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 In many countries worldwide, the population is aging rapidly and the proportion of 

people aged 65 and over is continuously increasing, especially in Europe (Eurostat; 

https://ec.europa.eu/eurostat/web/products-datasets/-/tps00028). This demographic shift 

towards higher proportions of older adults is associated with societal and economic 

consequences (Rae et al. 2010). Despite the gains in life expectancy, the period of life spent in 

good health (i.e. healthspan) is not keeping pace, with high prevalence levels of chronic 

diseases, disabilities and multimorbidity. Aging is the most important risk factor for many non-

communicable and chronic diseases, such as cancer, diabetes, cardiovascular diseases or 

neurodegenerative disorders. According to recent conceptualizations, gathered under the term 

Geroscience, aging and age-related diseases share common mechanisms (Kennedy et al. 2014; 

Franceschi et al. 2018). A small number of hallmarks or pillars, which are basic molecular and 

cellular processes, underlies the biology of aging in a highly interconnected way (Kennedy et 

al. 2014; López-Otín et al. 2013) (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The seven pillars of aging. Adapted from Kennedy et al. 2014. 

 

Age-related diseases rely on the same pillars and can be considered as an acceleration 

of the aging processes, i.e. as deviations from the trajectories of healthy aging. These deviations 

lead to a discrepancy between the chronological age of an individual and his/her effective 

biological age. Within the framework of Geroscience, there is growing interest in biomarkers 

of biological age, which could be able to capture this discrepancy. There is currently no 

consensus on how to best measure on individual’s biological age and until now a valid and 

unique aging biomarker has not yet been identified. The American Federation for Aging 
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Research has proposed some criteria for the development of aging biomarkers: it must predict 

the rate of aging; it must monitor a basic process underlying the aging process; it must be able 

to be tested repeatedly without harming the person; and it must be something that works both 

in humans and in laboratory animals (Butler et al. 2004). In the last decade, there has been 

tremendous interest in epigenetic biomarkers of aging. As their name imply, these biomarkers 

rely on epigenetics, which are one of the seven pillars of the aging process.  

 Epigenetics refers to heritable and reversible changes in chromatin structure and gene 

function that are not related to changes in the DNA sequence itself. DNA methylation, which 

is one of the best studied and most mechanistically understood epigenetic mechanism, involves 

the addition of a methyl group to a cytosine in a cytosine-guanine dinucleotide (named CpG 

site). DNA methylation is affected by both genetic and environmental factors and is subject to 

profound rearrangements during aging (Jung & Pfeifer 2015). Four main different types of age-

related changes coexist: global hypomethylation (Bollati et al. 2009; Luo et al. 2014), 

differential methylation of specific genomic loci (Bell et al. 2012; Bell et al. 2016; Rakyan et 

al. 2010; Christensen et al. 2009), increase in inter-individual divergence between patterns of 

DNA methylation (Fraga et al. 2005; Maegawa et al. 2017; Tan et al. 2016; Mendelsohn & 

Larrick 2017) and increase in the rate of epimutations (Gentilini et al. 2015). DNA methylation 

role in aging process, its implication in cellular senescence and in the development of various 

diseases has been extensively investigated (Calvanese et al. 2009; Pal & Tyler 2016).  

 During the last years, DNA methylation-based biomarkers, designated under the term 

“epigenetic clocks”, have been put forward as accurate aging biomarkers. Epigenetic clocks are 

algorithms based on the combination of DNA methylation levels at some specific CpG sites, 

that can predict the age of a DNA source. They are nowadays considered as among the most 

robust predictors of chronological age in humans (Horvath & Raj 2018; Field et al. 2018; 

Jylhävä et al. 2017; BLUEPRINT consortium 2016). Two of these clocks, Horvath’s (based on 

353 CpG sites) and Hannum’s (based on 71 CpG sites) calculators, developed in large samples 

cohorts covering the entire adult life span, show high correlations with age and small deviations 

from chronological age (Horvath 2013; Hannum et al. 2013). Besides these two models, 

researchers have also developed several other age-prediction models (Levine et al. 2018; Lu, 

Quach, et al. 2019; Horvath, Oshima, et al. 2018; Bocklandt et al. 2011; Weidner et al. 2014). 

These clocks are mostly derived by linear regression algorithms that train against the 

chronological age of the sample and ultimately select a set of CpG sites. The weights associated 

with each CpG site are determined and the product of the methylation level at each site with 
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the learned coefficient is summed, leading to an estimated epigenetic age, also called DNAm 

age (Figure 2).   

 

Figure 2: DNA methylation clock: how it works. Adapted from Field et al. 2018.  
 

Epigenetic clocks are not only able to predict chronological age with high accuracy, but 

evidence also suggests that they can be informative of the biological age of an individual. Thus, 

a positive or negative deviation of the biological age to chronological age according to these 

models reflects the presence of an accelerated or decelerated aging phenomenon, respectively. 

Horvath’s and Hannum’s clocks are able to predict all-cause mortality independently of classic 

risk factors (Marioni, Shah, McRae, Chen, et al. 2015; Chen et al. 2016; Dugué et al. 2018; 

Zheng et al. 2016; Christiansen et al. 2016; Perna et al. 2016; Fransquet et al. 2019; Marioni et 

al. 2016) and they also can be informative on other age-related outcomes such as frailty or 

cognitive and physical functioning (Ryan et al. 2019a; Simpkin et al. 2017; Sillanpää et al. 

2018; Gale et al. 2018; Breitling et al. 2016; Gale et al. 2018; Marioni, Shah, McRae, Ritchie, 

et al. 2015). A newly developed epigenetic biomarker of aging, known as PhenoAge, 

outperformed the previous models for mortality prediction and is so far the best predictor of 

age-related decline (Levine et al. 2018). This model, based on 513 CpG sites, was not calibrated 

on chronological age but on “phenotypic age”, derived from a set of different bio-clinical 

parameters (such as albumin, creatinine or C-reactive protein levels), and was better able to 

predict mortality (Levine et al. 2018). Apart from mortality and physical functioning, many 

other phenotypes and age-related conditions have been linked to epigenetic age acceleration, in 

blood or in specific tissues (Table 1). It was demonstrated that Horvath’s clock is able to 
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capture the age acceleration phenomenon associated with progeroid syndromes, such as Down 

syndrome (Horvath, Garagnani, et al. 2015) or Werner syndrome (Maierhofer et al. 2017). 

Importantly, the epigenetic clocks are also able to detect age-deceleration effects in models of 

healthy aging and longevity, such as centenarians and their offspring (Horvath, Pirazzini, et al. 

2015a). 
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Table 1: Phenotypes associated with the epigenetic clocks.   

Phenotypes References 

Dementia 

 
(Levine, Lu, et al. 2015) (Zhang et al. 2017) (Lu 

et al. 2017) 

 

 

Parkinson’s disease 

 

(Horvath & Ritz 2015) 

Menopause 
 
(Levine et al. 2016) 

 

 

Psychiatric disorders 
- Post-traumatic stress disorders 

- Bipolar disorders 

- Major depressive disorders 

 

(Wolf et al. 2016) (Wolf et al. 2017) (Fries et al. 

2017) (Han et al. 2018) 

Cardio-vascular events 

 
(Perna et al. 2016) (Roetker et al. 2018) (Levine 

et al. 2018) 

 

Development of cancer 

 

(Levine, Hosgood, et al. 2015) (Zheng et al. 

2016) (Perna et al. 2016) (Durso et al. 2017) 

(Ambatipudi et al. 2017) (Dugué et al. 2018) 

(Kresovich et al. 2019) 

 

Huntington disease 
 
(Horvath, Langfelder, et al. 2016) 

 

Obesity 

 
(Horvath et al. 2014) (Grant et al. 2017) 

(Nevalainen et al. 2017) (Ryan et al. 2019b) 

(Li et al. 2019) 

 

Chronic viral infections 
- HIV infection 

- CMV infection 

 
(Horvath & Levine 2015) (Kananen et al. 2015) 

(Gross et al. 2016) (Horvath, Stein, et al. 2018) 
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In view of the demographic remodeling that our societies face and its consequences, 

there is an important need to identify factors that are able to influence health in old age and to 

develop and validate interventions that could slow down or counteract the process of aging and 

its associated pathologies. Fundamental aging processes, as defined within the framework of 

Geroscience perspective, can be targeted by genetic or pharmacologic interventions, but another 

possible strategy to impact on healthspan is to intervene on lifestyle factors, such as diet or 

physical activity. Nutritional interventions seem to be one of the most promising approaches to 

promote healthy aging, and growing amount of data indicates that they can be associated with 

major health benefits (Longo et al. 2015; Dato et al. 2016; Wahl et al. 2016; Shlisky et al. 2017; 

Heiss et al. 2017; Xia et al. 2017). In order to monitor the impact of interventions aiming at 

increase healthy lifespan, accurate biological measures of age are needed. In this case, 

biomarkers could serve as surrogate endpoints, by showing that the intervention is affecting the 

underlying fundamental aging processes, before sufficient clinical events, such as age-related 

disease diagnosis or death, have accumulated (Justice et al. 2018). Biomarkers could also help 

for the early selection of patients at higher risk of accelerated aging and for the personalized 

evaluation of the effectiveness of the intervention.  

Regarding the epigenetic clocks, it is clear that they can be influenced by lifestyle factors 

and environmental exposures, such as education (Ryan et al. 2019a; Fiorito et al. 2019; Quach 

et al. 2017; Zhao et al. 2019), exposition to stress, violence or socio-economic disadvantages 

(Sumner et al. 2019; Austin et al. 2018; Jovanovic et al. 2017; Lawn et al. 2018; Fiorito et al. 

2017; Wolf et al. 2018; Zannas et al. 2015), but also exposition to pollution (Li et al. 2018; 

Curtis et al. 2019; White et al. 2019; Ward-Caviness et al. 2016), smoking (Zhao et al. 2019; 

Levine et al. 2018), and alcohol dependence (Rosen et al. 2018; Luo et al. 2019). Dietary habits 

usually associated with healthy eating, such as fish, poultry or fruit/vegetables intakes, have 

been associated with decreased age acceleration effects according to Horvath’s clock or 

Levine’s model, although the observed effects were weak (Quach et al. 2017; Levine et al. 

2018). A recently published paper examined the effects of a vitaminic supplementation on 

epigenetic age estimated with Horvath’s model (Sae-Lee et al. 2018), however, data on a 

possible rejuvenation of epigenetic age with a dedicated nutritional intervention are still scarce. 

 

The objectives of the work presented here are dual. In the first part, we evaluate the 

impact of a one-year Mediterranean-like diet intervention, delivered within the framework of 

the NU-AGE project, on epigenetic age acceleration measures calculated with Horvath’s model. 

In the second part of the work, we present the development a new epigenetic biomarker of 
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aging. This in-house developed predictor is based on a limited number of CpG sites assessed 

by the Agena EpiTYPER® system and is therefore potentially cost-effective compared to 

Horvath’s clock. We validate the new epigenetic biomarker of age in cohorts of individuals 

characterized by accelerated or decelerated aging and we use it to evaluate the impact of the 

nutritional intervention of the NU-AGE project. 
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1.1 Introduction 

Mediterranean diet, which is considered by UNESCO as a heritage of humanity, is a 

well-balanced mix of nutrients, antioxidants and anti-inflammatory molecules. This diet is 

characterized by a high intake of plant-based foods (vegetables, fruits, unrefined cereals, whole 

grain, legumes, nuts, seeds) and olive oil; a low-to-moderate intake of dairy products, fish and 

poultry; and a low intake of red meat and alcohol (Willett et al. 1995; Martucci et al. 2017). 

