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Sintesi

Lo scopo di questa tesi di dottorato ¢ studiare il funzionale dell’area per sottovarieta
immerse in varieta graduate equiregolari. Queste strutture, che generalizzano le varieta
subriemanniane non richiedendo nessuna ipotesi di Hérmander, sono definite su una
varieta liscia N ed ammettono una filtrazione H! C ... C H* crescente di sottofibrati
del fibrato tangente compatibile con 'operazione di commutazione. Quando fissiamo
un punto p in N questa filtrazione diventa una bandiera di sottospazi ed il grado di un
vettore nello spazio tangente ¢ uguale a ¢ se tale vettore appartiene allo sottospazio Hf;
ma non appartiene a ’Hf;_l. Un sottovarieta immersa M in una struttura graduata N e
ancora un varieta graduata: la sua filtrazione si ottiene intersecando ogni sottofibrato
di quella originale H! C ... C H* con il fibrato tangente T'M. 1l grado puntuale ¢ dato
dalla dimensione omogenea di questa nuova bandiera H' N T,M C ... C H*NT,M.
Il grado di M ¢ il massimo tra i gradi puntuali di tutti i punti p € M. Risulta
che il funzionale dell’area dipende dal grado della sottovarieta. Quindi per calcolare
la variazione prima dobbiamo prendere in considerazione solo variazioni ammissibili,
che non aumentano il grado durante la variazione. Si verifica che ad ogni variazione
ammissibile si puo associare un campo vettoriale variazionale che verifica un sistema
lineare di equazioni alle derivate parziali del primo ordine. Un campo vettore a supporto
compatto che verifica questo sistema si dice ammissibile, la domanda naturale che ci
poniamo € se e integrabile da una variazione ammissibile.

Il caso piu semplice di immersione ¢ dato da una curva v : I — R immersa in una
varieta graduata. In questo caso L. Hsu in [57] introdusse la mappa di olonomia e scopri
che quando la sua restrizione all’intervallo [a, b] C I & suriettiva, allora i campi vettoriali
ammissibili supportati in (a,b) sono integrabili. Questa ¢ una condizione differenziale
molto difficile da verificare, mentre noi introduciamo un’ipotesi di forte regolarita,
che & una condizione puntuale sul rango di una matrice, piu facile da verificare ed
che implica ovviamente il teorema di deformabilita precedentemente enunciato. Le
curve non regolari vengono chiamate singolari e sono le geodetiche anormali introdotte

da Montgomery nell’articolo [73, 74]. Tra queste curve singolari ve ne sono alcune
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particolarmente interessanti che sono le curve isolate nella topologia C!, perché non
ammettono variazioni ammissibili a supporto compatto.

La condizione di forte regolarita si generalizza facilmente al caso delle sottovarieta
di dimensione generica e ci permette di dedurre un teorema di deformabilita locale.
Sotto questa ipotesi siamo inoltre in grado di calcolare la variazione prima e dedurre
I’equazione di curvatura media che in certi casi puo essere anche del terzo ordine.
Ancora piu interessante ¢ il fatto che riusciamo ad esibire un esempio di sottovarieta
isolata nella topologia C'. La sottovarieta in questione ¢ un piano di grado tre immerso
nel gruppo di Engel, la cui unica variazione ammissibile trasversale coincide con
I'immersione stessa.

Solo quando la sottovarieta e rigata da curve di grado ¢, il sistema di equazioni
alle derivate parziali si riduce ad un sistema di equazioni differenziali ordinarie lungo
le curve caratteristiche di grado ¢y. Di conseguenza in questo caso siamo in grado di

generalizzare la nozione di mappa di olonomia a dimensione piu alta.



Resumen

El objetivo de esta tesis doctoral es estudiar el funcional area de subvariedades inmersas
en variedades graduadas equiregulares. Estas estructuras, que generalizan las variedades
subriemannianas sin asumir a priori la hipotesis de Hormander, estan definidas sobre
una variedad diferenciable N y admiten una filtraciéon H' C ... C H?® ascendente de
sub-fibrados del espacio tangente compatible con el corchete de Lie. Cuando fijamos
un punto p en N, esta filtracion es una cadena de subespacios y el grado de un vector
en el espacio tangente es igual a ¢ si dicho vector pertenece al subespacio "Hf; pero
no pertenece al subespacio ’Hf,_l. Una subvariedad M inmersa en una estructura
graduada es también una variedad graduada porque hereda su filtracion cortando cada
sub-fibrado de la primera con el fibrado tangente 7'M . El grado puntual se define como
la dimensién homogénea de esta nueva cadena H' NT,M C ... C H*NT,M. El grado
de M es el maximo del grado puntual sobre todos los puntos en M. La nocién de area
que consideraremos, que se obtiene como limite de areas riemannianas, depende del
grado de la subvariedad. Para calcular la primera variacién, tenemos que considerar
sOlo las variaciones admisibles, que no aumentan el grado durante la variacion. Resulta
que el campo variacional asociado a una variacion admisible cumple un sistema lineal
de ecuaciones en derivadas parciales de primer orden. Diremos que un campo vectorial
con soporte compacto es admisible cuando cumpla dicho sistema de ecuaciones en
derivadas parciales de primer orden. Entonces, la pregunta natural que surge es si un
campo vectorial admisible es integrable por medio de una variacién admisible.

El caso mas simple de inmersiéon viene dado por una curva v : I — R en un
variedad graduada. L. Hsu en [57] descubrié que, cuando la aplicacién de holonomia es
sobreyectiva restringida al intervalo [a, b] C I, se pueden integrar los campos vectoriales
admisibles con soporte en (a, b). Esta hip6tesis de regularidad es muy dificil de verificar.
Sin embargo, la hipétesis de regularidad fuerte, que es una condicién puntual sobre el
rango de la matriz de control, es mas facil de verificar e implica claramente el teorema de
deformacion anteriormente enunciado. Las curvas no regulares son llamadas singulares

y son las geodésicas anormales introducidas por Montgomery en los articulos [73, 74].
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Entre estas curvas singulares hay algunas particularmente méas interesantes, que son
las curvas aisladas en la topologia C*, porque no admiten variaciones admisibles con
soporte compacto.

La condiciéon de regularidad fuerte se puede generalizar al caso de las subvariedades
de dimensién arbitraria y nos permite deducir un teorema de deformaciéon local. Bajo
esta hipotesis podemos calcular la primera variacion y deducir la ecuacion de curvatura
media, que en algunos casos puede ser un operador de tercer orden. Aun maés interesante
es que exhibimos por primera vez un ejemplo de subvariedad aislada en la topologia C*.
La subvariedad en cuestién es un plano de grado tres inmerso en el grupo de Engel,
cuya unica variaciéon admisible transversal coincide con la misma inmersion.

Solamente cuando la subvariedad es reglada por curvas de grado g, el sistema de
ecuaciones en derivadas parciales se reduce a un sistema de ecuaciones diferenciales
ordinarias a lo largo de las curvas caracteristicas de grado ¢y. Por tanto, en este caso,

podemos generalizar la nociéon de aplicacion de holonomia a dimensiones superiores.



Introduction

The aim of this PhD thesis is to study the area functional for submanifolds immersed
in an equiregular graded manifold. This setting extends the sub-Riemannian one, re-
moving the bracket generating condition. However, even in the sub-Riemannian setting
only submanifolds of dimension or codimension one have been extensively studied. We
will study the general case and observe that in higher codimension new phenomena
arise, which do not show up in the Riemannian case. In particular, we will prove the
existence of isolated surfaces, which do not admit degree preserving variations: a phe-

nomena observed up to now only for curves, related to the notion of abnormal geodesics.

Graded manifolds are smooth manifolds N endowed with a increasing filtration of
sub-bundles H! C ... C H® of the tangent bundle T'N. This filtration is compatible
with the Lie bracket since given X € H' and Y € H? the commutator [X, Y] belongs
to H'*/. Given a point p € N we have a flag of subspaces H, C ... C Hj = T,N. The
degree of a vector v € T,,N is equal to £ if v € Hg and v ¢ Hiﬁl.

The concept of pointwise degree for a submanifold M immersed in a graded manifold
(N, H!, ... H?*) was first introduced by Gromov in [50] as the homogeneous dimension

of the tangent flag given by
T,MNH,C---CT,MNH,. (0.0.1)

The degree of a submanifold deg(M) is the maximum of the pointwise degree among
all points in M. An alternative way of defining the degree is the following: on an
open neighborhood of a point p € N we can always consider a local basis (X7, ..., X,,)
adapted to the filtration (”Hi)i:lms, so that each X has a well defined degree. Following
[70] the degree of a simple m-vector X; A... AKX, , with1 < j; < ... < j, <mn,
is the sum of the degree of the vector fields of the adapted basis appearing in the

wedge product. Since we can write a m-vector tangent to M with respect to the simple
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m-vectors of the adapted basis, the pointwise degree is given by the maximum of the
degrees of these simple m-vectors.

Examples of graded manifolds are Carnot manifolds (N, ), where H is a constant
rank distribution satisfying Hérmander’s rank condition: in this case H! coincides
with H and for every i, H* is obtained from H via ¢ commutations. Another example
are Hormander structures of type II introduced by Rothschild and Stein [93]. These
structures are naturally associated to a heat subelliptic equation: H! is a purely spatial
Hormander distribution, 9, € H? and all the elements of the flag of higher degree
are obtained via commutation. In this case it is clear that regularity properties of
the solution depend not only on integral curves of vector fields of degree one, but
also on integral curves of the vector field 0;, of degree 2. Finally we can consider a
sub-Riemannian manifold (N, H, h), which is a Carnot manifold (N, H) endowed with
a metric h on the distribution H and its submanifolds M. In [50, page 151] Gromov
points out that, while the distance of a sub-Riemannian manifold (N,?H,h) can be
expressed in term of integral curves of vector fields of degree 1 by Chow’s Theorem,
the same thing is no more true for a submanifold M immersed in N, with the induced
distance. Only if the new distribution H N'T'N verifies a Hormander type condition on
M, there exists a horizontal path tangent to M connecting any two points in M. This
condition for the distribution HN7T M is not satisfied even in simple cases. Nevertheless
the submanifold M inherits a filtration H! NTM C ... C H* N TM of its tangent
bundle T'M by means of the flag of sub-bundles H! C ... C H* in the ambient space
N induced by the distribution H. Therefore M endowed with this induced flag is a
graded manifold and the induced anisotropic distance on the submanifold M can be
defined as in Definition 1.1 in the paper by Nagel, Stein and Wainger [80]. As all these
examples show, the category of graded manifolds seems to be the natural one to study
the immersed submanifolds, since they certainly inherit the graded structure from the
ambient space.

We consider a Riemannian metric ¢ = (-,-) on N. For any p € N, we get an
orthogonal decomposition 7, N = IC; ©...®K,. Then we apply to g a dilation induced
by the grading, which means that, for any r > 0, we take the Riemannian metric g,

making the subspaces IC; orthogonal and such that

1

ri—1

gr\/ci = 9!1@' .

Whenever H! is a bracket generating distribution the structure (N, g,) converges

uniformly to the sub-Riemannian structure (N, H', gz) as 7 — 0. Therefore an
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immersed submanifold M C N of degree d has Riemannian area measure A(M, g,)

with respect to the metric g,. We define area measure A, of degree d by

Ag(M) = 13{61 p(deg(M)=dim(D)2 AN g) (0.0.2)
when this limit exists and it is finite. In (3.1.5) we stress that the area measure A, of
degree d is given by integral of the norm the g-orthogonal projection onto the subspace
of m-forms of degree equal to d of the orthonormal m-vector tangent to M. This area
formula was provided in [70, 69] for C! submanifolds immersed in Carnot groups and
in [38] for intrinsic regular submanifolds in the Heisenberg groups.

Given an immersion ® : M — N of degree d into a graded manifold (N, (H');),
we wish to compute the Euler-Lagrange equations for the area functional A;. The
problem has been intensively studied for hypersurfaces, and results appeared in
(43, 27, 17, 18, 28, 6, 54, 55, 58, 89, 90, 72, 21]. For submanifolds of codimension
greater than one in a sub-Riemannian structure only in the case of curves has been
studied. In sub-Riemannian geometry, the existence of minimizing curves for the
length functional that are not solutions of the geodesic equation was discovered by
Montgomery in [73, 74]. These curves are known as abnormal extremals. The prob-
lem of their regularity has been widely considered in the literature, see for instance
[75, 3, 2, 64, 62, 77, 1, 88]. The usual approach to face this problem is by means of the
study of the endpoint map. However, in this work we follow an alternative approach
based on the Griffiths formalism as suggested by Bryant and Hsu [11, 57], since it can
be generalized to higher dimensional submanifolds showing the existence of isolated

submanifolds.

In Chapter 2 we consider a curve v : I — N. Its degree d = deg(7y) is the maximum
of the pointwise degree of its points, that is exactly the degree of the tangent vector
7'(t) at each t € I. Then the area functional in this case coincides with the length

functional
Lav.J) = [ batyat

for each J C I, where 6,(t) is the density given by the projection of 7/(¢) onto the
space generated by adapted vector fields X,,, ,+1,...,X,, of degree d along the curve.
If we wish to compute the Euler-Lagrange equations we need to consider admissible

variations (see 2.2.1 for the definition): the ones that preserve the degree of the initial
curve v. Then it turns out that the associated variational vector field V () = a%(t) o
S=

associated to an admissible variation has to verify the first order condition (2.2.3) along
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v. We say that a vector field along ~ is admissible when it verifies the system of ODEs
(2.2.3). In [57, Theorem 3] Hsu pointed out that under a surjectivity condition of a
map associated to v each admissible vector field along ~ is integrable by an admissible
variation.

Roughly speaking a curve 7 is regular if it admits enough compactly supported
variations preserving its degree. Indeed, to integrate the vector field V (t) we follow
the exponential map generating the non-admissible compactly supported variation
[s(t) = exp, ) (sV (t)) of the initial curve . Let supp(V) C [a,b]. By the Implicit
Function Theorem there exists a vector field Y'(s,t) along v vanishing at a such that
the perturbations T'y(t) = exp ) (sV (t) + Y (s,t)) of I' are curves of the same degree
of v for each s small enough. In general T fixes the endpoint at v(a) but moves the
endpoint at (b). Finally the surjectivity condition allows us to produce the admissible
variation that moves the endpoint (b) to 0, and produces the compactly supported
vector field V.

This concept of surjectivity of a map associated to ~ will be called regularity
of 7 and it deals with the controllability (see [10, Chapter 13]) of the system of
ODEs (2.2.3). Indeed after splitting the admissible vector V' along v in its horizontal
Vi =3k | 9:X; and vertical V, = > k41 J3X; part the admissibility system of ODEs
(2.2.3) is equivalent to

F'(t)+ B(t)F(t) + A(t)G(t) = 0, (0.0.3)

where A(t), B(t) are defined in (2.3.3) and (X;) is a global orthonormal adapted basis
along . We control this linear system with initial condition F'(a) = 0 on a compact
interval [a,b] C I when for each value yo € R"~* there exists a control horizontal vector
field G(t) € C;~'((a,b),R¥) such that F(t) solves (0.0.3) and F(b) = . In other

words if the holonomy map
HY  Hy ™ (a,0) = Vg,  HYY(G) == F(b)

is surjective the system (0.0.3) is controllable. Therefore a curve « is said to be regular
restricted to [a, b] when the holonomy map is surjective. It turns out that there exists
a regular matrix D(t) along « solving the differential equation D' = DB such that the

image of the holonomy map is given by

b

HY(G) = —D(b)™! / D()A()G(#)dt.
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In [57, Corollary 5] (Proposition 2.4.6) Hsu proved that the regularity condition on
~ is equivalent to maximal rank condition on the matrix A(t) = D(t)A(t) along 7.
Furthermore all singular curves are characterized by the existence of a non-vanishing
row vector A(t) along ~ solving

(0.0.4)

Moreover, we check that the surjectivity of the holonomy map is independent of the
choice of Riemannian metric g = (-, -) on the tangent bundle TN, thus the regularity
of a curve v is an invariant of the graded structure (N, H?!,... H?). Furthermore in
Section 2.4.3 we proved that when we replace the space of continuous horizontal vector
fields with the space of square integrable horizontal vector fields, the surjectivity of
the holonomy map coincides with the surjectivity of the differential of the endpoint
map, that defines the regularity in the classical setting, see [75, 3, 2].

An analysis of Hsu’s regularity condition led us to introduce, in the article [22], a
weaker pointwise sufficient condition named strong reqularity to ensure the integrability
of all admissible vector fields along v (see Theorem 2.6.4). This pointwise full rank
condition does not require solving a differential equation but still ensures the regularity
of the curve. Consequently the nature of Theorem 2.6.4 is purely local in the sense

that guarantees variations only in neighborhoods of the point ¢ € I where the matrix

A(t) has full rank.

Even though the regularity of a curve is an invariant of the graded structure, the
minimizing paths for the length functional Ly of fixed degree clearly strongly depends
on the Riemannian metric g. Regarding only regular curves of fixed degree we deduce
the Euler-Lagrange equation for the critical points of Ly in Theroem 2.7.2, providing
some interesting application for curves of degree 2 belonging to a surfaces immersed
the Heisenberg group. However there are singular curves that are not solution of the
geodesic equation but they are minima for L;. When this singular horizontal curves

are minima of the sub-Riemannian length L, they are known as abnormal extremals.

In Chapter 3, we consider a C'' m-dimensional immersion ® : M — N, with m > 1,

into a graded structure (N, H!',... , H*), ®(M) = M. The problem of producing
admissible variations that preserves the degree is analogous to the one dimensional

problem previously treated. Consequently we focus on admissible variations, which

— oy

preserve it. The associated admissible vector fields, V = = o satisfies the system
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of partial differential equations of first order (3.3.3) on M. So we are led to the
central question of characterizing the admissible vector fields which are associated
to an admissible variation. In this setting, in general, there does not seem to be an
acceptable generalization of such an holonomy map. Indeed, the system of ODEs along
the curve becomes a complicated first order system of PDEs on the submanifold. Since
an existence result for compactly supported solutions of (3.3.3) is not available in
general, the theory previously exhibited for curves is not simple to develop. However,
in [23] we realized that the notion of strong regularity, introduced in [22] for curves, can
be easily generalized to submanifolds of given degree. In this setting the admissibility

system (3.3.3) in coordinates is given by

2. GP)E(F)@) + BEOF () + AP)G() =0, (0.0.5)
j=

where Cj}, B, A are matrices, F' are the vertical components of the admissible vector
field and G are the horizontal control components. Since the strong regularity tells
us that the matrix A(p) has full rank we can locally write explicitly a part of the
controls in terms of the vertical components and the other part of the controls, then
applying the Implicit Function Theorem we produce admissible variations. This way
in Theorem 3.5.2 we obtain that the strong regularity is a sufficient condition for the
local integrability of admissible vector fields on M. In Remark 3.6.4 we recognize that
our definition of strongly regular immersion generalizes the notion introduced by [50]
of regular horizontal immersions, that are submanifolds immersed in the horizontal
distribution such that the degree coincides with the topological dimension m. In
[49], see also [83], the author shows a deformability theorem for regular horizontal
immersions by means of Nash’s Implicit Function Theorem [81]. Our result is in the
same spirit but for immersions of general degree.

We establish that this strongly regular condition holds in the case of surfaces of
degree 4 and codimension 2 immersed in a four dimensional Engel structure. On the
other hand we are able to show that there are isolated surfaces which does not admit
degree preserving variations. Indeed, in Example 3.5.7 we exhibit an isolated plane,
immersed in the Engel group, whose only admissible normal vector field is the trivial
one. Moreover, Proposition 3.5.8 shows that this isolated plane is rigid in the C*
topology, thus this plane is a local minimum for the area functional. Therefore we
recognized that a similar phenomenon to the one of existence of abnormal curves can

arise in higher dimension. Finally we conjecture that a bounded open set 2 contained
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in this isolated plane is a global minimum among all possible immersed surfaces sharing
the same boundary 0f).

Moreover, in [47] we notice that there exist special coordinates adjusted to the
admissibility system. Indeed Proposition 3.4.4 guarantees that this admissibility system
is independent on the choice of metric g on T'N and Proposition 3.3.5 shows that only
the transversal part V+ of the vector field V = V' 4 V1 affects the admissibility
system. Therefore, we consider an adapted tangent basis E1, ..., E,, for the flag (0.0.1)
and then we add transversal vector fields V,,, .1, ...,V of increasing degrees so that a
sorting of {E1, ..., Em, Vina1, ..., Vi } is a local adapted basis for N. Then we consider
the metric g that makes Fy,..., E,, Vi1, ..., Vy, an orthonormal basis. Hence we

obtain that the admissibility system is equivalent to

n m+k
Ej(fi) = - Z bijr Ir— Z Qijh Ghs (0-0-6)
r=m+k+1 h=m-+1
fori =m+k+1,...,n and deg(V;) > deg(E;). In equation (0.0.6) the integer k,
defined in 3.4.6, separates the horizontal control of the systems V), = Z?z’,ﬁrl gV, from
the vertical component V,, =>2" . f; V..

As we stressed before a generalization of the holonomy map for general submanifolds
of dimension grater than one is not easy to find but we realized that it is possible when
we consider ruled m-dimensional submanifolds whose (m — 1) tangent vector fields
Es, ..., E,, have degree s and fill up the last layer of the graded manifold (N, H!, ... H?)
and the first vector field F; has degree equal to g, where 1 < ¢ty < s — 1. The resulting
degree is deg(M) = (m — 1)s 4+ tp. Therefore the ruled submanifold is foliated by
curves of degree ¢y out of the characteristic set My, whose points have degree strictly
less than deg(M). Then, under a logarithmic change of coordinates x = (x1, %), the

admissibility system (0.0.6) becomes

OF(x)
8x1

= —B(z)F(z) — A(z)G(z), (0.0.7)

where 0,, is the partial derivative in the direction Fy, G are the horizontal coordinates
Vi, = Z;:;f—l—l giVi, F are the vertical components given by V,, = 37" . | f.V, and
A, B are matrices defined at the end of Section 3.7. Therefore, this system of ODEs
is easy to solve in the direction 0,, perpendicular to the (m — 1) foliation generated
by Es, ..., E,. We consider a bounded open set ¥q C {x; = 0} in the foliation, then
we build the e-cylinder Q. = {(x1,2) : & € £¢,0 < z; < ¢} over 3. We consider the

horizontal controls GG in the space of continuous functions compactly supported in €2..
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For each fixed G , F is the solution of (0.0.7) vanishing on ¥,. Then the image of the
higher dimensional holonomy map Hj; is the solution F', evaluated on the top of the
cylinder €2.. We say that a ruled submanifold is reqular when the holonomy map is
surjective, namely we are able to generate all possible compactly supported continuous
vertical functions on ¥, C {x; = ¢} by letting vary the control G in the space of
compactly supported continuous horizontal functions inside the cylinder €2.. The main
difference with the one dimensional case is that the target space of the holonomy map
is now the Banach space of compactly supported continuous vertical vector fields on
the foliation instead of the finite dimensional vertical space of vectors at the final point
v(b) of the curve. In Theorem 3.8.7 we provide a nice characterization of singular ruled
submanifolds in analogy with (0.0.4), first established in the case of curves by Hsu
[57, Theorem 6]. Moreover, if s —3 < 19 < s — 1 the space of m-vector fields of degree
grater than deg(M) is reasonably simple, thus in Theorem 3.9.6 we show that each
admissible vector field on a regular immersed ruled submanifold is integrable in the
spirit of [57, Theorem 3] (Theorem 2.5.4).

For strong regular submanifolds it is possible to compute the Euler-Lagrange
equations to obtain a sufficient condition for stationary points of the area A, of degree
d. This naturally leads to a notion of mean curvature, which is not in general a second
order differential operator, but can be of order three.

In the present thesis we want to show the results investigated in [22, 23, 47], develop
them further and give also a general presentation of the problem by trying to make

this manuscript as much self-contained as we can.



Chapter 1

Background and Preliminaries

1.1 Background

1.1.1 Carnot manifolds

Let N be an n-dimensional smooth manifold. Given two smooth vector fields X,Y on

N, their commutator or Lie bracket is defined by
(X,Y]=XY -YX. (1.1.1)

An [-dimensional distribution H on N assigns smoothly to every p € N an [-dimensional
vector subspace H, of T,N. We say that a distribution H complies Hormander’s

condition if any local frame {X1,..., X;} spanning H satisfies
dim(L(Xy,...,X)))(p) =n, forallpe N, (1.1.2)

where £(X,..., X)) is the linear span of the vector fields X, ..., X; and their com-
mutators of any order.

A Carnot manifold (N, H) is a smooth manifold N endowed with an [-dimensional
distribution H satisfying Hormander’s condition. We refer to H as the horizontal
distribution. We say that a vector field on N is horizontal if it is tangent to the
horizontal distribution at every point. A C! path is horizontal if the tangent vector
is everywhere tangent to the horizontal distribution. A sub-Riemannian manifold
(N, H, h) is a Carnot manifold (N, #H) endowed with a positive-definite inner product
h on H. Such an inner product can always be extended to a Riemannian metric on
N. Alternatively, any Riemannian metric on N restricted to H provides a structure of
sub-Riemannian manifold. The Chow-Rashevskii Theorem, proved by L.W. Chow [20]
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in 1939 and independently by P.K. Rashevskii [87] in 1938, assures that in a Carnot
manifold (N, H) the set of points that can be connected to a given point p € N by
a horizontal path is the connected component of N containing p, see [75]. Given a

Carnot manifold (N, H), we have a flag of subbundles
H' ' '=HCHC---CH C---CTN, (1.1.3)

defined by
H = H 4+ [H,HY, 1> 1,

where

[(H,H] = {[X,Y]: X €H,Y € H'}.

The smallest integer s satisfying H; = T, N is called the step of the distribution H at
the point p. Therefore, we have

H,CH.C---CH,=T,N.

The integer list (ny(p),- - ,ns(p)) is called the growth vector of H at p. The homoge-
neous dimension Q(p) of the Carnot manifold (N, H) at p € N is given by

Q) =35 (o) (1.1.)

When the growth vector is constant in a neighborhood of a point p € N we say that p
is a reqular point for the distribution. We say that a distribution A on a manifold N
is equireqular if the growth vector is constant in N.

Given a connected sub-Riemannian manifold (N, #, h), and a C* horizontal path
v : |a,b] = N, we define the length of v by

b
L() = [ VRG0.4(0) dt. (1.15)
By means of the equality
d.(p,q) := inf{L(7) : v is a C" horizontal path joining p,q € N}, (1.1.6)

this length defines a distance function (see [12, § 2.1.1,§ 2.1.2]) usually called the
Carnot-Carathéodory distance, or CC-distance for short. See [75, Chapter 1.4] for
further details.
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1.1.2 Lie groups and Carnot groups

A Lie group (G,-) is a differentiable manifold which is also endowed with a group
structure such that the map G x G — G defined by (g,h) — g-h™! is C™ (see [99,
Definition 3.1]) and let g be its Lie algebra.

Definition 1.1.1. A Lie algebra g over R is a real vector space g together with a
bilinear operator [, | : g x g — g (called the bracket) such that for all X|Y, Z € g,

1. [X,Y] = —]Y, X]. (anti-commutativity)
2. [[X, Y], Z]+[IY, Z], X] + [[Z, X], Y] = 0. (Jacobi identity)

Definition 1.1.2. Let ¢ : Ny — Ny be a smooth function. The vector fields X on N
and Y on Ny are called p-related if dp(X) =Y o .

There is a finite dimensional Lie algebra intimately associated with each finite
dimensional Lie group. Moreover all the connected, simply connected Lie groups are
completely determined (up to isomorphism) by their Lie algebras, for further details
see [99]. Each Lie algebra can be seen as the space of all left invariant vector fields, i.e.
l,-related to themselves where the left translation by ¢ in G is given by l,(h) =g - h.

Let V C g be a linear subspace of the Lie algebra. This way, V is a left invariant
distribution and Hoérmander’s rank condition corresponds to the fact that V Lie-
generates g. In particular (G, V) is a Carnot manifold. If we set an inner product h on

V' we obtain a sub-Riemannian metric and (G, V| h) is a sub-Riemannian structure.

Definition 1.1.3. We say that G is a graded nilpotent Lie group if the Lie algebra g
has the form
g=VoVig...0V*

where [V, V7] =V and V" = 0 if r > s. Therefore, all iterated brackets of length

r > s are zero. Since V! =V Lie-generates g, we obtain a Carnot group.

Carnot groups enjoy the property of admitting dilations d;, for t > 0 such that
de(04(x),0:(y)) =t d.(z,y) for each x,y € G. These are first defined on the Lie algebra
by the map d; : g — g, where §;(X) := t'X when X € V* fori=1,...,s. Since G
is a simply connected Lie group we define the map d; : G — G extending the map
previously defined on the Lie algebra g by the exponential map exp : g — G, defined
in Section 1.1.3 and [99, Definition 3.30] .
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1.1.3 Exponential map

Let €2 C N be an open set of N and X be a smooth vector field on 2. Fixed p € €2,
the vector field X induces a local one parameter group of transformations on (2,

{ox(t,p) = o(t,p)}+ which is the unique solution of the Cauchy problem
9 a(t,p)

ot
(0,p) = p.

— )((7
lo(tp) (1.1.7)

This unique solution always exists for |t| sufficiently small. Moreover, if X =
X(uy,- - ,u,) depends in smooth way on parameters (uj,---,u,) in an open set
U C R” and we consider compact sets L C U and K C €, there exists a constant ¢
such that

0 Lx] — ey, e[ xK — Q (1.1.8)

is a smooth function. When it is clear that the parameters u = (uq,...,u,) and also
the vector field X are fixed, we denote ox(u,t,p) by o(t,p). For all ¢ sufficiently small,
ox(t,r) = oux(1,2) = exp(tX)(x) is always well-defined. By the uniqueness of (1.1.7),
there holds

o(s,o(t,p)) =o(s+t,p) if p e K, |s+t|<eo, (1.1.9)
oxx(t,p) = ox(\t, p) when p € K, |\t| < €. (1.1.10)

Now, by equation (1.1.9) the function x — o(—t,z) is a C* inverse of x — o(t, ).
Therefore, x — o(t, z) is a diffeomorphism on a compact set of €2, for |¢| sufficiently

small. In this sense we construct a parameter group of diffeomorphisms.

Definition 1.1.4. We define the exponential map by

exp(X)(p) = ox(1,p)
whenever the right hand side is defined.

Let Xi,---, X, be an orthonormal frame w.r.t. h on Q and (uq,--- ,u;) be parame-

ters in R'. Then, if
l
lul = | > u? (1.1.11)
=1
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is sufficiently small, |u| < €y, we have that the function
!
(ug, -+ ,u;,p) — exp (Zul XZ-> (p) (1.1.12)
i=1
is well-defined and smooth, see [80, Appendix].

Remark 1.1.5. Notice that

1. the curve (t) = exp (tX) (p) = ox(t, p) is horizontal, when X a vector field in
H on N.

2. the exponential map exp : g — G is a global diffeomorphism to a simply connected

Lie group G from its Lie algebra g.

1.1.4 Sub-Riemannian differential operators

A sub-Riemannian manifold (N, H, h) is the underlying structure to study the degen-
erate subelliptic operator. Let (Xi,..., X)) be a local frame for the distribution H
orthonormal with respect to the horizontal metric h and 2 C N be an open set, the

horizontal gradient of a function u : 2 — R is given by

Vit = zljxi(u)xi, (1.1.13)

=1

where we denote by X;(u)(p) at p € Q the Lie derivative

We say that f belongs to C3,(Q2, R) if X;(f) are continuous functions with respect to
the Carnot-Carathéodory distance d. defined in (1.1.6) for every i = 1,--- 1. Then we
define the class C3,(€2, R) by iteration. We will call these spaces the spaces of intrinsic
function of class k w.r.t. the distribution .

For each i =1,...,] we denote by X/ the adjoint of X; with respect to a volume
form vol given by

/ wX,(f) dvol = / X (u) f dvol.
N N



18 Background and Preliminaries

Since in local coordinates dvol = wdL, where w is a smooth density and L is the
Lebesgue measure, and X; = Z?:1 a;;0; we have

n

X (u) = —w ' X;(wu) =Y i(ay)u.

2
J=1

Therefore the sub-Laplacian defined by

l
Ag(u) == divy (Vy(uw) =D X7 Xi(u) (1.1.14)
i=1
is a degenerate elliptic second order operator since the matrix (a;;(a;;)") is positive
semi-definite.

Definition 1.1.6. Let P be a linear differential operator with C'* coefficients in an
open set 0 of N. Given a relative compact open set ' CC Q, we say that P is
hypoellitic if for each f € C°°(€') the solution u of the equation Pu = f belongs to
C>(Y).

L. Hérmander in his celebrated paper [56] showed that whenever the distribution
H = span{Xy,..., X;} satisfies Hormander’s rank condition (1.1.2) the degenerate
second order Ay is hypoelliptic. This result opened up the regularity theory and
the study of the fundamental solution for degenerate second order equations mostly
developed by [33, 48, 79, 60, 61]. In 1975 L. Rothschild and E. Stein [93] proved their
lifting approximation theorem. After a lifting at not regular point to a free up algebra to
a fixed level s (where all points are regular), they provided an homogeneous nilpotent
approximation (Xl, o ,Xl) of the system of vector fields (Xi,...,X;). Then they
obtain the fundamental solution of the sub-Laplacian Ay using the parametrix method
where the approximate operator is >>'_, X*X;. Similarly the Carnot-Carathéodory
distance d. can be approximated by a nilpotent distance cz, then, using the Hausdorft-
Gromov convergence, J. Mitchell [71] proved that Carnot groups are the tangent cones
for the sub-Riemannian manifolds at regular points. This result was later revisited by
A. Bellaiche in [7]. Thus, we understand the importance of Carnot groups, that play
the role of tangent spaces for the sub-Riemannian geometry as the Euclidean spaces

R™ are the tangent spaces for the Riemannian manifolds.

