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Abstract

This thesis intends to investigate two aspects of Constraint Handling Rules (CHR). It

proposes a compositional semantics and a technique for program transformation.

CHR is a concurrent committed-choice constraint logic programming language con-

sisting of guarded rules, which transform multi-sets of atomic formulas (constraints) into

simpler ones until exhaustion [Frü06] and it belongs to the declarative languages family.

It was initially designed for writing constraint solvers but it has recently also proven to be

a general purpose language, being as it is Turing equivalent [SSD05a].

Compositionality is the first CHR aspect to be considered. A trace based composi-

tional semantics for CHR was previously defined in [DGM05]. The reference operational

semantics for such a compositional model was the original operational semantics for CHR

which, due to the propagation rule, admits trivial non-termination.

In this thesis we extend the work of [DGM05] by introducing a more refined trace

based compositional semantics which also includes the history. The use of history is a

well-known technique in CHR which permits us to trace the application of propagation

rules and consequently it permits trivial non-termination avoidance [Abd97, DSGdlBH04].

Naturally, the reference operational semantics, of our new compositional one, uses history

to avoid trivial non-termination too.

Program transformation is the second CHR aspect to be considered, with particular

regard to the unfolding technique. Said technique is an appealing approach which allows

us to optimize a given program and in more detail to improve run-time efficiency or space-

consumption. Essentially it consists of a sequence of syntactic program manipulations

vii



which preserve a kind of semantic equivalence called qualified answer [Frü98], between

the original program and the transformed ones. The unfolding technique is one of the

basic operations which is used by most program transformation systems. It consists in the

replacement of a procedure-call by its definition. In CHR every conjunction of constraints

can be considered as a procedure-call, every CHR rule can be considered as a procedure

and the body of said rule represents the definition of the call. While there is a large body

of literature on transformation and unfolding of sequential programs, very few papers

have addressed this issue for concurrent languages.

We define an unfolding rule, show its correctness and discuss some conditions in

which it can be used to delete an unfolded rule while preserving the meaning of the orig-

inal program. Finally, confluence and termination maintenance between the original and

transformed programs are shown.

This thesis is organized in the following manner. Chapter 1 gives some general notion

about CHR. Section 1.1 outlines the history of programming languages with particular

attention to CHR and related languages. Then, Section 1.2 introduces CHR using exam-

ples. Section 1.3 gives some preliminaries which will be used during the thesis. Subse-

quentely, Section 1.4 introduces the syntax and the operational and declarative semantics

for the first CHR language proposed. Finally, the methodologies to solve the problem of

trivial non-termination related to propagation rules are discussed in Section 1.5.

Chapter 2 introduces a compositional semantics for CHR where the propagation rules

are considered. In particular, Section 2.1 contains the definition of the semantics. Hence,

Section 2.2 presents the compositionality results. Afterwards Section 2.3 expounds upon

the correctness results.

Chapter 3 presents a particular program transformation known as unfolding. This

transformation needs a particular syntax called annotated which is introduced in Sec-

tion 3.1 and its related modified operational semantics ω′t is presented in Section 3.2.

Subsequently, Section 3.3 defines the unfolding rule and prove its correctness. Then, in

Section 3.4 the problems related to the replacement of a rule by its unfolded version are
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discussed and this in turn gives a correctness condition which holds for a specific class of

rules. Section 3.5 proves that confluence and termination are preserved by the program

modifications introduced.

Finally, Chapter 4 concludes by discussing related works and directions for future

work.
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Chapter 1

Introduction

This chapter intends to introduce some common themes that will in turn be used in the

rest of the thesis. In particular, CHR syntax and various CHR semantics are introduced.

CHR is a general purpose [SSD05a], declarative, concurrent, committed-choice constraint

logic programming language consisting of guarded rules, which transform multi-sets of

atomic formulas (constraints) into simpler ones to the point of exhaustion [Frü06]. In

the following sections we present the initial notion of CHR semantics, as proposed by

Frühwirth in [Frü98] that is affected by the trivial non-termination problem. We will

continue with an initial attempt to solve this problem, as proposed by Abdennadher in

[Abd97] and finally we will introduce the notion of ωt semantics, as proposed by Duck et

al. in [DSGdlBH04] that we will then consider for the remainder of the thesis. Let’s start

with an historical introduction.

1.1 History of programming languages

We consider that the history of computer science was born during the second half of the

1940s when the first electronic computer appeared. The first programming language, or

at least a way to program it, was born with the first computer.
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The original programming, using first generation (GL1) languages, was made by turn-

ing switches and connecting cables. ENIAC, EDSAC and EDVAC are examples of com-

puters where the programming languages were practically speaking non-existent. In fact,

low level machine languages were used for programming. These languges consisted in

some binary code descriptions of the operations and of the computational process of the

machine itself [GM06, HP90].

The Assembly languages (second generation (GL2)) languages are the first steps in the

creation of languages that are closer to human language with respect to previous (GL1)

ones. These languages are a symbolic representation of the machine languages. Portabil-

ity is low because every computer model has its own Assembly language [GM06].

Mainframes are general purpose batch machines which were born at the end of the

1950s. Together with these computers the first hight level languages (GL3) were born.

FORTRAN (1957) conceived for scientific applications, ALGOL (1958) developed as an

algorithmic family of languages, LISP (1960) projected for list manipulation, COBOL

(1960) oriented to business and Simula (1962) devoted to simulation applications are

examples of GL3.

1.1.1 The ’70s languages

During the ’70s the microprocessor appeared. In this period software increased its in-

teractive needs. Languages like C (1972), Pascal (1970) and Smalltalk (1970) met these

required characteristics. These languages are imperative and object ones.

Declarative languages

Programming, using an imperative paradigm, has to concern itself both with “what” re-

sults we are interested in and “how” to reach them. If a declarative paradigm is used,

the programmer has to pay attention only to “what” result he is interested in, leaving the

interpreter of the language to take care of “how” to reach the desired result.

There are two classes of declarative languages, namely the functional and the logical.
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ML was born as a Meta Language for a semi-automatic proof system. It was de-

veloped by R. Milner and his Edinburgh group. This is a functional declarative lan-

guage to which imperative characteristics were added. It has a safe static type system and

inference-type mechanism.

Prolog

Whereas some ideas of logic programming can also be found in the works of K. Gödel and

J. Herbrand, the first strong foundational theories were expounded upon by A. Robinson,

who in the 1960s wrote the formal definition of the resolution algorithm. This algorithm

permitts the proof of theorems of first order logic that do not give an “observable” re-

sult which can be seen as the result of the computation. Prolog was the first practical

embodiment of the concept of logic programming, that considers the result task. It was

conceived in the early 1970s by Alain Colmerauer and his colleagues at the University

of Aix-Marseille. The key idea behind logic programming is that computation can be

expressed as controlled deduction from declarative statements. Robert Kowalski of the

University of Edinburgh collaborated with the Marseille group. He showed that Prolog

could be understood as an implementation of the SLD resolution (1974). Said resolution is

a restricted version of the previous resolution algorithm. SLD resolution proves a formula

by explicitly computing the values of the variables that make the formula true. These

variables give the computational results at the end of the deductive process. Although

the field has developed considerably since those early days, Prolog remains the most

fundamental and widely used logic programming language. The first implementation

of Prolog was an interpretative programme, written in Fortran by members of Colmer-

auer’s group. Although in some ways quite crude, this implementation was a milestone in

several other ways. It established the viability of Prolog. It helped to disseminate the lan-

guage and it laid the foundations for Prolog implementation technology. A later milestone

was reached, by the DEC-10 Prolog system developed at the University of Edinburgh by

D.H.D. Warren and colleagues. This system, built on the Marseille implementation tech-

nique, operates by introducing the notion of compiling Prolog into a low-level language

(in this case DEC-10 machine code), as well as various important space-saving measures.
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Warren later refined and abstracted the principles of the DEC-10 Prolog implementation

into what is now known as the WAM (Warren Abstract Machine). The ISO standard of

Prolog was defined during the 1990s. [AK99, GM06].

1.1.2 The ’80s languages

During the 1980s the personal computer appeared. Apple II was probably the first one

in 1978, followed in 1984 by the Macintosh PC. In 1981, IBM introduced its first PC

and Lotus made the first spreadsheet. During these years languages like C++ and Ada

appeared. C++ may be considered as an increment of C. In fact, object-oriented pro-

gramming now becomes possible. Ada is the first real-time language but CLP (Constraint

Logic Programming) had a major impact on CHR history.

Constraint Logic Programming

CLP (Constraint Logic Programming) can be considered a successor of Prolog. There

are similiarities between Prolog and CLP rules. Both of them have a single constraint

head and a body. The innovation due to CLP, consists mainly in the underlying constraint

solver. In fact, while the initial Prolog was able to manage only Horn clauses, CLP

permits the manipulation of relations for opportune domains, adding a constraint solving

mechanism to classic logic programming. Colmeraurs and his Marseille group were the

first to develop a constraint language in 1982 called Prolog II. It permitted the use of

equations and disequations for terms (rational trees). After that, in the middle of the

1980s, Prolog III was introduced as an extension of the previous one. Generical constraint

on strings, boolean and reals were then premitted. During the same period: CLP(R) with

constraints on real numbers was developed at Monash University (Australia) and Jafar and

Lassez defined the theoretical aspects of CLP programming. They specifically proved that

all the logic languages could be seen as particular instances of CLP. Furthermore, they

inherited all the main results of logic programming. Finally Dincbas, Van Hentenryck

and others at ECRC defined CHIP, a Prolog extension that permitted various kinds of

constraints and in particular constraints on finite domains.
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Concurrent Constraint Logic Programming

CCP (Concurrent Constraint Logic Programming) was introduced by V. Saraswat [Sar93]

based on ideas of M. J. Maher [Mah87]. It can be seen as an extension of CLP where

dynamic scheduling is added. This allows for “processes” or “agents” which communi-

cate through the global constraint store. In particular, user-defined constraints are viewed

as processes and a state is regarded as a network of processes linked through shared vari-

ables by means of the store. Processes communicate by adding constraints to the store

and synchronize by waiting for the store to enable a delay condition. Said condition is

called a guard which must be enabled for the rule to be used. There are two kind of

condition: the tell(C) and the ask(C) one. The former enables the rule if the constraint

C is consistent with the global store while the latter enables the rule when the constraint

store implies the constraint C. CLP employs “don’t know non-determinism”, which tries

every rule until an answer is found. CCP employ the “don’t care non-determinism” which

applies whatever rule for which the guard is satisfied, without backtracking. A CCP rule

is composed of a head, a body like CLP and, unlike CLP itself, by a guard.

1.1.3 The ’90s languages

During the 1990s CHR together with web-oriented languages like HTML and Java ap-

peared.

CHR

CHR can be seen as a successor to CCP. In fact, CHR and CCP are really similiar to each

other because both of them are concurrent. Both their rules contain a guard, a body and a

head. The main difference consists in the shape of the head because the CHR head can be

made up of a conjunction of constraints unlike the one constraint CLP head.

A difference from CLP is the way in which constraints in the goal are rewritten. The

unification algorithm is used to perform the binding operation between a CLP rule head

and the constraints of a goal while matching substitution is used when CHR is considered

to perform the same operation. Matching substitution can be considered as a sort of
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simplification of the unification algorithm: a head constraint like 5 =< X can unify but

can not match with a constraint like X =< Y in the goal.

The first works on CHR appeared in 1992 when T. Früwirth, S. Abdennadher and

H. Meuss wrote the first paper, where CHR without the propagation rule was consid-

ered [AFM99]. The following year the propagation rule was added. The first survey

about CHR was written by T. Früwirth in 1998 [Frü98]. The first solution to trivial

non-termination was proposed by S. Abdennadher in 1997 [Abd97] and a solution closer

to practical implementation to the same problem was proposed by Duck et al. in 2004

[DSGdlBH04].

Meanwhile, the general interest shown in CHR increased both from the practical and

the theoretical side and today various languages like C, Haskell, Java and Curry support

CHR implementations.

Prolog was the first language in which CHR was embedded because of the above

mentioned similarities [HF00]. Today, many versions of CHR compilers or interpreters

for Prolog or logic languages are made. For example, the CHR implementation for HAL

[GdlBDMS02], ToyCHR for Sicstus and SWI-Prolog by G. J. Duck in 2004 and the

Leuven CHR [Sch05] for SWI-Prolog.

The first Java interpreter for CHR was developed by Abdennadher et al in 2000 and

was called JACK (JAva Constraint Kit) [AKSS02]. Soon afterwards two other implemen-

tations were proposed namely K.U.Leuven JCHR [VWSD05] by Van Weert et al. and

CHORD (CHR with Disjunction) by Vitorino et al. in 2005.

A first implementation of CHR in Haskell was done by G. J. Duck in 2005 and

called HaskellCHR. It contains an implementaion of WAM (Warren Abstract Machine)

for Haskell. Also a concurrent version of CHR was developed in Haskell by Lam and

Sulzmann [SL07].

CHR was also recentely added to Curry by M. Hanus [Han06] and last but by no

means least, a fast CHR version for C by Wuille et al. appeared in 2007 [WSD07].
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1.2 CHR by example

In this section we will introduce CHR using some examples. A slight variant on the first

example is also proposed by the CHR website http://www.cs.kuleuven.ac.be/˜dtai/projects/CHR/

as an introduction to CHR for beginners.

Example 1.1 The following CHR program [Frü98] encodes the less-than-or-equal-to con-

straint, assuming the = predicate as a given built-in constraint

rfl @ X =< Y ⇔ X = Y |true. reflexivity

asx @ X =< Y, Y =< X ⇔ X = Y. antisymmetry

trs @ X =< Y, Y =< Z ⇒ X =< Z. transitivity

idp @ X =< Y \X =< Y ⇔ true. idempotence

�

The program of Example 1.1 is made up of four CHR rules. Every rule is made up

of an unequivocal name, that is written to the left of the symbol “@”, and that is usually

used to refer to the rule, a head that is a conjunction of CHR constraints between the “@”

and the “⇒” or “⇔” symbol, or a conjunction of CHR constraints between the “@” and

the “⇔” symbol where the symbol “\” is added between the head constraints, an optional

guard that is contained between the symbols “⇒” or “⇔” and the symbol “|” and finally

a body that represents the rest of the rule.

It can clearly be observed that there are three kinds of rules: the first two rules (rfl

and asx) are called simplification rules. In fact, the constraints to which the rules are

applied, are simplified with the usually more simple constraint in their body. This kind

of rule presents the symbol ⇔ and no \ symbol in the head. The third rule (trs) is

called a propagation rule because it propagates the meaning of the constraints contained

in a state adding the constraints of its body that can be useful to perform the following

computational steps. The fourth rule (idp) is called simpagation because its behaviour is

a combination of simplification and propagation.

Let us now consider the intuitive meaning of each rule: as follows, CHR specifies how

=< simplifies, propagates and simpagates as a constraint.
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The rfl rule represents the reflexivity relation: X =< Y is logically true if it is the

case that X = Y , which means the guard is satisfied.

The asx rule represents the antisymmetry relation: if we know that both X =< Y

and Y =< X then we can replace the previous constraints with the logically equivalent

X = Y . In this instance no test condition is required.

The trs rule represents the transitive relation: if we know bothX =< Y and Y =< Z

then we can add a redundant constraint X =< Z as a logical consequence.

The idp rule represents the idempotence relation: if there are two constraintsX =< Y

one of them can be deleted, without changing the meaning.

Let us now consider a practical case where the previous program is applied to the con-

junction of constraints A =< B,A =< B,B =< C,B =< C,C =< A. The selection

of rules introduced in Example 1.2 is a redundant one. Said selection was chosen to show

to the reader all the kinds of CHR rules. A more compact example, which computes less-

than-or-equal-to, can be found in [Frü98]. The CHR constraints B =< C and A =< B

are introduced twice in the considered goal to permit the application of each rule of the

proposed Example 1.2 at least once. The reader can verify that the same result can be

obtained also if a single copy of the previous constraints is considered.

A =< B,A =< B,B =< C,B =< C,C =< A

%A =< B,A =< B simpagates in A =< B by idp;

A =< B,B =< C,B =< C,C =< A

%A =< B,C =< A propagates in C =< B by trs;

A =< B,B =< C,B =< C,C =< A,C =< B

%B =< C,C =< B simplify in C = B by asx

A =< B,B =< C,C =< A,C = B

%B =< C simplify in true by rfl considered C = B

A =< B,C =< A,C = B

%A =< B,C =< A simplifies in A = B by asx considered C = B

A = B,B = C

%is the solution of the computation.
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We would like to point out that redundancy as given by CHR propagation, is useful.

Otherwise, the second computational step would not be performed and the results would

not be achieved. Note also that multiple heads of rules are essential in solving these

constraints.

Now a second CHR program is presented that computes the greatest common divisor

following the Euclidean algorithm. Said program is introduced to show that, using CHR,

extremely compact programs can be written. This program has been published in the

above mentioned website.

Example 1.2 This CHR program is made up of a mere two CHR rules. The first one is

called clean-up and it allows for the deletion of gcd(0) CHR constraints. The second rule,

called compute, makes the actual computation.

clean− up @ gcd(0)⇔ true.

compute @ gcd(N)\gcd(M)⇔ 0 < N,N =< M |L is M mod N, gcd(L).

where mod represents the remainder of the integer division between M and N while is

represents the assignment of a value to a variable. �

Let us consider an application of Example 1.2 to the whole to numbers 12, 24 and 72.

gcd(12),gcd(24),gcd(72)

%gcd(12), gcd(24) simpagates as gcd(0) via compute,

gcd(12),gcd(72),gcd(0)

%gcd(0) simplifies as true via clean,

gcd(12),gcd(72)

%gcd(12), gcd(72) simpagates as gcd(6) via compute,

gcd(12),gcd(6)

%gcd(12), gcd(6) simpagates as gcd(0) via compute,

gcd(0),gcd(6)

%gcd(0) simplifies as true via clean,

gcd(6)

% is the result.
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1.3 Preliminaries

In this section we will introduce some notations and definitions which we will need

throughout the thesis. Even though we try to provide a self-contained exposition, some

familiarity with constraint logic languages and first order logic could be useful (see for

example [JM94]). CHR uses two kinds of constraints: the built-in and the CHR ones, also

called user-defined.

According to the usual CHR syntax, we assume that a user-defined constraint is a

conjunction of atomic user-defined constraints.

On the other hand, built-in constraints are defined by c ::= d|c ∧ c|∃xc, where d is an

atomic formula or atom.

These constraints are handled by an existing solver and we assume that they contain

true, false (with the obvious meaning) and the equality symbol =. The meaning of these

constraints is described by a given, first order theory CT which includes the following

CET (Clark Equational Theory) in order to describe the = symbol.

Moreover, CET (Clark Equational Theory) is considered for terms and atoms manip-

ulation:

Reflexivity (> → X = X)

Symmetry (X = Y → Y = X)

Transitivity (X = Y ∧ Y = Z → X = Z)

Compatibility (X1 = Y1 ∧ . . . ∧Xn = Yn → f(X1, . . . , Xn) = f(Y1, . . . , Yn))

Decomposition (f(X1, . . . , Xn) = f(Y1, . . . , Yn)→ X1 = Y1 ∧ . . . ∧Xn = Yn)

Contradiction (f(X1, . . . , Xn) = g(Y1, . . . , Ym)→ ⊥) if f 6= g or n 6= m

Acyclicity (X = t→ ⊥) if t is function term and X appears in t

If H = h1, . . . , hk and H ′ = h′1, . . . , h
′
k are sequences of CHR constraints, the notation

H = H ′ represents the set of equalities h1 = h′1, . . . , hk = h′k.
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Fv(φ) denotes the free variables appearing in φ. The notation ∃−V φ, where V is a

set of variables, denotes the existential closure of a formula φ with the exception of the

variables in V which remain unquantified.

If it is not specified differently, we use c, d to denote built-in constraints, h, k, s, p, q to

denote CHR constraints and a, b, g, f to denote both built-in and user-defined constraints,

which together are known as constraints. A CHR constraint h can also be labelled with

an unequivocal identifier h#i. We will also use the functions chr(h#i)=h and the func-

tion id(h#i)=i. These functions will be also extended to sets and sequences of identified

CHR constraints in the obvious way. If it is not differently specified, the capital versions

will be used to denote multi-sets (or sequences) of constraints. Given a goal G, the nota-

tional convention G̃ represents sets of identified constraints. In particular, G̃ depicts every

possible labelling of the CHR constraints in multi-set G; consequently G = chr(G̃).

We will often use “,” rather than ∧ to denote conjunction and we will often consider a

conjunction of atomic constraints as a multi-set of atomic constraints.

We denote the concatenation of sequences by · and the set difference operator by \.
Then, [n,m] with n,m ∈ N represents the set of all the natural numbers between n and m

(n and m are included). Subsequently, we omit the guard when it is the true constraint.

Furthermore, we denote by U the set of user-defined constraints. Finally, multi-set union

is represented by the symbol ].

1.4 The original CHR

As shown by the following subsection, a CHR program consists of a set of rules which

can be divided into three types: simplification, propagation and simpagation rules. The

first kind of rules is used to rewrite CHR constraints into simpler ones, while the second

one allows us to add new redundant constraints which may cause further simplification.

Simpagation rules allow us to represent both simplification and propagation rules.

In this section the syntax and the semantics (the operational and the declarative ones),

as proposed in [Frü98] are introduced.
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1.4.1 Syntax

A CHR program [Frü98] is a finite set of CHR rules. There are three kinds of CHR rules:

A simplification rule has the following form:

r@H ⇔ D |B

A propagation rule has the following form:

r@H ⇒ D |B

A simpagation rule has the following form:

r@H1 \H2 ⇔ D |B,

where r is a unique identifier of the rule, H , H1 and H2 are sequences of user-defined

constraints called heads, D is a multi-set (or a sequence) of built-in constraints called

guard and B is a multi-set (or a sequence) of (built-in and user-defined) constraints called

body. Both B and D could be empty. A CHR goal is a multi-set of (both user-defined and

built-in) constraints.

1.4.2 Operational semantics

State

Given a goal G, a multi-set of CHR constraints S and a multi-set of built-in constraints

C, and a set of variables ν = Fv(G), a state or configuration is represented by Conf and

it has the form

〈G,S,C〉ν .

The initial configuration has the form

〈G, ∅, true〉ν .
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Solve
CT |= c ∧ C ↔ C′ and c is a built-in constraint

〈{c} ]G,S,C〉ν −→ 〈G,S,C′〉ν

Introduce
h is a user-defined (or CHR) constraint
〈{h} ]G,S,C〉ν −→ 〈G, {h} ] S,C〉ν

Simplify
r@H′2 ⇔ D |B ∈ P x = Fv(H′2) CT |= C → ∃x((H2 = H′2) ∧D)

〈G,H2 ] S,C〉ν −→ 〈B ]G,S, (H2 = H′2) ∧ C, 〉ν

Propagate
r@H′1 ⇒ D |B ∈ P x = Fv(H′1) CT |= C → ∃x((H1 = H′1) ∧D)

〈G,H1 ] S,C〉ν −→ 〈B ]G,H1 ] S, (H1 = H′1) ∧ C〉ν

Simpagate
r@H′1 \H′2 ⇔ D |B ∈ P x = Fv(H′1, H

′
2) CT |= C → ∃x(H1, H2 = H′1, H

′
2)) ∧D)

〈G,H1 ]H2 ] S,C〉ν −→ 〈B ]G,H1 ] S, (H1, H2 = H′1, H
′
2) ∧ C〉ν

Table 1.1: The transition system Tx for the original semantics

A final configuration has either the form

〈G,S, false〉ν

when it has failed or it has the form

〈G,S,C〉ν

when it represents a successful termination, since there are no more applicable rules.

The transition system

Given a program P , the transition relation−→⊆ Conf ×Conf is the least relation which

satisfies the rules in Table 1.1 and for the sake of simplicity, we omit indexing the relation

with the name of the program.

The Solve transition allows us to update the (built-in) constraint store by taking into

account a built-in constraint c, contained in the goal. The built-in constraint is moved

from the goal to the built-in constraint store.

The Introduce transition is used to move a user-defined constraint h from the goal to

the CHR constraint store. After this operation, h can be handled by CHR rules.
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The Simplify transition rewrites user-defined constraints in CHR store, using the sim-

plification rules of program P . All variables of the considered program rule are re-

named separately with fresh ones, if needed, in order to avoid variable name clashes

before the application of the rule. Simplify transition can work if the current built-in

constraint store (C) is strong enough to entail the guard of the rule (D), once the parame-

ter passing (matching substitution) has been performed (this is expressed by the equation

(H2 = H ′2)). Note that, due to the existential quantification over the variables x appearing

in H ′2, in such a parameter passing, the information flow is from the actual parameter (in

H2) to the formal parameters (H ′2), that is, it is required that the constraints H2 which

have to be rewritten are an instance (which means that H2 = H ′2θ and θ is the matching

substitution) of the headH ′2. The transition adds the bodyB of the rule to the current goal,

the equation (H2 = H ′2) to the built-in constraint store and it removes the constraints H2.

The Propagate transition matches user-defined constraints in the CHR store, using

the propagation rules of program P . All variables of the program clause (rule) considered

are renamed separately with fresh ones, if needed, in order to avoid variable name clashes

before the application of the rule. Propagate transition can work if the current built-

in constraint store (C) is strong enough to entail the guard of the rule (D), once the

parameter passing (matching substitution) has been performed (this is expressed by the

equation (H1 = H ′1)). Note that, due to the existential quantification over the variables

x appearing in H ′1, in such a parameter passing the information flow is from the actual

parameter (in H1) to the formal parameters (H ′1), that is, it is required that the constraints

H1 which have to be rewritten are an instance (which means that H1 = H ′1θ and θ is the

matching substitution) of the head H ′1. The transition adds the body B of the rule to the

current goal and the equation (H1 = H ′1) to the built-in constraint store.

The Simpagate transition rewrites user-defined constraints in CHR store using the

simpagation rules of program P . All variables of the considered program clause are

renamed separately with fresh ones, if needed, in order to avoid variable name clashes

before the application of the rule. Simpagate transition can work if the current built-

in constraint store (C) is strong enough to entail the guard of the rule (D), once the

parameter passing (matching substitution) has been performed. This is expressed by the
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equation (H1, H2 = H ′1, H
′
2). Note that, due to the existential quantification over the

variables x appearing in H ′1, H
′
2, in such a parameter passing the information flow is

from the actual parameter (in H1, H2) to the formal parameters (H ′1, H
′
2), that is, it is

required that the constraints H1, H2 which have to be rewritten are an instance (which

means that (H1, H2) = (H ′1, H
′
2)θ and θ is the matching substitution) of the head H ′1, H

′
2.

The transition adds the body B of the rule to the current goal, the equation (H1, H2 =

H ′1, H
′
2) to the built-in constraint store and it removes the constraints H2.

We can now point out that the transition system of Table 1.1 can be simplified. The

Simpagate rule can simulate both the Simplify and Propagate ones. In fact, the behaviour

of:
the Simplify rule H ′1 ⇒ D | B is equivalent to H ′1\∅ ⇔ D | B,
the Propagate rule H ′2 ⇔ D | B is equivalent to ∅\H ′2 ⇔ D | B.

1.4.3 Declarative semantics

CHR is concerned with defining constraints and not procedures in their generality and a

declarative semantics may be attributed to it.

The logical reading of a CHR program P [Frü98, FA03] is the conjunction of the

logical readings of its rules, that is called P , with a constraint theory CT .

The CT theory determines the meaning of the built-in constraint symbols appearing

in the program and it is expected to include at least an equality constraint = and the basic

constraints true and false.

The logical reading P of P rules is given by a conjunction of universally quantified

logical formulae (one for each rule).

Definition 1.1 A CHR Simplify rule H ⇔ D | B is a logical equivalence if the guard is

satisfied:

∀x̄∀ȳ(({d1} ] . . . ] {dj})→ ((h1, . . . , hi)↔ ∃z̄({b1} ] . . . ] {bk})))

A CHR Propagate rule H ⇒ D | B is an implication if the guard is satisfied:

∀x̄∀ȳ(({d1} ] . . . ] {dj})→ ((h1, . . . , hi)→ ∃z̄({b1} ] . . . ] {bk})))
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A CHR Simpagate rule H1 \ H2 ⇔ D | B is a logical equivalence if the guard is

satisfied:

∀x̄∀ȳ(({d1}] . . .]{dj})→ ((h1, . . . , hi)↔ ∃z̄({h1}] . . .]{hl}]{b1}] . . .]{bk})))

whereD = {d1}]. . .]{dj},H = h1, . . . , hi,H1 = h1, . . . , hl,H2 = hl+1, . . . , hi and

B = {b1}]. . .]{bk} with x̄ = Fv(H) (global variables) and ȳ = (Fv(D)\Fv(H)), z̄ =

(Fv(B) \ Fv(H)) (local variables).

The following example considers the previously introduced ones in Section 1.2 and

gives the declarative semantics of some CHR rules.

Example 1.3 The CHR simplification rule that encodes the reflexivity relation in Exam-

ple 1.1

rfl@X =< Y ⇔ X = Y |true.

has the logical reading

∀X, Y ({X = Y } → (X =< Y ↔ true)).

The CHR propagation rule that encodes the transitivity relation in Example 1.1

trs@X =< Y, Y =< Z ⇒ X =< Z.

has the logical reading

∀X, Y, Z(true→ (X =< Y, Y =< Z → {X =< Z})).

The CHR simpagation rule that encodes the computation in Example 1.2

compute@gcd(N)\gcd(M)⇔ 0 < N,N =< M |L is M mod N, gcd(L).

has the logical reading

∀N,M({0 < N,N =< M} → (gcd(N), gcd(M)↔
∃L{L is M mod N, gcd(L), gcd(N)})).

where CT defines the meaning of =, <, true, false. �
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1.5 The propagation problem

It is of no relevance to the previously proposed semantics in Subsection 1.4.2 that a propa-

gation rule can be applied ad infinitum to a conjunction of constraint H . This can happen

until such time as a simplification rule eventually deletes some constaint in H . This

problem, known also as trivial non-termination, was solved for the first time in [Abd97],

where a multi-set called token store was introduced in the state and subsequently in

[DSGdlBH04]. The following subsections present these two approaches.