Mediterranean diet could represent a powerful tool for promoting healthy aging. Indeed, this 

diet has been extensively investigated in relation to several health outcomes and it has 

demonstrated favorable effects on mortality, cardiovascular risk and blood pressure, cancer, 

cognitive status, frailty, as well as on inflammation (Estruch et al. 2013; Estruch et al. 2006; 

Mitjavila et al. 2013; Ostan et al. 2015; Martínez-González et al. 2015; Kojima et al. 2018; 

Trichopoulou et al. 2003; Trichopoulou et al. 2015; Psaltopoulou et al. 2013; Singh et al. 2014). 

Some studies have suggested that Mediterranean diet prevents telomere shortening, a well-

established biomarker of age, but results are not consistent among different studies (Davinelli 

et al. 2019).  

The role of Mediterranean diet in promoting healthy aging has been recently 

investigated in the framework of the European project NU-AGE (‘‘New dietary strategies 

addressing the specific needs of elderly population for an healthy aging in Europe’’), a large 

multidisciplinary consortium with 30 partners across Europe (Santoro et al. 2014; Berendsen et 

al. 2014). The aim of NU-AGE project was to investigate how an intervention based on 

Mediterranean diet, specifically tailored according to the nutritional needs of people over 65 

years of age, can impact on age-related diseases and functional decline, possibly counteracting 

inflammaging and its outcomes (Franceschi et al. 2000). Probands were enrolled in five 

European countries (Italy, Poland, France, Netherlands and United Kingdom) and a one-year 

Mediterranean-like diet was administered to the intervention subgroup. A comprehensive 

clinical and molecular characterization of participants was performed at baseline and after the 

one-year intervention, and results achieved so far in the framework of this study have 

demonstrated a beneficial effect of the Mediterranean-like diet on global cognition and episodic 

memory (Marseglia et al. 2018), osteoporosis (Jennings et al. 2018), immune function (Maijo 

et al. 2018), on cardiovascular health (Jennings et al. 2019), on the rate of bone loss in 

individuals with osteoporosis (Jennings et al. 2018), as well as on the proteasomal proteolysis 

(Athanasopoulou et al. 2018). The NU-AGE study design (different countries with different 

dietary traditions and habits) and the large number of collected data allowed to evaluate the 

impact of relevant variables usually poorly investigated (age, sex, ethnicity/genetics, as well as 
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individual characteristics) on different parameters at baseline and after the intervention (Konz 

et al. 2018; Marseglia et al. 2018; Ostan et al. 2018; Pujos-Guillot et al. 2018; Santoro et al. 

2018; Santoro et al. 2019; Jennings et al. 2019). Importantly, the design of NU-AGE project 

offers the possibility to evaluate the effects of the intervention taking into account the 

background (in terms of lifestyle habits, environmental conditions and genetic profile) of the 

enrolled subjects, which were recruited also in non-Mediterranean countries (Poland, 

Netherlands and United Kingdom). The effects of a Mediterranean diet intervention on non-

Mediterranean countries are not granted, because its transferability requires specific changes in 

dietary habits (Martínez-González et al. 2017) and because genetic and environmental factors, 

that can be country-specific, can hamper/enhance its effects (Mayr et al. 2018).  

Here, we decided to study the impact of the nutritional intervention on the epigenetic 

biomarkers of aging, focusing on subjects enrolled in a Mediterranean country (Italy) and in a 

non-Mediterranean country (Poland). 

 

1.2 Methods 

1.2.1 NU-AGE study 

NU-AGE was a one-year, multicenter, randomized, single-blind, controlled trial 

(registered with clinicaltrials.gov, NCT01754012) with two parallel groups (i.e. dietary 

intervention and control) carried out during April 2012–January 2015 in five European centers 

in Italy (Bologna), Poland (Warsaw), France (Clermont-Ferrand), Netherlands (Wageningen), 

and the United Kingdom (Norwich). Volunteers from the community aged 65–79 years, free of 

major overt chronic diseases for at least two years (i.e. cancer, severe organ disease), living 

independently, and free of dementia, were recruited to participate in the baseline assessment 

(Santoro et al. 2014; Berendsen et al. 2014). At enrollment, exclusion criteria included severe 

chronic diseases, type 1 and insulin-treated type 2 diabetes, chronic use of corticosteroids, 

recent (previous 2 months) use of antibiotics, recent (previous 3 months) change in habitual 

medication use, malnutrition (as diagnosed by Body Mass Index (BMI) <18.5 kg/m2 or >10% 

weight loss within the previous 6 months), food allergy/intolerance requiring special diets, or 

frailty (as assessed by the presence of at least three out of five criteria: unintentional weight 

loss, self-reported exhaustion, weakness (grip strength), slow walking speed, and low physical 

activity) (Fried et al. 2001). Of the 2668 participants, 1512 were screened for inclusion and 

1296 were eligible to participate in the NU-AGE trial. Participants were randomly assigned 

(1:1 allocation ratio) to the control or intervention groups, after stratification by sex, age (65-

72 or >72-79 years), frailty status (pre-frail or non-frail), and BMI (<25 or ≥25 kg/m2). 
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Randomization was done by computer-generated allocation. All participants provided written 

informed consent before participating, in accordance with the Declaration of Helsinki, and the 

study protocol was approved by ethics committees in each country. 

 

Participants assigned to the intervention group received individually tailored 

standardized dietary advice, delivered by a trained dietician or research nutritionist. Dietary 

advice was administered 9 times during the year and supported by mail or e-mail. The NU-

AGE dietary guidelines were based on nutrient reference values and food-based dietary 

recommendations for older adults from each of the 5 countries where the intervention took 

place, the modified MyPyramid for Older Adults and nutrient requirements from the European 

Commission and the Institute of Medicine. To help compliance, participants received 

commercially available foods, such as olive oil, whole-grain pasta, margarine rich in mono- 

and polyunsaturated fatty acids, and low-fat, low-salt cheese. They also received vitamin D3 

supplements (10 µg per day).  

Adherence to study protocol was evaluated using the 7-day food records and calculated 

by the NU-AGE index scoring system, specifically constructed to this purpose (Jennings et al. 

2018; Berendsen et al. 2018). The NU-AGE index is a continuous scale in which 16 dietary 

components were included. For the adequacy components whole grains, fruits, vegetables, 

legumes, low-fat dairy, low-fat cheese, fish, low-fat meat and poultry, nuts, olive oil, fluids, 

and vitamin D3 supplements, a score ranging from 0 to 10 could be obtained for greater intakes 

of these components. For moderation components (alcohol, sodium and sweets), participants 

with lower intakes received 10 points ranging to 0 points for participants with greater intakes. 

Here, we used the NU-AGE index transformed in percentage and scaled 0 to 100 (with 0 equal 

to no adherence and 100 to fully adherent). 

 Height was measured with a stadiometer to the nearest 0.1 cm, while weight was 

measured to the nearest 0.1 kg with a calibrated scale. BMI was calculated as follows: weight 

[kg]/height[m]2. 

 

From the whole NU-AGE cohort, a sub-group of 120 subjects was randomly selected 

from the Italian and Polish sub-cohorts to be analyzed by specific -omics at baseline (T0) and 

after dietary intervention (T1). Thus, genome-wide DNA methylation analysis was performed 

in a subgroup of 120 subjects (60 from the Italian cohort and 60 from the Polish one) from the 

intervention group, both at T0 and T1, for a total of 240 samples. Exact chronological age of 
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the subjects (in years) at T0 was calculated as follows: [(T0 date) – (Date of birth)] / 365. Exact 

chronological age at T1 was calculated as follows: [(T1 date) – (Date of birth)] / 365.  

 

1.2.2 DNA methylation analysis 

Samples were analyzed for genome-wide DNA methylation patterns using the Illuminaâ 

Infinium HumanMethylation450 BeadChip array (Illumina Inc., CA, USA), which interrogates 

more than 450 000 methylation sites quantitatively across the genome at single-nucleotide 

resolution. Genomic DNA was extracted from 250 µL of whole blood (drawn on 

ethylenediamine tetra acetic acid (EDTA) tubes), using the QIAamp 96 DNA Blood Kit 

(QIAGEN, Hilden, Germany). DNA quantification was performed using the Quant-iT™ 

dsDNA Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA), with a robotic liquid 

handling system, Hamilton MicroLab Star (Hamilton, Reno, NEV, USA), allowing 

quantification of a 96-well format. One microgram of DNA was bisulfite converted, using the 

EZ DNA Methylation Kit (Zymo Research Corporation, Orange, CA, USA) according to 

manufacturer’s instructions. After bisulfite conversion, DNA was whole-genome amplified, 

enzymatically fragmented and hybridized to Illuminaâ Infinium HumanMethylation450 

BeadChips (Illumina Inc., CA, USA), according to manufacturer's protocols. Samples from the 

different groups (Italy and Poland, T0 and T1) were accurately randomized across the 

experimental sessions. Arrays were scanned using the HiScan instrument (Illumina Inc., CA, 

USA). Raw fluorescence intensities were extracted using ‘minfi’ Bioconductor package (Aryee 

et al. 2014) and normalization was performed using the preprocessQuantile function 

(Touleimat & Tost 2012).  

 

1.2.3 Evaluation of DNA methylation age and of epigenetic age acceleration 

Normalized DNA methylation data were uploaded into the DNA methylation age 

calculator, developed by Steve Horvath and freely available at the website: 

https://dnamage.genetics.ucla.edu, to calculate DNAm age. DNAm age is calculated using the 

weighted average of DNA methylation levels at 353 CpG sites, as described by Steve Horvath 

(Horvath 2013). The ‘advanced blood analysis’ option was selected in the online calculator, 

allowing the calculation of three measures of epigenetic age acceleration (AA) that were further 

considered here. These measures have been previously described by Horvath and colleagues 

and have been applied to date in several publications. The first measure is considered as the 

universal measure of epigenetic AA and is denoted AgeAccel. It corresponds to the residual 

that results from regressing DNAm age on chronological age. The second measure of epigenetic 
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AA is referred as Intrinsic Epigenetic Age Acceleration (IEAA), denoted as 

AAHOAdjCellCounts in the online software. IEAA is defined as the residual resulting from 

regressing DNAm age on chronological age and seven measures of immune blood cells count 

estimates: naive CD8+ T cells, exhausted CD8+ T cells, plasma B cells, CD4+ T cells, natural 

killer cells, monocytes and granulocytes. IEAA is independent of changes in blood cell 

composition that occur with time and is considered as a measure of ‘pure’ epigenetic aging 

effects in blood cells. Finally, the third measure considered is referred as Extrinsic Epigenetic 

Age Acceleration (EEAA), known as BioAge4HAStaticAdjAge in the online software. EEAA 

is based on a weighted average of the epigenetic age measure with Hannum’s clock (Hannum 

et al. 2013) and three blood cell types that are known to change with age: naive cytotoxic T 

lymphocytes (CD45RA+CCR7+), exhausted cytotoxic T lymphocytes (CD45RA-CD28-) and 

plasma B cells. EEAA is defined as the residual formed from regressing the resulting weighted 

epigenetic age on chronological age. This measure is dependent on age-related changes in blood 

cell composition and can be considered as a measure of aging in immune system.  

