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Abstract

Coordinating activities in a distributed system is an open research topic. Several

models have been proposed to achieve this purpose such as message passing,

publish/subscribe, workflows or tuple spaces. We have focused on the latter

model, trying to overcome some of its disadvantages. In particular we have ap-

plied spatial database techniques to tuple spaces in order to increase their perfor-

mance when handling a large number of tuples. Moreover, we have studied how

structured peer to peer approaches can be applied to better distribute tuples on

large networks. Using some of these result, we have developed a tuple space im-

plementation for the Globus Toolkit that can be used by Grid applications as a co-

ordination service. The development of such a service has been quite challenging

due to the limitations imposed by XML serialization that have heavily influenced

its design. Nevertheless, we were able to complete its implementation and use

it to implement two different types of test applications: a completely paralleliz-

able one and a plasma simulation that is not completely parallelizable. Using this

last application we have compared the performance of our service against MPI.

Finally we have developed and tested a simple workflow in order to show the

versatility of our service.
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Chapter 1

Introduction

The Service Oriented Architecture (SOA) [52] has promoted software modular-

ization and reuse, leading to distributed applications based on the coordination

of different services that execute a specific task. In this Lego-like approach, coor-

dinating the different services is of fundamental importance and needs a coordi-

nation model able to satisfy the requirements of distributed applications designed

for SOA. Thus, there is a need to implement a coordination model able to satisfy

the requirements of distributed applications designed using the SOA.

This is more evident for Grid applications that have to accomplish very com-

plex tasks. In fact, Grid technologies are converging toward SOA, that simplifies

application development and promotes sharing of computational resources.

Developing models that manage the coordination of activities in a distributed

system is a very old research area. In past years several coordination models have

already been proposed and today it is possible to use them in a SOA context. The

most used models are publish/subscribe [53] and workflows [131]. Although

both can be implemented with different features, they are the background of al-

most all SOA oriented frameworks.

Along with these most known models, another less widely used one has been

developed: the tuple space model [63]. It manages coordination using a virtual
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shared memory on which it is possible to operate using synchronous and asyn-

chronous operations. Services that compose a distributed application can syn-

chronize themselves writing or taking data from the tuple spaces. This model

shows several interesting features:

• Dynamic Membership: services can join or leave the distributed application

without the use of any kind of protocol and any influence on the application

(if adequately developed).

• Inherent Load Balancing: clients can be programmed to request tasks, execute

them and store the result into the space. In this way, the more powerful ones

will execute more tasks thus leading to a sort of load balancing without

complex support. This approach is similar to the concept of work stealing

introduced by Cilk [61]

• Declarative Approach: there is no need to specify which host will take or

write a specific data item: it is simply inserted or removed from the space

using generic queries. This can simplify the development and execution

of applications, abstracting them from the network topology and allowing

reconfiguration of the network without changes in the application code.

• Powerful interface: that allows distributed applications to be rapidly devel-

oped using few simple operations. These operations also support both

asynchronous and synchronous behavior.

These features can be very useful for applications as well as services develop-

ment. Using tuple spaces, the coordination of activities of a high level applica-

tions can be developed in less time and with less resources, supporting at the

same time every kind of distributed algorithms. Services can profit by the intrin-

sic features of this model like independence from the network topology and load

balancing. For example, index services can be developed without worrying about

load balancing that will be automatically supported by the tuple space service.
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Clearly not all applications can be efficiently developed with this model. For

example, applications based on the transmission of large data set should use more

suited services or protocols, but the coordination of these transmissions can be

achieved with the use of tuple spaces.

However, to support the high abstraction level required by this model, a care-

fully implementation is needed in order to avoid performance bottlenecks. In

fact, many freely available and widespread tuple space implementations suffer

from performance problems and this has probably limited the diffusion of the

tuple space model.

The purpose of this thesis is twofold:

• to study techniques that improve the performance of tuple space implemen-

tations, maintaining its original semantics

• to demonstrate the feasibility and validity of these improving techniques

developing a tuple space service and testing it with different types of appli-

cations

Thus, this thesis is organized as follows: the next three chapters describe the

state of the art in Coordination, Grid technologies and P2P systems respectively.

They constitute the related work of our proposal. Chapter 5 describes our pro-

posed ideas to enhance the performance of actual tuple space implementations

in both centralized and highly distributed contexts. Using some of these ideas

we have developed a Grid service that implements the tuple space model as de-

scribed in Chapter 6. Chapter 7 describes the experiments we have conducted

in order to study the efficiency of our implementation using two different types

of applications: a highly parallel one and another one with a higher communica-

tion to computation ratio that simulates a plasma. Using this last application as a

benchmark, we have compared the performance of our framework against MPI

[138], a typical application programming interface (API) for the message pass-

ing model. Moreover, a simple workflow has been tested in order to show the

versatility of our service. Finally, Chapter 8 makes some conclusive remarks.



Chapter 2

Coordination and Tuple Spaces

2.1 Introduction

Research in the coordination field has more than 20 years of history and several

paradigms and systems have been proposed. The main concept of this research

field can be defined as follows:

Program = Coordination + Computation

This means that programs show two orthogonal aspects: the first one does the

computational work and the second one has to do with the coordination of the

efforts required to reach the final solution. Although this definition seems quite

simple, it has produced several proposals that can be very different from each

other. In fact, they can be classified in several ways.

If we look at the way in which coordination is inserted into the computational

code, we can identify two groups of systems [11]:

• Endogenous Systems in which the coordination code is not separated from

the computational one.

• Exogenous Systems in which the coordination code is clearly separated from

the computational one.
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If we analyze the way in which the coordination is achieved we have the follow-

ing two groups of models [100]:

• Data-Driven Coordination Models in which the coordination is lead by data

transformations.

• Process-Oriented Coordination Models in which the coordination is defined by

means of the coordination patterns used by the processes.

These two types of classification are orthogonal and coexist at the same time in

all coordination systems.

2.1.1 Data-Driven Coordination Models

A typical example of data-driven coordination models are tuple space systems

[63] in which coordination is achieved by means of a virtual shared memory, the

tuple space, used by all computational entities to store and retrieve their data.

The tuple space represents a separation between time and space because the com-

putational entities do not know either each other or the state of the entire system,

but only the data that they need to process and that are gathered from the space.

There are several implementations of this model that will deeply described in

Section 2.2.

Another example of a data-driven coordination model is the multiset rewrit-

ing in which the coordination is accomplished defining rewriting rules on mul-

tisets (i.e. sets whose element can have multiple copies) that lead data transfor-

mations. Implementations of this models are for example GAMMA [19] that is

based on a chemical metaphor (rewriting rules are repetitively applied until no

suitable data are present in the multi sets), CHAM [30] or IAM [8].

Bauhaus [38] is a tuple space based model in which tuples can be multisets.
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2.1.2 Process-Oriented Coordination Models

In process-oriented coordination models, the coordination is achieved defining

the coordination patterns that connects the various computational entities of the

systems and that can change during the time. In this type of models data have

no meaning and computational entities are considered black box. Typically these

models are also exogenous because the definition of coordination patterns is sep-

arated from the computational code.

A typical control driven model is for example IWIM [10] that is based on pro-

cesses, ports, channels and events. Processes can be of two types: workers that

do the computational work and managers that create new processes and dynami-

cally connects them using channels. Ports are used by processes to write and read

data and constitute the start and endpoints of channels. Events are used by the

processes to gather information about the environment state. MANIFOLD [13] is

an implementation of the IWIM model.

ConCoord [69] is a coordination language very similar to MANIFOLD.

Configuration description languages like DURRA [20], DARWIN [88] or RA-

PIDE [112] describe complex software by interconnecting existing components.

Reo [12] is a model similar to IWIM in which coordination patterns are de-

scribed only by means of basic channel types and their composition without the

need of events or the notion of manager and worker processes.

TOOLBUS [29] uses a unique communication channel to coordinate different

processes.

2.1.3 Hybrid Coordination Models

Both process-oriented and data-driven coordination models have some disad-

vantages. Data-driven models can be inefficient or too tightly integrated with

the computational code to easily support modifications in the application. On

the other side process-oriented models can be too static to handle the dynamic

execution of open systems.
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Thus, some proposals have been made in order to merge the best features

of these two models. For example ACLT [95], TuCSoN [96] and MARS [35]

merge the concept of events with shared data space defining the notion of pro-

grammable medium: programmable actions are triggered by operations on the

space.

IWIM-LINDA [99] or ECM [111] describe the integration of a process-based

view in tuple space based systems. ECM is a general model for the coordination

languages STL, STL++ and Agent&CO.

In the following sections we will describe more deeply the tuple space model,

since it is the basis of our implementation. As showed by the previous general

taxonomy of coordination models, there are several other models that could be

also used. The main reason for the choice of the tuple space model is that it

supports better open systems whose environments or requirements can change.

Process-oriented models can deal with this type of systems too, but we think that

the separation of time and space supported by tuple spaces is better suited for

this type of systems, allowing an application to work in different environment or

under different requirements without any need to rewrite or reconfigure it.

2.2 Tuple Spaces

The Tuple Space model has been proposed by Gelernter and Carriero as coor-

dination model for distributed application [63]. It is based on the concept of a

unique virtual shared memory, the tuple space, on which various hosts arranged

in a cluster can operate using a small number of synchronous and asynchronous

operations. These operations are:

• out that inserts a tuple into the space

• in that synchronously removes a tuple from the space matching the given

template. If no such tuple is found, the application waits until a matching

one is inserted into the space.
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int x;

out("data",2,3.5);

//this call matches the previously inserted tuple

in("data",?x,double);

//from here x == 2

Table 2.1: An example of the original tuple space operations

• rd that synchronously reads a tuple from the space matching the given tem-

plate. Like the previous operation, if no tuple is found the application waits

until a matching one is inserted.

• inp, rdp are the asynchronous versions of in and rd respectively. They

return immediately NULL if no matching tuples are present into the space.

• eval that executes a process on the first available host using the passed

function. This operation is used to create worker processes.

In the original model by Carriero and Gelernter, tuples are usually ordered arrays

of typed values. The allowed types are the C primitive types and the pointers to

arrays and structs. Templates are tuples which contain one or more wildcards

used for matching other tuples. A wildcard can be a type descriptor or a variable

that will contain the corresponding value after an operation call. Tuples are se-

lected through the use of templates applying the so called associative matching:

two tuples matches if they have the same length and every corresponding pair

of elements has the same type or the same value. Thus, templates can be seen as

filters that select the desired tuples. The previously defined operations are used

inside standard C code. Since some of them are synchronous, the tuple space

model can be used to synchronize the execution flow of distributed applications

deployed in a cluster.
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During the years the original model has been modified in several ways and

many other tuple space systems have been developed. Due to their number it is

difficult to described them all. Thus, we will focus only on the most important

ones.

Tuple space systems can be classified in two main groups according to the

way in which tuples are stored:

• Centralized tuple space systems in which all tuples of a space are stored

on the same server.

• Distributed tuple space systems in which the tuples of the same space can

be stored on different servers.

In the first type of systems, the centralized tuple store can become a bottleneck,

whereas in the second ones load-balancing strategies can be employed but oper-

ations can be more expensive. Moreover, in the latter case, the tuple distribution

can be more or less transparent to the clients.

Following this simple classification, in the next sections we analyze the most

important implementations of both groups. For the sake of simplicity, we have

classified Linda as a centralized tuple space system, although in some aspects it

can be considered a distributed one too.

2.2.1 Centralized Tuple Space Systems

Linda

TCP Linda [148] is the last incarnation of the original system thought by Car-

riero and Gelernter and it is used as a cluster wide computational framework

especially in the field of pharmaceutical applications (the Gaussian application

family is based upon it). Respect to other cluster-based frameworks like MPI, it

introduces tuple space operations as full-fledged statements of the C and Fortran

programming languages and not as function calls that reside in a library. Thus,

a specific compiler has to be used to detect the tuple space operations and to
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define the distribution that is hard-coded into the binary files produced. Since

the system is closed source, it is very difficult to exactly know the real strategies

employed for the distribution but it is clear that this approach can gather more

information than a normal distributed system and apply specific optimizations.

In fact, with a static analyzer it is possible to consider operation usage patterns

and optimize the data flow between the hosts.

The cluster organization can be seen as a master/slave model, in which the

master is the node where the application starts and the slaves, that do not change

during the execution, are defined by a configuration file. This structure is rigid in

the sense that no fault-tolerance policy are employed and when a slave crashes

the application aborts.

TSpace

TSpace [91] is a tuple space system developed by IBM and implemented in Java.

The model introduced many changes to the original model of Linda. In particular

the most important modifications are:

• Multiple space handling: TSpace can manage many tuple spaces with dif-

ferent names at the same time whereas Linda uses a unique space.

• Event notifications: clients can register themselves for receiving notifica-

tions of modifications of the space like the insertion or removal of tuples

• Transactional support: to guarantee ACID properties to operations between

different spaces.

• Support XML tuples: to contain semistructured data.

• Access control for clients: to authenticate clients before operating on the

space.

The system consists of one or more central servers where the spaces reside and

clients that remotely access them.
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Java Spaces

JavaSpaces [116] is a standard service of the Jini framework [117] that implements

a tuple space. Like TSpaces, it supports multiple spaces, access control, events

and transactions but does not support natively XML tuples. It also introduces

support for the persistence of the space that is saved on the file system and can

be reloaded after crashes or shutdowns of the server.

A particular characteristic of JavaSpaces is the way in which tuples are de-

fined. In fact, usually tuples are considered ordered vectors of values but JavaS-

paces see them as standard java objects with different named fields. These fields

can have different types that are used for the associative mapping. It is an idea

similar to named columns in database tables. In this way, the programming in-

terface is more friendly and it is simpler to create active tuples, i.e. tuples with

associated operations since they are full-fledged Java objects.

Other implementations

In more than twenty years several different tuple space models and implementa-

tions have been proposed in the research literature. The previous three systems

are the most important due to their diffusion and characteristics. Other central-

ized systems are for example Tucson [96], that introduces the concept of com-

mand tuple that can modify the behavior of the space, Objective Linda [78] is

probably the first proposal of an object-oriented tuple space model, Klaim [47]

that introduces the concept of location for identifying tuples alongside a deep

formal analysis of tuple spaces in general, and X-Mars [36] that uses XML-based

tuple spaces for the coordination of agents.
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2.2.2 Distributed Tuple Space Systems

GigaSpaces

GigaSpaces [139] is a commercial tuple space implementation. It is based on the

JavaSpaces model and interfaces but provide higher scalability and efficiency. It

is designed to be the core of a framework in which tuple spaces are used to guar-

antee scalability and efficiency to applications without any need to rewrite them.

In fact, all main services are implemented using tuple spaces, allowing changes

of distributed applications structure and scalability simply by means of config-

uration files. So, developers are not more bothered by scalability issues and can

concentrate themselves on the development of the requested functionalities. Ser-

vices implemented in this way are, for example, a JMS-based messaging service

and a distributed cache.

Moreover, it is possible to deploy standard J2EE applications on the top of

GigaSpaces. In fact, there is a framework, OpenSpace, that is implemented using

GigaSpaces and the Spring framework, allowing standard SOA applications to

use GigaSpaces’s features. It can be also accessed directly using C++ and .Net.

To achieve the required scalability and performance, GigaSpaces tuple spaces

can be configured in several ways and they are deployed in a SLA-driven cluster

using different replication strategies.

Blossom

Blossom [121] is a high performance distributed tuple space implementation writ-

ten in C++. It extensively uses the default C++ type parametrization to imple-

ment tuples and related classes. The whole system is a standard C++ library, thus

no precompiler is needed in order to compile Blossom programs.

One of the most important characteristics of this tuple space implementations

is its support to strongly typed tuple spaces. In fact, each tuple space has an asso-

ciated tuple type: only the tuples that match this type are allowed to be inserted
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into the space. In this way, the developer cannot introduce new bugs incorrectly

modifying tuples.

Moreover, other advanced specification of the tuple structure can be defined

for the space. For example, it is possible to assert that all tuples of a space have

a constant in the first field. In this way, the space runtime can use this informa-

tion to automatically hash this constant value and use the result to distribute the

tuples between the various hosts composing the cluster.

Thanks to this distribution approach and the extensive use of C++ type para-

metrization, Blossom seems to be more efficient than SCA Linda, as reported by

some tests.

Blossom implementation is based on Roots, a C++ high performance commu-

nication library developed by the same author.

Lime

Lime [101] is a tuple space implementation designed to extend the original tu-

ple space model in order to support ad-hoc networks. The system is based on

agents that can move between different hosts of the same network (logical mo-

bility) or different networks thus modifying their topology (physical mobility).

These agents are the only active entities of the system, are identified by a unique

ID and can own one or more tuple spaces where the tuples are stored. This spaces

can be shared with other agents on the same network and their content will be

merged in order to give the agents the view upon a virtual tuple space. The

merging operation is done transparently by the Lime runtime and is executed

whenever an agent joins or leaves a network.

