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ABSTRACT 

A normal vaginal microbiota, dominated by lactobacilli, is crucial for the prevention of several 

urogenital and sexually transmitted infections, including Candida and Chlamydia (Gupta et al., 1998; 

Spurbeck and Arvidson, 2008; Parolin et al., 2015; Nardini et al., 2016; Foschi et al., 2017; Ñahui 

Palomino et al., 2017). This aspect is strengthened by the demonstration that in case of bacterial 

vaginosis, a clinical condition characterized by the depletion of lactobacilli, a higher risk of STI 

transmission and acquisition is reported (Taha et al., 1998; Martin et al., 1999; Wiesenfeld et al., 

2003; Abbai et al., 2015). 

The protective role of lactobacilli against urogenital pathogens is exerted through different 

mechanisms including the production of various antibacterial compounds (lactic acid, hydrogen 

peroxide, bacteriocins and biosurfactants), the competitive exclusion for epithelial adhesion, and the 

immunomodulation (Kaewsrichan et al., 2006; Borges et al., 2014; Parolin et al., 2015; Younes et al., 

2018). Lactobacillus spp. interaction with the vaginal epithelial cells is the first step in the formation 

of the biological barrier against colonization of opportunistic and pathogenic organisms. The 

blockage of undesirable microorganisms adherence by lactobacilli may take place by exclusion, 

competition, and displacement mechanisms (Coman et al., 2015; Osset et al., 2001; Verdenelli et al., 

2014). 

In this project, some lactobacilli strains, previously isolated from healthy vaginal swabs by Parolin et 

al., (Parolin et al., 2015) were tested in order to evaluate their protective role against C. albicans and 

C. trachomatis infections. Specifically, the first part of this thesis regarded the study of lactobacilli 

protection versus C. albicans infection, and L. crispatus BC1 and BC2, L. gasseri BC9 and BC11, 

and L. vaginalis BC15 were employed. Two mechanisms of action at the basis of the protective role 

of lactobacilli against C. albicans were identified. The first mechanism was those exerted by L. 

crispatus BC1and L. gasseri BC9 which interacting with HeLa cell plasma membrane caused a 

modification of polar lipids organization and increased membrane fluidity. The second mechanism 

was exerted by L. crispatus BC2, L. gasseri BC11 and L. vaginalis BC15 which acted modulating 
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α5β1 exposure on HeLa plasma membrane. Both mechanisms resulted in the inhibition of C. albicans 

adhesion to HeLa cells. 

The second part of the present thesis aimed to identify vaginal Lactobacilli strains able to interfere 

with C. trachomatis infection process. Specifically, L. crispatus BC4 and BC5, L. gasseri BC14 and 

L. vaginalis BC17 were tested, and L. crispatus BC5was chosen as model strain because was the most 

active strain in counteract C. trachomatis adhesion to HeLa cells. Importantly, through siRNA 

silencing of ITGA5 gene, we demonstrated that C. trachomatis needs of α5 integrin subunit for its 

adhesion and internalization into HeLa cells. Furthermore, our results showed that L. crispatus BC5 

was able to protect from C. trachomatis infection by means of a dual mechanism. On the one hand, 

L. crispatus BC5 interaction with HeLa caused an increase of plasma membrane fluidity and a 

reduction of α5 integrin exposure on cell surface, thus making this protein less available for C. 

trachomatis binding and internalization. On the other hand, L. crispatus BC5 directly interacted with 

C. trachomatis, grabbing it and thus preventing its binding to α5 integrin. Interestingly, both in L. 

crispatus BC5 lysate and BS5, through western blot was identified a protein similar to α5 integrin 

which could be responsible for C. trachomatis binding.  

In conclusion, this study allowed a deeper understanding on the mechanisms underlying the 

protection against pathogenic microorganisms, in the specific case C. albicans and C. trachomatis. 

Thanks to their characteristics and to protective effects against pathogens, lactobacilli herein studied, 

with particular emphasis on L. crispatus BC5, could be good candidates for their use as probiotic 

agents promoting woman’s vaginal health. 
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1.1 Vaginal microbiota 

1.1.1 Vaginal microbiota of healthy woman 

The human body hosts microorganisms that inhabit surfaces and cavities exposed or linked to the 

external environment. Each body site contains ecological communities of microbial species that exist 

in a mutualistic relationship with the host. The varieties of organisms present are highly dependent 

on the predominant environmental conditions and host factors and hence vary from site to site. 

Moreover, they vary between individuals and over time (Costello et al., 2009).  

The vaginal mucosal ecosystem consists of a stratified squamous non-keratinized epithelium overlaid 

by a mucosal layer continuously lubricated by cervicovaginal fluid (CVF). Together, these form a 

physical and biochemical barrier against extraneous invading microorganisms. CVF is an acidic 

medium containing a large assortment of antimicrobial molecules such as antibodies (IgA and IgG), 

mucins, b-defensins, surfactant proteins etc., which in addition promotes the confinement of 

exogenous microorganisms (Aldunate et al., 2015; Witkin 2015; Witkin et al.; 2016). Besides the 

presence of the molecules mentioned above, the vaginal tract is also colonized by microorganisms, 

recognized as the vaginal microbiota (VM). These microorganisms, in addition to a complex 

synergism among secretion’s proteins and peptides, epithelial, and immune cells, perform a crucial 

role in the defense of female genital tract against infectious and inflammatory processes (Valenti et 

al., 2018). The species that inhabit the vaginal tract can change based on intrinsic host factors such 

as stage of life cycle, immune responses, hormone levels, nutritional status and disease states. The 

vaginal microbiota can also be altered by external factors such as environmental exposures, microbial 

interspecies competition or commensalism, and hygiene behaviors (Bolton et al., 2008).  

The human vaginal microbiota was first studied in 1892 by Döderlein, who considered the VM as 

homogenous and consisting only of gram-positive bacilli (Döderlein 1892). Over time this concept 

has been modified by researcher that have found the microbiota of asymptomatic woman to be 

composed of a variety of anaerobic and aerobic microorganisms. Döderlein’s bacilli are currently 
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know to be members of Lactobacillus spp. Lactobacilli are the most prevalent and often numerically 

dominant microorganisms, at 107–108 CFU/g of vaginal fluid in healthy premenopausal women 

(Boris et al., 2000; Farege et al., 2010). The most frequently lactobacilli species isolated from healthy 

woman are L. iners, L. crispatus, L. gasseri, L. jensenii, followed by L. acidophilus, L. fermentum, L. 

plantarum, L. brevis, L. casei, L. vaginalis, L. delbrueckii, L. salivarius, L. reuteri, and L. rhamnosus 

(Cribby et al., 2008). Other microbial species can be found in vaginal microbiota to a lesser extent, 

including Staphylococcus, Ureaplasma, Corynebacterium, Streptococcus, Peptostreptococcus, 

Gardnerella, Bacteroides, Mycoplasma, Enterococcus, Escherichia, Veillonella, Bifidobacterium 

and Candida (Hyman 2005; Larsen 2001; Marrazzo 2002; Redondo-Lopez 1990). 

Recent progresses in DNA sequencing techniques have enabled the classification of the vaginal 

microbiota into five community state types (CSTs) among which CST-I, -II, - III and -V are 

dominated by L. crispatus, L. gasseri, L. iners, and L. jensenii respectively, while CST-IV is 

dominated by mixed anaerobes similar to those found in Bacterial Vaginosis (BV) (Smith et al., 2017; 

Ravel et al., 2011). Multiple studies have shown that the vaginal microbiota may differ between 

women with different ethnicity and geographical location, with Blacks and Hispanics that harbor 

more aerobic bacterial species (CST-IV) and show higher vaginal pH (Ravel et al., 2011; MacIntyre 

et al., 2015). 

 

1.1.2 Alteration of vaginal microbiota composition 

As mentioned above, microbial communities inhabiting different human body sites can vary based 

on intrinsic host factors such as the stage of life cycle, the nutritional status and hormonal levels or 

can be altered by external factors such as environmental exposures, microbial interspecies 

competition or commensalism and hygiene behaviors (Bolton et al., 2008). Age is one of the factors 

that most affects changes in the vaginal ecosystem. In fact, the vaginal microbial ecosystem 

undergoes significant changes during the different stages of the woman's life, changes that are directly 

influenced by estrogen levels. The vaginal tract is colonized within 24 hours of a female child’s birth 
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and remains colonized until death (Farage et al., 2006; Farage et al., 2010). During puberty, the rising 

levels of estrogen promote the maturation and the accumulation of glycogen in the vaginal epithelial 

cells. Glycogen is metabolized by human α-amilase to maltose, maltotriose and α-destrine, which in 

turn are metabolized to lactic acid by Lactobacillus species (Figure 1.1), which become predominant 

during this stage of woman life. This creates an acidic environment which favours lactobacilli growth 

at the expense of other anaerobic microorganisms (Aldunate et al., 2015; Marchesi et al., 2015). 

 

 

Figure 1.1 Eubiotic effect of estrogen and Lactobacillus species in the vaginal milieu  
(Amabebe-Anumba 2018). 
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During the menopause there is a drastic reduction in estrogen production and glycogen content in the 

vaginal epithelium drops as well, leading to a depletion of lactobacilli. The decrease in the number 

of lactobacilli results in an increase of pH values that promotes the growth of pathogenic 

microorganisms (Farage et al., 2010). Even during pregnancy, there is a change in the microbiota due 

to the high level of estrogen and to increased vaginal glycogen deposition, which enhances the 

proliferation of Lactobacilli- dominated microbiota (Witkin, 2015). Among the external factors that 

can induce alterations in the normal composition of the vaginal microflora, hygiene behaviors and 

sexual activity can represent disturbing factors (Schwebke et al., 1999). Antibiotics, in addition to 

eradicating pathogens, also affect non-pathogens and disrupt the natural microbiota. Therefore, the 

use of probiotics containing vaginal lactobacilli could be useful to restore a vaginal microflora 

dominated by Lactobacillus genus (Reid et al., 2011; Mastromarino et al., 2002). 

 

1.1.3 Vaginal dysbiosis 

The vaginal microbiota (VMB) dominated by lactobacilli play a pivotal role in protecting against 

several pathogenic microorganisms. In the state of mucosal health, the microorganisms constituting 

the vaginal microbiota coexist in a perfect balance and the resulting homeostasis derives from a deep 

and complex interaction between them. The rupture of homeostasis, and in particular the lack of 

lactobacilli, contribute to creating a micro-environment suitable for the growth of pathogenic 

microorganisms (Petrova et al., 2015) (Figure 1.2). There seems to be an association between absence 

(or low concentrations) of vaginal lactobacilli and the development of Bacterial Vaginosis (BV). BV 

is one of the most common vaginal disorders that affect fertile, premenopausal and pregnant women, 

resulting in millions of health care visits worldwide each year. BV is a complex, polymicrobial 

disorder characterized by the disruption of the vaginal microbial niche, resulting in a reduction of 

lactobacilli. This leads to an overgrowth of strict or facultative anaerobic bacteria such 

as Gardnerella spp., Atopobium spp., Prevotella spp., Mobiluncus spp., as well as other taxa such 

as Clostridium spp., Megasphaera spp., Leptotrichia spp (Verstraelen et al., 2004; Fredricks et 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373506/#B153
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al., 2005; Tamrakar et al., 2007). Bacterial vaginosis is associated with high pH, a decrease in 

antimicrobial activity of the vaginal fluid, and local impairment of the multiple innate immune 

pathways (Dover et al., 2008). A typical feature of BV is the absence of inflammation. In BV, there 

is only a slight increase in interleukin I and a low production of interleukin 8, which prevents the 

attraction of inflammatory cells like macrophages and neutrophils (Donati et al., 2010).  

 

 

 

Figure 1.2 Composition of VMB during healthy and dysbiotic states (Petrova et al., 2015). 

 

 

Important to remark is that in around 50% of women BV is asymptomatic, but when symptomatic, 

BV is characterized by homogeneous malodorous vaginal discharge and vaginal discomfort. (Sweet, 

2000). Clinical diagnosis of BV requires three out of four features: the presence of clue cells on 

microscopy; a homogenous discharge adherent to the vaginal walls; pH of vaginal fluid higher than 

4.5; and a "fishy" amine odour of the vaginal discharge before or after addition of 10% KOH. Another 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373506/#B47
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373506/#B145
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method of diagnosis is Gram staining that uses Nugent's criteria and allows to categorise the vaginal 

flora into three categories: normal, intermediate, and flora consistent with bacterial vaginosis (Joesoef 

and Schmid, 2005). Most of the time, BV is a non-inflammatory condition and can have important 

clinical sequelae. For example, it has been reported that changes in the VMB are associated with 

various vaginal and urinary tract infections (Harmanli et al., 2000; Koumans et al., 2002). It has also 

been shown that BV facilitates the acquisition of sexually transmitted infections such as Neisseria 

gonorrhoeae, Chlamydia trachomatis, HIV and HSV-2 (Martin et al., 1999; Cherpes et al., 2003b; 

Wiesenfeld et al., 2003). Furthermore, BV may result in increased rates of early pregnancy loss and 

preterm delivery (Eckert et al., 2003; Verstraelen et al., 2005). 

 

1.1.4 Role of lactobacilli in promoting vaginal health  

Vaginal microbiota is commonly dominated by Lactobacillus spp. in approximately 70% of women.  

Lactobacilli are a group of Gram-positive, facultative anaerobic bacteria producing lactic acid as 

product of glycogen fermentation (Axelsson 2004; Aguirre-Collins 1993). 

In healthy pre-menopausal woman, the most frequently isolated species are Lactobacillus 

crispatus, Lactobacillus gasseri, Lactobacillus jensenii and Lactobacillus iners. Residing at the port 

of entry of bacterial and viral pathogens, the vaginal lactobacilli can create a barrier against pathogen 

invasion. Indeed, mainly thanks to products of their metabolism secreted in the cervicovaginal fluid, 

lactobacilli can play an important role in the inhibition of bacterial and viral infections. Therefore, 

a Lactobacillus-dominated microbiota appears to be a good biomarker for a healthy vaginal 

ecosystem (Petrova 2015). 

Several are the mechanisms by which lactobacilli stabilize the vaginal microbiota conferring 

protection against potential pathogens (Figure 1.3). These include: 1) the production of antimicrobial 

compounds such as hydrogen peroxide, lactic acid, bacteriocin-like substances and biosurfactant, 2) 

the capability to adhere and compete for adhesion sites in the vagina, and 3) the capability to co-

aggregate (Borges et al., 2013).  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373506/#B59a
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373506/#B76a
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373506/#B92a
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373506/#B27
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373506/#B158
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373506/#B41a
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4373506/#B152a
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1) Production of antimicrobial compounds 

Lactic acid. Lactobacilli produce lactic acid through the fermentation of glucose released by vaginal 

epithelial cells. The production of lactic acid by lactobacilli can contribute to pH acidification, which 

is also maintained by the secretion of organic acids by the vaginal epithelial cells themselves. The 

vaginas of reproductive-aged women typically have a pH of approximately 4–4.5, and it is likely that 

this degree of acidity strictly limits the microbiota to acidophilic species such as Lactobacillus spp. 

However, pH may have more subtle effects than simply to provide an unfavorable environment for 

certain species of microorganisms. Furthermore, in vitro studies have shown that acidification by 

lactobacilli growth can inhibit the proliferation of pathogen microorganisms, such as C. albicans, 

Escherichia coli, G. vaginalis, Mobiluncus spp. and other bacteria cultured from vaginal specimens 

obtained from women with bacterial vaginosis (Boris et al., 2000). 

Hydrogen peroxide. H2O2 is an oxidizing agent, which is toxic to catalase-negative bacteria such as 

most anaerobic microorganisms. Some studies suggest that H2O2 is produced by 95 % of L. crispatus 

and 94 % of L. jensenii vaginal isolates (Antonio et al., 1999); furthermore, approximately 80 % of 

the strains of vaginal origin produces H2O2 (Aroutcheva et al., 2001) and only 6% of women with 

bacterial vaginosis containe H2O2-producing Lactobacillus species in their vagina (Eschenbach et al., 

1989). Other in vitro studies also demonstrate the involvement of the peroxidase system in the 

inhibition of Neisseria gonorrhoeae in an acidic environment by a complex effect from H2O2, acid 

production and bacteriocin-like compounds (Zheng et al., 1994). 

