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Abstract

Thanks to the development of modern advanced numerical techniques, the modelling of the
whole landslide process via a single simulation has become possible today. Even though
the capability of these comprehensive numerical techniques in large deformation analysis
has been proven with many applications, yet few efforts have been devoted to developing
landslide simulation tools addressing both the pre-failure and post-failure analyses. The
present thesis focuses on the use of Particle Finite Element Modelling (PFEM) in landslide
applications. PFEM was originally proposed for problems of fluid mechanics and has been
gradually applied to solid mechanics. The PFEM developed here is based on the optimization
solver. To assess its capability, also an additional model has been developed in this thesis
work: it is the widely adopted model based on depth-averaged equations (DAEs) solved by a
finite difference technique. The DAEs has been validated against analytical and laboratory
data as well as against the observations of the 1783 Scilla, Italy, landslide event. The PFEM
model has been validated through applications to the slope stability analysis problem and to
the run-out analysis of the 2008 Tangjiashan, China, landslide. Further, the PFEM model has
been used to capture the slip surface and the deposit profile of the 2013 Cà Mengoni landslide,
occurred in northern Apennines, Italy. It is found that the weakening process plays a crucial
role in the evolution of landslides. Finally, the onset mechanism and landslide dynamics of
soil slopes subjected to seismic loading has been studied via the present approach.
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Chapter 1

Introduction

1.1 Landslides

As a widespread found geophysical phenomenon, the term landslide usually refers to various
mass movements on slopes, and according to the features of movement type and material
components, Varnes built a classification system (Varnes, 1978) with 29 typical landslide
types that has been widely accepted and further developed (Hungr et al., 2014), based on
several typical movements: fall, topple, slide, spread, and flow. Practically, the whole process
of a landslide usually includes the failure, post-failure and propagation stages with distinct
kinematic characteristics (Cascini et al., 2009). Different effects such as external loads and
rheological relationships act together during the landslide process and pose a challenging
problem for researchers.

The initiation of a landslide is governed by the basic physics including the interactions
among material strength, gravitational stress, external forces, and pore-fluid pressure (Keefer
and Larsen, 2007). Intensive rainfalls and seismic shaking are known to be two main factors
triggering the failure of landslides according to abundant observational evidence. The large
uncertainties on triggering factors and material properties lead to the huge complexity of the
identification of unstable zones.

The motion and deposition of landslides are usually studied by referring to the motion
of material governed by equations derived from fluid mechanics. It is difficult to develop a
proper constitutive model for the motion of granular material under shear, since the grains can
behave like a solid, a liquid or a gas (Jop et al., 2006). The flow behaviour has been described
in many ways as Newtonian material, Non-Newtonian material, dry Mohr-Coulomb material,
two-phase material, etc (Bagnold, 1954; Chen, 1988; Pitman and Le, 2005; Savage and
Hutter, 1989). Additionally, the sliding landslides can be treated as rigid-like blocks, which
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interact with each other following the Newton’s second law (e.g., Hungr, 1995; Tinti et al.,
1997).

The landslide associated with rainfall effects and seismic loading have triggered a lot of
specific researches. Intensive rainfall causes the variations of pore water pressure and effective
stress, leading to the deformation of pre-failure stage of landslides. It has been proposed
by Caine (1980) that the occurrence of shallow landslides and debris flows are controlled
by the rainfall intensive-duration threshold. Further, different rainfall thresholds have been
proposed to build a relationship between the threshold and the database of rainfall-induced
landslides. The analyses are carried out focusing on the explanation of pore water pressure
contributing to the failure of saturated/unsaturated slopes (Collins and Znidarcic, 2004).
As for the earthquake-induced landslides, they are related to the earth surface processes
initialized by seismic waves. Most moderate and large earthquakes can trigger landslides,
ranging from small scales in soil to massive rock avalanches and two recent events, i.e. the
1999 Chi-Chi, earthquake and the 2008 Wenchuan, earthquake, have provided numerous
cases for the understanding of seismic effects on earth surface processes (Fan et al., 2019).
The failure of earthquake-induced landslides is mainly attributed to the dynamic stresses and
the discontinuities inside the slope body.

To quantify the relationships between the response of slopes and the triggering causes,
mathematical model is needed to describe these factors. According to Van Asch et al. (2007),
the mathematical model should include the following features:

• geometrical: characterizing local geometry and internal structure;

• morphostructural: identifying evidences of mass movements by remote sensing or field
works;

• kinematic: specifying control factors varying in time;

• geotechnical: describing physical and hydrological properties of material;

• geomechanical: merging these features with their supportive data in mathematical
form.

Various information associated with multiple strategies should be included into the math-
ematical model. Due to the complexity of the mathematical models, they are most often
solved by means of numerical techniques.
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1.2 Numerical techniques
The widely used landslide modelling techniques mainly focus on the failure mechanism and
the propagation stage of landslides. For the failure mechanism, the landslide is commonly
analysed by e.g., the limit equilibrium method (Fredlund and Krahn, 1977), the limit analysis
method (Chen, 2013), the finite-element method (Dawson et al., 1999), the discrete-element
methods (Chang, 1992). For the landslide propagation stage, the landslide is considered
as a mass-flow, which can be treated as a flow-like material based on equations derived
from the fluid mechanics. The mass flow consists of rocks and poorly sorted sediments and
water, rapidly moving across a steep-slope region and mainly driven by gravity force. This
mass-flow dynamics has attracted great interest from scientists and engineers due to its high
velocity and impact forces, and consequently to its high damaging power.

To minimize the damage of landslides, it is important to study the post-failure stage
of the landslide. The post-failure stage hereafter denotes the evolution processes after the
failure of landslides. On the basis of the fundamental work by Savage and Hutter (1989),
where the mass-flow is treated as a shallow-flow model with the Mohr-Coulomb rheology
law, most of the current models are still using a set of depth-averaged equations derived from
the principles of mass and momentum conservation to describe the mass flow behaviours
with various emphasises, e.g., single-phase debris flows (Chen, 1988), two-fluid debris flows
(Pitman and Le, 2005) and two-layer approach (Fernández-Nieto et al., 2008). These models
consider the landslide propagation that starts from rest assuming that the slip surface is
known, being determined by a previous slope stability analysis or field surveys. With the aim
of risk assessment of landslide hazards, the depth-averaged models can be integrated into
GIS-based environment suitable for quick risk assessment of rapid mass flows released from
a defined area (e.g., Mergili et al., 2017).

Based on the capability of modelling large deformation problems in geomechanics, the
modern numerical techniques provide the opportunity to simulate the failure and post-failure
mechanism via a single simulation. The numerical approaches applied to landslide modelling
can be classified into three types: discontinuous approaches, continuous approaches, and the
coupled approaches.

For discontinuous approaches, the Discrete Element Method (DEM) is probably the most
used method, where the Newton’s law is applied to govern the discretized elements consider-
ing the internal interactions and different force-displacement relationships. Different models
of force-displacement laws account for the dynamics of individual discretized elements and
they have been applied to modelling of the post-failure stage of landslide with successes (e.g.,
Staron, 2008; Tang et al., 2009). The main limitation of the DEM is its high computational
cost.
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As regards continuous approaches, they can be simply categorized into mesh-based
approaches and mesh-free approaches. FDM, FVM (Finite Volume Method) and FEM are the
most used mesh-based approaches. Another typical technique of the mesh-based approaches
is the Arbitary Lagrangian Eulerian (ALE) method. According to the ALE description
(Donea et al., 1982), the mesh nodes can move arbitrarily to optimize the shapes of elements
to avoid mesh distortion. The ALE description can be reduced to the Lagrangian-based FEM
method by moving mesh with material or the Eulerian-based FEM by fixing mesh in the
space. An example can be found in the work by Di et al. (2007), where a standard step
of the ALE algorithm consists of a Lagrangian step and a Eulerian step. The governing
equations are solved in the Lagrangian step and then mesh smoothing and variable mapping
are performed in the Eulerian step. One limitation of the ALE is that it cannot treat adequately
cases where extreme deformations are involved.

The mesh-free approaches associated with some other mesh-based particle methods
can be generalized as particle approaches including the Smoothed Particle Hydrodynamics
(SPH) (Bui et al., 2008), Material point method (MPM) (Andersen and Andersen, 2010) and
particle finite element method (PFEM) (Idelsohn et al., 2003). SPH is a typical mesh-free
approach that was originally proposed by Lucy (1977) and Gingold and Monaghan (1977) for
astrophysical problems. The idea of SPH is to follow particles that carry physical quantities.
The interpolation is carried out based on the particle position vector, using a weighting
function (’kernel’), being a differentiable, decreasing, compactly supported function of the
particle distance and the characteristic length, h, known as the smoothing length (Violeau and
Rogers, 2016). MPM is a hybrid Eulerian-Lagrangian approach, where the moving material
points carry state variables and the fixed Eulerian meshes are used to determine incremental
displacements and stains at material points. The idea of PFEM (Idelsohn et al., 2004) is
that the mesh nodes of the FEM mesh can move freely and even separate from the original
mesh they belong to. The alpha-shape method is used to recognize the computational domain
and FEM-solvers are used to update the positions of those particles. For other numerical
approaches applied to large deformation analysis including landslides applications, one can
referred to Soga et al. (2015).

1.3 Motivation and objectives of this work

The processes of landslides are often associated with complex geological conditions and
intensive rainfalls and seismic shaking are known to be the main triggering factors for the
failure of a slope. Slope failure mechanism depends on many geotechnical, hydrological,
geomorphological, and physical factors, which are hard to be all included in numerical
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models. So far, the phases of the onset and of the evolution are treated separately in
numerical models, which means that the studies are carried out from different points of view.
With the development of modern numerical techniques, especially of the strategies handling
large deformation problems, it has become possible to simulate the whole landslide process
covering pre-failure and post-failure analyses. The aim of this work is to study landslides
onset and dynamics by adopting a unified approach where slope stability, identification of
unstable zone, failure propagation, detaching processes and detached mass motion can be
simulated by means of a comprehensive model considering complex factors.

To develop a model for landslide processes that can be used to predict the unstable
zone and the landslide deposit considering various effects, the primary work is to assess
the capability of the adopted numerical techniques in the model. As regards this aspect, it
has been already mentioned above that several numerical techniques can be considered for
the simulation of landslides involving large deformations. One relevant additional factor
qualifying the goodness of a model is that it should be easily developed and integrated into
the geoscientific models that are applied for the risk assessment of landslides. In practice,
the numerical method should be easy to use for all those researchers that are not familiar
with advanced numerical techniques and that like to adapt it to solve their own specific
problems. Taking into account these considerations, the PFEM, which can be regarded as
the particle version of the classical FEM, has been chosen as the basic numerical method
to treat landslides into this work. It is known that the PFEM model can be developed
based on different FEM solvers. An optimization-based PFEM relying on the robustness
of available optimization solvers has been developed here by constructing optimization
problems submitted to the solvers, which allows researchers to develop their own version.

With these objectives, a model that solves depth-averaged equations (DAEs) is first
introduced, since various DAEs have been widely applied to the landslide modelling focusing
on run-out analysis. The DAEs model has also been treated as a reference in the following
sections, which thereby gives the structure of this thesis. In chapter 2, the basic concepts of the
widely used depth-averaged equations (DAEs) are introduced and a finite difference scheme
is developed to solve the DAEs. The numerical code is tested against typical benchmarks
and a real case, i.e. the 1783 Scilla landslide, Italy, with comparisons carried out against
a Lagrangian block model (Tinti et al., 1997) and against observation data. In chapter 3,
the numerical implementation of the mathematical optimization-based PFEM is explained,
where some key aspects are unveiled. In chapter 4, an assessment of the developed PFEM
model applied to landslide modelling is conducted by comparing the results with typical
techniques in slope stability and landslide propagation analyses. In chapter 5, the idea of
simulating the landslide process via a single simulation is carried out based on a real case,



6 Introduction

i.e., the 2013 Cà Mengoni landslide, northern Apennines, Italy. By the back-analysis of the
landslide, it is found that in general, the model can capture the shallow movement of the
landslide, but a weakening of the material should be included during the post-failure process.
In chapter 6, the effects of seismic loading are explored and large deformation analyses of
soil slopes impacted by seismic waves are performed.



Chapter 2

Depth-averaged models

Earth-surface mass flows such as debris flows and rock avalanches can result from slope
failures. Both solid and fluid phases act together, often with extremely destructive power.
According to the feature of this flow-like property, the corresponding mathematical models
are usually constructed based on the principles of fluid mechanics. Due to the complexity
of the mixture material behaviour under motion, quantitative descriptions are built with
some assumptions to simplify the mass-flow motions. The scaling technique assuming
that the depth scale is much smaller than the length scale and the depth average technique
assuming that the relevant variables are the average quantities along depth are the two most
frequently adopted techniques, leading to the so called depth-averaged models. They have
been widely applied to many flow-like phenomenon including flood propagation, landslide
run-out analysis, tsunamis generation, and so on. This chapter is presented with two aims:
(1) explaining the basic idea of the depth-averaged models; (2) introducing the developed
finite difference code and validating it against benchmarks and real cases. It is pointed out
that only a succinct description, though complete and exhaustive, is given here since most
contents have been included in a paper (Wang et al., 2019a) that is one of the products of
this thesis work.1 We stress also that this model will be further compared with the developed
PFEM model in the following chapters.

2.1 Governing equations

The governing equations of the depth-averaged models, also called depth-averaged equations
(DAEs), are derived from the Navier-Stokes equations using depth-integration technique.

1Most contents in this section have been summarized in a paper published in: Wang L, Zaniboni F, Tinti S,
et al. Reconstruction of the 1783 Scilla landslide, Italy: numerical investigations on the flow-like behaviour of
landslides[J]. Landslides, 2019, 16(6): 1065-1076.
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The shallow-water approximation (long-wave approximation) assumes that the vertical
velocity scale is negligibly small compared to the horizontal velocity scale, which leads to
the appearance of the shallow water equations (SWEs). Incorporating the Mohr-Coulomb
rheology law into the SWEs, the model developed by Savage and Hutter (1989) has been
widely used and further extended by many researchers. The modifications on the classical
SWEs have been conducted to describe different mechanisms during the motion of mass
flows (e.g. Gray and Thornton, 2005; Iverson, 2005; Mangeney et al., 2005; Pudasaini, 2012).
The governing equations in this chapter are restricted to the basic equations that express the
conservation law of mass and of linear momentum for a two-phase mixture.

2.1.1 Balance equations

On the basis of the Eulerian description, let’s consider the flow motion through a volume V
in space bounded by the surface S. Assuming that the out direction of V is positive, then the
mass change within V can be attributed to two components:

• the continuum flows out
∫

S ρundS, where un is the velocity normal to S and ρ is the
density

• the variation of density with in V
∫

V
∂ρ

∂ t dV

Since mass is conserved: ∆m =
∫

V
∂ρ

∂ t dV +
∫

S ρundS = 0, using the divergence theorem, we
can get the following equations inside the volume V :

∫
V

(
∂ρ

∂ t
+∇(ρu)

)
dV = 0 (2.1)

Let’s assume a mixture consisting of fluid and solid phases with components denoted by
the volume fractions αs and α f . Hereafter, the subscript s and f are used to denote the fluid
and the solid phases. The mass conservation is valid for both phases, with two simplified
conditions:

• no phase change dmi
dt = 0(i = s, f )

• two phases are individually incompressible ∂ρi
∂ t = 0(i = s, f )

The simplified mass conservation equations be written as:

∂ (ρsαs)

∂ t
+∇(ρsαsus) = 0 (2.2a)

∂ (ρ f α f )

∂ t
+∇(ρ f α f uf) = 0 (2.2b)
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Similarly, we can obtain a momentum conservation equation based on the Newton’s second
law, stating that the momentum change is produced by forces. Considering that:

• the rate of momentum ∫
V

∂ (ρu)
∂ t

dV

• the flow out of momentum (”⊗ ” represents the tensor product)∫
S
(ρu⊗u)dS

• and the forces

One can obtain the momentum conservation equations:

∂ (ρsαsus)

∂ t
+∇(αsρsus ⊗us) = αsρsg−∇Ts + fs −αs∇p (2.3a)

∂ (ρ f α f u f )

∂ t
+∇(α f ρ f u f ⊗u f ) = α f ρ f g+∇T f + f f +αs∇p (2.3b)

Here the complex interactive forces (e.g. Pudasaini, 2012) are simplified as the drag force
term fd between the solid and fluid phases, leading to the expressions: fs = fd, f f = −fd

(Meng and Wang, 2016). Ts and T f are the partial stress tensors of granular and fluid phases.
p is the fluid pressure and g is the gravitational acceleration.

Stress tensors

The buoyancy force exerted on solid phase is −αs∇p and T f = −pI+ τ f . Thus we can
obtain that ∇T f +αs∇p =−α f ∇p+∇τ f . Considering the Mohr-Coulomb model for solid
phase and the Newtonian fluid model for the fluid phase, one can write Ts = αsT̃s with T̃s

being the Coulomb stress tensor for dry granular material. The partial shear stress is given by
τ f = α f µ(∇u f +∇T u f ), where µ is the dynamic viscosity.

Mixture expression

The governing equations for two phases can be reduced to the classical Navier-Stokes
equation for incompressible fluid if we add Eq. (2.3a) with Eq. (2.3b). Replacing −∇Ts by
∇τ f (compressive stress is positive for solid while negative for fluid), we have:

∂ (ρu)
∂ t

+∇(ρu⊗u) = ρg+∇τ −∇p (2.4)



10 Depth-averaged models

2.1.2 Scaling analysis

According to the previous works (e.g. Gray et al., 1999; Pudasaini, 2012; Savage and Hutter,
1989), the above governing equations can be simplified with the introduction of dimensionless
variables:

(x,y,z,b,s, t) = L(x̂, ŷ,ε ẑ,ε b̂,ε ŝ,1/
√

gLt̂) (2.5a)

(u,v,w) =
√

gL(û, v̂,εŵ) (2.5b)

(p) = ρ f gH p̂,(Cd) = ρ f
√

g/LĈd (2.5c)

(Ts(ii)) = ρsgHT̂s(ii),(Ts(i j)) = ρsgHT̂s(i j) (2.5d)

Here H and L are the introduced characteristic depth and horizontal length respectively and
the superscript ˆ represents the non-dimensionalized variables. u,v,w are the down-slope
(x), cross-slope (y) and normal (z) components of the velocity. ε = H/L is the aspect ratio
and Ts(i j) are the components of the solid stress tensor.

