create T′, given an integer solution
x∗ that violates the constraint (2.25), we choose to connect v with some u ∈ V(T)
such that x∗v + x∗u ≤ 1 (this is always possible, unless v and all its neighbours are
interdicted). By setting T′ = T ∪ {uv} we obtain a spanning subgraph inequality of
type (2.27) with the same violation as for the inequality (2.25). For |T| < n− 2, this
”growing” of the subgraph T can be subsequently repeated until all vertices of G are
spanned by T′, without changing the violation of the inequality. Finally, in case an
interdicted vertex v has an interdicted neighbourhood (however, this cannot happen
in an optimal solution, because removing the interdicted vertex from the vertex-cut
would improve the leader solution) we need to add the extra constraints:

xu + ∑
v∈N(u)

xv ≤ degG(u) u ∈ V. (2.29)

�

Coefficient lifting. For any T ∈ TG, the coefficients next to xv variables are all
non-negative, and hence inequalities (2.27) can be lifted to:
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∑
v∈V

(
min

{
γ, degT(v)− 1

})
xv ≥ γ T ∈ TG, (2.30)

where γ = k− n + |E(T)|.

Figures 2.2-2.3 illustrate a cycle-free subgraph T ∈ T \ TG and a spanning cycle-
free subgraph T′ ∈ TG, along with the associated inequalities. Both inequalities are
able to cut off the infeasible solution of Figure 2.2.

v8

v3

v7

v2

v6

v1

v9

v4

v10

v5

FIGURE 2.2: Infeasible solution for k = 3, with the black vertices
{v1, v2} in the vertex cut (the remaining vertices form one connected

component).

FIGURE 2.3: A cycle-free subgraph T ∈ T \ TG and the associated
inequality (2.25): −x1 − x2 + 2x3 + x4 + 3x5 ≥ 0 (left part). A span-
ning cycle-free subgraph T ∈ TG and the associated inequality (2.27):
3x3 + 2x4 + 3x5 ≥ 2; downlifted according to (2.30) to x3 + x4 + x5 ≥ 1

(right part).

Finally, given the fact that imposing the inequalities (2.25) associated to span-
ning subgraphs from TG guarantees a valid formulation, a natural question arises:
would it be sufficient to impose these inequalities only for spanning trees of G? The
following result provides a negative answer to this question:
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Proposition 7 Inequalities (2.25) derived from spanning trees only are not sufficient to
ensure a valid formulation for the k-vertex cut problem.

Proof. To prove this result, we provide an instance in which an infeasible solution
x∗ is not cut off by spanning tree inequalities. Consider a graph composed by a path
of 5 vertices, k = 3, and the solution x∗ depicted in the figure below, where the black
vertices represent interdicted ones ( x∗3 = x∗4 = 1, the remaining values are zero).
The solution x∗ separates G into only 2 components, hence it is infeasible.

x∗1 = 0 x∗2 = 0 x∗3 = 1 x∗4 = 1 x∗5 = 0

There is a single spanning tree in G, and the associated cut, which is x2 + x3 +
x4 ≥ 2, does not cut off the infeasible point x∗. �

The following propositions characterize the strength of the LP relaxation of the
Representative and Natural formulations.

Proposition 8 If k ≤ n/2, the bound for the k-Vertex Cut problem provided by the opti-
mal solution value of the LP relaxation of formulation (2.26)-(2.28) strictly dominates the
corresponding bound provided by the formulation (2.6)-(2.10).

Proof. We first show that any feasible solution x∗ of the LP relaxation of (2.26) -
(2.28) can be mapped into a feasible solution of the LP relaxation of (2.6)-(2.10) with
the same objective function value. The two objective functions are the same, thus we
only have to determine z∗ satisfying all the constraints of formulation (2.6)-(2.10). By
exploiting Proposition 4, z∗u can be fixed to n/k, for each u ∈ V. It is straightforward
to check that all the constraints of formulation (2.6)-(2.10) are satisfied by (x∗, z∗).

To prove the strictness of the relation, we show that the value of the optimal so-
lution of the LP relaxation of (2.26) -(2.28) is strictly larger then 0 for any graph G
which is not yet disconnected in at least k components, while by Proposition 4 those
of (2.6)-(2.10) is always 0. Indeed, any solution of value 0 for (2.26)-(2.28) must have
xu = 0 ∀u ∈ V. Consider a graph G with q connected components. Any acyclic
subgraph of G has at most n− q edges, let t be a subgraph with exactly n− q edges
(so it is spanning). By plugging xu = 0 ∀u ∈ V in (2.24) (which are equivalent to
(2.27)) for t, we get n− q ≤ n− k which is violated if k > q, so the solution of cost 0
is infeasible. �

2.5. Separation Algorithms

In this section, we address separation procedures for the valid inequalities intro-
duced in Sections 2.3 and 2.4.2.

Separation of constraints (2.9). Given a (fractional) solution x∗, z∗ ∈ [0, 1]V to the
LP relaxation of model REP, separation of constraints (2.9) asks for finding a pair of
vertices u, v such that there is a path P∗ ∈ Πuv with

z∗u + z∗v > ∑
t∈V(P∗)\{u,v}

x∗t +1. (2.31)
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For each pair of vertices, we can search for such a path in polynomial time by solving
a shortest path problem from u to v on G(V, E), where we define the length of each
edge (i, j) ∈ E as

lij =
x∗i + x∗j

2
(2.32)

(note that the constant term x∗u+x∗v
2 has to be removed from the length of each path).

Concerning the computation of shortest paths, for fractional solutions, one can
solve the All Pairs Shortest Path problem through the Floyd Warshall algorithm. In
the case of integer solutions, finding a shortest path between a vertex u and all other
vertices can be done by performing a simple breath-first search (BFS) procedure in
the support graph G∗ in which vertices v such that x∗v = 1 are removed. The BFS tree
guarantees that each vertex v at layer ` in that tree has the shortest distance ` from
the source u. If the vertices are not connected, the distance is ∞. Hence, separation
of integer solutions can be done in O(|V||E|) time.

Observation 4 Separation of constraints (2.9) can be performed in polynomial time.

Separation of constraints (2.11). Constraints (2.11), that are the lifted version of
(2.9), can be still carried on by solving a shortest path problem from u to v on
G(V, E), where we define the length of each edge (i, j) ∈ E as

lij =
x∗i + x∗j

2
−

z∗i + z∗j
2

, (2.33)

(still the constant term x∗u+x∗v
2 has to be removed from the length of each path). Since

edges can have negative weight, we solve heuristically this problem in two steps
(where the first step can be skipped):

• first we heuristically solve a longest path problem with lengths as defined in
(2.33) with opposite sign. We implemented a greedy procedure that obtains
such long path starting from the edge with the largest weight and then it builds
a path by adding the edge with the largest and positive weight that is adjacent
to the current path, without closing a cycle;

• second, if in the previous step no violated cut is found, we compute the short-
est paths P∗ with the nonnegative lengths as defined in (2.32), and then check
the value of the z∗w variables for w ∈ V(P∗) \ {u, v}. This way, we have a
separation procedure that is exact for (2.9) and heuristic for (2.11).

Separation of constraints (2.27). Let x∗ be the current solution to the LP relaxation
of model NAT. We define edge-weights as

w∗uv = 1− x∗u − x∗v , uv ∈ E

and search for the maximum-weighted cycle-free subgraph in G. Let W∗ denote
the weight of the obtained subgraph; if W∗ > n− k− ∑v∈V x∗v , we have detected a
violated inequality.

For fractional points x∗ the maximum-weighted cycle-free subgraph can be de-
tected in O(|E| log |V|) by running an adaptation of Kruskal’s algorithm for minimum-
spanning trees. Edges are sorted in a non-increasing order according to their weight,
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and then Kruskal’s algorithm is applied, i.e., each edge in this ordering is selected
to be included in the subgraph being constructed, provided it does not close a cycle.
The algorithm stops as soon as an edge with negative weight is encountered in the
ordering.

Separation of integer points x∗ can be performed in O(|E|) time. In this case,
all edge weights are equal to 1, 0 or -1. Following the result of Proposition 5, it is
sufficient to consider the graph defined by edges with weight equal to one, which
corresponds to G∗ = G[V \ V0] where V0 are interdicted vertices encoded by x∗.
Hence, it is sufficient to run any graph traversal algorithm on G∗ (like, e.g., BFS) to
find connected components in G∗.

Observation 5 Separation of constraints (2.27) can be performed in polynomial time.

Since there are several alternative subgraphs describing connected components,
to avoid shallow cuts, when separating integer points we shuffle the set of edges of
G∗ before each separation call. This procedure guarantees to find a cut of type (2.25),
where the associated subgraph T is not necessarily spanning all vertices from V.

However, it is (always) possible to construct a Spanning Subgraph cut starting
from an infeasible integer solution x∗ and a cut associated with a (nonspanning)
acyclic subgraph T ∈ T violated by this solution. To do so, we scan first isolated
vertices in the interdicted graph G∗ and we assign them an interdicted neighbor,
then for all still non-spanned interdicted vertices we assign them to one of their
neighbors in V \V0. In this way we do not change the weight of the obtained T ∈ T
since these edges have 0 weight. This repairing step requires O(|E|) steps, so that
the total separation time remains O(|E|).

2.6. Computational results

The goal of our computational experiments is to test the performance of the pro-
posed formulations, i.e., the Representative Formulation REP (Section 2.3) and the
Natural Formulation NAT (Section 2.4.2). Both formulations, having an exponen-
tial number of constraints, are solved within a branch-and-cut framework. We have
proposed several variants and valid inequalities for each formulation, and thus a
second goal of this section is to identify their best configuration. In addition, we
propose and test a Hybrid Formulation obtained by combining elements of the two
formulations.

Finally, we assess the computational performance of our best branch-and-cut al-
gorithm by comparison with the Compact Formulation COMP (Section 2.1), and
with a state-of-the-art branch-and-price algorithm proposed in [11], and based on a
formulation with exponentially many variables.

The source code of our branch-and-cut algorithm can be downloaded at https:
//github.com/paoloparonuzzi/k-Vertex-Cut-Problem/. The software was given
the DOI (Digital Object Identifier) https://doi.org/10.5281/zenodo.3333560.

2.6.1 Experimental Setting

Benchmark instances. In our experiments we have two sets of instances, which
are the ones considered in the computational experiments of [11]. All instances have
weights wv = 1 for all v ∈ V. The first set includes all the classical Vertex Color-
ing instances [34] having up to 200 vertices, and all the 10th DIMACS instances [35]
having up to 300 vertices (instances with α(G) ≥ 5). The features of the 59 selected

https://github.com/paoloparonuzzi/k-Vertex-Cut-Problem/
https://github.com/paoloparonuzzi/k-Vertex-Cut-Problem/
https://doi.org/10.5281/zenodo.3333560
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instances are reported in the first part of Table 2.1 where, after the instance name,
we show the number of vertices (n) and edges (m), the stability number (α(G)), and
the optimal solution value of the k-Vertex Cut problem (size of the optimal vertex
cut) for values of k ∈ {5, 10, 15, 20}, when it can be found by one of the methods
discussed in this section or in [11]. Missing entries correspond to infeasible prob-
lems (α(G) < k), while unknown optimal values are indicated by a “-” (these are
the instances which are not solved within timelimit). Trivially solved instances are
indicated by a “·” (these are the instances which, before or after preprocessing, have
q connected components, with q ≥ k). The second set of 59 instances, whose features
are given in Table 2.2, were proposed in [10]. This set is a collection of intersection
graphs of the coefficient matrices of linear equations systems, arising from various
applications. When solving the k-Vertex Cut problem for a given value of k, we
remove from our analysis all infeasible and trivial instances.

All the instances are preprocessed off-line by checking the condition of Proposi-
tion 3. In particular, for each vertex the stability number of its anti-neighborhood is
computed and, when the condition of the proposition is met, the vertex is removed.
Although this asks for solving an NP-hard Maximum Stable Set problem, the asso-
ciated computing time in negligible for the size of graphs we consider. As long as
at least a vertex is removed from the graph, the procedure is iteratively repeated.
In our testbed, graph reductions are achieved only for a limited subset of instances,
namely, 20, 11, 17 and 16 instances for k = 5, 10, 15 and 20, respectively. While for
many instances only one or two vertices are removed, in some cases many vertices
are removed, with up to 113 vertices out of 125. In 6 cases the resulting instance
is solved (i.e., it is disconnected in q components, with q ≥ k). These instances are
marked as trivial in Tables 2.1 and 2.2. Preprocessing is applied before instances are
tackled by any of the solution algorithms here described, in other words, all methods
receive the same input (preprocessed) graph.

Detailed results for the preprocessing are reported in the Appendix.

Computational environment. All the experiments, including the runs of the branch-
and-price algorithm from [11], are performed on a computer with an i7-6900K pro-
cessor clocked at 3.20 GHz and 64 GB RAM under GNU/Linux Ubuntu 16.04. We
use CPLEX 12.7.1 and the Concert Technology framework to implement our branch-
and-cut algorithms. The Compact Formulation is solved with the CPLEX MIP solver.
CPLEX is run in single-threaded mode and all CPLEX parameters are set to their de-
fault values. A time limit of one hour is set for each tested instance.

2.6.2 Results for Representative, Natural and Hybrid Formulations

We tested several different configurations of the Representative Formulation (e.g.,
changing the separation strategy, removing strengthening constraints, etc.), and we
report detailed computational results for the following two configurations:

• we denote by REPp the formulation (2.6) - (2.8), (2.10) - (2.13). Constraints
(2.11) are separated by only applying the second step of the procedure de-
scribed in Section 2.5, that is, by computing shortest paths on a graph with
positive edge weights;

• we denote by REPlp−p the same formulation, where (2.11) are separated by ap-
plying both steps of the procedure described in Section 2.5, that is, by heuris-
tically computing a long path in a graph with positive and negative edge
weights.
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Different frequencies and tolerances for the separation procedure were tested for
all configurations. According to our extensive preliminary computational experi-
ments, the best choice is to stop the cut separation when the absolute violation is
smaller than 0.5 (violation tolerance). We call the separation procedure for all integer
points and for fractional points every 100 nodes of the branching tree.

Inequalities (2.8), that are expressed for each edge in E(G), can be strengthened
to clique inequalities. However (as confirmed by our preliminary computational
experiments) modern MIP solvers are very effective in the automatic separation of
clique inequalities, and hence we keep edge constraints in our formulation.

Similarly, we tested several different configurations of the Natural Formulation,
and we report detailed computational results for the following two:

• we denote by NAT the formulation (2.25), (2.26) and (2.28), where (2.25) are
lifted to (2.30) when spanning;

• we denote by NATs the previous formulation where the family of constraints
(2.25) are made spanning for all integer solutions, and then lifted to (2.30).

We tested different frequencies and tolerances of the separation procedure and
the best choice for the violation tolerance is also in this case 0.5. We call the separa-
tion procedure for all integer points and for fractional points at all the nodes of the
branching tree.

The Representative and the Natural Formulations use the same natural variables
xv, v ∈ V, to describe which vertices are in the k-vertex cut, and implement alter-
native sets of contraints to impose the required number of nonempty disconnected
components. Although the Natural Formulation showed more effective than the
Representative Formulation (see results in the following), there are some instances
on which the latter has a better performance. In addition, in our preliminary com-
putational experiments we observed that, thanks to the presence of a stable set con-
straints (2.8), the Representative Formulation is much faster in detecting infeasible
instances (i.e., those with α(G) < k). Infeasible instances were removed from our
testbed, however, we expect the Representative Formulation to be fast in detecting
infeasibilities also at the nodes on the branch-and-cut tree. Therefore, it makes sense
trying to obtain a more effective formulation by integrating the two into a Hybrid
model.

In order to explore the direction of embedding into the Natural Formulation the
advantages of the Representative one (i.e., solving some specific instance and fast
detection of infeasibilities after branching), we designed the following Hybrid con-
figuration:

• we denote by HYBs Formulation NATs with additional constraints (2.7), (2.8),
(2.10), (2.12) and (2.13).

Aggregated results for the first set of instances (Vertex Coloring and DIMACS)
are reported in Table 2.3, where the first column gives the considered value of k.
Then the table reports, for each configuration of the Representative, Natural and
Hybrid Formulations described above, the number of instances solved to optimality;
the average computing time in seconds (for the subset of instances solved to opti-
mality by all configurations), the average number of explored nodes in the branching
tree (for the subset of instances solved to optimality by all configurations); the aver-
age percentage gap of the LP relaxation computed as 100 · ((UB− LP)/UB), where
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UB is the optimal or best known solution value and LP is the optimal value of the
LP relaxation; the average time to solve the LP relaxation. Violation tolerance is set
to 0.1 when solving LPs. The last three rows of the table report the averages over all
values of k.

The configurations reported in Table 2.3 have improving performance. When
moving from REPp to REPlp−p, the number of instances solved to optimality is in-
creased for all value of k, except k = 5. The improved results are explained by
comparing the values of the LP gap of REPp and REPlp−p: the table clearly shows
that separating inequalities (2.11) by applying both steps of the procedure described
in Section 2.5 allows to close much more LP gap. Using Natural Formulations (NAT
and NATs) for all values of k the number of instances solved to optimality is in-
creased, and the number of nodes explored by the branch-and-cut algorithm is re-
duced by 3 orders of magnitude. This can be attributed to the significantly smaller
LP relaxation gaps of Natural Formulations, when compared to those obtained us-
ing Representative Formulations. Comparing formulations NAT and NATs, the lat-
ter has a slightly better performance, and can solve 2 more instances on the whole
set. Finally, the table shows that the best computational performances is provided
by HYB which is able to solve 132 instances (out of 169). The number of explored
nodes by the branch-and-cut algorithm is one third of that of NATs. As anticipated,
this is as a result of the introduction of the constraints from the Representative For-
mulation, which allow to fast detect infeasible nodes in the branching tree. Summa-
rizing from Table 2.3 we can conclude that HYB is the best formulation proposed in
this chapter. We now compare its performances with the state-of-the-art algorithm
present in the literature for the k-Vertex Cut problem.

2.6.3 Comparison with state-of-the-art solution methods

In this section we compare the results of our best formulation (HYBs) with the solu-
tion of the Compact Formulation (denoted as COMP) solved by means of the general
purpose CPLEX MIP solver, and with a state-of-the-art branch-and-price algorithm
proposed in [11] (denoted as BP).

When solving the Compact Formulation, as suggested in [11], the formulation is
enhanced by a preprocessing phase in which a subset of variables is removed so
as to reduce the symmetry of the formulation and to improve the quality of the
associated LP relaxation. In this preprocessing, we search for k − 1 vertex-disjoint
cliques C1, . . . , Ci, . . . , Ck−1 of the graph G, and remove the following variables

yh
v, i = 1, . . . , k− 1, v ∈ Ci, h = i + 1, . . . , k. (2.34)

Indeed, two vertices u, v of a clique cannot be in two different subsets Vi and Vj.
Then for all solutions we can reorder the sets V1, ..., Vk to ensure that each vertex of
a clique Ci must be in one set Vj j ≤ i or in the vertex cut. Thus we can remove the
variables (2.34) to reduce the symmetry.

The comparison, whose results are reported in Table 2.4, is performed on the
whole set of instances including Vertex Coloring, DIMACS and Intersection graphs
described in Section 2.6.1. The table has the same structure of the previous one, and
reports the number of instances solved to optimality, the average computing time in
seconds and the average number of explored nodes (for solved instances). The ta-
ble clearly shows that HYB is the best performing method on average, being able to
solve 202 out of the 304 tested instances. COMP and BP can both solve 168 instances.
On the subset of instances that are solved by all the three methods, the computing
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TABLE 2.3: Performance comparison for different configurations of
the Representative, Natural and Hybrid Formulations on the first set

of instances (Vertex Coloring and DIMACS).

k REPp REPlp−p NAT NATs HYBs

Opt. (out of 51) 29 27 33 34 35

Avg Time 148.70 105.57 7.40 3.79 1.07

5 Avg Nodes 61524 24174 70 73 29

LP Avg Gap 89.55 67.15 22.96 22.76 22.85

LP Avg Time 0.01 0.17 0.24 0.21 0.32

Opt. (out of 41) 20 23 29 30 32

Avg Time 201.66 319.21 2.11 1.52 2.43

10 Avg Nodes 41683 32568 6 7 5

LP Avg Gap 72.27 46.34 13.88 13.94 14.00

LP Avg Time 0.05 1.32 0.37 0.33 0.54

Opt. (out of 38) 22 24 33 32 33

Avg Time 96.75 52.17 316.91 226.47 3.57

15 Avg Nodes 48078 10923 39 35 12

LP Avg Gap 65.99 48.75 16.91 16.96 16.94

LP Avg Time 0.06 138.57 0.18 0.17 0.33

Opt. (out of 36) 18 22 31 32 32

Avg Time 141.32 351.13 190.94 41.70 3.66

20 Avg Nodes 47735 25595 58 48 11

LP Avg Gap 58.65 38.37 17.12 17.11 17.12

LP Avg Time 0.07 1.93 0.24 0.24 0.49

Total Opt. (out of 166) 89 96 126 128 132

Total Avg Time 146.75 194.04 121.10 66.20 2.55

Total Avg Nodes 50656 23169 45 43 15

Total Avg LP Gap 73.19 51.69 18.11 18.07 18.11

Total Avg LP Time 0.04 34.98 0.25 0.24 0.41
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TABLE 2.4: Performance comparison between the Hybrid Formula-
tion and the state-of-the-art methods on the complete instance set

(Vertex Coloring, DIMACS and Intersection graphs).

k COMP BP HYBs

Opt. (out of 107) 92 60 71

5 Avg Time 31.84 59.93 84.78

Avg Nodes 10768 30 106

Opt. (out of 80) 37 43 51

10 Avg Time 105.64 52.19 1.39

Avg Nodes 67123 7 26

Opt. (out of 65) 29 36 46

15 Avg Time 219.33 23.38 2.81

Avg Nodes 41750 19 25

Opt. (out of 52) 19 29 38

20 Avg Time 196.06 169.52 0.39

Avg Nodes 58673 16 6

Total Opt. (out of 304) 177 168 206

Total Avg Time 98.66 61.78 43.66

Total Avg Nodes 33040 22 64

time of BP is approximately 2/3 the computing time of COMP, while the computing
time of HYB is approximately halved with respect to the computing time of COMP.
An important information is given by the average number of nodes explored in the
branch-and-cut tree, in particular COMP explores ≈33,000, BP ≈22 and HYB ≈64
nodes, respectively. By analyzing these figures, it clearly emerges that COMP ex-
plores many more nodes than the other two methods. This fact is due to the poor
quality of the LP relaxation bound provided by the Compact Formulation. BP and
HYB explore fewer nodes, and the reason is the quality of the LP bounds provided
by these formulations. BP is the algorithm which explores the smallest number of
nodes on average. By analyzing the results for each value of k separately, the table
shows that COMP provides the best computational performances for k = 5 but then,
as far as k ≥ 10, HYB always guarantees the best computational performances on
this set of instances, being able to solve 49 out of 80 instances, 46 out of 65 and 38
out of 52, for k = 10, k = 15 and k = 20, respectively. Also the BP algorithm shows
a better performance than COMP as soon as k ≥ 10.

A graphical representation of the relative performance of the three compared ap-
proaches is given by the performance profiles of Figures 2.4 and 2.5, for unweighed
and weighted (see Section 2.6.3) instances respectively. Following the guidelines
suggested by [36], the performance profiles are defined as follows. Let m be any
solution method and i denote an instance of the problem. In addition let ti,m be the
time required by method m to solve instance i. We define the performance ratio for
pair (i, m) as

ri,m =
ti,m

minm∈M{ti,m}



2.6. Computational results 29

TABLE 2.5: Performance comparison between the Hybrid Formula-
tion and the state-of-the-art methods on the complete instance set

with weights (Vertex Coloring, DIMACS and Intersection graphs).

k COMP BP HYBs

Opt. (out of 107) 92 60 71

5 Avg Time 35.99 67.55 210.67

Avg Nodes 11350 77 217

Opt. (out of 80) 37 43 51

10 Avg Time 69.61 174.96 2.30

Avg Nodes 22872 21 26

Opt. (out of 65) 29 37 47

15 Avg Time 343.26 36.61 21.76

Avg Nodes 109726 180 86

Opt. (out of 52) 19 30 39

20 Avg Time 559.17 300.40 1.15

Avg Nodes 180529 31 15

Total Opt. (out of 304) 177 170 208

Total Avg Time 151.21 112.23 106.13

Total Avg Nodes 48594 77 127

where M is the set of the considered methods. Then, for each method m ∈ M, we
define:

ρm(τ) =
|{i ∈ I : ri,m ≤ τ}|

|I|
where I is the set of the instances. Intuitively, ri,m denotes the worsening (with re-
spect to computing time) incurred when solving instance i using method m instead
of the best possible one, whereas ρm(τ) gives the percentage of instances for which
the computing time of method m was not larger than τ times the time of the best
performing method. For each value of τ in the horizontal axis, the vertical axis re-
ports the percentage of the instances for which the corresponding algorithm spends
no more than τ times the computing time of the fastest algorithm. The curves origi-
nates from a point denoting the percentage of instances for which the corresponding
algorithm is the fastest, and at the right end of the chart, they show the percentage
of instances solved within time limit. The best performance algorithm is graphically
represented by the curve in the upper part of the Figures. The horizontal axis is rep-
resented in logarithmic scale. The figures clearly show that the relative performance
of the 3 algorithms depends on the value k considered.

For k = 5, Figure 2.4 shows that HYB and COMP are the fastest method in≈40%
of the instances. HYB can solve ≈65% of the instances, while COMP can solve
≈85%, and the corresponding curve dominates those of HYB in most of the chart.
BP is the fastest method in ≈5% and can solve ≈55% of the instances. For k = 5,
the best option appears to solve the problem by means of the COMP formulation.
As soon as the value of k increases, the performance of the three solution methods
changes. For k = 10, the figure shows that HYB is the fastest method in ≈50%
and it can solve ≈60% of the instances. It dominates the other two methods on the
whole chart; BP is the fastest method in ≈20% and can solve ≈50% of the instances,
while COMP is the fastest method in ≈10% and can solve ≈40% of the instances.
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FIGURE 2.4: Performance profile of exact methods for the
k-Vertex Cut problem.

The primacy of HYB increases with increasing k: for k = 15, the figure shows that
HYB is the fastest method in ≈60% and it is able to solve ≈70% of the instances. It
dominates the other two methods on the whole chart; BP is the fastest method in
≈15% and can solve ≈60% of the instances, while COMP is the fastest method in
≈5% and can solve ≈40% of the instances. For k = 20, the figure shows that shows
that HYB is the fastest method in≈70% and it is able to solve≈75% of the instances.
It dominates the other two methods on the whole chart; BP is the fastest method in
≈15% and can solve ≈55% of the instances, while COMP is the fastest method in
less than 5% and can solve ≈30% of the instances.

Summarizing for k = 5 the best method on average is COMP which is able
to solve the largest percentage of the instances, even if HYB remains the fastest in
almost half of them. For all the other values of k, i.e., k ∈ {10, 15, 20}, the best
computational performance is provided by HYB which is always able to solve the
largest percentage of the instances and it is always the fastest methods in more that
50% of them. As far as the comparison between COMP and BP is concerned, the
results we obtain are in line with the results presented in [11], i.e., BP is dominated
by COMP when k = 5, while an opposite behavior is experienced for larger values
of k.

Weighted case

In the previous sections we focused the computational analysis on the case where
vertices have the same weight (without loss of generality, equal to 1), but all the de-
scribed formulations, as well as the BP algorithm can also tackle the weighted case,
that is, the case in which each vertex v ∈ V has an integer weight wv. According
to our computational experiments the best among the formulations proposed in this
chapter for the weighted case is still HYB. Hence, in this section we report on the
performance of HYB, COMP and BP on the complete set of instances including Ver-
tex Coloring, DIMACS and Intersection graphs, where a random integer weight with
uniform distribution in {1, . . . , 10} is generated for each vertex v ∈ V. As reported in
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FIGURE 2.5: Performance profile of exact methods for the
k-Vertex Cut problem with weights.

Table 2.5, the results in terms of number of solved instances are very similar to those
obtained in the unweighted case, confirming the superior performance of HYB, with
208 out of 304 instances solved to optimality, followed by COMP and BP with 177
and 170 solved instances, respectively. The distribution of optimal solution among
the separate values of k shows that COMP provides the best computational perfor-
mances for k = 5 but then, as far as k ≥ 10, HYB is always the best method, and
BP always performs better than COMP. Despite the (almost identical) number of
solved instances by each algorithm, the weighted instances appear more challeng-
ing for what concerns computing times and number of Branch-and-Bound nodes:
COMP requires approximately 50% more nodes and seconds while both BP and
HYB approximately double the number of Branch-and-Bound nodes and the com-
puting time.

Performance profiles for the weighted case are reported in Figure 2.5, and are
very close to the profiles obtained in the unweighted case. For k = 5, the curve
corresponding to COMP dominates that of HYB, and the best option appears to
solve the problem by means of the COMP formulation. The performance of BP is
the worst. As soon as k = 10, the performance of HYB becomes the best. The pri-
macy of HYB increases with increasing k and it largely dominates the other solution
methods. Further details on the experiments for the weighted case are reported in
the Appendix.

2.7. Conclusions

We have considered a prototype problem in the family of Critical Node Detection
Problems, that is, the problem of removing a (minimum weight) set of vertices from
a graph so as to disconnect the resulting graph in several components. The so-called
k-vertex cut problem has relevant applications not only in network analysis, but also
in matrix decomposition for solving systems of equations by parallel computing.
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We have described two new integer linear programming formulations, both in-
volving an exponential number of constraints for which we provided separation
procedures and implemented branch-and-cut algorithms.

Both formulations use a natural set of variables to identify the removed vertices
(the k-vertex cut). The first considers additional variables to denote which vertex
is representative of each component of the disconnected graph, while in the second
formulation, the model is derived from the perspective of a two-phase Stackelberg
game in which a leader deletes the vertices in the first phase, and in the second phase
a follower builds connected components in the remaining graph.

Extensive computational experiments on a set of benchmark instances allowed
us to identify the strengths and weaknesses of the two formulations, that in the end
we combined in a hybrid one. The experiments also showed that the hybrid formu-
lation significantly outperforms a state-of-the-art branch-and-price method recently
proposed for the problem.

The presented idea of looking into the k-vertex cut problem from the perspective
of a two-players Stackelberg game can be used in a more general setting for solving
Critical Node/Edge Detection Problems. Derivation of new formulations in the nat-
ural space of decision variables for this large family of problems will be subject of
future research.
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Appendix

In Table 2.6 we report, for each considered value of k, the number of vertices re-
moved by preprocessing in the instances where it has some effects. In the first two
columns of the table, we report the number of vertices (n) and the number of edges
(m) of the graph. In Table 2.7 we report, for each instance (Vertex Coloring and
DIMACS) and for each considered value of k, the computational times required by
COMP, BP and HYB to find the optimal value ("tl" means that the time limit is
reached). In tables 2.8, 2.9 and 2.10, the same information is reported for Intersec-
tion graph instances, Vertex Coloring and DIMACS instances in the weighted case
and Intersection graph instances in the weighted case, respectively. In table 2.11, we
report the optimal values for each weighted instance (Vertex Coloring and DIMACS)
and for each considered value of k (instances that are infeasible and/or trivial for all
values of k are not reported). In table 2.12, the same information for Intersection
graph instances in the weighted case is reported.
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TABLE 2.6: Number of vertices removed by preprocessing

n m k = 5 k = 10 k = 15 k = 20

2-FullIns_3 52 201 6
2-Insertions_3 37 72 1
chesapeake 39 170 1 2 5
david 87 406 1 1 1 1
DSJC125.5 125 3891 113
football 115 613 3
huck 74 301 1 1
karate 34 78 1 2 7
miles1500 128 5198 108
mulsol.i.2 188 3885 3
mulsol.i.3 184 3916 3 3
mulsol.i.4 185 3946 3 3
mulsol.i.5 186 3973 3 3
myciel3 11 20 6
myciel4 23 71 7
myciel5 47 236 3 8
r125.1c 125 7501 97
r125.5 125 3838 8

bcspwr02 49 177 11
can61 61 866 11
dwt___59 59 256 31
dwt87 87 726 13
impcol_b 59 329 34
L100.cavity01 100 1844 2
L100.fidap025 100 2031 66
L100.fidapm02 100 3090 57
L100.rbs480a 100 2550 64
L100.wm1 100 2956 10 37
L100.wm3 100 2934 50
L120.cavity01 120 2972 2
L120.fidap022 120 4307 80
L120.fidap025 120 2787 80
L120.fidapm02 120 4626 50
L120.rbs480a 120 3273 34
L120.wm2 120 3387 23
L125.can__161 125 1257 32
L125.can__187 125 1022 73
L125.dwt__162 125 943 5
L125.dwt__193 125 2982 4
L125.fs_183_1 125 3392 1
L80.cavity01 80 1201 8
L80.fidap025 80 1201 52
L80.steam2 80 1272 4
L80.wm1 80 1786 2 15 47
L80.wm2 80 1848 29
lund_a 147 2837 21
pores_1 30 179 4
west0067 67 411 3
will57 57 304 16
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Optimal Values Optimal Values

k = 5 k = 10 k = 15 k = 20 k = 5 k = 10 k = 15 k = 20

1-FullIns_3 35 53 miles500 42 - -
1-FullIns_4 35 66 90 122 miles750 120 -
1-Insertions_4 40 68 100 125 mug100_1 10 27 46 69
2-FullIns_3 42 71 92 125 mug100_25 11 30 52 77
2-Insertions_3 18 50 73 mug88_1 20 43 68 99
2-Insertions_4 42 69 99 124 mug88_25 14 38 63 93
3-FullIns_3 33 53 76 106 mulsol.i.2 · · · 96
3-Insertions_3 22 47 72 95 mulsol.i.3 · · 96 98
4-FullIns_3 40 81 98 127 mulsol.i.4 · · 96 98
4-Insertions_3 17 43 68 94 mulsol.i.5 · · 96 98
5-FullIns_3 35 72 95 113 myciel4 38 68
adjnoun 11 29 51 81 myciel5 47 77 105 129
anna 7 7 9 15 myciel6 57 87 115 138
celegansneural 5 5 15 37 myciel7 67 - - 148
chesapeake 28 60 92 polbooks 34 79 103 136
david · · 17 50 queen10_10 - 486
dolphins 10 30 66 89 queen11_11 - -
DSJC125.1 106 - - - queen12_12 - -
DSJC125.5 - 645 queen13_13 - -
football 101 - - - queen14_14 - -
games120 - - - - queen5_5 103
huck 7 17 33 54 queen6_6 149
jazz 23 70 133 - queen7_7 199
jean 2 4 14 19 queen8_12 339
karate 11 23 34 61 queen8_8 239
lesmis 4 6 13 21 queen9_9 296
miles1000 297 r125.1 · · 2 9
miles1500 626 r125.1c 648
miles250 · · 7 30 r125.5 505

TABLE 2.11: Optimal values of the instances with weights, instances
that are infeasible and/or trivial for all values of k are not reported

(Coloring and DIMACS).
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Optimal Values Optimal Values

k = 5 k = 10 k = 15 k = 20 k = 5 k = 10 k = 15 k = 20

arc130 442 L120.cavity01 49 100 115 168
ash219 36 78 120 164 L120.fidap022 486
ash331 39 - - - L120.fidapm02 509
ash85 117 - L120.rbs480a 433
bcspwr01 28 70 L120.wm2 7 28 67 239
bcspwr02 38 87 133 L125.ash608 37 - - -
bcspwr03 53 113 168 235 L125.bcsstk05 218
bfw62a 114 L125.can__161 - - -
can__144 - - L125.can__187 - - - 541
can61 207 L125.dwt__162 - - -
can62 31 78 130 L125.dwt__193 291
can73 144 - L125.fs_183_1 71
can96 - - L125.gre__185 - - -
curtis54 74 L125.lop163 - - -
dwt___59 59 141 226 L125.west0167 19 46 73 109
dwt66 54 - L125.will199 21 60 92 127
dwt72 26 64 105 169 L80.cavity01 43 49 92 154
dwt87 66 - 313 L80.steam2 257
gre__115 44 108 - - L80.wm1 88 218 281
ibm32 80 L80.wm2 24 264
impcol_b 22 58 109 202 L80.wm3 23 74
L100.cavity01 49 91 100 162 lund_a - -
L100.fidapm02 443 pores_1 99
L100.rbs480a 370 rw136 40 - - -
L100.steam2 303 steam3 145
L100.wm1 78 169 274 west0067 97 188
L100.wm2 20 237 west0132 21 57 97 132
L100.wm3 20 76 303 will57 33 113

TABLE 2.12: Optimal values of the instances with weights, instances
that are infeasible and/or trivial for all values of k are not reported

(Intersection graphs).
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Chapter 3

The bilevel combinatorial structure
of the k-Vertex Separator problem

1

Given a simple undirected graph G = (V, E), where V is the set of its vertices and
E is the set of its edges, we are interested in studying the problem of disconnecting
G by removing a subset of vertices. Formally:

Definition 0 (vertex separator) A vertex subset S ⊂ V is called a vertex separator if the
removal of S disconnects the graph G.