Bacteriocins and biosurfactants. Bacteriocins are antimicrobial peptides or proteins, produced by 

almost all genera of lactobacilli. Bacteriocins have several mechanisms of action, including 

cytoplasmic membrane pore formation, interference with cellular enzymatic reactions and nuclease 

activity (Gillor et al., 2005). However, only few bacteriocins from vaginal isolates of Lactobacillus 

spp. have been identified. Some examples are the bacteriocin produced by a strain of L. salivarus 

with activity against E. faecalis, E. faecium and N. gonorrhoeae (Ocaña et al., 1999), or a small 

bacteriocin, produced by  L. fermentum strain L23, which displayed a wide inhibitory spectrum 
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including both Gram-negative and Gram-positive pathogenic strains and two species of Candida spp. 

(Pascual et al., 2008). Bacteriocins show inhibitory effects similar to those of antibiotics, although 

they are different as regards their synthesis, mechanism of action, toxicity, and resistance mechanisms 

(Li et al., 2005; Kaur et al., 2013). Antibiotic-resistant microorganisms are usually not resistant to 

bacteriocins. Furthermore, toxicity studies heve shown that antimicrobial peptides produced by 

lactobacilli do not irritate the vaginal ephitelium and have no effects on vaginal lactobacilli viability 

(Li et al., 2005; Stoyancheva et al., 2014). 

Another characteristic of lactobacilli is the capability of producing biosurfactant substances. In a 

study of 1996, fifteen strains were found to produce biosurfactant. The substance or substances 

adsorbed to surfaces and inhibited the initial adhesion of E. faecalis by 70%. The crude substance 

was analyzed and was found to contain proteins and carbohydrates (Velraeds et al., 1996).  

Numerous physiological functions of biosurfactants have been described. Biosurfactants can, among 

other things, enable microorganisms to grow on water-immiscible compounds by lowering the surface 

tension at the phase boundary, cause emulsification, and stimulate adhesion of microbial cells to 

organic substrates (Fiechter,1992). It has been shown that biosurfactant activity is resistant to trypsin 

and pepsin, and sensitive to -amylase and lysozyme, and resistant to 75o C degree heating.  

Among these substances, surlactine, produced by L. acidophilus and L. fermentum, has shown a 

particularly effective inhibitory activity against Enterococcus faecalis, Escherichia coli, and 

Staphylococcus epidermidis, as well as Candida albicans (Velraeds et al., 1998). 

In this perspective, the antiadhesive molecules produced by certain lactobacilli look promising for 

application to many human sites where pathogens can attach, colonize, and confer disease. 

2) Adhesion to the epithelial vaginal cells.  

One of the protective mechanisms exploited by the lactobacilli is their capability to adhere and 

compete for adhesion sites in the vaginal epithelium, preventing in this manner the colonization by a 

pathogen. Cell adhesion is a multistep process that involves the contact of the bacterial cell membrane 

and interacting surfaces (Kos et al., 2003) 
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Several factors such as hormonal changes (particularly estrogen), vaginal pH, and glycogen content 

can affect the ability of lactobacilli to adhere to epithelial cells and colonize the vagina (Cribby et 

al., 2008). Lactobacilli inhabiting a healthy urogenital tract exclude the colonization of pathogenic 

bacteria by occupying or masking (by steric hindrance) their potential binding sites in the mucosa.  

The blockage of urogenital pathogens adherence by lactobacilli can occur through exclusion,  

competition for receptor sites and displacement of adhered pathogens. Several studies have shown 

the capability of Lactobacillus spp. to adhere to epithelial vaginal cells to form a biological barrier 

against colonization by pathogenic bacteria (Coudeyras et al., 2008; Zárate et al., 2006). Multiple 

components of the bacterial cell surface seem to participate to this process. It has been reported that 

the factors responsible for adherence to epithelial vaginal cells seemed to be glycoproteins and 

carbohydrates (Boris et al., 1998).  

Furthermore, it has been shown as some lactobacilli strains were able to significally reduce C. 

albicans adhesion by exclusion, competition and displacement experiments (Parolin et al., 2015).  

3) Co-aggregation with pathogenic bacteria 

Coaggregation is a process by which genetically distinct bacteria become attached to one another via 

specific molecules (Rickard et al., 2003). Cumulative evidence suggests that such adhesion influences 

the development of complex multispecies biofilms. Coaggregation has been observed amongst 

bacteria isolated from biofilms in the mammalian gut, the human urogenital tract and potable-water-

supply systems, indicating that the adhesion of genetically distinct strains could be a widespread 

phenomenon (Handley et al., 2001). Lactobacilli can form coaggregates and bind to pathogens, and 

this results in a return to homeostasis, since the coaggregation creates a hostile biochemical micro-

environment around a pathogen and prevents it from continuation of growth and domination of the 

niche. The ability of lactobacilli to coaggregate with other bacteria probably influences the structure 

and stability of the urogenital flora (Reid et al., 1990). It has been shown that certain species of 

Lactobacillus, including L. acidophilus, L. gasseri and L. jensenii are able to co-aggregate with E. 

coli, vaginal staphylococci and C. albicans (Boris et al., 1998; Ekmekci et al., 2009). Furthermore, 
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Lactobacillus reuteri RC-14 has shown the ability to penetrate mature E. coli biofilms and kill the E. 

coli upon coaggregation and integration with the biofilm (McMillan et al., 2011). 

 

 

 

Figure 1. 3: Possible mechanisms contributing to restoration of the microbiota. (Reid et al., 2011) 

 

1.1.5 Lactobacilli: potential use as vaginal probiotics 

Probiotics have been defined as ‘‘live microorganisms, which, when administered in adequate 

amounts, confer a health benefit on the host’’ (FAO/WHO, 2006). Many studies provided evidence 

of the beneficial functions of the human microbiota, and prompted the selection of bacterial strains, 

recognized as probiotics, with health-promoting capacities for the treatment of conditions in which 

the microbiota, or its optimal functioning, is perturbed (Mastromarino et al., 2013). A remarkable 

interest from women was shown on the potential use of LAB for maintaining normal urogenital health 
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(Anukam et al., 2007). A probiotic may act indirectly through treating and preventing recurrent BV 

or directly by secreting substances (e.g., hydrogen peroxide, bacteriocins, lactic acid) that block 

sexually transmitted infection (Bolton et al., 2008) (Figure 1.4).  

 

 

 

Figure 1.4: Requirements in the choice of a probiotic (Konings et al., 2000) 

 

Since antimicrobial treatment of urogenital infections is not always effective, and problems remain 

linked to bacterial and yeast resistance, recurrent infections, and side-effects, it is not surprising that 

alternative remedies are of interest to patients and their caregivers. Indeed, lactobacilli probiotics can 

be used over a long period of time without adverse effects, making them an attractive alternative to 

antibiotics, particularly in addressing the problem of high recurrence rates (Cribby et al 2008).  
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Since lactobacilli can ascend passively from the rectum to the vagina, probiotics can be administered 

either vaginally or orally, which can be a significant breakthrough in being able to deliver probiotics 

in foods and dietary supplements (Reid, 2008). Through oral administration, the time required to 

affect the vaginal tract is clearly longer than direct vaginal instillation, and will depend on viability 

of the strains as they pass through the stomach and gut. In addition, the load of lactobacilli that can 

be delivered this way is obviously lower than via vaginal administration. However, an advantage of 

the oral approach may be the ability of the lactobacilli to reduce the transfer of yeast and pathogenic 

bacteria from the rectum to the vagina, which could potentially lower the risk of infection (Cribby et 

al., 2008). Vaginal dosage forms available around the world include creams, gels, tablets, capsules, 

films, tampons, rings, and douches. While the majority of vaginal drugs so far have been in the form 

of gels, there is a growing interest in alternative dosage forms such as rings, tablets, and films (Garg 

et al., 2010).  

Several clinical trials have been performed to assess whether specific strains of lactobacilli are able 

to colonize the vaginas of women with symptomatic or asymptomatic BV, to reduce the colonization 

of pathogens, and to improve symptoms of BV when they are present ( Falagas et al., 2007). Two 

types of experimental approaches have been employed in these studies using probiotics for treatment 

of BV. In the first, BV therapy was carried out using only probiotics. In the second, probiotics were 

administered following a conventional antibiotic therapy. Two studies (Anukam et al., 2006b; 

Mastromarino et al., 2009) used a combination of different species of lactobacilli with different 

biological properties on fertile non-pregnant women. L. rhamnosus gR-1 and L. fermentum RC-14 

were the strains used in the first study (Anukam et al., 2006b). L. rhamnosus gR1 adheres strongly to 

uroepithelial cells and inhibits adhesion and growth of uropathogens (Reid et al., 1987). L. fermentum 

RC-14 produces biosurfactant compounds (Velraeds et al., 1998) and significant amounts of 

hydrogen peroxide, adheres to uroepithelial cells and inhibits pathogen binding (Reid and Bruce, 

2001). Cure of BV was based on a Nugent score ≤ 3 at 30 days. A BV cure rate of 65% was achieved 

after probiotic treatment compared to 33% of the metronidazole therapy.  
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The second study used a product containing a combination of three strains of lactobacilli: L. brevis 

CD2, L. salivarius FV2 and L. plantarum FV9 (Mastromarino et al., 2009). The strains were able to 

temporarily colonize the human vagina (Massi et al., 2004), reduce vaginal proinflammatory 

cytokines IL-1β and IL-6 (Hemalatha et al., 2012) and showed inhibitory activity towards HSV-2 

replication in cell cultures (Conti et al., 2009; Mastromarino et al., 2011). The double-blind, placebo-

controlled trial (Mastromarino et al., 2009) used both the Amsel criteria and Nugent scores to assess 

BV cure as recommended by the FDA. The intravaginal probiotic-treated group (L. brevis CD2, L. 

salivarius FV2 and L. plantarum FV9) obtained a BV cure rate of 50% compared to 6% in the 

placebo-treated group with the combined test methods, whereas a 67% vs 12% cure rate was obtained 

when considering only the Amsel criteria.  In a randomized double-blind placebo-controlled study, 

vaginal capsules containing L. gasseri LN40, L. fermentum LN99, L. casei subsp. rhamnosus LN113 

and P. acidilactici LN23 (108 and 109 viable cells for capsule) were administered for 5 days to 95 

women after conventional treatment of BV and/or vulvovaginal candidiasis. Probiotic strains were 

present 2–3 days after administration in 89 % of the women. After one menstruation, 53 % were 

colonized by at least one Lactobacillus strain. Nine percent were still colonized 6 months after 

administration. The probiotic supplementation resulted in less malodorous discharge, and a trend 

towards higher clinical cure rate, compared with the placebo group (Ehrström et al., 2010). Some 

studies evaluated the use of lactobacilli for the prevention of recurrent urinary tract infections (UTI). 

Among these, it has been reported a study with nine patients inserted with vaginal suppositories 

containing the strain L. crispatus GAI 98322 (1.08 cfu per suppository) every 2 days for 1 year. A 

significant reduction in the number of recurrences was noted, without any adverse complication 

(Uehara et al., 2006). 
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1.2 Candida albicans 

1.2.1 Vulvovaginal candidiasis (VVC) 

Vulvovaginal candidiasis is an infection of the vulva and the vagina caused by fungi belonging to 

Candida genus, and is estimated to be the second most common cause of inflammation after 

bacterial vaginosis (Spence, 2010). The most common pathogen is Candida albicans, which is 

isolated in 85 to 90% of all VVC cases (Sobel, 1997). 

1.2.2 Candida albicans: pathogenicity mechanisms 

C. albicans is one of the very few fungal species causing disease in humans. It is a member of the 

healthy microbiota, asymptomatically colonizing the gastrointestinal (GI) tract, reproductive tract, 

oral cavity, and skin of most humans (Achkar and Fries, 2010; Ganguly and Mitchell, 2011; Kennedy 

and Volz, 1985; Kumamoto, 2002; Kumamoto, 2011). In individuals with healthy immune systems, 

C. albicans is often harmless, and kept in balance with other members of the local microbiota. 

However, alterations in the host microbiota caused by lactobacilli depletion and antibiotic use, 

changes in the host immune response that can occur during stress, infection by other microbe, or 

immunosuppressant therapy, or variations in the local environment such as shifts in pH or nutritional 

content, can enable C. albicans to overgrow and cause infection (Nobile and Johnson; 2015).  

Candida spp are the fourth most common cause of hospital-acquired systemic infections in the United 

States with crude mortality rates of up to 50% (Pfaller and Diekema, 2010). C. albicans can cause 

two major types of infections in humans: superficial infections, such as oral or vaginal candidiasis, 

and life-threatening systemic infections. 

Candida albicans is a polymorphic fungus that can grow as an ovoid budding yeast (also named 

blastospores), as elongated ellipsoid cells that remain attached at a constricted separation site 

(pseudohyphae), or as parallel-sided true hyphae (Berman and Sudbery, 2002) (Figure 1.5). The 

fungus can also form chlamydospores, spore-like structures, produced under distinct conditions, of 

as yet unknown biological function (Martin et al., 2005; Citiulo et al., 2009), and undergo phenotypic 
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switching between white and opaque morphologies, an event which is important for mating and 

biofilm formation (Miller and Johnson,2002; Daniels et al., 2006). The transition between yeast and 

hyphal growth, termed dimorphism, is tightly regulated by a network of signal transduction pathways 

in response to environmental stimuli. For example, at low pH (< 6) C. albicans cells predominantly 

grow in the yeast form, while at a high pH (> 7) hyphal growth is induced (Odds, 1988). Furthermore, 

it has been proposed that both growth forms are important for pathogenicity (Jacobsen et al., 2012). 

The hyphal form has been shown to be more invasive 

than the yeast form (Berman and Sudbery, 2002), 

while the smaller yeast form is believed to represent 

the form primarily involved in dissemination (Saville 

et al., 2003). One of the most important virulence 

factor of C. albicans is the adhesion to the host cells, 

which is mediated by a specialized set of proteins, the 

adhesins. The best studied C. albicans adhesins are 

the agglutinin-like sequence (ALS) proteins and 

particularly the Als3, which is an hypha-associated 

adhesion especially important for the adhesion 

(Zordan et al., 2012; Phan et al., 2007; Murciano et 

al., 2012). Adhesion and hyphal formation are strictly 

related; indeed, the contact of C. albicans to abiotic 

surfaces or to host cells stimulates hyphal formation 

and the simultaneous induction of hyphal-associated 

adhesins. In addition, C. albicans invades the 

epithelial cells by means of two distinct processes: induced endocytosis and active penetration 

(Zakikhany et al., 2007; Dalle et al., 2010; Wächtler et al., 2011). Induced endocytosis is a host-

driven process activated mainly by interaction between the C. albicans invasin, Als3, and host E-

Figure 1.5: Candida albicans tissue 

invasion.  

(Gow et al., 2011) 
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cadherin. This process results in clathrin dependent uptake, similar to the internalin-E-cadherin 

dependent internalization of Listeria monocytogenes (Zakikhany et al., 2007; Phan et al., 2007; 

Moreno-Ruiz et al., 2009). A further important virulence factor of C. albicans is its capability to form 

biofilms on abiotic (e.g. catheters) or biotic surfaces (e.g. mucosal cell surfaces). Biofilms form in a 

sequential process including adherence of yeast cells to the substrate, proliferation of the yeast cells, 

formation of hyphal cells in the upper part of the biofilm, accumulation of extracellular matrix 

material and, finally, dispersion of yeast cells from the biofilm complex (Finkel and Mitchell, 2011). 