2.1.3 Depth-averaged equations

By means of the scaling analysis technique, the governing equations can be simplified as
dimensionless equations. The continuity equations Eqs. (2.2) are naturally converted as
(Hereafter, the superscript ˆ is omitted for convenience):

ρs
√

gL
L

(
∂ (αs)

∂ t
+∇(αsus)) = 0 (2.6a)

ρ f
√

gL
L

(
∂ (α f )

∂ t
+∇(α f uf)) = 0 (2.6b)

As for the momentum equations, the following equations are separately expressed for the
solid and the fluid phases.

Fluid: The components of terms along x, y and z directions are listed inside the equations:

∂ (ρ f α f u f )

∂ t


ρ f gL

L
(∂α f u f )

∂ t
ρ f gL

L
(∂α f v f )

∂ t

ε
ρ f gL

L
(∂α f w f )

∂ t

(2.7)
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∇(ρ f α f u f ⊗u f )


ρ f gL

L

(
∂ (α f u2

f )

∂x +
∂ (α f u f v f )

∂y +
∂ (α f u f w f )

∂ z

)
ρ f gL

L

(
∂ (α f u f v f )

∂x +
∂ (α f v2

f )

∂y +
∂ (α f v f w f )

∂ z

)
ε

ρ f gL
L

(
∂ (α f u f w f )

∂x +
∂ (α f v f w f )

∂y +
∂ (α f w2

f )

∂ z

) (2.8)

−α f ∇p


−ρ f gH

L α f
∂ p
∂x

−ρ f gH
L α f

∂ p
∂y

−ρ f gH
H α f

∂ p
∂ z

(2.9)

Assuming a linear drag relationship for the drag force term fd =Cdαsα f (uf −us), one can
write

−fd


ρ f gCdα f αs(u f −us)

ρ f gCdα f αs(v f − vs)

ερ f gCdα f αs(w f −ws)

(2.10)

Newtonian rheology is adopted for the fluid, i.e. τ f = η f (∇u f +∇T u f ):

∇τ f


ε

NR

[
2∂ 2u f

∂x2 + ∂

∂y(
∂v f
∂x +

∂u f
∂y )+

1
ε2

∂ 2u f
∂ z2 +

∂ 2w f
∂x∂ z

]
ε

NR

[
2∂ 2v f

∂y2 + ∂

∂x(
∂v f
∂x +

∂u f
∂y )+

1
ε2

∂ 2v f
∂ z2 +

∂ 2w f
∂y∂ z

]
O

(2.11)

in which NR = (ρ f H
√

gL)/(α f η f ) that is similar to the Reynold number. The z component
of the stress is omitted.

Solid: The same procedures can be applied to the stresses exerted on solid phases.

Depth-integration technique
1
h

∫ s(x,y,t)

b(x,y)
()dz = () (2.12)

Leibniz integral rule

d
dx

(
∫ b(x)

a(x)
f (x, t)dt) = f (x,b(x))

d
dx

b(x)− f (x,a(x))
d
dx

a(x) (2.13)

+
∫ b(x)

a(x)

∂

∂x
f (x, t)dt

With further simplifications, e.g. shallow water assumptions (hydrostatic), the depth-averaged
equations (DAEs) can be obtained for the two-phase modelling. Different modifications
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(boundary conditions, interaction forces, etc.) can result in different equations (e.g. Meng
and Wang, 2016; Pitman and Le, 2005; Pudasaini, 2012) describing different mechanisms.
These equations can be reduced to the simple mixture models (e.g. Iverson and Denlinger,
2001; Savage and Hutter, 1989), but, for simplicity, the details and final forms of these DAEs
are not presented here. Instead, the DAEs adopted to simulate landslide propagation in the
thesis will be introduced in the next sections.

2.2 Numerical scheme

The resulting partial differential equations can be solved by means of various numerical
techniques. With the advantages of easily understood and implemented, FDM has been
served for solving these equations for a quite long time. The numerical scheme presented
here follows the one proposed by Tai et al. (2002). The numerical scheme combines a first-
order Lax-Friedrichs scheme (Lax, 1954) with a piecewise linear reconstruction. The central
Nessyahu-Tadmor (NT) scheme (Nessyahu and Tadmor, 1990), computing the staggered cell
averages at the interfacing break-points, is adopted since it possesses the advantage of the
simplicity of a Riemann-solver-free approach. The cell average and the linear reconstruction
techniques of the NT scheme that is written in a conservative form to automatically satisfy
the conservation properties of the original equations are explained in this section. The
conservation equations are integrated in both time and space in discrete form to be solved
by the code. The staggered grid algorithm is implemented to control spurious oscillations,
which are further reduced using a suitable flux limiter method. The numerical scheme based
on the fixed Cartesian grid (Eulerian approach) and identifying the shocks by the regions
with large gradients, is a so-called shock capturing scheme.

2.2.1 Cell average

In order to explain our numerical scheme better we use a 1D case first, where the governing
equations take the form:

ut(x, t)+ fx(u(x, t)) = s(u(x, t)) (2.14)

Here u is the conservative variable, f is the momentum flux along x direction and s is the
source term. Hereafter, the subscripts t,x represent derivatives with respect to the time and x
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directions. To solve this problem, the idea of cell average is applied on a staggered grid.

Un
i =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

u(x, tn)dx,

Un
i+ 1

2
=

1
∆x

∫ xi+1

xi

u(x, tn)dx

(2.15)

Here, U denotes cell-average values. The subscript i and the superscript n represent at the
ith node and at the current state respectively. The center of the interval (xi−1/2,xi+1/2) is xi,
and the interval is named as cell Ii. Thus, the interval of (xi,xi+1) is naturally denoted as cell
Ii+1/2. Taking the cell Ii as an example and integrating the hyperbolic equations in time over
the interval (tn, tn+1) and in space over the interval (xi− 1

2
,xi+ 1

2
), one obtains:

∫ x
i+ 1

2

x
i− 1

2

∫ tn+1

tn
ut(x, t)dxdt =

−
∫ x

i+ 1
2

x
i− 1

2

∫ tn+1

tn
fx(u(x, t))dxdt +

∫ x
i+ 1

2

x
i− 1

2

∫ tn+1

tn
s(u(x, t))dxdt

(2.16)

that can be easily written as:∫ x
i+ 1

2

x
i− 1

2

u(x, tn+1)dx =
∫ x

i+ 1
2

x
i− 1

2

u(x, tn)dx

−
∫ tn+1

tn

(
f (u(xi+ 1

2
, t))− f (u(xi− 1

2
, t))dt

)
+

∫ x
i+ 1

2

x
i− 1

2

∫ tn+1

tn
s(u(x, t))dxdt

(2.17)

The LHS and the first term of the RHS of the above equation can be further manipulated by
the cell average technique: ∫ x

i+ 1
2

x
i− 1

2

u(x, tn+1)dx = ∆xUn+1
i∫ x

i+ 1
2

x
i− 1

2

u(x, tn)dx =
∆x
2

un
i− 1

4
+

∆x
2

un
i+ 1

4

(2.18)

As for the other terms in the RHS, they similarly can be transformed to:

∫ tn+1

tn

(
f (u(xi+ 1

2
, t))− f (u(xi− 1

2
, t))

)
dt = ∆t( f (u

n+ 1
2

i+ 1
2
)− f (u

n+ 1
2

i− 1
2
)) (2.19)
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∫ x
i+ 1

2

x
i− 1

2

∫ tn+1

tn
s(u(x, t))dxdt =

∆t∆x
2

(
s(u

n+ 1
2

i+ 1
4
)+ s(u

n+ 1
2

i− 1
4
)
)

(2.20)

where un
i is used to denote u(xi, tn).

By a piecewise linear approximation, we can assume that:

un
i± 1

4
= un

i± 1
2
∓ ∆x

4
(ux)

n
i± 1

2
(2.21)

Further, the values at half-time step can be similarly predicted by Taylor’s expansion and the
original equation Eq. (2.14):

u
n+ 1

2
i± 1

2
= un

i± 1
2
+

∆t
2
(ut)

n
i± 1

2

= un
i± 1

2
− ∆t

2
( fx)

n
i± 1

2
+

∆t
2
(s)n

i± 1
2

(2.22)

u
n+ 1

2
i± 1

4
= u

n+ 1
2

i± 1
2
∓ ∆x

4
(ux)

n+ 1
2

i± 1
2

(2.23)

Therefore the cell average values Un+1
i can be obtained from the original values at the

previous time step at the nodes xi− 1
2
,xi+ 1

2
denoted as un

i∓ 1
2
. Based on the present scheme,

on integrating values in the intervals Ii+1/2 and Ii, the values of the original nodes can be
updated after two time steps. Figure 2.1 explains the procedure of the time advance process.

Fig. 2.1 Stencil for 1D cases.
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Assume that the initial computational domain includes three values un
i−1, un

i and un
i+1,

denoted as black-filled circles. With the information at a ghost node un
i+2 shown as a black-

filled rectangle, the values of middle points un+1
i−1/2, un+1

i+1/2 and un+1
i+3/2, marked as unfilled

circles can be obtained by the mentioned strategy. Moreover, with the values at another ghost
node un+1

i−3/2 marked as an unfilled rectangle, the values at original domain are obtained at

the next time step, which are denoted as un+2
i−1 , un+2

i and un+2
i+1 . Therefore, the time advance

process of the conservative variable is achieved.

2.2.2 Flux limiter

To attenuate possible spurious oscillations in the numerical solution, a flux limiter method
is applied to conduct the second-order piecewise linear reconstructions. The cell average
derivative is determined by a generalized minmod-like limiter involving a parameter θ

(Kurganov and Tadmor, 2000).

(ux)
n
i = MM

(
θ

un
i −un

i−1

∆x
,
un

i+1 −un
i−1

2∆x
,θ

un
i+1 −un

i

∆x

)
(2.24)

where θ is a predefined parameter and 1 ≤ θ ≤ 2. MM denotes the function of the minmond
limiter expression. For the present flux limiter involving three values, i.e. MM(z1,z2,z3):

minmod(z1,z2,z3) =


min{z1,z2,z3}, if z1,2,3 > 0

max{z1,z2,z3}, if z1,2,3 < 0

0, otherwise.

2.2.3 Stability condition

The CFL (Courant-Friedrichs-Lewy) stability condition is used to ensure that the maximum
phase velocity cmax is always smaller than the speed associated with the grid, i.e. ∆x/∆t, and
gives the expression of the adaptive time step for solving the governing equations:

∆t ≤ k
∆x

cmax
(2.25)

cmax = max
∀i

(|λ (min)
i |, |λ (max)

i |) (2.26)

where λ
(min)
i and λ

(max)
i are the minimum and maximum eigenvalues of the Jacobian matrix

(∂F/∂U)n
i . The parameter k is usually taken less than 1/0.5 for the NT scheme applied to
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1D/2D cases, and k = 0.475 for 2D simulations is suggested by the numerical experiments
conducted by Jiang and Tadmor (1998).

2.2.4 Extension to two-dimensional cases

Fig. 2.2 Stencil for 2D cases.

With a 2D cell, the formulas given in the previous section have to be adapted to cover
both space directions. Each loop of calculation is divided into two time steps. In the first
time step, the values of cell average, denoted as Un+1

i+1/2, j+1/2 are updated from the original

nodal values, denoted as un
i, j. In the second time step, the values of cell average Un+2

i, j are
updated from the values un+1

i+1/2, j+1/2 obtained from the first time step. Thus, the values at
the original nodes are updated every two time-steps calculations. Figure 2.2 illustrates this
procedure. The values at the original nodes un

i, j are shown as orange points, and the region
defined by orange solid lines is the computational domain. By means of the mentioned
numerical scheme, cell average values at Un+1

i+1/2, j+1/2 (green nodes) can be obtained with the
help of ghost nodes for the first time step. Let values at the nodes be equal to the obtained
cell average values, that is un+1

i+1/2, j+1/2 =Un+1
i+1/2, j+1/2. By one more time step, all the values

at original nodes un+2
i, j can be successfully updated (shown as blue nodes). Naturally the

information at the displayed ghost nodes are used.
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2.3 Benchmarks

2.3.1 Classical ’dam-break’ problem

The dam-break problem is a classical benchmark for shock-capturing numerical schemes,
and has been widely used also for validating mass flow models. The analytical solution of
this kind of Saint-Venant equations is reviewed in Faccanoni and Mangeney (2013). The
governing equations can be given the following form:

U⃗ =

[
h

hu

]
; F⃗ =

[
hu

hu2 + 1
2gh2;

]
; G⃗ = 0; S⃗ = 0 (2.27)

where h is the height of water, g = 9.81m/s2 is the gravity acceleration, u is the x direction
velocity. The initial condition is that the water is still and its level has an abrupt jump from
the higher constant value h1 to the lower constant value h2. Very many experiments have been
run that all gave very satisfactory results. What we show here refers to the same configuration
treated by Louaked and Hanich (1998), i.e. the initial upstream depth is set to h1 = 1.0m and
the downstream depth is set as h2 = 10−6m. The adopted fixed space step is ∆x = 0.01m.
The numerical and analytical solutions for a specific time t = 0.1s are compared in Fig. 2.3
(a-b) to show that the shock wave is well captured by the present method.

Another typical benchmark for mass flows is a debris mixture flowing over a rough slope
inclined at an angle α , described by the following equations:

U⃗ =

[
h

hu

]
; F⃗ =

[
hu

hu2 + 1
2βxh2;

]
;

G⃗ = 0; S⃗ =

[
0

hgcosα(tanα − tanδ )

] (2.28)

where βx = gcosα and δ is the basal friction angle. If lateral earth pressure is taken into
consideration, we have βx = Kxgcosα , where Kx is the lateral earth pressure coefficient
(Savage and Hutter, 1989) along the x direction. The model adopted hereafter assumes that
lateral earth pressure coefficient is equal to 1. The initial configuration of the ’dry bed’ test
case (the downstream water level h2 = 0.0m) provided by Faccanoni and Mangeney (2013)
is used, where α = 22◦, δ = 21◦ and the upstream water level is h1 = 0.1446m. The mesh
density of δx = 0.01m is used. The results obtained from this numerical scheme at t = 0.5s
can be seen in Figure 2.3(c-d).
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Fig. 2.3 Comparisons between numerical simulation and analytical solution of 1D ’dam-break’
problems.

2.3.2 Two-dimensional ’dam-break’ problem

The geometry of this problem is firstly used by Fennema and Chaudhry (1990), and has
been widely adopted for testing numerical codes or new approaches, such as by Fagherazzi
et al. (2004), Ouyang et al. (2013) and La Rocca et al. (2015). The computational domain
is a 200-m-long and 200-m-wide channel with a thin dam that is located at the position
of (x,y) = (100m,0 − 200m) along the y direction. Water depth of the upstream and
downstream region in the reservoir are 10 m and 5 m respectively. Assuming that a part of the
dam, that is (x,y) = (100m,95−170m), breaks instantaneously, the water upstream crashes
into the reservoir with lower water depth. The wall condition is enforced at the boundary of
the channel and at the non-breaking sector of the dam, where the velocities normal to the
wall are set to zero. Contour and height profiles of water are given at t = 7.2s in Figures
2.4 and 2.5. Using coarse grids with a resolution of 2.5m, and the results obtained with the
present scheme agree well with the published results that can be found in Fagherazzi et al.
(2004) and in the other aforementioned papers.
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Fig. 2.4 Contour plot of the break at t = 7.2s. Resolution for the simulation is set to 2.5m for
both x and y directions.

Fig. 2.5 Height profile of the water break t = 7.2s.

2.3.3 Dam break over a triangle hump

The European project EU CADAM (European Union Concerted Action on Dam Break
Modelling) provides a laboratory experiment for testing the capability of numerical schemes
applied to a practical case. The set-up is a 38 m long horizontal domain with a dam located
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Fig. 2.6 Sketch of the set-up of the dam break experiment over a triangular hump.

at x = 15.5m. Seven gauges named G2, G4, G8, G10, G11, G13 and G20, located at
x = 17.5,19.5,23.5,25.5,26.5,28.5, and 35.5 m, were set to measure the time history of the
water depth. Figure 2.6 illustrates the configuration of this experiment. To reproduce this
experiment by the numerical code, the node separation is set to ∆x = 0.05m and the Manning
coefficient n = 0.0125s/m1/3 is adopted throughout the entire domain. On the left end a
rigid wall condition is imposed, while on the right end the condition is a free flow. The
computational time is set as 90 s to be compared with the experimental data. After the sudden
opening of the gate, the water in the reservoir rushes out and inundates the downstream
domain. The generated water wave propagates along the domain over the basal topography,
and several surges are observed at gauges. The water motion is affected by the gravity
and friction. In Figure 2.7, great agreements have been achieved by the numerical results
compared with the observation data. The arriving time and water depth of the various water
pulses have been successfully predicted.

Fig. 2.7 Time histories of the water elevation at the seven gauges.
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2.4 Investigation of the 1783 Scilla landslide

The narrow Messina Strait, located between the eastern tip of Scilly and the southern end
of Calabria, connecting the Tyrrhenian Sea to the north with the Ionian Sea to the south,
as shown in Figure 2.8A, is one of the most seismically active areas of southern Italy.
Tectonically, it is dominated by the development of the Siculo-Calabrian Rift Zone and is the
northernmost sector of the high level seismic belt including the largest earthquakes that have
occurred in southern Italy in the last four centuries, such as the 1693 SE Sicily earthquakes,
the 1783 Calabrian seismic sequence, the 1905 Monteleone earthquake and the Messina
earthquake of 1908 (Catalano et al., 2008). The 1783 seismic crisis started with a sequence
of strong earthquakes from February to March, exceeding magnitude Mw 7 (Rovida et al.,
2011) and lasted for at least three years (1783-1785). It caused more than 30,000 casualties,
destroyed 200 localities (Porfido et al., 2011), and triggered a further series of secondary
disasters including numerous mass failures, river dams with temporary lake formation and
tsunamis. The most catastrophic episode of this crisis in terms of death toll was the Scilla
tsunami event, that was generated by an earthquake-induced landslide and that killed more
than 1500 people on February 6, 1783. The landslide occurred at the south of the coastal
village of Scilla. The earthquake regarded as the trigger of the landslide happened offshore
in the Messina Strait and was a Mw = 5.9 aftershock of a strong shock occurred the day
before. The mass failure took place about 30 minutes later, and a huge tsunami generated by
the landslide crashing into the sea was observed soon after the mass collapse (Minasi, 1785).
Available historical reports and studies provide the tsunami run-up heights and inundation
distances, as summarized in Graziani et al. (2006). On the basis of recent field surveys of
subaerial and submarine scars, the total volume involved in the failure was postulated to be
8 Mm3 and the deposit was estimated as 5-6 Mm3 (Bozzano et al., 2006, 2011).

