
Alma Mater Studiorum - Università di Bologna

Dottorato di Ricerca In

Computer Science and Engineering

Ciclo XXXI

Settore Concorsuale: 01/B1

Settore Scientifico Disciplinare: INF/01

Engineering Background Knowledge for
Social Robots

Presentata da: Luigi Asprino

Coordinatore Dottorato Supervisore

Paolo Ciaccia Paolo Ciancarini

Esame finale anno 2019

To Serena.

iv

Abstract

Social robots are embodied agents that continuously perform knowledge-intensive

tasks involving several kinds of information coming from different heterogeneous

sources. Providing a framework for engineering robots’ knowledge raises several

problems like identifying sources of information and modeling solutions suitable for

robots’ activities, integrating knowledge coming from different sources, evolving this

knowledge with information learned during robots’ activities, grounding perceptions

on robots’ knowledge, assessing robots’ knowledge with respect humans’ one and so

on. Semantic Web research has faced with most of these issues and could provide

robots with the means for creating, organizing, querying and reasoning over know-

ledge. In fact, Semantic Web standards allow to easily integrate data generated

by a variety of components, thus enabling robots to make decisions by taking into

account knowledge about physical world, data coming from their operating envir-

onment, information about social norms, users’ preferences and so on. Semantic

Web technologies provide flexible solutions that allow to extend and evolve robots’

knowledge over time. Linked (Open) Data paradigm (a result of research in the

Semantic Web field) lets to easily reuse (i.e. integrate with robots’ knowledge)

existing external datasets so to bootstrap a robot’s knowledge base with relevant

information for its activities. Linked Data also provides a mechanism that allows

robots to mutually share knowledge. Existing solutions for managing robots’ know-

ledge only partially exploit the potential of Semantic Web technologies and Linked

Data. This thesis introduces a component-based architecture relying on Semantic

v

Web standards for supporting knowledge-intensive tasks performed by social robots,

and whose design has been guided by requirements coming from a real socially as-

sistive robotic application. All the components contribute to and benefit from the

knowledge base which is the cornerstone of the architecture. The knowledge base is

structured by a set of interconnected and modularized ontologies which are meant

to model information relevant for supporting robots in their daily activities. The

knowledge base is originally populated with linguistic, ontological and factual know-

ledge retrieved from the Linked Open Data. The access to the knowledge base is

guaranteed by Lizard, a tool that provides software components with an API for

accessing facts stored in the knowledge base in a programmatic and object-oriented

way. This thesis also introduces two methods for engineering knowledge needed by

robots: (i) A novel method for automatically integrating knowledge coming from

heterogeneous sources with a frame-driven approach. (ii) A novel empirical method

for assessing foundational distinctions over Linked Open Data entities from a com-

mon sense perspective (e.g. deciding if an entity inherently represents a class or

an instance from a common sense perspective). These methods realize two tasks

of a more general procedure meant to automatically evolve robots’ knowledge by

automatically integrating information coming from heterogeneous sources, and to

generate common sense knowledge by using Linked Open Data as empirical basis.

Feasibility and benefits of this architecture have been assessed through a proto-

type deployed in a real socially assistive scenario, whose this thesis presents two

applications and the results of a qualitative and quantitative evaluation.

vi

Acknowledgements

Riconosco che questo questo lavoro è frutto di un percorso iniziato molti anni fa sui

banchi di scuola e se oggi presento una tesi di dottorato lo devo a molte persone.

Vorrei iniziare dai miei genitori perchè i loro sforzi mi hanno permesso di studiare

in tutta tranquillità e perchè hanno sempre creduto in me e mi hanno incoraggiato

in quello che facevo. Vorrei ringraziare le mie sorelle Rosa e Paola insieme con i

loro mariti che mi hanno pazientemente sopportato durante gli anni di università.

Sfrutto questa sezione per esprimere la mia riconoscenza per Fulvio, Iride, Sara

ed Erminia che mi hanno accolto, ospitato, sfamato e aiutato come figlio/fratello.

Vorrei inoltre dedicare questa tesi ai miei nipoti Maria Letizia, Anna Luce, Lorenzo,

Vittoria e Lorena. Spero che possiate trovare anche voi un lavoro che vi appassioni

e che vi renda soddisfatti giorno per giorno.

Vorrei esprimere la mia più profonda gratitudine per la dr.ssa Valentina Presutti

che nel 2015, credendo in me e nelle mie capacità, mi ha accettato nel suo gruppo di

ricerca e in seguito mi ha guidato pazientemente per tutta la durata del dottorato.

Un ringraziamento speciale lo devo al mio supervisore, prof. Paolo Ciancarini, per

essere stato sempre pronto ad aiutarmi nelle mie difficoltà, per i suoi consigli e sug-

gerimenti nelle attività di ricerca. Inoltre, vorrei ringraziare in modo particolare il

prof. Aldo Gangemi per essersi sempre speso per trasferirmi le sue conoscenze allar-

gando i miei orizzonti di ricerca. Vorrei esprimere la mia riconoscenza verso i revisori

di questa tesi, la prof.ssa Eva Blomqvist e il dr. Fabien Gandon, perchè grazie ai loro

commenti appassionati ho potuto migliorare questa tesi. Vorrei ringraziare il prof.

vii

Frank Van Harmelen e il dr. Wouter Beek perchè mi hanno calorosamente accolto e

ospitato nel loro gruppo durante il mio periodo all’estero. Se sono qui è anche merito

di alcuni professori che durante gli anni di università mi hanno trasmesso entusi-

asmo verso le materie scientifiche. Tra questi, vorrei ringraziare in modo particolare

il prof. Giuseppe De Giacomo perchè la sua passione per l’intelligenza artificiale mi

ha spinto verso il mondo accademico. Infine, la mia riconoscenza va a tutti i miei

insegnanti e professori che si sono spesi per la mia formazione. Qui vorrei ricordarne

alcuni a cui sarò sempre riconoscente: Maria Elena Coppa, prof. Vaccarone, prof.ssa

Civale, prof.ssa Libertino e prof. Calabrese.

Durante questi anni ho collaborato con diverse persone e anche questo lavoro è

frutto del contributo di molti. In modo particolare vorrei esprimere la mia ricono-

scenza per Alessandro Russo e Andrea Giovanni Nuzzolese con i quali ho condiviso

e continuo a condividere molte fatiche e lunghi “pellegrinaggi”. Un grazie speciale

va alle persone che hanno collaborato al lavoro presentato in questa tesi Mehwish

Alam, Valerio Basile, Giorgia Lodi, Stefano Nolfi, Annarita Orsini, Silvio Peroni,

Massimiliano Raciti, Diego Reforgiato Recupero, e Chiara Veninata.

Ringrazio tutte le persone che durante questi anni hanno fatto parte del labor-

atorio per i loro spunti di riflessioni, consigli, chiacchierate e risate: Valentina Car-

riero, Mario Caruso, Piero Conca, Sergio Consoli, Valerio Di Carlo, Ludovica Mari-

nucci, Misael Mongiov̀ı, Martina Sangiovanni, e Carlo Stomeo. Vorrei ricordare e

ringraziare alcuni “compagni di banco e di merenda” che mi hanno accompagnato in

questa avventura come Ciriaco Cauteruccio, Ferdinando Cipollone, Carlo Gazzaneo,

Simone Lo Tufo, Mattia Lo Tufo, Angelo Maiorano, e Davide Marino.

Vorrei ringraziare con tutto il mio cuore i ragazzi del gruppo gamma. Avete un

posto speciale nel mio cuore e non posso fare a meno di voi nella mia vita. Questo

lavoro è anche indirettamente merito vostro.

Infine, vorrei concludere questi ringraziamenti con mia moglie Serena. Difficile

esprimere a parole quanto ti sono grato. In tutte le cose belle della mia vita c’è il

viii

tuo zampino.

Forse dimentico di ringraziare qualcuno e questo mi dispiace, ma qualcun’altro

si merita un ringraziamento di persona.

