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Abstract (English version)

Cancer is among the leading causes of mortality worldwide. Despite cancer death

rate has been decreasing thanks to the introduction of novel target therapies,

improvements in tumour characterisation, staging, prognosis, as well as treatment

monitoring and planning are required. The need for more effective functional

biomarkers as well as the awareness of the complexity of the tumour biology,

which reflects the widely studied tumour heterogeneity, have prompted the use

of imaging modalities able to inquire into biological aspects of the intra-tumoural

heterogeneity at different levels, structural, functional and molecular.

Dynamic Contrast Enhanced - Computed Tomography (DCE-CT), Magnetic

Resonance Imaging (MRI) and Positron Emission Tomography (PET) have shown

promising results, also leading to improvements in tumour diagnosis, staging and

prognosis. However, there are still some open issues requiring proper reliability

analyses, development of more quantitative approaches as well as more complex

biomarkers involving the evaluation of the tumour heterogeneity.

Part I of the Thesis presents the topics and issues regarding the image-based

biomarkers used till now, the obstacles preventing the use of DCE-CT in the clin-

ical practice, as well as the methodological contributions introduced to face these

issues; Part II of the Thesis is dedicated to the applications of the methodological

approaches devised in Part I and in most cases already published. In particular,

the reliability topic concerning the perfusion maps derived from DCE-CT image

series has been faced. Downstream of this analysis, it has been investigated the

ability of perfusion parameters, at diagnosis, to improve tumour characterisation

of predominant lung cancer subtypes. Then, an automatic methodological ap-

proach has been developed to classify the spatio-temporal heterogeneity of lung

tumour, as performed by expert radiologists through the visual interpretation of

DCE-CT series. Afterwards, a novel local-based method has been developed to

evaluate the intra-tumoural heterogeneity emerging from perfusion maps of lung
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tumours. The ability of the features extracted to act as a prognostic image-

based biomarker has been early assessed. To face the issue of the high variability

present in PET data, a robust approach was introduced to represent a high up-

take activity. To this purpose, a method to perform a 3D segmentation starting

from PET images has been developed and applied to segment the whole kidneys

in PET/CT series. Then, a multi-modal analysis of the intra-tumoural hetero-

geneity has been performed in the gastro-oesophageal junction (GOJ) cancer. In

particular, the heterogeneity of GOJ tumours acquired with both FDG-PET/CT

and FDG-PET/MRI has been analysed. The ability of the quantitative image-

based biomarker extracted to predict distant metastasis has been early assessed.

The results showed that more complex texture features have a better performance

in prognosis compared to the PET- and MRI-derived parameters commonly used

in clinical routine. Finally, an algorithm to detect sub-regions in tumour volumes

has been developed to combine multi-modal information. To this purpose, a 3D

registration algorithm was implemented in order to automatically transform and

align the multi-modal dataset related to each patient into one x-y-z coordinate

system.



Abstract (Italian version)

Il cancro è tra le principali cause di morte al mondo. Nonostante il tasso di mor-

talità si sia abbassato negli ultimi decenni grazie all’introduzione di nuove ter-

apie target, miglioramenti nella caratterizzazione tumorale, stadiazione, prognosi,

nonchè nel monitoraggio e nella pianificazione delle terapie sono comunque an-

cora necessari. Il bisogno di biomarker funzionali che siano maggiormente efficaci,

cos̀ı come la consapevolezza dell’estrema complessità biologica dei tumori, che si

riflette in una eterogeneità del tessuto tumorale, hanno promosso l’utilizzo di tec-

niche di imaging in grado di rilevare gli aspetti biologici peculiari dell’eterogeneità

a differenti livelli, strutturale, funzionale e molecolare.

La Tomografia Computerizzata perfusionale (TCp), la Risonanza Magnetica

(RM) e la Tomografia ad Emissione di Positroni (PET) hanno mostrato risultati

promettenti, che hanno anche condotto a miglioramenti nella diagnosi, nella sta-

diazione e nella prognosi. Tuttavia, questi successi sono ostacolati dalla quasi

assenza di approcci orientati ad un’analisi quantitativa dei biomarker, di op-

portune analisi dell’affidabilità dei dati, cos̀ı come dalla mancata valutazione

dell’eterogeneità nella pratica clinica.

La prima parte della Tesi presenta gli argomenti e le problematiche relativi

ai biomarker finora utilizzati, i limiti che ostacolano l’utilizzo della TCp nella

routine clinica, e i contributi metodologici introdotti; la seconda parte della Tesi

è dedicata alle applicazioni dei metodi sviluppati nella prima parte e nella mag-

gior parte dei casi già pubblicati. In particolare, è stata effettuata un’analisi

dell’affidabilità dei valori perfusionali. In seguito, è stata indagata l’abilità dei

parametri perfusionali, alla diagnosi, di migliorare la caratterizzazione di due is-

totipi predominanti del carcinoma polmonare. Successivamente, è stato messo

a punto un metodo automatico per classificare l’eterogeneità spazio-temporale,

cos̀ı come viene effettuato dai radiologi attraverso l’analisi visiva. È stato, in-

oltre, sviluppato un metodo basato sull’analisi locale per misurare l’eterogeneità
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tumorale emergente dalle mappe perfusionali. Il valore prognostico delle feature

estratte è stato preliminarmente valutato. Per fronteggiare il problema dell’elevata

variabilità presente nei dati PET, è stato introdotto un metodo robusto in grado

di dare una misura dell’elevata captazione di una struttura. Per questo scopo, è

stato anche sviluppato un metodo per la segmentazione 3D a partire da immagini

PET, che è stato poi applicato per segmentare reni da immagini PET/TC. In

seguito, è stata eseguita un’analisi multi-modale dell’eterogeneità su tumori della

giunzione gastro-esofagea. In particolare, l’eterogeneità di questi tumori è stata

analizzata sulle immagini delle serie PET/TC e PET/RM, acquisite con un pro-

tocollo a singola iniezione. È stata quindi valutata l’abilità dei biomarker derivati

dalle immagini multi-modali di predire la presenza di metastasi. I risultati hanno

mostrato che le texture feature hanno una prestazione migliore nella valutazione

della prognosi, confrontata con quella dei parametri derivati da PET ed RM, co-

munemente usati nella pratica clinica. Infine, è stato messo a punto un algoritmo

per il rilevamento delle regioni interne ai volumi tumorali al fine di combinare

le informazioni multi-modali. Per questo scopo, è stato implementato un algo-

ritmo di registrazione 3D al fine di trasformare ed allineare i dataset multi-modali

relativi ad ogni paziente in un unico sistema di coordinate x-y-z.
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Chapter 1

Introduction

Cancer is the most common malignant disease and among the leading causes

of death worldwide [1]. Despite the continuous decline in cancer death rate,

globally decreased over the two last decades [2], a continuous research is required

to improve tumour characterisation and prognosis, as well as treatment monitoring

and planning.

Recently, cancers have been described as “aberrant” organs characterised by

highly interactive cells [3], leading to a tissue biology even more complex than

that of the normal healthy tissue [4]. The awareness of the complexity underlying

the biological mechanisms has led to an increased interest for the analysis of the

tumour micro-environment, since the study of the intra-tumoral heterogeneity

could be the key to improve tumour characterisation and prognostication [5, 6, 7].

The last years have been characterised by the development of new target therapies,

usually designed to inhibit cell growth, angiogenesis and proliferation, whose early

effects do not reflect a reduction of the tumour volume.

The use of invasive biopsy may be inadequate in the presence of high intra-

tumoral heterogeneity, due to the sampling errors caused by taking tissue speci-

mens from small tumour portions [8]. Therefore, imaging technologies have gained

more and more attention having the potentiality to capture the in vivo whole tu-

mour heterogeneity in a minimally invasive way or, even, non-invasively [9, 10].

Moreover, imaging may provide novel quantitative approaches to assess the tu-

mour response to the novel target therapy. Indeed, the traditional criteria, the

mainstay for tumour evaluation, are based on the analysis of the morphological

tumour changes through Computed Tomography (CT) and Magnetic Resonance

Imaging (MRI), thus, resulting inadequate for an early evaluation of the efficacy

23



24 Chapter 1. Introduction

of the target therapy [11].

The need for more effective functional biomarkers have prompted the use of

Dynamic Contrast Enhanced (DCE) imaging, Diffusion Weighted Imaging (DWI),

as well as Positron Emission Tomography (PET), particularly when combined

with CT (PET/CT) and MRI (PET/MRI). For instance, the effects of anti-

angiogenic therapies, can be earlier detected on the tissue vascular supply, but

just later on morphology [8]. As a result, an increased interest for the develop-

ment of biomarkers, useful to monitor status and changes of the tumour vascular

network, has pushed for the use of the DCE-CT imaging technique [12]. Indeed,

DCE-CT is probably one of the most promising methodologies for the early as-

sessment of anti-angiogenic therapies efficacy, thanks to its wide availability, high

spatio-temporal resolution and promising preliminary findings [11]. The perfusion

parameters, which can be derived from DCE-CT sequences, have shown a high

correlation with angiogenesis biomarkers, as the micro-vessel density (MVD) [13]

and the vascular endothelial growth (VEGF) [14]. As regards PET imaging, this

functional technique is mainly used to study tumour metabolism through 18F-

fluorodeoxyglucose (18F-FDG), which permits a mapping of the tumour glucose

avidity. Usually, higher FDG uptake correlates with poor prognosis and tumour

aggressiveness [15, 16]. While, Apparent Diffusion Coefficient (ADC) parame-

ters, which are MRI biomarkers used to evaluate changes in cellular proliferation,

might be suggestive of tumour progression [17]. These imaging modalities have

different strengths and weaknesses regarding derived parameters, availability, re-

producibility and biological significance of the data (structural, functional, or

molecular) [18].

Despite the high potentialities shown, which have already led to improvements

in tumour diagnosis [19], staging [20] and prognosis [21], there are still some open

issues requiring the development of more quantitative approaches and complex

biomarkers involving the evaluation of the tumour heterogeneity. Indeed, visual

analysis still represents the gold-standard approach in many procedures [22], and

the biomarkers used till now are usually derived from global measurements, which,

by the way, do not involve the evaluation of the intra-tumoral heterogeneity. As

regards DCE-CT imaging, the lack of standardisation and reliability has even

prevented the use of this technique in the routine clinical practice [23, 8].

In this Thesis, the reliability topic concerning the perfusion maps derived from

DCE-CT image series has been faced. Downstream of this analysis, it has been

investigated the ability of perfusion parameters, at diagnosis, to improve tumour
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characterisation of predominant lung cancer subtypes. Then, due to the need for

visual analysis to gain objectivity, an automatic methodological approach has been

developed to classify the spatio-temporal heterogeneity, present in lung lesions,

as performed by expert radiologists through visual analysis. Afterwards, a novel

method to evaluate the intra-tumoral heterogeneity emerging from perfusion maps

of lung tumours has been also developed, and the ability of the features extracted

to act as prognostic image-based biomarker has been early assessed. To face the

issue of the high variability present in PET data, a more quantitative approach

was introduced to represent the highest uptake activity through the use of a

simple index, more robust than that routinely used in clinical practice. To this

purpose, a method to perform a 3D segmentation starting from PET images has

been developed and applied to segment the whole kidneys in 68Gallium prostate-

specific membrane antigen (68Ga-PSMA) PET/CT series. Then, a multi-modal

analysis of the intra-tumoural heterogeneity has been performed in the gastro-

oesophageal junction (GOJ) cancer. The aim was to analyse the heterogeneity of

GOJ tumours both acquired with a FDG-PET/CT and FDG-PET/MRI, with a

single injection protocol. The ability of the quantitative image-based biomarker

extracted to predict distant metastasis has been early assessed. The findings

have shown that more complex features have a better performance in prognosis

compared to the parameters PET- and MRI-derived commonly used in clinical

routine. Moreover, an algorithm to detect sub-regions in tumour volume has been

developed, having the potentiality to combine multi-modal information, enabling

a comparison of the heterogeneity coming from the different modalities. To this

purpose, a 3D registration algorithm was implemented to automatically transform

the multi-modal dataset related to each patient into one x-y-z coordinate system.

The Thesis is divided into two parts:

• Part I, presenting the topics previously outlined as well as the methodolog-

ical contributions introduced;

• Part II, reporting the applications of the methodological approaches previ-

ously introduced and, in most cases, already published.

As a result, besides the present introductory Chapter, the Thesis content is

organised as follows:

• Chapter 2 contains the background concerning the biological aspects of the

tumours. In particular, an introduction to the tumour heterogeneity and
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its specific functional aspects like the angiogenesis, the proliferation and the

metabolism, essential factors for the tumour growth and spread, is reported.

The imaging modalities able to detect these phenomena and, thus, improve

the characterisation of the tumour micro-environment are also preliminary

presented. Finally, an overview of the image-based biomarkers currently

used and investigated is reported.

• Chapter 3 describes in a more detailed way the imaging modalities used

in oncology, which have been considered during this Thesis work. In par-

ticular, CT and DCE-CT are introduced along with the benefits and most

relevant open issues. A mathematical approach to derive tumour vascu-

larity information is presented. Then, MRI principles of application along

with the most widely used MRI image series are reported, followed by the

most relevant open issues. Finally, PET principles and derived parameters

are presented, followed by a short presentation of the two combined hybrid

systems increasingly widespread in clinical practice, the PET/CT and the

PET/MRI. A summary of the most common tracers and isotopes is also

reported. Also in this case, the final section is dedicated to the open issues.

• Chapter 4 introduces the topic of the texture analysis, which could play

an essential role in medical image application, having the great advantage

of maximising the information, by exploiting available data without the

need for additional acquisitions. The main texture analysis approaches cur-

rently used in literature are briefly discussed. Then, a deep analysis is

reported about the statistical-based method, ranging from the first-order to

the higher-order features, which have been considered and developed within

this Thesis work.

• In Chapter 5, a novel approach based on the local analysis is introduced

to overcome the limitations of the first-order statistical features, previously

introduced. Two spatio-temporal indices conceived to exploit DCE-CT in-

formation and a third one summarising their joint behaviour are reported.

These indices describe the evolution over time of the tumour spatial hetero-

geneity. As regards the reliability analysis of perfusion maps, an error index

to establish which perfusion values are unreliable and a local-based index to

evaluate the local spatial coherence of the perfusion maps are presented.

• In Chapter 6, the image segmentation is briefly described and formalised.
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This is followed by an introduction to the registration methods currently

used, along with the algorithmic choices required. Then, the method de-

veloped to perform a 3D PET segmentation of the kidneys on PET/CT

images is reported. Then, the method used to perform the multi-modal 3D

registration of GOJ tumours on FDG-PET/CT and FDG-PET/MRI series

is presented. Afterwards, the algorithm developed to detect sub-regions in

tumour volume having the potentiality to compare multi-modal information

is shown.

• Chapter 7 reports the first application of one of the methodological ap-

proaches previously described, the spatio-temporal analysis of DCE-CT

sequences. As previously mentioned, visual analysis represents the gold-

standard for image interpretation. The need for more objective measures

pushes towards an intensive use of software to automatically provide quan-

titative information useful in clinical routine. The ability of spatio-temporal

features, devised in the Part I of the Thesis, to quantify and classify the lung

tumour heterogeneities, as performed through visual analysis by experts, is

discussed.

• Chapter 8 reports the use of the local-based index devised for the reliability

estimation, which is able to discriminate between the tumour heterogene-

ity, featured by locally structured patterns, and the noise, characterised by

sparse and unstructured values. As previously mentioned, currently, the

assessment strategies rely on global measurements, which are inadequate to

discriminate between noise and heterogeneity. This index enables a proper

comparison between perfusion maps, thus improving the overall reliability

of DCE-CT studies and favouring its translation into clinical routine.

• Chapter 9 reports the perfusion characterisation of two lung cancer sub-

types, at diagnosis. This topic is widely debated in literature, which reports

different and sometimes not statistically significant results. In this Thesis,

the analysis of perfusion differences have been carried out after removing the

unreliable perfusion values, through the methods presented in the Part I of

the Thesis. Therefore, the significance of the results has been achieved by

automatically detecting and excluding artefactual perfusion values as well

as through a punctual analysis of the borderline cases, i.e. the most atypical

lesions, whose perfusion values negatively affect the statistical significance
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of the study.

• Chapter 10 reports the approach to extract meaningful features from perfu-

sion maps based on the local analysis presented in the Part I of the Thesis.

The use of the local-based features, able to gather and exploit informa-

tion owned by the hemodynamic heterogeneity patterns at local level, is

reported. Features ability to act as a prognostic image-based biomarker

for lung cancers has been assessed. In particular, the correlation between

the feature-pair computed on perfusion maps and the survival of patients

affected by lung tumours was explored and analysed in comparison with

the staging, commonly used as prognostic indicator. The features devised

proved a strong correlation with the survival, this suggesting a promising

prognostic clinical application of the DCE-CT. Also in this case, a reliabil-

ity analysis of the maps was performed to automatically detect and remove

those pixels and regions undergoing high computing errors.

• Chapter 11 reports the approach used to analyse the potential of mannitol

to reduce renal uptake of 68Ga-PSMA, thus, the nephrotoxicity. To this

purpose, a PET-derived index has been devised, able to represent a high

uptake activity in a more robust manner than the clinical accepted PET

parameters. Indeed, these parameters widely used in clinical practice are

characterised by a large degree of variability due to physical and biological

sources of errors. In order to identify a more representative parameter for

the kidneys volume distribution of values, the segmentation method devel-

oped and presented in the Part I of the Thesis was used to segment the

whole kidneys. The analysis of the index devised showed that the rapid

administration of mannitol, carried out prior to the injection of the radio-

tracer, reduces the absorption of 68Ga-PSMA by renal tubules, limiting the

dose of the kidneys.

• Chapter 12 presents a multi-modal analysis of the tumour heterogeneity in

patients affected by GOJ cancer. The features derived from FDG PET/MRI

were analysed in order to establish if they could be able to predict for con-

temporaneous metastases. In particular, first- and second-order statistical

features were computed on the available image series. The results showed

that combined texture features can discriminate better than the parameters

currently used in clinical routine. As a result, this analysis may complement
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current staging practice.

• In Chapter 13, the conclusions concerning the topics faced in this Thesis are

drawn. A brief summary of the main methodological contributions achieved

and the results obtained during this research work is also reported.

The work developed in this Thesis has been carried out in collaboration with:

• Computer Vision Group (CVG), Advanced Research Center on Electronic

Systems (ARCES), University of Bologna, Italy. Head: Prof. Alessandro

Bevilacqua

• Diagnostic Imaging Unit, Istituto Romagnolo per lo Studio e la cura dei

Tumori (IRCCS-IRST), Meldola (Forĺı-Cesena), Italy. Head: Dr. Domenico

Barone

• Department of Cancer Imaging, School of Biomedical Engineering & Imag-

ing Sciences, within the Faculty of Life Sciences & Medicine at King’s Col-

lege London, St Thomas Hospital, United Kingdom. Head: Prof. Dr. Vicky

Goh.

The activities discussed in this Thesis pertain to the project PERFECT (Au-

tomatic analysis of hepatic and lung PERFusion through the usE of CT-4D image

reconstruction), to the study aiming at investigating whether mannitol can reduce

PSMA renal uptake, and to the prospective study regarding the multi-modality

imaging characterisation of the gastro-oesophageal tumours heterogeneity.

The methods developed and the results achieved in this Thesis work have been

partly published in four scientific papers on one national and three peer-reviewed

international journals, one international conference paper, twenty-nine abstracts

or extended posters, whose twenty-three on international and six on national con-

ferences. In addition, they have been also presented in six oral communications.

Finally, two papers have been submitted to international journals.
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This Chapter introduces the complexity of the tumours and, in particular,

of the tumour heterogeneity which makes the clinical oncological practice very

challenging. Indeed, the intra-tumoural heterogeneity involves specific functional

aspects like angiogenesis, proliferation and metabolism, which are essential for the

tumour growth and spread (Section 2.1). These processes require to be deeply

analysed. The imaging modalities able to detect these phenomena and, thus, to

improve the characterisation of the tumour micro-environment are also presented

(Section 2.2). Finally, an overview of the image-based biomarkers proposed so far

is reported (Section 2.3).

2.1 Tumour

Neoplasm is an abnormal new (neo) creation (plasma) of tissue. When the tissue

growth forms a mass, it is commonly referred to as tumour. Basically, there are

three types of tumours: benign, potentially malignant (pre-cancer), and malig-

nant (cancer). Usually, benign tumours can be easily removed. They are localised
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and they can not metastasise, that is, spread around the body. Pre-cancer tu-

mours are hardly distinguished from the other ones, since in their earlier phase

they share common features with benign tumours, in the later with malignant

ones. Given enough time, when not treated, they will transform into malignant

tumours, cancers. During this process, as a result of genetic alterations, tumour

acquires the so called ”hallmarks of cancer” [24, 4]. Now, the concept of cancer

as a closed, isolated and self-sufficient system of cells has been overcome. Re-

cently, cancers have been recognised as aberrant “organs”, being composed by

highly organised and interactive cells with the well known ability to metastasise

and destroy the surrounding tissue [3]. There are more than hundreds different

tumours and several subtypes for specific body districts. However, even though

the catalog of cancer cell genotypes is so really wide, in 2000, Hanahan and Wein-

berg suggested that it is the reflection of essentially six hallmarks: self-sufficiency

in proliferative signalling, insensitivity to anti-growth safeguards, resistance to

apoptosis, achievement of replicative immortality, induction of angiogenesis and

activation of tissue invasion and metastasis, which depends on the acquisition of

the other five capabilities [24]. In the last decade, as a result of extensive re-

search in tumour biology, Hanahan and Weinberg added two emerging hallmarks

involved in the pathogenesis of some or even all cancers. One is the capability to

reprogram cellular metabolism in order to most effectively support neoplastic pro-

liferation. The other concerns the capability to avoid immunological destruction

[4]. In this perspective, tumour biology appears even more complex than that of

the normal healthy tissue. Understanding the mechanism implies the study of the

so called “tumour microenvironment”. Indeed, even if at first the tumour should

appear composed by reasonably homogeneous cell populations, in the course of its

progression, hyperproliferation combined with increased genetic instability and re-

versible changes in cell properties bring to distinct clonal subpopulations. For this

reason, many tumours are “heterogeneous”. Being histopathologically different,

they reflect regions with a different degree of proliferation, vascularity, inflam-

mation and invasiveness. In addition, in recent years evidence has accumulated

regarding the existence of a subclass of neoplastic cells within tumours, known as

cancer stem cells (CSCs), which provide an explanation for the phenotypic and

functional heterogeneity of cancer cells in some tumours [25].
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2.1.1 Heterogeneity

Tumour heterogeneity is a phenomenon reflecting the highly complex tumour

micro-environment. Tumour can be composed by cells showing different genetic,

epigenetic and phenotypic profiles [26]. This phenomenon translates into varia-

tions of the tumour tissue in morphology, angiogenesis, metabolism, cellular pro-

liferation and metastatic potential. Heterogeneity occurs both between tumours of

the same organ, in this case it is referred as inter-tumour heterogeneity, and within

the same tumour, namely intra-tumour heterogeneity. Inter-tumour heterogene-

ity leads to the definition of tumour subtypes, while intra-tumour heterogeneity

means that tumour cells have different properties and can express different mark-

ers [27, 28, 29], as mentioned before. Therefore, the presence of tumour hetero-

geneity makes the clinical oncological practice very challenging, since introduces a

great variability in tumours’ response to available therapies as well as difficulty in

the identification of patients who will benefit most from specific treatments [29].

Indeed, the phenotypic heterogeneity in tumour cell populations as well as the

changes in cellular phenotypes resulting from adaptation to abnormal microenvi-

ronments need to be considered to improve the therapeutic outcome [30].

For this reason, in the last decade, an extensive research on tumour hetero-

geneity was conducted. As results, it has been found that its major clinical effects

are the association with drug resistance and the difficulty in performing histolog-

ical diagnoses. Indeed, in presence of tumour heterogeneity biopsy assay results

to be limited if not even inappropriate [6]. In addition, the complexity of tumour

pattern is increased by its degree of vascularization [31, 32]. Indeed, for tumours,

inflammatory disease and also other chronic conditions, blood vessels proliferate

in a really chaotic way through a process known as angiogenesis.

2.1.2 Angiogenesis

In 1969, a clinical cue studying a child retinoblastoma found evidence that tu-

mour growth depends on angiogenesis. Some years later in 1971 Judah Folkman

published this discovery, hypothesising that solid tumours are not able to grow

more than 1-2 millimetres without recruiting new blood vessels [33]. As already

mentioned, this process is known as angiogenesis and consists in the sprouting of

blood vessels from pre-existing vessels [34, 35]. Also the physiologic growth of the

body is based on angiogenesis. Indeed, with the enlarging of the vascularization,

tissue is able to receive nutrients, also creating paths for cells to leave or enter the
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Figure 2.1: Normal (a) and tumoral (abnormal) micro-circulation (b).

blood circulation. Vascularization of normal tissue is organised in a hierarchical

way consisting in arterioles, capillaries, venules, each having distinct functions.

Normal blood vessels result lined by the endothelial cells, which create a thin

monolayer constituting a barrier to control water, solutes and cells.

Tumour blood vessels have weird features: endothelial cells and vascular base-

ment membrane are all abnormal and locally incomplete and “deteriorated” [36].

Besides the presence of interruptions, even extra layers of basement membrane are

also reported [34]. In addition, tumour blood vessels present increased endothe-

lial fenestrations, this leading to an increase of blood flow (BF), plasma leakage

and permeability to large molecules present in the blood [37]. Endothelial cells

proliferate in a disorganized way and, for survival, become dependent on vascular

endothelial growth factor (VEGF) or other factors as well. Tumour enlargement

results associated with an increased interstitial pressure, due to the structural ves-

sels defects, leading to a locally decreased BF and, consequently, to an inadequate

oxygen delivery for cells viability.

Numerous studies have been conducted to better understand the biology un-

derlying the angiogenesis process and its role in metastases formation. In 2004,

these studies led to the Food and Drug Administration (FDA) approval of the

first antiangiogenic drug (bevacizumab, a humanised antibody targeting VEGF)
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as a first-line treatment for patients with metastatic colorectal cancer [38]. The

approval of the first antiangiogenic agent gave rise to high expectations for the

use of these treatments for malignant diseases, also raising several issues as the

assessment of tumour response to antiangiogenic therapies [39]. Other studies en-

courage the idea of therapies targeting cells proliferation mechanism, even though

these kinds of treatments should be considered carefully, since effects on tissue

and tumour are at present difficult to predict [40].

2.1.3 Cellular proliferation and metabolism

Cellular proliferation is an essential biological activity for both physiological and

pathological processes [41]. As already discussed, tumours are biologically hetero-

geneous. However, it is interesting to note that all tumours share the ability to

proliferate in an aberrant way differently from normal tissue, where the growth is

limited [40].

Normally, uncontrolled proliferation is prevented because cells absorb nutrients

from surrounding environment only if stimulated by growth factors. Cancer cells

acquiring genetic mutations overcome this growth factor dependence, altering

the receptor-initiated signaling pathways, probably activating the metabolism of

nutrients that both promote cell survival and fuel cell growth [42]. Therefore,

proliferation and tumour growth result unavoidably linked and supported by the

tumour metabolic reprogramming, considered as a hallmark of cancer.

The metabolic reprogramming consists in a tumour cells metabolic adapta-

tion, based on oncogenic signalling pathways that increase acquisition of nutri-

ents if they are abundant, also facilitating the assimilation of carbon into macro-

molecules such as proteins, lipids and nucleic acids [43]. Actually, recent works

highlight also the capability of cancers with particular mutations, like the KRAS

mutation in colon cancers, to be able to optimise metabolism when nutrients are

scarce [44].

At present, it is well known that there are thousands of mutations, translo-

cations, amplifications and deletions that may contribute to cancer progression.

Likewise, there are several key oncogenic signalling pathways leading to tumour

metabolism adaptation allowing cancer cells to survive and grow [45].

The relationship between tumour metabolism and tumour environment is not

very clear, and it seems not following the cause - effect principle. Certainly,

besides the genetic alterations, tumour cell micro-environment has an essential
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role in determining the tumour metabolic phenotype [46]. As already discussed,

tumour vascularization is structurally and functionally abnormal, leading to a

spatial heterogeneity [30], reflecting different oxygenation, pH, as well as glucose

and other metabolites concentrations. Also this harsh environment induces several

cellular stress responses that contribute to the alteration of the tumour metabolic

phenotype [45].

The metabolic features of cancer cells can be exploited for cancer treatment.

Indeed, being the majority of human cancer dependent on aberrant signaling path-

way, these altered pathways represent attractive therapeutic targets [47]. How-

ever, even if finding a therapeutic window between proliferating cancer cells and

normal cells remains challenging, the development of treatments targeting the

tumour metabolic pathways has been receiving renewed attention [48].

2.2 Imaging modalities

All these tumour processes are of essential clinical interest and require to be

analysed. At present, different imaging modalities are able to detect these phe-

nomena, ranging from the heterogeneity reflecting the tumour micro-environment,

to the specific functional aspects, like the angiogenesis, the proliferation and the

metabolism necessary for the tumour growth and spread.

Tumour heterogeneity is probably one of the most complex process to be

investigated and there is not one dedicated modality to detect this cancer feature.

Consisting of subpopulations of cells with different genotypes and phenotypes [30],

its spatial and temporal variability is increased by the presence of blood vessels,

dead cells and different proliferative and metabolic activities. For this reason, the

use of biopsy-based molecular assays could be inadequate because of the scarce

representativeness of samples [6, 8].

The advantage of imaging techniques is their non-invasive or minimally inva-

sive nature and the possibility to analyse in vivo the whole tumour heterogeneity

[9]. Many techniques have been proposed for the quantification of tumour het-

erogeneity and the choice of a specific technique depends on which heterogeneity

aspects we are interesting in. The imaging techniques mostly used for hetero-

geneity assessment include the MRI, CT, PET, single-photon emission computed

tomography (SPECT), ultrasonography (US).

Angiogenesis can be detected through DCE-imaging techniques, like the DCE-

CT and the DCE-MRI, through the analysis of the contrast agent passage after a
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bolus intravenous injection. DCE-based imaging permits to study in vivo the BF

of tumour vascularization and the exchanges between the intra-vascular and the

extra-vascular space [49].

Tumour perfusion and vascular volume can be also quantitatively measured

by 15O-labelled water ([15O]H2O) PET, being this marker free to diffuse and pass

into the intra-vascular and extra-vascular spaces. Even though this technique has

shown its clinical feasibility, the need for an on-site cyclotron due to the short

half-life of isotopes has thwarted its clinical application [17].

Tumour cells proliferation can be detected, for instance, through ADC para-

metric maps, clinically computed using MRI with DWI [50]. ADC maps reflect the

degree of diffusion of water molecules through different tissues. Therefore, lower

ADC values seem to reflect hyper-cellular areas where proliferation is higher [51].

Tumour proliferation, cell death and apoptosis can also be detected through the

3-deoxy-3-([18F]Fluoro)-fluorothymidine, FLT-PET. Indeed, the accumulation of

FLT in tissues has been shown to be associated with the cellular proliferation rate

[52].

Tumour metabolism consisting in an enhanced glucose uptake inspired tumour

imaging by FDG-PET, where FDG is an analogue of glucose, metabolised by

tumour cells similarly to glucose. FDG-PET is widely used in clinical practice for

tumours with high glucose metabolism, and has been shown to have a fundamental

role in diagnosis and monitoring of treatment response [53].

2.3 Image-based biomarkers

During the last years there have been substantial improvements in cancer therapies

with the advent of target therapies. However, survival remains poor for many

common tumours.