Previous numerical studies of the Scilla event were carried out by Avolio et al. (2009);
Mazzanti and Bozzano (2011) and Zaniboni et al. (2016) via different numerical techniques.
The Scilla landslide in the first two papers was simulated by the cellular automata technique
and by the DAN3D code (developed by Hungr and McDougall, 2009) respectively. The
cellular automata technique is used to simulate the complex dynamic system, where the
landslide consists of sub-blocks with interactions. The deposit of the Scilla landslide was
reconstructed by Avolio et al. (2009), who however did not give any details on the landslide
dynamics.The code DAN3D adopts a Lagrangian-based method to solve the DAEs, where
a variety of basal rheological relationships, material entrainment and other features can be
included. The conducted DAN3D simulations of the Scilla landslide described the motion of
the submarine landslide through a turbulence coefficient considering the effects of underwater
drag and frictions. The simulations revealed that the Scilla landslide accelerated to 45 m/s
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Fig. 2.8 A Geographical location of Scilla (red rectangle). B Area of the Scilla landslide.

after 20 s and decelerated to rest after 80 s. The computer deposit region was acceptably
reproduced by Mazzanti and Bozzano (2011), but the dynamic evolution of the sliding mass
was not presented in the paper. As for the last work mentioned above, it makes use of a 1D
Lagrangian block model (Tinti et al., 1997), where the landslide mass is discretized into
blocks that interact with each other. Forces including gravity, friction, drag and block-block
interaction act on blocks, that are allowed to change shape, but not volume. According to the
numerical investigations by Zaniboni et al. (2016), the model provided reasonable results in
both landslide dynamics and tsunami generation. However, it has to be mentioned that the
motion path should be predefined inside the code, which implies that the complex topography
effects have to be studied before using the model.

In this section, a model that include topography effects based on a global Cartesian
coordinate system and solved by the FDM scheme illustrated above is used to reconstruct
the historical 1783 Scilla landslide event. Additionally, the submarine landslide dynamics is
studied by means of two drag laws, i.e., linear and quadratic. According to the simulations,
the flow model is capable of handling topography effects and provides results that agree
well with the motion mechanism described by the 1D block model (Zaniboni et al., 2016).
Therefore, the flow model can be regarded as a reference to be further compared with the
PFEM model that will be the subject of Chapter 3.

2.4.1 Mixture model with topography modifications

This flow model assumes that the landslide consists of a grain-water mixture. It can be
simply regarded as the extension of the single-phase flow with topography effects. Usually,
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the complex topography effects driving the mass flows can be treated in a curvilinear
coordinate system (Gray et al., 1999), or implemented into more complicated Boussinessq-
like models (e.g., Castro-Orgaz et al., 2015; Denlinger and Iverson, 2004) to ensure the
accuracy and robustness of the numerical schemes. Here, we adopt the model considering
vertical acceleration and curvature effects resulting from topography effects based on the
global Cartesian coordinate system (Xia and Liang, 2018), and the model has been proven in
both theoretical studies and applications. The vector form of this model is given as follows:

U⃗ =

 h
hu
hv

 ; F⃗ =

 hu
hu2 + 1

2gφ−2h2

huv

 ;

G⃗ =

 hv
huv

hv2 + 1
2gφ−2h2

 ; S⃗ = S⃗b + S⃗ f

(2.29)

S⃗b =


0

−ahbx +
1
2gh2 ∂ (φ−2)

∂x

−ahby +
1
2gh2 ∂ (φ−2)

∂y

 ;

S⃗ f =


0

− µahuφ√
u2+v2+(ubx+vby)2

− µahvφ√
u2+v2+(ubx+vby)2


(2.30)

a = φ
−2(g+ v⃗T H⃗v⃗), v⃗ = (u,v)T ;

H⃗ =

[
bxx bxy

bxy byy

]
; φ = (b2

x +b2
y +1)1/2

(2.31)

where S⃗b is the basal topography term and S⃗ f is the friction term. The factor φ−2 merely
related to basal topography is theoretically important for the governing equations considering
complex topography in a Cartesian coordinate system. The term v⃗T H⃗v⃗ accounts for the effect
of the centrifugal force. v⃗ is the velocity vector including velocity components along x and y
directions. The parameter µ is the basal friction coefficient, and b(x,y) is the basal surface of
the landslide. bx(y) and bxx,bxy,byy represent the first-order and the second-order derivatives.
In this case we have assumed that the lateral earth pressure coefficients Kx and Ky are equal
to 1.
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2.4.2 Buoyancy and drag force terms

In the study conducted by Mazzanti and Bozzano (2011), using the DAN3D model, the
motion of the submarine landslide is computed by applying a turbulence coefficient, which
is rarely used in mass flow models. In our simulation, the whole event is restricted to the
motion of the slide, and the complicated interactions between mass and water are simplified
as buoyancy and drag forces acting on the mass itself. The effective gravity acceleration for
the submarine motion of the slide is reduced to (1−γ)g, where γ is the ratio between the fluid
and debris densities, i.e. γ = ρ f /ρs, with ρ f = 1000kg/m3 and ρs = 1700kg/m3 adopted
for the simulations. The drag force is the effect of a rather complicated process difficult
to describe. In mass flow modelling it can be expressed as a linear or quadratic function
of the relative mass-water velocity Meng and Wang (2016); Pudasaini (2012). However,
the quantification of the drag force coefficient is not easy and it is usually determined by
empirical formulas based on experimental data. Additionally, some proposed models (i.e.
Pudasaini, 2012) involving several parameters that are hard to evaluate, are scarcely adequate
for practical applications. Here, we focus on the performance of two different drag force
relationships. In our model the drag force is given as an additional source term:

S⃗ = S⃗b + S⃗ f + S⃗drag;

S⃗ldrag =

 0
−Cdhu
−Cdhv

 ; S⃗qdrag =

 0
−Cdhu

√
u2 + v2

−Cdhv
√

u2 + v2

 (2.32)

where Cd is the drag force coefficient that has dimensions of inverse time for linear model
and dimensions of inverse length for quadratic model. The drag force term is denoted as
S⃗drag, which is implemented as linear drag forces S⃗ldrag or quadratic drag forces S⃗qdrag into
the model. A constant drag coefficient is used in the simulations, choosing Cd = 0.05s−1 for
linear drag and the Cd = 0.015m−1 for quadratic drag forces.

2.4.3 Dynamic evolution of the Scilla landslide

After the triggering, the falling mass moves over the basal topography acted by driving and
resisting forces, and finally deposits at a certain distance. The triggering mechanism of the
landslide is not contained in the model, and the mass is released without initial velocity. To
account for the dynamic evolution of the landslide, the average velocity, calculated by the
total momentum and total height, is used to capture the overall dynamic state of the landslide.
At each time step, the code detects the boundary of the region that contains the mass material,
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so determining the computational domain. The choice of friction coefficients depends on
the back analysis, according to the observed data (Zaniboni et al., 2016) and differentiates
between subaerial and submarine sliding. The notations of µSA and µSM are used to represent
the basal friction coefficient for subaerial sliding and submarine sliding respectively. For the
simulation adopting the linear drag model, µSA = 0.25 and µSM = 0.05, while µSA = 0.25
and µSM = 0.03 are chosen for the quadratic drag model.

The average velocity time histories shown in Figure 2.9 clearly provide two distinct
dynamics obtained from two adopted different drag functions. As for the linear-law case,
one may observe that the curve we obtain here is similar to the one computed by Zaniboni
et al. (2016) with their 1D block model, where they used however a quadratic law for the
drag. Indeed, in both cases the landslide experiences a rapid acceleration stage followed by a
slightly less rapid deceleration stage. The only difference is that the velocity peak appears at
slightly different times. The curve we obtain for the quadratic law model however is quite
different. The acceleration phase is shorter, the peak velocity is much less (24 m/s vs. circa
32 m/s) and the deceleration phase lasts several minutes, much longer than for the linear
drag case.
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Fig. 2.9 Time evolution of the mean velocity of the landslide. The dynamics obtained from
the linear drag model is quite similar to the motion depicted by the 1D quadratic-drag block
model (Zaniboni et al., 2016), with slightly different accelerations. The landslide accelerates,
reaching a peak value at 32 m/s and then starts slowing down. Instead, the curve from the
quadratic law provides a much longer duration of the landslide motion. The landslide is
strongly decelerated by the water when it crashes into the sea with high velocity and then
moves slowly to the final still position. The peak velocity of the present simulations is smaller
than the value exceeding 40 m/s obtained by Mazzanti and Bozzano (2011), but the deposit
region is successfully reproduced by the model.

2.4.4 Propagation and Deposition

The field surveys of subaerial and submarine scars reveal the initial and final position of the
landslide, while the heights of the offshore deposits are not known from the literature. We
present the snapshots of the landslide height at different times in Figure 11 and Figure 12.
The snapshots are shown at 10 s time intervals for the linear drag model simulation, whereas
different time intervals are used for the quadratic drag model. As shown by the snapshots, the
mass moves along a reasonable direction, which validates the goodness of the mixture-flow
model with topographical modifications (Xia and Liang, 2018).

Figure 2.10 is the set of snapshots regarding the linear drag model. After the landslide
front crashes into water, the rest of the mass enters the sea and is affected by a relatively
low resistance that does not heavily impede the motion of the landslide. This dynamic is
depicted by the behaviour of the front body. In the first 30 s, the main body concentrates
on the middle and the rear of the landslide. Later, mainly as the effect of the drag force,
the main mass moves to the front and the middle, as can be seen in the snapshot at t = 40s.
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During the deceleration stage, most mass deposits within the observed region (delimited
by the dashed red line, see the t = 70s snapshot), and the motion is practically over after
90 s. The observed landslide subaerial scar area is bounded by a solid blue line, and the
observed landslide deposit area is bounded by a dashed red line. The coastline is denoted
by the black line. The movement can be separated into two stages: the acceleration stage
(t = 0−30s) and the following deceleration stage. Easting and Northing are implemented as
x and y directions in the simulation.
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Fig. 2.10 Snapshots of the landslide mass taken at 10 s intervals (from t=10 s to t=90 s)
obtained through the linear drag model.
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Figure 2.11 displays the simulations concerning the quadratic drag case. Impacted by
a very large drag when the mass front crashes into water, the landslide moves slowly and
tightly during the underwater propagation. In contrast to what is shown in Figure 2.10, the
main mass concentrates on the front and the middle of the body during the acceleration stage.
The lateral spreading behaviour shown in Figure 2.10 is restricted in Figure 2.11. After 160 s,
the main body arrives at the observed deposit region and then slowly decelerates until it stops.
Note that the deposit shapes resulting from the two laws are similar, though reached at quite
different times (see the t = 90s image of Figure 2.10). The blue line depicts the boundary of
the initial region of the landslide. The observed landslide deposit is bounded by a dashed red
line with the black line denoting the coastline. The movement can be separated into three
stages: an acceleration stage and two deceleration phases. The mass is mainly driven by
gravity forces in the first 15 s and then experiences a strong deceleration until 30 s and then a
gradual slow down until the rest. Easting and Northing are implemented as x and y directions
in the simulation.

We observe that the deposits from our simulations are located inside the region defined
by the observed data and therefore we can state that both kinds of simulations successfully
reconstruct the landslide event from the run-out perspective. The main difference between
the two simulations is that the landslide moves more slowly and remains more concentrated
at least during most of the motion when the quadratic drag model is implemented, while a
linear drag accounts for a larger spreading.
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Fig. 2.11 Snapshots of the landslide mass (from t = 10s to t = 300s) obtained through the
quadratic drag model.



Chapter 3

Particle finite element model

The finite element method (FEM) with its flexibility of considering complex geometries,
various constitutive models of geomaterials, different loading conditions and providing the
time evolution information of the slope body, has been seen as a dominant approach for slope
stability analysis. Despite the advantages of the traditional Lagrangian FEM in slope stability
analysis, it cannot capture adequately both the motion and deposition stages since severe
mesh distortion is unavoidable when the sliding body suffers large deformation. To tackle
this problem, the particle finite-element method (PFEM) was proposed by Idelsohn et al.
(2004) that combines the standard finite-element analysis and a particle-based approach. The
method was first developed for considering fluid-solid interaction (FSI) problems with free
surfaces and has been further applied to the modelling of landslides (Cremonesi et al., 2011;
Oñate et al., 2011; Zhang et al., 2015).

The existing PFEM for landslide modelling can be classified into two categories based on
the FEM solvers: (1) Newton-Raphson method (Cremonesi et al., 2011; Oñate et al., 2011);
(2) Mathematical-programming. The Newton-Raphson iteration method is the most used
scheme for the implementation of FEM in many codes and the iterations are carried out
between the level of global structures (where the unbalanced force is minimized) and the
level of material points such as stress integration points (where the stress-strain relationship
should be fulfilled). Loading steps are conducted through a series of load increments in a
relatively small magnitude for the sake of convergence (Bathe, 2006). As for the mathematical
programming method, the boundary value problems (BVP) are converted into equivalent
optimization problem, which can be solved using the interior point method (IPM). Based on
the analysis of the existence, uniqueness, sensitivity and stability of the solution can be carried
out mathematically, and efforts have been devoted to analyse the convergence properties
of this method (Alizadeh et al., 1998; Tits et al., 2003). The non-linear partial differential
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equations are cast as second-order cone programming (SOCP) problem, abbreviated as
SOCP-FEM and its PFEM version is denoted as SOCP-PFEM.

Even though the theory of the SOCP-PFEM has been well documented in Zhang et al.
(2013), its numerical implementation, which is widely different from the PFEM version
based on Newton’s iteration schemes, was not introduced in detail, which therefore handicaps
its further applications. We remark that the solution scheme for the finite element formulation
in the optimization-based PFEM differs considerably from that in the version developed by
Oñate et al. (2004) and by Cremonesi et al. (2010). This section is to explain the developed
mathematical optimization-based PFEM model based on the work by Zhang et al. (2013)
and some parts of this section have been published in Wang et al. (2019b). 1

3.1 Governing equations

The governing equations are partial differential equations of rate-independent elastoplastic
plane-strain problems for a continuum medium. First the system of equations for a static
analysis is established, and then dynamic and contact analysis problems are covered. These
equations include the equilibrium equations, the geometric equations, the constitutive equa-
tions and the boundary conditions. Further, the θ time-integration method (Bathe and Wilson,
1972) and the rigid contact scheme are introduced to account for the dynamic and the contact
analysis.

3.1.1 Static analysis

For a 2D domain V delimited by a boundary S, the set of equations relevant for a static
analysis is as follows.
(a) The equilibrium equation

∇
T

σ +b = 0 (3.1)

where the operator is ∇T = ( ∂

∂x ,0,
∂

∂y ;0, ∂

∂y ,
∂

∂x), the body force is b = (bx,by)
T and the stress

is σ = (σxx,σyy,σzz,σxy)
T .

(b) The strain-displacement relationship

ε = ∇u (3.2)

1Most contents in this section have been summarized in a paper published in: Wang, L., Zhang, X., Zaniboni,
F., Oñate, E., & Tinti, S. (2019). Mathematical optimization problems for particle finite element analysis
applied to 2D landslide modeling[J]. Mathematical Geosciences, 1-23.
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where the strain is ε = (εxx,εyy,2εxy)
T and the displacement is u = (ux,uy)

T .
(c) The boundary conditions on S

Nσ = t (3.3a)

u = up (3.3b)

where N = (nx,0,ny;0,ny,nx), t is the traction force and up is the prescribed displacement.
(d) The constitutive relationship

F(σ)≤ 0 (3.4a)

ε = ε
e + ε

p
ε

e = Cσ ε
p = λ∇σ G(σ) (3.4b)

in which F is the yield function, εe and ε p are the elastic and the plastic strains, C is the
elastic compliance matrix, λ is the plastic multiplier and G is the plastic potential. As shown
in (3.4b), the additive decomposition of the strain is used, whose incremental form is:

∆ε = C∆σ +∆λ∇GG(σ) (3.5)

For an associated flow rule, we have G = F . When the material undergoes purely elastic
deformation, the plastic multiplier increment ∆λ = 0 and F(σ) < 0, whereas, when the
material yields, we have ∆λ > 0 and F(σ) = 0. This constrain is the so-called complementary
condition that

∆λF(σ) = 0, ∆λ ≥ 0 (3.6)

Therefore, the above constitutive relationships are summarized in the following expression:
F(σ)≤ 0

∆ε = C∆σ +∆λ∇σ G(σ)

∆λF(σ) = 0, ∆λ ≥ 0

(3.7)
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3.1.2 Dynamic analysis

For dynamic analyses, the inertial force should be included in the equilibrium equation (3.1)
that is:

∇
T

σ +b = ρ v̇ (3.8a)

v = u̇ (3.8b)

By means of the θ−method (Bathe and Wilson, 1972), the expressions of stresses and
velocities become σ = θ1σn+1 +(1− θ1)σn and v = θ2vn+1 +(1− θ2)vn, rendering Eq.
(3.8) as:

∇
T [θ1σn+1 +(1−θ1)σn]+b = ρ

vn+1 −vn

∆t
(3.9a)

θ2vn+1 +(1−θ2)vn =
un+1 −un

∆t
(3.9b)

Hereafter, the subscripts n and n+1 denote the known and unknown states at times tn and
tn +∆t respectively, and ∆t is the time step. By introducing a new intermediate variable,i.e.
the inertial force γ , whose definition is shown in (3.12), and substituting Eq. (3.9b) into Eq.
(3.9a), the latter can be rearranged as:

∇
T

σn+1 +
1−θ1

θ1
∇

T
σn + b̃ = γn+1 (3.10)

and the according traction boundary condition Eq. (3.3a) becomes

Nσn+1 = t̃ (3.11)

in which

ρ̃ =
ρ

θ1θ2
, b̃ =

1
θ1

b+ ρ̃, γn+1 = ρ̃
∆u
∆t2 , t̃ =

1
θ1

t (3.12)

Eq. (3.9b) can also be rearranged as

vn+1 =
1
θ2

[
∆u
∆t

− (1−θ2)vn] (3.13)

which is used to update velocity vn+1 after the displacement increment ∆u is obtained. It
should be mentioned that the time integration scheme is unconditional stable when θ1 ≥ 1

2
and θ2 ≥ 1

2 .
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3.1.3 Contact analysis

The implementation of a rigid non-penetration contact scheme ensures that the incremental
nodal displacements do not exceed the gap between the node and the boundary. Therefore,
the contact condition is derived as follows:

Fig. 3.1 Schematic of contact condition.

nT
∆u−g0 ≤ 0 (3.14a)

p(nT
∆u−g0) = 0 (3.14b)

|q|−µ p ≤ 0 (3.14c)

where n is the outward unit vector of the rigid surface, g0 is the gap between the boundary
point of deformable materials and the rigid surface at t = tn, p is the normal force, q is the
tangential force and µ is the friction coefficient.

