
Alma Mater Studiorum – Università di Bologna

in cotutela con Sorbonne Université

DOTTORATO DI RICERCA IN

MATEMATICA

Ciclo XXXII

Settore Concorsuale: 01/A3

Settore Scientifico Disciplinare: MAT/05

A METRIC MODEL OF THE

VISUAL CORTEX

Presentata da: Noemi Montobbio

Coordinatore Dottorato

Fabrizio Caselli

Supervisori

Giovanna Citti

Alessandro Sarti

Co-Supervisore

Laurent Bonnasse-Gahot

Esame finale anno 2019





Contents

Introduction 1

Résumé 9

1 Neurophysiology and psychophysics of vision 19
1.1 The early visual pathways . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 Receptive fields and receptive profiles . . . . . . . . . . . . . . . . 20
1.1.2 The primary visual cortex (V1) . . . . . . . . . . . . . . . . . . . . 21
1.1.3 Beyond a hierarchical organization . . . . . . . . . . . . . . . . . . 26

1.2 Perceptual phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2.1 Gestalt theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2.2 Association fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Mathematical models of V1 . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.2 The Citti-Sarti model . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 A metric model for the functional architecture of V1 35
2.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Metric measure spaces . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.2 Dirichlet forms and associated operators . . . . . . . . . . . . . . . 40
2.1.3 Diffusion processes on metric measure spaces . . . . . . . . . . . . 42

2.2 A functional architecture defined by RPs . . . . . . . . . . . . . . . . . . . 46
2.2.1 The space of features as a metric space . . . . . . . . . . . . . . . 46
2.2.2 The case of Gabor filters . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.3 A non-differential example . . . . . . . . . . . . . . . . . . . . . . 55

2.3 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.1 The cortical metric measure space . . . . . . . . . . . . . . . . . . 57
2.3.2 The MCP for a sub-Riemannian surface in R2 ×S1 . . . . . . . . . 59



Contents

2.3.3 Propagation through a connectivity kernel . . . . . . . . . . . . . . 61
2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4.1 Numerical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 66
2.4.2 Gabor filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.4.3 Endstopped simple cells . . . . . . . . . . . . . . . . . . . . . . . 72
2.4.4 Spatiotemporal Gabor filters . . . . . . . . . . . . . . . . . . . . . 74
2.4.5 A family of learned filters . . . . . . . . . . . . . . . . . . . . . . 76

3 A metric model for lateral connections in CNNs 81
3.1 Feedforward and recurrent CNN architectures . . . . . . . . . . . . . . . . 83

3.1.1 Deep Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 83
3.1.2 CNNs for image classification . . . . . . . . . . . . . . . . . . . . 92
3.1.3 Recurrent CNNs (RecCNNs) . . . . . . . . . . . . . . . . . . . . . 94

3.2 Kernel CNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.2.1 The feature space as a metric space and the connectivity kernels . . 96
3.2.2 A loss function with a metric gradient term . . . . . . . . . . . . . 97
3.2.3 The KerCNN architecture . . . . . . . . . . . . . . . . . . . . . . 98
3.2.4 Task: stability to corrupted images . . . . . . . . . . . . . . . . . . 99

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3.2 Results for the loss regularization . . . . . . . . . . . . . . . . . . 105
3.3.3 Results for KerCNNs . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.3.4 Comparison between KerCNNs and RecCNNs . . . . . . . . . . . 110
3.3.5 Other datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Conclusion 119

Bibliography 121



Introduction

The aim of this thesis is the development of a model for the geometry of the connectivity
of the primary visual cortex (V1), by means of functional analysis tools on metric measure
spaces. The metric structure proposed to describe V1’s internal connections implements a
notion of correlation between neurons, based on their feature selectivity: this results in a
connectivity pattern that is directly induced by the local feature analysis performed by the
cells. We then apply this model to insert biologically inspired connections in deep learning
algorithms, to enhance their ability to perform pattern completion in image classification
tasks.
The main novelty in our approach lies in its ability to recover global geometric properties of
V1’s functional architecture without imposing any parameterization or invariance, but rather
by exploiting the local information naturally encoded in the behavior of single V1 neurons in
presence of a visual stimulus.

V1 is the first cortical area which receives the visual signal from the retina, and it is the
most studied and the best understood among the visual areas in the brain. The first, celebrated
description of its geometry was provided by D. H. Hubel and T. N. Wiesel in the ’60s [82],
starting from the crucial finding that cortical neurons are not only sensitive to the intensity
of the visual stimulus, but they also display a sharp selectivity to other features, such as
orientation, scale, velocity. According to Hubel and Wiesel’s model, every retinal location is
associated to a whole set of cells of V1, sensitive to all the possible values of these variables,
that are “engrafted” onto the positional map with a finer subdivision [81]. More precisely,
the position variable is sampled onto the cortex at a coarser resolution with respect to the
engrafted variables: as a consequence, at each discrete spatial location all values of these
other variables are represented. For instance, if we denote by (x,y) the spatial coordinates in
the retinal plane, the arrangement of the orientation preference variable w.r.t. them can be
described through an orientation map

Θ : R2 → S1. (0.1)
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These topographic maps typically contain regular regions as well as singular points, called
pinwheels, around which all values of θ are arranged as the spokes of a wheel.

The first processing of a visual stimulus in V1 is performed by a class of neurons called
simple cells, which act in a quite complicated way w.r.t. the retinal image. Using a largely
simplified model, a visual stimulus can be represented as a function I = I(x,y) defined on
the retinal plane, and the action of a simple cell in presence of this stimulus can be modeled
as a linear integral operator. Its associated kernel will be denoted here by ψ = ψ(x,y), and
will be called the classical receptive profile (RP) of the neuron. The RP of a V1 simple cell is
typically very concentrated, i.e. it is supported onto a localized domain of the retina, also
referred to as the receptive field (RF) of the neuron. Since the behavior of these neurons is
essentially characterized by the linear filtering operation performed by their RPs, the set of
simple cells is classically identified with a family {ψp}p∈G ⊆ L2(R2) of linear filters. For
each p in G , the filter ψp acts on an image I as follows:

Oψp(I) :=
∫
R2

ψp(x,y)I(x,y)dxdy.

We say that the family {ψp}p lifts the image I to a new function G ∋ p 7−→ Oψp(I) defined
on the set G indexing the family. In the following, we will refer to G as the feature space
associated to the bank of filters: intuitively, each element p∈G encodes the features extracted
by the corresponding filter ψp when it is applied to an image. In many classical models, the
feature space is defined as a product space G = R2 ×F . The coordinates (x,y) ∈ R2 denote
the center of the smallest ball containing the localized support of the filter (i.e. the point of
the retina at which the profile is centered): this encodes the variable of position. The third
index Φ ∈ F parameterizes the other features extracted by the filters. This translates in a
continuous setting the idea of engrafted variables: at each point (x,y), all values of Φ are
represented.
A well-established model for the RPs of V1 simple cells is represented by a set of bi-
dimensional Gabor filters [84, 48, 99]: the whole bank of filters {ψx,y,θ}x,y,θ is obtained by
translations of (x,y) ∈ R2 and rotations of θ ∈ S1 of a mother function

ψ(u,v) = exp
(

2πiu
λ

)
exp
(
− u2 + v2

2σ2

)
.

Thus, the corresponding feature space G is the rototranslation group SE(2) = R2 ×S1, repre-
senting the retinal position (x,y) and the orientation θ . Note that this product representation
contains no information about the topographic organization of the variable θ onto the posi-
tional map; one may insert this constraint by considering an orientation map Θ as in (0.6):
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this defines a sub-family {ψx,y,Θ(x,y)}(x,y)∈R2 of the above bank of filters, with a more realistic
bi-dimensional feature space.

The neural activity is known to propagate across V1 through intra-cortical connections,
often referred to as horizontal (or lateral) in the sense that they link cells belonging to the
same level of the hierarchy of visual areas. These have been investigated in a number of
experiments [72, 125, 27] and were found to link neurons that are far apart in the positional
map but sensitive to similar orientations. The spatial extent and the marked orientation
specificity of such connections have led to the hypothesis that lateral connections may be a
neurophysiological counterpart to those perceptual mechanisms leading to the integration
of local features into contours, described by the Gestalt law of good continuation and
investigated in several psychophysical experiments [83, 69, 61]. The results of the behavioral
experiments carried out in [61] are summarized through the notion of association field,
describing the strength of reciprocal influence between two perceived edge elements in terms
of their relative position and orientation. Notably, it is experimentally clear that there is a
relationship between the set of receptive profiles (sharply selective w.r.t. orientation and
position) and the structure of connectivity linking them.

Over the past twenty years, a number of models were proposed that characterize the
functional architecture of V1 through differential structures [89, 79, 121, 154, 41, 131, 1]. We
refer to [39] for a review. The main idea, anticipated by J. Koenderink [89] and W. Hoffman
[79] and further developed by J. Petitot and Y. Tondut [121], is to represent V1 as a fiber
bundle whose basis is the space of positions and whose fiber contains the engrafted variables.
This is typically endowed with a Lie group structure, often associated to a parameterized
bank of filters. For instance, the space SE(2) associated to a family of Gabor filters was
taken into consideration in [41], where the authors define a sub-Riemannian structure which
is invariant with respect to the group law; they describe the spreading of neural activity in V1
through the lateral connectivity by means of a propagation along the integral curves of this
structure. This idea can in principle be replicated as long as the bank of filters modeling the
RPs can be parameterized by a group. Yet, this condition is not verified for computational
models where the filters may be obtained for instance through automatic learning procedures
[117, 8]. It is nonetheless essential for a cortex model to describe the set of receptive profiles
and the functional geometry of intra-cortical connections with strictly connected instruments.

In the present work, we show that such geometrical properties can indeed be recovered
through a notion of correlation between RPs of simple cells, with or without the presence of
a group structure. Specifically, we propose a model of V1 as a metric space whose structure
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is induced directly by the shapes of such profiles. V1 is still represented by the feature space
G associated to a bank of filters {ψp}p∈G , and the distance between two points p0, p ∈ G is
defined as

d(p, p0) := ∥ψp −ψp0∥L2(R2). (0.2)

Therefore, the filters do not only provide a set of parameters on which one defines a geometric
structure, but rather they contribute to the characterization of such a structure. We stress
that this construction does not require any invariance or group structure onto the set G : for
example, note that the metric space would still be well defined even for a set of filters known
numerically and parameterized by a list of indices. The distance d is naturally associated to
the kernel

K(p, p0) := Re⟨ψp,ψp0⟩L2(R2) =

(∫
R2

ψp(x,y)ψp0(x,y)dx dy
)
. (0.3)

Indeed, the squared distance can be written as

d2(p, p0) = K(p, p)+K(p0, p0)−2K(p, p0).

K expresses a notion of correlation between filters w.r.t. the metric. This is straightforward
if ∥ψp∥2 = t for every p. In this case, the kernel is obtained as K(p, p0) = t − d2(p,p0)

2 and its
value for a couple of points increases as they get closer w.r.t the distance.

In order to describe the long-range spreading of neural activity across V1, we propose
to adapt to our setting the diffusion-based approach employed in many differential models.
We first equip our metric space with the spherical Hausdorff measure µ associated to the
distance d, thus defining the cortical metric measure space (G ,d,µ). We then refer to the
classical approach of K.-T. Sturm [137], which provides a general method to construct a
diffusion process on a metric measure space (X ,d,µ). This technique consists in defining a
Dirichlet form on L2(X ,µ) whose associated positive self-adjoint operator has a heat kernel ht

admitting Gaussian estimates in terms of the distance d, provided that a Measure Contraction
Property (MCP, see Definition 2.18 at page 43) holds on the space. In order to produce an
explicit algorithm to compute the cortical connectivity associated to a general bank of filters
(not necessarily known analytically) we propose to approximate the propagation along the
horizontal connectivity through an iterative procedure based on the estimation of the heat
kernel ht in terms of the kernel in (0.8). Specifically, given a nonlinear activation function ν

and a normalization operator N, we first consider the following local kernel around a starting
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point p0:
K p0

1 (p) := N [ν (K)] (p, p0).

We then construct a wider kernel through a mechanism of repeated integrations, as follows:

K p0
n :=

∫
N [ν (K)] (p,q) · K p0

n−1(q)dµ(q).

We will provide an extensive analysis of our results for the example of a feature space
determined by a family of Gabor filters. This is a case worth investigating for two reasons.
First, it is convenient in terms of intuition and manageability, since the invariances of the
feature space in this setting make it possible to perform some explicit calculations. Second,
it links the present metric model to the differential approach: indeed, the distance function
obtained in this case turns out to be locally equivalent to a Riemannian distance which
approximates the sub-Riemannian structure defined on R2 ×S1 in the model presented in
[41]. In this case, we will present some numerical simulations comparing the propagations
obtained respectively through a discretized heat equation associated to the Riemannian
structure, and through repeated integrations against the kernel as mentioned before.

Another significant example is given by the case of a surface Σ ⊆ R2 ×S1, obtained as
the feature space defined by a sub-family of Gabor filters, in the limit case where the external
metric on R2 × S1 becomes sub-Riemannian. This case provides a motivation behind the
choice of the general setting of metric measure spaces: indeed, the distance induced on Σ

as a metric subspace of R2 ×S1 cannot be obtained as the intrinsic metric associated to the
horizontal curves on the surface. We will prove that the resulting metric measure space
satisfies the MCP: this allows to describe the horizontal connectivity associated e.g. to a
surface

Σ = {θ = Θ(x,y)} ⊆ R2 ×S1

defined by an orientation map Θ as in (0.6).
Further numerical simulations for the feature spaces associated to different banks of

filters will be provided, including a bank of endstopped profiles, sensitive to the length of
the oriented stimuli: in this case, the connectivity pattern obtained turns out to recover the
property of curvature selectivity observed in these neurons [82, 51]. We also examined the
case where the RPs of simple cells are represented by a bank of filters obtained through an
unsupervised regression algorithm, as in [117]: even starting from a non-structured bank of
numerically known filters, our construction leads to outcomes that are qualitatively consistent
with neurophysiological and psychophysical experimental data. Our results suggest that the
geometry of the horizontal connections in V1 can indeed be obtained from the RPs, regardless
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of their parameterization.

The promising outcomes obtained even in the case of a non-structured bank of learned
filters led us to the idea of applying our construction in the context of Convolutional Neural
Networks (CNNs) for image classification. Specifically, we propose to modify the otherwise
purely feedforward architecture of these algorithms by inserting biologically plausible lateral
connections inspired by our kernel-based approach.

CNNs [63, 96] are a class of deep learning algorithms designed for image processing,
inspired by Hubel and Wiesel’s hierarchical model of the visual system [82], where translation
invariance is enforced by means of local convolutional windows shifting over the spatial
domain. These algorithms generally have a feedforward structure, whose output is the result
of transforming the input through a cascade of subsequent operators, corresponding to the
network’s layers. For l ∈ {1, . . . ,L}, the activation hl of the l-th layer is typically obtained
from hl−1 through convolution with a bank of filters ψ l:

hl = sl(ψ
l ∗hl−1 + bl), (0.4)

where bl is a further additive term called bias, and sl is a nonlinear activation function applied
pointwise. The filters ψ l and the bias terms bl are unknown, and they are determined through
minimization of a loss function, expressing the distance between the generated output and its
value known a priori on the data.
Despite the strong analogy with the feature extraction performed in the human visual system,
there are significant differences in structure and functioning between CNN algorithms and
biological mechanisms of object processing. Critically, CNNs turn out to be very unstable
to local perturbations of contours [13], and their ability to recognize objects seems to rely
heavily on local features, rather than on global shapes [29]. This may be at least partly due to
their feedforward structure: in the human visual system, the global analysis of a visual scene
is made possible by mechanisms of contour integration and figure-ground segregation which
are probably anatomically implemented by intra-layer and feedback recurrent connections.
This observation inspired some recent works, where horizontal recurrent mechanisms are
inserted in CNN architectures and their effects on performance in pattern completion tasks
are examined [139, 101, 135]. In particular, in [101] lateral connections of convolutional
type are added to a standard CNN. In the resulting architecture, referred to as Recurrent CNN
(RecCNN in the following), the horizontal connections are defined by learned filters: as such,
they are determined by additional parameters that are independent of the feedforward filters,
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and no geometrical prior apart from the convolutional structure is inserted.

Our contribution consists in the introduction of another variant of the CNN architecture,
given by the inclusion of a biologically inspired geometrical constraint encoding a notion
of correlation between convolutional filters. In each convolutional layer l we learn a family
{ψ l

k(· − i, · − j)}(i, j,k)∈Gl
of filters, and we apply the metric model described previously. In

this way the set Gl of learned features is endowed with a metric space structure induced by the
filters, and we can apply the associated diffusion kernel defined in (0.8). Our main claim is
that the introduction of this prior allows the networks to spontaneously implement perceptual
mechanisms of global shape analysis and pattern completion. To this end, we compared
the proposed model with the corresponding pure CNN architecture on generalization tasks
involving images corrupted by a variety of degradation types. That is, we trained the
networks on a simple task of image classification, and analyzed their generalization ability by
presenting them with perturbed images in the testing phase. We emphasize that the models
were not shown any corrupted images during the training stage, therefore their classification
performance on these data only depends on the representations that they learn on unperturbed
data.

As a first exploratory test, we considered a standard CNN architecture and inserted an
implicit geometric prior by only adding to the loss function a regularization term, expressed
as a squared gradient in the metric space defined earlier. The loss function obtained in this
way, as sum of a gradient term and a similarity term, can be considered as a typical functional
of calculus of variations. This led to an improved generalization ability of the network for
images subject to perturbations not affecting their topology. Yet, it proved insufficient in
the case of images corrupted by occlusions. We then enhanced such model by introducing a
new architecture, which will be referred to as KerCNN: this is obtained from a base CNN
architecture by inserting lateral connections defined through an iterative procedure, where
the kernels Kl act as “transition kernels” onto the activations of the convolutional layers. The
update rule for the l-th layer is defined as follows:h1

l = sl(ψ
l ∗hTl−1

l−1 + bl)

ht
l =

1
2

(
Kl ∗ht−1

l + ht−1
l

)
for 1 < t ≤ Tl,

(0.5)

where ht
l represents the activation of the l-th layer at the step t of the iteration. The first

step in (0.10) implements the standard lifting operation of convolutional layers, as in (0.9).
In subsequent steps, this activation is then averaged with an updated version of it obtained
through convolution with the kernel Kl , until a stopping time t = Tl is reached. The proposed



8 Introduction

recursive formula is similar to the one presented in [101, 135], although carefully modified
to implement a biologically plausible propagation of neural activity. Most importantly, the
lateral kernels themselves are not learned, but rather they are constructed to allow diffusion
in the metric defined by the learned filters. In particular, they establish a link between the
geometrical properties of feedforward connections and horizontal connectivity, being defined
as a function of the convolutional filters. This also implies that such kernels do not depend on
any additional trainable parameters: therefore, their insertion does not increase the original
network’s complexity in terms of number of parameters, which allows a fair comparison in
performance.

We shall give a complete report of our results for the popular MNIST digit classification
dataset [97]. We will fix a base CNN with 2 convolutional layers, and define for each combi-
nation of stopping times (T1,T2) the corresponding KerCNN architecture. The classification
accuracies achieved by the resulting models on corrupted testing images are then systemat-
ically compared. From our analysis it emerges that the KerCNN models with appropriate
stopping times largely outperform the corresponding base CNN in classification accuracy
on images subject to a variety of degradations, while mantaining the same performance on
unperturbed images. We also compared the CNN and KerCNN models with the RecCNN
architecture obtained by adding recurrent connections to the base model as in [135] – where
the number of parameters of the networks is matched by decreasing the size of feedforward
filters, to compensate for the additional recurrent parameters: in particular, for each task we
inspected the performance of the best KerCNN and RecCNN architectures (i.e. the ones with
the optimal number of iterations), and our results show that our biologically inspired model
outruns the recurrent one in practically all experiments. We will conclude the chapter by
giving a synthetic account on the same study carried out on different datasets.

The thesis is organized as follows. The first chapter contains the necessary anatomical
and psychophysical background on the visual pathways, as well as a review of the state of
the art for what concerns the mathematical modeling of the functional architecture of the
visual cortex. In the second chapter, we present our connectivity model, corresponding to the
content of [109, 110]. Finally, the third chapter is devoted to its application to deep learning
models for pattern completion. We developed these topics in a third article [108].



Résumé

L’objectif de cette thèse est le développement d’un modèle pour la géométrie de la
connectivité du cortex visuel primaire (V1), au moyen d’instruments d’analyse fonctionnelle
dans les espaces métriques mésurés. La structure métrique proposée pour la description des
connexions horizontales de V1 implémente une notion de corrélation entre les neurones,
basé sur leur sélectivité à certains attributs : cela donne une configuration de connectivité
qui est directement induite par l’analyse locale effectuée par les cellules. Nous appliquons
ensuite ce modèle en ajoutant des connexions biologiquement inspirées dans des algorithmes
d’apprentissage profond, afin de renforcer leur robustesse aux dégradations (tels que des
occlusions) dans la classification d’images.
La principale nouveauté de cette approche est sa capacité à retrouver des propriétés globales
de l’architecture fonctionnelle de V1 sans imposer aucune paramétrisation ou invariance,
mais plutôt en exploitant l’information locale naturellement codifiée dans le comportement
de chaque neurone de V1 en présence d’un stimulus visuel.

V1 est la première aire corticale qui reçoit le signal visuel de la rétine. Elle est la plus
étudiée et la mieux comprise des aires visuelles du cerveau. La première célèbre description
de sa géométrie a été donnée par D. H. Hubel et T. N. Wiesel dans les années 1960 [82],
basée sur la découverte cruciale que les neurones corticaux ne sont pas seulement sensibles
à l’intensité du stimulus visuel, mais qu’ils montrent aussi une forte sélectivité à d’autres
caractéristiques, telles que l’orientation, l’échelle, la vitesse. Selon le modèle de Hubel
et Wiesel, chaque entour sur la rétine est associée à tout un ensemble de cellules de V1,
sensibles à toutes les valeurs de ces variables, qui sont “greffées” sur la carte positionelle
avec une subdivision plus fine [81] : cela signifie que la position est échantillonnée sur le
cortex avec une résolution plus grossière par rapport à elles, de sorte qu’à chaque endroit
discret toutes les valeurs possibles des variables greffées soient représentées. Par exemple,
si nous dénotons (x,y) les cordonnées spatiales, la disposition de la variable d’orientation
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préférentielle par rapport à elles peut être décrite par une carte d’orientation

Θ : R2 → S1. (0.6)

Typiquement, ces cartes topographiques contiennent des régions régulières ainsi que des
points singuliers, appelés pinwheels (roues d’orientation), autour desquelles toutes les valeurs
de θ sont disposées comme les rayons d’une roue.

La première analyse d’un stimulus visuel en V1 est effectuée par une classe de cellules
appelés neurones simples, qui agissent d’une façon très compliquée par rapport à l’image
rétinienne. En utilisant un modèle simplifié, une image peut être représenté par une fonction
I(x,y) définie sur le plan rétinien, et l’action d’un neurone simple en présence de I peut être
modélisée comme un opérateur intégral linéaire. Son noyau associé sera dénoté avec ψ(x,y)
et appelé le profil récepteur (receptive profile, RP) de la cellule. Le RP d’un neurone simple
de V1 est typiquement très concentré, c’est à dire il est supporté dans un domaine localisé
de la rétine, également appelé le champ récepteur (receptive field, RF) du neurone. Puisque
le comportement de ces neurones se caracterise essentiellement par l’opération de filtrage
linéaire effectuée par leurs RPs, l’ensemble des neurones simples est classiquement identifié
avec un banc {ψp}p∈G ⊆ L2(R2) de filtres linéaires, où G est un ensemble paramétrant la
famille. Pour chaque p dans G le filtre ψp agit sur une image I comme suit :

Oψp(I) :=
∫
R2

ψp(x,y)I(x,y)dxdy.

Donc l’action du banc de filtres sur I produit une fonction G ∋ p 7−→ Oψp(I) définie sur G :
nous dirons que la famille {ψp}p relève l’image I à G . Dans ce qui suit, nous appelerons
G l’espace des “traits” (features) associé au banc de filtres : intuitivement, chaque élément
p ∈ G code les caractéristiques extraites par le filtre correspondant ψp quand il est appliqué
à une image. Dans nombreux modèles classiques, l’espace des features est défini comme
un espace produit G = R2 ×F : les cordonnées (x,y) ∈ R2 désignent le centre du disque le
plus petit qui contient son RF localisé (c’est à dire le point de la rétine sur lequel le profil
est centré), ce qui représente la variable de position ; le troisième indice Φ ∈ F paramètre
les autres attributs extraits par les filtres. Cela traduit dans un contexte continu l’idée des
variables greffées : à chaque point (x,y), toutes les valeurs de Φ sont représentées.

Un modèle bien établi des RPs des neurones simples de V1 est donné par un ensemble de
filtres de Gabor [84, 48, 99] : un tel banc de filtres {ψx,y,θ}x,y,θ est obtenu par translations de
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(x,y) ∈ R2 et rotations de θ ∈ S1 d’une fonction mère

ψ(u,v) = exp
(

2πiu
λ

)
exp
(
− u2 + v2

2σ2

)
.

Ainsi, l’espace de features G correspondant est le groupe SE(2) =R2×S1 des déplacements
du plan Euclidien, représentant la position rétinienne (x,y) et l’orientation θ . Notez que
cette représentation produit ne contient pas d’informations sur l’organisation topographique
de la variable θ sur la carte positionelle. Il est possible d’insérer cette contrainte en con-
siderant une carte d’orientation Θ comme décrit par (0.6) : cela définit une sous-famille
{ψx,y,Θ(x,y)}(x,y)∈R2 du banc de filtres ci-dessus, avec un espace de features bidimensionel
plus réaliste.

On sait que l’activité neuronale se propage le long de V1 par des connexions intracorti-
cales, souvent appelées horizontales (ou latérales) au sens où elles relient des cellules qui
appartiennent au même niveau de la hiérarchie des zones visuelles. Elles ont été étudiées
au moyen de nombreuses expériences [72, 125, 27], et il a été constaté qu’elles relient
des neurones qui peuvent être très éloignés dans la carte positionelle, mais sensibles à des
orientations similaires. L’étendue spatiale et la forte spécificité de ces connexions à l’égard
de l’orientation ont conduit à proposer que les connexions latérales soient une contrepartie
neurophysiologique de mécanismes perceptifs liés à l’intégration des données locales pour
former des contours. Ceux-ci ont été décrits par le concept Gestaltiste de bonne continu-
ation et étudiés dans différentes expériences psychophysiques [83, 69, 61]. Les résultats
des expériences comportementales réalisées par [61] sont résumés dans la notion de champ
d’association, qui décrit la force de l’influence réciproque entre la perception de deux élé-
ments orientés locaux en fonction de leurs position et orientation relatives. Notamment, il
est expérimentalement connu qu’il y a une relation entre l’ensemble des profils (sensibles à
l’orientation et à la position) et la structure de la connectivité qui les relie.

Au cours des vingt dernières années, de nombreux modèles qui caractérisent l’architecture
fonctionnelle de V1 à travers des structures différentielles ont été proposés : voir [89, 79,
121, 154, 41, 131, 1] ; nous faisons aussi référence à [39] pour un aperçu complet. L’idée
principale, anticipée par J. Koenderink [89] et W. Hoffman [79] et développée par J. Petitot
et Y. Tondut [121], est de représenter V1 comme un espace fibré ayant comme base l’espace
des positions et dont la fibre contient les variables greffées. Cet espace est typiquement
doté d’une structure de groupe de Lie, souvent associée à un banc de filtres paramétré. Par
exemple, l’espace SE(2) associé à une famille de filtres de Gabor a été adopté dans [41], où
les auteurs y définissent une structure sous-Riemannienne invariante par rapport à la loi de
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groupe. Ils décrivent la propagation de l’activité neuronale sur V1 au moyen d’une diffusion
le long des courbes intégrales de cette structure. Cette idée peut en principe être reproduite
dans la mesure où le banc de filtres modélisant les RPs peut être paramétré par un groupe.
Pourtant, cette condition n’est pas satisfaite par des modèles computationnels où les filtres
peuvent être obtenus par exemple à travers des procédures d’apprentissage automatique
[117, 8]. Il est néanmoins essentiel pour un modèle de cortex de décrire l’ensemble des RPs
et l’architecture fonctionnelle gouvernant la géométrie des connexions horizontales avec des
instruments étroitement liés.