1.5.1 Unlabelled constraints

The solution to the trivial non-termination problem, as proposed in [Abd97], is an elegant

theoretical solution. Proposed semantics needs an update of the token store every time a

new user-defined constraint is introduced into the CHR store. Another token store update

is performed every time a CHR transition works. The last kind of updates are performed

by a normalization function N . Naturally, the application of a propagation rule deletes

the associated token.

State

Given a goal G, a multi-set of CHR constraints S and a multi-set of built-in constraint

C, a multi-set of tokens T , and a set of variables ν = Fv(G), a state or configuration is

represented by Conft and it has the form

〈G,S,C, T 〉ν .

An initial configuration has the form

〈G, ∅, true, ∅〉ν .

A final configuration has either the form

〈G,S, false, T 〉ν
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when it has failed or it has the form

〈G,S,C, T 〉ν

when it represents a successful termination, as obviously there are no more applicable

rules.

The token store

The token store is a set of tokens. A token is made up of the name r of the propagation

rule that can be applied, an “@” symbol and the conjunction of constraints in the CHR

store to which r can be applied.

Let P be a CHR program, S the current CHR constraint store and h a user-defined

constraint. T(h,S) adds to the current token store all the new tokens that can be generated,

having taken into consideration the introduction of h in S. Naturally, the multiplicity of

the constraints in S is also considered.

T(h,S) = {r@H ′ | (r@H ⇒ D | B) ∈ P,H ′ ⊆ {h} ] S, h ∈ H ′,
and H matches with H ′}.

When the body of a rule contains more than one constraint, the token store is managed

in the following way

T(h1,...,hm,S) = T(h1,S) ] T(h2,{h1}]S) ] . . . ] T(hm,{h1,h2,...,hm−1}]S)

Operational semantics

The transition system, which uses the previously described token store, is shown in Table

1.2. The behaviours of the considered transition system are similar to the ones introduced

in Subsection 1.4.2, so only the differences will be discussed.

After every transition, a normalization function N : State × State is applied. State

represents the set of all states. Below, the normalization function N will be first of all

introduced using examples and, after that, giving the formal representation. The appli-

cation of the N function to a State will be formally represented by N (〈G,S,C, T 〉ν) =

〈G′, S ′, C ′, T ′〉ν .
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1. The normalization function deletes the unuseful tokens, that are the ones for which

at least a constraint, with which they are associated, has been deleted from the CHR

store e.g. N (〈G, g(X), B, {r@f(W ), r′@g(X)}〉) = 〈G, g(X), B, {r′@g(X)}〉ν .

This operation is called token elimination and it is formally represented by T ′ =

T ∩ T(S,State).

2. After having fixed a propagation order on the ν variables and considering the in-

troduction order for the others, it propagates the equality of variables. For example

N (〈G, g(X), {X = Y, Y = Z}, T 〉{X,W} = (〈G, g(Z), {X = Z, Y = Z}, T 〉{X,W}.
This operation is called equality propagation. In fact, G′, S ′ and T ′ derive from

G,S and T by replacing all variables X , for which CT |= ∀(C → X = t) holds,

by the corresponding term t, except if t is a variable that comes after X in the

variable order.

3. It projects the useless built-in constraints. For example

(〈G,H, {X = Z, Y = Z,Z = Z}, T 〉ν = (〈G,H, {X = Z, Y = Z}, T 〉ν . This op-

eration is called projection and it is formally represented by CT |= ∀((∃XC) ↔
C ′), where X is a variable which appears in C only.

4. Finally, it only unifies the variables that appear in the built-in constraint e.g. if

we consider that the following states (〈h(W ), g(X), {X = Z,M = Z}, T 〉W,X and

(〈f(W ),m(X), {X = Z,N = Z}, T 〉W,X are such that CT |= ∃M{X = Z,M =

Z} ↔ ∃N{X = Z,N = Z}, then their built-in constraint stores after the ap-

plication of N will both be equal to {X = Z, V0 = Z}. This operation is called

uniqueness and it is formally represented by C ′1 = C ′2 where

N (〈G1, S1, C1, T1〉ν) = 〈G′1, S ′1, C ′1, T ′1〉ν and

N (〈G2, S2, C2, T2〉ν) = 〈G′2, S ′2, C ′2, T ′2〉ν and

CT |= (∃XC1)↔ (∃Y C2) and

X and Y are variables which appear only in C1 and C2 respectively.

The previous examples underlined the multi-sets to which we already referred to specifi-

cally.
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Solve
CT |= c ∧ C ↔ C′ and c is a built-in constraint
〈{c} ]G,S,C, T 〉ν −→ N (〈G,S,C′, T 〉ν)

Introduce
h is a user-defined (or CHR) constraint

〈{h} ]G,S,C〉ν −→ N (〈G, {h} ] S,C, T ] T(h,S)〉ν)

Simplify
r@H′2 ⇔ D |B ∈ P x = Fv(H′2) CT |= C → ∃x((H2 = H′2) ∧D)

〈G,H2 ] S,C, T 〉ν −→ N (〈B ]G,S, (H2 = H′2) ∧ C, T 〉ν)

Propagate
r@H′1 ⇒ D |B ∈ P x = Fv(H′1) CT |= C → ∃x((H1 = H′1) ∧D)

〈G,H1 ] S,C, T ] {r@H1}〉ν −→ N (〈B ]G,H1 ] S, (H1 = H′1) ∧ C, T 〉ν)

Simpagate
r@H′1 \H′2 ⇔ D |B ∈ P x = Fv(H′1, H

′
2) CT |= C → ∃x(H1, H2 = H′1, H

′
2)) ∧D)

〈G,H1 ]H2 ] S,C, T 〉ν −→ N (〈B ]G,H1 ] S, (H1, H2 = H′1, H
′
2) ∧ C, T 〉ν)

Table 1.2: The transition system Tx − token for the CHR semantics that avoids trivial

non-termination

The T(h,S) relation of Introduce transition adds to the current token store all the pos-

sible tokens that can be used, considering the current CHR store S and all the rules of

program P .

The right hand side of the rule considered in Simpagate transition is supposed to be

not empty, that is H ′2 6= ∅.

1.5.2 Labelled constraints: ωt semantics

A more practical solution was proposed in [DSGdlBH04]. In fact, the computation of

the new token store every time that a transition happens and twice when the considered

transition is an Introduce, decreases the performance. This second approach was more

successful in research terms than the previous one. In the following part of this thesis, this

second approach is going to be considered. For the sake of simplicity, we omit indexing

the relation with the name of the program. First of all, we introduce the new state and the

the shape of the new elements of the token store.
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State

Given a goal G, a set of CHR constraints S (and its identified version S̃), a set of built-in

constraints C, a set of tokens T and a natural number n, a state is represented by Conft

and it has the form

〈G, S̃, C, T 〉n.

Given a goal G, the initial configuration has the form

〈G, ∅, true, ∅〉1.

A final configuration has either the form

〈G, S̃, false, T 〉n

when it has failed or it has the form

〈∅, S̃, C, T 〉n

when it represents a successful termination, as there are no more applicable rules.

The token store

Now, the tokens have a different shape from the ones of the previous Subsection 1.5.1. In

fact, r@i1, . . . , im is the new shape where r represents, as in the previous subsection, the

name of a rule, but now the identifiers i1, . . . , im replace the constraints.

The operational semantics

Given a program P , the transition relation −→ωt⊆ Conft × Conft is the least relation

satisfying the rules in Table 1.3. For the sake of simplicity, we omit indexing the relation

with the program name.

The Solveωt transition allows us to update the (built-in) constraint store, by taking into

account a built-in constraint contained in the goal. It moves a built-in constraint from the

store to the built-in constraint store. Without the loss of generality, we will assume that

Fv(C ′) ⊆ Fv(c) ∪ Fv(C).
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Solveωt

CT |= c ∧ C ↔ C′ and c is a built-in constraint

〈{c} ]G, S̃, C, T 〉n −→ωt 〈G, S̃, C′, T 〉n

Introduceωt

h is a user-defined constraint

〈{h} ]G, S̃, C, T 〉n −→ωt 〈G, {h#n} ∪ S̃, C, T 〉n+1

Applyωt

r@H′1 \H′2 ⇔ D |B ∈ P x = Fv(H′1, H
′
2) CT |= C → ∃x((chr(H̃1, H̃2) = (H′1, H

′
2)) ∧D)

〈G, {H̃1} ∪ {H̃2} ∪ S̃, C, T 〉n −→ωt 〈B ]G, {H̃1} ∪ S̃, (chr(H̃1, H̃2) = (H′1, H
′
2)) ∧ C, T ′〉n

where r@id(H̃1, H̃2) 6∈ T and T ′ = T ∪ {r@id(H̃1, H̃2)} if H̃2 = ∅ otherwise T ′ = T.

Table 1.3: The transition system Tωt for ωt semantics

The Introduceωt transition is used to move a user-defined constraint h from the goal

to the CHR constraint store, to label h with the first unused identifier n and finally to

update the next free identifier to n+ 1. After this operation, h can be handled by applying

CHR rules.

The Applyωt transition uses the rule r@H ′1\H ′2 ⇔ D | B provided that a matching

substitution θ exists, such that (H1, H2) = (H ′1, H
′
2)θ, D is entailed by the built-in con-

straint store C of the computation and T does not contain the token r@id(H1, H2). CHR

constraints of H2 are deleted. Constraints of the body B of rule r are added to the actual

goal G, the built-in constraints ((H1, H2) = (H ′1, H
′
2)) ∧ D is added to the built-in con-

straint store and finally the token r@id(H1, H2) is added to the token store T , if the right

hand side of the head of r, that is H ′2, is empty.

Note that, unlike the operations defined for the original CHR (Section 1.4) and the

ones defined for the first CHR that manage the trivial non-termination (Subsection 1.5.1),

here only three transitions are defined: Solveωt , Introduceωt and Applyωt . This happens

because both a propagation and a simplification rule can be simulated by a simpagation

one that is Applyωt . In fact, let H ⇒ D|B be a propagation rule the equivalent simpa-

gation rule is H \ ∅ ⇔ D|B and let H ⇔ D|B be a simplification rule the equivalent

simpagation rule is ∅ \H ⇔ D|B.

Now, given a goal G, the operational semantics, that is going to be introduced in the

next chapter, observes the final stores of computations terminating with an empty goal
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and an empty user-defined constraint. We call these observables, data sufficient answers,

using the terminology of [Frü98], where the first element in the state tuple is the goal

store, the second the CHR store, the third the built-in constraints store and the fourth the

token store. We also have the last identification number in the state written as subscript.

Definition 1.2 (Data sufficient answers) Let P be a program and let G be a goal. The

set SAP (G) of data sufficient answers for the query G in the program P , is defined as

follows:

SAP (G) = {∃−Fv(G)d | 〈G, ∅, true, ∅〉1 −→∗ωt 〈∅, ∅, d, T 〉n 6−→ωt}
∪
{false | 〈G, ∅, true, ∅〉1 −→∗ωt 〈G

′, K, d, T 〉n and

CT |= d↔ false}.

We can consider a different notion of answer [Frü98]. It is obtained by computations

terminating with a user-defined constraint which does not need to be empty.

Definition 1.3 (Qualified answers) Let P be a program and let G be a goal. The set

QAP (G) of qualified answers for the query G in the program P , is defined as follows:

QAP (G) = {∃−Fv(G)chr(K) ∧ d | 〈G, ∅, true, ∅〉1 −→∗ωt 〈∅, K, d, T 〉n 6−→ωt}
∪
{false | 〈G, ∅, true, ∅〉1 −→∗ωt 〈G

′, K, d, T 〉n and

CT |= d↔ false}.

Unlike the definitions contained in [Frü98], those contained in Definition 1.2 and 1.3,

have the new element T , known as the token store. Note that both previous notions of

observables characterise an input/output behaviour, since the input constraint is implicitly

considered in the goal.
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Chapter 2

Compositional semantics

Compositionality is a very antique and interdisciplinary principle. In fact, it can be

found in Mathematics, Linguistic Philosophy and Computer Science Semantics. Dum-

mett [Dum73] asserts that it originated with Frege whereas Popper [Pop76] informs us

that it can not be found in explicit form in Frege’s writings. As a matter of fact, in the

works of his youth, Frege only introduces the principle of contextuality [Fre84], which

declares that one should ask for the meaning of a word only in the context of a sentence,

and not in isolation. Said principle is completely different with respect to the contempo-

raneous idea of compositionality. In contrast, in his last publication, the idea of composi-

tionality is introduced, even if informally, in particular in [Fre23]. The above mentioned

principle can be represented by the following assertion: The meaning of a compound

expression is a function of the meanings of its parts [Jan97].

Till now, a lot of CHR semantics have been defined as per [Frü98, DSGdlBH04,

Sch05]. All these semantics, like other versions defined elsewhere, are not compositional

with respect to the conjunctions of atoms in a goal. This is somewhat surprising, consid-

ering CHR both from the logic programming and the concurrency theory perspective. In

fact, in the first case, the reference semantics (the least Herbrand model) as well as other

more refined semantics (e.g. s-semantics) enjoy this form of compositionality. When

considering CHR as a (committed choice) concurrent language the situation is analogous:

conjunction of atoms can naturally be considered as parallel composition, and most se-

mantics in concurrency theory are compositional with respect to parallel composition (as
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well as all the other language operators). Indeed generally-speaking, compositionality is

a very desirable feature for semantics, as it permits us to manage partially defined com-

ponents and it can be the basis for defining incremental and modular tools for software

analysis and verification. For these reasons in [DGM05] a fixpoint, and-compositional se-

mantics for CHR was defined, which allows us to retrieve the semantics of a conjunctive

query from the semantics of its components. This was obtained by using semantic struc-

tures based on traces, in a similar manner to what had already been done for data-flow

languages [Jon85], imperative concurrent languages [Bro93] and concurrent constraint

languages [dBP91]. The semantics defined in [DGM05] uses the operational semantics

as defined in [Frü98] as its reference point which, as previously mentioned, allows trivial

non-termination.

In this chapter we extend the work of [DGM05] by considering as reference semantics

the one defined in [DSGdlBH04] which avoids trivial infinite computations by using the

token store, as introduced in Subsection 1.5.2. It should be remembered that it allows

us to memorize the history of applied propagation rules and therefore to control their

application in order to avoid that the same rule is applied more than once to the same (oc-

currence of a) constraint in a derivation. As discussed in [DGM05], due to the presence

of multiple heads in CHR, the traces needed to obtain compositionality are more compli-

cated than those used for the other concurrent languages above mentioned. In this chapter

the need to represent the token store further complicates the semantic model, since when

composing two traces, representing two parallel processes (i.e. two jointed atoms), we

must ensure that the same propagation rule is not applied twice to the same constraint.

The resulting compositional semantics is therefore technically rather complicated, even

though the underlying idea is simple.

The new compositional semantics defined in this chapter is proven correct with respect

to a slightly different notion of observables, than the one in [DGM05], since now the token

store will also be considered.

Some of the results were already published in [GMT06].
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2.1 Compositional trace semantics

Given a program P , we say that a semantics SP is and-compositional if SP (A,B) =

C(SP (A),SP (B)) for a suitable composition operator C which does not depend on the

program P and where A and B are conjunctions of constraints. The presence of mul-

tiple heads in CHR makes not and-compositional the semantics which associates with

a program P the function SAP (Definition 1.2). In fact goals which have the same

input/output behavior can behave differently when composed with other goals. Con-

sider for example the program P , consisting of the single rule r@g, h ⇔ true|c (where

c is a built-in constraint). According to Definition 1.2 we have the following result

SAP (g) = SAP (k) = ∅, while SAP (g, h) = {〈∃−Fv(g,h)c〉} 6= ∅ = SAP (k, h), where k

is a CHR constraint. An analogous example can be made to show that QA semantics is

also not and-compositional.

In order to solve the problem exemplified above we must first define a new transition

system that will then be used to generate the sequences appearing in the compositional

model, by using a standard fixpoint construction. This transition system also collects in

the semantics the “missing” parts of heads which are needed in order to proceed with the

computation. For example, when considering the program P above, we should be able to

state that the goal g produces the constraint c, provided that the external environment (i.e.

a conjunctive goal) contains the user-defined constraint h. When composing (by using a

suitable notion of composition) such a semantics with the one of a goal which contains

h, we can verify that the “assumption” h is satisfied and therefore obtains the correct

semantics for g, h. In order to model correctly the interaction of different processes we

have to use sequences, analogously to what happens with other concurrent paradigms.

Thus, the new transition system we define is T = (Conf ,−→P ), where configurations

in Conf are triples of the form 〈G̃, c, T 〉n: G̃ is a set of built-in and identified CHR

constraints (the goal), c is a (conjunction of) built-in constraint(s) (the store), T is a set of

tokens and n is an integer greater or equal to the biggest identifier used either to number

a CHR constraint in G̃ or in a token in T . The transition relation −→P⊆ Conf ×Conf ×
℘(U), where P is a program, is the least relation satisfying the rules in Table 2.1 where
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Solve’
CT |= c ∧ d↔ d′ and c is a built-in constraint

〈{c} ∪ G̃, d, T 〉n −→∅P 〈G̃, d′, T 〉n

Apply’
r@H′1 \H′2 ⇔ C | B ∈ P x = Fv(H′1, H

′
2) G 6= ∅ CT |= c→ ∃x((chr(H̃1, H̃2) = (H′1, H

′
2)) ∧ C)

〈G̃ ∪ G̃′, c, T 〉n −→K
P 〈I

n+k+m
n+k (B) ∪ {H̃1} ∪ G̃′, (chr(H̃1, H̃2) = (H′1, H

′
2)) ∧ c, T ′〉n+k+m

where k and m are the number of CHR constraints in K and in B respectively,

{G̃} ∪ {In+k
n (K)} = {H̃1} ∪ {H̃2}, r@id(H̃1, H̃2) 6∈ T and

if H̃1 = ∅ then T ′ = T else T ′ = T ∪ {r@id(H̃1, H̃2)}

Table 2.1: The transition system T for compositional semantics
℘(A) denotes the powerset set of A. Note that we modify the notion of configuration

(Conft) used before by merging the goal store with the CHR store, since we do not need

to distinguish between them. Consequently the Introduce rule is now useless and we

eliminate it. On the other hand, we need the information on the new assumptions, which

is added as a label to the transitions.

We need some further notation: given a goal G, we denote by G̃ one of the possible

identified versions of G. Moreover, assuming that G contains m CHR-constraints, we

define a function In+m
n (G) which identifies each CHR constraint in G by associating a

unique integer in [n+1,m+n] with it, according to the lexicographic order. The identifier

association is applied both to the initial goal store, at the beginning of the derivation, and

to the bodies of the rules that are added to the goal store during the computation steps. If

m = 0, we assume that Inn (G) = G.

Let us now briefly consider the rules in Table 2.1. Solve’ is essentially the same rule

as the one defined in Table 1.3, while the Apply’ rule is modified to consider assumptions:

when reducing a goalG by using a rule having headH , the set of assumptionsK = H \G
(with H 6= K) is used to label the transition. Note that since we apply the function In+k

n

to the assumptions K, each atom in K is associated with an identifier in [n + 1, n +

k]. As before, we assume that program rules use fresh variables to avoid variable name

captures. Given a goal G with m CHR-constraints an initial configuration has the form

〈Im0 (G), true, ∅〉m where Im0 (G) is the identified version of the goal.

A final configuration has either the form 〈G̃, false, T 〉n if it has failed or 〈∅, c, T 〉n,

if it is successful.
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The following example shows a derivation obtained by the new transition system.

Example 2.1 Given the goal (C = 7, A =< B,C =< A,B =< C,B =< C) and
the program of Example 1.1 by using the transition system of Table 2.1 we obtain the
following derivation (where the last step is not a final one):

〈{C = 7, A =< B#1, C =< A#2, B =< C#3, B =< C#4},true, ∅〉4 →∅ Solve

〈{A =< B#1, C =< A#2, B =< C#3, B =< C#4}, C = 7, ∅〉4 →∅ trs@1, 3

〈{A =< C#5, A =< B#1, C =< A#2, B =< C#3, B =< C#4}, C = 7, {trs@1, 3}〉5 →∅ asx@5, 2

〈{A = C,A =< B#1, B =< C#3, B =< C#4}, C = 7, {trs@1, 3}〉5 →∅ Solve

〈{A =< B#1, B =< C#3, B =< C#4}, (A = C ∧ C = 7), {trs@1, 3}〉5 →∅ asx@1, 3

〈{B = C,B =< C#4}, (A = C ∧ C = 7), {trs@1, 3}〉5 →∅ Solve

〈{B =< C#4}, (B = C ∧A = C ∧ C = 7), {trs@1, 3}〉5

�

The semantic domain of our compositional semantics is based on sequences which

represent derivations obtained by the transition system in Table 2.1. We first consider

“concrete” sequences consisting of tuples of the form 〈G̃, c, T,m, Im+k
m (K), G̃′, d, T ′,m′〉.

Such a tuple represents exactly a derivation step 〈G̃, c, T 〉m −→K
P 〈G̃′, d, T ′〉m′ , where k

is the number of CHR atoms inK. The sequences we consider are terminated by tuples of

the form 〈G̃, c, T, n, ∅, G̃, c, T, n〉, with either c = false or G̃ is a set of identified CHR

constraints, which represent a terminating step (see the precise definition below). Since a

sequence represents a derivation, we assume that if

. . . 〈G̃i, ci, Ti,mi, K̃i, G̃
′
i, di, T

′
i ,m

′
i〉

〈G̃i+1, ci+1, Ti+1,mi+1, K̃i+1, G̃
′
i+1, di+1, T

′
i+1,m

′
i+1〉 . . .

appears in a sequence, then G̃′i = G̃i+1, T ′i = Ti+1 and m′i ≤ mi+1 hold.

On the other hand, the input store ci+1 can be different from the output store di pro-

duced in a previous step, since we need to perform all the possible assumptions on the

constraint ci+1 produced by the external environment, in order to obtain a compositional

semantics, so we can assume thatCT |= ci+1 → di holds. This means that the assumption

made on the external environment cannot be weaker than the constraint store produced in

the previous step. This reflects the fact that information can be added to the constraint

store and cannot be deleted from it. The idea is that CT |= ci+1 → di, with ci+1 6= di,

supposes that another sequence, which generates the constraint ci+1\di is inserted, into

the sequence that we are considering to obtain a real computation, oftentimes leading to
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a concrete sequence which does not correspond a real computation. Finally, note that

assumptions on user-defined constraints (label K) are made only for the atoms which are

needed to “complete” the current goal in order to apply a clause. In other words, no as-

sumption can be made in order to apply clauses whose heads do not share any predicate

with the current goal.

Example 2.2 The following is the representation of the derivation of Example 2.1 in
terms of concrete sequences:

〈{C = 7, A =< B#1, C =< A#2, B =< C#3, B =< C#4},true, ∅, 4, ∅
{A =< B#1, C =< A#2, B =< C#3, B =< C#4}, C = 7, ∅, 4〉

〈{A =< B#1, C =< A#2, B =< C#3, B =< C#4}, C = 7, ∅, 4, ∅
{A =< C#5, A =< B#1, C =< A#2, B =< C#3, B =< C#4}, C = 7, {trs@1, 3}, 5〉

〈{A =< C#5, A =< B#1, C =< A#2, B =< C#3, B =< C#4}, C = 7, {trs@1, 3}, 5, ∅
{A = C,A =< B#1, B =< C#3, B =< C#4}, C = 7, {trs@1, 3}, 5〉

〈{A = C,A =< B#1, B =< C#3, B =< C#4}, C = 7, {trs@1, 3}, 5, ∅
{A =< B#1, B =< C#3, B =< C#4}, (A = C,C = 7), {trs@1, 3}, 5〉

〈{A =< B#1, B =< C#3, B =< C#4}, (A = C,C = 7), {trs@1, 3}, 5, ∅
{B = C,B =< C#4}, (A = C,C = 7), {trs@1, 3}, 5〉

〈{B = C,B =< C#4}, (A = C,C = 7), {trs@1, 3}, 5, ∅
{B =< C#4}, (B = C,A = C,C = 7), {trs@1, 3}, 5〉

〈{B =< C#4}, (B = C,A = C,C = 7), {trs@1, 3}, 5, ∅
{B =< C#4}, (B = C,A = C,C = 7), {trs@1, 3}, 5〉

�
We then define formally concrete sequences, which represent derivation steps, per-

formed by using the new transition system as follows:

Definition 2.1 (Concrete sequences) The set Seq containing all the possible (concrete)

sequences is defined as the set

Seq = {〈G̃1, c1, T1,m1, K̃1, G̃2, d1, T
′
1,m

′
1〉〈G̃2, c2, T2,m2, K̃2, G̃3, d2, T

′
2,m

′
2〉 · · ·

〈G̃n, cn, Tn,mn, ∅, G̃n, cn, Tn,mn〉 |
for each j, 1 ≤ j ≤ n and for each i, 1 ≤ i ≤ n− 1,

G̃j are identified CHR goals, K̃i are sets of identified CHR constraints,

Tj, T
′
i are sets of tokens, mj,m

′
i are natural numbers and

cj, di are built-in constraints such that

T ′i ⊇ Ti, Ti+1 ⊇ T ′i , m
′
i ≥ mi, mi+1 ≥ m′i,

CT |= di → ci, CT |= ci+1 → di and

either cn = false or G̃n is a set of identified CHR constraints}.
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From these concrete sequences we extract some more abstract sequences which are the

objects of our semantic domain. If 〈G̃, c, T,m, K̃, G̃′, d, T ′,m′〉 is a tuple, different from

the last one, appearing in a sequence δ ∈ Seq, we extract from it a tuple of the form

〈c, K̃, H̃, d〉 where c and d are the input and output store respectively, K̃ are the assump-

tions and H̃ the stable atoms: the restriction of goal G̃ to the identified constraints, that

will not be used any more in δ to fire a rule. The output goal G̃′ is no longer consid-

ered. Intuitively, H̃ contains those atoms which are available for satisfying assumptions

of other goals, when composing two different sequences, representing two derivations of

different goals.

If 〈ci, K̃i, H̃i, di〉〈ci+1, K̃i+1, H̃i+1, di+1〉 is in a sequence, we also assume that H̃i ⊆
H̃i+1 holds, since the set of those atoms which will not be rewritten in the derivation can

only increase. Moreover, if the last tuple in δ is 〈G̃, c, T,m, ∅, G̃, c, T,m〉, we extract from

it a tuple of the form 〈c, G̃, T 〉. We can define formally the semantic domain as follows in

the next definition but first we must define the abstract sequences that will be used from

now on.

Definition 2.2 (Sequences) The semantic domainD containing all the possible sequences

is defined as the set

D = {〈c1, K̃1, H̃1, d1〉〈c2, K̃2, H̃2, d2〉 . . . 〈cm, H̃m, T 〉 |
m ≥ 1, for each j, 1 ≤ j ≤ m and for each i, 1 ≤ i ≤ m− 1,

H̃j and K̃i are sets of identified CHR constraints,

T is a set of tokens, H̃i ⊆ H̃i+1 and ci, di are built-in constraints

such that CT |= di → ci and CT |= ci+1 → di hold}.

In order to define our semantics we need two more notions. The first one is an abstrac-

tion operator α, which extracts from the concrete sequences in Seq (representing exactly

derivation steps) the sequences used in our semantic domain. To this aim we need the

notion of stable atom.

Definition 2.3 (Stable atoms and Abstraction) Let

δ = 〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉 . . . 〈G̃m, cm, Tm, nm, ∅, G̃m, cm, Tm, nm〉
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be a sequence of derivation steps where we assume that the CHR atoms are identified. We

say that an identified atom g#l is stable in δ if g#l appears in G̃j and the identifier l

does not appear in Tj \ T1, for each 1 ≤ j ≤ m. The abstraction operator α : Seq → D
is then defined inductively as

α(〈G̃, c, T, n, ∅, G̃, c, T, n〉) = 〈c, G̃, T 〉
α(〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n

′
1〉 · δ′) = 〈c1, K̃1, H̃, d1〉 · α(δ′).

where H̃ is the set consisting of all the identified atoms h̃ such that h̃ is stable in

〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉 · δ′.

We should point out at this point that the token store does not only keep trace of the

application of the rules with empty lhs (left hand side) of \: the one equivalent of the

pure simplification rules.

The following example illustrates the use of the abstraction function α.

Example 2.3 The application of the function α to the (concrete) sequence in Example
2.2 gives the following abstract sequence:

〈true, ∅, {B =< C#4}, C = 7〉 〈C = 7, ∅, {B =< C#4}, C = 7〉 〈C = 7, ∅, {B =< C#4}, C = 7〉
〈C = 7, ∅, {B =< C#4}, (A = C ∧ C = 7)〉 〈(A = C ∧ C = 7), ∅, {B =< C#4}, (A = C ∧ C = 7)〉
〈(A = C ∧ C = 7), ∅, {B =< C#4}, (B = C ∧A = C ∧ C = 7)〉
〈(B = C ∧A = C ∧ C = 7), {B =< C#4}, {trs@1, 3}〉

�

Before defining the compositional semantics we need a further notion of compatibility.

