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Summary

Sustainable computer systems require some flexibility to adapt to environmental
unpredictable changes. A solution lies in autonomous software agents which can
adapt autonomously to their environments. Though autonomy allows agents to de-
cide which behavior to adopt, a disadvantage is a lack of control, and as a side effect
even untrustworthiness: we want to keep some control over such autonomous agents.
How to control autonomous agents while respecting their autonomy?

A solution is to regulate agents’ behavior by norms. The normative paradigm
makes it possible to control autonomous agents while respecting their autonomy,
limiting untrustworthiness and augmenting system compliance. It can also facilitate
the design of the system, for example, by regulating the coordination among agents.
However, an autonomous agent will follow norms or violate them in some conditions.
What are the conditions in which a norm is binding upon an agent?

While autonomy is regarded as the driving force behind the normative paradigm,
cognitive agents provide a basis for modeling the bindingness of norms. In order to
cope with the complexity of the modeling of cognitive agents and normative bind-
ingness, we adopt an intentional stance.

Since agents are embedded into a dynamic environment, things may not pass at
the same instant. Accordingly, our cognitive model is extended to account for some
temporal aspects. Special attention is given to the temporal peculiarities of the legal
domain such as, among others, the time in force and the time in efficacy of provi-
sions. Some types of normative modifications are also discussed in the framework.
It is noteworthy that our temporal account of legal reasoning is integrated to our
commonsense temporal account of cognition.

As our intention is to build sustainable reasoning systems running unpredictable
environment, we adopt a declarative representation of knowledge. A declarative rep-
resentation of norms will make it easier to update their system representation, thus
facilitating system maintenance; and to improve system transparency, thus easing
system governance.

Since agents are bounded and are embedded into unpredictable environments,
and since conflicts may appear amongst mental states and norms, agent reasoning
has to be defeasible, i.e. new pieces of information can invalidate formerly deriv-



6 Summary

able conclusions. In this dissertation, our model is formalized into a non-monotonic
logic, namely into a temporal modal defeasible logic, in order to account for the
interactions between normative systems and software cognitive agents.
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1

Norm-governed computer systems

On the one hand, computer systems are driven by well-defined instructions for ac-
complishing some tasks. On the other hand, humans prescribe how the world ought
to be by means of norms. While the use of norms to regulate computer behavior is a
well-established idea , it is still a matter of research. This thesis investigates the use
of norms to regulate computer behaviors.

In this Chapter, the motivation for this thesis is briefly provided. In Section
1.1, we root the research in sustainable computer systems via autonomous software
agents, and in Section 1.2, we motive the use of norms to control autonomous agents.
In Section 1.3, we assume a cognitive account of normative bindingness and com-
mit to the intentional stance of such cognitive model. In Section 1.4, we argue for a
declarative and defeasible representation of knowledge. In Section 1.5, an example
of norm-governed computer system illustrates the vision. Finally, in Section 1.6, the
outline of the dissertation is given.

1.1 Toward autonomy

Computers excel in automation, unfailingly executing instructions. However, in an
ever-changing environment, executing automatically predefined instructions is not
enough; computers are expected to derive their own tasks. To this regard, a step be-
yond automation is autonomy.

Autonomy for computer systems is not aimed at emulating biological agents but
is rather a consequence of concrete environmental requirements. Indeed, as computer
systems do not float in a vacuum, they are embedded into some environments whose
properties influence features of such computer systems. For example, computer sys-
tems have evolved from centralized to distributed models in order to accompany the
decentralization and cooperation of present-day organizations.

S. Russell and P. Norvig’s investigation into the environment properties [185]
provides us with some hints for autonomy requirements. Firstly, a system’s envi-
ronment may not be static but dynamic, that is, it may not be assumed to remain
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unchanged. Indeed, needs and preferences of human users may evolve. Some com-
ponents may appear while others disappear. Other processes may operate on it and
change it. Secondly, an environment may not be fully observable in space and in
time, that is, the complete states may not be accessible. If an environment is not fully
observable then it is partially observable and consequently the system usually runs
on local information. From the point of view of an application embedded in an en-
vironment which is partially observable and dynamic, such environment may appear
non-deterministic or unpredictable.

In such unpredictable environments, computer systems require some flexibility
in order to adapt to changes and fulfill their initial assigned task. However, most as-
pects of the environments are often deeply buried in the code of the applications,
and as a consequence most unpredictable changes require costly code maintenance
or even the implementation from scratch of new applications. Sustainable computer
systems should provide flexible means to adapt to environmental changes. How shall
this vision of computing be achieved? Many people believe the answer lies in au-
tonomous computer systems, or autonomous agents.

If autonomy is understood in terms of independence then different types of auton-
omy are identifiable: information autonomy shall refer to information independence,
planning autonomy to planning independence, goal autonomy to goal independence
and so on. If we consider control independence, then we refer to the principle that
an agent can make decisions on its own, that is, roughly speaking, control is in-
side the agent and not outside. This relates well with the Greek etymology of term
autonomous which literally refers to giving oneself his/her own law. In this view,
autonomy enables computer systems to adapt to environmental changes “without the
intervention of human beings or other agents” [216]. In the remainder, autonomous
agents shall refer to control autonomous agents.

1.2 Toward norms

If we build autonomous software agents, we do not want to lose total control. In
some scenarios, an uncontrolled system may involve untrustworthiness: if we build
autonomous software agents, we would like to be able to trust them. A natural so-
lution lies in controlling to some extent those agents. But, how can an autonomous
artificial system be controlled while respecting its autonomy? Many people believe
that an answer lies in the normative paradigm.

The term norm is used in many different disciplines as in the philosophy of law,
sociology, psychology, linguistics etc., but there is no commonly accepted definition
of the term norm. In this thesis, a norm is a directive binding upon some agents
and serving to guide an ideal behavior. Following A. Ross in [181], a directive is
expressed by an enunciate of the directive discourse.

On this basis, a norm is used as an external source of control and it is by means
of norms that an autonomous agent shall be controlled from the outside, while re-
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specting its autonomy. Being autonomous, an agent can decide to behave according
to norms or violate them in some circumstances. Though norms may be violated, the
normative paradigm shall augment compliance of autonomous agents, and thus limit
untrustworthiness.

As norms are usually abstract they can also be addressed to multiple agents.
Then, each agent shall instantiate abstract norms relatively to its own condition.
Consequently, normative systems permit to control multiple (interacting) agents. As
norms guide agents, they can be used to coordinate agent activities: in doing so,
norms are used to control isolated agents to coordinate societies of multiple interact-
ing agents.

In computer science, a system composed of multiple agents (usually in interac-
tion) is called a multi-agent system. The research area defined as the interaction of
normative systems and multi-agents systems aims at investigating normative multi-
agent systems. A computer system which is based on a normative multi-agent system
has the advantages of both agent paradigm and normative paradigm. In this view,
an important perspective for norm-governed computer systems [106] is normative
multi-agent systems.

If norms are used to control autonomous agents then an essential issue is the
bindingness of norms. Why and how do agents adopt a norm? In which conditions is
a norm binding upon an agent? In which conditions shall an agent violate it? Many
people believe that an answer lies in cognitive agents.

1.3 Toward cognitive agents

In philosophy of law, a vast literature exists which attempts to understand why and
how a norm shall be binding upon an agent. Among all the models accounting for
normative bindingness, we are interested by cognitive models [191].

Cognitive agents are complex systems and consequently it is often difficult to
predict and discuss their behavior using the laws of physics. One common alternative
when discussing agents is to conceive them using mental concepts that are more
usually applied to humans, such as beliefs, desires and intentions. The philosopher
D. Dennett explains this vision in [62] by considering three stances that one can take
when characterizing the behavior of a system. (i) In the physical stance, one starts
with the original configuration of a system, and then uses the laws of physics to
predict how this system will behave. (ii) In the design stance, one uses knowledge of
the purpose a system is supposed to fulfill, and on this basis predicts how the system
will behave; for example, one takes normally the design stance when discussing an
alarm clock. (iii) In the intentional stance, predictions rely on mental explanations of
behavior (e.g., beliefs, intentions, desires, and so on). This intentional stance is well
explained by D. Dennett in [62]:

Here is how it works: first you decide to treat the object whose behavior
is to be predicted as a rational agent; then you figure out what beliefs that
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agent ought to have, given its place in the world and its purpose. Then you
figure out what desires it ought to have, on the same considerations, and
finally you predict that this rational agent will act to further its goals in the
light of its beliefs. A little practical reasoning from the chosen set of beliefs
and desires will in most instances yield a decision about what the agent
ought to do; that is what you predict the agent will do.

Since the physical or design stances for the account of cognitive agents are beyond
our scope, we will thus reduce our model of cognition to the intentional stance by
making use of mental concepts.

While autonomy is regarded as the driven force to introduce the norm paradigm
in computer systems, cognitive agents provide us with a basis on which to model the
bindingness of norms. The field of normative multi-agent systems is an opportunity
to investigate computable models of such bindingness. Central to such models is the
account of violations for at least two reasons: firstly because some agents’ (mental)
attitudes may conflict with norms, secondly because the norms themselves may con-
flict in some circumstances. Depending on the behaviors of agents with respect to
norms, the system may sanction violations or reward good behaviors.

1.4 Toward declarative knowledge representation and defeasible
reasoning

Knowledge can be represented procedurally or declaratively. In the procedural view,
the knowledge about a domain is intricate with the control of agents’ reasoning pro-
cess, and thus is implicitly represented. In the declarative view, the knowledge is
explicitly represented and separated from the reasoning procedures.

If new unpredicted knowledge will have to be treated, then the reasoning proce-
dures and the intricate knowledge may not be adapted and may not be easily adapt-
able: in unpredictable environment, the procedural view is not sustainable. On the
contrary, in a declarative representation, as the knowledge to be treated is separated
from the reasoning procedures, then, ideally, no modifications to the procedures have
to be introduced. As our intention is to build sustainable reasoning systems running in
an unpredictable environment, we shall favor the declarative view, and accordingly,
information about states of affairs (including norms) shall be explicitly represented.

A clear and explicit representation of norms has nice implications: as norms may
change over time, it shall facilitate the update of their system representation, and
consequently system maintenance, improve system transparency, and thus ease sys-
tem governance.

Beside procedural and declarative matters, the reasoning can be classically de-
ductive or defeasible. A reasoning is defeasible when certain conclusions can be
abandoned in light of further information, whereas a reasoning is classically deduc-
tive when the validity of conclusions are guaranteed even in light of further informa-
tion. What is the most appropriate type of reasoning for our purposes?
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To answer this question, it is important to remark that if the environment is un-
predictable from the agent point of view, then the agent is not omniscient. As a
consequence, new information can be communicated to the agents and conflict with
formerly derived conclusions: in other words, certain conclusions may have to be
abandoned in light of further information. Hence, it seems that defeasible reasoning
is necessary for our purposes to build sustainable computer systems, and that deduc-
tive reasoning has to be discarded.

From a more technical point of view, the requirement for declarative representa-
tion of knowledge coupled with defeasible reasoning usually ends up in the choice
of a non-monotonic logic to formalize ratiocinative process of software agents. We
shall return to the choice and development of an appropriate non-monotonic logic
more in depth in the next Parts. Before, in the next Chapters we shall connect our
research agenda with respect to the larger field of computer sciences & law. First, in
the following Section, we illustrate the idea of norm-governed computer system in
electronic government.

1.5 An example of a norm-governed computer system:
E-government

The so-called electronic government (e-government) is the use of information and
communication technology in public administrations. Combined with organizational
change, it has the potential to significantly improve public services and strengthen
democracy by improving the two-way communication between the citizens and their
government. The widespread deployment and use of e-government services can re-
sult in substantially reduced costs for both businesses and governments, thereby low-
ering taxes and boosting competitiveness.

Despite the emergence of best practices, many barriers remain before the take-
up of e-government can be achieved. An important obstacle concerns costs mainte-
nance. Indeed, in a fast changing political and economical environment, computer
systems have to be continually updated. As the execution of complex services may
involve multiple administrative agencies in coordination, software’s adaptations of-
ten run into expensive costs. Efforts are thus oriented to reduce cost maintenance, for
example by adopting standards.

A solution for sustainable e-government systems is to provide more flexibility to
applications, namely by means of some autonomy. For example, such infrastructure
shall ease the discovery of administrative electronic services by autonomous software
agents to facilitate the provision of up-to-date applications.

However, autonomous e-government agents have to be kept under control. An
elegant solution is to use the administrative normative framework (e.g. provisions
included in the law corpora) to guide their behaviors since it is primary for the cor-
rect conduct of administrative information systems. As the complex coordination of
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multiple and distributed administrative agencies is usually prescribed by some pro-
visions, the digital representation of formalized provisions can be used to guide the
coordination of distributed software agents acting on behalf of administrations. Of
course, some administrative tasks delegated to software agents may be incompati-
ble with the normative framework, and some unpredictable conflicts between norms
themselves shall occur: cognitive software agents will permit an account of norma-
tive bindingness. For example, intentions of cognitive agents acting one behalf of
some local autonomous administrations may conflict with state legislations.

The environment as normative knowledge changes over time: a declarative repre-
sentation of knowledge facilitates the update of the system, facilitates maintenance,
improve system transparency, and thus system governance by human administrators.

Taking into account an enormous number of public services and dependencies
between them, as well as the complexity of interpreting and implementing changes
in government regulations, an efficient e-government solution must provide the pos-
sibility of adapting progressively, while ensuring its compliance with the regulation.
A solution lies in the concept of normative multi-agent systems. While this is true
for public organization where information systems have to comply with internal and
external regulatory provisions, this is also true for private organizations where in-
formation systems have to implement business rules. Indeed, it is often the case that
policies are related to how companies should carry out their business. For example,
these policies are designed to ensure that they pay relevant taxes, to treat customers
and suppliers fairly, to not have an adverse impact on the environment, or to provide
reliable information for investors and creditors.

1.6 Plan of thesis

The thesis is divided in three Parts. The first Part, which includes Chapters 1, 2 and 3,
aims at providing a systemization of the thesis with respect to computer science and
law. Chapters 1 and 2 overview some tools to build norm-governed computer sys-
tems. Chapter 2 presents briefly possible relevant aspects of legal knowledge man-
agement and artificial intelligence & law. Chapter 3 introduces the notion of software
agent and related concepts, in particular normative multi-agent systems.

The second Part of the thesis, that is, Chapters 4, 5 and 6, is dedicated to present-
ing informally the framework of interaction between normative systems and software
cognitive agents. Chapter 4 provides a general and abstract model of defeasible rea-
soning. This model is further developed in Chapter 5 to account for the combinations
of mental, agency and deontic concepts as believes, desires, actions, obligations etc.
Chapter 6 extends the framework to capture some temporal aspects and normative
modifications.

The third Part of the thesis, that is, Chapters 7, 8, 9, 10 and 11, concerns the
formalization of the informal framework previously introduced. In Chapter 7, the
appropriateness of logic to formalize legal reasoning as it can be often argued in
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the literature is briefly introduced, and a gentle tour through well-known logic for-
malisms is intended to indicate some requirements for our formalization. Chapter
8 presents the particular logic, namely defeasible logic, on which is based our for-
malization. In Chapter 9, defeasible logic is extended with modalities to account for
mental, agency and deontic concepts. Temporal aspects are integrated in Chapter 10.
Finally, the Chapter 11 concludes the work presented in this thesis.
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Computer science and law

L. Loevinger is often cited in literature for having initiated in an article published in
1949 [124] the use of logics and formalization techniques to obtain concrete applica-
tions in law. Since then, the possible interactions between computer science and law
have grown to constitute a dedicated field usually simply called computer science
and law. The different ways of understanding the domains of computers science and
law, plus their possible and diverse relations are the basis of numerous systemisa-
tions that one can find in the literature (see e.g. [144]). As the domain of computer
science evolves, new paradigms can be applied to computer science and law, and new
systemisations may be provided.

We focus on two active fields of research which are relevant for our purpose,
namely legal knowledge management, and, artificial intelligence & law (AI & law).
The field of legal knowledge management concerns itself with the management of
legal knowledge including the acquisition, modeling, dissemination and maintenance
of knowledge, while the field of AI & law is more focused on tools to emulate legal
reasoning.

We overview legal knowledge management and AI & law in the Sections 2.1 and
2.2 respectively. We shall not attempt to provide an exhaustive and precise account of
the rich and diverse works in both fields. Our aim is rather that of a brief introduction
of possible connections between the topic of this thesis and some works in computer
science and law. In Section 2.3, we conclude the Chapter by giving some prospects.

2.1 Legal knowledge management systems

Legal knowledge management refers to the management of legal knowledge by in-
formation technologies. The motivations behind the management of legal knowledge
by information technologies are multiple. A major motivation lies in the observation
that organizations are faced with mounting difficulties in working with the amount of
normative information (legislations, regulations, precedents etc.) accumulated over
the years. Many organizations are now undermined by a normative overproduction
coupled with a complexity on the intricacy of normative systems structures (e.g. the
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hierarchy) and normative content. However, we expect normative systems to be ef-
fective and efficient: one of the possible solutions to make them effective and efficient
is the use of legal knowledge management systems.

In the following, some key stages in the management of legal knowledge by
information technologies are briefly presented.

Acquiring

Knowledge acquisition sets the challenge of getting the information that is around,
and turning it into knowledge by making it usable. Key issues include the identifi-
cation of sources of legal knowledge, how to make tacit knowledge explicit, how to
acquire and integrate knowledge from multiple sources (e.g. different legal sources).

The sources of knowledge can be diverse and a selection can be made with regard
to the context, the objectives and the users. For example, if the objective is to build
a legislative information website for citizens, then the sources of knowledge can
be limited to legislative laws published in official journals. More complete systems
may be required to consider further sources of information as precedents of courts,
legal doctrines, perhaps even legal administrative praxis, etc. In civil law countries,
a priority may be given to laws, whereas in common law countries, precedents may
be given more importance.

Modeling

If the acquired legal knowledge is intended to be processed by computers, then it
has to be encoded into some computable formats. To this regard, there are many
different types of legal knowledge, different processes, different kinds of users, etc.
and this heterogeneity requires an interoperable encoding format (see e.g. [112]).
Interoperability is usually ensured by meeting certain standards. Over the years, the
open standard Extensible Mark-up Language (XML) recommended by the World
Wide Web Consortium (W3C) has imposed itself as the most appropriate standard
for the encoding of information in legal documents.

XML is a markup language providing the possibility of combining a text and
extra information about it. The extra information, including structure, layout, or other
substantial content, is expressed using markup elements (or tags), which are typically
intermingled with the primary text. XML is extensible in the sense that its users
can define their own markup elements. Elements marking up legal documents are
typically classified into:

• structural elements to indicate, for example, titles, sections, articles, commas,
etc.,

• metadata elements to indicate, for example, the type of norm, the date of publi-
cation, the period in force, etc.,

• semantic elements to indicate, for example, the substantial content of clauses as
obligation, exception, etc.

Usually, some constraints on the possible structures binding XML elements are spec-
ified using schemata which are expressed by some related XML schema languages,
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for example, Document Type Definition (DTD) or XML Schema. XML schemata
must be able to act both as straightforward placeholders for the acquired knowledge
coming in, and to represent the knowledge so that it can be used for problem-solving.
This can raise some issues if the acquired knowledge is not well structured or intel-
ligible. For legislative documents, to overcome such issues, legistic techniques (see
e.g. [154]) can help to provide more well-drafted documents.

XML also has the advantage that it does not carry information about how to dis-
play material: thus, the display of material can be adapted to the needs of human
users. The display can be specified using Cascading Style Sheets (CSS) or the eX-
tensible Stylesheet Language (XSL).

XML standards have been progressively adopted by institutional authorities and
private organizations. For example, in Italy, in the context of a national project called
Norma In Rete1 (NIR) launched in 1999, some specifications for the mark-up of
normative documents in XML (NIR DTD’s) and for the identification of normative
resources (NIR URN’s) have been adopted. Similar projects exist elsewhere, e.g.
Lexdania in Denmark, CHLexML2 in Switzerland, FORMEX for European Union
publications, etc.

Recently, the Semantic Web [31] has opened new prospects in modeling legal
knowledge by providing tools to give well-defined meaning to information. Pieces
of information expressed in natural languages are ‘semantically’ marked up with
diverse standard XML-based languages. For example, the Resource Description
Framework (RDF) aims at making simple statements about resources in the form
of subject-predicate-object expressions while the Web Ontology Language (OWL)
is a language for defining Web ontologies. The standard for encoding rules is still
not fixed and is expected to facilitate the interchange of rules in rule-based systems.
Recently, the European project Estrella3 has developed a Legal Knowledge Inter-
change Format (LIKF) [37] building upon emerging XML-based standards of the
Semantic Web, including RDF and OWL, in order to facilitate the interchange of
legal knowledge among computer systems.

Storing

If the acquired and modeled legal knowledge is intended to be reused, then it has
to be stored in some repositories. The obvious issue is how to store legal knowl-
edge. Usually, legal knowledge is stored using available techniques on the market, i.e.
databases. The most diffused types of databases are relational databases and object-
oriented databases, but due to the increasingly common use of XML for modeling
legal knowledge, the use of XML databases is now investigated in many projects.

Retrieving and disseminating

In any large repository, retrieval of knowledge is an issue. This is particularly true for
the legal domain in which legal knowledge is usually distributed into many reposi-

1 http://www.normainrete.it
2 http://www.chlexml.ch
3 http://www.estrellaproject.org
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tories, each containing thousands of documents. Retrieval is usually performed us-
ing available information retrieval techniques on the market, i.e. by indexing legal
knowledge with additional knowledge structures to limit and direct search for rel-
evant content. Hypermedia technologies as the World Wide Web have opened new
prospects, for example, by facilitating the navigation through the complex network
of legislative documents. In the context of the Semantic Web, ontologies can be used
to enable a richer and more conceptual way of information retrieval.

The dissemination of legal knowledge has to take into consideration the validity
of norms. Usually, official journals are the reference to certify the validity of pub-
lished laws. How can the validity of legal documents disseminated by information
and telecommunication technologies be insured? For example, in Italy, the ministry
of justice launched in 1999 the national project Norma In Rete engaging national
administrations (parliament, ministries, government, cabinet, etc.) as well as local
governments (regional government, regional parliament, city administrations, etc.)
to build a single portal for accessing on-line4 the entire corpus of national and local
regulations, making these available to anyone with Internet access.

Besides, the dissemination faces the usual issues of knowledge management,
such as the deliverance of relevant knowledge to the right user, at the right time, in the
right form. For example, as soon as a new regulation appears in a particular domain,
then it can be delivered to whom it may concern, and can be accompanied more valu-
ably with relevant doctrines and precedents. Many various techniques exist and can
usually be classified as push or pull: a user can ‘pull’ information toward themselves,
while a publisher may ‘push’ information toward subscribers (publish/subscribe).

Maintaining knowledge

As legal knowledge evolves, repositories have to be maintained regularly. Legal
knowledge is not erased but maintained over time. For example, for legislative regu-
lation, versioning techniques allow to trace the history of documents.

Techniques to maintain a normative systems in an acceptable ‘order’ preceded
the use of computers. Solutions among others are simplication, codification, dereg-
ulation etc. (see e.g. [154]). The most common technique in legal informatics is the
so-called consolidation.

According to R. Pagano in [154] p.78, the term consolidation refers to the op-
eration of substitution of a plurality of dispositions that have been stratified through
time within a unique text. A consolidation does not bring substantive change but
coherence and clearness. Though, in theory, ‘full’ consolidation involves more than
just the operation of updating texts by applying normative modifications, in practice,
(semi-)automatic consolidation is reduced to such operation due to the complexity
of ‘full’ consolidation. Nevertheless, as normative modifications can be of different
types producing complex scenarios, automatic application of normative modifica-
tions is a matter of research in its own right (see e.g. [30]).

4 http://www.normainrete.it
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2.2 Artificial intelligence and law

The field of artificial intelligence and law (AI&Law) is born as an application of the
larger discipline of artificial intelligence. Artificial intelligence, at its very beginning,
has favored the legal domain for its applications. The research was particularly in-
spired by logic fitting in an old philosophical tradition (see e.g. G. Leibniz) to ground
legal reasoning in logical foundations. The idea is that legal rules and reasoning are
integrable in a system which would help human beings make decisions. This vision
is not without problems as it requires models of law that are computable, that is, re-
duce legal activities to algorithms, to formalize law. Can legal activities be reduced
to algorithms? Can legal knowledge be formalized? A full presentation of the field of
AI&law is beyond the scope of this work, and the reader is referred to the general in-
troduction provided in [187] by G. Sartor. A good summary by E. Rissland et al. can
be found in [178]. In the following, only a brief account of some common discussion
on paradigms of AI&Law which are relevant for our purposes will be related. Our
focus will then turn to legal knowledge-based systems.

2.2.1 Which AI paradigms for legal reasoning?

Building intelligent entities does not seem a straightforward task, and AI is a domain
of confronted views on how it should be conducted. In the following, these opposi-
tions are overviewed and their influence on some paradigms in AI&Law is briefly
discussed.

Symbolic AI vs. connectivist AI. In symbolic AI, solutions are derived through
theories representing the problem domain, while in connectivist AI, solutions result
from an adaptation of complex system after an adequate training. In practice, the
symbolic approach has led to knowledge-based systems, whereas connectionism has
led to neural networks.

The symbolic approach has dominated the AI research from its beginning until
today: intelligence has been understood as consisting in the manipulation of symbols.
If the symbolic representations are logic formulas, and the syntactical manipulations
of these formulas are inferences, then the symbolic approach corresponds usually
to a logic approach. The common motivation for a logic approach is a better un-
derstanding of the reasoning problem itself. The representations and reasoning that
the connectivist approach would produce might be too complex to characterize or
to understand at a conceptual level. For this reason, the large majority of works in
AI&Law is located in symbolic AI though some tentatives have also been performed
in connectivist AI (see e.g. [161]). In the remainder, we will only focus in the sym-
bolic approach.

Neat AI vs. dirty AI. Neat AI is based ideally with few elegant principles whereas
dirty (or scruffy) AI uses many approaches combined. The neat vs. dirty views are
usually related to the procedural vs. declarative accounts of knowledge. In the pro-
cedural view, the knowledge about a domain is intricate with the control of the rea-



16 2 Computer science and law

soning process, whereas in the declarative view, the knowledge about a domain is
clearly separated from the control of the reasoning process. In practice, for today’s
computer scientists, it amounts to a choice between procedural and declarative lan-
guage programming. Examples of procedural languages are Pascal, C, C++, Java,
Visual Basic etc. and examples of well-known declarative languages are Lisp and
Prolog. In general, if pragmatism replaces philosophical opinions, then a procedu-
ral language is used when the designer can predict the knowledge to be processed
whereas a declarative language is preferred when the evolution of the knowledge is
unpredictable. Also, since programs in declarative languages are usually less com-
putationally efficient than procedural languages in terms of memory and speed, the
seconds are favored to achieve specific tasks.

In AI&Law, the neat view has been preferred because the legal knowledge to pro-
cess is generally unpredictable. Another reason is that the few elegant principles of
the neat view helps the community to understand and discuss more easily proposed
systems.

Strong AI vs. weak AI. Strong AI makes an analogy between the mind and com-
puters and refers to machines that are capable not only of producing smart behaviors,
but also capable of having consciousness or a comprehension of its own reasoning.
Weak AI is a pragmatic approach and seeks to build systems capable of solving prob-
lems of limited scope. The controversy has deep philosophical roots since it relates
to whether human minds can be mechanized. As a matter of fact, strong AI is still
a matter of science fiction, and proposals in AI&Law so far cannot be classified as
‘minded’ systems. Nevertheless, many proposals use notions as mental states, no-
tably for example in the field of agent: such use of such mental states, however, do
not necessarily need strong AI principles.

Orthogonally to these general considerations, assuming that intelligent artifacts
aim at performing some (intelligent) tasks, AI distinguishes common sense tasks
and expert tasks. Roughly, common tasks do not presuppose a high level of special
knowledge or skill (i.e. without expertise) whereas expert tasks do. Practicing the law
requires both type of ‘intelligence’ because legal reasoning is often about scenarios
involving common sense reasoning. This is apparent, for example, by observing that
many laws regulate common sense tasks. Hence, arguably, AI&Law requires intel-
ligent systems able to deal with both common sense reasoning and legal reasoning.
However, as a matter of fact, AI techniques are not enough advanced to deal with
common sense reasoning. Hence, today’s implementable AI&Law systems must be
circumscribed to some limited expertise tasks.

Finally, the circumscription AI&Law systems to limited expertise tasks is further
constraint in practice by the utility of these applications, and in [40], K. Branting,
among others, argues that:
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Only when our conclusions are rooted in actual legal practice are we [the AI
and Law community] likely to make a significant contribution to the legal
community and the citizen-consumers of legal services.

2.2.2 Legal knowledge-based systems

The neat view of AI&Law has led to a preference for developing legal application
based on the model of so-called knowledge-based systems.

Knowledge-based systems are substantially different from traditional systems in
the way the knowledge is processed. In the latter, knowledge is implicitly encoded
into some hard-wired procedures, whereas in knowledge-based systems, knowledge
is represented explicitly under some formal structures describing the problem do-
main, for example as a set of statements expressed into some logical languages.
This set of formal structures constitutes the so-called knowledge base. On top of
this knowledge base, a module process the formal structures and provide an output,
for example, by proposing legal advice.

A strong motivation for the use of knowledge-based systems in the legal do-
main lies in the maintenance of knowledge. Indeed, changes of the knowledge buried
into traditional applications can require costly modifications of spaghetti procedures
while, in knowledge-based systems, only a modular modification of the knowledge
base is often sufficient, for example by adding or eliminating specific statements.
As legal knowledge is likely to change over time, knowledge-base systems are less
costly to maintain up-to-date.

Knowledge-based systems have to accommodate to the two main models of le-
gal reasoning: a first model (here, called rule-based reasoning) assumes a set of legal
norms (e.g. legislation), and a second model (called case-based reasoning) assumes a
set of decisions related to precedent cases (e.g. legal sentences). The first model has
resulted in knowledge-based systems called rule-based systems in which knowledge
is encoded under rules, while the second model into case-based systems in which
knowledge is represented by cases. Both systems are briefly overviewed in the fol-
lowing.

A rule-based systems is roughly composed of a knowledge base and an inference
engine to process the knowledge. The knowledge base is assumed to be a set of facts
and set of norms which are represented by rules. In its simplest, a rule has the form
of an ‘If-Then’ conditional statement:

If antecedents Then consequent.

If the antecedents hold then the rule is fired and the consequent is derived. For ex-
ample, a rule expressing that unmarried males are bachelors could be encoded as:

If x is a male and unmarried Then x is a bachelor.

The inference engine processes the rules stored in the knowledge base (the input) to
arrive at some conclusions (the output). For instance, if the knowledge base contains
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the statement ‘Mario is a male and unmarried’ along with the rule given above, then
the system is able to derive that ‘Mario is a bachelor’. As a rule base can be very
large, it is necessary to have efficient inferencing mechanisms that search through
the knowledge and deduce results in an organized manner. Two types of inferencing
are usually distinguished:

• Backward chaining: the inference engine works backward from a conclusion to
be derived to determine if there are rules in the knowledge base to derive the
conclusion.

• Forward chaining: the inference engine works forward from the content of the
knowledge base to derive a conclusion.

The knowledge representation and reasoning cannot be addressed here as it would
require us to discuss logic formalisms: the reader is referred to Section 7.

A well-known illustration of rule-based systems is M. Sergot et al. in [199] who
formalized the British Nationality Act using logic programming techniques.

The model of law as a set of decisions related to cases has represented the main
alternative to the model as a set of legal rules. It is rooted in the doctrine of stare
decisis according to which courts should stand by and adhere to precedent decisions.
In case-based systems, the knowledge base is a set of cases, i.e. problematic situ-
ations solved by legal decisions (e.g. by legal sentences), instead of a set of rules.
Legal case-based systems are part of the family of case-based systems. Case-based
systems solve new cases by adapting precedent solutions which were used to solve
precedent cases. Case-based systems have typically a cyclical process as proposed
by I. Watson and F. Marir [212]:

• retrieve the most similar case(s),
• reuse the case(s) to attempt to solve the problem,
• adapt the proposed solution if necessary, and
• retain the new solution as a part of a new case.

As pointed out by I. Watson and F. Marir, this cycle rarely occurs without human
intervention. For example, many case-bases systems are primarily used as case re-
trieval systems, and case adaptation is often being undertaken by users. However,
instead of assessing it as a weakness, it is sometimes advocated to encourage human
collaboration in decision support.

Often-cited examples of legal case-based systems are, among others, HYPO by
K. Ashley [20] and CATO by V. Aleven [4].

As legal explanations supporting conclusions are as important as the conclusions
themselves, knowledge-based systems are advantageous because they ease the pre-
sentation of such explanations.

In this regard, it is often argued that legal knowledge systems should implement
so-called deep models of knowledge and reasoning rather than shallow models (see
e.g. [25]). Roughly, deep models assume an isomorphism between the formalized
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knowledge and the knowledge to formalize, whereas shallow models tolerate a for-
malization into empirical associations with, for example, have no explicit reference
to some causal relation underlying the domain. Isomorphism has also the purpose to
ease maintenance of legal knowledge.

Deep models can concern the reasoning processes too. In this regard, compu-
tational argumentation techniques intented to model more naturally legal reasoning
has attracted most of the attention since the early 90s (see e.g. [86, 211]).

Many criticisms and doubts can be advanced for the development of legal
knowledge-based systems. These criticisms can be roughly classified into ethical
and technical.

A common criticism concerns whether legal reasoning can take the form of algo-
rithms. For example, concerning rule-based systems, since the formalization of legal
knowledge into rules is usually made in some logical languages, and the manipu-
lation of it with logical inferences, the appropriateness of logic to formalize legal
knowledge and reasoning can be fairly discussed. The reader can jump to Chapter 7
for a discussion on logic and law.

Another criticism is based on the difficulty in identifying and isolating well-
circumscribed pieces of legal knowledge. As an illustration, if we want to implement
a complete expert system on intellectual property rights (IPR), then such system shall
not only require to capture IPR laws, but also contract laws, and others: laws are not
disjoint but interconnected.

A last issue, which is more economical than technical, lies in the observation
that, notwithstanding some commercial successes (e.g. business rules companies),
and though the availability of open source systems have greatly reduced the efforts
and costs involved in developing knowledge-based applications, the difficulty of for-
malizing legal knowledge may lower the return on investment to unacceptable levels
for potential investors.

2.3 Prospects for computer science and law

In the previous Section, we saw that computer science has approached law in two
main perspectives: one consists in the implementation of legal knowledge manage-
ment systems while the other is an investigation of legal knowledge-based systems
using artificial intelligence techniques.

Legal knowledge management refers to the management of legal knowledge by
information technologies. In practice, such systems are usually composed of diverse
technologies to acquire, model, store, retrieve, disseminate and maintain normative
knowledge.

Legal knowledge-based systems refer to information technologies in which the
legal knowledge is explicitly represented. Most common examples are legal expert
systems.
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Both aim to provide applications to help citizens and jurists in their legal activi-
ties, but usually from a different perspective. It is our prediction that in the future, le-
gal knowledge management systems and legal knowledge-based systems will merge
to provide more complete legal solutions. In this view, legal knowledge management
techniques shall arrange the legal knowledge base of legal knowledge-based systems,
and conversely, as current legal knowledge management systems has little reasoning
capabilities, AI&Law techniques are foreseeable to augment their intelligent func-
tionalities. This view is confirmed, for example, by the multiple research interests in
the use of standard ‘semantic’ technologies (e.g. see [37]) intented to model norma-
tive knowledge embedded in legal knowledge management systems so that it can be
processed by AI&Law techniques.

However, many obstacles remain before the realization of efficient legal knowledge-
based systems can be achieved. Another prospect for legal informatics is norm-
governed systems, and particularly normative multi-agent systems. As argued in [58]
by R. Conte at al., though the fields of legal informatics and normative multi-agent
systems differ traditionally in models of references, formalisms and implementing
technologies, they could profit from each other by combining the results of each field.

In the next Chapter, we shall overview the field of agent technologies, with a
special focus on normative multi-agent systems.
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Agent technologies

The agent paradigm provides a powerful conceptual encapsulation to account for
many fields in computer sciences as cognitive models, communication, coordination
etc. It is not our intention here to give an exhaustive review of the agent paradigm
and associated technologies, so we shall present only some aspects relevant for our
field of research.

This Chapter on agents technologies is organized as follows. In Section 3.1, the
concept of individual agent is introduced while in Section 3.2, we deal with the con-
cept of multi-agent systems with a special focus on normative multi-agent systems.
Finally, in Section 3.3, the agent paradigm is compared with other conventional com-
puter technologies.

3.1 The concept of agent

This Section introduces the concept of agent and presents typical architectures by
which individual agents are implemented.

3.1.1 What is an agent?

The richness and the many different uses of the concept of agent has caused a sit-
uation where there is no commonly accepted definition of the term agent (cf. [78]
for a variety of definitions). In [185], S. Russell and P. Norvig give the following
definition:

An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through effectors.

This definition is rather broad: an agent is not related to a computer system. Any-
thing, e.g. any artifact, that senses an environment and acts upon it will be considered
an agent. There is no constraint on the kind of environment, which can be physical
or not, and the kinds of actions that are performed by the agent. So, according to S.
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Russell and P. Norvig, a thermostat is an agent. In [216], M. Wooldridge proposes a
somewhat more restrictive definition:

An agent is a computer system that is situated in some environment, and
that is capable of autonomous action in this environment in order to meet its
design objectives.

and, P. Maes in [128] gives a rather closed definition:

Autonomous agents are computational systems that inhabit some complex,
dynamic environment, sense and act autonomously in this environment, and
by doing so realize a set of goals or tasks for which they are designed.

Crucial elements are added to the definition of an agent. Firstly, an agent is related
to a computer system, and secondly, this computer system can act autonomously.

The notion of autonomy is a delicate issue that has its root in philosophy. As one
is autonomous as for a given action or goal (and not for another), and from some-
thing or somebody, it is current to understand autonomy in terms of (in)dependence.
Accordingly, an agent is autonomous if it is entitled to have resources independence,
reasoning independence, etc. In [53], C. Castelfranchi proposes the following insight
of autonomy:

Given the abstract control loop of any control system which purposively
relates information, knowledge, goals, situation, and action, or given the
general sensing-acting-environment loop of any interacting agent, if another
agent interferes in, is inserted in the control loop, if the flow of causal effects
on the world is interrupted and pass through another agent and needs it, the
system is no more completely independent or autonomous; it depends on
X’s intervention.

C. Castelfranchi notes that if the variable X is an (human) agent, then this character-
ization corresponds to the well-known M. Wooldridge’s view of autonomy as acting
“without the intervention of human beings or other agents” [216]. If autonomy is
understood in terms of independence then different types of autonomy are identifi-
able : information autonomy shall refer to information independence, planning au-
tonomy shall to planning independence, goal autonomy to goal independence and
so on. If we consider control independence, then we refer to the principle that an
agent can make decisions and take on its own, that is, roughly speaking, control is
inside the agent and not outside. This relates well with the Greek etymology of au-
tonomous (αυτøνøµøs), literally, who gives oneself his/her own law. If an agent is
autonomous, that does not mean that its behavior cannot be influenced. For exam-
ple, a goal autonomous agent may (or may not) accept some requests and may adopt
other goals under some conditions.

Beside the notion of autonomy, the definition of agent by M. Wooldridge and
P. Maes given above introduces both the notion of design objectives, that is, the
hypothesis that an agent is designed for specific purposes. On this point, according
to C. CastelFranchi [53],
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[. . . ] because a goal autonomous agent is an agent endowed with its own
goals. An agent is fully socially autonomous if it has its own goals, endoge-
nous, not derived from other agent’s will. It adopts goals from outside, from
other agents; it is liable to influencing. It adopts other agent goals only if
it sees that adoption as a way of enabling itself to achieve some of its won
goal.

This relates to delegation practice when the requesting agent has limited knowledge,
competence, time and capability. If an agent is autonomous and, all the more, has
some goals to realize, then it can take initiatives and not only react to change when it
happens. For this reason, many people attribute pro-activity along with reactivity to
an agent.

Because an agent can perform actions, we may prefer an agent that acts ’intelli-
gently’. Tough there is no commonly accepted definition of intelligence, rationality
is commonly accepted as a central property of intelligence. A rational agent is de-
fined as an agent that always chooses the action which maximizes its utility, given
all of the knowledge it currently possesses. Also, if agents can react autonomously
to changes, then the ability to learn and improve with experience, is deeply linked to
autonomy. While adaptivity is often considered a fundamental aspect of autonomy
and intelligence, how to implement it is still an issue which we cannot address here.

Finally and orthogonally to those properties, an agent can enjoy mobility; that is,
not all agents are mobile. For a software agent, mobility makes it free to travel among
the hosts of a network (such as the Internet). It is not bound to the host in which it
begins execution; it can transport its code and state to another host in the network,
where it resumes execution. As D. Lange and M. Oshima states in [121], “this ability
allows it to move to a system containing an object with which it wants to interact and
then to take advantage of being in the same host or network as the object.” Doing so,
mobile agents can a solution to reduce the network load. Drawbacks of mobile agents
concerns the hosts and the agents themselves. Hosts have to secure themselves from
malicious agents (as a program running in on host) that shall violate the norms of
the host. Meanwhile, mobile agents shall also protect themselves from mischievous
hosts.

3.1.2 Agent architectures

Depending on the required behavior, agents can be implemented according to differ-
ent styles of architectures. The styles of architecture most widely referred to in the
literature are reactive agents, model-based agents, deliberative agents, and layered
architectures.

Reactive agents, also called reflex-based agents, operate in a simple stimu-
lus/response fashion. This architecture does not support any explicit reasoning. Its
main advantage is that agents can react in time in fast changing environment. An of-
ten cited work of reactive architecture is [47]. The main disadvantage is that reactive-
based agents work only if the correct decision can be made on the basis of cur-
rent perceptions exclusively. So, reactive-based agents may not be practicable if the
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decision-making is influenced by the history of perceptions or if the environment is
not fully observable (i.e., a partially observable environment), that is, if more sophis-
ticated behaviors are required.

Model-based agents remove the limitations of reactive agents by managing envi-
ronments that are partially observable and by using the history of perceptions. To do
so, such agents have a model that represents relevant aspects of the environment. An
agent maintains internal states to keep track of (i) parts of the environment that the
agent cannot perceive, and (ii) the history of its perceptions. Typically, the internal
states correspond to symbolic representations of the environment, and the agent’s
behaviors are defined by syntactically manipulating this symbolic representation. If
these symbolic representations are logical formulas, and the syntactical manipula-
tion corresponds to inferences between these formulas, then we are dealing with the
class of logic-based agents. So a logical theory is implemented, and the process of
selecting an action reduces to a problem of proof: if the agent derives a logic for-
mula corresponding to a state of the world, then the agent performs the associated
actions. Examples of works on logic-based agents are MetateM [76] and Congolog
[122]. However, the inherent computational complexity of theorem-proving makes
it questionable whether agents as theorem provers can operate effectively in time-
constrained environments. So the theorem-prover architecture is often not acceptable
in environments changing faster than the decision-making agent, since goals may be-
come obsolete.

Deliberative agents remove the limitations of previous agents by reasoning about
their internal states: for example, a deliberative agent can figure out that a plan or a
goal has become obsolete and thus can reconsider it. Deliberative agents are mostly
represented by the class of belief-desire-intention (BDI) agents, which are increas-
ingly prevalent. These architectures have their roots in the philosophical tradition
of practical reasoning, i.e., the process of figuring out what actions to perform (see
e.g. [42, 167]). Practical reasoning consists of two distinct activities. The first in-
volves deciding what states of affairs we want to achieve based on the current beliefs:
this activity is called the deliberation. The second activity involves how we want to
achieve these states of affairs: this activity relates to planning and scheduling. A
compelling reason to use BDI architectures is that since an agent can be described in
terms of mental notions that are more usually applied to humans, it becomes easy for
observers to understand and predict its behavior [62]. A well-known example of BDI
architectures are the Procedural Reasoning System (PRS) [85] which has inspired
the development of successive similar systems (see e.g. [67]).

Recently, with the acknowledgment that norms can be an appropriate mean to
control autonomous agents, some extensions of BDI architectures accounting for
normative agents have been proposed. Examples of works in this direction are [63]
proposing a BDI interpreter loop that takes norms and obligations into account in
an agent’s deliberation, and the BOID architecture (see e.g. [44, 61]) as an abstract
agent representation, that consists of the four components beliefs, obligations, inten-
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tions and desires.

Layered architectures, also called hybrid architectures, attempt to give agents
both reactive and deliberative features. Indeed, in general, agents can be neither to-
tally deliberative nor purely reactive. If they are just reactive they cannot reason. If
they are only deliberative they may never be able to act efficiently in time. This leads
typically to a combination of both reaction and deliberation architectures, in an effort
to take the best from each approach. Generally, reaction and deliberation processes
are associated with different layers that interact so that agents can follow their own
plans while sometimes reacting to external events without deliberation. Most cited
works on layered architectures are InteRRap [141] and TouringMachines [73].

3.2 Multi-agent systems

Computer systems have evolved from centralized to distributed models in order to
accompany the decentralization and cooperation of present-day organizations. Appli-
cations are no longer monolithic programs functioning on one machine for a single
user, or distributed applications managed by a single organization such as today’s
intranet, but rather societies of components that may not all have been designed by
the same software development team and may be owned and managed by different
organizations. E-government systems spanning multiple administrations is an exam-
ple. Due to this inherent distribution of information and competencies, components
may be unable to accomplish their own tasks alone and are consequently required to
interact by providing services to one another. This is reflected, for example, in the
emerging visions of Semantic Web [31], Grid [77], and Ubiquous Computing [213],
among others.

Systems composed of multiple (interacting) agents are referred to as multi-agent
systems (MAS). Applications of MAS already exist. They are appreciated for ex-
ample in situations where agents interact with one another to solve problems that
are beyond the individual competencies, and in which several agents must together
make some joint decisions in order to accomplish some assigned tasks. Such appli-
cations refers typically to many agents that are spread widely over a geographically
distributed environment (see e.g. [158]). Other applications are multi-agent simula-
tion systems (MASS) are used to simulate complex systems as economies, societies
and biological environments. Indeed, MASS allows to provide answers to complex
problems that would otherwise be unobtainable via classic mathematical tools. For
example, J. Epstein and R. Axfell in [69] investigate how the heterogeneous behavior
of individual actors or agents generate the global macroscopic regularities of social
phenomena. Doing so, MASS can permit to develop plausible explanations of ob-
served phenomena and help in decision making. Also, using MASS, algorithms can
be tested in a isolated environment, before going to field trials with actual users. For
example, A. Artikis at al. in [19] simulate a formal framework for specifying, ani-
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mating, reasoning about and verifying the properties of open computational societies.

Whereas the previous Section presented the characteristics of individual agents,
in this Section we focus on multi-agent systems.

3.2.1 Communication

Interaction between agents is generally done by communication; that is, messages
are transmitted from senders to receivers via a communication medium provided by
an infrastructure. Messages are written in an agent communication language (ACL).

Most of the work done in ACL is based on the theory of speech acts (see e.g.
[196, 197]), which conceives human natural language in terms of actions. Roughly
speaking, speech acts theory states that a language is used not only for making a
statement but also for performing actions. When an agent transmits information to
another agent, this has an effect just as any other action would have. Thus, one can
define preconditions and effects for communicative acts in terms of mental states as
beliefs, goals, intentions, desires, etc. Each communicative act can be conceived as
an attempt by the sender to influence the mental state of the receiver of a message.
Defining ACLs in terms of mental states may ease its integration with BDI agent’s
architecture (see 3.1.2). Speech act theory is relevant to agent communication in that
it serves as a formal basis for deciding on primitive concepts in ACL. Furthermore,
a significant contribution of this work is that the semantic of the composite commu-
nicative act derives from the act’s constituents. Popular ACLs of the mental agency
approach are KQML [74], and FIPA ACL [75].

Typically, a message includes an indication of the type of communicative act (for
example, an act by which to inform, query, propose, etc.), the name of the sender
and receiver agents, the content of the message, and the ontology to be used in in-
terpreting that content. The content of a message is written in a Content Interchange
Language (CIL). CILs typically use the logic of predicates to make statements con-
cerning, for example, simple concrete facts, definitions, abstractions, inference rules,
constraints, and even meta-knowledge (knowledge about knowledge). A popular CIL
is the Knowledge Interchange Format (KIF) [84].

Ontologies allow agents to agree about the meaning of the terms from which the
contents of messages are made. Typically, ontologies are concretized under files that
contain sets of terms (a vocabulary) organized under taxonomic hierarchies: these
hierarchies contain different types of relations between terms, and these relations are
formalized. Usually, such files are written using specific languages, such as the Web
Ontology Language (OWL), which is a specification of the World Wide Web Con-
sortium (W3C) [210].

It has been argued that the ACLs of the mental agency approach are unrealis-
tic because they suppose that agents can access each other’s mental states. For this
reason, M. Singh in [202], for example, proposed an ACLs semantics base in social
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agency instead of mental agency. This social agency recognizes that communication
is inherently public, emphasizes conventional meaning, avoids pragmatics and con-
siders context. The social agency approach is more focused on the notion of protocols
and for this reason we will return to it in the next Section.

3.2.2 Coordination

Agents are often required to deal with coordination to govern interaction, for exam-
ple to manage dependencies between activities performed to achieve a goal, or to
avoid conflicts. Coordination can take many forms, for example, negotiations among
competitive or self-interested agents, cooperations among non-antagonistic agents,
etc. Aspects of coordination include the synchronization of agents, the avoidance of
live-locks and dead-locks, optimization of resources etc.

In a MAS, the coordination must integrate the specificities of agents. Compo-
nents in typical concurrent systems are built by the same organization to achieve a
common goal so that coordination is typically hardwired in at design time. Instead,
in MAS, each agent can be designed by different organizations and may have dif-
ferent (conflicting) goals so that coordination among agents is assumed to happen at
run-time.

Typically, agents coordinate by communicating. Ideally, an ACL of the mental
agency approach, such as KQML or FIPA ACL, allows agents to coordinate by rea-
soning on mental attitudes as beliefs, goals, etc. of other agents. As a matter fact,
this approach of coordination based on mental attitudes is hardly explored because
the associated issues. These issues include the attribution of mental states to pro-
grams in general (see e.g. [215]), the access to others private mental states, or some
assumptions such as sincerity and cooperation (see e.g. [202]).

An alternative is the use of communication protocols (or conversation specifi-
cations) which define sets of rules to guide the interactions taking place between
several agents: these rules, in other words, govern the exchange of a series of mes-
sages among agents. Several generic communication protocols have been devised
for systems of agents. For example, a popular protocol is the Contract Net Protocol
[203] which aims to control the bidding and contracting mechanisms of agents, in a
marketplace setting for instance. The Contract Net Protocol is shown in Figure 3.2.2
and works as follows: one agent solicits other agents by issuing a ‘call for proposals’
message that specifies the task and any conditions placed on the execution of the
solicited task. Solicited agents may respond by issuing some messages that indicate
their proposals. Proposals may include the preconditions for the task, which may be
the price, the time when the task will have to be done, etc. Once a deadline passes,
the soliciting agent evaluates any received proposals and selects one or more agents
to perform the task. The agents of the selected proposal(s) will be sent an ‘accept-
proposal’ message, and the others will receive a ‘reject-proposal’ message. Ideally,
the proposals are binding, so that once the soliciting agent accepts the proposal, the
selected agents will commit themselves to performing the task and, for example, a
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contract is formed.

1. One agent solicits other agents by issuing a “call for pro-

posals” message.

2. Solicited agents may respond by issuing “propo-

sals” messages.

3. The soliciting agent evaluates proposals and selects one

agent and send an “accept-proposal” message.
4. A new contract is created.

Fig. 3.1. A graphical representation of the contract Net Protocol.

Typically, messages received are interpreted according to the protocol they are
inserted in. For example, a message proposal received in the context of the Contract
Net Protocol will be interpreted differently in the context of the Dutch Auction Pro-
tocol, which is another sophisticated protocol to rule auction mechanisms between
agents.

On the pursuit of coordination by ACLs, M. Singh in [202] proposes to charac-
terize protocols in terms of commitments:

“[. . . ] agents play different roles within a society. The roles define the asso-
ciated social commitments or obligations to other roles. When agents join
a group, they join in one or more roles, thereby acquiring the commitments
that go with those roles. The commitments of a role are restrictions on how
agents playing that role must act and, in particular, communicate.”

Accordingly, protocols are defined in terms of commitments rather than as finite state
machines. M. Singh argues that if protocol requirements would be expressed solely
in terms of commitments, then agents could be tested for compliance on the basis of
their communications.

In the same line, conversation policies which define constraints over different as-
pects of conversations have been proposed along with conversation specifications in
order to provide more flexible control over agent communication, and thus coordi-
nation (see e.g. [162, 109]). In this view, modifications of declarative representations
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of conversation policies can ease the adaptation of the communication modules of
agents to circumstances.

The protocols discussed above can be classified as communication protocols
which consist in rules to guide the communication internal to some specific tasks.
However, coordination can be understood as the governance of interaction among
these specific tasks. At this level, many techniques exist and, unfortunately, no clear
classification emerged in the literature (see [153]).

Whatever the coordinating technique, the autonomy of agent has to be respected.
In this regard, argumentation techniques have been advocated (see e.g. [146]) to
structure to structure a wide range of coordination aspects occurring in persuasion,
negotiation, information-seeking, or inquiry settings etc. For example, as coordina-
tion aims at managing dependencies between activities performed to achieve a goal,
an agent may request another to act in a certain way. The request may more success-
ful if the agent builds and communicates arguments to persuade the other to act in
the requested way. In this view, works on argumentative dialogue games can be used
to specify protocols to govern the exchange of arguments.

For our purposes, it is interesting to note that the use of norms has been acknowl-
edged as an appropriate mean for coordination. For example, Y. Shoham and M.
Tennenholtz in [201] suggested to use social laws to coordinate agents: the agents
agree on certain rules in order to decrease conflicts among them and promote co-
operative behavior. In [57], R. Conte and C. Castelfranchi proposes also norms to
achieve coordination between them, but conisder a more cognitive ground for norms
studies. A. Omicini and S. Ossowski inspired by M. Shumacher [194] make in [152]
a distinction between subjective and objective coordination, depending on whether
we adopt a psychological or normative account of coordination.

3.2.3 Normative multi-agent systems

A system composed of multiple (interacting) agents is called a multi-agent system.
The research area defined as the interaction of normative systems and multi-agents
systems aims at investigating normative multi-agent systems. In [52], A. Jones and J.
Carmo provide the following definition of normative systems:

Sets of agents whose interactions are norm-governed; the norms pre-
scribe how the agents ideally should and should not behave. [. . . ] Impor-
tantly, the norms allow for the possibility that actual behavior may at times
deviate from the ideal, i.e., that violations of obligations, or of agents’ rights,
may occur.

Another definition is provided by M. Luck and F. López y. López in [125]:

A normative agent is an autonomous agent whose behavior is shaped by the
norms it must comply with. A normative agent must be able to decide, based
on its own goals and motivations, whether a norm must be either adopted
or complied with aware of the consequences of dismissing norms. [. . . ] A
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normative multi-agent system is a collection of normative agents which are
controlled by a set of common norms varying from obligations and social
commitments, to social codes.

In [35], G. Boella and L. van der Torre proposes to extend these definitions with
agents’ control over the set of norms:

A normative multi-agent system is a multi-agent system together with
normative systems in which agents on the one hand can decide whether to
follow the explicitly represented norms, and on the other the normative sys-
tems specify how and in which extent the agents can modify the norms.