Generally, new targeted treatment strategies have been designed to induce

cytostasis, the inhibition of cell growth and proliferation, rather than the reduction

of the tumour volume. Therefore, traditional response assessment criteria based

on the measurement of tumour size through CT and MRI may be inadequate to

assess tumour response to these specific therapies. For this reason, during the

past decade the research has been focused on the possible use of specific imaging

biomarkers, deriving tumour functional aspects. This led to an increase interest in

the use of DCE-imaging, mostly DCE-CT and DCE-MRI, DWI, as well as PET,

particularly when combined with CT (PET/CT) and MRI (PET/MRI).



38 Chapter 2. Background

The derived functional biomarkers have shown to be promising, but to date

they have not been clinically validated, while the change in number of lesions and

tumour size remains the gold standard for assessing tumour response to therapy

[54]. More specifically, Response Evaluation Criteria in Solid Tumors (RECIST)

are based on the measurement of the maximum tumour diameter (one-dimension

measure) [55, 56, 57], while the World Health Organization (WHO) criteria are

based on the two-dimensional long-axis measurements [58, 59]. Therefore, to

evaluate the effects of molecularly targeted therapy, inducing cytostatic response,

new and more effective biomarkers are needed [60, 8].

A very simple biomarker of tumour vascular supply is given by measuring the

change in Hounsfield Unit (HU) of pre-contrast and post-contrast CT data. This

gives a simple indication of the tumour ability to accumulate contrast medium.

Much more refined biomarkers on tissue angiogenesis degree can be derived from

DCE-CT and DCE-MRI, whose principal ones are similar to one another despite

inherent differences in signal generation. Tracer kinetic modelling of dynamic

imaging data allows deriving perfusion parameters like BF, blood volume (BV)

and the capillary permeability. Several studies have shown that statistical param-

eters computed on these perfusion indices significantly change after treatment

[61, 62]. In patients receiving anti-angiogenic therapies like bevacizumab, promis-

ing evidences have been reported of early effects in tumour perfusion (e.g., reduced

BF and BV), occurring long before tumour reduction becomes visible [63, 64].

Probably the greatest use of PET is addressed to the study of tumour metabo-

lism through 18F-FDG, which permits a mapping of tumour glucose metabolism.

Effects from vascular antiangiogenic therapy can be evaluated as FDG uptake

reduction. While, higher FDG uptake proves the metabolic activity of tissues

and correlate with poor prognosis and tumour aggressiveness [15, 16, 65]. PET

measurements usually involve the use of the standardised uptake value (SUV). In

particular, the maximum SUV (SUVmax) has become a clinical accepted parame-

ter, representing the tracer uptake normalised to the injected dose and the patient

body-weight. Authors in [66] found that a low 18F-FDG SUVmax is also associ-

ated with the presence of epidermal growth factor receptor (EGFR) mutations in

patients with non-small cell lung cancer (NSCLC). This discovery highlights the

increasing interest in finding indices able to differentiate tumour types, to be used

as surrogate biomarker for tumour diagnosis.

[18F]FLT SUV can estimate cell proliferation, as mentioned in the previous

section. The authors in [67] found that [18F]FLT SUV has a predictive value for
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patients with malignant recurrent glioma treated with bevacizumab and irinote-

can. In particular, a reduction in SUV seems to be associated to an increased

overall survival OS. Tumour cellular proliferation can be also estimated through

the mean ADC value (ADCmean), where a low value correlates with a high prolif-

eration activity [51]. Indeed, this MRI biomarker is linked to changes in cellular

packing and increased cell size or density might be suggestive of tumour progres-

sion [17].

Recently, with the emerging interest for the analysis of the intra-tumour het-

erogeneity, more complex biomarkers based on texture analysis methods were con-

sidered to represent it by quantitative information. Several evidences have been

reported on the correlation of tumour heterogeneity measurements with tumour

types, grading and response to therapy. For instance, authors in [5] have found

that using CT texture analysis features, it was possible to differentiate high-risk

thymic epithelial tumour from low-risk ones with a high diagnostic performance.

While authors in [6], considering three independent data sets of lung and head-

and-neck cancer patients, showed that combined CT texture features reflecting

the intra-tumour heterogeneity had a strong prognostic value, also resulting asso-

ciated with gene-expression profiles. In addition, in a recent retrospective study,

including patients with esophageal cancer treated with chemoradiotherapy, the

heterogeneity emerging from 18F-FDG primary tumour, quantified through the

use of statistical parameters, resulted predictive of tumour response [7].
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This Chapter describes imaging modalities widely used in oncology, which

will be considered during this Thesis work. In particular, an introduction to

the CT and the DCE-CT is presented in Section 3.1 along with a mathematical

approach to derive tumour vascularity information. The benefits and the most

relevant open issues are also reported. Section 3.2 introduces MRI principles of

application along with the most widely used MRI image series, the T1- and T2-

weighted as well as the DWI. At the end of the Section, the most relevant open
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problems are presented. Finally, Section 3.3 presents the PET principles and the

derived parameters, followed by a short introduction to the two combined hybrid

systems, the PET/CT and the PET/MRI. As for the other modalities, the final

subsection describes the main open issues.

3.1 CT

Since its introduction in the early ’70s, CT has revolutionised the world of the

diagnostic imaging. CT is considered as the main diagnostic tool in tumour

evaluation, including tumour staging and monitoring the response to therapies.

Its increasing availability is due to the relatively low costs and the broad spectrum

of pathologies that can be examined [68].

Schematically, the CT operation principle is based on an X-ray generator ro-

tating around a patient and shooting narrow beams of X-rays through the body.

As the X-rays leave the patient, they are picked up by the X-ray detectors, posi-

tioned at the opposite side of the ring with respect to the X-ray source.

After acquisition, the signals registered by the detectors undergo a pre-pro-

cessing step and are transformed into X-ray attenuation values. An image recon-

struction method derived from numerical analysis (inverse Radon transform) is

used to calculate the local attenuation at each point within the CT section.

To reduce the dependence on the X-ray spectrum and to obtain numerical

values of convenient size, the values are not displayed in the image as local atten-

uation coefficients but as CT numbers (CTN). CTN is determined by the X-ray

attenuation µ occurring in the corresponding voxel. It is defined as follows:

CTN = 1000
µ− µwater
µwater

(3.1)

where µwater is the water attenuation coefficient.

The CTN represents a quantitative measure of radiodensity and is expressed

in HU from the name of its inventor, the English engineer G.N. Hounsfield. Ac-

cording to the Hounsfield scale, -1000 HU represents CTN of air while 0 HU is

the CTN of water [69]. There is no an absolute upper limit for this scale, but

the range of CTN varies across scanners and according to available bits per pixel

(e.g., with 12 bits the upper bound is 3071 HU).

If tissues with different attenuation properties lie in the same voxel, the re-
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sulting CTN will represent with a good approximation the weighted sum of the

different attenuation values [70]. This phenomenon due to the inability of the

detector to differentiate different tissues is known as “partial volume effect”. It is

defined as follows:

CTN = v1CTN1 + v2CTN2 + .. (3.2)

∑
i

vi = 1 (3.3)

where vi are the partial volume elements. That means, for instance, that a big

amount of cartilage and a thin layer of compact bone can cause the same attenu-

ation in a voxel as hyperdense cartilage alone.

Over the years many changes and technological improvements have been made

to increase CT performance. Probably, one of the most significant was the intro-

duction of the multislice CT in 1998, where an increased scan speed was associated

with a better z-axis spatial resolution [71]. Then, also the volume coverage was

increased along with the temporal resolution. Even today the aim is to get thinner

and thinner slices with smaller acquisition times.

The human eye can distinguish only a limited number of grey-levels (from

about 40 to 100, depending on viewing conditions). Consequently, there is no

point in assigning the complete diagnostic range of CTN (some 4000 HU) to

the available range of grey-levels (from white to black) because discrimination

between structures with small differences in CTN would no longer be possible. It

is therefore better to display just a portion of the CT scale, as shown in 3.1. This

so-called window is defined by its width, which affects image contrast, and by its

level, which determines image brightness. Reducing the window width increases

image contrast; decreasing the window level has the effect of brightening the

image while, on the contrary, raising the window/level (W/L) will result in a

darker image [72].

3.1.1 DCE-CT

In 1979, few years after G.N. Hounsfield introduced CT, Leon Axel first proposed

a method for assessing tissue perfusion from DCE-CT data [73]. At first this

procedure remains confined to research studies, being the CT scanners not able

to satisfy the high resolution and short acquisition time requirements. After
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Figure 3.1: Images viewed at different window settings to enhance (a) bone (window
1500, level 300), (b) soft tissue (window 350, level 50) and (c) lung tissue (window
1500, level -400).

the introduction of the multislice systems, a renewed interest for DCE-CT, the

functional imaging also known as CT perfusion (CTp), stimulated several clinical

applications essentially targeting acute stroke and oncology.

Focusing on oncology applications, as mentioned before, the introduction of

new therapies targeting tumour angiogenesis made CT and morphology-based cri-

teria inadequate to evaluate tumour response. Immunohistochemical biomarkers

of angiogenesis such as MVD, VEGF, and serum biomarkers such as circulat-

ing endothelial cells (CEC), have led to encouraging results, even if sometimes

inhomogeneous [74]. However, none of these methods is considered a definitive

indicator of the angiogenic activity for a functional tumour characterisation. In-

deed, these potential biomarkers involve invasive, expensive and not widespread

techniques, poorly suitable for a daily routine in the clinical practice [75, 76].

For this reason, even if CT remains the gold-standard for anatomical imaging

in several tumours, there is a dire need to incorporate CTp into the existing CT

protocols, being relatively inexpensive, almost non-invasive and already widely

available. At present, CTp is widespread in both research and clinical trials, not

yet in the routine clinical practice since protocols and software are far from being

standardized. Its use permits the in vivo quantification of tissue perfusion through

the temporal analysis of the Time Concentration Curves (TCCs), obtained by

repeating scans over time after the administration of a contrast medium [77].

Multiple CTp parameters can be derived studying TCC signals, representing

the temporal tissue density variations directly proportional to the quantity of con-

trast material trapped within the tissue. Several studies have shown correlations
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between CTp parameters and angiogenesis biomarkers (e.g., MVD and VEGF) in

a wide spectrum of cancers, originated in different body districts including lung

[13, 76], liver [14], prostate [78], stomach [79], kidney [80] and soft tissues [81].

The benefits of using DCE-CT to derive tumour vascularity information need

to be balanced against the cancer risk associated to the radiation received dur-

ing DCE-CT acquisition [12]. Among the most effective perfusion parameters

permitting angiogenesis evaluation BF arises [82]. BF showed a high correlation

with the tissue biomarker MVD [81] and can be measured by considering only

the first passage of the contrast medium, this requiring a short-time examination

and permitting to minimize the radiation dose administered to the patient, ac-

cordingly. Moreover, short-time acquisition also reduces the probability of patient

movements, permitting to carry out perfusion studies with a single breath hold

[83].

3.1.2 BF mathematical model

BF is one of the most significant perfusion parameters [82], which allows detecting

the earliest functional changes on tumour vasculature even within the first week of

anti-angiogenic therapy [84]. BF is defined as the transport of blood, consequently

also of oxygen and nutrients, through a unit volume of tissue per unit of time

(expressed in ml/min/100g or in ml/min/100ml). This is a phenomenon occurring

at the capillary microvasculature level, not to be confused with the blood velocity,

a concept usually applied for large vessels [68].

BF can be calculated for each voxel by considering a single-compartment

model. This model represents both the intravascular and interstitial spaces with

a temporal concentration of the tracer corresponding to the TCC of the tissue,

CT (t). The system is characterized by a single inlet, the arterial input, with an

arterial blood plasma concentration CA(t), and a single outlet, the venous outlet,

with a venous blood plasma concentration CV (t), as shown in Figure 3.4. The re-

Figure 3.2: Single-compartment model outlining the perfusion tissue.

lation between CA(t), CV (t) and CT (t) is given by the Fick’s principle expressing

the conservation of mass:
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dCT (t)

dt
=
BF

VT
[CA(t)− CV (t)] (3.4)

One immediate simplification is to assume that during the measurement period

there is no venous outflow, CV (t) ' 0 (i.e., no contrast medium has reached the

venous side of the circulation yet). This assumption is valid only for time periods

less than the minimum transit time, when the injected contrast medium will all

remain within the tissue. Under this assumption, Eq. (3.4) can be simplified as

follows:

dCT (t)

dt
=
BF

VT
[CA(t)− CV (t)] ' BF

VT
CA(t) (3.5)

This implies that the slope of the tissue curve, dCT (t)/dt, reaches a maximum

(“steepest slope”) when the input function, CA(t), is at its maximum point [73].

Thus, the BF, expressed in mL/min/100 g, is given by

BF

VT
'

[dCT (t)
dt ]max

[CA(t)]max
(3.6)

This is known as the Mullani-Gould formulation or single-compartment for-

mulation. The approximation used in Eq. (3.5) results in an overestimation of

the denominator of Eq. (3.6), and consequently in an underestimation of the BF

if the bolus is large, or for organs with a rapid vascular transit. Accordingly, for

organs such as spleen and kidney characterized by a complex microcirculation this

assumption might not hold [85], but for most clinical applications the achievable

accuracy and precision levels are appropriate [86] and the maximum slope method

to calculate BF has been validated [87].

Figure 3.3 shows an ideal input function measured within a large tissue-feeding

artery (red) and the concentration time curve measured in the tissue (blue). Usu-

ally, the proper input function is not detectable, this explaining why the steepest

slope does not coincide with the maximum concentration time point [86].

3.1.3 BF computation

To obtain the samples needed to build CT (t) and CA(t), the target lesions and

the arterial input (aorta) need to be segmented for each time instant, thus the-
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Figure 3.3: Representation of the aortic TCC signal, CA(t) (red), and the tissue TCC
signal, CT (t) (blue). The red star points out the aortic peak, while the blue circle the
steepest slope of the tissue curve. The grey vertical line indicates the time at which
the aortic input is at its maximum, while the magenta line highlights tissue maximum
slope.

oretically sampling the same body section. Generally, TCCs are built for the

pixels belonging to the regions of interest (ROIs) by sampling the corresponding

HU values. They appear as mainly composed of three phases: the baseline, the

enhancement and the outflow. The first phase represents the time period before

the arrival of the contrast medium in the tissue; the second phase is featured by

an enhancement of the tissue corresponding to the arrival of the contrast medium;

the last phase corresponds to the time period when the tracer leaves the tissue

and starts the recirculation.

In order to obtain the TCC signal for each voxel of the tissue, several ap-

proaches are available in the literature, some of them being also quite recent [88].

In this Thesis, the sigmoid-shape model given by the Hill Equation has been

adopted [89]. This model, described with the equation 3.7, is able to fit the main

trend of the concentration samples in a robust manner [91].

y(t) = E0 + (Emax − E0)
tα

(EC50 + t)α
(3.7)

where E0 is the baseline concentration of the tissue, that is before the arrival

of the tracer, Emax is the saturation value of the concentration reached after its

arrival, EC50 is the time instant at the half-maximum value of the concentration,
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Figure 3.4: Representation of the sigmoidal model used for the fitting procedure,
relative to the temporal sequence of a reference slice [90].

and α is the parameter which mainly affects the slope of the sigmoid curve.

The BF values of the reference slice are represented using functional colori-

metric maps (Figure 3.5)). Blue regions point out low perfusion values, while

Figure 3.5: CT image (a) and corresponding BF map (b) of a lung tumour (squamous-
cell carcinoma).

regions characterised by hottest colours highlight the presence of highest perfu-

sion areas. Pink colour points out the presence of unreliable pixels, that will be

better described further on Section 5.3. These maps provide a useful view of the

perfusion and the functional heterogeneity of the tumour, highlighting for instance
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the presence of hypodense regions, hemorrhages, blood vessels and bronchi.

3.1.4 Open issues in DCE-CT

Despite CTp promising results in the oncological field, including early detection of

the tumour, improvement of prognosis, earl assessment of effects following novel

targeted therapies as well as diagnosis of tumour recurrence [92, 21, 11], CTp

is not a clinical practice yet due to several challenges, mostly still open. These

issues involve different aspects of DCE-CT utilisation. The lack of standardisa-

tion is one of the most serious [23], even if this problem has been partly faced by

the Quantitative Imaging Biomarkers Alliance (QIBA), with the development of

standardised protocols for DCE-CT and DCE-MRI [8]. Another relevant issue is

the radiation dose, since the cancer risk associated to a CTp examination has to

be justified by the benefits deriving from the knowledge of tumour perfusion [12].

In several studies, to decrease radiation dose tube voltage and/or mAs have been

decreased [93]. This has been possible due to the new reconstruction techniques,

which have improved the trade off between the noise introduced by the low-tube-

voltage technique, which would lead to beam hardening artefacts, and the image

quality. Repeatability and reproducibility are essential prerequisites to validate

a new imaging technique. Indeed, especially when considering therapeutic mon-

itoring, the assessment of measurement variability plays a primary role. Several

efforts in this regard have been made in both human and animal models. Goh

et al. analysed perfusion parameters (BF, BV, mean transit time or MTT, and

permeability) derived from baseline and repeated CTp scans performed within 48

hours in 10 patients with histologically proven colorectal cancer. Results showed

that perfusion parameters are reproducible with a within-subject coefficient of

variation lower for tumour than for skeletal muscle [94]. Authors in [95] found a

high correlation coefficient and a low variability of perfusion parameters between

two successive CTp scans performed within 30 hours in 4 patients with advanced

hepatocellular carcinoma (HCC). Another study [96] including 10 patients with

histologically proven NSCLC reported both permeability and blood volume mea-

surements were reproducible, with very low inter- and intra-observer variability.

Also in another study [97] with 20 patients affected by NSCLC, examinations were

repeated after 24 h. Low within-subject coefficient of variation for BF, BV, MTT

and peak enhancement showed the repeatability of the first-pass CTp technique.

Despite the above promising results, there is still need for more reproducibility
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studies for CTp measurements since most of the previous works were performed

on limited study populations coming from single centres. In addition, as shown

in [98], absolute CTp values are jointly affected by motion correction and acqui-

sition protocols, since longer acquisitions do not allow breath-hold condition, this

leading to unavoidable movements and to increased variability [99]. Motion arte-

facts due to, for instance, respiratory and cardiac movements can jeopardise TCCs

computation, leading to unreliable perfusion parameters, particularly in abdomen

and thorax studies. Similarly, also the presence of physics-based artefacts, such as

for instance cupping artefacts and streaks [70], as well as partial volume artefacts

[84], may alter the calculation of perfusion parameters. Besides these factors, also

tumour heterogeneity, reflecting the presence of chaotic and tortuous blood ves-

sels, hypoxic regions, micro-calcification and blood loss [100, 101], is considered an

intrinsic factor causing measurement variability [94]. Recently, very few studies

have started focusing on the TCCs fitting error to identify which perfusion values

are most likely unreliable at voxel level [102, 103], without considering the spatial

coherence of the perfusion maps. Actually, the reliability analysis is mainly per-

formed considering the inter- and intra-observer variability [98, 104, 96] through

the use of statistical global measures of perfusion parameters, include variability

caused by measure uncertainty and that intrinsic due to the intra-tumoral het-

erogeneity, this thwarting any assessment of perfusion reliability. This issue has

been partly faced in 5.3.1, where a deep analysis has been carried out.

3.2 MRI

As discussed in DCE-CT, non-invasive staging of cancer often involves CT as a

primary imaging investigation, because of its high accuracy reached through in-

novations in hardware and imaging tracers. CT plays an important role for the

assessment of the extension of the primary tumour invading the nearby tissues, as

well as for the detection of distant metastases [105]. It is well known that an accu-

rate tumour staging is of relevant importance for determining prognosis, planning

therapy and evaluating tumour response. Another aspect particularly crucial is

the determination of the resectability based on accurate evaluation of tumour infil-

tration depth and invasion into surrounding structures [106]. Despite the medical

imaging innovations, the assessment of local tumour extent and infiltration, for

some organs, remains challenging. For instance, for cancers of the oesophagus or

GOJ, the delineation of the tumour on CT images is hard, since tumour atten-
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uation is similar to that of the oesophageal wall. In addition, it is also difficult

to evaluate tumour infiltration through or beyond the oesophageal wall since the

single layers composing the oesophageal wall cannot be resolved due to the lack of

contrast characterising the soft tissue [107]. Currently, the endoscopic ultrasound

(EUS) is the most accurate for the staging for oesophageal cancer [108]. However,

there are lots of technical difficulties associated with the technique, due to the

inability to pass the endoscope through stenotic tumours. Magnetic resonance

imaging (MRI) has become a promising modality for the non-invasive staging of

some cancers, as gastric, oesophageal and GOJ cancer.

The nuclear magnetic resonance (NMR) phenomenon in solids and liquids was

first described in 1946 by Bloch and Purcell. In 1973 Paul Lauterbur proved that

it was possible to use NMR to create an image. Similarly to the CT technique,

MRI has rapidly evolved with the introduction of technological innovations as the

superconducting magnets, leading to the first clinical applications in the early

1980s [109].

In order to produce detailed images, MRI exploits the body’s natural mag-

netic properties. Indeed, in the body, mainly in water and fat, there is a great

abundance of hydrogen nuclei which are single protons [110].

Hydrogen atoms possess a property known as spin, which under normal condi-

tions, are randomly aligned. With the application of a strong static magnetic field

(B0) the protons axes aligned either in parallel (low-energy state) or antiparallel

way (high-energy state) to the external field precessing (rotating) around the B0

axis (3.6). Usually, in MRI B0 strengths range between 0.5T and 3T .

The frequency of the precession ω0, known as resonance or Larmor frequency,

is directly proportional to the magnetic field strength, B0, and is defined as follow:

ω0 = γB0 (3.8)

where γ is the gyromagnetic ratio and is constant for each atom.

By applying a second radiofrequency (RF) magnetic field B1 perpendicular

to B0, usually consisting of short pulses lasting microseconds, nuclei with a spin

can be excited [109]. The absorption of RF energy usually causes a transition of

the nucleus from lower to higher energy levels, as well as a spontaneous in-phase

spinning, that is simultaneous spinning. The energy absorbed and then emitted

by the nuclei can be detected, amplified and displayed as “free-induction decay”
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Figure 3.6: Under normal conditions, hydrogen protons spin in the body are randomly
arranged (a). In the presence of a strong magnetic field B0, as occurs in an MRI
scanner, protons align themselves parallel to the MRI magnetic field (b).

(FID).

In order to spatially localise the MR signal, magnetic gradients changing the

Larmor frequencies of the spins are added to the static field strength in the three

orthogonal directions [111]. Faster or slower frequency is detected as higher or

lower MR signal respectively, this permitting to distinguish MR signals sources in

the space and enabling image 3D reconstruction.

3.2.1 T1- and T2-weighted MRI

The application of multiple RF pulses in sequence allows to emphasise tissues

and abnormalities [110]. When the RF pulse is switched off tissues protons relax

(return to equilibrium) with different rates. The time taken for the protons to

relax can be measured in two ways, by considering separately what occurs to the

spins in the longitudinal and transverse plane.

The time taken for the protons to return to their original position, transferring

the energy absorbed from the RF pulse to their surroundings, is known as T1 relax-

ation or “spin-lattice” relaxation [112]. It is defined as the time needed to achieve

63% of the original longitudinal magnetization. Simultaneously, the protons spin-
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ning in-phase in the transversal plane will no longer spin synchronously, losing

transversal magnetization once the RF pulse is switched off. This phenomenon,

known as dephasing, is due to the inhomogeneity of the MRI scanner magnetic

field. T2 relaxation time, also known as “spin-spin” relaxation, is defined as the

time needed to dephase up to 37% of the original transversal magnetization [109].

It is faster than T1 relaxation. It is possible to obtain images with a single tissue

parameter, T1 or T2, which dominate the image contrast, creating the so-called

T1-weighted or T2-weighted image, respectively.

Figure 3.7: Gastro-oesophageal junction cancer outlined in red in T1 (a) and T2 (b)
images.

Different tissues have different T1 and T2 relaxation times, thus permitting

their identification. Fat has a short T1 relaxation time as compared to water

because it can more easily transfer its received energy to its surroundings and

quicker dephase. T2 relaxation time for fat is less short than T1. Therefore, it

appears bright on T1-weighted images and less bright in T2-weighted images. In

practice, T1-weighted images are mainly used to analyse normal anatomy. Very

few structures have a high signal intensity and appear bright on T1-weighted

images (e.g., fat, blood, melanin, high-protein tissues). Also artefacts can appear

as white structures. While, water and collagenous tissue have a lower signal

intensity on T1-weighted images and appear darker. T2-weighted images are

instead used to detect pathology, as shown in Figure 3.7, and fluids around the

tumour [111]. Indeed, pathology is usually associated with edema/fluid, which

makes T2 sequence very suitable, being characterised by a high signal intensity

of water.
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3.2.2 DWI

DWI is another MRI technique, sensitive to diffusion molecules. It relies on the

detection of the random microscopic motion of free water molecules [113], known

as Brownian movement, which is linked to the thermal kinetic energy [114]. This

constant random motion, which characterised water molecules enclosed in a con-

tainer, is known as free diffusion. In biologic tissue, the motion of water molecules

is restricted because movement is limited by the presence of cell membranes,

macromolecules and intra-cellular organelles [115].

DWI signal represents water molecules diffusion in the intra-vascular, intra-

cellular and extra-cellular space [116]. It is not surprising that signal emerging

from the intra-vascular space is higher since water molecules diffusion is less re-

stricted and that for highly vascularized tissues DWI signal component coming

from the intra-vascular space is significant [117]. In order to obtain DWI images,

two additional symmetric gradient pulses are applied to the magnetic gradient

pulses. The first is incorporated in order to dephase the nuclear spins, producing

an effect similar to the T2 relaxation. After occurring the 180◦ echo pulse, the

second magnetic pulse gradient is applied with the aim to rephase the nuclear

spins. However, if the nuclei have moved, the rephasing process will be incom-

plete, resulting in signal loss. Differences in signal intensity due to incomplete

spin rephasing are the basis of DWI signal. The degree of diffusion sensitization

can be enhanced by increasing the amplitude, duration, and temporal spacing

of the two added gradients. These gradient properties determine the so called b

value, expressed in s/mm2, an index of the degree of diffusion weighting.

In biological tissues DWI signal is inversely related to tissue cellularity as well

as integrity of cell membranes [118], as shown in Figure 3.8. Therefore, it is

possible to detect phenomena including water diffusion from the extra-cellular to

intra-cellular spaces, restriction of cellular membrane permeability and depolariza-

tion disruption, and increased cellular density [117]. These features are commonly

associated with malignancies and hypercellular metastases, being tumour tissue

generally characterised by a high density of cells, most of all with intact cell mem-

branes. In tissue micro-environment with less cells and defective cell membrane,

as occurs in the necrotic core of a large mass, water molecules can move freely

[119]. The ability of DWI to detect these characteristics along with the develop-

ment of new technologies and stronger diffusion gradients explain the increased

interest for DWI in the oncologic field. Oncologic applications include tumour
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Figure 3.8: Diffusion of water molecules, represented by light blue circle moving
along a direction, drawn as a black straight line. In the presence of low cellularity
and disrupted cell membranes, water is freer to diffuse in the extra-cellular space, than
in a more cellular environment. Disruptive cell membranes also permit the diffusion
between the intra- and extra-cellular spaces (a). In the presence of a high cellularity
and intact cell membranes water diffusion is restricted by the reduced extra-cellular
space and by the membranes, which constitute a barrier for the diffusion (b).

diagnosis and characterisation as well as prediction and assessment of treatment

response [120, 121]. DWI examinations usually last 1-5 minutes, thus permitting

its inclusion into the MRI imaging protocol without significantly increasing the

overall acquisition time. Another benefit of DWI is that no exogenous contrast

material is required since image contrast is due to the inherent tissue contrast,

determined by the random microscopic motion of water protons.

DWI images can be post-processed in order to obtain ADC maps [mm2/s],

providing functional tissue information [122]. Theoretically, it is possible to obtain

maps of water diffusion by acquiring two images with different b values [123],

according to the follow equation

ADC =
ln S0

S1

b1 − b0
(3.9)

where S0 and S1 are the signal intensity obtained with b0 and b1 values, respec-
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tively. This equation provides the real diffusion only if water can freely diffuse,

condition that never occurs in biological tissues [124, 50]. The great power of

ADC is its ability to represent, in some way at voxel level, the hidden physical

processes occurring at much smaller scales, since water molecules can diffuse on

distances of about few micrometres, interacting with other molecules and cellular

organelles. The ADC can be computed for each voxel of the image and displayed

as a parametric map, as shown in Figure 3.9.

Figure 3.9: Gastro-oesophageal junction cancer outlined in red in the DWI image
and the corresponding ADC map.

Regions of restricted diffusion in highly cellular areas are represented by low

ADC values, while less cellular areas are characterised by higher ADC values. It

is worth noting that although areas of restricted diffusion appear to be higher

in signal intensity on DWI images, these areas are contrarily characterised by a

low-signal intensity areas on the ADC map [117].

Usually, ADC values are lower for malignant lesions than for benign lesions and

healthy tissues [50]. As anticipated in Section 2.3, ADC values can be measured

to evaluate changes in cellular packing, in order to monitor tumour response to

therapy. Indeed, increased ADC values after chemotherapy has the potential to

early suggest the inefficacy of chemotherapy [125], allowing the clinicians to switch

to more efficient therapy.

3.2.3 Open issues in MRI

MRI is routinely used in clinical practice for the management of oncological pa-

tients, providing both structural and functional information, without involving the
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use of potentially harmful ionizing radiation [126]. MRI images are characterised

by an excellent contrast between soft tissues [11], such as muscle, ligaments, ar-

ticular cartilage and bone marrow. Although a lot of progress has been made

in the cost and, consequently, in the availability of MRI, there is still need to

further decrease the cost of MR scanners in order to improve the accessibility of

this technique [109].

Despite the numerous clinical applications, MRI present several issues. MRI

is particularly sensitive to physiological motions, such as the gastrointestinal peri-

stalsis, respiratory and cardiac movements, which lead to artefacts [127]. Simi-

larly, also vessels pulsations occurring in the presence of considerable BF, such

as in aorta and pulmonary vessels, lead to the so-called flow artefacts. To reduce

these artefacts, triggering and gating techniques should be applied. However,

these techniques, being time-consuming, worsen the overall examination time,

which still represents an issue [117]. Indeed, being the image acquisition time

quite long, also patient movement must be considered. Moreover, MRI scanners

may be uncomfortable for claustrophobic patients, and the image quality of the

open scanners could be not adequate.

Other aspects that need to be considered are the geometric distortions, known

as susceptibility artefacts, caused by the presence of metallic implants [128]. In

these cases, CT may represent a more suitable choice. Probably, CT constitutes

also a better alternative to investigate lung pathology. Indeed, besides being the

thorax subject to respiratory motion artefacts, it is also affected by air suscepti-

bility artefacts, directly related to a fast signal decay.

In central regions of the mediastinum the signal-to-noise ratio (SNR) may

degrade. This issue can be faced by scanning at a higher magnetic field strength

(i.e., 3T). However, scanning at higher field strength can lead to increased effect

of magnetic susceptibility variations, which can affect the geometrical fidelity of

MRI images [129].