It has been reported that mature biofilms are much more resistant to antimicrobial agents and host 

immune factors in comparison to planktonic cells (Finkel and Mitchell, 2011; Fanning and Mitchell, 

2012). The production of proteolytic enzymes, toxins and phospholipases also contributes to 

increasing the pathogenicity and the virulence of the fungus. For example, the presence of aspartyl 

proteinases produced by pathogenic Candida spp. has been found in vaginal secretions of women 

with symptomatic vaginitis, but not in women with asymptomatic colonization (De Bernardis 1990; 

Al-Hedaithy 2002). 

  

1.2.3 VVC: etiology, predisposing factors and incidence 

As mentioned above, C. albicans is the most common cause of VVC. The second most common 

pathogen identified in women with VVC is C. glabrata, which is isolated in 7 to 16% of cases (Achkar 

and Fries, 2010). Lactobacilli are an important element of vaginal microflora because their production 

of lactic acid keeps the vaginal pH low and prevents overgrowth of other pathogens (Achkar and 

Fries, 2010; Ronnqvist et al., 2006). Predisposing factors for VVC include diabetes mellitus, use of 

antibiotics, oral contraception, pregnancy and hormone therapy (Fidel, 2004). The use of antibiotics 

causes a change in vaginal microflora, which increases colonization with Candida spp. Colonization 

with C. albicans is increased from approximately 10% to 30%, and VVC is diagnosed in 28 to 33% 

of cases (Sobel, 2007). 
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VVC can be distinguished into uncomplicated and complicated cases. Uncomplicated cases are 

sporadic episodes of mild infections caused by C. albicans (Sobel et al., 1998). Complicated cases 

include VVC caused by other species of Candida, cases of severe infection, VVC during pregnancy, 

or VVC associated with other medical conditions such as immunosuppression or diabetes. Another 

form of complicated infection is the recurrent VVC (RVVC) which is defined as four or more 

episodes of VVC per year (Achkar and Fries, 2010; Berek et al., 2012; Peters et al., 2014). About 

75% of all women suffer at least once in their lifetime from vulvovaginal candidiasis (VVC), with 

40–50% experiencing at least one additional episode of infection (Hurley and De Louvois, 1979; 

Sobel, 2007). A small percentage of women (5–8%) suffer from at least four recurrent VVC per year 

(Foxman et al., 1998), and C. glabrata and other non–C. albicans forms are isolated in 10 to 20% of 

these cases (Mitchell, 2004; Peters et al., 2014). However, it is difficult to evaluate the exact incidence 

of VVC because of the high rate of self-treatment with over-the-counter medications. Moreover, the 

diagnosis is frequently based entirely on signs and symptoms without any tests to confirm the 

diagnosis (Achkar and Fries, 2010).  

1.2.4 VVC: clinical presentation, diagnosis and treatment 

The most common symptoms of VVC infection are burning pain and pruritus of the vulva with 

discomfort that can lead to dysuria and dyspareunia in more severe cases (Anderson et al., 2004). The 

vaginal pH in women with VVC is usually lower than 4.5 (Achkar and Fries, 2010). Clinical signs 

are edema and erythema of vulva and vagina associated with an abnormal vaginal discharge that may 

appear watery, cheese-like, or minimal (Anderson et al., 2004). The diagnosis is most frequently 

made clinically and microscopic examination of the discharge is also helpful. Indeed, mycelia can be 

seen under microscopy in 50 to 80% of cases. The whiff test is used to distinguish between VVC and 

bacterial vaginosis, and is performed by adding 10% potassium hydroxide to the vaginal discharge. 

In bacterial vaginosis, an amine-like odor is released following this reaction. Conversely, the test is 

negative in cases of VVC (Berek, 2012).  
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Antifungal treatment is essential to relieve symptoms and to avoid reinfection. Both oral and topical 

antifungal preparations are available, with fewer side effects for the topical preparations (Sobel, 

2014). Treatment of VVC depends on whether the patient has uncomplicated or complicated VVC 

(Pappas et al., 2009). In cases of uncomplicated VVC, the recommended therapy is a single oral dose 

of fluconazole 150 mg or, alternatively, a topical azole such as clotrimazole, terconazole or 

miconazole for 7 days. In the cases of complicated VVC instead, short-term antifungal therapy would 

not be effective and therefore long-term treatment are required (Sobel, 1997). In recurrent candidiasis, 

when the infection is caused by C. albicans, a regimen with antifungal drug is recommended for 14 

days, followed by a 6-month of maintenance therapy with fluconazole (150 mg once a week), 

itraconazole (10 to 50 mg a day) or others. Alternatively, 500 mg vaginal ovules containing, for 

example, clotrimazole can be administered topically once a week. 

Treatment in pregnant women is indicated to alleviate the uncomfortable symptoms. A topical 

antifungal (clotrimazole or miconazole) is suggested for 7 days; on the contrary, oral treatment is not 

recommended in the first trimester of pregnancy since some cases of abnormalities of the face, bones, 

skull and heart have been reported following exposure of the baby to high doses (Sobel 2014). 

 

1.2.5 Lactobacilli and VVC 

Several are the studies highlighting that the presence of lactobacilli in the vaginal ecosystem of 

healthy women represent an important barrier for vulva-vaginal infections caused by Candida spp. 

In vitro studies have demonstrated that L. rhamnosus, L. casei, and L. acidophilus significantly 

reduced levels of Candida albicans biofilms at the initial colonization phase and the later maturation 

phase of biofilm development, showing an activity strain-specific against Candida (Matsubara et al., 

2016). Through exclusion, competition and displacement experiments the interference exerted by 

lactobacilli toward the C. albicans adhesion to HeLa cells has been investigated. Most Lactobacillus 

strains significantly reduced yeast adhesion through several mechanisms. In particular, L. crispatus 
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BC2, L. gasseri BC10 and L. gasseri BC11 appeared to be the most active strains, indicating that 

anti-candida activity was a strain specific feature (Parolin et al., 2015). 

The lactobacilli may be able to inhibit Candida growth by competing for nutrients and producing 

lactic acid and other organic acids that lower pH. This creates an unsuitable environment, and can 

lead to up-regulation of stress-related genes in Candida (Kohler et al., 2012). 

Multiple studies have demonstrated that probiotics may be beneficial to patients with acute VVC 

treated with standard antifungals by improving vaginal symptoms. Comparing women with acute 

VVC receiving only antifungal therapy to women with acute VVC receiving antifungal therapy and 

vaginal probiotic containing L. acidophilus, L. rhamnosus, and L. delbrueckii subsp. bulgaricus it has 

been found that the probiotic group had greater improvement in clinical complaints (Kovachev and 

VatchevaDobrevska, 2015).  

Moreover, a significant increase in resolution of symptoms,  including vaginal burning and itching in 

women with acute VVC by using L. plantarum after antifungal therapy compared to women using 

antifungal therapy alone has been reported (De Seta et al., 2014). Similarly, women with acute VVC 

using a probiotic containing L. rhamnosus and L. reuteri after antifungal therapy showed significantly 

less vaginal discharge compared to women receiving antifungals alone (Martinez et al., 2009). In 

addition, it has been demonstrated that probiotics are helpful in decreasing recurrence of VVC 

infection. Indeed, women receiving vaginal L. plantarum showed a threefold-reduced risk of 

recurrence of VVC three months after single-dose clotrimazole therapy, compared to women 

receiving clotrimazole alone (Palacios et al., 2016). 
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1.3 Chlamydia infections 

Chlamydia spp. are important causes of human disease for which no effective vaccine exists. 

Chlamydiae are Gram-negative bacteria, aerobic, obligate, intracellular pathogens of several 

organisms, including humans. Because they are unable to synthesize their ATP, they have to use their 

host cell's energy resources. The genus Chlamydia involves in total nine species: C. 

trachomatis, C. muridarum, C. pneumoniae, C. pecorum, C. suis, C. abortus, C. felis, C. caviae, 

and C. psittaci. These species exhibit major differences in host range, tissue tropism, and disease 

pathology (Stephens et al., 2009). Certainly, among these, the most important species is C. 

trachomatis, which infects exclusively the human being, causing ocular and genital infections. Based 

on the antigenic properties of the major outer membrane protein MOMP, C. trachomatis has been 

classified into different serovars (Stephens et al., 1987; Baehr et al., 1988; Gomes et al., 2007).  

Serovars A-C are the etiologic agents of trachoma, which is the leading cause of infectious blindness 

worldwide (Stocks et al., 2014). With an estimate of 131 million new cases per year, C. trachomatis 

serovars D-K are the main bacterial cause of sexually-transmitted infections (STI). Remarkably, up 

to 70–80% of genital tract infections with C. trachomatis are asymptomatic and about 15- 40% can 

ascend to the upper genital tract and lead to serious complications such as pelvic inflammatory 

disease, ectopic pregnancy, and infertility in women (Malhotra et al., 2013). Furthermore, C. 

trachomatis serovars D-K can cause inclusion conjunctivitis in adults, and perinatal infections such 

us ophthalmia neonatorum and chlamydial pneumonia in infants (Rönnerstam et al., 1985; Schachter 

et al., 1986; Stenberg and Mardh, 1991; Darville, 2005; Hammerschlag, 2011). Finally, the more 

invasive serovars L1-L3 are the cause of a less frequent form of STI, the lymphogranuloma venereum 

(LGV), which is a systemic illness characterized by inguinal lymphadenopathy and/or severe 

proctitis/proctocolitis (Herring and Richens, 2006; White, 2009). C. trachomatis infection also 

facilitates the transmission of HIV and is associated with cervical cancer (Malhotra et al., 2013).  

 

https://www-sciencedirect-com.ezproxy.unibo.it/topics/agricultural-and-biological-sciences/felis
https://www-sciencedirect-com.ezproxy.unibo.it/topics/medicine-and-dentistry/tropism
https://www-sciencedirect-com.ezproxy.unibo.it/topics/medicine-and-dentistry/genital-tract-infection
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1.3.1 The developmental cycle  

Chlamydiae displays an exclusive biphasic developmental cycle, characterized by the alternation 

between extracellular, infectious elementary bodies (EBs), and intracellular, non-infectious reticulate 

bodies (RBs). EBs enter mucosal cells and differentiate into RBs in a membrane bound compartment, 

called inclusion. After several cycles of replication by binary fission, RBs differentiate back to EBs, 

which are finally released from the host by cell lysis and/ or extrusion, and ready to infect 

neighbouring cells (Bastidas et al., 2013). EBs and RBs show distinct morphologic and functional 

features. Elementary bodies have a spore-like cell wall that is stabilized by a set of proteins cross-

linked by disulphide bonds. These proteins form the outer membrane complex, which confers 

resistance to osmotic and physical stress (Nelson, 2012). EBs can survive in the extracellular 

enviromen, and once were considered metabolically inactive. However, recent studies indicated that 

EBs have high metabolic and biosynthetic activity depending on D-glucose-6-phosphate as a source 

of energy (Omsland et al., 2014). Indeed, EBs contain a plenty of proteins that are required for central 

metabolism and glucose catabolism (Saka et al., 2011), which might be used for the huge energy 

required for entry in the host cell and drive differentiation into RBs. During this transition, the 

reduction of cross-linked complexes provides the membrane fluidity that is required for replication 

(Nelson, 2012). RBs are able to acquire nutrient and actively replicate (Bastidas et al., 2013); 

specifically, they express proteins that are involved in the generation of ATP, protein synthesis and 

nutrient transport, such as V-type ATP synthases, ribosomal proteins and nucleotide transporters 

(Saka et al., 2011). 

Chlamydia trachomatis developmental cycle (Figure 1.6) requires a finely regulated expression of 

stage-specific factors. The cycle (reviewed by Elwell et al., 2016) begins with the binding of the EBs 

to the host cell which involves several bacterial ligands and host receptors. On the contact, pre-

synthesized T3SS (type III secretion system) effectors are injected into the host cell and some of them 

initiate cytoskeletal rearrangements to facilitate internalization and initiate mitogenic signalling to 
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establish an anti-apoptotic state. Thus, EBs are internalized into the inclusion. After 6-8 hours post-

infection, when the transition to reticulate body occurs, early genes are transcribed. Early effectors, 

the newly secreted inclusion membrane proteins (Incs), remodel the inclusion membrane, redirect to 

the inclusion the exocytic vesicles that are in transit from the Golgi. The nascent inclusion is 

transported, probably by an Inc protein, along microtubules to the microtubule-organizing centre 

(MTOC) or centrosome. Next, about 8–16 hours post-infection, mid-cycle genes are expressed, which 

comprise effectors that mediate nutrient acquisition and maintain the viability of the host cell. The 

bacteria divide by binary fission, replicating exponentially, and the inclusion considerably expands. 

At late stages, 24–72 hours post-infection, RBs differentiate into EBs in an asynchronous manner, 

which might be stimulated by their detachment from the inclusion membrane. Late-cycle genes 

encode the outer membrane complex and the DNA binding histone H1-like and H2-like proteins, Hc1 

and Hc2, which condense DNA and switch off the transcription of many genes. Some late-cycle 

effectors are then packaged in the newly formed elementary bodies to be discharged in the next cycle 

of infection. Elementary bodies exit the host through lysis or extrusion (reviewed by Elwell et al., 

2016). However, under certain condition, such as nutrient deprivation, exposure to penicillin, IFN γ, 

and other stressing conditions, Chlamydia entries into a persistent state (Byron 2012), during which 

the microorganism slows down the DNA replication, continuing genes transcription, but stops to 

divide. This persistent state is usually associated with the presence of enlarged, aberrant RBs. 

Nevertheless, Chlamydia is able to revert into infectious EBs once the stress condition is removed 

(Ouellette et al., 2006; Muramatsu et al., 2016). 
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Figure 1.6: The life cycle of Chlamydia trachomatis (Elwell et al., 2016). 

 

1.3.2 Chlamydial strategies for host cell invasion 

Chlamydiae can invade most cultured cells, suggesting that the receptors that aid host invasion are 

ubiquitous or that multiple receptors can be used. Binding is supposed to be a two-step process for 

some species, involving a first reversible interaction between the EB and the host cell mediated by 

heparan sulfate proteoglycans (HSPGs), followed by high-affinity irreversible binding to a secondary 

receptor (Dautry-Varsat et al. 2005). In addition to heparan sulfate (Chen et al. 1996; Wuppermann 
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et al. 2001), other receptors have been proposed to mediate Chlamydia entry into the host cell. These 

include the mannose receptor, the mannose 6-phosphate receptor, and the estrogen receptor 

(Cocchiaro and Valdivia 2009). Cell surface-exposed protein disulfide isomerase (PDI) has also been 

shown to play an important role in EB attachment and entry (Abromaitis and Stephens 2009). The 

diversity in binding and internalization mechanisms between species probably contributes to 

differences in tropism for specific hosts and tissues.  

On top of that, numerous bacterial adhesin and ligands have been proposed to promote the invasion 

end their use may vary depending on both the host-cell type and the chlamydial species (Cocchiaro 

and Valdivia 2009). Adhesins include the lipopolysaccharide (LPS) in C. trachomatis, which is 

proposed to bind to the cystic fibrosis transmembrane conductance regulator (CFTR) (Hegemann, 

2012; Ajonuma et al., 2010). Others ligands are the major outer membrane protein (MOMP; also 

known as CT681), which binds to the mannose receptor and the mannose 6-phosphate receptor18, 

and CT017 (also known as Ctad1) in C. trachomatis, which binds to β1 integrin (Stallmann et al., 

2015). Also the polymorphic membrane protein (Pmp) family in C. trachomatis and C. pneumoniae 

mediates adhesion (Becker and Hegemann, 2014). Indeed, it has been shown that Pmp21 (also known 

as Cpn0963) protein of C. pneumoniae binds to the epidermal growth factor receptor (EGFR) and 

functions as both an adhesin and an invasin (Mölleken et al., 2013). 

C. trachomatis also binds to ephrin receptor A2 (EPHA2) to activate downstream signalling 

(Subbarayal et al., 2015), whereas apolipoprotein E4 may act as a receptor for C. pneumonia 

enhancing the attachment of EBs to host cells (Gerard et al., 2008). Finally, PDI, a component of the 

oestrogen receptor complex, is implicated in the attachment and entry of many Chlamydia spp. (Davis 

et al., 2002; Mehlitz and Rudel, 2013). 