 

1.2.4 Estimating blood cell counts based on DNA methylation levels 

Blood cell counts used in the measures of IEAA and EEAA were estimated based on 

DNA methylation data using the epigenetic clock online software. Blood cell proportions of 

CD8+ T cells, CD4+ T cells, natural killer cells, B cells and granulocytes are based on 

Houseman's estimation method (Houseman et al. 2012). An advanced analysis option of the 

epigenetic clock software is used to estimate the percentage of naïve and exhausted CD8+ T 

cells. 
 

1.2.5 Genotyping 

Genomic DNA was extracted from 250 µL of whole blood (drawn on EDTA tubes), 

using the QIAamp 96 DNA Blood Kit (QIAGEN, Hilden, Germany). Two hundred nanograms 

of genomic DNA were genotyped for 713 014 genetic markers by the Illuminaâ OmniExpress 

BeadChip (Illumina Inc., CA, USA), according to manufacturer’s protocol. After quality 

control, 118 samples were retained. Quantitative trait association analysis and estimation of 

Single Nucleotide Polymorphisms (SNPs) allele frequencies were performed using PLINK 

toolset. 
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1.2.6 Statistical analysis 

The effects of the nutritional intervention on the three above-mentioned measures of 

epigenetic AA (AgeAccel, IEAA and EEAA) were analyzed with a Student’s paired-sample t‐

test. For each epigenetic AA measure, Benjamini-Hochberg procedure was applied to correct 

for multiple tests, considering a total of 6 tests. Pearson correlations between measures of 

epigenetic age and chronological age or scores of adherence to Mediterranean diet were 

calculated. All statistical analyses and graphics were produced using R v3.3.2. 

 

1.3 Results 

1.3.1 Subjects  

Genome-wide DNA methylation profiles were analyzed by the Illuminaâ Infinium 

HumanMethylation450 Beadchip (Illumina Inc., CA, USA) in whole blood of 120 European 

subjects, with chronological age ranging from 65 to 79 years old. Sixty patients were recruited 

in Italy and the other half was recruited in Poland. Characteristics of enrolled subjects are 

summarized in Table 1.1. Baseline characteristics were similar between the two groups in terms 

of chronological age and adherence to Mediterranean diet (Student’s t-test p-value > 0.05) 

(Figure 1.1). Body Mass Index (BMI) tended to be higher in Polish subjects compared to Italian 

ones, and this difference was statistically significant when considering only males (Student’s t-

test p-value = 0.027) (Figure 1.2). After one year of nutritional intervention (T1), adherence to 

Mediterranean diet significantly increased in both Italian and Polish participants, and a 

significant decrease in BMI was observed in Italian males (paired Student’s t-test p-value = 

0.008) (Figures 1.1 and 1.2).  
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Table 1.1: Characteristics of the study population at baseline (T0) and after one year of 

Mediterranean-like diet (T1). 
BMI: Body Mass Index. SD: Standard Deviation. 

  

Country  Italy Poland 

Subjects (n)  60 60 

Males / Females (n)  27 / 33 24 / 36 

Time  T0 T1 T0 T1 

Mean 
chronological 

age 
(years), mean ± SD 

M
al

es
 +

 F
em

al
es

 
72.23 ± 3.82 73.28 ± 3.81 71.08 ± 4.10 72.10 ± 4.09 

Mean BMI kg/m2, mean ± SD 26.99 ± 3.60 26.67 ± 3.59 28.07 ± 3.37 28.02 ± 3.24 

Adherence to 
NU-AGE diet 

(according to NU-
AGE diet score), 

mean ± SD 
51.86 ± 9.78 64.84 ± 8.84 51.62 ± 9.52 66.69 ± 10.09 

Mean 
chronological 

age 
(years), mean ± SD 

M
al

es
 

72.41 ± 3.91 73.48 ± 3.91 71.55 ± 4.27 72.58 ± 4.25 

Mean BMI kg/m2, mean ± SD 26.30 ± 2.88 25.79 ± 2.76 28.20 ± 3.06 28.19 ± 2.81 

Adherence to 
NU-AGE diet 

(according to NU-
AGE diet score), 

mean ± SD 
50.63 ± 10.43 66.48 ± 8.45 51.30 ± 8.39 66.74 ± 10.28 

Mean 
chronological 

age 
(years), mean ± SD 

Fe
m

al
e s

 

72.07 ± 3.80 73.12 ± 3.79 70.76 ± 4.01 71.78 ± 4.00 

Mean BMI kg/m2, mean ± SD 27.55 ± 4.05 27.39 ± 4.05 27.98 ± 3.61 27.91 ± 3.53 

Adherence to 
NU-AGE diet 

(according to NU-
AGE diet score), 

mean ± SD 
52.87 ± 9.25 63.49 ± 9.06 51.84 ± 10.31 66.66 ± 10.10 
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Figure 1.1: Adherence to Mediterranean-like diet increases from T0 to T1. 
Boxplots of NU-AGE diet score at T0 and at T1, in Italian and Polish subjects, considering all the subjects (upper 

panel), only males (middle panel) and only females (lower panel).  

There was no difference between the groups at baseline. After one-year of nutritional intervention, adherence 

significantly increased in all groups.   
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Figure 1.2: Body Mass Index at T0 and T1. 
Boxplots of BMI values at T0 and at T1, in Italian and Polish subjects, considering all the subjects (upper panel), 

only males (middle panel) and only females (lower panel).  

At baseline, BMI was significantly higher in Polish males as compared to Italian males. After one year of 

nutritional intervention, a significant decrease in BMI was observed in Italian males. 
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1.3.2 Effect of the nutritional intervention on the epigenetic age acceleration 

measures 

Epigenetic age (also referred to as DNA methylation age (DNAm age)) was calculated 

using the online age calculator. As expected, DNAm age was significantly associated with 

chronological age (p<0.0001), both at T0 (before nutritional intervention) and at T1 (after a 12-

months Mediterranean-like nutritional intervention), in both Italian and Polish groups (Figure 

1.3). 

 

 

Figure 1.3: Significant association between DNAm age and chronological age at T0 and 

T1. 
Scatter plots of chronological age (x-axis) versus DNAm age (y-axis) in the different groups (T0 = blue; T1 = red). 

Lines represent fitted linear regressions (Italy T0: R2 = 0.57, p-value = 1.67-06; Italy T1: R2 = 0.65, p-value = 1.41-

08; Poland T0: R2 = 0.55, p-value = 5.41-06; Poland T1: R2 = 0.56, p-value = 2.98-06).  
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For each subject we evaluated the epigenetic age acceleration (AA), that is the deviation 

between DNAm age and effective chronological age. Positive values of epigenetic AA indicate 

an epigenetic age older than expected, while negative values indicate an epigenetic age younger 

than expected on the basis of chronological age. In particular, as described in the Methods 

section, we considered three measures of epigenetic AA, implemented in the online age 

calculator, which reflect different aspects of epigenetic aging: 1) AgeAccel; 2) Intrinsic 

Epigenetic Age Acceleration (IEAA); 3) Extrinsic Epigenetic Age Acceleration (EEAA) 

(Table 1.2). At T0, in Italian subjects, AgeAccel ranged from -12.38 to 15.62 years, IEAA 

ranged from -11.56 to 12.27 years and EEAA ranged from -10.90 to 7.41 years. In Polish 

subjects, AgeAccel ranged from -8.49 to 16.27 years, IEAA ranged from -9.01 to 15.55 years 

and EEAA ranged from -12.56 to 13.56 years. At T1, in Italian subjects AgeAccel ranged from 

-8.60 to 14.25 years, IEAA ranged from -8.62 to 9.92 years and EEAA ranged from -8.97 to 

7.90 years. In Polish subjects, at T1, AgeAccel ranged from -9.81 to 10.99 years, IEAA ranged 

from -10.44 to 9.47 years and EEAA ranged from -11.31 to 10.02 years. Baseline measures of 

epigenetic AA were similar between Italian and Polish subjects (Student’s t-test p-value >0.05), 

but EEAA was significantly higher in Polish males compared to Polish females (Student’s t-

test p=0.00009) and compared to Italian males (Student’s t-test p=0.02). 
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Table 1.2: DNAm age and measures of epigenetic age acceleration at baseline (T0) and 

after one year of Mediterranean-like diet (T1). 
SD: standard deviation. DNAm age: DNA methylation age. IEAA: Intrinsic Epigenetic Age Acceleration. EEAA: 

Extrinsic Epigenetic Age Acceleration.  

Statistically significant differences in epigenetic AA measures between T0 and T1 are in bold. 

  

Country  Italy Poland 
Subjects (n)  60 60 

Males / Females (n)  27 / 33 24 / 36 
Time  T0 T1 T0 T1 

DNAm age (years), mean ± 
SD 

M
al

es
 +

 F
em

al
es

 

75.95 ± 5.9 76.36 ± 5.7 74.95 ± 5.5 74.96 ± 5.5 

AgeAccel (years), mean ± 
SD 0.35 ± 4.9 -0.12 ± 4.3 0.30 ± 4.6 -0.54 ± 4.6 

IEAA (years), mean ± 
SD 0.49 ± 4.4 -0.24 ± 4.0 0.24 ± 4.7 -0.49 ± 4.4 

EEAA (years), mean ± 
SD -0.48 ± 4.4 -0.39 ± 4.2 0.70 ± 4.7 0.16 ± 4.6 

DNAm age (years), mean ± 
SD 

M
al

es
  

76.72 ± 6.9 76.80 ± 6.8 76.23 ± 4.2 77.20 ± 4.3 

AgeAccel (years), mean ± 
SD 0.97 ± 5.5 0.17 ± 5.2 1.18 ± 3.7 1.30 ± 3.9 

IEAA (years), mean ± 
SD 0.55 ± 4.8 -0.38 ± 4.6 0.99 ± 3.7 1.19 ± 3.8 

EEAA (years), mean ± 
SD 0.90 ± 3.9 0.88 ± 3.4 3.47 ± 4.0 2.73 ± 4.1 

DNAm age (years), mean ± 
SD 

Fe
m

al
es

  

75.32 ± 5.0 76.00 ± 4.7 74.10 ± 6.1 73.47 ± 5.7 

AgeAccel (years), mean ± 
SD -0.16 ± 4.3 -0.34 ± 3.5 -0.29 ± 5.1 -1.76 ± 4.6 

IEAA (years), mean ± 
SD 0.45 ± 4.1 -0.13 ± 3.5 -0.26 ± 5.3 -1.61 ± 4.5 

EEAA (years), mean ± 
SD -1.6 ± 4.5 -1.4 ± 4.5 -1.14 ± 4.3 -1.54 ± 4.1 
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In both Italian and Polish cohorts, epigenetic AA measures at baseline were significantly 

associated (p<0.05) with those obtained after the 12-months tailored nutritional intervention 

(Figure 1.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Significant association between epigenetic AA measures at baseline and after 

one year of nutritional intervention.  
Scatter plots of epigenetic AA at T0 (x-axis) versus T1 (y-axis). The three epigenetic AA measures (AgeAccel, 

IEAA and EEEA) are reported respectively in the upper, middle and lower panels. Males and females subjects are 

indicated with cyan and pink circles respectively. Lines represent fitted linear regression lines models in males 

(cyan) and females (pink). Grey dotted lines represent the bisector. 