1.1.5 Hypersurfaces immersed in sub-Riemannian manifolds

Let (N, H,h) be a sub-Riemannian manifold. Consider an open set 2 C N and an
orthonormal frame (X1,..., X;) of the distribution H. Given a function u € L. .(Q)
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the horizontal variation of u with respect to €2 is defined as

Vary (u, Q) = sup {/QudivH(ng) dvol : ¢ € C’é(Q,’H)} , (1.1.15)

where in local coordinates ¢ = ', ¢;X; for ¢ € C}(Q), divy(d) = XL, X (¢;) and
dvol is the Riemannian volume form. A function u is said to have bounded H-variation
in Q if Vary (u, Q) < oo, and the collection of all such functions is denoted by BV3(f2).
Following the celebrated paper by E. De Giorgi [29], N. Garofalo and D.M. Nhieu [43]

defined the notion of perimeter in the sub-Riemannian setting.

Definition 1.1.7. Given E C {2 a measurable set, the H-perimeter of F relative to €2
is defined by
Py.,g(E, Q) = VarH(XE, Q),

where xg is the characteristic function of F. When Py (FE,2) < oo for each open set
Q) C N we say that E is a H-Caccioppoli set.

Inspired by the classical Plateau problem, that consists on finding hypersurfaces of
least area among those that share a fix boundary, and the isoperimetric problem, that
searches for the least area enclosing a fixed volume, several authors in the last twenty
years have developed a rich theory in these sub-Riemannian setting. In [43, Theorem
1.24 | the authors established an existence theorem for minimal surfaces under suitable
assumptions on the ambient manifold N as the Poincaré inequality and the doubling
property.

Fix a smooth Riemannian metric g on N such that g = h and assume that
E C N has C* boundary X, it follows from the Divergence Theorem in the Riemannian
manifold (V, g) that the perimeter Py (E) coincides with the sub-Riemannian area of
Y. defined by

A(D) = /E g dE, (1.1.16)

where v is a unit vector field normal to ¥ with respect to g, v}, the orthogonal projection
of v to the horizontal distribution, and d¥ is the Riemannian measure of X.

Keeping in mind the definition of intrinsic function in section 1.1.4, the natural
definition of intrinsic hypersurface in Carnot groups was provided by B. Franchi, R.

Serapioni and F. Serra Cassano in [36].

Definition 1.1.8. Let (G, -) be a Carnot group. We say that ¥ C G is a G-intrinsic
hypersurface if for any p € 3 there is an open set U of p and f € C5,(U) such that

ENU={qeU : f(qg) =0, Vuf(q) #0}.
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This definition allows to avoid the presence of singular (or characteristic) points,
where the projection of the normal v}, is equal to zero. However these intrinsic
hypersurfaces can even be fractals. This notion of G-intrinsic hypersurface is the right
one to study the retificability of the H-perimeter in Carnot groups, that was first
proved by B. Franchi, R. Serapioni and F. Serra Cassano in [35] and then and then
widely studied by [66, 28, 4, 24].

On the other hand, assuming that the hypersuface is a C' immersion, we allow the

possibility of singular points.

Sub-Riemannian mean curvature equation for hypersurfaces

Let ¥ be a C? immersed hypersurface in a sub-Riemannian manifold (N, H, h), X =
{p € X : v, =0} be the set of characteristic points and 2}, = ﬁ outside from 3.
Let g be a Riemannian metric on T'N such that ¢ restricted to H concides with h.
First of all we provide a variation I'; of ¥ compactly supported in ¥ \ ¥,. Therefore,

computing the first variational formula

d

il ATE)

for a C? immersed hypersurface, we obtain that the sub-Riemannian mean curvature

is given by

divy (o) — > (o, X1, X;) (1.1.17)

out of the characteristic set. In the previous formula the horizontal divergence

-1

divh(v) = Z<veiﬁha €;)

=1

is the trace of the horizontal second fundamental form 14 /(e;, e;) = (V, 0y, e;) for each

i, =1,...,1 =1, where ey,...,¢e_; is an orthonormal basis of 7),> N H, such that
i
Vh
the sub-Riemannian structure, see [54, Definition 3.3]. The operator defined in [54] is

€1y.n. €1, = is an orthonormal basis of 7, and V is a connection adapted to
not self-adjoint, but the one defined in [91] in the Heisenberg group is self-adjoint and
provides a notion of principal curvatures and of mean curvature.

In the last years several papers from different fields have studied this horizontal
mean curvature equation to solve Plateau’s problem, Bernstein’s problem and the
isoperimetric problem in this new setting, only to mention a few [43, 27, 17, 18, 28, 6,
54, 55, 58, 89, 90, 72, 21].
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1.1.6 Submanifolds immersed in Carnot groups

The natural question that arises is what is the natural replacement of the H-perimeter
for submanifolds of higher codimension immersed in a sub-Riemannian geometry.
Since the spherical Hausdorff measure is not manageable, because it is not lower
semicontinuous with respect to the Hausdorff convergence of sets, V. Magnani and D.
Vittone in [70] introduced an new measure for C'' submanifolds immersed in Carnot
group G, with Lie algebra g = V! ® V2@ ... @ V?. Fix a left invariant metric ¢ that
makes the layers V% orthogonal and an open set  C R™. Let ® : Q —+ G be an C*
immersion, then the area measure for each Borel subset 2 C €2 is given by

A(Y) (@4, (2) A ... A Dy, (2))dl, dL(2), (1.1.18)

= Q/|
where £ is the Lebesgue measure in R™, | - |, denotes the norm induced by g on
the m-vectors and (-)g4 is the projection of the m-tangent vector onto the degree
d = deg(®(2)). The degree of a submanifold, first introduced by Gromov [50], is the
maximum over all points of p € M of the homogeneous dimension

degy;(p) = D j dim(T,M NV7).

J=1

For a formal definition of the degree the reader can refer to Section 1.2.3. For C'!
immersions the authors in [70, Theorem 1.1] proved the equivalence between the area
measure (1.1.18) and the Hausdorff measure under the key assumption that points of
degree less than d are negligible with respect to the Hausdorff measure. Moreover it
is worth mentioning the intrinsic approach for submanifolds in the Heisenberg group
developed by [37, 38] and their replaced in [39] of the spherical Hausdorff measure
by the centered m-dimensional Hausdorff measure in more general setting of metric

spaces.

1.1.7 The endpoint map and Pontryagin’s principle

Let (N,H) be a Carnot manifold where # is a [-dimensional distribution and I =
la,b] € R. Given a point py € N we consider the space Qy(I,po) of all possible
absolutely continuous curves starting at py whose derivatives are square integrable on

I, for any metric h on the distribution. The endpoint map

£ QH(LPO) — N
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is defined by £(y) = v(b). Given Xi,...,X; a local frame for H, the Qy(I,po) is
a Banach manifold based on L?(I,R!) with local coordinates (uy,...,w) € L*(I,R!)
given by

In [75, Appendix EJ it is shown that that for the Cauchy problem

w;(t
'y(a) = Po
has a unique solution v = y(u, py) so that in local coordinates £(uy, ..., u;) = vy(b).

Definition 1.1.9. A regular curve is a regular point of the endpoint map £ and a

singular curve is a critical point of the endpoint map £.

Remark 1.1.10. We notice that a curve 7 : [a,b] — N given by (1.1.19) is singular if
and only if there exists a co-vector \ € T7 N such that

MdE(u)v) =0,

for each v € L?(I,R!), where d€(u) is the differential of £ at u € L*(I,R!).

Let Ht* C T*N be the space of one-forms of rank n — [ that annihilate the
distribution H. Fix a local frame of H** given by (6'*1,...,6") in a local neighborhood
Uof N. Let X;41,...,X, be the dual frame of (81, ..., 0"), X1,..., X, be the frame
of H and (11, ...,m) be the dual co-frame with respect to X7, ..., X;. The structure

functions cfj for each 7,7 = 1,...,n are given by
[Xi, X Z k. X (1.1.20)

Let w be the restriction of symplectic form to H**. Following the method of character-
istics developed by L. Hsu in [57], R. Montgomery [75, Theorem 5.2.2] recognized that
a horizontal curve ~ is singular if and only if v is the projection of a characteristic for
HL*, that is a never vanishing absolutely continuous curve A(t) € H1* such that the
interior product ¢y yw = 0 on TAH** whenever X (f) exists. An absolutely continuous
curve \ : [a,b] — T*N that belongs to H** is given by

~ 3 N ay Zul DX+ 3wyt (1.1.21)

r=I+1 j=l+1
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The restriction to H** of the tautological one-form is I ., y.0". Since w is the

differential of this restricted form we have

w= Y dy" A0+ D yde’.

r=Il+1 j=l+1

Then the equation ¢y w = 0 is equivalent to

Z (DO —updy” + S0 Nd6 (N (1), -).

r=I+1 j=l+1

Putting the Maurer-Cartan equation (see [59]) given by

1l 1 &

d@j: Z hn /\77 _Z Z _5 Z C_zret/\er,

zh:l =1 r=[+1 t,r=I0+1

forr=1+1,...,n,into (1.1.22) we gain u, =0 for r =1+ 1,...,n and

1 n l ]
3 3 MO =5 33 S+ )
=l+1r=I+11i=

r=l+1

(1.1.22)

Therefore we obtain that absolutely continuous curve \(¢) with square-integrable

derivative (1.1.21) is a characteristic if and only if A(¢) satisfies the following equations

Uj<t):() j:l—i—l,...,n,
n !

— > Y Ndoui=0, r=1+1,...,n,
j=l+1i=1

l n

Z Z )\JC’Z]hUZ:O hzl,,l

i=1 j=I+1

(1.1.23)

In control theory singular curves are the projection of abnormal extremals that are

defined by means of the Pontryagin Maximum Principle [86] that provides necessary

conditions for a horizontal curve to be a minimizer. When ~ with controls u is length

minimizing we call the pair (v, ) an optimal pair.

Theorem 1.1.11 (PMP). Let (v, u) be an optimal pair. Then there exist Ao € {0, 1}

and Lipschitz curve \(t) € I35 N such that

1. ()‘07)‘<t)) 7£ <070>7
2. /\oui—l—()\(t) (X)(t)> 0 +=1,...,1;
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3. the coordinates A\, forr =1...,n satisfy
n 1 ]

j=11:=1

As R. Monti described in [77] the proof of Theorem 1.1.11 (see [3]) is based on the
extended endpoint map
F (I, po) > Rx N

given by b
70 = ([ hrFa. £).

that in local coordinates is
b
# = ([ P, £w).

If (v, u) is an optimal pair for .#, then its differential d.% (u) is not surjective. Therefore

there exists a co-vector (0,0) # (A, A) € R x T3 N at () such that

(Ao, A), d-F (u)v) = 0,

for each v € L?(I,RY). When )y = 0 we obtain the case of the abnormal extremals
that are exactly the critical point of d€(u), thus by Definition 1.1.9 they are singular
curves. The Lipschitz curve A(t) of Theorem 1.1.11 is obtain by

where (P_;)* is the pull-back of the optimal flow P,(p) = ~(t), that at each point p € N
associates the solution ~(t) at the time ¢ € [a, b] of the Cauchy problem

l

Y(t) = wX;

i=1

v(a) = p.

In control theory the necessary conditions 1,2,3 for the optimality of Theorem 1.1.11 are
used to define the notion of extremal. We say that an horizontal curve v : [a,b] - N
is an eztremal if there exist Ao € {0,1} and a Lipschitz curve A(¢) € T7,)N such that
1,2,3 hold. When )y # 0 we say that v is a normal extremal and when \y = 0 we say
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that ~ is an abnormal extremal. A strictly abnormal extremal is an abnormal extremal
but not a normal one.

Notice that condition 2 for an abnormal extremal (Ao = 0) is equivalent to

fori=1,...,1. Therefore we have \(t) € H1*, that implies that the index j in (1.1.24)
goes from [ + 1 to n. Differentiating (1.1.25) we obtain

l n
o> Ncjun =0, (1.1.26)
h=1 j=I+1

fori =1,...,l. Putting together (1.1.25), (1.1.26) and (1.1.24) we gain, as we expected,

that an abnormal extremal satisfies the characteristic equation (1.1.23).
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1.2 Preliminaries

1.2.1 Graded Structure

Let N be an n-dimensional smooth manifold. Given two smooth vector fields X,Y on
N, their commutator or Lie bracket [X,Y] is defined by (1.1.1). An increasing filtration
(H')ien of the tangent bundle TN is a flag of sub-bundles

H'CH* C---CcH C---CTN, (1.2.1)

such that
(i) UienH'=TN
(i) [H',HI] CH™H, ford,j > 1,

where [H', H'] := {[X,Y]: X € H',Y € H?}. Moreover, we say that an increasing

filtration is locally finite when

(iii) for each p € N there exists an integer s = s(p), the step at p, satisfying H; = T, N.

Then we have the following flag of subspaces

H,CH.C---CH,=T,N. (1.2.2)

A graded manifold (N, (H')) is a smooth manifold N endowed with a locally finite
increasing filtration, namely a flag of sub-bundles (1.2.1) satisfying (i),(ii) and (iii). For
the sake of brevity a locally finite increasing filtration will be simply called a filtration.
Despite it may seem repetitive, for completeness reasons we will recall some concepts we
previously introduced in Section 1.1.1 for Carnot manifolds. Setting n;(p) := dim ’H;,,
the integer list (ny(p),--- ,ns(p)) is called the growth vector of the filtration (1.2.1) at
p. When the growth vector is constant in a neighborhood of a point p € N we say that
p is a regular point for the filtration. We say that a filtration (H‘) on a manifold N is
equireqular if the growth vector is constant in N. From now on we suppose that N is
an equiregular graded manifold.

Given a vector v in T, N we say that the degree of v is equal to ( if v € 7-[;; and
v ¢ H5'. In this case we write deg(v) = £. The degree of a vector field is defined
pointwise and can take different values at different points.

Let (N, (H!,...,H*)) be an equiregular graded manifold. Take p € N and consider
an open neighborhood U of p where a local frame {Xi,---, X, } generating H! is
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defined. Clearly the degree of Xj, for j = 1,...,n4, is equal to one since the vector
fields X1,..., X, belong to H!'. Moreover the vector fields X1, ..., X,,, also lie in H?,
we add some vector fields X,,, 41, , X, € H*\ H! so that (X1),, ..., (X,,), generate
H?2. Reducing U if necessary we have that Xi,...,X,, generate H* in U. Iterating

this procedure we obtain a basis of T'M in a neighborhood of p
(X1, Xy Xoaty oo, Xogs oo s X 141y - -+, X (1.2.3)

such that the vector fields X,,. ,+1,...,X,, have degree equal to i, where ng := 0. The
basis obtained in (1.2.3) is called an adapted basis to the filtration (H!,... H?).

Remark 1.2.1 (Carnot manifolds are graded structure). The flag of sub-bundles
(1.1.3) associated to a Carnot manifold (IV,H) gives rise to the graded structure
(N, (#H")). Clearly an equiregular Carnot manifold (N, H) of step s is a equiregular
graded manifold (N, H!,... H?).

Submanifolds immersed in Carnot manifolds

Let M be a submanifold immersed in an equiregular Carnot manifold (N, ) of step s.
The intersection subspace 7-[p = H,NT,M at each point p € M generates a distribution
# on M. Since a priori the distribution H does not satisfy Hérmander’s condition,
the structure (M, H) is not a Carnot manifold. Nevertheless, setting H’ := TM N H?,
the submanifold M inherits a locally finite increasing filtration H' € ... C H* = T'M,
that at each point in M is given by

H,CH. C---CHy=T,M, (1.2.4)

where 7 = T,M NHJ and fi;(p) = dim(#2). Evidently, (i) in Definition 1.2.1 is
satisfied. On the other hand, if X € H' and Y € H’, we can extend both vector fields
in a neighborhood of M so that the extensions X, Y] lie in H’ and H7, respectively.
Then [X, Y] is a tangent vector to M that coincides on M with [X;,Y;] € H*. Hence
[X,Y] € H™J. This implies condition (ii) in Definition 1.2.1. Therefore (M, H!, ... H?)

is a graded manifold.
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1.2.2 Degree of m-vectors

Given an adapted basis (X;)1<i<n, the degree of the simple m-vector field X; A... A X,
is defined by

deg(Xj, A ... AKX ,) = deg(Xj,).
i=1

Any m-vector X can be expressed as a sum
Xp = Z )\J(p)<XJ)p7
J

where J = (j1,...,dm), 1 < j1 < -+ < jm < m, is an ordered multi-index, and
Xy = X;, N...ANXj,. The degree of X at p with respect to the adapted basis
(Xi)1<i<n is defined by

max{deg((X,),) : As(p) # 0}.

It can be easily checked that the degree of X is independent of the choice of the adapted
basis and it is denoted by deg(X).
If X =3 ;A;X; is an m-vector expressed as a linear combination of simple

m-vectors X j, its projection onto the subset of m-vectors of degree d is given by

(X)a= > Xy, (1.2.5)
deg(X,)=d

and its projection over the subset of m-vectors of degree larger than d by

71'd(AX) = Z A X

deg(X j)=d+1

In an equiregular graded manifold with a local adapted basis (X1, ..., X,), defined
as in (1.2.3), the maximal degree that can be achieved by an m-vector, m < n, is the
integer d”, . defined by

max

dr = deg(Xy_my1) + -+ - + deg(X,). (1.2.6)

max

1.2.3 Degree of a submanifold

Let M be a submanifold of class C! immersed in an equiregular graded manifold
(N, (H',...,H?)) such that dim(M) = m < n = dim(N). Then, following [63, 70], we
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define the degree of M at a point p € M by
degy;(p) :=deg(vi A ... Avp), (1.2.7)

where vy, ..., vy, is a basis of T, M. Obviously, the degree is independent of the choice
of the basis of T,M. Indeed, if we consider another basis B’ = (v{,--- ,v),) of T, M,
we get

Vi A Aoy, = det(Mpg) vp A+ A,

Since det(Mp ) # 0, we conclude that deg,,(p) is well-defined. The degree deg(M) of
a submanifold M is the integer
deg(M) := max deg,,(p). (1.2.8)
peEM
We define the singular set of a submanifold M by

My ={p € M :deg,,(p) < deg(M)}. (1.2.9)

Singular points can have different degrees between m and deg(M) — 1.
In [50, 0.6.B] Gromov considers the flag

H,CH.C---CH,=T,M, (1.2.10)

where 7:[5) =T,MnN 'H{; and m; = dim(?—li). Then he defines the degree at p by

setting mg = 0. It is easy to check that our definition of degree is equivalent to
Gromov’s one, see [46, Chapter 2.2]. As we already pointed out, (M, (H’);en) is a
graded manifold.

Let us check now that the degree of a vector field and the degree of points in a

submanifold are lower semicontinuous functions.

Lemma 1.2.2. Let (N, (H',...,H?)) be a graded manifold reqular at p € N. Let V

be a continuous vector field defined on a open neighborhood Uy of p. Then we have

lim inf deg(V,) > deg(V},).

q—p
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Proof. As p € N is regular, there exists a local adapted basis (X7, ..., X,,) in an open
neighborhood Uy C U; of p. We express the smooth vector field V' in U, as

=Y Y @), (1.2.11)

i=1 j=n;_1+1
on U, with respect to an adapted basis (Xi,---,X,), where ¢;; € C(Uz). Suppose
that the degree deg(V,) of V at p is equal to d € N. Then, there exists an integer
ke {ng_1+1,--- ,ng} such that cqp(p) # 0 and ¢;;(p) =0 foralli =d+1,--- ,s and
j=mn;_1+1,---,n;. By continuity, there exists an open neighborhood U’ C U; such

that cqx(q) # 0 for each ¢ in U’. Therefore for each ¢ in U’ the degree of V, is greater
than or equal to the degree of V(p),

deg(V;) > deg(V},) = d.

Taking limits we get
lim inf deg(V;) > deg(V}). O

q—p
Remark 1.2.3. In the proof of Lemma 1.2.2, deg(V}) could be strictly greater than d

in case there were a coefficient ¢;; with ¢ > d + 1 satisfying ¢;;(¢) # 0.

Proposition 1.2.4. Let M be a C' immersed submanifold in a graded manifold
(N, (H, ..., H?)). Assume that N is reqular at p € M. Then we have

- - |
lim inf degy,(q) > degy(p)

Proof. The proof imitates the one of Lemma 1.2.2 and it is based on the fact that the
degree is defined by an open condition. Let 73, = " ;7;X; be a tangent m-vector in
an open neighborhood U of p, where a local adapted basis is defined. The functions 7;
are continuous on U. Suppose that the degree deg,,(p) at p in M is equal to d. This
means that there exists a multi-index J such that 77(p) # 0 and deg((X),) = d. Since
the function 7; is continuous there exists a neighborhood U’ C U such that 75(q) # 0
in U'. Therefore, deg(mas(¢)) = d and taking limits we have

- - -
lim inf degy(q) > degy (p) O

Corollary 1.2.5. Let M be a C' submanifold immersed in an equireqular graded
manifold. Then

1. deg,; is a lower semicontinuous function on M.



1.2 Preliminaries 31

2. The singular set My defined in (1.2.9) is closed in M.

Proof. The first assertion follows from Proposition 1.2.4 since every point in an equireg-
ular graded manifold is regular. To prove 2, we take p € M ~ My. By 1, there exists a
open neighborhood U of p in M such that each point ¢ in U has degree deg,,(q) equal
to deg(M). Therefore we have U C M ~ My and hence M ~ M, is an open set.  []

Remark 1.2.6. By Corollary 1.2.5 the set M ~ M, is open and the growth vector

(7, . .., 1) is constant in M ~. M. Therefore we obtain that (M ~ My, H', ..., H*)

is an equiregular graded manifold.






Chapter 2

Curves of fixed degree immersed in

graded manifolds

In this chapter we study the deformability properties of the simplest case of immersions,
that are curves immersed in a graded manifold. First of all we recall the degree of an
immersed curve and the length functional Ly for curves of degree less than or equal to d.
In Section 2.2 we deal with admissible variations for curves of degree d and we deduce
the system of ODEs for admissible vector fields. In Section 2.3 the invariances of this
system are studied. Section 2.4 is completely devoted to description of the holonomy
map and characterization of regular and singular curves. Here explicit examples of
singular curve of degree greater that one are showed and we exhibit the equivalence
between these singular curves and the ones defined by means of the endpoint map
in Subsection 1.1.7. In Section 2.5 we provide a different proof of Theorem 3 by [57]
using the Implicit Function Theorem in Banach spaces. In Section 2.6 we give in
Definition 2.6.1 a weaker pointwise sufficient condition to ensure the regularity of a
curve of degree d. This condition does not require solving a differential equation but
still ensures the regularity of the curve, see Theorem 2.6.4. This condition will be easily
generalized to submanifolds of given degree in Chapter 3. Section 2.7 is dedicated
to the first variation formula for the length functional Ly. Some applications to the
computation of geodesics in graded manifolds are provided. A substantial part of the

content of this chapter comes from the article [22], that has already been submitted.

2.1 Length of a generic curve

In this section we shall consider an equiregular graded manifold (N, H!, ..., H?) en-

dowed with a Riemannian metric g. We recall the following construction from [50, 1.4.D]:
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given p € N, we recursively define the subspaces K} := M, KCit! := (H!)*- N KL, for
1 <i< (s—1). Here L means perpendicular with respect to the Riemannian metric g.

Therefore we have the decomposition of 7, /N into orthogonal subspaces
TL,N=K, oK, ®---aK;, (2.1.1)

Given r > 0, a unique Riemannian metric g, is defined under the conditions: (i) the

subspaces K; are orthogonal, and (ii)

1
ri—1

Grlic, = 9lic;s 1=1,...,s. (2.1.2)

It is well-known that when (N, H) is a Carnot manifold the Riemannian distances of
(N, g,-) uniformly converge to the Carnot-Carathéodory distance of (N,H, h), where
h = g (see [50, p. 144]).

Working on a neighborhood U of p we construct an orthonormal adapted basis
(X1,...,X,) for the Riemannian metric g by choosing orthonormal bases in the
orthogonal subspaces IC;, 1 <i < sforeach p € U. Let I be a non-trivial interval,
and v : I — N a curve of class C! immersed in an equiregular graded manifold
(N,H', ..., H*). By definition (1.2.7) the degree of v at a point ¢ € I is given by

deg, (t) := deg(7'(?)).
The degree deg(y) of a curve v is the positive integer
deg(7) := max deg, (?)
and the singular set o = v(ly) of v is given by
Iy ={t €1 :deg,(t) < deg(v)}. (2.1.3)
By the length formula we get

L. J.g0) = [ 17/, (2.1.4)
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where J C I is a bounded measurable set on I and L(v, J, g.) is the length of v(J)

with respect to the Riemannian metric g.. If we set d = deg(y) then we have

wwzﬁyﬁm&mm

where u;(t) = (v'(t), (X)), setting g(-,-) = (-, ). Then it follows

oo = (D0 ey 22
j=1

7 (t)

By Lebesgue’s dominated convergence theorem we obtain

1 ng 1
lim (r2(d_1)L(7, J gr)) -/ ( 3 uj(t)2>2dt. (2.1.5)
rl0 J j=nga+1

Definition 2.1.1. If v : I — N is an immersed curve of degree d in a graded manifold
(N, H) endowed with a Riemannian metric g, the length L, of degree d is defined by

L
La(y, ) = lim (12 VL7, 0. g.)),
for any bounded measurable set J C I.

Equation (2.1.5) provides the integral formula Ly(v, J) = [, 04(t)dt, where

1

nd 2

Oa(t) = ( . (), (Xj)w(t)>2> : (2.1.6)
Jj=ng—1+1

Remark 2.1.2. Clearly if deg(y) = 1 and (N,H) is a Carnot manifold, the sub-

Riemannian metric is given by h = gl then the length functional L, coincides with

the length L defined in (1.1.5).

2.2 Admissible variations for the length functional

Since the degree is defined by an open condition, the degree can not decrease along a
variation I'(¢, s) of y(t) in a tubular neighborhood of a curve. If it increases strictly,
the length functional L4, where d is the degree of the original curve, takes value 400

and we cannot compute the first variation of the functional.
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Let us consider a curve v : I — N into an equiregular graded manifold endowed

with a Riemannian metric g = (-, -). In this setting we have the following definition

Definition 2.2.1. A smooth map I' : I x (—&,¢) — N is said to be an admissible
variation of v if I'y : I — N, defined by I's(¢) := I'(¢, s), satisfies the following properties

(1) Lo =1,
(ii) T's(1) is an curve of the same degree as 7 for small enough s,
(iii) T's(t) = ~(t) for t outside a given compact subset of I.

Definition 2.2.2. Given an admissible variation I', the associated variational vector

field is defined by
_or

V(t) := a(t,()). (2.2.1)

The vector field V' is compactly supported in I. We shall denote by X,(I, N) the
set of smooth vector fields along I. Hence V' € X((1, N) if and only if V' is a smooth
map V : I — TN such that V(t) € T, N for all t € I, and is equal to 0 outside a
compact subset of I.

Let us see now that the variational vector field V' associated to an admissible
variation I' satisfies a differential equation of first order. Let (Xi,---,X,) be an
adapted frame in a neighbourhood for consistence U of ~(t) for some ¢ € I. We denote
by d = deg(~y) the degree of 7. As T'y(I) is a curve of the same degree as y(I) for small

s, there follows

(ZCD (i) =0, 222

for all r = ng + 1,...,n. Taking derivative with respect to s in equality (2.2.2) and

evaluating at s = 0 we obtain the condition

<V’Y'(t)v<t)7 (Xr)'y(t)> + <’}//(t), vV(t)Xr> =0

for all r = ng+1,...,n. In the above formula, (-,-) indicates the scalar product in
N. The symbol V denotes, in the left summand, the covariant derivative of vectors in
X(I, N) induced by g and, in the right summand, the Levi-Civita connection associated
to g (see for instance [30]). Thus, if a variation preserves the degree then the associated
variational vector field satisfies the above condition and we are led to the following

definition.
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Definition 2.2.3. Given an curve v : I — N, a vector field V' € Xy(I, N) along 7 is
said to be admussible if it satisfies the system of first order ODEs

(Vo V (1), (Xo)y) + (Y (1), Vv X,) =0 (2.2.3)

where r =ng+1,...,nand t € I. We denote by A, (I, N) the set of admissible vector
fields.

Thus we are led naturally to a problem of integrability: given a vector field V'
along 7 such that the first order condition (2.2.3) holds, we wish to find an admissible

variation whose associated variational vector field is V.

Definition 2.2.4. We say that an admissible vector field V' € X,(I, N) is integrable if
there exists an admissible variation such that the associated variational vector field is

V.

2.3 The structure of the admissibility system of
ODEs

Let (N, (H?)) be an equiregular graded manifold endowed with a Riemannian metric
g={(,-). Weset H :=H? where 1 < d < s. For sake of simplicity the distribution
‘H will be called horizontal as well as a curve of degree d and we set k := ny. Let
v : I — N be a horizontal curve defined in an open interval I C R. Take a < b so that
[a,b] C R.

Given an open set U where an orthonormal adapted basis (X;) is defined, the
admissibility condition (2.2.3) for a vector field V' is

(V V. X))+ (7, VyX,) =0, r=k+1,...,n. (2.3.1)

Expressing V' in terms of (X;)

k n
V:Z%Xri‘ Z 1i X,
i=1 j=k+1
we get that (2.3.1) is equivalent to the system of (n — k) first order ordinary differential
equations

n k
f;—F Z ijfj —i—Zarigi = 0, r = k—i—l,...,n, (232)
i=1

j=k+1
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where

a?"i(t> = <V'Y’Xi7 (XT)’Y> + <inXT77/>7
brj(t) = (Vo X, (X0)1) +(Vx,; X, 7).

Remark 2.3.1. Assume that we can extend the tangent vector along ~y

(2.3.3)

ZW (X)),
to a vector field on a tubular neighborhood of v, then we have

Qrj = <v7’Xia Xr> + <VX¢XT77,>
=(V, X, X,) — (Vx'\ X;)
(Y, X (), (X))

k k k
Z UEXZ7 7 Z XZ? ) (XT)’Y> - Z Up CZ’L' (7)
=1 (=1 =1

and
k
.,
= w Cej
=1

where ¢j; and ¢j; for i,£ =1,...,k and j,r = k+1,...,n are the structure functions
defined in (1.1.20), for further details see for instance [75].

In the special case when H is a distribution of a Carnot manifold (NN, H) the matrix
A(t) = (a;) represents the H.-curvature and B(t) = (b;,) the H'-curvature restricted
to 74 in the first term with respect to metric g, where H® = Hi(t)/Hi?tl) fori=2,...,s,
see for instance [75, 51, 72].

The system (2.3.2) can be written in matrix form as
F'=—-BF — AG, (2.3.4)

where B(t) = (b,;(t))/Z;77" is a square matrix of order (n — k) and A(t) =

.....

(ani(1)Zyyi" , is a matrix of order (n— k) x k, and

.....

fk+1 g1
F = : , G= I (2.3.5)

fn gk

The system (2.3.4) has sense for any adapted orthonormal basis (Y;) defined on the
curve 7, locally extended in a tubular neighborhood of the curve. Indeed, if (X;) and
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(Y;) are two of such adapted bases, we may write
Y, = Z mi; X,
j=1
for some square matrix M = (m;;) of order n. Since (X;) and (Y;) are adapted basis,

M
a= (M0
0 M,

where M), and M, are square matrices of orders k and (n — k), respectively. Let us

M is a block diagonal matrix

express V' as a linear combination of Y;

k n
V=>aYi+ > [V
i=1 j=k+1

and let A, B the associated matrices

B r=k+1,...,n
A= (<V7’Yi7YT> + <inYT’7,>)¢:1 ..... ko
_ r=k+1,...,n
B = (<VV’}/J'7 )/7“> + <VYJ'}/7"7/>>]':]<;+1 ..... n
Letting
Jrr1 17
F = ) é = )
f 7
it is immediate to obtain the following equalities
F = M,F,
G = MG,
! (2.3.6)
A= M,AM!,
B = M,(M')" + M,BM_.

Remark 2.3.2. We observe that the equations in (2.3.6) imply that F'+BF+AG = 0.
To prove this formula it is necessary to take into account that Mj and M, are orthogonal
matrices. We also observe that the ranks of A(t) and A(t) coincide for any ¢ € 1.
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Remark 2.3.3. Given a smooth vector field X and a horizontal vector field Y on N,

we define a covariant derivative on the bundle of horizontal vector fields by
VY = (VxY)y,

where (-), denotes the orthogonal projection over the horizontal distribution. This
covariant derivative defines a parallel transport on any curve in N that preserves the
Riemannian product of horizontal vector fields. This way we can extend any horizontal
orthonormal basis at a given point of () to a horizontal orthonormal basis in (7).
A similar connection can be defined on the vertical bundle using the projection over
the vertical bundle that allows us to build an orthonormal basis on (/) of the vertical
bundle. This way we are able to produce an adapted global basis on (1) (see for
instance [98, 15]).

2.4 The holonomy map

In this section we first recall Hsu’s construction of the holonomy map [57] and we adapt
it to curves in graded manifolds. Let (N, (H')) be an equiregular graded manifold
endowed with a Riemannian metric g = {-,-). We set H := H%, where 1 < d < s. For
sake of simplicity the distribution H will be called horizontal as well as a curve of
degree d and we set k := ny. Given a horizontal curve v : I — N, with a € I, we

consider the following spaces
L. XI(a), 7 > 0, is the set of C" vector fields along 7 that vanish at a.
2. Hl(a), r >0, is the set of horizontal C" vector fields along v vanishing at a.

3. VI(a), r > 0, is the set of vertical vector fields of class C" along 7 vanishing at a.

By a vertical vector we mean a vector in H*.

We fix an adapted orthonormal basis (X;) along v extended in a neighborhood of .
The admissibility condition (2.3.1) can be expressed globally on v using these global
vector fields. We define the admissibility operator Ad : X(y) — V(v) by

Ad(Y) = > (VoY Xi) + (7, Vv X)) Xi. (2.4.1)
i=k+1
Observe that Ad(Y') = 0 implies that Y is an admissible vector field on ~.