Dans le présent travail, nous montrons que de telles propriétés peuvent être en effet
modélisées par une notion de corrélation entre les RPs des neurones simples, avec ou sans la
présence d’une structure de groupe. Plus spécifiquement, nous proposons un modèle de V1
comme espace métrique, dont la structure est induite directement par les conformations de
tels profils. V1 est toujours représenté par l’espace de features G associé à un banc de filtres
{ψp}p∈G , et la distance entre deux points p0, p ∈ G est définie par

d(p, p0) := ∥ψp −ψp0∥L2(R2). (0.7)

En conséquence, non seulement les filtres fournissent un ensemble de paramètres sur lequel
on peut définir une structure géométrique, mais également ils contribuent à la caractérisation
d’une telle structure. Nous soulignons que cette construction ne nécessite aucune invariance
ou loi de groupe sur l’ensemble G : par exemple, notez que l’espace métrique serait encore
bien défini même en partant d’un ensemble de filtres connus numériquement et paramétrés
par une liste d’indices. La distance d est naturellement associée à un noyau

K(p, p0) := Re⟨ψp,ψp0⟩L2(R2) =

(∫
R2

ψp(x,y)ψp0(x,y)dx dy
)
. (0.8)

En effet, la distance au carré peut être écrite comme

d2(p, p0) = K(p, p)+K(p0, p0)−2K(p, p0).

K exprime une notion de corrélation entre les filtres par rapport à la métrique. Cela est
simple à voir si ∥ψp∥2 = t pour chaque p : dans ce cas, le noyau est obtenu comme

K(p, p0) = t − d2(p,p0)
2 et sa valeur pour un couple de points augmente lorsqu’ils se rap-

prochent par rapport à la distance.
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Afin de décrire la propagation à longue portée de l’activité neuronale sur V1, nous
proposons d’adapter à notre contexte l’approche basée sur la diffusion utilisée dans les
modèles différentiels. Nous commençons par équiper cet espace métrique avec la mesure de
Hausdorff sphérique µ associée à la distance d, définant ainsi l’espace métrique de mesure
(G ,d,µ). Nous adoptons ensuite l’approche classique de K.-T. Sturm [137], qui fournit
une méthode générale pour construire un processus de diffusion sur un espace métrique de
mesure (X ,d,µ). Cette technique consiste à définir une forme de Dirichlet sur L2(X ,µ)

dont l’opérateur autoadjoint positif associé admet un noyau de la chaleur ht , pour lequel on
a des estimations Gaussiennes par rapport à la distance d – à condition qu’une propriété
appelée Measure Contraction Property (MCP, voir Definition 2.18 à page 43) soit satisfaite
sur l’espace. De manière à produire un algorithme explicite pour calculer la configuration
de connectivité associé à un banc de filtres général (pas forcément connu analytiquement),
nous proposons d’approximer la propagation le long de la connectivité horizontale par une
procédure itérative basée sur l’estimation du noyau de la chaleur ht en fonction du noyau
(0.8). Plus précisement, nous commençons par considérer le noyau local suivant autour d’un
point de départ p0 :

K p0
1 (p) := N [ν (K)] (p, p0),

où N est un opérateur de normalisation et ν est une fonction d’activation non linéaire. Nous
construisons ensuite un noyau plus large au moyen d’un mécanisme d’intégrations répétées,
comme suit :

K p0
n :=

∫
N [ν (K)] (p,q) · K p0

n−1(q)dµ(q).

Nous allons présenter une analyse complète de nos résultats pour l’example d’un espace
de features déterminé par une famille de filtres de Gabor. Cela est un cas qui mérite d’être
examiné pour deux raisons. En premier lieu, il est pratique pour ce qui concerne l’intuition et
la “tractabilité” mathématique, puisque les invariances de l’espace de features dans ce cadre
permettent d’effectuer des calculs explicites. Ensuite, il relie le présent modèle métrique
à l’approche différentielle : en effet, la fonction distance obtenue dans ce cas se révèle
être localement équivalente à une distance Riemannienne, qui approxime la structure sous-
Riemannienne définie sur R2×S1 dans [41]. Dans ce cas, nous allons montrer des simulations
numériques comparant les propagations obtenues respectivement par une équation de la
chaleur discretisée associée à la structure Riemannienne, et par intégration répétée du noyau
comme indiqué précédemment.

Un autre exemple significatif est donné par le cas d’une surface Σ ⊆ R2 ×S1, obtenue
comme espace de features défini par une sous-famille de filtres de Gabor, dans le cas limite où
la métrique extérieure sur R2×S1 devient sous-Riemannienne. Ce cas fournit une motivation
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du choix d’un contexte général tel que celui des espace métriques de mesure : en effet, la
distance induite sur Σ comme sous-espace métrique de R2 × S1 ne peut pas être obtenue
comme métrique intrinsèque associée aux courbes horizontales sur la surface. Nous allons
prouver que l’espace métrique de mesure résultant satisfait la MCP : cela permet de décrire
la connectivité horizontale associée par exemple à une surface

Σ = {θ = Θ(x,y)} ⊆ R2 ×S1

définie par une carte d’orientation Θ comme celle décrite par (0.6).
Nous allons ainsi montrer d’autres simulations numériques pour les espaces de features

associés à différentes familles de filtres, y compris un banc de profils endstopped, c’est à dire
sensibles à la longueur des stimuli orientés : dans ce cas, la configuration de connectivité
obtenue se révèle capable de retrouver la propriété de sélectivité à la courbure observée sur
ces neurones [82, 51]. Nous examinons également le cas où les RPs des neurones simples
sont représentés par un banc de filtres obtenus par un algorithme de régression non super-
visé, comme dans [117] : même en partant d’une famille non structurée de filtres connus
numériquement, notre construction produit des résultats qui sont qualitativement compatibles
avec les données expérimentales neurophysiologiques and psychophysiques. Nos résultats
suggèrent que la géométrie des connexions horizontales de V1 peut effectivement être obtenue
à partir des RPs, quelle que soit leur paramétrisation.

Les résultats encourageants obtenus même dans le cas d’un banc de filtres appris ont
conduit à l’idée d’appliquer notre construction dans le contexte des réseaux de neurones con-
volutifs (CNNs, de l’anglais Convolutional Neural Networks) pour la classification d’images.
Plus spécifiquement, nous proposons de modifier l’architecture purement hiérarchique de ces
algorithmes, en introduisant des connexions latérales biologiquement plausibles, inspirées
par notre approche par noyau.

Les CNNs [63, 96] sont une classe d’algorithmes d’apprentissage profond pour le traite-
ment d’images, inspirés par le modèle hiérarchique du système visuel de Hubel et Wiesel
[82], où l’invariance par translation est imposée par des fênetres de convolution glissantes sur
le domaine spatiale. Ces modèles ont généralement une structure de réseau à propagation
avant (feedforward), dont la sortie résulte de la transformation du signal d’entrée par une
cascade d’opérateurs, correspondants aux couches du réseau. Pour l ∈ {1, . . . ,L}, l’activation
hl de la couche l-ième est typiquement obtenue à partir de hl−1 par la convolution avec un
banc de filtres ψ l :

hl = sl(ψ
l ∗hl−1 + bl), (0.9)
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où bl est un terme additif appelé biais, et sl est une fonction d’activation non linéaire, ap-
pliquée ponctuellement. Les filtres ψ l et les biais bl ne sont pas connus, et ils sont déterminés
par la minimisation d’une fonction de loss qui exprime la distance entre l’input généré et sa
valeur connue a priori sur les données.
Malgré la forte similitude avec l’extraction de caractéristiques effectuée dans le système
visuel humain, il y a des différences significatives de structure et de fonctionnement entre
les CNNs et les mécanismes biologiques de traitement d’objets. Notamment, les CNNs
se révèlent très peu stables aux perturbations locales des contours [13], et leur capacité à
reconnaitre les objets semble faire largement appel aux caractéristiques locales, plutôt qu’aux
formes globales [29]. Cela peut être au moins partiellement dû à leur structure feedfor-
ward : dans le système visuel humain, l’analyse globale d’une scène visuelle est rendue
possible grâce à des mécanismes d’intégration de contours et de ségrégation figure-fond,
qui sont censés être anatomiquement implémentés par de connexions intracorticales et en
feedback. Cette observation a inspiré de récents travaux, où des mécanismes récurrents
horizontales ont été inserés dans l’architecture des CNNs, et leurs effets sur la performance
des réseaux en présence d’images corrompues ont été examinés [139, 101, 135]. Notamment,
dans [101], des connexions latérales de type convolutif sont ajoutées à un CNN de base.
Dans l’architecture résultante, appelé CNN récurrent (RecCNN ci-après), les connexions
horizontales sont définies par des filtres appris : par conséquent, elles sont déterminées par
des paramètres supplémentaires qui sont indépendants des filtres feedforward, et aucune
information géométrique n’est insérée au-delà de la structure convolutive.

Notre contribution consiste à introduire une autre variante d’un CNN, donnée par
l’inclusion d’une contrainte biologiquement plausible qui code une notion de corrélation entre
les filtres convolutifs. Dans chaque couche convolutive l une famille {ψ l

k(· − i, · − j)}(i, j,k)∈Gl

de filtres est apprise, et nous appliquons le modèle métrique décrit précédemment. De cette
manière, l’ensemble Gl des features est doté d’une structure d’espace métrique induite par
les filtres, et nous pouvons appliquer le noyau de diffusion défini par (0.8). Notre hypothèse
est que l’introduction de cet élement permette d’implémenter spontanément des mécanismes
perceptifs d’analyse globale des formes et de complètion de contours (contour completion).
À cette fin, nous avons comparé le modèle proposé avec l’architecture purement convolutive
correspondante, sur des tâches de généralisation impliquant des images perturbés par une
varieté de types de dégradation. C’est à dire, les réseaux ont été entraînés sur une simple
tâche de classification d’images, et nous avons analysé leur capacité de généralisation en
les évaluant sur des images perturbées en phase de test. Nous soulignons qu’aucune image
corrompue n’a été montrée aux modèles lors de la phase d’entraînement, donc leur perfor-
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mance de classification ne dépend que des représentations qu’ils ont appris sur les données
non perturbées.

Dans un premier temps, nous avons considéré une architecture convolutive standard
et inséré une contrainte géométrique uniquement par l’ajout dans la fonction de loss d’un
terme de régularisation exprimé comme un gradient au carré dans l’espace métrique défini
précédemment. La fonction de loss obtenue, somme d’un terme de gradient et d’un terme
de similarité, peut être considérée comme un fonctionnel typique du calcul des variations.
Cela a conduit à une meilleure capacité de généralisation du réseau pour images avec des
perturbations qui ne changeaient pas leur topologie. Pourtant, il s’est avéré insuffisant
dans le cas d’images corrompues par occlusions. Nous avons alors renforcé tel modèle en
introduisant une nouvelle architecture, ci-après appelée KerCNN : elle est obtenue à partir
d’un CNN de base en insérant des connexions latérales définies par une procédure itérative,
où les noyaux agissent comme des “noyaux de transition” sur les activations des couches
convolutives. La règle de mise à jour pour la l-ième couche est définie comme suit :h1

l = sl(ψ
l ∗hTl−1

l−1 + bl)

ht
l =

1
2

(
Kl ∗ht−1

l + ht−1
l

)
pour 1 < t ≤ Tl,

(0.10)

où ht
l représente l’activation de la l-ième couche au pas t de l’itération. Le premier pas dans

(0.10) implémente l’opération standard de relèvement des couches convolutives, comme
présenté dans (0.9). Aux pas suivants, cette activation est moyennée avec sa version “actual-
isée” obtenue par convolution avec le noyau Kl , jusqu’à un temps d’arrêt t = Tl . La formule
récurrente proposée est proche à celle présentée dans [101, 135], mais modifiée attentivement
pour implémenter une propagation de l’activité neuronale qui soit biologiquement plausible.
Notamment, les noyaux latéraux eux-mêmes ne sont pas appris, mais il sont conçus pour
générer une diffusion dans la métrique définie par les filtres appris. Notamment, ils établis-
sent un lien entre les propriétés géométriques des connexions feedforward et horizontales,
puisqu’ils sont définis comme fonction des filtres convolutifs. Cela implique également
que de tels noyaux ne dépendent d’aucun paramètre supplémentaire, ce qui permet une
comparaison équitable en termes de performance.

Nous fournissons un rapport complet de nos résultats sur MNIST [97], une base de
données très célèbre pour la classification de chiffres manuscrits. Nous allons fixer un CNN
de base avec 2 couches convolutives, et définir pour chaque combinaison de temps d’arrêt
(T1,T2) le KerCNN correspondant. Les taux de bon classement atteints par les réseaux résul-
tants sur les images de test corrompues sont ensuite systématiquement comparés. D’après
notre analyse, il apparaît que les KerCNNs avec des temps d’arrêt appropriés surpassent
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largement le CNN correspondant dans la classification d’images avec une varieté de dégrada-
tions, tout en gardant la même performance sur les images non perturbées. Nous avons aussi
comparé nos KerCNNs avec les RecCNN obtenus per l’ajout de connexions récurrentes au
modèle de base, comme dans [135] – où le nombre de paramètres des réseaux est ajusté en
réduisant la taille des filtres feedforward, pour compenser l’ajout des paramètres récurrents.
Notamment, pour chaque tâche nous avons examiné la performance des meilleurs KerCNN et
RecCNN (c’est à dire ceux avec le nombre optimal d’itérations), et les résultats montrent que
notre réseau inspiré biologiquement dépasse le modèle récurrent dans pratiquement toutes
les expériences. Nous concluons le chapitre en donnant un rapport de synthèse sur la même
étude effectuée sur différentes bases de données.

La thèse est organisée comme suit. Le premier chapitre contient le contexte anatomique
et psychophysique nécessaire sur les voies visuelles, ainsi qu’une revue sur l’état de l’art pour
ce qui concerne la modélisation mathématique de l’architecture fonctionnelle du cortex visuel.
Dans le deuxième chapitre, nous presentons notre modèle de connectivité, correspondant
au contenu des travaux [109, 110]. Pour terminer, le troisième chapitre est consacré à
l’application de ce modèle à des algorithmes d’apprentissage profond pour l’analyse globale
de formes. Nous avons développé ce sujet dans un troisième papier [108].





Chapter 1

Neurophysiology and psychophysics of
vision

1.1 The early visual pathways

We start by giving some background on the main structures composing the early visual
pathways, with a particular focus on the primary visual cortex.
The visual signal is first mapped onto the retina, from which it is conveyed through the optic

Figure 1.1 Structure of the visual pathways. Source: [120].

nerve to the lateral geniculate nucleus (LGN). This structure is the main central conjunction
to the occipital lobe, in particular to the primary visual cortex (V1). From V1, different
specialized parallel pathways depart, leading to higher cortical areas performing further
processing. See Figure 1.1 for a schematic depiction.
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1.1.1 Receptive fields and receptive profiles

Figure 1.2 A schematic depiction of the concept of receptive field of a neuron.

Through the above-mentioned connections, each cell is linked to a specific domain D
of the retina which is referred to as its receptive field (RF), as schematically depicted in
Figure 1.2. A retinal cell in the RF of the neuron can react in an excitatory or in an inhibitory
way to a luminous stimulation, with different modulation: this can be described through a
function ψ : D → R, called the receptive profile (RP) of the cell, which measures its reaction
to punctual stimuli located at every point (x,y) ∈ D. Positive values of ψ correspond to
excitatory responses, and negative values correspond to inhibitory ones, while the absolute
value of ψ represents their intensity. Neurons in the early visual pathways typically have very
localized RFs, and their RPs are generally modeled as compactly supported or exponentially
decaying functions.
Throughout the text, we will typically consider a visual stimulus to be an L2 function defined
onto the retina R ⊆ R2. In most cases these functions will be real-valued, meaning that we
refer to grayscale stimuli – otherwise they may take values in R3, encoding the three RGB
channels. However, it is perhaps more natural [120] to treat the signal (which may be a very
noisy function) as a Schwartz distribution, i.e. a continuous linear functional onto a space of
test functions. Note that this allows to include the description of a punctual stimulus located
at a retinal point (x0,y0) ∈ R as the Dirac delta δ(x0,y0).

The response of certain types of visual neurons to an optic signal has been shown to be
approximately linear with respect to the retinal image. In other words, a simplified model
for the behavior of such a cell can be written through a linear operator Oψ defined in terms
of the profile ψ of the cell:

Oψ(I) :=
∫

D
I(x,y)ψ(x,y)dxdy. (1.1)
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This means that the RPs of these neurons not only provide information about the impulse
response of the cell, but they also allow to model its reaction to a general (non-punctual)
visual stimulus I ∈ L2(R). More generally, the integral in Eq. (1.1) can be seen in the sense
of distributions as the representation ⟨I|ψ⟩. Note that, in the case of a punctual stimulus
I = δ(x0,y0), this gives ψ(x0,y0) as a result.

Figure 1.3 The receptive profile of an ON-center LGN cell. On the left, a schematic representation of
the ON and OFF domains; in the middle,a visualization of the level sets of the RP. On the right, the

“Laplacian of Gaussian” model for LGN RPs. Source: [120].

A first example of this linear behavior is given by the neurons of the LGN. It is a classic
result of neurophysiology that the RPs of such neurons are best modeled as Laplacians of
Gaussians. See for instance Figure 1.3, showing the RP of an “ON-center” LGN cell, i.e.
one responding positively to punctual stimuli located in the central region of its RF, and
negatively to those outside this region.

1.1.2 The primary visual cortex (V1)

Main types of neurons

As for V1, two main classes of cells can be observed in this area. These neurons are
referred to as simple and complex cells, and they were first discovered by D. H. Hubel and T.
N. Wiesel in the ’60s [82]. While simple cells still exhibit an approximately linear behavior
w.r.t. the retinal image, the response of complex cells cannot be represented through a linear
operation.
Simple cells are the first neurons in the visual pathways showing orientation selectivity,

given by a strongly anisotropic RP, as shown in Figure 1.4: this means that they respond
strongly only to stimuli containing edges or contours aligned with the orientation of their
elongated RP. These cells receive most of the outgoing projections from the LGN: it is
presumed that each simple receptive field arises from multiple isotropic LGN receptive fields
converging in a line [81, 144], as schematically depicted in Figure 1.5. The set of RPs of
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Figure 1.4 (a) Left: an example of experimentally measured odd RPs of simple cells in cat V1. Right:
the best-fitting 2D Gabor function for the cell’s RP. (b) The same as (a) for an even RP. Both examples
are taken from [48]. (c) A quadrature pair of Gabor RPs, given by the real (left) and imaginary (right)
parts of a complex Gabor function. Source: [120].

Figure 1.5 Orientation selective V1 RPs can be obtained by summing the responses of LGN non-
oriented cells. Source: [144].

V1 simple cells has classically been modeled [84, 48, 99] through a bank of Gabor filters
{ψx,y,θ}x,y,θ . These are obtained from a mother filter

ψ0,0,0(u,v) = exp
(

2πiu
λ

)
exp
(
− u2 + v2

2σ2

)
, (1.2)

by translations T(x,y) of (x,y) ∈ R2 and rotations Rθ of θ ∈ S1:

ψx,y,θ (u,v) = ψ0,0,0

(
T−1
(x,y)R

−1
θ
(u,v)

)
. (1.3)

The standard deviation σ of the Gaussian function represents the scale of the profiles: the
smaller the value of σ , the more concentrated the corresponding profile.

Note that these are complex-valued functions: each filter ψx,y,θ actually represents two
RPs, given by its real and imaginary parts, sharing the same orientation but shifted by 90◦ in
phase. These are referred to as a quadrature pair of cells. Real and imaginary parts of Gabor
filters represent so-called even and odd cells respectively (see Figure 1.4b).
The family is indexed by R2 × S1: (x,y) ∈ R2 encodes the position at which the filter is
centered and θ ∈ S1 expresses its preferred orientation. Here we take the scale σ to be fixed,
but that may be let vary as well, yielding a multiscale feature extraction.
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Indeed, the shape of the RPs of these neurons contains information about the features that

Figure 1.6 Development of phase-invariance through the energy model of a V1 complex cell.

they extract as linear filters on the visual signal. For instance, a profile ψ with a local support
is sensitive to position, in the sense that the neuron only responds to stimuli in a localized
region of the image. Or again, a profile with an elongated shape will be sensitive to a certain
orientation. If we denote the whole set of RPs of simple cells by {ψp}p∈G , where G is a set
of indices, we may intuitively regard each p ∈ G as the instance of such features to which ψp

responds the most. In these terms, we shall refer to G as the feature space associated to the
bank of filters {ψp}p. According to this framework, in the classical model of Gabor filters
the feature space is G = R2 ×S1.

The information extracted by simple cells is believed to determine the behavior of com-
plex cells, which perform a second order analysis: in particular, according to the energy
model [105], the response of each complex cell is modeled as the square sum of a quadrature
pair of simple cells (see Figure 1.6). This leads to the phase invariance of these neurons,
whose behavior cannot be described through linear filtering.

A further cell type was found within V1 in Hubel and Wiesel’s studies: the neurons
belonging to this third class were first referred to as hypercomplex and defined to be all those
cells showing a more “intricate” behavior than simple and complex cells [82]. Hypercomplex
cells displayed orientation selectivity, but confined to stimuli of a limited size: this property
is referred to as end-stopping. However, this attribute was observed shortly thereafter in
simple and complex neurons [70], which contradicted the existence of an independent class
of hypercomplex cells. The notions end-stopped simple and end-stopped complex cells were
then accepted in place of the preceding characterization of end-stopping as exclusive to a
separate class.
The RPs of endstopped cells are characterized by antagonistic “end zones” suppressing the
response to stimuli longer than the central excitatory area. There also exist endstopped
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profiles which are only stopped at one end: only a stimulus that extends too far in one specific
direction will stimulate the inhibitory region and reduce the strength of the neuron’s response.
Endstopped cells have also been shown [82] to react to curved stimuli; a mathematical
description of the relation between endstopping and curvature has been developed in [51].

Retinotopy

The projection of a visual signal from the retina to the visual cortices is performed in a
“continuous” fashion, so that adjacent spots on the retina are coded by adjacent neurons in
these areas: this phenomenon is referred to as retinotopy, and it is one of the topographic
maps observed in the visual areas. The deformation that a signal on the retina undergoes
when it is represented on the cortex is referred to as the retino-cortical mapping, and it is
shown to be well approximated, close to the center of the field of view, by the complex
logarithmic function

ℓa,k(z) = k · log(z+a).

The role of parameters a and k, changing in different animals, is to specify the fit [119].
Figure 1.7 displays a comparison between an experimental measurement of the mapping and

Figure 1.7 (a) From [141]: the visual stimulus used to estimate the retino-cortical mapping (on the
left) and the flattened visual cortex of a macaque with the corresponding activated regions (on the
right). (b) The conformal mapping of the unit half disk by log(z+0.1) [119]. The vertical meridian
of the disk is mapped to the curved boundary on the left in the range of the map.

its approximation through ℓa,k.

Hypercolumnar structure

It has been shown, through recording of the responses to certain stimuli (e.g. oriented
bars passing through the RF), that the preferred orientation of V1 neurons is roughly constant
moving perpendicularly to the cortical surface [82]. These groups of neurons with similar
orientation selectivity are called orientation columns. On the other hand, the preferred
orientation varies gradually in the directions parallel to the surface, so that different columns
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Figure 1.8 (a) The classical “ice cube” model of V1. (b) Orientation displayed as a separate variable
over the retinal coordinates at each point.

are sensitive to different orientations. V1 neurons are also organized into alternating ocular
dominance columns, containing cells that are responsive only to input from the left or right
eye, see Figure 1.8a. According to the classical “ice cube” model [82], these groupings form
computational units called hypercolumns, each containing cells sensitive to approximately
the same retinal position but spanning all orientations, thus monitoring information from one
point in the visual field.

Orientation maps

The arrangement of orientation preference of V1 neurons is described by orientation
maps, providing another example of the topographic organization of the cortex besides
retinotopy. These maps can be measured through in-vivo optical imaging techniques [25, 27]
based on the acquisition of activity of cells from the superficial layers of V1 in presence of
visual stimuli consisting of oriented gratings. For each orientation value, the corresponding

Figure 1.9 (A) Difference images obtained for stimulus angles θ = 0◦,45◦,90◦,135◦. Dark areas were
preferentially activated by a stimulus with orientation θ ; light areas were active during presentation
of the orthogonal angle. (B) The orientation map Θ(x,y) obtained by vector summation of data
obtained for each angle. The orientation preference measured at each location (x,y) is color-coded
according to the key shown below. (C) Enlarged portions of the map show linear two zones (left) and
two pinwheel arrangements (right). Source: [27].
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activity pattern is subtracted from the pattern acquired during presentation of the orthogonally
oriented grating; these individual difference images, after undergoing some smoothing and a
normalization, are then combined by vector summation to create an orientation preference
map, where the orientation θ is given as a function of position. Figure 1.9 shows four
difference maps (A) and the corresponding color-coded orientation map (B) in tree shew V1
[27]. These maps typically contain regions where the orientation value changes linearly, as
well as singular points around which all values of θ are arranged as the spokes of a wheel:
the latter are commonly referred to as pinwheels.
Each pinwheel arrangement corresponds to a hypercolumn of orientation. Position is sampled
onto the cortex at a coarser resolution with respect to orientation, so that at each discrete
spatial location all orientations are coded. In other words, orientation is “engrafted” onto the
positional map with a finer subdivision [81].

1.1.3 Beyond a hierarchical organization

According to the classical feedforward model of the visual system, the processing of a
visual stimulus involves the transfer of the signal through a hierarchy of sub-cortical and
cortical areas performing a cascade of processing stages which code for increasingly complex
features, as mentioned at the beginning of this chapter. However, neural responses do not only
result from an ordered sequence of hierarchical computations, but rather they are modulated
by both horizontal (intra-area) connections and feedback signals from higher areas. This
allows to integrate the information to perform complicated perceptual tasks such as grouping,
contour integration, figure-ground segregation. Indeed, a global analysis is necessary in order
to correctly recognize objects and interpret a visual scene: single receptive profiles alone
cannot account for such non-local features [76, 115, 6, 71, 121]. In the following, we will
focus on the geometrical properties of the horizontal connectivity of V1.

The intra-cortical circuitry of V1 can be described in terms of two main mechanisms: a
inhibitory short-range connectivity taking place within each hypercolumn, and a long-range
horizontal (or lateral) connectivity, linking neurons belonging to different hypercolumns.
The former essentially selects the orientation of maximum output in response to a visual
stimulus and suppresses the others: this mechanism explains the sharp orientation tuning
experimentally observed in most simple cells, and it is commonly referred to as non-maxima
suppression. As for horizontal connections, these exhibit some precise geometrical properties
that have been investigated in several neurophysiological experiments [72, 125, 27]. In [27],
small biocytin injections in a site of tree shew V1 were made, and the resulting distribution
of boutons was tracked: this allowed to analyze the geometry of the connections departing
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Figure 1.10 Bouton distributions resulting from a biocytin injection, shown over the orientation
preference map. Image modified from [27].

from the localized set of neurons who took up the biocytin. This study highlighted the wide
range of these connections, linking neurons even with markedly separated RFs, as well as
their orientation specificity: neural activity turned out to spread around each neuron along
the axis of its preferred orientation, targeting other cells sensitive to similar orientations. This
last property leads to a patchy configuration, with terminations concentrating selectively in
the regions of the orientation preference maps corresponding to the angle of the starting cell.
See Figure 1.10, from [27].

1.2 Perceptual phenomena

1.2.1 Gestalt theory

The processing mechanism taking place throughout the visual pathways allows to ef-
ficiently group local elements into complete objects, and to segregate a figure from its
background. The first systematic studies of the principles ruling perceptual organization were
carried out in the 1920s by German psychologists Max Wertheimer, Wolfgang Köhler and
Kurt Koffka, who founded the school of thought known as Gestalt psychology. The German
word “Gestalt” can be translated as “organized whole”, and it refers to the general concept
that parts identified individually are not sufficient to describe the whole, which has a reality
of its own. In other terms, when observing an object we are not directly conscious of its parts
even if they can be clearly seen, yet we are aware of the overall scene. Classical references
for these topics are [90, 91, 147]. We also refer to [143] for a recent review.

The purpose of Gestalt theorists was to understand the laws behind the ability of our
mind to build meaningful perceptions out of a disorganized reality. This requires a form of
self-organization which allows to combine smaller elements to form larger objects, according
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to certain rules: the Gestalt approach is based on the development of a set of principles
known as laws of perceptual organization, in an attempt to systematize these innate mental
rules. The first Gestalt studies focused on grouping, while further research also approached
the problem of perceptual organization in terms of figure-ground segregation. Well-known
Gestalt principles related to grouping are those of good continuation (aligned elements are
perceived as a group) and proximity (elements that are close to each other and apart enough
from the rest of the objects form a cluster). On the other hand, an example of principle linked
to figure-ground segregation is convexity, stating that convex rather than concave patterns
tend to be perceived as figures.