Luigi

ix

x

Contents

List of Tables xvii

List of Figures xix

List of Publications xx

1 Introduction 1

1.1 Goals of the Thesis . 6

1.2 Contributions of the Thesis . 7

1.3 Case Study: Companion Robots in Socially Assistive Context 10

1.4 Research Methodology . 10

1.5 Thesis Outline . 12

2 Background 15

2.1 Social Robots . 15

2.1.1 Software Architectures for Social Robots 15

2.2 The Semantic Web . 17

2.2.1 Extensible Markup Language (XML) 18

2.2.2 Resource Description Framework (RDF) 18

2.2.3 Web Ontology Language (OWL) 19

2.2.4 SPARQL . 20

2.3 Ontologies . 20

xi

2.3.1 Knowledge Management Frameworks for Social Robots 21

2.4 Pattern-based Ontology Design . 23

2.4.1 Ontology Design Patterns . 24

2.4.2 eXtreme Design . 24

2.5 Ontology Matching . 27

2.6 Linguistic Linked Open Data Resources 27

2.7 Common Sense Knowledge . 29

3 An Ontology Network for Social Robots in Assistive Context 31

3.1 Design Methodology . 32

3.1.1 Guidelines for Ontology Re-use 32

3.1.2 MARIO Ontology Network Development Process 38

3.2 Knowledge Areas . 41

3.3 Ontology Modules . 46

3.3.1 Affordance Ontology . 46

3.3.2 Comprehensive Geriatric Assessment Ontology 54

3.3.2.1 CGA Ontology Modules 58

3.3.3 Tagging Ontology . 67

3.3.4 Other Modules . 70

3.4 Discussion . 79

4 Providing LOD as Background Knowledge for Social Robots 81

4.1 Framester: a Linguistic Data Hub . 81

4.1.1 Framester Overview . 82

4.1.2 Semi-automatic Generation of Framester 84

4.1.2.1 Conversion of Input Resources in RDF 85

4.1.2.2 Normalization of the Input Resources 86

4.1.2.3 Linking Entities of Different Resources 87

4.1.2.4 Heuristic Methods for Extending the Mapping 89

xii

4.1.2.5 Assessing Integrity Constraints 91

4.2 Assessing Foundational Distinctions in Linked Open Data 92

4.2.1 Related Work . 95

4.2.2 Methods . 95

4.2.3 Alignment-based Classification 96

4.2.4 Machine Learning-based Classification 98

4.2.4.1 Features . 99

4.2.5 Reference Datasets . 100

4.2.6 Evaluation . 104

4.2.7 Alignment-based Methods: SENECA 105

4.2.8 Machine Learning Methods 106

4.3 Discussion . 107

5 Accessing Background Knowledge using Lizard 113

5.1 Requirements . 115

5.2 Architecture . 116

5.3 Ontology Bundle . 120

5.3.1 Java API . 121

5.3.1.1 Mapping OWL on Java 122

5.3.1.2 Naming conventions 124

5.3.1.3 Preliminary Tasks 124

5.3.1.4 Hierarchy of the Java Classes 125

5.3.1.5 Assigning Methods to Classes 126

5.3.1.6 Jena and Bean Classes 133

5.3.2 Rest API . 136

5.3.2.1 Description of the REST API 141

5.4 Discussion . 143

xiii

6 A Frame-based Approach for Integrating Ontologies 145

6.1 Types of Semantic Heterogeneity . 147

6.2 Proposed Approach . 148

6.2.1 Mapping Ontology Entities on Frames 148

6.2.2 Frame-based Ontology Matching 154

6.3 Discussion . 155

7 A Knowledge Centered Architecture for Social Robots 159

7.1 Requirements of Software Architectures for Social Robots 160

7.1.1 Functional Requirements . 160

7.1.2 Non Functional Requirements 162

7.2 Robot Software Architecture Overview 163

7.3 Components . 165

7.3.1 Behaviors and Task Manager 165

7.3.1.1 Behavior . 165

7.3.1.2 Task Manager . 167

7.3.2 Event Bus . 168

7.3.3 Bundle Manager . 169

7.3.4 Knowledge Management Framework 169

7.3.4.1 Knowledge Base . 169

7.3.4.2 Lizard . 170

7.3.5 Basic Capabilities . 170

7.3.5.1 Text to Speech and Speech to Text 171

7.3.5.2 Graphical User Interface Manager 171

7.3.5.3 Perception and Motion Controller 171

7.3.6 Convoluted Capability Subsystem 172

7.4 Architecture Prototype for a Real Social Assistive Scenario 172

7.4.1 Delivering Knowledge-intensive Applications for Social Robots 173

xiv

7.4.1.1 Comprehensive Geriatric Assessment 173

7.4.1.2 Reminiscence Therapy 178

7.4.2 Evaluation . 183

7.4.2.1 Quantitative Evaluation 183

7.4.2.2 Qualitative Evaluation 184

7.5 Discussion . 186

8 Conclusion and Future Work 189

8.1 Research Questions Revisited . 191

8.2 Future Work . 194

Appendices 197

A Code Generated by Lizard 199

A.1 Interface . 199

A.2 Jena Class . 201

A.3 Bean Class . 205

A.4 REST API Description . 207

xv

xvi

List of Tables

3.1 Advantages and Disadvantages of different approaches to ontology

reuse. 36

3.2 Competency questions answered by the Affordance ODP. 48

3.3 Ontology modules imported/reused by the CGA ontology. 56

3.4 Competency questions answered through the Co-Habitation status

ontology. 59

3.5 Competency questions answered through the Medication Use ontology. 60

3.6 Competency questions answered through the Capability Assessment

ontology. 62

3.7 Competency questions answered through the SPMSQ ontology. 63

3.8 Competency questions answered through the ESS ontology. 65

3.9 Competency questions answered through the CIRS ontology. 66

3.10 Competency questions answered through the Tagging ontology. 68

3.11 Ontology modules imported/reused by the Tagging ontology. 70

4.1 CIC dataset crowd-based annotated dataset of classes and instances.

The table provides an insight of the dataset per level of agreement.

Agreement values computed according to Formula 4.1. 103

4.2 POC dataset: crowd-based annotated dataset of physical objects. The

table provides an insight of the dataset per level of agreement. Agree-

ment values computed according to Formula 4.1. 104

xvii

4.3 Results of SENECA on the Class vs. Instance and Physical Object

classifications compared against the reference datasets described in

Section 4.2.5. P*, R* and F*
1 indicate precision, recall and F1 measure

on Class (C), Instance (I), Physical Object (PO) and complement of

Physical Object (NPO). F1 is the average of the F1 measures. 105

4.4 Results of the Support Vector Machine classifier on Class vs. Instance

task against the reference datasets described in Section 4.2.5. The

first four columns indicate the features used by the classifier: A is the

abstract, U is the URI, E are incoming and outgoing properties, D

are the results of the alignment-based methods. P*, R*, F*
1 indicate

precision, recall and F1 measure on Class (C) and Instance (I). F1 is

the average of the F1 measures. 108

4.5 Results of the Support Vector Machine classifier on Physical Object

classification task against the reference datasets described in Sec-

tion 4.2.5. The first four columns indicate the features used by the

classifier: A is the abstract, U is the URI, E are incoming and out-

going properties, D are the results of the alignment-based methods.

P*, R*, F*
1 indicate precision, recall and F1 measure on Physical Ob-

ject (PO) and the complement of Physical Object (NPO). F1 is the

average of the F1 measures. 109

6.1 An example of association ontology entity-frames. 150

xviii

List of Figures

1.1 The Kompäı-2 robot and its user interface. 11

2.1 The Semantic Web stack. 17

2.2 An example of collected uses-story. 25

3.1 The eXtreme Design workflow as extended in [174]. The highlighted

tasks involve the guidelines for ontology reuse. 34

3.2 The template of the user stories provided by the customer represent-

atives. 39

3.3 The network of ontologies constituting the MARIO Ontology Network. 40

3.4 The diagram of the Affordance ontology. 48

3.5 Two equivalent action-selection schemes. 51

3.6 The UML class diagram of CGA ontology. 56

3.7 The UML class diagram of the Co-Habitation status ontology. 59

3.8 The UML class diagram of the Medication Use ontology. 60

3.9 The UML class diagram of the Capability Assessment ontology. . . . 61

3.10 The UML class diagram of the SPMSQ ontology. 62

3.11 The UML class diagram of the ESS ontology. 64

3.12 The UML class diagram of the CIRS ontology. 66

3.13 The UML class diagram of the MNA ontology. 67

3.14 The UML class diagram of tagging ontology. 69

3.15 The UML class diagram of Music ontology. 74

xix

4.1 An example of Framester representation for the concept G suit. . . . 85

4.2 SENECA approach for assessing whether a DBpedia entity is a class

or an instance (Figure 4.2a) and whether it is a physical object or not

(Figure 4.2b). 98

5.1 A diagram that shows the intuition behind Lizard and its operating

scenario. 117

5.2 The solution stack provided by Lizard that allow applications to in-

teract with a Knowledge Base. 118

5.3 An example showing how the hierarchy of classes defined in the input

ontology (Figure 5.3a) is reflected in the Java classes generated by

Lizard (Figure 5.3b). 126

5.4 The Action ontology module of the Mario Ontology Network. 127

5.5 A simple ontology arising a name clash in the method signatures. . . 131

6.1 The UML class diagram of the Ontology Design Pattern Participation.149

6.2 An example of alignment between the object property isParticipantIn

and the frame Competition. A dashed line represents a possible cor-

respondence between elements of the two models. These edges are

labeled with a confidence measure based on the semantic text simil-

arity of the two elements. 153

6.3 The workflow summarizing the macro steps of the proposed approach

for matching two ontologies. 155

7.1 The software architecture of the social robot. 164

7.2 Architectural model of the CGA and Reminiscence applications . . . 174

7.3 Example of prompting questions formulation from user-specific know-

ledge graph . 180

xx

Chapter 1

Introduction

Social robots [21, 37, 56, 64, 61, 77] are autonomous embodied agents that interact,

collaborate, communicate with humans, by following the behavioral norms expected

by people with whom robots are intended to interact. Several definitions have been

proposed for the term “social robot”, but all of them broadly agree that a social

robot has the following characteristics: (i) Physical embodiment, i.e. a social robot

has a physical body; (ii) Sociality, i.e. a social robot is able to interact with people

by showing human-like features while following the social rules (defined through

society) attached to its role; (iii) Autonomy, i.e. a social robot makes decisions by

itself (the autonomy is sometimes limited in testing phase, like in the Wizard of Oz

experimental setting [110, 178]). In recent years, the field of socially assistive robot-

ics [72] has emerged given the great potential of social robots in supporting people

with cognitive impairment or physical disability [27, 96, 104, 149]. As overviewed

in [137], existing robotic technologies for care range from pet-like devices to ad-

vanced anthropomorphic mobile robotic assistants. While service robots often focus

on providing physical support, a socially assistive robot aims to provide cognitive

support through social interaction.

In order to effectively interact, communicate, collaborate with humans, robots

should demonstrate some intelligence. Generally, the approaches for building such

2 Chapter 1. Introduction

an intelligence can be classified into two categories, namely, symbolic and subsym-

bolic approaches [169, 195]. In symbolic approaches real-world entities, facts, rules

and concepts are formalized by means of symbols. Symbols are stored in a know-

ledge base and are manipulated to make conclusions and take decisions. Conversely,

subsymbolic approaches attempt to address problems without building an explicit

representation of concepts and entities. An example of subsymbolic approaches are

artificial neural networks, i.e. large networks of extremely simple numerical pro-

cessors (i.e. neurons), massively interconnected and running in parallel. These

networks consume and produce numerical vectors. The connections between neur-

ons determine how input vectors is transformed to an output vector. In these sys-

tems, knowledge is not encoded with symbols but rather in the pattern of numerical

strengths of the connections between neurons. These networks can “learn” to per-

form a given task by seeing a set of examples. An example is a pair of a possible

input for the task at hand with (possibly) the corresponding desirable output. From

these examples a neural network can learn the optimal weights to predict the desir-

able output from a given input. There are benefits and drawbacks of both kinds of

approaches. While subsymbolic approaches achieve better performance in specific

tasks, they need a large quantity of examples to learn optimal strengths. These

examples could be hardly available for certain tasks. The other main issue with

subsymbolic systems is the inability of explaining why a certain output is provided

for a given input. This could be a non-negligible problem for many domain, such

as medicine. In contrast, symbolic systems are able to explain their decisions and

do not require examples. However, these systems need considerable effort for de-

fining symbols and designing rules and methods to manipulate symbols for solving

problems.

Integrating the two approaches have also become more common to benefit of

both strategies (e.g. [92, 99, 144]). The framework proposed in this thesis benefits

of both symbolic and subsymbolic techniques. Subsymbolic techniques are used in

perceptual tasks (such as translation of spoken language into text), whereas symbolic

techniques are used for controlling the robot at an higher level [93]. In particular,

Chapter 1. Introduction 3

subsymbolic subsystems of the robot transform low-level perception in symbols so

to enable the symbolic processing of the control system. In this way the framework

benefits of the state-of-the-art performance on perceptual tasks of subsymbolic tech-

niques without compromising the possibility of having a system that is deterministic

and able to explain its behavior and decisions (important requirements for the case

study of this thesis, cf. Section 1.3).

In order to show human-like feature the robot should be able to manipulate a

human-like set of symbols, called background knowledge. This could be informally

defined as the knowledge that a robot need in order to operate. This background

knowledge includes (but it is not limited to): linguistic, encyclopedic and procedural

knowledge as well as knowledge concerning the physical world and social norms. All

of these kind of knowledge are involved in a potential human-robot interaction. For

example, suppose that a person asks a robot to “cut a slice of bread”. In order to

fulfill this request, the robot should resort to: (i) linguistic knowledge in order to

understand what the person says (e.g. to associate the word “cut” to the meaning

“detaching with a sharp-edged instrument”); (ii) encyclopedic knowledge in order

to figure out what are the entities involved in the request (e.g. what is a a slice of

bread); (iii) procedural knowledge in order to realize the steps to undertake (e.g. take

the bread knife, put the bread on a cutting board etc.); (iv) physical world knowledge

in order to figure out where the entities involved in the request are usually located,

and if, what the person asks, is feasible and is something that the robot can do (e.g.

knives and bread can be usually found in a kitchen); (v) social norms knowledge

in order to check if, what the person asks, is something socially acceptable (i.e.

cutting a slice of bread is acceptable but stabbing someone is generally immoral).

This simple example shows the complexity and the need of these types of knowledge.

Once the robot receives a user request, it is expected to interpret it, namely, it needs

to associate the user request with an internal representation of its meaning. This

representation should use referents with a formal semantics for the robot. From

these referents the robot can access the other kinds of knowledge. For example

from a referent representing the meaning of the word “cut”, i.e. “detaching with a

4 Chapter 1. Introduction

sharp-edged instrument”, the robot is be able to access to procedural knowledge to

figure out how to cut something. This is possible if all these types of knowledge are

connected, well-organized and available to the robot.