The semantics of the traditional operations is unchanged although some new

operations have been defined in order to send data directly to one specific agent

(location).

Moreover, the system introduces the concept of reaction to some events, like

the insertion of a tuple or an agent leaving a network. Agents can register for
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some of these events and execute code when they are fired. This simply repre-

sents a classical notification support with the exception that two types of events

can be fired: strong events that are atomically fired across the entire network and

weak events that do not follow a strict synchronization constraint. The first ones

are more computationally expensive.

Lime is an example of a so called Global Virtual Data Structure, i.e. a data

structure that is created merging and sharing local data owned by the participants

of an ad-hoc network.

Comet

Comet [82] is the communication infrastructure of the Automate middleware (see

Section 3.2.3) and represents a distributed tuple space implementation for Grid-

like environments. Its architecture is based on the following layers ordered from

top to bottom:

• Coordination Layer that exposes the operations and stores the tuples

• Communication Layer that implements an index for the tuples and dynam-

ically organizes the p2p overlay network

• JXTA substrate on which the overlay network is created.

As a common p2p application, each node is responsible to store a fraction of all

possible tuples that can be inserted into the space. Tuples are described using

XML and are indexed using the following procedure:

• For each field a hash function is computed creating an n-dimensional point

• The n-dimensional point created is then mapped to one dimension using a

Hilbert Space Filling Curve.

• Finally the tuple is forwarded to the correct node using Chord (see Section

4.1.1)
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The tuple search algorithm is similar to the previous one. A template repre-

sents a hyperplane on an n-dimensional space. Using a procedure similar to the

previous one it is mapped on a list of possible hosts where the corresponding

tuples can be stored. This list is then searched to find the requested tuple.

This system seems an interesting solution for p2p tuple spaces but it presents

many drawbacks:

• It is not freely available

• does not support common Grid standards like WSRF

• There are doubts on the performance of the range search algorithm used,

that seems to be heavily based on application-level support since Chord

does not provide range search capabilities.

Tota

Tota [89] is a middleware based on agents that can communicate through a dis-

tributed tuple space. The tuples are composed by data and distribution rules that

define how they should be distributed to neighbors. Every agent has a runtime

that receives tuples from the neighbors or propagates the tuple produced by its

own agent. When a tuple arrives to a new node, the propagation rule is executed

in order to define how it should be distributed. There are three types of tuples:

• MessageTuples that travel the entire network as a wave

• HopTuples whose distribution is based on the number of hops performed

• SpaceTuples that use some types of geographical information (e.g. GPS) to

travel across the network.

SwarmLinda

SwarmLinda[41] is a biologically inspired implementation of a distributed tuple

space. The model used is based on ant colonies: the tuples are the food and the
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templates are the ants that try to find the requested tuples. During the search

for tuples, the template releases a sort of trace on the visited nodes. This trace

can be followed by next templates in order to optimize the search: if the trace

of a similar template is found then it is followed, otherwise a random walk is

employed. Traces have an evaporation rate that prevents ants from following old

routes.

If after some time the template has not found any results, it has three choices:

suicide, sleep for a random time and then restart the process or jump to another

random node and continue the search.

Storage of new tuples is based on a modified version of the brood sorting

algorithm [60]. A new tuple is stored in a node that has neighbors with similar

tuples. If no such node has been found, a random decision is taken in order to

store the tuple in the current node or to search a better one.

PeerSpace

PeerSpace [33] defines a formal tuple space coordination model that is completely

decentralized and based upon p2p networks.

Each peer is identified by an id and stores a subset of the data space. Since the

model is completely abstract, no restriction has been made upon the format used

for the tuple. However, the chosen format should be flexible enough to represent

all data required, to be readable by all peers and to be lightweight enough to

reduce the communication overhead. PeerSpace identifies three kinds of data:

• local data that can be retrieved only using the id of the peer that owns them

and disappear when the peer leaves the network

• replicable data that are transparently replicated between peers

• generic data that can be transparently moved through the network

These data types are needed in order to support both context-aware and context-

transparent data. Context-transparent data are needed in order to avoid the so
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called Slashdot effect [135], i.e. the slowdown caused by a high number of request

for the same data item.

Three possible operations are defined in order to access data on the decen-

tralized space. These operations can be composed in a sequential or a parallel

fashion. The operations defined are:

• write that inserts new data into the space

• read that gets non-destructively data from the space according to a tem-

plate

• take that extracts destructively the data from the space

All these operations support the three types of data previously defined. The write

operation is always done on the local storage and then the replicable and generic

data are diffused in the network according to some load-balancing rules. The

read and take operations work using a peer horizon. Since the network can be

huge, it is impossible to gain a global view on all the peers connected. For this

reason only the peers reachable in a predefined number of hops are involved in

the operations. This represents a relaxed semantics for consuming operations

with respect to that commonly used in tuple space models, but it is needed in

order to support networks with large sizes. However, this policy does not avoid

important informations to be retrieved: actually they can be replicated or moved

as needed.

The model defined by PeerSpace is abstract, but a sample implementation of

it has been developed using JXTA.

2.2.3 Comparison Between Distributed Tuple Space Systems

As can be seen from the previous sections, there are only a few tuple space imple-

mentations that are completely distributed. This is probably due to the fact that

completely distributed tuple space systems are more complex to develop than

centralized ones.
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Probably for this reason the scalability of these systems is quite doubtful.

SwarmLinda and PeerSpace does not present any result regarding their real or

simulated performance. Lime and Tota are designed for small ad-hoc networks

and uses flooding-based approaches that can result in low performance. More-

over, as will be shown in Chapter 5, Lime can also suffer from low performance

due to its tuple space implementation when the number of tuples is high. Comet

seems to be the only implementation specifically designed for medium and large

networks. Nevertheless, its scalability can be a problem too; in fact using space-

filling curves to index tuples can produce a high number of requests for associa-

tive matching that can saturate the network. The presented test results do not

help in removing this doubt because they have been collected on small networks

of at most 50 peers. Blossom is probably the only system that provides high

performance in a distributed context. Nevertheless, it is designed only for homo-

geneous clusters and cannot manage a large scale network composed by different

sites.

Apart from Blossom, none of these systems employs fault-tolerance techniques,

like replication, in order to assure that a given tuple will be present with high

probability into the space despite peer volatility. In this way, data can be lost in-

dependently of their importance and the standard blocking semantics of the tuple

space cannot be implemented.

Finally none of the systems uses a structured p2p network approach and we

have not found any example of a similar system in literature at the time of the

writing of this thesis. Probably, this is due to the fact that tuple space imple-

mentations need a range query support that has been introduced in structured

networks only recently.

For these reasons, we have decided to study the possibility to use structured

p2p networks to implement distributed tuple spaces. The results we have ob-

tained are described in Chapter 5.
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Grid Technologies

Grid technologies have been developed to support ”coordinated resource shar-

ing and problem solving in dynamic, multi-institutional virtual organizations”

[59]. A virtual organization is a temporary group in which preexistent resources

(computational services, storage, . . . ) owned by different institutions are shared

according to policies defined by their owners themselves. Virtual organizations

and the relationships present inside them can have very different purposes, size

and stability. Thus Grid technologies can be seen as middlewares that help virtual

organizations to reach their goals promoting the sharing of resources, but respect-

ing the policies defined by the various resource owners. The multi-institutional

and dynamic nature of virtual organizations are main features that Grid tech-

nologies should support. In the last years several different Grid middlewares

have been developed: however they share a general architecture. It consists of

the following layers from the bottom to the top:

• Fabric that provides the resources whose sharing will be mediated by the

Grid. It implements the local resource specific operations and for this rea-

son should not be used directly by applications. Example of resources im-

plemented by this layer are for example NFS storage clusters, access to local

scheduling systems . . . .

• Connectivity that implements the basic communication and authentication

protocols used for accessing the resources and the other components of the
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Application
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Figure 3.1: Schema of the general Grid architecture

Grids. It contains standard protocols like HTTP, FTP or more specific pro-

tocols like GridFTP or GSI protocols that provide Grid specific features.

• Resource that provides mechanisms for the initiation, monitoring, control

and accounting of single fabric resources. With respect to the fabric layer,

the operations provided are standard and does not depend on the specific

local resource.

• Collective that provides services and protocols able to handle collections

of resources using the Resource and Connectivity layers. Services on this

layer are for example scheduling engines, workload management systems

or directory services.

• Application is the top most layer that uses the previous ones to implement

user specific tasks.

This common architecture can be more or less evident in the various systems.
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Often the term Grid is used incorrectly. In fact, sometime it is used for sys-

tems whose purposes and architectures are very different from the previously

defined ones, or as a synonym for High Performance Computing (HPC). To bet-

ter understand these differences, Foster in [56] underlines that a Grid system is a

distributed system with all the following particular characteristics:

• it coordinates resources that are not subject to centralized control.

• it uses standard, open, general-purpose protocols and interfaces.

• it delivers non-trivial qualities of service.

For example the Sun Grid Engine [147] provides non trivial quality of service but

has a centralized control and, according to this definition, it is incorrect to define

it with the term Grid.

3.1 Grid Middleware

The generic architecture described previously has driven the development of sev-

eral different Grid middleware with different characteristics. Most of them are

based on standard service-oriented middleware enhanced to support the previ-

ously described challenges.

Usually in their architectures is evident the difference between a lower and

an upper layer. The lower layer can be identified with the fabric layer defined

by the general Grid architecture, although sometimes it can also contains part of

the connectivity layer like the implementation of high performance communica-

tion protocols. Instead, in the upper layer, it is sometimes impossible to clearly

identify the connectivity, resource and collective layer. High level services are

deployed on traditional application servers like JBoss and often provide Web Ser-

vice interfaces. High level services are usually implemented in Java whereas the

low level ones in C/C++.
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Although various types of Grid applications have been developed, it is still

difficult to have exact information about the coordination systems used. Never-

theless it is possible to identify three groups:

• Legacy Applications that are executed using metascheduler or batch systems.

This kind of applications maintains its original coordination model without

changes. For example, most of them use MPI as coordination infrastructure

and so the ported version uses now a Grid-enabled version of it.

• New Grid Applications specifically created for the Grid, they use the coordi-

nation models supported by the middleware on which they are deployed.

For example, this kind of applications uses workflow systems to accomplish

their tasks.

• Ported Applications, originally developed for other distributed systems and

then adapted to the Grid. Typically these applications use a hybrid ap-

proach to coordination. In fact, they are composed by old legacy compo-

nents and new modules that use Grid services to allocate and schedule their

tasks.

This limited survey on coordination model used by Grid applications shows

an important characteristic of these types of environments: two different appli-

cation visions coexist at the same time. In fact, applications can be executed on

batch systems (scheduler/metascheduler) like in the 70’s, or they can be com-

posed by different Web Services like predicated by the SOA.

The first vision can be defined as ”black-boxed” because the user has limited

or no possibility to define how the application will be distributed on the network.

The second one is ”white-boxed” because through workflows the user can

define its own distribution.

Each of these visions has advantages and disadvantages: the ”black-boxed”

approach can deal more simply with large network, heterogeneity and long run-

ning applications, but can hardly optimize complex interactions because it does
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not know the execution flow. The ”white-boxed” approach instead can manage

complex interaction and dynamic execution but is more complex to code on large

network.

The following describes only the most important and stable Grid middleware

available today. This list is not exhaustive, because new middleware are devel-

oped continuously for specific tasks.

3.1.1 Globus Toolkit

The Globus Toolkit (GT) [57] is developed at the University of Chicago and rep-

resents the de facto standard for Grid computing. It is composed by several Web

Services and provides SOA functionalities to Grid applications. As stated in [32],

the GT can be used in two different ways: as a standard SOA middleware or as

a batch system, executing legacy jobs. The way in which the system is used de-

pends on the specific application. The toolkit can be divided into the following

main components:

• Common Runtime that contains common libraries for both applications

and services. It implements the WSRF [144] and WSN [143] specifications

on which all Web Services of the GT are based. It is implemented in Java

and C. For Python and Perl are available only clients.

• Execution Management that provides a Web Services (GRAM) for job sub-

mission. It works as a Web Service based gateway to other cluster schedul-

ing systems like PBS [151], Condor [119] or LSF [145]. The Globus Toolkit

also provides a meta-scheduler GridWay [70] that allows the control of many

GRAM enabled clusters, aggregating them in a unique virtual cluster.

• Security that provides communication security, authentication and autho-

rization. It uses X.509 certificates for authentication and implements the

WS-Security and WS-Trust for message level security and credential dele-

gation respectively. It also provides a SAML implementation for describing

more advanced authorization policies.
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• Data Management that provides Web Services for data movement (RFT),

replica location (RLS) and replica management (DRS). It also implements

GridFTP and a common interface for database access (OGSA-DAI).

• Information Service that provides an index service (MDS) that is able to

aggregate information from different sources and allows queries on them.

Information coming from other standard Globus services are automatically

collected and every Web Service can register its own information. The MDS

is able to trigger operations when some of the information change.

The previously described services represent only the main components provided

by the GT. Other optional tools are developed by subprojects like:

• MPIch-G2 [77] that is a Grid aware MPI [138] implementation. It allows

different MPI clusters to be glued together in a unique virtual cluster like

GridWay does for schedulers. It also support firewall traversal functionali-

ties for MPI messages. Unfortunately, it is still not well integrated in the last

version of the GT.

• BSP (Bulk Synchronous Parallel) Model [42] implementation provided by

the subproject BSP-G. It implements a coordination model similar but sim-

pler that MPI

• CoG Kits [124] that are deployed on top of the toolkit and provide high level

interfaces that allow rapid development of Grid applications. Moreover,

they abstract the services from underlying grid infrastructures, allowing the

code to be more portable across different infrastructures or versions of the

same infrastructure.

3.1.2 WSRF.NET

WSRF.Net [71] is an implementations of the WSRF specification using the .NET

framework that aims to be interoperable with the Globus Toolkit. Its architec-

ture is completely different with respect to Globus and the development of Web
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Services is based on annotated sources. Stubs and skeletons are indeed automat-

ically created by external programs using the annotations present in the source

code. This middleware can be deployed only on Windows systems and probably

on Unix flavors on which the Mono Runtime Environment is installed 1. It of-

fers a smaller number of services than its Globus counterpart. In particular, this

project has implemented GridFTP.Net and GRAM.Net composed by clients and

services compatible with the homonymous Globus services.

3.1.3 UNICORE

UNICORE [113] (UNiform Interface to COmputing REsource) is another Grid

framework based on the concepts described by the Open Grid Service Architec-

ture. It has been designed to provide a seamless, secure, and intuitive access to

heterogeneous computing environments. It is composed by two different soft-

ware packages: the UNICORE Client and Server Bundle.

The UNICORE Client is composed by a GUI that helps UNICORE users to

prepare their applications for submission. Applications are defined using work-

flows, connecting together the services provided by UNICORE, or using custom

scripts if needed. After having prepared the application, its whole lifecycle is

automated and can proceed unattended.

To cope with software heterogeneity, application workflows are compiled in

Abstract Job Objects (AJO) representing generic service functionalities that are

automatically mapped to real implementations at the server-side. Moreover, each

application or job group has an associated USpace that logically groups all input

and output files and automatically manages the data transmission between dif-

ferent UNICORE sites and jobs.

The Server Bundle is installed on clusters that represent UNICORE sites host-

ing different types of UNICORE services. The clusters also provides several

legacy applications that can be accessed through the AJO mapping. More legacy

1This is an idea based on our knowledge of the Mono Runtime Environment but we have not

found examples of such a use in the research literature.
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applications can be plugged in UNICORE servers implementing a specific wrap-

per in Java or Perl. There are a series of standard service hosts by the UNICORE

container like for example data management, job submission, storage manage-

ment and other. Other high level services can be also developed and deployed

on top of the UNICORE container.

UNICORE is implemented in Java and usually uses RMI or Java Serializa-

tion for the communications. In the last version several Web Service interfaces

have been developed in order to enhance interoperability with other Grid mid-

dlewares like the Globus Toolkit. Thus UNICORE sites can be accessed through

the old interfaces as well as the new Web Service interfaces and this choice is done

automatically by the UNICORE client when the application is prepared and sub-

mitted.

3.1.4 gLite

gLite [137] is a Grid middleware developed by the EGEE project to constitute the

basis of a common European Grid infrastructure for scientific computing. It has

been developed using components and experiences coming from other projects

and it is the successor of the LCG-2 middleware used previously. The Grid used

by the EGEE project is deployed on more than 200 sites worldwide with more

than 30000 CPUs. Its main task will be to support the LHC experiment at the

CERN.