1.2.2 Association fields

The Gestalt law of good continuation has been investigated quantitatively in a variety of
studies [83, 69, 61]. In [61], psychophysical experiments were carried out to determine these
rules in terms of reciprocal position and orientation of local edge elements. Observers were

Figure 1.11 (a) Path segregation. (b) A schematic representation of the notion of association field.
Images taken from [61].

tested in their ability to identify a set of oriented local elements (Gabor patches) forming a
path, among other items not organized in any recognizable pattern (see Figure 1.11a), with
different conditions of spacing and alignment of the elements. The results of the study are
synthesized in the schematic concept of association field [61], displayed in Figure 1.11b:
this object characterizes the geometry of the mutual influences between local edge elements
depending on their orientation and reciprocal position. In other words, the perception of an
edge element is strengthened by the presence of surrounding segments with certain relative
positions and orientations with respect to it. In particular, the strongest correlation takes
place between those segments that are either collinear or co-circular: in Figure 1.11b, filled
lines indicate the correlation between the central horizontal element and the ones on its left,
while dotted lines connect it with elements uncorrelated with it, such as the ones on its right.
The psychophysical analysis performed in [61] revealed that association fields and horizontal
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connections display a comparable spatial extent: this fact, together with their shared orienta-
tion specificity, makes the lateral connectivity a potential anatomical implementation of this
perceptual phenomenon [71, 121].

Figure 1.12 The connectivity pattern found in the model of [152] includes both co-axial and trans-axial
contributions. The length of the lines indicates connection strength.

The “classical” association field focuses on the reciprocal influences between co-axial
oriented elements. However, an analogous correlation has also been observed between
parallel segments arranged along the trans-axial direction, i. e. the one orthogonal to the
central oriented element: this phenomenon is referred to as ladder effect [106, 61, 152]; see
Figure 1.12.

1.3 Mathematical models of V1

In this section, we give an overview on some previous mathematical models describing
the connectivity of the visual cortex and the laws of perceptual organization. We then briefly
outline the model constructed by G. Citti and A. Sarti [41] in R2 ×S1, which we will later
recover as a limit case of our model, when applied to a bank of Gabor filters.

1.3.1 Overview

Neuromathematical models of V1 often adopt a differential geometry approach to model-
ing the functional architecture of this area. A breakthrough idea has been that of representing
V1 as a fiber bundle with the space of retinal locations as a basis. This differential approach
first appeared in the works of J. Koenderink [89] and W. Hoffman [79]. It was then further
developed by J. Petitot and Y. Tondut [121] with the idea that, in the cortical processing,
illusory contours on the retinal plane are lifted to curves satisfying a geodesic condition in
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the total space. A more complete description, allowing for non equi-oriented boundaries,
was given in [41] by writing their model in the Lie group SE(2) = R2 ×S1 by requiring the
invariance under roto-translations. This construction is employed to formulate a model of
perceptual completion and formation of subjective surfaces which can be seen as the lifting
in SE(2) of the variational models for inpainting, based on elastica functionals [5, 15, 21].
The local invariance of the architecture of V1 w.r.t. SE(2) has been exploited in a number of
other works. In [16], cortical orientation maps are modeled as minimizers of an uncertainty
principle stated in this setting, see also [49]. In [18], orientation maps are generated by also
taking into account the scale variable. An extension of [41] in the context of spatio-temporal
analysis of visual stimuli was developed in [17]. On the other hand, a semi-discrete variant of
[41] was proposed in [26], where only a finite number of angles is taken into consideration.
Moreover, a study on the relation between association field curves and sub-Riemannian
geodesics in R2 × S1 has been carried out in [53]. Perceptual grouping of spatial visual
features is modeled in [128], where the authors develop a mean field neural theory and use
harmonic analysis tools to account for the constitution of perceptual units in presence of
a visual stimulus. In [45], a model for the grouping of spatio-temporal visual features is
proposed. In [42], the authors address the problem of modal completion through a gauge field
Lagrangian: this couples the neurogeometrical model in [41] with a retinex term [95, 68, 22]
implementing the perceptual invariance w.r.t. contrast. Moreover, a number of models have
been proposed where perceptual grouping and texture segmentation tasks are addressed
through a combination of long-range interactions and recurrent processing, involving the
so-called bipole model [76, 115, 77].
In [127], a Fokker-Planck equation was considered instead of a sub-Riemannian heat equa-
tion, resulting from a study of statistical kernels of edge co-occurrence in natural images (see
also [112] and [129]). This corresponds to assuming that the propagation has a deterministic
component along the first horizontal vector field and a stochastic component in the direction
of the second.
Linear as well as non-linear diffusion equations in R2 ×S1 were also employed in [55, 56]
for medical image processing; here, the lifting process of the image is based on a so-called
orientation score, essentially providing a local orientation representation of an image through
a generalized unitary wavelet transform [54]. In [1], such a lifting was complemented with
the definition of a sub-Riemannian structure in a 5-dimensional space obtained by introducing
the features of curvature and intensity, for a blood vessel tracking task. In [57], the approach
of evolution equations was extended to the range of Gabor transforms, again with applications
to the processing of images.
The functional architecture of the visual cortex has also been described through structures



1.3 Mathematical models of V1 31

different from the Lie group SE(2), such as the affine group [130], the Galilei group [17],
the hyperbolic space [132].
Another model of V1 horizontal connections based on differential geometry has been pro-
posed in [20], where a crucial role is again given to curvatures, providing a directional rate
of change of orientation. In this work, the relationship between nearby tangents is analyzed
for curves as well as textures. An analysis of other possible relationships between the lateral
connectivity and visual function beyond contour integration had been carried out in [19] as
well.

1.3.2 The Citti-Sarti model

The model proposed by G. Citti and A. Sarti in [41] focuses on the representation of a
gray level image I through its level lines. Simple cells over each point (x,y) are sensitive
to the orientation of the level lines of I, thus detecting an angle as engrafted variable. The
cell giving the maximal response is assumed to have Θ(x,y) =−arctan

(
Iy
Ix

)
as its preferred

orientation. Therefore, the vector field

YΘ =−sin(Θ(x,y))∂x + cos(Θ(x,y))∂y

on R2 is tangent to the level lines of I at the point (x,y). The images of these lines through
the map (x,y) 7→ (x,y,Θ(x,y)) are called lifted level lines, and their tangent vector at every
point can be written as a linear combination of the vector fields

Y1 =−sinθ∂x + cosθ∂y , Y2 = ∂θ . (1.4)

These vector fields define a bi-dimensional sub-bundle of the tangent bundle to R2 × S1,
referred to as the horizontal tangent bundle. One can define a scalar product on this sub-
bundle by imposing the orthonormality of Y1 and Y2: this determines a sub-Riemannian
structure on R2 ×S1. The Lie algebra generated by Y1 and Y2 through the bracket operation
between vector fields is the whole Euclidean tangent plane, since

[Y1,Y2] =−cos(θ)∂x − sin(θ)∂y =: −Y3. (1.5)

In other words, Y1 and Y2 satisfy the Hörmander rank condition. This leads, by the Chow
theorem, to the so-called connectivity property: any couple of points in R2 × S1 can be
connected through a horizontal curve, i.e. an integral curve of a section of the horizontal
tangent bundle. See [80, 38, 107] as references on these topics.
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Such sub-Riemannian structure has been shown to be naturally induced by the action
of a bank of Gabor filters on a visual stimulus. In particular, consider the bank of filters
{ψx,y,θ}x,y,θ defined in (1.3), and denote O(x,y,θ)(I) := Oψx,y,θ (I). That is, O(x,y,θ)(I) is the
outcome of filtering an image I with the profile ψx,y,θ . This can be locally approximated as

O(x,y,θ)(I)≈−Y3(θ) Iσ (x,y), (1.6)

where Iσ is a smoothed version of I, obtained by convolving it with a Gaussian kernel:

Iσ (x,y) =
∫

exp
(
(x−u)2 +(y− v)2

σ2

)
I(u,v)dudv.

This once more defines a lifting of the 2D image domain to the 3D space R2 × S1: each
point (x,y) ∈ R2 is sent to a point (x,y,θ) ∈ R2 ×S1 such that θ is a local maximum point
of θ 7→ O(x,y,θ)(I), so that the whole image domain is lifted to the set{

(x,y,θ) : O(x,y,θ)(I) = max
θ

O(x,y,θ)(I)
}

⊆ R2 ×S1.

This “non-maximal suppression” principle is based on experimental evidence on the sharp
orientation tuning of V1 neurons. The lifting of the level lines of I through this procedure
yields curves that are tangent to the planes generated by Y1 and Y2 [43].

The lateral propagation of neural activity in the cortical space is described in [41] through
the sub-Riemannian heat equation ∂tu = ∆u, where ∆ = Y 2

1 +Y 2
2 , and the association field

around a point (x0,y0,θ0) ∈ R2 ×S1 is characterized as a family of integral curves of Y1 and
Y2 starting at this point. Namely, γ ′ = Y1 |γ + kY2 |γ and γ(0) = (x0,y0,θ0), where k varies in
R.
The evolution of the activity of V1 neurons is influenced by a combination of intra-columnar
and lateral connections. In [41], the sub-Riemannian diffusion modeling the horizontal
connections and the mechanism of selection of maxima implemented by the short-range
connectivity have been combined by alternating their action iteratively: precisely, each
iteration consists of a first step of diffusion in a finite time interval and a second step of non
maximal suppression. The time interval is then sent to zero. See also [30] and [31], where
the connections between each couple of neurons are represented by a weight function which
is decomposed as the sum of two terms modeling these two mechanisms.
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In the next chapter, we will propose a new model of the functional architecture of V1
that does not require any differential or group structures as most previous models. Our
construction is based on the definition of a metric structure onto the feature space associated
to a family of filters modeling the RPs of simple cells. Such a geometry is induced by the
shape of the RPs themselves. In particular, when the family of RPs is represented by a bank of
Gabor filters indexed by R2 ×S1, the induced distance is locally equivalent to a Riemannian
approximation to the sub-Riemannian structure described in [41]. Still, our model can be
applied to a wide range of filter banks, and it is able to recover some geometrical properties
compatible with both neurophysiological and psychophysical experimental evidence, even
when applied to a randomly ordered family of learned filters.





Chapter 2

A metric model for the functional
architecture of V1

In this chapter, after recalling some theoretical notions on distances and measures (Section
2.1), we provide the main original contribution of this thesis, consisting of a novel technique
for modeling the connectivity of V1 based on the feature selectivity of simple cells. We first
introduce a distance onto the feature space associated to a family of RPs, which is naturally
coupled with a local notion of correlation between the profiles (Section 2.2). Along the
lines of the differential approach described in Section 1.3, we will then characterize the
long range lateral connectivity through a propagation with respect to this metric structure
(Section 2.3). Finally, we will show the results obtained by applying our construction to some
different banks of filters and examining the geometric properties emerging from the computed
connectivity (Section 2.4). We have recently outlined the above-mentioned methods and
results in [109, 110]. Here, we want to give a self-contained and unitary presentation of these
studies.

2.1 Theoretical background

2.1.1 Metric measure spaces

In this section, we recall some notions about distances, length spaces and measures. We
refer to [33] as an introductory text on these topics.

Definition 2.1. Given an arbitrary set X, a function d : X ×X →R∪{+∞} is a distance (or
metric) on X if the following conditions are satisfied for all p,q,q′ ∈ X.

(i) d(p,q)> 0 if p ̸= q, and d(p, p) = 0 (positiveness).
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(ii) d(p,q) = d(q, p) (symmetry).

(iii) d(p,q)≤ d(p,q′)+d(q′,q) (triangle inequality).

The pair (X ,d) is called a metric space.

Remark 2.1. Every metric space (X ,d) has a natural structure of topological space: a basis
for the topology on X is given by the set of open balls Bε(p) := {q ∈ X : d(p,q)< ε} for
all ε > 0 and p ∈ X .

Definition 2.2. A metric space is separable if it admits a dense countable subset.

Definition 2.3. A metric space X is locally compact if every point of X has a compact
neighborhood.

A distance on a set X can be induced by a length structure, which consists of a class
of admissible paths for which we can define a length, and a length function assigning a
nonnegative number to every admissible path. Specifically, we call a path any continuous
map γ : [a,b]→ X , and we define:

Definition 2.4. A length structure on a topological space X is a couple (A(X),L), where
A(X) is a set of paths on X which is closed under restrictions, concatenations and linear
reparameterizations of paths; and L : A(X)→ R is a nonnegative function such that:

(i) L
(

γ|[a,b]

)
= L

(
γ|[a,c]

)
+L

(
γ|[c,b]

)
for any c ∈ [a,b];

(ii) t 7→ L
(

γ|[a,t]

)
is continuous on [a,b];

(iii) L(γ ◦ϕ) = L(γ) for any linear homeomorphism ϕ;

(iv) inf{L(γ) : γ(a) = p, γ(b) ∈ X ∖Up}> 0 for all p ∈ X and any neighborhood Up of p.

A path γ ∈ A(X) is called admissible, and L(γ) is called the length of γ .

Remark 2.2. Property (iv) expresses a condition of compatibility with the underlying topology
of the space.

We can now define a distance function induced by a length structure as follows:

Definition 2.5. Given a length structure (A(X),L) we define, for all p,q ∈ X,

dL(p,q) := inf{L(γ) s.t. γ : [a,b]→ X , γ ∈ A(X), γ(a) = p, γ(b) = q}. (2.1)

Remark 2.3. It is easy to check that (X ,dL) is a metric space.
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Definition 2.6. A length structure is complete if for all p,q ∈ X there exists an admissible
path joining them whose length is equal to dL(p,q); that is, if there exists a shortest path
between every two points. In this case, the distance dL is said to be strictly intrinsic.

Definition 2.7. A metric space (X ,d) is called a length space if d can be obtained as the
distance function dL associated to a length structure; it is a geodesic space if dL is strictly
intrinsic.

Example 2.1. Consider a metric space (X ,d) and define the length of a path γ : [a,b]→ X as

Ld(γ) := sup

{
n

∑
i=1

d(γ(ti),γ(ti−1)) : n ∈ N, a ≤ t0 ≤ . . .≤ tn ≤ b

}
. (2.2)

This defines a length structure, where the class of admissible paths contains all continuous
paths on X parameterized by closed intervals.

Remark 2.4. The length function Ld of the previous example induces a distance d̂ = dLd as
in (2.1). d̂ is called the intrinsic distance induced by d, and it does not necessarily coincide
with d. If it does, then (X ,d) is clearly a length space. On the other hand, it is possible to
prove that for any length space (X ,d) the intrinsic distance d̂ induced by d coincides with d
itself. This brings to the following equivalent definition of length space.

Definition 2.8. Let d be a distance on X, and let d̂ be the intrinsic metric induced by d. If
d = d̂, then the metric space (X ,d) is said to be a length space.

Example 2.2 (Riemannian distance). A Riemannian structure on a smooth manifold M is
determined by a smooth section g of the positive-definite quadratic forms on the tangent
bundle T M; that is, a scalar product gp(·, ·) on the tangent space TpM at each point p, varying
smoothly w.r.t. p. This allows to define the length of a smooth curve γ : [a,b]→ M as

Lg(γ) :=
∫ b

a

√
gγ(t)(γ

′(t),γ ′(t))dt. (2.3)

The Riemannian distance dg on (M,g) is the one obtained from Lg as in (2.1). The metric
space (M,dg) is a length space, and it is also geodesic if the manifold is complete.

Example 2.3 (Carnot-Carathéodory distance). Consider now a smooth horizontal subbundle
of T M, that is a collection HM of subspaces HpM ⊆ TpM, for any p ∈ M, that is locally
generated by a set of smooth vector fields. A smooth curve γ : [a,b]→ M is horizontal if
γ ′(t) ∈ Hγ(t)M for a.e. t ∈ [a,b]. A smooth connected manifold M with horizontal subbundle
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HM is said to be H-connected if any two points of M can be joined by a horizontal curve.
By the Chow-Rashevsky Theorem, a sufficient condition for M to be H-connected is that the
Lie algebra generated by HpM through the Lie product of vector fields coincides with TpM
(Chow condition).
Now, a sub-Riemannian metric on M is given by a smoothly varying scalar product g defined
on HpM for each p. The triplet (M,HM,g) is called a sub-Riemannian manifold. Again,
the metric g induces a length function as in (2.3); however, in this case Lg is only defined
for horizontal curves, which are the admissible paths for this length structure. The distance
induced on M by this length function via (2.1) is called the Carnot-Carathéodory distance.
We refer to [107] for a complete review of these topics.

We now recall the definition of measure on a set X . If a metric space (X ,d) is endowed
with a measure, this is in general unrelated to the topological structure induced by the distance.
However, as we will briefly point out, these two structures can be linked by some notion of
compatibility.

Definition 2.9. Let X be a set. A σ -algebra on X is a set A of subsets of X such that:

(i) A ∋ /0,X;

(ii) A,B ∈ A ⇒ A∖B ∈ A ;

(iii) if {Ai}i∈I ⊆ A is a finite or countable collection, then
⋃

i Ai ∈ A .

Remark 2.5. Given an arbitrary collection G of subsets of X , there exists a unique minimal
σ -algebra containing G ; it is called the σ -algebra generated by G .

Definition 2.10. A measure on a σ -algebra A is a function µ : A → R+∪{+∞} such that:

(i) µ( /0) = 0;

(ii) if {Ai}i∈I ⊆ A is a finite or countable collection of disjoint sets, then µ (
⋃

i Ai) =

∑i µ(Ai).

A subset of X is said to be measurable if it belongs to A . We say that µ is finite if µ(X)<+∞,
and σ -finite if X is the countable union of measurable sets with finite measure.

When the set X is endowed with a topology, it is possible to define a σ -algebra determined
by the open sets of X .
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Definition 2.11. If X is a topological space, then the σ -algebra generated by the set of all
its open sets is called the Borel σ -algebra of X. A measure defined on the Borel σ -algebra is
called a Borel measure over X.

When the topological structure is induced by a distance, a Borel measure over X defines
what is usually called a metric measure space:

Definition 2.12. A metric measure space is a triple (X ,d,µ) where d is a distance on X and
µ is a measure on the Borel σ -algebra of (X ,d).

One may relate the properties of a Borel measure with the underlying topology of the
space. The following is a rather natural “compatibility” condition between the measure and
the topology.

Definition 2.13. A measure µ on the σ -algebra of Borel sets of a Hausdorff topological
space X is called a Radon measure if it has the following properties.

(i) µ is inner regular: for any open set A, µ(A) is the supremum of µ(K) over all compact
sets K ⊆ A.

(ii) µ is outer regular: for any Borel set B, µ(B) is the infimum of µ(A) over all open sets
A ⊇ B.

(iii) µ is locally finite: every point of X has a neighborhood of finite measure.

We conclude this section by briefly introducing the (spherical) Hausdorff measure induced
by a distance. We cite [78, 150, 60] as references for this topic.

Definition 2.14. Let (X ,d) a metric space and s ≥ 0. For an ε > 0 define

H s
ε (X) := inf

{
∑

i

(
diam(Si)

)s | diam(Si)< ε ∀i

}
, (2.4)

where the infimum is taken over all finite or countable coverings {Si}i∈I of X, and we take
inf /0 =+∞. The s-dimensional Hausdorff measure of X is defined by

H s(X) := lim
ε→0

H s
ε (X). (2.5)

When the infimum in (2.4) is only taken over coverings of balls of the distance d, we denote it
by S s

ε (X) and the limit
S s(X) := lim

ε→0
S s

ε (X) (2.6)
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is called the s-dimensional spherical Hausdorff measure of X.

Remark 2.6. Since H s
ε (X) and S s

ε (X) are nonincreasing functions of ε , their (possibly
infinite) limit as ε → 0 always exists.

Remark 2.7. For subsets A ⊆ X , the (spherical) Hausdorff measure is defined by considering
A as a metric space with the restricted metric.

Theorem 2.1. For any metric space (X ,d) and any s ≥ 0, S s and H s are Borel measures
on X.

Example 2.4. The 0-dimensional (spherical) Hausdorff measure of a set is its cardinality.

Remark 2.8. The measures H s and S s are comparable, but not equal in general.

The Hausdorff measure of a set is strictly linked with the concept of dimension. Specifi-
cally, there is a “critical dimension” s0, below which the measure is infinity and above which
the measure is zero. This allows to extend the notion of dimension to metric spaces. The
precise statement is enunciated below.

Theorem 2.2. For a metric space (X ,d), there exists a real number s0 ∈ [0,+∞] such that
H s(X) = 0 for all s > s0 and H s(X) = +∞ for all s < s0. The value s0 is called the
Hausdorff dimension of X .

Remark 2.9. The Hausdorff dimension s0 is not necessarily an integer, and the measure H s0

can be zero, a positive number or infinity. The theorem also holds for the spherical Hausdorff
measure, with the same s0.

Example 2.5. Countable sets have Hausdorff dimension 0; n-dimensional manifolds have
Hausdorff dimension n.

In the following, “the (spherical) Hausdorff measure” on a metric space X refers to the
s0-dimensional measure, where s0 is the Hausdorff dimension of X .

2.1.2 Dirichlet forms and associated operators

We now give some basic definitions on Dirichlet forms. The reader may refer to [64] for
a comprehensive description.

Definition 2.15. Given a real Hilbert space H, a symmetric form on H is a non-negative
definite symmetric bilinear form densely defined on H.

Remark 2.10. A symmetric form E induces a distance d on its domain by d2(u,v) :=
E(u− v,u− v).
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Now, given a symmetric form E : D(E)×D(E)→ R on H, a new symmetric form is
defined on D(E) by

E1(u,v) := E(u,v)+ ⟨u,v⟩,

where ⟨·, ·⟩ is the scalar product of H.

Definition 2.16. A symmetric form E is closed if D(E) is complete w.r.t. the metric induced
by E1. It is closable if

{un}n ⊆ D(E), E(un −um,un −um)→ 0, ⟨un,un⟩ → 0 ⇒ E(un,un)→ 0.

Proposition 2.1. A symmetric form is closable if and only if it admits a closed extension.

Theorem 2.3. For any closed symmetric form E on H, there exists a unique non-positive
definite self-adjoint operator A on H such thatD(E) = D(

√
−A)

E(u,v) = ⟨−Au,v⟩, u ∈ D(A), v ∈ D(E).
(2.7)

We now fix a measure space (X ,µ), where µ is a σ -finite Borel measure, and we consider
symmetric forms on the Hilbert space H = L2(X ,µ).

Definition 2.17. A symmetric form on L2(X ,µ) is Markovian if for each ε > 0 there exists a
function φε : R→ R such that

(i) φε(t) = t for all t ∈ [0,1], −ε ≤ φε(t)≤ 1+ ε for all t ∈ R, and

0 ≤ φε(t ′)−φε(t)≤ t ′− t ∀t < t ′;

(ii) u ∈ D(E) ⇒ φε ◦u ∈ D(E) and E(φε ◦u,φε ◦u)≤ E(u,u).

A closed Markovian symmetric form on L2(X ,µ) is called a Dirichlet form. A Dirichlet form
E is said to be strongly local if E(u,v) = 0 whenever u∈D(E) is constant on a neighborhood
of the support of v ∈ D(E).

Example 2.6. Let (M,g) be a complete Riemannian manifold, equipped with the measure
dµg(p) =

√
detgp d p induced by g. One can define a strongly local Dirichlet form by

E(u,v) :=
1
2

∫
M

g(∇u,∇v)dµg, (2.8)
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where ∇u denotes the Riemannian gradient of u, defined as the unique vector field satisfying
g(∇u,X) = d f (X) for any vector field X . The non-positive definite self-adjoint operator
associated to E (as in Theorem 2.3) coincides with 1

2∆, where ∆ is the Laplace-Beltrami
operator on M, defined by

∆u := div(∇u), u ∈C∞
0 (M).

Indeed, for any u,v ∈C∞
0 (M),

⟨−∆u,v⟩=−
∫

M
div(∇u) v dµg =

∫
M

g(∇u,∇v)dµg.

Remark 2.11. A symmetric form E is often identified with its associated quadratic form, i.e.
the one obtained by evaluating E on the diagonal. Conversely, any quadratic form Q defines
a symmetric form E(u,v) := 1

4(Q(u+v)−Q(u−v)) on D(Q)×D(Q). The same symbol E
is often used to denote both the symmetric form and the quadratic form.

2.1.3 Diffusion processes on metric measure spaces

In this section, we provide a brief review on diffusion processes on metric measure spaces,
containing some concepts that will be employed in the next sections. As mentioned before,
we aim at extending to our context the diffusion-based approach adopted in differential
models (see Section 1.3) to describe the horizontal propagation of neural activity in V1. As
such, we need appropriate extensions of some important concepts and tools from smooth to
non-smooth structures. In this section, we recall some results concerning the construction of
diffusion processes on metric measure spaces and the properties of their associated Laplacian
operators and heat kernels.
We shall mainly focus on the classical approach introduced in 1998 by K.-T. Sturm [137],
which provides a general method to define Dirichlet forms and diffusion processes on met-
ric measure spaces (X ,d,µ), under a crucial assumption called the Measure Contraction
Property (MCP). This property essentially gives a bound for distortions of the measure µ

under contractions of X along quasi-geodesics w.r.t. the metric d. As a first example, any
Riemannian manifold equipped with its geodesic distance and the Riemannian volume form
satisfies this requirement, as a consequence of the Bishop volume comparison theorem.
Slightly different versions of the MCP were introduced in later years [138, 116]. These may
be regarded as a generalization of the lower Ricci curvature bound on Riemannian manifolds:
in fact, the (K,n)-MCP proposed in [116] is shown to be equivalent, for an n-dimensional
Riemannian manifold, to its Ricci curvature being bounded from below by (n−1)K. Another
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kind of synthetic treatment of the lower Ricci curvature bound on metric measure spaces
is given by so-called curvature-dimension conditions CD(K,N) [138, 102] expressed in
terms of the convexity of certain functions on the associated Wasserstein space. Here, N
plays in some sense the role of an upper bound for the dimension. All these properties are
associated to a uniform lower bound for the Ricci curvature, encoded in the constant K. This
is not needed in the present context, where we are interested in defining a well-behaved
diffusion process on our metric measure space, which is guaranteed by the MCP introduced
in [137]. Indeed, under this assumption it is possible to obtain generalizations of the Lapla-
cian operator and of its heat kernel, and the latter can also be shown to admit Gaussian
estimates in terms of the distance. It is worth mentioning that self-adjoint Laplace operators
on metric measure spaces are also constructed in [35], by a different method based on the con-
cept of upper gradients. We also refer to [4] for a review on calculus in metric measure spaces.

We now enunciate some definitions and results contained in [137]. Let (X ,d,µ) be a
metric measure space, such that (X ,d) is a locally compact separable metric space and µ is
a Radon measure on X , strictly positive on nonempty open sets. One can then construct a
Dirichlet form E on L2(X ,µ) as the Γ-limit of a sequence of forms, defined in analogy with
the Dirichlet form of Example 2.6. Specifically, one defines

Er(u) =
1
2

∫
X

N (p)
∫

Br(p)∖{p}

(
u(q)−u(p)

d(q, p)

)2 dµ(q)√
µ(Br(q))

dµ(p)√
µ(Br(p))

, (2.9)

where N is a normalization function, and lets E = Γ-limr→0 Er. This does always exist,
provided that (X ,d,µ) satisfies the following property.

Definition 2.18. A metric measure space (X ,d,µ) satisfies the (weak) Measure Contraction
Property (MCP) with exceptional set if there exists a closed set Z ⊆ X with µ(Z) = 0 such
that for every compact set Y ⊆ X ∖ Z there are numbers R > 0,ζ < ∞ and ϑ < ∞, and
µ2-measurable maps Φt : X ×X → X (for all t ∈ [0,1]), with the following properties.

(i) for µ-a.e. p,q ∈ Y with d(p,q)< R, and for all s, t ∈ [0,1],

Φ0(p,q) = p, Φt(p,q) = Φ1−t(q, p), Φs(p,Φt(p,q)) = Φst(p,q), (2.10)

d(Φs(p,q),Φt(p,q))≤ ϑ |s− t|d(p,q). (2.11)
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(ii) Define, for r < 0, the measures dµr(p) = dµ(p)√
µ(Br(p))

. Then, for all r < R, µ-a.e. p ∈ Y ,

all µ-measurable A ⊆ Br(p)∩Y and all t ∈ [0,1],

µr(A)√
µ(Br(p))

≤ ζ
µrt(Φt(p,A))√

µ(Brt(p))
. (2.12)

The space (X ,d,µ) is said to verify the strong MCP if:

• the constants ζ and ϑ can be taken arbitrarily close to 1;

• for every ζ ′ > 1 there exists some ϑ ′ > 1 such that, for µ-a.e. p ∈ Y and for all r < R
with Br(p)⊆ Y ,

µ(Brϑ ′(p))≤ ζ
′
µ(Br(p)).

In this case, there is no restriction in taking always ζ = ζ ′ and ϑ < ϑ ′.
For both the weak and strong MCP, one says without exceptional set if Z = /0.

Remark 2.12. For fixed p and q, the map Φ·(p,q) : [0,1] → X , t 7→ Φt(p,q) is a quasi-
geodesic joining p and q. Moreover, if (X ,d) is a geodesic space such that geodesics joining
p and q can be chosen in such a way that they depend in a measurable way on p and q,
property (ii) simplifies to

µ(A)
µ(Br(p))

≤ ζ
µ(Φt(p,A))
µ(Brt(p))

.