AgeAccel Italy: R2 = 0.84, p-value < 2.2-16; AgeAccel Poland: R2 = 0.79, p-value = 3.54-14; IEAA Italy: R2 = 0.81, 

p-value = 6.5-15; IEAA Poland: R2 = 0.75, p-value = 3.86-12; EEAA Italy: R2 = 0.84, p-value < 2.2-16; EEAA Poland: 

R2 = 0.80, p-value = 1.86-14. 
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We then used Student’s paired-sample t‐test to compare the epigenetic AA measures at 

T0 and at T1. In Italian subjects, no statistically significant differences between T0 and T1 were 

observed considering AgeAccel, also when subjects were divided according to sex (Figure 1.5, 

upper panel). On the contrary, in Polish subjects, AgeAccel measures were significantly lower 

at T1 versus baseline (T0) (p=0.0312) (Figure 1.5, upper panel). In other words, under the 

Mediterranean-like diet intervention, there was a statistically significant rejuvenation of the 

Polish subjects, according to the AgeAccel measure. When we divided samples on the basis of 

sex, we observed that the effect was predominantly related to a decrease in AgeAccel measures 

in Polish females at T1 compared to T0 (p=0.0013). Rejuvenation of the Polish females after 

one year of nutritional intervention was confirmed with the IEAA measure (Figure 1.5, middle 

panel), as analysis returned a significant decrease in IEAA values at T1 versus T0 (p=0.007). 

Lower IEAA measures were also observed at T1 in Italian subjects as compared to T0 

(p=0.0347). The EEAA predictor did not give significant results (Figure 1.5, lower panel) in 

both groups. After correction for multiple testing, the effect remained statistically significant 

for Polish females, according to AgeAccel (adjusted p-value = 0.008) and IEAA (adjusted p-

value = 0.04) measures (Figure 1.5). 

Figure 1.6 reports, for each subject, the intra-pair difference between AgeAccel at T1 

and AgeAccel at T0 (AgeAccel Diff), the intra-pair difference between IEAA at T1 and IEAA 

at T0 (IEAA Diff), and the intra-pair difference between EEAA at T1 and EEAA at T0 (IEAA 

Diff). In all three cases, a negative value indicates an epigenetic rejuvenation. 
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Figure 1.5: A one-year Mediterranean-like diet intervention promotes epigenetic 

rejuvenation in a country- and sex-specific manner. 
Boxplots of epigenetic AA measures at T0 and T1 (upper panel: AgeAccel; middle panel: IEAA; lower panel: 

EEAA) considering all the subjects, only males and only females. Statistically significant results are greyed. 
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Figure 1.6: Individual-specific response to the nutritional intervention according to 

epigenetic AA measures. 
Barplots of intrapair differences for the three measures of epigenetic age acceleration (Blue: males; Pink: females).  

 

The discrepancy between results observed with AgeAccel and IEAA and those observed 

with EEAA is of particular interest: the rejuvenation related to the nutritional intervention can 

be considered as a pure effect on the epigenetic clock, unconfounded by a potential effect of 

the intervention on the immune system, as IEAA is independent of changes in the composition 

of blood cells. 

 

Finally, we assessed if AgeAccel Diff, IEAA Diff and EEAA Diff values were related 

to, respectively, Age Accel, IEAA and EEAA values at baseline (Figure 1.7). In both the 

countries and for all the different AA measures, we found that the majority of subjects showing 

an epigenetic age rejuvenation (AgeAccel Diff, IEAA Diff or EEAA Diff less than 0) had also 

baseline AA levels greater than 0 (Figure 1.7). Fisher's exact test confirmed that this 

enrichment was significant for AgeAccel and IEAA measures in Poles, indicating that the effect 

of the diet tended to be more marked in those subjects that displayed higher epigenetic AA 

values at T0.  
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Figure 1.7: Stronger impact of diet on epigenetic AA measures in subjects with higher 

epigenetic AA values at baseline. 
Scatter plots of epigenetic AA measures at T0 (x-axis) versus epigenetic AA measures difference between T1-T0 

(y-axis). The three epigenetic AA measures (AgeAccel, IEAA and EEEA) are reported respectively in the upper, 

middle and lower panels. Males and females subjects are indicated with cyan and pink circles respectively. The 

number of subjects in each quadrant is reported. Fisher’s test exact test was applied to test if there was a difference 

of proportion of subjects in the 4 quadrants. 
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1.3.3 Association between epigenetic age acceleration measures, BMI and adherence 

to the Mediterranean-like diet 

In order to identify factors associated with the slowdown of the epigenetic AA measures, 

we first investigated the relationship between BMI and the epigenetic markers. We did not find 

any significant association between BMI and AgeAccel, IEEA or EEAA.  

We also analyzed the association between the epigenetic AA measures and the NU-

AGE score measuring the adherence to the Mediterranean-like diet, calculated at T0 and T1. 

We observed a significant negative association of AgeAccel (p=0.037) and IEAA (p=0.027) 

with the NU-AGE score, with higher levels of adherence to the Mediterranean-like diet 

associated with negative epigenetic AA values, that is with epigenetic rejuvenation (Figure 

1.8). 
 

 

Figure 1.8: Association between epigenetic AA measures and adherence to 

Mediterranean-like diet.  
Scatter plots of epigenetic age acceleration measures (y-axis) and NU-AGE score evaluating adherence to the 

Mediterranean-like diet (x-axis) (T0 = blue; T1 = red). The line represents a fitted linear regression (AgeAccel: R2 

= - 0.13, p-value = 0.037; IEAA: R2 = - 0.14, p-value = 0.027; EEAA: R2 = - 0.05, p-value = 0.457). 
 

1.3.4 Association between epigenetic age acceleration measures and genotype 

Finally, we evaluated if response to Mediterranean-like dietary intervention, in terms of 

epigenetic AA, was related to the genetic background of the participants of the study. To this 

aim, we carried out a genome-wide association study (GWAS) of epigenetic AA measures in 

our cohort, expressed as AgeAccel Diff, IEAA Diff or EEAA Diff as described above (Figure 
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1.6). The quantile-quantile (QQ) plot of association results demonstrated no genomic inflation. 

After correction for multiple testing, no significant association was observed at the genome-

wide level (Benjamini-Hochberg corrected p-value<0.05). However, small-effect loci with 

nominal significance (p-value<1x10-4) were identified for all of the three measures of 

epigenetic AA. A total of 68, 49 and 46 single nucleotide polymorphisms (SNPs) were found 

significantly associated with AgeAccel Diff, IEAA Diff and EEAA Diff respectively (Table 

1.3). Thirty-one SNPs were common between AgeAccel Diff and IEAA Diff, while there were 

no SNPs in common between EEAA Diff and AgeAccel Diff or IEAA Diff (Figure 1.9). 

Interestingly, 5 SNPs out of 68 (for AgeAccel Diff) and 6 SNPs out of 49 (for IEAA Diff) 

showed minor allele frequency differences between Italians and Polish (p-values < 0.05).   
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Table 1.3: Top 10 of Single Nucleotide Polymorphisms (SNPs) associated with AgeAccel 

Diff, IEAA Diff and EEAA Diff.   

SNP Unadjusted p-value ID Common with  

Age Accel Diff 
rs2588499 0.000000119 chr2:75708979:C/T:1 Common with IEAA 

rs7769262 0.00000162 chr6:63556032:A/C:1 Common with IEAA 

rs6930829 0.00000206 chr6:63569602:G/A:1 Common with IEAA 

rs9293982 0.00000255 chr6:75558759:A/G:1 Common with IEAA 

rs12821987 0.00000612 chr12:97429549:A/C:1 Common with IEAA 

rs9597587 0.00000784 chr13:58257265:A/G:1 Common with IEAA 

rs6599689 0.00000841 chr10:125106194:A/G:1 Common with IEAA 

rs10943071 0.00000896 chr6:63322114:G/A:1 Common with IEAA 

rs6942254 0.0000172 chr6:63672200:G/A:1  

rs11568110 0.0000221 chr17:4539673:C/T:1 Common with IEAA 

IEAA Diff 
rs9597587 0.000002013 chr13:58257265:A/G:1 Common with AgeAccel 

rs2588499 0.000002833 chr2:75708979:C/T:1 Common with AgeAccel 

rs9293982 0.000007551 chr6:75558759:A/G:1 Common with AgeAccel 

rs9392414 0.00001381 chr6:2686488:C/T:1 Common with AgeAccel 

rs12810082 0.00001584 chr12:67192531:C/T:1 Common with AgeAccel 

rs12273933 0.0000202 chr11:78950572:G/T:1 Common with AgeAccel 

rs12823702 0.00002074 chr12:67203190:C/T:1 Common with AgeAccel 

rs7699928 0.0000209 chr4:190088167:C/T:1 Common with AgeAccel 

rs9876871 0.00002156 chr3:36812570:C/T:1 Common with AgeAccel 

rs7769262 0.00002163 chr6:63556032:A/C:1 Common with AgeAccel 

EEAA Diff 
rs6745958 0.00000259 chr2:232870178:G/A:1  

rs1138729 0.000004885 chr2:10271196:A/G:1  

rs10101912 0.000007387 chr8:88218888:C/T:1  

rs7920763 0.000008745 chr10:2740608:A/G:1  

rs557135 0.000009344 chr6:52765760:A/G:1  

rs12800154 0.00001869 chr11:104158392:A/G:1  

rs10132733 0.00001943 chr14:22946231:A/G:1  

rs13379495 0.00001972 chr15:46133052:G/T:1  

rs16949428 0.00002292 chr15:66381722:A/G:1  

rs8028460 0.00002292 chr15:66391818:T/G:1  
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Figure 1.9: Thirty-one SNPs associated with AgeAccel are common with IEAA.  
Venn diagram of SNPs associated with AgeAccel (blue), IEAA (yellow) and EEAA (green).  

 

In order to identify pathways that may be relevant to epigenetic AA effects upon 

Mediterranean-like nutritional intervention, we performed an enrichment analysis using i-

GSEA4GWAS. i-GSEA4GWAS is a freely available and widely used open platform which 

applies an improved gene set enrichment analysis to detect pathways and gene sets associated 

with traits. i-GSEA4GWAS employs SNP label permutation to correct gene variation to reduce 

the bias due to different genes with different number of mapped SNPs. This correction ensures 

to identify gene sets consisting of non-random high-association genes with biological 

plausibility instead of random high-association genes with large numbers of mapped SNPs 

(Zhang et al. 2010). In the analysis of AgeAccel Diff associations, we found 60 significant gene 

sets (p<0.05), 13 of which were significant after false discovery rate (FDR) correction 

(FDR<0.05). IEAA Diff analysis returned 37 significant gene sets (p<0.05), 11 of which had a 

FDR<0.05. We found a large overlap between the enrichment analysis results of the two 

epigenetic AA measures, in particular for pathways involved in energy metabolism, regulation 

of cell cycle and of immune functions. On the contrary, enrichment analysis for EEAA Diff did 

not return any significant result (p<0.05).    
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Gene Set Name Unadjusted  
p-value Gene Set Description 

Age Accel Diff 

HSA05130_PATHOGENIC_ESCHERICHIA_COLI_INFECTION_EHEC < 0.001 Genes involved in pathogenic Escherichia coli 
infection - EHEC 

HSA04115_P53_SIGNALING_PATHWAY < 0.001 Genes involved in p53 signaling pathway 

APOPTOSIS < 0.001  

SIG_CHEMOTAXIS < 0.001 Genes related to chemotaxis 

MTORPATHWAY 0.0020 
Mammalian target of rapamycin (mTOR) 

senses mitogenic factors and nutrients, 
including ATP, and induces cell proliferation. 

