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ABSTRACT 

Radio over Fiber (RoF) is a pertinent technology to deal with exorbitant requirement of bandwidth 

in multivariate wireless services both for outdoor and indoor scenarios and is regarded as a significant 

technology for building centralized/cloud radio access network (C-RAN) due to its inherent capillary 

properties.  

The dissertation aims to analyze different Radio over Fiber systems for the front-haul applications. 

Particularly, analog radio over fiber (A-RoF) are simplest and suffer from nonlinearities, therefore, 

mitigating such nonlinearities through digital predistortion are studied. In particular for the long haul A-

RoF links, direct digital predistortion technique (DPDT) is proposed which is based on the behavioral model 

of the link which can be applied to reduce the impairments of A-RoF systems due to the combined effects 

of frequency chirp of the laser source and chromatic dispersion of the optical channel. Then, indirect 

learning architecture (ILA) based structures namely memory polynomial (MP), generalized memory 

polynomial (GMP) and decomposed vector rotation (DVR) models are employed to perform adaptive 

digital predistortion with low complexities. Distributed feedback (DFB) laser and vertical capacity surface 

emitting lasers (VCSELs) in combination with single mode/multi-mode fibers have been linearized with 

different quadrature amplitude modulation (QAM) formats for single and multichannel cases. Finally, a 

feedback adaptive DPD compensation is proposed.   

Then, there is still a possibility to exploit the other realizations of RoF namely digital radio over 

fiber (D-RoF) system where signal is digitized and transmits the digitized bit streams via digital optical 

communication links. The proposed solution is robust and immune to nonlinearities up-to 70 km of link 

length. It is shown that efficient D-RoF links can be obtained with a relatively low amount of analog to 

digital converter (ADC) resolution bits. 

 Lastly, in light of disadvantages coming from A-RoF and D-RoF, it is still possible to take only 

the advantages from both methods and implement a more recent form knows as Sigma Delta Radio over 

Fiber (S-DRoF) system. Second Order Sigma Delta Modulator and Multi-stAge-noise-SHaping (MASH) 

based Sigma Delta Modulator are proposed. The workbench has been evaluated for 20 MHz LTE signal 

with 256 QAM modulation. Finally, the 6x2 GSa/s sigma delta modulators are realized on FPGA to show 

a real time demonstration of S-DRoF system. The demonstration shows that S-DRoF is a competitive 

competitor for 5G sub-6GHz band applications. 
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Chapter 1  

Introduction 

The contents of this chapter are taken partially from A2, where we presented the 

characterization and review of different Radio over Fiber systems. 

1.1 Introduction 

The fifth generation (5G) technology is envisaged to provide faster internet 

access with low latency, cost effectiveness and pervasive mobile coverage [1.1-1.3]. 

The increasing demand of Internet-connected smartphones, tablets and other gadgets 

are leading towards the explosive growth of mobile data traffic. This has made 

mobile fronthaul (MFH) networks as the data rate bottleneck of user experience. To 

enhance the capacity and coverage of mobile data networks, the next generation 

MFH is expected to support the coexistence of multiple mobile services from various 

radio access technologies (RATs), such as Long Term Evolution (LTE) signals, etc. 

Radio over Fiber (RoF) is a pertinent technology to deal with exorbitant requirement 

of bandwidth multivariate wireless services both for outdoor and indoor scenarios 

[1.4-1.6] and is regarded as a significant technology for the next generation networks 

[1.7]. In particular, RoF technology can provide an essential platform for building 

centralized/cloud radio access network (C-RAN) which should be able to control the 

centralized base band units (BBU) coming from different base stations and remote 

radio heads (RRHs) [1.8]. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

The interconnectivity of these BBUs with RRHs is economically viable with the 

distribution network known as the ‘fronthaul’ [1.9-1.10]. The RoF technology is then 

a suitable candidate for the fronthauling due to its inherent capillary properties. 

Figure 1.1 shows the C-RAN utilizing optical front hauls (OFHs). 

In addition to the advantages coming from the use of the 

optical fiber as a transmission channel, like extremely broad bandwidth, immunity 

to electromagnetic interference and large transmission distances, an additional 

attractive feature lies in the agnosticism of RoF systems concerning the particular 

transmission modulation format, which makes them intrinsically future-proof. 

Nonetheless, the drawbacks of these systems can be presented through the 

presence of distortion that can possibly lower the performances. These impairments 

are caused by imperfect linear behavior of laser, photo detector and optical fiber. 

or due to the combination of fiber chromatic dispersion and spurious phase signals 

generated by the laser source (also called frequency chirp) [1.11]. Similarly, since 

RoF transmission is based on optical subcarrier modulation, therefore, it is 

susceptible to nonlinear distortion.  

To avoid these issues, an alternative solution can consist in the Digital Radio over 

Fiber (D-RoF) technique [1.12]. Transmitting digital data mitigates the non-linearity 

issues at both the transmitter and receiver [1.13].  

 
Figure 1.1: Basic C-RAN architecture showing optical fronthauls (OFHs) 

 

 



 

 

Similarly, the phase relation between many RRHs does not remain steady and 

spectral efficiency decreases [1.14]. More recently, Delta-Sigma modulation has been 

proposed as a new digitization interface for a digital fronthaul link [1.15-1.16]. 

However, these systems require expensive, highly efficient and high sampling rate DSP 

circuitry to achieve the performance [1.17]. Therefore, to utilize the A-RoF technology 

while applying an efficient methodology to alleviate the inherent nonlinearities can 

represent a reasonable choice.  Different topologies of RoF are discussed in the 

following section. 

1.2 Radio over Fiber Architectures 

In this section, different radio over fiber topologies are compared. The idea is to 

explain the differences in the topologies of the different RoF architectures. Figure 1.2 

shows a possible scenario for the comparison of different RoF architectures. 

The typical schematic framework of an A-RoF architecture system at the down-

stream link is shown in Figure 1.2. In the most typical case, the baseband signal is 

upconverted to an RF signal. The RF signal is then converted to an optical signal in 

the electrical to optical (E-O) conversion block and transmitted through the optical 

link. At the receiver, optical to electrical (O-E) block retrieves the received RF signal 

back to electrical domain. This signal is then transmitted through the antenna after 

performing filtering and amplification. The link explained is called in literature as 

Intensity Modulation Direct Detection (IM-DD) Analog Radio over Fiber (A-RoF). In 

particular, the intensity of optical power produced by the laser is directly modulated 

by the useful RF signal, while the output RF current of the photo-detector (PD) is 

produced by the optical power which is directly absorbed by the PD. Moreover, the 

transmission is performed in the analog domain, or rather, without the usage of any 

Analog-to-Digital Converter (ADC) to convert the RF signal in the digital domain 

[1.18-1.22]. 

 However, the A-RoF is liable to noise and distortion due to nonlinearities, which, 

in general, are generated both, at the transmitter and receiver sides [1.23-1.26]. The 

other possible architecture is Digital Radio over Fiber. The architecture is similar to  



 

 

 

A-RoF, however, after the frequency up-conversion, analog to digital (ADC) 

converter is present which converts the analog signal to digital one. On the other hand, 

Digital mobile fronthauls (D-MBFHs) based on the Digital-Radio over Fiber (D-RoF) 

technique are not affected by the nonlinear effects typical of A-RoF systems [1.12-

1.13,1.27]. In Figure 1.2, considering the blue (D-RoF) branches, a typical D-RoF 

architecture can be visualized.  

The common public radio interface (CPRI) that was proposed by the CPRI 

cooperation, Nokia, Bell Labs, Ericsson, Huawei, Orange and NEC, was adopted as the 

D-MBFH interface [1.28]. However, when CPRI was employed as a digitization interface 

developed for narrowband radio access technologies (RATs), such as UMTS (CPRI 

version 1 and 2), WiMAX (version 3), LTE (version 4) and GSM (version 5), due to its 

limited spectral efficiency, it had limited scalability. Moreover, it also requires a very 

high data traffic in the fronthaul network segment, implying the use of expensive high-

performance analog-to-digital and digital-to-analog converters [1.14]. Therefore, an 

alternative solution, which can overcome these bottlenecks would be desirable. 

This solution can be pursued by employing Sigma-Delta (ΣΔ) Modulation, realizing 

in this way a technique which can be called Sigma-Delta Radio over Fibre (ΣΔ-RoF) and 

can combine the advantages of both A-RoF and D-RoF. An example of realization of a 

ΣΔ-RoF system can still be appreciated in Figure 1.2, considering the red (ΣΔ-RoF) 

branches. It can be observed that in the ΣΔ-RoF systems, the signal, before being 

converted to the Optical domain by the Optical Transmitter, undergoes the ΣΔ 

modulation. This operation, exploiting a highspeed digital oversampling of the 

modulating signal with 1-bit resolution, allows to reach a high immunity to non-

linearities. At the same time, it realizes the so-called operation of noise shaping, which 

places most of the noise power out of the signal bandwidth [1.29-1.32]. 

As shown in Figure 1.2, at the receiver end, after the optical-to-electrical conversion, 

performed by a photodetector, a band-pass filter (BPF) guarantees the correct digital-to-

analogue conversion of the signal as well as the spectral emission requirements, by 

filtering the out-of-band quantization noise.  



 

 

It can then be observed that the ΣΔ-RoF technique proves particularly 

convenient in the realization of the fronthaul downlink, where the transmitting 

section is located at the BBU, while the receiving section is at the RRH. Indeed, the 

cost of the ΣΔ modulator can in this way be shared by many users, while the RRH 

structure is maintained simple, without the installation of active devices. Following 

the same idea, solutions for the fronthaul uplink which can maintain the RRH simple 

configuration should be pursued, not excluding the A-RoF one [1.32].  

Figure 1.2: Essential schematic illustration of A-RoF, D-RoF and SD-RoF downlinks. Note 

that the SD-RoF scheme can also be implemented swapping the positions of the ΣΔ MOD 

block and of the Freq. Upconv. Block. 

 



  

 

1.3 Aims of the Thesis 

The main aim and contribution of this thesis are two fold. Firstly, to exploit different Radio 

over Fiber systems for the front-haul applications. Particularly, Analog Radio over Fiber are 

simplest and suffer from nonlinearities, therefore, applying linearization methods to Analog 

Radio over Fiber systems is studied and implemented in first half of thesis.  Then, there is still a 

possibility to exploit the other realization of RoF namely a digital radio over fiber is discussed 

and designed. Lastly, in light of disadvantages coming from A-RoF and D-RoF, it is still possible 

to take the advantages from both methods and implement a more recent form knows as Sigma 

Delta RoF.  

The specific objectives of the thesis are listed below. 

1. To develop a novel predistortion methodology that linearizes the link impairments in long 

haul Analog Radio over Fiber links caused due to combined effect of laser chirp and fiber 

dispersion.  

2. To develop a novel predistortion linearization technique based on indirect learning 

architecture for improving the nonlinearities issue in Analog Radio over fiber links based 

on Vertical Capacity Surface Emitting Lasers (VCSELs) or Distributed Feedback (DFB) 

lasers. Linearization methodologies are shown not only for single but multi-channel 

scenarios as well.  

3. To design and implement a Digital Radio over Fiber System for medium range length and 

compare its performance with Analog Radio over Fiber links.   

4. To realize a Sigma Delta Radio over Fiber System which intermixes the advantages of 

both, A-RoF and D-RoF links. Different sigma delta modulation structures are 

implemented, and performance methodologies are evaluated. Particularly, a real time 

Sigma delta RoF link is designed where FPGA is used to implement sigma delta 

modulation followed by performance evaluation.   
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1.4 Thesis Outline 

This thesis is organized into seven chapters, and its comprehensive overview is depicted in 

Figure 1.2. 

➢ Chapter 1 discusses the main context of the thesis followed by the main contributions 

added through this thesis. It introduces the radio over fiber (RoF) technology. A brief 

summary of different RoF topologies are discussed. The aim of the thesis is discussed.  

➢ Chapter 2 discusses the literature review of previous linearization techniques 

developed for Analog Radio over Fiber system. Different architectures developed in 

Digital predistortion are discussed. Chapter also includes the literature review of DPD 

identification process and DPD models that have been proposed up till now.  

➢ Chapter 3 proposes a predistortion technique for linearizing Analog RoF links which 

corrects the link impairments caused due to combined effect of laser chirp and fiber 

dispersion. The proposed technique is independent of the laser model which makes it 

salutary in terms of adapting to other possible laser models. The mathematical 

framework of the proposed technique and its implementation is discussed. The 

predistortion is applied firstly to sinusoidal signals and then to LTE standard signals. 

As a figure of merit, the effects of the proposed operation are reported by analysing 

the Adjacent Channel Leakage Ratio (ACLR) and Error Vector Magnitude (EVM) of 

the received signal.  

➢ Chapter 4 discusses linearization techniques based on indirect learning architecture. 

Two class of links are linearized i.e. Vertical Capacity Surface Emitting Lasers 

(VCSELs) and Distributed Feedback Laser (DFB) based RoF links. Volterra 

polynomial structures such as memory polynomial (MP) and generalized memory 

polynomial (GMP) methods are proposed for linearizing Radio over fiber links. 

Similarly, a novel demonstration is shown for dual channel transmission where each 

channel nonlinearities are reduced with the DPD models proposed in this chapter. 

Finally, a feedback approximation methodology is proposed which is a possible 

implementation of a digital predistorter in adaptive form. 
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➢ Chapter 5 discusses another class of RoF system which is called as Digital Radio 

over Fiber system. The chapter introduces the need and importance of digital RoF 

system. It is discussed that Digital RoF is a good option to switch from Analog RoF 

to Digital RoF.  Analytical model is proposed and it is shown that a better error free 

transmission is obtained for digital RoF as compared to Analog RoF. Then, an 

experimental validation of this analytical model is presented which proves that the 

proposed digital radio over fiber system is an optimized version that uses less number 

of ADC resolution bits.    

➢ Chapter 6 discusses another class of RoF system which is called as Sigma Digital 

Radio over Fiber (S-DroF) system. The chapter introduces the need and importance of 

Sigma delta RoF system, an auxiliary method that amalgamates the advantages of A-

RoF and D-RoF. It discusses the basics of sigma delta modulator (∑∆𝑀). The need of 

power hungry and high-speed digital to analog converter (DAC) required in D-RoF is 

replaced by a ∑∆𝑀. It describes the different architectures that have been proposed. 

The analytical model with simulation is shown and then experimental setup is 

discussed.  

➢ Chapter 7 concludes and discusses the overall findings of the thesis. It also highlights 

the extension of the work that can be the object of future research activity. 

The comprehensive overview of the thesis is shown in Figure 1.3. 

 



  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Comprehensive overview of the thesis 
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Chapter 2  

Linearization Methods for Analog Radio over Fiber 

Transmission Systems 

This chapter presents the literature review of previous linearization techniques 

developed for Analog Radio over fiber system. Then, Digital Predistortion (DPD) is 

discussed in detail followed by the different architectures utilized. This Chapter also 

includes the literature review of DPD identification process and DPD models that have 

been proposed up till now. 

2.1 Introduction 

Suppression of nonlinearities that arise in A-RoF is the key for the successful 

application of RoF transmission. It is important to identify the causes of these 

nonlinearities. In general, non-linear distortion in RoF transmission occur due to 

nonlinear characteristics of microwave and optical transmission in the RoF systems.  

The main sources of nonlinearities in the RoF based front-haul are the following: 

1. Signal Impairments of Optical Modulation at optical transmitter (OTx) 

2. Nonlinearities of RF power amplification at radio transmitter (RTx)  

3. Fiber Dispersion 

4. Combination of laser chirp and fiber dispersion 

5. Other possible components such as low noise amplifiers (LNA), 

photodiodes, etc. 
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Figure 2.1: RoF uplink and downlink schematic 

For RoF downlinks in Figure 2.1, the main sources of nonlinearities stem from 

optical subcarrier modulation at baseband unit (BBU) and RF power amplifier at remote 

radio head (RRH). While for RoF uplinks, the main sources of nonlinearities originate 

from optical subcarrier modulation at RRH. The rest of the components also introduce 

nonlinearities, but typically are very small compared to the above. In order to minimize 

the nonlinearities in RoF transmission, different methodologies have been proposed that 

comprises of electrical and optical linearization methods. They have been summarized 

in the block diagram below in Figure 2.2. 

Figure 2.2: Summary of linearization techniques 
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The literature review of linearization techniques is presented below in Table 2.1. Major 

linearization techniques implied for RoF transmission are summarized. 

 

 

 

 



  

Table 2-1:  Overview of the linearization techniques implied for RoF transmission 

Sr. 

No. 
Authors 

Type of 

linearization 

Sub-category Evaluated 

quantities 
Linearization  

Advantages  

 
Disadvantages 

1 Draa et al; 

Chen et al 

[2.18, 2.19] 

 

Electrical Analog 

Predistortion 

IMD3 Complete RoF system 

(Laser, photodiode, 

LNA) 

Maintenance of phase for 

generated IMD3 components 

Difficult to have suppression of second 

order nonlinear distortion for large 

bandwidth. 

 

2 

 

Hass et al; 

Hraimel et al 

[2.20, 2.21] 

Optical Mixed 

Polarization 

Second or third 

order nonlinear 

distortions 

Complete RoF system Suppression of second and 

third order nonlinearities 

• RoF transmission should be 

polarization dependent. 

• Compression of linear components to 

some extent. 

 

3 Zhu et al 

[2.22] 

Optical Dual 

wavelength 

linearization 

(DWL) 

Second or third 

order nonlinear 

distortions 

Complete RoF system Suppression of second and 

third order nonlinearities 

Wavelength dependent transmission i.e. 

suppression of nonlinear components only 

if wavelengths are anti-phase to each other. 

4 Ghannouchi 

et al 2.23] 

Digital Digital Pre-

distortion 

(DPD) 

Third order 

nonlinearities 

Power Amplifier Wideband linearization 

achievable 

• Complicated DSP required 

• Power consumption is huge 
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5 Duan et al 

[2.24] 

Digital DPD ACPR, EVM Laser Additional accuracy with less 

DSP requirements 

Complexity and calculation time for digital 

linearization is high for higher nonlinearity 

order and memory depth. 

6 Pei et al 

[2.25] 

Digital DPD ACPR Laser/ RoF 15 dB higher suppression in 

ACPR 

 Feedback complexity. 

7 Lam et al 

[2.26] 

Digital Digital Post 

Processing 

(DPP) 

ACPR, BER RoF All order nonlinear distortion 

components compressed 

significantly. 

• High speed digitizer required. 

• Applicable to uplinks only. 

• DPP to be deployed at RRH side, which 

means price of the prototype has to be 

passed to the customer side, which is 

undesirable and also will add higher 

complexity to the RRH. 
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8 Hekkala et al 

[2.27] 

Digital DPD ACPR, EVM Laser only Less complexity and over 

head 

• 0.3% improvement in EVM. 

• No link length considered. 

• DPD done using intermediate 

frequency. 

• RoF link was not composed of laser-

fiber-photodiode only. Attenuators & 

amplifiers were used, may be the signal 

impairments corrected were due to 

these components. 

• Limited to sinusoid input signals  

9 Hadi et al 

[2.28] 

Digital DPD C/HD2, IIP2, 

IIP3 

Combination of fiber 

dispersion and laser chirp 

Linearizes links up to tens of 

km. 

• Limited to sinusoidal (single, dual) 

input tones. 

• No EVM, ACPR shown 
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10 Vieira et al. 

[2.29] 

Digital DPD EVM Laser Utilization of OFDM signal 

with 5 MHz bandwidth 

• Only magnitude (AM/AM) 

linearization shown. 

• RoF link is not generic, RoF link 

contains 10 dB attenuator.  

11 Hekkala et al.  

[2.30] 

Digital DPD ACPR, BER Laser Utilization of OFDM signal 

with 12.5 MHz bandwidth 

Joint compensation proposed for PA and 

RoF which results in reduction in 

improvement.  

 

12 Mateo et al.  

[2.31] 

Digital DPD EVM, ACPR RoF system Utilization of LTE 20 MHz 

signal. 

• RoF link is not generic. Contains signal 

amplification by LNA and a PA.  

• Feedback for 10 km length is 

unrealistic, requires a uplink for the 

linearization of downlink.  
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13 Mateo et al. 

[2.32] 

Digital DPD NMSE, ACPR RoF system Utilization of LTE 20 MHz 

with 16 QAM modulation 

 

 

• PSD of output with and without DPD is 

not at the same level after 

normalization, DPD has reduced the 

bandwidth of the signal.  

• DFB laser has not been pushed to 

higher RF input powers in order to see 

the efficacy of the predistorter. 

14 Mateo et al. 

[2.33] 

Digital DPD ACPR, EVM RoF system Linearization considering 

ideal and no feedback 

Results are attenuation dependent i.e. with 

proper attenuation using different 

optimization algorithms, similar results to 

ideal case can be obtained. 

 

15 Roselli et al. 

[2.34] 

Electrical Analog 

predistortion 

IMD3 Laser Maintenance of phase for 

generated IMD3 components 

Difficult application to large scale 

production because every single RoF 

transmitter requires a variant 

predistorter.  

 

16 R. B. Childs 

et al. [2.35] 

Electrical  Analog 

predistortion 

IMD3 Laser Accurate correction Difficulties to synthesize arbitrary transfer 

functions in the time domain.  
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.Simultaneous correction of both, second 

and third order is not possible due to 

coupling between different paths. 

17 Veiga et al. 

[2.36] 

Electrical  Analog 

predistortion 

IMD3 Laser Phase maintenance is easy To compensate arbitrary bandwidth 

limitation in the frequency domain. 

 

        

        

        

        

        

        

  



  

Apart from the techniques summarized in Table 2.1, detailed explanation of the possible 

techniques is discussed. Linearization methods based on optical technologies such as feedforward 

[2.37-2.42], cascaded SOA and MZM [2.43-44], light injection cross modulation [2.45-2.48] and 

dual-parallel modulation [2.49-2.54] suffer from expensive optical components, complicated 

system design, and more importantly, precise control/matching requirement of amplitude, phase, 

or bias, which severely prevent them from real application. Predistortion technique, on the other 

hand, features simple and low-cost implementations, which only needs a block of predistorter 

before the transmitter to pre-compensate the nonlinear channel response, and can be realized in 

electrical domain without expensive optical components. Given the static and highly predictable 

nature of MFH networks, as well as the limited system budget of access networks, predistortion 

is considered as one of the most cost-effective solutions to linearize analog MFH. 

Predistortion can be applied in either analog or digital domain. For analog predistortion, the 

exponential transfer characteristics of diodes and CMOS circuits can be exploited to form desired 

nonlinear transfer function to linearize MFH channel response.  

In general, any transmission impairments can be modeled as nonlinear distortion with 

memory effect, where the nonlinear distortion captures the dependence of channel transfer 

function on input amplitudes in the time domain; whereas memory effect is contributed by the 

bandwidth limitation in the frequency domain. For analog predistortion, the main technical 

challenges are the difficulties to synthesize arbitrary transfer functions in the time domain, and to 

compensate arbitrary bandwidth limitation in the frequency domain. 

Withal, predistortion has another form that can be carried out in digital form too. Digital 

predistortion first transforms the input analog signals to digital domain by 

ADC, and after DSP the processed signals are transformed back to analog domain 

by DAC. Enabled by the advancement of DSP technologies, the challenges of analog 

predistortion can be easily addressed. In the time domain, arbitrary transfer functions can be 

synthesized; in the frequency domain, arbitrary memory effects can be 

addressed by frequency equalization enabled by FFT/IFFT.  
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Some functions that are difficult or even impossible to achieve with analog diodes can be 

easily realized by DSP. The only constraint of digital predistortion is the processing speed, 

which is limited by the speed and power consumption of input/output ADC/DAC. 

In this chapter, a literature review is presented for digital predistortion (DPD) techniques 

that linearize the analog mobile front haul. Section 2.2 discusses the operating principles of 

DPD. Section 2.3 presents the evaluation performance parameters  

2.2 Operating Principles 

The principle of DPD exploits an inverse and nonlinear profile as that of the Radio over Fiber 

system. Consequently, when cascaded with the RoF system, it will lead to linearization of the 

overall cascaded system. The principle of DPD is shown in Figure 2.3. 

 

 

 

 

 

 

 

Figure 2.3: DPD linearization principle for Analog MFH 

DPD should be inserted before the Electro-Optical (E/O) converter so that the over all link 

can be compensated. It should be noted that DPD based linearization can linearize links based 

on intensity modulation-direct detection (IM-DD) or coherent transmission. 
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2.3 Parameters to evaluate DPD linearization on signals 

The performance evaluation and order of improvement in link linearization will be presented 

by the evaluation of parameters such as adjacent channel power ratio (ACPR), normalized mean 

square error (NMSE) and error vector magnitude (EVM).  

The efficiency of the proposed methods is presented by the ACPR that computes the distortion 

components outside the useful signal bandwidth. It is expressed as [2.1]: 

𝐴𝐶𝑃𝑅𝑑𝐵𝑐 = 10 log10 [
∫ 𝑆(𝑓) 𝑑𝑓
𝑎𝑏𝑢
𝑎𝑏𝑙

∫ 𝑆(𝑓)  𝑑𝑓
𝑢𝑏𝑢
𝑢𝑏𝑙

] 

where 𝑎𝑏𝑙 and 𝑎𝑏𝑢 are the lower and upper frequency limits of the adjacent channel; 𝑢𝑏𝑙 and 

𝑢𝑏𝑢 are the frequency bounds of useful bands. 𝑆(𝑓) denotes Power Spectral Density (PSD) of the 

output signal 𝑦(𝑛).   

NMSE is defined as follows [2.27]: 

𝑁𝑀𝑆𝐸𝑑𝐵 = 10𝑙𝑜𝑔10 [
∑ |𝑥(𝑛) − 𝑧𝑝(𝑛)|

2𝑁
𝑛=1

∑ |𝑥(𝑛)|2𝑁
𝑛=1

] 

The NMSE value is estimated between 𝑧𝑝(𝑛) and 𝑥(𝑛) of the RoF where  𝑁 embodies the total 

signal length.  

The performance of the proposed methods will be calculated additionally by the Error 

Vector Magnitude (EVM). It is a quantity that assesses the difference between the ‘expected’ 

complex value of a demodulated symbol with reference to ‘actual’ value of the received symbol. 

EVM can be mathematically expressed as [2.3]: 

𝐸𝑉𝑀 (%) = √

1
𝑀
∑ |𝑆𝑚 − 𝑆0,𝑚 |

2𝑀
𝑚=1

1
𝑀
∑ |𝑆𝑚  |

2𝑀
𝑚=1

 

where  𝑀 is the number of symbols in the constellation, 𝑆𝑚 is the ideal symbol of the 

constellation associated with the symbol “𝑚” and  𝑆0,𝑚 is the real symbol associated with  𝑆𝑚. The 

3GPP has set an EVM limit for LTE signals modulated by 256 quadrature amplitude modulation 

(QAM) format to be 3.5% [2.55]. 

 

 

(2.1) 

(2.3) 

(2.2) 
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2.4 DPD Models 

The behavioral model of RoF treats RoF as a “black-box”. For DPD operation, input and output 

signals are required. Many mathematical models have been proposed that can be used for DPD 

identification. Many DPD techniques have been reported in this literature review. They can be 

classified into three categories: look-up table (LUT)-based DPDs [2.56, 2.57], Volterra series 

based DPDs [2.58-2.59] and neural network (NN)-based DPDs [2.60, 2.61]. The LUT-based 

DPD is simple, but its linearization performance depends on the size of the LUT.  

Volterra series-based models are most widely used. One of the most commonly used models 

is memory polynomial (MP) that is able to counter act the non-linearities and memory effects at 

the same time.  MP model is also called as diagonal Volterra model because the diagonal terms 

are non-zero while non diagonal terms are zero. Indeed, this MP model is a compromise between 

a memory less and full Volterra memory model.  Depending on the application, scenario and 

order of nonlinearity, appropriate model can be chosen.  

Recently, with growing interest in the complex models that have been derived from Volterra 

series. These models include Generalized Memory Polynomial (GMP), Dynamic Deviation 

Reduction (DDR) model, Laguerre Volterra model, etc. Now we discuss these models in the 

sections below. The DPD models can be divided in two main categories depending on the memory 

that they possess: Memoryless models and memory models.  

In [2.60], an MP DPD based on direct learning architecture is proposed. Another MP DPD is 

proposed in [2.62], which is based on indirect learning architecture. The MP model is widely used 

because it has lower complexity than the Volterra series model and can closely mimic the 

nonlinear behavior of PA with memory effects. The artificial neural network (ANN) has excellent 

capability to accurately approximate nonlinear functions. Hence, ANN can be used to model the 

inverse characteristics of PA.  
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2.4.1 Memoryless Model 

These equivalent basebands filtered models have been used extensively for modeling the DPD 

for power amplifiers.  For low input bandwidth signal, the characteristics of PA have been 

modeled with memoryless model or with diagonal memory polynomial model. However, in case 

of RoF, memoryless models are not able to find a good linearization, therefore we have considered 

only memory-based models in our literature. Similarly, memoryless model defines only AM/AM 

conversion. 

The memoryless polynomial model can be written as: 

𝑦(𝑛) = ∑ 𝑏𝑘|𝑥(𝑛)|
𝑘(𝑥(𝑛))

𝐾−1

𝑘=0

 

where 𝑥(𝑛) is baseband input and 𝑦(𝑛) is baseband output respectively. 𝑏𝑘 is the complex 

valued coefficient and 𝐾 is maximum order of nonlinearity. 

2.4.2 Models Derived from Volterra Series 

The E/O and O/E conversion can introduce memory effects which can add a limitation to the 

performance of DPD operation. Therefore, in order to take in to account the memory effects, 

Volterra series is a good choice.  

The Volterra series model can be expressed in following form: 

𝑦̌(𝑛) = ∑∫ .  .  .
+∞

0

∫ ℎ𝑘  (𝜏1, . . , 𝜏𝑘)∏𝑥̆(𝑡 − 𝜏𝑙)𝑑𝜏𝑙

𝑘

𝑟=1

 
+∞

0

+∞

𝑘=1

 

Where 𝑦̌(𝑛) is the RF output signal of the system, 𝑥̌(𝑛) is the RF input signal, while ℎ𝑚(. ) 

is the 𝑚-th order Volterra kernel. Once the RF signal is down converted to baseband, the envelope 

can be obtained through low pass filter. Therefore, a baseband image in discrete time with input 

as 𝑥̌(𝑛) will be: 

 

(2.5) 

(2.4) 



 

28 

𝑦(𝑛) = ∑ ∑ ∑ … ∑ ℎ2𝑘+1(𝑙1, . . , 𝑙2𝑘+1)

𝑄−1

𝑞2𝑘+1 

𝑄−1

𝑞2=𝑙1

𝑄−1

𝑞1=0

𝐾

𝑘=0

∏𝑥̆(𝑡 − 𝑙𝑗)

𝑘+1

𝑟=1

∏ 𝑥∗(𝑛 − 𝑙𝑗)

2𝑘+1

𝑟=𝑘+2

 

where K represents the nonlinearity order and Q represents the memory depth. 

Eq. 2.6 states that Volterra series model is strongly dependent on the number of terms. The 

complexity increases with increasing number of terms. Moreover, the identification process 

becomes cumbersome.    

2.4.2.1 Memory Polynomial Model 

Memory Polynomial (MP) model is referred as an inverse non-linear model that has been 

exploited previously as a powerful model for both, inverse and direct modeling of power amplifier 

(PA) nonlinearities. Applying this model for RoF has an additional advantage since memory less 

model might have problems to characterize the electro-optical (EO) conversion phenomena 

accurately [2.63].  

The MP model is generally referred as a compromise between memoryless nonlinearity and 

full Volterra series due to presence of diagonal memory. The output in this case is referred as: 

𝑦(𝑛) = ∑∑𝑐𝑘𝑞𝑥(𝑛 − 𝑙)

𝑄−1

𝑞=0

|𝑥(𝑛 − 𝑙)|𝑘
𝐾−1

𝑘=0

 

   Here 𝐾 represents order of non-linearity, 𝑄 is referred as the memory depth,  𝑦(𝑛) represents the 

predistorter input sequence, 𝑥(𝑛) shows a baseband input signal and 𝑐𝑘𝑞 denotes the model 

coefficients. 

 

 

 

 

 

 

(2.6) 

(2.7) 
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2.4.2.2 Generalized Memory Polynomial Model 

MP model has been effectively used for DPD, however, the performance can be improved by 

formulating a more general memory structure. The use of Generalized Memory Polynomial (GMP) 

model has been widely utilized for the linearization of PAs [2.64]. However, GMP has not been yet 

evaluated for RoF with varying lengths. The GMP model basis functions possess memory for both, 

for the diagonal terms as well as for the crossing terms i.e., 𝑥(𝑛 − 𝑞)|𝑥(𝑛 − 𝑟)|𝑘−1, where 𝑞 ≠ 𝑟. 

The output of the post inverse block 𝑧𝑝(𝑛) modeled with GMP can be expressed as: 

𝑦(𝑛) =   ∑ ∑ 𝑐𝑘𝑞𝑥(𝑛 − 𝑞)

𝑄𝑎−1

𝑞=0

|𝑥(𝑛 − 𝑞)|𝑘

𝐾𝑎−1

𝑘=0

 

+ ∑ ∑ ∑𝑑𝑘𝑞𝑟

𝑅𝑏

𝑟=1

𝑥(𝑛 − 𝑞)

𝑄𝑏−1

𝑞=0

|𝑥(𝑛 − 𝑞 − 𝑟)|𝑘

𝐾𝑏

𝑘=1

 

+ ∑ ∑ ∑𝑒𝑘𝑞𝑟

𝑅𝑐

𝑟=1

𝑥(𝑛 − 𝑞)

𝑄𝑐−1

𝑞=0

|𝑥(𝑛 − 𝑞 + 𝑟)|𝑘

𝐾𝑐

𝑘=1

 

where 𝑦(𝑛) and 𝑥(𝑛)represents the DPD output and input respectively. Similarly, 𝑐𝑘𝑞; 𝑑𝑘𝑞𝑟 and 

𝑒𝑘𝑞𝑟  denotes the complex coefficients for the signal and the envelope; signal and lagging envelope 

and signal and leading envelope respectively. 

 𝑘 represents the index of nonlinearity, and 𝑞, 𝑟 represents the indices of the memory.  While 𝐾𝑎,𝐾𝑏,𝐾𝑐 

are the maximum orders of nonlinearity, 𝑄𝑎, 𝑄𝑏 , 𝑄𝑐 are the memory depths, while 𝑅𝑏 and 𝑅𝑐 exhibits 

the lagging and leading delay tap lengths, respectively. GMP has been applied choosing 

𝐾𝑎=𝐾𝑏=𝐾𝑐= 𝐾, 𝑄𝑎=𝑄𝑏=𝑄𝑐= 𝑄 and 𝑅𝑏 = 𝑅𝑐 = 𝑅. 

2.4.2.3 Orthogonal Polynomial Model 

The conventional polynomial model as in Eq. (2.7) has basis functions which are not 

orthogonal. The polynomial model with orthogonal basis reduces the numerical instability linked 

with conventional polynomial model. 

(2.8) 
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The memoryless polynomial given in Eq. (2.6) is given as follows: 

𝑦(𝑛) = ∑𝛽𝑘𝜓𝑘(𝑥(𝑛))

𝐾−1

𝑘=0

 

  

Where  

𝜓𝑘(𝑥) =∑𝑈𝑖𝑘

𝑘

𝑖=0

|𝑥|𝑖𝑥 

And 𝑈𝑖𝑘 are the coefficients of orthogonal polynomial basis functions. 