Example 2.7. Let (X ,g) be a Riemannian manifold. If d is the Riemannian distance and µ

is the Riemannian volume on X, (X ,d,µ) is a metric measure space satisfying the initial
requests on d and µ . Furthermore, for such a space the strong MCP without exceptional set
is verified. This example is central in our setting, since the basic case which we have in mind
as a prototype will be the metric space induced by a family of Gabor filters, whose distance
is estimated by a Riemannian distance (see Section 2.2.2).
More examples are given by manifolds with corners or by gluing together of manifolds not
necessarily of the same dimension.

The MCP implies some important facts, among which the volume doubling property on
X ∖Z. That is, for each compact set Y there exist constants M and R > 0 such that

µ (B2r(p))≤ M ·µ (Br(p))

for all r ∈]0,R[ and µ-a.e. p ∈ Y (see Proposition 4.5 in [137]). Moreover, for each
u ∈ CLip

0 (X), the Γ-limit and the point-wise limit of Er(u) exist and coincide. Such a
limit defines a strongly local, regular Dirichlet form, whose associated intrinsic metric is
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locally equivalent to the original distance d. A Poincaré inequality is shown to hold as well.
Finally, the corresponding positive self-adjoint operator A has a Hölder continuous heat
kernel ht (see Theorem 7.4 in [137]):

Theorem 2.4 (Sturm, 1998). There exists a measurable function

H : ]0,∞[×X ×X −→ [0,∞], (t, p,q) 7−→ H(t, p,q)≡ ht(p,q) (2.13)

with the following properties.

(i) For every t > 0, every u ∈ L2(X ,µ) and µ-a.e. p ∈ X ,

e−Atu(p) =
∫

X
ht(p,q)u(q)dµ(q). (2.14)

(ii) The function H is locally Hölder continuous on ]0,∞[×(X ∖Z)× (X ∖Z) and identi-
cally zero on its complement in ]0,∞[×X ×X .

(iii) For all s, t > 0 and all p,q ∈ X ,

ht(p,q) = ht(q, p) and ht+s(p,q) =
∫

X
hs(p,q′)ht(q′,q)dµ(q′). (2.15)

The function H is defined pointwise uniquely by these properties and is called heat kernel
for A.

Furthermore, this heat kernel admits upper and lower Gaussian estimates. More precisely
(see Theorems 7.7 and 7.9 of [137]), we have the following result.

Theorem 2.5 (Sturm, 1998). Let (X ,d,µ) verify the strong MCP with some exceptional set,
and let Z be the exceptional set for the weak MCP. Then, for every compact Y ⊆ X ∖Z and
every ε > 0, there exists a constant C such that

1
C µ(B√

t∧R(p))
exp
(
−C

d2(p,q)
2t

)
exp
(
−Ct

R2

)
≤ ht(p,q)

≤ C
µ(B√

t0(p))
exp
(
−d2(p,q)
(2+ ε)t

)
exp(−(1+ ε)Λt) ,

for each p,q which are joined by an arc γ in Y of arc length d(p,q). Here R = d(γ,X ∖Y ),
t0 = inf{t,d2(p,X ∖Y ),d2(q,X ∖Y )} and Λ is the bottom of the spectrum of the operator A
on L2(X ,µ).
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2.2 A functional architecture defined by RPs

In this section, we first give the main definitions at the basis of our model, whose basic
idea is the construction of a metric space, encoding the local geometry of the cortex, induced
by the RPs of simple cells. The main new feature of this model is that the cortical geometry is
entirely defined by the profiles: this means that any bank of filters can induce a connectivity
pattern through this technique. The space on which the distance function will be defined is
the feature space G indexing a family of filters {ψp}p∈G chosen to model the RPs of V1
simple cells. We shall provide details on the behavior of this cortical distance in the classical
case of a family of Gabor filters of fixed scale. As remarked in Section 1.1.2, in this case the
feature space is R2 ×S1: in effect, we will show that the distance function induced by Gabor
filters on this space is locally equivalent to a Riemannian distance on R2 ×S1; this in turn
approximates the Carnot-Carathéodory distance associated to the sub-Riemannian structure
defined in [41]. We will then show that the application of our construction to a surface in
R2 ×S1 (defined e.g. by an orientation map Θ(x,y)) provides, as a limit case, an example of
a cortical metric which cannot be described through differential structures.

2.2.1 The space of features as a metric space

We start by fixing a bank of linear filters {ψp}p∈G ⊆ L2(R2). In the following, we define
a metric structure on the set of parameters G associated to {ψp}p.

Definition 2.19. Let {ψp}p∈G be a family of real- or complex-valued functions in L2(R2).
We call G the feature space associated to the family {ψp}.
We then define the distance function d : G ×G −→ R,

d(p, p0) := ∥ψp −ψp0∥L2(R2), (2.16)

and the generating kernel K : G ×G −→ R,

K(p, p0) := Re⟨ψp,ψp0⟩L2. (2.17)

This kernel is the reproducing kernel [10] on the closure of the linear span of {ψp}p

in L2(R2) (see also [52]); it extends to a general family of filters the familiar idea of the
reproducing kernel associated to a family of wavelets [9, 50]. In the special case where G has
a group structure and the filters are given by ψp = Upψ for a fixed mother filter ψ through a
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unitary group representation U , one has

K(p,q) = K(p−1q, 1). (2.18)

This is indeed the case for the example of a bank of Gabor filters that will be examined later.
Note that

d2(p, p0) = ∥ψp −ψp0∥
2
L2 = ∥ψp∥2

L2 +∥ψp0∥
2
L2 −2Re⟨ψp,ψp0⟩L2 .

If we assume the filters to be normalized to have L2-norm equal to t, the above expression
only depends on the real part of the inner product between the two filters, that is on the kernel
K:

d2(p, p0) = 2
(
t −K(p, p0)

)
. (2.19)

The value of K at a couple of points increases as they get closer according to the distance
d: therefore, K(p, p0) can be thought of as a measure of correlation between p and p0 with
respect to d.

The function we defined is obviously a distance on G , since it is a restriction of the L2

distance function. However, one may want to introduce some constraints on which filters can
directly interact with one another in determining the geometry of the space – for instance,
this can be done to inspect the behavior of the connectivity w.r.t. certain features encoded in
the RPs. We will see a concrete example of this situation in the case of Gabor filters, where
we will be able to isolate the spreading of neural activity along the axis of the preferred
orientation of the starting RP, while discarding the contributions along the orthogonal axis.
Imposing such constraints corresponds to defining around each point p0 ∈ G a local patch
P(p0) ⊆ G , and to restrict the definition of d to this set. Given a local distance defined
around each point, one may ask whether it is possible to glue all these distances together to
obtain a global distance function on the feature space. We first define a new function d̃ as
follows.

Definition 2.20. For every p, p0 ∈ G , if there exists a sequence {q j} j=1,...,N such that q0 =

p0, qN = p and q j ∈ P(q j−1)∀ j = 1, ...,N, we define

d̃(p, p0) := inf

{
N

∑
j=1

d(q j−1,q j) : N ∈ N, q0 = p0, qN = p, q j ∈ P(q j−1)∀ j

}
. (2.20)

Otherwise, we set d̃(p, p0) :=+∞.
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Note that, in general, the existence of a sequence {q j} j=1,...,N such that q0 = p0, qN = p
and q j ∈ P(q j−1)∀ j = 1, ...,N is not guaranteed for any couple of points (p, p0). However,
this would be a “degenerate” case where there are isolated points or regions of the feature
space, corresponding to neurons whose activations are mutually independent.

Proposition 2.2. Given a set G , define around each point p0 a patch P(p0)⊆ G such that

∀p0 ∈ G ∃ε > 0 : Bε(p0) := {p ∈ G : d(p, p0)< ε} ⊆ P(p0). (2.21)

Then d̃ : G ×G −→ R defined as above satisfies:

(i) d̃(p,q)≥ 0 ∀p,q ∈ G ,

(ii) d̃(p,s)+ d̃(s,q)≥ d̃(p,q) ∀p,s,q ∈ G ,

(iii) ∀p,q ∈ G , d̃(p,q) = 0 ⇔ p = q.

Proof. First, d̃ is well-defined. This means verifying that the local distance functions coincide
on overlapping patches. Indeed, this happens by construction, since d(p, p0) is always equal
to the L2 distance between ψp and ψp0 .
Second, d̃ verifies the properties.

(i) d̃ is obviously non negative.

(ii) As for the triangle inequality, we have:

d̃(p,s)+ d̃(s,q)

= inf

{
N

∑
j=1

d(q j−1,q j) |N ∈ N, q0 = q, qN = p, q j ∈ P(q j−1)∀ j,∃ j : q j = s

}

≥ inf

{
N

∑
j=1

d(q j−1,q j) |N ∈ N, q0 = q, qN = p, q j ∈ P(q j−1)∀ j

}
= d̃(p,q).

(iii) Lastly, we have to prove that d̃(p, p0) = 0 ⇔ p = p0. Suppose p ̸= p0. From (2.21),
there exists an ε > 0 such that Bε(p0)⊆ P(p0). Now,

• if p /∈ P(p0), then p /∈ Bε(p0) and consequently d̃(p, p0) ̸= 0;

• on the other hand, if p is in P(p0), then d̃(p, p0) ̸= 0 for the properties of d,
which is a distance on P(p0).
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Note that, given a sequence p0 = q0,q1, . . . ,qN = p, the condition q j ∈ P(q j−1) does
not imply having q j−1 ∈ P(q j). Therefore, in general, (2.20) yields a quasimetric d̃, i.e. an
asymmetric distance. This intuitively means that getting from p to p0 may be harder than
getting from p0 to p, i.e. d̃(p, p0)> d̃(p0, p). A simple practical example of a quasimetric
d̃ is given by the walking times between points on a mountain: when p0 is uphill w.r.t. p,
d̃(p, p0) is greater that d̃(p0, p). See [148] as a reference on quasimetric spaces.
However, recall that the distance we are defining should model the lateral connectivity in V1.
Due to the evidence that horizontal connections are largely reciprocal [88], it is reasonable to
model this phenomenon through a symmetric distance. Since the construction of the patches
P(·) was meant to restrict which cells can interact with one another, it is natural to define
them so that p is connected to q if and only if q is connected to p. This means requiring that

q ∈ P(p)⇔ p ∈ P(q),

which implies the symmetry of d̃ by considering for each sequence p = q0,q1, . . . ,qN = q the
reversed sequence {qN− j} j=0,...,N . In the following, the symmetry is taken as an assumption.

To sum up, the kernel distance defined in (2.16) may be treated as a local object by restrict-
ing it to suitable patches defined around each point. In order to have a meaningful distance
on the whole feature space taking into account these constraints, the local distance functions
must be glued together: the above Proposition states that, under reasonable conditions on the
choice of the patches, this yields a well-defined global distance on G .

2.2.2 The case of Gabor filters

As a first example, we show the results of applying the model described above to the
classical case of a bank of Gabor filters. We then prove that the distance obtained in this
case is locally equivalent to a Riemannian approximation to the sub-Riemannian metric
introduced in [41].
Let us consider the set {ψx,y,θ}x,y,θ of Gabor filters introduced in (1.2). For each value of
λ > 0 and σ > 0, one obtains a family of filters parameterized by p = (x,y,θ) ∈ R2 × S1

where each of the filters ψx,y,θ has wavelength λ and scale σ .

The distance function.

Fix λ ,σ > 0 and denote p = (x,y,θ) and p0 = (x0,y0,θ0). We first note that the kernel
K(p, p0) = Re⟨ψp,ψp0⟩L2(R2) shows certain invariances in this case. Specifically, as pointed
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out before, the explicit expression for K(·, p0) for p0 ̸= (0,0,0) can be obtained from the one
for K(·,0) through the group operation. We have:

K
(
(x,y,θ),(x0,y0,θ0)

)
= K

(
(Rθ0T(x0,y0)(x,y),θ −θ0), (0,0,0)

)
.

It is therefore sufficient to compute explicitly the expression of K(p, p0) for p0 = (0,0,0).
We have:

⟨ψp,ψ0⟩L2(R2) = σ
2
π exp

(
− x2

4σ2 −
y2

4σ2 −
2σ2π2(1− cosθ)

λ 2

)
exp
(
−iπ

x(1+ cosθ)+ ysinθ

λ

)
.

The real part of this scalar product gives the kernel K. Of course, the same invariance holds
for the distance d. Since the squared L2-norm of each of the filters (1.2) is equal to σ2π , we
have:

d2(p,0)= 2σ
2
π−2σ

2
π exp

(
− x2

4σ2 −
y2

4σ2 −
2σ2π2(1− cosθ)

λ 2

)
·cos

(
π

x(1+ cosθ)+ ysinθ

λ

)
.

(2.22)
Note that the distance d depends on σ and λ , since the scale and wavelength of the filters
naturally influence its spatial extent and oscillatory behavior respectively.

Local patches.

In the case of Gabor filters, the level sets of the distance d (or equivalently, of the kernel
K) in the feature space are in general not connected (see Figure 2.1). This is due to the
oscillations of the periodic factor. In terms of the interactions between RPs, the central lobe
of the level sets corresponds to the co-axial effect, i.e. the one along the axis of the preferred
orientation of the starting RP ψp0 : along this axis, the strongest interactions are the ones with
filters collinear with ψp0 (see Figure 2.2b), and the value of K decreases as the orientation
of the filters varies from θ0. On the other hand, the smaller lobes developing along the

Figure 2.1 (a) A level set of K
(
(x,y,θ),(0,0,0)

)
. (b) Three slices for θ =−π

6 ,0,
π

6 .
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Figure 2.2 A schematic representation of the interactions between odd RPs sharing the same orien-
tation, depending on their reciprocal position. (a) An example odd filter, with white ON areas and
gray OFF areas. The axis of its preferred orientation is displayed. The next pictures show different
reciprocal configurations of two such filters. Overlapping areas where the sign of the product is
positive are displayed in red and marked by a plus symbol, while zones where the product is negative
are blue and marked by a minus symbol. (b) Collinear filters bring to high values of K along their
common axis. (c) Parallel filters with overlapping regions of opposite signs yield negative values of K.
(d) Parallel filters with overlapping regions of the same sign yield positive values of K.

orthogonal axis result from the “periodic” correlation of the central RP with filters parallel to
ψp0 (i.e. filters with orientation θ0 but centered on points of the orthogonal axis): the kernel
takes positive values when areas of the two RPs with the same sign overlap (as in Figure
2.2d), and negative values when areas of opposite signs overlap (as in Figure 2.2c). In a
first stage we thought it best to restrict ourselves to the effect along the axis of the preferred
orientation, i.e. to consider only the central connected component of the level sets. This
only takes a straightforward analytical operation in the Gabor case, and it makes it easier to
compare our model with the ones obtained through real-valued diffusion equations. We shall
therefore restrict the distance to local patches defined around each point p0 = (x0,y0,θ0) of
R2 ×S1 such that the distance is truncated where it reaches its maximum, thus eliminating
the periodicity of the cosine in Eq. (2.22):

Figure 2.3 (a) For fixed y = 0 and θ = 0, a plot of x 7→ d((x,0,0),(0,0,0)). In red, the corresponding
slice of a neighborhood Bε

(
(0,0,0)

)
= {(x,y,θ) ∈ R2 ×S1 : d((x,y,θ),(0,0,0))< ε}, which is not

connected. (b) We truncate the distance function at its maximum. (b) The neighborhood of the same
radius as before, with the truncated distance, turns out to be connected. (d) The non-connected ball
Bε

(
(0,0,0)

)
(dark blue) displayed in the 3D space R2 ×S1. The patch P(0,0,0) is represented by

the volume between the two light blue surfaces. After truncating the distance function, only the central
lobe remains. In this example we set λ = 1 and σ = 1.
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P(p0) := {(x,y,θ) : |a(1+ cosδ )+bsinδ |< λ},

with (a,b,δ ) =
(
Rθ0T(x0,y0)(x,y), θ −θ0

)
. Of course, the thickness of the patch depends on

the frequency of the oscillations of the distance, ruled by the wavelength λ of the filters.
Figure 2.3 schematically displays this operation on a plot of the distance function with respect
to x, for fixed values of y and θ . The shape of the patches is shown in Figure 2.4.
For each p, p0 ∈ R2 ×S1 we then consider the distance d̃(p, p0) as defined in (2.20). Note
that those neighborhoods which are “small enough” are connected even without truncating
the distance function (see Figure 2.3a). In other words, there always exists an ε > 0 such
that Bε(p0)⊆ P(p0), i.e. the local structure is preserved despite the clipping. In terms of
the correlation kernel, this is equivalent to saying that the reciprocal influence of collinear
filters is greater that the one between parallel filters, since all the values of K(·, p0) above
a sufficiently high threshold are confined inside P(p0). This property, together with the
symmetry of the patches, makes (2.20) a global distance on R2 ×S1 (see Proposition 2.2 and
the following remark). Moreover, note that a finite sequence {q j} j=0,...,N connecting two
points always exists. For p0 = (0,0,0) and p = (x,y,θ), take for example:

q0 = (0,0,0) = p0, q1 = (0,y,0), q2 =
(

0,y,
π

2

)
, q3 =

(
x,y,

π

2

)
q4 = (x,y,θ) = p.

The distance is therefore finite.
This definition provides an example of adjustment that can be introduced on the original

kernel in order to define some restriction on which filters are influenced by one another.
Nonetheless, we believe that the whole kernel is interesting for a further analysis, since its

Figure 2.4 (a) In dark blue, a level set of K
(
(x,y,θ),(0,0,0)

)
. The patch P(0,0,0) is the volume

between the two surfaces displayed in light blue. (b) The same level set, after truncating. Here, λ = 1.
(c) Horizontal slices of the truncated kernel for θ =−0.75,−0.45,0,0.45,0.75. The white regions
represent positive values, the black ones represent negative values. Note that the kernel has been
truncated at its minimum.
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oscillatory behavior in the orthogonal direction seems to account for the trans-axial “ladder”
effect which has indeed been observed in both neurophysiological and psychophysical studies
[106, 61, 152] (see also Figure 1.12 in Section 1.2.2), thus naturally including in the model
the Gestalt perceptual principle of parallelism.

Local estimate of d2.

Let us study the local behavior of the distance function d induced by the filters (1.2)
on R2 ×S1. The following proposition states that d is locally estimated by a Riemannian
distance on R2 ×S1.

Proposition 2.3. There exists a Riemannian metric g on R2 ×S1 whose induced distance dg

satisfies:
d(p, p0)

dg(p, p0)
→ 1 as dg(p, p0)→ 0.

Moreover, the Riemannian volume form on (R2×S1,g) is a constant multiple of the Lebesgue
measure.

Proof. Fix p = (x,y,θ) ∈ R2 ×S1, and let x,y,θ → 0. We have:

• exp
(
− x2

4σ2 − y2

4σ2 −
2σ2π2(1−cosθ)

λ 2

)
≈ 1− x2

4σ2 − y2

4σ2 − 2σ2π2

λ 2
θ 2

2 .

• cos
(
π
(x(1+cosθ)+ysinθ)

λ

)
≈ 1− 2π2

λ 2 x2.

Then

d2(p,0)≈ 2σ
2
π

((
1

4σ2 +
2π2

λ 2

)
x2 +

y2

4σ2 +
σ2π2

λ 2 θ
2
)
.

More generally, for p = (x,y,θ)→ (x0,y0,θ0) = p0,

d2(p, p0)≈ 2σ
2
π

((
1

4σ2 +
2π2

λ 2

)
a2 +

1
4σ2 b2 +

σ2π2

λ 2 (θ −θ0)
2
)
,

where (a,b) = Rθ0T(x0,y0)(x,y). Equivalently,

d2(p, p0)≈ (x− x0, y− y0, θ −θ0)·g(p0)·

x− x0

y− y0

θ −θ0





54 A metric model for the functional architecture of V1

where

g(p0)= 2σ
2
π


(

1
4σ2 +

2π2

λ 2

)
cos2 θ0 +

1
4σ2 sin2

θ0
2π2

λ 2 cosθ0 sinθ0 0
2π2

λ 2 cosθ0 sinθ0

(
1

4σ2 +
2π2

λ 2

)
sin2

θ0 +
1

4σ2 cos2 θ0 0

0 0 σ2π2

λ 2

 .

(2.23)
Finally, for every point p0,

detg(p0) = 8σ
6
π

3
(

1
4σ2 +

2π2

λ 2

)
1

4σ2
σ2π2

λ 2 .

This concludes the proof.

Convergence to a sub-Riemannian metric.

Finally, we show that the metric g computed above is a Riemannian approximation to a
sub-Riemannian structure on R2 ×S1 which is, up to constants, the same as the one defined
in [41]. More precisely, we prove:

Theorem 2.6. Let σ2 = Aλ for some A > 0. Then the distance dg induced by the metric
g in (2.23) converges uniformly on the compact sets of R2 ×S1, as λ −→ 0, to the Carnot-
Carathéodory distance induced by the vector fields

Ỹ1 =

√
2A
π

(−sinθ∂x + cosθ∂y) and Ỹ2 =
1√

2Aπ3
∂θ , (2.24)

with the horizontal norm that makes them orthonormal.

Proof. We first plug the condition σ2 = Aλ into the expression of the Riemannian metric g.
The distance induced by g is the Carnot-Carathéodory distance associated to the vector fields
Ỹ1,Ỹ2 and

Ỹ3 :=
1
L
· (cosθ∂x + sinθ∂y) =

1
L
· Y3,

where L :=
√

π

2 +
4Aπ3

λ
. The associated norm on the tangent space Tp

(
R2×S1) at each point

p is

|v|2 = v2
1 + v2

2 + v2
3, where

3

∑
i=1

viỸi = v ∈ Tp
(
R2 ×S1).

Note that L→+∞ as λ → 0. The vector fields (Ỹ1,Ỹ2,Ỹ3) = (Ỹ1,Ỹ2,
1
LY3) define a Riemannian

approximation to the sub-Riemannian metric defined by (Ỹ1,Ỹ2), and the thesis follows from
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the approximation theorem in [75], Section 1.4.D.

Remark 2.13. Note that the vector fields Ỹ1 and Ỹ2 generate the horizontal distribution of the

sub-Riemannian structure on R2 ×S1 introduced in [41]. In particular, Ỹ1 =
√

2A
π

· Y1 and

Ỹ2 =
√

1
2Aπ3 ·Y2, where Y1 and Y2 are as in (1.4). Moreover, Ỹ3 := 1

L ·Y3, where −Y3 = [Y1,Y2].

Remark 2.14. The constraint σ2 = Aλ implies, for λ → 0, that the support of the filters
shrinks and the number of oscillations under the Gaussian bell goes to infinity.

2.2.3 A non-differential example

The example that we are about to introduce is a relevant one since it represents an
instance of feature space whose metric cannot be described through a differential structure,
thus motivating our work in the more general setting of metric spaces.
Let us consider a surface

Σ =
{
(x,y,θ) ∈ R2 ×S1 : θ = Θ(x,y)

}
, (2.25)

and the corresponding subset {ψx,y,Θ(x,y)}x,y of the above-mentioned family of Gabor filters.
This yields a feature space G = R2, endowed with the metric structure defined by this
subfamily of filters, i.e.

d
(
(x,y),(x0,y0)

)
:= ∥ψx,y,Θ(x,y)−ψx0,y0,Θ(x0,y0)∥L2(R2). (2.26)

The restriction to Σ of a distance which is estimated by a Riemannian one is still estimated
by the induced Riemannian metric on the surface. However, setting σ2 = Aλ → 0 as before
yields a sub-Riemannian structure on R2 ×S1, determined by the vector fields Ỹ1 and Ỹ2 of
Theorem 2.6 with the following norm on the horizontal planes:

|v|2H = v2
1 + v2

2, where v1Ỹ1 + v2Ỹ2 = v ∈ Hp. (2.27)

For each p the horizontal plane Hp is the subspace of Tp
(
R2 ×S1) generated by Y1 and Y2.

We work on the domain (x,y) of the function Θ defining the surface. Now consider, as in [40],
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the projections V :=Y1 Θ and W :=Y3 Θ of the vector fields Y1,Y3 on the plane P = {(x,y,0)}:

V(x,y) = Y1 Θ (x,y) =−sin(Θ(x,y))∂x + cos(Θ(x,y))∂y

W(x,y) = Y3 Θ (x,y) = cos(Θ(x,y))∂x + sin(Θ(x,y))∂y.

The vector fields V and W span the plane P. Note that the surface Σ is foliated by integral
curves of V , and the restriction of the horizontal norm (2.27) onto this surface would yield a
degenerate distance whose balls are segments of curves.
The distance we want to consider on Σ is instead the one whose balls are obtained by
intersecting Σ with the balls of the sub-Riemannian metric on R2 × S1 – i.e. the distance
induced on Σ as a metric subspace of R2 × S1 with the Carnot-Carathéodory distance.
At each point p0 ∈ R2 × S1, the exponential mapping expp0

: g → R2 × S1 is defined by
expp0

(X) = γX(1, p0), where g is the Lie algebra associated to R2 × S1 = SE(2) as a Lie
group (see [145]) and γX(·, p0) is the unique solution to the Cauchy problemγ̇(t) = X|γ(t)

γ(0) = p0.

For sufficiently small t, expp0
(tX) = γtX(1, p0) = γX(t, p0) is always well defined. Moreover,

expp0
is a local diffeomorphism [145]. We can thus define locally on R2 ×S1 the distance

d2
Y (p, p0) = v2

1 + v2
2 + |v3|,

where v1,v2,v3 ∈ R are such that p = expp0

(
∑

3
i=1 viYi

)
. This distance is locally equivalent

to the Carnot-Carathéodory distance dcc on R2 ×S1 [113]. Restricted on the domain of Θ,
this becomes

d2
Σ

(
(x,y),(x0,y0)

)
= e2

1 + |e2|, (2.28)

where (x,y) = exp(x0,y0)

(
e1V + e2W

)
(see [40]). Note that the balls of this distance are

indeed open sets of the surface.

Surfaces play a key role in modeling the visual cortex. A first example is given by
a surface of maxima such as the one introduced in [41]. Another important instance is
represented by the surface defined through an orientation map Θ of V1, see Section 1.1.2.
We shall return to this example in the next Section, whose main subject will be the horizontal
connectivity of V1. As already mentioned in Section 1.3, a possible way to represent this
connectivity is by means of a diffusion process: in some differential models of V1, this
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diffusion is expressed through second order operators associated to the sub-Riemannian
structure taken into consideration. In order to still be able to use this approach in non-
differential cases such as the one described above, we aim at extending it to the context of
metric measure spaces.

2.3 Connectivity

A central aspect in modeling the visual cortex is the characterization of how the activity
of a neuron is influenced by the surrounding cells. As outlined in Section 1.3, in many
existing mathematical models of the visual cortex, the feature space associated to V1 simple
cells is equipped with a sub-Riemannian structure. Starting from this local geometry, the idea
is to describe the spreading of horizontal connections around each neuron through a diffusion
equation (e.g. the sub-Riemannian heat equation [41] or the Fokker-Planck equation [127])
associated to the geometry of the space. Such constructions inspired us to give an analogous
description of the lateral connectivity through a suitable concept of diffusion linked to the
geometric structure of our space.
In our model, the feature space is equipped with a metric structure defined by the receptive
profiles themselves. Starting from a general family of filters, we cannot expect the distance
obtained to be compatible with some differential structure. We shall then address the issue in
the much more general setting of metric measure spaces, following the classical approach of
K.-T. Sturm [136, 137] recalled in Section 2.1.

2.3.1 The cortical metric measure space

Let us recall our setting: we have defined a metric space (G ,d), where G is the feature
space indexing a family {ψp}p∈G of linear filters on the plane, and d is the distance function
of Definition 2.20. The first step in order to be able to do some analysis on (G ,d) is to
equip it with a suitable measure. This has to be related to some notion of density of the
filters with respect to the distance d. Moreover, the MCP of [137] (see Section 2.1) expresses
a link between the metric balls and the measure. Therefore, a quite natural choice is the
spherical Hausdorff measure (see Section 2.1) associated to the distance d. We shall denote
it by µ . Suppose now that (G ,d) is a locally compact separable metric space, that µ is a
Radon measure with full support on X and that the metric measure space (X ,d,µ) satisfies
the MCP. This yields Gaussian estimates for the heat kernel ht associated to the diffusion
process defined by the Dirichlet form E, meaning that in this case one has an approximate
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version of ht expressed explicitly in terms of the cortical distance d.

The first comment to be made is about the nice behavior of the spherical Hausdorff
measure and of the MCP in the event of equivalent (or locally equivalent) distances. Indeed,
the following holds.

Proposition 2.4. The weak MCP for the spherical Hausdorff measure is invariant under local
equivalence of distances.