As an organization of agents bound with norms can be defined as an institution, some
authors have proposed to model (open) agent organization as electronic institutions
(see e.g. [71]). However, the distinction between electronic institutions and norma-
tive multi-agent systems is not clear since institutions are constituted by norms.

A normative system can be composed by diverse types of norms, and many clas-
sifications, often rooted in social sciences, exist.

In philosophy of law for example, H. Hart makes in [102] a distinction between
primary and secondary legal rules: primary rules govern conduct of agents while
secondary rule manage primary rules. Secondary rules are further classified into rules
of recognition (to determine the ‘validity’ of legal rules), rules of change (to change
legal rules) and rules of adjudication (to empower some agents with adjudication
power, for example to adjudicate whether a law has been violated.)

In computer sciences, G. Boella and L. van der Torre (see e.g. [36]) consider
regulative norms to specify the ideal behavior of agents, constitutive norms used
to constitute institutions, procedural norms address to the mechanisms to support
primary substantive norms.

We cannot address here the multiple existing classifications, but we hope that the
two examples given above illustrate well that such classifications allow systematic
indications for the use of norms in multi-agent systems.

For example, an observer of a multi-agent system can be invited to reason on an
organizational rather than an individual level in order to discuss the overall behavior
of the society. Thus, a multi-agent system can be understood as having some sort of
collective intention rather than a sum of individual intentions. Accordingly, norms
can be collective, i.e. they are directed to a group of agents so that the group ought
to behave accordingly. What is particularly interesting with collective norms is to
understand their impact on the individual behaviors of the agents in the group, i.e.
to understand when and how the collective directives are translated into individual
directives. If a collective directive is violated, then the application of the sanction is
at issue. Legal reasoning associated with collective directives can take account for
many parameters. For example, L. Cholvy and C. Garion proposes in [81] a model
in which if a group has neither a particular hierarchical structure nor an institutional-
ized representative agent, then the derivation of individual directives depends on the
ability of the agents (i.e. what they can do) and their own personal commitments (i.e.
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what they are determined to do). As for checking if these obligations are fulfilled or
not, we need to know what are the actual actions performed by the agents.

An important issue in normative multi-agent systems is the sources of norms. In
the field of multi-agent systems, there are two approaches: norms can be designed
off-line (by some administrators for example), or they can emerge from the agents
themselves.

The former is the most prominent approach while the latter is usually reducted
to scenarios of self-contracting agents. In this regard, the notion of so-called institu-
tional power is a possibility to account for the characteristic feature of an institution
whereby some agents are empowered to create or modify significant normative as-
pects of that institutions, usually by performing a special act, for example by signing
a contract. The notion of institutional power is sometimes captured by considering
that an action or a state of affair A counts as an action or state of affair B in that
particular institution (see e.g. [107, 82]).

Moreover, as norm emergence can be related to norm propagation, and though a
substantive amount of work on the propagation of norms exists, few formal frame-
works have been developed in this regard. In [193] for example, some mechanisms
for the propagation of norms from a leader of a society to the followers are proposed.

Though in common multi-agent systems, there is a single normative system, there
can be several of them. This is particularly important since artificial societies are
often characterized according their properties of openness. Openness of a society
relates to the degree on which agents can join the society. So, artificial societies
are traditionally divided up in two types: open societies, where it is possible for an
external agent to join the society, and closed societies, where an external agent cannot
join it.

In open multi-agent systems, an agent belonging to an institution with a nor-
mative system X may join another institution with a normative system Y . The rela-
tionship between the institutions can be hierarchical for example between a global
and local authority. This raises the question of conflicts among norms of different
institutions and how agents deal with them. In this regard, F. López y López et al.
[126] argues that the normative behavior of agents not only relates to the decision of
whether to comply with a norm or not, but also to the decisions of whether to join,
to stay or to leave a society regulated by norms.

A closed society refers typically to a multi-agent system in which agents are ex-
plicitly designed to achieve common goals. As a closed society is by definition not
opened, and usually designed and managed by an unique organization, the issues
concerning conflicts among norms of different institutions hardly exist unless the
closed society itself is composed of diverse societies.

The systematization of all the different notions to design and implement norma-
tive multi-agent systems is an issue in its own right. On this aspect, norms can be
useful to design a system by specifying declaratively aspects of such systems.
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In this view, V. Dignum et al., for example, proposed in [64] a framework for
modeling agent organizations by three dimensions: normative, organizational and
ontological that describe different characterizations of the environment. Orthogo-
nally, in order to make design of the multi-agent system manageable, the method-
ology distinguish three levels of abstraction with increasing implementation detail.
At the most abstract level, the statutes of the organization to be modeled are defined
(statues indicate the main objective, values and context of the organization) and the
ontology of the model itself. At the concrete level, starting from the abstract values
defined in the previous level, the analysis and design of the system is refined in terms
of norms and rules, roles, landmarks and concrete ontological concepts. Finally, at
the implementation level, the design specified in the concrete level is implemented
in a given multi-agent architecture.

The implementation of multi-agent systems can be facilitated using middlewares,
that is, softwares which make the link between the hardware, the operating system,
the network at the bottom, and the agent-software application on top. Middlewares
hide the complexity of networking for the application developer and offer an in-
frastructure for general distributed applications. The aim of middleware is to facil-
itate the implementation, deployment, and management of distributed agent appli-
cations by providing different basic services, i.e. promoting the reuse of code. A
example of a popular open source middleware is JADE [24]. A comprehensible re-
view of multi-agent system middlewares can be found in [127]. Some investigations
with regards to the implementation of normative multi-agent systems exist (see e.g.
[113, 205, 3, 72, 70]). Such infrastructures are concerned with norm-oriented ser-
vices as, for examples, the detection of when a norm is active, the detection of a
violation on a norm, and the handling of violations with sanctions.

3.3 Agents and other computer paradigms

A comparison of software agents with other conventional information technologies
makes it possible to highlight similarities and differences, and perhaps to better dis-
cern the concept of agent. I discuss below the relationship that agents have with the
client/server model, with objects, and with expert systems.

3.3.1 Relationship between agents and the client/server model

The most current model for distributed applications is the client/server model. The
client/server model makes a distinction of roles between its distributed elements,
namely, servers and clients. Servers are reactive, in that they cannot communicate
with a client on their own initiative; they handle most of the capabilities and must
provide stability (they cannot appear and disappear, for example). Clients, on the
other hand, do take initiatives, in the sense that they can initiate a communication
with a server but cannot communicate directly with one another; they have few ca-
pabilities, and they are allowed to appear and disappear. Most today’s Internet appli-
cations are based on the client/server model.



3.3 Agents and other computer paradigms 33

On this basis, one would be tempted to assimilate client and server as two special
kinds of agents and consequently consider the client/server model as a special case of
the agent-based model. However, the two models are traditionally keep distinct be-
cause, as noted by [24], agent-based models do not necessary make a distinction of
roles between client and server. That is, all the applications based on the agent-based
model cannot fit well with the client/server model. In this view, the agent paradigm
is appreciated to facilitate the design of applications that manage the complexity of a
domain. Indeed, as the complexity of a system arises from the interactions between
elements of the system, agents ease their representation and the implementation of
their interactions. Furthermore, scalability and flexibility of applications is facilitated
by the integration of agents using step-by-step procedures whereas traditional servers
tend to limit them.

In the increasingly popular peer-to-peer model (see [139] for a review), peers
are nodes of a network that can function both as servers and clients at any time,
depending on the role the peer acts in. A peer may thus be likened to an agent,
and for that reason, some people have argued that the multi-agent paradigm can be
superimposed on the peer-to-peer architecture.

3.3.2 Relationship between agents and objects

Objects are commonly defined as computational entities capable of receiving mes-
sages, processing data, and sending messages to other objects. A computer program,
then, may be conceived of as composed of a collection of objects that act on one
another, as opposed to a traditional view of a program as a collection of functions
or procedures, or simply as a list of instructions to the computer. Objects usually
possess so-called “methods” that consists of a sequence of instructions to perform an
action, a set of input parameters to parametrize those actions, and possibly an output
value of some kind. One can invoke a method for an object that must then perform
the sequence of instructions contained in the method. A method invocation is thus
considered to be a request for an object to perform some task, and it is often conceive
as a means of passing a message to an object.

Some distinctions between agents and expert systems can be indicated (see e.g.
[151]). Firstly, agents are usually argued to embody a stronger notion of autonomy
than objects; in particular, agents decide for themselves whether or not to perform
an action on request. When invoking a object’s method to make it to perform an
action, the object has no choice whether to execute its method or not: once an object’s
method is invoked, its execution will follow necessarily. In an agent-oriented setting,
there is no concept of ’invoking a method’ on a agent. It cannot be taken for granted
that an agent will perform an action only because one requests the agent to do so.
With objects, control comes from the outside, whereas in an agent setting, it comes
from the inside: this why agents are argued to embody a stronger notion of autonomy
than objects. Secondly, agents are capable of flexible (reactive, proactive, social)
behavior, while the standard object model is not primarily concerned with such types
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of behavior. Thirdly, a multi-agent system is by nature multi-threaded, that is, each
agent is assumed to have at least one thread of control, whereas the standard object
model usually runs with a single thread of control in the system.

Furthermore, because object-oriented applications have specific methodologies
but agents are not objects, it has been argued that agent-oriented applications requires
also specific methodologies (see e.g. [217]). For example, object models hardly cap-
ture notions as an agent proactively generating actions or dynamically reacting to
changes in their environment, still less how to effectively cooperate and negotiate
with other self-interested agents. Many agent-oriented methodologies have been pro-
posed over the years, and their presentations goes beyond the scope of this thesis. The
reader can find a survey in [105].

Finally, note that agents are commonly implemented using object technologies,
that is, the two paradigms are not competitive but complementary.

3.3.3 Relationship between agents and expert systems

An expert system is a system capable of solving problems or giving advice in a spe-
cific knowledge domain and has been an important artificial intelligence technology.
The problem-solving activity is performed by an inferential engine, that is, a program
capable of drawing inferences from pieces of knowledge contained in a knowledge
base. The knowledge is represented explicitly, typically as a set of logic statements.

While there are obvious similarities between agents and expert systems, there
are also significant differences. These differences are evoked in the following by
[216]. First, expert systems do not usually interact directly with any environment:
they get the information not through sensors but through a user acting as an in-
termediary, while the interaction between agents and their environment takes place
directly and autonomously. Secondly, expert systems are not normally capable of
proactive behavior. Thirdly, while some applications make use of several expert sys-
tems that communicate with one another, making these systems look in some sense
like multi-agent systems, expert systems are not usually equipped with any evolved
communicating ability.

In regard to the legal domain, laws may apply to agents whereas legal expert sys-
tems are intended to provide legal advices.

In light of these distinctions, any expert system may be likened to a sort of very
‘poor’ agent, whereas not all agent can be likened to an expert system.
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Informal





4

Reasoning framework

Our intention is to give a formal account for some aspects of the interaction between
normative systems and cognitive agents. The term cognition is used to refer to a
faculty for the human-like processing of information and we are interested here in the
reasoning processes involved in cognition. In this Chapter, we first present informally
a general abstract reasoning framework to express our model of cognition. Then, in
Chapters 5 and 6, this abstract framework of reasoning will be specified to account
for some aspects of reasoning involving mental concepts and temporal aspects.

In Section 4.1 of this Chapter, we root our framework on defeasible reasoning.
Then, we present the notion of argument (Section 4.2), defeat between arguments
(Section 4.3), and finally justified arguments (Section 4.4).

4.1 Defeasible reasoning

A reasoning is defeasible when certain conclusions are abandoned in light of further
information whereas a reasoning is deductive when validity of conclusions are guar-
anteed even in light of further information. Though defeasible reasoning belongs to
the domain of common sense, it has been studied intensively in philosophy and com-
puter science, especially in artificial intelligence.

In antiquity, Aristotle, in his work entitled the Topics, emphasized deductive rea-
soning, especially in the form of the syllogism: If we have the premises that all
men are mortal and that Socrates is a man, then we can conclude that Socrates is
mortal. Having these premises, nothing can be added to our knowledge will change
that conclusion. However, Aristotle also pointed out the important place of dialectic
reasoning using rational inference based on probable premises. For Plato, dialectic
becomes the process to provide the good.

After antiquity, and in the western world, deductive reasoning seemed to be the
major object of concerns, and it was only in the mid twentieth century that a new spe-
cial attention of defeasible reasoning was given. In this regard, R. Chisholm is often
cited for his thesis that sensory appearances provide righteous but defeasible reasons
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for believing in some facts about the physical world [54, 55]. If something looks red,
then we can presume that it is red. But if the light is red then this presumption can
be defeated.

Another often cited figure is the philopher J. Pollock who proposed a formal the-
ory to account for defeasible reasoning in terms of defeasible arguments which can
be defeated by other (defeasible) arguments [163, 164, 165, 166, 167]. In the view
of J. Pollock, the motivation for defeasible reasoning is strongly related to the limi-
tations of agent capacities. Indeed, a bounded agent must be able to adopt beliefs on
the basis of incomplete information whereas an omniscient agent would not require
necessarily defeasible reasoning because no further information can be provided to
its knowledge. However, even if the agent is omniscient, it may not fast enough to
process all the information: an agent with defeasible reasoning has the advantage that
it can provide quickly provisional conclusions while continuing to inquiry in order
to adjust these conclusions. This may be also a disadvantage because a provisional
conclusions may be merely incorrect or uncertain, this issues when an agent should
stop inquiring by balancing the costs and benefits of the inquiry.

In the legal domain, many doctrinal studies observed the notion of defeasible
reasoning. In this regard, some quotations from famous philosophers can be found in
[191] by G. Sartor:

All law is universal, and there are some things about which it is not
possible to pronounce rightly in general terms; therefore in cases where it is
necessary to make a general pronouncement, but impossible to do so rightly,
the law takes account of the majority of cases, though not unaware that in
this way errors are made. And the law is none the less right; because the
error lies not in the law nor in the legislator, but in the nature of the case, for
the raw material of human behavior is essentially of this kind. So, when the
law states a general rule, and a case arises under this that is exceptional, then
it is right, where the legislator, owing to the generality of his language, has
erred in not covering that case, to correct the omission by a ruling such as
the legislator himself would have given if he had been present there, and as
he would have enacted if he had been aware of the circumstances. (Aristotle,
Nicomachean Ehics)

[It] is right and true for all to act according to reason: And from this
principle it follows as a proper conclusion, that goods entrusted to another
should be restored to their owner. Now this is true for the majority of cases:
But it may happen in a particular case that it would be injurious, and there-
fore unreasonable, to restore goods held in trust; for instance, if they are
claimed for the purpose of fighting against ones country. And this principle
will be found to fail the more, according as we descend further into detail,
e.g., if one were to say that goods held in trust should be restored with such
and such a guarantee, or in such and such a way; because the greater the
number of conditions added, the greater the number of ways in which the
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principle may fail, so that it be not right to restore or not to restore. (T.
Aquinas, Summa Theologiae)

In the first half of the twentieth century, defeasibility has been studied by D. Ross
who developed a theory of prima-facie obligations (see e.g. [182, 183]) in which the
balance of conflicting prima-facie obligations allows us to establish our real obliga-
tions. In [183], D. Ross writes:

Moral intuitions are not principles by the immediate application of
which our duty in particular circumstances can be deduced. They state [. . . ]
prima facie obligations. [. . . ] [We] are not obliged to do that which is only
prima facie obligatory. We are only bound to do that act whose prima facie
obligatoriness in those respects in which it is prima facie obligatory most
outweighs its prima facie disobligatoriness in those aspects in which it is
prima facie disobligatory.

Later, H. Hart [102] reintroduced the notion of defeasibility:

When the student has learnt that in English law there are positive con-
ditions required for the existence of a valid contract, [. . . ] he has still to
learn what can defeat a claim that there is a valid contract, even though all
these conditions are satisfied. The student has still to learn what can follow
on the word unless, which should accompany the statement of these condi-
tions. This characteristic of legal concepts is one for which no word exists
in ordinary English. [. . . ] The law has a word which with some hesitation I
borrow and extend: This is the word ‘defeasible,’ used of a legal interest in
property which is subject to termination of ‘defeat’ in a number of different
contingencies but remains intact if no such contingencies mature.

A. Peczenik investigates the idea of non-deductive ‘jumps’ in legal reasoning and
the opposition of prima-facie legal obligation and all-considered legal obligations
[159]. Those considerations involves a notion defeasibility. In [159], the need for
defeasibility is motivated by A. Peczenik in a J. Pollock’s flavour by arguing that:

No human being has the resources sufficient to formulate all-things-considered
statement sensu stricto.

More recently, H. Prakken and G. Sartor in [175] argue that defeasibility in the
law involves three different aspects, which they call inference-based defeasibil-
ity, process-based defeasibility, and theory-based defeasibility. Regarding inference-
based defeasibility and process-based defeasibility, H. Prakken and G. Sartor write:

Inference-based defeasibility covers the fact that legal conclusions, though
correctly supported by certain pieces of information, cannot be inferred
when the theory including those information is expanded with further pieces
of information (we use the term “theory” to mean in general any set of
premises intended to provide an account of a legal domain). This idea is also
frequently expressed by saying that common sense reasoning (as opposed to
logical deduction) is nonmonotonic: the conclusions of the reasoning pro-
cess do not grow inevitably as further input information is provided.
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In legal texts, inference-based defeasibility is allowed by many diverse expressions
such as “unless proved otherwise”, “unless otherwise agreed”, “except in those cases
. . .”, “subject to . . .”, etc. The distinction between inference-based defeasibility and
process-based defeasibility is explained in the following:

Theories of inference-based defeasibility (i.e., non-monotonic logics)
essentially take a static view on reasoning, since they just look at a given
body of information, and say which beliefs are warranted on the basis of
that information. Even the definition of non-monotonicity is stated in essen-
tially static terms: it just says that the beliefs warranted on the basis of an
information set S need not be included in the beliefs warranted on the ba-
sis of a larger information set S0. This definition abstracts from whether S
precedes S0 in the reasoning process or not; and if S did precede S0, it is
is silent on how the reasoning progressed from S to S0. Most importantly,
‘standard’ non-monotonic logics say nothing about in which circumstances
S can be taken as a basis for decision, and in which circumstances it is better
to search for more information. Process-based defeasibility addresses such
‘dynamic’ aspects of defeasible reasoning. As for legal reasoning, a crucial
observation here is that it often proceeds according to the rules of legal pro-
cedures.

Process-based defeasibility is well illustrated in dialectic debates of judicial proceed-
ings where each party tries to defeat the arguments of the other parties. Theory-based
defeasibility is explained in the following:

The third form of defeasibility [. . .] is theory-based defeasibility. This
results from the evaluation and the choice of theories which explain and
systematize the available input information: when a better theory becomes
available, inferior theories are to be abandoned.

On this aspect, L. McCarty in [137] observes:

A judge rendering a decision in a case is constructing a theory of that
case. It follows, then, that a lawyer’s job (in an appellate argument) is to
construct a theory of the case, too, and one that just happens to coincide
with his client’s interest. Since the opposing lawyer is also constructing a
theory of the case, which coincides with her client’s interest, the argument
boils down to this: which theory should the judge accept? There are several
constraints here, but they are weak ones. Legal theories should be consistent
with past cases, and they should give acceptable results on future cases. They
should not be too hard to understand, or too hard to administer, which means
that they should be free of major anomalies. One term that is sometimes used
to describe these requirements is “coherence”.

T. Bench-Capon and G. Sartor in [190, 26, 27, 28] provide a model of legal reasoning
accounting for theory construction and theory comparison: alternative legal theories
are built by parties in case, and the party that have built the ‘best’ theory wins. Com-
parison among theories are based on combination diverse aspects of coherence such
as:
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• factor-coverage, a better theory takes into account more features of precedents,
• value-coverage, a better theory takes into account a larger set of values,
• analogical connectivity, a better theory includes more analogical connections be-

tween its components,
• non-arbitrariness, a better theory contains fewer ad-hoc statements, required nei-

ther for explaining the past evidence nor for implementing the shared assessment
of value-priorities.

Finally, defeasibility that leads naturally to the comparison of the weight of sets of
reason is well illustrated by a traditional symbol of justice, namely the balance.

4.2 Arguments

In line with the foregoing, our model of reasoning must account for defeasible rea-
soning. The following provides informally such abstract model of defeasible reason-
ing in which the process of reasoning is captured by deriving defeasible conclusions
from premises.

A ratiocination proceeds through discrete reasoning steps by instancing some
reasoning schemata. A reasoning schema has the form as below:

A1,A2, . . . ,An

B1,B2, . . . ,Bn
(4.1)

It is read as A1, A2, . . . , An is a reason for B1, B2, . . ., Bn. The Ai’s are called the
preconditions of the schema while the Bi’s are its post-conditions. The set of precon-
ditions in a schema is termed its reason while the set of post-conditions is termed
its conclusion. The Ai’s and the Bi’s are statements symbolizing declarative sen-
tences. Statements can be conditional (i.e. statement of the form if . . . then . . . ) or
non-conditional. For our purposes, non-conditional statements shall be expressed by
literals. A literal is an atomic formula (or an atom) or the negation of an atomic
formula. Atomic formulas are expressed in the language of predicate logic (see Sec-
tion 7.2.2). For example, the statement “Mario is married” shall be formalized as
the positive literal married(mario), and the “Mario is not married” as the negative
literal ¬married(mario) where the symbol ¬ represents the negation. Conditional
statements are expressed by rules relating statements to another statement and have
the following form:

α1, α2, . . . αn→ β . (4.2)

The αi’ s constitute the antecedents of the rule while the β is its consequent and they
related are by the symbol→. For example, the rule expressing that unmarried males
are bachelors can be formulated as follows:

male(x),¬married(x)→ bachelor(x). (4.3)

A very useful reasoning schema is detachment with which from the preconditions
α1,α2, . . . ,αn and the rule (α1, α2, . . . αn→ β ), we conclude β :
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α1, α2, . . . , αn,
α1, α2, . . . , αn→ β

β

(4.4)

For example, from the fact that Mario is a male and unmarried, and the rule express-
ing that unmarried males are bachelors, then we can derive that Mario is a bachelor:

male(mario), ¬married(mario),
male(mario), ¬married(mario)→ bachelor(mario)

bachelor(mario)

(4.5)

Conclusions of instantiated schemata may be used as premises for other schemata.
Doing so, instantiated schemata are ‘chained’, and such chains are called arguments.
We represent graphically an argument as an inference tree in which each vertice
(or node) is labeled by a rule or a literal, and each compound arrow linking nodes
corresponds to the application of a reasoning schema. The root is the conclusion and
leafs are facts.

For example, if we consider the fact that Mario is a man and the rule that a man
is a male, then we can conclude that Mario is a male. Given the fact that Mario is
unmarried, and from the previous rule expressing that unmarried males are bachelors,
then we can conclude that Mario is a bachelor. The tree associated to this argument
is given in Figure 4.1.

bachelor(mario)

male(x),¬married(x)→ bachelor(x) ¬ married(mario) male(mario)

man(x)→ male(x) man(mario)

Fig. 4.1. An argument represented graphically as a tree.

We distinguish strict and defeasible rules. Strict rules use the symbol → while
defeasible rules use the symbol⇒. Hence a strict rule has the form:

α1, α2, . . . , αn→ β , (4.6)

while a defeasible rule a has the form below:

α1, α2, . . . , αn⇒ β . (4.7)

For example, the policy rules expressing that students have discount is expressed as:



4.2 Arguments 43

student(x)⇒¬discount(x). (4.8)

Both strict and defeasible rules can be used in the detachment schema. A schema
whose preconditions contain a strict rule is strict whereas a schema whose precondi-
tions contain a defeasible rule is defeasible. The distinction holds in that a conclusion
of a strict schema cannot be rejected on light of further information whereas a con-
clusion of a defeasible schema can be rejected on light of further information. For
example, from the fact that Mario is student and the policy that students have dis-
count we can conclude defeasibly that Mario has a discount. This is expressed by the
following instantiated detachment schema:

student(mario),
student(x)⇒ discount(x)

discount(mario)

(4.9)

Strict or defeasible conclusions of instantiated schema may be used as premises for
other schemata to build chains of schemata, i.e. arguments. An argument that does
not use a defeasible detachment schema is strict while an argument that use a defeasi-
ble detachment schema is defeasible. For example, the argument given in Figure 4.1
is strict while the argument in (4.9) is defeasible. Some authors refer to provisional
conclusions of defeasible schemata as prima facie conclusions to suggest that such
conclusions are derived on the basis of information available to the agents. Some
other authors as G. Sartor and A. Peczenik prefer the terminology of pro-tanto con-
clusions to suggest conclusions that can be withdraw on light of further information.

A reasoning based on strict schemata is a deductive reasoning while a reasoning
based on strict and defeasible schemata is a defeasible reasoning.

Before moving to the next Section, we may argue that a negative literal ¬γ may
result from the non-derivation of the corresponding positive literal γ from a set of
premises. The non-derivation of a certain literal can be related to an argumentative
adaptation of the closed world assumption according which something is false if it
is not currently proved to be true. Given a set of premises A, this can be captured by
the following:

A 6` γ

A ` ¬γ

(4.10)

Notice this involves that from a finite set of premises, we may derive an infinity
of negative literals, and this is problematic if we want to build a reasoner which
reasons forward. Importantly, the negation ¬ in the schema given above is not a
‘sound’ or ‘strong’ negation as we intended negation initially but rather a ‘weak’
negation which, for example, in logic programming is traditionally called negation
as failure. If we denote weak negation by weak¬, then the schema (4.10) should be
more adequately replaced by the following:
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A 6` γ

A `weak ¬γ

(4.11)

The relation between strong negation ¬ and weak negation weak¬ goes beyond our
scope, and we leave it as a matter of future research.

4.3 Defeaters and defeated

The previous Section isolated the concept of argument supporting some (defeasible)
conclusions. In some circumstances, the detachment of the consequent of rule(s) may
be defeated by other rule(s). In this Section, we present the notion of defeaters and
the treatment of defeat.

4.3.1 Defeaters

As proposed by J. Pollock [166], and in most accounts of defeasible reasoning, two
types of defeaters are distinguished: (i) rebutting defeaters which provide a reason
for contradicting a conclusion, and (ii) undercutting defeaters which undermine the
support of a conclusion without contradicting it.

In our setting, we have we are limited to account for undercutting and rebutting
defeaters as the defeat of the detachment of the consequent (of a defeasible rule) by
the detachment of a conflicting consequent. In this view, as proposed by [149], “the
conflicting rule my either rebut the first by supporting a conflicting consequent, or it
may be undercut the first rule by identifying a situation in which the rule does not
apply.” Before moving to the account of undercutting and rebutting defeaters in our
setting, it is important to make some remarks on conflicts detection.

Conflicting rules are rules whose consequents conflict, and conflicting conse-
quents are defined as conflicting literals. In the following, the set of literals conflict-
ing with a literal γ is denoted Conflict(γ) or more shortly∼ γ . If γ is a positive literal q
then∼ γ is a negative literal ¬q, and if γ is a negative literal ¬q then∼ γ is a positive
literal q. Among the possibility of conflicting literals, it is natural and standard to
assume that a literal γ and its complement ∼γ conflict. Hence in the following we
assume that Conflict(γ) = ¬γ and Conflict(¬γ) = γ . For example, the literals discount
and ¬discount are complement of each other, hence they conflict and we can write
Conflict(discount) = ¬discount and Conflict(¬discount) = discount. We assume that
if γ1 conflicts with γ2 then γ2 conflicts with γ1.

For example, consider that some inquiry indicates the policy that persons above
25 years are not entitled to discount. This policy is expressed by the following de-
feasible rule:

over 25(x)⇒¬discount(x). (4.12)

Consider that Mario is over 25 years hold, then we can draw the following argument
concluding defeasibly that Mario is not entitled of any discount.
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over 25(mario),
over 25(x)⇒¬discount(x)

¬discount(mario)

(4.13)

Since Mario is a student and is above 25, then Mario is pushed toward the incompat-
ible conclusions of being entitled of a discount and not being entitled of a discount.
Indeed, according the argument in (4.9), Mario as a student has no discount, while
according the argument in (4.13) Mario has no discount since is above 25. On the as-
sumption that the argument in (4.9) is a stronger reason than the argument in (4.13),
then the former rebuts the latter. We shall return latter to the notion of strength of
arguments.

At this stage, since we have only strict and defeasible rules in our hands, we
are limited to account for rebutting defeaters without having the possibility to cap-
ture undercutting defeaters. In order to capture undercutting defeaters, following D.
Nute [149], we introduce another type of rule called defeater. A defeater rule has the
following form:

α1, α2, . . . αn ; β . (4.14)

Defeater rules can be used in detachment schemata but are not intented to support the
consequent: their purpose is just to undercut other rules. For example, if we replace
the defeasible rule in (4.13), representing the policy that persons above 25 years are
not entitled to discount, by a defeater rule:

over 25(x) ; ¬discount(x), (4.15)

and given that Mario is over 25 years hold, then we can draw the following argument:

over 25(mario),
over 25(x) ; ¬discount(x)

¬discount(mario)

(4.16)

If the argument in (4.16) is assumed to be stronger than the argument in (4.9),
then the former undercut the latter. As the argument in (4.16) is a detachment
of the consequent of a defeater rule, it cannot be used to support the conclusion
¬discount(mario).

In this setting, the distinction between rebutting and undercutting is captured
thanks to the introduction of defeater rules along with strict and defeasible rules.
Strict rules and defeasible rule are used as rebutting defeaters, while defeater rules
are used as undercutting defeaters. To detect when an argument defeats another one,
the notion of conflict is central. Accordingly, we say that an argument S conflicts with
an argument R if and only if the arguments S and R contain two conclusions γ1 and
γ2 such that γ1 conflicts with γ2 and vice versa. For example, the argument in (4.9)
conflicts with the argument in (4.13) and vice versa.
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4.3.2 Conflicts handling

Conflicts between arguments can be distinguished on the basis of the strict or defea-
sible nature of conclusions. Accordingly, conflicts may exist (i) between strict and
defeasible conclusions, (ii) between defeasible conclusions, and (iii) between strict
conclusions.

All models of defeasible reasoning handle the first type of conflicts by consid-
ering that strict conclusions override defeasible conclusions. In other words, given a
strict and defeasible conclusion which are conflicting, the strict conclusion prevails
while the defeasible conclusion is rejected. Accordingly, strict arguments cannot be
defeated.

The second type of conflict between defeasible conclusions is resolved on the
basis of a tier information, namely preferences. Many criteria are commonly used to
settle preference between conclusions. For example, D. Poole [168, 169] proposed
that if two arguments support conflicting conclusions, then the argument, which is
based upon the most specific set of premises, defeats the other argument. We abstract
to these criteria, and root preferences by an explicit strength order between rules. To
do so, rules are identified by rule labels and a strength order is stabilized by the
relation � between two rules labels in order to indicate the relative strength of each
rule. So, the formula r2 � r1 indicates that the rule labeled r2 is stronger than the rule
labeled by r1. In this abstract account of preference, provided two applicable rules
and a strength order between these two rules, one is allowed to conclude only for the
consequent of the stronger rule. For example, consider the two following arguments:

student(mario),
r1: student(x)⇒ discount(x)

discount(mario)

(4.17)

over 25(mario),
r2: over 25(x)⇒¬discount(x)

¬discount(mario)

(4.18)

These arguments support two conflicting defeasible conclusions, namely
¬discount(mario) and discount(mario). If we assume that the rule r2 is stronger
than rule r1, i.e. r2 � r1, then we discard the conclusion discount(mario) to adopt
the conclusion ¬discount(mario).

Accordingly, we say that an argument W defeats a defeasible argument S if
and only if W and S contain two conclusions γ2 consequent of a rule r2 and γ1
consequent of a rule r1 respectively, such that γ1 conflicts with γ2 and the rule
r2 is stronger than the rule r1 (i.e. r2 � r1). For example, the argument in (4.13)
defeats the argument in (4.9) since the conclusion discount(mario) conflicts with
the conclusion ¬discount(mario) and r2 is stronger than r1.
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Conflicts between strict conclusions indicate an inconsistency in the theory. Since
strict conclusions are not defeasible by nature, no preferences can applied to solve
the conflict and the conflicting strict conclusions are derived.

4.4 Justified arguments

Comparing arguments by pairs is not enough since a defeating argument can in turn
be defeated by other arguments. Indeed, an argument defeating a first argument can
at its turn be defeated by a third argument, and in this case, the first argument is
reinstated. We intend to determine justified arguments.

For example, given the fact that Mario is a member, and a provision indicating
that members are entitled of a discount, we can conclude defeasibly that Mario is
entitled of a discount:

member(mario),
r3: member(x)⇒ discount(x)

discount(mario)

(4.19)

Suppose that the rule r3 is stronger than the rule r2 (i.e. r3 � r2), then the argument in
(4.19) defeats the argument (4.13). So, we have a first argument in (4.9) defeated by
a second argument (4.13) which is at its turn defeated by a third argument (4.19): the
first argument in (4.9) is reinstated and thus we can conclude that Mario is entitled
of a discount.

Of course defeating arguments can be defeated by other arguments which can
be at their turn defeated, and this pseudo-cycle can be repeated as much as needed.
When the set of arguments defeating each others is unraveled, we end up with
justified arguments. As a rule of thumb, an argument is justified if it is an undefeated
argument, but the general criteria to determine them can turn out to be rather tricky
in some cases. As a matter of fact, the set of justified arguments can be determined
in many different ways (see Section 7.4.4) and no agreement has been reached so
far how to compile such set.

As an illustration of the difficulty in deriving the right set of justified arguments,
consider that no preferences exist between two conflicting defeasible arguments. In
this case, conflicts may be resolved in two modes, namely the skeptical and the
credulous one. These two modes yield different results as to what defeasible con-
clusions are warranted. Roughly, in the skeptical mode no conflicting conclusion is
derived whereas in the credulous mode the maximum of possible defeasible conclu-
sions (subject to a consistency requirement) are derived.

A well-known example from the literature (the so-called ’Nixon diamond’)
makes the distinction clear. Suppose that Nixon is both a Quaker and a Republi-
can and that Quakers are pacifists whereas Republicans are not. Accordingly, we can
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build the arguments in (4.20) and (4.21). Figure 4.2 illustrates graphically the Nixon
diamond.

quaker(nixon),
quaker(x)⇒ paci f ist(x)

paci f ist(nixon)

(4.20)

republican(nixon),
republican(x)⇒¬paci f ist(x)

¬paci f ist(nixon)

(4.21)

Pacifist

Quaker

Nixon

Republican

Fig. 4.2. The Nixon diamond.

In the credulous mode, we have no reason to prefer either conclusion to the other
one, but will nevertheless commit to a conclusion, namely, either Nixon is a pacifist
or Nixon is not a pacifist. In the skeptical mode instead, the reasoning agent rec-
ognizes that there is an incompatibility inferences and refrains from drawing either
one.

Whether reasoning should be credulous or skeptical is largely debated, and no
agreements has been reached so far: the commitment for one or the other is some-
times considered as a matter of taste. On this aspect, J. Pollock in [167] suggests to
make a distinction on the basis of epistemic and practical reasoning:

[. . .] the controversy over skeptical and credulous reasoning stems from a
confusion of epistemic reasoning with practical reasoning. In practical rea-
soning, if one has no basis for choosing between two alternative plans, one
should choose at random. The classical illustration is the medieval tale of
Buridan’s ass who starved to death standing midway between two equally
succulent bales of hay because he could not decide from which to eat. [. . .] If
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the evidence favoring two alternative hypothesis is equally good, the agent
should record that fact and withhold belief. Subsequent practical reasoning
can then decide what to do given that epistemic conclusion. In some cases it
may be reasonable to choose one of the hypotheses at random and act as if it
is known to be true, and in other cases more caution will be prescribed. [. . .]
Epistemic reasoning should acknowledge ignorance when it is encountered
rather than drawing conclusions at random.

Such view is related to the observation that in some cases, the agent’s epistemic
ignorance makes the expected values of the different plans equal, and either plan is
preferable to no plan at all. In some other cases, instead, the agent ignorance makes
the expected value of doing nothing higher than the expected value of either plan. To
sum up, J. Pollock in [167] argues:

[. . .] a rational agent should acknowledge its ignorance and take that into
account in computing the expected value of plans.

For example, in a medical diagnosis scenario, on the evidence supporting two
diseases, it could be disastrous to treat the patient for one disease rather than the
other. In our setting, we shall commit to skeptical reasoning, leaving the integration
of credulous reasoning for future investigations.

As another complication, consider the case in which for any argument in support
of a defeasible conclusion γ there is also an equally good argument against it.

p1,
r1: p1⇒ q

q

(4.22)

p2,
r2: p2⇒ q

q

(4.23)

p3,
r3: p3⇒¬q

¬q

(4.24)

p4,
r4: p4⇒¬q

¬q

(4.25)

Suppose that r1 � r3 and r2 � r4. On the one hand, for any argument supporting the
defeasible conclusion q, there is an argument of equal strength supporting ¬q. In this
view, we are tempted to admit that the conclusion q is not justified. On the other
hand, for any argument supporting ¬q, there is a stronger argument supporting q,
and in this view, we are tempted to admit that the conclusion q is justified.

If we assume this last view, then we assume so-called team defeat. So far, there
is no collective agreement on whether team defeat should be assumed in argumenta-
tion: in the formal part of this dissertation, the formalization in defeasible logic will
account for both views in the sense that defeasible logic can be easily tuned to cater
or not for team defeat, leaving the ultimate choice to the users.
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Notice that team defeat should not be confused with J. Pollocks collective defeat
[166], in which, given a set of arguments, any argument of the set is defeated by
another argument, and no argument of the set is defeated by an undefeated argument
outside the set.

A final remark concerns competing defeasible arguments in which a defeasible
part is in upstream with respect to a strict one. For example, consider the following
rules [51]:

wr⇒ m,
m→ hw,
go⇒ b,
b→¬hw,

(4.26)

where wr stands for “John wears something that looks like a wedding ring”, m for
“John is married”, hw for “John has a wife”, go for “John often goes out until late
with his friends” and b for “John is a bachelor”. Given the facts wr and go, we can
build an argument supporting hw and another argument supporting ¬hw: we have a
conflict to solve and there is no strength order among rules.

Since the incompatible conclusions hw and ¬hw are supported by defeasible ar-
guments, we refute hw and ¬hw. Moreover, though m and b are intuitively incom-
patible, they do not formally conflict and thus we can conclude m and b, that is, an
incoherency. On this basis, we can argue that we derive an incoherency because the
theory itself is not coherent. To recover coherency, we can change the initial theory
by specifying explicitly that m and b conflicts (m ∈ Conflict(b)) or by adding the rule
indicating that bachelors are not married: b→¬m.

Another possibility to recover coherency lies in the assumption that incompati-
bility of some defeasible statements supported by strict rules implies the incompati-
bility of some defeasible statements supporting the formers. For example, since the
incompatible conclusions hw and ¬hw are supported by two strict rules, we may con-
sider that the conclusions b and m are also indirectly incompatible. In this view and
in the setting of ambiguity blocking, we refute the conclusions hw and ¬hw as the
conclusions b and m. We shall call such mode of resolving conflicts ‘coherency re-
covering’ because starting from a incoherent theory, we recover coherent results. To
do so, a simple solution consists in considering partial contraposition of strict rules
[51]. In the example, by considering the contraposition ¬hw→¬m, we can build an
argument attacking m and thus recover coherency.

For our purposes, we shall assume no mechanism to recover coherency. In par-
ticular, we shall not use contraposition, leaving it for future investigations. Hence,
in our setting, the consequent of a conditional can be derived if its antecedent holds,
but the negation of its antecedent cannot be derived if the negation of its consequent
holds.
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Cognitive model

The Chapter 4 set up a defeasible reasoning framework. In this Chapter, this frame-
work is extended progressively to account for some cognitive aspects of agents. As
autonomous agents may follow or violate norms, this cognitive account allows us to
model normative bindingness.

A cognition of agent is traditionally analyzed by means of two types of cogni-
tion: epistemic cognition, which concerns what to believe and practical cognition,
which concerns what to do. The distinction between epistemic and practical cogni-
tion is disputable since both are usually interdependent: epistemic cognition provides
some beliefs which are required by practical reasoning, and practical reasoning is
necessary to guide inquiries. We keep here the distinction. Both types of cognition
require ratiocinative processes and non-ratiocinative processes (e.g. perception), but
in the remainder, we shall focus only on the ratiocinative processes, and leave non-
ratiocinative processes for possible future investigations.

In Sections 5.1, 5.2 and 5.3, we account for some aspects of epistemic, practical
and normative cognitions respectively. Reasoning schemata for these three types cog-
nition are then provided into Section 5.5. Finally, in Section 5.4, we address conflicts
among conclusions which allow us a cognitive account of normative bindingness.

5.1 Epistemic cognition

Epistemic cognition allows an agent to represent its environment and reason on it. G.
Sartor writes in [191]:

An agent endowed with the faculty of epistemic cognition processes external
inputs and obtain epistemic states. Then the agent reasons, producing new
mental states on the basis of the epistemic states the agent already has. Epis-
temic reasoning is indeed the process through with one builds new epistemic
states moving from the epistemic states one already possesses.

In our setting, the term ‘epistemic’ may involve some confusion because it is usually
referred to the notion of knowledge whereas we are interested by (dis)beliefs and
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(in)existences of states of affairs. The distinction between the notions of knowledge
and belief has a long philosophical tradition since antiquity. In epistemology, the
dedicated branch of philosophy concerned with knowledge and beliefs, knowledge
is traditionally defined as justified true belief. Here, we shall not enter in this still
on-going debate among philosophers, and do not address the distinction between the
two notions.

5.1.1 (Dis)beliefs and (in)existences

An agent ag endowed with epistemic cognition processes external inputs to form
internal states to represent and reason on its environment. Such internal states are
called epistemic states and consists of sets of beliefs. In the following, we interpret
beliefs of the type “an agent ag believes in γ” as “It holds, from the viewpoint of an
agent ag, that γ”, and we shall formalize it as:

Holdagγ. (5.1)

For example, the statements “It holds, from the viewpoint of Mario, that he is stu-
dent” and “It holds, from the viewpoint of Guido, that Mario is not a student” are
written as:

Holdmariostudent(mario), (5.2)

Holdguido¬student(mario). (5.3)

In the remainder, beliefs of the type “an agent ag believes in γ” is interpreted as ‘It
holds, from the viewpoint of an agent ag, that γ’, but the inverse is not true as we
shall see in the temporal setting of the next Chapter. However, in order to ease the
discussion, both forms shall be referred to as beliefs.

A disbelief as the refusal to believe something is captured by the negation of
a belief. For example, that “Mario disbelieves (does not believe) that he is not a
student” and “Guido disbelieves (does not believe) to be a student” can be written
as:

¬Holdmario¬student(mario), (5.4)

¬Holdguidostudent(guido). (5.5)

The notation Holdagγ indicates that γ holds from the viewpoint of agent ag, accord-
ingly γ holds subjectively. To indicate that γ holds objectively irrespectively to any
agent, we use the notation Holdobjγ . For instance, the statement “It holds objectively
that Mario is Italian” is formulated as:

Holdobjitalian(mario). (5.6)

Formulas of the form Holdobjγ are pieces of information holding objectively which
may not be accessible by any agent while subjectives (dis)believes are pieces of
information holding subjectively by an agent who may have an ‘access’ to it for
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example by introspection as we shall see soon. Formulas of the form Holdobjγ refer
to objective existence, whereas formulas of the form Holdagγ (with ag different to
obj) are called beliefs.

Notice that we assume that a plain literal denotes the objective existence of the
state of affair expressed by the plain literal. For example, the formula italian(mario)
is also another representation of the statement “Objectively, Mario is Italian”. How-
ever, we believe that the use of the notation Holdobj helps to remove ambiguities
on the epistemic status of plain literals, and, as we will see in the next Chapter, it
prepares an adequate notation for our temporal setting.

A combination of (dis)beliefs and (in)existences of state of affairs is represented
by a sequence of the operator Holdag. For example, the statement “Guido believes
that Mario disbelieves that Guido is a student” is written as:

Holdguido¬Holdmariostudent(guido). (5.7)

In the remainder, a sequence of epistemic operators shall be noted (Xi)1..n where Xi
stands for Holdag or ¬Holdag. Accordingly, an epistemic statement shall have the
form (Xi)1..nγ where γ is a literal.

In the previous Chapter, rules were introduced to relate some literals to another
literal. With the introduction of (dis)beliefs, rules can relate (dis)beliefs (¬)Holdagα

and objective (in)existence of state of affairs (¬)Holdobjα . Accordingly, a rule shall
have the following form:

r: α1, . . . ,αn ↪→ β . (5.8)

where α1, . . . ,αn,β are epistemic statements, and ↪→ stands for either→,⇒ or ;.
For example, the conditional statement “If Mario is Italian and Mario believes that
the wine x is Italian, then Mario believes that the wine x is good” can be formulated
as:

r2: Holdobjitalian(mario),Holdmarioitalian wine(x)⇒ Holdmariogood(x). (5.9)

Rules too can hold objectively or with respect to an agent beliefs. For example, the
statement “Mario believes that if one is 28 years old, then one is above 25 years old”
can be expressed by:

Holdmario(r1: Holdaghas 28(x)→ Holdagover 25(x)). (5.10)

Next, we cater for the detachment of the consequent of such epistemic rules.

5.1.2 Detachment schema in epistemic reasoning

The process through which an agent derives new beliefs from other beliefs is called
epistemic reasoning. An important schema in epistemic cognition is epistemic de-
tachment:
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(Xi)1..nα1,(Xi)1..n . . . ,(Xi)1..nαn,
(Xi)1..n(r: α1, . . . ,αn ↪→ β )

(Xi)1..nβ

(5.11)

where ↪→ is either→,⇒ or ;, and (Xi)1..n is a (non-empty) sequence of epistemic
operators. In line with the previous Chapter 4, we can have strict epistemic detach-
ments and defeasible ones. A strict epistemic detachment schema has a strict rule in
its pre-conditions:

(Xi)1..nα1, . . . ,(Xi)1..nαn,
(Xi)1..n(r: α1, . . . ,αn→ β )

(Xi)1..nβ

(5.12)

For example, given the definite conditional “It holds objectively that if Mario believes
that one is 28 years old, then Mario believes that one is above 25 years old” and the
statement “Objectively, Mario believes that he is 28 years old”, we can form the
following instance of the epistemic detachment:

HoldobjHoldmariohas 28(mario),
Holdobj(r1: Holdmariohas 28(x)→ Holdmarioover 25(x))

HoldobjHoldmarioover 25(mario)

(5.13)

A defeasible epistemic detachment schema has a defeasible rule in its pre-conditions:

(Xi)1..nα1, . . . ,(Xi)1..nαn,
(Xi)1..n(r: α1, . . . ,αn⇒ β )

(Xi)1..nβ

(5.14)

For example, given the statements “If Mario is Italian and Mario believes that the
wine x is Italian, then Mario believes that the wine x is good” and “Mario is Italian”
and “Mario believes that Chianti is an Italian wine”, then we conclude defeasibly
“Mario believes that Chianti is a good wine”.

Holdobjitalian(mario),
Holdmarioitalian wine(chianti),
r1: Holdobjitalian(mario),Holdmarioitalian wine(x)⇒ Holdmariogood(x)

Holdmariogood(chianti)

(5.15)

Next, we investigate the phenomena of introspection and its dual, reflexion.

5.1.3 Introspection and reflexion

If an agent can observe and sense its environment, he may also be able to do so with
its mental states. Such agents are called reflexive agents whereas agents that cannot
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sense or observe their mental states are said planar. A reflexive agent may hence
form some beliefs about his beliefs and disbeliefs. The formation of beliefs about
beliefs is captured by the schema of positive introspection:

Holdagγ

HoldagHoldagγ

(5.16)

while the formation of beliefs about disbeliefs is captured by the schema of negative
introspection:

¬Holdagγ

Holdag¬Holdagγ

(5.17)

For example, given “Mario believes to be a student”, we can derive “Mario believes
that Mario believes to be a student”:

Holdmariostudent(mario)

HoldmarioHoldmariostudent(mario)
(5.18)

Believed rules also can be object of introspection. For example, given that Mario be-
lieves that students are entitled to discount, then we can conclude that Mario believes
that Mario believes that students are entitled to discount:

Holdmario(r: student(x)⇒ discount(x))

HoldmarioHoldmario(r: student(x)⇒ discount(x))
(5.19)

The inverse of introspection, called here reflexion, is captured by the following
schemata:

HoldagHoldagγ

Holdagγ

(5.20)

Holdag¬Holdagγ

¬Holdagγ

(5.21)

For example, if Mario believes that Mario believes to be a student then Mario believes
to be a student:

HoldmarioHoldmariostudent(mario)

Holdmariostudent(mario)
(5.22)

In the foregoing, both phenomena of introspection and reflexion are captured at
the level of reasoning schemata. However, it is arguable that both phenomena are
defeasible with respect to the substantial contents of beliefs and some doxastic pref-
erences. Since preferences stand between rules, both phenomena of introspection and
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reflexion are more natural expressed at the rule level. For this reason, the schemata
of positive introspection (5.16) and negative introspection (5.17) shall be replaced by
the following defeasible schema rules:

rHoldagγ⇒HoldagHoldagγ : Holdagγ ⇒ HoldagHoldagγ, (5.23)

r¬Holdagγ⇒Holdag¬Holdagγ : ¬Holdagγ ⇒ Holdag¬Holdagγ. (5.24)

Notice that the schema rules are labeled by their own content to insure their unique
labeling, and so that a preference can be set among rule labels. For example, the
schema (5.18) shall be replaced by the following detachment schema:

Holdmariostudent(mario),
rHoldmariostudent(mario)⇒HoldmarioHoldmariostudent(mario):

Holdmariostudent(mario)⇒ HoldmarioHoldmariostudent(mario)

HoldmarioHoldmariostudent(mario)

(5.25)

Similarly, we replace the schemata (5.20) and (5.21) by the defeasible schema
rules:

rHoldagHoldagγ⇒Holdagγ : HoldagHoldagγ ⇒ Holdagγ, (5.26)

rHoldag¬Holdagγ⇒¬Holdagγ : Holdag¬Holdagγ ⇒¬Holdagγ. (5.27)

Beside introspection and reflexion, we assume that given any state of affairs, then
we can entail defeasibly that this state holds objectively. Accordingly, we have the
following rule:

rγ⇒Holdobjγ : γ ⇒ Holdobjγ, (5.28)

and the reverse:
rHoldobjγ⇒γ : Holdobjγ ⇒ γ. (5.29)

Finally, in epistemic setting, new conflicts may arise from the collisions of incom-
patible beliefs. For example, the conclusions “Mario believes that Chianti is a good
wine” and “Mario believes that Chianti is not a good wine” are incompatible. Thus,
a (dis)belief, which is supported by chaining some reasoning schemata (i.e. an argu-
ment), may not be endorsed by an agent because the argument supporting it may be
defeated by some other arguments. The discussion on conflicts between epistemic
statements is postponed to Section 5.5.

5.2 Practical cognition

Though epistemic cognition allows an agent to represent and reason on its environ-
ment, it does not provide any means to guide the behavior of the agent. To guide its
behavior, an agent requires the so-called practical cognition.
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An agent endowed with practical cognition forms internal states called conative
states composed of mental attitudes as desires, goals, intentions, etc. [191]. A ra-
tional agent directs its behavior to render its situation more likable. To do so, an
agent selects some goals and enters in a phase of planning by building and selecting
some plans to reach these goals. A plan is the endorsement of a set of actions to be
performed and shall then guide the agent’s conduct.

5.2.1 Desires

Desires (or goals) indicate the states of affairs which an agent aims to reach. In the
following, a desire is indicated by the operator Desag where ag is a variable denoting
the agent bearing the desire. Accordingly, the agent ag desires γ is formalized as
follows:

Desagγ, (5.30)

where γ is the desired state of affairs. For example, the statement “Guido desires to
be entitled of a discount” and “Mario desires to not be member” can be formalized
as:

Desguidodiscount(guido), (5.31)

Desmario¬member(mario). (5.32)

Notice that we do not permit the subscript of the operator Des with obj because we
do not have an (intuitive) interpretation of formulas as Desobjγ .

A desire can be negated, to indicate for example agents’ aversion. For instance,
the statement “Guido does not desire to not be entitled of a discount”, and “Mario
does not desires to be member” can be represented by:

¬Desguido¬discount(guido), (5.33)

¬Desmariomember(mario). (5.34)

As for epistemic reasoning in which we have rules relating literals and (dis)beliefs,
in pratical reasoning we can have rules relating epistemic statements and (negated)
desires. For example, given the statements “Mario believes that if Guido believes to
not have any discount, then Guido desires to get a discount” and “Mario believes that
Guido believes to not have a discount”, we can derive that “Mario believes that Guido
desires a discount”. This can be expressed by the following instantiated detachment
reasoning schema:

HoldmarioHoldguido¬discount(guido),
Holdmario(r: Holdguido¬discount(guido)⇒ Desguidodiscount(guido))

HoldmarioDesguidodiscount(guido)

(5.35)
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In Section 5.4.2, we will present the detachment reasoning schema for the general
case in practical reasoning.

As many desires can be (defeasibly) derived, bounded agents may be unable
to satisfy all the undefeated desires. Hence, an agent shall select some desires. This
selection process can be made via certain kinds of utilities associated with the desired
states. On this approach, a utility can be a numerical value representing how ‘good’
the desired state is: the higher the utility is, the better. The task of the agent, then,
is to bring about states that maximize utility. The main disadvantage is that it is
often difficult to derive an appropriate utility function. An alternative is to encode
the utility into the logic theory by specifying that in some conditions, some desires
discard some others.

5.2.2 Actions

Since norms and practical reasoning are about the behaviors of agents, the concept
of action is crucial for our purpose. A huge literature analyzing the concept of action
exists. It is common to root the concept of action in the distinction between the
static and dynamic aspects of a system. The static aspects are described by properties
while dynamic aspects are captured by occurrences. Further analysis of the class
occurrence in terms of subclasses is largely debated in the literature. As an example
of ontology, J. F. Allen in [5] proposes that the class occurrence is divided in two
subclasses, processes and events:

Processes refer to some activity not involving a culmination or anticipated
result, such as the process denoted by the sentence, “I am running”. Events
describe an activity that involves a product or outcome, such as the event
denoted by the sentence “I walked to the store”.

An action is eventually another subclass of the class occurrence involving an agent.
Actions can be processes (e.g. “I am running”) or events (e.g. “I walked to the store”).
In this view, an agent and an occurrence constitute the action of the agent causing the
occurrence. An action of which the occurrence is an event, is termed a performance,
while an action of which the occurrence is a process is an activity.

Such ontologies are undoubtedly invaluable but are not catered for here because
not essential for our purpose. Closer to our approach is the work of G. Sartor in [191]
who proposes two characterizations of actions:

• a behavioral characterization, describing the type of action, and
• a productive characterization, describing the state produced by the action.

For example, “Guido joined” is a behavioral characterization, while “Guido is mem-
ber” is a productive characterization. Consequently, two types of action can be con-
sidered:

• behavioral actions, which are described by the type of behavior, and
• productive actions, which are described by the type of produced state.



5.2 Practical cognition 59

These two types of action are represented by the two following action operators:

• Doag for behavioral actions, and
• Bringag for productive actions.

where ag indicates the acting agent. For example, the behavioral action “Guido
joined” and the productive action “Guido brings about his membership” can be ex-
pressed by:

Doguido join(guido), (5.36)

Bringguidomember(guido). (5.37)

Productive actions can be interpreted in terms of causality: that an agent ag
brings a state of affair means that ag causes this state of affair. As for desires,
notice that we do not permit the subscript of the operator Bring or Do with obj be-
cause we do not have an (intuitive) interpretation for formulas as Bringobjγ or Doobjγ .