Similarly, the memory polynomial with orthogonal basis is proposed as: 

𝑦(𝑛) = ∑∑𝛽𝑘𝜓𝑘(𝑥(𝑛 − 𝑙))

𝑄−1

𝑞=0

𝐾−1

𝑘=0

 

2.4.3 Decomposed Vector Rotation Model 

The Decomposed Vector Rotation model (DVR) architecture was suggested for the 

linearization of Power Amplifiers (PAs) [2.65] and a comparative study for PAs was implied 

recently in [2.66]. DVR is an adapted version of the canonical piecewise linear (CPWL) 

functions to handle complex valued signal. DVR is expressed as: 

 

                 𝑦(𝑛) = ∑ 𝑎𝑖|𝑥(𝑛 − 𝑖)|
𝑄𝐷𝑉𝑅
𝑖=0  

+ ∑ ∑ 𝑎𝑘𝑖,1

𝑄𝐷𝑉𝑅

𝑖=0

||𝑥(𝑛 − 𝑖)| − 𝛽𝑘|𝑒
𝑗𝜃(𝑛−𝑖)

𝐾𝐷𝑉𝑅

𝑘=1

 

+ ∑ ∑ 𝑎𝑘𝑖,21

𝑄𝐷𝑉𝑅

𝑖=0

||𝑥(𝑛 − 𝑖)| − 𝛽𝑘|𝑒
𝑗𝜃(𝑛−𝑖). |𝑥(𝑛)|

𝐾𝐷𝑉𝑅

𝑘=1

 

(2.9) 

(2.10) 

(2.11) 
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+ ∑ ∑ 𝑎𝑘𝑖,22

𝑄𝐷𝑉𝑅

𝑖=0

||𝑥(𝑛 − 𝑖)| − 𝛽𝑘|. 𝑥(𝑛)

𝐾𝐷𝑉𝑅

𝑘=1

 

+ ∑ ∑ 𝑎𝑘𝑖,23

𝑄𝐷𝑉𝑅

𝑖=0

||𝑥(𝑛 − 𝑖)| − 𝛽𝑘|. 𝑥(𝑛 − 𝑖)

𝐾𝐷𝑉𝑅

𝑘=1

 

+ ∑ ∑ 𝑎𝑘𝑖,24

𝑄𝐷𝑉𝑅

𝑖=0

||𝑥(𝑛 − 𝑖)| − 𝛽𝑘|. 𝑥(𝑛 − 𝑖)

𝐾𝐷𝑉𝑅

𝑘=1

 

                 +  .  .  . 

where 𝑥(𝑛)  and 𝑦(𝑛) are the input and output respectively. Similarly, 𝛽𝑘 is the breakpoint while 

𝐾𝐷𝑉𝑅 represents elements in the partition and  𝑄𝐷𝑉𝑅 represents the memory depth.  

2.4.4 Neural Network Models 

Neural network (NN) models are also used for DPD modeling. NN is a multi-layer structure 

that has been developed from imitating the nervous system. It is a consolidated choice because it 

can be trained to learn any arbitrary nonlinear input-output relationships. Since it carries excellent 

capability to accurately approximate nonlinear functions, it can be used to model the inverse 

characteristics of the system under test.  

The input signal is fed to the input layer, and the output signal is found at the output layer. 

Each layer is a group of neurons which have no connection between each other 

but have connections with the neurons of the next layer. For linearization of PA, a PD based 

on a multilayer perceptron is presented in [2.67]. In [2.68], a two-hidden-layer feedforward neural 

network (FFNN) model is proposed for PA modelling and DPD. A real-valued time delay neural 

network is proposed in [2.69] using only real-valued parameters and the real components of input 

and output signals. The multilayer NN model is shown below in Figure 2.4: 

(2.12) 
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Figure 2.4: Multilayer Neural Network Model 

2.5 DPD Identification 

The estimation of predistortion model coefficients is referred as DPD identification which is 

an important aspect of digital predistortion.  

There are two approaches that have been identified in literature for estimation of model 

coefficients: direct learning architecture (DLA) and indirect learning architecture (ILA) [2.60, 

2.62].  

In DLA, the DPD operation is directly identified with the input/output signals of the system 

while in ILA, a pre distorter training block generally referred as “post-inverse” block identifies 

first the input and output signals and then in the second phase applies the training coefficients to 

the system under test as a DPD. This means that post-inverse becomes cascaded as a predistorter 

block after the training phase.  

2.5.1 Indirect Learning Architecture 

The indirect learning architecture (ILA) is shown in Figure 2.5. The DPD model identification 

is very important aspect which is based on the estimation of the digital predistorter model 
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coefficients.  Since in ILA, there is no need of model assumption, post-inverse (post-distorter) can 

be used as pre-inverse (pre-distorter) and allows for linear estimation of the coefficients, therefore 

it is straightforward and has been commonly used in [2.64], [2.65].  

ILA can imply different techniques to identify DPD models such as least squares (LS), recursive 

least square (RLS) and least mean square (LMS) [2.70-2.73]. We will describe LS method since its 

usability is straight forward and carries less complexity.  

There are number of least squares (LS) algorithm for estimation of model coefficients that take 

the linear weighting of nonlinear signals [2.74]. The formulation of the estimation initiates with 

collecting the coefficients e.g., 𝑐𝑘𝑞, 𝑑𝑘𝑞𝑟and 𝑒𝑘𝑞𝑟 in to a R × 1 vector 𝒗. 𝑅 represents the total 

number of coefficients. 𝒗 means  a signal whose time will sample over the same period. Considering 

(2), coefficients 𝑐21 denotes the signal 𝑥(𝑛 − 1)|𝑥(𝑛 − 1)|2. 𝒁 characterizes the collection of all 

such vectors into a 𝑁x 𝑅 matrix.  

 

 

 

 

 

 

Figure 2.5: Indirect Learning Architecture (ILA) for system under test 

Once the convergence condition is obtained, the output of the predistorter training block 

becomes:  𝑧𝑝(𝑛) = 𝑥(𝑛) and hence 𝑧(𝑛) =  𝑢(𝑛). For total samples 𝑁, the output can be written in 

the following way: 

𝒛𝒑 = 𝒁𝒗 
(2.13) 
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Where 𝒛 = [𝑧(1), . . , 𝑧(𝑁)]𝑇, 𝒛𝒑 = [𝑧𝑝(1), . . , 𝑧𝑝(𝑁)]
𝑇
, while 𝒗 displays a R × 1 vector that 

contains the coefficients 𝑐𝑘𝑞, 𝑑𝑘𝑞𝑟and 𝑒𝑘𝑞𝑟.The LS solution will then become a solution for the 

equation expressed as: 

[𝒁𝐻𝒁]𝒗̂ = 𝒁𝐻𝒙 

In order to solve Eq. (2.14), many approaches have been proposed. One of them is QR 

factorization which is generally implied to badly conditioned matrix. 𝒁𝐻𝒁 is generally badly 

conditioned matrix. Therefore, we explain below the QR factorization method: 

i. QR factorization is computed. Since 𝒁 = 𝑸𝑹, where Q  is a matrix (N x N) while  R  is  a  N x R 

upper triangular matrix. There are 𝟐𝑵 𝐱 𝑹𝟐 −
𝟐

𝟑
 𝑹𝟑 flops in this step.  

ii. 𝑸𝑯𝒙 is computed. Here, 𝟐𝑵𝑹 − 𝑹  are flops in this step. 

iii. 𝑹𝒄̂ = 𝑸𝑯𝒙  is solved for upper triangular matrix. There are 𝑹𝟐 flops involved in this step. 

The LS solution in (4) should minimize the cost function  

𝐶 = ∑|𝑧𝑝(𝑛) − 𝑥(𝑛)|
2

𝑁

𝑛=1

 

2.5.2 Direct Learning Architecture 

The direct learning architecture (DLA) is shown in Figure 2.6.  The model of DPD employing 

DLA using nonlinear filtered x least mean square algorithm (NFxLMS) has been used in [2.75]. The 

coefficient 𝜅 of the basis function 𝜑𝑘[𝑢(𝑛)] can be updated by stochastic gradient algorithm while 

the gradient is represented by derivative: 

𝜕𝜀2(𝑛)

𝜕𝜅
= 2𝜀2(𝑛)

𝜕𝜀(𝑛)

𝜕𝜅
 

= −2𝜀∗(𝑛)
𝜕𝑧(𝑛)

𝜕𝜅
 

where 

() 

() 

() 
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𝜕𝑧(𝑛)

𝜕𝜅
≅ ∑

𝜕𝑧(𝑛)

𝜕𝑥(𝑛 − 𝑞)
𝜑𝑘[𝑢 (𝑛 − 𝑞)]

𝑄−1

𝑞=0

 

Here Q is the memory depth of DPD model and 
𝜕𝑧(𝑛)

𝜕𝑥(𝑛−𝑞)
 is the derivative of nonlinear model. 

Therefore, a model needs to be identified firstly.  

For simplicity, 𝑔(𝑞, 𝑛) =
𝜕𝑧(𝑛)

𝜕𝑥(𝑛−𝑞)
; therefore Eq. 2.17 becomes: 

𝜕𝑧(𝑛)

𝜕𝜅
≅ ∑𝑔(𝑞, 𝑛) 𝜑𝑘[𝑢 (𝑛 − 𝑞)]

𝑄−1

𝑞=0

 

 

  

 

 

 

 

Figure 2.6: Direct Learning Architecture (DLA) for system under test 

It is equivalent that each basis function 𝜑𝑘[𝑢(𝑛)] is filtered by an instantaneous equivalent 

linear (IEL) filter 𝒈(𝒏) = [𝒈(𝟎, 𝒏), . . , 𝒈(𝑳 − 𝟏, 𝒏)] [2.76]. Using this method, an NFxRLS is 

proposed for recursive least square (RLS) algorithm. Replacing (2.18) into (2.16), we can have: 

𝜕𝜀2(𝑛)

𝜕𝜅
= −2𝜀∗(𝑛)

𝜕𝑧(𝑛)

𝜕𝜅
 

 = −2𝜀∗(𝑛)∑𝑔(𝑞, 𝑛) 𝜑𝑘[𝑢 (𝑛 − 𝑞)]

𝑄−1

𝑞=0

 

() 

() 
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= −2[𝜀(𝑛)∑𝑔∗(𝑞, 𝑛)  

𝑄−1

𝑞=0

]

∗

𝜑𝑘[𝑢 (𝑛 − 𝑞) 

A DLA estimator has been widely used to estimate DPD coefficients [2.77]. Since, there is 

no need to identify the PA model and coefficients errors is solved as a linear problem. The 

relation between the input u and the output x of the DPD can be expressed in matrix form as: 

𝑥 = 𝑈𝑐 

Where 𝑥 = [𝑥(1). . . 𝑥(𝑁)]𝑇 , 𝑐 𝑖𝑠 𝑅 x 1 is coefficient vector where U is a N x R matrix of 

basis functions. The reference error of measurement is given as: 

𝑒(𝑛) =
𝑦(𝑛)

𝐺
− 𝑢 (𝑛) 

                                             = 𝑧(𝑛) − 𝑢(𝑛) 

The origin of the reference comes from two parts: 

• The coefficients of DPD are not ideal. As the DPD model is linear with its coefficients, we can 

express the error generated by the coefficients error ∆c by U·∆c, where ∆c is R×1 vector 

containing the set of coefficient errors ∆𝒄𝒊. 

• The LS error 𝑒𝐿𝑆 in the identification. In LS calculation, QR factorization is an orthogonal 

projection. Thus 𝑒𝐿𝑆 is orthogonal to the input signal U. 

𝑒 = 𝑒𝐿𝑆 + 𝐔. ∆𝐜 

To reduce 𝑒𝐿𝑆, the cost function to minimize is: 

𝜎 =∑|𝑒(𝑛) −∑∆𝑐𝑅𝜑𝑅[𝑢(𝑛)]

𝑅

|

2

 

The LS solution of the coefficient error which minimize (2.23) is the solution for 

the following equation 

𝑈𝐻𝑒 = [𝑈𝐻𝑈]∆𝐜 

() 

() 

() 

() 

() 

() 
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where 𝑒 = [𝑒(1). . . 𝑒(𝑁)]𝑇 

In this method, there is no need to calculate the inverse of the system model. 

2.6 Conclusions 

The chapter reviews the methodologies implied for linearization of analog radio over fiber 

systems. Table 2.1 presents a comparative overview of different linearization techniques. Each 

methodology is discussed w.r.t advantages and disadvantages that it carries. The concept of digital 

predistortion based linearization is discussed as the most advantageous technique. The motivation 

of applying DPD and methodologies are discussed in detail.  The most important class of models 

utilized is the volterra based polynomial methods. DPD identification methods are presented. 

It has been shown that initially volterra based methods were widely employed for the 

linearization of PAs. Later, these models were adapted for RoF too. It has been shown that it is 

also possible to go out of the “Volterra Box” and utilize other models such as DVR, DDR and 

ANN. There tradeoffs have been discussed in light of literature review.  

The main contributions of this dissertation are thoroughly presented in the following chapters.  
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Chapter 3  

Direct Digital Predistortion for compensation of 

nonlinearities in Radio over Fiber links   

Some contents of this chapter are taken from J2, C2 and C3, where we presented the 

characterization of digital predistortion method based on behavioral model.  

_____________________________________________________________________________ 

This chapter proposes a predistortion technique for linearizing Analog RoF links which 

corrects the link impairments caused due to combined effect of laser chirp and fiber dispersion. 

The proposed technique is independent of the laser model which makes it salutary in terms of 

adapting to other possible laser models. The mathematical framework of the proposed technique 

and its implementation is discussed. The predistortion is applied firstly to sinusoidal signals and 

then to LTE standard signals. As a figure of merit, the effects of the proposed operation are 

reported by analysing the Adjacent Channel Leakage Ratio (ACLR) and Error Vector Magnitude 

(EVM) of the received signal. 

3.1 Introduction 

In order to manage the ever-increasing demand for larger transmission bandwidth, the Analog 

Radio-over-Fiber (A-RoF) technology is a viable solution which has found application in the 

distribution of both wired and wireless services within various scenarios, utilizing as transmission 

channel different types of silica fibers, as Single Mode [3.1], Multimode [3.2] or Multi-Core [3.3], 

or also utilizing Polymeric Plastic optical fibers [3.4]. 

The A-RoF technology plays a major role in the realization of the physical layer of 3G and 4G 

systems and is expected to form the cornerstone of the future fifth generation of wireless networks 

[3.5-3.7]. In addition to the advantages coming from the use of the optical fiber as a transmission 

channel, like extremely broad bandwidth, immunity to electromagnetic interference and large 
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transmission distances, an additional attractive feature lies in the agnosticism of RoF systems 

concerning the particular transmission modulation format, which makes them intrinsically future-

proof.  

Nonetheless, the drawbacks of these systems can be presented through the presence of distortion 

that can possibly lower the performances. These impairments are caused by imperfect linear 

behavior of laser, photo detector and optical fiber. One primary drawback of these systems is the 

signal susceptibility to the combination of fiber chromatic dispersion and spurious phase signals 

generated by the laser source (also called frequency chirp) [3.8]. 

To subdue the nonlinearities in A-RoF transmission, various solutions have been proposed, 

which include analog and digital electrical techniques [3.9-3.13] 

Analog predistortion method was addressed in [3.9] where the nonlinearities of the laser source 

were compensated. The drawback of the said methodology is difficult application on large scale 

production because every single RoF transmitter requires a variant predistorter.  Digital 

Predistortion linearization technique using memory polynomials was discussed in [3.10], while a 

trained predistorter based on Volterra series has been applied to Non Linear RoF link [3.11-3.14]. 

Similarly, the Digital Predistortion technique based on canonical pecewise-linear (CPWL)  function 

was proposed for intensity modulated/direct detection RoF system [3.15]. More recently, Digital 

Predistortion based on memory and generalized memory polynomial was proposed for VCSELs 

based radio over fiber links [3.16-3.17]. 

All the techniques apply the distortion compensation considering the RoF systems as “black 

box”. However, to guarantee the accuracy of the digital linearization performed, memory length 

and order of nonlinearity has to increase which leads to high complexity of the predistortion 

process. This factor can reduce the application of this linearization method substantially. Similarly, 

there exists a simpler possibility where one can identify the source of nonlinear behavior and 

directly compensate it without any feedback. One of these cases is based on the behavioral modeling 

of the whole link in which predistorter is used to compensate the nonlinearity of the RoF link [3.18]. 

In this case, knowing physical macroscopic quantities of the A-RoF components it is possible to 

compensate for nonlinearities generated by laser chirp and fiber dispersion.  
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In this chapter, the above mentioned “direct” predistortion is theoretically studied and 

implemented. The predistortion is applied firstly to sinusoidal signals and then to LTE  standard 

signals. As a figure of merit, the effects of the proposed operation are reported by analyzing the 

Adjacent Channel Leakage Ratio (ACLR) and Error Vector Magnitude (EVM) of the received 

signal. ACLR and EVM are utilized as performance parameters. The proposed technique is 

independent of the  Laser model which makes it salutary in terms of adapting to other possible laser 

models.  

The chapter is organized as follows. Section 3.2 gives the brief description related to the 

mathematical modeling of the proposed predistorter. In Section 3.3, simulation results for the 

proposed predistorter are presented and briefly discussed. Section 3.4 discusses the predistorter 

behavior in the presence of adiabatic chirp while Section 3.5 talks about feasibility of the proposed 

distorter. Finally, Section 3.6 concludes the chapter. 

3.2 Proposed Approach 

A conventional directly modulated A-RoF link, including the proposed predistorter is shown 

in Figure 3.1. In detail, the RoF link is composed of a laser transmitter, a standard optical fiber 

cable, and a photodiode, which converts the optical power in the electric current. The combined 

effect of laser chirp and fiber chromatic dispersion leads to signal degeneration in RoF links [3.8-

,3.19]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.1: Block scheme representing the collocation of the proposed predistorter block. The dashed 

rectangle encases Radio over Fiber link schematized through its essential components. LD: Laser diode; 

SMF: Single Mode Fiber; PD: Photo Diode. 
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The idea behind the proposed predistortion technique is that in the absence of fiber chromatic 

dispersion, the only presence of laser chirp would not determine any nonlinear effect. Thus, the 

predistorter is then used to digitally generate an opposite dispersion to compensate the 

nonlinearity of the RoF link. The functional scheme of the Predistorter block is shown in Figure 

3.2. 

The proposed approach, in the beginning, converts the analog RF modulating current to a 

digital one by means of an Analog to Digital Converter (ADC). Then it works with the samples 

𝐼(𝑡𝑛) to predict a modulated optical field 𝐸(𝑡𝑛) by exploiting an appropriate laser model. 𝐸(𝑡𝑛) 

becomes the input of the “Fiber Compensation” block whose output is a corrected modulated 

optical field 𝐸𝑐𝑜𝑟𝑟(𝑡𝑛) which would theoretically not be affected by the fiber dispersion effect.  

To obtain 𝐸𝑐𝑜𝑟𝑟(𝑡𝑛), the field 𝐸(𝑡𝑛) is convolved with the conjugate of the fiber pulse 

response. Subsequently, the input current correction block calculates, through an inverse function 

of the Laser model, the corrected samples of current, 𝑖𝑐𝑜𝑟𝑟(𝑡𝑛), that, once  utilized as a laser  input 

signal,  should result in an electric field as close as possible to 𝐸𝑐𝑜𝑟𝑟(𝑡𝑛). Through a Digital to 

Analog Converter (DAC), the current is finally brought back to analog form and modulates the 

injection current of the laser source of the real RoF link. 

 

         

 

 

 

 

 

 

 

 

Figure 3.2:Functional Block scheme representing the collocation of the proposed predistorter block. 

 

Referring again to the functional scheme of Figure 2, the mathematical framework is now 

discussed in detail. 
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3.2.1 Directly Modulated Laser 

 

The Electrical field 𝐸(𝑡) produced by a directly modulated Laser Diode (LD) exhibits 

Intensity Modulation (IM) as a desired result together with an additional undesired Frequency 

Modulation (FM) known as frequency chirping. Such field is described by the following 

expression:  

 

𝐸(𝑡) =   𝐸0√1 + 𝑀𝐼𝑀𝑖𝑅𝐹(𝑡). 𝑒
𝑗[𝜔𝑜𝑡+∆𝜗(𝑡)] 

  

 

In Eq 3.1, 𝐸0 is the field amplitude without RF modulation, 𝑀𝐼𝑀 is the Optical Modulation 

Index also often indicated as OMI defined as [3.20]:  

 

𝑀𝐼𝑀=
√2<(𝑃(𝑡)−𝑃𝑜)

2> 

𝑃𝑜
 

 

 

 

  where 𝑃(𝑡) = 𝑃𝑜[1 + 𝑀𝐼𝑀𝑖𝑅𝐹(𝑡)] describes the instantaneous optical power and the operator  

≪ (. ) ≫ denotes that the time average of (.) is performed.  

In turn, the quantity 𝑃𝑜 = 𝜂(𝐼𝑏𝑖𝑎𝑠 − 𝐼𝑡ℎ) is the portion of the optical power due to the only 

bias current 𝐼𝑏𝑖𝑎𝑠, while 𝐼𝑡ℎ is the threshold current of the laser and 𝜂 represents its slope-

efficiency. The increase in RF power leads to increase in 𝑀𝐼𝑀, while biasing is kept fixed. With 

𝑖𝑅𝐹(𝑡), it is indicated the current that modulates the laser source, which, as a consequence of the 

definition given by Eq. 3.2 obeys to the normalization< (𝑖𝑅𝐹(𝑡))
2
>=

1

2
. Note that in the 

particular case when the RF current which modulates the laser is just a sinusoidal tone given by 

𝐼𝑅𝐹,𝑀 cos(𝜔𝑅𝐹𝑡), it is 𝑃(𝑡)= 𝜂(𝐼𝑏𝑖𝑎𝑠 − 𝐼𝑡ℎ + 𝐼𝑅𝐹,𝑀  cos(𝜔𝑅𝐹𝑡)) where 𝑀𝐼𝑀 =
𝐼𝑅𝐹,𝑀

𝐼𝑏𝑖𝑎𝑠−𝐼𝑡ℎ
 and  

𝑖𝑅𝐹(𝑡) = cos(𝜔𝑅𝐹𝑡).Moreover, 𝜔𝑜 is the angular emission frequency of the laser source while 

∆𝜃(𝑡) represents the instantaneous phase deviation of the optical carrier due to the mentioned 

chirp phenomenon. 

() 

() 
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The concept of instantaneous change in the optical frequency is given in [3.21]. This concept 

can be employed to determine the instantaneous phase deviation. The instantaneous change in 

optical frequency is given as  

∆𝑓(𝑡) =
𝛼𝐿𝑊

4𝜋
[
1

𝑃(𝑡)

𝑑𝑃(𝑡)

𝑑𝑡
+ 𝜅𝑃(𝑡)] 

In Eq.3.3, 𝛼𝐿𝑊 is the Henry linewidth enhancement factor. Whereas, 𝜅 is the adiabatic chirp 

scaling factor of the laser source utilized. In Eq. 3.3, 
1

𝑃(𝑡)

𝑑𝑃(𝑡)

𝑑𝑡
 represents transient chirp while 

𝜅𝑃(𝑡) represents adiabatic chirp. 

Since ∆𝜃(𝑡) = ∫2𝜋∆𝑓(𝑡) 𝑑𝑡, the instantaneous phase deviation comes out to be: 

 

∆𝜃(𝑡) =
𝛼𝐿𝑊

2
ln(𝑃(𝑡)) +

𝛼𝐿𝑊

2
𝜅∫𝑃(𝑡) 𝑑𝑡 

 

In Eq. 3.4, by substituting the instantaneous optical power 𝑃(𝑡), a more meaningful 

expression can be obtained in the following way: 

 

∆𝜃(𝑡) =
𝛼𝐿𝑊

2
[𝑀𝐼𝑀. 𝑖𝑅𝐹(𝑡)]

𝛼𝐿𝑊

2
𝜅𝑀𝐼𝑀𝑃𝑜∫𝑖𝑅𝐹(𝑡) 𝑑𝑡 

The RF modulating current 𝑖𝑅𝐹(𝑡) is a pass-band signal and can therefore be written as: 

𝑖𝑅𝐹(𝑡) = 𝐼(𝑡) cos(𝜔𝑐𝑡) − 𝑄(𝑡)𝑠𝑖𝑛(𝜔𝑐𝑡) 

where 𝐼(𝑡) and 𝑄(𝑡) are the In-Phase and Quadrature baseband signals respectively and 𝜔𝑐 

is the RF carrier frequency. With the help of this expression for 𝑖𝑅𝐹(𝑡), the instantaneous phase 

deviation becomes as follows: 

 

() 

() 

() 

() 
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∆𝜃(𝑡) =
𝛼𝐿𝑊

2
𝑀𝐼𝑀. [𝐼(𝑡) cos(𝜔𝑐𝑡) − 𝑄𝑠𝑖𝑛(𝜔𝑐𝑡)] +

𝛼𝐿𝑊

2𝜔𝑐
𝜅𝑀𝐼𝑀𝑃𝑜[𝐼(𝑡) sin(𝜔𝑐𝑡)

+ 𝑄(𝑡)𝑐𝑜𝑠(𝜔𝑐𝑡)] 

 

In Eq. 3.6, the term 𝐼(𝑡) sin(𝜔𝑐𝑡) + 𝑄(𝑡)𝑐𝑜𝑠(𝜔𝑐𝑡)can be referred as 𝐼𝑅𝐹′(𝑡) and 
𝐼
𝑅𝐹′

(𝑡)

𝜔𝑐
 

becomes the integral of the signal 𝑖𝑅𝐹(𝑡). It is then: 
 

 

∆𝜃(𝑡) =
𝛼𝐿𝑊

2
𝑀𝐼𝑀. 𝑖𝑅𝐹(𝑡) +

𝛼𝐿𝑊

2𝜔𝑐
𝜅𝑀𝐼𝑀𝑃𝑜

𝐼𝑅𝐹′(𝑡)

𝜔𝑐
 

and, consequently, 

∆𝜃(𝑡) =
𝛼𝐿𝑊

2
𝑀𝐼𝑀 . 𝑖𝑅𝐹(𝑡) +

𝛼𝐿𝑊

2𝜔𝑐
𝜅𝑀𝐼𝑀𝑃𝑜∫  𝑖𝑅𝐹(𝑡) 

= 𝐾𝑡𝑖𝑅𝐹(𝑡) + 𝐾𝑓∫  𝑖𝑅𝐹(𝑡) 

 

where 𝐾𝑡 and 𝐾𝑓 represent the transient and adiabatic chirp coefficients respectively. 

Therefore, the expression in Eq. 3.1 becomes 

 
 

𝐸(𝑡) =   𝐸0√1 + 𝑀𝐼𝑀𝑖𝑅𝐹(𝑡). 𝑒
𝑗(𝜔𝑜𝑡+[𝐾𝑡𝑖𝑅𝐹(𝑡)]+[𝐾𝑓 ∫  𝑖𝑅𝐹(𝑡) 𝑑𝑡])  

3.2.2 Fiber Compensation 

The “Fiber Compensation” block receives 𝐸(𝑡) as  an input. The corresponding time impulse 

response is obtained considering the fiber pulse response:   

 

ℎ(𝑡, 𝑧) = √
𝜋

𝑗𝛾
. 𝑒

𝑗𝜋2𝑡2

𝛾  and 𝛾 =
𝐷𝑧 𝜆𝑜

2𝜔𝑜
(2𝜋)2 

 

 

In Eq. 3.10, 𝐷 is the second order dispersion (
𝑠𝑒𝑐

𝑚2
), z is the fiber's length (m), 𝜆𝑜 is the optical 

wavelength,𝜔𝑜 = 2𝜋𝑓𝑜 where 𝑓𝑜 is the optical frequency. The corrected field 𝐸𝑐𝑜𝑟𝑟(𝑡) is then found 

by the convolution operation of  the input field 𝐸(𝑡) with the conjugate of the fiber pulse response. 

This corrected field 𝐸𝑐𝑜𝑟𝑟(𝑡) would entirely compensate the Fiber dispersion effect. It can therefore 

be written as:  

 

() 

() 

() 

() 

() 
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𝐸𝑐𝑜𝑟𝑟(𝑡) = 𝐸(𝑡)  ℎ∗(𝑡) 
 

3.2.3 Approximations Applied to the Model 

As explained above, the aim of the digital predistortion technique is to eliminate the chromatic 

dispersion effect which operates on the phase of the electric field emitted by the laser.  The 

proposed approach starts from the consideration that an appropriate current 𝑖𝑅𝐹,𝐶𝑜𝑟𝑟 given in input 

to the laser would assure that the optical field “generated” by the laser is 𝐸𝐶𝑜𝑟𝑟(𝑡) given by Eq. 

3.11. This means that it is possible to write: 

 

 

𝐸𝑐𝑜𝑟𝑟(𝑡) = |𝐸𝑐𝑜𝑟𝑟(𝑡)|𝑒
𝑗∠𝐸𝑐𝑜𝑟𝑟(𝑡) = 𝑔[𝑖𝑅𝐹,𝑐𝑜𝑟𝑟(𝑡)] 

 

= 𝐸𝑐𝑜𝑟𝑟,0√1 + 𝑀𝐼𝑀𝑖𝑅𝐹,𝑐𝑜𝑟𝑟(𝑡). 𝑒
𝑗(𝜔𝑜𝑡+[𝐾𝑡𝑖𝑅𝐹,𝑐𝑜𝑟𝑟(𝑡)]+[𝐾𝑓 ∫  𝑖𝑅𝐹,𝑐𝑜𝑟𝑟(𝑡) 𝑑𝑡])  

 

where 𝑔[. ] is the function describing the relationship between the field emitted by the laser 

and its input modulating RF current. In order to determine 𝑖𝑅𝐹,𝑐𝑜𝑟𝑟(𝑡) it is then necessary to 

perform the operation symbolically expressed by: 

𝑖𝑅𝐹,𝑐𝑜𝑟𝑟(𝑡) = 𝑔−1[𝐸𝑐𝑜𝑟𝑟(𝑡)] 

An approximation is at this point applied to the resolution of Eq. 3.15, namely it is taken:  

 

𝑖𝑅𝐹,𝑐𝑜𝑟𝑟(𝑡) = 𝑔−1[𝐸𝑐𝑜𝑟𝑟(𝑡)] ∼
1

𝐾𝑡
[∠𝐸𝑐𝑜𝑟𝑟(𝑡) − 𝜔𝑜𝑡] = 𝑖̃𝑐𝑜𝑟𝑟(𝑡) 

 

Aim of this approximation is to simplify the model and allow the application of the correction 

in a straightforward way. Indeed, as can be seen from Eq. 3.14 the relationship given between Eq. 

3.15 is rigorously valid only when  𝑀𝐼𝑀 ≪ 1 and 𝐾𝑓 ∫  𝑖𝑅𝐹,𝑐𝑜𝑟𝑟(𝑡)  𝑑𝑡 ≪ 𝐾𝑡𝑖𝑅𝐹,𝑐𝑜𝑟𝑟(𝑡), i.e. when 

the power of the RF modulating signal exhibits low values and when the transient chirp effect 

prevails over the adiabatic one. 

 

() 

() 

() 

() 

() 
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After the 𝑖̃𝑐𝑜𝑟𝑟(𝑡) is computed, the electric field emitted by laser source and coupled at the 

fiber input section leads to following expression: 

 

𝐸𝑇𝑋(𝑡, 𝑧 = 0) = 𝐸𝑐𝑜𝑟𝑟,0√1 + 𝑀𝐼𝑀𝑖̃𝑐𝑜𝑟𝑟 . 𝑒
𝑗(𝜔𝑜𝑡+[𝐾𝑡𝑖̃𝑐𝑜𝑟𝑟(𝑡)]+[𝐾𝑓 ∫ 𝑖̃𝑐𝑜𝑟𝑟(𝑡) 𝑑𝑡])  

Eq. 3.17 takes into account that in general, in addition to transient chirp, the real laser will also 

exhibit the adiabatic chirp [3.22]. The propagation of the field 𝐸𝑇𝑋 is modeled in the frequency 

domain, by taking its Fast Fourier Transform ℰ𝑇𝑋 (𝜔, 𝑧 = 0) and multiplying it by a fiber transfer 

function which is given as follows in the Eq. 3.18: 

 

𝜘(𝜔, 𝑧) = 10−
αloss
20

𝑧  ×  𝑒−𝑗𝛽|𝜔𝑜𝑧  ×   𝑒
−𝑗

𝜕𝛽
𝜕𝜔

|
𝜔𝑜

(𝜔−𝜔0)𝑧
× 𝑒

−𝑗
1
2
𝜕2𝛽
𝜕𝜔2|

𝜔𝑜

(𝜔−𝜔0)
2𝑧
  

 

In Eq. 3.18, αloss represents the field attenuation coefficient expressed in[
𝑑𝐵

𝑘𝑚
], 𝛽 represents the 

propagation constant of the fundamental mode propagating in the fiber. 
𝜕𝛽

𝜕𝜔
|
𝜔𝑜

is its group delay 

per unit length, 
𝜕2𝛽

𝜕𝜔2 = −
𝐷𝜆0

𝜔0
 is the chromatic dispersion coefficient expressed in 

sec2

𝑚
. 

 

The second and the third factors at the right hand side (RHS) of Eq. 3.18 respectively introduce 

just a phase delay and a group delay to the 𝐸𝑇𝑋(𝑡, 𝑧 = 0) given by Eq. 3.17, which do not determine 

nonlinearities in the RF signal received. Moreover, the first factor at the RHS of Eq. 3.18 practically 

represents an attenuation coefficient, since αloss can be regarded as constant in the bandwidth 

considered. The square of this coefficient multiplies the powers of both the desired RF signal and 

the undesired RF disturbances due to the studied nonlinearities. Since all the figures of merit studied 

in the following depend on the ratio between these two powers, this attenuation coefficient does not 

practically influence the results obtained in the present simulations. 

For the purpose of the present study Eq. 3.19 can then be simplified to the following Fiber 

transfer function:   

 

𝐻(𝜔,𝑧) = 𝑒
𝑗(𝐷𝑧

𝜆0
2𝜔0

2𝜋(𝜔−𝜔0)
2
)
 

 

whose Inverse Fourier Transform is actually the pulse response of the optical fiber span 

introduced in Eq. 3.11 
 

Note that the mentioned simplification on the term 10−
αloss
20

𝑧
 is here possible because, with the 

aim to study in detail the impairments due to the system nonlinearities, the presence of a noise 

() 

() 

() 
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floor at the receiver side has not been taken into account in the simulations performed. However, 

the maximum link distance considered has been chosen as 50 km, in order to focus the study on 

realistic applicative scenarios. 

 

The output electric field is then estimated through the product between the Inverse Fourier 

transform of ℰ𝑇𝑋 (𝜔, 𝑧 = 0) and 𝐻(𝜔, 𝑧). The following expression of output field 𝐸𝑇𝑋(𝑡, 𝑧 = 𝐿) 
is achieved: 
 

 

𝐸𝑇𝑋(𝑡, 𝑧 = 𝐿) = ℱ−1[ℱ(ℰ𝑇𝑋 (𝜔, 𝑧 = 0)).𝐻(𝜔, 𝑧)] 
 

 

This output electric field is then finally used to compute the received RF current assuming a 

square law detection using common photodiode (PD). Hence, the photo-detected current 

becomes: 

 

𝑖𝑜𝑢𝑡(𝑡) = ℛ|𝐸𝑇𝑋(𝑡, 𝑧 = 𝐿)|2 

 

where ℛ represents the responsivity of the Photodiode. 
 

Note also that Eq. 3.1 and Eq. 3.21 imply that the power vs current characteristic of the laser and 

the current vs power characteristic of the photodiode exhibit linear behaviors. This assumption is 

due to the fact that aim of the proposed method is to counterbalance the combined effect of laser 

chirp and chromatic dispersion, which is the prevailing cause of nonlinearity in directly modulated 

RoF links with lengths of tens of km. For this reason, other possible causes of nonlinearities have 

not been included in the numerical model.  

3.3 Numerical Results and Discussion 

 

In the following sub-sections, the proposed Direct Predistortion Technique (DPDT) has been 

utilized to carry out numerical simulation for the two sinusoidal RF tone and LTE signal as a test 

signal. The technique developed has been implemented on MATLAB. The results of evaluated 

quantities for the said test signals are discussed in detail.  