3.2 Min-max program for finite-element analysis

The aforementioned governing equations can be reformulated as min-max formulations
according to previous works (e.g., Krabbenhoft et al., 2007; Simo et al., 1989; Simo and
Taylor, 1985; Zhang et al., 2013), where detailed derivations have been documented. In the
section, a brief summary is provided for those equivalent min-max optimization problems.
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The standard finite-element analysis follows from the principle of minimum potential
energy or from the principle of virtual work, considering displacements or stresses as the
only master field while all other field variables can be obtained by the master field. The
multi-field Hellinger-Reissner variational principle (Reissner, 1950), treating displacements
and stresses as the master fields is adopted for static analysis after defining the functional:

Π(σ ,u) =
∫

V

(
− 1

2
∆σ

TC∆σ +σ
T

∇
T u

)
dV −

∫
V

bT udV −
∫

S
tT udS (3.15)

The equivalence between this variational principle and the governing equations can be proved
by introducing an additional equation with a new variable s:

F(σn+1)+ s = 0, s > 0 (3.16)

Next, the following functional is defined:

J = Π(σ ,u)+β lns−∆λ (F(σn+1)+ s) (3.17)

where β is an arbitrarily small constant and the logarithmic barrier function implies the fact
that s > 0. Taking functional derivatives, the governing equations of static analysis in section
3.1 can be obtained as follows:

δJ
δ∆u

=

∇T σ +b = 0, in V

Nσ = t, on S
(3.18a)

δJ
δσ

= ∇(∆u)−C∆σ −∆λ∆F(σ) = 0 (3.18b)

δJ
δ∆λ

= F(σ)+ s = 0 (3.18c)

δJ
δ s

→ s∆λ = β (3.18d)

These equations are equivalent to the governing equations for static analysis when β ap-
proaches to 0. It should be mentioned that the flow rule for material behaviour F = G is
included in Eq. (3.18b). Therefore, the solutions can be obtained at the saddle point of
the functional Eq. (3.15), expressed as δΠ(σ ,u) = 0. According to this formulation, the
problem is transformed easily to a problem of min-max optimization, more specifically to:

min
u

max
σ

∫
V

(
− 1

2
∆σ

TC∆σ +σ
T

∇
T u

)
dV −

∫
V

bT udV −
∫

S
tT udS (3.19)
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where, the internal work is maximized with respect to stresses and the total potential energy
is minimized with respect to displacements. The incremental form of the min-max problem
is implemented for conducting the analysis.

min
∆u

max
σn+1

− 1
2

∫
V

∆σ
TC∆σdV +

∫
V

σ
T

∇
T

∆udV −
∫

V
bT

∆udV −
∫

S
tT

∆udS (3.20)

subject F(σ)≤ 0

Here, the stress increment ∆σ is estimated by ∆σ = σn+1 −σn and ∆u denotes the displace-
ment at the current analysis step. Efforts have also been devoted to reformulate the governing
equations for dynamic elastoplastic problems. It was demonstrated (Zhang et al., 2013) that
the min-max optimization problem equivalent to the governing equations discretized by θ−
method for dynamic analysis is:

min
∆u

max
(σ ,γ)n+1

− 1
2

∫
V

∆σ
TC∆σdV +

∫
V

σ
T
n+1∇

T
∆udV −

∫
V

b̃T
∆udV (3.21)

−
∫

S
t̃T

∆udS+
(1−θ1)

θ1

∫
V

σ
T
n ∇

T
∆udV +

∫
V

γ
T
n+1∆udV − ∆t2

2

∫
V

γ
T
n+1ρ̃

−1
γn+1dV

subject F(σn+1)≤ 0

where the inertial force γ is included as an independent master field in the maximum part of
the optimization problem. The contact constraints will be taken into account later.

3.3 Finite-element discretization

3.3.1 Mixed triangular element

The finite-element approximations are achieved by the use of shape functions. Following the
standard finite-element notation, the relationship between element and nodes can be written
as:

σ ≈ Nσ σ̂ (3.22a)

u ≈ Nuû (3.22b)

γ ≈ Nγ γ̂ (3.22c)

where σ̂ , û and γ̂ are stresses, displacements and dynamic forces at nodes, while Nσ , Nu

and Nγ are the corresponding matrix forms of the shape functions. The mixed isoparametric
triangle element (Bathe, 2006) is chosen for our simulations, using quadratic shape functions
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for displacements interpolation and linear shape functions for stresses interpolation. Within
an element, six nodes at the edges are used to discretize displacements and dynamic forces,
while three integration nodes are used to discretize stresses, as illustrated in Fig. 3.2.

Fig. 3.2 Quadratic/linear isotropic triangular element utilized in the simulation.

By substituting the Eq. (3.29b) into the geometric Eq. (3.2), the relationship between
strains and nodal displacements is

ε = ∇
T u = Buû (3.23)

where, Bu are the partial derivatives of the displacement shape functions with respect to the
global coordinates x and y. The shape functions Nu and Nσ are:

N1
u = (2ζ −1)ζ ,N2

u = (2ξ −1)ξ ,N3
u = (2η −1)η ,N4

u = 4ξ ζ ,N5
u = 4ξ η ,N6

u = 4ηζ ;

(3.24a)

N1
σ = 2ζ − 1

3
,N2

σ = 2ξ − 1
3
,N3

σ = 2η − 1
3
. (3.24b)
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in which, ξ ,η ,ζ are the local coordinates and ζ = 1− ξ −η . Consequently, the local
derivatives of Nu are:

∂N1
u

∂ξ
= 4(ξ +η)−3,

∂N2
u

∂ξ
= 4ξ −1,

∂N3
u

∂ξ
= 0,

∂N4
u

∂ξ
= 4−8ξ −4η ,

∂N5
u

∂ξ
= 4η ,

∂N6
u

∂ξ
=−4η .

(3.25a)

∂N1
u

∂η
= 4(ξ +η)−3,

∂N2
u

∂η
= 0,

∂N3
u

∂η
= 4η −1,

∂N4
u

∂η
=−4ξ ,

∂N5
u

∂η
= 4ξ ,

∂N6
u

∂η
= 4−8η −4ξ .

(3.25b)

As for the numerical integration, the Gauss integration scheme is adopted to calculate the
numerical integrations over the triangular elements:∫

V
xdηdξ =

1
2 ∑wix(ηi,ξi) (3.26)

where, x is the integral variable, V denotes the integration domain and wi are the weight
factors. A seven-point integration scheme is recommended for the integration of the variable
involving the calculation of a matrix square root, such as the calculation of C1/2 in the
next section, since in such a case a three-point integration is not able to ensure the required
accuracy. For different finite elements, the local coordinates and weight factors of the
integration points are documented in Bathe (2006).

3.3.2 Finite element discretization

Using the explained finite element discretization, the discrete form of the min-max problem
(3.21) for dynamic analysis can be expressed as:

min
∆û

max
(σ̂ ,γ̂)n+1

σ̂
T
n+1B∆û− f̃T

∆û− 1
2

∆σ̂
T
n+1C∆σ̂n+1 −

1
2

∆t2
γ̂

T
n+1Dγ̂n+1 + γ̂

T
n+1A∆û (3.27a)

subject to F(σ̂
j

n+1)≤ 0, j = 1, ...,nσ (3.27b)
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Where

f̃ =
∫

V
NT

u b̃dV +
∫

S
NT

u t̃dS− 1−θ1

θ1
BT

σ̂n (3.28a)

B =
∫

V
NT

σ BudV (3.28b)

C =
∫

V
NT

σCNσ dV (3.28c)

D =
∫

V
NT

γ ρ̃
−1NγdV (3.28d)

A =
∫

V
NT

u NγdV (3.28e)

(3.28f)

In the optimization problem (3.27), the yield function (3.27b) is imposed at the stress
interpolation points, with nσ and σ̂

j
n+1 being respectively the total number of the stress

interpolation points and the stress states at the jth stress integration point at tn+1. The
minimization part of the min-max problem (3.27a) can be resolved analytically meaning that
the min-max problem (3.27) is equivalent to the following maximization problem:

max
(σ̂ ,γ̂)n+1

− 1
2

∆σ̂
T
n+1C∆σ̂n+1 −

1
2

∆t2
γ̂

T
n+1Dγ̂n+1 (3.29a)

subject to F(σ̂
j

n+1)≤ 0, j = 1, ...,nσ (3.29b)

BT
σ̂n+1 − f̃+AT

γ̂n+1 = 0 (3.29c)

which is the one for dynamic analysis.

The optimization problem (3.29) can be reduced to the one for quasi-static elastoplastic
analysis by removing the terms relevant to dynamics and setting θ1 = θ2 = 1. Specifically,
for quasi-static elastoplastic analysis is:

min
∆û

max
σ̂n+1

− 1
2

∆σ̂
T
n+1C∆σ̂n+1 (3.30a)

subject to F(σ̂
j

n+1)≤ 0, j = 1, ...,nσ (3.30b)

BT
σ̂n+1 − f = 0 (3.30c)

in which f =
∫

V NT
u bdV +

∫
S NT

u tdS.

In contact analysis problems, at every time step, the identification of potential contact
nodes should be carried out and the normal and tangential forces are implemented at these
nodes. The displacements of the potential contact nodes cannot be higher than the distance
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from the boundary, considering the non-penetration contact condition. The potential nodes
are identified as contact nodes, if the normal displacements of the contact nodes equal the
gap, ∆uN −g0 = 0. If not, ∆uN ≤ g0. And the variational formulation of this contact scheme
is the same (with the same contact inequality), used in granular dynamics by Krabbenhoft
et al. (2012b).

max −g0 p (3.31a)

subject to |q|−µ p ≤ 0, p ≥ 0 (3.31b)

The contact analysis is included only when the dynamic analysis is conducted. So the
min-max problem is rewritten as

max
(σ̂ ,γ̂,p j)n+1

− 1
2

∆σ̂
T
n+1C∆σ̂n+1 −

1
2

∆t2
γ̂

T
n+1Dγ̂n+1 −

nc

∑
j=1

g0 j p j (3.32a)

subject to F(σ̂
j

n+1)≤ 0, j = 1, ...,nσ (3.32b)

BT
σ̂n+1 +AT

γ̂n+1 +ET
c ρ = f̃ (3.32c)

p j =−nT
j ρ j, j = 1, ...,nc (3.32d)

q j =−n̂T
j ρ j, j = 1, ...,nc (3.32e)

|q j|−µ p j ≤ 0, j = 1, ...,nc (3.32f)

in which, ρ = (ρx,ρy)
T is the nodal forces vector, n = (nx,ny)

T is the normal of the rigid
boundary and n̂ = (−ny,nx)

T . Assuming that the inclined angle of the slope is θs (see Figure
3.1), the corresponding components are nx = sinθs,ny = cosθs. The logical index set of
contact nodes is denoted as Ec and nc is the number of potential contact nodes. The potential
contact nodes are set as the nodes on the surface S of the computational domain V . The
present maximization problem is a type of a convex optimization problem that can be recast
as a standard second-order cone programming (SOCP) problem and then resolved using the
interior point method. For simplicity, the present scheme for the finite element solution is
abbreviated as SOCP-FEM.

3.4 Numerical implementation

Although the theories of the SOCP-FEM analysis for quasi-static and dynamic elastoplastic
problems have been well demonstrated, there are only few efforts devoted to its numerical
implementation. This section focuses primarily on the numerical implementation of the
SOCP-FEM with emphasis on some key aspects. Particularly, we focus on (1) the implemen-
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tation of the boundary conditions in the SOCP-FEM; (2) the transformation of the resulting
maximization problem for quasi-static/dynamic elastoplastic analyses into a standard SOCP
problem; and (3) the solution of the resulting SOCP problem using the IPM available in
MOSEK. MOSEK is a large-scale optimization software, and it is freely available for aca-
demic license. For the present simulations, the MOSEK optimization toolbox for MATLAB
is used and more details can be found in MOSEK (2019).

3.4.1 Implementation of boundary conditions

The traction and displacement boundary conditions have to be imposed so that the boundary-
value problem can be resolved. The traction boundary condition, for instance Eq. (3.3a), is
handled by integrating tractions along the boundary surface, resulting in equivalent nodal
forces. In other words, the implementation of the traction boundary condition in the SOCP-
FEM is exactly the same as that in the traditional displacement-based FEM(Bathe, 2006).
Nevertheless, the imposition of displacement boundary condition (3.3b) in the SOCP-FEM
differs from that in the displacement-based FEM. In the traditional displacement-based FEM,
the displacement boundary condition is implemented either by the penalty method or by
modifying the global stiffness matrix. In contrast, the SOCP-FEM requires the introduction
of a new field variable, i.e. the nodal reaction force r̂n+1, for this purpose. Specifically, for
quasi-static problems, the discretized optimization problem with displacement boundary
conditions being fulfilled is in the form of

max
(σ̂ ,r̂)n+1

− 1
2

∆σ̂
T
n+1C∆σ̂n+1 +(Euup)T r̂n+1 (3.33a)

subject to F(σ̂
j

n+1)≤ 0, j = 1, ...,nσ (3.33b)

BT
σ̂n+1 − f = Eur̂n+1 (3.33c)

In contrast to the min-max program for static analysis shown in (3.30a-c), the new equations
consider the work done by the nodal reaction force r̂n+1 and the change on equilibrium
equation (3.33c). This equilibrium condition can also be implemented into the dynamic
and the contact analyses. It is worth noting that σn+1 and ∆u are dual variables, that can
be obtained simultaneously by the optimization solver. Consequently, the imposition of the
stress boundary condition and of the displacement boundary condition cannot be imposed
on the same element, namely over-constraints are not allowed. To check the validity, the
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Lagrangian associated with (3.3) is constructed:

L =
1
2

∆σ̂
T C∆σ̂ − (Euûp)T r̂n+1 −∆û(BT

σ̂n+1 − f−Eur̂n+1)−
nσ

∑
j=1

∆λ̂
jF(σ̂

j
n+1) (3.34)

Differentiating L with respect to the reaction force r̂n+1 leads to

∂L

∂ r̂n+1
=−Euûp +Eu∆û = 0 (3.35)

which is the displacement boundary condition (3.3b). For dynamic problems, the imposition
of displacement boundary conditions is operated in the same manner.

3.4.2 Reformulation to a SOCP problem

The aforementioned optimization problem can be reformulated as a standard second-order
cone programming (SOCP) problem in a form of:

min
x

cT x (3.36a)

subject to ax = b (3.36b)

x ∈ K (3.36c)

where x is the vector of optimization variables, a,b and c are the matrix and vectors of
factors, and K is a tensor product of second-order cones such that K = K1 × ...Kl . The
second-order cones can be in the type of:

• Quadratic cone:

K n
q = x ∈ Rn : x1 ≥

√
x2

2 + ...+ x2
n (3.37)

• Rotated quadratic cone:

K n
r = x ∈ Rn : 2x1x2 ≥

n

∑
j=3

x2
j ,x1,x2 ≥ 0 (3.38)
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Specifically, the SOCP problem equivalent to the maximization problem (3.32) is

min
xn+1

m+ s+
nc

∑
j=1

g0 j p j (3.39a)

subject to BT
σ̂n+1 +AT

σ̂n+1 +ET
c ρ = f̃ (3.39b)

(
1
2

∆σ̂
T C∆σ̂ ≤ m)


y = C

1
2 ∆σ̂

n = 1

2mn ≥ yT y

(3.39c)

(
1
2

∆t2
γ̂

T
n+1Dγ̂n+1 ≤ s)


k = ∆tD

1
2 γ̂n+1

l = 1

2sl ≥ kT k

(3.39d)

Contact constraints


p j =−nT

j ρ j

q j =−n̂T
j ρ j

µ p j ≥
√
(q j)2 +0 j

, j = 1, ...,nc (3.39e)

(F(σ̂
j

n+1)≤ 0)

χ j = Hσ̂
j

n+1 +d

χ
j

1 ≥
√
(χ

j
2)

2 +(χ
j

3)
2

, j = 1, ...,nσ (3.39f)

where xn+1 is the vector consisting of all the optimization variables. The SOCP problem
(3.39) is obtained by first converting the quadratic terms 1

2∆σ̂T C∆σ̂ into the objective
function of (3.32) into the minimization of a scalar variable (i.e. variable m in (3.39a)) subject
to linear equalities and rotated quadratic constraints (i.e. (3.39c)). The same operation is
applied to 1

2∆t2γ̂T
n+1Dγ̂n+1 in the objective function resulting in the variable s in (3.39a)

and the constraints in (3.39d). Contact constraints in (3.32d-f) are reformulated as those
in (3.39e), where quadratic constraints are enforced. The yield criterion F(σ̂

j
n+1) ≤ 0 is

equivalent to the constraints in (3.39f). In our simulations, the Mohr-Coulomb criterion is
adopted which in a plane-strain case is

F(σxx,σyy,σxy) =
√
(σxx −σyy)2 +4σ2

xy +(σxx +σyy)sinφ −2c cosφ ≤ 0 (3.40)
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and thus the according χ,H,d in (3.39f) are:

χ = (χ1,χ2,χ3), σ = (σxx,σyy,σzz,σxy) (3.41a)

H =


−sinφ −sinφ 0

1 −1 0

0 0 2

 and d =
[
2c× cosφ 0 0

]T
(3.41b)

3.4.3 Solution using MOSEK

The resulting SOCP problem (3.39) can be resolved using the IPM which is a robust solution
scheme available in MOSEKMOSEK (2019). In this section, the program submitted to
MOSEK for the solution is presented in detail. All information of the program is restored in
an object called ′prob′ in MOSEL. Specifically, the optimization variables of SOCP problem
(3.39) are as follows:

x = {σ̂n+1,χ,y,m,n, l,s, γ̂n+1,k,ρ, p,q,µ p,0} (3.42)

and the corresponding vectors c and b and the matrix a (see also problem (3.36)) are

prob.c = [0;0;0;1;0;0;1;0;0;0;g0;0;0;0], (3.43a)

prob.a =



BT ... AT ... ET
c ...

−H diag(1) ... ... ... ...

−C1/2 0 diag(1) ... ... ...