In [38], [39], the Vertex Separator problem (VSP) has been addressed, formally:
Given an integer u ∈ N, and a cost cv ∈ N associated with each vertex v ∈ V,
the VSP asks for a partition of V into three disjoint nonempty subsets V1, V2, S,
where V1 and V2 are the shores of the separator S, such that v ∈ V1 and w ∈ V2 implies
(v, w) /∈ E, the size of each shore is bounded by u, and the function ∑v∈S cv is min-
imized. The VSP is an NP-hard problem (see [39]) and it has several applications
for different connectivity problems (we refer the interested reader to [40]–[42], and
to [39] for a survey of such applications), one of the most important ones is related
to the efficient solution of linear systems [43], [44]. In this chapter, we study the
following problem closely related to the VSP:

Definition 0 (capacitated k-Vertex Separator problem (k-VSP)) Given a graph G =
(V, E) and two integer values k, u ∈ N, k ≥ 2, the capacitated k-Vertex Separator problem
(k-VSP) asks for a partition of V into k + 1 disjoint subsets V = {V1, V2, . . . , Vk} ∪ S,
where Vi (i = 1, . . . , k) are the shores of the separator S, such that v ∈ Vi and w ∈ Vj with
i, j = {1, . . . , k}, j > i implies (v, w) /∈ E, the size of each shore is bounded by u, and the
cardinality of S is minimized.

Note that in our definition of the k-VSP we allow empty shores. With this as-
sumption, the problem is equivalent to the Matrix Decomposition problem studied in
[13]. Indeed, it can be viewed as the problem of assigning the rows of a matrix A to k
disjoint blocks. The objective is to remove a minimum number of rows from A and to
assign the remaining rows to the blocks so that: (i) each row is assigned to at most
one block, (ii) each block contains at most u rows, and (iii) no two rows in different
blocks have a common nonzero entry in a column. The problems are equivalent by
defining a row of A for each vertex of G and by defining a column of A for each edge

1The results of this chapter appears in: F. Furini, I. Ljubić, E. Malaguti, and P. Paronuzzi, “Casting
light on the hidden bilevel combinatorial structure of the k-Vertex Separator problem", Technical Report
OR-19-6, http://or.dei.unibo.it/technical-reports, 2019. [37]

http://or.dei.unibo.it/technical-reports
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of G, with nonzero entries at the rows corresponding to the endpoints of the edge.
Conversely, given A, we define a vertex in G for each row, and an edge for each pair
of vertices if there is at least a column in A with nonzero entries in the corresponding
rows. The problem is NP-hard as discussed in [13].

There exist several other relevant applications related to the k-VSP. Detecting a
critical infrastructure in communication (or social) networks is important for under-
standing the vulnerability of the networks and the location of points that need to
be protected in case of viral attacks. The goal is to find a smallest subset of ver-
tices to protect (i.e., “vaccinate” or “interdict”) so that the damage caused by the
spread of the virus through the network is limited. Thereby, the network defender
does not know which vertex of the network will be attacked, but assumes that the
virus will spread instantaneously from the infected vertex to its neighbors, as long
as the neighbor is not protected. Hence, for diffusing information through a social
network, or spreading a (computer) virus through a (communication) network, the
network elements need to be connected. In this context, the vertices identified by
k-VSP (optimal) solutions can be seen as the “most vital” or “critical” vertices of a
graph, with respect to connectivity. Therefore, solving the k-VSP determines a small-
est subset of vertices that need to be vaccinated, to ensure that the damage caused by
a sudden outbreak of a virus, measured as the size of the largest connected compo-
nent of the network from which vaccinated vertices are removed, is then kept below
the given parameter u.

In Figure 3.1, we give an example graph of 10 vertices and 13 edges and we
provide an optimal solution for the k-VSP with k = u = 3. The vertex separator
is composed by the grey vertices, i.e., the set S = {v8, v9}. After the removal of
S, the graph G[V \ S] is disconnected. More precisely, the graph is partitioned into
3 pairwise disconnected subsets of vertices (the shores) and the separator, namely:
V1 = {v1, v2, v7} (the first shore), V2 = {v3, v4} (the second shore), V3 = {v5, v6, v10}
(the third shore) and S = {v8, v9} (the separator).

v1 v2 v4v3 v5 v6

v7 v8 v9 v10

FIGURE 3.1: An example graph G for the k-VSP, with 10 vertices and
13 edges. The vertices of an optimal k-VSP solution with k = 3 and
u = 3 are shown in grey, i.e., the separator S = {v8, v9}. Dashed lines
represent the edges which are incident to the removed vertices and

they do not appear in G[V \ {v8, v9}].

Notation. Let K denote the set of integers {1, ..., k}. Given a simple undirected
graph G = (V, E) with |V| = n and |E| = m, for an edge wv ∈ E, we say that w and
v are neighbours. The complement of graph G = (V, E) is a graph G = (V, E), where
E = {wv : wv /∈ E}. Let N(w) = {v ∈ V|wv ∈ E} denote the neighborhood of w.
A subset of vertices W ⊂ V is a clique of G, if any two vertices of W are neighbours.
A clique cover of G is a partition of V such that each element of the partition is a
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clique. We indicate by degG(v) the number of edges incident to v in graph G. Given
a subset of edges E′ ⊆ E of G, we say that E′ is spanning G if for every vertex v of G
there is at least an edge in E′ incident with v. Given a non-adjacent pair of distinct
vertices w, v ∈ V, a set F ⊂ V is called v-w-separator if and only if removing F from
G disconnects w from v. Given W ⊂ V, a subgraph G[W] = (W, E[W]) induced by
W contains all vertices of W and all edges E[W] ⊂ E whose both ends belong to W.

Literature review. In this section, we provide a literature review of the exact algo-
rithms present in the literature for the k-VSP and its closely related problems. To
the best of our knowledge, the first exact algorithm for the k-VSP, addressed as ma-
trix decomposition problem, has been proposed in [13]. An integer programming (IP)
formulation is proposed and a Branch-and-Cut algorithm, based on polyhedral in-
vestigations, has been designed. The main motivation of the study was to verify
whether the constraint matrix of a linear or integer program can be decomposed
into the so-called bordered block diagonal form (see also [45] for further details).

Recently, an alternative exact algorithm for the k-VSP has been proposed in [27].
In this paper, the k-VSP has been called the Capacitated Hypergraph Vertex Separator
problem and a branch-and-price algorithm has been designed based on specialized
algorithms to solve the pricing problems. In addition, a branching scheme tailored
for the problem is proposed and enhanced by a number of speed-up techniques. It is
worth mentioning that, even though in [27] the problem has been defined on hyper-
graphs, an equivalent problem defined on simple graphs is obtained by replacing
each hyperedge with a clique. We compare the computational performance of this
branch-and-price algorithm with our newly developed Branch-and-Cut algorithm
in Section 3.7.

In case k = ∞, our problem is closely related to the interdiction problem in which
at most B vertices need to be removed from the graph, so that the size of the largest
connected component in the remaining graph is minimized. This problem is strongly
NP-hard, but can be solved in polynomial time on trees and series-parallel graphs
(see [46]). In [47], the authors propose an extended MIP formulation and a family of
valid inequalities to solve this problem. Besides the fact that in our setting k < ∞,
another major difference is in the type of objective function: instead of dealing with
a min-max objective function, we are minimizing the budget, while making sure the
largest connected component in the remaining graph will contain no more than u
vertices.

Another problem related to the k-VSP is the k-Vertex Cut problem, which is ob-
tained by setting u = ∞ and forbidding the empty shores in our problem definition.
Formally: A vertex cut is a set of vertices whose removal disconnects the graph into
several connected components. If the number of connected components is at least k,
this set is called a k-vertex cut. Given a graph G, a positive weight cv for each vertex
v ∈ V, and an integer k ≥ 2, the k-Vertex Cut problem (k-VCP) is to find a k-vertex cut
of minimum weight. The k-VCP has been object of research in the recent years and
we address the interested reader to, e.g., [48] where an exact branch-and-price algo-
rithm has been proposed. Recently, we proposed in [6] a Branch-and-Cut algorithm
for the k-VCP, exploiting a bilevel point-of-view of the problem, which allowed us
to derive a valid IP formulation in the natural space of the variables and to beat
state-of-the-art results from [48].

Our Contribution. This chapter studies a canonical IP formulation for solving the
k-VSP in which several new families of valid inequalities are derived by exploiting
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a “bilevel” point of view. The problem is seen as a two-player Stackelberg game in
which a leader interdicts the network by removing some of its vertices, and a fol-
lower determines the maximum connected component in the remaining graph (we
refer the interested reader to e.g., [49]–[52], for other relevant problems related to
Stackelberg games). In addition, the leader has to make sure, the connected compo-
nents can be packed in at most k shores, each of the size at most u. We first provide a
basic canonical formulation, and show how to use the value function reformulation
of the follower’s optimization problem to derive new sets of valid inequalities. The
value function reformulation has been convexified in two different manners: the first
one adds penalties for the violation of some constraints in the objective function, the
second one is Benders reformulaton derived from an extended formulation. Theo-
retical analysis reveals that Benders cuts are dominated by the first family of cuts.
We show that the new inequalities can be separated at integer points in polynomial
time, and explain details of an efficient Branch-and-Cut implementation. Compu-
tational study which is performed on a large set of publicly available benchmark
instances shows that our new exact method is competitive against the state-of-the-
art Branch-and-Price procedure given in [27]. Moreover, we are able to improve the
best known results for several difficult classes of instances and to provide optimal
solution values for 61 previously unsolved instances from the literature.

The chapter is structured as follows. In Section 3.1, we present a compact In-
teger Programming formulation for the k-VSP. In Section 3.2, we develop our new
formulation in the natural space of the variables obtained through a bilevel interpre-
tation of the problem. In this section we present several families of valid inequalities
whose separation procedures are presented in Section 3.6. In Section 3.7, we discuss
extensive computational results comparing a newly developed Branch-and-Cut al-
gorithm with the state-of-the-art algorithms for the k-VSP. Finally, in Section 3.8, we
present the conclusions of our work and some future lines of research.

3.1. A Compact Integer Programming Formulation

A first IP formulation for the k-VSP was introduced in [13], where for each vertex
v ∈ V and each integer i ∈ K, a binary variable ξ i

v is defined, such that

ξ i
v =

{
1 if vertex v belongs to the shore Vi

0 otherwise
i ∈ K, v ∈ V.

The vertices that remain unassigned to any of the shores (i.e., for which ξ i
v = 0, for

all i ∈ K), are the ones defining the separator S. This is why instead of minimizing
the cardinality |S| of the separator, one can equivalently maximize the number of
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vertices out of S (i.e., the vertices in ∪i∈KVi), thus obtaining the following IP formu-
lation

max ∑
i∈K

∑
v∈V

ξ i
v (3.1)

∑
i∈K

ξ i
v ≤ 1 v ∈ V, (3.2)

ξ i
w + ∑

j∈K\{i}
ξ

j
v ≤ 1 i 6= j ∈ K, wv ∈ E, (3.3)

∑
v∈V

ξ i
v ≤ u i ∈ K, (3.4)

ξ i
v ∈ {0, 1} i ∈ K, v ∈ V. (3.5)

The objective function (3.1) maximizes the number of vertices assigned to the shores
of the separator. Constraints (3.2) impose that each vertex is assigned to at most one
shore and (3.3) imposes that the shores induce pairwise disconnected subgraphs.
Constraints (3.4) impose that the capacity of each shore is not exceeded, i.e., the
number of vertices assigned to each shore is not larger than the capacity u. This for-
mulation is known to suffer from symmetries, given that any permutation of indices
{1, . . . , K} results in the same feasible (LP-)solution.

In [27], this model is reformulated by defining a clique cover Q of G and intro-
ducing a binary variable ψi

Q for each integer i ∈ K and each clique Q ∈ Q such
that

ψi
Q =

{
1 if some vertex v ∈ Q belongs to the shore i
0 otherwise

i ∈ K, Q ∈ Q.

Constraints (3.2) and (2.3) are replaced by

∑
i∈K

ψi
Q ≤ 1 Q ∈ Q, (3.6)

ξ i
v − ψi

Q ≤ 0 i ∈ K, Q ∈ Q, v ∈ Q. (3.7)

In [13], formulation (3.1)–(3.5) was strengthened by several valid inequalities and
solved by a tailored Branch-and-Cut algorithm. Among the inequalities introduced
in [13], the so called block-invariant inequalities are invariant under a permutation
of the indices of the shores i ∈ K (called blocks in [13]). These inequalities can be
expressed for aggregated variables defined as

zv = ∑
i∈K

ξ i
v, v ∈ V,

which define if a vertex v is assigned to a shore (zv = 1) or it is removed from G
(zv = 0), i.e., it is in the separator S. In the next section, we present an IP formulation
based on the complement of these variables, and recall some of the block-invariant
inequalities that we exploit to strengthen our formulation.

3.2. A canonical IP formulation

We now study an IP model that exploits the complement of the aggregate variables
zv, v ∈ V, introduced in the previous section. Our goal is to provide a “thin” formu-
lation that lives in the natural space of decision variables, namely those constituting
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the objective function. This will allow us to tackle more challenging (and potentially
denser) instances, using only a linear number of decision variables. To this end, a
binary variable xv is defined such that

xv =

{
1 if vertex v belongs to the separator S
0 otherwise

v ∈ V.

Given an arbitrary set W ⊂ V, let

σ(W) =

{
# bins of size u needed to pack conn. components of G[W], if possible
∞, otherwise

The k-VSP can now be modeled as follows:

min ∑
v∈V

xv (3.8)

∑
v∈W

xv ≥ 1 W ⊆ V : σ(W) ≥ k (3.9)

xv ∈ {0, 1} v ∈ V, (3.10)

where the objective function (3.8) minimizes the number of deleted vertices, i.e., the
vertices in the separator S. Constraints (3.9), denoted as Bin Packing constraints in
the following, guarantee that any vertex separator S (encoded by x) which does not
allow to “pack” the connected components of G[V \ S] into k shores of size u, has to
be discarded. These constraints have been proposed in [13]. The authors show that
their separation corresponds to solving an instance of the Bin Packing problem, in
which items correspond to connected components C of G[W] of weight |C|, and bins
have capacity u. If more than k bins are used by an optimal solution, the connected
components induced by W cannot be “packed” into the k shores of capacity u, so at
least one vertex in W must belong to the separator. As a special case, if there exists
a component C such that |C| > u (which can be determined in polynomial time),
the packing is infeasible, and hence, at least one vertex from W must belong to the
separator. It is not difficult to see that in the latter case, Bin Packing constraints are
dominated by

∑
v∈C

xv ≥ 1, C ⊆W : C connected and |C| = u + 1. (3.11)

Besides its sparsity, another major advantage of this model compared to the for-
mulation from Section 3.1 is that we get rid of the symmetries (i.e., the degeneracy
caused by index permutations). This comes at a cost of having an NP-hard proce-
dure to check feasibility of any integer point of the Branch-and-Cut tree.

To (partially) overcome this difficulty, in the remainder of this section we propose
new valid inequalities in the space of x variables, that can be used to enhance this
basic model, and whose separation can be performed in polynomial time. To derive
these inequalities, we approach the problem from a bilevel perspective.

3.3. A bilevel interpretation of the problem

Bilevel optimization has recently attracted a lot of attention of the research commu-
nity, not only because of its relevance for the real-world applications but also be-
cause of the recent advancements in the development of off-the-shelf MILP solvers.
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The latter ones are the major driving force for the methods of computational opti-
mization to be pushed to the next frontiers [53]–[57]. Our problem can be seen in
the context of Defender-Attacker games, which are typically solved using the tools
and methods of bilevel optimization (see, e.g., [33], [58], [59]). In this section we
exploit some modeling ideas borrowed from the bilevel optimization to improve the
modeling power and understanding of the k-VSP.

For k = ∞, the k-VSP can be viewed as a sequential two-player Stackelberg
game in which there are two players: a leader (i.e., Defender) and a follower (i.e., At-
tacker). In the first step, the leader “interdicts” the follower by deleting (i.e., protect-
ing, vaccinating) some vertices from the graph. In the following step, the follower
determines the maximum connected component in the remaining graph. Hence, from
the perspective of the leader, the problem is to find the smallest subset of vertices
to delete from G, so that the size of the optimal follower solution (i.e., the number
of vertices in the maximum connected component) is at most u. For k < ∞, we are
interested in finding at most k shores, hence the leader solution must additionally
satisfy the Bin Packing constraints (3.9).

Independently on the value of k, using the value function reformulation for the
follower, we can impose the following condition:

Φ(x) ≤ u (3.12)

where Φ(x) denotes the optimal solution value of the follower subproblem for a
given vector x. In general, the value function Φ(x) does not need to be convex.
Hence, one possible way to deal with the problem and to derive a single-level prob-
lem reformulation is to try to convexify the value function. In the following we dis-
cuss two possible ways to convexify this function and derive valid inequalities.

3.3.1 Convexification by penalization

Given a binary realization of the leader variables x∗, the value Φ(x∗) can be calcu-
lated in O(|E|) time by simply removing the vertices v such that x∗v = 1 and search-
ing for a largest connected component in the resulting graph. Nevertheless, as our
next goal is to use the value function reformulation to derive valid linear constraints
in the x space, in the following we are providing a sparse IP formulation for finding
Φ(x∗). In this follower’s subproblem, for each vertex v ∈ V, a binary variable yv is
defined such that

yv =

{
1 if vertex v belongs to a maximum connected component
0 otherwise

v ∈ V,

recalling that maximum connected component has to be determined in the inter-
dicted graph. The follower IP formulation reads

Φ(x∗) = max ∑
v∈V

yv (3.13)

yv ≤ 1− x∗v v ∈ V (3.14)

∑
v∈F

yv ≥ yw + yv − 1 F ∈ Fwv, wv 6∈ E (3.15)

yv ∈ {0, 1} v ∈ V. (3.16)

The objective function (3.13) maximizes the number of the selected vertices. Con-
straints (3.14) ensure that the interdicted vertices cannot be selected. Constraints
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(3.15) impose that the optimal follower solutions correspond to connected compo-
nents (in the interdicted graph). These constraints are defined with respect to the
collection Fwv of all the (minimal) w-v-separators for each pair of vertices wv /∈ E.
More precisely, constraints (3.15) impose that if a pair of vertices w and v is selected,
at least one vertex in each F ∈ Fwv must be selected too (see, e.g., [60] for further
details).

We aim at finding a reformulation of the follower’s subproblem whose feasible
space does not depend on x∗, with an adapted objective function, so that for any
choice of x∗, the two problems provide the same optimal solution. In our setting,
we apply convexification by penalization, as it is done in e.g. [32], [33], [52]. The major
goal is to remove interdiction constraints yv ≤ 1− x∗v from the follower’s subprob-
lem, and to introduce penalty terms in the objective function instead, so that the
existence of the optimal follower solution satisfying yvx∗v = 0 is guaranteed. The
reformulation can be obtained as stated in the following observation.

Observation 6 The follower subproblem can be restated as

Φ(x∗) = max

{
∑

v∈V
yv − ∑

v∈V
Mv x∗v yv : (3.15), (3.16)

}
(3.17)

where Mv are sufficiently large values that guarantee that yv = 0 whenever x∗v = 1.

With the above observation and a proper choice of multipliers Mv, v ∈ V, the
value function Φ(x) becomes a piece-wise convex function defined as

Φ(x) = max
y∗∈C ∑

v∈V
y∗v − ∑

v∈V
Mv y∗v xv,

where C denotes all extreme points of the polytope of the (unrestricted) follower
subproblem. In our setting, C corresponds to the connected subgraphs of G.

Hence, constraint (3.12) can now be replaced by the following family of cuts:

∑
v∈C

(1−Mvxv) ≤ u, C ∈ C (3.18)

The new constraints (3.18) have been obtained by replacing in (3.12) the expression
of Φ(x) by the objective function of (3.17). They can be equivalently restated as

∑
v∈C

Mvxv ≥ |V(C)| − u C ∈ C, (3.19)

imposing that, for each connected subgraph C of G, the sum of the Mv coefficients
associated with the interdicted vertices is greater or equal than the cardinality of C
minus the capacity u.

A straightforward down-lifting of the coefficients gives

∑
v∈V

min{|V(C)| − u, Mv} xv ≥ |V(C)| − u C ∈ C. (3.20)

In order to obtain a tight formulation, the values of Mv should be as small as
possible.

Given a tree T with |V(T)| > u, let compT(v) denote the cardinality of the vertex
set of a largest connected component obtained after removing v. Let C ∈ C be a tree
T, then:

Mv = |V(C)| − compT(v).
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Indeed, the value of Mv in this case indicates the deterioration of the optimal ob-
jective value (|V(C)|) by interdicting vertex v. In the general case, i.e., when C is
a generic connected subgraph from C with |V(C)| > u, the above mentioned con-
straints remain valid, and can be imposed for any spanning tree T of C. Hence, we
have the following result:

Proposition 9 Let C be a connected subgraph of G with |V(C)| > u and let T (C) be the
set of all spanning trees of C, then the following inequalities

∑
v∈V(C)

(|V(C)| − compT(v))xv ≥ |V(C)| − u T ∈ T (C), (3.21)

which can be downlifted as in (3.20), are valid for the k-VSP. These cuts will be referred to as
Component Cuts in the remainder of this chapter.

3.3.2 Convexification by dualization

Based on the Proposition 2 from [47], we can calculate Φ(x) using the following
extended LP formulation:

Φ(x) = min λ (3.22a)

λ ≥ ∑
v∈V

σvl l ∈ V (3.22b)

σwl − σvl ≥ −xw − xv vw ∈ A, l ∈ V (3.22c)
σll ≥ 1 l ∈ V (3.22d)

σvw ≥ 0 v, w ∈ V, (3.22e)

where for each edge vw ∈ E we define two arcs vw, wv ∈ A. The variables σvw are
defined for any two vertices v, w ∈ V, and there exists an optimal solution of this LP
in which σvw = 1 if and only if v and w belong to the same connected component
of the interdicted graph. Hence, by calculating ∑v∈V σvl , we are counting the num-
ber of vertices which are in the same component as the vertex l ∈ V. Constraints
(3.22b) impose that λ is bounded from below by the size of the largest component.
Constraints (3.22c) guarantee that if two neighboring vertices v and w are not inter-
dicted, and v is in the same component as l, then w must be in the same component
as well.

Since this LP formulation results in a convex way of describing the value func-
tion, we obtain an extended formulation of the k-VSP as follows:

min

{
∑

v∈V
xv : ∑

v∈V
σvl ≤ u, l ∈ V, (3.22c)− (3.22d) (3.9), (3.10)

}
.

To the best of our knowledge, this extended formulation is new and has not been
considered in the previous literature. As our major motivation is to study the IP
models in the natural space of x variables, our next goal is to project out σ variables
from this model. This can be done in a Benders fashion, resulting in the following
family of Benders feasibility cuts:

∑
l∈V

(
γ̃l − ∑

vw∈A
β̃l

vw
(
xv + xw

))
≤ u (3.23)
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where (α̃, β̃, γ̃), associated to constraints (3.22b)-(3.22d), represents an optimal solu-
tion of the following LP:

Φ(x) = max ∑
l∈V

(
γl − ∑

vw∈A
βl

vw
(
xv + xw

))
(3.24a)

∑
wv∈δ−(v)

βl
wv − ∑

vw∈δ+(v)
βl

wv ≤
{

αl , v 6= l
αl − γl , v = l

v, l ∈ V

(3.24b)

∑
l∈V

αl = 1 (3.24c)

(α, β, γ) ≥ 0 (3.24d)

We notice that, in an interdicted graph with binary values of x, this dual represents a
single-commodity flow formulation imposed for each “root” l ∈ V. For a connected
component C, a vertex l is chosen as a root, and αl units of flow are sent from l to
every other vertex v ∈ V(C). Thereby, the value γl contains the total amount of flow
sent from l plus αl (which is exactly the size of C, assuming αl = 1). The flow is
sent along a spanning tree T of C, and each value βl

vw counts the total amount of
flow carried along the arc (v, w) of that tree. Since we are looking for a distribution
of the values of αl among the vertices of G, and we penalize each arc (v, w) whose
end vertices are interdicted (cf. the second term in the objective function), an opti-
mal solution is obtained by choosing a largest component in the interdicted graph,
randomly picking one of its vertices l as a root and setting αl = 1. Hence, instead of
detecting Benders cuts using a black-box LP formulation, based on the above argu-
ments we can use a combinatorial procedure to detect the following family of valid
inequalities:

Proposition 10 Let C be a connected subgraph of G with |V(C)| > u and let T be a
spanning tree of C, and assume that one unit of flow is sent from a chosen root l ∈ V(C)
to all other v ∈ V(C), v 6= l along the edges of T. Let al

v be the sum of flows sent into the
vertex v and out of v. Then the following inequalities

∑
v∈V(C)

al
vxv ≥ |V(C)| − u T ∈ T (C), l ∈ V(C) (3.25)

which can be down-lifted as in (3.20), are valid for the k-VSP. These cuts will be referred to
as Benders Cuts in the remainder of this chapter.

Proof. We first observe that inequalities (3.23) can be rewritten as

∑
l∈V

∑
vw∈A

β̃l
vw(xv + xw) ≥ ∑

l∈V
γ̃l − u. (3.26)

Following the discussion from above, we then choose a root l ∈ V(C), calculate the
coefficients β̃l and set al

v = ∑vw∈δ+(v)∪δ−(v) β̃l
vw. Recall that the value of γ̃l is |V(C)|

for the chosen l, and that all β̃l′ and γ̃l′ are zero for l′ 6= l. �

3.3.3 Another bilevel point-of-view

Consider a connected subgraph C of G, with |V(C)| > u. If we denote by x(C) ⊂
V(C) the vertices of C that are interdicted, then the minimum number q of compo-
nents into which C has to fall apart, so that each resulting component contains no
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more than u vertices is given as:

q =

⌈
|V(C)| − |x(C)|

u

⌉
.

Hence, from an alternative bilevel perspective, we could see this as a Stackleberg
game: the leader interdicts some vertices, and, for each connected subgraph C,
such that |C| > u, the follower calculates the number of connected components in
the interdicted graph. If the number of components is smaller than q, the solution
of the leader is infeasible. Let ΨC(x) be the number of connected components of
subgraph C in the interdicted graph. The latter condition can be imposed as the
following constraint:

ΨC(x) ≥ q C ⊆W : C connected and |C| > u.

In chapter 2 we showed that the condition for a generic graph G = (V , E) to
be partitioned into at least q nonempty components by interdicting vertices can be
expressed by the following exponential family of inequalities, where S denotes the
set of all cycle-free spanning subgraphs of G and n = |V|

∑
uv∈E(S)

(
1− xu − xv

)
≤ n− ∑

v∈V
xv − q S ∈ S . (3.27)

Hence, we can apply the previous result to any component C ∈ C, such that |V(C)| >
u. We restrict ourselves to spanning trees T ∈ T (C):

∑
uv∈E(T)

(1− xu − xv) ≤ |V(T)| − ∑
v∈V(T)

xv −
⌈
|V(T)| −∑v∈V(T) xv

u

⌉
T ∈ T (C).

(3.28)

After removing the rounding and using |E(T)| = |V(T)| − 1, we obtain the follow-
ing result:

Proposition 11 Let C be a connected subgraph of G with |V(C)| > u, and let T (C) be the
set of all spanning trees of C, then the following inequalities

∑
v∈V(T)

[u(degT(v)− 1) + 1] xv ≥ |V(T)| − u T ∈ T (C), (3.29)

which can be down-lifted as in (3.20), are valid for the k-VSP. These cuts will be referred to
as Degree Cuts in the remainder of this chapter.

We notice that according to Proposition 6, constraints (3.27) should be imposed
for each acyclic spanning subgraph of C. In the context of the current chapter how-
ever it is correct to consider only spanning trees of C, because, if there is a non-
connected acyclic spanning subgraph (i.e., a forest) violating the constraint, we would
add the corresponding constraint for each tree of the forest as well. Furthermore, for
(3.29), the right hand side is always positive, and all coefficients next to the vertices
are non-negative so that the constraints can be lifted as in (3.20).
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3.3.4 Comparison between Component, Degree and Benders cuts

By comparing Component Cuts (3.21) and Degree Cuts (3.29), we observe that the
latter are obtained by selecting a tree T spanning C and by setting

Mv = u(degT(v)− 1) + 1, v ∈ V(T).

Despite the fact that both families of cuts are associated with trees, where each
vertex v in the selected tree appears with a coefficient Mv, the values of these coeffi-
cients differ in the two cases. An example given in Figure 3.2a) for u = 2 shows that,
when these cuts are imposed for the same C ∈ C, the two cuts do not dominate each
other. For the given example, the Component cut and, respectively, the Degree cut
are given as:

x1 + 3x2 + 4x3 + 3x4 + x5 + x6 + x7 ≥ 5
x1 + 5x2 + 3x3 + 5x4 + x5 + x6 + x7 ≥ 5

For this example, the Benders cuts (with the root any non-leaf vertex, e.g., l = v2)
are dominated by Component and Degree cuts, and read:

x1 + 5x2 + 5x3 + 5x4 + x5 + x6 + x7 ≥ 5

However, another example depicted in Figure 3.2b) for u = 3 shows that, when
Benders cuts and Degree cuts are imposed for the same C ∈ C, the two cuts do not
dominate each other. The Benders cut (with the root l = v3) and, respectively, the
Degree cut are:

x1 + 3x2 + 5x3 + x4 + x5 + x6 + x7 + x8 ≥ 5
x1 + 4x2 + 5x3 + x4 + x5 + x6 + x7 + x8 ≥ 5

v6 v7 v5

v1 v2 v3 v4

v5 v6 v7 v8

v1 v2 v3 v4

FIGURE 3.2: Two examples demonstrating relationships between
studied inequalities. a) u = 2, b) u = 3.

We obtained this stronger result:

Proposition 12 For a given connected subgraph C and its spanning tree T ∈ T (C),
Benders cuts (3.25) are dominated by the Component cuts (3.21).