The following result is essential for the construction
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Lemma 2.4.1. Let v : I — N be a horizontal curve in a graded manifold (N, H)
endowed with a Riemannian metric. Given Z € %gfl(a), there exist a unique vertical
vector field Y, € VI (a) such that Ad(Z, +Y,) = Z,.

Proof. We choose a global orthonormal adapted basis (X;) on v and write

k n
Z = ZgiXi + Z 2 Xr,
=1 r=k+1
The vertical vector field Y, would be determined by their coordinates ( f,.) in the vertical
basis (X,), where r =k +1,...,n %
Condition Ad(Z, +Y,) = Z, is then equivalent to the system of (n — k) ordinary

differential equations

k n
f;+Zam-gi+ Z beifj =2, r=k+1,...,n, (2.4.2)
i—1 j=k+1

where
Ar; = <V'y’XiaXr> + <VXin77/>a brj = <V7’Xja Xr> + <VX]~XT77/>'

Given (g;), the system (2.4.2) admits a unique solution defined in the whole interval
I with prescribed initial conditions f,(a) = 0, for r = k4 1,...,n. This concludes the
proof. n

Given a horizontal curve v : I — N and [a,b] C I, Lemma 2.4.1 allows us to define

a holonomy type map
H;,l’b : 7—[6_1(((1, b)) — Vi)

like in Hsu’s paper [57]. Here H{ '((a,b)) is the space of horizontal vector fields of
class (r — 1) with compact support in (a,b). In order to define H$" we consider a
horizontal vector Vj, € H§ '(a,b) with compact support in (a,b) and we take the only
vector field V,, € VI (a) such that Ad(V}, + V) = 0 provided by Lemma 2.4.1. Then we
define

H¥ (Vi) = Vi(b). (2.4.3)

Definition 2.4.2 ([57]). In the above conditions, we say that v restricted to [a,b] is

reqular if the holonomy map H,‘j7b is surjective.

!Notice that the integer number r is an index and it is not the same r we use for the space C"
functions
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Given a horizontal curve v : I — N, we choose an orthonormal adapted basis
(X;) along 7. A horizontal vector field V}, can be expressed in terms of this basis
as Vj, = Zle 9:X;. The unique vertical vector field V, such that Ad(V}, +V,) =0
can be expressed as V, = >i',  fiX;. Defining F' and G as in (2.3.5), condition
Ad(V,+V,) = 0 is equivalent to F' = —BF — AG, where A, B are the matrices defined
in (2.3.3). In these conditions, the coordinates of H%*(V},) = V,(b) in the basis (X;)
are given by F(b).

The following result allows the integration of the differential equation (2.3.4) to
explicitly compute the holonomy map. As usual we first solve the homogeneous linear
system (Lemma 2.4.4), then we find a solution to the associated non-homogeneous one
(Proposition 2.4.3).

Proposition 2.4.3. In the above conditions, there exists a square reqular matriz D(t)
of order (n — k) such that

F(b) = —D(b)"! / "(DAYDG(1) dr. (2.4.4)

Proof. Lemma 2.4.4 below allows us to find a regular matrix D(t) such that D’ = DB.
Then equation F' = —BF — AG is equivalent to (DF')’ = —DAG. Integrating between
a and b, taking into account that F'(a) = 0, and multiplying by D(b)~!, we obtain

(2.4.4). m

Lemma 2.4.4. Let B(t) be a continuous family of square matrices on the interval
[a,b]. Let D(t) be the solution of the Cauchy problem

D'(t) = D(t)B(t) on [a,b], D(a) = I,.

Then det D(t) # 0 for each t € [a, b).

Proof. By the Jacobi formula we have

d(det D(t)) , dD(t)
— = Tr (adj D(t) dt) ,

where adjD is the classical adjoint (the transpose of the cofactor matrix) of D and Tr

is the trace operator. Therefore

ddet(D(t))

S = T ((adj D) D(#) B(1)) = det D(t) Tr(B(1)). (2.4.5)
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Since det D(a) = 1, the solution for (2.4.19) is given by
det D(t) = eda B -

for all ¢ € [a,b]. Thus, the matrix D(t) is invertible for each ¢ € [a, b]. O

Definition 2.4.5. We say that the matrix A(t) := (DA)(t) on 7 defined in Proposition
2.4.3 is linearly full in R"~* if and only if

dim (span {Al(t), AR Yt € a, b]}) =n—k,

where A’ for i = 1,...,k are the columns of A(t).
Proposition 2.4.6. The horizontal curve «y restricted to |a,b] is reqular if and only if
A(t) is linearly full in R™*,

Proof. Assume that the holonomy map is not surjective. Then the image of H;”’ is

contained in a hyperplane of V, ) expressed in the coordinates associated to the basis

.....

of Proposition 2.4.3 we have

ozAF@):—AD@yi/b

a

- b .
A@G@ﬁz—/[ﬂ@G@ﬁ,

where T' = AD(b)~" # 0. As this formula holds for any G(t), we have TA(t) = 0 for all
t € [a,b]. Hence A is not linearly full as its columns are contained in the hyperplane of
R"* determined by T'.

Conversely, assume that A is not linearly full. Then there exists a row vector with
(n — k) coordinates T' # 0 such that TA(t) = 0 for all ¢ € [a,b]. Then

b
(CD(b)F(b) = F/ A®)G(t)dt = 0.
Hence the image of the holonomy map is contained in a hyperplane if V,) and v is

not regular. O

The following result provides a technical criterion of non-regularity

Theorem 2.4.7. The horizontal curve y is non-reqular restricted to [a, b] if and only if
there exists a row vector field A(t) # 0 for all t € [a,b] that solves the following system

N(t) = A(t)B(?)

(2.4.6)
A(H)A(t) = 0.
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Proof. Assume that + is nonregular in [a, b], then by Proposition 2.4.6 there exists a
row vector I' # 0 such that
TD(t)A(t) = 0

for all ¢ € [a,b], where D(t) solves

{D(t)’ = D(t)B(t) (2.4.7)

D(CL) = Ip—k-

Since I' is a constant vector and D(¢) is a regular matrix by Lemma 2.4.4 , A(t) := T'D(¢)
solves the system (2.4.6) and A(t) # 0 for all ¢ € [a, b].
Conversely, any solution of the system (2.4.6) is given by

A(t) = TD(t),

where I' = A(0) # 0 and D(t) solves the equation (2.4.7). Indeed, let us consider a
general solution A(t) of (2.4.6). If we set

O(t) = A(t) — TD(t),

where I' = A(0) # 0 and D(t) solves the equation (2.4.7), then we deduce

Clearly the unique solution of this system is ®(¢) = 0. Hence we conclude that
T'A(t) = 0. Thus A(t) is not fully linear and by Proposition 2.4.6 we are done. O

Remark 2.4.8. Notice that if we write A(t) = (Ag41(t), ..., An(t)) by Remark 2.3.1
the equation (2.4.6) is equivalent to

n n k )
M) = 20 Nbir= D0 Y Aichu

j=k+1 j=k+1i=1

> N = D Nchu

(2.4.8)

When (N, H) is a Carnot manifold where H is a distribution of rank /, then we have
that £ = [ and (2.4.8) is equivalent to the characteristic system (1.1.23) where the

first equations u; = 0 for j =+ 1,...,n are taken for granted since in Theorem 2.4.7
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we assume 7 horizontal. In the characteristic system (1.1.23) we assume  absolutely
continuous curves with square integrable derivative while in our construction v is at

least C!, so that the coefficients of A and B are at least continuous.

2.4.1 Independence on the metric

Let g and g be two Riemannian metrics on NV and (X;) be orthonormal adapted basis

with respect to g and (Y;) with respect to g. Clearly we have
Y= m;X;,
j=1

for some square invertible matrix M = (m,;)—y """ of order n. Since (X;) and (Y;) are

adapted basis, M is a block matrix

My, My,
M — n My ,
0 M,
where M), and M, are square matrices of orders k and (n — k), respectively, and My,

is a k x (n — k) matrix.

Remark 2.4.9. One can easily check that the inverse of M is given by the block

matrix
oo (Mt =M M M
0 M

Setting G = (§(Xi, X;))ij=1.... we have

.....

Thus it follows

G, = (M) M+ (M) My (M) My My, M
Gro = —(M;7 V! M, My, M,
G = (M )M,
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Let A be the associated matrix

Then it follows

dng(Y ’Y,Y; (str 87/7 ijz )7

that it is equivalent to
dm—zzmsrg $9 'Y X])mji"i_msrg(stXj)f)/(mji)
s=1j=1
For each j =1,...,k we have
k n
[, Xl =D wyXe+ Y anXe,
t=1 (=k+1

where wy; = g(Xy, [7, Xj]) and ay; defined in (2.3.3). Then we obtain

s=1 j=

k n
D Mg §( X, Xo)wmys + Y m §(Xs, Xo)ag my;
t=1 l=k+1

1
k
Z Z Mg g X57 X; )VI(mji)

7j=1

J
—+

Sy
>

=1
k k n
+ DD ma §(Xe, Xo)wiy mys + D mgr §( X, Xo)ag; my;
s=kt1j=1 \t=

=1 l=k+1

Setting Qp, = (wi;)1=1% we gain

.....

A =(My,)" (G, My, + Gy A My, + Gy, M)
+ (M) ((Gno)! My, + Gy A My, + (Go)' M)
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and, by Remark 2.4.9, we obtain
A= (M) (M) MG (0 My, + M) — (M) M My My A M)
— (M}, (M) M, (0 M, + M) 0.09)

+ (M My, (M) My My, M) AM,
= M ' AM,.

Now let B be the associated matrix

Then it follows

that it is equivalent to

:szsrg S /7 Xt])mt]+msrg(XsaX ) (mtj>
s=1t=1
Setting w;; = g(X;, [, Xy]) fori=1,...,kand t = 1,...,n we have
[, X = sztX + Z an X,
(=k+1
when t = 1,...,k and ay as in definition (2.3.3) and

v, X = sztX + Z but Xy,
l=k+1
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when t =k +1,...,n and by as in definition (2.3.3).

k k n
by =>.> (Z M §(Xs, Xi)wie me; + > Mg §(Xs, Xo)aw mtj)

i=1 l=k+1

k n k n
+>. ) (strg(XsaXi)witmtj+ > mer(Xs,Xe)betmtj)

i=1 {=k+1

(Xs, Xt) 7' ()

+
M-
M=
3
<

_.

-
I

A

k n
> g §( X, Xo)wimy + > mg §( X, Xo)an mtj)
=1 {=k+1

v
Il
=
+
—
~
Il
—

_l’_
M=
M?r

i=1 l=k+1

n k k n
-+ Z Z (strg(Xs,Xi)witmtij Z msrg(Xs,Xg)bgtmtj>

B =M, (Gthth + GroAMpyy + G M,
+ G BM, + G M, + G M, )
+ M, ((Ghv)tQthv + Gy AMy + (Gro) Qo M,
+ Gy BM, + (G ) M, + GUM;).
By Remark 2.4.9 we obtain

B=M;'AM,,+ M;'BM, + M, ' M. (2.4.10)

Proposition 2.4.10. Let v : I — N be a curve immersed in a graded manifold
(N,H',...,H®). Let g and g be two Riemannian metrics on TN. Then 7 is reqular in
[a, b] with respect to g if and only if v is reqular in [a,b] with respect to §.

Proof. Let (Y;) be an orthonormal adapted basis along v with respect to g. Without
loss of generality we assume that the system (2.3.4) with respect to metric g is given

by

F'(t) = —A(t)G(t)
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and B = 0. This is not restrictive since starting by a generic metric gy, by Proposition
2.4.3, there exists a matrix D(t) that transforms the metric gy in the metric g. Let

(X;) be an orthonormal adapted basis along v with respect to g. Then there exists an
My, My,
M— h h ,
0 M,

Y;‘ = Z mjin.
j=1

invertible block matrix

such that

Then, by Theorem 2.4.7 a curve 7 is non-regular with respect to ¢ if and only if
A(t) = A # 0 is a constant row vector such that AA(t) = 0 for each t € [a,b]. By
equation (2.4.9) we obtain

0= AA(t) = AM,; ' (t) A(t) My(t).

Since M, is invertible, setting A(t) := AM;(t) # 0 we deduce A(t)A(t) = 0. Moreover
by (2.4.10) we have

0=DB=M,"AMy,+ M, BM,+ M, ' M.
Multiplying both sides by A we deduce
0=AM;'BM,+ AM; M. (2.4.11)
Differentiating the identity M, M, it follows
MM, = —(M;1)' M,
Putting this identity in (2.4.11) we have
AM;YB M, = A(M; M,

Since A is constant and M, is invertible we conclude A'(t) = A(t)B(t). By Theo-

rem 2.4.7, this means that ~ is non-regular with respect to g. O]

Proposition 2.4.10 shows that the definition of regularity for a curve ~ is independent

of the choice of Riemannian metric ¢ = (-, -) on the tangent bundle T'N.
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2.4.2 Some low-dimensional examples and isolated curves

Remark 2.4.11. Let A be the matrix defined in (2.3.3) with respect to an adapted
basis (X;) along v. Notice that if there exists a point ¢ € (a,b) such that

rank A(t) = n — k, (2.4.12)

for some adapted basis (X;), then the curve v is regular in [a, b]. In particular, if we
assume that (2.4.12) holds for any ¢ € (a,b), then the curve v is regular in [a, b]. Notice
that this condition implies n — k < k, that is § < k.

Example 2.4.12. Any horizontal curve v : I — M?"*! in a contact sub-Riemannian
manifold (M?"*! H = ker(w)), is regular. Let T' be the Reeb vector field. We extend
the vector field 4" along 7 to a vector field on M. Given a contact manifold M, one
can assure the existence of a Riemannian metric ¢ = (-,-) and an (1, 1)-tensor field .J
so that

(T,X) =w(X), 2X,J(Y))=dw(X,Y), J*(X)=-X+wX)T. (2.4.13)

The structure given by (M,w, g, J) is called a contact Riemannian manifold, see [8]
and [42]. In particular the structure (M, #H, g) is a Carnot manifold. Then, we fix an
orthonormal adapted basis (X1, ..., Xo,,T) along v, where X; € H fori=1,...,2n.
Then the admissibility equation for V' = Z?El fiXi + fone1T is given by

fi(t)
foni1(t) = =b fania () — A : ;
f2n(t)
where b = ([, T],T) and A = (a4, ..., as,) with
@ = (VX T) + (VT )
= ([, Xi].T) = w(h X]) (2.4.14)

= —dw(y, X;) = =2(y, J(Xy)) = 2(J (7/), X).

Since J(7/(t)) € H~) and J(7/(t)) # 0 for all ¢ € I we have rank A(t) = 1 for all t € I.

Hence ~ is regular in every subinterval of I.

Definition 2.4.13. We say that a curve v : [ — N is isolated when its only non-

tangential admissible variation is the the trivial one.
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Here we recall some basic definitions given in [11]. Given two point p,q € (N, H! C
... C H?) for each 1 < d < s we set that {244(p, q) is the space of curves of degree less

or equal to d that connect p, q.

Definition 2.4.14 ([11]). A curve 7 : [a,b] — N of degree d = deg(y) is H-rigid
if there is a C'-neighborhood 4 of v in Qya(y(a),v(b)) so that every a € il is a
reparametrization of . We say that ~ is locally rigid if every point of [a, b] lies in a

subinterval J C I so that v restricted to J is rigid.
Remark 2.4.15. We notice that

1. whenever (N, H?) is a Carnot manifold 1.1.1, namely when H? verifies Hsrman-

der’s rank condition, Q4,4(p, ¢) is not empty by Chow’s Theorem,
2. if we consider C'! variations then an isolated curve on I = [a, D] is rigid.

Here we show a well-known example of horizontal singular curve that is also rigid,

first discovered by F. Engel.

Example 2.4.16. An Engel structure (F, H) is 4-dimensional Carnot manifold where
H is a two dimensional distribution of step 3. A representation of the Engel group E ,
which is the tangent cone to each Engel structure, is given by R* endowed with the

distribution H generated by

2
7

X1 =0, and Xy =0, +210,, + 5

Os, -
The second layer is generated by
X3 = [X1,Xo] = 0y + 210,

and the third layer by X, = [X;, X3] = 0,,. Let v : R — R* be the horizontal curve
parametrized by v(t) = (0,¢,0,0) whose tangent vector 7/(t) is given by 0,, along
the curve. We consider the Riemannian metric g = (-, -) that makes (X,...,X4) an
orthonormal basis. An extension of 7/(¢) to the all space is clearly 0., . By Remark
2.3.1 we have b,; = ([04,, X;], X,) = 0 for r,j = 3,4 and a,; = ([0, Xi], X;) = 0 for
r=3,4,i=1,2, since 0,, does not commute with any vector. Let [a,b] C R, a < b.

Then, by Proposition 2.4.3 the holonomy map is given by

HENG) = F(b) = ( ! ) ,
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for all g1, g2 € C§°([a, b]). Therefore we deduce the holonomy map is not surjective,

thus ~ is non-regular restricted at each interval [a,b]. Clearly we observe that the

wo-(21)

Bryant and Hsu [11, Proposition 3.2] proved that v(t) = (0,¢,0,0) is rigid in the

C' topology, here we propose an easy readjustment of their proof. In [97] Sussmann

constant matrix

is not linearly full.

proved that this curve is a minimizer for the C-C distance between two point on this

straight line.

Proposition 2.4.17. Let (E*,H) be the Engel group with coordinates (xy, T2, T3,74)
where the distribution H is generated by

2

X1 =08, and Xo= 0y, + 110, + %au,

then the horizontal curve v : R — E4, y(t) = (0,¢,0,0) is isolated.

Proof. Let T's(t) be a compactly supported variation on R and K its support. Then,
there exist @ > 0 such that K C [—a,a]. Fix s small enough, we set I's(t) =
(1(t), x2(t), x3(t), 24(t)). Since I's(—a) = (0, —a,0,0), I's(a) = (0,a,0,0) we have
xr1(—a) = z3(—a) = z4(—a) = 0 and z1(a) = 23(a) = z4(a) = 0. Moreover the
xro-component of v is an increasing smooth function of ¢ with non-vanishing derivative
which maps [—a, a] diffeomorphically onto itself, therefore the curve T'y(t) can be
reparametrized by (x(t),, x3(t), z4(t)). Since the distribution # is given by the kernel
of the one forms

2
w=2zx1dry —drs and A= %dl‘g — dxy,

we have
(1) = m(B)ia(t) = 11 (1)
Fa(t) = ‘”%2(’5) i(t) = "””%2“).
Therefore

wy(t) = | " o()dt and  za(t) = / L)y,

—a —a 2

Since x4(a) = 0 we obtain that
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0. [l

Hence we deduce x;(t) = 0 and consequently x4(t) = x3(t)

Slightly changing the distribution of Example 2.4.16 we show an example singular

curve of degree 2.

Example 2.4.18. Let us consider R? endowed with the distribution H generated by

I l’?
X1 = 8331 and XQ = 8,,35 + 2 (9952 —+ ?&,33 -+ gaﬂl .

The second layer is generated by

2
1

X3 = [X17X2] = aﬂcg + xlawg + 9

Oy

the third layer by Xy = [X, X3] = 0., + 210,, and the fourth layer by X5 = [X;, X4] =
Oz,- Now the curve v : R — R® parametrized by v(t) = (0,¢,0,0,0) is a curve of degree
2, its tangent vector +/(t) is given by 0,,. Therefore we have ny = 3. We consider the
Riemannian metric g = (-, -) that makes (X, ..., X5) an orthonormal basis. Since the

extension d,, to the all space of 7/(t) does not commute with an vector field of the
basis (X7, ..., X5), by Remark 2.3.1 we deduce that

A:OOO B:OO,
000 0 0

Since A is not linearly full we conclude that v is a non-regular curve of degree 2.

However ~ is not isolated since it is possible to deform the initial curve in the direction

D

Example 2.4.19. Let H be 3-dimensional distribution on R® generated by

2
X1 = 8931, X2 = 8332 + xlaxg + %%4 and X3 = 85.

The second layer is generated by X, = [X7, X5] and the third layer by X5 = [X7, X4].
Let v : R — R® be the horizontal curve parametrized by ~v(t) = (0,0,0,0,¢) whose
tangent vector /() is given by X3 = 0,,. We consider the Riemannian metric g = (-, -)
that makes (X, ..., X5) an orthonormal basis. Since X3 does not commute with any
vector fields of the basis we deduce that A = 0 and B = 0. Then the admissibility
equation (2.3.4) is given F’ = 0 with initial condition F(a) = 0. Clearly the holonomy

map is not surjective since F'(b) = 0. Therefore the curve v is non-regular on each
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subinterval [a,b] C R. However the curve v can be deformed in the horizontal non-
tangential directions X; and X, unlike the rigid curve in Engel showed in Example
2.4.16.

Example 2.4.20 (Kolmogorov). Let us consider in R* the Kolmogorov operator

72

L:@t—l—x@y—i—?@z—aiw,
where (,v, z,t) is a point in R*. Notice that L is homogeneous of degree two under the
dilation 6x((z,y, z,t)) = (Az, N3y, A2, A?t). Therefore the graded structure adapted to
L is given by R* endowed with the filtration

H' =span{X; = 0,}

H? = span{X;, Xy = 0, + v0, + L;@Z}

H? = span{X;, Xo, X3 = [ X, Xo] = 9, + 20.}
H* = span{ X, Xy, X3, Xy = [X1, X3] = 0.}

Setting H := H?2, we allow only curve of degree less than or equal to two. Due to the
computations developed in Example 2.4.16, we obtain that v(s) = (0,0, 0, s) is singular
of degree two. Moreover the same argument exhibited in Proposition 2.4.17 prove that

this curve is isolated.

Example 2.4.21. The 3-dimensional Heisenberg group H! is a Lie group defined by a
Lie algebra b generated {X,Y, T}, where the only non-trivial relation is 7' = [ X Y].
Setting H = span{X, Y}, (H!, H) is the simplest example of Carnot group, that clearly
is a Carnot manifold. A possible presentation of the Heisenberg group is provided by
R3 where the vector field {X,Y, T} are given by

0 yo 0 z0 0
"o 20, Y Tay T2 TTo

As we point out in Section 1.2.1 each C' surface ¥ immersed in the H! inherits a
structure of graded manifold (X, H, 7—22), where H! = HNTY and H2 = T'Y. Moreover
Y\ Yo, where ¥y denotes the characteristic set, is an equiregular graded manifold. The
foliation properties by horizontal integral curves of ! have been deeply studied by
[84, 43, 18]. We notice that each integral curve v : I — X of H' is singular restricted

to each [a,b] C I. Since the dim(H') = 1 the one dimensional matrix A(¢) = 0 and
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the admissibility system (2.3.4) is given by
F' = BF.

Fixing the initial condition F(a) = 0 the unique solution of the homogeneous system

is F'(t) = 0, thus the holonomy map is not surjective.

Remark 2.4.22. Let 0,,,...,0,, be the Euclidean basis in R", n > 2. Let 1 < k < n.
Assume that we set H! = span{d,,,...,0,,} and H? = TR™. Let v : R — R" be a
curve in H' such that 7/(t) = S5, he Oy, Let (-,-) be the standard Euclidean metric
in R". Setting H = H' we obtain that matrices defined in (2.3.3) is given by

k
Qp; = Zh€<[amg7axi]7axr> =0

(=1

and i
brj = > he{[0r,, 0r,), 0, ) = 0,
=1
forallt=1,...;kand r,j =k+1,...,n. Since A =0 and B = 0 we deduce that
F'(t) = 0 and F(a) = 0. Therefore F(b) = 0 and the holonomy map is not surjective.
Hence in this setting each horizontal curve is singular but clearly is not rigid since we

can deform the curve in horizontal directions.

2.4.3 The holonomy map on the space of square integrable

functions

In [75, Section 3.8] R. Montgomery stressed the fact the C! topology is not the correct
one for calculus of variations. Indeed, a rigid curve in the C! topology is always a local
minimum (see [97]) for each functional, in particular for the length functional, since
its minimality does not depend on the functional but only on its domain. Therefore
R. Montgomery suggested to consider the W12 topology for curves instead of the C*!
topology, introducing the endpoint map described in Section 1.1.7. Here we show how
we can take into account this weakening of the regularity for the holonomy map.

Let I C R be an open interval. Let v : I — N be an absolutely continuous curve of

degree d = deg(y) with square integrable derivative

Y (t) = ; wp(t) (X)),
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where u, € L} (I,R) for each ¢ = 1,...,k letting H = H' k = ng, ((X1)y),
..., (Xk)~@) is an horizontal frame along v for H and ((Xi41)@)s---» (Xn)y@) is a
vertical frame for V = (H)* along 7, both of them provided by Remark 2.3.3. Let
[a,b] C I. A square integrable vector field V' € L?([a,b], TN) can be projected into its

horizontal part Vj, € L?([a,b], H) given by
k
Vi =Y gi(t)(Xi),wy where g; € L*([a,b])
i=1
and its vertical part V,, € L*([a,b], V) given by

Vo= Y KO where f, € L2([a.b])

r=k+1

Thus, the admissibility system (2.4.2) is now equivalent to

k n
f;—i—ZamgH— Z b,,jfj:(), r:k—l—l,...,n, (2415)

i=1 j=k+1

where we consider distributional derivatives and the coeflicients

k k

(i = ; w(t)ep (), by = ; ue(t)cy;(7) (2.4.16)
belong to L?*([a,b]), since by assumption u, € L*([a,b]). Since any linear system
satisfies the Carathéodory hypothesis [52, eq. (5.2), Section 1.5] and the Lipschitz
condition in the spatial variable [52, eq. (5.3), Section 1.5], we have that the system
(2.4.15) admits a unique absolutely continuous solution by [52, Theorem 5.3, Section
1.5]. Hence this Carathéodory’s existence theorem allows us to define a holonomy type
map

HY L ([a, 0], H) = Vo)

where V, 4 is the vector space of vertical vectors at the point y(b). In order to define
I:[;l’b we consider a horizontal vector V, € L?([a,b],H) and we take the only vector
field V,, € W'%([a, b], V) solution of (2.4.15) with initial condition V,(a) = 0, thanks
to [52, Theorem 5.3, Section I.5]. By the Sobolev Embedding Theorem [45, Corollary
7.11] the space W2([a,b],V) is continuously embedded in C2([a,b],V). Thus, we

consider the %—Hélder function, denoting it always as V,,, in the class of functions of
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V, € Wh%([a,b], V) so that we define
H* (Vi) = Vi (0).

Definition 2.4.23. In the above conditions, we say that ~y restricted to [a, b is regular

. r ,b . . .
if the holonomy map HY” is surjective.

Defining F' and G as in (2.3.5), the system (2.4.15) is equivalent to F' = —BF — AG,
where A, B are the L? matrices defined in (2.4.16) and the time derivative shall
be understood in the distributional sense. In these conditions, the coordinates of
F[ﬁj’b(Vh) = V,(b) in the basis (X;) are given by F(b).

The following result allows the integration of the differential equation (2.4.15) to

explicitly compute the holonomy map.

Proposition 2.4.24. In the above conditions, there exists a square reqular matriz D(t)

of order (n — k) with coefficient in C2([a,b]) such that
F(b) = —D(b) / "(DAYDG() dt. (2.4.17)

Proof. Lemma 2.4.25 below allows us to find a regular matrix D(t) with coefficient
in C2([a,b]) such that D' = DB. Then equation F' = —BF — AG is equivalent to
(DF) = —DAG. Since DF belongs to W'?([a,b],V) and the fundamental theorem of
calculus still holds in W12 we have

D(b)F(b) — D(a)F(a) = — / "(DAYDG() dt

Taking into account that F(a) = 0, and multiplying by D(b)~!, we obtain (2.4.17). O

Lemma 2.4.25. Let B(t) be a L* family of square matrices on the interval [a,b]. Let
D(t) be the C2 solution of the Cauchy problem

D'(t) = D(t)B(t) on [a,b], D(a) = I,. (2.4.18)

Then det D(t) # 0 for each t € [a, b].

Proof. Thanks to [52, Theorem 5.3, Section 1.5] the Cauchy problem (2.4.18) has a
unique solution D € W'2([a, b], M?*9), that belongs to C'z([a, b], M4*4) by the Sobolev

Embedding Theorem. Since the determinant is a polynomial function, therefore C*,
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we apply the chain rule in Sobolev spaces to gain the Jacobi formula

d(det D(t)) , dD(t)
—n = Tr (adj D(t) dt)

in the distributional sense, where adjD is the classical adjoint (the transpose of the

cofactor matrix) of D and Tr is the trace operator. Therefore

ddet(D(t))

S = T ((adj D() D(HB(H)) = det D() Tr(B(1)). (2.4.19)

Since det D(a) = 1, the solution for (2.4.19) is given by
det D(t) = oo TB)dr 0,

for all ¢ € [a,b]. Thus, the matrix D(t) is invertible for each ¢ € [a, b]. O

Theorem 2.4.26. The absolutely continuous curve 7y of degree d = deg(y), with square
integrable derivative, is non-reqular restricted to [a,b] if and only if there exists a C:
row vector field A(t) # 0 for all t € [a,b] that solves the following system

{A’(t) = A(t)B() (2.4.20)

A($)A(t) = 0,

for a.e. t € [a,b].

Proof. Assume that «y is nonregular in [a, b], then the image of the holonomy map is
contained in a proper subspace of V,). Therefore there exists a row vector I' # 0 such
that ,

TE(b) = — / D) D) AR)G(E) = 0 (2.4.21)

for all G € L*([a, ], H), where D(t) solves

(2.4.22)

D(t) = D(t)B(t)
D(CL) = In_k-

In the previous computation we used the integral formula provided by Proposition 2.4.24.
Setting A(t) := T'D(b)"'D(t) by equation (2.4.21) we obtain A(¢t)A(t) = 0 for a.e.
t € [a,b]. Since I is a constant vector and D(¢) is a regular C2([a, b)) N W2([a, b])
matrix by Lemma 2.4.25, we obtain A’(t) = A(t)B(t) a.e. in [a,b] and A(t) # 0 for all
t € [a,bl.
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Conversely, any solution of the system (2.4.20) is given by
A(t) = T'D(t),

where I' = A(0) # 0 and D(t) solves the equation (2.4.22). Indeed, let us consider a
general solution A(t) of (2.4.20). If we set

O(t) = A(t) — TD(t),

where I' = A(0) # 0 and D(t) solves the equation (2.4.22), then we deduce

Clearly the unique solution of this system is ®(¢) = 0. Hence we conclude that
I'D(t)A(t) = 0 for a.e. t in [a,b]. Furthermore by Proposition 2.4.24 we have that the

image of the holonomy map is given by
b
F(b) = —D(b)"! / (DA)(H)G(t) dt
for each G € L?([a,b], H). Setting I := I'D(b) we obtain
s b
TF(b) = — / TD(H)AM)G(t)dt = 0.

Therefore the image of the holonomy map is contained in a proper subspace of V, ),

thus the curve v is non-regular restricted to [a, b]. O
Remark 2.4.27. We notice that

« as we pointed out in Remark 2.4.8 when (N, ?H) is a Carnot manifold the system
(2.4.20) coincides with the characteristic system (1.1.23), but now for absolutely

continuous curves with square integrable derivatives and not only for C* curves;
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o we have the following inclusions for the holonomy map

HY - LQ([a, b],'H) — Vﬂ,(b)

a
U

Hf;’b : CO((aa b)? H) - V"/(b)
U

H o Ci((a,b),H) = Vi
U

HY o Ci((a,0),H) = Wy
U

HY o C3o((a,0),H) = Vo,

where the suitable control space depends on the regularity (L? C*, ..., C*) of
the immersed curve we consider. When the curve is W2 the control space is
L*([a, b],H) and when the curve is C" the control space for the holonomy map is
Co Y(a,b),H) for r > 1.

2.5 Integrability of admissible vector fields on a

regular curve

In this Section, we provide an alternative proof of the fundamental Theorem 3 in Hsu’s
paper [57], that implies that, when ~ is a regular curve in (a,b), then any admissible
vector field along « with compact support in (a, b) is integrable. We recall that H := H¢,
where 1 < d < s is the degree of 7. For sake of simplicity the distribution H will be
called horizontal as well as a curve of degree d and we set k := ny. We need first some
preliminary results.

We consider the following spaces
L. XI(a), r > 0, is the set of C" vector fields along v that vanish at a.
2. Hl(a), 7 > 0, is the set of horizontal C" vector fields along v vanishing at a.

3. V;"(a), r > 0, is the set of vertical vector fields of class C" along 7 vanishing at a.

By a vertical vector we mean a vector in H->.

We shall denote by II, the orthogonal projection over the vertical subspace.
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For r > 1, we consider the map
G: M, a) x Vi(a) = H Ha) x VI~ Ha), (2.5.1)

defined by
G(Y1,Yz) = (Y1, F(Y1 4+ Y2)),

where F(Y) = IL(I'(Y)'), and ['(Y)(t) = exp,;) (Y (¢)). Observe that F(Y') = 0 if and
only if the curve T'(Y)) is horizontal.

We consider on each space the corresponding || - ||, or || - ||,—1 norm, and the
corresponding product norm (it does not matter whether it is Euclidean, the sup or
the 1 norm).

Then

DG(0,0)(Yi, Ya) = (Y2, DF(0)(Y; + Ya)).

where DF(0)Y is given by

DFOY = 3 ((V,¥.X) + (7, Vy X)) X

i=k+1

Observe that DF(0)Y = 0 if and only if Y is an admissible vector field.
Our objective now is to prove that the map DG(0,0) is an isomorphism of Banach

spaces. To show this, we shall need the following result.
Proposition 2.5.1. The differential DG(0,0) is an isomorphism of Banach spaces.

Proof. We first observe that DG(0, 0) is injective, since DG (0, 0)(Y1,Y2) = (0,0) implies
that Y7 = 0 and that the vertical vector field Y; satisfies the compatibility equations
with initial condition Y3(a) = 0. Hence Y5 = 0. The map DG(0,0) is continuous.