... ... 1 ... ... ... ...

... ... 1 ... ... ... ...

... ... −∆tD1/2 diag(1) ... ...

... ... nT ET
c diag(1) ... ...

... ... n̂T ET
c ... diag(1) ...

... ... diag(−µ) ... diag(1) ...

... ... ... ... ... diag(1)



, (3.43b)

prob.blc = prob.buc = [f̃;d;−C
1
2 ∗ σ̂n;1;1;0;0;0;0;0]. (3.43c)

The linear equality constraint (3.36b) is implemented as the lower and upper bounds, namely,
prob.blc ≤ prob.ax ≤ prob.buc. The inequality constraints are in the form of quadratic
or rotated quadratic cones. There are a total of nc + nσ + 2 conic cones according to the
expression in (3.39c)-(3.39f). Specifying the type of each cone and the index of its members in
x, the conic constraints can be defined straightforwardly in ′prob′. A detailed solution scheme
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for the SOCP-FEM analysis is provided in Algorithm 1 for reference. The optimization
solver returns the structure type of the solutions named ‘res′ at the end of each analysis step,
and the solutions of x are contained in res.sol.itr.xx. The incremental displacement ∆û is
the dual variable of γ̂n+1, and is stored in res.sol.itr.y. The optimization solver returns the

For ith incremental analysis:
1. Update the status of variables such as the velocity, the acceleration and the stress;
2. Form global matrices A,B,C,D,H,d according to (3.28b-e) and (3.40);
3. Calculate f̃ according to Eq. (3.28a);
4. Contact detection:

• (1) Calculate g0 of potential contact nodes;

• (2) Update normal vectors in Eqs. (3.32d)-(3.32e) with inclined slope angle θs;

5. Construct the SOCP program based on Eq. (3.43) and submit to MOSEK;
6. Extract/calculate the status variables:

• (a) Find stresses σ̂n+1in res.sol.itr.xx;

• (b) Calculated velocity v̂n+1 with ∆û obtained from res.sol.itr.y;

• (c) Calculate the increment of strain tensors using Eq. (2.2) and Eq. (2.5);

Return to step 1 with i = i+1

Algorithm 1: Solution scheme

structure type of the solutions named res at the end of each analysis step, and the solutions
of x are contained in res.sol.itr.xx. The incremental displacement is the dual variable of the
stresses and is stored in res.sol.itr.y.

3.5 Particle finite-element technique

Originated in the fluid mechanics, the PFEM has demonstrated its capabilities of tackling
issues such as free-surface evolution and mesh distortion. Some challenging fluid mechanics
problems that have been solved successfully include, but are not limited to, the modelling
of free-surface flows and their interaction with solid structures, wave breaking, multi-phase
flows, etc. (Idelsohn et al., 2003, 2004; Oñate et al., 2011, 2004). The key idea behind the
PFEM rests with the treatment of mesh nodes as free particles which can move and even
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separate from the computational domain to which they originally belong. In a given time
interval [tn, tn+1], the basic steps of the PFEM are as follows (see also Fig. 3.3):

• 1. Erase the mesh topology and update the position of mesh nodes based on the solved
incremental displacement to obtain a cloud of particles, Cn+1 (Figs. 3.3(a) and (b)).

• 2. Use the α-shape method (Cremonesi et al., 2010) to identify the new computational
domain Ωn+1 based on Cn+1 (Fig. 3.3(c)).

• 3. Remesh the domain Ωn+1 to obtain a new mesh Mn+1 (Fig. 3.3(d)).

• 4. Map the history variables from the old mesh Mn to the new mesh Mn+1 using the
Unique Element Method (UEM) introduced in Hu and Randolph (1998).

• 5. Solve the equations using Algorithm 1 based on the new mesh Mn+1.

Fig. 3.3 Steps for PFEM techniques in the time interval [tn, tn+1].

It is worth noting that the governing equations used in this PFEM version are under the
assumption of infinitesimal strain. At the end of each incremental analysis, the configuration
is updated according to the solved displacement. This assumption may lead to several
errors for large deformation analysis. However, practically the error induced due to the
infinitesimal strain assumption is relatively minor because the used incremental step is very
small. The present version of the PFEM with small strain theory has been validated against
several benchmarks such as the modelling of a water dam break, granular column collapse,
underwater granular flows and the related induced waves, and non-Newtonian flows in an
annular viscometer in (Zhang et al., 2019) where satisfactory agreements between the PFEM
simulation results and the available experimental data and/or analytical results have been
obtained. For the PFEM derived from the concepts of large-strain plasticity and its application
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to granular material flows which are closely related to landslide propagations, readers are
referred to Dávalos et al. (2015). More specifically, an investigation of ‘Remeshing and
Interpolation Technique with Small Strain’ (RITSS) for large deformation analysis in soil
has shown that the RITSS procedure with small time steps leads to relatively small errors
when applied to geotechnical problems (Tian et al., 2014). As for the accuracy of UEM,
more details can be found in Hu and Randolph (1998), where numerical results of the bearing
capacity problem using UEM and coarse meshes is compared with analytical solutions: the
fluctuation of the load-displacement curve is within 6%, which can be further reduced by
adopting finer meshes.



Chapter 4

Applications of landslide modelling

The details of the optimization-based PFEM applied to landslide modelling has been ex-
plained in Chapter 3, and its applications have been explored through modelling a flow-like
landslide (Zhang et al., 2015), the progressive failure of landslides in sensitive clays (Zhang
et al., 2017) as well as submarine landslides and their consequences such as the induced
tsunamis and the impact to ocean pipelines (Zhang et al., 2019). However, there are few ef-
forts devoted to studies comparing the optimization-based PFEM vs. the common approaches
for landslide modelling in geosciences (e.g. vs. depth-averaged approaches). The objective
of this section is to quantitatively assess the performance of the present model in landslide
modelling with two main applications: (1) stability analysis; (2) landslide propagation analy-
sis. As mentioned, these two stages are usually simulated separately by numerical techniques
addressing pre-failure and post-failure analyses. Therefore, the performance of the model
developed in this thesis is discussed through comparisons against the most commonly used
techniques. Specifically, the stability analysis is carried out based on a typical homogeneous
slope benchmark (see Cheng et al., 2007) and the propagation analysis is conducted with the
presented depth-averaged model in Chapter 2. Some parts of this section have been published
in Wang et al. (2019b). 1

4.1 Stability analysis

Slope stability analysis is a classical problem in the field of geological, geophysical and
engineering. The quantitative analysis of slope stability starts from the fundamental work by
Bishop Bishop (1955), in which the slice-based limit equilibrium method (LEM) was used for

1Most contents in this section have been summarized in a paper published in: Wang, L., Zhang, X., Zaniboni,
F., Oñate, E., & Tinti, S. (2019). Mathematical optimization problems for particle finite element analysis
applied to 2D landslide modeling[J]. Mathematical Geosciences, 1-23.
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predicting slope stability. Due to its simplicity, the use of LEM has been widely adopted in
engineering applications even though it is known that some assumptions are over simplified
and there is not a unique solution for it. The LEM uses the global equilibrium condition
and the slices are treated as being in purely static situation without constitutive relationships.
Later, the use of the limit analysis method that models the soil as a perfectly plastic material
obeying an associated flow rule became popular. In this approach two plastic bounding
theorems (lower and upper bounds) can be used to determine the computational value (Chen,
2013). In order to automatically obtain the slip surface through the computation, proper
stress-strain relationships should be implemented to account for the evolution of the slip
surface, which can be identified by the shear strain. With the successes of the development of
the finite element method (FEM) in engineering, the advantages of FEM in the elastoplastic
analysis of slopes have been recognised. They can be summarized as follows (Griffiths and
Marquez, 2007):

• failure surface is not needed to be predefined

• balance relationship between slices is avoided

• information inside the slope body can be described

• capability to simulate slope failures that can be observed in reality

Thereby, numerical techniques especially the finite-element analysis has become the dominant
approach in the slope stability analysis nowadays. Usually the factor of safety (FOS) is
chosen as the index to determine the situation of slopes. Combined with the present model
for 2D elastoplastic plane-strain problems, a simply binary search algorithm is implemented
to compute the critical situation of slopes in this section.

4.1.1 FEM analysis

Practically, the stability analysis of a slope is carried out using the strength reduction method
(SRM) to identify the critical state of the slope by gradually reducing the strength of the soil.
The critical state is indicated by the factor of safety (FOS) that is defined as the ratio of the
actual soil shear strength to the minimum shear strength required to prevent failure (Bishop,
1955). For example, when the Mohr-Coulomb model is used with cohesion c and internal
frictional angle φ , then according to the SRM (Dawson et al., 1999), these parameters are
reduced by a reduction factor (RF) that is:

c′ =
c

RF
, tanφ

′ =
tanφ

RF
(4.1)
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The RF is the FOS of the slope when the used c′ and tanφ ′ are at the minimum values
required to prevent failure. In other words, a slope with a FOS greater than one is identified
as stable otherwise it is unstable. To verify the accuracy of the SOCP-FEM approach for slope
stability analysis, a homogeneous soil slope that was analyzed using the limit equilibrium
method (LEM) and the finite element method by Cheng et al. (2007), is re-examined in
this section. The initial geometry of the example is illustrated in Fig. 4.1. The density,
elastic modulus and Poisson’s ratio of the soil are 2000kg/m3,14MPa and 0.3, respectively.
Simulations with both the associated (ψ = φ ) and non-associated (ψ = 0◦) flow rules are
conducted using SOCP-FEM under quasi-static assumptions with material parameters in
line with those in Cheng et al. (2007). For the case of non-associated flow rule, the strategy
presented in Krabbenhoft et al. (2012a) is utilized. A total of 6095 triangular elements are
used to discretize the slope in our simulations.

Fig. 4.1 Initial geometry of the slope model. Lateral displacement is set to zero along left
and right boundaries and the bottom is fully fixed.

The binary search algorithm illustrated in Fig. 4.2 is employed to calculate the FOS. The
critical failure state of a slope is determined when the optimization solver is not feasible
or the maximum incremental displacement is higher than a given threshold. For the static
analysis, the incremental displacement of the failed zone should be infinite. So, the threshold
used here is to approach the critical situation. Several thresholds varying from 0.1 m to
100 m have been used and no significant effects on FOS are found. For an engineering
point of the permanent displacement of slopes, more investigations should be devoted to
the dynamic analysis of the slope since the time-dependent information is available. It will
be shown later that the weakening process may play a significant role in the slope failures
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according to our simulations. Here, an initial range [RF1 = 0.2,RF2 = 10] is set to trigger
the searching process and when the tolerance |RF1−RF2|/RF1 < 10−3 is achieved, the
calculated reduction factor RF1 is the FOS of the slope. For the non-associated flow rule, the
plastic potential function is not equivalent to the yield function, i.e.:

F =
√

(σxx −σyy)2 +4σ2
xy +(σxx +σyy)sinφ −2ccosφ (4.2a)

G =
√

(σxx −σyy)2 +4σ2
xy +(σxx +σyy)sinψ (4.2b)

By means of the approximation form of the yield function, the non-associated flow rule can
be expressed as an associated flow rule (Krabbenhoft et al., 2012a), which can be tackled by
the present min-max program.

F ≈ F∗ =
√
(σxx −σyy)2 +4σ2

xy +(σxx +σyy)sinψ −2c̃cosψ (4.3a)

c̃ = c
cosφ

cosψ
+

1
2
(tanψ − sinφ

cosψ
)(σxx +σyy)n (4.3b)

where c̃ is updated every time step to guarantee the accuracy of the approximation. The
subscript n refers to the current state at time tn. Additionally, an error control scheme
proposed by Wang et al. (2018) replaces the dilation angle by an automatically determined
φk. The angle φk approaches to the dilation angle ψ as the internal loop increases and the
loop ends when the increment displacement field suffers a control error from the reduction of
φk. The error control scheme improves the accuracy of the stability analysis of slopes with
non-associated Mohr-Coulomb material. Also, a comparison between the searching process
for FOS using traditional FEM and using the mathematical-optimization based finite element
analysis can be found in Wang et al. (2018). With the examples shown in Table 4.1, numerical
results by SOCP-FEM are compared with the results in Cheng et al. (2007). SOCP1 and
SOCP2 denote the SOCP-FEM with non-associated flow rule and with associated flow rule.
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Fig. 4.2 Searching strategy for FOS.

Table 4.1 Factor of safety determined by the limit equilibrium method (LEM), the strength
reduction method with a non-associated flow rule (SRM1) and an associated flow rule
(SRM2), SOCP1 and SOCP2. Diff1 is the percentage difference between the FOSs obtained
from SRM1 and SOCP1 in absolute value, while Diff2 is the same but applied to SRM2 and
SOCP2. The data of LEM, SRM1 and SRM2 are from Cheng et al. (2007)

Case c (kPa) φ (◦) LEM SRM1 SOCP1 Diff1 (%) SRM2 SOCP2 Diff2 (%)

1 5 5 0.41 0.43 0.42 2.3 0.43 0.43 0.0
2 5 15 0.70 0.73 0.71 2.7 0.73 0.72 1.4
3 5 25 0.98 1.03 1.02 1.0 1.03 1.00 2.9
4 5 35 1.28 1.34 1.32 1.5 1.35 1.31 3.0
5 10 5 0.65 0.69 0.67 2.9 0.69 0.68 1.4
6 10 15 0.98 1.04 0.99 4.8 1.04 1.01 2.9
7 10 25 1.30 1.36 1.32 2.9 1.37 1.33 2.9
8 10 35 1.63 1.69 1.63 3.6 1.71 1.68 1.8
9 20 5 1.06 1.20 1.16 3.3 1.20 1.18 1.7
10 20 15 1.48 1.59 1.51 5.0 1.59 1.55 2.5
11 20 25 1.85 1.95 1.83 6.2 1.96 1.91 2.6
12 20 35 2.24 2.28 2.24 1.8 2.35 2.30 2.1



54 Applications of landslide modelling

4.1.2 Post-failure analysis by PFEM

In the framework of the PFEM, not only the FOS of a slope can be determined but also the
post-failure processes and final run-out distances for different reduction factors. This can be
achieved through the dynamics analysis. To illustrate this capability, case 12 in Table 4.1 is
re-analyzed with the non-associated flow rule. Four different reduction factors are used and
the corresponding final deposits from the simulations are illustrated in Fig. 4.3.

Fig. 4.3 Final deposits obtained from the PFEM simulation for the reduction factor (a)
RF = 2.24, (b) RF = 2.3, (c) RF = 2.4 and (d) RF = 2.9. Contours refer to the displacement
of soils (unit: meter), and the slip surfaces from the analysis by SRM1, SRM2 and LEM are
extracted from Cheng et al. (2007).

As displayed, for RF = 2.24 and 2.3 clear sliding surfaces are identified from the PFEM
simulation which coincide with the slip surfaces determined by other approaches (Figs. 4.3
(a) and (b)). However, soil elements in these two cases experience very small displacements.
This is because the used reduction factors are very close to the factor of safety of the slope
implying that the slope will tend to be stable again after limited deformation. For RF = 2.4
(Fig. 4.3(c)), deformation is well identified and the maximum displacement around 0.7 m
is experienced by soil nodes along the slip surface. Increasing further the reduction factor
leads to greater deformations. For example, when RF = 2.9, the sliding mass has a moving
distance exceeding 2 meters, which has been well predicted by our approach. The present
simulations indicate that the run-out distance of landslides might be slightly small if without
further material-weakening, which is due to the redistribution of stress and material. This also
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indicates that the material-weakening behaviour may play a significant role in the evolution
of some large landslides.

4.2 Landslide propagation

The landslide propagation involves the accurate description of the rheological behaviour
of landslides. Due to the limitation of traditional FEM in dealing with large deformation
problems, the run-out analysis of landslides mainly focuses on the fluid-like behaviour based
on the Eulerian approaches. Based on the present PFEM model, traditional FEM analysis
can be extended to the description of landslide propagation. By means of the non-associated
Mohr-Coulomb, the Drucker-Prager and the Tresca yield criterion, the present SOCP-PFEM
has been applied to the examples of granular collapse and dam-break problems (Zhang et al.,
2013, 2019). In this section, the present PFEM model is compared against the results of the
widely used depth-averaged model applied to the landslide propagation problem and also
with Laboratory test and a real landslide data.

4.2.1 Laboratory test

In Chapter 2, the developed DAEs code has been validated against the water-dam break
problems, where the flow-like behaviour of the material is simulated. The comparison with
analytical results proves the accuracy of the code and the comparison with the observation
data from EU CADAM laboratory experiment validate the capability of the shallow-water
model with hydraulic friction effects in water-flow simulations. Here, a laboratory test of
the collapse of aluminum bars is used as an example for the numerical investigations. Small
aluminum bars of diameters 1 and 1.55 mm, and length 50 mm are used to represent soil.
The initial model is a rectangular area of 200× 100mm and is generated by placing two
flat solid walls on a flat surface. The aluminum bars mainly move along the longitudinal
direction leading to a 2D configuration. Square grids were plotted to visualize the profiles
and the experiment was started by quickly removing the right-end wall to right. More details
can be found in Bui et al. (2008). ). In the same paper, the smoothed particle hydrodynamic
(SPH) associated with the Drucker-Prager constitutive model is used to capture the large
deformation and failure of this experiment, where good agreements are obtained. Later,
different numerical results have been compared based on the experimental data (e.g., Lian
et al., 2012; Peng et al., 2016; Zhang et al., 2019).
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Fig. 4.4 Numerical results at five moments: t = 0.075s, t = 0.125s, t = 0.175s, t = 0.225s
and the final deposit profile.

In this part, we focus on the simple comparison between the PFEM model and the depth-
averaged model in this experiment. It should be mentioned that the adopted depth-averaged
model is the simple shallow water model with the basal Mohr-Coulomb law Savage and
Hutter (1989), better results can be obtained by the advanced models that are able to describe
the internal rheology. The Mohr-Coulomb model is implemented into the PFEM model
and parameters are: Young’s Modulus E = 0.84MPa, Poisson’s ratio µ = 0.3, friction angle
φ = 19.8◦, dilation angle ψ = 0◦ and cohesion c = 0. The time step is set to ∆t = 1×10−3s
(Zhang et al., 2019). As for the Depth-averaged model, only the basal friction angle is needed
and it is set to φ = 19.8◦.

4.2.2 Tangjiashan Landslide

Computing the propagation of landslides requires the accurate description of the rheological
behavior of the involved geomaterials. In the present PFEM framework, more sophisticated
material constitutive models can be implemented for landslide propagation. It is of interest
to compare the simulation results of a real landslide case obtained from the present PFEM
method and those from the depth-averaged models.