Firstly, the case is considered when only the transient chirp is present in the directly modulated 

laser, i.e. when the approximation given by Eq. 3.16 can be reasonably accepted.  

 

() 

() 
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In addition, with the aim to show that the solution proposed features a general applicability, Sec. 

3.3 studies also the case when only the adiabatic chirp is present, allowing to appreciate that also 

in this case a beneficial effect is present on the global system performance. The analysis of these 

two extreme situations is motivated by the fact that in the majority of applicative situations one 

of the two types of chirp prevails over the other, and can be considered to be the only one 

determining the frequency modulation of the field emitted by the laser [3.23].  

3.3.1  Evaluation of Intermodulation Distortion for Dual RF Tone 

 

The predistorter simulation efficacy is evaluated initially with a signal composed by a couple of 

sinusoidal RF tones having frequencies 𝑓𝑅𝐹1 and 𝑓𝑅𝐹2, namely 𝑖𝑅𝐹(𝑡) = cos(𝜔𝑅𝐹1𝑡) +

cos(𝜔𝑅𝐹2𝑡) with 𝜔𝑅𝐹1 = 2𝜋𝑓𝑅𝐹1 and 𝜔𝑅𝐹2 = 2𝜋𝑓𝑅𝐹2. The nonlinearities considered of the RoF 

link have been those related to the generation of an undesired component at the frequency 2𝑓𝑅𝐹1 −

𝑓𝑅𝐹2 at the receiver side. 

To evaluate the model, initially a pure dual tone RF sinusoidal signal is utilized. This allows to 

test the proposed model and approach without increasing the complexity of the input radio signal.  

In this case, the frequency of modulating RF tones 𝑓𝑅𝐹1 and 𝑓𝑅𝐹2  is considered to be 1 GHz and 

1.01 GHz respectively. An optical fiber of G.652 type is utilized which exhibits a chromatic 

dispersion coefficient 𝐷 =
16.10−6𝑠𝑒𝑐

𝑚2  for the operating wavelength of  𝜆 = 1.55 𝜇𝑚. Similarly to 

what has been assumed for laser and photodiode characteristics, also the possible nonlinearities 

coming from the optical fiber have assumed to be negligible with respect to the prevailing effect 

of laser chirp and fiber chromatic dispersion. Note however that the system considered utilizes a 

single wavelength where a sub-carrier modulation is performed. The only detriment could then 

come from the Self Phase Modulation phenomenon, which, due to the typical values of the optical 

powers involved in these systems (few dBm) can be regarded as negligible Table 3.1  lists the 

main parameters utilized in the simulations. 
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Table 3-1: Parameters utilized in the formulation of simulation results 

The results for the dual sinusoidal RF tone are presented in Figure 3.3. 𝑃𝐼𝑀𝐷 indicates the 

third order intermodulation power received at the frequency 2𝑓𝑅𝐹2 − 𝑓𝑅𝐹1 and 𝑃𝐶,𝑂𝑈𝑇 the power 

received at one of the two carrier frequencies (e.g. 𝑓𝑅𝐹1). The ratio 
𝑃𝐼𝑀𝐷

𝑃𝐶,𝑂𝑈𝑇 
is reported as a function 

of the RoF link length for two possible values of 𝑀𝐼𝑀(𝑀𝐼𝑀=10% and 𝑀𝐼𝑀 = 30%). The 

intermodulation distortion is reported in this way and not using the typical third order input or 

output intercept points, because the ratio 
𝑃𝐼𝑀𝐷

𝑃𝐶,𝑂𝑈𝑇 
 corresponds to the Adjacent Channel Leakage 

Ratio i.e. ACLR which will be one of the quantities utilized with reference to realistic LTE 

signals. 

The amount by which each signal modulates the optical transmitter is measured by𝑀𝐼𝑀. 

Typically, increasing 𝑀𝐼𝑀 is expected to lead to higher signal distortion due to the corresponding 

higher value of RF modulating power for a given 𝐼𝑏𝑖𝑎𝑠 of the laser.   

Indeed, the curves for 10% of 𝑀𝐼𝑀 exhibit lower values of 
𝑃𝐼𝑀𝐷

𝑃𝐶,𝑂𝑈𝑇 
 as compared to 30% of 𝑀𝐼𝑀. 

At the same time, in both, a noticeable improvement due to the proposed correction can be 

noticed. For example, for 𝑀𝐼𝑀 = 10%, at a distance of 50 km, the predistorted corrected curve 

exhibits 
𝑃𝐼𝑀𝐷

𝑃𝐶,𝑂𝑈𝑇 
= -97.08 dBc (as compared to uncompensated value of -82.78 dBc  ) while for 

Optical 
Link 

Component 

Parameters Values 

Laser and 

PD 

𝐼𝑏𝑖𝑎𝑠= 70 mA 

𝐼𝑡ℎ = 5 𝑚𝐴 

𝑀𝐼𝑀 = 10,30 % 

𝐾𝑡 = 110 (
1

𝑚𝐴
) 

ℛ = 1 (
𝑚𝐴

𝑚𝑊
)  

Fiber 

(ITU-T 

G.652) 

 Dispersion= 16 

𝑝𝑠

𝑛𝑚

𝑘𝑚
 

 z= 0-50 km 

Attenuation= 0.2 
𝑑𝐵

𝑘𝑚
 

Signal 𝑓𝑅𝐹1 = 1 𝐺𝐻𝑧 

𝑓𝑅𝐹2 = 1.01 𝐺𝐻𝑧 
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30%of 𝑀𝐼𝑚, at 50 km, the compensated corrected curve has a value of -70.09 dBc (as compared 

to the uncompensated value of -59.80 dBc).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Comparison between values of ACLR (for Dual Sinusoidal RF Tone), for varying length z 

for 𝑴𝑰𝑴 = 10% and 𝑴𝑰𝑴 = 30%, with and without the application of the proposed predistortion 

technique.  

 

In order to summarize the results for the sinusoidal tone, Figure 3.4 presents a comparison 

between absolute improvement in ACLR, varying length and input power 𝑷𝑰𝑵. It can be seen that 

improvement due to proposed Direct predistortion technique is also significant at higher lengths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Comparison between Absolute Improvement in ACLR (for Dual Sinusoidal Tone), for 

varying length z and for varying input power 𝑷𝑰𝑵. 



 

61 

3.3.2 Evaluation of LTE Signal as an Input Test Signal  

 

As mentioned above, the model is now evaluated with reference to a realistic LTE standard 

signal. Tests are performed by generating a LTE signal of 3.84 MHz bandwidth having 64 QAM 

modulation format. The signal is modeled through a locally developed software which complies 

with the release 13.4 of the LTE standard (3GPP Release 13). The parameters of the LTE signal 

in base band are summarized in Table 3-2. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Table 3-2: Parameters of the LTE Signal Utilized 

3.3.2.1 ACLR Results for LTE Signal  

In the following subsection, the results of the simulations are discussed. The first quantity to 

be evaluated is the Adjacent Channel Leakage Ratio (ACLR). In Figure 3.5, the behavior of 

ACLR is reported as a function of fiber link length for 𝑓𝑐 = 2.14 𝐺𝐻𝑧 for two possible values of 

the optical modulation index 𝑀𝑖𝑀. The parameters used in this case for RoF components are the 

same of Table 3-1. 

 

As expected, also in this case higher the 𝑀𝐼𝑀, higher is the distortion generated (see the 

uncorrected curve in Figure 3.5. The interesting fact is that the improvement in ACLR is still 

significant taking into account high distances. For example, at z=50 km for 𝑀𝐼𝑀 = 10%. ACLR 

is lowered by 25.2 dBc for the corrected curve as compared to the uncompensated ACLR value. 

Similarly, 𝑀𝐼𝑀 = 30%, the uncompensated value of ACLR is -53.15 dBc while this value is 

lowered to -70.9 dBc for the compensated case. 

Parameter Values 

Nominal Channel Bandwidth (𝐵𝑐ℎ) 

Useful Channel Bandwidth (𝐵𝑐ℎ𝑢) 

Sampling Frequency (𝐹𝑠) 

Frame Duration (𝑇𝑓𝑟𝑎𝑚𝑒) 

Subframe duration (∆𝑇𝑠𝑢𝑏𝑓𝑟𝑎𝑚𝑒) 

FFT size 

3 𝑀𝐻𝑧 

2.7 MHz 

3.84 MHz 

10 ms 

1 ms 

256 
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Figure 3.5: Comparison between values of ACLR (for LTE Signal), for varying length z for 𝑴𝑰𝑴 = 10% 

and 𝑴𝑰𝑴 = 30%, with and without the application of the proposed predistortion technique. 

Moreover, ACLR improvement has been evaluated for all proposed conditions and the 

numerical results have been summarized in Figure 3.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Comparison between Absolute Improvement in ACLR (for LTE Signal), for varying length z 

and for varying input power 𝑷𝑰𝑵. 
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3.3.2.2 EVM Results for LTE Signal  

 

The effect of the proposed correction is now evaluated with respect to the EVM. EVM is 

evaluated through a locally developed software. The software is based on an EVM 

characterization bench for Frequency Division Duplexing (FDD) downlink LTE frame 

transmission based on the release 13.4 of the standard. The entire frame of 10 ms is generated 

using a software developed in MATLAB. The program also creates the samples followed by the 

creation of the modulating signals and up-converts them to a RF carrier frequency. It is then 

launched into the  Radio-over-Fiber link model whose characterization has already been explained 

in the Section 3.1. After the signal propagates through the A-RoF link, the signal undergoes post 

processing that comprises of down conversion and down sampling respectively. The software is 

realized ad-hoc for LTE frame, and is able to synchronize the frame, equalize the channel and 

extract the EVM for each physical and logical channel. Tests were performed generating an LTE 

signal of 3.84 MHz. To see the effect of transient chirp for LTE signals on EVM, a test is done where 

EVM is reported for respective lengths up to 50 Km. The trend in Figure 3.7 formalizes that EVM 

improvement can be seen for 10 and 30 % of 𝑀𝐼𝑀 values. This endorses that the proposed predistorter 

improves the EVM by further lowering it from the uncorrected value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Comparison between the EVM values (for LTE Signals), for varying length z = 0 -50 Km for 

𝑴𝑰𝑴  =10% and 30%, with and without the application of the proposed predistortion technique. 
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3.4 Behavior of Predistorter in Presence of Adiabatic Chirp 

 

As shown in Section 3.1.3, the proposed predistortion technique aims on the compensation of the 

transient chirp. However, in many practical cases, especially using Distributed Feedback (DFB) 

lasers, the adiabatic chirp component generally prevails [3.24]. In order to evaluate this situation, 

the electric field 𝐸𝑇𝑋(𝑡) from Eq. 3.17 can be expressed as follows: 

 

𝐸𝑇𝑋(𝑡, 𝑧 = 0) = 𝐸𝑐𝑜𝑟𝑟,0√1 + 𝑀𝐼𝑀𝑖̃𝑐𝑜𝑟𝑟 . 𝑒
𝑗(𝜔𝑜𝑡+[𝐾𝑓 ∫ 𝑖̃𝑐𝑜𝑟𝑟(𝑡) 𝑑𝑡])  

 

In order to evaluate the effect of adiabatic chirp on the trend of ACLR and on its correction, 𝐾𝑓 

is varied from 30 to 440 
𝑀𝐻𝑧

𝑚𝐴
, length is fixed to 50 km and 𝑀𝐼𝑀 = 30%. 

The results reported in Figure 3.7 affirms that increase in adiabatic chirp produces the distortion 

that worsens the ACLR to a point where the need of predistortion becomes critical. For instance, 

for the adiabatic chirp of 300 
𝑀𝐻𝑧

𝑚𝐴
, the uncorrected ACLR value of -21 dBc is compensated to a 

relative lower value of -35 dBc. This means that proposed predistorter is able to correct the 

adiabatic chirp as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.8: Comparison between the values of ACLR (for LTE Signal), for varying % of Adiabatic Chirp 

for fixed length z = 50 km for 𝑴𝑰𝑴 = 30%, 𝒇𝒄=2.14 GHz, with and without the application of the proposed 

predistortion technique 

Lengths up to 50 km are introduced to show the behavior of the improvement due to the proposed 

procedure from the point of view of the numerical simulation. The inclusion of optical amplifier 
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is not envisaged in the model of RoF since the amplification will amplify the transmission and 

the adjacent channel in the same proportion and the ratio of the channels will have no effect. The 

effectiveness of proposed predistorter is further confirmed by analyzing the power spectral 

densities (PSD) of the output signal with and without linearization process. It can be observed 

that Proposed predistortion technique results in spectral regrowth reduction (see Figure 3.9). 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 3.9: The Effectiveness of predistortion in suppressing spectral regrowth, with and without 

correction. 𝑲𝒇 = 𝟐𝟐𝟎
𝑴𝑯𝒛

𝒎𝑨
 , z = 50 km for 𝑴𝑰𝑴 = 30%. 

 

To see the effect of adiabatic chirp for LTE signals on EVM, a test is done where length is fixed 

to be 50 Km and adiabatic chirp is varied from 30 to 440 
𝑀𝐻𝑧

𝑚𝐴
. The trend in Figure 3.10 

substantiates that higher the % of the adiabatic chirp, higher is the EVM value, e.g. at 330 
𝑀𝐻𝑧

𝑚𝐴
, 

contribution of the adiabatic chirp, the corrected EVM is 2.010 % as compared to 3.64 % for 

uncorrected EVM. In order to highlight the EVM improvement by the proposed predistorter, the 

comparison between the constellation of received Physical Downlink Shared Channel (PDSCH) 

with and without correction. There is an appreciable improvement in the received constellation 
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of PDSCH for the corrected case as compared to the uncorrected case. This validates that the 

proposed predistorter improves the EVM.  

Figure 3.10: Comparison between the EVM values (for LTE Signals), for varying % of Adiabatic Chirp 

for fixed length z=50 km for 𝑴𝑰𝑴 = 𝟑𝟎%, with and without the application of the proposed 

predistortion technique 

 

A comparative overview of LTE signals for minimum and maximum adiabatic chirps at 50 km is 

gathered in Table 3-3. For 33 
𝑀𝐻𝑧

𝑚𝐴
 of 𝐾𝑓, with the proposed DPDT, ACLR is -52.77 dBc and 

without the DPDT, the value is -38.29 dBc, with an improvement of 14.48 dB. However, EVM 

results reveal that with the DPDT, its value is 0.60 %, whereas without the DPDT, it is 0.81 %. 

Similarly, for 450 
𝑀𝐻𝑧

𝑚𝐴
 of 𝐾𝑓, the improvement with DPDT is 10.1 dB in terms of ACLR and 

EVM is reduced from 3.7 % to 2.2 % i.e. reduction in EVM is 40 % of its uncorrected value.  

 

Table 3-3: Linearization Performance for adiabatic Chirp (Minimum and Maximum Values) 

 

 Setup ACLR (dBc) EVM (%) 

𝐾𝑓 = 33
𝑀𝐻𝑧

𝑚𝐴
 

   

 w/o DPDT 

with DPDT 

-38.29 

-52.77 

0.81 

0.60 

𝐾𝑓 = 450
𝑀𝐻𝑧

𝑚𝐴
 

   

 w/o DPDT 

with DPDT 

-19.9 

-30 

3.7 

2.2 
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3.5 Feasibility of the Proposed Predistorter  

As far as realization is concerned, a primary role is played by the ADC, which constitutes the 

first block of the predistorter (see again Figure 3.2) and converts the analog input signal to a digital 

signal that can be processed either in a DSP or in a FPGA. As it is established that cost of an ADC 

is closely related with performance capabilities, higher is the sampling rate of an ADC, higher is its 

cost. Note however, that the sampling rate is related to the bandwidth of the modulating signal. 

Increasing the order of the modulation scheme (e.g. 256 QAM instead of 64 QAM) would not 

require an ADC with higher sampling rate. In any case, bandpass sampling theory could be 

employed to appreciably reduce the sampling rate, without any replica overlapping, as proposed by 

various authors in different fashions [3.25-3.27]. In this view, for the presented application, use of  

ADC08DJ3200 6.4-GSPS Single-Channel from Texas Instruments is envisaged.   

3.6 Conclusion 

A numerical predistortion technique, based on a rigorous mathematical simulation 

model, is proposed which aims to improve the performance of the RoF link. The nonlinearity 

compensation technique evaluates the inter-modulation related quantities like 

ACLR and EVM of signals under test. The performed simulations gives a quantitative 

idea of its beneficial effects. When adiabatic chirp is considered, the simulated results 

guarantee “at present” a significant reduction of ACLR by 14 dBc for 𝐾𝑓 of 220 MHz/ 

mA when length is 50 km and MIM is 30%. Similarly, EVM is reduced from 2.95 to 

1.6% with the proposed technique. The simulation program can be a helpful tool for the 

design of cost-effective RoF link. The proposed approach is advantageous as it compensates the 

disturbance caused by the phase of the field and it is adaptable to other laser 

models. Higher levels of practical realizability are featured by the proposed technique 

with respect to other Digital Predistortion solutions, while maintaining good degrees of 

nonlinearities compensation. The realization of the predistortion system is anticipated, 

since it can be realized using Field Programmable Gate Arrays of typical characteristics. 

 

 

 

 



 

68 

References 
 

3.1 Wake, D., Nkansah, A., Gomes, N.J.: Radio over fiber link design for next generation 

wireless systems. IEEE/OSA J. Lightwave Technol. 28(16), 2456–2464 (2010) 

3.2 Alcaro, G., Visani, D., Tarlazzi, L., Faccin, P., Tartarini, G.: Distortion mechanisms 

originating from modal noise in radio over multimode fiber links. IEEE Trans. Microw. 

Theory Tech. 60(1), 185–194 (2012) 

3.3 Morant, M., Llorente, P.: Performance analysis of multiple radio-access provision in a 

multicore-fbre optical fronthaul. Opt. Commun. 436, 161–167 (2019) 

3.4 Visani, D., Okonkwo, C.M., Shi, Y., Yang, H., van den Boom, H.P.A., Tartarini, G., 

Tangdiongga, E., Koonen, A.M.J.: 3x2N-QAM constellation formats for DMT over 1-mm 

core diameter plastic optical fiber. IEEE Photonics Technol. Lett. 23, 768–770 (2011) 

3.5 Kabonzo, F.M., Dilshad, M.U.: Impact of radio over fiber technology for integrated 5G 

front and backhaul applications. In: 2017 IEEE 2nd advanced information technology, 

electronic and automation control conference (IAEAC), Chongqing, pp. 1077–1081 (2017) 

3.6 Thomas, V.A., El-Hajjar, M., Hanzo, L.: Performance improvement and cost reduction 

techniques for radio over fiber communications. IEEE Commun. Surv. Tutor. 17(2), 627–

670 (2015) 

3.7 Nanni, J., Polleux, J., Algani, C., Rusticelli, S., Perini, F., Tartarini, G.: VCSEL-based 

radio-over-G652 fiber system for short-/medium-range MFH solutions. J. Lightwave 

Technol. 36(19), 4430–4437 (2018) 

3.8 Meslener, G.J.: Chromatic dispersion induced distortion of modulated monochromatic 

light employing direct detection. IEEE J. Quantum Electron. QE 20, 1208–1216 (1984) 

3.9 Vieira, L.C., Gomes, N.J., Nkansah, A., Van Dijk, F.:Behavioral modeling of radio-over-

fiber links using memory polynomials. In: 2010 IEEE international topical meeting on 

microwave photonics, Montreal, QC, pp. 85–88 (2010) 



 

69 

3.10 Roselli, L., Borgioni, V., Zepparelli, F., Ambrosi, F., Comez, M., Faccin, P., Casini, A.: 

Analog laser predistortion for multiservice radio-over-fiber systems. IEEE J. Lightwave 

Technol. 37(5), 1211–1223 (2003) 

3.11 Zhu, R., Zhang, X.: Broadband predistortion circuit design for electro-absorption 

modulator in radio over fiber system. In: Proceedings of the optical fiber communications 

conference and exhibition (OFC), San Francisco, CA, USA (2014) 

3.12 Huang, H.T., Lin, C.T., Chiang, S.C., Lin, B.J., Shih, P.T.B., Ng’oma, A.: Volterra 

nonlinearity compensator for I/Q imbalanced mm-wave OFDM RoF systems. In: 2015 

International topical meeting on microwave photonics (MWP). pp. 1–4 (2015) 

3.13 Fuochi, F., Hadi, M.U., Nanni, J., Traverso, P.A., Tartarini, G.: Digital predistortion 

technique for the compensation of nonlinear efects in radio over fiber links. In: 2016 IEEE 

2nd international forum on research and technologies for society and industry leveraging a 

better tomorrow (RTSI), pp. 1–6 (2016) 

3.14 Hadi, M.U., Nanni, J., Traverso, P.A., Tartarini, G., Venard, O., Baudoin, G., Polleux, 

J.L.: Experimental evaluation of digital predistortion for VCSEL-SSMF-based Radio-over-

Fiber link, In: 2018 International topical meeting on microwave photonics (MWP), 

Toulouse, France, pp. 1–4 (2018) 

3.15 Mateo, C., Carro, P.L., García-Dúcar, P., De Mingo, J., Salinas, I.: Radio-over-fiber 

linearization with optimized genetic algorithm CPWL model. Opt. Express 25(4), 3694–

3708 (2017) 

3.16 Hadi, M.U., Traverso, P.A., Tartarini, G., Venard, O., Baudoin, G., Polleux, J.L.: Digital 

predistortion for linearity improvement of VCSEL-SSMF-based radio-over-fiber links. 

IEEE Microw. Wirel. Compon. Lett. 29(2), 155–157 (2019a) 

3.17 Hadi, M.U., Nanni, J., Traverso, P.A., Tartarini, G., Venard, O., Baudoin, G., Polleux, 

J.L.: Linearity improvement of VCSELs based radio over fiber systems utilizing digital 

predistortion. Adv. Sci. Technol. Eng. Syst. J. 4(4), 156–163 (2019f) 



 

70 

3.18 Shafik, R.A., Rahman, M.S., Islam, A.R.: On the extended relationships among EVM, 

BER and SNR as performance metrics. In: 2006 International conference on electrical and 

computer engineering, Dhaka, pp. 408–411 (2006) 

3.19 Tartarini, G., Faccin, P.: Efcient characterization of harmonic and intermodulation 

distortion efects in dispersive radio over fiber systems with direct laser modulation. 

Microw. Opt. Technol. Lett. 46(2), 114–117 (2005) 

3.20 Visani, D., Tartarini, G., Tarlazzi, L., Faccin, P.: Transmission of UMTS and WIMAX 

signals over costefective radio over fiber systems. IEEE Microw. Wirel. Compon. Lett. 

19(12), 831–833 (2009) 

3.21 Koch, T.L., Linke, R.A., Hanzo, L.: Efect of nonlinear gain reduction on semiconductor 

laser wavelength chirping. Am. Inst. Phys. Appl. Phys. Lett. 48, 613–615 (1986) 

3.22 Wei, C.C.: Small-signal analysis of OOFDM signal transmission with directly modulated 

laser and direct detection. Opt. Lett. 36, 151–153 (2011) 

3.23 Nanni, J., Barbiroli, M., Fuschini, F., Masotti, D., Polleux, J.-L., Algani, C., Tartarini, G.: 

Chirp evaluation of semiconductor DFB lasers through a simple Interferometry-based (IB) 

technique. Appl. Opt. (OSA) 55(28), 7788–7795 (2016) 

3.24 Villafranca, A., Lasobras, J., Garces, I.: Precise characterization of the frequency chirp in 

directly modulated DFB lasers. In: Spanish conference on electron devices, pp. 173–176 

(2007) 

3.25 Betta, G., Capriglione, D., Ferrigno, L., Miele, G.: Innovative methods for the selection 

of bandpass sampling rate in cost-efective RF measurement instruments. Meas. J. Int. 

Meas. Confed. 43(8), 985–993 (2010) 

3.26 Braithwaite, R.N.: Wide bandwidth adaptive digital predistortion of power amplifers 

using reduced order memory correction. In: Microwave symposium digest, IEEE MTT-S 

international, pp. 1517–1520 (2008) 

3.27 Liu, Y., Yan, J.J., Dabag, H.T., Asbeck, P.M.: Novel technique for wideband digital 

predistortion of power amplifers with an under-sampling ADC. IEEE Trans. Microw. 



 

71 

Theory Tech. 62(11), 2604– 2617 (2014) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

72 

Chapter 4  

Experimental demonstration of Digital Predistortion for 

Radio over Fiber (RoF) Systems  

The contents of this chapter are taken from [J3],[J8]-[J9], [C1]- [C3] and [A1] where we 

presented the characterization of digital predistortion method for Analog Radio over Fiber 

Systems. 

_____________________________________________________________________________ 

The utilization of Analog Radio over Fiber System is prone to nonlinearities. In previous chapter, 

we discussed a digital predistortion method based on behavioral model of radio over fiber system 

that compensates the nonlinearities due to combined effect of laser chirp and fiber dispersion. In 

this chapter, DPD based methods are discussed for the short range RoF links where laser 

nonlinearities are the primary source of nonlinearity. 

The chapter is organized as follows. 

1. The first part discusses the experimental demonstration of DPD technique to VCSELs 

based RoF links. Here, the DPD application is discussed separately for Single mode 

VCSELs and Multi-Mode VCSELs respectively for varying link lengths.  

2. The second part discusses DPD technique implied to DFB based RoF links. DPD efficacy 

is discussed by comparing MP, GMP and DVR models.  

3. The third part discusses a Multi-channel DPD methodology implied to both, VCSELs and 

DFB based RoF links.  

The chapter is organized as follows: 

Sec 4.1 discusses DPD methodology implied to VCSELs while Sec. 4.2 explains DPD 

methodology for DFB based RoF links. Sec. 4.3 includes the demonstration of DPD for 

multichannel carriers applied to both, VCSELs and DFB based RoF links. Sec. 4.4 introduces the 
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concept of real time implementation of the proposed DPD method and Sec. 4.5 concludes the 

chapter. 

4.1 Experimental Demonstration of Digital Predistortion for VCSELs based RoF links 

In this section, we will discuss the developed methodology that has been applied to class of 

links which utilizes VCSELs for fronthaul applications. The section will first introduce the 

significance of VCSELs for short link applications followed by the need of DPD in such scenario. 

Then, we discuss the developed method and its demonstration for single mode and multi-mode 

VCSELs. Finally, conclusions are drawn for this section. 

While considering the short-medium reach networks, OFHs based on the RoF technology 

can be realized utilizing Standard Single mode Fiber (SSMF) or also Multimode Fiber (MMF) 

[4.1]. In both cases, a possible solution which keeps low levels cost and power consumption can 

be obtained utilizing Vertical Cavity Surface Emitting Lasers also known as VCSELs which emit 

in the first optical window (wavelength 𝜆=850 nm) as the optical source.  

While the use of VCSELs operating at short wavelengths is a relatively consolidated choice 

finding application e.g. in combinations with Plastic Optical Fibers within in-building networks 

[4.2-4.3] or in combination with MMFs within data centers [4.4], care must be taken in front of 

the possible impairments due to the multimodal behavior of SSMFs that operate at the 850 nm 

[4.5].The presence of  multimodal behavior would  indeed be absent if  expensive VCSELs 

operating at 1.3 𝜇𝑚 and 1.55 𝜇𝑚 were utilized , in which the major SSMF-related impairments 

could just be ascribed to optical nonlinear effects and/or to chromatic dispersion [4.4-4.6]. 

However, appropriate countermeasures have been proposed, which can prevent this last 

impairment cause to be critical [4.7-4.8].  

Besides the cited OFH, VCSEL-based RoF systems can be found in multivariate scenarios, 

being utilized for radio astronomic signal transmission [4.9], multi service indoor wireless signal 

distribution [4.10], or machine learning detection [4.11]. 

In all these cases, a cardinal issue is represented by the impairments of the opto-electronic 

devices and particularly the whole VCSEL based Radio over Fiber system. Such nonlinearities, 

that arise due to relatively stable causes like nonlinear attributes coming from laser diode and 

perhaps from photodiode [4.12]. These nonlinearities can also arise due to little dynamics of 
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VCSELs [4.13], e.g., when high Peak-to-Average Power Ratio (PAPR) signals are transmitted 

and can have an important role especially for multi-channel transmission. They indeed can cause 

high in and out of band distortion, which leads to higher interference among near channels. 

 

In this section, we apply DPD based linearization to VCSELs based RoF links, particularly, 

the linearization is applied to Single Mode (SM)-VCSELs and Multi-Mode (MM) VCSELs. The 

novelty of the work presented is summarized as follows:  

1. A novel evaluation is performed by considering the SM VCSEL-based RoF system, not only in 

B2B configuration, but equipped with SSMF spans of different lengths; 

2. Moreover, also Multimode (MM) VCSEL-based RoF systems are analyzed, utilizing different 

lengths of MMFs; 

3. In addition, the DPD technique is evaluated based on Memory Polynomials (MP) and 

Generalized Memory Polynomial (GMP), where GMP in general shows an improved 

effectiveness with respect to MP;  

4. The DPD is trained and tested near to threshold to check the efficacy of the proposed technique. 

As a performance index evaluation, the link linearity improvements are observed by calculating 

the Adjacent Channel Power Ratio (ACPR), Normalized Mean Square Error (NMSE), spectral 

regrowth, Normalized Magnitude (AM/AM) and Normalized phase (AM/PM).  The 

characterization has been done for two different VCSELs to show linearization. Firstly, In Section 

4.1.1, the DPD methodology is discussed for SM-VCSEL. 4.1.2, modeling methodology is 

highlighted for MM-VCSELs based RoF links while in Section 4.1.3, conclusions are drawn.   

4.1.1 DPD Methodology Implied to SM-VCSEL 

In this section, DPD for SM-VCSELs will be considered only. The detailed modeling 

methodology is discussed followed by experimental setup and results and discussion.  

4.1.1.1 Modeling Methodology for SM-VCSELs based RoF links 

The architecture of the predistortion technique is shown in Figure 4.1 which utilizes Indirect 

Learning Architecture for the estimation of PD training coefficients [4.14-4.17]. Since the 
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statistic of the waveform will remain the same over time, therefore, it can be assumed that system 

nonlinearity is not time varying and the training of the predistortion can be applied in an off-line 

practice. This will not only reduce the expenditures and over heads of the predistorter but also 

avoids the need of an identification algorithm. The identification of DPD is performed in one 

step. Hence, a linear estimation of PD coefficients results in straightforward identification. 

 

Figure 4.1: DPD identification for RoF utilizing ILA 

At first, the training phase calculates the predistorter coefficients. At this point, the RoF 

system output 𝑦(𝑛), becomes input 𝑧(𝑛) to the Pre-Distorter Training block which is defined as  

𝑧(𝑛) =
𝑦(𝑛)

𝐺
 where G denotes the gain of the system. The coefficients appraisal can be made 

using least-squares-based algorithm and is described in Sec. 2.5.1. The convergence point of the 

training is achieved by minimizing the error function. Eventually, the computed training 

coefficients are employed to the predistorter referred as Digital Pre-Distorter in Figure 4.2. The 

predistorter models utilized are derived from the classical Volterra series. 

4.1.1.2 Digital Predistortion Model 

A. Memory Polynomial (MP) Model 

 Memory Polynomial (MP) model is referred as an inverse non-linear model that has been 

exploited previously as a powerful model for both, inverse and direct modeling of power amplifier 

(PA) nonlinearities. Applying this model for RoF has an additional advantage since memory less 

model might have problems to characterize the electro-optical (EO) conversion phenomena 
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accurately. The MP model is generally referred as a compromise between memoryless nonlinearity 

and full Volterra series due to presence of diagonal memory. The output in this case is referred as: 

𝑧𝑝(𝑛) = ∑∑𝑐𝑘𝑞𝑧(𝑛 − 𝑞)

𝑄−1

𝑞=0

|𝑧(𝑛 − 𝑞)|𝑘
𝐾−1

𝑘=0

 

      Here 𝐾 represents order of non-linearity, 𝑄 is referred as the memory depth,  𝑧 represents the 

predistorter input sequence and 𝑐𝑘𝑞 denotes the model coefficients. 

 

B. Generalized Memory Polynomial (GMP) Model 

      The use of Generalized Memory Polynomial (GMP) model has been widely utilized for the 

linearization of PAs [4.18]. However, GMP has not been yet evaluated for RoF with varying 

lengths. The GMP model basis functions possess memory for both, for the diagonal terms as well 

as for the crossing terms i.e., 𝑥(𝑛 − 𝑞)|𝑥(𝑛 − 𝑟)|𝑘−1, where 𝑞 ≠ 𝑟. The output of the post inverse 

block 𝑧𝑝(𝑛) modeled with GMP can be expressed as: 

𝑧𝑝(𝑛) =   ∑ ∑ 𝑐𝑘𝑞𝑧(𝑛 − 𝑞)

𝑄𝑎−1

𝑞=0

|𝑧(𝑛 − 𝑞)|𝑘

𝐾𝑎−1

𝑘=0

 

 

+ ∑ ∑ ∑𝑑𝑘𝑞𝑟

𝑅𝑏

𝑟=1

𝑧(𝑛 − 𝑞)

𝑄𝑏−1

𝑞=0

|𝑧(𝑛 − 𝑞 − 𝑟)|𝑘

𝐾𝑏

𝑘=1

 

 

+ ∑ ∑ ∑𝑒𝑘𝑞𝑟

𝑅𝑐

𝑟=1

𝑧(𝑛 − 𝑞)

𝑄𝑐−1

𝑞=0

|𝑧(𝑛 − 𝑞 + 𝑟)|𝑘

𝐾𝑐

𝑘=1

 

where 𝑧𝑝(𝑛) and 𝑧(𝑛)represents the DPD output and input respectively. Similarly, 

𝑐𝑘𝑞; 𝑑𝑘𝑞𝑟 and 𝑒𝑘𝑞𝑟  denotes the complex coefficients for the signal and the envelope; signal and 

lagging envelope and signal and leading envelope respectively. 𝑘 represents the index of 

nonlinearity, and 𝑞, 𝑟 represents the indices of the memory.  While 𝐾𝑎,𝐾𝑏,𝐾𝑐 are the maximum 

orders of nonlinearity, 𝑄𝑎, 𝑄𝑏 , 𝑄𝑐 are the memory depths, while 𝑅𝑏 and 𝑅𝑐 exhibits the lagging and 

leading delay tap lengths, respectively. GMP has been applied choosing 𝐾𝑎=𝐾𝑏=𝐾𝑐= 𝐾, 

𝑄𝑎=𝑄𝑏=𝑄𝑐= 𝑄 and 𝑅𝑏 = 𝑅𝑐 = 𝑅. 

The main objective of the predistorter is to minimize the error (𝑒(𝑛) = 𝑧𝑝(𝑛) − 𝑥(𝑛)) between 

the 𝑧𝑝(𝑛) and the input 𝑥 of the RoF system.  