The gLite’s architecture is composed by the following main modules:

• User Interface (UI) composed by a set of tools for job submission, moni-

toring and data transfer used for managing application on the Grid. This

module represents the access to the Grid and is usually installed on users

PCs.

• Computing Element (CE) represents a cluster on which computations take

place. Several CE are available in the network and they are composed by
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a Grid Gate, that enables the access to the CE, a Local Resource Manage-

ment System, that schedules the jobs like normal batch systems, and a set of

Worker Nodes, that execute the jobs. Several different Local Resource Man-

agement Systems can be employed like Condor, OpenPBS, LSF, SunGrid

Engine.

• Storage Element (SE) provides uniform access to storage resources. Each

SE is managed by a Storage Resource Manager that can have different func-

tionalities depending on the size and characteristics of the storage system

that has to manage. SE are accessed via the GISFTP protocol and can be

composed by different type of hardware like disk arrays or type-based mass

storage systems.

• Information Service (IS) provides information about Grid resources and

their status. All resources are described using the GLUE schema that rep-

resents a common conceptual data model for every resource on the Grid.

Two different types of IS are used in gLite: MDS (provided by the Globus

project), for resource discovery and to publish the resource status, and R-

GMA, for accounting, monitoring and publication of user-level information.

• Data Management responsible for handling file replicas that can be stored

at different sites. Files are identified in a position independent way by

means of GUIDs or Logical File Names. Storage URLs and Transport URLs

depend instead on the site where the replica is located. A mapping of these

identifiers is maintained by the data management subsystem and continu-

ously updated.

• Workload Management System (WMS) is responsible to choose the CEs

where to submit the jobs. Suitable CEs are chosen on the basis of the require-

ment expressed in the job description (match-making) and on the current

load of the controlled CEs. Moreover, WMS uses the Logging and Book-

keeping Service to track job status.
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• Security responsible for enforcing and integrating the security policies of

the different domains that forms virtual organizations, allowing a transpar-

ent access to resources. It is based on the GSI model that uses X.509 certifi-

cates and a public key infrastructure for identifying users and doing data

cryptography.

3.1.5 GridBus

GridBus is a Java middleware developed by the University of Melbourne that

implements a Grid framework compatible with other Grid systems. It consists of

several high level layers and services that can be deployed on other Grid middle-

wares like the Globus Toolkit, UNICORE, NorduGrid or Apple’s XGrid.

One of the particular characteristics of GridBus is the use of economic me-

taphors to model various aspect of the services like the job scheduling or the

allocation of resources. They are based on the idea that resources or actions have

a cost and that entities that have to handle them try to minimize the expenses

respecting the original requirements. Using this model, algorithms can produce

quasi-optimal allocation or scheduling policies efficiently.

The main components developed by GridBus are:

• Alchemi [86] is a job submission system written in .Net that can execute

jobs on Windows clusters. It has been designed to support different config-

uration of the cluster and to automatically adjust the jobs execution based

on the cluster load.

• Gridbus Broker, a client-side metascheduler used to execute applications.

• Grid Workflow Engine, an XML-based workflow engine.

• Grid Market Directory, an index service that also stores resource costs.

• GridSim, a framework for the simulation of Grid applications, scheduling

policies or other type of distributed applications. It is able to simulate an
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heterogeneous computer network on which Grid services and applications

can be deployed to study their performance.

• GridScape allows rapid development of Grid access portals without any

need to know web technologies.

The Gridbus Broker, Grid Workflow engine and Grid Market Directory will

be discussed more deeply later in this chapter.

3.1.6 NorduGrid

NorduGrid [51] is a Grid infrastructure that extends the functionalities of the

Globus Toolkit 2.4. It has been designed to be scalable, to avoid single points

of failure and to meet the requirements of both users and system administrators.

Although it is based on the Globus Toolkit, several new services have been devel-

oped to satisfy the previous goals. In particular the main components developed

by the NorduGrid project are:

• User Interface (UI) is a lightweight client component that is installed on

the user’s machine to allow a simple access to the Grid. In particular it pro-

vides several functionalities like job submission and monitoring, resource

discovery and brokering.

• Information System, based on the Globus Toolkit’s MDS, has been modi-

fied to become more scalable and better represent status information used

by the project. The Information System is composed by a distributed sets

of databases and indexes arranged hierarchically in a tree with redundant

paths to avoid single points of failure. The data model used is different

with respect to the original one to better represent every possible type of

information used in the network.

• Computing Cluster is the basic computing unit of NorduGrid and is com-

posed by a cluster of worker nodes, hidden from the rest of the network, a
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Grid Manager, that manages job requests coming from the Grid, and a local

Information System for storing the cluster and jobs status. NorduGrid does

not impose a specific configuration for clusters, rather it tries to minimize its

requirements allowing the Grid Manager to be deployed on existent cluster

without modifying local policies.

• Storage Element that is used to store the data and is eventually accessed by

the Grid Manager or the UI to deal with data transfer. The protocol used is

GridFTP.

• Replica Catalog, based on the Globus counterpart with some minor changes,

is used to locate and manage replicas on the network.

In the last years some work has been done in order to provide interoperability

between NorduGrid and gLite.

3.1.7 BOINC

The Berkeley Open Infrastructure for Network Computing (BOINC) [7] is a frame-

work used to create so-called Desktop Grids, i.e. Grid systems that use normal

PCs as computational resources. Volunteers donate some of their unused CPU

time to one or more projects. Probably the term Grid is not well suited for this

system due to the low QoS supported. The BOINC architecture is composed by

two main components: a server and client module.

The server module is deployed on a mid-range server and it is used to sched-

ule and monitor project workunits and their results. There is one server module

installation for every project and all clients that participate to the project contact

it to receive workunits and to submit results.

The client module is common for all projects and it is able to execute worku-

nits coming from different projects. It is installed on the volunteer machine and

executes workunits when the machine is less loaded.
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This system has to deal with two major issues: cheating of results and het-

erogeneity. The first problem is addressed distributing redundant workunits and

analyzing the returned results: the most common result is considered to be cor-

rect. To complete this analysis a minimum number of results should be returned,

otherwise more workunits should be rescheduled. Heterogeneity is addressed

making available different versions of the same application compiled for differ-

ent architectures. Clients will automatically download and execute the applica-

tion version matching their architecture.

The most famous project based on BOINC is Seti@home.

3.2 Main Research Topics

The research in Grid systems addresses different main topics regarding functional

as well as architectural aspects. The main research topics are the following:

• Security

• Resource Discovery and Management

• P2P

• Mobility

• Coordination

These topics are only the most important ones of the wide Grid research field.

Moreover, several topics intersect each others (like coordination and resource dis-

covery or p2p and mobility) and can produce hybrid solutions. In every case,

these research areas have produced different solutions and implementations.

3.2.1 Security

This was one of the first topic that the research in Grid systems had to address.

Actually, the support to virtual organizations and their mutable nature needs a
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strong access control and authorization to guarantee that only allowed persons or

institutions can access the network and its services. This has lead to the definition

of different security systems, like GSI [127], VOMS [4] or Shibboleth [126], that

can also allow interoperability and mutual identification of credentials between

different Grid middlewares.

3.2.2 Resource Discovery and Management

Grid networks are composed of different types of resources that applications can

use. Thus, part of the applications task consists in identifying suitable resources

and allocate them in the most cost effective way. Thus, this research area tries

to solve two problems. The first one is effectively indexing the various type of

resources to retrieve them in a second time. The second problem is developing

systems that are able to collect information about the available resources and al-

locate them according to the application requirements.

The first problem has lead to the creation of different types of index services,

that index resources and update their information using some sort of shared

schema.

For example, the MDS [46] is an index service part of the Globus Toolkit.

It is able to aggregate information from different sources and allows queries on

them. Information coming from other standard Globus services are automatically

collected and every Web Service can register its own information. The MDS is

able to trigger operations when some of the information change.

Grid Market Directory [132] is an information service part of the GridBus

middleware. Its main characteristic is that service providers can publish their

services and related costs, allowing consumers to find those ones that satisfy their

requirements with the minimum cost.

To address the second problem, resource brokers or matchmaking agents have

been developed. These agents try to automatically allocate resource pools repre-

senting the best compromise between available resources, their cost and applica-

tion requirements.
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Gridbus Broker [122] is a metascheduler that uses an economic model to opti-

mize the scheduling of processes and the allocation of resources. The idea is that

every operation on resources (e.g. allocation) has a cost and the broker should

minimize it respecting at the same time the application requirements. It is a client

side application that resides on the user machine and it is compatible with differ-

ent execution system like for example GRAM, UNICORE or Alchemi.

In [14] another marketmaker approach is used in order to reduce message

exchanges between clients and providers. A marketmaker agent is used to hide

completely the providers from the clients. Its task is to allocate resources at the

minimum price and to resell them to clients. In this way clients need to know

only the marketmaker agent, that is able to buy or lease larger resources from the

providers thus reducing communications and optimizing allocation.

In [34] several other strategies are described in order to better support Grid

scheduling. The thesis proposed by the authors is that using economic based

strategies it is possible to obtain a quasi-optimal scheduling and resource alloca-

tion without a global knowledge of the entire Grid. The approach proposed in

this paper has been used to develop the GridBus Broker.

DI-Gruber [50] is a completely distributed resource broker that aims to avoid

the possible bottleneck represented by a central brokering service. It has been

developed as an extension of the GRUBER broker deployed on the Open Science

Grid. The prototype has been developed and tested on PlanetLab with a simu-

lated network of up to 40000 nodes.

3.2.3 Peer to Peer

Since its beginning, in the Grid community is present a research field that aims to

integrate p2p solutions in Grid environments in order to:

• provide more scalability

• better support fault tolerance



34 Chapter 3. Grid Technologies

• simplify the system configuration

This vision has not yet led to an integration of p2p systems in current Grid projects

due to great problems in security, trust and support of QoS requirements. Never-

theless, several projects have been started to integrate p2p approaches in a Grid

environment. These projects follow two different research directions: enhancing

singular Grid service with p2p solutions like [58, 72, 44, 17, 128] or developing a

complete new middleware based on p2p paradigms. Although the first research

direction is more probable to be integrated into Grids currently in production,

the second one is also interesting for the challenges it poses. The main organic

projects that aim to develop a complete p2p grid middleware are described in the

following sections.

WSPeer

WSPeer [67] is a complete middleware based on Web Service and WSRF that sup-

ports a p2p environment. It is based on the idea that the standard client/server

model used by all common Grid system is not suitable for a p2p world. Thus all

peers should be considered service providers that can be contacted and discov-

ered in a p2p fashion. WSPeer is based on the P2PS middleware [125] that creates

and manages unstructured p2p networks based on superpeers. WSPeer is build

on top of P2PS and implements the WSRF standard. It uses three types of commu-

nication protocols: HTTP, p2ps, a protocol defined by P2PS, and Styx, a protocol

developed for the Inferno Operating System and used for its NAT-traversal ca-

pability. This middleware supports network transparency using so called Virtual

Network Addresses (VNA) based on URNs. They uniquely identify peers and

resources independently from the network in which they reside. According to

some test results this middleware is interoperable with the GT4 when the HTTP

protocol is used. This middleware is still under development.
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Narada Brokering

The Narada Brokering [98] is a complete messaging middleware focused on dis-

tributed Web Service systems. It is based on JXTA and implements a publish/-

subscribe model to enable communications between various distributed entities.

Several policies for message exchanges can be used like reliable delivery, ordered

delivery, secure delivery. Communication can be done using different protocols

like UDP, TCP, HTTP, SSL and parallel TCP. The system is compatible with the

JMS interfaces and implements several Web Service standards like WS-Transmit,

WS-Reliability or WS-Eventing but does not still provide support for WSRF 2 at

this time.

AutoMate

AutoMate[2] is an experimental framework for autonomous services on the Grid.

It uses algorithms inspired by biological systems and its architecture is composed

by the following layers:

• Accord Programming Layer that extends existing distributed programming

models and frameworks to support autonomic elements.

• Rudder Coordination Layer that provides a coordination framework and an

agent-based deductive engine to support autonomic behaviors. The coor-

dination framework is based on a distributed p2p tuple space implementa-

tion, Comet[82], described in Section 2.2.2.

• Meteor/Pawn Middleware Layer that provides a content-based middleware

with support for content-based routing, discovery and associative messag-

ing.

• Sesame Access Management Layer that provides access control and dynamic

context-aware control.
2According to some announcements, support for WSRF will be implemented in a future release
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Although the very interesting features of this system and the great number of

related publications, Automate is not freely available. Moreover, it seems not to

support legacy applications and actual Web Service standards like WSRF.

SP2A

SP2A [6] is another p2p middleware based on Web Services. It is developed using

JXTA and allows resources to be semantically annotated with OWL-S ontologies.

The serialization support is relatively simpler than that provided by the previous

middlewares and does not support the WSRF standard.

In [40] a p2p application specific scheduling algorithm is proposed. The aim of

this paper is to propose a model to define p2p scheduling for generic application.

The model uses two different types of agent that define two overlay networks.

The first type is represented by computational agents that execute tasks. They

are ordered in a tree like structure and know their parent and their children. The

second type of agents is represented by distribution agents that distribute data in

order to transmit it to the best computational nodes according to an application

metric (e.g. computational speed). At the application start the distribution node

create a torus with the k best nodes chosen between n. These nodes execute the

tasks and the torus is continuously updated in order to contain always the k best

nodes.

Finally, in [39] an organic approach to desktop Grid is proposed. Actual desk-

top Grid middlewares like BOINC have a centralized nature. This paper de-

scribes how a completely distributed desktop middleware can be implemented

using a biologically inspired approach. Tasks and subtasks of the computation

are organized in a tree like structure, that is continuously updated according to

the computational speed of the agents and the link status between them. Only a

part of the children of an agent are used for the computation: they represent the

best ones according to a specific metric. In such a way completely decentralized

and scalable desktop Grids can be created.
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3.2.4 Mobility

Often Grid middleware need to be employed in situation in which the network

is also composed by mobile devices or sensors that transmit data to services for

their analysis. Similar situations are, for example, seismological analysis or dis-

aster management. Thus, this research tries to define models and services that

integrates mobile aspects in Grid middlewares.

Mobile Grid is a research area of the Grid community that aims to develop

models and middlewares that allow mobile devices (PDAs, sensors. . . ) to access

resources on a Grid infrastructures or to be part of a Grid-based applications.

Scenarios in which this approach can be useful are, for example, geological mon-

itoring, crisis management or traffic monitoring. This is a relatively new research

area in the Grid community and practical results are sometimes still missing. For

example, both the projects Akogrimo[76], financially supported by the European

Community, and K*Grid[142], financially supported by the South Korean gov-

ernment, aim both to provide middlewares and standards for mobile Grids.

The ISAM[129] project proposes a pervasive computing environment that in-

tegrates three concepts: context-awareness, mobility, and Grid computing. The

applications developed upon it can show adaptive behaviors but, for the mobil-

ity, only wireless network infrastructures are supported. Ad hoc networks are

not taken in consideration.

Another project, MoGrid[49], has developed a complete p2p mobile Grid in-

frastructure. It is composed by two different softwares: MoCA, a middleware for

building context-sensitive mobile applications, and InterGridade, a Grid middle-

ware supported by the Brazilian government.

Kurkovsky and others in [81] propose a distributed problem solving environ-

ment based on mobile devices that is integrated into a Grid infrastructure.
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3.2.5 Coordination

Coordinating the tasks composing an application is of a fundamental importance

when the application components should operate on different network and ser-

vices spread worldwide. For this reason services and coordination models have

been used in order to simplify the development and deployment of Grid applica-

tions.

Most of the Grid middleware implement publish/subscribe services or mes-

sage passing interfaces like MPI. However, these coordination model can hardly

handle complex interactions or execution on different sites. For this reason, work-

flow engines have been employed in order to simplify the development of com-

plex application. Some workflow engine are part of the Grid middleware (e.g.

UNICORE), whereas others are available as third part services. The most impor-

tant workflow engine are the followings.

The Karajan Workflow Engine [152] is a workflow engine for the Globus

Toolkit. It uses a custom XML language for describing workflows that is based

on GridAnt, a make-like application of Grid middleware.

The Grid Workflow Engine [130] uses a simple XML-based workflow lan-

guage to schedule processes on Grid environments. IBM TSpaces is used to im-

plement the workflow engine. Moreover, this system employs an optimization

model based on economic metaphors.

Pegasus [48] is another workflow engine for Grid systems. Its main charac-

teristic is the ability to define reusable abstract workflows that are automatically

transformed in concrete workflows on the basis of the available resources. This

automatic transformation employs AI planning techniques to avoid manual in-

tervention.

Kepler [84] uses another approach to define and schedule workflow tasks.