Providing such a framework for engineering robots’ knowledge raises several prob-

lems like identifying sources and modeling information relevant for robots’ activit-

ies, integrating knowledge coming from different sources, evolving this knowledge

with information learned during robots’ activities, grounding perceptions on robots’

knowledge, assessing robots’ knowledge with respect humans’ one and so on. Sev-

eral knowledge representation approaches for robots can be found in literature, we

present the most relevant that are employed in robotic architectures. The choice

of a knowledge representation formalism has an impact on the expressiveness (the

breadth of concepts that can be represented), on the ability infer logical consequences

form asserted facts in a tractable manner (i.e. tractability) and on the amount of

tools and knowledge already available that can be provided to robots for supporting

their tasks.

Predicate logic is a collection of formal systems that includes: propositional lo-

gic (dealing with zero-arity predicates, called propositions), first-order logic (FOL)

(dealing with terms of higher arity) and higher order logic (in which predicates can

be arguments of other predicates). Unlike propositional logic, first-order logic and

higher order logic are undecidable (i.e. it does not exist a method for validating all

the formulas). To overcome the undecidability of FOL, some fragments of the logic

have been proposed (e.g. horn clause and description logic). Propositional logic,

horn clause (which constitutes the foundation of logic programming languages), de-

scription logic [17] (at the basis of the W3C’s OWL-DL standard) are used in several

robotic frameworks (e.g. [141, 152, 186, 206]). Modal logic extends propositional and

predicate logic to include the modality operator. A modal is an operator that qual-

ifies statements (e.g. usually, possibly). An example of robotic framework based

on modal logic is Tino [60]. Temporal logic allows to qualify proposition in terms

of time (e.g. “I am always hungry”). It is used in some robotic frameworks such

as [69, 114]. Another logics particularly relevant for robotic frameworks (e.g. [121])

Chapter 1. Introduction 5

is the probabilistic logic which provides a formalism able to handle uncertainty.

All of these logic frameworks allow to potentially encode robot’s knowledge and

are supported by several off-the-shelf reasoning tools. Although some of them show

high expressive power and attractive computational features, they almost lack of ex-

isting resources that could provide robots with a comprehensive background know-

ledge for their tasks. The choice of a framework impacts on the effort required to

provide a robot with a considerable amount of knowledge for its tasks. This problem

is even more significant for social robots which need of a sizable and heterogeneous

knowledge bases to operate.

The Semantic Web [28] standards give a good trade-off among the expressiveness,

tractability and availability of resources and tools for manipulating such knowledge.

The Semantic Web (cf. Section 2.2) is an extension of the World Wide Web aimed

at providing a framework that allows data to be shared with a common syntax

and semantics. It based on a language defining the syntax of data to be shared

(i.e. XML), a model defining the format of data (i.e. RDF) and a language to

formally specify the semantics of data (i.e. OWL). OWL is derived from descrip-

tion logics and comes in three forms: (i) OWL Full for maximum expressiveness,

but undecidable; (ii) OWL DL designed to provide the maximum expressiveness

while retaining decidability; (iii) OWL Lite that supports taxonomies and simpler

constraints with a limited expressiveness but attractive computational features. Se-

mantic Web standards provide a good expressive power (equivalent to Description

Logics), without compromising decidability and tractability. It is supported by a

pletora of off-the-shelf reasoners, knowledge management systems, as well as tools

for creating, organizing and integrating knowledge. Another benefit of implement-

ing a framework that relies on Semantic Web technologies is the opportunity of

exploiting knowledge available as Linked Open Data (LOD). LOD is a huge web of

data (∼200 billion linked facts1) formally (and uniformly) represented in RDF and

OWL, and openly available on the Web.

1LODCloud, https://lod-cloud.net/

https://lod-cloud.net/

6 Chapter 1. Introduction

1.1 Goals of the Thesis

The aim of this thesis can be summarized in the following question.

RQ0: To what extent Semantic Web technologies and Linked Data can be

used to create, organize, access to, and evolve robot’s background know-

ledge?

Existing solutions for managing robots’ knowledge (such as RoboEarth [208], Robo-

Brain [186], ORO [123], ORA [171], RACE [182], and OUR-K framework [127]) only

partially exploit the potential of Semantic Web technologies and Linked Data. In

these projects, Semantic Web technologies are mostly employed to address syntactic

heterogeneity of data, to define conceptualizations of the robots’ knowledge, and,

more rarely, to include external datasets within the robots’ knowledge base. Most

of these frameworks focused on a single dimension of knowledge while disregarding

more social aspects. In fact knowledge manipulated by these frameworks are often

related to the interaction of the robot with the physical environment for supporting

navigation [152], inter-robot communication [208], manipulation of the objects [206],

representation of robot’s actions [209].

We claim that robots’ architectures can profoundly benefit of Semantic Web

technologies and Linked Data paradigm. (i) Semantic Web technologies could en-

able an incremental and iterative development of the architecture. (ii) Semantic

Web standards allow to easily integrate data generated by a variety of components,

thus enabling robots to make decisions by taking into account knowledge about the

physical world, data coming from their operating environment, information about

social norms, users’ preferences and so on. (iii) Semantic Web technologies provide

flexible solutions to extend and evolve robots’ knowledge over time. (iv) Linked

(Open) Data paradigm lets to easily reuse (i.e. integrate with robots’ knowledge)

existing external datasets so to bootstrap knowledge base with relevant information

for robots’ activities. (v) Linked Data also provides a mechanism that allows robots

to mutually share knowledge.

Chapter 1. Introduction 7

As anticipated with the main research question RQ0, the goal of this thesis is

to investigate feasibility and benefits of engineering background knowledge of social

robots with a framework based on Semantic Web technologies and Linked Data.

This investigation has been carried out in a socially assistive context (presented in

Section 1.3) by following the methodology described in Section 1.4. The research

question RQ0 can be decomposed into the following sub-questions which will be

investigated and discussed in the following chapters (one question for each Chapter,

from Chapter 3 to Chapter 7).

RQ1: What kind of knowledge a robot needs to operate in socially assistive context?

What exiting ontologies can be used to organize the robot’s knowledge? What

ontologies need to be advanced? What domains of interest in this context miss

of a conceptualization?

RQ2: What Linked Data can provide background knowledge for social robots tasks?

RQ3: How to provide robots with access to knowledge?

RQ4: How to integrate robot’s knowledge with data coming from robot’s experience?

RQ5: How Semantic Web technologies can be orchestrated to support robot tasks?

1.2 Contributions of the Thesis

This thesis contributes to goals presented in Section 1.1 as follows.

• We have devised a set of interconnected and modularised ontologies, i.e. the

MARIO Ontology Network (MON), which are meant to model all knowledge

areas that are relevant for robots’ activities in socially assistive contexts (cf.

RQ1). This ontology network defines reference models for representing and

structuring the knowledge processed by the robot. MON provides a robot with

the means for creating, organizing, querying and reasoning over a background

knowledge. MON reuses and integrates state-of-the-art ontologies in various

8 Chapter 1. Introduction

domains (such those related to personal information, social and multimedia

contents), and, proposes novel solutions in medical domain (e.g. CGA Onto-

logy, cf. Section 3.3.2) and in robotic domain (i.e. Affordance Ontology, cf.

Section 3.3.1). These modules enables robots to assess the medical, psycho-

social and functional status of a person and to decide the most appropriate

action to perform in a given situation.

• The knowledge base is originally populated with lexical, linguistic and factual

knowledge retrieved from Linked Open Data. The thesis presents a novel

process for generating, integrating and assessing this knowledge (cf. RQ2).

Moreover, we propose a novel empirical method for assessing foundational

distinctions over Linked Open Data entities from a common sense perspective

(e.g. deciding if an entity inherently represents a class or an instance from

a common sense perspective). This method realizes the first step of a more

general procedure meant to automatically generate common sense knowledge

from Linked Open Data (cf. RQ2). These methods advance state-of-the-art in

Semantic Web by proposing standardized techniques for creating an integrated

repository of linguistic, factual, encyclopedic, ontological and common sense

knowledge. The benefits of these techniques as well as the resulting datasets

are not limited to robotic domain, but also extend to every application domain

that requires a rich knowledge base to operate [59].

• We have developed an object-RDF mapper (called Lizard) that facilitates

software components to interact with an RDF knowledge base (cf. RQ3). In

particular, given an RDF knowledge base and an OWL ontology describing

its structure, Lizard provides applications with an API for accessing RDF

facts stored in a knowledge base following the object-oriented paradigm. The

API reflects the semantics of the input ontology and allows transparent access

to the knowledge base, Differently from existing systems, Lizard exposes the

API following the REST architectural style over HTTP. This tool is aimed at

easing the software development of knowledge-aware systems by filling the gap

Chapter 1. Introduction 9

between Semantic Web technologies and Object-Oriented applications. The

benefits of Lizard are not to be intended only for robotic domain, but every

application that need to access to a knowledge base compliant with Semantic

Web standards could potentially use Lizard’s API.

• We introduce a novel approach for automatically integrating knowledge com-

ing from different ontologies with a frame-driven approach (cf. RQ4). This

method aimed at finding complex correspondences between ontology entities

according the intensional meaning of their models, hence abstracting from their

logical types. In this proposal, frames are considered as “unit of meaning” [89]

for ontologies and are used as a mean for representing intentional meaning of

ontology entities. The frame-based representation of entities’ meaning enables

at finding complex correspondences among entities abstracting from their lo-

gical type thus leading a step ahead the state of the art of ontology matching.

Other potential benefits of this method related to understanding and generat-

ing natural language will be discussed in Section 6.3.

• This thesis introduces a component-based architecture relying on Semantic

Web standards for supporting knowledge-intensive tasks performed by social

robots, and whose design has been guided by requirements coming from a real

socially assistive robotic application. The ultimate goal aim of the architec-

ture is to create a platform for easing the development of robotic applications

by providing developers with off-the-shelf software artifacts, models and data.

The strategy to pursue this goal is to massively reuse Semantic Web tech-

nologies due to their intrinsic availability and interoperability. Moreover, we

present a prototype which is aimed at demonstrating feasibility and benefits

of such a architecture and two applications running on top of the architecture

prototype. We claim that the prototype is only an example of robotic sys-

tems that benefit of framework proposed in the thesis. This framework could

potentially be integrated, with appropriate adaptions, with every autonomous

agents (not limited to embodied systems).

10 Chapter 1. Introduction

1.3 Case Study: Companion Robots in Socially

Assistive Context

A case study for this thesis work has been provided by the H2020 European Project

MARIO2. This project has investigated the use of autonomous companion robots as

cognitive stimulation tools for people with dementia. The MARIO robot and its cap-

abilities were specifically designed to provide support to people with dementia, their

caregivers and related healthcare professionals. Among its capabilities, MARIO

can help caregivers in the patient assessment process by autonomously perform-

ing Comprehensive Geriatric Assessment (CGA) evaluations, and is able to deliver

reminiscence therapy through personalized interactive sessions. These capabilities

are part of a robotic software framework (inspired to the architecture presented in

Chapter 7) for companion robots, and, they are supported by the knowledge repres-

entation and management framework proposed in this thesis. The overall framework

and the applications presented in these thesis have been deployed on Kompäı-2 ro-

bots (showed in Figure 1.1), evaluated and validated during supervised trials in

different dementia care environments, including a nursing home (Galway, Ireland),

community groups (Stockport, UK) and a geriatric unit in hospital settings (San

Giovanni Rotondo, Italy). There was a clear mutual benefit between this thesis

work and the work carried out within the context of the MARIO Project. On the

one hand, the MARIO benefited of the framework proposed in this thesis. On the

other hand, the MARIO project provided a real-world application that fine-tuned

the requirements and tested the capabilities of the contributions of this thesis.