Proof. We prove this result by showing that, for each vertex v ∈ V(T), the coeffi-
cient av in the Benders cut is not smaller than the coefficient Mv in the Component
cut. Let |V(T)| = n. When v is a leaf, it is trivial. If v is the root l, av = n − 1,
whereas Mv ≤ n − 1. If v is neither the root l nor a leaf, by removing v we par-
tition T in deg(v) components: a component containing l, and deg(v) − 1 compo-
nents not containing l. Let these components include κ vertices in total. We have
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av = 2κ + 1. If the largest component of T after removing v is the one including l,
Mv = n− (n− (κ + 1)) = κ + 1, and hence, av > Mv. If the largest component of T
after removing v does not include l, let q ≤ κ be its cardinality; we have Mv = n− q.
Having Mv > av would imply n > 2κ + 1 + q. But this would imply that the com-
ponent including l has cardinality n− κ − 1 > 2κ + 1 + q− κ − 1 = κ + q which is a
contradiction since we assumed the largest component has cardinality q. �

3.4. Cover inequalities

These inequalities exploit the concept of connectivity. Let W ⊆ V be a subset such
that the induced subgraph G[W] = (W, E(W)) is r-vertex-connected (i.e., at least r
vertices have to be removed to disconnect W). Then the following inequality, which
can be derived from the corresponding block-invariant inequality of [13], is valid

∑
v∈W

xv ≥ min(|W| − u, r) W ⊆ V, |W| > u. (3.30)

3.5. Additional valid inequalities

Additional sets of valid inequalities, derived from the corresponding block-invariant
inequalities of [13], can be exploited in order to strengthen the formulations of the
previous sections.

• The star inequalities

∑
w∈N(v)

xw ≥ (deg(v) + 1− u)(1− xv) v ∈ V, deg(v) ≥ u (3.31)

impose that for each vertex v ∈ V having a degree larger than or equal to the
capacity, if vertex v is not interdicted than at least deg(v) + 1− v of its adjacent
vertices have to be interdicted. The number of these constraints is of the order
of the cardinality of the vertex set. After some rewriting, it is not difficult to
see that star inequalities are a special case of down-lifted version of component
cuts (3.21), imposed for the star centered at v.

• In addition, we can impose precedence conditions between vertices, by observ-
ing that when the neighbourhood of a vertex w is included in the neighbour-
hood of a vertex v, then there is no reason to interdict w before v is interdicted.
Indeed, any feasible solution where xw = 1 and xv = 0 can be transformed
to a feasible solution of the same cost where xw = 0 and xv = 1. Precedence
conditions are then stated as

xw ≤ xv v, w ∈ V, N(w) \ {v} ⊂ N(v) \ {w}. (3.32)

Instead, when two vertices share the same neighbourhood, interdicting the
first or the second does not make any difference. In this case we can get rid
of potential symmetries with constraints (3.33) by imposing that the lowest
index vertex can be interdicted only after the largest index vertex is interdicted.
These additional precedence conditions are stated as

xw ≤ xv v, w ∈ V, w < v, N(w) \ {v} = N(v) \ {w}. (3.33)
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3.6. Separation routines

This section describes separation strategies for the presented inequalities. All in-
equalities we propose (with the exception of cover inequalities) are given for a spe-
cific tree associated with a connected component. Trees are constructed during the
detection of connected components, which can be performed by DFS or BFS. By con-
struction, trees obtained through BFS define inequalities where one vertex (having
large degree) receives a large coefficient, and the other vertices receive a small coeffi-
cient. After down-lifting, these constraints tend to be computationally more effective
than the corresponding constraints where the initial trees are detected by DFS.

3.6.1 Separation of Degree Inequalities

Integer case. Given an integer solution x∗, if we denote by V(x∗) ⊂ V the sub-
set of interdicted vertices, the interdicted graph is the subgraph of G induced by
V \ V(x∗). The separation problem reduces to finding a connected subgraph C of
the interdicted graph such that |V(C)| > u, yielding a violation |V(C)| − u of con-
straints (3.29). The most violated inequality is obtained by choosing the (element-
wise) maximal subgraph C. Our inequalities (3.29) are however not associated with
connected subgraphs, but with subtrees contained in the subgraphs, whose number
can be exponential in the size of each subgraph.

So, during the separation procedure, a tree for each connected subgraph of the
interdicted graph that exceeds the capacity is built by means of a BFS, where the
edges are processed in a random order. As soon as the size of the tree under con-
struction is larger than u, and for each edge later on added to the tree, an inequality
is defined and included in the formulation. So, at the end of the procedure, for
each connected subgraph C (of the interdicted graph) that exceeds the capacity u,
|V(C)| − u inequalities of type (3.31) are added to the model.

Fractional case. Given a fractional solution x∗, after rewriting (3.29), we can see
that checking whether a violated constraint exists is equivalent to finding a subtree
T that maximizes the following function

∑
vw∈E(T)

(1− x∗v − x∗w)− ∑
v∈V(T)

(1− x∗v)(1−
1
u
). (3.34)

If the obtained value is positive, a violated cut (3.29) is added to the model. The
above separation problem can be seen as the Prize-Collecting Steiner Tree problem
(PCSTP)

max

{
∑

v∈V
wv yv − ∑

vw∈E
wvw zvw : (z, y) is a subtree of G

}
(3.35)

with wvw = x∗v + x∗w, vw ∈ E and wv = 1
u + (1− 1

u )x∗v , v ∈ V. To solve the problem,
one can use a specialized algorithm for the PCSTP, as the one described in [61], or a
heuristic procedure.

Our heuristic procedure builds a tree starting from the edge with the largest
weight, where the weight of an edge is defined according to the contribution of
the edge itself and of its endpoints to (3.34). Iteratively, the procedure adds edge-
vertex pairs to the current tree according to a random order, as long as edge-vertex
pairs with a positive contribution can be found. The contribution for adding a vertex
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v and an edge vw is again defined as in (3.34). When the procedure stops, if the tree
has a positive weight then a violated inequality has been detected.

3.6.2 Separation of Component Inequalities

For integer solutions, any tree T that is contained in the interdicted graph and whose
vertex set V(T) exceeds the capacity, produces a violation |V(T)| − u of constraints
(3.21). In this case, however, computing the coefficients of each variable xv, v ∈ T
requires to run a BFS procedure with vertex v as a root. So, adding an inequality
for each intermediate tree (i.e., trees that do not span a maximal connected subgraph)
can be time consuming. For this reason when separating inequalities (3.21) we only
consider a spanning tree for each maximal subgraph C in the interdicted graph that
exceeds the capacity u. In this case as well, the tree is built according to a random
ordering of the vertices in V(C). No separation is performed for fractional solutions,
for which a well defined associated optimization problem is lacking.

3.6.3 Separation of Benders Cuts

Benders cuts are separated for integer solutions as discussed in Section 3.3.2: for each
connected component C of the interdicted graph whose vertex set V(C) exceeds the
capacity, a vertex of maximum degree l is chosen as a root (this choice produces
lower values of the coefficients in the Benders cut). A spanning tree rooted at l
is constructed by BFS, where vertices are sorted according to a random ordering
(again, choice produces lower values of the coefficients in the Benders cut), and the
corresponding Benders cut is defined.

3.6.4 Separation of Cover Inequalities

Given a connected subgraph C of the interdicted graph with |V(C)| > u, inequali-
ties (3.30) impose either to disconnect the set (by removing at least r vertices, when
the component is r-connected) or to remove a number of vertices to reduce the car-
dinality of the vertex set to u. There are different options for computing the vertex-
connectivity r of a connected subgraph, which give rise to different ways of separat-
ing constraints (3.30):

1. The vertex-connectivity r of a connected subgraph C can be computed in poly-
nomial time by maximum-flow computations. Even though this procedure
runs in polynomial time, it can be time consuming in dense graphs.

2. Borndörfer et al. (1998) [13] proposed a greedy procedure to detect biconnected
components. This procedure can be used to detect whether a component is (at
least) bi-connected and to derive inequalities (3.30) with r = 2.

3. Computing biconnected components (r = 2) in a connected undirected graph
can be performed in linear time with the sequential algorithm proposed by
Hopcroft and Tarjan (1973)[62], during the execution of the DFS. Hence, for
each connected subgraph C of the interdicted graph with |C| > u, we have as
a by-product of DFS a sub-component of cardinality u + 1 or u + 2, for which
we write the corresponding inequality (3.30).

We implemented a separation procedure for integer solution for all three described
methods, option 3 being the default one. For fractional solution, we only considered
the greedy method described in 2.
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3.6.5 Separation of Bin Packing Inequalities

Inequalities (3.9) are separated for integer solutions only. Given an integer solution
x∗ and the associated interdicted graph defined by the set of interdicted vertices
V(x∗), the Bin Packing problem instance associated with the connected components
of the latter graph is defined and solved. If the optimal solution to the Bin Packing
problem uses more than k bins, an inequality (3.9) is defined for W = V \V(x∗).

3.7. Computational Results

In this computational section, we present the results of the experiments with the aim
of assessing the performance of the mathematical models described in the previ-
ous sections. We implemented a Branch-and-Cut framework based on formulation
(3.8)–(3.11) which has a polynomial number of variables and an exponential number
of constraints, namely, the Bin Packing Inequalities (3.9) and their feasibility counter-
part (3.11). Even though correct, this formulation asks to solve a NP-hard problem
to check feasibility of any integer point of the Branch-and-Cut tree. Hence, this basic
model is enhanced by four different families of constraints for which we have devel-
oped polynomial separation algorithms for integer points: (i) Component Inequalities
(3.21), (ii) Degree Inequalities (3.29), (iii) Benders cuts (3.25) and (iv) Cover Inequalities
(3.30).

The first goal of this computational section is to assess the relative computa-
tional performance of each family of inequalities, and their computational inter-
action when separated in a Branch-and-Cut fashion. Based on the results of these
experiments, which are presented in Section 3.7.1, the best (and hence, default) con-
figuration of our newly developed Branch-and-Cut algorithm is determined. The
latter is then used in a second set of experiments (cf. Section 3.7.2), in which the
performance of the Branch-and-Cut algorithm is compared with the state-of-the-art
exact methods for the k-VSP present in the literature.

Benchmark instances. We tested the same four sets of benchmark instances con-
sidered in [27]. The first two sets of graphs are obtained from matrix decomposition
problems. The considered matrices are the constraint matrices of several Netlib
and MIPLIB instances. There are 55 graphs constituting the Netlib data set, with
the number of vertices ranging from 51 to 500. The MIPLIB data set contains 37
graphs whose number of vertices ranges from 19 to 490 2. The other two sets are 40
instances from the second DIMACS challenge [35] and 50 Random graphs representing
hypergraphs generated by the authors of [27]. For the DIMACS set, the number of
vertices ranges from 23 to 496, whereas for the Random set, the number of vertices
ranges from 68 to 164. Since [27] considered hypergraphs, we adapted the latter
instances to our case by defining a clique for each hyperedge. In summary, our com-
putational study is conducted on a set of 182 graphs with different structures and
densities; the exact number of vertices and edges of these graphs are reported in the
tables provided in the Appendix.

As far as the values of k (maximum number of shores) and u (maximum capacity
of each shore) are concerned, we borrow the same setting from [27] in which k ∈
{4, 8, 12, 16, 24, 32, 64, 218, 256} and u = d n

k e. The values of k are clustered into three
major categories: (i) small → k ∈ {4, 8, 12}, (ii) medium → k ∈ {16, 24, 32} and

2The constraint matrices determining these graphs have been presolved and reduced by SCIP 3.2.0
with default settings by the authors of [27].
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(iii) large → k ∈ {64, 128, 256}. In summary, using 9 different values of k and 182
graphs, we obtained a testbed of 1638 different instances. In the remainder of this
chapter, aggregated results for small, medium and large values of k are reported
(whereas the detailed results can be found in the Appendix).

Computational Environment. All the reported experiments are performed on a
computer equipped with an i7 processor clocked at 3.20 GHz and 64 GB RAM under
Linux operating system. We use the CPLEX 12.7.1 MIP framework to implement
our Branch-and-Cut algorithms. CPLEX is run in single-threaded mode and all CPLEX
parameters are set to their default values. A time limit of 30 minutes is set for each
tested instance.

3.7.1 Determining the best configuration of the Branch-and-Cut algorithm

As previously discussed, a basic valid formulation for the k-VSP is given by (3.8)-
(3.11). Each one of the four families of inequalities: the Component Inequalities
(3.21), the Degree Inequalities (3.29), the Benders cuts (3.25) and the Cover Inequal-
ities (3.30) can be used to enhance this basic model. These families of cuts are com-
posed by an exponential number of constraints and thus they are separated within
the branching tree for integer solutions. In addition, they can be separated for frac-
tional solutions in order to strengthen the dual bounds and (potentially) improve
the computational convergence. In the following, we report results for the following
Branch-and-Cut configurations:

• C: the B&C separating the Component Inequalities (3.21) for integer solutions;

• D: the B&C separating the Degree Inequalities (3.29) for integer solutions;

• B: the B&C separating the Benders Cuts (3.25) for integer solutions;

• CV: the B&C separating the Cover Inequalities (3.30) for integer solutions, via
the detection of biconnected components. Among the three separation pro-
cedures given in Section 3.6.4, after extensive preliminary computational tests,
we determined that the best performing way is via the application of the Hopcroft
and Tarjan algorithm [62].

Concerning the separation of fractional points for (3.21), recall that this remains
an open question (see Section 3.6.2). Regarding the constraints (3.29), we tested the
separation of fractional points either in an exact or heuristic fashion. Although im-
provements were obtained for some specific instances, on average the computational
performance was worsened – additional computational effort was needed to solve
the LP relaxation at the branching nodes due to a large number of violated cuts
detected. We therefore do not report the results for this particular setting. Similar
considerations apply to the separation of (3.30) at fractional points, which was per-
formed by means of the greedy procedure proposed in [13]. Also in this case, the
average computational performance was worsened.

In all the configurations of the Branch-and-Cut algorithm, Bin Packing inequal-
ities (3.9) are separated at integer points only when no other violated inequalities
have been detected. This guarantees that no connected subgraph C with cardinal-
ity of the vertex set exceeding the capacity exists in the interdicted subgraph. The
associated Bin Packing instances were not challenging and hence, a standard MIP
formulation for the Bin Packing problem was used with CPLEX as the off-the-shelf
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solver. Indeed, the performance of our configurations was not affected by the effi-
ciency of the latter separation procedure which is why we refrained from developing
a tailored algorithm for the Bin Packing problem.

In Section 3.5, we presented two additional families of valid inequalities which
are in polynomial number: (i) the Stars Inequalities (3.31) and (ii) the Precedence In-
equalities (3.32) and (3.33). Thanks to extensive preliminary experiments, we ob-
served that these inequalities are useful to strengthen the formulation and to speed-
up the computational convergence. For this reason, they are always included into
our models.

In Table 3.1, we present the results of the computational experiments performed
with the previously discussed configurations of the Branch-and-Cut algorithm. Pre-
cisely, we report the performance of 5 different configurations: C, D, B and CV, i.e., the
four basic variants separating the Component, Degree, Benders and Cover Inequal-
ities for integer solutions, respectively. In addition, we report the performance of
C+CV, which corresponds to the separation of the Component Cuts and of the Cover
Cuts for each integer solution. Indeed, while the first three families of cuts have the
same structure (i.e., are all associated with trees of the graph G), the latter family is
structurally different. Hence, we tried to combine Cover Inequalities with the other
inequalities, and we report the results for the best configuration. Table 3.1 is horizon-
tally divided in four sections, the first three reporting aggregated results for the three
classes of values for the maximum number of shores k, i.e., small→ k ∈ {4, 8, 12},
medium → k ∈ {16, 24, 32}, large → k ∈ {64, 128, 256}. These three sections (546
instances each) report, for each configuration of the Branch-and-Cut algorithm, the
total number of instances solved to proven optimality (rows “Opt”), the average
computing time in seconds (rows “Avg Time”) and the average number of nodes
explored by the branching tree (rows “Avg nodes”). Finally the fourth section of the
table reports the same information for the entire set of the 1638 instances. All the
averages are computed separately for each configuration, by considering only the
instances solved to proven optimality by that configuration.

As far as the comparison of the four basic variants (C, D, B and CV) is concerned,
from the table it emerges that with 1165 instances solved to proven optimality, C is
the best configuration followed by B, which is able to solve 1110 instances, D which
is able to solve 1068 instances and by CV, which only solves 1063 instances. A similar
pattern can also be seen for the three different categories of values for k. The number
of instances solved to proven optimality and the computational times suggest that
the class small is the hardest to solve for all our Branch-and-Cut algorithms.

Separating both the Component and the Cover Cuts pays off in terms of the
number of instances solved to proven optimality, precisely C+CV is able to solve 1180
instances (15 more than C alone). The average number of Branch-and-Bound nodes
suggests that CV explores on average fewer nodes than C, especially for small values
of k. By combining the two families of cuts, on average the number of explored
nodes is reduced, compared with C alone.

3.7.2 Comparison with state-of-the-art solution methods

In this section we compare the performances of our best Branch-and-Cut configura-
tion identified in the previous section (i.e., the configuration C+CV) with the state-of-
the-art exact methods available in the literature for the k-VSP:

• BP: the Branch-and-Price algorithm of [27], and
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TABLE 3.1: Performance comparison for different configurations of
our Branch-and-Cut algorithm.

k C D B CV C+CV

small

Opt. (out of 546) 294 226 258 219 305

Avg Time 66.52 89.38 74.72 78.92 85.12

Avg Nodes 87355 12375 70370 29922 75221

medium

Opt. (out of 546) 388 360 369 362 392

Avg Time 53.53 46.39 46.56 32.42 44.34

Avg Nodes 82145 21012 64327 32320 54149

large

Opt. (out of 546) 483 482 483 482 483

Avg Time 19.22 17.88 21.82 16.01 19.74

Avg Nodes 41170 39678 42302 37852 39956

Total Opt. (out of 1638) 1165 1068 1110 1063 1180

Total Avg Time 42.58 42.62 42.34 34.56 44.81

Total Avg Nodes 66472 27608 56148 34334 53786

• Cplex: the direct solution of the compact model (3.1), (3.4) -(3.7) via CPLEX, a
state-of-the-art commercial MIP solver.

For these tests we used the same test-bed of 1638 instances proposed by [27] and
described in the previous section. We recall that a time limit of 30 minutes is set for
each run as for the experiments reported in [27]. The results of BP and Cplex are
directly borrowed from the tables reported in [27] (the performance of our machine
is comparable with the machine used for the experiments of [27], which is equipped
with a i7 processor clocked at 3.40 GHz).

The information reported in Table 3.2 summarizes the results of this second set
of tests. The table follows the same structure given in Table 3.1, but in addition
to the disaggregation concerning the category of k, we also report disaggregated
information for each class of instances. All the averages are computed separately
for each method, by considering only the instances solved to proven optimality by
that method. We discuss now the results for each class of instances separately.

For 360 DIMACS instances, Cplex is able to solve 200 instances, BP 223 instances
and C+CV 245 instances. For 333 MIPLIB instances, Cplex is able to solve 107 in-
stances, BP 135 instances and C+CV 168 instances. For 495 Netlib instances, Cplex
is able to solve 294 instances, BP 410 instances and C+CV 413 instances. For the 450
Random instances, Cplex is able to solve 263 instances, BP 410 instances and C+CV 354
instances.

Summarizing, in terms of the number of instances solved, our Branch-and-Cut
algorithm C+CV outperforms both Cplex and BP for the DIMACS and MIPLIB classes of
instances, it has a performance comparable with that of BP for the Netlib instances,
while it is outperformed by BP for the Random instances. For the category small of the
k values, Cplex remains instead the best option. This is due to the small number of
variables of the compact formulation which linearly depends on k. For medium and
large values of k, Cplex is largely dominated by BP and C+CV, which improve their
performance for increasing values of k, thus showing a complementary performance
with respect to Cplex. In particular, C+CV is the best option for all classes of instances,
when k is large.

Finally, performance profiles depicted in Figures 3.3 and 3.4 give a graphical
representation of the relative performance of the three compared methods, i.e., C+CV,
BP and Cplex. In Figure 3.3, the instances are gathered by class of instances, i.e.,
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TABLE 3.2: Performance comparison between Cplex, BP and our best
Branch-and-Cut algorithm.

Class k Cplex BP C+CV

DIMACS

small
Opt. (out of 120) 73 59 66

Avg Time 194.31 164.37 45.57

medium
Opt. (out of 120) 58 73 78

Avg Time 192.77 109.77 28.68

large
Opt. (out of 120) 69 91 101

Avg Time 61.57 71.71 33.15

Total Opt. (out of 360) 200 223 245

Total Avg Time 148.07 108.68 35.07

MIPLIB

small
Opt. (out of 111) 52 23 45

Avg Time 232.22 147.41 22.99

medium
Opt. (out of 111) 25 46 48

Avg Time 253.00 174.20 2.65

large
Opt. (out of 111) 30 66 75

Avg Time 19.35 122.35 61.24

Total Opt. (out of 333) 107 135 168

Total Avg Time 177.39 144.29 34.26

Netlib

small
Opt. (out of 165) 138 114 122

Avg Time 124.51 182.35 36.34

medium
Opt. (out of 165) 93 141 134

Avg Time 322.76 66.15 30.52

large
Opt. (out of 165) 63 155 157

Avg Time 30.40 24.99 9.97

Total Opt. (out of 495) 294 410 413

Total Avg Time 167.06 82.90 24.43

Random

small
Opt. (out of 150) 110 110 72

Avg Time 247.09 276.42 242.86

medium
Opt. (out of 150) 65 150 132

Avg Time 529.22 43.92 82.78

large
Opt. (out of 150) 88 150 150

Avg Time 0.35 0.42 0.19

Total Opt. (out of 450) 263 410 354

Total Avg Time 234.26 90.38 80.34
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Netlib, MIPLIB, DIMACS and Random. In Figure 3.4, the instances are gathered by
values of k, i.e., small, medium and large. As proposed in [36], let m be any solution
method and i denote an instance of the problem. In addition let ti,m be the time
required by method m to solve instance i. The performance ratio for a pair (i, m) is
defined as

ri,m =
ti,m

minm∈M{ti,m}
where M is the set of the considered methods. For each method m ∈ M, we then
define:

ρm(τ) =
|{i ∈ I : ri,m ≤ τ}|

|I|
where I is the set of the instances. The value ri,m represent the worsening (with re-
spect to computing time) incurred when solving instance i using method m instead
of the best possible one, whereas ρm(τ) gives the percentage of instances for which
the computing time of method m was not larger than τ times the time of the best
performing method. For each value of τ in the horizontal axis, the vertical axis re-
ports the percentage of the instances for which the corresponding algorithm spends
no more than τ times the computing time of the fastest algorithm. All computing
times smaller than 0.1 seconds were scaled to 0.1, which is the granularity of the
profile. This way we avoid comparisons between tiny values, which would produce
inaccurate conclusions. The curves originate from a point denoting the percentage
of instances for which the corresponding algorithm is the fastest, and at the right
end of the chart, they show the percentage of instances solved within time limit. The
best performing algorithm is graphically represented by the curve in the upper part
of the respective figure. The horizontal axis is represented in logarithmic scale.

From Figure 3.3, it emerges that C+CV is the fastest exact method for around 60%
of the DIMACS instances, while this is the case for the BP and Cplex for only ≈10%
of instances. Even by allowing larger computing times, C+CV outperforms BP and
Cplex on this class of instances. For the MIPLIB instances, C+CV is the fastest ex-
act method for 40% of the instances, while this is true for BP (resp., Cplex) for less
than 30% (resp., approximately 10%) of the instances. By allowing larger computing
times, C+CV outperforms BP and Cplex also on this class of instances. For the Netlib
instances, C+CV is the fastest exact method for more than 70% of the instances, while
this is true for BP (resp., Cplex) for less than 40% (resp., approximately 10%) of the in-
stances. 3 Even by allowing larger computing times, the fraction of instances solved
by C+CV is slightly larger than that of instances solved by BP. For the Random in-
stances, BP is the fastest method for 60% of the instances, followed by C+CV (around
50%) and Cplex (less than 20%). BP is the best method for this class of instances.
From Figure 3.3 it also emerges that the hardest set of instances are the MIPLIB ones,
since only 50% of these instances can be solved to proven optimality by the best per-
forming method. Instead, almost 70% of the DIMACS, more than 80% of the Netlib
and more than 90% of the Random instances, respectively, can be solved by the best
exact method.

Figure 3.4, where instances are gathered by values of k, confirms that the hardest
instances are the ones of category small, for which more than 60% of the instances
can be solved to proven optimality by the best considered exact method. C+CV is the
fastest method for around 40% of the instances, while for BP and Cplex this is true for
around 20% of the instances. However, by allowing larger computing times, Cplex

3These values may sum up to a value larger than 100%, if more than one algorithm is classified as
the fastest for a specific instance (because of ties in the computing time).
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is the best performing method for this class. The situation is slightly improved for
the category medium, where more than 70% of the instances can be solved to proven
optimality by C+CV and BP. C+CV is the fastest method for almost 60% of the instances,
BP is the fastest for around 35% of instances and Cplex is completely outperformed.
For large computing times, C+CV and BP have a similar performance. As far as the
category large is concerned, approximately 90% of these instances can be solved by
C+CV which is also the fastest method for almost 80% of these instances, while this
is true for BP for around 50% and for Cplex for around 10% of the instances. C+CV is
the best performing method for this class.
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FIGURE 3.3: Performance profiles by class of instances: DIMACS,
MIPLIB, Netlib and Random.

 0

 20

 40

 60

 80

 100

1 10 102 103

�(�)

�

k small

C+CV
BP

Cplex
 0

 20

 40

 60

 80

 100

1 10 102 103

�(�)

�

k medium

C+CV
BP

Cplex

 0

 20

 40

 60

 80

 100

1 10 102 103

�(�)

�

k large

C+CV
BP

Cplex

FIGURE 3.4: Performance profiles by values of k: small → k ∈
{4, 8, 12}, medium → k ∈ {16, 24, 32}, large → k ∈ {64, 128, 256}

.



3.8. Conclusions 63

3.8. Conclusions

In this chapter we studied the capacitated k-Vertex Separator problem in which a
subset of vertices of minimum cardinality has to be removed from a given graph,
so that the size of each connected component in the remaining graph is bounded
by u, and all components can be packed into k shores. For this hard problem with
applications in detecting critical nodes in communication networks, social networks
analysis and matrix decomposition, extended formulations have been well studied
in the previous literature, but very little has been known about solving the problem
using a canonical IP formulation. The major drawback of the canonical IP formula-
tion is that it requires solving an (NP-hard) bin-packing problem in order to verify
feasibility of a solution. To improve the computational efficiency of the underly-
ing IP formulation, we proposed several families of valid inequalities which are de-
rived from a perspective of a two-player sequential game in which a leader removes
the vertices, and a follower solves another combinatorial optimization problem that
(partially) guarantees feasibility of the solution. Three new families of valid inequal-
ities are proposed, and their effects on the basic IP formulation are studied both from
the theoretical and computational perspective.

On a large benchmark set of the instances available in the current literature, we
demonstrate that our new Branch-and-Cut approach is competitive with the state-of-
the-art Branch-and-Price algorithm and a compact formulation from [27]. In partic-
ular, our approach computationally outperforms to the Branch-and-Price algorithm
from [27] for large values of the number of shores k and for structured graphs from
various applications, while the latter has a better performance for random graphs
and average values of the k parameter.

Our computational analysis has revealed that exact approaches for k-Vertex Sep-
arator problem can tackle graphs with up to 500 vertices. Solving the problem for
graphs with thousands of vertices is a relevant open problem, for which heuristic
and approximate methods should be considered as an interesting stream of research.

Finally, we hope that this work raises the awareness on the importance and
merit of bilevel optimization for solving difficult combinatorial optimization prob-
lems by modeling them as two-player Stackelberg games. Many vertex/edge dele-
tion/insertion problems or graph partitioning problems could benefit from this new
modeling paradigm. The same is true for problems that ask for finding the most
central or most critical vertices/edges with respect to various centrality measures.
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Appendix

In Table 3.3 we report, for each instance from the DIMACS set and for each considered
value of k, the optimal solution value of the k-Vertex Separator problem, in parenthe-
sis, and the computational times of C+CV, for instances solved to proven optimality.
When the time limit of 30 minutes is reached, we report the values of lower and up-
per bound at time limit. In the first two columns of the table, we report the number
of vertices (n) and the number of edges (m) of the graph. The same information is re-
ported in Tables 3.4, 3.4 and 3.5 for the MIPLIB, Netlib and Random sets of instances,
respectively.
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TABLE 3.3: Features, computational times and optimal solution val-
ues (if known) of C+CV for the DIMACS instances.

n m k=4 k=8 k=12 k=16 k=24 k=32 k=64 k=128 k=256

anna 138 493 0.2 (13) 0.4 (15) 0.5 (16) 0.6 (18) 0.4 (22) 0.3 (23) 0.1 (29) 0.1 (39) 0.0 (58)

david 87 406 0.2 (13) 0.3 (16) 0.2 (19) 0.2 (21) 0.1 (25) 0.1 (32) 0.0 (38) 0.0 (51) 0.0 (51)

fpsol2.i.1 496 11654 3.2 (51) 3.1 (57) 10.5 (74) 8.7 (88) 18.2 (95) 14.8 (102) 22.8 (125) 15.0 (145) 5.9 (166)

fpsol2.i.2 451 8691 2.7 (29) 1.2 (34) 1.6 (44) 3.5 (54) 4.5 (63) 5.7 (71) 9.8 (88) 12.0 (114) 8.1 (143)

fpsol2.i.3 425 8688 1.8 (29) 1.9 (36) 1.5 (47) 1.6 (56) 1.7 (65) 2.0 (73) 6.3 (93) 7.4 (114) 3.0 (143)

games120 120 638 (24-46) (29-57) (31-58) (35-69) (52-72) (59-75) (77-86) 0.1 (98) 0.1 (98)

huck 74 301 0.1 (5) 0.0 (11) 0.0 (16) 0.0 (21) 0.0 (23) 0.0 (28) 0.0 (36) 0.0 (47) 0.0 (47)

jean 80 254 0.0 (7) 0.1 (11) 0.0 (14) 0.1 (20) 0.1 (24) 0.0 (28) 0.0 (33) 0.0 (42) 0.0 (42)

miles250 128 387 0.2 (8) 2.0 (13) 190.2 (22) 305.9 (28) 88.3 (37) 0.7 (46) 0.1 (67) 0.0 (84) 0.0 (84)

miles500 128 1170 (23-29) (37-46) (47-52) (60-61) 1087.8 (71) 4.8 (81) 0.4 (96) 0.0 (110) 0.0 (110)

miles750 128 2113 1601.2 (38) (57-63) 86.7 (69) 8.8 (77) 2.5 (86) 0.7 (96) 0.2 (108) 0.0 (116) 0.0 (116)

miles1000 128 3216 (52-54) (74-76) 66.7 (85) 5.5 (90) 1.3 (96) 0.4 (104) 0.1 (114) 0.0 (120) 0.0 (120)

miles1500 128 5198 0.7 (64) 2.0 (91) 0.8 (99) 0.4 (104) 0.3 (108) 0.1 (114) 0.1 (120) 0.0 (123) 0.0 (123)

mulsol.i.1 197 3925 0.5 (38) 0.3 (69) 0.3 (74) 0.3 (76) 0.2 (77) 0.3 (79) 0.3 (82) 0.3 (87) 0.2 (97)

mulsol.i.2 188 3885 0.1 (38) 0.1 (54) 0.2 (55) 0.2 (55) 0.4 (57) 0.2 (60) 0.3 (73) 0.2 (77) 0.1 (98)

mulsol.i.3 184 3916 0.1 (39) 0.2 (55) 0.2 (55) 0.2 (55) 0.1 (57) 0.2 (60) 0.2 (74) 0.2 (77) 0.1 (98)

mulsol.i.4 185 3946 0.1 (38) 0.2 (55) 0.2 (55) 0.1 (55) 0.2 (57) 0.2 (60) 0.2 (73) 0.2 (77) 0.1 (99)

mulsol.i.5 186 3973 0.1 (38) 0.2 (55) 0.2 (55) 0.2 (55) 0.2 (57) 0.2 (60) 0.2 (73) 0.2 (76) 0.1 (98)

myciel4 23 71 0.2 (10) 0.1 (11) 0.0 (12) 0.0 (12) 0.0 (12) 0.0 (12) 0.0 (12) 0.0 (12) 0.0 (12)

myciel5 47 236 116.1 (19) 0.5 (20) 0.2 (22) 0.2 (23) 0.1 (24) 0.1 (24) 0.0 (24) 0.0 (24) 0.0 (24)

myciel6 95 755 (29-38) 32.0 (35) (40-42) 225.2 (44) 4.4 (45) 2.2 (47) 0.6 (48) 0.1 (48) 0.1 (48)

myciel7 191 2360 (42-75) (55-65) (61-84) (64-86) (73-89) (81-86) 402.6 (95) 8.3 (96) 0.5 (96)

queen5_5 25 160 503.9 (16) 0.3 (17) 0.2 (19) 0.1 (20) 0.1 (20) 0.0 (20) 0.0 (20) 0.0 (20) 0.0 (20)

queen6_6 36 290 (17-25) 364.7 (26) 1.6 (28) 1.5 (28) 0.2 (28) 0.2 (28) 0.0 (30) 0.0 (30) 0.0 (30)

queen7_7 49 476 (19-35) (28-36) (32-38) (36-38) 16.5 (39) 1.1 (40) 0.0 (42) 0.0 (42) 0.0 (42)

queen8_8 64 728 (22-47) (34-48) (39-50) (45-52) 393.0 (52) 12.6 (54) 0.0 (56) 0.0 (56) 0.0 (56)

queen8_12 96 1368 (30-72) (44-75) (54-79) (59-79) (65-81) (69-82) 802.5 (83) 0.3 (88) 0.2 (88)

queen9_9 81 1056 (26-59) (38-62) (47-66) (50-66) (56-64) (59-68) 106.0 (69) 0.2 (72) 0.1 (72)

queen10_10 100 1470 (31-75) (45-81) (54-82) (59-84) (65-85) (68-85) 1559.1 (87) 0.4 (90) 0.3 (90)

queen11_11 121 1980 (36-90) (50-101) (61-99) (69-101) (75-104) (81-105) (96-107) 1.2 (110) 1.0 (110)

queen12_12 144 2596 (42-108) (57-121) (74-120) (80-123) (88-125) (91-126) (98-128) (109-128) 6.0 (132)

queen13_13 169 3328 (49-126) (62-145) (79-144) (91-146) (98-147) (103-148) (115-150) (123-152) 31.2 (156)

queen14_14 196 4186 (56-147) (68-170) (90-172) (99-169) (111-171) (116-172) (125-176) (139-178) 64.6 (182)

queen15_15 225 5180 (62-168) (73-195) (99-199) (113-198) (125-200) (130-199) (142-204) (155-206) 264.1 (210)

queen16_16 256 6320 (71-192) (81-224) (110-232) (124-231) (138-234) (147-231) (165-234) (174-235) (238-240)

school1 385 19095 (101-267) (125-311) (154-292) (168-295) (185-301) (196-307) (219-307) (234-318) (277-328)

school1_nsh 352 14612 (85-245) (119-303) (140-269) (160-269) (173-279) (184-275) (204-281) (230-291) (249-300)

zeroin.i.1 211 4100 0.7 (43) 0.5 (49) 0.8 (57) 1.0 (61) 0.5 (70) 0.5 (72) 0.8 (78) 0.5 (84) 0.2 (91)

zeroin.i.2 211 3541 0.2 (28) 0.6 (38) 0.9 (42) 0.7 (46) 0.8 (51) 0.4 (55) 0.4 (62) 0.5 (73) 0.2 (84)

zeroin.i.3 206 3540 0.3 (28) 0.7 (38) 0.6 (42) 0.7 (47) 0.8 (51) 0.8 (54) 0.4 (62) 0.5 (73) 0.2 (83)
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TABLE 3.4: Features, computational times and optimal solution val-
ues (if known) of C+CV for the MIPLIB instances.