All these indicates that multiple redundant strategies likely exist to ensure chlamydial entry, and the 

path is dependent on the Chlamydia species or features of the host cell type being invaded (Cocchiaro 

and Valdivia 2009). 
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1.3.3 Immunophatogenesis 

C. trachomatis is a strong immunogen, which stimulates both humoral and cell mediated immune 

responses. In addition to the immunogenic antigens, the outcome of chlamydial infection depends on 

interaction and balance of cytokines secreted by the activated lymphocytes. Interferon gamma (IFN-

γ) has been described as a single most important factor in host defense against Chlamydia, while 

disease susceptibility has been linked to enhanced expression of Interleukin- 10 (IL-10)17. Immune 

system changes or disturbances induced by C. trachomatis may favour its own survival in the infected 

host, and induce persistent infections (Malhotra et al., 2013). 

C. trachomatis infection can be distinguished in primary infection or chronic recurrence/re-infection. 

Primary infection. As mentioned above, the first defensive line against Chlamydia infections is the 

mucosal barrier of the female genital tract. During primary infection the mucosal cells secrete 

numerous pro-inflammatory chemokines and cytokines, including IL-1, IL-6, IL-8, GM-CSF and 

TNF-α (Malinverni 1996; Morton 1999). The release of these molecules induces vasodilatation, 

increased endothelial permeability, activation and influx of neutrophils, monocytes and T-

lymphocytes, and elevated expression of adhesion molecules. The initial amplification of C. 

trachomatis seems to be counteracted by neutrophils, which possibly limit the spread within the 

female genital tract (Rasmussen et al., 1997). T helper cells (Th1) also play an important role during 

early phase of infection. Indeed, upon Chlamydia antigen-induced activation, T helper secrete IFN-

γ, necessary for the infection regression. IFN-γ, in turn, increases the potential of various phagocytes 

to destroy Chlamydia and stimulates the secretion of other cytokines, including IL-1, which by 

stimulating the secretion of IL-2 by Th1 cells, causes increased replication of cytotoxic lymphocytes 

and natural killer cells (Witkin et al., 2000). Thus, the primary infection leads to a local inflammatory 

reaction caused by penetration and reproduction of the bacteria in the epithelial cells and to IgA 

secretory antibody production. In most cases the host's reaction to the primary infection is transient 

and does not cause tissue damage (Zdrodowska-Stefanow et al., 2003). The host's immune response 
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is crucial for the resolution of the infection; however, as mentioned above, Chlamydia has found the 

way to neutralize the immune system, remaining in a state of latency and causing persistent infections. 

Chronic infection, recurrence/re-infection. Chronic infection, associated with persistence of 

Chlamydia in the host cells, and recurrent infection or reinfection are more dangerous. Chronic 

infection is characterized by the maintenance of a microorganism in the host cell. The inflammation 

is induced in less time and with increased intensity, and a rapid immune response by previously 

sensitized lymphocytes occurs (Choroszy-Król et al., 2012). A delayed hypersensitivity reaction or 

rarely type 3 hypersensitivity reactions (Arthus reaction) is observed in long term or recurrent 

stimulatory action of chlamydial antigens (Paavonen, 1996).  Processes that occur during these 

reactions cause tissue damage, fibrosis and cicatrisation within the affected organs. Irreversible 

consequences like pelvic inflammatory disease (PID) leading to infertility, ectopic pregnancy, 

chronic pelvic pains and chronic urethritis may occur. Lack of treatment or improper therapeutic 

strategies can result in chronic infection. Furthermore, dietary factors like insufficient supply of 

tryptophan, L-isoleucine, and cysteine in diet, as well as certain cytokines, like INF-γ, TNF-α, may 

affect the outcome of the infection (Zdrodowska-Stefanow et al., 2003). 

 

1.3.4 Epidemiology 

C. trachomatis is the leading cause of bacterial sexually transmitted infection (STI) in the world. 

Moreover, in endemic areas, mostly in Africa and the Middle East, C. trachomatis also causes 

trachoma, a leading cause of preventable blindness worldwide. Furthermore, C. trachomatis, as well 

as other genital infections, can promote the sexual transmission of viruses such as HIV (Fleming and 

Wasserheit,1999). The World Health Organization estimated that in 2016 there were 376 million new 

infections (more than 1 million per day) of the four curable STIs – chlamydia, gonorrhoea, syphilis 

and trichomoniasis. Among these, 127 million of new cases were caused by Chlamydia. STI 

prevention and control has increased spread public health benefits. Left untreated, some STIs increase 
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the risk of HIV transmission during unprotected sexual contact and lead to complications, such as 

PID, infertility, ectopic pregnancy, miscarriage, fetal death and congenital infections (Taylor et al., 

2018). 

Most of the men and woman infected with C. trachomatis are often asymptomatic, therefore a 

significant proportion of the cases remain undiagnosed and can develop complications of infection. 

Rates of reported cases of chlamydia are highest among adolescents and young adults aged 15-24 

years. In 2014, the rate among 15-19 year olds was 1804 cases per 100000 and the rate among 20-24 

year old was 2484,6 cases per 100000 (Workowski et al., 2015).  

C. trachomatis is transmitted via infected secretions and mucous membranes of urethra, cervix, 

rectum, conjunctivae and throat. In addition, a neonate can be infected by the infected mother during 

vaginal delivery (Manavi, 2006). Additional predictors of incidence chlamydial infection in young 

women include single marital status, having a new sex partner or concurrent partnerships, smoking 

and associated indicators of socioeconomic status, having gonorrhea or bacterial vaginosis, and 

presence of carcinogenic human papillomavirus (Crichton et al., 2015; Aghaizu et al., 2014; Batteiger 

et al., 2010; Hwang et al., 2014; Jorgensen et al., 2015). 

 

 

1.3.5 Clinical symptoms of Chlamydia trachomatis infections 

Most persons who are infected with C. trachomatis are asymptomatic. However, when symptoms of 

infection are present, in women they most commonly include abnormal vaginal discharge, vaginal 

bleeding, and dysuria (Stamm et al., 1990). 

Chlamydial infection in women can cause urethritis, cervicitis and salpingitis. Other clinical signs of 

C. trachomatis infection are mucopurulent endocervical discharge, easily induced endocervical 

bleeding, or edematous ectopy (Marrazzo et al., 2002). Untreated, infection may persist for up to 4 

years (Molano et al., 2005) although spontaneous clearance of infection after diagnosis has been 

described (Geisler et al., 2013), suggesting development of some degree of protective immunity. 
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Untreated chlamydial infection leads to PID in 20–40% of infected women (Paavonen et al., 1999). 

PID is the result of post-infectious inflammation of female upper genital tract that includes salpingitis, 

endometritis and inflammation of fallopian tubes (Manavi, 2006). When untreated, PID can 

eventually lead to infertility, ectopic pregnancy and/or chronic pelvic pain. Chlamydial PID can 

manifest as pelvic or lower abdominal pain associated to cervical motion tenderness or uterine or 

adnexal tenderness at the physical exam (Workowski et al., 2015) but even upper genital tract 

infection may be asymptomatic (Wiesenfeld et al., 2012). 

C. trachomatis genital tract infection can also negatively impact pregnancy. A previous chlamydial 

infection is associated to a high risk of ectopic pregnancy (Bakken et al., 2007). C. trachomatis 

infection has been associated with spontaneous abortion, stillbirth and preterm delivery (Liu et al., 

2013; Hollegaard et al., 2007; Andrews et al., 2000). C. trachomatis can also be transmitted to a 

neonate during delivery through contact with infected cervix tissue and secretions. This causes 

infection of mucous membranes of the eye, oropharynx, urogenital tract, and rectum. The most 

common presentation is C. trachomatis conjunctivitis that develops 5-12 days after birth (Rours et 

al., 2008), but C. trachomatis also can cause a subacute, afebrile pneumonia with onset at ages 1-3 

months (Rours et al., 2009). Furthermore, C. trachomatis has also been proposed as a possible risk 

factor for cervical cancer: a cofactor based on detection of chlamydial DNA in HPV-associated 

lesions (Paba et al., 2008), and the presence of anti-CT antibodies correlated with risk for squamous 

cell carcinoma (SCC) or invasive cervical cancer (ICC) (Paavonen et al., 2003). In addition, primary 

fallopian tube carcinomas have been described in patients with chronic PID (Zardawi 2014), and 

infertility is a known risk factor for epithelial ovarian cancer (reviewed by Salvador et al., 2009). 

Infection with L1, L2 and L3 serovars of C. trachomatis cause Lymphogranuloma venereum (LGV). 

LGV infections are associated with urogenital ulceration and invasion of the lymphatic system in 

both men and women, which can result in bubo formation, fistulae, fibrosis and rectal stenosis (de 

Vrieze and de Vries, 2014). These infections are usually symptomatic and symptoms include 
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anorectal pain, discharge, tenesmus, rectal bleeding and constipation, often accompanied by fever (de 

Vries et al., 2013). 

 

1.3.6 Treatment and prevention 

Uncomplicated genitourinary chlamydial infection in non-pregnant adolescents and adults should be 

treated with azithromycin 1g in a single dose or doxycycline 100 mg twice daily for seven days. 

Studies indicate that both treatments are equally effective (Workowski et al., 2015) 

For pelvic inflammatory disease treatment, ofloxacin 400 mg twice daily for 2-week course and 

metronidazole 400 mg twice a day are recommended. Alternatively, doxycycline 100 mg twice a day 

can substitute for ofloxacin. Ceftriaxone should be added to the above regimen in case of gonococcal 

PID.  Doxycycline and ofloxacin (Floxin) are contraindicated during pregnancy; therefore, the CDC 

recommends erythromycin base or amoxicillin for the treatment of chlamydial infection in pregnant 

women (Workowski et al., 2015). 

Doxycycline (100 mg twice daily for 21 days) is the preferred treatment for LGV. An alternative 

treatment regimen includes erythromycin (500 mg four times daily for 21 days); azithromycin (1 g 

once weekly for three weeks) may also be used (CDC, 2006). 

Since the majority of CT infections are asymptomatic, detection of infection often depend on 

screening. The 2010 CDC Sexually Transmitted Diseases (STD) Treatment Guidelines recommends 

annual CT screening in all sexually active women 25 years of age or younger, as well older women 

with risk factors. Benefits of CT screening in women have been showed in areas where screening 

programs have reduced rates of PID, and recent works suggest a continued decline in PID rates in the 

United States (reviewed by William, 2015). The method for the diagnosis and management of 

uncomplicated CT infection in adolescents and adults includes: 

(1) use of nucleic acid amplification tests (NAATs) to assess CT infection; 
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(2) treatment with CDC (Centers for Disease Control and Prevention)-recommended therapy to 

reduce complications and prevent transmission to others; 

(3) treatment of sexual partners to prevent reinfection and complications in both patients and partners; 

(4) repeat CT testing a few months following treatment to identify repeat infection; 

(5) a test of cure (TOC) in pregnant women at a minimum of 3 weeks following treatment to identify 

persisting or repeat infection so that repeat treatment can be provided punctually to reduce risk for 

maternal and neonatal morbidity (reviewed by William, 2015). 

Since C. trachomatis is sexually transmitted, barrier methods of contraception, including condom 

use, are effective at preventing chlamydial transmission, however utilization rates are low (Bearinger 

et al., 2007). 

Despite numerous attempts to develop a protective vaccine against C. trachomatis infections, 

effective vaccines are not yet available. Because MOMP is a highly abundant surface antigen, it has 

long been considered a promising candidate. Recent studies have shown that novel formulations 

delivering MOMP proteins  through cationic liposomes, induced antibody, type-1 immunity and 

partial protection from infection in minipigs (Lorenzen et al., 2015) and significant protection against 

upper tract disease in mice (Olsen  et al., 2015; Boje et al., 2016). In a pre-clinical study, intranasal 

immunization using MOMP in combination with Nanostat™, oil-in-water nanoemulsion in mice was 

performed and and mice were then subsequently challenged intra-vaginally with chlamydia. In this 

study, 100 percent of mice receiving no treatment developed oviduct pathology (indicator of PID) 

versus just 20 percent of mice treated (p<0.001). A polyvalent vaccine, composed of MOMP with 

PMPs formulated with DDA/MPL adjuvants, reduces chlamydial shedding when tested in a 

transcervical C. trachomatis mouse model (Stary et al., 2015).  

Because vaccines are the best form of prevention and protection against infections, including those 

from Chlamydia, further studies are needed in order to identify protective antigens. 
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1.3.7 Lactobacilli and C. trachomatis infections 

The innate defence system of the female mucosal genital tract involves a complex interaction among 

the healthy vaginal flora, immune cells, and several proteins that defend the host from pathogens.  

Lactobacillus spp. are the main host defence factor against pathogens, like C. trachomatis, within the 

cervico-vaginal ecosystem. As already broadly described, they are able to limit the growth of genital 

pathogens by means of  different mechanisms, such as competitive exclusion, anti-microbial 

compound production (lactic acid, hydrogen peroxide, defensins, etc.), the immune system activation 

as well as the maintenance of a low vaginal pH (Mijac et al., 2005; Vielfort et al., 2008; Petrova et 

al., 2015). Women with lactobacilli poor microbiota show an increased susceptibility to sexually 

transmitted pathogens. Several studies indicate that abnormal vaginal flora lacking lactobacilli is 

associated with the acquisition of infections by Neisseria gonorrhoeae, Chlamydia trachomatis, and 

Trichomonas vaginalis (reviewed by Nardis et al., 2013). 

Gong et al. demonstrated that lactic acid and, hence, a low pH, were essential for the anti-chlamydial 

activity of predominant Lactobacillus species in the cervico-vaginal microbiota (Gong et al., 2014). 

Apart from this, studies reported the ability of different vaginal Lactobacillus strains such as 

Lactobacillus brevis or Lactobacillus crispatus to strongly inhibit early phases of C. trachomatis 

infection as well as its intracellular replication. In particular, L. brevis and L. salivarius, showed an 

adverse effect on chlamydial EBs, on chlamydial adsorption to epithelial cells, and on intracellular 

phases of chlamydial replication. Furthermore, L. brevis was significantly more effective than L. 

salivarius. Interestingly, L. brevis was able to inhibit the development of persistent forms of C. 

trachomatis induced by coinfection with herpes simplex virus type 2 (HSV-2) (Mastromarino et al., 

2014). Several potential mechanisms interfering with C. trachomatis adhesion to host cell have been 

described.  

Rizzo et al., explored the ability of L. crispatus to affect C. trachomatis infectivity. Importantly, they 

showed that L. crispatus and its supernatant inhibited the adhesion of C. trachomatis cells to human 

epithelial cells or macrophages, and inhibited C. trachomatis infectivity. In addition, L. crispatus had 
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no cytotoxic effect on the epithelial cells or macrophages, reduced the production of the pro-

inflammatory cytokines, IL-6, IL-8, and TNF-α, and increased the production of the anti-

inflammatory cytokine, IL-10. L. crispatus commonly resides in the urogenital microbiota of healthy 

women and these results suggest that increasing the presence of such microbes can play an important 

role in protecting the genitourinary tract against pathological conditions (Rizzo et al., 2015).  

Nardini et al. performed a study, that included eight strains of L. crispatus, six strains of L. gasseri, 

three strains of Lactobacillus vaginalis, and lactic acid as a lactobacilli cellular metabolite, on the 

infectivity of C. trachomatis. All lactobacilli exerted a strong inhibitory effect, although, L. crispatus 

showed the highest effectiveness. Larger anti-chlamydial activity was correlated to increased cellular 

metabolites resulting in a lower pH, and the acidic conditions produced by lactic acid production were 

shown to be necessary for chlamydial inhibition. However, lactobacilli supernatants exhibited greater 

inhibition than only lactic acid, suggesting synergism with other lactobacilli metabolites (Nardini et 

al., 2016). 