In the last years, DWI has become more available in the clinical practice due

to improvements of MR devices, proving to be a useful tool for diagnosis, tumour

characterisation and monitoring tumour response to therapy, in a variety of organs

such as oesophagus and stomach [130], liver [19], rectum [131], pancreas [132],

and also in prostate [133]. One of the major issue, which limits the widespread

adoption of DWI in the oncologic field, is the lack of standardization in the image

acquisition, particularly with regard to the choice of b values, which has led to

significant differences ADC estimates [134].
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Another source of variability in ADC values regards the analysis of the re-

sults, which can lead to different clinical consideration. Indeed, as discussed in

Section 2.1.1, tumour micro-environment is both spatially and temporally hetero-

geneous [117]. Analysing statistical indexes (e.g., mean or median value of ADC

maps) has the great advantage of providing a single value to represent the whole

tumour ROI or volume in a fast and intuitive way, generating parameters with

a high inter-observer repeatability [135]. However, these statistical global values

cannot reflect the underlying lesion heterogeneity. More sophisticated methods to

describe data need to be introduced and further work is needed to better under-

stand the pathologic variations associated with features observed in ADC maps.

3.3 PET

PET is a nuclear medicine imaging technique well established in the oncological

field, able to image the metabolic and biological processes occurring in the body.

It provides information regarding molecular processes taking place in healthy and

pathological tissue, adding functional information with respect to the morpholog-

ical characterisation, which can be derived using other imaging techniques as CT

and MRI [136].

PET operation principle involves the use of radioactive agents, which are

usually administered intravenously as radiopharmaceuticals. Radioactivity de-

cay caused ionizing radiations within the body, which can be detected, measured,

and imaged through the use of gamma cameras [137]. Indeed, the nuclear decay

emits a positron, a β+ particle, that interacts with an electron, β− particle. The

annihilation event between the β+ and the electron produces two coincident γ

rays (photons), as shown in Figure 3.10. If two detectors oriented at 180◦ detect

the pairs of annihilation photons in coincidence, then the origin of the β+ emission

can be identified along the line between the two detectors [138]. Thus, PET image

intensity reflects the radiopharmaceutical activity concentration derived from the

analysis of annihilation events.

The positron-emitting radionuclide is introduced into the body on a biologi-

cally active molecule. Indeed, PET tracers are characterised by two components:

• the so-called vector, vehicle or ligand which is the molecular structure, chem-

ically and biologically interacting with target sites in the tissue;

• a positron emitting radionuclide, which will provide a detectable signal en-
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Figure 3.10: Positron and electron annihilation resulting in the emission of two anti-
parallel γ rays.

abling the localization of the ligand.

Among the target sites usually considered there are specific receptor systems,

antigens, enzymes, transporters, specific metabolic alterations [139].

The most widely used biologically active molecule in routine application in on-

cology, neurology and cardiology is the FDG, an analogue of glucose, first radiola-

belled in 1978 [140]. In general, cancer cells, contrary to normal cells, metabolise

glucose by aerobic glycolysis [42, 46, 45]. Otto Warburg noticed this general prin-

ciple, known as the Warburg effect, characterised by increased glycolysis regardless

of oxygen availability. Indeed, it is interesting to note that also malignant hypoxic

cells, tend to use anaerobic metabolism, which requires even more glucose than

the aerobic one [47]. Tumour glycolysis is usually associated with an increased

glucose uptake, being many cancers characterised by a high metabolic rate. For

this reason, enhanced glucose uptake derived from FDG-PET can be used as an

early indicator of drug efficacy [53] and as a staging tool for several cancers, with

the possibility to investigate the presence of cancer metastases.

FDG-PET images are traditionally visually interpreted through a qualitative

analysis [141]. However, in the last years, some statistical parameters derived

from standardized uptake value (SUV) maps have been established in the clinical

practice. SUV reflects the decay-corrected uptake of the radiotracer within a
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region or volume of interest (ROI or VOI, respectively) normalised to the injected

dose and the whole-body distribution, typically taking into account the patients

body weight. SUV is an adimensional parameter usually normalised on body

weight (BW ) expressed in g and computed as follow:

SUV =
activity ·BW
dose · decay

(3.10)

where activity is the activity concentration in tissue (expressed in Bq/mL),

dose is the total radiopharmaceutical dose administered to patient (Bq and decay

is the decay factor used to correct the injected dose, computed as follows:

decay = 2
ti−ta

h (3.11)

where ti is the injection start time (s), ta is the acquisition time (s), and h is

the radionuclide half time (s).

Usually, SUV is reported as the mean (SUV mean) or maximum (SUV max)

SUV of all voxels within a ROI or a VOI [142]. Among these, SUV max is usually

preferred to the mean value, which can vary with the region considered, due to the

high heterogeneity of tumour FDG uptake. Therefore, contrarily to SUV max, it

is subject to both intra- and inter-observer variability [143]. The use of SUV max

has facilitated the comparison between patients, even if the practice of using SUV

thresholds for diagnosis is still widely debated [144].

Routinely, PET is often performed in combination with CT through hybrid

system known as PET/CT, even if recently a combination of PET and MRI has

been proposed as a promising alternative [145].

3.3.1 Hybrid systems

Combined PET/CT has emerged as a powerful imaging modality for tumour

diagnosis, staging and restaging, with dramatic improvements in the accuracy

over the PET alone [20]. At present, FDG-PET/CT is used in most oncologic

disease processes for several indications, including tumour response assessment,

treatment planning and follow-up examinations for recurrence detection [146].

PET/CT scanners are characterised by two high-performance scanners, solving

the problems of significant misalignments, met when fusing image-series coming
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from standalone systems [136].

CT acquisition of the whole body usually lasts less than 1 minute and is

acquired before PET. As already mentioned, one of the greatest advantages of

performing a whole-body CT is that functional images can be easily aligned with

the underlying anatomy, emerging from CT images. Another essential advantage

is that through CT attenuation maps is possible to directly correct PET images.

An example of PET/CT clinical use with a great impact in clinical practice

is the evaluation of the nodal involvement. Indeed, if from one side CT enables

a size evaluation of the lymph node, with PET is possible to derive its metabolic

activity, detecting possible disease earlier than anatomic changes occur (e.g., size

> 10mm) [136].

The devolpement of hybrid PET/MRI system is quite recent even if the idea

to combine the PET and the MRI arose even before PET/CT introduction [147].

The reason of this delay and slow progress is that the integration of the PET with

the MRI system is much more complex than that with the CT, due to the presence

of magnetic fields. Anyway, although it was really challenging, many resources

have been invested for the achievement of the multimodality PET/MRI, due to

the great success of PET/CT systems [148].

As already mentioned, in PET/CT system CT images are not just used for

anatomical details but also to easily perform coefficients attenuation correction.

For a PET/MRI system the derivation of attenuation-correction maps from MRI

images is much more complex [149] and although several methods have been

developed, this problem has not been overcome yet. Moreover, the acquisition

time for PET/MRI systems is longer than that of PET/CT ones.

Anyway, PET/MRI systems, despite their technical limitations, present valu-

able advantages, including the acquisitions being spatially and temporal simulta-

neous, with a great benefit for post-processing analysis, as the image registration.

Moreover, the total dose administered to the patient can be reduced significantly

as no dose is required by MRI scans.

As regards clinical applications, it is worth noting that MRI is the preferred

imaging modality to examine diseases of the soft tissue, making PET/MRI systems

very suitable for brain, breast and abdomen application. Indeed, because of its

superior soft-tissue contrast MRI is able to provide a high spatial resolution of

tumour as well as local disease extent, being also essential for characterisation of

primary tumour in sites sub-optimally imaged with CT [150].
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Figure 3.11: PET image acquired with PET/CT (a) and PET/MRI system (c) and
corresponding SUV fusion with CT (b) and T1-weighted image (d). These images point
out a gastro-oesophageal junction cancer, characterised by an increased abnormal FDG
uptake outlined in red in (a) and (c).

3.3.2 Tracers

In the past decade, the number of beta-emitting compounds able to mark both

metabolic pathways other than FDG and non-metabolic pathways has increased

exponentially. These markers are mainly indicated for the assessment of clinical

conditions that cannot be successfully imaged with the FDG radiopharmaceutical.
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Table 3.1: A summary of the most common tracers and isotopes used to image specific
molecular mechanism. Organs with the highest physiological uptake are also reported.

Molecular

mechanism
Tracer Isotope

Organs with

highest uptake

Glucose metabolism FDG F-18 Brain, myocardium, breast,

liver, spleen stomach, intestine,

kidney, urinary bladder, skeletal

muscle, lymphatic tissue, bone

marrow, salivary glands, thy-

mus, uterus, ovaries, testicle,

brown fat

Proliferation FLT F-18 Bone marrow, intestine, kidneys,

urinary bladder, liver

Bone metabolism NaF F-18 Bone

Phospholipid

metabolism

Choline C-11 Liver, pancreas, spleen, salivary

glands, lachrymal glands, renal

excretion, bone marrow, intes-

tine

Somatostatin-

receptor

DOTANOC Ga-68 Pituitary gland, spleen, liver,

adrenal glands, kidneys, urinary

bladder

DOTATOC Ga-68 Pituitary gland, spleen, liver,

adrenal glands, pancreas, uri-

nary bladder, thyroid

DOTATATE Ga-68 Spleen, urinary bladder, liver

Prostate-specific

antigen

PSMA Ga-68 Lacrimal gland, parotid gland,

submandibular gland, liver,

spleen, small intestine, colon,

kidney, urinary bladder, salivary

glands
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Among these, there are radiolabelled ones, including aminoacids, choline deriva-

tives, nitroimidazole derivatives, and peptides targeting several different recep-

tors. PET imaging enables the visualisation of molecular phenomena including

metabolism and proliferation, as well as specific receptor and gene expression, as

reported in Table 3.1, this explaining why it is considered as molecular imaging

[151]. Even though FDG tracer remains the most widely used in the clinical prac-

tice, these new radiotracers pave the way for more personalised and specific imag-

ing. For instance, Ga-68-labeled somatostatin-receptor analogs are widely spread-

ing in clinical routine for diagnosis and treatment planning of neuroendocrine tu-

mours (NET) [141]. It is worth noting that SUV max derived from metabolic PET

studies, such as 18F-FDG-PET, reflects the rate of the tracer metabolism, thus

the underlying metabolic activity of the tissue. In PET studies obtained with

receptor-based radiotracers, such as 68Ga-DOTA-peptides, the biologic meaning

of SUV max corresponds to the cells receptors availability. This information is

particularly useful for NET lesions, since they overexpress somatostatin recep-

tors, making the 68Ga-DOTA-peptides particularly suitable for the assessment of

these tumours, less glucose-avid than other tumours and, consequently, not easy

to detect with 18F-FDG PET scans. Moreover, 68Ga-DOTANOC PET allowed

the identification of patients who will benefit most from somatostatin analog ther-

apy [152]. Some studies have also investigated the role of grading and staging of

pancreatic NET, through the use of somatostatin receptor density as potential

prognostic factors [153].

It is interesting to note that authors in [154] report that NET lesions are

greatly heterogeneous. As mentioned before, these kinds of tumours are charac-

terised by overexpression of somatostatin receptors on the cell membranes. The

use of a dual-tracer approach with 18F-FDG and 68Ga-DOTA-TOC, has allowed

assessing somatostatin receptors expression and glycolytic metabolism. This ap-

proach could improve the selection of the most suitable therapy in patients with

NET. High SUV max derived from 18F-FDG images may suggest an aggressive

tumour behaviour, providing a complementary information to the somatostatin

receptor density, and representing a step towards a personalised medicine of NET

patients.

As regards tracer able to highlight phospholipid metabolism, the most used

is 11C-Choline. This radiotracer was found being able to image several tumours,

including prostate cancer. Indeed, several cancers have shown high levels of phos-

phorylcholine, much more significant than those found in normal tissue. However,
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what is responsible for tracer accumulation is currently not completely clear, even

if experimental studies suggest that choline transport and not phosphorylation is

the key step for choline uptake in malignant cells [151].

Actually, as regards prostate cancer, the most widely used radiotracer is 68Ga-

PSMA, able to image the expression of PSMA in cancer cells. 68Ga-PSMA is a

novel radiotracer that, analogously to the 68Ga-DOTA-peptides for NET tumours,

is able to detect prostate cancer and metastases by targeting tumour PSMA over-

expression [155].

3.3.3 Open issues in PET

As reported in the previous Sections, PET imaging providing molecular and func-

tional information of tumour biology has completely revolutionised the oncologi-

cal clinical practice, leading to dramatic improvements in diagnosis, staging, re-

staging, preoperative assessment, therapy monitoring and selection [150]. One of

the main disadvantages of PET scanners remains their high operating cost. In-

deed, the technology is still expensive and, to exploit all PET potential, highly

specialised radiochemistry expertise and a cyclotron unit are required, at least

within a reasonable distance, due to the limited half-life, for instance, of 18F

isotope [141].

Standardisation of acquisition protocols, including patient preparation, is man-

datory, since several biologic and technological factors can affect SUV computation

[142]. Indeed, SUV can be affected by patient characteristics like body weight,

biologic features as the blood glucose level, and also respiratory movements. As

regard the technical aspects also the uptake time, the decay correction, the use of

the time of flight, the scanner calibration, the methods for attenuation correction,

the algorithms for the PET reconstruction and the use of contrast agent in hy-

brid system, cause variability in SUV measurements [156]. Some of these aspects

concern in particular the PET/MRI, which despite being characterised by a bet-

ter soft tissue contrast and less ionising radiation has some drawbacks including

inferior PET data and higher susceptibility to artefacts due to respiratory and

cardiac motion as well as air-tissue or air-bone interfaces.

Measurement variability prevents often both within-patient analysis, including

comparison of values coming from follow-up examinations, and between-patient

analysis, thus thwarting improvements in diagnosis and prognosis assessment. As

regards tumour monitoring, a set of guidelines for the PET assessment of tumour
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response, similar to the RECIST, have been proposed in 2009 as PET Response

Criteria in Solid Tumors [157].

The partial volume effect represents a phenomenon with dramatic impact on

image quality. FDG accumulation in small tissue volumes appear larger in size and

characterised by a weaker signal. Partial volume effect is partly due to the PET

low spatial resolution, which introduces blurring effects, the lesion size, the sur-

rounding background activity and the sampling errors due to the reconstruction

algorithms [158]. Besides technical aspects, also respiratory and cardiac motion

artefacts can amplify the partial volume effect. Therefore, SUV cannot be accu-

rately measured in lesions with a diameter smaller than 2cm, where the value will

result probably underestimated [141].

There is currently no consensus regarding the definition of ROI used to mea-

sure tumour SUV. There are several different possibilities that include:

• free-hand segmentation of the tumour;

• fixed-size ROI positioned on the gravity centre of the tumour;

• isocontour defined as a percentage of tumour SUV max.

As mentioned in Section 3.3, manually segmentation of the tumour ROI af-

fects SUV mean value, thus preventing its repeatability and reproducibility. In

addition, this procedure may be subject to observer variability. To overcome the

variability introduced by a subjective approach, the idea of a fixed-size ROI was

proposed, automatically positioned based on geometrical lesion features. Despite

this procedure has the advantage of removing observer variability, the fixed-size

ROI introduces another type of variability, linked to the size of the lesions [159].

SUV mean will erroneously include outer structures, which will lead to an under-

or an over-estimation of the uptake. In this case, also SUV max computation could

be compromised. For this reason, the choice of isocontour has appeared as the

most “reliable” and objective one, and 40% of SUV max is usually considered as

significant [160]. The drawback of this approach is that the percentage of SUV val-

ues considered for the SUV mean measure, depending on the SUV max, is strongly

affected by the amount of noise of the images. Indeed, SUV max represents just 1

pixel of the tumour, i.e. that having the maximum intensity value. Even though,

in absence of noise this value represents the least affected by partial volume effect,

unfortunately, in a real situation, SUV max is strongly affected by noise. This issue

will be deeply analysed in Chapter 11.



3.3. PET 67

What probably has made SUV max so popular, beyond its promising clinical

results and despite its sensitivity to noise is that it is an observer-independent

parameter more reproducible than SUV mean [142, 161]. However, it worth noting

that even in an ideal situation, lesions are heterogeneous, thus a single pixel cannot

be considered as representative of the whole tumour uptake.
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This Chapter introduces the concept of “texture analysis”, a tool that has

played an essential role in medical image application, having the great advan-

tage of maximising the information, without the need for additional acquisitions

(Section 4.1). The main texture analysis approaches currently used in literature

are briefly discussed (Section 4.2). Then, the statistical-based methods, consid-

ered and developed within this Thesis work, have been reported ranging from the

first-order to the higher-order features (Section 4.3).

4.1 Background

Image analysis is widely used in oncologic settings, playing an essential role in

several medical applications, as diagnosis [19], staging [20], prognosis [21] and

response evaluation to therapy [54]. As reported in Chapter 3, a variety of imaging

modalities can be employed in the oncological clinical practice, including CT,

MRI and PET. As shown, these modalities have peculiarities which make them

suitable for different oncologic settings, being able to assess different biological

69
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mechanisms. Despite their particular use and technological features, they share

the way images are clinically interpreted, that is mostly visually [162]. Generally,

the aim of the clinician is to detect potential abnormalities, recognising patterns

and linking the perceived patterns with possible diagnoses. Therefore, the success

of a correct image interpretation strongly depends on the skills of the clinician

[163].

As discussed in Section 2.3, when the analysis is carried out relying also on

quantitative measurements, these are global statistical measures, most of times

mean values computed, for instance, on HU or BF values derived from CT im-

ages, on ADC and SUV parameters from MRI and PET images, respectively.

However, tumours are heterogeneous at different scale, from gene to tissue, as

discussed in Section 2.1.1. Therefore, a global evaluation cannot be entirely rep-

resentative, this preventing a proper tumour characterisation. A visual approach

could allow a qualitative heterogeneity evaluation, that however will be prone to

subjective variability. As a result, despite tissue heterogeneity has been proved to

be strongly related to tumour aggressiveness [164], prognosis [165] and survival

[166], its quantitative evaluation is still not included in the clinical practice.

On the other hand, by its very nature, quantitative evaluation through molec-

ular characterisation, involving biopsies or invasive surgeries to get small tissue

specimens, cannot adequately represent the features of the tumour as a whole

[6]. On the contrary, imaging is able to provide voxel-based information for the

whole tumour. It has the great potential to capture the in vivo intra-tumoral

heterogeneity non-invasively [9], paving the way for a routine tumour monitoring

and therapy response evaluation.

In the last decade, quantifying the salient features of the intra-tumoral hetero-

geneity has gained a great attention, also leading to a re-emerging of the texture

analysis as an essential tool in the era of personalised medicine [162]. As stated

in 1979 by Haralick, texture has not a satisfactory definition, assuming different

meanings based on the context, being also perceived in a highly subjective way

[167]. Anyway, we need a working definition of texture. Texture refers to the

structures and the appearance of an object and its analysis involves several math-

ematical methods, which permit to derive features able to reflect the variation

intensities and the underlying structure of the object.

Texture analysis includes several different techniques, which are not new in the

medical field but date back to the early 70s, when texture measures were suggested

for the detection of lung disease patterns [168]. The major advantage in clinical
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practice is that these mathematical approaches can offer information not visible

by the human eye in an objective way, exploiting data routinely acquired [169].

Texture analysis for medical use represents an ongoing field of research, with

applications ranging from automatic segmentation [170] and lesions detection

[171], to differentiation between pathological and healthy tissues [172], or between

benign and malignant tumours [173, 169].

4.2 Texture analysis methods

Texture analysis refers to a wide spectrum of mathematical methods, aiming at

describing the spatial relationships between the intensity level within an image.

As mentioned just before, the advantage of computing textural features in the

medical field is that, being a post-processing technique, maximises the information

that can be derived from standard images [164]. Different methods can be used

to perform a texture analysis, including structural, model-based, transform-based

and statistical methods [174].

The structural methods are based on the use of well-defined primitives known

as texture elements, e.g. regularly spaced parallel lines and squares. The prop-

erties of the texture elements define the type of texture (structure) to be inves-

tigated. Various approaches have been proposed to detect set of textures, which

appear as “distorted” versions of ideal textures. These require the use of different

classes of transformations, which includes the projective transformations, the per-

ceptual processes and those modelled for specific class of patterns [175]. Despite

these efforts, these methods appear to be limited in medical application since they

were conceived to work well when prior structures are known in advance [176],

thus resulting not effective to describe the complex texture characterising tumour

tissues [177].

The model-based methods use sophisticated mathematical models as the au-

toregressive (AR) models, the Markov random fields (MRF) and the fractal mod-

els, thus trying to interpret an image texture by using generative image model

and stochastic model. Essentially, these techniques generate an empirical model

of each pixel. The estimated parameters of the image models are used for im-

age analysis as textural feature descriptors. The primary disadvantage of these

approaches is the computational complexity involved in the estimation of these

parameters, especially the stochastic ones. Even if the fractal model has been

shown to be efficacy for some textures in medical image analysis, the main issue
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remains the inefficacy when describing local image structures [176]. Objects may

exhibit a multifractal behaviour. Despite the multifractal analysis allows comput-

ing a spectrum or a set of fractal dimensions, numerical differences appear among

the existing algorithms [163]. Moreover, the computation of the fractal dimension

is complex for the textured images that, most of time, are not deterministic and

have statistical variations [178].

Another approach consists in the analysis of the texture properties in different

spaces, such as frequency and scale space. These methods are based, for instance,

on the Fourier, Gabor or Wavelet transform [174]. The disadvantage of using the

Fourier trasform is that the time-frequency resolution is limited. Gabor transform

is essentially a windowed-Fourier transform, which allowed for a frequency and

spatial localisation, remaining limited by its single filter resolution [179]. Wavelet

transforms overcome this problem by using multiple channels for different fre-

quencies, this requiring intensive computation. Gabor and Wavelet transforms

due to their space-frequency decomposition abilities have been preferred for tex-

ture analysis, especially to treat images classification and segmentation problems.

However, being texture analysis based on wavelet transform highly dependent on

the “mother” wavelet chosen, it is difficult to find one setup for different kind of

tissues and imaging modalities.

The last approach, deeply examined in the next section (Section 4.3), concerns

the statistical methods, which have been reported to have higher discrimination

ability on medical images than the structural and transform-based methods [174].

These methods are based on the representation of the image texture through

the use of distribution properties and examining the relationships of the image

intensity values. Statistical methods have been widely exploited in literature

[180, 181], successfully used for discrimination and classification problems, also

due to their simple computation and more intuitive interpretation [10].

4.3 Statistical features

Texture perception and more specifically texture discrimination were extensively

studied by Julesz in the early 70s [182], [183]. Julesz’s pioneering work focused

on the possibility to discriminate two texture, despite being characterised by the

same brightness, contrast, and colour [184]. His research is based on statistical

methods including first- and second-order statistics.

First-order statistics are based on the histogram of pixels intensity values in
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the image. The features derived from values distribution depend only on single

pixel values and not on the interaction or co-occurrence of neighbouring pixel

values. The most common first-order statistic is the average intensity in an image.

Second-order statistics are based on the likelihood of observing pixels pairs of

specific intensity values. These features belong to the textural features, since

they can represent the spatial distribution of image values.

Statistical methods have played an important role in several medical applica-

tions, helping in improving diagnosis, staging and early response assessment [185].

Indeed, the intensity variations of medical images, which characterise the texture,

are supposed to reflect the underlying physical and biological variation.

Generally, features are automatically extracted from images and then used

for classification tasks, as distinguishing benign from malignant nodules. Usually,

feature calculation is performed after segmentation of ROIs or VOIs.

There are several ways to describe the perceived qualities of a texture, this

explaining the wide number of methods and features used to describe it. Texture

can be characterised by several features, such as uniformity, regularity, coarse-

ness, roughness, density, linearity and directionality. In oncological application,

the textural features that can be derived to describe these image characteristics

provide a measure of the intra-tumoural heterogeneity.

4.3.1 First-order features

The statistical features are global features, which describe how intensity values

within a ROI are distributed. Let x = {x1, x2, .., xN} be the set of L values of

the N voxels in the image. Let h = {h1, h2, ..hL} be the histogram with count

ni of each intensity level i in x. The occurrence probability pi for each intensity

level is pi = hi
N . Accordingly, we can have the following definitions:

Mean µ

µ =
1

N

N∑
k=1

xk (4.1)

Standard deviation σ

σ = (
1

N

N∑
k=1

(xk − µ)2)
1
2 (4.2)
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Skewness S

S =
1
N

∑N
k=1(xk − µ)3

[ 1
N

∑N
k=1(xk − µ)]

3
2

(4.3)

Kurtosis K

K =
1
N

∑N
k=1(xk − µ)4

[ 1
N

∑N
k=1(xk − µ)2]2

− 3 (4.4)

Coefficient of variation CV

CV =
σ

µ
(4.5)

Entropy E also known as Shannon entropy

E = −
L∑
i=1

pi log2 pi (4.6)

Uniformity U

U =

L∑
i=1

p2i (4.7)

Other parameters derived from the histogram analysis also include: themedian,

the intensity level that divides a distribution in two halves, the mode, the value

occurring frequently, the minimum and the maximum, that is the lowest and

the highest pixel values, and the 10th and 90th percentile, more robust to outliers

than minimum and maximum.

The main limit of these features, when used for heterogeneity evaluation, is

that they perform global measures, not considering the local variations within the

ROI. This issue will be addressed in Section 5.1.

4.3.2 Second-order features

Second-order statistics are based on the joint probabilities and provides co-oc-

currence measurements performed on matrices, known as grey level co-occurrence

matrices (GLCMs), that reflect the spatial grey-level dependence. Actually, these

matrices may contain any type of entity, besides grey levels. Each cell of these

matrices represents how often a couple of pixel values (i, j) occurs, this being the

basis for measuring the relationship between pixels. Therefore, these matrices
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provide valuable information about images since, as reported by Haralick et al.,

tone and texture, which are always present in the images, bear an inextricable

relationship [186].

The features that will be extracted from GLCM provide image statistical infor-

mation regarding the distribution of pixels pairs along one of the image directions.

GLCM provides a new image representation [167] and is an estimate of the second-

order joint probability, pij , of the intensity values of two pixels i and j, separated

by a distance δ (δ = 1 for neighbouring pixels) along a given direction θ, (where

usually θ can be horizontal, vertical, diagonal and anti-diagonal, i.e. θ = {0◦, 45◦,

90◦, and 135◦}). This joint probability can be represented with a square matrix

pij , with row and column dimensions equal to the number of discrete intensity

levels L in the image. Each pij element contains the frequency of a combination of

intensity levels pairs, i and j, at a certain distance δ, along a specific direction θ.

The resulting GLCM is a symmetric matrix, as shown in Figure 4.1. For images

Figure 4.1: Small image (a) and relative co-occurrence matrix (b) for δ = 1 and
θ = 0◦. The joint probability is obtained dividing the matrix in (b) for the total
number of possible pixel pairs.

tending to be flat, i.e. uniform with no texture, the resulting GLCM would be

almost diagonal. Contrarily, for images with increased local intensity variations,

i.e. with increased texture, the resulting GLCM will result characterise by more

off-diagonal values, as shown in Figure 4.2.

The choice of δ and θ in most cases is not obvious an must be made carefully to

properly characterised and classified a texture. The features that will be derived

from GLCM are local features that should encode in an efficient way, useful for

classification tasks, the relevant information present in GLCM structures. Some of

GLCM features reported below have a clear correspondence with human texture
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Figure 4.2: CT image (a) and relative co-occurrence matrix (b) for δ = 5 and θ = 0◦.

perception (e.g., coarseness, smoothness), while some others do not represent

some specific visual properties, but they still encode texture information with

high discriminatory power [187].

Joint maximum MJ is the probability corresponding to the most common

GLCM co-occurrence and is defined as

MJ = max(pij) (4.8)

Joint average µJ is the weighted sum of the joint probabilities and is defined

as

µJ =

L∑
i=1

L∑
j=1

i pij (4.9)

Joint variance σ2J is a measure of the variability of the GLCM co-occurrences

and is defined as

σ2J =

L∑
i=1

L∑
j=1

(i− µ)2 pij (4.10)

where µ = joint average.
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Second order entropy EJ is defined as

EJ = −
L∑
i=1

L∑
j=1

pij log2 pij (4.11)

Angular second moment ASM [186] also called energy and uniformity is de-

fined as

ASM =
L∑
i=1

L∑
j=1

p2ij (4.12)

Contrast C a measure of the intensity levels variations is defined as

C =
L∑
i=1

L∑
j=1

(i− j)2 pij (4.13)

Inverse difference IDF is defined as

IDF =

L∑
i=1

L∑
j=1

pij
1 + |i− j|

(4.14)

Inverse difference normalised IDFN is defined as

IDFN =
L∑
i=1

L∑
j=1

pij
1 + |i− j|/L

(4.15)

Homogeneity H also known as inverse difference is defined as

H =
L∑
i=1

L∑
j=1

pij
1 + (i− j)2

(4.16)

Homogeneity normalised HN is defined as

HN =

L∑
i=1

L∑
j=1

pij
1 + (i− j)2/L2

(4.17)

Correlation CORR [186] is defined as
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CORR =

∑L
i=1

∑L
j=1 ij pij − µxµy
σxσy

(4.18)

where

µx =
L∑
i=1

i
L∑
j=1

pij (4.19)

µy =
L∑
j=1

j
L∑
i=1

pij (4.20)

σx =
L∑
i=1

(i− µx)2
L∑
j=1

pij (4.21)

σy =
L∑
j=1

(j − µy)2
L∑
i=1

pij (4.22)

Autocorrelation A is defined as

A =
L∑
i=1

L∑
j=1

i j pij (4.23)

4.3.3 Higher-order features

Higher-order features include parameters describing regions or zones, thus reflect-

ing the relationship of each voxel with the neighbouring voxels [188]. Higher-order

approach includes the grey level run length matrix (GLRLM), introduced by Gal-

loway in the 70s [189], who defined a wide variety of visual texture features, based

on the distribution of pixels with the same intensity value along a given direction.

Like the GLCM, GLRLM assesses the distribution of the intensity values in an

image or in a stack of images. However, whereas GLCM assesses co-occurrence

of grey levels couple within a given distance and orientation, GLRLM measures

the so-called run lengths. A run length is defined as the length of a consecutive

sequence of pixels with the same grey-level intensity in a pre-set direction. Thus,

the GLRLM represents the occurrences of runs with length j for a discretised grey

level i. The run-length matrix has a great potentiality since it is able to reflect

the granularity of a texture: fine texture is expectedly characterised by short run-

lengths with similar grey-level intensities, whereas coarse texture by longer runs
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with different grey-level intensities [179].

It is worth noting that for small images most of the elements of the GLRLM

could be zero-valued, since there is not much space for runs. Moreover, if the

range of grey-level intensities is wide, many runs would contain only one pixel.

Therefore, before calculation of texture features, it is necessary to discretise the

tonal range of the image by grouping the grey-levels into bins. The number of

calculations needed to build the GLRLM is directly proportional to the pixels

number in the image [189].

Once the run-length matrices are calculated along each direction, analogously

to the Haralick features extracted from GLCM, it is possible to extract several

descriptors from GLRLM. These descriptors are able to capture the texture prop-

erties and discriminate among different textures. They can be used either with

respect to each direction or by merging them to have a global view of the texture

information.

Let rij be the (i, j)th entry in the given GLRLM, L be the number of grey

levels in the image, representing the channel depth of the DICOM image, R be

the number of different run lengths, Nr be the total number of runs (the normal-

ising factor) and N be the number of pixels or voxels in the image. The texture

descriptors that can be derived from a given GLRLM are described below.