Actions can be negated. On this aspect, the negation of an action and the omission
of the same action are distinguished:

• Bringag¬γ for the negation, and
• ¬Bringagγ for the omission.

For instance, the productive negated action “Mario brings about his non member-
ship” can be expressed by:

Bringmario¬member(mario), (5.38)

while the omission of the productive action “Mario does not bring that is member”
is expressed by:

¬Bringmariomember(mario). (5.39)

For combinatorial reason, the negation of a behavioral action and its omission are
considered.

• Doag¬γ for the negation, and
• ¬Doagγ for the omission.

A confusion may appear about a behavioral account of a negated action. For instance,
what is the negation of the action corresponding to the verb “to join”? If it is about
leaving then we deal with the ‘positive’ action of leaving, and this may be expressed
as follows:

Domarioleave(mario). (5.40)

However, the following notation which intends to be equivalent is somewhat suspect.

Domario¬ join(mario). (5.41)

More intuitive is the omission of a behavioral action. For example, the omission of
the behavioral action “Mario does not join” is expressed by:
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¬Domario join(mario). (5.42)

If it is acknowledged that a behavioral characterization for the negation of an action
may be awkward in some cases, then it is perhaps appropriate to notice one charac-
terization is often reducible to the other. As remarked by [191], productive actions
can be expressed using behavioral actions by observing that an agent ag who brings
it about that γ is equivalent to ag who does the action of bringing about that γ:

Bringagγ ≡ Doag(bring about γ). (5.43)

Inversely, a behavioral action can be expressed using productive actions by observing
that an agent ag who does γ is equivalent to ag who brings it about that ag does γ:

Doagγ ≡ Bringag(ag doesγ). (5.44)

On this setting, rules can be enriched with the concept of action. For example,
the conditional statement “If Guido believes to be not entitled of any discount, Guido
desires to be entitled of any discount, then Guido brings about being a member” can
be expressed by the following defeasible rule:

r: Holdguido¬discount(guido), Desguidomember(guido)
⇒ Bringguidomember(guido). (5.45)

By applying the detachment schema, and under the appropriate conditions, we
derive Bringguidomember(guido).

Modeling dynamics of a system via actions is confronted to at least three well-
known problems, namely the qualification problem, the frame problem and the ram-
ification problem. Each of these problems are briefly investigated below for our
framework.

The qualification problem arose with the difficulties in specifying all the con-
ditions which must be fulfilled to get an effective action. This problem was early a
central point of research in artificial intelligence, and, J. McCarty in [135] explains:

The ‘qualification problem’, immediately arose in representing general com-
mon sense knowledge. It seemed that in order to fully represent the condi-
tions for the successful performance of an action, an impractical and implau-
sible number of qualifications would have to be included in the sentences
expressing them. For example, the successful use of a boat to cross a river
requires, if the boat is a rowboat, that the oars and row locks be present
and unbroken, and that they fit each other. Many other qualifications can
be added, making the rules for using a rowboat almost impossible to apply,
and yet anyone will still be able to think of additional requirements not yet
stated.

The idea for overcoming the qualification problem is to assume the defeasible suc-
cessful performance of an action, and then to consider eventual reasons against its
success. If no reason against the defeasible success of an action can be advanced,
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then the effect of the action is derived. Accordingly, an important schema for actions
is about the defeasible success of an action: performing a productive action entails
the corresponding state of affair. This is expressed by the following schema:

Bringagγ

Holdobjγ

(5.46)

For example, if Guido performs the action of bringing his membership, then we
conclude defeasibly that it objectively holds that Guido is a member:

Bringguidomember(guido)

Holdobjmember(guido)
(5.47)

In the foregoing, in order to tackle the qualification problem, the defeasible success-
ful performance of actions is treated at the level of reasoning schemata. However, it
is arguable that both the successful performance of an action is defeasible with re-
spect to the substantial type of the action, and some strength order between its default
successfulness and its unsuccessfulness. Since preferences stand between rules, the
successful performance is more naturally expressed at the rule level. For this reason,
the schemata of defeasible successful performance (5.46) shall be replaced by the
following defeasible schema rule:

rBringagγ⇒Holdobjγ : Bringagγ ⇒ Holdobjγ. (5.48)

The schema rules are labeled by their own contents to ensure their unique labeling,
and so that a preference can be set among rule labels. For example, the schema in
(5.47) shall be replaced by the following rule:

rBringguidomember(guido)⇒Holdobjmember(guido):
Bringguidomember(guido)⇒ Holdobjmember(guido).

(5.49)

Given the above rule and the premise Bringguidomember(guido), we build the fol-
lowing detachment schema:

Bringguidomember(guido),
rBringguidomember(guido)⇒Holdobjmember(guido):

Bringguidomember(guido)⇒ Holdobjmember(guido)

Holdobjmember(guido)

(5.50)

The successful performance of the attempt Bringguidomember(guido) shall
then depend on the other applicable rules supporting the contrary state
Holdobj¬member(guido).

Notice that the schema rule in (5.48) assumes that performing a productive ac-
tion entails the objective existence of the corresponding state of affair (indicated by
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the operator Holdobj). Arguably, we could also assume that performing a productive
action involves the subjective belief of the corresponding state of affair (indicated by
the operator Holdag), in this case we would have:

rBringagγ⇒Holdagγ : Bringagγ ⇒ Holdagγ. (5.51)

However, it is also arguable that, if a productive action is performed, first, the corre-
sponding state of affair holds objectively, then the agent observes this state of affairs,
and eventually the agent believes in this state of affair. In this view, we would have
to discard the reasoning schema given above, and eventually, we can simulate the
perception of the state of affairs by some kinds of rules of the following form:

Holdobjγ,Doagobserve(γ)⇒ Holdagγ. (5.52)

As a matter of fact, it seems that in some circumstances, performing a productive
action involves the subjective belief of the corresponding state of affair (indicated
by the operator Holdag), whereas in other circumstances, performing a productive
action does not involve the subjective belief of the corresponding state of affair. In
other words, we retrieve basically the qualification problem. To overcome it, we shall
assume that agent believes by default and defeasibly in the successful performance
of her action, and then consider eventual reasons against her beliefs. On this basis,
we assume both the schema rules in (5.48) and in (5.51).

Beside the qualification problem, the frame problem [136] is the difficulty of for-
malizing all the things that remain unchanged when an action is performed whereas
the ramification problem is the difficulty of formalizing all the things that do change
as the result of an action. In our setting, the ramification problem is handled by spec-
ifying some rules aiming at relating the action (or the result of the action) to the
changing aspects of the system. Concerning the frame problem, as the issue is in fact
a temporal one, we shall discuss it in our temporal model in Section 6.

Orthogonally to the qualification, frame and ramification problem, it is some-
times assumed the principle according which, for both behavioral and productive
actions, doing separate actions entails doing their combination:

Bringagγ1 and Bringagγ2

Bringag(γ1 and γ2)
(5.53)

Doagγ1 and Doagγ2

Doag(γ1 and γ2)
(5.54)

Finally, in legal reasoning and common-sense reasoning, actions can have an inten-
tional character or not. If an action Bringagγ (or Doagγ) is performed by an agent ag
then it is sometimes inferred that the agent ag has the desire to bring about the state
γ:

Doagγ

Desagγ

(5.55)
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Bringagγ

Desagγ

(5.56)

Though the above inferences (5.53) - (5.56) could be added to the framework, we do
not account for such inferences in the remainder for the sake of simplicity.

5.2.3 Plans and intentions

When an agent has selected a desire, then it has to satisfy it. To satisfy this desire, it
enters in a phase of planning, to build plans.

A plan is the endorsement of a set of operations to be performed. These plans
shall then guide the latter conduct of the agent. Note that plans may not be reduced
to a mere linear sequences of operations and may have more complex structure. For
example, a plan may contain conditioned operations to specify the conditions on
which an operation shall be performed.

Planning is rooted into the general fact that, for bounded agents, deliberation
requires time: if our actions were influenced on the fly short deliberation then per-
formed actions would may not be optimal. Hence, bounded agents need ways to
influence action beyond the present.

Plans built by bounded agents cannot be specified in details once and for all.
Rather, planning agents tend to create, in a first phase, partial plans that may be fur-
ther refined with respect to the present circumstances of an agent. Such partial plans
are constituted of instrumental desires (see e.g. [167]) which are at the initiation of
further planning in a second phase. On this view, planning consists of means-end
reasoning which is aimed to build plan for how to satisfy (instrumental) desires, and
such planning is called teleological planning. It is common to consider another level
in planning, in which an agent choses when to perform actions adopted in teleologi-
cal planning. Planning for when to perform actions is scheduling. Since teleological
planning may be dependent of scheduling, then teleological planning and scheduling
are usually interdependent.

As many plan candidates can satisfy a desire, they have to be compared to make
a selection and adopt a candidate plan. A common view to compare candidates
plans is based on the expected utility of plans. The candidate plan having the highest
expected utility is then adopted by the agent. In a dynamic world, since plans have
to cater for naturally occurring events and actions of other agents, then it is perhaps
more relevant to consider strategies instead of plans, as suggested by game theory.

An intention is often interpreted as a partial plan that the agent has committed to
apply to satisfy a desire. In this view, a common account of intention is the so called
desire-belief model. In such model, an action is said intentional or performed with
a certain intention if this action is part of a plan that has been built on the basis of
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some beliefs to reach contents of goals. In the desire-belief model, intention can be
hence explained in terms of desires and beliefs.

For example, suppose that Guido intentionally join. This action is said intentional
because it is part of the plan built by Guido to get a discount. This plan has been built
by Guido because he desires some discounts, and his plan has been built on his belief
that joining will provide him some discounts.

This simple belief-desire approach has been criticized by M. Bratman (see e.g.
[42]) that argues that intentions should not be characterized by some reduction to
beliefs and desires, but instead, accounted for as distinct mental attitudes. His ar-
gumentation is based on his consideration that intentions are conduct-controlling
(instead of conduct-influencing as desires), proactive attitudes resisting reconsidera-
tion, and are subject to inertia. On this basis, M. Bratman considers that the simple
belief-desire model does not account for such forms of intentions, and proposes that:

Prior intentions and plans, then, provide a background framework
against which the weighing of desire-belief reasons for and against various
[deliberative] options takes place. This framework helps focus deliberation:
it helps determine which options are relevant and admissible.

Hence, instead of having a linear belief-desire model, we have to consider interac-
tions between deliberative processes and planning-scheduling processes.

It is not our intention here to present and formalize how planning can be per-
formed, and the reader is referred nevertheless for a philosophical discussion to M.
Bratman [42] and for more technical solutions to S. Russell and P. Norvig [185].

5.3 Normative cognition

In this Section, we shall focus on normative knowledge, how it can be captured,
and how an agent can reason on it. We shall first introduce the three usual building
concepts of normative knowledge, i.e. obligation, prohibitions and permissions.

5.3.1 Basic deontic concepts

An obligation indicates something that one has to do. In the following, an obligation
is indicated by the deontic operator Oblag where the subscript ag is a variable over
the subject of the obligation. Accordingly, the expression “It is obligatory for ag that
γ” is represented by the following formula:

Oblagγ .

For example, that “Mario is obliged to cooperate” can be formulated as:

Oblmariocooperate(mario).

An obligation can be negated. On this aspect, the negation of an obligation and the
obligation of the omission of something are distinguished:
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• ¬Oblagγ for the negation of obligation, and
• Oblag¬γ for the obligation to omit.

For instance, the negation obligation “Mario has no obligation to attend meetings”
can be expressed by:

¬Oblmarioattend meetings(mario),

while the obligation to omit to attend meeting may be formulated by:

Oblmario¬attend meetings(mario).

The obligation of omission is paralleled by the idea of a prohibition. Being for-
bidden or prohibited is the status of an action that should not be performed or omit-
ted. In natural language, prohibitions are expressed in various ways. For example we
may express the same idea by saying: “It is forbidden that Mario does not cooper-
ate,” “There is a prohibition that Mario does not cooperate,” etc. In the following, a
prohibition is indicated by the deontic operator Forbag. Accordingly, the expression
“it is forbidden for ag that γ” can be expressed by the following formula:

Forbagγ .

For instance, the expression “Mario is prohibited to attend meeting” can be formu-
lated as:

Forbmarioattend meetings(mario).

The third basic deontic concept, besides obligation and prohibition, is permis-
sion. In natural language, permissions are expressed in various ways. For example,
we may express the same idea by saying: “Mario is permitted to elect the president,”
“Mario is allowed to elect the president”, “Mario can elect the president”, etc. A per-
mission shall be indicated by the deontic operator Permag and a statement of the type
”it is permitted for ag that γ” shall be expressed by the following formula:

Permagγ.

For instance, the statement “Mario is permitted to elect the president” can be formu-
lated as:

Permmarioelect president(mario).

The last basic deontic concept is facultativeness which shall be indicated by the
deontic operator Facag. Accordingly, the expression “it is facultative for ag that γ”
can be expressed by the following formula:

Facagγ .

For example, the statement “it is facultative for Mario to be a president candidate”
can be expressed by:

Facmario president candidate(mario).
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More normative notions can be built by extending the basic deontic concepts as obli-
gations and permissions. For example, G. Sartor in [191, 192] proposes a formaliza-
tion of rights including obligative rights, permissive rights, ergo-omnes rights and
exclusionary rights. Other normative constructs include the notions of legal power
(which is distinct from the idea of permission in that legal power provides the abil-
ity to determine certain results through one action), enabling power, potestive rights,
declarative powers etc.

Though such legal notions are fundamental, we do not address them here, leaving
their integration in our framework for future investigations.

5.3.2 Normative conditionals

Following G. Sartor’s works [191, 192], a normative conditional expresses that un-
der certain conditions a certain normative conclusion holds. In this view, a normative
conditional indicates that the antecedent normatively determines the dependent real-
ization of the consequent, and can have the form:

If antecedents thenn consequent

where the supscript n expresses the idea of normative determination. An ontology
of different kinds of normative conditionals is beyond the scope of this work. We
assume that interesting norms for our purposes can be reducted to normative condi-
tionals, in the sense that they can express by varying the nature of the antecedents
and consequent. In our setting, a normative conditional is represented as a rule of the
following form:

r: α1, . . . ,αn ↪→ β (5.57)

where ↪→ stands for either →, ⇒ or ;. For example, a provision asserting that
members must cooperate can be formulated as a deontic conditional:

r: Holdobjmember(x)⇒ Oblxcooperate(x). (5.58)

Constitutive rules which express that a thing (state of affairs, event, et.) counts as
another thing in a certain context may be viewed as non-deontic conditionals. For
example, the constitutive rule, expressing that the action of rising one’s hand counts
as making a bid in the context of an auction room, can be formulated as:

r5.59: Holdobjis in auction room(x),Doxrise hand(x)⇒ Doxbid(x). (5.59)

As any rule, rules representing normative conditionals can be used in the detach-
ment schema (see Section 5.4.2).

5.3.3 Relations between deontic concepts

Relations between basic deontic concepts can be classified into relations equivalence,
compatibility or, at the opposite, incompatibility (or conflict). Each of the four deon-
tic operator X can appear in formulas such as Xγ , X∼γ , ¬Xγ or ¬X∼γ and instead
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of explicitly dealing with each of the possible binary relations between formulas,
we shall focus on some primitive relations with which the remaining ones can be
derived.

We begin with the deontic operator Oblag and the trivial observations on the
incompatibility between the obligation of γ (i.e. Oblagγ) and the obligation of ∼γ

(i.e. Oblag∼γ) and between the obligation of γ (i.e. Oblagγ) and the non obligation γ

(i.e. ¬Oblagγ). We formalize these incompabilities by writing:

Oblagγ ∈ Conflict(Oblag∼γ), (5.60)

Oblagγ ∈ Conflict(¬Oblagγ). (5.61)

As most of the literature, we assume that the obligation of γ is equivalent to the
prohibition to ¬γ . This is expressed by the following where the symbol ≡ represents
the relation of equivalence.

Oblagγ ≡ Forbag∼γ (5.62)

For instance, the statement “Mario must cooperate” is equivalent to “Mario is for-
bidden to not cooperate”:

Oblmariocooperate(mario)≡ Forbmario¬cooperate(mario). (5.63)

We integrate the equivalence in our framework by two strict rules:

rOblagγ→Forbag∼γ : Oblagγ → Forbag∼γ, (5.64)

rForbag∼γ→Oblagγ : Forbag∼γ → Oblagγ. (5.65)

A consequence of formulas (5.60) and (5.65) is the intuitive incompatibly of
the obligation of γ and the prohibition of γ . For example, the statements “Mario is
obliged to cooperate” and “Mario is prohibited to cooperate” are incompatible. We
express the conflict between prohibitions and obligations by writing:

Oblagγ ∈ Conflict(Forbagγ). (5.66)

We move to the relation between obligations and permissions. We assume that if it
is obligatory that γ then it is permitted that γ . This is expressed by the following
schema rule:

rOblagγ⇒Permagγ : Oblagγ ⇒ Permagγ. (5.67)

For example, that Mario is obligated to cooperate involves that he is permitted to
cooperate:

rOblmariocooperate(mario)⇒Permmariocooperate(mario):
Oblmariocooperate(mario)⇒ Permmariocooperate(mario). (5.68)
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Remark that we cannot derive the obligation of γ from the permission to γ . At this
stage, we allow us to move to the consideration that the prohibition of γ is equivalent
to the non permission of γ:

Forbagγ ≡ ¬Permagγ (5.69)

Since the obligation of γ (Oblagγ) is equivalent to the prohibition of ∼γ (i.e.
Forbag∼γ), and the prohibition to γ (i.e. Forbagγ) is equivalent to the non permission
of γ (i.e. ¬Permagγ), then we obtain by transitivity of the relation of equivalence,
that the obligation of γ (i.e. Oblagγ) is equivalent to the non permission of ∼γ (i.e.
¬Permag∼γ):

Oblagγ ≡ ¬Permag∼γ, (5.70)

or equivalently:
¬Oblagγ ≡ Permag∼γ. (5.71)

In other words, if no obligation holds, then we have the permission of the contrary.
In line with the treatment of equivalence between Oblagγ and Forbagγ as strict rules,
we integrate in our framework the above equivalences as strict rules. For example,
the equivalence is translated as the following schema rules:

rForbagγ→¬Permagγ : Forbagγ →¬Permagγ, (5.72)

r¬Permagγ→Forbagγ : ¬Permagγ → Forbagγ. (5.73)

In line with the literature, ‘it is facultative that γ’ is equivalent to say that both γ and
¬γ’s omission are permitted, and in vice versa. We have thus the following equiva-
lence:

Facagγ ≡ Permagγ and Permag∼γ. (5.74)

Since we do not authorize conjunctions in the consequent of rules, we translate the
equivalence given above by the three following strict rules:

rFacagγ→Permagγ : Facagγ → Permagγ, (5.75)

rFacagγ→Permag∼γ : Facagγ → Permag∼γ, (5.76)

rPermagγ,Permag∼γ→Facagγ : Permagγ, Permag∼γ → Facagγ. (5.77)

For instance, it is facultative for Mario to cooperate involves that Mario is permitted
to cooperate and that Mario is not permitted to not cooperate:

rFacmariocooperate(mario)→Permmariocooperate(mario):
Facmariocooperate(mario)→ Permmariocooperate(mario), (5.78)

rFacmariocooperate(mario)→Permmario¬cooperate(mario):
Facmariocooperate(mario)→ Permmario¬cooperate(mario). (5.79)

We resume graphically some of the relations between deontic operators given
above and derivable relations in Figure 5.1.
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Fig. 5.1. Some relations between deontic operators.
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5.3.4 Strong and weak permissions

In [208], p.86, G. von Wright discussed the distinction between weak permission
(denoted hereafter weakPerm) and strong permission (denoted Perm)1:

As new kinds of act originate, the authorities of norms may feel a need for
considering whether to order or to permit or to prohibit them to subjects. The
authority or law-giver may, for example, consider whether the use of alcohol
or tobacco should be permitted. In the case of every authority, personal or
impersonal, there will always be a great many acts about the normative status
of which he never cares.
It is therefore reasonable, given an authority of norms, to divide human acts
into two main groups, viz. acts which are and acts which are not (not yet)
subject to norm, some are permitted, some prohibited, some commanded.
Those acts which are not subject to norm are ipso facto not forbidden. If
an agent does such an act the law-giver cannot accuse him of trespassing
against the law. In that sense suh an act can be said to be ‘permitted’.
If we accept this division of acts into two main groups-relative to a given
authority of norms-and if we decide to call acts permitted simply by virtue
of the fact that they are not forbidden, then it becomes sensible to distin-
guish between two kinds of permission. These I shall call strong and weak
permission respectivelly. An act will be said to be permitted in the weak
sense if it is not forbidden; and it will be said to be permitted in the strong
sense if it is not forbidden but subject to norm. [...] Weak permission is not
an independent norm-character. Weak permissions are not prescriptions or
norms at all. Strong permission only is a norm-character.

Accordingly, in our setting, given a set of premises A, if the set contains an applicable
norm indicating explicitly a permission, we may derive Permagγ (i.e. A ` Permagγ).
If A does not entail Forbagγ (i.e. A 6` Forbγ) then it entails weakPermagγ (i.e. A `weak

Permagγ).
In this view, weak permission is related to the notion of weak negation weak¬ as

introduced in Chapter 4. Given a set of premises A, the weak negation of a positive
literal γ (i.e. weak¬γ) is derived if γ is not entailed from A:

A 6` γ

A ` weak¬γ

(5.80)

Hence, if we have A 6` Forbagγ then we obtain A ` weak¬Forbagγ . Accordingly, as
we assumed that ¬Forbagγ is equivalent to Permagγ , we have that weak¬Forbagγ is
equivalent to weakPermagγ .

Note that some authors reserve also the expression ‘weak permission’ to indicate
the derivation of a permission from an obligation. This choice seems to me awkward
and confusing:

1 Sometimes, weak and strong permissions are called negative and positive permissions re-
spectively.
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• awkward because intuitively, from an obligation we obtain a very strong permis-
sion (instead of a weak permission),

• confusing because it tends to make a confusion between permissions obtained
from an explicit obligation, and proper weak permissions as intended by G. von
Wright: “Weak permissions are not prescriptions or norms at all”.

In order to avoid an awkward and confusing terminology, we shall reserve hereafter
the expression ‘weak permission’ w.r.t. γ (i.e. weakPermagγ) to indicate that a set A of
premises does not entail a prohibition w.r.t. γ (i.e. A 6` Forbagγ). In this view, given
an obligation of γ we can derive the strong permission of γ:

rOblagγ⇒Permagγ : Oblagγ ⇒ Permagγ. (5.81)

Given the obligation of γ we have the strong negation of the permission of ∼γ and
vice versa:

rOblagγ⇒¬Permag∼γ : Oblagγ →¬Permag∼γ. (5.82)

r¬Permag∼γ⇒Oblagγ : ¬Permag∼γ → Oblagγ. (5.83)

Given a set of premises A such that A 6` Forbagγ we have:

A 6` Forbagγ

A ` weakPermagγ

(5.84)

or
A ` weak¬Forbagγ

A ` weakPermagγ

(5.85)

A 6` Oblag∼γ

A ` weakPermagγ

(5.86)

A ` weak¬Oblag∼γ

A ` weakPermagγ

(5.87)

A question is whether strong permissions have a proper ontological status. In-
deed, a provision indicating a permission seems somewhat useless to guide the be-
havior of an agent. In this regards, A. Ross argues that a permission is useful only
within the context of a contrary obligation, and write in [181], p. 120-122:

Telling me what I am permitted to do provides no guide to conduct unless
the permission is taken as an exception to a norm of obligation (which may
be the general maxim that what is not permitted is prohibited). Norms of
permission have the normative function only of indicating, within some sys-
tem, what are the exceptions from the norms of the obligation of the system
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[. . . ] I know of no permissive legal rule which is not logically an exemption
modifying some prohibition, and interpretable as the negation of an obliga-
tion.

In the same line, N. Bobbio identifies the function of permissive norms as exceptions
to obligations. In [33], p. 891-892, N. Bobbio writes:

Permissive norms are subsidiary norms: subsidiary in that their existence
presupposes the existence of imperative norms [...] a permissive norms is
necessary when we have to repeal a preceding imperative norm or to dero-
gate to it. That is to abolish a part of it (that in this case it is not necessary
preexisting because a law itself may prescribe a limit to its own extension.)

A strong permission Permagγ may occur as an explicit exception to a ‘background’
prohibition Forbag∼γ . In that regard, some authors have argued that strong permis-
sions which are non exceptions of prohibitions exist in the setting of hierarchical
normative systems (see e.g. E. Bulygin in [48], p.213, and G. Boella and L. van der
Torre in [34]) In this view, permissions can be used to allow some authorities to issue
norms on some fields, and thus blocking the same authorities to block norms on
different fields. These permissions aims at guiding legislators by indicating the fields
which can be object of regulation. Here, the difference between such permissions
and declarative powers is not clear: do the legislators have the permission to issue
norms on some fields? or do the legislators have the declarative power to issue
norms on some fields?

Furthermore, G. Boella and L. van der Torre in [34] remark that situations
exist in which we have a strong permission for γ , and a weak permission for ∼γ:
for example, if it is forbidden to have guns, but it is permitted for policemen to
have guns, then a policeman has the strong permission to have guns and the weak
permission to not have gun. This brings us to the relation among the concept of
facultativeness, strong permission and weak permission. More generally, in which
conditions a weak permission can be assimilated to a strong permission?

Such discussion goes beyond our scope, and we shall consider in the remainder
only strong permission, leaving the integration of weak permission in our framework
for future investigations.

5.4 Reasoning schemata

The process of reasoning proceeds through discrete reasoning steps by instantiating
reasoning schemata which are presented in this Section. Before moving to the proper
reasoning schemata, we first investigate combinations of modalities.

5.4.1 Combining modalities

In the foregoing, epistemic, practical and normative modalities have been introduced
in isolation, but commonsense reasoning present many situations that combine such
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modalities. For example, Guido desires to believe to be member, Mario believes that
Guido does not desire to be a member, Mario desires that Guido brings about being
a member, and so on. An infinite number of combination between modalities exists
and such combination shall be formulated as a sequence of modalities formulated as
follows:

(Φi)1..nγ (5.88)

where γ is a literal, and where Φi is modality or the negation of such modality, or in
other words, Φi is an element of the set {Holdag, ¬Holdag, Desag, ¬Desag, Bringag,
¬Bringag, Oblag, ¬Oblag, Forbag, ¬Forbag, Permag, ¬Permag, Facag, ¬Facag }. The
variable in subscript ag ranges over the set of agents. For example, Guido desires to
believe to be member shall be formulated:

DesguidoHoldguidomember(guido). (5.89)

Mario believes that Guido does not desire to be a member as:

Holdmario¬Desguidomember(guido). (5.90)

Mario desires that Guido brings about being a member as:

DesmarioBringguidomember(guido). (5.91)

We enrich rules with combination of modalities. A rule can relate modal statements
to other modal statements. For example, the conditional statement “If Guido believes
to be not entitled of any discount, Guido desires to believe to be entitled of any
discount, then Guido desires to bring about being a member” can be expressed by:

r: Holdguido¬discount(guido), DesguidoHoldguidomember(guido)
⇒ DesguidoBringguidomember(guido). (5.92)

Rules themselves can be object of modalities, but we limit them to epistemic modal-
ities. Let (Φi)1..n denote a sequence of (negated) epistemic modalities, where Φi is
stands for (¬)Holdag. We admit the possibility for formulas of the following form:

(Φi)1..n(r: α1, . . . ,αn ↪→ β ), (5.93)

where Γi and Γ stands for any statement. For example, that the statement “Mario
believes that Guido believes that if Guido believes to be not entitled of any discount,
Guido desires to believe to be entitled of any discount, then Guido desires to brings
about being a member” can be expressed by:

HoldmarioHoldguido(r: Holdguido¬discount(guido), DesguidoHoldguidomember(guido)
⇒ DesguidoBringguidomember(guido)).

(5.94)
The detachment of the consequent of such rules is investigated next.
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5.4.2 Detachment schema

An important schema is the detachment schema which extends the simple detach-
ment presented in Section 4.2 to account for modalities. Suppose a rule believed by
an agent ag:

Holdag(r: α1, . . . ,αn ↪→ β ).

In order to apply such a rule, we assume that the agent ag has to believe in α1, . . . ,αn,
that is, we assume that we have Holdagα1, . . . ,Holdagαn. For example, given the
statements “Guido believes that if he believes to not have any discount, then he de-
sires to get a discount” and “Guido believes that he believes to not have a discount”,
we derive defeasibly that “Guido believes that he desires a discount”. This can be
expressed by the following instantiated reasoning schema:

HoldguidoHoldguido¬discount(guido),
Holdguido(r: Holdguido¬discount(guido)⇒ Desmariodiscount(guido))

HoldguidoDesguidodiscount(guido)

(5.95)

We generalize the schema given above. Let (Φi)1..n denote a sequence of modalities,
where Φi stands for Holdag. The sequence can be empty. The variable in subscript
ag ranges over the set of agents. Let αi and β any statement. We have the following
detachment schema:

(Φi)1..nα1, . . . ,(Φi)1..nαn,
(Φi)1..n(r: α1, . . . ,αn ↪→ β )

(Φi)1..nβ

(5.96)

where ↪→ stands either for→,⇒ or ;. Accordingly to our previous setting in strict
and defeasible reasoning, we can have strict detachments and defeasible ones. A
strict detachment schema has a strict rule in its pre-conditions while a defeasible
detachment uses a defeasible rule or a defeater rule.

For instance, given that Mario is a member, we can derive defeasibly that Mario
is obliged to cooperate:

Holdobjmember(mario),
r: Holdobjmember(x)⇒ Oblxcooperate(x)

Oblmariocooperate(mario)

(5.97)

Notice that the detachment schema given in (5.96) allows agents to emulate the
reasoning schema of other agents. For example, given the statements “Luigi believes
that Mario believes that if Guido believes to not have any discount, then Guido desire
to get a discount”, and that “Luigi believes that Mario believes that Guido believes to
not have a discount”, we conclude defeasibly that “Luigi believes that Mario believes
that Guido desires a discount”. This can be expressed by the following instantiated
reasoning schema:
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HoldluigiHoldmarioHoldguido¬discount(guido),
HoldluigiHoldmario(r: Holdguido¬discount(guido)⇒ Desguidodiscount(guido))

HoldluigiHoldmarioDesguidodiscount(guido).
(5.98)

Conclusions of instantiated schemata may be used for other schemata in order to
build arguments. These arguments may support conflicting conclusions: the analysis
of conflicting conclusions is postponed to Section 5.5.

5.4.3 Rule conversion

So-called rule conversion (see e.g. [93]) refers to the inference in which given a rule
with modality X , and given that all the literals in the antecedent of the rule are derived
in one and the same modality Y , then the conclusion of the rule inherits the modality
Y of the antecedent.

For example, given the statements “Mario believes that if one kills another then
the latter is died” and “Mario desires to kill Guido”, we conclude defeasibly that
“Mario desires Guido died”:

Desmariokill(guido),
Holdmario(r: kill(x)⇒ died(x))

Desmariodied(guido)

(5.99)

If the notion of rule conversion is appealing to capture many situations, it may be
also counter-intuitive in many others. For example, suppose the statements “Mario
believes that if one is rich then one pays taxes” and “Mario desires to be rich”, then
following the inference of rule conversion then we conclude defeasibly that “Mario
desires to pay taxes”:

Desmariorich(mario),
Holdmario(r: rich(x)⇒ tax(x))

Desmariotax(mario)

(5.100)

Hence in some cases, rule conversion makes sense whereas in some others it does
not. At this stage, two possibilities: either the inference rule conversion is accepted,
or it is discarded.

If rule conversion is accepted as an inference then counter-intuitive conclusions
can be blocked on light of further grounds. For example, the agent theory can be
accompanied with the conditional that one desiring to be rich do not desire to pay
taxes.

If the rule of conversion is discarded then, eventually, conditionals which are
relevantly object of conversion, can be associated to the corresponding ‘converted’
conditional. For example, we can add to the first conditional “If one kills another then
the latter is died” a second conditional “If one desire to kill another then one desire



76 5 Cognitive model

the latter died”, so that given “Mario desires to kill Guido”, then we conclude defea-
sibly by simple detachment that “Mario desires Guido died”. Conditionals which are
not relevantly object of conversion, are not associated to any ‘converted’ conditional.

In both cases (i.e. whether rule conversion is accepted or not), some extra condi-
tionals have to be added to the knowledge base to restore intuitions. However, if rule
conversion is accepted then a rule of inference has to be added. Hence, it seems that
the inference of rule of conversion brings little to the model while complicating it.
For this reason, we discard from our model the inference rule conversion.

5.4.4 Introspection and reflexion

In Section 5.1.3 on introspection and reflexion, we proposed some schema rules so
that agents are able to reason on their epistemic states. We enlarge here the intro-
spection and reflexion of an agent ag to statements of the form Φagγ where γ is any
statement, and Φ is an element of the set {Holdag, ¬Holdag, Desag, ¬Desag, Bringag,
¬Bringag, Oblag, ¬Oblag, Forbag, ¬Forbag, Permag, ¬Permag, Facag, ¬Facag }. Ac-
cordingly, we have the following schema rules:

rΦagγ⇒HoldagΦagγ : Φagγ ⇒ HoldagΦagγ, (5.101)

rHoldagΦagγ⇒Φagγ : HoldagΦagγ ⇒ HoldagΦagγ. (5.102)

For instance, if Guido desire to get some discount then Guido believes that he desires
to get some discount:

rDesguidodiscount(guido)⇒HoldguidoDesguidodiscount(guido):
Desguidodiscount(guido)⇒ HoldguidoDesguidodiscount(guido).

(5.103)

If Guido believes that he desires to get some discount then Guido desires to get some
discount:

rHoldguidoDesguidodiscount(guido)⇒Desguidodiscount(guido):
HoldguidoDesguidodiscount(guido)⇒ Desguidodiscount(guido).

(5.104)

Beside introspection and reflexion, we assume that given any statement, then we can
entail defeasibly that this statement holds objectively, and inversely. Accordingly, we
have the following rule:

rγ⇒Holdobjγ : γ ⇒ Holdobjγ, (5.105)

rHoldobjγ⇒γ : Holdobjγ ⇒ γ. (5.106)

Next, we investigate the collisions of conclusions.
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5.5 Collisions of conclusions

In Section 4.3, we saw that an argument S conflicts with an argument R if and only if
the arguments S and R contain two conclusions γ1 and γ2 such that γ1 conflicts with
γ2 and vice versa. The set of literals conflicting with a literal γ was denoted Conflict(γ)
and we assumed that a statement γ conflicts with its negation ¬γ:

• Conflict(γ) = {¬γ},
• Conflict(¬γ) = {γ}.

In the setting of epistemic, practical and normative reasoning, new conflicts may
arise from the collisions of incompatible conclusions. For example, the conclusions
“Guido desires a discount” and “Guido does not desire a discount” conflict. In the
remainder of this Section, we investigate sets of conflicting statements, and how to
handle such conflicts.

5.5.1 Conflicts

In epistemic reasoning, new conflicts may arise from the collisions of incompatible
epistemic statements. For example, there is a conflict between the statements “Mario
believes to be a member” and “Mario disbelieves to be a member”. The statements
“Mario believes to be a member’ and “Mario believes to not be a member” conflict
too. More generally, if γ holds from a viewpoint and if γ does not hold from the same
viewpoint, then there is a conflict. Likewise, if γ holds from a viewpoint and if ∼γ2

holds from the same viewpoint, then there is also a conflict.

• Conflict(¬Holdagγ)⊇ {Holdagγ},
• Conflict(Holdagγ)⊇ {Holdag∼γ}.

In terms of belief, a belief of γ and the disbelief of γ conflict, and the belief of γ con-
flicts with the belief of∼γ . For example, we can write Conflict(¬Holdmariomember)⊇
{Holdmariomember} and Conflict(Holdmario¬member) ⊇ {Holdmariomember}. How-
ever, we cannot write Conflict(Holdmario¬member) ⊇ {¬Holdmariomember}. Notice
that conflicts are restricted to believes beared by the same agents. For example,
there is no conflicts between the conclusions “Mario believes to be a member”
and “Guido does not believe to be member”. Furthermore, at this stage, there is no
conflict between Holdmariomember and HoldmarioHoldmario¬member.

In our practical reasoning setting, we have to cater for potential conflicts between
desires, and conflicts between actions. Both types of conflict follow the same schema
of conflict between epistemic statements, so a desire (an action) and its negation
conflict, and the desire (action) of γ conflicts with the desire (action) of ∼γ:

• Conflict(¬Desagγ)⊇ {Desagγ},
• Conflict(Desagγ)⊇ {Desag∼γ},
• Conflict(¬Bringagγ)⊇ {Bringagγ},

2 As for notation, ∼γ denotes any element of the set Conflict(γ).
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• Conflict(Bringagγ)⊇ {Bringag∼γ}.

As for epistemic statements, conflicts are restricted to modalities held by the same
agents. For example, there is no conflicts between the conclusions “Mario desires to
not be a member” and “Guido desires to be a member”.

Concerning normative reasoning, we have already identified primitive conflicts
between deontic modalities in Section (5.3.3), we resume all possible conflicts in the
following:

• Conflict(Oblagγ)⊇ {¬Oblagγ, Oblag∼γ, ¬Permagγ, Permag∼γ, Forbagγ},
• Conflict(¬Oblagγ)⊇ {Oblagγ, ¬Permagγ, Forbag∼γ},
• Conflict(Permagγ)⊇ {Oblag∼γ, ¬Permagγ, Forbagγ},
• Conflict(¬Permagγ)⊇ {Oblagγ, ¬Oblag∼γ, Permagγ, ¬Permag∼γ, Forbag∼γ, ¬Forbagγ},
• Conflict(Forbagγ)⊇ {Oblagγ, Permagγ, Forbag¬γ, ¬Forbagγ},
• Conflict(¬Forbagγ)⊇ {¬Oblagγ, ¬Permagγ, Forbagγ, ¬Forbag¬γ},
• Conflict(Facagγ)⊇ {Oblag∼γ, ¬Permagγ, Forbagγ, Oblagγ, ¬Permag∼γ, Forbag∼γ}.

Remark that our model allows us to cater for combinations of modalities.
For example, since we have Conflict(¬Desguidomember) ⊇ {Desguidomember} then
we obtain Conflict(Holdmario¬Desguidomember) ⊇ {HoldmarioDesguidomember}.
However, Holdmario¬Desguidomember and ¬Desguidomember do not conflict.

Whilst the foregoing can be considered as a minimum set of conflicts that any
agent shall adopt, other potential conflicts may be specific for some particular agents.
For example, some ‘social’ agents may consider that the desire of γ and the obliga-
tion of ∼γ conflict, whereas other ‘independent’ agents may not. Possible specific
conflicts are indicated in the Table 5.1 where each type of conflict is associated with
a type of agent (see [204, 46, 45, 59, 93] for related proposals).

Conflict type Agent type

Forbagγ ∈ C ∗onflict(Desagγ) Desire-compliant
Forbagγ ∈ C ∗onflict(Bringagγ) Action-compliant
Desag∼γ ∈ C ∗onflict(Bringagγ) Slothful
HoldagHoldag∼γ ∈ C ∗onflict(Holdagγ) 1-introspective consistent
Holdag¬Holdagγ ∈ C ∗onflict(Holdagγ) 2-introspective consistent
Forbagγ 6∈ C ∗onflict(Desagγ) Desire-deviant
Forbagγ 6∈ C ∗onflict(Bringagγ) Action-deviant
Desag∼γ 6∈ C ∗onflict(Bringagγ) Unstable
HoldagHoldag∼γ 6∈ C ∗onflict(Holdagγ) 1-introspective inconsistent
Holdag¬Holdagγ 6∈ C ∗onflict(Holdagγ) 2-introspective inconsistent

Table 5.1. Types of conflict.
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In order to distinguish conflicts valid for any agent and conflicts specific to some
particular agents, we indicate the latter with a star ∗. For example, Forbmarioγ ∈
C ∗onflict(Desmarioγ) indicates that, from Mario’s viewpoint, any prohibition of γ con-
flicts with the desire of γ . Though we discard dynamic conflicts for the sake of sim-
plicity, we allow for some simple epistemic reasoning on them:

• Given Yagβ ∈ C ∗onflict(Xagγ), we have HoldobjYagβ ∈ C ∗onflict(HoldobjXagγ), and
vice versa,

• Given Yagβ ∈C ∗onflict(Xagγ), we have HoldagYagβ ∈C ∗onflict(HoldagXagγ), and vice
versa,

• Given β ′ ∈ C ∗onflict(γ) and β ≡ β ′, we have β ∈ C ∗onflict(γ).

For example, given the specific conflict regarding Mario Forbmarioγ ∈
C ∗onflict(Desmarioγ), we can derive among others HoldobjForbmarioγ ∈
C ∗onflict(HoldobjDesmarioγ) and HoldmarioForbmarioγ ∈ C ∗onflict(HoldmarioDesmarioγ).

Desire-deviant and action-deviant agents tend to ignore norms and thus tend to
violate norms because they do not consider any conflict between the desire or the
performance of γ and its prohibition. In this view, a distinction is made between log-
ical conflicts (possibly leading to some inconsistencies) and violations. For example,
an action-deviant agent ag can bring about γ (i.e. Bringagγ) while a normative state-
ment forbids it (i.e. Forbagγ): the scenario does not lead to a logical conflict but a
violation.

5.5.2 Preferences

Desire-compliant and action-compliant agents may also violate norms: whereas
desire-deviant and action-deviant agents tend to violate norms because no conflicts
exist between the desire or the performance of γ , and its prohibition, desire-
compliant and action-compliant agents may violate norms because they have a
preference of their desires of actions over norms. Indeed, conflicts are not defeats: in
Section 4.3, we saw that conflicts between defeasible conclusions can be resolved on
the basis of preferences expressed by an explicit strength order between rules: rules
are identified by labels and a strength order is stabilized by the operator � between
two rules labels in order to indicate the relative strength of each rule. So, the formula
r2 � r1 indicates that the rule labeled r2 is stronger than the rule labeled by r1.
Provided two applicable rules and a strength order between these two rules, one is
allowed to conclude only for the consequent of the stronger rule. In the remainder,
we discuss ‘local’ preferences or ‘global’ preferences to specify strength order.

Local preferences consist in specifying as usual strength orders between conflict-
ing rules. For instance, suppose the following rules:

r1: ⇒ Desmario¬cooperate(mario), (5.107)
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r2: ⇒ Oblmariocooperate(mario). (5.108)

Assuming that Mario is a desire-compliant agent, if the rule r2 is stronger than the
rule r1 (i.e. r2 � r1) then the conclusion that Mario is obliged to cooperate is entailed
whereas the conclusion that his desire to do not so is discarded. This solution is
local because its scope is limited to the rules appearing in the preference relation
�. Of course, preferences over rules hold for some viewpoints. To account for it,
a preference will have the form (Xi)1..n(r2 � r1) where Xi is an epistemic operator
Holdag. For instance, “It holds, from the viewpoint of Guido, that r2 is stronger than
r1” is formulated as:

Holdguido(r2 � r1).

Accordingly, a conflict between conclusions held from some viewpoints have to be
resolved by some preferences held from the same viewpoints. For instance, given the
rules r1 and r2 and the preference Holdguido(r2 � r1), we cannot solve the conflict
because the conflicting conclusions and the preference do not hold from the same
viewpoint. However, given the same rules and the preference Holdmario(r2 � r1),
we can solve the conflict and conclude that Mario is obliged to cooperate (i.e.
Oblmariocooperate(mario)). Let’s see another example. Given the following rules:

Holdguido(r3: ⇒ Desmario¬cooperate(mario)),

Holdguido(r4: ⇒ Oblmariocooperate(mario)),

and the preference HoldguidoHoldmario(r4 � r3), we can resolve the conflict between
HoldguidoDesmario¬cooperate(mario) and HoldguidoOblmariocooperate(mario), to
conclude HoldguidoOblmariocooperate(mario).

Though we discard dynamic preferences for the sake of simplicity, we allow for
some simple epistemic reasoning on them:

• Given (Xi)1..n(r2 � r1), we have Holdobj(Xi)1..n(r2 � r1), and vice versa,
• Given Holdag(Xi)1..n(r2 � r1), we have HoldagHoldag(Xi)1..n(r2 � r1), and vice

versa.

The first item indicates that any preference holds objectively, and vice versa. The
second item expresses introspection and reflexion over preferences. For example,
given the rules r1 and r2 in (5.107) and (5.107), we can derive the following:

Holdobj(r1: ⇒ Desmario¬cooperate(mario)), (5.109)

Holdobj(r2: ⇒ Oblmariocooperate(mario)). (5.110)

Likewise, given Holdmario(r2 � r1), we have HoldobjHoldmario(r2 � r1). The conflict
between HoldobjDesmario¬cooperate(mario) and HoldobjOblmariocooperate(mario)
is thus resolved and we derive HoldobjOblmariocooperate(mario).
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The assumption that a conflict between conclusions held from some viewpoints
have to be resolved by some preferences held from the same viewpoints raises some
issues when there is an ‘epistemic asymmetry of viewpoints’ between two conclu-
sions.

For example, suppose that Mario is an agent who is 1-introspective consistent,
i.e. HoldmarioHoldmario∼γ ∈ Conflict(Holdmarioγ) (see Table 5.1) and suppose the fol-
lowing rules:

r5: ⇒ Holdmario¬c, (5.111)

r6: ⇒ HoldmarioHoldmarioc. (5.112)

Suppose that the rule r5 is stronger than the rule r6. In order to resolve the conflict
between Holdmario¬c and HoldmarioHoldmarioc, do we need to consider the preference
Holdmario(r5 � r6) or the preference HoldmarioHoldmario(r5 � r6)? Fortunately, if we
have the first preference then we have the second, and vice versa. In other words, both
are acceptable to resolve the conflict, and both provide us with the same outcome.

In the general case, given two conflicting conclusions having an asymmetry of
viewpoints, we assume that the preference has to hold from the viewpoints of the
undefeated conclusion.

Another solution to resolve conflict is to provide a global preference between
conflicting statements.

For example, the profile of Mario can be described by asserting that, by default,
the prohibition of γ defeats the desire of γ so that the conclusion that Mario de-
sires to not cooperate is defeated by its obligation to cooperate (i.e. the prohibition
to not cooperate). We shall write β ∈ Defeat(γ) to denote a statement β defeats an-
other statement γ . For instance, in the case of Mario, we can write Forbmarioγ ∈
Defeat(Desmarioγ) to indicate that, by default, prohibitions defeat desires.

Types of global preferences over statements can be associated to some types of
agent. For example, if prohibitions defeat desires w.r.t. an agent then we say that this
agent is desire-social. Table 5.2 parses possible types of defeats between statements,
and associated types of agent.

Defeat type Agent type

Forbagγ ∈Defeat(Desagγ) Desire-social
Desagγ ∈Defeat(Forbagγ) Desire-unsocial
Forbagγ ∈Defeat(Bringagγ) Action-social
Bringagγ ∈Defeat(Forbagγ) Action-unsocial
Desagγ ∈Defeat(Bringag∼γ) Willful
Bringagγ ∈Defeat(Desag∼γ) Involuntary

Table 5.2. Types of defeat.



82 5 Cognitive model

Of course, based on different frameworks, other agent types can be specified
(see e.g. [204, 46, 45, 59, 93]). For example, it is sometimes argued that beliefs
should override desires. In [204] for instance, R. Thomason considers that (i) if
you believe that it is going to rain, and that (ii) if it rains, you will get wet, and
(iii) you would not like to get wet, then you should believe you will get wet. On
the assumption that the desire and the belief conflict, then you should believe that
you will get wet. It is thus argued that beliefs defeat conflicting desires in order to
avoid wishful thinking agents. Though the present framework can easily capture the
idea by adding Holdagγ ∈ Defeat(Desag∼γ), we do not feel any necessity to do so.
Indeed, we do not assume any conflict between believing something and desiring
the contrary. For example, you can be wet as a matter of fact, still you would not like
to be wet. Assuming a conflict between a belief and the desire of the contrary, and
the defeat of desires by believes would also imply that an agent cannot change his
environment. In the example, you will never be able to make a plan to avoid being
wet, for instance by taking an umbrella.

Likewise conflicts and local preferences, we discard dynamic global preferences
for the sake of simplicity but we allow for some epistemic reasoning on them:

• Given Xagγ ∈Defeat(Xagγ), we have HoldobjXagγ ∈Defeat(HoldobjXagγ), and vice
versa,

• Given Xagγ ∈ Defeat(Xagγ), we have HoldagXagγ ∈ Defeat(HoldagXagγ), and vice
versa,

• Given β ′ ∈Defeat(γ) and β ≡ β ′, we have Holdagβ ∈Defeat(γ).

For example, given Forbmarioγ ∈ Defeat(Desmarioγ), we can derive among oth-
ers HoldobjForbmarioγ ∈ Defeat(HoldobjDesmarioγ) and HoldmarioForbmarioγ ∈
Defeat(HoldmarioDesmarioγ).

Local preferences and global preferences may collide. For example, suppose the
following rules

Holdobj(r7: ⇒ Desluigi¬cooperate(luigi)), (5.113)

Holdobj(r8: ⇒ Oblluigicooperate(luigi)). (5.114)

Suppose that we have the conflict Conflict(Desluigi¬cooperate(luigi)) ⊇
{Oblluigicooperate(luigi)}, the local preference Holdmario(r7 � r8) and the
global preference Oblluigiγ ∈ Defeat(Desluigi∼γ). According the local preference,
we are pushed to conclude Desluigi¬cooperate(luigi) whereas according the global
preference, we are pushed to conclude Oblluigicooperate(luigi). In order to cope
with this issue, we assume that a global preference hold by default in the sense
that if a local preference is in contradiction with the later then the local preference
take precedence over the global preference. Thus, in our example, we conclude
Desluigi¬cooperate(luigi) and discard Oblluigicooperate(luigi).
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In this Chapter, we have seen that profiles of agents deliberation and thus nor-
mative bindingness can be characterized by stating conflicts between statements and
preferences to solve these conflicts. In the next Chapter, we shall accommodate this
framework to integrate some temporal aspects.
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Temporal model

Dynamic environments are an essential motivation for the need of autonomous
agents. In a dynamic environment, things may not pass at the same instant, and time
allows us to express things which pass at different instants.

In the following, we shall extend the model presented in Chapter 5 to give an
account of some temporal aspects with regard to both mental attitudes and deontic
provisions. We shall try to abstract from some philosophical issues concerning the
nature of time and how it can be accommodated within some metaphysical models.
We shall just assume that mental attitudes and normative provisions can be related to
temporal references and the passage of time allows change of these elements.

In Section 6.1, we investigate the integration of temporal dimensions to state-
ments. Reasoning schemata with respect to the temporal setting are discussed in
Section 6.2. Conflicts between temporal statements are addressed in Section 6.3 and
modifications in Section 6.4.

6.1 Temporal statements

Ordinarily, two types of time reference are considered in the literature. One type is
absolute time reference (for example a date as 28 February 2007) while the other
type is relative time reference (for example by the use of the term “before”, “after”
etc.). Roughly, a relative time reference is called so because it stands in relation to
certain conditions or circumstances while an absolute time reference is such that it
does not stand in relation to any conditions or circumstances. However, this distinc-
tion is somewhat dubious since an absolute time reference is still relative to another
absolute reference (for example the birth of Jesus for western datation). Hence, the
difference of between the two qualifications of time references are standardly cap-
tured as follows:

• An absolute time reference is defined in relation to a global event (origin of time)
of the system.

• A relative time reference is defined in relation to a local event of the system.
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In our framework, the passage of time allows for the change of things (as mental
attitudes and provisions), and these things are expressed by some statements related
to temporal references.

6.1.1 Temporal modal literals

In the previous Chapter, epistemic, practical and normative reasoning was captured
by modal operators. In this setting, temporal references can be associated to the
modalities. For example, Mario believes in 2007 that he is a student. Guido desires
in 2007 to have discount. Guido is obliged in 2007 to reduce pollution. To tempo-
ralise modalities, we supscript them with an absolute time reference. For instance,
the sentence “Mario believes in 2008 to be a student” can be formulated as:

Hold2008
mariostudent(mario). (6.1)

Intuitively, Holdt
agγ means that γ holds at a time t for the point of view of an agent

ag. To indicate that γ holds objectively at time t, we write Holdt
objγ . For instance, the

statement “It holds in 2008, that Mario is a student” can be formulated as:

Hold2008
obj student(mario). (6.2)

We admit sequences of modalities. For instance, the sentence “Mario believes in
2009 that he was student in 2008” shall be formulated as:

Hold2009
marioHold2008

obj student(mario). (6.3)

This last formulation may appear clumsy because we may assume that an agent can-
not believe objectively something: a belief remains always subjective to an agent. On
this aspect, it is perhaps more appropriate to reformulate (6.3) into:

Hold2009
marioHold2008

mariostudent(mario). (6.4)

Notice also that, according our interpretation of formulas Holdt
agγ as “It holds, from

the viewpoint of agent ag at time t, that γ”, sequences of operators of the form
Holdt ′

agHoldt
ag are also able to express a belief at certain time t ′ about something

holding at a different time t and which is not believed at this time t. For example, if
a retroactive rule r is published in 2008 and is efficacious in 2007, then Mario could
not believe in 2007 that the rule r was efficacious. Hence, whereas it does not make
sense to state that Mario believes in 2008 that Mario believes in 2007 that the rule is
efficacious, it does make sense to say that “It holds, from the point of view of Mario
and in 2008, that it holds, from the viewpoint of Mario and in 2007, that the rule is
efficacious”:

Hold2008
marioHold2007

marioe f f icacious(r). (6.5)

Other operators can also be associated to a temporal reference. For example, the
statement “Guido desires in 2007 to have discount” shall be formulated as:
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Des2007
guidodiscount(guido). (6.6)

The productive action “In 2006, Guido brings about his membership” can be ex-
pressed by:

Bring2006
guidomember(guido). (6.7)

Deontic modalities can be temporalised too. For instance, the provision “Guido is
obliged in 2009 to pay tax” can be formulated as:

Obl2009
guido pay tax(guido). (6.8)

We may use the universal quantifier and some constraints over time. For instance,
the statement “Mario is an adult in 1973 onwards” shall be formulated as:

∀t, t ≥ 1973, Holdt
agadult(mario). (6.9)

We leave the the use of existential quantifier over time as a matter of future inves-
tigation. Quantification over time can have for scope a modality and the content of
the modality. For example, the statement “Mario desires this week to have a discount
next week” shall be formulated as:

∀t,1≥ t ≥ 7,∀t ′,8≥ t ′ ≥ 14, Dest
marioHoldt ′

agdiscount(mario). (6.10)

In order to simplify the writing of bounded quantification over time, we shall use time
intervals. A time interval denoted [ti, t f ] is a set of instants t bounded by ti and t f such
that for all t, t ≥ ti and t ≤ t f . Accordingly, the formula (6.10) shall be rewritten in
the interval based notation as:

Des[1,7]
marioHold[8,14]

mariodiscount(mario). (6.11)

When we are interested in figuring out in which temporal intervals a conclusion
holds, it is perhaps more perspicuous to represent it using a graph where each
axis represents the time arrow in a different temporal dimension. For example,
Hold[0,50]

marioHold[0,50]
marioc can be represented graphically in Figure 6.1.