1.4 Research Methodology

The structuring and organization of the research activities have been following two

complementary paths, though interlinked and interleaved among each other. On

the one hand, we approached a case study with an explorative strategy aimed at

2MARIO project, http://www.mario-project.eu/portal/

http://www.mario-project.eu/portal/

Chapter 1. Introduction 11

Figure 1.1: The Kompäı-2 robot and its user interface.

investigating the needs of a real socially assistive robotic application and highlighting

the limits of current solutions. On the other hand, problems that came from the real

setting have been generalized in order to contribute with their solutions to advance

the state of the art. The two activity paths are summarized hereafter together with

the strategy for evaluating the contributions of the thesis.

Explorative Approach to the Case Study. The work carried out along this

path has been focusing on identifying the needs of a real socially assistive robotic

application, highlighting the limits of current solutions, and, designing, developing,

deploying and testing working solutions within a concrete robotic application. In line

with the overall principles and methodology adopted in the project, we have been

following an incremental and iterative design and development approach, inspired

by Agile principles. As a consequence, the implemented approaches and solutions

have been: (i) designed following a requirements-driven and user-centered approach,

taking into account pilot sites’ needs and scenarios; (ii) incrementally integrated,

tested and validated during trial activities; (iii) gradually refined and improved on

12 Chapter 1. Introduction

the basis of trials feedback.

Research Activities and Solutions Targeting Open Problems. The work

carried out along this path has been focusing on research activities aimed at the

identification of solutions targeting open problems in the broad field of knowledge

representation and engineering. These research problems are either inspired by and

abstracted from concrete use cases, or derive from general challenges that can be

specialized in the context of socially assistive robots. These problems have been

synthesized in the research questions RQ0-RQ5 outlined in Section 1.1. When such

a problem is identified an analysis of the current solutions is performed, and, if

limitations emerge from the state of the art, then, new hypotheses are defined and

tested in the real scenario. In particular, the prototype developed within the context

of the MARIO project is to be interpreted as a proof-of-concept implementing the

framework proposed in this thesis and evaluated in a real assistive context.

Evaluation strategy. The contributions of the thesis have been evaluated by

following two different strategies, one targeting the whole robotic system and the

other focusing on individual components of the architecture. A prototype of the

framework presented in this thesis has been developed within the context of the

MARIO project (cf. Section 1.3) and assessed during supervised trials in different

dementia care environments. The evaluation of the prototype consisted of a quantit-

ative assessment, involving the use of standardized questionnaires, and a qualitative

assessment, aimed at capturing impressions of the stakeholders. Architectural com-

ponents were individually evaluated through suitable experiments (meant to assess

the accuracy of components) or proof-of-concepts (intended to demonstrate the feas-

ibility of components).

1.5 Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 1. Introduction 13

Chapter 2 - Background. This chapter overviews the research areas related to

this work, including a quick introduction to the Semantic Web, Socially (As-

sistive) Robotics and Common Sense Knowledge. Mentions of related work

are also featured in other chapters.

Chapter 3 - An Ontology Network for Social Robots in Assistive Con-

text. Chapter 3 presents a set of interconnected and modularised ontologies,

called MARIO Ontology Network (MON), which are meant to model all know-

ledge areas that are relevant for robots’ activities in socially assistive contexts.

This ontology network defines reference models for representing and struc-

turing the knowledge processed by the robot. MON provides a robot with

the means for creating, organizing, querying and reasoning over a background

knowledge.

Chapter 4 - Providing Linked Open Data as Background Knowledge for

Social Robots. This Chapter investigates the possibility of populating the

extensional level with data retrieved from the web. To this end two lines of

research have been carried out in parallel focusing on linguistic and common

sense knowledge respectively. Regarding the first line of research the chapter

presents Framester, a huge linguistic knowledge graph integrating lexical, lin-

guistic, ontological and encyclopedic data. This Chapter also introduces a

novel empirical method for assessing foundational distinctions over Linked

Open Data entities from a common sense perspective (e.g. deciding if an

entity inherently represents a class or an instance from a common sense per-

spective). This method realizes the first step of a more general procedure

meant to automatically generate common sense knowledge from Linked Open

Data.

Chapter 5 - Accessing Background Knowledge using Lizard. Chapter 5

presents Lizard, an Object-RDF mapper providing software components with

the access to the knowledge base following the Object-Oriented paradigm.

14 Chapter 1. Introduction

Chapter 6 - A Frame-based Approach for Integrating Ontologies. Chapter 6

describes the frame-based approach for integrating ontologies. This method

enables to integrate knowledge from different structured (namely, ontologies

and knowledge graphs) and unstructured sources (e.g. text).

Chapter 7 - A Knowledge Base Centered Software Architecture for So-

cial Robots. This chapter presents a component-based architecture relying

on semantic web technologies for supporting knowledge-intensive tasks per-

formed by social robots. Moreover, this chapter presents a prototype which is

aimed at demonstrating feasibility and benefits of such a architecture and two

applications running on top of the architecture prototype.

Chapter 8 - Conclusion and Future Work. A summary of the overall research

activity and possible lines of future work to be followed from the current state

concludes this dissertation.

Chapter 2

Background

2.1 Social Robots

Social Robots are embodied agents designed to socially interact with people and

can be categorized depending on the application domain or depending on the type

of tasks are designed to perform (for comprehensive overviews please refer to [39,

77, 122, 181]). Leite et al. [122] identified four different application domains: health

care, education, work environments and public spaces, and home. Socially Assistive

Robots can be broadly classified into three categories (a review of the assistive social

robots is provided by [39, 181]): (i) Service Robots are devices designed to support

people living independently by assisting them with mobility, completing household

tasks, and monitoring health and safety; (ii) Companion Robots [57] are meant to

create companionship for human beings; (iii) Coaching Robots (e.g. [70, 71]) that

act as a coach to encourage human beings through a series of therapeutic tasks for

enhancing their health conditions.

2.1.1 Software Architectures for Social Robots

Despite the different application domains and the intended functions, most of the

architectures of social robots [44, 70, 71, 94, 95, 101, 105, 135, 143, 211] are consti-

tuted by the following elements:

16 Chapter 2. Background

1. A subsystem that manages the hardware devices allowing the robot to perceive

the environment (such as lasers used for navigation, cameras, touch sensors,

microphones etc.).

2. A set of components dealing with the robot’s motors and actuators (e.g. wheel

engines, speakers).

3. A knowledge base storing information for supporting the robot’s behaviors,

tracing the users’ activities or preferences, and collecting from the operating

environment (e.g. maps).

4. A multi-modal user interface that provides users with multiple modes to in-

teract with robots. This is typically delivered by a voice-user interface and/or

a touch-screen device.

5. A behavior controller that gathers information from perceptual components,

knowledge base and user interfaces, and decides the next actions to perform.

6. If necessary, a supervision interface that enables to remotely control the robot

and to possibly interrupt the robot’s operation. Using such a interface is part

of one of the most common Human-Robot Interaction experimental techniques

called Wizard of Oz [110, 178].

The architecture presented in Chapter 7 follows the structure of existing architec-

tures and defines a subsystem that allows to dynamically (i.e. at run-time without

need of re-deploy) extend the capabilities of the robot, thus enabling an agile and

evolutionary development of the architecture. Examples of such flexibility mech-

anisms can be also found in literature. Fritsch et al. [79] proposed a flexible in-

frastructure to extend the capabilities of the companion enabling the interaction

with humans. XML is used In this proposal as language for defining the format of

messages exchanged by the components and to define the sequence of operations the

robot have to perform. Similarly, the extensible architecture introduced by Rossi

et al. [183] allows to modify and expand the multi-modal interface without impact-

ing the rest of the architecture. These mechanisms partially fulfill the flexibility

Chapter 2. Background 17

Figure 2.1: The Semantic Web stack.

and extensibility requirement since does not allow to dynamically deploy new soft-

ware components. This feature is provided by our architecture which guarantees

extensibility of the robot behaviors and capabilities. Other novel elements of our

architecture concern with the use of semantic web and linked data for managing and

bootstrapping the knowledge base.

2.2 The Semantic Web

The Semantic Web [28] is an extension of the Web aims at providing a common

framework that allows data to be shared and reused across application boundaries.

Standardisation for Semantic Web is under the care of World Wide Web Consortium

(W3C). The W3C standards for the Semantic Web mainly include: XML, RDF(S),

OWL and SPARQL. Figure 2.1 shows the semantic web stack and provides an

overview of the standard technologies recommended by the W3C.

18 Chapter 2. Background

2.2.1 Extensible Markup Language (XML)

Extensible Markup Language (XML) is a markup language that defines a set of rules

for encoding documents in a both human-readable and machine-readable format.

An XML document consists of a properly nested set of open and close tags, where

each tag can have a number of attribute-value pairs. Crucial to XML is that the

vocabulary of the tags and their allowed combinations is not fixed, but can be

defined per application of XML. In the Semantic Web context, XML is being used

as a uniform data-exchange format thus providing a common syntax for exchange

data across the web.

2.2.2 Resource Description Framework (RDF)

Resource Description Framework (RDF)1 is a W3C recommendation originally de-

signed as metadata model, it has being used as a general framework for modelling in-

formation. The basic construction in RDF is the triple <subject, preficate, object>.

The subject denotes a resource and the predicate expresses a relationship between

the subject and the object (which can be a value or another resource). For example,

a way for representing the fact “The author of War and Peace is Leo Tolstoy” is

:War and Peace :author :Leo Tolstoy

where :War and Peace and :Leo Tolstoy are the Uniform Resource Identifiers (URIs)

of two resources representing respectively the book titled “War and Peace” and the

writer “Leo Tolstoy”, and :author is the URI of the predicate “author” which is

used to connect a book to its author. It is easy to see that an RDF model can be

seen as a graph where nodes are values or resources and edges are properties. Several

common serialisation formats of RDF are in use, including: TURTLE2, RDF/XML3,

N-Triples4.

1RDF, W3C Recommendation https://www.w3.org/TR/rdf11-concepts/
2TURTLE, https://www.w3.org/TR/turtle/
3RDF/XML, https://www.w3.org/TR/rdf-syntax-grammar/
4N-Triples, https://www.w3.org/TR/n-triples/

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/n-triples/

Chapter 2. Background 19

RDF Schema (RDFS)5 provides a data-modelling vocabulary for RDF data.

RDFS is an extension of RDF aims at providing basic elements for structuring RDF

resources. It allows to define: Classes, Properties, Datatypes and Hierarchies for

both classes and properties.

2.2.3 Web Ontology Language (OWL)

The Web Ontology Language (OWL)6 is a semantic markup language for defining,

publishing and sharing ontologies on the World Wide Web. OWL can be used

to explicitly represent the meaning of terms in vocabularies and the relationships

between those terms. This representation of terms and their interrelationships is

called ontology. OWL is part of the Semantic Web stack (see Figure 2.1) and it is

complementary to XML, RDF and RDFS:

• XML provides a surface syntax for structured documents, but imposes no

semantic constraints on the meaning of these documents;

• RDF is a datamodel for resources and relations between them. It provides a

simple semantics for this datamodel;

• RDFS is a vocabulary for describing properties and classes of RDF resources,

with a semantics for generalisation-hierarchies of such properties and classes;

• OWL adds constructs for describing properties and classes: among others, re-

lations between classes (e.g. disjointness), cardinality (e.g. “exactly one”),

equality, richer typing of properties, characteristics of properties (e.g. sym-

metry), and enumerated classes.