Figure 4.3: Small image (a) and relative GLRLM matrix for the horizontal (b) and
the vertical direction (c).
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The short runs emphasis SRE emphasises the short runs. Being highly depen-

dent on the occurrence of short runs, it is expected high for fine textures. SRE is

defined as

SRE =
1

Nr

L∑
i=1

R∑
j=1

rij
j2

(4.24)

The long runs emphasis LRE emphasises the long runs. Contrarily to SRE,

being highly dependent on the occurrence of long runs, it is expected high for

coarse textures. LRE is defined as

LRE =
1

Nr

L∑
i=1

R∑
j=1

rij j
2 (4.25)

The low grey level run emphasis LGRE is analogue to SRE, but instead of

short runs, it emphasises the low grey-level values. It is defined as

LGRE =
1

Nr

L∑
i=1

R∑
j=1

rij
i2

(4.26)

The high grey level run emphasis HGRE feature is analogue to LRE. This

feature emphasises high grey levels and is defined as:

HGRE =
1

Nr

L∑
i=1

R∑
j=1

rij i
2 (4.27)

The short run low grey level emphasis SRLGE emphasises short runs and low

grey-level values and is defined as

SRLGE =
1

Nr

L∑
i=1

R∑
j=1

rij
i2j2

(4.28)

The short run high grey level emphasis SRHGE emphasises short runs and

high grey-level values and is defined as

SRHGE =
1

Nr

L∑
i=1

R∑
j=1

riji
2

j2
(4.29)
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The long run low grey level emphasis LRLGE emphasises long runs and low

grey-level values and is defined as

LRLGE =
1

Nr

L∑
i=1

R∑
j=1

rijj
2

i2
(4.30)

The long run high grey level emphasis LRHGE emphasises long runs and high

grey-level values and is defined as

LRHGE =
1

Nr

L∑
i=1

R∑
j=1

rijj
2i2 (4.31)

The grey level non-uniformity GLNU measures the similarity of grey-level

intensity values in the image. A low GLNU value correlates with runs equally

distributed along grey levels. It is defined as

GLNU =
1

Nr

L∑
i=1

(
R∑
j=1

rij)
2 (4.32)

The normalised version of the GLNU feature, GLNUN, is defined as

GLNUN =
1

N2
r

L∑
i=1

(
R∑
j=1

rij)
2 (4.33)

The run length non-uniformity RLNU measures the similarity of runs. A low

RLNU value correlates with runs equally distributed along run lengths. It is

defined as

RLNU =
1

Nr

R∑
j=1

(
L∑
i=1

rij)
2 (4.34)

The normalised version of the RLNU feature, RLNUN, is defined as

RLNUN =
1

N2
r

R∑
j=1

(

L∑
i=1

rij)
2 (4.35)

The run percentage RPC assesses the fraction of the number of realised runs
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and the maximum number of potential runs, the number of voxels in the ROI.

It is a measure of the coarseness of a texture. A low RPC value is associated to

highly uniform images and pictures with linear structures [189]. This feature is

defined as

RPC =
Nr

N
(4.36)
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In this Chapter, a novel approach based on the local analysis (Section 5.1) is

introduced to overcome the limitations of the global features described in Section

4.3. Two spatio-temporal indices conceived to exploit DCE-CT information and

a third one summarising their joint behaviour are reported in Section 5.2. These

features describe the evolution over time of the tumour spatial heterogeneity. In

Section 5.3, an error index to establish which perfusion values are unreliable and

a local-based index to evaluate the local spatial coherence of the perfusion maps

are introduced.

5.1 Local features

Images are inherently corrupted by noise, which usually emerges as random vari-

ations in intensity values and structured artefacts [190]. The presence of noise

can affect image measurements, especially local measures, leading to unreliable

results. Global measures can mitigate the effects of noise.

Several techniques exist to manipulate images and are used not only to re-

duce image noise but also, for instance, to enhance details and sharpen edges,

83
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i.e. boundaries of structures within the image [191]. Traditionally, the concept of

filtering has its roots in the frequency domain, especially in the use of the Fourier

transform. Filtering operations performed on the pixels of an image are usu-

ally known as “spatial” filtering. Substantially, the spatial filtering is performed

through a convolution of the image with a sub-image known as mask, kernel or

window. Basically, through an iterative procedure, the filter mask is moved from

point to point in an image and the response of the filter for each point (pixel) is

calculated by performing a predefined neighbourhood operation [192].

The simplest filter is the linear one, where the response is given by the product

of the mask coefficients and the corresponding pixel values. Considering the 3× 3

mask of Figure 5.1, the response R to the linear filtering at a point (x, y) in the

image is computed as follows:

R =

1∑
i=−1

1∑
j=−1

w(i, j)f(x+ i, y + j) (5.1)

where w(i, j) is the (i, j)th weight coefficient and f(x+i, y+j) is the corresponding

image value. In particular, the coefficient w(0, 0) coincides with f(x, y), indicating

that the mask is centred at (x, y) when the response is determined. Averaging

filters or mean filters are generally used for denoising and can be seen as low-pass

filters. These filters result ineffective when removing impulsive noise [193]. In

this case, non-linear filters as the median filter are preferred, being able to remove

noise while maintaining edges [194].

In this Thesis, a similar methodological approach has been used to overcome

the limitations introduced by the first-order features presented in Section 4.3.1. In-

deed, when computing first-order features tissue heterogeneity information within

an image is almost disregarded. For this reason, the global features previously

presented have been also implemented as local features, by considering the spa-

tial relations among neighbour pixels. This could allow to somehow preserve the

tissue heterogeneity information within the considered ROI.

To perform a local analysis a procedure similar to the image filtering has been

performed. More specifically, the first-order features are computed locally within

the ROI, considering a square patch W centred on a pixel at which, in the feature

map, the resulting value is stored. This procedure is repeated for each pixel within

the ROI, by using a sliding window, as shown in Figure 5.2.

The choice of W is not trivial and must be made carefully, also taking into
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Figure 5.1: Representation of the spatial filtering showing a 3×3 mask and the region
of the image considered for the filtering.

account the resolution of the modality being considered, to properly detect the

smallest coherence heterogeneity pattern. Indeed, the tumour tissue is charac-

terised by gradual transitions that occur with a spatial coherence. At the end of

this procedure, global statistical indices as the mean value of the local features

can be calculated on the local-feature maps. This methodological approach takes

benefits from the local analyses, able to preserve the heterogeneity information,

and the use of a global feature to summarise the outcome, which reduces the noise

effects.

While local features as the local average and the local median coincide with the

filters mentioned above, local features as the local entropy, uniformity, standard

deviation, kurtosis, skewness and CV (see Eq. 4.6, Eq. 4.7, Eq. 4.2, Eq. 4.4,
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Figure 5.2: From left to right, BF map (a) and sliding window of 9 × 9 pixel (b)
showing the perfusion values considered for the computation of the local coefficient of
variation (lCV ), stored in the corresponding pixel of the lCV map (c).

Eq. 4.3, Eq. 4.5, respectively) constitute novel simple features that can provide a

new representation of the image. The importance of performing a local CV (lCV)

and its possible application will be discussed in Section 5.3.1 and Chapter 8,

respectively. Beyond providing more representative feature values, this procedure

also allows the visualization of features colorimetric maps. For instance, the local

entropy and local uniformity maps are of particular interest. As an example,

Figure 5.3 reports the CT slice of a lung tumour (adenocarcinoma) outlined in

red and the corresponding local entropy and local uniformity maps. The local

entropy provides a representation of the local irregularity present within a ROI,

while the local uniformity refers to local homogeneities.

Perfectly flat images will be characterised by an entropy equal to zero, while

images with long runs of pixels, i.e. pixels with same values, will have a low

entropy, contrarily to images characterised by short runs and high contrast, which

will be characterised by a high entropy. Similar but opposite considerations can

be made when referring to the local uniformity. It is worth noting that entropy

and uniformity are indirectly related but not linearly dependent. An application

of these local features on BF maps is reported in Chapter 10.
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Figure 5.3: CT image of a lung adenocarcinoma outlined in red (a), and relative local
entropy (b) and local uniformity maps (c).

5.2 Heterogeneity analysis on DCE-CT

In order to exploit both spatial and temporal DCE-CT information, two novel

indexes have been conceived to perform a spatio-temporal analysis. These indexes

are computed on the DCE-CT sequences of a slice, by studying the TCCs group

properties inside a ROI for local windows W (x, y) of size w × w and centred on

the slice coordinate (x, y), whose values in the image domain are denoted by ΩW .

Let σ(ΩW (m)) be the spatial standard deviation of the TCC values assumed in

W (x, y), at the generic time sample tm. The following indexes have been analysed:

• MS (temporal Mean value of local Standard deviation), the temporal mean

value of the σ(ΩW (m)) values on the whole sequence of the reference slice

is computed, thus yielding E(ΩW ) (where E(·) stands for expectation). MS

was conceived to provide an estimate of temporal persistence of local spatial
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homogeneity within the ROI;

• SS (temporal Standard deviation of local Standard deviation), the temporal

standard deviation of the σ(ΩW (m)) values on the whole sequence of the

reference slice is computed, thus yielding Σ(ΩW ). SS quantifies the temporal

stability of the local texture.

5.2.1 Single-feature analysis

The two indexes MS and SS represent the first two features considered for DCE-

CT heterogeneity analysis. In practice, a low MS value points out regions that

keep locally homogeneous (i.e., with a low contrast) over time, while high values

highlight voxels belonging to a heterogeneous tissue, which could be characterised

by a constant or a variable enhancement.

As regards SS, it shows a low value when the local spatial distribution of

the contrast agent has a time steady dispersion, that is, the TCCs’ family is

characterised by a temporal coherence of spatial properties of tissue, whether it

is a homogeneous or heterogeneous tissue. For instance, this occurs in case of

variance-preserving transformations, like spatially uniform enhancement. On the

other hand, high SS values may occur when voxels belonging to different structures

fall into the same window W , for instance, in case of a not negligible motion of the

patient, when the drawn ROI does not perfectly fit the lesion, or when the local

enhancement changes dynamically, for instance in the presence of blood vessels.

The outcome of each index was also represented by means of colorimetric maps

(referring to HU values), so as to enable a visual comparison with the ground truth

established by radiologists. As an example, Fig. 5.4 shows the colorimetric maps

Figure 5.4: Ground truth (left), colorimetric maps of SS (middle) and MS (right).

of SS (middle) and MS (right) referred to a ground truth examination, manually
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outlined by radiologists, whose heterogeneity is of Type 3 (left).

5.2.2 Multi-feature analysis

In order to explore the joint behaviour of the single indexes, a 2D feature analysis

was also performed by implementing an unsupervised classification. In practice,

a k-means clustering algorithm was used to find out groups of lesion voxels char-

acterised by the same SS and MS behaviour, with k=4 number of different classes

(or clusters). The Squared Euclidean distance is the distance measure used to

quantify the similarity of patterns. Results are also given using a colorimetric

Cluster Mask, CM, that represents the third feature. The scatter plot of Fig. 5.5

Figure 5.5: MS-SS scatter plot (left) and its respective clusters mask (right). Data
have been partitioned into four clusters, mapped by the red, blue, green and cyan
colours, respectively.

(left) shows an example of voxels clustered into four classes, visualised in red,

blue, green and cyan, respectively, encompassing similar MS and SS values, then

mapped within the lesion ROI by forming a colorimetric mask (right), keeping

the same cluster colours as in the scatter plot, so as to enable a visual comparison

with the ground truth established by radiologists. This also provides a spatial

visualisation of the clusters, thus improving interpretation of results.

5.3 Reliability analysis on DCE-CT

As discussed in Section 3.1.4, the reliability of DCE-CT sequences still represents

an open issue. Among the factors playing a major role in affecting DCE-CT

examinations there are the acquisition artefacts, the motion artefacts, especially

in thorax and abdomen studies, and the presence of anatomical structures close
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to the tumour, for instance heart and aorta, as well as structures directly present

within the mass, such as bronchi, haemorrhages and small blood vessels. The

structures directly involved in the lesion are usually manually excluded from the

perfusion analysis [195], since they can jeopardise the computation of global or

local perfusion-based parameters, also affecting the visual analysis of the perfusion

colorimetric maps.

In lung cancer studies, respiratory movements can induce the lesion motion,

causing mis-registrations [196] in both transverse (x-y plane) and craniocaudal (z

axis) directions and leading to inconsistent TCC fitting and, consequently, unre-

liable perfusion parameters. The effects of motion artefacts and data acquisition

time on the absolute values and reproducibility of perfusion parameters where no

motion compensation procedures have been adopted are reported for both lung

and liver tumours [197, 198].

In this Thesis, this issue has been overcome by performing a manual and rigid

translation of the ROIs in both transverse and craniocaudal plane, by exploring

the adjacent slices in order to obtain through a 3D manual alignment the “best”

sequence for the considered slice, known as reference slice [199, 90, 200]. An

example of choice among adjacent slices is reported in Figure 5.6 where Z∗ is

the reference slice. Once the best sequence has been selected, the TCC signal

for each pixel inside the ROI is computed as reported in Section 3.1.3. The

quality of the fitting has been assessed by considering the residuals of each TCC

signal, computed as the differences among the observed HU samples YTCC and

the relative values computed through the fitting Y TCC for each time instant t:

ε(t) =
∣∣YTCC(t)− Y TCC(t)

∣∣ (5.2)

Being ε directly proportional to the distance between the detected and the

computed HU sample, it will highlight the differences among these samples. The

reliability of the single TCC has been assessed by computing the temporal mean

value µε of the residual ε relative to the considered pixel. The distribution of

this error has been used to detect those values undergoing high fitting errors in

order to exclude them from the analysis. There are several advantages for the

computation of µε. This errors distribution can be visualised as a colorimetric

map, allowing clinicians to make fairer consideration, being aware of regions and

BF values with highest computing errors. BF values characterised by high µε
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Figure 5.6: Example of selection of the best sequence for a lung tumour perfusion
study, performed to achieve the best matching with the Z levels contiguous with the
reference slice level, represented by Z∗.

errors should not be included in the analysis, since BF values derive from TCCs

not correctly fitted. High errors usually occur in the presence of noise, artefacts

(both physics and due to motion) and anatomical structures, such as bronchi and

blood vessels, which responding differently from the tissue to the passage of the

contrast medium are not adequately modelled through a sigmoid. Through the
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use of this index, these structures usually manually removed, can be excluded

from the analysis by adopting a cut-off value. Several kinds of thresholding can

be adopted to automatically exclude unreliable values from the perfusion maps.

In this Thesis, the “triangle” method reported in [201] has been adopted. At the

end of the analysis, unreliable BF values can be easily visualised in the colourmap,

since they are pointed out with the pink colour.

5.3.1 Local coefficient of variation

As reported in Section 4.3.1, the CV is a statistical parameter defined as the ratio

between the standard deviation σ and the arithmetic mean µ of the considered

distribution (see Equation 4.5). It represents a relative dispersion index and mea-

sures the variability within a range of values in relation to their mean. This makes

the CV a very attractive tool because it permits the comparison of distributions

free from scale effects.

Considering a mean value > 1, always verified in perfusion studies, if the range

of values is narrow, the resulting CV will be low, indicating a greater homogeneity

of values. For instance, for a mostly uniform image CV is very low, being all values

almost equal to each other. Conversely, a wider range of values reveals a greater

heterogeneity, thus resulting in a higher value of CV.

Any index aiming at assessing the reliability of the estimated perfusion maps

must necessarily taking into account the relations among neighbour voxels. In-

deed, the TCC signals belonging to a small tissue area should be usually charac-

terised by gradual and coherent transitions. For this reason, the index conceived

arises from local measures, based on the lCV. Using a window size comparable

to the grain of the tumour lesions heterogeneity reduces the effects of the same

on statistical measures, thus, it actually allows considering the local variability,

the spatial inconsistency due to other causes. In addition, lCV colorimetric maps

provide radiologists with a panoramic view of the reliability in BF maps, where

regions characterised by lower lCV values suggest a greater local spatial coherence

of the BF maps,while the higher values point out an inconsistent variability, which

could mislead clinical consideration.

Eventually, a single and easily extractable index was calculated from the lCV

values. This statistical index is the mean of lCV values, µlCV , which is able to

take into account the local heterogeneity of the perfusion map. The benefits of

using the µlCV have been deepened in Chapter 8, where this index has been early
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validated in 16 patients with primary lung cancer [200]. In this study, µlCV proved

its capability to discriminate between the inherent tumour heterogeneity and the

noise affecting images.
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In this Chapter, the methods developed to perform a 3D segmentation on PET

images and a multi-modal registration are presented. In particular, in the first part

of this Chapter, the segmentation procedure is briefly described and formalised in

Section 6.1. Then, the method developed to perform a 3D PET segmentation of

the kidneys in 68Ga-PSMA PET/CT images is reported. While kindeys appear

well defined and simply detectable, the gold standard for tumour segmentation

remains the manual delineation performed by experts. In the second part of

the Chapter, the image registration methods currently used and the algorithmic

choices required are described in Section 6.2. Then, an application regarding

the multi-modal 3D registration of GOJ tumours manually outlined on FDG-

PET/CT and FDG-PET/MRI series, acquired during the period abroad at the

King’s College London, is presented.

95
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6.1 Segmentation

The extraction of quantitative tumour image-based parameters as well as the

analysis of tumour heterogeneity relies on the definition of ROIs. These ROIs

represent anatomical structures, such as tumours or organs under examination,

and are used to define areas from which image features are calculated. ROIs can

be defined both manually by experts, semi-automatically and automatically. This

process, known as segmentation, consists in the classification of the voxels of an

image into a set of distinct classes. In the medical field, segmentation has been

identified as a key problem remaining one of the most studied and challenging of

the image processing [202]. It plays a fundamental role in diagnosis [203], staging

[204], treatment and radiation therapy planning [205] as well as disease monitoring

[206].

Image segmentation can be formulated as follows [207]. Let Ω be the 2D image

domain and Pi the n partitions (image observation) of Ω:
Pi ⊂ Ω⋃n
i=1 Pi = Ω

Pi ∩ Pj = ∅ i 6= j

(6.1)

Ideally, the segmentation procedure should identify objects that correspond to

distinct anatomical structures or semantically coherent aggregates (i.e. humans)

in the image [208].

In the clinical practice, the gold standard remains the manual delineation

performed by expert radiologists and nuclear medicine physicians [202], who can

visually interpret images, define the boundaries of the structure of interest detect-

ing and excluding areas which could mislead subsequent analyses as, for instance,

inflammation regions in proximity of the tumours, as shown in figure 6.1.

There are several approaches to automatically segment an image, as the thresh-

olding methods [209], the region growing [210], the classifiers and clustering ap-

proaches [211] and the artificial neural networks [212]. Independent on the ap-

proach utilised, the segmentation procedure leads to the creation of a ROI mask

R, where each pixel i is defined as:{
R(i) = 1 if i ∈ ROI

R(i) = 0 otherwise
(6.2)
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Figure 6.1: CT image of a lung tumour (a) and its manual segmentation performed
by a radiologist with more than 25 years experience (b).

6.1.1 Segmentation of PET images

As discussed in Section 3.3.3, at present there is no consensus in the nuclear

medicine field regarding the definition of the ROI used to derive SUV values. The

difficulty in PET image segmentation is mainly due to the low spatial resolution

and the presence of noise. However, the identification of dark objects on a light

background (or the opposite) in PET images is relatively simple. For this reason,

thresholding methods could be the most suitable choice. The basic result is that

the initial grey level image is converted into a binary image based on a threshold

value T : {
R[I(x)] = 1 if I(x) ≥ T
R[I(x)] = 0 if I(x) < T

(6.3)

where I is the intensity and x is the spatial coordinate of the image [202].

In this Thesis, an assisted method to perform a 3D segmentation starting from

PET images has been developed and applied to perform a 3D segmentation of the

kidneys in 68Ga-PSMA PET/CT series. This clinical application will be deeply

described, further on, in Chapter 11. The segmentation was performed using

ImageJ software (v1.47 or later) [213], Java3D plugin collection and Java 1.6 or

later. As shown in Figure 6.2, the procedure can be divided into three phases:
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pre-processing, processing and post-processing phase.

Figure 6.2: Flowchart of the assisted 3D kidneys segmentation.
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The pre-processing phase involves the manual delimitation of the structure to

be segmented only in one of the slices that compose it, for instance, with a circle,

as shown in Figure 6.3 (a) and (b). This procedure is normally not mandatory

but in the most complex cases it improves the overall result of the segmentation.

The reason is that it permits to consider the local histogram of the structure

considered, facilitating the subsequent processing steps. The processing phase

starts with the selection of an appropriate W/L. The W/L can be automatically

set clicking on the Imagej tool icon and selecting the option Auto from the popup

menu. For instance, in the use case reported in Chapter 11, after circumscribing

one of the kidneys, the W/L were automatically selected in order to enhance the

kidneys, as one can see in Figure 6.3 (c). Then, a connexity analysis for the blobs

detection was performed through the use of the 3D Object Counter plugin, which

embeds a threshold-based segmentation method [214]. This plugin automatically

identifies a threshold value, which can be adjusted by the user using a slider

and looking at the preview. Segmentation results were visualised through the 3D

Roi Manager plugin [215], which permits to identify the structures (or blobs) of

interest and to manually export them. In the use case described in Chapter 11,

this plugin led to the extraction of the kidneys. As one can see, both in the section

reported in Figure 6.3 (d) and in the whole volume reported in Figure 6.4, at this

point of the procedure the kidneys, which are the objects detected, result to be

as hollow organs.

The post-processing phase involves the filling of the objects detected, as shown

in Figure 6.3 (e). For this purpose, an ImageJ macro was developed able to fill

and integrate the ROIs of the structure of interest. In this way, it was possible to

obtain the full kidneys volume, thus also including the regions characterised by a

lower captation like the renal pelvis, which is discarded during the previous steps.

The output of the macro is the whole set of ROIs of the structure of interest,

which will be used for subsequent analyses and 3D measurements.
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Figure 6.3: Example of segmentation of the right kidney in (a). The procedure starts
with the manually outlining of the kidney and the selection of the W/L (b). The
resulting image (c) is used for the object detection.
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Figure 6.4: 3D visualization of the kidneys, the “objects” detected during the pro-
cessing phase. As one can see, the less captating regions like the renal pelvis is almost
discarded during the processing phase. In order to allow subsequent analysis and 3D
measurements, results of the object detection were post-processed through an in-house
developed ImageJ macro.

6.2 Registration

Medical images acquired with different modalities can provide complementary

information about the anatomy and the physiology [216]. For this reason, huge

efforts have been made to develop methods for the multi-modality registration.

Geometric registration is the process of overlaying two or more images representing

the same scene acquired at different times, from different viewpoints, and/or with

different detectors, that is by different modalities [217]. In other words, the aim

of the registration algorithms is to determine the spatial transformation, which

maps the points of a second image to be registered to the corresponding points

of the first image. Because of the aspects mentioned above as time, location and

sensor type, which make the images inherently different, there is no one method

to perform image registration. Therefore, due to the diversity of images, different

methods have emerged to be specifically efficient. Essentially, these methods

differ for the architectural and algorithmic choices. Among these, one of the

most distinctive elements concerns the type of geometric deformation between

the images, which will be estimated. Other essential elements are the similarity

(or distance) measure and the interpolation technique, which one should adopt.



102 Chapter 6. Image processing and multi-modality approach

Therefore, the co-registration algorithms can be distinguished from each other for

the particular solutions used to solve the previous sub-problems, i.e. the transform

model estimation (e.g., rigid or non-rigid) as well as the similarity measure and the

interpolation method to be applied. Nevertheless, the algorithmic flow-chart of a

co-registration method can be generically schematised as reported in Figure 6.5.

As one can see, the registration process involves an optimisation problem: the

transformation to align the two input images, the reference (fixed image) and the

template one (moving image), is iteratively estimated in order to maximise their

similarity.

One of the most used criteria for classifying co-registration methods refers to

the way the two input images, the reference and the template, are compared. It

is possible to identify four categories of co-registration:

• manual or assisted;

• landmark-based;

• surface-based;

• intensity-based.

In the manual co-registration the user, generally a radiologist or a physician,

is asked to visually align the images through the use of assisted image processing

tools, provided with sophisticated graphical interfaces, which make manipulation

of graphical data easier. Beyond being hugely time-consuming, among the major

limitations there is the accuracy level, which depends on the user’s judgement and

experience and consequently it can be affected by both inter- and intra-observer

variability.

The landmark-based co-registration consists in identifying the positions of the

corresponding markers in the two images and in the subsequent determination of

the transformation, which aligns the pairs of these points [218, 219].
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Figure 6.5: General framework for the co-registration of two images, the reference
and the template ones.
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There are two types of markers: internal and external. Internal markers, com-

monly known as anatomical markers, are anatomical features, easy to find and

identify in the images. The identification of the anatomical structures is usu-

ally performed by experts through software tools. Instead, the external markers

are visible and easily identifiable objects attached to the patient during image

acquisition. The landmark-based co-registration essentially consists of two steps:

• detection of the landmarks (anatomical or external) in the reference and

template images;

• calculation of the geometric transformation that minimises a cost function

based on the landmark offsets.

The surface-based co-registration involves the extraction of the object surfaces

present in the images and the determination of the transformations [220], which

minimise the distance between the corresponding surfaces. The success of this

method essentially depends on the segmentation phase of the set of surfaces to be

considered.

The intensity-based co-registration is probably the most widely used in lit-

erature [221]. Statistically, an image can be seen as a distribution of a random

variable, which is the intensity level of the images. The co-registration method

based on the intensity levels of the images involves the use of similarity measures,

computed on the images to be aligned, and their optimisation, obtained by chang-

ing the transformation parameters.

6.2.1 Similarity measures

The most widely used similarity measures are based on:

• intensity differences;

• intensity cross-correlation;

• information theory.
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The similarity measures based on the intensity difference are usually performed

on the sum of squared differences (SSD), which is defined as follows:

SSD =
1

N

N∑
i=1

[A(i)−BT (i)]2 (6.4)

where A and BT are the reference and the transformed template images, respec-

tively; A(i) and BT (i) are their ith pixel values and N is the total number of

pixels of A. The assumption behind the SSD, computed voxel by voxel, is that

the structures in the reference and template images have same intensity values.

Therefore, this measure is suitable for mono-modality image registration and the

lower the SSD, the better the images registration.

The similarity measures based on the cross-correlation are performed as the

correlation coefficient or normalised correlation coefficient (NCC ), which is defined

as:

NCC =

∑N
i=1[A(i)−A(i)] · [BT (i)−BT (i)]√∑N

i=1[A(i)−A(i)]2 ·
√∑N

i=1[BT (i)−BT (i)]2
(6.5)

where A, BT , A(i), BT (i) and N are defined as reported above for the Equa-

tion 6.4. The cross-correlation overcomes the limitation introduced by the SSD,

whose assumption is having similar intensity values of the images. Indeed, NCC

measures the similarity between images, which may be acquired with different con-

ditions. NCC is based on the assumption that there is a linear relation between

the intensity values of the two images. Thus, the greater the cross-correlation,

the better the images registration. However, this condition is not always true for

multi-modal images and may lead to misregistration.

The information theory measures are mostly based on the mutual information

(MI ), which measures the statistical dependence between two random variables

or the amount of information that one variable contains (or explains) about the

other [222]. Usually, MI is based on the Shannon entropy, which is defined by

the Eq. 4.6. As reported in Chapter 4.3.1, for an image X the entropy E(X) is

computed on the occurrence probabilities pi related to image intensity histogram.

Entropy will reach a maximum value if all the intensity levels have equal proba-

bility of occurring, minimum value of zero if the occurring probability of one of

the intensity levels is equal to 1, i.e. uniform image. As regards the image regis-

tration procedure, the joint entropy E(X,Y ) between two images X and Y is also
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considered. E(X,Y ) measures the amount of information present in the combined

images and it is calculated using the joint histogram of two images. Every value

of the joint histogram corresponds to the occurrence of the intensity levels in the

two images (X and Y ) at the same positions. If the images are totally unrelated,

then the joint entropy will be the sum of the entropies of the individual images.

The more similar the images are, the lower the joint entropy is. Therefore, the

relation between joint and individual entropies can be formalised as follow:

E(A,BT ) ≥ E(A) + E(BT ) (6.6)

MI is defined as follows:

MI(A,BT ) = E(A) + E(BT )− E(A,BT ) (6.7)

MI is widely used for multi-modality image registration since it does not

assume any relationship between the intensity values of the two images [223].

Therefore, MI method has an inherent degree of robustness and the optimal

transformation is reached by maximising MI.

Beyond the similarity measures used and the registration approaches adopted

to register images, as one can see in Figure 6.5, at the heart of these registration

methods lies the image scaling and interpolation. Indeed, images coming from

different modalities may have different size and resolution. Therefore, images

resizing is a necessary step to perform image registration. This process leads to

images with the same number of pixels and the same pixel spacing.

6.2.2 Interpolation

Once the template image is scaled, interpolation algorithms provide an estimate

of the voxel intensities at non-grid positions, starting from the grey level values of

the original grid. There are no clear indications whether upsampling or downsam-

pling schemes are preferable. Indeed, whilst up-sampling requires inference and

introduces artificial information, down-sampling to the smallest dimension leads

to loss of information.

Algorithms usually considered for image interpolation are:

• Nearest-neighbour; the output pixel is assigned the value of the pixel at the
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closest grid position, since a weight of one is assigned that pixel, while the

other pixels receive zero weights and, thus, are not considered;

• Bilinear; the output pixel value is assigned a weighted average computed on

the grey-level values of the pixels in the nearest 2-by-2 neighbourhood;

• Bicubic; the output pixel value is assigned a weighted average computed on

the grey-level values of the pixels in the nearest 4-by-4 neighbourhood.

Therefore, the voxel intensity at a non-grid position is interpolated as a weighted

sum of the voxel intensities at neighbouring grid positions. The weighting proce-

dure is determined by the interpolation kernel adopted, shown for one dimension

in Figure 6.6.

Figure 6.6: One dimension kernel for the nearest neighbour (a), linear (b) and cubic
(c) interpolation. The bandwidth (number of pixels) considered for each method is
also reported.

As one can see, the nearest-neighbour interpolation is performed through a

uniform kernel, the linear interpolation through a triangle kernel and the cubic

interpolation through a cubic spline. The width of the interpolation kernel deter-

mines the number of neighbour pixel values involved in the weighting procedure.

The same approaches can be adopted to interpolate 3D stacks of images. In

3D, the interpolation algorithms referred to as trilinear and tricubic interpolation.

Regardless of the application, which may involve a 2D (slice) or a 3D (image stack)
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interpolation, the choice of the optimal interpolation algorithm is often context-

driven. The nearest-neighbour and the linear interpolation are adequate in most

cases [217]. Cubic and higher order interpolations can produce out-of-range grey

values. This does not occur, for instance, with the linear interpolation, which is

probably considered the most conservative choice, suitable in many cases.

In order to allow subsequent analysis, voxel interpolation also requires rescal-

ing the ROI mask R to the same dimensions of the interpolated image.

6.2.3 Application on PET/CT and PET/MRI

During my period at the King’s College London, while collaborating with the

St Thomas Hospital, I extended the research work to the multi-modal analysis

of the intra-tumoural heterogeneity in GOJ cancer. This cancer is associated

with poor prognosis and survival [224], especially for advanced stages. Although

tumour infiltration and nodal involvement are essential prognostic indicators [225],

novel means are needed to better stratify GOJ patients.

The main aim of this project was to extract quantitative image-based biomark-

ers for predicting distant metastases in GOJ patients, which will be deeply ad-

dressed in Chapter 10. The secondary purpose was detecting sub-regions in tu-

mour volumes, with the potentiality to combine the information coming from the

different modalities. The latter has required a within-patient multi-modal reg-

istration of GOJ tumours. For this project, 20 patients prospectively recruited

underwent both FDG-PET/CT and FDG-PET/MRI with a single injection proto-

col. Information regarding patients enrolment and image acquisition are reported

in Section 12.2. As shown in Figure 6.7, the available image series were the two

PET series coming from the PET/CT and the PET/MRI, and the CT, T1, T2,

DWI and, consequently, the ADC series.