n m k=4 k=8 k=12 k=16 k=24 k=32 k=64 k=128 k=256

30n20b8 490 28234 (136-180) (208-239) (229-260) (245-268) (259-283) (270-289) (305-314) 18.0 (362) 2.1 (413)

50v-10 233 549 (19-22) (23-25) 435.6 (27) 10.5 (30) 4.2 (35) 0.8 (36) 0.7 (50) 0.7 (50) 0.2 (50)

b-ball 19 143 0.0 (11) 0.0 (11) 0.0 (11) 0.0 (11) 0.0 (11) 0.0 (11) 0.0 (11) 0.0 (11) 0.0 (11)

csched007 271 5427 (53-131) (79-218) (95-198) (104-206) (114-211) (125-215) (146-205) (170-186) (180-199)

csched008 271 4956 (50-127) (75-210) (91-193) (100-197) (109-209) (121-200) (145-201) (163-194) (178-203)

csched010 272 5321 (49-134) (72-219) (92-189) (101-178) (112-171) (123-176) (147-177) (168-176) (182-189)

dfn-gwin-UUM 156 1409 (40-47) (47-50) 24.6 (47) 5.0 (56) (71-74) (81-87) 1303.0 (96) 241.6 (99) 0.1 (101)

eil33.2 32 496 0.0 (24) 0.0 (28) 0.0 (29) 0.0 (30) 0.0 (30) 0.0 (31) 0.0 (31) 0.0 (31) 0.0 (31)

eilB101 100 3921 (61-65) 49.9 (73) 5.5 (77) 1.7 (79) 1.0 (82) 1.0 (84) 0.7 (91) 0.0 (94) 0.0 (94)

ger50_17_trans 498 14021 (111-135) (138-163) (152-184) (151-189) (185-194) (197-210) (255-323) (287-351) (300-359)

glass4 392 24768 (120-276) (191-290) (219-301) (232-306) (255-311) (263-316) (304-325) (329-335) 98.4 (345)

gmu-35-40 357 3461 12.6 (19) (41-71) (59-75) (68-102) (82-114) (94-121) (146-162) (207-213) 140.1 (239)

gmu-35-50 358 4443 400.3 (28) (52-78) (69-85) (80-100) (99-111) (108-124) (169-172) 35.5 (229) 5.2 (258)

go19 361 1978 (28-177) (33-240) (36-251) (39-244) (41-249) (47-272) (133-266) (186-260) (203-265)

harp2 92 999 0.1 (18) 0.1 (18) 0.1 (18) 0.1 (19) 0.1 (19) 0.1 (19) 0.1 (19) 0.1 (19) 0.1 (19)

k16x240 256 600 4.3 (14) 8.6 (15) 1.7 (16) 1.9 (16) 2.2 (16) 1.4 (16) 1.0 (16) 1.0 (16) 0.4 (16)

m100n500k4r1 100 2248 (38-74) (54-82) (65-80) (70-80) (75-84) (81-84) 17.8 (86) 0.9 (89) 0.9 (89)

mik.250-1-100.1 100 4950 0.0 (75) 0.0 (87) 0.0 (91) 0.0 (93) 0.0 (95) 0.0 (96) 0.0 (98) 0.0 (99) 0.0 (99)

neos-1228986 241 2915 (18-68) (43-84) (65-117) (74-137) (88-124) (98-135) (132-141) 36.7 (160) 0.1 (161)

neos-1426635 486 6210 (18-67) (18-164) (48-76) (77-173) (115-257) (143-217) (186-264) (235-281) (318-325)

neos-1440225 328 8630 (70-96) (82-242) (86-177) (103-215) (136-219) (157-211) (204-224) (248-273) (270-286)

neos-777800 475 38862 (142-201) (216-259) (236-279) (253-291) (274-299) (295-305) 1331.3 (311) 142.1 (315) 48.1 (317)

neos-911880 83 1704 0.1 (35) 0.0 (35) 0.0 (35) 0.0 (35) 0.0 (35) 0.0 (35) 0.0 (35) 0.0 (48) 0.0 (48)

neos15 492 1680 (19-86) (25-133) (26-143) (33-147) (35-227) (37-215) (81-204) (167-217) 2.3 (261)

neos788725 433 6960 (62-96) (66-112) (74-115) (86-217) (120-268) (130-230) (180-328) (222-344) (255-353)

neos858960 128 2427 1.1 (43) 0.1 (46) 0.1 (46) 0.1 (46) 0.1 (47) 0.1 (48) 0.1 (48) 0.1 (48) 0.1 (48)

noswot 172 1442 (10-27) (30-52) (44-68) (54-77) (68-82) (84-97) 0.0 (107) 0.0 (122) 0.0 (147)

ns1766074 110 1755 (34-80) (50-82) (60-83) (68-88) (74-90) (80-90) 1078.7 (95) 7.6 (100) 7.5 (100)

p80x400b 474 990 4.5 (7) 0.4 (10) 3.7 (16) 8.0 (21) 5.4 (30) 3.8 (32) 9.8 (43) 3.7 (78) 3.5 (78)

pg 135 2760 0.3 (25) 0.3 (25) 0.3 (25) 0.3 (25) 0.3 (25) 0.3 (25) 0.3 (25) 0.3 (25) 0.1 (35)

pg5_34 225 5100 0.2 (25) 0.2 (25) 0.2 (25) 0.2 (25) 0.2 (25) 0.2 (25) 0.2 (25) 0.1 (25) 0.1 (125)

probportfolio 302 45450 0.3 (226) 0.2 (264) 0.2 (276) 0.2 (283) 0.2 (289) 0.2 (292) 0.2 (297) 0.2 (299) 0.2 (300)

ran14x18 284 756 1.2 (16) 1.2 (16) (16-20) 1.3 (16) 2.6 (32) 1.9 (32) 1.2 (32) 1.0 (32) 1.2 (32)

ran14x18.disj-8 447 15861 54.2 (96) 20.7 (99) (103-105) 5.5 (103) (146-149) 59.5 (165) 8.1 (172) 8.4 (182) 1.4 (195)

ran16x16 288 768 0.1 (16) 1.2 (16) (19-20) 2.5 (16) 2.3 (32) 2.1 (32) 1.6 (32) 1.3 (32) 1.4 (32)

swath 482 22110 (125-361) (152-421) (192-423) (233-430) (257-437) (272-443) (303-451) (311-450) (333-451)

timtab1 332 12582 (91-129) (121-144) (140-162) (155-170) (174-192) (187-198) 25.1 (224) 0.3 (259) 0.1 (270)



3.8. Conclusions 67

TABLE 3.5: Features, computational times and optimal solution val-
ues (if known) of C+CV for the Netlib instances.

n m k=4 k=8 k=12 k=16 k=24 k=32 k=64 k=128 k=256

adlittle 53 239 0.1 (10) 0.0 (14) 0.0 (16) 0.0 (17) 0.0 (20) 0.0 (23) 0.0 (27) 0.0 (27) 0.0 (27)

agg 164 1694 1.6 (22) 30.6 (44) 19.9 (57) 2.4 (62) 0.6 (78) 0.4 (83) 0.1 (104) 0.0 (114) 0.0 (130)

agg2 280 4010 (42-46) 59.5 (63) (81-84) (91-101) (109-114) (127-128) 1.2 (147) 0.4 (180) 0.1 (199)

agg3 282 4104 (44-48) 209.2 (66) (83-89) (93-105) (112-119) 917.1 (128) 2.0 (151) 0.3 (180) 0.1 (200)

bandm 180 2379 30.2 (40) 33.8 (52) 4.1 (58) 1.8 (62) 0.6 (70) 0.1 (82) 0.1 (112) 0.1 (126) 0.0 (143)

beaconfd 90 1199 0.3 (26) 0.1 (36) 0.1 (37) 0.0 (38) 0.0 (40) 0.1 (40) 0.0 (40) 0.0 (42) 0.0 (42)

blend 54 548 0.1 (20) 0.1 (26) 0.0 (30) 0.0 (32) 0.0 (36) 0.0 (39) 0.0 (43) 0.0 (43) 0.0 (43)

bnl1 448 2102 (26-55) (33-61) (38-77) (43-79) (65-71) (74-77) 1223.5 (107) 1.5 (149) 1.0 (218)

boeing1 284 2751 2.4 (23) 83.9 (41) 20.9 (46) 39.0 (53) 50.3 (64) 12.1 (73) 0.9 (104) 0.8 (142) 0.2 (164)

boeing2 122 740 0.9 (19) 2.4 (25) 4.3 (30) 3.1 (35) 0.5 (37) 0.3 (42) 0.2 (56) 0.1 (71) 0.0 (71)

bore3d 52 615 0.2 (23) 0.1 (28) 0.1 (29) 0.0 (30) 0.0 (32) 0.0 (35) 0.0 (40) 0.0 (40) 0.0 (40)

brandy 113 1613 8.5 (34) 3.3 (42) 2.3 (49) 0.5 (53) 0.1 (60) 0.1 (64) 0.0 (75) 0.0 (84) 0.0 (84)

capri 166 2676 (43-47) 125.0 (57) 2.8 (59) 7.8 (64) 0.7 (73) 0.7 (78) 0.2 (96) 0.1 (105) 0.0 (122)

czprob 475 464 8.8 (3) 18.4 (4) 20.6 (5) 39.4 (6) 110.8 (9) 46.2 (9) 28.0 (11) 28.2 (13) 27.9 (13)

degen2 382 5686 (67-102) (77-114) (86-119) (89-134) (118-126) (131-138) (170-172) 1.1 (200) 1.2 (221)

e226 148 1537 29.4 (29) 1.9 (38) 0.6 (42) 0.3 (50) 0.3 (65) 0.2 (75) 0.0 (90) 0.0 (99) 0.0 (113)

etamacro 307 1489 (30-71) (36-85) (39-88) (42-104) (52-105) (60-120) (106-126) (140-143) 31.1 (165)

fffff800 306 3886 1.6 (24) 17.7 (43) 8.7 (52) 18.2 (76) 3.7 (110) 2.8 (128) 1.0 (156) 1.0 (166) 0.3 (174)

finnis 350 977 2.8 (11) 282.6 (24) (31-34) 670.0 (38) 793.9 (45) 70.8 (50) 7.1 (61) 17.0 (92) 3.5 (108)

forplan 104 1153 (33-35) 137.1 (41) 87.9 (47) 16.2 (51) 8.9 (57) 4.2 (59) 0.3 (67) 0.0 (75) 0.0 (75)

gfrdpnc 322 314 0.2 (4) 1.4 (9) 0.8 (11) 1.8 (13) 3.0 (19) 3.7 (23) 2.1 (40) 1.5 (72) 2.1 (92)

grow15 300 2934 745.1 (15) (28-36) (43-63) (54-67) 0.1 (105) 0.0 (150) 0.0 (225) 0.0 (255) 0.0 (269)

grow22 440 4315 (12-24) (29-35) (41-49) (58-104) (83-108) 0.1 (132) 0.0 (286) 0.0 (352) 0.0 (395)

grow7 140 1371 22.5 (17) (32-34) 0.0 (56) 0.0 (77) 0.0 (98) 0.0 (105) 0.0 (119) 0.0 (125) 0.0 (132)

israel 163 10628 0.2 (98) 0.1 (118) 0.2 (129) 0.1 (133) 0.0 (137) 0.0 (138) 0.0 (145) 0.0 (147) 0.0 (152)

lotfi 122 528 10.2 (19) 26.3 (25) 11.3 (30) 0.4 (31) 0.9 (37) 0.3 (44) 0.1 (56) 0.0 (67) 0.0 (67)

perold 500 5743 (49-188) (55-285) (62-253) (76-223) (98-339) (126-226) (185-232) (246-262) 17.6 (305)

pilot4 352 5707 (46-75) (66-104) (95-122) (117-124) 38.6 (122) 156.9 (130) 22.2 (142) 8.0 (178) 0.9 (193)

recipe 55 129 0.0 (1) 0.4 (8) 0.0 (12) 0.0 (15) 0.0 (25) 0.0 (28) 0.0 (38) 0.0 (38) 0.0 (38)

sc105 59 356 0.3 (16) 0.2 (20) 0.1 (25) 0.1 (26) 0.1 (28) 0.1 (34) 0.0 (42) 0.0 (42) 0.0 (42)

sc205 113 1558 (35-40) 3.7 (45) 1.4 (54) 0.7 (56) 0.5 (63) 0.3 (64) 0.1 (71) 0.0 (90) 0.0 (90)

scagr25 221 8050 1641.0 (69) 5.9 (101) 0.5 (113) 0.2 (120) 0.1 (127) 0.1 (132) 0.1 (137) 0.1 (151) 0.0 (176)

scagr7 58 661 0.0 (21) 0.0 (28) 0.0 (32) 0.0 (33) 0.0 (35) 0.0 (39) 0.0 (46) 0.0 (46) 0.0 (46)

scfxm1 242 2057 2.5 (17) (45-49) (58-61) (64-67) (80-82) 74.1 (91) 0.4 (111) 0.3 (142) 0.0 (168)

scfxm2 485 4231 137.7 (18) (36-40) (64-85) (82-105) (101-124) (115-139) (172-187) 4.1 (228) 1.2 (285)

scorpion 105 502 0.3 (11) 0.2 (12) 0.1 (36) 0.1 (38) 0.1 (41) 0.0 (43) 0.0 (50) 0.0 (70) 0.0 (70)

scrs8 181 1835 (30-35) (47-50) (53-56) 355.7 (58) 7.7 (62) 1.3 (66) 0.1 (74) 0.3 (91) 0.1 (117)

scsd1 77 202 0.1 (8) 0.1 (13) 0.1 (16) 0.0 (18) 0.0 (20) 0.0 (25) 0.0 (32) 0.0 (45) 0.0 (45)

scsd6 147 342 (14-16) (20-22) (24-28) (28-31) (34-35) 458.6 (43) 0.6 (53) 0.2 (62) 0.0 (86)

scsd8 397 1069 (14-25) (20-63) (24-71) (26-92) (31-104) (37-125) (70-149) (131-168) 31.3 (199)

sctap1 269 706 70.7 (15) 287.4 (22) 111.7 (25) 44.4 (29) 7.9 (35) 1.7 (40) 1.1 (55) 0.6 (71) 0.6 (91)

share1b 102 493 0.1 (7) 0.0 (15) 0.1 (27) 0.0 (31) 0.0 (37) 0.0 (45) 0.0 (60) 0.0 (68) 0.0 (68)

share2b 93 619 0.1 (9) 0.0 (12) 0.0 (37) 0.0 (51) 0.0 (63) 0.0 (65) 0.0 (66) 0.0 (70) 0.0 (70)

shell 252 247 0.1 (4) 0.3 (6) 0.8 (9) 1.4 (10) 1.1 (13) 1.4 (17) 0.6 (27) 1.8 (49) 0.2 (75)

ship04l 313 593 0.3 (5) 2.1 (9) 2.2 (9) 2.5 (11) 3.2 (12) 3.4 (13) 3.9 (14) 4.0 (19) 2.9 (32)

ship04s 213 391 0.2 (4) 1.1 (8) 2.2 (10) 2.0 (10) 0.8 (11) 1.0 (12) 0.9 (17) 1.0 (25) 0.2 (37)

ship08s 284 462 0.2 (4) 0.3 (7) 1.3 (12) 5.3 (14) 4.0 (17) 2.4 (18) 2.1 (23) 2.3 (26) 2.5 (40)

ship12s 344 592 0.2 (3) 0.2 (3) 0.3 (3) 0.6 (11) 1.2 (21) 4.1 (25) 8.9 (37) 3.2 (42) 2.5 (63)

stair 246 11285 (104-116) 33.9 (131) 5.3 (132) 3.8 (138) 2.3 (145) 1.7 (149) 10.7 (168) 0.5 (171) 0.1 (189)

standata 258 411 0.3 (1) 0.4 (3) 1.1 (4) 1.0 (5) 1.0 (9) 1.8 (9) 2.2 (20) 0.7 (28) 0.6 (64)

standmps 360 638 2.4 (8) 8.9 (12) 15.3 (16) 23.6 (19) 20.8 (25) 13.5 (26) 12.0 (38) 17.4 (52) 6.1 (69)

stocfor1 62 272 0.1 (10) 0.0 (13) 0.0 (16) 0.0 (20) 0.0 (24) 0.0 (29) 0.0 (37) 0.0 (37) 0.0 (37)

tuff 137 1464 0.7 (26) 0.7 (36) 3.7 (45) 0.6 (47) 0.2 (58) 0.1 (64) 0.2 (73) 0.2 (79) 0.0 (90)

vtpbase 51 354 0.1 (14) 0.0 (23) 0.0 (25) 0.0 (30) 0.0 (35) 0.0 (40) 0.0 (44) 0.0 (44) 0.0 (44)

wood1p 171 3310 0.1 (28) 0.1 (62) 0.0 (67) 0.0 (78) 0.0 (94) 0.0 (106) 0.0 (135) 0.0 (145) 0.0 (155)
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TABLE 3.6: Features, computational times and optimal solution val-
ues (if known) of C+CV for the Random instances.

n m k=4 k=8 k=12 k=16 k=24 k=32 k=64 k=128 k=256

grp1_1 68 191 17.6 (15) 12.4 (18) 0.5 (19) 0.3 (20) 0.1 (25) 0.1 (25) 0.0 (29) 0.0 (35) 0.0 (35)

grp1_2 68 169 39.4 (14) 4.9 (16) 0.8 (18) 0.3 (20) 0.1 (22) 0.1 (22) 0.1 (26) 0.0 (36) 0.0 (36)

grp1_3 58 217 (18-21) (22-24) 43.2 (25) 4.6 (27) 0.4 (28) 0.1 (31) 0.0 (36) 0.0 (36) 0.0 (36)

grp1_4 60 187 50.6 (16) 48.3 (19) 1.1 (21) 0.3 (22) 0.2 (23) 0.1 (28) 0.0 (35) 0.0 (35) 0.0 (35)

grp1_5 75 184 1.0 (12) 0.6 (14) 0.3 (16) 0.3 (20) 0.1 (21) 0.1 (23) 0.1 (28) 0.0 (37) 0.0 (37)

grp2_1 75 230 (17-20) (21-24) (24-26) 43.2 (28) 1.6 (29) 0.6 (32) 0.1 (35) 0.0 (46) 0.0 (46)

grp2_2 95 183 3.7 (11) 27.2 (15) 2.2 (17) 1.4 (19) 0.4 (23) 0.2 (27) 0.0 (33) 0.0 (47) 0.0 (47)

grp2_3 87 219 224.2 (16) (20-22) 1668.2 (23) 511.1 (26) 2.4 (29) 0.5 (32) 0.2 (35) 0.0 (46) 0.0 (46)

grp2_4 98 203 32.1 (14) 135.8 (18) 78.4 (20) 16.8 (22) 1.1 (24) 0.6 (26) 0.2 (35) 0.0 (48) 0.0 (48)

grp2_5 93 160 0.5 (9) 2.1 (13) 1.0 (15) 0.5 (17) 0.3 (21) 0.1 (24) 0.1 (33) 0.0 (43) 0.0 (43)

grp3_1 102 232 517.3 (16) (19-22) 1041.8 (23) 104.6 (25) 5.1 (28) 1.0 (30) 0.1 (39) 0.0 (55) 0.0 (55)

grp3_2 108 217 1384.5 (15) 1146.5 (19) 1765.4 (23) 46.4 (24) 10.9 (28) 0.8 (30) 0.2 (41) 0.0 (53) 0.0 (53)

grp3_3 122 213 4.5 (11) 9.1 (14) 3.6 (16) 1.2 (18) 1.2 (21) 0.3 (26) 0.2 (42) 0.0 (60) 0.0 (60)

grp3_4 104 217 501.9 (15) 1435.2 (19) 1062.6 (22) 329.4 (24) 5.5 (27) 2.9 (31) 0.1 (40) 0.0 (55) 0.1 (55)

grp3_5 107 216 337.4 (15) 1245.3 (19) 975.8 (22) 100.6 (23) 2.5 (26) 0.8 (29) 0.1 (38) 0.1 (50) 0.0 (50)

grp4_1 142 221 226.3 (12) (16-17) (19-20) 446.3 (22) 182.9 (26) 10.9 (28) 0.8 (35) 0.4 (43) 0.1 (63)

grp4_2 125 246 1605.3 (15) (18-20) (21-23) 495.7 (25) 36.0 (27) 1.2 (33) 0.3 (45) 0.0 (58) 0.0 (58)

grp4_3 135 187 0.9 (8) 1.3 (11) 1.1 (13) 1.6 (16) 0.8 (18) 0.8 (20) 0.2 (29) 0.2 (34) 0.1 (57)

grp4_4 128 161 0.2 (5) 0.3 (8) 0.3 (9) 0.4 (12) 0.5 (15) 0.2 (18) 0.1 (32) 0.0 (53) 0.0 (53)

grp4_5 126 195 0.5 (7) 2.7 (12) 3.6 (15) 1.8 (18) 1.0 (20) 0.6 (24) 0.2 (40) 0.0 (57) 0.0 (57)

grp5_1 173 219 0.4 (7) 0.5 (9) 1.1 (12) 0.8 (13) 2.3 (17) 1.6 (19) 0.5 (32) 0.5 (43) 0.1 (68)

grp5_2 161 155 0.3 (2) 0.5 (5) 1.0 (6) 0.5 (8) 1.4 (10) 0.3 (12) 0.9 (23) 0.3 (30) 0.1 (54)

grp5_3 158 195 0.4 (7) 1.3 (10) 2.5 (13) 1.6 (15) 2.0 (19) 1.2 (23) 0.7 (31) 0.4 (40) 0.1 (61)

grp5_4 159 192 0.2 (3) 0.5 (6) 0.5 (9) 1.2 (12) 1.5 (17) 0.9 (21) 1.3 (30) 0.3 (43) 0.1 (67)

grp5_5 158 199 0.2 (4) 0.3 (8) 0.4 (9) 0.4 (12) 0.7 (13) 0.3 (18) 0.2 (30) 0.3 (38) 0.1 (64)

grp6_1 69 292 (20-24) (23-30) (28-31) 555.6 (31) 1.5 (35) 1.5 (35) 0.3 (39) 0.0 (46) 0.0 (46)

grp6_2 74 266 (19-24) (23-27) (25-28) 135.3 (30) 2.8 (31) 0.5 (33) 0.2 (36) 0.0 (44) 0.0 (44)

grp6_3 50 250 (19-22) 544.7 (24) 67.2 (26) 3.0 (27) 0.5 (27) 0.1 (29) 0.0 (33) 0.0 (33) 0.0 (33)

grp6_4 52 275 (20-24) (25-26) 91.9 (27) 6.6 (28) 0.6 (30) 0.3 (32) 0.0 (37) 0.0 (37) 0.0 (37)

grp6_5 63 297 (21-26) (24-29) (28-30) 13.2 (32) 0.7 (33) 0.2 (36) 0.1 (43) 0.0 (43) 0.0 (43)

grp7_1 96 223 (16-19) (19-25) (23-26) 440.8 (27) 4.0 (31) 0.8 (34) 0.1 (38) 0.0 (50) 0.0 (50)

grp7_2 77 272 (19-25) (23-29) (26-30) 358.7 (31) 5.6 (32) 0.8 (34) 0.2 (40) 0.0 (46) 0.0 (46)

grp7_3 77 349 (21-31) (26-35) (28-35) (34-36) 39.9 (37) 2.1 (38) 0.6 (43) 0.1 (49) 0.1 (49)

grp7_4 87 316 (21-29) (24-30) (26-33) (31-32) 8.8 (35) 0.7 (38) 0.3 (44) 0.0 (55) 0.0 (55)

grp7_5 78 291 (20-25) (24-28) (26-30) 320.8 (32) 10.8 (33) 0.8 (35) 0.3 (39) 0.0 (47) 0.0 (47)

grp8_1 115 325 (19-28) (22-32) (23-37) (27-36) 805.4 (39) 10.4 (41) 0.3 (51) 0.0 (66) 0.0 (66)

grp8_2 121 301 (18-23) (21-28) (23-29) (27-31) 482.5 (33) 2.1 (37) 0.2 (49) 0.1 (62) 0.1 (62)

grp8_3 118 302 (18-22) (21-30) (24-32) (26-33) 43.2 (35) 3.1 (38) 0.3 (49) 0.0 (63) 0.0 (63)

grp8_4 122 298 (17-29) (20-32) (22-35) (25-38) (31-40) 242.7 (41) 0.4 (51) 0.1 (67) 0.1 (67)

grp8_5 108 302 (19-21) (22-26) (26-30) 251.4 (29) 6.9 (33) 1.6 (36) 0.1 (45) 0.0 (59) 0.0 (59)

grp9_1 136 340 (19-25) (23-29) (24-32) (27-35) (35-37) 708.4 (41) 1.2 (48) 0.1 (54) 0.1 (74)

grp9_2 143 237 107.8 (13) (17-18) (20-21) (23-24) 326.3 (29) 48.3 (31) 0.7 (39) 0.5 (46) 0.1 (64)

grp9_3 146 342 (17-24) (20-31) (23-33) (26-35) (34-37) 62.4 (40) 0.9 (49) 0.4 (58) 0.0 (74)

grp9_4 139 332 (17-24) (21-28) (23-31) (27-33) 411.4 (36) 20.7 (38) 0.4 (45) 0.2 (57) 0.0 (73)

grp9_5 138 297 (17-19) (20-25) (23-28) (25-30) 201.5 (33) 27.0 (36) 0.8 (42) 0.2 (51) 0.0 (69)

grp10_1 168 321 (15-19) (19-26) (21-28) (24-28) 559.7 (32) 29.4 (34) 0.9 (47) 0.5 (57) 0.1 (80)

grp10_2 169 348 (16-22) (19-28) (21-29) (24-34) (31-35) 552.1 (37) 1.3 (51) 0.3 (62) 0.1 (83)

grp10_3 161 296 (14-17) (18-21) (21-23) 1462.4 (23) 106.0 (30) 15.7 (32) 0.7 (43) 0.3 (56) 0.1 (77)

grp10_4 157 281 94.7 (13) 287.3 (17) 478.2 (20) 100.2 (22) 22.8 (27) 1.7 (31) 0.4 (41) 0.6 (49) 0.1 (73)

grp10_5 164 265 134.4 (13) (16-18) (19-22) (22-24) 80.4 (27) 25.2 (29) 0.8 (42) 0.6 (50) 0.1 (71)
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Chapter 4

Chance Constrained Problem with
Integer Scenario Variables

1

4.1. Introduction

Mathematical optimization problems originally arose with a scheme in which the
input data are known; but, very soon, the needs of real applications, in which part
of the problem setting is not deterministic, led the research to investigate the case
of problems with probabilistic constraints [64]. In this kind of problems, a random
variable is given and the feasible region of the problem depends on its realization.
The decision maker fixes a threshold value, say, α, and the solution must optimize
a given objective function while belonging to the feasible region with probability at
least 1− α. In other words, the problem solver is willing to run the risk of finding
a solution that could be infeasible, once the random variable realization takes place.
This class of problems is defined as Chance-Constrained Mathematical Programming
(CCP) problem and it finds application in several fields. See [65] for an application
in the water management of a real-life water resource system; in [66], stochastic
programming is used to find the optimal vaccination policy for controlling infectious
disease epidemics; while, in [67] the authors develop five stochastic programming
models to identify cost-effective acid rain control strategies.

Now, we introduce the formal definition of the problem:

Definition 0 Given a probability value defined by the decision-maker, say, α and a ran-
dom variable, say, w, a Chance-Constrained Mathematical Programming problem can be
expressed as:

max{cx : Pr(x ∈ Cx(w)) ≥ 1− α, x ∈ X} (CCP)

Where Cx(w) is a set that depends on the realization of w and X is a set that is described by
deterministic constrains.

To be thorough, CCP problem can be generalized to the case in which an unsat-
isfied realization (i.e., an infeasible solution) can enter a recovery mode [68]. In this
case, the objective function takes into account also a cost that will be proportional to
the infeasibility degree.

In order to obtain a deterministic reformulation of CCP, some assumptions are
needed:

1The results of this chapter appears in: A. Lodi, E. Malaguti, M. Monaci, G. Nannicini and P.
Paronuzzi, “Chance Constrained Problem with Integer Scenario Variables", Technical Report OR-19-7,
http://or.dei.unibo.it/technical-reports, 2019. [63]

http://or.dei.unibo.it/technical-reports
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1. the sample space, denoted as Ω, is discrete and finite, and in particular Ω =
{wk : k = 1, . . . , h};

2. the objective function contribution of the normal mode is preferred to the one
of the recovery mode.

The first assumption, even if it looks very restrictive, results quite common in prac-
tice. Typically, the expected realization of a future event is not very detailed and,
often, it is the result of a discretization process. When this is the case, a generic re-
alization wk is usually called scenario. With the second assumption we ensure the
two-stage consistency [69].

Now, introducing a set of indicator variables zh, the problem can be formulated
in the following form:

max cx
s.t.: x ∈ X

k = 1, . . . , h zk = 0 ⇒ x ∈ Cx(wk)
k = 1, . . . , h zk = 1 ⇒ x ∈ C̄x(wk)

∑h
k=1 pkzk ≤ α

k = 1, . . . , h zk ∈ {0, 1}

(CCPR)

Where Cx(wk) and C̄x(wk) are the the feasible sets for the normal and recovery
modes, respectively.
Under the additional assumption that:

3. all the Cx(wk)’s and C̄x(wk)’s share the same recession cone;

the problem can be modeled as a MINLP (Mixed Integer Non Linear Program):

max cx
s.t.: Ax ≤ b

g1(x, y1) ≤ M1z1
ḡ1(x, ȳ1) ≤ M̄1(1− z1)

...
. . .

...
gh(x, yh) ≤ Mhzh
ḡh(x, ȳh) ≤ M̄h(1− zh)

p1z1 + . . . + phzh ≤ α
z1, . . . zh ∈ {0, 1}
y1, . . . yh integer

(CCP-MINLP)

In this formulation, we assume that gk, ḡk are vectors of convex functions and Mk,
M̄k are vectors of large enough constants. Since there is no objective function con-
tribution associated with variables y, the second stage problems are feasibility prob-
lems. But, if necessary, the vector of first-stage variables x can be enlarged in order
to consider objective contributions of the second stage problems. Our work refers
to the case where all x variables are continuous, but the framework we propose can
handle also the integrality requirements on the set X at the cost of additional com-
putational complexity.

The third assumption is necessary because, otherwise, the recession cone of CCP-
MINLP and the one of CCPR may differ. Indeed, the recession cone of CCPR is given
by the union of the intersection of the recession cones only of the sets Cx(wk), C̄x(wk)
that are active, according to zh variables. On the other hand, the recession cones
of inactive sets in CCP-MINLP cannot be deactivated, hence the only unbounded
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directions are those that belong to all the sets Cx(wk), C̄x(wk) at the same time (see
[70]). This is clearly not the same as the recession cone of CCPR, unless the last
introduced condition holds.

As already pointed out, CCP-MINLP corresponds to a Mixed Integer Non Linear
Program and it can be implemented within a commercial solver framework. But, this
approach might probably result unsuccessful due to two main drawbacks related to
this specific formulation of the problem. The first main aspect that must be taken
into account is that the size of this formulation increase together with the number of
considered scenarios; the second point is linked to the presence of big-M constraints
that, generally, tends to make very weak the relaxations of mathematical programs
(see, e.g., [71]).

Luedtke in [72] introduced a Benders decomposition approach for chance con-
strained problems; his algorithm only applies to the case in which the scenario sub-
problems are described by linear functions and variables must be continuous. Lodi
et al. ([3]) proposed a finitely convergent Branch-and-Cut algorithm that applies to
the case in which gk, ḡk are convex, potentially nonlinear, functions, as in the case
we consider, but the scenario variables, namely yk and ȳk, are restricted to be con-
tinuous. In this work, the authors define a master problem in which the indicator
variables zh are kept, but all the big-M constraints are removed. When the master
problem produces a solution, say, x̂, that is infeasible, then a cutting plan, obtained
as outer approximation cut [73], is generated for the sets Cx(wk) or C̄x(wk), depend-
ing on the values of the indicator variables.