Proof. If d and d′ are two distances defined on X with corresponding spherical Hausdorff
measures µ and µ ′, then we have [60]:

∃κ > 0 : κ
−1d(x,y)≤ d′(x,y)≤ κ d(x,y) ∀x,y ∈ X (2.29)

=⇒ κ
−s

µ(A)≤ µ
′(A)≤ κ

s
µ(A) for any Borel set A ⊆ X , (2.30)

where s is the Hausdorff dimension. The same holds locally if the distances are only locally
equivalent.
Suppose now that the MCP is verified for (X ,d,µ). The exceptional set Z is obviously still a
null set with respect to µ ′. Fix a compact set Y ⊆ X ∖Z. Note that, even if the equivalence is
just local, the compactness of Y allows to have (2.29) with the same κ over all Y . The maps
Φt are still measurable and verify the properties (i). In particular (2.11) holds thanks to the
equivalence of the distances. Recall that the doubling property holds for d,µ and let M be a
doubling constant:

µ(Bκr(x))≤ Mµ(Br(x)).

Now, (2.30) implies:

(κsM)−1
µ(Br(x))≤ µ

′(B′
r(x))≤ κ

sM µ(Br(x)) and (κ
3s
2 M)−1

µr(A)≤ µ
′
r(A)≤ κ

3s
2 M µr(A).

Finally, by these inequalities and the property (2.12) for d and µ , we have:

µ ′
r(A)√

µ ′(B′
r(x))

≤ κ2sM
3
2 µr(A)√

µ(Br(x))
≤ ζ κ2sM

3
2 µrt(Φt(x,A))√
µ(Brt(x))

≤ ζ κ4sM3µ ′
rt(Φt(x,A))√

µ ′(B′
rt(x))

,

i.e.
µ ′

r(A)√
µ ′(B′

r(x))
≤C

µ ′
rt(Φt(x,A))√
µ ′(B′

rt(x))
.
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In fact, if the (local) equivalence constant κ of the two distances can be locally chosen to
be arbitrarily close to 1, then even the strong MCP is preserved. These facts are of particular
importance for our purposes: by Proposition 2.3, the cortical distance arising from a set
of Gabor filters is locally equivalent to a Riemannian distance on R2 × S1, with a local
equivalence constant approaching 1. Recall that all Riemannian manifolds (M,g) are locally
compact as metric spaces with the geodesic distance dg [2], and that this property is preserved
in metric spaces under local equivalence of distances by Proposition 2.4. Moreover, the MCP
holds [137] on (M,dg,µg) where µg is the Riemannian measure, which coincides uo to a
constant with the spherical Hausdorff measure associated to dg. This immediately leads to
the following result.

Theorem 2.7. The cortical metric measure space (R2 × S1,d,µ) defined by the bank of
Gabor filters (1.2) satisfies the MCP.

2.3.2 The MCP for a sub-Riemannian surface in R2 ×S1

We now go back to the example, introduced in Section 2.2.3, of a sub-Riemannian surface
in R2 ×S1. We show that such a space satisfies the MCP, thus providing an example of a
non-differential feature space on which the horizontal connectivity can still be represented
through a suitable diffusion process. Specifically, we prove the following theorem.

Theorem 2.8. Consider a surface Σ as in (2.25), whose defining function Θ(x,y) is C1,
except possibly for a discrete set Π ⊂ R2. Denote Z := {(x,y,Θ(x,y)) : (x,y) ∈ Π} ⊆ Σ.
Then Σ verifies the MCP with exceptional set Z.

Proof. We first verify that (Σ,dΣ) is locally compact.

(i) R2×S1 with the Carnot-Carathéodory distance dcc is a locally compact space [2]. Then
each closed subset of (Σ,dΣ) away from Z is locally compact because it is a closed
subspace of (R2 ×S1,dcc) by the continuity of Θ.

(ii) Now, given ζ ∈ Z, we need to construct a compact neighborhood of ζ in Σ. Consider a
closed ball Bcc

ε (ζ ) of dcc in R2 ×S1 such that Bcc
ε (ζ ) does not contain any other point

of Z; then define B := Bcc
ε (ζ )∩Σ. This is a neighborhood of ζ in the induced metric

dΣ. We now prove that B is compact.
Given a sequence {pn}n ⊆ B ⊆ Bcc

ε (ζ ), by the compactness of Bcc
ε (ζ ) there exists a

subsequence {pnk}k converging to a point p ∈ Bcc
ε (ζ ). If ζ /∈ {pnk}k, then p belongs

to B by (i). If ζ ∈ {pnk}k, either p = ζ ∈ B or pnk ̸= ζ for k > k and the truncated
sequence falls into the preceding case.



60 A metric model for the functional architecture of V1

The measure µ that we consider on Σ is the one given by the sub-Riemannian area [66, 36],
since this coincides up to a constant with the spherical Hausdorff measure on (Σ,dΣ) (see
[65, 62]). Specifically, given a subset S ⊆ Σ,

µ(S) =
∫

S
|Nh|dΣ. (2.31)

Here, Nh is the orthogonal projection of a unit vector field normal to Σ onto the horizontal
distribution, and dΣ is the Riemannian measure of Σ induced by the projected vector fields V
and W defined in Section 2.2.3, i.e.

dΣ(x,y) =
√

detgΣ(x,y)dxdy.

Now denote ξ = (x,y). We define

Φt(ξ ,A) = expξ (t·exp−1
ξ
(A)), (2.32)

where · denotes the dilation

t·v =
(
te1, t2e2

)
∀v = (e1,e2) ∈ P.

Given a compact set Y of Σ and A ⊆ Br(ξ )∩Y , we have:

µ(Φt(ξ ,A)) =
∫

expξ (t·exp−1
ξ

(A))
dµ =

∫
expξ (t·exp−1

ξ
(A))

|Nh(ξ
′)|
√

det(gΣ(ξ ′))dξ
′

=
∫

t·exp−1
ξ

(A)

∣∣Jξ (v)
∣∣|Nh(expξ (v))|

√
det(gΣ(expξ (v)))dv

= t3
∫

exp−1
ξ

(A)

∣∣Jξ (tu)
∣∣|Nh(expξ (tu))|

√
det(gΣ(expξ (tu)))du

= t3
∫

A

∣∣Jξ (t·exp−1
ξ
(ξ ′))

∣∣∣∣Jξ (exp−1
ξ
(ξ ′))

∣∣ |Nh(Φt(ξ ,ξ
′))|
√

det(gΣ(Φt(ξ ,ξ ′)))dξ
′,

where dξ ′ = dx′dy′ and Jξ (v) denotes the Jacobian determinant of expξ . Then

µ(Φt(ξ ,A))
µ(A)

=

∫
A

∣∣Jξ (t·exp−1
ξ
(ξ ′))

∣∣ ∣∣Jξ (exp−1
ξ
(ξ ′))

∣∣−1 f (Φt(ξ ,ξ
′))dξ ′∫

A f (ξ ′)dξ ′ t3, (2.33)
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where we have denoted f = |Nh|
√

det(gΣ). Now, one has [40, 113]:

(1+O(|v|))−1 ≤ |Jξ (v)| ≤ 1+O(|v|).

This yields

(1+ t2O(|exp−1
ξ
(ξ ′)|))−1

1+O(|exp−1
ξ
(ξ ′)|)

≤

∣∣Jξ (t·exp−1
ξ
(ξ ′))

∣∣∣∣Jξ (exp−1
ξ
(ξ ′))

∣∣ ≤
1+ t2O(|exp−1

ξ
(ξ ′)|)

(1+O(|exp−1
ξ
(ξ ′)|))−1

Since ξ ′ ∈ Br(ξ ) and t ∈ [0,1], the initial calculation leads to

µ(Φt(ξ ,A))
µ(A)

≥
∫

A f (Φt(ξ ,ξ
′))dξ ′∫

A f (ξ ′)dξ ′
t3

1+O(r)
.

Finally, f (Φt(ξ ,ξ
′)) = f (ξ ′)+O(dΣ(Φt(ξ ,ξ

′),ξ ′)) and both Φt(ξ ,ξ
′) and ξ ′ are in Br(ξ ).

Then,∫
A f (Φt(ξ ,ξ

′))dξ ′∫
A f (ξ ′)dξ ′ =

∫
A f (ξ ′)dξ ′+O(r)

∫
A dξ ′∫

A f (ξ ′)dξ ′ ⇒ µ(Φt(ξ ,A))
µ(A)

≥ t3

1+O(r)
.

On the other hand, since Brt(ξ ) = Φt(ξ ,Br(ξ )) and since we have estimates for Jξ and f
both from above and from below, we have:

µ(Brt(ξ ))

µ(Br(ξ ))
≤ (1+O(r))

µ(Φt(ξ ,A))
µ(A)

.

Remark 2.15. Note that, in the case of a pinwheel surface (see Section 1.1.2), the excep-
tional set Z of the MCP is represented by the singularities at the center of each pinwheel
arrangement.

2.3.3 Propagation through a connectivity kernel

The propagation of neural activity starting from a single neuron may be modeled through
the diffusion process described above with a Dirac delta ψp0 as an initial datum. Thanks
to Theorem 2.4, under the hypothesis that the MCP holds on (G ,d,µ), this is equivalent to
considering the heat kernel ht(p, p0), which also admits upper and lower Gaussian estimates.

Moreover, in the special case of a compact Riemannian submanifold of the Euclidean
space, an arbitrary good approximation of the heat kernel can be provided by iterating the
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Gaussian kernel for small t. In [47], an approximating kernel is defined as follows: given an
exponentially decaying function h and a parameter α ∈ R,

kt(p,q)= h
(
∥p−q∥2

t

)
; k(α)

t (p,q)=
kt(p,q)

Qα
t (p)Qα

t (q)
, where Qt(p)=

∫
kt(p,q)Q(q)dµ(q).

Here, Q is a density function expressing the distribution of points in a dataset. A new kernel,
depending on the choice of α , is then defined via a normalization:

N(α)[kt ](p,q) =
k(α)

t (p,q)∫
k(α)

t (p,q′)Q(q′)dµ(q′)
. (2.34)

The following theorem is proved (see Proposition 3 in [47]).

Theorem 2.9 (Coifman and Lafon, 2006). Define the operators

H(α)
t f (p) :=

∫
N(α)([kt ](p,q) f (q)dµ(q) and Lt,α f =

1
t

(
f −H(α)

t f
)
. (2.35)

For α = 1 and for any fixed m, the operator Lt,1 converges to the Laplace-Beltrami operator
onto the linear span of its first m eigenfunctions, and the kernel

kt,n :=
(

H t
n

)n−1
N(α)

[
k t

n

]
converges to the Neumann heat kernel on the manifold as n goes to infinity.

As a matter of fact, the result proved in [47] is more general. For each value of α ,
the generator converges to a specific operator (see Theorem 2 in [47]). In particular, an
interesting fact is that, for α = 1

2 , the process approximates the diffusion of a Fokker-Planck
equation depending on the density function Q. This result implies that different normaliza-
tions of the same Gaussian kernel may be used to define a generalization of other diffusion
processes proposed in differential cortex models. As already mentioned in Section 1.3, the
Fokker-Planck equation has been taken into consideration in various works to describe the
lateral connectivity of V1 [112, 127].

We model the expansion of the activity starting from the stimulation of one specific
profile (i.e. one point p0 of the feature space G ) through an operator analogous to (2.35).
First, we adapt the normalization operation proposed in [47] to our setting by taking the
integrals w.r.t. the spherical Hausdorff measure associated to the cortical distance. For α = 1
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and Q ≡ 1, we obtain the operator N applied to kernels K : G ×G → R as follows:

N[K ](p,q) =
K (1)(p,q)∫

K (1)(p,q′)dµ(q′)
,

where
K (1)(p,q) =

K (p,q)∫
K (p,q′)dµ(q′)

∫
K (p′,q)dµ(p′)

.

We then define the propagation operator

Ht f (p) :=
∫

N [ν (Kt)] (p,q) f (q)dµ(q), (2.36)

where N is applied to the kernel Kt (we hereafter make explicit the dependence of K on the
squared norm t of the filters) after passing it through a sigmoidal activation function

ν(z) =
1

1+ exp(−z)
.

Note that, for d(p,q)→+∞, the term ν (Kt) is an exponentially decaying function of d2
t (p,q)

2 :

ν (Kt(p,q)) =
exp
(
−d2

t (p,q)
2

)
1
e + exp

(
−d2

t (p,q)
2

) ∼ e · exp
(
−d2

t (p,q)
2

)
.

We finally provide a description of the propagation of neural activity around a point p0 by
defining

K p0
t,n := Hn−1

t K p0
t , (2.37)

where K p0
t (p)≡ K p0

t,1(p) := N [ν (Kt)] (p, p0).

By this iterative procedure, the spatial extent of the kernel widens at each step, and this
width depends on the size of the RPs, i.e. on the diameter of their RFs (RPs are local objects,
and they are always modeled through compactly supported or rapidly decaying functions).
There is neurophysiological evidence [7] that the extension of horizontal connections de-
parting from a V1 cell matches the size of its so-called low-contrast summation field; this
is identified as the area measured by presenting low-contrast bars or gratings of increasing
sizes at the RF center, and keeping the size of peak response. The low-contrast summation
field has in turn been shown [85, 7] to be on average 2.2-fold greater than the “classical”
RF. Therefore, since a relationship between the RF size and the spatial extent of horizontal
connections seems to hold from a biological point of view, we believe that the optimal number
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of iterations may not depend on the RP size. As for the choice of this number, a first stopping
criterion is this average ratio between the size of low-contrast summation fields and classical
RFs. Another possible quantitative framework for fitting the kernel to the neurophysiological
data was proposed in [59] to fit a Fokker-Planck kernel to the data from [27] and [7]: the
kernel was evaluated on a pinwheel map and compared with the measured distribution of the
tracer by comparing their densities onto the rectangles of a grid (whose sampling size was
chosen to match the pinwheel scale).

Remark 2.16. The kernel Kt can be locally approximated through an exponentially decaying

function of the squared distance. By Taylor expansion, we have: e−
d2
t (p,q)

2t =
(

1− d2
t (p,q)

2t

)
+

o
(

d2
t (p,q)

t

)
, where dt depends on the squared norm t of the filters – also note that dt = t ·d1,

where d1 is the cortical distance obtained from the same bank of filters, but normalized to
have L2 norm equal to 1. Recall that Kt can be expressed in terms of dt as follows:

Kt(p,q) = t − d2
t (p,q)

2
,

where t is the squared L2 norm of the filters. If we fix t, when dt(p,q) is small we then get

e−
d2
t (p,q)

2 ≈
(

1− d2
t (p,q)

2

)
= Kt(p,q). (2.38)

This suggests that, with a much more rough approximation, one can even think of modeling
the cortical connectivity as an iteration of (a proper normalization of) Kt itself instead
of a Gaussian kernel. In this case, one may consider an activation function of the type
s(z) = max(z−T,0), which simply puts to zero all values below a certain threshold T .

Finally, note that this idea of repeated convolutions can be applied to model the evolution
of the response of the layers of V1 to a visual stimulus I applied to the retina, in the presence
of horizontal connections. In general, given a function of the cortical coordinates

F0 : G −→ R,

the action of the propagated kernel onto F can be expressed by

Hn[F ](p0) :=
∫
G

K p0
n (p)F0(p)dµ(p). (2.39)
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Now, note that

Hn[F ](p0) =
∫
G

(∫
G

N[s(K)](p,q)F0(p)dµ(p)
)

K p0
n−1(q)dµ(q)

=
∫
G

K p0
n−1(q)H1[F ](q)dµ(q) = Hn−1[H1[F ]](p0) = . . .= H1 . . .H1︸ ︷︷ ︸

n

[F ](p0).

This means that applying the n-th step kernel to F0 is equivalent to applying n times the local
kernel to F0. Now, one can take as F0 the activation computed by lifting the image I to the
cortical coordinates. This can be written as follows:

I0(p) := h
(∫

I(x,y)ψp(x,y)dxdy
)
,

where h is an activation function. Therefore, one can compute the “evolved” response
In(p0) = Hn[I](p0) by taking n steps of propagation through the local kernel. We will come
back on this in Chapter 3, where an analogous form of propagation will be applied to the
activations of the layers of a convolutional neural network.

2.4 Experiments

In this section we show, through some numerical simulations, the geometrical properties
of the connectivity kernels obtained by applying our model to some different banks of filters.
We first provide some general information about the numerical scheme used throughout the
simulations. As a first example, we resume the classical model of Gabor filters presented in
Section 2.2.2 and display the association fields generated by the connectivity in this case, as
well as in the case of the surface generated by an orientation map. The propagated kernel
will be computed both through the mechanism of repeated integrations described in Section
2.3.3, and by suitably approximating the diffusion process introduced in Section 2.1. We then
recover curvature selectivity properties of the association fields emerging from endstopped
simple cells. We also take into account the spatiotemporal behavior of the RPs by considering
a family of three-dimensional Gabor filters including a time parameter. Finally, we show
that it is still possible to recover a coherent “bow-tie” pattern starting from a family of RPs
obtained through a learning algorithm, whose parameterization carries no a priori geometric
information.
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2.4.1 Numerical scheme

The first distinction to be made in the treatment of these examples from the numerical
point of view is that between the continuous case and the discrete one. This can refer either
to the feature space G or to the spatial domain of the single filters. For instance, in the case
of a Gabor system, both the feature space G = R2 ×S1 and the spatial variable (u,v) ∈ R2

need to be sampled. On the contrary, when dealing with a bank of learned filters, the family
of indices G and the filter domains are finite sets. Of course, one could also consider “hybrid”
cases, e.g. a bank of filters defined on R2 but indexed by a discrete set.

For what concerns the computation of the initial kernel, the numerical setup is very
basic. The filters are either defined on R2 or numerically known onto a set of the type
{( i

n ,
j
n)}i, j=−n,...,n ⊆ R2; computing the generating kernel K(p,q) simply involves taking the

integral of the function ψp ·ψq ∈ L1(R2), which is either compactly supported or exponen-
tially decaying. Thus, the filter domains can safely be sampled (when needed) through a
bounded square grid

{(xi,y j)}i, j=0,...,N ⊆ [−W,W ]× [−H,H],

for some N,W,H > 0, with

xi+1 − xi = y j+1 − y j =: δ > 0 ∀i, j.

The kernel K(p,q) is then standardly calculated as

1
δ 2 ∑

i, j
ψp(xi,y j)ψq(xi,y j).

In the Gabor case, as shown in Section 2.2.1, this integral can even be computed analytically,
thus avoiding this approximation.

As for the propagation, first note that, in the case of a finite feature space G = {p1, . . . , pM},
the Hausdorff measure reduces to the counting measure: integrals over G are finite un-
weighted sums over its elements. Although seemingly trivial, this indeed captures the
distribution of the features throughout the data thanks to the inhomogeneity of the distance
d. Loosely speaking, given a certain set of filters, some features may be “more densely”
represented than others w.r.t. d. As a basic example, suppose that the filter ψp1 is highly
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correlated with 8 other filters, i.e. for a fixed ε∣∣{i ∈ {2, . . . ,M} : d(pi, p1)< ε
}∣∣= 8.

On the other hand, suppose that ψp2 has only 2 filters highly correlated with it. As a
consequence, µ(Bd

ε (p1)) = 9 and µ(Bd
ε (p2)) = 3, i.e. the balls of d of the same radius ε

centered at p1 and p2 have different measures. For a non-finite metric space, the spherical
Hausdorff measure extends this concept, although in general it is not explicitly computed;
however, the distance d in the Gabor case turns out to be estimated by a Riemannian distance
(see Proposition 2.3), and the spherical Hausdorff measure on a Riemannian manifold
coincides up to a constant factor with the Riemannian volume form [60]. This also makes it
possible to approximate the positive self-adjoint operator associate to the diffusion process
described in Sections 2.1 and 2.3.1 through a graph Laplacian operator, as in [34]. We will
go into more detail on the discretization of the Gabor feature space and on the definition of
this discrete operator in Section 2.4.2.
A last point to be mentioned is the role of the normalization applied to the kernel when
computing the propagation through the iterative procedure described in Section 2.3.3. Namely,
for each n we have:

0 ≤ K p0
n (p)≤ ∥K p0

n−1∥∞

∫
G

N [s(Kt)] (p,q)dµ(q)︸ ︷︷ ︸
=1

.

Therefore, ∥K p0
n ∥∞ is non-increasing w.r.t. n, which prevents the values of K p0

n from explod-
ing as n → ∞.

2.4.2 Gabor filters

We now go back to the bank of Gabor filters {ψx,y,θ} considered in Section 2.2.2. Since
the generating kernel in this case is known analytically, no discretization of the filter domain
R2 is needed for its computation. As for the feature space R2 × S1, in the following we
consider a sampling of the type

{−x, . . . ,x}×{−y, . . . ,y}×{−θ , . . . ,θ}

where x = y = 1 with discretization step .0075 and and θ = 1.5 with step .015 for the visual-
izations of the generating kernel; x = 1.5 and y = 2 with step .075, and θ = 1.5 with step .15
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for the propagation.

The generating kernel K computed around a point (x0,y0,θ0) ∈ G is a three-dimensional
function

(x,y,θ) 7→ K
(
(x,y,θ), (x0,y0,θ0)

)
.

Since the feature space for this family is of the form position × orientation, it is possible to
display a projection of it on the retinal plane. Specifically, by taking the maximum in the

Figure 2.5 The behavior of (x,y,θ) 7→ K
(
(x,y,θ), (0,0, π

4 )
)

in the case of Gabor filters. The kernel
has been truncated as explained above. In particular, the images show: (a) the receptive profile
ψp0 corresponding to p0 = (0,0, π

4 ); (b) a level set in R2 ×S1; (c) the projection on the (x,y) plane
obtained taking the maximum in θ .

variable θ and projecting onto the (x,y) plane, we obtain a 2D function concentrated around
(x0,y0), as displayed in Figure 2.5c.

We now display some stages of the iterative process described in Section 2.3.3, for the
truncated kernel K. Figure 2.6a displays the real part of the filter ψ(0,0,0), chosen as starting

Figure 2.6 Propagation of the neural activity in R2 ×S1 through repeated integrations of the kernel.
(a) The starting filter ψ(0,0,0) (real part). (b) The kernel K(0,0,0)

n (x,y,θ) for n = 1,2,3, projected down
onto the (x,y) plane by taking the maximum over θ . (c) The corresponding maximizing orientations
θ(x,y): at every location (x,y), an oriented segment with angle θ(x,y) is displayed – only where
K(0,0,0)

3

(
x,y,θ(x,y)

)
is over a threshold.
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point. In the Gabor case, the connectivity kernel lives in R2 ×S1. The functions

(x,y,θ) 7→ K(0,0,0)
n (x,y,θ), n = 1,2,3, (2.40)

obtained through three subsequent steps of the iterative rule (2.37), have been projected onto
the (x,y) plane by taking the maximum over the variable θ , as shown in Figure 2.6b. Finally,
Figure 2.6c shows the orientation θ(x,y) maximizing the value of K(0,0,0)

3 , at each location
(x,y) where this value exceeds a threshold. Specifically,

θ(x,y) := argmax
θ

K(0,0,0)
3 (x,y,θ).

Now, as shown in Section 2.2.2, the cortical distance d obtained from the family of filters

Figure 2.7 Propagation of the neural activity through the discretized heat equation associated to the
graph Laplacian in R2 ×S1. (a) The starting point (0,0,0), displayed as a blue asterisk in this 3D
space. (b) The updated kernel, projected down onto the (x,y) plane by taking the maximum over θ .
(c) The corresponding maximizing orientations θ(x,y), as in Figure 2.6.

(1.2) is locally equivalent to a Riemannian distance on the space R2 × S1. In such a case,
it is possible to discretize the Laplace-Beltrami operator by means of a graph Laplacian
operator associated to the distance. Specifically, given a simple undirected weighted graph Γ

with vertices X = {pi}i equipped with weights {µi}i, and edges E = {ei j}i, j equipped with
weights {wi j}i, j, one can define for any function f on V the Laplacian operator onto the
graph as

L f (pi) :=
1
µi

∑
j : pi∼p j

wi j
(

f (p j)− f (p j)
)
, (2.41)

where pi ∼ p j means that there is an edge connecting pi and p j. This operator, possibly
with slightly different definitions from time to time, is widely used in shape analysis (see e.g.
[100, 123]) to construct algorithms that keep trace of the geometry of the data, by means of
parameterizations obtained through the eigenfunctions of L. In [34], a graph approximation
of a Riemannian manifold M is constructed by taking the set of vertices X to be an ε-net in M
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with an associated discrete measure µ̃ = ∑i µiδpi which approximates the volume µ of M. In
the Gabor case, this allows to consider a simple rectangular grid as set of vertices, provided
that the discretization step is sufficiently small. Moreover, this choice yields uniform weights
µi. The set of edges with relative weights is then defined depending on the distance. Namely,
for ρ ≫ ε , two vertices pi, p j ∈ X are connected by an edge iff di j ≡ d(pi, p j)< ρ , and in
this case one defines the edge weight wi j := κ µiµ j, where κ is a normalization constant
depending on the dimension of the manifold. Note that the vertices can be chosen to be
any ε-net, since the geometry of the manifold is encoded in the definition of the edges, i.e.
in the choice of the neighborhood over which the sum (2.41) is taken. We implemented
the graph Laplacian associated to this approximating graph, in order to obtain a discretized
heat equation on the same sampling of R2 ×S1 as before, with initial datum the Dirac delta
f0 = δ(0,0,0) in this three-dimensional space, see Figure 2.7a. We took 100 iterations of the
discretized differential equation with a time step of 0.01. We then projected the updated
datum f (x,y,θ) onto the image plane, again by taking the maximum over θ , and displayed
the maximizing orientations as in the preceding case. See Figure 2.7b-c.
The results obtained are compatible with the geometrical properties of V1 lateral connections,
and the pattern of the maximizing orientations turns out to be consistent with the perceptual
principles of association fields.

Similar results have been obtained in several works concerning second-order statistics
on the distribution of edges in natural images. In [12], the statistical measurement of
the organization of local edge elements into curves led to the introduction of an oriented
filtering operation, expressed by a kernel on R2 ×S1 (see Figure 15.3 in [12]); its orientation
specificity and the negative lateral lobes recall some characteristics of our connectivity kernel,
especially after clipping it at its minimum as explained above (cf. the slices in Figure 2.4c).
In [67], association field-like structures comparable to our Figure 2.6c emerge from both a
statistical analysis of edge co-occurrence in natural images, and a Bayesian study analyzing
the probability of two edge elements belonging to the same extended contour. A similar
analysis is carried out in [58], except that here contours are described as ordered sequences
of tangent elements; in this work a stronger role of the parallelism cue emerges, i.e. there
is a marked correlation between parallel edge elements. See also [94] and [134] as further
references on the emergence of the collinearity, cocircularity and parallelism cues from
statistics on natural images.
These studies are not to be regarded as a separate kind of analysis leading to results consistent
with ours. Indeed, it is believed that the cortical processing is influenced by environmental
statistics and adapts to best process those signals that are most likely to occur.
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Propagation on the pinwheel surface.

Figure 2.8 (a) The orientation map Θ, generated through superposition of plane waves. The point
(0,0) is highlighted in black. (b) The starting filter ψ̃0,0 (real part).

We now consider the sub-family of Gabor filters {ψx,y,Θ(x,y)}x,y determined by an ori-
entation map Θ and the corresponding metric structure onto GΘ = R2. We generated an
orientation map Θ through superposition of plane waves with random phases, as described in
[120], and we chose its central point (0,0) as a starting point (see Figure 2.8a). The corre-
sponding filter ψ(0,0) is displayed in Figure 2.8b. Again, we implemented the propagation of
neural activity through iteration of the kernel onto the 2D feature space, and we displayed the
updated kernel with color-coded intensity (Figure 2.9a), as well as the orientations Θ(x,y)

Figure 2.9 Propagation of the neural activity onto GΘ through repeated integrations of the kernel.
(a) The propagated kernel around (0,0), obtained after four iterations. A black asterisk shows the
starting point (0,0), and the orientation Θ(0,0) is highlighted by a red line superposed onto the
image. (b) At each point (x,y) where the kernel exceeds a threshold, the corresponding orientation
Θ(x,y) is displayed through an oriented segment superposed onto the orientation map.

corresponding to points (x,y) where the kernel exceeds a threshold (Figure 2.9b). As a
sampling of the feature space, we took ]−2,2[×]−2,2[⊆ R2 = GΘ, discretized with step
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0.05 for both x and y. Finally, recall that the cortical distance on GΘ can be seen as the

Figure 2.10 Propagation of the neural activity through the discretized heat equation associated to
the graph Laplacian on GΘ with initial datum δ(0,0). (a) The updated 2D kernel around (0,0), with a
black asterisk showing the starting point (0,0), and a red line highlighting the orientation Θ(0,0).
(b) At each point (x,y) where the kernel exceeds a threshold, the corresponding orientation Θ(x,y),
as in 2.9.

restriction of the Gabor distance to Σ = {
(
x,y,Θ(x,y)

)
}x,y ⊆ R2 × S1. This is still locally

equivalent to a Riemannian metric on GΘ. Note that, for σ2 = Aλ ≪ 1, this approximates the
distance dΣ of Section 2.2.3. We implemented the graph Laplacian operator associated to this
metric on GΘ, and the corresponding discretized heat equation with initial datum δ(0,0). The
results for 150 iterations of the discretized equation, with a time step of 0.01, are displayed
in Figure 2.10.
Note that in this case we do not need to project the connectivity kernels onto the image plane
to visualize them, since the whole propagation already lives in a bidimensional space.
Again, the computed kernel spreads along the axis of the orientation Θ(0,0); moreover, it
propagates in a patchy way, with peaks in the regions of the map whose orientation values
are close to Θ(0,0). This behavior has been observed experimentally by tracking the spread-
ing of neural activity through biocytin injections, and by comparing it with the underlying
orientation preference map [27].