Although all these studies demonstrated the protective role of lactobacilli against Chlamydia, further 

efforts are needed to deeply understand the protective mechanisms exerted by lactobacilli and their 

great contribution to the health of the vaginal ecosystem. 
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A normal vaginal microbiota, dominated by lactobacilli, is crucial for the prevention of several 

urogenital and sexually transmitted infections, including Candida and Chlamydia (Gupta et al., 1998; 

Spurbeck and Arvidson, 2008; Parolin et al., 2015; Nardini et al., 2016; Foschi et al., 2017; Ñahui 

Palomino et al., 2017). This aspect is strengthened by the demonstration that in case of bacterial 

vaginosis, a clinical condition characterized by the depletion of lactobacilli, a higher risk of STI 

transmission and acquisition is reported (Taha et al., 1998; Martin et al., 1999; Wiesenfeld et al., 

2003; Abbai et al., 2015). 

Candida albicans, is the largely prevalent etiological agent of vulvovaginal candidiasis (VVC), which 

is a common infection among women associated with considerable morbility and healthcare cost. 

Although the pathogenesis of VVC remains a controversial issue, it seems that when the balance 

between the microorganisms existing in the vaginal microbiota is disrupted, the overgrowth of 

Candida is facilitated. (Matthew E. Falagas et al., 2016).  

C. trachomatis is the leading cause of bacterial sexually transmitted diseases with 127 million new 

cases per year, according to the most recent World Health Organization estimates. Lactobacillus spp. 

are the main host defense factor against pathogens like C. trachomatis within the cervico-vaginal 

ecosystem; in fact several studies reported the ability of different vaginal Lactobacillus strains, such 

as Lactobacillus brevis or Lactobacillus crispatus, to strongly inhibit early phases of C. trachomatis 

infection as well as its intracellular replication (Marisa Di Pietro et al., 2019). 

The protective role of lactobacilli against urogenital pathogens is exerted through different 

mechanisms including the production of various antibacterial compounds (lactic acid, hydrogen 

peroxide, bacteriocins and biosurfactants), the competitive exclusion for epithelial adhesion, and the 

immunomodulation (Kaewsrichan et al., 2006; Borges et al., 2014; Parolin et al., 2015; Younes et al., 

2018). Lactobacillus spp. interaction with the vaginal epithelial cells is the first step in the formation 

of the biological barrier against colonization of opportunistic and pathogenic organisms. The 

blockage of undesirable microorganisms adherence by lactobacilli may take place by exclusion, 
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competition, and displacement mechanisms (Coman et al., 2015; Osset et al., 2001; Verdenelli et al., 

2014). 

In this contest, the present thesis aims to understand the mechanisms at the basis of Lactobacilli 

protection against pathogens with particular attention to C. albicans and C. trachomatis infection. In 

the first part of this work, we investigated the protective role of Lactobacilli against C. albicans and 

we selected five strains belonging to three representative vaginal species. Specifically, we chose L. 

crispatus BC1 and BC2, L. gasseri BC9 and BC11, and L .vaginalis BC15,  that showed a good 

profile adhesion to HeLa cells. Furthermore, L.crispatus strains have showed to significantly reduce 

the adhesion of C.albicans to the cervical cell line in competition experiments (Parolin et al., 2015). 

Lactobacilli exert beneficial effects on the cervical and vaginal mucosa not only through the microbial 

competition but also by modulating several important functional activities of the human ephitelium, 

such as immune response, cell proliferation and apoptosis (Abedin-Do et al., 2015; Mirmonsef et al., 

2011; Motevaseli et al., 2013; Rizzo et al., 2013; Rizzo et al., 2015; Rose et al., 2012). In this 

perspective, the aim of this work is to study the manner in which the interaction with the different 

Lactobacilli strains could modulate plasma membrane properties of HeLa cells. In particular, we 

investigated the effect of Lactobacilli interaction in modulating plasma membrane permeability and 

fluidity by using DAPI and Red Nile staining. Moreover, we assessed the role of Lactobacilli in 

modulating α5 integrin subunit exposure and in peroxide production.  

The purpose of the second part of the present thesis was to identify vaginal Lactobacilli strains able 

to interfere with C. trachomatis infection process. Specifically, we have chosen L. crispatus BC4 and 

BC5, L. gasseri BC14 and L. vaginalis BC17 to assess their capability, in counteract C. trachomatis 

interaction with HeLa cells through exclusion assay. In order to understand the rationale of the 

interaction between Lactobacilli, C. trachomatis and HeLa cells, L. crispatus BC5 was chosen as a 

model to study the molecular mechanism underlying the activity against Chlamydia, with particular 

interest in the modulation of plasma membrane properties. Furthermore, since the integrin family of 
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receptors is a major target of bacterial pathogens that colonize human tissues or invade specific cell 

types (Hoffmann et al., 2011; Hauck et al., 2012), we investigated the role of α5 integrin subunit in 

C. trachomatis internalization in HeLa cells. In order to study this last important aspect, we followed 

two different experimental strategies.  First, we checked whether C. trachomatis was able to infect 

HT29, a colon cancer cell line lacking the α5 integrin subunit, and if a re-expression of this subunit 

was able to mediate Chlamydia entry into the same cell line. Subsequently, we verified whether after 

silencing the integrin α5 subunit, C. trachomatis maintained its ability to enter and infect HeLa cells. 

Finally, all the experiments of the thesis aimed to gain a deep understanding of the close relationship 

between vaginal microbiota, host, and HeLa cells used as model of vaginal epithelium, in the prospect 

of employing lactobacilli as natural therapeutic agents to promote women's health.  
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3.1 Cell culture  

HeLa, a human cervical carcinoma cell line, and HT29, a colon cancer cell line, were used in these 

experiments. Cells were seeded in plates (Orange Scientific) at a density of 2x105 cells/cm
2
 and 

incubated at 37°C in a 5% CO2 atmosphere. The composition of the complete medium is reported in 

Table 3.1. 

 

Table 3.1: Composition of cell complete medium. 

 

RPMI 1640 (Lonza) 89% 

  

Fetal bovine serum (FBS) (EuroClone) 10% 

  

L-glutamine 200 mM (Sigma-Aldrich) in phosphate buffered saline (PBS) 1% 

  

 

 

Cells were washed two times in Phosphate Buffer Solution (PBS) and subsequently, trypsin 

0.115% (Sigma-Aldrich) in a solution of PBS-ethylenediaminetetraacetic acid (EDTA) (Sigma-

Aldrich) 0.02% was added to split cells, incubated with cells for 5 minutes at 37°C and 

neutralized with complete medium. Cells were finally counted using a Burker chamber. The 

composition of PBS is given in Table 3.2. 
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Table 3.2: Composition of phosphate buffered saline. 

 

 

 

 

 

 

 

 

 

3.2 Cell treatments with Candida albicans 

Candida albicans used in the present study, were kindly provided by Professor Marangoni 

(Microbiology Laboratory of Sant’Orsola-Malpighi University Hospital of Bologna).  

Lactobacillus crispatus BC1 and BC2, Lactobacillus gasseri BC9 and BC11 and Lactobacillus 

vaginalis BC15 were previously isolated from vaginal swabs of healthy premenopausal women 

(Parolin et al., 2015). 

These strains were selected on the basis of their adhesive properties toward HeLa cells (1–11 

lactobacilli/HeLa cell) (Parolin et al., 2015). Lactobacilli were cultured in de Man, Rogosa and 

Sharpe (MRS) broth supplemented with 0.05% L-cysteine. Incubation was carried out in anaerobic 

jars supplemented with GazPack EZ for 18 hours at 37 °C, afterwards cultures were centrifuged at 

5,000 × g for 10 min at 4 °C and cell pellets were washed in sterile saline.  

HeLa cells were seeded at 2 × 104 cells/cm2 in plastic wells or on sterile glass coverslips for 48 h, 

treated with lactobacilli at a ratio of 1:100 (HeLa cell: Lactobacillus), for 1 h, at 37 °C and 5% CO2 

atmosphere. Afterwards, HeLa-bacteria co-cultures were washed 3 times with PBS to remove 

unbound bacteria. When indicated, HeLa cells were simultaneously treated with C. albicans, using 

the same ratio.  

NaCl (Sigma-Aldrich) 8 g/L 

    Na2HPO4 (Sigma-Aldrich) 1.15 g/L 

    KCl (Sigma-Aldrich) 0.2 g/L 

    KH2PO4 (Sigma-Aldrich) 0.2 g/L 
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3.2.1 DAPI and Nile Red staining 

Stock solutions of Nile Red (NR, 9-diethylamino-5H-benzo-[alpha]-phenoxazine-5-one; Sigma-

Aldrich) and DAPI (4',6-diamidino-2-phenylindole; Thermo Fisher Scientific) were prepared in 

Dimethyl sulfoxide (DMSO) at the concentration of 1mM and 0.1mg/mL, respectively, and stored 

protected from light. HeLa cells were grown on glass coverslips and treated with lactobacilli, as 

described above. After three washes with PBS, NR staining was performed with a final dye 

concentration of 5µM for 5 min, at 37 °C; DAPI was used at the concentration of 5µg/mL for 15 min, 

at 37 °C. Cells were then fixed with 3% paraformaldehyde for 15 min, and repeatedly washed with 

0.1M glycine/PBS and 1% BSA/PBS. Specimens were embedded in Mowiol and analyzed using a 

Nikon Coolscope II equipped with a Eclipse 90i microscope. A 20X objective was used. 

 

3.2.2 Fluorescence anisotropy measurements  

The plasma membrane fluidity of HeLa cells was estimated by means of the fluorescence anisotropy 

of the hydrophobic probe PA-DPH (1,6-diphenyl-1,3,5-hexatriene-4’-propionic acid; Thermo Fisher 

Scientific). HeLa cells were treated with lactobacilli, then washed 3 times with PBS and resuspended 

at a final concentration of 3 × 105 cells/mL. The absorbance of the cell suspension was kept lower 

than 0.15 at the excitation wavelength of PA-DPH. A few microliters of PA-DPH stock solution were 

added to the cell suspension in order to obtain a final probe concentration of 1µM. Fluorescence 

anisotropy measurements were performed by using a PTI QuantaMaster fluorometer (Photon 

Technology International) equipped with a temperature-controlled cell holder and Polaroid HNP'B 

polarizers. Temperature was kept at 25 °C. Excitation and emission wavelengths were set at 360 nm 

and 430 nm, respectively. Fluorescence anisotropy (r) was calculated by using the equation: 

r = (IVV - IVH·G)/(IVV + 2·IVH·G) 
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where IVV is the fluorescence intensity measured with vertical excitation and vertical emission 

polarization filters and IVH is the fluorescence intensity measured with vertical excitation and 

horizontal emission polarization filters. G is the grating factor used to correct for monochromators 

grating induced polarization and it was obtained as a ratio of the emission intensities using 

horizontally polarized excitation: G = IHV/IHH. (Calonghi et al., 2017). 

 

3.2.3 Immunocytochemical integrin staining 

HeLa cells were grown on glass coverslips for 48h and then treated 1h with lactobacilli. Cells were 

washed 3 times with PBS and fixed in 500 μL of paraformaldehyde 3% for 15 min in agitation. Glass 

slides were washed twice with 1 mL of PBS-glycine 0.1 M (Sigma-Aldrich), and washed twice again 

with 1 mL of PBS-bovine serum albumin (BSA) 1% (Sigma-Aldrich). Samples were first incubated 

with anti-human CD49e primary antibody (BioLegend) for 1 h in agitation at RT.  Samples were 

washed again twice with 1 mL of PBS-bovine serum albumin (BSA) 1% and then incubated with 

anti-mouse Alexa 568-conjugated secondary antibody (Thermo Fisher Scientific) for 1 h at RT. 

Finally, after 2 washes with 1 mL of PBS-BSA 1%, specimens were embedded in Mowiol and 

analyzed by using a Nikon C1s confocal laser-scanning microscope, equipped with a Nikon PlanApo 

60X, 1.4-NA oil immersion lens. 

 

3.2.4 Detection of ROS generation 

The Dichlorofluorescein diacetate (DCF-DA) fluorimetric assay (Thermo Fisher Scientific) was used 

to analyse the intracellular production of ROS.  

HeLa cells were incubated with 5μM DCF-DA for 30 min at 37 °C, then washed twice with PBS and 

treated with lactobacilli for one hour at 37 °C. HeLa cells treated with Tert-buthyl-hydroperoxyde 

(TBH) 100µM were used as a positive control, untreated and unstained cells were used as negative 
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control. DCF-DA fluorescence was measured by using an EnSpire Multimode Plate Reader 

(PerkinElmer) at excitation and emission wavelengths of 485 nm and 535 nm, respectively.  

 

3.3 Cell treatments with Chlamydia trachomatis 

Chlamydia trachomatis (CT) used in the present study, were kindly provided by Professor Marangoni 

(Microbiology Laboratory, Sant’Orsola-Malpighi University Hospital of Bologna).  

Lactobacillus crispatus BC4 and BC5, Lactobacillus gasseri BC14, and Lactobacillus vaginalis 

BC17, previously isolated from vaginal swabs of healthy premenopausal women (Parolin et al., 2015, 

Nardini et al., 2016), were used in this set of experiments. Lactobacilli strains were grown as 

described in paragraph 3.2. 

 

3.3.1 Adhesion assay 

HeLa cells were seeded at 2 × 104 cells/cm2 on sterile glass coverslips for 48h. Cells were treated with 

lactobacilli CP of L. crispatus, BC4 and BC5, and L. gasseri BC14 applying a ratio of 1:100 (HeLa 

cell: Lactobacillus), for 1h, at 37 °C and 5% CO2 atmosphere. Afterwards, HeLa-bacteria co-cultures 

were washed 3 times with sterile PBS and then were treated with 5 × 103 CT EBs, for 1h, at 37 °C 

and 5% CO2 atmosphere. Samples were washed 3 times with PBS, fixed in 3% paraformaldehyde for 

10 min, and marked with a monoclonal antibody against the chlamydial membrane 

lipopolysaccharide antigen conjugated with fluorescein (Meridian), for 30 min at RT. Specimens 

were embedded in Mowiol and analyzed by using a Nikon C1s confocal laser-scanning microscope, 

equipped with a Nikon PlanApo 60X, 1.4-NA oil immersion lens. Chlamydia adhesion was assessed 

by counting the number HeLa cells positive to EBs attached in 10 random fields. 
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3.3.2 Effect of L. crispatus BC5 interaction on HeLa cells 

The effect of L. crispatus BC5 interaction on HeLa cells was evaluated by studying the lipid 

membrane organization, membrane fluidity and modulation of α5β1 integrin exposure. 

The modulation of membrane lipid organization was studied using Red Nile staining as described in 

paragraph 3.2.1. 

The effect of BC5 CP on plasma membrane fluidity of HeLa cells was estimated by means of the 

fluorescence anisotropy of the hydrophobic probe TriMethylAmmonium Diphenyl Hexatriene 

(TMA-DPH; Thermo Fisher Scientific) as described in paragraph 3.2.2. 

The effect of L. crispatus BC5 CP on surface α5β1 integrin exposure was evaluated as described in 

Paragraph 3.2.3. 