() 

(4.1) 
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4.1.1.3 Estimation Algorithm 

There are number of least squares (LS) algorithm for estimation of model coefficients that take 

the linear weighting of nonlinear signals [4.18-4.21]. The formulation of the estimation initiates 

with collecting the coefficients e.g., 𝑐𝑘𝑞, 𝑑𝑘𝑞𝑟and 𝑒𝑘𝑞𝑟 in to a R × 1 vector 𝒗. 𝑅 represents the total 

number of coefficients. 𝒗 means  a signal whose time will sample over the same period. Considering 

(2), coefficients 𝑐21 denotes the signal 𝑥(𝑛 − 1)|𝑥(𝑛 − 1)|2. 𝒁 characterizes the collection of all 

such vectors into a 𝑁x 𝑅 matrix. Once the convergence condition is obtained, the output of the 

predistorter training block becomes:  𝑧𝑝(𝑛) = 𝑥(𝑛) and hence 𝑧(𝑛) =  𝑢(𝑛). For total samples 𝑁, 

the output can be written in the following way: 

𝒛𝒑 = 𝒁𝒗 

Where 𝒛 = [𝑧(1), . . , 𝑧(𝑁)]𝑇, 𝒛𝒑 = [𝑧𝑝(1), . . , 𝑧𝑝(𝑁)]
𝑇
, while 𝒗 displays a R × 1 vector that 

contains the coefficients 𝑐𝑘𝑞, 𝑑𝑘𝑞𝑟and 𝑒𝑘𝑞𝑟.The LS solution will then become a solution for the 

equation expressed as: 

[𝒁𝐻𝒁]𝒗̂ = 𝒁𝐻𝒙 

The LS solution in (4) should minimize the cost function  

𝐶 = ∑|𝑧𝑝(𝑛) − 𝑥(𝑛)|
2

𝑁

𝑛=1

 

The advanced variations to Volterra series in form of MP, GMP and others increases the 

effectiveness of predistortion. However, this advanced variation can come into existence by 

increasing the memory depth and nonlinearity order. However, this will extortionate the 

computational complexity and this has to be weighed against other simpler expediencies. Moreover, 

the performance would generally be more efficient if the predistortion model has higher number of 

coefficients. This means that while selecting the model and its complexity, a smart tradeoff between 

complexity and performance can be made accordingly.  

4.1.1.4 Experimental Setup 

The experimental test bed utilized for demonstrating and validating the proposed DPD technique is 

shown in Figure 4.2. The baseband LTE signal of 5-MHz with 64 QAM modulation format is 

() 

() 

() 
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emulated through a domestic software on MATLAB compliant with 3GPP release TS 36.104 

V15.2.0 [4.22]. The signal is oversampled at 38.4 MSa/s. After this, the sampled sequence of signals 

passes through the DPD block, which is then RF-transformed at 800 MHz by a Vector Signal 

Generator (VSG) (see Figure 4.2) and is then sent to the optical link. The signal at the output of the 

RoF is then down-converted to baseband by a Rohde and Schwarz Vector Spectrum Analyzer (VSA) 

which provides this down coverted baseband received signal for post processing to PC workbench. 

VSA has frequency range between 2 Hz and 8 GHz. 

A Single Mode VCSEL (Optowell), that operate at 850-nm, which is followed by a fiber span 

(SSMF) and a PIN photodiode, having 2.5 GHz bandwidth and responsivity factor of 0.6 A/W 

constitutes the RoF link.  The SSMF for varying lengths has been utilized so that the effect of 

length on the DPD technique can be observed.  

 

 

 

 

 

 

 

 

 

 Figure 4.2: Experimental evaluation comprising of  DPD training and application phase. 

 

The process of predistortion is carried out in two steps. The first step is referred as a training phase. 

In training phase, the parameter identification for predistorter is carried out as referred in Figure 

4.2. During the training phase, reference LTE frames are utilized (see LTEREF block in Figure 4.2). 

Primarily, input and output signals are synchronized i.e. time aligned (see Sync. in Figure 4.2). 

This block finds the time delay estimation by utilizing the Synchronization Signals (Primary and 

Secondary) accessible in the LTE framework.  
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 Then, the predistorter coefficients are procured through the PD models utilized (see Train. in 

Figure 4.2). In the second step i.e. the testing phase, the training coefficients obtained in previous 

step are utilized to apply DPD in MATLAB. This means that all switches are turned to opposite 

position in Figure 4.2 and the testing is done for LTE frames followed by sampling, pre-distortion, 

and then uploaded to the Vector Signal Generator (VSG). Finally, they are channelized through 

the optical link and performance metrics are compared with the one without predistortion. It must 

be noted that the DPD testing and validation is not only evaluated for the reference LTE signals 

that were used not only for training, but also for generalized LTE frames. Details of parameters 

utilized is given in Table 4-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-1: System Parameters 

 

 

 

 

 

 

 

 

Optical Link 

Component 
Parameters Values 

Laser 

SM-VCSEL 

Wavelength= 850 nm 

𝐼𝐵𝑖𝑎𝑠 = 4 𝑚𝐴 

𝐼𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 2 𝑚𝐴 

RIN = -130 dB/Hz 

SSMF Fiber 

Maximum Length = 1.5 Km 

Attenuation = 2.5 
𝑑𝐵

𝑘𝑚
 

Photo- detector 
Responsivity = 0.6 A/W 

Bandwidth = 2.5 GHz 
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Figure 4.3: L-I-V characterization utilized in the evaluation of DPD experiments for SM-VCSEL. 

 

4.1.1.5 Results and Discussion  

      The efficacy of the linearization method is appraised and brought into discussion in this 

section. A primary attention should be given while selecting the parameters of the predistorter such 

as memory depth (𝑄) and nonlinearity order (𝐾).  

The L-I-V characteristic curve of SM-VCSEL utilized is illustrated in Figure 4.3. In SM-

VCSEL, the maximum saturation current (𝐼𝑠) is 5 mA while threshold current (𝐼𝑡ℎ) is 2 mA. The 

bias point (𝐼𝑏𝑖𝑎𝑠) is chosen at 4 mA.  

The predistorter complexity is dependent upon the model and order of 𝑄 and 𝐾 chosen. In order 

to show the trend of this fact, Figure 4.4 elaborates the experimental NMSE results for different 

choices of 𝑄 and 𝐾 using both models.  

The evaluation in Figure 4.4 has been done for varying orders of  𝑄 (0, 1, 2 & 3) and non-

linearity 𝐾 (3, 4, 5 & 6) by applying a higher  RF input power (0 𝑑𝐵𝑚). It can be perceived that 

GMP results in higher reduction of NMSE in comparison to MP at lower orders of 𝐾. From this 

initial finding, the optimal values 𝑄 = 1,2 and 𝐾 = 3 are chosen, resulting from a tradeoff 

between performance achieved and complexity required to the system. 
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Figure 4.4: Normalized Mean Square Error results with varying values of memory depth 𝑄 and Nonlinearity 
Order 𝐾. 

 

In addition to NMSE, to show the effect of increasing complexity of the proposed distorter, 

keeping the value of 𝑅 = 1 fixed, Figure 4.5 represents the ACPR for MP (𝑄 = 1,2 and 𝐾 = 3) 

and GMP (𝑄 = 1,2 and 𝐾 = 3) for 1 Km of SSMF. It is perceived that ACPR for MP model 

doesn’t satisfies 3GPP ACPR requirement for MP (both  𝑄 = 1,2 and 𝐾 = 3) after -5 dBm of 

input power. While, GMP with 𝑄 = 1and 𝐾 = 3 satisfies the requirement, however, it is exactly 

on the borderline at 0 𝑑𝐵𝑚 of RF input power.  

Considering GMP with 𝑄 = 2 and 𝐾 = 3, the ACPR is well below the requirement set by 

3GPP, hence the higher complexity enhances the performance.  This demonstration shows that the 

performance can be enhanced at the cost of higher complexity of the PD model.   

Similarly, the Power Spectral Density (PSD) of the received sequence is analyzed when both 

models are implemented. The length is fixed to 1 km and RF input power is 0 dBm. The results 

have been arranged for comparison of MP and GMP with same order of 𝐾 and 𝑄.  
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Figure 4.5: ACPR outcomes vs. input RF power. (𝑄=1,2, R=1 and 𝐾=3 for MP & GMP). 

 

Consider Figure 4.6(a), the DPD for received output signal is demonstrated for both models 

by fixing K=3 and Q=1. It is noticeable that GMP has higher reduction in spectral regrowth 

reduction as compared to MP. Then, in order to highlight the effect of increasing the complexity 

order, the PSD of GMP and MP are compared for 𝐾=3 and 𝑄=2 in Figure 4.6 (b). This shows that 

DPD for 𝐾=3 and 𝑄=2 is stronger as compared to 𝐾=3 and 𝑄=1 due to which spectral regrowth 

reduction in latter case is higher. Similarly, GMP for 𝐾=3 and 𝑄=2 results in ACPR of -44 dBc 

as compared to -37 dBc when GMP is utilized for (𝐾=3 and 𝑄=1). This substantiates that GMP 

has better ACPR reduction than MP. This conclusion seems justified due to the fact that GMP 

carries memory not only in the diagonal but also in the crossing terms. In light of this discussion 

and results in the Figure 4.4, 4.5 and 4.6, GMP with optimal values  𝑄 = 2 and 𝐾 = 3  keeping 

𝑅 = 1 fixed have been selected from a tradeoff between performance achieved and complexity 

required to the system.  
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Figure 4.6: PSD evaluation of output signal without and with DPD (MP/GMP) 0 𝑑𝐵𝑚 for 1 Km SSMF 

with SM-VCSEL having: (a) Q=1, R=1, K=3 and (b) Q=2, R=1, K=3.  

 

In Figure 4.7, the ACPR experimental outcomes for several RF input powers (𝑃𝑖𝑛) are reported 

for SM-VCSEL with SSMF. There are three different cases discussed: Patch cord (back to back), 

1 km fiber length and 1.5 km fiber length case. By increasing the length of the fiber, the leakages 

in adjacent channels rise and therefore the worsening occurs with higher lengths. By employing 

linearization, it can be seen that fiber length with different lengths have different linearization 

profiles. For instance, let’s consider 1.5 km length case, the ACPR without linearization at 0 

𝑑𝐵𝑚 is -18 𝑑𝐵𝑐, and with linearization employed, it is reduced by 22 𝑑𝐵𝑐 to -40 𝑑𝐵𝑐. 

 

 

 

 

 

 

 

 

 

Figure 4.7: ACPR results vs. varying input signal power using (𝑄=2 and 𝐾=3 for GMP) for SM-VCSEL with SSMF. 

(b) (a) 
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It can be deduced from the trend in Figure 4.8 that the proposed DPD technique linearizes the 

length cases as well. Indeed, linearizing the laser nonlinearity is primary aim of the short link 

lengths, however, in addition to an optical channel consisting in a fiber patch cord (few meters of 

length), the proposed technique works efficiently for longer fiber lengths. 

It must be put into evidence that linearization method has been evaluated for conditions which 

are very critical such as high PAPR and  𝐼𝑏𝑖𝑎𝑠 close to the threshold with optimal values of K and 

Q. If these critical conditions are relaxed, this will lead to better linearization performance of the 

predistorter.  

Figure 4.8 represents the AM-AM and AM-PM statistics with and without the linearization 

employed for the RoF link consisting of 1 Km SSMF and SM-VCSEL. In Figure 4.8 (a), The 

normalized magnitude with respect to output is shown for the case with and without DPD. With 

DPD, the curve is a straight line. Similarly, It can be seen in Figure 4.8 (b) that after DPD, the 

AM/PM is now a straight line and the phase difference is reduced to within 2 degrees. 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: (a) AM-AM and (b) AM-PM plots for SM-VCSEL at 1 km of SSMF for 0 dBm of input RF 
power with and without DPD.  

 

Figure 4.9 shows the EVM computation of SM-VCSEL for 1 km length utilizing MP and GMP for 

𝐾 = 3, 𝑄 = 2. It is understandable that EVM reduction with GMP is higher than MP. 

 

(a) (b) 
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Figure 4.9: EVM results vs. varying input signal power using (𝑄=2 and 𝐾=3 for GMP) for SM-VCSEL 
with SSMF. 

 

Table 4.2 reports the results of the proposed technique, referred to 1 km of link length with 0 dBm. 

The results are summarized for MP and GMP with 𝐾=3 and 𝑄=2 in terms of ACPR and 

NMSE. The suggested technique linearizes the SM-VCSEL link and MM-VCSEL. Indeed, Table 

4.2 suggests that linearization with GMP is better than MP for link length of 1 km (SM for SM-

VCSEL). The reduction in ACPR and NMSE for SM-VCSEL is 22 and 20 dB respectively.  

 

Table 4-2: Linearization performance for proposed DPD (𝑃𝐼𝑁= 0 dBm, Link length= 1 km) 

 

 

 

 

 

 

 

4.1.2 Linearization of MM-VCSEL-MMF based RoF systems 

It was explained in the introduction of Sec. 4.1 that the use of VCSELs operating at short 

wavelengths is a relatively consolidated choice finding applications in multi variate scenarios. Not 

only SM-VCSELs but also MM-VCSELs have applications in realistic scenarios e.g. in 

combination with MMFs within data centers [4.4]. 

 

Model 

SM-VCSEL 

NMSE (dB) ACPR (dBc) EVM (%) 

Without  DPD -19.86 -20 6.8 

With GMP (K=3, Q=2) -41.548 -44 
4.7 

With MP (K=3, Q=2) -31.25 -35 3.4 
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However, all these systems are prone to impairments of the opto-electronic devices. These 

nonlinearities can also arise due to little dynamics of VCSELs, e.g., when high Peak-to-Average 

Power Ratio (PAPR) signals are transmitted and can have an important role especially for multi-

channel transmission. They indeed can cause high in and out of band distortion, which leads to 

higher interference among near channels. Therefore, it is necessary to linearize these links and 

diminish the non-linearities. 

In this section, we will discuss in detail the linearization method implied for MM-VCSEL-MMF 

based RoF systems. 

4.1.2.1 Experimental Setup 

Figure 4.10 shows a block diagram of the experimental testbed used for the validation of the 

proposed DPD technique for MM-VCSEL. A MM-VCSEL, operating at 850-nm wavelength, is 

followed by a MMF and a PIN photodiode, with responsivity of 0.6 A/W and 2.5-GHz bandwidth. 

The baseband LTE 5-MHz signals, emulated according to 3GPP Release 13 through a local 

MATLAB software with 64 QAM format, are oversampled (ADC in Figure 4.10) at a rate of 38.4 

MSa/s. The sampled signals pass through the DPD block, are RF-converted (800 MHz) by an 

Agilent N5182B MXG X-Series Signal Generator (see Figure 4.10) and sent to the optical link.  

In the DPD training phase, reference LTE frames are utilized (LTEREF block in Figure 4.10), 

the input and output sequences are first synchronized in time (Sync. block in Figure 4.10). This is 

accomplished through an in-house developed algorithm, which finds the cross-correlation for             

time delay estimation, by capitalizing the Primary Synchronization Signals and Secondary 

Synchronization Signals present in the LTE frame. The DPD coefficients are then obtained (Train. 

block in Figure 4.10) through an in-house developed MATLAB program. 

In the DPD testing phase (Figure 4.10 with all switches turned to opposite position), different 

LTE frames are sampled, predistorted, uploaded to the Signal Generator and transmitted through 

the optical link. ACPR and NMSE are then evaluated and compared to the corresponding case 

when no DPD is applied. It is worth noticing that the DPD is tested not only for the ref signals that 

were used for training, but also for general LTE frames. 
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Figure 4.10: Experimental evaluation comprising of  DPD training and application phase. 

 

 

The reason performing the test with reference to the MM-VCSEL-MMF based RoF 

configurations is related to the fact that, according to the particular applicative context, may make 

it preferable with respect to the SM-VCSEL-SMF based RoF systems. Indeed, the SM-VCSEL-

SSMF based link can indeed feature convenience in terms of cost and flexibility, because of the 

lower cost per meter of SSMF with respect to MMF, and because of the huge transmission 

bandwidth of the SSMF. The MM-VCSEL-MMF based link can take advantage of a typically 

higher dynamic range and emitted/coupled power of the MM-VCSEL over MMF with respect to 

the SM-VCSEL over SSMF case.  

Table 4.3 contains the parameters utilized in the experimental bench in Sec. 4.1.2.1. 
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Table 4-3: System Parameters utilized in MM-VCSEL-MMF based RoF system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.2.2 Results and Discussion  

      The efficacy of the linearization method is discussed and brought into discussion in this section. 

As discussed previously, primary attention should be given while selecting the parameters of the 

predistorter such as memory depth (𝑄) and nonlinearity order (𝐾). The L-I-V characteristic curve 

of  MM-VCSEL utilized are illustrated in Figure 4.11. In MM-VCSEL, the maximum saturation 

current (𝐼𝑠) is 8 mA and threshold current (𝐼𝑡ℎ) is 0.8 mA. The bias point (𝐼𝑏𝑖𝑎𝑠) is chosen to be 4 

mA. The signals having higher PAPR will give rise to higher distortions owing to small dynamics.   

 

 

 

 

 

 

 

Figure 4.11: L-I-V characterization utilized in the evaluation of DPD experiments for  MM-VCSEL. 

 

Optical Link 

Component 
Parameters Values 

Laser 

MM-VCSEL 

Wavelength= 850 nm 

𝐼𝐵𝑖𝑎𝑠 = 4 𝑚𝐴 

𝐼𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.8 𝑚𝐴 

RIN = -125 dB/Hz  

Fiber 

MMF 

Maximum Length = 1 km 

Attenuation = 2.5 
𝑑𝐵

𝑘𝑚
 

Photo- detector 
Responsivity = 0.6 A/W 

Bandwidth = 2.5 GHz  
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The PAPR of signal utilized is 9.1 dB. In Figure 4.12, the PSD of MM-VCSEL for 1 km utilizing 

𝐾 = 3, 𝑄 = 2 is shown. Since GMP results in better reduction than MP, we have shown results 

with GMP only for simplicity. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12: PSD comparison between MP and GMP using DPD experiments for  MM-VCSEL. 

 

 

In Figure 4.13, the ACPR of MM-VCSEL with four different lengths is shown up to 1 km. For 

instance, 1 km length, the uncorrected ACPR at 0 dBm is around -22 dBc while the linearization 

results in a significant reduction to -36 dBc. It can be seen from the trend in Figure 4.13 that the 

proposed DPD technique linearizes the length cases as well. Indeed, linearizing the laser 

nonlinearity is primary aim of the short link lengths, however, in addition to an optical channel 

consisting in a fiber patch cord (few meters of length), the proposed technique works efficiently 

for longer fiber lengths. 
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It must be put into evidence that linearization method has been evaluated for conditions which 

are very critical such as high PAPR and  𝐼𝑏𝑖𝑎𝑠 close to the threshold with optimal values of K and 

Q.  We have chosen the biasing point of VCSEL by intention so that it can be shown that DPD is 

operational even for critical conditions. Indeed, if these critical conditions are relaxed, this will lead 

to better linearization performance of the predistorter.  

Figure 4.13: ACPR results vs. varying input signal power using (𝑄=2 and 𝐾=3 for GMP) for MM-VCSEL 

with MMF.  

 

Similarly order of linearization in terms of EVM is expressed in Figure 4.14. It is visible that MM-

VCSEL-MMF at 1 km can be linearized well in the limits by utilizing MP/GMP architecture, 

though, GMP surpasses the linearization from MP. 

 

 

 

 

 

 

 

 

Figure 4.14: EVM results vs. varying input signal power using (𝑄=2 and 𝐾=3 for GMP) for MM-VCSEL 
with MMF. 
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Table 4.4 reports the results of the proposed technique, referred to 1 km of link length with 0 

dBm. The results are summarized for MP and GMP with 𝐾=3 and 𝑄=2 in terms of ACPR and 

NMSE. 

 

Table 4-4: Linearization performance for proposed DPD for MM-VCSEL-MMF 

(𝑃𝐼𝑁= 0 dBm, Link length= 1 km) 

 

The reduction in ACPR and NMSE for MM-VCSEL 14 and 16 dB respectively.  

The improvement for MM-VCSEL is different from SM-VCSEL (see sec. 4.1.1.5) because the 

nonlinearities of two lasers are different. It should be noted that MM-VCSEL can achieve higher 

linearization by selecting appropriate sets of coefficients.  

4.1.3 Discussion and Conclusions 

The time devoted to the periodical re-training of the Digital Predistortion system would in any 

case remain negligible with respect to the time of normal operation of the RoF system, still allowing 

its adoption in real applicative scenarios. Similarly, it is possible to utilize an additional photodiode 

in a base station and feedback the laser nonlinearities and approximating that laser is the main cause 

of nonlinearity in the RoF link. 

Note also that the proposed predistortion method can be applied also to LTE signals of larger 

bandwidth. The polynomial models nonetheless would require higher values of 𝐾 & 𝑄 with respect 

to the case presented. 

Considering the LTE signal bandwidth and higher modulation format, they would result in a 

higher PAPR of the transmitted RF signal [4.23]. At the same time, the increase in bandwidth also 

Model 

MM-VCSEL 

NMSE (dB) ACPR (dBc) EVM (%) 

Without DPD -17.63 -22.04      6.45 

With GMP (K=3, Q=2) -33.18 -36 2.1 

With MP (K=3, Q=2) -30.14 -29       3.4 



 

92 

determines a correspondent increase in the overall base-band memory of the system to be taken 

into account by the model. 

The polynomial models proposed can still be applied in these operating conditions. They 

nonetheless would require higher values of the 𝐾 & 𝑄 with respect to the case presented in the 

submitted work. These requirements would impact the cost of the DPD implementation, which 

would be higher due to the higher sampling rate of ADCs, and higher computing capabilities of 

FPGAs. 

This section proposed a Digital Pre-Distortion mechanism for linearizing VCSEL based RoF links 

with different characteristics specifically link lengths. The proposed technique demonstrates a 

digital predistorter based on MP and GMP. The experiments have been prosecuted for systems 

based on SM-VCSEL followed by SSMF and on MM-VCSEL followed by MMF. The signal 

transmitted was a 5-MHz Bandwidth 64 QAM LTE signals and different link lengths have been 

considered. The performance has been explored in terms of ACPR and NMSE showing that for a 

link length up to 1 km, both SM-VCSEL and MM-VCSEL can be linearized in good proportion. 

Particularly, utilizing SM-VCSEL, GMP results in 22 dBs of reduction in ACPR while MM-

VCSEL results in 14 dBs of reduction in spectral regrowth. The results testify an encouraging link 

performance with low complexity of the predistorter model. It has been demonstrated for the first 

time that GMPs achieves superior linearization as compared to MP for link lengths up to 1.5 km.  

4.2 Linearization of DFB-SSMF based RoF links 

As discussed earlier, RoF systems offer efficient and worthwhile solutions on enhancing the 

coverage and capacity of wireless links both in long and short-reach networks [4.24-4.26]. 

Besides their attractive features, such as low-loss, broad bandwidth and impunity to 

electromagnetic interventions, RoF systems are prone to nonlinearities. In short range networks, 

the nonlinearities due to the combination of fiber chromatic dispersion and laser frequency chirp 

are usually negligible [4.27]. However, the non-idealities owing to laser and possibly to 

photodiode are of paramount importance. Consequently, the quality of transmission is degraded 

and interference with near channels is aggravated. Orthogonal Frequency Division Modulated 

(OFDM) signals, like e.g. Long-Term Evolution (LTE) and fifth generation (5G) ones, are prone 

to such distortions ascribed to a high peak-to average power ratio (PAPR) in their signal 

envelope. 
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In order to improve the linearity of intensity modulated/direct detection (IM/DD) RoF 

systems, we present in this section Indirect Learning Architecture (ILA) based predistortion 

identification for increasing the linearization of such links. In this section, referring to 

Distributed Feedback (DFB) laser based RoF links, the advantages of the Decomposed Vector 

Rotation (DVR) technique will be shown, compared to Memory Polynomial (MP) and 

Generalized Memory Polynomial (GMP) methods that have been consolidated in details in 

Section 4.1. Section 4.1.1 discusses modeling methodology for ILA. Section 4.2.2 discusses 

experimental setup for the DFB based DPD method. In Section 4.2.3, the results are analyzed by 

means of reduction in Normalized Mean Square Error (NMSE), Adjacent Channel Power Ratio 

(ACPR) and Error Vector Magnitude (EVM). Section 4.2.4 concludes this section. 

4.2.1 Modeling Methodology 

The ILA used for the evaluation of DPD is depicted in Figure 4.15. The predistorter 

coefficients are computed during the training phase. The digitized baseband output of the RoF 

system 𝑦(𝑛) feeds the Pre-Distorter Training block through 𝑧(𝑛) =
𝑦(𝑛)

𝐺
. Here 𝐺 represents the 

link gain. The coefficients estimation takes place using any least-squares-based algorithm. Once 

the error function 𝑒(𝑛) converges, the coefficients are passed to the Digital Pre-Distorter block. 

 

 

 

 

 

 

 

Figure 4.15: DPD schematic showing RoF system utilizing Indirect Learning Architecture 

A. Decomposed Vector Rotation Model 

The Decomposed Vector Rotation model (DVR) architecture was suggested for the 

linearization of Power Amplifiers (PAs) [4.28] and a comparative study for PAs was implied 
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 (4.7) 

recently in [4.29]. DVR is an adapted version of the canonical piecewise linear (CPWL) functions 

to handle complex valued signal. Although, generally for RoF, and DFBs in particular, the 

comparison between DVR and MP/GMP hasn’t been so far evaluated. To find a balance between 

implementation complexity and performance efficiency in the RoF links, the use of a modified 

DVR model is here proposed, which is syncopated version of the model proposed. The truncated 

version considers only the linear and first order basis function. The idea is to show that the 

modified DVR model having low complexity is efficient enough to provide better linearization 

as compared to MP/GMP models for RoF link linearization.The simple version of DVR is 

expressed as: 

𝑧𝑝(𝑛) = ∑ 𝑎𝑖|𝑧(𝑛 − 𝑖)|

𝑄𝐷𝑉𝑅

𝑖=0

 

+ ∑ ∑ 𝑎𝑘𝑖,𝑗

𝑄𝐷𝑉𝑅

𝑖=0

||𝑧(𝑛 − 𝑖)| − 𝛽𝑘|𝑒
𝑗𝜃(𝑛−𝑖)

𝐾𝐷𝑉𝑅

𝑘=1

 

where 𝑧𝑝(𝑛) and 𝑧(𝑛) are the DPD output and input respectively. Similarly, 𝑎𝑖 and 𝑎𝑘𝑖,𝑗  are 

the model coefficients. 𝑄𝐷𝑉𝑅 represents the memory depth, 𝐾𝐷𝑉𝑅 represents elements in the 

partition while 𝛽𝑘’s show thresholds that define the partition i.e. 𝛽𝑘 =
𝑘

𝐾𝐷𝑉𝑅
 for 𝑘 = 1, 2, . . 𝐾𝐷𝑉𝑅.  

B. Memory Polynomial Model 

The second predistorter model implemented is a bargain between complete memory and 

memoryless structure due to a diagonal memory that it possesses. The Pre-Distorter Training 

block output will be: 

𝑧𝑝(𝑛) = ∑ ∑ 𝑎𝑘𝑞𝑧(𝑛 − 𝑞)𝑄−1
𝑞=0 |𝑧(𝑛 − 𝑞)|𝑘𝐾−1

𝑘=0   

while 𝐾 shows non-linearity order, 𝑄 represents memory depth,  𝑧 is the input of predistorter 

and 𝑎𝑘𝑞 are the model coefficients. 

C. Generalized Memory Polynomial Model 

      Generalized Memory Polynomial architecture was recently applied to RoF based VCSELs 

in [4.16,4.30]. The GMP is expressed as: 

   (4.6) 
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(4.8) 𝑧𝑝(𝑛) = ∑ ∑ 𝑎𝑘𝑞𝑧(𝑛 − 𝑞)

𝑄𝑎−1

𝑞=0

|𝑧(𝑛 − 𝑞)|𝑘

𝐾𝑎−1

𝑘=0

 

   + ∑ ∑ ∑ 𝑏𝑘𝑞𝑟
𝑅𝑏
𝑟=1 𝑧(𝑛 − 𝑞)

𝑄𝑏−1
𝑞=0 |𝑧(𝑛 − 𝑞 − 𝑟)|𝑘

𝐾𝑏
𝑘=1  

   + ∑ ∑ ∑ 𝑐𝑘𝑞𝑟
𝑅𝑐
𝑟=1 𝑧(𝑛 − 𝑞)

𝑄𝑐−1
𝑞=0 |𝑧(𝑛 − 𝑞 + 𝑟)|𝑘

𝐾𝑐
𝑘=1  

here 𝑧𝑝(𝑛) and 𝑧(𝑛) are the DPD output and input respectively. likewise, 𝑎𝑘𝑞 , 𝑏𝑘𝑞𝑟 and 𝑐𝑘𝑞𝑟 

denotes the complex coefficients for the signal and the envelope; signal and lagging envelope and 

signal and leading envelope respectively. 𝐾𝑎,𝐾𝑏,𝐾𝑐 are the orders of nonlinearity, 𝑄𝑎, 𝑄𝑏 , 𝑄𝑐 are 

the memory depths, 𝑅𝑐 symbolizes the leading and 𝑅𝑏 denotes the lagging delay tap lengths, 

respectively. 

In order to perform an impartial juxtaposition among the three models, once the parameters 

𝐾 and 𝑄 are chosen in applying the MP model, GMP and DVR models are applied choosing 

respectively 𝐾𝑎=𝐾𝑏=𝐾𝑐= 𝐾, 𝑄𝑎=𝑄𝑏=𝑄𝑐= 𝑄, and 𝐾𝐷𝑉𝑅=𝐾, 𝑄𝐷𝑉𝑅= 𝑄. 

4.2.2 Experimental Setup 

The experimental testbed utilized is presented in Figure 4.16. A Multi Quantum Well (MQW) 

DFB laser, working at 1310-nm wavelength succeeds a Standard Single Mode Fiber (SSMF) of 

1.5 km having attenuation equal to 0.4 dB/km and negligible chromatic dispersion. The optical 

signal detection is accomplished by a PIN photodiode. The PIN photodiode has a bandwidth of 

2.5 GHz and 0.6 A/W of responsivity. The biasing current was 𝐼𝑏𝑖𝑎𝑠 = 15 𝑚𝐴, setting the power 

consumption to an acceptable level, while being not too close to the threshold current 𝐼𝑡ℎ~5.5𝑚𝐴.  

The LTE baseband signal of 5 MHz with 256 QAM modulation is emulated through a 

domestic software on MATLAB compliant with 3GPP release TS 36.104 V15.2.0. The signal is 

oversampled at a scale of 38.4 MSa/s. The sampled signals pass through the DPD block and are 

then upconverted at 1 GHz utilizing an Agilent N5182B MXG Vector Signal Generator and then 

transmitted to the optical link. The signal received through the vector signal analyzer is passed 

through the training phase of the DPD. Firstly, the LTE reference frames are employed for 

synchronizing the input and output signals (Sync. block in Figure 4.16).  
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Figure 4.16: Schematic of Experimental testbed. Train. Phase (yellow units active). By changing the 

position of switches (green block active) DPD implemented for many LTE frames. 

This block finds the time delay evaluation by utilizing the Synchronization Signals (Primary 

and Secondary) accessible in the LTE framework. Then, the predistorter coefficients are procured 

through the PD models utilized (see Train. in Figure 4.16). For the DPD validation phase (all 

switches move to opposite direction in Figure 4.16), testing is done for LTE frames followed by 

sampling, pre-distortion, and then uploaded to the Vector Signal Generator (VSG). It is noteworthy 

that the DPD is validated for general frames of LTE.  

4.2.3 Experimental Results and Discussion 

Figure 4.17 shows a comparison of experimental NMSE results using MP, GMP and DVR. 

In case of MP and GMP, the results have been evaluated for varying 𝑄 (1, 2 and 3) and non-

linearity orders 𝐾 (3, 4, 5 and 6) while for DVR, same orders of 𝑄 are evaluated for number of 

elements in the partitions 𝐾. The average value of RF input power is 𝑃𝐼𝑁 = 0 𝑑𝐵𝑚.  

It is perceptible from Figure 4.17 that DVR bring about higher mitigation of NMSE as 

compared to MP/ GMP. Considering that higher values of 𝑄 and 𝐾 lead to lower values of NMSE 

at the expense of an increased computational time, the average value of RF input power is 𝑃𝐼𝑁 =

0 𝑑𝐵𝑚. Taking into account that higher values of 𝑄 and 𝐾 lead to lower values of NMSE at the 

expense of an increased computational time, the optimal values 𝑄 = 2 , 𝐾 = 3 have been selected 

to proceed in the comparison among the architectures. 
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Figure 4.17: Normalized Mean Square Error results for different 𝐾 and 𝑄. 

In Figure 4.18, the ACPR experimental outcomes for varying input powers with and without 

DPD are reported, confirming that also in terms of reducing the ACPR values; the linearization 

performance proves better using DVR than GMP/MP. 

Figure 4.18: ACPR for varying input power for MP/GMP/DVR 

Figure 4.19 details the Power Spectral Density (PSD) of the output signal with and without the 

different DPDs for 𝑃𝐼𝑁 = 0 𝑑𝐵𝑚. As expected, DVR results in lower spectral regrowth with respect 

to MP/GMP.  
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Figure 4.19: PSD for 𝑷𝑰𝑵 = 0 𝒅𝑩𝒎 in the different considered cases. 

Figure 4.20 shows the EVM comparison with and without DPD by sweeping the input power. 

DVR results in better linearization than MP/GMP at higher RF input powers as well.  

Figure 4.20: EVM for varying input power for MP/GMP/DVR 

 

Table 4.5 summarizes quantitatively the shown experimental results for 𝑄 = 2 , 𝐾 = 3. Note 

that the proposed DPD is functional for longer link distances and higher bandwidth provided that 

model is extracted with right 𝑄 and/or 𝐾. 
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Table 4-5: Comparison among the utilized DPD models for PIN=0dBm 

 

Finally, to further highlight the performance of the DVR model, in Figure 4.21, the comparison 

is presented in terms of normalized magnitude (AM/AM) and normalized phase (AM/PM) 

characteristics with and without its application where the AM/AM curve is linear, while the phase 

difference is highly reduced. 

 

Figure 4.21: Effect of DVR-based DPD on AM/AM and AM/PM curves for DFB based RoF links 

 

 

Model NMSE (dB) ACPR (dBc) 

 

EVM (%) 

No DPD  -19.10 -27.25 8.2 

  MP-DPD  -35.15  -44.56 2.36 

  GMP-DPD  -40.14 -47.62 
1.9 

DVR-DPD -42.10 -53.45 1.65 

(a)                                              (b) 
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4.2.4 Conclusions 

A novel evaluation has been experimentally carried out between DPD identification models for 

DFB based RoF links. In particular, the system performance in terms of NMSE, ACPR and EVM 

are estimated by means of classical MP and GMP models and with the DVR one, based on 

segmentation approach. For DFB based RoF links, the results establish that a promising link 

performance improvement is obtained already at low non-linearity order, with all the three 

models. It has been however shown that DVR allows to obtain a higher degree of linearization 

for all the considered quantities. 

4.3 Experimental Demonstration on Digital Predistortion for Multi-Channel Radio 

over Fiber Systems 

  The diversity of the wireless services have been increasing within the past decade. Multi standard 

and multi band technologies are getting a lot of importance and preferred for wireless operations. 

In case of distributed antenna systems (DAS), radio over fiber (RoF) is a viable technology due 

to their benefits such as front haul fiber sharing, scalability and low loss transmission. The RoF 

technology plays a major role in the realization of the physical layer of 3G and 4G systems and 

is expected to form the cornerstone of the future fifth generation of wireless networks. Multi-band 

techniques are widely implied due to potential cost and energy saving. However, these networks 

are prone to inherent nonlinearities such as laser chirp, in band and cross band non-linear 

distortions and optical link impairments. For multi-band RoF systems, the modulation 

nonlinearities can result in both in-band and cross-band nonlinear distortions, which ultimately 

limits the link performance and radiofrequency (RF) power transmitting efficiency [4.32-4.34]. 

In this section, we propose a novel simplified multi-band DPD technique for such multi band RoF 

systems. In the proposed technique, instead of processing the multi-band RF signal as a single 

entity, the DPD is performed on the baseband signal of each individual RF band before 

frequency up-conversion and RF combination. The compensation function is synthesized for each 

RF band by involving the nonlinear impacts and memory effects from all existing RF bands.  

The proposed technique provides the following advantages compared to the 

previously published techniques:  

i. The nonlinearities compensation is done for each band individually. 

ii. DPD technique has dependency over frequency offset. 
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This section is organized as follows. Section 4.3.1 describes and demonstrates the theoretical 

understanding about the principle of the proposed architecture is described comprehensively and 

the mathematical theory behind the proposed model is explained accordingly. Finally, Section 

4.3.2 reports the measurement results and performance improvements using the proposed 

architecture. 

