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Chapter 1

Abstract

Providing support for multimedia applications on low-power mobile devices

remains a significant research challenge. This is primarily due to two reasons:

• Portable mobile devices have modest sizes and weights, and therefore

inadequate resources, low CPU processing power, reduced display ca-

pabilities, limited memory and battery lifetimes as compared to desktop

and laptop systems.

• On the other hand, multimedia applications tend to have distinctive QoS

and processing requirements which make them extremely resource-demanding.

This innate conflict introduces key research challenges in the design of multi-

media applications and device-level power optimization.

Energy efficiency in this kind of platforms can be achieved only via a syn-

ergistic hardware and software approach. In fact, while System-on-Chips are

more and more programmable thus providing functional flexibility, hardware-

only power reduction techniques cannot maintain consumption under accept-

able bounds.

It is well understood both in research and industry that system configura-

tion and management cannot be controlled efficiently only relying on low-level

firmware and hardware drivers. In fact, at this level there is lack of information

about user application activity and consequently about the impact of power

management decision on QoS.

Even though operating system support and integration is a requirement

for effective performance and energy management, more effective and QoS-

sensitive power management is possible if power awareness and hardware

configuration control strategies are tightly integrated with domain-specific mid-

dleware services.
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The main objective of this PhD research has been the exploration and the

integration of a middleware-centric energy management with applications and

operating-system. We choose to focus on the CPU-memory and the video sub-

systems, since they are the most power-hungry components of an embedded

system. A second main objective has been the definition and implementation

of software facilities (like toolkits, API, and run-time engines) in order to im-

prove programmability and performance efficiency of such platforms.

Enhancing energy efficiency and programmability of modern Multi-Processor

System-on-Chips (MPSoCs)

Consumer applications are characterized by tight time-to-market constraints

and extreme cost sensitivity. The software that runs on modern embedded

systems must be high performance, real time, and even more important low

power. Although much progress has been made on these problems, much

remains to be done.

Multi-processor System-on-Chip (MPSoC) are increasingly popular plat-

forms for high performance embedded applications. This leads to interesting

challenges in software development since efficient software development is a

major issue for MPSoc designers.

An important step in deploying applications on multiprocessors is to allo-

cate and schedule concurrent tasks to the processing and communication re-

sources of the platform. The problem of allocating and scheduling precedence-

constrained tasks on processors in a distributed real-time system is NP-hard.

There is a clear need for deployment technology that addresses these multi pro-

cessing issues. This problem can be tackled by means of specific middleware

which takes care of allocating and scheduling tasks on the different processing

elements and which tries also to optimize the power consumption of the entire

multiprocessor platform.

This dissertation is an attempt to develop insight into efficient, flexible and

optimal methods for allocating and scheduling concurrent applications to mul-

tiprocessor architectures.

It is a well-known problem in literature: this kind of optimization prob-

lems are very complex even in much simplified variants, therefore most au-

thors propose simplified models and heuristic approaches to solve it in reason-

able time. Model simplification is often achieved by abstracting away platform

implementation ”details”. As a result, optimization problems become more

tractable, even reaching polynomial time complexity. Unfortunately, this ap-

proach creates an abstraction gap between the optimization model and the real

HW-SW platform. The main issue with heuristic or, more in general, with in-

complete search is that they introduce an optimality gap of unknown size. They
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provide very limited or no information on the distance between the best com-

puted solution and the optimal one.

The goal of this work is to address both abstraction and optimality gaps,

formulating accurate models which accounts for a number of ”non-idealities”

in real-life hardware platforms, developing novel mapping algorithms that de-

terministically find optimal solutions, and implementing software infrastruc-

tures required by developers to deploy applications for the target MPSoC plat-

forms.

Energy Efficient LCD Backlight Autoregulation on Real-Life Multimedia Ap-

plication Processor

Despite the ever increasing advances in Liquid Crystal Display’s (LCD) tech-

nology, their power consumption is still one of the major limitations to the bat-

tery life of mobile appliances such as smart phones, portable media players,

gaming and navigation devices. There is a clear trend towards the increase of

LCD size to exploit the multimedia capabilities of portable devices that can re-

ceive and render high definition video and pictures. Multimedia applications

running on these devices require LCD screen sizes of 2.2 to 3.5 inches and more

to display video sequences and pictures with the required quality.

LCD power consumption is dependent on the backlight and pixel matrix

driving circuits and is typically proportional to the panel area. As a result, the

contribution is also likely to be considerable in future mobile appliances. To

address this issue, companies are proposing low power technologies suitable

for mobile applications supporting low power states and image control tech-

niques.

On the research side, several power saving schemes and algorithms can be

found in literature. Some of them exploit software-only techniques to change

the image content to reduce the power associated with the crystal polarization,

some others are aimed at decreasing the backlight level while compensating

the luminance reduction by compensating the user perceived quality degrada-

tion using pixel-by-pixel image processing algorithms. The major limitation of

these techniques is that they rely on the CPU to perform pixel-based manip-

ulations and their impact on CPU utilization and power consumption has not

been assessed.

This PhD dissertation shows an alternative approach that exploits in a smart

and efficient way the hardware image processing unit almost integrated in ev-

ery current multimedia application processors to implement a hardware as-

sisted image compensation that allows dynamic scaling of the backlight with

a negligible impact on QoS. The proposed approach overcomes CPU-intensive

techniques by saving system power without requiring either a dedicated dis-
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play technology or hardware modification.

Thesis Overview

The remainder of the thesis is organized as follows.

The first part is focused on enhancing energy efficiency and programma-

bility of modern Multi-Processor System-on-Chips (MPSoCs). Chapter 2 gives

an overview about architectural trends in embedded systems, illustrating the

principal features of new technologies and the key challenges still open. Chap-

ter 3 presents a QoS-driven methodology for optimal allocation and frequency

selection for MPSoCs. The methodology is based on functional simulation

and full system power estimation. Chapter 4 targets allocation and schedul-

ing of pipelined stream-oriented applications on top of distributed memory

architectures with messaging support. We tackled the complexity of the prob-

lem by means of decomposition and no-good generation, and prove the in-

creased computational efficiency of this approach with respect to traditional

ones. Chapter 5 presents a cooperative framework to solve the allocation,

scheduling and voltage/frequency selection problem to optimality for energy-

efficient MPSoCs, while in Chapter 6 applications with conditional task graph

are taken into account. Finally Chapter 7 proposes a complete framework,

called Cellflow, to help programmers in efficient software implementation on

a real architecture, the Cell Broadband Engine processor.

The second part is focused on energy efficient software techniques for LCD

displays. Chapter 8 gives an overview about portable device display technolo-

gies, illustrating the principal features of LCD video systems and the key chal-

lenges still open. Chapter 9 shows several energy efficient software techniques

present in literature, while Chapter 10 illustrates in details our method for sav-

ing significant power in an LCD panel.

Finally, conclusions are drawn, reporting the main research contributions

that have been discussed throughout this dissertation.
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Introduction

2.1 Trends in Embedded Systems: A Consumers Per-

spective

The number of consumer electronics devices sold worldwide is growing rapidly.

A total of 2.1 billion consumer electronics devices with a total value of $1.3 tril-

lion were sold worldwide in 2006. It is expected that by 2010 this has grown

to over 3 billion devices with a total value of around $1.6 trillion [1]. Most

of these devices contain one or more processors that are used to realize the

functionality of the device. This type of devices are called embedded systems.

Embedded systems range from portable devices such as digital cameras and

MP3-players, to systems like a television or the systems controlling the flight

of an airplane. These systems are everywhere around us in our daily live. Most

of them are becoming intelligent micro-systems that interact with each other,

and with people, through (wireless) sensors and actuators. Embedded systems

form the basis of the so-called post-PC era [2], in which information process-

ing is more and more moving away from just PCs to embedded systems. This

trend is also signaled by ubiquitous computing [3], pervasive computing [4]

and ambient intelligence [5]. These three visions describe all a world in which

people are surrounded by networked embedded systems that are sensitive to

their environment and that adapt to this environment. Their objective is to

make information available anytime, anywhere. Embedded systems provide

the necessary technology to realize these visions [6]. Realization of these vi-

sions implies that the number of embedded systems surrounding us in our

daily lives will increase tremendously.

An important subclass of embedded systems are embedded multimedia

systems. These systems combine multiple forms of information content and

information processing (e.g. audio, video, animations, graphics) to inform or
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Figure 2.1: Embedded multimedia systems: PlayStation 3 and iPhone.

entertain the user. Examples of such systems are mobile phones, game con-

soles, smart cameras and set-top boxes. Many of the applications that perform

the information processing in these systems process audio, video and anima-

tion. These types of data are inherently streaming. So, many embedded multi-

media systems contain streaming applications [7]. These applications typically

perform a regular sequence of transformations on a large (or virtually infinite)

sequence of data items.

The functionality integrated into new embedded multimedia systems is

ever increasing. The Sony PlayStation has, for example, transformed itself from

a simple game console to a complete entertainment center. It not only allows

users to play games, it can also be used to watch movies, listen to music and

to browse the Internet or chat online with other PlayStation 3 users. Another

example of a true multimedia platform is the Apple iPhone. It includes many

different applications next to the mobile-phone functionality. It has, for exam-

ple, a wide-screen LCD display that allows users to watch movies and browse

through their collection of photos that are taken with the build-in camera. The

phone contains also an MP3-player which allows users to listen for up-to 16

hours to their favorite music. While traveling, users can also use the phone

to browse the Internet, send emails or use online navigation software such as

Google-maps. It is expected that even more functions will be integrated into fu-

ture embedded multimedia systems. This trend was already signaled by Vaan-

drager in 1998 who stated that ”for many products in the area of consumer
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electronics the amount of code is doubling every two years” [8].

Current embedded multimedia systems have a robust behavior. Consider

for example a modern high-end television system. Such a system splits the in-

coming video stream from its accompanying audio stream. Many different pic-

ture enhancement algorithms are executed on the video stream to improve its

quality when displayed on the screen. Despite the complex processing going

on inside the television, the video and audio stream are output in sync on the

screen and the speakers. Consumers expect that future embedded multimedia

systems provide the same robust behavior as current systems have despite the

fact that more and more media processing is performed in software [9].

In summary, the following trends in embedded (multimedia) systems are

observed from the perspective of consumers.

• The number of embedded systems surrounding people in their daily lives

is growing rapidly, and these systems are becoming connected more and

more often.

• Increasingly more functionality is integrated into a single multimedia

system.

• Users expect the same seamless behavior of all functions offered by novel

multimedia systems as offered by existing systems.

2.2 Trends in Embedded Systems: A Designers Per-

spective

The previous section outlines the most important trends in the field of embed-

ded systems from the perspective of consumers. It shows that embedded sys-

tems have to handle an increasing number of applications that are concurrently

executed on the system. At the same time, guarantees must be provided on the

behavior of each application running on the system. This section considers the

same systems, but it looks at the trends visible in their design(-process).

The omnipresence of embedded systems in people’s lives is leading to a

tremendous increase in the amount of data that is being used. Today, people

have gigabytes of photos, music and video on their systems. That data must

be processed in real-time to be made useful. Embedded systems must provide

the required computational power to do this. At the same time, their energy

consumption should be kept at a minimum as many of these devices are bat-

tery powered (e.g., mobile-phone, MP3-player, digital-camera). To fulfill these

requirements, the use of multi-processor systems-on-chip (MP-SoCs) is becom-

ing increasingly popular [10], [11]. For example, Intel has shifted from increas-
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Figure 2.2: Current and expected eras for Intel processor architectures [12].

ing the clock frequency of every processor generation to a strategy in which

multiple cores are integrated on a single chip. This paradigm shift is outlined

in their platform 2015 vision [12]. It describes the expected evolution of In-

tel processor architectures from single core systems, via multi-core systems

toward many-core systems (see Figure 2.2). The Cell architecture [22] that is

used in the PlayStation 3 is another example that shows the increasing popu-

larity of MP-SoCs. It combines a PowerPC core with 8 synergetic processors

that are used for data-intensive processing. A third example is the Nexperia

digital video platform [14] from NXP. It supports digital television, home gate-

way and networking, and set-top box applications. An advanced member of

the Nexperia family is the PNX8550 that combines two TriMedia processors, a

MIPS processor and several hardware accelerators in a single chip.

The growing complexity of embedded multimedia systems leads to a large

increase in their development effort. At the same time, the market dynam-

ics for these systems push for shorter and shorter development times. It will

soon be obligatory to keep to a strict design time budget that will be as small

as six months to go from initial specification to a final and correct implemen-

tation [15]. Furthermore, the non-recurring engineering cost associated with

the design and tooling of complex chips is growing rapidly. The International

Technology Roadmap for Semiconductors (ITRS) predicts that while manufac-

turing complex Systems-on-Chip will be feasible, the production cost will grow

rapidly as the costs of masks is raising drastically [16]. To address these issues,
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Figure 2.3: Design-space exploration strategies.

a platform- based design methodology is proposed in [17], [15]. The objective

of this design methodology is to increase the re-use across different products

that share certain functionality and the re-use between different product gen-

erations. The first form of re-use decreases the production cost as the same

hardware can be used in more products. The second form of re-use lowers the

development time as functionality implemented for a product does not have

to be re-implemented for a successor product. The traditional design method-

ology is a single monolithic flow that maps an application onto an architecture

(see Figure 2.3(a)). It starts with a single application which is shown at the top

of Figure 2.3(a). The bottom of the figure shows the set of architectures that

could support this application. The design process (black arrow) selects the

most attractive solution as defined by a cost function. Synthesis of this archi-

tecture is often an explicit objective of the design methodology [7], [18].

The platform-based design methodology [17], [15] no longer maps a single

application to an architecture that is optimal for this single application. In-

stead, it maps an application onto a hardware/software platform that can also

be used for different applications from the same application space (see Figure

2.3(b)). This platform consists of a set of interconnected hardware components

(e.g., processors, memories, etc.), potentially software components with, for ex-

ample, operating-system type of functionality and an application program in-
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terface (API) that abstracts from the underlying hardware and software. This

API allows replacing one platform instance from the architecture space with

another platform instance without the need to re-implement the application

on the platform. The platform-based design methodology stimulates the use

of a common ”platform” denominator between multiple applications from the

same application space. As a result, future design flows that map an appli-

cation to a platform will focus on compiling an application onto an existing

platform [15].

The trends signaled above show that the context in which applications are

executed is becoming more dynamic. In future systems, multiple applications

are running concurrently on an MP-SoC, and the set of active applications may

change over time. At the same time, users expect a reliable behavior [5] of each

individual application independent of the context in which it is operating. Vir-

tualization of the resources in a system has been proposed as a concept to tackle

this problem. The idea behind virtualization is that an application is given the

illusion that it is running on its own copy of the real hardware which howev-

erhas only a fraction of the resources that are available in the real platform. For

example, a processor which can do 100 million instructions per second could

use a Time-Division Multiple-Access (TDMA) scheduler to present itself to an

application A as a processor which can run 50 million instructions per second.

This leaves room for another application B to use the remaining 50 million

instructions per second without knowing that application A is also running

on this processor. Virtualization has become popular in recent years in server

and desktop computers [12], [21]. The concept is also employed in embedded

systems. The Cell architecture [22] of IBM uses virtualization to avoid that pro-

grammers have to think about sharing processing resources and to guarantee

the real-time response characteristics of applications. The Hijdra architecture

[23] of NXP is another example of an embedded multi-processor system that

uses virtualization. This architecture assumes that every hardware component

has a scheduler that allows it to be shared between applications without them

influencing each others timing behavior.

In summary, the following trends in the design of embedded systems are

observed from a design perspective.

• Heterogeneous multi-processor systems are used to provide the required

computational power for novel embedded multimedia systems.

• Networks-on-chip are used to provide a scalable interconnect with tim-

ing guarantees between the processors in the system.

• Platform-based design reduces production cost, design cost and design

time of embedded systems.
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• Virtualization of resources is used to guarantee a predictable behavior of

applications in a dynamic environment.
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Chapter 3

Application-Specific

Power-Aware Workload

Allocation for Voltage

Scalable MPSoC Platforms

3.1 Overview

In this chapter, we address the problem of selecting the optimal number of pro-

cessing cores and their operating voltage/frequency for a given workload, to

minimize overall system power under application-dependent QoS constraints.

Selecting the optimal system configuration is non-trivial, since it depends on

task characteristics and system-level interaction effects among the cores. For

this reason, our QoS-driven methodology for power aware partitioning and

frequency selection is based on functional, cycle-accurate simulation on a vir-

tual platform environment. The methodology, being application-specific, is

demonstrated on the DES (Data Encryption System) algorithm, representative

of a wider class of streaming applications with independent input data frames

and regular workload.

3.2 Introduction

Many state-of-the-art or envisioned Multi-Processor Systems-on-Chip (MPSoCs)

adopt the symmetric multi-processing paradigm [8]. This is due to the evolv-

ing micro-architecture of integrated cores, to the extension of their instruction
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set architecture in the direction of DSPs and to the increasing levels of inte-

gration made available by technology scaling. The design and implementation

of MPSoCs is characterized by conflicting requirements of the ever increasing

demand for higher performance and stringent power budgets. Circuit-level

power minimization techniques can be used to address the power concern, in-

cluding clock gating [18], dynamic voltage and frequency scaling (DVFS) [20]

and low voltage design with variable/multiple Vdd/Vth control [16]. Further-

more, CMOS technology progressively allows an increasing number of voltage

and clock domains to be specified on the same chip (see the voltage islands con-

cept in [12]).

Lowering supply voltage reduces power quadratically but also results in

a performance degradation, which translates into a reduction of the processor

operating frequency at which functional correctness is guaranteed. Therefore,

voltage scaling is usually associated with frequency scaling and vice versa.

In the new MPSoC domain, the problem of voltage and frequency selection

cannot be optimally solved if we consider each processor in isolation. First,

tasks running on individual cores are tightly related, since they are often the

result of an application partitioning process, based on a specific workload al-

location policy which creates task inter-dependencies.

Second, system-level interaction among the variable-voltage/frequency cores

might induce non-trivial effects on global system performance and energy met-

rics. As an example, system performance is a non-additive metric, but strongly

depends on the inter-processor synchronization mechanism and on the inter-

action on the system bus of the traffic patterns generated by cores running at

different speeds.

However, in a parallel computing domain like MPSoCs, workload allo-

cation is another degree of freedom for system power minimization. DFVS

and extraction of task level parallelism should be jointly addressed in a global

power minimization framework. Here, the trade-off to span is between the

number of concurrent processors and the power overhead they introduce in

the system, which is a function of their clock speed. For instance, the same

application-dependent throughput constraint could be met by means of N pro-

cessors working at speed X or by sharing the workload among N +M concur-

rent processors working at reduced speed X
′

.

In this chapter, we take a semi-static approach to the frequency/voltage

selection problem. Pareto-optimal processor configurations are statically de-

termined at design time in the power-performance exploration space, and for

different bus traffic conditions. However, our design time exploration frame-

work opens the way for a dynamic update of frequency settings as a function

of the varying features of interfering traffic, switching to the statically derived
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Pareto-optimal configuration for the new working conditions.

This approach can be applied to application domains characterized by reg-

ular and highly predictable workloads, with minimum run-time fluctuations.

Baseband processing in wireless modems, encryption engines, digital image

filtering and many signal processing functions are examples thereof. For such

applications, performance fluctuations can be only induced by interfering events,

such as additional data transfers generated on the bus by other running appli-

cations. In fact, although we consider a maximum number of available pro-

cessors, we assume that not all of them must be necessarily allocated to the

execution of a given application. We introduce a complete QoS-based method-

ology that provides the optimal number of processing cores for a given scal-

able workload and their individual frequency/voltage settings in such a way

to minimize system power while meeting application throughput constraints.

Our methodology for processor allocation and frequency/voltage selection

is simulation based. We want to overcome the limitations of previous works,

which proposed theoretical and highly abstract models without validation on

real platforms or on functional, timing accurate MPSoC simulation tools. In

contrast, we deployed a virtual platform [26], enhanced with hardware exten-

sions for variable frequency/voltage cores, for developing the allocation and

frequency selection methodology and for validating our approach. As such,

our methodology is strongly related to the specific workload. We therefore

restricted our analysis to the optimization of a parallel, highly scalable DES

encryption algorithm, deriving a methodology and drawing conclusions that

can be extended to the whole class of applications DES algorithm belongs to,

namely streaming applications with uncorrelated input data frames.

This chapter is structured as follows. Section 2 reports previous work while

the virtual platform environment is described in Section 3. Section 4 and 5

present DES algorithm and problem formulation. Section 6 explains our method-

ology, whose results are reported in Section 7.

3.3 Related Work

A survey of techniques for system level power optimization is reported in [1, 2].

The issue of voltage/frequency selection for single-processor systems is a ma-

ture research field: many run-time dynamic techniques have been proposed [3,

4], and validation tools [5] and hardware [32] are available.

On the contrary, in the multi-processor system domain, many approaches

based on theoretical analysis and abstract simulation have been proposed, but

an accurate validation of the effectiveness of these techniques is still in its early

stage.
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In [6] the problem of minimizing power of a multi-processor system using

multiple variable supply voltages is modelled as a mixed integer non-linear

programming optimization problem. The work in [7] points out that mini-

mizing communication power without considering computation may actually

lead to higher energy consumption at the system level. An analytical approach

is taken in [8] to assign single optimal voltage to each processor present in

an application-specific heterogeneous multi-processor system after allocation

and scheduling have been performed. A heuristic to address the problem of

energy-efficient voltage scheduling of a hard real-time task graph with prece-

dence constraints for a multi-processor environment is presented in [9], but it

is limited to dual voltage systems. The algorithm introduced in [11] targets

power utilization and performance of multi-processor systems wherein pa-

rameters such as operating voltage, frequency and number of processors can

be tuned. Approaches for combined DVS and adaptive body biasing in dis-

tributed time-constrained systems have been reported in [29]. A technique for

combined voltage scaling of processors and communication links, taking into

account dynamic as well as leakage power consumption, is proposed in [30].

The energy-aware scheduling algorithm presented in [17] consists of a design-

time phase, which results in a set of Pareto-optimal solutions, and of a run-time

phase, that uses them to find a reasonable cycle budget distribution for all of

the running threads. The effect of discrete voltage/speed levels on the energy

savings for multi-processor systems is investigated in [14], and a new scheme

of slack reservation to incorporate voltage/speed adjustment overhead in the

scheduling algorithm is also proposed. The approach to energy minimiza-

tion in variable voltage MPSoCs taken in [13] consists of a two phase frame-

work that integrates task assignment, ordering and voltage selection. Aydin et

al. [23] propose energy-efficient periodic real-time task scheduling algorithms

based on the earliest deadline first scheduling strategy. Heuristic algorithms

are instead used in [25]. [17] proposes to schedule real time tasks with prece-

dence constraints by means of list heuristics. Many works assume that actual

execution time of tasks to be scheduled is equal to the worst case execution

time [25, 26, 28]. A more realistic approach is taken in [24].

With respect to previous work, our contributions are: 1) the joint solution

of processor allocation and frequency/voltage setting; 2) a novel algorithm for

efficient construction of the Pareto frontier for selecting the optimal system

operating points based on throughput and utilization constraints; 3) validation

on a full-system functional and power simulation for a real application case

study.
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Figure 3.1: MPSoC platform with hardware support for frequency scaling.

3.4 Virtual Platform Environment

We carried out our analysis within the framework of the SystemC-based MPARM

simulation platform [26]. Figure 3.1 shows a pictorial overview of the simu-

lated architecture. It consists of a configurable number of 32-bit ARMv7 pro-

cessors. Each processor core has its own private memory, and a shared memory

is used for inter-processor communication. Synchronization among the cores

is provided by hardware semaphores implementing the test-and-set operation.

The system interconnect is a shared bus instance of the STBus interconnect

from STMicroelectronics. The software architecture consists of an embedded

real-time operating system called RTEMS [33], which natively supports syn-

chronization and inter-task communication primitives.

The virtual platform environment provides power statistics leveraging technology-

homogeneous power models made available by STMicroelectronics for a 0.13

µ m technology for ARM cores, caches, on-chip memories and the STBus.

Support for Variable Frequency Cores. The virtual platform has been ex-

tended to support different working frequencies for each processor core. For

this purpose, additional modules were integrated into the platform, namely a

variable clock tree generator, programmable registers and a synchronization

module.

The clock tree generator feeds the hardware modules of the platform (pro-

cessors, buses, memories, etc.) with independent and frequency scaled clock

trees. The frequency scaled clock trees are generated by means of frequency di-

viders (shift counters), whose delay can be configured by users at design-time.

A set of programmable registers has been connected to the system bus to let the

operating system or a dedicated hardware module (monitoring system status)

select the working frequencies. Each one of these registers contains the integer
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divider of the baseline frequency for each processor.

Scaling the clock frequency of the processors creates a synchronization is-

sue with the system bus, which is assumed to work at the maximum frequency.

The processing cores and the bus interface communicate by means of a hand-

shaking protocol which assumes the same working frequency at both sides.

Therefore, a synchronization module was designed, containing two dual-ported

FIFOs wherein data and addresses sent by the bus interface to the processor

and vice versa are stored. This module works with a dual clock: one feeding

the core side and one feeding the bus interface side. Finally, the module also

takes care of properly interfacing processor to bus signals, and a dedicated

sub-module is implemented for this purpose. In Figure 3.1, the hardware ex-

tensions for frequency-scaled cores have been shaded. The Maximum STBus

frequency of 200MHz was kept as the maximum processing core frequency,

to which frequency dividers were applied. The scaling factor for the power

supply was derived from [19].

3.5 Workload Allocation

3.5.1 DES Dataflow

DES performs two main operations on input data, controlled by the key: bit

shifting and bit substitution. By doing these operations repeatedly and in a

non-linear way, the final result cannot be used to retrieve the original data

without the key. DES works on chunks of 64 bits of data at a time. Each 64

bits of data is iterated on from 1 to 16 times (16 is the DES standard). For each

iteration, a subset of the key is fed into the encryption block, that performs

several different transforms and non-linear substitutions. More details can be

found in [31].

3.5.2 Mapping DES on MPSoC Platform

DES algorithm matches the master-slave workload allocation policy. DES en-

crypts and decrypts data using a 64-bit key. It splits input data into 64-bit

chunks and outputs a stream of 64-bit ciphered blocks. Since each input ele-

ment (called frame) is independently encrypted from all others, the algorithm

can be easily mapped onto a variable number of cores. Moreover, DES poses

a balanced workload to the processors, since the execution time is almost in-

dependent on input data. This consideration will be important when we will

address core clock scaling later in this chapter.

In the parallelized version of DES, we define three kinds of tasks. An initia-

tor task (producer) dispatches 64-bit blocks together with a 64-bit key to n calcu-
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lator tasks (referred as working tasks) for encryption. Initiator task and working

tasks are allocated to different processing elements (PEs). A buffer in shared

memory is used to exchange data. Since frames are uncorrelated from each

other, computation of working tasks can be carried out in parallel by running

multiple task instances on different slave processors. Here slave processors just

need to be independently synchronized with the producer, which alternatively

provides input data to all of the slave tasks. Finally, a collector tasks (consumer)

reconstructs an output stream by concatenating the ciphered blocks provided

by the working tasks. It is allocated onto another PE and communicates with

workers by means of output buffers.

Both input and output buffers are located in shared memory. Each one

of them is implemented using two queues, so that one queue can be write-

accessed by the producer while the other one is read-locked by the worker. The

same holds for the output buffer. Moreover, in case of multiple workers, each

one has its own input and output buffer. In brief, the streaming application

is mapped onto the platform as a three-stage pipeline, where the intermedi-

ate stage can be made by an arbitrary number of multiple parallel tasks. The

overall system model is described in Figure 3.2.

Figure 3.2: DES workload allocation policy.

3.6 Problem Formulation

The ultimate objective of this work is to find the optimal number of parallel

workers (and a corresponding number of slave processors) to achieve a given

throughput (in frames/sec), and to set the operating frequencies of the cores

in the system (producer, consumer and workers) so to minimize overall power

consumption. We decided to make producer and consumer work at the same

speed, in order to keep the system stable. Moreover, since the workload of the

parallel workers is balanced due to the intrinsic DES characteristics, we assume

they are also running at the same speed.

The optimization problem can be thus formulated as follows. For a given

throughput (T ), which univocally determines consumer speed (and producer),
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we need to find a couple (NWK , S), where NWK is the number of workers and

S is the scaling factor between producer (or consumer) speed and workers’

speed. If fWK is the clock frequency of workers and fPR is the clock frequency

of producer/consumer, we obtain fWK = S · fPR/CN .

Given this formulation, the optimization problem can be solved by search-

ing for those system configurations that minimize the following cost function:

P = F (NWK , fWK , fPR, fCN ), (3.1)

where P is average power consumption of the whole MPSoC, and the fol-

lowing constraints hold:

fPR = fCN = fWK/S; (3.2)

NWK ≤ NMAX ; (3.3)

where NMAX is the maximum number of PEs available in the system, ex-

cluding the PEs allocated to producer and consumer tasks. In the following,

we will change this constraint to handle the case in which not all system PEs

can be reserved for DES application.

The intuition behind our approach is that configurations that minimize the

cost function are those that minimize system idleness. As a consequence, the

optimum scaling factor S, that is a function of NWK , will be the one that best

synchronizes the execution of workers with that of producer/consumer. In

general, since the computational effort required by each worker to produce an

output frame is much larger than that required by the producer and consumer,

S will be larger than one for low NWK and lower than one for high NWK . This

is because producer and consumer tasks are essentially memory-bound, while

working tasks are CPU-bound. For a memory-bound task, throughput is less

sensitive to frequency scaling, since this latter does not affect memory access

times, that stay constant. Once S has been found, the absolute speed values are

determined by the required throughput.

As showed in the experimental result section, the solution to this problem

is not trivial. Simple solutions that tune either NWK or core frequencies in iso-

lation are sub-optimal.

Handling Bus Effects. In general, we cannot assume that all system re-

sources are available for the target application. This fact has a double effect on

the previously defined optimization problem. First of all, not all of the PEs are

available, so that equation 3.3 changes as follows:
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NWK ≤ NFREE ; (3.4)

where NFREE is the number of free PEs. Note that our methodology will

indicate whether it is power efficient to use all of the NFREE PEs or a lower

number of them, together with the proper frequency settings, for a given work-

load. Since the bus is partially occupied by interfering traffic generated by

applications running on the busy PEs, this will affect the performance of the

communication among DES tasks. As a results, the cost function depends on

traffic conditions. We can characterize bus traffic by means of two parameters:

ρ is the bus bandwidth consumed by interfering traffic, while σ is the average

burst size of the interfering traffic. We can then rebuild Equation 3.5 as follows:

P = F (NWK , fWK , fPR, fCN , σ, ρ). (3.5)

3.7 QoS-Driven Optimization Strategy

Our power optimization framework consists of a two step process. First, we

statically perform a smart exploration to find Pareto-optimal configurations

that minimize the cost function in a power/throughput design space. We per-

form this exploration by varying traffic parameters (σ, ρ) in a discrete range

of possible values. Then, we store these configurations in a three-dimensional

look-up table indexed by σ, ρ and NFREE that will be used at run-time in a

semi-static way to maintain QoS under varied traffic conditions.

3.7.1 Design-time Smart Design Space Exploration

We explore the throughput/power design space in an attempt to find the Pareto

curve. Each exploration assumes a given number of workers, therefore we

have to perform multiple exploration rounds corresponding to a different num-

ber of available workers in the system. Our method tries to find the optimal

scaling factor between producer/consumer and workers frequency that gives

rise to minimum idleness of processing cores during system operation. For

each explored configuration in the design space, a simulation run is performed

to compute the corresponding level of power dissipation of the overall sys-

tem. However, as will be explained shortly hereafter, our approach cuts down

on the number of configurations to analyze in order to determine the Pareto

points.

The methodology starts by simulating the configuration where all of the

PEs (both workers and producer/consumer) run at the maximum speed, then

derives two other configurations by scaling PR/CN or WK frequency. From
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Figure 3.3: Example of smart exploration.

these new configurations, we generate other configurations using the same

scaling rule. Clearly, since we scale the frequency of PEs, at each step we move

to lower throughput regions. However, in order to reduce the number of sim-

ulation runs, we defined an optimized version of the algorithm that allows to

reduce the number of design points to be explored.

The smart exploration is based on the following intuitions. First, a con-

figuration is said to be ”dominated” if there is at least another configuration

that provides a higher or equal throughput with lower power. Configurations

that turn out to be non-dominated once the smart search procedure completes

are those belonging to the Pareto curve. Second, it is worth observing that

dominated configurations cannot generate (using the scaling rule explained

above) non-dominated configurations that cannot be obtained by scaling non-

dominated configurations already found. Hence, when we generate two new

configurations, we always check if one of them is dominated. If this is true, the

dominated configuration is discarded and thus all other configurations derived

from it are not explored. Should some of the unexplored points belong to the

Pareto curve, we will find them by scaling the non-dominated configuration.

The observation can be justified as follows (refer to Figure 3.3). Let us first

point out that derived configurations can have lower or equal throughput w.r.t.

their parent configurations, being obtained through frequency scaling. Then,

let us indicate with (i, j) the scaling factor of PR/CN and WK respectively

with respect to maximum system frequency. Assume now to generate two

new configurations C(1,2) and C(2,1) from the starting one C(1,1). If a config-

uration is dominated, for example C(2,1), this means that its power consump-

tion is higher and the throughput is lower than another one already explored,



3.7 QoS-Driven Optimization Strategy 27

namely C(1,2). In practice, C(2,1) corresponds to a less efficient operating point

in which the amount of power wasted in idle cycles is increased w.r.t. C(1,1).

Since in C(2,1) we have scaled the PR/CN frequency, we deduce that the per-

formance bottleneck in C(1,1) was represented by the producer/consumer, and

that by moving to C(2,1) we have made the pipeline even more unbalanced. In

contrast, C(1,2) reduces workers frequency, and goes in the direction of bal-

ancing the pipeline and minimizing idleness. Suppose now to generate two

additional configurations from the dominated point C(2,1). Since we are fur-

ther decreasing PR/CN frequency, we are moving away from the optimal ratio

between PR/CN and WK speed, increasing the power wasted by WKs in idle

cycles.

These considerations are at the core of the smart exploration algorithm de-

scribed in Figure 3.4. It makes use of two lists of configuration points. A

”Pareto list” stores configurations that pass all dominance checks and are there-

fore proved to be Pareto points. A ”temporary list” instead stores candidate

Pareto points, which might turn out to be dominated by points that still have

to be generated by the frequency scaling methodology. When we are sure that

the scaling process will not generate configurations providing higher through-

put than that ensured by a configuration in the temporary list, then this latter

can be moved to the Pareto list.

A generic loop of this algorithm works as follows. From each configuration

C(i,j) we generate two new configurations C(i+1,j) and C(i,j+1), and denote

the one with highest throughput as current configuration (CCURR). The other

one is stored in the temporary list (sorted for decreasing throughput) only if it

passes a dominance check against CCURR, against all previously stored config-

urations in the temporary list and the ones that are already in the Pareto list.

Even though it passes the dominance check, this point cannot be put in the

Pareto list since there could be other dominating configurations with interme-

diate throughput values generated by CCURR.

Before examining CCURR we must make sure that there are no configura-

tions in the temporary list with higher throughput. If this is the case, such

configurations should be examined first (and eventually added to the Pareto

list), so that when we later perform the dominance check on CCURR and it

turns out to be successful, CCURR can be directly inserted in the Pareto list. If

two configurations in the Pareto list have the same throughput, the one with

the lowest power replaces the other one. New configurations are generated by

scaling the last one added to the Pareto list.

At the end of this process, we obtain a Pareto curve, and the procedure has

to be repeated for a different number of workers, exploring all cases for which

NWK ≤ NFREE . By composing all these Pareto curves, we observe that in each
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Figure 3.4: Flow diagram of the smart exploration algorithm.

region of the configuration space some Pareto curves happen to stay above the

other ones. For instance, when small throughput values have to be ensured,

employing an overly high number of workers is power-inefficient, since the

same performance can be provided by fewer workers. In other words, the

composition of all curves leads to an overall Pareto curve (PARO) showing the

optimal number of workers and the optimal operating frequencies of the cores

that allow to provide a given throughput at minimum power.

The reduction on exploration time allowed by our algorithm can be ex-

ploited to perform more exploration rounds accounting for the impact on the

power-performance trade-off of system parameters that are likely to dynami-

cally change at run-time. In particular, we decided to derive multiple overall

Pareto curves PARO in presence of different traffic patterns (σ, ρ), thus allow-

ing semi-static resource allocation and frequency setting based on the levels

of bus traffic. Obviously, the discretization of explored traffic patterns (whose

entity is related to the size of look-up tables) is unavoidable.

3.7.2 QoS-Oriented Semi-Static Workload Allocation

Once Pareto-optimal configurations have been statically determined in the pre-

vious step, they will be stored in a three-dimensional look-up table having

traffic parameters and NFREE as indexes. The table returns the overall Pareto

curve for NFREE maximum processors, from which the optimal configuration

for a given throughput constraint can be immediately derived.

At run-time, working conditions might change as an effect of events occur-

ring at a large time granularity, such as freed PEs or newly admitted appli-
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Figure 3.5: Pareto curve with one worker.

Figure 3.6: Pareto curve with five workers.

cations in the system or abrupt changes in bus traffic due to data-dependent

applications. In this case, the amount of resources allocated for our applica-

tion and their frequency settings must be recomputed by looking at the table.

Traffic parameters and number of free cores might be retrieved from the envi-

ronment (i.e. an operating system) or through dedicated monitoring hardware.

Since we do not store in the table all possible values of σ, ρ but only a discrete

set, it is possible that run-time values of traffic parameters do not belong to

this set. In this case, Pareto-optimal points must be obtained either by interpo-

lating among stored configurations or by selecting conservative configurations

that provide the target throughput under traffic conditions that are worst than

those actually detected. This latter approach of course incurs power penalties

that are the price to pay for the discretization of stored values.
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3.8 Results

In this section we first show power/performance Pareto curves obtained through

smart design space exploration that are used to fill in the look-up tables de-

scribed in previous section. We consider power contributions of all system

components. Then, we compare our results with those provided by alterna-

tive approaches. As mentioned in Section 3.4, our platform uses frequency

dividers to generated scaled clocks for the cores, as done in common embed-

ded platforms [22]. Scaling is obtained by dividing maximum clock speed by

an integer number, so that speed levels are discretized. Such a discretization

will play a significant role in determining the Pareto curves.

3.8.1 Pareto Optimal Configurations

Pareto-optimal configurations are shown in Figure 3.5 for one worker (PAR1)

and in Figure 3.6 for 5 workers (PAR5). Both figures outline the effective-

ness of the smart design space exploration process. It is evident that a large

number of configurations have not been evaluated, thus cutting down on sim-

ulation runs. Points that have been discarded because they are dominated are

also showed. Let us focus on the one worker case in Figure 3.5. The algo-

rithm starts from the upper rightmost point corresponding to fPR/CN = fWK

= fMAX . It immediately discards the upper points in the plot and moves down

vertically until it finds the first point of the Pareto curve. We observed that the

discarded points correspond to fWK scaling. This means that in the starting

configuration the single worker is the bottleneck and by scaling down fWK

we make the system even more unbalanced. In contrast, by scaling fPR/CN ,

we get a reduction of power consumption with constant throughput until PR

and CN become the bottlenecks. This corresponds to a Pareto optimal config-

uration, and the relative scaling factor between fPR/CN and fWK frequencies

minimizes the idleness. All configurations with same throughput but higher

power are then discarded. Other points that we obtain by scaling PR/CN from

here increase the idleness, but they are still Pareto optimal since they are not

dominated by other configurations. The reason for this is the discrete number

of available frequencies.

With a larger number of workers (greater than four), Pareto curves become

similar to Figure 3.6, where a case with 5 workers is represented. Here, PR/CN

are the bottlenecks in the starting configuration. Although we correctly scale

workers frequency to balance the system, the scaling granularity is so coarse

(scaling of 5 workers at a time) that after one scaling step the workers become

the bottleneck. Therefore the identification of Pareto points here is much less

intuitive than in Figure 3.5.
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Figure 3.7: Overall Pareto curve with five available workers.

The overall Pareto curve (PARO(NFREE)) for a maximum number of avail-

able workers is obtained by comparing the Pareto-optimal configurations for

the different numbers of workers. The curve is shown in Figure 3.7 for NFREE =

5 workers. We can observe that using all workers is not always the most power-

efficient solution.

Our analysis also shows that for a larger number of workers, second-order

effects come into play. We in fact observed an increase of the achievable through-

put until the number of workers is equal to eight, which is the last point with

no diminishing returns. In fact, with more than eight WKs the bus saturates

when high throughputs have to be delivered, as detailed in Figure 3.8. As a

consequence, the configuration with 8 workers is the one which provides the

highest throughput. By further increasing the number of workers, since the

upper bound on the achievable throughput has been passed, the actual deliv-

ered throughput will not further increase. Moreover the power consumption

will increase due to the contribution of additional cores. For this reason, when

considering the overall Pareto curve PARO(NMAX) with NFREE ≥ 9, config-

urations that do not use all of the workers are more efficient for higher throug-

puts.

Interfering traffic effects on the power-performance trade-off points are shown

in Figures 3.9 and 3.10. All the points correspond to configurations where pro-

ducer, consumer and workers work at the same speed, which is the maximum

speed on the rightmost part of the plot and a scaled speed as we move to lower

throughput values. Figure 3.9 highlights the impact of reduced available bus

bandwidth on DES performance for the 1 worker case. The throughput theo-
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Figure 3.8: Bus saturation effect.

retically achievable by configurations on the rightmost part cannot be actually

provided because of a larger impact of bus contention. This effect is not ob-

served in the leftmost part, since there is a lower frequency of bus accesses

to deliver lower throughput and since the processors are working at a lower

speed than the bus.