Actually, it is based on a generalization of the Actors model [3] which defines two

types of entities: actors that are responsible for the computations and directors

that dynamically define the connections between actors and their execution order.
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Finally Triana [120] is a problem solving environment that uses workflows to

represent applications. Users are able to define the distribution policy of the tasks

composing their workflows and to change the workflow structure at runtime. It

does not depend on a specific midlleware: Triana workflows can be executed on

standard Grid middleware like the Globus Toolkit as well as on a JXTA network.

The systems described so far are well tested and successfully used in many

applications. Nevertheless, in the literature other prototypes are described which

manage workflows using different strategies.

In [15] a description of an intelligent Grid environment is presented. The ap-

proach used defines an intelligent broker based on agents: they autonomously

create workflows based on an abstract description of the job submitted by the

user. Ontologies defining services and tasks help agents in creating workflows

and executing them. Moreover, it is possible to detect faults during the execution

and automatically redefine the workflow.

Another proposal is presented in [21] and uses a process language inspired

by the π-calculus. Agents execute workflows described in this language. The

system allows the use of so called ”coordination templates”, i.e. workflows not

completely defined that represent generic coordination models. They can be use-

ful in order to modularize the coordination, since the workflows employed can be

categorized into few models. Agents can exchange these templates and instan-

tiate them according to the job parameters. It is an approach similar to Model

Driven Architecture (MDA) or Problem Solving Model (PSM).

An interesting proposal is described in [43]. This paper describes a simula-

tion framework based on user-defined component and rules. The simulation is

decomposed in components that are dynamically loaded by a specific service at

runtime. The components are executed in parallel and at the end of the compu-

tation the next steps are defined by some user defined rules that are fetched from

a central repository. This approach is similar to workflows but with some dif-

ferences. First of all the components are deployed at runtime and are simpler to

develop than standard services. In this way the Grid environment is transparent
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from the components point of view, allowing a simple porting to other environ-

ments. Moreover, the rules can simplify the development of fault-tolerant appli-

cations implicitly defining a dynamic workflow. Unfortunately the way in which

a network-wide synchronization is established is not clear and the centralized

architecture of the information system is a possible bottleneck.

In [92] an interpreted language (Alua) is used in order to interactively run and

coordinate distributed applications. Although an interactive environment can be

useful for small applications or rapid development, it is questionable if it can be

useful for long-running applications too. However, the interpreted language has

a syntax simpler than a classical XML-based workflow language.

Another approach is described in [18]. It uses a chemical programming pa-

radigm in order to accomplish coordination. In fact, the semantics of this pro-

gramming language implicitly defines coordination. Unfortunately the work de-

scribed is only a proposal and does not seem to have any real implementation.

Our proposal can be inserted in this research topic.



Chapter 4

P2P Systems

In this chapter we will describe the state of the art of p2p systems. Some of the

systems presented in the following sections are on the basis of our proposal. In

particular, p2p protocols supporting range queries will be used by our prototype

as described in the next chapter.

P2P systems are distributed systems with the following particular character-

istics:

• No Different Roles, nodes in a p2p system do not show different roles like

client or server: all peers are considered equal and are supposed to im-

plement the same behavior or interfaces. Sometimes, some peers are more

”important” than others since they are more stable or have more compu-

tational power. In this case, they are called ”Super Peers” but they behave

exactly like normal peers.

• High Volatility, peers can join or leave the network at any time and with-

out any previous notification. The support to this behavior leads to a high

tolerance to faults.

• High Scalability, the network size can scale up to millions of nodes. Thus,

all decisions should be taken locally without the presence of a centralized

authority.
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These characteristics, that apply in different ways to the various p2p implemen-

tations, make this kind of distributed system very useful in situations where fault

tolerance and high scalability are needed.

The most important operation in p2p systems is the discovery of the best peer

(or peers) that can store or owns a specific resource. Although this operation is

also present in other ”traditional” distributed systems, in p2p systems it becomes

the most important one because it must take into account the particular charac-

teristics of these systems. Since a centralized authority cannot be present, the

decision on how to choose the best peer is taken locally with a limited amount of

information. According to the way in which this operation is accomplished, p2p

systems can be classified into two main groups:

• Unstructured Networks in which peers do not know the resources stored

by their neighbors. Thus, routing paths are not previously known and have

to be defined locally collecting information along the way from neighbors.

The algorithms used for these types of systems are based on flooding-like

models sometimes also known as percolation, gossip or epidemic. Systems

that implement similar models are for example JXTA [115], Gnutella [108]

and eMule [80].

• Structured Networks in which peers know the possible resources stored by

the neighbors. In this way, the search can be sped up avoiding to query

peers that cannot store the requested resource. The allocation policy is de-

fined by the algorithm and usually based on identifier equality (Uniform

routing) or other type of relations (Non-uniform routing).

These systems can be grouped in other two main subgroups according to

the model employed to insert or find a resource in the network:

– Distributed Hash Tables (DHT) that create the abstraction of a hash

table for managing the resources in the network.

– Tree-based structures that provide the abstraction of a tree arranging

the peers accordingly.
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In the following sections n will indicate the number of peers composing the net-

work.

4.1 Distributed Hash Tables

One of the most important model of structured networks are the so called Dis-

tributed Hash Tables (DHT), that create a logical structure implementing an exact

matching behavior. Peers and resources are addressed with the same type of

identifier: given a resource id, the peer with the most similar id is responsible for

storing that resource. In this way, a routing algorithm can be implicitly defined

forwarding the messages to the peer that is closer to the destination. However,

to reach good performance the routing process should be as quick as possible re-

quiring a low number of hops between nodes. Usually DHTs arrange their nodes

in a way that requires O(log(n)) messages to identify suitable peer. The most of

them uses skip lists in order to reach such performance.

Skip Lists are sorted lists in which the i-th node has blogm(n)c pointers to

nodes that are at distance of 1, m1, m2, . . . ,mlogm(n)−1 from it. In this way, a search

algorithm has a complexity of O(logm(n)) instead of being linear. Unfortunately,

creating and maintaining such a data structure is extremely expensive and it can-

not be employed in a distributed system since it would require too many mes-

sages. Therefore, DHTs use probabilistic skip lists, that are constructed only with

the available nodes trying to respect the properties of exact skip lists, and tend to

them when the number of elements tends to infinity.

As said before these types of p2p systems originally provided only the support

for exact-matching queries. Clearly this type of queries is not suitable for some

applications like for example distributed databases or computation processing.

For this reason in the last years there was a great effort for integrating support for

range queries in this type of systems. In the following section we will discuss the

original DHT systems as well as the most important extensions that introduce the

support for range queries.



44 Chapter 4. P2P Systems

4.1.1 Original DHT Models

CAN

CAN [106] arranges nodes in a k-dimensional toroidal space: each node repre-

sents a k-dimensional point that is responsible for a specific hyper-volume. All

resources, whose id falls into this volume, are stored by its owner. Identifiers

in CAN are computed using a SHA1 hash function that produces a sequence of

160 bits that is split according to the number of dimensions. When a new node

joins the network, the volume in which it falls, that was owned by another peer,

is divided in two along one dimension and the new peer becomes the owner of

the new volume. Resources that were managed by the old peer and that fall in

the new volume migrate to the new node. In this way, each node knows at least

2 ∗ k neighbors. Messages are forwarded to the peer nearest to the destination

according to the Euclidean distance.

The routing cost of CAN is O(k/4 ∗ n1/k), thus its performance increases with

the number of dimensions, being relatively poor for low dimensions. There-

fore, to reduce communication costs, some enhancements of CAN use several

instances of this protocol at the same time with an increasing number of dimen-

sions.

Chord

Chord [114] uses a ring like structure in order to arrange their nodes. Each node

has an id that is computed using a SHA1 hash function and it is positioned in the

ring according to its natural ordering. Each node has pointers to its predecessor

and to O(log(n)) successors at exponentially increasing distance. A resource is

managed by the node that has an id greater or equal to it. When a new node

joins the network it is inserted in the ring according to its id and the links of its

predecessor are updated to take into account its presence.

The routing cost of Chord is O(log(n))
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Pastry

Pastry [110] is a DHT implementation intended to be the communication core

of a decentralized service-oriented framework: some services, such as the pub-

lish/subscribe implementation Scribe, have been already implemented.

Pastry uses prefixes in order to arrange its nodes. Identifiers in Pastry are ob-

tained using an MD5 hash function that produces sequences of 128 bits. They are

interpreted as binary integers with a base of b bits (usually 4). The base b is a con-

figuration parameter that should be tuned in order to get the best performance.

Each node in Pastry maintains two tables: the routing table and the leaf table.

The routing table is composed by 128÷(b−1) entries containing the known peers

whose id shares the first i digits with the actual id and differs in the i + 1-th digit.

Each entry has a limited number of registered peers (defined by another configu-

ration parameter) that are chosen taking into account the real network topology:

only the peers with the minimum ping delay or with the minimum distance in

hops are inserted in the routing table. Moreover, they are ordered using a LIFO

policy to take into account the fact that ”oldest” nodes are more probably to re-

main active than ”newer”. The excluded nodes are inserted in the so called leaf

table that is used in case of failures or lack of information. In order to provide

better fault tolerance, resources can be replicated among more peers.

A request is forwarded to the peer that shares the longest prefix with it or to

the nearest one, according to the Euclidean distance between their ids, in the case

of multiple candidates or lack of information. Using this algorithm the routing

cost of Pastry is O(logb(n)).

Tapestry

Tapestry [133] is another DHT implementation based on prefixed similar to Pas-

try. It uses a dynamic version of the Plaxton algorithm [103] and, unlike Pastry,

uses a 160 bit space for identifiers and introduces the concept of object pointers

for replicas: instead of replicating the whole object on different peers, pointers to
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that object are replicated whereas the original object remains on the initial host.

Kademlia

Kademlia [90] uses a tree topology to order the nodes. Its identifiers are 160 bit

long and their binary representation defines their position in a virtual binary tree.

The distance between two nodes is defined as the XOR composition of their re-

spective identifiers. Each node has a routing table composed by 160 entries (k-

buckets), that maintain nodes with distances between 2i and 2i + 1. These k-

buckets can store at most k nodes (usually 20) that are arranged in a least recently

seen fashion: the most visited nodes are at the end of the list.

The routing information is updated at every operation getting new informa-

tion from the messages that arrive at the nodes. In this way, it is possible to dis-

cover new peers and arrange them using the described policy. Moreover, ping-

like messages that probe the network topology are no longer necessary, simplify-

ing the protocol.

A message is forwarded to the nearest peer using the XOR based metric and

requires O(log(n)) steps in order to reach its destination.

4.1.2 Support to Range Queries in DHTs

The DHT systems described so far implement only exact matching for discover-

ing peers or resources. Although this is enough for most cases, some applications

like distributed databases or processing need more complex queries like range-

query or k-nearest-neighbor. Therefore some work has been done in order to

enrich DHTs with these types of queries.

Protocols that support complex queries have to take in consideration the fol-

lowing aspects in order to obtain good performance:

• Locality: similar data should be memorized in adjacent nodes; in this way,

it is simpler to discover all the resources contained in a range
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• Load Balancing: data access and distribution among nodes should be the

most uniform possible

• Limited Metadata: to drive the queries. The minimum number of addi-

tional metadata should be used; theoretically, no metadata should be needed

at all.

The proposed systems use different strategies in order to introduce support

for more complex queries:

• Additional software layers over existing DHT implementations

• Enhancing existent protocols better exploiting their characteristics

• Developing completely new protocols that natively support complex que-

ries

In the first approach a preprocessing phase is employed in order to map val-

ues and range queries to the available peers. For example, space-filling curves can

be used to map multi-dimensional values or ranges into one-dimensional ones.

Then, a standard DHT implementation is used to store the values and querying

for results. In this way, the DHT protocol is not modified but the performance

can suffer due to an increased number of queries (a range can be split into sev-

eral exact match queries) or a low hit ratio since the queries cannot identify all

candidates. This approach has been used for example by SCARP [62]. Other sim-

ilar solutions are described in [118], in which a distributed quadtree is created

on standard Chord nodes, and in [134], that uses a balanced binary segment tree

upon OpenDHT [107] nodes and supports cover queries.

In the second approach the protocol is enriched with a support to range que-

ries, exploiting some of its intrinsic characteristics. In this case the protocol is

modified only partially because it already creates overlay networks that poten-

tially allow complex queries. Examples of this approach are CAN or Chord: the

overlay networks they create can intrinsically support, for example, range queries

but these have not been considered in the original versions of both protocols.
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Finally, in the third approach completely new protocols are developed with

the specific goal to support complex queries from the beginning.

In the following section we will present the most important works following

the last two approaches.

4.1.3 Enhancing of Original DHTs

CAN Extension

Extended-CAN [9] is an example of enhancing an existent protocol in order to

support range queries. It follows the same idea of the original CAN introducing

some limited modifications. For example, data are distributed in the network

using a space filling curve that maps them to a d-dimension space. In this way,

using the locality propriety of some space filling curve, similar data are stored

by adjacent nodes. The range query processing can be accomplished using two

different strategies:

• Controlled Flooding requests are sent to neighbor nodes that intersect the

query: duplicate requests can arrive at the same node.

• Directed Controlled Flooding requires that the first node that intersects the

query generate two ”request weaves”: the first one toward nodes that inter-

sect the query with greater intervals, the second one toward the remaining

nodes that intersect the query with smaller intervals.

A strategy adopted to obtain a good load balance is to randomly perturbate the

data identifiers modifying their less significant digits. In this way, they can be

distributed more uniformly but the exact match search can become impossible.

Chord Extension

Abdallah and Le [1] describe a protocol that extends Chord allowing range que-

ries. The modifications of the protocol are based on two aspects: the hashing

function and the load balancing.
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The first modification proposed by the authors is the substitution of a stan-

dard hash function with any other function that maps values to nodes preserving

their natural order. In this way, values are assigned to subsequent nodes and not

scrambled over the network.

Unfortunately, preserving the natural order of values can lead to load imbal-

ances in some nodes when the data distribution is not uniform. To avoid this

case, a careful load balance algorithm has been proposed. The idea is that nodes

can change the value of their identifiers moving along the ring, in order to take

the responsibility of more data and reducing the load.

If a node is overloaded, it can move toward its successor (increasing its identi-

fiers) or its predecessor can move toward it: since identifiers have changed, data

should be reassigned to the nodes thus reducing the load. If neither the predeces-

sor nor the successor can accept new data, another unloaded and newly-joined

node is found that ”jumps” to a place on the ring where it can split the distribu-

tion peak. Unloaded nodes map themselves using the DHT infrastructure and

thus are found with O(log(n)) messages.

To know if they are unbalanced or not, nodes should know the average load

balance of the entire network. To do so, they use epidemic or gossip style aggre-

gation functions that exponentially converge to the right result.

Given the described order-preserving mapping function and load-balancing

algorithm, the range query is executed in the following way: first the node main-

taining the lower bound of the range is found using the standard exact matching

procedure; then, the request is propagated to its successors until the upper bound

is reached. In this way, a range request is achieved in O(log(n) + m) messages

where m is the number of nodes contained in the range.

HotRoD

HotRoD [102] is a DHT based framework aiming to introduce support for range

queries. It can be imposed on existing DHT implementation with minor changes.
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The two key features that it implements are the followings: a locality-preserving

hashing function and a replication-based load balancing scheme.

HotRoD can use any existent DHT implementations in order to work but

it was developed using Chord. Data are considered to be database tuples of

a k-attribute relation R(A1, . . . , Ak). To store a tuple in the network at most k

order-preserving hash function are used (one for each attribute) plus another

one calculated on the primary key of the relation. Thus, each insertion requires

O((k + 1) ∗ log(n)) messages. The hash functions are not specified but the most

suitable ones can be used according to the attribute ranges.

However, this indexing does not reduce the load of data present in the net-

work: a load-balancing scheme is needed. Unlike the majority of the works that

use migration to avoid imbalances, HotRoD employs replication. This is due to

the fact that migration can reduce the load only in terms of number of resources

stored in a singular node, but it does not do anything in term of popularity of a

specific resource. Migrating a popular resource to another node does not solve

the problem, instead distributing similar requests among different replicas can

reduce the average number of requests processed by each node.

To obtain this result HotRoD uses a so called multi rotation hashing that can

calculate the identifier of the i-th replica of the given attribute. In practice the

hash of replicas is augmented by a value that rotates in specific ranges defined by

the maximum number of replicas. In this way, replicas can be stored on different

nodes that compose a virtual ring.

Replicas are automatically generated by nodes that at random intervals check

if they are too heavily loaded and decide to create new replicas of their data. To

do this however, they need to know how many replicas of a specific data item are

presented in the network. These values are also indexed and replicated by the

network.

The maximum number of replicas is a configuration parameter: high value of

this parameter corresponds to more uniform distribution of load but at the cost

of a high overhead.
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The range search proceeds in the following way: first a randomly selected

replica of the lower bound of the range is identified. Then the request proceeds

to the highest bound identifying randomly at each step an available replica of the

actual value. So the overall complexity of a range search is O(log(n)) + m) where

m are the number of values contained in the range.