To this end, given a sequence of derivation steps

δ = 〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉 . . . 〈G̃m, cm, Tm, nm, ∅, G̃m, cm, Tm, nm〉

and a derivation step t = 〈G̃, c, T, n, K̃, G̃′, d, T ′, n′〉, we may define

Vloc(t) = Fv(G′, d) \ Fv(G, c,K) (the local variables of t),

Vass(δ) =
⋃m−1
i=1 Fv(Ki) (the variables in the assumptions of δ) and

Vloc(δ) =
⋃m−1
i=1 Fv(Gi+1, di) \Fv(Gi, ci, Ki) (the local variables of δ, namely the vari-

ables, introduced by the clauses used in the derivation δ).
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Definition 2.4 (Compatibility) Let t = 〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉 a tuple repre-

senting a derivation step for the goal G1 and let

δ = 〈G̃2, c2, T2, n2, K̃2, G̃3, d2, T3, n
′
2〉 . . . 〈G̃m, cm, Tm, nm, ∅, G̃m, cm, Tm, nm〉

be a sequence of derivation steps forG2. We say that t is compatible with δ if the following

holds:

1. Vloc(δ) ∩ Fv(t) = ∅,

2. Vloc(t) ∩ Vass(δ) = ∅ and

3. for i ∈ [2,m], Vloc(t) ∩ Fv(ci) ⊆
⋃i−1
j=1 Fv(dj).

The three conditions of Definition 2.4 reflect the following facts: 1) The clauses in a

derivation are renamed apart; 2) The variables in the assumptions are disjointed from the

local variables (those of the rules used) in the derivation; 3) Each of the local variables

appearing in an input constraint has already appeared in an output constraint. These

conditions ensure that, by using the notation of the definition above, if t is compatible

with δ then t · δ is a sequence of derivation steps for G1. Moreover, the local variables in

a derivation δ and in the abstraction of δ are the same (Lemma 2.1). We now have all the

tools necessary to define compositional semantics.

Definition 2.5 (Compositional semantics) Let P be a program and let G be a goal. The

compositional semantics of G in the program P , SP : Goals→ ℘(D), is defined as

SP (G) = α(S ′P (G))

where α is the pointwise extension to sets of the abstraction operator given in Definition

2.3 and S ′P : Goals→ ℘(Seq) is defined inductively as follows:

S ′P (G) = {〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉 · δ ∈ Seq |

G̃1 is an identified version of G,

CT 6|= c1 ↔ false, 〈G̃1, c1, T1〉n1 −→K1
P 〈G̃2, d1, T2〉n′1

and δ ∈ S ′P (G2) for some δ such that

〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉 is compatible with δ} ∪

{〈G̃, c, T, n, ∅, G̃, c, T, n〉 ∈ Seq}.
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It can be observed that S ′P (G) is also the least fixpoint of the corresponding operator

Φ ∈ (Goals → ℘(Seq))→ Goals → ℘(Seq) defined by

Φ(I)(G) = {〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉 · δ ∈ Seq |

G̃1 is an identified version of G,

CT 6|= c1 ↔ false, 〈G̃1, c1, T1〉n1 −→K1
P 〈G̃2, d1, T2〉n′1

and δ ∈ I(G2) for some δ such that

〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉 is compatible with δ} ∪

{〈G̃, c, T, n, ∅, G̃, c, T, n〉 ∈ Seq}.

where I : Goals → ℘(Seq) stands for a generic interpretation assigning a set of

sequences to a goal. The ordering of the set of interpretations Goals → ℘(Seq) is that of

(point-wise extended) set-inclusion. It is straightforward to check that Φ is continuous (on

a CPO), thus standard results ensure that the fixpoint can be calculated by tn≥0φ
n(⊥),

where φ0 is the identity map and for n > 0, φn = φ ◦ φn−1 (see for example [DP90]).

2.2 Compositionality

In this section, we first define the semantic operator ‖ (Definition 2.9) which allows us to

compose two sets of sequences, describing the semantics of two goals, in order to obtain

the semantics of their conjunction (i.e. parallel composition). Such an operator consists

of two parts. Intuitively, if S1 and S2 are the sets we want to compose, first of all every

sequence σ1 ∈ S1 is interleaved with every sequence σ2 ∈ S2 (Definition 2.6). Then the

η operator (Definition 2.8) is applied: this adds all the sequences which can be obtained

from the original ones by to eliminating the assumptions which are satisfied by the stable

atoms (Definition 2.7).

By using the ‖ operator we are in position to prove that the semantics defined in the

previous section is and-compositional and correct with respect to the observables SAP .

We now need some more notations. Assuming that σ = 〈c1, K̃1, H̃1, d1〉〈c2, K̃2, H̃2, d2〉
· · · 〈cm, H̃m, T 〉 ∈ D is the abstraction of a sequence for the goal G, we define the over-

loaded operator id(σ) = id(
⋃m−1
i=1 K̃i) ∪ id(

⋃m
i=1 H̃i) as the set of identification values of
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all CHR constraints in σ. We define the following operators, some of which are analogous

of those already introduced for concrete sequences:

Vass(σ) =
⋃m−1
i=1 Fv(Ki) (the variables in the assumptions of σ),

Vstable(σ) = Fv(Hm) =
⋃m
i=1 Fv(Hi) (the variables in the stable sets of σ),

Vconstr(σ) =
⋃m−1
i=1 Fv(di) \ Fv(ci) (the variables in the output constraints of σ which

are not in the corresponding input constraints),

Vloc(σ) = (Vconstr(σ)∪Vstable(σ))\(Vass(σ)∪Fv(G)) (the local variables of a sequence

σ, which are the local variables of the derivations δ such that α(δ) = σ).

The ‖ operator which performs the interleaving of two sequences is defined as follows.

Definition 2.6 (Composition) The operator ‖: D×D → ℘(D) is defined as follows. Let

σ1, σ2 ∈ D be sequences for the goalsH andG, respectively, such that id(σ1)∩id(σ2) = ∅
and

(Vloc(σ1) ∪ Fv(H)) ∩ (Vloc(σ2) ∪ Fv(G)) = Fv(H) ∩ Fv(G). (2.1)

Then σ1 ‖ σ2 is defined by cases as follows:

1. If both σ1 and σ2 have length 1 and have the same store, say σ1 = 〈c, H̃, T 〉 and

σ2 = 〈c, G̃, T ′〉, then

σ1 ‖ σ2 = {〈c, H̃ ∪ G̃, T ∪ T ′〉 ∈ D}.

2. If σ2 = 〈e, G̃, T ′〉 has length 1 and σ1 = 〈c1, K̃1, H̃1, d1〉 · σ′1 has length > 1 then

σ1 ‖ σ2 = {〈c1, K̃1, H̃1 ∪ G̃, d1〉 · σ ∈ D | σ ∈ σ′1 ‖ σ2}.

3. If σ1 = 〈c, H̃, T 〉 has length 1 and σ2 = 〈e1, J̃1, Ỹ1, f1〉 · σ′2 has length > 1 then

σ1 ‖ σ2 = {〈e1, J̃1, H̃ ∪ Ỹ1, f1〉 · σ ∈ D | σ ∈ σ1 ‖ σ′2}.
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4. If both σ1 = 〈c1, K̃1, H̃1, d1〉 · σ′1 and σ2 = 〈e1, J̃1, Ỹ1, f1〉 · σ′2 have length > 1 then

σ1 ‖ σ2 = {〈c1, K̃1, H̃1 ∪ Ỹ1, d1〉 · σ ∈ D | σ ∈ σ′1 ‖ σ2} ∪
{〈e1, J̃1, H̃1 ∪ Ỹ1, f1〉 · σ ∈ D | σ ∈ σ1 ‖ σ′2}.

It is worth noting that the condition id(σ1) ∩ id(σ2) = ∅ avoids the capture of identifiers,

while the condition (2.1) in Definition 2.6 imposes the fact that there are no common

local variables between the two sequences σ1 and σ2. This will be used in the proofs to

ensure that when using Apply′ rules to concrete sequences generating σ1 and σ2, no local

variables are shared.

Example 2.4 We now show an example of abstract sequences for the goals (A =<
B,C =< A) and (C = 7, B =< C,B =< C), using the program in Example 2.1.
The goal (A =< B,C =< A) has the derivation d =

〈{A =< B#1, C =< A#2}, C = 7, ∅〉4 →{B=<C} trs@1, 5

〈{A =< C#6, B =< C#5, A =< B#1, C =< A#2}, C = 7, {trs@1, 5}〉6 →∅ asx@6, 2

〈{A = C,B =< C#5, A =< B#1}, C = 7, {trs@1, 5}〉6 →∅ Solve

〈{B =< C#5, A =< B#1}, (A = C ∧ C = 7), {trs@1, 5}〉6 →∅ asx@5, 1

〈{B = C}, (A = C ∧ C = 7), {trs@1, 5}〉6 →∅ Solve

〈∅, (B = C ∧A = C ∧ C = 7), {trs@1, 5}〉6

and denoting by δ the sequence arising from such a computation d, we obtain the abstract
sequence α(δ) =

〈C = 7, {B =< C#5}, ∅, C = 7〉 (a)

〈C = 7, ∅, ∅, C = 7〉 (b)

〈C = 7, ∅, ∅, (A = C ∧ C = 7)〉 (c)

〈(A = C ∧ C = 7), ∅, ∅, (A = C ∧ C = 7)〉 (d)

〈(A = C ∧ C = 7), ∅, ∅, (B = C ∧A = C ∧ C = 7)〉 (e)

〈(B = C ∧A = C ∧ C = 7), ∅, {trs@1, 5}〉 (f)

Moreover, we have the following derivation step for (C = 7, B =< C,B =< C)

〈{C = 7, B =< C#3, B =< C#4},true, ∅〉4 →∅ 〈{B =< C#3, B =< C#4}, C = 7, ∅〉4 Solve

and therefore we can say that

γ = 〈 {C = 7, B =< C#3, B =< C#4},true, ∅, 4, ∅, {B =< C#3, B =< C#4}, C = 7, ∅, 4〉
〈 {B =< C#3, B =< C#4}, (B = C ∧A = C ∧ C = 7), ∅, 4, ∅,
{B =< C#3, B =< C#4}, (B = C ∧A = C ∧ C = 7), ∅, 4〉

is a sequence for (C = 7, B =< C,B =< C). Then α(γ) is the following sequence

〈true, ∅, {B =< C#3, B =< C#4}, C = 7〉 (g)

〈(B = C ∧A = C ∧ C = 7), {B =< C#3, B =< C#4}, ∅〉 (h)

�
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The following substitution operator is used in order to satisfy an assumption, by using

a stable atom. It allows us to replace the assumption g#j by the identified stable atom

h#i everywhere in the sequence, and to replace j by the identifier i in every element of

token set, provided that token set cardinality does not decrease.

Definition 2.7 (Substitution operators) Let T be a token set, S be a set of identified

atoms, id1, . . . , ido, id
′
1, . . . , id

′
o be identification values and let g1#id1, . . . , go#ido,

h1#id
′
1, . . . , ho#id

′
o be identified atoms.

Moreover, let σ = 〈c1, K̃1, H̃1, d1〉〈c2, K̃2, H̃2, d2〉 · · · 〈cm, H̃m, T 〉 ∈ D.

• T ′ = T [id1/id
′
1, . . . , ido/id

′
o] is the token set obtained from T , by substituting each

occurrence of the identifier idl with id′l, for 1 ≤ l ≤ o. The operation is defined

if T and T ′ have the same cardinality (namely, there are no elements in T which

collapse when we apply the substitution).

• S[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o] is the set of identified atoms obtained from

S, by substituting each occurrence of the identified atom gl#idl with hl#id′l, for

1 ≤ l ≤ o.

• σ′ = σ [g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o] is defined only if

T ′ = T [id1/id
′
1, . . . , ido/id

′
o] is defined and in this case

σ′ = 〈c1, K̃ ′1, H̃ ′1, d1〉〈c2, K̃ ′2, H̃ ′2, d2〉 · · · 〈cm, H̃ ′m, T ′〉 ∈ D,

with 1 ≤ l ≤ m− 1, 1 ≤ p ≤ m, K̃ ′l = K̃l[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o]

and H̃ ′p = H̃p[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o].

The η operator performs the satisfaction of assumptions, using stable atoms in the

composed sequence, as previously mentioned.

Definition 2.8 (η operator) Let W̃ be a set of identified CHR atoms, let σ be a sequence

in D of the form

〈c1, K̃1, H̃1, d1〉〈c2, K2, H2, d2〉 . . . 〈cm, H̃m, T 〉.
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We denote by σ \ W̃ ∈ D the sequence

〈c1, K̃1, H̃1 \ W̃ , d1〉〈c2, K̃2, H̃2 \ W̃ , d2〉 . . . 〈cm, H̃m \ W̃ , T 〉

(where the sets difference H̃j \ W̃ considers identifications, with 1 ≤ j ≤ m).

The operator η : ℘(D)→ ℘(D) is defined as follows. Given S ∈ ℘(D), η(S) is the least

set, satisfying the following conditions:

• S ⊆ η(S);

• if σ′ · 〈c, K̃, H̃, d〉 · σ′′ ∈ η(S) and two sets of identified atoms exist, namely K̃ ′ =

{g1#id1, . . . , go#ido} ⊆ K̃ and W̃ = {h1#id
′
1, . . . , ho#id

′
o} ⊆ H̃ such that

1. for 1 ≤ l ≤ o, CT |= (c ∧ gl)↔ (c ∧ hl) and

2. σ̄ = ((σ′ · 〈c, K̃ \ K̃ ′, H̃, d〉 · σ′′) \ W̃ ) [g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o]

is defined,

then σ̄ ∈ η(S).

Note that Definition 2.8 introduces an upper closure operator1 which satisfies a set of

sequences S, by adding new sequences where redundant assumptions can be removed.

An assumption g#i in K̃ can be removed if h#j appears as a stable atom in H̃ and the

built-in store c implies that g is equivalent to h. Once a stable atom is “consumed” for

satisfying an assumption, it is removed from the sets of stable atoms of all the tuples

appearing in the sequence, to avoid multiple uses of the same atom.

We can finally define the composition operator ‖ on sets of sequences. To simplify the

notation we denote with the symbol ‖ both the operator acting on sequences in addition

to the one acting on sets of sequences.

1S ⊆ η(S) holds by definition, and it is easy to see that η(η(S)) = η(S) holds and that S ⊆ S′ implies

η(S) ⊆ η(S′).
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Definition 2.9 (Set of sequence composition) The composition of sets of sequences ‖:
℘(D)× ℘(D)→ ℘(D) is defined by:

S1 ‖ S2 = {σ ∈ D | there exists σ1 ∈ S1 and σ2 ∈ S2 such that

σ = 〈c1, K̃1, H̃1, d1〉 · · · 〈cm, H̃m, T 〉 ∈ η(σ1 ‖ σ2),

(Vloc(σ1) ∪ Vloc(σ2)) ∩ Vass(σ) = ∅ and for i ∈ [1,m]

(Vloc(σ1) ∪ Vloc(σ2)) ∩ Fv(ci) ⊆
⋃i−1
j=1 Fv(dj)}.

The first condition on variables ensures that local variables of σ, that are the ones used

in the derivation of which σ is abstraction, are different from the ones used by assumptions

of σ. The second condition ensures that σ is an abstraction of a derivation that satisfies

condition 3 of Definition 2.4 (Compatibility).

Example 2.5 We now consider an application of Definition 2.9, by using the two abstract
sequences of Example 2.4, showing that this composition gives us the sequence in Exam-
ple 2.3. First of all, we compose the abstract sequences α(δ) and α(γ) of Example 2.4 by
using Definition 2.6 and obtaining (among others) the following interleaved sequence:

〈true, ∅, {B =< C#3, B =< C#4}, C = 7〉 g(a)

〈C = 7, {B =< C#5}, {B =< C#3, B =< C#4}, C = 7〉 a(h)

〈C = 7, ∅, {B =< C#3, B =< C#4}, C = 7〉 b(h)

〈C = 7, ∅, {B =< C#3, B =< C#4}, (A = C,C = 7)〉 c(h)

〈(A = C,C = 7), ∅, {B =< C#3, B =< C#4}, (A = C,C = 7)〉 d(h)

〈(A = C,C = 7), ∅, {B =< C#3, B =< C#4}, (B = C,A = C,C = 7)〉 e(h)

〈(B = C,A = C,C = 7), {B =< C#3, B =< C#4}, {trs@1, 5}〉 f and h

where g(a) means that the tuple g and the stable atoms of tuple (a) have been used (and
analogously for the other steps), until the last step of interleaving, that uses f and h,
closes the composition. The application of Definition 2.8, by also using Definition 2.7,
substitutes the constraint labelled by the identifier #5 for the one labelled by #3. This is
represented by crossing both constraints.

〈true, ∅, {B =< C#3, B =< C#4}, C = 7〉 g(a)

〈C = 7, {B =< C# 6 5→ 3}, {B =< C#3, B =< C#4}, C = 7〉 a(h)

〈C = 7, ∅, {B =< C#3, B =< C#4}, C = 7〉 b(h)

〈C = 7, ∅, {B =< C#3, B =< C#4}, (A = C,C = 7)〉 c(h)

〈(A = C,C = 7), ∅, {B =< C#3, B =< C#4}, (A = C,C = 7)〉 d(h)

〈(A = C,C = 7), ∅, {B =< C#3, B =< C#4}, (B = C,A = C,C = 7)〉 e(h)

〈(B = C,A = C,C = 7), {B =< C#3, B =< C#4}, {trs@1, 6 5→ 3}〉 f and h

Note that another application of Definition 2.8 is possible by satisfying the assumption
with the stable atom B =< C#4. Definition 2.8 then also produces, among others, the
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following sequence:

〈true, ∅, {B =< C#4[3]}, C = 7〉 g(a)

〈C = 7, ∅, {B =< C#4[3]}, C = 7〉 a(h)

〈C = 7, ∅, {B =< C#4[3]}, C = 7〉 b(h)

〈C = 7, ∅, {B =< C#4[3]}, (A = C,C = 7)〉 c(h)

〈(A = C,C = 7), ∅, {B =< C#4[3]}, (A = C,C = 7)〉 d(h)

〈(A = C,C = 7), ∅, {B =< C#4[3]}, (B = C,A = C,C = 7)〉 e(h)

〈(B = C,A = C,C = 7), {B =< C#4[3]}, {trs@1, 3[4]}〉 f and h

which is equal to the one found in Example 2.3. Here 4[3] represents the two possibilities,

namely, the constraint labelled by #5 is satisfied by the one labelled by #3 or by #4,

respectively. �

Using this notion of composition of sequences we can show that the semantics SP
is compositional. Before proving the compositionality theorem we need some technical

lemmata.

Now four main lemmas, which are directly used in the theorem, and other minor

lemmata, which are used to prove the main lemmata, are given.

Let us introduce some further notations that are used in the following lemmas. Given

a sequence γ, where γ ∈ Seq ∪ D, we will denote by length(γ), Inc(γ), Ass(γ) and

Stable(γ) the length of the sequence γ, the set of the input constraints of γ, the set of

non-identified assumptions of γ and the set of non-identified atoms in the last goal of γ

respectively. We denote by ε the empty sequence. Moreover, let δ ∈ Seq be a sequence

of derivation steps

δ = 〈B̃1, c1, T1, n1, K̃1, B̃2, d1, T2, n
′
1〉 . . . 〈B̃m, cm, Tm, nm, ∅, B̃m, cm, Tm, nm〉.

We denote by InG(δ), Intok(δ) and Inid(δ) the identified goal B̃1, the token set T1 and

the counter n1, respectively.

Finally, we denote by Aloc(δ) the set of the CHR-atoms in the (renamed) clauses,

used in a derivation represented by δ.

Now, let W̃ be a set of identified CHR-constraints, such that for each i ∈ id(W̃ ) and

j ∈ id(B̃1), we can say that i ≤ n1 and i 6= j. We denote by δ ⊕ W̃ the sequence

〈(B̃1, W̃ ), c1, T1, n1, K̃1, (B̃2, W̃ ), d1, T2, n
′
1〉 · · ·

〈(B̃m, W̃ ), cm, Tm, nm, ∅, (B̃m, W̃ ), cm, Tm, nm〉.
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The following first main lemma states that, considering a sequence δ in a concrete

semantics, the free variables in the assumptions and the local variables in δ are the same

as the ones in the abstraction of δ.

Lemma 2.1 Let G be a goal, δ ∈ S ′P (G) and let σ = α(δ). Then Vr(δ) = Vr(σ) holds,

where r ∈ { ass, loc }.

Proof Let us consider the following two sequences (where G̃1 is an identified version of

G):

δ = 〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉 . . . 〈G̃m, cm, Tm, nm, ∅, G̃m, cm, Tm, nm〉

and

σ = 〈c1, K̃1, H̃1, d1〉 . . . 〈cm, H̃m, Tm〉,

where H̃m = G̃m.

The proof follows:

Vass(δ) =
m−1⋃
i=1

Fv(Ki) = Vass(σ)

(2.2)

Now, we will prove that Vloc(δ) = Vloc(σ). The proof is by induction on m =

length(δ).

We now recall the definitions of Vloc:

Vloc(t) = Fv(G2, d1) \ Fv(G1, c1, K1)

Vloc(δ) =
m−1⋃
i=1

Fv(Gi+1, di) \ Fv(Gi, ci, Ki)

Vloc(σ) = (Vconstr(σ) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G))

m = 1) In this case δ = 〈G̃, c, T, n, ∅, G̃, c, T, n〉, σ = 〈c, G̃, T 〉, and therefore, by defi-

nition Vloc(δ) = Vloc(σ) = ∅.
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m ≥ 1) Let

δ = 〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉〈G̃2, c2, T2, n2, K̃2, G̃3, d2, T3, n

′
2〉 · · ·

〈G̃m, cm, Tm, nm, ∅, G̃m, cm, Tm, nm〉.

By definition of S ′P (G), there exists δ′ ∈ S ′P (G2) such that

t = 〈G̃1, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉

is compatible with δ′ and δ = t · δ′ ∈ Seq.

By inductive hypothesis, we can say that Vloc(δ′) = Vloc(σ
′), where σ′ = α(δ′).

Moreover, by definition of function α, σ = 〈c1, K̃1, H̃1, d1〉 · σ′, where H̃1 is the set

consisting of all the identified atoms that are stable in δ.

By definition of Vloc and by inductive hypothesis

Vloc(δ) =
m−1⋃
i=1

Fv(Gi+1, di) \ Fv(Gi, ci, Ki)

= Vloc(δ
′) ∪ (Fv(G2, d1) \ Fv(G1, c1, K1))

= Vloc(σ
′) ∪ (Fv(G2, d1) \ Fv(G1, c1, K1)). (2.3)

Moreover, by definition of Vloc(σ) and since Vstable(σ) = Vstable(σ
′), we can say

that

Vloc(σ
′) = (Vconstr(σ

′) ∪ Vstable(σ)) \ (Vass(σ
′) ∪ Fv(G2)). (2.4)

Therefore, considering the equations (2.3) and (2.4), using the properties of ∪ and

observing that Fv(G2) ∩ Fv(G1, c1, K1) = Fv(G2) ∩ Fv(G1, K1) because of the

behaviour of Solve′ and Apply′2 we are in position to write:

Vloc(δ) = ((Vconstr(σ
′) ∪ Vstable(σ)) \ (Vass(σ

′) ∪ Fv(G2)))

∪ (Fv(G2) \ Fv(G1, K1)) ∪ (Fv(d1) \ Fv(G1, c1, K1)). (2.5)

2 Solve′ : Fv(G2) ∩ Fv(G1, c1,K1) = Fv(G2) ∩ Fv(G1);

Apply′ : fresh variable of the rule can not be in c1.
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Now, let x ∈ Fv(K1). By definition x ∈ Fv(t), since t is compatible with δ′ and

by point 1 of Definition 2.4 (Compatibility), that is Vloc(δ′) ∩ Fv(t) = ∅, we can

say that x 6∈ Vloc(δ
′) = Vloc(σ

′) and therefore considering (2.4) we can add x to

Vass(σ
′) ∪ Fv(G2) without any problem. Then by (2.5)

Vloc(δ) = ((Vconstr(σ
′) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G2)))

∪ (Fv(G2) \ Fv(G1, K1)) ∪ (Fv(d1) \ Fv(G1, c1, K1)). (2.6)

We will now only consider the first part of the equation found in (2.6): by properties

of ∪, and considering that the variables that we can add using Fv(G2)∩Fv(G1, K1)

instead of Fv(G2) are yet added by Fv(G2) \ Fv(G1, K1), we can say that

((Vconstr(σ
′) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G2))) ∪

(Fv(G2) \ Fv(G1, K1)) =

((Vconstr(σ
′) ∪ Vstable(σ)) \ (Vass(σ) ∪ (Fv(G2) ∩ Fv(G1, K1)))) ∪

(Fv(G2) \ Fv(G1, K1)) =

((Vconstr(σ
′) ∪ Vstable(σ)) \ (Vass(σ) ∪ (Fv(G2) ∩ Fv(G1)))) ∪

(Fv(G2) \ Fv(G1, K1)), (2.7)

where the last equality follows by observing that Fv(K1) ⊆ Vass(σ).

Now let x ∈ Fv(G1) \ Fv(G2) and let us assume that x ∈ Vconstr(σ′) ∪ Vstable(σ).

Then x 6∈ Vloc(δ
′) = Vloc(σ

′) because x ∈ Fv(t) and by Definition 2.4 point 1

(Compatibility) Vloc(δ′)∩ Fv(t) = ∅. Therefore since x 6∈ Fv(G2), by considering

the equation found in (2.4) we can say that x ∈ Vass(σ′) ⊆ Vass(σ). According to

the previous results and through (2.6) and (2.7), we can say that

Vloc(δ) = ((Vconstr(σ
′) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G1)))

∪ (Fv(G2) \ Fv(G1, K1)) ∪ (Fv(d1) \ Fv(G1, c1, K1)). (2.8)

Now let x ∈ (Fv(d1) \ Fv(c1)) ∩ Vass(σ′). Since by point 2 of Definition 2.4
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(Compatibility) Vloc(t) ∩ Vass(σ′) = ∅, we can say that x ∈ Fv(G1, K1). Then

Fv(d1) \ Fv(G1, c1, K1) = (Fv(d1) \ Fv(c1)) \ Fv(G1, K1)

= (Fv(d1) \ Fv(c1)) \ (Fv(G1, K1) ∪ Vass(σ′))
= (Fv(d1) \ Fv(c1)) \ (Fv(G1) ∪ Vass(σ)).

Considering the previous result we can further say that

Vloc(δ) = ((Vconstr(σ) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G1))) ∪

(Fv(G2) \ Fv(G1, K1)). (2.9)

Finally you may observe that if x ∈ Fv(G2) \ Fv(G1, K1), then an Apply′ step

occurred, x ∈ Vloc(t) and therefore, by Definition 2.4 of compatibility at point 2,

x 6∈ Vass(σ). Moreover, according to point 3 of Definition 2.4 (Compatibility),

that says for i ∈ [2,m], Vloc(t) ∩ Fv(ci) ⊆
⋃i−1
j=1 Fv(dj), we can conclude that

x ∈ Vconstr(σ) ∪ Vstable(σ). In fact, if no derivation step in δ uses an atom g ∈ G2

containing the variable x, then x ∈ Fv(Gm) = Vstable(σ). Otherwise, by definition

of the derivation step, there is a least index k ∈ [1,m = 1] such that x ∈ Fv(dk)

and according to point 3 of Definition 2.4 (compatibility) x 6∈ Fv(ck), so x will

appear in Fv(dk) \ Fv(ck) ⊆ Vconstr(σ). Then as seen in (2.9), by the previous

result and by definition of Vloc,

Vloc(δ) = ((Vconstr(σ) ∪ Vstable(σ)) \ (Vass(σ) ∪ Fv(G1))) = Vloc(σ)

the thesis thus holds.

2

The identifiers are introduced to the constraints only to distinguish two different occur-

rences of the same atom, so we can freely rename them without any unforeseen difficulty.

We recall that a renaming is a substitution of the form [j1/i1, . . . , jo/io], where j1, . . . , jo

are distinct identification values and i1, . . . , io is a permutation of j1, . . . , jo. We will use

ρ, ρ′, . . . to denote renamings.

Definition 2.10 (Index rename) Let σ, σ1, σ2 ∈ D and let S1, S2 ∈ ℘(D).
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• Let ρ = [j1/i1, . . . , jo/io] be a renaming. σρ is the sequence obtained from σ, by

substituting each occurrence of the identification value jl with the corresponding il,

for l ∈ [1, o].

• σ1 ' σ2 if there exists a renaming ρ such that σ1 = σ2ρ.

• S1 � S2 if for each σ1 ∈ S1 there exists σ2 ∈ S2 such that σ1 ' σ2.

• S1 ' S2 if S1 � S2 and S2 � S1.

We can also note that if σ1 ' σ2 there therefore exists a renaming ρ = [i1/j1, . . . io/jo]

such that σ1 = σ2ρ. There also exists a renaming ρ−1[j1/i1, . . . jo/io] such that σ1ρ
−1 =

σ2.

Now, four minor lemmata, which are used to prove the second main lemma, are intro-

duced. The proof of the following three minor lemmas is straightforward by definition of

derivation and of '.

The following lemma states that we can obtain two concrete sequences that differ only

from the same fixed subset of tokens in each tuple.

Lemma 2.2 Let G be a goal, δ ∈ S ′P (G) such that

δ = 〈G̃, c1, T1, n1, K̃1, G̃2, d1, T2, n
′
1〉〈G̃2, c2, T2, n2, K̃2, G̃3, d2, T3, n

′
2〉

· · · 〈G̃m, cm, Tm, nm, ∅, G̃m, cm, Tm, nm〉,

where G̃ is an identified version of G. Let T ′1 ⊆ T1. Then there exists a derivation

δ′ ∈ S ′P (G)

δ′ = 〈G̃, c1, T ′1, n1, K̃1, G̃2, d1, T
′
2, n

′
1〉〈G̃2, c2, T

′
2, n2, K̃2, G̃3, d2, T

′
3, n

′
2〉

· · · 〈G̃m, cm, T
′
m, nm, ∅, G̃m, cm, T

′
m, nm〉,

such that Tm \ T ′m = T1 \ T ′1.