 

4.3.1 Review of the developed multi-dimensional DPD models 

The indirect learning architecture utilized for multi-channel DPD is shown 

in Figure 4.22. 𝑢𝑖(𝑛) ( i = 1, 2) denotes the original baseband complex signal of the ith band. 

The output of DPD block which becomes the input to RoF link is 𝑥𝑖(𝑛) while the output of RoF 

link is referred as  𝑦𝑖(𝑛). The digital predistorter indeed has an inverse transfer function with 

respect to the RoF link. 𝐺𝑖 is the gain of the RoF link for the 𝑖𝑡ℎ band.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: Schematic for Dual Channel DPD methodology for RoF System 

 

We will discuss the PD models and their forms for the multi-channel cases in the following 

sections. As both the input signals play their part in model identification process, therefore, a new 

model identification model has been discussed. The model considers the dual baseband input with 

𝐾 as nonlinearity order and 𝑄 as memory depth.  

The general form of Volterra baseband DPD is given as: 
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𝑦(𝑛)

= ∑ 𝜆𝑚1
1 𝑥𝑛−𝑚1

+ ∑ ∑ ∑ 𝜆𝑚1𝑚2𝑚3
3 𝑥𝑛−𝑚1

𝑀

𝑚3=0 

𝑀

𝑚2=𝑚1

𝑀

𝑚1=0

𝑀

𝑚1=0

𝑥𝑛−𝑚2
𝑥𝑛−𝑚3
∗

+ ∑ ∑ ∑ ∑ ∑ 𝜆𝑚1𝑚2𝑚3𝑚4𝑚5
5 𝑥𝑛−𝑚1

𝑥𝑛−𝑚2
𝑥𝑛−𝑚3

𝑥𝑛−𝑚4
∗ 𝑥𝑛−𝑚5

∗

𝑀

𝑚5=𝑚4

𝑀

𝑚4=0

𝑀

𝑚3=𝑚2

𝑀

𝑚2=𝑚1

𝑀

𝑚1=0
 

 

The form presented in Eq. (4.9) is a truncated baseband representation in time-discrete domain 

for any nonlinear RF PD. The monomials in the Volterra are all odd order. These monomials are 

product of delayed inputs and their complex-conjugates, with one decreasing complex conjugate 

factor. The monomials with even order contain signals that fall outside the band of interests and 

are filtered away [4.35].  

In order to derive the Generalized Polynomial model for dual band input, let us assume that 

𝑥1(𝑛) and 𝑥2 (𝑛) are the baseband input signals at different carrier frequencies. Such signal can 

be represented as: 

𝑥𝑛 = 𝑥1(𝑛)𝑒
𝑗𝜔0𝑛 + 𝑥2(𝑛)𝑒

−𝑗𝜔0𝑛 

Substituting (4.10) , the following linear terms are obtained: 

𝑥𝑛−𝑚1
= 𝑥1,𝑛−𝑚1

𝑒𝑗𝜔0(𝑛−𝑚1) + 𝑥2,𝑛−𝑚1
𝑒−𝑗𝜔0(𝑛−𝑚1) 

The 3rd order terms obtained by inserting (4.11) in (4.10) is given as: 

𝑥𝑛−𝑚1
𝑥𝑛−𝑚2

𝑥𝑛−𝑚3
∗ = 𝑥1,𝑛−𝑚1

𝑒𝑗𝜔0(𝑛−𝑚1) + 𝑥2,𝑛−𝑚1
𝑒−𝑗𝜔0(𝑛−𝑚1). 

𝑥1,𝑛−𝑚2
𝑒𝑗𝜔0(𝑛−𝑚2) + 𝑥2,𝑛−𝑚2

𝑒−𝑗𝜔0(𝑛−𝑚2)(𝑥1,𝑛−𝑚3

∗ 𝑒𝑗𝜔0(𝑛−𝑚3) + 𝑥2,𝑛−𝑚3

∗ 𝑒−𝑗𝜔0(𝑛−𝑚3)) 

 

= 𝑒−𝑗𝜔𝑜𝑛(𝑥2,𝑛−𝑚1 𝑥2,𝑛−𝑚2 𝑥2,𝑛−𝑚3 
∗ 𝑒𝑗(𝑚1+𝑚2−𝑚3) + 𝑥2,𝑛−𝑚1 𝑥1,𝑛−𝑚2 𝑥1,𝑛−𝑚3 

∗ 𝑒𝑗(𝑚1−𝑚2+𝑚3)

+ 𝑥1,𝑛−𝑚1 𝑥2,𝑛−𝑚2 𝑥1,𝑛−𝑚3 
∗ 𝑒𝑗(−𝑚1+𝑚2+𝑚3) 

+𝑒−3𝑗𝜔𝑜𝑛(𝑥2,𝑛−𝑚1 𝑥2,𝑛−𝑚2 𝑥1,𝑛−𝑚3 
∗ 𝑒𝑗(𝑚1+𝑚2+𝑚3)) 

+𝑒3𝑗𝜔𝑜𝑛(𝑥1,𝑛−𝑚1 𝑥1,𝑛−𝑚2 𝑥2,𝑛−𝑚3 
∗ 𝑒𝑗(−𝑚1−𝑚2−𝑚3)) 

+𝑒𝑗𝜔𝑜𝑛(𝑥1,𝑛−𝑚1 𝑥1,𝑛−𝑚2 𝑥1,𝑛−𝑚3 
∗ 𝑒𝑗(−𝑚1−𝑚2+𝑚3) + 𝑥1,𝑛−𝑚1 𝑥2,𝑛−𝑚2 𝑥2,𝑛−𝑚3 

∗ 𝑒𝑗(−𝑚1+𝑚2−𝑚3)

+ 𝑥2,𝑛−𝑚1 𝑥1,𝑛−𝑚2 𝑥2,𝑛−𝑚3 
∗ 𝑒𝑗(𝑚1−𝑚2−𝑚3)) 

 

The higher order terms get complicated with increasing order. However, it can be predicted 

from 3rd order expression that there is 1 positive and 2 negative delays in the exponent as these 
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are the components which occur in interesting frequency region. The complete series expression 

consists of the weighted sum of all terms of all orders and delays as represented in : 

 

     𝑦𝑛 = ∑ 𝑎
𝑚1
(1)

𝑀

𝑚1=0

𝑥1,𝑛−𝑚1
 

+ ∑ ∑ ∑ 𝑎𝑚1𝑚2𝑚3

(3) (𝑥1,𝑛−𝑚1
𝑥1,𝑛−𝑚2

𝑥1,𝑛−𝑚3

∗ 𝑒𝑗(−𝑚1−𝑚2+𝑚3)

𝑀

𝑚3=0

𝑀

𝑚2=𝑚1

𝑀

𝑚1=0

+ 𝑥1,𝑛−𝑚1
𝑥2,𝑛−𝑚2

𝑥2,𝑛−𝑚3

∗ 𝑒𝑗(−𝑚1+𝑚2−𝑚3) + 𝑥2,𝑛−𝑚1
𝑥1,𝑛−𝑚2

𝑥2,𝑛−𝑚3

∗ 𝑒𝑗(𝑚1−𝑚2−𝑚3)) 

 

  

+ ∑ ∑ ∑ ∑ ∑ 𝑎𝑚1𝑚2𝑚3𝑚4𝑚5

(5) (𝑥1,𝑛−𝑚1
𝑥1,𝑛−𝑚2

𝑥1,𝑛−𝑚3
𝑥1,𝑛−𝑚4

∗ 𝑥1,𝑛−𝑚5

∗ 𝑒𝑗(−𝑚1−𝑚2−𝑚3+𝑚4+𝑚5)

𝑀

𝑚5=𝑚4

𝑀

𝑚4=0

𝑀

𝑚3=𝑚2

𝑀

𝑚2=𝑚1

𝑀

𝑚1=0

+ 𝑥1,𝑛−𝑚1
𝑥1,𝑛−𝑚2

𝑥2,𝑛−𝑚3
𝑥2,𝑛−𝑚4

∗ 𝑥1,𝑛−𝑚5

∗ 𝑒𝑗𝜔0(−𝑚1−𝑚2+𝑚3−𝑚4+𝑚5)) 

 

+⋯ 

There is a possibility that we can simplify the complex conjugate terms. Since, we enforce 

that all complex-conjugate terms to have same delay as that of non-complex-conjugates. This will 

simplify 𝑥𝑛−𝑚𝑥𝑛−𝑚
∗ = |𝑥𝑛−𝑚|

2. This simplification is two folded: first, allowing real valued 

multiplications instead of complex ones and secondly, few delays to sum over. The simplified 

complexity reduced form is given by: 

𝑦𝑛 = ∑ 𝑏𝑚1𝑥1,𝑛−𝑚1
 

𝑀

𝑚1=0

 

+ ∑ ∑ ∑ 𝑏 𝑚1𝑚2

(𝑠1) 𝑥1,𝑛−𝑚1
|𝑥𝑠1,𝑛−𝑚2

|
2
 

2

𝑠1=1

𝑀

𝑚2=0

𝑀

𝑚1=0

 

+ ∑ ∑ ∑ ∑ ∑ 𝑏 𝑚1𝑚2

(𝑠1,𝑠2)𝑥1,𝑛−𝑚1
|𝑥𝑠1,𝑛−𝑚2

|
2
|𝑥𝑠2,𝑛−𝑚3

|
2
 

2

𝑠2=𝑠1

2

𝑠1=1

𝑀

𝑚3=0

𝑀

𝑚2=0

𝑀

𝑚1=0

 

 

This representation can be further simplified and reduced by restricting the allowed cross-

terms between different delays and signals. 
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() 



 

104 

𝑦𝑛 = ∑ ∑ ∑ 𝑏 𝑚,0
(𝑘,𝑗)

𝑥1,𝑛−𝑚|𝑥1,𝑛−𝑚|
𝑘−𝑗

|𝑥2,𝑛−𝑚|
𝑗
 

𝑘

𝑗=0,2,..

𝑃

𝑘=0,2,..

𝑀

𝑚=0

 

+ ∑ ∑ ∑ ∑ 𝑏 𝑚,𝑙
(𝑘,𝑗)

𝑥1,𝑛−𝑚|𝑥1,𝑛−𝑚−𝑙|
𝑘−𝑗

|𝑥2,𝑛−𝑚−𝑙|
𝑗

𝑘

𝑗=0,2,..

𝑃

𝑘= 2,4,..

𝐺

𝑙=1

𝑀

𝑚=0

 

+∑ ∑ ∑ ∑ 𝑏 𝑚,−𝑙
(𝑘,𝑗)

𝑥1,𝑛−𝑚−𝑙|𝑥1,𝑛−𝑚|
𝑘−𝑗

|𝑥2,𝑛−𝑚|
𝑗

𝑘

𝑗=0,2,..

𝑃

𝑘= 2,4,..

𝐺

𝑙=1

𝑀

𝑚=0

 

 

This is the generalized memory polynomial for dual channel.  

Similarly, if we remove totally all the cross-terms altogether, This is the structure used in 

[4.34-4.35] and the memory polynomial for dual band is given as: 

 𝑦𝑛 = ∑ ∑ ∑ 𝑏 𝑚,0
(𝑘,𝑗)

𝑥1,𝑛−𝑚|𝑥1,𝑛−𝑚|
𝑘−𝑗

|𝑥2,𝑛−𝑚|
𝑗
 

𝑘

𝑗=0,2,..

𝑃

𝑘=0,2,..

𝑀

𝑚=0

 

 

There are of course also other complexity-reductions of the full Volterra that can be considered, 

such as: 

• If the 𝑥2 signal has much less power than 𝑥1 (or vice versa), it may be useful to only include 

the linear effects of 𝑥2 , since higher order terms may be insignificant. 

• The memory depth of high-order terms can be reduced compared to the linear terms, since 

high-order, high delayed terms should be of less significance. 

• Likewise, the nonlinear order of high-delayed terms can be reduced. 

• In general, the general dual-input Volterra can be pruned by excluding insignificant terms in 

various ways. 

 

Another model that can be applied has been recently developed by Anding Zhu in [4.28] 

which was applied to single input channel power amplifiers. We have also discussed in Sec. 

4.2.1.A the use of DVR for linearization of DFB based RoF link. Here we discuss its usage for 

dual channel case. 

𝑦(𝑛) =∑𝑎𝑖|𝑥1(𝑛 − 𝑖)|

𝑀

𝑖=0
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+∑∑𝑎𝑘𝑖,𝑖𝑛

𝑀

𝑖=0

||𝑥1(𝑛 − 𝑖)| − 𝛽1,𝑘,𝑖𝑛| 𝑥1(𝑛 − 𝑖)

𝐾

𝑘=1

 

+∑∑𝑎𝑘𝑖,𝑐𝑟𝑜𝑠𝑠,1

𝑀

𝑖=0

||𝑥2(𝑛 − 𝑖)| − 𝛽2,𝑘,𝑐𝑟𝑜𝑠𝑠,1|

𝐾

𝑘=1

𝑥1(𝑛 − 𝑖) 

+∑∑𝑎𝑘𝑖,𝑐𝑟𝑜𝑠𝑠,2

𝑀

𝑖=0

||𝑥1(𝑛 − 𝑖)| + |𝑥2(𝑛 − 𝑖)| − 𝛽2,𝑘,𝑐𝑟𝑜𝑠𝑠,2|

𝐾

𝑘=1

𝑥1(𝑛 − 𝑖) 

+∑∑𝑎𝑘𝑖,𝑐𝑟𝑜𝑠𝑠,3

𝑀

𝑖=0

||𝑥1(𝑛 − 𝑖)| − |𝑥2(𝑛 − 𝑖)| − 𝛽2,𝑘,𝑐𝑟𝑜𝑠𝑠,3|

𝐾

𝑘=1

𝑥1(𝑛 − 𝑖) 

+∑∑𝑎𝑘𝑖,𝑐𝑟𝑜𝑠𝑠,4

𝑀

𝑖=0

|√|𝑥1(𝑛 − 𝑖)|2 + |𝑥2(𝑛 − 𝑖)|2 − 𝛽2,𝑘,𝑐𝑟𝑜𝑠𝑠,4|

𝐾

𝑘=1

𝑥1(𝑛 − 𝑖) 

 

Here 𝑦(𝑛) represents the output while 𝑥1(𝑛) and 𝑥2(𝑛) shows signal input. The memory 

depth is represented by 𝑀 while 𝐾 represents the hyperplanes or number of elements in the 

partition. 𝛽𝑘 represents the thresholds that define the partition. The absolute operation serves as 

nonlinear basis functions including both in band and cross band terms.  

 

Coefficients Extraction 

The decision to apply different models depends on robust, fast and accurate model extraction 

routine. DPD model extraction can be performed by utilizing ILA or DLA.  As discussed in Sec. 

2.5, ILA employs predistorter RoF training block (post-inverse) by using input and output  

signals and then transferring the training coefficients to DPD. Since this technique offers a fast 

convergance as compared to DLA, we will use ILA for dual channel DPD model identification. 

The general output signal associated with 𝑖𝑡ℎ input signal can be presented as: 

𝑦1(𝑛) =∑ ∑ ∑ 𝑐𝑘𝑞𝑚
1 𝑥1(𝑛 − 𝑞)

𝑘

𝑚=0

|𝑥1(𝑛 − 𝑞)|𝑘−𝑚
𝑄−1

𝑞=0

𝐾

𝑘=0
|𝑥2(𝑛 − 𝑞)|𝑚 

and  

𝑦2(𝑛) =∑ ∑ ∑ 𝑐𝑘𝑞𝑚
2 𝑥2(𝑛 − 𝑞)

𝑘

𝑚=0

|𝑥1(𝑛 − 𝑞)|𝑘−𝑚
𝑄−1

𝑞=0

𝐾

𝑘=0
|𝑥2(𝑛 − 𝑞)|𝑚 
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Here (𝑐𝑘𝑞𝑚
1  𝑐𝑘𝑞𝑚

2 ) are the coefficients while 𝑥1(𝑛 − 𝑞) and 𝑥2(𝑛 − 𝑞) are complex baseband 

signals at the frequency 𝑓1 and 𝑓2. |. . . | is the absolute value of the complex signals. 

 

The representation in matrix form becomes: 

𝑦𝑖⃗⃗⃗  = 𝑨𝑥 
𝑖 𝐶  

Here 

𝐶 = [𝑐000 
𝑖  𝑐100

𝑖  𝑐110
𝑖  . . .  𝑐𝐾 𝑄−1 𝑘

𝑖 ]
𝑇
 

represents vector of polynomial coefficients. 

𝑦𝑖⃗⃗⃗   = [𝑦(𝑛) .  .  . 𝑦(𝑛 + 𝐼 − 1)]𝑇 

represents a vector with I samples of the output signal at ith output. 

 

while 𝑨𝑥 
𝑖  is represented as: 

𝑨𝑥 
𝑖 = [𝒃𝑥 

(0)
  . . .  𝒃𝑥 

(𝑆)
  . . . 𝒃𝑥 

(𝑄−1)
] 

In this Eq. (4.23), 

 

𝒃𝑥 
(𝑆)

=  

 

[
𝑥𝑖(𝑛 − 𝑠) 𝑥𝑖(𝑛 − 𝑠)|𝑥𝑖(𝑛 − 𝑠)|𝑘−𝑚|𝑥𝑖𝑖(𝑛 − 𝑠)|𝑘 𝑥𝑖(𝑛 − 𝑠)|𝑥𝑖𝑖(𝑛 − 𝑠)|𝐾

⋮ ⋱ ⋮
𝑥𝑖(𝑛 − 𝑠 + 𝐼 − 1) 𝑥𝑖(𝑛 − 𝑠 + 𝐼 − 1)|𝑥𝑖(𝑛 − 𝑠 + 𝐼 − 1)|𝑘−𝑚|𝑥𝑖𝑖(𝑛 − 𝑠 + 𝐼 − 1)|𝑘 𝑥𝑖(𝑛 − 𝑠 + 𝐼 − 1)|𝑥𝑖𝑖(𝑛 − 𝑠 + 𝐼 − 1)|𝐾

] 

 

which represents the elements extracted from Eq. (4.23) 

The model identification is based on indirect learning approach [4.36]. The LS algorithm is 

utilized to solve Eq. (4.23). The calculated coefficients are then utilized to predistort the input 

signals.  

4.3.2 Multi-Channel DPD for DFB based RoF System 

As discussed in Sec. 4.3, to illustrate the possible DPD methodology for more than one channel, 

we employ DPD for dual channels first to Distributed Feedback laser based RoF links.  DFB based 

() 
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RoF links are prone to nonlinearities such as intermodulation distortion due to inherent nonlinear 

behaviour of  electrical to optical (E/O) converters.  

The experimental setup is shown in Figure 4.23. Two independent processing cells are used, 

where each processing cell is responsible for the compensation of the nonlinearity associated with 

that particular frequency band. A Multi Quantum Well (MQW) DFB laser, working at 1310-nm 

wavelength succeeds a Standard Single Mode Fiber (SSMF) of 1.5 km having attenuation equal 

to 0.4 dB/km and negligible chromatic dispersion. The optical signal detection is accomplished 

by a PIN photodiode. The PIN photodiode has a bandwidth of 2.5 GHz and 0.6 A/W of 

responsivity. The biasing current was  𝐼𝑏𝑖𝑎𝑠 = 15 𝑚𝐴 while threshold 𝐼𝑡ℎ = 5.5 𝑚𝐴. The 

baseband LTE 10 MHz signals, emulated according to 3GPP Release TS 36.104 V15.2.0 through 

a local MATLAB software with 256 QAM format, are oversampled (ADC in Figure 4.23) at a 

rate of 76.8 MSa/s. The sampled signals pass through the DPD block, are RF-converted (1000 

MHz) by an Agilent N5182B MXG X-Series Signal Generator (see Figure 4.23) and sent to the 

optical link.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: Experimental Setup for DFB based RoF link DPD (Training and Testing phase) 

 

In order to study the DPD for multi-channel transmission, consider a two-band directly 

modulated DFB based RoF system. The multi-channel transmission is performed by using an 

inhouse MATLAB code that generates baseband samples of N independent Frequency Division 

Duplex (FDD) LTE channels before overlapping and then sending them to a Vector Signal 

Generator Agilent N5182B MXG X-Series Signal Generator for up-conversion and transmission 
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to RoF link. Two 256 quadrature amplitude modulation (256 QAM) RF signals both with 10 MHz 

bandwidth at 1 GHz and 1.2 GHz were then applied to the laser operating at 1310 nm wavelength. 

At the receiver side the signal is captured by a Vector Signal Analyzer and each channel is 

analyzed separately by the MATLAB code. 

Both signal sequences were generated cyclically, therefore, the outputs of the RoF link were 

also cyclical. This enabled to use one VSA to record the baseband signals of the two bands in 

different cycles but regard them as the parallel outputs. The process of demultiplexing, down-

conversion and ADC operation of the dual band RF signal is performed by VSA.  

During the predistorter training, Both the channels of 10 MHz having 256 QAM modulation 

format at 1 GHz and 1.2 GHz without predistortion are fed in to the RoF system. The predistorter 

identification initiates with the coefficient estimation. The inputs, 𝑥1 and 𝑥2 (which are equals to 

𝑢1 and 𝑢2 in this step) and outputs, 𝑧1and  𝑧2 are applied.  

Each signal received is passed through the DPD training phase. Firstly, the reference LTE 

frames are utilized for synchronizing the input and output sequences (Sync. block in Figure 4.23). 

The synchronization process is achieved through a local developed algorithm, which finds the 

cross-correlation for time delay estimation, by tapping the Primary and Secondary 

Synchronization Signals present in the LTE frame. Then, the DPD coefficients are obtained 

(Train. block in Figure 4.23) through MATLAB program. 

For the DPD validation phase (all switches move to opposite direction in Figure 2), different 

LTE frames are sampled, predistorted, uploaded to the Signal Generator and transmitted through 

the optical link. It is noteworthy that the DPD is validated for general LTE frames.  

At first, the proposed DPD technique for dual channel is experimentally investigated using GMP 

model by varying nonlinearity order (K = 2, 3, 4, 5) and memory length (Q = 0, 1, 2, 3). The RF 

input power in this case is fixed to a relative higher value of 0 dBm per band. The results are 

illustrated in Sec. 4.3.2.1. 

4.3.2.1 Results and Discussion 

Figure 4.24 in terms of effective improvement in ACPR. It can be seen in Figure 4.24(a) and 

Figure 4.24(b), there is a substantial improvement by employing GMP at higher 𝐾 and 𝑄 in both 

channels. The nonlinearity orders up to 5 are required to be involved during DPD for better 

performance.  
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Taking into account higher nonlinearity orders only provides limited performance 

improvement, whereas the computational complexity increases. Similarly, by increasing the 

memory depth 𝑄, distinct performance improvement occurs as the memory length increases.  

Finally, the DPD is evaluated with DVR method by varying the memory depth (Q = 0, 1, 2, 3) 

and (𝐾𝐷𝑉𝑅 =2, 3, 4, 5) in Figure 4.24 (c) (channel 1) and Figure 4.24 (d) (channel 2). It can be 

appreciated that linearization is better with DVR as compared to GMP. DVR at 𝑄𝐷𝑉𝑅 =

3, 𝐾𝐷𝑉𝑅 = 5 results in 14.52 dB and 15.49 dB of reduction in ACPR for 1st and 2nd channel 

respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24: ACPR improvement for DFB in channel 1 and 2 with using GMP and DVR. (a) represents 

channel 1 with GMP. (b) represents channel 2 with GMP. (c) represents channel 1 with DVR and (d) 

represents DVR with channel 2. 

 

(a) 

(c) (d) 

(b) 
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For higher RF input power, the higher nonlinearity orders and memory depths are supposed to 

be considered. However, when the RF input power further increased to the level on which the 

performance was too bad to identify the impact of predistortion. In order to have a balance 

between the performance and the implementation complexity and to have fair comparison,  

𝑄𝐺𝑀𝑃 = 𝑄𝐷𝑉𝑅 = 𝑄=3 and  𝐾𝐷𝑉𝑅 = 𝐾𝐺𝑀𝑃 = 𝐾 = 4 is chosen for the following investigations. 

In Figure 4.25, the ACPR experimental results for several input powers (𝑃𝑖𝑛) with and without 

DPD (GMP and DVR) for both channels are reported. The linearization performance proves better 

for DVR than GMP also in terms of reduction in the ACPR values.  

Figure 4.25: ACPR improvement for DFB in channel 1 and 2 with using GMP and DVR with varying RF 
input power 

 

The summary of results with and without DPD at 𝑃𝐼𝑁 = −15 𝑑𝐵𝑚 and 5 𝑑𝐵𝑚 is given in 

following Table 4.6. 
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Table 4-6: Linearization performance for DFB based directly- modulated RoF links 

 

Now, the EVM with and without DPD for both channels is shown for varying RF input power 

in Figure 4.26. The performance behavior proves that DVR for both channels results in better 

realization than GMP method, e.g. at 0 𝑑𝐵𝑚 of 𝑃𝐼𝑁, the EVM for both channels without DPD is 

8.4/9.1 %, while with DPD-GMP it is 2.5/2.36 % and DVR results in 1.71/1.59 %  respectively 

of EVM. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26: EVM improvement for DFB RoF link in channel 1 and 2 with using GMP and DVR with 
varying RF input power 

 

𝑃𝐼𝑁  

(dBm) 

ACPR w/o 

DPD (dBc) 

ACPR with 

GMP (dBc) 

ACPR 

with DVR 

(dBc) 

5 -21.84/-24.03 -30.53/-30.81 -39/-41.53 

-15 -30.51/-31.2 -38.57/-40.88 

 

-47/-50.91 
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By extending the length of the SSMF fiber span up to 1 km and applying the GMP-based DPD 

with 𝑄=1, 𝐾=3 up to 𝑃𝑖𝑛 = 0 𝑑𝐵𝑚, the ACPR remained below the reference level of -36 dBc 

given by the 3GPP Standard considered.  

The power spectral density (PSD) for 0 dBm RF input power is shown in Figure 4.27. It can be 

seen that DVR results in better reduction than GMP. 

 

 

 

 

 

 

 

 

Figure 4.27: Spectral Regrowth of input, output and corrected channels for DFB based RoF link 

4.3.3 Multi-Channel DPD for VCSEL based RoF System 

In this section, like DFB, this section discusses the DPD approach for VCSEL based RoF 

links for dual channel case. VCSELs offer a cheaper solution for smaller transmission lengths up 

to 2 km.   Applying DPD to such link lengths for multi-channel will be very beneficial. In all 

these cases, a cardinal issue is represented by the impairments of the opto-electronic devices and 

particularly the whole VCSEL based Radio over Fiber system. Such nonlinearities, that arise 

when high Peak-to-Average Power Ratio (PAPR) signals are transmitted and can have an 

important role especially for multi-channel transmission. They indeed can cause high in and out 

of band distortion, which leads to higher interference among near channels. 

Like Figure 4.23, the experimental setup is shown in Figure 4.28. The only difference in this setup 

is presence of MM-VCSEL and MMF. A multi-mode VCSEL operating at 850-nm is utilized 

here with a MMF of length 75 meters. The PIN photodiode, having 2.5 GHz bandwidth and 
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responsivity factor of 0.6 A/W is used. The biasing current 𝐼𝑏𝑖𝑎𝑠 = 4 𝑚𝐴 and 𝐼𝑡ℎ = 0.8 𝑚𝐴 is 

fixed. The attenuation of MMF is 2.5 𝑑𝐵/Km.  

The baseband LTE signal of 10-MHz with 256 QAM modulation format is emulated 

through a domestic software on MATLAB compliant with 3GPP release TS 36.104 V15.2.0 

[4.22]. The signal is oversampled at 76.8 MSa/s. After this, the sampled sequence of signals 

passes through the DPD block, which is then RF transformed at 800 MHz by a Vector Signal 

Generator (VSG) (see Figure 3) and is then sent to the optical link. 

    The process of predistortion implied is similarly to one implied in Sec. 4.3.2. 

 

 

 

 

 

 

Figure 4.28: Experimental setup for MM-VCSEL based MMF for DPD training and testing phase 

4.3.3.1 Results and Discussion 

Figure 4.29 represents linearization performance in terms of effective improvement in ACPR. 

It can be seen in Figure 4.29(a) and Figure 4.29(b), there is a substantial improvement by 

employing GMP at higher 𝐾 and 𝑄 in both channels. The nonlinearity orders up to 5 are required 

to be involved during DPD for better performance. The DPD is evaluated with DVR method by 

varying the memory depth (Q = 0, 1, 2, 3) and (𝐾𝐷𝑉𝑅 =2, 3, 4, 5). It can be appreciated that 

linearization is better with DVR as compared to GMP. DVR at 𝑄𝐷𝑉𝑅 = 3,𝐾𝐷𝑉𝑅 = 5 results in 

18.12 dB and 18.42 dB of reduction in ACPR for 1st and 2nd channel respectively. 
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Figure 4.29: ACPR improvement for MM-VCSEL-MMF based RoF link in channel 1 and 2 with using 

GMP and DVR. (a) represents channel 1 with GMP. (b) represents channel 2 with GMP. (c) represents 

channel 1 with DVR and (d) represents DVR with channel 2. 

In order to evaluate the efficacy of DPD with varying RF input power, Figure 4.30 reports the 

ACPR for both channels using GMP and DVR model. Indeed, as in SM-VCSEL, DVR results in 

better linearization than GMP. At 0 dBm, DVR results in 17 and 16 dBs of reduction with DVR 

and 5.4 and 5.6 dBs of reduction is observed with GMP model.  

(a) 
(b) 

(d) (c) 
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Figure 4.30: ACPR improvement for MM-VCSEL-MMF based RoF link in channel 1 and 2 with using 

GMP and DVR with varying RF input power 

The power spectral density is shown in the Figure 4.31 for MM-VCSEL using GMP/DVR. It 

can be seen that PSD for both the channels is effected by the nonlinearities of VCSELs caused 

due to multichannel transmission. 

 

 

 

 

 

 

 

Figure 4.31: Spectral Regrowth for MM-VCSEL based MMF RoF link for both channels 
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The EVM characterization is done in order to consolidate the proposed architecture. With 

GMP and DVR, the uncompensated channels are linearized to 3.5% EVM limit set by 3GPP.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.32: EVM performance for corrected and uncorrected both channels for DVR and GMP 
architectures 

 

4.3.3.2 Conclusions 

It has been shown that DPD is in good proportions for Multi channel VCSELs based RoF links. 

It is clear that like other cases, DVR results in better performance as compared to GMP. The 

proposed method is applicable for longer link distances, and/or higher values of RF input power 

are admitted, provided that the model is extracted with appropriate higher values of 𝑄 and/or 𝐾. 

Higher values of 𝑄 and/or 𝐾 make also possible to apply the proposed DPD technique in the 

transmission of LTE signals, which exhibit higher bandwidth and/or modulation order with 

respect to the case considered. 

4.4 REAL TIME SCENARIO 

Digital Predistortion (DPD) has proven to be an effective technique to reduce the non-

linearities in RoF systems. From the applicative scenario, the process of DPD may be positioned 

at the Central Office (CO), e.g. where BBUs are placed and compensate the RoF Downlink 

nonlinearities. A periodical re-training of the Digital Predistortion system is in this case necessary, 
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requiring however a negligible time with respect to the time of normal operation of the RoF 

system. Various methods can be validated for enforcing the periodical training phase. Namely, if 

a RoF Uplink is applied, the nonlinearities in this case be compensated by a digital post distorter 

block located at a correspondent CO. By utilizing this method, the RoF downlink nonlinearities 

can be accumulated at BBU which will decrease the cost and complexity of remote antenna unit. 

In this section we will discuss some possible solutions that can be proposed for the applicative 

scenario.  

It has been evidenced in previous discussions that Radio-over-Fiber (RoF) is an empowering 

technology for the upcoming 5G fronthaul networks due to its ability to carry broadband signals 

and provide high-speed connections and low latency due to advantages such as hardware costs 

saving, small footprint, low power loss, sharing resources and centralization.  

The realization in Figure 4.33 below in principle is a possible implementation of a digital 

predistorter in adaptive form. This implementation has the advantage to put all the expensive 

processing of the signals at the Central Office / Base Transmit Station (CO-BTS), allowing to 

obtain a sharing of the cost among many users. In the figure, switches SW1, SW2 and SW3 are 

set to configuration (1) while switches SW4 and SW5 in configuration (2) and SW6, SW7 are not 

influent.  

This corresponds to the “normal” operation of the bidirectional link. Indeed, the Digital Pre-

Distorter (DPD) is assumed to be trained and to perform an appropriate processing of the digitized 

Base Band signal, which is subsequently brought back to analog form and modulated at 

radiofrequency (RF). After having passed through the Optical DL the signal enters a circulator 

(Ci) which allows to transmit the signal through a remote antenna unit (RAU). Conversely the 

signal which is received by the RAU, passes through (Ci) and is sent to the Optical UL up to the 

Central Office /Base Station. Here the signal is brought back to BB and processed by the CO-

BTS (operation not show) in order to arrive to its final destination. 

When switches SW4, SW6 and SW7, are set to configuration (3-A), and SW5 is connected to 

the ADC, a post-distortion operation is performed with reference to the UL. 
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Figure 4.33: First possible realization of an adaptive predistortion scheme. 

 

An RF test signal (which is known also at the (CO-BTS)) is sent through the Optical UL and 

arrives at the (CO-BTS). Here, in a fashion similar to the one described in the submitted work, a 

Digital Post-Distortion is performed in order to counterbalance the nonlinearities of the UL.  

 

The characteristic parameters of the memory polynomials determined through this operation 

are given to the Pre Distorter Controller Block. In principle, the Pre-Distorter Controller Bolock 

is in this way able to build the sampled version of the BB signal received at the RAU, as it would 

result if the operation of demodulation and sampling were performed at the RAU itself 

It is expected that the nonlinear characteristics of the UL are rather stable with time, therefore, 

this operation is supposed to be seldom performed (namely, with the same frequency at which the 

training of the Digital Predistorter is realized). When switches SW1, SW2, SW3, SW4 and SW6 

are set to configuration (3-B), SW5 is connected to the ADC (SW7 not influent), the training of 

the Digital Pre Distorter is performed. 

 

It can be furtherly observed that performing a little change in the architecture reported in Fig 4.33, 

it is possible to exploit the post distortion of the Up Link not only to guarantee a reliable feedback 

to the Digital Predistortion system, but also to guarantee a higher quality of the signals received 

by the CO/BTS from the RAU during its normal operation. The one described is not the only 
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configuration possible for the implementation of a digital predistorter in adaptive form. Other 

possible alternative solutions are reported below. 

 

Both proposals regard an alternative realization of the adaptive scheme for the Down Link. In 

both cases the price to pay is to set more signal processing devices at the Remote Antenna Unit. 

At the same time, the transmission of the feedback signal to the CO/BTS to realize the Digital Pre 

Distortion can be less demanding. Indeed, in both cases the information is digital, and at the same 

time it does not need to arrive in real time to the CO/BTS. It is then possible in this case to exploit 

even just an internet connection between RAU and BTS. 

Figure 4.34: Second possible realization of an adaptive predistortion scheme. 

 

In the following, we present a DPD methodology applied to Multi-Mode (MM) VCSEL-Multi 

mode fiber (MMF)-based RoF links where a simplifying approximation on the generation of the 

mentioned feedback signal is proposed. Indeed, this solution trains the pre-distorter taking a 

length of a few meters the output of a RoF link which shares the same VCSEL source of the 

system to be compensated. The feedback signal is in this way generated directly at the CO and is 

immediately available to the pre-distorter training block. This approach, which is based on the 
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fact that the nonlinearity of the RoF link is mainly induced by the directly modulated VCSEL, 

makes use of Generalized Memory Polynomial (GMP) model using ILA.  