Figure 3.10 instead shows the impact of average burst size of the interfer-

ing traffic (σ), keeping the bandwidth consumed by interfering traffic ρ con-

stant. We show that the impact on throughput is larger for smaller but more

frequent bursts, and that configurations providing high throughput values are

more sensitive.

3.8.2 Efficiency Comparison

In Figure 3.11 we compare our optimal solutions for a 2 workers case (NFREE =

2) with an alternative policy which always uses the maximum number of avail-

able workers and scales down all processor frequencies to get a lower through-

put. With our power-aware methodology, we can cut down power by 30%

for high throughput values, since we are able to reduce idleness. For lower

throughput values the savings are smaller but still our configurations are more

power efficient.

The effectiveness of the power-aware allocation has also been compared

with a policy with no voltage/frequency scaling. In this case, a lower through-

put can be achieved by employing a lower number of processors. Results are
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Figure 3.9: Effect of interfering traffic bandwidth. ρ is the bandwidth occupancy of in-
terfering traffic with respect to maximum bus bandwidth.

Figure 3.10: Effect of burst size of interfering traffic.
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Figure 3.11: Comparison of power-aware allocation strategy with no workers tuning
policy.

Figure 3.12: Comparison of power-aware allocation strategy with no frequency scaling
policy.

reported in Figure 3.12 for NFREE = 5. The comparison highlights that using

our strategy allows to save 50% of power for lower throughput values, since

we again scale frequencies to reduce idleness.

3.9 Conclusion

We presented a QoS-driven methodology for optimal allocation and frequency

selection. Our methodology is based on functional simulation and full system
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power estimation. It is demonstrated on the DES algorithm, representative of a

wider class of streaming applications with independent input data frames and

regular workloads. We have showed the savings in terms of needed simulation

runs and the efficiency with respect to alternative approaches.
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Chapter 4

A Fast and Accurate

Technique for Mapping

Parallel Applications on

Stream-Oriented MPSoC

Platforms with

Communication Awareness

4.1 Overview

The problem of allocating and scheduling precedence-constrained tasks on the

processors of a distributed real-time system is NP-hard. As such, it has been

traditionally tackled by means of heuristics, which provide only approximate

or near-optimal solutions. This chapter proposes a complete allocation and

scheduling framework, and deploys an MPSoC virtual platform to validate the

accuracy of modelling assumptions. The optimizer implements an efficient and

exact approach to the mapping problem based on a decomposition strategy.

The allocation subproblem is solved through Integer Programming (IP) while

the scheduling one through Constraint Programming (CP). The two solvers

interact by means of an iterative procedure which has been proven to converge

to the optimal solution. Experimental results show significant speedups w.r.t.

pure IP and CP exact solution strategies as well as high accuracy with respect

to cycle-accurate functional simulation. Two case studies further demonstrate
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the practical viability of our framework for real-life applications.

4.2 Introduction

Mapping and scheduling problems on multi-processor systems have been tra-

ditionally modelled as Integer Linear Programming (IP) problems [2]. In gen-

eral, even though IP is used as a convenient modelling formalism, there is con-

sensus on the fact that pure IP formulations are suitable only for small problem

instances, i.e., applications with a reduced task-level parallelism, because of

their high computational cost. For this reason, heuristic approaches are widely

used, such as genetic algorithms, simulated annealing and tabu search[17].

However, they do not provide any guarantees on the optimality of the final

solution.

On the other hand, complete approaches, which compute the optimal solu-

tion at the cost of an increasing computational cost, can be attractive for stat-

ically scheduled systems, where the solution is computed once and applied

throughout the entire lifetime of the system.

Static allocations and schedules are well suited for applications whose be-

haviour can be accurately predicted at design time, with minimum run-time

fluctuations [38]. This is the case of signal processing applications such as base-

band processing, data encryption or video graphics pipelines. Pipelining is a

common workload allocation policy to increase throughput of such applica-

tions, and this explains why research efforts have been devoted to extending

mapping and scheduling techniques to pipelined task graphs[7].

The need to provide efficient solutions to the task-to-architecture mapping

problem in reasonable time might lead to symplifying modelling assumptions

that can make the problem more tractable. Negligible cache-miss penalties

and inter-task communication times, contention-free communication or un-

bounded on-chip memory resources are examples thereof. Such assumptions

however jeopardize the liability of optimizer solutions, and might force the

system to work in sub-optimal operating conditions.

In Multi-Processor Systems-on-Chip (MPSoCs) the main source of perfor-

mance unpredictability stems from the interaction of many concurrent commu-

nication flows on the system bus, resulting in unpredictable bus access delays.

This also stretches task execution times. Communication architectures should

be therefore accurately modelled within task mapping frameworks, so that the

correct amount of system-level communication for a given mapping solution

can be correctly estimated and compared with the actual bandwidth the bus

can deliver. A communication sub-optimal task mapping may lead to reduced

throughput or increased latency due to the higher occupancy of system re-
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sources. This also has energy implications.

In this chapter we present a novel framework for allocation and schedul-

ing of pipelined task graphs on MPSoCs with communication awareness. We

target a general template for distributed memory MPSoC architectures, where

each processor has a local memory for fast and energy-efficient access to pro-

gram data and where messaging support is implemented. A state-of-the-art

shared bus is assumed as the system interconnect. Our framework is communication-

aware in many senses.

First, we introduce a methodology that determines under which operat-

ing conditions system interconnect performance is predictable. In that regime,

we derive an accurate high-level model for bus behaviour, which can be used

by the optimizer to force a maximum level of bus utilization below which

architecture-related uncertainties in system execution are negligible. The limit

conditions for predictable bus behaviour are bus protocol-specific, and evolv-

ing communication protocols are extending the predictable operating region

to higher levels of bus utilization. Our methodology allows system designers

to precisely assess when delivered bus bandwidth is lower than the require-

ments and consequently decide whether to revert to a more advanced system

interconnect or to tolerate a comunication-related degradation of system per-

formance.

Second, our mapping strategy discriminates among allocation and schedul-

ing solutions based on the communication cost, while meeting hardware/software

constraints (e.g., memory capacity, application real-time requirements).

Our allocation and scheduling framework is based on problem decomposi-

tion and combines Artificial Intelligence and Operations Research techniques:

the allocation subproblem is solved through Integer Programming (IP), while

scheduling through Constraint Programming (CP). However, the two solvers

do not operate in isolation, but interact with each other by means of no-goods

generation, resulting in an iterative procedure which has been proven to con-

verge to the optimal solution. Experimental results show significant speed-ups

w.r.t. pure IP and CP exact solution strategies.

Finally, we deploy an MPSoC virtual platform to validate the results of the

optimization steps and to more accurately assess constraint satisfaction and

objective function optimization. The practical viability of our framework for

real-life systems and applications is shown by means of two demonstrators,

namely GSM and Multiple-Input-Multiple-Output (MIMO) wireless commu-

nication.

The structure of this work is as follows. Section 4.3 illustrates related work.

Section 4.4 presents the target architecture while application and system mod-

els are reported in Section 4.5. Highlights on Constraint Programming and
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Integer Programming are illustrated in Section 5.5. Our combined solver for

the mapping problem is described in Section 5.6, its computation efficiency in

Section 4.8 and its integration in a software optimization methodology for MP-

SoCs in 4.9. Section 4.10 finally shows experimental results.

4.3 Related work

System design methodologies have been investigated for more than a decade,

so that now hardware/software codesign has such a rich literature which is

impossible to survey exhaustively in one article. This section addresses only

the works that are more closely related to the problem and to the class of appli-

cations we target. A wider insight on the specific research themes addressed

by the HW/SW codesign community over the last decade is reported in [35],

while a very comprehensive update on the state of the art in system design can

be found in [33].

Mapping and scheduling problems on multi-processor systems have been

traditionally modelled as integer linear programming problems, and addressed

by means of IP solvers. An early example is represented by the SOS system,

which used mixed integer linear programming technique (MILP) [2]. Partition-

ing with respect to timing constraints has been addressed in [3]. A MILP model

that allows to determine a mapping optimizing a trade-off function between

execution time, processor and communication cost is reported in [5]. An hard-

ware/software co-synthesis algorithm of distributed real-time systems that op-

timizes the memory hierarchy (caches) along with the rest of the architecture is

reported in [6].

Pipelining is a well known workload allocation policy in the signal process-

ing domain. An overview of algorithms for scheduling pipelined task graphs

is presented in [7]. IP formulations as well as heuristic algorithms are tradi-

tionally employed. In [9] a retiminig heuristic is used to implement pipelined

scheduling, while simulated annealing is used in [10].

Pipelined execution of a set of periodic activities is also addressed in [12],

for the case where tasks have deadlines larger than their periods.

The complexity of pure IP formulations for general task graphs has led

to the deployment of heuristic approaches (refer to [38] for a comprehensive

overview of early results). A comparative study of well-known heuristic search

techniques (genetic algorithms, simulated annealing and tabu search) is re-

ported in [17]. Unfortunately, busses are implicit in the architecture. Simulated

annealing and tabu search are also compared in [14] for hardware/software

partitioning, and minimization of communication cost is adopted as an essen-

tial design objective. A scalability analysis of these algorithms for large real-
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time systems is introduced in [15]. Many heuristic scheduling algorithms are

variants and extensions of list scheduling [15]. In general, scheduling tables

list all schedules for different condition combinations in the task graph, and

are therefore not suitable for control-intensive applications.

The work in [11] is based on Constraint Logic Programming to represent

system synthesis problem, and leverages a set of finite domain variables and

constraints imposed on these variables. Constraint (Logic) Programming is an

alternative approach to Integer Programming for solving combinatorial opti-

mization problems [17]. Both techniques can claim individual successes but

practical experience indicates that neither approach dominates the other in

terms of computational performance on problems similar to the one faced in

this chapter. The development of a hybrid CP-IP solver that captures the best

features of both would appear to offer scope for improved overall performance.

However, the issue of communication between different modelling paradigms

arises. One method is inherited from the Operations Research and is known

as Benders Decomposition [24]: it is an iterative solving strategy that has been

proven to converge producing the optimal solution. Benders Decomposition

has been extended, and called Logic-Based Benders Decomposition in [7], for

dealing with any kind of solver, like a CP solver. There are a number of papers

using Benders Decomposition in a CP setting[18][19][6][8].

In this work, we take the Logic-Based Benders Decomposition approach,

and come up with original design choices to effectively apply it to the context of

MPSoCs. We opt for decomposing the mapping problem in two sub-problems:

(i) mapping of tasks to processors and of data to memories and (ii) scheduling

of tasks in time on their execution units. We tackle the mapping sub-problem

with IP and the scheduling one with CP, and combine the two solvers in an it-

erative strategy which converges to the optimal solution [7]. Our problem for-

mulation will be compared with the most widely used traditional approaches,

namely CP and IP modelling of the entire mapping and scheduling problem

as a whole, and the significant cut down on search time that we can achieve is

proved. Moreover, in contrast to most previous work, the results of the opti-

mization framework and its modelling assumptions are validated by means of

cycle-accurate functional simulation on a virtual platform.

4.4 Target Architecture

Our mapping strategy targets a general architectural template for a message-

oriented distributed memory MPSoC. The distinctive features of this template

include: (i) support for message exchange between parallel computation sub-

systems, (ii) availability of local memory devices at each computation sub-
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Figure 4.1: Message-oriented distributed memory architecture.

system and of non-local (i.e., accessible through the system bus) memories to

store program data exceeding local memory size. The remote storage can be

provided by a unified memory with partitions associated with each processor

or by a separate private memory for each processor core connected to the sys-

tem bus. This assumption concerning the memory hierarchy reflects the typical

trade-off between low access cost, low capacity local memory devices and high

cost, high capacity memory devices at a higher level of the hierarchy. Several

MPSoC platforms available on the market match our template, such as the Cell

Processor[8], the Silicon Hive Avispa-CH1 processor[31], the Cradle CT3600

family of multiprocessor DSPs[30] or the ARM11 MPCore platform[29].

The only restriction that we pose in the template concerns the communica-

tion queues, which are assumed to be single-token. Therefore, in a producer-

consumer pair, each time a data unit is output by the producer, the consumer

has to read it before the producer can run again, since it has its single-entry out-

put queue occupied. The extension of our framework to multi-token queues is

left for future work and can be seen as an incremental improvement of the

optimization framework.

We modelled one instance of this architectural template in order to test our

optimization framework (see Fig. 5.1). The computation sub-systems are sup-

posed to be homogeneous and consist of ARM7 cores (including instruction

and data caches) and of tightly coupled software-controlled scratchpad mem-

ories for fast access to program operands and for storing input data. We used

an AMBA AHB[4] bus as shared system interconnect.

In our implementation, hardware and software support for efficient mes-

saging is provided. Messages can be directly moved between scratchpad mem-

ories. In order to send a message, a producer core writes in the message queue
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stored in its local scratchpad memory, without generating any traffic on the in-

terconnect. After the message is ready, the consumer can transfer it to its own

scratchpad or to a private memory space. Data can be transferred either by

the processor itself or by a direct memory access controller, when available. In

order to allow the consumer to read from the scratchpad memory of another

processor, the scratchpad memories should be connected to the communica-

tion architecture also by means of slave ports, and their address space should

be visible to the other processors.

As far as synchronization is concerned, when a producer intends to gener-

ate a message, it checks a local semaphore which indicates whether the queue

is empty or not. When a message can be stored, its availability is signaled to

the consumer by releasing its local semaphore through a single write opera-

tion that goes through the bus. Semaphores are therefore distributed among

the processing tiles, resulting in two advantages: the read/write traffic to the

semaphores is distributed and the producer (consumer) can locally poll whether

space (a message) is available, thereby reducing bus traffic.

Furthermore, our semaphores may interrupt the local processor when re-

leased, providing an alternative mechanism to polling. In fact, if the semaphore

is not available, the polling task registers itself on a list of tasks waiting for that

semaphore and suspends itself. Other tasks on the processor can then execute.

As soon as the semaphore is released, it generates an interrupt and the corre-

sponding service routine reactivates all tasks on the waiting list.

A DMA engine is attached to each core, as presented in [25], allowing ef-

ficient data transfers between the local scratchpad and non-local memories

reachable through the bus. The DMA control logic supports multichannel pro-

gramming, while the DMA transfer engine has a dedicated connection to the

scratchpad memory allowing fast data transfers from or to it.

Finally, each processor core has a private memory, which can be accessed

only by gaining bus ownership. This memory could be on-chip or off-chip

depending on the specific platform instantiation. It has a higher access cost and

can be used to store program operands that do not fit in scratchpad memory.

Optimal memory allocation of task program data to the scratchpad versus the

private memory is a specific goal of our optimization framework, dealing with

the constraint of limited size of local memories in on-chip multi-processors.

The software support is provided by a real-time multi-processor operating

system called RTEMS [11] and by a set of high-level APIs to support message

passing on the considered distributed memory architecture. The communi-

cation and synchronization library abstracts low level architectural details to

the programmer, such as memory maps or explicit management of hardware

semaphores[32].
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Our implementation thus supports: (i) processor or DMA-initiated memory-

to-memory transfers, (ii) polling-based or interrupt-based synchronization, and

(iii) flexible allocation of the consumer’s message buffer to the local scratchpad

or the non-local private memory.

4.5 High-level application and system models

4.5.1 Task model

Our mapping methodology requires to model the multi-task application to be

mapped and executed on top of the target hardware platform as a Directed

Acyclic Task Graph with precedence constraints. In particular, we focus on

pipelined task graphs, representative of signal processing workloads. A real-

time requirement is typically specified for this kind of applications, consisting

for instance of a minimum required throughput for the pipeline of tasks. Tasks

are the nodes of the graph and edges connecting any two node indicate task

dependencies. Computation, storage and communication requirements should

be annotated onto the graph as follows.

The task execution time is given in two cases: program data is stored en-

tirely in scratchpad memory and local data is stored in remote private memory

only. In this latter case, the impact of cache misses on execution time is taken

into account.

Our application model associates three kinds of memory requirements to

each task:

- Program Data: storage space is required for computation data and for pro-

cessor instructions. They can be allocated by the optimizer either on the local

scratchpad memory or on the remote private memory.

- Internal State: when needed, an internal state of the task can be stored either

locally or remotely.

- Communication queues: the task needs communication queues to store out-

going as well as incoming messages to/from other tasks. For the sake of ef-

ficient messaging, we pose the constraint that such communication queues

should be stored in local scratchpad memory only. So, allocation of these

queues is not a degree of freedom for the optimizer.

We assume that application tasks initially check availability of input data

and of space for writing computation results (i.e., the output queue must have

been freed by the downstream task), in an SDF-like (synchronous dataflow)

semantics. Actual input data transfer and task execution occur only when both

conditions are met. These assumptions simply result in an atomic execution

of the communication and computation phases of each task, thus avoiding the
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(a)

(b)

Figure 4.2: (a) Bus allocation in a unary model; (b) Bus allocation in a coarse-grain ad-
ditive model

need to schedule communication as a separate task.

4.5.2 Bus model

Whenever predictable performance is needed for time-critical applications, it

is important to avoid high levels of congestion on the bus, since this makes

completion time of bus transactions (and hence of task execution) much less

predictable. Average or peak bus bandwidth utilization can be modulated by

means of a proper communication-aware task mapping strategy.

When the bus is required to provide a cumulative bandwidth from concur-

rently executing tasks that does not exceed a certain threshold, its behaviour

can be accurately abstracted by means of a very simple additive model. In other

words, the bus delivers an overall bandwidth which is approximatively equal

to the sum of the bandwidth requirements of the tasks that are concurrently

making use of it.

This model, provided the working conditions under which it holds are care-

fully delimited, has some relevant advantages with respect to the scheduling

problem model. First, it allows to model time at a coarse granularity. In fact,

busses rely on the serialization of bus access requests by re-arbitrating on a

transaction basis. Modelling bus allocation at such a fine granularity would
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make the scheduling problem overly complex since it should be modelled as a

unary resource (i.e., a resource with capacity one). In this case, task execution

should be modelled using the clock cycle as the unit of time and the resulting

scheduling model would contain a huge number of variables. The additive

model instead considers the bus as an additive resource, in the sense that more

activities can share bus utilization using a different fraction of the total bus

bandwidth. Fig. 4.2(a) illustrates this assumption. The figure represents the

bus allocation and scheduling in a real processor, where the bus is assigned to

different tasks at different times on a transaction-per-transaction basis. Each

task, when owning the bus, uses its entire bandwidth.

Fig. 4.2(b), instead, represents how we model the bus, abstracting away

the transaction-based allocation details. We assume that each task consumes a

fraction of the bus bandwidth during its execution time. Note that we have two

thresholds: the maximum bandwidth that the bus is physically able to deliver,

and the theoretical one beyond which the additive model fails to predict the

interconnect behaviour because of the impact of contention. We will derive this

latter threshold in the experimental section by means of extensive simulation

runs.

In order to define the fraction of the bus bandwidth absorbed by each task,

we consider the amount of data they have to access from their private mem-

ories and we spread it over its execution time. In this way we assume that

the task is uniformly consuming a fraction of the bus bandwidth throughout

its execution time. This assumption will be validated in presence of different

traffic patterns in the experimental section.

Another important effect of the bus additive model is that task execution

times will not be stretched as an effect of busy waiting on bus transaction com-

pletion. Once the execution time of a task is characterized in a congestion free

regime, it will be only marginally affected by the presence of competing bus

access patterns, in the domain where the additive model holds.

Mapping tasks in such a way that the bus utilization lies below the additive

threshold forces the system to make efficient use of available bandwidth. How-

ever, our methodology can map tasks to the system while meeting any require-

ment on bus utilization. Therefore, if a given application cannot be mapped

with the bus working in the additive regime, it is on burden of the designer

to choose whether to increase maximum allowable peak bus utilization (at the

cost of a lower degree of confidence in optimizer performance predictions) or

to revert to a more advanced system interconnect. Even in the first case, our

methodology helps designers to map their applications with minimum addi-

tive threshold crossing.
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4.6 Background on optimization techniques

In this section, we recall the basic concepts behind the method we use in this

chapter, namely the Logic Based Benders Decomposition, and the two opti-

mization techniques we use for solving each subproblem resulting from the

decomposition, namely Constraint Programming and Integer Programming.

4.6.1 Logic Based Benders Decomposition

The technique we use in this chapter is derived from a method, known in Op-

erations Research as Benders Decomposition [24], and refined by [7] with the

name of Logic-based Benders Decomposition. The classical Benders Decompo-

sition method decomposes a problem into two loosely connected subproblems.

It enumerates values for the connecting variables. For each set of enumerated

values, it solves the subproblem that results from fixing the connecting vari-

ables to these values. The solution of the subproblem generates a Benders cut

that the connecting variables must satisfy in all subsequent solutions enumer-

ated. The process continues until the master problem and subproblem con-

verge providing the same value. The classical Benders approach, however, re-

quires that the subproblem be a continuous linear or nonlinear programming

problem. Scheduling is a combinatorial problem that has no practical linear

or nonlinear programming model. Therefore, the Benders decomposition idea

can be extended to a logic-based form (Logic Based Benders Decomposition -

LBBD) that accommodates an arbitrary subproblem, such as a discrete schedul-

ing problem. More formally, as introduced in [7], a problem can be written as

min f(y) (4.1)

s.t. pi(y) i ∈ I1 Master Problem Constraints (4.2)

gi(x) i ∈ I2 Subproblem Constraints (4.3)

qi(y) → hi(x) i ∈ I3 Conditional Constraints (4.4)

y ∈ Y Master Problem Variables (4.5)

xj ∈ Di Subproblem Variables (4.6)

We have master problem constraints, subproblem constraints and conditional

constraints linking the two models. If we solve the master problem to optimal-

ity, we obtain values for variables y in I1, namely ȳ and the remaining problem
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is a feasibility problem:

gi(x) i ∈ I2 Subproblem Constraints (4.7)

qi(ȳ) → hi(x) i ∈ I3 Conditional Constraints (4.8)

xj ∈ Di Subproblem Variables (4.9)

We can add to this problem a secondary objective function, say f1(x) just to

discriminate among feasible solutions. If the problem is infeasible, a Benders

cut By(y) is created constraining variables y. The master problem thus becomes

min f(y) (4.10)

s.t. pi(y) i ∈ I1 Master Problem Constraints (4.11)

Byi
(y) i ∈ 1..h Benders cuts (4.12)

y ∈ Y Master Problem Variables (4.13)

yi is the solution found at iteration i of the master problem.

In practice, to avoid the generation of master problem solutions that are

trivially infeasible for the subproblem, it is worth adding a relaxation of the

subproblem to the master problem.

Deciding to use the LBBD to solve a combinatorial optimization problem

implies a number of design choices that strongly affect the overall performance

of the algorithm. Design choices are:

• how to decompose the problem, i.e., which constraints are part of the

master problem and which instead are part of the subproblem. This in-

fluences the objective function and its dependency on master and sub-

problem variables;

• which solver to choose for each decomposition: not all problems are

solved effectively by the same solver. We consider in this chapter Con-

straint and Integer Linear programming that cover a variety of optimiza-

tion problems effectively;

• which model to use for feeding each solver: given the problem and the

solver we still need to design the problem model, i.e., variables, con-

straints and objective function. In combinatorial optimization, a wrong

model results always in poor solver performances;
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• which Benders cuts to use, establishing the interaction between the mas-

ter and the subproblem;

• which relaxation to use so as to avoid the generation of trivially infeasible

solutions in the master problem.

In the following we provide preliminaries on Constraint Programming and

Integer Programming, while in section 5.6 we detail the design choices per-

formed for the mapping and scheduling problem at hand.

4.6.2 Constraint Programming

Constraint Programming (CP) has been recognized as a suitable modelling and

solving tool to face combinatorial (optimization) problems. The CP modeling

and solving activity is highly influenced by the Artificial Intelligence area on

Constraint Satisfaction Problems, CSPs (see, e.g., the book by [37]). A CSP is a

triple 〈V,D,C〉 where V is a set of variables X1, . . . ,Xn, D is a set of finite do-

mains D1, . . . ,Dn representing the possible values that variables can assume,

and C is a set of constraints C1, . . . , Ck. Each constraint involves a set of vari-

ables V ′ ⊆ V and defines a subset of the cartesian product of the corresponding

domains containing feasible tuples of values. Therefore, constraints limit the

values that variables can simultaneously assume. A solution of a CSP is an

assignment of values to variables which is consistent with constraints.

Constraints can be either mathematical or symbolic. Mathematical con-

straints have the form: t1 R t2 where t1 and t2 are finite terms, i.e., variables,

finite domain objects and usual expressions, and R is one of the constraints

defined on the domain of discourse (e.g., for integers we have the usual re-

lations: >,≥, <,≤,=, 6=). For example, if two activities i and j characterized

by starting times Starti and Startj and durations di and dj are linked by a

precedence constraint stating that activity i should be executed before activity

j, the following mathematical constraint can be imposed, Starti + di ≤ Startj .

Symbolic constraints, called also global constraints, are predicates involving

finite domain variables. They are expressive and powerful constraints (which

can also be defined by the user) embedding constraint-dependent filtering al-

gorithms. A typical global constraint is the

alldifferent([X1, . . . ,Xn])

available in most CP solvers. Declaratively, the constraint alldifferent([X1, . . . ,Xn])

holds iff all variables are assigned to a different value. Thus, it is declaratively

equivalent to a set of n ∗ (n − 1)/2 binary inequality constraints. However,

its compact representation allows more concise models and embeds a special-
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ized efficient graph-based filtering algorithm [36]. Many constraints have been

devised for scheduling, which is the most successful application of Constraint

Programming. In particular, many kinds of resource and temporal constraints

have been devised so as to solve large problem instances, see [16]. As an ex-

ample, let us consider the cumulative constraint used for modelling limited

resource availability in scheduling problems. Its parameters are: a list of vari-

ables [S1, . . . , Sn] representing the starting time of all activities sharing the re-

source, their duration [D1, . . . ,Dn], the resource consumption for each activ-

ity [R1, . . . , Rn] and the available resource capacity C. Clearly this constraint

holds if in any time step where at least one activity is running the sum of the

required resource is less than or equal to the available capacity. The constraint

cumulative([S1, . . . , Sn], [D1, . . . ,Dn], [R1, . . . , Rn], C) holds iff

∀j
∑

Sj≤i<Sj+Dj

Ri ≤ C

4.6.3 Integer Programming

Another solution technique, which is well known and widely used in the sys-

tem design community is Integer Programming (IP). Integer programming is

an older method, with roots that date back to the late 1950s. Integer Program-

ming can be thought of as a restriction of Constraint Programming. In fact,

Integer Programming has only two types of variables: integer variables whose

domain contain non-negative integers and continuous variables whose domain

contain non-negative real values. In addition, IP allows only one type of con-

straint: linear inequalities. Finally, the objective function must be linear in the

variables. It seems that these restrictions make integer programming much

narrower than constraint programming. However, many problems can still be

modeled effectively, and algorithms for integer programs can find optimal so-

lutions quickly for many applications. The solving principle of IP is based on

the solution of the linear relaxation, allowing arbitrary sets of linear constraints

to be treated as a global constraint, providing a global view of the problem.

The relaxation provides a bound enabling efficient pruning of the search tree

and directing search toward promising regions.

The standard form of an IP is the following: let x be the vector of variables,

x = [x1, x2, . . . , xn]. A set of these variables I are required to take on integer

values, while the remaining variables can take on any real value. Each variable

can have a range, represented by vectors l and u such that li ≤ xi ≤ ui. A linear

constraint on the variables is a vector of coefficients a = [a1, . . . , an] and a scalar
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right-hand-side b. The constraint is then the requirement that

∑

j

ajxj = b

The “=” in the constraint can also be ≤ or ≥ (but not < or >). The objective

function is formed by a vector of coefficients c = [c1, c2, . . . , cn], with the objec-

tive of minimizing (or maximizing) cx. An integer program consists of a single

linear objective and a set of constraints. If we create a matrix A = [aij ], where

aij is the coefficient for variable j in the ith constraint, then an integer program

can be written:

min cx (4.14)

s.t. Ax = b (4.15)

l ≤ x ≤ u (4.16)

xj integer for all j ∈ I (4.17)

For many applications, it is worth working within the limits of integer pro-

gramming to achieve high performance.

4.7 Model definition

The two main approaches followed by the system design community when

facing software mapping problems in MPSoCs are: (1) either modelling and

solving the problem to optimality as an Integer Program whatever the prob-

lem structure is or (2) using a special purpose heuristic algorithm requiring

sophisticated debugging and tuning and achieving sub-optimal solutions. In

this chapter, we claim that:

• Whenever allocation and scheduling can be performed off-line due to the

intrinsic features of the application (predictable workload), the correct

approach is to solve these problems to optimality, since their solution

is computed once for all at design time and applied during the entire

lifetime of the system. Optimal solutions enable to achieve significant

performance speed-ups.

• Analyzing and exploiting the problem structure helps in choosing the

best solving technique. Integer Programming is an effective solving frame-

work but it is not always the best technique one can use. Constraint Pro-

gramming effectively deals with fine time granularities, temporal con-
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straints, resource constraints, and different kind of activities. In general,

the best solution strategy can be applied to each subproblem structure.

We have first tried to solve the overall problem (mapping and scheduling)

to optimality using a single approach. We have tested both Constraint Pro-

gramming alone and Integer Programming alone on the problem without suc-

cess. Therefore, we have switched to Logic Based Benders Decomposition. As

shown in section 5.5.3, a number of design choices should be addressed.

• How to decompose the problem. We split the overall mapping prob-

lem into two sub-problems: (1) the allocation of tasks to processors and

memory requirements to storage devices, trying to minimize the commu-

nication cost, and (2) the scheduling sub-problem, where the minimiza-

tion of execution time (or makespan) can be chosen as secondary design

objective.

Given the critical role played by on-chip communication in determin-

ing performance predictability of highly integrated MPSoCs, we select

communication cost minimization as the objective function of the overall

problem. This function involves only variables of the first problem. In

particular, we have a communication cost each time two communicating

tasks are allocated on different processors, and each time a memory slot is

allocated on a remote memory device. Once we have optimally allocated

tasks to resources, we can minimize the global schedule makespan.

Note that our decomposition choice is, to our knowledge, original. Other

approaches to allocation and scheduling [6] [8] cope with scheduling

problems where tasks assigned to different machines are not linked by

any constraint. Therefore, the subproblem is composed by a set of inde-

pendent single machine scheduling problems.

Different objective functions can be easily supported by our technique.

Clearly, one should change the relaxation of the subproblem and the no-

goods. The aim of this work is not to prove the effectiveness of Logic-

Based Benders Decomposition in general, but specifically for the problem

at hand.

• Which solver to choose for each decomposition. There are no general

guidelines for choosing the best solver for the problem at hand. Indeed,

it is not always possible to choose the best solver for a given problem

instance. For some problems, it is widely recognized that either Integer

Programming or Constraint Programming are the techniques of choice.

Integer Programming is effective for coping with optimization problems,

it has a global problem view due to the use of linear relaxations, but
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sometimes its models are too large and somewhat unnatural. On the

other hand, Constraint Programming has an effective way to cope with

the so called feasibility reasoning, encapsulating efficient and incremen-

tal filtering algorithms into global constraints. However, CP has a naive

way to cope with optimization problems by successively solving a set

of constraint satisfaction problems with tighter bounds on the objective

function.

For the problem at hand, the allocation problem has been solved via In-

teger Programming. It better copes with objective functions based on

the sum of assignment costs. For the scheduling problem, the solver is

instead based on Constraint Programming since it better copes with tem-

poral resource constraints and finer time granularity.

• Which model to use for feeding each solver. This part will be described

in detail in the next sections. In particular, the allocation problem model

is described in section 4.7.1 while the scheduling problem model is de-

scribed in section 4.7.2.

• Which Benders cuts to use. This aspect is essential for the interaction

between the two solvers. We solve the allocation problem first (called

master problem), and the scheduling problem (called subproblem) later.

The master is solved to optimality and its solution passed to the subprob-

lem solver. If the solution is feasible, then the overall problem is solved

to optimality, since the main objective function depends only on master

problem variables. If, instead, the master solution cannot be completed

by the subproblem solver, a no-good is generated and added to the model

of the master problem, roughly stating that the solution passed should

not be recomputed again (it becomes infeasible), and a new optimal so-

lution is found for the master problem respecting the (set of) no-good(s)

generated so far. Being the allocation problem solver an IP solver, the

no-good has the form of a linear constraint.

• Which relaxation to use. Now let us note the following: the assignment

problem allocates tasks to processors, and memory requirements to stor-

age devices minimizing communication costs. However, since real-time

constraints are not taken into account by the allocation module, the so-

lution obtained tends to pack all tasks in the minimal number of proces-

sors. In other words, the only constraint that prevents to allocate all tasks

to a single processors is the limited capacity of the tightly coupled mem-

ory devices. However, these trivial allocations do not consider through-

put constraints which make them most probably infeasible for the over-

all problem. To avoid the generation of these (trivial) assignments, we
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should add to the master problem model a relaxation of the subprob-

lem. In particular, we should state in the master problem that the sum

of the durations of tasks allocated to a single processor does not exceed

the real time requirement. In this case, the allocation is far more similar

to the optimal one for the problem at hand. The use of a relaxation in the

master problem is widely used in practice and helps in producing better

solutions.

4.7.1 Allocation problem model

The allocation problem is the problem of allocating n tasks to m processors and

memory requirements to storage devices. The objective function is the mini-

mization of the amount of data transferred on the bus. We solve the allocation

problem using an IP model. We consider four decision variables: Tij , taking

value 1 iff task i executes on processor j; Yij , taking value 1 iff task i allocates

the program data on the scratchpad memory of processor j; Zij , taking value

1 iff task i allocates the internal state on the scratchpad memory of processor j;

Xij , taking value 1 iff tasks i and i + 1 execute on different processors, one of

them being processor j, therefore the 2 tasks communicate using the bus. Vari-

ables Xij have only two indexes since we are considering a pipeline, where a

task i communicates only with the task i + 1. When modelling a general task

graph these variables must have the form Xikj , taking value 1 iff two com-

municating tasks i and k execute on different processors, one of them being

processor j. The linear constraints introduced in the model are:

m
∑

j=1

Tij = 1,∀i ∈ 1 . . . n (4.18)

Tij + Ti+1j + Xij − 2Kij = 0 ,∀i ∈ 1 . . . n ,∀j (4.19)

Constraints (4.18) state that each process can execute only on a processor, while

constraints (4.19) state that Xij can be equal to 1 iff Tij 6= Ti+1j , that is, iff task i

and task i + 1 execute on different processors. Kij are integer binary variables

forcing the sum Tij +Ti+1j +Xij to be either 0 or 2 (in fact, Xij is the exor of Tij

and Ti+1j). We also add to the model the constraints stating that if a task i does

not execute on a processor j, it cannot allocate its program data or its internal

state in the local scratchpad of processor j, i.e. Tij = 0 ⇒ Yij = 0, Zij = 0.

For each group of consecutive tasks whose execution times sum exceeds the

RT requirement, we introduce in the model a constraint preventing the solver

to allocate all the tasks in the group to the same processor. To generate these

constraints, we find out all groups of consecutive tasks whose execution times
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sum exceeds RT . Constraints are the following:

∑

i∈S

Duri > RT ⇒
∑

i∈S

Tij ≤ |S| − 1 ∀j (4.20)

This is a relaxation of the scheduling problem, added to the master problem to

prevent the generation of trivially infeasible solutions. The objective function

is the minimization of the communication cost, i.e., the total amount of data

transferred on the bus for each pipeline iteration. Contributions to the commu-

nication cost arise when a task allocates its program data and/or internal state

to the remote memory, and when two consecutive tasks execute on different

processors, and their communication messages must be transferred through

the bus from the communication queue of one processor to that of the other

one. Using the decision variables described above, we have a contribution re-

spectively when: Tij = 1, Yij = 0, or Tij = 1, Zij = 0, or Xij = 1. Therefore,

the objective function is to minimize:

m
∑

j=1

n
∑

i=1

(

Memi(Tij − Yij) + 2 × Statei(Tij − Zij) +

+(DataiXij)/2)
)

(4.21)

where Memi, Statei and Datai are the amount of data used by task i to store re-

spectively the program data, the internal state and the communication queue.

4.7.2 Scheduling problem model

Once tasks have been allocated to the processors, we need to schedule process

execution. Since we are considering a pipeline of tasks, we need to analyze

the system behavior at working rate, that is when all processes are running

or ready to run. To do that, we consider several instantiations of the same

process; to achieve a working rate configuration, the number of repetitions

of each task must be at least equal to the number of tasks n; in fact, after n

iterations, the pipeline is at working rate. So, to solve the scheduling problem,

we must consider at least n2 tasks (n iterations for each process), see Fig. 4.3.

In the scheduling problem model, for each task Taskij (the j-th iteration of

the i-th process) we introduce a variable Aij , representing the computation ac-

tivity of the task. Once the allocation problem is solved, we statically know if a

task needs to use the bus to communicate with another task, or to read/write

computation data and internal state from the remote memory. In particular,

each activity Aij must read the communication queue from the activity Ai−1j ,

or from the pipeline input if i = 0. For this purpose, we introduce in the model
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Figure 4.3: Precedence constraints among the activities

the activities Inij . If a process requires an internal state, the state must be read

before the execution and written after the execution: we therefore introduce in

the model the activities RSij and WSij for each process i requiring an internal

state. The durations of all these activities depend on whether data are stored

in the local or the remote memory but, after the allocation, these times can be

statically estimated. Fig. 4.3 depicts the precedence constraints among tasks.

The horizontal arcs (between Taskij and Taski,j+1) represent just precedence

constraints, while the diagonal arcs (between Taskij and Taski+1,j) represent

precedences due to communication and are labelled with the amount of data to

communicate. Each task Taskij is composed by activity Aij possibly preceded

by the internal state reading activity RSij , and input data reading activity Inij ,

and possibly followed by the internal state writing activity WSij . The prece-

dence constraints among the activities are:

Ai,j−1 ≺ Inij , ∀ i, j (4.22)

Inij ≺ Aij , ∀ i, j (4.23)

Ai−1,j ≺ Inij , ∀ i, j (4.24)

RSij � Aij , ∀ i, j (4.25)

Aij � WSij , ∀ i, j (4.26)

Ini+1,j−1 ≺ Aij , ∀ i, j (4.27)

Ai,j−1 ≺ Aij , ∀ i, j (4.28)

where the symbol ≺ means that the activity on the right should follow the ac-

tivity on the left, and the symbol � means that the activity on the right must

start as soon as the execution of the activity on the left completes: i.e., A ≺ B

means StartA + DurA ≤ StartB , and A � B means StartA + DurA = StartB .

Constraints (4.22) state that each process iteration can start reading the commu-
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nication queue only after the end of its previous iteration: a task needs to access

the data stored in the communication queue during its whole execution, so the

memory storing these data can only be freed when the computation activity

Aij ends. Constraints (4.23) state that each task can start computing only when

it has read the input data, while constraints (4.24) state that each task can read

the input data only when the previous task has generated them. Constraints

(4.25) and (4.26) state that each task must read the internal state just before the

execution and write it just afterwards. Constraints (4.27) state that each task

can execute only if the previous iteration of the following task has read the

input data; in other words, it can start only when the data stored in its commu-

nication queue has been read by the target process. Constraints (4.28) state that

the iterations of each task must execute in order. We also introduced the real-

time requirement constraints Start(Aij) − Start(Ai,j−1) ≤ RT , ∀ i, j, whose

relaxation is used in the allocation problem model. The time elapsing between

two consecutive executions of the same task can be at most RT . Processors

are modelled as unary resources, stating that only one activity at a time can

execute on each processor, while the bus is modelled as a shared resource (see

subsection 4.5.2): several activities can share the bus, each of them consuming

a fraction of the total bandwidth; a cumulative constraint is introduced ensur-

ing that the total bus bandwidth consumption (or a lower threshold) is never

exceeded.

4.8 Computational efficiency

To test the computational efficiency of our approach, we now compare the re-

sults obtained using this model (Hybrid in the following) with results obtained

using only a CP or IP model to solve the overall problem to optimality. Actu-

ally, since the first experiments showed that both CP and IP approaches are not

able to find even the first solution, except for the easiest instances, within 15

minutes, we simplified these models removing some variables and constraints.

In CP, we fixed the activities execution time not considering the execution time

variability due to remote memory accesses, therefore we do not consider the

Inij , RSij and WSij activities, including them statically in the activities Aij . In

IP, we do not consider all the variables and constraints involving the bus: we

do not model the bus resource and we therefore suppose that each activity can

access data whenever it is necessary.

We generated a large variety of problems, varying both the number of tasks

and processors. All the results presented are the mean over a set of 10 instances

for each task or processor number. All problems considered have a solution.

Experiments were performed on a 2GHz Pentium 4 with 512 Mb RAM and
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leveraged state-of-the-art professional solving tools, namely ILOG CPLEX 8.1,

ILOG Solver 5.3 and ILOG Scheduler 5.3.

In Fig. 4.4 we compare the algorithms search time for problems with a

different number of tasks and processors respectively. Times are expressed in

seconds and the y-axis has a logarithmic scale.

0.1

1

10

100

1000

4 5 6 7 8 9 10

Number of Tasks

T
im

e 
in

 s
ec

. (
lo

g)

Hybrid

IP

CP

0.1

1

10

100

1000

1 2 3 4 5 6 7

Number Of Processors

T
im

e 
in

 s
ec

. (
lo

g)

Hybrid

IP

CP

Figure 4.4: Comparison between algorithms search times for different task number
(left) and for different processor number (right)

Although CP and IP deal with a simpler problem model, we can see that

these algorithms are not comparable with Hybrid, except when the number

of tasks and processors is low and the problem instance is very easy to be

solved, and Hybrid incurs the communication overhead between two models.