The following lemma proves that every concrete sequence δ, that is obtained from the

goal (H,G), where the first step is made by an Apply′ rule, can be obtained, with the sole

exception of first tuple and an index renaming, from the goal H , assuming in the first step

the constraints in G, that are all used in the Apply′ rule.
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Lemma 2.3 Let H,G be goals and let δ ∈ S ′P (H,G) such that

δ = 〈(H̃, G̃), c1, T1, n1, K̃1, R̃2, d1, T2, n
′
1〉〈R̃2, c2, T2, n2, K̃2, R̃3, d2, T3, n

′
2〉

· · · 〈R̃m, cm, Tm, nm, ∅, R̃m, cm, Tm, nm〉
= 〈(H̃, G̃), c1, T1, n1, K̃1, R̃2, d1, T2, n

′
1〉 · δ1

where H̃ = (H̃ ′, H̃ ′′) and G̃ are identified versions of H = (H ′, H ′′) and G, respectively,

H ′′ 6= ∅ and the first tuple of the sequence δ represents a derivation step s, which is made

by an Apply’ rule and uses only all the atoms in (H̃ ′′, G̃). There then exists a derivation

δ′ ∈ S ′P (H),

δ′ = 〈H̃, c1, T1, n1, K̃
′
1 ∪ G̃′, R̃′2, d1, T

′
2, l
′
1〉〈R̃′2, c2, T ′2, l2, K̃ ′2, R̃′3, d2, T

′
3, l
′
2〉

· · · 〈R̃′m, cm, T ′m, lm, ∅, R̃′m, cm, T ′m, lm〉,
= 〈H̃, c1, T1, n1, K̃

′
1 ∪ G̃′, R̃′2, d1, T

′
2, l
′
1〉 · δ′1

and there further exists a renaming ρ such that δ′1 = δ1ρ, K̃ ′1 = K̃1ρ and G̃′ = G̃ρ.

The next Lemma says that if we can add a set of identified constraints to the goal

store (such that there are sufficient free indices) of a concrete sequence then the sequence

obtained is a concrete sequence too.

Lemma 2.4 Let G be a goal, W̃ be a set of identified atoms and let δ ∈ S ′P (G) such that

δ ⊕ W̃ is defined and Fv(W̃ ) ∩ Vloc(δ) = ∅. Then δ ⊕ W̃ ∈ S ′P (G, chr(W̃ )).

The following not immediate lemma proves that we can obtain the same concrete

semantics both from a goal and from one part of it, where at most only different identifiers

can be used. It is used in Lemma 2.6. We then impose some characteristics to arrive at

the desired result.

Lemma 2.5 Let P be a program and let H and G be two goals such that there exists a

derivation step

s = 〈(H̃, G̃), c1, T1〉n1 −→K1
P 〈(B̃, G̃), d1, T2〉n′1 ,
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where H̃ and G̃ are identified versions of H and G respectively and only the atoms in H̃

are rewritten in s.

Assume that there exists δ ∈ S ′P (H,G) such that δ = t · δ′ ∈ Seq, where

t = 〈(H̃, G̃), c1, T1, n1, K̃1, (B̃, G̃), d1, T2, n
′
1〉,

δ′ ∈ S ′P (B,G) and t is compatible with δ′. Moreover, assume that there exists δ′1 ∈ S ′P (B)

and δ′2 ∈ S ′P (G), such that

1. InG(δ′1) = B̃, InG(δ′2) = G̃, Intok(δ′1) = Intok(δ′2) = T2,

for i ∈ {1, 2}, Inid(δ′i) ≥ n′1, Vloc(δ′i) ⊆ Vloc(δ
′) and Inc(δ′i) ⊆ Inc(δ′).

2. Ass(δ′1) ⊆ Ass(δ′) ∪ Aloc(δ′2) ∪ InG(δ′2) and Ass(δ′2) ⊆ Ass(δ′) ∪ Aloc(δ′1) ∪
InG(δ′1),

3. α(δ′1) ‖ α(δ′2) is defined and that there exists σ′ ∈ η(α(δ′1) ‖ α(δ′2)) such that

σ′ ' α(δ′).

Thus, δ1 = t′ · δ′1 ∈ S ′P (H), where t′ = 〈H̃, c1, T1, n1, K̃1, B̃, d1, T2, n
′
1〉, α(δ1) ‖ α(δ′2) is

defined and there exists σ ∈ η(α(δ1) ‖ α(δ′2)) such that σ ' α(δ).

Proof In the following proof we assume that

δ′1 = 〈B̃1, e1, T2, h1, M̃1, B̃2, f1, T
′
2, h
′
1〉 · · · 〈B̃l, el, T

′
l , hl, ∅, B̃l, el, T

′
l , hl〉

δ′2 = 〈G̃1, r1, S2, j1, Ñ1, G̃2, s1, S
′
2, j
′
1〉 · · · 〈G̃p, rp, S

′
p, jp, ∅, G̃p, rp, S

′
p, jp〉

δ′ = 〈R̃2, c2, T2, n2, K̃2, R̃3, d2, T3, n
′
2〉 · · · 〈R̃m, cm, Tm, nm, ∅, R̃m, cm, Tm, nm〉,

where B1 = B̃, G1 = G̃, R2 = (B̃, G̃) and el = rp = cm (our sequence needs the last

condition to close the composition (cmp. Definition 2.6)). The following then holds.

(a) t′ represents the derivation step s′ = 〈H̃, c1, T1〉n1 −→K1
P 〈B̃, d1, T2〉n′1 . The proof is

straightforward, by observing that t represents the derivation step

s = 〈(H̃, G̃), c1, T1〉n1 −→K1
P 〈(B̃, G̃), d1, T2〉n′1 ,

which uses only atoms in H̃ .
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(b) δ1 ∈ S ′P (H). By considering the previous point, by hypothesis and by definition of

S ′P (H), we have to prove that δ1 ∈ Seq and that Definition 2.4 is satisfied, ac-

cording to the hypothesis InG(δ′1) = B̃, Intok(δ′1) = T2, Inid(δ′1) = h1 ≥ n′1

and Inc(δ′1) ⊆ Inc(δ′) (and then CT |= instore(δ′1) → instore(δ′)). Moreover,

since δ = t · δ′ ∈ Seq, we can say that CT |= instore(δ′) → d1 and therefore

CT |= instore(δ′1)→ d1 through transitivity. Then we have only to prove that t′ is

compatible with δ′1 and so that the three conditions of Definition 2.4 hold.

The following points then hold:

1. According to the hypothesis Vloc(δ′1) ⊆ Vloc(δ
′) and the construction Fv(t′) ⊆

Fv(t). Then Vloc(δ′1)∩Fv(t′) ⊆ Vloc(δ
′)∩Fv(t) = ∅, where the last equality

follows since t is compatible with δ′.

2. We can say that:

Vloc(t
′) ∩ Vass(δ′1) ⊆
(since Vloc(t′) = Vloc(t) through the construction and

Ass(δ′1) ⊆ Ass(δ′) ∪ Aloc(δ′2) ∪ InG(δ′2) as per hypothesis)

Vloc(t) ∩ (Vass(δ
′) ∪ Vloc(δ′2) ∪ Fv(G)) ⊆

(since through the hypothesis Vloc(δ′2) ⊆ Vloc(δ
′) and

Vloc(t) ∩ Fv(G) = ∅ as per construction)

Vloc(t) ∩ (Vass(δ
′) ∪ Vloc(δ′)) =

(since t is compatible with δ′ and Vloc(t) ⊆ Fv(t))

∅

3. We have to prove that with 1 ≤ i ≤ l,

Vloc(t
′) ∩ Fv(ei) ⊆

i−1⋃
j=1

Fv(fj) ∪ Fv(d1).

First of all, observe that since t is compatible with δ′, per construction x ∈
Vloc(t

′) = Vloc(t) and for i ∈ {1, 2}, Vloc(δ′i) ⊆ Vloc(δ
′) we can say that

x 6∈ Fv(H) ∪ Fv(G) ∪ Vloc(δ′1) ∪ Vloc(δ′2) ∪ Vass(δ′). (2.10)
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Moreover, through the hypothesis Inc(δ′1) ⊆ Inc(δ′), there therefore exists

the least index h ∈ [2,m] such that ei = ch. Therefore, since, by construction,

Vloc(t
′) = Vloc(t) and, by hypothesis, t is compatible with δ′, considering a

generic variable x ∈ Vloc(t′) ∩ Fv(ei), we have that

x ∈
h−1⋃
j=1

Fv(dj).

Then, to prove the thesis, we have to prove that if x ∈
⋃h−1
j=1 Fv(dj) then

x ∈
⋃i−1
j=1 Fv(fj) ∪ Fv(d1). If x ∈ Fv(d1) then the thesis holds.

Let us assume that x 6∈ Fv(d1), x ∈
⋃h−1
j=2 Fv(dj) and let k be the least index

j ∈ [2, h− 1] such that x ∈ Fv(dj). Now, we have two possibilities:

(a) dk is an output constraint of δ′1, i.e. there exists j ∈ [1, i − 1] such that

dk = fj , then we have the proof.

(b) dk is an output constraint of δ′2, namely there exists w ∈ [1, p] such that

dk = sw. Then, since k is the least index j such that x ∈ Fv(dj), x ∈
Vloc(t) and, by hypothesis, t is compatible with δ′, we have that x 6∈
Fv(ck) and therefore x 6∈ Fv(rw).

Moreover, since by (2.10) and by point 2 of the hypothesis, x 6∈ Fv(G)∪
Vloc(δ

′
2) ∪ Vass(δ′2), we can say that x 6∈ Fv(Gw).

Then by definition of derivation step, we have a contradiction, since x ∈
Fv(sw) \ (Fv(rw) ∪ Fv(Gw) ∪ Vloc(δ′2) ∪ Vass(δ′2)).

(c) α(δ1) ‖ α(δ′2) is defined. Now we consider Definition 2.6. First of all, observe that

id(δ1)∩id(δ′2) = ∅ since α(δ′1) ‖ α(δ′2) is defined (and therefore id(δ′1)∩id(δ′2) = ∅)
and since by hypothesis Inid(δ′2) = j1 ≥ n′1. Then we only have to prove that

(Vloc(α(δ1)) ∪ Fv(H)) ∩ (Vloc(α(δ′2)) ∪ Fv(G)) = Fv(H) ∩ Fv(G).

By Lemma 2.1

Vloc(α(δ1)) = Vloc(α(δ′1)) ∪ Vloc(t′). (2.11)

and since α(δ′1) ‖ α(δ′2) is defined, we can say that

(Vloc(α(δ′1)) ∪ Fv(B)) ∩ (Vloc(α(δ′2)) ∪ Fv(G)) = Fv(B) ∩ Fv(G).
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From the above, we can therefore maintain that

Vloc(α(δ′1)) ∩ (Vloc(α(δ′2)) ∪ Fv(G)) = ∅. (2.12)

Now observe that, since t is compatible with δ′ (Definition 2.4 at point 1): Vloc(δ′)∩
Fv(t) = ∅ holds, Vloc(t′) = Vloc(t) per construction and, according to Lemma 2.1,

we can conclude that Vloc(t′)∩Vloc(α(δ′)) = ∅. Furthermore, through the hypothesis

Vloc(α(δ′2)) ⊆ Vloc(α(δ′)) and according to the definition of t, we have that Fv(G)∩
Vloc(t

′) = Fv(G) ∩ Vloc(t) = ∅. Then

Vloc(α(δ1)) ∩ (Vloc(α(δ′2)) ∪ Fv(G)) =

(Vloc(α(δ′1)) ∪ Vloc(t′)) ∩ (Vloc(α(δ′2)) ∪ Fv(G)) = ∅. (2.13)

Finally, since t is compatible with δ′ as in Definition 2.4 point 1: Vloc(δ′)∩Fv(t) =

∅), as per constructionFv(H) ⊆ Fv(t) and the hypothesis Vloc(α(δ′2)) ⊆ Vloc(α(δ′))

we can say that

Fv(H) ∩ Vloc(α(δ′2)) ⊆ Fv(H) ∩ Vloc(α(δ′)) = ∅ (2.14)

and that the thesis thus holds for (2.11), (2.13), (2.14) and for the properties of set

operators.

(d) There exists σ ∈ η(α(δ1) ‖ α(δ′2)) such that σ ' α(δ). By inductive hypothesis

α(δ′) ' σ′ ∈ η(α(δ′1) ‖ α(δ′2)). Through the definition of ', there exists a renam-

ing ρ such that

α(δ′) = σ′ρ. (2.15)

Since by hypothesis InG(δ′) = (InG(δ′1), InG(δ′2)) and Intok(δ′1) = Intok(δ′2) =

Intok(δ′), without loss of generality, we can assume that

t′ρ = t′. (2.16)

Moreover, by definition of ‖ there exists σ1 ∈ α(δ′1) ‖ α(δ′2) such that σ′ ∈ η({σ1})
and

〈c1, K̃1, (J̃1 ∪ Ỹ1), d1〉 · σ1 ∈ α(δ1) ‖ α(δ′2),
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where J̃1 is the set of atoms in H̃ which are not rewritten in δ1 and Ỹ1 the set of

atoms in G̃ which are not rewritten in δ′2.

Let us denote the following symbols where:

• J̃2 is the set of atoms in B̃ which are not rewritten in δ′1,

• W̃1 is the set of atoms in (H̃, G̃) which are not rewritten in δ and

• W̃2 is the set of atoms in (B̃, G̃) which are not rewritten in δ′.

According to the definition of α,

α(δ) = 〈c1, K̃1, W̃1, d1〉 · α(δ′). (2.17)

According to the definition of η and since σ′ ∈ η({σ1}),

〈c1, K̃1, (J̃1 ∪ Ỹ1) \ S, d1〉 · σ′ ∈ η(α(δ1) ‖ α(δ′2)), (2.18)

where the sets difference (J̃1 ∪ Ỹ1) \ S considers identification values and S is

such that (J̃2 ∪ Ỹ1) \ S = W̃2. Since (J̃1 ∪ Ỹ1) ⊆ (J̃2 ∪ Ỹ1), we can assume that

W̃ = (J̃1∪ Ỹ1)\S = (J̃1∪ Ỹ1)∩W̃2. Then by definition, W̃ contains all and solely

the atoms in (H̃, G̃) which are not rewritten in t and in δ′ and therefore W̃ = W̃1.

Therefore by (2.18)

〈c1, K̃1, W̃1, d1〉 · σ′ ∈ η(α(δ1) ‖ α(δ′2)).

Then
(〈c1, K̃1, W̃1, d1〉 · σ′) ρ = (by (2.16))

〈c1, K̃1, W̃1, d1〉 · (σ′ρ) = (by (2.15))

〈c1, K̃1, W̃1, d1〉 · α(δ′) = (by (2.17))

α(δ)

and this completes the proof.

2

The following second main lemma states that, fixed a concrete sequence derived by

the goal (H,G), there then exist two concrete sequences that are derived from H and G,

for which there further exists an abstract composition that is equal to the abstraction of

the fixed sequence.
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Lemma 2.6 Let P be a program, H and G be two goals and assume that δ ∈ S ′P (H,G).

Then both δ1 ∈ S ′P (H) and δ2 ∈ S ′P (G) exist, and σ ∈ η(α(δ1) ‖ α(δ2)) such that, for

i = 1, 2, Vloc(δi) ⊆ Vloc(δ) and σ ' α(δ).

Proof We can now construct by induction on l = length(δ), two sequences δ ↑(H,G)=

(δ1, δ2), where δ1 ∈ S ′P (H), δ2 ∈ S ′P (G) and i ∈ {1, 2}with the following characteristics:

1. InG(δ) = (InG(δ1), InG(δ2)), Vloc(δi) ⊆ Vloc(δ), Inid(δi) ≥ Inid(δ), Intok(δi) =

Intok(δ) and Inc(δi) ⊆ Inc(δ) (and therefore CT |= instore(δi)→ instore(δ));

2. Ass(δ1) ⊆ Ass(δ) ∪ Aloc(δ2) ∪ InG(δ2) and Ass(δ2) ⊆ Ass(δ) ∪ Aloc(δ1) ∪
InG(δ1);

3. α(δ1) ‖ α(δ2) is defined and α(δ) ' σ ∈ η(α(δ1) ‖ α(δ2)) (where identifiers of

atoms in σ are resorted with respect to the δ ones).

The two sequences composed using ‖ operator enjoy the above properties. These

properties are also needed to apply Lemma 2.5 that we will need to prove the current

lemma.

(l=1) In this case δ = 〈(H̃, G̃), c, T, n, ∅, (H̃, G̃), c, T, n〉, so

δ ↑(H,G) = (〈H̃, c, T, n, ∅, H̃, c, T, n〉, 〈G̃, c, T, n, ∅, G̃, c, T, n〉)
= (δ1, δ2)

where δ1 ∈ S ′P (H), δ2 ∈ S ′P (G). Note that, by definition of sequence, id(H̃) ∩
id(G̃) = ∅ and by construction Vloc(δ1) = Vloc(δ2) = ∅, so α(δ1) ‖ α(δ2) is

defined. Then

α(δ1) = 〈c, H̃, T 〉, α(δ2) = 〈c, G̃, T 〉 and

α(δ) = σ = 〈c, (H̃, G̃), T 〉 ∈ α(δ1) ‖ α(δ2).

Furthermore, the following holds

1. InG(δ) = (H̃, G̃) = (InG(δ1), InG(δ2)), Vloc(δ) = Vloc(δi) = ∅ so Vloc(δi) ⊆
Vloc(δ) = ∅, Inid(δi) = Inid(δ), Intok(δi) = T = Intok(δ) and Inc(δi) =

Inc(δ);
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2. Ass(δ1) = ∅ so Ass(δ1) ⊆ Ass(δ) ∪ Aloc(δ2) ∪ InG(δ2) and

Ass(δ2) = ∅ so Ass(δ2) ⊆ Ass(δ) ∪ Aloc(δ1) ∪ InG(δ1));

3. α(δ1) ‖ α(δ2) is defined and α(δ) ∈ η(α(δ1) ‖ α(δ2)): the proof is straight-

forward by definition of ‖.

(l>1) If δ ∈ S ′P (H,G), by definition

δ = 〈(H̃, G̃), c1, T1, n1, K̃1, B̃2, d1, T2, n
′
1〉 · δ′,

where H̃, G̃ and B̃2 are identified versions of the goals H , G and B2, respectively,

id(H̃) ∩ id(G̃) = ∅, δ′ ∈ S ′P (B2) and t = 〈(H̃, G̃), c1, T1, n1, K̃1, B̃2, d1, T2, n
′
1〉 is

compatible with δ′. We recall that, by definition, the tuple t represents a derivation

step

s = 〈(H̃, G̃), c1, T1〉n1 −→K1
P 〈B̃2, d1, T2〉n′1 .

Now we distinguish various cases according to the structure of the derivation step

s.

Solve’ If the derivation step s uses a Solve′ rule we can assume, without loss of

generality, that H = (c,H ′) and H̃ = (c, H̃ ′) so:

s = 〈(H̃, G̃), c1, T1〉n1 →∅P 〈(H̃ ′, G̃), d1, T1〉n1 ,

CT |= c1 ∧ c ↔ d1, t = 〈(H̃, G̃), c1, T1, n1, ∅, (H̃ ′, G̃), d1, T1, n1〉 and δ′ ∈
S ′P (H ′, G). Furthermore, α(δ) = 〈c1, ∅, W̃ , d1〉 · α(δ′) where W̃ is the first

stable identified atoms set of α(δ′), because the application of Solve′ does not

modify the next stable identified atoms set.

By inductive hypothesis there exists δ′1 ∈ S ′P (H ′) and δ2 ∈ S ′P (G) such that

δ′ ↑(H′,G)= (δ′1, δ2) and α(δ′) ' σ′ ∈ η(α(δ′1) ‖ α(δ2)). We may now define:

δ ↑(H,G)= (δ1, δ2) where δ1 = 〈H̃, c1, T1, n1, ∅, H̃ ′, d1, T1, n1〉 · δ′1.

By definition, 〈H̃, c1, T1〉n1 →∅P 〈H̃ ′, d1, T1〉n1 represents a derivation step

for H and so we can write the tuple t′ = 〈H̃, c1, T1, n1, ∅, H̃ ′, d1, T1, n1〉,
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Fv(d1) ⊆ Fv(H) ∪ Fv(c1) and therefore Vloc(t′) = ∅, then the following

holds:

1. By inductive hypothesis InG(δ2) = G̃ and therefore InG(δ) = (H̃, G̃) =

(InG(δ1), InG(δ2)). Now, let i ∈ {1, 2}. Vloc(δi) ⊆ Vloc(δ
′) through in-

ductive hypothesis and as per construction; Vloc(δ′) = Vloc(δ) by previous

observation (that is Vloc(t′) = ∅), then Vloc(δi) ⊆ Vloc(δ).

Intok(δi) = T1 = Intok(δ), Inid(δ1) = n1 = Inid(δ) and by inductive

hypothesis Inid(δ2) ≥ Inid(δ′) ≥ Inid(δ), where the last inequality

follows from the definition of sequence.

By inductive hypothesis and as per construction Inc(δi) ⊆ Inc(δ′) ∪
{c1} = Inc(δ).

2. By construction Ass(δ1) = Ass(δ′1) and Ass(δ) = Ass(δ′) and through

inductive hypothesis Ass(δ′1) ⊆ Ass(δ′) ∪ Aloc(δ2) ∪ InG(δ2). Then

Ass(δ1) ⊆ Ass(δ) ∪ Aloc(δ2) ∪ InG(δ2).

Furthermore through inductive hypothesis,Ass(δ2) ⊆ Ass(δ′)∪Aloc(δ′1)∪
InG(δ′1) and as per constructionAss(δ′)∪Aloc(δ′1)∪InG(δ′1) = Ass(δ)∪
Aloc(δ1) ∪ InG(δ1).

3. The proof follows according to Lemma 2.5 and by inductive hypothesis.

Apply’ - only atoms of H In the derivation step s we use the Apply′ rule and we

assume that only atoms deriving from H = (H ′, H ′′) are used: H ′′ 6= ∅ is

used by Apply′ rule and H̃ = (H̃ ′, H̃ ′′).

In this case we can assume that

s = 〈(H̃, G̃), c1, T1〉n1 →K1
P 〈(H̃

′, B̃, G̃), d1, T2〉n′1

so δ′ ∈ S ′P (H ′, B,G) and t = 〈(H̃, G̃), c1, T1, n1, K̃1, (H̃
′, B̃, G̃), d1, T2, n

′
1〉.

By inductive hypothesis there exist δ′1 ∈ S ′P (H ′, B) and δ′2 ∈ S ′P (G) such

that δ′ ↑((H′,B),G)= (δ′1, δ
′
2) and α(δ′) ' σ′ ∈ η(α(δ′1) ‖ α(δ′2)). As per the

definition of ↑, Intok(δ′2) = T2 ⊇ T1.

Thus, according to Lemma 2.2, there exists a derivation δ2 ∈ S ′P (G) such that

V (δ2) = V (δ′2), for V ∈ {length,Aloc, Ass, Vloc, Stable},
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Intok(δ2) = T1 and α(δ′) ∈ η(α(δ′1) ‖ α(δ2)). (2.19)

We may then define:

δ ↑(H,G)= (δ1, δ2) where δ1 = 〈H̃, c1, T1, n1, K̃1, (H̃
′, B̃), d1, T2, n

′
1〉 · δ′1

By definition s′ = 〈H̃, c1, T1〉n1 −→K1
P 〈(H̃ ′, B̃), d1, T2〉n′1 is a derivation step

for H , t′ = 〈H̃, c1, K1, T1, n1, (H̃
′, B̃), d1, T2, n

′
1〉 represents the derivation

step s′ and Vloc(t′) = Vloc(t). Now the following holds, with i ∈ {1, 2}:

1. By construction InG(δ) = (InG(δ1), InG(δ2)) = (H̃, G̃). Through in-

ductive hypothesis, construction, property of union and by (2.19), Vloc(δi) ⊆
Vloc(δ

′) ∪ Vloc(t).
Moreover, through inductive hypothesis, the definition of δ, (2.19) and

as per construction Vloc(δ′) ∪ Vloc(t) = Vloc(δ) and Inc(δi) ⊆ Inc(δ′) ∪
{c1} = Inc(δ) so Vloc(δi) ⊆ Vloc(δ) and Inc(δi) ⊆ Inc(δ). Inid(δ1) =

n1 = Inid(δ) and Inid(δ2) ≥ Inid(δ′) ≥ Inid(δ). Finally, through

construction and inductive hypothesis Intok(δi) = T1 = Intok(δ).

2. By inductive hypothesis, (2.19) and construction,

Ass(δ1) = Ass(δ′1) ∪ {K1}
⊆ Ass(δ′) ∪ Aloc(δ2) ∪ InG(δ2) ∪ {K1}
= Ass(δ) ∪ Aloc(δ2) ∪ InG(δ2)

and

Ass(δ2) = Ass(δ′2)

⊆ Ass(δ′) ∪ Aloc(δ′1) ∪ InG(δ′1)

⊆ Ass(δ) ∪ Aloc(δ1) ∪ InG(δ1).

3. The proof follows according to Lemma 2.5 and inductive hypothesis.

Apply’ - only atoms of G The proof is the same as that of the previous case and is

thus omitted.

Apply’ - atoms of H and G In the derivation step s we use the Apply′ rule and let

us further assume that in s some atoms deriving both from H and G are used.
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In this case, we can assume that H = (H ′, H ′′), G = (G′, G′′), H ′′ 6= ∅,
G′′ 6= ∅, H̃ = (H̃ ′, H̃ ′′), G̃ = (G̃′, G̃′′) and (H̃ ′′, G̃′′) are the atoms in the goal

(H̃, G̃), which are used in s. Moreover let G̃1 be the atoms in the head of the

clause used in the derivation step s, such that G̃′′ are unified with G̃1 in s.

s = 〈(H̃, G̃), c1, T1〉n1 −→K1
P 〈(H̃

′, G̃′, B̃), d1, T2〉n′1 ,

so δ′ ∈ S ′P (H ′, G′, B) and t = 〈(H̃, G̃), c1, T1, n1, K̃1, (H̃
′, G̃′, B̃), d1, T2, n

′
1〉.

Moreover α(δ) = 〈c1, K̃1, W̃ , d1〉 · α(δ′), where W̃ is the set of stable atoms

of δ′ restricted to the atoms in (H̃ ′, G̃′).

Using the same arguments of the previous point both δ′1 ∈ S ′P (H,G′′) and

δ′2 ∈ S ′P (G′) exist such that δ ↑((H,G′′),G′)= (δ′1, δ
′
2).

Now, observe that, according to Lemma 2.3 and the definition of ↑, there exists

δ1 ∈ S ′P (H) such that InG(δ1) = H̃, Ass(δ1) = Ass(δ′1) ∪ {G′′},

α(δ′1) = 〈c1, K̃1, W̃1, d1〉 · σ1, α(δ1) = 〈c1, K̃ ′1 ∪ G̃2, W̃
′
1, d1〉 · σ′1,

V (δ1) = V (δ′1) for V ∈ {Intok, Inid, Vloc, Inc, Stable, Aloc}(2.20)

where σ1 ' σ′1, and K̃ ′1, W̃ ′
1 and G̃2 are an identified version of K1, of W1 and

of G′′, respectively.

Moreover, since δ ∈ S ′P (H,G) and Vloc(δ
′
2) ⊆ Vloc(δ), we can say that

Fv(G′′) ∩ Vloc(δ′2) = ∅ and for each i ∈ id(G̃′′) and j ∈ id(G̃′), we can

further say that i ≤ n1 and i 6= j. Then according to Lemma 2.4, we

can assume that δ2 = δ′2 ⊕ G̃′′ ∈ S ′P (G). By construction InG(δ2) = G̃,

Stable(δ2) = Stable(δ′2) ∪ {G′′} and

V (δ2) = V (δ′2) for V ∈ {Intok, Inid, Vloc, Inc, Ass, Aloc}. (2.21)

Without loss of generality, we can choose δ1 and δ2 in such a way that id(δ1)∩
id(δ2) = ∅.
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Now, observe that, according to the definition of ↑ and inductive hypothesis,

α(δ′1) ‖ α(δ′2) is defined and therefore Vloc(δ′1)∩Vloc(δ′2) = ∅. Moreover, since

{G1} ⊆ Aloc(δ′1) and therefore Fv(G1) ⊆ Vloc(δ
′
1), and as per (2.21), we can

conclude that

Fv(G1) ∩ Vloc(δ′2) = ∅. (2.22)

Then, we can assume, without loss of generality, that

{G′′} ∩ Ass(δ′2) ⊆ Ass(δ). (2.23)

In fact, let g ∈ ({G′′}∩Ass(δ′2))\Ass(δ), since by definition of ↑ there exists

σ̄ ∈ η(α(δ′1) ‖ α(δ′2)) such that α(δ) ' σ̄ and g 6∈ Ass(δ), by definition of ‖,
there exists a stable atom g′ either in δ′1 or δ′2 such that, in order to obtain σ̄,

the assumption g is satisfied with the stable atom g′.

Then, according to (2.22), we can substitute each occurrence of g in the as-

sumptions of δ′2 with the corresponding element in G1 (namely, with the atom

g1 ∈ G1 such that CT |= c1 ∧ g ↔ c1 ∧ g1).

We are now in a position to define

δ ↑(H,G)= (δ1, δ2).

Therefore, the following holds, with i ∈ {1, 2}:

1. By construction InG(δ) = (InG(δ1), InG(δ2)). By definition of ↑ and

by the previous observation Vloc(δi) = Vloc(δ
′
i) ⊆ Vloc(δ), Intok(δi) =

Intok(δ′i) = Intok(δ), Inid(δi) = Inid(δ′i) ≥ Inid(δ) and Inc(δi) =

Inc(δ′i) ⊆ Inc(δ).