For each sequence investigated, segmentation of the whole tumour volume

was manually performed by a dual trained nuclear medicine physician/radiologist

(with more than 5 years experience) using ImageJ [213]. A 3D registration algo-

rithm was implemented on MATLAB (MathWorks, Natick, MA, USA) to auto-

matically transform the dataset related to each patient into one x-y-z coordinate

system.
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Figure 6.7: Patient ID1. Example of the available image series: from the PET/CT,
PET (a) and CT (b); from the PET/MRI, PET (c), T1 (d), T2 (e) and DWI (f). In
red, the ROI attained by GOJ segmentation, manually performed by a dual trained
nuclear medicine physician/radiologist, is also reported.

As described in Section 6.2, image registration methods require many choices

as the image interpolation to apply on the moving image, the coordinate trans-

formation model and the definition of a cost function. Since the acquisition of

PET/CT and PET/MRI were performed for each patient within the one hour,

the hypothesis was that these tumours, being linked to the junction that sepa-

rates the esophagus from the stomach, would not change in size neither transform

but, at worst, they would move due to the unavoidable peristaltic movements.

For this reason, only rigid transformation, in particular global translations, were

considered. As the reference image, CT images were considered for their high

anatomical details. Actually, also MRI series show high anatomical details of soft

tissues. However, being the CT series faster than the MRI ones, they are likely

less prone to motion artefacts and tumour displacements.

To avoid information loss, image up-sampling was performed by considering

MRI resolution as a reference. The linear interpolation was applied to the moving

images, in order to avoid the out-of-range values, which may result using cubic

interpolation, and the effect of noise, which may be enhanced using the nearest

neighbour. Then, the registration was performed for the entire volume estimating,
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slice by slice in an iterative fashion, the rigid image transformation that maximises

MI (Figure 6.8).

Figure 6.8: Patient ID1. Example of slice overlapping after registration on CT,
showing the PET from PET/CT (a), the PET from PET/MRI (b), the T1 (c), the T2
(d) and the DWI (e).

Therefore, it is not a rigid registration of the tumour volumes, but being

computed slice by slice, it may reduce the effects of motion artefacts due to un-

avoidable peristaltic movements. The optimal estimated transformation was also

used to transform the ROI mask previously scaled accordingly.

In Figure 6.9, as an example, the volumes overlapping of the PET, coming

from the PET/CT (in red) and the PET/MRI (in green), with the CT (in blue)

is reported. The quality of the registration was considered very good by the expert

who performed the manual segmentation. As one can see in Figure 6.9, the PET

volumes from the PET/MRI appear bigger than those from PET/CT, probably

for technical reasons. These are partly discussed in Section 3.3.1, where the main

differences between the PET/CT and the PET/MRI hybrid systems are reported.
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Figure 6.9: Tumour volumes of patient ID1. PET volumes from PET/CT (a) and
PET/MRI (b); CT volume and overlapping with the PET volumes (d, e) after 3D
registration.

Since the use of FDG-PET has gained acceptance in radiation oncology, a com-

parison between the pairs of PET volumes coming from the two different modal-

ities was of particular interest. Indeed, different metabolic volumes could have

strong implication in the radiotherapy planning. To this purpose, the registration

between PET volumes from PET/CT and PET/MRI performed minimising the

SSD, one of the most robust similarity measures for mono-modality studies, was

preliminary analysed.

The similarity of these PET volumes pairs coming from the PET/CT and

PET/MRI was measured by taking into account the Sørensen-Dice index (SDI).

This index is a similarity coefficient, often used to evaluate the performance of a

segmentation method compared to another considered as a gold standard [226].

SDI is usually measured on a reference mask X and a candidate mask Y and

defined as follows:

SDI =
2|X ∩ Y |
|X|+ |Y |

(6.8)

where |X| and |Y | are the cardinalities of X and Y.
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In this case, the goal was not to compare two segmentation methods but

to measure the similarity of the segmented PET volumes coming from the two

different PET series. Indeed, SDI is able to quantify how similar two binary

objects are. Therefore, it is also a measure of how two volumes overlap. The

similarity coefficient ranges from 0 to 1, where 1 points out a perfect match

between volumes, and 0 means that those volumes do not overlap at all.

Similarity results for each patient are summarised and reported in arbitrary

units (a.u.) in Table 6.1. Results reflect differences in shape, size and/or 3D

registration efficacy of PET volumes. Below, I briefly examined the three best

results (ID2, ID12, ID16), the three worst (ID6, ID14, ID18) and, for complete-

ness, the case reported in Figure 6.9 (ID1). As one can see, in the first three

cases (Fig. 6.10, Fig. 6.11 and Fig. 6.12) volumes registration and overlapping are

almost perfect. Indeed, it is impossible to reach similarity values equal to 1, since

the two PET volumes are never identical.

Figure 6.10: Tumour volumes of patient ID2 from PET/CT (a), PET/MRI (b) and
their overlapping after 3D registration (c)
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Table 6.1: Summary of Sørensen-Dice similarity coefficient (SDI ) relative to each
patient (ID), reported in arbitrary units [a.u.].

Patient SDI [a.u.]

ID1 0.62
ID2 0.79
ID3 0.63
ID4 0.60
ID5 0.51
ID6 0.46
ID7 0.53
ID8 0.58
ID9 0.59
ID10 0.73
ID11 0.67
ID12 0.81
ID13 0.51
ID14 0.12
ID15 0.63
ID16 0.78
ID17 0.72
ID18 0.40
ID19 0.65
ID20 0.71
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Figure 6.11: Tumour volumes of patient ID12 from PET/CT (a), PET/MRI (b) and
their overlapping after 3D registration (c)

Figure 6.12: Tumour volumes of patient ID16 from PET/CT (a), PET/MRI (b) and
their overlapping after 3D registration (c)
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The worst cases need to be analysed separately. Probably, the low similarity

value of the first one (Fig. 6.13) is not due to a failure of the 3D registration pro-

cedure. The tumour appears unconnected and the dual trained nuclear medicine

physician/radiologist met with difficulties in outlining the thinnest part, suggest-

ing removing that from the analysis.

Figure 6.13: Tumour volumes of patient ID6 from PET/CT (a), PET/MRI (b) and
their overlapping after 3D registration (c)

As regards the second one (Fig. 6.14), volumes overlapping appears very bad,

this reflecting on the similarity value which not surprisingly is the smallest one.

At first, this mismatching was attributed to a failure of the registration procedure.

However, the expert confirmed that the two PET series appeared very different

and that the tumour was well detectable on the PET series coming from the

PET/MRI sequence and not from the PET/CT one. Examining the slices of the

PET/CT series (Fig. 6.15) and the related ones of the PET/MRI (Fig. 6.16) this

result is not surprising. The ROIs appear very different and apparently located

in different parts, as one can see in Fig. 6.15 and Fig. 6.16.
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Figure 6.14: Tumour volumes of patient ID14 from PET/CT (a), PET/MRI (b) and
their overlapping after 3D registration (c)

Figure 6.15: Three slices from PET-CT series showing in red the tumour outlining
(patient ID14)

Figure 6.16: Three slices from PET-MRI series showing in green the tumour outlining
(patient ID14)
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As regards the third case (Fig. 6.17), the low similarity value is due to the

large difference in size of the two volumes, which however appear well registered.

Figure 6.17: Tumour volumes of patient ID18 from PET/CT (a), PET/MRI (b) and
their overlapping after 3D registration (c)
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As regards ID1, the case first considered (Fig. 6.9), the similarity was of 0.62,

pointing out that PET volumes are quite similar. This not particularly high value

is due to the difference in size of the volumes (Fig. 6.18), as discussed before for

the previous case.

Figure 6.18: Tumour volumes of patient ID1. PET volumes from PET/CT (a) and
PET/MRI (b) and their overlapping after 3D registration (c).

The algorithm to perform the clustering and 3D mapping of similar values

inside the volumes was set up and early used for the pairs of PET volumes. It is

based on the use of the k -means clustering algorithm, which permits the grouping

of the voxels inside the volume having similar values. This simple algorithm

takes as input the number of clusters k and the set of observation vectors to be

clustered. After the clustering procedure, each voxel is mapped within the ROI of

each slice, providing a visualization of the clusters in the ROI, as shown in Figure

6.19 (k = 4). It is worth noting that the clusters reflect the spatial coherence of

the regions, which can be visually identified in the original image.
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This algorithm has been conceived for the heterogeneity analysis, since it has

the potentiality to allow a comparison of tumour regions coming from different

registered modalities. Indeed, it permits to compare the clusters obtained with

the original image stack data, as well as the clusters originated by the voxel-wise

features, as the local features described in Section 5.1, performed slice by slice.

Figure 6.19: Close-up view of a GOJ tumour in a single PET slice (a) and corre-
sponding clustering and mapping results (k = 4) (b).

When computed on the original data, it could be very useful to automatically ex-

clude air and fluids as well as to perform an automatic segmentation. For instance,

Figure 6.20 reports clustering (k = 4) and mapping of the two PET volumes of

ID1, showing the same tumour acquired with the two hybrid systems. These

volumes, being manually outlined, appear quite different in shape. Actually, the

inner clusters, characterised by a higher uptake, almost coincide. Thus, the differ-

ence between the two volumes is due to the green parts, which correspond to the

cluster with the lowest uptake values and that may not even be a tumour part.

The high-uptake regions are visible in transparency and highlighted in ascending

order with purple, red and cyan colours. These findings justifies further studies

regarding the impact of using different modalities for the radiotherapy planning

and the different perception of the same structure from the PET/CT and the

PET/MRI system, which has the great advantage of involving less dose to the

patient.
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Figure 6.20: Patient ID1. Clustering and mapping results obtained with the raw
PET values of PET/CT (a) and PET/MRI (b) volumes.

6.2.4 Future works

The results obtained in the previous Section 6.2.3 can be considered as a promising

start for a more complex registration procedure. Using all the voxels values from

the fixed image is the most straightforward strategy even if it is time-consuming for

large images. Authors in [227] suggest other approaches including, for instance,

the use of a voxels subset selected on a uniform grid or also random sampled.

Another strategy includes the use of a mask in order to force the sampler to pick

voxels in a small neighbourhood and not from the entire image domain. This last

approach could improve the registration of the structure of interest, especially in

the presence of artefacts far from the structure, which can be easily removed from

the analysis.

As regards the 3D clustering and mapping, a deep analysis of the regions,

which can be detected using the available image series, could be very useful to

better understand the biological mechanisms underlying the tumour biology. Fur-

ther on, the analysis of the impact on the radiotherapy planning of using the

PET/CT and the PET/MRI systems should be investigated. Indeed, authors

in [228] found that the use of different imaging modalities produced significantly

different gross tumour volumes for oropharyngeal squamous cell carcinoma and

that the delineation based on the multi-modality imaging has the potential to

improve the accuracy of the volume definition. Moreover, the use of FDG-PET in

radiotherapy planning has gained acceptance in the oncological clinical practice

[229]. Therefore, a comparison between the combined volumes coming from the
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PET/CT series (PET and CT) and from the PET/MRI ones (T1, T2 and DWI)

should be performed to determine the differences in the dose coverage, focusing

in particular on the variations between the metabolic volumes.
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As described in Section 3.1, DCE-CT has emerged as a promising technique

to perform functional hemodynamic studies, with wide applications in the onco-

logic field. It pushes towards an intensive use of software to automatically provide

quantitative information useful in the clinical routine. This requires that visual
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analysis, representing the gold-standard for CT image interpretation, gains objec-

tivity. This Chapter reports the application of the spatio-temporal features pre-

sented in the Section 5.2 to quantify and classify the lung tumour heterogeneities

from DCE-CT sequences, as performed by experts through visual analysis. To

this purpose, a proper heterogeneity taxonomy was conceived together with two

experienced radiologists and described in Section 7.2. The qualitative and quan-

titative approaches used to generate the results is further detailed and discussed

in Section 7.3. The acquisition protocol used to perform the perfusion exami-

nations and the results achieved with the features devised, which were assessed

using multiple binary classification tests according to the “one vs. all” strategy,

are reported in Section 7.4. Finally, Section 7.6 outlines conclusion and highlights

perspectives for future works. 1

7.1 Introduction

CT has always been considered the reference technology for morphological analysis

of organs and tissues, because of its high spatial resolution and its well-established

spread over the area. It is widely known that visual assessment represents the

reference approach for tissue morphological studies [162]. In general, visual anal-

ysis is widely exploited in medicine and represents the gold-standard approach in

many disciplines, to diagnose pathologies according to the symptoms expressed by

patients or during screening studies, by visual interpreting medical images and,

often, to directly determine through visual assessment the best possible therapeu-

tic procedures [22]. Visual evaluation is the key step in several decision making

processes, ranging from histopathology, where the visual score is still the gold

standard in morphometric [230] and immunohistochemistry staining evaluation

[231], to the nuclear medicine, where in PET assessing whether an abnormal up-

take is greater than the normal activity, also providing information regarding its

origin (primary tumour or distant metastases), is performed visually [232]. For

this reason, in several medical fields visual evaluation has been regulated so as

to provide it with more objectivity. The most relevant example can be found in

digital mammography, where systems for the visual description and analysis of

the density patterns are well-defined and categorised. These systems allow dis-

1This article was republished with permission of World Scientific Publishing Company, from
Automatic classification of lung tumour heterogeneity according to a visual-based score system in
dynamic contrast enhanced CT sequences, Alessandro Bevilacqua, Serena Baiocco, International
Journal of Modern Physics C, Vol. 27, No. 10 (2016) 1650106.
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tinguishing between benign findings (e.g., characterised by round opacities with

microcalcifications or fatty densities) or likely malignancies (e.g., amorphous mi-

crocalcifications or hyperdensities with convex contours) [233]. At present, visual

features in mammograms represent the most important features employed to train

computer aided diagnosis systems [234].

In the oncologic field, visual assessment with CT modalities represents the

basis for the analysis of tumour heterogeneity, which is an important prognostic

factor, as high intra-tumour heterogeneity showed to be associated with higher

tumour grades [235]. As previously discussed in Section 2.1.1, it is also worth

noting that the very small bioptic samples are not often adequate to catch the

whole tumour heterogeneity properties, since they cannot represent the full extent

of phenotypic or genetic variations of tumour. Indeed, it is known that tumour

tissues have extraordinarily interconnected heterogeneities both at genetic and

histopathological levels, ranging from genes, proteins, cells, microenvironment

and tissues [236], and reflecting areas of high cell density, angiogenesis, necro-

sis, haemorrhage and myxoid change [179]. What CT, or Contrast Enhanced-CT

(CE-CT), can do is addressing the macroscopic heterogeneity level referring to

the tissue morphology. For instance, texture analysis is employed on CT images

to detect changes in tumour heterogeneity after treatment [237], or to find pos-

sible correlations between CE-CT fine-texture features and poorer 5-year overall

survival rate in patients with primary colorectal cancer [181]. As discussed in

Section 3.1.1, the upgrade of CT technology, both in terms of number of detectors

and gantry rotation speed, made these devices also suitable for dynamic analyses

and the study of heterogeneity has been shifting towards heterogeneity functional

parameters. DCE-CT has emerged as a promising technique to perform func-

tional hemodynamic studies [238] and perfusion analyses [199, 103], with a wide

application in the oncological field, providing information in diagnosis, tumour

staging and prognosis [18]. Recently, it has been used to try assessing heterogene-

ity of different perfusion values. In [239], fractal analysis is used with the aim of

evaluating the spatial heterogeneity of the tumour vasculature in DCE-CT per-

fusion sequence. The outcome of the method consisted in global parameters used

to see whether these values could be correlated to the presence of tumours. In

[240], concentric regions of perfusion maps referring to healthy and tumour tissue

are considered and visually compared to find out possible correlations. Thus, in

the age of personalised medicine, a non-invasive and automatic method to assess

tumour heterogeneity might be of clinical benefit, whereas the evaluation is still
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accomplished through visual procedure.

In this Chapter is reported an automatic methodological approach to classify

the intra-tumour spatial (morphological) heterogeneity present in NSCLC lesions

as performed by expert radiologists through visual analysis. To this purpose, a

taxonomy of possible heterogeneity degrees is defined by expert readers, who as-

signed a score each, on a 3-point basis. This information was also employed to

build the ground-truth stemming from a set of DCE-CT examinations. The two

voxel-wise spatio-temporal indexes presented in Section 5.2 were adopted. These

indexes, based on the time distribution of statistical parameters computed on re-

gional textures, were used both separately and jointly for one- and two-dimension

feature analyses to build colorimetric maps. The heterogeneity was assessed on

these maps and visually compared with the ground truth, where the visual match-

ing procedure was explicitly ruled. Matching results were quantitative analysed

for each type of heterogeneity and for each feature, using confusion matrices and

provided in terms of sensitivity (SE) and specificity (SP). Experimental results

confirm that each heterogeneity type is recognised with a high specificity by at

least one of our indexes, that however show a slightly worse sensitivity. Finally,

it is worth noting that temporal data also enriches the radiologists’ knowledge re-

garding lesion heterogeneity, by providing supplementary information concerning

physiological status of tumour.

7.2 Materials and method

The common CE-CT offers static information regarding the heterogeneity of tis-

sue morphology, that however can be enriched through dynamic examinations,

also yielding information regarding the lesion status. For instance, what stati-

cally could appear as a low density region, could be interpreted as a homogeneous

necrotic region, or even a vessel can be better detected and identified through

contrast enhancement. For this reason, the approach proposed relies on the esti-

mation of tissue contrast agent delivery in DCE-CT sequences, acquired through

axial scanning. The kinetics of a contrast agent in tissue directly depends on

the tissue properties themselves, so it can be used to estimate them. Usually,

in oncology an initial low-dose, unenhanced full-body CT scan is performed on

a patient to identify the target lesions at baseline conditions. Then, soon after

administering a contrast agent, the same volume section is repeatedly scanned

over time and the voxel-based tissue TCCs signals (in HU) of the reference slices
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are generated by the contrast agent before, during, and after reaching the tumour

lesion. As discussed in Section 3.1.1, the TCC of each voxel is represented by the

collection of the attenuation values of the discrete temporal signal representing

the dynamic evolution of the tracer in that voxel. ROIs are created by the radiol-

ogists by manually outlining each lesion in those slices where the clinical features

of the lesions are considered as being the most representative ones (the so-called

“reference” slices).

7.2.1 Heterogeneity taxonomy

At present, there is not any ground truth reported in the literature as a visual

reference for the morphological heterogeneity degrees of primary lung tumour

tissues and the evaluation of the heterogeneity is still left to the subjectivity

of radiologists assessment. In order to automatically exploit the heterogeneity

information in a computer vision system, the heterogeneity has to be assessed in

an objective manner. Therefore, the first step we carried out was to identify the

possible different heterogeneity degrees shown by a lung tumour tissue, so as to

cover as many clinical scenarios as possible. Subsequently, a proper taxonomy

was defined in agreement by two 25-year experienced readers, based on a 3-point

scale:

• homogeneous pattern (Type 1), where the lesion tissue does not present

heterogeneous regions;

• micro-inhomogeneous pattern (Type 2), where regions with different point

densities are homogeneously present and distributed over the entire lesion;

• macro-inhomogeneous pattern (Type 3), characterised by the presence of

one or more homogeneous regions, whose tissue density is markedly different

from the background (generally represented by low density necrotic regions).

Changes in tissue density within the tumour may be ascribed to different causes,

such as the presence of bronchi or a disorganised vascular structure, which after the

passage of the contrast medium appears as dark or bright objects, respectively. In

addition, a rapid tumour growth outstripping the vascular supply leads to hypoxia

[30] and, subsequently, results in the presence of necrotic regions which even after

the injection of contrast medium show a reduced enhancement.
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7.2.2 Spatio-temporal indexes

In order to exploit both spatial and temporal information, a spatio-temporal anal-

ysis was performed by using the two indexes MS and SS conceived and presented

in Section 5.2.1. Also the joint behaviour of these indexes, represented by CM the

index presented in Section 5.2.2, was considered for a multi-feature analysis. This

index permits the generation of a mask, which provides a spatial visualization of

the clusters characterised by similar MS and SS pixel values.

7.3 Assessment of results

7.3.1 Generation of ground truth

For each examination, two experienced radiologists looked through the entire scan

sequence so as to form in their mind the morphological structure of lesion, also

exploiting dynamic information. Then, they visually scored the degree of lesion

heterogeneity in the reference slices using the 3-point scale defined in Sect. 7.2.1.

After that, for each lesion they detected and manually outlined in those slices

the heterogeneity regions represented by anatomical structures such as vessels,

bronchi, micro-calcifications, high-density areas and necrosis, and the presence

of physics-based artefacts too. The two radiologists started by performing this

analysis in double blind, and then they reviewed together all the selected cases so

as to reach an agreement. Usually, whole vessels and bronchi are well identifiable,

while detecting artefacts and necrotic regions is much harder and, even when

succeeding, both boundaries and extent are detected with a poor accuracy.

7.3.2 Visual analysis

Manual annotation

An analysis similar to that used to generate the ground truth was performed for

the colour maps of the spatio-temporal indexes conceived. In this case, the regions

on the maps which appear spatially semantically coherent were manually bounded

and outlined. Instead, for the colour masks, resulting from the clustering of the

spatio-temporal indexes, the regions with uniform colours were directly considered

[201]. Then, each map and each mask well assigned a visual score with the same

3-point scale used in Sect. 7.3.1, by considering them as belonging to Type 3

(macro-inhomogeneous, with well-defined regions semantically consistent), Type



7.3. Assessment of results 131

2 (micro-inhomogeneous, with micro-areas differing from the background, without

a defined anatomical meaning), or Type 1 (homogeneous, fully consistent from a

semantic point of view).

Visual matching

At the beginning, the segmentation of the spatio-temporal indexes maps into

connected ROIs as well as the use of cluster mask as-is, were considered to per-

form an automatic matching between manual and computed ROIs. However, the

way the anatomical structures and artefacts were detected and outlined, mainly

the uncertainty in delineating necrotic regions and artefacts, drove the choice of

the approach to compare the regions manually outlined by radiologists (i.e., the

ground truth) with the regions identified in the cluster masks and in the spatio-

temporal indexes maps. For this reason, the comparison was performed through

a visual matching of these regions by considering a successful match in case of

(at least, a partial) overlap between the ROIs of ground truth and those of the

features we devised. Nevertheless, in few cases at the end of the visual matching

procedure some maps and masks, previously resulted in uncertain classification,

lead the Readers to reconsider the corresponding ground truth and re-assigning it

to a different type, by including the supplementary knowledge introduced by the

temporal evolution of the cancer tissue texture.

7.3.3 Quantitative results

In order to assess the performance of the spatio-temporal indexes and of the

cluster mask, a multiple binary classification test according to the “one-vs.-all ”

strategy was carried out. As it commonly occurs, the capability of a single feature

to discriminate one class from the remaining ones is assessed through using the

well-known 2×2 contingency table. Accordingly, there are four different outcomes

from the matching procedure: “hit” or true positive (TP), false positive (FP), true

negative (TN), “miss” or false negative (FN), all arranged into nine contingency

tables, one for each class and for each feature [241].

A simple example using one feature (e.g., SS) and three classes is useful to

clarify how this approach works. Hypothesising that radiologists assigned a lesion

“Type 1” as a true condition and the SS colorimetric map suggests “Type 2”.

Then, this mismatch is classified as a FN, a FP, and a TN in the “Type 1”,

“Type 2”, and “Type 3” contingency tables, respectively. Nonetheless, in case
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that SS correctly suggested “Type 1”, this match would have been annotated as

a TP in the “Type 1” contingency table and as a TN in “Type 2” and “Type 3”

ones. The same principle can be extended to all features.

7.4 Experimental results

37 datasets, corresponding to 22 DCE-CT examinations (including follow-ups)

were considered in this study, referring to 13 patients (age range 36-81 years),

each with one NSCLC lesion, who underwent axial DCE-CT perfusion, performed

on a 256-slice CT system (Brilliance iCT, Philips Medical System, Best, The

Netherlands). A 50-mL intravenous bolus of contrast agent (Iomeron, Bracco,

Milan, Italy) was injected in each patient at 5 mL/s. A single acquisition of

duration 25 s, with patient instructed for breath-hold, giving 20 temporal scans

of the same volume section (11 slices with 5-mm slice thickness, yielding 55 mm

of z-coverage, 0.4-sec rotation time, at 80 kV, 250 mA, 100mAs). Image data are

reconstructed to 220 cine images (512×512 pixel, 350-mm×350-mm, 5-mm slice

spacing, 16-bit grey-level depth, 1.25-s sampling period).

All images were analysed on a computer monitor and the heterogeneity regions

were outlined using a graphic device (Intuos®Pro, Wacom, Krefeld, Germany).

The environmental lighting level of the reading room was kept as low as possi-

ble, since it is known that the amount of surrounding light influences diagnostic

performance.

The algorithm was implemented in Matlab© (MathWorks, Natick, MA, USA).

The elapsed time required to process DCE-CT images and generate and displayed

one spatio-temporal map is less than 4 s on an Intel i5 CPU M480, 2.67 GHz,

thus being negligible as far as our needs are concerned.

7.4.1 Results

The 37 slices chosen by radiologists where manually annotated and classified to

build the ground truth, according to what reported in Table 7.1, that also includes

results of the visual matching between the ground-truth annotations and the fea-

tures considered (SS, MS, CM), collected in contingency tables and analysed in

terms of SE and SP. In the remaining parts of this Section, some meaningful ex-

amples referring to four different patients (ID1, ID2, ID3, ID4) are showed and

discussed.
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Table 7.1: A summary of the contingency tables for the three types of heterogeneities

Ground truth (#) Feature TP TN FP FN SE SP

Type 1
SS 17 14 1 5 77 93

(22) MS 18 13 2 4 82 87
CM 18 13 2 4 82 87

Type 2
SS 6 26 4 1 86 87

(7) MS 4 27 3 3 57 90
CM 4 29 1 3 57 97

Type 3
SS 6 26 3 2 75 90

(8) MS 5 24 5 3 63 83
CM 6 23 6 2 75 79

The first feature considered, SS, results extremely specific for the three types

of heterogeneity, producing the best results for Type 1 (SP=93%) and Type 3

(SP=90%), and also resulting highly sensitive. In particular, in terms of sensi-

tivity it produces the best results for Type 2 (SE=86%). Figure 7.1 shows the

Figure 7.1: Patient ID1: ground truth (left), colorimetric map of SS (right).

colorimetric map of SS (right) for patient ID1, referring to a lesion whose ground

truth (left) is classified as belonging to Type 2. As one can see, the colorimetric

map correctly matches and the texture appears micro-inhomogeneous, with small

regions characterised by different densities, having different dynamic behaviours,

homogeneously distributed over the entire lesion.

The second feature considered, MS, is highly specific for Type 2 but, differently

from SS, it is not sensitive enough. On the contrary, it produces good results both
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in terms of sensitivity and specificity for Type 1, while it results quite specific

but not sensitive enough for Type 3. Figure 7.2 shows an example of a MS

Figure 7.2: Patient ID2: ground truth (left), colorimetric map of MS (right).

colorimetric map (right) for patient ID2, referring to a lesion whose ground truth

(left) is classified as belonging to Type 1, which correctly matches and reproduces

a homogeneous texture.

The third feature, CM, returns the same good results as MS for Type 1. For

Type 3 it results less specific than the other features and more sensitive than MS,

showing in this case the same result as SS. For Type 2, it is extremely specific,

having the highest values among these features (SP=97%), but it results to be

poorly sensitive, similarly to MS and differently from SS. Figure 7.3 reports results

Figure 7.3: Patient ID3: ground truth (left), colour mask of CM (middle), MS–SS
scatter plot (right).

related to CM mask (middle) which perfectly matches and reproduces the original

ground truth manually outlined by radiologists (left) and classified as belonging
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to Type 3. This lesion, undergoing a light motion during examination (referred

to the thin outer red region), appears as being homogeneous (wide cyan), with

inner bronchi and blood vessels (in green and blue). All these tissue structures

are characterised by the same behaviour in terms of MS and SS, as one can see in

the scatter plot of Figure 7.3 (right), showing four clusters highlighted by as many

colours, with their centroids. The homogeneity of the lesion (cyan) is characterised

by low MS and SS values, while the big bronchus (blue) is characterised by the

widest SS and MS, because during the lesion motion incorporates both air and

tissue and, also moving along z-axis, its shape changes over time. Small bronchi

and blood vessels belong to the same cluster (green) characterised by high MS and

SS values. The bronchi present high values, though preserving the same shape

over time, because of the lesion movement, while the high values of blood vessels

are due to the increasing enhancement caused by the tracer passage.

The results discussed so far show that MS is a useful index, if it is used as

a support to reinforce the results of SS through the construction of CM. On

the contrary, SS alone appears to be effective in recognising these three types of

heterogeneities, even the most indefinite micro-inhomogeneous tissue.

7.5 Discussion

As expected Type 1, because of its intrinsic homogeneity, is more simple to be

identified by all the features, without any difference between MS and CM. Type

2 is better identified by SS, which results more sensitive to highlight different

structural inhomogeneities, showing high values when the local range of HU val-

ues is not preserved over time. On the other side, MS and CM fail to detect

the lesion heterogeneity belonging to this type which is, however, the type the

radiologists themselves identify with the greatest uncertainty. As far as Type 3

is concerned, it is better identified by SS and CM. The difficulty in detecting this

type of heterogeneity arises from the contemporary presence of characteristics of

the other two types, homogeneity and micro inhomogeneity, in the same lesion.

The predominance of one of these features could affect the recognition of Type 3.

Nevertheless, whenever Type 3 is detected all the features enrich the knowledge

of the clinicians by showing regions of clinical interest often not visually identified

even at the ground truth definition stage. Generally speaking, bronchi, blood ves-

sels and haemorrhages are perfectly reproduced by the colorimetric maps referring

to all the features, while hypodense necrotic regions outlined by radiologists have
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a weak correspondence with the colour regions of our features. Nevertheless, it

is worth noting that the extent of these regions, usually large and homogeneous

inside, cannot be clearly outlined even by radiologists. This is highlighted in the

ground truth image of Figure 7.4 (top left) where the hypodense region is only

partially indicated by these features. In this case, all our three features show

only a part of the macro region contours identified by radiologists. However, it

is interesting to note how SS colorimetric map (top right) and, yet more, MS

colorimetric map (bottom left) and CM colour mask (bottom right) point out one

more hypodense area in the peripheral top region. Although this was not ini-

tially identified by radiologists, its presence was confirmed further on, when our

features were then submitted to their attention in the matching stage. The same

occurred with the blood vessels identified by these features, which could not be

detected at the ground-truth generation stage, but were subsequently identified

by radiologists in other time instants.