As soon as the number of tasks and/or processors grows, IP and CP perfor-

mance worsen and their search times become orders of magnitude higher w.r.t.

Hybrid. Furthermore, we considered in the figures only instances where the

algorithms are able to find the optimal solution within 15 minutes, and, for

problems with 6 tasks or 3 processors and more, IP and CP can find the solu-

tion only in the 50% or less of the cases, while Hybrid can solve 100% of the

instances. We can see in addition, that Hybrid search time scales up linearly in

the logarithmic scale.

We also measured the number of times the CP and IP solvers iterate. We

found that, due to the limited size of the scratchpad and to the relaxation of

the sub-problem added to the master, the solver iterates always 1 or 2 times.

Removing the relaxation, it iterates up to 15 times. This result gives evidence

that, in a Benders decomposition based approach, it is very important to intro-

duce a relaxation of the sub-problem in the master, and that the relaxation we

use is very effective although very simple.

4.9 Validation methodology

In this section we explain how to deploy our optimization framework in the

context of a real system-level design flow. Our approach consists of using a

virtual platform to pre-characterize the input task set, to simulate the allocation
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and scheduling solutions provided by the optimizer and to detect deviations

of measured performance metrics with respect to predicted ones.

For each task in the input graph we need to provide the following informa-

tion: bus bandwidth requirement for reading input data in case the producer

runs on a different processor, time for reading input data if the producer runs

on the same processor, task execution time with program data in scratchpad

memory, task execution overhead due to cache misses when program data re-

sides in remote private memory. For each pipelined task graph, this informa-

tion can be collected with 2+N simulation runs on the MPARM simulator[26],

where N is the number of tasks. Recall that this is done once for all. We model

task communication and computation separately to better account for their

requirement on bus utilization, although from a practical viewpoint they are

part of the same atomic task. The initial communication phase consumes a

bus bandwidth which is determined by the hardware support for data transfer

(DMA engines or not) and by the bus protocol efficiency (latency for a read

transaction). The computation part of the task instead consumes an average

bandwidth defined by the ratio of program data size (in case of remote map-

ping) and execution time. A less accurate characterization framework can be

used to model the task set, though potentially incurring more uncertainty with

respect to optimizer’s solutions. We use the virtual platform also to calibrate

the bus additive model, specifying the range where this model holds. For an

AMBA AHB bus, we found that tasks should not concurrently ask for more

than 50% of the theoretical bandwidth the bus can provide (400 MByte/sec

with 1 wait state memories), otherwise congestion causes a bandwidth deliv-

ery which does not keep up with the requirements.

The input task parameters are then fed to the optimization framework,

which provides optimal allocation of tasks and memory locations to processor

and storage devices respectively, and a feasible schedule for the tasks meeting

the real-time requirements of the application. Two options are feasible at this

point. First, the optimizer uses the conservative maximum bus bandwidth in-

dicated by the virtual platform, and the derived solutions are guaranteed to be

accurate (see section 4.10). Second, the optimizer uses a higher bandwidth than

specified, in order to improve bus utilization, and the virtual platform must

then be used to assess the accuracy of the optimization step (e.g., constraint

satisfaction, validation of execution and data transfer times). If the accuracy is

not satisfactory, a new iteration of the procedure will allow to progressively de-

crease the maximum bandwidth until the desired level of accuracy is reached

with the simulator.

Note that the scheduler of the RTEMS operating system allows to imple-

ment all the scheduling solutions provided by the optimizer. For the case we
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are considering (stream-oriented processing with single token communication

among the pipeline stages) it can be proven that all schedules are periodic. The

interested reader can read the proof in Appendix I. Our framework assumes

that no preemption nor time-slicing is implemented by the OS. Most schedules

generated by the optimizer can be implemented by means of priority-based

scheduling, but not all of them. For those remaining cases, RTEMS provides

scheduling APIs with which one task can decide which task to activate next. In

this way, all possible schedules can be implemented.

4.10 Experimental Results

We have performed three kinds of experiments, namely (i) validation and cali-

bration of the bus additive model, (ii) measurement of deviations of simulated

throughput from the one computed by the optimizer on a large number of

problem instances, (iii) experiments devoted to show the viability of the pro-

posed approach by means of two demonstrators.

Figure 4.5: Implications of the bus additive model

4.10.1 Validation of the bus additive model

The behaviour of the bus additive model is illustrated by the experiment of

Fig.4.5. An increasing number of AMBA-compliant uniform traffic generators,

consuming each 10% of the maximum theoretical bandwidth (400 MByte/sec),

have been connected to the bus, and the resulting real bandwidth provided

by the bus measured in the virtual platform. It can be clearly observed that

the delivered bandwidth keeps up with the requested one until the sum of the

requirements amounts to 60% of the maximum theoretical bandwidth. This de-

fines the actual maximum bandwidth, notified to the optimizer, under which

the bus works in a predictable way. If the communication requirements exceed

the threshold, as a side effect we observe an increase of the execution times
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of running tasks with respect to those measured without bus contention, as

depicted in Fig.4.6. For this experiment, synthetic tasks running on each pro-

cessor have been employed. The 60% bandwidth threshold value corresponds

to an execution time variation of about 2% due to longer bus transactions.

Figure 4.6: Execution time variation

Figure 4.7: Bus additive model for different ratios of bandwidth requirements among
competing tasks for bus access

However, the threshold value also depends on the ratio of bandwidth re-

quirements of the tasks concurrently trying to access the bus. Contrarily to

Fig.4.5, where each processor consumes the same fraction of bus bandwidth,

Fig.4.7 shows the deviations of offered versus required bandwidth for com-

peting tasks with different bus bandwidth requirements. Configurations with

different number of processors are explored, and numbers on the x-axis show

the percentage of maximum theoretical bandwidth required by each task. It

can be observed that the most significant deviations arise when one task starts

draining most of the bandwidth, thus creating a strong interference with all

other access patterns. The presence of such communication hotspots suggests

that the maximum cumulative bandwidth requirement which still stimulates

an additive behaviour of the bus is lower than the one computed before, and

amounts to about 50% of the theoretical maximum bandwidth. We also tried to
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reproduce Fig.4.7 varying the burstiness of the generated traffic. Till now, the

traffic generators have used single bus transactions to stimulate bus traffic. We

then generated burst transactions of fixed length (4 beat bursts, correspond-

ing to a cache line refill of an ARM7 processor) but with varying inter-burst

periods. Results are not reported here since the measured upper thresholds

for the additive model are more conservative than those obtained with single

transfers. Therefore, frequent single transfers and unbalanced bus utilization

frequencies of the concurrent tasks running on different processors represent

the worst case scenario for the accuracy of the bus additive model.

Figure 4.8: Probability of throughput differences.

4.10.2 Validation of allocation and scheduling solutions

We have deployed the virtual platform to implement the allocations and sched-

ules generated by the optimizer, and we have measured deviations of the simu-

lated throughput from the predicted one for 50 problem instances. A synthetic

benchmark has been used for this experiment, allowing to change system and

application parameters (local memory size, execution times, data size, etc.). We

want to make sure that modelling approximations are not such to significantly

impact the accuracy of optimizer results with respect to real-life systems. The

results of the validation phase are reported in Fig.4.8, which shows the proba-

bility for throughput differences between optimizer and simulator results. The

average difference between measured and predicted values is 0.76%, with 0.79

standard deviation. This confirms the high level of accuracy achieved by the

developed optimization framework, thanks to the calibration of system model

parameters against functional timing-accurate simulation and to the control of

system working conditions.

In general, knowing the accuracy of the optimizer with respect to functional

simulation is not enough, since the relative sign of the error decides whether

real-time requirements will be met or not in cases where there is only very little

slack time. Fig.4.9 tries to answer this question by reporting the distribution of
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Figure 4.9: Probability of throughput differences in variable realtime study.

the sign of prediction vs measurement errors. A negative error indicates that

the optimizer has been conservative, therefore the real throughput is higher

than the predicted one. The contrary holds in case of positive errors. This latter

case is the most critical, since it corresponds to the case where the optimizer

has been optimistic. However, we clearly see that the error margin is very

small (within 5%). Moreover, since the scheduling step of the optimization

framework targets makespan minimization, the optimizer usually provides a

schedule which results in throughput values that are far more conservative

than those that were required to the optimizer. As a consequence, even if the

real throughput is 5% worse, the margins with respect to the timing constraints

are typically much larger.

The scalability of our approach with the number of tasks and processors has

already been showed in section 4.8, and compared with state-of-the-art solving

techniques. In contrast, the case studies that follow aim at proving the appli-

cability of our approach to real-life applications and MPSoC systems. Most

applications are natively coded in imperative sequential C language, and their

efficient parallelization goes beyond the scope of this work. We therefore man-

ually decomposed the GSM and MIMO benchmarks in a reasonable number of

tasks and tested our mapping methodology with them.

4.10.3 Application to GSM

Most state-of-the-art cell-phone chip-sets include dual-processor architectures.

GSM encoding and decoding have been among the first target applications

to be mapped onto parallel multi-processor architectures. Therefore, we first

proved the viability of our approach with a GSM encoder application. The

source code has been parallelized into 6 pipeline stages, and each task has

been pre-characterized by the virtual platform to provide parameters of task

models to the optimizer. Such information, together with the results of the op-

timization run, are reported in Fig.4.10. Note that the optimizer makes use of

3 out of the 4 available processors, since it tries to minimize the cost of com-
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munication while meeting hardware and software constraints. The throughput

required to the optimizer in this case was 1 frame/10ms, compliant with the

GSM minimum requirements. The obtained throughput was 1.35 frames/ms,

far more conservative. The simulation on the virtual platform provided an ap-

plication throughput within 4.1% of the predicted one. The table also shows

that program data has been allocated in scratchpad memory for Tasks 1,2 and

6 since they have smaller communication queues. Schedules for this problem

instance are trivial. The time taken by the optimizer to come to a solution was

0.1 seconds.

Figure 4.10: GSM case study.

4.10.4 MIMO processing

One major technological breakthrough that will make an increase in data rate

possible in wireless communication is the use of multiple antennas at the trans-

mitters and receivers (Multiple-input Multiple-output systems). MIMO tech-

nology is expected to be a cornerstone of many next-generation wireless com-

munication systems. The scalable computation power provided by MPSoCs

is progressively making the implementation of MIMO systems and associated

signal processing algorithms feasible, therefore we applied our optimization

framework to spatial multiplexing-based MIMO processing[39].

The MIMO computation kernel was partitioned into 5 pipeline stages. Op-

timal allocation and scheduling results for a system of 6 ARM7 processors are

reported in Fig.4.11. The reported mapping configuration is referred to the

case where the tightest feasible real-time constraint was applied to the system

(about 1.26Mbit/sec). Obviously, further improvements of the throughput can

be obtained by replacing the ARM7 cores with more computation-efficient pro-

cessor cores. In this benchmark, Task 5 has the heaviest computation require-

ments, and requires a large amount of program data for its computation. In

order to meet the timing requirements and to be able to allocate program data

locally, this task has been allocated on a separate processor.
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Figure 4.11: MIMO processing results.

As can be observed, the optimizer has not mapped each remaining task on a

different processor, since this would have been a waste of resources providing

sub-optimal results. In other words, the throughput would have been guaran-

teed just at the same, but at a higher communication cost. Instead, Tasks 1-4

have been mapped to the same processor. Interestingly, the sum of the local

memory requirements related to communication queues leaves a very small

remaining space in scratchpad memory, which allows the optimizer to map

locally only the small program data of Tasks 3 and 4. The overall mapping so-

lution was therefore not trivial to devise without the support of the combined

CP-IP solver, which provides the optimal allocation and scheduling in about

600 ms. The derived configuration was then simulated onto the virtual plat-

form, and throughput accuracy was found to be (conservatively) within 1%.

4.11 Conclusions

We target allocation and scheduling of pipelined stream-oriented applications

on top of distributed memory architectures with messaging support. We tackle

the complexity of the problem by means of decomposition and no-good gener-

ation, and prove the increased computational efficiency of this approach with

respect to traditional ones. Moreover, we deploy a virtual platform to validate

the results of the optimization framework and to check modelling assump-

tions, showing a very high level of accuracy. Finally, we show the viability of

our approach by means of 2 demonstrators: GSM and MIMO processing. Our

methodology contributes to the advance in the field of software optimization

tools for highly integrated on-chip multiprocessors, and can be applied to all

pipelined applications with design-time predictable workloads. The extension

to generic task graphs does not present theoretical hindrances and is ongoing

work.
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Appendix 1: Proof of schedule periodicity

In this section we prove that despite our algorithm considers an unbounded

number j of iterations of a pipeline with n tasks Taskij , i = 1..n, our final

schedule is always periodic. The proof assumes single token communication

queues (i.e. length one queues), but it can be easily extended to any finite

length.

Tasks are partitioned by the allocation module on p processors. So let us

consider p partitions: Taskij i ∈ Spk∀j where k = 1..p and Spk is the set

of tasks assigned to processor k. Our aim is to show that our (time discrete)

scheduling algorithm that minimizes the makespan produces a periodic solu-

tion even if we have a (theoretical) infinite number of pipeline iterations.

The proof is based on the following idea: if we identify in the solution a

state of the system that assumes a finite number of configurations, than the so-

lution is periodic. In fact, after a given state S the algorithm performs optimal

choices; as soon as we encounter S again, the same choices are performed.

For each iteration j, the state we consider is the following: the slack of each

task in Sk to its deadline. The state of the system is the following: For each

processor k = 1..p we have 〈Slackk
1j , . . . , Slackk

lj〉, where Slackk
ij is the differ-

ence between the deadline of Taskij running on processor k and its completion

time. Therefore, if we prove that the number of possible state configurations

is finite (i.e., it does not depend on the iteration number j), being the transi-

tions between two states deterministic, even if we have an infinite number of

repetition of the pipeline, the solution is periodic.

After the pipeline starts up, the deadline of each task Taskij is defined by

the first iteration of task i. i.e., Taski1. In fact, the real-time (throughput) con-

straint states that every P time points each task should be repeated. There-

fore, if the first iteration of a task i is performed at time ti, the second iter-

ation of i should be performed at time ti + P , and the j-th iteration at time

ti + (j − 1) ∗ P − diration(Taskij).

Now, let us consider two cases:

• if the tasks in Sk are consecutive in the pipeline, then their repetition

cannot change. For example, if tasks T1j , T2j and T3j are allocated to the

same processor (for all j), having length one queues, they can be repeated

only in this order. Indeed, one can repeat T1j after T2j , but minimizing

the makespan it is not the right decision.

• if instead the tasks in Sk are not consecutive, then there could be repeti-

tions in between that could break the periodicity. Therefore, we should

concentrate on this case.
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For the sake of readibility we now omit the index representing the iteration

since we concentrate on the maximum slack a task can assume. Let us consider

two non consecutive tasks TA ∈ Sk and TB ∈ Sk. Suppose that between TA

and TB there are m tasks allocated on other processors different from k. Let

us call them TA1, TA2, . . . TAm ordered by precedence constraints. If we have

communication queues of length one, between TA and TB there are AT MOST

m iterations of TA. In fact, TA can be repeated as soon as TA1 starts on another

processor. Also, it can be repeated as soon as another iteration of TA1 starts, that

can happen as soon as TA2 starts and so on. Clearly, m iterations are possible

only if

m ∗ duration(TA) ≤
m

∑

i=1

duration(TAi)

but if this relation does not hold, there can be only less iterations of TA.

Therefore, m is an upper bound on the number of iterations of TA between the

first TA and TB . If tA is the time where the first repetition of TA is performed,

the mth iteration of TA has a deadline of tA + (m − 1) ∗ P . Its slack is clearly

bounded to the maximum deadline minus its duration, tA + (m − 1) ∗ P −

duration(TA).

The upper bound for m is n−2. In fact, in a pipeline of n tasks the maximum

number of repetitions of a task happen if only the first and the last task are

allocated on the same processor. They have n − 2 tasks in between allocated

on different processors. Therefore, the maximum number of repetitions of T1

between T1 and Tn is n − 2

Therefore if the first iteration of T1 is executed at time t1 its (n−2)th iteration

has a max deadline t1 + (n − 3) ∗ P − duration(T1).

Being the max deadline of a task finite, also its max slack is finite despite

the number of iteration of the pipeline.

Therefore, whatever the state is, each task belonging to the state has a finite

slack. The combination of slacks are finite, and therefore, after a finite number

of repetition, the system finds a state already found and becomes periodic.
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Chapter 5

Reducing the Abstraction and

Optimality Gaps in the

Allocation and Scheduling for

Variable Voltage/Frequency

MPSoC Platforms

5.1 Overview

Multi-core platforms are becoming widespread in a growing number of em-

bedded application domains. These platforms require effective techniques for

static allocation, scheduling and voltage/frequency assignment of complex

multi-task applications. We propose a novel approach to optimally solve the

allocation, scheduling and discrete voltage/frequency selection problem for

MPSoCs with support for low-power features, minimizing overall system en-

ergy dissipation incurred by task execution and communications, and includ-

ing frequency switching overhead. We guarantee optimality for large problem

instances, which were considered beyond reach for exact solvers.

Furthermore, we have fully implemented the development-time and run-

time software infrastructure required to deploy the solution computed by the

optimizer on real execution platforms. This enables us to validate the effec-

tiveness as well as the accuracy of our software optimization approach. We

performed extensive analysis and validation on a cycle accurate virtual plat-

form for a number of problem instances, including two complete application
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demonstrators (GSM and JPEG).

5.2 Introduction

The last five years have been characterized by a paradigm shift in the design

of integrated architectures: boosting clock frequencies of monolithic proces-

sor cores has clearly reached its limits [1, 2, 3, 4], and designers are turning

to multicore architectures to satisfy the ever-growing computational needs of

applications within a reasonable power envelope [5]. This trend is common

to both general purpose and embedded computing platforms. All commer-

cial manufacturers of high-performance processors are currently introducing

multi-core architectures (AMD’s Opteron, Intel’s Montecito, Sun’s Niagara,

IBM’s Cell and Power5) [6]. Embedded computing platforms have anticipated

the ”multicore revolution”, as they are typically designed with much tighter

power budgets, aiming at maximum energy efficiency.

One of the most daunting challenges to the success of Multi-Processor System-

on-Chip (MPSoC) platforms consists of developing effective software optimiza-

tion tools that can optimally exploit the available cores [7]. At a coarse gran-

ularity, mapping a multi-task application to a multi-core architecture is a key

step of the software development flow, as it significantly impacts design qual-

ity metrics like execution time, throughput and power. Moreover, the avail-

ability of an increasing number of architectural tuning knobs for optimal sys-

tem configuration (e.g., voltage/frequency settings of processor cores, data

partitioning among memory devices and/or hierarchies, synchronization tech-

niques) is making the design space exceedingly complex for traditional mod-

elling and solving frameworks [8]. In addition, the intricacies of component

interactions in multicore architectures call for detailed system models and for

their validation on a real or virtual platform [9].

In this chapter, we focus on an allocation and scheduling problem of grow-

ing practical relevance, namely finding an energy optimal mapping of a task

graph onto a multi-core platform that supports independent frequency and

voltage settings for all of its cores. A number of MPSoC platforms support

variable frequency and voltage operation [10, 53, 12], and many authors have

pointed out that optimal allocations, schedules and frequency/voltage settings

lead to major power savings [13]. Unfortunately, this optimization problem is

known to be NP-hard [13] even in much simplified variants [14], and most

authors propose simplified models and heuristic approaches to solve it in rea-

sonable time.

Model simplification is often achieved by abstracting away platform imple-

mentation ”details” such as the penalties for frequency and voltage switching,
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the limited capacity of level-one scratchpad memories or the actual connectiv-

ity of communicating cores. As a result, optimization problems become more

tractable, even reaching polynomial time complexity [13]. Unfortunately, this

approach creates an abstraction gap between the optimization model and the

real HW-SW platform. Validation is therefore required and the accuracy of the

solutions must be carefully assessed through detailed simulation runs or exe-

cution on the target hardware.

Heuristic approaches rely on two main strategies: problem decomposition and

incomplete search. Decomposition splits the problem into a set of sub-problems

that are then solved in sequence. A common decomposition strategy for the

mapping problem is to first perform allocation, followed by scheduling and fi-

nally voltage and frequency assignment [15, 16]. Incomplete search [17] relies

on flexible iterative algorithmic frameworks (e.g., genetic algorithm or tabu

search) that are customized for the target problem and generally find good

solutions in a reasonable computation time. The main issue with decomposi-

tion and incomplete search is that they introduce an optimality gap of unknown

size. In other words, they provide very limited or no information on the dis-

tance between the best computed solution and the optimal one. Even worse,

when attempting to solve constrained problems, they may fail to find existing

feasible solutions.

The goal of our work is to address both abstraction and optimality gaps.

Namely, we formulated an accurate model for allocation, scheduling and fre-

quency/voltage setting, which accounts for a number of ”non-idealities” in

real-life hardware platforms. We also developed a novel mapping algorithm

that deterministically finds optimal solutions. Even though its worst-case run-

time is obviously exponential, our search strategy is computationally efficient

in practice and achieves low run times (i.e. minutes) for problem instances

of practical relevance (i.e. up to hundreds of tasks). This is much beyond

the instance sizes that could be handled in the past by complete search algo-

rithms, while being comparable with heuristic approaches. On the other hand,

we achieve consistently lower-power results than the best previously reported

heuristics. More importantly, we find feasible solutions for tightly constrained

problem instances where heuristic search fails.

Furthermore, a second main contribution of our work is the implementa-

tion of the static (design-time) and dynamic (run-time) software infrastructure

required to deploy the applications on the target platform. This is a critical

and non-trivial task, as we must guarantee that actual execution accurately

matches in time and space the solution computed by the optimizer. We can

therefore validate the optimizer against cycle accurate performance and power

analysis on a virtual platform. Experiments on a large number of problem in-
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stances demonstrate that the accuracy of our model is high and that execution

traces match the estimates of the models with average error below 5% (worst

case 10%).

Our optimizer is based on an algorithmic framework called logic-based

Benders Decomposition (LBBD) [7, 19] which solves the allocation, schedul-

ing and voltage/frequency selection problems to optimality in a computation-

efficient fashion through the cooperation between two solvers: an integer lin-

ear programming (ILP) solver for allocation and voltage/frequency setting and

a constraint programming (CP) solver for scheduling. It is important to em-

phasize that LBBD is not a heuristic decomposition strategy: the two solvers

interact in an iterative fashion that is guaranteed to achieve convergence to

optimality. The computational efficiency of our optimizer comes from three

main factors: (i) we use solvers that are well matched to the sub-problems

they handle (namely: ILP works well on allocation, while CP works well on

scheduling), (ii) we use problem-specific strategies to propagate information

from one solver to the other that rapidly achieve convergence, (iii) we use a

symmetry-reducing strategy to eliminate from the search space a large num-

ber of equivalent solutions.

We target statically configured systems, where allocation, scheduling and

frequency settings are precomputed at design time. Such systems require design-

time predictable application behavior with small run-time fluctuations, such as

many signal processing and even some multimedia applications. For these ap-

plications, our methodology makes the pre-computation of optimal solutions

still affordable in spite of the increasing number of integrated processor cores

and of the growing exposition of task-level parallelism.

This chapter is structured as follows. We first describe previous work in

the field. The target architecture and the virtual platform environment are pre-

sented in Section 6.4. Section 5.5 provides background on optimization tech-

niques. Our approach to the mapping problem is presented in Sections 5.6

and 7.5.2. Computation efficiency of our approach is assessed in Section 5.9.

The design-time and run-time support to make the optimization framework

interact with the HW-SW platform is illustrated in Sections 5.10 and 5.11. Ex-

perimental results validating the accuracy of the proposed optimizer follow

in Section 5.12, while a comparison with a heuristic approach is reported in

Section 5.13.

5.3 Related Work

In the following, we focus on off-line voltage/frequency selection tech-

niques, since our approach falls into this category.
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A number of techniques have been developed for single processor systems.

Yao et al. proposed in [20] the first DVS approach which can dynamically

change the supply voltage over a continuous range. Ishihara and Yasuura [21]

modeled the discrete voltage selection problem using an integer linear pro-

gramming (ILP) formulation. Xie et al. [22] present an algorithm for calcu-

lating the bounds on the power savings achievable through voltage selection.

Jejurikar and Gupta [23] propose an algorithm that combines voltage scaling

and shutdown in order to minimize dynamic and leakage energy in single.

Andrei et al. [13] proposed an approach that solves optimally the voltage

scaling problem for multi-processor systems with imposed time constraints.

The continuous voltage scaling is solved using convex nonlinear program-

ming with polynomial time complexity, while the discrete problem is proved

strongly NP hard and is formulated as mixed integer linear programming (MILP).

The previously mentioned approaches assume that the mapping and schedul-

ing are given. However, the achievable energy savings of dynamic voltage

scaling are greatly affected by the mapping and the scheduling of the tasks on

the target processors.

Task mapping and scheduling are known NP complete problems [24] that

have been previously addessed, without and with the objective of minimizing

the energy. Both heuristic [25], [26] and exact solutions [27] have been pro-

posed.

Assuming the mapping of the tasks on the processors is given as input, the

authors from [28] present a scheduling technique that maximizes the available

slack, which is then used to reduce the energy via voltage scaling. Schmitz

et al. [25] present a heuristic approach for mapping, scheduling and voltage

scaling on multiprocessor architectures.

A leakage-aware approach for combined dynamic voltage selection and

adaptive body-biasing has been proposed in [29, 13]. However, the approach

in [29] is restricted to the single processor case. A multiprocessor setting

is addressed in [13] through a mixed integer linear programming approach.

Although we concentrate in this chapter on the dynamic power and supply

voltage selection, our methodology can handle with minor changes the com-

bined supply and body bias scaling problem with only marginal implications

on computational complexity.

The closest approach to our work is the one of Leung et al., [30]. They

propose a mixed integer programming formulation for mapping, scheduling

and voltage scaling of a given task graph to a target multiprocessor platform.

They assume continuous voltages, so the overall result is suboptimal.

Summing up, the two main approaches followed by the system design com-

munity when facing software mapping problems in MPSoCs are: (1) either
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modelling and solving the problem to optimality as an Integer Program what-

ever the problem structure is or (2) using a special purpose heuristic algorithm

requiring sophisticated debugging and tuning and achieving sub-optimal so-

lutions. In this chapter, we claim that:

• whenever allocation and scheduling can be performed off-line due to the

intrinsic features of the application (predictable workload), the correct

approach is to solve these problems to optimality, thus achieving optimal

system configuration performance- and energy-wise. Clearly, a compu-

tation efficient solving engine is required even for the off-line analysis,

due to the complexity of the design space.

• Computation efficiency of solving techniques can be improved by ana-

lyzing and exploiting the problem structure. Integer Programming is an

effective solving framework, but it is not always the best technique one

can use. In general, the best solution strategy can be applied to each sub-

problem structure, and be deployed within a cooperative solving frame-

work.

5.4 Target Architecture

The objective of this work is to map an application with exposed task-level par-

allelism onto a homogeneous multi-core platform. The main objective function

consists of minimizing overall system power while meeting application real-

time constraints. The degrees of freedom available for the optimization pro-

cess are the allocation of tasks to processors, their scheduling in time and the

frequency/voltage selection for task execution.

The target architecture for our mapping strategy is a general template for

a parallel MPSoC architecture. The platform consists of a scalable number of

homogeneous processing cores, a shared communication infrastructure and a

shared memory for inter-tile communication. Processing cores embed instruc-

tion and data caches and are directly connected to tightly coupled software-

controlled scratch-pad memories.

The architecture is assumed to provide a harmonized hardware-software

support for messaging, targeting scalability to a large number of communicat-

ing cores. Messages can be exchanged by tasks through software communica-

tion queues, which can be physically allocated either in scratch-pad memory

or in shared memory, depending on whether tasks are mapped onto the same

processor or not. This assumption avoids to generate bus traffic and to in-

cur congestion delays for local communications. We also target architectures

where synchronization between producer-consumer pairs does not give rise to
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Figure 5.1: Distributed MPSoC architecture.

semaphore polling traffic on the bus, since this might unacceptably and unpre-

dictably degrade performance of ongoing message exchanges. Interrupt-based

synchronization or the implementation of distributed semaphores at each com-

putation tile are two example mechanisms matching our requirements.

As in many recent multi-core architectures, we assume that the target plat-

form supports different working frequencies and voltages for each processor

core. In practice, each computation tile has its own clock tree, and synchro-

nization mechanisms are provided for interfacing with the system bus (clock

domain crossing). Moreover, we assume that the voltage/frequency settings

can be adjusted at run-time.

An embodiment of this template architecture is considered in this work,

in order to be able to provide input data to the optimization framework, to

valide its solutions based on functional simulation and to validate objective

function values. The architecture is illustrated in Fig.5.1. However, alternative

architectures matching the same template can be input to our methodology,

with just the burden to re-characterize the costs for basic communication and

synchronization mechanisms, as will be explained in Section 5.12.

We used the MPARM platform for complete MPSoC functional simulation

with clock-cycle accuracy in SystemC [26]. ARM7 processor cores build up

the computation section of the platform, while an interconnect compliant with

AMBA AHB specification is selected. 32kB instruction and data caches are

instantiated. Frequency/voltage decoupling between processor cores and the

bus is implemented through dual-clock FIFOs featuring a latency of 4 clock

cycles of the slowest clock frequency [31]. A maximum operating frequency
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of 200 MHz is assumed for the bus, to which per-core frequency dividers are

applied. The used voltage/frequency pairs are illustrated in Table 5.1. The

variable frequency support for the platform is further enhanced by a variable

clock tree generator and by programmable registers. The clock tree generator

feeds the hardware modules of the platform with independent and frequency

scaled clock trees. A set of programmable registers is connected to the system

bus: each one of these registers contains the integer divider of the baseline

frequency for each processor.

Frequency Supply Voltage

200 MHz 1V
100 MHz 0.61V
66 MHz 0.55V
50 MHz 0.47V
40 MHz 0.44V

Table 5.1: Voltage-Frequency pairs.

Synchronization between producer/consumer pairs is implemented by means

of distributed hardware semaphores. When a producer generates a message,

it locally checks an integer semaphore which contains the number of free mes-

sages in the queue. If space is available, it decrements the semaphore and starts

writing the message. When the message is ready, it signals this to the consumer

by incrementing the consumer pointer (this is the only bus access for the en-

tire synchronization process). Furthermore, if the semaphore is not available,

the polling task registers itself on a list of tasks waiting for that semaphore

and suspends itself. Other tasks on the processor can then execute. As soon

as the semaphore is released, it generates an interrupt and the corresponding

interrupt routine reactivates all tasks on its waiting list.

We set up a communication and synchronization library abstracting away

low level architectural details to programmers, such as memory maps or ex-

plicit management of hardware semaphores and shared memory. The details

can be found in [32]. System resources are controlled by the RTEMS real-time

operating system.

Our virtual platform environment provides power statistics for ARM cores,

caches, on-chip memories and AMBA AHB bus by leveraging technology-

homogeneous power models for a 0.13 µ m technology provided by STMicro-

electronics. When all tasks mapped on a processor core are suspended, then

the core enters power save mode, where the power consumption is assumed

to be negligible.
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5.5 Background on optimization techniques

In this section, we recall the basic concepts behind the solvers we use in this

chapter, namely Constraint Programming and Integer Programming. We also

describe the method we use for enabling the cooperation between the two

paradigms, namely the Logic Based Benders Decomposition.

5.5.1 Constraint Programming

Constraint Programming (CP) has been recognized as a suitable modelling and

solving tool to face combinatorial (optimization) problems. The CP modeling

and solving activity is highly influenced by the Artificial Intelligence area on

Constraint Satisfaction Problems, CSPs (see, e.g., the book by [37]). A CSP

is a triple 〈V,D,C〉 where V is a set of variables X1, . . . ,Xn, D is a set of fi-

nite domains D1, . . . ,Dn representing the possible values that variables can

assume, and C is a set of constraints C1, . . . , Ck. Each constraint involves a set

of variables V ′ ⊆ V and defines a subset of the cartesian product of the corre-

sponding domains containing feasible tuples of values. Therefore, constraints

limit the values that variables can simultaneously assume. A solution of a CSP

is an assignment of values to variables which is consistent with all problem

constraints.

Constraints can be either mathematical or symbolic. Mathematical con-

straints have the form: t1 R t2 where t1 and t2 are finite terms, i.e., variables,

finite domain objects and usual expressions, and R is one of the constraints

defined on the domain of discourse (e.g., for integers we have the usual re-

lations: >,≥, <,≤,=, 6=). For example, if two activities i and j characterized

by starting times Starti and Startj and durations di and dj are linked by a

precedence constraint stating that activity i should be executed before activity

j, the following mathematical constraint can be imposed, Starti + di ≤ Startj .

Symbolic constraints, called also global constraints, are predicates involving

finite domain variables. They are expressive and powerful constraints (which

can also be defined by the user) embedding constraint-dependent filtering al-

gorithms. A typical global constraint is the

alldifferent([X1, . . . ,Xn])

available in most CP solvers. Declaratively, the constraint alldifferent([X1, . . . ,Xn])

holds iff all variables are assigned to a different value. Thus, it is declaratively

equivalent to a set of n ∗ (n − 1)/2 binary inequality constraints. However,

its compact representation allows more concise models and embeds a special-

ized efficient graph-based filtering algorithm [36]. Many constraints have been
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devised for scheduling, which is the most successful application area of Con-

straint Programming to date. In particular, many resource and temporal con-

straints have been devised so as to solve large problem instances, see [16]. As

an example, let us consider the cumulative constraint used for modelling lim-

ited resource availability in scheduling problems. Its parameters are: a list of

variables [S1, . . . , Sn] representing the starting time of all activities sharing the

resource, their duration [D1, . . . ,Dn], the resource consumption for each activ-

ity [R1, . . . , Rn] and the available resource capacity C. Clearly this constraint

holds if in any time step where at least one activity is running the sum of the

required resource is less than or equal to the available capacity. The constraint

cumulative([S1, . . . , Sn], [D1, . . . ,Dn], [R1, . . . , Rn], C) holds iff

∀j
∑

Sj≤i<Sj+Dj

Ri ≤ C

In commercial solvers like ILOG Scheduler, variants of this constraint have

been implemented for unary, cumulative, renewable and consumable resources

in presence of preemptive and non preemptive activities.

5.5.2 Integer Programming

Another solution technique, which is well known and widely used in the sys-

tem design community is Integer Programming (IP). Integer programming is

an older method, with roots that date back to the late 1950s. Integer Program-

ming can be thought of as a restriction of Constraint Programming. In fact,

Integer Programming has only two types of variables: integer variables whose

domain contain non-negative integers and continuous variables whose domain

contain non-negative real values. In addition, IP allows only one type of con-

straints: linear inequalities. Finally, the objective function must be linear in

the variables. It seems that these restrictions make integer programming much

narrower than constraint programming. However, many problems can still be

modeled effectively, and algorithms for integer programs can find optimal so-

lutions quickly for many applications. The solving principle of IP is based on

the solution of the linear relaxation, allowing arbitrary sets of linear constraints

to be treated as a global constraint, providing a global view of the problem.

The relaxation provides a bound enabling efficient pruning of the search tree

and directing search toward promising regions.

The standard form of an IP is the following: let x be the vector of variables,

x = [x1, x2, . . . , xn]. A set of these variables I are required to take on integer

values, while the remaining variables can take any real value. Each variable

can have a range, represented by vectors l and u such that li ≤ xi ≤ ui. A linear



5.5 Background on optimization techniques 87

constraint on the variables is a vector of coefficients a = [a1, . . . , an] and a scalar

right-hand-side b. The constraint is then the requirement that

∑

j

ajxj = b

The “=” in the constraint can also be ≤ or ≥ (but not < or >). The objective

function is formed by a vector of coefficients c = [c1, c2, . . . , cn], with the objec-

tive of minimizing (or maximizing) cx. An integer program consists of a single

linear objective and a set of constraints. If we create a matrix A = [aij ], where

aij is the coefficient for variable j in the ith constraint, then an integer program

can be written:

min cx (5.1)

s.t. Ax = b (5.2)

l ≤ x ≤ u (5.3)

xj integer for all j ∈ I (5.4)

For many applications, it is worth working within the limits of integer pro-

gramming to achieve high performance.

5.5.3 Logic Based Benders Decomposition

We will show that Constraint Programming and Integer Programming solvers

are used to solve parts of our problem. The technique we use in this chap-

ter for letting the two solvers cooperate is derived from a method, known in

Operations Research as Benders Decomposition [24], and refined by [7] with

the name of Logic-based Benders Decomposition. The classical Benders De-

composition method decomposes a problem into two loosely connected sub-

problems. It enumerates values for the connecting variables. For each set of

enumerated values, it solves the subproblem that results from fixing the con-

necting variables to these values. The solution of the subproblem generates

a constraint, called Benders cut, that the connecting variables must satisfy in

all subsequent solutions enumerated. The process continues until the master

problem and subproblem converge providing the same value. The classical

Benders approach, however, requires that the subproblem be a continuous lin-

ear or nonlinear programming problem. This requirement poses severe appli-

cability restrictions. For instance scheduling is a combinatorial problem that

has no practical linear or nonlinear programming model. Therefore, the Ben-
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ders decomposition idea can be extended to a logic-based form (Logic Based

Benders Decomposition - LBBD) that accommodates an arbitrary subproblem,

such as a discrete scheduling problem. More formally, as introduced in [7], a

problem can be written as

min f(x, y) (5.5)

s.t. pi(y) i ∈ I1 Master Problem Constraints (5.6)

gi(x) i ∈ I2 Subproblem Constraints (5.7)

qi(y) → hi(x) i ∈ I3 Conditional Constraints (5.8)

y ∈ Y Master Problem Variables (5.9)

xj ∈ Di Subproblem Variables (5.10)

We have master problem constraints, subproblem constraints and conditional

constraints linking the two models. If we solve the master problem to optimal-

ity, we obtain values for variables y in I1, namely ȳ, and the subproblem is thus

formulated as

min f(x, ȳ) (5.11)

gi(x) i ∈ I2 Subproblem Constraints (5.12)

qi(ȳ) → hi(x) i ∈ I3 Conditional Constraints (5.13)

xj ∈ Di Subproblem Variables (5.14)

The heart of Benders decomposition is somehow to derive a function that

gives a valid lower bound on the optimal value of the original problem for any

fixed value of y. This function yields to a valid Benders cut. The algorithm

proceeds as follows. At each iteration 1..h the Benders cuts so far generated
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are added to the master problem model that becomes

min f(x, y) (5.15)

s.t. pi(y) i ∈ I1 Master Problem Constraints (5.16)

Byi
(y) i ∈ 1..h Benders cuts (5.17)

y ∈ Y Master Problem Variables (5.18)

yi is the solution found at iteration i of the master problem.

In practice, to avoid the generation of master problem solutions that are

trivially infeasible for the subproblem, it is worth adding a relaxation of the

subproblem to the master problem.

Deciding to use the LBBD to solve a combinatorial optimization problem

implies a number of design choices that strongly affect the overall performance

of the algorithm. Design choices are (i) how to decompose the problem, (ii)

which solver to choose for each decomposition; (iii) which model to use for

feeding each solver; (iv) which subproblem relaxation to add to the master

problem so as to avoid the generation of trivially infeasible solutions; (v) which

Benders cuts to define for establishing the interaction between the master and

the sub-problem.

5.6 High-impact modeling choices

We first tried to solve the overall mapping problem (allocation and schedul-

ing) to optimality using a single approach. We tested both Constraint Pro-

gramming and Integer Programming alone on the problem with unacceptable

computation efficiency results. Therefore, we switched to Logic Based Benders

Decomposition. As shown in section 5.5.3, a number of design choices has to

be addressed.

• How to decompose the problem. We split the overall mapping problem

into two sub-problems:

(1) the allocation of tasks to processors and the selection of a baseline fre-

quency scaling factor for the execution of each task. The objective func-

tion at this stage is the minimization of the energy spent by the system

for task execution and communication.

(2) The scheduling of tasks in time on the assigned processors. The ob-

jective function of the scheduling sub-problem is the secondary objective

function of the mapping problem as a whole, and consists of energy min-
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Obj. Function:

Overall system energy

(depends on MP and SP 

variables)

Valid

allocation

ALLOCATION

of processors and frequencies

to tasks
INTEGER PROGRAMMING

SCHEDULING:
CONSTRAINT PROGRAMMING

Benders Cuts
“the solution just computed is the

optimal one unless a better one

exists with a different allocation”

Resource constraints

Real time

constraints

Relaxation of the SP

Obj. Function:

Minimize frequency

switching overhead

Figure 5.2: Application of Logic-Based Benders Decomposition to the Dynamic
Voltage Scaling Problem.

imization associated with frequency switchings.

Interestingly, our decomposition choice and interaction strategy can po-

tentially result in higher accuracy with respect to competing solving strate-

gies, such as [6] [8]. These latter cope with scheduling problems where

tasks assigned to different machines are not linked by any constraint.

Therefore, the subproblem there is composed by a set of independent

single machine scheduling problems.

Different objective functions can be easily supported by our technique.

Clearly, one should change the relaxation of the subproblem and the Ben-

ders cuts. The aim of this chapter is not to prove the effectiveness of

Logic-Based Benders Decomposition in general, but specifically for the

problem at hand.