6.1.2 Temporal modal rules

A temporal rule relates some temporal statements α1 . . .αn to another temporal state-
ment β and has the following form:

r: α1, . . . ,αn ↪→ β . (6.12)

where ↪→ stands for→,⇒ and ;. For example, the provision stating that “members
are obliged to cooperate” can be formulated as:

r: Holdt
agmember(x)⇒ Obltagcooperate(x). (6.13)

Our formalization allows us to express rules whose consequent outlives the an-
tecedent, and such rules shall be called P-rules. For example, in legal setting as in
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Fig. 6.1. Graphical representation of Hold[0,50]
marioHold[0,50]

marioc.

the Italian normative system, the following P-rule indicates that the date of entry of
force of a provision is established after a 15-day period (called vacatio legis) starting
at the date of publication:

vl: Holdt
ag published(r)⇒ Hold[t+15,max]

ag f orce(r). (6.14)

It is important to not assimilate P-rules to some persistence of some sort. For exam-
ple, a rule of the form:

r: Holdt
agα ⇒ Hold[t,max]

ag β

is a notational short-cut for the rules:

r: Holdt
agα ⇒ Holdt

agβ ,

r: Holdt
agα ⇒ Holdt+1

ag β ,

r: Holdt
agα ⇒ Holdt+2

ag β ,

. . .

r: Holdt
agα ⇒ Holdmax

ag β ,

We assume that the persistence of γ is the self-renewal of γ through time. Based
on this assumption, persistence can be accurately formalized, for example, as the
following schema rule:

r6.15: Holdt
agγ ⇒ Holdt+1

ag γ. (6.15)
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Such rules shall be called rules of persistence. For instance, instead of capturing the
statement “If one is born then one is alive onwards.” by the following P-rule:

r: Holdt
agborn(x)⇒ Hold[t,max]

ag alive(x), (6.16)

we shall capture the persistence of aliveness by the following rule of persistence:

r6.17: Holdt
agalive(x)⇒ Holdt+1

ag alive(x). (6.17)

As in most cases, the persistence of a thing is initiated by other things, then a rule of
persistence shall be accompanied with a triggering rule. For instance, the statement
“If one is born then one is alive.” could captured by the following rule:

r: Holdt
agborn(x)⇒ Holdt

agalive(x). (6.18)

The distinction between P-rules and persistence rules allows us to express appro-
priately maintenance and achievement statements, for example between achievement
obligations and maintenance obligations (cf. [89]).

An example of achievement obligation is a provision indicating that customers
must pay within 30 days after receiving the invoice. For an achievement obligation,
the state of affairs φ has to occur before a deadline condition δ , otherwise a violation
is detected. An achievement obligation can be formalized by the following template
rules:

rinit : α1, ...,αn⇒ Obltagφ , (initialization)
rpers: Obltagφ ⇒ Oblt+1

ag φ , (persistence)
rterm: Obltagφ ,Holdt

agφ ; ¬Obltagφ , (termination)
rviol : Holdtδ

agδ ,Obltδagφ ⇒ Holdtδ
agviol(r). (violation)

The violation fact viol(r) is a specific literal, indexed by the name of the group of
rules. Generally, a deadline signals that a violation of the obligation has occurred
(rule invviol). This may or may not trigger an explicit sanction (see below). Note that
the obligation itself may even persist after the deadline.

In maintenance obligations, the state of affair has to hold for any instants. For ex-
ample, customers must keep a positive balance, for 30 days after opening an bank ac-
count. Prohibitions, i.e. obligations to avoid some states, form a large class of main-
tenance obligations. The generic formalization for maintenance obligations consists
of the following template rules.

rinit main: Holdt
agχ,Holdtδ

agδ ⇒ Obl[t,tδ ]
ag φ , (initialization maintenance)

rviol main: Obltagφ ,Holdt
ag¬φ ⇒ Holdt

agviol(r). (violation of maintenance)

Note that neither termination rule nor persistence rules are needed. Here, the deadline
only signals that the obligation is terminated. A violation occurs, when the obliged
state does not obtain at some point before the deadline.

For an achievement obligation, the condition φ must occur at least once before
the deadline. For maintenance obligations, condition φ must obtain during all instants
before the deadline. Likewise maintenance and achievement obligations, P-rules and
persistence rules allow us to express maintenance goals to maintain some particular
state and achievement goals to attain (achieve) some state.
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6.1.3 Legal temporal dimensions

At this stage, it is important to notice that legal reasoning is characterized by various
temporal dimensions (see [156, 157]): if we intend to give an accurate account of
temporal aspects of norms and therefore to be consistent with legal principles, then
we have to identify, distinguish and capture these various times. These distinctions
are, for example, of the utmost importance to express ultra-active and retroactive
provisions as we shall see soon.

Our analysis shall be centered upon the distinction of two temporal profiles in
legal norms. A first distinction deals with so-called external times and internal times
of norms.

• The internal times are associated to a norm or provision which is specified within
the norm or provision.

• The external times are associated to a norm or provision which is specified in a
different norm or provision.

A second distinction deals with so-called static times and dynamic times of norms.

• The static times are associated to a norm or provision which cannot change on
the basis of events,

• The dynamic times are associated to a norm or provision which can change on
the basis of future events (typically as normative modifications).

In general, static times are defined at the document level, and the embedded pro-
visions inherit the same static times of its containing document. Commonly cited
static times are the date of existence, the date of enactment, the date of publication,
the date of entry of force:

• The date of existence of a document is the date when the lawmaking body (such
as a senate or a lower house) ‘freezes’ the document in its final form.

• The date of enactment, or date of delivery, or date of assent, succeeds the date of
existence and is the date when the competent authorities finalize the document
by affixing their signatures to it (e.g. promulgation by a president, signature by a
king or queen). In general, this date is clearly indicated in the document.

• The date of publication is the date when the normative document is published in
an official journal.

• The date of entry into force of a document marks the beginning of its period
of force. In general, the date of entry of force is established on function of the
date of document’s publication in an official journal. For example, in the Italian
normative system, the date of entry of force is establish after a 15-day period
(called vacatio legis) starting at the date of publication.

Common important external and dynamic dates are the date of republication and the
date of transposition:

• the date of republication is the date when the document is republished into the
official journal. Though the date of publication is unique, a document can be
republished several times, and thus can have several republication dates.
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• the date of transposition is the date when member states brings into force the
laws necessary to comply with a directive.

We concentrate on three external and dynamic times associated to norms, namely the
time of force, the time of efficacy, and the time of applicability:

• The time of force is the time during which the legal norm is in force or valid if
by validity of a norm we mean its partaking to the normative system. Generally,
it is a period of time which boundaries may change over time through temporal
modifications. By default, the beginning of the period of force is determined by
other rules, and the end of the period of force is established by derogation rules.

• The time of efficacy, sometimes called the time of enforceability, is the time dur-
ing which the provision causes its legal effect. In this regard, we have to make a
distinction between unconditioned provisions and unconditioned provisions. For
a unconditioned provision, the time of efficacy corresponds to the time when the
provision is operative. For instance, if “It is forbidden to smoke” is efficacious
during [t1, t2] then during that period smoking is prohibited. For conditioned pro-
visions, the time of efficacy corresponds to the time during which the provision’s
conditions can be instantiated. For instance, “If one smokes, then one is subject
to 10 Euro fine” is efficacious during [t1, t2] then during that time the fact that one
person smokes causes that persons subjection to the sanction.

• The time of applicability, or the time of the effect, is the time at which the in-
tented effect of the provision is applied. For unconditioned provisions, it is by
default the time when the provision becomes operative if the provision has an
instantaneous effect, or the period during which the provision remains operative.
For conditioned provisions, it is a function of the time when an instance of the
provision’s conditions have taken place. By default it is contemporary but a dif-
ferent time can also be established. For instance, “If you drive dangerously, your
license will be suspended for one year”. In this case, if one drives dangerously at
time t, then the license will be suspended from t to t +1 year. Then [t, t +1year]
is the time of the effect related to the preconditions instance of time t. If the pro-
vision is instantiated to a concrete case, then some temporal values are assigned
to the time of applicability: the time values assigned to the time of applicability
w.r.t. to a concrete case is called the time of occurrence of a provision w.r.t. to a
concrete case. For example, if Mario drives dangerously in 2007, then his license
will be suspended from 2007 to 2008: the time of occurrence is the period made
of the year 2007 and 2008.

Notice that for unconditioned provisions, the time of applicability is the time of ef-
ficacy. In general, the provision’s period of efficacy and applicability coincide with
its period of force, but in some cases they are different as for example in case of
conditioned retroactive or ultra-active norms. An example of a provision illustrating
the different temporal dimensions is provided in Table 6.1.

In a such complex temporal setting, as pointed out by [133], we can use either
an analytical approach or a synthetical approach for the representation of provisions.
In the synthetical approach all temporal and substantial elements of the norm are
represented within the same sentence. For example:
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Table 6.1.

Art. 3

If one drives dangerously then the license is suspended for two years.

Mario drives dangerously on 1st January 2008.

Date of publication: 1st September 2007.
Date of entry in force: 15th September 2007.
Period of force: 15th September 2007 onwards.
Period of efficacy: 15th September 2006 onwards.
Period of application: [t, t +1]
(where t is the time when an instance of the provision’s condition has taken place).
Period of occurrence: from 1st January 2008 to 1st January 2009.

• during the period from 10/6/1997 to 16/6/1997, anyone who parks in front of the
station is liable to a fine.

In the analytical approach one sentence represents the substantive content of the
norm, and other sentences specify its temporal features. In the example given above,
instead of having just one sentence, we could have had two sentences:

• Anyone who parks in front of the station is liable to a fine.
• Norm 1 is in force from 10/6/1997 to 16/6/1997.

or even three sentences:

• Anyone who parks in front of the station is liable to a fine.
• Norm 1 starts to be in force at 10/6/1997.
• Norm 1 ceases to be in force at 16/6/1997.

On the one hand, analytical representations of time have some drawbacks. In
particular, more than one sentence needs to be considered in order to determine both
the substantial content of the norm and its subsumption interval. Moreover, infer-
ences from analytical representations must take into account the interaction between
substantive norms and norms which regulate subsumption intervals.

On the other hand, the analytical approach has a number of advantages: (i) it is
modular and clear, (ii) temporal elements do not need to be always directly specified,
but they can be made dependent upon future and possibly not yet known facts.

In the remainder, we adopt the analytical approach. Accordingly, we indicate the
time of force and the time of efficacy of a provision by temporal literals. A provision,
represented by a rule r, efficacious at time t shall be formulated as:

Holdt
age f f icacious(r). (6.19)

The following formulate a provision represented by a rule r in force at time t:

Holdt
ag f orce(r). (6.20)
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In general, the date of entry of force is established on function of the date of docu-
ment’s publication in an official journal. For example, in the Italian normative sys-
tem, the date of entry of force is establish after a 15-day period (called vacatio legis)
starting at the date of publication. We shall formulate the vactio legis as follows:

vl: Holdt
ag published(r)⇒ Hold[t+15,max]

ag f orce(r). (6.21)

The time of existence te of a rule is captured by prefixing the rule by Holdte
ag:

Holdte
ag(r: α1, . . . ,αn⇒ β ). (6.22)

Intuitively, the formula means that the rule r holds at time te from the viewpoint of
agent ag. The time te here is not intented to capture the time of force, instead it is
the time for which the rule holds and is interpreted and the time of existence of the
represented provision. For instance, the provision, existing in 1990 onwards, stating
that members are obliged to cooperate, can be formulated as:

Hold[1990,max]
ag (r: Holdt

agmember(x)⇒ Obltagcooperate(x)). (6.23)

As any provision is formalized as a rule relating some antecedents to a conse-
quent, the legal time of efficacy corresponds either to the time of the antecedents (in
case of conditioned provisions) or to the time of the consequent (in case of uncondi-
tioned provisions). For our purposes, and for the sake of simplicity, in the remainder
the time of efficacy shall always refer to the time of antecedents of the rule. In case
of unconditioned provisions, as the set of antecedents of the rule is empty, there is
no need to specify the time of efficacy (though the time of legal efficacy corresponds
to the time of application of the rule).

6.2 Temporal reasoning schemata

Our reasoning schemata must be adapted to the introduction of temporal aspects,
in particular to legal ones. Next, we analyze the integration of these aspects to the
detachment schema.

6.2.1 Temporal detachment schemata

The different legal temporal dimensions identified in the previous Section raises
some issues on the applicability of rules. For example, consider the following rule:

r: Holdt
agα ⇒ Holdt

agβ . (6.24)

To be applied, such rule should be accompanied by Holdtα
agα with a temporal refer-

ence tα which has to fulfill some temporal constraints regarding the time of force and
of efficacy of the rule r. To conclude defeasibly Holdtα

agβ , a first constraint is that the
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rule r has to be in force and efficacious at the same time than α , i.e. Holdtα
ag f orce(r)

and Holdtα
age f f icacious(r). We express this by the following temporal detachment:

Holdtα
agα,

r: Holdt
agα ⇒ Holdt

agβ ,

Hold
t f
ag f orce(r),

Holdte
age f f icacious(r),

t f = te = tα

Holdtα
agβ .

(6.25)

For instance, given the provision “Members are obliged to cooperate”, the facts that
this provision is in force and efficacious in 2007, and the statement “Mario believes
that he is a member in 2007”, we can conclude defeasibly that “Mario is obliged in
2007 to cooperate”. This can be expressed instantiating the reasoning schema given
above:

Hold2007
mariomember(mario),

r: Holdt
agmember(x)⇒ Obltagcooperate(x),

Hold2007
mario f orce(r),

Hold2007
marioe f f icacious(r)

Obl2007
mariocooperate(mario)

(6.26)

An issue arises when the rule is not in force and efficacious at the same time, that
is, when t f 6= te. To overcome such issue, a solution is to use the notion of tempo-
ral viewpoint. Temporal viewpoints are of the utmost importance when one has to
deal with retroactive or ultra-active. Roughly, an ultra-active norm involves a time
of efficacy which is posterior to the time of force, while a retroactive norm involves
a time of efficacy which is anterior to the time of force.1 In our example, the rule
r is applicable in the logical sense if, in a first temporal viewpoint, α holds when
the rule r is in force, and, in a second temporal viewpoint, holds when the rule r is
efficacious, that is, the rule r is applicable if we have Hold

t f
agHoldte

agα . We express
this by the following temporal detachment:

Hold
t f
agHoldtα

agα,
r: Holdt

agα ⇒ Holdt
agβ ,

Hold
t f
ag f orce(r),

Hold
t f
agHoldte

age f f icacious(r),
tα = te

Hold
t f
agHoldtα

agβ

(6.27)

1 Retroactive laws are sometimes referred in the literature as ex post facto laws. Notice that
in some domains, retroactive rules are not permitted. This is the case of criminal law, where
the principle “Nullum crimen, nulla poena sine praevia lege poenali” is in most cases ap-
plied (see [142, 143] for an investigation of the justifiability of retroactivity).



6.2 Temporal reasoning schemata 95

For instance, suppose that the rule given in (6.26) is in force in 2007 and effica-
cious in 2006 (thus the rule expresses a retroactive provision). We can instantiate the
schema given in (6.27) as follows:

Hold2007
marioHold2006

mariomember(mario),
r: Holdt

agmember(x)⇒ Obltagcooperate(x),
Hold2007

mario f orce(r),
Hold2007

marioHold2006
marioe f f icacious(r)

Hold2007
marioObl2006

mariocooperate(mario)

(6.28)

Another complication arises when the rule to apply is itself temporalised. For
example, suppose that the rule r: Holdt

agα ⇒ Holdt
agβ holds at time tr:

Holdtr
ag(r: Holdt

agα ⇒ Holdt
agβ ) (6.29)

We assume that the conditions to apply such rule are similar to those we previously
set, but the time tr of the rule has to equal its time of force t f , that is tr = t f . We have
thus the following schema:

Hold
t f
agHoldtα

agα,
Holdtr

ag(r: Holdt
agβ ⇒ Holdt

agβ ),
Hold

t f
ag f orce(r),

Hold
t f
agHoldte

age f f icacious(r),
tr = t f ,
tα = te

Hold
t f
agHoldtα

agβ

(6.30)

For instance, given the policy “In 2007, members are obliged to cooperate”, the facts
that this policy is in force in 2007 and efficacious in 2006, and the statement “In
2007, Mario is a member in 2006”, we can conclude defeasibly “In 2007, Mario is
obliged in 2007 to cooperate.”

Hold2007
marioHold2006

ag member(mario),
Hold2007

mario(r: Holdt
agmember(x)⇒ Obltagcooperate(x)),

Hold2007
mario f orce(r),

Hold2007
marioHold2006

marioe f f icacious(r)

Hold2007
marioObl2007

mariocooperate(mario)

(6.31)

At this stage, the model of temporal reasoning is incomplete with regards to
situation in which some pieces of temporal information are explicitly missing. For
example, suppose that the rule r holding in 2007 is in force in 2007 and efficacious
in 2007. We have the following knowledge base KB:
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KB = { Hold2007
ag α ,

Hold2007
ag (r: Holdt

agα ⇒ Holdt
agβ ),

Hold2007
ag f orce(r),

Hold2007
ag Hold2007

ag e f f icacious(r)}

Following the schema (6.30), we cannot conclude Hold2007
ag Hold2007

ag β whereas we
should intuitively do. How to reconciliate our intuition with the present formaliza-
tion? A solution is to treat time dimensions in a Russian-dolls like fashion. Let us
illustrate it by means of temporal statements as exposed in the knowledge base KB
given above. The first step consists in deriving all the statements holding in 2007 to
constitute a knowledge base KB2007

ag in which any element holds in 2007 from the
viewpoint of agent ag:

KB2007
ag = { α,

r: Holdt
agα ⇒ Holdt

agβ ,
f orce(r),
Hold2007

ag e f f icacious(r)}

The idea is to make derivation using the statements contained in KB2007
ag . At this

stage, the statement α is atemporal while the antecedent of the rule is temporalised.
To overcome such issue, a solution is to consider that α holds in 2007 from the
viewpoint of agent ag since it is in the knowledge base constituted of statements
holding from the viewpoint of agent ag in 2007 . Doing so, we can apply the rule
r: Holdt

agα ⇒ Holdt
agβ (because from the previous step we have Hold2007

ag α) and
hence we can derive Hold2007

ag β . Since the last result holds in the knowledge base
KB2007

ag in which statements hold for 2007, we can conclude Hold2007
ag Hold2007

ag β

which satisfies our initial expectations.
Treating time dimensions in a such Russian-dolls like fashion can be captured by

accepting the reasoning schema according which from an assertion Holdt
agγ we infer

Holdt
agHoldt

agγ:
Holdt

agγ

Holdt
agHoldt

agγ

(6.32)

While the reasoning schema given above permits to reincorporate some intuitions
into our formalization, some other intuitions are not captured in other cases in which
some pieces of temporal information are missing. Consider for example the follow-
ing knowledge base:

KB = { Hold2006
ag α ,

Hold2007
ag (r: Holdt

agα ⇒ Holdt
agβ ),

Hold2007
ag f orce(r),

Hold2006
ag e f f icacious(r)}

Following our approach, the rule r is not applicable and hence we cannot de-
rive Hold2007

ag Hold2006
ag β . To make it applicable, we need explicitly the statement
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Hold2007
ag Hold2006

ag α . A solution is to extend the reasoning schema given in 6.32 so
that Holdt

agγ entails Holdt ′
agHoldt

agγ with t ≤ t ′:

Holdt
agγ,

t ≤ t ′

Holdt ′
agHoldt

agγ

(6.33)

This schema is the inferential counter-part of an introspective schema rule that we
shall introduce later in Section 6.2.3.

Another issue arises when some statements are not associated with any temporal
information at all, for example, when a rule r: Holdt

agα⇒Holdt
agβ is not prefixed

by any temporal operator. To overcome such issue we assume that atemporal state-
ments hold objectively at any time:

γ

Holdt
objγ

(6.34)

where γ is any statement. For example, consider the following knowledge base:

KB = { Hold2007
obj Hold2006

obj α,

r: Holdt
agα ⇒ Holdt

agβ ,

Hold2007
obj f orce(r),

Hold2007
obj Hold2006

obj e f f icacious(r)}
The rule r is not prefixed with any temporal operator, so we instantiate the schema
(6.34) as follows:

r: Holdt
agα ⇒ Holdt

agβ

Holdt
obj(r: Holdt

agα ⇒ Holdt
agβ ).

(6.35)

so that we can conclude Hold2007
obj Hold2006

obj β by means of schema (6.30).

6.2.2 General reasoning schema

In the foregoing, we have identified several types of temporal detachment schemata.
All these detachment schemata can be accounted by a general reasoning schema.
Let Φ denote a sequence of operator (φ ti

i )1..n where φi is an operator Holdag (the
sequence Φ can be empty), and ψ t

ag is any operator. We have:

ΦHold
t f
agψ

te
1ag′α1, . . . ,ΦHold

t f
agψ

te
nag′αn,

ΦHold
t f
ag(r: ψ

t1
1ag′α1, . . . ,ψ

tn
nag′αn ↪→ β ),

ΦHold
t f
ag f orce(r),

ΦHold
t f
agHoldte

age f f icacious(r), . . . ,ΦHold
t f
agHoldte

age f f icacious(r),

ΦHold
t f
agβ

(6.36)
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where ↪→ stands for either→,⇒ or ;.

With the reasoning schema given above, an agent can emulate its own reasoning:
For instance, given that Mario believes in 2008 that, (i) from his viewpoint in 2007,
he was student in 2006, and (ii) the policy indicating that members are obliged to
cooperate holds in 2007, (iii) the policy is in force in 2007 and (iv) is efficacious in
2006, we can conclude defeasibly that Mario believes in 2008 that, from his view-
point in 2007, he was obliged in 2006 to cooperate.

Hold2008
marioHold2007

marioHold2006
mariomember(mario),

Hold2008
marioHold2007

mario(r: Holdt
agmember(x)⇒ Obltagcooperate(x)),

Hold2008
marioHold2007

mario f orce(r),
Hold2008

marioHold2007
marioHold2006

marioe f f icacious(r)

Hold2008
marioHold2007

marioObl2006
mariocooperate(mario)

(6.37)

If an agent can emulate its own reasoning schema then he may also emulate the
reasoning schema of other agents. For instance, giving that Guido believes in 2008
that, (i) from the point of view of 2007, Mario was student in 2006, and (ii) the policy
indicating that members are obliged to cooperate holds in 2007, (iii) the policy is in
force in 2007 and (iii) is efficacious in 2006, we can conclude defeasibly that Guido
believes in 2008 that, from the viewpoint of Mario in 2007, Mario was obliged in
2006 to cooperate.

Hold2008
guidoHold2007

marioHold2006
mariomember(mario),

Hold2008
guidoHold2007

mario(r: Holdt
agmember(x)⇒ Obltagcooperate(x)),

Hold2008
guidoHold2007

mario f orce(r),
Hold2008

guidoHold2007
marioHold2006

marioe f f icacious(r)

Hold2008
guidoHold2007

marioObl2006
mariocooperate(mario).

(6.38)

Next, we account for introspection and reflexion in the temporal setting.

6.2.3 Introspection and reflexion with time

In temporal setting, the reasoning schemata of introspection and emulation given in
Section 5.1.3 must be somewhat adapted.

We assume introspection about statements of the form Φagγ where γ is any state-
ment, and Φ is an element of the set {Holdag, ¬Holdag, Desag, ¬Desag, Bringag,
¬Bringag, Oblag, ¬Oblag, Forbag, ¬Forbag, Permag, ¬Permag, Facag, ¬Facag }. Ac-
cordingly, we have the following defeasible reasoning schema:

Φ t
agγ

Hold[t,max]
ag Φ t

agγ

(6.39)
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where max is the higher boundary of our bounded ordered set of instants of time. For
instance, if Mario believes in 2007 that he will not be a student in 2008, then we can
conclude defeasibly that Mario believes in 2007 that Mario believes in 2007 onwards
that he will not be a student in 2008:

Hold2007
marioHold2008

mario¬student(mario)

Hold[2007,max]
mario Hold2007

marioHold2008
mario¬student(mario)

(6.40)

Inversely, we assume temporal reflexion as follows:

Holdt
agΦ t

agγ

Φ t
agγ

(6.41)

For instance, suppose that Mario believes in 2007 that Mario believes in 2007 that
Mario believed in 2006 that Mario was not a student, we conclude defeasibly that
Mario believes in 2007 that Mario believed in 2006 that Mario was not a student:

Hold2007
marioHold2007

marioHold2006
mario ¬student(mario)

Hold2007
marioHold2006

mario ¬student(mario)
(6.42)

In the foregoing, both phenomena of introspection and reflexion are captured at the
level of reasoning schemata. However, it is arguable that both phenomena are de-
feasible with respect to the substantial content of statements and some preferences.
Since preferences stand between rules, both phenomena of introspection and reflex-
ion are more natural expressed at the rule level. For this reason, the introspection
schema (6.39) shall be replaced by the following defeasible schema rule:

r
Φt

agγ⇒Hold[t,max]
ag Φagγ

: Φ t
agγ ⇒ Hold[t,max]

ag Φ t
agγ. (6.43)

Notice that the schema rule is labeled by its own content to insure its unique labeling,
and so that a preference can be set among rule labels.

Likewise, we replace the schemata (5.20) by the following defeasible schema
rule:

rHoldt
agΦt

agγ⇒Φt
agγ : Holdt

agΦ t
agγ ⇒Φ t

agγ. (6.44)

Beside introspection and reflexion, we assume that given any statement, we can entail
defeasibly that this statement holds objectively at any time, and inversely. Accord-
ingly, we have the following rule:

rγ⇒Holdt
objγ

: γ ⇒ Holdt
objγ, (6.45)

r
Hold[min,max]

obj γ⇒γ
: Hold[min,max]

obj γ ⇒ γ. (6.46)

where min and max are the lower and higher boundaries of a bounded ordered set of
instants of time.
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6.3 Collisions of temporal conclusions

In Section 5.5, standard conflicting sets of modal statements were provided and we
introduced agent types to detect and solve conflicts between the different components
of the cognitive profiles of agents deliberation. In this Section, we investigate sets of
conflicting statements, and how to handle such conflicts in a temporal setting.

6.3.1 Conflicts

We identified in Section 5.5 the criteria defining conflicts between statements. In
a temporal setting, these criteria have to include time. Our assumption is that con-
flicting statements in the temporal setting are those of the atemporal setting posi-
tioned at the same temporal coordinate. Accordingly, let φ be any operator of the set
{Holdag,Desag,Bringag}, we have:

• Conflict(¬φ tγ) = {φ tγ},
• Conflict(φ tγ) = {φ t∼γ}.
• Conflict(Obltagγ) = {¬Obltagγ, Obltag∼γ, ¬Permt

agγ, Permt
ag∼γ, Forbt

agγ},
• Conflict(¬Obltagγ) = {Obltagγ, ¬Permt

agγ},
• Conflict(Permt

agγ) = {Obltag∼γ, ¬Permt
agγ},

• Conflict(¬Permt
agγ) = {¬Obltag∼γ, Permt

agγ, ¬Perm∼γ, Oblγ},
• Conflict(Forbt

agγ) = {Obltagγ, Permt
agγ, Forb∼γ, ¬Forbγ},

• Conflict(¬Forbt
agγ) = {¬Obltagγ, Forbt

agγ, ¬Forbt
ag∼γ},

• Conflict(Fact
agγ)= {Obltag∼γ,¬Permt

agγ,Forbt
agγ,Obltagγ,¬Permt

ag∼γ, Forbt
ag∼γ}.

For example, we have Forb2009
guidomember ∈ Conflict(Perm2009

guidomember), and
Hold2008

marioForb2009
guidomember ∈ Conflict(Hold2008

marioPerm2009
guidomember). However,

Hold2009
marioForb2009

guidomember and Hold2008
marioPerm2009

guidomember do not conflict because
they are not positioned at the same temporal coordinate.

As in the atemporal setting, we can distinguish conflicts valid for any agent and
conflicts specific to some particular agents (see Section 5.5.1). Likewise conflicts
valid for any agent in the temporal setting, we assume that specific conflicts in the
temporal setting are those of the atemporal setting positioned at the same temporal
viewpoints (see Table 6.2).

Furthermore, the epistemic reasoning on atemporal conflicts is extended to the
temporal ones as follows:

• Given Y t
agβ ∈ C ∗onflict(X

t
agγ), we have Holdt ′

objY
t
agβ ∈ C ∗onflict(Holdt ′

objX
t
agγ),

• Given Y t
agβ ∈C ∗onflict(X

t
agγ), we have Holdt ′

agY t
agβ ∈C ∗onflict(Holdt ′

agX t
agγ) such that

t ′ ≥ t,
• Given Holdt

agY t
agβ ∈ C ∗onflict(Holdt

agX t
agγ), we have Y t

agβ ∈ C ∗onflict(X
t
agγ),

• Given β ′ ∈ C ∗onflict(γ) and β ≡ β ′, we have β ∈ C ∗onflict(γ).
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Conflict type Agent type

Forbt
agγ ∈ C ∗onflict(Dest

agγ) Desire-compliant
Forbt

agγ ∈ C ∗onflict(Bringt
agγ) Action-compliant

Dest
ag∼γ ∈ C ∗onflict(Bringt

agγ) Slothful
Holdt

agHoldag∼γ ∈ C ∗onflict(Holdt
agγ) 1-introspective consistent

Holdt
ag¬Holdagγ ∈ C ∗onflict(Holdt

agγ) 2-introspective consistent
Forbt

agγ 6∈ C ∗onflict(Dest
agγ) Desire-deviant

Forbt
agγ 6∈ C ∗onflict(Bringt

agγ) Action-deviant
Dest

ag∼γ 6∈ C ∗onflict(Bringt
agγ) Unstable

Holdt
agHoldag∼γ 6∈ C ∗onflict(Holdt

agγ) 1-introspective inconsistent
Holdt

ag¬Holdagγ 6∈ C ∗onflict(Holdt
agγ) 2-introspective inconsistent

Table 6.2. Types of conflict.

For example, given the specific conflict regarding Mario Forb2008
marioγ ∈

C ∗onflict(Des2008
marioγ), we can derive among others Hold2010

obj Forb2008
marioγ ∈

C ∗onflict(Hold2010
obj Des2008

marioγ) and Hold2010
marioForb2008

marioγ ∈ C ∗onflict(Hold2010
marioDes2008

marioγ).

6.3.2 Preferences

In the atemporal framework, we saw that conflicts between defeasible conclusions
can be resolved on the basis of local preferences expressed by an explicit strength
order between rules or global preferences between types of statements. In the fol-
lowing, we accommodate local and global preferences in our temporal framework.

Concerning local preferences, the determination of the strength order can be in-
formed by the principle lex posterior derogat legi priori according to which a subse-
quent rule derogates the previous one. For instance, consider a fiscal provision stating
that if one has the income in excess of fifty thousand in 2007 then one has to pay the
tax A in 2008. The following formalize it:

Hold[2007,max]
obj (r6.54: Hold2007

ag income(x) > 50⇒ Obl2008
x taxA). (6.47)

The provision enters in force and is efficacious in 2007. Suppose now that, for what-
ever reason, the legislator provides a retroactive provision stating that if one has the
income in excess of fifty thousand in 2007 then one does not have to pay the tax A
in 2008:

Hold[2008,max]
obj (r6.48: Hold2007

ag income(x) > 50⇒¬Obl2008
x taxA). (6.48)

The provision enters in force in 2008 and is efficacious in 2007. Suppose as a fact
that Mario had an income in excess of fifty thousand in 2007:
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Hold[2007,max]
obj Hold2007

obj income(mario) > 50.

Both rules r6.54 and r6.48 are applicable in 2008: the rule r6.54 supports
the conclusion Hold2008

ag Obl2007
mariotaxA and the rule r6.48 supports the conclusion

Hold2008
ag ¬Obl2007

mariotaxA, and thus we obtain a conflict. The rule r6.48 is subsequent to
the rule r6.54 and thus overrides it: we conclude Hold2008

ag ¬Obl2007
mariotaxA and discard

Hold2008
ag Obl2007

mariotaxA.
We do not address explicitly in our framework the principle ‘lex posterior dero-

gat legi priori’, and we assume that a strength order implicitly taking this principle
into account is stabilized between two rules labels in order to indicate the relative
strength of each rule. For example, we write r6.48 � r6.54 to indicate that the rule
r6.48 is stronger than r6.54 and assume that it implcitly accounts for the principle ‘lex
posterior derogat legi priori’.

Nevertheless, preferences over rules can hold from some viewpoints and will
have the form (Xi)1..n(r2 � r1) where Xi is an epistemic operator Holdt

ag. For in-
stance, “It holds objectively in 2008 that r6.48 is stronger than r6.54” is formulated
as:

Hold2008
obj (r6.48 � r6.54).

Accordingly, a conflict between conclusions held from some viewpoints have to be
resolved by some preferences held from the same viewpoints.

The epistemic reasoning on atemporal strength orders is extended to the temporal
ones as follows:

• Given (Xi)1..n(r2 � r1), we have Holdt ′
obj(Xi)1..n(r2 � r1),

• Given Holdt
ag(Xi)1..n(r2 � r1), we have Holdt ′

agHoldt
ag(Xi)1..n(r2 � r1) such that

t ′ ≥ t,
• Given Holdt

agHoldt
ag(Xi)1..n(r2 � r1), we have Holdt

ag(Xi)1..n(r2 � r1).

The first item indicates that any preference holds objectively at any time. The sec-
ond and third item express temporal introspection and reflexion over preferences,
respectively.

The use of local preferences to resolved conflicts are illustrated in Figures 6.2 to
6.9. In each Figure, the literal c holds in the gray areas while ¬c holds in the black
areas, and neither c nor ¬c hold in the white areas.

Concerning global preferences, likewise our assumption that specific conflicts
in the temporal setting are those of the atemporal setting positioned at the same
temporal viewpoints, we assume that global preferences in the temporal setting are
those of the atemporal setting positioned at the same temporal viewpoints (see Table
6.3). We assume similar temporal epistemic inferences:

• Given Y t
agβ ∈Defeat(X t

agγ), we have Holdt ′
objY

t
agβ ∈Defeat(Holdt ′

objX
t
agγ),

• Given Y t
agβ ∈ Defeat(X t

agγ), we have Holdt ′
agY t

agβ ∈ Defeat(Holdt ′
agX t

agγ) such that
t ′ ≥ t,

• Given Holdt
agY t

agβ ∈Defeat(Holdt
agX t

agγ), we have Y t
agβ ∈Defeat(X t

agγ),
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• Given β ′ ∈Defeat(γ) and β ≡ β ′, we have β ∈Defeat(γ).

For example, given Forb2008
marioγ ∈ Defeat(Des2008

marioγ), we can derive among oth-
ers Hold2010

obj Forb2008
marioγ ∈ Defeat(Hold2010

obj Des2008
marioγ) and Hold2010

marioForb2008
marioγ ∈

Defeat(Hold2010
marioDes2008

marioγ).

Defeat type Agent type

Forbt
agγ ∈Defeat(Dest

agγ) Desire-social
Dest

agγ ∈Defeat(Forbt
agγ) Desire-unsocial

Forbt
agγ ∈Defeat(Bringt

agγ) Action-social
Bringt

agγ ∈Defeat(Forbt
agγ) Action-unsocial

Dest
agγ ∈Defeat(Bringt

ag∼γ) Willful
Bringt

agγ ∈Defeat(Dest
ag∼γ) Involuntary

Table 6.3. Types of defeat.

Finally, as in the atemporal setting, we assume that a global preference hold by
default in the sense that if a local preference is in contradiction with the later then
the local preference take precedence over the global preference.

6.4 Normative modifications

Following [157], a legal system is defined as a set of documents fixed at a defined
time t and which have been issued by an authority and whose validity depends on
rules that determine, for any given time, whether a single document belongs to the
system. Formally:

LS(t) = {D1(t),D2(t),D3(t), . . . ,Dn(t)} (6.49)

where Dn(t) denotes a document at a fixed time t in a discrete representation.

A normative system, in turn, takes the documents belonging to a legal system and
organizes them to reflect their evolution over time. A normative system should there-
fore be more precisely defined as a particular discrete time-series of legal systems
that evolves over time. In formal terms:

NS = {LS(t1),LS(t2),LS(t3), . . . ,LS(t j)} (6.50)

Changes of a normative system over time can be effected by normative modifica-
tions. Normative modifications are provisions which modify other provisions or the
arrangement of provisions inside a normative system.
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Fig. 6.2.
Hold[50,150]

ag (r: ⇒ Hold[50,150]
ag c),

Hold[75,125]
ag (s: ⇒ Hold[75,125]

ag ¬c),
>= ∅.
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Fig. 6.3.
Hold[50,150]

ag (r: ⇒ Hold[50,150]
ag c),

Hold[75,125]
ag (s: ⇒ Hold[75,125]

ag ¬c),
>= {s� r}.
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Fig. 6.4.
Hold[50,150]

ag (r: ⇒ Hold[50,150]
ag c),

Hold[75,125]
ag (s: ⇒ Hold[75,125]

ag ¬c),
>= {s≺ r}.
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Fig. 6.5.
Hold[50,150]

ag (r: ⇒ Hold[50,150]
ag c),

Hold[25,125]
ag (s: ⇒ Hold[25,125]

ag ¬c),
>= ∅.
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Fig. 6.6.
Hold[50,150]

ag (r: ⇒ Hold[50,150]
ag c),

Hold[25,125]
ag (s: ⇒ Hold[25,125]

ag ¬c),
>= {s≺ r}.
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Fig. 6.7.
Hold[50,150]

ag (r: ⇒ Hold[50,150]
ag c),

Hold[25,125]
ag (s: ⇒ Hold[25,125]

ag ¬c),
>= {s� r}.
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Fig. 6.8.
Hold[50,150]

ag (r: ⇒ Hold[50,150]
ag c),

Hold[25,125]
ag (s: ⇒ Hold[75,175]

ag ¬c),
>= ∅.
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Fig. 6.9.
Hold[50,150]

ag (r: ⇒ Hold[50,150]
ag c),

Hold[75,175]
ag (s: ⇒ Hold[25,125]

ag ¬c),
>= ∅.
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6.4.1 Categorization of modifications

A well-documented analysis of normative modifications can be found in [155]. The
modifying provision is called the active provision, while a modified provision is
called the passive provision. The identification of the passive norms is generally done
by means of a normative reference. If the reference is complete and accurate then the
reference is said to be explicit, whereas if the reference is incomplete or not accurate
then it is said implicit. Furthermore, if both the modifying action and the passive
norm are certain, then the corresponding modification is explicit. Accordingly, im-
plicit modifications are any modification whose the modifying action is uncertain or
the passive norm is implicit. Implicit modifications are classically introduced by a
formula of the form “All norms in conflict with present article are hereby repealed”.

There exist different types of modifying actions. We adopt the categorization
provided in [155], and accordingly, normative modifications are divided in two broad
categories:

• norm-specific modifications, and
• legal-system modifications.

These top level categories are then refined into sub-categories and these in turn into
a third level which specifies types of modifications (see Table 6.4).

Table 6.4. Categorizations of normative modifications

First level Second level Third level
Norm-specific modification Modifications of content Textual modifications

Modifications of meaning
Modifications of scope Derogations

Extensions
Temporal modifications Modifications of force

Modifications of efficacy
Legal-system modification

Norm-specific modifications modify other normative provisions or normative
acts singly. Modifications on a single disposition can be further classified as below.

• Content modifications which can be further classified into modifications of mean-
ing and textual modifications. A modification of meaning modifies the meaning
of a provision without modifying the text of it. A textual modifications modifies
the text of the passive provision. Textual modifications includes substitutions,
integrations, relocations and repeal.

• Modifications of scope do not alter the text but restrict or extend the range of
application of the passive provision. Modifications of scope includes derogations
and extensions.
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• Temporal modifications impact on the time of force, the time of efficacy of the
passive provisions. Examples of modifications of the time of force are annul-
ment, renewal, prorogations, initiation and termination of the period of force.
Modifications of the time of efficacy includes prorogation, suspension, initiation
or termination of the period of efficacy,

Legal-system modifications modify the relationships between the norms included
in a legal system instead of a single norm. Such modifications generally occur by
altering the normative functions of the passive provisions. An example is the rati-
fication of an international treaty: the treaty is already in force in international law
and must be integrated to the Italian normative system by means of a ratification. An-
other example is about the relations holding between delegating norms and delegated
norm, as when a government issues an emergency legislative decree by delegation
by the parliament. A delegated norm does not have any reason exist without a con-
stitutional relation with a delegating norm.

6.4.2 Temporal dimensions of modifications

As any provision, a modificatory provision has a time of force and a time of efficacy.
The period of force is the time during which the modificatory provision partakes in
the normative system. The time of efficacy is (i) for unconditioned provisions, the
time of application of the modification (see below) (ii) for conditioned provisions,
the time associated to the conditions. We distinguish two times with respect to mod-
ifications:

• the time of the application of the modification associated to the modifying action
itself, and

• the time of the effect of the modification associated to the effect of the modifying
action.

Note that for an unconditioned modificatory provision, the time of the application
of the modification is the time of legal efficacy of the provision. Hereafter, as an
unconditioned provision is modeled for our purposes as a rule with empty conditions,
the time of efficacy shall always refer to the time of conditions of the rule. If the
conditions are empty, then there is no need to specify the time of efficacy, and the
time of legal efficacy shall correspond to the time of the application.

In general, the time of force, the time of the application of the modification, and
the time of effect of the modification coincide, but in some cases they are different
as for example retroactive modifications or modifications in the past.

• A modification is retroactive if the time of causation of the modification is in the
past w.r.t. the time of force.

• A modification is ultra-active if the time of causation of the modification is in
the future w.r.t. the time of force.

• A modification is in the past if the time of causation of the modification and its
time of force are contemporaneous and the time of the effect of the modification
is in the past w.r.t. the time of force.
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• A modification is in the future if the time of causation of the modification and its
time of force are contemporaneous and the time of the effect of the modification
is in the future w.r.t. the time of force.

Examples of modification in the past and in the future are illustrated in the Tables
6.5 and 6.6 respectively.

Table 6.5. An example of modification in the past.

Art. 3
The article 45 of the Act n.20/2004 is substituted as following from the 1st January 2005.

“Art. 45
1. All the citizen with three children in 2009 should be have a discharge
of the tax of 3000 Euro in 2010”

Art. 15
This act enters into operation the 1st January 2006.
Time of enter into force: 1st January 2006.
Time of efficacy: 1st January 2006.
Date of the application of the modification: 1st January 2006.
Date of the effect of the modification: 1st January 2005.

Table 6.6. An example of modification in the future.

Art. 3
The article 45 of the Act n.30/2006 is repealed from the 1st January 2008.

Art. 10
This act enters into operation the 1st June 2007.
Time of enter into force: 1st January 2007.
Time of efficacy: 1st June 2007.
Period of the application of the modification: 1st June 2007.
Time of the effect of the modification: 1st January 2008.

6.4.3 Temporal modifications

A temporal modificatory provision shall be modeled as a conditional statement
relating some conditions α1 . . . αn to a temporal modification represented as

Hold[t1,t2]
ag Hold[t ′1,t ′2]

ag β where β stands for f orce(r), ¬ f orce(r), e f f icacious(r) or
¬e f f icacious(r), depending on the type of temporal modifications. The modified
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provision is represented by the rule label r. The interval [t1, t2] represents the time of
the application of the modification while the interval [t1, t2] captures the time of the
effect of the modification.

r: α1 . . .αn⇒ Hold[t1,t2]
ag Hold[t ′1,t ′2]

ag β . (6.51)

For example, the unconditioned abrogation in 2007 of a provision represented by the
rule r can be formulated as:

mr: ⇒ Hold[2007,max]
ag Hold[2007,max]

ag ¬ f orce(r). (6.52)

The unconditioned suspension between [2007,2008] of a rule r can be formulated as:

mr: ⇒ Hold[2007,2008]
ag Hold[2007,2008]

ag ¬ f orce(r). (6.53)

A modification can be ultra-active or retroactive. A type of retroactive modifications
deserving special attention concerns modifications subverting from the outset (ex-
tunc) all the effects of the passive provision in the meantime (i.e. from the time of
its entry into force to the time the modification is set forth). Often cited ex-tunc
modifications are annulments (e.g. the lapsing out of force of a legislative decree)
and abrogations that cancels out all the earlier effects since the passive provision
came into force.

Let’s illustrate an ex-tunc annulment. Consider the fiscal provision stating that if
one has an income in excess of fifty thousand in 2007 then one has to pay the tax A
in 2008. The provision exists and is in force in 2007 onwards.

Hold[2007,max]
obj (r6.54: Hold2007

ag income(x) > 50⇒ Obl2008
ag taxA),

Hold[2007,max]
obj f orce(r6.54).

(6.54)

Suppose this provision is accompanied by the provision stating that if the tax A is
due in 2008 then she does not have to pay the tax B in 2008. This provision exists
and is force in 2007 onwards.

Hold[2007,max]
obj (r6.55: Obl2008

ag taxA⇒¬Obl2008
ag taxB),

Hold[2007,max]
obj f orce(r6.55).

(6.55)

Suppose now that, for whatever reason, the legislator annuls in 2008 the first provi-
sion (rule r6.54). The annulment exists and is in force in 2009 (we do not indicate the
time of efficacy since the annulment is unconditioned).

Hold[2009,max]
obj (r6.56: ⇒ Hold[2008,max]

obj Hold[2008,max]
obj ¬ f orce(r6.54)),

Hold[2009,max]
obj f orce(r6.56)

Hold[2009,max]
obj Hold[2008,max]

obj Hold[2008,max]
obj f orce(r6.54).

(6.56)

Suppose that Mario had an income in excess of seventy thousand in 2007: the rules
r6.54 and r6.55 can be applied. From the viewpoint of 2007, Mario has to pay in
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2008 Tax A, and hence by applying r6.55, Mario does not have to pay in 2008 Tax
B. In year 2009, the annulment is applied: the first fiscal provision with its effects
disappear from the normative system. Hence, from the viewpoint of 2009 onwards,
we cannot derive anymore that Mario has to pay in 2008 Tax A, and consequently
Mario does not have to pay Tax B in 2008.

6.4.4 Textual modifications

Textual modifications operate in a first level in which provisions are expressed
in natural languages such as English, French etc. For example, a substitution
replaces usually a piece of text expressed in natural language with another piece
of text. Automation of textual modifications at this level are usually found into
traditional consolidation techniques (see e.g. [30]) in which the logic formalization
of provisions and the associated formalized reasoning play no role. As our aim is
to formalize legal reasoning under logical forms, we limit textual modifications to
operate in a second level in which provisions are formalized. We cannot address
here the correspondence from the first level to the second level, and will investigate
textual modification in the latter only. This formal reduction allows us to analyze
modifications in way which can be discussed, for example to clarify temporal
aspects, and which can be used in autonomous norm-governed multi-agent systems
in which agents can modify norms autonomously.

A textual modificatory provision can be modeled as a conditional state-
ment relating some conditions α1 . . .αn to a textual modification captured by
textual modi f ication:

r: α1 . . .αn⇒ Holdt
objHoldt ′

objtextual modi f ication. (6.57)

where t is the time of application of the modification, and t ′ is the time of effect of the
application. The proper textual modification textual modi f ication shall be modeled
as a function that takes as input the passive provision to be modified and outputs the
corresponding modified provision. In the remainder, we shall focus on any kind of
modification that can be reduced to a textual substitution. Textual substitutions as
“substitute in rule r the string string1 by string2” can be formulated as:

Holdt
agHoldt ′

agsubstitute(r,Cont(r),string1,string2). (6.58)

where t is the modification time, and t ′ is the application time, and Cont(r) is the
string corresponding to the serialization of the content of the rule r. The substitution
returns a string Cont ′(r) corresponding to the serialization of the new content of the
rule r in which a specified substring string1 has been replaced with another substring
string2. Accordingly, we provide below the temporal reasoning schema:

Hold
t f
agHoldtm

agHoldts
ag(r: Cont(r)),

Hold
t f
agHoldtm

agHoldts
agsubstitute(r,Cont(r),string1,string2))

Hold
t f
agHoldtm

agHoldts
ag(r: substitute(r,Cont(r),string1,string2)).

(6.59)
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Let us illustrate the above reasoning schema. Consider, for example, a reform of
pension system made in 2007 stating that 60 years old people can no longer retire.

Hold[2007,max]
ag (r: Holdt

ag60 years old(x)⇒¬Permt
xretire(x)). (6.60)

Suppose that a new government deliberates in 2008 to modify the above provision.
Formally, the modification consists in a substitution of ¬Perm by Perm, its modifi-
cation and application time is in 2008.

Hold2008
ag Hold2008

ag substitute(r,Cont(r),¬Perm,Perm). (6.61)

By instantiating the above schema we shall obtain:

Hold[2008,max]
obj Hold[2008,max]

obj (r: Holdt
ag60 years old(x)⇒¬Permt

xretire(x)),

Hold[2008,max]
obj Hold[2008,max]

ag substitute(r,Cont(r),¬Perm,Perm))

Hold[2008,max]
obj Hold[2008,max]

obj (r: Holdt
ag60 years old(x)⇒ Permt

xretire(x))
(6.62)

A modification can apply only if some constraints are fulfilled and, in some
scenarios a modification cannot apply. In the remainder of this Section we investigate
such constraints and pathological scenarios. In order to ease the discussion, we shall
abstract from temporal references in the following, and assume that things hold at
the same instants.

The most obvious constraint to modify a rule r is that this rule has to be present
in the set of rules. In other words and more generally it is not possible to modify
something that does not exist: for example, we cannot apply usually in sequence
a substitution on the same rule. Notice that this assumption does not constrain the
modified rule to be in force: indeed we can modify a provision which is not yet in
force.

Other cases in which a modification cannot be applied, are those in which textual
modifications conflict. Consider for example the following rules:

r4: a⇒ b,
r5: ⇒ substitute(r4,Cont(r4),⇒ b,; x),
r7: ⇒ substitute(r4,Cont(r4),⇒ b,; d).

(6.63)

Clearly, the rule r5 and r7 conflicts. How to solve this conflict? If the rule r5 is
stronger than r7, then, intuitively, the substitution involved by the rule r7 should ap-
ply. However, if no superiority relation holds between the rules, then conflicts are
more delicate to handle. Two approaches are possible. A first possibility is an ‘am-
biguity propagation’ flavored approach in which any scenario applying the modifi-
cations is parsed. For example, given the above rules r4, r5 and r7 then we could
derive:

r4: a ; c,
r4: a ; d.



112 6 Temporal model

A second approach is an ‘ambiguity blocking’ approach, that is, no modification
at all is applied. If no modification is applied then the question arises whether the
target rule should be derived. In a cautious approach as ‘ambiguity blocking’, it is
coherent to block the derivation of the target rule, but it is nevertheless possible to
consider a weak ‘ambiguity blocking’ approach with which the unmodified target
rule is derived. In the following, only the strong “ambiguity blocking” approach
is considered to favor legal cautiousness and the principle that a rule cannot have
different content, or in other words, we cannot derive two rules with the same label
(and at the same time) with different content. Hence, several modifications applying
on the same rule may not imply that they conflict. Indeed, consider the following
rules:

r8: e⇒ f ,
r9: ⇒ substitute(r8,Cont(r8),⇒ f ,; g),

r10: ⇒ substitute(r8,Cont(r8),e,d).

then, we should be able to derive:

r8: d ; g,

In general, conflicts between modifications occur when they apply on the same ele-
ment of a rule. If some modifications apply on different elements of a rule then they
may not conflict. However, even if they do not conflict then pathological situations,
in which the content of a rule is instable, may also arises. For example, consider the
following rules:

r11: e⇒ f ,
r12: ⇒ substitute(r11,Cont(r11),⇒ f ,; g),
r13: ⇒ substitute(r11,Cont(r11),; g,⇒ f ).

We can apply first r12 on r11, then r13, then r12 and so on. In such pathological
cases, according to the principle that a rule cannot have different contents, neither
r11: e⇒ f nor r11: e ; g should be derived. Another pathological case occurs when
a rule triggers its own modification. For example, consider the following rule:

r15: f ⇒ substitute(r15,Cont(r15),e,d).

Self-modification can also occur indirectly when the consequent of a rule triggers a
second rule modifying the first:

r14: e⇒ f ,
r15: f ⇒ substitute(r14,Cont(r14),e,d).

In such a complex setting, the formalization of textual modification requires a com-
plex formalization. Importantly, the automation of legal consolidation of provisions
expressed in natural languages requires more than such complex formalization:
indeed, it also requires the automation of the correspondence between (i) textual
modifications operating on provisions expressed in natural languages, and (ii)
textual modifications operating on formalized provisions.
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In normative multi-agent computer systems, if textual modifications aim at the
modification of normative rules then the formalization of such textual modifications
seems unnecessary. The reason lies in the observation that textual modifications can
be emulated by the abrogation of the rule to be modified and the introduction of a
new rule similar as the modified rule would be. Doing so, a complex formalization
is avoided and replaced by much more efficient mechanisms to modify normative
systems.





Part III

Formal





7

Logic formalization

In the previous Part, an informal model accounting for the interaction between nor-
mative systems and cognitive agents is proposed. In this Part, we move on its formal-
ization, by stating formal rules governing classes of expressions, as a step toward an
implementation.

Many formalizations can be provided, and a selection has to be made on some
features as soundness and completeness of course, but also computability, expres-
siveness, and ergonomics. Next, in Section 7.1, the appropriateness of logic to for-
malize legal reasoning as it can be often argued in the literature (e.g. see [191]) is
briefly introduced. The following Sections take a gentle tour through well-known
logic formalisms, and for each formalisms, its appropriateness for our purpose is
investigated.

7.1 Logic and law

The use of logic to formalize legal reasoning preceded the use of computers. For ex-
ample, S. Kanger [111] and L. Lindhal [123] investigations on normative positions
formalized C. Hohfeld’s account of complex normative concepts as duties and rights
[104]. C. Alchourrón and E. Bulygin [2] used logic to analyze normative systems.
With the arrival of computer applications for the legal domain, and especially artifi-
cial intelligence applied to it, logic has been used as the major tool to formalize legal
reasoning and has been developed in many directions. Next, the appropriateness of
logic to formalize legal reasoning as it can be often discussed in the literature (see
e.g. G. Sartor in [191]) is briefly introduced.

7.1.1 Legal reasoning as deductive reasoning

An initial attraction between law and logic comes from the analogy between the
logical deduction of a conclusion from a set of axioms, and the justification of a
decision from legally binding sources. This analogy stems from the way both jurists
and logicians may proceed to master a system by specifying rules that give account



118 7 Logic formalization

of this system. In this regard, G. Sartor in [191] quotes C. Perelman and L. Olbrechts-
Tyteca [160]’s description of such logical approach:

[An approach], which may be called logical, is that in which the primary
concern is to resolve beforehand all the difficulties and problems which can
arise in the most varied situations, which one tries to imagine by applying the
rules, laws and norms one is accepting. This is usually the approach of the
scientist, who tries to formulate laws which appear to him to govern the area
of his study and which, he hopes, will account for all the phenomena which
can occur in it. It is also the usual approach of someone who is developing
a legal or ethical doctrine and who proposes to resolve, if not all the cases
where it applies, at least the greatest possible number of those with which
one might be concerned in practice. The person who in the course of his life
imitates the theorists we have just referred to is regarded as a logical man,
in the sense in which the French are logical and the English are practical.
The logical approach assumes that one can clarify sufficiently the ideas one
uses, make sufficiently clear the rules one invokes, so that practical problems
can be resolved without difficulty by the simple process of deduction. This
implies moreover that the unforeseen has been eliminated, that the future
has been mastered, that all problems have become technically soluble.