5RDFs, W3C Recommendation https://www.w3.org/TR/rdf-schema/
6OWL, W3C Recommendation https://www.w3.org/TR/owl-ref/

https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/owl-ref/

20 Chapter 2. Background

2.2.4 SPARQL

SPARQL7 is a query language for retrieving and manipulating data store in RDF

format. Most forms of SPARQL queries contain a set of triple patterns called “basic

graph pattern”. Triple patterns are like RDF triples except that each of the subject,

predicate and object may be a variable (denoted by a question mark). A basic graph

pattern matches a subgraph of the RDF data when RDF terms from that subgraph

can be substituted with the variables of the pattern. For example, the following

SPARQL query retrieves pairs books authored by Tolstoy.

SELECT ?book WHERE {?book :author :Leo Tolstoy}

2.3 Ontologies

Historically ontology, listed as part of metaphysics, is the philosophical study of the

nature of being, becoming, existence, or reality, as well as the basic categories of

being and their relations. Ontology deals with questions concerning what entities

exist or can be said to exist, and how such entities can be grouped, related within a

hierarchy, and subdivided according to similarities and differences. While the term

ontology has been rather confined to the philosophical sphere in the recent past, it

has gained a specific role in a variety of fields of Computer Science, such as Artificial

Intelligence, Computational Linguistics, and Database Theory and Semantic Web.

In Computer Science the term loses part of its metaphysical background and, still

keeping a general expectation that the features of the model in an ontology should

closely resemble the real world, it is referred as a formal model consisting of a set

of types, properties, and relationship types aimed at modeling objects in a certain

domain or in the world. In early ’90s Gruber [97] gave an initial and widely accepted

definition:

An ontology is a formal, explicit specification of a shared conceptual-

ization. An ontology is a description (like a formal specification of a

7SPARQL, W3C Recommendation https://www.w3.org/TR/rdf-sparql-query/

https://www.w3.org/TR/rdf-sparql-query/

Chapter 2. Background 21

program) of the concepts and relationships that can formally exist for an

agent or a community of agents.

Accordingly, ontologies are used to encode a description of some world (actual,

possible, counterfactual, impossible, desired, etc.), for some specific purpose.

In the Semantic Web, ontologies have been used as a formalism to define the

logical backbone of the Web itself. The language used for designing ontologies in

the Web of Data is the Web Ontology Language (OWL). In the last decade there

has been a lot of research for investigating best practices for ontology design and

re-use in the Web of Data. Among the others the EU-FP7 NeOn project8 has

provided sound principles and guidelines for designing complex knowledge networks

called ontology networks. An ontology network is a set of interconnected ontologies.

According to [4], the interconnections can be defined in a variety of ways, such as

alignments, modularization based on owl:import axioms, and versioning. Ontology

networks enable modular ontology design in which each module conceptualizes a

specific domain and can be designed by using Ontology Design Patterns [88] and

pattern-based ontology design methodologies, such as eXtreme Desing [33].

2.3.1 Knowledge Management Frameworks for Social Ro-

bots

Ontologies and Semantic Web technologies can support the development of robotic

systems and applications that deal with knowledge representation, acquisition and

reasoning. Furthermore, Semantic Web standards enable the interlinking of local

robotic knowledge with available information and resources coming from the Web

of Data. This trend has also led to the creation of the IEEE RAS Ontologies for

Robotics and Automation Working Group (ORA WG), with the goal of developing

a core ontology and an associated methodology for knowledge representation and

reasoning in robotics and automation [171].

8http://www.neon-project.org/

http://www.neon-project.org/

22 Chapter 2. Background

In this direction, different frameworks have been proposed to model, manage

and make available heterogeneous knowledge for robotic systems and applications.

Focusing on service robots that operate in indoor environments through perception,

planning and action, the ontology-based unified robot knowledge framework (OUR-

K) [127] aims at supporting robot intelligence and inference methods by integrating

low-level perceptual and behavioural data with high-level knowledge concerning ob-

jects, semantic maps, tasks, and contexts. An ontology-based approach is also ad-

opted in the ORO knowledge management platform [123]. The platform stores and

processes knowledge represented according to the OpenRobots Common Sense On-

tology9, an OWL ontology based on the OpenCyc upper ontology and extended with

the definition of reference concepts for human-robot interaction. When deployed on

a robot, the knowledge base can be instantiated with a priori common-sense know-

ledge and is then used as a “semantic blackboard” where the robotic modules (such

as the perception module, the language processing module, the task planner and the

execution controller) can store the knowledge they produce and query it back.

Along the same path, research projects and initiatives, such as KnowRob10,

RoboEarth11 and RoboBrain12, go beyond local knowledge bases and, also with the

emergence of cloud-based robotics, propose Web-scale approaches. KnowRob [205,

206, 207] is a knowledge processing system and semantic framework for integrating

information from different sources, including encyclopedic knowledge, common-sense

knowledge, robot capabilities, task descriptions, environment models, and object de-

scriptions. Knowledge is represented and formally modeled according to a reference

upper ontology, defined using the Web Ontology Language (OWL). The system

supports different reasoning capabilities and provides interfaces for accessing and

querying the KnowRob ontology and knowledge base. Similarly, the RoboEarth

framework [208] provides a web-based knowledge base for robots to access and share

semantic representations of actions, object models and environments, augmented

9https://www.openrobots.org/wiki/oro-ontology
10http://knowrob.org/
11http://roboearth.ethz.ch/
12http://robobrain.me/

https://www.openrobots.org/wiki/oro-ontology
http://knowrob.org/
http://roboearth.ethz.ch/
http://robobrain.me/

Chapter 2. Background 23

with rule-based learning and reasoning capabilities. The RoboEarth knowledge base

relies on a reference ontology, as an extension of the KnowRob ontology to (i) repres-

ent actions and relate them in a temporal hierarchy; (ii) describe object models to

support recognition and articulation; and (iii) represent map-based environments.

An HTTP-based API enables robots to access the knowledge base for uploading,

searching and downloading information from and to their local knowledge bases.

Along the same path, the RoboBrain knowledge engine [186] aims at learning and

sharing knowledge gathered from different sources and existing knowledge bases,

including linguistic resources, such as WordNet, image databases, such as ImageNet,

and Wikipedia. Although the RoboBrain knowledge base does not explicitly adopt

ontologies and Semantic Web technologies, knowledge is represented in a graph

structure and stored in a graph database. A REST API enables robots to access

RoboBrain as-a-service, to provide and retrieve knowledge on the basis of a specific

query language.

The need to provide robots with a knowledge representation and management

framework able to handle knowledge from different sources (including external data

sources and knowledge bases) and support multiple tasks and applications has long

been considered in robotics. However, it is only in recent years that the potential

of ontology-based knowledge representation approaches and Semantic Web tech-

nologies has been considered to address the two aforementioned points in robotic

platforms.

2.4 Pattern-based Ontology Design

The notion of “pattern” has proved useful in design, as exemplified in diverse areas,

such as software engineering. Under the assumption that there exist classes of prob-

lems that can be solved by applying common solutions (as has been experienced

in software engineering), it is suggested to support reusability on the design side

specifically. To this end Ontology Design Patterns (ODPs) have been proposed as

modeling solutions to recurrent ontology design problems. ODPs are modeling com-

24 Chapter 2. Background

ponents that can be used as basic building blocks of an ontology network. eXtreme

Design (XD) is an ontology design methodology that supports the pattern-based

approach. We adopted XD as methodology for designing the MARIO Ontology

Network presented in Chapter 3 and we extensively reused ODPs. Sections 2.4.1

and 2.4.2 briefly introduce ODPs and XD, respectively.

2.4.1 Ontology Design Patterns

Ontology Design Patterns (ODPs) [88] is an emerging technology that favors the

reuse of encoded experiences and good practices. ODPs are modeling solutions to

solve recurrent ontology design problems. They can be of different types including:

(i) logical, which typically provide solutions for solving problems of expressivity

e.g., expressing n-ary relations in OWL; (ii) architectural, which describe the overall

shape of the ontology (either internal or external) that is convenient with respect to

a specific ontology-based task or application e.g. a certain DL family; (iii) content,

which are small ontologies that address a specific modeling issue, and can be directly

reused by importing them in the ontology under development e.g., representing roles

that people can play during certain time periods; (iv) presentation, which provide

good practices for e.g. naming conventions.

2.4.2 eXtreme Design

eXtreme Design (XD) [173, 33, 174] is a family of methods and associated tools,

based on the application, exploitation, and definition of ontology design patterns

(ODPs) for solving ontology development issues. XD principles are inspired by

those of the agile software methodology called eXtreme Programming (XP). The

main idea of agile software development is to be able to incorporate changes easily,

in any stage of the development. Instead of using a waterfall-like method, where

you first do all the analysis, then the design, the implementation and finally the

testing, the idea is to cut this process into small pieces, each containing all those

elements but only for a very small subset of the problem. XD is test-driven, and

Chapter 2. Background 25

Figure 2.2: An example of collected uses-story.

applies the divide-and-conquer approach as well as XP does. Also, XD adopts pair

design, as opposed to pair programming. The main principles of the XD method

can be summarised as follows:

• Customer involvement and feedback. The customer should be involved

in the ontology development and its representative should be aware of all parts

of the ontology project under development. Interaction with the customer rep-

resentative is key for favoring the explicit expression of the domain knowledge.

• Customer stories and Competency Questions. The ontology require-

ments and its tasks are described in terms of small stories by the customer

representative. Designers work on those small stories and, together with the

customer, transform them in the form of Competency Questions [98] (CQs).

CQs will be used through the whole development, and their definition is a key

phase as the designers have the challenge to help the customer in making expli-

cit as much implicit knowledge as possible. We asked all the partners involved

in the case study to provide their own stories. The template for providing the

stories is shown in Figure 2.2. The fields “Partner”, “Scriber”, “e-mail” were

26 Chapter 2. Background

used for asking further clarification about the story. The Title field helped

for a better understanding the main focus of the story. The “Priority” field

was used to choose the stories to treat first. The allowed values were High,

Medium and Low. “Depends on” allowed to specify a link between two stor-

ies. For example, if a story was too long, it could be split into two stories and

this field allowed one to express the dependency. The last field “Knowledge

area(s)” was used for associating the story with one or more knowledge areas

which the story belonged to. The customer stories collected together with the

resulting Competency Questions can be retrieved on-line13. Other compet-

ency questions have been extracted by analysing domain documents, such as

those used for effectuating a Comprehensive Geriatric Assessment (CGA) of a

patient.

• Content Pattern (CP) reuse and modular design. A development pro-

ject is characterised by two main sets: (i) the problem space composed of the

actual modelling issues that have to be addressed during the project which are

called “Local Use Case” (LUC); (ii) the solution space made up of reusable

modelling solutions, called “Global Use Case” (GUC), representing the prob-

lem that a certain ODP provides a solution for. If there is a CP’s GUC that

matches a LUC it has to be reused, otherwise a new module is created. An

analysis of the possible strategies for reusing CP is provided by [174].

• Collaboration and Integration. Collaboration and constant sharing of

knowledge is needed in a XD setting, in fact similar or even the same CQs and

sentences can be defined for different stories. When this happens, it means

that these stories can be modelled by reusing a set of shared CPs.

• Task-oriented design. The focus of the design is on that part of the domain

of knowledge under investigation that is needed in order to address the user

stories, and more generally, the tasks that the ontology is expected to address.

13http://etna.istc.cnr.it/mario/D5.1/.

http://etna.istc.cnr.it/mario/D5.1/

Chapter 2. Background 27

• Test-driven design. A new story can be treated only when all unit tests

associated with it have been passed. An ontology module developed for ad-

dressing a certain user story associated to a certain competency question, is

tested e.g. (i) by encoding in the ontology a sample set of facts based on the

user story, (ii) defining one or a set of SPARQL queries that formally encode

the competency question, (iii) associating each SPARQL query with the ex-

pected result, and (i) running the SPARQL queries against the ontology and

compare actual with expected results.