To this end, a historical event, i.e. the Tangjiashan mass failure in Sichuan province,
China, is addressed in this section (Fig. 4.5). The failure was triggered by the 2008 Wenchuan
earthquake and the sliding mass crashed rapidly into the Jianjiang river, causing a landslide
dam and a death toll up to 84 (Luo et al., 2012; Xu et al., 2009). The slide moved along
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a complex topography with a maximum slope angle of 40◦ he motion lasted around 30 s
according to (Xu et al., 2009). The data about the landslide body and the deposit are extracted
from the field survey conducted by (Hu et al., 2009). In our PFEM simulation, the domain
is discretized by using 3335 elements and a time step ∆t of 0.1 s is used. According to
Huang et al. (2012), the sliding mass can be represented by a Mohr-Coulomb model with
the following material parameters: density ρ = 2000kg/m3, friction angle φ = 30◦, dilation
angle ψ = 0◦, and cohesion c = 30kPa. The basal friction coefficient is chosen as µ = 0.27.
As for the time integration, the backward Euler scheme, i.e. θ1 = θ2 = 1, is implemented
into the PFEM simulation.

Fig. 4.5 Background of Tangjiashan landslide: Left Engineering geology map (modified
from Hu et al. (2009) and Xu et al. (2009)); Right Satellite image (modified after Peng and
Zhang (2012)).

In addition to the PFEM, the simulation of the landslide motion was also carried out by
using the depth-averaged model shown in section 2.4.1. In contrast to the present PFEM
model, the adopted depth-averaged model only considers the basal Mohr-Coulomb friction
law, mainly used for simulating the flow-like behavior of mass-flow movements. Therefore
the needed material parameters is the basal frictional coefficient µ = 0.27. In the simulation,
the lateral earth pressure coefficient (Savage and Hutter, 1989) is assumed to unity.
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Fig. 4.6 Simulated propagation with velocity contour at four moments.

The landslide position simulated by the PFEM analysis with velocity magnitude contour
at four different moments are shown in Fig. 4.6 and the dash line represents the simulation
conducted by the depth-averaged model. At t = 6s, the landslide moves as a whole with
the velocity around 20 m/s and the DAEs model depicts a slightly faster motion. Further,
velocity distinctions within the landslide body in PFEM simulation can be observed when the
mass climbs the opposite side of the mountain. Impeded by the anti-slope, the front of the
landslide decelerates rapidly, while the rear of the landslide still moves with a velocity higher
than 25 m/s. On the contrary, it is clear that the landslide depicted by the DAEs simulation
suffers a larger deformation and the mass accumulates in the front of the landslide (see in
Fig. 4.6(c-d)). The movement of the rear sector changes the deposit profile of the landslide
shown in Fig. 4.6(d). The main body described by the PFEM model is still, while the mass
depicted by DAEs is impeded by the front mountain and starts moving back. The present
PFEM model describes the Tangjiashan landslide moving more like a rigid body and differs
in this aspect from the DAEs simulation.
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Fig. 4.7 (a) deposit profile; (b) Mass variation; (c) Mean velocity profile

The simulations agree well with the observation data and also with the SPH simulation.
Calculating the area of the initial and final cross-sections of the computational domain, the
mass variations of the simulations are shown in Fig. 4.7(b), where the maximum of 1.5%
mass change is produced by the remeshing procedure in PFEM simulation. The mass balance
of the DAEs simulation is well kept. Considering the landslide as a whole, the mean velocity
profile of the landslide is shown in Fig. 4.7(c). In the PFEM simulation, the landslide was
accelerated to around 26 m/s in the first 10 s and then decelerated to still. As for the DAEs
simulation, the main mean velocity profile is quite similar, while an additional velocity
profile is produced due to the back motion of the landslide body. In general, the present two
simulations are nearly consistent in capturing the main motion of the Tangjiashan landslide
with differences in the internal motion inside the landslide body, depicted by the landslide
profile.





Chapter 5

Entire simulation of landslides

With some assumptions, physically-based models can provide the dynamic information of
landslides such as travel distance, impact forces, hazardous areas for the assessment of
landslide hazards. Usually these models can be integrated into Geographic Information
System (GIS) with some techniques, such as Monte Carlo techniques and multiple flow
direction algorithms, to predict mass movements at different scales (Mergili et al., 2017).
Mostly, depth-averaged equations (DAEs) are used to account for the flow dynamics since
they can be easily developed and solved for different scales. For some landslides, the
onset of slope failure is at small scale and the landslide propagation is at a larger scale.
Therefore, modelling the dynamics of landslides including different scales is a challenging
task. Currently, several numerical methods can be used for the analysis of landslides from
initiation and deposition stages, as reviewed in (Soga et al., 2015). And a study on a virtual
slope model based on MPM has been conducted by (Yerro et al., 2016) to investigate the
response of slope to the reduction of the material strength. It has been proven in Chapter 4
that our particle finite element method (PFEM) has the capability of simulating the entire
evolution of the landslide from the generation to the deposition phase. Therefore it is
important to figure out the difference between a unified PFEM simulation and the usually
adopted approaches that separate failure mechanism (static analysis) and run-out analysis
(dynamic analysis) based on real cases. In this Chapter, we first apply the PFEM code to
a simple homogeneous slope model and numerical results reveal that under the so-called
critical condition the landslide comes to a stop with a slight modification of the original
profile, while the profile is drastically changed if strength reduction is further applied. To
further explore the PFEM capability, we choose the 2013 Cà Mengoni landslide, northern
Apennines, Italy, as a case study, since it behaved as if it were formed by a homogeneous
material. In virtue of the back-analysis of the run-out distance that is performed by using
different material strength parameters, we show that the PFEM model is able to capture
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the variation of the observed landslide profile, and contributes to the understanding of the
dynamics of the whole sliding process.

5.1 Critical condition

In Chapter 4, a slight deformation under critical condition (see Figure 4.3) has been depicted
by the PFEM model with dynamic analysis. This phenomenon has also been reported by other
methods (e.g. Cuomo et al., 2013; Peng et al., 2015; Yerro et al., 2016).A simple comparison
is presented here to show the deposit profile of a homogeneous slope, simulated by PFEM
and SPH methods. The latter method was applied by (Peng et al., 2015) methodswho made
use of the Drucker-Prager elastoplastic model with non-associated flow rule. In the SPH code,
the simulations were conducted with material parameters modified by prescribed reduction
factors that were set close to the critical safety factor, which is the so-called critical failure
condition for the slope. The critical condition of a slope may be defined as the moment that
the slope transits from a state of stability to instability. The material parameters for soil
including elastic modulus E, internal friction angle φ , cohesion c, dilation angle ψ , Poisson’s
ratio ν and density ρ can be found in Table 5.1. By means of the shear strength reduction
method (SSR), the strength parameters, i.e. cohesion and internal friction angle, are modified
by the reduction factor (RF), the critical value for RF being approximately equal to the
stability factor of the slope (FOS). The safety factor computed by static analysis in our
model is 1.953 and is comparable with the published values of 1.94 (Griffiths and Lane,
1999; Peng et al., 2015). In this section, we adopt the critical reduction factor RF = 1.953
for the dynamic simulations to investigate how the slope evolves under the critical condition.

Table 5.1 Material parameters for homogeneous soil slope.

E (MPa) φ (◦) c (kPa) ψ (◦) ν ρ (kg/m3)
Case 30 30 5 0 0.2 1850

The critical condition of a slope may be defined as the moment that the slope transits
from a state of stability to instability. By means of the shear strength reduction method
(SSR), the strength parameters, i.e. cohesion and internal friction angle, are modified by the
reduction factor (RF), the critical value for RF being approximately equal to the stability
factor of the slope (FOS). The safety factors computed by static analysis in our model is
1.953 respectively and is comparable with the published values of 1.94 (Griffiths and Lane,
1999; Peng et al., 2015). In this section, we adopt the critical reduction factor RF = 1.953
for the dynamic simulations to investigate how the slope evolves under the critical condition.
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In the simulations, we chose the mesh element size with typical area of 0.16 m2 for the
slope, resulting in the corresponding total number of 1566 triangles. The adopted boundary
conditions are that lateral nodes cannot have horizontal displacements and bottom nodes
cannot move at all. The final deposit profile we obtain for the slope with our PFEM model is
displayed in Fig. 5.1. It can be seen that the PFEM model, which has solid foundations in
continuum mechanics, describes that the homogeneous slope stops with slight modification
of the original profile. This result also suggests that the weakening process during the
post-failure stage influences the mobility of shallow landslide and debris flows, which will
be proven in the next section.

Fig. 5.1 Final profiles of the slope with distribution of displacement.

Naturally, it is of interest to investigate the dynamic evolution of the slope when the
material strengths are further reduced. By the same SSR technique, individual reduction
factors RFC and RFF are implemented to reduce cohesion and internal friction angle
respectively. To quantify the run-out distance of the sliding body, the average displacement
D is calculated by averaging the displacement of nodes that run distances more than 0.1 m.
The value of D computed by the critical condition is denoted as Dc. The influence of RFC
and RFF on the ratio between D and Dc is plotted in Fig. 5.2.
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Fig. 5.2 Relationship between the ratio D/Dc and the reduction factors for cohesion and
internal friction angle. The reduction factors are not further reduced beyond the limit shown
in the graph, since the failure mass reaches the right lateral boundary of the numerical slope
domain.

Fig. 5.3 Evolution of the average velocity v̄ of the sliding body, computed by averaging over
the nodes that have the magnitude of velocity larger than 10−4 m/s.
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The clearly sharp slope of the curve of RFF indicates that the reduction of friction angle
has larger influence on the mobility of landslides. The dynamics of the landslide is also
shown through the evolution of the average velocity in Fig. 5.3. After failure (t = 0s), the
main body achieves its peak velocity at t = 1.5s and then decelerates to still within 4 s in
total.

5.2 Case study: The 2013 Cà Mengoni landslide

As was mentioned already, the modern numerical techniques can be applied to the entire
evolution of landslides from initiation to deposition. Nonetheless, few studies have been
conducted to investigate the performance of these techniques based on a real case landslide.
To explore its capability in capturing some landslide features, the Cà Mengoni landslide, that
occurred on 6 April 2013 in the northern Apennines, close to Castel dell’Alpi, a village in the
province of Bologna, Italy, is chosen as a case study. A detailed static slope stability analysis
has been conducted by Berti et al. (2017), where the material strength parameters were
back-analysed in details. The landslide is a flysch rock slide, and is of a type quite common
in northern Apennines. Previous studies (Berti et al., 2017; Ronchetti et al., 2009) indicated
that, despite its complexity, the flysch behaves as a homogeneous medium at the slope scale.
Additionally, we note that the final profile of the 2013 Cà Mengoni landslide is similar to what
is observed in the shallow movements of landslides. Therefore, we take this as a hint that
our model based on continuum mechanics can be implemented to investigate this historical
event. The strategy is to use the PFEM model to investigate the failure mechanism and profile
variation from the perspective of analysing the final deposit with different parameters.

5.2.1 Background and slope model

The 2013 6th April Cà Mengoni landslide, located in the Apennines south of Bologna was
triggered after a long period of rainfall with about 310 mm in 30 days, and finally deposited
on 8th, April. The main motion of the landslide occurred in the early afternoon of 6th, April
and then slowed down reaching a velocity less than 1 m/h in the late afternoon. The landslide,
that has an estimated volume of 3 million m3, was witnessed moving with an approximately
peak velocity of 10 m/h. The landslide mainly consists of a cretaceous flysch that is made of
a close alternation of sandstones, siltstones, and marls. The detailed field survey reveals that
the original slope was initialized within the flysch substratum. The geological, geotechnical,
and geophysical investigations provide an interpretation of the failure mechanism of the
landslide. It was postulated that the landslide experienced a three-stage mechanism, which
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has been depicted in Fig. 5.4. After the first translational sliding of the landslide, the failure
mass moved along a curvilinear surface at about 30 m depth. It was also postulated that
multiple failure surfaces were generated during the failure of the landslide. More geological
details can be found in Berti et al. (2017).

Fig. 5.4 Evolution and numerical set-up of of the main cross-section of the Cà Mengoni
landslide (after Berti et al. (2017)).

The original, intermediate and final profiles of the landslide are shown in Fig. 5.4. The
corresponding 2D numerical mesh in Fig. 5.4 consists of 21755 triangles with area of 25
m2. Values for elastic modulus E, density ρ and Poisson’s ratio ν are taken from Berti et al.
(2017) as well as the values for cohesion c and internal friction angle ψ , that are 30 kPa and
29◦ respectively. In the present model the material is one phase only, so the numerical slope
model is stable with the chosen c and φ . Different reduction factors RFC and RFF are used
to investigate the dynamic evolution of the landslide.

5.2.2 Numerical investigation

The dynamic evolution of landslides involves various mechanisms during different stages,
while here we simulate the dynamic evolution of homogeneous material controlled by
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the gravity force and local topography. In this section, we concentrate on the mass flow
movements within shallow depth by implementing different material strength parameters.
The performed numerical simulations are to investigate the slide motion from initiation to
deposition. Current numerical simulations release material from a certain zone without
the identification of the potential failure zone. With the aim to explore the performance
of the PFEM model in describing the landslide processes in a single code, the numerical
simulations are carried out separately in two steps: (1) Static analysis; (2) Dynamic analysis.
The identification of unstable zones in mountain slopes is usually done by means of the shear
strength reduction method associated with FEM. According to the previous studies on a
simple geometry slope, the recognized landslide mass moves along the slip surface close to
the one obtained from static analysis. It is of interest to compare the motion of the landslide
simulated by the dynamic analysis with the slip surface identified by static analysis based on
a more complicated slope model, since the stress conditions are changed during the dynamic
computation.

Slip surface by static analysis

The Mohr-Columb model is implemented in the code to identify the slip surface of the slope.
By means of the adopted material parameters associated with the algorithm presented in
chapter 4, the obtained FOS are 1.5 and 1.545 respectively. The identified slip zones are
shown in the PEEQ plots in Fig. 5.5. For the associated model, the toe of the slope starts
to move when the reduction factor equals to 1.5, and this indicates a local failure of the
landslide. Since the plastic zone depicted in Figure 5.5(a) does not show connection between
the toe and the slope surface, a further check was carried out to check the robustness of FOS
searching algorithm. With the associated Mohr-Coloumb model, the numerical landslide
fails when RF is higher than 1.5. This slip zone shown in Figure 5.5(b) is deeper than the one
observed and the one obtained by the finite difference analysis by Berti et al. (2017), where
the water table was set at the ground. The PEEQ accumulates at the toe of the generated slip
zone downhill and gradually decreases moving uphill. It should be noted that the slip surface
obtained by means of the static analysis here is not the slip surface obtained by means of the
dynamic analysis, which will be explained later on. Black dashed line in Fig. 5.5 represents
the observed slip surface during the first stage of the landslide.
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Fig. 5.5 Contour of PEEQ under the critical condition for the slope models.

Dynamic evolution

The dynamic evolution of landslides involves several dynamic processes, such as the dynamic
behavior of material and the redistribution of landslide slips. Unlike the single slip surface
shown in Figure 5.5, simulations here present the generation of multi-slip surfaces during
post-failure stages. The previous study on a simple geometry slope showed that the reduction
of internal friction angle φ has a significant influence on the slip surface, contributing also to
the generation of multiple slip surfaces.

The critical condition of RF = 1.545 identifies the stage where the plastic strain zone
allows the slipping over an internal surface, which marks the landslide initiation. With the
same strategy to weaken the material strength, we test different values for RFC and RFF . If
not mentioned explicitly, the end flag of simulation is the minimum average velocity lower
than 0.0001 m/s and the time step is ∆t = 1s. When the failure mass is still moving, a clear
velocity distinction between the mass and the stable body can be seen. We checked all the
cases that the failure mass is stopped with the specific velocity threshold, even by adopting a
very large time step.

The final profile of the landslide using the critical reduced parameters gives the local
failure of the initial slope displayed in Figure 5.6(a). Increasing RFF makes the plastic zone
closer to the observation data, as shown in Figures 5.6(b) and 5.6(d). Two cross slip surfaces
are observed in Figure 5.6(d) and this can represent two different stages of the landslide.
Figure 5.6(c) shows that the increment of cohesion does not change the local failure portrayed
in Figure 5.6(a). It should be mentioned that the non-normalized PEEQ values for the case
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of Figure 5.6(c) are generally higher than the ones of Figure 5.6(a), and that also the PEEQ
values inside the sliding body are distributed more widely than in Figure 5.6(a). Interestingly,
Figure 5.6(b) depicts a slip surface that agrees well with the slip surface of the first stage of
the landslide. However, it cannot describe the whole stages of the landslide, and thus the
deposit profile is not well captured.

Fig. 5.6 Normalized PEEQ contour with final profile of landslide for four cases.

Fig. 5.7 Snapshots of PEEQ with RFC = 1.5, RFF = 2.

It can be seen in Figure 5.7 that two main slip surfaces form at the beginning of the
landslide evolution. With different sliding velocities, different slide bodies are observed in
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(b), (c) and (d). Red and black dashed lines represent the actual slope and observed slip
surface. The landslide is nearly stopped with t = 40s. Simulations with various RFF and
RFC values are also conducted to investigate the dynamic mechanism of landslide evolution,
and the maximum displacement of the nodes is chosen as an evaluation index. As shown
in Fig. 5.8, the landslide can have a maximum displacement over 200 meters when RFF is
larger than 1.5. The slope of the isolines confirms that the landslide mobility is influenced
much more by RFF than by RFC.

Fig. 5.8 Relationship between the maximum displacement and the reduction factors RFC
and RFF . The simulations are conducted with RFC and RFF varying from 1 to 2 with equal
step of 0.1.

Landslide deposit profile

With the observed data and the numerical results, the misfit index (Zaniboni and Tinti, 2014)
can be calculated by means of operation on polygons. The polygons corresponding to the
observed landslide deposit profile and to the numerical deposit profile are denoted as PO and
PN . Using PI for the polygon of the initial profile, the misfit index, designated by MI, is
computed through the formula:

∆PO = PO ∪PI −PO ∩PI (5.1)

∆PN = PN ∪PI −PN ∩PI (5.2)

MI = 1− ∆PO ∩∆PN

∆PO ∪∆PN
(5.3)
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Fig. 5.9 Relationship between the MI and the reduction factors RFC and RFF that are varied
from 1 to 2 with equal interval of 0.1.