SIG_PIP3_SIGNALING_IN_B_LYMPHOCYTES < 0.001 Genes related to PIP3 signaling in B 
lymphocytes 

PEPTIDE_GPCRS 0.0020  

HSA04620_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY < 0.001 Genes involved in Toll-like receptor signaling 
pathway 

HSA00100_BIOSYNTHESIS_OF_STEROIDS 0.0020 Genes involved in biosynthesis of steroids 

SIG_PIP3_SIGNALING_IN_CARDIAC_MYOCTES < 0.001 Genes related to PIP3 signaling in cardiac 
myocytes 

HSA04650_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY < 0.001 Genes involved in natural killer cell mediated 
cytotoxicity 

HSA00190_OXIDATIVE_PHOSPHORYLATION 0.0040 Genes involved in oxidative phosphorylation 

HSA04512_ECM_RECEPTOR_INTERACTION < 0.001 Genes involved in ECM-receptor interaction 

IEAA Diff 
HSA03010_RIBOSOME 0.0010 Genes involved in ribosome 

HSA04620_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY < 0.001 Genes involved in Toll-like receptor signaling 
pathway 

APOPTOSIS < 0.001  

PEPTIDE_GPCRS 0.0020  

HSA05130_PATHOGENIC_ESCHERICHIA_COLI_INFECTION_EHEC 0.0010 Genes involved in pathogenic Escherichia coli 
infection - EHEC 

HSA00040_PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS < 0.001 Genes involved in pentose and glucuronate 
interconversions 

APOPTOSIS_GENMAPP 0.0030  

HSA04115_P53_SIGNALING_PATHWAY < 0.001 Genes involved in p53 signaling pathway 

ERKPATHWAY 0.0020 Cell growth is promoted by Ras activation of 
the anti-apoptotic p44/42 MAP kinase pathway. 

HSA05213_ENDOMETRIAL_CANCER 0.0010 Genes involved in endometrial cancer 

ST_ADRENERGIC 0.0010 Adrenergic receptors respond to epinephrine 
and norepinephrine signaling. 

 

Table 1.4: Gene sets associated with AgeAccel Diff and IEEA Diff (with false discovery 

rate<0.05) according to the enrichment analysis performed with i-GSEA4GWAS (Zhang et 

al. 2010).  
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2.1 Introduction 

The canonical epigenetic clocks (i.e. Horvath’s and Hannum’s models) are based on 

DNAm values at a large number of CpG sites, measured by Illumina® Infinium microarrays, 

which are genome-wide platforms for the analysis of DNA methylation. These epigenetic 

clocks are characterized by their high accuracy and, for Horvath’s one, by its wide applicability 

to different tissues and cells types. Despite these great advantages, these models have some 

limitations. Their technology is characterized by a high cost, both in terms of equipment and 

consumables, and by the requirement of complex bioinformatic analysis. This issue could 

represent a constraint to their use in the context of large human cohorts and to their 

implementation in clinical settings. There is need for the development of epigenetic biomarkers 

of aging, based on locus-targeted DNA methylation analysis, assessable with faster, cost 

effective and easy to apply approaches.  

 In this direction, alternatives with fewer CpG sites already exist. A model built on 

DNAm values of whole blood at 3 CpG sites (Weidner’s estimator) was published in 2014. 

This model, based on bisulfite pyrosequencing, was found to significantly correlate with 

chronological age (Weidner et al. 2014). However, it failed to predict mortality in the Lothian 

Birth Cohort (Lin et al. 2016). Our group also identified two loci, located in the CpG island of 

ELOVL2 and FHL2 genes, showing very high correlation with chronological age in whole 

blood (Garagnani et al. 2012). These results have been confirmed in other replicative tissues 

(Florath et al. 2014; Kananen et al. 2016; Steegenga et al. 2014; Bacalini et al. 2017) and have 

been applied to teeth samples as well (Giuliani et al. 2016). Methylation levels in these regions 

were not associated with mortality in the Leiden Longevity Study (Bacalini et al. 2017), but 

ELOVL2 and FHL2 hypermethylation were found associated with the prospective development 

of breast cancer and colorectal cancer, respectively (Durso et al. 2017). Finally, prediction 

models based on a small number of CpG sites have been developed recently for forensic age 

prediction, using pyrosequencing or Agena EpiTYPER® system based approaches (Huang et 

al. 2015; Zbieć-Piekarska, Spólnicka, Kupiec, Parys-Proszek, et al. 2015; Soares Bispo Santos 

Silva et al. 2015; Spólnicka et al. 2018, p.2; Freire-Aradas et al. 2016). 

 The objective of this work was to develop a new epigenetic biomarker of aging for 

whole blood, based on the combination of a limited number of CpG sites, assessable through 

Agena EpiTYPER® platform. The performance of this model was then tested in populations 

characterized by successful or accelerated aging. Finally, this biomarker was applied to samples 

collected within the framework of the NU-AGE project, in order to evaluate the impact of the 

one-year nutritional intervention.  
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2.2 Methods 

 2.2.1 Samples collection and DNA extraction 

DNA was extracted from whole blood samples of European individuals belonging to 

previously existing cohorts. The epigenetic model was built and tested on samples collected in 

apparently healthy subjects of different age (0-98 years old), included in different cohorts. The 

model was then applied to subjects with Down syndrome, centenarians and their offspring and 

participants of the NU-AGE project belonging to the nutritional intervention group. Written 

informed consents were previously obtained from the participants, prior to their inclusion in the 

different projects. Studies were all approved by local ethics committees. Table 2.1 summarizes 

the different cohorts from which the samples were taken from. DNA was extracted from venous 

blood samples, drawn on EDTA tubes. Genomic DNA extraction was performed with QIAamp 

DNA Blood Kit (QIAGEN, Hilden, Germany) and 500 ng of DNA were bisulfite converted, 

using the EZ DNA Methylation Kit (Zymo Research Corporation, Orange, CA, USA) according 

to manufacturer’s instructions. 
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Subjects Number Age range Brief description of the 
cohort 

Building and testing of the model: healthy subjects 

Controls 

315 
Females n = 132 

Males n = 180 

NA n = 3 

 

 

0–98 years 

 
0-19 years: n = 6 

20-39 years: n = 53 

40-59 years: n = 94 

60-74 years: n = 123 

75-98 years: n = 39 

 

 
Healthy subjects, from which 3 
cord blood samples, 26 Down 
syndrome subjects’ siblings, 
170 subjects included in the 

MARKAGE project (Capri et 
al. 2015), 37 controls belonging 
to PROPAG-AGEING cohort 

recruited at the University 
Medical Center of Göttingen, 
30 age-matched controls of 

centenarians’ offspring 
(PRIN2006 and PRIN2009 
cohorts), 17 samples from 
young collaborators and 32 

samples from older adults (79-
98 years old) living in the 

urban area of Bologna. 
 

Application of the model: models of successful or accelerated aging, and nutritional intervention 

Down syndrome 
subjects 

75 
Females n = 30 

Males n = 45 

 

 

12–66 years 

 
0-19 years: n = 12 

20-39 years: n = 44 

≥ 40 years: n = 19 

 

 

Centenarians 
106 

Females n = 82 

Males n = 24 

 

99–112 years 

 
99-104 years: n = 96 

105-109 years: n = 7 

≥ 110 years: n = 3 

 

Centenarians recruited in Italy 

(PRIN2006 and PRIN2009 
cohorts) 

Centenarians’ offspring 

143 
Females n = 81 

Males n = 62 

 

 

55–89 years 

 
55-69 years: n = 68 

70-89 years: n = 75 

 

Centenarians’ offspring 

recruited in Italy 

(PRIN2006 and PRIN2009 
cohorts) 

NU-AGE project 

 

233 
Females n=128 

Males n = 105 

 

65–80 years 
Italian (n=124) and Polish 

(n=109) subjects belonging to 
the intervention group 

 
Table 2.1: Overview of the cohorts used for the construction and validation of the model.  
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2.2.2 Selection of candidate markers 

 Identification and selection of relevant CpG sites were firstly based on deep analysis of 

the literature. We carefully chose potential targets on the basis of the correlation between their 

methylation levels and chronological age, and on the basis of their association with age-related 

outcomes. In particular, we considered CpG sites included in previously published epigenetic 

clocks (Hannum et al. 2013; Horvath 2013; Horvath, Oshima, et al. 2018; Levine et al. 2018); 

CpG sites showing an increase in inter-individual variability in DNA methylation with age, 

according to the study by Slieker et al. (Slieker et al. 2016); and CpG sites associated with age-

related conditions and chronic low-grade inflammation (Ligthart et al. 2016).  

Secondarily, selection and validation of relevant CpG sites were based on statistical 

assessment of their performances in our proprietary Illumina® Infinium 450K datasets on age-

related conditions, with particular attention to those in which Horvath’s and Hannum’s clocks 

successfully identified age acceleration or deceleration effects (Down Syndrome subjects, 

centenarians and their offspring).  
 

2.2.3 EpiTYPER® DNA methylation analysis 

 The most relevant CpG sites were subsequently considered for locus-specific DNA 

methylation analysis with the Agena Bioscience EpiTYPER® system (San Diego, CA, USA; 

formerly Sequenom). Sequences of the regions of interest, flanking each selected CpG sites, 

were retrieved from the UCSC genome browser (https://genome.ucsc.edu/), using the genome 

assembly GRCh37/hg19. Primer design was performed using Agena Bioscience EpiDesigner® 

software (http://epidesigner.com/), specifically optimized for the EpiTYPER® system. 

 Locus-targeted DNA methylation analysis was performed according to manufacturer’s 

instructions. Ten nanograms of whole blood genomic bisulfite-converted DNA were amplified 

using the bisulfite-specific primers, in a 5 µL total volume using a 384-well plate. 

Unincorporated nucleotides and primers were then removed with the Shrimp Alkaline 

Phosphatase (SAP) treatment, and reverse transcription/RNaseA cleavage were performed. 

Finally, 20 µL of RNase-free ddH2O were added to each sample, as well as 6 mg of Clean Resin 

in order to eliminate salts of sodium and potassium that could interfere with the analysis. 

Sample dispensation on a SpectroCHIP was performed by the Nanodispenser, and final 

detection was done with the mass spectrometer. Methylation data were obtained using the 

EpiTYPER® analysis software, expressed as continuous values between 0 and 1 (corresponding 

to 0 and 100% methylation respectively).  
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2.2.4 Age prediction 

 For each target region, the Agena EpiTYPER® system returns DNA methylation data 

(expressed as b-values) of a specific number of CpG units (i.e. regions containing one or 

multiple CpG sites) that were included in the predictive model. The first step was the imputation 

of missing values (retrieved as NA by the Agena EpiTYPER® system), using mice (Multivariate 

Imputation by Chained Equations) R package (Buuren & Groothuis-Oudshoorn 2011). 