• Which solver to choose for each decomposition. There are no general

guidelines for choosing the best solver for the problem at hand. For

some problems, it is widely recognized that either Integer Programming

or Constraint Programming are the techniques of choice. Integer Pro-

gramming is effective for coping with optimization problems, it has a

global problem view due to the use of linear relaxations, but sometimes

its models are too large and somewhat unnatural. On the other hand,

Constraint Programming has an effective way to cope with the so called

feasibility reasoning, encapsulating efficient and incremental filtering al-

gorithms into global constraints. However, CP has a naive way to cope
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with optimization problems by successively solving a set of constraint

satisfaction problems with tighter bounds on the objective function.

For the problem at hand, the allocation problem has been solved via In-

teger Programming. It better copes with objective functions based on the

sum of assignment costs. The model feeding the IP solver will be de-

scribed in section 5.7.1. For the scheduling problem, the solver is instead

based on Constraint Programming since it better copes with temporal

resource constraints and finer time granularities. This part will be de-

scribed in detail in section 5.7.2.

• Which relaxation to use. Since real-time constraints are not taken into

account in the allocation problem solver, this latter runs the risk of pro-

viding trivially infeasible solutions. In other words, computation and

communication activities may be packed in the same processor in such

a way that the sum of their durations exceeds the real-time constraints.

This makes the considered assignment certainly infeasible for the overall

problem. This can be avoided by adding a relaxation of the subproblem

to the master problem model. In particular, we should state in the master

problem that the sum of the overall execution and communication times

should not exceed the deadline for that processor. It follows from this that

the computed allocation will be much more similar to a feasible one for

the problem at hand and this reduces the search time. In addition, using

a subproblem relaxation we can compute a bound on the energy and the

time for frequency switching for tasks allocated on the same processor.

The relaxations used are described in section 5.7.3.

• Which Benders cuts to use. This aspect is essential for the interaction be-

tween the two solvers. We solve the allocation problem first (called mas-

ter problem), and the scheduling problem (called subproblem) later. The

master is solved to optimality and its solution passed to the subproblem

solver. In contrast to 4, where only performance issues were considered

and the primary objective function involved only variables of the master

problem, now the overall system energy minimization function involves

also sub-problem variables (the frequency switching overheads). For this

reason, the iterative solving strategy is key to converge to the optimal

solution. In fact, the scheduling sub-problem solver may indicate that

no feasible schedule exists for a given allocation. In this case, the mas-

ter problem solver will be constrained not to return the same allocation

through proper Benders Cuts. Alternatively, a feasible schedule is de-

rived for the given allocation, and a new iteration of the master problem

solver is triggered. This way, the computed allocation and scheduling
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solution at the first iteration is retained as the optimal solution unless a

more energy-efficient one exists with a different allocation and frequency

assignment. More details follow in Section 5.7.4.

The resulting cooperative solving framework for the power-aware map-

ping problem is summarized in Fig.5.2 and detailed in Section 7.5.2.

5.7 Dynamic Voltage Scaling Problem - DVSP

We consider a task graph G whose nodes represent a set of T tasks, that are

annotated with their deadline dlt and with the worst case number of clock cy-

cles WCNt. Arcs represent dependencies among tasks. Each arc is annotated

with the amount of data two dependent tasks ti and tj should exchange, and

therefore the number of bus clock cycles for exchanging (reading and writing)

these data WCNRtitj
and WCNWtitj

. Both the read and write activities are

performed at the same speed of the task and use the bus (which instead works

at the maximum speed). Execution, read and write activities are modelled as

atomic. Tasks run on a set of processors P . Without lack of generality, we as-

sume that each task has enough local memory to meet its storage requirements,

since these latter can be easily included in an extended model version.

Each processor can run with M energy/speed modes and has a maximum

load constraint dlp. Each task spends energy both in computing and in com-

municating. In addition, when the processor switches between two modes it

spends time and energy. We have a matrix E describing energy overhead Efifj

for switching from any frequency fi to any fj . Similarly, a matrix T describing

time switching overhead Tfifj
is defined.

The Dynamic Voltage Scaling Problem (DVSP) is the problem of allocating

tasks to processors, defining the running speed of each task and scheduling

each of them minimizing the total energy consumed. In order to solve the

DVSP to optimality without simplifying assumptions relieving computation

constraints but impairing solution accuracy, we applied the Logic-Based Ben-

ders decomposition technique [7] to this new application domain.

As introduced in Section 5.6, we decompose the problem in two parts: the

first, called Master Problem, is the allocation of processors and frequencies to

tasks and the second, called Subproblem, is the scheduling of tasks given the

static allocations and frequency assignments provided by the master. The mas-

ter problem is tackled by an Integer Programming solver while the subproblem

through a Constraint Programming solver.
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5.7.1 The Master Problem model

We model the allocation problem using Integer Linear Programming. We have

binary variables Xptm which take value 1 if task t is mapped on the processor

p and runs in (energy-speed) mode m, 0 otherwise. Since we also take into

account communication, we assume that two tasks consume energy and time

for communication only if they are allocated on two different processors. Vari-

ables Rpt1t2m and Wpt1t2m take value 1 if the task t1 running on processor p

reads (resp. writes) data (at mode m) from (resp. for) a task t2 not running on

p. We assume that tasks running on the same processor do not consume en-

ergy and do not spend time in communication for the sake of the optimization

problem, while we include the actual minor costs for local communication in

execution time and energy for the sake of modelling accuracy. They are input

data provided with the task graph.

Any task can be mapped to only one processor and can run at only one

speed, that is:

P
∑

p=1

M
∑

m=1

Xptm = 1 ∀t

Also, each task reads data (resp. writes data) atomically while executing

in a given mode and on a given processor, thus constraining variables Rpt1t2m

and Wpt1t2m:

P
∑

p=1

M
∑

m=1

Rpt1t2m ≤ 1 ∀t1, t2

P
∑

p=1

M
∑

m=1

Wpt1t2m ≤ 1 ∀t1, t2

Since at each write activity corresponds a related read activity, we have:

P
∑

p=1

M
∑

m=1

(Wpt1t2m − Rpt2t1m) = 0 ∀t1, t2

The objective function OF is to minimize the energy consumption for task exe-

cution Ecomp and for task communication Eread and Ewrite:

Ecomp =

P
∑

p=1

M
∑

m=1

T
∑

t=1

XptmWCNttclockm
Ptm

ERead =

P
∑

p=1

M
∑

m=1

T
∑

t,t1=1

Rptt1mWCNRtt1tclockm
Ptm
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EWrite =

P
∑

p=1

M
∑

m=1

T
∑

t,t1=1

Wptt1mWCNWtt1tclockm
Ptm

OF = Ecomp + ERead + EWrite

where Ptm is the power consumed by task t when running in execution

mode m and tclockm
is the clock cycle at mode m.

The objective function defined up to now depends only on master problem

variables. However, switching from one speed to another introduces transition

costs, but their value can be computed only at scheduling time. Therefore, we

update the objective function of the master problem with frequency transition

(or setup) costs:

OFMaster = OF +
∑P

p=1 Setupp

where Setupp is the cost of frequency switching on processor p. Note that in

the master problem model the Setupp variables are not constrained. This is true

only in the first iteration of the Logic Based Benders Decomposition algorithm

where all the Setupp variables are forced to be 0. From the second iteration on,

instead, cuts are produced by the subproblem, constraining variables Setupp

such that they might no longer be 0. These cuts will be described in section

5.7.4. In addition, for this variable, we can compute a bound using a relaxation

of the subproblem. We will explain this relaxation in section 5.7.3.

In the master problem model, we have added a set of constraints that avoid

the computation of symmetric (thus useless) solutions. For example, the first

task is always allocated on the first processor. Each task i should be allocated

on a processor j only if j ≤ i. In addition a task uses a new processor only if it

is not mappable on a processor already used.

5.7.2 The Sub-Problem model

For the scheduling part we use a Constraint Programming model. Each task

t has an associated variable representing its starting time Starti. The du-

ration is fixed since the frequency has been decided in the master problem,

i.e., durationi = WCNi/fi. In addition, if two communicating tasks ti and

tj are allocated on two different processors, we should introduce two addi-

tional activities (one for writing data to the shared memory and one for reading

data from the shared memory). We model the starting time of these activities

StartWriteij and StartReadij . These activities are carried on at the same fre-

quency of the corresponding task. If ti writes and tj reads data, the writing

activity is performed at the same frequency of ti and its duration dWriteij de-

pends on the frequency and on the amount of data ti writes, i.e., WCNWij/fi.
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Analogously, the reading activity is performed at the same frequency of tj and

its duration dReadij depends on the frequency and on the amount of data tj

reads, i.e., WCNRij
/fj . Clearly the read and write activities are linked to the

corresponding task:

Starti + durationi ≤ StartWriteij ∀j

StartReadij + dReadij ≤ Startj ∀i

The constraint is not an equality constraint since each task can produce data

for many tasks and can read from many tasks. Moreover, reads and writes on

the same queue are linked from

StartWriteij + dWriteij ≤ StartReadij ∀i, j

The way reading and writing activities are scheduled heavily depends on

the the task graph structure. If we restrict our analysis to pipelined task graphs

(i.e., dependencies among tasks are such that they are logically ordered in a

pipeline, as in 4), then input data reading activities can be considered tightly

coupled with computation activities of each task. Therefore, tasks writing their

output data to shared memory just have their execution time increased by a

quantity WCNW /fm, where WCNW is the number of clock cycles for writ-

ing data (it depends on the amount of data to write) between a task and its

successor in the pipeline, and fm is the frequency of the clock when task t is

performed. Similarly, tasks reading input data from shared memory have their

duration increased by a quantity WCNR/fm.

On the contrary, for generic task graphs, a task might need to read multiple

input queues before executing, with possible suspensions between the consec-

utive reading activities, as illustrated in Fig.5.3. Our modelling framework

accounts for this general case.

Therefore, we introduce constraints forcing the execution of a task to start

immediately after its last reading activity is completed, and the writes of one

task to be executed sequentially without intermediate suspensions beginning

from the execution completion of that task. For this purpose, we need to intro-

duce two additional activities for each task named MacroReadi and MacroWritei.

These latter group all the reading and writing activities of the associated task

with index i. Durations of these macro-activities can be expressed as (symbol

→ indicates a precedence constraint):

dMacroReadi ≥
∑

j,j→i dReadij ∀i

dMacroWritei =
∑

j,i→j dWriteij ∀i

This leads to new constraints linking communication and execution activi-

ties:

Starti + durationi = StartMacroWritei ∀i
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READ23

PROC 1

PROC 1

PROC 2

TASK 2

TASK 1

TASK 3

TASK 1 EX 1 WRITE13

EX 2TASK 1

TASK 1

WRITE23

READ13 EX 3WAIT

Figure 5.3: Example of multiple input data reads and their scheduling in time.

StartMacroReadi + dMacroReadi = Starti ∀i

In the subproblem, we model precedence constraints in the following way:

if tasks ti should precede task tj and they run on the same processor at the

same frequency the precedence constraint is simply:

Starti + Durationi ≤ Startj

If instead the two tasks run on the same processor at different speed, we

should add the time Tfifj
for switching between the two frequencies.

Starti + Durationi + Tfifj
≤ Startj

If the two tasks run on different processors and should communicate we

should add the time for communicating.

Starti + Durationi + dWriteij + dReadij ≤ Startj

The scheduling engine must also verify that timing and resource require-

ments are met. As regards timing, task as well as processor deadlines are forced

with proper constraints. In the simplifying assumption that task and processor

deadlines are set to the same value, we just have to check that

Starti + Durationi ≤ Deadline ∀i

otherwise the generalization is straightforward.

Resources are modelled as follows. We have a unary resource constraint for

each processor, modelled through a cumulative constraint having as parame-

ters a list of all tasks sharing the same resource p, TaskListp, their durations

DurationListp, their resource consumption (which is a list of 1) and the capac-

ity of the processor which is 1

cumulative(TaskListp,DurationListp, [1], 1) ∀p
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We model the bus through an additive model we have already validated in

4. Based on this model, the bus can be shared by many activities (reads/writes

from/to shared memory) in such a way that the offered bandwidth equals the

sum of the bandwidth requirements of the concurrent activities. In principle,

this is true only provided congestion effects remain marginal. In practice, when

the bandwidth requirements exceed a given upper threshold, the offered band-

width incurs a saturation effect, since most of the time is spent by communica-

tion actors in competing for bus access. Operating in this regime might not be

convenient, since interconnect performance becomes unpredictable (e.g., the

additive model fails) and only modest gains in interconnect effective utiliza-

tion are achieved at the cost of an impairment of modelling accuracy.

The objective function we want to minimize in the scheduling problem is the setup

energy, i.e., the energy spent for frequency switchings:

min
∑P

p=1 Setupp

For this purpose, we use a matrix of precomputed transition costs E which

reports the energy overhead for switching from frequency fi (row i) to fj (col-

umn j), and whose diagonal is obviously null. If we indicate with Sp the set

of task pairs which are scheduled consecutively on processor p, then the setup

costs can be derived as

Setupp =
∑

(i,j)∈Sp
Efifj

∀p

A bound on Setupp is computed in Subsection 5.7.3.

5.7.3 Relaxation of the subproblem

The master problem formulation described in section 5.7.1 will result in allo-

cations where tasks will potentially run at their lowest frequencies and on the

same processor, since task and processor deadlines are not yet accounted for

in the master problem. Feeding these allocation solutions to the subproblem

solver will most probably result in infeasible schedules, thus leading to a lot of

computation-inefficient iterations between master and sub-problem. To avoid

this, we introduce relaxations of the subproblem in the master problem model.

In other words, we impose that on each processor the sum of the time spent

for the computation, plus the time spent for communication (read and write)

should be less than or equal to the deadline of the processor, in order to prevent

trivially infeasible solutions:

T p
compp

=
T

∑

t=1

M
∑

m=1

Xptm
WCNt

fm

T p
read =

T
∑

t=1

M
∑

m=1

T
∑

t=1

Rptt1m
WCNRtt1

fm
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T p
write =

T
∑

t=1

M
∑

m=1

T
∑

t=1

Wptt1m
WCNWtt1

fm

T p
comp + T p

read + T p
write ≤ dlp ∀p

In the same way, task deadlines can be captured, which are the same for-

mulas but the final sums are computed for each task.

Note that to further improve these constraints, we can add a contribution

concerning the setup time Tswitch, i.e., the time spent to switch between two

frequencies in the same processor.

T p
comp + T p

read + T p
write + T p

switch ≤ dlp ∀p

On Tswitch we can only compute a lower bound since the real switching

time can be computed once the schedule is known. The idea is the following.

If we consider all the task frequencies allocated on a single processor, we know

that Tswitch is at least the sum of all switches minus the greatest switch time.

For instance if frequencies f1 f2 and f3 are allocated on processor PE0, we

have to sum the minimum time for switching to frequency f1, f2 and f3 minus

the maximum of the three. To this purpose we have defined variables Zpf

taking value 1 if the frequency f is allocated at least once on the processor p,

0 otherwise. In addition we can extract from the matrix T of switching time

overheads a vector T̄ corresponding to the time of frequency switches that will

be possibly performed on the processor. The i-th element in the vector T̄ is the

minimum time for switching to frequency i. The lower bound on Tswitch can

be imposed as follows:

T p
switch ≥

M
∑

f=1

(Zpf T̄f − maxf{T̄f |Zpf = 1}) ∀p

An additional set of constraints has been introduced to further restrict the

search space and improve computation-efficiency. In particular, we constrain

execution mode selection m for tasks belonging to a precedence chain, (indepen-

dently of the processor they use) forcing the sum of their execution time not to

exceed processor deadline of the last task dlplast
. A precedence chain includes

tasks featuring precedence constraints in a pipelined fashion, wherein the first

and the last task in the chain do not feature neither producer nor consumer

tasks, respectively. An example of the extraction of 4 precedence chains from

a simple task graph is showed in Fig.5.4, and the constraint in the problem

model is as follows:

T c
comp + T c

read + T c
write ≤ dlplast

∀c(chains)



5.7 Dynamic Voltage Scaling Problem - DVSP 99

TASK 6CHAIN 1 ={Task1, Task3, Task4, Task 5}

CHAIN 2 = {Task1, Task3, Task4, Task6}

CHAIN 3 = {Task2, Task3, Task4, Task5}

CHAIN 4 = {Task2, Task3, Task4, Task6}

TASK 2

TASK 1

TASK 3 TASK 4

TASK 5

Figure 5.4: Precedence chain extraction from an example task-graph.

Another aspect of the relaxation that helps in avoiding the computation of

suboptimal solutions concerns the computation of a bound on the switching

costs on each processor Setupp. It is computed in the same way described for

Tswitch. This time, however, we have to extract from the matrix of switching

cost overheads E a vector Ē corresponding to the cost of frequency switches

that will be possibly performed on the processor. The i-th element in the vector

Ē is the minimum cost for switching to frequency i.

Setupp ≥
M
∑

f=1

(Zpf Ēf − maxf{Ēf |Zpf = 1}) ∀p

5.7.4 Benders Cuts

Once the subproblem has been solved, we generate Benders Cuts. The cuts are

of two types:

(i) if there is no feasible schedule given an allocation, we have to compute a

no-good on variables Xptm avoiding the same allocation to be found again.

(ii) if a feasible and optimal schedule exists, we cannot simply stop the itera-

tion since the master objective function depends also on subproblem variables.

Therefore, we have to produce cuts saying that the one just computed is the

optimal solution unless a better one exists for a different allocation. These cuts

produce a lower bound on the setup costs of the processors.

The procedure converges when the master problem produces a solution

with the same objective function value of the previous one.

The first type of cuts are no-good: we call Jp the set of couples (Task, Fre-

quency) allocated to processor p. We impose
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∑

(t,m)∈Jp

Xptm ≤ |Jp| − 1 ∀p

Let us concentrate on the second type of cuts. The cuts we produce in this

case are bounds on the variable Setup previously defined in the Master Prob-

lem.

Suppose the schedule we find for a given allocation has an optimal setup

cost Setup∗. It is formed by independent setups, one for each processor Setup∗ =
∑P

p=1 Setup∗p.

We have a bound on the setup LBSetupp
on each processor and therefore a

bound on the overall setup LBSetup =
∑P

p=1 LBSetupp
.

Setupp ≥ 0

Setupp ≥ LBSetupp

LBSetupp
= Setup∗p − Setup∗p

∑

(t,m)∈Jp

(1 − Xptm)

These cuts remove only one allocation. Indeed, we have also produced cuts

that remove some symmetric solutions.

We have devised tighter cuts removing more solutions. However, they

complicate the model too much and our experimental results show that these

cuts, even if tighter, do not lead to any advantage in terms of computational

time.

5.8 Example of computation

We now show a simple example of how the two solvers work and interact on a

small problem instance with 5 computation tasks and 4 communication tasks,

with the precedence constraints as described in Figure 5.5. Table 5.2 shows the

duration (in clock cycles) of task executions. For communication tasks we re-

port the duration in case the communication is local to the processor or remote.

The durations of the reading and the writing activities of each communication

Comi are the half of the values reported in Table 5.2. We have 2 processing

elements that run at 3 different frequencies, 200MHz, 100MHz and 50MHz.

Therefore, for example Task1 will last 1.5ms if it runs at 200MHz, 3ms if it runs

at 100MHz and 6ms if it runs at 50MHz. The energy spent by the processors are

10mW when running at 200MHz, 5mW when running at 100MHz and 2mW

when running at 50MHz.
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Each frequency switching needs 200ns to be performed. In addition, switch-

ing from 200MHz to any other frequency leads to an energy consumption of

500pJ; switching from 100MHz to any other frequency leads to an energy con-

sumption of 200pJ; switching from 50MHz to any other frequency leads to an

energy consumption of 100pJ.

The real-time requirement imposes the processors deadline at 7ms.

Name Task0 Task1 Task2 Task3 Task4
Clock 300k 100k 300k 100k 100k
Name Com1 Com2 Com3 Com4
Clock 100/200 100/200 100/200 100/200

Table 5.2: Activity durations for the example

Figure 5.5: Task graph for the example in Table 5.2

The first solution found by the master problem allocates Task3 alone on

the first processor and all the other tasks on the second processor1. Task0 and

Task2 run at the highest speed, Task3 and Task4 run at the lowest speed and

Task1 runs at 100MHz. The master problem objective function (cost for ex-

ecution and communication) is 43023400 pJ, and the lower bound provided

by the subproblem relaxation for the energy spent for frequency switching is

300pJ. This solution is passed to the scheduling problem solver that checks

the feasibility of the solution found. In this case, the solution is feasible and

the scheduler provides an optimal solution that minimizes the energy for fre-

quency switching whose cost of 1200 pJ. The solution for the overall problem is

the sum of the energy spent for execution, communication and switching, i.e.,

43024600 pJ.

Now a Benders Cut is produced providing a bound on the cost. The cutting

plane states that 43024600 pJ is the optimal solution, unless a better one exists

for a different allocation and frequency assignment.

A new allocation is found taking into account the cutting plane just gener-

ated. The new solution has an objective function value, 43023500, worse than

the first one. In this case, the process allocation is the same, but now also

Task1 runs at the highest speed. We have an higher power consumption for

1Note that an equivalent symmetric solution can be obtained just by interchanging the two
processors.



102
Reducing the Abstraction and Optimality Gaps in the Allocation and Scheduling for Variable

Voltage/Frequency MPSoC Platforms

execution, but we can avoid 2 frequency switchings. The lower bound on the

switching overhead is in fact 100 pJ, thus this allocation can potentially lead to

a better solution. The solution is passed to the subproblem solver. A schedul-

ing is produced whose actual switching cost is 500 pJ. The overall solution,

whose cost is 43024000 pJ, is the best one found so far.

Another Benders Cut is produced and passed to the master problem. The

third allocation is produced whose cost is 43023500 pJ and switching lower

bound of 300 pJ. This cost is lower than the overall cost of the best solution

found. The subproblem schedules this allocation and finds the optimal switch-

ing overhead of 1200 pJ. The overall cost, 43024700 pJ, is actually worse than

the one found at the previous iteration.

The master problem does not find any allocation with an objective function

lower than 43024000 pJ and the search ends.

The optimal allocation is: Task3 on the first processor and all the other tasks

on the second processor. The optimal frequency assignment is: Task0, Task1

and Task2 at the higher speed and the others at the lower. The overall optimal

cost is 43024000 pJ.

5.9 Computational efficiency

We tested the computational efficiency of our hybrid approach on a 2GHz Pen-

tium 4 machine with 512 Mb RAM and leveraged state-of-the-art professional

solving tools, namely ILOG CPLEX 8.1, ILOG Solver 5.3 and ILOG Scheduler

5.3. We considered two kinds of DVSP instances: i) instances with a pipelined

task graph and ii) instances with a generic task graph.

5.9.1 Pipelined task graphs

The pipeline workflow is typical, for example, of signal processing applica-

tions (e.g., baseband processing, video graphics pipelines). The same set of

tasks is repeated on each input data unit or frame. We cannot know in ad-

vance the number of frames, thus, to analyze the pipeline at working rate, thus

we schedule several repetition of each task. If n is the number of tasks in the

pipeline, after n repetitions the pipeline is at full rate. In a pipeline with n tasks,

we have n execution activities and 2× (n− 1) communication activities (a read

and a write for each edge in the graph); we therefore allocate n + 2 × (n − 1)

and schedule n × (n + 2 × (n − 1)) activities.

We generated and solved 280 instances with an increasing number of tasks

and processing elements. Results are summarized in Table 5.3. The first three

columns contain the number of allocated and scheduled activities (execution+communication
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data writes and reads) and the number of processing elements considered in

the instances (we consider here PEs able to run at three different frequencies).

The last two columns represent respectively the search time and the number

of iterations between the master and the subproblem. Each value is the mean

over 10 instances with the same number of tasks and PEs. We can see that for

all the instances the optimal solution can be found within four minutes and the

algorithm scales quite smoothly for increasing number of tasks and PEs. We

can also see that the number of iterations is typically low: the optimal solution

can be found after one iteration in the 50% of the cases and the number of it-

erations is at most 5 in almost the 90% of cases. This result is due to the tight

relaxations added to the master problem model.

Activities

Alloc Sched Procs Time (s) Iters

4+6 16+24 2 1,73 1,98
4+6 16+24 3 1,43 2,91
4+6 16+24 4 2,24 3,47
5+8 25+40 2 2,91 2,36
5+8 25+40 3 4,19 4,12
5+8 25+40 4 5,65 4,80
5+8 25+40 5 6,69 3,41

6+10 36+60 2 3,84 2,90
6+10 36+60 3 10,76 2,17
6+10 36+60 4 15,25 4,66
6+10 36+60 5 23,17 4,50
6+10 36+60 6 26,14 3,66
7+12 49+84 2 4,67 1,75
7+12 49+84 3 5,90 1,90
7+12 49+84 7 34,53 6,34
8+14 64+112 2 4,09 3,28
8+14 64+112 3 10,99 1,83
8+14 64+112 4 12,34 4,45
8+14 64+112 5 22,65 10,53
8+14 64+112 7 51,07 6,98
9+16 81+144 2 1,79 1,12
9+16 81+144 5 60,07 7,15
9+16 81+144 6 70,40 9,20
10+18 100+180 2 5,52 1,83
10+18 100+180 3 3,07 1,96
10+18 100+180 6 120,02 6,23
10+18 100+180 10 209,35 10,65

Table 5.3: Search time and number of iterations for instances with pipelined
task graphs
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5.9.2 Generic task graphs

We extended our analysis to instances where the task graph is a generic one,

so an activity can possibly read data from more than one preceeding activities

and possibly write data that will be read by more than one subsequent activity.

The number of reading and writing activities can become considerably higher,

being higher the number of edges in the task graph. We consider here PEs

that can run at six different frequencies. This problem is much harder than

the pipelined one, because the task graph can have a number of parallel task

execution chains and thus the macro-activities described in Section 5.7.2 must

be considered, complicating and introducing symmetries in the model. Dif-

ferently from the pipelined instances, we schedule a single repetition of each

task.

Table 5.4 summarizes the results. Each line represents an instance that has

been solved to optimality. Columns have the same meaning as those already

described in Table 5.3. The number of communications in this case in not equal

to 2 × (n − 1) as for the pipelined instances, but depends on the specific task

graph. We can see that typically the behaviors are similar to those found when

solving the pipelined instances, but we can note some instances where the

number of iterations or the search time is notably higher. For example, in the

last but two line the number of iterations is very high: this is due to the par-

ticular structure of the task graph; in fact it can happen that a high degree of

parallelism between the tasks, that is a high number of tasks that can execute

only after a single task, leads to a number allocations that are not schedulable.

The master problem solver thus looses time proposing to the scheduler a high

number of infeasible allocations. On the contrary, in the last line the number of

iterations is low but the search time is extremely high: this is due to the tasks

characteristics that make the scheduling problem very hard to be solved.

In addition, we have tested our approach on a DSVP instance considering

decreasing values of the deadline, so as to have instances with different con-

straint tightness. We noticed that the phase transition of the problem happens

when the deadline is not too tight to have few solutions (among which is easy

to find the optimal one) and not too loose so as the problem is trivially solv-

able assigning all tasks to the same processor at the lowest speed. In addition,

varying the deadline constraints, the best and the worst search time remain

within an order of magnitude, so our methodology efficiently faces instances

with different densities of feasible solutions.

Finally, we intended to compare computation efficiency of our hybrid ap-

proach with that of traditional approaches not leveraging problem decomposi-

tion (i.e., the whole mapping problem modelled through ILP or CP). However,

such a comparison was already reported in 4 for a simpler problem (power con-
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Activities

Alloc Sched Procs Time(s) Iters

8+12 8+12 3 1,48 2
8+12 8+12 3 4,26 6
8+16 8+16 2 1,57 1
8+16 8+16 3 0,81 1
8+16 8+16 4 0,86 1
9+8 9+8 2 2,73 3
9+10 9+10 4 2,60 4
9+12 9+12 4 1,40 3
9+12 9+12 4 2,14 5
9+12 9+12 2 1,11 1
9+16 9+16 3 35,95 43
9+16 9+16 4 29,59 26
9+16 9+16 4 4,84 6
9+20 9+20 3 2,51 1
9+20 9+20 6 158,43 39
9+22 9+22 3 6,62 2
9+24 9+24 2 2,51 1

10+12 10+12 4 0,37 1
10+12 10+12 4 11,50 27
10+16 10+16 3 12,81 3
10+16 10+16 4 13,92 14
10+18 10+18 2 5,90 1
10+18 10+18 3 2,12 1
10+24 10+24 4 4,18 5
12+20 12+20 5 551,92 213
14+22 14+22 2 14,11 1
14+62 14+62 6 3624,81 2

Table 5.4: Search time and number of iterations for instances with generic task
graphs

sumption was not accounted for, only performance was), and already showed

a computation efficiency gap of orders of magnitude. Considering an upper

bound of 15 minutes for the search time, CP and IP proved capable of finding

the optimal solution only for extremely small instances, with a low number

of tasks and PEs, and to find a solution (not the optimal one) only in 50% of

the hard instances, while the hybrid approach solved 100% of the instances to

optimality.

5.10 Design time support

A software development and optimization flow based on the above hybrid

solver addresses the optimality gap usually incurred by fast exploration frame-

works. On the other hand, this flow requires a correspondent design-time and
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run-time support in the target platform matching the way the application and

the architecture have been abstracted in the optimization framework and al-

lowing the precise implementation of computed mapping solutions. In prac-

tice, such support is needed to close the abstraction gap (i.e., the deviation

between the mapping problem model and the real behavior of the target plat-

form), which is the other main objective of this chapter.

5.10.1 Application and task computational model

Our methodology requires to model the multi-task application to be mapped

and executed on top of the target HW platform as a task graph with prece-

dence constraints. Nodes of the graph represent concurrent tasks while the

arcs indicate mutual dependencies (communication and/or synchronization).

Figure 5.6: Three phases behavior of Tasks.

Task execution is structured in three phases, as indicated in Fig.5.6: all input

communication queues are read (INPUT), computation activity is performed

(EXEC) and finally all output queues are written (OUTPUT). Each phase con-

sists of an atomic activity. Each task also has 2 kinds of associated memory

requirements:

• Program Data: storage locations are required for computation data and

for processor instructions;

• Communication queues: the task needs queues to transmit and receive

messages to/from other tasks, eventually mapped on different proces-

sors.

Program data are allocated on the private memory of each processor, while

communication queues reside in scratch-pad memory (in case the communi-

cating tasks run on the same processor) or in shared memory (for remote com-

munications).

5.10.2 Customizable Application Template

We set up a generic customizable application template allowing software de-

velopers to easily and quickly build their parallel applications starting from

a high-level task and data flow graph specification. Programmers can at first

think about their applications in terms of task dependencies and quickly draw

the task graphs, and then use our tools and libraries to translate the abstract
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representation into C-code. This way, they can devote most of their effort to the

functionality of tasks rather than the implementation of their communication,

sychronization, scheduling and energy mode switching mechanisms. Follow-

ing our scalable and parameterizable template, we also ensure that the final

implementation of the target application will be compliant with the modelling

assumptions of the optimizer, and that the optimal performance and the con-

straint satisfaction of computed mapping solutions will be achieved in practice.

Figure 5.7: Example of how to use the Customizable Application Template.

Fig.5.7 shows a pictorial illustration of how our template looks like. Pro-

grammers can specify the structure of the target application by simply declar-

ing a series of macros and data structures. In the example, we have depicted

a task graph with twelve tasks and with precedence constraints defined in the

matrix queue consumer[][]. If task i has a precedence constraint w.r.t. task j,

the element queue consumer[i][j] will be set to 1. Developers can also spec-

ify information about the configuration of the target hardware platform and

the desidered allocation and schedule, as derived from the optimization tool.

N CPU macro specifies the number of available processing cores. The two

task on core[] and schedule on core[][] data structures specify where tasks should

be allocated and which schedule to apply for each core, while with the task freq[]

vector developers can associate an operating voltage/frequency pair to each

task.

For every task indicated within the application template, C-code is auto-
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Figure 5.8: Task computational versus the C-code generated.

matically generated. Fig.5.8 shows C-code for a task reflecting the considered

computation model. At task creation, the task state and private data struc-

tures are instantiated and initializated, as well as all buffers and semaphores

needed for communication and synchronization. The INPUT phase of the com-

putational model corresponds to the Read input() function, while the OUTPUT

phase to the Write output() one. These two functions are blocking and handle

the whole communication and synchronization procedures automatically. The

only section which is on burden of the programmer is the Exec() function: this

is the customizable computational core of the task.

5.11 Run-time support

We implemented a set of APIs by which users can easily reproduce optimizer

solutions on their target platform with great accuracy.

5.11.1 OS-independent allocation and scheduling support

Once the target application has been implemented using our generic customiz-

able template, tasks, program data and communication queues are allocated to

the proper hardware resources (processor or memory cores) as indicated by the

computed allocation solution. This is done through the init task of our template

which allocates and launches all the activities at booting time.

In order to reproduce the exact scheduling behavior of the optimizer, we

implemented a scheduling support middleware in the target platform. Using
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this facility, programmers only have to specify the desired scheduling for every

processor core, which is handled accordingly by our middleware in a transpar-

ent way.

After the boot of the application, our framework sets to active only the first

task in the scheduling list, while the other ones are set to the sleep state. In

this way, we avoid any undesired task preemption by the OS scheduler, which

would induce a different behavior with respect to the optimal one provided by

the optimizer.

After the active task has finished its execution, it is put to sleep thus releas-

ing the CPU, while the subsequent task in the scheduling list is woken up by

switching its state to active. If the subsequent task is allocated to a different

CPU, this remote wake up mechanism is handled via interrupts. Every time

a new task is scheduled, our middleware sets its right operating frequency as

specified in the application template.

5.11.2 Communication and Synchronization support

Software support for efficient messaging is also provided by our set of high-

level APIs. The communication and synchronization library abstracts low level

architectural details to the programmer, such as memory maps or explicit man-

agement of hardware semaphores or interrupt signaling. The structure of the

queues is shown in Fig. 5.9.

Figure 5.9: The structure of a queue.

The infrastructure for the communication between a producer-consumer

pair is composed by a data queue and by two semaphores. The communication

and synchronization mechanisms have already been illustrated in Section 6.4.

If one task has got more than one input or output queue, our optimizer can

specify the optimal reading/writing sequence from/to them. We tuned our

run-time support to enable this option. This is a very important feature, since

an optimal queue-usage ordering can increase the parallelism and thus boost

performance. Fig. 5.10 better clarifies this issue. It shows a case study in which

six tasks are allocated to two different processing cores.

Task T1 has to communicate with both T2 and T3, which are allocated to

the same core, and with T4 allocated to a different core. At start-up, let us

assume that task T1 will be scheduled on CPU1 and task T4 on CPU2. While T1
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Figure 5.10: Optimal queue usage ordering: example.

immediately starts its execution, T4 has to wait for data from T1, thus keeping

CPU2 stalled. The idle wait of T4 depends on the queue-fill ordering enforced

by T1: it will be shorter if T1 gives maximum priority to queue C3. Both our

optimization framework and our application execution support can handle this

additional degree of freedom for performance optimization.

5.12 Experimental Results

For each task in the input graph the optimizer needs the worst-case execu-

tion time, the time required for writing and for reading input data from local

memory and the overhead for writing and reading input data if queues are al-

located onto the shared memory in the absence of contention. For each task

graph, this information can be collected with only 2 simulation runs on a vir-

tual platform. As mentioned in Section 6.4, we used the MPARM platform for

complete MPSoC functional simulation with clock-cycle accuracy [26] in Sys-

temC. This modelling and simulation environment was used both to provide

input data for the optimization framework and to validate its solutions.

Two types of validation experiments were performed, namely (i) compari-

son of simulation-based energy and throughput with optimizer-derived val-

ues, and (ii) prove of viability of the proposed approach for real-life demon-

strators (GSM, JPEG).

5.12.1 Validation of optimizer solutions

We have deployed the virtual platform to implement the allocations, schedules

and frequency assignments generated by the optimizer. A tunable multitask

application has been used for this experiment, allowing to change system and

application parameters (local memory size, execution times, data size, real-

time requirements, etc.) and to generate the 200 problem instances used for

validation. The results of the validation phase are reported in Fig.5.11, which

shows the distribution of energy deviations. The average difference between
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Figure 5.11: Distribution of Energy Consumption differences.

Figure 5.12: Distribution of throughput deviations.

measured and predicted energy values is 4.80%, with 1.71 standard deviation.

Fig.5.12 shows the distribution of throughput differences: in this case the av-

erage difference between measured and predicted values is 4.51%, with 1.94

standard deviation. This confirms the high level of accuracy achieved by the

developed optimization framework in modelling real-life MPSoCs with the as-

sumed architectural template.

5.12.2 Demonstrators

GSM demonstrator

The methodology has been applied to a GSM codec parallelized in two ways:

the first variant features 10 generic tasks while the second one consists of 6

tasks ordered in a logic pipeline. Each task has been pre-characterized by the

virtual platform to provide parameters of task models to the optimizer. After

the optimization stage, the solution has been validated on the virtual platform.

Fig.6.16 shows the task graph of the first GSM implementation variant. The

time taken by the optimizer to come to a solution was 0.2 seconds and Table

5.12.2 shows the results of this optimization run. The validation process of

the solution on the virtual platform running two cores showed an accuracy by
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Figure 5.13: Task graph of the first GSM implementation variant with 10 tasks.

3.99% on throughput and by 2.91% on energy requirements.

Deadline (ns) # of Proc. Allocation of Tasks to Core Task Freq. Divider Energy Consump. (nJ)

5000 2 1,1,1,1,2,1,1,2,2,2 1,2,2,2,4,1,1,1,1,1 4784

Table 5.5: Mapping solution for the GSM encoder.

The results for the pipelined version of the GSM codec showed an accu-

racy on the processor energy dissipation, as predicted by the optimizer, by 2%.

We used the pipelined version of the GSM demonstrator to explore how the

optimizer minimizes energy dissipation of the processor cores with varying

real-time requirements, and the results are reported in Fig.5.14. The behaviour

of the optimizer is not specific for the GSM case study, but can be extended to

all applications featuring timing constraints.

Figure 5.14: Behaviour of the optimizer with varying real-time requirements. Alloca-
tion is given as an array indicating the processor ID on which each task is
mapped. Similarly, the frequency of each task is expressed in terms of the
integer divider of the baseline frequency. Only 3 dividers are used for this
example.
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When the deadline is loose, all tasks are allocated to one single processor

at the minimum frequency (66 MHz, corresponding to a divisor of 3). As the

deadline gets tighter, the optimizer prefers to employ a second processor and

to progressively balance the load, instead of increasing task frequencies. This

procedure is repeated every time a new processor has to be allocated to meet

the timing constraints. Only under very tight deadlines, the optimizer lever-

ages increased task frequencies to speed-up the system. To the limit, the system

works with 1 task on each processor, although not all tasks run at the maxi-

mum frequency. In fact, the GSM pipeline turns out to be unbalanced, there-

fore it would be energy inefficient to run the shorter tasks at maximum speed,

and would not even provide performance benefits. As a result, the optimizer

determines the most energy-efficient configuration that provides the best per-

formance. The problem becomes infeasible if more stringent deadlines than

710 ns are required. We will show in the next sub-section that this optimizer

behaviour is a function of the computation-communication ratio.

JPEG demonstrator

Our methodology was then applied to a JPEG decoder, which was partitioned

in 4 pipelined tasks: Huffman DC decoding, Huffman AC decoding, inverse

quantization, inverse DCT. Each stage processes an 8x8 block, amounting to

an exchange of 1024 bit among pipeline stages. The accuracy of the energy

estimation given by the optimizer was found to be 3.1% from functional sim-

ulation. In contrast to pipelined GSM, user requirements on a JPEG decoding

usually consist of the minimization of the execution time and not of a deadline

to be met. However, a performance-energy conflict arises, and two approaches

to allocation and scheduling of a JPEG decoder task graph are feasible. On

one hand, the designer could be primarily interested in reducing execution

time at the cost of increased energy. On the other hand, the primary objective

function could be the minimization of energy dissipation, whatever the decod-

ing performance. This trade-off has been investigated with the optimizer and

the Pareto-optimal frontier in the performance-energy space is illustrated in

Fig.5.15. The constraint on the execution time on the x-axys has been translated

into a constraint on the block decoding time. The curve is not linear since there

is a discrete number of voltage-frequency pairs, which makes the problem for

the optimizer much more complex.

As we can observe, for a large range of deadlines, the optimizer is good at

improving system performance without significantly changing processor en-

ergy dissipation. This is done by using one or two processors, changing the

allocations and using high frequency dividers. Beyond 200 ns, the optimizer is

forced to use low frequency dividers, thus causing the energy to skyrocket. In-
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terestingly, the increase of task frequency is preferred to an increase of the num-

ber of processors, since the communication energy would involve even higher

total energy consumption. This behaviour is different from the one seen for

the GSM, since this time the computation-communication ratio is lower than

for GSM due a larger size of exchanged messages.

Figure 5.15: Pareto-optimal frontier in the performance-energy design space.

5.13 Comparison between optimal and heuristic ap-

proaches

In this section we illustrate a comparison of mapping and frequency/voltage

assignment solutions generated by our complete solver with those provided

by a heuristic approach leveraging genetic algorithms.

5.13.1 Genetic-Based Energy Optimization Heuristic

The heuristic was taken from [33]. Originally, the approach presented in [33]

associates a communication task that has to be scheduled for each message

exchanged over the bus. In order to have a fair comparison with our approach,

we have implemented the additive bus model used in this chapter.

The optimization flow of the heuristic is split in three parts:

• Genetic task allocation optimization

• Genetic schedule optimization

• Optimal frequency selection
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Figure 5.16: Task allocation string describing the mapping of five tasks to an
architecture

In the genetic task allocation approach, solution candidates are encoded

into allocation strings, as shown in Fig. 5.16. Each gene in these strings de-

scribes a candidate allocation of a task to a processor. For instance, task τ4 in

Fig. 5.16 is mapped to the processing element PE0. As typical in all genetic

algorithms, ranking, selection, crossover, mutation and offspring insertion are

applied in order to evolve an initial solution pool. The key feature of this al-

gorithm is the invocation of a genetic scheduling procedure for each allocation

candidate, in order to calculate the fitness function that guides the optimiza-

tion.