2.4.3 Endstopped simple cells

We will now focus on the connectivity pattern emerging from a particular class of neurons,
namely endstopped simple (ES) cells, showing simple RPs equipped with end zones along the
preferred orientation (see Section 1.1.2). Such profiles can be modeled by linear combination
of two similarly positioned and oriented simple RPs of different sizes, as proposed in [51].
Specifically, one such RP ψ can be written as the (weighted) sum of the positive contribution
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of a smaller simple RP ψS and the negative contribution of a larger simple RP ψL, as follows:

ψ := cS ψ
S − cL ψ

L, (2.42)

where cS > cL > 0. Figure 2.11 shows an example of even and odd RPs generated as in

Figure 2.11 ES profiles obtained as in Eq. (2.42).

(2.42), where the simple RPs ψS and ψL are modeled by Gabor filters. To be more precise,
the model in [51] proposes to represent the response R of ψ to some contrast pattern as

R = h
(
cS h(RS)− cL h(RL)

)
, (2.43)

where RS and RL are the responses of ψS and ψL to such pattern, and h is the rectifying
function h(z) = max(0,z). This increases the stimulus specificity compared to directly
computing the response from (2.42). Nonetheless, the two models coincide when the
responses of both ψS and ψL to a visual stimulus are nonnegative, i.e. for those stimuli in
the “preferred range” of orientation and curvature of the ES cell.
We computed the kernels associated to some families of ES profiles of different lengths and
displayed the resulting association fields, obtained as before by selecting the orientation that
maximizes the intensity at each location. This experiment shows that our model allows to
recover the link between the length of ES cells and curvature [82, 51]. The left column of
Figure 2.12 shows the connectivity patterns obtained for a set of non-endstopped simple
cells (top image), corresponding to zero curvature, and for three families of ES cells of
decreasing lengths, corresponding to increasing absolute values of curvature. In each of the
cases displayed, we considered 21 RPs with orientation values equally spaced in [−π,π]. We
then shifted them spatially to generate the whole filter bank. Our results are compared to the
curvature-based connection fields obtained in [20] through differential tools, displayed in the
right column of Figure 2.12. Since the sign of the curvature is taken into consideration in
[20], each of our association fields corresponds to a couple of theirs (with curvatures κ and
−κ).
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Figure 2.12 Top row: association fields emerging from the connectivity kernels associated to a
simple cell (top) and to three ES profiles of varying length. Bottom row: the connection fields of
curves obtained in [20] relative to curvature κ = 0 (top) and three increasing positive values of κ

respectively.

2.4.4 Spatiotemporal Gabor filters

Let us consider a family of filters still of Gabor type, but taking into account the movement
of the stimulus. Cocci et al. [46] fitted the RPs of a set of V1 neurons showing velocity-
selective behaviours with a three dimensional Gabor model. That is we have, in addition to
the two spatial dimensions, a third temporal dimension in the domain of these filters, which
in fact form a subset of L2(R3). A convenient visualization of such filters is as a temporal

Figure 2.13 The time course of the recording of a simple cell’s RP. Source: [46].

sequence of spatial maps (see Figure 2.13, taken from [46]). In [17], the authors also develop
a differential model of functional architecture based on such 3D Gabor family.
Now, in order to mantain the notations as similar as possible to the one that we used for 2D
Gabor filters, we shall write the general inseparable element of the family of filters as

ψx,y,θ ,t,α(u,v,s) = exp
(
−2πi

(
X
λ
+α(s− t)

))
·exp

(
−X2 +Y 2

2σ2 − (s− t)2

2β 2

)
,
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where X = (u− x)cosθ +(v− y)sinθ

Y =−(u− x)sinθ +(v− y)cosθ .

The set of filters is indexed by the position (x,y)∈R2, the orientation θ ∈ S1, the time t ∈R+

at which the response of the filter is maximum, and the velocity α ∈ R. Parameters λ and β

are fixed.
Let us compute the generating kernel K in this setting. The feature space in this case is
R2 × S1 ×R×R. We compute K

(
(x,y,θ , t,α),(x0,y0,θ0, t0,α0)

)
with t = t0: this means

considering two cells whose activation peaks at the same time. In other words, we fix t and
we take G = R2 ×S1 ×R as our feature space. We restrict to this case in order to be able
to better interpret the results in terms of the orientation and velocity parameters. Denote
p = (x,y,θ ,α) and p0 = (x0,y0, t0,α0). We obtain the following expression.

K(p, p0) = Kspatial((x,y,θ),(x0,y0,θ0)
)
· β

2√
π exp

(
−β 2(α −α0)

2

4

)
,

where Kspatial denotes the generator obtained in the time-independent case discussed above.
Through repeated integrations against K, we obtain the connectivity kernels K(x0,y0,θ0,α0)

n

associated to this family of filters. Since we are considering a 4-dimensional feature space,

Figure 2.14 Visualizations of the spatiotemporal generating kernel computed around the point
(x0,y0,θ0,α0) = (0,0,0,0). a) A level set of its projection onto the (x,y,θ) space, obtained by
taking the maximum in α . b) A level set of its projection onto the (x,y,α) space, obtained by taking
the maximum in θ .

we visualize the generating kernel by projecting it onto the 3-dimensional spaces R2 ×S1

(position and orientation) and R2 ×R (position and velocity). Figure 2.14 displays the kernel
around p0 = (0,0,0,0) projected (a) onto R2 ×S1 by taking the maximum in the variable α ,
and (b) onto R2 ×R by taking the maximum in the variable θ .
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Note that the filters ψx,y,θ ,t,α represent cells that respond maximally to only one direction
of movement (depending on the sign of α): such profiles are called inseparable. However,
there exist also cells which are equally sensitive to both directions, whose profiles are called
separable (since they can be obtained by the product of two real functions of space and time
respectively), as well as cells sensitive to both directions but to a different extent. The family
of all these profiles can be obtained through weighted sums of inseparable profiles [46]:

ψ
C
x,y,θ ,t,α(u,v,s) =Cψx,y,θ ,t,α(u,v,s)+(1−C)ψx,y,θ ,t,−α(u,v,s),

(2.44)

where C ∈ [0,1] is the separability index, weighing the contribution of sensitivity to the two
opposite directions of movement, expressed by the velocity parameters α and −α . Note that,
if we introduce C as a parameter, then α can be taken to be nonnegative as an index.
The generator K̃ for the complete family

{ψ
C
x,y,θ ,t,α}x,y,θ ,t,α,C

is easily obtained from the generator K for the inseparable family above. Denote

q = (x,y,θ , t,α,C),

q0 = (x0,y0,θ0, t0,α0,C0).

We have:

K̃(q,q0) =CC0K(p+, p+0 )+ C(1−C0)K(p+, p−0 )

+ (1−C)C0K(p−, p+0 )+ (1−C)(1−C0)K(p−, p−0 ),

where p+ = (x,y,θ , t,α), p− = (x,y,θ , t,−α) and p+0 , p−0 are defined similarly.

2.4.5 A family of learned filters

We now test our model in the case of a family of numerically-known filters indexed
by a discrete subset of R2 ×F , where the fiber F is just a set of indices with no a priori
geometric structures. The aim of this example is to show that the metric structure defined on
this feature space by the kernel K still generates “bow-tie” patterns onto the retinal plane.
Specifically, we chose a bank of filters obtained through an unsupervised learning algorithm

which maximizes sparseness; this procedure was first proposed by Olshausen and Field
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Figure 2.15 A bank of 128 filters obtained by training a set of basis functions on natural images (see
[117]). The algorithm used is described in [98].

in 1996 [117] in order to find efficient linear codes for natural scenes, as an attempt to
understand the response properties of visual neurons in terms of the statistical structure of
natural images. Their algorithm generates a family of localized, oriented, bandpass RPs, as
the 128 shown in Figure 2.15 (which were generated using a later version of the algorithm,
provided by Lee et al. in 2007 [98]).
We then “centered” the support of each filter ψ by identifying the spatial location around
which ψ is concentrated and cropping its domain (16×16 pixels originally) symmetrically
around this point to obtain a 11×11 pixel support. The central location was simply chosen
to be the point where the function ψ reaches its maximum. To manage the cases in which the
maximum point was near the border, we added a 5-pixel padding of zeros around the initial
filters before cropping.
At this point, we have a set {ψ f } f=1,...,128 of functions centered at zero: by shifting them
spatially, we obtain a family of filters ψx,y, f centered at (x,y), where x,y ∈ {−W, . . . ,W}.
Therefore, the feature space in this case can be written as

G = {−W, . . . ,W}2 ×F ,

where F = {1, . . . ,128}. The width W depends on the size of the images one considers
onto the retinal plane. For example, in [117], 512×512-pixel images where considered to
generate the bank of filters: in this case, one may take W = 256.
We are now able to compute K. Note that, since the filters have an 11× 11 support, the
support of the generating kernel K projected onto the (x,y)-plane will be of size 21× 21
and the supports of the kernels obtained by repeated integrations will widen progressively.
Figure 2.16 displays the projection onto the retinal plane of the kernel around a filter, for
four different filters of the family. As in the Gabor example, the first projection (central
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column) shows at each (x,y) the maximum value (color-coded) of the kernel over all f ∈ F ;
the second projection (right column) displays, at the points (x,y) where this value is above
a threshold, a tiny version of the filter ψx,y, f where the maximum is achieved. Even in

Figure 2.16 Visualization of the kernel K computed around four filters ψ0,0, f0 ( f0 = 19,49,92,79).
In each of the four cases the image displays, from left to right: the original filter (already cropped
around its center); the projection of the kernel on the (x,y)-plane obtained by taking the maximum in
the variable f ; the same projection, where instead of the intensity value we displayed at each pixel
the filter ψx,y, f maximizing K

(
(x,y, f ),(0,0, f0)

)
.

this non-structured case, a “bow-tie” pattern along the preferred axis of the starting filter
develops, with the orientations of the maximizing filters organizing across space in a way
consistent with the association fields of [61]. However, in this example the “side lobes”



2.4 Experiments 79

emerging from the interaction of parallel RPs were not discarded. A clipping similar to the
one performed for Gabor filters may be reproduced e.g. by adopting techniques of connected
component extraction; nonetheless, since the pattern obtained turns out to be consistent
with the “ladder” effect described in [152], truncating the kernel might mean ignoring some
relevant information.
Note that in this case we only displayed bidimensional representations of the connectivity
kernel. This is still possible since we constructed a parameterization of the family of
filters in order to have a feature space of the form position × features, so it makes sense
to project the results on the (x,y)-plane. However, a visualization of the kernels in the
space G = {−W, . . . ,W}2 ×F would no longer be meaningful, since the set of indices
F = {1, . . . ,128} is not ordered with respect to the distance.





Chapter 3

A metric model for lateral connections in
CNNs

Convolutional Neural Networks (CNNs) are a powerful algorithmic framework that
provides outstanding performances on image classification tasks. However, there is still little
insight into how the learning process of these algorithms develops and how exactly image
information is coded in CNNs, and notably how these mechanisms are related to human
object processing. Indeed, although CNN models were initially inspired [63, 96] by Hubel
and Wiesel’s hierarchical model of the visual system [82], they display critical discrepancies
w.r.t. biological vision in both structure and feature analysis.
In [13] the authors show that, unlike in human vision, global shapes have surprisingly little
impact on the classification output of the net: on the contrary, CNNs turn out to learn mostly
from local features. As such, CNN architectures are very unstable to small local perturba-
tions, even when the global structure of the image is preserved and its content is still easily
recognizable by a human observer. Along the same lines, it has been recently shown [29]
that a very good classification accuracy on the ImageNet benchmark dataset can be reached
through a model that only relies on the occurrences of local features, with no information on
their spatial location in the image.
Besides, although the overall convolutional architecture has much in common with the
process of feature extraction carried out in the visual pathways, its structure implements a
purely feedforward mechanism. On the other hand, the human visual system is well known
to rely on both lateral (intra-layer) and feedback (top-down) recurrent connections for pro-
cesses that are critical for object recognition, such as contour integration or figure-ground
segregation (see Chapter 1). In recent years, several models have been proposed in which
CNN architectures are enriched with some recurrent mechanism inspired by biological visual
systems. In [139], pre-trained feedforward models were augmented with a Hopfield-like
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recurrent mechanism acting on the activation of the last layer, to improve their performance
in pattern completion: partially visible objects converge to fixed attractor points dictated by
the original whole objects. In [101] a “Recurrent CNN” architecture is introduced, where
lateral connections of convolutional type are inserted in a regular feedforward CNN. We
shall briefly outline this architecture, henceforth referred to as RecCNN, in Section 3.1.3.
A systematic analysis of the effect of adding lateral and/or top-down connections has been
carried out in [135], where the resulting architectures are tested on a task of classification of
cluttered digits. In RecCNNs, lateral connections are learned, and no geometrical prior (apart
from the convolutional structure) is inserted. As such, these connections are determined by
additional parameters that are completely independent of the feedforward architecture.

In the following, we propose to modify the classical CNN architecture by inserting a
biologically plausible geometric prior on the structure of lateral connections, in terms of a
measure of correlation between neurons inspired by our connectivity model described in
Chapter 2. The main point that we wish to make is that this information allows the networks
to spontaneously implement perceptual mechanisms of global shape analysis and completion.
Therefore, we shall examine the ability of the models to generalize an image classification
task to data corrupted by a variery of different perturbations: these include occlusions (as in
[139]), local contour disruption (as in [13]) and adversarial attacks via Fast Gradient Sign
Method (FGSM) [74]. We stress that the data perturbations are only inserted in the testing
phase – that is, the models are not trained to classify corrupted images.
As a preliminary experiment, we examine the effect of an implicit constraint given by the in-
troduction of a suitable regularization term in the loss function. We then improve this method
by directly modifying the architecture of a base 2-layer CNN through lateral connections
similar to the ones in RecCNNs, but defined by a structured kernel encoding specific geomet-
ric information. This new architecture will be referred to as KerCNN. We will compare the
performance of these new models to the one of the base CNN, for the generalization task
mentioned above.

The chapter is organized as follows: in Section 3.1, we provide the necessary background
about some deep learning architectures; in Section 3.2 we outline our new models and define
the task; finally, Section 3.3 is devoted to the results. The analysis presented in Sections 3.2
and 3.3 roughly corresponds to the content of [108].
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3.1 Feedforward and recurrent CNN architectures

In this section we give some general background on deep neural networks, with a focus
on the specific architectures mentioned before, namely feedforward and recurrent CNNs.

3.1.1 Deep Neural Networks

The term deep learning indicates a class of machine learning algorithms, inspired by
information processing in biological nervous systems, designed to recognize patterns and
learn data representations. Its diverse applications include computer vision, speech recog-
nition, social network filtering, machine translation, drug design, medical image analysis.
The main object at the basis of this framework is the artificial neural network, which may be
defined as a directed graph whose vertices are called nodes (or artificial neurons, or simply
neurons) and whose edges represent the connections between these nodes. The inputs of a
neuron are all the nodes from which it receives incoming connections; its output is typically
defined as some nonlinear function of a weighted sum of these inputs. The nodes of such a
network can be aggregated into groups, called layers, which are connected with each other
in a hierarchical way, that is they are ordered; the presence of one or more hidden layers
interposed between the first (input) and last (output) layer characterizes a sub-family of
algorithms called deep neural networks (DNNs). The most basic DNN architecture is a
purely feedforward one, where the neurons of each layers send outgoing connections only to
neurons of the next layer. The network is said to be fully connected if all the nodes of a layer
are connected to all the nodes of the next one.

A feedforward DNN implements an operator F which is determined through a minimiza-
tion process, to approximate a given operator

Z : H0 → HL. (3.1)

The approximating functional F is obtained as the composition F0 ◦ . . .◦FL of mappings

Fl : Hl → Hl+1

acting between suitable functional spaces and representing the network’s layers. We hereafter
outline this process through the following steps.

• We first describe the approximating operator F , determining the so-called architecture
of the feedforward DNN.
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• We then introduce the loss function, i.e. the function to be minimized, essentially
expressing a measure of dissimilarity between the approximating operator F and the
“true” operator Z.

• Finally, we focus on the optimization process, which is typically implemented via a
gradient descent method.

Feedforward DNNs

The unknown operator F = F0 ◦ . . .◦FL takes as input a function I ≡ h0 : G0 → R (first
layer) and produces an output hL = Fh0 : GL →R (last layer). For l ∈ {0, . . . ,L}, the mapping
Fl : Hl → Hl+1 encodes the operations performed between the l-th layer and the (l +1)-th
layer. This yields an alternance of linear and nonlinear operations: Fl applies to its input
hl ∈ Hl a linear operation followed by a nonlinear one. The activation hl+1 : Gl+1 → R
of the (l + 1)-th layer is obtained as a function of the preceding activation hl : Gl → R as
follows:

hl+1 := Fl(hl) = sl+1(Alhl +bl),

where:

• sl+1 : Hl+1 → Hl+1 is a nonlinear activation function;

• Al : Hl → Hl+1 is a linear operator;

• bl ∈ Hl+1 is a further additive element, often referred to as bias term.

In most cases, the activation functions sl are obtained by pointwise applying a real function
sl : R→ R, which we still denote by the same name – i.e. with a slight abuse of notation
we write sl( f ) := sl ◦ f . A typical choice for it in recent literature is the so-called Rectified
Linear Unit (ReLU), defined as sl(z) = max(0,z) [114, 93]. Another common example is
the sigmoidal activation function

sl(z) =
1

1+ e−z . (3.2)

In practical implementations, the domains Gl are discrete sets {1, . . . ,Nl} and we generally
denote hl = {hl(i)}i∈Gl . In this case, the linear operators Al at each layer can be represented
as Nl+1 ×Nl matrices {wl( j, i)} j∈Gl+1,i∈Gl , and the bias terms are vectors bl = {bl( j)} j∈Gl+1 .
In these terms, the network is fully connected when at every layer the entries of Wl are
all independent of each other and wl( j, i) ̸= 0 for all i ∈ Gl, j ∈ Gl+1. According to this
formulation, for a fixed j ∈ Gl+1, {wl( j, i)}i∈Gl contains the weights of the incoming edges
of hl+1( j) in the graph structure. See Figure 3.1 for a schematic depiction.
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Figure 3.1 A feedforward, fully connected DNN with one hidden layer. As an example, we displayed
the neuron h0(2) = I(2) of the input layer and the neuron h1(3) of the first hidden layer, as well as
the weight w0(3,2) connecting them.

The loss function

Recall that the functionals Fl are to be determined in order for F to best approximate
the true operator Z: this is done by minimizing a loss function L , usually composed by a
“fiducial term” P, and a “regularization term” R. The latter is generally introduced to enforce
some restriction on the complexity of the function space in which the approximating function
F is sought. For instance, smoothness conditions or bounds on the vector space norm may be
imposed. In fact, the most common regularization term in deep learning is defined as

R(F) = λ

L

∑
l=0

∑
j∈Gl+1
i∈Gl

|wl( j, i)|2. (3.3)

That is, the squared 2-norms of the matrices {wl( j, i)}i, j for each l are penalized. The term
is weighted by a factor λ , called the regularization hyperparameter. This method, usually
referred to as L2 regularization, enforces small values of the coefficients. Alternatively, one
can use an L1 term (or lasso [140]) penalizing the absolute values of the weights, yielding
a sparse representation – i.e. one involving few non-zero coefficients. The role of the
regularization term R is linked to the concept of generalization in learning problems: we will
come back on this later.
On the other hand, the term P quantifies how much F differs from Z. In a so-called supervised
learning framework, Z is known on a given subset X ⊆ H0 and the fiducial term takes the
form

P(F(I),Z(I)), (3.4)
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where I ∈ X . Then the whole loss function is obtained in this case as

L (F,Z,X ) =
1

|X | ∑
I∈X

P(F(I),Z(I)) + R(F). (3.5)

As for the form of P, the main distinction to be made is between regression and classification
tasks.

1. The cases in which the outputs Z(I) express a continuous quantity (e.g. the height of a
population) are referred to as regression tasks. In these cases, a typical choice for P is
the classical mean squared error (MSE):

P(F(I),Z(I)) := ∥F(I)−Z(I)∥2
2.

2. On the other hand, we talk of classification when we aim at separating the input data
into M categorical classes identified by labels {0, . . . ,M−1} (e.g. classify images of
handwritten digits with the correct number in {0, . . . ,9}). In this case, the problem is
generally formulated in probabilistic terms by choosing an output space of probability
vectors:

HL+1 =

{
p ∈ [0,1]M :

M−1

∑
n=0

pn = 1

}
. (3.6)

In order for the values of F to be contained in HL+1, the last activation function sL is
taken to be the softmax function

sL+1 : RM → RM, sL(v)n =
evn

∑
M−1
k=0 evk

∀ n = 0, . . . ,M−1. (3.7)

The softmax function produces a vector whose entries are real numbers between 0
and 1 that sum to 1: this can be interpreted as a vector of probabilities. Note that
this provides an example of activation function which is not obtained by pointwise
applying a real function.
If an input I ∈ X belongs to the n-th class, the exact function Z maps it to the vector

en = (e0, . . . ,eM−1), en
n =

1 if n = n

0 otherwise,
(3.8)

which assigns probability 1 to the n-th class, and 0 to all the other classes. The most
common loss function used for multiclass classification is given by the cross entropy
between the output F(I) and the target vector Z(I) containing the “true” probabilities
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associated to the input I:

P(F(I),Z(I)) =−
M

∑
n=1

Z(I)n log(F(I)n) =− log(F(I)n(I)), (3.9)

where n(I) is the correct class for I. The last equality holds since Z(I)n(I) = 1 and
Z(I)n = 0 for each n ̸= n(I).

Optimization process

The supervised learning process amounts to determining the linear functionals Al and the
bias terms bl through minimization of the loss function L . Note that, in a discrete setting,
this consists in determining all the entries of the matrices {wl( j, i)}i, j and of the bias vectors
{bl( j)} j, which are referred to as the parameters of the network.
The typical minimization scheme employed to optimize a DNN’s parameters is the gradient
descent (or steepest descent) method. Gradient descent is a first-order iterative algorithm
based on the construction of a minimizing sequence for a functional J defined on a Hilbert
space. The main idea is to consider a flow in the opposite direction of the gradient of the
functional, which is orthogonal to the level lines of J: this means considering a Cauchy
problem ∂tu(ξ , t) =−∇J(u(ξ , t))

u(ξ ,0) = u0.
(3.10)

By varying the initial point u0, the solutions of (3.10) form the steepest descent flow of J.
By discretizing these differential equations, one obtains sequences (u[t])t∈N =

(
u(·, t)

)
t∈N

along which the value of J decreases. These also converge to minima of J provided that a
Palais-Smale compactness condition on the level sets of J is verified. We refer to [3] for a
complete discussion on this subject.
An advantage of this method is computational efficiency, due to its formulation through a
discretized Cauchy problem, yielding a very simple iteration step

u[t+1] = u[t]− ε ∇J(u[t]).

In the present setting, we have u = (w,b) =
(
{wl( j, i)}i, j,{bl( j)} j

)
and J is given by

J(w,b) := L
(
F(w,b),Z,X

)
, (3.11)

where the dependence of F on (w,b) has been made explicit in the right-hand side for clarity.
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Backpropagation

According to the steepest descent method described above, the network parameters are
updated through

wl(i, j)[t+1] = wl(i, j)[t]− ε
∂J(w,b)

∂wl(i, j)[t]
, (3.12)

bl(i)[t+1] = bl(i)[t]− ε
∂J(w,b)
∂bl(i)[t]

. (3.13)

Each optimization step t is commonly referred to as an epoch. The learning rate ε is often
not kept fixed during the whole learning process: a typical scheme consists in starting with a
higher value (yielding larger changes at every iteration) and gradully decreasing it.

The gradients ∇wJ =
(

∂J
∂wl(i, j)

)
l,i, j

and ∇bJ =
(

∂J
∂bl(i)

)
l,i

can be analytically computed

through a routine commonly referred to as backpropagation [146]. This name is due to the
fact that the partial derivatives of J w.r.t. the parameters of the internal layers are computed
through an iterative formula starting from the last layer, essentially obtained by iteratively
applying the chain rule. We denote

JI(w,b) := P
(
F(w,b)(I),Z(I)

)
,

so that
J(w,b) =

1
|X | ∑

I∈X

JI(w,b)+R
(
F(w,b)).

The backpropagation algorithm is actually only needed for the fiducial part of the loss func-
tion, which is affected by the chain of operations performed on the input. We hereby show
how to compute the derivative of the fiducial terms JI(w,b) = P

(
F(w,b)(I),Z(I)

)
w.r.t. one of

the linear weights wl(i, j). A similar, simpler argument can be applied for the bias weights
bl(i).

Denote for convenience ĥl(i) = ∑ j wl(i, j)hl−1( j)+bl(i). Then:

hl(i) = sl(ĥl)i, (3.14)

∂ ĥl(i)
∂wl(i, j)

= hl−1( j). (3.15)
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By (3.15), we have:

∂JI(w,b)
∂wl(i, j)

=
∂JI

∂ ĥl(i)
∂ ĥl(i)

∂wl(i, j)
=

∂JI

∂ ĥl(i)
hl−1( j) =: δ

l
i hl−1( j).

Therefore, computing the whole derivative amounts to determining the quantity δ l
i =

∂JI
∂ ĥl(i)

.
We distinguish the following two cases.

• l = L+1. In this case, wL+1(i, j) is a parameter of the last layer before applying the
loss function:

I → . . .→ hL( j)
wL+1(i, j)−−−−−→ hL+1(i)→ P(hL+1,Z(I)).

Then δ
L+1
i is easily computed as follows.

δ
L+1
i =

∂JI

∂hL+1(i)
∂hL+1(i)
∂ ĥL+1(i)

= ∂iP
(
hL+1

)
· ∂i
(
sL+1(ĥL+1)

)
i.

Here, ∂iP denotes the derivative of P(F,Z) = P
(
( f1, . . . , fN),(z1, . . . ,zN)

)
w.r.t. fi, and

the second factor contains the derivative of the i-th component of sL+1(·) w.r.t. its i-th
argument, by Eq. (3.14). For instance, if sL+1 is the softmax function (3.7),

∂i
(
sL+1(ĥL+1)

)
i =
(
sL+1(ĥL+1(i))

)
i −
(
sL+1(ĥL+1(i))

)2
i .

• l < L+1. That is, wl(i, j) is a parameter of an internal layer:

I → . . .→ hl−1( j)
wl(i, j)−−−→ hl(i)

wl+1(m,i)−−−−−→ hl+1(m)→ . . .→P
(
FL+1◦ . . .◦Fl(hl−1),Z(I)

)
.

In this case we have:

δ
l
i =

∂JI

∂hl(i)
∂hl(i)
∂ ĥl(i)

=
∂JI

∂hl(i)
s′l(ĥl(i)) =

(
∑
m

∂JI

∂ ĥl+1(m)

∂ ĥl+1(m)

∂hl(i)

)
s′l(ĥl(i))

=

(
∑
m

δ
l+1
m wl+1(m, i)

)
s′l(ĥl(i)).

Note that, for internal layers, the nonlinear activation functions are real functions sl

applied pointwise: therefore the derivatives ∂i
(
sl(·)

)
i are simply given by s′l . The

non-differentiability of the ReLU activation function is handled in practice by setting
its derivative at zero to be either 0 or 1.
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To sum up, the derivative in (3.12) is given by the following backward iterative rule:

∂JI(w,b)
∂wl(i, j)

= δ
l
i hl−1( j), with δ

l
i =


∂1P
(
hL+1(i)

)
s′L+1(ĥL+1(i)) if l = L+1

s′l(ĥl(i))∑m δ l+1
m wl+1(m, i) otherwise.

The gradients ∇wJ(w,b) and ∇bJ(w,b) may alternatively be computed numerically through
a finite difference scheme; however, in addition to being approximate, this would also be
very computationally expensive. All the experiments that will be presented in Section 3.3
have been carried out using PyTorch [118], a popular deep learning framework providing a
powerful automatic differentiation tool which keeps track of the network graph: this allows
to “backpropagate” the gradients of all the internal operations by applying the chain rule to
their analytically computed derivatives, as outlined above.