Secondly, methylation b-values were converted to M-values through a logistic transformation 

included in the Bioconductor package lumi (Du et al. 2008). Our model of age-prediction was 

built using a ridge regression model, included the R package caret (Classification and 

Regression Training) (Kuhn 2008), considering control subjects from 20 to 80 years old (which 

corresponds to the age range in which chronological age and epigenetic age show a linear 

relationship according to Horvath’s clock). Validation of the prediction model was performed 

using a 10-fold cross-validation procedure. The outcome of the model was a predicted 

epigenetic age, expressed in years. Correlation coefficients obtained through linear regression 

of this predicted epigenetic age and chronological age were calculated in order to evaluate the 

accuracy of the prediction. We were finally able to define a measure of epigenetic age 

acceleration (named AgeAccel) as the distance from the regression line between predicted 

epigenetic age and chronological age in controls. A positive result indicates an epigenetic age 

acceleration, while negative values indicate an epigenetic age deceleration.  

All analyses were performed using R version 3.3.2.  
 

2.3 Results 

 2.3.1 Selection of candidate CpG sites 

A total of seven CpG probes mapping in six different genes were considered relevant 

according to the above-mentioned criteria and were then selected for further analysis. 

Characteristics of the selected CpG sites are shown in Table 2.2. 
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Table 2.2: List of selected CpG sites and their main characteristics. 
 

ELOVL2 is a gene coding for the Elongation of very long chain fatty acids protein 2, 

whose methylation status has been previously reported as highly correlated with age, in whole 

blood and most of human tissues, and considered as a robust epigenetic marker of age (Bacalini 

et al. 2017; Cho et al. 2017; Florath et al. 2014; Garagnani et al. 2012; Spólnicka et al. 2018; 

Correia Dias et al. 2019; Zbieć-Piekarska, Spólnicka, Kupiec, Makowska, et al. 2015; Luo et 

al. 2019). Moreover, our team demonstrated that hypermethylation of ELOVL2 in blood is 

associated with the prospective development of breast cancer (Durso et al. 2017) and 

cg16867657 has been recently included in a new DNA methylation estimator of telomere length 

(Lu, Seeboth, et al. 2019).  

The CpG site cg22736354, associated with the gene NHLRC1 (NHL Repeat Containing 

E3 Ubiquitin Protein Ligase 1), is included in several published epigenetic clocks: Horvath’s 

clock (Horvath 2013); Hannum’s clock (Hannum et al. 2013); Levine’s clock (Levine et al. 

2018) and Horvath’s new Skin & Blood clock (Horvath, Oshima, et al. 2018). Another CpG 

site related to this gene has also been reported as an age-related variably methylated position 

(aVMP) by Slieker et al. (Slieker et al. 2016) and NHLRC1 has been recently included in a 

DNAm-based forensic age predictor (Vidaki et al. 2017).  

Additionally, we evaluated the methylation of SIRT7 (sirtuin 7) gene, owing to the 

crucial role of sirtuins in senescence in human cells (Paredes et al. 2018). Two CpG sites 

(cg07855221 and cg09253473), associated with SIRT7 and MAFG (MAF BZIP Transcription 

Factor G) genes, were considered relevant and included in our list of targeted loci. SIRT7 age-

related hypomethylation was also found in mice livers, with a protective impact of dietary 

restriction on methylation patterns (Hahn et al. 2017).  

CpG site 

Illumina®Infinium ID 
Location Associated gene 

Correlation status 

with age 

cg16867657 chr6:11,044,877-11,044,877 ELOVL2 Positive 

cg22736354 chr6:18,122,719-18,122,719 NHLRC1 Positive 

cg07855221 

cg09253473 

chr17:79,877,314-79,877,31 

chr17:79,877,390-79,877,390 
MAFG Negative 

cg10636246 chr1:159,046,973-159,046,973 AIM2 Negative 

cg09809672 chr1:236,557,683-236,557,683 EDARADD Negative 

cg26372517 chr1:36,039,159-36,039,159 TFAP2E Positive 
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We also decided to include in our model the CpG site cg10636246, associated with 

AIM2 (Absent in Melanoma 2) gene, coding for an interferon-gamma-induced protein involved 

in the innate immune response. DNA methylation at this specific CpG site was found to be 

associated with CRP serum levels in a meta-analysis of epigenome-wide association studies 

(Ligthart et al. 2016) and is also included in Levine’s clock (Levine et al. 2018).  

The CpG site cg09809672, associated with EDARADD (EDAR Associated Death 

Domain) gene, is included in several of the diverse epigenetic biomarkers of aging published 

so far (Bocklandt et al. 2011; Horvath 2013; Hannum et al. 2013; Levine et al. 2018; Horvath, 

Oshima, et al. 2018). EDARADD was also recently included in a panel of genes for age 

prediction in forensics use (Correia Dias et al. 2019).  

Finally, the CpG site cg26372517, associated with TFAP2E (Transcription Factor AP-

2 Epsilon) gene, which encodes for a protein that acts as a transcription factor, was considered 

relevant. This CpG site is included in Horvath’s clock (Horvath 2013), and was found 

differentially methylated in our available Illumina® Infinium 450K datasets applied to 

centenarians subjects and their offspring, who have been previously characterized by a 

phenomenon of decelerated epigenetic aging (Horvath, Pirazzini, et al. 2015b).  

 

We designed specific EpiTYPER® primers to evaluate the DNA methylation of the 

above identified CpG sites and of the surrounding ones not assessed by the Infinium platform 

(Table 2.3). Length of the amplicons was between 340 bp (SIRT7/MAFG) and 598 bp 

(NHLRC1).  
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Table 2.3: EpiTYPER® primers designed for DNA methylation analysis of the six targeted 

regions.  
 

2.3.2 Correlation between chronological age and methylation levels 

DNA methylation analysis of the six loci of interest with the Agena EpiTYPER® system 

retrieved usable DNA methylation values in a total of 73 CpG units, containing 124 unique 

CpG sites. The distribution of the 73 CpG units was as following: 15 CpG units for ELOVL2, 

21 CpG units for NHLRC1, 6 CpG units for MAFG / SIRT7, 7 CpG units for AIM2, 5 CpG 

units for EDARADD and 19 CpG units for TFAP2E.  

For each of the 73 CpG units, we evaluated the association between chronological age 

and DNA methylation levels in all individuals. The linear regression between age and DNA 

methylation levels was calculated in control subjects only and was found statistically significant 

(p-value < 0.05) in 46 CpG units (1 in AIM2, 6 in NHLRC1, 6 in MAFG / SIRT7, 15 in 

ELOVL2, 4 in EDARADD and 14 in TFAP2E). Three representative examples are presented 

in Figure 2.1.  

 

 

Amplicon ID Forward primer Reverse primer Genomic Localization 

ELOVL2 AGGAAGAGAGGTAAATTTGTA
GGAATAGAGTTATTTTTTT 

CAGTAATACGACTCACTATAGGGA
GAAGGCTCCCCTCTCCCACAAAAA

CC 
chr6:11,044,680-11,045,053 

NHLRC1 TTGAGTTTAGGAGTTTTATGAG
GTG 

AACAAAAAACAATCCTATTATCCT
CA 

chr6:18,122,552-18,123,149 

SIRT7 / MAFG GAGGGAGGTAGTAGGGATAAT
ATGG 

CTTTAACCAAAACCAAATCTCTCA
A 

chr17:79,877,158-79,877,497 

AIM2 AAAATTTGGTTGATTGTTGATT
TTT 

CAATACAAATTCTTATCTTCAAAA
CA 

chr1:159,046,805-159,047,299 

EDARADD TTTTTTGGTGATTAGGAGTTTT
AGTG 

CAAAATTTCAAAAAACAAACCAAC
T 

chr1:236,557,384-236,557,805 

TFAP2E TTATTATAATTGGAGTGTATGG
AGTAGG 

ACAAAAAAATTAAAAAATCCAAC
AC 

chr1:36,038,876-36,039,325 
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Figure 2.1: Scatter plots of DNA methylation values according to chronological age in 3 

CpG sites/units of the amplicons MAFG / SIRT7 (left panel), ELOVL2 (middle panel) and 

EDARADD (right panel).  
For each CpG site/unit, the line represents the linear regression line in controls (SIRT7: R2 =-0.36, p-value = 

5.68-11; ELOVL2: R2 =0.85, p-value < 2.2-16; EDARADD: R2 =-0.59, p-value < 2.2-16).  

 

2.3.3 Statistical prediction model 

The DNA methylation values of the six selected regions obtained in 278 control subjects 

with age range between 20 and 80 years old were used to build our ridge regression model for 

epigenetic age prediction. The model provided an accurate estimation of chronological age (R2 

= 0.92, p-value < 2.2e-16) (Figure 2.2). The Mean Absolute Deviation (MAD) between 

predicted epigenetic age and chronological age was equal to 4.70 years.  

 

 

 

 
 
 
 
 
 
 
 
 

 

Figure 2.2: Association of chronological age (x-axis) and predicted epigenetic age (y-axis) 

in control subjects with age range 20-80 years old. 
The line represents a fitted linear regression (R2 = 0.92, p-value < 2.2-16). 
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2.3.4 Application of the epigenetic age predictor: age-acceleration and age 

deceleration models 

 Our model was evaluated for its predictivity of biological age by testing its capability 

to identify age-acceleration and age-deceleration effects in the different cohorts mentioned in 

the Methods section. Firstly, we applied our model to a cohort of subjects with DS. DS is 

classified as a progeroid disease and evidence suggests that DS subjects are characterized by 

an acceleration of the aging process, atypical and segmental, affecting particularly the immune 

and central nervous systems (Zigman 2013; Franceschi et al. 2019; Gensous et al. 2019). From 

a biological perspective, DS subjects also exhibit features of accelerated aging, as it has been 

demonstrated with the Horvath’s clock (Horvath, Garagnani, et al. 2015), with the GlycoAge 

index (Borelli et al. 2015) and with the brain age index (Cole et al. 2017). Here, we applied our 

model in a cohort of 75 subjects with DS, with chronological age ranging from 12 to 66 years 

old. We found that DS subjects exhibited a highly significant age acceleration effect, with an 

average age acceleration (AgeAccel) of 11.2 years (p-value < 0.0001 as compared to age-

matched controls (Wilcoxon-Mann-Whitney test)). The magnitude of the age-acceleration 

effect observed with our model in DS subjects is important and higher than the one observed 

with the Horvath’s model in blood (4.25 years) (Horvath, Garagnani, et al. 2015). 