Indeed, if for instance we consider the 1-norm on the product space we have

1DG(0,0)(Y1, Y2)[| = [|(Y1, DF(0)(Y1 + Y2))|
< Yallr—y + [IDF ) (Y1 + Y2)) [l
< (T llCaig) - Yallr—2 4+ (4 1)) [[ Yl

To show that DG(0,0) is surjective, we take (Y7,Y5) in the image, and we find
a vector field Y along 7 such that Y(a) = 0, ¥, = Y7 and DF(0)(Y) = Y5 by
Lemma 2.4.1. The map DG(0,0) is open because of the estimate (2.5.2) given in
Lemma 2.5.2 below. [l
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Lemma 2.5.2. In the above conditions, assume that DF(0)(Y) =Y, and Y, =Y) and
Y(a) = 0. Then there exists a constant K such that

1Yollr < K(IY2llr—1 + [[Yallr-1). (2.5.2)

Proof. Reasoning as in Lemma 2.4.1 we choose a global orthonormal adapted basis
(X;) on v and write
k n n
Y = Zngzu Yy = Z 2 X, and }/:U = Z fTXT‘
i=1 r=k+1 r=k+1

Then Y, is a solution of the ODE (2.4.2) given by
F'=-Bt)F+ Z(t)— A®)G(t) (2.5.3)
where B(t), A(t) are defined in (2.3.3), F', G are defined in (2.3.5) and we set

Zk+1
Z = :

Zn

Since Y, (a) = 0 an Y,, solves (2.5.3) in (a,b), by Lemma 2.5.3 there exists a constant
K such that

1Yoller (o) = 1 ler (o < K Z(t) — A(t) G(#)ller-1(ap) (2.5.4)
< K'(|Yaller-1 (e + 1Yiller=1(am)-
where K’ = K max{1,supj, [[A(t)|l,-1}- O

Lemma 2.5.3. Let r > 1 be a natural number. Let u : [a,b] — R be the solution of

the inhomogeneous problem

u' = A(t)u + c(t), (2.5.5)

u(a) = ug

where A(t) is a d x d matriz in C™' and c(t) a C"! vector field. Then, there exists a
constant K such that
[ull, < K(llellr—r + |uol)- (2.5.6)
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Proof. The proof is by induction. We start from the case r = 1. By [53, Lemma 4.1] it

follows

u(t) < <!uo\ + /t ]c(s)|ds) el J; 4G las!,

where the norm of A is given by sup,_; |[A x|. Therefore we have

sup |u(t)| < Ci(sup [e(t)] + |uol), (2.5.7)
tela,b] te[a,b]

where we set
C, = (b _ a)e(b_a) suPsea,p) |AMDI

Since w is a solution of (2.5.5) it follows

sup [u'(t)] < sup [|A(D)]| sup |u(t)]+ sup |c(t)]

tela,b] te[a,b] tela,b] te(a,b] (2 5 8)
< (G2 +1) sup [c(t)].
t€la,b]
Hence by (2.5.7) and (2.5.8) we obtain
[Jully < K(lleflo + [uol).
Assume that (2.5.6) holds for 1 < k < r, then by (2.5.5) we have
uT () = 3T AW () wB (1) 4+ (1),
k=0
By the inductive assumption we deduce
sup [u™ (1) < 3 sup [AP @) sup [P ()] + sup |7(1)]
tela,b] k=0 tE€la,b] tefa,b] telab] (2.5.9)
< (Cs+1)(sup [ ()] + Juol)-
t€(a,b]
Hence the inequality (2.5.6) for r 4+ 1 simply follows by (2.5.9). O

Finally, we use the previous constructions to give a criterion for the integrability of

admissible vector fields along a horizontal curve.

Theorem 2.5.4. Givenr > 1, let v: I — N be a C" curve of degree d = deg(7y) in

an equireqular graded manifold (N, H',..., H®) endowed with a Riemannian metric.
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Assume that ~y is reqular in the interval [a,b] C I. Then every admissible C™! vector

field with compact support in (a,b) is integrable.

Proof. Let us take V, V!, ... V" F vector fields in f{g_l(a) along v vanishing at a. We

consider the map

G:[(—e8) x (—£,0)"F] x [H7 7M@) x Vi(a)] = HL M (a) x VI !(a),

given by
n—k

G((s,(50), Y1, Ya)) = (Vi, F(sV + 3 s,V + V) + Y2)).

i=1
The map G is continuous with respect to the product norms (on each factor we put the
natural norm, the Euclidean one on the intervals and || - ||, and || - ||,—1 in the spaces

of vectors along 7). Moreover

G(0,0,0,0) = (0,0),

since the curve 7 has degree less or equal to d = deg(v). By Proposition 2.5.1 we have
that
D»G(0,0,0,0)(Y1, Y2) = DG(0,0)(Y, Y2)

is a linear isomorphism. We can apply the Implicit Function Theorem to obtain maps
Vii(—e, )" M = HI a), Yo (—e,0)" T = Vi(a),

such that G(s, (s), (Y1)(s,5:), (Y2)(s, 8:)) = (0,0). This implies that (Y1)(s, (s;)) = 0
and that
F(sV+)_ sV +Ys(s,8)) = 0.

Hence the curves

D(sV 4> s V' + Ya(s,s;))

are horizontal.
Now we assume that V' is an admissible vector field with V(a) = V(b) = 0, and

that V1, ..., V" are admissible vector fields vanishing at a. Then the vector field
Y

a5 0

9Y;
(%i

(0,0)

along ~ are vertical and admissible. Since they vanish at a, they are identically 0.
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If, in addition, V.1(b),..., V.""*(b) generate the space H*(b). We consider the map
I: (—,e)" " - N

given by |
(s,(s:)) — I(sV + Z siV"'+ Ya(s, s:)) (D).

For s, (s;) small, the image of this map is an (n — k)-dimensional submanifold S of
N with tangent space at v(b) given by H#(b) (as V(b) = 0 and V*(b) = V/'(b) generate
H:p)- Notice that

o11(0,0) i 1
oo = V(B =V,
which is invertible and A11(0.0)
95 =V(b) =0.

Hence we can apply the Implicit Function Theorem to conclude that there exists a

family of smooth functions s;(s) so that

sV—l—Zsz W+ Ys(s, 5i(5))) (2.5.10)

are horizontal and take the value v(b) at b. Clearly, we have

I(s, (si(s))) = 7(b).
Differentiating with respect to s at s = 0 we obtain

a11(0, 0) 10,0y ,
95 +> 05, ———s,(0) = 0.

i

Therefore s(0) = 0 for each i = 1,...,n — k. Thus, the variational vector field to I' is

Fa(j) =V +Y 50 V’+&00 aYQ

s=0

=V (2.5.11)

Finally the variation I'(t, s) = exp,(sV + X; 5:(5)V" + Ya(s, 5:(s))), given by (2.5.10),
is C™~1, since all the vector fields V, VY, are at least C"~! (the horizontal components
of V and V' are C"~! and the vertical components are C") and the Riemannian

exponential map follows the geodesics that are smooth. O
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2.6 A new integrability criterion for admissible vec-
tor fields

In this subsection we give a sufficient condition for a curve v : I — N of degree d
to be regular in [a,b] C I. The condition is that the matrix A(t) associated to the
admissibility system of differential equations (2.3.4), defined in (2.3.3), has rank (n — k)
for any t € I. By Proposition 2.4.6, this condition implies that the curve v is regular
in [a,b]. The aim of this section is to give a direct proof of this fact, that generalizes to
higher dimensions.

We recall that H := H¢, where 1 < d < s is the degree of . For sake of simplicity
the distribution H will be called horizontal as well as a curve of degree d and we set

k := ng. We consider the following spaces:
1. X"(I,N), r > 0: the set of C" vector fields along .
2. H"(I,N), r > 0: the set of C" horizontal vector fields along ~.
3. V'(I,N):={Y € X'(I,N) : (Y, X) =0 VX € H'(I,N)} = H"(I, N)*.

We shall denote by II, the orthogonal projection over the vertical subspace.

As in the previous subsections we consider an orthonormal adapted basis (X;) along
~ and the associated admissibility system in matrix form F' = BF + AG, where the
matrices A, B, F' and G are defined in (2.3.3) and (2.3.5).

Definition 2.6.1. We say that a horizontal curve v : I — N is strongly reqular at
t € I if rank A(t) = n — k. We say that v is strongly reqular in J C I if it is strongly
regular at every t € J.

Remark 2.6.2.

1. Given ty € I such that 7 is strongly regular at ¢y, there exists a small neighborhood
J of to in I where the rank of A(t) is given by a fixed subset of columns of A(t)
for all t € J. This neighborhood J can be extended to a maximal one where this

property holds.
2. Notice that a curve v can be strongly regular at ¢ € I only when £ > 2.

The third equation in (3.4.18) implies that this definition is independent of the

chosen adapted orthonormal basis along . With this definition, we are able to prove
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Lemma 2.6.3. Let k > 5 and r > 0. Let A(t) be the C" (n — k) x k matriz defined
in (2.3.3) with respect to (X1,...,X,). Assume that rank A(t) =n — k for t € [a,b].
Then there exists a horizontal orthonormal global basis X1, ..., X} on [a,b] such that
the matriz A(t) with respect to the orthonormal global basis (X1, ..., X, Xpg1, -, Xy
s given by

Aft) = (Au(t) 0),

where Ay (t) is an invertible square (n — k) matriz.

Proof. The proof is by induction on the dimension of the kernel of A that is equal to
2k —n.

When dim(ker A(¢)) = 1 locally there exist two unitary vector fields X (¢) and
— X (t) in the kernel of A(t). We define a global vector field Xy (t) locally choosing
one of the two unit vectors X (¢) or —X(¢) in the kernel and adjusting them in the
overlapping intervals. Then we extend the unitary vector field X}, to an orthonormal
horizontal basis (Xi,..., X};). Therefore with respect to (X1,..., Xp, Xps1, ..., X,)
the last column of the matrix A is equal to zero.

If dim(ker A(t)) > 1, fix t €]a,b[, then by a continuation argument for the deter-
minant there exists an open neighborhood U; =]t — 4, + §[ and a non vanishing C"
vector field V(¢) on U such that A(t)V () = 0. Then {U;}cjas is an open cover of the
compact set [a, b] then there exists a finite sub-cover Uy, ..., Ug such that U, N Uz # 0
fora,p€{l,...,Q}, a< fifandonly if 5 =a+1. Let {¢p, : a € {1,...,Q}} be a
partition of unity subordinate to the cover {U, : a € {1,...,Q}} for further details
see [99, Definition 1.8]. For each « there exists a non vanishing C" vector fields V(t)
on U, in ker A(t). When U, N Uz # 0 we consider V(t) on U, and V#(t) on Uz in
ker A(t) such that they are linear independent on U, N Upg, since the dim(ker A(t)) > 1.

Then, we set
Q
X(t) =D va(t)V(2).
a=1

Therefore X (¢) is a global non vanishing vector field that belongs to ker(A(t)) for all
t € [a,b]. Thus we can extend the global unitary vector
~ X(t)
Xi(t) = =
| X ()]
to an orthonormal basis of the horizontal distribution. The matrix associated to this
basis has a vanishing last column. We remove this column and start again until we

have dimension 1. Hence in this new global horizontal basis (X1,...,X}) the last
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2k — n columns of the matrix A(t) vanish and the rank is concentrated in the square

matrix A;(t) given by the first n — k columns. O

Theorem 2.6.4. Let v : [ — N be a C"™! curve of degree d = deg(y) in a graded
manifold (N, H',..., H®) endowed with a Riemannian metric, where r > 0. Assume
that ~ is strongly reqular in |a,b] C I. Then every admissible vector field with compact

support in (a,b) is integrable.
Proof. Let J = [a,b]. The admissibility system is given by
F'(t)+ B(t)F(t) + A(t)G(t) = 0, (2.6.1)

with respect to (X;). By hypothesis, the rank of A(t) € C" is maximal for all ¢ € J.

By Lemma 2.6.3 there exists a global basis (X;) such that

At) = (As(t) 0),

where A; () is an invertible square (n—k) matrix. Then setting ', G the new coordinates
with respect to (X;) and B as in (3.4.18), by Remark 2.3.2 we have

'+ BF + AG =0 (2.6.2)
Calling
gl gn—k-}—l
Gy = |, Ga= : )
gn—k gk

the admissibility system (2.6.2) can be written as
F~1/+BF—|—A1G1 == 0,

and so
Gy =—A7'(F + BF). (2.6.3)

Now let H/(J) be the set of horizontal vector fields of class C" in J that are
linear combination of the first (n — k) vectors X, ..., X,_x, and H5(J) the set of
horizontal vector fields of class C" in J that are linear combination of the vector fields

Rkt s X



2.6 A new integrability criterion for admissible vector fields 69

We consider the map
G VT x Hi(J) = VTH(T) x V() (2.6.4)

defined by

We recall that, given a vector field Y along a portion of v, we define the curve I'(Y)(t)
by exp, (Y (t)) and we define F(Y') as the vertical projection of the tangent vector
I'(Y). We consider on each of the spaces appearing in (2.6.4) the corresponding || - ||,
or || - ||;4+1 norm, and in the product one of the classical product norms.
Then
DG(0,0)(%:, V) = (Vi, DF(0)(Y: + Y3)).

where DF(0)Y is given by

n—k n
DF(O)Y = > (fl(t) + > an(t)at) + > brj(t)fj(t)) X;.
r=k+1 i=1 j
Observe that DF(0)Y = 0 if and only if Y is an admissible vector field, namely Y
solves (2.6.1).

Our objective now is to prove that the map DG(0,0) is an isomorphism of Banach
spaces. Indeed suppose that DG(0,0)(Y7,Y5) = (0,0). This implies that Y] is equal
to zero. In the coordinates previously described, Y; to F, and Y; to G;. By the
admissibility equation (2.6.3) we have that also Y5 is equal to zero. This proves that
DG(0,0) is injective. Let us prove now that DG(0,0) is surjective. Take (Z;, Z), where
Zy € V'), and Zy € V'(J) we seek Y7, Y, such that DG(0,0)(Y1,Ys) = (Z1, Zs).
Then Y; = Z; and Yj is obtained by solving the system

G, = —21;1(15’ + BF + Z)

since Y; and Zy = Y°,_j41 5. X, is already given. This proves that DG (0, 0) is surjective.
Keeping the above notation for Y;, Z;, i = 1,2, we notice that DG(0,0) is a

continuous map since the identity map is continuous and there exists a constant K
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2], < (|| ™)

K(|[Yalrea + HYzH )-

such that

Wi+ HYzllr>

Moreover, DG(0,0) is an open map since we have

v, < 5 (|2

K([[Zi]lr41 + 1 Z2]l1)-

iz + ||Zz||7«)

This concludes the proof that DG(0,0) is an isomorphism of Banach spaces.

Let us finally consider an admissible vector field V' compactly supported on (a,b).

We consider the map

G:(—e,e) x VI x HI(J) = V'TUT) x V'(J),

defined by
G(s,71,Ya) = (Y1, F(sV + Y1 + Y3)).

The map G is continuous with respect to the product norms (on each factor we put the
natural norm, the Euclidean one on the intervals and || - ||, and || - ||,41 in the spaces

of vectors along 7). Moreover
G(0,0,0) = (0,0),
since v is horizontal. Now we have that
D2G(0,0,0) (Y1, Ya) = DG(0,0)(Y7, Y2)

is a linear isomorphism. We can apply the Implicit Function Theorem to obtain € > 0

and unique maps
Yi : (_878) — VTJFI(‘])? }/2 : (_€7€> — HI(‘])
such that G(s,Yi(s),Ya(s)) = (0,0,0). This implies that Y;(s) = 0, ¥5(0) = 0 and that

F(sV +Ys(s)) = 0.
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Hence the curve I'y : J — N defined by T's(t) = exp.,,(sV/(¢) + Ya(s)(t)) is horizontal

for s € (—¢,¢). Differentiating the above formula at s = 0 we obtain

As V is admissible we deduce that

DF(0) (%?(0)) = 0.

Since i
8Y n-
—( Zfl iw fieCTND),

we get from by equation (2.6.3) that f; = 0 for each h = 1,...,n — k. Therefore it
follows that 9%(0) = 0. This way we obtain that the variational vector field of the
variation I'y is
ol Y,
=V + 0)=V.
0s 0s s 0=

s=0

The uniqueness property of the Implicit Function Theorem provides Y;(s) = 0 for
s € (—e,e) when V = 0. O

2.7 The first variation formula

Let v: I — N be a curve of degree d in a graded manifold (N, H!, ..., H?) endowed
with a Riemannian metric. We fix an orthonormal adapted basis (X7, ..., X)) along
the curve. Recall that the length of degree d was computed in (2.1.5) as Lq(7,J) =
[; 04(t)dt, where the length density 04 of degree d is given by

i) = (3% w0 <ij>>2)5.

Jj=nd-1+1

Assume that 6,(t) # 0 for all ¢ € I. Fixing ¢ € I it turns out that

o) = | ' 0u(r)dr

is a diffeomorphism, then 7(s) = (¢ ~1(s)) is a reparametrization of v so that the new
length density is identically 1. If not, by Corollary 1.2.5 we know that I \ [ is open
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and we can reparametrize v such the new length density is identically 1 on every open
connected component (interval) of I \ 1.

Let I'(¢, s) be an admissible variation of 7 whose variational vector field is given by
V(t) = 95(¢,0). Calling 6 = 6, the derivative of the length functional L, is given by

js SZOLd(Fs,I) = ; o 0/( i1+1<r((;t5)7(Xj)F(t7s)> >2dt
R

Integrating by parts we obtain that
"(t), X; ). X
/1 GO0 G v, x,)de /1 —(V(t),V, <<7()’J>Xj>> dt.
Since V' = Y1 (V, X;) X; we get

((1), Vv X) = (V, 300, Vi X)X,

i=1
and so we can write p
D L, 1) = /(V, H) dt, (2.7.1)
ds|,_q I
where
T "(t), X; n
H= (—v7,<<7()’> >+Z >’y VX)X ) (2.7.2)
Jj=nqg—1+1 0<t) i=1

Expressing 7' = >4, (v, X¢) Xy, we can rewrite H as

o S (_d<<7’(t> X,) )X LSOO 0. XD

j=ng—1+1 dt 0() i=1/4=1 (t) o

), (2.7.3)
where
i = —(Vx, X5, Xi) + (Xo, Vi, Xj) = (X, [X0, X)) (2.7.4)

With this preparation, we can compute the first variation formula for the length L, of

degree d for regular curves.
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Remark 2.7.1. Let m be a positive integer. We remind that when z is a vector
field in R™ with coordinates x; for ¢ = 1,...,m, its transpose is the row vector

ol = (z1,...,%m).

Theorem 2.7.2. Lety: 1 — N be a curve of degree d = deg(7y) such that 04(t) = 1
for each t € I ~\ Iy. Assume that the curve 7y is reqular restricted to [a,b] C I ~\ Iy.
Then v is a critical point of the length of degree d for any admissible variation if and
only if there is a constant vector kT € R"™"d such that v satisfies along v the following

differential equation

a7+ 0 = (b ( BT (1) D\ (7) ar)) A, (@75)

where u; = (7', X;) fori=1,...,n4, A(t) defined in (2.3.3), D(t) solving (2.4.7) and
we set

0 b1
0 Bh /Bnd

_ , - — : 2.7.6

R RYS ’ (5) Baas: e
und Bn

with - s
=3 Y wud

(=1j=ngq_1+1
Proof. Fix an adapted basis (X;) along ~y, and consider the admissible vector field
ng n
V=>g9Xi+ Y X
i=1 j=ng+1

solving the admissibility equation (2.3.4). Then we have
(DF) = —DAG. (2.7.7)

Since v is regular by hypothesis, Theorem 2.5.4 implies that V' is integrable, and so
there exists an admissible variation I'(¢, s) such that V(t) = g—g(t, 0). With the notation
introduced in (2.7.6) the first variational formula with respect to (X;) is given by

d

s )yl 1) = /1 —a' ()G(t) + B, ()G() + B, () F(t) dt. (2.7.8)
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Since (2.7.7) holds and F' is compactly supported in [a, b] we have
/Bf(t)F(t) dt = /BT )DL (t)D(t)F(t) dt
I

</ GL(n)D () dr ) (DF) (2 dt
/ </ t dT) D(t)A(t)G(t) dt.

Therefore (2.7.8) is equivalent to

/1 (—aT(t) + ( / ! BT (r)D7\(7) dT) D(t)A(t) + 8 (t)) G(t)dt, (2.7.9)

for each G(t) that verifies

Hence a critical point of the functional L, is given by

/1 (—aT<t) + ( /at BT(r)D~(r) dT) D)A(t) + ﬁ,f(t)) G(t)dt = 0,

for each G satisfying

b
a,b _ —1 _
H*(G) = D(b) / D) A®)G(#)dt = 0.
Since the holonomy map is surjective by the du Bois-Reymond Lemma [57, Lemma
C.1] there exists a constant vector kT € R* " guch that the Euler-Lagrange equation

is given by
+(f BT (r D () ar) DA + 5(1) =k D) DOA®).  (2.7.10)

Since D(b)~! is a constant matrix we have that k = kD(b)~" is a constant row vector.
Hence ~y satisfies equation (2.7.5).
Conversely, assume that equation (2.7.5) holds so than also (2.7.17) holds. Putting
equation (2.7.17) into (2.7.9) we obtain
d

i) LaTw D) = /I k DIOAMG(t)dt = k /I D) ARG (1)t
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Since (2.7.7) holds and F' is compactly supported in [a, b] we conclude

I =k ooFe)| - =o

dS s=0 t=a

Hence we proved that v is a critical point of the length functional of degree d for any
admissible variation. O

Example 2.7.3 (The Heisenberg group H"). A well-known example of contact sub-
Riemannian manifold (see Example 2.4.12) is the Heisenberg group H", defined as

R?**+1 endowed with the contact form

wo = dt + Z(mlalyZ — yidx;).

i=1

Moreover H" is a Lie group (R?*"*! %) where the product is defined, for any pair of
points (z,t) = (z1,..., 20, t), (Z/, ') = (21,...,2,,t') in R*T = C?" x R, by

) no

i=1

(z,t) * (2/,t) = (z +2 -t + D Im(zﬂ/)) :

A basis of left invariant vector fields is given by {Xi,---, X,,, Y1, -+, Yy, T}, where

0 y; O 9, x; 0 0
om 20, oy t2a T )

X;

The only non-trivial relation is [X;, Y;] = 7. Here the horizontal metric h is the one
that makes {X;,Y; : ¢ = 1,--- ,n} an orthonormal basis of H = ker(wp). On the
tangent bundle we consider the metric g = (-,-) so that (2.4.13) holds. Clearly, we
have (X;,T) = (V;,T) =0 for all i = 1,...,n. Let V be the Levi-Civita connection

associated to g. From Koszul formula and the Lie bracket relations we get
inXj - VY,Y; - VTT = O, VX,Y; - —(5ijT, VYZX] = 5”T (2711)

For any vector field X on H" we have J(X) = VxT. Following the previous notation
we set X, ; = Y; forall i = 1,...,n and Xs,,1 := T, then the only non-trivial

structure constants are

Al — 2 (X X, Xone) = 1, (2.7.12)

in+1i

foralle=1,...,n.
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Let v : I — H" be an horizontal curve parameterized by arc length, i.e. 6(t) =1
By equation (2.7.11) and the linearity of V on the first term we have (7', V., X;) =0
thus it holds

a; = (V7 Xj) + (7, Vo Xj) = (V' Xj),
where « is defined in Theorem 2.7.2. Since (V.7 T) = —(v', J(7')) = 0, then V.7 is
horizontal. By equation (2.7.12) we have ¢}, = 0 for all j = 1,...,2n, thus we deduce

that
2n 2n

Bi = ZZ<7,>XJ><7,>X€> Céz =0

¢=1j=1

forall i =1,...,2n 4+ 1. In this setting we have
B:<[7/>T]7T>:O’ A:(ala"'7a2n)7

where a; = 2(J(v'), X;), as we computed in (2.4.14). Since the solution of following
Cauchy problem

D'(t)=D(t)B(t) =0

D(a) =

is given by D(t) =1 for all ¢ € [a, b], the right side term of (2.7.5) is given by 2kJ (7).
Then we conclude that ~ is a critical point of the horizontal length functional for any

admissible variation if and only if there exists a constant £ € R such that
-V =2kJ(v). (2.7.13)

Explicit solutions to this geodesic equation can be find in [89, p. 10 |, [76, p. 160] and
in [7, p. 28].

Let now v : I — H" be a curve such that deg(y) = 2. We parametrize the curve -y
so that the length density 65(¢) = (v, T) = 1 for all t € I \ Ij. Since deg(y) = 2 is the
maximal degree for a curve in Heisenberg the vertical set V) = {0} for all t € I \ 1.
Then 7 is regular restricted to each interval [a,b] C I \ . Therefore we have that
k=D=A=0and

0
: 2n+1
— ' _ 2n+1
@ = o | Bi = Z Ugp+1 Ug Cpy -
(=1
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Thus we have 5; = —(7,Y;) fori=1,....n, 5; = (v, X;) fori =n+1,...,2n and
Pons1 = 0. We deduce f = J(o'). Hence the geodesic equation (2.7.5) is given by
J(7') =0, then v/ = T. We conclude that the geodesics of degree 2 are straight lines

in direction 0.

2.7.1 Some properties of the length functional of degree two

for surfaces immersed in the Heisenberg group

Let X be a surface immersed in the Heisenberg group H!, where a basis of left-invariant

vector fields is given by
X:8x+%8t, Y:ay—gat, T =9,

We consider the ambient metric g = (-, -) that makes (X,Y,T) an orthonormal basis,
see Example 2.4.21, and ‘H = span{ X, Y'}. ¥ inherits the Riemannian metric g induced
by g. Hence (X, H, 7:[2) is a graded manifold endowed with the Riemannian metric g,
where 7:[11, =T,2 NH,, ’}:[]2, = T,3 if p belongs to 3 \ 3y and 7—211, = 7-2?, =H,=T,%
for p € 3y. Let N be a unit vector normal to ¥ w.r.t. g and N, = N — (N, T)7T its
orthogonal projection onto H. In the regular part ¥ \ g, the horizontal Gauss map
v, and the characteristic vector field Z are defined by

vp = U]i:r Z = J(w), (2.7.14)
where J(X) =Y, J(Y) = —X and J(T) = 0. Clearly Z is horizontal and orthogonal
to v, then it is tangent to . If we define

S = (N,T)uj, — | N,|T, (2.7.15)

then (Z,, 5,) = (e1, e2) is an orthogonal basis of 7,3 and it is adapted to the filtration
7'[11, NT,X C 7-[12, NT,% for each p in ¥ \ Xy.
In the regular part ¥\ % the length functional L, is well-defined. Since all variation

['y are admissible and the first variation formula is given by

d

ds

Lo(Ty, T) = /I(V, H) dt, (2.7.16)

s=0

where V is a vector field in T and H is given by equation (2.7.3). Then the Euler-
Lagrange equation for L, is given by H = 0. Following equation (2.7.3), H = 0 is
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equivalent to

d () L& (e (Be ;)
Cdt <|< '(t), es ) €+ ZZ ( (1), CZ) e; = 0. (2.7.17)

i=14=1 62)

Then a straightforward computation shows that (2.7.17) is equivalent to

(W'(t), eﬁc%l) er + ((7’(15), 61>c§2) ea =0

This means that the geodesic equation for L, is given by
(v'(), 2)([S, 2], S) = 0. (2.7.18)

Whenever ([S, Z],S) # 0 the unique geodesic for L, starting from p is the integral curve
of the vector field S passing through p, namely the unique solution of the following
Cauchy problem

V() = Sy

7(0) = p.
The projection of the integral curve of S onto the xy-plane are called seed curves in

the literature, see for instance [14, page 159].

Example 2.7.4. A vertical plane P, in H! is given by
P,={(z,y,t) €H' : ax+by=c, a®>+b* =1, c€ R}

It is easy to see that the Z = 0X —aY and S = T'. Thus on a vertical plane we always
have ([T, Z],T) = 0, since the Lie algebra of the Heisenberg group is nilpotent. More
generally each surface obtained by the product of a planar curve in the xy-plane with R
in the ¢ direction (see [16, Example 3.4]) verifies (S, Z], S) = 0. Therefore all curves in
P, satisfy the geodesic equation (2.7.18). Now for seek of simplicity in the computation
we consider the vertical plane {y = 0}. This is not restrictive since a generic vertical

plane P, can be obtained by a rotation and a left-translation of {y = 0}. The length

3= [ 16(), Tolds,

where v(s) = (z(s),t(s)) is a piecewise C* curve in P, = {y = 0}. Let p = (29, o) and

functional of degree 2 is given by

q = (z1,t1) be two point in P,. We consider the piecewise curve a(s) : [0,2] — P,
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defined by

a1(s) = (xo, s t1 + (1 — s)to) if se€/0,1]

a(s) =
ap(s) = ((s — Day + (2= s)xo, ty) if se[l,2].

We claim that a(t) is a minimizing curve for the length functional of degree 2, that
means Lo(a) < Lo(7y) for each curve v : [a,b] — P,, v(s) = (z(s),t(s)) such that
v(a) = (zo,to) and vy(b) = (z1,%1). Indeed, defining the following function

f:a,b] = R, f(s) = (t(s) — to, t1 — to),
we have f(a) =0 and f(b) = |[t; — to|?>. Then, it holds
£0) = 1(0) - fla) = [ F(s)as (2.7.19)

By Cauchy-Schwarz inequality and (2.7.19) we obtain

=t =| [ Fs)as| < [ 1F6)lds < [ 1)t — tolds

b
<t —t0|/ 1t/ (s)|ds.

Then, it follows

[ty — to| </ab|t'(s)|ds:/(fq/(fy’(s),TPds:Lg(y). (2.7.20)

Since Lo(ag) = 0 we have Lo(a)) = Lo(ay) = |t; — to|. By equation (2.7.20) we conclude
Ly(a) < Lo(y). However Ly has several minimum among all curves that fix that
end-points p and ¢, because each curve of degree 2 that has increasing ¢ coordinate is
a minimum for the length functional Ly. Indeed, when we reach the horizontal leaf of

coordinates t; we can connect each point on the leaf leaving unchanged the value of L.

Example 2.7.5 (Characteristic plane). Let P. be the characteristic (or horizontal)
plane in H' defined by
P.={(z,y,t) e H' : t=0}.
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In cylindrical coordinates © = pcos(f), y = psin(f) and ¢t = ¢, where p > 0 and
6 € [0,27], we consider the orthonormal adapted basis (X', Y”,T) in H!, where

X" =cos(0)X +sin(d)Y = g,
dp
Lo 58 (2.7.21)
Y’ = —sin(0)X + cos(A)Y = 00 + = 5 Bt

Furthermore, since the tangent vector to P, are ap and

9, P>
— =pY' =T
a0 " 9t
we deduce 5 . 5
/=— and S= —

Since ([Z, 5], S) = a% ((1 + %)_%) # 0 for all p > 0 the geodesics for Ly are integral
curves of S. Let y(t) : [0,¢] — R?\ {0} be the integral closed curve of S such that
7(0) = (po, bo) and v(t) = (po,6o), po > 0, 6y € [0,27] and | - | the Euclidean metric.
When p, tends to 0 the circle described by v collapses to the characteristic point 0 and
we have

2
lim = lim _ TP

)|dt =
P0—>0/|,y | po—0 00 /1+ﬂo

Example 2.7.6 (Pansu’s spheres). In cylindrical coordinates the Pansu sphere S; is

= 2.

the union of the graphs of the functions f and — f defined on the plane ¢t = 0, where

for0 < p <1
1
Fp.0) =3 (p\/l —p°+ COS‘W/))) :

Then, for 0 < p < 1 we have

2
8f_ p and g:().

p 1= p? 00
Therefore the unit normal N to the upper (lower) hemisphere, described by the graph
f (respectively —f ), is
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N[

Thus, we have v, = + X', Z =Y’ (N,T) = (1 — p*)~2 and

No—t X and S L vy P g
=+—— an = — :
h 1— p2 T— 2 1—p?

A straightforward computation shows that for 0 < p < 1 there holds

1
I—p

11 p 2.7.22
= — (Y 4+T,X + T (2.7.22)
1—pﬂp 1—p2>

= p*(1—p?) 72 £0.