 

3.3.3 Exclusion assay with anti-CD49e antibody 

HeLa cells were seeded at 2 × 104 cells/cm2 on sterile glass coverslips for 48h. HeLa cells were first 

pre-exposed to IgG isotype (1:500 ) or anti-CD49e antibody (10 µg/mL) (BioLegend) for 1 h and then 

incubated with 5 × 103 CT EBs for 48 h at 37 °C and 5% CO2. HeLa cells infected with 5 × 103 CT 

EBs were used as controls. After 48h of incubation, samples were fixed in 3% paraformaldehyde for 

10 min, permeabilized in ethanol and stained with the fluorescein-conjugated chlamydial membrane 

lipopolysaccharide antibody (Meridian). Speciement were analysed by confocal microscopy as 

described above. Number of IFUs/ field were counted by using Image J. 
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3.3.4 Re-expression of α5 integrin subunit in HT29 

HT29 were seeded at 2 × 104 cells/cm2 on petri dish. After 24h of adhesion, cells were treated with 

5-Azacytidine (AZA) 10µM for 72h at 37 °C and 5% CO2.  Afterwards, cells were trypsinized and 

counted. 5x106 cells were centrifuged for 10 min at 250 g and washed twice with 1 mL of PBS by 

centrifugation at 3,000 g for 3 min. For the RNA extraction and purification, the RNeasy Mini Kit 

(Qiagen) was used. Once extracted, RNA was quantified by NanoDrop spectrophotometer (Thermo 

Fisher Scientific) and employed to generate cDNA using the Transcriptor High Fidelity cDNA 

Synthesis Kit (Roche). cDNA obtained  was used to analyze the levels of transcripts by quantitative 

Real-Time PCR (qRT-PCR). The LightCycler FastStart DNA Master SYBR Green I kit (Roche) and 

the LightCycler 2.0 Instrument (Roche) were employed. Primers (Sigma-Aldrich) used and qRT-PCR 

conditions are listed in Table 3.3. After the qRT-PCR, the presence of singles amplicons at the 

expected size was verified on a 1.8% agarose gel. 

 

Table 3.3: List of primers and conditions for quantitative Real-Time PCR. 

 

 

PRIMER SEQUENCE Tannealing Tfluorescence AMPLICON 

Β-ACTIN 

FW GCCACACGCAGCTCATTGTAGA 

65°C 65°C 272 bp 

Β-ACTIN 

REV GCCCTCGTCGTCGACAACGG 

ITGA5 FW GGCAGAAGGCAGCAATGGTG 

60°C 65°C 303 bp 

ITGA5 REV AGGCATCTGAGGTGGCTGGGA 
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In order to evaluate α5 integrin subunit protein expression, HT29 were seeded at 2 × 104 cells/cm2 on 

sterile glass coverslips for 24h. Samples were treated or not with 5-azacytidine 10µM for 72h and 

subsequently fixed and stained with anti-human CD49e primary antibody (BioLegend) as described 

is Paragraph 3.2.3. 

To evaluate C. trachomatis capability to infect HT29, cells treated or not with 5-azacytidine 10µM 

for 72h were subsequently incubated with 5 × 103 CT EBs for 48 h at 37 °C and 5% CO2. After 48h 

of incubation, samples were fixed, permeabilized, and stained with the fluorescein-conjugated 

antibody against chlamydial membrane lipopolysaccharide (Meridian). Speciement were analysed by 

confocal microscopy as described above and Chlamydia infection evaluated counting the number of 

IFUs/ field by using Image J. 

 

3.3.5 α5 integrin subunit silencing 

siRNA silencing was applied after 72 h of HeLa adhesion, when cells were 70% confluent. The 

specific siRNA against ITGA5 gene and the scramble siRNA used in this thesis are described in Table 

3.4. 

Table 3.4: Custom validated siRNA used for the experiments. 

 

 

 

 

 

 

 

Validated Silencer Select siRNA (Thermo Fisher Scientific) 

 

s7549 

  

 

Silencer Select Negative Control siRNA (Thermo Fisher Scientific) #1 
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Both specific siRNA against ITGA5 gene (siRNA) and Negative Control siRNA (scramble) were 

dissolved in RNase-free water up to a 10 µM stock. siRNA stock was first diluted 1:100 in OptiMEM 

(Thermo Fisher Scientific). The RNAiMAX (Thermo Fisher Scientific) solution was diluted 1:50 in 

OptiMEM, too. The diluted solution of siRNA was gently mixed to an equal volume of the diluted 

RNAiMAX, and incubated at RT for 20 minutes. Finally, the siRNA-RNAiMAX solution was diluted 

1:5 in OptiMEM medium and added drop by drop to cells. siRNA treatment was applied at the final 

concentration of 10nM either for 48h or 72h. After treatment, total protein extraction was performed 

and α5 integrin subunit expression level was assessed by Western blotting, as described below. 

 

3.3.6 Total protein extraction 

HeLa treated either not with siRNA or scramble 10nM as described in paragraph 3.3.5, were washed 

twice with PBS and incubated with 500 µL of Radioimmunoprecipitation assay buffer lysis (RIPA) 

and 500 µL of HNTG buffer at 4°C for 15 minutes with agitation. After cell lysis, the solution was 

centrifuged for 20 minutes at 12,000 g and the supernatant containing the proteins was quantified 

using the Bio-Rad protein assay (Bio-Rad) based on the method of Bradford. The compositions of the 

RIPA lysis buffer and the HNTG buffer are described in Table 3.5. 
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Table 3.5: RIPA lysis buffer and HNTG buffer compositions for protein extraction. 

 

RIPA Buffer 

Trizma Base - HCl, pH 7.4 (Sigma-Aldrich) 50 mM 

NaCl 150 mM 

EDTA 1 mM 

NaF (Sigma-Aldrich) 1 mM 

Sodium deoxycholate (Sigma-Aldrich) 1% 

Triton X-100 (Sigma-Aldrich) 1% 

Sodium dodecyl sulfate (SDS) (Sigma-Aldrich) 0.1% 

Sodium orthovanadate (Sigma-Aldrich) 1 mM 

Leupeptin, aprotinin, antipain, pepstatin A (Calbiochem) 10 µg/mL 

HNTG Buffer 

4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES), pH 7.4 (Sigma-

Aldrich) 

50 mM 

NaCl 150 mM 

Triton X-100 0.1% 

Glycerol (Sigma-Aldrich) 10% 

 

3.3.7 Western blot 

Proteins were analysed by SDS-PAGE and Western blotting on nitrocellulose membrane. To 

detect α5 integrin subunit, 10 µg of total protein lysate for each sample (CTRL, siRNA and 

scramble (48h and 72h)) were resolved on a 7.5% polyacrylamide gel in running buffer at 200 
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V for 1 hour. Western blot was performed in transfer buffer at 100 V for 1 hour. The composition 

of running buffer and transfer buffer are given in Table 3.6 and Table 3.7, respectively. 

 

Table 3.6: Composition of running buffer for SDS-PAGE. 

 

Trizma Base 25 mM 

  

Glycine (Sigma-Aldrich) 192 mM 

  

SDS 0.1% 

  

 

Table 3.7: Composition of transfer buffer for western blot. 

 

Trizma Base 25 mM 

  

Glycine 192 mM 

  

Methanol (Sigma-Aldrich) 20% 

  

 

After western blot, the nitrocellulose membrane was initially blocked by incubation with PBS-

polyoxyethylene sorbitan monolaurate (TWEEN 20) 0.1% (Sigma-Aldrich) in agitation for 1 

hour, then it was incubated with a rabbit anti-human α5 integrin subunit  (1:1000 in PBS Tween, 
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Cell Signaling Technology) or a rabbit anti β- actin (1:2000, Sigma Aldrich) antibodies. 

Immunoreactive bands were detected by using a horseradish peroxidase (HRP) conjugated 

secondary antibody (1:20,000 in PBS Tween, GE Healthcare) followed by WESTAR EtaC 2.0 

(Cyanagen). Densitometry analysis of immunoreactive bands was done by Fluor-S Max 

MultiImager (Bio-Rad). Relative quantification of α5 integrin subunit was performed by using 

β-actin signal as control. Mean of at least three independent analysis and Student's t-test were 

used to verify the significance of results (a p-value less than 0.05 was considered significant). 

 

3.3.8 Evaluation of C. trachomatis infection capability upon α5 integrin 

subunit silencing in HeLa 

HeLa were seeded at 2 × 104 cells/cm2 on sterile glass coverslips for 72h.Cell were treated either 

not with siRNA or scramble 10nM for 72h as described in paragraph 3.3.5. Afterwards, samples 

were incubated with 5 × 103 CT EBs for 48 h at 37 °C and 5% CO2. Cells were then washed three 

times with PBS, fixed in paraformaldehyde, and permeabilized in ethanol. Cells were stained for 

chlamydial membrane lipopolysaccharide and analyzed by confocal microscopy as described 

above. 

 

3.3.9 C. trachomatis infectivity interference assay 

To study the capacity of both L.crispatus BC5 (BC5) cells and BS5 to interfere with the entry of 

CT EBs into HeLa cells, following experiments were performed.  HeLa were seeded at 2 × 104 

cells/cm2 on sterile glass coverslips for 48h. Cells were treated as described in Table 3.8. 
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Table 3.8: Samples description. 

 

After treatment, samples were washed three times with PBS, fixed in paraformaldehyde, and 

permeabilized in ethanol. Cells were stained for chlamydial membrane lipopolysaccharide and 

analyzed by confocal microscopy as described above. The number of IFUs was counted in 30 

randomly chosen 200× microscopic fields. Results were expressed as the percentage (median 

percentage ± median absolute deviation) of CT infectivity, comparing the number of IFUs of the 

single experiments with the control. 

CTRL Control cells (no treatment) 

BC5 
Cells first treated with L. crispatus BC5 CP for 1h, and then incubated 

with CT EBs for 48h. 

CD49e-BC5 
Cells treated 1h with L. crispatus BC5 pre-incubated with CD49e 

antibody for 1h, and then incubated with CT EBs for 48h. 

CT+anti-

CD49e 

Cells treated 48h with CT EBs pre-incubated 1h with anti-CD49e 

antibody. 

BS5 
Cells treated with Released surface-associated components of 

L.crispatus BC5 (BS5) for 1h and then incubated for 48h with CT EBs. 

BC5 w/o BS5 
Cells treated 1h with BC5 deprived of BS5, and then incubated for 48h 

with CT EBs. 

CT+ BS5 Cells treated 48h with CT EBs pre-incubated 1h with BS5. 
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3.3.10 Released surface-associated components extraction  

40 mL of an overnight culture of L. crispatus BC5 were inoculated in 400 mL of MRS broth and 

allowed to grow for 24 h under anaerobic conditions. Cell pellet was harvested by centrifugation 

(10,000g, 10 min) and, after 2 washes in sterile water, re-suspended in 150 mL of PBS. The 

suspension was then gently stirred at RT for 2 h in order to release the cell-bound BS5, and 

centrifuged again. Afterwards the supernatant was filtered through a 0.22 μm pore size filter, and BS5 

was purified by dialysis against demineralized water in a Cellu-Sep© membrane (molecular weight 

cutoff 6,000–8,000 Da; Spectra/Por 2 dialysis membrane (Spectrum Laboratories Inc.) for 24 h at 

RT. Finally, the purified BS5 was lyophilized at 0.01 atm and −45 °C (Christ Freeze Dryer ALPHA 

1–2). 1.6 mg of BS5 powder were dissolved in 1 mL of sterile PBS and filtered through a 0.22 μm 

pore size filter (Giordani B et al, 2019). The final concentration of use was 0.05 mg/mL.  

 

3.3.11 Cytotoxicity assay 

In order to evaluate the BS5 cytotoxicity, HeLa were seeded at 2 × 104 cells/cm2 on 96 wells plate for 

24h. Afterwards, the media was eliminated and fresh media (200 μL) containing BS5 in the 

concentration range of 0.05, 0.1, 0.2, 0.4, 0.8, 1.0 and 1.2 mg/mL were added, followed by incubation 

for 24h. Once the incubation period was completed, media containing BS5 was gently removed and 

Alamar Blue was added in each well diluted 1:10 in sterile PBS in a final volume of 100 μL. Samples 

were incubated for 4h at 37°C and 5% CO2. Absorbance was measured at wavelengths of 570 nm and 

600 nm using the spectrophotometer (Uvikon). The percent difference in reduction between treated 

and control cells in cytotoxicity assays was calculated as follow: 
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Where:   

O1 = 80,586, molar extinction coefficient (E) of oxidized alamarBlue (Blue) at 570 nm*  

O2= 117,216, E of oxidized alamarBlue at 600 nm*  

A1 = absorbance of test wells at 570 nm   

A2 = absorbance of test wells at 600 nm  

P1 = absorbance of positive control well (not treated cells plus alamarBlue) at 570 nm   

P2 = absorbance of positive control well (not treated cells plus alamarBlue) at 600 nm 

 

3.3.12 Western blot of proteins from bacterial cells 

Two-hundred μL of L. crispatus BC5 suspension (5 × 108 Lactobacillus CFU/mL) were pelleted and 

treated with 180 μL of enzymatic lysis buffer (20 mM tris-HCl, 2 mM EDTA, 1.2% Triton X-100, 

20 mg/mL lysozyme) for 30 min at 37 °C. Afterwards, proteins were analysed by SDS-PAGE and 

Western blotting on nitrocellulose membrane. To detect α5 integrin subunit, 10 µg of L. crispatus 

lysate and 15 µg of BS5 were resolved on a 10% polyacrylamide gel in running buffer at 200 V for 1 

hour. Western blot was performed in transfer buffer at 100 V for 1 hour. The composition of running 

buffer and transfer buffer are given in Table 3.6 and Table 3.7, respectively. 

 

% difference between treated and control cells   

 

=  

(O2 x A1) - (O1 x A2)  

 

(O2 x P1) - (O1 x P2)  

x100   
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3.3.13 Statistical analysis 

In the experiments regarding NR and DAPI fluorescence intensity quantification, PA-DPH 

anisotropy, and intracellular ROS production, a paired Student’s t test was used to determine whether 

treated and untreated samples were significantly different. P values below 0.05 were considered 

significant and evidence of population differences. 
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4.1 Role of lactobacilli in the prevention of C. albicans infection 

In this first part of the chapter, results regarding the study of the protective role of lactobacilli against 

C. albicans are described. L. crispatus BC1 and BC2, L. gasseri BC9 and BC11 and L. vaginalis 

BC15 were selected on the basis of their good adhesion profile to HeLa cells, a cervical cell line, 

according to the results published by Parolin et al., in 2015. The effects exerted by the different 

Lactobacillus strains of vaginal origin on the physical properties of the plasma membrane in HeLa 

were studied, and two putative mechanisms at the basis of lactobacilli protective role were identified. 

Results herein described have been published in the paper “Interaction of vaginal lactobacillus strains 

with HeLa cells plasma membrane” (N. Calonghi, G. Frisco et al., Beneficial Microbes 2017). 

 

4.1.1 Modulation of HeLa plasma membrane properties by lactobacilli 

In order to evaluate the effect of lactobacilli strains on plasma membrane properties, lipid bilayer 

organization of HeLa cells was firstly investigated. For this experiment, HeLa were seeded on sterile 

glass coverslips and incubated for 1h with L. crispatus BC1 and BC2, L. gasseri BC9 and BC11 and 

L. vaginalis BC15. After the treatment, HeLa cells were stained with the NR dye, which acts as a 

hydrophobic probe, exhibiting different fluorescence depending on the relative hydrophobicity of the 

surrounding environment. Specifically, NR is able to fluoresce intensely in the presence of polar 

lipids such as phospholipids, showing excitation and emission maximum at 549 nm and 628 nm, 

respectively (Greenspan and Fowler, 1985). Samples were analysed by confocal microscopy and the 

results are shown in the left panel of Figure 4.1. The interaction of HeLa cells with L. crispatus BC1 

and L. gasseri BC9 strongly decreased NR emission fluorescence, indicating a reduced exposure of 

membrane polar lipids. The treatment with L. crispatus BC2 caused a weaker reduction of NR 

fluorescence, whereas L. gasseri BC11 and L. vaginalis BC15 did not affect membrane lipid 

organization. Nile Red Fluorescence quantification of HeLa control and treated with L. crispatus BC1 

and BC2, L. gasseri BC9 and BC11 and L. vaginalis BC15 is shown in Figure 4.2. 
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Afterwards, HeLa plasma membrane permeability was evaluated. Indeed, HeLa cells were also 

counterstained with DAPI which, being hydrophobic, is able to spontaneously cross the plasma 

membrane and bind to nuclear DNA. Results regarding DAPI staining are shown in the right panel 

of Figure 4.1. Upon the interaction with L. crispatus BC2, L. gasseri BC11 and L. vaginalis BC15 

HeLa cells remained permeable to DAPI. On the contrary, DAPI fluorescence resulted strongly 

decreased after L. crispatus BC1 and L. gasseri BC9 treatment, indicating that the interaction of this 

two Lactobacilli strains with cell plasma membrane prevented DAPI internalization and its binding 

to HeLa nuclear DNA. DAPI fluorescence quantification of HeLa control and treated with L. 

crispatus BC1 and BC2, L. gasseri BC9 and BC11 and L. vaginalis BC15 is shown in Figure 4.3 

Treatment with L. crispatus BC1 and L. gasseri BC9 have led to changes in lipid organization and 

permeability that could be not attributed simply to lactobacilli adherence capability to HeLa cells. 