2.5 Ontology Matching

Among the various semantic technology proposed to handle heterogeneity Ontology

Matching [191] has proved to be an effective solution to automate integration of

distributed information sources. Ontology Matching (OM) finds correspondences

between semantically related entities of ontologies. These correspondences enable

several tasks such as ontology merging, query answering, or data translation. There

have been proposed several formalization of the matching problem, we follow the

formalization in [67] that provide a unified approach over the previous works. The

matching problem is the problem of finding an alignment between two ontologies. An

alignment is a set of 4-uple (e1, e2, r, n) where: (i) e1 and e2 are entities defined by the

first and the second ontology, respectively; (ii) r is a relation holding between e1 and

e2, e.g., equivalence, subsumption, disjointness; (iii) n is the confidence measuring

the likelihood that the relation holds.

2.6 Linguistic Linked Open Data Resources

Many resources belonging to different domains are now being published on-line using

Linked Data principles to provide easy access to structured data on web. This

includes many linguistic resources that are already a part of Linked Data, but made

available mainly for the purpose of being used by NLP applications.

28 Chapter 2. Background

Two of the most important linguistic linked open data resources are Word-

Net [145] and FrameNet [19]. They have already been formalised as semantic web

resources, e.g. in OntoWordNet [85], WordNet RDF [16], FrameNet RDF [153],

etc. FrameNet allows to represent textual resources in terms of Frame Semantics.

The usefulness of FrameNet is limited by its limited coverage, and non-standard

semantics. An evident solution would be to establish valid links between Frame-

Net and other lexical resources such as WordNet , VerbNet and BabelNet to create

wide-coverage and multi-lingual extensions of FrameNet. By overcoming these lim-

itations NLP-based applications such as question answering, machine reading and

understanding, etc. would eventually be improved. Within MARIO these were im-

portant requirements, hence we developed Framester (presented in Chapter 3): a

frame-based ontological resource acting as a hub between e.g. FrameNet, WordNet,

VerbNet, BabelNet, DBpedia, Yago, DOLCE-Zero, and leveraging this wealth of

links to create an interoperable predicate space formalised according to frame se-

mantics [75], and semiotics [80]. Data designed according to the predicates in the

predicate space created by Framester result to be more accessible and interoperable,

modulo alignments between specific entities or facts.

The closest resources to Framester are FrameBase [184] and Predicate Matrix

[116]. FrameBase aimed at aligning linked data to FrameNet frames, based on similar

assumptions as Framester’s: full-fledged formal semantics for frames, detour-based

extension for frame coverage, and rule-based lenses over linked data. However,

the coverage of FrameBase is limited to an automatically learnt extension (with

resulting inaccuracies) of FrameNet-WordNet mappings, and the alignment to linked

data schemas is performed manually. Anyway, Framester could be combined with

FrameBase (de)reification rules so that the two projects can mutually benefit from

their results.

Predicate Matrix is an alignment between predicates existing in FrameNet, Verb-

Net, WordNet, and PropBank. It does not assume a formal semantics, and its cov-

erage is limited to a subset of lexical senses from those resources. A RDF version of

Predicate Matrix has been created in order to add it to the Framester linked data

Chapter 2. Background 29

cloud, and (ongoing work) to check if those equivalences can be reused in semantic

web applications.

2.7 Common Sense Knowledge

Over the years, a number of projects aimed at generating common sense knowledge.

Regardless specific settings, the results of these projects can be seen an ontology

O =< T,A > consisting of T, a T-box (i.e. terminology box, also called schema or

vocabulary) and A is an A-box (assertion box). The outcome of these projects can be

informally classified on the basis of following criteria. (i) the process used to generate

knowledge (e.g. automatic or with humans in the loop); (ii) the breadth of the

knowledge produced (i.e. universal or domain specific); (iii) the formalism used to

represent knowledge; (iv) the density of the knowledge (i.e. the number of assertion

per entity); (v) the richness (the variety of types and relations) and the depth (the

number of inheritance relations) of the t-box; (vi) the level of interoperability with

other datasets (i.e. the linkage of the ontology at both intensional and extensional

level); (vii) the metadata (i.e. provenance and validity of stated facts).

Among existing projects we overview strengths, weaknesses and results of DB-

pedia, ConceptNet, NELL. DBpedia14 [31] is a very popular dataset automatically

obtained from Wikipedia infoboxes. DBpedia is the de-facto main hub of the Web

of Data containing 4,58 milion entities of encyclopedic nature. However, some weak-

nesses of DBpedia are the scarcity of relations among entities and the limited depth

of the vocabulary. In fact, the DBPedia ontology is induced from Wikipedia and is

only partially aligned with existing formal theories (e.g. foundational ontologies).

These drawbacks make hard answer queries such that “what knives are used for?”,

“give me all physical entities”.

ConceptNet15 [130, 197, 196] is a large scale multilingual semantic network that

integrates knowledge from (i) Open Mind Common Sense project [193, 194] who ran

14DBpedia, http://wiki.dbpedia.org/
15ConceptNet, http://conceptnet.io/

http://wiki.dbpedia.org/
http://conceptnet.io/

30 Chapter 2. Background

a web site that collected common sense facts from users; (ii) existing datasets such

as DBpedia, Wiktionary, Open Multilingual WordNet, OpenCyc [125] and Umbel;

(iii) Verbosity, a game with a purpose that learns common sense knowledge from

people’s intuitive word associations. ConceptNet defines thirty lexical and common

sense relations among its entities such as: “antonym”, “synonym”, “is used for”

(that associates an object with what is used for, e.g. “bridge” and “cross water”),

“at location” (that associates an object with its typical locations, “butter” and

“refrigerator”), “capable of” (associating an object with what it can do, e.g. “knife”

and “cut”) etc. NELL16 [45, 148] is an ongoing project aiming at learning large

semantic network (similar to ConceptNet) with a never ending approach. The main

drawback of ConceptNet and NELL is the inherent ambiguity of their concepts

(e.g. “apple” is both a fruit and a computer company that can be used both for

“eating” and for “computing”, and it is controlled by “Steve Jobs”). ConceptNet

and NELL provide information about provenance and confidence of facts, but they

miss contextual conditions that make the facts true. Moreover, it is not clear how

these projects select the resources to extract the knowledge from.

16NELL, http://rtw.ml.cmu.edu/rtw/

http://rtw.ml.cmu.edu/rtw/

Chapter 3

An Ontology Network for Social Robots

in Assistive Context

In order to interact with people showing human-like features, a social robot must be

provided with a human-like background knowledge. Furthermore, when employed

in socially assistive context, robots continuously perform knowledge-intensive tasks

aimed at (i) assisting their users with their daily activities (e.g. drive the patients to

a specific location or identifying searched objects); (ii) helping nurses, physician and

familiars in the healthcare process of people with dementia (e.g. collecting inform-

ation for assessing patient’s cognitive status). Determining what kind of knowledge

social robots need in socially assistive context and how to organize their knowledge

is the goal related to research question RQ1 (cf. Section 1.1) which is investigated

in this chapter. To this end, the chapter presents a set of interconnected and mod-

ularised ontologies, i.e. the MARIO Ontology Network (MON), which are meant to

model all knowledge areas that are relevant for robots’ activities in socially assistive

contexts. This ontology network defines reference models for representing and struc-

turing the knowledge processed by the robot. MON provides a robot with the means

for creating, organizing, querying and reasoning over a background knowledge. The

robot background knowledge consists of: lexical knowledge (e.g. natural language

lexica and linguistic frames), domain knowledge (e.g. users related information),

environmental knowledge (e.g. physical locations and maps), sensor knowledge (e.g.

RFID, life measures), and metadata knowledge (e.g. entity tagging). The Ontology

32 Chapter 3. An Ontology Network for Social Robots in Assistive Context

Network, named MARIO Ontology Network (MON), is composed of several modu-

larised ontologies that cover different knowledge areas that are relevant to the tasks

of supporting people affected by dementia. The knowledge areas and the ontology

modules were identified by analysing the use cases that emerged from the MARIO

project (cf. Section 1.3), These uses cases mainly describe actions and behaviors

featuring the MARIO robot. Nevertheless, they also provide a detailed descrip-

tions about the nature of the knowledge that the robot has to deal with in order

to behave. The MON consists of 53 modules covering 12 knowledge areas. The

Ontology Network has been developed following the eXtreme Design methodology

(introduced in Section 2.4.2) and by extensively reusing Ontology Design Patterns

(cf. Section 2.4.1). The rest of the Section is organized as follows. Section 3.1

describes the ontology development process, Section 3.2 presents the MON’s know-

ledge areas and Section 3.3 outlines the most innovative ontology modules of the

Ontology Network.

3.1 Design Methodology

The MARIO Ontology Network (MON) has been designed by following best prac-

tices and pattern-based ontology engineering methods aimed at extensively re-using

Ontology Design Patterns (ODPs) [88]. In particular, the MON has been developed

following the eXtreme Design (XD) [33, 173] methodology (cf. Section 2.4.2). This

methodology has been extended in order to identify the knowledge areas that are

relevant to a companion robot (cf. 3.2) and to provide ontology engineers with

guidelines for re-using existing ontologies (cf. 3.1.1). Section 3.1.2 illustrates how

eXtreme Design has been configured in for the development of MON.

3.1.1 Guidelines for Ontology Re-use

Linked Data is rapidly increasing, especially in the public sector where opening

data is becoming a consolidated institutional activity. However, the importance of

Chapter 3. An Ontology Network for Social Robots in Assistive Context 33

providing Linked Data with a high quality ontology modeling is still far from be-

ing fully perceived. The result is that Linked Data are mostly modeled by directly

reusing individual classes and properties defined in external ontologies, overlooking

the possible risks caused by such a practice. Although ontology reuse is a recom-

mended practice in most ontology design methodologies [192], a standardization of

ontology reuse practices is still missing. Most literature on ontology reuse is focused

on the challenging issue of ontology selection, while our perspective is on how to

implement reuse once the selection finalized. This practice may compromise the

level of semantic interoperability that can be achieved. Therefore, the need of clear

guidelines for ontology reuse arise.

In [174] we provided a series of guidelines for ontology reuse in the context of

ontology projects that exhibit these characteristics: (i) there is no ontology that

addresses all or most of the requirements of the local ontology project; (ii) the

ontology under development is meant to be used as a reference ontology for a certain

domain; (iii) there is the willingness to comply with existing standards. These

guidelines can be integrated into the tasks 7 and 8 of the XD workflow (cf. Figure 3.1

and Section 2.4.2).

Ontology re-use models can be classified based on (i) the type of reused ontology

(e.g. foundational, top-level, ontology design patterns, domain ontologies); (ii) the

type of reused ontology fragment (e.g. individual entities, modules, ontology design

patterns, arbitrary fragments); (iii) the amount of reused axioms (e.g. import of

all axioms, of only axioms in a given neighbourhood of an entity, of no axioms);

(iv) the alignment policy (e.g. direct reuse of entities, reuse via equivalence or

subsumption relations such as owl:equivalentClass and rdfs:subClassOf). The

only characteristic that all these models share is to reuse entities with the same

logical type as they were defined (e.g. an entity defined as owl:Class in an ontology

is commonly reused as such).

We identify the following possible approaches to ontology reuse.

34 Chapter 3. An Ontology Network for Social Robots in Assistive Context

Figure 3.1: The eXtreme Design workflow as extended in [174]. The highlighted

tasks involve the guidelines for ontology reuse.