7.6 Conclusion

This work led to a publication [101], the first work using sequences of DCE-CT

to assess the morphological heterogeneity levels of lung tumours, even through

a semi-automated approach. As shown, in this work a well-defined procedure to

generate the ground truth images and proper numerical features were devised to

perform the visual matching and to assess the results. The indices computed on

the TCC signals proved to be effective to describe, and measure, the heterogeneity

features visually detected by radiologists on single reference slices. In fact, the

approach developed permits an automatic classification of heterogeneities, with a

high certainty degree (minimum specificity≥0.90) for all types, with a good sen-

sibility (minimum value ≥0.75). Yet more these features, the first ones based on

spatio-temporal measures, enrich the radiologist’s knowledge regarding the mor-

phological heterogeneity of cancer tissue by providing supplementary information

regarding tracer dynamics, hence physiological status. The main advantages of

our approach include the introduction of objectivity in a crucial visual assessment

task and the possibility to exploit heterogeneity information within an automatic

software pipeline. For this reason, the methodology developed could be employed

in decision making process relying on the quantification, or the detection, of the

different types of heterogeneities, thus constituting a valid tool to assist radiol-

ogists in clinical activities. As regards future works, these findings could also



7.6. Conclusion 137

Figure 7.4: Patient ID4: ground truth (top left), colorimetric map of SS (top right),
colorimetric map of MS (bottom left), colour mask of CM (bottom right).

enable a comparison between the morphological heterogeneities assessed on HU

images and the functional heterogeneities derived by the typical colorimetric per-

fusion maps. Potentially, these indices could even be used for semi-quantitative

comparative analyses between patients, or within patient during follow-ups to au-

tomatically monitor the evolution of a given heterogeneity types or even to detect

a change in heterogeneity. The correlation analysis could bring new information

regarding the overall tumour heterogeneity that, not to forget, involves all levels

and all scales.
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As discussed in Section 2.1, in the last few years, cancer treatments have im-

proved significantly with the introduction of new therapies aiming at reducing

tumour angiogenesis. CTp is being emerged as a promising functional technique

for assessing tumour response to these new treatments, which yield a reduction of

perfusion heterogeneity, occurring long before morphological reduction. However,

several factors, such as noise induced by respiratory and physiological involun-

tary motion, prevent a reliable quantitative assessment, hence the clinical use

of CTp. Currently, the assessment strategies rely on global measurements that

fail in discriminating between noise and heterogeneity of tumour perfusion, both

characterised by a wide value dispersion. This Chapter reports the use of the

139
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local-based index presented in Section 5.3 for the reliability estimation, which is

able to discriminate between the tumour heterogeneity, featured by locally struc-

tured patterns, and the noise, characterised by sparse and unstructured values.

This index enables a proper comparison between perfusion maps and can replace

the parameters based on the global mean, thus improving the overall reliability

of CTp studies and favouring the translation into clinical routine. 1

8.1 Introduction

As discussed in Section 3.1, CTp represents a promising imaging technique in

the oncological field, expectedly providing information in diagnosis, to discrimi-

nate benign from malignant lesions [242], tumour staging [75] and prognosis [21].

Recently, CTp has shown the potentiality of monitoring tumour response [243],

demonstrating the ability to identify reduced perfusion even after a single admin-

istration of anti-angiogenic agent. However, this technique is delaying its entrance

in the clinical routine because of the strong difficulties met to obtain reliable and

reproducible results, and even to assess the reliability itself [244].

One of the main obstacles preventing the use of CTp in the clinical routine

arises from the unreliability of CTp measurements, introduced by the examina-

tion protocol, the presence of physics-based artefacts, the partial volume artefacts

and the methods of data processing and analysis [245]. Besides these factors, also

tumour heterogeneity is considered an intrinsic factor causing measurement vari-

ability [94]. Finally, the motion artefacts are considered among the most common

causes hampering the CTp technique in clinical practice [199], particularly prob-

lematic in abdomen application where movements, mostly due to breathing, are

almost inevitable.

All these factors lead to random and systematic errors, which may reflect both

in the construction of the TCCs and in the estimation of the perfusion parameters,

thus jeopardising the final quality of the perfusion maps. Just recently, very few

studies have started focusing on the TCCs fitting error to identify which perfusion

values are unreliable at voxel level [102, 103], but neglecting the spatial coherence

of the perfusion maps. In general, the reliability analysis is primarily performed

in terms of inter- and intra-observer variability [104, 96, 98] where, to assess the

1This article was published in Biomedical Signal Processing and Control, 31, A. Bevilacqua,
D. Barone, S. Baiocco, G. Gavelli, A novel approach for semi-quantitative assessment of reliability
of blood flow values in DCE-CT perfusion, 257–264, Copyright Elsevier (2017).
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variability of measures, the CV is often used. This index is calculated on global

parameters, that is mean and standard deviation of perfusion parameter values

computed on the whole maps [94]. In addition, CV has also been directly used

as a global-based index to assess the quality [246] of the perfusion maps, despite

the limit of using global measurements have repeatedly been highlighted [102].

In fact, global measures of perfusion parameters include variability due to both

measurements uncertainty and physiological tumour heterogeneity, this preventing

any assessment of reliability of perfusion maps.

This Chapter reports the application of the novel approach for the reliability

estimation presented in Section 5.3, which aims at partially overcoming the low

specificity of global measures [200]. A spatial analysis of the perfusion maps was

performed by introducing the lCV index, the structure-based coefficient, able to

gather and exploit information regarding tumour heterogeneity at local level, thus

expectedly isolating the effects of variability based on noise only. The results of

the local-based reliability analysis can be shown through colorimetric index maps,

where high lCV values suggest, for those voxels, unreliable BF values.

The effectiveness of this approach was assessed by using pairs of BF perfusion

maps of primary lung cancer, computed according to the maximum slope method,

before and after 3D motion registration, assuming that the motion corrected maps

are always improved [199]. Three different motion degrees (MD) are considered.

Both the “global” CV (gCV, the common CV computed on the whole map) and

our index based on lCV values have been computed for each pair of perfusion maps

and the significance of the outcome have been statistically computed. Results

prove that only CV index always succeeds in selecting the CTp maps with the

best quality, independent of the examinations MD.

8.2 Materials and methods

The dataset for this study was selected from a retrospective CTp study, approved

by the institutional review board (IRB), consisting of examinations regarding 16

patients (range 36 - 81 years) with primary lung tumours. All patients had been

instructed for breath-hold, but some of them were able to hold their breath just

partly, thus, introducing motion artefacts in the exam. By taking into account

follow-up studies, 21 cases in total have been analysed, each consisting of two

data-sets obtained before and after motion compensation. For each examination,

the MD was ranked by radiologists according to a 3-point scale, representing heavy



142 Chapter 8. Reliability analysis of BF maps from CTp of lung cancer

(2),moderate (1), and lack of motion (0). This information was reported in Table

8.1.

8.2.1 Perfusion CT protocol

The patients underwent cine CTp, performed on a 256-slice CT system (Brilliance

iCT, Philips Medical System, Best, The Netherlands), feet first in the supine

position. An initial low dose unenhanced full-body CT scan was performed to

identify the target lesions at baseline conditions. A 50-mL intravenous bolus of

contrast agent (Iomeron, Bracco, Milan, Italy) was then injected at 5 mL/s for

axial cine contrast enhanced CT. A single acquisition of duration 25 s, with patient

instructed for breath-hold, giving 20 scans with 55 mm of z-coverage (11 slices

× 5 mm slice thickness, 0.4 s rotation time, at 80 kV, 250 mA). Image data are

reconstructed to 220 cine images (512× 512 pixel, 11 slices, 350 mm × 350 mm,

5 mm slice spacing, 1.25-s temporal resolution).

Accordingly, the generic protocol provides for M scans, each corresponding to

different sampling instants, of K levels each (e.g., M = 20, K = 11).

8.2.2 Perfusion maps

For each voxel a single-compartmental model was considered for the calculation

of the BF, among the most significant perfusion parameters [82], since permits

the early detection of the functional changes in tumour vascular supply, within

the first week from the administration of the anti-angiogenic therapy [84]. As

reported in Section 3.1, to generate the TCC signal the sigmoid-shape model was

adopted to robustly describe the main trend of the M concentration sample.

The target lesions and the arterial input (aorta) were selected in agreement

by two radiologists on a reference slice. For each lesion the radiologists manually

drawn the ROI on the reference slice. BF functional maps of the reference slice

were obtained using an in-house algorithm developed in Matlab© (MathWorks,

Natick, MA, USA).

8.2.3 Local coefficent of variation

The lCV index was computed on all the available maps. As described in Section

5.3, the computation of the lCV value is performed iteratively by assigning the

proper value to the pixel displaced at the same position of the BF map. This

procedure repeated for each pixel within the ROI is performed by using a sliding
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window of 9 × 9 pixels, corresponding to 6.15 × 6.15 mm, inside the ROI. The

tumour tissue is characterised by gradual transitions occurring with a spatial co-

herence, and this window size is suitable to detect the smallest coherent functional

heterogeneity pattern, this heavily reducing the effects of noise on statistical mea-

surements. In particular, the choice of the window size was first driven by the

radiologists of our team, stating that in the clinical practice regions smaller than

5 mm-side are rarely considered. On the other hand, it is well established that

CT texture features finer than 4 mm would represent noise and should not be

considered [247]. The choice of 6 mm was made so as to improve the significance

of the patch. For these reasons, most of the remaining spatial inconsistency of BF

values can be ascribed to causes other than physiological ones.

lCV can be visualized through colorimetric maps, which provide radiologists

with a global view of the reliability in BF maps, highlighting the regions charac-

terised by a greater spatial coherence and those by an inconsistent variability. The

lCV maps can be represented through pseudo-colours using a hotcold colour map.

The brown colour points out the pixels where the lCV values are not computed

because the minimum number of adjacent values is not available.

Finally, the single statistical index µlCV introduced in Section 5.3.1 was cal-

culated from the lCV values of each BF map.

8.2.4 Data Analysis

Usually, it is taken for granted that the CV parameter (here, gCV), computed on

global perfusion values (e.g., the mean of perfusion parameters) or even on the

whole map, is implicitly related to the quality of perfusion maps [246] and therefore

can distinguish between variability due to physiological factor or noise sources.

Actually, to verify this capability, maps of known quality should be available.

Of course, an absolute quantitative quality index does not exist. Therefore, to

properly analyse the capability of gCV, and µlCV , in discriminating maps with

a different quality, it is necessary to consider maps characterised by a known

quality rank. To this purpose, we consider perfusion maps obtained using motion

corrected and unregistered CTp sequences, assuming that motion compensation

always leads in some way to improve the perfusion maps, as reported in [199].

Indeed, the uncorrected maps result more greatly affected by motion artefacts,

compared to the registered ones.

The motion correction was performed as reported in Section 5.3, involving
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manually x-y-z translation, performed by radiologists on the reference sequence,

so that the borders of the lesion visually match. According to this procedure,

a 3D rigid alignment is achieved. Instead, the unregistered approach consists in

keeping the reference ROI fixed along the reference sequence.

The effectiveness of the proposed approach was assessed in three steps. First,

we validated the novel index, µlCV , by measuring its capability to discriminate

between pairs of maps of different known quality, aware that lower µlCV values

hint at a greater regional coherence of the whole BF map, which is neglected

by gCV. Then, the ability of gCV to accomplish the same task was considered.

Finally, the outcome achieved with µlCV and gCV were compared to draw further

considerations.

8.2.5 Statistical analysis

In order to assess the statistical significance of the differences in µlCV between

the motion corrected maps and the uncorrected ones the Welch two-sample t-test

was used, according to [248]. [249] suggests the same statistical test to assess the

differences in gCV values. P values ≤ .01 were considered statistically significant.

All statistical analysis was performed using R software (version 3.0.1, The R

Foundation for Statistical Computing).

8.3 Results

Figure 8.1 shows the couples of µlCV (top) and gCV (bottom) values, computed

on the whole datasets of perfusion maps and referred to the registered (in the blue

colour) and unregistered (in red) sequences. For reader’s convenience, the samples

have been joined and displayed with dashed blue and solid red lines, respectively.

Numerical values are reported in Table 8.1.

Figure 8.1 (top) clearly shows that the µlCV values of the unregistered maps

always result greater than those of the corrected ones, and these differences have

statistical significance except for ID16, where µlCV values are statistically equiva-

lent. In particular, in the thirteen examinations characterised by large movements

of lesions (ID1-ID8, ID11, ID17, ID19-ID21), both in the craniocaudal and in the

transaxial directions (for instance, caused by breath-hold being kept only par-

tially), the differences between the values of µlCV for corrected and uncorrected

maps are greater (see IDs with MD=2 in Table 8.1). In fact, in such cases the
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Figure 8.1: µlCV (top) and gCV (bottom) values referring to the unregistered maps
(highlighted in red colour) and to the corresponding registered ones (pointed with blue
colour).

uncorrected perfusion maps are characterised by a higher variability and the mo-

tion correction plays a more decisive role. On the contrary, for the seven lesions

(ID9, ID10, ID12-ID15, ID18) relatively stable (IDs with MD=1 in Table 8.1)

during the CTp acquisition, the effects of motion correction are appreciable with

difficulties, this leading to more comparable µlCV values, although keeping statis-

tically different. However, the p-values are several orders of magnitude lower than

those referring to examinations undergoing heavy motion. Finally, for motionless

examinations (ID16) µlCV values are statistically coincident (P= .16), coherently

with our expectations, this really representing a pair of perfusion maps with a

comparable reliability degree, as one can see in Figure 8.2.

In order to test the same ability by gCV, we computed its values for the same

perfusion maps and the results, graphed in Figure 8.1 (bottom) and reported

numerically in Table 8.1, are consistent with those reported in other studies [98].
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10 mm 10 mm

(a) (b)

Figure 8.2: Perfusion maps related to ID16, with (a) and without (b) motion com-
pensation.

The values of gCV for the uncorrected maps again result to be generally higher

than those computed on the registered ones, as expected. In particular, the gCV

succeeds in discriminating between 7 out of 13 couples of perfusion maps referring

to examinations with heavy motion (ID1, ID2, ID6, ID7, ID17, ID20, ID21), where

the presence of noise in perfusion maps is greater. Nevertheless, gCV fails with the

examination ID3, returning a lower and significant value for the uncorrected map.

Things worsen when dealing with examinations undergoing a moderate motion

and it just succeeds for ID9 and ID13 (2 out of 7). In addition, gCV cannot detect

significant differences between the couple of maps of the examination ID16, in line

with what has already been stated regarding the stability of the lesion.

On the whole, two main outcomes arise from these results. The first is that

µlCV never fails in detecting the best quality, and ones only the difference is

not statistically significant, when it should not, that is in the absence of motion.

Second, gCV may assign a better quality to a noisier perfusion map.

To understand the main reasons standing behind this behaviour, the concept

of intra-tumour heterogeneity must be considered. In fact, in the presence of

heterogeneity (nevertheless, a low degree is almost always present), a perfusion

map can be seen as a set of local homogeneities which can be captured by the local

analysis underlying the lCV computation, thus yielding quite low µlCV values. On

the contrary, gCV is based on a global average and it cannot distinguish whether

high perfusion values are sparsely arranged or come from local homogeneities
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(e.g., local perfusion peaks). In fact, noise introduced by motion “breaks” these

homogeneities, always leading µlCV to increase. Nevertheless, the changes of µ and

σ (Eq. 4.5) of perfusion values are not due to noise only, but also to the spreading

of the homogeneity, and gCV cannot distinguish between these different causes.

For instance, Figure 8.3 shows the perfusion maps of the lesion ID3, with (a) and

without (b) motion compensation, along with the related lCV maps (c) and (d).

Lesion ID3 moves and incorporates air samples within the fixed ROI, yielding

(a) (b)

(c) (d)

10 mm

10 mm

10 mm

10 mm

Figure 8.3: Perfusion maps referring to ID3, with (a) and without (b) motion com-
pensation, with related lCV maps (c) and (d).

noisy TCCs (reflecting in the increasing perfusion values in the low-left side of

the lesion, Figure 8.3 (b)). After motion correction (Figure 8.3 (a)) µ reduces

from 108.71 to 54.34, while σ from 73.98 to 40.93, thus leading to an increasing
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of the gCV. Meanwhile, the lCV recognises the improvements in terms of local

homogeneities (Figure 8.3 (c) and (d)), and the overall µlCV decreases.

8.4 Discussion

Assessing the reliability of a CTp map still is an open problem and represents one

of the main obstacle to the clinical utilisation of CTp methodology. Quantitative

imaging has just recently emerged as a need also in dynamic studies involving CT.

So far, limited published data exist concerning the variability of CTp measurement

and almost always with reference to the cranial circulation where, moreover, the

near absence of movement reduces the measurement error. Till now, the well-

known CV (what in this study was named gCV) has been employed beyond its

capabilities, as a global index to assess the overall quality of perfusion maps,

subsequently used to draw clinical considerations. The approach presented in

this Chapter, highlighted two different types of errors when using gCV for such

purposes. First, it often fails to detect the most reliable perfusion maps, here

represented by those improved through motion compensation. Second, and this

is yet a more serious issue, gCV may erroneously confer a higher quality to worse

maps. Both these errors produce serious drawbacks.

In the first case, the scientific outcome of perfusion studies, where the choice of

a contrast agent [246] or of the TCC sampling frequency [250], or the reproducibil-

ity of CTp parameters [96] have been computed on the basis of gCV assessments,

could be misleading and definitely compromised. In the second case, the conse-

quences are yet more severe and could even yield a misdiagnosis. For instance,

the two perfusion maps referring to ID3 and reported in Figure 8.3 (a) and (b)

may induce completely different clinical considerations and induce opposite ther-

apeutic decision. In fact, the incorrect map suffering from motion artefacts and

chosen by gCV as being the best one (Figure 8.3 (b)) shows the lesion as being

characterised by only one small necrotic core and a significant peripheral perfused

area, this may erroneously suggest a change of therapy. Nonetheless, in reality it

is almost completely necrotic (Figure 8.3 (a)), this correctly hinting at a therapy

working successfully.
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8.5 Conclusion

The experimental results suggest that gCV is not suitable to assess the quality of

perfusion maps, because it is not able to detect the presence of heterogeneities,

neither to neglect their influence. To date, an index to really assess the measure-

ment variability had not been presented yet.

The novel index discussed in this work, the µlCV , is the first index in CT

perfusion studies able to take the intra-tumour heterogeneity into account, by

ensuring that its effect slightly interfere with the measurement of variability due

to noise. It never fails in ranking the quality of the pairs of maps, while it assigns

same value to different maps achieved with almost negligible motion correction.

It is worth remarking that the differences between the µlCV values of the pairs of

maps are correlated to the motion degree of the examinations, and to the amount

of improvements introduced by the CTp alignment, accordingly, this proving the

high discriminatory power of µlCV .

As a secondary, yet important, advantage of using this approach is that lCV

colorimetric maps provide radiologists with an overall view of the reliability in

BF maps, where regions characterised by lower lCV values suggest a greater local

spatial coherence of the BF maps, also in the presence of apparent variability,

while higher values point out an inconsistent variability, which could mislead

clinical considerations.

On the whole, this approach constitutes an improvement of the daily activities

of the experts in interpreting the CTp studies and their reliability, this represent-

ing an important advance towards a reliable measurement of the effectiveness of

anti-angiogenic therapies and, ultimately, for the translation of the CTp technique

in the clinical standard practice.
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This Chapter reports the perfusion characterisation of two lung cancer sub-

types at diagnosis. As discussed in Section 9.1, this topic is widely debated in

literature, which reports different and sometimes not statistically significant re-

sults. The quantitative approach used to newly investigate the perfusion of this

151
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two histotypes and to generate the results is further detailed and discussed in Sec-

tion 9.2. The qualitative and quantitative approaches used to assess the results

are reported in Section 9.3. The significance of the results discussed in Section 9.4

has been achieved by automatically detecting and excluding artefactual perfusion

values as well as through a punctual analysis of the “borderline” cases. These are

the less representative lesions, where the two histotypes have similar perfusion

values, which negatively affect the statistical significance of the study. Finally,

Sections 9.5 discusses the results, while Sections 9.6 outlines the conclusion, high-

lighting perspectives for future works. 1

9.1 Introduction

As discussed in Section 2.1, tumorigenesis involves angiogenesis, a complex mecha-

nism consisting in the generation of a vascular network nourishing the tumour that

is highly disorganised [251]. Studying abnormal vascular patterns, and their tem-

poral changes, may be essential for tissue characterisation [101]. To this purpose,

the interest in CTp methodologies has been recently confirmed [252], since CTp

supplies both high spatial and temporal resolution and allows computing perfusion

parameters from the analysis of the TCCs [253], generated by the contrast agent

reaching the tumour. Among the most effective perfusion parameters allowing

angiogenesis evaluation [254], BF arises [82] mainly because of its high correlation

with the tissue biomarker MVD [81]. BF can be measured by considering the first

passage of the contrast medium, thus minimising the dose administered to the

patient [255]. Clinical applications of BF information computed at diagnosis in-

clude the lesion characterisation [256], especially relevant for inoperable patients,

who need to schedule non-surgical treatments [257]. Or else, higher baseline BF

values in patients with advanced lung carcinoma could suggest a better response

to therapy [258].

The differences in BF values between responders and non-responders have

prompted a tumour hemodynamic characterisation, which also embodies cancer

histological subtypes. Characterising the perfusion of NSCLC has shown to pro-

vide useful information concerning their status, in particular as regards their

hypoxia degree, deeply affecting tumour response to treatment [259]. In par-

1This article was published in BioMed Research International, A. Bevilacqua, G. Gavelli, S.
Baiocco, D. Barone, CT Perfusion in Patients with Lung Cancer: Squamous Cell Carcinoma
and Adenocarcinoma Show a Different Blood Flow, Volume 2018, Article ID 6942131, 10 pages
(2018).
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ticular, it was shown that the adenocarcinoma (AC) subtype has a significantly

lower hypoxia degree than the squamous cell carcinoma (SCC) one [260]. The

authors in [261] found that various perfusion parameters differ between lung can-

cer subtypes. In particular, the authors in [262] indicate that AC is characterised

by a more abundant blood supply than SCC, as the higher peak of their TCCs

suggested. Moreover, also BV and flow-extraction product resulted to be signif-

icantly higher in AC than in SCC [260]. Nevertheless, the literature shows dis-

cordant results. For instance, the authors in [13] found that AC has apparently a

higher perfusion than SCC, but these results were not statistically significant, in

spite of MVD resulted significantly more intense in AC than in SCC. Other stud-

ies [263, 264, 265] highlighted no differences in perfusion parameters among these

two histological subtypes, also finding that they are characterised by a similar

MVD [266].

When considering these discordant results, we must bear in mind that BF

computation of lung tumours is exposed to several sources of error [200], arising

from respiratory motion [196], CTp artefacts [70] and, not to forget, tumour lo-

cation [267], which can affect the reliability of BF values [268], thus dimming the

real nature of tumours. As regards tumour location, its influence on BF values

is rarely considered in CTp studies. Nonetheless, it has been shown that perfu-

sion in central carcinomas is significantly lower than in peripheral ones, due to

the different recruitment of vessels [269]. It is worth noting that also anatom-

ical structures inside lesion, such as vessels and bronchi, can be responsible for

jeopardising perfusion analyses [268].

The aim of this study was to evaluate the characteristics of lung tumour at

diagnosis (i.e., at baseline condition), newly investigating possible significant dif-

ferences in perfusion between AC and SCC, the two predominant NSCLC pheno-

types. Nevertheless, as previously shown, the literature presents discordant results

in AC and SCC perfusion characterisation, caused by too a high measurement

variability, stemming from clinical and physiological factors as well as external

causes (e.g., patient movements and artefacts). To reduce such a variability, un-

reliable perfusion values were automatically detected and removed. In addition,

lesions’ position, central or peripheral, and their proximity to large vessels, were

examined to analyse how these factors could affect lesions’ perfusion. Finally, for

each histotype we analyse the less representative lesions, whose perfusion values

are shifted to the group mean value characterising the other histotype.
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9.2 Materials and methods

9.2.1 Study population

This study was approved by the IRB that waived informed consent for the ret-

rospective data analysis of the patients. In addition, a written consensus was

obtained by all patients before each study. Between September 2010 and April

2013, a total of 32 consecutive patients (22 men, 10 women; age range 36-81 years)

with primary NSCLC, subdivided in 24 AC and 8 SCC, were identified and en-

rolled for data analysis. Tumour stage was determined in all patients according to

the TNM classification of malignant tumours (seventh edition): 1 patient was di-

agnosed stage IB, 3 patients were diagnosed IIIA, 5 patients IIIB and 23 patients

IV tumour stage.

9.2.2 Inclusion and exclusion criteria

The patients included in this study were selected according to the following cri-

teria: over eighteen years old, with histologically verified NSCLC, and no prior

history of chemotherapy, surgery or thoracic radiation therapy. Patients were ex-

cluded if the longest axial lesion diameter was less than 10 mm in at least one

slice, if the examination was severely affected by physics-based artefacts, in case

of a clinically significant cardiovascular disease and a known history of deep vein

thrombus or pulmonary embolus. The final population included 26 patients, 19

AC and 7 SCC. Besides subtypes and staging, Table 9.1 includes lesion’s location

and position as the cancer features. For the sake of completeness, also the widest

axial tumour section is reported.

9.2.3 CTp protocol

At diagnosis, the patients underwent axial CTp performed on a 256-slice CT

system (Brilliance iCT, Philips Medical System, Best, The Netherlands), feet

first in the supine position. Initially, an unenhanced low-dose full-body CT scan

was performed to identify the target lesion at baseline conditions. Then, a 50 mL

intravenous bolus of contrast agent (Iomeron, Bracco, Milan, Italy) was injected at

5 mL/s for axial cine contrast enhanced CT, followed by a flush with physiological

saline solution (30 mL, 5 mL/s). Five seconds later, each patient underwent a

single acquisition of 25-s duration, under breath-hold condition. This protocol

yields 20 scans, each corresponding to different sampling instants, with 55 mm of
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Table 9.1: Summary of the histological diagnosis, tumour stage, position and location
(for details see Section 9.3.1), and area of the widest tumour slice relative to each lesion.

Patient ID Diagnosis Stage Position Location Size [cm2]

ID1 AC IV Left Peripheral 2.4
ID2 AC IV Left Extended 15.9
ID3 AC IV Left Peripheral 4.6
ID4 AC IV Right Extended 7.0
ID5 AC IV Right Extended 16.1
ID6 AC IV Right Peripheral 15.0
ID7 AC IIIA Right Extended 5.9
ID8 AC IV Left Peripheral 1.5
ID9 AC IV Right Extended 29.0
ID10 AC IIIA Right Peripheral 2.5
ID11 AC IV Right Extended 20.3
ID12 AC IV Right Extended 3.9
ID13 AC IV Right Peripheral 0.6
ID14 AC IV Left Extended 2.5
ID15 AC IV Left Extended 10.8
ID16 AC IV Right Extended 1.9
ID17 AC IV Left Peripheral 1.5
ID18 AC IV Left Central 3.8
ID19 AC IIIB Right Central 10.7
ID20 SCC IB Left Peripheral 2.1
ID21 SCC IV Left Central 7.2
ID22 SCC IV Right Peripheral 5.2
ID23 SCC IIIB Right Central 10.3
ID24 SCC IIIB Right Extended 22.8
ID25 SCC IV Right Central 8.2
ID26 SCC IIIB Right Central 16.1

z-coverage (11 slices × 5-mm slice thickness, 0.4-s rotation time, at 80 kV, 250

mA, 100 mAs). Image data are reconstructed to 220 cine images (512×512 pixel,

11 slices, 350 mm × 350 mm, 5-mm slice spacing, 1.25-s temporal resolution).

9.2.4 Perfusion maps

A ROI in the descending aorta was selected as the input function. A second ROI

was manually drawn in consensus by two expert radiologists (25-year experience

each) on a reference slice, where the tumour showed the widest area, similarly

to what done in [265, 269]. Then, for each lesion, the radiologists performed
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a 3D alignment according to the procedure described in Section 5.3. In order

to obtain the TCCs relative to each voxel, the values of the temporal sequence

were fitted using the sigmoid-shape model, arising from the Hill Equation [91],

as deeply described in Section 3.1.1. The curve fitting is achieved employing

an in-house fitting algorithm based on the nonlinear, least squares, Levenberg-

Marquardt minimization algorithm (lsqcurvefit, Matlab©; MathWorks, Natick,

MA, USA). After TCCs computation, BF values, expressed in mL/min/100 g,

were computed for AC and SCC subtypes using the Maximum-Slope method [73,

270] by considering the first-pass phase only [62] and representing each voxel with

a one-compartment model, including both the intravascular and the extravascular

spaces [271]. This allowed performing short-time examinations with a great benefit

for patients, in terms of absorbed radiation dose and examination quality, since

motion artefacts were reduced by the possibility for patients to hold their breath.

9.2.5 Data analysis

As explained in Section 5.3 unreliable BF values were excluded from the anal-

ysis and highlighted in the colour map with the pink colour. In particular, BF

values strictly lower than 1 mL/min/100 g were automatically removed, being

considered unlikely compliant with physiological values and rather ascribable to

numerical errors. Similarly, BF values undergoing high TCC fitting errors due to

the presence of structures, such as blood vessels and bronchi, or dynamic artefacts,

were automatically detected as unreliable through the method presented in [268].

Finally, mean BF values were computed for each examination and considered to

identify hemodynamic differences between the two histological NSCLC subtypes,

AC and SCC.

To better understand the implications of the denoising methods used, in Fig-

ure 9.1 we report two BF maps related to ID15, obtained by using the denoising

method [268] (a) and by manually removing (i.e., clipping) the highest BF val-

ues (b), supposedly out of the physiological range, as it is normally done. The

removed values are shown in the pink colour in both maps. As one can see, the

denoising method removes unreliable regions, including the outer ones, that is,

those suffering from partial volume effect, which pure clipping normally keeps.

Nevertheless, this method preserves a range of BF values wider than clipping

does. This behaviour is underlined by the BF histogram of Figure 9.2 (b), show-

ing that, by clipping, the highest BF values (in red) are removed independently
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Figure 9.1: Perfusion maps of ID15 achieved through the use of the automatic denois-
ing method (a) and by hand clipping the highest BF values (b). In pink, the unreliable
values.

0 50 100 150 200 250 300 350

BF [ml/min/100 g]

0

10

20

30

40

50

60

N
u

m
b

e
r 

o
f 

v
o

x
e

ls

0 50 100 150 200 250 300 350

BF [ml/min/100 g]

0

10

20

30

40

50

60

N
u

m
b

e
r 

o
f 

v
o

x
e

ls

Figure 9.2: In blue, the histograms related to the original ID15 BF map and, in red,
the BF values that were removed through the use of the automatic denoising method
(a) and by hand clipping the highest BF values (b).

from their reliability, and the range of values narrowed. On the other side, the BF

histogram of Figure 9.2 (a) highlights the clear advantage of the denoising method,

which “saves” those high values which are generated with no appreciable errors.

Furthermore, one can see how this method is able to even automatically remove

unreliable low values falling within the physiological BF range. This explains

why the range of BF values is wider, though the regions removed have a wider

extent. Although these two maps are apparently very similar, the real benefit of

the denoising method definitely arises in the subsequent analysis. For instance,
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as regards the perfusion analysis, the mean BF value of the clipped map (mean

BF = 44.1 mL/min/100 g) is smaller than that of the corresponding denoised

map (mean BF = 47.7 mL/min/100 g) by almost 10%. This underestimation of

the mean BF value, due to the inclusion of unreliable BF values and exclusion of

high BF values regardless of their reliability, could severely affect the statistical

analysis of all perfusion studies. Of course, in the presence of bronchi, vessels and,

above all, artefacts this difference can be even larger.

9.2.6 The “borderline” examinations

After performing the automatic error analysis to detect and exclude unreliable

values, we looked for the other causes that could affect the perfusion of the “bor-

derline” cases. Indeed, these are the less representative lesions of the two classes,

whose parameter values are nearest to each other, which negatively affect the sta-

tistical significance of the study. If from one side they could simply originate from

artefacts, from the other side, more interestingly, they can reflect the inherent

variability of data and the intrinsic tumour properties.

9.3 Assessment of results

The main purpose of this research is to determine whether AC and SCC are

characterised by a different baseline perfusion. In order to assess the statistical

significance of the differences in BF between AC and SCC subtypes, the one-

tail Welch’s t-test was used for mean, while the one-tail Wilcoxon Rank Sum

test (also known as Mann-Whitney U-test) was used for median. For both, the

statistical significance is achieved with p-value < 0.05. The statistical analysis

was performed using R software (version 3.0.1, The R Foundation for Statistical

Computing).