On the contrary, centenarians and their offspring are considered as extraordinary models 

to study longevity and successful/healthy aging. Centenarians have delayed morbidity, as most 

of them avoid or largely postpone age-related diseases. Centenarians’ offspring, and more 

generally relatives of long-lived subjects, are healthier than subjects non-related to long-lived 

parents. They have a significant survival advantage, a higher probability to become themselves 

long-lived and a lower risk to develop major age-related diseases (Terry, Wilcox, McCormick 

& Perls 2004; Terry et al. 2003; Terry, Wilcox, McCormick, Pennington, et al. 2004; Bucci et 

al. 2016). It has previously been demonstrated that long-lived individuals have lower epigenetic 

age (Horvath, Pirazzini, et al. 2015b; Armstrong et al. 2017). Here, we applied our model to a 

cohort of 106 centenarians and 123 centenarians’ offspring, recruited in Italy. We found that 

both populations were significantly epigenetically younger than controls: the average AgeAccel 

measure was equal to – 8.61 years in centenarians (p-value < 0.0001) and equal to – 1.47 years 

in centenarians’ offspring (p-value = 0.047 as compared to age-matched controls) (Table 2.4).  
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Table 2.4: Epigenetic age and measures of epigenetic age acceleration (AgeAccel) in the 

different groups.  
SD: standard deviation. 

 
 
Figure 2.3 represents the correlation between predicted epigenetic age and chronological age, 

while Figure 2.4 represents the measure of epigenetic age acceleration (AgeAccel) in the 

different groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Correlation between chronological age (x-axis) and predicted epigenetic age 

(y-axis) in the different groups.  
The red represents the linear regression in controls with age range 20-80 years old (R2 = 0.92, p-value < 2.2-16). 

The yellow line represents the bisector. Individuals above the red line are characterized by an epigenetic age 

acceleration phenomenon, whereas individuals below present an epigenetic age deceleration.  

  

Group 
Number of 

subjects 
Chronological age 

(mean±SD) 

Epigenetic Age 
(mean±SD) 

AgeAccel 
(mean±SD) 

Down syndrome  75 33.49 ± 12.9 47.87 ± 29.1 + 11.17 ± 27.0 

Centenarians 106 101.52 ± 2.4 85.95 ± 10.7 - 8.61 ± 10.7 

Centenarians’ 

offspring 
143 70.06 ± 6.7 66.24 ± 9.0 - 1.56 ± 8.6 
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Figure 2.4: Boxplots of predicted epigenetic age acceleration in the different groups.  

By definition, controls are characterized by an average epigenetic age acceleration equal to 0.  

 

2.3.5 Application of the epigenetic age predictor: impact of a nutritional intervention 

We applied our model to the samples collected within the NU-AGE project, in order to 

evaluate the impact of the one-year nutritional intervention. As compared to the study 

performed with the Illumina® Infinium 450K platform and presented in Part One, we decided 

to perform DNA methylation analysis on all available DNA samples from Italian and Polish 

subjects of the NU-AGE intervention group (Berendsen et al. 2014). Thus, we performed the 

analysis in 233 individuals, distributed as 124 Italian subjects and 109 Polish ones. 

For each individual, we calculated a predicted epigenetic age at baseline (T0) and after 

one-year of nutritional intervention (T1), as well as a measure of epigenetic age acceleration, 

AgeAccel (Table 2.5). There was no statistically significant difference in terms of 

chronological age between the groups. However, Polish subjects had significantly higher 

predicted epigenetic age and AgeAccel values at baseline, as compared to Italian subjects (t-

test p-value = 0.047 for predicted epigenetic age and 0.0124 for AgeAccel). Polish females had 

higher baseline AgeAccel values as compared to Italian females (mean = 1.20 vs -2.28; p-value 

= 0.036), whereas the difference was not statistically significant between Polish males and 

Italian males (p-value = 0.174). Predicted epigenetic age were significantly associated with 
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chronological age (p-value < 0.05) (Figure 2.5 and Figure 2.6), although the correlation was 

weak (global correlation coefficient for all subjects = 0.273).  

 

 

Table 2.5: Baseline characteristics of the Italian and Polish subjects included in the NU-

AGE project.  
SD: standard deviation. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.5: Association of chronological age (x-axis) and predicted epigenetic age (y-axis) 

in all individuals tested, at T0 (blue) and T1 (red). 
Lines represent fitted linear regressions (T0: R2 = 0.34, p-value = 1.2-07; T1: R2 = 0.23, p-value = 0.0005). Yellow 

line represents the bisector.  

 

  

Country Italy Poland 

Subjects       (n) 124 109 

Males / Females           (n) 60 / 64 45 / 64 

Chronological age 
(years), mean ± SD 

72.16 ± 3.8 71.58 ± 4.0 

Epigenetic age 
(years), mean ± SD 

67.19 ± 9.7 69.90 ± 10.9 

AgeAccel 
(years), mean ± SD 

-2.40 ± 9.2 0.80 ± 10.2 
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Figure 2.6: Association of chronological age (x-axis) and predicted epigenetic age (y-axis) 

in NU-AGE subjects at T0 (blue) and T1 (red), according to country and sex.  
Lines represent fitted linear regressions (Italy T0: R2 = 0.34, p-value = 0.0001; Italy T1: R2 = 0.16, p-value = 0.07; 

Poland T0: R2 = 0.36, p-value = 0.0001; Poland T1: R2 = 0.30, p-value = 0.002).  

 

In the 120 subjects for which genome-wide DNA methylation analysis was available, 

we evaluated the association between epigenetic age predicted with our model and DNAm age 

predicted with Horvath’s model. We observed a statistically significant association between the 

two sets of values (p-value < 0.001), although the correlation was low (coefficient = 0.29) 

(Figure 2.7).  

 

 

 

 

 

 

 

 

 

Figure 2.7: Association of DNAmAge calculated with Horvath’s model (x-axis) and 

predicted epigenetic age (y-axis) in NU-AGE subjects at T0 (blue) and T1 (red). 
Lines represent fitted linear regressions (T0: R2 = 0.35, p-value = 7.9-05; T1: R2 = 0.20, p-value = 0.03). 
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In both Italian and Polish subjects, epigenetic age acceleration measures at baseline were 

significantly associated (p<0.05) with those obtained after the nutritional intervention (Figure 

2.8). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Association between epigenetic age acceleration measure at baseline and after 

one year of nutritional intervention.  
Scatter plots of AgeAccel at T0 (x-axis) versus T1 (y-axis). Males and females subjects are indicated with cyan 

and pink circles respectively. Lines represent fitted linear regression lines models in all subjects (grey) (Italy: R2 

= 0.21, p-value = 0.0195; Poland: R2 = 0.35, p-value = 0.0002), males (cyan) and females (pink). Grey dotted lines 

represent the bisector (AgeAccel at T0 and T1 equal to 0). 
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We evaluated the impact of the one-year Mediterranean-like diet on the epigenetic 

measures of age acceleration, by comparing for each subject AgeAccel values at baseline with 

the ones obtained at T1. We observed a significant rejuvenation of the individuals after one-

year of nutritional intervention (Student’s paired t-test p-value = 0.0023) (Figure 2.9).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Boxplots of predicted epigenetic age acceleration at T0 (blue) and T1 (red).  

 

When we divided samples according to country and gender, we observed that the effect 

was related to a rejuvenation of Polish subjects (p=0.010), and specially of Polish females (p-

value = 0.016) (Figure 2.10). 
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Figure 2.10: Boxplots of epigenetic age acceleration measures at T0 (blue) and T1 (red) 

considering all the subjects (left panel), only males (middle panel) and only females (right 

panel).  

 

 For each subject, we calculated the intra-pair difference between AgeAccel at T1 and 

AgeAccel at T0 (AgeAccel Diff), defined as AgeAccel at T1 – AgeAccel at T0 (Figure 2.11). 

Here also, a negative value indicates an epigenetic rejuvenation. 

Figure 2.11: Individual-specific response to the nutritional intervention according to 

AgeAccel measure. 
Barplots of intrapair differences for AgeAccel measures (Blue: males; Pink: females).  
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As we did for the epigenetic age acceleration measures obtained with Horvath’s model, 

we assessed if AgeAccel Diff values were related to AgeAccel values at baseline (Figure 2.12). 

In Polish subjects, we observed that the effect of the nutrition intervention was more marked in 

subjects displaying high values of AgeAccel at baseline. Comprehensively, these results are 

similar to the ones observed with the measures of epigenetic age acceleration calculated 

according to the Horvath’s clock and presented in the first part of this work.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12: Scatter plots of epigenetic age acceleration measure at T0 (x-axis) versus 

epigenetic age acceleration measures difference between T1-T0 (y-axis).  
Males and females subjects are indicated with cyan and pink circles respectively.

−40 −20 0 20 40

−4
0

−2
0

0
20

40

Italy

AgeAccel T0

Ag
eA

cc
el

 T
1 
− 

Ag
eA

cc
el

 T
0

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
● ●

●

●

●

54

29

8

33

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

−40 −20 0 20 40

−4
0

−2
0

0
20

40

Poland

AgeAccel T0

Ag
eA

cc
el

 T
1 
− 

Ag
eA

cc
el

 T
0

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

31

26

12

40



Discussion 
 

 54  

 

 

 

 

Discussion



Discussion 
 

 55  

It is of critical importance to understand the factors influencing health in old age and to 

develop strategies which may modulate the aging trajectory, decrease morbidity and increase 

the number of elderlies in good health. To this regard, lifestyle modifications, and especially 

nutritional interventions, appear to be promising strategies to impact on aging. In our work, we 

were particularly interested in the impact of Mediterranean diet, one of the most popular dietary 

patterns in Southern Europe that has long been associated with health benefits. We evaluated 

the effects of a one-year Mediterranean-like diet, newly designed according to the nutritional 

needs of people over 65 years of age and delivered within the framework of the European 

project NU-AGE (Berendsen et al. 2014), on epigenetic age acceleration measures. We 

demonstrated that the nutritional intervention can slow down the epigenetic aging rate of blood 

in specific groups of participants. This rejuvenation effect was observed initially with the 

measures derived from Horvath’s epigenetic clock model and was further confirmed with our 

gene-targeted model developed with the Agena EpiTYPER® system. Interestingly, the 

protective effect of the whole diet on the epigenetic age appears to be both country and sex-

specific, as Polish, and especially Polish females, appear to benefit the more from the 

intervention, according to the measures of epigenetic age acceleration. Epigenetic aging rates 

have been previously described as influenced by race/ethnicity (Horvath, Gurven, et al. 2016) 

and sex (Horvath, Gurven, et al. 2016; Xiao et al. 2018), and we also demonstrated here that 

the epigenetic response to an intervention can be influenced by these parameters. It is likely 

that the observed differences between males and females are not only related to pure biological 

differences (for example, differences in body composition (Santoro et al. 2018)), but also to 

anthropologic and cultural components (such as levels of education, cooking or willingness to 

stick to the nutritional advices for example). While population and sex-specificities appear 

clearly in this work, inter-individual differences intervene also in the response to the nutritional 

intervention. Firstly, subjects that were epigenetically older at baseline (i.e. subjects with higher 

epigenetic age acceleration values at T0) had a more marked effect of the nutritional 

intervention and seemed to benefit the more of the effects of the Mediterranean-like diet. 

Secondly, according to our GWAS performed in the first part of this work on the epigenetic 

acceleration measures calculated with Horvath’s model, some genetic variants influence the 

response to the intervention. GWAS results were largely overlapping between AgeAccel and 

IEAA analysis. Furthermore, enrichment analysis suggested that both epigenetic age 

acceleration measures were associated to genetic variants in genes involved in pathways related 

to the regulation of cell metabolism and immune function. Among the gene sets associated to 

AgeAccel differences between T1 and T0, it is worth to note the presence of the mTOR 
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pathway, which plays a pivotal role in the regulation of nutrients-sensing and energy 

metabolism during aging (Lushchak et al. 2019; Cummings & Lamming 2017; Tosti et al. 