An agent who has adopted such logical style of decision making, is guided by
subsuming facts to rules in order to derive the relevant decisions. Such view is
adopted typically by computer legal rule-based systems (see Section 2.2.2), and for
example, M. Sergot et al. in [199] formalized convincingly the British Nationality
Act using logic programming techniques. However, such deductive view may raise
several problems which are briefly discussed below.

Firstly, in many cases, (legal) decision making cannot merely reach by subsum-
ing facts to rules since such rules may not exist. For example, legislators drafting
normative texts cannot envisage all the circumstances in which they will be applied
so that the law can result ‘incomplete’. In more general terms, it is argued that since
the law has for object a world which is inherently not fully observable in space and in
time, which is dynamic and unpredictable, the deductive logical approach is deemed
to fail.

A response consists in arguing that a deductive reconstruction of legal reasoning
represents a normative model, rather than a mere description of legal practice, so
that logic formalisms are intended as an ideal instead of a description of real legal
practice. Close to this position, another response lies in the proposition that logic
formalisms are meant to reconstruct the external justification phase of decision
making instead of guiding an internal derivation of decisions.

A second objection related to the first on the incompleteness of the deductive
model concerns the fact that classical logic formalisms are monotonic, that is, the
addition of new premises as new evidences or new rules cannot invalidate formerly
derived conclusions. The monotonicity of classical logics really matters if we ob-
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serve that, for example, to overcome legal incompleteness, a first law is usually pro-
vided with general scope, and then exceptions are added so that the law can fit better
to the diverse actual situations.

The usual response to this objection on the monotonicity of classical logic
formalisms holds in the consideration that logic formalisms can be conceived
to feature non-monotonicity, that is, the addition of new premises can invalidate
formerly derivable consequences (see Section 7.4).

A third objection related to the second lies in the observation that conflicts are
central to the law but classical logic systems do not handle such conflicts since they
aim at avoiding inconsistencies and that they do not permit reasoning with such in-
consistencies.

Though this objection is valid for classical logics, it does not apply in general on
the light of recent development on logics (particularly in non-monotonic logics) in
which reasoning with inconsistent information is possible.

A fourth objection about the deductive view dwells on the observation that logic
deals primarily with the truth property of descriptive sentences. However, norms
like imperatives are often not understood as neither true nor false. For example, the
sentences as ”Leave the room!” or ”You can enter the room” are not intented to
describe some aspects of the world. It has been argued that if they are not descriptive,
then they cannot have truth-values, and by consequence be compounded by truth-
functional connectives as in classical logics. Hence, though a logical study of norms
may intuitively exist, there cannot be a logic of it. This is the Jörgensen’s dilemma
(from the name of the Danish legal theorist J. Jörgensen who discussed it, see [108]).

A response is that the central notion of logic is the idea of inference, rather than
the notion of truth-value. On this view, logic as a inference tool can be applied to
imperative norms. Another related response is based on the classical distinction be-
tween norms and normative statements as recalled by J. Hansen et al. in [101]:

Though norms are neither true or false, one may state that according to the
norms, something ought to be (be done) or is permitted: the statement “John
ought to leave the room”, “Mary is permitted to enter”, are then true or
false descriptions of the normative situation. Such statements are sometimes
called normative statements, as distinguished from norms.

Accordingly, a possible logic can be used to reason about normative statements
reflecting logical properties of underlying norms.

A fifth objection is based on the observation that legal reasoning requires more
than deduction but, for example, also analogy or induction.

This objection is the basis of some works aiming at combining different types
of reasoning. For example, A. Gardner in [207] has proposed to combine rule and
case-based approaches, in the sense of using cases when the rules run out. In [173],
H. Prakken and G. Sartor have shown that case-based reasoning may be embedded in
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the theory of defeasible argumentation which is usually used in rule-based reasoning
system.

7.1.2 Logic as a tool to remove impreciseness

Another argument supporting the use of logic in the legal domain is rooted in the
tradition of positivism where law is expected to be more certain and less ambiguous:
logic formalisms can appear as a tool for removing impreciseness from the legal
discourse. For example, the use of propositional logic for representing legal texts
was advocated by L. Allen in [6] arguing that the syntax of propositional logic
would enable legal drafters to avoid unintended syntactical ambiguities, and so
prevent litigation. If syntactical impreciseness is a possible source for different
interpretations, then logic could, for example, constrain the arbitrariness of some
human discretional decision-making.

However, this view was also largely criticized by observing that logic formalisms
can hardly capture the rich expressiveness of natural language in which legal pro-
visions are generally stated (on this point see e.g. G. Sartor’s investigations in
[189, 186, 188]). This observation goes in pair with the issue of legal interpreta-
tion which is critical when laws is formulated deliberately in an rather elastic and
evasive way. Indeed, as well remarked by R. Borruso in [39]:

Specie nei regimi democratico-parlamentari, ove i governi sono sorretti
da maggioranze poltiche instabili costituite dalla coalizione di partiti molto
spesso diversi per ideologia, la necessità di trovare un accordo basato sul
compromesso spinge spesso a formulare le leggi in maniera evasiva o elas-
tica propio perché, altrimenti, l’accordo non si raggiungerebbe. Ma un tal
modo di legiferare aumenta sempre piu - patologicamente - l’importanza
della giurisprudenza e da ai giudici un potere enorme. Perché, [...] mediante
l’interpretazione della legge, come di qualsiasi altro testo scritto in linguag-
gio naturale, si può integrare o ridurre o comunque modificare e, in taluni
casi limte, capovolgere la portata di una norma, tantoché non è affatto az-
zardato definire creativo nel senso piu completo del termine, l’intervento
della guirisprudenza.

So, even if legal provisions are certain, in practice, legal reasoning is characteristi-
cally uncertain and that refers traditionally to the pervasive problem of so-called open
texture. The problem of open texture arises when the conditions for the application of
a legal disposition are not straightforward, but instead are left to the discretion of the
reasoner. Attempts to deal with open texture have led to distinguish different types
of open texture. The most common types of open texture identified in the literature
refer to ambiguity and vagueness.

Open texture as ambiguity refers to terms that can have more than one definition.
For example, the ambiguous legal term ‘valid’ can have many meanings as illustrated
by the long on-ongoing debate among philosophers of law.
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Vagueness means that it is not always clear whether a legal term should apply to
a concrete fact situation. Vague concepts are not black or white with precise bound-
aries: though there are central prototypical cases whose classifications seem clear,
concept boundaries are gray zones and contains cases with viable competing inter-
pretations. The substantial difference between vagueness and ambiguity is subtle and
might be illustrated by observing that vagueness often come to light only when legal
language is confronted with a concrete case whereas ambiguity can be detected a
priori with a dictionary.

Ambiguity and vagueness can involve classification difficulties as well illus-
trated by H. Hart in [102] considering a local provision that prohibits vehicles from
entering a municipal park. While the concept of vehicles can be expected to apply
to automobiles with little disagreement, there are a number of cases for which the
application of the statute is debatable as for example a bicycle.

The wide acceptance that these types of open texture are distinct to each oth-
ers has led to different techniques (see e.g. [161] for some investigations), but as
remarked by T. Bench-Capon and P. Visser in [29], the analytic diagnosis of open-
texture has led to an isolation of these techniques and few works attempt to combine
the forces of each.

7.1.3 Logic for norm-governed computer systems

Due to the many barriers as pointed out by the sketchy discussion given above, and
as a matter of fact, the use of logic to model real-life legal reasoning is limited, and
S. Haack in [99] questioning the prospects of logic in the law, answers “something
but not all” (to which the jurist and logician E. Bulygin replies in [49] by “not all,
but more than something”). Another prospect is norm-governed computer systems
for which works on logic in the law could provide simply a lot.

Indeed, norm-governed computer systems require solid theorical basis but does
not need all the subtleties of real-life legal reasoning as, for example, open texture.
Hence, norm-governed computer systems could profit of the logical analysis and
techniques developed for modeling legal reasoning in order to formalize simple nor-
mative systems tailored to govern computer systems. This view is in line with R.
Conte at al. in [58] who investigate how to fill the gap between the frameworks of
autonomous agents and legal theory. Indeed as pointed out by R. Conte at al., though
some gaps exists between these two frameworks in terms of language and formalisms
used, theories of reference, objectives etc., normative multi-agent systems requires
integrating works in the legal and multi-agent domains. R. Conte at al. in [58] argues:

Most problems concerning regulation of the interaction of autonomous
agents are linked to issues traditionally addressed by legal studies, and
specifically, by legal doctrine and legal theory [. . . ]. This is no surprise,
since law is the most pervasive and developed normative system, and it is
typically concerned with the government of autonomy: the fundamental task
of the law is exactly that of providing normative reasons which may restrain
and co-ordinate the behaviour of autonomous agents, [. . . ].
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In this view, if the interaction between normative systems and software cognitive
agents requires integrating works in the legal and multi-agent domains then this
integration can be strongly facilitated by a common formalism appropriate for both
domains. It is with this idea in mind that we shall propose in the next Chapters a
formalism based on defeasible logic.

In the remainder of this Chapter, as many criticisms were the occasion for many
scholars to face new challenges that resulted in developments of more adequate log-
ical techniques, we present briefly the most studied logic formalisms with respect to
our purposes.

7.2 Classical logics

By classical logics, we intend to mean the class of formal logics that have been
most intensively studied and most widely used. We shall focus on the two most
well-known of them, namely classical propositional logic and (classical) first-order
predicate logic.

7.2.1 Classical propositional logic

Classical propositional logic, also known as propositional calculus or sentential
logic, aims at studying ways of combining propositions, statements or sentences
to build more complex propositions, statements or sentences. Note that the term
‘proposition’ is here used synonymously with ‘statement’ and ‘sentences’ while it
is sometimes intented as an higher abstraction level to name different statements or
sentences which express the same thing. For instance, the English statement, “Mario
is a student”, its translation statement in French “Mario est un étudiant”, would be
considered as the same proposition. For the purposes of our presentation, the term
‘proposition’, ‘statement’ and ‘sentences’ are used interchangeably.

In any natural language, a statement rarely consists of a single word, instead a
statement would be generally composed of a subject along with a verb. Propositional
logic considers instead atomic statements, i.e. statements as indivisible wholes, and
build complex statements which combine atomic statements.

To build formulas, we assume alphanumeric symbols as a,b,c . . . ,0,1,2, . . . , and
any symbol or sequence of such symbols is an atomic formula (or atom or proposi-
tional variable). For instance, the following are formulas:

student,

over 25.

As notation, we shall use Greek letters α,β . . . as meta-variables ranging over for-
mulas. The assignment of truth-values of atomic formulas is called an interpretation
(or a valuation), that is, an interpretation I in propositional logic assigns to each
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atomic formula a truth-value (false or true).

Propositional logic aims at studying ways of combining propositions, but such
combinations are limited to statements in which the values of truth of complex state-
ments depend on the values of truth of its constituting statements. Hence, a crucial
question is what are these combinations. They are 16 possible combinations for two
propositional variables γ and β . These combinations can be listed as a table, each
line of which expresses a possible combination of truth-values for the simpler state-
ments to which the combination applies, along with the resulting truth-value for the
complex statement formed in each combination [98]:

γ β 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Each combination ‘connects’ the truth-value of a complex statement with respect to
the truth-values of its constituting statements, and at each combination is associated
a connective operator. An extensive approach would be to define 16 connectives
corresponding to the 16 possible combinations. Another approach, and it is the ap-
proach commonly adopted, is to chose adequate primitive connectives from which
other combinations can be built. A primitive connective is traditionally the negation
symbolized by ¬ which inverses the truth-value of a proposition and which is asso-
ciated to the following truth table:

γ ¬γ

1 0
0 1

The second primitive connective is traditionally either the conjunction or the dis-
junction respectively symbolized by ∨ and ∧. Well-formed formulas using the con-
nectives ∨ and ∧ have the form γ ∨ β and γ ∧ β respectively. These connectives
correspond to the following truth tables:

γ β γ ∨β

1 1 1
0 1 1
1 0 1
0 0 0

γ β γ ∧β

1 1 1
0 1 0
1 0 0
0 0 0

Note that the conjunction or the disjunction can be defined by means of the other and
the connective negation. Indeed, it is easy to see that the compound statement γ ∧β

has the same truth-value than the statement ¬γ ∧¬β .
In order to have more compact formula, two other connectives ⊃ and ≡ can be

introduced, keeping in mind that we could define others. Well-formed formula using
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the connective ⊃ have the form γ ⊃ β and have the same truth-value than ¬γ ∨β .
Hence the truth table of ⊃ is the following:

γ β γ ⊃ β

1 1 1
0 1 1
1 0 0
0 0 1

Well-formed formula using the connective≡ have the form γ ≡ β and have the same
truth-value than (γ ⊃ β )∧ (β ⊃ γ). Hence the truth table of ≡ is the following:

γ β γ ≡ β

1 1 1
0 1 0
1 0 0
0 0 1

In the case of propositional logic, a semantics provides an univoque and formal
meaning to the different connectives and this univocal and formal meaning to the
different connectives is specified by the above truth tables. An interpretation of a
formula α (i.e. as we have seen previously the assignment of truth values of atomic
formulas) is a model of α if and only if the interpretation I of the atomic formulas
constituting α assigns the truth-value true to α , and shall be noted I |= γ . A formula
γ is said valid if it holds in every interpretation of γ , i.e. I |= γ for all interpretations
I. To determine whether a formula is true in some interpretations, we can build the
corresponding truth tables, or use some correct (truth-preserving) rules of inferences.
For our purposes, we skip the presentation of such rules of inference because the
analysis of the semantics provides us with enough insights in the adequacy of
propositional logic for ordinary intuitions. Accordingly, it is perhaps worth noting
that in propositional logic, connectives are truth-functional: the truth-value of a
compound sentence depends only on the truth-value of its component. For this
reason, classical propositional logic is said truth-functional, and this property raises
some problems which are discussed in the following.

A first common problem found in the literature is about the restricted interpre-
tation of the material conditional connective ⊃. Since classical propositional logic
is said truth-functional, the truth-value of a material conditional statement is deter-
mined by the truth-value of its constituting statement. This is perhaps more visible if
one calls back that a material conditional statement γ ⊃ β is equivalent to (¬γ)∨β .
As a consequence, a material conditional γ ⊃ β is true if its antecedent γ is false.
For example, since the statement the earth revolves around the moon is false, the
following material conditional is true:

¬the earth revolves around the moon⊃ mario is obliged to f ly. (7.1)

Though the above statement is true in the setting of classical propositional logic, we
do not expect it. The source of the issue is that most of ordinary conditionals are not
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material conditionals, i.e. their truth-values do not depend on the truth-values of its
components.

A second criticism related to the former concerns the use of Modus Tollens (Latin
for “the way that denies by denying”), i.e. contrapositive inference. Modus Tollens
consists of the following inference: If γ ⊃ β and ¬β are true, then ¬γ is true. Though
modus Tollens is appreciable for material conditionals, its use is not appropriate
for some other kinds of conditionals, and especially for exceptions. For example,
suppose that the following statement is true:

student ⊃ discount. (7.2)

Suppose that Mario does not have a discount, i.e., the proposition ¬discount is true.
By Modus Tollens, we can infer that Mario is not a student, i.e. the proposition
¬student is true. However, intuitively, we cannot derive that Mario is not a student
because he does have not a discount: indeed he may be for example a student which
is over 25. In general, Modus Tollens is banned from formal defeasible reasoning
and hence from formal legal reasoning.

A third common criticism is based on the fact that being truth-functional guaran-
tees that by additional statements the truth-value of a compound statement does not
change. In other words, no new statement can change the formally computed truth-
value of a statement. As a consequence, the computed truth-value of a statement
cannot be changed on light of further information. To qualify this feature, classical
propositional logic is said monotonic. For example, consider that the informal sen-
tences “if Mario is a student then Mario has a discount” and “Mario is a student” are
respectively formalized as follows:

student ⊃ discount, (7.3)

student. (7.4)

Following the above truth tables, one can infer that the proposition discount is true.
Suppose now that the informal sentences that “if Mario is over 25 years old then
Mario has no discount” and “Mario is over 25 years old” are respectively formalized
as follows:

over 25⊃ ¬discount, (7.5)

over 25. (7.6)

Following the above truth tables, one can infer that the proposition ¬discount is
true. We have hence infer that both discount and ¬discount are true, that is, an
inconsistency.

A fourth criticism which is connected to the previous one lies in the obser-
vation that in classical propositional logic, from a contradiction anything can be
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deduced (this is sometimes expressed in Latin by “Ex Falso Sequitur Quodlibet”).
Indeed, given a contradiction α (i.e. α is always false), we can build the formula
α ∨ β where β is any formula. Since α is false then β is true. For example,
suppose that we have as premise the contradiction student ∧¬student, the formula
(student ∧¬student)∨mario is obliged to f ly is valid and consequently we can
derive that the proposition mario is obliged to f ly is true. The fact that from a
contradiction, anything can be deduced is very important because, though conflicts
(i.e. contradictions) are central to the law, anything cannot derived from them.
Hence, classical propositional logic does not behave appropriately on the handling
of contradictions for our purposes.

A fifth criticism dwells on the observation that many sentences are not truth-
functional by nature. For instance, consider the sentence “Guido believes that Mario
is not a student”. The truth-value of the sentence “Mario is not a student” does not
determine the truth-value of “Guido believes that Mario is not a student”. Similarly,
the truth-value of the statement “it is obligatory that Mario cooperate” does not only
depend on the truth-value of the statement “Mario cooperate”. If we want a logic
that accounts for such sentences, a remedy is that the truth-value of such modal
statements does not only depend of the constituting statements but also to other
statements. We shall see in Section 7.3 that modal logic aims at overcoming such
issue.

Finally, though propositional logic can deal with many forms of statement and
inference, some others cannot be captured by propositional logic. For instance, the
well-known syllogism which from “All men are mortal” and “Socrate is a man”
derives “Socrate is mortal”, cannot be accounted for in propositional logic. More
generally, those forms of reasoning involving such words as “For all” or “There
exists”, cannot be formalized in propositional logic. Such limitation really matters for
normative reasoning since norms are usually addressed to multiple agents, each agent
instantiating the norms to its own condition. To capture these forms of reasoning,
propositional logic can be extended into a logic called predicate logic which we will
see next.

7.2.2 First-order predicate logic

Propositional logic cannot capture forms of reasoning involving such words as “For
all” or “There exists” to make general statements, for example about elements of a
set. To capture these forms of reasoning, propositional logic can be extended into
a logic called predicate logic. Predicate logic can be of the first-order or of higher
order, but for our purposes, the presentation is limited to the first-order predicate
logic, and shall be brief. More complete presentation of first-order predicate logic
can found in many academic books (see e.g. [145]).

In predicate logic, a domain of discourse is modeled as individuals which can
have some properties (these properties can be relations with other individuals). For
example, we can consider that the person Mario is an individual having the property
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of being a student. An individual is denoted by a constant symbol and a property by
a predicate symbol. For instance, the individual Mario can be denoted by the con-
stant symbol m or ds v3va5d f and the property student by the predicate symbol s or
f a f f f . For the sake of ergonomy, a symbol is usually chosen to suggest what it is
intented to denote. Hence, in our case, the individual Mario and the property student
will be denoted by the constant symbols “mario” and “student” respectively. Using
predicate and constant symbols, we can symbolize the statement “Mario is a stu-
dent” as student(mario). Note that while predicates can be used to denote a property
of a single individual, they can also be used to express a relation between several
individuals. For instance, the statement “Mario pays Guido” can be symbolized by
pay(mario,guido).

When some individuals have the same properties or are related by the same re-
lations, then they can be grouped to form sets of individuals or sets of n-tuple. If
our intention is to reason about sets of individuals then the introduction of variables
and quantifiers are invaluable. A variable refer to any individual within the domain
of discourse, and is usually denoted by x, y, . . .. Using predicate and variable sym-
bols, statements about undetermined individuals can be symbolized. For instance,
the formula student(x) expresses that an undetermined individual, referred as x, has
the property of being a student. Quantifiers are used to quantify the variables over
sets of individuals. In predicate logic, two quantifiers are usually considered: the
universal quantifier symbolized by ∀ and the existential quantifier symbolized by ∃.
The universal quantifier is used to bound a variable to any individual of a set. For
example, the formula ∀xstudent(x) expresses that for any individual x, x is a student.
The existential quantifier is used to bound a variable to at least one individual of a
set. For example, the formula ∃xstudent(x) expresses that there exists an individual
x such that x is a student.

So far, elements have been represented only by constant symbols. However, in
domain of discourse, we would like to designate elements which are composed of
other elements. Functors are intented to capture such constructions. For example, the
family consisting of the parents Mario and Maria and children Carlo and Carla can
be represented by the construction f amily(mario,maria,child(carlo,carla)). when
the functors are unspecified they shall be symbolized by f , g, h etc.

Predicate logic is an extension of propositional logic and, uses the same connec-
tives symbols (¬, ∨, ∧, ⊃ and ≡) to build compound statements. Finally, auxiliary
symbols such as parentheses are used to limit the scope of other symbols.

To sum up, the alphabet of predicate logic consists of the following class
of symbols: (i) variable symbols such as x, y, . . ., (ii) constant symbols such
as a, b, . . ., (iii) functor symbols such as f , g, . . ., (iv) predicate symbols such
as p, q, r, . . ., (v) logical connectives such as ∧ (conjunction), ¬ (negation),
≡ (logical equivalence), ⊃ (implication) and ∨ (disjunction), (vi) quantifiers ∃
(existential) and ∀ (universal), and finally (vii) auxiliary symbols like parenthe-
ses and commas. To emphasize the arity n of a functor f , it is written in the form
f /n. Similarly, to emphasize the arity n of a predicate p, it is written in the form p/n.

The objects of a domain are called terms whose syntax is defined as below:
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Definition 7.1. The set T of terms over a given alphabet A is the smallest set such
that:

• Any constant in A is in T ;
• Any variable in A is in T ;
• If f /n is a functor in A and t1, . . . , tn ∈ T then f (t1, . . . , tn) ∈ T

Terms will be denoted by s and t. The syntax of well-formed formulas (wff) is defined
as:

Definition 7.2. Let T be the set of terms over the alphabet A . The set F of wff (with
respect to A ) is the smallest set such that:

• If p/n is a predicate symbol in A and t1, tn ∈ T then p(t1, . . . , tn) ∈F
• If F and G ∈F , then so are (F ∧G), (F ∨G), (¬F), (F ⊃ G), (F ≡ G)
• If F ∈F and x is a variable in A then (∃xF) and (∀xF) ∈F

Formulas of the form p(t1, . . . , tn) are called atomic formulas (or simply atoms).
Let F be a formula, an occurrence of the variable x in F is said to be bound if the
occurrence is in the scope a quantifier ∀ or ∃, otherwise the occurrence is said to be
free. A formula or a term which contains no variables is called a ground.

The previous paragraphs introduced the language of formulas as a formalization
of a class of declarative statements of natural language. Such sentences refer to some
“world” and may true or false in this world. Declarative statements refer to objects
and relations on objects. The meaning of logic formula is defined relative to the
abstraction of this world. The abstraction of this world is set of objects, and this set
is called the domain. A relation between a domain (i.e. the abstraction of the world)
and the set of bounded formulas is called an interpretation.

Definition 7.3 (Interpretation). An interpretation I of an alphabet A is a domain
D and a mapping that associates :

• Each constant c ∈A with an element cI ∈D
• Each n-ary functor f ∈A with a function fI : Dn→D
• Each n-ary predicate symbol p ∈A with a relation pI ⊆Dn

The domain D of an interpretation I will be sometimes written |I|. Remark that an
interpretation does not deal with variable: a valuation is a mapping from variables of
the alphabet to the domain of an interpretation.

Definition 7.4 (Semantics of terms). Let I be an interpretation, υ a valuation and
t a term. The meaning υI of t is an element of the domain D of interpret defined as
follows:

• if t is a constant c, then υI(t) := cI,
• if t is a variable x, then υI(t) := υ(x),
• if t is of the form f (t1, . . . , tn), then υI(t) := fI(υI(t1), . . . ,υI(tn)),
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The meaning of a formula is a truth-value (i.e. true or false) and, as in propositional
logic, the truth-value of a formula depends on its components. However, given the
refinement in the syntax due to the introduction of constants, variables, predicates,
functors, quantifies, the semantics is also refined. In the following, the notation I |=υ

P stands for the statement “P is true with respect to the interpretation I and valuation
υ”, and I 6|=υ P for “P is false with respect to the interpretation I and valuation υ”

Definition 7.5 (Semantics of wff’s). Let I be an interpretation, υ a valuation, P and
Q well-formed formulas. The meaning of P, Q or combinations of P and Q w.r.t. I
and υ is defined as follows:

• I |=υ p(t1, . . . , tn) iff 〈υI(t1), . . . ,υI(tn)〉 ∈ pI,
• I |=υ ¬P iff I 6|=υ P,
• I |=υ P∧Q iff I |=υ P and I |=υ Q,
• I |=υ P∨Q iff I |=υ P or I |=υ Q (or both),
• I |=υ P⊃ Q iff I |=υ Q whenever I |=υ P,
• I |=υ P≡ Q iff I |=υ P⊃ Q and I |=υ Q⊃ P,
• I |=υ ∀xP iff I |=υ F for every t ∈ |I|,
• I |=υ ∃xP iff I |=υ F for some t ∈ |I|,

Given a set P of closed formulas and a domain D (i.e. an abstraction of a world), we
are interested in finding out the interpretation(s) I in which the formulas of P can give
a proper account of the domain, that is, the interpretation(s) I in which all formulas
of P are true. Such interpretations are called models of P.

Definition 7.6. An interpretation I is a model of a set P of closed formulas iff every
formula of P is true in I.

Given some explicit information about a system, we are interesting in deducing some
others pieces of information about that system. In other words, given a model I of
a set P of closed formula, we are interested in deducing other formulas Q from P
which are also true in the model I. This leads to the notion of logical consequence.

Definition 7.7. Let P be a set of closed formulas. A closed formula Q is a logical
consequence of P (denoted P |= Q) iff Q is true in every model of P.

As for propositional logic, the truth-value of a formula in some interpretations can
be compiled using some rules of inferences. We do not provide them here and we
will just notice that, in the general case, predicate logic is undecidable, i.e., it is
undecidable whether a first-order logic formula is valid (or true under all possible
interpretations). In other words, there is no decision procedure that can correctly
determine whether a formula is valid. Eventually, first-order predicate logic is semi-
decidable. If a formula is true given a set of axioms, there is a procedure that will
determine this. However, if the formula is false, then there is no guarantee that a
procedure will ever determine this and the procedure may never halt in this case. As
we will see in Section (7.4.3) on logic programming, the issue of undecidability can
be overcome by introducing restrictions on the language of formulas.

Furthermore, though first-order predicate logic is a response to the lack of expres-
siveness of propositional logic, since predicate logic is an extension of propositional
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logic, it inherits of the drawbacks of propositional logic concerning (i) the formal-
ization of conditionals as material conditionals, (ii) the possibility of Modus Tollens,
(ii) its monotonicity, (iii) its incapacity to formalize modal statement, (iv) that from
a contradiction, anything can be deduced. Next, in order to overcome the incapacity
of classical logic to formalize modal statements, modal logics is briefly presented.

7.3 Modal logics

Classical logic is truth-functional: the truth-value of complex statements depends
only of the truth-value of its constitutive statements. However, this approach seems
inadequate for many types of sentences. For instance, consider the modal sentence
“Guido believes that Mario is not a student”. The truth-value of the sentence “Mario
is not a student” does not determine the truth-value of “Guido believes that Mario
is not a student”. Similarly, the truth-value of the modal statement “It is obligatory
that Mario cooperates” does not simply depend on the truth-value of the statement
“Mario cooperates”. The truth-functional nature of classic propositional logic does
not seem to be appropriate for such modal statements.

If we want a logic that accounts for such sentences, a remedy is that the truth-
value of modal statements does not only depend of the constituting statements but
also to some other statements. Modal logics aim at studying modal propositions and
the logical relationships that they can bear to one another. Though modal logic was
initially developed to deal with modes of necessity and possibility to capture modal
sentence of the form “It is necessary that . . . ” or “It is possible that . . . ”, it was
extended to other modes as epistemic, deontic or temporal modes. Hence, modal
logics cover a family of logics with similar reasoning schemata and different symbols
aiming at capturing such or such modes. Table 7.1 lists the most common modal
logics.

In the following, we present briefly the typical semantics used in modal logic
systems, namely the possible worlds semantics. Bearing in mind that modal logic
can handle predication, we limit our presentation to propositional modal logic for
the sake of simplicity.

7.3.1 Possible world semantics

Modal logic was first developed to deal with modes of necessity and possibility.
Accordingly, to facilitate the discussion, we consider first alethic logic (the logic of
the modes regarding necessity and possibility), and then how the reasoning schemata
can be adapted to other kind of modalities. Alethic logic begins by augmenting the
classical propositional logic with two unary operators, 2 denoting ‘necessity’ and 3

denoting ‘possibility’. Assuming this notation, “necessarily γ” shall be formalized as
2γ , while “possibly γ” as 3γ .

The idea is that the truth-value of modal statements does not only depend of the
constituting statements but also to some other statements. To do so, an interpretation
of modal propositions, i.e. how modal propositions shall be attributed truth-values,
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Modal logic Symbols Expressions symbolized

Alethic logic 2 It is necessary that ..
3 It is possible that ..

Deontic logic O It is obligatory that ..
P It is permitted that ..
F It is forbidden that ..

Temporal logic G It will always be the case that ..
F It will be the case that ..
H It has always been the case that ..
P It was the case that..

Doxastic logic B It is believed that ..

Epistemic logic B It is believed that ..
K It is known that ..

Table 7.1. Some well-known modal logics.

is based on the idea of possible worlds that are in relations by means of so-called
accessibility relations. We shall see later that the properties of these accessibility
relations permit to determine the truth-value of propositions and hence, the properties
of the studied logic.

Given a set W of possible worlds, a valuation v is introduced to give a truth-value
to each proposition for each of the possible worlds in W . This means that the value
assigned to γ at world w may differ from the value assigned to γ for another world w′.
The truth-value of a sentence γ at world w given by the valuation v shall be written
v(γ,w).

In this setting, the truth-values true and false of complex sentences at world w ∈
W given a valuation v is defined by the following clauses:

v(∼γ,w) = true i f f v(γ,w) = true, (7.7)

v(γ ⊃ β ,w) = true i f f v(γ,w) = F or v(β ,w) = true, (7.8)

v(2γ,w) = true i f f ∀w′ ∈W, i f wRw′, then v(γ,w′) = true, (7.9)

v(3γ,w) = true i f f ∃w′ ∈W,wRw′, v(γ,w′) = true. (7.10)

The clause in (7.9) is at the heart of alethic logic and captures the notion of necessity.
From it, we can derive the following schema named (K):

2(γ ⊃ β )⊃ (2γ ⊃2β ). (7.11)
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The clauses in (7.10) and (7.9) involves that the operator 2 can be defined from 3

by noting 2γ ≡ ¬3¬γ .
As an illustration of the use of the clauses given above, conisder the model made

of:

• the set of possible worlds W = {w1,w2,w3}, and
• the set of accessibility relations R = {w1Rw2, w1Rw3}, and
• the set of valuation V = {v(student ⊃ discount, w1) = true,

v(student, w2) = true,
v(student ⊃ discount, w2) = true,
v(student, w3) = true,
v(student ⊃ discount, w3) = true, }

We derive v(2student,w1) = true and v(2(student ⊃ discount),w1) = true,
that is student is necessarily true. From the clause (7.8), we conclude
v(discount, w2) = true and v(discount, w3) = true, and by means of the
clause (7.9), v(2discount, w1) = true. From this last result, we have
v(¬2student∨2discount, w1) = true, that is, v(2student ⊃2discount, w1) = true.
By consequence, we obtain v(¬2(student ⊃ discount) ∨ (2student ⊃
2discount), w1) = true, that is v(2(student ⊃ discount) ⊃ (2student ⊃
2discount), w1) = true which verifies well the schema K (7.11).

Some intuitions are not captured by the clauses given in (7.7)-(7.10). For exam-
ple, in some systems we would like to express that if γ is necessary then γ is ‘nec-
essarily necessary’, corresponding to the schema 2γ ⊃ 22γ . To account for it, the
accessibility relation can be provided with some properties, and for each property of
the accessibility relation corresponds some valid and invalid schemata. Some well-
known accessibility relations with their corresponding interpretations and axioms are
presented in Table 7.2.

Accessibility Relation Interpretation Axiom Axiom Name

Distributivity 2(γ ⊃ β )⊃ (2γ ⊃2β ) (K)
∀u∃v, uRv Serial 2γ ⊃3γ (D)
∀u, uRu Re f lexive 2γ ⊃ γ (M)
∀u∀v∀w, if uRv and vRw then uRw Transitive 2γ ⊃22γ (4)
∀u∀v, if uRv then vRu Symmetric γ ⊃23γ (B)
∀u∀v∀w, if wRv and wRu then vRu Euclidean 3γ ⊃23γ (5)

Table 7.2. Some well-known accessibility relations with their corresponding interpretations
and axioms.

For example, in any model such that the accessibility relation is reflexive then the
schema 2γ ⊃ γ is valid, that is, in any world of any model 2γ ⊃ γ is true.
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The properties of the accessibility allows a systemic study of modal logics. Ac-
cordingly, each modal logic is characterized by the properties of the accessibility re-
lation. If a modal logic needs such and such property then the relation property needs
such and such property. What axioms and rules must be added to the propositional
logic to create a ‘correct’ system of modal logic is often a matter of philosophical
opinion, usually driven by the theorems one wishes to prove. Many modal logics,
known collectively as normal modal logics, include classically the distribution ax-
iom (K): 2(γ ⊃ β ) ⊃ (2γ → 2β ), and the necessitation axiom (N): γ ⊃ 2γ . The
weakest normal modal logic, named K in honor of S. Kripke, is simply propositional
logic augmented by 2, the axioms (K) and (N).

7.3.2 Epistemic logic

J. Hintikka proposed a formal account of reasoning on knowledge and beliefs based
on the possible worlds semantics [103] which strongly influenced successive works
on the field. In this view, an agent knows γ in w if γ is true in all the worlds w′

accessible from w.

If the operator 2 is interpreted as the belief operator (in this case, the symbol 2

is rewritten B), then the corresponding modal logic is the so-called doxastic logic,
the logic of belief and disbelief. What axioms must be considered to create a ‘cor-
rect’ doxastic logic is a long on-going debate amongst logicians, philosophers and
computer scientists. The most common account for doxastic logic is the so-called
KD45, that is the modal logic limited to the axioms (K), (D), (4) and (5). The ax-
iom (D): Bγ ⊃ ¬B¬γ (bearing in mind that 2γ ≡ ¬3¬γ) indicates that the rela-
tion of accessibility is serial, and retains consistency among beliefs. The axiom (4):
Bγ ⊃BBγ indicates that the relation of accessibility is transitive. For example, if
we have v(Bstudent,w1) = true, then we have also v(BBstudent,w1) = true. Tran-
sitivity can be thus interpreted as a mean to capture introspection. The axiom (5):
¬Bγ ⊃B¬Bγ is interpreted as negative introspection.

By adding the axiom (M), the accessibility relation becomes reflexive and we
obtain the so-called epistemic logic, the modal logic of knowledge and belief.
Knowledge is indicated by K. The reflexive property of the accessibility relation
implies the schema Kγ ⊃ γ which is commonly related to veracity: if I know γ then
γ is the case.

Beside the fact that the modeling of knowledge and belief in terms of accessible
worlds is far from being intuitive, modal epistemic logic is undermined by some
paradoxes. To give a flavor of them, we can indicate the so-called logical omniscience
problem. Briefly, if an agent knows γ , and if γ entails β then the agent also knows
β . A simple example taken from [214] illustrates well the problem here: following
J. Hintikka’s setting, from the facts that (i) Lois Lane believes that Superman can
fly, and since (ii) Clark Kent is Superman, then we can conclude that (iii) Lois Lane
believes that Clark Kent can fly. This conclusion is not expected because in the story
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of Superman, Lois Lane does not believe that Clark Kent can fly. Many works (see
e.g. [214]) which we cannot address here aim at overcoming this issue.

7.3.3 Deontic logic

If the operator 2 is interpreted as the obligation operator (in this case, the symbol
2 is rewritten O), then we are studying deontic logic, the modal logic of obligation
and other related notions as permission, prohibition etc. . . . Since deontic notions
are central to the law, deontic logic is often argued to take a major role as a formal
language in legal knowledge representation and reasoning.

Many other properties of the accessibility relation can be analyzed with respect
to a deontic setting. The most cited and studied of deontic logic is the so called Stan-
dard Deontic Logic (SDL) which is usually axiomatized as a normal modal logic,
that is propositional logic augmented with the distribution axiom (K): O(γ ⊃ β ) ⊃
(Oγ ⊃Oβ ), the necessitation axiom (N): γ ⊃Oγ and the axiom (D): Oγ ⊃ ¬O¬γ

(or equivalently Oγ ⊃Pγ). In this view, the axiom (K) considers that if a material
conditional is obligatory, and its antecedent is obligatory, then so is its consequent,
and justifies the so-called deontic detachment inference pattern: given Oγ and
O(γ ⊃ β ) we derive Oβ . The axiom (N) tells us that if something is a theorem, then
it is obligatory. The axiom (D) indicates that what is obligatory is also permitted,
and can be rewritten as Oγ ⊃Pγ (the operator 3 can be interpreted as the permission
operator noted here P). In Standard Deontic Logic, the relation of accessibility is
not reflexive, otherwise we would have the undesirable schema Oγ ⊃ γ , that is, if γ

ought to be, then γ is the case. Hence, deontic logic discards the reflexibility relation.

Beside its discutable intuition, Standard Deontic Logic is unfortunately under-
mined by many paradoxes, or in other words, is not correct. An impressive lists of
paradoxes can be found in [138]. To give a flavour of the encountered issues, we can
consider one of the most studied, namely the Chilshom’s paradox. It consists of the
derivation of an inconsistency from four sentences as the followings:

• It ought to be that John goes to assist his neighbors. Ogo.
• It ought to be that if John goes, then he tells them he is coming. O(go⊃ tell).
• If john doesn’t go, then he ought not tell them he is coming. ¬go⊃O¬tell.
• John does not go. ¬go

By deontic detachment, the formulas Ogo and O(go ⊃ tell) implies Otell whereas,
by factual detachment, the formulas ¬go and ¬go⊃O¬tell implies O¬tell. We have
hence deduced Otell and O¬tell, that is, an inconsistency. As modal epistemic logic,
many scholars proposed some (complex) variants of deontic logic in order to solve
the paradoxes (see [206] for a review).
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7.4 Non-monotonic logics

In Section 7.1 on the appropriateness of logic to formalize legal reasoning, it has been
argued that since law has for object a world which is inherently not fully observable
in space and in time, which is dynamic and unpredictable, then the deductive logical
approach is deemed to fail. Furthermore, on the assumption that conflicts, which are
central to the law, are modeled as a contradiction, classical logics are not appropriate
for our purposes since classical logics aim at avoiding inconsistencies and does not
permit reasoning with such inconsistencies.

In logical terms, these criticisms on the appropriateness of logic to formalize le-
gal reasoning are related to the monotonicity1 of classical logics, that is, the addition
of new premises never invalidates formerly derivable consequences. Monotonicity
can characterized formally using the relation ` of consequence between a set of
premises and a single sentence:

If A ` α and B⊇ A then B ` α

where A and B are the sets and α the sentence. While these criticisms on monotonic-
ity are acceptable for classical logics which are monotonic, they are not acceptable
on the light of non-monotonic systems in which the addition of new premises can in-
validate formerly derivable consequences and in which the reasoning with potential
inconsistent information is possible. Non-monotonic logics abandon the monotonic-
ity property of the relation `, and adopt a non-monotonic consequence relation de-
noted |∼. Non-monotonic logics covers a family of formalisms devised to capture a
non-monotonic consequence relation, and some properties, which |∼ should/can/has
to respect, have been provided in the literature. For example, D. Gabbay in [80]
argues that any well-behaved non-monotonic consequence relation should respect
reflexivity, cut and cautious monotony properties:

• reflexivity: if α ∈ A then A |∼α ,
• cut: If A,β |∼α and A |∼β then A |∼α ,
• cautious monotony: If A |∼α and A |∼β , then A,β |∼α .

Other properties can be proposed to characterize the non-monotonic consequence
relation, and we can use them to guide the design of a non-monotonic logic satisfying
such or such properties of non-monotonicity (see e.g. Kraus et al. ’s [120]). This
‘top-down’ method contrasts with the ‘bottom-up’ method with which initial non-
monotonic logics were designed by proposing first non-monotonic mechanisms and
then by studying their non-monotonicity properties. The ‘top-down’ method cannot
be addressed here, and in the following, we present briefly the most studied non-
monotonic logics and their relevances for our purposes. The reader can find in [174]
another overview of the uses of non-monotonic logics in artificial intelligence and
law.

1 In mathematics, monotonicity refers to a process which from a larger input you can get
only a larger output.
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7.4.1 Circumscription

Circumscription was proposed by J. McCarthy in [134] and mainly superseded by the
same author in [135], to overcome the qualification problem (i.e. which conditions
must be fulfilled to get an effective action) by formalizing the idea that things are
as expected unless otherwise specified, e.g. an action is effective unless something
prevents it.

Though circumscription was initially defined in first-order logic, we present first
its adaptation to propositional logic in order to help the reader to grasp the basic idea.
The idea is to evaluate the truth-value of propositions on the light of a restricted set
of interpretations. Suppose that we have the following axioms:

student ∧¬abnormal ⊃ discount (7.12)

student (7.13)

Our goal is to find out a mechanism to derive discount. Classical propositional logic
does not achieve this goal as discount is not true in all the interpretations. This is
apparent in the last row of Table 7.3.

student student ∧¬abnormal ⊃ discount abnormal discount
1 1 0 1
1 1 1 0

Table 7.3. Truth table.

When we compute the truth-value of the proposition discount, we consider the in-
terpretation in which the proposition abnormal is true, whereas it is not contained in
the axioms. The idea is then to remove any interpretation in which propositions that
are not in the axioms takes the value true. In the remaining interpretation, the propo-
sition discount is true. Now, suppose that the new information that abnormal is true.
In this case, using the same mechanism as previously done, then we can draw that
discount is false. This example illustrates the non-monotonicity of (propositional)
circumscription: the formerly derived consequence has changed by adding a premise.

In its original first-order logic formulation, circumscription consists in minimiz-
ing the extension of some predicates (the extension of a predicate is the set of tuples
of values the predicate is true on). This minimization is similar to the closed world
assumption that what is not known to be true is false.

The following presents circumscription as proposed by J. McCarthy in [134]: Let
A be a sentence of first-order logic (e.g. the conjunction of the premises of a theory)
containing a predicate P(x1, . . . ,xn) which we will write P(x). We write A(Φ) for the
result of replacing all occurrences of P in A by the predicate expression Φ .

Definition 7.8. The circumscription of P in A(P) is the sentence schema

A(Φ)∧∀x.(Φ(x)⊃ P(x))⊃ ∀x.(P(x)⊃Φ(x))
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Circumscription consists in the above sentence schema which can be used along the
rules of inference of first-order logic. The schema assumes a predicate parameter
Φ that may substituted by an arbitrary predicate expression. The conjunct A(Φ)
asserts that Φ has to satisfy the conditions satisfied by P while the second conjunct
∀x.(Φ(x) ⊃ P(x)) asserts that the entities satisfying Φ are a subset of those that
satisfy P. Since the schema is an implication, if these two previous conjuncts are
assumed then we can conclude the sentence on the right ∀x.(P(x) ⊃ Φ(x)). The
conclusion asserts the converse of the second conjunct to indicate that Φ and P have
to coincide.

Interestingly, circumscription can be used by minimizing predicates expressing
the abnormalities of situations. Minimizing the extension of these predicates permits
to reason under the implicit assumption that things are as expected (that is, they are
not abnormal), and that this assumption is made only if possible (abnormality can be
assumed false only if this is consistent with the facts.)

For example, suppose the statements “a student have a discount if he is not ab-
normal”, “students over 25 are abnormal” and “Mario is a student”:

∀x, student(x)∧¬abnormal(x)⊃ discount(x),
∀x, over 25(x)⊃ abnormal(x),
student(mario).

(7.14)

In first-order logic, assuming the fact student(mario) we cannot conclude that
discount(mario) is true since we cannot prove ¬abnormal(mario). To prove
discount(mario), the circumscription technique can be used by circumscribing the
predicate abnormal. For the sake of the example, we use a slight generalization of
the previous circumscription schema which permits to circumscribe two predicates
simultaneously (say P and Q):

A(Φ ,Ψ)∧∀x(Φ(x)⊃ P(x))∧∀y(Ψ(y)⊃ Q(y))
⊃ ∀x(P(x)⊃Φ(x))∧∀y(Q(y)⊃ (y)). (7.15)

Accordingly, the circumscription formula A(discount,abnormal) is:

A(Φ ,Ψ)∧∀x(Φ(x)⊃ discount(x))∧∀y(Ψ(y)⊃ abnormal(y))
⊃ ∀x(discount(x)⊃Φ(x)∧∀y(abnormal(x)⊃Ψ(y)), (7.16)

which spelled out is:

∀xstudent(x)∧¬Ψ(x)⊃Φ(x)
∧∀xover 25(x)⊃Ψ(x)
∧student(mario)
∀x(Φ(x)⊃ discount(x))∧∀y(Φ(y)⊃ abnormal(y))

⊃ ∀x(discount(x)⊃Φ(x)∧∀y(abnormal(x)⊃Φ(y)).

(7.17)

If we now substitute Φ(x)≡ (x = mario) and Ψ(y)≡⊥ into (7.17) then the left side
of the implication is true, and we obtain:

∀x(discount(x)⊃ (x = mario)). (7.18)
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which asserts that Mario has a discount. Such treatment of abnormalities can be
useful in legal reasoning to capture exceptions.

Beside the fact that the circumscription is not particularly intuitive, many issues
undermined the original circumscription and triggered many proposals to dealt with
them (e.g. see [79], p. 16). A major issue concerns its non-computability and thus
the incompleteness of any proof theory. Accordingly, some ‘reductions’ have been
proposed to provide similar but computable frameworks (e.g. see [79], p. 18).

7.4.2 Default logic

Default logic is a non-monotonic logic proposed by R. Reiter in [176] to formalize
reasoning with default assumptions.

A theory in default logic is a pair 〈D,W 〉 where W is a set of formulas to express
indisputable facts, and D is a set of default rules of the following form:

α : β1,β2, ...,βn

ω
.

If the so-called prerequisite α is derived, and each of the so-called justifications βi
is consistent with the derived statements, then the consequence ω is derived. In the
original default logic, formulas are initially assumed to be expressed in the language
of first-order logic. Defaults with free variables represent the sets of their ground
instances over the Herbrand universe. Remark that contraposition cannot be applied
to defaults (in classical logics, contraposition implies that the material conditional
student ⊃ discount is equivalent to ¬discount ⊃ ¬student). As we have seen in
Section 7.2.1 that contraposition is undesired for defaults, default logic overcomes
this issue of contraposition in a radical way: they are not allowed for defaults.

Let us illustrate default logic. The following is a default formalizing that any
student, who is assumed to not be over 25, has a discount:

D = { student(x) : ¬over 25(x)
discount(x)

}.

This default is accompanied by the facts that Mario and Guido are students and that
Guido is over 25:

W = {student(mario), student(guido), over 25(guido)}.

According to the default rule, Mario has a discount because the precondition
student(mario) holds and the justification over 25(mario) cannot be inconsistent
with any already proved statements. On the contrary, we cannot prove that Guido
has a discount because the justification over 25(guido) is inconsistent with the fact
over 25(guido) though the precondition student(guido) holds.
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A default rule can be applied to a theory in order to add its conclusion to the
theory. Other default rules may then be applied to the resulting theory. When the
theory is such that no other default can be applied, the theory is called an extension
of the initial default theory. R. Reiter defines an extension of a theory using a fixed-
point semantics as provided in the following. Given a set S of closed well-formed
formulas ω (a well-formed formula is closed if it does not contain any free variable),
the set T h(S) is defined by T h(S) = {ω|ω is a closed well-formed formulas and
S ` w}

Definition 7.9. Let (D,W ) be a closed default theory, S be a set of closed well-formed
formulas, and Γ (S) be the smallest set satisfying the following three conditions:

• W ⊆ Γ (S),
• T h(Γ (S)) = Γ (S),
• if α:β1,...,βn

ω
∈ D, α ∈ Γ (S), ¬β1, . . . ,¬βn 6∈ S then ω ∈ Γ (S).

A set E satisfying Γ (E) = E is an extension of (D,W ).

The first condition indicates that facts are contained in the extension. The second
condition expresses that the extension has to be deductively closed. Roughly, the
third condition specifies that defaults have to be applied as much as possible. R.
Reiter gives a somewhat more intuitive characterization of an extension:

Definition 7.10. Let (D,W ) be a closed default theory, E be a set of closed well-
formed formulas, and Ei (i≥ 0) be sets of closed wffs defined as follows:

• E0 = W,
• Ei+1 = T h(Ei)∪{ω | α:β1,...,βn

ω
∈ D, α ∈ Ei, ¬βi 6∈ E}.

E is an extension of (D,W ) iff E =
⋃

∞
i=0 Ei.

This definition is non-constructive because the extension E appears in the definition
of Ei+1, and thus makes the derivation of an extension a non trivial task. Importantly,
since the default rules may be applied in different order, then different extensions
can be built. A famous illustration is the Nixon diamond example which is a default
theory with two extensions:

D = { republican(x):¬paci f ist(x)
¬paci f ist(x) , quaker(x):Paci f ist(x)

Paci f ist(x) },
W = {republican(nixon),quaker(nixon)}.

(7.19)

Since Nixon is both a Republican and a Quaker, both defaults can be applied. Ap-
plying the first default, we obtain that Nixon is not a pacifist, which makes the sec-
ond default not applicable. Applying the second default leads to the conclusion that
Nixon is a pacifist, which makes the first default not applicable. The Nixon diamond
default theory has therefore two extensions, one in which paci f ist(nixon) is true,
and another in which paci f ist(nixon) is false.

This example illustrates well that since several ways to entail a formula exist,
some default theories can have several extensions, i.e. different semantics can be
formulated. The two most well-known are the skeptical and the credulous semantics.
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In the skeptical semantics, a formula is entailed by a default theory if it is entailed by
all its extensions. In credulous semantics, a formula is entailed by a default theory
if it is entailed by at least one of its extensions. For example, the Nixon diamond
example theory has two extensions, one in which Nixon is a pacifist and one in which
he is not a pacifist. Consequently, neither paci f ist(nixon) nor ¬paci f ist(nixon) are
skeptically entailed, while both of them are credulously entailed.

Though default logic deals elegantly with non-monotonicity and removes the
issue on contraposition, it is undermined by some well-known problems. We present
some of them (see [79] p. 45-47 for a more complete list). Firstly, a major drawback
of default logic is its computational complexity (see e.g. [50]). Given a default theory
〈D,W 〉 and a sentence β , the amounts of resources required for the execution of an
algorithm computing whether for example there is an extension which contains β ,
do not permit an efficient implementation.

Secondly, the existence of extensions is not guaranteed in default logic. For ex-
ample, consider a theory consisting of the following default:

true:¬A
A

. (7.20)

The statement A cannot belong to any extension because the default is inapplicable.
However, if a candidate extension E does not contain A then E is not an extension
since no default has been applied. In other words, the empty extension is not even
guaranteed.

Thirdly, default logic may not account for some intuitively expected results. For
example, consider the following theory:

D = { student(x):¬discount(x)
discount(x) , member(x):¬discount(x)

discount(x) },
W = {student(mario)∨member(mario)}

(7.21)

intuitively, since Mario is a student or a member, one of the defaults should apply
and, hence we would expect to derive discount(mario). In default logic, however,
a default is applicable only if its prerequisite is derived, and thus we cannot derive
discount(mario).

Fourthly, defaults are provided under a form of inference rules which does not
allow for reasoning about them.

Notwithstanding with these problems, default logic is one of the most studied
among non-monotonic logics, and many variants or extensions have been proposed.
For example, prioritized versions of default logic have been proposed in order to
account for preferences between defaults (see e.g. [43]).

7.4.3 Logic programming

Logic programming is the interpretation of first-order predicate logic as a program-
ming language [114]. The idea is to use logic to represent knowledge and the use of
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deduction to solve problems by deriving logical consequences. R. Kowalski explains
in [115]:

A consequence of using logic to represent knowledge is that such knowledge
can be understood declaratively. A consequence of using deduction to derive
consequences in a computational manner is that the same knowledge can
also be understood procedurally. Thus logic programming allows us to view
the same knowledge both declaratively and procedurally.

In the legal domain, the use of logic programming to formalize pieces of leg-
islation was investigated originally by researchers at Imperial College (see e.g.
[198, 199, 117]).

Since first-order predicate logic is not decidable in the general case, its use as
a programming language requires some constraints on the efficiency of computabil-
ity. This is achieved by introducing restrictions on the language of formulas. In the
original logic programming, a program is a set of restricted formulas called Horn
clauses. A Horn clause is a clause (a disjunction of literals) with at most one positive
literal. A literal is an atomic formula (atom) or its negation (referred to as positive
and negative literals, respectively). The following is an example of a Horn clause:

¬A1∨ . . .∨¬Am∨A0

where A0, . . . ,Am are positive atomic formula (atom). Any variable is assumed to
be universally quantified, that is, the universal quantifier is left implicit. A definite
clause is a clause which contains exactly one positive literal. A definite program is a
finite set of definite clauses which are usually written equivalently in the form of an
implication:

A0← A1∧ . . .∧Am .

This restriction on formulas makes it possible to use a special inference rule called
the SLD-resolution inference introduced by J. Robinson [180], and deduction is per-
formed by backwards reasoning using this inference rule.

The most well-known implemented logic programming system is probably Pro-
log (standing originally for Programmation en logigue), and was first implemented
in 1972 by Colmerauer and Roussel. As different logic programming formalisms
exist, different Prolog languages exist (see [41] for a comprehensive book about
Prolog).

In the original logic programming, a program is a set of Horn clauses and con-
sequently express ‘positive information’2. However, in many common situations, we
use ‘negative information’ to express ourselves. This usually the case when we ex-
press that something does not hold, for example, as the statement “Mario does not
have a discount”. Though it is arguable that in every day scenarios pieces of negative

2 A Horn clause of the form← A1∧ . . .∧Am is interpreted as a goal statement which asserts
the goal of successfully executing the procedures calls Ai.
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information are seldom stated explicitly, law is domain in which negation has an im-
portant role. Indeed, if conflicts are central to the law and if conflicts are modeled by
the contraction between positive and negative information, then the use of negation
is particularly relevant for the formalization of legal reasoning. The introduction of
negation in logic programming is a field of research of its own right (for a review see
e.g. [18]) and only essential points for our purposes will be provided.

Initially, in order to capture a notion of negation without losing the efficiency in
implementation, logic programming was extended with so-called negation by failure
(see e.g. [56]). In this setting, a clause is written as:

A0← A1∧ . . .∧Am∧ ∼ Am+1∧ . . .∧ ∼ An

where m≤ n and A0, . . . ,An are positive atomic formula (atom). The notion of nega-
tion as failure can be related to the so-called closed world assumption according
which something is false if it is not currently proved to be true. To deal with negation
by failure, a Horn clause theorem prover is augmented with a special inference rule:
this is the negation as failure inference rule whereby∼ A can be inferred from failure
to derive A (i.e. if every possible proof of A fails). This can be formalized as:

P 6` A

∼A
(7.22)

where P is definite program and A an atom. In such setting, deduction is usually
performed using SLDNF-resolution (i.e. SLD-resolution augmented with negation
as failure).