2. By definition of ↑, by construction and by (2.20),

Ass(δ1) = Ass(δ′1) ∪ {G′′}
⊆ Ass(δ) ∪ Aloc(δ′2) ∪ InG(δ′2) ∪ {G′′}
= Ass(δ) ∪ Aloc(δ2) ∪ InG(δ2).
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Moreover, according to (2.20), the definition of ↑, construction and (2.21),

Ass(δ2) = Ass(δ′2)

⊆ Ass(δ) ∪ Aloc(δ′1) ∪ InG(δ′1)

= Ass(δ) ∪ Aloc(δ1) ∪ InG(δ1) ∪ {G′′}
= Ass(δ) ∪ Aloc(δ1) ∪ InG(δ1),

where the last equality follows as per (2.23).

3. α(δ1) ‖ α(δ2) is defined and σ ∈ η(α(δ1) ‖ α(δ2)) exists such that

α(δ) ' σ. The proof that α(δ1) ‖ α(δ2) is defined follows by observing

that, by definition of derivation, Vloc(δ′1) ∩ Fv(G′′) = ∅, by construction

for i ∈ {1, 2}, Vloc(δi) = Vloc(δ
′
i) and by definition of ↑, α(δ′1) ‖ α(δ′2) is

already defined.

At this point, we will prove that α(δ) ' σ ∈ η(α(δ1) ‖ α(δ2)). First

of all, observe that through construction, (2.20) and (2.21) for each σ̄1 ∈
η(α(δ′1) ‖ α(δ′2)) there exists σ̄2 ∈ η(α(δ1) ‖ α(δ2)) such that σ̄1 ' σ̄2

(namely, η(α(δ′1) ‖ α(δ′2))� η(α(δ1) ‖ α(δ2))).

Moreover, by definition of ↑, α(δ) ' σ̄ ∈ η(α(δ′1) ‖ α(δ′2)). Then the

proof follows through the transitivity of '.

2

There now follow three minor lemmas. Said lemmata are used to prove Lemma 2.10.

In the following, given a derivation

δ = 〈R̃1, c1, T1, n1, K̃1, R̃2, d1, T2, n
′
1〉 · · · 〈R̃m, cm, Tm, nm, ∅, R̃m, cm, Tm, nm〉,

we define id(δ) = id(
⋃m
i=1 R̃i) ∪ id(

⋃m−1
i=1 K̃i).

The following lemma considers a derivation step s and replaces assumptions of s with

unused constraints in the input goal of s.

Lemma 2.7 Let P be a program and let R be a goal, such that there exists a derivation

step s = 〈R̃, c, T, n, L̃1, R̃
′, d, T ′, n′〉 for R. We suppose that L̃1 has k CHR constraints.

Assume that there exists

L̃′ = {h1#id
′
1, . . . , ho#id

′
o} ⊆ R̃ and L̃ = {g1#id1, . . . , go#ido} ⊆ L̃1
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such that

• the identified atoms in L̃′ are not used by s,

• for each j ∈ [1, o], CT |= c ∧ hj ↔ c ∧ gj and

• T ′[id1/id
′
1, . . . , ido/id

′
o] is defined.

There then exists a derivation step

s′ = 〈R̃, c, T, n, L̃′1, R̃′′, d, T ′′, n′′〉,

whereby

• {n+ 1, . . . , n+ k} = id(L̃1), ρ = [n+ 1/j1, . . . , n+ k/jk] is a renaming,

• L̃′1 = (L̃1 \ L̃)ρ,

• R̃′′ = (R̃′ \ L̃′)[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o]ρ,

• T ′′ = T ′[id1/id
′
1, . . . , ido/id

′
o]ρ, n′′ ≤ n′ and

• Vloc(s) = Vloc(s
′).

Proof The proof is straightforward as per the definition of derivation step.

2

The following lemma substitutes constraints, that are in the input goal and eventually

also in the output goal, with other constraints having a different label. The context, in

which the following lemma is used, is the propagation of the substitution of an assumption

with a stable atom in all of the computational steps of a sequence.

Lemma 2.8 Let P be a program. R be a goal,

s = 〈R̃1, c, T1, n, L̃1, R̃2, d, T2, n
′〉

be a derivation step for R, where R̃1 is an identified version of R and let the two sets

of identified atoms L̃′ = {h1#id
′
1, . . . , ho#id

′
o} and L̃ = {g1#id1, . . . , go#ido} be such

that for each j ∈ [1, o] the following then holds
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• CT |= c ∧ hj ↔ c ∧ gj ,

• id′j 6∈ id(R̃1) ∪ id(R̃2) ∪ id(L̃1)

• Either gj#idj ∈ R̃1 or idj 6∈ id(R̃1) ∪ id(R̃2) ∪ id(L̃1) and

• T2[id1/id
′
1, . . . , ido/id

′
o] is defined.

There then exists a derivation step

s′ = 〈R̃′1, c, T ′1, n, L̃1, R̃
′
2, d, T

′
2, n

′〉

where for i ∈ {1, 2}, R̃′i = R̃i[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o],

T ′i = Ti[id1/id
′
1, . . . , ido/id

′
o] and Vloc(s) = Vloc(s

′).

Proof The proof is straightforward as per the definition of derivation step.

2

Before the following lemma we need the extension of the substitution operator defined

in Definition 2.7 for the previously mentioned concrete sequences:

Definition 2.11 What is defined in Definition 2.7 is considered as a given. Let the se-

quence

δ = 〈R̃1, c1, T1, n1, L̃1, R̃2, d1, T2, n
′
1〉 · · · 〈R̃m, cm, Tm, nm, ∅, R̃m, cm, Tm, nm〉,

then δ′ = δ[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o] with for each j ∈ [1, o], idj ≤ n1 and

id′j ≤ n1 is:

δ′ = 〈R̃∗1, c1, T ∗1 , n1, L̃
∗
1, R̃

∗
2, d1, T

∗
2 , n

′
1〉 · · · 〈R̃∗m, cm, T ∗m, nm, ∅, R̃∗m, cm, T ∗m, nm〉.

where R̃∗i = R̃i[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o], T

∗
i = Ti[id1/id

′
1, . . . , ido/id

′
o]

and L̃∗j = L̃j[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o] with 1 ≤ i ≤ m, 1 ≤ j ≤ m− 1.

The following lemma substitutes constraints of the goal with other constraints that

differ only for the identifier used. The context in which it will be used is the substitution

of assumptions with stable atoms in a sequence.
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Lemma 2.9 Let P be a program and R be a goal,

δ = 〈R̃1, c1, T1, n1, L̃1, R̃2, d1, T2, n
′
1〉 · · · 〈R̃m, cm, Tm, nm, ∅, R̃m, cm, Tm, nm〉 ∈ S ′P (R),

where R̃1 is an identified version of R, and let L̃′ = {h1#id
′
1, . . . , ho#id

′
o} and let L̃ =

{g1#id1, . . . , go#ido} be two sets of identified atoms such that for each j ∈ [1, o] the

following holds

• idj ≤ n1 and id′j ≤ n1

• CT |= c ∧ hj ↔ c ∧ gj ,

• id′j 6∈ id(δ)

• Either gj#idj ∈ R̃1 or idj 6∈ id(δ) and

• Tm[id1/id
′
1, . . . , ido/id

′
o] is defined.

Then δ[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o] ∈ S ′P (R′),

where R′ = chr(R̃1[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o]).

Proof The proof is straightforward as per Lemma 2.8 and by induction on the length of

δ.

2

The following third main lemma states that once fixed, two concrete sequences, that

are derived from the goals H and G, there exists a concrete sequence, that is derived from

(H,G), then said abstraction is equal to the abstraction of the composition of the given

two sequences.

Lemma 2.10 Let P be a program, letH andG be two goals and assume that δ1 ∈ S ′P (H)

and δ2 ∈ S ′P (G) are two sequences such that the following holds:

1. α(δ1) ‖ α(δ2) is defined,

2. σ = 〈c1, K̃1, W̃1, d1〉 · · · 〈cm, W̃m, Tm〉 ∈ η(α(δ1) ‖ α(δ2)),

3. (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅,
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4. For i ∈ [1,m], (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆
⋃i−1
j=1 Fv(dj).

Then there exists δ ∈ S ′P (H,G) such that α(δ) ' σ.

Proof The proof follows by induction on the length of δ. First of all, two concrete se-

quences δ1 ∈ S ′p(H) and δ2 ∈ S ′p(G), which are elements of Seq, and their composition,

are considered. Furthermore, it is proven that the first concrete tuple, whose abstraction

provides the first abstract sequence of the composed abstract one, represents a derivation

step for (H, G). Afterwards, it will be proven that the inductive abstract sequence en-

joys properties of the four points in the hypothesis of the lemma. Then the existence of

δ ∈ S ′p(H,G) follows by compatibility. Finally, the existence of a rename ρ such that

σ = α(δ)ρ is proven.

First of all, observe that since α(δ1) ‖ α(δ2) is defined, we can assume without loss

of generality, that the following holds:

• InG(δ1) = H̃ , InG(δ2) = G̃. Intok(δ1) = T ′1, Intok(δ2) = T ′′1 and Inid(δ1) = p1

and Inid(δ2) = q1 such that

• for each h ∈ id(H̃) and k ∈ id(G̃), h 6= k, h ≤ q1, k ≤ p1 and

• for each j ∈ [1, l] and r@i1, . . . , il ∈ T ′1, {i1, . . . , il} 6⊆ id(δ2) and ij ≤ q1 and for

each r@i1, . . . , il ∈ T ′′1 , {i1, . . . , il} 6⊆ id(δ1) and ij ≤ p1.

In the remaining part of the proof, given two derivations δ1 ∈ S ′P (H) and δ2 ∈ S ′P (G),

which verify the previous conditions, we can construct by induction on the l = length(σ)

a derivation δ ∈ S ′P (H,G) such that the following conditions hold

1. InG(δ) = (H̃, G̃) = (InG(δ1), InG(δ2)), Vloc(δ) ⊆ Vloc(δ1)∪Vloc(δ2), Intok(δ) =

T ′1 ∪ T ′′1 , Inid(δ) = n1, where n1 is the minimum between p1 and q1, Inc(δ) ⊆
Inc(δ1) ∪ Inc(δ2),

2. Ass(δ) ⊆ Ass(δ1) ∪ Ass(δ2) and

3. there exists a renaming ρ such that σ = α(δ)ρ (and therefore σ ' α(δ)) and ρ(id) =

id for each id ≤ Inid(δ).
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(l = 1) In this case δ1 = 〈H̃, c, T ′, p, ∅, H̃, c, T ′, p〉, δ2 = 〈G̃, c, T ′′, q, ∅, G̃, c, T ′′, q〉,
α(δ1) = 〈c, H̃, T ′〉, α(δ2) = 〈c, G̃, T ′′〉, σ = 〈c, (H̃, G̃), T ′ ∪ T ′′〉 and

δ = 〈(H̃, G̃), c, T, n, ∅, (H̃, G̃), c, T, n〉, where T = T ′ ∪ T ′′ and n is the minimum

between p and q.

(l > 1) Without loss of generality, we can assume that

δ1 = t′ · δ′1, δ2 = 〈G̃, e1, T ′′1 , q1, J̃1, G̃2, f1, T
′′
2 , q

′
1〉 · δ′2

where the following holds

• t′ = 〈H̃, c1, T ′1, p1, L̃1, H̃2, d1, T
′
2, p
′
1〉, δ′1 ∈ S ′P (H2), t′ is compatible with δ′1

and σ1 = α(δ1) = 〈c1, L̃1, Ñ1, d1〉 · α(δ′1) where Ñ1 is the set of stable atoms

for σ1.

• δ′2 ∈ S ′P (G2)∪ε and if δ′2 ∈ S ′P (G2) then σ2 = α(δ2) = 〈e1, J̃1, M̃1, f1〉·α(δ′2)

and M̃1 is the set of stable atoms for σ2, else σ2 = α(δ2) = 〈e1, M̃1, T
′′
1 〉 and

M̃1 = G̃.

• σ ∈ η(〈c1, L̃1, Ñ1 ∪ M̃1, d1〉 · σ′) and σ′ ∈ η(α(δ′1) ‖ σ2).

In this case, without loss of generality, we can assume that p′1 ≤ q1.

As per the definition of η, there exist the sets of identified atoms L̃′, L̃′′, L̃ such that

L̃ = {g1#id1, . . . , go#ido} ⊆ L̃1 and

L̃′ = {h1#id
′
1, . . . , ho#id

′
o} ⊆ ((Ñ1 ∪ M̃1) \ L̃′′),

where

1. L̃′′ is the set of stable atoms of (Ñ1 ∪ M̃1) used in η(α(δ′1) ‖ σ2), in order to

obtain σ′.

2. for 1 ≤ j ≤ o, CT |= (c1 ∧ gj)↔ (c1 ∧ hj) and

3. σ = (〈c1, K̃1, W̃1, d1〉 · (σ′ \ L̃′)) [g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o] is de-

fined, where K̃1 = L̃1 \ L̃ and W̃1 = (Ñ1 ∪ M̃1) \ (L̃′ ∪ L̃′′).

Now observe that the following holds:
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• Since t′ = 〈H̃, c1, T ′1, p1, L̃1, H̃2, d1, T
′
2, p
′
1〉 represents a derivation step for H

and since by hypothesis for each k ∈ id(G̃), k ≤ p1 and for each r@i1, . . . , il ∈
T ′′1 , {i1, . . . , il} 6⊆ id(δ1), we can conclude that

t′′ = 〈(H̃, G̃), c1, T
′
1 ∪ T ′′1 , p1, L̃1, (H̃2, G̃), d1, T

′
2 ∪ T ′′1 , p′1〉

represents a derivation step for (H,G).

• Since

σ = (〈c1, K̃1, W̃1, d1〉 · (σ′ \ L̃′)) [g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o]

is defined and by definition of ‖, we can say that (T ′2∪T ′′1 )[id1/id
′
1, . . . , ido/id

′
o]

is defined

• As per previous observations and Lemma 2.7,

t = 〈(H̃, G̃), c1, T
′
1 ∪ T ′′1 , p1, K̃

′
1, B̃, d1, T

′′, p′′1〉

represents a derivation step for (H,G), where

– {p1 + 1, . . . , p1 + k} = id(L̃1) and ρ1 = [p1 + 1/j1, . . . , p1 + k/jk] is a

renaming,

– K̃ ′1 = (L̃1 \ L̃)ρ1 = K̃1ρ1,

– B̃ = ((H̃2, G̃) \ L̃′)[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o]ρ1,

– T ′′ = (T ′2 ∪ T ′′1 )[id1/id
′
1, . . . , ido/id

′
o]ρ1, p′′1 ≤ p′1 and Vloc(t) = Vloc(t

′).

Moreover, the following holds:

α(δ′1) ‖ α(δ2) is defined. Since α(δ1) ‖ α(δ2) is defined, we can assume that id(δ1)∩
id(δ2) = ∅ and so id(δ′1) ∩ id(δ2) = ∅. Then by definition, we have only to

prove that

(Vloc(α(δ′1)) ∪ Fv(H2)) ∩ (Vloc(α(δ2)) ∪ Fv(G)) = Fv(H2) ∩ Fv(G).

First of all, observe that since Vloc(α(δ′1)) ⊆ Vloc(α(δ1)) and α(δ1) ‖ α(δ2)

is defined, we can say that Vloc(α(δ′1)) ∩ (Vloc(α(δ2)) ∪ Fv(G)) = ∅ and

(Fv(H) ∪ Vloc(α(δ1))) ∩ (Vloc(α(δ2))) = ∅.
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Now, observe that according to the definition of derivation

Fv(H2) ⊆ Fv(H) ∪ Vloc(α(δ1)) ∪ Fv(L1)

and therefore, Fv(H2) ∩ Vloc(α(δ2)) = Fv(L1) ∩ Vloc(α(δ2)). Then as per

previous observations

(Vloc(α(δ′1)) ∪ Fv(H2)) ∩ (Vloc(α(δ2)) ∪ Fv(G)) =

(Fv(H2) ∩ Fv(G)) ∪ (Fv(L1) ∩ Vloc(α(δ2))).

We now, assume that there exists x ∈ Fv(L1)∩Vloc(α(δ2)) and that g ∈ L1 is

such that x ∈ Fv(g). Since as seen in Point 3. of the hypothesis Vloc(α(δ2))∩
Vass(σ) = ∅, we can maintain that g 6∈ K1 and therefore there exists g′ ∈
G such that CT |= c1 ∧ g ↔ c1 ∧ g′. Now, observe that, since g′ ∈ G

and x ∈ Vloc(α(δ2)), we can say that x 6∈ Fv(g′) and therefore, we can say

that x ∈ Fv(c1) and CT 6|= ∃xc1 ↔ c1. Then, since by definition of ‖,
CT |= e1 → c1, either x ∈ Fv(e1) or CT |= e1 ↔ false. In both cases

x 6∈ Vloc(α(δ2)) and it then follows that Fv(L1) ∩ Vloc(α(δ2)) = ∅.

σ′ = 〈c2, K̃2, W̃2 ∪ L̃′, d2〉 · · · 〈cm, W̃m ∪ L̃′, Tm〉 ∈ η(α(δ′1) ‖ α(δ2)). The proof is

straightforward, by definition of ‖.

(Vloc(α(δ′1)) ∪ Vloc(α(δ2))) ∩ Vass(σ′) = ∅. According to the definition, the hypoth-

esis and Lemma 2.1, we can say that

(Vloc(α(δ′1)) ∪ Vloc(α(δ2))) ∩ Vass(σ′) ⊆
(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅.

for i ∈ [2,m], (Vloc(α(δ′1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆
⋃i−1
j=2 Fv(dj). To prove this

statement, observe that as per the hypothesis and Lemma 2.1, where i ∈
[2,m],

(Vloc(α(δ′1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆
(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆⋃i−1
j=1 Fv(dj).

Let i ∈ [2,m], such that there exists x ∈ (Vloc(α(δ′1))∪Vloc(α(δ2)))∩Fv(ci)∩
Fv(d1). As per the hypothesis x 6∈ Fv(c1). Then, since x ∈ Fv(d1) ⊆
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Fv(t′) and t′ is compatible with δ′1, we may conclude that x 6∈ Vloc(α(δ′1))

and therefore x ∈ Vloc(α(δ2)). As per Lemma 2.1 and since α(δ1) ‖ α(δ2) is

defined, we can say that x 6∈ Fv(H) and therefore, by definition of derivation,

we can say that CT 6|= ∃xd1 ↔ d1. According to the definition of ‖, CT |=
e1 → d1 and therefore, since x ∈ Fv(d1) and CT 6|= ∃xd1 ↔ d1, either

x ∈ Fv(e1) or CT |= e1 ↔ false. In both the cases x 6∈ Vloc(α(δ2)). As in

previous observations

(Vloc(α(δ′1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆
i−1⋃
j=2

Fv(dj)

and we are therefore arrived at the thesis.

Moreover, via construction the following holds

• Intok(δ′1) = T ′2 and Inid(δ′1) = p2. Since according to the definition of the

derivation p2 ≥ p1 and the hypothesis for each k ∈ id(G̃), k ≤ p1, we can

say that for each h ∈ id(H̃2), h 6= k and k ≤ p2. Moreover, without loss of

generality, we can assume that for each h ∈ id(H̃2), h ≤ q1.

• according to the definition of the derivation, if T ′2 6= T ′1, T ′2 = T ′1∪{r@id1, . . . , idl}
such that {id1, . . . , idl} ⊆ id(δ1). Then since by hypothesis id(δ1)∩ id(δ2) =

∅ and for each r@i1, . . . , il ∈ T ′1, {i1, . . . , il} 6⊆ id(δ2), we can conclude that

for each r@i1, . . . , il ∈ T ′2, {i1, . . . , il} 6⊆ id(δ2).

Through previous results and by inductive hypothesis, we can say that there δ′ ∈
S ′P (H2, G) exists such that

1. InG(δ′) = (InG(δ′1), InG(δ2)) = (H̃2, G̃), Vloc(δ′) ⊆ Vloc(δ
′
1) ∪ Vloc(δ2),

Intok(δ′) = T ′2 ∪ T ′′1 , Inid(δ′) = m2, where m2 is the minimum between p2

and q1, Inc(δ′) ⊆ Inc(δ′1) ∪ Inc(δ2),

2. Ass(δ′) ⊆ Ass(δ′1) ∪ Ass(δ2) and

3. there exists a renaming ρ′ such that σ′ = α(δ′)ρ′ (and therefore σ′ ' α(δ′))

and ρ′(id) = id for each id ≤ Inid(δ′).
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Moreover, according to the definition of η, L̃′ ⊆ (H̃, G̃) is a set of atoms which are

stable in δ′. Let δ′′ ∈ S ′P (R′) be the derivation obtained from δ′ by deleting from

each goal in δ′ the atoms in L̃′, where R̃′ = (H̃2, G̃) \ L̃′ and R′ = chr(R̃′).

Via construction and Lemma 2.9

δ̄ = δ′′[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o]ρ1 ∈ S ′P (R),

where

• InG(δ̄) = R̃ = R̃′[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o]ρ1, R = chr(R̃),

• Intok(δ̄) = (T ′2 ∪ T ′′1 )[id1/id
′
1, . . . , ido/id

′
o]ρ1 and

• Vloc(δ̄) = Vloc(δ
′′) = Vloc(δ

′).

Let us denote by δ the sequence t · δ̄.

Then, to prove the thesis, we have to prove that t · δ̄ ∈ Seq, t is compatible with δ̄

(and therefore δ ∈ S ′P (H,G)), Vloc(δ) ⊆ Vloc(δ1) ∪ Vloc(δ2), Inc(δ) ⊆ Inc(δ1) ∪
Inc(δ2), Ass(δ) ⊆ Ass(δ1) ∪ Ass(δ2) and σ ' α(δ).

(t · δ̄ ∈ Seq). By construction, we have only to prove that CT |= instore(δ̄) →
d1. The proof is straightforward, since via construction either instore(δ̄) =

instore(δ′1) or instore(δ̄) = instore(δ2).

(t is compatible with δ̄). The following holds.

1. Vloc(δ̄) ∩ Fv(t) = ∅. By construction and by inductive hypothesis

Vloc(t) = Vloc(t
′), Fv(t) ⊆ Fv(t′) ∪ Fv(G) and

Vloc(δ̄) = Vloc(δ
′) ⊆ Vloc(δ

′
1) ∪ Vloc(δ2). (2.24)

Since t′ is compatible with δ′1 (Definition 2.4 point 1) and α(δ′1) ‖ α(δ2)

is defined, we can conclude that

Vloc(δ
′
1) ∩ (Fv(t′) ∪ Fv(G)) = ∅. (2.25)
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According to points 3. and 4. of the hypothesis Fv(K1, c1)∩Vloc(δ2) = ∅
and the definition of derivation Fv(G)∩Vloc(δ2) = ∅. Moreover, through

point 1. of the hypothesis we can say that α(δ1) ‖ α(δ2) is defined and

therefore (Fv(H) ∪ Vloc(t′)) ∩ Vloc(δ2) = ∅. Then by definition and in

accordance with the first statement in (2.24)

Fv(t)∩ Vloc(δ2) = (Fv(c1, H,G,K1)∪ Vloc(t′))∩ Vloc(δ2) = ∅. (2.26)

Then

Vloc(δ̄) ∩ Fv(t) ⊆ (according to the last statement in

(2.24))

(Vloc(δ
′
1) ∪ Vloc(δ2)) ∩ Fv(t) ⊆ (according to the second statement

in (2.24) and (2.25))

Vloc(δ2) ∩ Fv(t) = (according to (2.26))

∅.

2. Vloc(t) ∩ Vass(δ̄) = ∅. The proof is immediate via point 3. of the hypoth-

esis.

3. for i ∈ [2, n], Vloc(t) ∩ Fv(ci) ⊆
⋃i−1
j=1 Fv(dj). The proof is immediate

through construction and point 4. of the hypothesis.

(Vloc(δ) ⊆ Vloc(δ1) ∪ Vloc(δ2)). Via construction

Vloc(δ) = (through construction)

Vloc(t) ∪ Vloc(δ̄) = (through construction)

Vloc(t
′) ∪ Vloc(δ′) ⊆ (through previous results)

Vloc(t
′) ∪ Vloc(δ′1) ∪ Vloc(δ2) = (through construction)

Vloc(δ1) ∪ Vloc(δ2).
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(Inc(δ) ⊆ Inc(δ1) ∪ Inc(δ2))

Inc(δ) = (through construction)

Inc(t) ∪ Inc(δ̄) = (through construction)

Inc(t′) ∪ Inc(δ′) ⊆ (through previous results)

Inc(t′) ∪ Inc(δ′1) ∪ Inc(δ2) = (through construction)

Inc(δ1) ∪ Inc(δ2).

(Ass(δ) ⊆ Ass(δ1) ∪ Ass(δ2))

Ass(δ) = (through construction)

Ass(t) ∪ Ass(δ̄) = (through the definition of Ass(t))

(L̃1 \ L̃) ∪ Ass(δ̄) ⊆ (through the definition of \)
L̃1 ∪ Ass(δ̄) ⊆ (through the definition of δ̄)

L̃1 ∪ Ass(δ′) ⊆ (through previous results)

L̃1 ∪ Ass(δ′1) ∪ Ass(δ2) = (through construction)

Ass(δ1) ∪ Ass(δ2).

(there exists a renaming ρ such that σ = α(δ)ρ (and therefore σ ' α(δ)) and

ρ(id) = id for each id ≤ n1). By inductive hypothesis there exists a renaming

ρ′ such that σ′ = α(δ′)ρ′ and ρ′(id) = id for each id ≤ n2. Since by definition

of the derivation, for each j ∈ id(L̃′), j ≤ n2 we can conclude that ρ′(j) = j

for each j ∈ id(L̃′). Then

σ′ \ L̃′ = (since σ′ = α(δ′)ρ′)

α(δ′)ρ′ \ L̃′ = (by previous observation)

(α(δ′) \ L̃′)ρ′ = (through the definition of \ and α)

(α(δ′ \ L̃′))ρ′ = (through the definition of δ′′)

(α(δ′′))ρ′.

Moreover, since for i ∈ [1, o] and for r ∈ [1, k], idi ≤ n2 id
′
i ≤ n2, p1+r ≤ n2

and jr ≤ n2, we can say that

(α(δ′′))ρ′[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o]ρ1 =

(α(δ′′))[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o]ρ1ρ

′
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and therefore

(σ′ \ L̃′)[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o]ρ1 =

(by a previous result)

(α(δ′′))ρ′[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o]ρ1 =

(by previous observation)

(α(δ′′))[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o]ρ1ρ

′ =

(according to the definition of δ̄)

(α(δ̄))ρ′.

Then, according to the definition of renaming

(σ′ \ L̃′)[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o] = (α(δ̄))ρ (2.27)

where ρ = ρ′ρ2 and ρ2 = [j1/p1 + 1, . . . , jk/p1 + k] = ρ−1
1 .

By definition, we can say that ρ is a renaming and by construction ρ(j) = j

for each j ≤ n1.

According to the definition of δ, we can observe that

α(δ)ρ = (by virtue of the definition of α and δ)

〈c1, K̃ ′1ρ, W̃ ′
1ρ, d1〉 · α(δ̄)ρ = (via the definition of renaming and (2.27))

〈c1, K̃ ′1ρ, W̃ ′
1ρ, d1〉 · (σ′ \ L̃′)[g1#id1/h1#id

′
1, . . . , go#ido/ho#id

′
o]. (2.28)

where W̃ ′
1 = B̃1 ∩ B̃2, where B̃1 and B̃2 are the sets of atoms in (H̃, G̃)

which are not rewritten by t and by δ̄, respectively. Now observe that since

K̃ ′1 = K̃1ρ1 and since ρ′(j) = j for each j ≤ n2, we can mainain that

K̃ ′1ρ = K̃1ρ1ρ = K̃1ρ1ρ
′ρ2 = K̃1ρ1ρ2 = K̃1. (2.29)

Moreover, according to the construction B̃1 = ((Ñ1 ∪ M̃1) \ L̃′) and (2.27)

B̃2 = (W̃ ′
2 \ L̃′)[g1#id1/h1#id

′
1, . . . , go#ido/ho#id

′
o]ρ
−1, where W̃ ′

2 is the

first stable set of σ′. Then

W̃ ′
1 = ((Ñ1 ∪ M̃1) \ L̃′) ∩

(W̃ ′
2 \ L̃′)[g1#id1/h1#id

′
1, . . . , go#ido/ho#id

′
o]ρ
−1. (2.30)
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Now, observe that ρ(j) = j for each j ≤ n1 and for each i ∈ id((Ñ1 ∪ M̃1) \
L̃′), we can say that i ≤ n1. Then by (2.30)

W̃ ′
1 = ((Ñ1 ∪ M̃1) \ L̃′) ∩

(W̃ ′
2 \ L̃′)[g1#id1/h1#id

′
1, . . . , go#ido/ho#id

′
o]. (2.31)

As a result of the construction for each i ∈ [1, o], we can observe that idi > n1

and id′i ∈ id(L̃′). Then by (2.31)

W̃ ′
1 = ((Ñ1 ∪ M̃1) \ L̃′) ∩ (W̃ ′

2 \ L′).