Its effectiveness will be evidenced in the remainder with reference to LTE standard signals, 

evaluating the transmission performance in terms of reduction of Normalized Mean Square Error 

(NMSE), Adjacent Channel Power Ratio (ACPR) and Error Vector Magnitude (EVM). 

 

4.4.1 Modeling Approach 

The indirect learning method used in this work (see Figure 4.35) estimates the DPD 

coefficients in a preliminary training phase. The baseband output of the RoF system converted 

into digital form 𝑦(𝑛) is fed as an input sequence to the Pre-Distorter Training block via the 

quantity 𝑧(𝑛), defined as 𝑧(𝑛) = 𝑦(𝑛) 𝐺 where 𝐺 is the gain of the RoF link. The estimation of 

coefficients can be done using any least-squares-based algorithm. Once the error function 

converges, the computed coefficients are applied to the predistorter (Digital Pre-Distorter block). 

The predistorter model used in this work is the Generalized Memory Polynomial (GMP).   

 

 

 

 

 

 

Figure 4.35: Block diagram of the training phase of the proposed DPD technique for a RoF system using 

Indirect Learning Architecture. 

4.4.2 Experimental Setup 

The schematic representation of the methodology implied is shown in Figure 4.36. The tests 

are performed by generating LTE signal of 10 MHz bandwidth having 256 QAM modulation 

format. The LTE signal is applied by Agilent N5182B MXG X-Series Vector Signal Generator 

(VSG) to the RoF link. The signal is modeled through in-house MATLAB software which 

 (𝒏) 𝒙(𝒏)

 𝒏

𝒛(𝒏)

𝒛𝒑(𝒏)

Digital 
Pre-Distorter

 𝒏
< | |  𝒇 

GMP
(𝒏 )

(   )

−

(Training block)

ADC
 ( )

DAC

𝟏  
 (𝒏)

ADC

IRF  I( ) VCSEL
RoF Tx

RoF Rx 
‘near’

IRF  O( )

MMF
Patch 
Cord



 

121 

complies with the LTE standard (release 15.2 of the standard ETSI TS 136.211). This signal is 

modulated onto an RF carrier 𝑓𝑐 = 800 MHz. The experimental RoF link consists of a MM 

VCSELs with a patch cord and a link length of MMF with 75 m and photodiode (PD), with 

responsivity of 0.22 A/W. The Relative Intensity Noise (RIN) of the MM VCSEL is -125 dB/Hz 

for 𝑓𝑐 = 800 𝑀𝐻𝑧. The VCSEL biasing current is 𝐼𝑏𝑖𝑎𝑠 = 4 𝑚𝐴, its threshold current is 𝐼𝑡ℎ =

0.8 𝑚𝐴 and its maximum current is kept as 𝐼𝑠 = 8 𝑚𝐴.  Oversampling at a rate of 46.08 MHz is 

employed.  

In the training phase of DPD, which corresponds to the positions of the symbolic switches 

represented in Figure 4.36,  a link consisting of the same VCSEL of the RoF link to be linearized, 

a MMF patch cord and a photodiode of the same kind of the one utilized in the “far” receiver is 

utilized for giving the feedback signal to the predistorter training block. This configuration will 

be called as back-to-back (B2B) case. Reference LTE frames are utilized in this case where the 

input and output sequences have to be first synchronized in the time domain. This is accomplished 

through an in-house developed algorithm that calculates the cross-correlation for time delay 

estimation, by availing the Primary Synchronization Signals and Secondary Synchronization 

Signals present in the LTE frame. The DPD coefficients are then obtained (Train. block in Figure 

3), again through a MATLAB program developed domestically. 

In the testing phase, which is also represented by Figure 4.36, provided that all the symbolic 

switches are considered as set in the other position with respect to the depicted one, different LTE 

frames are sampled, predistorted, uploaded to the Signal Generator and transmitted through the 

optical link utilizing the zero-length case predistorter coefficients found in the training phase. 

ACPR, NMSE and EVM are then evaluated and compared to the corresponding case when no 

DPD is applied.  

 

 

 

 

 

 

Figure 4.36: Block diagram of the experimental bench utilized for the proposed RoF system predistorter. 

VSG: Vector Signal Generator. VSA: Vector Signal Analyzer. The symbolic switches are represented in 

the positions corresponding to the training phase. The normal operation of the link is represented by the 

same figure where all the symbolic switches are set in the other position with respect to the represented 

one. VSG contains DAC and VSA contains ADC. MMF span represents the fiber length considered. 
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The DPD is tested not only for the reference signals that were used for training, but also for 

general LTE frames. It is worth mentioning the fact that the same training coefficients found 

during the B2B case are utilized, makes this solution straightforwardly feasible, as mentioned in 

the Introduction. Indeed, going back to Figure 4.36, the system enclosed by the dashed lines which 

performs both training and predistortion can be placed at the Central Office, allowing to reduce 

complexity and cost of the whole system. 

4.4.3 Results and Discussion 

In order to check the efficacy of methodology proposed, the laser is pushed to work near the 

threshold and compression points so that the regions have high Peak to Average Power Ratio 

(PAPR) and distortions. To see the effect of improvement of DPD in these high distortion critical 

regions, the biasing point (𝐼𝑏𝑖𝑎𝑠) is chosen as 2 mA. In this section, ACPR, EVM and NMSE are 

evaluated as a figure of merit.  

 

Figure 4.37 presents the results of ACPR improvement in effective form with varying orders 

of 𝐾𝐺𝑀𝑃 and 𝑄𝐺𝑀𝑃 keeping 𝑅𝐺𝑀𝑃 =2. It can be seen that after 𝐾𝐺𝑀𝑃 = 5 and 𝑄𝐺𝑀𝑃=3, the 

increasing values of 𝐾𝐺𝑀𝑃 and 𝑄𝐺𝑀𝑃 doesn’t results in a very vast improvement. Hence, for the 

evaluations performed, the coefficients 𝐾𝐺𝑀𝑃 = 5, 𝑄𝐺𝑀𝑃=3 and 𝑅𝐺𝑀𝑃 = 2 are fixed.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.37: ACPR improvement with proposed DPD technique for varying orders of nonlinearity order 
(𝐾𝐺𝑀𝑃) and memory depth (𝑄𝐺𝑀𝑃) at 0 dBm of input power. 
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In Figure 4.38, the behavior of ACPR is reported as a function of several input signal powers 

(𝑃𝑖𝑛). Here, the orders of 𝐾𝐺𝑀𝑃 = 5 and 𝑄𝐺𝑀𝑃=3 are used keeping 𝑅𝐺𝑀𝑃 = 2 as fixed quantity. 

The trend further signifies that improvement with DPD is in appreciable amount even for the 

crucial cases as well. It is evident that with the proposed approximation, the linearization for 

length cases is same as compared to back to back case. This is obvious that the nonlinearity of the 

RoF link is mainly induced by the laser as assumed in our proposed methodology. Indeed, the 

approximation makes the linearization straightforward without the additional complexity of 

feedback mechanism. 

 

 

 

 

 

 

 

 

 

 

Figure 4.38: Comparison of Output signal without DPD and with DPD for back to back (0 m length) and 
75 m MMF at 0 dBm input signal power 

 

Figure 4.39 represents the spectral regrowth of applied methodology for 𝑃𝐼𝑁 = 0 𝑑𝐵𝑚. It can 

be seen that even with a signal having very high PAPR, working at a region close to threshold, 

high RF input power, the proposed method works well. The suppression of spectral growth due 

to linearization performed is in good proportions. 
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Figure 4.39: Comparison of Output signal without DPD and with DPD for back to back (0 m length) and 
75 m length at 0 dBm input signal power 

 

 

Figure 4.40 shows the EVM with and without DPD for varying 𝑃𝐼𝑁. Indeed, with the presented 

DPD method, the 3.5% EVM limit set by 3GPP is met. This further confirms the effectiveness of 

the DPD since it results in correction within the limits. 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.40: EVM comparison for DPD and without DPD for varying 𝑃𝐼𝑁 
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Table 4.7 summarizes the results for with and without DPD. It can be seen that the proposed 

method linearizes the link in good proportions. 

 

  

 

4.4.4 Discussion 

This work reports the experimental evaluation of digital predistortion for RoF mobile 

fronthaul with feedback approximation for MM-VCSEL based RoF links. The experiments have 

been performed with MM-VCSEL based RoF link with an LTE 10 MHz signal having 256 QAM 

modulation format. The proposed feedback approximation does not only reduce the overall cost, 

but also removes the complexities required to carefully handle the own nonlinearities of feedback 

loop. Notable performance improvements have been obtained in terms of NMSE, ACPR and 

EVM. It has been shown that linearization with proposed feedback approximation is obtained in 

good proportions. The detailed evaluation with higher link lengths is envisaged for future work. 

 

4.5 Conclusion 

In this chapter, adaptive DPD based linearization methods were discussed. In Sec. 4.1, RoF links 

based on SM-VCSEL-SSMF and MM-VCSEL-MMF were discussed well in detail. In Sec. 4.2, 

DFB-SSMF based RoF link was linearized with improvement in the performance in terms of 

ACPR and EVM improvement. In Sec. 4.3, Multichannel based DPD was discussed for DFB-

SSMF and MM-VCSEL-MMF based RoF links were linearized. Sec. 4.5 proposed a real time 

DPD approximation. In Table 4-8, Single channel DPD improvement is shown for SM-VCSEL-

SSMF, MM-VCSEL-MMF and DFB-SSMF for NMSE, ACPR and EVM with and without DPD 

Model 
NMSE 

(dB) 

ACPR 

(dBc) 

EVM 

 (%) 

No DPD -24.10 -24.13 
 

        6.4 

GMP-DPD -36.14 -33.81 
 

        3.3 

Table 4-7: Linearization performance for an input power of 0 dBm. 
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using 𝐾 = 3 and 𝑄 = 2. In Table-4.9, dual channel DPD is shown for DFB-SSMF and 

MMVCSEL-MMF RoF link cases.  
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Chapter 5  

Experimental Evaluation of Digital Radio over Fiber 

System 

This chapter is based on the results published in journals [J3] and [J4].  

_____________________________________________________________________________ 

The utilization of Analog Radio over Fiber System is prone to nonlinearities. In previous chapters 

it was discussed critically that how these links can be linearized. However, these linearization 

techniques have limitations. Therefore, as an example of the other possible solutions, Digital 

Radio over fiber system has been realized and discussed in detail.   

5.1 Introduction 

The use of Radio over Fiber technology has been growing to meet the demand of high 

bandwidth wireless services. Radio over Fiber has been regarded as an enabling technology for 

next generation networks, e.g. 5G. The primary aim of RoF is to provide a cost-effective efficient 

solution of distributing radio signals from a base station (BS) to remote antenna units (RAU). 

There have been many adaptations of RoF having their own advantages and disadvantages. 

Analog RoF (A-RoF) provides the least complex solution, however, it is susceptible to the 

nonlinearities coming from optical and microwave parts. It appears that intermodulation noises 

occur when sub-carrier multiplexing (SCM) is applied to A-RoF, both at the transmitter and 

receiver [5.1-5.3].  

The recent technological advances in analog to digital converter (ADC) and digital to analog 

converter (DAC) have made it possible to push the functionalities of these converters closer to 

the base station, hence, enabling the receiver and transmitter functions to be performed in the 

digital domain. Figure 5.1 shows such a BS system architecture in which optical transmission of 

the analog signal is first digitized and then transporting it over the fiber.  
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In the digitized RoF link, firstly, the analog RF signal is converted to a digital signal through 

an ADC and is transmitted over the optical fiber. The optical signal is detected at the receiver side 

and is converted back to the analog domain using a digital to analog converter (DAC). When 

carrier frequencies and baud rates are high, the cost and power-hungry ADC/DAC requirements 

become prohibitively large. In addition, transmitting digital samples compared to an analog signal 

results in a lower spectral efficiency. However, digital transmission of data alleviates the 

detrimental effects of noise and non-linearities at transmitter and at receiver [5.2].  

 

 

 

 

 

 

 

Figure 5.1: Block diagram of D-RoF system 

5.2 Background-Digital Radio over Fiber 

Digital Radio over Fiber has been evidenced primarily in [5.4] where a high-speed ADC was 

designed for the transmission of radio frequency signals over a digitally modulated optical fiber. 

As a part of literature review, the main contributions towards D-RoF are discussed below.  

• Wala et al.1993 In 1993, Wala et al. was a pioneer of implementing high speed ADC for 

digital transmission of radio frequency. The novel digital RF transport technology application 

was discussed, and performance was compared with A-RoF. Digital RoF demonstrated 

dynamic range better than their analog counterparts. It was shown that D-RoF has an 

insensitive BER to the fiber length up to 50 Km [5.4].  
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• Gamage et al. 2009 Experimental analysis was presented for digitized RF transport over fiber 

link. Experimental results were presented for a digitized RF-over-fiber link using bandpass 

sampling for 6 MS/s 16 QAM modulation of an RF carrier of 1 GHz [5.5-5.6]. 

• Yang et al. 2009 Novel evaluation of the link performance was done for different digitization 

resolutions, carrier frequencies, symbol rates and sampling frequencies. This was the first 

realistic demonstration on FPGA [5.7].  

• Yang et al. 2010 Unidirectional transmission of a digitized SCM RF signal composed of three 

QPSK modulated signals over an optical link using CW carrier is presented. It has been shown 

that the DAC may be used for recovering the digitized signal at different frequencies without 

a mixer and without a local oscillator [5.8]. 

• D. Wake et al. 2010 It was shown that noise introduced by the RoF links does not 

have a significant impact on wireless range if the wireless system has uplink power 

control. It was shown that digitized radio transmission is the optimum choice from a 

cost perspective [5.9].  

• Ghafoor et al. 2012 Digitized duplex transmission for 64-QAM modulation was 

proposed. Bidirectional data transmission is achieved over a single 25 km optical fiber 

using a single optical pulsed source on VPI transmission maker [5.10]. 

• Li et al. 2015 A new compression algorithm was proposed that is able to achieve 3 

times higher spectral efficiency than CPRI. 30-35dB input dynamic range was 

demonstrated for 64 QAM 20 MHz LTE signal. This work also investigated the 

latency caused by the digital signal processing. It was shown that the delay is less than 

2 microseconds on the FPGA boards to transmit and receive [5.11].   

5.2.1 Band Pass Sampling 

The principle of bandpass sampling is discussed in this section. The Nyquist sampling criteria 

suggests that in order to recover the analog signal from the sampled data, the sampling rate should 

at least be equal or higher than twice of the maximum frequency in the analog signal. This 

suggests that for RF signals having carrier frequencies in the GHz range, the nyquist criteria 
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suggests a sampling rates excessively high. This will result in very complex and expensive 

designs of the ADC/DAC which are not viable economically. 

Since, the Nyquist/Shannon sampling criterion requires a very high sampling frequency for 

digitizing a modulated radio signal with a bandwidth 𝐵 and a carrier frequency 𝑓𝑐 in the GHz 

range. This would necessitate very high-speed electronics which should operate at least at twice 

(𝑓𝑐 +
𝐵

2
) Hz. However, band-pass sampling, which relies on the pioneering work in [5.12], 

overcomes this practical issue, relaxing the constraints on the ADC/DAC performance in D-RoF 

systems [5.13].  

The bandpass sampling technique has been proposed in [5.14-5.15] which solves the need of 

high sampling rate. Since most of the wireless signals have a limited bandwidth that is lower than 

the center frequency, the bandpass sampling technique ensures that the sampling rate is dependent 

on the bandwidth of the analog signal instead of its highest frequency. Sampling of an analogue 

signal generates a spectrum composed of spectral lobes at multiples of the sampling frequency 

[5.16]. If the sampling frequency is chosen by ensuring that the multiple copies of the original 

spectrum do not overlap in the frequency domain, then the original signal may be recovered by 

using a bandpass filter [5.14-5.15]. 

In Figure 5.2, the spectrum of the signal along its sampled version is depicted. It can be 

observed from Figure 5.2 that the sampled signal has a spectrum that contains the original signals 

spectrum repeated periodically at the multiples of the sampling frequency. The frequency 

spectrum is divided into multiple Nyquist zones, each having a width equal to half the sampling 

frequency. It may be observed from Figure 5.2 that in order to avoid overlapping among the 

different spectral, the sampling frequency has to be sufficiently high. In case the sampling 

frequency used is insufficiently high, the different spectral replicas will overlap, which gives rise 

to aliasing. In the next section, we derive the values of the sampling frequencies, which will allow 

us to avoid aliasing. 
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Figure 5.2: Spectrum of the signal along its sampled version 

The Nyquist/Shannon sampling criterion requires a very high sampling frequency for 

digitizing a modulated radio signal with a bandwidth 𝑩 and a carrier frequency 𝒇𝒄 in the GHz 

range. This would necessitate very high-speed electronics which should operate at least at twice 

(𝑓𝑐 +
𝐵

2
) Hz. However, band-pass sampling, which relies on the pioneering work in [5.14], 

overcomes this practical issue, relaxing the constraints on the ADC/DAC performance in D-RoF 

systems [5.15]. In Figure 5.2(a), the sampling requirements under bandpass sampling are depicted 

as per IEEE 802.16-2004 WiMAX (Worldwide Interoperability for Microwave Access) standard. 

The symbol rate is set to 16 MSymbols/s and carrier frequency 𝒇𝒄 is 2.475 GHz with 20 MHz of 

bandwidth.  In bandpass uniform sampling, the sampling frequency 𝒇  must satisfy the following 

criteria in order to avoid spectral aliasing: 

 

𝟐
𝒇𝑯
𝑵

≤ 𝒇 ≤ 𝟐
𝒇𝑳

𝑵− 𝟏
 

𝟏 ≤ 𝑵 ≤ 𝑰 [
𝒇𝑯

𝒇𝑯 − 𝒇𝑳
] 

where 𝒇𝑯 is the highest and 𝒇𝑳 is the lowest frequency of the band to be sampled. 𝑵 is an 

integer, while (𝒇𝑯 − 𝒇𝑳) is the bandpass signal bandwidth. 𝑰  is the floor function which returns 

upper rounding to integer of the ratio [
𝒇𝑯

𝒇𝑯−𝒇𝑳
]. By employing bandpass sampling, many replicas 

of bandpass signal can be obtained as shown in Figure 5.2(b). Since a 13 MHz wide guard-band 

(5.1) 

(5.2) 
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is kept on the both sides of the central frequency, ensuring to avoid spectral aliasing due to critical 

bandpass sampling, the total channel bandwidth becomes 46 MHz. Thus, the practical values to 

be considered for 𝑓𝐻 and 𝑓𝐿 are 2.498 GHz and 2.452 GHz respectively. The critical sampling 

frequency is 2x46= 92 MSa/s. According to (5.2), and for the signal considered, 𝑁 can take an 

integer value between 1 and 54. If 𝑁 is chosen as 39, the bandpass sampling frequency 𝑓𝑆 yields 

128 MSa/s , which is a slightly higher rate than the critical sampling. Assuming the use of a low-

cost, low-power 8-bit ADC the bit rate results to be 1.024 Gbps. 

Note that a lower bit rate, i.e. a higher spectral efficiency, could be advantageously achieved 

through the introduction of appropriate signal processing stages (see e.g. the solution proposed in 

[5.13] ). However, as specified in the Introduction, aim of this work is to demonstrate the 

capability of the proposed Digital Radio over Fiber system to cover lengths up to 70 km. In terms 

of spectral efficiency, this solution represents a slight improvement with respect to CPRI, which 

transmits the same 20 MHz LTE signal with 1.2288 Gbps instead of the 1.024 Gbps when utilized. 

 

Figure 5.3: Schematic illustration of (a) Frequency spectrum of the bandpass sampled LTE signal (b) 

Original Bandwidth, of the same LTE signal, including guard bands. 

5.3 Signal Impairments in D-RoF Link 

There can be multiple components in a D-RoF link that can cause signal impairments. In this 

section, we will identify components wise the signal degradation that occurs in different stages 

of the D-RoF link. 

5.3.1 Signal Impairments in ADC 

Digital RoF systems utilizes bandpass sampling technique in order to reduce the over heads 

caused by high sampling rates. The ADC in such systems uses the bandpass sampling technique. 
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The important design consideration for the ADC is that they should effectively operate on the 

highest frequency component of the pass-band signal while sampling the pass-band signal at a 

sampling rate greater or twice the message bandwidth. Therefore, it is assumed that the analog 

bandwidth and sampling rate of the ADC used in our experiment satisfy both the criteria required 

for sampling a pass-band signal.   

The main functionalities of ADC are shown in Figure 5.4. Indeed, the sampling rate is reduced 

by utilizing the band pass sampling technique, however, the sampling frequency has to be chosen 

smartly in order to avoid harmful spectral aliasing. Similarly, out of band noise can alias in to 

signal bandwidth and causes limitations to the ADC performance. Whenever a pass-band signal 

is subjected to bandpass sampling, the SNR of the sampled signal becomes degraded by at least 

the noise aliased from the bands between DC and the analog bandwidth of the ADC [5.16-5.17]. 

 

 

 

 

 

 

 

Figure 5.4: Schematic illustrating functions of the ADC 

5.3.1.1 Signal to Noise Ratio (SNR) degradation in ADC 

In this section, the SNR degradation in response to bandpass sampling is discussed. The 

bandpass filtering is done before digitization process. In this discussion, the noise is considered 

to be Additive White Gaussian Nose (AWGN).  
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5.3.1.2 Signal to Noise Ratio (SNR) degradation due to Quantization 

The ADC output is a discrete function with a number of different states that are determined 

by the resolution of the device while its input is a continuous signal. Therefore, during this state 

conversion, it is possible that some information is lost and results in addition of distortion to the 

signal. This is regarded as quantization noise. The mean-square quantization noise power using 

single tone for an ideal quantizer is given by [5.18-5.19]: 

𝑁𝑜𝑖𝑠𝑒 𝑃𝑜𝑤𝑒𝑟𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑉𝑝𝑒𝑎𝑘
2

3 ∗ 𝐿2
 

Here, 𝑉𝑝𝑒𝑎𝑘 represents the input peak voltage while 𝐿 is the total number of quantization 

levels since 𝐿 = 2𝑛 where 𝑛 represents the resolution bits of ADC. The analog input mapping 

with respect to digital output code is shown below in Figure 5.5.  

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Schematic illustration of analog input mapping to digital output code 

 

 

(5.3) 
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In general, signal to be quantized can be composed of many tones with different modulation 

formats. Since these modulation formats are multi levelled and can exhibit peak to average power 

ratio (PAPR), therefore, it is necessary to consider the PAPR of these signals. In the work done, 

we have used a QAM signal source with a particular modulation format, therefore, we write a 

general expression at this point for the reader understanding.  

For M levels of QAM, PAPR can be written as: 

𝑃𝐴𝑃𝑅 =
3(√𝑀 − 1)

(√𝑀 + 1)
 

where M-ary QAM signal has √𝑀 voltage levels. Assume that quantization errors are uniformly 

distributed and independent, SNR due to quantization noise can be written as follows: 

𝑆𝑁𝑅𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑑𝐵) = −10 𝑙𝑜𝑔10(𝑃𝐴𝑃𝑅) + 6.02 ∗ 𝑛 + 10 𝑙𝑜𝑔10(3) 

where 𝑛 represents the Number of Bits.  

 

5.3.1.3 Signal to Noise Ratio (SNR) degradation due to out of band noise aliasing 

In order to derive analytical formulation of SNR due to bandpass sampling, AWGN with zero 

mean is considered. It is assumed that with ideal bandpass filtering, ADC Resolution bits are high 

so out of band noise aliasing is due to thermal noise only. Total noise power is given as: 

𝑃𝑇𝑜𝑡𝑎𝑙−𝑁𝑜𝑖𝑠𝑒−𝐵𝑃𝑆 = 𝑃𝑁𝑜𝑖𝑠𝑒−𝐼𝑁−𝐵𝐴𝑁𝐷 + 𝑃𝑁𝑜𝑖𝑠𝑒−𝐴𝑙𝑖𝑎𝑠𝑒𝑑 

where 𝑃𝑁𝑜𝑖𝑠𝑒−𝐼𝑁−𝐵𝐴𝑁𝐷 is the in-band signal noise and  𝑃𝑁𝑜𝑖𝑠𝑒−𝐴𝑙𝑖𝑎𝑠𝑒𝑑 is aliased noise power. 

𝑃𝑁𝑜𝑖𝑠𝑒−𝐴𝑙𝑖𝑎𝑠𝑒𝑑 = 2 (
𝑓𝑠
2
) (𝑁 − 1) (

𝑁𝑑𝑜𝑢𝑏𝑙𝑒−𝑇ℎ𝑒𝑟𝑚𝑎𝑙

2
) 

where 𝑓𝑠 is sampling frequency, 𝑁 is integer and 𝑁𝑑𝑜𝑢𝑏𝑙𝑒−𝑇ℎ𝑒𝑟𝑚𝑎𝑙 is the noise power spectral 

density of double-sided thermal noise. 𝑁𝑑𝑜𝑢𝑏𝑙𝑒−𝑇ℎ𝑒𝑟𝑚𝑎𝑙 is given as: 

𝑁𝑑𝑜𝑢𝑏𝑙𝑒−𝑇ℎ𝑒𝑟𝑚𝑎𝑙 =
𝐵𝑇

2
 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 



 

140 

Where 𝐵 is the Boltzmann constant and T represents temperature in kelvin. 

Therefore Eq. (5.6) becomes overall as: 

𝑃𝑇𝑜𝑡𝑎𝑙−𝑁𝑜𝑖𝑠𝑒−𝐵𝑃𝑆 = 𝑃𝑁𝑜𝑖𝑠𝑒−𝐼𝑁−𝐵𝐴𝑁𝐷 + (𝑓𝑠)(𝑁 − 1) (
𝐵𝑇

4
) 

Where 𝑃𝑁𝑜𝑖𝑠𝑒−𝐼𝑁−𝐵𝐴𝑁𝐷 is given as: 

𝑃𝑁𝑜𝑖𝑠𝑒−𝐼𝑁−𝐵𝐴𝑁𝐷 = 2(
𝑓𝑠
2
)𝑁 ∗ 𝑁𝑑𝑜𝑢𝑏𝑙𝑒−𝑇ℎ𝑒𝑟𝑚𝑎𝑙 

𝑃𝑁𝑜𝑖𝑠𝑒−𝐼𝑁−𝐵𝐴𝑁𝐷 = (
𝑓𝑠𝑁𝐵𝑇

2
) 

Now Eq. (5.9) becomes: 

𝑃𝑇𝑜𝑡𝑎𝑙−𝑁𝑜𝑖𝑠𝑒−𝐵𝑃𝑆 = 𝑃𝑁𝑜𝑖𝑠𝑒−𝐼𝑁−𝐵𝐴𝑁𝐷 + 𝑃𝑁𝑜𝑖𝑠𝑒−𝐴𝑙𝑖𝑎𝑠𝑒𝑑 

𝑃𝑇𝑜𝑡𝑎𝑙−𝑁𝑜𝑖𝑠𝑒−𝐵𝑃𝑆 = (
𝑓𝑠𝐵𝑇

2
) + (𝑓𝑠 ∗ (𝑁 − 1) ∗

𝐵𝑇

4
) 

SNR due to out of band pass sampling is given as: 

𝑆𝑁𝑅𝑜𝑢𝑡𝑜𝑓𝑏𝑎𝑛𝑑 =
𝑃𝑅𝐹

𝑃𝑇𝑜𝑡𝑎𝑙−𝑁𝑜𝑖𝑠𝑒−𝐵𝑃𝑆
 

Where 𝑃𝑅𝐹 represents signal power of the RF signal. 

5.3.1.4 Signal to Noise Ratio (SNR) degradation due to Jitter Noise  

Based on sampling theorems, it is expected to uniquely determine the input 

signal by the sampled data information. The effects of random errors on the nominal 

sampling time instant are commonly called timing jitter. 

As explained before, there can be errors such as timing jitters that can arise due to band pass 

sampling. These timing jitters are cause by two main factors. They are enlisted as: 

1. Aperture Jitter 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 
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2. Clock Jitter 

Aperture jitter in the sample and hold circuit is the time delay between the sampled input and 

the actual time taken by the sampled analog input signal.  Whereas, Clock Jitter is the random 

fluctuations in the period of clock [5.20-5.21].  

Figure 5.6 depicts the effect of jitter. With the higher timing jitter, it will lead to higher voltage 

error in the sampled output version. It is clear from Figure 5.6 that this effect will be highly 

magnified with higher slew rates. There are three additional effects due to aperture and clock jitter 

listed below: 

1. Increase in system noise floor. 

2. Increase in the uncertainty in the actual sampled signal itself. 

3. Inter-symbol interference [5.22-5.23].  

In order to simplify the evaluation, let’s assume that the aperture jitter and sampling clock jitter 

follow a Gaussian distribution with zero mean. The noise power due to jitter can be written as: 

𝑃𝐽𝑖𝑡𝑡𝑒𝑟 = 2∫∅𝑠 (𝑓) [1 − 𝑒
(−

(2𝜋𝑓)2𝜎𝑗𝑖𝑡𝑡𝑒𝑟 𝐴𝐷𝐶
2

)
] 𝑑𝑓 

Here ∅𝑠(𝑓) represents power spectral density of  signal while 𝜎𝑗𝑖𝑡𝑡𝑒𝑟 𝐴𝐷𝐶 presents ADC jitter.  

 

 

 

 

 

 

 

 

Figure 5.6: Schematic explaining the effect of jitter 

(5.14) 
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SNR due to jitter is given as: 

𝑆𝑁𝑅𝐴𝐷𝐶−𝐽𝑖𝑡𝑡𝑒𝑟 =
∫∅𝑠 (𝑓) 𝑑𝑓

2∫∅𝑠 (𝑓) [1 − 𝑒
(−

(2𝜋𝑓)2𝜎𝑗𝑖𝑡𝑡𝑒𝑟 𝐴𝐷𝐶
2

)
] 𝑑𝑓

 

In order to simplify this solution, it has been shown that modulated signal can be assumed to 

have a single carrier for the jitter noise calculations since it was shown in [30] that modulated 

carrier frequency is 10 times higher than the bandwidth signal i.e. 𝑓𝑐 > 10 ∗ 𝑟𝑠(1 + 𝛼). Since the 

magnitude change in the exponential term of the denominator of Eq. (5.15) is very small, therefore 

we can assume that (2𝜋𝑓)2𝜎𝑗𝑖𝑡𝑡𝑒𝑟 𝐴𝐷𝐶 ≪ 1, hence the SNR due to jitter can be simplified to be: 

𝑆𝑁𝑅𝐴𝐷𝐶 𝐽𝑖𝑡𝑡𝑒𝑟(𝑑𝐵) = −20 𝑙𝑜𝑔10(2𝜋𝑓𝑐𝜎𝑗𝑖𝑡𝑡𝑒𝑟 𝐴𝐷𝐶) 

 

5.3.2 Signal Impairments in DAC 

Like ADC, DAC also has signal impairments that arise due to phase noise of the clock used 

in clocking the DAC. During this evaluation, the band pass modulated signal is treated as a single 

carrier for jitter calculations as given in [5.23,5.24]. Thus, the sampling clock jitter will follow a 

gaussian distribution with a zero mean. In order to derive the SNR degradation due to DAC, let’s 

consider the block diagram of DAC in Figure 5.7.  The simplified block diagram shown here first 

converts the streams of bits to sample values. These outputs are series of rectangular pulses with 

width equal to the inverse of the clock rate. That is the reason due to which DAC is 

mathematically modelled by a zero order hold (ZOH). ZOH is a circuit device whose response is 

a rectangular pulse with width equal to inverse of the sampling rate and its frequency spectrum  

is a sinc function. It was shown in P. Smith et al. [5.23] that the SNR of the DAC output is: 

𝑆𝑁𝑅𝐷𝐴𝐶 𝐽𝑖𝑡𝑡𝑒𝑟 (𝑑𝐵) =
1

𝜎𝜃
2 [(

𝑓𝑐𝑙𝑘
𝑓𝑠𝑖𝑔

)]

2

 

(5.15) 

(5.16) 

(5.17) 
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where phase noise 𝜎𝜃= 2𝜋𝑓𝑐𝑙𝑘𝜎𝑗𝑖𝑡𝑡𝑒𝑟 𝐴𝐷𝐶 ,𝑓𝑐𝑙𝑘 and 𝑓𝑠𝑖𝑔 represents clock and signal frequency 

respectively. Since the frequency response of the ZOH is a sinc function, it is attenuated due to 

jitter noise at higher frequencies and this effect will impart the expression given above in Eq. 

(5.17). Therefore, the new expression becomes: 

𝑆𝑁𝑅𝐷𝐴𝐶 𝐽𝑖𝑡𝑡𝑒𝑟 (𝑑𝐵) =
1

𝜎𝜃
2

𝜋2

[𝑠𝑖𝑛 (
𝜋𝑓𝑠𝑖𝑔
𝑓𝑐𝑙𝑘

)]
2 

𝑆𝑁𝑅𝐷𝐴𝐶 𝐽𝑖𝑡𝑡𝑒𝑟 (𝑑𝐵) = −20 log10(2𝜋𝑓𝑐𝜎𝑗𝑖𝑡𝑡𝑒𝑟 𝐷𝐴𝐶)
−2
[𝑠𝑖𝑛𝑐 (

𝑓𝑠𝑖𝑔

𝑓𝑐𝑙𝑘
)]

−2

 

 

Figure 5.7: Schematic for DAC 

5.3.3 Optical Link Noise 

Apart from Noise sources in ADC and DAC, there are other noise sources like the one in 

optical link. These impairments arise due to optical channel noise. While deriving its expression, 

it is assumed that degradation is caused due to thermal noise. For such a receiver which is limited 

by the thermal noise, the Quality factor has been represented as: 

𝑄 = [
1 − 𝑟

1 + 𝑟
] . ℛ ∗

𝑃𝑎𝑣𝑔

𝐼𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑛𝑜𝑖𝑠𝑒
 

Where  𝑟 represents the ratio between the received currents of two bits respectively, ℛ shows 

the responsivity of the photodiode, 𝑃𝑎𝑣𝑔is the received optical power at the photodetector and 

𝐼𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑛𝑜𝑖𝑠𝑒 represents the current for the thermal noise. The Bit Error Rate (BER) is given as 

follows: 

(5.18) 

(5.19) 

(5.20) 
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𝐵𝐸𝑅 =
𝑒−

𝑄2

2

√2𝜋(𝑄) 
 

The Bit errors that arise in the optical channel, they cause additional errors to analog signals 

during the reconstruction phase. Thus, adding noise to the reconstructed analog signal.  Therefore, 

the optical BER named as 𝐵𝐸𝑅𝑜𝑝𝑡𝑖𝑐𝑎𝑙 becomes [5.25-5.26]: 

𝐵𝐸𝑅𝑂𝑝𝑡𝑖𝑐𝑎𝑙 = 𝑉𝑝𝑒𝑎𝑘
2 (𝐿2 − 1) ∗ 4 ∗

𝐵𝐸𝑅

3 ∗ 𝐿2
 

Therefore, the 𝑆𝑁𝑅𝑜𝑝𝑡𝑖𝑐𝑎𝑙𝑙𝑖𝑛𝑘 becomes: 

𝑆𝑁𝑅𝑜𝑝𝑡𝑖𝑐𝑎𝑙𝑙𝑖𝑛𝑘 =
𝑃𝑠

𝐵𝐸𝑅𝑜𝑝𝑡𝑖𝑐𝑎𝑙
 

5.3.4 Total Link Noise 

In the discussion above, we have discussed in detail major components of noise that may arise 

in Digital RF optical link.  The total link noise can therefore be expressed by summation of all 

these noise element by element. Figure 5.8 shows the noise sources in the digital link at each 

stage. The total SNR can be expressed as: 

𝑆𝑁𝑅𝐿𝐼𝑁𝐾 = [𝑆𝑁𝑅𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝑆𝑁𝑅𝑜𝑢𝑡𝑜𝑓𝑏𝑎𝑛𝑑 + 𝑆𝑁𝑅𝐴𝐷𝐶𝑗𝑖𝑡𝑡𝑒𝑟]𝐴𝐷𝐶  + 𝑆𝑁𝑅𝑜𝑝𝑡𝑖𝑐𝑎𝑙𝑙𝑖𝑛𝑘

+ 𝑆𝑁𝑅𝐷𝐴𝐶𝑗𝑖𝑡𝑡𝑒𝑟 

 

 

 

 

 

Figure 5.8: Block diagram of noise sources at different stages of the D-RoF link 

(5.21) 

(5.22) 

(5.23) 

(5.24) 
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Table 5.1 lists the mathematical expressions used for modelling the types of noise due to ADC 

and DAC. The values of the ADC and DAC RMS jitter, 𝜎𝑗𝑖𝑡𝑡𝑒𝑟 𝐴𝐷𝐶 and 𝜎𝑗𝑖𝑡𝑡𝑒𝑟 𝐷𝐴𝐶, respectively, 

are taken from the specifications of the Digital Sampling Oscilloscope utilized in the experimental 

part described in Section 5.6.  