Interestingly for our purpose, when logic programming is extended with nega-
tion as failure, it can support non-monotonic reasoning. For example, R. Kowalski in
[116] investigates several ways in which negations and exceptions arising in legisla-
tion can be represented by negation as failure. For instance, a statement of the form
“A student has a discount unless he or she is over 25 years hold” can be expressed
by the clause:

discount(x)← student(x),∼ over 25(x). (7.23)

If our set of facts includes student(mario) (but not over 25(mario)) then we can
conclude discount(mario), whereas if the set of facts includes both student(mario)
and over 25(mario)) then we cannot conclude anymore discount(mario).

Beside the fact that negation as failure may result in looping programs (depend-
ing on the inference procedure), a serious problem is that they are unsound: indeed,
it can be proved that any proof procedure deriving a negative literal from a definite
program is unsound. In fact, the point is that negation as failure is not properly a
classical negation ¬. Logic programming with classical negation is usually called
extended logic programming in which programs are sets of clauses written as:

L0← L1∧ . . .∧Lm∧ ∼ Lm+1∧ . . .∧ ∼ Ln (7.24)
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where m≤ n and L1, . . . ,Ln are literals (i.e. an atomic formula (atom) or its negation).
M. Gelfond and V. Lifschitz in [83] proposed a so-called stable model semantics:

classical negation is eliminated from extended programs by a simple transformation
which replace any negated atom ¬p by a new positive atom p∗. A full presentation
of extended logic programming is beyond our scope, however, the main result is that
extensions of logic programming capturing classical negation do exist.

Another issue of negation as failure concerns the maintenance of knowledge
bases. Suppose that a new exception∼ below 60(x) is added to the clause 7.23 which
has to be changed into:

discount(x)← student(x),∼ over 25(x),∼ below 60(x). (7.25)

This illustrates the criticism based on the observation that negation as failure does
not offer the possibility of adding new specific exceptions without having to change
the original clauses (see e.g. [170]). A solution is to consider general exceptions: for
example, the statement of the form “A student has a discount unless he or she is over
25 years hold” can be expressed by the clauses (7.26) and (7.27) :

discount(x)← student(x),∼ exception7.23(x), (7.26)

exception7.23(x)← over 25(x),∼ exception7.27(x). (7.27)

If a new exception∼ below 60(x) is added to the statement formalized by the clause
7.26, then it is sufficient to add the following clause;

exception7.23(x)← below 60(x),∼ exception7.28(x). (7.28)

Though the maintenance of the knowledge base is facilitated using general excep-
tions, this solution is not totally satisfactory because the ‘network’ of exceptions
may be difficult to grasp in large sets of rules. To avoid such issue, a solution is mod-
eling defeasible reasoning by means of rules without negation as failure: instead,
defeasible reasoning is modeled by rules and a priority relation among them. Rules
are usually labeled in order to ease the expression of the priority expression. Doing
so, instead of changing original clauses, we can add new clauses and appropriate the
priority relation. For example, to cater for the new exception ∼ below 60(x), instead
of replacing the clause (7.23) by the clause (7.25), we can add to the former the
clause:

r7.29: ¬discount(x)← below 60(x) (7.29)

(where r7.29 is the label), and the following priority relation:

r7.23 > r7.29 (7.30)

where r7.23 > r7.29 means that the rule labeled by r7.23 is superior to the rule labeled
by r7.29. Some logic programming formalisms with priority relation are compared by
Antoniou et al. in [16].



144 7 Logic formalization

7.4.4 Argumentation

Argumentation is an intuitive paradigm to construct non-monotonic logics. It
permits to account for both the defeasibilty of arguments and the handling of
conflicts. Over the years, many formal argumentation systems have been proposed
(see e.g. [68, 38, 209]) but all share substantially the same basic idea consisting
in building arguments in favor or against a statement, selecting “acceptable”
ones, and evaluating whether the original statement is accepted or not. For-
mal argumentation systems seem particularly well adapted to model dialectical
processes in legal reasoning and, as consequence legal reasoning is the privileged
domain of application and inspiration for argumentation (see e.g. [86, 87, 170, 172]).

An advantage of argumentation is that the reasoning process is modular and made
of intuitive steps, thus avoiding the monolithic approach of many traditional non-
monotonic logics. In [170], H. Prakken proposes a four-layered view on argumenta-
tion:

• The first layer, called the logical layer, defines how single arguments can be built.
• The second layer, called the dialectical layer, focuses on conflicting arguments

and defines dialectical status of arguments.
• The third layer, called the procedural layer, regulates the conduct of argumenta-

tive dialogues.
• The fourth layer, called the heuristic layer, deals with the strategies in dialogues

(within the bounds of the procedural layer).

The reasoning process of the logical and dialectical layer consists usually of the
following four steps:

• build arguments in favor or against a statement,
• identify the conflicts among the arguments,
• determine which arguments are acceptable, and
• define the justified statements.

Some arguments systems leave the internal structure of arguments unspecified
(see e.g. [68, 209]) whereas some others use a particular logical language to build
arguments (see e.g. [172]). Usually, such languages are defined over a set of literals
and two kinds of rules: strict and defeasible rules.

Of course, some arguments may conflict if they support contradictory conclu-
sions. A conflict relation is usually analyzed in terms defeating relation. A first ar-
gument may defeat a second argument which may not defeat the first. For example,
strict arguments (i.e. arguments constructed with facts and strict rules) can defeat
defeasible arguments, but the inverse is not true. Since, literals and rules are two
building blocks of arguments, it is also common to distinguish rebutting and under-
cutting. Informally, a first argument rebuts a second argument if the conclusion of
the first is contradictory with the conclusion of the second. A first argument under-
cuts a second if the second uses a rule whose applicability is disputed by the first. In
[68], P.M. Dung proposes the following definition of an argumentation framework
(slightly adapted for our purpose):
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Definition 7.11. An argumentation framework is a pair AF = 〈AR,de f eat〉 where
AR is a set of arguments and de f eat is a binary relation on AR, i.e. de f eat ⊆ AR×
AR.

We say that an argument A defeats an argument B if and only if de f eat(A,B) ∈ De f
(or A defeats B). Comparing arguments by pairs is not enough since a defeating
argument can in turn be defeated by other arguments. The next step is about defining
some criteria, or a semantics, to determine the acceptability of arguments. Usually,
a set of acceptable arguments is called an extension. In [68], P.M. Dung proposed
different semantics (i.e. different notion of acceptability). Some semantics determine
a unique set of acceptable arguments (i.e. an extension) while some others return
several extensions and allowing different status for arguments. The following recalls
the semantics proposed by P.M. Dung in [68]:

Definition 7.12. A set S of arguments is said to be conflict-free if there are no argu-
ments A,B ∈ S such that A defeats B.

Definition 7.13. An argument A ∈ AR is acceptable w.r.t. a set S of arguments iff for
each argument B ∈ AR: if B defeats A then B is defeated by S.

• A conflict-free set of arguments S is admissible iff each argument in S is accept-
able w.r.t. S.

• An admissible set S of arguments is called a complete extension iff each argument
which is acceptable w.r.t. S, belongs to S.

• A preferred extension of an argumentation framework AF is a maximal (w.r.t. set
inclusion) admissible set of AF.

• A conflict-free set of arguments S is called a stable extension iff S attacks each
argument which does not belong to S.

• The grounded extension is the least (w.r.t. set inclusion) complete extension.

Informally, the notion of preferred extension corresponds to a credulous semantics
of an argumentation framework while the notion of grounded extension corresponds
to a skeptical semantics. Justified statements are usually those which are supported
by at least one argument in each extension.

An attractive aspect of argumentation is that justified statements can be com-
piled using dialectical proof procedures similar to human argumentative dialogues
about an issue. Such dialectical proof procedures are usually formalized under the
form of dialogue-games which take the form of interactions between two or more
agents, where each agent makes a move by making some utterance in a common
communication language, and according to some pre-defined rules. Moreover, since
argumentation can be used for diverse goals, diverse types of dialogues games can be
designed (for example for persuasion dialogues, negotiation, deliberation dialogues,
inquiry, etc.)

Such dialectical proof procedures are often embedded into a multi-agent context:
the procedure involves agents putting forward arguments for and against proposi-
tions, together with justifications for the acceptability of these arguments. Argumen-



146 7 Logic formalization

tation as such can be used to model and guide multi-agent interactions by specifying
protocols.

In a procedural setting in which argumentation can be modeled as a game, the
exchange of arguments can be analysed with game-theoretical tools, and agents can
build argumentative strategies (see e.g. [184, 179]).

Finally, it has been shown that other well-known non-monotonic logics as cir-
cumscription, default logic, auto-epistemic Logic and logic programming can be
captured by argumentation logics (see e.g. [110, 68, 38]). Doing so, argumenta-
tion provides a common intuitive framework to compare and evaluate different non-
monotonic logics.

7.5 Time and non-monotonic logics

The following presents briefly two well-studied non-monotonic logics, namely the
situation calculus and the event calculus, aiming at capturing dynamic aspects as
time and change.

7.5.1 Situation calculus

The originators of the situation calculus, J. McCarty and P. Hayes, provide in [136]
the simple idea on which it is based:

A situation s is the complete state of the universe at an instant of time. [. . .]
Since the universe is too large for complete description, we shall never com-
pletely describe a situation; we shall only give facts about situations. These
facts will be used to deduce further facts about that situation, about future
situations and about situations that persons can bring about from that situa-
tion.

Situations are constructed by actions from an initial situation and actions are
represented syntactically as functions from one situation to the resulting situation.

The situation calculus is based on circumscription as used by J. McCarthy to
formalize the implicit assumption of inertia: things do not change unless otherwise
specified (resolving thus the so-called frame problem [136]). Unfortunately, S. Hanks
and D. McDermott in [100] demonstrated that the solution proposed by J.McCarthy
was leading to wrong results in some cases, like in the Yale shooting problem sce-
nario. Many proposals followed to capture correctly the Yale shooting problem and
similar issues. The following presents a version amongst them which was introduced
by R. Reiter in [177]. The basic elements of R. Reiter’s version of situation calculus
are:

• the actions which can be performed in the world. A special predicate Poss is used
to indicate when an action is executable,
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• the fluents which describe the state of the world (i.e. the ‘properties of the
world’), and

• the situations, each being a finite sequence of actions (i.e. a history of action
occurrences).

Remark that in R. Reiter’s version of the situation calculus described here, a situation
does not represent a state or snapshot, but a history. In this view, a dynamic world is
modeled as a series of situations resulting of various actions being performed. State-
ments whose truth-value may vary from situation to situation are represented by
fluents, i.e. predicates taking a situation term as their final argument. For example,
member(mario,s) means that Mario is member in situation s. The situation which ex-
ists before the performance of any action is called the initial situation and is typically
denoted s0. The new situation resulting from the performance of an action is denoted
using the function symbol do (some other references also use result). The function
symbol do has a situation and an action as arguments, and a new situation as a result.
Accordingly, do(a,s) denotes the successor state to s resulting from performing the
action a. The description of a dynamic world is formalized by the following axioms:

• axioms about the situations (situation axioms),
• action precondition axioms,
• successor state axioms, and
• foundational axioms.

Each of these axioms are presented below.

Situation axioms. Any situation are specified by means of situation axioms. For ex-
ample, the following formalizes the fact that Mario is not member in the initial situ-
ation s0:

¬member(mario,s0).

Action precondition axioms. As already pointed out by the qualification problem,
some actions may not be executable in a given situation. The possibility of perform-
ing an action is expressed by literals of the form poss(a,s), where a is the action, s
a situation, and poss is a predicate denoting the performance of the action a in the
situation s. In the example, the condition to join the association is only possible when
one is not member is formulated by:

¬member(x,s)⊃ poss( join(x),s).

Successor state axioms. Given that an action is possible in a situation, we must spec-
ify the effects of that action on the fluents. To do so, effect axioms specify the effect
of a given action on the truth-value of a given fluent. These axioms indicating the
truth-value of a fluent F(−→x ,s) are classified into positive and negative effect axioms:

poss(a,s)∧ γ
+
F (−→x ,a,s)⊃ F(−→x ,do(a,s)),

poss(a,s)∧ γ
−
F (−→x ,a,s)⊃ ¬F(−→x ,do(a,s)).

The formula γ
+
F is intented to express the conditions under which action a in situ-

ation s makes the fluent F become true in the successor situation do(a,s), whereas
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γ
−
F expresses the conditions under which performing action a in situation s makes

fluent F false. For example, if an agent x has paid (paid(x,s)) and joins the as-
sociation (poss( join(x),s)) then the agent x is member in the successive situation
do( join(x),s):

poss( join(x),s)∧ paid(x,s)⊃ member(x,do( join(x),s)).

While the above axioms are about the effects of actions, they cannot be used to for-
malize all the things that remain unchanged when an action is made (i.e. frame prob-
lem). In order to solve the frame problem, R. Reiter in [177] proposes the following
successor state axiom:

poss(a,s)⊃
[
F(−→x ,do(a,s))≡ γ

+
F (−→x ,a,s)∨

(
F(−→x ,s)∧¬γ

−
F (−→x ,a,s)

)]
.

This formula tells us that if it is possible to perform action a in situation s, then the
fluent F is true in the resulting situation do(a,s) if and only if performing a in s
makes it true, or it is true in situation s and performing a in s does not make it false.
In other words, something holds at a situation s if it was initiated by an action a in
the last situation or if it held in the last situation and was not terminated by the last
actions.

Foundational axioms. The foundational axioms formalize the unique names
of actions and situations. R. Reiter proposes (i) the “unique names axioms
for actions” according to which for distinct action a(−→x ) and a′(−→y ) have dis-
tinct arguments a(−→x ) 6= a′(−→y ); and identical actions have identical arguments
a(−→x ) = a′(−→y ) ⊃ −→x = −→y , (ii) the “unique names axioms for states” according to
which the initial state s0 is the result of any action s0 6= do(a,s), and situations are
histories do(a,s) = do(a′,s′)⊃ a = a′∧ s = s′.

Interestingly, it is possible (see e.g. [118]) to write the situation calculus as a
logic program using the following clauses:

holds( f ,results(a,s))← happens(a,s)∧ initiates(a, f ,s),

holds( f ,results(a,s))← happens(a,s)∧holds( f ,s)∧¬terminates(a, f ,s).

The predicates happens, initiates and terminates correspond to the predicates poss,
γ

+
F (−→x ,a,s), and γ

−
F (−→x ,a,s) respectively. The first clause defines what sentences

hold because they are initiated by an action. The second clause is the frame axiom
and defines what properties hold because they held before and no actions terminated
it. The negation ¬ is interpreted as negation as failure.

The situation calculus relies on the concept of situation instead of an explicit
concept of time (as the event calculus). A direct consequence is that actions do no
occur at an explicit time instants, but occur in a situation. This is a serious drawback
in legal reasoning since statements often refer to an explicit time. For example, there
is no original mean to express a statement as “The present law enters in force the 1st

November 1999”. Many other issues exist. Among them, there is no original mean:
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• for representing information about the duration of actions,
• for representing situation that do not result from an action,
• for representing preconditions that must hold beyond the start time of the action,

and
• for dealing with simultaneous actions.

Many extensions to the original situation calculus exist to handle these problems,
but their integration into one homogeneous formalism is an issue of its own. The
difficulty of such integration is augmented by the fact that, for many people, the
situation calculus is not particularly intuitive.

7.5.2 Event calculus

The event calculus is a treatment of time initially proposed by R. Kowalski and M.
Sergot in [119] within the framework of logic programming so that it results in a
formalism which is computable.

The event calculus uses reification techniques to account for times. Reifying a
logic involves moving into the meta-language where a formula in the initial language,
i.e. the object language, becomes a term in the new language. Usually, the embedding
logic is the first-order logic while the reified language is many sorted. For example,
one can reason about the particular aspects of the truth of statements of the object
language through the use of a truth predicate like true which takes as arguments a
formula in the object language and a temporal expression. Doing so, we have formula
of the form:

true(statement, temporal argument)

whose intented meaning is that the first argument is true at the time denoted by the
temporal argument. For instance, the sentence “Mario is asleep between 2 o’clock
and 4 o’clock” can be formalized as true(asleep(mario),(2pm,4pm)).

In the event calculus, the primitive concepts are events, properties, instants
and intervals to account for scenarios in which events happens at some instants,
and initiates or terminates some properties holding on some temporal intervals.
Event calculus axioms permit to derive when some properties hold. The predication
happens(e, t) is used to express that an event e happens at time t. The predication
initiates(e, p) and terminates(e, p) define the effects of an event e on a property p.

To derive when a property holds, we use the predicate holdsAt which is defined
on the idea of inertia: a property holds a time t2 if an event initiated this property at
t2, or in a previous time t1 if this property has not been terminated between t1 and t2
(in the event calculus jargon, clipped). M. Shanahan in [200] proposes the following
axioms:

holdsAt(p, t2)← initially( f )∧ ∼ clipped(p, t1, t2). (7.31)
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holdsAt(p, t2)← happens(e, t1)∧ t1 < t2∧ initiates(e, p)∧ ∼ clipped(p, t1, t2).
(7.32)

clipped(p, t1, t2)≡ ∃e, t [happens(e, t)∧ t1 < t < t2∧ terminates(e, p)]. (7.33)

For example, the statements “If an agent x joins the association a then the agent x is
member” and “If an agent x leaves the association a then the agent x is not member”
can be formalized as:

initiates( join(x,a),member(x,a)),

terminates(leave(x,a),member(x,a)).

Suppose a scenario in which Mario joined the association Alliance in 2000, and
leaved it in 2005. We formalize it by the following statements:

happens( join(mario,alliance),2000)

happens(leave(mario,alliance),2005)

Using the axioms (7.33) and (7.32) of the event calculus, then we can
derive, for example, that Mario is a member of Alliance in 2003 (i.e.
holdsAt(member(mario,alliance),2003) is true) but not in 2006 (i.e.
holdsAt(member(mario,alliance),2003) is false).

As the event calculus is proposed in the framework of logic programming, it
results that it can be implemented in Prolog. For example, the basic event calculus
can be implemented by the following domain independent clauses:

holdsAt(Fluent, T) :-
initially(Fluent),
not(broken(Fluent, 0, T)).

holdsAt(Fluent, T) :-
initiates(Event, Fluent),
happens(Event, EarlyTime),
EarlyTime < T,
not(broken(Fluent, EarlyTime, T)).

broken(Fluent, T1, T3) :-
happens(Event, T2),
T1 =< T2,
T2 < T3,
terminates(Event, Fluent).

Due to its relative simplicity, the event calculus is often appreciated by computer
scientists. Unfortunately, the axioms (7.31)-(7.33) are not sufficient for their intended
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roles because they can lead to unexpected results in some scenarios concerned with
the frame problem [200]. Many others issues undermined such axiomatics of event
calculus and many extensions exist to overcome these issues (see e.g. [140]). For
example, in [200], M. Shanahan proposes a variant accounting for indirect effects,
actions with non-deterministic effects, concurrent actions, continuous change, etc. . . .
In the legal domain, R. Hernández Marı́n and G. Sartor proposed in [133] an exten-
sion of event calculus to account for some temporal aspects of the legal knowledge.





8

Defeasible logic

In the previous Chapters, we have pointed out the necessity of a non-monotonic logic
to formalize interactions between normative systems and cognitive agents. Among
the studied non-monotonic formalisms, it turns out that circumscription and default
logic have both a high computational complexity, and thus the amounts of resources
required to compute the conclusions of some theories do not permit an efficient im-
plementation. Argumentation formalisms provided intuitive account of defeasible
reasoning but the associated complexities are still a possible issue. Logic program-
ming with negation as failure seemed to be fulfilled the requirement, but logic pro-
gramming with priorities was argued to be more appropriate for our purposes.

In the remainder, we commit to a particular non-monotonic logic formal-
ism, namely defeasible logic. Defeasible logic was initially designed by D. Nute
[148, 147] and belongs to a family of approaches based on the idea of logic program-
ming allowing non-monotonicity without negation as failure or logic. Other logics in
this family include courteous logic programs [97] and LPwNF (Logic Programming
without Negation as Failure) [66], but Antoniou et al. in [17, 16] has accredited to
defeasible logic a higher expressiveness than these two systems with respect to skep-
tical reasoning. In [10], its flexibility was advocated by proposing simple ways to
tune it, and thus, to generate variants with ambiguity propagation or incapable of
team defeat for example. Formal properties of defeasible logic were analyzed [11], a
denotational semantics was provided in [129], a model theoretic semantics in [131]
as well as an argumentation semantics in [91] which can ease its use in argumenta-
tion systems. In [12], close links are established amongst known semantics of logic
programs as stable model semantics and Kunen semantics with respect to defeasible
logic.

Defeasible logic was designed to be easily implementable right from the begin-
ning, unlike most other approaches, and M. Maher in [130] proved that proposi-
tional defeasible logic has a linear complexity. In [132], M. Maher et al. report a
query answering system employing a backward-chaining approach (called Deimos)
and a forward-chaining implementation which computes all conclusion (called De-
lores). A prolog meta-interpreter for defeasible logic also exists [12]. More recent
implementated systems make possible interactions with the Semantic Web (see e.g.
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[22, 9, 23, 21]). Defeasible logic has been advocated for the modeling of regulations
[14], business rules [8] and business contracts [88].

We present its language in Section 8.1, provide its proof conditions in 8.2, and
an argumentation semantics in 8.3.

8.1 Language

In the following we the use D. Billington’ s formulation of defeasible logic [32]. A
defeasible logic theory is a structure D = (F,R,S ) where F is a finite set of facts, R
a finite set of rules, and S a superiority relation on R.
Facts are indisputable statements, for example, “Mario is a minor,” formally written
as:

minor(mario).

Rules can be strict, defeasible, or defeaters. Strict rules are rules in the classical
sense; whenever the premises are indisputable, so is the conclusion. An example of
a strict rule is “Minors are persons,” formally written as:

r1: minor(x)→ person(x).

Defeasible rules are rules that can be defeated by contrary evidence. An example of
a defeasible rule is “Persons have legal capacity”; formally:

r2: person(x)⇒ has legal capacity(x).

Defeaters are rules that cannot be used to draw any conclusion. Their only use is to
prevent some conclusions by defeating some defeasible rules. An example of this
kind of rule is “Minors might not have legal capacity,” formally represented as:

r3: minor(x) ; ¬has legal capacity(x).

The idea here is that even if we know that someone is a minor, this is not sufficient
evidence for the conclusion that he or she does not have legal capacity. The superior-
ity relation between rules indicates the relative strength of each rule. That is, stronger
rules override the conclusions of weaker rules. For example, if the rule r3 overrides
r2, formally written:

r3 � r2

then we can derive neither the conclusion that Mario has legal capacity nor the con-
clusion that he does have legal capacity. Note that the superiority relation between
certain rules can be left unspecified because in many cases there is no natural way of
assigning preferences.

Definition 8.1 (Language). Let Prop be a set of propositional atoms, and Lab be
a set of labels. The sets below are defined as the smallest sets closed under the
following rules:
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Literals
Lit = Prop∪{¬p|p ∈ Prop}

Rules
Rules = {r:φ1, . . . ,φn→ ψ|r ∈ Lab,φ1, . . . ,φn ∈ Lit,ψ ∈ Lit}
Ruled = {r:φ1, . . . ,φn⇒ ψ|r ∈ Lab,φ1, . . . ,φn ∈ Lit,ψ ∈ Lit}
Ruledft = {r:φ1, . . . ,φn ; ψ|r ∈ Lab,φ1, . . . ,φn ∈ Lit,ψ ∈ Lit}
Rule = Rules∪Ruled ∪Ruledft

Superiority relations
Sup = {s� r|s,r ∈ Lab}

Definition 8.2 (Defeasible Theory). A defeasible theory is a structure D = (F,R,S )
where

• F ⊆ Lit is a finite set of facts,
• R⊆ Rule is a finite set of rules such that each rule has an unique label,
• S ⊆ Sup is a set of acyclic superiority relations.

In the following, Greek letters (α , β , etc) shall be used as meta-variables ranging
over literals and the letters r, s and w as meta-variables ranging over rule labels. We
use some abbreviations: If γ is a literal,∼γ denotes the complementary literal (if γ is
a positive literal p then ∼γ is ¬p; and if γ is ¬p, then ∼γ is p). A(r) denotes the set
{φ1, . . . ,φn} of antecedents of a rule r, and C(r) to denote its consequent. The set of
rules whose consequent is γ is denoted R[γ]:

R[γ] = {r|r ∈ R,C(r) = γ}.

The set of strict rules whose consequent is γ is denoted Rs[γ]. The set of defeasible
and strict rules whose consequent is γ is denoted Rsd [γ].

8.2 Proof theory

A conclusion of a theory D is a tagged literal having one of the following forms:

+∆γ meaning that γ is definitely provable in D.
−∆γ meaning that γ is not definitely provable in D.
+∂γ meaning that γ is defeasible provable in D.
−∂γ meaning that γ is not defeasible provable in D.

Provability is based on the concept of a derivation (or proof) in D. A deriva-
tion is a finite sequence P = (P(1), ..,P(n)) of tagged literals. The initial part of the
sequence P of length i is denoted P(1..i). Each tagged literal or rule satisfies some
proof conditions.

A literal γ is definitely derivable (i.e. +∆γ) if (1) it is contained in the set of facts,
or (2) it exists a definitely applicable strict rule with consequent γ . Formally:
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If P(i+1) = +∆γ then
(1) γ ∈ F , or
(2) ∃r ∈ Rs[γ],∀α ∈ A(r)+∆α ∈ P(1..i).

To prove that a literal γ is not definitely provable (i.e. −∆γ), we have to show that
any attempt to provide a definite proof fails.

If P(i+1) =−∆γ then
(1) γ /∈ F , and
(2) ∀r ∈ Rs[γ],∃α ∈ A(r)−∆α ∈ P(1..i).

Example 1 Let us illustrate the definite provability by considering the following the-
ory D2:

F = {high income, disaster },

R = { r0: high income⇒ tax,
r1: high income, disaster→¬tax,
r2: ¬tax⇒ invest},

S = {r0 � r1}.

The set of facts contains high income and disaster, hence we derive:

+∆high income,
+∆disaster.

From the strict rule r1 and the conclusion +∆high income, +∆disaster, we obtain:

+∆¬tax.

There is no strict rules for tax, hence we conclude:

−∆ tax.

Defeasible provability (+∂ ) for literals consists of three phases. In the first phase,
we put forward a supported reason for the literal that we want to prove. Then in
the second phase, we consider all possible attacks against the desired conclusion.
Finally in the last phase, we have to counter-attack the attacks considered in the
second phase.

If P(i+1) = +∂γ then
(1) +∆γ ∈ P(1..i), or
(2) (2.1) −∆∼γ ∈ P(1..i), and

(2.2) ∃r ∈ Rsd [γ], ∀α ∈ A(r),+∂α ∈ P(1..i), and
(2.3) ∀s ∈ R[∼γ],

(2.3.1) ∃α ∈ A(s),−∂α ∈ P(1..i), or
(2.3.2) ∃w ∈ Rsd [γ],
∀α ∈ A(w),+∂α ∈ P(1..i), and w� s.
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Let us examine the proof condition of the defeasible provability of γ . We have two
cases: we show that γ is already definitely provable (1), or we need to argue using the
defeasible part of the theory (2). In this second case, to prove γ defeasibly we must
show that ∼γ is not definitely provable (2.1). We require then there must be a strict
or defeasible rule r ∈ R which can be applied and with head γ (2.2). But now we need
to consider possible attacks, i.e., reasoning chains in support of ∼γ , that is, any rule
s which has head ∼γ (2.3). Note that here we consider defeaters, too, whereas they
could not be used to support the conclusion γ; this is in line with the motivation of
defeaters given earlier. These attacking rules s have to be discarded (2.3.1), or must
be counterattacked by a stronger and applicable rule w which has a head γ (2.3.2).

Remark that the derivation of D `+∂γ from D `+∆γ can be somewhat mislead-
ing because if we interpret literals tagged by +∂ as defeasible conclusions, then we
may also conclude that +∂γ may be latter withdraw on light of further information,
which is not the case here.

Example 2 Let us illustrate the defeasible provability by considering the theory D2.
The set of facts contains high income and disaster, hence we derive:

+∆high income,
+∆disaster.

From the rule r1 and +∆high income, +∆disaster, we obtain:

+∆¬tax.

From +∆¬tax, we can derive:

+∂¬tax.

From the rule r2 and +∂¬tax, we conclude:

+∂ invest.

To prove that a literal is not defeasibly provable we have to show that any attempt
to give a proof fails.

If P(i+1) =−∂γ then
(1) −∆γ ∈ P(1..i), and
(2) (2.1) +∆∼γ ∈ P(1..i), or

(2.2) ∀r ∈ Rsd [γ], ∃α ∈ A(r),+∂α ∈ P(1..i), or
(2.3) ∃s ∈ R[∼γ],

(2.3.1) ∀α ∈ A(s),+∂α ∈ P(1..i), or
(2.3.2) ∀w ∈ Rsd [γ],
∃α ∈ A(w),+∂α ∈ P(1..i), or w 6� s

The inference conditions for negative proof tags are derived from the inference
conditions for the corresponding positive proof tag by applying the so-called
Principle of Strong Negation (see [13]): the strong negation of a formula is closely
related to the function that simplifies a formula by moving all negations to an
innermost position in the resulting formula and replace the positive tags with the
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respective negative tags and vice versa.

Notice that the clause (2.3.2) of the proof condition for +∂ allows to consider
rules w that counter-attacks any rule s attacking a supporting rules r for the desired
conclusion. This allows to deal with the notion of so-called team defeat: if there is
a team A consisting of applicable rules with consequent γ , and a team B consisting
of applicable rules with consequent ∼γ , then these teams compete with one another.
Team A wins if and only if any rule in team B is overruled by a rule in team A. If the
team A wins then we can prove +∂γ .

Example 3 Let us illustrate the notion of team defeat by the following theory D3.

F = {b},

R = { r1: b⇒ a,
r2: b⇒ a,
r3: b⇒¬a,
r4: b⇒¬a},

S = {r1 � r3,r2 � r4}.

The set of facts contains only b, hence we obtain:

+∆b,
+∂b.

Let us try to derive +∂a. Consider the proof condition for +∂ . The clause (1) is not
fulfilled since we cannot derive +∆a. The clause (2.1) is fulfilled since we derived
−∆¬a. From the conclusion +∂b and the rule r1 or r2, the clause (2.2) is fulfilled.
The rules r3 and r4 are also applicable but for each there is a stronger rule (r1
or r2) which is applicable and is stronger, hence the clause (2.3) is fulfilled. As a
consequence, we derive:

+∂a

In [13], G. Antoniou et al. shows that it is easy to define a variant of defeasible
that does not include team defeat. To do so, the clause (2.3.2) in the inference
condition +∂ as to be changed by the clause “(2.3.2) r � s”. In other words, an
attack on rule r by rule s can only be defended by r itself (if r is stronger than s.)

Strict rules are used in two different ways. In the proof conditions for definite
provability, strict rules are used as in classical logic: if they can fire they are
applied, regardless of any reasoning chains with the opposite conclusion. In the
proof condition for defeasible provability, strict rules are used like defeasible rules:
a strict rule may be applicable, yet it may not fire because there is a rule with
the opposite conclusion that is not weaker. Also, strict rules are not automatically
superior to defeasible rules. This treatment of strict rules may look a bit confusing
and counterintuitive.
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We conclude by the management of cyclic theories in which the derivation of γ

participates to trigger a rule with consequent∼γ . In the present version of defeasible
logic, there is no such idea that deriving +∂γ block the derivation of +∂∼γ .

Example 4 Let us illustrate the notion of cycle by the following theory D4.

F = {b},

R = {r0: b⇒ a,
r1: a⇒¬a},

S = ∅.

The set of facts contain only b, hence we derive:

+∆b,
+∂b.

There is not strict rules with consequent a and ¬a, hence we obtain:

−∆a,
−∆¬a.

Let us try to derive +∂a. Consider the proof condition for +∂ . The clause (1) is
not fulfilled since we cannot derive +∆a. The clause (2.1) is fulfilled since we de-
rived −∆¬a. From the conclusion +∂b and the rule r0, the clause (2.2) is fulfilled.
However, the r1 is also applicable, hence the clause (2.3) is not fulfilled. As a conse-
quence, we cannot derive +∂a. If the clauses of the proof condition for −∂ , then we
derive:

−∂a.

Let us try to derive +∂¬a. Consider the proof condition for +∂ . The clasue (1) is not
fulfilled since we did not derive +∆¬a. The clause (2.1) is fulfilled since we derived
−∆a. From the conclusion +∂a and the rule r1, the clause (2.2) is fulfilled. However,
the r0 is also applicable, hence the clause (2.3) is not fulfilled. As a consequence, we
cannot derive +∂¬a. If the clauses of the proof condition for −∂ , then we obtain:

−∂¬a.

Now consider the slightly different theory in which the superiority relation is not
empty:

F = {b},

R = {r0: b⇒ a,
r1: a⇒¬a},

S = {r1 � r0}.

The set of facts contains only b, hence we derive:

+∆b,
+∂b.
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There is not strict rules with consequent a and ¬a, hence we conclude:

−∆a,
−∆¬a.

Let us try to derive +∂a. Consider the proof condition for +∂ . The clause (1) is not
fulfilled since we cannot derive +∆a. The clause (2.1) is fulfilled since we derived
−∆¬a. From the conclusion +∂b and the rule r0, the clause (2.2) is fulfilled. The r1
is also applicable but r0 is also applicable and is stronger than r1, hence the clause
(2.3) is fulfilled. As a consequence, we can derive:

+∂a.

Let us try to derive +∂¬a. Consider the proof condition for +∂ . The clause (1) is not
fulfilled since we did not derive +∆¬a. The clause (2.1) is fulfilled since we derived
−∆a. From the conclusion +∂a and the rule r1, the clause (2.2) is fulfilled. However,
the r0 is also applicable and is stronger than r1, hence the clause (2.3) is not fulfilled.
As a consequence, we cannot derive +∂¬a. If the clauses of the proof condition for
−∂ , then we can derive:

−∂¬a.

Interestingly, G. Antoniou et al. in [11] shed light on the relations between the
types of provability ` +∆ , ` −∆ , ` +∂ , ` −∂ and the complements 6` +∆ , 6` −∆ ,
6` +∂ , 6` −∂ for literals γ and ¬γ . From the definitions of the proof conditions, it is
straightforward to show the following theorem.

Theorem 8.3. Let D be a defeasible theory. For any literal γ:

• if D `+∆γ , then D `+∂γ ,
• if D ` −∂γ , then D ` −∆γ ,
• we cannot have D `+∆γ and D ` −∆γ ,
• we cannot have D `+∂γ and D ` −∂γ ,

For any literal, [11] shows that there are exactly six different possible outcomes of
the proof theory, and presents for each outcome a simple theory which achieves this
outcome:

• D 6` −∆γ and D 6`+∂γ , (p→ p),
• D `+∂γ and D 6`+∆γ and D 6` −∆γ , (⇒ p , p→ p),
• D `+∆γ and D `+∂γ , (→ p),
• D `+∂γ and D ` −∆γ , (⇒ p),
• D ` −∆γ and D 6`+∂γ and D 6` −∂γ , ( p⇒ p),
• D ` −∂γ and D 6`+∆γ , ( /0).

It follows that a theory is consistent if we cannot conclude that both a literal γ and
its complement ∼γ are defeasibly true unless they are both definitely true:

Theorem 8.4. Let D be an acyclic defeasible theory. For any literal γ , D `+∆γ and
D `+∆∼γ iff D `+∂γ and D `+∂∼γ .
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Further results can be found in [11], among them, a modular transformation of any
defeasible theory D enables to build an equivalent theory D′ without facts, defeaters,
and superiority relations. This transformation is used in to provide an argumenta-
tion semantics of defeasible logic. Another argumentation semantics which does not
need the transformation is provided in [90]. In the remainder, we propose a slightly
adapted argumentation semantics which does not require the transformation as in
[11], but which is arguably simpler and reflects better the structure of proof theories
than [90].

8.3 Argument semantics

Defeasible logic has been defined by its proof theory so far, but non-monotonic rea-
soning can be analyzed in terms of arguments: non-monotonicity arises when an
argument for a conclusion is defeated by a counter-argument. So a non-monotonic
logic can be interpreted in terms of interacting arguments, giving for it an argumen-
tation semantics. We present the argumentation semantics in three steps: firstly we
define how arguments can be built, secondly we focus on conflicting arguments and
determine dialectical status of arguments, and thirdly we define the justified argu-
ments.

8.3.1 Arguments

The argument layer defines what arguments are. An argument for a conclusion (a
literal or a rule) is a proof tree (or monotonic derivation) of that conclusion in defea-
sible logic. Nodes are labeled by either literals or rules which are tagged by +∆ ′ and
+∂ ′. Nodes are connected by compound arrows that correspond to grounded infer-
ences rules. In the remainder, Greek letters (α , β , etc) shall be used as meta-variables
ranging over literals or rules according to the context.

Definition 8.5. An argument is a proof tree such that:

• each node is labeled by an assertion γ tagged by ∂ ′ or ∆ ′, and
• each leaf node is labeled by +∆ ′γ where γ ∈ F ∪R, and
• each compound arrow connecting nodes corresponds to a grounded inference

rule of the following types:

r ∈ Rs[γ],r is ∆ ′−applicable
+∆ ′γ

(8.1)

r ∈ R[γ],r is ∂ ′−applicable
+∂ ′γ

(8.2)

+∆ ′γ

+∂ ′γ
(8.3)

where
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If r is ∆ ′-applicable then
(1) +∆ ′r, and
(2) ∀α ∈ A(r), +∆ ′α .

If r is ∂ ′-applicable then
(1) +∂ ′r, and
(2) ∀α ∈ A(r), +∂ ′α .

• the consequent of a defeater, which is ∂ ′-applicable, is the root node.

The last condition specifies that a defeater rule may only be used at the top of an
argument: no chaining of defeaters is allowed.

Example 5 To illustrate the definition of argument, consider the theory D2:

F = {high income, disaster },

R = { r0: high income⇒ tax,
r1: high income,disaster→¬tax,
r2: ¬tax⇒ invest},

S = {r0 � r1}.

We can build the following arguments:

• F1: [+∆ ′high income],
• F2: [+∆ ′disaster],
• R0: [+∆ ′r0],
• R1: [+∆ ′r1],
• R2: [+∆ ′r2],
• F1’: [[+∆ ′high income]+∂ ′high income],
• F2’: [[+∆ ′disaster]+∂ ′disaster],
• R0’: [[+∆ ′r0]+∂ ′r0],
• R1’: [[+∆ ′r1]+∂ ′r1],
• R2’: [[+∆ ′r2]+∂ ′r2],
• A: [[F1′,R0′]+∂ ′tax],
• B: [[F1,F2,R1]+∆ ′¬tax],
• B’: [[B]+∂ ′¬tax],
• C: [[B′,R2′]+∂ ′invest].

Definition 8.6. A (proper) sub-argument of an argument A is a (proper) sub-tree of
the tree associated to A.

Example 6 The argument B is a proper sub-argument of argument B′. The argument
B′ is not a proper sub-argument of B′.

Definition 8.7. A tagged assertion (+∆ ′γ or +∂ ′γ) is a conclusion of an argument if
it labels a node of the argument.
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A more usual alternative would be to regard only the root of an argument as its unique
conclusion, but this choice would make the other definitions more complicated. Since
conclusions can be differently qualified depending on the rules used, arguments are
differentiated as follows:

Definition 8.8. A supportive argument is a finite argument in which no defeater is
applied.

Definition 8.9. A strict argument is an argument in which any node is tagged by
+∆ ′.

Definition 8.10. An argument that is not strict is defeasible.

Example 7 The argument B: [[F1,F2,R1]+∆ ′¬tax] is a strict and supportive ar-
gument.

8.3.2 Acceptable arguments

The previous Section defined the argument layer and isolated the concept of argu-
ment. This Section presents the dialectical layer which is concerned with relations
standing amongst arguments. It defines the notion of support, attack and counter-
attack, and focuses on the interaction amongst arguments. Firstly, we introduce the
notion of support:

Definition 8.11. A set of arguments S supports a defeasible argument A if any proper
sub-argument of A is in S.

Note that, in our setting, the atomic arguments, constituted of a fact or a rule of the
theory, are supported by the empty set.

The conditions determining which argument can attack or counter-attack another
argument are defined in the following. In the Section presenting the proof theory, a
defeasible conclusion is shown to have a proof condition consisting of three phases.
In the first phase, a supporting rule r for the desired conclusion is provided. In the
second phase, all possible attacks provided by a rule s against the conclusion are
considered. In the third phase, counter-attacks are proposed, that is, the counter-
attack consists of a rule w such that w is stronger than s.
So in the proof condition, the relation of attack between the first and second phase
is somewhat different of the relation of attack between the second and third phase.
To reflect this, we provide the notion of attack and defeat between arguments in the
following.

Definition 8.12. An argument S attacks a defeasible argument R if and only if +#∼γ

and +∂ ′γ are conclusions of the arguments S and R respectively, where # ∈ {∆ ′,∂ ′}.

Example 8 The argument B: [[F1,F2,R1] + ∆ ′¬tax] attacks the argument
A: [[F1′,R0′]+∂ ′tax].
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Definition 8.13. An argument W defeats a defeasible argument S if and only if

• +#γ and +∂ ′∼γ are conclusions of a rule w ∈ R[γ] and a rule s ∈ R[∼γ] in the
arguments W and S respectively, where # ∈ {∆ ′,∂ ′}, and

• if # = ∂ ′, w� s.

Example 9 The argument A: [[F1′,R0′] + ∂ ′tax] does not defeat the argument
B: [[F1,F2,R1] + ∆ ′¬tax] whereas the argument B attacks and defeats the argu-
ment A.

Defeasible reasoning differentiates traditionally between rebuttal and undercut-
ting. We stick to the tradition and define the notion of undercutting as follows:

Definition 8.14. An argument A undercuts a defeasible argument B if A attacks a
proper sub-argument of B.

In this setting, an argument that is attacked but not undercut is said to be rebutted.

Definition 8.15. A set of arguments S undercuts a defeasible argument B if there is
an argument A supported by S that attacks a proper sub-argument of B.

Definition 8.16. A set of arguments S defeats a defeasible argument B if there is an
argument A supported by S that defeats B.

Comparing arguments by pairs is not enough since an attacking argument can in
turn be attacked by other arguments. In the following, we will define justified argu-
ments, i.e. arguments that have no viable attacking argument in the discourse, and
rejected arguments that are attacked by justified argument. As in many argumenta-
tion systems, we base the status justified or rejected of arguments on the concept
of acceptability of an argument w.r.t. to set of arguments S. That an argument A is
acceptable w.r.t. to set of arguments S means that any attacker against A is defeated
by an argument supported by S. We present next a slightly adapted version of P.M.
Dung’s definition of acceptability [68].

Definition 8.17. An argument A is acceptable w.r.t. a set of arguments S if and only
if either

(1) A is strict, or
(2) for any argument B attacking A

(2.1) B is undercut by S, or
(2.2) B is defeated by S.

That any argument B, which attacks an acceptable argument A and which is not de-
feated by S, must be undercut (i.e. a proper sub-argument of B must be attacked, not
the conclusion) by a counter-argument C supported by S (i.e. the counter-argument
C is possibly not a member of S) aims to provide an ambiguity blocking semantics
of the system.
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8.3.3 Justified arguments

Based on the concept of acceptability we proceed to define justified arguments and
justified literals. That an argument A is justified means that it resists any refutation.

Definition 8.18. The set of justified arguments in a theory D is JArgsD =
⋃

∞
i=0 JD,i

with

• JD,0 = ∅,
• JD,i+1 = {A ∈ ArgsD|A is acceptable w.r.t. JD,i},
where ArgsD is the set of arguments that can be generated from D.

So, an argument A is acceptable w.r.t. JD,i+1 if either A is strict, or any argument B
attacking A is undercut by JD,i (i.e. there is an argument C supported by JD,i that
attacks a proper sub-argument of B) or counter-attacked by an argument supported
by JD,i.

Definition 8.19. A tagged assertion +∂ ′γ is justified if it is the conclusion of a sup-
portive argument in JArgsD.

Example 10 Let us illustrate these definitions by a step-by-step construction of the
set of justified arguments of the theory D2.

We need to find out any argument that is acceptable w.r.t. JD2,0 which is by def-
inition the empty set. Let us consider the strict arguments. The arguments F1, F2,
R0, R1, R2 and B are strict and thus are acceptable w.r.t JD,0. Let us now consider
non-strict arguments. The argument F1′, F2′, R0′, R1′ and R2′ are not attacked by
any argument. Hence they are acceptable w.r.t. JD2,0.

The argument A is attacked by the argument B which is neither undercut nor
counter-attacked by JD2,0. Hence the argument A is not acceptable w.r.t. JD2,0. Simi-
larly, the arguments B′ and C are attacked by the argument A which is neither under-
cut nor counter-attacked by JD2,0. Hence the arguments B′ and C are not acceptable
w.r.t. JD2,0.
We have parse any tentative to make acceptable arguments w.r.t. JD2,0, therefore

JD2,1 = {F1,F2,R0,R1,R2,F1′,F2′,R0′,R1′,R2′,B}.

The next step is to find out any argument that is acceptable w.r.t. JD2,1. The argument
A is attacked by the argument B which is neither undercut nor counter-attacked by
JD2,1. Hence the argument A is not acceptable w.r.t. JD2,1. The arguments B′ and C
are attacked by the argument A which is defeated by JD2,1 (consider the argument
B). Hence the argument B′ and C are acceptable w.r.t. JD2,1. We have parsed any
tentative to make acceptable arguments w.r.t. JD2,1, therefore

JD2,2 = {B,C}

It is easy to see that ∀i > 2, JD2,i = ∅. By definition, the set of justified arguments
JArgsD2 is

⋃+∞

i=0 JD2,i, that is,

JArgsD2 = {F1,F2,R0,R1,R2,F1′,F2′,R0′,R1′,R2′,B,B′,C}.
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Example 11 This example illustrates how the argumentation semantics deals with
team defeat. Consider the theory D3 from the example 3. Possible arguments include:

• B: [+∆ ′b],
• B’: [[+∆ ′b]+∂B′b],
• A1: [+∆ ′r1],
• A2: [+∆ ′b],
• A3: [+∆ ′b],
• A4: [+∆ ′b],
• A1: [[+∆ ′r1]∂ ′r1],
• A2: [[+∆ ′r2]∂ ′r2],
• A3: [[+∆ ′r3]∂ ′r3],
• A4: [[+∆ ′r4]∂ ′r4],
• A1”: [[[+∆ ′b]∂ ′b], [[∆ ′r1]∂ ′r1]∂ ′a],
• A2”: [[[+∆ ′b]∂ ′b], [[∆ ′r2]∂ ′r2]∂ ′a],
• A3”: [[[+∆ ′b]∂ ′b], [[∆ ′r3]∂ ′r3]∂ ′¬a],
• A4”: [[[+∆ ′b]∂ ′b], [[∆ ′r4]∂ ′r4]∂ ′¬a].

The strict arguments B, A1, A2, A3, A4 are acceptable w.r.t. JD3,0. The arguments B’,
A1’, A2’, A3’, A4’ are not attacked or defeated by any argument and hence are also
acceptable with respect to JD3,0. As a consequence we can build the set:

JD3,1 = {B,A1,A2,A3,A4,B′,A1′,A2′,A3′,A4′}.

The argument A1” is attacked by the arguments A3” and A4” which are attacked by
the arguments A1” and A2” respectively, and the arguments A1” and A2” are sup-
ported by the set JD3,1. Hence the argument A1” is acceptable w.r.t. JD3,1. Similarly
for A2”.

The argument A3” is attacked by the arguments A1” and A2” which are attacked
by the arguments A3” and A4” respectively, but the arguments A1” and A2” are
neither undercut nor defeated by JD3 . Hence, the argument A3” is not acceptable
w.r.t. JD3,1. Similarly for A4”.

We have parsed any tentative to make acceptable arguments w.r.t. JD3,1, therefore
we have:

JD3,2 = {A3′′,A4′′}.

∀i > 2, JD3,i = ∅ and thus

JArgsD3 = {B,A1,A2,A3,A4,B′,A1′,A2′,A3′,A4′,A3′′,A4′′}.

If a tagged assertion +∂ ′γ is justified means then it is provable (+∂ ). However,
defeasible logic permits to express when a conclusion is not provable (-∂ ). Briefly,
that a conclusion is not provable means that every possible argument for that conclu-
sion has been refuted. In the following, this notion is captured by assigning the status
rejected to arguments that are refuted. Roughly speaking, an argument is rejected if
it has a rejected sub-argument or it cannot overcome an attack from a justified ar-
gument. Given an argument A, a set S of arguments (to be thought of as arguments
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that have already been rejected), and a set J of arguments (to be thought of as justi-
fied arguments that may be used to support attacks on A), we assume the following
definition of the argument A being rejected by S and J:

Definition 8.20. An argument A is rejected by the sets of arguments S and J when A
is not strict and if (i) a proper sub-argument of A is in S or (ii) it is attacked by an
argument supported by J.

Definition 8.21. The set of rejected arguments in a theory D w.r.t. J is RArgsD(J) =⋃
∞
i=0 RD,i with

• RD,0(J) = ∅,
• RD,i+1(J) = {a ∈ ArgsD|a is re jected by RD,i(J) and J}.

Definition 8.22. A tagged assertion +∂ ′γ is rejected by J if there is no argument in
ArgsD−RArgsD(J) that ends with as a supportive rule for +∂ ′γ .

As shortcut, we say that an argument is rejected if it is rejected w.r.t. JArgsD and a
literal is rejected if it is rejected by JArgsD.

An argumentation semantics with ambiguity blocking can now be provided by
characterizing conclusions of defeasible logic in argumentation terms:

Definition 8.23. Let D be a defeasible theory and γ a literal,

• D `+∆γ iff there is a strict argument supporting +∆ ′γ in ArgsD.
• D ` −∆γ iff there is no strict argument supporting +∆ ′γ in ArgsD.
• D `+∂γ iff +∂ ′γ is justified.
• D ` −∂γ iff +∂ ′γ is rejected by JargsD.

This argumentation semantics is consistent with the proof theories of the presented
defeasible logic in the sense that conclusions get similarly tagged. The proof not
provided here is similar to the one in [91]. It follows that for any defeasible theory,
no argument is both justified and rejected, and thus no literal is both justified and
rejected. Eventually, if the set JArgsD of justified arguments contains two arguments
with conflicting conclusions then both arguments are strict. That is, inconsistent con-
clusions can be reached only when the strict part of the theory is inconsistent.





9

Modal defeasible logic

A simple cognitive model of agents was informally presented in Chapter 5. In this
Section, we provide a formalization of the cognitive model in modal defeasible logic.

Modal defeasible logic is an umbrella expression for extensions of defeasible
logic with modal operators. D. Nute proposed in [150] a deontic defeasible logic.
More recently, G. Governatori and A. Rotolo proposed extensions of defeasible logic
to capture combinations of mental attitudes and deontic concepts (e.g. see [93, 60,
59]). An implementation as Prolog meta-program of a variant of modal defeasible
logic exits (see [15, 65]).

In the remainder of the Section, we propose a version of defeasible logic account-
ing for sequences of modalities. In order to ease the comparison with basic defeasible
and to highlight similarities and differences, we provide the proof theory and the ar-
gumentation semantics in similar way as the previous Chapter on basic defeasible
logic.

9.1 Language

As in basic defeasible logic, we keep the distinction between strict rules, defea-
sible rules, and defeaters. Accordingly, a strict rule is an expression of the form
φ1, . . . ,φn→ψ such that whenever the premises are indisputable so is the conclusion.
A defeasible rule is an expression of the form φ1, . . . ,φn⇒ ψ whose conclusion can
be defeated by contrary evidence. An expression φ1, . . . ,φn ; ψ is a defeater used
to defeat some defeasible rules by producing evidence to the contrary.

Modal literals can occur in the antecedent of rules or in its consequent. This is a
shift from the [93, 60, 59]’s formalism in which, in order to extend defeasible logic
with modal operators, new types of rules relative to modal operator were introduced
by labeling arrows of the rules by a modal operator. This latter solution leads to dis-
tinguishing different modes through which the literals can be derived using rules.
Such formalism is most relevant when no sequence of modalities is needed: how-
ever, since we do intend to capture sequence of modalities, the formalism, in which
new types of rules relative to modal operator are introduced, is discarded in favor
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of a formalism in which modal literals can occur in the antecedent of rules or in its
consequent.

The types of agent are linked to the relations conflict and defeat between modal
statements (see Section 5.5). The binary relations conflict and defeat defines which
types of statements are in conflict and which are the stronger ones. For example, if
we write conflict(Oblagγ,Desag∼γ) this means that obligations holding for the agent
ag conflict with desires of the agent ag, and if we write defeat(Oblagγ,Desag∼γ) this
means that by default obligations overrides desires. In this perspective, agent types
are meaningful within a non-monotonic setting and are nothing but general strate-
gies to detect and solve conflicts between the different components of the cognitive
profiles of agent’s deliberation.

Definition 9.1 (Language). Let Prop be a set of propositional atoms, Ag a finite set
of agents, Lab be a set of labels and m,k ∈ N. The sets below are defined as the
smallest sets closed under the following rules:

Modal operators

Mod = {Holdag,Desag,Bringag,Oblag,Permag,Forbag,Facag |ag ∈ Ag}

Modal literals

MLit = {(Xi)1..n¬m
γ |γ ∈ Prop, Xi = ¬kX , X ∈Mod}

Rules

Rules = {(r: φ1, . . . ,φn→ ψ) |r ∈ Lab, φ1, . . . ,φn,ψ ∈MLit∪MRule}
Ruled = {(r: φ1, . . . ,φn⇒ ψ) |r ∈ Lab, φ1, . . . ,φn,ψ ∈MLit∪MRule}
Ruledft = {(r: φ1, . . . ,φn ; ψ) |r ∈ Lab, φ1, . . . ,φn,ψ ∈MLit∪MRule}
Rule = Rules∪Ruled ∪Ruledft

Modal rules

MRules = {(Xi)1..n¬mr |Xi ∈ {¬kHoldag|ag ∈ Ag}, r ∈ Rules}
MRuled = {(Xi)1..n¬mr |Xi ∈ {¬kHoldag|ag ∈ Ag}, r ∈ Ruled}
MRuledft = {(Xi)1..n¬mr |Xi ∈ {¬kHoldag|ag ∈ Ag}, r ∈ Ruledft}
MRule = MRules∪MRuled ∪MRuledft

Conflict relations

Conflict = {conflict(γ,β ) |γ,β ∈MLit∪MRule}

Defeat relations

Defeat = {defeat(γ,β ) |γ,β ∈MLit∪MRule}

Superiority relations

Sup = {(Xi)1..n(s� r) |Xi ∈ {Holdag|ag ∈ Ag},s,r ∈ Lab}
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Definition 9.2 (Defeasible theory). A defeasible theory is a structure D =
(F,R,S ,Ag,C ,D) where

• F ⊆ Lit∪MLit is a finite set of facts,
• R = R1 ∪R2 is a finite set of rules such that each rule has an unique label, and

where:
– R1 ⊆MRule and,
– R2 = {rγ→β : γ → β |β ∈ Equivalent(γ)}∪{rγ⇒β : γ ⇒ β |β ∈ Convert(γ)}

• S ⊆ Sup is a set of acyclic superiority relations,
• Ag = Ag1∪{obj} is a set of agents such that ∀a ∈ Ag1,a 6= obj,
• C ⊆ Conflict is a set of conflict relations,
• D ⊆ Defeat is a set of defeat relations.