According to Parolin et al., adhesiveness properties are strains specific rather than species-specific. 

Thus, such effects seem to be related to a specific activity of some lactobacilli strains, which, despite 

a low adherence to HeLa cells, are able to perturb the organization of plasma membrane and its 

functionality. This observation is in agreement with the results of Parolin et al. (2015), showing no 

correlation between the adhesiveness level of lactobacilli and their ability to counteract the adhesion 

of Candida. Indeed, the most active strains in reducing pathogen adhesion were not the most adhesive 

strains, suggesting that the inhibitory effects are not purely due to steric encumbrance and saturation 

of the adhesion sites, but rather to changes affecting the epithelial cells surface (Parolin et al., 2015). 

 



60 
 

 

Figure 4.1. Confocal microscopy of NR lipid staining and DAPI nuclear staining in control and 

Lactobacillus treated HeLa cells. HeLa cells were incubated with Lactobacillus strains for 1 hour, then 

stained with NR (left panel) and DAPI (right panel). 

treated with L. crispatus BC1, L. crispatus BC2, L. gasseri BC9, L. gasseri BC11, L. vaginalis BC15. 
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Figure 4.2. Quantification of Nile Red fluorescence intensity in control and lactobacilli treated HeLa 

cells. NR fluorescence intensity of HeLa cells alone (CTRL) or treated with the indicated Lactobacillus 

strains, was calculated by image densitometry using ImageJ (* p<0.05 respect to control). 

 

 

 

Figure 4.3. Quantification of DAPI fluorescence intensity in control and lactobacilli treated HeLa cells. 

DAPI fluorescence intensity of HeLa cells alone (CTRL) or treated with the indicated Lactobacillus strains, 

was calculated by image densitometry using ImageJ (* p<0.05 respect to control). 
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Finally, the effect of lactobacilli strains on plasma membrane fluidity was studied by means the 

fluorescence anisotropy of PA-DPH probe. This probe allows to monitor lipid organization of the 

fatty acyl chains thanks to its capability to locate within the plasma membrane bilayer and to 

fluoresce, with a polarized fluorescence correlated to its rotational diffusion in the membrane (Trotter 

and Storch, 1989). The PA-DPH fluorescence anisotropy of HeLa cells in response to the interaction 

with different lactobacilli strains is reported in Figure 4.4. The interactions of L. crispatus BC1 and 

L. gasseri BC9 with HeLa cell membranes significantly reduced the PA-DPH fluorescence anisotropy 

as compared to the untreated cells, while no significant differences were observed upon interaction 

with L. crispatus BC2, L. gasseri BC11, and L. vaginalis BC15 strains. 

 

 

Figure 4.4. Quantification of DA-DPH fluorescence anisotropy in control and lactobacilli treated HeLa 

cells. DAPI fluorescence intensity of HeLa cells alone (CTRL) or treated with the indicated Lactobacillus 

strains, was calculated by image densitometry using ImageJ (* p<0.05 respect to control). 

 

PA-DPH fluorescence anisotropy followed a trend similar to both NR and DAPI fluorescence: indeed, 

Lactobacillus strains BC1 and BC9 treated HeLa cells showed the lowest NR fluorescence intensity 

and a significantly reduced internalization of DAPI as compared to untreated cells. The reduction of 

PA-DPH fluorescence anisotropy resulting from the interaction of lactobacilli with the plasma 
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membrane of HeLa indicates an increase in membrane fluidity that can be strictly correlated with 

membrane polar lipid organization and permeability changes. All these data suggest a modification 

of the HeLa cells membrane properties due to interactions with L. crispatus BC1 and L. gasseri BC9. 

 

4.1.2 Effect of lactobacilli on ROS production in HeLa cells 

In order to study effects of lactobacilli on ROS production, cellular oxidative stress was measured by 

means of the cell-permeant probe DCF-DA, commonly used to detect free radical/ROS production in 

cells. HeLa treated 1h with L. crispatus BC1 and BC2, L. gasseri BC9 and BC11 and L. vaginalis 

BC15 were analyzed, and HeLa cells exposed to tert-buthyl-hydroperoxide (TBH) were used as a 

positive control for the DCF-DA assay; untreated and unstained cells were used as negative control. 

As shown in Figure 4.5, all Lactobacillus strains significantly decreased HeLa ROS content.  

  

 

Figure 4.5 Analysis of intracellular ROS production in control and Lactobacillus treated HeLa cells. ROS 

production was measured by DCF-DA fluorescent assay. Blank: untreated and unstained cells; TBH: tert-

buthyl-hydroperoxide treated cells; control HeLa cells (CTRL) or treated with the indicated Lactobacillus 

strains. (* p<0.05 respect to control). 
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4.1.3 Effect of lactobacilli on surface α5β1 integrin exposure 

In light of the results obtained so far, L. crispatus BC1 and BC2, L. gasseri BC9 and BC11 and L. 

vaginalis BC15 were also tested to investigate their role in modulating α5β1 integrin exposure. In 

fact, as it is known, membrane fluidity affects the free movement of phospholipid molecules and 

proteins in the bilayer to modulate various biological functions like ion transport, cell signaling and 

cell growth (Park et al., 2005). Thus, the question was addressed whether Lactobacillus stains 

interaction with HeLa plasma membrane could lead to changes on integrin exposure. HeLa cells 

stained for surface α5β1 integrin were analyzed by confocal microscopy and results are shown in 

Figure 4.6.  

Figure 4.6. Confocal microscopy of α5β1 integrin staining in control and Lactobacillus treated HeLa 

cells. (a) (CTRL)Control HeLa cells (bar = 50 µm);HeLa cells treated with L. crispatus BC1, L. crispatus 

BC2, L. gasseri BC9, L. gasseri BC11, L. vaginalis BC15. (b) Enlargement of α5β1 integrin staining in BC2, 

BC11 BC15 treated HeLa cells. Arrows indicate clustering of α5β1 integrin. (bar = 50 µm) 

(a) 

(b) 
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The interaction of L. crispatus BC1 and L. gasseri BC9 with HeLa cells did not change the expression 

of α5β1 integrin neither its localization, despite they significantly increased plasma membrane 

fluidity. On the contrary, L. crispatus BC2, L. gasseri BC11 and L. vaginalis BC15 stimulation, which 

did not affect membrane lipid organization and anisotropy, greatly changed the α5β1 integrin 

exposure. Indeed, BC2, BC11 and BC15 strains in addition to promoting integrin exposure, modified 

its organization on the plasma membrane, leading to the protein clustering (Figure 4.6 b). 

 

4.1.4 Interaction of lactobacilli with HeLa cells prevented C. albicans 

adhesion 

All the results shown so far have led to identify two mechanisms of action for the different strains of 

lactobacilli analyzed: the first one was exerted by L. crispatus BC1 and L. gasseri BC9, whose 

interaction with HeLa plasma membrane caused a significant increase in membrane fluidity by 

modulating lipid organization of the bilayer. The second one was exerted by L. crispatus BC2, L. 

gasseri BC11, and L. vaginalis BC15, whose stimulation of HeLa plasma membrane led to a 

modulation of α5β1 integrin exposure and clustering formation. 

In order to verify if the two mechanisms of interaction of lactobacilli with HeLa plasma membrane 

could have a role in the prevention of C. albicans adhesion to HeLa cells, L. crispatus BC1 and BC2 

were chosen as representative strains of the two groups of lactobacilli here identified. In this 

experiment HeLa were treated simultaneosly with L.crispatus BC1 or BC2 and C.albicans for 1h. 

Candida adhesion was visualized by means of NR, which is able to stain yeast lipid particles 

(Verstrepen et al., 2004), and HeLa membrane phospholipids too.  

Figure 4.7 (A) shows the NR staining of C. albicans cells adherent to HeLa cells, and Figure 4.7 (B) 

the modulation of the yeast adhesion to epithelium driven by L. crispatus BC1 and BC2. The images 

acquired by confocal microscopy confirm the ability of both L. crispatus strains to compete with C. 

albicans adhesion to HeLa cells. Since no significant difference was observed between the reductions 



66 
 

induced by L. crispatus BC1 and BC2 the two mechanisms are equally efficient to prevent Candida 

adhesion.  

 

Figure 4.7. Confocal microscopy of NR lipid staining of C. albicans adherent to HeLa cells, after 1 hour 

of coincubation with Lactobacillus strains. (A) NR staining of C. albicans. (B) Control HeLa cells (bar = 50 

µm); (C) HeLa cells treated with C. albicans. HeLa cells treated with C. albicans and L. crispatus BC1 (D), 

L. crispatus BC2 (E). 
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4.2 Role of lactobacilli in the prevention of C. trachomatis infection 

In this second part of the chapter, L. crispatus BC4 and BC5, L. gasseri BC14 and L. vaginalis BC17 

were employed in order to investigate their protective role in counteract C. trachomatis infection of 

HeLa cells, chosen as vaginal epithelial model. Specifically, the potential mechanism of protection 

was investigated in L. crispatus BC5, chosen as the model strain. Results described herein have been 

published in the paper “Lactobacillus crispatus BC5 Interferes with Chlamydia trachomatis 

Infectivity Through Integrin Modulation in Cervical Cells” (G. Frisco et al., Frontiers in 

Microbiology 2018). 

 

4.2.1 Interference of lactobacilli with C. trachomatis adhesion to HeLa  

In order to evaluate the role of lactobacilli in the prevention of  C. trachomatis adhesion to HeLa, 

cells were incubated with lactobacilli CP of L. crispatus BC4 and BC5, L. gasseri BC14 and  L. 

vaginalis BC17 for 1h and then with CT EBs for an additional 1h (exclusion mechanism). Specimens 

were stained for chlamydial membrane lipopolysaccharide antigen and images acquired by confocal 

microscopy are shown in Figure 4.8 (a). Chlamydia adhesion was assessed by counting the number 

of HeLa cells positive to CT EBs and quantification is reported in Figure 4.8 (b). L. crispatus BC5 

was the most active strain in counteract Chlamydia adhesion to HeLa cells, whereas no significative 

differences were observed upon L. crispatus BC4, L. gasseri BC14 and L. vaginalis BC17 treatment. 
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Figure 4.8 Interference of lactobacilli with C. trachomatis adhesion to HeLa cells. (a) Confocal 

microscopy of HeLa cells treated or not (CTRL) for 1h with the indicated lactobacillus strains and incubated 

for 1h with CT EBs. (b) Quantification of  Hela cells positive to CT EBs. Rapresentative micrographs are 

shown; results were expressed in percentage compared to control taken as 100%. Bars represent mean 

values and error bars represent standard deviations. Statistical significance was calculated vs. control (*P ≤ 

0.01) 
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4.2.2 L. crispatus BC5 modulate HeLa cells plasma membrane 

Since L. crispatus BC5 was the most active in counteract C. trachomatis adhesion to HeLa cells 

through the exclusion mechanism, it was chosen as a model strain for all the subsequent experiments. 

It was evaluated if 1h-treatment of Hela cells with L. crispatus BC5 CP would be able to induce 

modifications at the HeLa plasma membrane level. The effect of L. crispatus BC5 on plasma 

membrane modulation was investigated in terms of lipid organization, membrane fluidity and 

modulation of protein exposure.  

For the investigation of membrane lipid organization, HeLa cells were stained with the lipid dye NR 

and analyzed by confocal microscopy. Results are reported in Figure 4.9(a). As shown in Figure 

4.9(b), L. crispatus BC5 interaction with HeLa caused a decrease in NR emission fluorescence, 

indicating a reduced exposure of polar membrane lipids.  

In order to evaluate if L. crispatus BC5 interaction with HeLa cells could affect the physico-chemical 

characteristics of plasma membrane, the steady-state fluorescence anisotropy of TMA-DPH was 

measured both in control cells and in HeLa pre-incubated 1h with L. crispatus BC5. As reported in 

Figure 4.9(c), the treatment with L. crispatus BC5 CP induced a significant decrease in TMA-DPH 

anisotropy.  

Finally, it was investigated whether L. crispatus BC5 pre-treatment could alter integrin exposure on 

HeLa plasma membrane by immunostaining of CD49e. Images acquired by confocal microscopy are 

shown in Figure 4.9 (d,e). The pre-incubation of HeLa cells with L. crispatus BC5 significantly 

reduced the exposure of α5 integrin subunit on the plasma membrane.  

The results here reported, led to elucidate the biochemical mechanism at the basis of L. crispatus BC5 

interaction with HeLa cells plasma membrane. This interaction induced modifications at the plasma 

membrane level that are strain-specific. In particular, L. crispatus BC5 acted by increasing membrane 

fluidity and altering lipid composition, as well as α5β1 integrin exposure.  
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Fig.4.9. Effect of L. crispatus BC5 on Membrane lipid organization, fluidity and α5 integrin exposure of 

HeLa cells. (a,b) HeLa cells incubated or not with L. crispatus BC5 for 1 h and then stained with NR. (c) 

Steady-state fluorescence anisotropy of TMA-DPH of control  and L. crispatus BC5 treated HeLa cells. (d, e) 

HeLa cells incubated or not with L. crispatus BC5 for 1 h and then stained with anti-CD49e antibody. 

Fluorescence intensity was quantified by using Image J. Representative micrographs are shown. 

Experiments were repeated at least 3 times with similar results. Results are expressed as mean values ± 

s.e.m. * P ≤ 0.001. 

 

4.4.3 Role of α5 integrin subunit in C. trachomatis internalization.  

It is known that numerous pathogens exploit integrins expressed on target cell in order to mediate 

adhesion and cell internalization (Hoffmann et al., 2011; Hauck et al., 2012).. Since α5β1 integrin 

exposure was altered upon the interaction of L. crispatus BC5, it was examined if α5 integrin subunit 

could be involved in C. trachomatis internalization into HeLa. Thus, an anti-CD49e blocking 
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antibody was used to mask α5 integrin subunits exposed on HeLa cell surface, and then CT infectivity 

was evaluated. The specificity of α5 integrin subunit blocking was verified by using IgG isotype. As 

shown in Figure 4.10 (a, b), the CT infectivity was reduced by approximately 60% when anti-CD49e 

blocking antibody was used. On the contrary, the pre-incubation with IgG isotype did not affect C. 

trachomatis infectious process. (Frisco et al., 2019) 

 

 

 

Figure 4.10. An α5 integrin blocking antibody prevents HeLa infection by C. trachomatis. (a, b)HeLa cells 

were treated or not with an anti-α5 integrin antibody for 1 h, then incubated with CT EBs for 48 h. C. 

trachomatis infectivity was evaluated as number of IFUs/microscopic fields. Results were expressed in 

percentage compared with control taken as 100%. Bars represent median values, error bars represent 

median absolute deviations. Statistical significance was calculated vs control. * P ≤ 0.01. 

 

To further asses the role of α5 integrin subunit on CT infection, HT29, a human colon carcinoma cell 

line that constitutively lacks α5 subunit but does express the β1 subunit (Kempermann et al., 1997; 
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Schmidt et al., 1998) were incubated 48h with CT EBs. Image acquired by confocal microscopy 

(Figure 4.11a) showed how the absence of α5 integrin subunit inhibits C. trachomatis internalization. 

In order to allow α5 integrin re-expression, HT29 were treated with a Histone Deacetylase Inhibitor 

(HDACi), sodium butyrate (NaBu), or with a hypomethylating agent, 5-Azacytidine (5-AZA). 