As a result of the construction and via the definition of ‖, W ′
2 = ((Ñ2 ∪ M̃1) \

L̃′′), where Ñ2 is the set of stable atoms of α(δ′1), and therefore, as in the

previous result

W̃ ′
1 = ((Ñ1 ∪ M̃1) \ L̃′) ∩ ((Ñ2 ∪ M̃1) \ L̃′′). (2.32)

Moreover, since for each i ∈ [1, o], idi ∈ id(L̃) we can observe that

W̃1 = W̃1[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o] and

K̃1 = K̃1[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o] (2.33)

Then

W̃ ′
1ρ = (since ρ(i) = i for each i ≤ n1)

W̃ ′
1 = (via (2.32))

((Ñ1 ∪ M̃1) \ L̃′) ∩ (((Ñ2 ∪ M̃1) \ L̃′′) = (through the properties of

set operators)

((Ñ1 ∪ M̃1) ∩ (Ñ2 ∪ M̃1)) \ (L̃′ ∪ L̃′′) = (since by definition Ñ1 ⊆ Ñ2)

(Ñ1 ∪ M̃1) \ (L̃′ ∪ L̃′′) = (as a result of construction)

W̃1
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and therefore

α(δ)ρ =

(through (2.28))

〈c1, K̃ ′1ρ, W̃ ′
1ρ, d1〉 · (σ′ \ L′)[g1#id1/h1#id

′
1, . . . , go#ido/ho#id

′
o] =

(through (2.29) and the previous result)

〈c1, K̃1, W̃1, d1〉 · (σ′ \ L′)[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o] =

(through (2.33))

(〈c1, K̃1, W̃1, d1〉 · (σ′ \ L′))[g1#id1/h1#id
′
1, . . . , go#ido/ho#id

′
o] =

(by definition)

σ

and then the thesis.

2

Finally, the last immediate main lemma considers two sequences that differ only for

identifiers, so the free variables of assumptions and local ones are the same in both se-

quences.

Lemma 2.11 Let σ, σ′ ∈ D such that σ ' σ′. Then Vr(σ) = Vr(σ
′) holds, where r ∈

{ ass, loc }.

Now by using the above results we can prove the following theorem.

Theorem 2.1 (Compositionality) Let P be a program and let H and G be two goals.

Then

SP (H,G) ' SP (H) ‖ SP (G).

Proof We prove the two inclusions separately.

(SP (H,G)� SP (H) ‖ SP (G)). Let σ ∈ SP (H,G). According to the definition of SP ,

there exists δ ∈ S ′P (H,G) such that σ = α(δ). According to Lemma 2.6 there
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δ1 ∈ S ′P (H) and δ2 ∈ S ′P (G) exist such that for i = 1, 2, Vloc(δi) ⊆ Vloc(δ),

σ′ ∈ η(α(δ1) ‖ α(δ2)) and σ′ ' σ. Let

δ = 〈(H̃, G̃), c1, T1, n1, K̃1, B̃2, d1, T2, n
′
1〉 · · ·

· · · 〈B̃m, cm, Tm, nm, ∅, B̃m, cm, Tm, nm〉

and let σ′ = 〈c1, K̃1, W̃1, d1〉 · · · 〈cm, W̃m, Tm〉. According to Lemma 2.11 and

since σ ' σ′, in order to prove the thesis we have only to show that

(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) = ∅ and

for i ∈ [1,m], (Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆
⋃i−1
j=1 Fv(dj),

which are the two conditions which fail to satisfy all those of Definition 2.9. First

observe that through Lemma 2.1 and the hypothesis, we can say respectively that

Vass(σ) = Vass(δ) and for i ∈ {1, 2}, Vloc(α(δi)) = Vloc(δi) ⊆ Vloc(δ). (2.34)

Then through the previous results and the properties of the derivations (point 2) of

Definition 2.4 (Compatibility))

(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Vass(σ) ⊆ Vloc(δ) ∩ Vass(δ) = ∅.

Moreover, in keeping with the hypothesis and point 3) of Definition 2.4 (Compati-

bility), for i ∈ [1,m],

(Vloc(α(δ1)) ∪ Vloc(α(δ2))) ∩ Fv(ci) ⊆ Vloc(δ) ∩ Fv(ci) ⊆
⋃i−1
j=1 Fv(dj)

holds and this completes the proof of the first inclusion.

(SP (H) ‖ SP (G)� SP (H,G)). Let σ ∈ SP (H) ‖ SP (G). According to the definition

of SP and of ‖, δ1 ∈ S ′P (H) and δ2 ∈ S ′P (G) exist, such that σ1 = α(δ1), σ2 =

α(δ2), σ1 ‖ σ2 is defined, σ = 〈c1, K̃1, H̃1, d1〉 · · · 〈cm, H̃m, Tm〉 ∈ η(σ1 ‖ σ2),

(Vloc(σ1)∪Vloc(σ2))∩Vass(σ) = ∅ and for i ∈ [1,m], (Vloc(σ1)∪Vloc(σ2))∩Fv(ci) ⊆⋃i−1
j=1 Fv(dj). The proof is then straightforward, by using Lemma 2.10.
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2.3 Correctness

In order to show the correctness of the semantics SP with respect to the (input/output)

observables SAP , we must first introduce a different characterization of SAP , obtained

by using the new transition system as defined in Table 2.1.

Definition 2.12 Let P be a program and let G be a goal and let −→P be (the least

relation) defined by the rules in Table 2.1. We define

SA′P (G) = {∃−Fv(G)c | 〈G̃, true, ∅〉n1 −→∅P · · · −→∅P 〈∅, c, Tm〉nm 6−→K
P }

∪
{false | 〈G̃, true, ∅〉n1 −→∅P · · · −→∅P 〈G̃′, c, T 〉nm and

CT |= c↔ false}.

The correspondence of SA′ with the original notion SA is stated by the following

proposition, whose proof is immediate.

Proposition 2.1 Let P be a program and let G be a goal. Then SAP (G) = SA′P (G).

The observables SA′P , and therefore SAP , describing answers of successful compu-

tations can be obtained from SP , by considering suitable sequences, namely those se-

quences which do not perform assumptions either on CHR constraints or on built-in con-

straints. The first condition means that the second component of tuples (of the sequences

. . . 〈c, K̃, H̃, d〉 . . .) of our compositional semantics must be empty, while the second one

means that the assumed constraint at step i must be equal to the produced constraint of

steps i− 1. We call “connected” those sequences which satisfy these requirements.

Definition 2.13 (Connected sequences) Let σ = 〈c1, K̃1, H̃1, d1〉 . . . 〈cm, H̃m, T 〉 ∈ D.
We say that σ is connected if for each j, 1 ≤ j ≤ m− 1, K̃j = ∅ and dj = cj+1.

The proof of the following result derives from the definition of the connected sequence

and an easy inductive argument. If σ = 〈c1, K̃1, H̃1, d1〉 . . . 〈cm, H̃m, T 〉 is a sequence, we

denote by instore(σ) and store(σ) the built-in constraints c1 and cm, respectively and by

lastg(σ) the goal H̃m.
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Proposition 2.2 Let P be a program and let G be a goal. Then

SA′P (G) = {∃−Fv(G)c | there exists σ ∈ SP (G) such that instore(σ) = ∅,
σ is connected, lastg(σ) = ∅ and c = store(σ)}
∪

{false | there exists σ ∈ SP (G) such that instore(σ) = ∅, σ is

connected and CT |= store(σ)↔ false}.

The following corollary follows immediately from Proposition 2.1.

Corollary 2.1 (Correctness) Let P be a program and let G be a goal. Then

SAP (G) = {∃−Fv(G)c | there exists σ ∈ SP (G) such that instore(σ) = ∅,
σ is connected, lastg(σ) = ∅ and c = store(σ)}
∪

{false | there exists σ ∈ SP (G) such that instore(σ) = ∅, σ is

connected and CT |= store(σ)↔ false}.
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Chapter 3

Program Transformation: Unfolding in CHR

Program transformation was initially developed to assist in writing correct and efficient

programs. This could be done in two phases: The first one consisted in writing a possi-

bly inefficient program whose correctness was simple to prove. The second phase was

the sound transformation of the considered program, following a safe methodology to in-

crease efficiency. Nowadays, program transformation is also used to prove properties like

non-termination and deadlock-freeness.

Burstall and Darlington [BD77] advocated the program transformation approach. Said

approach did not usually consist in a single transformation step. In fact, many interme-

diate steps were usually performed until the final one is reached. So, let P0 be the initial

program, a sequence of equivalent programs 〈P0, . . . , Pn〉 is created. Such equivalence is

of a semantic nature. This means that, given a fixed input, the same output is found when

Pi is applied with 0 ≤ i ≤ n. Said property is represented by Sem(Pj) = Sem(Pj+1)

with 0 ≤ j < n − 1 where Sem is the function that associates its semantics with every

program. Figure 3.1 depicts a sequence of program transformations.

The original target of the transformation depicted above (Figure 3.1) would be an

P0
//

Sem
��

P1
//

Sem
��

P2
//

Sem
��

. . . // Pn

Sem
��

Sem(P0)
= Sem(P1)

= Sem(P2)
= Sem(Pn)

Figure 3.1: Equivalent program transformation
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improvement of the considered program, in terms of space or time complexity. This can

also be seen in the following Example 3.1.

Example 3.1 Various implementations of the Fibonacci sequence give an example of pro-

gram transformation. Let us recall the mathematical definition as introduced in [BPS04]

before proceeding further.


Fk+2 = Fk+1 + Fk with (k ≥ 1)

F0 = 1

F1 = 1

function FiboR(N: LongInt): LongInt; function FiboIter(N: LongInt): LongInt;

begin Var I, A, B, C: LongInt;

if(N < 2) then begin

FiboR := 1 if(N < 2) then

else FiboIter:=1

begin else

FiboR := FiboR(N-1) + FiboR(N-2); begin

end; A:=1;

end; B:=1;

for I:=3 to N do

begin

C:=A+B;

A:=B;

B:=C;

end;

FiboIter:=C;

end;

end;

The recursive version FiboR has time complexity O(2n) and space complexity O(n)

while the iterative version FiboIter has time complexity O(n) and space complexity

O(1). �
An example of how the performances can be improved using program transformation

is now proposed.

Example 3.2 Let us suppose that a program P = {r1, r2} is given where

r1@f(X, Y ), f(Y, Z)⇔ g(X,Z)

r2@g(X,Z)⇔ gs(Z,X)
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and where the constraint f(X, Y ) represents the relation “X is the father of Y ”, after-

wards the constraint g(X,Z) means “X is the grandfather of Z” and finally the constraint

gs(Z,X) stands for “Z is the grandson of X”.

We can observe that rule r1 can be substituted by the rule

r′1@f(X, Y ), f(Y, Z)⇔ gs(Z,X)

where the body of r′1 is substituted by that of r2. This can happen because only rule r2 can

be applied after the application of rule r1, so, the intermediate CHR constraint g(X,Z)

can be directly replaced by the final one with respect to the computation, that is gs(Z,X).

Naturally, the application of only one instead of two rules could lead to an improve-

ment in performance.
�

The experience of the scientific community has shown that program transformation

is a very valuable methodology, especially for the task of “programming in the small”.

This can be achieved by subdividing a big program into small modules that will cooperate

together to obtain the task of the main program. Such small tasks can be efficiently

optimized [PP96].

Naturally, the first experiences in program transformation considered the imperative

programming paradigm but subsequently also transformation rules for declarative ones

were defined.

Tamaki and Sato [TS84] was the first paper that proposed a general framework for the

fold/unfold transformations of programs, written using a Declarative Logic Language.

Pettorossi and Proietti [PP96] suggested further transformation for Logic Programs (LP).

Such transformations can be found with some adaptation also in the more recent lan-

guages that can be considered a derivation of LP like Constraint Logic Programming

(CLP) [JM94] and Concurrent Constraint Programming (CCP) [Sar93]. Examples of

transformation techniques for the above mentioned languages can be found in [FPP04]

for CLP and in [EGM01] for CCP.

Only a few papers, notably [FH03, Frü04, SSD05b], consider source to source trans-

formation of CHR programs. This is not surprising, since program transformation is in
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general very difficult for (logic) concurrent languages and in the case of CHR it is even

more complicated, as we shall discuss later.

While [Frü04] focuses on specialization of a program for a given goal, here we con-

sider unfolding. This is a basic operation of any source to source transformation (and

specialization) system and essentially consists in the replacement of a procedure-call by

its definition. Said call consists in a constraint with which a CLP rule can unify and con-

sidering CHR it is a conjunction of CHR constraints with which a CHR rule can match.

While this operation can be performed rather easily for sequential languages, and indeed

in the field of logic programming, it was first investigated by Tamaki and Sato more than

twenty years ago [TS84], whereby considering logic concurrent languages it becomes

quite difficult to define reasonable conditions which ensure its correctness. This is mainly

due to the presence of guards in the rules: Intuitively, when unfolding a rule r by using

a rule v (i.e. when replacing in the body of r a “call” of a procedure by its definition v)

it could happen that some guard in v is not satisfied statically (i.e. when we perform the

unfold), even though it could become satisfied later when the unfolded rule is actually

used. If we move the guard of v in the unfolded version of r we can then lose some com-

putations (because the guard is anticipated). This means that if we want to preserve the

meaning of a program we cannot replace the rule r by its unfolded version, and we have

to keep both the rules. Another source of difficulties consists in the matching substitution

mechanism. Only the variables in the atoms of the head of a rule r can be instantiated to

become equal to the goal terms following the previous mechanism. On the other hand, the

unification mechanism also permits instantiation of the variables in the atoms of the goal.

Considering the matching substitution, the deletion of r, when a rule v could be used to

unfold r if strong enough hypotheses were considered, they could cause computation loss

also if r were unfolded by another rule v′. Finally, the situation for CHR is further com-

plicated by the presence of multiple heads in the rules. In fact, as was recalled in Section

1.1.3, unlike CLP, the head of CHR rule can be composed of more than one constraint or

atom. Due to this particular characteristic, we say that CHR rules have multiple heads.

Let B be the body of a rule r and let H be the (multiple) head of a rule v, which can

be used to unfold r, we cannot be sure that at run-time all the atoms in H will be used
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to rewrite B, since in general B could be in a conjunction with other atoms even though

the guards are satisfied. This technical point, that one could currently legitimately find

obscure, will be further clarified in Chapter 3.4.

Despite these technical problems, the study of unfolding techniques for concurrent

languages, and for CHR in particular, is important as it could lead to significant improve-

ments in the efficiency and in non-termination analysis of programs.

In this chapter we will define an unfolding rule for CHR programs and show that it

preserves the semantics of the program in terms of qualified answers (a notion already

defined in the literature and previously introduced in Definition 1.3). We also provide a

syntactic condition which allows us to replace a rule by its unfolded version in a program

while preserving qualified answers. Even though the idea of the unfolding is straightfor-

ward, its technical development is complicated by the presence of guards, multiple heads

and matching substitution, as previously mentioned. In particular, conditions which al-

low us to replace the original rule by its unfolded version, are not immediately identified.

Moreover, a further complication arises from the fact that we consider the reference se-

mantics (called ωt), as defined in [DSGdlBH04] which avoids trivial non-termination by

using a, so called, token store or history (see Subsection 1.5.2). Due to the presence of this

token store, in order to define the unfolding correctly we have to slightly modify the syn-

tax of CHR programs by adding a local token store to each rule. The resulting programs

are called annotated and we define their semantics by providing a (slightly) modified ver-

sion of the semantics ωt, which is proven to preserve the qualified answers. Finally, the

maintenance of termination and confluence of property between the original and the ones,

which are modified following the above techniques, is proven.

Some of the results where already published in [TMG07].

3.1 CHR annotated syntax

As introduced in 1.5.2, a simpagation rule can simulate both simplification and propaga-

tion rule by considering, respectively, either H1 or H2 empty (with (H1, H2) 6= ∅). In the

following pages we will go on to consider in the formal treatment only simpagation rules.
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When considering unfolding we need to consider a slightly different syntax, where

rule identifiers are not necessarily unique, atoms in the body are associated with an iden-

tifier, that is unique to the rule, and where each rule is associated with a local token store

T .

Definition 3.1 CHR ANNOTATED SYNTAX. Let us define a token as an object of the

form r@i1, . . . , il, where r is the name of a rule and i1, . . . , il is a sequence of identifiers.

A token store (or history) is a set of tokens (Subsection 1.5.2).

An annotated rule has then the following form:

r@H1 \H2 ⇔ C | B̃;T

where r is an identifier, H1 and H2 are sequences of user-defined constraints, B̃ is a

sequence of (not-identified) built-in and identified CHR constraints such that different

(occurrences of) CHR constraints have different identifiers, and T is a token store, called

the local token store of rule r. An annotated CHR program consists of a finite set of

annotated CHR rules.

Having introduced the annotated syntax for CHR, some definitions, previously intro-

duced in Section 1.3, are now reproposed. The extensions of said definitions, which are

needed in this chapter, are now given. In the following sections, the functions chr(h#i)=h

and the overloaded function id(h#i)=i, [and id(r@i1, . . . , il) = {i1, . . . , il}] possibly ex-

tended to sets and sequences of identified CHR constraints [or tokens] in the obvious way

will be used. Given a goal G, we denote by G̃ one of the possible identified versions of

G. Goals is the set of all (possibly identified) goals.

Intuitively, identifiers are used to distinguish different occurrences of the same atom in

a rule. The identified atoms can be obtained by using a suitable function which associates

a (unique) integer with each atom. More precisely, let B be a goal which contains m

CHR-constraints. We assume that the function In+m
n (B) identifies each CHR constraint

inB by associating a unique integer in [n+1,m+n] with it according to the lexicographic

order.
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On the other hand, the token store allows us to memorize some tokens, where each

token describes which (propagation) rule has been used for reducing which identified

atoms. As we previously discussed in Section 1.5, the use of this information was orig-

inally proposed in [Abd97] and then further elaborated upon in the semantics defined in

[DSGdlBH04], in order to avoid trivial non-termination, arising from the repeated appli-

cation of the same propagation rule to the same constraints. Here we simply incorporate

this information in the syntax, since we will need to manipulate it in our unfolding rule.

Given a CHR program P , by using the function In+m
n (B) and an initially empty local

token store, we can construct its annotated version as follows.

Definition 3.2 Let P be a CHR program. Then its annotated version is defined as follows:

Ann(P ) = { r@H1 \H2 ⇔ C | Im0 (B); ∅ |
r@H1 \H2 ⇔ C |B ∈ P and

m is the number of CHR-constraints in B }.

Notation

In the following examples, given a (possibly annotated) rule

r@H1 \H2 ⇔ C |B(;T ),

we write it as

r@H2 ⇔ C |B(;T ),

if H1 is empty and we write it as

r@H1 ⇒ C |B(;T ),

if H2 is empty.

That is, we also maintain the notation previously introduced for simplification and

propagation rules. Moreover, if C = true, then true | is omitted. Finally, if in an

annotated rule the token store is empty, we simply omit it.
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3.2 The modified semantics ω′t

This section introduces a slightly different operational semantics with respect to the one

proposed in Subsection 1.5.2, called ω′t, which considers annotated programs and which

will be used to prove the correctness of our unfolding rules (via a specific form of equiv-

alence between ω′t and ωt).

We now define the semantics ω′t which considers annotated rules. This semantics

differs from ωt in two aspects.

First, in ω′t the goal store and the CHR store are fused in a unique generic store,

where CHR constraints are immediately labelled. As a consequence, we do not need

the Introduce rule anymore and every CHR constraint in the body of an applied rule is

immediately usable for rewriting.

The second difference concerns the shape of the rules. In fact, each annotated rule r

has a local token store (which can be empty) that is associated with it and which is used

to keep trace of the propagation rules that are used to unfold the body of r. Note also that

here, unlike the case of the propagation history in ωt, the token store associated with the

real computation can be updated, by adding more tokens at once (because an unfolded

rule with many tokens in its local token store has already been used).

In order to define ω′t formally we need a function inst which updates the formal iden-

tifiers of a rule to the actual computation ones and which is defined as follows:

Definition 3.3 Let Token be the set of all possible token set and let N be the set of natural

numbers. We denote by inst : Goals× Token× N→ Goals× Token× N the function

such that inst(B̃, T, n) = (B̃′, T ′,m), where

• B̃ is an identified CHR goal,

• (B̃′, T ′) is obtained from (B̃, T ) by incrementing each identifier in (B̃, T ) with n

and

• m is the highest identifier in (B̃′, T ′).
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We now describe the operational semantics ω′t for annotated CHR programs by using,

as usual, a transition system

Tω′t = (Conf ′t ,−→ω′t
).

Configurations in Conf ′t are tuples of the form 〈S̃, C, T 〉n with the following meaning.

S̃ is the set of identified CHR constraints that can be matched with rules in the program

P and built-in constraints. The built-in constraint store C is a conjunction of built-in

constraints and T is a set of tokens, while the counter n represents the last integer which

was used to number the CHR constraints in S̃.

Given a goal G, the initial configuration has the form

〈Im0 (G), true, ∅〉m,

where m is the number of CHR constraints in G. A final configuration has either the

form 〈S̃, false, T 〉n when it has failed or it has the form 〈S̃, C, T 〉n when it represents a

successful termination, since there are no more applicable rules.

The relation −→ω′t
(of the transition system of operational semantics ω′t) is defined by

the rules in Table 3.1. Let us now briefly discuss the rules.

Solve’ moves a built-in constraint from the store to the built-in constraint store;

Apply’ uses the rule r@H ′1\H ′2 ⇔ D | B̃;Tr provided that there exists a matching sub-

stitution θ such that chr(H̃1, H̃2) = (H ′1, H
′
2)θ, D is entailed by the built-in con-

straint store of the computation (θ is considered) and r@id(H̃1, H̃2) 6∈ T ; H̃2 is

replaced by B̃, where the identifier are suitably incremented by inst function and

chr(H̃1, H̃2) = (H ′1, H
′
2) is added to built-in constraint store.

In order to show the equivalence of the semantics ωt and ω′t we will use the notion of

observables called “qualified answers” which is introduced in 1.5.2.

Analogously, we can define the qualified answer of an annotated program.

Definition 3.4 (QUALIFIED ANSWERS FOR ANNOTATED PROGRAMS). Let P be an an-

notated CHR program and let G be a goal with m CHR constraints. The set QA′P (G) of
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Solve’
CT |= c ∧ C ↔ C′ and c is a built-in constraint

〈{c} ∪ G̃, C, T 〉n −→ω′
t
〈G̃, C′, T 〉n

Apply’

r@H′1\H′2 ⇔ D | B̃;Tr ∈ P, x = Fv(H′1, H
′
2)

CT |= C → (∃x(chr(H̃1, H̃2) = (H′1, H
′
2)) ∧D), r@id(H̃1, H̃2) 6∈ T

〈H̃1 ∪ H̃2 ∪ G̃, C, T 〉n −→ω′
t
〈B̃′ ∪ H̃1 ∪ G̃, (chr(H̃1, H̃2) = (H′1, H

′
2) ∧ C, T ′〉m

where (B̃′, T ′r,m) = inst(B̃, Tr, n) and T ′ = T ∪ {r@id(H̃1, H̃2)} ∪ T ′r if H̃2 = ∅
otherwise T ′ = T ∪ T ′r.

Table 3.1: The transition system Tω′t for ω′t semantics

qualified answers for the query G in the annotated program P is defined as follows:

QA′P (G) =

{∃−Fv(G)K ∧ d | 〈Im0 (G), true, ∅〉m →∗ω′t 〈K̃, d, T 〉n 6→ω′t
}

∪
{false | 〈Im0 (G), true, ∅〉m →∗ω′t 〈G̃

′, false, T 〉n}.

The following definition is introduced to describe the equivalence of two intermediate

states and it is only used in the proofs. We consider two states equivalent when they are

identical with the possible exception of the renaming of local variables and renaming of

identifiers and logical equivalence of built-in constraints.

Definition 3.5 (INTER-SEMANTICS STATE EQUIVALENCE) Let σ = 〈(H1, C), H̃2, D, T 〉n
be a state in the transition system ωt and let σ′ = 〈(K̃, C), D, T ′〉m be a state in the tran-

sition system ω′t.

States σ and σ′ are equivalent and we write σ ≡ σ′ if:

1. K̃1 and K̃2 exist, whereby K̃ = K̃1 ∪ K̃2, H1 = chr(K̃1) and chr(H̃2) = chr(K̃2),

2. for each l ∈ id(K̃1), l does not occur in T ′,

3. there exists a renaming of identifier ρ s.t. Tρ = T ′ and H̃2ρ = K̃2.
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The following result shows the equivalence of the two introduced semantics proving

the equivalence (with respect to Definition 3.5) of intermediate states. The proof is easy

by definition of ωt and ω′t.

Proposition 3.1 Let P and Ann(P ) be respectively a CHR program and its annotated

version. Then, for every goal G,

QAP (G) = QA′Ann(P )(G)

holds.

PROOF. By definition of QA and of QA′, the initial states of the two transition sys-

tems are equivalent. Then, we have only to show that any transition step from any state in

one system can be imitated from an equivalent transition step, originating in an equivalent

state in the other system, in order to achieve an equivalent state.

Let σ = 〈(H1, C), H̃2, D, T 〉n be a state in the transition system ωt and let σ′ =

〈(K̃, C), D, T ′〉m be a state in the transition system ω′t, such that σ ≡ σ′

Solve and Solve’: they move a built-in constraint from the Goal store or the Store re-

spectively to the built-in constraint store. In this case let C = C ′ ∪ {c}. According

to the definition of the two transition systems

σ −→Solve
ωt 〈(H1, C

′), H̃2, D ∧ c, T 〉n and σ′ −→Solve′

ω′t
〈(K̃, C ′), D ∧ c, T ′〉m.

According to the definition of≡, it is easy to check that 〈(H1, C
′), H̃2, D∧c, T 〉n ≡

〈(K̃, C ′), D ∧ c, T ′〉m.

Introduce: this kind of transition exists only in ωt semantics and its application labels a

CHR constraint into the goal store and moves it into the CHR store. In this case, let

H1 = H ′1 ] {h} and

σ −→Introduce
ωt 〈(H ′1, C), H̃2 ∪ {h#n}, D, T 〉n+1.

Let us denote H̃2 ∪ {h#n} by H̃ ′2. As in the definition of ≡, K̃1 and K̃2 exist

whereby K̃ = K̃1 ∪ K̃2, H1 = chr(K̃1) and chr(H̃2) = chr(K̃2). Therefore, an
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identified atom h#m ∈ K̃1 exists. Let n′ = ρ(n) (where n′ = n if n is not in the

domain of ρ). Through construction and hypothesis, K̃ ′1 = K̃1 \ {h#m} and K̃ ′2 =

K̃2 \{h#m} are such that K̃ = K̃ ′1∪ K̃ ′2, H ′1 = chr(K̃ ′1) and chr(H̃ ′2) = chr(K̃ ′2).

Moreover, according to the definition of ≡, for each l ∈ id(K̃1), l does not occur in

T ′. Therefore, since by construction K̃ ′1 ⊆ K̃1, we can say that for each l ∈ id(K̃ ′1),

l does not occur in T ′.

Now, to prove that σ′ ≡ 〈(H ′1, C), H̃ ′2, D, T 〉n+1, we have only to prove that there

exists a renaming ρ′, such that Tρ′ = T ′ and H̃ ′2ρ
′ = K̃ ′2.

We can consider the new renaming ρ′ = ρ ◦ {n′/m,m/n′}. By definition ρ′ is a

renaming of identifiers. Since by construction, m 6∈ id(K̃2), we can observe that if

there exists m′/m ∈ ρ, then m′ 6∈ id(H̃2). Moreover, since m 6∈ id(K̃2), if there

is no m/m′ ∈ ρ then m 6∈ id(H̃2). As a result of the previous observations, we

can conclude that H̃ ′2ρ
′ = H̃2ρ ∪ {h#n}{n/m} = K̃ ′2. Finally, since n does not

occur in T , we can say that Tρ′ = Tρ{m/n′} = T ′{m/n′}, where the last equality

follows by hypothesis. Moreover, since m ∈ id(K̃1), we can conclude that m does

not occur in T ′. Therefore, T ′{m/n′} = T ′ and then the thesis follows.

Apply: Let r@F ′\F ′′ ⇔ D1 |B,C1 ∈ P and r@F ′\F ′′ ⇔ D1 | B̃, C1 ∈ Ann(P ) be its

annotated version which can be applied to the considered state σ′ = 〈(K̃, C), D, T ′〉m,

in particular F ′, F ′′ match respectively with P̃1 and P̃2. Without loss of generality,

by using a suitable number of Introduce steps, we can assume that r@F ′\F ′′ ⇔
D1 |B,C1 ∈ P can be applied to σ = 〈(H1, C), H̃2, D, T 〉n. In particular, we can

assume for i = 1, 2, there exists Q̃i ⊆ H̃2 such that Q̃iρ = P̃i and F ′, F ′′ match

respectively with Q̃1 and Q̃2.

According to the definition of ≡, P̃3 and Q̃3 exist such that Q̃3ρ = P̃3, K̃2 =

P̃1 ∪ P̃2 ∪ P̃3, H̃2 = Q̃1 ∪ Q̃2 ∪ Q̃3 and let x = Fv(P̃1, P̃2) = Fv(Q̃1, Q̃2).

Through construction, since Tρ = T ′ and (P̃1, P̃2) = (Q̃1, Q̃2)ρ, we have that

• r@id(P̃1, P̃2) 6∈ T ′ if and only if r@id(Q̃1, Q̃2) 6∈ T and
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• CT |= D → ∃x(((F ′, F ′′) = chr(P̃1, P̃2)) ∧D1) if and only if CT |= D →
∃x(((F ′, F ′′) = chr(Q̃1, Q̃2)) ∧D1).

Therefore, in accordance with the definition of Apply and of Apply’

σ −→Apply
ωt 〈{H1, C} ] {B,C1}, (Q̃1, Q̃3), ((F

′, F ′′) = chr(Q̃1, Q̃2)) ∧D,T1〉n

if and only if

σ′ →Apply′

ω′t
〈(K̃1, P̃1, P̃3, C, B̃

′, C1), ((F
′, F ′′) = chr(P̃1, P̃2)) ∧D,T ′1〉o

where

• T ′ = T ∪ {r@id(Q̃1)} if Q̃2 = ∅, otherwise T1 = T ,

• (B̃′, ∅, o) = inst(B̃, ∅,m) and

• T ′1 = T ′ ∪ {r@id(P̃1)} if Q̃2 = ∅, otherwise T ′1 = T ′.