We use some abbreviations. The set of sequences of operators (Xi)1..n which does
not contain any negated operator is denoted Seq+:

Seq+ = {(Xi)1..n |Xi ∈Mod}

The set of antecedents {φ1, . . . ,φn} of a rule is denoted A(r), and its consequent is
denoted C(r). The set of rules whose consequent is γ is denoted R[γ]:

R[γ] = {r|r ∈ R,C(r) = γ}.

The set of strict rules whose consequent is γ is denoted Rs[γ]. The set of defeasible
and strict rules whose consequent is γ is denoted Rsd [γ].

9.2 Proof theory

A conclusion of a theory D is a tagged (modal)literal or (modal) rule having one of
the following forms:

+∆γ meaning that γ is definitely provable in D.
−∆γ meaning that γ is not definitely provable in D.
+∂γ meaning that γ is defeasibly provable in D.
−∂γ meaning that γ is not defeasibly provable in D.

Provability is based on the concept of a derivation (or proof) in D. A deriva-
tion is a finite sequence P = (P(1), ..,P(n)) of tagged (modal) literals or (modal)
rules. Each tagged (modal) literal or (modal) rule satisfies some proof conditions,
which correspond to inference rules for the four kinds of conclusions we have
mentioned above.

Before moving to the conditions governing provability of conclusions, we need
to introduce some preliminary notions. Firstly, it is crucial to establish criteria for
detecting and solving conflicts between the different components which characterize
the cognitive profiles of agent’s deliberation, and, above all between mental states
and normative provisions. For example, consider the conflicts arising from an obli-
gation and a prohibition:
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r: Holdmarioa⇒ Oblmarioc
s: Holdmariob⇒ Forbmarioc

If the two rules apply, then they conflict. Accordingly, for any γ we introduce the
sets Conflict(γ) that contains all the expression in conflict with γ . We define two sets
of conflict: the set C 1

onflict(γ) which denotes the set of assertions in conflict with
γ irrespective to any agent theory, and the set C ∗onflict(γ) which denotes the set of
assertions in conflict with γ with respect to an agent theory.

Definition 9.3 (Conflicts1). The set C 1
onflict(γ), which denotes the set of assertions

in conflict with γ irrespective to any agent theory, is defined as follows. Let ∼γ ∈
C 1

onflict(γ), we have:

• C 1
onflict(γ)⊇ {β |β ∈ Equivalent(β ′), β ′ ∈ C 1

onflict(γ)},
• C 1

onflict(γ)⊇ {β |γ ∈ C 1
onflict(β )}.

For any γ ∈MLit∪MRule,

• C 1
onflict(γ) = {¬γ},

For any X ∈ {Holdag, Desag, Bringag}, γ ∈MLit∪MRule,

• C 1
onflict(Xγ)⊇ {X∼γ},

For any γ ∈MLit,

• C 1
onflict(Oblagγ)⊇ {¬Permagγ, Permag∼γ},

• C 1
onflict(Facagγ)⊇ {Oblag∼γ, Oblagγ}.

Definition 9.4 (Conflicts∗). Let C ∗onflict a set of conflict relations conflict∗(γ,β ) de-
fined as follows. Let γ ∈MLit∪MRule, and let a theory D = (F,R,S ,Ag,C ,D), we
have:

• conflict∗(γ,β )∈C ∗onflict if conflict(β ,γ) or conflict(γ,β )∈C or conflict∗(β ,γ)∈
C ∗onflict,

• conflict∗(γ,β ) ∈ C ∗onflict if ∃β ∈ Equivalent(β ′), conflict∗(γ,β ′) ∈ C ∗onflict,
• conflict∗(Holdobjγ,Holdobjβ ) ∈ C ∗onflict if conflict∗(γ,β ) ∈ C ∗onflict,
• conflict∗(γ,β ) ∈ C ∗onflict if conflict∗(Holdobjγ,Holdobjβ ) ∈ C ∗onflict,
• conflict∗(HoldagHoldagγ,HoldagHoldagβ ) ∈ C ∗onflict if conflict∗(Holdagγ,Holdagβ ) ∈

C ∗onflict,
• conflict∗(Holdagγ,Holdagβ ) ∈ C ∗onflict if conflict∗(HoldagHoldagγ,HoldagHoldagβ ) ∈

C ∗onflict.

As abbreviation, we have C ∗onflict(γ) = {β |conflict∗(γ,β ) ∈ C ∗onflict}.

We define the set Conflict(γ) = C 1
onflict(γ)∪C ∗onflict(γ) as the set of assertions in conflict

with γ . An illustration of the notion of conflict is provided in the example 12. Next,
we define the equivalent assertions.

Definition 9.5 (Equivalences). The set Equivalent(γ), which denotes the set of asser-
tions equivalent to γ , is defined as follows. For any γ ∈ MLit∪MRule, X ∈ Mod,
n ∈ N and ∼γ ∈ Conflict(γ), we have:
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• Equivalent(γ) = {β |β ∈ Equivalent(γ)},
• Equivalent(γ) = {¬2nγ},
• Equivalent(¬nγ) = {¬nβ |β ∈ Equivalent(γ)},
• Equivalent(¬nX γ) = {¬nX β |β ∈ Equivalent(γ)},
• Equivalent(Oblagγ) = {¬Permag∼γ, Forbag∼γ}.

An illustration of the notion of conflict is provided in the example 12. Next, we
provide by means of the conversion relations which modal expressions can be con-
verted into which modal expressions. Note that we do not cater for the notion of
rule conversion which permits to use rules for a modality X as they were for another
modality Y provided certain conditions on the modes of the literals in antecedent of
the rules (see Section 5.4.3.) However, mere conversions between modalities exist
also abstraction done of the conditions on the modes of the literals in antecedent of
the rules. For example, if we derive the obligation to pay taxes, then we can also de-
rive the permission to pay taxes. The set of assertions which can result by conversion
from an assertion γ is denoted Convert(γ).

Definition 9.6 (Conversions). The set Convert(γ), which denotes the set of assertions
which can result by conversion from an assertion γ , is defined as follows. For any
X ∈Mod, γ ∈MLit∪MRule and n ∈ N, we have:

• Convert(γ)⊇ {β |β ∈ Convert(β ′), β ′ ∈ Equivalent(γ)},
• Convert(γ)⊇ {Holdobjγ},
• Convert((¬)nHoldagγ)⊇ {Holdag(¬)nHoldagγ},
• Convert(Holdag(¬)nHoldagγ)⊇ {(¬)nHoldagγ},
• Convert(Bringagγ)⊇ {Holdobjγ},
• Convert(Bringagγ)⊇ {Holdagγ},
• Convert(Oblagγ)⊇ {Permagγ},
• Convert(Facagγ)⊇ {Permagγ, Permag∼γ},
• Convert(¬nγ)⊇ {¬nβ |β ∈ Convert(γ)},
• Convert(¬nXγ)⊇ {¬nXβ |β ∈ Convert(γ)}.

Finally, based on the sets of defeating relations provided by a theory, we assume the
following sets of defeating assertions.

Definition 9.7 (Defeats). Let Defeat a set of defeat relations defeat∗(γ,β ) defined as
follows. Let γ ∈MLit∪MRule, and let a theory D = (F,R,S ,Ag,C ,D) we have:

• defeat∗(γ,β ) ∈Defeat if defeat(β ,γ) ∈D ,
• defeat∗(γ,β ) ∈Defeat if ∃β ∈ Equivalent(β ′), defeat∗(γ,β ′) ∈Defeat,
• defeat∗(γ,β ) ∈Defeat if ∃γ ∈ Equivalent(γ ′), defeat∗(γ ′,β ) ∈Defeat,
• defeat∗(Holdobjγ,Holdobjβ ) ∈Defeat if defeat∗(γ,β ) ∈Defeat,
• defeat∗(γ,β ) ∈Defeat if defeat∗(Holdobjγ,Holdobjβ ) ∈Defeat,
• defeat∗(HoldagHoldagγ,HoldagHoldagβ )∈Defeat if defeat∗(Holdagγ,Holdagβ )∈Defeat,
• defeat∗(Holdagγ,Holdagβ )∈Defeat if defeat∗(HoldagHoldagγ,HoldagHoldagβ )∈Defeat.

As abbreviation, Defeat(γ) = {β |defeat∗(β ,γ) ∈Defeat}.

We illustrate the notion given above in the example 12.
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Example 12 Given defeat(Oblguidoγ, Desguido∼γ) in a theory, we have:

Conflict(HoldmarioOblguidoa)⊇ {¬HoldmarioOblguidoa,
Holdmario¬Oblguidoa,
HoldmarioOblguido¬a,
Holdmario¬Permguidoa,
HoldmarioPermguido¬a,
HoldmarioForbguidoa }

Conflict(HoldguidoOblguidoa)⊇ {¬HoldguidoOblguidoa,
Holdguido¬Oblguidoa,
HoldguidoOblguido¬a,
Holdguido¬Permguidoa,
HoldguidoPermguido¬a,
HoldguidoForbguidoa,
HoldguidoDesguido¬a }

Equivalent(HoldmarioOblguidoa)⊇ {Holdmario¬Permguido¬a,
HoldmarioForbguido¬a}

Convert(HoldmarioOblguidoa)⊇ {HoldmarioPermguidoa,
Holdmario¬Oblguido¬a,
Holdmario¬Forbguidoa }

Defeat ⊇ {defeat∗(Oblguidoγ, Desguido∼γ),
defeat∗(HoldguidoOblguidoγ, HoldguidoDesguido∼γ),
defeat∗(HoldobjOblguidoγ, HoldobjDesguido∼γ) }

Definition 9.8 (Superiority S ∗). Let S ∗ a set of superiority relations (Xi)1..n(w �
s) defined as follows. Let a theory D = (F,R,S ,Ag,C ,D) we have:

• (Xi)1..n(w� s) ∈S ∗ if (Xi)1..n(w� s) ∈S ,
• Holdobj(Xi)1..n(w� s) ∈S ∗ if (Xi)1..n(w� s) ∈S ∗,
• (Xi)1..n(w� s) ∈S ∗ if Holdobj(Xi)1..n(w� s) ∈S ∗,
• HoldagHoldag(Xi)1..n(w� s) ∈S ∗ if Holdag(Xi)1..n(w� s) ∈S ∗,
• Holdag(Xi)1..n(w� s) ∈S ∗ if HoldagHoldag(Xi)1..n(w� s) ∈S ∗.

As abbreviation, S ∗((Xi)1..n(w� s)) = {(Xi)1..n(w� s) |(Xi)1..n(w� s) ∈S ∗}.

Definition 9.9 (Superiority Sup). Let Sup denote the set of tuples
〈(Xi)1..nγ,(Yi)1..n(w� s)〉 where (Xi)1..nγ is an assertion, and (Yi)1..n(w � s) ∈S ∗.
We have 〈(Xi)1..nγ,(Yi)1..n(w� s)〉 ∈Sup if and only if ( f�(Xi))1..n = (Yi)1..n where
f�(¬kXag) = Holdag.

As abbreviation, we have 〈(Xi)1..nγ,(w� s)〉 ∈ Sup if and only if
〈(Xi)1..nγ,(Yi)1..n(w� s)〉 ∈Sup.
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In order to lighten the presentation of the proof conditions, we present separately the
condition for applicability of rules. If a modal rule (Xi)1..nr is applicable then (1) the
rule r has for consequent γ , (2) the (possible empty) sequence of operators (Xi)1..n
does not contain a negated operator (i.e. ) (Xi)1..n ∈ Seq+, (3) the modal rule (Xi)1..nr
is provable, and (4) all the antecedents are proved appropriately:

If (Xi)1..nr is ∆(Xi)1..nγ-applicable then
(1) r ∈ Rs[γ], and
(2) (Xi)1..n ∈ Seq+, and
(3) +∆(Xi)1..nr ∈ P(1..i), and
(4) ∀α ∈ A(r), +∆(Xi)1..nα ∈ P(1..i).

If (Xi)1..nr is ∆(Xi)1..nγ-discarded then
(1) r 6∈ Rs[γ], or
(2) (Xi)1..n 6∈ Seq+, or
(3) −∆(Xi)1..nr ∈ P(1..i), or
(4) ∃α ∈ A(r), −∆(Xi)1..nα ∈ P(1..i).

The conditions for a rule to be ∂ -applicable are similar as those for ∆ -applicable:

If (Xi)1..nr is ∂ (Xi)1..nγ-applicable then
(1) r ∈ R[γ], and
(2) (Xi)1..n ∈ Seq+, and
(3) +∂ (Xi)1..nr ∈ P(1..i), and
(4) ∀α ∈ A(r), +∂ (Xi)1..nα ∈ P(1..i).

If (Xi)1..nr is ∂ (Xi)1..nγ-discarded then
(1) r 6∈ R[γ], or
(2) (Xi)1..n 6∈ Seq+, or
(3) −∂ (Xi)1..nr ∈ P(1..i), or
(4) ∃α ∈ A(r), −∂ (Xi)1..nα ∈ P(1..i).

We are now ready to define the proof theory that is, the inference conditions to derive
tagged conclusions from a given theory D. Note that the formalism we have intro-
duced allows us to modal rules, thus we have to admit the possibility that rules are
not only given but can be derived. Accordingly we have to give conditions that allow
us to derive rules. We begin with the proof conditions to determine whether a modal
literal or rule is a definite conclusion of a theory D. Let γ ∈MLit∪MRule,

If P(i+1) = +∆γ then
(1) γ ∈ F ∪R, or
(2) ∃r ∈ Rs, r is ∆γ-applicable.

To prove that a modal literal is not definitely provable we have to show that any
attempt to give a definite proof fails.

If P(i+1) =−∆γ then
(1) γ /∈ F ∪R, or
(2) ∀r ∈ Rs, r is ∆γ−discarded.



176 9 Modal defeasible logic

We now turn our attention to defeasible derivations. Defeasible provability (+∂ ) for
modal literals (or modal rules) consists of three phases. In the first phase, we put
forward a supported reason for the conclusion that we want to prove. Then in the
second phase, we consider all possible attacks against the desired conclusion. Finally
in the last phase, we have to defeat the attacks considered in the second phase.

If P(i+1) = +∂γ then
(1) +∆γ ∈ P(1..i), or
(2) (2.1) ∀β ∈ Conflict(γ), −∆β ∈ P(1..i), and

(2.2) ∃r ∈ Rsd , r is ∂γ− applicable, and
(2.3) ∀β ∈ Conflict(γ), ∀s ∈ R,

(2.3.1) s is ∂β −discarded, or
(2.3.2) ∃w ∈ Rsd , w is ∂γ− applicable, and

(2.3.2.1) γ ∈Defeat(β ), 〈γ,(s� w)〉 6∈Sup, or
(2.3.2.2) 〈γ,(w� s)〉 ∈Sup.

Let us illustrate the proof condition of the defeasible provability of γ . We have two
cases: 1) We show that γ is already definitely provable; or 2) we need to argue using
the defeasible part of D. In this second case, to prove γ defeasibly we must show that
∼γ is not definitely provable (2). We require then there must be a strict or defeasible
rule r ∈ R which can be applied and with consequent γ (2.1). But now we need to
consider possible attacks, i.e., reasoning chains in support of ∼γ , that is, any rule s
from which one can derive ∼γ . Note that here we consider defeaters, too, whereas
they could not be used to support the conclusion Xγ; this is in line with the motivation
of defeaters given earlier. These attacking rules s have to be discarded (2.3.1), or must
be defeated by a stronger rule w which has a consequent γ (2.3.2).
To prove that a modal literal is not defeasibly provable we have to show that any
attempt to give a proof fails.

If P(i+1) =−∂γ then
(1) −∆γ ∈ P(1..i), and
(2) (2.1) ∃β ∈ Conflict(γ), +∆β ∈ P(1..i), or

(2.2) ∀r ∈ Rsd , r is ∂γ−discarded, or
(2.3) ∃s ∈ R, β ∈ Conflict(γ),

(2.3.1) s is ∂β -applicable, or
(2.3.2) ∃w ∈ Rsd , w is ∂γ− applicable, and

(2.3.2.1) γ 6∈Defeat(β ), 〈γor(s� w)〉 ∈Sup, and
(2.3.2.2) 〈γ,(w� s)〉 6∈Sup.

Example 13 Let us illustrate the above proof conditions by the following theory
D13 = {F,R,S ,Ag,C ,D} where:

F = {Holdguidomember(mario), Holdguidodistrust(mario) },

R = R1∪R2, where
R1 = {Holdag(r0: Holdagmember(x)⇒ Oblxcooperate(x)),

Holdag(r1: Holdagdistrust(x)⇒ Desx¬cooperate(x))},
R2 = {rγ→β : γ → β |β ∈ Equivalent(γ)}∪{rγ⇒β : γ ⇒ β |β ∈ Convert(γ)},
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S = /0,

Ag = {mario,guido,obj},

C = {conflict(HoldguidoOblmarioγ, HoldguidoDesmario∼γ)},

D = {defeat(HoldguidoOblmarioγ, HoldguidoDesmario∼γ)}.

This agent mario is social because, by default, obligations defeats desires. The facts
Holdmariomember(mario) and Holdmariodistrust(mario) belong to the theory, hence
we derive:

+∆Holdguidomember(mario), +∂Holdguidomember(mario),
+∆Holdguidodistrust(mario), +∂Holdguidodistrust(mario).

The set of rules R2 contains the following rule:

rHoldagγ⇒HoldagHoldagγ : Holdagγ ⇒ HoldagHoldagγ ,

which is applicable, hence we obtain:

+∆HoldguidoHoldguidomember(mario), +∂HoldguidoHoldguidomember(mario),
+∆HoldguidoHoldguidodistrust(mario), +∂HoldguidoHoldguidodistrust(mario).

The rules r0 and r1 belong to the theory, hence we derive:

+∆Holdag(r0: Holdagmember(x)⇒ Oblxcooperate(x)),
+∂Holdag(r0: Holdagmember(x)⇒ Oblxcooperate(x)),

+∆Holdag(r1: Holdagdistrust(x)⇒ Desx¬cooperate(x)),
+∂Holdag(r1: Holdagdistrust(x)⇒ Desx¬cooperate(x)).

The rule r0 is +∂HoldguidoOblmariocooperate(mario)-applicable.
The rule r1 is +∂HoldguidoDesmario¬cooperate(mario)-applicable.
The rule r0 conflicts with r1 because we have:

HoldguidoDesmario¬cooperate(mario) ∈ Conflict(HoldguidoOblmariocooperate(mario)).

However, the rule r0 defeats r1 because we have:

HoldguidoOblmariocooperate(mario) ∈Defeat(HoldguidoDesmario¬cooperate(mario)).

Hence, we conclude:

−∂HoldguidoDesmario¬cooperate(mario),
+∂HoldguidoOblmariocooperate(mario).

Furthermore, the set of rules R2 contains the following rules:

rHoldagOblagγ⇒HoldagForbag∼γ : HoldagOblagγ → HoldagForbag∼γ ,
rHoldagOblagγ⇒HoldagPermagγ : HoldagOblagγ ⇒ HoldagPermagγ .

The above rules are both applicable, hence we can conclude among others:

+∂HoldguidoForbmario¬cooperate(mario),
+∂HoldguidoPermmariocooperate(mario).
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Example 14 Suppose the following theory D14 = {F,R,S ,Ag,C ,D} where:

F = {Holdmariohas high income(mario), Holdmariostrike by disaster(mario) },

R = R1∪R2, where
R1 = {Holdmario(r0: Holdaghas high income(x)⇒ Oblx pay tax(x)),

Holdmario(r1: Holdaghas high income(x), Holdagstrike by disaster(x)⇒ Permx¬pay tax(x)),
Holdmario(r2: Permmario¬pay tax(x)⇒ Desmarioinvest(x)),
Holdmario(r3: Holdmariohas high income(x), Desmarioinvest(x)⇒ Bringmarioinvest(x))},

R2 = {rγ→β : γ → β |β ∈ Equivalent(γ)}∪{rγ⇒β : γ ⇒ β |β ∈ Convert(γ)}

S = {Holdmario(r1 � r0)},

Ag = {mario,obj},

C = {conflict(Oblmarioγ,Desmario∼γ), conflict(Oblmarioγ,Bringmario∼γ)},

D = {defeat(Oblmarioγ,Desmario∼γ), defeat(Oblmarioγ,Bringmario∼γ)}.

From the fact Holdmariohas high income, the rule r0 is applicable, but the putative
conclusion HoldmarioOblmario pay tax is defeated by the application of the rule r1
which is stronger. Hence we can derive:

+∂HoldmarioPermmario¬pay tax(mario).

From the conclusion +∂HoldmarioPermmario¬pay tax(mario) and the rule r2, we ob-
tain:

+∂HoldmarioDesmarioinvest(mario).

From the previous result, the fact Holdmariohas high income and the rule r3, we de-
rive:

+∂HoldmarioBringmarioinvest(mario).

Finally, the set R2 includes the following rule:

RHoldagBringagγ⇒HoldagHoldagγ : HoldagBringagγ ⇒ HoldagHoldagγ

which is applicable and not attacked by any other rule, so we have:

+∂HoldmarioHoldmarioinvest(mario).

In words, Mario believes that his action is successful.

Example 15 Suppose the following theory D15 = {F,R,S ,Ag,C ,D} where:

F = {HoldobjHoldmarioa, HoldobjHoldmariob },

R = R1∪R2, where
R1 = {Holdobj(r0: Holdaga⇒ Oblagc),

Holdobj(r1: Holdagb⇒ Forbagc),
R2 = {rγ→β : γ → β |β ∈ Equivalent(γ)}∪{rγ⇒β : γ ⇒ β |β ∈ Convert(γ)}
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>= {Holdmario(r0 � r1)},

Ag = {mario,obj},

C = /0,

D = /0.

The rules r0 and r1 belongs to the theory, hence we can derive:

+∂Holdobj(r0: Holdaga⇒ Oblagc),
+∂Holdobj(r1: Holdagb⇒ Forbagc),

The rules r0 and r1 are both applicable but conflict (because HoldobjForbmarioc ∈
Conflict(HoldobjOblmarioc)). The rule r0 is stronger than the rule r1, hence we obtain:

+∂HoldobjOblmarioc, +∂HoldobjPermmarioc and −∂HoldobjForbmarioc.

Example 16 Suppose the following theory D16 = {F,R,S ,Ag,C ,D}:
F = {Holdaga, Holdmariob },

R = R1∪R2, where
R1 = {(r0: Holdaga⇒ Holdag¬c,

(r1: Holdagb⇒ Bringagc),
R2 = {rγ→β : γ → β |β ∈ Equivalent(γ)}∪{rγ⇒β : γ ⇒ β |β ∈ Convert(γ)}

>= {Holdmario(r0 � rBringagγ⇒Holdagγ)},

Ag = {mario,obj},

C = /0,

D = /0.

The rules r0 and r1 belongs to the theory, hence we derive:

+∂ (r0: Holdaga⇒ Holdag¬c),
+∂ (r1: Holdagb⇒ Bringagc),

The rule r1 is +∂Bringmarioc−applicable, and no counter-rule exists, hence we have:

+∂Bringmarioc

Furthermore, the set of rules R2 contains the rule:

rBringagγ⇒γ : Bringagγ → Holdagγ

which is +∂Holdmarioc− applicable. However, this latter rule conflicts with the rule
r0 which is +∂Holdmario¬c− applicable. The rule r0 defeats rBringagγ⇒Holdagγ , hence
we obtain:

+∂Bringmarioc, +∂Holdmario¬c and −∂Holdmarioc.

that is, the attempt Bringmarioc is unsuccessful. If the superiority relation >= {r0 �
rBringagγ⇒γ} is replaced by >= {rBringagγ⇒γ � r0} then we conclude:

+∂Bringmarioc, −∂Holdmario¬c and +∂Holdmarioc,

and in this case, the attempt Bringmarioc is successful.
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9.3 Argumentation semantics

As for basic non-modal defeasible logic, modal defeasible logic can be analyzed
in terms of interacting arguments, giving for it an argumentation semantics. As a
matter of fact, the argumentation semantics provided in Section 8.3 for non-modal
defeasible logic needs to be only slightly adapted to fit modal defeasible logic: in
order to help the reader, the remainder of this Section is thus a slight adaption of
Section 8.3.

9.3.1 Arguments

The argument layer defines what arguments are. An argument for a conclusion (a
literal or a rule) is a proof tree (or monotonic derivation) of that conclusion in modal
defeasible logic. Nodes are labeled by either modal literals or rules which are tagged
by ∆ ′ or ∂ ′ in order to keep trace of the strength of assertions. Nodes are connected
by arrows that correspond to grounded inferences rules.

Definition 9.10. An argument is a proof tree such that:

• each node is labeled by a modal literal or rule tagged by ∆ ′ or ∂ ′, and
• each leaf mode is labeled by +∆ ′γ where γ ∈ F ∪R, and
• each compound arrow connecting nodes corresponds to a grounded inference

rule of the following types:

r ∈ R, r is ∆ ′γ− applicable
+∆ ′γ

(9.1)

r ∈ R, r is ∂ ′γ− applicable
+∂ ′γ

(9.2)

+∆ ′γ

+∂ ′γ
(9.3)

where

If (Xi)1..nr is ∆ ′(Xi)1..nγ-applicable then
(1) r ∈ Rs[γ], and
(2) (Xi)1..n ∈ Seq+, and
(3) +∆ ′(Xi)1..nr, and
(4) ∀α ∈ A(r), +∆ ′(Xi)1..nα .

If (Xi)1..nr is ∂ ′(Xi)1..nγ-applicable then
(1) r ∈ R[γ], and
(2) (Xi)1..n ∈ Seq+, and
(3) +∂ ′(Xi)1..nr, and
(4) ∀α ∈ A(r), +∂ ′(Xi)1..nα .



9.3 Argumentation semantics 181

• If the rule r in the inference (9.2) is a defeater then the post-condition +∂ ′γ is
the root node.

The last condition specifies that a defeater rule may only be used at the top of an
argument; in particular, no chaining of defeaters is allowed.

Example 17 Suppose the following theory D14 = {F,R,S ,Ag,C ,D}:

F = {Holdmariohas high income(mario), Holdmariostrike by disaster(mario) },

R = R1∪R2, where
R1 = {Holdmario(r0: has high income(x)⇒ Oblx pay tax(x)),

Holdmario(r1: has high income(x), strike by disaster⇒ Permx¬pay tax(x)),
Holdmario(r2: Permmario¬pay tax(x)⇒ Desmarioinvest(x)),
Holdmario(r3: has high income(x), Desmarioinvest(x)⇒ Bringmarioinvest(x))},

R2 = {rγ→β : γ → β |β ∈ Equivalent(γ)}∪{rγ⇒β : γ ⇒ β |β ∈ Convert(γ)}

S = {Holdmario(r1 � r0)},

Ag = {mario,obj},

C = {conflict(Oblmarioγ,Desmario∼γ), conflict(Oblmarioγ,Bringag∼γ)},

D = {defeat(Oblmarioγ,Desmario∼γ), defeat(Oblmarioγ,Bringmario∼γ)}.

We can build the following arguments:

• F1: [+∆ ′Holdmariohas high income(mario)],
• F2: [+∆ ′Holdmariostrike by disaster(mario)],
• R0: [+∆ ′Holdmarior0],
• R1: [+∆ ′Holdmarior1],
• R2: [+∆ ′Holdmarior2],
• R3: [+∆ ′Holdmarior3],
• RHoldagOblagγ→HoldagForbag∼γ : [+∆ ′rHoldagOblagγ→HoldagForbag∼γ ],
• RHoldagOblagγ→Holdag¬Permag∼γ : [+∆ ′rHoldagOblagγ→Holdag¬Permag∼γ ],
• RHoldagPermagγ→Holdag¬Oblag∼γ : [+∆ ′rHoldagPermagγ→Holdag¬Oblag∼γ ],
• RHoldagPermagγ→Holdag¬Forbagγ : [+∆ ′rHoldagPermagγ→Holdag¬Forbagγ ],
• RHoldagOblagγ⇒Holdag¬Oblag∼γ : [+∆ ′rHoldagOblagγ⇒Holdag¬Oblag∼γ ],
• RHoldagOblagγ⇒HoldagPermagγ : [+∆ ′rHoldagOblagγ⇒HoldagPermagγ ],
• RHoldagBringagγ⇒Holdagγ : [+∆ ′rHoldagBringagγ⇒Holdagγ ],
• F1’: [[+∆ ′Holdmariohas high income(mario)]+∂ ′Holdmariohas high income(mario)],
• F2’: [[+∆ ′Holdmariostrike by disaster]+∂ ′Holdmariostrike by disaster(mario)],
• R0’: [[+∆ ′Holdmarior0]+∂ ′Holdmarior0],
• R1’: [[+∆ ′Holdmarior1]+∂ ′Holdmarior1],
• R2’: [[+∆ ′Holdmarior2]+∂ ′Holdmarior2],
• R3’: [[+∆ ′Holdmarior3]+∂ ′Holdmarior3],
• R′HoldagOblagγ→HoldagForbag∼γ

: [+∂ ′rHoldagOblagγ→HoldagForbag∼γ ],
• R′HoldagOblagγ→Holdag¬Permag∼γ

: [+∂ ′rHoldagOblagγ→Holdag¬Permag∼γ ],
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• R′HoldagPermagγ→Holdag¬Oblag∼γ
: [+∂ ′rHoldagPermagγ→Holdag¬Oblag∼γ ],

• R′HoldagPermagγ→Holdag¬Forbagγ
: [+∂ ′rHoldagPermagγ→Holdag¬Forbagγ ],

• R′HoldagOblagγ⇒Holdag¬Oblag∼γ
: [+∂ ′rHoldagOblagγ⇒Holdag¬Oblag∼γ ],

• R′HoldagOblagγ⇒HoldagPermagγ
: [+∂ ′rHoldagOblagγ⇒HoldagPermagγ ],

• R′HoldagBringagγ⇒Holdagγ
: [+∂ ′rHoldagBringagγ⇒Holdagγ ],

• AObl: [[F1′,R0′]+∂ ′HoldmarioOblmario pay tax(mario)],
• APerm: [[AObl,R′HoldagOblagγ⇒HoldagPermagγ

]+∂ ′HoldmarioPermmario pay tax(mario)],
• AForb: [[AObl,R′HoldagOblagγ→HoldagForbag∼γ

]+∂ ′HoldmarioForbmario¬pay tax(mario)],
• A¬Perm¬: [[AObl,R′HoldagOblagγ→Holdag¬Permi∼γ

]+∂ ′Holdmario¬Permmario¬pay tax(mario)],
• A¬Obl¬: [[AObl,R′HoldagOblagγ⇒Holdag¬Obli∼γ

]+∂ ′Holdmario¬Oblmario¬pay tax(mario)],
• BPerm¬: [[F1′,F2′,R1′]+∂ ′HoldmarioPermmario¬pay tax(mario)],
• B¬Obl: [[BPerm¬,R′HoldagPermagγ→Holdag¬Obli∼γ

]+∂ ′Holdmario¬Oblmario pay tax(mario)],
• B¬Forb¬: [[BPerm¬,R′HoldagPermagγ→Holdag¬Forbiγ ]+∂ ′Holdmario¬Forbmario¬pay tax(mario)],
• C: [[BPerm¬,R2′]+∂ ′HoldmarioDesmarioinvest(mario)],
• D: [[C,R3′]+∂ ′HoldmarioBringmarioinvest(mario)],
• D’: [[D,R′HoldagBringagγ⇒Holdagγ

]+∂ ′Holdmarioinvest(mario)].

Definition 9.11. A (proper) sub-argument of an argument A is a (proper) sub-tree of
the tree associated to A.

Definition 9.12. A tagged assertion (+∆ ′γ or +∂ ′γ) is a conclusion of an argument
if it labels a node of the argument.

A more usual alternative would be to regard only the root of an argument as its unique
conclusion, but this choice would make the other definitions more complex. Since
conclusions can be differently qualified depending on the rules used, arguments are
differentiated as follows:

Definition 9.13. A supportive argument is a finite argument in which no defeater is
used.

Definition 9.14. A strict argument is an argument in which any node is tagged by
+∆ ′.

Definition 9.15. An argument that is not strict is called defeasible.

Example 18 The argument AObl is a supportive argument for
+∂HoldmarioOblmario pay tax. It is not a strict argument and thus it is a defeasible
argument.

9.3.2 Acceptable arguments

The precedent Section defined the argument layer and isolated the concept of argu-
ment. This Section presents the dialectical layer which is concerned with relations
standing amongst arguments. It defines the notion of support and attack, and focuses
on the interaction amongst arguments. Firstly, we introduce the notion of support:
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Definition 9.16. A set of arguments S supports a defeasible argument A if every
proper sub-argument of A is in S.

Note that, in our setting, the atomic arguments, constituted of a fact or a rule of the
theory, are supported by the empty set.

The conditions that determine which argument can attack or defeat another ar-
gument are defined in the following. In the Section presenting the proof theory, a
defeasible conclusion is shown to have a proof condition consisting of three phases.
In the first phase, a supporting rule r for the desired conclusion is provided. In the
second phase, all possible attacks provided by a rule s against the conclusion are con-
sidered. In the third phase, counter-attacks are proposed, that is, the counter-attack
consists of a rule w such that w is stronger than s.
So, in the proof condition, the relation of attack between the first and second phase is
somewhat different of the relation of attack between the second and third phase. To
reflect this, we provide the notion of attack and counter-attack between arguments in
the following.

Definition 9.17. An argument S attacks a defeasible argument R if and only if

• +#′γ and +∂ ′β are conclusions of the arguments S and R respectively, where
# ∈ {∆ ′,∂ ′}, and

• γ ∈ Conflict(β ).

Example 19 The argument BPerm¬ attacks the argument AObl and vice versa.

Definition 9.18. An argument W defeats a defeasible argument S if and only if

(1) +#γ and +∂ ′β are conclusions of a rule w ∈ R[γ] and a rule s ∈ R[β ] respecti-
vely, where # ∈ {∆ ′,∂ ′}, and
(2) if # = ∂ , (2.1) γ ∈Defeat(β ), 〈γ,(s� w)〉 6∈Sup, or

(2.2) 〈γ,(w� s)〉 ∈Sup.

Example 20 The argument AObl attacks and defeats the argument BPerm¬ whereas
the argument BPerm¬ attacks, but does not defeat the argument AObl.

Defeasible reasoning differentiates traditionally between rebuttal and undercutting.
We stick to the tradition and define the notion of undercutting as follows:

Definition 9.19. An argument A undercuts a defeasible argument B if A attacks a
proper sub-argument of B.

In this setting, an argument that is attacked but not undercut is said to be rebutted.

Definition 9.20. A set of arguments S undercuts a defeasible argument B if there is
an argument A supported by S that attacks a proper sub-argument of B.

Definition 9.21. A set of arguments S defeats a defeasible argument B if there is an
argument A supported by S that defeats B.
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Comparing arguments by pairs is not enough since an attacking argument can in
turn be attacked by other arguments. In the following, we will define justified argu-
ments, i.e. arguments that have no viable attacking argument in the discourse, and
rejected arguments that are attacked by justified argument. As in many argumenta-
tion systems, we base the status justified or rejected of arguments on the concept of
acceptability of an argument w.r.t. to set of arguments S. That an argument A is ac-
ceptable w.r.t. to set of arguments S means that any attacker against A is defeated by
an argument supported by S. In this line, we next present a slightly adapted version
of P.M.Dung ’s definition of acceptability [68].

Definition 9.22. An argument A is acceptable w.r.t. a set of arguments S if and only
if either

(1) A is strict, or
(2) for any argument B attacking A

(2.1) B is undercut by S, or
(2.2) B is defeated by S.

That any argument B, which attacks an acceptable argument A and which is not de-
feated by S, must be undercut (i.e. a proper sub-argument of B must be attacked, not
the conclusion) by a counter-argument C supported by S (i.e. the counter-argument
C is possibly not a member of S) aims to provide an ambiguity blocking semantics
of the system.

9.3.3 Justified arguments

Based on the concept of acceptability we proceed to define justified arguments and
justified literals. That an argument A is justified means that it resists every refutation.

Definition 9.23. The set of justified arguments in a theory D is JArgsD =
⋃

∞
i=0 JD,i

with

• JD,0 = ∅,
• JD,i+1 = {A ∈ ArgsD|A is acceptable w.r.t. JD,i}.

where ArgsD is the set of arguments which can be generated from the heory D.

So, an argument A is acceptable w.r.t. JD,i+1 if either A is strict, or any argument B
attacking A is undercut by JD,i (i.e. there is an argument C supported by JD,i that
attacks a proper sub-argument of B) or defeated by an argument supported by JD,i.

Definition 9.24. A tagged assertion +∂ ′γ is justified if and only if it is the conclusion
of a supportive argument in JArgsD.

Example 21 Let us illustrate these definitions by a step-by-step construction of the
set of justified arguments of the theory D14.
We need to find out any argument that is acceptable w.r.t. JD14,0 which is by definition
the empty set. The following arguments are strict and thus are acceptable w.r.t JD,0.
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• F1: [+∆ ′Holdmariohas high income(mario)],
• F2: [+∆ ′Holdmariostrike by disaster(mario)],
• R0: [+∆ ′Holdmarior0],
• R1: [+∆ ′Holdmarior1],
• R2: [+∆ ′Holdmarior2],
• R3: [+∆ ′Holdmarior3],
• RHoldagOblagγ→HoldagForbag∼γ : [+∆ ′rHoldagOblagγ→HoldagForbag∼γ ],
• RHoldagOblagγ→Holdag¬Permag∼γ : [+∆ ′rHoldagOblagγ→Holdag¬Permag∼γ ],
• RHoldagPermagγ→Holdag¬Oblag∼γ : [+∆ ′rHoldagPermagγ→Holdag¬Oblag∼γ ],
• RHoldagPermagγ→Holdag¬Forbagγ : [+∆ ′rHoldagPermagγ→Holdag¬Forbagγ ],
• RHoldagOblagγ⇒Holdag¬Oblag∼γ : [+∆ ′rHoldagOblagγ⇒Holdag¬Oblag∼γ ],
• RHoldagOblagγ⇒HoldagPermagγ : [+∆ ′rHoldagOblagγ⇒HoldagPermagγ ],
• RHoldagBringagγ⇒Holdagγ : [+∆ ′rHoldagBringagγ⇒Holdagγ ],

Let us now consider non-strict arguments. The following arguments are not attacked
by any argument, and thus are acceptable w.r.t. JD14,0.

• F1’: [[+∆ ′Holdmariohas high income]+∂ ′Holdmariohas high income(mario)],
• F2’: [[+∆ ′Holdmariostrike by disaster]+∂ ′Holdmariostrike by disaster(mario)],
• R0’: [[+∆ ′Holdmarior0]+∂ ′Holdmarior0],
• R1’: [[+∆ ′Holdmarior1]+∂ ′Holdmarior1],
• R2’: [[+∆ ′Holdmarior2]+∂ ′Holdmarior2],
• R3’: [[+∆ ′Holdmarior3]+∂ ′Holdmarior3],
• R′HoldagOblagγ→HoldagForbag∼γ

: [+∂ ′rHoldagOblagγ→HoldagForbag∼γ ],
• R′HoldagOblagγ→Holdag¬Permag∼γ

: [+∂ ′rHoldagOblagγ→Holdag¬Permag∼γ ],
• R′HoldagPermagγ→Holdag¬Oblag∼γ

: [+∂ ′rHoldagPermagγ→Holdag¬Oblag∼γ ],
• R′HoldagPermagγ→Holdag¬Forbagγ

: [+∂ ′rHoldagPermagγ→Holdag¬Forbagγ ],
• R′HoldagOblagγ⇒Holdag¬Oblag∼γ

: [+∂ ′rHoldagOblagγ⇒Holdag¬Oblag∼γ ],
• R′HoldagOblagγ⇒HoldagPermagγ

: [+∂ ′rHoldagOblagγ⇒HoldagPermagγ ],
• R′HoldagBringagγ⇒Holdagγ

: [+∂ ′rHoldagBringagγ⇒Holdagγ ],

Any argument Ax is attacked by an argument Bx which is neither undercut nor
counter-attacked by JD14,0. Hence the arguments Ax is not acceptable w.r.t. JD14,0.
Similarly, the arguments Bx, C, D and D′ are attacked by the argument Ax which are
neither undercut nor counter-attacked by JD14,0. Hence the arguments Bx, C, D and
D′ are not acceptable w.r.t. JD14,0.
We have parse any tentative to make acceptable arguments w.r.t. JD14,0.The next step
is to find out any argument that is acceptable w.r.t. JD14,1. Any argument Ax is at-
tacked by an argument Bx which is neither undercut nor counter-attacked by JD14,1.
Hence the argument Ax are not acceptable w.r.t. JD14,1. The arguments Bx, C, D and
D′ are attacked by an argument Ax which is defeated by JD14,1 (consider the argu-
ment BPerm¬). Hence the arguments Bx, C, D and D′ are acceptable w.r.t. JD14,1. We
have parse any tentative to make acceptable arguments w.r.t. JD14,1, therefore

JD14,2 = {BPerm¬,B¬Obl,B¬Forb¬,C,D,D′}
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It is easy to see that ∀i > 2, JD14,i = ∅. By definition, the set of justified arguments
JArgsD14 is

⋃+∞

i=0 JD14,i.

That a tagged assertion +∂ ′γ is justified means that it is provable (+∂ ). How-
ever, Defeasible Logic permits to express when a conclusion is not provable (-∂ ).
Briefly, that a conclusion is not provable means that every possible argument for that
conclusion has been refuted. In the following, this notion is captured by assigning
the status rejected to arguments that are refuted. Roughly speaking, an argument is
rejected if it has a rejected sub-argument or it cannot overcome an attack from a
justified argument. Given an argument A, a set S of arguments (to be thought of as
arguments that have already been rejected), and a set J of arguments (to be thought
of as justified arguments that may be used to support attacks on A), we assume the
following definition of the argument A being rejected by S and J:

Definition 9.25. An argument A is rejected by the sets of arguments S and J when A
is not strict and if (i) a proper sub-argument of A is in S or (ii) it is attacked by an
argument supported by J.

Definition 9.26. The set of rejected arguments in a theory D w.r.t. J is RArgsD(J) =⋃
∞
i=0 RD,i with

• RD,0(J) = ∅,
• RD,i+1(J) = {a ∈ ArgsD|a is re jected by RD,i(J) and J}.

Definition 9.27. A tagged assertion +∂ ′γ is rejected by J if there is no argument in
ArgsD−RArgsD(J) that ends with as a supportive rule for +∂ ′γ .

As shortcut, we say that an argument is rejected if it is rejected w.r.t. JArgsD and a
literal is rejected if it is rejected by JArgsD.

An argumentation semantics with ambiguity blocking can now be provided by
characterising conclusions of Modal Defeasible Logic in argumentation terms:

Definition 9.28. Let D be a defeasible theory and γ be an assertion.

• D `+∆γ iff there is a strict argument supporting +∆ ′γ in ArgsD.
• D ` −∆γ iff there is no strict argument supporting +∆ ′γ in ArgsD.
• D `+∂γ iff +∂ ′γ is justified.
• D ` −∂γ iff +∂ ′γ is rejected by JargsD.

This argumentation semantics is consistent with the proof theories of the presented
modal defeasible logic in the sense that conclusions get similarly tagged. The proof
not provided here is similar to the one in [91]. It follows that for any defeasible the-
ory, no argument is both justified and rejected, and thus no literal is both justified and
rejected. Eventually, if the set JArgsD of justified arguments contains two arguments
with conflicting conclusions then both arguments are strict. That is, inconsistent con-
clusions can be reached only when the strict part of the theory is inconsistent.
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Temporal modal defeasible logic

Temporal modal defeasible logic extends modal defeasible logic with time. In
[95, 92, 94, 96, 89] defeasible logic was extended to capture some temporal aspects
in legal reasoning. [95] proved useful in modeling temporal aspects of normative
reasoning such as temporal normative positions. [92, 94] allowed for a logical ac-
count of the notion of temporal viewpoint (the temporal position from which things
are considered) and norm modifications. [89] provided a formal characterization of
legal terms (e.g. deadlines). [96] proposes an extension to cope with durative events
and with delays between antecedents (causes) and conclusions (effects) of rules in
the logic.

All these variants can be criticized under two aspects that this variant aims to
repair. Firstly, these extensions adopted a ‘synthetical approach’ in which all tem-
poral dimensions and substantial elements of the norm are represented within the
same sentence: a first objective of the present variant is to provide an ‘analytical ap-
proach’ in which one sentence represents the substantive content of the norm, and
other sentences specify its temporal features (see Chapter 6). Secondly, no argumen-
tation semantics was provided: a second objective here is to give such argumentation
semantics.

In the remainder of this Section, we extend the modal defeasible logic of Chapter
9 with an analytical approach and temporal intervals. An argumentation semantics is
proposed in Section 10.3. A Prolog meta-program implementing a fragment of the
logic is presented in Section 10.4.

10.1 Language

We consider a linear discrete bounded set T of points of time termed “instants” and
over it the order relation >⊆T ×T . We usually denotes the variables ranging over
the elements of T by t and its eventual subscripts, the minimal unit by u. The lower
and higher boundaries of T are denoted respectively by min and max.

Temporal intervals are defined as sets of instants between two indicated instants.
Formally, an interval is a member of the set Inter = {[t1, t2]∈T ×T |t1 ≤ t2}. As can
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be noted, this definition allows ‘punctual intervals’, i.e., intervals of the form [t, t].
We shall usually denote intervals by T , plus eventual subscripts.

Temporal intervals are associated to the operators Holdag, Desag, Bringag, Oblag,

Permag, Forbag, Facag. For example, the formula Obl[ jan07,dec07]
mario cooperate(mario)

means that Mario is obliged between January 2007 and December 2007 to cooperate.
As for basic defeasible logic and modal defeasible logic, a rule is a relation-

ship between temporal modal literals, and we distinguish strict rules, defeasible rules
and defeaters. A strict rule is an expression of the form (φ1, . . . ,φn → ψ) such that
whenever the premises are indisputable so is the conclusion . A defeasible rule is
an expression of the form (φ1, . . . ,φn ⇒ ψ) whose conclusion can be defeated by
contrary evidence. An expression (φ1, . . . ,φn ; ψ) is a defeater used to defeat some
defeasible rules by producing evidence to the contrary. Rules can be temporalised by
prefixing them with a sequence of operators (Xi)1..n, to indicate the modalities and
the periods in which they are considered.

As for the modal defeasible logic proposed in Chapter 9, the types of agent are
linked to the relations conflict and defeat between modalities (see Section 6.3).

In the following we define the language, that is, the set of rules specifying valid
formulas composing a theory in this variant of temporal modal defeasible logic.

Definition 10.1 (Language). Let T a linear discrete bounded ordered set of instants
of time, in which the minimal unit is u and the lower and higher boundaries of T
are denoted by min and max respectively. Let Prop be a set of propositional atoms,
Ag a finite set of agents, Lab be a set of labels, m,k ∈ N. The sets below are defined
as the smallest sets closed under the following rules:

Modal operators

Mod = {Holdag,Desag,Bringag,Oblag,Permag,Forbag,Facag |ag ∈ Ag}

Intervals
Inter = {[t1, t2] |t1, t2 ∈T , t1 ≤ t2}

Temporal modal operators

TMod = {XT |X ∈Mod, T ∈ Inter}

Temporal modal literals

TMLit = {(Xi)1..n¬m
γ |γ ∈ Prop,Xi = ¬kX , X ∈ TMod}

Rules

Rules = {r: φ1, . . . ,φn→ ψ |r ∈ Lab, φ1, . . . ,φn,ψ ∈ TMLit∪TMRul}
Ruled = {r: φ1, . . . ,φn⇒ ψ |r ∈ Lab, φ1, . . . ,φn,ψ ∈ TMLit∪TMRul}
Ruledft = {r: φ1, . . . ,φn ; ψ |r ∈ Lab, φ1, . . . ,φn,ψ ∈ TMLit∪TMRul}
Rule = Rules∪Ruled ∪Ruledft
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Temporal modal rules

TMRuls = {(Xi)1..n¬mr |Xi ∈ {¬kHoldT
ag|ag ∈ Ag,T ∈ Inter}r ∈ Rules}

TMRuld = {(Xi)1..n¬mr |Xi ∈ {¬kHoldT
ag|ag ∈ Ag,T ∈ Inter}, r ∈ Ruled}

TMRuldft = {(Xi)1..n¬mr |Xi ∈ {¬kHoldT
ag|ag ∈ Ag,T ∈ Inter}, r ∈ Ruledft}

TMRul = TMRuls∪TMRuld ∪TMRuldft

Conflict relations

Conflict = {conflict(γ,β ) |γ,β ∈ TMLit∪TMRul, γ =T
β}

Defeat relations

Defeat = {defeat(γ,β ) |γ,β ∈ TMLit∪TMRul, γ =T
β}

Superiority relations

Sup = {(Xi)1..n(s� r) |Xi ∈ {HoldT
ag|ag ∈ Ag, T ∈ Inter},s,r ∈ Lab}

Definition 10.2 (Defeasible Theory). A defeasible theory is a structure D =
(T ,F,R,S ,Ag,C ,D) where

• T is a discrete totally ordered set of instants of time,
• F = F1∪F2 is a finite set of facts, where

– F1 ⊆ TMLit and,
– F2 = {HoldT

ag f orce(r), HoldT
age f f icacious(r)|T ∈ Inter,ag ∈ Ag, r ∈ R2}

• R = R1 ∪R2 is a finite set of rules such that each rule has an unique label, and
where:
– R1 ⊆ TMRul and,
– R2 = {rγ→β : γ → β |β ∈ Equivalent(γ)}∪{rγ⇒β : γ ⇒ β |β ∈ Convert(γ)}

• S ⊆ Sup is a set of acyclic superiority relations,
• Ag = Ag1∪{obj} is a set of agents such that ∀a ∈ Ag1,a 6= obj,
• C ⊆ Conflict is a set of conflict relations,
• D ⊆ Defeat is a set of defeat relations.

We use some abbreviations. The set of sequences of temporal operators (Xi)1..n which
does not contain any negated temporal operator is denoted Seq+:

Seq+ = {(Xi)1..n |Xi ∈ TMod}

The set of antecedents {φ1, . . . ,φn} of a rule is denoted A(r), and its consequent is
denoted. The set of rules whose consequent is γ is denoted R[γ]:

R[γ] = {r|r ∈ R,C(r) = γ}.

The set of strict rules whose consequent is γ is denoted Rs[γ]. The set of defeasible
and strict rules whose consequent is γ is denoted Rsd [γ].



190 10 Temporal modal defeasible logic

10.2 Proof theory

A conclusion of a theory D is a tagged temporal modal literal or rule having one of
the following forms:

+∆γ meaning that γ is definitely provable in D.
−∆γ meaning that γ is not definitely provable in D.
+∂γ meaning that γ is defeasible provable in D.
−∂γ meaning that γ is not defeasible provable in D.

Provability is based on the concept of a derivation (or proof) in D. A deriva-
tion is a finite sequence P = (P(1), ..,P(n)) of literals tagged by +∆ or +∂ , or
rules tagged by +∆ or +∂ or +∇. P(1..n) denotes the initial part of the sequence
P of length n. Each tagged literal or rule satisfies some proof conditions, which
correspond to inference rules for the four kinds of conclusions we have mentioned
above.

Before moving to the conditions governing provability of conclusions, we need
to introduce some preliminary notions.

Definition 10.3 (Intervals: basic relations). Let ‘start()’ and ‘end()’ be the func-
tions that return the lower and upper bounds of an interval respectively. Let u be the
temporal unit. For any interval T1,T2,T3 ∈ Inter, we have:

• T1 = T2 if and only if start(T2) = start(T1) and end(T1) = end(T2),
• T1 v T2 if and only if start(T2)≤ start(T1) and end(T1)≤ end(T2),
• over(T1,T2) if and only if start(T1)≤ end(T2) and start(T2)≤ end(T1),
• T1 t T2 = T3 if and only if end(T1) + u = start(T2), start(T3) =

start(T1) and end(T3) = end(T2).

These relations are not meant to be a proposal of an algebra of intervals (e.g. [5]),
instead, they have been chosen in order to make the proof conditions as simple as
possible. To lighten the presentation, we use some abbreviations consisting in placing
temporal modal expression as an argument of the previous relations for intervals.

Definition 10.4. Let (XT1i
i )1..nγ,(XT2i

i )1..nγ,(XT3i
i )1..nγ ∈ TMLit∪TMRul∪Sup, we

have:

• (XT1i
i )1..nγ = (XT2i

i )1..nγ if and only if ∀i ∈ {1..n}, T1i = T2i,
• (XT1i

i )1..nγ =T (Y T2i
i )1..nβ if and only if ∀i ∈ {1..n}, T1i = T2i,

• (XT1i
i )1..nγ v (XT2i

i )1..nγ if and only if ∀i ∈ {1..n}, T1i v T2i,
• over((XT1i

i )1..nγ,(XT2i
i )1..nγ) if and only if ∃i ∈ {1..n}, over(T1i,T2i),

• (XT1i
i )1..nγ t (XT2i

i )1..nγ = (XT3i
i )1..nγ if and only if ∃i ∈ {1..n}, T1i t T2i = T3i,

∀ j 6= i, start(T1 j) = start(T2 j) = start(T3 j), end(T1 j) = end(T2 j) = end(T3 j).

For example, we can write Hold[10,15]
mario ¬Obl[30,80]

mario c v Hold[0,50]
mario¬Obl[0,80]

marioc. We define
two sets of conflict: the set C 1

onflict(γ) which denotes the set of assertions in conflict
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with γ irrespective to any agent theory, and the set C ∗onflict(γ) which denotes the set
of assertions in conflict with γ with respect to an agent theory.

Definition 10.5 (Conflicts1). The set C 1
onflict(γ), which denotes the set of assertions

in conflict with γ irrespective to any agent theory, is defined as follows. Let ∼γ ∈
C 1

onflict(γ), we have:

• C 1
onflict(γ)⊇ {β |β ∈ Equivalent(β ′), β ′ ∈ C 1

onflict(γ)},
• C 1

onflict(γ)⊇ {β |γ ∈ C 1
onflict(β )}.

For any γ ∈ TMLit∪TMRul,

• C 1
onflict(γ) = {¬γ},

For any X ∈ {Holdag, Desag, Bringag}, γ ∈ TMLit∪TMRul,

• C 1
onflict(X

T γ)⊇ {XT ∼γ},

For any γ ∈ TMLit,

• C 1
onflict(OblTagγ)⊇ {¬PermT

agγ, PermT
ag∼γ},

• C 1
onflict(FacT

agγ)⊇ {OblTag∼γ, OblTagγ }.