Our purpose is generalizing the Branch-and-Cut algorithm of [3] to the case rep-
resented by CCP-MINLP in which the scenario variables are integer. The main issue
that needs to be addressed is that, in opposite with the case considered by Lodi et
al., the sets Cx(wk), C̄x(wk) are nonconvex sets due to the integrality constraints of
the scenario variables. In this work, we present a Branch-and-Cut approach that also
applies to the case in which only some of the components of yk, ȳk are restricted to
be integer.

4.2. Decomposition algorithm

In the following, we propose a Branch-and-Cut algorithm where we generate cutting
planes as outer approximation point cuts, when possible. This approach generalizes
the one proposed by Lodi et al. [3] that only applies to the case in which the sce-
nario variables yk are continuous. From now on, our discussion focuses on the sets
Cx,y(wk), defined as the feasible regions of a normal mode scenario subproblem. We
can obviously define also C̄x,y(wk) and equivalently extend the procedure.

We follow a decomposition approach whereby we define a master problem and
h subproblems, one for each scenario, involving scenario-dependent constraints.
Whenever the solution of the master problem does not satisfy the constraints of some
active scenario, cuts are generated for the corresponding set Cx,y(wk). These cuts are
then added to the master problem. This basic idea yields an exact algorithm for
CCPR.

Given a point x̂ from the master, we must answer the question: does there exist
a ŷ such that (x̂, ŷ) ∈ Cx,y(wk)? Let us fix wk and write Cx,y simply. Therefore, for a
given scenario k, we can write

Cx,y = {(x, y) : g(x, y) ≤ 0, y integer} (4.1)
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where g(x, y) is a vector of convex functions. In addition, let Cont(Cx,y) be the con-
tinuous relaxation of Cx,y and let Conv(Cx,y) be the convex hull of Cx,y.

There are three notable cases in which x̂ is not feasible and we want to separate
it:

1. x̂ 6∈ ProjxCont(Cx,y);

2. x̂ 6∈ ProjxConv(Cx,y);

3. x̂ ∈ ProjxConv(Cx,y).

In the first case, it is sufficient to find an inequality valid for the projection of the
continuous relaxation of Cx,y and, so, we can straightforwardly apply the same sep-
aration procedure used in [3]. In the second case, we necessarily need an inequality
valid for the projection of the convex hull of Cx,y, which exists because we are sep-
arating from a convex set. In the last case, such an inequality does not exist, and
in order to separate x̂, we must perform some type of branching. We remark the
difficulty stems from the fact that Cx,y is a nonconvex set due to the integrality con-
straints.

The pseudo-code of our decomposition approach is provided in Algorithm 4.2.0.1.
Since the master problem involves the x variables only, the separation routines must
find a cut in the x space. In the rest of this section, we provide the separation algo-
rithms for cases 1 and 2 and we discuss different options to perform the branching
when case 3 occurs.

4.2.1 Case 1: separation when x̂ 6∈ ProjxCont(Cx,y)

Define the problem

min
(x,y)∈Cont(Cx,y)

1
2
‖x− x̂‖2

x, (PROJ)

where by ‖ · ‖x we denote the Euclidean distance in the x space only. If x̂ 6∈ Cont(Cx,y),
the optimal value of (PROJ) must be strictly greater than 0.

Theorem 1 of [3], adapted to our case, states that:

Theorem 1 Let Cont(Cx,y) be a closed set such that ProjxCont(Cx,y) is convex, and x̂ 6∈
ProjxCont(Cx,y). Let (x̄, ȳ) be the optimal solution to (PROJ) with positive objective function
value. Then, the hyperplane

(x̂− x̄)T(x− x̄) ≤ 0

separates x̂ from ProjxCont(Cx,y). This hyperplane is the deepest valid cut that separates x̂
from ProjxCont(Cx,y), if depth is computed in `2-norm.

We refer to [3] for a proof of this result.

4.2.2 Case 2: separation when x̂ 6∈ ProjxConv(Cx,y)

Suppose that x̂ ∈ ProjxCont(Cx,y). We want to discover (i) if x̂ lies in ProjxConv(Cx,y)
and, if not, (ii) we aim to define a facet to separate x̂. Let n be the dimension of X
and remind the following well known theorem:

Theorem 2 (Carathéodory’s theorem) If a point x of Rn lies in the convex hull of a set
P, then x can be written as the convex combination of at most n + 1 points in P.
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Algorithm 4.2.0.1 Decomposition Algorithm
1: Define a master problem as:

max cx
s.t.: Ax ≤ b

∑h
k=1 pkzk ≤ α

z ∈ {0, 1}h,

(MASTER)

2: repeat
3: Select an active node and solve its continuous relaxation.
4: If the node is not pruned, then branch on one variable zk.
5: For each node of the tree with solution (x̂, ẑ), ẑ ∈ {0, 1}h, do:
6: for k ∈ {1, . . . , h} : ẑk = 0 and Cont(Cx,y(wk)) 6= ∅ do
7: if @(x̄, ȳ) ∈ Cont(Cx,y) : ‖x̄− x̂‖ ≤ ε then
8: Separate x̂ from ProjxCont(Cx,y(wk)) with an inequality γx ≤ β;
9: Add inequality γx ≤ β + Mzk to MASTER; . Case 1

10: end if
11: end for
12: for k ∈ {1, . . . , h} : ẑk = 0 and Cx,y(wk) 6= ∅ do
13: if @(x̄, ȳ) ∈ Conv(Cx,y) : ‖x̄− x̂‖ ≤ ε then
14: Separate x̂ from ProjxConv(Cx,y(wk)) with an inequality γx ≤ β;
15: Add inequality γx ≤ β + Mzk to MASTER; . Case 2
16: end if
17: end for
18: if no inequality has been added and x̂ is not feasible for some active scenarios then
19: Reject x̂ and branch; . Case 3
20: end if
21: if (x̂, ẑ) is still feasible then
22: update incumbent (lower bound).
23: end if
24: until there is no node to explore.
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In addition to this, remember that a facet of a polytope of dimension n has dimension
n− 1 (i.e., can be written as the affine combination of at most n points).
Now, when solving the following problem:

min ‖x̂−∑n+1
i=1 λixi‖

s.t.: ∑n+1
i=1 λi = 1

i = 1, . . . , n + 1 λi ≥ 0.
i = 1, . . . , n + 1 xi ∈ ProjxCx,y.

(DIST)

we can distinguish two possible results:

1. the objective value is equal to zero, so x̂ lies in ProjxConv(Cx,y) and, possibly,
all λi are strictly positive (x̂ is a convex combination of the points xi);

2. the objective value is larger than zero, so x̂ does not lie in ProjxConv(Cx,y) and
at most n out of all λi can be strictly positive (they define a facet that separate
x̂);

Unfortunately, in model DIST both xi and λi are sets of variables, so the formulation
is clearly nonlinear and its solution would require an unjustified effort. For this
reason, our purpose is providing a procedure that converge to the optimal solution
of DIST in a finite number of iterations, within a certain tolerance. The basic idea is
to initialize our procedure by finding the closest feasible point to x̂, by solving the
problem:

x1 ← argx min
(x,y)∈Cx,y

‖x̂− x‖2
x

If the distance between this point and x̂ is lower than a fixed tolerance, then we
consider feasible x̂ and the procedure immediately stops without generating any
cut. Otherwise, at each iteration, we aim to find a new point in Cx,y that, convexly
combined with all the previous points, decreases the distance from x̂.

For this purpose, we define two new problems. Let j be the current iteration,
the first problem has to minimize the distance from the convex combination of the
current collection of points to x̂. It is defined as follows:

min ‖x̂−∑
j
i=1 λixi‖

s.t.: ∑
j
i=1 λi = 1

i = 1, . . . , j λi ≥ 0.
(MINDIST)

In this model only λi are variables, while all xi are known. Once this problem has
been solved, we can define x̄ = ∑

j
i=1 λixi. If the distance between x̂ and x̄ (i.e.,

the distance between x̂ and a point ling on ProjxConv(Cx,y)) is lower than a fixed
tolerance, say, ε, then we state that x̂ ∈ ProjxConv(Cx,y), and the procedure stops
because we are falling in the third case.

The second problem must identify a descent direction from x̄, that decreases the
distance to x̂. It is defined as follows:

max (x̂− x̄)T(xj − x̄)
s.t.: (xj, y) ∈ Cx,y.

(NEWPOINT)

Here, xj is the only variable. If the optimal solution value of this problem is larger
than zero than the convex combination of the new point xj with the previous ones
will decrease the distance from x̂. On the contrary, if the optimal solution value is
equal to zero but the distance between x̂ and x̄ is still grater than ε, then we state
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that x̂ 6∈ ProjxConv(Cx,y) and we found a facet to separate x̂. It is defined by the
hyperplane that is orthogonal to x̂ in x̄ = ∑

j
i=1 λixi.

The pseudo-code of this procedure is provided in algorithm 4.2.2.1.

Algorithm 4.2.2.1 minimizeDistance(x̂, k, ε, ζ)

1: Find x1 as the integer point in Cx,y closest to x̂;
2: d1 ← ‖x̂− x1‖;
3: if d1 > ε then . x̂ is not a feasible solution for scenario k;
4: λ1 ← 1;
5: j← 1;
6: repeat
7: Solve: dj ←MINDIST;

8: Define: x̄ ← ∑
j
i=1 λixi;

9: j ++;
10: Solve NEWPOINT and store the new point xj;
11: until (dj ≤ ε or dj−1 − dj ≤ ζ)
12: if dj > ε then
13: Separate x̂ from ProjxConv(Cx,y) with an inequality γx ≤ β;
14: Add inequality γx ≤ β + Mzk to MASTER;
15: return;
16: end if
17: end if

Proposition 13 Given a value of two values tolerance ε ≥ 0 and ζ ≥ 0, the value of dj in
Algorithm 4.2.2.1 converges to the optimal solution of DIST in a number of iterations that
is finite for ε > 0 and ζ > 0, but it may be infinite for ε = 0 or ζ = 0.

4.2.3 Case 3: separation when x̂ ∈ ProjxConv(Cx,y)

When this case occurs, there is no valid cut that can be added. So, we have to reject
the current solution, perform some type of branching and generate two new nodes
where the current solution is no more feasible. We considered three different options.

Spatial branching on variable x

The first option is performing a spatial branching on x̂ in the master. By choos-
ing the right values of branching, one could be able to generated nodes where x̂ 6∈
ProjxConv(Cx,y) for at least one scenario and, so, it would be possible to separate the
current infeasible solution in both the two new nodes by adding a new (local) cut.
In addition to this, the size of the master problem does not change. The drawbacks
of this option are all the difficulties of spatial branching, including choosing the ap-
propriate variable for branching. To perform this kind of branching, one can use the
information provided by the procedure 4.2.2.1 in order to define a branching that
puts in different nodes the different points x1, . . . , xn that define the convex combi-
nation of x̂. In the following we describe different strategies to select the x variable
to which perform the spatial branching. All the strategies exclude from the selection
the variables that in the current solution x̂ assume the value of one of their bounds,
since this would replicate the current node without affecting the solution, and, of
course, we assume that the branching value is the value given by the infeasible so-
lution x̂. The different possibilities are:

• selecting a random variable;
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• selecting the variable that split in the most balanced way the set of points ob-
tained during the separation procedure;

• selecting a variable whose branching generates two nodes in which the dis-
tances from the current solution x̂ and the nearest feasible point are differ-
ent (i.e., the starting point of the separation procedure is different in the two
nodes);

• selecting a variable whose branching generates two nodes in which the current
solution x̂ will be discarded by the generation of a cut (in the worst case, this
implies to run the separation procedure twice for each variable).

Another possibility is selecting a branching hyperplane, instead of performing the
branching on a single variable. This strategy has the drawback of increasing the
size of the problem in the generated nodes, since it adds a constraint to the original
model, but it could allow to always generate two nodes in which the current solution
is discarded by the generation of a cut.

Intern branching on variables y

Another alternative is performing the branching on the integer variables of the sce-
nario subproblem. Because x̂ ∈ ProjxConv(Cx,y), we could try to split the set Cx,y
into two sets, and create two scenarios C1

x,y, C2
x,y to replace the scenario Cx,y. In the

master, there would be two new variables zc1, zc2 to indicate whether we are satis-
fying the constraints for C1

x,y, C2
x,y with the usual convention zi = 0 ⇒ x ∈ Ci

x,y,
together with the constraint zC1 + zC2 ≥ 1 to ensure that the solution belongs to at
most one among C1

x,y, C2
x,y. It is not hard to see that if the scenario has a single binary

variable y, this approach works in just one branching step and at most two variables
have to be added in the master. But, if both the number of variables y and the values
that they can assume increase, then the size of the master problem could become in-
tractable. The drawback, in general, is that this option somehow brings the variables
of the subproblems at the level of the master.

Extern branching on variables y

The last possibility is similar to the previous one in the sense that also in this case
we use variables y to branch the problem. But, in this case, we handle the branching
externally from the solver: whenever case 3 occurs, we build and solve two new
instances of the problem. In these instances, that are the nodes of our B&B, we force
the selected integer variable y to assume the corresponding feasible values defined
by the branching, in addition to all the valid cuts inherited from the master. In this
way, all the single addressed problem have an affordable size. The drawback, of
course, is the number of the instances that we might have to solve.

4.3. Computational enhancements

In section 4.2 we described the procedure to generate valid cuts for the master prob-
lem by checking the feasibility of an integer solution in those scenarios that must be
satisfied (i. e., the corresponding z variable is equal to 0 in the current solution).

We specify that explicitly considering the case 1 (Section 4.2.1), in which the so-
lution coming from the master does not belong to the continuous relaxation of the
active scenario subproblem, is not necessary for the correctness of the decomposition
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algorithm. Nevertheless, we decided to include the generation of those inequalities,
since it requires an effort that is almost negligible in term of computational time.

In the following we describe other computational enhancements that can be ap-
plied to our algorithm in order to improve its performances.

4.3.1 Cutting strategies

It is worth underling that any cut can be globally added when it is generated in a
node of the branching tree whose feasible region has not been affected by spatial
branching; while, in the other case, the cut is locally valid and it could be possibly
added without any big M coefficient if the the corresponding z variable have been
already fixed to 0 by the branching.

In addition to this, one can also evaluate the feasibility of the solution in rela-
tion to the intersection of two ore more scenarios, instead of considering only one
scenario a time.

On the basis of these observations, we can state that:

• the cuts we add, before spatial branching has been performed, can be glob-
ally added to the master problem in the form of Big − M constraints whose
activation depends on the sum of the z variables of the involved scenarios;

• the cuts we add, after the spatial branching has been performed, must be lo-
cally added to the master problem in the form of Big− M constraints whose
activation depends on the sum of the z variables of the involved scenarios.

Observe that in the first case, since we are adding a global cut, we must always
include in the constraints all the z variables of the involved scenarios; in the second
case, instead, we can possibly exclude from the constraints the z variables that have
been already fixed to 0 by the branching (they would be redundant).

This analysis leads to a trade-off in the strategy used to generate cuts: intersect-
ing more scenarios allows to generate stronger cuts, but the problems to be solved
are obviously harder, since the number of variables increases, and, in addition to
this, these cuts will be valid only when all the z variables of the considered scenarios
are equal to 0. In [74], the authors propose different techniques to group different
scenarios in order to obtain a stronger lower bound for the CCP. The same grouping
techniques may be applied to our solving procedure in order to obtain stronger cuts
while taking under control the size of the problems to be solved during the separa-
tion procedure.

4.3.2 Storing feasible points

Algorithm 4.2.2.1 aims to determine whether a solution x̂ belongs to the projection
of the Convex Hull of the feasible region of the problem. The way in which the pro-
cedure answers this question is finding, when possible, a collection of feasible points
whose convex combination includes x̂. So, it is possible to speed up the procedure
by storing lists of points that are associated to each scenario, or to each group of
scenarios.

During the Branch-and-Cut execution, these lists must be updated any time a
spatial branching occurs (points that are no more feasible must be excluded); and,
if we consider groups of scenarios, when a scenario within a group becomes active,
the corresponding list also must be updated, since the new feasible region would be
smaller.
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Due to these reasons, the size of the lists must be calibrated: a large number of
stored points allows to reduce the number of iteration required by algorithm 4.2.2.1,
but it implies a longer time to scan the list of points any time it must be updated.

4.3.3 Solving deterministic problems

Our decomposition algorithm is based on a Branch-and-Cut framework that can be
implemented within a commercial integer programming solver such as IBM-ILOG
CPLEX. When this is the case, the branching decisions are usually entrusted to the
solver that is in charge of handling the generation of new nodes. But, when an inte-
ger solution is found by the master problem and we want to determine its feasibility,
we can always query the local bounds of the integer variables. In the case at hand,
if all the indicator variables z have been already fixed to some integer value, then
the problem reduces to be deterministic and there is no reason to run the separation
procedure. So, anytime this situation occurs, we directly solve the deterministic for-
mulation of the problem and we provide the solver with the optimal solution we
find. This allows us to immediately close the node.

4.4. Computational experiments

At the time of writing this thesis, our research on the topic is still in progress. For this
reason, the computational results we will present in this section are related to pre-
liminary experiments that have the main scope of understanding the potentialities
of the proposed algorithm. Specifically, our main scope in this phase of the research
is analyzing the performances of the separation procedure presented in Section 4.2.2
where we discussed the case in which an infeasible solution produced by the master
problem does not belong to the convex hull of the active scenario subproblems, but
it is inside their continuous relaxation. So, the results we will present are related to
tests in which we did not perform any kind of branching when the third case (Sec-
tion 4.2.3) occurred (i.e., we stop when a solution belonging to the convex hull of the
scenario subproblems is found).

4.4.1 Computational Environment

All the reported experiments are performed on a computer equipped with an i7
processor clocked at 3.20 GHz and 64 GB RAM under Linux operating system. We
use the CPLEX 12.7.1 MIP framework to implement our Branch-and-Cut algorithm.
CPLEX is run in single-threaded mode and all CPLEX parameters are set to their default
values.

4.4.2 Implementation details and test instances

In order to test our algorithm, we defined two different probabilistic resource plan-
ning problems that can be both represented by a compact formulation. Both the
problems use the same data consisting of a set of resources (e.g., server types), de-
noted by i ∈ I := {1, . . . , n}, a set of customer type, denoted by j ∈ J := {1, . . . , m},
and a set of scenarios, denoted by k ∈ K := {1, . . . , h}. The input parameters are:

• the unit cost ci of each resource i;

• the demand djk of each customer type j and scenario k;
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• the service rate µij of resource i for customer type j.

The objective of the first problem is to minimize the total cost of the resources in
a way such that the allocation does not exceed the available resource levels and is
sufficient to meet customer demands. The variables of the second stage are general
integer. The corresponding model reads as follows:

min ∑
i∈I

cixi

s.t.: ∑
j∈J

yijk ≤ fi(xi) i = 1 . . . n, k = 1 . . . h

∑
i∈I

µijyijk ≥ djk(1− zk) j = 1 . . . m, k = 1 . . . h

∑
k∈K

pkzk ≤ α

yijk ∈ N i = 1 . . . n, j = 1 . . . m, k = 1 . . . h

zk ∈ {0, 1} k = 1 . . . h

(FIRST)

The first set of constraints ensure that the demand allocation does not exceed the
resource availability; the second set of constraints impose that the demand of the
active scenarios must be satisfied; while the last constraint is the chance constraint.

Also in the second problem, the objective is to minimize the total cost of the re-
sources, but each demand must be satisfied by one resource only, without exceeding
the available resource level. In this case, we define the variables of the second stage
as binary. The corresponding model reads as follows:

min ∑
i∈I

cixi

s.t.: ∑
i∈I

yijk = 1− zk j = 1 . . . m, k = 1 . . . h

∑
j∈J

µijdjkyijk ≤ fi(xi) i = 1 . . . n, k = 1 . . . h

∑
k∈K

pkzk ≤ α

yijk ∈ {0, 1} i = 1 . . . n, j = 1 . . . m, k = 1 . . . h

zk ∈ {0, 1} k = 1 . . . h

(SECOND)

The first set of constraints impose that each customer type in each active scenario
has one associated resource; the second set of constraints ensure that the resources
are sufficient to satisfy the demands; the last constraint is the chance constraint.

In [72], the author also considers a chance constrained formulation of a resource
planning problem inspired by a call center staffing application and the instances
he used are available on-line ([75]). We adapted these instances to the problems
we consider: in particular, we divided each demand by 10 and we rounded them
down and we substituted each non-zero service rate with a random value between
1 and 10. In both formulations, we define fi(xi) as a generic convex function, but the
results we present in this section are all referred to the linear case in which fi(xi) is
equal to xi. We only considered instances with 20 resources (n = 20) and 30 customer
types (m = 30). We considered two sizes for the scenario set (h ∈ {10, 20}) and two
values for the parameter defining the risk level (α ∈ {0.1, 0.2}). For each possible
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combination of h and α, we considered 5 different instances. This way, we generated
a test-bed of 20 instances for each problem.

4.4.3 Results

In this section we compare the results obtained with the following solution ap-
proaches:

• CONT applies the separation procedure only for infeasible solutions that do not
belong to the continuous relaxation of the scenario subproblems (see Section
4.2.1). Basically, it corresponds to the algorithm proposed in [3].

• CONV1 and CONV2 represent the focus of our analysis. Both these approaches
include the previous one but they also separate the infeasible solutions that do
not belong to the convex hull of the scenario subproblems (see Section 4.2.2).
When processing a solution coming from the master, CONV1 checks the feasi-
bility for one scenario a time, while CONV2 considers groups of 2 scenarios,
defined before the algorithm starts.

• OPT uses IBM-ILOG CPLEX 12.7.1 to directly solve the compact formulation
of the problems. So, this is the only approach that always finds the optimal
solution value.

Since we are considering minimization problems, CONT, CONV1 and CONV2 provide a
lower bound for OPT.

Table 4.1 collects the objective values obtained when solving problem FIRST with
the four different approaches described above. The first column reports the number
of scenarios, the second column reports the different values of the risk level, the third
column reports the instance number, columns from the forth to the last one collect
the objective function values obtained by CONT, CONV1, CONV2 and OPT, respectively.
Table 4.2 reports the same information for problem SECOND.

We remember that the objective values reported in columns CONV1 and CONV2
may correspond to infeasible solution belonging to the convex hull. So, these ob-
jective values can be considered optimal only if the same objective value also arises
from a node in which the deterministic problem has been solved (see 4.3.3). In both
the tables, we mark these cases with an asterisk (*). In addition, we underline the
cases in which CONV1 or CONV2 do not improve the bound provided by CONT.

From table 4.1, we observe that CONV2 always finds the optimal solution value
in all the considered instances, while CONV1 fails in only one case. Out of 20 in-
stances, algorithm CONV1 proves the optimality of 16 instances, while CONV2 proves
the optimality of 19 instances. The situation changes a lot when considering prob-
lem SECOND. From table 4.2, we observe that, out of 20 instances, CONV1 finds the
optimal solution value in 5 cases, while CONV2 does it in 7 cases. In four cases, CONV1
does not increase the bound provided by CONT while this circumstance occurs only
once for CONV2. In addition to this, CONV2 finds an objective value that is larger than
the one found by CONV1 in almost all the cases (14 out of 20).

We do not report and discuss any computational times, since our algorithm has
not been optimized, yet.
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TABLE 4.1: Comparison of the objective values obtained with differ-
ent solution approaches (problem FIRST).

h α CONT CONV1 CONV2 OPT

10

0.1

0 34.28 *45.70 *45.70 45.70

1 33.69 *43.84 *43.84 43.84

2 33.49 *43.49 *43.49 43.49

3 38.89 *48.65 *48.65 48.65

4 34.74 *44.67 *44.67 44.67

0.2

0 34.24 *45.15 *45.15 45.15

1 33.46 *42.74 *42.74 42.74

2 32.20 *42.68 *42.68 42.68

3 37.88 *45.43 *45.43 45.43

4 33.60 41.68 *41.69 41.69

20

0.1

0 34.29 *45.70 *45.70 45.70

1 34.30 *45.62 45.62 45.62

2 35.31 45.40 *45.40 45.40

3 39.42 *49.55 *49.55 49.55

4 34.16 *43.01 *43.01 43.01

0.2

0 34.18 *44.43 *44.43 44.43

1 33.68 *43.92 *43.92 43.92

2 33.85 *43.50 *43.50 43.50

3 38.89 48.65 *48.65 48.65

4 33.60 41.85 *41.85 41.85
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TABLE 4.2: Comparison of the objective values obtained with differ-
ent solution approaches (problem SECOND).

h α CONT CONV1 CONV2 OPT

10

0.1

0 443.46 *464.67 *464.67 464.67

1 439.84 443.88 451.77 460.74

2 416.66 *424.47 *424.47 424.47

3 492.34 499.73 500.45 501.95

4 458.71 466.83 *468.78 468.78

0.2

0 438.82 443.46 451.33 453.82

1 435.48 440.12 443.15 455.32

2 407.18 407.18 407.18 414.34

3 479.57 *485.10 *485.10 485.10

4 435.36 435.39 439.04 450.96

20

0.1

0 443.46 *471.59 *471.59 471.59

1 444.48 445.40 453.34 470.77

2 441.91 *456.08 *456.08 456.08

3 502.78 516.97 *522.84 522.84

4 448.86 460.65 464.54 474.09

0.2

0 433.60 433.60 441.65 457.42

1 437.06 439.84 444.58 462.72

2 424.47 424.47 431.99 437.33

3 492.38 496.57 502.53 513.26

4 443.04 443.04 449.52 461.06
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4.5. Conclusions and future work

In this chapter, we addressed the Chance Constrained Problem and we considered
the case in which the second-stage variables of its MINLP reformulation are inte-
ger. We proposed a decomposition approach based on a Branch-and-Cut framework
where we generate cutting planes as outer approximation point cuts, when possible.
The difficulty of the problem at hand arises from the fact that the feasible regions
of the scenario subproblems, even if described by convex functions, result to be non
convex, due to the integrality constraint of the second-stage variables. We proposed
a convergent procedure to generate cuts that are valid for the convex hull of these
sets, while the case in which the solution produced by the master problem is in-
feasible but belongs to the convex hull of the scenario subproblems is still an open
point.

Our preliminary computational experiments showed that the bounds provided
by the generation of the cuts on the convex hull can be equal to the optimal solution
value in some cases, but, in other cases, the gap can be probably closed only by
performing some kind of branching, as discussed in Section 4.2.3. So, our future
research will move on this direction.
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Chapter 5

Integer Optimization with
Penalized Fractional Values:
The Knapsack Case

1

Integer Programming and combinatorial optimization problems require to de-
termine the optimal values for a set of variables, each having a discrete domain. In
many cases, variables enforce boolean conditions, and it is quite natural to resort to
binary variables. Just to mention a few examples, in the knapsack problem one has
to decide whether to insert an item in the knapsack or not. Similarly, in scheduling
applications, one is asked to decide if a job should be scheduled on a given machine.
Finally, the vehicle routing problem asks to decide if a certain customer must be in-
cluded in a certain route and if a given edge has to be used in the solution or not. The
explosion of new algorithms for binary problems in the last 30 years is motivated by
the amount and relevance of applications that can be tackled with these models. It
turns out that in many relevant real-world problems decisions can also be taken at a
fractional level, and thus decision variables can attain non-integer real values. How-
ever, this additional freedom of “splitting” an integer variable and selecting only a
fractional part will likely incur additional costs, i.e. “penalties” for deviating from
integrality, thus worsening the solution value.

For example, in preemptive scheduling (see, Pinedo [77]), each task may be pro-
cessed in different phases, until it has finished its execution, to minimize the total
makespan. In the Split Delivery Vehicle Routing Problem (see, Archetti and Sper-
anza [78]), the restriction that each customer has to be visited exactly once is re-
moved, i.e., each customer can be served by more than one route, possibly improv-
ing the objective function. In most of the cases addressed in the literature, splitting
an item either produces no additional cost or gives a constant penalty; e.g., Malaguti
et al. [79] considered a two-dimensional cutting problem in which raw material
has to be cut to produce items, and each cut introduces some constant trim loss. In
some applications, the deterioration of the solution induced by splitting cannot be
evaluated a priori, hence some approximation has to be used; e.g., Lodi et al. [80]
considered an applications arising in Mobile WiMAX in which data (items) have to
be sent from a base station to users using a unique channel (the knapsack). In this
system model, a part of the channel is used to allocate additional information about
the packets that are sent. Splitting an item is allowed, but it increases the amount of

1The results of this chapter appears in: E. Malaguti, M. Monaci, P. Paronuzzi, and U. Pferschy, “Inte-
ger optimization with penalized fractional values: The Knapsack case", European Journal of Operational
Research, 273(3), 874-888, 2019. [76]
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additional information to be sent, i.e., it reduces the available capacity. As the objec-
tive is to minimize the amount of overhead while transmitting all data, the problem
was formulated to minimize the number of items that are fractioned.

In this chapter we make a step further in the study of integer problems in which
splitting is allowed by removing the assumption that the penalty induced by split-
ting is a constant2. In particular, we allow the penalty to be described by an arbitrary
function that depends on the fraction of item that is taken, and apply this setting to
the simplest combinatorial optimization problem, namely to the 0-1 Knapsack Prob-
lem (KP) (cf. Martello and Toth [82] and Kellerer et al. [83]).

In KP we are given a knapsack of capacity W and a set N = {1, . . . , n} of items,
each item j ∈ N having a positive weight wj ≤W and a positive profit pj. The prob-
lem asks for selecting a subset of items with maximum profit whose total weight
does not exceed the knapsack capacity. We assume that ∑j∈N wj > W since other-
wise the problem is trivial. As items cannot be split, KP can be modeled by associat-
ing, with each item j, a binary variable xj taking value 1 if the item is selected, and
0 otherwise. Hence, the profit for each item is expressed as pjxj, and the capacity it
consumes is wjxj. In the Fractional Knapsack Problem with Penalties (FKPP) addressed
in this chapter, fractions of items are allowed to be selected, but whenever an item is
split, a penalty is incurred. Thus, the net profit associated with a fraction 0 < xj < 1
of an item j is smaller than (or equal to) pjxj, while no profit is earned when the item
is not selected, and the full item profit pj is earned for xj = 1. Formally, FKPP is
defined as follows: Given a knapsack problem KP as defined above, for each item j
there is a function Fj : [0, 1]→ < such that Fj(xj) represents the profit earned if item j
is taken at some (possibly, fractional) value xj ∈ [0, 1]. We assume that each function
Fj(·) has the following shape:

Fj(xj) =


0 if xj = 0
pj if xj = 1
pjxj − f j(xj) otherwise

(j ∈ N) (5.1)

where f j(xj) ≥ 0 for xj ∈ [0, 1] is an arbitrary (even discontinuous) function repre-
senting the penalty incurred in case item j is taken at a fractional level xj. Observe
that we allow f j(0) > 0 and/or f j(1) > 0 for some j, as these values are irrelevant for
the definition of function Fj(·). In the general case we will not impose any further
restrictions on f j(·) except that function values can be computed in constant time.
Thus, FKPP can be formulated as

max

{
n

∑
j=1

Fj(xj) :
n

∑
j=1

wjxj ≤W, 0 ≤ xj ≤ 1 (j ∈ N)

}

where each item j has associated a continuous variable xj indicating the fraction of
item j that is selected, and functions Fj(·) are defined according to (5.1). It is easy to
see that FKPP is an NP-hard problem since it contains KP as a special case arising
for f j(xj) = pj ∀xj ∈ (0, 1), i.e. no item will be split.

A special case of FKPP is given by the Continuous Knapsack Problem (CKP), that
is the relaxation of KP obtained removing the integrality requirement of the vari-
ables. In this case, variables xj have the same meaning as in FKPP, and both the
earned profit and the used capacity are proportional to xj. Thus, CKP arises when
f j(xj) = 0 ∀xj ∈ [0, 1] and for each item j. It is well known that this relaxation of KP

2Other penalty functions appeared as auxiliary subproblems in Freling et al. [81] and Casazza and
Ceselli [4].
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can be solved in polynomial time by ordering items according to a non decreasing
profit over weight ratio, and inserting them into the knapsack in this order. The first
item that cannot be completely inserted in the knapsack (if any), the so-called critical
element (also known as split or break item), is fractionally inserted in the knapsack,
so as to saturate its capacity, and the corresponding fraction of profit is earned.

Literature review. The classic KP is weakly NP-hard, and in practice fairly large
instances can be solved to optimality with moderate computational effort. The reader
is referred to the books by Martello and Toth [82] and by Kellerer et al. [83] for com-
prehensive discussion on algorithms, applications and variants of the problem. De-
spite the wide existing literature on knapsack problems, only few contributions can
be found that explicitly take penalties into account.

Freling et al. [81] considered a reformulation of the Multiperiod Single-Sourcing
Problem as a Generalized Assignment Problem and noticed that the pricing problem
is a knapsack problem with penalties. In this problem, that they called Penalized
Knapsack Problem, the objective function includes a penalty that is described by a
convex function depending on the total amount of capacity that is used. Observing
that the resulting objective function is concave, the authors analyzed the structure
of an optimal solution to the continuous relaxation of the problem. They concluded
that this structure is similar to that of an optimal solution to the CKP, and proposed
a solution algorithm. Ceselli and Righini [84] considered another version of the Pe-
nalized Knapsack Problem in which each item has associated a constant penalty and
the objective function is given by the total profit minus the largest penalty among
the selected items. This problem was extensively studied in Della Croce et al. [85].

Another related problem is the Bin Packing Problem with Item Fragmentation
(BPPIF), that was introduced by Mandal et al. [86] to model an application arising
in VLSI (Very Large Scale Integration) circuit design. In this problem, one is asked
to pack a given set of items in a fixed number of identical bins, while minimiz-
ing the number of items that are split among different bins. Casazza and Ceselli
[4] formulated BPPIF using a mathematical model with an exponential number of
variables, requiring the definition of column generation techniques. It turns out
that the pricing problem in this formulation is a special case of FKPP, where the
penalty for selecting each item j at a fractional level xj is defined as a linear function
f j(xj) = k j(1− xj) for each j ∈ N and xj ∈ (0, 1). Casazza and Ceselli [87] introduced
mathematical models and algorithms for many variants of BPPIF. Recently, Byholm
and Porres [88] noticed that BPPIF arises in the operation of file systems, and pre-
sented approximation and metaheuristic algorithms for its solution. As mentioned,
in all these papers there is a constant penalty associated with the splitting of an item
for bin packing.