Let σ1 = 〈{H1, C} ] {B,C1}, (Q̃1, Q̃3), ((F
′, F ′′) = chr(Q̃1, Q̃2)) ∧D,T1〉n and

σ′1 = 〈(K̃1, P̃1, P̃3, B̃
′, C, C1), ((F

′, F ′′) = chr(P̃1, P̃2)) ∧D,T ′1〉o.

Now, to prove the thesis, we have to prove that σ1 ≡ σ′1.

The following holds.

1. K̃ ′1 = (K̃1, B̃
′) and K̃ ′2 = (P̃1, P̃3) exist, whereby (K̃1, P̃1, P̃3, B̃

′) = K̃ ′1∪K̃ ′2,

H1 ]B = chr(K̃ ′1) and chr(Q̃1, Q̃3) = chr(K̃ ′2).

2. Since for each l ∈ id(K̃1), l does not occur in T ′, P̃1 ⊆ K̃2 and by definition

of Apply’ transition, we can conclude that for each l ∈ id(K̃ ′1) = id(K̃1, B̃
′),

l does not occur in T ′1,

3. Through construction and since Tρ = T ′, we can further conclude that T1ρ =

T ′1. Moreover, as a result of construction (Q̃1, Q̃3)ρ = (P̃1, P̃3) = K̃ ′2.

As per the definition, we arrive at the following conclusion, namely that σ1 ≡ σ′1

and then the thesis.

2
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3.3 The unfolding rule

In this section we define the unfold operation for CHR simpagation rules. As a particular

case we also obtain unfolding for simplification and propagation rules, as these can be

seen as particular cases of the former.

The unfolding allows us to replace a conjunction S of constraints (which can be seen

as a procedure-call) in the body of a rule r by the body of a rule v, provided that the

head of v matches with S. More precisely, assume that the head H of v, instantiated by a

substitution θ, matches with the conjunction S (in the body of r). Then the unfolded rule

is obtained from r, by performing the following steps: 1) the new guard in the unfolded

rule is the conjunction of the guard of r with the guard of v, the latter instantiated by

θ and without those constraints that are entailed by the built-in constraints which are in

r, 2) the body of v and the equality H = S are added to the body of r (equality here

is interpreted as syntactic equality), 3) the conjunction of constraints S can be removed,

partially removed or left in the body of the unfolded rule, depending on the fact that v

is a simplification, a simpagation or a propagation rule, respectively, 4) as for the local

token store Tr associated to every rule r, this is updated consistently during the unfolding

operations, in order to avoid that a propagation rule is used twice to unfold the same

sequence of constraints.

Before formally defining the unfolding we need to define the function

clean : Goals× Token→ Token,

as follows: clean(B̃, T ) deletes from T all the tokens for which at least one identifier is

not present in the identified goal B̃. More formally

clean(B̃, T ) = {t ∈ T | t = r@i1, . . . , ik and ij ∈ id(B̃), for each j ∈ [1, k]}.

Let us also recall at this juncture that we defined chr(h#i)=h.

Definition 3.6 (UNFOLD). Let P be an annotated CHR program and let r, sp ∈ P be

two annotated rules such that:

r@H1\H2 ⇔ D | K̃, S̃1, S̃2, C;T and

sp@H ′1\H ′2 ⇔ D′ | B̃;T ′ is a simpagation rule
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where chr(S̃1, S̃2) is identical to (H ′1, H
′
2)θ, that is, the constraints H ′1 in the head of

rule sp match with chr(S̃1) and H ′2 matches with chr(S̃2) by using the substitution θ.

Furthermore, assume that C is the conjunction of all the built-in constraints in the body

of r, that m is the highest identifier which appears in the rule r and that (B̃1, T1,m1) =

inst(B̃, T ′,m). Then the unfolded rule is:

r@H1\H2 ⇔ D, (D′′θ) | K̃, S̃1, B̃1, C, chr(S̃1, S̃2) = (H ′1, H
′
2);T

′′

where sp@id(S̃1, S̃2) 6∈ T , D′′ = D′\V , V ⊆ D′ where V is the biggest possible set such

that CT |= C ∧D → V θ, the constraint (D, (D′′θ)) is satisfiable and

• if H ′2 = ∅ then T ′′ = clean((K̃, S̃1), T ) ∪ T1 ∪ {sp@id(S̃1)}

• if H ′2 6= ∅ then T ′′ = clean((K̃, S̃1), T ) ∪ T1.

The reader can notice that, after the application of the previous unfolding defini-

tion, a new rule labelled with r is created. Said rule is usually introduced into the

CHR program which also contains the initial rule r. This means that, after unfolding,

the rule identifiers are usually not unique. We point out that the function inst (de-

fined in Definition 3.3) is used in order to increment the value of the identifiers asso-

ciated with atoms in the unfolded rule. This allows us to distinguish the new identi-

fiers introduced in the unfolded rule from the old ones. We should also note that the

condition of the token store is needed to obtain a correct rule. Consider for example

a ground annotated program P = {r1@h ⇔ k̃, r2@k ⇒ s̃, r3@s, s ⇔ B̃} and let

h be the start goal. In this case the unfolding could change the semantics if the to-

ken store were not used. In fact, according to the semantics proposed in Table 1.3 or

3.1, we have the following computation: h̃ →(r1) k̃ →(r2) k̃, s̃ 6→ωt . On the other

hand, considering an unfolding without the update of the token store one would have

r1@h ⇔ k̃
unfold using r2−→ r1@h ⇔ k̃, s̃

unfold using r2−→ r1@h⇔ k̃, s̃, s̃
unfold using r3−→ r1@h ⇔ k̃, B̃ so,

starting from the constraint h we could arrive at constraint k,B, that is not possible in the

original program (the clause obtained after the wrongly applied unfolding rule is under-

lined).
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As previously mentioned, the unfolding rules for simplification and propagation can

be obtained as particular cases of Definition 3.6, by setting H ′1 = ∅ and H ′2 = ∅, re-

spectively, and by considering the resulting unfolded rule accordingly. In the following

examples we will use � to denote both⇔ and⇒. The rule names will use the overlined

notation to point out a close resemblance between the rules themselves.

Example 3.3 The following program P = {r1, r2, r̄2} deduces information about ge-

nealogy. Predicate f is considered as father, g as grandfather, gs as grandson and gg as

great-grandfather. The following rules are such that we can unfold some constraints in

the body of r1 using the rule r2 [r̄2].

r1@f(X, Y ), f(Y, Z), f(Z,W )� g(X,Z)#1, f(Z,W )#2, gs(Z,X)#3.

r2@g(X, Y ), f(Y, Z)� gg(X,Z)#1.

r̄2@g(X, Y )\f(Y, Z)⇔ gg(X,Z)#1.

Now we unfold the body of rule r1 by using the rule r2 where we assume � =⇔ (so we

have a simplification rule). We use inst(gg(X,Z)#1, ∅, 3) = (gg(X,Z)#4, ∅, 4) and a

renamed version of r2

r2@g(X ′, Y ′), f(Y ′, Z ′)⇔ gg(X ′, Z ′)#1.

in order to avoid variable clashes. So the new unfolded rule is:

r1@f(X, Y ), f(Y, Z), f(Z,W )� gg(X ′, Z ′)#4, gs(Z,X)#3, X ′ = X, Y ′ = Z,Z ′ = W.

Now, we unfold the body of rule r1 by using the simpagation rule r̄2. As before,

inst(gg(X,Z)#1, ∅, 3) = (gg(X,Z)#4, ∅, 4)

and a renamed version of r̄2

r̄2@g(X ′, Y ′)\f(Y ′, Z ′)⇔ gg(X ′, Z ′)#1.

is used to avoid variable clashes. The new unfolded rule is:

r1@f(X, Y ), f(Y, Z), f(Z,W )� g(X,Z)#1,

gg(X ′, Z ′)#4, gs(Z,X)#3, X ′ = X, Y ′ = Z,Z ′ = W.
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Finally, we unfold the body of r1, by using the r2 rule where� =⇒ is assumed (so we

have a propagation rule). As usual, inst(gg(X,Z)#1, ∅, 3) = (gg(X,Z)#4, ∅, 4) and a

renamed version of r2 is used to avoid variable clashes such as:

r2@g(X ′, Y ′), f(Y ′, Z ′)⇒ gg(X ′, Z ′)#1.

and so the new unfolded rule is:

r1@f(X, Y ), f(Y, Z), f(Z,W )� g(X,Z)#1,

f(Z,W )#2, gs(Z,X)#3, gg(X ′, Z ′)#4, X ′ = X, Y ′ = Z,Z ′ = W ; {r2@1, 2}.

�

The following example considers more specialized rules with guards which are not

true.

Example 3.4 The following program P = {r1, r2, r̄2} specializes in the rules introduced

in Example 3.3 to the genealogy of Adam. So here we remember that Adam was the

father of Seth, Seth was the father of Enosh, Enosh was the father of Kenan. As before,

we consider the predicate f as father, g as grandfather, gs as grandson and gg as great-

grandfather.

r1@f(X, Y ), f(Y, Z)f(Z,W )�X = Adam, Y = Seth |
g(X,Z)#1, f(Z,W )#2, gs(Z,X)#3, Z = Enosh.

r2@g(X, Y ), f(Y, Z)�X = Adam, Y = Enosh | gg(X,Z)#1, Z = Kenan.

r̄2@g(X, Y )\f(Y, Z)⇔ X = Adam, Y = Enosh | gg(X,Z)#1, Z = Kenan.

If we unfold r1, by using (a suitably renamed version of) r2, where we assume� =⇔,

we obtain:

r1@f(X, Y ), f(Y, Z)f(Z,W )�X = Adam, Y = Seth | gg(X ′, Z ′)#4, Z ′ = Kenan,

gs(Z,X)#3, Z = Enosh,X ′ = X, Y ′ = Z,Z ′ = W.

When r̄2 is considered to unfold r1 we have

r1@f(X, Y ), f(Y, Z)f(Z,W )�X = Adam, Y = Seth | g(X,Z)#1, gg(X ′, Z ′)#4,

Z ′ = Kenan, gs(Z,X)#3, Z = Enosh,X ′ = X, Y ′ = Z,Z ′ = W.
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Finally if we assume � =⇒ in r2 from the unfolding we obtain

r1@f(X, Y ), f(Y, Z), f(Z,W )�X = Adam, Y = Seth | g(X,Z)#1, f(Z,W )#2,

gs(Z,X)#3, gg(X ′, Z ′)#4, Z ′ = Kenan, Z = Enosh,X ′ = X, Y ′ = Z,

Z ′ = W ; {r2@1, 2}.

Note that X ′ = Adam, Y ′ = Enosh are not added to the guard of the unfolded rule

because X ′ = Adam is entailed by the guard of r1 and Y ′ = Enosh is entailed by the

built-in constraints in the body of r1. �

We will now prove the correctness of our unfolding definition. Let r′ be the rule

obtained by the unfolding of rule r, using rule v. Let the state σtr′ be obtained after the

application of the rule r′ and let the state σfv be obtained, using the rules r and v. The

proof of the following proposition is done by showing the equivalence between the states

σtr′ and σfv . Before the introduction of the proposition, three new definitions are given.

The first one presents the concept of the built-in free state. Said state has no built-in

constraints in the store.

Definition 3.7 (BUILT-IN FREE STATE) Let σ = 〈G̃,D, T 〉o be a state. The state σ is

built-in free, if either G̃ is a multiset of CHR-constraints or D = false.

The second definition introduces the state equivalence between states, obtained using

our ω′t modified semantics transition system which was introduced in Table 3.1. Note that

in such a definition, the equivalence operator is represented by the symbol '.

Definition 3.8 (STATE EQUIVALENCE) Let σ = 〈G̃,D, T 〉o and σ′ = 〈G̃′, D′, T ′〉o be

built-in free states. σ and σ′ are equivalent and we write σ ' σ′ if one of the following

facts hold.

• either D = false and D′ = false

• or G̃ = G̃′, CT |= D ↔ D′ and clean(G̃, T ) = clean(G̃′, T ).
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The above definition, could be generalized. In fact, given a state, different fresh vari-

ables can be chosen to rename the variables of a rule. For our purposes, we suppose that

two states, have the same new variables, where possible.

Finally, the third definition presents the normal derivation. A derivation is called

normal if no other Solve′ transition is possible when an Apply′ one happens.

Definition 3.9 (NORMAL DERIVATION) Let P be an annotated CHR program and let

δ = 〈G̃, c, T 〉m →∗ω′t 〈K̃, d, T
′〉n 6→ω′t

be a derivation in P : We say that δ is normal if

it uses a transition Solve’ as soon as possible, namely it is possible to use a transition

Apply’ on a state σ only if σ is built-in free.

Note that, by definition, given an annotated program P , QA′(P ) can be calculated

by considering only normal derivations. Analogously for an annotated CHR program P ′.

The proof of the following proposition, which is about the equality bethween the [prime]

qualified answer, obtained using a general derivation and the ones obtained using only

normal derivation, is straightforward and hence it is omitted.

Proposition 3.2 Let P be CHR program and let P ′ an annotated CHR program. Then

QAP (G) = {∃−Fv(G)K ∧ d | δ = 〈G, ∅, true, ∅〉1 →∗ωt 〈∅, K̃, d, T 〉n 6→ωt

and δ is normal}
∪
{false | δ = 〈G, ∅, true, ∅〉1 →∗ωt 〈G

′, K̃, false, T 〉n
and δ is normal}

and

QA′P (G) = {∃−Fv(G)K ∧ d | δ = 〈Im0 (G), true, ∅〉m →∗ω′t 〈K̃, d, T 〉n 6→ω′t

and δ is normal}
∪
{false | δ = 〈Im0 (G), true, ∅〉m →∗ω′t 〈G̃

′, false, T 〉n
and δ is normal}.
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Proposition 3.3 Let r, v be annotated CHR rules and r′ be the result of the unfolding of r

with respect to v. Let σ be a generic built-in free state such that we can use the transition

Apply′ with the clause r′, obtaining the state σr′ and then the built-in free state σfr′ . Then

we can construct a derivation which uses at most the clauses r and v and obtain a built-in

free state σf such that σfr′ ' σf .

PROOF. Assume that

σ −→r′ σr′ −→Solve∗ σfr′

↘ r σr −→Solve∗ σfr (−→v σv −→Solve∗ σfv )

The labeled arrow −→Solve∗ means that only solve transitions are applied. Moreover,

• if σfr has the form 〈G̃, false, T 〉 then the derivation between the parenthesis is not

present and σf = σfr .

• the derivation between the parenthesis is present and σf = σfv , otherwise.

Preliminaries: Let σ = 〈(H̃1, H̃2, H̃3), C, T 〉j be a built-in free state and let r@H ′1\H ′2 ⇔
Dr | K̃, S̃1, S̃2, Cr;Tr and v@S ′1\S ′2 ⇔ Dv | P̃ , Cv;Tv where chr(S̃1, S̃2) is identical to

(S ′1, S
′
2)θ. Furthermore, assume that m is the greatest identifier which appears in the rule

r and that inst(P̃ , Tv,m) = (P̃1, T1,m1). Then the unfolded rule is:

r′@H ′1\H ′2 ⇔ Dr, (D
′
vθ) | K̃, S̃1, P̃1, Cr, Cv, chr(S̃1, S̃2) = (S ′1, S

′
2);T2

where v@id(S̃1, S̃2) 6∈ Tr, D′v = Dv\V , V is the biggest set such that V ⊆ Dv and

CT |= Cr ∧Dr → V θ, (3.1)

the constraint (Dr, (D
′
vθ)) is satisfiable and

• if S ′2 = ∅ then T2 = clean((K̃, S̃1), Tr) ∪ T1 ∪ {v@id(S̃1)}

• if S ′2 6= ∅ then T2 = clean((K̃, S̃1), Tr) ∪ T1.
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The proof: By definition of the transition Apply′, we can say that

CT |= C → ∃x((chr(H̃1, H̃2) = (H ′1, H
′
2)) ∧Dr ∧ (D′vθ)), (3.2)

where x = Fv(H ′1, H
′
2) and

σr′ = 〈(Q̃, Cr, Cv, chr(S̃1, S̃2) = (S ′1, S
′
2)), chr(H̃1, H̃2) = (H ′1, H

′
2) ∧ C, T3〉j+m1 ,

where Q̃ = (H̃1, H̃3, Q̃1), with inst((K̃, S̃1, P̃1), T2, j) = (Q̃1, T
′
2, j +m1) and

• if H ′2 = ∅ then T3 = T ∪ T ′2 ∪ {r@id(H̃1)}

• if H ′2 6= ∅ then T3 = T ∪ T ′2.

Therefore, by definition

σfr′ = 〈Q̃, Cf
r′ , T3〉j+m1 .

where

CT |= Cf
r′ ↔ Cr ∧ Cv ∧ chr(S̃1, S̃2) = (S ′1, S

′
2) ∧ chr(H̃1, H̃2) = (H ′1, H

′
2) ∧ C.

On the other hand, since through (3.2),

CT |= C → ∃x((chr(H̃1, H̃2) = (H ′1, H
′
2)) ∧Dr)

by definition of the transition Apply′, we can observe that

σr = 〈(Q̃2, Cr), chr(H̃1, H̃2) = (H ′1, H
′
2) ∧ C, T4〉j+m,

where Q̃2 = (H̃1, H̃3, K̃
′′, S̃ ′′1 , S̃

′′
2 ),

((K̃ ′′, S̃ ′′1 , S̃
′′
2 ), T ′r, j +m) = inst((K̃, S̃1, S̃2), Tr, j) and

• if H ′2 = ∅ then T4 = T ∪ T ′r ∪ {r@id(H̃1)}

• if H ′2 6= ∅ then T4 = T ∪ T ′r.

Therefore, as per the definition

σfr = 〈Q̃2, C
f
r , T4〉j+m.

where

CT |= Cf
r ↔ Cr ∧ chr(H̃1, H̃2) = (H ′1, H

′
2) ∧ C.

We now have two possibilities
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(Cf
r = false). In this case, through construction we can conclude that Cf

r′ = false.

Therefore σfr′ ' σfr and then the thesis is proven.

(Cf
r 6= false). According to the definition, (3.1), (3.2) and since chr(S̃1, S̃2) = chr(S̃ ′′1 , S̃

′′
2 )

is identical to (S ′1, S
′
2)θ, we can further conclude that

CT |= (Cr ∧ chr(H̃1, H̃2) = (H ′1, H
′
2) ∧ C)→

(∃y((chr(S̃1, S̃2) = (S ′1, S
′
2)) ∧Dv)),

where y = Fv(S ′1, S
′
2) and

σv = 〈(Q3, Cv), chr(S̃1, S̃2) = (S ′1, S
′
2) ∧ Cr∧

chr(H̃1, H̃2) = (H ′1, H
′
2) ∧ C, T5〉j+m1 ,

where Q̃3 = (H̃1, H̃3, K̃
′′, S̃ ′′1 , P̃2), with inst(P̃ , Tv, j +m) = (P̃2, T

′
v, j +m1) and

• if S ′2 = ∅ then T5 = T4 ∪ T ′v ∪ {v@id(S̃ ′′1 )}

• if S ′2 6= ∅ then T5 = T4 ∪ T ′v.

Finally, according to the definition, we can conclude that

σfv = 〈Q̃3, C
f
v , T5〉j+m1 ,

whereby

Cf
v ↔ Cv ∧ chr(S̃1, S̃2) = (S ′1, S

′
2) ∧ Cr ∧ chr(H̃1, H̃2) = (H ′1, H

′
2) ∧ C.

If Cf
v = false then the proof is analogous to the previous case and hence it is omit-

ted. Otherwise, observe that through construction, Q̃ = (H̃1, H̃3, Q̃1), where Q̃1 is

obtained from (K̃, S̃1, P̃1), by adding the natural j to each identifier in (K̃, S̃1) and

by adding the natural j + m to each identifier in P̃ . Analogously, through con-

struction, Q̃3 = (H̃1, H̃3, K̃
′′, S̃ ′′1 , P̃2), where (K̃ ′′, S̃ ′′1 ) are obtained from (K̃, S̃1),

by adding the natural j to each identifier in (K̃, S̃1) and P̃2 is obtained from P̃ , by

adding the natural j +m to each identifier in P̃ .

Therefore Q̃ = Q̃3.
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Now, to prove the thesis, we have only to prove that

clean(T3, Q̃) = clean(T5, Q̃3).

Let us introduce the function up : {Token}×N −→ N as the function that adds to

each identifier of every token of the set {Token} the value N. So

T3 = T ∪ T ′2[∪{r@id(H̃1)}]
= T ∪ up(T2, j)[∪{r@id(H̃1)}]
= T ∪ up((clean((K̃, S̃1), Tr) ∪ T1 ∪ [{v@id(S̃1)}]), j)[∪{r@id(H̃1)}]
= T ∪ up((clean((K̃, S̃1), Tr) ∪ up(Tv,m) ∪ [{v@id(S̃1)}]), j)

[∪{r@id(H̃1)}]

T5 = T4 ∪ T ′v[∪{v@id(S ′′1 )}]
= T ∪ T ′r[∪{r@id(H̃1)}] ∪ up(Tv, j +m)[∪{v@id(S ′′1 )}]
= T ∪ up(Tr, j)[∪{r@id(H̃1)}] ∪ up(Tv, j +m)[∪{up({v@id(S̃1)}, j)}]

The proof follows immediately when we consider that Q̃ = Q̃3 and the result of the

application of function clean.

2

We will now go on to prove the correctness of our unfolding rule.

Proposition 3.4 Let P be an annotated CHR program with r, v ∈ P . Let r′ be the result

of the unfolding of r with respect to v and let P ′ be the program obtained from P by

adding rule r′. Then, for every goal G, QA′P ′(G) = QA′P (G) holds.

PROOF. We have only to prove that QA′P ′(G) ⊆ QA′P (G). The proof of the other

inclusion is an obvious consequence of the operational semantics of CHR, since in a

computation step one may apply any applicable rule.

The proof follows from Propositions 3.2 and 3.3 and by a straightforward inductive

argument.



100 Chapter 3. Program Transformation: Unfolding in CHR

2

The proof of the following result is obtained immediately from the previously men-

tioned proposition and Proposition 3.1.

Corollary 3.1 (Correctness) Let P be CHR program and let Ann(P ) be its annotated

version (as previously defined). Let P ′ be the program obtained from Ann(P ) by adding

a rule which is obtained, by unfolding a rule in Ann(P ). Then, for every G,QA′P ′(G) =

QAP (G) holds.

PROOF. Proposition 3.1 proves thatQAP (G) = QA′Ann(P )(G) whereAnn(P ) = P ′′

and P ′′ is a program with no unfolded rules. Proposition 3.4 proves that QA′P ′′(G) =

QA′P ′(G) where P ′′ is an annotated program, that could also contain no unfolded rules

and P ′ is an annotated program with at least one unfolded rule. And hence the proof.

2

3.4 Safe rule replacement

The previously mentioned corollary shows that we can safely add to a program P a rule

resulting from the unfolding, while preserving the semantics of P (in terms of qualified

answers). However, when a rule r in program P has been unfolded producing the new

rule r′, in some cases we would also like to replace r by r′ in P , since this could improve

the efficiency of the resulting program. Performing such a replacement while preserving

the semantics is in general a very difficult task for three reasons.

First of all, anticipating the guard of v in the guard of r (as we do in the unfold

operation) could lead to a loss of some computations when the unfolded rule r′ is used,

rather than the original rule r. This is shown by the following example.

Example 3.5 Consider the program

P = { r1@g(X, Y )⇔ s(Z,X), f(Z, Y ), X = Adam.

r2@s(M,N)⇔M = Seth | .
r3@f(O,P )⇔ O = Seth, P = Enosh. }
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where we do not consider the identifiers (and the local token store) in the body of rules,

because we do not have propagation rules in P .

It is clear that the goal g(Q,R) has a successful derivation which computes Q =

X,X = Adam,R = Y, Y = P, P = Enosh, Z = O,O = Seth, Z = M,X = N , by

using the above program. On the other hand, this is not the case if one uses the program

P ′ = { r′1g(X, Y )⇔M = Seth | f(Z, Y ), X = Adam,Z = M,Y = N.

r2@s(M,N)⇔M = Seth | .
r3@f(O,P )⇔ O = Seth, P = Enosh. }

where the rule r′1 is obtained, by unfolding the rule r1, using the rule r2. For this reason

deleting the unfolded rule in general is not safe. �

The second problem is related to multiple heads. In fact, the unfolding that we have

defined assumes that the head of a rule matches completely with the body of another

one, whereas in general, during a CHR computation, a rule can match with constraints

produced by more than one rule and/or introduced by the initial goal. The following

example illustrates this point.

Example 3.6 Let us consider the program

P = { r@g(X, Y )⇔ f(X,Z), s(Y, Z).

r′@f(V,W ), s(W,M)⇔ V = M,U = V. }

where we do not consider the identifiers and the token store in the body of rules, because

we do not have propagation rules in P .

The unfolding of r by using r′ returns the new rule

r@g(X, Y )⇔ V = X,W = Z,W = Y,M = Z, V = M,U = V.

Now the program

P ′ = { r@g(X, Y )⇔ V = X,W = Z,W = Y,M = Z, V = M,U = V.

r′@f(V,W ), s(W,M)⇔ V = M. }
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where we substitute the original rule by its unfolded version is not semantically equivalent

to P . In fact, given the goal G = (g(B,C), f(Seth, Enosh), s(Seth,Adam)), when the

program P is considered, the following derivation can be obtained

〈(g(B,C), f(Seth, Enosh), s(Seth,Adam)), ∅〉 →r→Solve∗

〈(f(X,Z), s(Y, Z), f(Seth, Enosh), s(Seth,Adam)), (X = B, Y = C)〉 →r′→Solve∗

〈(f(X,Z), s(Seth,Adam)), (X = B, Y = C, V = Y,W = Z,U = Seth,

M = Enosh, V = M,U = W )〉 →r′→Solve∗

〈(∅, (X = B, Y = C, V = Y,W = Z,U = Seth,M = Enosh, V = M,U = W,

V ′ = X,W ′ = Z,U ′ = Seth,M ′ = Adam, V ′ = M ′, U ′ = W ′)〉.

On the other hand, when P ′ is considered, only rule r can be applied in order not to obtain

an inconsistent computation:

〈(g(B,C), f(Seth, Enosh), s(Seth,Adam)), ∅〉 →r→Solve∗

〈(f(Seth, Enosh), s(Seth,Adam)), (B = X,C = Y, V = M,U = W,X = V,

Z = W,Y = V, Z = M)〉.

The underscored CHR constraints indicates the constraint considered for the application

of the chosen CHR rule.

Now, we can finally maintain that QA′P ′(G) 6= QA′P (G). �

The final problem is related to the matching substitution. In fact, following Definition

3.6, there are some matchings that could become possible only at run time, and not at

compile time, because a more powerful built-in constraint store would be needed. Also in

this case, a rule elimination could lead to a loss of possible answers, as illustrated in the

following example.

Example 3.7 Let P be a program

P = { r1@g(X, Y )⇔ f(X,Z), s(Y, Z).

r2@f(Adam,W )⇔ W = Enosh.

r3@f(T, J)⇔ s(J, T ). }
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where we do not consider the identifiers and the token store in the body of rules, because

we do not have propagation rules in P . Let P ′ be the program where the rule r1, that

is unfolded, using r3 in P , substitutes the original r1 (note that other unfoldings are not

possible, in particular the rule r2 can not be used to unfold r1)

P ′ = { r1@g(X, Y )⇔ s(J, T ), s(Y, Z), X = T, Z = J.

r2@f(Adam,W )⇔ W = Enosh.

r3@f(T, J)⇔ s(J, T ). }

Let be G = g(Adam,R) the goal, we can see that the state σ = 〈s(Y, Z), (X =

Adam,R = Y,W = Z,W = Enosh, )〉 can be reached when program P is consid-

ered. On the other hand a state σ′ such that σ ' σ′ can not be reached from program

P ′ because, with the considered goal (and consequently the considered built-in constraint

store) r2 can fire in P but can not fire in P ′. Naturally QA′P ′(G) 6= QA′P (G). �

We have found a case in which we can safely replace the original rule r by its unfolded

version, while maintaining the qualified answers semantics. Intuitively, this holds when:

1) the constraints of the body of r can be rewritten only by CHR rules with a single-head,

2) no rule v exists which has a multiple head H such that a part of H can match with a

part of the constraints introduced in the body of r (that is, there exists no rule v which

can be fired, by using a part of the constraints introduced in the body of r plus some other

constraints) and 3) all the rules, that can be applied at run time to the body of the original

rule r, can also be applied at transformation time (so unfolding avoidance for built-in

constraint store and guard-anticipation problems are solved).

Before formally defining these conditions we need some further notations. First of all,

given a rule r@H1\H2 ⇔ D | Ã;T , we define two sets. The first one contains a set of

pairs, whose first component is a rule that can be used to unfold r@H1\H2 ⇔ D | Ã;T ,

while the second one is the sequence of the identifiers of the atoms in the body of r, which

are used in the unfolding.

The second set contains all the rules that can be used for the partial unfolding of

r@H1\H2 ⇔ D | Ã;T , that is the set of rules that can fire by using at least an atom in the

body Ã of the rule and some others CHR and built-in constraints. Furthermore, it contains
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the rules that can fire if an opportune built-in constraint store is given by the computation

but that can not be unfolded according to Definition 3.6.

Definition 3.10 Let P be an annotated CHR program and let

r@H1\H2 ⇔ D | Ã;T and

r′@H ′1\H ′2 ⇔ D′ | B̃;T ′

be two annotated rules, such that r, r′ ∈ P and r′ is renamed separately with respect to

r. We define U+
P and U#

P as follows:

1. (r′@H ′1\H ′2 ⇔ D′ | B̃;T ′, (i1, . . . , in)) ∈ U+
P (r@H1\H2 ⇔ D | Ã;T ) if and only if

r@H1\H2 ⇔ D | Ã;T can be unfolded with r′@H ′1\H ′2 ⇔ D′ | B̃;T ′ (by Def-

inition 3.6), by using the sequence of the identified atoms in Ã with identifiers

(i1, . . . , in).