The genetic scheduling algorithm finds, for a given allocation, the schedule

that meets all the task deadlines and, furthermore, has the minimum energy.

We deployed one of the most widely used heuristic approaches to scheduling,

namely list scheduling, which takes scheduling decisions based on task priori-

ties.

Clearly, different assignments of priorities result in different schedules. The

task priorities are encoded into a priority string. The genetic algorithm aims

at finding an assignment of priorities that leads to a schedule of high quality

in terms of timing behaviour and exploitable slack time. Both crossover and

mutation are applied during the iterative execution of the genetic algorithm.

The algorithm terminates after a stop criterion is fulfilled (for example, a bound

of the number of consecutive generations that did not improve significantly the

solution).

A fitness function is used for evaluating the quality of a schedule. The fit-

ness function captures the energy of a certain schedule. After the list schedul-

ing has constructed a schedule for a given set of priorities, the algorithm pro-
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ceeds by passing this schedule to a voltage selection algorithm that identifies

the task voltages that minimize the energy dissipation. After performing the

voltage selection, the fitness FS of each schedule candidate is calculated.

As we have seen, the voltage selection is the core of the global energy opti-

mization. During the genetic scheduling step, a fast voltage scaling heuristic is

used. However, once the genetic algorithms are completed, we use the optimal

frequency scaling algorithm presented in [34], restricted to select one single

frequency for each task. Consequently, if the genetic heuristic method finds

the best allocation and schedule, after the last frequency selection step, we will

obtain a globally optimal result, identical to the one produced by the approach

proposed in our work.

5.13.2 Comparison results

The complete and the heuristic algorithms have been put at work with a num-

ber of task graphs featuring from 10 to 20 tasks each. We found that the heuris-

tic approach never provides the optimal solution for the problem instances un-

der test. Nevertheless, in 70% of the cases energy consumption difference is

within 5%, but in the 10% of the cases it is extremely high (up to 44%). The

energy consumption of generated mappings differs on average by 8.02%, with

a standard deviation of 15.94. The minimum difference is 0.01%, while the

maximum is 43.76%.

By setting loose search stopping criteria for the heuristic method (thus giv-

ing it more time to optimize the solution), we allowed this latter to take a

search time comparable to that of our technique. In spite of this, our com-

plete method is able to find optimal solutions that the heuristic algorithm is

not able to find. Since our approach extends the applicability of complete

methods to large problem instances at an affordable search time for statically

scheduled systems, this experiment further confirms the distinctive advantage

of doing this, namely the generation of power-efficient system configurations

which heuristic methods hardly provide.

Although we do not have any performance-related contribution to the ob-

jective functions in both methods, we found it interesting to compare the ex-

ecution time of applications with the mapping solutions under test, viewing

it as a side effect of the optimization process. Obviously, real-time constraints

are always met in all solutions. We got a mean difference between execution

time values of 10.59%, standard deviation 12.02%, minimum -1.94% and max-

imum 29.11%. When the execution time difference is negative, it means that

the makespan found by the heuristic algorithm is lower with respect to that of

the hybrid approach. This happens in 29% of the cases. This means that when
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the heuristic method provides lower execution times, it does that at the cost of

employing lower frequency dividers, thus incurring higher energy. In contrast,

sub-optimal mappings and/or schedulings may lead to longer execution times

and and to higher energy values as well.

In the second experiment we performed, we solved a common problem

instance while varying the real time constraint, i.e., we varied the deadline

value (a common value for processor and task deadlines was chosen) from

a very loose one (allowing all tasks to run at the lowest speed on the same

processor) to the tightest one.

Results are shown in Figure 5.17: we report the energy consumption (y

axis) of the solutions found by the complete and the heuristic approach as a

function of the deadline (x axys). We can see that the heuristic solution is never

the optimum, even when the real-time constraint is weak. In fact, the relative

difference for the loosest deadline value is equal to 0.55%. Such difference

then grows as the real-time constraint becomes tighter, and for deadline values

lower than 3ms the heuristic approach is not even able to find a solution, while

the complete solver finds that the lowest possible deadline value is around

2.1ms. We find this capability of our solver to extend the range of problem

feasibility very interesting from an application viewpoint.
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Figure 5.17: Comparison between optimal and heuristic solutions

5.14 Conclusions

In this chapter, we address both the optimality gap and the abstraction gap

which impair the results of traditional software optimization flows for on-chip

multiprocessor systems. On one hand, we present a cooperative framework
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to solve the allocation, scheduling and voltage/frequency selection problem

to optimality for energy-efficient MPSoCs. This iterative framework is based

on Logic-Based Benders Decomposition and provides optimal solutions at an

affordable search time, orders of magnitude shorter than traditional ILP or CP

solvers. On the other hand, we set up a design-time and a run-time support

for the target MPSoC platform allowing to specify applications while match-

ing optimizer modelling assumptions and to exactly implement mapping so-

lutions computed by the hybrid solver, thus achieving expected performance

results and constraint satisfaction. Interestingly, we automate most of the steps

for software development and optimization, thus allowing programmers to

concentrate on functionality and code optimization and not on the application

execution support. Experimental results confirm the high accuracy of opti-

mizer solutions as validated with cycle-accurate functional simulation. Finally,

a comparison of our approach with a heuristic algorithm proves the capability

of our solving framework to find solutions even in limit operating conditions

and to save a significant amount of energy in many problem instances due to

the computation of the optimal solution with satisfactory search times.
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Chapter 6

Communication-Aware

Stochastic Allocation and

Scheduling Framework for

Conditional Task Graphs in

Multi-Processor

Systems-on-Chip

6.1 Overview

Designers, thanks to the increasing levels of system integration, are turning

to multicore architectures to satisfy the ever-growing computational needs of

applications within a reasonable power envelope. One of the most interesting

challenges for MultiProcessor System-on-Chip (MPSoC) success is the devel-

opment of new design flows for efficient mapping of multi-task applications

onto hardware platforms. Even though data-flow graphs are often used for

pure data-streaming, many realistic applications can only be specified as con-

ditional task graphs (CTG). The problem of allocating and scheduling condi-

tional task graphs on processors in a distributed real-time system is NP-hard.

The first contribution of this chapter is a complete stochastic allocation and

scheduling framework, where an MPSoC virtual platform is used to accurately

derive input parameters, validate abstract models of system components and

assess constraint satisfaction and objective function optimization. The opti-
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mizer implements an efficient and exact approach to allocation and scheduling

based on problem decomposition. The original contributions of the approach

appear both in the allocation and in the scheduling part of the optimizer. For

the first, we propose an exact analytic formulation of the stochastic objective

function based on the task graph analysis, while for the scheduling part we

extend the timetable constraint for conditional activities.

The second contribution of this chapter is the introduction of a software li-

brary and API for the deployment of conditional task graph applications onto

Multi-Processor System-on-Chips. With our library support, programmers can

quickly develop multi-task applications which will run on a multi-core archi-

tecture and can easily apply the optimal solution found by our optimizer. The

proposed programming support manages OS-level issues, such as task alloca-

tion and scheduling, as well as task-level issues, like inter-task communication

and synchronization.

6.2 Introduction

During last five years we lived through a paradigm shift in the design of inte-

grated architectures from conventional single processor systems to multipro-

cessors. This shift has been caused by the evidence that popular approaches to

maximize single processor performance have reached their limits. Prohibitive

power consumption, the higher bound of boosting clock frequencies of mono-

lithic processor cores [1] [2] [3] [4] and design complexity are the most critical

factors that limit performance scaling [5].

However, Moore’s law continues to enable a doubling in the number of

transistors on a single die every 18-24 months. Consequently, designers are

turning to multicore architectures to satisfy the ever-growing computational

needs of applications within a reasonable power envelope [6]. Keeping with

Moore’s law, the semiconductor roadmap foresees a doubling in the number

of core units per die with every process generation [7]. This trend is noticeable

both in mainstream [49] [50] [39] [52], as well as in embedded computing [42]

[45] [51] [53].

Future Multi-Processor System-on-Chips (MPSoCs) hosting a huge number

of processors will guarantee high computational power thanks to their mas-

sive parallelism, but at the cost of a more complicated parallel programming

paradigm.

One of the most daunting challenges to the success of MPSoC platforms

consists of developing effective software optimization tools that can optimally

exploit the available cores [8]. If we consider that software running on mul-

tiprocessor must be high performance, real-time, and low power incoming
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MPsoC platforms will lead to several and interesting challenges in software

development. This statement becomes more strong by the fact that consumer

applications are characterized by tight time-to-market constraints and extreme

cost sensitivity. We can formilize that there is a clear need for new deployment

technologies which address multi processing issues in embedded systems.

Modern applications, particularly in the embedded domain, exhibit a lot

of concurrency at different levels of granularity. Task level concurrency is

the coarsest grained category and is exhibited when the computation contains

multiple flows of control. The key to successful application deployment lies

in effectively mapping this concurrency in the application to the architectural

resources provided by the platform. Even though data-flow graphs are often

used for pure data-streaming applications, many realistic applications can only

be specified as conditional task graphs. Mapping a multi-task application to a

multi-core architecture is a key step of the software development flow, as it sig-

nificantly impacts design quality metrics like execution time, throughput and

power. The problem of allocating and scheduling conditional task graphs on

processors in a distributed real-time system is NP-hard. In addition, the in-

tricacies of component interactions in multicore architectures call for detailed

system models and for their validation on a real or virtual platform [9].

Model simplification is often achieved by abstracting away platform imple-

mentation details. As a result, optimization problems become more tractable,

even reaching polynomial time complexity [10]. Unfortunately, this approach

creates an abstraction gap between the optimization model and the real HW-

SW platform. Neglecting this gap can generate unpredictable behaviours, like

undesired system-level interactions of many concurrent execution flows. In

the application developing phase, programmers must be conscious about sim-

plified assumptions taken into account in optimization tools. For instance, a

communication or synchronization sub-optimal task implementation leads to

reduced throughput and/or latency and has also energy implications, due to

the higher occupancy condition for system resources. Validation is therefore

required and the accuracy of the solutions must be carefully assessed through

detailed simulation runs or execution on the target hardware.

Moving from these considerations, in this chapter we present a novel frame-

work for developing, allocating and scheduling conditional multi-task graphs

on multi-processor systems-on-chip. We target a general template for dis-

tributed memory embedded systems where the communication architecture

is becoming a critical component. Interaction of multiple traffic patterns on the

system bus causes congestion and hence unpredictable communication laten-

cies. Neglecting this behaviour in high level optimization tools for allocation

and scheduling might lead to unacceptable deviations of real performance met-
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rics with respect to predicted ones and to the violation of real-time constraints.

Our allocation and scheduling framework is based on problem decomposi-

tion and deploys techniques mutuated from the Artificial Intelligence and the

Operations Research community: the allocation subproblem is solved through

Integer Programming while the scheduling one through Constraint Program-

ming. More interestingly, the two solvers can interact with each other by means

of no-good generation, thus building an iterative procedure which has been

proven to converge producing the optimal solution.

We propose two main contributions in this field: the first concerns both the

allocation and scheduling components. The objective function we consider in

the allocation component depends on the allocation variables. Clearly, having

conditional tasks, the exact value of the communication cost cannot be com-

puted. Therefore our objective function is the expected value of the commu-

nication cost. We propose here to identify an analytic approximation of this

value. The approximation is based on the Conditional Task Graph analysis for

identifying two data structures: the activation set of a node and the coexis-

tence set of two nodes. The approximation turns out to be exact and polyno-

mial. Concerning the scheduling, we propose an extension of the time-table

constraint for cumulative resources, taking into account conditional activities.

The propagation is polynomial if the task graph satisfies a condition called Con-

trol Flow Uniqueness which is quite common in many conditional task graphs

for system design. To address the abstraction gap, we formulated an accu-

rate model for allocation and scheduling, which accounts for a number of non-

idealities in real-life hardware platforms.

The other main contribution of this chapter is the introduction of a new

methodology for multi-task application development. We present the imple-

mentation of the static (design-time) and dynamic (run-time) software infras-

tructure required to deploy the applications on the target platform. This is a

critical and non-trivial task, as we must guarantee that actual execution ac-

curately matches in time and space the solution computed by the optimizer.

We propose a software library and APIs for the deployment of conditional

task graph applications onto Multi-Processor System-on-Chips. The proposed

programming support manages OS-level issues, such as task allocation and

scheduling, as well as task-level issues, like inter-task communication and syn-

chronization. We carried out its implementation with both high flexibility and

performance in mind.

Finally, we deploy an MPSoC virtual platform to validate the results of

the optimization steps and to more accurately assess constraint satisfaction

and objective function optimization. In multi-processor systems, we believe

this validation phase is critical in order to check modelling assumptions and
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make sure that second-order effects and/or modelling approximations impair

optimizer-predicted performance (e.g., a required throughput) only marginally

below 10%.

The structure of this work is as follows. Section II illustrates previous work.

Section III presents the target architecture while high level application and sys-

tem models, simplifying the optimization framework, are reported in Section

IV. Our combined solver for the mapping problem is described in Section V, its

computation efficiency in Section VI and its integration in a software optimiza-

tion methodology for MPSoCs in VII. Section VIII finally shows experimental

results.

6.3 Related Work

The synthesis of system architectures has been extensively studied in the past.

Mapping and scheduling problems on multi-processor systems have been tra-

ditionally tackled by means of Integer Linear Programming (ILP). In general,

even though ILP is used as a convenient modelling formalism, there is consen-

sus on the fact that pure ILP formulations are suitable only for small problem

instances, i.e. task graphs with a reduced number of nodes, because of their

high computational cost. An early example is represented by the SOS system,

which used mixed integer linear programming technique (MILP) [40]. A MILP

model that allows to determine a mapping optimizing a trade-off function be-

tween execution time, processor and communication cost is reported in [17].

The complexity of pure ILP formulations for general task graphs has led to the

deployment of heuristic approaches. Heuristic approaches provide no guaran-

tees about the quality of the final solution, and many times the need to bound

search times limits their applicability to moderately small task sets. In [22]

a retiminig heuristic is used to implement pipelined scheduling, while simu-

lated annealing is used in [38]. A comparative study of well-known heuristic

search techniques (genetic algorithms, simulated annealing and tabu search) is

reported in [13]. Unfortunately, busses are implicit in the architecture, unlike

in [24]. A scalability analysis of these algorithms for large real-time systems is

introduced in [32]. Many heuristic scheduling algorithms are variants and ex-

tensions of list scheduling [23]. In general, scheduling tables list all schedules

for different condition combinations in the task graph, and are therefore not

suitable for control-intensive applications.

Constraint Logic Programming (CP) is an alternative approach to Integer Pro-

gramming for solving combinatorial optimization problems [34]. The work in

[43] is based on Constraint Logic Programming to represent system synthesis

problem, and leverages a set of finite domain variables and constraints im-
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posed on these variables. Both ILP and CP techniques can claim individual

successes but practical experience indicates that neither approach dominates

the other in terms of computational performance. The development of a hy-

brid CP-IP solver that captures the best features of both would appear to offer

scope for improved overall performance. However, the issue of communica-

tion between different modelling paradigms arises. One method is inherited

from the Operations Research and is known as Benders Decomposition [18]:

it is has been proven to converge producing the optimal solution. There are a

number of papers using Benders Decomposition in a CP setting [46] [25] [31]

[8] [9].

[41] presents an approach leverages a decomposition of the problem in the con-

text of MPSoC systems. The authors tackle the mapping sub-problem with IP

and the scheduling one with CP. The work considers only pipelined streaming

applications and does not handle conditional task graphs. In order to solve

the problem of allocating and scheduling a general conditional task graph

onto a MPSoC, the introductions of more complex problem models and cost

functions, such as more complex subproblem relaxations and Benders cuts are

needed.

In the system design community, the problem of allocating and scheduling a

conditional multi-task application is extremely important and many researchers

have worked extensively on it, mainly with incomplete approaches: for in-

stance in [48] a genetic algorithm is devised on the basis of a conditional schedul-

ing table whose (exponential number of) columns represent the combination of

conditions in the CTG and whose rows are the starting times of activities that

appear in the scenario. The number of columns is indeed reasonable in real

applications. The same structure is used in [33], which is the only approach

that uses Constraint Programming for modelling the allocation and schedul-

ing problem. Indeed the solving algorithm used is complete only for small

task graphs (up to 10 activities). Besides related literature for similar prob-

lems, the Operations Research community has extensively studied stochastic

optimization in general. The main approaches are: sampling [12] consisting in

approximating the expected value with its average value over a given sample;

the l-shaped method [35] which faces two phase problems and is based on Ben-

ders Decomposition [18]. The master problem is a deterministic problem for

computing the first phase decision variables. The subproblem is a stochastic

problem that assigns the second phase decision variables minimizing the aver-

age value of the objective function. A different method is based on the branch

and bound extended for dealing with stochastic variables, [37].

The CP community has recently faced stochastic problems: in [47] stochastic

constraint programming is formally introduced and the concept of solution
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is replaced with the one of policy. In the same paper, two algorithms have

been proposed based on backtrack search. This work has been extended in [44]

where an algorithm based on the concept of scenarios is proposed. In partic-

ular, the paper shows how to reduce the number of scenarios, maintaining a

good expressiveness.

6.4 Target Architecture

Our mapping strategy targets a general template for a message-oriented dis-

tributed memory architecture. An embodiment of this template architecture is

considered in this work, in order to be able to provide input data to the opti-

mization framework, to valide its solutions based on functional simulation and

to validate objective function values. The specific platform instance, conform-

ing to the template, only determines the annotated values in the application

task graph (cost for communication and execution times), which is an input

to our framework. However, alternative architectures matching the same tem-

plate can be input to our methodology, with just the burden to re-characterize

the costs for basic communication and synchronization mechanisms, There-

fore, the allocation and scheduling methodology we propose is not affected by

specific design choices (e.g., the kind of processing unit, the bus architecture).

The characteristics of the architectural template targeted by our optimiza-

tion framework include:

1. support for message exchange between the computation tiles,

2. availability of local memory devices at the computation tiles and of re-

mote (i.e., non-local to the tiles, accessible through the system bus) stor-

age devices for those program data that cannot be stored in local memo-

ries.

The remote storage can be provided by a unified memory with partitions asso-

ciated with each processor or by a separate private memory for each processor

core connected to the system bus. This assumption concerning the memory

hierarchy reflects the typical trade-off between low access cost, low capacity

local memory devices and high cost, high capacity memory devices at a higher

level of the hierarchy.

We deployed the model of an instance of this architectural template in order

to prove the viability of our approach (see Fig. 6.1). The computation tiles are

supposed to be homogeneous and consist of ARM cores (including instruction

and data caches) and of tightly coupled software-controlled scratchpad mem-

ories for fast access to program operands and for storing input data. We used

an AMBA AHB bus as system interconnect. A DMA engine is attached to each



130
Communication-Aware Stochastic Allocation and Scheduling Framework for Conditional

Task Graphs in Multi-Processor Systems-on-Chip

Figure 6.1: Message-oriented distributed memory architecture.

core, as presented in [27], allowing efficient data transfers between the local

scratchpad and non-local memories reachable through the bus. The DMA con-

trol logic supports multichannel programming, while the DMA transfer engine

has a dedicated connection to the scratch-pad memory allowing fast data trans-

fers from or to it. In order to communicate each others, cores use non-cachable

shared memory.

For the synchronization among the processors, semaphore and interrupt

facilities are used:

1. a core can send interrupt signals to each other using the hardware inter-

rupt module mapped on in the global addressing space;

2. several cores can synchronize using the semaphore module that imple-

ments test-and-set operations.

Finally, each processor core has a private on-chip memory, which can be ac-

cessed only by gaining bus ownership. In principle, it could be also an off-chip

memory. In any case, it has a higher access cost and can be used to store pro-

gram operands that do not fit in scratch-pad memory. Optimal memory allo-

cation of task program data to the scratch-pad versus the private memory is

a specific goal of our optimization framework, dealing with the constraint of

limited size of local memories in on-chip multi-processors.

The software support is provided by a real-time operating system called

RTEMS [11].

Our implementation thus supports:

• either processor or DMA-initiated memory-to-memory transfers,

• either polling-based or interrupt-based synchronization, and

• flexible allocation of the consumer’s message buffer to the local scratch-

pad or the non-local private memory.
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The architecture is assumed to provide a hardware-software support for

messaging, targeting scalability to a large number of communicating cores.

Messages can be exchanged by tasks through software communication queues,

which can be physically allocated either in scratch-pad memory or in shared

memory, depending on whether tasks are mapped onto the same processor or

not. This assumption avoids to generate bus traffic and to incur congestion

delays for local communications. We also target architectures where synchro-

nization between producer-consumer pairs does not give rise to semaphore

polling traffic on the bus, since this might unacceptably and unpredictably de-

grade performance of ongoing message exchanges. Interrupt-based synchro-

nization or the implementation of distributed semaphores at each computation

tile are two example mechanisms matching our requirements.

6.5 High-Level Application

The multi-task application to be mapped and executed on top of the target

hardware platform is represented as a conditional task graph with precedence

constraints. In the following we describe some preliminaries on Conditional

Task Graph and on the high level application.

6.5.1 Conditional Task Graph

A CTG is a tuple 〈T,A,C, P 〉, where

• T = TB ∪TF is a set of nodes; ti ∈ TB is called branch node, while ti ∈ TF

is a fork node.

• A is a set of arcs as ordered pairs ak = (ti, tj).

• C is a set of pairs 〈tk, ck〉 for each node tk ∈ TB representing the condition

labeling the node.

• P is a set of triples 〈Arc,Out, Prob〉 each one labeling an arc Arc = (tk, tj)

rooted in a branch node tk, Out is a possible outcome of condition ck

labeling node tk, and pk is the probability that Out is true (pk ∈ [0, 1]).

The CTG always contains a single root node with no incoming arcs.

Intuitively fork nodes originate parallel activities, while branch nodes have

mutually exclusive outgoing arcs. We also need to define and-nodes and or-

nodes. A node with more than one ingoing arc is an or-node if all ingoing arcs

are mutually exclusive, it is instead an and-node if all arcs are not mutually

exclusive; mixed nodes are not allowed.
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Figure 6.2: A Conditional Task Graph

For instance, in figure 6.2A t0 is the root node and it is a fork node. Arcs

(t0, t1) and (t0, t12) rooted in a fork node are deterministic. Node t1 is a branch

node, labeled with condition a. With an abuse of notation we have omitted the

condition in the node and we have labeled arc (t1, t2) with a meaning a = true

and (t1, t5) with ¬a meaning a = false. The probability of a = true is 0.5 and

the probability of a = false is also 0.5 as depicted in figure 6.2B. Node t20 is an

or-node while node t21 is an and-node.

Since the truth or the falsity of conditions is not known in advance, the

model is stochastic. For the purposes of this chapter, we are interested in the

concept of scenario. A scenario corresponds to an assignment of outcomes to

conditions and defines a deterministic task graph containing the set of nodes

and arcs that are active in the scenario. In figure 6.2 an example of run time

scenario is defined by the assignment a = true, d = true and e = false.

Given a CTG=〈T,A,C, P 〉, and a scenario s, the deterministic task graph

TG(s) associated with s is defined as follows:

• The root node always belongs to the TG(s)

• An arc (ti, tj) belongs to TG(s) if it is a deterministic arc and ti belongs to

TG(s) or if it has an associated outcome Outij ∈ s and ti belongs to TG(s).

• A node ti belongs to TG(s) if it is an and-node and all arcs ak ∈ A−(ti)

are in TG(s) or if it is an or-node and only one arc ak ∈ A−(ti) is in TG(s)

The deterministic task graph derived from the CTG in figure 6.2 and asso-

ciated to the run time scenario a = true, d = true and e = false is depicted in

figure 6.3.

We need now to associate a probability to each scenario.

∀s ∈ S p(s) =
∏

Outij∈s

pij
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Figure 6.3: The deterministic task graph associated to the run time scenario a = true,
d = true and e = false

In this chapter we are interested in computing the probability of sets of

scenarios. In particular, we are interested in all scenarios where a given task

is active (executes) and in all scenarios where pairs of tasks are active. The

probability of the scenarios where task ti is active can be computed as follows:

p(ti) =
∑

s|ti∈TG(s)

p(s)

while the probability a couple of tasks are both active in the same scenario

is

p(ti ∧ tj) =
∑

s|ti,tj∈TG(s)

p(s)

Finally, for modeling purposes, we also define for each task an activation

function fti
(s); this is a stochastic function such that:

fti
: S → {0, 1}

and

fti
(s) =

{

1 if ti ∈ TG(s)

0 otherwise

6.5.2 Application Model

Given a CTG representing the high level application, we interpret each node

as a task and each arc as a communication between two tasks.

Computation, storage and communication requirements are annotated onto

the graph. In detail, the worst case execution time (WCET) is specified for each

node/task and plays a critical role whenever application real-time constraints

(expressed here in terms of deadlines) are to be met.

Each node/task ti also has two kinds of associated memory requirements:

• Program Data: storage locations are required for computation data and

for processor instructions; we refer to this quantity as mi.
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• Internal State: a task internal state can be stored either locally or re-

motely; we refer to this quantity as sti

Each arc between two tasks r = (ti, tj) is labelled with the memory require-

ment for Communication queues.

Each of these memory requirement can be allocated either locally in the

scratchpad memory or remotely in the on-chip memory; a local allocation of

internal state and program data is allowed on the processor where the corre-

sponding task runs. The Communication queue related to arc (ti, tj) can be

allocated locally only if both ti and tj run on the same processor. The com-

munication requirement, i.e., the amount of data that need to be exchanged

between two tasks is referred to as cr.

6.6 Problem model

The problem we face is the following: given a CTG, we have to map each

node/task of the CTG onto a processing element, and each memory require-

ments (program data, internal state and communication queues) on a local/remote

storage device, and to schedule tasks and communications on the available re-

sources. Since the problem is stochastic we have to guarantee that for each

possible run time scenario all temporal and resource constraints are satisfied.

The objective function we have to minimize is the bus usage. Being the prob-

lem stochastic, we should minimize the expected bus utilization instead of its

real value on a specific scenario. Therefore the optimal solution to our problem

is a unique assignment of starting times and resources to tasks that is feasible

whatever the run time scenario is, that minimizes the expected value of the bus

utilization.

Note that the bus utilization to be minimized counts two contributions: one

related to single tasks, since once computation data and/or internal state are

physically allocated to remote memory a number of bus accesses should be

performed. This communication depends on the amount of data to be stored.

The second contribution is related to pairs of communicating tasks in the task

graph. If two communicating tasks are allocated onto two different processors

they should access the bus. This contribution depends on the amount of data

the two tasks should exchange.

6.6.1 Problem structure

The problem considered is a scheduling problem with alternative resources. In

fact, each task should be allocated to a processor. Each memory slot required

for processing the task should be allocated to a memory device. Clearly, tasks
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should be scheduled in time subject to real time constraints, precedence con-

straints, and resource capacity constraints.

From a different perspective, the problem decomposes into two compo-

nents:

• the allocation of tasks to processors and of the memory slots required by

each task to the proper memory device;

• a scheduling problem with static resource allocation.

The objective function of the overall problem is the minimization of the ex-

pected communication cost. This function involves only variables of the first

problem.

A number of papers in the recent literature [8], [9], [1], [31] suggest that

these kinds of problems are efficiently solved via the so called Logic-based

Benders Decomposition that works as follows: the allocation problem (called

master problem) is solved first, and the scheduling problem (called subprob-

lem) later. The master is solved to optimality and its solution passed to the

subproblem solver. If the solution of the master is feasible for the subproblem

constraints, then the overall problem is solved to optimality. If, instead, the

master solution cannot be completed by the subproblem solver, a no-good is

generated and added to the model of the master problem, roughly stating that

the solution passed should not be recomputed again (it becomes infeasible),

and a new optimal solution is found for the master problem respecting the (set

of) no-good(s) generated so far.

Given the structure of the allocation and scheduling problems, we have

solved the allocation problem via Integer Linear Programming and the schedul-

ing problem via Constraint Programming.

Constraint Programming (CP) has been recognized as a suitable modelling

and solving tool to face combinatorial (optimization) problems. Problems are

modeled declaratively by defining a set of variables representing problem en-

tities, each variable has an associated domain representing possible variable

assignments and a set of constraints, limiting the values that variables can si-

multaneously assume. A solution of a constraint program is an assignment of

values to variables which is consistent with constraints. The solving process of

a constraint solver is the following. Each constraint is propagated so as to re-

move a priori those values that cannot appear in any consistent solution. Then,

since propagation is not complete, i.e., some values left in the domain can still

be inconsistent, tree search is performed. The process of constraint propagation

and search is iterated as long as a solution is found or a failure occurs. One of

the most successful application of CP to date is scheduling. Problem variables
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are activity starting times. Temporal constraints are easily represented through

mathematical constraints.

For example, if two activities acti and actj characterized by starting times

start(acti) and start(actj) and durations di and dj are linked by a precedence

constraint stating that activity acti should be executed before activity actj , the

following mathematical constraint can be imposed, start(acti)+di ≤ start(actj).

Many resource and temporal constraints have been devised for scheduling ap-

plications. The aim of these constraints is to apply filtering algorithms that

remove a priori domain values from the variable start(acti) that are inconsis-

tent with the constraint itself. For a survey on existing constraints and filtering

algorithms the interested reader can refer to [16].

Another solution technique, which is well known and widely used in the

system design community is Integer Programming (IP). Integer programming

is an older method, with roots that date back to the late 1950s. Integer Pro-

gramming can be thought of as a restriction of Constraint Programming. In

fact, Integer Programming has only two types of variables: integer variables

whose domain contain non-negative integers and continuous variables whose

domain contain non-negative real values. In addition, IP allows only one type

of constraint: linear inequalities. Finally, the objective function must be linear

in the variables.

It seems that these restrictions make Integer Programming much narrower

than Constraint Programming. However, many problems can still be mod-

eled effectively, and algorithms for integer programs can find optimal solutions

quickly for many application domains.

The solving principle of IP is based on the solution of the linear relaxation,

allowing arbitrary sets of linear constraints to be treated as a global constraint,

providing a global view of the problem. The relaxation provides a bound en-

abling efficient pruning of the search tree and directing search toward promis-

ing regions.

6.6.2 Allocation problem model

With regards to the platform described in section 6.4, the allocation problem

can be stated as the one of assigning processing elements to tasks and storage

devices to their memory requirements. First, we state the stochastic allocation

model, then we show how this model can be transformed into a determinis-

tic model through the use of existence and co-existence probabilities of tasks.

To compute these probabilities, we propose two polynomial time algorithms

exploiting the CTG structure.
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Stochastic integer linear model

Suppose n is the number of tasks, p the number of processors, and na the num-

ber of arcs. We introduce for each task and each PE a variable Tij such that

Tij = 1 iff task i is assigned to processor j. We also define variables Mij such

that Mij = 1 iff task i allocates its program data locally, Mij = 0 otherwise.

Similarly we introduce variables Stij for task i internal state requirements and

Crj for arc r communication queue. The objective function depends also on the

run time scenarios s. We call S the set of all possible run time scenarios. We

want to minimize of bus traffic expected value. The allocation model is defined

as follows:

min z = E(busTraffic(M,St, C, S))

s.t.

p−1
∑

j=0

Tij = 1 ∀i = 0, .., n − 1 (6.1)

Stij ≤ Tij ∀i = 0, .., n − 1, j = 0, .., p − 1 (6.2)

Mij ≤ Tij ∀i = 0, .., n − 1, j = 0, .., p − 1 (6.3)

Crj ≤ Tij ∀arcr = (ti, tk), r = 0, .., na − 1, j = 0, .., p − 1 (6.4)

Crj ≤ Tkj ∀arcr = (ti, tk), r = 0, .., na − 1, j = 0, .., p − 1 (6.5)

n−1
∑

i=0

[stiStij + miMij ] +

na−1
∑

r=0

crCrj ≤ Capj ∀j = 0, .., p − 1(6.6)

Constraints (6.1) force each task to be assigned to a single processor. Con-

straints (6.2) and (6.3) state that program data and internal state can be locally

allocated on the PE j only if task i runs on it. Constraints (6.4) and (6.5) enforce

that the communication queue of arc r can be locally allocated only if both

the source and the destination tasks run on processor j. Finally, constraints

(6.6) ensure that the sum of locally allocated internal state (sti), program data

(mi) and communication (cr) memory cannot exceed the scratchpad device ca-

pacity (Capj). All tasks have to be considered here, regardless they execute

or not at runtime, since a scratchpad memory is, by definition, statically al-

located. In addition, some symmetries breaking constraints have been added

to the model. All problem constraints should be verified independently from

the run time scenario. On the contrary, scenarios should be considered in the

objective function expected value.

The expected value of the bus traffic is computed taking into account the
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set S of all possible run time scenarios as follows:

E(busTraffic(M, St, C, S)) =
∑

s∈S

p(s)busTraffic(M, St, C)(s)

busTraffic(s) =
∑n−1

i=0 taskBusTraffici(s) +
∑

arcr=(ti,tk) commBusTrafficr(s)

where

taskBusTraffici(s) = fti
(s)

[

mi(1 −
∑p−1

j=0 Mij) + si(1 −
∑p−1

j=0 Sij)
]

commBusTrafficr=(ti,tk)(s) = fti
(s)ftk

(s)
[

cr(1 −
∑p−1

j=0 Crj)
]

In the taskBusTraffic(s) expression, if task ti executes in s (thus fti
(s) = 1),

then (1 −
∑p−1

j=0 Mij) is 1 iff the task i program data is remotely allocated. The

same holds for the internal state. In the commBusTraffic(s) expression we have

a contribution if both the source and the destination task execute (fti
(s) =

ftk
(s) = 1) and the queue is remotely allocated (1 −

∑p−1
j=0 Crj = 1).

Transformation in a deterministic model

In most cases, the minimization of a stochastic functional, such as the expected

value, is a very complex operation (even more than exponential), since it often

requires to repeatedly solve a deterministic subproblem [35]. The cost of such a

procedure is not affordable for hardware design purposes since the determin-

istic subproblem is by itself NP-hard. One of the main contributions of this

chapter is the way to reduce the bus traffic expected value to a deterministic

expression. Since all tasks have to be assigned before running the application,

the allocation is a stochastic one phase problem: thus, for a given task-PE assign-

ment, the expected value depends only on stochastic variables. Intuitively, if

we properly weight the bus traffic contributions according to task probabilities

we should be able to get an analytic expression for the expected value.

Now, since both the expected value operator and the bus traffic expression

are linear, the objective function can be decomposed into task related and arc

related blocks:

E(busTraffic) =
∑

s∈S

p(s)busTraffic(s)

E(busTraffic) =
∑

s∈S

p(s)





n−1
∑

i=0

taskBusTraffici(s) +
∑

arcr=(ti,tk)

commBusTrafficr(s)





Since for a given allocation the objective function depends only on the

stochastic variables, the contributions of decision variables are constants: we
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call them KTi =
[

mi(1 −
∑p−1

j=0 Mij) + si(1 −
∑p−1

j=0 Sij)
]

, and KCr =
[

cr(1 −
∑p−1

j=0 Crj)
]

.

THus

E(busTraffic) =
∑

s∈S

p(s)





n−1
∑

i=0

fti
(s)KTi +

∑

arcr=(ti,tk)

fti
(s)ftk

(s)KCr





This can be rewritten as

E(busTraffic) =

n−1
∑

i=0

KTi

∑

s∈S

p(s)fti
(s) +

∑

arcr=(ti,tk)

KCr

∑

s∈S

p(s)fti
(s)ftk

(s)

The term
∑

s∈S p(s)fti
(s) is the probability of all scenarios where a given

task executes (referred to as p(ti) in section 6.5.1), while
∑

s∈S p(s)fti
(s)ftk

(s)

is the probability that both tasks ti and tk execute in the same scenario (referred

to as p(ti ∧ tk) in section 6.5.1).

E(busTraffic) =
n−1
∑

i=0

KTip(ti) +
∑

arcr=(ti,tk)

KCrp(ti ∧ tk) (6.7)

To apply the transformation we need both those probabilities; moreover, to

achieve an effective overall complexity reduction, they have to be computed in

a reasonable time. We developed two polynomial cost algorithms to compute

these probabilities.

Probability of a node
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Figure 6.4: A: An example of the three data structures; B: a sample execution of A1

All developed algorithms are based on three data structures derived from

the CTG. In Figure 6.4A we show an example of a CTG on the left and the
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related data structures:

• the activation set of a node n (AS(n)). It is computed by traversing all

paths from the starting node to n and collecting the condition outcomes

on the paths. In the activation set the outcomes are not linked via logical

operators. For instance the activation set of node n in figure Figure 6.4A

contains outcomes a, b and not c from one path and a, not b and d

from the second path. These outcomes are grouped in the activation set.

• a binary c × c exclusion matrix (EM) where c is the number of condition

outcomes. EMij = 1 iff outcomes ci and cj are mutually exclusive (i.e.

they originate at the same branch). For instance EMbb̄ = 1 since they are

mutually exclusive.

• a binary c× c sequence matrix (SM). SMij = 1 iff ci and cj are both needed

to activate some node in the CTG. For instance SMab̄ = 1 since they are

both needed to activate n.

All these data structures can be extracted from the graph in polynomial

time. Once they are available, we can determine the existence probability of a

node i using algorithm A1, that is used to compute p(ti) in equation (6.7). The

algorithm has O(c3) complexity (where c is the number of condition outcomes)

representing sets as bit vectors; in the algorithm the notation SMi stands for

the set of condition outcomes “sequenced” with a given outcome ci (SMi =

{cj |SMij = 1}); the same holds for EMi.

algorithm: Activation set probability (A1) – probability of a node or an arc

1. let S be the input set for this iteration; initially S = AS(n)

2. find a condition outcome ch ∈ S such that (EMh \ {ch}) ∩ S 6= ∅

3. if such an outcome does not exist return p =
∏

c∈S p(c)

4. otherwise, set B = EMh ∩ S

5. compute set C = S ∩
⋂

ci∈B SMi

6. compute set R =
⋂

ci∈B(S \ SMi)

7. set p = 0

8. for each outcome ci ∈ B:

8.1. set p = p + A1((S ∩ SMi) \ (C ∪ R))

9. set p = p ∗ A1(C) ∗ A1(R)

10. return p

end

Algorithm A1 works recursively partitioning the activation set of the target

node: let us follow the algorithm on the example in figure 6.4B. We have to

compute the probability of node n, whose activation set is AS(n) = {a,b,

not b, not c, d}. The algorithm looks for a group of mutually exclusive
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condition outcomes (the B set), see b and not b in AS(n). If such outcomes

do not exist, the probability of the activation set S is the product of the prob-

abilities of its elements (step 3). Otherwise, if there are at least two exclu-

sive outcomes, the algorithm then builds a “common” set (C) and a “rest” set

(R): the first contains outcomes cj in sequence with all branch outcomes, such

that SMij = 1 ∀ci ∈ B, the second outcomes ch not in sequence, such that

SMih = 0 ∀ci ∈ B. In the example C = {a} and R = ∅. Finally A1 builds

for each branch outcome a set containing the sequenced outcomes (S ∩ SMi at

step 8.1), and chains b and not c and not b and d in figure 6.4. A1 is then

recursively called on all these sets. The probabilities of sets corresponding to

mutually exclusive condition outcomes are summed (step 8.1), the ones of C

and R are multiplied (step 9).

Coexistence probability of a pair of nodes

We have to compute the probability a pair of tasks are active in the same sce-

nario so as to compute p(ti ∧ tj) in equation (6.7). Given a pair of nodes i and

j, we can determine a kind of common activation set (coexistence set (CS)) using

algorithm A2, whose inputs are the activation sets of the two nodes (AS(i),

AS(j)). The complexity of the algorithm A2 is again O(c3). The notation

EX(S) stands for the exclusion set, i.e. the set of conditions surely excluded

by those in S; it can be computed in O(c2).

algorithm: Coexistence set determination (A2)

1. if ASi = ∅ then CS = ASj ; the same if ASj = ∅

2. otherwise, if there are still not processed outcomes in
ASi, let ch be the first of them:

2.1. compute set S = ASi ∩ SMh

2.2. compute the exclusion set EX(S)

2.3. compute set:
C = ASj ∩

⋃

ck∈ASj∩EX(S) SMk

2.4. compute set:
R = ASj ∩

⋃

ck∈ASj\C SMk

2.5. set D = C \ R (outcomes to delete)

2.6. if ASj is not a subset of D:

2.6.1. set CS(ASi, ASj) =
CS(ASi, ASj) ∪ S ∪ (ASj \ D)

end

A2 works trying to find all paths from ni to the root node (backward paths)

and from the root node to nj (forward paths). The algorithm starts building a

group of backward paths by choosing a condition outcome (for instance a in

1 figure 6.5) and finding all outcomes in sequence with it (set S in 2 figure

6.5).
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Figure 6.5: Coexistence set computation

Then the algorithm finds the exclusion set (EX(S)) of set S and intersects

it with AS(nj). In 3 figure 6.5 the only outcome in the intersection is not

a (crossed arc): outcomes in the intersection and those sequenced with them

are called “candidates outcomes” (set C in 3 figure 6.5). These outcomes will

be removed from AS(nj), unless they are sequenced with one or more non-

candidate outcomes, i.e., they belong to the set R (for instance outcome f is

in sequence with not b and is not removed from AS(nj) in 4 , figure 6.5).