According to Figure 5.9, the most similar numerical deposit profile might appear when
the MI takes the smallest value. Considering that the values are quite close, we choose the
four smallest values of MI and plot the corresponding results in Figure 5.10. The run-out
distance is well reproduced in the case (a), (c) and (d), while the case (b) indicates that with
the value RFF = 1.9 one might obtain a slip surface more in agreement with the observation
data.

Fig. 5.10 Final deposit profile with four cases. Red and black dashed lines represent actual
slope and observed slip surface.
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The present PFEM simulation not only provides a reasonable deposit compared with
the observed deposit profile, but also agrees quite well with the observed slip surface. This
remarkable result indicates that: (1) the classical slope stability analysis might overestimate
the strength parameters when it is applied to real landslide cases; (2) weakening process is
quite important during the propagation of a landslide. Combining Figure 5.10(b), which
captures the slip surface of the first stage and Figure 5.10(d), one may conclude that the
observed slip surfaces and the run-out distance might be reproduced reasonably well by
weakening the material parameters.

Weakening process

The previous simulations are carried out with the sudden reduction of strength parameters,
where the reduction factors RFF and RFC are employed at the first dynamic time step (after
the gravity balance calculations). In this section, a simple gradually increasing reduction
factor law is implemented into the code to cast a light on the weakening process. In a
first stage with a duration T1 ∼ 280s RFF and RFC are gradually increased from 1.5 until
RFF = 1.90 and RFC = 1.98. After that, the simulation remains with RFF = 1.9 and
RFC = 2 until the general maximum velocity smaller than 10−5m/s (T2 ∼ 2900s). The
results for the first weakening process are shown in Figure 5.11(a) and 5.11(b). It can be seen
that this quasi-static weakening process produces a result that is slightly different than the
one shown in Figure 5.11(b). In Figure 5.11(a), the landslide has maximum displacement
around 80 m at the front, which is smaller than in Figure 5.10(b). Further, we note that the
sliding body moves with extremely low velocity along the slip surface as shown in Figure
5.11(b).

Fig. 5.11 Final deposit profile for the weakening process.
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Then, in another phase of duration, T3 ∼ 1100s, the factors are increased to the final
values RFF = 2.0 and RFC = 2.0 and the consequence is that the landslide moves at a higher
velocity before reaching the final deposit profile that is a good approximation of the observed
profile (see Figs. 5.11(c) and 5.11(d)). Notice that the time intervals T1, T2 and T3 have been
selected with no reference to the observed time phases of the real Cà Mengoni landslide, but
only with the purpose to investigate how our PFEM model performs assuming time-dependent
material parameters. This experiment suggests that the evolution time of the landslide is
strongly governed by the weakening process of the sliding material, and that, when it is
extremely slow, like in creeping, it can be interpreted as the progressive passage through
varying conditions of quasi-equilibrium. In other words, it can be seen as a quasi-static
process rather than as a full dynamic process. It also suggests that more physically-based
weakening models, i.e. strain-accumulated model, should be further employed to investigate
further this topic, as it deserves.

The present PFEM model, that describes the dynamic deformation of a homogeneous
slope that is controlled by gravity, local topography and material strength, gives results that
agree well with the observed deposit profile and slip surface of the landslide when choosing
appropriate reduction of internal friction angle φ . This finding can contribute to the risk
assessment of shallow landslides, where landslide movements are controlled by deformations.
We note that with the current model we have not been able to predict exactly the dynamic
evolution of the Cà Mengoni landslide, as we have obtained a landslide moving much faster
than it was. This is not critical, however, since slow creeping can be obtained by applying
proper weakening laws. Furthermore, we point out that our model can provide more complete
information on a landslide process, including the identification of the failure and influence
areas, which is quite important for planning adequate mitigation strategies.

5.3 Conclusions

The accurate modelling of the entire process of landslide under a unified computational
framework is a challenge for landslide studies and the significant developments of novel
numerical approaches cast a light on solving this issue. To investigate and explore the
capability of meshless approaches, the PFEM approach was employed in this Chapter. The
present PFEM model, which combines the conventional finite element analysis and the
particle-based technique, can simulate the dynamic evolution of landslides, mainly focusing
on the shallow deformation of a slope.

Based on typical examples in slope stability analysis (Griffiths and Lane, 1999), we
observe that under critical conditions the failure mass deposits with slight modification of the
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original profile. This result indicates that there should be a further weakening process that is
effective in controlling landslide propagation. Further investigations show that the reduction
of internal friction angle significantly contributes to the mobility of landslides.

Applying the PFEM model to the 2013 Cà Mengoni landslide, that is a typical mass-
movement event in northern Appennines, Italy, and was controlled by the homogeneous
deformation of weak rocks, we found that the multi-slip surface mechanism can be accounted
for by our model. Indeed, the numerical results show that the slip-surface obtained by the
dynamic analysis is different from the one obtained by static analysis, since the plastic
strain zones further develops during the movement of the failure mass, with a redistribution
of stresses. Moreover, the model can provide a deposit profile and slip surfaces that well
approximate the observed data if suitable material parameters are specified. The dynamic
analysis, however, is not able to reproduce the observed duration of the process, which
numerically occurs in the order of tens of seconds rather than in several hours. We have
shown that the overall landslide duration can be modified by assuming simple weakening
laws for the material parameters and the final landslide picture is more sensitive to the final
values taken by the material parameters than to the weakening time interval. In this study,
we have considered a maximum weakening time of about 4280 s instead of the observed
time that was about two-day long (Berti et al., 2017), because of running time limitations.
Our results show that more physically-based weakening models should be built, especially
considering the effects of rainfalls on material properties, and also that, technically, the use of
larger time step to reduce the computational time without affecting the physical significance
of the results should be further studied.



Chapter 6

Large deformation analysis of soil slopes
subjected to seismic loading

The efforts of modelling the effects of seismic loading on slopes start from the early works
of limit-equilibrium methods (Terzaghi, 1950), in which seismic forces are represented as
permanent body force acting on the landslides. The FOS can be computed by the ratio
between the resistance force and the driving force terms. Soon, the method has been widely
known as the pseudostatic analysis. This simple method has been used as one of the main
techniques for the stability analysis of slopes in engineering during the last several decades.
The choice of the coefficient is quite important for the pseudostatic analysis, and there
is not a suitable physically-based criterion for choosing the coefficient. Another popular
simple approach is the permanent-displacement analysis introduced by Newmark (1965).
The permanent-displacement analysis is used to assess the deformation of slopes during the
earthquake. The model depicts a sliding rigid block exerted by seismic forces, moving over a
basal topography. Notwithstanding its simplicity in computing the permanent displacement,
the model can fairly predict the deformation if slope geometry, soil properties, and earthquake
motions are reasonably predefined, according to laboratory model tests and back-analysis of
real cases (Goodman and Seed, 1966; Wartman et al., 2005; Wilson and Keefer, 1983).

In these two methods, the relationship between the stress and deformation is not well
expressed. Therefore, mathematical models including the constitutive model relationship
have been applied to the deformation of slopes solved by FDM, FEM, DEM, etc. (Jibson,
2011). Numerous efforts have been devoted to numerical analysis of seismic slopes by
means of the mentioned numerical techniques. In this section, numerical investigations are
performed based on the behaviour of seismic slopes involving large deformations based on
the particle finite element model. It is concluded in Chapter 5 that the weakening process
should be further studied during the post-failure of landslides. The capable numerical model
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should describe the couple-effects of seismic shaking and material weakening. With this
objective, a strain-softening model and the term of seismic forces are included into the code
to investigate the behaviour of seismic slopes.

6.1 Literature reviews

The direct action on slopes by earthquakes is the stresses caused by seismic ground motion.
It has been acknowledged that the dynamic response of slopes to seismic motion is controlled
by factors including the excitation signal (that is the seismic wave itself), local topography,
material property and discontinuities that can amplify and de-amplify signals. Step-like
topographies significantly influence the dynamic response of slopes according to the early
study in 1960s by Idriss and Seed (1967).A long-term (four year) monitoring system of
a landslide-prone area in Italy showed that the amplification factor of shaking energy is
about 2-3, apparently related to the local topography effects. The results also suggested
that the directional redistribution of shaking energy is controlled by the combination of
topographic and geological factors acting in similar directions (Del Gaudio and Wasowski,
2007). By means of large-scale shaking table tests, the response and amplification behaviour
was also studied on a prototype slope (Lin and Wang, 2006). It was found that the dynamic
response of the slope model remained linear when the loading amplitude is lower than 0.4
g and nonlinear responses were observed when acted by higher amplitude. It was also
found that the failure surface of the slope is fairly shallow under such excitation. This
failure mechanism is similar to the observations in some earthquake-induced landslide events.
Due to the fact that observational data are difficult to obtain and that large-scale physical
model test are expensive, numerical analyses have also been conducted to explore the role of
different effects on slope dynamic responses. The study of seismic wave amplification also
belongs to the field of seismology. Analytical solutions of the scattering of seismic waves
in simple local surface topography can be found in Trifunac (1972) and Wong (1982). The
use of numerical approaches is first validated against these analytical solutions. Various
numerical approaches including FDM, FEM, boundary element-based methods (BEM) have
been applied to computational seismology to quantify the site response. In contrast to
the pure seismology analyses, the proper constitutive relationships that can address failure
processes should be implemented into the stress-deformation analysis of seismic slopes. The
failure of earthquake-induced landslides is controlled by the evolution of the behaviour of
geomaterial during the seismic excitation. The adopted constitutive model should be able to
describe the yield process of slip surface during the pre-failure and post-failure processes.
The entire simulation in Chapter 5 shows that the weakening process of material can be
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regarded as a significant factor contributing to the failure of landslides. Also, field surveys
of historical landslide events suggest that the peak and residual shear strength should be
properly incorporated into mathematical models addressing the mobilized strength.

A review of the residual shear strength in first-time slope failures in real cases is provided
by Mesri and Shahien (2003). The paper reanalyses 99 historical events of slope failures
and it is found that the slip surface of many first-time slope failures is at residual condition,
which indicates that the weakening process exists during the stage transiting from initiation to
deposition. After the first-time global slope failure, the material along the slip surface might
be fully softened or at residual condition. The reduction of material from peak strength to
residual strength usually is represented by the function of plasticity index. The interpretation
of this strength drop can be attributed to the random arrangement of particles along the
yield surface. Due to the complex dynamic behaviours of soils in various conditions and the
difficulties in obtaining in-site experimental data, the constitutive models that can describe
this strain-softening behaviour of soils are implemented with emphasis on the qualitative
analysis of slope deformations.

It is known that this drop of material from peak strength to residual strength can cause the
progressive failure of landslides, and a landslide occurred at Senise (Southern Italy), 1986
was analysed by Troncone (2005) to address the role of strain-softening behaviour. The finite
element analysis associated with an elasto-viscoplastic Mohr-Coulomb model was adopted
to simulate the material behaviour by reducing the strength with the accumulated deviatoric
plastic strains. Based on the numerical analyses, the landslide evolution was controlled
by the strain-softening behaviour of soils after the triggering by excavation activities. The
variation of shear strength, i.e. cohesion and internal friction angle, follows the bilinear form
proposed by Potts et al. (1990).However, it has to be pointed out that the large deformation
process of the landslide could not be reproduced due to the limitation of the traditional
FEM analysis. Naturally, the large deformation analysis of soils involving strain-softening
behaviours can be conducted by the aforementioned advanced numerical techniques using
proper strain-softening models.

A large deformation finite-element modelling of progressive failure of sensitive clay
slopes was carried out by Dey et al. (2015), where the coupled Eulerian-Lagrangian (CEL)
approach is performed using Abaqus software. After the erosion of a block located at the
toe of the conceptual slope model, the soil mass moves with the shear strength degradation
following an exponential function. The evolution of shear band inside landslide body was
clearly described by the approach. Further, the Material Point Method (MPM) analysis of the
large deformation of a similar conceptual slope model triggered by excavation was performed
by Wang et al. (2016). Later, a detailed investigation of the role of clay sensitivity in the
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evolution of progressive and retrogressive failure of landslides was conducted through PFEM
by Zhang et al. (2017).

With the successes of the stain-softening models in describing the progressive failure
of landslides, the effects of seismic shaking have also been incorporated into the numerical
models to analyse the large deformation analysis of soil slopes. A very recent work is
presented by Islam et al. (2018) with emphasis on the couple effect of strain-softening and
seismic excitation. The research was carried out to investigate the large deformation of
landslides in sensitive clays based on four conceptual models using the software Abaqus.
The soil was modelled in a coupled Eulerian and Lagrangian procedure, where a Eulerian
step follows the calculation of the traditional Lagrangian step. The information obtained
from Lagrangian analysis has to be mapped back to the fixed Eulerian mesh, and the
Eulerian analysis naturally avoids the mesh distortion. Seismic excitation was implemented
into the simulations as horizontal acceleration time history curves along the bottom. The
degradation of soil strength was expressed through an exponential function of accumulated
plastic shear displacement. Von Mises yield criterion was adopted with two segments of
cohesion weakening, where remoulded undrained shear strength and large-displacement
undrained shear strength are reduced according to the magnitude of the accumulated plastic
displacement. The performed simulations successfully captured some types of seismic slope
failure (e.g. spread, flowslide or monolithic) as observed in field.

6.2 The aim of this work

It has been numerically investigated by the aforementioned works that the strain-softening
process of material significant contribute to the evolution of landslides via different numerical
techniques. Coupled with the long-term seismic excitation (more than 18s), the large
deformation of landslides have been performed by Islam et al. (2018). However, there are
still several aspects to analyse for a complete study of large deformations of seismic slopes.
Indeed, it is still challenging to qualitatively describe the process by means of which the
seismically induced stress triggers the failure of slopes through numerical analysis. One of the
difficulties for the implementation of the seismic wave propagation is the large computational
cost. The accurate description of landslides involving large deformation requires a high
resolution of the numerical scheme (e.g. high-quality mesh), which is usually expensive for
seismic wave propagation. Due to this limitation, the designed conceptual landslide model for
large deformation analyses is generally of depth no more than 100 m. The incident seismic
wave field will be very hard to describe due to the existence of free topography and imperfect
absorbing property of dynamic boundary conditions. Therefore, a natural alternative choice
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is to introduce the seismic wave as a body force term following the time history of the input
seismic excitation. With this technique, in the following simulations, the role of vertical
seismic excitation is investigated numerically as well as the role of the magnitude of the
seismic excitation.

It has been reported by Iverson (1997) that the cohesion of geomaterial after failure is
usually negligible and the resistance forces mainly depend on the frictional angle and the pore
water pressure. The sensitive analysis of strength parameter in Chapter 5 also shows that the
friction effects significantly contribute to the run-out distance of landslides. The importance
of friction-weakening law was early studied in the field of dynamic rupture of faults, where
the relationships between slip rate and other state variables was explored (Dieterich, 1979).
Therefore, the friction coefficient on the sliding surface can be updated with those state
variables. Based on the observations and numerical reconstructions of catastrophic landslide
events, it was found that the postulated friction coefficient can vary from µ = 0.7−0.8 for
small volumes at low velocities to µ = 0.1 for large volumes at high speed. Correspondingly,
a velocity-weakening friction law was proposed by Lucas et al. (2014) to account for these
effects.. However, it has to be mentioned that the friction- weakening law is currently
implemented with emphasis on the post-failure stage of landslides (Borykov et al., 2019). So,
another goal of this section is to numerically investigate the role of the friction-weakening
process in landslide dynamics via the PFEM model.

The PFEM model presented in Chapter 3 is adopted here with the modified strain-
softening model. To account for the introduced seismic forces, the gravity acceleration should
be modified. When the horizontal acceleration is considered, the horizontal acceleration is
set equal to the input excitation signals. When the vertical and horizontal seismic motion
are both included, the input vertical motion should also be added to the gravity acceleration
term. It can be implemented by modifying the body force term in Eq. (3.12). To describe
the strain-softening behaviour, the similar degradation model reducing material strength by
plastic index is included. In this section, the plastic index is chosen as the deviatoric plastic
strain.

6.3 Clay model configuration

Similar to the Slope-I model in Islam et al. (2018), a three-layer model with flat crest is
selected in our simulations. The geometry is illustrated in Fig. 6.1 with discretized elements.
The soil below the blue dashed line is set as the rigid base and the soil between blue and
red dashed lines is stiff clay. The material strength of the stiff clay is constant during the
simulation. The soil above the blue dashed line is sensitive clay, where the cohesion varies
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with the plastic index, i.e. deviatoric plastic strain. The input seismic motion is chosen
from two records: 1940 El Centro and 1985 Nahanni earthquakes, which can be found in
COSMOS virtual data centre (Archuleta et al., 2006). A simple linear reduction law for
material strength is adopted in our simulations. For the clay slope model here, the internal
friction angle is set to zero. For stiff clay, the cohesion at the crest is set as c0 = 25kPa, and
the cohesion increases along the depth d by the linear relationship c = c0 +2d. The depth d
is computed from the crest of the slope model. For stiff clay, the cohesion is not changed
during the simulation, while for sensitive clay, it is reduced by the linear form shown in Fig.
6.3. cr1 = c0/3,k1 = 5e−4 and cr2 = c0/16,k2 = 1e−2.

Fig. 6.1 Model of clay slope

Preliminary study on mesh sensitivity has been carried out to ensure the accuracy of the
present numerical simulations. It has been investigated by Zhang et al. (2017), the mesh plays
a role in the description of shear bands, while no significant effects are found on landslide
dynamics and run-out distances by means of our model. To capture the landslide process
including the evolution of shear bands in high resolution, i.e., dense mesh, is required, as
illustrated in Fig. 6.1, where 33639 elements are used. Lateral and bottom boundaries are set
as fixed.
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Fig. 6.2 Input signals

Fig. 6.3 Material-softening law
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6.3.1 Onset and failure Mechanism

The Nahanni seismic signal shown in Fig. 6.2(b) multiplied by a scale factor that equals to
2 is implemented into the simulation. In this part, we restrict the research on the onset and
failure mechanism of the landslides. It has been studied that the strain-weakening behaviour
can induce the progressive failure of landslides with large run-out distance(e.g., Zhang et al.,
2017). The relationships between seismic motion/material strength with run-out distance
will not be fully studied, and we mainly investigate the onset-failure process via the PFEM
model. The excitation lasts 7 seconds, as illustrated in Fig. 6.4. The external horizontal body
force term is included to represent the horizontal seismic motion.

Fig. 6.4 Input seismic signal with 7s lasting excitation.