Prefix Hash Trees

Prefix Hash Trees [105] try to store data that share a common prefix on the same

node using a standard DHT implementation. The idea behind this protocol is

that a data item should be stored on the node whose id match the hash value

computed on its prefix. In this way, all data that share a common prefix are stored

on the same node and can be retrieved directly. When the number of data that

share a common prefix on a node reach a configuration limit, they are moved to

different hosts that are responsible for a longer prefix. The old host maintains

information about the moved data allowing range queries to retrieve them.

4.1.4 DHTs with Native Support to Range Queries

GosSkip

GosSkip [64] is a general framework that creates a p2p structured network allow-

ing range searches and probably other types of complex queries.

With respect to other systems, in GosSkip node identifiers are not restricted

to bit sequences but can be every kind of data upon which it is possible to define

a deterministic total ordering. For example, identifiers can be represented by

strings or topic filters allowing GosSkip to be used as the basis of a highly scalable

publish/subscribe system.

Each node has a skip list that is used to store nodes at increasing distance

preceding or following the actual node according to the defined order. The re-

spective distance of nodes defines its level: direct neighbors are at level 0, nodes

a distance 2 are at level 1 and so on. A message sent to a node of level i becomes
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a message of level i. To maintain these skip lists piggyback messages are used:

every message has a variable number of additional entries that store information

about known nodes at the message level. These entries are stored in the various

nodes that the messages reach and then attached to the following ones enriched

with the actual node information. Information contained in the entries is used to

update the skip list, an approach similar to Kademlia.

Once the network is set up, range queries are forwarded to the first known

node that is inside the given range. Then they are forwarded to other higher and

lower level nodes that are inside the same range.

SCRAP MURK

SCARP and MURK are two p2p protocols described in [62] that allow the exe-

cution of range queries. They are based on different architectures and provide

different performance.

SCARP uses a two step insertion operation in order to identify the node where

to store a given resource. In the first step a space-filling curve is used to map

multi-dimensional values to one-dimensional ones. In the second phase these

values are stored to nodes in a way that preserve their order. In this way how-

ever, the value distribution between nodes can become unbalanced, so in the case

of overloaded nodes a migration policy is used in order to split data across neigh-

bors.

Range queries in SCARP are executed in two phases too. In the first one from

a multi-dimensional range query a series of one-dimensional ranges are obtained

according to the specified space-filling curve. In the second phase matching

nodes are queried in order to get the values.

MURK uses an approach similar to CAN but with two great differences:

• In CAN, when a node joins the network the virtual space is equally divided,

in MURK the load is equally divided so that the ”old” and the ”new” node

have the same number of resources.
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• CAN uses hash functions to map nodes whereas MURK uses a space-filling

curve.

This structure does not guarantee load-balancing during the evolution of the net-

work so the same load-balancing scheme of SCARP is used.

The message routing depends on the MURK network topology chosen. In

fact, three possible topologies can be used:

• The standard CAN topology

• The standard CAN topology enhanced with 2∗ log(n) skip pointers for each

node chosen at random

• The standard CAN topology enhanced with 2 ∗ log(n) skip pointers chosen

using the distance between their partition center as metric

To verify the performance of range queries the authors have conducted two

types of test to study locality, i.e. the average number of nodes across which

the answer to a given query is stored, and the routing costs, i.e. the average

number of messages exchanged between nodes in order to route a given query.

These tests have been repeated varying the number of dimensions, the network

size and the selectivity of the query. According to obtained results it seems that

MURK outperforms SCARP especially when enhanced topology is used. This is

probably due to the fact that a range query can be mapped to a great number of

unidimensional ranges thus requiring many requests.

NRTree

NRTree [83] defines a super peer based network that is arranged in a way allow-

ing the execution of range queries. The n-dimensional space is subdivided into

hypercubes each of them managed by a specific super peer. Super peers are ar-

ranged in a way similar to a n-dimensional CAN, thus requests are forwarded

to the super peers responsible for the hypercubes that intersect them. Each su-

per peer is responsible for a variable number of peers that help it to store the
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resources. To index the resources, each peer and super peer uses a distributed

R-Tree [65], a spatial data structure that can map hypercubes and hyperpoints to

resources in an efficient way. The super peer and the peers owns only a part of

the entire R-Tree of the region they are responsible for: the super peer maintains

the top of the tree whereas the other peers manage a subtree according to their

position in the n-dimensional space.

Since R-Trees support range search, such requests are forwarded to the super

peers that then forward them to the adequate peers according to their identifiers.

If the number of peers is high and that of super peers low the efficiency of the

range search is high since it can proceed through the R-Trees.

There are two problems that this protocol has to address: the load balancing

between nodes inside the same region and the election of the super peer in case

of failures.

4.2 Tree-based P2P structures

Tree-based structures are another example of structured p2p networks that na-

tively support range queries. In contrast to DHTs they create tree-like over-

lay networks that can be searched in order to find the desired resources. Tree-

based structures have been developed for better supporting distributed databases

and their query processing that heavily uses range queries. Moreover, they ap-

peared some years after the first DHT implementations because a tree-based over-

lay is more complex to maintain due to its intrinsic fault-proneness and load-

imbalance. In fact, the closer a node is to the root the more important it is and

can be overloaded by queries. Moreover, if a node fails it is impossible to reach

its children. To avoid this type of problems the tree-based structures should care-

fully implements load-balancing strategies and create redundant paths to connect

nodes and avoid network splits. The most important tree-based systems are de-

scribed in the following sections.
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BATON

BATON [74] was probably the first p2p systems that employed a tree overlay

network. There were some previous proposals but they did not resolve all the

performance and fault-tolerance issues of a such structure.

BATON organizes the peers in a balanced binary tree structure according to

their identifier. Every node maintains a range of values and a set of links to other

nodes with the associated range. To avoid network splits redundant paths should

be created and for this reason every node maintains pointers to its children, its

parent, its left and right siblings at exponential increasing distance and its left and

right adjacent nodes, i.e. the nodes that are the predecessor and the successor of

the current node in an in-order traversal of the tree.

A new peer joins the network contacting a participant and then this operation

proceeds in two phases: in the first one the right parent of the new peer is found

using the adjacent nodes, in the second one siblings are contacted to update their

routing tables. All this process requires O(log(n)) messages.

Soft leaves and node failures are handled using in part the same algorithm.

When a node wants to gracefully leave the network, it is responsible to identify

another node that can take care of its children. To do this it uses siblings and/or

adjacent nodes. After having successfully found a new adequate node it can dis-

connect from the network. A node failure is handled in a similar way: when a

node discovers that it is unreachable it contacts its parent that from now on is re-

sponsible to contact other nodes to update their routing table. These operations

also require O(log(n)) messages.

To maintain the balanced structure after joins or leaves, network restructuring

is needed. It is done using node rotations in a way similar to that employed by

AVL trees requiring additional O(log(n)) messages.

Queries are forwarded through the nodes using the links and the associated

ranges. In the exact matching query the search stops when it arrives to the peer

storing the range that contains the value requiring O(log(n)) messages. In the

range query after having found the first node intersecting with the range, the
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search proceeds through the children and or siblings requiring O(log(n) + m)

messages when m nodes intersect the ranges.

The insertion of new data into the overlay network is accomplished in three

steps: first an exact matching query is done in order to find the appropriate node,

then the data is inserted and finally the neighbors are updated when the range of

the node changes.

Beside the balancing of the structure, this system requires a balancing of the

data too. It is based on migration of part of the range to other nodes in the neigh-

borhood. To avoid too many message exchanges internal nodes balance their

load with adjacent nodes whereas leaf nodes can leave and rejoin the network

becoming the children of a less loaded node. This operation can require a net-

work restructuring.

BATON*

BATON* [73] is an enhancement of BATON that uses a generic tree based overlay

instead of a binary tree. In BATON* each node has m children and the left and

right routing tables are based on skip lists storing sibling nodes at exponentially

increasing distance on the same level. An old node can only accept a new node

if it has full routing tables and does not have m children. Otherwise, it has to

forward the request. A node can leave the overlay network only if the latter does

not become unbalanced, otherwise it should find a replacement. The overall cost

for the insertion or deletion of a node is O(m logm(n)), whereas the cost for an

equality search is O(logm(n)).

BATON* supports natively only one-dimensional queries, for supporting multi-

dimensional queries different indexes are employed. In particular the indexes are

of two types: indexes for singular attributes that are the most used or indexes for

a group of attributes that are less used. To map attributes on a single index, an

Hilbert Space Filling Curve is used. When a multi-dimensional query is pro-

cessed it is split in different subqueries according to the indexes that are then
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executed in parallel. At the end an intersection of the results is done. Heuristics

are employed to improve performance in query processing.

VBI-tree

The Virtual Binary Index Tree (VBI-Tree) [75] is an abstract data structure build

on top of an overlay framework. It was inspired by the BATON structure and can

support any kind of hierarchical tree indexing structures. Every node can be an

internal or a data node and each peer store an internal and a data node (its left

adjacent in the tree traversal).

Internal nodes maintain links to its children, parent left and right siblings and

left and right adjacent nodes. Moreover, they keep track of the regions covered by

each of their ancestors and the heights of the subtrees rooted in them. Data nodes

do not contain routing information since their identity is implicitly established

by the algorithm.

The join operation is similar to BATON and it is composed by two phases:

the first one identifies the correct peer to join with using the BATON algorithm

whereas the second one splits the corresponding data node in an internal node

and other two data nodes. The new internal node and its left child will be man-

aged by the new peer whereas the right child will be managed by another ade-

quate node according to the actual traversal order. After these steps the ancestors

are updated if required. The total number of messages required for this operation

is O(log(n)). When a peer wants to leave, it should find a replacement for itself in

order to avoid tree imbalance. This operation also requires O(log(n)) messages.

The fault tolerance and load balancing support is the same used in BATON.

Given the previously described overlay network, it is possible to define a

multi-dimensional index upon it in a way similar to other tree based indexing

structures like R-Trees. Every internal node maintains a region that contains those

of its children. In order to reduce the number of updates in the children nodes

two heuristics are employed:

• Updates are propagated only when the network is not busy
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• Internal nodes can maintain so called ”discrete data” (i.e. data that do not

fall in any of the children regions) that avoid children regions to be enlarged.

Regions are modified and updates are propagated only when the number

of ”discrete data items” exceeds a specific threshold.

The exact and range queries proceed through the ancestor, descendant and

neighbors. Heuristics are used in order to avoid that the queries proceed too far

up in the ascendent line and to take into account ”discrete data”.

LOT

LOT [5] is a tree-based overlay network connecting peers arranged in clusters. It

has been designed to exploit the topology of today’s large-scale networks, com-

posed by thousand of peers grouped in a small number of highly-connected clus-

ters, deployed in very distant geographical locations in the world.

Every peer maintains an internal state that is then aggregated to obtain the

final overall result. This state can be for example the result of a partial compu-

tation or a SQL query. To reach good performance, the cluster based topology

and a virtual tree structure are exploited. In fact, the peers inside the same clus-

ter represent a super leaf that is a part of the virtual tree connecting the various

clusters. Inside the super leaf, communication is accomplished using gossip-style

messages because this scheme allows fast data interchange between all peers.

Every super leaf uses a subset of their peers to emulate its own ancestors in or-

der to be fault tolerant. These peers can emulate the state of one or more ancestors

depending on the number of the members of the cluster. Since these emulation

peers are present in every cluster, it is possible to deal with faults and avoid net-

work split. However, to maintain a correct state, the emulation nodes should be

able to deterministically calculate it from its children and to continuously execute

a maintenance algorithm synchronized with the other clusters. This maintenance

algorithm proceeds in rounds from the bottom to the top in order to obtain the

correct states at every level of the tree.
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To join a new node contacts another one already part of the LOT network.

This replies with a list of emulation nodes that can be the ancestors of the new

node. The new node selects the nearest of them and then iterates this process

until the best node is found. This process however can create unbalanced trees,

for this reason when a node has too many children it splits itself and notifies this

modification during the maintenance algorithm so that other nodes can know it.



Chapter 5

A New Approach for Tuple Spaces

Implementation

5.1 Introduction

In this chapter we will discuss an approach that improves the performance of

tuple spaces. In fact, many widespread tuple space implementations suffer from

low performance when a high number of tuples is stored into the space. This

is mainly caused by inefficient implementations of its operations: in many cases

simple lists or arrays are used to index tuples. Although this approach can be

satisfied when a low number of tuples is stored, it becomes a bottleneck when

the tuple number increases. Therefore, more efficient approaches to index tuples

should be used. However, these indexes should support the particular nature of

tuples that can show very different structures: they can be arrays or objects, like

in JavaSpaces, and have different types and size. These differences are difficult to

handle and lists represent the simplest solution.

Notwithstanding these complex requirements, we think that it is possible to

use more efficient indexing schemes to increase the performance of tuple space

implementations. For this reason, we have developed an approach that is com-

posed by two phases. In the first one, tuples or templates are mapped to a n-

dimensional space applying hash functions to every of their fields or attributes.
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In the second phase, the produced mapping is used to operate on a data structure

that indexes the original tuples and allows fast insertion, removal and lookup.

These two phases are loosely coupled and can be developed separately until

they respect some requirements. In particular, the hashing functions should pro-

duce keys that are selective enough to avoid that too many values are mapped

with the same key. On the other side the indexing data structure should effi-

ciently support insertion, removal and range queries, because these last one are

needed to implement take and write operations.

Indexes that support the previous requirements are not so common but good

candidates can be found in the area of spatial databases as will be discussed in

Section 5.2. The use of such data structures allow the creation of highly efficient

centralized spaces as will be shown by our tests.

As described in Chapter 4, in the research literature are also present some

examples of distributed indexes, that support exactly the requirements we have

defined. Thus, using them it is possible to implement p2p tuple spaces, as will be

described in Section 5.2.

Thus, this approach show its versatility allowing the development of different

flavours of tuple spaces following the same scheme. Although we have imple-

mented this approach in our Grid-based service, it is completely general and can

be developed using other technologies.

5.2 Centralized Tuple Space implementation using Spa-

tial Indexes

As described previously our approach is composed by two phases. In the first

one, that can be called ”mapping” phase, tuples or templates are mapped to a

n-dimensional space, where n is the number of fields or attributes.

The Cartesian space used can be subset of Rn or Nn, according to the way in

which tuple field values are hashed. In our implementation, we have employed
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the space [0, 1] ⊂ Rn for approximation reasons. The mapping we have used

presents some differences between tuples and templates.

For tuples, we use an hash function for every field. It produces keys in the

interval [0, 1] and it is chosen according to the field type.

For templates we create hypercubes defined by two n-dimensional points: the

lower left and upper right point. Every empty field produces two possible value

0 or 1 whereas non empty field are hashed like in tuples. Thus, every tuple con-

tained in the produced hypercube satisfies the template.

After having mapped tuples to a n-dimensional space, we can use spatial in-

dexes to efficiently handle them. Spatial indexes have been developed for spatial

databases and Geographical Information Systems (GIS) and support efficiently

the requirement previously defined.

The mapping between tuples and n-dimensional points is not new and it has

been already proposed by Comet and in [94]. Nevertheless, such approaches do

not use spatial indexes.

5.2.1 Overview of Spatial Indexes

There are many examples of multi-dimensional space indexes that can be used to

implement our space. According to their structure and characteristics, they can

be grouped in the following way:

• Tree-based that use tree-like structures to index points and can be organized

in two other subgroups:

– Point-Oriented that can index only n-dimensional points

– Shape-Oriented that can index n-dimensional shapes too, like hyper-

rectangles.

• Partition Strategies that try to calculate once a key from the spatial position

and index it using traditional data structures like B-Trees.
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The first spatial index structures that have been proposed are the point-oriented

ones.

KDTrees [26] index hyper-points using an unbalanced binary tree subdividing

recursively the space in two subspaces, according to the point position. At each

tree level the split axis is rotated in order to have a more uniform subdivision of

the space.

QuadTrees [54] recursively split a n-dimensional space in 2n regular hyper-

cubes independently from the point position. The point will be stored by the

nearest node.

These data structures have two disadvantages: they are not balanced and can

index points only. More recently shape-oriented tree-based strategies have been

proposed that, with respect to the previous ones, use general balanced trees and

can also index shapes. The most important of these structures is the R-Tree [65].

It indexes shapes using a B-tree like structure in which keys are hyper-rectangles

that completely contain the corresponding subtree. Insertion, removal and que-

ries are done comparing geometrically the intersection of the keys.