The outcomes left in AS(nj) identify a set of forward paths we are interested

in. The algorithm goes on until all outcomes in AS(ni) are processed. If there

is no path from ni to nj (i.e. the coexistence set is empty) the two nodes are

mutually exclusive and their coexistence probability is 0.

The probability of a coexistence set can be computed once again by means

of algorithm A1: thus, with A1 and A2 we are able to compute the existence

probability of a single node and the coexistence probability of a pair of nodes.

Since the algorithms complexities are polynomial, the reduction of the bus traf-

fic to a deterministic expression can be done in polynomial time.

6.6.3 Scheduling Model

The scheduling subproblem has been solved by means of Constraint Program-

ming. Since the objective function depends only on the allocation of tasks and

memory requirements, scheduling is just a feasibility problem. Therefore we

decided to provide a unique worst case schedule, forcing each task to execute

after all its predecessors in any scenario. Tasks using the same resources can

overlap if they can never appear in the same run time scenario (they are mutu-

ally exclusive).
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Modeling tasks

Tasks have a five phase behavior (see figure 6.6): they read all communica-

tion queues, eventually read their internal state, execute, write their state and

finally write all the communications queues.

Figure 6.6: Task execution phases

For modeling purpose, each task is modeled as a set of non preemptive

activities: in particular we use one activity to model each queue reading op-

eration, one for each queue writing operation, one activity to represent the

execution phase, one for state reading and one for state writing. Each activ-

ity has a fixed duration (DUR). The duration of execute activities is the WCET

characterizing CTG nodes. For reading and writing activities (for both com-

munication queues and state) the duration depends on the memory allocation

choices made in the master; in particular local allocation of queues, state and

program data results in shorter reading, writing and execution activities.

If the allocation is local to the processor where the task runs, the duration

is lower than the case where the allocation of memory requirements is remote.

The activity is constrained to execute between an earliest start time (EST)

and a latest end time (LET), also referred to as task deadline; for each activity

act a start and an end variables are defined such that:

start(act) ≥ EST (act)

end(act) ≤ LET (act)

end(act) = start(act) + DUR(act)

Precedence relations

Tasks are linked by precedence relations due to data communication, while

other precedence relations result from the decomposition of each task in many

activities. Both type of relations are modeled as constraints on the start and

end variables. In particular, given two activities acti and actj both strict and

loose precedence constraint are possible, respectively enforcing end(acti) ≤

start(actj) (actj executes after acti) and end(acti) = start(actj) (actj executes

immediately after acti).

The number and type of precedence constraints used depends on the type



144
Communication-Aware Stochastic Allocation and Scheduling Framework for Conditional

Task Graphs in Multi-Processor Systems-on-Chip

of the involved tasks (or/and, branch/fork); an overview of all the possible

schemas is given in figure 6.7. In the picture the black arrows represent strict

precedence relations, while the gray hyphened arrows are loose precedence

relations.

Figure 6.7: Task decomposition schema

In case a task has a single ingoing arc (input queue), the execution phase

must start immediately after the only reading activity (figure 6.7A). If more

than one ingoing arc is present the execution phase must start when the last

reading operation is over; this is modeled by introducing a “cover” activity,

which starts with the first reading activity and ends with the last one: the ex-

ecution phase starts immediately after this fake activity, and loosely after each

reading operation.

The execution phase consists in the only execution activity if the task has

no state; otherwise the read state, execution and write state activities are linked

by loose precedence relations (figure 6.7B).

If a single outgoing arc is present, the corresponding write activity must

start immediately after the execution phase (see figure 6.7C). If the task has

more than one outgoing arc the adopted schema depends on whether the task

is branch or a fork. All the writing operations of a branch node are mutually

exclusive: therefore they all start immediately after the execution phase, since

they never appear in the same scenario. Writing activities of a fork node must

all be performed after the execution phase, in a non specified order: a cover

activity of fixed duration, equal to the sum of the durations of all writing activ-

ities, constrains their sequence to start immediately after the execution phase.

Finally, precedence relations due to data communication are modeled as
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loose precedence constraint between pairs of writing and reading activities cor-

responding to the same arc (see figure 6.7D).

Resource constraints

Both the processing elements and the bus are modeled as limited capacity

resources, whose limit cannot be exceeded by overlapping non mutually ex-

clusive tasks during the execution. On the contrary, mutually exclusive tasks

can access the same resource at the same time without competition, since they

never appear in the same scenario. Special resource constraints guarantee these

properties to hold in the schedule.

In particular the processing elements are unary resources (i.e. with unary

capacity): therefore tasks requiring the same PE cannot overlap in time at all:

we modeled them defining a simple disjunctive constraint proposed in [33],

which enforces, for every two activities acti, actj requiring the same PE:

p(task(acti) ∧ task(actj)) = 0 ∨

end(acti) ≤ start(actj) ∨ end(actj) ≤ start(acti)

that is, acti and actj cannot overlap in time, unless they never appear in the

same scenario (p(task(acti) ∧ task(actj)) = 0). In the problem we face, each

activity acti related to task tj requires the PE tj is mapped to. As an exception,

in the execution phase of tasks with state the PE is required by a cover activity

(see figure 6.7B): this allows the state reading, execution, state writing activities

to stretch without releasing the processor.

The bus, as in [1], is modeled as a cumulative resource with capacity equal

to its bandwidth, according with the so called “additive model”, which allows

an error less than 10% until bandwidth usage is under 60% of the real capacity.

Each activity requires an amount of bus bandwidth dependent on the size of

the data to exchange and on its duration.

A family of filtering algorithms for cumulative resource constraints is based

on timetables, data structures storing the worst case usage profile of a resource

over time [14]. While timetables for traditional resources are relatively simple

and very efficient, computing the worst case usage profile in presence of alter-

native activities is not trivial, since this varies in a not linear way; furthermore,

every activity can have its own resource view.

Suppose for instance we have the CTG in figure 6.8A, where for sake of

simplicity each task corresponds to an activity; tasks t0, . . . , t4 and t6 have

already been scheduled: their start time and durations are reported in figure
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6.8B; the bus has bandwith 3, and the bandwidth requirement for each of the

tasks is reported next to each of them in the graph. Tasks t5 and t7 have not yet

been scheduled; t5 is present only in scenario ¬a, where the bus usage profile

is the first one reported in figure 6.8B; on the other hand, t7 is present only in

scenario a, b, where the bus usage profile is the latter in figure 6.8B. Therefore

the resource view at a given time depends on the activity we are considering.

In case an activity is present in more than one scenario, the worst case has to

be considered.

Figure 6.8: Capacity of a cumulative resource on a CTG

In order to model the bus we introduce a new global timetable constraint

for cumulative resources and conditional tasks in the non preemptive case. The

global constraint keeps a list of all known entry and exit points of activities:

given an activity acti, if LST (acti) ≤ EET (acti) then the entry point of acti is

LST (ti) and EET (ti) is its exit point (where LST stands for “latest start time”,

EET for “earliest end time” and so on).

The filtering algorithm is described in A3. Let acti be the target activity:

A3 scans the interval [EST (ti), finish) checking the resource usage at all en-

try points (as long as good = true). If it finds an entry point with not enough

capacity left it starts to scan all exit points (good = false) in order to determine

a new possible starting time for activity acti. If such an instant is found its

value is stored (lastGoodT ime) and the finish line is updated ((step 4.2.2.2)),

then A3 restarts to scan other entry points, and so on. When the finish line is

reached the algorithm updates EST (acti) or fails. A3 has O(a(c+ b)) complex-

ity, where a is the number of activities, b the number of branches, c the number

of condition outcomes. The algorithm can be easily extended to update also

LET (A).
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algorithm: Propagation of the cumulative resource constraint wi th alternative activities (A3)

1. time = EST (acti), finish = EET (acti)

2. latestGoodTime = time

3. good = true

4. While ¬ [(good = false ∧ time > lst(a)) ∨ (good = true ∧ time >= finish)]:

4.1. if busreq(acti) + usedBandwith > busBandwidth:

4.1.1. time = next exit point
4.1.2. good = false

4.2. else:

4.2.1. time = next entry point
4.2.2. if good = false:

4.2.2.1. lastGoodTime = time

4.2.2.2. finish = max(finish, time + DUR(acti))

4.2.2.3. good = true

5. if good = true: EST (acti) = lastGoodTime

6. else: fail

end

A3 is able to compute the bandwidth usage seen from each activity in O(b+

c) by taking advantage of a particular data structure we introduced, named

Branch Fork Graph (BFG).

The BFG makes it possible to compute bus usage in a very efficient way,

by making direct use of the graph structure: if we only took into account the

exclusion relations it would be an NP-hard problem. To have a polynomial

time algorithm however the graph should satisfy a particular condition (called

“Control Flow Uniqueness”).

Control Flow Uniqueness

We are interested in conditional graphs satisfying Control Flow Uniqueness (CFU)

a condition introduced in [20]. CFU is satisfied if each “and” node has a main

ingoing arc arci, such that in every scenario where arci is active, also all the

other ingoing arcs are active.

In practice CFU requires each and-node to be triggered by a single “main”

predecessor, or, in other words, that every and-node must be on a single control

path. For example in figure 6.9A, task t5 is sufficient to trigger the execution of

t8 (since t7 executes in all scenarios) and thus CFU holds. On the opposite, in

figure 6.9B, neither t4 nor t5 alone are sufficient to activate t7 and CFU is not

satisfied.

In many practical cases CFU is not a restrictive assumption: for example,

when the graph results from the parsing of a computer program written in a

high level language (such as C++, Java, C#) CFU is naturally enforced by the

scope rules of the language.
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Figure 6.9: A: a CTG which satisfies CFU B: a CTG which does not satisfy CFU

In particular, CFU is a weaker condition compared to that of having struc-

tured graphs [15], that is graphs with a single collector node for each condi-

tional branch: in particular CFU allows for graphs with multiple “tail” tasks

(with no successor).

6.6.4 Benders cuts and subproblem relaxation

Each time the master problem solution is not feasible for the scheduling sub-

problem a cut is generated which forbids that solution. Moreover, all solutions

obtained by permutation of PEs are forbidden, too.

Unfortunately, this kind of cut, although sufficient, is weak; this is why we

decided to introduce another cut type, generated as follows: (1) solve to feasi-

bility a single machine scheduling model with only one PE and tasks running

on it; (2) if there is no solution the tasks considered cannot be allocated to any

other PE.

The cut is very effective, but we need to solve an NP-hard problem to gen-

erate it; however, in practice, the problem can be quickly solved.

Again with the objective to limit iteration number, we also inserted in the

master problem a relaxation of the subproblem. This employs two types of

constraints:

1. For each sequence of communicating tasks (path) π = ti0 , ti1 , . . .:

np
∑

j=0

[

∑

ti∈π

duri(Mij , Sij) +
∑

ar∈π

durr(Erj)

]

≤ deadline

That is, memory devices cannot be allocated in such a way that the to-

tal duration of a path is greater than the deadline. The linear functions

duri(Mi, Si) and durr(Er) are lower bounds on the duration of all the

task related activities (execution, state reading/writing) and arc related

(queue reading/writing) activities on the path π.
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2. For each set of non mutually exclusive tasks S = {ti0 , ti1 , . . .}:

∀j = 0, . . . , np−1
∑

ti∈S













durij(Mtj , Stj) +
∑

ar = (ti,−)

ar = (−, ti)

durrj(Erj)













≤ deadline

where durij(Mtj , Stj) and durrj(Erj) are linear lower bounds on the du-

ration of task ti and arc ar on PE j. This second type of cuts prevents

the total duration of non mutually exclusive groups of activities on PE j

from exceeding the deadline, since non mutually exclusive tasks cannot

overlap and must execute in sequence if they are on the same PE.

Note that both the number of paths and the number of sets of non mutually

exclusive tasks are exponential: relaxation cuts are therefore added during the

search as they are needed.

6.6.5 Computational Efficiency

We implemented all exposed algorithms in C++, using the state of the art

solvers ILOG Cplex 9.0 (for ILP) and ILOG Solver 6.0 and Scheduler 6.0 (for

CP). We tested all instances on a Pentium IV pc with 512MB RAM. The time

limit for the solution process was 30 minutes.

We tested the method on two set of instances: the first set contains synthetic

benchmarks; peculiar input data of this problem (such as the branch probabil-

ities) were estimated via a profiling step. Instances of this first group are only

slightly structured, i.e. they have very short tracks and quite often contain sin-

gleton nodes: therefore we decided to generate a second group of instances,

completely structured (one head, one tail, long tracks)1.

The results of the tests on the first group are summarized in table 6.1. In-

stances are grouped according to the number of activities (acts); beside this,

the table reports also the number of processing elements (PEs), the number of

instances in the group (inst.), the instances which were proven to be infeasible

(inf.), the mean overall time (in seconds), the mean time to analyze the graph

(init), to solve the master and the subproblem, to generate the no-good cuts

and the mean number of iterations (it). The solution times are of the same or-

der of the deterministic case (scheduling of Task Graphs), which is a very good

result, since we are working on conditional task graphs and thus dealing with

a stochastic problem.

For a limited number of instances the overall solving time was exception-

ally high: the last column in the table shows the number of instances for which

1All instances are available at http://www-lia.deis.unibo.it/Staff/MichelaMilano/tests.zip
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this happened, mainly due to the master problem (A), the scheduling problem

(S) or the number of iterations (I). The solution time of these instances was not

counted in the mean; in general it was greater than than thirty minutes.

acts PEs inst. inf. time init master sub nogood it A/S/I

10-12 2 6 0 0.0337 0.0208 0.0075 0.0027 0.0027 1.1667 0/0/0
13-15 2 8 1 0.5251 0.1600 0.0076 0.0040 0.0020 1.1250 0/0/0
16-18 2-3 12 0 0.1091 0.0922 0.0089 0.0067 0.0013 1.0833 0/0/0
19-21 2-3 14 1 0.1216 0.0791 0.0279 0.0079 0.0046 1.2143 0/0/0
22-24 2-3 23 4 0.2336 0.1520 0.0259 0.0061 0.0081 1.1739 0/0/0
25-27 2-3 16 3 1.7849 0.0319 1.7285 0.0108 0.0088 1.3125 0/0/0
28-30 2-3 13 2 0.3331 0.0284 0.0770 0.1900 0.0338 1.6667 0/1/0
31-33 3-4 4 2 0.3008 0.2303 0.0510 0.0040 0.0000 1.0000 0/0/0
34-36 3-4 13 4 0.6840 0.0204 0.4245 0.0132 0.0108 1.2308 0/0/0
37-39 3-4 7 0 1.5670 0.0399 1.2010 0.1384 0.1877 4.4286 0/0/0
40-42 3-4 6 3 2.9162 0.0182 0.5857 2.2267 0.0390 1.6667 0/0/0
43-45 3-4 6 1 5.3670 0.2757 4.8200 0.0630 0.2005 4.1667 0/0/0
46-48 4-5 11 0 3.2719 0.0508 0.6913 2.4616 0.0683 2.0000 1/2/0
49-51 4-5 11 1 1.9950 0.1840 1.7900 0.0071 0.0087 1.1111 1/1/0
52-54 5-6 6 0 8.0000 1.3398 1.5743 4.8788 0.2073 2.7500 1/1/0
55-67 6 8 0 2.2810 0.8333 1.4377 0.0100 0.0000 1.0000 1/4/0

Table 6.1: Results of the tests on the first group of instances (slightly structured)

acts PEs inst. inf. time init master sub nogood it A/S/I

20-29 2 7 2 0.5227 0.0200 0.0134 0.0090 0.0021 8.8571 0/0/0
30-39 2-3 6 0 1.7625 0.0283 1.2655 0.2057 0.2630 5.8333 0/0/0
40-49 3 3 0 0.4380 0.0313 0.3493 0.0573 0.0000 1.0000 0/0/0
50-59 3-4 7 0 1.1403 0.0310 0.6070 0.2708 0.2315 3.6667 0/0/1
60-69 4-5 4 0 10.1598 0.0385 6.8718 1.2798 1.9698 18.0000 0/0/0
70-79 4-5 4 0 88.9650 0.0428 88.6645 0.2578 0.0000 1.0000 0/0/0
80-90 4-6 7 0 202.4655 0.0755 184.0177 6.5008 11.8715 28.6667 0/0/1

Table 6.2: Result of the tests on the second group of instances (completely structured)

Although this extremely high solution time occurs with increasing frequency

as the number of activities grows, it seems it is not completely determinated by

that parameter: sometimes even a very small change of the deadline or of some

branch probability makes the computation time explode.

We guess that in some cases, when the scheduler is the cause of inefficiency,

this happens because of search heuristic: for some input graph topologies and

parameter configurations the heuristic does not make the right choices and the

solution time dramatically grows. Perhaps this could be avoided by random-

izing the solution method and by using restart strategies [28].

The results of the second group of instances (completely structured) are

reported in table 6.2. In this case the higher number of arcs (and thus of prece-

dence constraints) reduces the time windows and makes the scheduling prob-

lem much more stable: no instance solution time exploded due to the schedul-

ing problem. On the other hand the increased number of arcs makes the al-
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mean time to gen. a cut
basic case: 0.0074
with relaxation based cuts (RBC): 0.0499

number of iterations excution time
deadline basic case with RBC basic case with RBC result

8557573 2 3 1.18 0.609 opt. found
625918 1 1 0.771 0.765 opt. found
590846 1 1 0.562 0.592 opt. found
473108 19 6 6.169 1.186 opt. found
464512 190 14 201.124 9.032 opt. found
454268 195 24 331.449 10.189 opt. found
444444 78 15 60.747 6.144 opt. found
433330 9 4 4.396 1.657 opt. found
430835 5 3 3.347 1.046 opt. found
430490 5 3 3.896 1.703 opt. found
427251 3 2 2.153 0.188 inf.

Table 6.3: Number of iterations without and with scheduling relaxation based cuts

location more complex and the scheduling problem approximation less strict,

thus increasing the number of iterations and their duration. In two cases we

go beyond the time limit.

We also ran a set of tests to verify the effectiveness of the cuts we proposed

in section 6.6.4 with respect to the basic cuts removing only the solution just

found: table 6.3 reports results for a 34 activities instance repeatedly solved

with a decreasing deadline values, until the problem becomes infeasible. The

iteration number greatly reduces. Also, despite the mean time to generate a

cut grows by a factor of ten, the overall solving time per instance is definitely

advantageous with the tighter cuts.

Finally, to estimate the quality of the chosen objective function (bus traffic

expected value), we tested it against an easier, heuristic technique of deter-

ministic reduction. The chosen heuristic simply optimizes bus traffic for the

scenario when each branch is assigned the most likely outcome; despite its

simplicity, this is a particularly relevant technique, since it is widely used in

modern compilers ([26]).

We ran tests on three instances: we solved them with our method and the

heuristic one (obtaining two different allocations) and we computed the bus

traffic for each scenario with both the allocations. The results are shown in table

6.4, where for each instance are reported the mean, minimum and maximum

quality improvement against the heuristic method. Note that on the average

our method always improves the heuristic solution; moreover, our solution

seems to be never much worse then the other, while it is often considerably

better.
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quality improvement
instance activities scenarios mean min max

1 53 10 4.72% -0.88% 13.08%
2 57 10 2.59% -0.11% 8.82%
3 54 24 12.65% -0.72% 39.22%

Table 6.4: Comparison with heuristic deterministic reduction

6.7 Efficient Application

Development Support

Optmization flow requires a correspondent design-time and run-time support

in the target platform matching the way the application and the architecture

have been abstracted in the optimization framework and allowing the precise

implementation of computed mapping solutions. In practice, such support is

needed to close the abstraction gap (i.e., the deviation between the mapping

problem model and the real behavior of the target platform), which is the other

main objective of this chapter.

In this section we describe our new application development support. It is

mainly composed by a generic Customizable Application Template and a set of

high-level APIs. Our facilities tackle both OS-level issues, such as task alloca-

tion and scheduling, as well as task-level issues, like inter-task communication

and synchronization. The main goal of our development framework is the ex-

act and reliable execution of application after the optimization step, giving at

the same time guarantees about high performance and constraint satisfaction.

6.7.1 Design time support: Customizable Application Template

We set up a generic customizable application template allowing software de-

velopers to easily and quickly build their parallel applications starting from a

high-level task and data flow graph specification compliant to our previously

described models. Programmers can at first think about their applications in

terms of task dependencies and quickly draw the task graphs, and then use

our tools and libraries to translate the abstract representation into C code. This

way, they can devote most of their effort to the functionality of tasks rather than

the implementation of their communication, synchronization and scheduling

mechanisms.

More in details, users can specify the number of tasks included in the target

application, their nature (e.g. branch, fork, or-node, and-node) and their prece-

dence constraints (e.g. due to data communication), thus quickly drawing its

CTG. Programmers can specify the structure of the target application by simply

declaring a series of macros and data structures. Once programmer has build
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this application skeleton, he can focus onto the functionalities of the tasks, thus

giving the main effort of his work only to the more specific and critic sections

of the application.

User can configure the Customizable Application Template via XML file,

which will be automaticly translated into C-code. We implemented also an

Eclipse plug-in graphical interface in order to make the configuration of the

Customizable Application Template easier and less error-prone. Figure.7.12

shows a snapshot of how the GUI looks like. The user can compose his appli-

cation task graph simply draggin and dropping nodes (i.e. task) and arrows

(i.e. precedence constraints), then our plugin will produce the XML file corre-

sponding to its right Customizable Application Template configuration.

Figure 6.10: Snapshot Eclipse plug-in graphical user interface.

For every task indicated within the application template, C–code is auto-

matically generated which reflects the considered task computational model

(i.e. Reading Input Phase, Reading State Phase, Execution, etc.). Following our

scalable and parameterizable template, we also ensure that the final implemen-

tation of the target application will be compliant with the modelling assump-

tions of the optimizer, and that the optimal performance and the constraint

satisfaction of computed mapping solutions will be achieved in practice.

6.7.2 Run-time support: OS-level and Task-level APIs

We implemented a set of APIs by which users can easily reproduce optimizer

solutions on their target platform with great accuracy.

Once the target application has been implemented using our generic cus-

tomizable template, tasks, program data and communication queues are allo-

cated to the proper hardware resources (processor or memory cores) as indi-

cated by the computed allocation solution. This is done through the init task

of our template which allocates and launches all the activities at booting time.

In order to reproduce the exact scheduling behavior of the optimizer, we
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implemented a scheduling support middleware in the target platform. Using

this facility, programmers only have to specify the desired scheduling for every

processor core, which is handled accordingly by our middleware in a transpar-

ent way.

After the boot of the application, our framework sets to active only the first

task in the scheduling list, while the other ones are set to the sleep state. In

this way, we avoid any undesired task preemption by the OS scheduler, which

would induce a different behavior with respect to the optimal one provided by

the optimizer.

After the active task has finished its execution, it is put to sleep thus releas-

ing the CPU, while the subsequent task in the scheduling list is woken up by

switching its state to active. If the subsequent task is allocated to a different

CPU, this remote wake up mechanism is handled via interrupts.

Figure 6.11: The structure of a queue.

Software support for efficient messaging is also provided by our set of high-

level APIs. The communication and synchronization library abstracts low level

architectural details to the programmer, such as memory maps or explicit man-

agement of hardware semaphores or interrupt signaling. Messages can be di-

rectly moved between scratch-pad memories. The structure of queue is shown

in Fig. 7.17.

A queue for the communication between a producer task and a consumer

one is composed by a data queue and two semaphores. In order to send a mes-

sage, a producer core writes in the message queue stored in its local scratch-pad

memory, without generating any traffic on the interconnect. After the message

is ready, the consumer can transfer it to its own scratchpad or to a private mem-

ory space. Data can be transferred either by the processor itself or by a direct

memory access controller, when available. In order to allow the consumer to

read from the scratchpad memory of another processor, the scratchpad mem-

ories should be connected to the communication architecture also by means of

slave ports, and their address space should be visible by the other processors.

As far as synchronization is concerned, when a producer intends to gen-

erate a message, it locally checks an integer semaphore which contains the

number of free messages in the queue. If enough space is available, it decre-

ments the semaphore and stores the message in its scratch-pad. Completion

of the write transaction and availability of the message is signaled to the con-
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sumer by remotely incrementing its local semaphore. This single write op-

eration goes through the bus. Semaphores are therefore distributed among

the processing elements, resulting in two advantages: the read/write traffic

to the semaphores is distributed and the producer (consumer) can locally poll

whether space (a message) is available, thereby reducing bus traffic. Further-

more, our semaphores may interrupt the local processor when released, pro-

viding an alternative mechanism to polling. In fact, if the semaphore is not

available, the polling task registers itself on a list of tasks waiting for that

semaphore and suspends itself. Other tasks on the processor can then exe-

cute. As soon as the semaphore is released, it generates an interrupt and the

corresponding interrupt routine reactivates all tasks on the wait list.

Figure 6.12: Optimal queue usage ordering: example.

If one task has got more than one input or output queue, our optimizer can

specify the optimal reading/writing sequence from/to them. We tuned our

run-time support to enable this option. This is a very important feature, since

an optimal queue-usage ordering can boost performance and parallelism. Fig.

6.12 better clarifies this issue. It shows a case in which six tasks are allocated to

two different cores. Task T1 has to communicate with both T2 and T3, which

are allocated to the same core, and with T4 allocated to a different core. At start-

up, let us assume that task T1 will be scheduled on CPU1 and task T4 on CPU2.

While T1 immediately starts its execution, T4 has to wait for data from T1, thus

keeping CPU2 stalled. The idle wait of T4 depends on the queue-fill ordering

enforced by T1: it will be shorter if T1 gives maximum priority to queue C3.

Both our optimization framework and our application execution support can

handle this additional degree of freedom for performance optimization.

6.8 Methodology

In this section we explain how to deploy our optimization framework in the

context of a real system-level design flow. Fig. 6.13 shows a pictural overview
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Figure 6.13: Application development methodology.

of the overall application development methodology flow proposed. Our ap-

proach consists of using a virtual platform to pre-characterize the input task

set, to simulate the allocation and scheduling solutions provided by the opti-

mizer and to detect deviations of measured performance metrics with respect

to predicted ones. The target application is pre-characterized and abstracted as

a Conditional Task Graph. The task graph is annotated with computation time,

amount of communication and storage requirements. However, not all tasks

will run on the target platform: in fact, the application contains conditional

branches (like if-then-else control structures) which will prevent the execution

of some of them. Therefore, an accurate application profiling step is needed,

from which we have a probability distribution on each conditional branch that

intuitively gives the probability of choosing that branch during real future ex-

ecution.

We model task communication and computation separately to better ac-

count for their requirement on bus utilization, although from a practical view-

point they are part of the same atomic task. The initial communication phase

consumes a bus bandwidth which is determined by the hardware support for

data transfer (DMA engines or not) and by the bus protocol efficiency (latency

for a read transaction). The computation part of the task instead consumes an

average bandwidth defined by the ratio of program data size (in case of remote

mapping) and execution time. A less accurate characterization framework can

be used to model the task set, though potentially incurring more uncertainty

with respect to optimizer’s solutions.

The input task parameters are then fed to the optimization framework,

which provides optimal allocation of tasks and memory locations to processor

and storage devices respectively, and a feasible schedule for the tasks meeting

the real-time requirements of the application.

After the optimization phase, we can build the optimal implementation of

our target application using both the optimizer solution for the hardware plat-
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form (i.e. optimal allocation and scheduling) and the application development

support (i.e. Customizable Application Template and OS-level and Task-level

APIs).

6.9 Experimental Results

We have performed two kinds of experiments, namely (i) comparison of sim-

ulated throughput with optimizer-derived values, and (ii) prove of viability of

the proposed approach for real-life demonstrators (GSM, Software Radio).

We have deployed the virtual platform to implement the allocations and

schedules generated by the optimizer, and we have measured deviations of

the simulated throughput from the predicted one for 30 problem instances. A

synthetic benchmark has been used for this experiment, allowing to change

system and application parameters (local memory size, execution times, data

size, etc.). We want to make sure that modelling approximations are not such

to significantly impact the accuracy of optimizer results with respect to real-life

systems.

Figure 6.14: Difference in execution time

The results of the validation phase are reported in Fig.6.14 and Fig.6.15.

Fig.6.14 shows the differences in execution time between the predicted one by

the optimizer and the real one by the cycle accurate simulator. It can be noticed

that the differences are marginal and we can point out that all the deadline

constraints are satisfied.

Fig.6.15 shows the probability for throughput differences between opti-

mizer and simulator results. The average difference between measured and

predicted values is 4.8%, with 2.41 standard deviation. This confirms the high

level of accuracy achieved by the developed optimization framework, thanks

to the calibration of system model parameters against functional timing-accurate

simulation and to the control of system working conditions.
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Figure 6.15: Probability for throughput differences

Figure 6.16: GSM encoder case study. Figure 6.17: SW Radio case study.

The GSM application has been used to prove the viability of our approach.

The source code has been parallelized into 10 task (see Fig.6.16), and each task

has been pre-characterized by the virtual platform to provide parameters of

task models to the optimizer. The time taken by the optimizer to come to a

solution was 0.2 seconds. The validation process of the solution on the vir-

tual platform running two cores showed an accuracy by 5.1% on throughput

requirement.

Our optimization framework was then applied to a Software Radio appli-

cation. Fig.6.17 shows the obtained task graph. The target application compu-

tation kernel was partitioned into 10 stages, and the accuracy on throughput

estimation was 6.33% with a solution found in 0.25 seconds.

6.10 Conclusions

We target allocation and scheduling of conditional multi-task applications on

top of distributed memory architectures with messaging support. We tackle the

complexity of the problem by means of decomposition and no-good genera-

tion, and introduce a software library and API for the reliable software deploy-

ment. Moreover, we propose an entire innovative framework to help program-

mers in software implementation and deploy a virtual platform to validate the

results of the development framework and to check modelling assumptions of

optimizer, showing a very high level of accuracy. Our methodology can po-
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tentially contribute to the advance in the field of software optimization and

development tools for highly integrated on-chip multiprocessors.
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Chapter 7

Cellflow: a Parallel

Application Development

Infrastructure with Run-Time

Support for the Cell BE

Processor

7.1 Overview

The Cell BE processor provides both scalable computation power and flexibil-

ity, and it is already being adopted for many computational intensive appli-

cations like aerospace, defense, medical imaging and gaming. Despite of its

merits, it also presents many challenges, as it is now widely known that is very

difficult to program the Cell BE in an efficient manner. Hence, the creation of

an efficient software development framework is becoming the key challenge

for this computational platform.

We propose a novel software toolkit (called Cellflow) which enables devel-

opers to quickly build multi-task applications for Cell-based platform. We sup-

port programmers from the initial stage of their work, through a development-

time software infrastructure, to the final stage of the application development,

proposing a safe and easy-to-use explicit parallel programming model.

We address also the problem of allocating and scheduling of tasks on pro-

cessor engines, as well as communication channels to memories, with the goal

of minimizing application execution time. We have developed a complete op-
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timization strategy based on problem decomposition. Unfortunately, a tradi-

tional two-stage decomposition produces unbalanced components: allocation

part is difficult, while the scheduling part is much easier. To address this is-

sue, we have developed a multi-stage decomposition, which is a recursive ap-

plication of standard Logic based Benders’ Decomposition (LBD). Our exper-

iments demonstrate that this apprach is very effective in obtaining balanced

sub-problems and in reducing the runtime of the optimizer. Our environment

provides also on-line runtime support, which manages OS-level issues (such

as task allocation and scheduling) as well as task-level issues (like inter-task

communication and synchronization).

Experimental results show that in Cellflow we reduced to minimum the

abstraction gap between the optimization and development phases.

7.2 Introduction

Cell is a heterogeneous multi-core architecture composed by a standard gen-

eral purpose microprocessor (called PPE), with eight coprocessing units (called

SPEs) integrated on the same chip. The SPE is a processor designed for stream-

ing workloads, featuring a local memory, and a globally-coherent DMA en-

gine [21], [26]. Cell has already demonstrated impressive performance ratings

in computationally intensive applications and kernels mainly thanks to its in-

novative architectural features [34], [19], [33], [30]. Unfortunately, Cell’s main

differences from conventional homogeneous multiprocessors are at the same

time the reason for its programming difficulties. The heterogeneity of its com-

putational capability, the limited, explicitly-managed on-chip memory and the

multiple options for exploiting hardware parallelism, make efficient applica-

tion design and implementation a major challenge. Efficiently programming

requires to explicitly manage the resources available to each SPE, as well the al-

location and scheduling of activities on them, the storage resources, the move-

ment of data and synchronizations, etc.

Even though data-flow graphs are often used for pure data-streaming ap-

plications, many realistic applications can only be specified as generic task

graphs. The problem of allocating and scheduling generic task graphs on pro-

cessor engines in a distributed real-time system is NP-hard.

Moving from these considerations, the novelty of this work is the creation

of a framework, called Cellflow, that can help programmers in handling these

complex and critical activities and decisions. The Cell’s SDK from IBM [18] is a

complete and very powerful environment, but it does not offer any facility for

optimizing the resource utilization in terms of both allocation and scheduling,

memory transfers and utilization. Our goal is to enable developers to quickly
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build multi-task applications using an explicit parallel programming model.

Our key object is to give developers access to the power of Cell multi-core

architecture, but at a high level. We want to set programmers free from the

issue of managing low-level and architecture-specific details, so they can focus

on developing the core algorithms of the application. Our entire infrastructure

is built on top of the low-level libraries available within the Cell’s Software

Development Kit (SDK) and can be fully integrated in it.

In optimization tools many simplifying assumptions are generally consid-

ered: model simplification is often achieved by abstracting away platform im-

plementation details such as the limited capacity of local memories or the ac-

tual paradigm of communication between cores. As a result optmization prob-

lems become more tractable and easy to solve. Unfortunatly, this approach cre-

ates an abstraction gap between the optimization model and the real HW/SW

platform. The abstraction gap between high level optimization tools and stan-

dard application programming models can introduce unpredictable and un-

desired behaviours in the final platform implementation. In the application

developing phase, programmers must be conscious about system simplifica-

tions taken into account in optimization tools. For instance, a communication

or synchronization sub-optimal task implementation leads to reduced through-

put and/or increase latency. The main goal of our work is to address the ab-

straction gap, formulating a very accurate model for allocation and scheduling,

which accounts for a number of non idealities in real-life hardware platforms

and which is behavioural compliant with our application modelling.

Our toolkit is made of an off-line development framework and an on-line

runtime support. The off-line facility is a design-time software infrastructure

for the deployment of multi-task applications. It is made up of a generic cus-

tomizable application template, thanks to which software developers can eas-

ily and quickly build their application skeleton starting from a high level task

and data flow graph, and of an allocation and scheduling support, in order to

find an optimal mapping and scheduling on the hardware architecture.

We modeled the application as a task graph. The application workload is

partitioned into computation sub-units denoted as tasks, which are the nodes

of the graph. Graph edges connecting any two nodes indicate task depen-

dencies due, for example, to communication and/or synchronization. Tasks

communicate through queues and each task can handle several input/output

queues. We have to allocate tasks to processors, memory requirements and in-

put/output queues to memory devices and schedule the overall application in

order to minimize the application execution time (i.e., the schedule makespan).

We have previously solved similar applications [1], [2] via Logic-based Ben-

ders Decomposition [7], by facing allocation via Integer Linear Programming
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and scheduling via Constraint Programming. In this case, a similar approach

scales poorly: the two-stage decomposition produces two unbalanced compo-

nents. The allocation part is extremely difficult to solve while the scheduling

part is indeed easier.

We have experimented a multi-stage decomposition, which is actually a

recursive application of standard Logic based Benders’ Decomposition (LBD),

that aims at obtaining balanced and lighter components. An extensive set of

experimental results confirm that the multi-stage decomposition pays off in

terms of efficiency even if for large problems where the proof of optimality

cannot be completed in the available time the traditional approach provides

better solutions. Also, we analyze the impact of cutting planes and number of

iterations in the traditional benders approach and in the variant we propose.

The on-line runtime support is composed by a series of software libraries

and APIs which manage OS-level issues, such as task allocation and schedul-

ing, as well as task-level issues, like inter-task communication and synchro-

nization. In this phase we tackle also the problem of the limited memory size

of the SPEs, optimizing their utilization through overlaying.

The software framework is targeted towards statically-configured applica-

tion, where allocation and scheduling settings are precomputed once at de-

sign time, such as many signal processing and even some multimedia applica-

tions. With Cellflow, Cell programming becomes simpler, but at the same time

it achieves high efficiency thanks to the run-time support (which is tuned to

the SPE harware) and to off-line optimal allocation and scheduling.

7.3 Related Work

The Cell architecture includes multiple, heterogeneous processor elements (PPE

and SPEs) and Single-Instruction-Multiple-Data (SIMD) units on all SPEs. This

kind of platform supports a wide range of heterogeneous parallelism levels.

To our knowledge, prior work is mainly focused on trying to exploit fine grain

parallelism of Cell, such as at instruction and function level, while our work

is one of the few approaches at task level. In [20] authors present a frame-

work for the automatic exploitation of the functional parallelism of a sequen-

tial program through the different SPEs. Their work is based on annotation

of the source code of target application. A runtime library deals with gen-

erating threads, scheduling them on the SPEs, and transferring data to/from

them. The authors in [31] present a realtime software platform for the Cell

processor. It is based on the virtualization of the processing resources and a

real-time resource scheduler which runs on the PPE. The compiler described

in [23] implements techniques for optimizing the execution of scalar code in



7.4 Cell BE Hardware Architecture 169

SIMD units, subword optimization and other techniques. Authors in [22] de-

scribe several compiler techniques that aim at automatically generating high-

quality code over a wide range of heterogeneous parallelism available on the

CELL processor. Techniques include compiler-supported branch prediction,

compiler-assisted instruction fetch, generation of scalar codes on SIMD units,

automatic generation of SIMD codes, and data and code partitioning across the

multiple SPEs in the system.

At a higher level of abstraction, [19] presents a complexity model for de-

signing algorithms on the Cell processor, along with a systematic procedure

for algorithm analysis. To estimate the execution time of the algorithm, the

authors present a model which considers the computational complexity, mem-

ory access patterns, and the complexity of branching instructions. This model,

coupled with the analysis procedure, should enable identification of potential

implementation bottlenecks. Williams et al. [37] analyzed the performance

of Cell for key scientific kernels such as dense matrix multiply, sparse matrix

vector multiply and 1D and 2D fast Fourier transforms, while the paper [36]

evaluates the performance of bioinformatic applications on the Cell. Authors

in [32] provide a software development platform which allows to use standard

C++ programming to create parallel applications, or extend existing applica-

tions to run on Cell. The work in [27] analyzes the performance and the avail-

able bandwidth of Cell processor, its interconnect bus and memory hierarchy

for high memory bandwidth applications. The authors draw many interesting

conclusions, including the statement that individual SPE to SPE communica-

tion almost achieves the peak bandwidth. Some parallel programming models

have been implemented and ported on the Cell processor [29, 38]. The authors

in [38] have ported Streamit and its run-time environment on Cell architecture.

Streamit is based on a dataflow programming language, but it needs its own

compiler, while in our case we are fully compatible with the standard C-based

development flow.

7.4 Cell BE Hardware Architecture

In this section we give a brief overview of the Cell hardware architecture, fo-

cusing on the features that are most relevant for our programming enviroment.

Cell is a non-homogeneous multi-core processor [35] which includes a 64-bit

PowerPC processor element (PPE) and eight synergistic processor elements

(SPEs), connected by an internal high bandwidth Element Interconnect Bus

(EIB) [28]. Figure.7.1 shows a pictorial overview of the Cell Broadband En-

gine Hardware Architecture. The PPE is dedicated to the operating system

and acts as the master of the system, while the eight synergistic processors
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Figure 7.1: Cell Broadband Engine Hardware Architecture.

are optimized for compute-intensive applications. The PPE is a multithreaded

core and has two levels of on-chip cache, however, the main computing power

of the Cell processor is provided by the eight SPEs. The SPE is a compute-

intensive coprocessor designed to accelerate media and streaming workloads

[25]. Each SPE consists of a synergistic processor unit (SPU) and a memory flow

controller (MFC). The MFC includes a DMA controller, a memory management

unit (MMU), a bus interface unit, and an atomic unit for synchronization with

other SPUs and the PPE.

Efficient SPE software should heavily optimize memory usage, since the SPEs

operate on a limited on-chip memory (only 256 KB local store) that stores both

instructions and data required by the program. The local memory of the SPEs

is not coherent with the PPE main memory, and data transfers to and from the

SPE local memories must be explicitly managed by using asynchronous coher-

ent DMA commands.

7.5 Off-line Development Infrastructure

In this section, we describe the computational model supported by our envi-

ronment, and the off-line (development time) support for optimal allocation

and scheduling of parallel tasks on SPEs.

7.5.1 Application and task computational model

Our application model is a task graph with precedence constraints. Nodes of

the graph represent concurrent tasks while the arcs indicate mutual depen-

dencies due, for example, for communication and/or synchronization. Tasks

communicate through queues and each task can handle several input/output

queues.

Task execution is modeled and structured in three phases, as indicated in



7.5 Off-line Development Infrastructure 171

Figure 7.2: Three phases behavior of Tasks.

Figure.7.2: all input communication queues are read (Input Reading), task

computation activity is performed (Task Execution) and finally all output queues

are written (Output Writing). Each phase consists of an atomic activity. Each

task also has 2 kinds of associated memory requirements:

1. Program Data: storage locations are required for computation data and

for processor instructions;

2. Communication queues: the task needs queues to transmit and receive

messages to/from other tasks, eventually mapped on different SPEs.

Both these memory requirements can be allocated on the local storage of each

SPE or reside in the shared memory.

7.5.2 Multi-stage Benders Decomposition

The problem we have to solve is a scheduling problem with alternative re-

sources and allocation dependent durations. A good way of facing these kind

of problems is via Benders Decomposition, and its Logic-based extension [7].