To study the evolution of the process from onset to motion, we first study the evolution of
displacement of the sliding body. The displacement of two directions at different moments
are extracted to interpret the landslide dynamics. x direction displacement of the landslide
at 2 s, 4 s, 6 s, 8 s,10 s, 12 s, 14 s, and 16 s can be found in Fig. 6.5 and Fig. 6.6, where
the initiation and propagation are well captured. horizontal body force term is included to
represent the horizontal seismic motion.
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Fig. 6.5 Horizontal displacement of the landslide at four instants: 2 s, 4 s, 6 s, 8 s. (Unit: m)

According to Fig. 6.5, it is found that the failure of the landslide can be attributed to the
yield of the toe of the slope. For t = 2s (the first plot in Fig. 6.5), the displacement is at a
negligible scale (10−4m). In the second plot (t = 4s), it is clear that the soil at the toe starts
yielding and there is a distinct line that indicates the opposite motion of the surrounding soil.
The intensive strong seismic motion (see Fig. 6.4) starting from about t = 3s contributes to
this failure process. Then, it becomes clearer that the soil at the toe is exerted by the opposite
motions of its back soil and magnitude of displacement increases by one magnitude (10−3m).
Later, it can be seen in the fourth plot that the slip surface is generated and an irregular
sliding body is extruded to the ground with a large horizontal displacement exceeding 1 m.
Also, the simulation depicts that the landslide moves with several different blocks, which
can be recognized from blocks with different colours (four blocks in the fourth plot). The
displacement of the thin yellow block behind the green one is at low values and this block
will move after the movement of the front of the landslide.
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Fig. 6.6 Horizontal displacement of the landslide at four instants: 10 s, 12 s, 14 s, 16 s. (Unit:
m)

In the following time instants, the extreme large deformation of the landslide is involved.
For t = 10s, the recognized sliding body illustrated by t = 8s in Fig. 6.5 has a displacement
of 1 m. The blocks interact together and induce the surface deformation on the sliding body.
With high velocities, the blocks rapidly with large displacement as shown in the moments
t = 12s and t = 14s. For t = 16s, it is found that a circle slip surface on the crest is generated
by the movements of the landslide.
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Fig. 6.7 Vertical displacement of the landslide at four instants: 2 s, 4 s, 6 s, 8 s. (Unit: m)

Fig. 6.8 Vertical displacement of the landslide at four instants: 10 s, 12 s, 14 s, 16 s. (Unit: m)
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The landslide dynamics is depicted in Fig. 6.7 and Fig. 6.8, where the front and the
rear of the landslide experiences a upward and a downward motion respectively. It is clear
in t = 4s and t = 6s that, the lasting of seismic motion significantly contributes to uplift of
the toe and then induces the failure. The landslide dynamics can be also represented by the
evolution of velocity information as shown in Fig. 6.9 and Fig. 6.10. It can be seen in Fig.
6.9 that the deformation of the slope mainly comes from the subsidence on the crest until the
generation of the slip surface (see Fig. 6.12). The velocity of front the sliding body at t = 8s
is 2 m/s and then increases to 10 m/s at t = 14s (see Fig. 6.10). The induced retrogressive
failure has been well captured in Fig. 6.10 by the velocity discontinuities between the front
and the rear of the sliding body. The evolution of the plastic zone (shear band) can be
observed by the Fig. 6.11 to Fig. 6.14 at four instants. The complete slip surface is observed
at t = 8s after the yield of soils at the toe of the slope. Later, the plastic propagates inside the
sliding body with a following failure shown in Fig. 6.13. As mentioned that we focus on the
main dynamics of the landslide from failure to motion, so the full simulation of the whole
process is not presented here for simplicity.

Fig. 6.9 Velocity magnitude of the landslide at four instants: 2 s, 4 s, 6 s, 8 s. (Unit: m/s)
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Fig. 6.10 Velocity magnitude of the landslide at four instants: 10 s, 12 s, 14 s, 16 s. (Unit:
m/s)

Fig. 6.11 Equivalent plastic strain at t = 6s.
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Fig. 6.12 Equivalent plastic strain at t = 8s.

Fig. 6.13 Equivalent plastic strain at t = 10s.

Fig. 6.14 Equivalent plastic strain at t = 12s.

Overall, the dynamics of such a landslide of clay subjected to seismic loading can be
summarized as: (1) The failure of soils at the toe; (2) The propagation of plastic strain that
generate the slip surface; (3) The included retrogressive failure induced by the landslide
motion. It is obvious that the weakening of the soils significantly contributes the propagation
of shear bands.
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6.3.2 Influence of weakening parameter

The residual strength is changed as cr2 = c0/10 in this part and the seismic signal shown in
Fig. 6.4 is changed with a factor 0.75 and 1.25 respectively. The corresponding slope models
are denoted as Slope-I and Slope-II respectively. The influence of weakening parameters on
the failure mechanism is studied by the comparison between slip surfaces. The velocity of
the landslide at five instants from t = 2s to t = 10s with interval of 2 s are displayed in Fig.
6.15 and Fig. 6.16 respectively.

Fig. 6.15 Velocity profiles of Slope-I at five moments from t = 2s to t = 10s with interval of
2 s, Unit: m/s.

In contrast to the irregular slip surface shown in section 6.4.1, clear circle slip surfaces
are observed by our approach under two different situations. This can be attributed to the
change of cr2, and the failure process is influenced by the weakening parameters. It has
been investigated by Yerro et al. (2016) that the residual strength of material controls the
post-failure behaviour of the landslide. Instead, it is found by the present model that the
residual strength also plays a role in the generation of the slip surface during the seismic
excitation.

According to the comparison between Fig. 6.15 and Fig. 6.16, the slope failure occurs
earlier when exerted by a larger excitation. As shown in Fig. 6.15, the recognized sliding
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body of Slope-I is larger than the one of Slope-II in Fig. 6.16. The seismic motion lasts
7 s, and the slip surface of Slope-II has been already generated at t = 4s. After this time
the intensive bilateral excitation restricts the propagation of the failure. For the case of
Slope-I, the slip surface generates after the intensive seismic excitation phase and the failure
propagates with less influence from the seismic motion. So far, the seismic wave propagation
between the sliding body and the stable body cannot be accurately described by the current
techniques due to the variation of geometry and material. The seismic motion is implemented
in a simple manner and it can be further studied with more advanced ways.

Fig. 6.16 Velocity profiles of Slope-II at five moments from t = 2s to t = 10s with interval
of 2 s, Unit: m/s.

6.3.3 Vertical loading

The characteristics of lateral seismic motion have been extensively studied in the seismic
slope stability, and the importance of vertical motion in earth structures has been noticed after
the devastating Kanto Earthquake in Japan (Ling et al., 1997). For practical seismic design
of structures, seismic coefficient should be determined by the maximum peak acceleration
of the considered earthquake. In the limit equilibrium method, the influences of seismic
motion are introduced by two acceleration coefficients. According to earthquake records,
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peak value of vertical acceleration approximates to the range of 1/2 to 1/3 of peak horizontal
acceleration (Wiegel, 1970). Therefore, two body terms including the horizontal and the
vertical loading are implemented into the model to trigger the failure of the clay slope.

Fig. 6.17 Velocity profiles of Slope-II at t = 4s excited by (a) horizontal and (b) two-direction
loading, unit: m/s.

Fig. 6.18 Velocity profiles of Slope-II at t = 5s excited by (a) horizontal and (b) two-direction
loading, unit: m/s.

As displayed by Fig. 6.17 and Fig. 6.18 that the inclusion of vertical loading has an
influence on the onset mechanism of the landslide. With the vertical loading, the slope failure
happens later than the one only excited by horizontal loading due to two reasons. One is that
the directional change of the vertical loading can reduce the gravity effects, since upward
and downward accelerations are involved. The other reason can be seen from the comparison
between slip surfaces, i.e. (a) in Fig. 6.17 and (b) in Fig. 6.18. The slip surface induced by
seismic motion involving vertical loading is deeper than the one triggered by pure horizontal
loading. It is obvious that the generation of deeper failure experiences larger impeding forces
coming from the base. It should be mentioned that the onset velocity of the landslide shown



92 Large deformation analysis of soil slopes subjected to seismic loading

in Fig. 6.18(b) is larger than that in Fig. 6.17(a). Also, the slip surface in Fig. 6.18(b) is
more irregular compared with the slip surface obtained in Fig. 6.17(a).

Fig. 6.19 Equivalent plastic strain evolution of Slope-II excited by two-direction loading
from t = 4s to t = 6.5s with interval of ∆t = 0.5s.

The onset mechanism tracked by the evolution of equivalent plastic strain is presented
in Fig. 6.19. The toe of the slope first yields and leads to generation of slip surfaces where
three blocks are involved (see Fig. 6.19(b)). After that, the shear band propagates inside the
sliding body and the onset mechanism is quite similar in all simulations. In addition to the
retrogressive failure on the crest, a clear slip surface under the front of the landslide is also
observed during the motion of the landslide (see Fig. 6.20 (c)). It should be mentioned that
the seismic excitation ends after t = 7s (see Fig. 6.4). The velocity profiles of the slope after
slope failure are presented in Fig. 6.21. The alphabetical order from (a) to (e) indicates the
results obtained from the model only excited by horizontal motion. The Roman numeral
represents the model considering vertical loading. It is clear that the magnitude of the sliding
velocity is quite close, and the deeper sliding zone contributes to the generation of new slip
surfaces. As can be seen, the retrogressive failure shown in (b-c) is smaller than the one in
(III-IV). The deeper failure disturbs the situation of the sensitive clay and generates a new
slip surface under the front of the landslide.



6.3 Clay model configuration 93

Fig. 6.20 Equivalent plastic strain evolution of Slope-II excited by two-direction loading at
different instants. Slip surfaces are highlighted by adopting a fixed colorbar.

Fig. 6.21 Comparison between velocity profile of Slope-II after the onset of landslide.
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6.4 Frictional effects

In this part, the resistance of internal friction angle is also included into the model. The non-
associated Mohr-Coulomb model is used and the dilation angle is set to zero. The concept
landslide model shown in Fig. 6.1 is still used here with the internal friction angle equal to
10◦. Correspondingly, the reduction parameters for the soil are changed as cr1 = 2.5 and
Cr2 = 5, since the upper layer is not high sensitive clay when considering internal frictional
effects. The consideration of amplitude is included by using two amplification factor of the
seismic signal shown in Fig. 6.2 (b). The excitation signals treated as horizontal acceleration
are displayed at the bottom of Fig 6.22. The velocity profiles of the landslide at five instants
are presented in Fig 6.22 corresponding to the applied loading curve below each of them.
With a larger amplitude, the slip surface generates earlier (see (III) t = 3.5s) than the one in
Fig 6.22(e) (t = 4.5s). The generated slip surfaces are similar to each other and the onset
velocity of sliding body is about 0.5m/s, mainly controlled by the configuration of material
(compared with the velocity in clay soils).

Fig. 6.22 Velocity profiles of the landslide under different excitation amplitude at chosen
instants.

The landslide dynamics after-failure can also be captured via the evolution of velocity.
The dynamics of the landslide under the two amplitude signals is similar and only the one
with higher amplitude is presented in Fig. 6.23. The sliding body moves with a maximum
velocity near 4 m/s at t = 7.5s (see Fig 6.23 (d)) and gradually decelerates to maximum
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velocity of 1 m/s. It is clear that the front of the landslide approximates to still at t = 15s
even though the rear is still moving. The landslide moves mainly based on the initial failure
generated at t = 3.5s (see Fig 6.22 (III)) in the form of a shallow movement. Therefore
we can see that the inclusion of the internal friction angle significantly affects the whole
landslide process since it plays a crucial role in resistance forces.

Fig. 6.23 Velocity evolution of the landslide with higher amplitude.





Chapter 7

Conclusions and Outlook

The main work of this thesis has been devoted to the development of numerical tools applied
to the entire simulation of landslides including the modelling of pre- and post-failure analysis
of landslides. To this end, the optimization-based Particle Finite Element Method (PFEM)
has been chosen as the tool to investigate the dynamics of landslides. Additionally, an FDM
code based on depth-averaged equations (DAEs) has been developed to allow the comparison
between the PFEM model and the DAEs applied to the run-out process of landslides. The
present PFEM model can serve for the modelling of landslides and further can be developed
to include more features. The contributions of the present work are summarized as follows:

• Numerical details of the DAEs code have been presented and the developed code can
be applied to the family of DAEs. Based on a model proposed by Xia and Liang
(2018), the DAEs code has successfully captured the deposit profile of the 1783 Scilla
landslide, Italy. Two different landslide dynamics have been studied by adopting two
submarine drag laws.

• Numerical implementation of the optimization-based PFEM has been fully presented.
It is a 2D PFEM code and it can be further incorporated into other geoscientific models
to meet different requirements.

• The PFEM code has been applied to the modelling of landslides including the stability
analysis and the run-out analysis parts. The performances of the DAEs code and the
PFEM code have been compared for the analysis of landslide propagation problems.

• The PFEM code has been used to investigate the evolution of the 2013 Cà Mengoni
landslide. It has been found that the weakening process dominates the dynamics of
landslide from initiation to deposition.
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• Preliminary studies have been conducted to investigate the performance of a strain-
softening model combined with the inertial forces in modelling the dynamics of
landslides subjected to seismic loading.

Based on the developed models, the landslide dynamics has been studied through experi-
mental tests, real cases and simplified conceptual models. According to the investigations of
the 1783 Scilla landslide, Italy, it has been found that the landslide dynamics captured by the
depth-averaged model incorporating a linear drag relationship is similar to the one described
by the quadratic-drag block model (Zaniboni et al., 2016), even though the deposit profile
can be successfully captured by the model adopting two drag relationships. A historical
tsunami event was generated by the 1783 Scilla landslide, further comparisons can be carried
out based on a tsunami model using different landslide dynamics. A recent work has been
published by Zaniboni et al. (2019), where the block model that communicates the landslide
dynamics to tsunami generation model was applied to study the landslide-tsunami effects on
the Calabrian and Sicilian coasts. Similar efforts can be done to compare the tsunami wave
generated by a more solid-like landslide (i.e. block model) and a more fluid-like landslide
(i.e. DAEs).

The DAEs and the PFEM model are compared through the modelling of landslide
propagation problems: the collapse of aluminum bars (laboratory test) and the run-out of the
2008 Tangjiashan landslide, China. The simulations provide similar deposit profiles for the
‘collapse’ problems, while the velocity of the flow described by the DAEs is faster than the
one depicted by PFEM model. This can be attributed to the adopted simple rheology in the
present model, and further studies should be conducted by using more advanced models.

Thanks to its capability of modelling large deformation, the PFEM model has been
applied to study the entire landslide process for a conceptual case and for a real case. It has
been found that slopes experience a relatively small displacement without the weakening
process. Therefore, one can conclude that the weakening process contributes significantly
to the high mobility of some landslides. A back-analysis has been conducted via numerical
investigations on the 2013 Cà Mengoni landslide, Italy. The landslide has been simulated as a
homogeneous material according to previous geological surveys and numerical studies (Berti
et al., 2017). By means of a simple time-dependent linear weakening law, the slip surface
and run-out distance have been captured by the PFEM model. From initiation to deposition,
the slope body experienced shallow variations on the surface, and this can be attributed to
the response of slope geometry to material strength. However, the present simulations cannot
accurately describe the velocity information of the landslide due to the lack of information
about the time-dependent degradation of the material. In the future, a proper creeping law
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should be included into the model to simulate a real case landslide, for which observation
data are available.

Further, the dynamics of landslide subjected to seismic loading has been studied on a
conceptual model. The model was presented by (Islam et al., 2018) to simplify the widely
found clay slopes in Canada. To simplify the complexity of the seismic analysis of the
landslide, the additional stresses caused by seismic waves have been simplified as inertial
force terms following the acceleration records in the model. Also, a strain-weakening model
has been included to describe the degradation of clay from peak strength to residual strength.
According to the numerical simulations, it has been found that the landslide in clay is triggered
after the generation of several blocks. First, the toe of the slope yields and several blocks
form during the seismic excitation. After the triggering, the blocks interact with each other
while moving and one can observe a progressive failure induced by the strain-weakening
process. The strain-weakening model depends on the accumulated plastic strain and it has
been found that the choice of the weakening parameters influences the slip surface of the clay
slope. A further study has been done by considering the influence of vertical loading on the
onset mechanism of the landslide. The inclusion of vertical loading increases and reduces
the gravity effects and thus affects the initiation moment of the landslide. With the vertical
loading, the generated slip surface is deeper than the one only excited by horizontal loading in
the studied case. Considering the effects of friction, it has been found that the induced shallow
slope failure moves along the ground, in contrast to the observed deep failure of the clay slope.
The present simulations successfully capture some types of landslide movements, though
this study is still preliminary. More systematic simulations will be carried out to separate
the influence of seismic loading and strain-weakening behaviour on the large deformation
analysis of seismic slopes.





Appendix A

Short guide of the developed codes

All simulations have been conducted on the PC : Thinkpad T470p with the processor Intel(R)
Core(TM) i7-7820HQ CPU @ 2.90GHz and 16 GB RAM.
Depth-averaged codes

• Tool: MATLAB (for computation and Pre/Post Processing).

• Brief description: the code can be applied to the general depth-averaged models, where
the new state of conservative variables are updated by the governing equations of
conservative variables, flux and source terms. The flux and source terms are further
updated according to the these conservative variables. Flux limiter and adaptive time
step are used to ensure numerical stability.

• Consuming time (Scilla case in Chapter 2) for: Linear drag (150s simulation) took
1397.4 seconds and Quadratic drag (300s simulation) took 963.8 seconds. Physical
variables were stored each 5 simulated seconds for both linear and quadratic cases.

FEM/PFEM code

• Mesh Generator: DistMesh (Persson and Strang, 2004) and Triangle (Shewchuk,
1996).

• Pre-processing & construction of optimization problem: MATLAB.

• Optimization solver: MOSEK (MOSEK, 2019) with academic license.

• Post-processing: MATLAB & Paraview (Ahrens et al., 2005).

• Brief description: The optimization problem is constructed as a structure ’prob ’ that
can be identified by MOSEK, and the solutions are contained in ’res’ returned by the
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MOSEK. Physical variables are extracted from ’res’, and further being stored, updated
and written in the format of ’vtk’ that can be visualized by Paraview. The PFEM
technique is written as MATLAB script and it should be called when large-deformation
analysis is involved.

• Consuming time (the 2013 Cà Mengoni landslide in Chapter 5): 225.4 seconds for each
step, including all the costs of Pre/Post Processing, computation and PFEM technique.
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