([2,5],5) = (v', X7,5)

2

On the equator of Sy, parametrized by 6 — (1,6,0), we have ([Z,S],S) = 0 since
T is tangent to S;. Fix a point py = (po, 0o, =f(po,60)) € S; with 0 < py < 1. By
(2.7.22) out from the equator ([Z, S], S) # 0, then the geodesic y(s) = (p(s), 0(s),t(s) =
f(p(s),0(s))) at po for the Ly functional is the solution of the following Cauchy problem

1

pls) = V()2

0(s)

—0
(o) — p(s)
Hs) = Friop

Y(0) = (po, bo, £ (po,bo))-

(2.7.23)

2

Then we have 0(s) = 0y and p(s) verifies

; [ym 2+ sin_l(y)]z(S) s (2.7.24)
0
Moreover, we notice that the sign of £(s) is opposite to the sign of f. This means
that the ¢ coordinate of a geodesic y(s) decreases in the upper hemisphere and
increases in lower hemisphere until v reaches the equator. Then for each p, > 0
and 6y € [0,27] we consider 7, : [0,5] — S; the solution of (2.7.23) such that
Y(0) = (p, 0, f(p)), vu(5) = (1,60,0) and ~, : [0, 5] — S; the solution of (2.7.23) such
that 7,(0) = (p, 0, —f(p)), 7e(5) = (1,600,0). Letting I = [0,25] we set

o) - {%(s> s€0,3]

7(25 —s) s € [s,2§]
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When pg tends to 0 the end-points of o go to the poles that are characteristic points

and we have

T
I / '(1)|dt = lim 25 = ~
im I]oz()\ im 25 = ¢,

po—0 po—0

since by (2.7.24) it follows

1 p(s) T
T - 2 .1 _n
5= plolgo }gq 5 [y\/l Y + sin (y)] T

PO



Chapter 3

Submanifolds of fixed degree

immersed in graded manifolds

This chapter is devoted to the study of m-dimensional submanifolds of fixed degree
immersed in an equiregular graded manifold (N, H?, ..., H?*) endowed with a Rieman-
nian metric, in particular we will show how to extend the notions of deformability
and regularity introduced for curves in Chapter 2 to immersed submanifolds. First
of all in Section 3.1 we define the area of degree d for these submanifolds. This is
done as a limit of Riemannian areas. In addition, an integral formula for this area
in terms of a density is given in formula (3.1.4). Section 3.2 is devoted to provide
examples of submanifolds of certain degrees and the associated area functionals. In
Sections 3.3 and 3.4 we introduce the notions of admissible variations, admissible
vector fields and integrable vector fields and we study the system of first order partial
differential equations defining the admissibility of a vector field. In particular, we show
the independence of the admissibility condition for vector fields of the Riemannian
metric in § 3.4.2. In Section 3.5 we give the notion of a strongly regular submanifold
of degree d, see Definition 3.5.1. Then we prove in Theorem 3.5.2 that the strong
regularity condition implies that any admissible vector vector is integrable. In addition,
we exhibit in Example 3.5.7 an isolated plane whose only admissible normal vector
field is the trivial one. In Section 3.6 we introduce suitable intrinsic coordinates to
rewrite in convincing way the admissibility system. In Section 3.7 we provide the
definition of ruled submanifolds. Section 3.8 is completely devoted to description of the
higher-dimensional holonomy map and characterization of regular and singular ruled
submanifolds. Finally, in Section 3.9 we give the proof of Theorem 3.9.6, that is a
generalization of Theorem 2.5.4. Finally in Section 3.10 we compute the Euler-Lagrange

equations of a strongly regular submanifold and give some examples. A substantial
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part of the content of this chapter comes form the articles [23] and [47], that have

already been submitted.

3.1 Area for submanifolds of given degree

In this section we shall consider a graded manifold (N, H!, ..., H?®) endowed with a
Riemannian metric g, and an immersed submanifold M of dimension m.

We recall the construction introduced in Section 2.1 : given p € N, we recursively
define the subspaces K} := H,, Kt = (H)" NH™, for 1 < i < (s—1). Here L
means perpendicular with respect to the Riemannian metric g. Therefore we have
the decomposition (2.1.1) of T,N into orthogonal subspaces. Given r > 0, the unique
Riemannian metric g, is the one that makes the subspaces K; orthogonal and verifies
(2.1.2).

Working on a neighborhood U of p where a local frame (X7, ..., X}) generating the
distribution H is defined, we construct an orthonormal adapted basis (X7, ..., X,,) for
the Riemannian metric g by choosing orthonormal bases in the orthogonal subspaces
Kt 1 < i< s. Thus, the m-vector fields

X; - (r%(deg(le)—l)le) ALA (r%(deg(ij)—l)Xj ) 7 (3.1.1)

where J = (j1,J2,- -, Jm) for 1 < j; < -+ < j, < n, are orthonormal with respect to
the extension of the metric g, to the space of m-vectors. We recall that the metric g,

is extended to the space of m-vectors simply defining

Gr(VI A AU, UL AL AYL) = det (gr(vi, v;)) (3.1.2)

1<i,j<m’

for vy,..., vy and vy, ..., v, in T,N. Observe that the extension is denoted the same

way.

3.1.1 Area for submanifolds of given degree

Assume now that M is an immersed C'! submanifold of dimension m in a equiregular
graded manifold (N, H!, ..., H*) equipped with the Riemannian metric g. We take a
Riemannian metric g on M. For any p € M we pick a p-orthonormal basis ey, ..., ey,

in T,M. By the area formula we get

AM, g,) = /M/ e Ao Aeml, du(p), (3.1.3)
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where M’ C M is a bounded measurable set on M and A(M’, g,) is the m-dimensional
area of M’ with respect to the Riemannian metric g,.

Now we express

eLN...Ney, = ZTJ(p)(XJ)p = Zf’}(p)(f(f})p, r>0.

From (3.1.1) we get Xf} = r%(deg(XJ)_m)XJ, and so 7; = r—3(desX)-m) - Moreover,

as {X7} is an orthonormal basis for g, we have

|61 AL A @m|§T = Z(f;(p)f — ZT_(deg(XJ)—m)Ti(p).
J J

Therefore, we have

1/2
1%8 1z (deg(M)—m) ler A A, = 17%1 (Zr(deg(M)deg(XJ))Ti(p»
J

(v 2w

deg(Xs)=deg(M)
By Lebesgue’s dominated convergence theorem we obtain
] :
tim (1200 A0 g)) = [ (X Be) ). G149
o M deg(x ;) =deg(M)

Definition 3.1.1. If M is an immersed submanifold of degree d in an equiregular
graded manifold (N, H!, ..., H*) endowed with a Riemannian metric g, the degree d
area A, is defined by

1 d
M) = lim (2470 A0 g,) ).

rl0
for any bounded measurable set M’ C M.

Equation (3.1.4) provides an integral formula for the area A;. An immediate

consequence of the definition is the following

Remark 3.1.2. Setting d := deg(M) we have by equation (3.1.4) and the notation
introduced in (1.2.5) that the degree d area A, is given by

Ag(M) :/ [(er A Aem)yly du(p). (3.1.5)

M/
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for any bounded measurable set M’ C M. When the ambient manifold is a Carnot
group this area formula was obtained by [70]. Notice that the d area A, is given by

the integral of the m-form

(e1 Ao Nem)a
l(e1 Ao ANem)dlg

Wa(v1, -y Um) (D) = (V1 A oo A Uy, ) (3.1.6)
where vy, ..., vy, is a basis of T,M.

In a more general setting, an m-dimensional submanifold in a Riemannian manifold
is an m-current (i.e., an element of the dual of the space of m-forms), and the area is
the mass of this current (for more details see [31]). Similarly, a natural generalization
of an m-dimensional submanifold of degree d immersed in a graded manifold is an
m-current of degree d whose mass should be given by A,. In [38] the authors studied
the theory of H-currents in the Heisenberg group. Their mass coincides with our
area (3.1.5) on intrinsic C' submanifolds. However in (3.1.6) we consider all possible

m-forms and not only the intrinsic m-forms in the Rumin’s complex [94, 82, 5].

Corollary 3.1.3. Let M be an m-dimensional immersed submanifold of degree d in a
graded manifold (N, H, ..., H®) endowed with a Riemannian metric g. Let My C M
be the closed set of singular points of M. Then Ay(My) = 0.

Proof. Since M, is measurable, from (3.1.4) we obtain

( > T?(p))%du(p),

deg(X,)=d

Aa(Mp) = /

Mo

but 7;(p) = 0 when deg(X ;) = d and p € M since deg,,(p) < d. O

Remark 3.1.4. Another easy consequence of the definition is the following: if M
is an immersed submanifold of degree d in graded manifold (N, H!,..., H*) with a
Riemannian metric, then Ay (M') = oo for any open set M’ C M when d' < d. This

follows easily since in the expression
Lig—
r2@=m e AN emlg,

we would have summands with negative exponent for 7.

In the following example, we exhibit a Carnot manifold with two different Rieman-
nian metrics that coincide when restricted to the horizontal distribution, but yield

different area functionals of a given degree.
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Example 3.1.5. We consider the Carnot group H! @ H', which is the direct product of
two Heisenberg groups. Namely, let R? x R? be the 6-dimensional Euclidean space with

coordinates (z,y, z,2',y, 2’). We consider the 4-dimensional distribution H generated
by

y X
X=0,-Y0., Y =8, + 20,
9 vty
/ /
X' =a, - Lo, Y =8, + 2.
2 v

The vector fields Z = [X,Y] = 0, and Z' = [X',Y’] = 0, are the only non trivial
commutators that generate, together with X, Y, X', Y’ the subspace H? = T'(H! @ H*).
Let Q be a bounded open set of R? and u a smooth function on € such that u(s, t) = 0.

We consider the immersed surface

d:Q—H @H,
(s,t) — (s,0,u(s,t),0,t,u(s,t)),

whose tangent vectors are

O, =(1,0,u,,0,0,us) = X +ugs Z+u, 7,
®, =(0,0,0,0,1,0) = Y.

Thus, the 2-vector tangent to M is given by
P NP, =XANY' +u,(ZAY' +Z ANY).

When u,(s,t) is different from zero the degree is equal to 3, since both Z A'Y” and
Z' NY' have degree equal to 3. Points of degree 2 corresponds to the zeroes of us. We
define a 2-parameter family g, of Riemannian metrics on H' ® H', for (A, 1) € R?, by
the conditions (i) (X, Y, X', Y’) is an orthonormal basis of H, (ii) Z, Z" are orthogonal
to H, and (iii) ¢(Z,2) = X\, g(Z',Z") = p and g(Z', Z) = 0. Therefore, the degree 3

area of ) with respect to the metric g, , is given by
A3(Q) = / us(\ + v) dsdt.
Q

As we shall see later, these different functionals will not have the same critical points,

that would depend on the election of Riemannian metric.
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However, in some cases, we can give conditions ensuring that two different extensions
of a sub-Riemannian metric on a Carnot manifold provide the same area functional of

a given degree up to scaling. These functionals would have the same critical points.

Remark 3.1.6. Let M be an m-dimensional submanifold immersed in an equiregular
Carnot manifold (N, H) and we set d := deg(M). Assume that for all p in M

(i) there exist ey,...,en—1 vectors tangent to 7,M that belong to H,,
(ii) there exists e,, € T, M such that deg(e,,) =d —m + 1,
(111) Nd—m+1 — Nd—m = 1.

Let h be a sub-Riemannian metric defined on H and ¢, g be two different metrics
extending h to the whole tangent space T'NV and such that Hg_m“ \Hg_m is orthogonal
to ‘H, with respect to the both metric g, g at each p in M. Then there exists a real
number A > 0 such that

Ag(M,g) = X Aq(M, g). (3.1.7)

Indeed, fix an adapted basis (Xi,...,X,) orthonormal in H. Then, the degree d

component of the tangent m-vector is given by

(e1 Ao ANem)a= > asXj N NXj AN X s
1<ji<<jm-1<k
where J = (J1,. .., jm—1,Na—m+1) and ay; € R. Therefore there exists A > 0 such that
|(61 ARRRWA em)d’g = Z a?} g(Xnd—m+17Xnd—m+l)

1<ji1<-<jm-1<k

— Z a?] )\ g(Xnd,erl 9 Xndf'm+l)

1<j1 < <jm—1<k
= |(€1 VANPIAN em)d\g.
Hence, by the integral formula (3.1.5) we obtain (3.1.7).

3.1.2 Strongly regular submanifolds for the growth vector

Let M be a submanifold in an equiregular graded manifold (N, H?', ..., H?*). Then we
consider the flag (1.2.10)

H,CH.C---CHy=T,M, (3.1.8)
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where HJ = T,M NHJ and i;(p) = dim(7#2) — dim(7Z ). In [44] Ghezzi and Jean say
that M is strongly equiregular if m;(p) is constant for each p in M and each j =1,...,s.
In analogy with the definition of a regular point, we say that M is strongly reqular for
the growth vector at p in M if there exists a neighborhood U, C M such that m;(q) is

constant for each ¢ in U, and each j =1,--- ,s.

Proposition 3.1.7. Let M be a smooth submanifold of degree deg(M) in an equiregular
graded manifold (N, H', ..., H®). Suppose that p is a point of mazimal degree deg,;.
Then M is strongly reqular for the growth vector at p.

Proof. Let p be a point of maximal degree. By Proposition 1.2.4 there exists an open
neighborhood U, C N such that deg,,(¢) > deg,,(p) for all ¢ in U, N M. Since deg,,(p)
achieves the maximum value d(M) at p we have deg,,(¢) = deg,,(p) for all ¢ in U,N M.
Let us consider a basis of the tangent space

Bp = (61, o 6y G+l s 5 Crgy s oo Cg 41y - - 767715) (319)
adapted to the flag (3.1.8) at p in M such that

7—2}0 =span{ey,...,em, },

72
H,, =spani{er, . .., Cmy; €y 41y - - Cring |

s _
H,, =span{en, ..., €, 1, Cmu_y 11, -+ Ciny }-

We can consider smooth vector fields {E};},;-;
U, C U, such that

. defined on an open neighborhood

-----

Dq = (E1|q, ey Eﬁu |q, Eﬁn-{-l’qa ‘e 7En~12‘qa ey Eﬁls_1+1|qa ‘e 7Efn5

a)

span all the tangent space T;M for each ¢ in U, N M and D, is equal to the basis
B, at p. By Lemma 1.2.2 we have that there exists an open set U C U} such that
deg(Ej|,) = deg(e;) for all j =1,...,m,. Moreover, we claim that deg(E;|,) = deg(e;)
for all i = 1,...,m = m,. Otherwise there exists an index k such that deg(Ej|,) >

deg(ex) and we have

ey (@) = 3 deg(El,) > Y- deg(er) = deg(p).
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which is impossible since we know that deg,,(p) = deg,,(¢) for all ¢ in U]. Hence
we have m;(q) = m;(p) for all i = 1,..., s, what implies that the submanifold M is
strongly regular for the growth vector at p. O

Remark 3.1.8. In [44, Theorem 1] it is proved that the degree deg(M) of a strongly
equiregular submanifold M immersed in an equiregular Carnot manifold is equal to
the spherical Hausdorff dimension, induced by the C-C distance d,. defined in (1.1.6).
In addition, the Radon-Nikodym derivative of the d-spherical Hausdorff measure with
respect to a generic measure on M was computed.

Since the spherical Hausdorff dimension is a local property, a straightforward
consequence of Proposition 3.1.7 is that the spherical Hausdorff dimension of M ~ M,
is equal to d = deg(M). Moreover in [70, Theorem 1.2] the authors computed the
Radon-Nikodym derivative of the Riemannian area of M induced by a graded metric
in a Carnot group with respect to the d-spherical Hausdorff measure at points of
maximum degree d. This quantity is equal to the ratio between a metric factor and
the norm of the projection of the unit m-vector 7p;(p) tangent to M onto the degree
d. The behavior of this metric factor has been deeply investigated by V. Magnani in
[68, 67].

Hence, we speculate that at points of maximum degree d = deg(M) the Radon-
Nikodym derivative of m-dimensional area measure on (M, ), induced by the ambient
metric g on the Carnot manifold, with respect to the d-dimensional spherical Hausdorff
measure should be equal to the ratio between a metric factor and the norm of the
projection of the unit m-vector 7y;(p) tangent to M onto the degree d. This should
imply that our d-area measure given in (3.1.5) is absolutely continuous with respect to

the spherical Hausdorff measure whenever S%(Mj) = 0.

3.2 Examples

3.2.1 Degree of a hypersurface in a Carnot manifold

Let M be a C! hypersurface immersed in an equiregular Carnot manifold (N, H),
where H is a bracket generating [-dimensional distribution. Let ) be the homogeneous
dimension of N and p € M.

Let us check that deg(M) = @ — 1. The pointwise degree of M is given by

degy (p) = > j(my; — 1),
j=1
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where 1m; = dim(H2) with 7 = T,M NHJ. Recall that n; = dim(H). As T,M is a
hyperplane of T, N we have that either 7:[; = 7-[; and m; = n;, or 7:[;; is a hyperplane
of H} and 1; = n; — 1. On the other hand,

m; — Mi—1 <Ny — MNy_1.
Writing

n; — Ni—1 = m; — M1 + 2,

for non-negative integers z; and adding up on 7 from 1 to s we get

s
Z Z; = 1,
=1

since ms = n — 1 and ny = n. We conclude that there exists ig € {1,...,s} such that
2z, = 1 and z; = 0 for all j # 4. This implies
m; = N, 1 < 19,

If ig > 1 for all p € M, then H C TM, a contradiction since H is a bracket-

generating distribution. We conclude that 7o = 1 and so

=1 =2

=1-(n1—1)+> i(n—ni_1)=Q — 1.

=2
3.2.2 Ay,,i-area of a hypersurface in a (2n + 1)-dimensional
contact manifold

A contact manifold is a smooth manifold M?"*! of odd dimension endowed with a one

form w such that dw is non-degenerate when restricted to H = ker(w). Since it holds
dw(X,Y) = X(w(Y)) = Y (w(X)) — w([X, Y]),

for X,Y € H, the distribution H is non-integrable and satisfies Hormander rank condi-
tion by Frobenius theorem. When we define a horizontal metric h on the distribution

H then (M, H,h) is a sub-Riemannian structure. It is easy to prove that there exists
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an unique vector field T on M so that
CU(T) = 1, ,CT(X) = 0,

where L is the Lie derivative and X is any vector field on M. This vector field T’
is called the Reeb vector field. We can always extend the horizontal metric h to the
Riemannian metric ¢ making 7" a unit vector orthogonal to H.
Let ¥ be a C* hypersurface immersed in M. In this setting the singular set of ¥ is
given by
Yo={pel:T,X="H,}

and corresponds to the points in ¥ of degree 2n. Observe that the non-integrability of
‘H implies that the set X \ X is not empty in any hypersurface .

Let N be the unit vector field normal to ¥ at each point, then on the regular set
>\ Yo the g-orthogonal projection N, of N onto the distribution H is different from
zero. Therefore out of the singular set ¥y we define the horizontal unit normal by

Ny,
Vh = 777>
| Nl
and the vector field
S = <N, T>Vh - |Nh|T,

which is tangent to X and belongs to H?. Moreover, T,X N (H2 \ H,) has dimension
equal to one and 7,2 N 7—[11, equal to 2n — 1, thus the degree of the hypersurface > out
of the singular set is equal to 2n 4+ 1. Let e,...,e9,_1 be an orthonormal basis in

T, N 7-[11). Then ey, ..., e,-1,5, is an orthonormal basis of 7,,> and we have
61/\.../\62n_1/\S: <N,T>€1/\.../\€2n_1/\l/h— |Nh|€1/\.../\€2n_1/\T.

Hence we obtain
Agnar (2) = /E N, |dE. (3.2.1)

This formula was first obtained by [43] in the general setting of hypersurfaces immersed
in sub-Riemannian manifold, as we mention in Section 1.1.5 equation (1.1.16). In
the case of 3-dimensional pseudo-hermitian manifolds it was deduced by [18, 84] and

generalized to any dimension by [40, 95].

Example 3.2.1 (The Heisenberg group H"). A well-known example of contact manifold
is the Heisenberg group H", described in Example 2.7.3, defined as R?"*! endowed
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with the contact form .

i=1
Moreover H" is a Lie group (R?"™! %) where the product is defined, for any pair of
points (z,t) = (z1,..., 20, t), (Z/, ') = (21,...,2,,t') in R*T1 = C*" x R, by

b %]

(z,t) * (2/,t) = (z +2 T+ Im(zizz-')> :

=1

A basis of left invariant vector fields is given by {Xi,---, X,,, Y1, -+, Yy, T}, where

0 0 0 0 0
Xi= — i—, Yi=——x;— 1=1,....,n, T=—.
o, Ty, o, Yo, ! " )
The only non-trivial relation is [X;, Y;] = —27. Here the horizontal metric h is the one

that makes {X;,Y; :4=1,--+ ,n} an orthonormal basis of H = ker(wy).
Let Q be an open set of R* and u : Q — R be a function of class C'. When we
consider a graph ¥ = Graph(u) given by the zero set level of the C* function

f(xbyla---vxn?yn?t) :u(a?layla'-wxn?yn)_t:()a

the unit tangent N normal to X is

N — Z;L:l(uzi - yi)Xi + (in + xl)YZ - T‘
I+ S0 (e, — )2 + (g, + 2:)2

Therefore the projection of N onto the horizontal distribution is given by

it (ua, — 4) X 4 (uy, + 24)Yi
VU S (g, — )2+ (uy, + 2,)?

Np

Then, setting the horizontal metric so that X;, Y; are orthonormal we have the expression

1
2

(En:(uzi —4i)* + (uy, +fci)2) L, (3.2.2)

i=1

A1 (2N 20, ) = /Q

where £ is the Lebesgue measure in R?". This is exactly the area formula independently
established in recent years, see for instance [27, 18, 19, 92, 54]. This formula is valid
for any set 0 C X since Ay,11(20) = 0.
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Remark 3.2.2. In general when we fix a metric g we can always consider an orthonor-
mal basis (eq,...,ey) of T,M, which is also adapted to the flag (1.2.10). However,
it is not always possible to extend this basis (eq, - ,e,,) to an orthonormal adapted
basis of T,,N, unless T}, M is contained in "H; with ¢ < s. For instance, if we consider a
surface ¥ immersed in the Heisenberg group (H', g) where a basis of orthonormal left

invariant vector fields is given by
X:am—%at, Yzﬁy—i—;@t, T =29,

Let N be unit normal vector to X for g and N, = N — (N, T)T its projection onto

H. In the regular part X ~\ Xy the horizontal Gauss map v}, and the characteristic
vector field Z are defined by

Ny,

=— Z=J 3.2.3

= 2= ) (323

where J(X) =Y, J(Y) = —X and J(T) = 0. Clearly Z is horizontal and orthogonal
to v, then it is tangent to .

If we define
S = (N,T)v, — |N,|T, (3.2.4)

then (Z,,S,) is an orthogonal basis of 7),¥ and it is adapted to the flag Hll) NT,X C
7-[12) NT,Y for each p in ¥ \ 3y. The only way to extend (Z,, S,) to an orthogonal basis
of T,H! is to add N,. Obviously (Z,,S,, N,) is orthonormal basis of H' but it is not
adapted to the flag ’H[l, C ’Hg. Notice that an adapted basis that is also an extension of

(Z,9) is for instance given by (v, Z, S), which is not an orthogonal basis.

Example 3.2.3 (The roto-translational group). Take coordinates (z,y, ) in the 3-

dimensional manifold R? x S*. We consider the contact form
w = sin(@)dx — cos(0)dy,
the horizontal distribution ‘H = ker(w), is spanned by the vector fields
X = cos(#)0, +sin(0)0,, Y = Oy,

and the horizontal metric A that makes X and Y orthonormal.
Therefore R? x S! endowed with this one form w is a contact manifold. Moreover
(R% x S',H, h) has a sub-Riemannian structure which is also a Lie group known as the

roto-translational group. A mathematical model of simple cells of the visual cortex V1



3.2 Examples 95

using the sub-Riemannian geometry of the roto-translational Lie group was proposed
by Citti and Sarti (see [25], [26]).
Here the Reeb vector field is given by

T = [X,Y] =sin(#)0, — cos(#)d,.

Let 2 be an open set of R? and u :  — R be a function of class C'. When we consider
a graph ¥ = Graph(u) given by the zero set level of the C'! function

f(x7y76) = U(%Z/) —0= 07
the unit normal NV to X is given by

Xw)X —-Y +T(u)T
N = :
\/1 + X (u)? + T(u)?

Therefore the projection of NV onto the horizontal distribution is given by

XX -Y
V1+ X (u)? + T(u)?

N,

Hence the 3-area functional is given by
As(S\ To, A) = / (1+ X (w)?)* dudy.
Q

3.2.3 Aj,-area of a ruled surface immersed in an Engel struc-
ture

Let F = R? x S! x R be a smooth manifold with coordinates p = (x,y,0, k). We set
H = span{ Xy, X»}, where

X1 = cos(6)0, +sin(0)0, + k0y and X, = 0. (3.2.5)

Therefore (F,H) is a Carnot manifold, indeed H satisfy Hérmander’s rank condition

since
X3 = [XlaXZ] = _89

(3.2.6)
Xy = [X1, [ X1, X3 = —sin(0)0, + cos()0,.
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and, setting X; = >j_, Al(p)d;, we have det(A(p)) # 0 where

cos(f) sin(f) k O
0 0 0 1
A — I
») 0 0 -1 0
—sin(f) cos(@) 0 0
and
(8137 8@17 897 ak) = (@17 82, a37 84)
The sub-bundle H? is generated by H and the vector field X3 = [X;, X5] = —0p.

Finally, the sub-bundle H? = TN is generated by H? and the vector field X, =
(X1, X3] = —sin(0)0, + cos(0)0,. Therefore, (X1,...,X,) is an adapted basis to the
flag H C H>* C H® =TE.

To define a sub-Riemannian structure we need an inner product on the distribution

‘H. In the present work we will use two different metrics on the distribution H:

10
hy = ( - ) (3.2.7)

the one which makes X; and X, orthonormal and

1+k% 0
ho — 3.2.8
2 ( O ) 523

the one induced by the Euclidean metric. Therefore, (E,H, hy) and (E,H, hy) are

sub-Riemannian manifolds. We can write the canonical basis respect to Xy, -+, Xy
4 .
0; =Y _(A(p) )iX;, (3.2.9)
j=1
where
cos(f) 0 kcos(f) —sin(6)
B sin(f) 0 ksin(0 cos(60
0 0 —1 0
0 1 0 0

Here we provide a similar computation to the one developed by Le Donne and Magnani
in [63] in the Engel group. Since the Engel group is the tangent space to E these

computations are morally equivalent. Let € be an open set of R? endowed with the
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Lebesgue measure. We denote by (uy, us) a point in 2. Then we consider an embedding
®: Q — FE, where we set & = (&', d2 &3 &1) and X = ®(12). The tangent vector to X
are ®,, = Y1, ®J e;, i = 1,2. By equation (3.2.9) we obtain

4 4
=2 P2 (A X
7=1 =1
@, (cos(0)X; + k cos(0) X3 — sin(0) Xy)
+ @2 (sin(6) X, + ksin(6) X5 + cos(6)Xy)
— @3 X3+ D, X
= (cos(®%)®,,, + sin(P*)®? ) X; + D, Xo + (D*(cos(P*) D, + sin(P*)D?)
— ©3 ) X5 + (—sin(®®) P, + cos(P®) P2 ) Xy

Computing the wedge product, it follows

D, A D, = (cos(®*) DL + sin(P*) P21 X; A Xy
— (cos(®?) DL + sin(P*) DX X; A X3
+ 12X A X,y
+ (@3 — D (cos(®) D + sin (D) D2)) Xy A X3
+ (sin(®*) @ — cos(P?) D) Xy A X,y
+ (@12 — sin(P*) D) + cos(P?) D) X3 A Xy,

O = det ( Ty ) .
I

(3.2.10)

where we set

x

According to the notion of pointwise degree, we have that

5 if 034(1,6) 7é 0

deg,, (B(1)) = 4 if |erg(u)] + Jea(u)] >0 and  ezq(u) =0
b 3 if |eis(w)| + |cos(u)| > 0 and  cgq(u) = cra(u) = cog(u) =0

2 if ezq(u) = crq(u) = coq(u) = c13(u) = co3(u) =0
(3.2.11)

where we set
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Notice that the degree of ¥ can never be equal to 2. Indeed, if deg(X) was equal to
2 the submanifold ¥ would be a integrable manifold for the distribution H, then H
would be involutive by Frobenius Theorem. However, the distribution H is bracket-
generating and not involutive. Since we are particularly interested in applications
to the visual cortex (see [46],[85, 1.5.1.4] to understand the reasons) we consider the

surface ¥ = ®(Q) given by ® = (z,y,0(z,y), x(x,y)). The tangent vectors to X are
O, = (1,000, k), @, =(0,1,0,,r,). (3.2.12)

In order to know the dimension of 7, N H,, it is necessary to take in account the

rank of the matrix

1 0 0, Ku
1
p=| © b | (3.2.13)
cos(f) sin(f) x 0
0 0 0

Obviously rank(B) > 3, indeed we have

1 Kz
det|] 0 1 k, | #0.
00 1

Moreover, it holds

cos(f) sin(f) k
rank(B) =3 <& det 1 0 6, =0
0 L0, (3.2.14)
& Kk—0,cos(f) —6,sin(d) =0
& k= X1(0(z,y)).
Since we are inspired by the foliation property of hypersurface in roto-translational

group and the lifting of a retinal 2D image to the cortex Engel space F enjoys (3.2.14),
in the present work we consider only surface ¥ = {(z,y,0(x,y), k(x,y))} verifying the
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foliation condition x = X;(0(x,y)). Thus, thanks to (3.2.10), we have

D, N D, =(cos(0)k, — sin(f)r,) X1 A Xo — (cos(0)8, —sin(0)0,) X1 A X
+ X4 A Xy + (0pky — Oykp — K(cos(0)ky — sin(f)rk,)) Xo A X3
+ (sin(f)ky + cos(0)rz) Xa A Xy
+ (k — sin(0)0, — cos(0)0,) X35 N X4.

(3.2.15)

By the foliation condition (3.2.14) we have that the coefficient of X3 A X, is always
equal to zero, then we deduce that deg(X) < 4. Moreover, the coefficient of X; A X,
never vanishes, therefore deg(X) = 4 and there are not singular points in . When
k = X;(0) a tangent basis of T, adapted to 1.2.10 is given by

€1 = COS(@)(I);E + sin(é’)CI)y = X1 + X1 (H)Xg,

(3.2.16)
ey = —sin(0)®, + cos(0)P, = Xy — X4 (0) X3 + Xu(k) Xo.

When we fix the Riemannian metric g; that makes (X, ..., X4) we have that the
Ay-area of ¥ is given by

A2, g) :/Q(l—l—Xl(m)z)% dxdyz/ﬂ(uxf(e)?)% dxdy. (3.2.17)

When we fix the Euclidean metric gy that makes (0y, da, 9y, Jx) we have that the Aj-area
of ¥ is given by
1
Au(S, g0) = /Q (1+ 82+ X1(k)?)* dedy, (3.2.18)

Notice that g; restricted to the distribution is equal to hy and gol|y is equal to hs.

3.3 Admissible variations for submanifolds

Let us consider an m-dimensional manifold M and an immersion ® : M — N into an
equiregular graded manifold endowed with a Riemannian metric g = (-,-). We shall

denote the image ®(M) by M and d := deg(M). In this setting we have the following

definition

Definition 3.3.1. A smooth map I' : M x (—&,¢) — N is said to be an admissible
variation of ® if 'y : M — N, defined by I'y(p) := I'(p,t), satisfies the following

properties

(i) To =@,
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(ii) Ty(M) is an immersion of the same degree as (M) for small enough ¢, and
(iii) Ty (p) = ®(p) for p outside a given compact subset of M.

Definition 3.3.2. Given an admissible variation I', the associated variational vector

field is defined by

V@yzgﬁwy (3.3.1)

The vector field V is an element of Xo(A, N): i.e., a smooth map V : M — T'N
such that V(p) € Ty N for all p € M. It is equal to 0 outside a compact subset of M.
Let us see now that the variational vector field V' associated to an admissible
variation I satisfies a differential equation of first order. Let p = ®(p) for some p € M,
and (X7, -+, X,,) an adapted frame in a neighborhood U of p. Take a basis (é1,...,€y,)
of T,M and let e; = d®y(e;) for 1 < j < m. As I';(M) is a submanifold of the same

degree as ®(M) for small ¢, there follows

((dl)p(er) Ao A (AT p(em), (X)rum) =0, (3.3.2)

forall X; = X; A AKX, , with 1 < ji <--- < jp < n, such that deg(X ;) > deg(M).
Taking derivative with respect to ¢ in equality (3.3.2) and evaluating at t = 0 we obtain

the condition

m

O=(er A...Nem, VipXs)+ D (et A . AV VAL Aem, Xy)
k=1
for all X; such that deg(X,;) > deg(M). In the above formula, (-,-) indicates the
scalar product in the space of m-vectors induced by the Riemannian metric g. The
symbol V denotes, in the left summand, the Levi-Civita connection associated to g
and, in the right summand, the covariant derivative of vectors in X(M, N) induced by
g. Thus, if a variation preserves the degree then the associated variational vector field

satisfies the above condition and we are led to the following definition.

Definition 3.3.3. Given an immersion ® : M — N, a vector field V € Xo(M, N) is
said to be admissible if it satisfies the system of first order PDEs

O=(e1 Ao Nem, VypXs) + > (et Ao AV VAL A e, Xy) (3.3.3)
k=1

where X; = X;, A... A X, , deg(X;) > d and p € M. We denote by Ag(M, N) the
set of admissible vector fields.
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It is not difficult to check that the conditions given by (3.3.3) are independent of
the choice of the adapted basis.

Thus we are led naturally to a problem of integrability: given V € X,(M, N) such
that the first order condition (3.3.3) holds, we ask whether an admissible variation

whose associated variational vector field is V' exists.

Definition 3.3.4. We say that an admissible vector field V € Xo(M, N) is integrable
if there exists an admissible variation such that the associated variational vector field
isV.

Proposition 3.3.5. Let & : M — N be an immersion into a graded manifold. Then
a vector field V € Xo(M, N) is admissible if and only if its normal component V* is

admissible.

Proof. Since the Levi-Civita connection and the covariant derivative are additive
we deduce that the admissibility condition (3.3.3) is additive in V. We decompose
V = VT +V<+in its tangent V' and normal V+ components and observe that VT
is always admissible since the flow of VT is an admissible variation leaving ®(M)
invariant with variational vector field V' T. Hence, V+ satisfies (3.3.3) if and only if V/

verifies (3.3.3). O

3.4 The structure of the admissibility system of
first order PDEs

Let us consider an open set U C N where a local adapted basis (X, ..., X,,) is defined.
We know that the simple m-vectors X; := X;, A... A X, generate the space A,,(U)

of m-vectors. At a given point p € U, its dimension is given by the formula

) n
dim(A,,(U),) = <m>
Given two m-vectors v,w € A,,(U),, it is easy to check that deg(v + w) <
max{degv,degw}, and that degAv = degv when A # 0 and 0 otherwise. This
implies that the set
AL (U), :=={v € Ay, (U), : degv < d}
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is a vector subspace of A,,(U),. To compute its dimension we let v; := (X;), and we

check that a basis of A4 (U), is composed of the vectors

vy, A ... Av;,, such that Z deg(v;) < d.

Jj=t1
To get an m-vector in such a basis we pick any of the k; vectors in 'Hll) N{vy, ..., v}
and, for j = 2,...,s, we pick any of the k; vectors on (HJ ~ H)™") N {vy,...,vn}, s0

that
e ki+---+ ks =m, and
o 1-ki+---+s-ks<d.