2018). In animal models, it has been previously demonstrated the influence of a genetic 

component in the response to a nutritional intervention, such as caloric restriction (Liao et al. 

2010). Liao et al. observed that lifespan expansion by caloric restriction was not universal in 

mice and was highly dependent on the strain of the animals, suggesting the important influence 

of the genotype in the caloric restriction effect (Liao et al. 2010). In humans, this problematic 

has been poorly investigated. Previous reports have evaluated the association between genetic 

background and epigenetic age acceleration in different tissues (Lu et al. 2018; Lu et al. 2016; 

Lu et al. 2017), but little is known about the influence of genetics on the response to a nutritional 

intervention. In a recent study, the effects of dietary supplementation with folic acid and vitamin 

B12 on epigenetic age deceleration were found dependent upon gender and MTHFR genotype 

(Sae-Lee et al. 2018). Only the group of women with the MTHFR 677CC genotype displayed 

a deceleration in epigenetic aging upon vitaminic supplementation (Sae-Lee et al. 2018).  

Furthermore, our work underlines the importance of DNAm clocks as biomarkers of 

aging and suggests that they may represent accurate tools to measure the effectiveness of 

lifestyle-based strategies that prolong healthy living (Mitteldorf 2019). During the last seven 

years, evidence has accumulated on the robustness of epigenetic clocks, successfully associated 

with prediction of mortality or morbidity in humans (Horvath & Raj 2018; BLUEPRINT 

consortium 2016). Epigenetic clock models have been successfully developed in animals, 

especially in mice and rats models (Wang et al. 2017; Petkovich et al. 2017; Stubbs et al. 2017; 

Maegawa et al. 2017; Thompson et al. 2018; Meer et al. 2018; Thompson et al. 2017; 

Polanowski et al. 2014). These animal models are of particular interest because they have the 

potential to provide new insights on the relationships between DNAm biomarkers and 

interventions which are intended to increase the lifespan and cannot be easily performed in 

humans, such as caloric restriction (i.e. reduction of caloric intake without causing malnutrition) 

for example. Thus, it has been demonstrated that animals under caloric restriction are 

significantly younger regarding their epigenetic age as compared to their untreated counterparts 

(Maegawa et al. 2017; Wang et al. 2017; Stubbs et al. 2017; Petkovich et al. 2017; Thompson 

et al. 2018). On the contrary, lifestyle interventions that are known to shorten lifespan in mice 

(ovariectomy, high fat diet) are associated with significant epigenetic age acceleration (Stubbs 

et al. 2017). 

In this work, we presented a new model, assessable with a different technology than the 

previously developed ones, that could be of interest in broad clinical settings, in light of the 
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cost-effectiveness of the technique. After deep analysis of literature and evaluation of potential 

targets of interest in publicly available and own proprietary Illumina® Infinium datasets, we 

came to a restricted list of 6 candidate genomic regions. In order to optimize the prediction of 

chronological age, we decided to include three sites that were present in previously published 

epigenetic clocks, and we included regions with high levels of correlation between DNA 

methylation levels and chronological age, such as ELOVL2, which has been previously reported 

as one of the most robust age predictors and incorporated in several forensic age predictors so 

far (Garagnani et al. 2012; Zbieć-Piekarska, Spólnicka, Kupiec, Makowska, et al. 2015, p.2; 

Spólnicka et al. 2018, p.2; Jung et al. 2019, p.2). On the other hand, we considered CpG sites 

that could better reflect differences in the rates of aging, i.e. sites that could better reflect the 

biological age of the individuals. Thus, we considered sites described by Slieker et al. as age-

related variably methylated positions (aVMPs), i.e. sites with a dependency of variance with 

age (Slieker et al. 2016). Finally, we integrated one site (associated with AIM2 gene) which 

showed an important association between DNA methylation and serum CRP levels (Ligthart et 

al. 2016). Chronic, sterile, low-grade inflammation during aging, designed under the term 

inflammaging (Franceschi et al. 2000), is known to contribute to age-associated diseases 

(Franceschi & Campisi 2014) and serum CRP levels can served as sensitive markers of this 

phenomenon. In a GWAS performed in European and African Americans individuals, Ligthart 

et al. identified 58 CpG sites associated with CRP levels, among which the most significant one 

was cg10636246, associated with AIM2 gene and that was thus further considered for our model 

(Ligthart et al. 2016).  

The six selected regions were analyzed with Agena EpiTYPER® technology in a cohort 

of 315 apparently healthy individuals, previously included in other studies performed in our 

laboratory. Among these subjects, 278 had a chronological age ranging from 20 to 80 years old 

and were subsequently used for the construction of our epigenetic age predictor. Our model 

provides a mean absolute age prediction error of 4.70 years in all healthy subjects and a good 

correlation between predicted epigenetic age and chronological age. Notably, the application 

of our model to the NU-AGE cohort overall confirmed the results of Horvath's epigenetic clock, 

further suggesting that measures of epigenetic age acceleration in humans may respond to 

changes in lifestyle and thus could be a viable and helpful option to follow the impact of anti-

ageing interventions. Further optimizations and refinements of the clocks, which could be 

tailored for specific indications, specific age range, or specific diseases, are needed.  One major 

limit of the technique used to measure DNA methylation levels with the Agena EpiTYPER® 

system is the difficulty to normalize and preprocess data before the analysis. While several 
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normalization procedures and pipelines exist for DNA methylation data obtained with the 

different Illumina® Infinium platforms (Yousefi et al. 2013; Wang et al. 2015), this is not the 

case for the gene-targeted approach we used here. Different runs of DNA methylation analysis 

with the Agena EpiTYPER® system were necessary to obtain data in all the subjects of interest 

(both controls and cases). Batch variability, variations among technical replicates in the absence 

of data normalization can introduce potential bias in the model and in its application to other 

large sample size cohorts, potentially reducing or increasing meaningful findings. 

Environmental factors, including diet, are able to modify the epigenome (Bacalini et al. 

2014; ElGendy et al. 2018), and cross-sectional associations between epigenetic age 

acceleration measures and dietary patterns have been previously described (Quach et al. 2017; 

Levine et al. 2018). However, data from longitudinal studies on a possible rejuvenation of 

epigenetic age with dedicated therapeutic or lifestyle interventions are few. Two works have 

been recently published on this topic. Firstly, Pavanello et al. examined the hypothesis that an 

intensive relaxing training of 60 days may influence epigenetic age by turning back the 

epigenetic clock (Pavanello et al. 2019). They observed a trend to a reduction in DNAm age 

(estimated with the model proposed by Zbiec-Piekarska et al. (Zbieć-Piekarska, Spólnicka, 

Kupiec, Parys-Proszek, et al. 2015)) after training in 6 healthy subjects (p = 0.053), but not in 

patients after myocardial infarction. Secondly, the effect of a protocol intended to ‘rejuvenate 

the thymus’ (TRIIM trial) was examined by Horvath’s team (Fahy et al. 2019). The one-year 

intervention, composed of recombinant human growth hormone, dehydroepiandrosterone and 

metformin, was delivered to 9 healthy aging men (age range: 51 – 65 years old). A rejuvenating 

effect on four epigenetic age predictors (Horvath’s, Hannum’s, Levine’s clocks and GrimAge) 

was observed, with a mean change of about 2.5 years. The intervention was also associated 

with a protective effect on different immunosenescence biomarkers (reversal of thymic 

involution, increase in both naïve CD4+ and CD8+ T cells) and the effect persisted six months 

after discontinuing the treatment. Data regarding the impact of nutritional intervention are 

lacking and, to our knowledge, our study is the first longitudinal and interventional study to 

examine effects of such an intervention on epigenetic age acceleration measures in human blood 

cells. According to our results, a one-year nutritional intervention could be able to rewind the 

epigenetic AA process in some specific groups. The discrepancy between the slowdown 

obtained with AgeAccel and IEAA measures on one hand, and the absence of effect observed 

with EEAA measure on the other hand seems to be of particular interest. Indeed, the three 

measures of epigenetic AA we studied in the first part of this work do not capture the same 

features of biological aging. By their very own construction, IEAA is considered as a measure 
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of epigenetic age acceleration independent of age-related changes in the cellular composition 

of blood, whereas EEAA is more meant to capture the age-related decline of the immune 

system. Here, we did not observe any significant impact of the nutritional intervention on this 

decline according to the EEAA measure. These results therefore suggest that the 

Mediterranean-like diet has a pure rejuvenating impact on the biological clock, and that this 

result is unconfounded by a potential effect of the intervention on the immune system. 

 

Collectively, our results indicated that Mediterranean-like diet can promote epigenetic 

rejuvenation in the elderly, according to two models of biomarkers of epigenetic aging, and that 

its effect is dependent on different factors including: 1) country / population specific factors, 

likely influenced by anthropologic and cultural components; 2) sex / gender specific factors and 

3) individual-specific factors, for example related to the genetic background and to the baseline 

epigenetic profile of each individual (Figure 3). Further work is required to elucidate how these 

and other determinants influence the epigenetic aging and how some individuals seem to be 

more prone to benefit from specific interventions. This will be a key achievement for the 

development of individualized nutritional interventions aimed at promoting healthy living and, 

more in general, for the application of a precision medicine approach to anti-aging 

interventions.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: A precision medicine approach for nutritional interventions.
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Abstract 
 

There is a need to identify factors that are able to influence health in old age and to 

develop interventions that could slow down the process of aging and its associated pathologies. 

Lifestyle modifications, and especially nutrition, appear to be promising strategies to promote 

healthy aging. Their impact on aging biomarkers has been poorly investigated. In the first part 

of this work, we evaluated the impact of a one-year Mediterranean-like diet, delivered within 

the framework of the NU-AGE project in 120 elderly subjects, on epigenetic age acceleration 

measures assessed with Horvath’s clock. We observed a rejuvenation of participants after 

nutritional intervention. The effect was more marked in the group of Polish females and in 

subjects who were epigenetically older at baseline. In the second part of this work, we 

developed a new model of epigenetic biomarker, based on a gene-targeted approach with the 

EpiTYPER® system. We selected six regions of interest (associated with ELOVL2, NHLRC1, 

SIRT7/MAFG, AIM2, EDARADD and TFAP2E genes) and constructed our model through a 

ridge regression analysis. In controls, estimation of chronological age was accurate, with a 

correlation coefficient between predicted and chronological age of 0.92 and a mean absolute 

deviation of 4.70 years. Our model was able to capture phenomena of accelerated or decelerated 

aging, in Down syndrome subjects and centenarians and offspring respectively. Applying our 

model to samples of the NU-AGE project, we observed similar results to the ones obtained with 

the canonical epigenetic clock, with a rejuvenation of the individuals after one-year of 

nutritional intervention. Together, our findings indicate that nutrition can promote epigenetic 

rejuvenation and that epigenetic age acceleration measures could be suitable biomarkers to 

evaluate their impact. We demonstrated that the effect of the dietary intervention is country-, 

sex- and individual-specific, thus suggesting the need for a personalized approach to nutritional 

interventions. 