Definition 10.6 (Conflicts∗). Let C ∗onflict a set of conflict relations conflict∗(γ,β )
defined as follows. Let γ,β ∈ TMLit ∪ TMRul, and let a theory D =
(F,R,S ,Ag,C ,D), we have:

• conflict∗(γ,β ) ∈ C ∗onflict if conflict(γ,β ) ∈ C ,
• conflict∗(γ,β ) ∈ C ∗onflict if ∃β ∈ Equivalent(β ′), conflict∗(γ,β ′) ∈ C ∗onflict,
• conflict∗(γ,β ) ∈ C ∗onflict if γ v γ ′, β ∈ β ′, conflict∗(γ ′,β ′) ∈ C ∗onflict,
• conflict∗(HoldT

objγ,HoldT
objβ ) ∈ C ∗onflict if conflict∗(γ,β ) ∈ C ∗onflict,

• conflict∗(γ,β ) ∈ C ∗onflict if conflict∗(HoldT
objγ,HoldT

objβ ) ∈ C ∗onflict,

• conflict∗(Hold[t1,t3]
ag X [t1,t2]

ag γ, Hold[t1,t3]
ag Y [t1,t2]

ag β ) ∈ C ∗onflict if conflict∗(X [t1,t2]
ag γ, Y [t1,t2]

ag β ) ∈
C ∗onflict,

• conflict∗(XT
agγ, Y T

agβ ) ∈ C ∗onflict if conflict∗(HoldT
agXT

agγ, HoldT
agY T

agβ ) ∈ C ∗onflict.

As abbreviation, we have C ∗onflict(γ) = {β |conflict∗(γ,β )or conflict∗(β ,γ) ∈
C ∗onflict}.

We define the set Conflict(γ) = {β |β ∈ C 1
onflict(γ)∪C ∗onflict(γ), over(β ,γ)} as the set

of assertions in conflict with γ . Next, we define the equivalent assertions.

Definition 10.7 (Equivalences). The set Equivalent(γ), which denotes the set of asser-
tions equivalent to γ , is defined as follows. For any γ ∈ TMLit∪TMRul, X ∈ TMod,
n ∈ N and ∼γ ∈ Conflict(γ), we have:

• Equivalent(γ) = {β |β ∈ Equivalent(γ)},
• Equivalent(γ) = {¬2nγ},
• Equivalent(¬nγ) = {¬nβ |β ∈ Equivalent(γ)},
• Equivalent(¬nX γ) = {¬nX β |β ∈ Equivalent(γ)},
• Equivalent(OblTagγ) = {¬PermT

ag∼γ, ForbT
ag∼γ}.
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Next, we provide by means of the conversion relations which modal expressions can
be converted into which modal expressions. The set of assertions which can result by
conversion from an assertion γ is denoted Convert(γ).

Definition 10.8 (Conversions). The set Convert(γ), which denotes the set of asser-
tions which can result by conversion from an assertion γ , is defined as follows. For
any X ∈ TMod, γ ∈ TMLit∪TMRul and n ∈ N, we have:

• Convert(γ)⊇ {β |β ∈ Convert(β ′), β ′ ∈ Equivalent(γ)},
• Convert(γ)⊇ {HoldT

objγ |T ∈ Inter},
• Convert((¬)nHold[t1,t2]

ag γ)⊇ {Hold[t1,t3]
ag (¬)nHold[t1,t2]

ag γ},
• Convert(HoldT

ag(¬)nHoldT
agγ)⊇ {(¬)nHoldT

agγ},
• Convert(BringT

agγ)⊇ {HoldT
objγ},

• Convert(BringT
agγ)⊇ {HoldT

agγ},
• Convert(OblTagγ)⊇ {PermT

agγ},
• Convert(FacT

agγ)⊇ {PermT
agγ, PermT

ag∼γ},
• Convert(¬nγ)⊇ {¬nβ |β ∈ Convert(γ)},
• Convert(¬nXγ)⊇ {¬nXβ |β ∈ Convert(γ)}.

Finally, based on the sets of defeating relations provided by a theory, we assume the
following sets of defeating assertions.

Definition 10.9 (Defeats). Let Defeat a set of defeat relations defeat∗(γ,β ) defined as
follows. Let γ,β ∈MLit∪MRule, and let a theory D = (T ,F,R,S ,Ag,C ,D) we
have:

• defeat∗(γ,β ) ∈Defeat if defeat(γ,β ) ∈D ,
• defeat∗(γ,β )∈Defeat if defeat∗(γ ′,β ′)∈Defeat, and γ v γ ′, β v β ′, γ v β , β v γ ,
• defeat∗(γ,β ) ∈Defeat if ∃β ∈ Equivalent(β ′), defeat∗(γ,β ′) ∈Defeat,
• defeat∗(γ,β ) ∈Defeat if ∃γ ∈ Equivalent(γ ′), defeat∗(γ ′,β ) ∈Defeat,
• defeat(γ,β ) ∈ C ∗onflict if γ v γ ′, β ∈ β ′, defeat(γ ′,β ′) ∈Defeat,
• defeat∗(HoldT

objγ,HoldT
objβ ) ∈Defeat if defeat∗(γ,β ) ∈Defeat,

• defeat∗(Hold[t1,t3]
ag Hold[t1,t2]

ag γ,Hold[t1,t3]
ag Hold[t1,t2]

ag β ) ∈ Defeat if
defeat∗(Hold[t1,t2]

ag γ,Hold[t1,t2]
ag β ) ∈Defeat,

• defeat∗(HoldT
agγ,HoldT

agβ ) ∈Defeat if defeat∗(HoldT
agHoldT

agγ,HoldT
agHoldT

agβ ) ∈Defeat.

As abbreviation, we have Defeat(γ) = {β |defeat∗(β ,γ ′) ∈Defeat, over(γ,γ ′)}.

Definition 10.10 (Superiority S ∗). Let S ∗ a set of superiority relations
(Xi)1..n(w� s) defined as follows. Let a theory D = (T ,F,R,S ,Ag,C ,D) we have:

• (Xi)1..n(w� s) ∈S ∗ if (Xi)1..n(w� s) ∈S ,
• γ ∈S ∗ if γ v γ ′, γ ′ ∈S ,
• HoldT

obj(Xi)1..n(w� s) ∈S ∗ if (Xi)1..n(w� s) ∈S ∗,

• Hold[t1,t3]
ag Hold[t1,t2]

ag (Xi)1..n(w� s) ∈S ∗ if Hold[t1,t2]
ag (Xi)1..n(w� s) ∈S ∗,

• HoldT
ag(Xi)1..n(w� s) ∈S ∗ if HoldT

agHoldT
ag(Xi)1..n(w� s) ∈S ∗.
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As abbreviation, we have S ∗((Xi)1..n(w � s)) = {(Xi)1..n(w � s) |(Xi)1..n(w � s) ∈
S ∗}.

Definition 10.11 (Superiority Sup). Let Sup denote the set of tuples
〈(Xi)1..nγ,(Yi)1..n(w� s)〉 where (Xi)1..nγ is an assertion, and (Yi)1..n(w � s) ∈S ∗.
We have 〈(Xi)1..nγ,(Yi)1..n(w� s)〉 ∈Sup if and only if ( f�(Xi))1..n = (Yi)1..n where
f�(¬kXag) = Holdag.

As abbreviation, we have 〈(Xi)1..nγ,(w� s)〉 ∈ Sup if and only if
〈(Xi)1..nγ,(Yi)1..n(w� s)〉 ∈Sup.

We present separately the condition for a rule to be applicable so that it supports
a temporal modal literal or rule. If a temporal modal rule (Xi)1..nr is applicable then
(1) the rule r has for consequent γ , (2) the (possible empty) sequence of operators
(Xi)1..n does not contain a negated operator (i.e. ) (Xi)1..n ∈ Seq+, (3) the temporal
modal rule (Xi)1..nr is provable, (4) and in force, and (5) all the antecedents are
proved at a temporal position of the rule’s efficacy:

If (Xi)1..nr is ∆γ-applicable then
(1) r ∈ Rs[γ ′], γ v (Xi)1..nγ ′, and
(2) (Xi)1..n ∈ Seq+, and
(3) +∆(Xi)1..nr ∈ P(1..i), and
(4) +∆(Xi)1..n f orce(r) ∈ P(1..i), and
(5) ∀(Yi)1..nα ∈ A(r),

(5.1) +∆(Xi)1..n(Yi)1..nα ∈ P(1..i), and
(5.2) Xn = ZT ′

ag , Y1 = ZT
ag′ , +∆(Xi)1..nHoldT

age f f icacious(r) ∈ P(1..i).

A rule, which is not applicable, is discarded following the conditions below:

If (Xi)1..nr is ∆γ-discarded then
(1) r ∈ Rs[γ ′], γ 6v (Xi)1..nγ ′, or
(2) (Xi)1..n 6∈ Seq+, or
(3) −∆(Xi)1..nr ∈ P(1..i), or
(4) −∆(Xi)1..n f orce(r) ∈ P(1..i), or
(5) ∃(Yi)1..nα ∈ A(r),

(5.1) −∆(Xi)1..n(Yi)1..nα ∈ P(1..i), or
(5.2) Xn = ZT ′

ag , Y1 = ZT
ag′ , −∆(Xi)1..nHoldT

age f f icacious(r) ∈ P(1..i).

The conditions for a rule to be ∂ -applicable (resp. ∂ -discarded) are similar to those
for ∆ -applicable (resp. ∆ -discarded), but where we replace ∆ with ∂ and in which
the modifiability is accounted for.

If (Xi)1..nr is ∂γ-applicable then
(1) r ∈ R[γ ′], γ v (Xi)1..nγ ′, and
(2) (Xi)1..n ∈ Seq+, and
(3) +∂ (Xi)1..nr ∈ P(1..i), and
(4) +∂ (Xi)1..n f orce(r) ∈ P(1..i), and
(5) ∀(Yi)1..nα ∈ A(r),
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(5.1) +∂ (Xi)1..n(Yi)1..nα ∈ P(1..i), and
(5.2) Xn = ZT ′

ag , Y1 = ZT
ag′ , +∂ (Xi)1..nHoldT

age f f icacious(r) ∈ P(1..i).

If (Xi)1..nr is ∂γ-discarded then
(1) r ∈ R[γ ′], γ 6v (Xi)1..nγ ′, or
(2) (Xi)1..n 6∈ Seq+, or
(3) −∂ (Xi)1..nr ∈ P(1..i), or
(4) −∂ (Xi)1..n f orce(r) ∈ P(1..i), or
(5) ∃(Yi)1..nα ∈ A(r),

(5.1) −∂ (Xi)1..n(Yi)1..nα ∈ P(1..i), or
(5.2) Xn = ZT ′

ag , Y1 = ZT
ag′ , −∂ (Xi)1..nHoldT

age f f icacious(r) ∈ P(1..i).

We are now ready to define the proof theory that is, the inference conditions to
derive tagged conclusions from a given theory D. Note that the formalism we have
introduced allows us to temporalise rules, thus we have to admit the possibility that
rules are not only given but can be proved to hold for certain span of time. Ac-
cordingly we have to give conditions that allow us to derive rules instead of literals.
Proofs to determine whether a temporal modal literal or rule γ is a definite conclusion
of a theory D follow the same path. A temporal modal literal or rule γ is definitely
provable (+∆ ) if (1) there exists a temporal modal literal or rule γ ′ in the set F of
facts or in the set R of rules such that γ v γ ′, or (2) there is an applicable strict rule
to provide γ , or (3) γ is definitely provable in some temporal sub-intervals.

If P(i+1) = +∆γ then
(1) ∃γ ′ ∈ F ∪R, γ v γ ′, or
(2) ∃r ∈ Rs, r is ∆γ-applicable, or
(3) ∃γ1,γ2,γ1t γ2 = γ, +∆γ1 ∈ P(1..i) and +∆γ2 ∈ P(1..i).

To prove that a temporal modal literal is not definitely provable we have to show that
any attempt to give a definite proof fails. A temporal modal rule r is not definitely
provable if (1) there is not such rule in the set of rules defined in some sup-interval,
and (2) there is no applicable strict rule to provide γ , and (2) r is not defined in any
sub-intervals.

If P(i+1) =−∆γ then
(1) ∀γ ′ ∈ F ∪R, γ 6v γ ′, and
(2) ∀r ∈ Rs, r is ∆γ-discarded, and
(3) ∀γ1,γ2,γ1t γ2 = γ,−∆γ1 ∈ P(1..i) or −∆γ2 ∈ P(1..i).

We now turn our attention to defeasible derivations, that is, derivations giving an
assertion as a defeasible conclusion of a theory D. We begin with the proof conditions
to determine whether a rule is a defeasible conclusion. The proof conditions for a
rule introduce a buffer-like proof tag ∇ that allows to consider intermediary steps.
Defeasible provability (+∂ ) for temporal modal literals consists of three phases. In
the first phase, we put forward a supported reason for the assertion that we want to
prove. Then in the second phase, we consider all possible attacks against the desired
conclusion. Finally in the last phase, we have to counter-attack the attacks considered
in the second phase.
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If P(i+1) = +∂γ then
(1) +∆γ ∈ P(1..i), or
(2) (2.1) ∀β ∈ Conflict(γ), −∆β ∈ P(1..i), and

(2.2) ∃r ∈ Rsd , r is ∂γ-applicable,
(2.3) ∀β ∈ Conflict(γ), ∀s ∈ R,

(2.3.1) s is ∂β -discarded, or
(2.3.2) ∃w ∈ Rsd , w is ∂γ-applicable,

(2.3.2.1) γ ∈Defeat(β ), 〈γ,(s� w)〉 6∈Sup, or
(2.3.2.2) 〈γ,(w� s)〉 ∈Sup, or

(3) ∃γ1,γ2,γ1t γ2 = γ,+∂γ1 ∈ P(1..i) and +∂γ2 ∈ P(1..i).

Let us illustrate the proof condition of the defeasible provability of γ . We have two
cases: 1) We show that γ is already definitely provable; or 2) we need to argue using
the defeasible part of D. In this second case, to prove γ defeasibly we must show that
no complement temporal modal literals β definitely provable (2). We require then
there must be a strict or defeasible (applicable) rule r providing γ (2.1). But now we
need to consider possible attacks, i.e., that is, any rule s supporting attacking com-
plement temporal modal literals. Note that here we consider defeaters, too, whereas
they could not be used to support the conclusion γ . These attacking rules s have to
be discarded (2.2.1), or must be defeated by a stronger rule w supporting γ (2.2.2).
Finally, we have to cater for the case where γ is defeasible provable on sub-intervals
making up γ (3).
To prove that a temporal modal literal is not defeasibly provable we have to show
that any attempt to give a proof fails.

If P(i+1) =−∂γ then
(1) −∆γ ∈ P(1..i), and
(2) (2.1) ∃β ∈ Conflict(γ), +∆β ∈ P(1..i), or

(2.2) ∀r ∈ Rsd , r is ∂γ-applicable,
(2.3) ∃β ∈ Conflict(γ), ∃s ∈ R,

(2.3.1) s is ∂β -applicable, and
(2.3.2) ∀w ∈ Rsd , w is ∂γ-discarded,

(2.3.2.1) γ 6∈Defeat(β ) or 〈γ,(s� w)〉 ∈Sup, and
(2.3.2.2) 〈γ,(w� s)〉 6∈Sup, and

(3) ∀γ1,γ2,γ1t γ2 = γ,−∂γ1 ∈ P(1..i) or −∂γ2 ∈ P(1..i).

Example 22 Suppose the following theory D22 = (T ,F,R,S ,Ag,C ,D) where T
are dates of the Gregorian calendar, and

F = {Hold[1Jan08,max]
mario opened(account),

Hold[1Jan08,31Dec08]
mario positive(account),

Hold[1Jan09,20Jan09]
mario ¬positive(account),

Hold[1Jan08,max]
mario f orce(r0), Hold[1Jan08,max]

mario e f f icacious(r0),
Hold[1Jan08,max]

mario f orce(r1), Hold[1Jan08,max]
mario e f f icacious(r1),

Hold[1Jan08,max]
mario f orce(r2), Hold[1Jan08,max]

mario e f f icacious(r2),
Hold[15Jan09,max]

mario f orce(r3), Hold[15Jan09,max]
mario Hold[1Jan09,max]

mario e f f icacious(r3)}
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R = R1∪R2, where
R1 = {Hold[1Jan08,max]

mario (r0: Holdt
xopened(account)

⇒ Obltx positive(account)),
Hold[1Jan08,max]

mario (r1: Holdt−1
x positive(account), Holdt

x¬positive(account)
⇒ Perm[t,t+15days]

x ¬positive(account)),
Hold[1Jan08,max]

mario (r2: Holdt
x¬positive(account), Obltx positive(account)

⇒ Holdt
xblocked(account)),

Hold[1Jan09,max]
mario (r3: Holdt−1

x positive(account), Holdt
x¬positive(account)

⇒ Perm[t,t+30days]
x ¬positive(account))},

R2 = {rγ→β : γ → β |β ∈ Equivalent(γ)}∪{rγ⇒β : γ ⇒ β |β ∈ Convert(γ)},

S = {Hold[min,max]
mario (r1 � r0), Hold[min,max]

mario (r3 � r0)},

Ag = {mario,obj},

C = {conflict(OblTmarioγ,DesT
mario∼γ), conflict(OblTmarioγ,BringT

mario∼γ)},

D = {defeat(OblTmarioγ,DesT
mario∼γ), defeat(OblTmarioγ,BringT

mario∼γ)}.

The set R2 includes the following rule:

R
Hold

[t1,t2]
ag γ⇒Hold

[t1,t3]
ag Hold

[t1,t2]
ag γ

: Hold[t1,t2]
ag γ ⇒ Hold[t1,t3]

ag Hold[t1,t2]
ag γ

which is applicable and not attacked by any rule, so we obtain:

+∂Hold[1Jan08,max]
mario Hold[1Jan08,max]

mario opened(account),

+∂Hold[1Jan08,max]
mario Hold[1Jan08,31Dec08]

mario positive(account),

+∂Hold[1Jan09,max]
mario Hold[1Jan06,20Jan]

mario ¬positive(account),

+∂Hold[1Jan08,max]
mario Hold[1Jan08,max]

mario e f f icacious(r0),

+∂Hold[1Jan08,max]
mario Hold[1Jan08,max]

mario e f f icacious(r1),

+∂Hold[1Jan08,max]
mario Hold[1Jan08,max]

mario e f f icacious(r2),

+∂Hold[15Jan08,max]
mario Hold[15Jan08,max]

mario e f f icacious(r3).

The rules r0, r1 and r3 are applicable, but the appli-
cation of the rule r0 to obtain the putative conclusion
Hold[1Jan08,max]

mario Obl[1Jan08,max]
mario positive(account) is attacked by the application

of the rule r1 for Hold[1Jan09,max]
mario Perm[1Jan09,15Jan09]

mario ¬positive(account) and by the

application of the rule r3 for Hold[15Jan09,max]
mario Perm[1Jan09,30Jan09]

mario ¬positive(account).
The rule r1 and r3 are stronger than the rule r0, hence we derive:

+∂Hold[1Jan08,31Dec08]
mario Obl[1Jan08,max]

mario positive(account),
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+∂Hold[1Jan09,14Jan09]
mario Perm[1Jan09,15Jan09]

mario ¬positive(account),

+∂Hold[1Jan09,14Jan09]
mario Obl[16Jan09,max]

mario positive(account),

+∂Hold[15Jan09,max]
mario Perm[1Jan09,30Jan09]

mario ¬positive(account),

+∂Hold[16Jan09,max]
mario Obl[31Jan09,max]

mario ¬positive(account).

The rule r2 is applicable, hence we obtain:

+∂Hold[1Jan09,14Jan09]
mario Hold[16 jan07,max]

mario blocked(account),

−∂Hold[15Jan09,max]
mario Hold[16 jan07,max]

mario blocked(account).

10.3 Argumentation semantics

As for basic defeasible and modal defeasible logic, temporal modal defeasible logic
can be characterized in terms of interacting arguments, giving for it an argumenta-
tion semantics. In this Section, we provide a slight adaptation of the argumentation
semantics given for modal defeasible logic in order to integrate time.

10.3.1 Arguments

The argument layer defines what arguments are. An argument for a temporal modal
assertion (i.e. a literal or a rule) is a proof tree (or monotonic derivation) of that
assertion in temporal modal defeasible logic. Nodes are labeled by either temporal
modal literals or temporal modal rules tagged by ∂ ′ or ∆ ′. Nodes are connected by
arrows that correspond to grounded inferences rules (see below).

Definition 10.12. An argument is a proof tree such that:

• each node is labeled by a temporal modal literal or rule tagged by ∂ ′ or ∆ ′, and
• each leaf mode is labeled by +∆ ′γ where γ ′ ∈ F ∪R and γ v γ ′, and
• each compound arrow connecting nodes corresponds to a grounded inference

rule of the following types:

+∆ ′γ1,+∆ ′γ2, γ1t γ2 = γ

+∆ ′γ
(10.1)

r is∆ ′γ− applicable
+∆ ′γ

(10.2)

+∂ ′γ1,+∂ ′γ2, γ1t γ2 = γ

+∂ ′γ
(10.3)

r is∂ ′γ− applicable
+∂ ′γ

(10.4)

+∆ ′γ

+∂ ′γ
(10.5)
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If (Xi)1..nr is ∆ ′(Xi)1..nγ-applicable then
(1) r ∈ Rs[γ ′], γ v (Xi)1..nγ ′, and
(2) (Xi)1..n ∈ Seq+, and
(3) +∆ ′(Xi)1..nr, and
(4) +∆ ′(Xi)1..n f orce(r), and
(5) ∀(Yi)1..nα ∈ A(r),

(5.1) +∆ ′(Xi)1..n(Yi)1..nα , and
(5.2) Xn = ZT ′

ag , Y1 = ZT
ag′ , +∆ ′(Xi)1..nHoldT

age f f icacious(r).

If (Xi)1..nr is ∂ ′(Xi)1..nγ-applicable then
(1) r ∈ R[γ ′], γ v (Xi)1..nγ ′and
(2) (Xi)1..n ∈ Seq+, and
(3) +∂ ′(Xi)1..nr, and
(4) +∂ ′(Xi)1..n f orce(r), and
(5) ∀(Yi)1..nα ∈ A(r),

(5.1) +∂ ′(Xi)1..n(Yi)1..nα , and
(5.2) Xn = ZT ′

ag , Y1 = ZT
ag′ , +∂ ′(Xi)1..nHoldT

age f f icacious(r).

• If the rule r in the inference (10.4) is a defeater then the post-condition +∂ ′γ is
the root node.

The last condition specifies that a defeater rule may only be used at the top of an
argument: no chaining of defeaters is allowed.

Example 23 Given the theory D22, we can build among others the following argu-
ments:

• F1: [+∆ ′Hold[1Jan08,max]
mario opened(account)],

• F2: [+∆ ′Hold[1Jan08,31Dec08]
mario positive(account)],

• F3: [+∆ ′Hold[1Jan09,20Jan09]
mario ¬positive(account)],

• F4: [+∆ ′Hold[1Jan08,max]
mario f orce(r0)],

• F5: [+∆ ′Hold[1Jan08,max]
mario e f f icacious(r0)],

• F6: [+∆ ′Hold[1Jan08,max]
mario f orce(r1)],

• F7: [+∆ ′Hold[1Jan08,max]
mario e f f icacious(r1)],

• F8: [+∆ ′Hold[1Jan08,max]
mario f orce(r2)],

• F9: [+∆ ′Hold[1Jan08,max]
mario e f f icacious(r2)],

• F10: [+∆ ′Hold[15Jan09,max]
mario f orce(r3)],

• F11: [+∆ ′Hold[15Jan09,max]
mario Hold[1Jan09,max]

mario e f f icacious(r3)],
• R0: [+∆ ′Hold[1Jan08,max]

mario r0],
• R1: [+∆ ′Hold[1 jan08,max]

mario r1],
• R2: [+∆ ′Hold[1Jan08,max]

mario r2],
• R3: [+∆ ′Hold[1Jan09,max]

mario r3],
• R4: [+∆ ′Hold[t1,t2]

ag γ ⇒ Hold[t1,t3]
ag Hold[t1,t2]

ag γ],
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• R5: [+∆ ′Hold[t1,t2]
ag Hold[t1,t2]

ag γ ⇒ Hold[t1,t2]
ag γ],

• F1’: [[F1]+∂ ′Hold[1Jan08,max]
mario opened(account)],

• F2’: [[F2]+∂ ′Hold[1Jan08,31Dec08]
mario positive(account)],

• F3’: [[F3]+∂ ′Hold[1Jan09,20Jan09]
mario ¬positive(account)],

• F4’: [[F4]+∂ ′Hold[1Jan08,max]
mario f orce(r0)],

• F5’: [[F5]+∂ ′Hold[1Jan08,max]
mario e f f icacious(r0)],

• F6’: [[F6]+∂ ′Hold[1Jan08,max]
mario f orce(r1)],

• F7’: [[F7]+∂ ′Hold[1Jan08,max]
mario e f f icacious(r1)],

• F8’: [[F8]+∂ ′Hold[1Jan08,max]
mario f orce(r2)],

• F9’: [[F9]+∂ ′Hold[1Jan08,max]
mario e f f icacious(r2)],

• F10’: [[F10]+∂ ′Hold[15Jan09,max]
mario f orce(r3)],

• F11’: [[F11]+∂ ′Hold[15Jan09,max]
mario Hold[1Jan09,max]

mario e f f icacious(r3)],
• R0’: [[R0]+∂ ′Hold[1Jan08,max]

mario r0],
• R1’: [[R1]+∂ ′Hold[1 jan08,max]

mario r1],
• R2’: [[R2]+∂ ′Hold[1Jan08,max]

mario r2],
• R3’: [[R3]+∂ ′Hold[1Jan09,max]

mario r3],
• R4’: [[R4]+∂ ′Hold[t1,t2]

ag γ ⇒ Hold[t1,t3]
ag Hold[t1,t2]

ag γ],
• R5’: [[R5]+∂ ′Hold[t1,t2]

ag Hold[t1,t2]
ag γ ⇒ Hold[t1,t2]

ag γ],
• F1”: [R4′,F1′]+∂ ′Hold[1Jan08,max]

mario Hold[1Jan08,max]
mario opened(account)],

• F2”: [[R4′,F2′]+∂ ′Hold[1Jan09,max]
mario Hold[1Jan08,31Dec08]

mario positive(account)],
• F3”: [[R4′,F3′]+∂ ′Hold[1Jan09,max]

mario Hold[1Jan09,20Jan09]
mario ¬positive(account)],

• F5”: [[R4,F5′]+∂ ′Hold[1Jan08,max]
mario Hold[1Jan08,max]

mario e f f icacious(r0)],
• F7”: [[R4,F7]+∂ ′Hold[1Jan08,max]

mario Hold[1Jan08,max]
mario e f f icacious(r1)],

• F9”: [[R4,F9]+∂ ′Hold[1Jan08,max]
mario Hold[1Jan08,max]

mario e f f icacious(r2)],
• F2B: [[R4′,F1′]+∂ ′Hold[1Jan09,max]

mario Hold[31Dec08]
mario positive(account)],

• F3B: [[R4′,F3′]+∂ ′Hold[1Jan09,max]
mario Hold[1Jan09]

mario ¬positive(account)],
• F4B: [[F4]+∂ ′Hold[1Jan09,max]

mario f orce(r0)],
• F7B: [[R4,F7]+∂ ′Hold[1Jan09,max]

mario Hold[1Jan09,max]
mario e f f icacious(r1)],

• R1B: [[R1]+∂ ′Hold[1 jan09,max]
mario r1],

• A
Hold[1Jan08,31Dec08]

mario Obl[1Jan08,max]
mario

:

[[F1′′,R0′,F4′,F5′′]+∂ ′Hold[1Jan08,31Dec08]
mario Obl[1Jan08,max]

mario positive(account)],
• A

Hold[1Jan09,14Jan09]
mario Obl[16Jan08,max]

mario
:

[[F1′′,R0′,F4′,F5′′]+∂ ′Hold[1Jan09,14Jan09]
mario Obl[16Jan08,max]

mario positive(account)],
• B

Hold[1Jan09,14Jan09]
mario Perm[1Jan09,15Jan09]

mario
:

[[F2B,F3B,R1B,F4B,F7B]+∂ ′Hold[1Jan09,14Jan09]
mario Perm[1Jan09,15Jan09]

mario ¬positive(account)].
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Definition 10.13. A (proper) sub-argument of an argument A is a (proper) sub-tree
of the tree associated to A.

Definition 10.14. A tagged assertion (+∆ ′γ or +∂ ′γ) is a conclusion of an argument
if it labels a node of the argument.

A more usual alternative would be to regard only the root of an argument as its unique
conclusion, but this choice would make the other definitions more complex. Since
conclusions can be differently qualified depending on the rules used, arguments are
differentiated as follows:

Definition 10.15. A supportive argument is a finite argument in which no defeater is
used.

Definition 10.16. A strict argument is an argument in which any node is tagged by
+∆ ′.

Definition 10.17. An argument that is not strict is called defeasible.

Example 24 The argument B
Hold[1Jan09,14Jan09]

mario Perm[1Jan09,15Jan09]
mario

is a supportive argu-

ment for +∂ ′Hold[1Jan09,14Jan09]
mario Perm[1Jan09,15Jan09]

mario ¬positive(account)]. It is not a
strict argument and thus it is a defeasible argument.

10.3.2 Acceptable arguments

The precedent Section defined the argument layer and isolated the concept of argu-
ment. This Section presents the dialectical layer which is concerned with relations
standing amongst arguments. It defines the notion of support and attack, and focuses
on the interaction amongst arguments. Firstly, we introduce the notion of support:

Definition 10.18. A set of arguments S supports a defeasible argument A if every
proper sub-argument of A is in S.

Note that, in our setting, the atomic arguments, constituted of a fact or a rule of the
theory, are supported by the empty set.

The conditions that determine which argument can attack another argument are
defined in the following. In the Section presenting the proof theory, a defeasible
conclusion is shown to have a proof condition consisting of three phases. In the
first phase, a supporting rule r is provided. In the second phase, all possible attacks
against the desired conclusion are considered, that is, an attack consists of any rule
s supporting a complemement temporal modal literal. In the third phase, counter-
attacks are proposed by means of a defeating rule w.
So in the proof condition, the relation of attack between the first and second phase
is somewhat different of the relation of attack between the second and third phase.
To reflect this, we provide the notion of attack and defeat between arguments in the
following.
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Definition 10.19. An argument S attacks a defeasible argument R if and only if

• +#′β and +∂ ′γ are conclusions of the arguments S and R respectively, where
# ∈ {∆ ′,∂ ′}, and

• β ∈ Conflict(γ).

Example 25 The argument B
Hold[1Jan09,14Jan09]

mario Perm[1Jan09,15Jan09]
mario

attacks the argument

A
Hold[1Jan08,31Dec08]

mario Obl[1Jan08,max]
mario

and vice versa.

Definition 10.20. An argument W defeats a defeasible argument S if and only if

(1) +#γ and +∂ ′β are conclusions of a rule w ∈ R[γ] and a rule s ∈ R[β ] respecti-
vely, where # ∈ {∆ ′,∂ ′}, and
(2) if # = ∂ , (2.1) γ ∈Defeat(β ), 〈γ,(s� w)〉 6∈Sup, or

(2.2) 〈γ,(w� s)〉 ∈Sup.

Example 26 The argument A
Hold[1Jan08,31Dec08]

mario Obl[1Jan08,max]
mario

attacks but does not defeat

the argument B
Hold[1Jan09,14Jan09]

mario Perm[1Jan09,15Jan09]
mario

whereas the latter attacks and defeats

the former.

Defeasible reasoning differentiates traditionally between rebuttal and undercutting.
We stick to the tradition and define the notion of undercutting as follows:

Definition 10.21. An argument A undercuts a defeasible argument B if A attacks a
proper sub-argument of B.

In this setting, an argument that is attacked but not undercut is said to be rebutted.

Definition 10.22. A set of arguments S undercuts a defeasible argument B if there is
an argument A supported by S that attacks a proper sub-argument of B.

Definition 10.23. A set of arguments S defeats a defeasible argument B if there is an
argument A supported by S that defeats B.

Comparing arguments by pairs is not enough since an attacking argument can in
turn be attacked by other arguments. In the following, we will define justified argu-
ments, i.e. arguments that have no viable attacking argument in the discourse, and
rejected arguments that are attacked by justified argument. As in many argumenta-
tion systems, we base the status justified or rejected of arguments on the concept of
acceptability of an argument w.r.t. to set of arguments S. That an argument A is ac-
ceptable w.r.t. to set of arguments S means that any attacker against A is defeated by
an argument supported by S. In this line, we next present a slightly adapted version
of P.M.Dung ’s definition of acceptability [68].

Definition 10.24. An argument A is acceptable w.r.t. a set of arguments S if and only
if either
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(1) A is strict, or
(2) for any argument B attacking A

(2.1) B is undercut by S, or
(2.2) B is defeated by S.

The condition (2.1) aims to provide an ambiguity blocking semantics of the system,
whereas the condition (2.2) aims to provide a team defeat feature of the system.

10.3.3 Justified arguments

Based on the concept of acceptability we proceed to define justified arguments and
justified assertion. That an argument A is justified means that it resists every refuta-
tion. Given a defeasible theory D, the set of arguments that can be generated from D
is denoted by ArgsD. The following definition is based on [171]’s definition of fixed
point semantics.

Definition 10.25. The set of justified arguments in a theory D is JArgsD =
⋃

∞
i=0 JD,i

with

• JD,0 = ∅,
• JD,i+1 = {arg ∈ ArgsD |arg is acceptable w.r.t. JD,i}.

So, an argument A is acceptable w.r.t. JD,i+1 if either A is strict, or any argument B
attacking A is undercut by JD,i (i.e. there is an argument C supported by JD,i that
attacks a proper sub-argument of B) or defeated by an argument supported by JD,i.

Definition 10.26. A tagged assertion +∂ ′γ is justified if and only if it is the conclu-
sion of a supportive argument in JArgsD.

A justified tagged assertion +∂ ′γ means that it is defeasibly provable (+∂ ). How-
ever, temporal modal defeasible logic permits to express when a conclusion is not
provable (-∂ ). Briefly, that a conclusion is not provable means that every possible ar-
gument for that conclusion has been refuted. In the following, this notion is captured
by assigning the status rejected to arguments that are refuted. Roughly speaking, an
argument is rejected if it has a rejected sub-argument or it cannot overcome an at-
tack from a justified argument. Given an argument A, a set S of arguments (to be
thought of as arguments that have already been rejected), and a set J of arguments
(to be thought of as justified arguments that may be used to support attacks on A),
we assume the following definition of the argument A being rejected by S and J:

Definition 10.27. An argument A is rejected by the sets of arguments S and J when
A is not strict and if (i) a proper sub-argument of A is in S or (ii) it is attacked by an
argument supported by J.

Definition 10.28. The set of rejected arguments in a theory D w.r.t. J is RArgsD(J) =⋃
∞
i=0 RD,i with
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• RD,0(J) = ∅,
• RD,i+1(J) = {arg ∈ ArgsD |arg is re jected by RD,i(J) and J}.

Definition 10.29. A tagged assertion +∂ ′γ is rejected by J if there is no argument in
ArgsD−RArgsD(J) that ends with as a supportive rule for +∂ ′γ .

As shortcut, we say that an argument is rejected if it is rejected w.r.t. JArgsD and a
literal is rejected if it is rejected by JArgsD.

An argumentation semantics with ambiguity blocking can now be provided by
characterizing conclusions in argumentation terms:

Definition 10.30. Let D be a defeasible theory and γ be an assertion.

• D `+∆γ iff there is a strict argument supporting +∆ ′γ in ArgsD.
• D ` −∆γ iff there is no strict argument supporting +∆ ′γ in ArgsD.
• D `+∂γ iff +∂ ′γ is justified.
• D ` −∂γ iff +∂ ′γ is rejected by JargsD.

This argumentation semantics is consistent with the proof theories of the presented
Temporal Deontic Defeasible Logic in the sense that conclusions get similarly
tagged. The proof not provided here is similar to the one in [91]. It follows that
for any defeasible theory, no argument is both justified and rejected, and thus no
literal is both justified and rejected. Eventually, if the set JArgsD of justified argu-
ments contains two arguments with conflicting conclusions then both arguments are
strict. That is, inconsistent conclusions can be reached only when the strict part of
the theory is inconsistent.

10.4 A Prolog meta-program

In this Section, we describe a Prolog meta-program M t which is an extension of a
meta-program M for basic defeasible logic [12].

M t implements a fragment of the temporal modal defeasible logic provided in
this Chapter. The restrictions concern the language and defeasible theories.

Definition 10.31 (Language). Let T = N, Prop be a set of propositional atoms, Ag
a finite set of agents, Lab be a set of labels, n ∈N∗, and m,k,m′,k′ ∈ {0,1}. The sets
below are defined as the smallest sets closed under the following rules:

Modal operators

Mod = {Holdag,Desag,Bringag,Oblag |ag ∈ Ag}

Punctual intervals
Inter = {[t, t] |t ∈T }
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Temporal modal operators

TMod = {HoldT
ag,DesT

ag,BringT
ag,OblTag |T ∈ Inter, ag ∈ Ag}

Temporal modal literals

TMLit = {¬kX¬m
γ |X ∈ TMod, γ ∈ Prop}

Rules
Rules = {r: φ1, . . . ,φn→ ψ |r ∈ Lab, φ1, . . . ,φn,ψ ∈ TMLit}
Ruled = {r: φ1, . . . ,φn⇒ ψ |r ∈ Lab, φ1, . . . ,φn,ψ ∈ TMLit}
Ruledft = {r: φ1, . . . ,φn ; ψ |r ∈ Lab, φ1, . . . ,φn,ψ ∈ TMLit}
Rule = Rules∪Ruled ∪Ruledft

Persistence rules

Rulepers
s = {r: ¬kX [t,t]

ag ¬mγ →¬kX [t+1,t+1]
ag ¬mγ

|r ∈ Lab, X ∈Mod, ag ∈ Ag, t ∈T , γ ∈ Prop}
Rulepers

d = {r: ¬kX [t,t]
ag ¬mγ ⇒¬kX [t+1,t+1]

ag ¬mγ

|r ∈ Lab, X ∈Mod, ag ∈ Ag, t ∈T , γ ∈ Prop}
Rulepers = Rulepers

s ∪Rulepers
d

Conflict relations

Conflict = {conflict(¬kX [t,t]
ag ¬mγ,¬k′Y [t,t]

ag ¬m′β )
|X ∈Mod, ag ∈ Ag, t ∈T , γ,β ∈ Prop}

Defeat relations

Defeat = {defeat(¬kX [t,t]
ag ¬mγ,¬k′Y [t,t]

ag ¬m′β )
|X ∈Mod, ag ∈ Ag, t ∈T , γ,β ∈ Prop}

Superiority relations

Sup = {HoldT
ag(s� r) |ag ∈ Ag, T ∈ Inter, s,r ∈ Lab}

Definition 10.32 (Defeasible Theory). A defeasible theory is a structure D =
(T ,F,R,S ,Ag,C ,D) where

• T is a discrete totally ordered set of instants of time,
• F ⊆ TMLit is a finite set of facts,
• R = R1 ∪R2 is a finite set of rules such that each rule has an unique label, and

where:
R1 ⊆ Rule∪Rulepers,

R2 = {r
Bring[t,t]

ag γ⇒Bring[t,t]
ag γ

: Bring[t,t]
ag γ ⇒ Hold[t,t]

ag γ,

r
Bring[t,t]

ag γ⇒Bring[t,t]
ag γ

: Bring[t,t]
obj γ ⇒ Hold[t,t]

obj γ},
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• S ⊆ Sup is a set of acyclic superiority relations which hold at any time, and
∀r,s, r ∈ R−Rulepers, s ∈ R∪Rulepers we have HoldT

ag(r � s),
∀r,s, r,s ∈ R∪Rulepers we have HoldT

ag(r � s) and HoldT
ag(s� r),

• Ag = Ag1∪{obj} is a set of agents such that ∀a ∈ Ag1,a 6= obj,
• C ⊆ Conflict is a set of conflict relations which holds at any time,
• D ⊆ Defeat is a set of defeat relations which holds at any time.

Furthermore, we assume the absence of cycles in a defeasible theory D. Rules are
in force and in efficacy at any time for any agent. As abbreviation, punctual intervals
[t, t] and [t +1, t +1] are denoted t and t +1, respectively.

M t is thus a simple meta-program to be considered as a basis for further
extensions. M t consists of the following clauses. We have permitted ourselves some
syntactic flexibility and removed temporal functions (allowing displaced effects for
example) in order to lighten the presentation. We have three clauses defining classes
of rules:

rule(R, Head, supportive, Body) :-

rule(R, Head, strict, Body).

rule(R, Head, supportive, Body) :-

rule(R, Head, defeasible, Body).

persistent(R) :-

rule(R, mlit(mod(X, Ag, T+1), Lit), , [mlit(mod(X, Ag, T), Lit)]).

The two first clauses indicate that strict and defeasible rules are supportive rules.
The last clause defines persistence rules. Next we define the strict and defeasible
applicability of rules which are not persistence rules.

definitelyApplicable(rule(R, X, Type, Body)):-

rule(R, X, Type, Body),

not persistent(R),

permutation(Body, Body2),

definitelybody(Body2).

definitelybody([]).

definitelybody([H|T]) :-

definitely(H),

definitelybody(T).

defeasiblyApplicable(rule(R, X, Type, Body)):-

rule(R, X, Type, Body),

not persistent(R),

permutation(Body, Body2),

defeasiblybody(Body2).
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defeasiblybody([]).

defeasiblybody([H|T]) :-

defeasibly(H),

defeasiblybody(T).

Definite provability is defined by the following clauses. A modal literal
mlit(mod(X, Ag, T), Lit) is definitely provable if it is a fact (first clause),
or if there exists a definitely applicable strict rule with consequent mlit(mod(X,
Ag, T), Lit) (remaining clauses). The second and third clause cater for non
persistence rules, the fourth and fifth clause for persistence rules.

definitely(X) :-

fact(X).

definitely(mlit(mod(X, Ag, T), Lit)) :-

ground(T),

definitelyApplicable(rule( , mlit(mod(X, Ag, T), Lit), strict, )).

definitely(mlit(mod(X, Ag, T2), Lit)) :-

not ground(T2),

definitelyApplicable(rule( , mlit(mod(X, Ag, T), Lit), strict, )),

T2 is T.

definitely(mlit(mod(X, Ag, T2), Lit)) :-

rule(R, mlit(mod(X, Ag, T+1), Lit), strict, ),

persistent(R),

definitelyApplicable(strict( , mlit(mod(X, Ag, T), Lit), )),

computepers(T, T2).

definitely(mlit(mod(X, Ag, T2), Lit)) :-

rule(R, mlit(mod(X, Ag, T+1), Lit), strict, ),

persistent(R),

fact(mlit(mod(X, Ag, T), Lit)),

computepers(T, T2).

Defeasible provability is defined by the following clauses. A modal literal
mlit(mod(X, Ag, T), Lit) is defeasibly provable if it is definitely provable
(first clause), or if (i) there exists a defeasible applicable strict or defeasible rule
with consequent mlit(mod(X, Ag, T), Lit) which is not defeated (remaining
clauses). The second and third clause cater for non persistence rules, the fourth and
fifth clause for persistence rules.

defeasibly(X) :- definitely(X).

defeasibly(mlit(mod(X, Ag, T), Lit)) :-

ground(T),

defeasiblyApplicable(rule( , mlit(mod(X, Ag, T), Lit), supportive, )),
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conflict(Lit, NonLit),

not definitely(mlit(mod(X, Ag, T), NonLit)),

not attacked(mlit(mod(X, Ag, T), Lit)).

defeasibly(mlit(mod(X, Ag, T2), Lit)) :-

not ground(T2),

defeasiblyApplicable(rule( , mlit(mod(X, Ag, T), Lit), supportive, )),

T2 is T,

conflict(Lit, NonLit),

not definitely( mlit(mod(X, Ag, T2), NonLit)),

not attacked(mlit(mod(X, Ag, T2), Lit)).

defeasibly(mlit(mod(X, Ag, T2), Lit)) :-

rule(R, mlit(mod(X, Ag, T+1), Lit), supportive, ),

persistent(R),

defeasiblyApplicable(rule( , mlit(mod(X, Ag, T), Lit), supportive, )),

computepers(T, T2),

not broken(mlit(mod(X, Ag, T1), Lit), mlit(mod(X, Ag, T2), Lit)).

defeasibly(mlit(mod(X, Ag, T2), Lit)) :-

rule(R, mlit(mod(X, Ag, T+1), Lit), defeasible, ),

persistent(R),

fact(mlit(mod(X, Ag, T), Lit)),

computepers(T, T2),

not broken(mlit(mod(X, Ag, T), Lit), mlit(mod(X, Ag, T2), Lit)).

The following clauses indicate if and how a rule can be attacked and specify the
defeat of attacking rules by stronger counter-attacking rules.

attacked(mlit(mod(X, Ag, T), Lit)) :-

conflict(mlit(mod(X, Ag, T), Lit), mlit(mod(Y, Ag, T), NonLit)),

defeasiblyApplicable(rule(S, mlit(mod(Y, Ag, T), NonLit), , )),

not defeated(S, mlit(mod(Y, Ag, T), NonLit), mlit(mod(X, Ag, T), Lit)).

broken(mlit(mod(X, Ag, T1), Lit), mlit(mod(X, Ag, T2), Lit)) :-

conflict(mlit([mod(X, Ag, )], Lit), mlit([mod(Y, Ag, )], NonLit)),

defeasiblyApplicable(rule(S, mlit(mod(Y, Ag, T), NonLit), , )),

T>=T1,

T=<T2,

not defeated(S, mlit(mod(Y, Ag, T), NonLit), mlit(mod(X, Ag, T), Lit)).

broken(mlit(mod(X, Ag, T1), Lit), mlit(mod(X, Ag, T2), Lit)) :-

conflict(mlit(mod(X, Ag, ), Lit), mlit(mod(Y, Ag, ), NonLit)),

fact(mlit(mod(Y, Ag, T), NonLit)),

T>=T1,

T=<T2.
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defeated(S, mlit(mod(Y, Ag, T), NonLit), mlit(mod(X, Ag, T), Lit)) :-

defeat(mlit(mod(X, Ag, ), Lit), mlit(mod(Y, Ag, ), NonLit)),

defeasiblyApplicable(rule(W, mlit(mod(X, Ag, T), Lit), supportive, )),

not mlit(mod(hold, Ag, ), sup(S, W)).

defeated(S, mlit(mod( , Ag, T), ), mlit(mod(X, Ag, T), Lit)) :-

mlit(mod(hold, Ag, ), sup(W, S)),

defeasiblyApplicable(rule(W, mlit(mod(X, Ag, T), Lit), supportive, )).

The auxiliary predicate computepers(T1, T2) is defined according whether the time
instant T2 is grounded or not.

computepers(T1, T2) :-

ground(T2),

T2 >= T1.

computepers(T1, T2) :-

not ground(T2),

T2 is T1.

Finally, given a defeasible theory D = (T ,F,R,S ,Ag,C ,D), the domain de-
pendent clauses of the meta-program are introduced as follows.

• For any XT
agγ ∈ F :

fact(mlit(mod(X, Ag, T), γ)).
• For any strict rule r: φ1, . . . ,φn→ ψ ∈ R:

rule(r, ψ, strict, [φ1,..., φn]).
• For any defeasible rule r: φ1, . . . ,φn⇒ ψ ∈ R:

rule(r, ψ, defeasible, [φ1,..., φn]).
• For any defeater r: φ1, . . . ,φn ; ψ ∈ R:

rule(r, ψ, defeater, [φ1,..., φn]).
• For any conflict relation conflict(XT

agγ,Y T
agβ ) ∈D :

conflict(mlit(mod(X, Ag, T), γ), mlit(mod(Y, Ag, T), β)).
• For any conflict relation defeat(XT

agγ,Y T
agβ ) ∈D :

defeat(mlit(mod(X, Ag, T), γ), mlit(mod(Y, Ag, T), β)).
• For any superiority relation XT

ag(r� s) ∈S :
mlit(mod(X, Ag, T), sup(r,s)).

For example, consider the provision indicating that customers must pay within
30 days after receiving the invoice. This example can be formalized by the following
rules:

rinit : Holdt
agget invoice(ag)⇒ Obltag pay(ag),

rpers: Obltag pay(ag)⇒ Oblt+1
ag pay(ag),

rterm: Holdt
ag pay(ag) ; ¬Obltag pay(ag),

rviol : Holdt
agget invoice(ag), Oblt+30

ag pay(ag)⇒ Holdt
agviolation.

The obligation to pay is triggered by receipt of the invoice (rule rinit ). The obligation
persists (rule rpers) and terminates when it is complied with (rule rterm). The
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termination is modeled by using a defeater rule. If the customer has not paid within
30 days after receiving the invoice then a violation is triggered (rule rviol). Note
that the obligation persists after the deadline. In the prolog meta-program, the rules
given above are captured by the following:

rule(rinit, mlit(mod(obl, Ag, T), pay(Ag)), defeasible,

[mlit(mod(hold, Ag, T), get invoice(Ag))]).

rule(rpers, mlit([mod(obl, Ag, plus(T,1))], pay(Ag)), defeasible,

[mlit(mod(obl, Ag, T), pay(Ag))]).

rule(rterm, mlit([mod(non(obl), Ag, plus(T,1))], pay(Ag)), defeater,

[mlit(mod(hold, Ag, T), pay(Ag))]).

rule(rviol, mlit([mod(hold, Ag, plus(T, 30))], violation), defeasible,

[mlit(mod(hold, Ag, T), get invoice(Ag)),

mlit([mod(obl, Ag, plus(T, 30))], pay(Ag))]).

Suppose that we have the fact Hold0
marioget invoice(mario):

fact(mlit(mod(hold, mario, 0), get invoice(mario))).

If we make the query defeasibly(mlit(mod(X, Ag, 30), Lit)), then we
obtain:

defeasibly(mlit(mod(hold, mario, 30), violation(mario))).

defeasibly(mlit(mod(obl, mario, 30), pay(mario))).

In other words, a violation is triggered at time 30 because the customer did not pay,
and the obligation to pay still exists. If we have the fact Hold0

marioget invoice(mario)
and Hold15

mario pay(mario):

fact(mlit(mod(hold, mario, 0), get invoice(mario))).

fact(mlit(mod(hold, mario, 15), pay(mario))).

then the query defeasibly(mlit(mod(X, Ag, 30), Lit)) cannot be satisfied
because neither the obligation nor the violation holds at time 30.
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Conclusions

The motivation of this dissertation stems from the need for sustainable computer sys-
tems in unpredictable environments. We assume that the paradigm of autonomous
software agents is a solution to build such sustainable computer systems, and ac-
knowledge that norms can be used for controlling autonomous software agents while
respecting their autonomy. Cognitive agents form the basis for modeling normative
bindingness.

In this Chapter, we discuss the main results of this research, some prospects and
limits.

11.1 Results

The main contribution of this dissertation is the development of a formal framework
in temporal modal defeasible logic to account for the interactions between software
cognitive agents and normative systems.

Basic defeasible logic was extended with (sequence of) modalities for epistemic,
practical and normative reasoning. As conflicts may appear amongst mental states
and norms, the combination of modalities with the defeasible features of the logic
accounts for the bindingness of norms with respect to autonomous cognitive agents.
To some extend, the framework is also a contribution of computer science to model
normative bindingness.

The proposed modal defeasible logic was at its turn extended to relate some
inherent temporal aspects of dynamic environments. The extension was made by
associating temporal intervals to modalities. As we admitted sequences of modal-
ities, our framework caters for temporal viewpoints. A special attention was given
to some temporal aspects of the legal domain as the time of force and the time of
efficacy, retroactive and ultra-active provisions. Bearing in mind the law of parsi-
mony “entia non sunt multiplicanda praeter necessitatem”, our temporal account of
legal reasoning was related to a common-sense temporal account of cognition: doing
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the introduction of new logic entities was limited. Some temporal and textual nor-
mative modifications were also investigated, and their integration in the framework
discussed.

Finally, a Prolog meta-program of a fragment of temporal modal defeaible logic
was proposed.

11.2 Prospects and limits

This dissertation is part of an ongoing effort in norm-governed computer systems to
provide an appropriate formalization of the interaction between software cognitive
agents and normative systems. In this view, many possible extensions of the pro-
posed framework come to mind, and we shall suggest only those closely correlated
to the present work.

At the normative level, we have limited our framework to basic deontic operators
for obligations, prohibition, (strong) permissions, facultativeness. A prospect is
to enrich this set of normative notions, for example by the integration of weak
permissions, rights including obligative rights, permissive rights, ergo-omnes
rights and exclusionary rights, or legal powers, enabling powers, potestive rights,
declarative powers etc. (see e.g. [191, 192]). The notion of role can be also integrated.

Concerning temporal aspects, while we focused on absolute time reference using
intervals of time instants, a challenging prospect is the integration of relative time
reference (e.g. ‘before’, ‘after’ etc.) and temporal constraints. For example, suppose
a scheduling agent having to comply with a medical prescription as given below
[195]:

A patient requires three medical exams, each followed within 12 hours by
a treat ment session. Exams and treatments cannot overlap. Both are com-
pleted within 4 hours and must be at least 8 hours apart. The exams require
resources available from the 8th to the 12ve and from the 20th to the 21st of
the month.

Associated with some other possible normative constraints, some example of queries
(as a slight defeasible adaptation of [195]) are: find a (de)feasible schedule (if any),
find all (de)feasible schedules, what are the (de)feasible times for an exam or a treat-
ment?, what are the (de)feasible relations between two exams or treatments?, what
are the (de)feasible relations between all exams and treatments?

Beside temporal aspects, we did not account for spatial dimensions. The spatial
dimensions are important if we acknowledge that the application of norms is usually
spatially grounded to specific locations. For example, French legislation usually
applies on the French territory, some private policies applies on particular working
places, etc.
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Also, in the current framework, priorities between rules, conflict and defeat re-
lations among statements to characterize agent profiles are captured at the inference
level. An interesting prospect is a setting at the theory level to develop dynamic
priorities among rules (see [7]) and dynamic agent profiles. Dynamic priorities
could be appropriate to capture for example a combination of time-based priority
(lex posterior derogat legi priori), hierarchy-based priority (lex superior derogat legi
inferiori), and specificity-based priority (lex specialis derogat legi generali).

Beside conceptual extensions of the framework, a challenging and important
prospect concerns implementation matters.

As a Prolog meta-program to emulate a fragment of temporal defasible logic
was proposed, its extension to integrate other notions as legal temporal dimensions,
intervals and combinations of modalities is a prospect.

A Prolog meta-program is a possibility of implementation among others. If our
intention is to build a forward reasoning engine, then we can adopt the algorithm
suggested by [130] by considering snapshots of the theory at any temporal position
to built an equivalent ground instantiated theory. Based on the ground instantiated
theory, we can apply the algorithm of [130] to compute in linear time the extension.
However, this solution is hardly acceptable since it involves a combinational
explosion of the number of grounded instances. In other words, the amounts of
resources required for the execution of such solution to compute the extension of a
theory do not permit an efficient implementation. To slightly overcome the issue,
we can consider some restrictions on the language, for example, by considering
only instant intervals so that the linear complexity is ‘only’ augmented by a factor
t equals to the number of time instants. An efficient algorithm has still to be invented.

Beside technical issues, bearing in mind the proverb “Science sans conscience
n’est que ruine de l’âme” by F. Rabelais, we close this dissertation on some ethical
issues. Is our field of research compatible with ethical demands? Numerous science
fiction stories nourished worries and fantasies on autonomous artificial agents. Some
people could claim that there is no matter of urgency. Arguably, there is less urgency
to deal with autonomous artificial agents than with genetic engineering. Though most
of dangers are faraway from reality, the use of agent softwares has already generate
legal issues (see e.g. [1]).

For example, as norms often deal with ethical issues, is it wise to delegate arti-
ficial agents ethical tasks? or is human discretion needed? A primer issue concerns
for instance the responsibility for violations or errors made by software agents. What
are the future impacts of such technologies in human beings’ societies? Nowadays,
such impacts are hardly predictable.
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