HDACs are enzymes that remove the acetyl groups from histone lysine residues. The process of 

deacetylation creates more positive charges on the histones and thus increases the interaction of the 

positively charged N termini of histones with the negatively charged phosphate groups of DNA. 

These interactions transform DNA into a more condensed form, making it less accessible to the cell's 

transcriptional machinery (Hong et al., 1993; Nagy et al., 1997). The cytosine analogue 5‐azacytidine 

is one of the currently most advanced drugs for epigenetic cancer therapies. This compound acts as a 

DNA methyltransferase inhibitor and has shown substantial potency in reactivating epigenetically 

silenced tumor suppressor genes in vitro (Stresemann et al.,2008). On this ground, HT29 were treated 

with NaBu 5mM or 5-AZA 10 µM for 72 h. After the treatment, mRNA and protein expression levels 

of α5 integrin subunits were verified by RT-PCR and confocal microscopy, respectively. Results 

reported in Figure 4.11(b, c) show that only treatment with 5-AZA induced a re-expression of α5 

integrin subunit in HT29 cells at both mRNA (b) and protein (c) levels. Thus, HT29 re-expressing α5 

integrin subunit were subsequently incubated for 48h with CT EBs and CT infectivity was evaluated. 

As evidenced by confocal images reported in Figure 4.11 (e), CT was able to infect HT29.  
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Figure 4.11. Role of α5 integrin subunit on CT infectious process. (a) HT29 were incubated for 48h with 

CT EBs. Specimens were stained for chlamydial antigen (b) ITGA5 gene expression. Lane M: GeneRuler 

DNA Ladder;  Lane A: cDNA of HT29 CTRL; lane B and C: cDNA of HT29 treated with 5-AZA diluited 1:10 

and 1:100, respectively; Lane D: cDNA of HT29 treated with NaBu; Lane E: cDNA of HeLa positive CTRL. 

(c, d) Confocal microscopy of α5 integrin subunit in HT29 control and treated with 5-AZA and fluorescence 

intensity quantification. Representative micrographs are shown. Experiments were repeated at least 3 times 

with similar results. Results are expressed as mean values ± s.e.m. * P ≤ 0.001. (e) Confocal microscopy of 

HT29 treated with 5-AZA and subsequently incubated for 48h with CT EBs. Specimens were stained as 

described above.  
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To further confirm the involvement of α5 integrin in CT infectious process in HeLa cells, a siRNA 

silencing was performed to knockdown endogenous α5 integrin subunit expression (Frisco et al., 

2019). Validated siRNAs were used for the analysis: a specific anti-ITGA5 and a correspondent 

negative siRNA were chosen (scramble). A silencing time course was assessed by quantification of 

α5 integrin subunit protein 48-120 h after silencing with siRNA 10 nM. Total protein lysates were 

resolved in SDS-PAGE and α5 integrin subunit protein was identified by a specific antibody in 

western blot. By normalization on the amount of β-actin, quantification of α5 integrin subunit in the 

specific siRNA sample was compared with the relative scramble sample (Figure 4.12 a, b). Since α5 

integrin subunit expression was already greatly reduced after 48 h of siRNA treatment, this time point 

was chosen as optimal. Following silencing, cells were incubated with CT EBs for 48h, stained for 

chlamydial antigen and finally CT infectivity was evaluated. Transfection of cells with α5 integrin-

specific siRNA reduced CT infection by 64%, whereas transfection of cells with scramble did not 

affect CT infection (Figure 4.12 c, d). These results demonstrate that α5 integrin subunit plays an 

essential role in C. trachomatis adhesion and internalization in HeLa cells. 
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Figure 4.12. ITGA5 gene silencing prevents C. trachomatis infection of HeLa cells. (a, b) Western blotting 

of α5 integrin subunit expression in control, ITGA5 siRNA and scramble Hela cells. Quantification of α5 

integrin subunit was normalised on β-actin. Bars represent mean values based on three independent 

experiments, error bars represent standard deviations. (c, d)  HeLa cells treated with siRNA or scramble 

were infected with CT EBs, and stained for chlamydial antigen. Bar, 20 µm. Results were expressed in 

percentage compared with scramble, taken as 100%. Bars represent median values, error bars represent 

median absolute deviations. Statistical significance was calculated vs control. * P ≤ 0.01 
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4.3. Understanding L. crispatus BC5 mechanism of action 

Once the role of α5 integrin subunit in promoting CT infection has been demonstrated, it remained to 

elucidate what was the mechanisms by which L. crispatus BC5 exerted its protective effect.  

First, it was investigated whether the protective mechanism could be ascribed to a direct interaction 

between L. crispatus BC5 and α5 integrin subunit or, alternatively, to a direct interaction between 

lactobacillus and Chlamydia.  

 

4.3.1 The pre-incubation with the antibody anti-CD49e inhibited the 

protective effect of L. crispatus BC5  

In order to elucidate L. crispatus BC5 mechanism of action, BC5 CP was pre-treated 1h with CD49e 

antibody and then employed to counteract CT infection. CT infectivity was evaluated by counting the 

number of IFUs/field and results are reported in Figure 4.13. Notably, the pre-incubation of L. 

crispatus BC5 with anti- CD49e antibody led to a loss of protective capability. 

 

Figure 4.13 CD49e antibody inhibited L. crispatus BC5 protective role. HeLa cells were treated with L. 

crispatus BC5 CP  not treated or pre-treated with an anti- CD49e antibody for 1 h. HeLa/lactobacilli co-

culture were  then incubated with CT EBs for 48 h (exclusion). HeLa cells incubated CT EBs for 48 h were 

used as control. C. trachomatis infectivity was evaluated as number of IFUs/microscopic fields. Results were 

expressed in percentage compared with control taken as 100%. Bars represent median values, error bars 

represent median absolute deviations. Statistical significance was calculated vs control. * P ≤ 0.01. 
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In order to understand the meaning of these results, a western blot was performed . HeLa cells lysate 

and L. crispatus BC5 lysate were resolved by 10% SDS-PAGE. After electrophoresis, proteins were 

transferred to a nitrocellulose membrane and then immunoblotted with an anti-CD49e antibody. The 

anti-CD49e antibody recognized a specific band for α5 integrin subunit in HeLa cells lysate of 140 

KDa, but also a specific band in BC5 lysate of about 50 KDa. 

The results reported in Figure 4.14 indicated that the mechanism of protection from C. trachomatis 

infection could not be ascribed to a direct interaction between L. crispatus BC5 and α5 integrin 

subunit. 

Figure 4.14. SDS-PAGE and Western blot. HeLa cells lysate (CTLR) and BC5 lysate were 

separated by SDS-PAGE (a) and the western blot membrane (b) was labeled with anti- CD49e 

antibody.   

 

4.3.2 L. crispatus acts by sequestering Chlamydia 

In order to verify whether the protective mechanism of L. crispatus BC5 could be ascribed to a direct 

interaction with C. trachomatis, CT EBs were first incubated 1h with anti-CD49e or with L. crispatus 

BC5 CP, and then incubated with HeLa cells for 48h. The results reported in Figure 4.15 showed as 

the pre-incubation of CT EBs with L. crispatus BC5 CP reduced CT infectivity by approximately 

67%. On the contrary, the pre-incubation of CT EBs with anti-CD49e did not affect CT infectivity. 
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Thus, these results indicated that L. crispatus BC5 interacted directly with C. trachomatis, 

sequestering it and preventing its binding to integrin. 

 

 

 Figure 4.15 The pre-incubation of CT EBs with L. crispatus BC5 inhibited C. trachomatis infection. 

HeLa cells were incubated for 48h with CT EBs pre-treated 1h with anti- CD49e antibody or pre-treated 1h 

with L. crispatus BC5 . HeLa incubated with not treated CT EBs for 48 h were used as control. C. 

trachomatis infectivity was evaluated as number of IFUs/microscopic fields. Results were expressed in 

percentage compared with control taken as 100%. Bars represent median values; error bars represent 

median absolute deviations. Statistical significance was calculated vs control. * P ≤ 0.01. 

 

4.3.3 Effect of released surface-associated components of L. crispatus 

BC5 on C. trachomatis infection 

It is known that among the released surface- associated components there are amphiphilic compounds 

such as biosurfactants, produced by microorganisms, which can be localized on their cell surface, or 

secreted extracellularly. It is known that these molecules exert several functions including the 

capability to act as antimicrobial, antiadhesive and antibiofilm agents (Gudiña et al., 2013, 

Sambanthamoorthy et al., 2014, Giordani et al., 2019). In this perspective, released surface- 

associated components were isolated from L. crispatus BC5 (BS5). In order to verify its cytotoxic 
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effect, BS5 was administred to HeLa cells for 24h, in a range between 0.05 mg/mL and 1.2 mg/mL. 

Cells viability was evaluated by using Alamar blue assay. The results reported in Figure 4.16, showed 

as BS5 had no cytotoxic effect on HeLa for all the tested amounts.  

 

 

Figure 4.16 Cytotoxicity assay. The effect of BS5  isolated from L. crispatus BC5 on cells viability was 

evaluated by means Alamar blue absorbance in control and treated HeLa cells. Results were expressed in 

percentage compared with control taken as 100%. Bars represent mean value; error bars represent standard 

deviations. Statistical significance was calculated vs control. * P ≤ 0.05. 

 

Afterwards, HeLa cells were incubated with BS5 (0.05 mg/mL) or with BC5 CP deprived of BS5 for 

1h at 37°C, and subsequently incubated with CT EBs for 48h. CT infectivity was evaluated by 

counting the number of IFUs/field and results, reported in Figure 4.17, showed as the treatment with 

BS5 significantly reduced C. trachomatis infection by approximately 50%, while BC5 deprived of 

BS5 lost its protective effect. These results demonstrated that BS5 was an important component  in 

conferring protection from C. trachomatis infection, since L. crispatus BC5 deprived of BS5 lost its 

protective capability. 
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Figure 4.17 BS5 prevents C. trachomatis infection of HeLa cells. Control HeLa cells, HeLa treated with 

0.05 mg/mL BS5 or with BC5 deprived of BS5 were infected with CT EBs. C. trachomatis infectivity was 

evaluated as number of IFUs/microscopic fields. Results were expressed in percentage compared with 

scramble, taken as 100%. Bars represent median values; error bars represent median absolute deviations. 

Statistical significance was calculated vs control. * P ≤ 0.01. 

 

As before, in order to investigate the mechanism by which the BS5 isolated from L. crispatus BC5  

could protect from C. trachomatis infection, a western blot was performed. HeLa cells lysate and  

BS5 were resolved by 10% SDS-PAGE. After electrophoresis, proteins were transferred to a 

nitrocellulose membrane and then immunoblotted with an anti-CD49e antibody. Results are showed 

in Figure 4.18. Similar to the experiment previously described in Paragraph 4.3.1, the anti-CD49e 

antibody recognized also in BS5 a specific band of about 50 KDa. As well as for L. crispatus BC5, 

BS5 mechanism of protection from C. trachomatis infection could not be ascribed to a direct 

interaction with α5 integrin subunit. Afterwards, it was investigated whether BS5 could bind directly 

to C. trachomatis as well. CT EBs were first incubated 1h with BS5 (0.05 mg/mL) and then incubated 

with HeLa cells for 48h. The results reported in Figure 4.19 showed that the pre-incubation of CT 

EBs with BS5 reduced CT infectivity by approximately 67%. In conclusion, these results indicated 
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that BS5, as well as L. crispatus BC5, interacted directly with C. trachomatis, sequestering it and 

preventing its binding to integrin. 

Figure 4.18. SDS-PAGE and Western blot. HeLa cells lysate(CTLR) and BS5 were separated by 

SDS-PAGE (a) and the western blot membrane (b) was labeled with anti- CD49e antibody. 

 

Figure 4.19. The pre-incubation of CT EBs with BS5 inhibited C. trachomatis infection.  HeLa cells were 

incubated for 48h with CT EBs pre-treated 1h with BS5. HeLa incubated with not treated CT EBs for 48 h 

were used as control. C. trachomatis infectivity was evaluated as number of IFUs/microscopic field. Results 

were expressed in percentage compared with control taken as 100%. Bars represent median values; error 

bars represent median absolute deviations. Statistical significance was calculated vs control. * P ≤ 0.01. 
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CHAPTER 5 

 

CONCLUSIONS 
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The vaginal microbiota, dominated by lactobacilli, play a pivotal role in protecting against several 

pathogenic microorganisms, including C. albicans and C. trachomatis. In the state of mucosal health, 

the microorganisms constituting the vaginal microbiota coexist in a perfect balance and the resulting 

homeostasis derives from a deep and complex interaction between them. The rupture of homeostasis, 

and in particular the lack of lactobacilli, contribute to creating a micro-environment suitable for the 

growth of pathogenic microorganisms (Petrova et al., 2015). The protective role of lactobacilli against 

urogenital pathogens is exerted through different mechanisms including the production of various 

antibacterial compounds (lactic acid, hydrogen peroxide, bacteriocins and biosurfactants), the 

competitive exclusion for epithelial adhesion, and the immunomodulation (Kaewsrichan et al., 2006; 

Borges et al., 2014; Parolin et al., 2015; Younes et al., 2018). Lactobacillus spp. interaction with the 

vaginal epithelial cells is the first step in the formation of the biological barrier against colonization 

of opportunistic and pathogenic organisms. The blockage of undesirable microorganisms adherence 

by lactobacilli may take place by exclusion, competition, and displacement mechanisms (Coman et 

al., 2015; Osset et al., 2001; Verdenelli et al., 2014). 

In this project, some lactobacilli strains, previously isolated from healthy vaginal swabs by Parolin et 

al., (Parolin et al., 2015) were tested in order to evaluate their protective role against C. albicans and 

C. trachomatis infections. Specifically, the first part of this thesis regarded the study of lactobacilli 

protection versus C. albicans infection, and L. crispatus BC1 and BC2, L. gasseri BC9 and BC11, 

and L. vaginalis BC15 were employed. Two mechanisms of action at the basis of the protective role 

of lactobacilli against C. albicans were identified. The first mechanism was those exerted by L. 

crispatus BC1and L. gasseri BC9 which interacting with HeLa cell plasma membrane caused a 

modification of polar lipids organization and increased membrane fluidity. The second mechanism 

was exerted by L. crispatus BC2, L. gasseri BC11 and L. vaginalis BC15 which acted modulating 

α5β1 exposure on HeLa plasma membrane. Both mechanisms resulted in the inhibition of C. albicans 

adhesion to HeLa cells. 
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The second part of the present thesis aimed to identify vaginal Lactobacilli strains able to interfere 

with C. trachomatis infection process. Specifically, L. crispatus BC4 and BC5, L. gasseri BC14 and 

L. vaginalis BC17 were tested, and L. crispatus BC5was chosen as model strain because was the most 

active strain in counteract C. trachomatis adhesion to HeLa cells. Importantly, through siRNA 

silencing of ITGA5 gene, we demonstrated that C. trachomatis needs of α5 integrin subunit for its 

adhesion and internalization into HeLa cells. Furthermore, our results showed that L. crispatus BC5 

was able to protect from C. trachomatis infection by means of a dual mechanism. On the one hand, 

L. crispatus BC5 interaction with HeLa caused an increase of plasma membrane fluidity and a 

reduction of α5 integrin exposure on cell surface, thus making this protein less available for C. 

trachomatis binding and internalization. On the other hand, L. crispatus BC5 directly interacted with 

C. trachomatis, grabbing it and thus preventing its binding to α5 integrin. Interestingly, both in L. 

crispatus BC5 lysate and in BS5, through western blot was identified a protein similar to α5 integrin 

which could be responsible for C. trachomatis binding.  

In conclusion, this study allowed a deeper understanding on the mechanisms underlying the 

protection against pathogenic microorganisms, in the specific case C. albicans and C. trachomatis. 

Thanks to their characteristics and to protective effects against pathogens, lactobacilli herein studied, 

with particular emphasis on L. crispatus BC5, could be good candidates for their use as probiotic 

agents promoting woman’s vaginal health. 
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