FKPP is also related to the general nonlinear knapsack problem. Bretthauer and
Shetty [89] presented a survey concerning algorithms and applications of this prob-
lem, and analyzed the general form of the problem and of its most common variants:
continuous or integer variables, convex or nonconvex functions, separable or non-
separable functions, bounds on the variables, or generalized upper bound (GUB)
constraints. None of these variants, however, can be used to model FKPP.

Paper contribution. To the best of our knowledge, this is the first paper that
specifically addresses FKPP in its general settings. Our contributions can be sum-
marized as follows:
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1. General structural properties, the special case where all profit functions Fj are
convex, and the analogous case where penalties occur as additional weights
(instead of profit reduction) are introduced in Section 5.1.

2. In Section 5.2 we propose two different mathematical models and discuss the
relation between the two models. The first model has a linear number of vari-
ables and constraints, but a non-linear objective function. The second model
restricts the weight contribution of each variable to integers and resembles
a Multiple-Choice Knapsack Problem (MCKP), albeit it requires a number of
variables that is pseudopolynomial in the input size. Moreover, we construct
a Fully Polynomial Time Approximation Scheme (FPTAS) for the problem in
its general form. Nevertheless, the presence of fractional variables prevents to
derive an FPTAS by simple adaptations of similar algorithms for MCKP, and
requires a suitable treatment of the items profits.

3. From an algorithmic point of view we first report in Section 5.4 the dynamic
program recently proposed by Ceselli and Casazza [4] for the optimal solution
for the special case in which all profit functions are convex. Then an improved
algorithm with lower computational complexity is presented which partitions
the dynamic programming iterations into phases, each addressing a subprob-
lem of suitable size. Finally, Section 5.5 presents some fast and simple heuristic
algorithms for the approximate solution of FKPP.

4. Section 5.6 reports the outcome of an extensive computational study on the
performance of the proposed models and algorithms. To this end we de-
veloped benchmark instances derived from the KP literature using different
shapes of the penalty functions. It turns out that our newly developed, im-
proved dynamic programming scheme delivers the best performance among
all solution approaches for the instances of the convex case.

5.1. Structural results

In this section we impose some natural assumptions on the input data, and describe
some properties of any optimal FKPP solution that will be used in the next section
for modelling and solving the problem. Furthermore, we will introduce the relevant
special case where all Fj(·) are convex.

Assumption 1 All item weights wj and the capacity value W are integers.

This assumption is usually imposed for knapsack-type problems and holds with-
out loss of generality. If there are rational weight coefficients, one can multiply all
weights and the capacity by the smallest common multiple of the denominators and
thus reach integer values.

Proposition 14 For each item j ∈ N we can replace Fj(·) with F̃j(·) in the objective func-
tion of FKPP, where F̃j(xj) = max{Fj(y) : y ∈ [0, xj]} ∀xj ∈ [0, 1].

Proof. Let us denote by I = (n, W, (Fj), (wj)) an instance of FKPP. We define another
FKPP instance, say, Ĩ = (ñ, W̃, (F̃j), (w̃j)) with ñ = n items, capacity W̃ = W and, for
each item j = 1, . . . , n, weight w̃j = wj and profit function F̃j(xj) = maxy≤xj{Fj(y)}.
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Since I and Ĩ differ for the objective function only, a solution x is feasible for I if
and only if it is feasible for Ĩ. In addition, by definition of F̃j(·), we have F̃j(xj) ≥
Fj(xj) ∀j, i.e., moving from I to Ĩ cannot reduce the value of solution x.

We now prove that, given an optimal solution x̃ (say) for Ĩ, it is possible to con-
struct a solution x that has the same value in I. For each item j, set

xj := min{y : Fj(y) = F̃j(x̃j)}. (5.2)

Note that, by definition of F̃j(·), we have xj ≤ x̃j for each item j, i.e., x is a feasible so-
lution for instance I. In addition (5.2) ensures that Fj(xj) = F̃j(x̃j) ∀j, i.e., solutions x
and x̃ have the same value according to profit functions Fj(·) and F̃j(·), respectively.
This implies that x is indeed optimal for I. �

It must be noted that the computation of F̃j(·) is not necessarily possible in poly-
nomial time but depends on the properties of Fj(·). Thus, also mapping an optimal
solution for F̃j(·) back into a solution for Fj(·), as required by (5.2), may be impossi-
ble in polynomial time. However, bearing these computational caveats in mind, the
proposition justifies our second assumption:

Assumption 2 For each item j ∈ N, function Fj(·) is non-decreasing in [0, 1].

We now observe that, while an optimal solution to CKP includes at most one
fractional item (namely, the critical item), this is not the case for FKPP. Indeed, there
are generic FKPP instances with n items for which the optimal solution splits all
items.

Proposition 15 There are instances of FKPP for arbitrary n, where all n items are split in
the optimal solution.

Proof. Consider the following instance with n items, knapsack capacity W = M for
some large value M, and all items identical with pj = wj = M− 1 for j = 1, . . . , n.
The profit function Fj(xj) = F(xj) = (M− 1)xj − f (xj) for j = 1, . . . , n is defined as
the following piece-wise linear (non-convex) function (see Figure 5.1):

F(xj) =



0 if 0 ≤ xj ≤ 2
M−1

M
M−2n (M− 1)xj − 2M

M−2n if 2
M−1 < xj ≤ 1

n
M

M−1

M
n if 1

n
M

M−1 < xj ≤ M−2
M−1

(M− 1)(M− 1− M
n )xj − (M− 1)(M− 2− M

n ) if M−2
M−1 < xj ≤ 1

Choosing an item j with xj ≥ M−2
M−1 leaves a residual capacity ≤ 2 which could

only be filled by items i with xi ≤ 2
M−1 , but then these items i would contribute zero

profit and the resulting solution has a total profit at most pjxj ≤ M− 1.
For choosing an item j with xj <

M−2
M−1 it is always better to set xj to the lower end

of the interval where profit is constant, i.e. xj =
1
n

M
M−1 . Taking this fractional choice

for all n items yields an optimal solution value of M (and total weight M). Choos-
ing a value even smaller than 1

n
M

M−1 for some items does not offer any opportunities
for improving the contribution of other items by increasing their values, since an
increase of profit starts only for item values strictly greater than M−2

M−1 , which leads
us back to the case we settled at the beginning of the proof. �
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M
n

M

0 2
M−1

1
n

M
M−1

M−2
M−1 1

F(xj)

xj

FIGURE 5.1: Example of a generic profit function that
leads to an optimal solution with all fractional items.

5.1.1 FKPP with convex objective function

For several applications, it is reasonable to assume that the penalty functions f j(·)
are concave. This means that taking a smaller part of an item and selecting it (or
its complement) will incur a rather small penalty, as it may correspond to a minor
trimming operation. However, splitting an item closer to the middle, and thus devi-
ating more significantly from integrality, requires a more involved effort and causes
a higher penalty. Hence, we will consider the special case where all functions f j(·)
are concave and thus all profit functions Fj(·) are convex. Clearly, this case also in-
cludes the most plausible cases of linear and constant penalty functions. Note that
the special case of FKPP resulting from BPPIF (Ceselli and Casazza [4]) contains lin-
ear penalty functions and thus falls into this category of convex profit functions.

We now show that for this case an optimal solution exists in which at most one
item is taken at a fractional level. This fact has pleasing modeling and algorithmic
consequences, discussed next.

Proposition 16 If all profit functions Fj(·) are convex, there exists an optimal solution for
FKPP that has at most one fractional item.

Proof. Let x∗ be an optimal solution for FKPP that includes two items, say h and k,
at a fractional level. We will show that x∗ cannot be unique. Let ε > 0 be a positive
value and define εh = ε/wh and εk = ε/wk. Now consider two solutions y and z as
follows:

yj =


x∗j if j 6= h, k
x∗h + εh if j = h
x∗k − εk if j = k

(j ∈ N)

and

zj =


x∗j if j 6= h, k
x∗h − εh if j = h
x∗k + εk if j = k

(j ∈ N)
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Given their definition, these solutions satisfy the capacity constraint, as ε units
of capacity are moved from h to k or vice-versa. In addition, as both x∗h and x∗k are
strictly positive and smaller than 1, solutions y and z are feasible if ε is chosen such
that εh ≤ min{1− x∗h , x∗h} and εk ≤ min{1− x∗k , x∗k}. Finally, ε > 0 implies εh > 0
and εk > 0, i.e., y and z are distinct from x∗ and x∗ = 1

2 y + 1
2 z. As all profit functions

are convex we have that:

∑
j∈N

Fj(x∗j ) ≤
1
2 ∑

j∈N
Fj(yj) +

1
2 ∑

j∈N
Fj(zj)

implying that:

∑
j∈N

Fj(x∗j ) ≤ max
{

∑
j∈N

Fj(yj), ∑
j∈N

Fj(zj)

}
i.e., at least one between y and z yields a profit not smaller than that of x∗. Thus,
another optimal solution may be defined either increasing h and decreasing k or de-
creasing k and increasing h, until one of the two variables hits either the lower or the
upper bound. �

Since we assumed the knapsack capacity W and all the item weights wj (j =
1, . . . , n) to be integer, the following result is a direct consequence of Proposition 16.

Proposition 17 If all profit functions Fj(·) are convex, there exists an optimal solution to
FKPP where wjxj is integer for each item j.

Proof. Proposition 16 ensures that an optimal FKPP solution, say x∗, exists in which
at most one item is split. Let k be such item. Since we assume all weights and the
capacity be integer, all items j 6= k have an integer value of wjx∗j , and the residual
capacity for item k is an integer number. As function Fk(·) is non-decreasing, there
is an optimal solution where item k is taken at the largest possible value, which is
indeed an integer. �

We conclude this section observing a relevant property of function Fj(·) (j ∈ N),
in case it is convex. Indeed, under convexity hypothesis, Fj(0) = 0 implies that there
must exist a value x′j ∈ [0, 1) such that Fj(x) ≤ 0 for x ∈ [0, x′j] and Fj(x) is strictly

increasing for x ∈ [x′j, 1]. Thus, the profit function F̃(·) introduced in Proposition 14

is defined as F̃j(x) = Fj(x) for x ≥ x′j and F̃j(x) = 0 for x < x′j. This means that, if

we use function F̃j(·) instead of Fj(·), an optimal solution x̃j obtained for the latter
can be mapped to xj = 0 if Fj(x̃j) ≤ 0 and to xj = x̃j otherwise. In other words, there
is no need to explicitly compute x′j, and, given an optimal solution for F̃j(·), one can
compute variables xj according to (5.2) in linear time.

5.1.2 Penalty in terms of weight

We have defined FKPP by considering a penalty in the profit of fractional items. It
seems natural to also consider the case in which the penalty for fractional items is
enforced in terms of additional weight, instead of reduced profit. In other words, we
can consider that a fraction xj of a given item j produces a profit pjxj, but consumes a
capacity Gj(xj) ≥ wjxj, where Gj(xj) is a (possibly discontinuous) function defining
the weight of fraction xj, once the penalty is considered. Define, Gj(0) = 0 and
Gj(1) = wj, for all j ∈ N. In this section we show that the fractional knapsack
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problem with weight penalty can be reduced to FKPP for a suitable penalty function.
To this aim we introduce, for each item j, set

Sj =
{

xj ∈ [0, 1] : @y > xj, Gj(y) ≤ Gj(xj)
}

(5.3)

that contains all those points that are not dominated, i.e., for which no point exists
that provides a larger profit and consumes the same capacity (or less). In the follow-
ing, we show that, for each j ∈ N, only points xj ∈ Sj are relevant in the definition
of the weight function Gj(·).

Proposition 18 There exists an optimal solution x of the fractional knapsack with penalty
in terms of weight such that xj ∈ Sj for each item j ∈ N.

Proof. Let x be an optimal solution of the problem. By contradiction, assume there
exists an item j (say) such that xj /∈ Sj. This means that there exists y such that
Gj(y) = Gj(xj) and y > xj. Setting xj = y does not increase the amount of capacity
required by item j, while it increases the objective function value; this contraditcs
the assumption that x is an optimal solution. �

Based on this proposition, for each item j we can define a reduced weight func-
tion whose domain is Sj; it turns out that this reduced function is strictly increasing
on its domain. Setting aside the theoretical issue that the reduced function Gj(·) may
be difficult to compute, this justifies the following assumption.

Assumption 3 For all j ∈ N, function Gj(·) is a strictly increasing function and hence it
is invertible.

Note that, if Gj(·) is discontinuous for some j, then G−1
j (·) is not defined for some

weight values. However, we can complete the definition of each G−1
j (·) for the whole

domain by setting G−1
j (w) := max{xj : Gj(xj) ≤ w} for all w ∈ [0, wj]. Similarly to

the discussion in Section 5.1, the computational complexity for computing G−1
j (w)

depends on the properties of Gj(·).
The main result of this section follows:

Proposition 19 A fractional knapsack problem with penalty in terms of weight, described
by invertible functions Gj(·) for all j ∈ N, can be reduced to a FKPP.

Proof. Let I = (n, W, (pj), (Gj)) be an instance of fractional knapsack with penalty
in terms of weight. For each item j, let wj = Gj(1) denote its maximum weight.
We define an instance Ĩ = (ñ, W̃, (F̃j), (w̃j)) of FKPP with ñ = n items and capacity
W̃ = W. In addition, for each item j = 1, . . . , n, we define a weight w̃j = wj and
profit function F̃j(x̃j) = pjG−1

j (wj x̃j).
We now show that every feasible solution for I has associated a feasible solution

for Ĩ with the same value, and viceversa. Let x be a feasible solution for I, i.e.,
such that each item j has weight Gj(xj) and gives a profit pjxj. We now define a
solution x̃ by setting x̃j = Gj(xj)/wj, i.e., item j has weight Gj(xj) and gives a profit
F̃j(x̃j) = pjG−1

j (wj x̃j) = pjG−1
j (wjGj(xj)/wj) = pjxj.

Similarly, let x̃ be a feasible solution for Ĩ, i.e. each item j has weight wj x̃j

and profit F̃j(x̃j). We define a solution x by setting xj = F̃j(x̃j)/pj, i.e., item j has
weight Gj(xj) = Gj(F̃j(x̃j)/pj) = Gj(pjG−1

j (wj x̃j)/pj) = wj x̃j and profit pjxj =

pj F̃j(x̃j)/pj = F̃j(x̃j). �
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5.2. Mathematical models for FKPP

In this section we present two alternative mathematical models for FKPP. The first
model is general, though it may be non-linear depending on the form of the penalty
functions. Conversely, the second model is an Integer Linear Program (ILP) re-
stricted to integral weight contributions of all items. Recalling Proposition 17, this
applies e.g. for the case when all Fj(·) functions are convex.

5.2.1 General model

The first model (MGEN) has continuous variables xj to denote the fraction of item
j ∈ N in the solution. In addition we introduce, for each item j, two binary vari-
ables αj and β j, that are used to handle the profit function for xj = 0 and xj = 1,
respectively. Denoting by ∆0

j = f j(0) and ∆1
j = f j(1), the formulation reads:

(MGEN) max ∑
j∈N

(
pj xj − f j(xj) + ∆0

j αj + ∆1
j β j

)
(5.4)

∑
j∈N

wj xj ≤W (5.5)

αj ≤ 1− xj j ∈ N (5.6)
β j ≤ xj j ∈ N (5.7)

0 ≤ xj ≤ 1 j ∈ N (5.8)
αj, β j ∈ {0, 1} j ∈ N. (5.9)

The objective function (5.4) takes into account both the linear profit and the penalty
of each item and is possibly increased by ∆0

j or ∆1
j when item j is not selected or

fully inserted into the knapsack, respectively. While (5.5) is the capacity constraint,
inequalities (5.6) and (5.7) set the correct values of the αj and β j variables, allowing
each such variable to be 1 only in case the associated item is not taken or fully taken,
respectively.

This model has polynomial size for what concerns both the number of variables
and constraints. All constraints in the model are linear, and all possible nonlineari-
ties appear in the objective function only. Thus, the computational tractability of the
model depends on the shape of the penalty functions f j(·).

5.2.2 An ILP model for integer weight contributions

The second model (MINT) assumes the integrality of the used weight for each item
j. It samples the function Fj(xj) for all relevant values of variable xj, and introduces
a binary variable for each such value. In particular, for each item j ∈ N and possible
weight k = 1, . . . , wj, we introduce a binary variable yjk that takes value 1 if item j
uses k units of capacity, i.e., if wjxj = k. For each pair (j, k), we denote by tjk the net
profit obtained by taking k

wj
units of item j, namely:

tjk = Fj

(
k

wj

)
=


0 if k = 0
pj if k = wj
pj

k
wj
− f j(

k
wj
) otherwise.

(j ∈ N)
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As an illustrative example, for an item j with wj = 3 we define 3 variables
yj1, yj2, yj3 with weights 1, 2, 3 and profits tj1 = Fj(1/3) = pj/3 − f j(1/3), tj2 =
Fj(2/3) = 2pj/3− f j(2/3) and tj3 = Fj(1) = pj.

Recall that, for the case where all profit functions Fj(·) are convex, Proposition 17
ensures that an optimal solution exists in which each item uses an integer number
of units of capacity. Thus, MINT gives an optimal solution for the convex case. Of
course, MINT can be also applied for the general case where it will yield a possibly
sub-optimal, approximate solution, which will be discussed in Section 5.2.3.

Using the above definitions, the second model is:

(MINT) max ∑
j∈N

wj

∑
k=1

tjk yjk (5.10)

wj

∑
k=1

yjk ≤ 1 j ∈ N (5.11)

∑
j∈N

wj

∑
k=1

k yjk ≤W (5.12)

yjk ∈ {0, 1} j ∈ N; k = 1, . . . , wj. (5.13)

Objective function (5.10) takes into account both the profit and the penalties for
the selected items. Constraints (5.11) ensure that each item is associated with a
unique weight value, whereas (5.12) imposes the capacity constraint.

Observe that the number of yjk variables is ∑j∈N wj, i.e., pseudopolynomial in the
input size. Thus, we may expect this model to be extremely challenging to be solved
for instances with large item weights. However, this model is a pure Integer Linear
Program (ILP), and can thus be solved using the rich machinery offered by mod-
ern commercial ILP solvers. Moreover, it is easy to see that MINT corresponds to
a Multiple-Choice Knapsack Problem (MCKP) with inequality constraints, where each
subset of items in MCKP corresponds to the possible choices for cutting an integer
weight from an item in FKPP. Thus, one could also solve MINT by applying spe-
cialized algorithms for MCKP. Note that number of items in the resulting instance
of MCKP, say ñ, is pseudopolynomial, namely ñ = ∑j∈N wj which is in O(nwmax),
where wmax := max{wj : j = 1, . . . , n} denotes the maximum weight of an item.
Thus, the classical dynamic programming scheme described in Kellerer et al. [83,
Sec. 11.5]) would take O(nwmaxW) time.

5.2.3 Comparison between MGEN and MINT

In the convex case both the general model MGEN and model MINT are valid. The
following proposition states the relationship between the associated continuous re-
laxations.

Proposition 20 When functions Fj(·) are convex for all j ∈ N, the continuous relaxation
of model (5.4)–(5.9) dominates the continuous relaxation of model (5.10)–(5.13).

Proof. Let (x∗, α∗, β∗) be an optimal solution to the continuous relaxation of model
MGEN. Observe that, in any optimal solution, variables α and β will be at the max-
imum value that is allowed, namely α∗j = 1− x∗j and β∗j = x∗j for each j ∈ N. Thus,
the contribution of each item j to the objective function is

pjx∗j − f j(x∗j ) + ∆0
j (1− x∗j ) + ∆1

j x∗j ≤
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pjx∗j −
(

∆0
j (1− x∗j ) + ∆1

j x∗j
)
+ ∆0

j (1− x∗j ) + ∆1
j x∗j = pjx∗j

where the first inequality holds by convexity of − f (xj).
Consider now a solution, say y∗, for the second model, defined as follows: for

each item j ∈ N, let

y∗jk =
{

0 if k < wj
x∗j if k = wj

It is easy to see that this solution satisfies constraints (5.11) and (5.12), i.e., y∗ is
a feasible solution to the continuous relaxation of MINT. The associated value is
pjy∗jwj

= pjx∗j which concludes the proof. �

We can also explicitly state the following property of the continuous relaxation
of MINT.

Proposition 21 Let ȳjk be an optimal solution of the LP-relaxation of MINT. Then ȳjk = 0
for k < wj.

Proof. Comparing the efficiencies ejk (profit per unit of weight) we have for k < wj:

ejk =
pj

k
wj
− f j(

k
wj
)

k
=

pj

wj
− 1

k
f j(

k
wj

) ≤
pj

wj
= ejwj

Observe that (5.11) impose that, for each item j, the sum of the associated y variables
is at most 1. Thus, for each item j, it is always advantageous to consider variable yjwj

(i.e., the one with highest efficiency) and set it to the largest possible value. �

Although the associated continuous relaxation of MINT provides weaker bounds
than its counterpart for MGEN, the former can be computed much more efficiently.
It follows from Proposition 21 that the LP-relaxation of MINT is equivalent to the
LP-relaxation of the underlying knapsack problem KP and thus can be solved by the
classical linear time algorithm (see, Kellerer et al. [83, Sec. 3.1]) in O(n) time3. For
the continuous relaxation of MGEN no combinatorial algorithm is available for the
general case.

As observed above, one could obtain an approximation of the general case by
solving model MINT and thus implicitly adding the restrictions that wjxj is integer
for each item j. This might seem attractive since the MCKP-type model MINT can
be expected to be much easier to solve than the general MINT, as illustrated by our
experiments in Section 5.6. Unfortunately, the quality of this approximation may be
quite low in the worst case.

For a given instance I, let us denote by z∗(I) and zINT(I) the optimal solution
value and the value of the solution computed by model MINT, respectively. The
following result determines the maximum percentage deviation of the latter with
respect to the optimum when nonconvex profit functions are considered.

Theorem 3 Let I be an instance of FKPP with arbitrary profit functions Fj(·) for each item
j. Then, we have zINT(I)

z∗(I) ≤
1
2 and the ratio can be tight.

Proof. For ease of notation, we omit the indication of the instance I at hand. Let
zC be the optimal solution value of the problem in which items can be split with no

3Note that employing the linear time algorithm for the LP-relaxation of MCKP (see, Kellerer et
al. [83, Sec. 11.2]) would give an O(nwmax) pseudopolynomial algorithm.
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penalties. Similarly, denote by zKP the same value for the problem in which they
cannot be split at all. We have

zC ≥ z∗ ≥ zINT ≥ zKP ≥ zC

2
, (5.14)

where the last inequality derives from the observation that zKP corresponds to a KP
whose continuous relaxation is zC. Thus, both zINT and z∗ belong to the interval
[ zC

2 , zC], implying that the ratio between these two values cannot be larger than 1
2 .

To prove that the ratio is tight, consider a family of instances defined according to
an integer parameter k, as follows: there are n = k2 + 1 items and the capacity is
C = k + 1. The first item has profit p1 = k, weight w1 = 1, and a profit function
such that F1(x1) = 0 for x1 < 1. Each remaining item j = 2, . . . , n has pj = k + 1,
wj = k + 1, and profit function Fj(xj) = (k + 1)xj for 0 ≤ xj ≤ 1

k(k+1) and Fj(xj) =
1
k

for xj ≥ 1
k(k+1) .

The optimal solution completely packs the first item and fills the residual capacity
by taking each remaining item j at a level xj =

1
k(k+1) . It is easy to see that each such

item requires a capacity equal to 1
k and that the resulting profit is z∗ = p1 + k2 1

k =
k + k = 2k. The heuristic solution is composed by a unique item j ∈ [2, n] that is
taken completely, thus yielding a profit zINT = k + 1. Observe that an equivalent
solution is obtained taking item 1 and using the residual capacity equal to k to pack
the remaining items. In this case, forcing each item to have an integer wjxj value
implies that k items are taken at a level xj =

1
k+1 , thus producing a total profit equal

to k + k 1
k = k + 1. Thus we have zINT

z∗ = k+1
2k , i.e, the ratio is arbitrarily close to 1

2 for
sufficiently large k. �

Inequality (5.14) also shows the following bound on the effect of allowing fractional
values.

Corollary 1
zKP ≤ z∗ ≤ 2 zKP

5.3. An FPTAS for the general case

For an NP-hard problem the best algorithmic approach one can hope for is a Fully
Polynomial Time Approximation Scheme (FPTAS). This means that for any given
accuracy ε > 0, the algorithm computes a feasible solution with a relative devia-
tion of at most ε from the (unknown) optimal solution. Its running time must be
polynomial in 1/ε and size of the encoded input. This allows a trade-off between
accuracy and running time: Permitting a larger deviation a rough estimation of the
optimal solution value is reached within a short computation time. Allocating more
running time, almost optimal solutions can be guaranteed. We can derive an FPTAS
for FKPP by employing another approximate representation of FKPP as a Multiple-
Choice Knapsack Problem (MCKP) different from Section 5.2.2.

For each item j, we define a function ϕj : [0, pj]→ [0, 1] such that ϕj(p) = inf{x :
Fj(x) ≥ p}. This function is well defined since all Fj are monotonically increasing,
though it may not be easy to evaluate. If Fj is strictly increasing and continuous then
ϕj is the inverse function F−1

j . According to our definition, if a profit function is
constant on a certain interval, i.e. Fj(x) = c for all x ∈ [a, b] ⊆ [0, 1], then ϕj(c) = a.
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Note that in all cases we are aware of, an FPTAS for knapsack-type problems is
derived from an exact, pseudopolynomial dynamic programming scheme. Usually,
the profit values are divided by a suitable constant (depending on ε) and the result-
ing values are rounded down. Thus, the order of magnitude of all profits is reduced.
This scaling of the profit space results in a polynomial running time at a certain loss
of optimality. For FKPP the situation is different since the continuous, non-discrete
nature of the decision variables and the resulting item weights and profits does not
seem to permit an exact dynamic programming approach for the general case. Of
course, it is well-known that the MCKP instance implied by MINT can be solved
to optimality in pseudopolynomial time and can be approximated by an FPTAS, but
the resulting solution may deviate considerably from the optimal solution for the
general case of FKPP, as illustrated by Theorem 3.

For our general FPTAS we are given an accuracy parameter ε and a scaling pa-
rameter K to be defined later. We partition the profit range [0, pj] of every item j
into equal-sized intervals of width K. Thus, the profit range is approximated by a
sequence of equidistant discrete values 0, K, 2K, . . . , b pj

K cK, and the final value pj (if
it is not a multiple of K). This guarantees that for any profit p ∈ [0, pj], there exists
an integer number i ∈ {0, 1, . . . , b pj

K c} such that iK ≤ p < (i + 1)K.
For any instance I of FKPP, we define a corresponding instance IA of MCKP with

the same capacity W. Each item j in I gives rise to a subset Nj of b pj
K c+ 1 items in IA.

For i ∈ {0, 1, . . . , b pj
K c} there is an item in Nj with profit i and weight ϕj(i K)wj. Note

that the sequence of profits in each subset is completely regular, while the sequence
of weights may contain large jumps and also subsequences of identical values if Fj

is discontinuous. Every feasible solution of IA directly implies a feasible solution of
I by setting xj = ϕj(i K) if item i was selected from subset Nj.

Our FPTAS consists of running dynamic programming by profits, i.e. determin-
ing for every profit value the smallest weight of a solution reaching this profit. In
this way one can solve IA to optimality and report the associated feasible solution
for I. The running time of the underlying standard algorithm (see, Kellerer et al. [83,
Sec. 11.5]) is a product of the number of items, and an upper bound on the objective
function. Setting pmax := max{pj : j = 1, . . . , n}, considering that the total number
of items in IA is ∑j∈N(b

pj
K c+ 1) ≤ n pmax/K+ n, and stating a trivial upper bound on

the objective function value of IA as n pmax/K, its running time can be bounded by
O((npmax/K)2). Now, choosing (similar to the classical FPTAS for KP) K := εpmax

n the
running time is fully polynomial, namely O(n4/ε2). Note that we do not consider
possible improvements of this complexity as our aim is to establish the existence of
an FPTAS.

Theorem 4 There is an FPTAS for FPKK if, for each item j ∈ N and possible profit p ∈
[0, pj], value ϕj(p) can be computed in polynomial time.

Proof. It remains to show that the algorithm yields an ε-approximation.4 Consider
an instance I with optimal solution x∗, solution value z∗, and the corresponding
instance IA of MCKP. For each value x∗j , determine an integer number ij such that
ijK ≤ Fj(x∗j ) < (ij + 1)K. Now define the following solution, obtained by setting
x∗A

j := ϕj(ij K) for each item j. Clearly, x∗A is a feasible solution in IA; let us denote
by z∗A its objective function value in IA. Observe that x∗A is also feasible in I, and

4It should be noted that the direct application of standard arguments as given in Kellerer et al. [83,
Sec. 2.6] does not work since the optimal solution for I may have an almost arbitrary profit if translated
into a feasible solution of IA.
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its associated value is Kz∗A. The difference between z∗ and Kz∗A, i.e. moving from I
to IA and back to I, can be bounded by

z∗ − Kz∗A ≤ nK = εpmax ≤ εz∗ (5.15)

since the profit contributed by each item j will be reduced by less than K.
Now consider the solution to IA computed by our algorithm, i.e., an optimal

solution obtained running the dynamic programming algorithm, and let zA ≥ z∗A

be its objective value in IA. As the outcome of our FPTAS, this implies a feasible
solution, say x′, for I with objective function value z′ = KzA. Thus, we have from
(5.15)

(1− ε)z∗ ≤ Kz∗A ≤ KzA = z′

i.e., the produced solution yields an ε-approximation of z∗ for any ε > 0. �

5.4. Dynamic Programming algorithms for the convex case

In the following sections, we present dynamic programming (DP) algorithms that
can be used for computing an optimal solution to FKPP in case that an optimal so-
lution exists with at most one fractional item. By Proposition 16 this applies for the
broad class of instances where profit functions are convex. Our algorithms will use
a DP algorithm for KP as a black box. Thus, we firstly review two classical DP al-
gorithms for KP. Then, we describe the DP approach proposed in [4] to solve FKPP.
Finally, we present a new algorithm that yields improvements with respect to the
algorithm by [4] both from a theoretical and from a computational viewpoint.

5.4.1 Dynamic Programming algorithms for KP

The basic idea of DP algorithms for KP is to solve, for each item j = 1, . . . , n and
capacity value c = 1, . . . , W, the KP instance defined by item set {1, . . . , j} and ca-
pacity c. Denoting by T(j, c) the value of this solution, we can determine an optimal
solution to the original instance as T(n, W).

There are two main procedures that can be used to compute the T entries. The
first one, also known as Bellman recursion (see, Bellman [90]), is based on the com-
putation of all the n ×W entries. The computation of each entry can be done in
constant time, yielding an O(nW) complexity. The second scheme is known as Dy-
namic Programming with Lists and goes back to Nemhauser and Ullmann [91] (see
also Kellerer et al. [83, Sec. 3.4]). The basic idea is that an optimal solution can be
determined without computing all the T(j, c) entries since many (j, c) pairs may be
redundant. This consideration may reduce the memory requirement and improve
the computational performance of the resulting algorithm. In fact, under certain
input distributions it was shown in [92] to run in expected polynomial time. On
the other hand, there is no effect in reducing the worst-case complexity and, if the
number of non-redundant entries is comparable to nW, then the overhead needed
to handle the lists could be significant.

In the following, we will assume that a black box procedure DP-KP implementing
one of the schemes above is available. Observe that both algorithms require some
initialization step; conceptually, this corresponds to setting T(0, c) = 0 for each c =
1, . . . , W. However, one can easily generalize the schemes simply setting T(0, c) =
S(c) for each c = 1, . . . , W, where S is some starting vector to be properly defined
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in case some profit is obtained even when no items are taken (S = 0 means that a
zero vector is used). In addition, note that the DP algorithm returns, as a byproduct,
the optimal solution value for all possible capacities c = 1, . . . , W. Given an item
set N, a capacity value W, and a vector S containing a starting profit value for each
capacity entry, function DP-KP(N, W, S) computes and returns a vector T such that
T(c) = T(|N|, c) for each c = 1, . . . , W.

5.4.2 A Dynamic Programming algorithm for FKPP

The DP algorithm proposed in [4] is based on the following observation: if no item
is fractionally selected in an optimal solution, then an optimal solution of FKPP cor-
responds to the optimal solution of KP. Otherwise, one can exploit the fact that only
one item is taken at a fractional level, guess this item and solve a KP associated with
the remaining items. In case a DP algorithm is used to solve the KP instance, one
can easily compute a posteriori the amount of capacity to be used for the split item
and derive an optimal FKPP solution. The complete algorithm DP1 is given in Al-
gorithm 5.4.2.1, where each zj denotes the profit of the optimal solution in case item
j is split. The version of this algorithm, where DP with Lists is used, will be referred
by DP2.

Algorithm 5.4.2.1 DP1

compute the optimal solution when no item is split
set T := DP-KP(N, W, 0) and z∗ := T(W)
for all items j ∈ N do

apply DP without item j
set T := DP-KP(N \ {j}, W, 0) and zj := T(W);
complete the solution by splitting item j in the best possible way
for c = 1 to wj − 1 do

if T(W − c) + Fj(
c

wj
) > zj then

zj := T(W − c) + Fj(
c

wj
)

end if
end for
if zj > z∗ then

z∗ := zj
end if

end for
return z∗

Algorithm DP1 can be executed in O(n2W) time. Indeed, computing the optimal
solution when no item is split requires the execution of a dynamic programming for
KP. As to the case in which an item is split, there are n iterations. At each iteration j,
one has to run the dynamic programming for KP with item set N \ {j} and capacity
W, which requires O(nW); given that, the associated zj value can be computed in
O(wj) time. Thus, the overall complexity of DP1 is O(n2W). The same considera-
tions apply for DP2.