When a node become full, a split is needed to maintain the tree balanced and

optimize future queries. Different strategies have been employed for this oper-

ation leading to various flavors of R-Tree. The original R-Tree implementation

tries to find two partitions of the children that cover the minimum volume. The

R*Tree [22] enhances this heuristics taking into account the perimeter too. The

X-Tree [28] uses the R*Tree strategy but allows nodes to be not split if the best

partition is not good enough according to a configuration parameter. This strat-

egy was developed in order to better support high-dimensional data that were

handled not suitably by the R*Tree. Another important R-Tree like scheme is

the M-Tree[45], that is designed to be a generic tree-based indexing scheme that

reduces the number of geometrical comparisons needed for its operations, thus

improving the overall performance. One of the most relevant disadvantages of

these methods is the computational cost needed to visit the tree. In fact, to select

the correct subtree it is necessary to calculate the intersection between the query
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Figure 5.1: The different spatial partitions defined by some of the spatial indexes described in this

thesis.

and each key. This can be very expensive especially for high-dimensional data.

Moreover, the heuristics employed by split operations sometimes can fail in find-

ing the optimal split. To overcome these problems, space partitioning strategies

have been proposed. Basically these strategies try to compute a unique key once

for each element and use it to index the point. Since keys are integer or floating

point values, geometrical comparisons are not more needed and the computa-

tional cost is lower. Moreover, they can be indexed using more common data

structures like traditional B-Trees.

The most important partitioning schemes are the Pyramid Technique [27],

the Γ-partitioning and the Θ-partitioning [97]. The Pyramid Technique subdi-

vides the space in 2n pyramids. So each point can fall only in one pyramid and

its distance from the basis of the pyramid determine its key. So using the pair

<pyramid number, point height> it is possible to index the points using

a B-Tree. The problem of this approach is that the partitioning is not injective

and for some highly-skewed data the performance can be low as stated in [85].

However, in normal cases this approach can have very good performance. An-

other partitioning scheme that overcome these limitations is the Γ-partitioning. It

recursively subdivides the space into m Γ shaped subspaces each containing two

regions. Every n-dimensional point is completely identified by the number of the

region that contains it and its distance form the region base. Using this key it can
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be stored by a normal B-Tree. The number of regions used is a parameter defined

manually and does not depend on the number of dimensions. The Θ-patitioning

is similar with the difference that the regions are hypercubes or hyperrectangles

contained in each other.

A disadvantages of these space partitioning schemes is that they can hardly

index shapes.

5.2.2 Experimental Results

Due to the great number of different spatial indexes available, we have decided to

implement our centralized prototype using two different types of spatial indexes:

the X-Tree, because it is optimized for high-dimensional data, and the Pyramid

Technique. In this way, we are able to compare the behavior and the characteris-

tics of these two types of indexes and to choose the most suitable for our purpose.

For example the X-Tree, along with all the other shape-oriented indexes, can be

used to implement efficient notification systems for tuple spaces too. In fact, they

can be used to retrieve a tuple given a template, as well as to retrieve a template

given a tuple. If a template represents a subscription, this feature can be used for

identifying efficiently the destination of the notification.

Both indexes have been implemented in Java from scratch since we can only

find C or C++ based implementations or Java implementations not adequate for

our purposes. This means that their code is not well optimized and, with some

tuning, these implementations can be more efficient.

To better understand the behavior of our prototypes, we have compared them

with the most important tuple space systems available today. We have conducted

the following test: inserting an increasing number of tuples into the space and

calculating the average time required to write and take them. The test has been

conducted on a 3GHz Core Duo PC with 1GByte of RAM. The results are re-

ported in Figure 5.2 and 5.3. To better show the differences between the various

implementations, we have used a logarithmic scale.
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Figure 5.2: Average time spent for take operations
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Unfortunately, we could not collect the same amount of data for every imple-

mentation because some of them were unable to handle huge spaces and crashed.

For example JavaSpaces could not finish the test with 220 objects even if the JVM

can use up to 2GB of heap memory 1.

Nevertheless, the collected data show an interesting trend of our two imple-

mentations: both of them perform very well resulting often as the fastest with re-

spect to all the other implementations. In fact, the X-Tree based implementation

is the fastest of all in taking tuples from the space independently from the size

whereas the pyramid based implementation is the second best and overcomes

the JavaSpaces implementation for spaces with a size less than 219.

The X-Tree strategy performs better in take operations rather than in write

ones: this is due to the higher number of operations needed to find the correct

position inside the tree. In fact, it has to check if hyperrectangles intersect each

other, whereas the Pyramid technique uses B-Trees that needs only integer com-

parisons, and the other implementations use lists or arrays that need a constant

number of operation to insert a data item.

Taking in consideration both take and write time, the pyramid based imple-

mentation is the best for medium/large spaces whereas the X-Tree based one

performs better for very large spaces.

5.3 Distributed Tuple Space Implementation using Struc-

tured P2P Network

In this section we will describe how to use our spatial-based approach to develop

distributed tuple spaces upon structured p2p networks. Exploiting the follow-

ing technique, we aim to make distributed tuple spaces more efficient and fault-

tolerant.
1It was useless employing more memory because the physical RAM of the computers was 1GB

and thus we were already using part of the swap partition, slowing down the computation and

probably obtaining not comparable results
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Although some p2p tuple space implementations are already present in the

literature, none of them seem to use directly p2p structured networks as commu-

nication layer but they prefer to use unstructured network approaches. This is

probably due to the fact that the structured p2p network should support range

queries in order to implement the take operation, but this is an uncommon fea-

ture. In fact, the implementation of an efficient range query support for struc-

tured p2p network is an open research topic as described in the previous chapter.

To develop our p2p tuple space we have followed the same approach de-

scribed in Section 5.2, changing the data structure used for storing tuples in the

second phase. In fact, it has been substituted with a p2p network implementa-

tion that stores the tuples and supports range-queries. Generally speaking, each

peer in the network is responsible for a non overlapping part of the space and

the tuples it contains. Thus, tuple space operations are implemented using those

defined by the p2p network, for example take and read operations are based on

range-queries.

The way in which tuples are mapped to a n-dimensional space is the same

used for centralized tuple spaces.

Similarly to the previous prototype, also in this case there are many suitable

p2p systems. For this reason we have chosen two different network structures: a

CAN-based one and a tree-based one.

5.3.1 CAN-based Implementation

The first p2p protocol we have taken into account was CAN, because it is rela-

tively simple to implement and is based on the subdivision of the space into a set

of hypercubes.

Following our original idea, tuples are stored by the peers responsible for

the space partitions in which their n-dimensional mappings fail. Probably the

only problem is how to define the take operation. In fact, although CAN uses

hypercubes to index resources, it was original designed only for exact-matching

queries but soon some proposals have been made to support range queries too.
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The most of them are based on neighbors flooding: the query is forwarded to

all neighbors whose hypercubes intersect the range. For our implementation we

have chosen a simple flooding based strategy without the use of additional links

between nodes.

To support different tuple lengths it is necessary to maintain several instances

of the protocol at the same time: one for every dimension. This is computational

expensive but the protocol does not allow Cartesian spaces with a different num-

ber of dimensions to be used at the same time.

Although designed to cover a Cartesian space, this protocol shows lower per-

formance compared with others. In fact, it needs O( d
√

n) messages for an exact-

matching query and the nodes routing table is not bounded.

5.3.2 Tree-based Implementation

To overcome the disadvantages of the CAN-based prototype we have tested an-

other p2p protocol that uses a VBI tree. It has been designed to handle multidi-

mensional data using an approach similar to standard spatial trees. It creates and

maintains a binary tree, whose nodes contain ranges of data. It has been designed

to be general, i.e. the protocol handles only the general binary structure whereas

the mapping to it can vary and depends on the index used. Thus, this protocol

is based on two layers: a lower one that maintains the binary tree and does not

change and an upper one that depends on the index used. This is a very useful

feature because it allows to create different indexes, implementing only a small

module. Moreover, the mapping is not so complex because the different spatial

indexes arrange data in similar ways.

This protocol is more efficient with respect to the previous one because it

needs O(log(n)) messages for a join operation or an exact-matching query. More-

over, it does not need to maintain different network instances for every dimen-

sion because the tree structure will always be the same. It is sufficient that nodes

maintain a tuple storage for every dimension and the corresponding ranges.
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Unfortunately, maintaining the tree balanced and correctly updating the ta-

bles needs more messages than CAN and this number can be very high in case of

highly skewed data distributions.

5.3.3 Experimental Results

To compare these two possible protocols, we have implemented them using the

Peersim [136] simulator, a centralized p2p system simulator written in Java al-

lowing rapid development of p2p protocols. Using it we have conducted two

different types of tests. The first one measures the efficiency of the two proto-

cols in the case of write or exact-matching take operations: it generates a random

topology and measures the diameter of the overlay network created by the proto-

cols. We have executed it increasing the size of the network and repeating it 1000

times for each network size. The results of this test are shown in Figure 5.4.

The second test measures the efficiency of take operations: it generates a ran-

dom topology and executes 1000 random queries calculating the number of vis-

ited nodes. This test was also repeated 1000 times for each network size and its

results are shown in Figure 5.5. Since in CAN the number of nodes intersecting

with the queries depends on the dimension of the space used, to better compare

the two approaches we have used an index equal to the ratio of visited nodes to

intersecting nodes. Values nearer to 1 mean fewer messages wasted to accom-

plish the queries.

As shown by the graphs the VBI based protocol outperforms the CAN based

one in both write and take performance.

5.4 Conclusion

In the previous sections we have proposed a generic approach to tuple space im-

plementation, able to enhance their performance and to reduce the disadvantages
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that this kind of systems can show in particular circumstances. Although this ap-

proach has been originally developed in order to better adapt tuple space systems

to Grid infrastructures, it is general and can be used by other technology too.

Our proposal can be considered a novelty because, in the field of tuple space

implementations, there are no other works that use the same techniques.

The approach we propose is composed by two phases: a first one that maps tu-

ples and templates to a n-dimensional space and a second one in which the tuples

are stored by an efficient spatial index. In this way, we can use the data structures

and algorithms developed for spatial databases to index tuples. Since these last

techniques seem to be very efficient, we can profit by them to enhance the tuple

space performance. This is evident from the tests we have conducted compar-

ing prototypes developed using our approach with other publicly available tuple

space implementations. They have proved to be the best for medium-large spaces

and at least the second best after JavaSpaces for larger spaces. Due to these good

results, we have decided to implement both strategies in our Grid-based service,

allowing applications to choose the most suitable storage.

Moreover, our approach is very versatile. In fact, it can be employed not only

for centralized tuple spaces, but also to develop distributed ones. It is sufficient

to substitute the spatial index in the second phase with a p2p network and the

space can become distributed. Clearly the p2p network used should support the

same requirements of spatial indexes, in particular it should be able to handle

range-queries. Unfortunately, only a few p2p systems are adequate for this pur-

pose and we have employed two of them in our prototype: CAN and VBI-tree.

CAN-based spaces are simpler to implement because they represent a ”natural”

mapping but have poor performance. VBI-based spaces have better performance

but are more difficult to implement due to their tree structure that is more com-

plex to be maintained.

Although we have obtained good results with our p2p based tuple space im-

plementation, for the moment we have decided not to include it in our Grid ser-

vice due to the small network we can use as a testbed. It is too small to take real
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advantages from the p2p approach. Nevertheless the highly modularized archi-

tecture we have designed for our service allows its inclusion at a later time when

more resources become available.
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Grinda

6.1 Introduction

After the definition and implementation of a generic tuple space infrastructure in

the previous chapter, in this one we will show how this tuple space implemen-

tation can be used to implement a Grid service. We have named this tuple space

system Grinda (Grid + Linda). It is designed to be deployed on the Globus Toolkit

and to serve as coordination framework for applications deployed on the same

infrastructure. Grinda is not intended to be a workflow engine or a batch sys-

tem, although it can be also used in this way, it is a coordination service and thus

applications should be coded using its API and should not use domain specific

languages like BPEL4WS [141]. Nevertheless, applications can exploit interesting

features like independence from network topology and the possibility to choose

between different tuple space implementations, adapting the framework to the

application requirements.

Since Grid environments have particular requirements we have introduced

new features in our system especially in the abstract model and in the implemen-

tation of the distributed and local tuple spaces. In fact, a major characteristic of

our implementation is the efficient indexing of tuples.

The sections of this chapter are organized as follows: Section 6.2 describes the

tuple space model we have used comparing it with the most common ones. In
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Section 6.3 we describe the overall architecture of our system whereas in Section

6.4 we explain some of the major implementation details we have employed.

6.2 Model

The tuple space model we have employed in our system is inspired by JavaS-

paces. In Grinda tuples are no longer ordered arrays like in the original Linda

system or in TSpaces, but every class type is potentially a tuple.

We have decided to use a JavaSpaces-like approach for two reasons:

• it simplifies application development because it does not need additional

code to map data to tuples. Moreover, tuples in Linda often require addi-

tional labels or values to be correctly taken from the space. This is fault-

prone since an error in setting these objects could led to malfunctions.

• it maps better into XML messages used by the Globus Toolkit for the com-

munication and requires less effort for the serialization.

To support this model we have redefined the standard associative matching in

the following way:

A tuple t of type τ matches another one t′ of type τ ′ if τ = τ ′ or τ is

a super type of τ ′ and every fields it contains is null or matches the

corresponding one in t′.

This new definition of the associative matching is more powerful with respect to

the original one. In fact, it is able to support objects and inheritance too. Every

object can be used as tuple and it does not impose the use of specific interface like

JavaSpaces does. This avoids the proliferation of wrapper types used only for the

communication and allows every legacy types to be used directly.

Templates are defined using null values: a null attribute matches every corre-

sponding attribute value. This certainly prevents the use of null value in tuples

but simplify their definition since no special value has to be used in fields.
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Moreover, this definition takes into account class inheritance simplifying the

development of applications. In fact, it is possible, for example, to define a generic

task type and other more specific task subtypes that inherit from the generic

one implementing more specific behaviors (a similar example has been coded in

Grinda). In this way, the system promotes modularization because only specific

behaviors should be coded, whereas generic one can be reused where possible.

This is a great improvement with respect to original tuple space systems because

without this possibility a modification in the tuple structure leads to a modifi-

cation of every take operation in the application. In Grinda this is not more the

case.

The operations implemented follow the naming convention of JavaSpaces:

out becomes write, in take and rd read. Moreover, we have implemented

the following ”collective” operations:

• writeAll that atomically writes an array of tuples into the space

• takeAll and readAll that take and read all tuples matching a given tem-

plate respectively. If no matching tuple is present into the space the opera-

tions wait until at least a matching one is inserted.

• takeAllp and readAllp the not blocking versions of the previous opera-

tions.

In table 6.1 is reported an example code of Grinda operations usage. It has to be

noted that to correctly support this model, the system should be able to automat-

ically serialize every type in the corresponding XML representation. Details on

how this is achieved are described in Section 6.4.

6.3 Architecture

The architecture of the Grinda framework is based on the WSRF specification and

is composed of two main modules: a client-side and a server-side one. The first
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class SimpleTuple {

public SimpleTuple(Integer field1, Double field2) {

this.f1=field1;

this.f2=field2;

}

public Integer f1;

public Double f2;

}

class DerivedTuple extends SimpleTuple {

public SimpleTuple(Integer field1, Double field2,

Integer field3) {

super(field1,field2);

this.f3=field3;

}

public Integer f3;

}

static void main() {

TupleSpace ts=new TupleSpace("test")

DerivedTuple t=new DerivedTuple(1,3.5,4);

ts.write(t);

//a template matching every simple

//or derived tuple with attribute f1 == 1

SimpleTuple st=new SimpleTuple(1,null);

SimpleTuple r=ts.take(st); //r == t

}

Table 6.1: Example code of Grinda usage in Java
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one is used to hide the serialization and deserialization of data and to implement

the synchronous behavior of some operations. The second module represents the

service that has to be deployed in the Globus Toolkit or a compatible application

server like Tomcat.
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Figure 6.1: Diagram representing the general architecture of Grinda modules

6.3.1 The Client-side Module

As described before, the main purpose of this module is to hide the details of the

communication with the server, in order to simplify the development of appli-

cations based on Grinda. It contains three categories of objects: the objects used

directly by the applications, those involved in the serialization and deserializa-

tion of the data and finally those employed to mimic the synchronous operations.

The most important class in the client-side module is the TupleSpace one,

that creates the connection with the server and transmits the operation requests
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Figure 6.2: UML class diagram representing the architecture of the client-side module

through the GrindaServiceStub. It accomplishes its task using TupleSpa-

ceContext that maintains the configuration and initializes the system at the

startup managing the threads needed for the blocking operations and the noti-

fications (BlockingOperationManager and NotificationManager respec-

tively). SerializationUtils is responsible for marshaling and unmarshaling

custom data types using the XStream library [155] as described in Section 6.4.2.