So we conclude, taking ny = 0, that

dim(A(U),) = X (fl (n W ))

kitetho=m, \i=1
L+ tsks<d
When we consider two simple m-vectors v;;, A... Awv;, and v A...Avj,, their
scalar product is 0 or 41, the latter case when, after reordering if necessary, we have
v, = vj, for k = 1,...,m. This implies that the orthogonal subspace A% (U); of
A2 (U), in A,,(U), is generated by the m-vectors

vy, A ... Av, such that > deg(v;) > d.

Jj=i

Hence we have

dim(A () = % =) (3.4.1)
kit tks=m, \i=1 ki
Tk +otsks>d

with ng = 0. Since (N, H',...,H?) is equiregular, ¢ = dim(AZ (U);) is constant on

N. Then we can choose an orthonormal basis (X,,...,X,) in A% (U), at each point
peU.
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3.4.1 The admissibility system with respect to an adapted
local basis
In the same conditions as in the previous subsection, let ¢ = dim(AZ (U),) and

(Xs,--.,Xy,) an orthonormal basis of Af,(U);. Any vector field V € X(M,N) can

be expressed in the form

V=2 fuXn,
h=1

where fi,..., fn, € C°(®71(U),R). We take py € ®(U) and, reducing U if necessary,
a local adapted basis (E;); of TM in ®~(U). Hence the admissibility system (3.3.3)

is equivalent to

ZZ Cisn Bi(fa) + D Bin fa =0, i=1,....1, (3.4.2)
j=1h=1 h=1
where .
J
cijn(p) = (e1 Ao A(Xn)p A Aem, (X)), (3.4.3)
and

Bzh(p) = <61 VANAN €m, V(-X}L)pXJ'L'>+

+Z<€1/\.../\verh/\.../\em;<XJi)p> (344)

(e1 A E;, Xpl(p) Ao A em, (XJ,)p)-
J=1
In the above equation we have extended the vector fields F; in a neighborhood of

po = ®(po) in N, denoting them in the same way.

Definition 3.4.1. Let m,(p) be the dimension of ’H‘” T,MNOHy, a€{l,..., s},
where we consider the flag defined in (1.2.10). Then we set

w(U) = max lglégs{oz ma(p) # 0} (3.4.5)
and
pi=mn,, =dim(H"*) > dim(H") = ny. (3.4.6)

The integer number ¢o(U) is the ambient degree of the first sub-bundle the induced
filtration (H*)az1
He.

s and p is the dimension of the corresponding ambient sub-bundle

77777
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Remark 3.4.2. In the differential system (3.4.2), derivatives of the function f, appear
only when some coefficient ¢;;;,(p) is different from 0. For fixed h, notice that ¢;;,(p) = 0,
foralli=1,...,¢,7=1,...,mand p in (V) if and only if

()
deg(es A+ A (Xp)p A+ New) <d, forall1<j<m,pe @ (U).

This property is equivalent to
deg((Xp),) < deg(e;), for all 1 < j < m,p € @ 1(U).

So we have ¢;j, = 0 in @~ H(U) for all 4, j if and only if deg(X}) < ¢o(U).

We write

V= ZghXh+ Z [ Xe,

r=p+1

so that the local system (3.4.2) can be written as
m n n p
Z Z CZjTEj(fT) + Z birfr + Z Aingn = O, (347)
J=lr=p+ r=p+1 h=1

where ¢;;, is defined in (3.4.3) and, for 1 <i </,

ain = Bin, bir = Bir, 1< h<p, p+1<r <, (3.4.8)

where [;; is defined in (3.4.4). We denote by B the ¢ x (n — p) matrix whose entries
are b;,, by A the ¢ x p whose entries are a;;, and for j =1,...,m we denote by C; the
€ x (n — p) matrix C; = (cin )i p’;'r'ig - Setting

.....

fp+1 g1
F=| : |, ag=]: (3.4.9)

In 9p

the admissibility system (3.4.7) is given by

Z )+ BF + AG = 0. (3.4.10)
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3.4.2 Independence on the metric

Let g and g be two Riemannian metrics on N and (X;) be orthonormal adapted basis

with respect to g and (Y;) with respect to g. Clearly we have

for some square invertible matrix D = (d;;)'=5" of order n. Since (X;) and (Y;) are

adapted basis, D is a block matrix

Dy Dy Dz ... Dy
0 Dy Doz ... Dayy
D=1 0 0 Dss ... Dssf,
0 0 0 .o
0 0 0 0 Dy
where D;; fori = 1,..., s are square matrices of orders n;. Let p be the integer defined in
(3.4.1), then we define Dy, = (dj;)ij=1...py Do = (dji)ij=pt1...n and Dy, = (dﬂ); ‘{H ..... n

Let us express V' as a linear comblnatlon of (Y;)

V= ZgthJr Z A

r=p+1

then we set

fpﬂ g1

=sh!
Il
()
Il

fa 9
and F' and G as in (3.7.6).

Given I = (i1, ...,1y) with 43 < ... <4, we have

Yi=Y, N Z Z Ajyiy i Xjy N oo N X,

= Z Aii me jm:zAJIXJ-
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Since the adapted change of basis preserves the degree of the m-vectors, the square

matrix A = (A\;;) of order (:1) acting on the m-vector is given by

Ay A
A= (" (3.4.11)
0 A,

where Aj, and A, are square matrices of order (::l) — ¢ and ¢ respectively and Ay, is a

matrix of order ((Z) — K) x £. Moreover the matrix A is invertible since both { X}

and {Y7} are basis of the vector space of m-vectors.

Remark 3.4.3. One can easily check that the inverse of A is given by the block matrix

Al (A A AAT
L0 A ’

Setting G = (§(X7, X)) we have

é _ Gh éhv
(Ghz))t Gv

) = (ATHYAT).
Thus it follows

Gy = (AN A+ (A AL (ALY AL AR ALY
Gro = — (A AT ARALT,
G, = (A)'AL

Let A be the associated matrix
j=1

Setting
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and 2 = (Qh QU) = (w JT)Seg(’jjg 4> a straightforward computation shows

A =(Ap)! (Gh Q, Dy + Gy ADy + Gy, Y chj(Dh))

J=1

+ (AL ((Ghv) Dy, + Gy ADy + (Gro)' Y. Gy E; Dh)

Jj=1

By Remark 3.4.3 we obtain

A=(Ap)t ((Ahl)fAh1 (Q, Dy, + fj C;E;(Dy))

j=1

(AT AT A A ADh>
m 3.4.12
(MA@ + 3 G E(D)) A1)

7=1

+ (A + AL (ALY AL AALY) AD,
=A,' AD,.

First we notice that if h =1,..., p we have

o)
Gin=00Y5, Ex A AV A AEy)

o
=> > A 9(X1, X ) eqjn din
T
(3.4.13)

Therefore, setting

deg(J)<d

and
0 ~ () h=1,....p
C] <g(Y],E1 /\Yh/\ AEm)) L s
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by (3.4.13) we gain
C7 = (A}, G + AL(Gr))(Cf D) = 0.

Let C’j be the associated matrix

~ () h=p+1,...n
C;,= (g(YJi,El/\.../\Yh/\.../\Em)) o
Setting
- ) () h=p+1,..n
C; :(g(YJ,ElA.../\Yh/\.../\Em)) ,
deg(J)<d

it is immediate to obtain the following equality
Cj =(Aw)' (Gu(CJ Dhy + C1V D) + G C;D,)
+ (M) ((Gwo)'(CJ' Dpy + €'V D) + G,CyD,) (3.4.14)
=A,'C;D,.
Let B be the associated matrix
B= (g(YJi,ZEl/\.../\ [E;, Y3 /\.../\Em>)'
j=1
A straightforward computation shows

B =(An)! <Gh(Qh Diy +Q,D, + 3 CH B, (Dyy) + CHV B, (D))
7=1

+ Gho(ADyy + BD, + 3 chj(Dv))>

Jj=1

+ (A (éﬁwmh Do+ D, + 3. CHE;(Dpy) + CHY (D))

J=1

+Gu(AD + BD, + 3 CiE(D,) )

j=1

By Remark 3.4.3 we obtain

B=A,"ADy,+A,;'BD,+> A,'C;E;(D,). (3.4.15)

j=1

Finally, we have G = D,G + Dy, [ and F = D, F.
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Proposition 3.4.4. Let g and § be two different metrics, then a vector fields V' is

admissible w.r.t. g if and only if V is admissible w.r.t. §.

Proof. We remind that an admissible vector field

V= ZngnL Z fiX

i=p+1
w.r.t. g satisfies
Z )+ BF + AG = 0. (3.4.16)
By (3.4.12), (3.4.15) and (3.4.14) we have
Zé P+ BF+ AG = A; (Zc (D,E,(F) + E;(D,)F)
= . (3.4.17)
+ ADF + ADG+ BDUF) Z )+ BF + AG)

In the previous equation we used that G = DyG + Dy, F, F = D,F and
E;(D.)D," + DyE;(D,") =0,

for all j = 1,...,m, that follows by D,D;* = I,_,. Then the admissibility system
(3.4.16) w.r.t. g is equal to zero if and only if the admissibility system (3.4.17) w.r.t.
J. 0

Remark 3.4.5. When the metric g is fixed and (X;) and (Y;) are orthonormal adapted

basis w.r.t g, the matrix D is a block diagonal matrix given by

2
~\o D,/

where Dy, and D, are square orthogonal matrices of orders p and (n — p), respectively.
From equations (3.4.12), (3.4.15), (3.4.14) it is immediate to obtain the following
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equalities
F=D,'F,
G =D, 'G,
A=A;' A D,

- (3.4.18)
B=A,'BD,+> A,'C;E;(D,),

j=1

éj = A;lchv.

3.4.3 The admissibility system with respect to the intrinsic

basis of the normal space

Let ¢ be the dimension of A% (U )j and (X,,...,Xy,) an orthonormal basis of simple
m-vector fields of degree grater that d. Let py be a point in M and ®(py) = po.
Let eq,..., e, be an adapted basis of T},)M that we extend to adapted vector fields
Ey,...,E, tangent to M on U. Let vy1,...,v, be a basis of (T, M)+ that we
extend to vector fields V,,11,...,V,, normal to M on U, where we possibly reduced the
neighborhood U of py in N. Then any vector field in X(®~(U), N) is given by

V=Y UEi+ Y U,
j=1 h=m+1
where ¢y, ..., 1, € C"(®~H(U),R). By Proposition 3.3.5 we deduce that V is admissible
if and only if V+ = S>3 ¥V} is admissible. Hence we obtain that the system (3.3.3)

is equivalent to

7=1 h=m+1 h=m+1
where
N (4)
En(B) = (ex Ao  AULA . A e, (X1)p) (3.4.20)
and A
Bin(p) = (e1 Ao A em, Vi, X )+
A AVOVEA . Nem, (X,
f;@l i 'h em: (Xs)p) (3.4.21)

= Z<€1 VANIRWAN [Ej, Vh](p) Ao N e, (XJi>p>‘

m
J=1
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Definition 3.4.6. Let ¢o(U) be the integer defined in 3.4.1. Then we set k := n,, —m,,.

Assume that k£ > 1, and write

m~+k
Z ¢h Vh + Z ¢r T
h=m+1 r=m-+k+1

and the local system (3.4.19) is equivalent to

m n m—+k
Z Z giJT wr + Z Bzr Z/}r + Z Qip ¢h - 0 (3422)
j=lr=p+1 r=p+1 h=m+1
where &, is defined in (3.4.20) and, for 1 < </,
ain = Biny Bir = Biry m+1<h<m+k, m+k+1<r<n (3.4.23)

We denote by B+ the ¢ x (n —m — k) matrix whose entries are 3;,, by At the £ x k
whose entries are «;, and for every j = 1,---m by C’jL the ¢ x (n —m — k) matrix with

entries (&ijn) i bt Setting

,,,,,

Umtk+1 Pt
Ft = : , Gt=| (3.4.24)

¢n ¢m+k

the admissibility system (3.4.2) is given

Y CiEj(FY)+ B F'+ AGH =0. (3.4.25)
j=1
Remark 3.4.7. We can define the matrices AT, BT, C'T with respect to the tangent
projection VT in a similar way to the matrices A+, B+, C*. First of all we notice that

the entries

i} )
Ehn (D) = (1 Ao c AU A L A ey (X))

fori=1,...,0and j,v = 1,...,m are all equal to zero. Therefore the matrices C'"
and BT are equal to zero. On the other hand, A" is the (¢ x m)-matrix whose entries

are given by

iel/\ NIE;ENp) N A em, (Xg,)p)
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fore=1,...,f and v = 1,...,m. Frobenius Theorem implies that the Lie brackets
[E}, E,] are all tangent to M for j,v =1,...,m, and so all the entries of AT are equal
to zero.

3.5 Integrability of admissible vector fields

In general, given an admissible vector field V', the existence of an admissible variation
with associated variational vector field V' is not guaranteed. The next definition is a

sufficient condition to ensure the integrability of admissible vector fields.

Definition 3.5.1. Let ® : M — N be an immersion of degree d of an m-dimensional
manifold into a graded manifold endowed with a Riemannian metric g. Let ¢ =
dim(AZ,(U),) for all ¢ € N and p = n,, set in (3.4.1). When p > ¢ we say that ® is
strongly reqular at p € M if

rank(A(p)) = ¢,

where A is the matrix appearing in the admissibility system (3.4.10).

The rank of A is independent of the local adapted basis chosen to compute the
admissibility system (3.4.10) because of equations (3.4.18). Next we prove that strong
regularity is a sufficient condition to ensure local integrability of admissible vector
fields.

Theorem 3.5.2. Let & : M — N be a smooth immersion of an m-dimensional
manifold into an equireqular graded manifold N endowed with a Riemannian metric g.
Assume that the immersion ® of degree d is strongly reqular at p. Then there exists an
open neighborhood W of p such every admissible vector field V' with compact support

on W5 is integrable.

Proof. Let p = ®(p). First of all we consider an open neighborhood U, C N of p such
that an adapted orthonormal frame (X7, ..., X,,) is well defined. Since ® is strongly

regular at p there exist indexes hq,...,hy in {1,..., p} such that the submatrix
ain, (p) -+ a1n,(P)
Ap=|
aen, (P) -+ e, (D)

is invertible. By a continuity argument there exists an open neighborhood W; C ®~*(U,,)

A

such that det(A(q)) # 0 for each ¢ € Wj.
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We can rewrite the system (3.4.10) in the form

Ghy m 9ia
t | =AY CE;(F)+BF+A| : (3.5.1)
=1
Ghy ’ Gip_e
where @1, ...,7,_¢ are the indexes of the columns of A that do not appear in Aand A
is the ¢ x (p — ¢) matrix given by the columns iy, ...,7, ¢ of A. The vectors (E;); form

an orthonormal basis of TM near p.

On the neighborhood Wj; we define the following spaces

1. X5 (W5, N), r > 0 is the set of C” vector fields compactly supported on W taking

values in T'N.
2. Ag(Wp, N) ={Y € X5(W;, N) 1Y = Y0, g:X,}-
3. AL (W5 N) ={Y € Af(W;,N): Y =31, gn Xn, }-
4. A5 (Wp, N) ={Y € Ay(W5, N) : (Y, X) =0V X € A} o(W;, N)}.

5. V(W5 N) ={Y e X*(W;, N) : (Y, X) =0VX € A[(W;,N)}
:AS(W@N)L

6. Ag(Wp, N) = {12y fiXs, : fi € C5 (W)}
Given r > 1, we set
E i= A5 (Wy, N) x Vs (W, N),
and consider the map
G: Ex Al (W5 N) = E x A (W, N), (3.5.2)

defined by
G(Y1,Ys,Y3) = (Y1, Y, F(Y1 + Yo + V3)),

where II, is the projection in the space of m-forms with compact support in W} onto
A" (W5, N), and
FY) =1, dl(Y)(er) A ... NdT(Y)(em)) ,
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where I'(Y)(p) = expg,)(Y,). Observe that F(Y') = 0 if and only if the submanifold
I'(Y') has degree less or equal to d. We consider on each space the corresponding || - ||,
or || - ||;—1 norm, and a product norm.
Then
DG(0,0,0)(Y1, Ya, V) = (Y, Yo, DF(0)(Yi + Ya + Ya)),

where we write in coordinates

p—L ¢ n
}/].:Zg’itXZ't7 B:ZghiXhia and Y3 = Z err-
t=1 =1 r=p+1
Following the same argument we used in Section 3.3, taking the derivative at ¢t = 0 of
(3.3.2), we deduce that the differential DF(0)Y is given by

VA m n n P

D‘F(O)Y = Z (Z Z Cierj(fT> + Z bi’/‘f’r + Z aihgh) XJ;"

i=1 \ j=1r=pt1 r=p+1 h=1

Observe that DF(0)Y = 0 if and only if Y is an admissible vector field, namely Y
solves (3.5.1).

Our objective now is to prove that the map DG(0,0, 0) is an isomorphism of Banach
spaces.

Indeed suppose that DG(0,0,0)(Y7,Ys,Y3) = (0,0,0). This implies that ¥; and Y5
are equal zero. By the admissible equation (3.5.1) we have that also Y3 is equal to zero,
then DG(0,0,0) is injective. Then fix (21, Zo, Z3), where Z; € A;Bl(Wp,N), Zy €
V(W N), Zs € Ay (Wj, N) we seek Y;,Ys, Y3 such that DG(0,0,0)(Y;,Ys, Y3) =
(Z1, Zy, Z3). We notice that DF(0)(Y: + Y2 + Y3) = Z3 is equivalent to

21 Giy 9hy

A

=Y CE;(F)+BF+A| : |+A]| : ;
=1
Ze ’ Gip_s Ghy

where with an abuse of notation we identify Z3 = Zle z; X, and Zle z; Xp,. Since

A is invertible we have the following system

Ih m Jix <1
=AY N CE(F)+BF+A| ¢ |+ : (3.5.3)
j=1

ghé gip,g Zy
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Clearly Y, = Z, fixes g;,,...,gi,_, in (3.5.3), and Y5 = Z, fixes the first and second
term of the right hand side in (3.5.3). Since the right side terms are given we have
determined Y3, i.e. gp,, ..., gn,, such that Y; solves (3.5.3). Therefore DG(0,0,0) is
surjective. Thus we have proved that DG(0,0,0) is a bijection.

Let us prove now that DG(0, 0, 0) is a continuous and open map. Letting DG(0,0,0)(Y;,Ys,Y3) =
(Zy, Zy, Z3), we first notice DG(0,0,0) is a continuous map since identity maps are

continuous and, by (3.5.3), there exists a constant K such that

=1

23]l < K(Z IViYallra + 1YVallra + IYVallra + ||Y3||r—1)
< K([[Yallr + [Yillr—1 + [[Yslr—1)-

Moreover, DG(0,0,0) is an open map since we have

Va1 < K(Z 1V Zallr—1 + || Zallr—1 + | Z1]|r -1 + HZ3Hr—1>

=1

< K12l + 1 Z1ll-1 + 1281 7-1)-

This implies that DG(0,0,0) is an isomorphism of Banach spaces.

Let now us consider an admissible vector field V' with compact support on W,. We

consider the map

G: (=€) x Ex Aj;"(Wp, N) — E x Aj™ (W, N),

defined by

G(s,Y1,Y3,Y2) = (Y1, F(sV + Y1 + Y3 + 12)).
The map G is continuous with respect to the product norms (on each factor we put the
natural norm, the Euclidean one on the intervals and || - ||, and || - ||,_1 in the spaces

of vectors on ®(M)). Moreover

G(0,0,0,0) = (0,0),

since ® has degree d. Denoting by Dy the differential with respect to the last three

variables of G we have that

DyG(0,0,0,0)(Y:, Yz, Y3) = DG(0,0,0)(Y1, Y, Y3)
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is a linear isomorphism. We can apply the Implicit Function Theorem to obtain unique
maps
Yi:(—¢,6) = AS?(W,;, N),
Yy : (—¢e,e) = Vi(W5, N), (3.5.4)
Yy (—e,e) = A7 (W, N),
such that G(s,Yi(s),Ya(s),Ys(s)) = (0,0). This implies that Yi(s) = 0, Ya(s) = 0,

Y3(0) = 0 and that
F(sV +Y;(s)) = 0.

Differentiating this formula at s = 0 we obtain

Df@<V+i§m0:0

Since V' is admissible we deduce

9V
D —(0) =0.
F(0) s (0)=0
Since 22(0) = {_; gn, Xn,, where g, € C;~" (W), equation (3.5.1) implies gs, = 0 for
each i =1,..., (. Therefore it follows %3 (0) = 0.

Hence the variation I's(p) = I'(sV + Y3(s))(p) coincides with ®(g) for s = 0 and

q € Wj, it has degree d and its variational vector fields is given by

) )
5o =V 0=V

s=0

Moreover, supp(Y3) C supp(V'). Indeed, if ¢ ¢ supp(V), the unique vector field Y3(s),
such F(Y3(s)) = 0, is equal to 0 at §. O

Remark 3.5.3. In Proposition 3.3.5 we stressed the fact that a vector field V =
VT + V< is admissible if and only if VV+ is admissible. This follows from the additivity
in V of the admissibility system (3.3.3) and the admissibility of V' T. Instead of writing V'
with respect to the adapted basis (X;); we consider the basis Fy, ..., Ey, Vi, .-, Vi
described in Section 3.4.3.

Let AL, B+ C* be the matrices defined in (3.4.23), AT be the one described in
Remark 3.4.7 and A be the matrix with respect to the basis (X;); defined in (3.4.8).
When we change only the basis for the vector field V' by (3.4.12) we obtain A = AD,.
Since AT is the null matrix and A = (AT| At) we conclude that rank(A(p)) =
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rank(A+(p)). Furthermore ® is strongly regular at p if and only if rank(A*(p)) = ¢ < k,
where k is the integer defined in 3.4.6.

3.5.1 Some examples of strongly regular submanifolds

Example 3.5.4. Consider a hypersurface ¥ immersed in an equiregular Carnot mani-
fold (N, H), then we have that 3 always has degree d := deg(X) equal to d";} = Q — 1,

max

see § 3.2.1. Therefore the dimension ¢, defined in Section 3.4, of A% (U), is equal
to zero. Thus any compactly supported vector field V' is admissible and integrable.
When the Carnot manifold N is a contact structure (M?" ™ H = ker(w)), see 3.2.2,
the hypersurface ¥ has always degree equal to d**_ = 2n + 1.

max

Example 3.5.5. Let (E,#) be the Carnot manifold described in Section 3.2.3 where
(r,9,0,k) € R? x S! x R = E and the distribution # is generated by

X1 = cos(0)0, + sin(0)0, + kg, X9 = 0.

Clearly (X, ..., X,) is an adapted basis for H. Moreover the others no-trivial commu-

tators are given by

(X1, X4] = —kX| — K* X3
[X37X4] - X1 + ng

Let 2 C R? be an open set. We consider the surface 3 = ®(Q) where
O(z,y) = (z,y,0(x,y), 5(z,y))

and such that X;(6(z,y)) = k(x,y). Therefore the deg(X) = 4 and its tangent vectors

are given by

El =X1 + Xl(li)XQ,
Ey =X — X4(0) X5 + X4(r) Xo.

Let g = (-,-) be the metric that makes orthonormal the adapted basis (Xi, ..., Xy).
Since (A3(N))* = span{X3 A X,} the only no-trivial coefficient ¢y, for r = 3,4 are
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given by
<X3/\E2,X3/\X4> = ]_, and <X4AE2,X3/\X4> :X4(0)

On the other hand cy9, = (Ey A X, X5 A X,) = 0 for each h =1, ..., 4, since we can
not reach the degree 5 if one of the two vector fields in the wedge has degree one.

Therefore the only equation in (3.4.2) is given by
~ 4 ~ ~ ~ ~
Ev(f3)+X4O0) B (f)+> ( (X3 A Xy, By A [Ey, Xp] + [Er, Xa] A E2>) fa=0. (3.5.5)
h=1

Since deg(E) A [Fa, X)) < 4 we have (X3 A Xy, By A[Ey, X3]) =0 foreach h =1,...,4.
Since [uX,Y] =u[X,Y] — Y (u)X for each X,Y € X(N) and u € C*°(N) we have

[Er, Xn] = [ X1, Xn] + X1(#)[Xa, Xn] — Xn(Xa(
— X1 (k) X5 — X1(X1(K)) X, h
X5 — Xo(X1 (k) X, h=
Xy — X3(X1 (k) X, h
kX1 — K2 X3 — Xy (X1(k)Xs h

Thus, we deduce

(X3 A Xy, [EhXh] A Ez) =

IS S S

I
._-bcow»—x

Hence the equation (3.5.5) is equivalent to

Ev(f3) + Xa(0)Er(f1) — Xo(r) f1 + fo — Xa(0) f3 — K> f1 =0 (3.5.6)

Since 1o(€2) = 1, we have p = ny = 2, where p is the natural number defined in (3.4.1).

In this setting the matrix C' is given by

C=(10 X40) 0),
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Then the matrices A and B are given by
A= ( —Xl(li) 1 ),

B=(-Xi0) —r*).

Since rank(A(z,y)) = 1 and the matrix Az, y), defined in the proof of Theorem 3.5.2,
is equal to 1 for each (z,y) € Q we have that ® is strongly regular at each point (z,y)
in  and the open set W, ,y = €. Hence by Theorem 3.5.2 each admissible vector field
on € is integrable.

On the other hand we notice that k = ny — m; = 1. By the Gram-Schmidt process

an orthonormal basis with respect to the metric g is given by

E, - oi(Xl X (R)Xa),

By = Ol <X4 — X4(0)X5 + Xz? (X — Xl(l-{)Xl)> ,

Vi = (X + Xu(O)X0)

V= o2 (x4 + 8% - X))

where we set

o] = \/1 + Xl(/i)2, O3 = 4/ 1 +X4<9)2

Xy(k)2  yJofod+ Xu(k)?
=1+ X,(0)2 = .
Q2 J + X4(0) +(1+X1(/<L)2) o
Since it holds
(Vs N Ey, X3 N Xa) = %7
Qo

(Vi N By, X3 AN Xy) =0,

<[E17 ‘/E’)] A E27X3 A X4> =

X 2
<[E17V21] A E27X3 /\X4> = % (1 —+ 4('%) ) — %7
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then a vector field V+ = v3(z, y) Vs + 4(x, y) V4 normal to X is admissible if and only
if 13,14 € CH(Q) verify

« X,(0)(1 — K? «
— B1(¥s) + M% + —2ahy = 0.
Qo Qe a3
That is equivalent to
X1(13) + 0" by + a1y = 0, (3.5.7)

where X; = cos(0(z,))d, + sin(f(z,y))0, and

L X0 - X,(0)
1+ X4(9)2 ’
at = (1 + X4</€)2) .

a?a3

In particular, since a*(z,y) > 0 we have that rank(at(z,y)) = 1 for all (x,y) € Q.
Along the integral curve 7/(t) = X; on 2 the equation (3.5.7) reads

y(t) 4+ b (E)s(t) + a* (t)a(t) = 0,

where we set f(t) = f(y(t)) for each function f: Q — R.

3.5.2 An isolated plane in the Engel group

Definition 3.5.6. We say that an immersion ® : M — N in an equiregular graded

manifold (N, H' C ... C H*) is isolated if the only admissible variation normal to

M = ®(M) is the trivial one.
Here we provide an example of isolated surface immersed in the Engel group.

Example 3.5.7. Let N = R* and H = span{X;, X»}, where
X1 = Gzl, XQ = 83[;2 + 1‘18% + 37383[;4

and X3 = 0,, and X, = 0,,. We denote by E* the Engel group given by (R* H). Let
T :Q C R? — E* be the immersion given by

T(v,w) = (v,0,w,0).
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Since T, A T, = X; A X3 the degree deg(X) = 3, where ¥ = T(Q) is a plane. An
admissible vector field V = S"1{_, fu X verifies the system (3.4.2) that is given by

4
Ofy Ofhn
D G (KA X, X (X0 A X, X )+ (3.5.5)

+ fh (<[X17Xh] A X37XJ¢> + <X1 A [X37Xh]7XJi>) = O’

for X, = X5 A Xy, Xy, = Xo A Xy and X, = X3 A Xy, Therefore (3.5.8) is equivalent
to of
4
871'3 + f2 = O
=0
0fa
Omy

Let K = supp(V). First of all we have g—ﬁ = 0. Since fy € C*°(R) there follows

= 0.

of: ___Ph
8$1 E)xg@ml ’

Then let (z1,x9) € K we consider the curve
vis (T + s, x3)

along which f; and f, are constant. Since f; and f, are compactly supported at the
end point, (z1 + sg,x3) € 0K we have fy(z1 + so,x3) = fa(x1 + So,x3) = 0. Therefore
we gain fy = fo = 0. Therefore the only admissible vector fields f; X, 4+ f3X3 are
tangent to . Assume that there exists an admissible variation ['y for T, then its
associated variational vector field is admissible. However we proved that the only
admissible vector fields are tangent to X, therefore the admissible variation I'y has to
be tangent to ¥ and the only normal one a trivial variation, hence we conclude that
the plane Y is isolated.
Moreover, we have that & = 1 and the matrix A defined in 3.5.1 is given by

-1
Alu,w)=1 0
0

Since rank(A) = 1 < 3 we deduce that T is not strongly regular at any point in 2.

Here we prove that ¥ is isolated without using the admissibility system.
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Proposition 3.5.8. Let E* be the Engel group given by (R*, H), where the distribution
‘H is generated by
X1 = 8961, XQ = 8932 + ;1:18963 + .2?36934.

Let Q C R? be a bounded open set. Then the immersion Y : Q — E* of degree 3 given

by
T(v,w) = (v,0,w,0)

1s 1solated.

Proof. An admissible normal variation I'y of T has to have the same degree of T and
has to share the same boundary Y(0€2) = 0%, where clearly ¥ = Y(Q). For a fix s, we

can parametrize ['y by
©: Qo EL Ov,w) = (v, 6(v,w), w, ¥ (v, w)),
where ¢,1 € C3(Q,R). Since deg(®(Q)) = 3 we gain

(By APy, X1 A Xy) =0
(Py A Py, Xo A Xy) =0 (3.5.9)
(Oy APy, X1 A Xy) =0,

where
O, =01 + ¢02 + V0,04 = Xy + 0y (X — v X3 + wXy) + 1,

and
Py = ¢y + 031,01 = Py (Xo — VX5 + wXy) + X5 + 1.

Denoting by 74 the projection over the 2-vectors of degree larger than 3, we have
7T4<(I)v A (I)w) :(ww + Uwa)Xl A\ X4 + (bv(ww + w(z)w)XQ A X4

- Ugbv(ww + w¢w)X3 A X4 + (¢v + w¢v)X4 A X2
+ (]. — U¢w)<¢v + U)QZSU)XZL A\ X3.

Therefore (3.5.9) is equivalent to

%} + wﬁbw =0
¢v¢w - wv(bw =0 (3510)
U(stww - wv¢w) - ('Qby + 'U)Q%) = 0.
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The second equation implies that (3.5.10) is equivalent to

¢w + w¢w =0
¢vww - wv(bw =0 (3511)
Yy + wo, = 0.

Then we notice that the first and the third equations implies the second one as it

follows

stww - @Z)vgbw = _¢vw¢w + w¢v¢w =0.

Therefore the immersion ® has degree three if and only if

ww = _w¢w

(3.5.12)
¢v = —'U)st.

Only when the compatibility conditions ([53, Eq. (1.4), Chapter VI]) for linear system
of first order are given we have a solution of this system. However the compatibility
condition is given by

O:wwv_wvw:¢v
Since ¢ € C}(Q) we obtain ¢ = 0. Therefore also 1, = 0, then ¢y = 0. Hence
o="7. O

Here we provide the generic equations for a immersed surface of degree three in the

Engel group.

Proposition 3.5.9. Let E* be the Engel group given by (R*, H), where the distribution
‘H is generated by
Xl = 8361, XQ = 8:1:2 -+ .Z‘lax?’ + .I'gafm.

Given Q C R? an open set, a general C' immersion ® : Q — E* has degree three if and
only if
Gu(dy — 30°) = (¢, — 020°)
G2(SE — §26%) = G2 — $267) (3.5.13)
G — 02" (6 — 030°) = (6, — 630") (¢, — D20°),
where ®(u,v) = (¢ (u,v), *(u,v), $*(u,v), ¢*(u,v)), ¢, = %’5 and ¢! = %ii for each
i=1,...,4.
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Proof. We recall that X3 = [X, Xo] = 0,, has degree two and Xy = [X3, Xs] = 0,

has degree there. Therefore we have

(Du - ¢i6x1 + gbiaxg + qbiaxg + gbia@;
= ¢, X1 + 05 Xo + (9 — 920" ) X + (¢, — 020°) X4

and

q)’u - ¢11)ax1 + ¢3a{£2 + ¢ia$3 + ¢'24)al'4
= 0, X1+ )Xz + (¢ — 630" ) X5 + (0, — 916°) X

Then the 2 tangent vector to ®(2) = X is given by

D, A @, =(, b, — ¢2¢1) X1 A Xz + (04 — $10") — &, (8, — 9u9')) X1 A X
+ (9400 — 930") — DL(dh — 9u9')) X2 A X

+ (Gu(dy — <Z> ¢3) (0, — 0u0”)) X1 A X

+ (000, — d10°) — dL(¢y, — 9,0°)) Xa A Xy

+ (00 — 20" ) (0, — 630°) — (8 — 630" ) (9, — 910°)) X5 A Ko,

When the degree of X is less or equal the coefficients in front of the 2 simple vectors of
degree 4 and 5 have to be equal to zero, that is verified if and only if the system of
PDEs (3.5.13) holds. O

Here we provide some examples of surfaces of degree three that are not rigid in the

C'* topology.