Direct Reuse of Individual Entities. This approach consists of directly intro-

ducing individual entities of external ontologies in local axioms. This practice is

very common in the Linked Data community, however it is a routine, not a good

practice, at all. It is essentially driven by the intuition of the semantics of concepts

based on their names, instead of their axioms. In this case, the risk that the formal

semantics of the reused entities is incompatible with the intended semantics to be

represented is rather high. Moreover, with this practice a strong dependency of

the local ontology with all the reused ontologies is created. This dependency may

put at risk the sustainability and stability of the local ontology and its associated

knowledge bases: if a change in the external ontology introduces incoherences in the

local one, they must be dealt with a redesign process and consequential change in

the ontology signature.

Chapter 3. An Ontology Network for Social Robots in Assistive Context 35

Indirect Reuse of Ontology Modules and Alignments. With this approach,

the modeling of some concepts and relations, which are relevant for the domain but

applicable to more general scopes, is delegated to external ontologies by means of

ontology module reuse. An ontology module is a fragment that may be identified

as providing a solution to one or more specific requirements of the local ontology.

For example, let us consider an external ontology modeling the participation of

an individual (e.g. through a property ex:isInvolvedIn) to an event (e.g. a class

ex:Event). If the local ontology needs to specify a particular involvement in an event

(e.g. lo:hosted) it should specialize (it indirectly reuses) the relation of the external

one (i.e. ex:isInvolvedIn). The fragment of the external ontology identified as

relevant for the local ontology may be communicated in some usage documentation

provided with the ontology. Nevertheless, it is difficult to provide third parties with

a formal indication of the fragment that was meant to be relevant. This may lead

to high heterogeneity in the usage of external fragments in data modeled through

the local ontology. As for ontology sustainability, when a change in the external

ontology provokes possible incoherences, the redesign process would be easier dealt

with as compared to the previous approach.

Direct Reuse of Ontology Design Patterns and Alignments. If the frag-

ment is clearly and formally identified, since it is embedded in a dedicated ontology,

some of the previous remarked issues can be mitigated. Let us consider that the

earlier example class ex:Event is defined in an external ontology that implements a

specific ODP. In this case, a scenario in which a redesign process must be undertaken

may be less frequent. In fact, ODPs are developed for reuse purposes and thus they

are unlikely to change. In the light of these observations, it is recommended to reuse

ODPs in contrast to individual entities.

Indirect Reuse of Ontology Design Patterns and Alignments. ODPs are

used as templates. This approach is an extension of the previous one. At the same

time, the ontology guarantees interoperability by keeping the appropriate align-

36 Chapter 3. An Ontology Network for Social Robots in Assistive Context

ments with the external ODPs, and provides extensions that satisfy more specific

requirements. The alignment axioms may be published separately from the core of

the ontology. With this type of reuse, the potential impact of possible changes in

the external ODP is minimised. In fact, even if incoherences show after a change in

the external ODP (which is rather unlikely to happen) the redesign process would

be very simple. The ontology signature and axioms would remain unchanged, as

incoherences would be resolved by simply removing or revising the alignment axioms.

Reuse method Fragment Advantages Disadvantages

Direct

Re-

use

Individual

Entity

Linked data practise Semantic ambiguity,

difficulty in verifying

the consistency among

the diverse reused

concepts, dependency

on external ontolo-

gies, instability and

unsustainability

Indirect

Re-

use

Ontology

Module

Stability and sustain-

ability of domain re-

lations and concepts,

modularity, interoper-

ability

Possible heterogeneity

in module usage, de-

pendency on external

modules, instability

and unsustainability

limited to external

modules

Continued on next page

Table 3.1: Advantages and Disadvantages of different approaches to ontology reuse.

Chapter 3. An Ontology Network for Social Robots in Assistive Context 37

Reuse method Fragment Advantages Disadvantages

Direct

Re-

use

Ontology

Design

Pattern

Stability and sus-

tainability of domain

relations and concepts,

modularity, interoper-

ability, easier redesign

in case of external

changes

Dependency on ex-

ternal modules, mitig-

ated risk of instability

and unsustainability

limited to external

ODPs

Indirect

Re-

use

Ontology

Design

Pattern

Stability and sustain-

ability of domain re-

lations and concepts,

modularity, interoper-

ability, dependency on

external modules lim-

ited to alignment ax-

ioms

Slightly increased

design effort for mould-

ing ODPs

Table 3.1: Advantages and Disadvantages of different approaches to ontology reuse.

Table 3.1 summarizes the advantages and disadvantages of the discussed four

approaches. In general, among all of them, the recommended one is the fourth

approach: in the situation of incoherence raised by a change in an external reused

ontology, it guarantees the easiest maintenance. Besides the development of MON,

we applied these guidelines in two Linked Open Data projects of the e-government

sector. The first project was developed in the context of cultural heritage, in col-

laboration with the Italian Ministry of Cultural Heritage and Activities and Tour-

ism [131]; the second was carried out within the agriculture domain, in collaboration

with the Italian Ministry of Agriculture [165].

38 Chapter 3. An Ontology Network for Social Robots in Assistive Context

3.1.2 MARIO Ontology Network Development Process

The first task of the ontology network development process was identifying the

knowledge areas that the ontology has to cover. This task is ideally included in the

first step of eXtreme Design process which aims at providing “the ontology design

team with an overview of the problem from a domain expert perspective, its scope,

and agree on initial terminology” (cf. [172]). The knowledge areas were identified

by analyzing the use cases that emerged from the MARIO Project [29]. Section 3.2

describes the MON knowledge areas and their connection with MARIO’s use cases.

As in the eXtreme Desing methodology, the ontology requirements were de-

scribed in terms of small stories provided by the domain experts. The partners of

the MARIO consortium acted as domain experts and provided the stories. The

story template is shown in Figure 3.2. The fields “Partner”, “Scriber”, “e-mail”

were used for asking possible further clarifications about the story. The “Title” field

helped for a better understanding the main focus of the story. The “Priority” was

used to choose the stories to treat first. The allowed priority values were “High”,

“Medium” and “Low”. “Depends on” allowed to specify a link between two stories.

For example, if a story was too long, it could be split into two stories and this field

allowed one to express the dependency. The domain experts were recommended to

keep the stories as short as possible and to use the dependency relation in case of

long stories. The last field “Knowledge area(s)” was used for associating the story

with one or more knowledge areas which the story belonged to.

Ontology Designers worked on those small stories and, together with the cus-

tomer, transform them in the form of Competency Questions (CQs) [98]. Other

competency questions have been extracted by analysing domain documents, such

as those used for performing a Comprehensive Geriatric Assessment (CGA) of a

patient. The customer stories collected together with the resulting Competency

Questions can be retrieved on-line1.

Following the eXtreme Design principles, the ontology requirements were im-

plemented in a networked ontology consisting of 53 ontology modules covering

1MON customer stories, http://etna.istc.cnr.it/mario/D5.1/stories/.

http://etna.istc.cnr.it/mario/D5.1/stories/

Chapter 3. An Ontology Network for Social Robots in Assistive Context 39

Figure 3.2: The template of the user stories provided by the customer represent-

atives.

12 knowledge areas. Knowledge areas and ontology modules were formalized in

OWL ontology and are available on-line at 2. Each ontology module has been de-

veloped in a iterative and incremental way. The use of these ontologies within the

MARIO’s abilities made emerge new requirements that were continuously addressed

by the MARIO Ontology Network. This practice reflects the “Embracing Changes”

paradigm which is one of the main principles of the Agile development on which

eXtreme Design is based on.

Figure 3.3 provides an overview of the whole ontology network (detailed figures

on portions of the network are provided in the next section). The nodes of the net-

work are ontologies belonging to MON whereas the arrows represent owl:imports

axioms holding among them. The entry point of the Ontology Network is the on-

tology mario.owl3. This ontology imports all the knowledge areas, which, in turn,

import the ontology modules they contain.

For the development of the MON, we configured eXtreme Design in order to

2MARIO Ontology Network, http://www.ontologydesignpatterns.org/ont/mario/
3MON entry point, http://www.ontologydesignpatterns.org/ont/mario/mario.owl

http://www.ontologydesignpatterns.org/ont/mario/
http://www.ontologydesignpatterns.org/ont/mario/mario.owl

40 Chapter 3. An Ontology Network for Social Robots in Assistive Context

Figure 3.3: The network of ontologies constituting the MARIO Ontology Network.

have an indirect re-use of Ontology Design Patterns (ODPs) and alignments. On-

tology Design Patterns are used as templates for designing the local ontology, and

alignments axioms are provided in order to bind the local entities to the external

ones. The alignment axioms are published separately from the core of the ontology4.

At the same time, this strategy guarantees interoperability by defining appropriate

alignments with the external ODPs, and allows the implementations of extensions

for satisfying more specific requirements. With this type of re-use, the potential

impact of possible changes in the external ODP is minimised. In fact, even if inco-

herences or changes occur in the external ODP (which is rather unlikely to happen)

then the redesign process would be very simple. The ontology signature and axioms

would remain unchanged, as incoherences or changes would be resolved by simply

4 http://etna.istc.cnr.it/mario/ont/alignments.ttl

http://etna.istc.cnr.it/mario/ont/alignments.ttl

Chapter 3. An Ontology Network for Social Robots in Assistive Context 41

removing or revising the alignment axioms.

3.2 Knowledge Areas

The MARIO Ontology Network (MON) consists of several ontologies that cover

different knowledge areas that are relevant for robot’s tasks. The knowledge areas

were identified by analysing the use cases that emerged from the system specification

carried out in the context of the MARIO Project [29]. These uses cases describe

actions and behaviors featuring the MARIO robot. Nevertheless, they also provide

us with detailed description about the nature of knowledge the robot should deal

with. Hence, we highlighted, for each use case, the knowledge domains required

to address such a use case. This process was driven by the identification of the

competency questions [98] from the textual descriptions of the use cases. Thus, the

knowledge domains emerged from the competency questions we collected, i.e. the

knowledge domains identify the topics involved by competency questions. Finally,

we gathered a set of top-level knowledge areas by iteratively generalizing the know-

ledge domains. This method is similar to the Gronded Theory [199], which is often

used in Social Sciences to extract relevant concepts from unstructured corpora of

natural language resources (e.g., texts, interviews, or questionnaires). This method

allowed us to identify 12 knowledge areas, listed below together with diagram rep-

resenting the portion of MON included in the area.

1. Knowledge Area. Personal Sphere.

Description. People information, information about relationship among people,

contacts etc.

Use Cases. UC3.1.1.5 Capture and load personal data for the use, UC3.1.1.12

Set up users, UC3.1.3.2 Assist the user with information about people, UC3.1.6.2

CGA: Question User about Family.

2. Knowledge Area. Life events and patterns.

42 Chapter 3. An Ontology Network for Social Robots in Assistive Context

Description. Information about everyday events, memories, scheduling, plans

etc.

Use Cases. UC3.1.3.1 Add Events, UC3.1.3.4 Help the user carry out a

sequence of actions, UC3.1.3.5 Inform the user about events, UC3.1.3.6 Sug-

gest things the user can do, UC3.1.6.3 CGA: Question user about Daily Living

activity, UC3.1.6.8 Monitor the daily pattern of the user.

3. Knowledge Area. Social and multimedia content.

Description. Online social network community, multimedia content such as

photos, videos, movies, documents.

Use Cases. UC3.1.1.v1 Choose and pre-load Games for the User, UC3.1.1.

2 Choose and pre-load Music for the User, UC3.1.1.3 Choose and pre-load

Videos for the User, UC3.1.2.2 Play Music for the User, UC3.1.2.3 Play a

Game with the User, UC3.1.2.4 Read a text to the User, UC3.1.2.5 Show a

video to the User.