Another important task of TupleSpaceContext is to set up the XStream

library with some of our classes: MessageElementReader and MessageEle-

mentWriter read and write objects produced by the GrindaServiceStub for

generic type encoding whereas ReflectionConverter encodes and decodes

custom data types following our rules.

6.3.2 The Server-side Module

The server-side module contains the logic responsible to store the tuples and to

implements the tuple space operations..
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Figure 6.3: UML class diagram representing the architecture of the server-side module

The main class used by the server-side module is GrindaContext; it is im-

plemented as a ResourceHome and for this reason its state survives to the web

service calls. It stores the various TupleBroker instances active in the system

along with configurations and a thread for the asynchronous sending of mes-

sages. This last one is used for communications with clients or other services in

the case of distributed spaces.

The TupleBroker interfaces and its subclasses represent the business logic

of the spaces active in the service. They contain all information needed to ex-

ecute operations on both centralized and distributed spaces. In this way, the

tuple space implementation is more modular and new implementations can be

deployed into the server without the need to modify the service. In fact, the de-

sired TupleBroker implementation is defined by a server-side configuration file

and it is loaded when the service container starts up.

There is a hierarchy of TupleBroker: AbstractTupleBroker is an ab-

stract class used for simplifying the development of new brokers, MasterSla-

veTupleBroker and ClusteredTupleBroker are a centralized and a dis-
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tributed tuple space implementation. The latter can be used to create spaces

whose tuples are shared between different services that constitute a highly con-

nected component. In this case, a spatial indexing strategy is used to identify the

service (or services) that can contain a matching tuple.

Using this approach, it would be possible in the future to implement the VBI-

tree strategy discussed in the previous chapter.

TupleBrokers uses various other classes to accomplish its tasks. Apart

the GrindaContext they can use two different types of tuple space: transient

and persistent one. Transient tuple spaces are based on spatial indexing of tu-

ples whereas persistent ones use XML databases. Another tuple storage is the

Register that maintains pending request of blocking operations.

Finally the GrindaService class wraps the service interface and calls meth-

ods of GrindaContext to obtain TupleBrokers and executes their operations.

As can be guessed from this simple architectural description, the server-side

module can also be though of as a factory that creates and maintains new spaces.

According to this view, it could be implemented following the factory design pat-

tern of the WSRF framework. In fact, this was our first choice, but unfortunately

the resulting performance was 50% slower than those showed by a similar im-

plementation that does not use the factory pattern of the WSRF (see Figure 6.4).

This was probably due to an inefficient implementation of SOAP headers (used

to store the resource ID) analysis and resource storage. For this reason our imple-

mentation does not use the ”standard” factory pattern.

To implement the synchronous behavior of some tuple space operations, like

take or read, we have used the WSN specification transforming them in asyn-

chronous ones. In fact, it is impossible to implement directly synchronous opera-

tions using only web services interactions: socket timeouts and a correct network

programming won’t allow it. So we need a client-side thread and a register that

maintains and handles synchronous operation requests.

The simplest case is when a matching tuple is already present into the space.

In this case the TupleSpace class connects directly to the service that passes
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Figure 6.4: Performance of the same application using Grinda with or without the factory pattern.

It is clear the difference in performance.

the request to the TupleBroker implementation responsible for the space that

finally returns the result.

Instead, if no matching tuple is found, the TupleBroker registers the unful-

filled requests and returns an empty response. The TupleSpace recognizes the

empty response, registers it in the BlockingOperationManager and blocks

the application. When, after some time, a matching tuple is inserted into the

space, the TupleBroker recognizes that it can fulfill a pending request, removes

the pending request and sends the response directly to the client-side Blocking-

OperationManager that unblocks the application and passes it the result.

The BlockingOperationManager exposes a standard NotificationCon-

sumer interface allowing to be compatible with other WSN implementation. This

can be useful for implementing the client-side module since there exist vari-

ous WSN implementations in different programming languages like C, C++, C#,

Python, Perl or Java.

Another possible architecture for this behavior could be based on WSN top-

ics and the relative automatic notification mechanism. The Grinda service could

expose a standard NotificationProducer interface allowing direct registra-
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tion to topics each of which representing a space. However, this architecture

has not been chosen because it would be more difficult to code the interaction

between TupleBroker instances and the registration service. In fact, the lat-

ter does not implement an API for supporting custom registration mechanisms

efficiently. Moreover, it would require to develop support for a new TopicEx-

pressionType (or at least a QueryExpressionType).

6.4 Implementation

The Grinda server-side module is implemented in Java using Web Services and

the WSRF framework provided by the Globus Toolkit. It has to be deployed into

the Globus Toolkit container or a compatible servlet container like Tomcat.

The client-side module is designed to be loosely-coupled with the service al-

lowing the use of other libraries or programming languages to be better inte-

grated with the application. In fact, we have developed two different client-side

modules: one in Java and the other in C++. Both share a similar architecture with

some difference that we will discuss in this section. With these two modules it is

possible for new and legacy applications to interact with the tuple space.

Using other programming languages like C# or Python, it would also be pos-

sible to implement client-side modules. However, due to the lack of time and

resources we have not developed such specific frontends but we hope to do it in

the future.

The implementation of Grinda show various interesting aspects. The most

important of them are the tuple space implementation, the transparent serializa-

tion of tuples, the notification mechanism and the implementation of the C++

client-side module. They will be analyzed in details in the following sections.
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6.4.1 Tuple Space Implementation

Tuple Spaces have been designed to be modular and to share the same interface

allowing different implementations to be developed. In fact, using the configura-

tion file it is possible to specify the tuple space implementation to use: it will be

automatically instantiated at runtime.

We have implemented two different types of tuple space: a transient and a

persistent one. The first type uses the techniques described in the previous chap-

ter and is present in two different flavors: X-Tree or Pyramid-Technique based.

Each of these flavors can be chosen independently and loaded at runtime. In this

way, the space is more efficient, reducing the computational cost of operations as

demonstrated before.

Unfortunately, transient spaces lose their content on system crashes or service

shutdowns. For this reason we have developed a persistent tuple space based

on XML database. Write operations store the XML description of the data com-

ing from the clients into the databases, take operations are accomplished using

XPath queries on these data. As database implementation, we have used the

Oracle XML Berkeley DB because according to [87] seems to have the best perfor-

mance. An implementation based on Xindice would be useful, because this XML

database is used by many services of the Globus Toolkit. Unfortunately, for lack

of time we have still not implemented it.

6.4.2 Serialization of Tuples

One of the most important problems we have faced during the development of

our service was the handling of different data types in tuples. In fact, web ser-

vices developers usually have to deal with predefined data structures that are

serialized (or deserialized) using the stubs created automatically by tools on the

basis of WSDL definitions. Even when an element with the XML Schema type

any is part of input or output of a web service operation, serializers can be called

at client or server-side to obtain the corresponding object in order to manipu-
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late it with the used programming language. This can be seen as a ”tyranny of

serializers” that forces all data types transmitted to have a corresponding serial-

izer/deserializer pair at both client and service side.

This approach is used because hard-coding the serialization is more efficient

than other methods like reflection, but for our service we need something more

flexible for the following reasons:

• Developers should be able to use their own custom data types in a simple

way without the need to create stubs or coding serializers. This avoid the

proliferation of data types whose unique purpose is to encapsulate legacy

data: why do not transmit them directly? The program complexity and the

development efforts would be reduced.

• Third part developers have no control on the service and thus they cannot

deploy new serializers for data types not yet supported. This is a great prob-

lem especially for our tuple space implementation that is unable to know a

priori what types will be transmitted to the service.

To support this feature we need a tuple model that can be simply converted to

XML and vice versa. The simplest for this purpose was the JavaSpaces one be-

cause it allow a direct translation as we will describe.

However, to do a such operation we need a library that allows the direct trans-

lation of data into XML and we have chosen the XStream library [155]. This li-

brary take in input a Java object and serialize it in XML using its own internal

structure without the definition of any kind of specific serializer. The library uses

the Java reflection API to obtain the object fields and translates them into XML el-

ements: field names become tag names and their values are recursively converted

in textual form. The root element name is equal to the class name.

In this way, only a serializer would be enough theoretically to marshal every

possible type and we do not need to create new serializers for every type we

use. However, some types still need specific serializers but the XStream library
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class Person {

String firstName="John";

String lastName="Doe";

Date dateOfBirth=

new Date("01/01/1970");

int age="37";

<Person>

<firstName>John</firstName>

<lastName>Doe</lastName>

<dateOfBirth>

01/01/1970

</dateOfBirth>

<age>37</age>

</Person>

Table 6.2: Example of XStream serialization

provide a simple plugin system and specific serializers for many standard Java

types.

An important problem is how these types are serialized. In fact, some data

types, especially arrays, can be inefficiently serialized if only plain XML is used,

and this can lead to very low performance during the transmission. This is a

known problem of SOAP (and XML protocols in general) and some specifica-

tions have been proposed to resolve it. The most used of them is SOAP with

Attachment [153], although it will be probably abandoned in favor of a more ef-

ficient one as MTOM [154]. They define binary encodings to transmit data inside

a SOAP Envelope.

Unfortunately, with very small arrays a similar encoding will provide only

an excessive overhead, whereas in other case saving the data in a file and down-

loading only pieces of them using another binary protocol like GridFTP will be

better.

Thus, we have to offer to the developer the possibility to choose between dif-

ferent transport mechanisms. For this reason our serialization support allows

various types of array serializers to be selected at runtime. Until now, we have

implemented array serializers using plain XML, base64 encoding, SOAP Attach-

ment and files. This last one saves the data in a file and sends only a link to it,
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allowing the receiver to download the data and reducing the server load. For the

moment, we have not implemented a serializer for MTOM because the current

version of the Globus Toolkit does not support it.

In order to allow receivers to correctly deserialize the data, a specific attribute

enc is added to the element representing the encoding used.

Serializing data in a efficient way, like that described above, leads to the im-

possibility to analyze each element during the matching. In fact, encoded ele-

ments should not be matched because this operation will be expensive and the

encoded version could not respect the natural equality semantics. For these rea-

sons, the XML attribute nocheck is used. It prevents the matching function to

take into account this element. The matching will be then computed on the re-

maining elements.

A similar approach has been used to implement the matching against super-

types. In fact, in the root element the attribute implements is present that con-

tains the list of classes the current type extends (interfaces have not be used be-

cause they cannot be passed to the space). So, it is possible to checks supertypes

in order to compute the matching.

Using this approach, it is possible to transmit every type with the minimum

effort for the developer. Apart from simplifying the code avoiding the prolifer-

ation of ”wrapper types”, it enforces better modularization. In fact, since every

type can be serialized, it is possible to use directly part of the business logic of the

application allowing methods to operate directly on serialized data. So, meth-

ods can be directly invoked on received objects and other support classes are no

more needed. In this way, a result similar to Java Serialization is obtained: a data

is transmitted and immediately one of its method can be called. This approach

does not support code mobility because the class definition is not transmitted and

should be present on every tuple space client. However, it is simpler to code than

the standard interaction with stubs.
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6.4.3 Notification

As in JavaSpaces we have developed a support to event notification. A listener

can register itself for receiving notifications of tuples inserted or removed from

the space through the use of templates. Since the notification is tightly-coupled

with the distribution strategy used, we have decided that TupleBroker should

handle it too. Similar to operations, registration requests are forwarded to the

most suitable TupleBroker that will handle them.

Unfortunately, this approach is not compatible with the WS-BasicNotification

specification because it is impossible to return immediately the EndpointRefe-

rence of the resource that represent the subscription. In fact, apart from cen-

tralized spaces, it is not known a priori and must be discovered every time.

Moreover, we need a way to specify a template to match specific tuples. Ac-

cording to the standard, this could be done using the Precondition field of the

Subscribe message but it is not taken into consideration by the Globus Toolkit

implementation, that has been revealed to be a simple topic based notification

system without the possibility to specify any filters on outgoing notification mes-

sages or registrations. The lack of features is too great to use this implementation

in our service.

Even the use of another specification, the WS-BrokeredNotification, cannot

help. It is not implemented by the Globus Toolkit and its use could lead to the

creation of a chain of brokers each responsible for the subscription of the other.

So a notification message needs to travel through the entire chain before arriving

at the correct destination enormously increasing the communication overhead.

For these reasons, we have decided to implement our own Web Service inter-

face for notification. In fact, WSN specifications have showed to be inadequate

to handle our distributed architecture and their implementation in the Globus

Toolkits is not complete and lacks many features.
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6.4.4 C++ Client

The development of the C++ client has been quite challenging. In fact, we wanted

to maintain the possibility of an automatic type serialization. Unfortunately C++

does not implement a standard reflection API like Java or C# and RTTI is not

powerful enough to support the automatic serialization of custom types. There

are several projects that try to support reflection mechanisms in C++ like [109],

[146] or [149] but most of them are only prototypes and not widely adopted. For

this reason we have used the Qt4 Toolkit [150], one of the most important toolkits

for the development of portable applications used in many projects like for exam-

ple KDE. In fact, it provides an interesting feature: the Meta Object System. This

allows to have type information about classes developed using the toolkit and to

instantiate them by name at runtime. Although less evolved than the Java and

C# counterparts, it is still very useful for our purpose.

In our Java implementation we have used the reflection API to collect the class

fields and transform them into XML elements. We have done the same in the

C++ client except from the fact that we have used QProperties. They are man-

aged by the Qt runtime and can be written or read by name. So custom objects

can be serialized automatically reading their properties and transform them in

XML elements with the same name. To better accomplish this process proper-

ties should be defined using the QVariant class that allows primitive types like

int or float to be treated like objects. The only inconvenience of this approach

is that custom objects and their properties should be manually defined by the

developers using some macros.

The Qt framework does not implement an API for SOAP or XML-RPC mes-

saging and so we have used the gSOAP 2.7.9 library [140], a little and embeddable

library that allows to develop web services in both C and C++. It can generate

client or server-side stubs and provides a simple HTTP server that we have used

to implement asynchronous operations. Unfortunately, it has still some bugs and

we must find some workarounds for them.

The gSOAP library is also the basis of the C implementation of the Globus
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Toolkit. We have not used it because it is designed only for the C programming

language and has no support for C++. Moreover, it is more difficult to use and

configure and requires more resources.
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Experimental Results

7.1 Introduction

After having successfully implemented our service, we have developed a series

of tests in order to verify the behavior of our system. We have measured two

different aspects: the latency of the system and the scalability, when a distributed

application is deployed on a network. We have tested scalability using two differ-

ent types of applications, which have completely different parallelization strate-

gies. Moreover we have developed and tested a simple workflow in order to

show the versatility of our service and a possible further use of it.

The first type of application tries to guess a hashed password using a brute

force attack. It represents a highly parallel application that requires very few

communications during its execution. Thus, the communication overhead should

be very limited.

The second test application is a plasma simulation. The algorithm used is

not completely parallel and thus the communication overhead should be greater.

We have implemented this application to analyze the behavior of our system in

the case of not completely parallelizable applications. Moreover, since this test

application derived from an MPI-based code we have been able to compare the

performance of our framework with MPI too.



92 Chapter 7. Experimental Results

Using these two different types of applications we gained more information

on the behavior of our system under different circumstances.

All our experiments have been performed on the same testbed: a 100Mbps

Ethernet LAN composed by Core Duo PCs equipped with Ubuntu Linux 7.04.

This network was not dedicated because it is part of the students laboratories,

but was the only choice we have to collect a medium-large number of hosts.

7.2 Latency Tests

The first test we have conducted on our implementation is calculating its latency.

By latency we mean the time required to accomplish a tuple space operation.

Given a number of slaves, the test consist in calculating the average time spent

for taking/writing the same tuple from/in a space. The average has been ob-

tained from 1000 repeated tests. As shown in Figure 7.1, the latency is not heavily
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Figure 7.1: Latency Test Results

influenced by the number of hosts. Take operations seem to be absolutely inde-

pendent of the network size whereas write operations increase of a small factor

when the size grows (∼20% with an increased size of 1600%).
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Another interesting aspect is that the graph shows that write operations re-

quire more time than take ones. Probably this is due to a higher overhead in

instantiating all the objects required for storing tuples.

7.3 Scalability Test

As described before the scalability test has been conducted on two different types

of applications. In both cases we have calculated if the application speedup in-

creases when adding new hosts.

The first application tested was the highly parallel one. It simulates a brute

force attack on an hashed password using a master/slave strategy. At the begin-

ning the master randomly generates a password and computes its SHA1 hash.

Then it writes all tasks to the tuple space. Each of them contains the hashed pass-

word along with the interval of the strings to check. The slaves continuously loop

through the following steps:

1. take a task from the tuple space

2. generate the requested strings

3. calculate their SHA1 hash

4. compare them with the one sent by the master

5. write a partial result to the space

At the end the master collects all the partial results and returns the password.