Example 3.5.10. Given Q C R? an open set, let ® : Q — R* be the immersion

parametrized by

O(u,v) = (gbl(u, v), 0% (u,v), ¢*(u,v), *(u, v)) : (3.5.14)

where ¢?(u,v) = ¥ (u+v), ¢*(u,v) = m and ¢*(u, v) = ¢(u+v) for ¥, p € C*(Q)

with 9'(u,v) # 0 for each (u,v) € Q. ® is an immersion whenever ¢} # ¢!. We notice

that 5
=Yt o) = T a0

oY (u + v)

Bilu,v) =
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Then it follows

96"0.0) _ vy gy 4 0) 2T 204 08
T—¢(u+v)—¢(u+v)w,(u+v) = ¢. (u,v)p’(u, v)
and

= ¢ (utv) =¢(utv) = ¢y (u, v)¢" (u,v).

ov Y (u+v)
Therefore the immersion solves the system (3.5.13), thus by Proposition 3.5.9 ®(2)

has degree three. Since the compactly supported variations
Ft(uu U) - (I)(ua U) + t(g<u7 U)7 07 07 O)

for every g € C§°(Q) are all admissible, because the first component ¢! + tg is not
involved in the system (3.5.13), we have that all the immersions ® of the type (3.5.14)

are not isolated.

3.6 Intrinsic coordinates for the admissibility sys-
tem of PDEs

Let ® : M — N be a C™' immersion in a graded manifold, M = ®(M) and d = deg(M).
By Proposition 3.4.4 we realize that the admissibility of a vector field V' is independent
of the metric. Therefore we can use any metric in order to study the system. Let
p be a point in M \ My, that is an open set thanks to Corollary 1.2.5. We consider
e1,..., ey a basis of T,M adapted to the flag (1.2.10). Then we complete this basis to

a basis of the ambient space T, N adding vy,41, ..., v, of increasing degree such that
a sorting of {ey,...,€m,Vmi1,-..,0,} is an adapted basis of T, N. Thus we extend
€15y Cm, Umil,-- -, U, to vector fields Fy, ..., En, Vingt, ..., Vy, so that their sorting

is still adapted in a neighborhood of p. Since the immersion is C™!, the vector fields
Ey, ..., E,, are Lipschitz, thus the vector fields V,,11,...,V,, are also Lipschitz. Then
we consider the metric g = (-,-) that makes Fy, ..., E,, Vioi1, ..., V, an orthonormal
basis in a neighborhood U of p.

Letting ¢y be the integer defined in (3.4.5) given by

to(U) = max min {a : m4(p) # 0},

peU 1<a<s



126 Submanifolds of fixed degree immersed in graded manifolds

and k := n,, — m,, the integer defined in 3.4.6. Given a generic vector field W
transversal to T'M, the only simple m-vectors of degree strictly greater than d whose

scalar product with

(9)
EiA--AWA---ANE, (3.6.1)
are candidate to be different from zero are
(4)
ExN---ANV,A---ANE,

for i = m+1,...,n and deg(V;) > deg(E;). Since (V;); and (E;); have increasing
degree, we obtain deg(V;) > deg(E) = 1o if and only if i = m+k+1,...,n, where k is
defined in (3.4.6). Therefore we deduce that the candidates simple m-vectors of degree

strictly greater than d whose scalar product against (3.6.1) is different from zero are

ExN---ANV,AN---NE,,

fori=m+k+1,...,n and deg(V;) > deg(E;). Furthermore by Proposition 3.3.5 we
know that V' is admissible if and only if

m-+k n
V= Z gnVh + Z Ve (3.6.2)
h=m+1 r=m+k+1

is admissible. Therefore putting V1 in (3.3.3) we obtain

m n m-+k

Z( Y GpraBi(f)+ D0 GnaEi(gn)
7=1 Yr=m+k+1 h=m+1
o o (3.6.3)
+ Z bz’jrafr + Z (Nlijhagh) = 07
r=m+k+1 h=m+1

where
) (@)
Cijta = (EA N AVEN- ANEp, By Ao AV Ao A Ep,)

©) (@)
Aijha = (EAN . N[Ej VRIAN CCONE By AN~ AV AN NEp)

- () ()



3.6 Intrinsic coordinates for the admissibility system of PDEs 127

fort=m+1,....n,r=m+k+1,....n, h=m+1,... m+k, a=1,...,m,
i=m+k+1,...,nand deg(V;) > deg(E,). Then we have that ¢, is equal to 1 for
i=t>m+k, a=jand deg(V;) > deg(E;) or equal to zero otherwise. Moreover, we
notice that a;;jn, and Bijm are different from zero only when o = j and in particular

we have

i := Gijn; = (Vi, [}, Val), (3.6.4)

forh=m+1,....m+k,i=m+k+1,...,n, deg(V;) > deg(E;) and
bijr = bigry = (Vi [B}, Vi), (3.6.5)

fori,r =m+k+1,...,n and deg(V;) > deg(E;). Therefore V is admissible if and
only if

n m—+k
Ei(fi) = — Z bijr [r — Z Qijh Ghs (3.6.6)
r=m+k+1 h=m+1

fori=m+k+1,...,n and deg(V;) > deg(E;).

Remark 3.6.1. Notice that the coefficients a;;;, and b;;, defined in (3.6.4) and (3.6.5)

are defined almost everywhere. Indeed the vector fields Ey, ..., E,, Vi1, ..., V, are
Lipschitz, then thanks to [32] the Lie brackets [E;, V] and [E;,V;]| for j =1,...,m,
h=m+1,...m+kandr=m+k—+1,... n are defined almost everywhere.

Example 3.6.2 (Horizontal submanifolds). Given n > 1 we consider the Heisenberg
group H", previously described in Example 2.7.3, with its distribution H generated by
o y; 0 o ;0
Xi=—+ %+, K:@_Ea 1=1,...,n.

The Reeb vector fields is provided by T' = 9, = [X;,Y;] for ¢ = 1,...,n. Let
g = (-} be the Riemannian metric that make (Xi,...,X,,Y1,...,Y,,T) an or-
thonormal basis. We rename the horizontal vector fields Xi,...,X,,,Y:,...,Y, with
Ziyeeos Loy Znity - - Zop. Let £ be an open set of R™, with m < n. Here we consider
a C! immersion ® : Q — H"” such M = ®(Q) is a Lagrangian submanifold. Let
Ey, ..., E, be an orthonormal local frame of 7'M, then there exist Z;,, ..., Z;, such
that [Z;,, Z;,] = 0 for each o, =1,...,n and

Ej =3 a}(p)Z, for j=1,...m, (3.6.7)
a=1
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where the matrix A = (a(p));= " has full rank equal to m, for each p € Q. Therefore

a vector field V' =3""; ¢; Xi + gi+n Yi + f T is admissible if and only if it satisfies the

system

E;(f) = (B, T), T) f = X_({[E5, Xi], T)gi + ([E, Vi, T) giyn),

==Y algi,. (3.6.8)
a=1

The matrix A = (af);= " has full rank equal to m, however we can not deduce any
information about the strongly regularity of M since the dimension ¢ of the space of
m-vector of degree greater than m is greater than the rank of A. For instance when

n = m = 2 the space of 2-vectors of degree greater than 2 is generated by
XiANT, XoANT, YT ANT and Yo AT.

Since ¢ = 4 that is greater than m = 2 we can not use Theorem 3.5.2.

A necessary and sufficient conditions for the uniqueness and the existence of a
solution of the admissibility system (3.6.8) (see [53, Theorem 3.2, Chapter VI|) are
given by

E,E,(f) — BE(f) = ~E, (Z afgz-ﬁ) + B, (z g) . (369)
B=1 a=1

for each j,v =1,...,m. These are the so called integrability condition [53, Eq. (1.4),
Chapter VI|. A straightforward computation shows that the right hand side of is equal

to

%: )05 (Zi,(9in) = Zia (i) — @5 Zio () gy + @) Zi, (05) G- (3.6.10)
a,f=1

Moreover, the left hand side is equal to
Z G Br(f Z Z a9,
= Z l'y gz'y

- Z ﬁZZB gla - a?Zia (af)glﬁ
B,a=1
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Therefore the compatibility (or integrability) conditions are given by

> aaf(Ziy(9i) — Zin(95)) = 0, (3.6.11)
a,f=1
for each v,7 = 1,...,m. Moreover, when the horizontal submanifold is a Lagrangian

manifold of dimension m = n, the compatibility conditions (3.6.11) are equivalent to

for each o, 3 =1,...,n.

Here we exhibit an example of 2D plane immersed in 6D space that admits compactly

supported admissible vector fields only in one direction.

Example 3.6.3. Let N = R® and H' = span{ X}, X5, X3}, where

2

X1 =0y, Xo=0,, Xs=04,+110s, + 120, + %aﬁ

and Xy = [X3, X3] = 0y, X5 = [X2, X3] = 0p, + 220, that with X3, X5, X3 generate
H?. Finally the last sub-bundle H? is obtained adding Xg = [Xa, X5] = 9,,. Notice
that (RS H!) is a Carnot group whose growth vector is (3,5,6). Let Q C R? be a
bounded open set. Let ® : Q € R? — RS be the immersion given by

¢ (v,w) = (0,u,0,v,0,0).

Since ¢, A &, = X5 A X, the degree deg(X) = 3. Let g = (-,-) be the metric that
makes X1,...,Xs an orthonormal basis. An admissible vector field V+ = ¢, X, +
93 X3+ f5X5+ fs X6 normal to T3 has to satisfies (3.6.6). In this case a straightforward

computation, based on the commutator relations, shows that (3.6.6) is equivalent to

Xo(fs) =—fs (3.6.12)
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Notice that we have d®(9,) = X, and d®(0,) = X4, therefore on surface we have

——(u,v) = —f5(u,v) (3.6.13)

Following [53] a sufficient and necessary condition for the existence and unicity of a
solution for (3.6.13) si given by

%{j(u,’u) = 0.

If we seek for a compactly supported admissible vector fields V+, following the same
argument of Example 3.5.7, we deduce that fs = f5 = g5 = 0 on 2. Hence the only
compactly supported vector field is given by V+ = ¢, X for each g; € C3(Q).

Remark 3.6.4. Let (IV,H) be a Carnot manifold such that H = ker(#) where 6 is a
R"~* one form. Following [50, 83] we say that an immersion ® : M — N is horizontal
when the pull-back ®*§ = 0 and, given a point p € ®(M), the subspace T,M C H,, is
regular if the map

V — (Lvde)‘TpM (3614)

is onto for each horizontal vector V on M. Let X be an horizontal extension of V on
N and Y be another horizontal vector field on N, then

d(X,Y) = X(0(Y)) = Y(0(X)) — 0([X,Y]) = =0([X,Y])

Assume that the local frame E, ..., E,, generate T,M at p then the map (3.6.14)
is given by 6([X, E;](p)), for each j = 1,...,m. In our notation the surjectivity of
this map coincides with the pointwise condition of maximal rank of the matrix (a;;)
introduced in equation (3.6.4). Since by equation (3.4.18) the rank of A is independent
of the metric g we deduce that this regularity notion introduced by [50, 49] is equivalent

to strongly regularity at p (Definition 3.5.1) for the class of horizontal immersions.

3.7 Ruled submanifolds in graded manifolds

In this section we consider a particular type of submanifolds for which the admissibility

system reduces to a system of ODEs along the characteristic curves, that rule these
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submanifolds by determining their degree since the other adapted tangent vectors

tangent to M have highest degree equal to s.
Definition 3.7.1. Let (N, H',...,H?®) be an equiregular graded manifold and let A/

a m-dimensional manifold with m < n. We say that an immersion ® : M — N is ruled
if
deg(M) = (m — 1)s + ¢, (3.7.1)

where 1 < 19 < s—1and M = ®(M). In this case, we will call the image of the

immersion M a ruled submanifold.

Let p be a point of maximum degree in M. Let eq,..., e, be a basis of T,M
adapted to the flag (1.2.10). Therefore deg(e;) = ¢ and deg(e;) = s for j =2,...,m
and k =n,, — 1. Then we follow the construction described in Section 3.6 to provide
the metric g and the orthonormal basis Fy, ..., E,, V11, ..., V, whose sorting is an
adapted basis. Since deg(E;) > deg(V;) foreach j =2,...,mandi=m+k+1,...,n,
the only derivative that appears in (3.6.6) is E;. Therefore we deduce that a vector

field V4, given by equation (3.6.2), is admissible if and only if it satisfies

n m+k
Ex(f)+ Y bacfr+ Y aiangn =0, (3.7.2)
r=m+k+1 h=m+1

fori=m+k+1,...,n and

aitn(p) = (v, [E1, Vi) (),
and
birr(p) = (vi, [E1, Vi ](p))-

Given p in M each point ¢ in a local neighborhood U of p in M can be reached

using the exponential map as follows
q = exp(z1Ey) exp (Z ijEj) (p)-
=2

On this open neighborhood U we consider the local coordinates = = (x1, 22, ..., %)
given by logarithmic map =. We set & := (z3,...,x,,). Given a relative compact open
subset 2 CC Z(U) we consider
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be the (m — 1)-dimensional leaf normal to F;. Then there exists ¢ > 0 so that the

closure of the cylinder
Q. ={(r1,2) : 0<z1<e, T €%} (3.7.4)

is contained in Z(U). Then . = {(¢,2) : & € Xy} is the top of the cylinder. Since
d=(F,) = 0., in this logarithmic coordinates the admissibility system (3.7.2) is given
by

= —B(z)F(x) — A(x)G(x), (3.7.5)
orxy
where we set
Jmaks1 Im+1
F = : , G= : (3.7.6)
fn Im+k

and we denote by B the (n —m — k) square matrix whose entries are b;;,., by A the

(n —m — k) x k matrix whose entries are a;yj,.

3.8 The high dimensional holonomy map for ruled

submanifolds

For general submanifolds we are not able to provide a satisfactory generalization of
the holonomy map described for curves in Section 2.4. The main difficulty is that we
do not know how to verify a priori the compatibility conditions [53, Eq. (1.4), Chapter
VI, that are necessary and sufficient conditions for the uniqueness and the existence
of a solution of the admissibility system (3.6.6) (see [53, Theorem 3.2, Chapter VIJ).
However, for ruled submanifolds the system (3.6.6) reduces to the system of ODEs
(3.7.2) along the characteristic curves. Therefore, a uniqueness and existence result
for the solution is given by the classical Cauchy-Peano Theorem, as in the case of
curves in Section 2.4. We thought it reasonable to organize this section following the
same structure of Section 2.4. The main difference is that the target space of the high
dimensional holonomy map is the Banach space of continuous functions on the foliation
perpendicular to the characteristic curves.

Let ® : M — N be a ruled immersion in a graded manifold. Let €. be the open
cylinder defined in (3.7.4) and T%,(f) = f(0,) and Tx_(f) = f(e,-) be the operators
that evaluate functions at 1 = 0 and at x; = ¢, respectively. Then we consider the

following spaces:
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m-+k

1. ”H,O(Qa):{ > gV gieCo(Qa)}-

1=m+1

2. VHQ.) :{ znj fiVi + O fi € C(), fi € C(N), Ts, () :o}.

i=m-+k

3. V(X.) is the set of compactly supported vertical vector fields in Cp(3., R"™F)

normal to M.

Therefore the Cauchy problem allows us to define the holonomy type map
HSy s Ho(Qe) — V() (3.8.1)

in the following way: we consider a horizontal compactly supported continuous vector
m+k
Vi= Y aVi € Ho(Sk)
l=m+1
we fix the initial condition Y,(0,%) = 0. Then there exists a unique solution
K) = Z fr‘/r € Vl (Qe)

r=m-+k+1

of the admissibility system (3.7.5) with initial condition Y,,(0,2) = 0. Letting

Ty, : VHQ) = V()

€

be the evaluating operator for vertical vectors fields at z; = ¢ defined by Ty_(V) =
V(e,-), we define H5,;(Y) = Ts_(Y,).

Definition 3.8.1. We say that ® restricted to Q. is regular if the holonomy map H%,

is surjective.

The following result allows the integration of the differential system (3.7.5) to

explicitly compute the holonomy map.

Proposition 3.8.2. In the above conditions, there exists a square reqular matrix
D(xy1,%) of order (n — k —m) such that

Fle,#) = —D(e,2)"! /OE(DA)(T, #)G(r, 2) dr, (3.8.2)

for each & € X.
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Proof. Lemma 3.8.3 below allows us to find a regular matrix D(zy,#) such that
0., D = DB. Then equation 0,, F = —BF — AG is equivalent to 0,,(DF) = —DAG.
Integrating between 0 and ¢, taking into account that F'(0, %) = 0 for each & € ¥, and
multiplying by D(e,2)™!, we obtain (3.8.2). O

Lemma 3.8.3. Let E be an open set of R™™1. Let B(t,\) be a continuous family of
square matrices on [0,e] x E. Let D(t,\) be the solution of the Cauchy problem

8,D(t,\) = D(t, )B(t,\) on [0,2] x B, D(0,\) = I,

for each A € E. Then det D(t,\) # 0 for each (t,\) € [0,e] x E.

Definition 3.8.4. We say that the matrix A(z1,2) := (DA)(x1,2) on Q. defined in
Proposition 3.8.2 is linearly full R"~™* if and only if for each £ € %,

dim (span {fll(xl,i), Y L N B < [O,s]}) =n-—m—k,

where A’ for i =m +1,...,m + k are the columns of A(zy, 7).

Lemma 3.8.5. Let L: X — Y be a linear closed operator of Banach spaces. Then L
is not surjective if and only if there exists p € Y*, u #Z 0 such that p(y) = 0 for each
y € Range(L).

Proof. Assume that £ is not surjective, namely the subspace Range(L) = We(ﬁ) -
Y, then by [9, Corollary 1.8] we obtain the result. Conversely by contradiction assume
that Range(£) =Y, but by assumption there exists a a dual function g # 0 such that
1(y) = 0 for each y € Y, which is absurd. O

Proposition 3.8.6. The immersion ® restricted to Q. is reqular if and only if A(ml, )

is linearly full in R*—™"F,

Proof. Assume that the holonomy map is not surjective. The representation formula
(3.8.2) allows us to deduce that the linear map Hs is closed, since the limit of integrals
of an uniform sequence of continuos functions converges to the integral of the uniform
limit of the sequence. Since the dual of the space of compactly supported continuous
functions is the space of Radon measures (see [34, Chapter 7]), by Lemma 3.8.5 there

exists a Radon measure p # 0 and a continuous row vector I'(Z) such that

0=Tu(F(s,-) = —p (r(@)p(g, o (DA)(r, 2)G(r, 2) m)

0

_ /0 : /E T@)/DA)T.2)G(r. ) dyu(2)dr
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where I' = T'(2)D(e,2)~" # 0. As this formula holds for any G(t,%), we have

['(2)A(t,2) = 0 for all ¢ € [a,b] and p-a.e. in Z. Since the supp(p) # 0 there

exists o € supp(p) such that ['(Zg)A(t, Z9) = 0, then their columns are contained
in the hyperplane of R** determined by I'(y). Hence we deduce that A is not
linearly full.

Conversely, assume that A is not linearly full. Then there exist a point Z, € ¥
and a row vector with (n — m — k) coordinates I' # 0 such that T A(z, &) = 0 for all

x1 € [0,¢]. Then, denoting by dz,(¢) = ©(Zo) the delta distribution, we have
Dos(D(e, )F(2,2)) = = [ T(DA)(r, 30)G(r, o) dr =0
0

Since the Radon measure d;, annihilates the image of the holonomy map by Lemma

3.8.5 we conclude that the holonomy map is not surjective. O]
The following result provides a useful characterization of non-regularity

Theorem 3.8.7. The immersion ® restricted to Q. is non-reqular if and only if there
exist a point &y € Xo and a row vector field A(x1, %) # 0 for all x; € [0, €] that solves

the following system

axlA(.Tl, fo) = A(.ﬁEl, Zi‘o)B(ZBl, i’g)

(3.8.3)
A([Eh i’o)A(ZL’l, i’o) =0.

Proof. Assume that ® restricted to €. is non-regular, then by Proposition 3.8.6 there

exist a point Ty € ¥y and a row vector I' # 0 such that
FD(.CEl, i‘o)A(.’El, ilAfo) =0
for all z; € [0,¢], where D(z1, %) solves

8,,D = DB

(3.8.4)
D(07 fO) = In—m—k-

Since I' is a constant vector and D(z1, %) is a regular matrix by Lemma 3.8.3 |
A(zq,%0) :=T'D(x1,Z0) solves the system (3.8.3) and A(zy,Z) # 0 for all x; € [0, €].
Conversely, any solution of the system (3.8.3) is given by

A(x1,20) = I'D(z1, £9),
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where I' = A(0,29) # 0 and D(z1, o) solves the equation (3.8.4). Indeed, let us

consider a general solution A(t,Zg) of (3.8.3). If we set
U;. (1) = A(t, &9) — T'D(t, &),
where I' = A(0, Zy) # 0 and D(t, &) solves the equation (3.8.4), then we deduce

Oy W5, (t) = W (1) B(2, Z0)
\Ij:%o (O) =0.

Clearly the unique solution of this system is W;,(f) = 0. Hence we conclude that
Ffl(xl,io) = 0. Thus fl(:cl,ﬁco) is not fully linear and by Proposition 3.8.6 we are
done. 0

3.9 Integrability of admissible vector fields for a

ruled regular submanifold

Since for ruled submanifolds we have the notion of regularity given by high dimensional
holonomy map, in this section we deduce a deformability global result (Theorem 3.9.6)
for immersed submanifolds in analogy with Theorem 2.5.4. Indeed the regularity
assumption, that comes from a solution of a system of ODEs, allows us to produce
admissible variations of the original immersion compactly supported in an arbitrary set.
This result is sharper than the one obtained for general submanifolds (Theorem 3.5.2),
where we provide only variations of the original immersion compactly supported in an
open neighborhood of the strongly regular point.

In order to provide an integrability result in the spirit of Theorem 2.5.4 we need that
the space of simple m-vectors of degree grater than deg(M) is quite simple. Therefore

we give the following definition.

Definition 3.9.1. We say that a m-dimensional ruled immersion, see Definition 3.7.1,
® : M — N into an equiregular graded manifold (N, H!, ..., H*)

(i) fills the grading from the top if ny — ns_y = m — 1, where ny = dim(H*) and
ne_1 = dim(H51);

(ii) is foliated by curves of degree grater than or equal to s — 3 if ¢y > s — 3.
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A ruled submanifold verifying (¢) and (i7) will be called a FGT-(s—3) ruled submanifold

and in this case (ii) is equivalent to
s—3<w<s—1 (3.9.1)

Remark 3.9.2. Since ny —ns_1 = m — 1 and the condition (3.9.1) holds we have that
the only simple m-vectors of degree strictly grater than deg(M) are

ViNnEsN---NE,

fore =m+k+1,...,n. When ¢y = s — 1 the submanifold has maximum degree

therefore all vector fields are admissible, thus there are no singular submanifold.

Keeping the previous notation we now consider the following spaces

m+k B
L. H(Z) = {YH = Y gVi: g €C(), T () :0} where the norm is
=m-+1
given by
Willoo :=_ max sup |gi

""" m a:EQE

2. V(%) = {YU = > fiVi : 0nfi € C(Q), f € C(U), Ty (f2) :0} , where
i=m+k
the norm is given by

Yol == max  (sup |fi| + sup [0y, fi])
i=m+k,...n €, x€Qe

3. A(Xp) is the set of elements given by

n
Z Zi(l'l,...,l'm>v;/\E2/\"'/\Em
i=m+k+1

where z; € C(€.) vanishing on X.

We denote by I1; the orthogonal projection over the space A(Xg), that is the bundle
over the vector space of simple m-vectors of degree strictly grater than d, thanks to
Remark 3.9.2. Then we set

G H(Zo) x V) — H(Z0) x A(X), (3.9.2)
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defined by
G(Y1,Yz) = (Y1, F(Y1 4+ Y2)),

where

FY)=T,;(dU(Y)(er) A... ANdT(Y)(em)),

and ['(Y)(p) = expg,)(Y,). Observe that now F(Y') = 0 implies that the degree of the

variation I'(Y) is less than or equal to d. Then
DG(0,0)(Y1,Ys) = (Y1, DF(0)(Y: + Y2)),

where DF(0)Y is given by

S ofi(x) - azy
DF(0)Y = Z ( B + Z bitr fr + Z ailhgh)vi NEy NN Epy,.
i=m+k+1 21 r=m-k h=m+1

Observe that DF(0)Y = 0 if and only if Y is an admissible vector field, namely Y
solves (3.7.5).
Our objective now is to prove that the map DG(0,0) is an isomorphism of Banach

spaces. To show this, we shall need the following result.
Proposition 3.9.3. The differential DG(0,0) is an isomorphism of Banach spaces.

Proof. We first observe that DG(0, 0) is injective, since DG(0,0)(Y7, Y2) = (0, 0) implies
that Y7 = 0 and that the vertical vector field Y; satisfies the compatibility equations
with initial condition Y5(0, ) = 0 for each & € ¥y. Hence Y2 = 0. The map DG(0,0)
is continuous. Indeed, if for instance we consider the 1-norm on the product space we

have

IDG(0,0)(Yr, Yo)[| = [|(Ye, DE(0)(Y1 + Y2))]]
< [Willoo + [IDF(0) (Y1 + Y2)) [l
< (L anig)llo) Y2 lloo 4 (1 4 [1(brij)loo ) [ Y21

To show that DG(0,0) is surjective, we take (Y1,Y2) in the image, and we find a
vector field Y on €2, such that Yy =Y;, DF(0)(Y) =Y, and Y,(0,%) = 0. The map
DG(0,0) is open because of the estimate (3.9.3) given in Lemma 3.9.4 below. O
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Lemma 3.9.4. In the above conditions, assume that DF(0)(Y) = Y2 and Y, =Y and
Y(a) = 0. Then there exists a constant K such that

1Yollr < K([[Yalloo + [[Yilloc) (3.9.3)
Proof. We write
m—+k n n
Yi= > gVh Yo= > zViNEyA---AE, and Y,= Y fV.

Then Y, is a solution of the ODE (3.7.5) given by
Op, F(21,2) = =B(2)F(x1,2) + Z(x1,2) — A(z)G(x1, 2) (3.9.4)
where B(z), A(z) are defined after (3.7.6), F', G are defined in (3.7.6) and we set

Zm+k+1
J = :

Zn

Since Y,(0,%) = 0 an Y,, solves (3.9.4) in (0,¢), by Lemma 3.9.5 there exists a constant

K such that

Yolls = [[Flly < K[ Z(2) — Az) G(2)]|

<
i (3.9.5)
< K([[Yalloo + [Yilloo)-

where K = K max{1, || A(z)||o}. O

Lemma 3.9.5. Let E be an open set of R™™1. Let u: [0,¢] x E — R be the solution

of the inhomogeneous problem

W) = At Au(t, A) + e(t, V), (3.9.6)

where A(t, \) is a d X d continuous matriz on [0,¢] X E and c(t, \) a continuous vector
field on [0,e] x E. We denote by u' the partial derivative Oyu . Then, there ezists a
constant K such that

[l == llullee + [t/ lloe < K(llclloc + [uo]oo)- (3.9.7)
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Proof. We start from the case r = 1. By [53, Lemma 4.1] it follows
t t
u(t A) < (JuoN)|+ [ le(s, Nlds ) el 14014,
0
for each A € E' and where the norm of A is given by supy,_; [A z|. Therefore we have

sup sup |u(t, A)| < Cy(sup sup |c(t, A)| 4 sup |ug(N)]), (3.9.8)
tef0,e] \eE tef0,e] \eE AeE

where we set
Cl — 565511137:6[0,5] SUPxcE ||A(t»>\)||.

Since u is a solution of (3.9.6) it follows

sup sup [u'(¢,\)] < sup sup [|A(t, \)|| sup sup |u(t, A)| + sup sup |c(¢,A)]
te0,e] A\eE te0,e] A\eE tel0,e] A\eE tel0,e] AeE

(3.9.9)
< (Ca +1) sup sup le(t, A)].
te(0,e] A\eE
Hence by (3.9.8) and (3.9.9) we obtain
[ully < EK(llelloo + [[uolloo)- O

Finally, we use the previous constructions to give a criterion for the integrability of

admissible vector fields along a horizontal curve.

Theorem 3.9.6. Let ® : M — N be a ruled FGT-(s—3) immersion into an equiregular
graded manifold (N, H", ..., H?®) such that deg(M) = (m—1)s+1y, where m = dim(M),
and (i) and (it) in 3.9.1 hold. Let Q. = {(x1,2) : 0 < x; <&, & € Eg} with X
defined in (3.7.3). Assume that ® is reqular on the compact Q.. Then every admissible

vector field with compact support in . is integrable.

Proof. If 1o = s—1 all vector fields are admissible, then all immersions are automatically
regular. Each vector field is integrable for instance by the exponential map.

Let now s — 3 < 19 < s — 2. Let us take V vector field on . and {V*}22, vector
fields equi-bounded in the supremum norm on €. Let I*(R) the space of summable

sequences. We consider the map

G+ [(—ev2) X I(R)] > M) X V(S0) = H(Z0) x A(Z).
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given by
G((r, (), Y1,Y2)) = Vi, F(rV + Y7V + Vi + Ya)).
i=1
The map G is continuous with respect to the product norms (on each factor we put
the natural norm, the Euclidean one on the interval, the [* norm and || - ||o and || - ||1

in the spaces of vectors on 2). Moreover

G(0,0,0,0) = (0,0),

since the curve v is horizontal. Denoting by Dy the differential with respect to the

last two variables of G we have that
DyG(0,0,0,0)(Y1,Y2) = DG(0,0)(Y1, V)
is a linear isomorphism. We can apply the Implicit Function Theorem to obtain maps
Vi (—e,e) x IMe) = H(Xo), Yao:(—e,e)x'(e) = Vo),

such that G(7, (;), (Y1) (7, 7:), (Y2)(7,7:)) = (0,0). We denote by I'(¢) the ball of radio
¢ in Banach space ['(R). This implies that (Y;)(7,(;)) = 0 and that

F(tV + Z V' 4+ Ya(r, 7)) = 0.

i=1

Hence the submanifolds
F(TV + Z'EVZ + Y'2(7_, Tl))

have degree equal to or less than d.
Now we assume that V' is an admissible vector field compactly supported on €2,
and that V* are admissible vector fields such that V! vanishing on 2. Then the vector

field oY; 5v.
2 2

on €. are vertical and admissible. Since they vanish at (0, %), they are identically 0.
Since the holonomy map is surjective we choose {V*}22; on Q. such that {Ts_(V)}ien

is a normalized Schauder basis for V(X.). Then we consider the map

P:(—e,e) x I*e) = Co(Xe, N)
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given by
(7', (Tz)) — F(TV + Z Tivi + Yé(T, Ti))|257
=1

where Cy(X., N) is the Banach manifold based on Cy(3., R™). Notice that

aP(0,0)

5 =Ty (V') = Tx (V}),
T;

which is invertible since the holonomy map is surjective and

aP(0,0)

5, =T (V) =0,

since V is compactly supported in €2.. Hence we can apply the Implicit Function
Theorem to conclude that there exist ¢’ < ¢ and a family of smooth functions 7;(7),
with >, |7:(7)| < e for all 7 € (—€’,€’), so that

TV—FZTz Wit Ya(r, 73(7)))

take the value ®(p) for almost each p € X.. Since the vector fields {V*}2°, are equi-
bounded in the supremum norm on €., the series Y2, 7;(7)V? is absolutely convergent
on Q..

Clearly, we have

P(r, (1:(1))(p) = ®(p),

for almost each p € ¥.. Differentiating with respect to 7 at 7 = 0 we obtain

oP(0,0) oP(0,0) , .
o +>° o 7/(0) = 0.

%

Therefore 7/(0) = 0 for each i € N. Thus, the variational vector field to I is

I'(7) 0Ys

, 8Y2
G o)W 4 222 : 9.1
o V4 3OV 4 52(0,0) +§j8n =V (3.9.10)

=0 1 D

Here we show an example of regular ruled surface that is foliated by isolated curves.
Example 3.9.7. Let E be the Engel group introduced in Example 2.4.16, given by R*
endowed with the distribution H generated by

2
X1 =08, and Xo=0,, + 110, + %au.
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The second layer is generated by
X3 = [X1, Xp] = Opy + 110,

and the third layer by X, = [X3, X3] = 0,,. In Example 2.4.16 we show a well-known
example of horizontal singular curve, first discovered by Engel, given by v : R — R*,
v(t) = (0,¢,0,0). R. Bryant and L. Hsu proved in [11] (see also Proposition 2.4.17)
that « is rigid in the C* topology therefore this curve + does not satisfy any geodesic
equation. However H. Sussman [97] proved that 7 is the minimizer among all the
curves whose endpoints belongs to the xs-axis.

Let © be an open set in R? and ® :  — R* be the ruled immersion parametrized
by ®(u,v) = (0,u,0,v) whose tangent vectors are (Xo)a () and (X4)s,0). Then we
have that the degree deg(®(£2)) is equal to four. Fix the left invariant metric g that

makes X1,..., X4 an orthonormal basis. Taking into account equation (3.7.2), we have
that a normal vector field V = f3 X35+ ¢ X, is admissible if and only if

o _

ou g1,

since b33 = (X3, [ X2, X3]) = 0 and az; = (X3, [Xo, Xi]) = —1. Therefore A(u,v) =
(—1) for all (u,v) € Q, then A is linearly full in R. Thus, by Proposition 3.8.6 we gain
that ruled immersion @ is regular.

Despite the immersion ® is foliated by singular curves that are also rigid in the
C' topology, ® is a regular ruled immersion. Moreover X is a FGT-(s — 3) ruled
submanifold, thus by Theorem 2.5.4 we obtain that each admissible vector field is

integrable.

Example 3.9.8. Let (E,#) be the Carnot manifold described in Section 3.2.3 and
in Example 3.5.5 where p = (z,y,0,k) € R? x S' x R = E and the distribution H is

generated by
X1 = cos(0)0, + sin(0)d, + kg, Xo = 0.