As regards the analysis of the borderline cases, several factors that may cause

perfusion variability were examined. The site where tumours arose, right or left

lung, was considered since it is proved that they drain to different lymph node

groups according to their position [272]. In this context, also the tumour loca-

tion, central or peripheral, was considered since central tumours can be almost

completely fed by the bronchial circulation, while the peripheral tumours, mainly

at their early growth stage, can have a significant pulmonary contribution [265].

Finally, a study of the extrinsic effects on perfusion computation was performed,

focusing on the beam hardening artefacts, which for instance occur in tumour
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localised near bony regions of the chest and, also, where the contrast medium is

highly concentrated [70].

9.3.1 Tumour location

For each examination, two radiologists examined the entire scan sequences. They

divided tumours into three groups according to their locations, also reporting if

they are in the left or right lung. A tumour was considered peripherally located if

it is 20 mm of the costal pleura, within the pulmonary parenchyma without direct

connection to mediastinal structures. A tumour is centrally located if it is 20

mm of the mediastinal structures, in a close relationship with the central airways.

Otherwise, it is considered as an extended tumour (that could be either large

or small). The two radiologists started by performing this analysis in double

blind and, then, they reviewed together all cases to reach an agreement. This

information is reported in Table 9.1.

9.4 Results

Table 9.2 resumes the main BF parameter values for AC and SCC subtypes, while

Table 9.2: BF stratified by NSCLC Subtypes.

NSCLC Subtypes
BF [mL/min/100 g]

Mean Median Minimum Maximum SD

AC 83.5 79.2 33.0 141.3 29.4
SCC 57.0 44.3 28.0 98.4 27.2

Note: SD = standard deviation.

Figure 9.3 graphically shows the distribution of BF values for the two subtypes.

The outcome highlights that the baseline BF mean value of AC examinations is

definitely greater than that of SCC ones (p-value = 0.02), as well as the BF

median value (p-value = 0.03). Figure 9.4 shows the averaged BF values of

each AC (top) and SCC (bottom) examination. For reader’s convenience, the

samples were joined and displayed with solid blue lines, whereas the group mean

and standard deviation (SD) values were shown with solid red and green lines,

respectively. As one can see, as it often happens each subtype may have some
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Figure 9.3: Box plots showing the BF values of AC (left) and SCC (right) lesions.
The median is indicated as a red line in the boxes, whereas the vertical size gives the
interquartile range.

borderline examinations nearer to the group mean value of the other subtype

(the green disks in Figure 9.4), which are responsible for reducing the statistical

significance of the between-group mean difference. Accordingly, the focus was on

the three AC examinations (ID5, ID10, ID15) whose BF values are closer to the

SCC group mean value and two SCC’s (ID23, ID26) with mean values closer to

AC group mean, to assess whether their mean value really reflects phenotypical

features.

The first consideration concerns ID10 (mean BF = 32.9 mL/min/100 g), the

AC lesion characterised by the lowest perfusion and shown in Figure 9.5. This le-

sion is a very small peripheral carcinoma, one of the smallest examined, located in

the subpleural parenchyma, probably characterised by a predominant pulmonary

circulation, which could not have activated the angiogenesis process yet [273]. As

regards the other two AC lesions with a low perfusion, ID5 (mean BF = 50.5

mL/min/100 g) in Figure 9.6 (a) and ID15 (mean BF = 47.7 mL/min/100 g) in

Figure 9.6 (b), these share similar properties that could explain their low perfu-

sion. In fact, both of them are large and extended lesions, presenting wide hypoxic

regions that lower the mean BF values. Altogether, these three cases seem not

showing any external characteristic artificially altering their BF. For instance,
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Figure 9.4: Mean BF values of AC (top) and SCC (bottom) examinations (blue
circles), along with the corresponding group mean (solid red line) and SD (solid green
line) values. The green circles highlight the examinations for each subtype that are
closer to the mean value of the other subtype.

ID19 (mean BF = 141.4 mL/min/100 g) is a central carcinoma, as large as ID15,

with a high perfusion value (the highest one). As a matter of fact, lesions of such a

dimension are often characterised by a hypoxic core, due to the presence of weak

and disorganised capillaries characterising tumour angiogenesis. These vessels,

being more permeable than normal, increase the liquid of the extravascular space,

causing the adjacent cells moving away from the vessels and, consequently, the

low oxygenation of the surrounding tissue. However, the presence of segmental

vessels inside ID19 still nourished the core of the lesion.

As far as SCC are concerned, the two examinations ID23 (mean BF = 89.7

mL/min/100 g) and ID26 (mean BF = 98.5 mL/min/100 g) (Figure 9.7), showing

a higher perfusion compared to the others SCC, share a common feature. Indeed,

they are both central SCC lesions positioned at the right lung, directly connected
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Figure 9.5: Reference slice (a) and perfusion map (b) related to ID10. In pink, the
unreliable values.
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Figure 9.6: Reference slice and perfusion map related to ID5 (a, b) and ID15 (c, d).
In pink, the unreliable values.
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Figure 9.7: Reference slice and perfusion map related to ID23 (a, b) and ID26 (c, d).
In pink, the unreliable values.
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to the vena cava and the pulmonary artery, respectively. This particular location,

in proximity of these large blood vessels, may yield several artefacts during image

acquisition, as shown in the original slices of Figure 9.7, which are responsible

for an artificial increasing of BF values. A detail of six artefacted slices of ID23,

referred to the same couch position, is shown in Figure 9.8. Nonetheless, one other

Figure 9.8: A sequence of six slices of ID23, referring to same couch position, shows
the effect of beam hardening artefacts on lesions.

central lesion, ID25 (mean BF = 59.3 mL/min/100 g) in Figure 9.9 (a), suffers
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Figure 9.9: Reference slice and perfusion map related to ID25 (a) and ID21 (b). In
pink, the unreliable values.

for moderate artefacts, while the last one, ID21 (mean BF = 42.0 mL/min/100

g) in Figure 9.9 (b), is not artefacted. It is worth mentioning that if the artefacts

in ID23, ID25, ID26 were removed manually, BF values for SCCs would rise to

mean BF = 63.5 mL/min/100 g and SD BF = 36.9 mL/min/100 g, this yielding

the difference between the overall means of the histotypes not to be statistically

significant (p-value = 0.08). As a marginal note, it is interesting to see how the

SCC lesion characterised by the lowest mean BF value in our court, ID20 (mean

BF = 28.0 mL/min/100 g), shown in Figure 9.10, is staged IB.

At the end, the mean BF values of each lesion in relation to position and lo-

cation were analysed. Each of the four peripheral ACs in the left lung has a mean

value greater than the group mean they belong to, as well as the three right pe-

ripheral lesions have a lower mean BF, probably because of two bronchial arteries
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Figure 9.10: Reference slice (a) and perfusion map (b) related to ID20. In pink, the
unreliable values.

usually running to the left lung, while one only to the right lung. Similarly, all

the extended AC lesions, neglecting their position, have a mean value lower than

the group mean, except for ID2 and ID11 (Figure 9.11, (a) and (b), respectively),

(a) (b)

Figure 9.11: AC examinations ID2 (a) and ID11 (b) undergoing beam hardening
artefacts.

that represent large lesions undergoing light beam hardening artefacts, from left

and right atrium, respectively.
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9.5 Discussion

The work reported in this Chapter investigated the perfusion baseline character-

istics of AC and SCC, the two major NSCLC subtypes, after that the literature

has reported discordant outcomes [274]. This analysis was performed through

the use of the BF mean value, commonly used as significant statistical parameter

in several studies [81, 275]. The results show that, before treatments, the AC

histological type has a BF mean value significantly greater than SCC subtype,

which generally shows a lower perfusion associated with an increased presence of

necrotic areas. These results arise from the reliability analysis of the BF maps,

and are enforced by the analysis of borderline cases.

The reliability assessment, carried out through an automatic and objective er-

ror detection method [268], allowed removing the anatomical structures (mainly,

blood vessels and bronchi) and regions undergoing artefacts that could compro-

mise the correct interpretation of perfusion maps, thus considerably improving

their reliability. In particular, automatically removing and excluding all the arte-

facted regions from the subsequent analysis is probably the main reason why this

study found a clear statistical significance of the different BF properties of AC

and SCC histotypes.

Besides improving perfusion reliability, the borderline cases were analytically

examined. These are the less specific examinations of the two histotypes, whose

perfusion values are so near to the mean value of the other histotype as to partly

lose their representativeness. In particular, the possible presence of some external

causes, besides phenotypical properties, was investigated to motivate the mean

BF value of each borderline cases. As far as the three ACs are concerned, it

was not possible to find any external cause that could explain their lower BF

values. Rather, the wide range covered by the AC histotype could be suggestive

of the existence of sub-populations with different perfusion behaviours. Although

there is not any statistical evidence regarding probable effects of tumour’s position

and location on the BF mean values, interesting tendencies were found regard-

ing subgroups of the AC histotypes, that could support this hypothesis and are

worth to be investigated separately in a dedicated study. On the contrary, the

predominantly central position of SCCs makes them prone to beam hardening

artefacts, due to the high concentration of the contrast medium in large neigh-

bouring vessels, such as vena cava and the pulmonary artery. Indeed, it is known

that artefacts may yield false results in tumours localised near to large central
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vessels [269]. In particular, the results proved that without automatically remov-

ing those artefacted regions from perfusion computation in two borderline SCCs,

their BF mean values would expectedly be higher so as that the difference between

AC and SCC means would not be significant any more. This could explain the

discordant results emerging in the literature regarding the perfusion characteri-

sation of these lung cancer subtypes, since the “noise” emerging from the colour

maps was almost disregarded. As an example, the study carried out in [261]

reports group mean and SD BF values for AC (74.7± 28.2 mL/min/100 g) and

SCC (68.7± 32.1 mL/min/100 g) that are so near to each other as to conclude

that their difference is not statistically significant. However, a deep analysis of

SCCs could highlight that they underwent artefacts and using our same method

to remove them could have led to the opposite conclusion.

As an added value of this research, it is worth noting that these results have

been achieved using a short-time, dose-saving, protocol, that could foster other

studies aiming at investigating the peculiarities of AC subgroups, as far as BF

is concerned. Nonetheless, increasing the examination time would jeopardise the

possibility for patients to hold their breath, and motion artefacts introduced after

a 25-s period would worsen the quality of the image sequence [269].

This study has also some limitations. The first is the relatively small cohort

of patients. However, other works in the literature reported a similar number

of examinations, such as that in [275] (22 AC, 8 SCC), or smaller, like in [263]

(14 AC, 9 SCC), [265] (18 AC, 5 SCC) and [260] (6 AC, 8 SCC). Nonetheless,

removing the unreliable perfusion values improved the statistical significance of

the examinations at our disposal. The second limitation stems from the first one,

as the number of examinations prevented us to explore BF properties of possible

AC subgroups. Finally, we have studied the BF only. However, considering other

parameters was beyond the purpose of this research.

9.6 Conclusion

The main purpose of this work was to investigate the BF properties of AC and

SCC at diagnosis, before treatment, and clear perfusion differences emerged from

these NSCLC cancer subtypes that should be considered during their treatment

planning. Nonetheless, the two methodological contributions introduced allowed

this study, with a non-large size cohort and a short-time protocol, to achieve a clear

outcome. These contributions, which could benefit other cancer perfusion studies,
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consist in the use of a method to improve the reliability of single examinations

and the accurate analysis of those borderline lesions less characterising for the

histotype they belong to. In particular, it is important to explicitly investigate

the causes that may be responsible for those values because, besides permitting

to detect values that are artificially high (or low), the borderline lesions could

contain even more valuable information than the other ones.

Among the practical advantages, the capability of achieving more accurate

results could prevent the need of using a higher tube voltage, for instance, when

investigating central carcinomas, which reduces the sensitivity to the contrast

medium and increases the exposure of the patient [269].

We encourage the authors of all the previous studies on AC and SCC to

review their analysis in the light of the methodological approaches presented in

this research. In this age of personalised medicine, a non-invasive profiling of the

tumour in terms of perfusion characteristics, apparently an independent surrogate

biomarker, could have important implications in treatment strategy, particularly

in the identification of the patients, mainly with AC, that will most benefit from

antiangiogenic therapies.
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This Chapter reports the use of the local-based features presented in Section

5.1 derived from perfusion maps. The ability of the local-based features, able to

gather and exploit information owned by the hemodynamic heterogeneity patterns

at local level, to act as a prognostic image-based biomarker for lung cancers has

been assessed. In particular, the correlation between the feature-pair computed

on CT perfusion maps and the survival of patients affected by lung tumours was

explored and analysed in comparison with the staging, commonly used as prog-

nostic indicator (Section 10.3). The features devised proved a strong correlation

with survival, this suggesting a promising prognostic clinical application of the

169
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DCE-CT. Also in this case, the reliability analysis presented in Section 5.3 was

performed on the BF maps to automatically detect and remove those pixels and

regions undergoing high computing errors. 1

10.1 Introduction

Lung cancer is the most common malignant disease and the leading cause of can-

cer death worldwide [276, 277]. 85% of lung cancers are NSCLCs [278]. Despite

the introduction of more advanced therapeutic strategies, including antiangio-

genic treatments, NSCLC remains associated with poor prognosis and OS [279].

Tumour staging is recognised as the most important prognostic factor of survival.

However, heterogeneity within the same stage grouping suggests individual fac-

tors influence survival outcomes [280]. In this era of personalised therapy, one

of the challenges remains the identification of more effective markers of prognosis

for a better stratification of NSCLC patients [247], with strong implications in

treatment choices and consideration of alternative therapies [281].

As discussed in Section 2.1, several studies have focused on the analysis of the

intra-tumoral heterogeneity and the underlying biological mechanisms in order

to identify more accurate prognostic biomarkers [236, 282, 181]. Indeed, NSCLC

tissues are extremely heterogeneous both at genetic and histopathological level,

reflecting the presence of angiogenesis, hypoxia, high cell density, necrosis and

haemorrhage [179, 101]. Angiogenesis involving the chaotic proliferation of new

blood vessels from pre-existing ones [283] may cause local reductions in BF thus

leading to hypoxia [30]. This is a universal cancer hallmark determining tumour

response to treatment in NSCLC, reducing radiosensitivity as well as sensitivity

to some chemotherapeutic agents [284].

As discussed in Section 3.1, CTp has been accepted as a clinical technique

in the oncologic field, primarily for the early evaluation of tumour response to

anti-angiogenic therapies [285]. Indeed, CTp allows capturing tumours vascular

patterns through the analysis of the TCCs, representing the tissue density tempo-

ral variations [68], directly proportional to the quantity of contrast medium within

the tissue. The BF parameter proved to detect the earliest functional changes on

tumour vasculature even within the first week of anti-angiogenic therapy [84].

1Z 2018 IEEE. Reprinted with permission from Serena Baiocco, Domenico Barone, Giampao-
lo Gavelli, Alessandro Bevilacqua, Analysis of CT Perfusion Blood Flow Maps in Patients with
Lung Cancer: Correlation with the Overall Survival, 2018 23rd Conference of Open Innovations
Association (FRUCT), Nov. 2018.
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Moreover, BF shows a high correlation with MVD tissue biomarker , permit-

ting the detection of abnormal vascular patterns within tumour tissue [82, 81].

However, several factors may affect the reliability of BF maps. Among these, res-

piratory and cardiac motion artefacts, especially in abdomen and thorax studies,

partial volume artefacts as well as physics-based artefacts, for instance, occurring

in tumour located near structures with a high concentration of contrast agent

(e.g., heart and great blood vessels) and bony regions of chest [70]. Therefore, a

reliability analysis is needed to properly characterise the tissue heterogeneity and,

finally, to derive quantitative features [200].

In this Chapter, the method to evaluate the intra-tumoral heterogeneity emerg-

ing from BF maps, presented in Section 5.1, is applied. To this purpose, BF maps

were computed according to the Maximum-Slope method. The reliability analysis

of the BF maps, reported in Section 5.3, was performed to automatically detect

and remove those pixels and regions undergoing high computing errors due to

artefacts or wrong fitting, which could hamper the evaluation of the tissue micro-

circulation. The two local-based statistical indexes introduced in Section 5.1 were

derived from the BF maps. These indexes are able to gather and exploit in-

formation owned by the hemodynamic heterogeneity patterns at local level and,

expectedly, to isolate the effects of variability due to image artefacts and tumour

size. At diagnosis, the correlation between the feature-pair computed on BF maps

and the OS of patients affected by NSCLC was explored to assess whether these

features could work as a prognostic image-based biomarker for NSCLC. The dis-

crimination ability of the feature-pair was analysed in comparison with staging,

a disease variable commonly associated with OS. The new developed features

proved a strong correlation with OS [286].

10.2 Materials and methods

10.2.1 Study population

This study was approved by the IRB that waived informed consent for the retro-

spective data analysis of patients. Between September 2010 and December 2012,

a total of 36 consecutive patients (25 men, 11 women; age range 36-81 years)

with primary NSCLC, subdivided in 28 AC, 6 SCC and 2 Large-cell carcinoma

(LCC),were enrolled for data analysis. Tumour stage was determined in all pa-

tients according to the TNM classification (seventh edition) of malignant tumours:
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2 patients were diagnosed stage IB, 3 stage IIIA, 4 stage IIIB and 27 stage IV. Pa-

tients inclusion criteria were: (a) over eighteen years old, (b) with histologically

verified NSCLC, and (c) no prior history of chemotherapy, surgery or thoracic

radiation therapy.

Exclusion criteria were: (a) clinically significant cardiovascular disease, (b)

pregnancy or lactation, (c) a known history of deep vein thrombus or pulmonary

embolus, (d) patients lost to follow-up for unknown reasons (n = 8), (e) patients

alive at the time of the study (n = 4), (f) patients whose lesion has the longest

axial diameter of the lesion shorter than 10 mm in at least one slice (n = 3), and

(g) examination severely affected by physics-based artefact (n = 2).

The final population included 19 patients. The variable considered as a refer-

ence for the survival prediction was the staging. This variable was dichotomised

so as to divide in early stage patients likely receiving curative surgery or curative

chemoradiotherapy (stage I - IIIA) and advanced stage patients (stage IIIB - IV)

likely receiving palliative chemotherapy, radiotherapy, or molecular therapies.

Table 10.1 includes the previous information along with the histological sub-

type (AC, SCC, LCC), and patients OS data, defined as the time interval in

months between the date of baseline CT examination and the date of death.

10.2.2 CTp protocol

At the diagnosis stage, the patients underwent axial CTp performed on a 256-

slice CT system (Brilliance iCT, Philips Medical System, Best, The Netherlands),

feet first in the supine position. Initially, an unenhanced low-dose full-body CT

scan was performed to identify the target lesions at baseline conditions. Then, a

50 mL intravenous bolus of contrast agent (Iomeron, Bracco, Milan, Italy) was

injected at 5 mL/s for axial cine contrast enhanced CT. Each patient performed a

single acquisition lasting 25 s under breath-hold condition. This protocol yields 20

scans, each corresponding to different sampling instants, with 55 mm of z-coverage

(11 slices × 5-mm slice thickness, 0.4-s rotation time, at 80 kV, 250 mA). Image

data are reconstructed to 220 cine images (512 × 512 pixel, 11 slices, 350 mm ×
350-mm, 5-mm slice spacing, 1.25-s temporal resolution).

10.2.3 Perfusion maps generation

The target lesions and the arterial input (aorta) were selected in agreement by

two radiologists on a reference slice. For each lesion on the reference slice, the
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Table 10.1: Summary of the histological diagnosis, tumour stage and OS data
(months) relative to each patient.

Patient ID Diagnosis Stage OS

ID1 LCC IIIB 6
ID2 AC IV 4
ID3 SCC IB 14
ID4 AC IV 13
ID5 AC IV 5
ID6 AC IB 5
ID7 AC IV 6
ID8 AC IV 10
ID9 SCC IV 17
ID10 SCC IV 52
ID11 AC IV 6
ID12 AC IV 6
ID13 AC IV 4
ID14 AC IV 8
ID15 AC IV 12
ID16 SCC IIIB 11
ID17 AC IV 12
ID18 AC IV 0
ID19 AC IV 7
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radiologists manually drawn the ROI and translated it on the remaining slices of

the reference sequence, so that the borders of the lesion visually match. Moreover,

when appropriate, adjacent slice levels were visually explored by the radiologists

who chose, for each scan, the levels which visually offer the best match with the

reference slice, as described in Section 5.3 and shown in Fig. 10.1. According to

this procedure, a 3D rigid alignment of the lesion in the reference slice is achieved.

BF values were computed by considering the first-pass phase only [62] and

representing each voxel with a single-compartment model. This allowed perform-

ing short-time examinations with the effect of reducing motion artefacts, since

patients had the possibility to remain in apnoea. As reported in Section 3.1.1,

the model adopted is characterised by a single inlet, the arterial input, with an

arterial blood plasma temporal concentration CA(t), and a single outlet, the ve-

nous outlet, with a venous blood plasma temporal concentration CV (t). CT (t)

represents the TCC of the tissue. The relation between CA(t), CV (t) and CT (t)

can be expressed through the Fick’s principle 3.4. No venous outflow was assumed

to occur during the measurement period (CV (t) ' 0).

In order to obtain the TCC signal for each voxel, the sigmoid-shape model

given by the Hill Equation in Eq. (3.7) [91], was adopted. The curve fitting is

achieved using an in-house fitting algorithm based on the nonlinear, least squares,

Levenberg-Marquardt minimization algorithm (lsqcurvefit, Matlab©; MathWorks,

Natick, MA, USA).

10.2.4 Perfusion maps denoising

The analysis of tumours BF maps includes the denoising process presented in

Section 5.3, which consists in detecting and excluding unreliable BF values, a

necessary step to be performed before the local analysis and features extraction.

Basically, BF values strictly lower than 1 mL/min/100 g were automatically re-

moved, being considered unlikely as physiological values and rather attributable

to numerical errors, as the algorithm of perfusion computation forces the values

to be positive. The quality of the fitting has been assessed by considering the

residuals (ε) of each TCC signal, measured as reported in Eq.5.2 The reliability

of the single TCC has been assessed by computing the temporal mean value µε

of the residual ε relative to the considered pixel. The distribution of this error

has been used to detect those BF values undergoing high fitting errors in order to

exclude them from the analysis.
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Figure 10.1: Example of selection of the best sequence for a lung tumour perfusion
study, performed to achieve the best matching with the Z levels contiguous to the
reference slice level, represented by Z∗.
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High errors usually occur in the presence of noise, artefacts (both physics and

due to motion) and anatomical structures, such as bronchi and blood vessels.

Through the use of this index, these structures usually manually removed have

been automatically excluded from the analysis by adopting an automatic cut-off

value. To this purpose, the “triangle” method reported in [201] has been used. At

the end of these automatic procedures, the removed BF values appear highlighted

in the colour maps with the pink colour, as shown in Fig. 10.2, reporting reference

slice Fig. 10.2 (a) and related BF map Fig. 10.2 (b). As one can see, the denoising

method removes unreliable regions also including the edge ones, which are affected

by partial volume effect, still preserving a wide range of BF values [274].

Figure 10.2: Reference slice (a) and BF colorimetric map (b) of an adenocarcinoma
examination (patient ID8). The pink colour points out unreliable BF values.

10.2.5 Computation of novel local-based features

After denoising, the functional heterogeneity arising from lesions’ BF maps was

assessed using an in-house software developed in Matlab© (MathWorks, Natick,

MA, USA).

Entropy (E ) (Eq. 4.6) was chosen to analyse the functional heterogeneity.

This first-order statistics feature, commonly used to measure image irregularity

or randomness [287], has recently shown a huge prognostic potential in patients

with colorectal cancer [288], gliomas [289] and breast cancer [290].

The analysis was computed locally on denoised BF maps, within the same
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ROI drawn for the perfusion map computation, by using a window W centred

on the pixel that will be replaced with the resulting value. The choice of W,

representing the anatomical scale considered to perform the local analysis, was

first driven by the radiologists of our team, stating that in the clinical practice

patches smaller than 5×5 mm are rarely considered and patches of about 1×1 cm

are more representative for NSCLC functional heterogeneity. On the other hand,

it is well known that CT texture features finer than 4 mm would represent mostly

noise and should not be considered [247]. For this reason, entropy was computed

locally for each pixel of the BF map, considering a square region with side of 15

pixels, corresponding to 10.3 mm, centred on the pixel itself. This procedure was

iteratively repeated for each pixel within the ROI by using the sliding window W.

At the end, a local entropy (locE ) map was achieved and the mean value of locE

maps, µE, was considered as a feature of the functional heterogeneity.

As an example, Fig. 10.3 (a) shows the locE map relative to the BF map

in Fig. 10.2. As one can see, the locE map highlights the presence of a greater

heterogeneity in the lower region of the tumour, caused by the presence of the

small areas with different tissue density characterising the BF map. The great

Figure 10.3: Patient ID8.locE (a) highlights a high heterogeneity of the BF values
in the lower region of the tumour; locU map (b) highlights an increased uniformity of
BF values in the upper region of the tumour.

advantage of performing a local analysis and, then, considering the mean values of

the local feature values, is that it heavily reduces the effects of tumour size on sta-

tistical measurements. The clinical potentiality of the other first-order statistics
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features (mean, standard deviation, median, skewness, kurtosis, and uniformity)

were also explored focusing on uniformity (U ), the feature related to the image

homogeneity, showing high values in the presence of small BF transitions in the

map. U is defined as in Eq. (4.7). Also in this case, the mean value of the local

uniformity (locU ) maps, µU , was considered as a feature of the tumour functional

heterogeneity. As an example, Fig. 10.3 (b) shows the locU map relative to the

BF map reported in Fig. 10.2. The high values of the locU map in the upper

region of the tumour point out the presence of a homogeneous hypodense area. It

is worth noting that locE and locU values are inversely related but not linearly

dependent.

10.2.6 Statistical Analysis

The principal purpose of this work was to determine whether local features di-

rectly extracted from denoised BF maps could work as a surrogate prognostic

biomarker. To avoid overfitting, the features selected were analysed both sepa-

rately as well as jointly in pairs. In order to assess their prognostic potential,

the correlation between the feature-pair and the OS was investigated by using

the k -means clustering algorithm. Mean survival for the entire cohort of patients

(µOS = 10.5) was used as threshold to separate patients with highest (OS ≥ µOS)

and lowest (OS < µOS) survival expectation. k -means (k = 2) was set up so as to

automatically group patients in two different classes (or clusters), characterised

by similar features behaviour. As similarity measure to resolve the membership

of the feature-pairs, the Squared Euclidean distance was considered. In order

to determine to what extent the feature means differ between clusters identified

by the algorithm, a multivariate analysis of variance (MANOVA) was performed

(p-value < 0.001). SE, SP, positive predictive value (PPV), negative predictive

value (NPV) and accuracy (ACC) were calculated to quantify the discrimination

ability of both features selected and staging, which is the variable used as ref-

erence for survival prediction. In particular, we defined as condition true a low

survival expectation and as condition false a high survival expectation. The pos-

itive prediction is represented by the advanced stage condition while the negative

prediction by the early stage one. Therefore, patients with advanced stage and

low survival expectation belong to the TP, patients with early stage characterised

by a high survival expectation are the TN, while the patients with advanced stage

and a high survival expectation are the FP, and patients with early stage and low
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survival expectation are the FN.

Statistical analysis was performed using Matlab© (MathWorks, Natick, MA,

USA).

10.3 Results

µE and µU are the features characterised by the highest discriminatory power in

distinguishing patients with different survival expectations (SE=100%, SP=71%,

PPV=86%, NPV=100%, ACC=90%). Results in terms of µE and µU for each

patient are summarised and reported in arbitrary units (a.u.) in Table 10.2.

µE and µU are able to group patients with the lowest (OS < µOS) and highest

(OS ≥ µOS) survival expectation. Cluster 1 (highlighted in red in Fig. 10.4),

characterised by higher µE and lower µU values, encloses all the patients with

the worst prognosis (OS < µOS), with the exception of ID4 and ID15 pointed out

in Fig. 10.4.

Figure 10.4: Scatter plot of µE and µU values related to all the examinations are
reported in arbitrary units (a.u.). 14 examinations belong to Cluster 1 (in red), 5 to
Cluster 2 (in blue).
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Table 10.2: Summary of µE and µU relative to each examination (ID), reported in
arbitrary units (a.u.).

Patient ID µE [a.u.] µU (·10−2) [a.u.]

ID1 6.00 1.92
ID2 6.59 1.22
ID3 4.62 5.20
ID4 6.70 1.12
ID5 6.81 1.01
ID6 6.56 1.21
ID7 6.13 1.69
ID8 6.45 1.36
ID9 5.78 2.24
ID10 5.38 3.09
ID11 6.32 1.44
ID12 6.61 1.19
ID13 6.14 1.70
ID14 6.71 1.11
ID15 6.23 1.57
ID16 5.75 2.23
ID17 5.82 2.14
ID18 6.34 1.46
ID19 6.61 1.13
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On the contrary, the samples belonging to Cluster 2 (highlighted in blue in

Fig. 10.4) referred to all patients characterised by the best prognosis in this study

(OS ≥ µOS). The outcome of MANOVA proves that µE and µU of the two

clusters differ significantly, with a p-value ∼ 10−4.

Staging (SE=92%, SP=14%, PPV=65%, NPV=50%, ACC=63%) performed

worse as survival predictor.

10.4 Discussion

As discussed in Chapter 4, in the last decade, quantifying the perceived features

of the intra-tumoral heterogeneity has gained a great attention, leading to a re-

newed interest for statistical features and texture analysis as essential tools in

the era of personalised medicine. First-order statistics features widely used in

literature [291, 292] do not take into account the spatial information of the im-

ages but just the distribution of values. Therefore, when computing first-order

features tissue heterogeneity information within an image is almost disregarded.

The local features devised preserve the tissue heterogeneity information within

the considered ROI. Results showed that these features have a valuable prognos-

tic potential, proving a high correlation with OS when computed on BF maps,

where unreliable BF values were previously automatically removed. In particular,

a greater heterogeneity of BF values seems to be associated with a higher tumour

aggressiveness, which heavily affects the OS parameter. Moreover, the results

showed that these features, used in combination, had a better performance than

the staging parameter, commonly used in clinical routine for prognosis. It is worth

noting that this approach can be easily performed on CTp data, without the need

for additional examinations and maximising the information that can be derived

from these functional studies.

10.5 Conclusion

Although only essential parameters are routinely quantified in the clinical prac-

tice, this study shows that the two local-based statistical indexes considered to

capture the hemodynamic heterogeneity could work as a prognostic image-based

biomarker for NSCLC. This finding represents a promising approach for the clin-

ical utilization of CTp.
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This Chapter 11 reports the approach used to analyse the potential of man-

nitol to reduce the renal uptake of PSMA, first proposed in [155] and presented

in Section 11.1. To this purpose, a SUV-based index has been devised, able to

represent a high uptake activity in a more robust manner than the clinical ac-

cepted SUV parameters (Section 11.2). Indeed, these parameters widely used in

clinical practice are characterised by a large degree of variability due to different

sources of errors. In order to identify a more representative parameter for the

entire kidneys volume distribution of values, the segmentation method developed

and presented in the Section 6.1 was used to perform a 3D segmentation of the

183
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kidneys. The analysis of the index devised improved and enforced the results

previously obtained through the use of SUV max (Section 11.3), showing that the

rapid administration of mannitol reduces the absorption of the renal tubules, thus

limiting the dose of the kidneys (Section 11.4).

11.1 Introduction

Prostate cancer (PC) is the leading cancer in men and the third cause of cancer

death worldwide [293]. The diagnostic capability of the conventional imaging

modalities, as CT, MRI and bone scintigraphy (BS) for metastasis screening, has

resulted limited in the detection of loco-regional and distant metastatic lesions in

PC patients [294].