Previous papers have shown the effectiveness of the method for similar prob-

lems. Hooker in [8] and [9] has shown how to deal with several objective func-

tions in problems where tasks allocated on different machines are not linked by

precedence constraints. Similar problems have been faced by Jain and Gross-

mann [6], Bockmayr and Pisaruk [4] and Sadykov and Wolsey [12], the latter

comparing this approach with branch and cut and column generation. Many

of these approaches consider multiple independent subproblems: that is, once

the master problem is solved, then many decoupled subproblems result which

can be solved in an independent fashion. The same approach is used by Tarim

and Miguel [16] to solve stochastic problems with complete linear recourse.

The allocation is in general effectively solved through Integer Linear Pro-

gramming, while scheduling is better faced via Constraint Programming. In

our case, the scheduling problem cannot be divided into disjoint single ma-

chine problems since we have precedence constraints linking tasks allocated

on different processors. We have implemented such an approach, similarly to

[1], [2], and experimentally experienced a number of drawbacks. The main

problem is that for the problem at hand a two stage decomposition produces

two unbalanced components. The allocation part is extremely difficult to solve

while the scheduling part is indeed easier. We will see in section 7.5.3 that this

approach scales poorly.
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We have experimented a multi-stage decomposition, which is actually a re-

cursive application of standard Logic based Benders’ Decomposition (LBD),

that aims at obtaining balanced and lighter components. The allocation part

should be decomposed again in two subproblems, each part being easily solv-

able.

In Figure.7.3 at level one the SPE assignment problem (SPE stage) acts as the

master problem, while memory device assignment and scheduling as a whole

are the subproblem. At level two (the dashed box in Figure.7.3) the memory

assignment (MEM stage) is the master and the scheduling (SCHED stage) is

the correspondent subproblem. The first step of the solution process is the

computation of a task-to-SPE assignment; then, based on that assignment, al-

location choices for all memory requirements are taken. Deciding the allocation

of tasks and memory requirements univocally defines task durations. Finally,

a scheduling problem with fixed resource assignments and fixed durations is

solved.

When the SCHED problem is solved (no matter if a solution has been found),

one or more cuts (labeled A) are generated to forbid (at least) the current mem-

ory device allocation and the process is restarted from the MEM stage; in ad-

dition, if the scheduling problem is feasible, an upper bound on the value of

the next solution is also posted. When the MEM & SCHED subproblem ends

(either successfully or not), more cuts (labeled B) are generated to forbid the

current task-to-SPE assignment. When the SPE stage becomes infeasible the

process is over converging to the optimal solution for the problem overall.

We found that quite often SPE allocation choices are by themselves very

relevant: in particular, a bad SPE assignment is sometimes sufficient to make

the scheduling problem infeasible. Thus, after the task to processor allocation,

we can perform a first schedulability test as depicted in Figure.7.4. In prac-

tice, if the given allocation with minimal durations is already infeasible for the

scheduling component, then it is useless to complete it with the memory as-

signment that cannot lead to any feasible solution overall.

SPE Allocation

The computation of a task-to-SPE assignment is tackled by means of Integer

Linear Programming (ILP). Given a graph with n tasks, m arcs and a platform

with p processing elements the ILP model we adopted is very simple: this a first

visible advantage of the the multi-stage approach. We introduce a decisional

variable Tij ∈ {0, 1} such that Tij = 1 is task i is assigned to PE j. The model

to be solved is:
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Figure 7.3: Solver architecture: two level
Logic based Benders’ Decom-
position

Figure 7.4: Solver architecture with
schedulability test

min z

s.t. z ≥
n−1
∑

i=0

Tij ∀j = 0, . . . , p − 1 (7.1)

p−1
∑

j=0

Tij = 1 ∀i = 0, . . . , n − 1 (7.2)

Tij ∈ {0, 1} ∀i = 0, . . . , n − 1, ∀j = 0, . . . p − 1

Constraints (7.2) state that each task can be assigned to a single SPE; con-

straints (7.1) are needed to express the objective function. The makespan objec-

tive function depends only on scheduling decision variables. Here we adopt

an objective function that tends to spread tasks as much as possible on different

SPEs, which often provides good makespan values pretty quickly. Constraints

(7.1) force the objective variable z to be greater than the number of tasks allo-

cated on any PE.

Constraints on the total duration of tasks on a single SPE were also added

to a priori discard trivially infeasible solutions; this methodology in the LBD

context is often referred to as “adding a subproblem relaxation”, and is crucial

for the performance of the method. In practice the model also contains the

constraints:

n−1
∑

i=0

dmin(i)Tij ≤ dline ∀j = 0, . . . , p − 1

Where dmin(i) is the minimum possible duration of task i (reading and

writing phases included), and dline is a deadline. Since tasks have no dead-

line in the present problem, we impose as deadline the makespan of the best
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solution found so far.

Since the SPE are symmetric resources, the allocation model also features

quite standard symmetry breaking ordering constraints to remove SPE permu-

tations.

Schedulability test

We modified the solver architecture by inserting a schedulability test between

the PE and the MEM stage, as depicted in figure 7.4.

In practice, once a SPE assignment is computed, the system checks the ex-

istence of a feasible schedule using model of section 7.5.2, with all activity du-

rations (execution, read, write) set to their minimum. If no schedule is found

cuts that forbid (at least) the last SPE assignment are generated. Once a feasible

schedule is found, the task-to-SPE assignment is passed to the memory device

allocation component.

Memory device allocation

Once tasks are assigned to processing elements, their memory requirements

and communication buffers must be properly allocated to storage devices. We

tackled the problem by means of Mixed Integer Linear Programming, devising

a model with a relatively simple “core”.

Given a task-to-SPE assignment, for each task we introduce a boolean vari-

able Mi such that Mi = 1 if ti allocates its computation data on the local

memory of the SPE it is assigned to (let this be pe(i)). Similarly, for each

arc/communication queue ar = (th, tk), we introduce two boolean variables

Wr and Rr such that Wr = 1 if the communication buffer is on SPE pe(h) (that

of the producer), while Rr = 1 if the buffer is on SPE pe(k) (that of the con-

sumer).

Mi ∈ {0, 1} ∀i = 0, . . . , n − 1

Wr ∈ {0, 1}, Rr ∈ {0, 1} ∀r = 0, . . . ,m − 1

Note that, if for an arc ar = (th, tk) it holds pe(h) 6= pe(k), then either the

communication buffer is on the DRAM, or it is local to the producer or local

to the consumer; if instead pe(h) = pe(k), than the communication buffer is

either on the DRAM, or it is local to both the producer and the consumer. More

formally, for each arc ar = (th, tk):
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Rr + Wr ≤ 1 if pe(h) 6= pe(k) (7.3)

Rr = Wr if pe(h) = pe(k) (7.4)

Constraints on the capacity of local memory devices can now be defined in

terms of M , W and R variables. When a task executes it always works on local

data, therefore everything it needs (input and output buffers, internal data) is

copied to the local device when the task starts. At the end of the execution all

data allocated in DRAM are copied back, while all locally allocated require-

ments are left on the local device.

Therefore, in order to state memory capacity constraint we first define:

base usage(j) =
∑

ar = (th, tk)

pe(k) = j

comm(r)Rr +

+
∑

pe(i)=j

mem(i)Mi +

+
∑

ar = (th, tk)

pe(h) = j

pe(h) 6= pe(k)

comm(r)Wr

Where mem(i) is the amount of memory required to store internal data of

task i and comm(r) is the size of the communication buffer associated to arc r.

The base usage(j) expression is the amount of memory needed to store all data

permanently allocated on the local device of processor j. Then we can post the

constraints:

∀j = 0, . . . , p − 1, ∀i such that pe(i) = j :

base usage(j) +
∑

ar=(th,ti)

(1 − Rr)comm(r) +

(1 − Mi)mem(i) +
∑

ar=(ti,tk)

(1 − Wr)comm(r) ≤ Cj

As in the previous stage, we also add to the model a scheduling subproblem

relaxation; again, the two basic ideas are that the length of the longest path
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and the total duration of tasks on a single SPE must be lower than any current

deadline. However, since memory allocation choices influence task duration,

the relaxation is much more complex than that used in the SPE stage. Details

on the relaxation can be found in [3].

The use of multistage Benders decomposition enables the complex resource

allocation problem to be split into the drastically smaller SPE and MEM mod-

els. However, adding a decomposition step hinders the definition of high qual-

ity heuristics in the allocation stages and makes the coordination between the

subproblems a critical task. We tackle these issues by devising effective Ben-

ders’ cuts and using poorly informative, but very fast to optimize objective

functions in the SPE and MEM stages. In practice the solver moves towards

promising part of the search space by learning from its mistakes, rather than

taking very good decisions in the earlier stages. Some preliminary experimen-

tal results showed how in our case this choice pays off in terms of computation

time, compared to using higher quality (but harder to optimize) heuristics, or

less expensive (but weaker) cuts.

Scheduling subproblem

The scheduling subproblem is modeled and solved with ILOG Scheduler. In

particular, we introduce an activity for each execution phase (execi) and buffer

reading/writing operation (rdr, wrr). Task are not preemptive, thus all activi-

ties regarding a single task execute without interruption in a pre-specified se-

quence. Suppose rdr0
. . . rdrh−1

are the reading activities of task ti and wrrh
, . . . , wrrk−1

its writing activities, then:

∀l = 0, . . . , h − 2 end(rdrl
) = start(rdrl+1

)

end(rdrh−1
) = start(execi)

end(execi) = start(wrrh
)

∀l = h, . . . , k − 2 end(wrrl
) = start(wrrl+1

)

Each communication buffer must be written before it can be read. Thus for

each pair of tasks th, tk linked via a precedence constraint ar = (th, tk) in the

task graph we impose:

∀r = 0, . . . ,m − 1 end(wrr) ≤ start(rdr)

Processing elements are modeled as unary resources, and all activities re-
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garding task ti use SPE of index pe(i). Task durations are fixed and depend

on memory allocation; in particular, a local memory requirement allocation

always yields smaller durations. The objective function to minimize is the

makespan.

In the previous papers on similar problems [1, 15] we introduced a bus

model using cumulative constraints. Here the applications we face are not

communication intensive and the Cell platform provides plenty of communi-

cation bandwidth. We therefore did not impose such a constraint on the bus

capacity.

Benders cuts

Benders cuts are used in the Logic Based Benders Decomposition to control the

iterative solution method and are of extreme importance for the success of the

approach.

In first place, cuts are generated at each iteration yielding an infeasible sub-

problem in order to forbid (at least) the current master problem solution; when,

after a number of iterations, the master problem becomes infeasible the solu-

tion process ends. The efficiency and the effectiveness of those cuts have there-

fore a strong influence on the total solution time.

Second, whenever a feasible complete solution is found, a new deadline

constraint is added to the makespan requiring the forthcoming solutions to be

better than the current one; then, cuts for the master problem are generated as

in the previous case. In principle, the effectiveness of the method could be fur-

ther improved by analyzing the last feasible solution to deduce cost bounds for

not yet explored master problem assignments. Unfortunately, devising effec-

tive bounds of that kind is tricky in our case, due to the presence of precedence

relations between tasks on different SPEs: we therefore decided to focus on

generating strong feasibility cuts.

In a multi stage Benders Decomposition approach we have to define Ben-

ders cuts for each level. Here we have to specify both level 1 and level 2 cuts:

we start from the level 2 Benders cuts, between the SCHED ad the MEM stage

(“A” cuts in figure 7.3).

Let σ be a solution of the MEM stage, that is an assignment of memory

requirements to storage devices. If X is a variable, we denote as σ(X) the

value it takes in σ. The level 2 cuts we used are:

∑

σ(Mi)=0

Mi +
∑

σ(Rr)=0

Rr +
∑

σ(Wr)=0

Wr ≥ 1 (7.5)

This forbids the last solution σ and all solutions one can obtain from σ by



178
Cellflow: a Parallel Application Development Infrastructure with Run-Time Support for the

Cell BE Processor

remotely allocating one or more requirements previously allocated locally: this

would only yield longer task durations and worse makespan. In practice we

ask for at least one previously remote memory requirement to be locally allo-

cated.

Similarly, level 1 cuts (“B” cuts in Figure.7.3), between the SPE and the

MEM & SCHED stage must forbid at least the last proposed SPE assignment.

Again, let σ be such a (partial) solution. Since the processing elements are

symmetric resources, we can forbid together with the last assignment all its

possible permutations. This is done by means of a polynomial size family of

cuts.

For each processing element j we introduce a variable Sj ∈ {0, 1} such that

Sj = 1 iff all and only the tasks assigned to SPE j in σ are on a single SPE in a

new solution. This is enforced by the constraints:

∀j, k = 0, . . . , p − 1
∑

σ(Tij)=1

(1 − Tik) +
∑

σ(Tij)=0

Tik + Sj ≥ 1 (7.6)

We can then forbid the assignment σ and all its permutations by posting the

constraint:
p−1
∑

j=0

Sj ≤ p − 1 (7.7)

The level 1 and level 2 cuts we have just presented are sufficient for the

method to work, but they are too weak to make the solution process efficient

enough; we therefore need stronger cuts. For this purpose we have devised a

refinement procedure (described in Algorithm 1) aimed at identifying a sub-

set of assignments which are responsible for the infeasibility. We apply this

procedure to (7.5), (7.6) and (7.7).

Algorithm 1 Refinement procedure

1: let X be the set of all master problem decisional variables in the original
cut

2: sort the X set in nonincreasing order according to a relevance score
3: set lb = 0, ub = |X|, n = lb + ⌊ub−lb

2 ⌋
4: while ub > lb do
5: feed subproblem with current MP solution
6: relax subproblem constraints linked to variables Xin

,Xin+1
, . . . ,Xi|X|−1

7: solve subproblem to feasibility
8: if feasible then
9: set lb = n + 1

10: else
11: set ub = n
12: restore relaxed subproblem constraints
13: return lb
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Algorithm 1 refines a cut produced for the master problem, given that the

correspondent subproblem is infeasible with the current master problem so-

lution; an example is shown in figure 7.5, where Xi0, . . . Xi5 are variables in-

volved in the Benders cut we want to refine.

First all master problem variables in the original cut (let them be in the X

set) are sorted according to some relevance criterion: least relevant variables

are at the end of the sequence (figure 7.5-1). The algorithm iteratively updates

a lower bound (lb) and an upper bound (ub) on the number of decisional vari-

ables which are responsible for the infeasibility; initially lb = 0, ub = |X|. At

each iteration an index n is computed and all subproblem constraints linked

to decisional variables of index greater or equal to n are relaxed; in Figure.7.5-

1 n = 0 + ⌊ 0+6
2 ⌋ = 3. Then, the subproblem is solved: if a feasible solution

is found we know that at least variables from Xi0 to Xin
are responsible of

the infeasibility and we set the lower bound to n + 1 (figure 7.5-2). If instead

the problem is infeasible (see figure 7.5-3), we know that variables from Xi0 to

Xin−1
are sufficient for the subproblem to be infeasible, and we can set the up-

per bound to n. The process stops when lb = ub. At that point we can restrict

the original cut to variables from Xi0 to Xin−1
.

When we apply the Algorithm 1 to level 2 cuts the X set contains all M , R

and W variables in the current cut (7.5); the relevance score is the difference

between the current duration of the activity they refer to in the scheduling

subproblem (resp. execution, buffer reading/writing) and the minimum pos-

sible duration of the same activity. Relaxing constraints linked to M , R and

W variables means to set the duration of the corresponding activities to their

minimum value.

Level 1 cuts are more tricky to handle: the X set contains tasks (ranked by

their minimum duration) rather than decisional variables, and to relax the con-

straints we have to: A) set to the minimum the duration of all activities related

to the considered task; B) remove all related (7.3) and (7.4) constraints in the

Figure 7.5: Refinement procedure: an example
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memory allocation subproblem and set to 0 the memory requirement associ-

ated to all the corresponding M , R and W variables in the capacity constraints.

This cut refinement method has some analogies with what is done in Cam-

bazard and Jussien [17], where explanations are used to generate logic based

Benders cuts.

Note that refinement of level 2 cuts requires to repeatedly solve (relaxed)

scheduling problems, which are by themselves NP-hard; the situation is even

worse for level 1 cuts, since the subproblem is in this case the couple MEM

& SCHED, which is iteratively solved. Therefore generation of refined cut is

very expensive: the question is how much effort is worthwhile to spend in

generating strong cuts. This is an issue which will be considered in the section

about experimental results.

Finally, the described refinement procedure finds the minimum set of con-

secutive variables in X which cause the infeasibility of the subproblem, without

changing the order of the sequence. Note however that is possible that some of

the variables from Xi0 to Xin−1
are not actually necessary for the infeasibility.

To overcome this limitation Algorithm 1 can be used within the iterative con-

flict detection algorithm described in [13], [14] to find a minimum conflict set.

We implemented such an iterative procedure to generate even stronger (but of

course more time consuming) cuts.

7.5.3 Computational Efficiency

Our approach has been implemented using the state of the art solvers ILOG

Cplex 10.1 and Scheduler/Solver 6.3. We tested the approach on 200 task

graphs representing realistic applications. All graphs were randomly gener-

ated by means of a specific instance generator designed to produce realistic

task graphs. All instances feature high parallelism and complex precedence

relations; durations and memory requirements are randomly generated, but

based on values taken from real applications. The Cell configuration we used

for the tests has 6 available SPEs.

Table 7.6 compares performance results for the traditional two stage logic

based Benders decomposition approach referred to as BD, and the three stage

that we propose in this chapter, referred to as TD. In the two level solver, the

master problem performs allocation of tasks to SPEs and memory requirements

to storage devices through Integer Linear Programming while the subproblem

is a scheduling problem and is solved via Constraint Programming. Instances

are grouped by number of tasks; each group contains 20 instances, for which

the minimum and maximum number of arcs is also reported. The table reports

the average number of SPE, MEM iterations for the three-stage approach and
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TD BD Timed out

ntasks narcs SPE it. MEM it. time PM it. time TD ∧ BD ¬ TD ∧ BD TD ∧ ¬ BD

10-11 4-11 12 13 3.67 73 73.30 0 0 0
12-13 8-14 17 15 11.19 46 151.31 0 1 0
14-15 8-15 19 28 10.25 9 144.49 0 0 0
16-17 11-17 30 41 29.53 101 387.24 0 2 0
18-19 13-19 47 73 158.93 122 814.75 1 4 0
20-21 16-22 90 129 403.20 114 1291.90 2 10 0
22-23 19-26 87 132 571.88 95 1686.00 3 15 0
24-25 20-29 107 162 920.00 79 1639.00 9 7 0
26-27 23-29 88 187 837.50 30 1706.50 6 12 0
28-29 25-35 109 224 1218.50 24 1721.00 9 10 0

Figure 7.6: Performance tests

the average number of iterations between the master and subproblem in the

two stage approach (we refer to this quantity as PM iterations). In the time

columns we report the average solution time for both solvers. All tests were

run with a cutoff time of 1800 seconds: the last three columns report the num-

ber of instances (out of 20) for which: 1) both TD and BD exceed the time limit

(TD ∧ BD); 2) BD exceeds the time limit ad TD does not (¬ TD ∧ BD); 3) TD

exceeds the time limit and BD does not (TD ∧ ¬ BD).

Note that in general TD is much more efficient than BD. Starting from group

20 − 21, the high number of timed out instances makes the average execution

time a less relevant index; by looking at the last three columns, however, one

can easily see how in many large instances TD can still find the optimal solu-

tion, while BD is not able to provide it within the time limit (column ¬ TD ∧

BD); note also that the opposite never occurs (column TD ∧ ¬ BD). Of course

as the number of nodes and arcs grows the number of instances for which both

solvers exceed the time limit also increases (column TD ∧ BD).

Note that TD has a lower execution time, despite it generally performs more

iterations than BD. This suggest that the two solvers have in practice a very

different behavior: TD tends to work by solving many easy subproblems, while

BD performs fewer and slower iterations.

This is more clearly shown in table 7.7, which reports for each instance

group the average number of SPE, MEM, SPE & MEM (PM) and SCHED sub-

problems solved by both solvers. For each solver the average time to solve a

single subproblem of every type is reported.

One can see how TD solves thousands of problems (mostly to generate

cuts), while BD faces fewer of them. On the other hand TD subproblems are

very easy; note that the difference between the number of SPE, MEM and

SCHED subproblems for the TD solver is around one order of magnitude,

while the time to solve each subproblem type follows an analogous, inverse

trend: once again this suggest that the TD solver has a quite balanced behav-
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TD #probs TD time BD #probs BD time

ntasks SPE MEM SCHED per SPE per MEM per SCHED PM SCHED per PM per SCHED

10-11 12 177 484 0.0362 0.0046 0.0013 12 165 2.1314 0.0010
12-13 17 285 573 0.0954 0.0078 0.0013 13 195 4.8076 0.0014
14-15 19 389 1312 0.0291 0.0083 0.0016 14 201 6.0836 0.0016
16-17 30 692 2304 0.0656 0.0141 0.0019 18 302 35.5924 0.0017
18-19 47 1463 6014 0.1266 0.0270 0.0028 26 495 84.7409 0.0024
20-21 90 2764 12641 0.7690 0.0549 0.0030 23 428 246.3311 0.0037
22-23 83 2707 12010 0.7709 0.0585 0.0988 19 448 270.8062 0.0049
24-25 107 3807 20877 1.4909 0.0860 0.0077 10 203 773.3269 0.0055
26-27 88 3959 24692 0.6456 0.0824 0.0087 5 87 1088.9167 0.0205
28-29 109 4731 31267 1.4714 0.1091 0.0104 5 140 1080.7726 0.0099

Figure 7.7: Number of subproblems solved and their difficulty

ior. On the contrary, the resource allocation stage for the BD solver is instead

often very time consuming compared to the scheduling; moreover, the gap be-

comes larger as the size of the instance increases.

Going more deeply, it is interesting to observe the distribution of the solu-

tion time between the problem components in the instances solved within the

time limit and in those which are not.

Figure.7.8 reports histograms that show the distribution of the allocation/scheduling

time ratio for the TD solver (where “allocation” means SPE + MEM). The X axis

is divided into intervals, the Y axis counts the number of instances which fall

in each interval.

Intuitively, in a balanced three stage decomposition strategy, the resource

allocation is expected to take around 2/3 of the total solution time. One can

see how the distribution for the instances solved within the time limit roughly

follows a bell-shaped curve, with a peak around 0.7-0.8, slightly more than 2/3.

The solution time for instances not solved within the limit appears to be more

unbalanced with most of the time absorbed by the allocation. This suggests

that for the TD solver more time could be spent in scheduling, for example to

generate stronger cuts for the MEM stage.

This differentiated behavior between timed out and not timed out instances

Figure 7.8: TD execution time distribution for instances solved within the time limit (on
the left) and not solved within the time limit (on the right)
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Figure 7.9: BD execution time distribution for instances solved within the time limit (on
the left) and not solved within the time limit (on the right)

Without strong ref. With strong ref.

ntasks SPE it. MEM it. time > TL SPE it. MEM it. time > TL

10-11 192 90 497.90 5 12 13 3.67 0
12-13 386 295 1144.21 11 17 15 11.19 0
14-15 410 539 1181.24 12 19 28 10.25 0

Figure 7.10: Performance results for the TD solver with and without strong cut refine-
ment

is not observed for the BD solver where substantially all the process time is

spent in solving allocation subproblems (see Figure.7.9).

Since most instances in the last two groups were not solved to optimality

by both the approaches, we now want to compare the solution quality when

optimality is not proved. In these cases the TD solver always finds the best

solution and the average improvement is around 9%.

Finally, we considered the impact of strong Benders cuts on the TD solver.

We disabled the strong cut refinement system in the TD solver: instead of find-

ing a minimum conflict at each iteration we only remove some non relevant

elements, using Algorithm 1. Table 7.10 reports the number of SPE and MEM

iterations, the average solution time and the number of instances not solved

within the time limit for the first three groups, without and with strong cut

refinement. Note how disabling the refinement process causes a drastic per-

formance breakdown: the weak refinement procedure is therefore not strong

enough. Tuning the effort to be spent in cut generation remains an open prob-

lem.

7.5.4 Customizable Application Template

We set up a generic customizable application template allowing software de-

velopers to easily and quickly build their parallel applications starting from a

high-level task and data flow graph specification compliant to our previously

described models. Programmers can at first think about their applications in

terms of task dependencies and quickly draw the task graphs, and then use
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our tools and libraries to translate the abstract representation into C code. This

way, they can devote most of their effort to the functionality of tasks rather than

the implementation of their communication, synchronization and scheduling

mechanisms.

Figure 7.11: Example of how to use the Customizable Application Template.

User can configure the Customizable Application Template via XML file,

which will be automaticly translated into C-code. Figure.7.11 shows a pictorial

illustration of how our C-coded template looks like.

In the example, we have depicted a task graph with twelve tasks and with

precedence constraints defined in the matrix queue consumer[][]. If task i has a

precedence constraint w.r.t. task j, the element queue consumer[i][j] will be set

to 1. Information about the configuration of the target hardware platform and

the desired allocation and schedule can be also specified. N SPE macro spec-

ifies the number of available SPEs. The task on spe[] and schedule on spe[][]

data structures specify where tasks should be allocated and which schedule

to apply for each SPE. In a similar way, where to allocate program data and

communication queues can be also defined: this is a very important feature

since developer can easily and quickly find the optimal trade-off between per-

formance and local memory occupation.

We implemented also an Eclipse plug-in graphical interface in order to

make the configuration of the Customizable Application Template easier and

less error-prone. Figure.7.12 shows a snapshot of how the GUI looks like.

The user can compose his application task graph simply draggin and drop-

ping nodes (i.e. task) and arrows (i.e. precedence constraints), then our plugin

will produce the XML file corresponding to its right Customizable Application

Template configuration.

After this configuration step, the programmer should just write the algo-

rithms that will run on the SPEs using standard C code. Our infrastructure will

automatically manage communication and synchronization between threads,

exploiting at best Cell architecture features. The kernel of our customizable ap-
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Figure 7.12: Snapshot Eclipse plug-in graphical user interface.

plication template is made of a PPE part, that reads the configuration files and

sets up all the system structures, and an SPE part, that supports the run-time

execution and communication. Details on how the initialization phase works

and how PPE and SPE interact will be explained in section 7.6.1.

Figure 7.13: Task computational versus the generated C code.

Figure.7.13 shows C code of the SPE part. As you can notice, it reflects the

considered task computational model. The INPUT phase of the computational

model corresponds to the Read input() function, while the OUTPUT phase to

the Write output() one. These two functions are blocking and handle the whole

communication and synchronization procedures automatically.

The only section which has to be written by the programmer is the Exec() func-

tion: this is the customizable computational core of the task.

7.5.5 Allocation and Scheduling support

The problem of efficently allocating and scheduling multi-task applications on

a multi-processor in a distributed system is very challenging. As already de-

scribed in section 7.5.2 we are able to provide an optimal solution to this issue

for a wide range of applications. Unfortunatly sometimes our optimization

tool may exceed the time-out limit in finding the optimal solution (see section
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7.5.3). To overcome this limitation, we impemented also a suboptimal algo-

rithm based on a list scheduling heuristic [24]. We chose a heuristic algorithm

because it is a good compromise between solving time and solution quality.

List scheduling keeps a list of the ready tasks (the ones whose all producers

have already finished); that list is then ordered according to a priority function,

and the highest-priority ready task is scheduled next. To assign priorities to

tasks, ASAP (As Soon As Possible) and ALAP (As Late As Possible) start times

are determined for each task, according to application task dependencies, and

task mobility is calculated as the difference ALAP-ASAP. The highest mobility

a task has, the highest priority it will obtain. Once the scheduling is found, the

tasks are mapped on the SPEs according to a Round-Robin algorithm: proced-

ing in priority order, each task is mapped on a different SPE. In this way it is

possible to achieve a good load balancing between all the SPEs. List schedul-

ing and round-robin (R-R) allocation are simple and scalable heuristics, but

they do not provide any optimality guarantee.

7.6 On-line Runtime Support

The runtime takes care of the task scheduling and data handling between the

different cores.

7.6.1 SPE task allocator and scheduler

Once the target application has been implemented using our generic customiz-

able template, tasks, program data and communication queues are allocated

to the proper hardware resources (SPEs or memory resources). This is done

through the init task of our template which allocates and launches all the ac-

tivities at booting time.

More specifically, during boot the PPE creates a global configuration table that

Figure 7.14: Global application table.

contains information about queue buffers and where to allocate local data. The

table is arranged so that each table entry contains information related to a task.
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To populate that table, the PPE reads the configuration files (that contain allo-

cation information) and interacts with SPEs to know the physical addresses of

all structures of queues. Figure.7.14 represents a simplified global application

Figure 7.15: Initialization of global application table.

table. Each line is referred to a task and holds all the information that the task

will need during its execution:

• local data address;

• information about input and output queues (buffer and semaphore ad-

dresses).

This interaction between PPE and SPEs uses a specific mailbox-based pro-

tocol, that supports:

• allocating local SPE data;

• allocating buffers;

• initializing semaphores;

• starting the execution (once the table is completed).

Figure.7.15 illustrates this initialization phase: the PPE gathers information

from configuration files and SPEs, and builds the global application table. When

a task is scheduled, its code overlay is loaded and the task’s entry from the

global table is received. This means a very dynamic and memory-efficient

(for both code and data) local storage management to cope with its limited

size. In order to reproduce the desired scheduling behavior, we implemented a

scheduling support middleware. Using this facility, programmers only have to

specify the desired scheduling for every SPE, which is handled accordingly by

our middleware in a transparent way. To overcome the capacity limitations of

local storage, we support SPE overlay: every time a new task has to be sched-

uled, it is loaded into local storage by our middleware through overlay. In an

overlay structure the local storage is divided into a root segment, which resides

always in storage, and one or more overlay regions, where overlay segments
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Figure 7.16: Task scheduling through overlays.

are loaded when needed. In our framework, a scheduler is implemented on

each SPE and its code is stored in the root segment of the local storage (see

Figure.7.16). Handling the scheduling on the SPE itself avoids additive over-

head due to communication and synchronization with PPE. Our scheduling

policy is non-preemptive, since the context of an SPE task is too large (it in-

cludes SPE registers, LS image, and outstanding DMA commands residing in

the DMA queue) to achieve a quick context switch.

7.6.2 SPE Communication and Synchronization support

Software support for efficient messaging is also provided by our set of high-

level APIs. The communication and synchronization library abstracts low level

architectural details to the programmer, such as memory maps or explicit man-

agement of hardware semaphores or interrupt signaling. The structure of the

queues is shown in Figure.7.17. The infrastructure for the communication be-

Figure 7.17: The structure of a queue.

tween a producer/consumer pair is composed by a data queue, two counters

and a series of semaphores. The data queue is composed by several data slots.

The data queue can be allocated either in shared memory or in local memory

of SPE. A couple of semaphores is associated to each slot by means synchro-

nization between producer/consumer pairs is implemented. Semaphores and

counters are distributed and allocated in local storage to SPEs. When a pro-
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ducer task generates a message, it locally checks the private counter which

contains the identifier of the free slot in the queue and starts to poll the slot’s

semaphore. When producer acquires the semaphore, it starts writing the mes-

sage. If the data queue is allocated remotely (either in shared memory or in

local memory to consumer) a DMA transfer is issued. When the message is

ready, the producer signals this by releasing consumer’s semaphore. If pro-

ducer and consumer reside on different SPEs, this is the only bus access for the

entire synchronization process. We set up a communication and synchroniza-

tion library abstracting away low level architectural details to programmers,

such as memory maps or explicit management of semaphores, DMA transfers

and shared memory.

As previously mentioned, all the information about queues (i.e. structure

physical addresses, ids, etc.) are stored in the task table which is filled at

boot time: this brings to more efficient both communication and syncroniza-

tion since the hand-shaking address negotiations are done only once and not

every time a task is scheduled.

7.7 Experimental Results

7.7.1 Case study

In this section we show an example of how to use Cellflow to build a parallel

application. The selected case study is an instance of a software radio appli-

cation. A software radio receives its input from a data source (the digitized

antenna output), while its output is connected to a digital audio output de-

vice. As Figure.7.18 shows, the main dataflow is a pipeline with a band-pass

Figure 7.18: Data flow graph for a software FM radio

filter for the desired frequency, a demodulator, and an equalizer. The most in-

tuitive and quick way to translate this data-flow into code using Cellflow is to

map every node in the chart to a task. From the developer prespective, he/she
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will just implement the kernel code of these functional nodes and configure

the application template to build the overall task graph (i.e. to specify to the

run-time environment both communication and synchronization constraints

between tasks). Figure.7.19 gives a simple view of the flow-graph and of the

final implementation of the target software radio application.

Figure 7.19: Simple dataflow graph of a software FM radio versus C code.

The above described pipeline implementation of the software radio appli-

cation is the simplest way to map the data-flow chart into code. In order to

increase the parallelism, the same benchmarch can be implemented splitting

tasks in several sub-tasks, making the data-flow graph parallelism more ex-

plicit. More in detail, the equalizer task can be viewed as a more complex sub-

graph composed by different filters: it is made up of a split-join, where each

child adjusts the gain over a particular frequency range, followed by a filter

that adds together the outputs of each of the bands. As Figure.7.20 shows, the

Figure 7.20: Flow graph for an equalizer.

equalizer is composed by a series of band-pass filters running in parallel, with

their outputs added together. The band-pass filter can be viewed in turn as the

subtraction between two low-pass filters which work at different frequency,

with the overall result feeded to an amplifier. In the overall implementation

through Cellflow (see Figure.7.21), the translation of this more complex data-

flow graph will only reflect a different configuration of the application tem-
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Figure 7.21: Complex data-flow graph for the Software Radio.

plate (i.e. with more tasks and a different communication and synchronization

tree) and the implementation of more fine-grained kernel tasks (i.e. for the

implemetation of the low-pass filter, the subtracer block and the amplifier).

7.7.2 Performance Analysis

In this section we analyize the speedup achieved by Cellflow on of three real-

life applications, namely Mat-mult, FFT and Software Radio.

Mat-mult is a block matrix multiplication: each task executes a matrix mul-

tiplication between an input matrix and a private operand matrix, and then

feeds its output to the following task. The platform receives a continuous flow

of input matrices and produces a continuous flow of output matrices. This

benchmark is representative of a wider class of applications for embedded sys-

tems with high data parallelism, like image and sound filters. The FFT bench-

mark is an implementation of the Fast Fourier Transform. Conceptually it is

a single pipeline, but the main path is duplicated into a split-join to expose

parallelism (see Figure.7.22) The Software Radio implementation has been de-

Figure 7.22: FFT-benchmark flow graph.

scribed in section 7.7.1.
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Figure 7.23: Benchmark results. Speedup is normalized against the execution with 1
SPE.

We carried on our analysis on a Sony PlayStation 3, which represents an

inexpensive solution to work with Cell processor. The performance results for

the three examples are shown in Figure.7.23. The figure presents the perfor-

mance results obtained when running an increasing number of SPEs scaled to

the case when 1 SPE is used. The Mat-mult benchmark scales almost perfectly

w.r.t. the theoretical speed-up limit, thus proving the efficiency of our run-time

environment and its almost negligible overhead. Also in the case of FFT an

increasing number of SPEs brings to perceptible speed-ups. The software ra-

dio benchmark instead shows good speedup until only three SPEs: there is a

path in the graph which duration bounds the speed up. More performance

improvement can be reached in this case using software pipeline optimization.

7.7.3 Validation of optimizer solutions

To analyze the quality of our optimizer allocator, we performed experiments on

a large set of synthetically generated task graphs. A task-graph generator has

been implemented, so that it is possible to obtain a large number of pseudo-

random test cases. To explore applications with different characteristics, the

generator can be configured to produce task graphs with specific features, such

as:

• Number of tasks;

• Average number of communication arcs between tasks;

• Average queue buffer size;

• Buffer and program data location;

• Average task execution time.
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For test purposes, we produced three sets of task graphs: one with 15-task

instances, one with 25-task instances and one with 30 tasks per instance. The

test instances have then been processed by both our optimal and heuristic (list

scheduling algorithm and Round-Robin allocator) solvers.

At this point, we had to profile the behaviour of applications (we were

mainly interested in task execution times). Application profiling can be eas-

ily done running the applications on IBM Full-System Simulator, or using the

profiling tool that comes with the Cell SDK, but the slowness of the former and

the inaccuracy of the latter would prevent to run computationally intensive

and precise tests. The best choice was to run the code on real hardware. Thus,

all our experimental tests have been conducted using all the available SPEs (i.e.

six for PlayStation 3): this is the worst case in terms of synchronization, com-

munication and bus usage, as well as complexity of scheduling and allocation

problem.

We compared for each instance the heuristic allocation and scheduling with

the optimal ones. Figure.7.24 shows the percentage difference (normalized on

Figure 7.24: Histogram of the optimality gap on 100 instances.

100 instances) of heuristic solutions with respect to the optimal ones. For the

37% of the instances, the heuristic and the exact solutions matched, for the

remaining instances the heuristic optimizer produced sub-optimal results, with

up to a 35% optimality gap.

Figure.7.25 represents the average performance (application execution time)

for each set of tests (15, 25 and 30 tasks). This proves that the error does not

grow too rapidly with the number of tasks, but remains around 15%. These

experiments confirm that the optimal solver achieves significant better results,

but also that the list scheduler with round-robin allocator provide resonable

solutions for critical instances.
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Figure 7.25: Comparison of average application execution times.

7.8 Conclusions

We propose a complete framework, called Cellflow, to help programmers in

software implementation on the Cell Broadband Engine processor. Cellflow

is composed by an off-line development framework and an on-line runtime

support, and experimental results demonstrate the efficiency and viability of

our solution.
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Chapter 8

Portable Device Display

Technologies

8.1 Overview

Display technologies are relatively new. The cathode ray tube was developed

less than 100 years ago. For the last 10 years, scientists and engineers have

been working closely to create a display technology capable of providing a

paper and ink like reading experience, with superior viewability, but also with

respect to cost, power, and ease of manufacture.

An LCD display system is composed of an LCD panel, a frame buffer mem-

ory, an LCD controller, and a backlight inverter and lamp or light-emitting

diode (LED). High-resolution, high-color LCDs require large LCD panels, high-

wattage backlight lamps, and large-capacity frame buffer memories, which to-

gether lead to high-power consumption.

The processor and the menory are in power-down mode during the slack

time, but the display components are always active mode, for as long as the

display is turned on. This makes the LCD backlight the dominant power con-

smer, with the LCD panel and the frame buffer coming a second and third

in power consumption. A modern mobile device requires a lot of computing

power. With interactive applications, such as a video telephony or an assisted

GPS, an even higher portion of the energy will be consumed by the display

system.

8.2 Mobile Device Power Distribution

Figures 8.1, 8.2, 8.3 indicate pie charts that illustrate the mobile device power

distribution ranging from a legacy mobile device (voice only) to a smartphone/multimedia
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Figure 8.1: Legacy Handset Power Distribution Radio Frequency (RF) Dominated
Power Consumption in Legacy (Voice Only) Handsets

Figure 8.2: Feature Rich Handsets Power Distribution. More Equitable Power Con-
sumption Distribution in Smartphone/Multimedia Mobile Devices

mobile device to a gaming targeted mobile device. Convergence of features is

driving new application processing and visual display requirements.

8.3 Backlights

Backlght mechanical design has become very sophisticated, allowing very few

LEDs to be used with highly complex optical light pipes/light spreads which

Figure 8.3: Game Oriented Phone Power Distribution. Power Distribution for Single
Game Players, Dominated by the Display and Processing
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Figure 8.4: Most Power is Consumed When the Backlight is On

create uniform illumination of the LCD. Power consumption of the backlight is

a critical issue. Now that white LEDs have replaced cold-cathode fluorescent

lamps (CCFLs) for backlighting mobile device displays (and LEDs will soon

replace CCFLs in laptop also), the next major innovation is the RGB LEDs,

which will significantly enlarge the color gamut of the backlight, and therefore

the display itself. It is claimed that an image that has higher color saturation

(larger color gamut) looks brighter than a lower color saturation image. Engi-

neers will take advantage of this effest to lower backlight power consumption.

The RGB LED backlight will be a great benefit to mobile device displays.

Many mobiel devices are equipped with color thin-film transistor (TFT)

liquid-crytal displays (LCDs). A quality LCD system is now the default con-

figuration for handheld embedded system. An LCD panel does not illuminate

itself and thus requires a light source. A transmissive LCD uses a backlight,

which is on of the greadiest consumer of power of all system components.

A reflective LCD uses ambient light and a reflector instead of the backlight.

However, reflective LCD is not siutable for quality displays, and complemen-

tary use f ambient light and the backlight, named transflective LCD, is used for

small handheld devices. When the backlight is turned off, a transmissive LCD

displays nothing but black screen; even transflective screens are barely legible

without the backlight.

Most useful applications require the backlight to be on. Figure 8.4 indicates

the display power modes and the current drawn when the backlight is turned

on [1].

Figure 8.5 indicates the system level components contribution to the power

consumption. Note the power consumend by the backlight.

There are many techniques employed to conserve energy consumed by a

display system. Ambient luminance affects the visibility of LCD TFT panels.

However, by taking account of this, backlight autoregulation [2] can also re-

duce the average energy requirements of the backlight. Simultaneously bright-

ness and contrast scaling [4] further enhances image fidelity with a dim back-
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Figure 8.5: System Wide Power Consumption [1]

light, and thus, permits an additional reduction in abcklight power. Even more

aggressive management of the backlight can be achieved by modification of

the LCD panel to permit zoned backlighting [5]. Additional energy conserv-

ing techniques include dynamic luminance scaling (DLS), dynamic contrast

enhancement (DCE), and backlight autoregulation. These techniques will be

discussed later in this chapter.