Table 5-1: Summary of different noise sources, with their expression and assumptions 

ADC:  

Jitter Noise 

 

𝑺𝑵𝑹𝑨𝑫𝑪 𝑱𝒊    (𝒅𝑩)

= −𝟐𝟎 𝒍 𝒈𝟏𝟎(𝟐𝝅𝒇𝒄𝝈𝒋𝒊     𝑨𝑫𝑪) 

where 𝑓𝑐 = 2.475  𝐺𝐻𝑧; 𝜎𝑗𝑖𝑡𝑡𝑒𝑟 = 0.8 𝑝𝑠 

Assuming that: 

The ADC sampling clock 

Jitter has a zero mean with 

gaussian distribution.   

ADC: 

 Quantization 

Noise 

 

𝑺𝑵𝑹𝑸  𝒏 𝒊𝒛  𝒊 𝒏(𝒅𝑩)

= −𝟏𝟎 𝒍 𝒈𝟏𝟎(𝑷𝑨𝑷𝑹)

+ 𝟔. 𝟎𝟐 ∗ 𝒏 + 𝟏𝟎 𝒍 𝒈𝟏𝟎(𝟑) 

where 𝑃𝐴𝑃𝑅 =
3(√𝑀−1)

√𝑀+1
;  𝑀 = 64 ; 𝑛 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑡𝑠 

Assuming that: 

Quantization errors are: 

a) Uniformly Distributed. 

b) Independent   
 

ADC:  

Out of Band Noise 

Aliasing 

𝑺𝑵𝑹𝑶𝑩−𝑵 𝒊  𝑨𝒍𝒊  𝒊𝒏𝒈(𝒅𝑩) =
𝟐𝑷 

𝑵𝒇 𝑲𝑻
 

where 𝑃𝑠= output power of RF 

modulated signal; 𝑁 = integer referred to 

Nyquist zones; 𝑓𝑠 = Sampling Frequency ; 

𝐾=Boltzman constant; 𝑇=Temperature in 

Kelvin 

Assuming that: 

ADC Resolution bits are high 

so out of band noise aliasing is 

due to thermal noise only. 

DAC:  

Signal 

Degradation due 

to DAC jitter noise  

𝑺𝑵𝑹𝑫𝑨𝑪 𝑱𝒊     (𝒅𝑩)

= −𝟐𝟎 𝐥𝐨𝐠𝟏𝟎(𝟐𝝅𝒇𝒄𝝈𝒋𝒊     𝑫𝑨𝑪)
−𝟐

 

∗ [ 𝒊𝒏𝒄 (
𝒇𝒄
𝒇𝑺
)]

−𝟐

 

Assuming that: 

The band pass modulated 

signal is treated as a single carrier 

for jitter calculations.  
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5.4 Analytical model for D-RoF systems 

The D-RoF link proposed has been realized by means of VPI Transmission Maker. Figure 

5.9 presents the block diagram of the system, where the main functionalities of the different 

blocks are specified, together with the list of the non-idealities taken into account.  

The 64 QAM RF signal is fed into the ADC with n bits of resolution which performs the 

digitization using the bandpass uniform sampling technique. quantization, and coding functions 

are performed by this block. Through quantization, the discretization of the continuous signal is 

performed with respect to ADC resolution giving it a new representation in discrete-time and 

amplitude domain.  

The quantized signal is then converted to a binary sequence and subsequently encoded using 

a NRZ (non-return to zero) encoder. Then, this stream of bits modulates a Distributed Feed Back 

(DFB) laser diode. The modulated optical carrier is transported over an optical channel of 

standard single mode fiber (SSMF) and is then detected by a photoreceiver, based on a PIN 

photodetector. The output data received are then fed into a digital signal processor (DSP) that 

recovers the digital data stream, which in turn goes to the DAC for normalization, decoding and 

signal reconstruction operations. Finally, this reconstructed signal is fed to a Performance 

Evaluator block, which computes SNR, EVM and Eye Opening Penalty (EOP).  

Different kinds of noise are generated in the ADC. First of all, whenever a bandpass signal is 

bandpass sampled out of the band, noise aliases into the Nyquist zones [5.26-5.29]. Moreover, 

the ADC can introduce quantization and jitter noise into the link. The quantization noise is 

determined by the resolution bits of the ADC while jitter noise can be due both to the ADC itself 

 where 𝑓𝑐 = 2.475 𝐺𝐻𝑧 ;  𝑓𝑆 = 128 𝑀𝐻𝑧; 

𝜎𝑗𝑖𝑡𝑡𝑒𝑟 𝐴𝐷𝐶 = 0.8𝑝𝑠 
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(aperture jitter) and to the sampling clock. Considering the receiver side, the DAC is in turn 

subject to jitter noise which is due to the phase noise of the clock utilized. 

Figure 5.9: Block Diagram of the D-RoF link considered, evidencing the main functionalities of the signal- 

processing components and the non-idealities taken into account in the model. 

 

Signal Degradation that arises due to bandpass sampling, clock jitter noise and quantization 

noise are weakly correlated, and these noise sources can then be assumed to be independent 

[5.27]. Mean of the bandpass sampling, jitter and quantization noises are zero.  Furthermore, 

DAC jitter noise is due to the clock jitter can be assumed to be independent of both optical link 

and ADC. 

The resolution of the ADC should ensure that quantization error is uniformly distributed. This 

means that SNR due to quantization noise should be higher than SNR due to jitter noise [5.12]: 

 

𝑆𝑁𝑅𝑄𝑢𝑎𝑛𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛  >  𝑆𝑁𝑅𝐽𝑖𝑡𝑡𝑒𝑟 

Equation (5.25) can be expanded in the following form: 

 

−10 log10(𝑃𝐴𝑃𝑅) + 6.02 ∗ 𝑛 + 10 log10(3)   >  −20 𝑙𝑜𝑔10(2𝜋𝑓𝑐𝜎𝑗𝑖𝑡𝑡𝑒𝑟) 

(5.25) 

(5.26) 
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In (5.26), 𝑷𝑨𝑷𝑹 is the Peak to Average Power Ratio and amounts to 8.1 dB while 𝒇𝒄 is 2.475 

GHz and 𝝈𝒋𝒊     that represents the ADC RMS jitter is 0.8 psec. By considering these values in 

(5.26), we selected 𝒏 = 𝟖, as the optimal resolution for the ADC.  

The impairments associated with the Analog to Digital Conversion operation include also the 

introduction of nonlinearities. These are taken into account by assuming the ADC as composed 

by an ideal device to which the different noise contributions are added, and which is preceded by 

a nonlinear block accounting for the distortion introduced by the real ADC. Such nonlinear block 

has been set in the model in the form of a truth table, extrapolated from the behavior of the real 

ADC utilized for the experimental test.  The causes of non-ideal behavior introduced in the D-

RoF system by the optical link which were taken into account in the model consist in the Intensity 

Noise of the DFB laser, in the attenuation and chromatic dispersion of the optical fiber, and in the 

presence of shot and thermal noise at the photodetector. The corresponding characteristics are 

listed in Table 5-2.  

Table 5-2: Parameters utilized in the simulation of the Optical Link 

Optical 
Link 

Component 

Parameters Values 

Laser Wave Length= 1550 nm 

Average Power= 10 mW 

Line Width= 16e6 Hz 

𝐼𝐵𝑖𝑎𝑠 = 40 𝑚𝐴 

𝐼𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 10 𝑚𝐴 

RIN = -130 dB/Hz 

Fiber 
Dispersion= 16 

𝑝𝑠

𝑛𝑚

𝑘𝑚
 

Length= up to 70 km 

Attenuation= 0.2 
𝑑𝐵

𝑘𝑚
 

Photo- 

detector 

Responsivity 0.6 A/W 

Shot Noise (computed assuming 𝐼𝐷𝑎𝑟𝑘~0 𝑚𝐴) 

Thermal Noise  (Computed assuming= 290°𝐾) 
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5.4.1 Performance Results 

 

In the present section, the performance of the D-RoF system proposed will be compared with 

the performance of an A-RoF system. The A-RoF system considered is practically composed by 

the block diagram represented in Figure 5.1 once the ADC, DSP and DAC blocks are removed. 

This means that the 64 QAM RF signal directly modulates the DFB laser diode, and that the 

Performance Evaluator block is placed immediately after the photo receiver.  

 

Figure 5.10 evaluates the EVM performance of the two RoF methodologies with respect to 

fiber length. Input Power 𝑃𝐼𝑁 is set at level 0 𝑑𝐵𝑚. The trend of the A-RoF curve shows that with 

the increase in the fiber length, there is a significant rise in the value of EVM for A-RoF. Indeed, 

for lengths greater than 60 km the A-RoF link exceeds the 3GPP threshold of EVM=8%, while 

the D-RoF link maintains a value of EVM lower than 3% over the whole range of lengths 

considered, which is well below the 3GPP limit.  Figure 5.10 also shows the 64-QAM received 

constellations in both architectures for L=70 km, allowing to appreciate that the received symbols 

are more scattered in the A-RoF case with respect to the D-RoF one, and confirming that the latter 

is less affected by the causes of impairments present in the system. 

Figure 5.10: Values of EVM vs RF input power are illustrated for both the Analog and the Digital RoF 

systems analyzed. PDSCH (Physical Downlink Shared Channel) constellations at  𝑷𝑰𝑵 = 𝟓𝒅𝑩𝒎 are 

shown as well. 
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In order to evaluate the dynamic range of the two architectures, the EVM performance is 

evaluated with varying input powers. Since, in Figure 5.10, the EVM for 0 𝑑𝐵𝑚 input power for 

60 km is equal or less than 8% for both, A-RoF and D-RoF, the length is fixed to 60 km. Figure 

5.11 shows then for this value of the link length the EVM estimation for varying input powers.  

With reference to both systems a qualitatively similar behaviour can be observed. Initially, for 

increasing values of the input RF power, the values of EVM tend to decrease, since the power of 

the useful signal increases with respect to the power of the noise contributions. Once a minimum 

value of EVM is reached (for 𝑃𝐼𝑁~− 5𝑑𝐵𝑚 and for 𝑃𝐼𝑁~ 0 𝑑𝐵𝑚  in the A-RoF and D-RoF cases, 

respectively), the value of EVM starts to exhibit a positive slope with respect to increasing values 

of 𝑃𝐼𝑁. This last behaviour is due to the insurgence of distortion terms generated within either of 

the two systems. 

In the case of the A-RoF link the spurious terms which determine an increase of EVM for 

𝑃𝐼𝑁 > −5𝑑𝐵𝑚 are due to the fact that relatively high PAPR of the modulating signal causes the 

DFB laser to go below threshold determining a distortion in the signal transmitted over the optical 

carrier.  

In the case of the D-RoF link, the increase of EVM for 𝑃𝐼𝑁 > 0𝑑𝐵𝑚 are caused by the 

nonlinearities of the ADC, which, as mentioned above, are taken into account through the 

introduction of an appropriate nonlinear block realized in the form of truth table, which precedes 

an ideal ADC.  

Figure 5.11: Values of EVM vs fiber length 𝑳 are illustrated for both the Analog and the Digital RoF 

systems analyzed. PDSCH constellations at  𝑳 = 𝟕𝟎 𝒌𝒎 are shown as well.  
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From Figure 5.11, it can be appreciated that the dynamic range of the A-RoF  lies between -15 

𝑑𝐵𝑚 and 0 𝑑𝐵𝑚, adding up to 15 dB, while in the D-RoF link,  it ranges from -22 𝑑𝐵𝑚 to 5 𝑑𝐵𝑚, 

adding up to 27 dB.  The accepted dynamic range in accordance to 3GPP limit for Analog RoF link 

is then almost half as compared to Digital RoF link. The constellation chart shows the symbols 

received at the D-RoF boundary of the 3GPP 8% limit (𝑃𝐼𝑁=5𝑑𝐵𝑚). It is evident that the Analog 

RoF symbols reception is noisier than that of Digital RoF link in correspondence to the same value 

of 𝑃𝐼𝑁 . 

The comparison between Analog and Digital RoF is further performed by evaluating the signal 

to noise ratio (SNR).  Figure 5.12 represents the comparison of SNR for varying fiber lengths at 0 

𝑑𝐵𝑚 of input power. Also, in this case D-RoF outperforms A-RoF.  

In case of D-RoF, the SNR maintains a constant value for L <35 km. This is determined by the 

fact that the quantization noise of the ADC given by (5.25) prevails over all the other contributions, 

which practically do not influence the value of the SNR. However, for higher lengths, the noise 

collected at the optical receiver section starts to dominate over the quantization noise as a result of 

the increased fiber loss, limiting the overall link performance. In case of A-RoF, the signal 

attenuation is the main cause of the monothonical reduction of the SNR which is observed for 

increasing values of the link length.  

  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 5.12: Results for SNR vs. Fiber Length 
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Figure 5.13 highlights the influence of the number of bits chosen for the ADC resolution on the 

values SNR and EVM for the D-RoF Link. The selected Input optical power 𝑃𝐼𝑁 is 0 𝑑𝐵𝑚 and 

length of the link is fixed to 60 km. It can be appreciated that the number of 8 bits chosen for the 

ADC resolution represents a correct choice, since the value of the EVM would only very slightly  

increase while the value of the SNR would not even increase at all if n=9 or n=10 were chosen 

for the ADC resolution.  

 
 

 

 

 

 

 

 

 

 

 

Figure 5.13: Results for EVM and SNR as a function of ADC Resolution 

The transmission performance of  A-RoF and D-RoF systems is further  investigated by analysing 

the Eye diagrams of the transmitted signals. Figure 5.14 allows to appreciate that for both systems 

EOP increases with the increasing fiber length. EOH in the A-RoF case closes after a distance of 

45 km, in line with the fact that EOP approaches infinity. In the D-RoF case, the EOH remains 

open within all the considered fiber length range. For a distance of 70 km EOP shows a value of 

7.4 𝑑𝐵. Although there is not, in general, a direct relation between EOP and more quantitative 

parameters like the EVM, its evaluation allows to have an immediate idea of the quality of the 

received signal. 

In addition, the evaluation of the EOP will constitute in the next section one of the benchmark 

utilized for the experimental validation of the proposed D-RoF system.  

 

 

 

 

 

 

 

 

 
 Figure 5.14: Eye Opening Penalty versus Fiber length. The inset shows the EOP for D-RoF at 50 km. 
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5.5 D-RoF Experimental Setup and Analytical Model Results Validation 

In order to verify the proposed analytical model, the digitized radio over fiber link has been 

demonstrated through an experimental setup, whose   schematic is shown in Figure 5.15.  The RF 

signal is generated by a Vector Signal Generator (VSG).  A 20 MHz LTE signal having 64 QAM 

modulation is used to modulate a carrier frequency of 2.475 GHz. The bandpass sampling is 

carried out at 128 MSamples/s. For emulating the ADC, the Digital Sampling Oscilloscope (DSO) 

Keysight Technologies DSOX1102G is utilized, which captures more than 50000 samples/s and 

whose maximum resolution is 8 bits. The coder and the quantizer are implemented by a software 

code. The time window captured using the DSO was 500 μs. The samples processing is done 

offline. Note that this practical implementation is very similar to the one proposed in [5.28], two 

primary differences being the use of a Distributed Feedback (DFB) laser (instead of a VCSEL), 

and the distance covered by the optical link, which in this experimental case is 30 km (instead of 

20 km). 

At first, the samples are coded and appended with a preamble of optimum binary sequences 

having lowest probability of failure as given in [5.29]. The chosen preamble was (+ 1, + 1, + 1, + 

1, + 1, + 1, - 1, - 1, - 1, - 1, - 1, - 1, + 1, +1, - 1, - 1). The preamble can in principle lead to 

additional over heads, however, the selected preamble has negligible effect since it has 16 bits 

leading to a bit rate of 1.024 Gbps. The resultant binary digital stream is obtained through 

Keysight 81134A pulse pattern generator (PPG).  

Before this stream is used to directly modulate the Opti Lab 1550 nm Distributed Feedback 

(DFB) Laser, it is necessary to attenuate the peak to peak output voltage of the PPG so that the 

DFB laser is biased at 40 mA with an extinction ratio of 0.07. This operation guarantees that the 

DFB laser always operates above threshold. The possible nonlinear effects that may arise in the 

evaluation of the system performance must be ascribed to the non-ideal behavior of the ADC 

included in the DSO. The DC bias current is unified with the attenuated signal using a bias tee. 

This resultant signal modulates the laser and transmits it over 30 km of fiber length. The received 

optical signal is photo detected using a photodiode having 0.6 A/W of responsivity.  

The received signal is fed into the data recovery block that consist of a DSO and a correlator. 

The photodiode output is captured by the DSO and is then sent to the correlator block 
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(implemented through a software code) which compares the captured output data stream with the 

preamble in order to identify the starting bit.  

The DAC consists of a decoder, a zero-order hold (ZOH) and signal reconstruction block 

clocked at 128 MHz. The decoder and the ZOH are implemented by a software code while the 

signal reconstruction is employed using an arbitrary waveform generator (AWG). The output of 

the correlator data stream is decoded off-line in the decoder block of DAC and decoded samples 

were generated electrically using the AWG. This reconstructed signal is then fed to the VSA. In 

Figure 5.15 (a), (b) and (c), the signal is shown at different stages. In Figure 5.15 (a), the quantized 

signal containing 50,000 samples converted to 400,000 bits after coding is shown. Figure 5.15(b) 

and 5.15(c) show respectively the photodiode output captured by the DSO in the data recovery 

block and its spectrum in the frequency domain. 

 

 

 

 

 

 

 

 

Figure 5.15: Experimental setup for D-RoF transmission. VSG: Vector Signal Generator. DSO: Digital 

Signal Oscilloscope. PPG: Pulse Pattern Generator. SMF: Single Mode Fiber. AWG: Arbitrary Waveform 

Generator. VSA: Vector Signal Analyzer. The inset (a) represents the quantized signal at the output of the 

DSO. Inset (b) and (c) represents the photodiode output signal and spectrum captured by the DSO. 
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5.5.1 Results and Discussion 

In order to validate the experimental bench, a comparison between measured and modelled 

data is performed, referred to the experimental setup described, where the length of the fiber is 

set to 30 km. Figure 5.16 shows the behaviours of SNR resulting from the described  analytical 

model (𝑆𝑁𝑅𝐴𝑁𝐴𝐿𝑌𝑇𝐼𝐶) and from the experimental measurement  (𝑆𝑁𝑅𝐸𝑋𝑃) as a function of the 

number of ADC resolution bits. A difference between about 5 dB (for n=3) and about 9 dB (for 

n=8) can be observed between 𝑆𝑁𝑅𝐴𝑁𝐴𝐿𝑌𝑇𝐼𝐶 and 𝑆𝑁𝑅𝐸𝑋𝑃, when considered with a RF carrier 

frequency of 2.475 GHz. 

 

 

 

 

 

 

 

 

 

However, the behaviors of modelled and measured EVM (𝐸𝑉𝑀𝐴𝑁𝐴𝐿𝑌𝑇𝐼𝐶and 𝐸𝑉𝑀𝐸𝑋𝑃 , 

respectively) again as function of the number of ADC resolution bits, which is reported in Figure 

5.17 shows only a slight difference between the two curves, indicating that the simulation model 

developed can be a useful tool for predicting the system performance.  

As an additional test, 𝑆𝑁𝑅𝐸𝑋𝑃 and 𝐸𝑉𝑀𝐸𝑋𝑃 , have been measured also considering, after 

bandpass sampling, the spectral replica of the transmitted signal at 100 MHz (and not at 2.475 

GHz). The computed behavior coming from the theoretical simulation does not vary in this case, 

but it can be appreciated that 𝑆𝑁𝑅𝐸𝑋𝑃 and 𝐸𝑉𝑀𝐸𝑋𝑃  are both in good  agreement with the 

Figure 5.16: Theoretical vs Experimental SNR for varying ADC resolution bits 
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theoretical values of 𝑆𝑁𝑅𝐴𝑁𝐴𝐿𝑌𝑇𝐼𝐶. It appears that the lower agreement exhibited at 2.475 GHz is 

due to a sort of higher “insertion loss” which is performed by the instrumentation at higher order 

Nyquist zones. This can be possibly included in the parameters of the model utilized numerical 

simulation, which results validated by the measurements performed on the considered 

experimental bench. Similarly, it can be concluded based on our theoretical and experimental 

observations that an ADC with 8 resolution bits is sufficient to achieve optimum SNR and EVM 

performance. 

 

 

 

 

 

 

 

 

 

Figure 5.17: Theoretical versus experimental EVM for different numbers of ADC bits 

As an additional comparison, Figure 5.18 presents the behaviour of EVM for changing values 

of the RF input power. The link length is again fixed to 30 km for both theoretical/ analytical 

𝐸𝑉𝑀𝐴𝑁𝐴𝐿𝑌𝑇𝐼𝐶 and Experimental 𝐸𝑉𝑀𝐸𝑋𝑃. The trend in Figure 5.18 confirms the consideration 

expressed above, namely that the  𝐸𝑉𝑀𝐸𝑋𝑃 for the 2.475 GHz spectral replica undergoes higher 

insertion losses compared to the spectral replicas at lower order zones [5.30]. The experimental 

results 𝐸𝑉𝑀𝐸𝑋𝑃 @ 100 MHz are very close to   𝐸𝑉𝑀𝐴𝑁𝐴𝐿𝑌𝑇𝐼𝐶 curve. The slight difference can be 

attributed to experimental errors. 
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Figure 5.18: Theoretical versus experimental EVM for varying RF input power at 30 Km. 

 

The Eye-Opening Penalty (EOP) defines the deterioration in the eye diagrams. EOP is the ratio 

of the non-distorted reference eye called Eye Opening Amplitude (EOA) to the eye opening of the 

distorted eye, i.e. the Eye Opening Height (EOH) [5.31]. Finally, Figure 5.19 shows the comparison 

of the Eye-opening penalty computed with the analytical model (𝐸𝑂𝑃𝐴𝑁𝐴𝐿𝑌𝑇𝐼𝐶) with the one measured in 

the experimental (𝐸𝑂𝑃𝐸𝑋𝑃) for RF spectral replicas at 100 MHz and 2.475 GHz respectively. In line with 

the previous observations, it can be appreciated that the both computed 𝐸𝑂𝑃𝐸𝑋𝑃 exhibit values very similar 

to the 𝐸𝑂𝑃𝐴𝑁𝐴𝐿𝑌𝑇𝐼𝐶 which is a further validation of the analytical model. 

 

 

 

 

 

 

 

 

Figure 5.19: Theoretical versus experimental EOP for varying fiber lengths. 
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Table 5-3: Summary of the analytical and experimental bench for D-RoF 

Table 5.3 presents the summary of the performance parameters for experimental and 

analytical D-RoF link. The link length is 30 km, 8 bits of resolution and 0 𝑑𝐵𝑚 of RF input 

power. It can be seen that model results are very much in accordance with the experimental 

results.    

 

5.6 Conclusions 

A comprehensive analysis has been presented on the performance of Digital and Analog RoF 

systems. It has been demonstrated that the use of D-RoF system for broadband wireless signal 

transportation and distribution applications employing bandpass sampling for 20 MHz LTE signal 

having 64 QAM modulation format. The proposed technique has demonstrated the increase of 

the reach of the fiber distance up to 70 km with an optimized value of resolution bits. Moreover, 

the analytical model utilized for D-RoF has been validated experimentally for 30 km of fiber 

length. The results obtained for experimental bench are in accordance with the D-RoF analytical 

model. It’s also evident that the performance of the D-RoF is predominantly determined by the 

performance of the ADC. By employing bandpass sampling, indeed, ADC complexity and over 

heads of sampling at giga samples can be relaxed. Indeed A-RoF link has less good performance 

than D-RoF link, one still may prefer usage of A-RoF over D-RoF for short distances keeping in 

mind the throughput and losses versus cost of deploying D-RoF system. Real time 

implementation of the above proposed system and multichannel propagation using D-RoF is 

envisaged for the future work. 

Parameter D-RoF Experimental D-RoF Analytical 

@ 100 MHz @ 2.475 GHz 

EVM (%) 1.3 2.2 1.1 

EOP (dB) 3.1 3.3 2.8 

SNR (dB) 38 40 43 
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Chapter 6  

Sigma Delta Radio over Fiber Systems as a New 

Candidate for Fronthaul Applications 

The findings of this chapter have been published as journal articles [J5], [J6] and [J7] while 

another article [A2] has been submitted. 

_____________________________________________________________________________ 

This chapter discusses another class of RoF system which is called as Sigma Digital Radio over 

Fiber (S-DRoF) system. The chapter introduces the need and importance of Sigma delta RoF 

system, an auxiliary method that amalgamates the advantages of A-RoF and D-RoF. It discusses 

the basics of sigma delta modulator (∑∆𝑀). The need of power hungry and high-speed digital to 

analog converter (DAC) required in D-RoF is replaced by a ∑∆𝑀. It describes the different 

architectures that have been proposed. The analytical model with simulation is shown and then 

experimental setup is discussed.  

6.1 Introduction 

In recent years, the continuous demand for delivering gigabits of data rate has become crucial. 

Next-generation networks such as 5G require high speed data rate, cost effective and low latency 

solutions [6.1]. In order to support such networks, a worthwhile and greener optical transport 

solution will be needed. Radio over Fiber (RoF) systems have been looked upon as a capacitive 

technology to cope with the on growing demand of these next generation networks.  

The techniques adapted for RoF can be either in analog or digital form. A-RoF and D-RoF 

have been discussed comprehensively in previous chapters. Digital RoF (D-RoF) can overcome 

the nonlinear effects arising in A-RoF [6.2-6.3]. It has been regarded as a robust solution in terms 

of performance. However, the cost of D-RoF increases as the requirement of high precision 

analog to digital and digital to analog converters adds up to it. Similarly, the phase relation 
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between many RRHs doesn’t remains steady and spectral efficiency decreases [6.4]. Therefore, 

the existence of an alternative solution which can fix these bottlenecks would be desirable.   

 An auxiliary methodology is Sigma Delta Modulated Radio over Fiber (S-DRoF) that 

amalgamates the advantages of A-RoF and D-RoF [6.5-6.8]. This is a power efficient and robust 

technique eliminating the need for high-speed digital circuitry. The need of power hungry and 

high-speed digital to analog converter (DAC) required in D-RoF is replaced by a sigma delta 

modulator (∑∆𝑀). The same RRH can be used for ARoF and S-DRoF. However, similar to D-

RoF, the digital signal transmitted over the link is highly resistant to nonlinearities. 

In this chapter, we discuss the basics of Sigma delta ∑∆𝑀, its’ different forms and novel 

robust solution for the implementation of 5G CRAN downlink applications are proposed. This 

chapter is organized as follows. Section 6.2 summarizes the RoF architectures. Section 6.3 briefly 

proposes a novel digitization interface based on Sigma Delta Radio over Fiber (S-DRoF) that 

employs the SDM to RF signal. Section 6.4 describes the system description where different 

architectures are used. Firstly, simulation is shown, and experimental setup is discussed. In 

Section 6.5, performance analysis of S-DRoF is presented in terms of Error Vector Magnitude 

(EVM) and Signal to Noise Ratio (SNR) while Section 6.5 concludes the chapter. 

6.2 Review of Sigma Delta Radio over Fiber System 

There are three different methods utilized for mobile fronthauling as shown in Figure 6.1 (a)-

(c). It shows the mobile front haul with three different implementation techniques. 6.1 (a) shows 

an analog mobile front haul architecture based on RoF techniques. The baseband signal is 

upconverted to RF signal which is then converted to an optical signal in electrical to optical (E-

O) conversion block and transmitted through the optical link. At the receiver, optical to electrical 

(O-E) block retrieves the received RF signal back to electrical domain. This signal is then 

transmitted through the antenna after performing filtering and amplification. 

However, this solution is susceptible to nonlinearities coming from its microwave and optical 

parts [6.9-6.15]. In order to subdue these nonlinearities, various solutions have been proposed for 

the linearization of A-RoF links that were discussed in detail in Chapter 2.  
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Since the linearization methods implied to A-RoF links are limited to narrow bandwidth and 

require feedback which is a tedious process. Similarly, for 5G networks, it would be challenging 

to dynamically track and compensate the nonlinear channel response, especially given the fact of 

broadband time varying data traffic from multiple RATs. 

On the other hand, Digital mobile fronthaul (D-MBFH) based on Digital-Radio over Fiber 

(D-RoF) is not affected by the nonlinear effects arising in A-RoF [6.16-6.18]. Figure 6.1 (b) 

represents the D-RoF architecture. The common public radio interface (CPRI) that was proposed 

by the CPRI cooperation, Nokia, Bell Labs, Ericsson, Huawei, Orange and NEC, was adopted as 

the D-MBFH interface [6.19]. However, when CPRI was employed as a digitization interface 

developed for narrowband radio access technologies (RATs), such as UMTS (CPRI version 1 and 

2), WiMAX (version 3), LTE (version 4) and GSM (version 5), due to its limited spectral 

efficiency, it had limited scalability. Moreover, it also required tremendous data traffic in the 

fronthaul network segment. Similarly, the cost of D-RoF increases as the requirement of high-

performance analog-to-digital and digital-to-analog converters adds to it. Similarly, the phase 

relation between many RRHs does not remain steady and spectral efficiency decreases [6.20]. 

Therefore, an alternative solution, which can overcome these bottlenecks, would be desirable. 

The CPRI bottleneck can be outmaneuvered by employing Sigma-Delta Modulation (SDM). 

An auxiliary methodology is Sigma-Delta Radio over Fiber (S-DRoF) that combines the 

advantages of both A-RoF and D-RoF. It is a simpler and power efficient solution that eliminates 

the need for high-power of the 1-bit quantization noise is very high, its spectral density is shaped 

for the most part out of the band of interest.   

The digital signal transmission is highly immune to non-linearities, as in the case of D-RoF. 

At the receiver end, a band-pass filter (BPF) guarantees the correct digital-to-analogue conversion 

of the signal and the spectral emission requirements by filtering the out-of-band quantization 

noise. Figure 6.1 (c) shows the general scheme of S-DRoF. The power-hungry multi-bit DAC 

and the subsequent linear driver at the D-RoF transmitter are replaced by a sigma delta (SD) 

modulator. 
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Figure 6.1: Schematic illustration of (a) A-RoF, (b) D-RoF and (c) S-DRoF. ADC: Analog to Digital 

Converter; DSP: Digital Signal Processor; E-O: Electrical-to-Optical; SMF: Single Model Fibre; O-E: 

Optical-to-Electrical; DAC: Digital to Analog Converter; SDM: Sigma Delta Modulation; BPF: Band 

Pass Filtering. 
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6.3 Operation Principle 

The sigma-delta modulation (∑∆𝑀) utilizes oversampling of an input signal at a rate several 

times higher than the Nyquist rate. In ∑∆𝑀, the number of quantization bits are limited due to 

which Nyquist sampling results in significant quantization noise. However, in order to deal with 

this quantization, the oversampling extends the Nyquist zones which can be spread over a wide 

range of frequency that leads to in-band noise reduction. Therefore, the unwanted and relatively 

high quantization noise can be refiltered then to reduce it in the useful band. 

A very basic difference between conventional ADC and  ∑∆𝑀 is aliasing. ∑∆𝑀 samples the 

signal at many times its bandwidth. Therefore, it does not require a complex high order anti-

aliasing filter. Aliasing occurs when sampled, a signal is reproduced, in the frequency domain, at 

multiples of the sampling frequency, as band-limited signals. When Nyquist rate is used, these 

signal reproductions appear to be close together as shown in Figure 6.2(a). This can result in 

aliasing issues as shown in the Figure 6.2(b). When oversampling is employed, since signal 

images are distant, this overlapping issue does not occur as shown in Figure 6.2(c).  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Frequency domain for (a) Nyquist rate ADC, (b) the aliasing effect, and (c) oversampling 

ADC (∑∆𝑴 concept). 
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The quantization operation can be performed with very low resolution with a sampling rate 

higher than the Nyquist criteria. The limited number of quantization bits results in a considerable 

amount of quantization noise. Therefore, the unwanted and relatively high quantization noise can 

be refiltered in order to reduce it in the useful band. The use of BPF not only eliminates the need 

of expensive and power-hungry DACs, but also circumvents the data-rate bottleneck linked with 

CPRI.  

 

Different from Nyquist ADC, SDM trades quantization bit for sampling rate, using high 

sampling rate and only few (1-bit generally) quantization bits. After baseband processing, digital 

baseband signal is upconverted to radio frequency, then a bandpass delta-sigma modulation 

encodes the discrete-time multibit RF signal into a one-bit data stream. In Figure 6.3(a), (b), (c) 

and (d) shows the behavior of Nyquist ADC generally utilized. It can be seen that it utilizes 

Nyquist sampling followed by multi bit quantization. In contrast to this, Figure 6.3(a*), (b*), (c*) 

and (d*) shows the operation principle of bandpass SDM.   

In Figure 6.3(b*), the Oversampling extends the Nyquist zone, so that quantization noise can be 

spread over a wide frequency range. In Figure 6.3(c*), the noise shaping technique pushes the 

quantization noise out of the signal band that separates the noise from the signal in frequency 

domain. In Figure 6.3(d*), at RRH, a BPF takes out the desired signal eliminating the out of band 

noise and retrieving the analog waveform.  

 

 

 

 

 

 

 

 

 

Figure 6.3: Operation principles of: (a)-(d) shows Nyqusit ADC and (a*)-(d*) shows sigma delta 

modulation concept. (a*) Quantization noise mapped. (b*) Oversampling extends the range of 

quantization noise. (c*) Noise shaping. (d*) BPF. 
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6.4 Structures of Sigma Delta Modulator (∑∆𝑴) 

In this section, the structure of ∑∆𝑀 utilized in our work are discussed.  There are two main 

structures that have been exploited in the work performed. The first structure discussed is Second 

Order Sigma Delta Modulator and the other one is Multi-stAge-noise-SHaping (MASH) based 

Sigma Delta Modulator. 

6.4.1 Second Order Sigma-Delta Modulator 

The significance of ∑∆M is the quantization of the baseband signal.  This operation is 

performed with a very low resolution and at a sampling rate much higher than the Nyquist criteria. 

Since, the quantization bits are limited, Nyquist sampling leads to a significant quantization noise. 

Therefore, the relatively high quantization noise can be reshaped in frequency domain so that the 

noise in the useful band can be reduced. This operation leads to a very high Signal to Noise Ratio 

(SNR) [6.21].    

At the receiver end, the bandpass filtering (BPF) of the reshaped spectrum suppresses the 

quantization noise that results in retrieving of the original signal. Figure 6.4 shows the schematic 

of the second order with the combination of 𝐴1 and 𝐴2 yields a second order ∑∆𝑀. The input 

amplitude of ∑∆𝑴 is expressed with respect to this full-scale range. To simplify the 

computational analysis, let’s consider that quantizer has been replaced with a linear 

approximation, i.e. removal of the quantizer and adding (white) quantization noise [6.21]. 