Recently, 68Ga-PSMA-PET has emerged as a promising diagnostic tool for

PC patients [295]. Indeed, the new radiotracer 68Ga-PSMA has shown a great

potential for theranostic approaches [296], with excellent diagnostic performance

for primary and secondary staging thanks to the ability to detect the expression

of PSMA, even at low level of serum prostate-specific antigen (PSA) [294].

Despite the benefits of using 68Ga-PSMA-PET, several studies have shown

that PSMA is physiologically expressed by the lacrimal and salivary glands, liver,

spleen, intestine and, especially, by the kidneys, which receive the highest dose

rate [293]. In the kidneys, PSMA is expressed in the apical epithelium of the

proximal tubules [297]. Osmotic diuretics, such as mannitol, can facilitate water

excretion, while inhibiting the reabsorption of sodium, chloride, and other solutes.

Clinicians of our team investigated the potential of mannitol to reduce kidneys

uptake of 68Ga-PSMA and, therefore, the kidneys’ toxicity in [155]. By analysing

the SUV max of baseline and follow-up 68Ga-PSMA-PET examinations, obtained

with concomitant intravenous infusion of 10% mannitol, they were able to identify

the best infusion protocol for mannitol to reduce PSMA kidneys’ uptake.

However, as discussed in Section 3.3.3, SUV max represents the activity of few

or even just 1 pixel (i.e. that having the maximum intensity value). Therefore,

it cannot be representative of the high activity concentration of the structure

considered. As discussed in [158], SUV max is strongly affected by noise and can

behave in an unpredictable manner. For the same reason, also the use of other

SUV parameters derived from isocontour based on SUV max, a choice appearing

as the most “reliable” and objective one (40% of SUV max is usually considered

as significant [160]), could lead to an under- or an over-estimation of the SUV
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parameter (e.g., SUV mean). Indeed, the drawback of this approach is that the

percentage of SUV values considered for the SUV mean measure, depending on the

SUV max is affected by the amount of noise of the images. Moreover, the SUV mean

parameter, being dependent on the ROIs definition, is less reproducible than the

SUV max, which is an observer-independent parameter [142, 161].

Anyway, despite the apparent benefits of using the SUV max, which led to

its popularity, as already mentioned the use of this parameter for comparing

baseline and follow-up examinations is problematic, since changes in SUV max may

be often statistical fluctuations rather than real changes in radiotracer uptake.

For this reason, baseline and follow-up examinations from 68Ga-PSMA-PET/CT

have been reanalysed considering the distribution of SUV values and seeking a

more robust statistical index to better represent the tracer accumulation. To this

purpose, the method developed in Section 6.1.1 has been applied to perform the

3D kidneys’ segmentation and derive the distribution of SUV values.

11.2 Materials and methods

11.2.1 Patient Enrolment

9 patients affected by PC were considered for this study (age 71 ± 5 [64-78]

years). These patients were treated with radical prostatectomy for PC of inter-

mediate/high risk (pathological Gleason score 7-9) and referred for 68Ga-PSMA-

PET/CT imaging following biochemical recurrence. The mean PSA level at the

time of the image acquisition was 2.25 ± 0.96 [0.89-3.21] ng/ml. The patients

underwent baseline 68Ga-PSMA-PET/CT (b-PET/CT) to localise the site of re-

lapse. The patients with a negative b-PET/CT scan and PSA progression dur-

ing follow-up examination underwent a second 68Ga-PSMA-PET/CT scan with

concomitant intravenous infusion of 10% mannitol (m-PET/CT). Two different

protocols were used for the mannitol infusion:

• 500 ml of mannitol infused over 40 minutes, immediately after the injection

of 68Ga-PSMA (A-infusion).

• 250 ml mannitol infused over 15 minutes immediately before and again after

68Ga-PSMA injection (B-infusion).

A-infusion was adopted for the first three patients, B-infusion for the following

six patients. The mean injected activity of 68Ga-PSMA was (173 ± 19) [52-198]

MBq.
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11.2.2 Image Acquisition

68Ga-PSMA-PET/CT images were acquired with Biograph mCT Flow PET/CT

system (Siemens Healthineers, Erlangen, Germany) 60 minutes after intravenous

injection of 68Ga-PSMA. All patients were asked to void before the scan was

initiated. An unenhanced CT scan (120 kV, 80 mA/s) was acquired before the

PET series. PET data were corrected for decay, random and scatter events. The

attenuation correction was performed using the low-dose CT, component of the

study [155].

11.2.3 Image Analysis

In the first study [155], 68Ga-PSMA-PET/CT images were examined by two nu-

clear medicine specialists who independently calculated the SUV max. As previ-

ously discussed, SUV max is characterised by a large degree of variability due to

physical and biological sources of error. In order to find out a more robust SUV-

based parameter to represent a high uptake, the entire distributions of kidneys

SUV values have been derived. To this purpose, the 3D segmentation method

devised and reported in Section 6.1.1 has been adopted.

Once derived the kidneys’ SUV distributions related to each examination, the

Tukey method [298] was used to identify possible outliers in SUV distributions.

As expected, these distributions often present outliers and almost always these

are the highest SUV values. This implies that in many cases SUV max represents

a distribution outlier. For this reason, to feature a high uptake level, a more

robust statistical parameter than SUV max has been introduced. This parameter,

less affected by the presence of distribution outliers, is the median computed on

the upper 10% of the SUV distribution (SUV10%), the last distribution decile

representing a high activity.

11.2.4 Statistical Analysis

The differences in SUV10% between b-PET/CT and m-PET/CT examinations

were assessed for the statistical significance, independently of the type infusion,

due to the reduced number of cases. To this purpose, the Kruskal-Wallis test,

used to compare groups medians, was performed on the upper 10% of the SUV

distributions for each kidney. The statistical significance is achieved with p-value

< 0.001.
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Statistical analysis was performed on Matlab© (MathWorks, Natick, MA,

USA).

11.3 Results

Table 11.1 resumes SUVmax and SUV10% values (presented as mean ± stan-

dard deviation) obtained with the two mannitol infusion protocols, derived from

both kidneys and referred to b-PET/CT and m-PET/CT examinations. Fig-

ure 11.1 and Figure 11.2 show for right and left kidneys, respectively, the couples

of SUV max (top) and SUV10% (bottom) values, computed on the whole dataset

and referred to the baseline (b-PET/CT, in the blue colour) and the follow-up (m-

PET/CT, in red) examinations. For reader’s convenience, the A-patients samples

were joined with a solid line, while B-patients samples with a dashed one.

As one can see, in the three A-infusion patients (ID7, ID8 and ID9), SUV max

(top) globally increased during the m-PET/CT examinations for both right and

left kidneys. Actually, ID7 showed just a slightly increased SUV max value for

the right kidney, remaining unchanged for the left one. As regards the six B-

infusion patients (from ID1 to ID6), the SUV max follow-up values were lower

than the baseline ones in both kidneys, with the exception of ID5 for both right

and left kidneys. These results were only partly confirmed by SUV10%. Indeed,

SUV10% showed that ID7, the A-infusion patient having similar values of SUV max,

was characterised by a lower uptake of the follow-up examination. Instead, as

regards the B-infusion patients, follow-up SUV10% values were always lower than

the corresponding baseline ones. This occurred also for ID5, which instead showed

similar values of SUV max for both kidneys. The outcomes of the Kruskal-Wallis

test computed for each kidney prove that differences between baseline and follow-

up SUV10% values were significant (p-value < 0.001).

11.4 Discussion

Dosimetry studies have shown that organs as kidneys, lacrimal and salivary glands

exhibit tracer accumulation, which may limit the use of radiolabelled PSMA lig-

ands [299]. The study reported in [155] is the first to investigate the potential

protective effect of mannitol to reduce the renal uptake of PSMA and, therefore,

the dose administered to the kidneys. The results of this study have shown that

PSMA kidneys’ uptake can be safely reduced with concomitant mannitol infusion
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Figure 11.1: Right kidneys. SUVmax (top) and SUV10% (bottom) values referring to
the baseline (blue) and to the corresponding follow-up examination (red). A-patients
samples are joined with a solid line (ID7-ID9), while B-patients samples with a dashed
one (ID1-ID6).

and that the B-infusion scheme is the most effective one. These outcomes were

obtained through the use of the SUVmax parameter.

As previously discussed, SUVmax is a parameter commonly used in clinical

practice having several attractive features. It can simply reflect the most metabol-

ically active part or the part with the highest expression, which may be the most

significant clinical one [300]. SUVmax can be easily measured and is slightly

affected by partial-volume effects. However, it is dramatically susceptible for un-

predictable variations due to noise, reflecting the activity of only one pixel in a

potentially heterogeneous mass.

SUV10% introduced in this work overcomes the vulnerability of SUV max, which

represents a single-pixel measurement, and results much less affected by noise,

since it considers a statistically significant part of the values distribution by tak-
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Figure 11.2: Left kidneys. SUVmax (top) and SUV10% (bottom) values referring to
the baseline (blue) and to the corresponding follow-up examination (red). A-patients
samples are joined with a solid line (ID7-ID9), while B-patients samples with a dashed
one (ID1-ID6).

ing the median value. It also overcomes the limits of SUVmean, usually conditioned

by partial volume effect and segmentation, commonly performed through isocon-

tour based on the SUV max. Even more important, SUV10% preserves a clinical

meaningful value by representing the highest PET activity, in a more robust way.

Results obtained with SUV10% improve and statistically enforce those obtained

through SUV max. SUV10% findings confirm the B-infusion protocol as the best

one to safely reduce PSMA renal uptake. For all the patients included in this

study, SUV10% values referred to baseline and follow-up examinations resulted

significantly different, even for ID5 and ID7, the cases showing similar baseline

and follow-up SUV max values. In this context, it is worth noting that SUV10%

values obtained for ID5, one of the six B-infusion patients, strengthen the effec-

tiveness of the B-infusion protocol as the best administration scheme to reduce
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renal uptake. Indeed, the values obtained through SUV10% coherently showed

that the short mannitol infusion performed through the B-infusion scheme (ID1 -

ID6) leads to a reduction of kidneys uptake in the follow-up examinations.

This study highlights the advantages of using SUV10% compared with SUV max.

SUV10% proved a greater ability in values separability and, being derived as the

median value of a distribution, it resulted less affected by the presence of outliers.

Otherwise, almost always SUV max represents a distribution outlier and, for this

reason, it cannot be statistically representative for the mass considered.

Nevertheless, optimal cut-off values based on SUV max are often proposed in

literature as surrogate predictive biomarkers [301, 302, 303], due to the failure of

standardised criteria for the evaluation of tumour response to therapy. We believe

that previous studies could benefit from the methodological approach presented in

this research, which paves the way for more reliable evaluation of clinical outcome

and response assessment, playing a decisive role in therapeutic decision-making.

11.5 Conclusion

In this Chapter, a simple SUV-based statistical index has been proposed to feature

a high uptake activity in a more robust manner than SUV max, widely adopted

in clinical practice. In the case study considered, SUV10% was able to enforce

the preliminary results obtained with SUV max, confirming that mannitol, an in-

expensive and well-tolerated mean, could play an important role in reducing the

dose received by kidneys during a PSMA-PET/CT.
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This Chapter presents a multi-modal analysis of the tumour heterogeneity in

patients affected by GOJ cancer. Despite improvements in OS, a better patient

stratification remains a key issue for a better management of GOJ patients (Sec-

tion 12.1). The statistical features reported in Section 4.3 were derived from the

FDG-PET/MRI image series Section 12.2. Then, an analysis was performed in

order to establish their ability to predict for contemporaneous metastases. Sec-

tion 12.3 reports the results of the best pair of second-order statistical features

computed on SUV and ADC maps. These combined texture features proved a

better discrimination ability compared to the parameters currently used in clinical

routine (Section 12.4). As a result, this analysis may complement current staging

practice for GOJ cancer (Section 12.5).
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12.1 Introduction

GOJ cancers are leading causes of cancer deaths worldwide [304]. Surgery com-

bined with neoadjuvant chemotherapy or chemoradiotherapy offers the best chance

of cure [305, 306, 307]. Despite improvements in survival expectation, OS remains

poor and a better patient stratification remains a key challenge for GOJ patients,

since most of the times the quality of life remains poor after surgery, taking up

to 3 years to return to pre-therapy levels [308].

18F-FDG PET/MRI has shown promising results, providing a slightly superior

TNM staging for GOJ cancer [309]. 18F-FDG-PET/MRI also gives a chance to

improve GOJ phenotyping by combining molecular, functional and anatomical

characteristics, directly providing radiomic approaches [310].

As discussed in Section 2.1, an extensive research on tumour heterogeneity

have been performed in the last decade, since its presence hints at tumour cells

having different properties and likely expressing different markers. Recent studies

reported that the presence of tumour heterogeneity introduces a great variability

in therapy response [29, 311].

In this Chapter, the statistical texture analysis method developed and reported

in Section 4.3 were applied to evaluate the intra-tumoural heterogeneity emerging

from the PET, T1, T2, DWI series as well as SUV and ADC maps. The working

hypothesis was that tumours with metastatic potential would be associated with

greater heterogeneity. Thus, the aim of this study was to identify whether texture

features derived from 18F-FDG-PET/MRI are associated with distant metastases

at staging in patients with GOJ cancer. The discrimination ability of the features

was analysed in comparison with parameters commonly used in clinical practice

as the SUVmax, ADCmean and the tumour diameter (defined as the maximum axis

length of the tumour volume).

12.2 Materials and methods

12.2.1 Patient Enrolment

Following IRB approval and informed consent, 24 prospective patients with his-

tologically proven GOJ cancer were recruited from 2015 to 2018. None of the

patients had a history of previous malignancy. All patients had undergone stan-

dard staging investigations, which included EUS, CE-CT of the thorax and ab-

domen and 18F-FDG-PET/CT. Final staging was documented in a multidisci-
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plinary team (tumour review board) meeting.

12.2.2 Image Acquisition

Patients were injected with 326± 28 MBq of 18F-FDG. PET/MRI examinations

were performed on an integrated PET/MRI system (Siemens Biograph mMR, Er-

langen, Germany) immediately following a clinical PET/CT acquisition. The time

between injection of 18F-FDG and PET/MRI examination was 156 ± 23 minutes.

PET/MRI was acquired from the skull base to mid-thigh. The sequences acquired

included: T1-weighted Dixon VIBE (in-phase, out of phase, fat, water images),

T2-weighted Half-Fourier-Acquired Single-shot Turbo spin Echo (HASTE) and

free breathing diffusion-weighted sequences (DWI, b values of 50 and 900s/mm2).

Tumour stage was determined in all patients according to the TNM classi-

fication of malignant tumours (seventh edition) to determine metastatic versus

non-metastatic disease. TNM stage was defined by all standard staging investi-

gations (not including PET/MRI) and documented in a multidisciplinary team

meeting.

Four patients were excluded for technical reasons (incomplete scan, bulk mo-

tion, DIXON fat water swap, poor quality diffusion imaging) precluding texture

analysis, leaving 20 patients (18 male, 2 female, median age 67 years, range: 52-86

years). Their tumour characteristics are summarised in Table 12.1. 10 patients

had evidence of metastases including liver (3), lung (2), bone (1), and distant

lymph nodes, e.g. retroperitoneal (7).

12.2.3 Image Analysis

For each sequence investigated, segmentation of the whole tumor volume was

performed manually by a dual trained nuclear medicine physician/radiologist

(with > 5 years experience) using ImageJ [213]. Feature generation and selec-

tion were performed using an in-house software based on Matlab© (MathWorks,

Natick, MA, USA). The first-order and second-order statistical features, reported

in Section 4.3, were computed for PET and SUV maps as well as MRI series as

T1, T2, DWI and ADC maps from the whole tumour volume (Figure 12.1). The

maximum tumour diameter was also measured. Given the sample size, no more

than two features were analysed jointly so as to minimise overfitting and avoid

spurious results. Feature selection started performing a k -means (k = 2) cluster-

ing algorithm. Squared Euclidean distance was considered as similarity measure
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Table 12.1: Summary of tumour characteristics for the 20 patients, including tumour
type and TNM staging.

Tumour Characteristics Number of patients

Tumour Type
Adenocarcinoma 17

Squamous carcinoma 3

T Stage
T1/2 0
T3/4 20

N Stage
Node negative 2
Node positive 18

M Stage
Non metastatic 10

Metastatic 10

to determine the membership of the feature-pairs. Then, as a second step, the

correlation of feature-pairs with the presence of metastases was automatically

analysed. Linear discriminant analysis (LDA) was used to determine the linear

discrimination boundary.

12.2.4 Statistical Analysis

MANOVA was performed to assess the statistical separability of the groups iden-

tified by feature-pairs (p-value < 0.001). SE, SP, PPV, NPV and ACC were

calculated to quantify the discrimination ability of features in comparison with

SUVmax, ADCmean and tumour size. In order to assess the impact that inter-

observer variability might have on the feature reproducibility, the segmentation

of tumour volumes was perturbed by performing automatic dilation and erosion

altering the lesion boundary by one pixel. Intraclass correlation coefficient (ICC)

was computed by considering the feature values derived from dilated and eroded

volumes.

Statistical analysis was performed on Matlab© (MathWorks, Natick, MA,

USA).
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Figure 12.1: Schema showing tumour segmentation on 18F-FDG PET, T1-weighted,
T2-weighted and diffusion weighted axial image of a GOJ cancer (a), respective tumour
volumes (b) and subsequent feature generation, extraction and selection (c).

12.3 Results

GLCM joint entropy derived from both SUV and ADC maps were the best feature-

pair for discriminating patients with and without metastases (SE = 80%, SP

= 80%, PPV = 80%, NPV = 80%, ACC = 80%). In particular, Cluster 1

(Fig. 12.2, highlighted in red), which combined lower GLCM entropy derived

from SUV and higher GLCM entropy from ADC, reflecting higher parameter
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Figure 12.2: Distribution of GLCM entropy from ADC and SUV. Cluster 1 (high-
lighted in red) represents patients with metastatic disease, while Cluster 2 (highlighted
in blue) those without metastatic disease.

spatial homogeneity and heterogeneity, respectively, is associated with metastatic

disease. Instead, Cluster 2 (highlighted in blue in Fig. 12.2), which is in some

way characterised by the combined presence of homogeneity (or heterogeneity) of

ADC and SUV maps, is associated with no metastatic disease.

LDA proved the two groups identified by the clustering were linearly separated.

The equation for the optimal separation of patients with and without metastatic

disease is

K + L1eADC + L2eSUV = 0 (12.1)

where K = 40.90, L1 = −7.75, L2 = 6.25, eADC and eSUV are the second-order

entropy from ADC and SUV, respectively.

Patients with metastatic disease belonged to the half-plane given by the following

inequality:
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K + L1eADC + L2eSUV < 0 (12.2)

Instead, patients without metastatic disease belonged to the half-plane formally

expressed by the following inequality:

K + L1eADC + L2eSUV > 0 (12.3)

MANOVA confirmed that the means of these features for the two groups of

patients differed significantly, with a p-value < 0.001. In comparison, SUVmax

(SE = 30%, SP = 80%, PPV = 60%, NPV = 53%, ACC = 55%), ADCmean

(SE = 20%, SP = 70%, PPV = 40%, NPV = 47%, ACC = 45%) and maximum

tumour diameter alone (SE = 10%, SP = 90%, PPV = 50%, NPV = 50%,

ACC = 50%) had poorer sensitivity and accuracy.

As far as the variability analysis is concerned, computing automatic dilation

and erosion altered the PET volumes by 34.8±8.1% and 30.6±6.2%, respectively.

Feature reproducibility errors for dilation and erosion were only 3.4 ± 3.0% and

3.1 ± 2.3%, respectively. Analogously, while ADC volume variations for dilation

and erosion were 14.6± 2.8% and 13.9± 2.5%, feature reproducibility errors were

2.5± 1.1% and 3.1± 1.8%, respectively. ICC for ADC and SUV GLCM entropy

derived from dilated volumes were 0.96 and 0.98, respectively, while derived from

eroded volumes were 0.94 and 0.98, this proving the features selected to be highly

reproducible.

12.4 Discussion

Better patient stratification remains a key challenge for the optimal manage-

ment of GOJ patients. The preliminary results of this study show that combined

18F-FDG PET and MRI texture features are associated with contemporaneous

metastatic disease in GOJ cancer. In particular, the combination of lower joint

entropy derived from SUV maps and higher joint entropy from ADC, which repre-

sents lower and higher local texture heterogeneity, respectively had SE and SP of

80% for the presence of metastatic disease. Sensitivity was higher than SUVmax,

ADCmean or maximum tumour diameter alone where SE was 30%, 20% and 10%,

respectively. Usually most cancers, including GOJ cancers, show an increased

accumulation of 18F-FDG [15, 16, 312], this permitting cancer detection. As dis-

cussed in Chapter 11, SUVmax represents the highest value of the normalised
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radioactivity concentration through the measurement of a single voxel. To date

18F-FDG PET/CT prognostic studies using SUVmax alone have reported mixed

findings [313, 314, 315, 316]. However, the meta-analysis reported in [317] has not

attributed a prognostic value to the SUVmax. These mixed results have pushed for

radiomic studies with 18F-FDG PET/CT [318, 180, 7]. Recent studies reported

an improvement to the prediction of response through the use of second-order and

higher-order statistical features derived from PET images [319, 320]. As discussed

in Section 3.2, contrarily to higher FDG uptake, diffusion of water molecules is

typically reduced in most cancers, again permitting cancers detection and ther-

apy response monitoring [124, 50]. ADC represents the apparent diffusion of wa-

ter molecules and ADCmean, having a good repeatability, is the most commonly

used parameter [321]. This parameter is influenced by several factors, including

microscopic perfusion, bulk motion, acquisition sequence parameters and tissue

orientation [50]. Currently, few diffusion MRI studies have been performed for

GOJ cancer with variable outcomes [322, 323]. Some studies have evaluated the

prognostic potential of tumour size, for instance, suggesting that it should be

considered as prognostic factor in oesophageal squamous cell cancer [324]. In this

study, maximum tumour size had a low sensitivity for metastatic disease.

This is the first study to assess the prognostic value of the combination of

SUV and ADC information. SUV and ADC may highlight different aspects of the

tumour phenotype. The majority (85%) of the tumours were adenocarcinomas,

which demonstrate a tubular, tubulopapillary or papillary growth pattern. The

metastatic signature found in this study and involving a greater local homogene-

ity of SUV combined with a higher ADC heterogeneity may be promising. The

greater homogeneity of SUV uptake on a local level may relate to higher cellular

versus stromal volume, i.e. more tightly packed predominantly FDG-avid tumour

cells produce a more homogeneous tracer distribution. Greater local ADC het-

erogeneity likely reflects the varying glandular content, i.e. greater heterogeneity

represents a more aggressive histotype.

12.5 Conclusion

In summary, a combined radiomic approach has the potential to improve risk

stratification of GOJ patients, with strong implications for long-term outcome.

Quantitative combined 18F-FDG PET and MRI texture features of the primary

tumour from simultaneous PET/MRI scans are associated with a metastatic phe-
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notype and may, in the future, help identifying patients who will benefit from

alternative therapeutic strategies or closer surveillance.
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Chapter 13

Conclusions

Cancer is among the most common cause of mortality worldwide. Despite progress

has been made in cancer care through the introduction of the target therapies,

there are several obstacles preventing moving forward. Among the main issues:

• the exiguity of techniques to properly characterise the tumour tissue and

early assess novel target therapy efficacy;

• the lack of methods involving the evaluation of the intra-tumoural hetero-

geneity, which reflects the presence of different cells population and may

introduce a significant variability in tumours’ response to the available ther-

apies.

This Thesis aims at facing these issues and filling in some gaps, so as to

lead to improvements in tumour diagnosis and prognosis, by introducing more

quantitative approaches. The most relevant achievements can be summarised as

follows:

• methods and indexes devised to detect unreliable perfusion values from

DCE-CT examinations;

• local-based features able to gather and exploit the information owned by

the heterogeneity patterns;

• methods and indexes able to exploit the evolution over time of the tumour

spatial heterogeneity emerging from DCE-CT studies;

• SUV-based index to represent a high uptake activity;

• method to perform a 3D segmentation of the structures in PET images;

203
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• method to perform a multi-modal 3D registration;

• algorithm to detect sub-regions in tumour volume and compare the multi-

modal information.

The method conceived and realised to assess the reliability of the perfusion

values provides the reader with an overview of the perfusion maps reliability.

Regions characterised by lower lCV values suggest a greater local spatial coherence

of the maps, while the higher values highlight an inconsistent variability, which

could mislead clinical consideration.

Reliability analysis of the perfusion values led to significant improvement on

the accuracy of results and, consequently, of the clinical findings, accordingly.

The local-based approach has allowed to overcome the limitations of the first-

order features, which almost disregard the tissue heterogeneity information. This

approach proved to be able to preserve the intra-tumoural heterogeneity. More-

over, the features derived from the local maps take benefit from both the local

analyses “saving” the heterogeneity information, and the global ones that sum-

marise the outcome reducing the noise effects. Moreover, the spatio-temporal

indexes developed proved to effectively describe and quantify the heterogeneity

features visually detected by radiologists on single DCE-CT reference slices.

To face the issue of variability present in PET data, a simple statistical index

was introduced to better represent a high uptake activity. SUV10% has proved

a greater robustness compared to the SUVmax commonly used. Indeed, SUVmax

representing just one pixel of the tumour is strongly affected by noise. The index

devised is derived from the SUV values distribution of the volume of interest,

segmented through the method set up starting from PET/CT series.

During the PhD period abroad at the King’s College London, I have also

had the opportunity to work at a rare dataset of patients affected by GOJ can-

cer, underwent both FDG-PET/CT and FDG-PET/MRI with a single injection

protocol. The registration method developed has pointed out differences in tu-

mour volumes, allowing a direct comparison of the PET volumes derived from the

PET/CT and PET/MRI series. The algorithm developed to detect sub-regions

in tumour volumes may bring several advantages. Among these, a direct compar-

ison of tumour regions coming from different registered modalities, as well as the

automatically exclusion of air and fluids. Moreover, it has also shown its utility

in automatic segmentation procedures.

It is worth noting that these methodological approaches also yield to prelimi-
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nary clinical achievements. The most relevant ones can be summed up as follows:

• the lCV-based index has proved to be able to detect the most reliable per-

fusion maps, while the index commonly used often fails and, even worst,

sometimes erroneously confers a higher quality to worse maps. This could

lead to unfair comparisons of within-patient perfusion maps (e.g., follow-

up examinations) or to misleading clinical considerations from low quality

perfusion maps;

• the features devised to exploit the information owned by the hemodynamic

heterogeneity patterns at local level showed a prognostic potential as surro-

gate biomarker for lung cancers. These features proved a strong correlation

with OS, while tumour staging performed worse as survival predictor;

• the spatio-temporal indexes devised perfectly identified and reproduced bron-

chi, blood vessels and haemorrhages manually outlined by radiologists. Only

hypodense regions have a weak correspondence and, sometimes, the features

detected more of them. Radiologists, who initially did not identify these

regions confirmed their presence further on, when the features were submit-

ted to their attention in the matching stage. Therefore, the methodology

developed may be employed in decision making processes relying on the

quantification, or the detection, of different types of heterogeneities. These

analyses may be useful to objectively examine changes of heterogeneity lev-

els as response to therapies;

• the SUV10% parameter devised was able to improve the results obtained with

SUV max, identifying the best infusion protocol of mannitol to reduce PSMA

renal uptake and, consequently, the dose administered to the kidneys. The

results obtained with this approach were statistically more significant than

those obtained through the use of SUV max;

• the multi-modal registration of the tumour volumes has preliminary high-

lighted that the choice of the modality used could impact on the dose cov-

erage in the radiotherapy planning;

• the multi-modal analysis of the tumour heterogeneity in GOJ cancer has

shown that the second-order texture features derived from FDG-PET/MRI

can discriminate better than the parameters currently used in the clinical

routine for predicting contemporaneous metastases.
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For the sake of completeness, it is worth remarking that all the methods and

the algorithms, devised and developed for the heterogeneity assessment, can be

applied independently from the imaging modality used for the image acquisition

(except for the spatio-temporal indexes, which can be applied on DCE-images

only).

The encouraging outcomes achieved in this Thesis should push for further stud-

ies, involving larger patients’ cohorts as well as repeatability and reproducibility

analyses. Indeed, a large amount of high-quality data is a mandatory prerequi-

site to realize powerful predictive classifiers [325]. This requirement could lead

to many obstacles, due to the need of sharing data from different institutions,

which leads to technical and legal issues. It is worth noting that the need for a

reliable quantitative imaging has been also recently recognized by the National

Cancer Institute [326]. This has led to the formation of the Quantitative Imaging

Network that promotes biomedical research, development, standardization and

clinical validation of quantitative imaging methods with the aim to improve the

clinical decision making, through the collaboration of oncologists, radiologists,

medical physicists, and computer scientists [327].

The potential of the promising features devised in this Thesis, able to detect

valuable in vivo characteristics, should be prospectively evaluated. The results

obtained also encourage the deepening of the unknown relationship between imag-

ing findings and biologic features. One of the major challenge in this field remains

the combination of the features selected with other patients’ characteristics.This

would permit to comprehensively understand the specific cancer biology of indi-

vidual patient and infer phenotypic signatures containing predictive or prognostic

values. For instance, the detection of low-perfused regions associated with a high

cell density could reveal the presence of an aggressive cell population likely resis-

tant to treatments.

Unlike biopsies, quantitative imaging could permit a longitudinal monitoring

of the intra-tumour heterogeneity and, consequently, of the “specific” habitats and

their changing over time, since clinical examinations can be easily repeated during

the therapy [325]. In this perspective, another area of the quantitative imaging

has been widely explored. This research area regards the texture analysis of

apparently metastasis-free areas of the liver with surprising results in the indirect

detection of a metastatic status, even without morphological changes [328].

In conclusion, the analysis of the tumour heterogeneity should be further ex-

plored to achieve a personalization of medicine. Indeed, having the potential to
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identify the patients who would benefit most from consideration of alternative

therapies and treatment intensification, it could lead to a customization of the

therapy.
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[23] O. M. Topcuoğlu, M. Karçaaltıncaba, D. Akata, M. N. Özmen, Repro-
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[147] B. J. Pichler, A. Kolb, T. Nägele, H.-P. Schlemmer, PET/MRI: paving the

way for the next generation of clinical multimodality imaging applications,

Journal of Nuclear Medicine 51 (3) (2010) 333. (cit. on pp. 61)



244 BIBLIOGRAPHY

[148] S. Vandenberghe, P. K. Marsden, PET-MRI: a review of challenges and

solutions in the development of integrated multimodality imaging, Physics

in Medicine & Biology 60 (4) (2015) R115. (cit. on pp. 61)
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cipale è quella di acquisire le metodolo-

gie per poter far ricerca. Certo

non immaginavo che questo percorso

potesse cambiarmi tanto nel profondo

e che tutte le persone che mi sono

state accanto avrebbero influenzato ir-

reversibilmente questo cambiamento.

I would like to thank Prof. Alessan-

dro Bevilacqua for welcoming me to the

Computer Vision Group, transmitting

the care, I would almost say obsession,

for details. Thank you for believing in

me and for giving me the chance to

work independently, teaching me that

progress begins where our comfort zone

ends.

Vorrei ringraziare il Prof. Alessandro

Bevilacqua per avermi accolto nel Com-

puter Vision Group trasmettendomi la

cura, direi quasi ossessione, per i det-

tagli. Grazie per aver creduto in me e

per avermi dato la possibilità di lavo-
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