Training, validation and testing

A typical learning routine involves splitting the dataset X into a larger training set
X train and a smaller testing set X test , and only using the former to determine A and b in
the optimization process. That is, the sum in (3.5) is only taken over X train. Precisely, the
quantity to be minimized w.r.t. the parameters w and b of the network is

J(w,b) = L
(
F(w,b),Z,X train) = 1

|X train| ∑
I∈X train

P
(
F(w,b)(I),Z(I)

)
+ R

(
F(w,b)).

This procedure is referred to as the training phase. The ability of the learned functional to
generalize the approximation of Z to unseen examples I ∈ H0 ∖X train can then be tested
onto X test , which is contained in H0 ∖X train and on whose elements the correct value of
Z is known.

As mentioned before, a critical role in the generalization ability of the network is played
by the regularization term R. Since the exact function Z is only known on a subset of its
domain, if no bounds are imposed on the complexity of the space, an approximating function
F can be learned for which the loss function is zero on the training data; however, loosely
speaking, this may be the result of learning the data “by heart” rather than constructing
meaningful representations for pattern recognition. This phenomenon is commonly referred
to as overfitting, and leads to poor performances on the testing data. We cite [24] as a solid
reference on these topics.
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As a matter of fact, the training problem of most neural networks produces error surfaces that
are non-convex; it has been shown that even a single-neuron network can have exponentially
many distinct local minima [11]. A common approach for “empirically” addressing this
issue is repeat the optimization process multiple times with different random initialization
seeds. On the other hand, finding a global minimum on the training set might actually lead
to overfitting. A popular technique to avoid overfitting is validation-based early stopping
[111, 122], guided by “verification” steps taken during the training phase. That is, the original
dataset is split into X = X train⋃X val⋃X test ; at every fixed number of training epochs
(on X train) the loss function is evaluated onto the validation set X val . Since the network
parameters are updated independently of the elements of X val , evaluating the loss function
on this set allows to track the generalization ability of the network during the optimization:
even if the loss function computed onto the training set is decreasing during the minimization
process, this may not be the case for the same function computed on the “unseen” examples;
in fact, it may even start increasing. The early stopping method consists in choosing the
number of training epochs according to the behavior of the loss function on the validation
data – i.e. the optimization algorithm is stopped as soon as the validation loss function stops
decreasing.
From the theoretical point of view, many recent works have tried to characterize the error
surfaces of DNNs. Although local minima are in general not equivalent, the probability of
finding a local minimum with a high value appears to decrease with network size [37]. It is
also worth mentioning that several recent works have focused on the (apparently much more
critical) issue of saddle points in the error surfaces (see e.g. [86]).

According to the classical (also called “vanilla”) gradient descent algorithm, the sum in
(3.11) is taken over the whole training set X train. In most cases, however, a variant called
stochastic gradient descent (SGD) [124] is employed when training neural networks: this
performs separate update steps for a sequence of “mini-batches” of fixed size, X1, . . . ,Xm ⊆
X train. That is, the training set is split into X train =

⋃
m Xm; for each m ≤ m, a functional

Jm is defined as in (3.11) by only summing over Xm, and the parameters are modified by
applying one step of the update rule in (3.12) for Jm: each epoch implies looping over
mini-batches until the whole dataset has been used. This method allows to employ highly
optimized matrix operations that lead to a very efficient computation of the gradient w.r.t. a
mini-batch. Note that taking a small batch size may lead to heavy fluctuations in the values
of the functional across iterations: this makes it possible to possibly jump out of the current
basin to reach potentially better local minima. Morever, it has been shown that SGD displays
the same convergence behavior as vanilla gradient descent for slowly decreasing learning
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rates [28].
Further, several “adaptive” variants of SGD have recently been introduced that adapt the
learning rate to each parameter by enforcing smaller updates for parameters associated with
frequently occurring features. One of the most popular among these methods is Adaptive
Moment Estimation (Adam) [87], which also takes into account a momentum estimation
for updating the learning rate. We refer to [126] for a useful review on gradient descent
algorithms.

Image data

The inputs I ∈ H0 of a DNN can represent a variety of different data: they can encode
images, text, audio signals, chemical features, just to name a few. In the present context, we
wish to focus on computer vision tasks, i.e. on situations where the input space contains
image data. According to the notations introduced above, an image can be represented as a
function

I : G0 → R,

where G0 = [α1,α2]× [β1,β2] ⊆ R2 for grayscale images and G0 = [α1,α2]× [β1,β2]×
{1,2,3} for RGB images. In the discrete setting, this translates into a H0 ×W0 ×n0 matrix
with n0 = 1 or n0 = 3 respectively. In the following, we shall generally denote input images
by I(u,v,c) for the general formulation, and by I(i, j,c) when focusing on the discrete imple-
mentation.

From now on, we will focus on image classification tasks. That is, the networks’ inputs
will be images I, and we will adopt the cross entropy as a fiducial term in the loss function.
In this case, the generalization ability of the network can be quantified through its accuracy
on the testing set, simply defined as the percentage of elements of X test that get correctly
classified by the trained network.

3.1.2 CNNs for image classification

A breakthrough in deep learning for computer vision was reached with the introduction
of a particular class of DNN architectures, namely Convolutional Neural Networks (CNNs).
The characterizing feature of these networks is the presence of layers that are not fully
connected as in classical deep architectures: instead, translation invariance is enforced by
local convolutional windows shifting over the spatial domain, thus allowing for the weights
to be shared across different locations of the image. The analogy with localized receptive
profiles in biological vision is strong. The processing of early visual areas is classically
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modeled as the lifting of an image to a feature space through a bank of filters with a localized
support (see also Section 1.1.2); the first convolutional layer of a CNN implements an
analogous mechanism, i.e. the linear functional W0 is a convolution operator

A0I (u,v,k) := ψ
0
k ∗ I (u,v) =

∫
G0

ψ
1
k (u

′,v′,c)I(u−u′,v− v′,c)du′dv′dc

= ∑
c∈{1,2,3}

∫
β2

β1

∫
α2

α1

ψ
1
k (u

′,v′,c)I(u−u′,v− v′,c)du′dv′,

where {ψ1
k }k=1,...,n1 is a bank of filters acting on images I(u,v,c). The subsequent convolu-

tional layers are defined similarly: for each l ∈ {0, . . . ,L−1} we have

Alhl (u,v,k) := ψ
l+1
k ∗hl (u,v),

where {ψ
l+1
k }k=1,...,nl+1 is the bank of filters associated to the (l +1)-th layer. The activation

of the (l +1)-th layer is then obtained as

hl+1(u,v,k) = Flhl(u,v,k) = sl+1 (Alhl (u,v,k)+bl(k)) = sl+1

(
ψ

l+1
k ∗hl (u,v)+bl(k)

)
.

(3.16)
Each activation hl(u,v,k) is defined onto a feature space Gl ⊆ R2 ×{1, . . . ,nl} encoding a
spatial 2D component and a feature index k ∈ {1, . . . ,nl}.
The spatial shifting of the filters introduces a critical constraint in the architecture, thus
significantly reducing the degrees of freedom (corresponding to the number of trainable
parameters) w.r.t. a regular DNN. Note that a smaller constraint is also applied to the bias
terms, which do not depend on the spatial coordinates (u,v) but only on the feature index k:
that is, bl(u,v,k) = bl(k).
The final layer of the network is typically not convolutional, i.e. the operator AL is not
translation invariant. AL maps to an output space HL+1 whose shape depends on the task: in
the case of multiclass classification, HL+1 is as in (3.6), where M must match the number
of classes, and the last activation function sL+1 is the softmax function (3.7). It is also not
uncommon to have more than one fully connected layers, with pointwise nonlinear activation
functions (e.g. ReLUs) interposed between them.

We now focus on the discrete formulation. In this setting, the update rule (3.16) reads:

hl+1(i, j,k) = sl+1

(
∑

i′, j′,k′
ψ

l+1
k (i′, j′,k′) · hl(i− i′, j− j′,k′) + bl(k)

)
.
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Let us recall the shapes of the tensors involved in these operations and fix some notations.
First, the input image I = h0 has size H0×W0×n0, where n0 equals 1 or 3, and the filters must
have either 1 or 3 channels accordingly: the bank of filters {ψ1

k }k=1,...,n1 is a d1×d1×n1×n0

tensor, where n1 is the number of filters of the first layer. The convolution between I and the
filters ψ1

k gives an H1 ×W1 ×n1 tensor, to which a bias vector b1 ∈ Rn1 is added along the
third component, to obtain the output h1 of the layer. Likewise, for each l a bank of filters
{ψ l

k}k=1,...,nl of size dl ×dl ×nl ×nl−1 is convolved with a tensor hl of size Hl ×Wl ×nl , and
a bias vector bl ∈ Rnl is added to the result.
Another layer that can optionally be interposed between convolutional layers consists of
the application of a pooling operation P: this performs a downsampling of its input over
the spatial variables (i.e. the “depth” dimension remains unchanged), typically by taking
the maximum or by averaging over small neighborhoods. For instance, if a pooling layer
is applied to an activation hl of size Hl ×Wl ×n1 over 2×2 squares, then the output P(hl)

will be an Hl
2 × Wl

2 ×nl tensor. This downsampling operation reduces the dimensionality and
introduces invariance to small shifts and distortions. The insertion of pooling layers has a
neural motivation as well: the receptive fields of visual neurons tend to get wider and wider
moving towards higher cortical layers, and subsampling the spatial dimension of a feature
space is equivalent to taking filters with a wider support in the next layer.
In these discrete terms, the non-invariance of the last linear operator AL yields a fully
connected layer. In practice, the output hL of the last convolutional layer is “flattened” to a
vector of length S = HL ·WL ·nL and transformed through a matrix {wL( j, i)}i, j of size S×M
and a bias vector of length M (where M is the number of classes), thus yielding a vector with
M entries.

3.1.3 Recurrent CNNs (RecCNNs)

The human visual system, as outlined in the preceding chapters, relies not only on a
hierarchical transmission of signals, but also on a lateral spreading of information. On the
other hand, the sequential structure of a CNN implements a purely feedforward mechanism:
the output of each layer only depends on the activation of the preceding layer. Recurrent
CNNs [101, 135] (RecCNNs) are a modification of this kind of architecture, where lateral
connections of convolutional type are added to a regular CNN. This means that the network
includes not only connections from one layer to the next one, but also connections from a
layer to itself: this can be described by introducing a time parameter t. The activation of the
l-th hidden layer at time t, which we denote by ht

l , is a function of:

• ht
l−1 (the output of the preceding layer at the same time step t);
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• ht−1
l (the output of the same layer at time t −1).

Specifically, following the notations introduced for CNNs, we have:

ht
l = sl

(
φ

l ∗ht−1
l︸ ︷︷ ︸

lateral

+ ψ
l ∗ht

l−1︸ ︷︷ ︸
feedforward

+bl
)

(3.17)

for all t, l > 0, where ht
0 = I for all t > 0, and h0

l ≡ 0 for all l > 0. Here, φ l = {φ l
k}k denotes

the convolutional filters defining the lateral connections at the l-th layer. Since the coefficients
of the net are kept the same at each time step, the only additional parameters w.r.t. a standard
CNN are the recurrent weights φ l . In a representation of the network as a graph, the recurrent

Figure 3.2 (a) Schematic representation of an RecCNN, from [135]. (b) A recurrent convolutional
layer from [101], unfolded for T = 3 time steps.

connections can be represented in a compact way as arrows going from a layer to itself, see
Figure 3.2(a). In order to represent the “unfolded” network, one needs to make explicit the
time component, as displayed on the top in Figure 3.2b (for 3 time steps).
Recurrent neural networks (RNNs) are often employed to process sequential inputs, e.g.
audio recordings, video or text. In such cases, a new input It = ht

0 is fed into the network at
each time step. On the contrary, in RecCNNs the input image is static, i.e. it is kept fixed at
each time step: the time variable only affects the processing.
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3.2 Kernel CNNs

The lateral connections in RecCNNs are completely learned and independent of the
feedforward ones. Moreover, the inclusion of these connections in a CNN increases its
complexity in terms of trainable parameters.
Our main contribution is to induce the metric structure presented in Chapter 2 on the layers of
a CNN. Accordingly, we will first modify the loss function with a regularizing term defined
by means of a gradient in the metric. After that, we will use the kernel defined in Chapter
2 to introduce convolutional lateral connections in the net. This means that the recurrent
kernels are obtained as a function of the feedforward ones. As such, their inclusion in the
structure of a CNN does not introduce any new parameters. Moreover, this construction
allows to enrich the model with biologically inspired prior knowledge on the geometrical
structure of lateral connections.

In the following, we first show how to define connectivity kernels associated to each
convolutional layer and outline the proposed network architecture; we then introduce a testing
framework to analyze the performance of the networks in a task of classification of corrupted
images, focusing on types of image degradation where mechanisms of perceptual completion
and global object analysis are required for correct classification.

3.2.1 The feature space as a metric space and the connectivity kernels

Applying the model defined in Chapter 2, we first endow the sets Gl of features with a
structure of metric space. Note that the filters {ψ l

k}k are all centered at zero; they are then
shifted over the spatial domain in the convolution operation. Similarly to the case of the bank
of learned filters of Section 2.4.5, we can define a family of translation-invariant filters by
{ψ l

k(· − i, · − j)}(i, j,k)∈Gl
. The distance dl : Gl ×Gl → R associated to the l-th convolutional

layer is nothing but the L2 distance between such filters:

dl
(
(i, j,k),(i0, j0,k0)

)2
= ∑

i′, j′,c
|ψ l

k(i
′− i, j′− j,c)−ψ

l
k0
(i′− i0, j′− j0,c)|2. (3.18)

The invariance of dl w.r.t. translations yields

dl
(
(i, j,k),(i0, j0,k0)

)
= dl

(
(i− i0, j− j0,k),(0,0,k0)

)
.

Therefore, the distance between all couple of points is completely characterized by the
distance from the points of the type (0,0,k0). The same holds for the associated correlation
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kernel, computed by taking the L2 scalar product between the filters ψ l . For the sake of
brevity, we denote

K̃l(i, j,k0,k)≡ K̃l
(
(i, j,k),(0,0,k0)

)
= ν

(
∑

i′, j′,c
ψ

l
k0
(i′, j′,c) · ψ

l
k(i− i′, j− j′,c)

)
. (3.19)

Here, ν is the sigmoidal activation function

ν(z) =
1

1+ e−z .

The indices are let vary so that the product ψ l
k0
(i′, j′,c) · ψ l

k(i− i′, j − j′,c) is computed
whenever the supports of the two filters overlap. Therefore, if the size of the bank of filters ψ l

is dl ×dl ×nl ×nl−1, then the size of the kernel is obtained as (2dl −1)× (2dl −1)×nl ×nl .
The final kernel is then given by

Kl(i, j,k0,k) = N[K̃l](i, j,k0,k), (3.20)

where N is the same normalization operator introduced in [47] and employed to normalize
the kernel in Chapter 2. Specifically, in the current case of a discrete, translation-invariant
kernel K̃l

(
(i, j,k0),(0,0,k)

)
= K̃l(i, j,k0,k), the operator reads:

N[K̃l](i, j,k0,k) :=
K̃l

(1)
(i, j,k0,k)

∑i′, j′,k′ K̃l
(1)
(i′, j′,k0,k′)

,

where

K̃l
(1)
(i, j,k0,k) =

K̃l(i, j,k0,k)
∑i′, j′,k′0

K̃l(i′, j′,k′0,k)∑i′, j′,k′ K̃l(i′, j′,k0,k′)
.

3.2.2 A loss function with a metric gradient term

The definition of a distance on the feature space allows us to add to the loss function a
new regularization term R depending on the metric gradient of the filters. In this way, the
loss function will take the expression of a classical functional of calculus of variation. As
already outlined in Section 2.1, a typical way to define a gradient norm in a metric setting
is by averaging a finite difference taken w.r.t. the distance onto a ball, see Eq. (2.9): the
pointwise value is obtained as the radius of the ball goes to zero. Here, we take the same
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approach. We start by defining, for any (u,v,k) ̸= (u0,v0,k0),

∇ψ
l(u0,v0,k0) =

{
∇(u,v,k)ψ

l(u0,v0,k0)
}

u,v,k
:=

{
ψ l

k(u,v)−ψ l
k0
(u0,v0)

dl
(
(u,v,k),(u0,v0,k0)

)}
u,v,k

. (3.21)

Note that, thanks to the translation invariance of the spatial variables due to the convolutional
structure, for these coordinates we may adopt the usual finite difference scheme to define
our gradient, i.e. consider a perturbation (u0 +h,v0 +h) of (u0,v0) by a fixed small step h.
However, the notion of “small step” depends on the metric taken into consideration. Since
the metric dl is defined onto the feature space Gl , we say that (u,v,k) is a “small perturbation”
of (u0,v0,k0) when dl((u,v,k),(u0,v0,k0)

)
is small. In this case, for fixed (u0,v0,k0), one

may regard ∇(u,v,k)ψ
l(u0,v0,k0) as a directional derivative. We then define

|∇ψ
l(u0,v0,k0)|2 :=

1
|Bε(u0,v0,k0)|

∫
Bε (u0,v0,k0)∖{(u0,v0,k0)}

(
∇(u,v,k)ψ

l(u0,v0,k0)
)2dudvdk,

where Bε(u0,v0,k0) is the ball of dl of radius ε around (u0,v0,k0). On the other hand,
since ∇(u,v,k)ψ

l(u0,v0,k0) = ∇(u−u0,v−v0,k)ψ
l(0,0,k0), we can simply consider the gradient

computed at the central point of the filter ψ l
k0

. That is, we can set (u0,v0) = (0,0) and define
the regularization term

Rl := λ ∑
k0

|∇ψ
l(0,0,k0)|2, (3.22)

where λ is a parameter weighting the contribution of the term in the loss function. For
the sake of readability, we omitted in (3.21) the dependence on the channel component
c ∈ {1, . . . ,nl−1}: for each c, we are actually taking ψ l

k(u,v,c) and ψ l
k0
(u0,v0,c) in (3.21).

This yields a different gradient for each channel c. If nl−1 > 1, we also sum over c in (3.22).

3.2.3 The KerCNN architecture

We now transpose the notion of connectivity introduced in Chapter 2, and notably the
propagation of Eq. (2.39), directly into the structure of a CNN. We shall refer to the resulting
network architecture as KerCNN. The update rule of a KerCNN layer is inspired by the
iterative procedure outlined in Chapter 2 to describe the propagation of neural activity in V1.
Specifically, h1

l = sl(ψ
l ∗hTl−1

l−1 + bl)

ht
l =

1
2

(
Kl ∗ht−1

l + ht−1
l

)
for 1 < t ≤ Tl,

(3.23)
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where the kernels Kl are defined from the filters ψ l as in (3.20).
The output of the (l−1)-th layer is first lifted to the l-th feature space through a feedforward
step, yielding an activation h1

l , which is then updated through convolution with the kernel
Kl , as in (2.39). The new output h2

l is defined by averaging between this updated activation
Kl ∗h1

l and the original activation h1
l . The same procedure is repeated, yielding a sequence

of activations ht
l , until a fixed stopping time Tl is reached. Note that each layer has its own

stopping time. We remark that convolutions with the kernel Kl are taken with appropriate
padding, so that the size of ht

l is preserved at every iteration.
The intuitive idea here is that Kl behaves like a “transition kernel” on the feature space of the
l-th layer, slightly modifying its output according to the correlation between its filters: the
activation of a filter encourages the activation of other filters highly correlated with it.

3.2.4 Task: stability to corrupted images

Our guess is that the insertion of structured lateral connections may improve the perfor-
mance of a CNN in tasks related to perceptual mechanisms of global shape analysis and
integration. In particular, we focus on a task of classification of corrupted images.
We start by considering a fixed CNN architecture with L convolutional layers as a base model,
and we modify it by inserting the structured lateral connections as described in Section 3.2.3.
Note that this yields a different KerCNN architecture for each combination of the layers’
stopping times (T1, . . . ,TL). If all stopping times are 1, the model coincides with the base
CNN.
Given a labeled image dataset, each model is trained in a supervised way to perform clas-
sification. No corruption is applied to the images during the training phase: the training
examples are the original images from the dataset (up to some basic pre-processing). The
actual experiment consists in analyzing the ability of the models to generalize the classifica-
tion to the degraded images, by comparing their classification accuracy on corrupted testing
images. We examine different kinds of image corruption:

1. Gaussian patches occluding the image, similar to the ones in [139];

2. Disruption of local contours, in analogy with the study presented in [13], obtained by
subdividing the image into horizontal or vertical strips and by shifting each of these
strips by a random number of pixels d ∈ {0, . . . ,D};

3. Adversarial attacks through the Fast Gradient Sign Method (FGSM) [74]. FGSM,
one of the most popular attack methods, simply adjusts the input image by taking a
gradient ascent step to maximize the loss function. Precisely, the perturbed image Ĩ is
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obtained as
Ĩ = I + ε · sign

[
∇IL

(
F,Z,X test)] (3.24)

where L is the loss function (3.5).

In all three cases, the amount of degradation can be quantified by a parameter: the standard
deviation γ of the Gaussian patches, the maximum displacement D of the strips, and the
step ε of the FGSM. We expect the classification accuracy of the models to decrease as the
amount of degradation increases: the more stable a model is to these perturbations, the slower
the drop in performance w.r.t. the degradation parameter.

Lipschitz stability

The analysis of stability of a network to perturbations of its inputs is closely linked to its
Lipschitz properties. If Φ(I) is the feature vector associated to the input I at a certain layer,
analyzing the stability of this representation w.r.t. some type of degradation means making
sure that a small change in the input provokes a small change in the feature vector. This can
be expressed through a Lipschitz condition

∥Φ(I′)−Φ(I)∥ ≤CΦ∥I′− I∥

with suitable norms on the input and output spaces, where I′ is a perturbation of I. For
instance, I′ can be obtained as a deformation of I through a diffeomorphism τ : Rd →Rd , i.e.
I′(u) := I(u− τ(u)). Another kind of perturbation may be given by the addition of a noise
term, i.e. I′(u) = I(u)+ ε(u).
In special cases such as S. Mallat’s scattering networks [104, 32], where the filters are
pre-defined, the stability properties of the model can be established analytically. A similar
analysis is carried out in [23] with learned filters, but for an architecture constrained by
the projection of the activation at each layer onto a reproducing kernel Hilbert space (see
also [103]). For general network architectures, several algorithms to estimate the Lipschitz
constant have been developed [151, 153, 14, 142].

We now take Φ to be the activation h1
l of a certain layer after a standard convolutional

step. We write h1
l (I) to make explicit the dependence on the input. We can examine the

stability properties of taking the subsequent iterative steps in (3.23) by comparing the norms
∥ht+1

l (I′)− ht+1
l (I)∥2 and ∥ht

l(I
′)− ht

l(I)∥2. Precisely, we have the following estimate in
terms of the kernels Kl .
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Proposition 3.1. Fix l ∈ {1, . . . ,L} and I, I′ in the input space H0. Let ht
l(I),h

t
l(I

′) ∈ Hl be
defined as in (3.23) for each t. Then we have

∥ht+1
l (I′)−ht+1

l (I)∥2 ≤
1
2

(
1+
√

Sl

)
∥ht

l(I
′)−ht

l(I)∥2, (3.25)

where Sl := supq
∫
Gl

Kl(p,q)d p.

Proof. Comparing the two norms in (3.25) means estimating the Lipschitz constant of the
mapping Cl : Hl → Hl defined by Cl[h] := 1

2(h+Kl ∗h). We have:

∥Kl ∗h∥2
2 ≤

∫
Gl

(∫
Gl

Kl(p,q)h(q)2dq
)(∫

Gl

Kl(p,q′)dq′
)

︸ ︷︷ ︸
=1

d p

=
∫
Gl

h(q)2
(∫

Gl

Kl(p,q)d p
)

dq ≤
(

sup
q

∫
Gl

Kl(p,q)d p
)
∥h∥2

2 = Sl ∥h∥2
2.

Therefore, thanks to the linearity of the mapping Cl , an upper bound for its Lipschitz constant
is given by 1

2

(
1+

√
Sl
)
. That is,

∥Cl[h′]−Cl[h]∥ ≤
1
2

(
1+
√

Sl

)
∥h′−h∥ ∀h,h′ ∈ Hl.

The thesis follows from the fact that ht+1
l = Cl[ht

l].

Remark 3.1. Note that the above argument is not specific to a particular type of perturbation
of I. In fact, the three types of image degradation described before may be expressed as
different kinds of transformations.

1. A Gaussian patch centered at (u1,u2) superposed onto an image I can be expressed as
the multiplication of I(u) by a function 1− exp

(
(u1−u1)

2+(u2−u2)
2

σ2

)
.

2. The local edge disruption may be approximated by the action of a diffeomorphism τ

as seen before.

3. The FGSM method modifies the image through an additive “adversarial” term, see Eq.
(3.24), and can therefore be included in the additive noise perturbations.

Remark 3.2. The kernel Kl is not normalized w.r.t. the first variable p, and the bound on
the Lipschitz constant of Cl depends on the integral of Kl w.r.t. p. Therefore, Sl cannot
be replaced by 1 in general. This can be done if the (symmetric) unnormalized kernel
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K̃l = ν
(
ψ l ∗ψ l) computed around any point of the feature space has constant L1 norm.

Indeed, in terms of K̃l we have:

Sl ≤
supp

∫
Gl

K̃l(p,q)dq

infp
∫
Gl

K̃l(p,q)dq
.

Therefore, the stability of the operator in the Lipschitz sense depends on how close the integral∫
Gl

K̃l(p,q)dq is to being constant in p. This in turn revolves around the “homogeneity” of
the bank of filters ψ l . In particular, if the bank of filters is obtained through the action of a
group, the corresponding kernel K̃ is invariant w.r.t. the group law in the sense of (2.18): as a
consequence, the integral

∫
Gl

K̃(p,q)dq is constant in p and Sl ≤ 1 in this case.

3.3 Results

In this section, we provide a complete analysis of the results obtained on MNIST [97],
a popular database of images of handwritten digits for classification. We compare the
performance of a 2-layer CNN model with the ones of the corresponding “regularized”
network introduced in Section 3.2.2, as well as the KerCNN and RecCNN models, for varying
stopping times T1 and T2. The models will be trained on the MNIST dataset, and tested for
the task outlined in Section 3.2.4, for different types and amounts of image degradation. We
will finally give a synthetic report on the same study carried out on the Kuzushiji-MNIST
[44], Fashion-MNIST [149] and CIFAR-10 [92] datasets. All the experiments were carried
out using PyTorch [118].

Figure 3.3 (a) A sample from the MNIST dataset. (b) A testing image from the MNIST dataset
corrupted by a Gaussian patch of increasing standard deviation. (c) A testing image from the MNIST
dataset corrupted by an increasing amount of local contour disruption D. (d) Testing images from
different classes, perturbed by applying the FGSM to the base CNN with increasing values of ε . Below
each image, we display the classified label, as well as the correct label (in brackets). Apart from the
unperturbed image (ε = 0), all the images are misclassified by the CNN.



3.3 Results 103

3.3.1 Implementation

The MNIST dataset

The MNIST dataset [97] consists in 70000 labeled 28×28 grayscale images of handwrit-
ten digits from 0 to 9: see the sample in Figure 3.3a. We trained the networks on the 60000
training images, and we tested them on the 10000 testing images corrupted by the three types
of degradation mentioned above. Some examples are displayed in Figure 3.3b-d.

Base model

Our base model is a CNN with 2 hidden layers. We take 16 filters of size 5×5 in the first
convolutional layer and 16 filters of size 5×5×16 in the second convolutional layer, each
followed by ReLU activation and max pooling, and a fully connected last layer followed by
softmax activation. The total number of trainable parameters is 7482. We then compare this

Figure 3.4 Our KerCNN model with structured lateral connections defined by kernels K1 and K2.

model with the one obtained from it by inserting the structured lateral connections. See Figure
3.4 for a description of the model. The lateral kernels in this case have size 9×9×16×16.
We also analyze the performance of the model obtained from the CNN by inserting recurrent
connections according to the RecCNN model, i.e. through the update rule (3.17). As said
before, lateral connections given by the kernels Kl do not introduce new parameters in the
starting CNN. On the other hand, the insertion of learned lateral connections results in a
model with more parameters than the base CNN: for example, the introduction of learned
kernels of size 4× 4× 16× 16 in the first layer of the base model would add 4096 new
parameters to the original 7482. In the following, we consider a 7482-parameter version of
the RecCNN, obtained by decreasing the size of feedforward filters in order to compensate
for the extra recurrent parameters, as in [135].



104 A metric model for lateral connections in CNNs

Training details

All the models were trained to minimize the cross entropy classification loss (3.9), for
150 epochs with validation-based early stopping: to this end, the training set was split into
50000 training images and 10000 validation images. Adam optimizer was employed with
the standard parameters indicated in [87], a batch size of 50 and the Xavier initialization
scheme [73]; L2 regularization with λ = .0005 was used. In the models including lateral
connections (of any kind), recurrent dropout [133] with .2 probability was applied to the
“horizontal” contributions. In RecCNNs, local response normalization (LRN) was applied
after recurrent convolutional layers as in [101, 135]. The training and testing images were
z-score normalized according to the mean and standard deviation computed across the whole
training set. For each architecture (i.e. each combination of stopping times T1 and T2), 10
nets initialized with different random seeds were trained. The testing results displayed in
the following are obtained by testing all 10 nets and averaging the classification accuracy
over trials. Error bars (95% confidence intervals) are shown in the plots to keep track of the
variability across initialization seeds.