2. r′@H ′1\H ′2 ⇔ D′ | B̃;T ′ ∈ U#
P (r@H1\H2 ⇔ D | Ã;T ) if and only if one of the

following holds:

(a) either there exists Ã′ = (Ã1, Ã2) ⊆ Ã and a built in constraint C ′ such that

Fv(C ′)∩Fv(r′) = ∅, the constraint D∧C ′ is satisfiable, CT |= (D∧C ′)→
∃x((chr(Ã1, Ã2) = (H ′1, H

′
2))∧D′), r′@id(Ã1, Ã2) 6∈ T with x ∈ Fv(r′) and

(r′@H ′1\H ′2 ⇔ D′ | B̃;T ′, id(Ã1, Ã2)) 6∈ U+
P (r@H1\H2 ⇔ D | Ã;T )

(b) or there exist Ã′ ⊆ Ã, a multiset of CHR constraints H ′ 6= ∅ and a built

in constraint C ′ such that Ã′ 6= ∅, Fv(C ′) ∩ Fv(r′) = ∅, the constraint

D ∧ C ′ is satisfiable, {chr(A′), H ′} = {K1, K2} and CT |= (D ∧ C ′) →
∃x(((K1, K2) = (H ′1, H

′
2)) ∧D′) with x ∈ Fv(r′).

Some explanations are in order here.

The set U+ contains all the tuples composed by rules, that can be used to unfold a

fixed rule r, and the identifiers of the constraints considered in the unfolding, introduced

in Definition 3.6.
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Let us now consider the set U#. The conjunction of built-in constraints C ′ rep-

resents a generic set of built-in constraints (said set naturally can be equal to every

possible built-in constraint store that can be generated by a real computation before

the application of rule r′). The condition Fv(C ′) ∩ Fv(r′) = ∅ is required to avoid

free variable capture. It represents the fresh variable renaming of a rule r′ with re-

spect to the computation before the use of the r′ itself in an Apply transition. The

condition r′@id(Ã1, Ã2) 6∈ T grants the propagation rules trivial non-termination avoid-

ance. The conditions CT |= (D ∧ C ′) → ∃x((chr(Ã1, Ã2) = (H ′1, H
′
2)) ∧ D′) and

CT |= (D ∧ C ′) → ∃x(((K1, K2) = (H ′1, H
′
2)) ∧ D′) ensure that a strong enough

built-in constraint is possessed by the computation, before the application of rule r′. The

conditions A′1 6= ∅ and H ′ 6= ∅ assure respectively that at least one constraint in the

body of rule r and that at least one constraint form the initial goal or introduced by

the body of other rules are unfolded. Finally, the following condition (r′@H ′1\H ′2 ⇔
D′|B̃;T ′, id(Ã1, Ã2)) 6∈ U+

P (r@H1\H2 ⇔ D | Ã;T ) is required to avoid the consider-

ation of the rules that can be correctly unfolded in the body of r. There are two kinds

of rules that are added to U#. The first one, introduced by Example 3.7, points out the

matching substitution problem (Condition 2a of Definition 3.10). The second kind, intro-

duced by Example 3.6, points out the multiple heads problem: the rule r′ can match with

the body of r but also can match with other constraints introduced by the initial goal or

generated by other rules (Condition 2b of Definition 3.10).

Note also that if U+
P (r@H1\H2 ⇔ D | Ã;T ) contains a pair, whose first component is

not a rule with a single atom in the head, then by definition, U#
P (r@H1\H2 ⇔ D | Ã;T ) 6=

∅.

Finally, given an annotated CHR program P and an annotated rule r@H1\H2 ⇔
D | Ã;T , we can define

UnfP (r@H1\H2 ⇔ D | Ã;T )

as the set of all annotated rules obtained by unfolding the rule r@H1\H2 ⇔ D | Ã;T with

a rule in P , by using Definition 3.6.

We now can give the central definition of this section.



106 Chapter 3. Program Transformation: Unfolding in CHR

Definition 3.11 (SAFE RULE REPLACEMENT) Let P be an annotated CHR program and

let r@H1\H2 ⇔ D | Ã;T ∈ P , such that the following holds

i) U#
P ((r@H1\H2 ⇔ D | Ã;T ) = ∅ and

ii) U+
P (r@H1\H2 ⇔ D | Ã;T ) 6= ∅ and

iii) for each

r@H1\H2 ⇔ D′ | Ã′;T ′ ∈ UnfP (r@H1\H2 ⇔ D | Ã;T )

we can say that CT |= D ↔ D′.

Then we can conclude that the rule r@H1\H2 ⇔ D | Ã;T can be safely replaced (by its

unfolded version) in P .

Some further explanations are in order here.

Condition i) of the above mentioned definition implies that r@H1\H2 ⇔ D | Ã;T

can be safely deleted from P only if:

• U+
P (r@H1\H2 ⇔ D | Ã;T ) contains only pairs, whose first component is a rule

with a single atom in the head.

• a sequence of identified atoms of body of the rule r can be used to fire a rule r′ only

if r can be unfolded with r′, by using the same sequence of the identified atoms.

Condition ii) states that at least one rule exists which unfolds the rule r@H1\H2 ⇔
D | Ã.

Condition iii) states that each annotated clause obtained by the unfolding of r in P

must have a guard equivalent to that of r: In fact, the condition CT |= D ↔ D′ in iii)

avoids the problems discussed in Example 3.5, thus allowing the anticipation of the guard

in the unfolded rule.

We can now provide the result which shows the correctness of the safe rule replace-

ment condition.
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Theorem 3.1 Let P be an annotated program,

r@H1\H2 ⇔ D | Ã;T be a rule in P such that r@H1\H2 ⇔ D | Ã;T can be safely

replaced in P , according to Definition 3.11. Assume also that

P ′ = (P \ {(r@H1\H2 ⇔ D | Ã;T )}) ∪ UnfP (r@H1\H2 ⇔ D | Ã;T ).

Then QA′P (G) = QA′P ′(G) for any arbitrary goal G.

PROOF. By using a straightforward inductive argument and according to Proposition

3.4, we can observe that QA′P (G) = QA′P ′′(G) where

P ′′ = P ∪ UnfP (r@H1\H2 ⇔ D | Ã;T ),

for any arbitrary goal G.

Then to prove the thesis, we have only to prove that

QA′P ′(G) ⊇ QA′P ′′(G).

Since by hypothesis r@H1\H2 ⇔ D | Ã;T can be safely replaced in P , following Defi-

nition 3.11 (Safe rule replacement), we can observe that Ã = C, K̃, where K̃ is a set of

(identified) CHR constraints and

K̃ 6= ∅. (3.3)

Now, let σ be a generic built-in free state such that we can use the transition Apply′

with the clause r@H1\H2 ⇔ D | Ã;T , obtain the state σr and then the built-in free state

σfr .

σ −→r
P ′′ σr −→Solve∗ σfr = 〈K̃r, C

f
r , T

f
r 〉m,

where chr(K̃) ⊆ chr(K̃r) (⊆ denotes the inclusion in the multisets) and Cf
r → C. The

labelled arrow −→Solve∗ means that only solve transitions are applied.

We now have two possibilities

(σfr 6−→P ′′) In this case, as per (3.3) and since by definition

U+
P (r@H1\H2 ⇔ D | Ã;T ) 6= ∅,
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we can say that

CT |= Cf
r ↔ false. (3.4)

Moreover, since r@H1\H2 ⇔ D | Ã;T can be safely replaced there exists a clause

r@H1\H2 ⇔ D′ |C,C ′, B̃;T ′ ∈ UnfP (r@H1\H2 ⇔ D | Ã;T )

and CT |= D ↔ D′. Since by hypothesis, σ is a built-in free state such that

we can use the transition Apply′, with the clause r@H1\H2 ⇔ D | Ã;T , we can

further say that for the state σ we can use the transition Apply′, with the clause

r@H1\H2 ⇔ D′ |C,C ′, B̃;T ′ and then the state σ′r is obtained and then the built-in

free state σ′fr where σ′fr = 〈K̃ ′r, C ′
f
r , T

′f
r 〉m′ and CT |= C ′fr ← Cf

r Therefore, as

per (3.4), CT |= C ′fr ↔ false and hence the thesis is proven.

(σfr −→v
P ′′ σ

′
v −→Solve∗ σ′fv ) In this case, there exists a clause v in P ′′, such that we can

use the transition Apply′, with the clause v, in order to rewrite the state σfr to the

state σ′v. As per the definition of qualified answers and since r@H1\H2 ⇔ D | Ã;T

(with Ã = (C, K̃)) can be safely replaced, we can assume, without loss of gen-

erality, that v is a clause that rewrites at least an atom introduced by the rule

r@H1\H2 ⇔ D | Ã;T (this holds, since by definition the guard of the clause v is

implied by D ∧ C). Moreover, since r@H1\H2 ⇔ D | Ã;T can be safely replaced

we can say that v exactly rewrites an atom k̃ ∈ K̃ by condition i) of Definition 3.11.

Let v be the clause v@\k′ ⇔ Dv | Ãv;Tv (or let v be the propagation clause [v@k′\ ⇔
Dv | Ãv;Tv]). By definition and though construction

(r′@H1\H2 ⇔ D | [k̃], K̃, C, Ã′v;T
′
v ∪ T [∪{v@id(k̃)}], id(k̃)) ∈

U+
P (r@H1\H2 ⇔ D | Ã;T ) ⊆

P ′

Now, to prove the thesis, we have to prove that

σ −→r′ σr′ −→Solve∗ σfr′ and σ′f ≡ σfr′ .

The above mentioned result immediately follows from the definition of unfolding

of r, using v and Proposition 3.4.
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2

Of course, the result of the previous theorem can be applied to a sequence of program

transformations. Let us define such a sequence as follows.

Definition 3.12 (U-sequence) Let P be an annotated CHR program. An U-sequence of

programs, starting from P is a sequence of annotated CHR programs P0, . . . , Pn, such

that

P0 = P and

Pi+1 = (Pi \ {(r@H1\H2 ⇔ D | Ã;T )})∪
UnfPi(r@H1\H2 ⇔ D | Ã;T ),

where i ∈ [0, n− 1], (r@H1\H2 ⇔ D | Ã;T ) ∈ Pi and (r@H1\H2 ⇔ D | Ã;T ) is safety

deleting from Pi+1 ∪ {r@H1\H2 ⇔ D | Ã;T}.

Then from Theorem 3.1 and Proposition 3.1 we immediately reach the following

corollary.

Corollary 3.2 Let P be a program and let P0, . . . , Pn be an U-sequence starting from

Ann(P ). Then QAP (G) = QA′Pn(G) for any arbitrary goal G.

PROOF. Proposition 3.1 proves that the qualified answer for a program P and its an-

notated version P0 = Ann(P ), having fixed a start goal, is the same. Theorem 3.1 proves

that, having fixed a goal, the qualified answer for program P0 is equal to the qualified an-

swer for a program P1 obtained by P0 adding all the possible unfoldings of a rule r ∈ P0

and deleting r, supposing that the safe rule replacement condition holds for r. The proof

of this Corollary follows by transitivity of equality in fact QAP (G) = QA′P0
(G) with

Ann(P ) = P0 for Proposition 3.1 and QA′Pi(G) = QA′Pi+1
(G) with 0 ≤ i ≤ n − 1 for

Theorem 3.1.

2
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3.5 Confluence and termination

In this section the confluence and termination preservation between an original program

and the ones derived using the previous introduced methodology will be analysed.

Before starting to analyse the above mentioned topics, we only want to investigate

the termination characteristic of the process, as introduced in Definition 3.12. A simple

example can prove that the considered process is generally non-terminant. In fact, let

P = {r@p ⇔ p, q} be a program where at least a rule contains in its body a conjunction

of constraints that can match with the head of the rule. The rule r can be unfolded ad

infinitum. At other times, rules which generate a non-terminating computation can reach

a fixpoint if the transfomation proposed in Definition 3.12 is applied as depicted in the

following example. Let P = {r1@p ⇔ q, r2@q ⇔ p} be a CHR program, its’ fixpoint

is the program P ′ = {r1@p ⇔ q, r2@q ⇔ p, r1@p ⇔ p, r2@q ⇔ q}. In fact, further

unfolding would only generate rules that have already been introduced.

Let us now prove that our unfolding preserves confluence and termination.

The formal definition of termination from [Frü04] is introduced and adapted to our ω′t
semantics.

Definition 3.13 (Termination) A CHR program P is called terminating, if there are no

infinite computations.

Definition 3.14 (Normal Termination) A (possibly annotated) CHR program P is called

normal terminating, if there are no infinite normal computations.

Proposition 3.5 (Normal Termination) Let P be a CHR program and let P0, . . . , Pn be

an U-sequence, starting from Ann(P ). P satisfies normal termination if and only if Pn

satisfies normal termination.

PROOF. First of all observe that by using the same arguments of Proposition 3.1, we can

say that P is normal terminating if and only if Ann(P ) is normal terminating. Moreover,

from Proposition 3.3 and by using a straightforward inductive argument, we can observe

that for each i = 0, . . . , n−1, if Pi satisfies normal termination if and only if Pi+1 satisfies
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the normal termination too and then the thesis.

2

When (standard) termination is considered instead of normal termination, program

transformation, as defined in Definition 3.12 (U-sequence), can introduce problems con-

nected to the guard elimination process of Definition 3.6 (Unfold), as shown in the fol-

lowing example.

Example 3.8 Let us consider the following program:

P = { r1@p(X)⇔| X = a, q(X).

r2@q(Y )⇔ Y = a | r(Y ).

r3@r(Z)⇔ Z = d | p(Z). }

where we do not consider the identifiers and the token store in the body of rules, because

we do not have propagation rules in P . Then the following possible unfolded program P ′

is given. In said program, the previous r1 is unfolded using r2 (following Definition 3.6)

and the (original clause) r1 ∈ P is deleted because safe rule replacement holds, so that

the results of Theorem 3.1 can be applied as follows:

P ′ = { r1@p(X)⇔| X = a,X = Y, r(Y ).

r2@q(Y )⇔ Y = a | r(Y ).

r3@r(Z)⇔ Z = d | p(Z). }

It is easy to check that the program P satisfies the (standard) termination. If instead the

program P ′ and the start goal (V = d, p(V )) are considered, the following state can be

reached

〈(X = a, p(Z)#3), (V = d, V = X,X = Y, Y = Z), ∅〉4

where r1, r3 (in the order) can be applied infinitely if the built-in constraint X = a is not

moved by Solve′ rule into the built-in store, where it would be evaluated. This can happen

because of the non-determinism in rule application of ω′t semantics. �

The confluence property guarantees that any computation for a goal results in the same

final state, no matter which of the applicable rules are applied [AF04]. This means that
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QAP (G) has cardinality one for each goal G. The formal definition of confluence from

[Frü04] is introduced and adapted to our ω′t semantics. Confluence is only considered for

normal terminating programs. In the following 7→∗ means either −→ωt or −→ω′t
.

Definition 3.15 (Confluence) A CHR [annotated] program is confluent if for all states

σ, σ1, σ2: if σ 7→∗ σ1 and σ 7→∗ σ2 then states σ′f and σ′′f exist such that σ1 7→∗ σ′f and

σ2 7→∗ σ′′f and σ′f and σ′′f are identical with the possible exception of renaming of local

variables, identifiers and logical equivalence of built-in constraints.

From the previous definition it follows that σ′f and σ′′f are equivalent, so σf ' σ′f .

Corollary 3.3 (Confluence) Let P be a normal terminating CHR program and let P0, . . . , Pn

be an U-sequence, starting from Ann(P ). P satisfies confluence if and only if Pn also

satisfies confluence.

PROOF. We prove only that if P is normal terminating and confluent, then Pn is also

confluent. The proof of the converse is similar and hence it is omitted. First of all, observe,

that by hypothesis and by Proposition 3.5, we can say that Pn is normal terminating.

Let us assume by contrary that Pn does not satisfy confluence. This means that, there

exists a state σ = 〈(K̃,D), C, T 〉o such that

σ −→∗ω′t σ1 and σ −→∗ω′t σ2

in Pn and two states σ′1 and σ′2 that are identical with the possibile exception of renaming

of local variables, identifiers and logical equivalence of built-in constraints for which

σ1 −→∗ω′t σ
′
1 and σ2 −→∗ω′t σ

′
2 in Pn do not exist.

Since Pn is normal terminating, there are two normal derivations

σ1 −→∗ω′t σ
f
1 6−→ω′t

and σ2 −→∗ω′t σ
f
2 6−→ω′t

in Pn, where σf1 and σf2 are built-in free states.

Then, by using arguments similar to that given in Proposition 3.1 and Proposition 3.3,

we can conclude that two normal derivations exists

σ′ −→∗ωt σ
′
f 6−→ωt and σ′ −→∗ωt σ

′′
f 6−→ωt
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in P , where σ′ = 〈D, K̃, C, T 〉o+1, σ′f ≡ σf1 and σ′′f ≡ σf2 . Then, since by hypothesis P is

confluent, we can further state that σ′f and σ′′f are identical with the possible exception of

the renaming of local variables, identifiers and logical equivalence of built-in constraints.

Therefore, according to the definition of ≡, we obtain a contradiction to the assumption

that two states σ′1 and σ′2 as previously defined do not exist.

2

Finally, we conjecture that some relation can be found between confluence and quali-

fied answer maintenance. In particular we suppose that if P is a CHR program confluent,

Theorem 3.1 further holds without part 2a of Definition 3.10.
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Chapter 4

Related work and conclusions

This thesis has introduced both a compositional semantics and a program transformation

for CHR programs.

The above mentioned compositional semantics is based on sequences and it is com-

positional with respect to the and-composition and it is correct as regards to “success

answers”. The proposed semantics takes into account the theoretical operational seman-

tics called ωt, as defined in [DSGdlBH04]. The ωt semantics is refined with respect to the

original one introduced by [Frü98]. In fact, token store and univoque identifiers are added

respectively to states and CHR constraints. Such ωt semantics admits propagation rules

(simulated by a simpagation one with an empty simplification part) and uses a token store

and a unique identifier for every CHR constraint, in order to avoid trivial non-termination.

The need to model within our semantics the token store as well as the identifiers (by

means of the identification function In+m
n (G)) constitutes the main technical difference

between this thesis and [DGM05]. In fact, [DGM05] simulates a propagation rule using

a simplification one. This result can be obtained by creating a simplification rule which

has as a head, the head of the propagation one, and as a body, all the constraints of the

body of the simplification rule joined with the constraints in the head of the propagation

one. In this way the application ad infinitum of a such transformed propagation rule is

impossible to avoid if no other simplification rule is applied to the constraints which are

both in the body and in the head of the transformed rule. The introduction of fairness

hypothesis is worth nothing for such modified propagation rules. This means that propa-
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gation rules were not treated in a satisfactory way since the original operational semantics

of CHR was considered, thus allowing any propagation rules to introduce trivial infinite

computations. On the other hand, the theoretical semantics introduced in [DSGdlBH04]

inspires the compositional semantics introduced in this thesis. In fact, a propagation and

a simplification rule are transformed into a simpagation one where the right hand side

and the left hand side of the head with respect to the “\” symbol are respectively empty.

Said compositional semantics, associating an unique identifier to each CHR constraint

and maintaining the history of the constraints, to which a propagation like rule is ap-

plied, permits trivial non-termination avoidance, without further considering the fairness

hypothesis [GMT06].

The presence of multiple heads, as well as the need to model the token store and

the related management of the identifiers associated with the CHR constraints, leads to

a semantic model which is technically involved, even though the basic idea is simple.

However, it is difficult to avoid this complication if one wants to model precisely the ob-

servables we are interested in. A simpler model could be obtained by considering a more

abstract semantics which characterizes a superset of the observables in question. Such an

abstract semantics could be useful for program analysis, along the lines of the abstract

interpretation theory. Of course, it would be desirable to introduce within the semantic

model the minimum amount of information needed to obtain compositionality, whilst at

the same time preserving correctness. In other words, it would be desirable to obtain a

fully abstract semantics (for the success answers notion of observables). This will be left

to future studies. Even though techniques similar to those used in [dBP91, dBGM97]

for CCP could be considered, in the case of CHR, the possibility of removing informa-

tion considerably complicates (unlike CCP) the problem. Moreover, the fully abstract

model would probably retain all the complication of the semantics presented here, further

augmented by the need to introduce suitable abstraction operators. Finally, it would be

desirable to also obtain a compositional characterization for “qualified answers”, by mod-

ifying Definition 1.2, in order to also consider computations terminating with a non-empty

user-defined constraint. In spite of the obvious interest from a theoretical and practical

point of view of a such kind of compositional semantics, there is a hurdle to overcome.
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The compositional semantics, as presented in this thesis, is not refined enough to ob-

tain the desired result. In fact, the acceptance of a non-empty final store in the concrete

semantics means a non-empty stable atom set in the abstract one. This in general can

permit the interleaving with other abstract sequences which possibly present constraints

in the assumption set which can be satisfied, using the ones in the stable atom set. This

fact introduces a clear difficulty in the determination of when an abstract sequence is

terminated. Let us consider as an example of what has been previously said the follow-

ing one. Let P = {r@p, q ⇔ m} be a CHR program. The sequences of one element

〈∅, p, ∅〉 ∈ QAP (p) and 〈∅, q, ∅〉 ∈ QAP (q) are possible elements of qualified answer

set, while their composition 〈∅, (p, q), ∅〉 is not a element ofQAP (p, q). The introduction

of a set, which contains the names of rules that can not be applied from a certain point

onwards, could be a possible solution to this problem.

The other topic considered in this thesis concerns the definition of an unfold operation

for CHR which preserves the qualified answers of a program. This was obtained by trans-

forming a CHR program into an annotated one which is then unfolded. The equivalence

of the unfolded program and the original (non-annotated) one is proven (Corollary 3.1),

by using a slightly modified operational semantics for annotated programs (as defined in

Section 3.2). We then provided a condition that could be used to safely replace a rule with

its unfolded version, whilst simultaneously preserving qualified answers, for a restricted

class of rules. Confluence and termination maintenance of the program modified in the

previous way with respect to the orginal one are proven.

There are only a few other papers that consider source to source transformation of

CHR programs. They will now be introduced in order from the most relevant to the less

relevant. Finally, the differences between the program transformation proposed for two

logic concurrent languages as GHC and CCP will be expounded.

The most relevant paper on the transformation topic introduced in the thesis is [TMG07].

Said paper presents preliminary results with respect to the ones that are given here.

Another interesting paper about CHR program transformation is [Frü04]. Rather than

considering a generic transformation system, it focuses on the specialization of rules re-

garding a specific goal, analogously to what happens in partial evaluation. In particular,
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it defines how to specialize a simplification and a propagation rule with respect to a goal

with which the considered rule overlaps, which means that the head of the rule and the

goal must have at least one CHR constraint in common. Naturally, a form of correct-

ness is given. In fact, the specialized rules obtained by the given definitions are proven

to be redundant and their addition or deletion is also proven to preserve the termination.

A rule is said to be redundant for a program if and only if for all possible states, only

identical states with the possible exception of the renaming of logical variables and log-

ical equivalence of built-in constraints, can be reached. Said paper does not consider the

trivial non-termination problem so identifiers associated with CHR constraints and token

store are not introduced. At the end of the paper a section with program transformation

examples is introduced. This section is the most relevant for our work. In fact, some

examples about unfolding are given. Naturally, the trivial non-termination problem is not

considered at all.

In [FH03], CHR rules are transformed in a relational normal form to create smaller

and streamlined programs. Said form is obtained by the introduction of special CHR

constraints for each component of a rule, such as head, guard and body instead of the

rule itself. After that, the transformation is executed by CHR programs till a fixpoint

is reached, acting on the previously introduced normal CHR constraints form. Then,

the final relational normal form obtained in the previous computation step is translated

back into CHR rules. This process is called source-to-source program transformation.

Performance improvement can be considered as a similarity between the paper under

discussion and our thesis. In fact, unfolding can increase the performance of a program.

Some differences between the two works can be however pointed out. First of all, the

correctness of such proposed transformation methodology was not given. As in [Frü04],

also in this paper the trivial non-termination problem is not considered at all. Finally, the

main difference between our program transformation and the one introduced in the paper

under discussion consists in the use of the relational normal form, which this thesis does

not use.

A specific form of transformation for CHR is considered in [FDPW02]. In particular,

the PCHR (Probabilistic CHR) is introduced here, that is a CHR where every rule is asso-
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ciated with a nonnegative number. The higher said number, the higher is the probability

that the considered rule fires, when alternative rules can also fire. This paper, like the the-

sis, considers the confluence concept but, differently from the thesis itself. It extends the

considered concept to PCHR, introducing the probabilistic confluent notion. The source-

to-source program transformation is used for the implementation of PCHR. In fact, the

relational normal form, previously discussed for [FH03] was already introduced in this

paper.

Various ways to improve complier performances are proposed in [SSD05b]. Said

compiler optimizations are a major step towards allowing CHR programmers to write

more readable and declarative programs, without sacrificing efficieny. In particular, we

are interesting in two of the three improvement mechanism proposed, that are called guard

optimization and types and modes. In fact, the other one, called occurrence subsumption,

does not lead to a real rule rewriting. As a matter of fact, it only permits us to make consid-

erations about particular rules, where the head and guards constraints are symmetric. Said

considerations are enough to deduce that the considered rule can not be applied if only

a partial rule application analysis fails. Guard optimization permits the simplification of

(some) guard constraints, by considering that all recent CHR compiler/interpreter imple-

mentations use a specific operational semantics called refined operational semantics and

represented by the ωr symbol, where the rules are tried in textual order. This usually al-

lows for the deletion of the constraints in the guard, if they are a direct consequence of the

guards of the previous introduced rules, from the textual point of view. Types and modes

mechanism consists in moving the charactrization of a variable such as a list, from the

head to the guard of a rule, after which a type declaration is given by the user. Said trans-

formation permits us to benefit from analysis like the never-stored one [HGdlBSD05].

This paper gives the statement of the equivalence between the ωr semantics and the new

semantics proposed. Unlike this paper, in our thesis the reference operational semantics

is ωt. In spite of this difference, a form of guard semplification is also introduced in our

work. In fact, the guard constraints of the unfolded rule are a subset of conjunction or the

guard constraints of the rule which would be unfolded and the rule which would be used

to perform unfolding. As a matter of fact, the constraints of the rule that would be used
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to do unfolding, that are entailed by those of the rule that would be unfolded, are deleted.

Our thesis does not consider the never-stored analysis because such as analysis is more

indicated for compiler optimization than for a source-to-source transformation.

The introduction of aggregates in CHR [SWS07] implies another form of source-to-

source CHR program transfomation. In fact, the standard CHR is enriched by special

CHR constraints like sum, count, findall and min which are managed by a preproces-

sor. Said preprocessor transforms a CHR program with aggregates into a standard CHR

program without aggregates. Our thesis only considers standard CHR and not such an

extension. Naturally, aggregate and unfolding techniques can work together to increase

the readability and performance of a CHR program.

Both the general and the goal specific approaches are important in order to define

practical transformation systems for CHR. In fact, on the one hand of course one needs

some general unfold rule. On the other hand, given the difficulties in removing rules from

the transformed program, some goal specific techniques can help to improve the efficiency

of the transformed program for specific classes of goals. A method for deleting redundant

CHR rules is considered in [AF04]. However, it is based on a semantic check and it is not

clear whether it can be transformed into a specific syntactic program transformation rule.

When considering more generally the field of concurrent logic languages, we find a

few papers which address the issue of program transformation. Notable examples include

[EGM01] that deals with the transformation of concurrent constraint programming (CCP)

and [UF88] that considers Guarded Horn Clauses (GHC). In [EGM01] several kinds of

program transformation are defined, including which folding and unfolding. On the other

hand, in [UF88] only the fold and unfold transformation are considered. The main dif-

ference between CCP and GHC consists in the underlying constraint solver. In fact, the

sover of GHC is only able to manage equality as a built-in constraint, while the one used

by CCP, similarly to CHR, can be a more complex built-in constraint solver. But the main

problem in extending the results obtained in these papers to CHR consists in the possibil-

ity, for a CHR head to be composed of multiple constraints. In fact, when a CHR multiple

head rule can be used to unfold another CHR rule, we can not guarantee that during the

real computation exactly the same constraint will be used in the body. Another difference
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between GHC and CCP with respect to CHR consists in the algorithm that evaluates if a

rule can be applied to a (conjunction) of constraints. In fact, the first two above mentioned

languages use unification algorithms unlike CHR which uses matching substitution. This

causes difficulties especially when rule deletion is considered.

The third chapter of the current thesis can be considered as a first step in the direction

of defining a transformation system for CHR programs, based on unfolding. This step

could be improved in several directions. First of all, the unfolding operation could be

extended to also take into consideration the constraints in the propagation part of the head

of a rule instead of those in the body. In addition, the condition that we have provided for

safely replacing a rule could be generalized to include more cases. Also, we could extend

to CHR some of the other transformations, notably folding, which have been defined in

[EGM01] for CCP. Finally, we would like to investigate from a practical perspective to

what extent program transformation can improve the performances of the CHR solver.

Clearly, the application of an unfolded rule avoids some computational steps, assuming

of course that unfolding is done at the time of compilation, even though the increase in

the number of rules could eliminate this improvement when the original rule cannot be

removed. Here it would probably be important to consider some unfolding strategy, in

order to decide which rules have to be unfolded.



122 Chapter 4. Related work and conclusions



References

[Abd97] Slim Abdennadher. Operational semantics and confluence of constraint

propagation rules. In Gert Smolka, editor, Third International Confonfer-

ence on Principles and Practice of Constraint Programming (CP 1997),

volume 1330 of Lecture Notes in Computer Science, pages 252–266.

Springer-Verlag, October, November 1997.

[AF04] Slim Abdennadher and Thom Frühwirth. Integration and organization
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