It is clear that this simple application is completely parallel and uses the im-

plicit load balancing of the tuple space. In fact, since all the tasks are written

to the space at the beginning, the faster slaves can collect and execute a higher

number of tasks with respect to the slower ones, thus increasing the overall uti-

lization of the computers. Moreover, the slaves should not wait until the master

finish to write all the tasks, they start immediately when a new task becomes
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Figure 7.2: Speedup of the highly parallel test application

available. Finally the tasks themselves are very small thus reducing the commu-

nication overhead. As shown by the test results in Figure 7.2, the speedup of this

application seems to grow very well compared to the linear one.

The second application we have used to test our framework is a plasma sim-

ulation. In the following sections we briefly describe the physical background of

the model and then the results we have obtained in the test.

7.3.1 Plasma Simulation

A plasma is a hot fully ionized gas which may be regarded as a collection of Ni

positive ions and Ne negative electrons interacting through their mutual electric

(E) and magnetic (B) fields.

The force experienced by a charge q moving with velocity v in electromag-

netic fields is (here and in the following boldface variables indicate vector-valued

quantities)

F = qE + qv ×B, (7.1)
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and the motion of the charge is determined by the Newton law

F = m
dv

d t
. (7.2)

The electric and magnetic fields are related to the charge and current density

(ρ, j) by the Maxwell equations:

∇·E =
ρ

ε0

, (7.3)

∇·B = 0, (7.4)

∇×E = −∂B

∂t
, (7.5)

∇×B = µ0j +
1

c2

∂E

∂t
, (7.6)

where ε0, µ0 and c = (ε0µ0)
1/2 are respectively the permittivity, the magnetic per-

meability and the light velocity in free space.

Numerical method

For plasma simulation in three dimensions, the particle-in-cell (PIC) method has

the longest history (it has been introduced since early sixties for fluid dynamics

[66]) and has been proved useful for application to a variety of plasma phenom-

ena (see for a general discussion [31] and [68]). In this method the plasma volume

(V ) containing N = Ni + Ne particles each with mass mn charge qn and velocity

vn (n = 1, . . . , N ), is sampled in cells through a mesh with three step size, not

necessarily equal, in each dimension, ∆1, ∆2 and ∆3. Each mesh cell is then an

hexahedral element with volume ∆1∆2∆3 and contains a large number of ions

and electrons.

The standard simulation with PIC method proceeds iterating the following

steps

• compute the particle parameters on the grid from the particle position

• solve the field equations on the grid to obtain the force field on the mesh
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• compute the particle parameters at the particle position by back interpola-

tion from grid point values

• advance the particles in time integrating the motion equation for velocities

and positions

The first and third step are essentially an interpolation algorithm, which can

be defined scatter and gather phase, following the tradition. These steps are the

most compute-intensive of the simulation.

The algorithm of the second step depends on the structure of the Maxwell

equations which better approximate the problem under study. Accordingly, 4-th

order Runge-Kutta method for ordinary differential equations (ODE) or several

methods to solve the Poisson equation apply.

The last step could be realized with a symplectic integration method as the

Verlet method [123] or the 4-th order Runge-Kutta, when the magnetic field is

relevant.

Interpolation

The scatter of particle parameters as, for instance, the charge is realized with a

convolution between the particle charge density (δ3 is the Dirac 3-dimensional

delta function),

ρp(x) = q
N∑

i=1

δ3(x− xi), (7.7)

and a cloud density profile, W (x), for each particle, i.e. (∆ = ∆1 = ∆2 = ∆3)

ρ(x) =
1

∆3

∫
ρp(y)W (x− y) dy. (7.8)

The sampling of density on the mesh point is realized then as (the vector of

indices n ≡ (n1, n2, n3) identify the mesh cell)

ρ(xn) =
1

∆3

∑
i

W (x− xn). (7.9)
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The effect of the convolution process is to smooth the density and hence the

related physical parameters (as field and force) on the cloud size and to limit the

spatial resolution of the code. This behavior suggests that a good solution could

be to reduce the overlap of grid points by the cloud density profile and to increase

the number of mesh grid points to reduce the density smoothing and the space

resolution, respectively.

However, the higher the number of points covered by the cloud density pro-

file, the higher the regularity of the function: in one dimension, the continuity of

the function is granted for linear interpolation involving two points, while to get

continuity of the profile derivative up to second order requires quadratic inter-

polation involving 3 near points; in three-dimensional space this involves 8 mesh

points and 27, respectively. In the third step of the iterative process, when the

back interpolation of the force

Fi =
∑
n

W (xi − xn)F(xn) (7.10)

is required with the same density W profile to avoid self-forces, higher accuracy

in force computation is controlled by higher regularity of the mesh profile func-

tion.

Therefore the choice of the profile function is a compromise between accu-

racy in force computation at particle position, smoothing of the density field and

computational load.

Parallelization

PIC codes are extremely compute-intensive in the simulation of interesting phys-

ical problems and require parallel computing. The parallelization of a PIC code is

not an easy task. Principal factors that hinder the straightforward parallelization

are

• the presence of particle and mesh which prevents the application of one

only optimal method of parallelization
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• the back and forth interpolation between grid and particles every timestep

• the movement of particles which can produce load unbalance

• the possible generation of strong inhomogeneity in particle distribution which

require an adaptive spatial domain decomposition

Some of this issues have been successful addressed by different groups who

aimed at obtaining either efficient algorithms for at least a class of problems or

some general system. PICARD [37], QUICKSILVER [104], VORPAL [93] and a

PPM library [16] are some of the results.

PICARD and VORPAL have been developed mainly for PIC simulation with

load balancing and domain decomposition. The first implements partially some

of the extensive taxonomy of different parallelization models obtained through

an abstraction of grid and particle boxes, the second applies to plasma models

which includes both particle-in-cell and fluid models, allowing laser-plasma in-

teraction, and adopt the object oriented paradigm using C++. Many of the fea-

tures of VORPAL are also present in the Fortran90 codes OSIRIS [55].

QUICKSILVER applies to multiblock codes and obtains rather good efficiency

(about 90%) for parallelization when the distribution is uniform, and a poor one

(about 60%) when dealing with irregular distributions.

Recently, Sbalzarini et al. [16] have produced a portable library developed

in standard languages (Fortran 90 and C) and libraries (MPI) which allows also

the treatment of particle-particle interaction. This method is actually an imple-

mentation of a so-called particle-particle-mesh (PPM, see for details [68]) and the

authors claim a remarkable level of efficiency for a variety of problems.

All these codes can run on mainframe or on distributed environment. Finally,

ALaDyn [23, 24, 25] is a code for plasma simulation which applies PIC method

and has been developed by a group of the University of Bologna. Different order

of interpolation are possible in this code and the computation of field and the

update of particle position and velocity is performed with a 4th order Runge-
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Kutta algorithm. The parallelization strategy used is present in the taxonomy

analyzed by [37] and it is realized by means of MPI library.

7.3.2 Plasma Test Results

To obtain more information about the scalability of our framework we have used

the ALaDyn code as another test application. Since it is written in C using MPI

we have ported it to Grinda substituting only the MPI calls enabling the commu-

nications through the C++ client. The rest of the algorithm remained untouched.

For the tests we have used a 250x250x800 computational mesh with 107 particles.

The changes we have made in the ALaDyn code are related to the MPI func-

tion calls. In particular the code uses four MPI functions: MPI broadcast, MPI -

send, MPI receve and MPI sendreceive. The first one is used for the initial con-

figurations whereas the latter ones are used by workers to inform each others of

the new migrated particles they have to handle.

The MPI functions have been translated to Grinda primitives as described by

Table 7.1. The translation depends on the role that workers have in the communi-

cation. Actually, initiators of the communication should use primitives different

from receivers. Moreover, the data transmitted through the tuple space should

contains so called labels that help in disambiguating similar data items. In our

case MPI process identifiers and custom data definition label have been used for

this purpose.

MPI Function Grinda Primitive

Initiator Receiver

MPI bcast write read

MPI send write write

MPI receive take take

MPI sendreceive write; take write; take

Table 7.1: Translation of the MPI functions to Grinda primitives
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At this point we were able to compare our framework with MPI using the

plasma simulation application as benchmark. In fact, we have deployed the orig-

inal application on the same network along with the open source MPICH 1.2.7

library. As showed by Figure 7.3 the original MPI-based application and our
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Figure 7.3: Speedups of the Grinda-based test application and the original MPI implementation.

code have almost equivalent speedups. The difference seems to have essentially

a statistical meaning.

It should be said also that we did not change the parallelization algorithm of

AlaDyn. Other parallelization models described in the [37] taxonomy could im-

prove the performance of the application, exploiting better Grinda characteristics.

In fact, the implemented algorithm does not allow any type of load-balancing,

statically assigning the tasks to each node at the beginning. This can reduce the

overall performance of our system, which could also benefit from other types of

algorithm requiring a smaller number of communications.

Moreover, the application class of AlaDyn is probably not well suited for

our service, because it can require the transmission of large amount of data that

the tuple space is not meant to handle. There are several other protocols de-

signed specifically for this purpose. Grinda is not a data transmission system like
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GridFTP but a high level coordination service able to handle the dependencies

between the various computing modules composing a distributed applications.

We have implemented this second test and compared it to MPI only to demon-

strate the adaptability of our service to different circumstances even not the best

suitable for our infrastructure.

Finally it has to be noted that these results are only preliminary because more

in-depth tests are needed in order to completely understand the behavior of our

system.

7.3.3 Workflow Example

To show the versatility of our system, we have also implemented and tested a

simple workflow. The execution model we have used is based on a generic rep-

resentation of the various tasks composing the workflow. Actually, every task

type we have used is a subclass of grinda.client.Task. They will be written

into the space and executed by a variable number of hosts. Since the description

is generic, the slaves do not need to know which tasks they are going to exe-

cute, they simply take from the space the first instance of grinda.client.Task

available. Task inputs are stored inside the task class itself and, after the execu-

tion, tasks can produce other tasks or other type of data as output. In every case

they will be written into the space.

According to this approach, the tuple space is used as the basis for a work-

flow engine, which can take advantages from the features of the tuple space

model. Actually, to increase the application performance, it is sufficient to add

more slaves allowing more tasks to be executed at the same time.

The workflow we have used is depicted in Figure 7.4. It is composed by more

than 250 tasks: the most of them can be executed in parallel apart the central one

that is unique and have to wait for the previous task to be executed. To test our

workflow, we have executed it on the usual test network with an increasing num-

ber of hosts. Each of them is responsible for executing a variable number of tasks

according to its load. Thus this number is not defined in advance and depends
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... ...

... ...

Figure 7.4: The workflow used as test

on the load of the single machines. For each network size, the average time spent

for different runs of the test application has been calculated. The experimental

results are showed in Figure 7.5. As shown by the experimental results, the ap-
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Figure 7.5: Speedup of the tested workflow at different network sizes

plication scales quite well at the beginning, reducing its performance for network

with more than 16 hosts. This is an expected results for two reasons: firstly it is

the usual trends of distributed application, secondly the workflow we have used
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is not completely parallelizable and thus the maximum speedup we can obtain

is less than that of a completely parallel application. Nevertheless, we think that

this workflow has performed quite well.

Finally, we have to state that the workflow support we have implemented

is only a prototype. Actually, it lacks of many features like a module able to

automatically transform a graphical or textual representation of the workflow in

a sequence of tuple space operations. However, these characteristics are out of

the scope of this thesis and probably will be more deeply analyzed in a future

work.
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Conclusion and Future Development

The Service Oriented Architecture (SOA) has promoted the modularization and

reuse leading to distributed applications based on the coordination of different

services executing a specific job. In this Lego-like approach the models that man-

age the coordination are of a fundamental importance. Several coordination mod-

els have been proposed in the literature during the years like message passing,

publish/subscribe, workflows or tuple spaces. Some of them are more suitable

to support the SOA model like workflows or publish/subscribe, other can be still

used for this purpose but provide very few features like message passing. Finally

some of them, like tuple spaces, have been used not often due to their limited

diffusion.

In this thesis we have showed how to use one of these seldom used models,

tuple spaces, to coordinate activities in SOA.

However, before developing a complete service, we have analyzed the advan-

tages and disadvantages of actual tuple space implementations and proposed

some techniques in order to gain better performance. In fact, many available im-

plementations can become bottlenecks in some situations. Our proposals try to

avoid these problems and focus on two different aspects: the tuple storage and

distributed tuple spaces.

To increase the performance of tuple storages we have proposed the use of

spatial indexing. This approach seems to have not been used up to now. In the
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literature are described many spatial indexing strategies very different from each

other, for this reason we have employed two of them to compare their behavior:

X-Tree and the Pyramid Technique. Both implementations haven resulted the

fastest ones compared to almost all other widespread implementations, especially

for medium large storages.

Another aspect of tuple space implementations that we have investigated is

the distribution of tuples on a network. Many distributed tuple spaces are not

able to support large networks well. To overcome this limitation we have used

structured p2p protocols to speedup the operations. Since take operations require

a range search support to be accomplished, we have used two particular p2p

protocols: the VBI-tree and Extended-CAN. As before we have compared the

results of both approaches and we have showed that VBI-tree based tuple spaces

perform very well compared to Extended-CAN ones. This approach represent a

novelty too, because no other proposal has been made in order to use this type of

structured p2p protocols for tuple spaces.

After the study of these techniques, that are general and can be implemented

on various technologies, we have used some of them to design and implement a

Grid service for the tuple space model using the Globus Toolkit. Its development

posed challenges in different aspects.

First of all the choice of the tuple space model to employ was a key point be-

cause XML serialization poses very strong limits. For example the original array-

like tuple model has been revealed inadequate due to serialization problems and

complex use. At the end a model similar to JavaSpaces was chosen because it

support better XML messages.

The use of this model has contributed to resolve another problem, probably

the worst of all. It was caused by the architecture of the Globus Toolkit (and

Apache Axis in particular) that has shown to be unable to support custom data

types not associated with a serializer. This is a great problem for tuple spaces

because the possibility to use every possible data type in tuples is very impor-

tant. Nevertheless, we have solved this problem using smart serialization at the
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client-side whereas services maintain the tuple content in an tree-like form with-

out serialization. This solution has been very powerful since it allows every pos-

sible Java data type to be serialized (even those present in the standard library)

and simplify the service that does not need to deserialize the tuples. Clearly this

approach produces higher overhead with respect to the standard one but was the

only possible choice to create a usable system.

During the development of our service we have also found some limits of

the Globus Toolkit implementation, especially in the modules that support the

WSN notification. They prevented us from implementing advanced notification

mechanisms reusing the WSN support. Moreover, the factory based development

strategy has revealed to be slower although more logic and modularizable from

an architectural point of view.

After having successfully completed the implementation of our service, we

have tested them in order to analyze its behavior. In particular, we have stud-

ied the latency of the system and its scalability. The latency has resulted stable

and independent from the number of clients used although higher with respect

to binary communications. This means that our framework can suffer from a

high overhead in some circumstances especially when many communications are

needed. For this reason we have analyzed its scalability using two different types

of applications: a high parallelizable one, that simulates brute-force attacks to a

password, and a plasma simulation, that instead requires more communications

and is not completely parallelizable. Both applications have showed a scalable

behavior even if the scalability of the second one was limited by the system over-

head.

The second application was simply ported from a MPI-based original code

and this fact gave us the possibility to compare our framework with MPI, a typi-

cal message passing model. The test results show that our application has perfor-

mance comparable with the MPI-based one. Nevertheless these tests demonstrate

that our framework can be efficiently used by real applications. It should be also

outlined that the Grinda API is quite simple and powerful allowing developers
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to write distributed applications in a more efficient way.

The tests presented in this thesis have not been conducted on a well-established

testbed as PlanetLab [79], which is used to test other types of distributed appli-

cations. This is due to the fact that there is still not a consensus on a common

testbed for Grid applications and we are unable to use production Grids due to

our limited resources.

Even if we have succeeded in developing a working framework, it can be still

extended in some ways. Aspects that can be enhanced are the support for security

and the transactional behavior of the tuple space.

At the moment, our service can be secured through the GSI infrastructure

provided by the Globus Toolkit. This means that an XML security descriptor can

be used to define authorization and transmission requirements for the service.

Moreover, through another configuration file it is possible to tell the client how to

connect to a secure service. In every case the security provided by the GSI infras-

tructure will regard the whole service and not singular spaces or even tuples. A

more granular approach to security could be a challenge since it should take into

account performance too.

The transactional behavior is another aspect that has not been taken into ac-

count by our framework for two reasons: there is not consensus on a transac-

tion model for Grid applications and there is not a widely adopted standard for

managing Web Service transactions. We will study this problem more in-depth,

analyzing possible solutions.

Finally, in order to increase the usefulness of our framework we think to port

it to a more widespread infrastructure like Axis 2. In this way, it could be used by

regular Web Services and we hope that this will avoid some of the limitations we

have found.
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