Image perturbations

• We first consider testing images corrupted by occlusions in the form of Gaussian
“bubbles” at random locations over the image, similar to the ones considered in [139].
Specifically, the image I′ obtained by modifying the original input I through a patch
centered at (u1,u2) was implemented as:

I′(u) = (I(u)−b) · (1−g(u))+b,

where g(u) := 1
2πγ2 exp

(
(u1−u1)

2+(u2−u2)
2

2γ2

)
and b is the “background color”. For the

MNIST dataset, b was chosen to be the value at the upper left angle of each image.
See Figure 3.3b. The number of patches per image was kept fixed to 4. The level
of degradation is represented by the standard deviation γ of the Gaussian bubbles,
expressed in pixels and varying in {0,5,10,15,25,30}.

• In [13], evidence is provided that the feature extraction performed by deep CNNs
mostly relies on local edge relations, rather than on global object shapes. Their
experiments showed that, conversely to human vision, the networks’ performance
was much more robust to global shape changes preserving local features, than to a
disruption of local contours preserving the global infomation. We hypothesized that
the insertion of structured lateral connections in CNNs could make the models more
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robust to these local perturbations. To automatically create a “local scrambling” of
pixel information analogous to the one considered in [13], we proceeded as follows.
For a fixed D ∈ N, we subdivided the images into horizontal strips and shifted each of
these strips by a number of pixels dn, where |dn| was randomly chosen in {0, . . . ,D}:

∀u2 ∈ [sn,sn+1), ∀u1 I′(u1 +dn,u2) = I(u1,u2),

where [sn,sn+1) is the interval of u2 in the n-th strip and dn is the corresponding shift.
We then repeated the procedure by subdividing the modified image into vertical strips
and by shifting them as well. Some examples are displayed in Figure 3.3c. The amount
of degradation is given in this case by the maximum displacement D expressed in
pixels, which was kept the same for both horizontal and vertical strips. In the following
experiments, D varies in {0,1,2,3,4}.

• Figure 3.3d shows some examples of images obtained through (3.24) applied to the base
CNN for MNIST, for increasing values of ε . For sufficiently small ε , this perturbation
results in an image that is almost identical to the original one to the human eye;
however, these images are misclassified by the network. The corruption of the image
is expressed by the parameter ε , varying in {0, .05, .1, .15, .2, .25}.

3.3.2 Results for the loss regularization

We start by displaying the results obtained for the above-mentioned tasks by simply
considering the base CNN architecture and adding a regularization term R1 associated to the
connectivity kernel of the first layer, as in (3.22). We let the regularization parameter λ vary
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Figure 3.5 Results for the “regularized CNN”, with MNIST testing images corrupted through Gaussian
patches (a), local edge disruption (b) and FGSM (c). In all three plots, the classification accuracy
(y-axis) is plotted against the amount of degradation (x-axis). Each curve refers to a value of the
regularization parameter λ .
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in {0, .5,1,1.5,2,2.5}, and we compared the resulting networks. Note that the base CNN is
obtained for λ = 0. For all three generalization tasks we plotted the classification accuracy
(y-axis) of the models for varying levels of degradation (x-axis). Each curve corresponds to a
value of λ , and the dashed blue line displays the chance level accuracy (10%). Figures 3.5b
and 3.5c show that the performance on images corrupted by local edge disruption and FGSM
attacks (for most values of ε) is improved as the weight λ increases: this suggests that the
constraint inserted through the regularization term indeed helps integrate the perturbed local
features into global shapes. However, this is not the case for images occluded by Gaussian
patches (see Figure 3.5a): this prior does not allow to “fill” in the occlusions. Indeed, this
constraint is defined in terms of the local correlation measure encoded in the initial kernel,
and it does not implement a proper propagation process defining a long-range connectivity. In
the following, we directly modify the architecture according to (3.23), where the activations
of the layers are iteratively updated through the kernel.

3.3.3 Results for KerCNNs

We hereafter compare the classification accuracy of the base CNN with the one of the
corresponding KerCNN model, defined as described in Section 3.2.3, for varying amounts of
image degradation and for different stopping times of KerCNN.

Gaussian patches

We first examine the KerCNN defined by inserting lateral connections in the first layer
of the base CNN. Figure 3.6a(left) shows its classification accuracy for varying values of
standard deviation γ of the Gaussian patches. The three graphs displayed are referred to
different stopping times T1 = 1,2,3, and the chance level accuracy is displayed as well
(dashed blue line). Note that, for T1 = 1, the model is the standard CNN with no lateral con-
nections. The mean performance of these three nets on the original testing set (0 degradation)
is almost identical (99.0±0.1%). On the other hand, for increasingly degraded images the
performance drops dramatically for the CNN (T1 = 1, blue curve), while decaying much
more slowly for increasing values of T1. Note that the gap in classification accuracy between
the CNN and the best KerCNN reaches ∼ 25 points. After reaching its optimal value (T1 = 2
for γ ≤ 5 and T1 = 3 for greater values), the performance drops again by taking further steps.
For the sake of legibility, we displayed in the left plot only the curves up to the optimal value
of T1. The behavior of classification accuracy w.r.t. T1 ∈ {1, . . . ,6} can be best appreciated
in the right plot of Figure 3.6a, displaying a curve for each value of standard deviation.
We now analyze the performance of the KerCNN models with lateral connections:
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Figure 3.6 Results for MNIST testing images corrupted through Gaussian patches, for KerCNN with
lateral connections in the first (a), resp. second layer (b). Left plots: classification accuracy (y-axis)
at increasing values of γ (x-axis), displayed for stopping time T1 = 1,2,3 (a), resp. T2 = 1, . . . ,5
(b). Right plots: classification accuracy (y-axis) for increasing values (x-axis) of T1 (a), resp. T2 (b),
displayed for different values of degradation. Each curve refers to a value of std, displayed in red in
correspondence of the curve.

• only in the second layer;

• in both layers.

Analogous to the preceding case, the optimal stopping time for the net with lateral connections
in the second layer is T2 = 2 for the original images, T2 = 4 for a small degradation (γ = 5)
and T2 = 5 for greater values of standard deviation. Figure 3.6b(left) plots the accuracy
against the level of degradation: we display the curves for T2 = 1, . . . ,5; the accuracy w.r.t.
stopping times T2 ∈ {1, . . . ,6} is plotted in Figure 3.6b(right), where each curve corresponds
to a level of image degradation. The results show the same pattern as before, although with a
smaller improvement (up to ∼ 15 points between the base CNN and the model with optimal
T2).
It is interesting to note that the optimal number of iterations shifts towards higher values
(for both layers) as the size of the occlusions increases. As mentioned before, the kernel Kl

can be thought of as an anisotropic transition kernel on the space of activations of the l-th
layer. As such, the repeated application of the lateral contribution given by these kernels
may be interpreted as a spreading of activation, around each spatial location, along those
orientations that are most activated at that point. Intuitively, this “compensates” for the
gaps in the activation caused by the occlusions: the wider the gap, the higher the number of
iterations of the kernel needed for the image to be consistently completed.
We finally study the combinatorics of stopping times T1,T2 ∈ {1, . . . ,6} in the two layers:

Figure 3.7 displays the results for different levels of image degradation. For each combination
of T1 (x-axis) and T2 (y-axis), the mean accuracy over all trials (color-coded) is displayed.
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Figure 3.7 Classification accuracy (color-coded) for KerCNN for all combinations of T1,T2 ∈
{1, . . . ,6}, displayed for γ = 0, . . . ,30. The maximum value of accuracy is marked by a red star
onto the corresponding cell.

Note that the highest values of accuracy lie on a diagonal that shifts towards higher values
of both T1 and T2 as the level of degradation increases. It is interesting to observe that, for
γ = 15,20,25, the optimal couple (T1,T2), highlighted by a red star, is one involving lateral
connections in both layers.
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Figure 3.8 Results for MNIST testing images corrupted through local contour disruption, for KerCNN
with lateral connections in the first (a), resp. second layer (b). Left plots: classification accuracy at
increasing values of displacement D, displayed for stopping time T1 = 1, . . . ,5 (a), resp. T2 = 1, . . . ,5
(b). Right plots: classification accuracy for increasing values of T1 (a), resp. T2 (b), displayed for
different values of degradation. Each curve refers to a value of D, displayed in red in correspondence
of the curve.

As before, we compare the classification accuracy of the models for an increasing amount
of degradation, given by the maximum displacement D. In this case, the performance of
the models turns out to rise for increasing stopping times up to T2 = 6 for the models with
lateral connections in the second layer, while there is a peak in performance at T1 = 5 for
the ones with lateral connections in the first layer: see Figure 3.8. A similar situation is
observed when analyzing the combinatorics of stopping times for the first and second layers,
as shown in Figure 3.9: the optimal couple of values (T1,T2) shifts towards the maximum as
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the displacement D increases, and the best accuracy is reached at (T1,T2) = (6,6) above a
certain amount of degradation.
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Figure 3.9 Classification accuracy (color-coded) for KerCNN for all combinations of T1,T2 ∈
{1, . . . ,6}, displayed for D = 0, . . . ,4. The maximum value of accuracy is marked by a red star
onto the corresponding cell.

Adversarial attacks

Finally, we test our model’s robustness to adversarial attacks via FGSM. Again, we first
examine the performance of the models with lateral connections in one layer at a time, for
varying T1 and T2 respectively. Figure 3.10 displays the classification accuracies of these
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Figure 3.10 Results for MNIST testing images perturbed via FGSM, for KerCNN with lateral connec-
tions in the first (a), resp. second layer (b). Left plots: classification accuracy at increasing values
of ε , displayed for stopping time T1 = 1, . . . ,6 (a), resp. T2 = 1, . . . ,6 (b). Right plots: classification
accuracy for increasing values of T1 (a), resp. T2 (b), displayed for different values of degradation.
Each curve refers to a value of ε , displayed in red in correspondence of the curve.

models for T1 ∈ {1, . . . ,6} (a) and T2 ∈ {1, . . . ,6} (b). As before, the left figure plots the
accuracy against the amount of degradation, with a curve for each stopping time Ti, while the
right figure plots the accuracy against the stopping time Ti, with a curve for each value of
ε . Finally, Figure 3.11 displays the analysis of the combinatorics of T1 and T2. Similarly to
the case of Gaussian patches, the highest accuracy values lie on a diagonal. However, while
in that case the optimal combination was clearly located around a single spot, two peaks
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develop in the current case, corresponding to either high values of T1 and low values of T2, or
viceversa.
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Figure 3.11 Classification accuracy (color-coded) for KerCNN for all combinations of T1,T2 ∈
{1, . . . ,6}, displayed for ε = 0, . . . ,0.25. The maximum value of accuracy is marked by a red star
onto the corresponding cell.

We summarize the main results of this section in Table 3.1. For each type of degradation
and each level of corruption, the difference in mean % accuracy between the base CNN
and the optimal KerCNN model is displayed, as well as the corresponding combination of
stopping times (T1,T2).

Table 3.1 Overview on the best KerCNN performances resulting from the analysis of the combinatorics
of stopping times (T1,T2), for the MNIST dataset.

MNIST

std γ 0 5 10 15 20 25 30
best (T1,T2) (1,2) (2,1) (3,1) (3,2) (3,2) (3,2) (3,1)
% gap +0.03% +2.83% +16.94% +26.74% +22.90% +15.01% +8.55%

Shift D 0 1 2 3 4
best (T1,T2) (1,2) (1,5) (5,5) (6,6) (6,6)
% gap +0.03% +2.51% +24.32% +33.29% +23.35%

FGSM ε 0 .05 .1 .15 .2 .25
best (T1,T2) (1,2) (1,5) (1,6) (2,6) (2,6) (2,6)
% gap +0.04% +1.47% +12.35% +31.08% +30.55% +5.33%

3.3.4 Comparison between KerCNNs and RecCNNs

We now compare our model with the RecCNN architectures described above. Here,
recurrent convolutional connections as described in Section 3.1.3, with weights φ l of size
4×4×16×16, have been added in the first (resp. second) layer; the size of the feedforward
weights of the second layer has been decreased to 3×3×16×16 to make the number of
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Figure 3.12 Comparison between optimal KerCNN and optimal RecCNN. Top: Gaussian patches. (a)
KerCNN with T1 = 2 (orange, filled) and T1 = 3 (green, filled); RecCNN with T1 = 3 (green, dashed).
(b) KerCNN with T2 = 5 (violet, filled) and RecCNN with T2 = 3 (green, dashed). Middle: local edge
disruption. (a) KerCNN with T1 = 3 (green, filled) and T1 = 5 (violet, filled); RecCNN with T1 = 3
(green, dashed). (b) KerCNN with T2 = 6 (brown, filled) and RecCNN with T1 = 2 (orange, dashed).
Bottom: adversarial attacks. (a) KerCNN with T1 = 4 (red, filled) and RecCNN with T1 = 6 (brown,
dashed). (b) KerCNN with T2 = 6 (brown, filled) and RecCNN with T1 = 5 (violet, dashed).
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parameters match with the base CNN (as in [135]). The performance of these RecCNN
models on the tasks examined before has been compared to the one of the base CNN, as
well as with the corresponding KerCNNs. In most experiments, the RecCNN model did
not reach better accuracies than the base CNN, although in some cases a pattern similar to
the one seen for KerCNNs could be observed: in such cases, the performance increased
until an optimal stopping time. However, the improvement in accuracy turned out to be
much smaller in general than the one obtained by KerCNN models. Moreover, the geometric
content of these learned lateral kernels is not evident and the iterative steps taken according
to (3.17) do not seem to implement a kind of propagation – a hint of this lies in the fact that
the optimal stopping time for RecCNNs never depends on the amount of degradation of the
testing images.
In Figure 3.12, we compare the accuracies of the KerCNN and RecCNN architectures for
the corresponding optimal stopping times for each task. In all plots, the filled curves refer
to KerCNN models, while the accuracy of RecCNNs is displayed by dashed curves. The
color of each curve matches the one used for the corresponding stopping time in all the plots
throughout the paper.
Note that, in Figure 3.12a(top), curves for KerCNN with both T1 = 2 and T1 = 3 are displayed.
Although the KerCNN model with stopping time T1 = 3 (orange curve) widely outperforms
the optimal RecCNN for all values of standard deviation above 10, the RecCNN displays
a higher accuracy with small occlusions. However, for these smaller patches the optimal
stopping time for KerCNN is T1 = 2 (green curve), and this model outperforms the best
RecCNN for all values of degradation. A similar situation can be observed in Figure
3.12a(middle) for local edge disruption, where both T1 = 3 and T1 = 5 curves are displayed
for the KerCNN model.
To sum up, the KerCNN model clearly outperforms the corresponding RecCNN architecture,
when comparing the two for their respective best stopping times, for almost all tasks examined.
It is interesting to note that the only case in which RecCNNs show a higher accuracy than
KerCNNs for some values of degradation (only for lateral connections in the first layer)
is when the images are perturbed via FGSM for ε > 0.2. This suggests that, although the
recurrent structure of RecCNNs may help improve the stability to “noise-like” perturbations,
the absence of a geometric prior prevents them from implementing any mechanism of
completion or contour integration. It is worth noting that, in the study carried out in [135],
the networks were trained and tested to recognize cluttered digits: in their experiments,
RecCNNs significantly outperform the purely convolutional architectures, thus showing the
benefits of recurrence in learning challenging tasks. On the other hand, our study shows that
this does not extend to the case where the networks are facing nuisances for which they were
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not specifically optimized. For such generalization task, our structured lateral connections
inducing a geometric prior turn out to be much more effective.

3.3.5 Other datasets

In this last section, we provide a synthetic report of our results on three different datasets.
In order to analyze the effect of our lateral connections on images different from digits
while keeping most of our settings unchanged, we first examined two MNIST-like datasets:
the Kuzushiji-MNIST dataset [44], containing 10 phonetic letters of hiragana, one of the
components of the Japanese writing system; and the Fashion-MNIST dataset [149], consisting
of Zalando’s article images subdivided into 10 item categories (T-shirt/top, Trouser, Pullover,
Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot). Both datasets are made up of 70000

Figure 3.13 Examples from the Kuzushiji-MNIST (left) and Fashion-MNIST (right) datasets. (a)
A sample from the dataset. Each row corresponds to a class. (b) A testing image corrupted by a
Gaussian patch of increasing standard deviation. (c) A testing image corrupted by an increasing
amount of local contour disruption D. (d) Testing images from different classes, perturbed by applying
the FGSM to the base CNN with increasing values of ε . Below each image, we display the classified
label, as well as the correct label (in brackets). Apart from the unperturbed image (ε = 0), all the
images are misclassified by the CNN.

images of size 28×28, and we used the same training-validation-testing split as in MNIST.
Figure 3.13 displays, for each of these two datasets, some representatives of their 10 classes,
as well as some testing images corrupted by the three types of degradation examined. Finally,
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we tested our model on the CIFAR-10 dataset [92], consisting of 60000 32×32 colour images
in 10 classes (0:Airplane, 1:Automobile, 2:Bird, 3:Cat, 4:Deer, 5:Dog, 6:Frog, 7:Horse,
8:Ship, 9:Truck). Differently from MNIST-like datasets, CIFAR-10 poses the significantly
harder problem of recognizing objects in natural scene images. The dataset includes 50000
training images and 10000 test images. We extracted 10000 images from the training set to
use for validation-based early stopping – so that in our experiments the models were trained
on 40000 samples, validated on 10000 samples and tested on 10000 samples. Figure 3.14

Figure 3.14 (a) A sample from the CIFAR-10 dataset. Each row corresponds to a class. (b) A testing
image corrupted by a Gaussian patch of increasing standard deviation. (c) A testing image corrupted
by an increasing amount of local contour disruption D. (d) Testing images from different classes,
perturbed by applying the FGSM to the base CNN with increasing values of ε . Below each image,
we display the classified label, as well as the correct label (in brackets). Apart from the unperturbed
image (ε = 0), all the images are misclassified by the CNN.

shows some examples of (original as well as perturbed) testing images from CIFAR-10.
For all three datasets, we considered a CNN with 2 hidden layers as a base model.

• For what concerns Kuzushiji-MNIST and Fashion-MNIST, the architecture was kept
the same as for MNIST, except for the number of filters of the second layer which was
set to 32 instead of 16. The training options were kept the same as before, except for
the L2 regularization parameter for Kuzushiji-MNIST which was set to λ = .001.

• As for CIFAR-10, 64 and 128 filters were employed respectively in the first and second
convolutional layers. Moreover, since the images are RGB, the filters of the first
layer have three channels in this case. The networks were trained with early stopping
for a maximum of 300 epochs. Stochastic gradient descent was employed with an
initial learning rate of .01, which was automatically decreased by 1/10 when validation
accuracy stopped increasing for 10 epochs. We used a batch size of 64 samples
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and an L2 regularization parameter λ = .001. Also, dropout with .5 probability was
employed in the last layer. The rest of the settings were kept the same as for the other
datasets. Due to the longer training times, the results displayed for each architecture
are obtained by averaging over 3 networks, instead of 10, trained with different random
seeds. Moreover, we let vary the stopping times Ti only in {1,2,3,4}.

Tables 3.2, 3.3 and 3.4 summarize the results obtained on these less easy and less overused
databases. In Table 3.1, presented as a final report for MNIST, we displayed the best
improvement in mean % accuracy w.r.t. the base CNN as an index of performance of our
KerCNNs. We now summarize our results on these new datasets by reproposing a similar
overview: for each degradation type and corruption degree, we display the mean % accuracies
of the base CNN and the best KerCNN, as well as their difference.
For what concerns Kuzushiji-MNIST (Table 3.2), the best performance gap for images
occluded by Gaussian patches is comparable to the one obtained for MNIST. However,

Table 3.2 Overview on the best KerCNN performances resulting from the analysis of the combinatorics
of stopping times (T1,T2), for the Kuzushiji-MNIST dataset.

Kuzushiji-MNIST

std γ 0 5 10 15 20 25 30
best (T1,T2) (1,2) (2,1) (3,3) (3,3) (3,3) (3,3) (3,3)
CNN 93.13% 74.20% 39.67% 21.22% 14.81% 36.79% 30.38%
KerCNN 93.13% 75.72% 59.96% 51.44% 43.69% 12.39% 11.41%
% gap +0.00% +1.53% +20.29% +30.22% +28.89% +24.40% +18.97%

Shift D 0 1 2 3 4
best (T1,T2) (1,2) (1,4) (3,4) (5,2) (5,3)
CNN 93.13% 85.06% 61.62% 42.15% 31.49%
KerCNN 93.13% 87.91% 73.60% 59.15% 47.48%
% gap +0.00% +2.85% +11.99% +17.00% +16.00%

FGSM ε 0 .05 .1 .15 .2 .25
best (T1,T2) (1,2) (1,5) (1,6) (1,6) (5,5) (5,6)
CNN 93.13% 65.03% 28.15% 11.28% 6.36% 3.95%
KerCNN 93.13% 74.08% 48.91% 25.63% 13.74% 7.76%
% gap +0.00% +9.05% +20.76% +14.35% +7.38% +3.81%

a greater contribution of the second layer’s kernel can be observed: that is, the optimal
combinations of stopping times display larger values of T2 for this type of degradation. This
may be due to the more frequent occurrence of complex patterns requiring a “higher order”
analysis (such as crossings and loops) w.r.t. MNIST. On the other hand, on images subject to
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Table 3.3 Overview on the best KerCNN performances resulting from the analysis of the combinatorics
of stopping times (T1,T2), for the Fashion-MNIST dataset.

Fashion-MNIST

std γ 0 5 10 15 20 25 30
best (T1,T2) (1, 3) (3, 1) (3, 2) (3, 2) (3, 2) (4, 4) (4, 4)
CNN 89.86% 72.03% 49.07% 32.47% 22.43% 17.13% 14.18%
KerCNN 90.02% 73.37% 55.44% 43.03% 31.71% 25.55% 22.57%
% gap +0.16% +1.33% +6.37% +10.55% +9.28% +8.42% +8.39%

Shift D 0 1 2 3 4
best (T1,T2) (1, 3) (4, 3) (5, 4) (6, 6) (6, 6)
CNN 89.86% 77.27% 58.58% 44.33% 34.81%
KerCNN 90.02% 83.69% 72.18% 66.43% 60.87%
% gap +0.16% +6.42% +13.61% +22.10% +26.06%

FGSM ε 0 .02 .04 .06 .08 .1
best (T1,T2) (1, 3) (2, 6) (2, 6) (2, 6) (2, 6) (2, 6)
CNN 89.86% 53.81% 31.49% 18.53% 13.01% 10.13%
KerCNN 90.02% 70.48% 54.83% 42.78% 32.84% 25.57%
% gap +0.16% +16.67% +23.34% +24.25% +19.82% +15.45%

local displacement, smaller overall values of T1 and T2 bring to the best accuracy, also leading
to significantly smaller gaps in performance relative to MNIST. In fact, the abundance of
small details in such characters makes this kind of perturbation far more disruptive than it is
for images like MNIST’s digits: even a small displacement may completely destroy some
tiny yet characterizing features. Finally, the results for adversarial attacks with small values
of ε are analogous to the ones obtained for digits, although with a faster decay in accuracy.
On the other hand, although a configuration different from MNIST is observed for ε ≥ .2,
the accuracy values are around (or even below) chance level in these cases, which makes
somewhat pointless to speculate about them.
Let us now examine the results obtained for the Fashion-MNIST dataset, displayed in Table
3.3. As for the images occluded by Gaussian patches, the slightly increased contribution
of the second layer w.r.t. MNIST is again probably due to the heterogeneity of features
characterizing these images, including both extended contours and tiny, intricate line patterns.
For this type of perturbation, the improvement provided by our lateral connections is more
moderate than it is for the preceding datasets, reaching a maximum accuracy gap of ∼10%.
This may depend upon such images being largely composed by solid color areas rather than
lines. Intuitively, when an occlusion falls in the middle of one such area, it does not interrupt
a curve or a contour: therefore, the activation values of filters sensitive to local orientation is
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very low at these locations and consequently the action of the kernel on them is less relevant.
On the other hand, the perturbation obtained by shifting horizontal and vertical strips does
not affect constant areas, while it consistently disrupts the image edges. Moreover, differently
from Kuzushiji-MNIST’s characters, global shapes rather than local details are markedly
characterizing for discriminating between Fashion-MNIST classes. This makes our lateral
connections particularly suited to manage this kind of perturbation. Indeed, a far greater

Table 3.4 Overview on the best KerCNN performances resulting from the analysis of the combinatorics
of stopping times (T1,T2), for the CIFAR-10 dataset.

CIFAR-10

std γ 0 5 10 15 20 25 30
best (T1,T2) (2, 1) (2, 1) (2, 1) (2, 2) (3, 2) (3, 2) (4, 1)
CNN 75.64% 58.22% 32.84% 22.89% 19.27% 17.97% 17.40%
KerCNN 75.57% 58.08% 32.90% 23.57% 20.53% 19.33% 18.89%
% gap - 0.07% - 0.14% +0.06% +0.67% +1.26% +1.36% +1.49%

Shift D 0 1 2 3 4
best (T1,T2) (2, 1) (4, 4) (4, 4) (4, 4) (4, 4)
CNN 75.64% 41.7% 27.70% 23.71% 21.91%
KerCNN 75.57% 52.97% 43.33% 36.72% 31.99%
% gap - 0.07% +11.27% +15.63% +13.02% +10.08%

FGSM ε 0 .005 .01 .015 .02 .025
best (T1,T2) (2, 1) (2, 3) (3, 4) (4, 4) (4, 4) (4, 4)
CNN 75.64% 42.9% 21.80% 10.83% 5.32% 2.86%
KerCNN 75.57% 51.25% 35.55% 25.58% 18.66% 13.53%
% gap - 0.07% +8.35% +13.75% +14.75% +13.33% +10.67%

improvement from the CNN performance can be observed w.r.t. Kuzushiji-MNIST in this
case, especially for large values of the displacement D: note that, for D = 4, the ∼35%
accuracy obtained by the base CNN rises to ∼60% with the optimal KerCNN model. Finally,
for what concerns adversarial attacks, we considered values of ε varying in a smaller range,
since the decay in performance for this dataset turned out to be much faster; namely, we
took ε ∈ {0, .02, .04, .06, .08, .1}. Again, up to this rescaling, the results are analogous to the
other datasets.
As for CIFAR-10 (Table 3.4), the performance of CNNs and KerCNNs on images corrupted
by Gaussian patches is comparable for all values of γ , with a slight advantage for KerCNNs
for occlusions large enough (γ > 5). In our view, such “insensitivity” of lateral kernels
to this type of perturbation may be linked to the increased difficulty of dealing with color
images – indeed, this aspect certainly requires further investigation. On the other hand, the
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improvement obtained by KerCNNs w.r.t. CNNs for images subject to edge disruption and
adversarial attacks is still consistent (up to ∼15%). Note that the value of ε for adversarial
attacks in this case was let vary in {0, .005, .01, .015, .02, .025} (again due to the faster decay
in accuracy w.r.t. ε).
Overall, we believe that the global results are very promising, both for what concerns the
effectiveness of the model for image recognition under challenging conditions, and from the
point of view of its interpretation linked to biological vision.



Conclusion

In this work, we introduced a novel technique for describing the properties of the horizon-
tal connectivity in the primary visual cortex, by means of a metric structure which is directly
induced by the geometry of feedforward connections. Our construction is very flexible, since
it does not rely on any invariance in the parameterization of the family of profiles: this makes
it possible to define the connectivity pattern associated to any bank of filters {ψp}p ⊆ L2(R2).
Our results show that various different properties consistent with neurophysiological and
psychophysical data can indeed be recovered by applying this technique to different sets of
profiles.
The flexibility of this construction leads to the hypothesis that a similar approach may also
be employed for higher cortical layers, in order to give a geometric characterization of their
connectivity.

We further proposed a new deep learning architecture obtained by inserting biologically
plausible lateral connections in Convolutional Neural Networks, which turned out to improve
their generalization ability in image classification tasks under challenging conditions: the
testing images were subject to perturbations designed to undermine the ability of the networks
to recognize the objects via a local feature extraction – thus requiring an integration of context
information, which in biological vision is critically linked to lateral connectivity.
As a future development, we intend to extend our results to richer datasets and different tasks,
and to examine the connectivity kernels obtained in these cases. Moreover, in connection
with the hypothesis mentioned above, it would be interesting to acquire a more precise
understanding of the different feature information encoded in the kernels associated to each
layer of the convolutional architecture: this may help gain better insight into the analysis
carried out by the networks at each stage of their processing.
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