Proposition 22 If all profit functions Fj(·) are convex, FKPP is weakly NP-hard.

Proof. It is easy to see that FKPP is in NP. As pointed out in the Introduction,
it contains KP as a special case, which arises when no item j can be split, e.g.,
f j(xj) = pj ∀xj ∈ (0, 1) (j ∈ N). Thus, FKPP is NP-hard, but can be solved is
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pseudopolynomial time as shown by the analysis of algorithm DP1. �

5.4.3 An improved Dynamic Programming algorithm for FKPP

In this section we introduce a new DP algorithm for FKKP having an improved com-
putational complexity with respect to the scheme given in the previous section. The
resulting algorithm IDP1 (see Algorithm 5.4.3.1) takes as input an integer parameter
k that will be defined later. As for the previous approach, this algorithm considers
one item at a time as the split item, computes the optimal KP solution without this
item, and completes the solution in the best possible way. The main difference is
that the KP instances are solved in an incremental way. In particular, items are parti-
tioned into r subsets, each containing at most k items. For each item j that belongs to
subset Li, we compute vector T1, containing, for every capacity value c = 1, . . . , W,
the optimal solution value of the KP instance defined by all items not in Li and by
a capacity value c. Each such a solution is then completed considering all items in
Li but j. This can be done executing again procedure DP-KP, using T1 as the vec-
tor of starting values, thus obtaining a vector T2 that contains, for every capacity
value c = 1, . . . , W, the optimal solution value of KP instance with all items but j
and capacity equal to c. At this point, we can proceed as in DP1, i.e., considering all
fractional levels for item j, and computing the optimal value of the FKPP solution.
As stated in the following Theorem 5, this allows a reduction of the computational
complexity of the algorithm. Employing an implementation of this approach based
on DP with Lists will give an algorithm denoted by IDP2.

Algorithm 5.4.3.1 IDP1

compute the optimal solution when no item is split
set T := DP-KP(N, W, 0) and z∗ := T(W)
partition item set N into r subsets Li such that |Li| ≤ k for each i = 1, . . . , r
for i = 1 to r do

guess the set Li of items that contains the split item
set T1 := DP-KP(N \ Li, W, 0)
for all items j ∈ Li do

apply DP to the residual items (but item j) starting from the optimal values
associated with item set N \ Li

set T2 := DP-KP(Li \ {j}, W, T1) and zj := T2(W)
complete the solution splitting item j in the best possible way
for c = 1 to wj − 1 do

if T2(W − c) + Fj(
c

wj
) > zj then

zj := T2(W − c) + Fj(
c

wj
)

end if
end for

end for
if zj > z∗ then

z∗ := zj
end if

end for
return z∗

Theorem 5 Algorithm IDP1 can be executed in O(n3/2W) time.
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Proof. Consider an iteration of the algorithm, associated with subset (say) Li. The
first DP execution takes O((n− k)W) time. Then, k executions of the DP algorithm
are needed, trying all items in Li as split item. Each execution requires O(kW) time
and produces a solution in which item j is not taken. Trying all possible wj − 1 ways
to complete this solution with item j takes O(W) additional time.
Thus, the complexity of each iteration is O

(
nW − kW + k[kW + W]

)
. Executing r

iterations yields a total complexity equal to O(rnW − rkW + rk2W + rkW) time.
Taking k = b

√
nc and r = dn/ke ≈

√
n we obtain the claimed complexity equal to

O(
√

n nW − nW +
√

n nW + nW) = O(
√

n nW). �

Again, a similar reasoning applies for the list based IDP2.

5.5. Heuristics

In this section we present three simple heuristic algorithms that provide approxi-
mate solutions for the general FKPP.

5.5.1 First heuristic algorithm

The first heuristic (H1) exploits the similarity between FKPP and KP. The procedure,
described in Algorithm 5.5.1.1, first computes an optimal solution of the KP instance
obtained when items cannot be split. Then, it fills the residual capacity (if any) using
a fraction of some residual item. To this aim, all items that are not packed in the KP
solution are tried, and the one returning the maximum profit is selected.

Algorithm 5.5.1.1 H1

solve KP and let x be an optimal solution
set zH := ∑j∈N pjxj and c := W −∑j∈N wjxj
let j = arg max

i:xi=0
{Fi(c/wi)}

set xj := c/wj and zH := zH + Fj(xj)

return zH

5.5.2 Second heuristic algorithm

The heuristic algorithm H1 requires the solution of a KP. As this problem is NP-
hard, though solvable efficiently in practice, we developed a second algorithm based
on the approximate solution of the knapsack problem. In this algorithm, that will
be denoted as H2, we used the classical GREEDY procedure described in Kellerer et
al. [83], that returns a KP solution that is maximal with respect to inclusion. This
solution is possibly improved using a fraction of some unpacked item in the same
way it happens for H1.

5.5.3 Third heuristic algorithm

Our third heuristic produces an initial KP solution by applying a variant of the
GREEDY procedure, called GREEDY-SPLIT in Kellerer et al. [83], that packs items into
the knapsack until the critical item is found (and then terminates). The residual ca-
pacity (if any) is filled in an iterative way, selecting at each iteration the unpacked
item that can be packed with a maximum profit. The complete algorithm is given in
Algorithm 5.5.3.1.
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Algorithm 5.5.3.1 H3

execute the GREEDY-SPLIT algorithm for KP and let x be the resulting solution
set zH := ∑j∈N pjxj and c := W −∑j∈N wjxj
while c > 0 do

let j = arg max
i:xi=0
{Fi(vi) : vi = min(1, c/wi)}

set xj := min(1, c/wj), c = c− xjwj and zH := zH + Fj(xj)
end while
return zH

5.6. Computational experiments

In this section we report the outcome of our computational experiments on FKPP. In
Section 5.6.1 we first give some details about the implementation of the algorithm,
while Section 5.6.2 describes our benchmark instances. Sections 5.6.3, 5.6.4 and 5.6.5
report the results of the exact methods for different classes of problems, while Sec-
tion 5.6.6 reports the outcome of the experiments concerning the heuristic solution
of FKPP.

5.6.1 Settings

All experiments were performed single thread on a computer equipped with an
Intel(R) Core(TM) i7-6900K processor clocked at 3.20 GHz and 64 GB RAM under
GNU/Linux Ubuntu 16.04. Each run was assigned a time limit of one hour. All DP
algorithms and the heuristic algorithms were implemented in C++, while models
MGEN and MINT were solved using the state-of-the-art commercial solver CPLEX
12.7.1.

As to model MINT, we also solved it using a combinatorial exact algorithm,
namely algorithm MCKP by Pisinger [93]. This algorithm is considered the state-of-
the-art in the solution of Multiple-Choice Knapsack Problems, and its code is pub-
licly available at www.diku.dk/~pisinger/codes.html. Given a FKPP instance, we
defined an associated MCKP instance as follows: each item j in FKPP corresponds
to a subset of items of MCKP, and each possible fraction of item j with weight equal
to k in FKPP corresponds to an item with weight k in subset j of the MCKP instance,
possibly removing MCKP items with negative profit. Algorithm MCKP is designed
for problems with integer positive data and for the version of the problem with the
equality constraint, i.e., the case in which exactly one item must be selected from
each subset of items. Thus, we had to implement the following transformation:

1. all profit values were multiplied by a large factor, possibly rounding the ob-
tained values;

2. for each subset j of items, a dummy item with zero profit and weight was
added;

3. the profit and the weight of each item were increased by one, the capacity was
increased by n.

The results obtained by solving the resulting MCKP instance will be denoted by
MCKP in the following. Computational experiments showed that MCKP largely
outperforms, in terms of computing time, the direct application of our commercial
solver on model MINT. For this reason, we do not report the results obtained using
the latter method in our analysis.

www.diku.dk/~pisinger/codes.html
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5.6.2 Benchmark instances

To the best of our knowledge, there is no FKPP benchmark in the literature. Thus,
we generated a large set of problems derived from KP instances from the literature.
We now describe the way KP instances were selected, and discuss later how each KP
problem was used to generate a FKPP instance.

KP instances

To define our benchmark, we used the KP instances introduced by Pisinger [94]. In
particular, several classes of instances have been obtained with different types of
correlation between profits and weights. The instances generator, publicly available
at www.diku.dk/~pisinger/codes.html, takes as input the class number, a positive
parameter R that defines the range in which weights are generated, and the total
number of items n.
For our experiments we considered only the six classes (11, 12, 13, 14, 15, 16) that
are denoted as hard by Pisinger [94] for KP algorithms, and used five different val-
ues of R (namely, R = 103, 104, 105, 106 and 107) and five different values of n (n =
20, 50, 100, 200, and 500). It turned out that the generator returned integer overflow
when generating instances of class 16 with R ≥ 105; thus, we disregarded the corre-
sponding instances. For each class, R and n, we generated one problem, producing
a set of 135 KP instances.

Penalty functions

As to the penalty functions, we tested continuous functions expressed by polyno-
mials with degree at most 2, i.e., linear or quadratic penalty functions. Recall that
∆0

j = f j(0) and ∆1
j = f j(1) represent, for a given item j, the value of the penalty

function for xj = 0 and xj = 1, respectively. Thus, the general form of the penalty
function is

f j(xj) = −k jx2
j + (∆1

j − ∆0
j + k j)xj + ∆0

j (5.16)

where k j is a parameter that defines the slope of the function. Given (5.16), the profit
function for each item j reads as follows

Fj(xj) =


0 if xj = 0
pj if xj = 1
pjxj + k jx2

j + (∆0
j − ∆1

j − k j)xj − ∆0
j otherwise

(j ∈ N) (5.17)

The linear case. When k j = 0, ∀j ∈ N, all profit functions are linear, and all methods
described in Sections 5.2 and 5.4 can be used to determine an optimal solution. In
this case, we consider three different penalty functions, depending on the values ∆0

j

and ∆1
j , as follows:

1. Constant penalty: if ∆0
j = ∆1

j = ∆j, the penalty function for item j is constant,
and the associated profit function is given by

Fj(xj) =


0 if xj = 0
pj if xj = 1
pjxj − ∆j if 0 < xj < 1

(j ∈ N)

www.diku.dk/~pisinger/codes.html
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2. Increasing penalty: if ∆0
j = 0 and ∆1

j > 0, the penalty function for item j is
negligible for small fractions xj while it assumes its maximum for values of xj
close to 1. In this case the profit function is not continuous in xj = 1:

Fj(xj) =

{
pj if xj = 1
pjxj − ∆1

j xj if 0 ≤ xj < 1 (j ∈ N)

3. Decreasing penalty: if ∆0
j > 0 and ∆1

j = 0, the penalty function for item j
assumes its maximum value for xj = 0 and decreases to 0 for xj = 1. In this
case the profit function is not continuous in xj = 0:

Fj(xj) =

{
0 if xj = 0
(pj + ∆0

j )xj − ∆0
j if 0 < xj ≤ 1 (j ∈ N)

The quadratic case. If k j 6= 0 the objective function (5.17) is quadratic. In particu-
lar, it corresponds to a convex function if k j > 0, whereas it is a concave function
in (0, 1) if k j < 0 (while it is not concave neither convex when 0 and 1 are consid-
ered). In the first case Proposition 16 applies, thus both model MINT and the DP
algorithm can be used to derive an optimal solution. In this case, however, we could
not use model MGEN since our solver does not support the maximization of convex
functions. In the concave case, instead, model MINT and the DP algorithm do not
provide an optimal solution, whereas model MGEN asks for the minimization of a
convex quadratic integer program, which can be tackled by our solver (the continu-
ous relaxation of MGEN has concave objective function).
Figure 5.2 shows the different shapes of the profit function in the linear and quadratic
cases inside the interval [0, 1]. They are compared with the linear profit function cor-
responding to CKP.

-∆
0
j

0

pj - ∆
1
j

pj

0 1

F(xj)

xj

CKP

Constant

Increasing

Decreasing
-∆

0
j

0

pj - ∆
1
j

pj

0 0.5 1

F(xj)

xj

CKP

Convex

Concave

FIGURE 5.2: Linear profit functions (on the left) and convex and con-
cave profit functions (on the right) of FKPP compared with CKP.

Our benchmark includes, for each KP instance, 5 FKPP problems defined ac-
cording to the penalty functions described above: convex, concave, constant, in-
creasing and decreasing. In all cases, but for the one with increasing penalty, we set
∆0

j = 0.1pj for each item j. Similarly, all instances but those with decreasing penalty
shape, ∆1

j = 0.1pj for each item j. For the quadratic concave case, we set k j = 0.4pj,
as this choice defined a curve that is a tangent to the linear function pjxj for xj = 0.5.
By analogy, we set k j = −0.4pj in the convex case.
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5.6.3 Results on linear instances

Table 5.1 reports the results for the considered FKPP instances with linear penalty
functions (k j = 0). The first and the second columns of the table report the range
R and the number of items n of the instances, respectively. Each row summaries
the results of eighteen different instances (fifteen for R ≥ 105): one instance for
each class (as done by Pisinger [94]) and for each type of linear penalty function
(constant, increasing and decreasing). Then the table is vertically divided into six
sections, each associated with a model or an algorithm. For each algorithm we report
the percentage of instances solved to optimality and the average computing time
(for instances solved to optimality only). As algorithms IDP1 and IDP2 can solve
all instances to proven optimality, we report only the associated computing times.
Finally, row Avg collects the averages of the above values.

MGEN DP1 IDP1 DP2 IDP2 MCKP
R n % Opt. Time % Opt. Time Time % Opt. Time Time % Opt. Time

103 20 100.00 0.01 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00
103 50 100.00 0.11 100.00 0.01 0.00 100.00 0.00 0.00 100.00 0.00
103 100 100.00 1.10 100.00 0.03 0.00 100.00 0.02 0.01 100.00 0.00
103 200 100.00 7.30 100.00 0.08 0.01 100.00 0.06 0.01 100.00 0.00
103 500 100.00 10.00 100.00 1.06 0.10 100.00 1.31 0.13 100.00 0.02
104 20 100.00 0.01 100.00 0.01 0.01 100.00 0.00 0.00 100.00 0.29
104 50 100.00 0.31 100.00 0.06 0.02 100.00 0.01 0.01 100.00 0.04
104 100 100.00 42.85 100.00 0.22 0.05 100.00 0.07 0.03 100.00 0.05
104 200 77.78 1208.05 100.00 0.87 0.13 100.00 0.37 0.06 100.00 0.10
104 500 55.56 0.49 100.00 4.66 0.46 100.00 3.48 0.37 94.44 0.20
105 20 100.00 0.01 100.00 0.10 0.04 100.00 0.00 0.00 100.00 22.72
105 50 100.00 0.06 100.00 0.40 0.13 100.00 0.01 0.01 100.00 29.42
105 100 100.00 0.75 100.00 1.58 0.35 100.00 0.33 0.14 100.00 62.46
105 200 80.00 0.97 100.00 6.21 0.92 100.00 2.92 0.66 100.00 28.97
105 500 60.00 76.46 100.00 38.47 3.45 100.00 27.86 3.09 100.00 0.76
106 20 100.00 0.01 100.00 0.95 0.40 100.00 0.00 0.01 100.00 831.63
106 50 100.00 0.27 100.00 5.87 1.80 100.00 0.07 0.06 93.33 1102.64
106 100 100.00 0.85 100.00 21.61 4.25 100.00 3.86 1.68 86.67 256.69
106 200 80.00 1.21 100.00 84.95 12.10 100.00 33.94 8.32 100.00 143.40
106 500 86.67 673.10 100.00 531.08 47.37 100.00 395.27 42.46 86.67 466.65
107 20 100.00 0.01 100.00 12.10 5.35 100.00 0.04 0.08 0.00 -
107 50 100.00 0.37 100.00 78.15 22.85 100.00 0.20 0.19 0.00 -
107 100 100.00 1.96 100.00 298.58 60.47 100.00 18.08 12.98 0.00 -
107 200 100.00 2.63 100.00 1161.82 167.09 100.00 477.00 129.27 0.00 -
107 500 100.00 12.90 0.00 - 650.15 60.00 0.22 701.85 0.00 -

Avg 93.60 81.67 96.00 93.70 39.10 98.40 38.61 36.06 78.44 147.30

TABLE 5.1: Average computing time (seconds) over 6 classes of in-
stances with linear profit function.

Computational experiments show that the DP algorithms have a much better
performance than the direct application of the ILP solver on model MGEN: the
computing times for the model are often orders of magnitude larger than those of
the DP algorithms, and the number of instances solved to optimality is slightly over
the 80%. The improved DPs (IDP1 and IDP2) are, on average, the best performing
algorithms for the larger instances having 500 items. For these instances, the com-
puting times are one order of magnitude smaller than those of the corresponding
non-improved versions. In addition, IDP1 and IDP2 are the only methods that can
solve all the instances within the time limit. Finally, as to MCKP, results show that
the performance of this algorithm are only marginally affected by the number of
items, whereas it strongly deteriorates when increasing the maximum size R of the
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items: actually, MCKP is unable to solve any instance with R = 107.

Figures 5.3, 5.4 and 5.5 report the same results, for constant, increasing and de-
creasing penalty functions, respectively, using performance profiles (in logarithmic
scale). Following the guidelines suggested by Dolan and Moré [36], performance
profiles are defined as follows. Let m be any solution method and i denote an in-
stance of the problem. In addition let ti,m be the time required by method m to solve
instance i. We define performance ratio for pair (i, m) as

ri,m =
ti,m

minm′∈M{ti,m′}

where M is the set of the considered methods. Then, for each method m ∈ M, we
define:

ρm(τ) =
|{i ∈ I : ri,m ≤ τ}|

|I|
where I is the set of the instances. Intuitively, ri,m denotes the worsening (with re-
spect to computing time) incurred when solving instance i using method m instead
of the best possible one, whereas ρm(τ) gives the percentage of instances for which
the computing time of method m was not larger than τ times the time of the best
performing method.

The performance profiles clearly show that the DP algorithms are not influenced
by the considered penalty function: they “sample” the value of the profit function
for integer weight values and associate the profit to the corresponding item fraction.
Instead, the performances of the other two methods depend on the penalty function:
model MGEN has a good performance for about 40% of the instances with increas-
ing penalty functions, for which it is the fastest method, but then it struggles in
solving the instances with constant penalty function. On the contrary, MCKP turns
out to be the fastest method for almost 40% of the instances with constant penalty,
but it has low performance in the remaining two cases. Among DP algorithms, IDP2
turns out to be the most efficient method: actually, this is the fastest algorithm for
almost 30% of the instances and turns out to be the best algorithm for all the hard
instances that require a large computing time.

5.6.4 Results on convex instances

Table 5.2 reports the results for the considered FKPP instances with convex profit
function (k j < 0, j ∈ N). The table is organized as Table 5.1 though it does not
include results for model MGEN, that cannot be optimized using our MIP solver.

The results are somehow similar to those of the linear case, and confirm that the
DP algorithms are not really dependent on the shape of the profit function. Con-
versely, algorithm MCKP has a much more unpredictable behavior that, in any case,
deteriorates when increasing the value of R.

Figure 5.6 reports the performance profile for these instances, showing that DP2,
IDP2 and MCKP are the best methods for 30% of the instances each, while IDP1
being the fastest method for 10% of the instances. The fact that DP2 can be the best
method, i.e., even better that its improved counterpart IDP2, is due to implemen-
tation details that produce some slowdown in the latter; typically these effects are
negligible, but they are evident for easy instances that are solved within fractions of
a second.
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FIGURE 5.3: Performance profile of exact methods for FKPP - Con-
stant penalty function.
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FIGURE 5.5: Performance profile of exact methods for FKPP - De-
creasing penalty function.

DP1 IDP1 DP2 IDP2 MCKP
R n % Opt. Time Time % Opt. Time Time % Opt. Time

103 20 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00
103 50 100.00 0.01 0.00 100.00 0.00 0.00 100.00 0.00
103 100 100.00 0.03 0.00 100.00 0.02 0.00 100.00 0.00
103 200 100.00 0.08 0.01 100.00 0.07 0.02 100.00 0.00
103 500 100.00 1.09 0.12 100.00 1.30 0.15 100.00 0.01
104 20 100.00 0.01 0.00 100.00 0.00 0.00 100.00 0.16
104 50 100.00 0.05 0.02 100.00 0.01 0.01 83.33 0.01
104 100 100.00 0.22 0.04 100.00 0.07 0.04 100.00 0.02
104 200 100.00 0.79 0.12 100.00 0.36 0.07 100.00 0.04
104 500 100.00 4.67 0.48 100.00 3.50 0.36 100.00 0.11
105 20 100.00 0.08 0.03 100.00 0.00 0.00 100.00 17.64
105 50 100.00 0.39 0.17 100.00 0.01 0.01 80.00 6.14
105 100 100.00 1.59 0.36 100.00 0.32 0.15 80.00 0.37
105 200 100.00 6.16 0.97 100.00 2.96 0.66 100.00 0.32
105 500 100.00 38.44 3.47 100.00 28.52 3.11 60.00 0.35
106 20 100.00 0.94 0.40 100.00 0.01 0.01 60.00 1006.89
106 50 100.00 5.30 1.60 100.00 0.08 0.05 80.00 421.53
106 100 100.00 20.74 4.09 100.00 3.18 1.54 80.00 3.80
106 200 100.00 83.88 12.00 100.00 31.16 8.32 100.00 17.54
106 500 100.00 593.05 52.29 100.00 507.75 43.01 80.00 54.57
107 20 100.00 11.61 5.17 100.00 0.05 0.08 0.00 -
107 50 100.00 71.74 21.21 100.00 0.17 0.20 0.00 -
107 100 100.00 282.98 56.63 100.00 16.62 13.03 0.00 -
107 200 100.00 1114.09 160.22 100.00 357.51 129.78 0.00 -
107 500 0.00 - 678.84 60.00 0.23 701.45 0.00 -

Avg 96.00 93.25 39.93 98.40 38.16 36.08 72.13 76.47

TABLE 5.2: Average computing time (seconds) over 6 classes of in-
stances with convex objective function. Observe that the times re-
quired by the different DP algorithms are almost identical to those of

the linear case.
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5.6.5 Results on concave instances

As to profit functions that are concave in (0, 1), the only available method for com-
puting an optimal solution is the application of our solver to model MGEN. Table
5.3 reports the computing times and the percentage of instances solved to optimality
for these instances.

n = 20 n = 50 n = 100 n = 200 n = 500
R % Opt. Time % Opt. Time % Opt. Time % Opt. Time % Opt. Time
103 100.00 0.75 83.33 614.84 33.33 0.44 33.33 5.74 0.00 -
104 100.00 1.32 66.67 0.94 33.33 0.66 33.33 6.24 16.67 165.84
105 100.00 0.93 80.00 19.21 40.00 0.68 20.00 3.99 20.00 29.63
106 100.00 0.81 80.00 77.98 20.00 1.06 20.00 4.99 20.00 13.16
107 100.00 14.39 40.00 287.85 20.00 4.12 20.00 5.14 20.00 10.93

Avg 100.00 3.64 70.00 200.16 29.33 1.39 25.33 5.22 15.33 54.89

TABLE 5.3: Average times (seconds) over 6 classes of instances with
quadratic concave objective function.

The results in Table 5.3 show that solving the problem with concave profit is
much more challenging than in the linear case: MGEN is able to consistently solve
all the instances with 20 items, with an average computing time of 3.64 seconds, but
it fails in solving 30% of the instances with n = 50. Remind that, in the linear case,
the same algorithm was able to solve all the instances with n ≤ 100. Results are
even worse for larger instances: only 15% of the instances with 500 items are solved
to proven optimality within the given time limit.

5.6.6 Results of heuristic algorithms

Finally, we report the results obtained by executing the heuristic algorithms of Sec-
tion 5.5 on our instances. We compare these heuristics with a trivial approach that
solves the associated KP instance and takes no item at a fractional level. All these
algorithms require a negligible computing time for the considered instances, thus
times are not reported in what follows.
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We evaluate the quality of a heuristic solution as follows

%pro f = 100× zH

z∗
(5.18)

where z∗ and zH denote the optimal and the heuristic solution values, respectively.
Figure 5.7 plots the quality of the heuristic solutions for all the instances with linear
and convex profit functions, as for all these instances the optimal solution value is
known. The figure shows the trend with increasing number of items (on the left)
and range (on the right).

From Figure 5.7 (left side), we see that H1 finds the best solutions, on average, for
instances with 20 items; for larger instances the best algorithm is H2. H3 has a trend
which is similar to that of H2, though it performs better than the latter on instances
with 20 items only. Finally we observe that the quality of the heuristic solutions
improves when increasing the number of items: for n = 20, the best performing
algorithm (namely, H1) has an average profit that is about 1% smaller than the op-
timal one, while for n = 500 this gap is considerably reduced, and the profits of the
heuristic solutions are almost the same as the profits of the optimal solutions. This
is due to the fact that, for large number of items, the optimal KP solution value is
very close to the optimal FKPP solution value (see the plot of algorithm KP), hence
the way the spare capacity is filled becomes less crucial. From the practical view-
point this is good news: for smaller instances, it is important to compute optimal
solutions, which can be obtained in short computing time; for large instances, where
computing optimal solutions may be time consuming, heuristic solutions are indeed
near-optimal. Figure 5.7 (right side) shows a similar behavior concerning the KP so-
lutions. However, in this case, the trend associated with the other heuristic solutions
is much more irregular. This plot points out the obvious dominance of H1 over KP.
In addition, also in this case H2 and H3 have similar performances, that are better
than H1 for instances with small R, but become even worse than KP for instances
with R ≥ 105.
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FIGURE 5.7: Values of %pro f of the heuristic solutions with increas-
ing number of item (on the left) and with increasing range (on the

right).

As to instances with concave profit functions, we could solve to optimality only
instances with 20 items. Table 5.4 reports, for the KP and the three heuristic algo-
rithms, the average values of %pro f , and the percentage of instances for which each
algorithm computed an optimal solution.

In this case the best algorithm is clearly H3, which finds an optimal solution in
about 44% of the cases and gives, on average, a profit which is 99.93% times the
optimal one.
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KP H1 H2 H3
R % Opt. %pro f % Opt. %pro f % Opt. %pro f % Opt. %pro f
103 16.67 95.77 33.33 96.95 16.67 98.88 33.33 99.72
104 0.00 96.76 0.00 97.30 33.33 99.53 50.00 99.98
105 20.00 99.19 20.00 99.74 20.00 98.54 40.00 99.96
106 40.00 98.45 40.00 99.42 20.00 99.37 60.00 99.99
107 20.00 99.15 20.00 99.15 20.00 99.23 40.00 99.98

Avg 19.33 97.86 22.67 98.51 22.00 99.11 44.67 99.93

TABLE 5.4: Average percentage profit and optimal solutions for the
heuristic algorithms, concave profit function (20 items).

5.7. Conclusions

We considered integer optimization problems in which the integrality of the vari-
ables can be relaxed at the expenses of some penalty in the objective function, a
situation that has relevant applications in many contexts. Different from previous
approaches from the literature, that always considered the case in which the penalty
is constant, we allow the penalty to be dependent on the fractional quantity. As a
case study, we concentrated on the Knapsack Problem (KP), which is the simplest
integer optimization problem and for which many relevant properties are known.
Introducing a penalty associated with fractional variables, we thus defined the Frac-
tional Knapsack Problem with Penalties (FKPP), that we modelled using two mathe-
matical formulations. We studied some properties of the problem, and analyzed the
performances of the two models depending on the penalty functions used. From an
approximability perspective, we showed that FKPP admits a Fully Polynomial Time
Approximation Scheme (FPTAS), independently from the form of the penalty func-
tion. From an algorithmic point of view, we introduced two dynamic programming
algorithms and three fast heuristic algorithms. We performed an extensive com-
putational analysis to illustrate the performances of all the approaches on a large
benchmark set derived from the literature. Our experiments show that we are able
to efficiently solve medium-sized FKPP instances, and that the hardness of the in-
stances is closely related to the shape of the penalty function used. Moreover, it
seems that FKPP instances are consistently much harder that their KP counterparts,
which can be solved in an almost negligible time using combinatorial algorithms
from the literature. This suggests that some combinatorial algorithm tailored for
FKPP might allow the solution of much larger instances in a reasonable computing
time.
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Chapter 6

Models and heuristic algorithms
for a real-world lot sizing and
distribution problem

1

Production and distribution are two critic activities in supply chain management.
They consist on the coordinate set of actions allowing the match between indus-
tries and their markets, vendors and buyers, suppliers and purchasers. With the
increase of competition and globalization, their role shifted from operative to tacti-
cal and from a separate local vision to an integrated management of these functions.
Nowadays, competition is among collaborative interconnected and optimized sup-
ply chain networks. Each of them links, organically, companies to their markets and
strategic suppliers.

Following this trend, production and distribution planning rises as an integrated
decisional science to provide strategies and quantitative methods to fulfill the mar-
ket demand, answering the research and industrial question “What to produce and
deliver, when and how?”. Behind such question, the following multiple dimensions
of production and distribution planning emerge:

• Dynamic dimension, i.e., time drives the decisions of producing and distribut-
ing according to the market due dates and order delivery time;

• System dimension, i.e., the supply chain configuration (layers, entities, routes,
etc.) constraints and guides the decisions;

• Goal dimension, i.e., the goals to pursue as efficiency, cost, service level, green
and social aspects, etc;

• Stakeholder dimension, i.e., the decision-making process is tailored on the in-
terests of the supply chain actors.

The convergence of the introduced multiple dimensions is hard, making produc-
tion and distribution planning a wide, complex and dynamic problem to solve. The
scientific literature agrees to adopt an integrated and stepwise approach following
the impact of decisions and the horizon of the plan. Strategic, tactical and operative
clusters of decision are thus introduced. The strategic level focuses on long-term
decisions over a multiple-year time horizon. At this level, the key elements of the
supply chain system are fixed, e.g., overall structure, plant capacity, shipping modes,

1The results of this chapter appears in: V.Bo, M. Bortolini, E. Malaguti, M. Monaci, C. Mora, and P.
Paronuzzi, “Models and Algorithms for Integrated Production and Distribution Problems", Technical
Report OR-19-8, http://or.dei.unibo.it/technical-reports, 2019. [95]

http://or.dei.unibo.it/technical-reports
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etc. Generally, the temporal dimension is neglected, and a single large time window
is used. The inclusion of the temporal aspect of supply chains is the focus of the
tactical level, where a shorter planning time horizon, e.g., one or two semesters, is
typically considered. At this level, decisions on capacity and production allocation
among plants, network flows, shipping and storage modes are taken from an inte-
grated perspective minimizing costs and optimizing the supply chain service level.
Finally, daily scheduling and routing activities are among the most important deci-
sions of the operative level.

This paper, driven by an industrial instance and application, aims at contributing
to the tactical cluster of decisions. The goal is to provide the analytical model and
a solution approach to support planners to the best allocation of production among
plants and to the distribution flow definition within a multi-product, multi-plant
and multi-period context. An aggregated cost function includes relevant drivers af-
fecting the product total cost, while production and distribution constraints link the
model to the industrial practice. We present a solution approach based on heuristic
and metaheuristic optimization algorithms. To assess its effectivity and capability to
guarantee the expected level of performance (in terms of computing time), we com-
putationally test the approach to full-scale real-world instances from industry and
to a large benchmark of realistic instances.

The paper is organized as follows. In Section 6.1 we review the relevant literature
on the production scheduling area, both in terms of supply chain management and
for what concerns optimization algorithms. Section 6.2 gives a formal definition of
the problem at hand and introduces a mathematical formulation based on a Mixed
Integer Linear Programming (MILP) model. In Section 6.3 we present a fast heuristic
approach based on a greedy approach. In Section 6.4 we propose a metaheuristic
approach based on the ruin-and-recreate paradigm. Finally, in Section 6.5 we give
the outcome of computational experiments for the proposed approaches on two real-
world test-cases and on a large set of realistic instances that are derived from the real
ones. Conclusions are drawn in Section 6.6.

6.1. Literature review

As already mentioned, we consider different aspects of the supply chain, but we
identified the lot sizing as the core problem of our topic. Given the amount of an
independent demand, the lot sizing is the problem of deciding which equipment
must be used and in which period the production must be performed in order to
satisfy the demand, while minimizing the total required cost. It has been addressed
for the first time in 1913 in a seminal paper by Harris [96], who introduced the def-
inition of Economic Order Quantity (EOQ). The vastness of the possible applications
of this problem results evident from its definition; consequently, the number of pos-
sible variants is also huge. For these reasons, understanding which is the specific
version of the lot sizing problem that one is dealing with is a crucial task that is,
at the same time, not straightforward. The tertiary study proposed by Glock et al.
[97] results very useful for a first orientation. According to the definitions of this
tertiary study, our case can be defined as an extension of the multi-item Capacitated
Lot Sizing Problem (CLSP) and the model we propose in Section 6.2 corresponds to
a dynamic (demand is not constant) and deterministic (demand is known) model.
The same paper indicates the work of Maes and Van Wassenhove [98] and the one of
Karimi et al. [99] as the two main reviews about this topic. Moreover, other interest-
ing reviews are reported: the research of Buschkühl et al. [100], that focuses on the
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multi-level version of the problem, and two papers by Jans and Degraeve [101] and
[102], that discuss on meta-heuristic approaches and on possible extensions of the
problem, respectively. The Capacitated Lot Sizing Problem aims to determine the
amount and the period of the production of items in a considered planning horizon.
The production quantity is constrained by a finite capacity in each period. The prob-
lem involves linear production costs, that increase as the produced quantity does,
fixed set up costs, that occur any time a machine starts or switch the production in
some period, and holding costs, that occur when a product is stored in the inventory
from a period to the next one. The single-item version of the problem is shown to be
NP-hard in [103] even when the demand is stationary and there are no holding costs.
The proof provided by the authors is based on the reduction from the decision prob-
lem of checking the feasibility of a 0-1 equality constrained knapsack problem, that
is an NP-complete problem. The multi-item version is strongly NP-hard, as shown
in [104]. In this case, the authors make use of a pseudo-polynomial reduction of the
Three Partition Problem, that is a strongly NP-complete problem.