8.4 Display Technologies

Display technologies such as backlight LCDs, reflective LCDs, electrolumines-

cent (EL) displays, organic LEDs (OLEDs), and electrophoretic displays (EPD)

objective is to achieve paper-like viewing displays.

There are four primary approaches to flat-panel displays. Three are illus-

trated in Figure 8.6:

1. Transmissive displays work by modulating a source of light, such as a

backlight, using an optically active material such as a liquid-crystal mix-

ture.

2. Emissive displays such as OLEDs make use of organic materials to gen-

erate light when exposed to a current source.

3. Reflective displays work by modulating ambient light entering the dis-

play and reflecting it off a mirror-like surface. Until recently, this mod-

ulation has typically been accomplished using liquid-crystal mixtures or

electrophoretic mixture.

4. Transflective displays are a hybrid combination of a transmissive and

reflective display. This technology was developed to rpovide sunlight
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Figure 8.6: Approaches to Displays

Figure 8.7: Comparison of Display Technologies

viewability for transmissive displays. Being a compromise however, this

type of display technology offers a compromised viewing experience.

Reflective displays were invented primarly to address the shortcomings of

transmissive and emissive displas, namely power consumption and poor read-

ability in bright environments.

Since transmissive LCDs require a power-hungry backlight and emissive

OLEDs require a constant power source to generate light, it makes it difficult

for designers of these technologies to reduce power consumption. This is espe-

cially important for battery-powered portable devices such as mobile phones,

PDAs, digital music players, digital cameras, GPS units, and mobile gaming

devices. With efficient use of ambient light, reflective displays eliminate the

backlight unit and offer both significant power savings and a thinner display

module (8.7).

Mobile device display technoogies can be separated into emissive and non

emissive classes. This classification is expanded and illustrated in Figure 8.8.
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Figure 8.8: Classification of Mobile Device Displays

8.5 TFT LCD

There are three types of TFT LCD panels. In transmissive LCDs, a backlight

illuminates the pixels from behind. Transmissive LCDs offer a wide color range

and high contrast, and are typically used in laptops. They perform best under

lighting conditions ranging from complete darkness to an office environment.

Reflective LCDs are illuminated form the front. Reflective LCD pixels re-

flect incident light originating from the ambient environment or a frontlight.

Reflective LCDs can offer very low-power cnsumption (expecially without front-

light) and are often used in small portable devices such as handheld games,

PDAs, or instrumentation. They perform best in a typical office environment

or in brighter lighting. Under a dim lighting, reflective LCDs require a front-

light.

Transflective LCDs are partially transmissive and partially reflective, so

they can make use of environment light or backlight. Transflective LCDs are

common in devices used under a wide variety of lighting conditions, from

complete darkness to sunlight.

Transmissive and transflective LCD panels use very bright backlight sources

that emit more than 1,000 cd/m2. However, the transmittance of the LCD is rel-

ative low, and thus the resultant maximum luminance of the panel is usually

less than 10% of the backlight luminance.

Theoretically, the backlight and the ambient light are additive. However,

once the backlight is turned on, a transflective LCD panel effectively oper-

ates in the transmissive mode because the backlight source is generally much

brighter than the ambient light.

As stated earlier, backlighting for LCDs is the single biggest power draw

in portable displays. This is especially true in bright environments where the

backlight has to be switched to the brightest mode. Given how difficult it is

to view a typical transmissive LCD in a sunlit environment, LCD developers
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Figure 8.9: LCD Structure

have been working diligently on reflective LCDs.

Currently there are a number of portable devices using transflective LCDs.

The transflective display was invented to improve the performance of the trans-

missive LCD outdoors, where bright ambient light quickly overpowered the

LCD backlight, making the display hard to read. It was also configured to ad-

dress the shortcomings of a purely reflective LCD in a dark environment. The

transflective display employs a reflector that lets some light through from a

backlight. Using such an element, the display can be used in the dark where

the backlight provides illumination through the partly transmissive reflecting

element. In the bright outdoors, the backlight can be switched off to conserve

power and the mirrored portion of the reflector allows the LCD to be viewed

by making use of the ambient light. Theoretically, the transflective display ap-

pears to fix the shortcomings of the purely reflective and transmissive displays.

But in reality, this approach is a compromise and offers poor viewing experi-

ence.

Figure 8.9 shows the complexity of an LCD. The extensive use of optical

films such as polarized and color filters, as well as the TFT element which itself

requires several process step fabricate. Since LCDs work with polarized light,

the necessity of using a polarizer limits the amount of light that is reflected

or transmitted from the display. The additional layers, such as the color filter,

reduce light even further. Consequently, today’s LCDs require brighter back-

light in order to be readable, whether in total darkness or in the bright sunlight.

These brighter backlights lead to greater power consumption.

Despite the ever increasing advantages in LCD’s technology, their power
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Figure 8.10: OLED Structure

consumption is still one of the major limitations to mobile. There is a clear

trend towards the increase of LCD size to exploit the multimedia capabilities

of mobile devices that can receive and visualize high deifnition video and pic-

tures. Multimedia applications running on these deivces impose LCD screen

sizes of 2.2-3.5 in. and more to display video sequences and pictures with the

required quality.

8.6 OLED

Similar to LCDs, OLEDs can be constructed using a passive or active matrix.

The basic OLED cell structure is comprised of a stack of thin organic layers that

are sandwiched between a transparent anode and a metallic cathode. When a

current passes between the cathode and anode, the organic compounds emit

light (see Figure 8.10). Unlike LCDs, passice matrix OLEDs does not suffer

from lower contrast or slower response time. However, OLEDs offer several

advantages over LCDs.

The obvious advantage is that OLEDs are like tiny light bulbs, so they do

not need a backlight or any other external light source. They are less than one-

third of the bulk of a typical color LCD and about half the thickness of most

black-and-white LCDs. The viewing angle is also wider, about 160. OLEDs

also switch faster than LCD elements, producing a smoother animation. Once

initial investments in new facilities are recouped, OLEDs can potentially com-

pete at an equal or lower cost than incumbent LCDs.

Despite these advantages, OLEDs have a relatively short lifespan and as

power/brightness is increased the life is reduces dramatically. This is espe-

cially true for the blues, which lose their color balance over time. In addition,

only low-resolution OLED displays can use passive matrix backplanes and
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higher resolutions require active matrices, which need to be highly conduc-

tive since OLEDs are current driven. Typically, low temperature poly silicon

(LTPS) backplanes are used which adds cost and complexity. These conduc-

tors are also highly reflective requiring the OLED designers to add a circular

polarizer on the front if the display reducing the efficiency if the display and

increasing the cost. Finally, as is the case with all emissive displays, OLED

displays have poor readability in environments such as the bright outdoors.



208 Portable Device Display Technologies



Bibliography

[1] T.Botzas. PenTile RGBW display technology for meeting aggressive

power budgets in high resolution multimedia mobile applications. In In-

ternational Wireless Industry Consortium. 2005.

[2] I.Choi. J2ME LBPB (Low Power Basis Profile of the Java 2 Micro Edition)

Computer Systems Laboratory, 2002

[3] F.Gatti and A.Acquaviva and L.Benini and B.Ricco. Low power control

techniques for TFT LCD displays. In Proceedings of the International Con-

ference on Compilers, Architectures, and Synthesis for Embedded Sys-

tems, 2002

[4] W.C.Cheng and Y.Hou and M.Pedram. Power minimization in a backlit

TFT-LCD display by concurrent brightness and contrast scaling In Pro-

ceedings of DATE 04, 2004

[5] J.Flinn and M.Satyanarayanan. Energy-aware adaptation for mobile ap-

plications. In Proceedings of the Symposium on Operating Systems Prin-

ciples, 1999.

209





Chapter 9

Low Power LCD Techniques

9.1 Overview

A number of low-power LCD techniques have been investigated. These in-

clude DLS, extended DLS (EDLS), frame buffer compression, dynamic color

depth control, variable duty ratio refresh, abcklight autoregulation, and dark

window optimization. Each techniques saves the power consumption of the

display system by reducing the activity of the corrensponding components

such as the backlight luminance, the color depth, the refresh duty ratio, and

the pixel brightness.

9.2 Dynamic Luminance Scaling

DLS keeps the perceived intensity or contrast of the image as close as possible

to the original while achieving significant power reduction. DLS compromises

quality of image between power consumption, which fulfills a large variety of

user preferences in power-aware multimedia applications. DLS saves 20-80%

of power consumption of the backlight system while keeping a reasomable

amount of image quality degradation.

DLS adaptively dims the backlight with appropriate image compensation

so that the user perceives similar levels of brightness and contrast with minor

image distortion.

The luminance of the backlight is proportional to its power consumption.

As we dim the backlight, the brightness of the image on the LCD panel is re-

duced, but we save power. The principle of DLS is to save power by backlight

dimming while restoring the brightness of the image by appropriate image

compensation [3], [4].

Brute-force backlight dimming is a traditional technique to save power con-
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sumption, but it reduces brightness, and thus, the display quality is degraded.

By contrast, DLS does not sacrifice the overall brightness of the image but ac-

comodates minor color distortions. To achieve the maximum power saving

for a given color distortion limit, DLS dynamically scales the luminance of the

backlight as the image on the LCD panel changes.

There are a number of image compensation algorithms described in the

following section.

9.3 Brightness Compensation

Brightness is the intensity of an image perceived by human eyes. As an approx-

imation brightness is considered linearly proportional to the luminance of the

LCD panel. The major computational overhead of brightness compensation is

the construction of the transformation function and the transformation of each

pixel color. Building the transformation function includes the construction of

the histogram and determining a value for the threshold. Transforamtions are

typically performed either by moltiplication and division operations.

Brightness compensation allows a significant degree of backlight dimming

while keeping the distortion ratio reasonable, as long as the image has a conti-

nous histogram which is not severely skewed to bright areas. Although all the

histograms are dicrete by definition, we express that a histogram is continuos

if adjacent value are similar with each other, considering the original image

before digitization of the color values. Discrete histograms generally make it

difficult to determine a proper threshold value and most graphical user inter-

face (GUI) components have dicrete histograms.

9.4 Image Enhancement

Image enhancement allows one to apply DLS for the images with discrete his-

tograms where the brightest area dominates the image. Techniques of his-

togram stretching and histogram equalization are employed. Histogram stretch-

ing is an extension of brightness compensation, in that the histogram is stretched

with respect to the low threshold as weel as the high threshold. Histogram

stretching truncates data not only in the brightest areas but also in the dark-

est areas. It generally doubles the amount of backlight dimming that can be

achieved, in comparison with brightness compensation. Histogram stretching

implies contrast enhancement rather than recovery of brightness. The contrast

enhancement is more desirable for GUI applications, where readability is the

primary objective.
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Histogram stretching outperforms brightness compensation. However, build-

ing the transformation function has twice the computational complexity. Some-

times, the colors of objects are not important, but we need maximum readabil-

ity. Text-based screens often fall in this category. In such cases, we need to

achieve more contrast to allow more backlight dimming. Histogram equaliza-

tion is a usefull technique for this porpuse.

Image enhancement is also applicable to image with continous histograms.

Since histogram stretching is an extension of brightness compensation, there is

similar distortion to the image. The majority of pixels preserve their original

colors, and thus we can apply brightness compensation and histogram stretch-

ing for streaming images where inter-frame consistency must be considered.

On the other hand, histogram equalization is not applicable to streaming im-

ages because in this case most pixels change their colors. Histogram equaliza-

tion has a tendency to spread the histogram of the original image so that the

levels of the histogram-equalized image span a wider range [5].

Histogram equalization generally offers better readability than histogram

stretching when the image has a discrete spectrum. The computational com-

plexity for building the transformation function of histogram equalization is

the same as that for brightness compensation. Since the transformation funci-

ton is not a polynomial implementation, a table lookup is desiderable.

9.5 Context Processing

Histogram equalization generally outperforms histogram stretching in terms

of readability for GUI applications, if the histogram is dicrete. However, some

minor color may be merged into each other and are thus no longer distinguish-

able after histogram equalization. In the case of photographs, some minor col-

ors may be merged into others ir become similar to each other. But, in the case

of text the number of pixels does not correlate with importance. So we never

allow text to be merged into its background after histogram equalization.

Context processing is a usefull technique to prevent small foreground ob-

jects from having similar color to their background after histogram equaliza-

tion. If a foreground color and a background color become equal or similar af-

ter histogram equalization, context processing re-stretches their colors so that

the distance between them in color space is a maximum.

Context processing is a post-processing step that can be applied after bright-

ness compensation, histogram stretching, or histogram equalization. Distor-

tion ratio no longer has meaning if context processing is used. Context process-

ing does not require the overhead of building a transformation function since

it is not based on the histogram. However, transformation does require con-
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Figure 9.1: EDLS Framework [1]

text information for the application. Context processing can be implemented

by addition operation only.

DLS consists of two major operation: image compensation and backlight

control. Both can be implemented by modifying the application program and

operating system or the frame buffer device driver.

9.6 Extended DLS

DLS is extended to cope with transflective LCD panels, which operate both

with and without a backlight, depending on the remaining battery energy and

ambient luminance. These popular transflective LCD panels are the dominant

choice for battery operated electronic systems because they allow an image to

remain visible without a backlight, even though the quality can be poor.

Remember the principle of DLS is to reduce the light source’s luminance but

compensate for the loss in brightness by allowing more light to pass through

the screen, enhancing the image luminance. The viewer should perceive little

change. DCE also enhances image quality under a dimmed backlight, but does

so by increasing the image’s contrast. DCE requires similar image processing

to DLS, and thus we have the same degree of freedom in adaptation. Although

DLS preserves the original colors, DCE results in a noticeable change to the

original colors in pursuit of higher contrast and improved legibility. DCE is

a very aggressive power management scheme for transmissive LCD panels,

which differentiates it from DLS. The EDLS framework, as illustrated in Figure

9.1, achieves a congruent combination of DLS and DCE.

Fundamentally the EDLS interface is a simple slider knob. The EDLS knob

controls the trade-off between energy consumption and image quality. In ad-

dition it provides users with a power management scheme that can extend bat-

tery life at the cost of whatever Quality-of-Service (QoS) degradation the user

will accept. There is also automatic mode that changes the power management

setting, depending on the remaining battery energy.

When connected to an external power source, the backlight is fully on and

exhibits its maximum luminance. There should be no backlight power man-

agement so that user can enjoy the best image quality. When the system is

battery powered, however, user might want to extend the battery life for fu-

ture use, even if the battery is already fully charged. But users generally are
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not ready to sacrifice appreciable picture quality at that stage. As the remain-

ing battery energy decreases, users might become increasingly willing to com-

promise image quality to extend battery life. This is the point at which EDLS

applies DLS.

With a poor power budget, the user’s prime concern might well be to com-

plete the current task within the remaining battery energy budget, even if the

image quality decreases. This is the optimum time for EDLS to change from

DLS to DCE mode. Although DCE might alter the original colors, a moderate

degree of DCE does at least maintain a fixed distortion ratio. However, if the

battery energy is nearly exhausted, the only remaining option is to turn off the

backlight. Without the backlight, EDLS applies DCE to achieve the maximum

possible contrast. In this case, EDLS cannot guarantee a fixed amount of image

distortion, but the user should still be able to read the display and finish the

task.

The EDLS process starts by building a red-green-blue histogram of the im-

age for display. The EDLS slider determines the panel mode (transmissive or

reflective), the image processing algorithm (DLS or DCE), and the maximum

allowed percentage of saturated pixels, SR, after image processing. EDLSpro-

cess derives upper and lower thresholds TH and TL from SR and the his-

togram, and calculates a scaling factor that controls the amount of backlight

dimming.

EDLS significantly reduces backlight power consumption. However, it re-

sults in power, delay, and area overhead that take place in other components.

These overheads are primarly determined by the screen resolution, refresh rate,

and color depth.

9.7 Backlight Autoregulation

A mobile device operating in an environment with low ambient luminance,

and this luminance can be detected by a photo sensor, the backlight can be

dimmed without effecting the user. Backlight autoregulation adaptively dims

the backlight in response to changes in the ambient luminance [2]. Backlight

autoregulation is applicable while maintaning QoS only when reduced con-

trast by backlight dimming does not compromise the visibility. The contrast

between the LCD panel with normal backlight and the dark environment with

low ambient luminance is high enough so that we can safely reduce the con-

trast by dimming the backlight without compromise the visibility. To take ad-

vantage of backlight autoregulation, a mobile device must be equipped with a

photo sensor to detect the ambient luminance. Tpically the photo sensor can

be the on board camera.
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9.8 Frame Buffer Compression

Frame buffer compression [6] is used to reduce the power consumption of a

frame buffer memory and its associated buses. LCD controllers periodically

refresh theis display at 60 Hz activating the frame buffer.

Frame buffer compression reduces the activity of the frame buffer and thus

its power consumption. The compression algorithm employed is based on run-

length encoding for on-the-fly lossless compression.

An adaptive and incremental re-compression scheme, to accomodate fre-

quent partial frame buffer updates efficiently, has been developed. The result

is a savings from 30% to 90% frame buffer activity on average for various mo-

bile applications. The implementation of compression scheme consumes 30

mW more power and 10% more silicon space than a conventional LCD con-

troller without frame buffer compression. Howeverm, the power saved in the

frame buffer memory is up to 400 mW.

9.9 Dynamic Color Depth

Dynamic color depth control [3] modifies the pixel organization in the frame

buffer, wihch enables haf of the frame buffer memory devices to go into power-

down mode at the cost of a decreased color depth.

Dynamic color depth control achieves an energy saving from the frame

buffer. Variable duty ratio refresh [3] reduces the duty ratio of refresh cycles as

far as possible. This occurs only if the time constraint of the storage capacitor

of a sub-pixel on the TFT LCD panel is higher than the refresh period, saving

power in the frame buffer and the LCD panel interface bus.

Engineers have been working onbacklight autoregulation [2], which adap-

tively dims th ebacklight in response to changes in the ambient luminance, and

a dark window optimization [7] which modifies the windowing environment

to allow changes to the brightness and color of areas of the screen that are not

of current interest to the user. This saves power in OLED display panels.

There are many techniques available for low-power display systems. Choos-

ing the proper techniques are very important. Frame buffer compression and

dynamic color depth control have the same goal of reducing the power con-

sumption from the frame buffer. However, they cannot both be applied at the

same time, and so we have to select one. The user may be willing to allow some

decrease un color depth in exchange for higher contrast in a document viwer,

where image legibility is the most important QoS requirement, and dynamic

color depth control can meet user’s preferences. But if a photo image viewer is

running, then image fidelity should e preserved, and we should adopt frame
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buffer compression.
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Chapter 10

XEC-DLS

10.1 Introduction

Despite the ever increasing advances in Liquid Crystal Display’s (LCD) tech-

nology, their power consumption is still one of the major limitations to the bat-

tery life of mobile appliances such as smart phones, portable media players,

gaming and navigation devices. There is a clear trend towards the increase of

LCD size to exploit the multimedia capabilities of portable devices that can re-

ceive and render high definition video and pictures. Multimedia applications

running on these devices require LCD screen sizes of 2.2 to 3.5 inches and more

to display video sequences and pictures with the required quality.

LCD power consumption is dependent on the backlight and pixel matrix

driving circuits and is typically proportional to the panel area. As a result, the

contribution is also likely to be considerable in future mobile appliances. To

address this issue, companies are proposing low power technologies suitable

for mobile applications supporting low power states and image control tech-

niques.

Modern displays support multiple low power configurations correspond-

ing to different functionalities, aiming to reduce the power contribution of the

display circuitry. For example, a standby state can be defined where the inter-

nal power supply of the LCD panel is switched off but the external power is

supplied to ensure a fast display turn-on. Moreover, part of the input signal

conditioning logic can be switched off if an internal memory is used to display

data on the screen when RGB input is not sent.

Very recently, a new image processing technology has been announced by

Hitachi Semiconductor called RCCS (RGB Colour Control System) based on

backlight control. It is aimed at decreasing the luminance of the backlight

when darker images are displayed. To compensate for the luminance reduc-
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tion, the corresponding level of signals input to the LCD is increased. Since

consumption of LCD is mainly given by the backlight, this technique can be

quite promising concerning achievable power savings. However, its impact

on image quality has not been tested since the final product has not yet been

delivered.

On the research side, several power saving schemes and algorithms can be

found in literature. Some of them exploit software-only techniques to change

the image content to reduce the power associated with the crystal polarization,

some others are aimed at decreasing the backlight level while compensating

the luminance reduction by compensating the user perceived quality degrada-

tion using pixel-by-pixel image processing algorithms. The major limitation of

these techniques is that they rely on the CPU to perform pixel-based manip-

ulations and their impact on CPU utilization and power consumption has not

been assessed.

We present an alternative approach that exploits in a smart and efficient

way the hardware image processing unit (IPU) integrated in Freescale’s mul-

timedia application processors to implement a hardware assisted image com-

pensation that allows dynamic scaling of the backlight with a negligible impact

on QoS. The proposed approach overcomes CPU-intensive techniques by sav-

ing system power without requiring either a dedicated display technology or

hardware modification. CPU processing, based on frame by frame histogram

analysis on YUV image format, is minimized by means of hardware assisted

downsizing and image processing tasks.

We provide a real implementation of the dynamic backlight scaling tech-

nique, embedded within the Video4Linux software subsystem running on a

Freescale prototype development board (Advanced Development System) based

on the i.MX31 application processor and a 3.3-inch QVGA display. By instru-

menting this platform, we carried out a full characterization of both LCD and

CPU power consumption. To properly assess the effectiveness of the proposed

technique, a video player application and a variety of video sequences were

used in a comparative test against a software only solution. Results show

power savings up to 50% considering both LCD and CPU contribution with

bounded QoS degradation and real-time performance guarantees.

The development of this technique can be described as follows: First, we

demonstrate that energy efficient dynamic backlight scaling (DBS) is possible

and is effective in reducing total power consumption of a real-life mobile plat-

form. Second, we present a new backlight scaling technique overcoming the

limits of state of the art research solutions based on CPU-intensive process-

ing. Moreover, our work opens the opportunity for the comparison between

a DBS solution based on commercial-off-the-shelf hardware with alternative
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Figure 10.1: Freescale i.MX31 Advanced Development System (ADS)

solutions integrated in commercial LCD products. Finally, we show how DBS

can be successfully integrated with an ambient light sensor to further improve

power savings by adapting to environmental luminance conditions.

10.2 i.MX31 Application Development System

The i.MX31ADS enables the development of multimedia communication ap-

plications using the Freescale i.MX31, an ARM-11 based Application Processor,

and the Freescale MC13783 Atlas audio and power management chip.

The ADS consists (Figure.10.1) of a base board with display and interface

connectors, a CPU board with i.MX31 ARM-11 MCU, and a power manage-

ment board with MC13783 Atlas chip. The system supports application soft-

ware development, target board debugging and multiple interfaces for the ad-

dition of optional circuit cards. An LCD display panel, an image sensor, and a

separate keypad are supplied with the ADS.

10.3 Multimedia Support in the Freescale i.MX31 Ap-

plications Processor

In the i.MX31 Applications Processor, the most computationally-intensive parts

of video processing are offloaded from the ARM CPU and accelerated in hard-

ware via Freescale’s Image Processing Unit (IPU). This keeps power demands

very low, but retains design flexibility.

The Image Processing Unit is designed to support video and graphics pro-
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Figure 10.2: Message-oriented distributed memory architecture.

cessing functions and to interface to video/still image sensors and displays. A

schematic block diagram of the IPU is presented in Figure.10.2.

The IPU includes all the functionality required for image processing and

display management. This integrated approach yields several significant ad-

vantages.

The IPU is equipped with powerful control and synchronization capabil-

ities to perform its tasks with minimal involvement of the ARM CPU. These

include the following devices and capabilities:

• An integrated DMA controller (with two AHB master ports), allowing

autonomous access to system memory;

• An integrated display controller, performing screen refresh of a memory-

less display;

• A page-flip double buffering mechanism, synchronizing read and write

accesses to the system memory to avoid tearing;

• Internal synchronization.

As a result, in most cases, the CPU involvement is limited to processing

tasks such as video decoding, representing a significantly reduced processing

load. In particular, for some situations which extend for long periods, such as

screen refresh/update and camera preview, the ARM complex is idle and can

be powered down, reducing considerably the power consumption and hence

extending the battery life.

Moreover, the system-on-chip integration combined with internal synchro-

nization, avoids unnecessary access to system memory, reducing the load on

the memory bus and reducing further the power consumption. In particular,
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Figure 10.3: Image Processing Unit (IPU) block diagram.

output to a smart display can be processed on-the-fly, while reading from sys-

tem memory.

Last but not least, the IPU performs some very processing-intensive image

manipulations, adding considerable processing power to the system. Figure.

10.3 is a block diagram of the IPU.

The IPU consists of the CMOS Sensor Interface (CSI), the Image Converter

(IC), the Post-Filter (PF), the Synchronous Display Controller (SDC), the Asyn-

chronous Display Controller (ADC), the Display Interface (DI) and the Image

DMA Controller (IDMAC). The sensor data is fed to the CSI. The IC executes

pre- and postprocessing tasks. Pre- and postprocessing include the following

operations:

• downsizing with independent integer horizontal and vertical ratios;

• resizing with independent fractional horizontal and vertical ratios;

• color space conversion (YUV to RGB, RGB to YUV, YUV to different

YUV);

• combining a video plane with a graphics plane (blending of graphics on

top of video plane);

• 90 degree rotation, up/down and left/right flipping of the image.

The PF implements the MPEG-4 and H.264 post-filtering algorithms (de-

blocking and deringing algorithms). The SDC is designed to support memory-

less synchronous displays and synchronous interfaces of smart displays. The

SDC combines video and graphics planes before sending data to a display.
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Figure 10.4: Dynamic Backlight Autoregulation block diagram.

Combining is performed with alpha-blending. The ADC is designed to sup-

port asynchronous displays.

10.4 Dynamic Backlight Luminance Scaling Tech-

nique

Dynamic backlight luminance scaling adaptively dims the backlight with ap-

propriate image compensation so that the user perceives similar levels of bright-

ness and contrast with minor image distortion. The luminance of the backlight

is proportional to its power consumption. As we dim the backlight, the bright-

ness of the image on the LCD panel is reduced, but we save power. The princi-

ple of dynamic backlight scaling is to save power by backlight dimming while

restoring the brightness of the image by appropriate image compensation.

The dynamic backlight scaling scheme proposed does not sacrifice the over-

all brightness of the image but accommodates minor color distortions. To

achieve the maximum power saving for a given color distortion limit, dynamic

backlight scaling dynamically changes the luminance of the backlight as the

image on the LCD panel changes.

The block diagram in Figure.10.4 describes how the framework operates.

We can divide the overall flow into three main sections: preprocessing, pro-

cessing and postprocessing.

During the preprocessing step, the input frame, a frame of a video stream or

a simple still image, is modified in preparation for analysis by the CPU during

the following processing step (as we will see in the analysis of section 5). We

scale the size of the image and convert its input format to YUV format. These

phases allow us to process a smaller image and thus to compute over a smaller

set of data, as the YUV format already contains the luminance information of

each pixel of the image.
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After the preprocessing phase, the downsized and YUV converted image is

fed to the processing step. In this section of the framework, each pixel is used

to compute a luminance histogram of the preprocessed image. The luminance

histogram is then analyzed to ascertain how much the image luminance may be

increased, whilst satisfying a given distortion. The distortion is defined as the

total number of saturated pixels after image compensation. The result of the

processing step is to determine the amount of brightness reduction achievable

on the backlight, that compensates the brightness increase that can be applied

to the image itself in order to re-establish the correct perceived luminance level.

The final step of our framework is the postprocessing phase. It takes as

input the original input frame, which is the same starting input image of the

preprocessing phase with its original resolution and format. To this we apply

the color compensation, modifying pixel per pixel the luminance of the overall

frame. By applying the compensation to the original frame instead of the pre-

processed one, we do not loose image quality, in terms of resolution and color

distortion, due to resizing and format conversion.

10.5 Main Framework Settings

In our framework we can set and modify three key parameters, namely:

• frame rate;

• downsize ratio;

• distortion.

Tuning them we can find the optimal trade off between quality of service

(QoS) and power savings.

The frame rate setting establishes how many frames per second will be fed

to the main algorithm to calculate the new backlight and color compensation

level. With a low frame rate we will use less power on CPU side in the frame

analysis, since it will work less frequently, at the cost of a less responsiveness

to average luminance changes of the input video stream to the framework.

The downsize ratio setting establishes how much we will downsize the in-

put image during the preprocessing phase. A low downsize ratio will result in

a low CPU utilization at the cost of a less precise luminance value calculation

for color compensation.

The distortion setting establishes how many saturated pixels are admitted.

A low distortion level means a good QoS in terms of final displayed image, but

at the cost of a less aggressive overall power saving.
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10.6 IPU Enhanced Dynamic Backlight Auto-Compensation

Since several sections of our framework are computationally intensive, we take

advantage of resources available on the iMX31 multimedia processor, thereby

executing them in hardware. We use IPU features in the preprocessing and in

the postprocessing phases. In the preprocessing step the IC submodule of the

IPU is used to downsize the input frame and to convert its format to YUV, while

in the postprocessing step we use the facilities of the SDC and PP submodules

of the IPU to manipulate each pixel of the image, increasing its luminance, and

thus to control the backlight level of the LCD display. We paid great attention

in optimizing all memory accesses and CPU utilization. The communication

between the CPU, main memory and IPU’s submodules is made through DMA

transfers, while synchronization is handled by interrupts.

10.6.1 Color compensation scaling the Color Space Conversion

(CSC) Matrix

One of the main functions performed by the IPU is color space conversion

which is done through the conversion matrix CSC1. The conversion matrix

coefficients are programmable and they are stored in the IPU Task Parameter

Memory.

The conversion equations are:

where X0, X1 and X2 are the component of the input format; Z0, Z1, Z2

the component of the output format; C00,..,C22 and A0,..,A2 the conversion

matrix coefficients. All the parameters of the conversion matrix are written by

the MCU to the Task Parameter Memory.

We decided to execute the color compensation in the postprocessing step

scaling the values of conversion matrix coefficients.

For example, if input image format is RGB, the default conversion matrix is

the identity matrix:

In order to compensate an image after backlight scaling down, we need to

scale up the value of CS1default:
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Where b/b’ is the ratio between original backlight value (b) and scaled one

(b’).

10.6.2 Ambient-aware Backlight Autoregulation

Optimal visibility requires different LCD backlight settings depending on the

environmental light. Exploiting this consideration we implemented a mecha-

nism that monitors ambient light and calculates an adequate value for the back-

light level to be set. According to this policy the maximum backlight level will

only be set in strongly lit environments (i.e. sunny outdoors), which is often

not a likely operating condition. Only in this particular case we will still have

the maximum power consumption. Any different environmental light condi-

tion will lead to heavy power savings, since, for the LCD panel under test, the

LCD power consumption reduces linearly from over 600mW to less than 100

mW in low light conditions. We used two types of sensors. The camera-based

one is used for compatibility reasons. The photo-diode is a commercial solu-

tion already.

This mechanism is implemented as a daemon inside a standalone kernel

module. A kernel thread runs repeatedly once or more times per second and

gathers information from the camera or photo-diode about the captured image

luminance content. This allows us to derive an estimation of the environmental

light. Based upon this information a separate algorithm computes an appro-

priate value for the LCD backlight.

10.6.3 Integration: Ambient-aware Dynamic Backlight Autoreg-

ulation

In this section we briefly describe how we integrated the Ambient-aware Back-

light Autoregulation and the Dynamic Luminance Scaling schemes. The two

techniques are completely independent but at the same time they interact with

each other. The Dynamic Luminance Scaling scheme uses as reference point

the backlight level set by the Ambient-aware Backlight Autoregulation. Once

the Dynamic Backlight Luminance Scaling algorithm has computed the dim-

ming gap for the backlight, it is applied starting from the optimal luminance

value set by the Ambient-aware Backlight Autoregulation.
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Figure 10.5: LCD consumption profiling varying the backlight luminance value.

10.7 Power and Performance Characterization

In order to understand if our proposed framework is sustainable, we carried

out a feasibility study. We characterized the power consumption of the LCD

panel and of the CPU during the processing of a frame.

The display we used was a 3,5-inch Sharp TFT LCD Module. Figure.10.5

shows the measurements results in terms of current and power dissipation of

the LCD varying its brightness luminance.

LCD Power Consumption scales linearly with brightness scaling. A good

power saving is potentially achievable, as the gap between the maximum and

the minimum values is of 550 mW.

To understand the trade-offs between the achievable power savings on the

LCD side versus the power wasted on the CPU, we analyzed the power con-

sumption of the CPU during the processing of a frame. In this test the CPU

had to scan each pixel in the frame in order to collect its luminance value.

Results are shown in Figure 10.6. As expected, the frame processing CPU

utilization varies depending both on the frame resolution and the frame rate of

the input video stream. So, with a frame rate of 30 fps it goes from 1% with a

frame resolution of 80x64, to 12%, with a frame resolution of 320x240. While if

we consider a frame rate of 1 fps, it goes from 0.2% to 1.2%. This analysis is very

important both in terms of realtime performance and power consumption. Em-

bedded multimedia devices are often required to respect realtime constraints

and a backlight scaling technique not aware of this issue may lead to a viola-

tion of system requirements. Moreover, considering that the CPU consumes on

average 350 mW during processing, while its consumption is almost negligible

when idle (i.e. 10 mW), its power consumption while running is comparable



10.8 Experimental Results 231

Figure 10.6: CPU utilization during frame processing.

to that of the LCD.

Using the power and performance characterization, we are able to carry

out a worst case analysis on the feasibility of the proposed dynamic backlight

luminance scaling framework.

Assuming a frame rate of 30 fps and a frame resolution 320x640, the corre-

sponding CPU utilization to these settings is equal to 12%. For 12% of time the

core consumes 350 mW, for the remaining time it consumes 10 mW. The av-

erage power used by the CPU per second is 50.8 mW. In order to compensate

this CPU power, we need to dim the backlight luminance from 255 to 230. This

gap is not so wide, therefore we assume that we will be able to compensate the

reduced backlight luminance through color modification without a significanr

distortion on the image itself.

10.8 Experimental Results

We compared, in terms of power consumption, our hardware/software solu-

tion with other approaches. All figures show the power consumption of the

LCD display plus the power wasted on CPU. The power consumption of the

IPU is not shown because it is constant. Figure 10.7 shows the comparison of

our technique against implementation of the same framework with different

levels of hardware assistance. The first column in Figure 10.7 shows the power

consumed by i.MX31 ADS without any backlight scaling support when it is

displaying a video stream: we can consider this as the reference point.

The second column in Figure10.7 shows the power consumption of LCD

and CPU during the playback of a video stream with a backlight scaling sup-

port similar to our framework but entirely implemented in software. In other
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Figure 10.7: Power consumption comparison with different approaches.

words, we implemented the Dynamic Backlight Autoregulation in software

without any hardware assistance from the IPU. The video input format is RGB,

so CPU has to calculate the brightness histogram of the frame computing a

wider set of input data. Instead of computing it on a downsized frame, it is

done by downsampling. The color compensation is not done by IPU’s alpha-

blending, but by the CPU. It has to change pixel by pixel the brightness level of

the image, always in RGB format. Figure10.7 shows how this approach is not

suitable: compared to the first column (that is no backlight scaling support)

we consume 32% more power. The power consumed by the CPU computation

introduced by the backlight scaling support is greater than the power saved on

the LCD side.

The third column shows the case of software implementation in which we

analyze an input video stream in YUV format. In this case we added only a

light hardware support: the IPU is used only to convert the video stream from

RGB to YUV and back. Results show that this configuration is already suitable,

since we are able to save more than 10% of power with respect to the reference

case. In this case we experienced greater QoS degradation in terms of final

image quality in comparison with our proposed solution, since the distortion

is more sensitive to downsampling than downsizing.

The three rightmost columns in Figure10.7 show the power consumption

of the system with our hardware/software framework. The different columns

show different configurations in terms of frame rate, downsize factor and dis-

tortion threshold (see section 4.1). The first column represents the power con-

sumption considering the optimal settings for a video stream application, that

is a frame rate of 10 fps, a downsize factor of 0,8 and a distortion threshold

of 4%. It shows a power saving of 25% with respect to the reference case (no

backlight scaling support). The next column represents the power consump-

tion considering the optimal settings for a still image viewer, with a frame rate

of 3 fps, a downsize factor of 1 and a distortion threshold of 3%, and shows
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Figure 10.8: Power consumption with different ambient light conditions.

Figure 10.9: Video stream features.

a power saving of 28%. The last column represent the power consumption

considering the optimal setting for a text editor, with a frame rate of 1 fps, a

downsize factor of 0.25 and a distortion threshold of 10%, and shows a power

saving of 36%.

Figure10.8 shows the results of the Ambient-aware Dynamic Backlight Au-

toregulation integration. In this analysis we took as benchmark a video stream

application. The first column is always the reference point with the case of no

backlight scaling support. The second column shows the power saving achiev-

able by our framework in an outdoor environment, while the second and the

third are namely in an indoor and dark environment. As you can see from the

histogram, the darker the ambient luminance, the greater the power saving of

our system: it goes from 37% outdoors to 66% in the darkness.

In order to evaluate how our technique works in a real life system, we em-

bedded it in the Video4Linux driver and tested it using the MPlayer video ap-

plication. We measured the power consumption of the LCD and CPU during

the playing of two video: Spiderman 2 and Terminator 3. Table10.9 shows the

features of these two video streams in terms of frame rate and resolution.

Figure10.10 and Figure10.11 show the absolute power breakdown achiev-

able during the two video runs. Figure10.8 shows the overall power savings in

percentages. Compared to the reference case, with Spiderman 2 savings of 28

Analyzing more in detail Figure 10.10 and Figure 10.11, we notice that with

our solution the ratio between power saved on LCD and power consumed on
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Figure 10.10: Spiderman 2 user case.

Figure 10.11: Terminator 3 user case.

CPU is different. In Terminator 3 case, CPU consumes 373 mW while LCD

340 mW. In Spiderman 2 case, CPU consumes 397 mW while LCD 324 mW.

The CPU consumption is different because the two videos have different fea-

tures: Spiderman 2 is more computationally challenging for CPU since it has

a wider resolution and a faster frame rate (see Table 10.9). The LCD consump-

tion differs because the luminance reduction applied to the LCD backlight, and

consequently the power saving achievable, is frame-dependant: the darker the

input video stream , the more aggressively the backlight can be scaled.

10.9 Video4Linux Implementation

In this section, the implementation of dynamic backlight scaling technique

within Video4Linux is described.

The most important function is ”mxc v4l2out streamon”. During this func-

tion, all channels and all buffers associated to their streams are instantiated, ini-

tialized and enabled. In more detail,, the created channels are: MEM SDC BG,
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Figure 10.12: creating histogram and scan histogram function

MEM SDC FG, MEM PRP ENC MEM, SDC FG FB FORMAT. For each chan-

nel, double buffering both for input and output is used. herein all cases, chan-

nels are linked to each other through DMA transfers.

Another important function is ”mxc v4l2out open”, since here all inter-

rupts associated to the pre- and postprocessing are bound to their handlers.

The whole synchronization between different IPU submodules and the updat-

ing of all buffers are implemented inside these handlers.

The processing phase itself is implemented and triggered inside a han-

dler. In other words, the ”mxc v4l2out prep out irq handler”, that is associ-

ated with the end of the preprocessing phase of a frame, calls the fundamental

function of the processing phase.

The ”DLS YUV” is the core of the processing step. This function imple-

ments the algorithm that calculates the backlight scaling factor. It calls the

”creating histogram and scan histogram” function (see Figure 10.12), which

given a frame in YUV format and a distortion level, computes the image his-

togram and finds the appropriate luminance value that satisfies the distortion

constraint.

To create the histogram, this function scans only the Y component of the im-

age and incrementally stores the number of pixels per luminance-value ”bucket”
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in a vector. After that the vector is scanned incrementing a counter. When the

counter reaches the distortion level, it represents the luminance dimming value

that is required.

10.10 Conclusions

A method for saving significant power in an LCD panel has been demon-

strated. The technique, ’Dynamic Luminance Scaling’ analyzes and manipu-

lates pixel transmittance values in order to reduce the LCD backlight intensity

on-the-fly. It has been demonstrated that the technique is not viable if imple-

mented as software running on the iMX31 CPU since the power consumed in

the increased processing overhead exceeds that saved in the LCD backlight.

However, by utilizing features of the iMX31 IPU, proprietary to Freescale, sig-

nificant savings in excess of 20% (¿200mW) are demonstrated using the display

under test.

A fully automated LCD backlight regulation scheme has also been demon-

strated, further increasing the potential power savings. This sets the ’reference’

level of the LCD backlight according to the ambient lighting conditions (mea-

sured via a dedicated light sensor, or by multiplexing the on-board camera

sensor). This reference level is then scaled dynamically using the DLS scheme

described.



Conclusions

Providing support for multimedia applications on low-power mobile devices

remains a significant research challenge primarily due to two conflicting as-

pects: limited HW resources and application high-performance requirements.

Energy efficiency in this kind of platforms can be achieved only via a syn-

ergistic hardware and software approach: more effective and QoS-sensitive

power management is possible if power awareness and hardware configura-

tion control strategies are tightly integrated with domain-specific middleware

services.

The main objective of this PhD research has been the exploration and the

integration of a middleware-centric energy management with applications and

operating-system. We choose to focus on the CPU-memory and the video sub-

systems, since they are the most power-hungry components of an embedded

system. A second main objective has been the definition and implementation

of software facilities (like toolkits, API, and run-time engines) in order to im-

prove programmability and performance efficiency of such platforms.

In this thesis we have contributed tackling some of the numerous open re-

search challenges in the low-power System-on-Chip domain.