Therefore, signal transfer function (𝑆𝑇𝐹) is the transfer function of the input 𝑥 to the output 𝑦 

when the quantizer is neglected.    

Similarly, the noise transfer function (𝑁𝑇𝐹) is the transfer function from the quantization noise 

input to the output 𝑦 when the input is zero. Therefore, it can be represented as follows in Eq. 

(6.1): 

 

𝑦(𝑧) = 𝑆𝑇𝐹(𝑧) + 𝑥(𝑧) + 𝑁𝑇𝐹(𝑧)𝑄𝑒(𝑧) 

   = 𝑧−1𝑥(𝑧) + (1 − 𝑧−1)2 𝑄𝑒(𝑧) 

where 𝑦(𝑧) is the output, 𝑥(𝑧) is the input and 𝑄𝑒(𝑧) is the quantization error. The integrators 𝐴1 

and 𝐴2 are expressed as follows in Eq. (6.2) and (6.3): 

 

 

(6.1) 
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Figure 6.4: Frequency domain model of Second order ∑∆M structure 

 

 

𝐴1 =
1

(1−𝑧−1)
 

and 

 

 

𝐴2 =
𝑧−1

(1−𝑧−1)
 

 

The magnitude of the 𝑁𝑇𝐹 is evaluated as follows: 

|𝑁𝑇𝐹(𝑒𝑗2𝜋𝑓)|
2
=(2 sin(𝜋𝑓))4 ≈ (2𝜋𝑓)4 , for 𝑓 ≪ 1 

 

In order to evaluate the behavior of the proposed SDM, the absolute values of 𝑆𝑇𝐹 and 𝑁𝑇𝐹 

are plotted in Figure 6.5 [6.22]. The signal is unaffected, and its quantization noise is immensely 

boosted in high, out-of-band frequencies, and highly attenuated in the signal band, around 0. This 

means that the total quantization noise is greater, but since it is located out of the signal 

bandwidth, therefore, it can be easily band pass filtered at the output. 

The 𝑆𝑁𝑅 of the Second order SDM is given in Eq. (6.5) when sin wave is considered as an 

input signal with power 𝑃𝑢 =
𝐴2

2
, where 𝐴 is the peak amplitude. 

 

𝑆𝑁𝑅 = 15 𝐴2
(𝑂𝑆𝑅)5

2𝜋4
 

where 𝑂𝑆𝑅 is Over Sampling Ratio. 

 

 

 

 

 

 

(6.2) 

(6.3) 

(6.4) 

(6.5) 
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Figure 6.5: Frequency response of Second order ∑∆M structure 

6.4.1.1 System Description 

The experimental setup is shown in Figure 6.6. The RF signal is generated at digital signal 

processor (DSP) which is emulated by MATLAB. Then, this signal is sigma delta modulated by 

2nd order SDM implemented on MATLAB. The sigma delta modulated stream is then sent to 

Pulse Pattern Generation (PPG) block which is implemented in MATLAB. As far as, optical 

fronthaul link is concerned, it is implemented in the VPI Transmission Maker.  

  The pulse generated pattern is then used to directly modulate the 1550 nm Distributed Feedback 

(DFB) Laser. The Standard Single Mode Fiber (SSMF) of different lengths is utilized for 

comparison. The photodiode is followed by a BPF to filter the optical signal. This is followed by 

down conversion to baseband and further it is processed in evaluation block. The RF signal 

digitized by 1 bit 2nd order SDM is a 64 QAM modulated LTE signal of 20 MHz. The carrier 

frequency 𝑓𝑐 is 1.14 GHz. The details of the parameters utilized are given in Table 6.1. 

 

 

 

 

 

 

Figure 6.6: Simulation setup for Sigma Delta Radio over Fiber system. SDM: Sigma Delta Modulation. 

PPG: Pulse Pattern Generation, BPF: Band Pass Filtering. 
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Table 6-1: Parameters Value 

 

 

 

 

 

 

 

 

 

 

6.4.1.1.1 Experimental Results and Discussion 

In this section, the performances of the proposed S-DRoF are evaluated. At first, the 

performance of S-DRoF is evaluated by the Error Vector Magnitude (EVM). The 3GPP has set 

an EVM limit for LTE signals modulated by 64 QAM modulation format to be 8% [6.23]. The 

performance is measured for various symbol rates up to 100 MBd and for different fiber lengths 

up to 20 km. The results are shown in Figure 6.7. The degradation in EVM performance is 

observed for all the fiber lengths. It is observable that 20 km SSMF link degrades faster than 

others. The degradation is that the received signal has low power due to the path loss. However, 

6% of EVM at 20 km is good enough to receive a 64-QAM modulated signal. 

 

 

 

 

 

 

 

 

 

 

Figure 6.7: EVM performance for varying symbol rate for varying fiber lengths. 

Parameter Value 

 

RF Signal 

Carrier frequency = 1.14 GHz 

Constellation format= 64 QAM 

 

 

 

Optical 

Link 

 

Laser 

Wave Length= 1550 nm 

Average Power= 10 mW 

Line Width= 16e6 Hz 

 

Fiber 
Fiber Dispersion= 16 

𝑝𝑠

𝑛𝑚𝑘𝑚
 

Fiber Distance= 20 Km 

Attenuation= 0.2 
𝑑𝐵

𝐾𝑚
 

Photo detector  Responsivity 0.9 A/W 

Bandwidth: 4 GHz 

 

Bandpass Filtering 

Band Pass Bandwidth=190 MHz 

Conversion gain (Complete 

Receiver (PD+BPF))=220 V/W 
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Similarly, in Figure 6.8, constellation diagram is reported for 20 km case for 25 and 100 Mbd 

respectively. This signifies that EVM is poorer with higher baud rate. 

 

 

 

 

 

 

 

 

Figure 6.8: EVM performance for 20 km at (a) 25 Mbd and (b) 100Mbd 

 

Moreover, to evaluate the dynamic range of the proposed system, the EVM performance is 

evaluated in Figure 6.9 with varying RF input power for 20 km link. For this evaluation, the 

utilized symbol rate was 16 M Symbols/sec in order to ensure that there is no loss of 

synchronization and 8% limit of EVM for 3GPP standard is not violated. 

 

 

 

 

 

 

 

 

 

Figure 6.9: EVM performance for varying symbol rate for varying fiber lengths. 

 

Now, the performance of the proposed S-DRoF is evaluated by finding the adjacent power ratio 

(ACPR). The 𝐴𝐶𝑃𝑅 is evaluated for three different lengths from 10 up to 20 km. The RF input 

power is varied from -10 𝑑𝐵𝑚  to 0 𝑑𝐵𝑚. It can be seen in Figure 6.10 that    the value of 𝐴𝐶𝑃𝑅 

for every length is increasing with increasing RF input power.   If we consider the case when RF 

(b)  EVM=5.6% (a) EVM=2.1% 
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input power is -5 𝑑𝐵𝑚, the 𝐴𝐶𝑃𝑅 for 10, 15 and 20 km is  -32, -38.14 and -35.23 𝑑𝐵𝑐 respectively 

which are still within the standard’s specifications. 

 

 

 

 

 

 

 

 

 

Figure 6.10: ACPR performance for varying RF input power and varying fiber lengths. 

 

Table 6.2 reports the evaluated parameters when RF input power is -5 𝑑𝐵𝑚 at 20 km. 

 

Table 6-2: Performance Evaluation for 20 km at -5 dBm 

 

 

 

 

6.4.2 Multi-stAge-noise-SHaping (MASH) based ∑∆𝑴 

Figure 6.11 shows the schematic of the proposed ∑∆𝑀 known as Multi stAge noise SHaping 

(MASH). It is designed using stages, where the next stage input is the quantization error 

introduced by the quantizer of the current stage, which is the difference between its output and 

input. The individual outputs are digitally filtered and combined in a way that the quantization 

noise of each stage, excluding the last, is canceled at the overall output of the structure.  

Similarly, the input of the second stage is the quantization error of the first stage. The output of 

second stage becomes: 

 

𝑦2(𝑧) = 𝑆𝑇𝐹1(𝑧) ∗ 𝑄𝑒1(𝑧) + 𝑁𝑇𝐹1(𝑧)𝑄𝑒2(𝑧) 

 

Length (Km) 𝑬𝑽𝑴 (%) 𝑨𝑪𝑷𝑹 (𝒅𝑩𝒄) 

10 0.98 -32.12 

20 1.3 -35.23 

(6.6) 



 

174 

Moreover, the digital filters 𝐴1 and 𝐴2 must be designed at respective stages in order to cancel 

the quantization errors. The condition becomes: 

 

𝐴1. 𝑁𝑇𝐹1 + 𝐴2. 𝑆𝑇𝐹2 == 0 

 

The overall output becomes: 

      𝑦 = 𝐴1𝑦1 − 𝐴2𝑦2 

 

                                      = 𝑆𝑇𝐹1. 𝑆𝑇𝐹2. 𝑥 − 𝑁𝑇𝐹1. 𝑁𝑇𝐹2. 𝑄𝑒2 

 

By considering the first order ∑∆𝑀 where 𝑆𝑇𝐹 = 𝑧−1 and 𝑁𝑇𝐹 = 1 − 𝑧−1 as given in [6.19], 

we can write (6.4) as: 

 

𝑦(𝑧) = 𝑧−2𝑥(𝑧) − 𝑄𝑒2(𝑧)[1 − 𝑧−1]2 

 

Figure 6.11: 2 stage MASH based ∑∆M structure 

 

Eq. 6.9 shows that the second order structure has noise shaping performance of fourth order 

modulator. Stability of the structure is determined by the order of modulators used. Stability 

becomes a less important issue due to simplicity of the design stages since we utilize first order 

∑∆𝑀 in each stage of MASH.  

Similarly, quantization error is employed as an input which is very close to true white noise 

reducing the need of dithering. Likewise, there is no harmonic distortion of the signal generated 

in these stages. Consequently, the MASH structure permits the use of multi-bit quantizer in the 

higher stages without requiring the need of correction of the DAC nonlinearity. The reason is that 

(6.7) 

(6.8) 

(6.9) 
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it is high-pass filtered by the 𝑁𝑇𝐹 of the previous stage, suppressing it at the baseband. In the 

section below, the details of experimental bench utilized are shown.  

6.4.2.1 System Description 

The schematic of the experimental bench is shown in Figure 6.12. The RF signal is generated 

at digital signal processor (DSP) through MATLAB code. This RF signal is converted to 1-bit 

sigma delta modulation signal by MASH ∑∆𝑀 implemented in MATLAB. The sigma delta 

modulated stream is then sent to Keysight 81134A Pulse Pattern Generator which directly 

modulates the Distributed Feedback (DFB) laser having 1550 nm wavelength. Single Mode Fiber 

(SSMF) of length up to 5 km is utilized in this experimental evaluation. The optical stream of 

transmitted data is converted into electrical domain by photodiode having 9.3 GHz of bandwidth. 

The photodiode output is fed to a low noise amplifier (LNA) followed by a BPF to filter the 

optical signal. This is followed by down conversion to baseband and further it is processed in 

evaluation block. The RF signal digitized by 1-bit MASH ∑∆𝑀 is a 256 QAM modulated LTE 

signal of 20 MHz. The carrier frequency 𝑓𝑐 is 3.5 GHz. The details of the parameters utilized are 

given in Table 6.3. 

Table 6-3: Performance Evaluation Parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Value 

 

RF Signal 

Carrier frequency = 3.5 GHz 

Constellation = 256QAM 

 

 

 

Optical 

Link 

Laser Wavelength= 1550 nm 

Average Power= 10 mW 

Line Width= 16e6 Hz 

Fiber Fiber Dispersion= 16 
𝑝𝑠

𝑛𝑚𝑘𝑚
 

Distance=0.1, 1, 2, 5 km 

Attenuation= 0.5 
𝑑𝐵

𝑘𝑚
 

Photo-

detector 

(PD) 

Responsivity 0.9 A/W 

Bandwidth: 9.3 GHz 

 

 

Bandpass Filtering 

Band Pass Bandwidth=190 

MHz 

Conversion gain (Complete 

Receiver (PD+BPF))=220 V/W 
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6.4.2.1.1 Experimental Results and Discussion 

In this section, the performances of the proposed S-DRoF are evaluated. Firstly, the 

performance of S-DRoF is firstly evaluated by the error vector magnitude (EVM). The 3GPP has 

set an EVM limit of 3.5% for LTE signals modulated by 256 QAM modulation format [6.23]. 

The performance is measured for various symbol rates up to 400 Mbd and for different fiber 

lengths up to 5 km at 0 𝑑𝐵𝑚 of RF input power. The results are shown in Figure 6.13. The 

degradation in EVM performance is observed for all the fiber lengths. The reason for the 

degradation is that the received signal has low power due to the path loss.  

 

 

 

 

 

 

 

 

 

 

Figure 6.13: EVM performance for varying symbol rates and fiber lengths. 

 

In Figure 6.14, the performance is expressed by varying the distance length up to 5 km for varying 

input RF powers keeping in mind the fact that front haul lengths are generally in this order. It is 

observable that from -15 dBm of RF input power, EVM is in the limits for all the link lengths set 

by the 3GPP for 256 QAM.  

 

Figure 6.12: Experimental Bench for Sigma Delta Radio over Fiber system. SDM: Sigma Delta Modulation. 

SMF: Single Mode Fiber.PPG: Pulse Pattern Generation. BPF: Band Pass Filtering. LNA: Low Noise 

Amplifier. VSG: Vector Signal Analyzer 
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Figure 6.14: EVM performance for varying input powers and fiber lengths. 

 

Now, the performance of the proposed S-DRoF is evaluated by measuring the adjacent leakage 

ratio (ACLR). The 𝐴𝐶𝐿𝑅 is evaluated by changing the fiber length up to 5 km. The RF input 

power is varied from -15 𝑑𝐵𝑚  to 0 𝑑𝐵𝑚. The behavior is shown in Figure 6.15. Since higher 

input power leads to higher order of distortions in the adjacent channels, therefore ACLR rises.  

 

 

 

 

 

 

 

 

 

 

Figure 6.15: ACLR performance for varying RF input power and varying fiber lengths. 

 

The transmission performance of the proposed S-DRoF is investigated by Eye diagrams of the 

transmitted signal systems. Figure 6.16 reports the EOP versus fiber length. It shows that the EOP 

stays constant with the increasing fiber length. In the S-DRoF case, the EOH does not closes. 

Also, by looking at the inset at 5 km, the eye remains clean and wide open. 
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Figure 6.16: EOP versus Fiber length for 0 dBm of input power 

 

The summary of the comparative overview of the parameters evaluated is given in Table 6.4 

for the maximum and minimum length utilized for -5 𝑑𝐵𝑚 of input power at 400 Mbd.  

Table 6-4: Performance Summary at -5 dBm for 400 Mbd 

 

 

 

 

Since this technique is meant to be utilized for 5G sub-6GHz band fronthaul applications, its cost 

analysis is important factor. Since SDM trades quantization bit for sampling rate, using high 

sampling rate and only few (1-bit generally) quantization bits, the need of very expensive and 

high-speed digital circuitry is not required. In case of CPRI, D-RoF systems at the remote antenna 

units (RAU) require a DAC which needs to be high speed and efficient enough to handle the 

operations. In case of S-DRoF, the deployment of DAC is replaced by a band pass filter which 

further decreases the cost. DSP kit is required for both, D-RoF and S-DRoF, so, the cost of DSP 

kit remains constant. However, one major challenge to both D-RoF and S-DRoF is the need of 

high processing speed. 

 Sigma delta modulation requires high oversampling ratio to achieve the performance. To 

overcome the speed limit of existing FPGA, several parallel processing techniques have been 

Length (Km) 𝑬𝑽𝑴 (%) 𝑨𝑪𝑷𝑹 (𝒅𝑩𝒄) 

0.1 2.5 -39.31 

5 3.55 -34.11 
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reported, including polyphase decomposition [6.24] and look-ahead time-interleaving [6.25- 

6.26]. This means that by employing these techniques, even a simple FPGA kit can be deployed 

for the S-DRoF. This methodology greatly reduces the cost of S-DRoF to some thousands of 

euros as compared to D-RoF that will cost tens of thousands of euros for the same parameters and 

application. On basis of these facts, it can be proposed that S-DRoF is much cheaper solution 

than D-RoF systems.  

In this section, we have performed a novel demonstration experimentally for MASH based Sigma 

Delta Radio over Fiber for 5G sub-6GHz band fronthaul applications. By employing MASH, the 

second order SDM performance can be obtained. Utilization of proposed system eliminates the 

need for high-speed ADCs and DACs required in D-RoF systems. The experimental workbench 

has been evaluated for LTE signal of 20 MHz bandwidth having 256 QAM modulation which is 

modulated on a 3.5 GHz carrier frequency at 1550 nm. The measurement results show that this 

methodology is suitable for transmitting LTE signals. The real time implementation of MASH 

based S-DRoF is achievable with FPGA which will be discussed in the next section.  

 

6.4.3 Real time Implementation of Sigma Delta Radio over Fiber System for Fronthaul 

Applications 

In this section, we present the real time implementation of ∑∆𝑀 on FPGA. 2nd order ∑∆𝑀 

discussed previously in Sec. 6.4.1 is chosen to demonstrate the realistic experimental setup.  The 

section includes the implementation based on demonstration of 4 lane proof of real time sigma 

delta radio over fiber system. 

6.4.3.1 Experimental Setup  

Figure 6.17 shows the experimental test bed utilized for this work. Let us consider four 

pairs of an in-phase and quadrature baseband signals. This pair of baseband signals are sigma 

delta modulated by SD modulator at 6 GSa/s. We employ 2nd order SD-modulator to evaluate 

the performance. Moreover, the parallel multistage scheme can result in desired sampling rate 

[6.27].  The unwanted and relatively high quantization noise can be filtered out in order to reduce 

it in the useful band.  
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The sigma delta modulated baseband signals (both 1 bit) are up converted to a single bit 

binary signal. This binary signal has sampling rate of 12 GSps and carrier frequency 𝑓𝑐 of 3 GHz. 

This is followed by the electrical optical conversion. The optical converted signals are transmitted 

over Standard Single Mode Fibers (SSMFs). At each receiver, the photodiode converts the optical 

signal back to electrical domain followed by a bandpass filter (BPF) which filters the quantization 

noise. The module has a capacity to implement 4x parallel transmitters. However, for simplicity, 

only one lane proof is shown. To bring the optical signal to the respective RRHs, MTP breakout 

SMF fiber is used. 

The RF signal generation (baseband signal generation, up-sampling and up-conversion) and 

SDMs (1st order and 2nd order) shown in Figure 6.17 are implemented on Xilinx Virtex 

Ultrascale VCU108 FPGA Evaluation Kit. After the FPGA performs sigma delta modulation, the 

1-bit sigma delta modulated stream is fed to Module QSFP28-PIR4-100G (1310 nm Distributed 

Feed-back laser) is employed for the electrical optical conversion to transmit over SSMF. The 

received signals are then fed to respective RRH units having low noise amplifier (LNA) that 

amplifies the signal followed by analog band pass filter which filters the out of band noise. The 

band pass filtered signals are fed to UXR1004A Infiniium UXR real time oscilloscope having 

vector analysis software for post processing of data and parameters evaluation.  The noise current 

spectral density around 𝑓𝑐 is 16 
𝑝𝐴

√𝐻𝑧
. The module QSFP28-PIR4-100G has 4 transmitters in which 

each transmitter has a clock data recovery (CDR) to resample the data if needed.  

 

            The parameters and values are given in Table 6.5. 

  

 

 
Figure 6.17: Experimental test bed for real time implementation of Sigma Delta Radio over Fibre system. I-BB, Q-

BB: In-Phase and Quadrature Baseband, respectively;  MOD: Sigma Delta Modulator; Optical Tx: Optical 

Transmitter;  SMF: Single Mode Fibre;. LNA: Low Noise Amplifier; BPF: Band Pass Filtering; RTO: Real Time 

Oscilloscope; VSA: Vector Signal Analyzer; Param. Eval.: Parameters Evaluation.  
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Table 6-5: System parameters  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4.3.2 Experimental Results and Discussion  

 

The performance of S-DRoF is calculated by the Error Vector Magnitude (EVM).  Firstly, we 

calculate the EVM performance of 1 km and 10 km link length for all the 4 channels by varying 

RF input powers. This will clarify the performance variations of 4 channels with respect to each 

other. Figure 6.18 reports EVM for the input powers with 100 Mbd for 10 km and 0.1 km. Since 

Channel 4 is the worst effected case, therefore all the evaluations from this point onwards will be 

shown for channel 4. 

 

 

Parameter Value 

RF Signal Carrier frequency = 3 GHz 

Constellation format= 256 QAM 

 

Laser 

 

 

Wavelength= 1310 nm 

Transmitter Type= 4x DFB 

Cable Type= SMF 

Connect Type= MTP 

Optical 

Fibre 

Fibre Dispersion= 16 
𝑝𝑠

𝑛𝑚𝑘𝑚
 

Fibre Distance= 0.1, 1, 2, 5, 10 km 

Attenuation= 0.42 
𝑑𝐵

𝐾𝑚
 

Photodiode Responsivity 0.6 A/W 

Bandwidth: 5 GHz 

 

Bandpass 

Filtering 

 

Band Pass Bandwidth=180 MHz 

Conversion gain (Complete Receiver 

(PD+BPF) = 210 V/W 
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Figure 6.18: EVM performance for varying input powers for all channels with minimum and maximum 

link length  

 

Figure 6.19(a) reports the EVM for varying symbol rates up to 400 MBd for different fiber lengths 

at 0 𝑑𝐵𝑚 of input power. The increase in EVM is observable for all the fiber lengths. It is 

observable that EVM for 10 km is higher since the low power of received signal is due to the path 

loss. Similarly, a higher baudrate will result in a higher total noise power in the signal band and 

thus it leads to an increased EVM. Similarly, in Figure 6.19 (b) and (c), the constellation diagram 

is observed for the minimum length and minimum baud rate with respect to maximum length case 

and maximum baud rate respectively. It is observable that for 100 MBd, EVM for 100 m length 

is less than 1% and received constellation diagram is clean. However, for the 400 MBd, 10 Km 

length case, the received constellation is rather noisier and EVM is around 3%. Though, it is 

below the threshold of 3.5% set by 3GPP, it is acceptable. This signifies that EVM increases with 

higher baud rate as it leads to higher total noise power in the signal band. 
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Figure 6.19: (a) EVM performance for varying symbol rate for different SMF lengths. (b)-(c) 

Constellation diagrams for minimum and maximum baud rate and fiber lengths at input power 𝑃𝐼𝑁 =

0 𝑑𝐵𝑚.  

In order to evaluate the dynamic range of the system under test, the EVM is evaluated for 

varying values of input power in Figure 6.20 (a). For this evaluation, the symbol rate was set to 

100 MBd. It can be seen that with increasing values of the input powers, the EVM falls in the 

acceptable 3.5 % range.  The received optical power for varying distances is shown in measures 

of EVM degradation. Figure 6.20 (b) shows that EVM for 0.1, 5 and 10 km of distances are 

satisfying the 3.5% requirements of 3GPP. The trend validates that it can be a promising candidate 

for future mobile front haul applications. 

 

 

 

 

 

 

 

 

Figure 6.20: (a) EVM performance for varying input powers for varying link lengths. (b) EVMs vs 

received optical power for 0.1 km (black squared), 5 km (blue circular) and 10 km (red star). 

(b) 100 MBd 0.75% EVM 100 m 

(c) 400 MBd 2.8% EVM 10 Km (a)  

(a)  (b)  



 

184 

Figure 6.21 represents the experimental evaluation of ACLR value with respect to changing input 

RF power and fiber length respectively. The trend signifies that ACLR increases with increasing 

fiber length and higher input power as it leads to higher order of distortions in the adjacent 

channels.  It can be seen that ACLR for 0 𝑑𝐵𝑚 at 10 km is -29.91 dBc. 

 

 

 

 

 

 

 

 

 

 

Figure 6.21: ACLR vs input power for varying lengths. 

Figure 6.22 reports the EVM for 10 km link length with symbol rates ranging from 100 MBd to 

400 MBd, at different values of input power 𝑃𝐼𝑁. It is visible that performing an increase from 

the value 𝑃𝐼𝑁 = −16 𝑑𝐵𝑚, for which it is EVM>3.5% for all the symbol rates considered, the 

EVM monotonically decreases and, starting with the 100 MBd and ending with the 400 MBd 

case, the transmission is gradually attainable while respecting the EVM limit.  

 

 

 

 

 

 

 

 

 

 

Figure 6.22: EVM for different RF input powers with different baud rates for 10 km fiber length. 
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A behaviour similar to the one reported in Figure 6.23 is also observable for the other values of 

link length considered. In order to summarize all the measured performances,  Figure 6.23, 

reports, for each considered value of L value minimum value 𝑃𝐼𝑁,𝑚𝑖𝑛,𝐸𝑉𝑀<3.5% below which 

𝑃𝐼𝑁cannot fall in order to guarantee 𝐸𝑉𝑀 < 3.5%. It can be appreciated that when transmitting 

at 400 Mbd it is 𝑃𝐼𝑁,𝑚𝑖𝑛,𝐸𝑉𝑀<3.5% = −18 𝑑𝐵𝑚  for L = 0.1 km , while it is 𝑃𝐼𝑁,𝑚𝑖𝑛,𝐸𝑉𝑀<3.5% =

−6 𝑑𝐵𝑚 for z = 10 km. In line with the considerations developed above, the values of 

𝑃𝐼𝑁,𝑚𝑖𝑛,𝐸𝑉𝑀<3.5% can be identified as the optimized ones, since they maintain the ACLR at the 

lowest possible value, while allowing the received EVM to accomplish the 3GPP requirement. 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 6.23: Minimum RF input required to achieve a determined baud rate for different link lengths. 

 

The summary of the comparative overview of the parameters evaluated is given in Table 6.6 for 

the maximum and minimum length utilized for 0 𝑑𝐵𝑚 of input power at 100 MBd.  

 

Table 6-6: Performance Evaluation at 0 dBm for 100 MBd 

 

 

 

 

Length (km) 𝐸𝑉𝑀 (%) 𝐴𝐶𝑃𝑅 (𝑑𝐵𝑐) 

0.1 0.8 -38.45 

10 1.6 -29.81 
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In this section, we have proposed and demonstrated the implementation of S-DRoF link for the 

fronthaul applications with length up to 10 km. Utilization of such links eliminate the need for 

high-speed ADCs and DACs required in D-RoF systems. The experimental workbench has been 

evaluated for LTE signal of 20 MHz bandwidth having 256 QAM modulation which is modulated 

on a 3 GHz carrier frequency at 1310 nm. The 12 GSps sigma delta modulators are realized on 

FPGA. The results show an EVM of less than 3% per lane for a 3 Gbps (400 MBd 256-QAM 

modulation) for 10 km SSMF using DFB at 0 𝑑𝐵𝑚. The demonstrated real time S-DRoF link can 

cover the desired range of the 5G C-RAN fronthaul networks. 

6.5 Conclusion 

In this chapter, we have demonstrated and experimentally characterized a Sigma Delta RoF link 

for fronthaul applications with length up to 10 km. The workbench has been evaluated for LTE 

signal of 20 MHz bandwidth having 256 QAM modulation, which is upconverted by a 3 GHz 

carrier frequency at 1310 nm. Starting from simulation analytical model, the technique has been 

realized through experimental bench. Then, 6x2 GSa/s sigma delta modulators are realized on 

FPGA. The results show an EVM of less than 3% per lane for a 3 Gbps (400 MBd 256-QAM 

modulation) for 10 km SSMF using DFB at 0 𝑑𝐵𝑚. Optimized values of the RF input power  

which maintain the ACLR at the lowest possible value, while allowing the received EVM to 

accomplish the 3GPP requirements have been identified for different possible values of the link 

length, with a maximum value of −6 𝑑𝐵𝑚 for a length of 10 km The demonstrated real time ΣΔ-

RoF link can cover the desired range of the 5G C-RAN fronthaul networks. 
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Chapter 7  

Conclusions/Final Remarks and Future Directions 

7.1  Summary and Final Remarks 

This thesis dissertation has discussed the linearization methodologies for Analog 

Radio over fiber systems and proposed Digital and Sigma Delta class of radio over fiber 

links. In the first part of the dissertation (mainly Chapter 2,3 & 4), Analog class of 

Radio over Fiber links were discussed in context of compensating the nonlinearities 

issues. In chapter 3, a proposed technique and its implementation were discussed. The 

predistortion is applied firstly to sinusoidal signals and then to LTE standard signals. It 

is shown that proposed technique is able to compensate the link impairments in good 

proportions for long RoF links. 

Then, the dissertation discussed linearization techniques based on indirect learning 

architecture. Two class of links are linearized i.e. Vertical Capacity Surface Emitting 

Lasers (VCSELs) and Distributed Feedback Laser (DFB) based RoF links. Volterra 

polynomial structures such as memory polynomial (MP) and generalized memory 

polynomial (GMP) methods are proposed for linearizing Radio over fiber links. Then, 

a comparison is shown for linearization of DFB based RoF links with Volterra methods 

(MP and GMP) with Decomposed Vector Rotation (DVR) method. Similarly, a novel 

demonstration is shown for dual channel transmission where each channel 

nonlinearities are reduced with the DPD models proposed in this chapter. Finally, a 

feedback approximation methodology is proposed which is a possible implementation 

of a digital predistorter in adaptive form. 

The second half of dissertation stresses upon the other possible methods that can be 

used for front haul applications. With this approach, instead of compensating the Analog 

Radio over Fiber links, Digital and Sigma Delta Radio over Fiber Links are discussed.   
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Chapter 5 introduces the need and importance of digital RoF system. It is discussed 

that why Digital RoF is a good option to switch from Analog RoF to Digital RoF.  

Analytical model is proposed and it is shown that a better error free transmission is 

obtained for digital RoF as compared to Analog RoF. Then, an experimental validation 

of this analytical model is presented which proves that the proposed digital radio over 

fiber system is an optimized version that uses less number of ADC resolution bits. 

Finally, in Chapter 6, Sigma Digital Radio over Fiber (S-DRoF) system is studied. 

The chapter introduces the need and importance of Sigma delta RoF system, an auxiliary 

method that amalgamates the advantages of A-RoF and D-RoF. It discusses the basics 

of sigma delta modulator (∑∆𝑀). The need of power hungry and high-speed digital to 

analog converter (DAC) required in D-RoF is replaced by a ∑∆𝑀. It describes the 

different architectures that have been proposed. The analytical model with simulation is 

shown and then experimental setup is validated. Finally, a real time S-DRoF is proposed  

that can be used for fronthaul applications. The summary of all the methodologies 

implied in this dissertation are summarized in the following Table 7-1. 

 

 

 

 

 

 



  

 

Table 7-1:  Summary of RoF Transmission Topics Discussed in this Dissertation 

Sr. 

No. 
Methodology System Characteristics       Evaluated Quantities 

   

 

 

 

1 

 

 

 

 

2 

 

 

 

 

Behavioral Direct Digital Predistortion 

Methodology for Analog Radio over 

Fiber System 

 (Chapter 3) 

 

 

Digital Predistortion Methodology for 

Analog Radio over Fiber System 

 (Chapter 4) 

 

 

 

 

 

• DFB laser 1550 nm with Standard Single Mode Fiber (SSMF) of 50 

km length. 

 

 

 

• Single Mode VCSEL 850 nm with SSMF of 1.5 km. 

➢ Single Channel LTE 5, 10 MHz signal Bandwidth. 

➢ Dual channel 20 MHz LTE signal. 

 

 

 

 

 

 

ACLR, EVM 

 

 

 

 

ACLR, NMSE and AM/AM, 

AM/PM 

ACLR, NMSE, EVM and 

AM/AM, AM/PM 
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3 Digital Predistortion Methodology for 

Analog Radio over Fiber System 

(Chapter 4) 

 

 

 

•  Multi Mode-VCSEL 850 nm with SSMF of 1.5 km. 

➢ Single Channel LTE 5, 10 MHz signal Bandwidth. 

➢ Dual channel 20 MHz LTE signal. 

ACLR, NMSE, EVM and AM/AM, AM/PM 

  ACLR, NMSE, EVM and AM/AM, AM/PM 

 

4 Digital Predistortion Methodology for 

Analog Radio over Fiber System 

(Chapter 4) 

 

• DFB-MQW Laser 1310 nm with SSMF of 1.5 km. 

➢ Single Channel LTE 10 MHz signal Bandwidth. 

➢ Dual channel 20 MHz LTE signal. 

 

 

 

ACLR,          NMSE, EVM and AM/AM, AM/PM 

ACLR,          NMSE, EVM and AM/AM, AM/PM 

 

5 Optimized Digital Radio over Fiber 

System 

(Chapter 5) 

 

 

• DFB 1550 nm with SSMF of 70 km with 20 MHz LTE 

signal bandwidth. ADC Resolution is 8 bits. (Analytical and 

Experimental Validation) 

➢ Single Channel LTE 20 MHz signal Bandwidth. 

 

 

 

 

 

ACLR, EVM, EOP 
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6 Sigma Delta Radio over Fiber 

System 

(Chapter 6) 

• DFB 1550 nm with SSMF of 10 km with 20 MHz LTE 

signal bandwidth (Analytical and Experimental 

Validation). MASH and 2nd order SD modulator used. 

➢ Single Channel LTE 20 MHz signal Bandwidth. 

➢ Real Time Experimental bench for 4x channel Sigma 

Delta Radio over Fiber links  

 

 

 

ACLR, EVM, EOP 

ACLR, EVM, EOP 

 

 

 



  

 

7.2  Future Perspective of the work 

The work presented in the first part of dissertation establishes a foundation for analyzing 

problems involving modeling and compensation for Radio over Fiber Links. The motivation of 

this work was the provision of efficient digital signal processing (DSP) techniques, in order to 

eliminate the unavoidable distortions and nonlinearities of A-RoF links and improve the overall 

system performance.  

Thus, the presented behavior model technique Direct Digital Predistortion Technique (DPDT) 

discussed in Chapter 3 and developed digital compensation techniques based on Indirect Learning 

Architecture (ILA) provides a better understanding of the impact of different types of distortions 

and nonlinearities associated and give better tools to compensate for their effects on the system 

performance. Future directions of this work should focus on extending DSP techniques to 

incorporate the distortions and nonlinearities of the wireless channel and the receiver. The real 

time implementation of this setup with 5G NR signals will be interesting upgrade from LTE and 

LTE-A signals. 

The algorithm developed for extraction of the DPD coefficients uses Least Squares Method 

(LMS). It can be extended for real-time implementation of DPD coefficients extraction that 

should improve the performance and update the model more precisely. 

Similarly, the linearization method for Analog RoF systems can be mitigated with the help of 

Machine Learning techniques such as Machine learning based classifiers such as Support Vector 

Magnitude (SVM), KNN (K nearest neighbor) algorithms and many other techniques. These 

methods should be implemented, and a study should be carried out in order to see the potential of 

linearization implied with the help of this methodology. The important factors to be considered 

are time consumed for the training, resources allocation and realistic implementation of the 

approach. Similarly, adapting this work to compensate for all the distortions in the system requires 

extensive further investigation and analysis. 

Moving on, for the Digital Radio over Fiber system, the link length achieved with optimized 

resolution bits can be increased for higher carrier frequencies as well. This possible increase in 
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potential reach can be achieved if careful design considerations are made. Similarly, the 

proposed system in Chapter 5 can be implied for multi-channel cases as well. This case should 

be further investigated. 

 Furthermore, with regards to Sigma Delta Radio over Fiber Systems, wider signal 

bandwidth and higher carrier frequency of 5G signals, more efficient time-interleaving pipeline 

processing architecture need to be investigated to relax the FPGA speed. Moreover, higher-

order delta-sigma modulator with advanced noise shaping techniques, such as multiband 

operations for non-contiguous carrier aggregation should be investigated as well. 
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