The second layer is generated by
X3 = [X1, Xo] = —0p

and Xy, Xy. The third layer by adding X4 = [ Xy, [X4, Xs]] = —sin(0)0, + cos(#)0, to
X1,...,X5. Let Q be an open set of R? endowed with the Lebesgue measure. As in
Example 3.5.5 we consider the immersion ¢ : Q — E, ®(z,y) = (z,y,0(z,y), k(x,y))
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where we set ¥ = ®(£2). Then a tangent basis of 7,2 adapted to (1.2.10) is given by

El = Xl —l— Xl(H)Xg,

(3.9.11)
E2 = X4 — X4(9)X3 + X4(R)X2.

Therefore ¥ is a FGT-(s — 3) ruled submanifold foliated by horizontal curves. Adding
V3 = Xy — Xi(k)X; and V; = X3 we obtain a basis of TE. Choosing the metric g that

makes F1, F», V3, V, an orthonormal basis we gain that

ans = (Vi, [B1, V3]) = 1+ X (k)
bara = (Va, [Er, Vi]) = Xu(0).

Therefore the admissibility system (3.7.2) on the chart 2 is given by
Xi(f1) = =Xa(0) f1 — (1 + X1(0))gs,

where V4 = g3V5 + f4V4 and the projection of the vector field X; and X, onto € is
given by

X, = cos(0(z,9))0, + sin(6(z,y))d,
Xy = —sin(0(z, y))0, + cos(8(z,y))0,.

Notice that the matrix A(z,y) = ((1+ X1(6(z,y))?)) never vanishes for all (z,y) € Q,
then also the matrix A = DA defined in Proposition 3.8.2 never vanishes since
D(z,y) # 0 for all (x,y) € Q. Therefore by Proposition 3.8.6 the surface ¥ is regular,
then by Theorem 2.5.4 they are deformable.

3.10 First variation formula for submanifolds

In this section we shall compute a first variation formula for the area A4 of a submanifold
of degree d. We shall give some definitions first. Assume that ® : M — N is an
immersion of a smooth m-dimensional manifold into an n-dimensional equiregular
graded manifold endowed with a Riemannian metric g. Let u = ®*¢. Fix p € M and
let p = ®(p). Take a p-orthonormal basis (€1, .. .,&y,) in T;M and define e; := d®;(€;)
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for i =1,...,m. Then the degree d area density © is defined by

1/2
Op):=|(e1 A... New)d| = ( Y (et A Nem, (XJ)p>2> : (3.10.1)

deg(XJ):d

where (Xi,...,X,) is an orthonormal adapted basis of TN. Then we have
Ad(M) = [ O(E)du(p).

Letting My be the singular set defined in (1.2.9) we set

My = @1 (My). (3.10.2)

Assume now that V € X(M, N), then we set

m

(divE V)B) = (et A AVGV A Aem, (e1 Ao Aew)a). (3.10.3)

i=1
Finally, define the linear function f by

FV) = S (et A Aem, Vi, X0 {er Ao A em, (XJ)5). (3.10.4)

deg(Xs)=d
Then we have the following result

Theorem 3.10.1. Let ® : M — N be an immersion of degree d of a smooth m-
dimensional manifold into an equireqular graded manifold equipped with a Riemannian
metric g. Assume that there exists an admissible variation T : M x (—¢,&) — N with

associated variational field V compactly supported on M ~ My. Then

d

G, AT = [ e (@G VIE)+ ). (3109

Proof. Fix a point p € M. Clearly, &(t,p) = dl g (€:), i =1,...,m, are vector fields
along the curve ¢t — I'(p, t). Therefore, the first variation is given by

CZ toA(Ft<M)) = /M\MO cclif t:0| (EL(E) Ao A Em(t)), |du(p)
= o ;5 ( > <51(t)/\.../\5m(t),XJ>2) du(p).
Mo AUJy_o \ deg(X,)=d
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The derivative of the last integrand is given by

1

l(er Ao Aem)dl Z (er Ao Aem, (Xg)p) X

deg(XJ):d

X (<el/\.../\em,vvaJ>+Z<el/\.../\veiV/\...Aem,(XJ)p>>.

i=1
Using (3.10.3) and (3.10.4) we obtain (3.10.5). O

Remark 3.10.2. Let us denote by (Ei, ..., F,,) a local frame for the tangent space
d®(TM) such that E;(p) =e; for i = 1,...,m. Notice that

f(Va) ((ElA---/\Em)d>
—=(e1AN...Nep, V . 3.10.6
op o\ A A B! (3100
Indeed, since we have
(BExAN...ANEp)a= >, (EAAN...ANEn, X)Xy,
deg(Xs)=d
we get
V( 1 )_ > (ex Ao Aem, XV ((Bx Ao A By X))
PN\IBLA .. ANER)d dea(X3)=d l(ex Avoo Ae)al? ’

and so we have that VVP(](E /\.../\E 3
1 e m)d

is equal to

1
50 (degg}):dvp(wl AN By X)) (X0)p + (61 A A e, (Xj)p>vaXJ>

1
Vv N Nem)d-
+ p<|(E1/\.../\Em)d|>(el €m)d

Multiplying by e; A ... A e, and taking into account the above computations we get

(3.10.6).

Definition 3.10.3. Let ® : M — N be an immersion of degree d of a smooth m-
dimensional manifold into an equiregular graded manifold equipped with a Riemannian
metric g. We say that ® is Ag-stationary, or simply stationary, if it is a critical point

of the area A, for any admissible variation.



3.10 First variation formula for submanifolds 147

Proposition 3.10.4. Let ® : M — N be an immersion of degree d of a smooth m-
dimensional manifold into an equireqular graded manifold equipped with a Riemannian
metric g. Let T'y be admissible variation whose variational field V =V is compactly

supported and tangent to M = ®(M). Then we have

d _
= tzoAd(Ft(M)) ~0.

Proof. We consider the d area m-form wy defined in (3.1.6). Therefore, we have
vad = Zvdwd + dszd,

where 21, is the interior product in M, Ly is the Lie derivative in M and d denotes the

exterior derivative in M. Since wy is a top-dimensional form in M we have dwy = 0.
Thus, it follows

EV Wy = d (vad)

A

(=1)'W; (wwa(Wa, ... Wi W) ) +

I

@
Il
—

+ Z(—l)i—’—jlvwd([Wi, Wj], Wl, ceey VT/;‘, ceey Wj, ce ,Wm)
1<j
(1)

Wi (wd(Wl, LV ,Wm)> (3.10.7)

-

1

=

(By A ... AEp)g
WANA...AVwVA...ANW,,,
.1< ! W [N

Z (El/\.../\Em)d>>
[(Ex A ... ANEp)al )"

)+

+<W1A.../\Wm,vv<

where Wy, ..., Wy, are vector fields that at each point ¢ € M provide a basis of T, M
and (Ey,..., E,) is an orthonormal basis of vector field such that F;(p) = e; for
1=1,...,m. Choosing V; equal to E; for i = 1,...,m and evaluating the pullback of
(3.10.7) at p and by Remark 3.10.2 we obtain

d (& (wwa))(p) = = ((divi; V(D) + £(V5)).

By the Stokes Theorem we have

o ) *
/M o(p) ((leM V)(®) + f(Vp))d,u(p) = /an) (tywa) = 0,
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since V' is compactly supported in M. O

Remark 3.10.5. An alternative proof of Proposition 3.10.4 is the following: since
Ty(M) C ®(M) for all t, the vector field V,, = d®,;"(V}) is tangent to M and we have

d
dt|,_,

Ag(M) = /MW(@) +Odivg V) du = /M div (OV) du = 0.

Lemma 3.10.6. Let f,g € C*°(M) and X be a tangential vector field in C>°(M,TM).
Then there holds,

(i) fdiva(X) + X(f) = diva(fX),
(ii) gX(f) = divay(fgX) — gf diva (X) = fX(g).

Proof. By the definition of divergence we obtain (i) as follows

m

Avar(FX) = (7, (X)) = S el e + F{Ve, (), €0).

=1 =1

To deduce (ii) we apply twice (i) as follows

divar(gf X) = fX(g) = gdivi (f X) = gX(f) + g divas (X). H

Theorem 3.10.7. Let ® : M — N be an immersion of degree d of a smooth m-
dimensional manifold into an equireqular graded manifold equipped with a Riemannian
metric g. Assume that there exists an admissible variation T : M x (—¢,¢) — N with

associated variational field V' compactly supported on M ~ My. Then

d
dt|,_,

Ad(T(31)) = /M\MOW HL)dy, (3.10.8)

where Hy is the vector field

n

j=m+11i=1
noon (ExN...NEn)a
%Z ! En B (3109

ry !

j=m+1
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In this formula, (E;); is a local orthonormal basis of TM and (N;); a local orthonormal

basis of TM*. The functions &; are given by

() EiN...\NE,
gij:(El/\...ANj/\...AEm,( 1 L

). (3.10.10)

Proof. Since our computations are local and immersions are local embeddings, we shall
identify locally M and M to simplify the notation.

We decompose V = VT + V4 in its tangential VT and perpendicular V+ parts.
Since divl; and the functional f defined in (3.10.4) are additive, we use the first
variation formula (3.10.5) and Proposition 3.10.4 to obtain

d
dt|,_,

AT = [ o (v VR 0) + 1) dito).

To compute this integrand we consider a local orthonormal basis (£;); in TM
around p and a local orthonormal basis (N;); of TM* with (N;);. We have
Vi= > (V.N)N;.
j=m+1

We compute first

leMVJ‘ f: '/\VE_VL/\”‘/\E (El/\.../\Em)d

as

i Zn: <E1/\~./\(VEKV,N]-)NJ')/\.../\Em,

i=1 j=m+1

that it is equal to

< - (Z) oo
;j:%: < (v, ))(ElA...ANjA...AEm,|(E1A.”/\Em)d‘>

(3.10.11)

(i)
+(V,N;)(EAN...AVEN; A...NEy,

The group of summands in the second line of (3.10.11) is equal to (V, Hy), where

(ExN...NEp)a
(B A ... A Ep)dl

m n (%)
:Z Z <E1/\.../\VEiNj/\.../\Em7

i=1 j=m+1
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To treat the group of summands in the first line of (3.10.11) we use (ii) in Lemma 3.10.6.
recalling (3.10.10) we have

Ez'((V, Nj>)fij = divy <<‘/7 Nj)&jﬂ') — (V. divy (5z‘jEi)Nj>a

so that applying the Divergence Theorem we have that the integral in M of the first

group of summands in (3.10.11) is equal to

[ (V. Hd

M~ My

where

H, = — fj znj divyy (gijEi)Nj.

i=1 j=m+1

We treat finally the summand

fv) S f(N;)
= V, N, =(V.H
@ i:;_1< ) ]> (__) < Y 3>7
where V)
H; = Z @j Nj;.
j=m+1
This implies the result since Hy; = H; + Hy + Hs. O

In the following result we obtain a slightly different expression for the mean
curvature Hy in terms of Lie brackets. This expression is sometimes more suitable for

computations.

Corollary 3.10.8. Let ® : M — N be an immersion of degree d of a smooth m-
dimensional manifold into an equireqular graded manifold equipped with a Riemannian
metric g, M = ®(M). We consider an extension (E;); of a local orthonormal basis of
TM and respectively an extension (N;); of a local orthonormal basis of TM* to an

open neighborhood of N. Then the vector field Hy defined in (3.10.9) is equal to

n

Hd = Z (leM (@NJ — Zész)—i‘
j=m+1 i=1

_ (3.10.12)
+N;0)+> > §ik<[Ei7Nj]aNk>>Nj7

i=1 k=m+1

where &;; is defined in (3.10.10).
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Proof. Keeping the notation used in the proof of Theorem 3.10.7 we consider
UL (@) (ExN...NEy)d
. ANVEN; N...NFE,, N;.
Z::%: B (B n- A B
Writing
VEN; =Y (Ve N, E)E, + Y (VgNj, Ny) Ny, (3.10.13)
v=1 k=m+1
we gain
Hy= Y (de(N VB ABDd+Y Y &V, Nk>>N]
i i=1 k=m~+1
Let us consider
” ExN...NE,, X
>y ((El/\.../\Em,VNjXJ>< : J>> N;. (3.10.14)
j=m+1deg(X)=d [(BL A A Ep)dl

Since the Levi-Civita connection preserves the metric, we have

(BAN. . NEy, VN, Xg) = Nj((EIA. . ANEn, X5))—(Vn, (E1A---AEy), X ). (3.10.15)

Putting the first term of the right hand side of (3.10.15) in (3.10.14) we obtain

(Ex N ...\ Ey, Xy)
) N;((EyN...NEp, X)) = N,(0).
deg(X)=d s [(Ex Ao A Bl !

On the other hand writing

Vi, Ei = Z<VNjEi7Eu>EV + Z <VNjEiaNk>Nk

v=1 k=m+1
we deduce
.- (0 EiA...ANEn X
> <E1A.../\VNjEiA...AEm,XJ>< - )
i=1 deg(Xy)=d [(BEy Ao A Bl

=3 Y (VB N
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Therefore we obtain

n

Hy= 3 (N;-(@)—i S (Vi B N )6k ) N;.

j=m+1 i=1 k=m+1

Since the Levi-Civita connection is torsion-free we have

Hy +Hy= Y (divM(Nj) O+N;0)+Y 3 (BN, Nk)>.
e i=1 k=m+1
Since divy (N;) © = divy (© N;) we conclude that Hy = H; + Hy + Hj is equal to
(3.10.12). O

3.10.1 First variation formula for strongly regular submani-
folds

Definition 3.10.9. Let ® : M — N be a strongly regular immersion (see § 3.5) at
D, Uma1,---,U, be an orthonormal adapted basis of the normal bundle and k be the
integer defined in 3.4.6. Let N,,y1,..., N, be a local adapted frame of the normal
bundle so that (N;), = v;. By Remark 3.5.3 the immersion ® is strongly regular at p
if and only if rank(A+) = £. Then there exists a partition of {m + 1,...,m + k} into

sub-indices h; < ... < hy and 41 < ... < {1 k_¢ such that the matrix

alhl(ﬁ) alhe(ﬁ>
At(p) = : : (3.10.16)

eny (p) -+ un,(p)

is invertible. The mean curvature vector of degree d out of the singular set M, defined

in Theorem 3.10.7 is given by

> HIN;.

j=m+1
Then we decompose H; into the following three components

t

t .
m—+k+1 h1 1
H) H; H,

HY) = : H)=| : and HY = : (3.10.17)

Y

n he It k—t
Hd Hd Hd

with respect to Np,i1,..., N,.
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Theorem 3.10.10. Let & : M — N be a strongly reqular immersion at p in a graded
manifold. Then ® is a critical point of the Ay area functional if and only if the

immersion ® verifies

HY, — Hi(ALH)LAL =, (3.10.18)

and .
Hy — Hi(AY)™'BY =3 By (HS (AN 7' Cf) =0, (3.10.19)

j=1

on the open set Wp C M ~. M, introduced in Theorem 3.5.2 and where E? is the adjoint
operator of E; for j =1,...,m and HY, HY and HY are defined in (3.10.17), B+, C’f
in 3.4.3, At in (3.10.16) and AL is the ¢ x (m + k — ) matriz given by the columns

- 1
W,y impke Of AT

Proof. Since ® : M — N is a normal strongly regular immersion then by Theorem 3.5.2

each normal admissible vector field

m—+k n
VJ_ = Z ¢1 Nz + Z wr Nr
1=m-+1 r=m-k+1

is integrable. Keeping in mind the sub-indices in Definition 3.10.9, we set
Vit P, i,
: , I'=[| : and T = : . (3.10.20)

\Ij — :
wn th,g ¢im+k,g

Since the immersion ® : M — N is strongly regular, the admissibility condition (3.4.25)

for V* is equivalent to

I = —(AL)*(ZCj E;(P) +BL\IJ+ZHT>. (3.10.21)
j=1
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By Theorem 3.10.7 the first variational formula is given by

d
dt|,_,

AT (0) = [ (V4 H)

~ [ Hjv 4+ H T+ HIT

_/ HY U+ H, T — HY (AY)” (ZCL +Bi\p+AiT>
:/_ (H;—H’;(Ai)—lixl)H
M
+ / (Hg _HLAY B - B <H’; (Ai)—lcj.i))qf
M e

for every W € C5°(W;, R"™F) T € C°(W;, R**). By the arbitrariness of ¥ and 7T,
the immersion ® is a critical point of the area A, if and only if it satisfies equations
(3.10.18) and (3.10.19) on Wj. O

Example 3.10.11 (First variation for a hypersurface in a contact manifold). Let
(M*t! W) be a contact manifold such that H = ker(w), see § 3.2.2. Let T be the
Reeb vector associated to this contact geometry and g the Riemannian metric on M
that extends a given metric on ‘H and makes T" orthonormal to H. Let V be the
Riemannian connection associated to g.

Let us consider a C? hypersurface ¥ immersed in M. As we showed in § 3.2.2, the
degree of ¥ is maximum and equal to 2n + 1, thus each compactly supported vector
field V on ¥ is admissible. Following § 3.2.2, we consider the unit normal N to ¥ and

its horizontal projection N, namely
N = N, + (N, T)T.

As in § 3.2.2, we consider the vector fields

N,
= S = (N, T — |[Ni|T.
| N
Let e, ..., ea,—1 be an orthonormal basis of 7,2 N H,. Letting e, = S,, we have that
ei,..., ey, is an orthonormal basis of 7),X. Since

(61 VANAAN €2n>2n+1 = —|Nh‘ e1N...Ney 1 N Tp,
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we have

VANRAAN
(61 e2n)2n+1 =—e1 N...Negp_1 N TP'
[(ex A vt A ean)antl

Since X has codimension one, N is the only normal vector. Therefore, by the definition

of mean curvature Hy provided in (3.10.12), there follows
2n 2n
H,; = —divy <|Nh|N — Zfi,znﬂEi) — N(INu|) + > &ion ([N, E], N),
i=1 i=1
where, for 1 = 1,...,2n, the function &; 2,41 is given by

(0)
—(e1 AN ANAN AN egpy e Ao Neg AT,

Notice that N is orthogonal to T,,%, thus we have §; 9,41 =0 foralli=1,...,2n — 1.
Moreover, we have &a, 9,41 = —(N,T'). Thus
2n
INLIN =Y &iont1 Ei = [Ny|N 4+ (N, T)S = vj,.

=1

Now given X,Y vector fields on M, we define the tensor
o(X,Y)=(VxT,Y).

Therefore, we have

2n—1

divs(vn) = > (Vewh, Ei) + (Vs vy, S)
i=1
2n—1

= > (Ve E) — [Ni|(Vs i, T)
=1
= Z (Vi,vn, E;) + |Nplo(S,vp).

Since S = |N,|"*((N, T)N — T) and (V7T,v,) = (T, [T,v]) we get
|Nplo(S,vp) = (N, T)o(N,v,) + (T, [T, vp)).

Therefore we deduce

divs(1p) = anw&yh, E) + (N, T)o(N, ) + (T, [T, ). (3.10.22)

i=1
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On the other hand, we have

—N([Nu|)=(N, T){[N, S], N) =

=N(|Ni|) = (N, T(VnS = VsN,N)

—N(INu|) = (N, T)(VNS, N) (3.10.23)
—N(|Np]) + (N, T)(S,VNN)

—N(INp]) + (1 = [Nu|*) (v, VaN) = (N, T)|N; (T, VyN).

It can be easily proved, adapting the proof given by Ritoré and Rosales in [89, Lemma
4.2] to this more general setting, that the following relation holds

(yh,VNN> :N<|Nh|)+<N,T><VNT7 Vh>. (31024)
Using (3.10.24) we deduce

<VNT l/h> |Nh| (yh,VNN> — <N, T>|Nh|<T, VNN>
(VNT,vp) — |Np| (([Nulvn, VN N) = (N, T) [N, (T, VN N))
(VNT,vn) — |[Np| ((N, VNN))

Hence, we obtain

H; = - ; (Ven, i) — (N, T)o(N,v) = (T, [T, vp]) + (N, T)o (N, vy) (3.10.25)

= —divi () + (v, T, T),

out from the singular set My. When ([vp,, T], T) = 0 we obtain well known horizontal
divergence of the horizontal normal. This definition of mean curvature for an immersed
hypersurface was first given by S. Pauls [84] for graphs over the z,y-plane in H!,
later extended by J.-H. Cheng, J.-F. Hwang, A. Malchiodi and P. Yang in [18] in a
3-dimensional pseudo-hermitian manifold. In a more general setting this formula was
deduced in [54, 27]. For more details see also [41, 13, 95, 40, 92, 89].

Example 3.10.12 (First variation for ruled surfaces in an Engel Structure). Here we

compute the mean curvature equation for the surface ¥ C F of degree 4 introduced in
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Section 3.2.3. In (3.9.11) we determined the tangent adapted basis

By = cos(0)®, +sin(0)®, = X, + X, (k) Xy,
By = —sin(0)®, + cos(0)®, = Xy — X4(0) X3 + Xy4(r) X,

A basis for the space (T'M)* is given by

Ng == X4(9)X4 + X3
N4 = Xl("'{')Xl - X2 + X4(/€)X4

By the Gram—Schmidt process we obtain an orthonormal basis with respect to the

metric g as follows

F, 1

B, = 2L — (X, + X,(k)X

1 A 041( 1+ 1(f<6) 2)7

1 X4k

Ey=— <X4 — X4(0)X;5 + 4(2 )(XQ - Xl(n)X1)>
Oég al
1

Ny = —(Xs + Xa(0)X))
3

where we set

Xy(k)2  \JoRad+ Xa(k)?
= |14+ X4(0)% + =
" J O X ) o
and )
Nh = —Xl(li)Xl + XQ, Vp = ;(—Xl(K>X1 + XQ)
1

Since the degree of X is equal to 4 we deduce that

1

[051e%

(El /\ E2)4 -

(Xl ANXy+ X1(5>X2 A X4)7

then it follows |(E1 A Fy)s| = ap ! and

E/NE 1
M = o (X A Xy + Xa(8)Xa A Xo).
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A straightforward computation shows that &;3 for i = 1,2 defined in (3.10.12) are given
by

(E1 N E2)4
= (N3 N\ Es, =0,
S0 = NN B n B
(E1 A Es)y X4(0)
= (k1 NN
(E1 A Es)y
=(N,ANE =0
514 < 4 2 ‘(El A E2>4’> )
(El A\ E2)4 X4(Ii)
24 < ! b |(E1 A\ E2)4’ 10o3
Since we have
iN _ X4(9)E _ My X4(9)X4(/f)y
(0%)] 5 (0% 2 (0%)] 3 1o (X3 &
and
1 X 1 X
Ly Kalw) g (N, + 4@ (X4(0)X;3 — Xy)
Qo 100903 a5\ O a3

+ Xa(x) ( — Xy4(0) X3 + Xy — Xfy(/{) Nh))

oo i
1 X4(r)? 1
= (OégNh + 4( 3 Nh) = Nh
Q500 Q30 Q1a
1
= 7yh
as

it follows that the third component of Hy is equal to

H} = — divy (O‘?’Xg _ Xl Xulx) uh> — N3(az!)
(6%) 10o03
X,(0 Xu(w
R NN R A L 1 GO AR
a3 Q3o

and the fourth component of H, is equal to

3 = —divag () = Nagoz") + XD i, ) ny - i, ) vy

Q3 Qa3 (021851051

Then first variation formula is given by

ATu(S) = [ (V4 Ha) = [ HE g+ H (3.10.26)
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for each 13,14 € C§° satistying (3.5.7). Following Theorem 3.5.2 for each 13 € C§° we

deduce

Wy = —Xl(%ij bL%, (3.10.27)

since a*+ > 0.

Lemma 3.10.13. Keeping the previous notation. Let f g : 2 — R be functions in
C3(Q) and

X, = cos(6(z,9))0, + sin(0(x,y))d,,
Xy = —sin(0(z,y))0, + cos(6(z,y))0,

Then there holds
[o%i(h)+ [ 1a%u0) =~ [ 1Xu(9)

By Lemma 3.10.13 and the admissibility equation (3.10.27) we deduce that (3.10.26)

is equivalent to
bt _ (Hji Hj
3 4 d d
/Q<Hd - aLHd+X1 (ai> +X4(9)ai>¢3’

for each 13 € C§°(€2). Therefore a straightforward computation shows that minimal

(0, k)-graphs for the area functional A, verify the following third order PDE

X4(0)

a3

X, (HS) +atHE + ( (X1, X4](0) — alLXl (a*) >H§ =0. (3.10.28)

3.11 Calibration for minimal hypersurfaces in the

Heisenberg group

In this Section we show a calibration argument for C? minimal ¢-graphs in the Heisen-
berg group. We prove in Proposition 3.11.3 that a C? t-graph solution of the minimal
hypersurface equation, deduced by the first variation of the area functional, is a
minimum for the area among all possible C? t-graphs over the same open set € .

Let H" = (R?>"™! %) be the Heisenberg group, described in Example 2.7.3, we

consider the left invariant vector fields

Xzzaml—kyzat, }/Z:ayl—xzat 2:1,,n
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and the only non-trivial commutator
2T = [X,,Y;] = —20,.

Let © be an open set of R* and p = (z1,y1, " ,%n, ¥n) be a point in Q. Then, we
consider the C? function
u: Q=R

and the associated hypersuface
Y := Graph(u) = {(p,t) e H" : u(p) =t, p € Q}.

Since the Heisenberg group is a nilpotent contact manifold we have that the mean

curvature equation (3.10.25) for minimal hypersurfaces is
div(v,) = 0, (3.11.1)

where v, = and N}, is projection of the unit normal to X onto the distribution

Np_
[Vn |
H = span{X;,Y;}. Computing directly the first variation formula of (3.2.2) we realize
that for t-graphs

. . Vu — J(p)
divZ =divgen | == | =0 3.11.2
ive (1) iVR2 <\Vu — J(p)\) , ( )
where J(p) = (y1, =1, s Yn, —Tn), VU = (Ugy, Usgy,, - -+, Usg,,, Uy, ) and divge. is the

standard divergence in R?", for further details see [19]. Let S = Graph(u) be a minimal
hypersurface satisfying equation (3.11.2). Since S; = S + (0, ¢) obtained by a vertical
translation of S is still a minimal hypersurface we have that {S;},cr is a foliation by

minimal hypersurfaces of {2 x R.. Therefore, the horizontal normal vector field

Vu —J(p)

= Va0 (3.11.3)

Vp

is defined on the whole cylinder and it is invariant in the 7" direction. Notice that there

exists also the ambient horizontal divergence on the Heisenberg group given by

n

divin (Vi) = = > Xi(¢5) + Yi(disa)

7
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where Vi, = >0 ¢; X; + ¢,41Y; is a vector field in the horizontal distribution. When

vector field V;, do not depend on the ¢ variable we have
divgn (V}) = divgen (V). (3.11.4)

Since the unit horizontal normal vector field v, in (3.11.3) verifies the minimal surface
equation (3.11.2) at each (p,u(p) + ty) € Sy, and we can extend it to the all cylinder
2 x R. Moreover, by equation (3.11.4) we have

diVRQn(l/h) = O
In this case the singular set Sy is given by
So={(p,t) €S : Vu—J(p) =0}.

Clearly, the tangent vector v, is not defined on the singular set Sy and the area
functional has a different formula and a different Hausdorff dimension. In [19, Theorem
D] they proved that singular set Sy of a hypersurface is contained in a submanifold of

dimension less than n, here we report the proof of [19, Theorem D].

Theorem 3.11.1. Let Q2 be a open set of R*™. Suppose u in C*(Q) and S = Graph(u).
Then for each p in 2 there exists a neighborhood U of p in € such that Sy NU is a
submanifold of U satisfying

dimg(SoNV) < n,

where dimpg s the FEuclidean dimension.

Proof. First at all we define a function
G:Q—=R™  G(p)=Vu(p) - J(p)
The differential of G is given by
dG(p) = (Oju; — 0;J(p)i)ij=1. 2n

where J(p); is the i-th component of J(p) and u; = O;u. Notice that if A, B are matrices

of dimension m, by elementary linear algebra we know

rank(A) + rank(B) > rank(A + B) (3.11.5)
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and
rank(A) = rank(—A) = rank(—A”). (3.11.6)

Setting A = dG(p) and B = —dG(p)7, if follows by equations (3.11.5) and (3.11.6)
that

Indeed, setting h;; = 0;J(p); where 4,j = 1,--- ,2n, we have

0 1
-1 0 0

0 1

-1 0
0 0 1
-1 0

and rank(0;J(p); — 9;J(p);) = rank(2 h;;) = 2n. Therefore, we have
dimg(Ker(dG(p))) = 2n — rank(dG(p)) < n.

Then by the Implicit Function Theorem there exists an open neighborhood U of p in
Q such that G1(0) N U = Sy N U is a submanifold of U, having a dimension less that
n. [

Lemma 3.11.2. Let Sy be the set of singular point of an hypersurface S in H",
n > 2. Then for any € > 0 there exist open sets U' CC U C S with Sy C U’ and

1
U C {x: dist(x,Sy) < e} and a smooth function 1. : S — [0,1] such that |Vib.| < o

V.=0 in U,

(3.11.7)
ve=1 in (S\U)

and
/ V.| =% 0. (3.11.8)
S
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Proof. Here we provide a proof where the singular set Sy is a compact (paracompact)
set following [96, Lemma 2.4]. However, we only know that the singular set Sy is
closed in S, then for a right proof see [78]. By Theorem 3.11.1 we know that the
Euclidean dimension of the singular set Sy is less than or equal to n, thus, if n > 1,
we have H?"71(S;) = 0. Hence we can cover Sy with (a finite number of) balls
B;(r;) = B(pi, ;) N S where p; is a point in S and r; < /2 such that

dorl<e
i
Now, for each i we consider a function 1; in C*°(.S), 0 < ¢; < 1 such that

0 for z¢€ Bz(’l"z)
1 for x €S~ B;(2r;)

and

1
V()| < - for all .

%

Then setting v.(z) = min, ¢;(z), we have that 0 < ¢). < 1 and
Y.=0 on U’:UBZ»(TZ»)
Y.=1 on S~U,

where we set

U ={JB;(2r;) C {z:dist(z, Sy) < e}
i
Since we consider a minimum the function v, is piecewise smooth and we have

[V I@P dia) < [ STV @ dig )
1

Z / (2r;)—Bi(rs) 7’,?

Z H2”Jrl B;(2r;) — Bi(ry))

ng'n+1 (33)

:Oer" ' < Ce.

Finally, in order to obtain v, in C° we mollify .. O]
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Proposition 3.11.3. Let E be the subgraph of the minimal surface S = Graph(u)
and E be the subgraph of S = Graph(ii), where u, @ € C*(Q) and u satisfies equation
(3.11.2). Assume that K = E'A E is compact, then we have

Aspi1(S) < A2n+1('§)a

where Ag,y1 denotes the sub-Riemannian area.

Proof. Both E and E have locally finite perimeter, therefore by [65, Lemma 12.22]
K = E A E has locally finite perimeter. By assumption K is compact. By Lemma
3.11.2 there exist functions v, : S — [0,1] and 4. : S — [0, 1] verifying (3.11.7) and
(3.11.7). Since both S and S are graphs over  we can think that the functions ., Ve
are both defined on Q where € and € are the projection onto  of the singular set
Sy and respectively Sp. Setting . : 2 xR —[0,1] equal to 1, - 155 and constant in
the new variable, we have that there exist open sets U’ CC U C Q with Qo U Qo C U’
and U C {p : dist(p, Q U Q) < ¢} such that

0(p,t) =0 for p e U,

(3.11.9)
oe(p,t) =1 for p € (QA\U)

for each t € R, V.| < 1 and

/ V.| 2% 0.
K

Therefore we have

< [ Ve =50, (31110)
K

— ‘/KW%,W +W

Therefore, by the divergence theorem we have

0< ’/ div(perp)
K

/Kdiv(goeuh) = /S<905Vhth> |Ny| do + /SWth,Vf) |N§’ do

j (3.11.11)
> [ e Nl do = [ o2 INF] da

where N, ,*f is the projection of the unit normal N S to S onto the distribution and

y8 o N
NS
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We set ®(p) = (p,u(p)) and ®(p) = (p, @(p)) such that S = ®(Q) and S = ().
Letting ¢ tend to zero, we have that the left hand side of (3.11.11) goes to zero by
(3.11.10) and form the right hand side we obtain

A2n+1(S N (I)(QO U Qo)) g A2n+1(»§ N (f(QQ U Qo))
Since the singular sets do not affect the area functional, we conclude that
Agni1(9) < A2n+1(§)- O

Remark 3.11.4. Let (p, ) be a point in the Heisenberg group and g be a real number
such that B((p,t),r9) NOS = (). Then there exist r{, < rg and C positive constant such
that for each r < r{ it holds

Azon (SN B((p, t),71)) < Crh,






Index of Symbols

Here is a brief list of notations frequently used in this thesis.

smooth manifold of dimension n (page 13).

distribution of dimension [ (page 13).

Lie group (page 15).

an increasing filtration (page 26).

equiregular graded manifold (page 26).

growth vector (page 26).

smooth submanifold of dimension m (page 28).

pointwise degree of a submanifold (page 29).

degree of a submanifold (page 29).

singular set (page 29).

curve immersed (page 34).

Riemannian metric (page 33)

length functional of degree d (page 35).

density of the length functional of degree d (page 35).

the covariant derivative or the Levi-Civita connection(page 36).
holonomy map along ~ restricted to [a, b] (page 41).

Engel group (page 51).

Heisenberg group (page 75).

area measure of degree d (page 85).

an admissible variation (page 99).

dimension of the space of m-vector of degree greater than deg(M)
(page 102).

ambient degree of the first sub-bundle of the induced filtration
tangent to M (page 103).
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H,

dimension of the ambient sub-bundle corresponding to ¢o(U) (page 103).

¢ x p matrix (page 104).

¢ x (n — p) matrix (page 104).

¢ x (n — p) matrix for each j =1,...,m (page 104)

difference between the dimension of the ambient sub-bundle and the dimension
of the tangent induced sub-bundle both of them corresponding to ¢o(U) (page
110).

holonomy map for ruled submanifolds (page 133).

vector field associated to the first variation (page 150).
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