Anyhow, all the reviews state that, due to the complexity of the problem, there
are few attempts in the literature that try to make use of an exact algorithm ([105],
[106], [107]). On the other hand, there are many contributions based on a heuris-
tic approach, that are split them in two different categories in [99]: common-sense
heuristics and mathematical programming-based heuristics. The optimization algo-
rithm that will be introduced in Sections 6.3 - 6.4 belongs to the former class and.
Using the terminology of [99], it includes both a period-by-period constructive heuris-
tic (see Section 6.3), that builds a feasible solution by considering one demand at
a time starting from the first period, and an improvement heuristic (see Section 6.4),
that improves a given feasible solution. As for the works that also adopt this kind of
procedures, in addition to the papers cited in the review of Karimi et al. ([108], [109],
[110], [111], [112] as period-by-period constructive heuristic, and [113], [114], [115] as
improvement heuristic) we also report the more recent studies of Li et al. [116] and of
Toscano et al. [117].

As already mentioned, our problem is an extension of the CLSP. Compared with
the basic problem, several additional aspects appear in our application, namely:
setup times, multiple parallel machines, stockout costs, transportation costs (both
from the company plants to the customers and from the company plants to exter-
nal warehouses), availability of different capacity configurations, and minimum lot
size. All these aspects appear separately in many papers from the literature but,
to the best of our knowledge, there are no previous studies on problems that si-
multaneously involve all these aspects. Setup times were addressed by Jans and
Degraeve [118], [119], who introduced lower bounds and a branch-and-price algo-
rithm, and by Hindi et al. [120], who proposed a smoothing heuristic procedure
based on the Lagrangian relaxation of the problem. The multiple machines case
hase been addressed by Kang et al. [121], whose approach is based on a column
generation/branch-and-bound methodology. Sandbothe and Thompson [122], [123]
and Aksen et al. [124] addressed the lot-sizing problem with stockouts but they con-
sidered the the single-item version of the problem only. The transportation aspect
was considered by Chandra and Fisher [125], who showed that considering the pro-
duction and the distribution problems in an integrated system leads to better results
than solving the two problems separately. Haq et al. [126] presented a case study
where they formulated an integrated production-inventory-distribution model; sim-
ilar integrated models were also proposed by Bhutta et al. [127] and by Jolayemi and
Olorunniwo [128], while the extension of the model to the capacitated case has been
introduced by Rao [129] for a single-item environment and it has been subsequently
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generalized to the multiple item case by Rajagopalan and Swaminathan [130] and by
Bradley and Arntzen [131]. Different problems including the minimum lot size con-
straint were addressed using optimization algorithms. Anderson and Cheah [132]
proposed a heuristic algorithm based on a Lagrangian relaxation of the problem,
Constantino [133] studied the problem from the polyhedral viewpoint, while Mercé
and Fontan [134] solved the problem using a MILP-based heuristic. A mathemati-
cal programming-based heuristics for the dynamic multi-item capacitated lot-sizing
problem under random period demands was given by Tempelmeier [135]. The algo-
rithm is based on a heuristic column generation procedure combined with an ABC
heuristic that extends the algorithm introduced by Maes and Van Wassenhove [109]
for the deterministic CLSP. Armentano et al. [136] used a branch-and-bound proce-
dure to solve the multi-item, single-level CLSP with setup times reformulated as a
minimum cost network flow problem. Finally, we mention the dynamic multi-level
capacitated lot sizing problem addressed by Chen [137], where the setup state of a
resource may be used in consecutive time periods (setup carryover). The problem is
solved using a variant of the fix-and-optimize approach presented in [138], divid-
ing the problem in a number of smaller subproblems that are iteratively solved in a
heuristic way.

6.2. Problem Statement

We consider the problem of a company that faces a multiperiod demand for the
assortment of different products. The demand of each period originates from a set
of customers with a geographic distribution, and the products can be obtained from
different plants, from which they are shipped to the customers. Plants are equipped
with production lines, each one with the capability to produce, in each period, a
subset of the products after a suited setup; for each product, there is a minimum
production quantity that can be considered. Production consumes resources that
can be available at company, plant or line level. Production lines work according to
shift configurations, that define the number of production hours during a period and
that can be changed only at the beginning of some periods. Each plant is associated
with an internal warehouse, where the production of a period can be stored before
it is shipped to a customer at a later period. Each plant can also rent additional
space from external warehouses, if needed. The company wants to decide, for each
period, the shift configuration of each line and the production level of each product,
in order to minimize the total cost, determined by configuration and setup costs for
the lines, production, storage and shipment costs for the demands that are satisfied,
and penalty costs for the demands that are not satisfied. A formal definition of the
problem and a mathematical model are given in what follows.

6.2.1 Sets and variables

In our formulation we consider the following sets

• K = {1, . . . , K}: set of products;

• J = {1, . . . , J}: set of customers;

• I = {1, . . . , I}: set of plant;

• M = {1, . . . , M}: set of lines. Each line m is associated with a specific plant
i(m) ∈ I , that is, for each plant i ∈ I we define the set of associated lines
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as M(i). Compatibility between products and lines is expressed defining, for
each product k ∈ K, a set C(k) of lines that can produce k;

• H(m): set of configurations for each line m ∈ M. Each shift configuration for a
line has associated a cost and determines the capacity of the line. Without loss
of generality, we assume that a larger cost corresponds to a larger capacity, and
that configurations are sorted by increasing cost;

• F = {1, . . . , f }: set of product families; each product k belongs to one family
fk ∈ F ;

• T = {1, . . . , T}: set of time intervals. Set T is partitioned into π subsets
T1, T2, . . . , Tπ, that are called multiperiods. Each multiperiod includes all the
time intervals between two consecutive periods in which line configurations
can be changed;

• RP i = {1, . . . , RPi}: set of resources for plant i;

and decision variables specified as follows

• xkmt = number of products k obtained on line m during period t (k ∈ K, m ∈
C(k), t ∈ T ). These integer variables encode the main decision for the com-
pany, that is defining about production over time periods and lines;

• zkjt = unsatisfied demand for product k at period t for customer j (k ∈ K, j ∈
J , t ∈ T ). These integer variables define the amount of customers demand
that the company does not satisfy;

• fkjit = amount of product k shipped from plant i to customer j at period t
(k ∈ K, j ∈ J , i ∈ I , t ∈ T ). These integer variables define the way in which
customers demand is satisfied by the company;

• ymhv =

{
1 if line m operates in configuration h during multiperiod v
0 otherwise

(m ∈ M, h ∈ H(m), v = 1, . . . , π).
These binary variables define the shift configuration (working hours) of a line
during each multiperiod v.

• wkit = amount of product k stored in the internal warehouse associated with
plant i during period t (k ∈ K, i ∈ I , t ∈ T );

• skit = amount of product k stored in the external warehouse associated with
plant i during period t; (k ∈ K, i ∈ I , t ∈ T );

• φkit = amount of product k shipped from plant i to the associated external
warehouse during period t (k ∈ K, i ∈ I , t ∈ T );

• αm f t =

{
1 if line m processes at least one product of family f during period t
0 otherwise

(m ∈ M, f ∈ F , t ∈ T ).
These binary variables are used to denote the product families that are pro-
cessed on a line during a specific period, and to allocate the associated setup
costs.
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6.2.2 Cost function

The total cost to be minimized takes into account different components: the costs for
operating the lines, the production and operational costs for the satisfied demands,
and the opportunity costs (penalties) for the demands that are not satisfied. In par-
ticular, the overall cost is defined as the sum of the following terms:

CPR is the direct production cost, defined as

CPR = ∑
k∈K

∑
m∈M

∑
t∈T

cPR
km xkmt

where cPR
km is the cost for producing a unit of product k on line m;

CNS is the opportunity cost for the unsatisfied demand, defined as

CNS = ∑
k∈K

∑
j∈J

∑
t∈T

cNS
kt zkjt

where cNS
kt is the opportunity cost for the unsatisfied demand of a unit of prod-

uct k at period t;

CTC is the shipping cost to the customers, defined as

CTC = ∑
k∈K

∑
j∈J

∑
i∈I

∑
t∈T

cTC
kji fkjit

where cTC
kji is the shipping cost for a unit of product k to customer j from plant

i or from an internal/external warehouse associated with the plant;

CDC is the configuration cost for the product lines, defined as

CDC = ∑
m∈M

∑
h∈H(m)

π

∑
v=1
|Tv| cDC

mh ymhv

where cDC
mh is the shift cost for line m in configuration h;

CSI is the storage cost in the internal warehouses, defined as

CSI = ∑
k∈K

∑
i∈I

∑
t∈T

cSI
ki wkit

where cSI
ki is the storage cost for a unit of product k in the internal warehouses

at plant i;

CSE is the storage cost in the external warehouses, defined as

CSE = ∑
k∈K

∑
i∈I

∑
t∈T

cSE
ki wkit

where cSE
ki is the storage cost for a unit of product k in the external warehouses

at plant i;

CSU is the setup cost, defined as

CSU = ∑
m∈M

∑
f∈F

∑
t∈T

cSU
m αm f t
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where cSU
m is the cost for a setup on line m.

CTE is the shipping cost to the external warehouses, defined as

CTE = ∑
k∈K

∑
i∈I

∑
t∈T

cTE
ki φkit

where cTE
ki is the shipping cost for a unit of product k to the external warehouses

at plant i.

6.2.3 Constraints

The production schedule is subject to a number of different constraints, that we
present grouped according to their meaning and structure.

Demand

∑
i∈I

fkjit + zkjt = dkjt k ∈ K, j ∈ J , t ∈ T (6.1)

These constraints impose that the demand is either satisfies by shipping the re-
quired amount of products from some plant, or it is canceled and computed as
missed demand. The demand is expressed in terms of an order dkjt for a product
k to be delivered at customer j at time period t. Observe that we allow solutions
where a customer is served shipping products from different plants.

Lot-sizing balancing constraints

∑
m∈M(i)

xkmt + ski,t−1 + wki,t−1 = ∑
j∈J

fkjit + skit + wkit k ∈ K, i ∈ I , t ∈ T (6.2)

∑
k∈K

wkit ≤Wi i ∈ I , t ∈ T (6.3)

These constraints generalize the classical lot-sizing formulation to the case of mul-
tiple products, plants and warehouses. Constraints (6.2) impose, for each product,
plant, and period, a balance between the availability of the product, given by the
production and the stocked quantities, and the stocked quantities at the end of the
period plus the quantity that is shipped to customers. Constraints (6.3) define, for
each plant and period, the available capacity Wi of the internal warehouse associated
with the plant. Note that there is no similar constraint for external warehouses, as
we assume they have unbounded capacities.

Resources

∑
k∈K

τkm xkmt + ∑
f∈F

tSU
m αm f t ≤ ∑

h∈H(m)

Qmh ymhv m ∈ M, v = 1, . . . , π, t ∈ Tv(6.4)

∑
h∈H(m)

ymhv = 1 m ∈ M, v = 1, . . . , π (6.5)

∑
k∈K

∑
m∈M(i)

bP
kmr xkmt ≤ BP

irt i ∈ I , r ∈ RP i, t ∈ T (6.6)

These constraints limit the use of available lines and resources according to their
availabilities.
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Constraints (6.4) impose an upper bound on the maximum working time for each
line m in each period t. Indeed, the working time of the line is determined by the
production times τkm for each product k obtained on the line plus the total setup
time, which is equal to tSU

m for each different family that is produced. The right-
hand-side gives the availability of the line, where each coefficients Qmh represents
the available working time for line m and shift configuration h. These constraints
are paired with constraints (6.5) that impose to select exactly one shift configuration
for each line and multiperiod. Finally, constraints (6.6) describe the consumption of
resources available at plant level and impose, for each plant, resource and period,
that the amount of resource used cannot exceed the availability. In these constraints,
each bP

kir is the amount of resource r used by line m to produce one product of type
k, while BP

irt denotes the availability of resource r at plant i during time period t. In
a very similar way, it is possible to express the constraints (if any) that regulate the
consumptions of resources that are available at company or line level.

Setup, minimum production

∑
k∈K: fk= f

xkmt ≤ BIGM αm f t m ∈ M, t ∈ T , f ∈ F (6.7)

(xkmt = 0) ∨ (xkmt ≥ ρkmt) k ∈ K, m ∈ M, t ∈ T (6.8)

Constraints (6.7) model the setup that are incurred for each additional line, pe-
riod and product family. In these constraints, BIGM is a large enough constant that
is used to model the logical implication forcing an α variable to take value 1 in case
some products belonging to a certain family are produced. Observe that we consider
a planning problem, thus we do not model the specific setup time and cost as a func-
tion of the production sequence, and adopt instead average values for setup times
and costs. Logical constraints (6.8) impose that, for each product, line, and period,
either there is at least a minimum production level ρkmt of the product, or there is no
production at all for that product.

Shipment to external warehouses

φkit ≥ skit − ski,t−1 k ∈ K, i ∈ I , t ∈ T (6.9)

Finally, constraints (6.9) model the flow of products to the external warehouses, for
each product, plant and period. In particular, a positive value for a φ variable cor-
responds to some increase in the amount of products that stocked in an external
warehouse.

Mathematical formulation Finally the overall Mixed Integer Formulation reads
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min CPR + CNS + CDC + CSI

+CSE + CTE + CTC + CSU (6.10)
(6.1)− (6.9)

fkjit ≥ 0 k ∈ K, j ∈ J , i ∈ I , t ∈ T (6.11)
zkjt ≥ 0 k ∈ K, j ∈ J , t ∈ T (6.12)

xkmt ≥ 0 k ∈ K, m ∈ C(k), t ∈ T (6.13)
wkit ≥ 0 k ∈ K, i ∈ I , t ∈ T (6.14)
skit ≥ 0 k ∈ K, i ∈ I , t ∈ T (6.15)

ymhv ∈ {0, 1} m ∈ M, h ∈ H(i), v = 1, . . . , π (6.16)
αm f t ∈ {0, 1} m ∈ M, f ∈ F , t ∈ T (6.17)

φkit ≥ 0 k ∈ K, i ∈ I , t ∈ T (6.18)

where the objective function (6.10) is the sum of the costs, all variables associated
with physical quantities are defined as continuous nonnegative, and activation vari-
ables associated with line configurations and setups are binary.

The model has a polynomial number of variables and constraints. Note that
constraints (6.8) are not linear, in that they model a disjunctive argument. However,
it is well known that they can be rewritten in an equivalent form that is linear with
respect to the decision variables. This requires the addition to the model of binary
variables and BIGM coefficients, possibly leading to formulations that have a weak
linear programming relaxation. However, nowadays, that many commercial MILP
solvers allow formulations like (6.8), and adopt specific techniques to strengthen
formulations that include very large coefficients (see, e.g., [139]).

6.3. A constructive algorithm

In this section we present an iterative constructive heuristic that is used to produce
a feasible solution for the problem; possibly, this solution may be used as a starting
point for the metaheuristic algorithm that will be described in the next section.

Our algorithm has a primal nature, in that it starts with a feasible solution and
maintains feasibility at each iteration. Initially, no production takes place and each
line operates in each multiperiod according with the configuration having minimum
cost. Then, the algorithm considers one demand at a time, and determines the best
policy for the current demand, according to a greedy strategy. For the current de-
mand, the algorithm determines the “best” line and time period in which production
must take place, the amount of products to be produced, and updates the produc-
tion schedule accordingly. In case some change of configuration is required, the new
configuration is maintained for all time periods of the multiperiod.

Remind that each demand has associated a product, a customer, and a time pe-
riod. Demands are initially sorted by increasing time period, breaking ties according
to the type of product and by the customer. Let k, j and t denote the product, the
customer and the period, respectively, associated with the current demand. Then,
we consider all lines m ∈ C(k) that are compatible with products of type k and all
time periods τ ≤ t. For each pair (m, τ) we determine the associated production level,
i.e., the maximum amount e(kmτ) of product k that can be produced for satisfying
the current order. The total cost for pair (m, τ) is determined by
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• the direct production cost;

• the shipping cost to the customer;

• possibly, the setup cost;

• possibly, the cost for changing configuration;

• possibly, the storage cost and the shipping cost to external warehouses.

The first two costs are related with production and shipping of the products,
respectively. The setup cost is incurred only in case no product belonging to familty
fk is scheduled on line m in time period τ. As to the configuration cost, we take into
account only the incremental cost that is incurred when the configuration for line m
has to be changed to the next one allowing some additional capacity. In the score
computation, only a fraction of this additional cost is taken into account, the value
of the fraction being a parameter called ConfigParam ∈ [0, 1] that will be described
later. Finally, storage costs are considered in case τ < t, and may be associated with
costs for shipping products to an external warehouse in case not all products can be
stored in the internal warehouse in all the time interval [τ, t].

Due to several constraints, e.g., capacity of the line or minimum amount of pro-
duction on the line, the production level depends on each pair (m, τ). Thus, to have
a fair comparison, we score each pair (m, τ) according to the cost per unit of product,
i.e., we divide the total cost by the production level e(kmτ), and select the pair (m, t)
with minimum score.

If no line can produce product k in any time period τ ≤ t, or the cost per unit
of product is larger than the cost cost related to the out-of-stock of product k, the
current demand is refused. In case e(kmt) < dkjt we define a new (dummy) order
with demand d′kjt = dkjt − e(kmt) and iterate the process. Note that the requirement
on the minimum production, see constraints (6.8), may impose a production that is
strictly larger than dkjt. In this case, some units of product have to be stored in the
warehouse, and used in some subsequent time period (the associated storage costs
being not taken into account in this phase).

The pseudo-code of the algorithm is given in Algorithm 6.3.0.1.

Algorithm 6.3.0.1 Algorithm Greedy
1: sort the demands by nondecreasing time interval, breaking ties by product and by cus-

tomer;
2: for all demand do
3: determine the “best” line m, period t and production level e(kmt);
4: produce e(kmt) units of product k on line m in period t;
5: possibly update the configuration of line m in the multiperiod containing t;
6: if e(kmt) < dkjt then
7: define a new demand d′kjt = dkjt − e(kmt);
8: else if e(kmt) > dkjt then
9: store e(kmt)− dkjt units of product k in the warehouse associated with the plant

i(m);
10: end if
11: end for
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6.4. A metaheuristic approach

Preliminary computational experiments showed that the constructive heuristic of
Section 6.3 is very fast but may produce solutions in which the use of some lines is
not fully optimized. Thus, we developed a metaheuristic approach that is based on
the ruin-and-recreate paradigm (see, Schrimpf et al. [5]). The idea of a ruin-and-
recreate algorithm is to determine feasible solutions by (i) destroying a consider-
able part of a feasible solution (ruin phase), and (ii) applying a rebuilding procedure
(recreate phase) to complete the solution.

In our algorithm, the initial solution is produced by the constructive heuristic,
and three different procedures are used to destroy the solution:

1. remove all production associated with a certain line in a given multiperiod;

2. remove all production associated with a certain product in all time periods;

3. remove all production associated with a certain line in all time periods.

The first ruin procedure is used to repair situations in which the configuration
of the line is not optimized in the first time periods of a multiperiod. Typically this
happens when a change of configuration is incurred at some intermediate period
of the multiperiod, preventing all previous time intervals to take advantage of the
increased capacity of the line. The procedure considers one pair (line m, multiperiod
v) at a time, removes all the production of line m in multiperiod v, and repairs the
solution through multiple executions of the constructive procedure of Section 6.3. In
particular, at each execution we guess the configuration for the line m in multiperiod
v, and try to reschedule all the demands that are unsatisfied (either unscheduled in
the initial solution or removed by the ruin phase) without changing configuration of
the lines. The best solution found is used to replace the incumbent, in case some it
produces some improvement.

The second ruin procedure considers one product k at a time, removes the pro-
duction of all products of type k on all lines and periods, and reschedules unsatisfied
demands by applying again the constructive heuristic (without changing the config-
uration of the lines).

Similarly, the third ruin procedure considers each line m at a time, removes all
the production on the current line, and reschedules unsatisfied demands using the
constructive heuristic (without changing the configuration of the lines).

It should be noted that, in all cases, the repair phase is obtained running the con-
structive procedure of Section 6.3 to a restricted problem in which the configuration
of all lines in all the multiperiods is fixed. For this reason, configuration costs are not
taken into account in this phase.

The pseudo-code of the metaheuristic algorithm is given in Algorithm 6.4.0.1.
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Algorithm 6.4.0.1 Algorithm Ruin-and-Recreate
1: determine an initial feasible solution using Algorithm 6.3.0.1
2: repeat
3: for all line m and multiperiod v do
4: remove all production on line m during multiperiod v;
5: for all configuration h ∈ H(m) do
6: set configuration h for line m in multiperiod v;
7: schedule unsatisfied demands without changing the configuration of the lines;
8: possibly update the incumbent;
9: end for

10: end for
11: for all product k do
12: remove all production of type k;
13: schedule unsatisfied demands without changing the configuration of the lines;
14: possibly update the incumbent;
15: end for
16: for all line m do
17: remove all production on line m;
18: schedule unsatisfied demands without changing the configuration of the lines;
19: possibly update the incumbent;
20: end for
21: until stopping conditions

In our implementation, the algorithm is halted after a maximum number IterNum
of iterations or when an iteration with no improvement is encountered.

6.5. Computational experiments

In this section we evaluate the computational performance of our approach on a set
of real and realistic instances derived from two industrial problems in the food and
beverage industry. The objective of our experiments is threefold:

• first, we want to tune the algorithm parameters and assess the performance
of the two steps of our approach, in terms of solution quality and computing
time;

• second, we want to compare the overall performance of our approach with
those of a state-of-the-art MILP solver directly executed on mathematical model
(6.10)–(6.18);

• and finally, we are interested in analyzing the structure of the obtained so-
lutions for the industrial problems in both the original case and under some
realistic business scenarios.

Real-world instances. We considered two real instances, denoted as A and B in
the following, that describe real-world situations arising from the food industry. In
these instances the demand to be satisfied is specified in terms of orders, where an
order is given by an a request for an amount dkjt of product k by customer j at period
t.

Table 6.1 reports the main characteristics of the two instances, expressed in terms
of number of products (|K|), customers (|J |), plants (|I|), lines (|M|), different shift
configurations (|H|), product families (|F |), time periods (|T |) and multiperiods
(|≈|). Finally, the last column (|O|) gives the total number of orders that have to
be satisfied.
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|K| |J | |I| |M| |H| |F| |T | |≈| |O|

A 887 3 6 40 5 160 41 11 27,760

B 541 7 9 31 7 152 52 14 26,024

TABLE 6.1: Main characteristics of the real-world instances.

Realistic instances. Starting from the two real-world instances, we produced an
additional benchmark of 80 realistic instances. The realistic instances were obtained
by slightly modifying, in a random way, the original input data. In particular, for
each real-world instance, we generated:

• 10 similar instances in which each order dkjt has been replaced by a new order
in the range [0.9dkjt, 1.1dkjt];

• 10 varied instances in which each order dkjt has been replaced by a new order
in the range [0.7dkjt, 1.3dkjt].

All the remaining input parameters were left unchanged.

Experimental setting. All procedures were implemented in C++ and all experi-
ments were executed on a computer with a 3.20 GHz Intel Core I7 processor and
64 GB of RAM. Our algorithm is sequential in nature and cannot take advantage
from the parallelism of our hardware. However, considering the orders according to
different sortings produces different solutions. Thus, we implemented a parallel ver-
sion of the algorithm in which 4 threads are used, each running the same algorithm
on the same input, but with a different sequence for processing the orders. Then, the
best of the four solutions is returned. Preliminary experiments in which orders are
considered according to (common-sense) deterministic rules produced solutions of
the same quality as using random sortings.

6.5.1 Parameter Tuning

Our solution approach includes 2 main parameters:

• Parameter ConfigParam, which defines the fraction of additional cost for the
activation of a shift configuration that is allocated to the current order;

• Parameter IterNum, which determines the number of iterations of local search
to be performed after the first phase of the algorithm.

We performed the tuning of our algorithm on the original instances using 7 dif-
ferent values for ConfigParam, namely 0.00, 0.05, 0.10, 0.20, 0.30, 0.40 and 0.50.

Our first order of business was to determine the best values of ConfigParam for
the two real-world instances. To this aim, we considered only the values of the
solutions produced by the algorithm, without considering the computing time.

Table 6.2 reports the total cost for different values of ConfigParam. The entries in
the table report the best among the solutions found by the 4-threads algorithm after
the execution of the constructive algorithm and one iteration of Local Search. It is
worth underlining that parameter ConfigParam is used during the first phase of the
algorithm only; thus, there would not be any additional information in considering
more than one iteration of local search.
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0.00 0.05 0.10 0.20 0.30 0.40 0.50

A 119.15 118.43 118.17 118.29 119.57 120.09 122.62

B 263.44 252.66 248.13 255.64 265.97 280.48 288.84

TABLE 6.2: Effect of parameter ConfigParam on real-world instances.

Results in Table 6.2 suggest that ConfigParam = 0.10 is the best value for the two
real-world instances. For the first instance, while the average solution value (for
the considered values of the parameter) is equal to 119.47, using ConfigParam = 0.10
produces a solution with value 118.17, with a saving equal to 1.09%. For the second
instance, the saving is more relevant and is equal to 6.37%.

As to the second parameter, we performed the following experiment. We con-
sidered instance A and run the algorithm for a (potentially very large) number of
iterations, halting the procedure when no improvement is obtained after the last it-
eration of local search. Figure 6.1 reports the cost of the best solution found as a
function of the computing time. The first point of the curve corresponds to the so-
lution at the end of the first phase, while each subsequent point is the solution cost
obtained after an additional iteration of the local search. The picture shows that
a good trade-off between computing time and quality of the solution is obtained
with 2 iterations of local search. As most of the computing time is spent in the lo-
cal search phase, the computational effort grows almost linearly with the number of
local search iterations. For all the reported result, the computational time with this
configuration of the algorithm is approximately 90 seconds, for instance A, and 160
seconds, for instance B.
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FIGURE 6.1: Cost of a solution as a function of the computing time
for subsequent iterations of Local Search.
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6.5.2 Comparison with MIP

In this section we compare the performances of our algorithm (in its best configura-
tion, as described in the previous section) with those of a general-purpose commer-
cial MILP solver. To this aim, we considered both the real-world and the realistic
instances, and used IBM-ILOG Cplex 12.7.1 (CPLEX, in the following) to solve the
mathematical formulation of Section 6.2.3. CPLEX was run on 4 threads with a limit
of 10 hours of computing time; all the remaining parameters are set to their default
values.

Table 6.3 compares the values of the gap obtained through our heuristic algo-
rithm (HEUR, in the following) with those obtained by CPLEX. The first line of the
table is associated with the real-world instances, while the remaining lines refer to
the realistic instances. For each instance and algorithm we report the gap of the best
solution found, computed as %gap = 100U−L

L , where U is the solution value and L
denotes the best lower bound known. All figures in the table are computed using
the best lower bound produced by CPLEX at the time limit as L. In one case only,
CPLEX got all the available 64 GB of RAM of the machine and the process has been
automatically killed by the system. We denote this case with an asterisk (*) and we
report the gap reached until that moment. Due to the complexity of the problem,
we preferred to remove constraints 6.8 when solving the mathematical model with
CPLEX. Thus, the reported results in columns CPLEX refer to solutions that are typi-
cally infeasible from this point of view, i.e., the comparison is by design in favour of
CPLEX.

The results show that, on the real-world instances, our heuristic produces solu-
tions whose gap is very close to that of the best solution found by CPLEX with a huge
computational effort. Results are similar when realistic instances are considered,
though CPLEX does not take the minimum production constraint into account.

6.5.3 Solution Structure and Scenario analysis

Finally, in this section we discuss the cost structure of the solutions computed by our
method and we analyze how the cost structure of the solutions changes under pos-
sible scenarios. Figure 6.2 compares the as-is solution (column 1) with the following
what-if situations:

2. the use of external warehouses is forbidden;

3. the distribution costs are doubled;

4. the second most important plant is closes;

5. the scarce resource of the plant is reduced to the 70% of its value;

6. the scarce resource of the plant is available in an infinite quantity;

7. all the operation times of the lines are reduced to the 90% of their value.

The first hypothetic scenario has a total cost that is slightly larger than the as-is solu-
tion; since the external warehouses are not available, the inventory costs decreases,
but the amount of undelivered orders increases. Even if the distribution costs are
doubled (scenario 3), the amount of delivered orders remain the same; this can be
noticed from the fact that the Out of Stock costs does not change, if compared with
the as-is situation, while the total distribution costs are actually doubled. The most
important negative impact on the Out of Stock costs is given by scenario 4, where
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TABLE 6.3: Comparison of the gap obtained by our algorithm (HEUR)
and CPLEX

A B

Type Problem HEUR CPLEX HEUR CPLEX

- - 12.92 9.11 15.98 16.16

Similar 1 13.08 10.45 16.65 16.18

2 12.88 11.04 16.34 12.22

3 12.79 10.20 16.78 15.07

4 13.06 11.80 16.17 15.38

5 12.82 9.35 16.33 17.85

6 13.08 12.78 16.51 14.04

7 12.95 10.66 16.68 16.47

8 13.16 14.45 16.39 19.58

9 13.19 10.12 16.38 13.87

10 12.88 10.87 16.27 15.35

Varied 1 13.02 10.88 16.40 *19.93

2 13.10 12.26 16.45 16.30

3 13.59 11.18 16.86 15.75

4 13.41 10.09 15.93 13.96

5 13.26 10.28 16.24 15.74

6 13.32 26.51 16.36 16.34

7 13.40 12.40 17.04 14.36

8 12.81 11.89 16.48 15.77

9 13.40 9.41 16.94 13.96

10 12.45 9.65 16.81 13.31
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we suppose that the second important plant is closed. From scenarios 5 and 6, we
can observe the importance of the plant resource availability: when it is decreased
(scenario 5), then a larger part of the demand remains unsatisfied; when it is avail-
able in an infinite quantity, then the production is able to meet more than half of the
demand that was unsatisfied in the as-is solution and the inventory costs slightly
decrease. Decreasing the operation times of the lines allows to save part of the pro-
duction costs (scenario 7).

FIGURE 6.2: Different what-if scenarios.

6.6. Conclusions

In this chapter we addressed a lot sizing and distribution problem that arose from
a real-world application. The problem includes several products, whose production
must be scheduled on lines belonging to different plants, and several customers,
whose demand must be satisfied taking into account the transportation costs from
the plants to the customer locations.

After providing the formal definition of the problem based on a MILP formula-
tion, we introduced both an iterative constructive heuristic algorithm and a meta-
heuristic approach based on the ruin-and-recreate paradigm.

An extensive analysis of the results of computational experiments on two real-
world test-cases and on a large set of realistic instances proved that the approxima-
tions obtained in short computing time by our heuristic approach are very close to
those that can be achieved by running a state-of-the-art commercial solver on the
mathematical model for a very long computing time.
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Chapter 7

Conclusions and future work

In this thesis, we faced the idea of decomposing a problem from different perspec-
tives. In order to be successfully applied, decomposition techniques typically require
the existence of a specific structure in the formulation of the problem at hand. Then,
detecting this structure may turn out to be essential for the purpose of approaching
the problem with the most suitable method, but, at the same time, it may be a dif-
ficult task if this structure is not evident from the most natural formulation of the
problem. In this sense, we highlighted the decomposition as a problem itself and,
in Chapters 2 and 3, we introduced two different problems belonging to the family
of the Critical Node Detection Problems: the k-Vertex Cut problem and the capaci-
tated k-Vertex Separator problem. In both cases, we extrapolated a bilevel point of
view that allowed us to improve the best known results for several difficult classes of
instances. Pursuing this direction, the future research may investigate how similar
problems could benefit from this new modeling paradigm.

In Chapter 4, we dealt with the class of Chance Constraint Mathematical Pro-
gramming problems and we took into consideration the case in which the variables
representing future decisions have to assume integer values. Stochastic optimization
problems, like this one, are often formulated with models whose coefficient matrix
reveals a blocks structure that makes the problem very appealing to be effectively
addressed through decomposition techniques. So, in this case, we introduced the
decomposition with its most common acceptation, that is, as a very effective solution
method. Indeed, we presented a branch-and-cut framework based on a decomposi-
tion approach whereby we defined a master problem and one subproblems for each
possible realization of the random variable. Computational experiments showed
that the outer approximation point cuts, added by separating infeasible solutions
from the convex-hull of the subproblems, turned out to be functional in providing
valid bounds for the considered test-bed instances. However, our research on this
topic is still in progress and, on the basis of these promising preliminary results, we
count on improving the performances of the separation procedures and implement-
ing the spatial branching needed to definitively close the current existing gaps.

Another class of problems in which decomposition algorithms have been widely
applied in the combinatorial optimization field is the family of packing problems.
Even though this is one of the most investigated topic in the literature, the case in
which items can be fragmented at the expense of some penalty has been taken into
account only in the recent few years. In Chapter 5, we applied this concept to the
simplest and most iconic packing problem, namely the 0-1 Knapsack Problem, and
we introduced the Fractional Knapsack Problem with Penalties. This problem finds
several applications in practice, but it also arises as the subproblem to be solved
in Dantzig-Wolfe decomposition methods for packing problems where item frag-
mentation is allowed. The Fully Polynomial Time Approximation Scheme and the
dynamic programming algorithm, described in Sections 5.3 and 5.4, represent our
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main contributions on this subject. Future researches may reveal how these results
could be applied to similar problems that arise, like in this case, as the consequence
of decomposition approaches, or how they could be extended to general integer pro-
grams where variables can potentially take fractional values.
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