4. Knowledge Area. Health sphere.

Description. Information about living patterns, health patterns, vital signs,

anything related to CGA and MPI.

Chapter 3. An Ontology Network for Social Robots in Assistive Context 43

Use Cases. UC3.1.6.1 CGA: Assess the user when using a Telephone,

UC3.1.6.2 CGA: Question User about Family, UC3.1.6.3 CGA: Question user

about Daily Living activity, UC3.1.6.4 Question User to Establish Emotional

State, UC3.1.6.5 Carry out a CGA assessment on the user, UC3.1.6.6 Gener-

ate Health reports for the care staff, UC3.1.6.7 Monitor the Health of the user,

UC3.1.6.8 Monitor the daily pattern of the user, UC3.1.6.9 Record where the

user goes and what they do during the day, UC3.1.8.1 Ask the user a series of

questions to establish facts about them, or examine their heath or how they

are feeling.

5. Knowledge Area. Environment.

44 Chapter 3. An Ontology Network for Social Robots in Assistive Context

Description. Information about rooms, furnitures, objects etc.

Use Cases. UC3.1.1.8 Name Locations and rooms on the map, UC3.1.1.

11 Map Operating Environment, UC3.1.4.1 Approach the user, UC3.1.4.2

Identify the User in the Immediate Area, UC3.1.4.3 Search for the User in

the Operating Environment, UC3.1.6.9 Record where the user goes and what

they do during the day.

6. Knowledge Area. Emotional sphere.

Description. Information about emotions, sentiments, interests, opinions re-

lated to people etc.

Use Cases. UC3.1.6.4 Question User to Establish Emotional State, UC3.1.7.3

Identify and remember what the user likes, UC3.1.7.4 Show the User some

items from the generic reminiscence store that match their era, UC3.1.7.5

Show the User some items from their personal reminiscence store, UC3.1.8.1

Ask the user a series of questions to establish facts about them, or examine

their heath or how they are feeling.

7. Knowledge Area. Open knowledge.

Description. This area encloses unforeseen knowledge retrieved from web

(e.g. web sites, news articles etc.) or extracted from the dialogue with users.

This knowledge area provides the robot with the means for treating unexpected

knowledge.

Use Cases. UC3.1.3.5 Inform the user about events, UC3.1.3.6 Suggest

Chapter 3. An Ontology Network for Social Robots in Assistive Context 45

things the user can do, UC3.1.8.1 Ask the user a series of questions to establish

facts about them, or examine their heath or how they are feeling.

8. Knowledge Area. Regulatory sphere.

Description. Information about

norms, rules, social habits etc. Use Cases. UC3.1.3.4 Help the user carry

out a sequence of actions, UC3.1.3.6 Suggest things the user can do.

9. Knowledge Area. Proprioception.

Description. Information about MARIO abilities, MARIO functionalities,

applications MARIO is able to run, actions MARIO is able to do etc.

Use Cases. This knowledge area is transversal to all the use cases

10. Knowledge Area. Spatio-temporal data.

Description. Information about spatio-temporal data.

Use Cases. This knowledge area is transversal to all the use cases

11. Knowledge Area. Provenance.

Description. Information about provenance and validity of facts.

Use Cases. This knowledge area is transversal to all the use cases

46 Chapter 3. An Ontology Network for Social Robots in Assistive Context

12. Knowledge Area. Lexical-linguistic data.

Description. Data for natural language processing.

Use Cases. This knowledge area is transversal to all the use cases

3.3 Ontology Modules

In this section we describe the ontology modules composing the MARIO Ontology

Network.

3.3.1 Affordance Ontology

In the design of cognitive agents like robots, behaviour selection (also called beha-

viour arbitration) is the process of deciding which action to execute at each point

of time. For the sake of simplicity, most implemented systems use a built-in fixed

priority ordering of behaviours, i.e. the agent’s control strategy is embedded into

a collection of preprogrammed condition-action pairs. This strategy, called purely

reactive, has proven effective for a variety of problems that can be completely spe-

cified at design-time [140]. However, it is inflexible at run-time due to its inability to

store new information in order to adapt the robot’s behaviour on the basis of its ex-

perience. Moreover, the burden of predicting all possible input states and choosing

the corresponding output actions is completely left to the designer.

Behaviour-based approaches to action selection can be considered as an exten-

sion of purely reactive strategy. These approaches are related to the concept of

affordance. The notion of affordance has been introduced by Gibson [91] who de-

vised a theory of how animals perceive opportunities for action. Gibson called these

Chapter 3. An Ontology Network for Social Robots in Assistive Context 47

opportunity affordance. He suggested that the environment offers the agents (people

or animals) opportunities for action. For instance, a door can have the affordance

of “openability”. These action opportunities are latent in the environment and in-

dependent from individual’s ability to recognize them, but affordances are always

dependent on agent’s capability. For example, to a thief an open window can afford

the “steal” action, but not so to a waitress who may simply be afforded by the

“close” action if outside the temperature is too cold.

In this section we present the Affordance Ontology Design Pattern (ODP) that

extends the classical notion of affordance, which suggests that the physical objects

(e.g., a door) offer the opportunity of performing an action (e.g., open). In fact, our

ODP is designed by relying on the assumption that, not only physical objects, but

also complex situations (e.g., the user want to listen to some music) afford actions

(e.g., play music). A complex situation can be seen as the fullfilment at a certain

time of certain conditions. These conditions may involve temporal aspects (e.g.

lunchtime may afford the task remember the user to take the pills), the perception

of certain physical objects, the receiving of a command (e.g. I want to listen to some

music), or, even the existence of certain state-of-affairs (e.g. the situation the user

is sitting on a chair for a long while may afford the task entertain the user).

Related Work. There exist few examples of ontologies conceptualising the idea

of affordances. In literature, the notion of affordance has been seen either as the

relation between the environment and an agent [198], or as qualities of objects in

the environment taken with reference to an observer [159, 158, 190]. Our approach

is closer to the characterisation proposed by Stoffregen [198], albeit we abstract the

notion environment to a more general concept of situation as conceived by Gangemi

and Mika [84]. Namely, a situation embeds all the environment’s characteristics per-

ceived by the robot and possibly other conditions (e.g. involving time, the receiving

of a commands etc.).

48 Chapter 3. An Ontology Network for Social Robots in Assistive Context

aff:affordanceStrength xsd:double

aff:Affordance

aff:Situation

action:Task

aff:hasTask

1

dul:Situation

dul:Task

aff:satifies

aff:Frame

aff:holds

1

aff:isHeldBy

time:TemporalEntity

time:atTime

Figure 3.4: The diagram of the Affordance ontology.

ID Competency question

CQ1 Which is the strength of an Affordance?

CQ2 Which tasks are afforded in a certain situation?

CQ3 How should an agent behave in a certain situation?

CQ4 Which are the parameters involved in certain task?

Table 3.2: Competency questions answered by the Affordance ODP.

Module overview. The proposed pattern relies on the Descriptions and Situ-

ations ODP5 [84], combined with a frame-based representation scheme [153]. Table 3.2

reports the competency questions [98] that drove the design of the Affordance ODP.

Figure 3.4 shows the UML class diagram of the ontology. The base namespace is

associated with the value http://www.ontologydesignpatterns.org/ont/mario/

affordance.owl#. The page of the proposed pattern as submitted to the ontology-

designpatterns.org portal is http://ontologydesignpatterns.org/wiki/Submissions:Affordance.

Affordances are represented as individuals of the class Affordance, which is

modelled as a n-ary relation connecting:

• A class of situations that represents states of the world (i.e., any individual of

5Description and Situation ODP http://ontologydesignpatterns.org/wiki/Submissions:

DescriptionAndSituation

http://ontologydesignpatterns.org/wiki/Submissions:Affordance
http://ontologydesignpatterns.org/wiki/Submissions:DescriptionAndSituation
http://ontologydesignpatterns.org/wiki/Submissions:DescriptionAndSituation

Chapter 3. An Ontology Network for Social Robots in Assistive Context 49

the class Frame). This relation is expressed by means of the object property

holds;

• An agent’s behavior (aka a task), which is any individual of the class action:

Behavior. This relation is expressed by the object property hasBehavior.

• A quantity that indicates how much a behavior is relevant for the occur-

rence of a certain frame. This relation is expressed by the datatype property

affordanceStrength, whose range is xsd:double.

According to [89], the intended meaning of a frame (represented in our ODP

by the class Frame) can be summarised as a small-sized and richly interconnected

structure, used to organize our knowledge, as well as to interpret, process or anticip-

ate information. Frames identify classes of situations and have been investigated in

linguistics by Fillmore [75], in AI by Minsky [147], and more recenty in the Semantic

Web [89, 153]. We modelled the class Frame as a sub-class of framester:Frame6,

which is a class re-used from the Framester Ontology [81]. framester:Frame ex-

tends the class fn:Frame7 of the the OWL version [153] of FrameNet [19].

Situations are states of the world fulfilling certain conditions. These conditions

may involve: temporal aspects, the perception of physical entities, the receiving of

a command or the existence of certain state-of-affairs. Following the Description

and Situation ODP we made a basic distinction, between a Frame (or description)

and a Situation, which is a frame occurence. The class Situation is modelled as

sub-class of the class dul:Situation8 that is re-used from DOLCE Ultra-lite [83].

Any individual of Situation is modelled as a time indexed situation, i.e., a state

of the world anchored to a certain time point (e.g. at 11am the user expresses

the willingness to listen to jazz music). We re-used the time-indexed situation

6The prefix framester: stands for the namespace https://w3id.org/framester/schema/.
7The prefix fn: stands for the namespace http://www.ontologydesignpatterns.org/ont/

framenet/tbox/.
8The prefix dul: stands for the namespace http://www.ontologydesignpatterns.org/ont/DUL.

owl#.

https://w3id.org/framester/schema/
http://www.ontologydesignpatterns.org/ont/framenet/tbox/
http://www.ontologydesignpatterns.org/ont/framenet/tbox/
http://www.ontologydesignpatterns.org/ont/DUL.owl#
http://www.ontologydesignpatterns.org/ont/DUL.owl#

50 Chapter 3. An Ontology Network for Social Robots in Assistive Context

ODP9 for modelling time constraints for situations. Hence, a Situation is related

to time:TemporalEntity10 that allows to represent the notion of time either as

a time interval (i.e., any individual of the class time:TimeInterval), which has

a start and an end instant, or an instant itself (i.e., any individual of the class

time:Instant) that is associated with temporal values by means of the datatype

property time:inXSDDataTime whose range is xsd:dateTime11.

Our ODP models agent’s behaviours as tasks. Those tasks are represented as

individuals of the class action:Behavior that can be parameterised by specific

parameters represented as individuals of the class BehaviorParameter. The re-

larions between tasks and task parameters are expressed by the object property

hasParameter. For example, a certain task “Play music” can be associated with a

parameter “Jazz” that specifies the genre of the music to play.

Behaviours are always executed by actions. An action is represented as an indi-

vidual of the class action:Action and can expect the execution of multiple tasks.

The association between tasks and actions is represended by the object property

action:executes. This design reflects the way actions and tasks are modelled in

DOLCE. Hence, the classes action:Action and action:Behavior are represented

as sub-classes of dul:Action and dul:Task, respectively.

Actions are performed by agents. An agent is represented as an individual of

the class action:Agent, which in turn is designed to be sub-class of dul:Agent.

The relation between an action and an agent is expressed by the object property

action:byAgent.

Usage Scenario. The affordance, as introduced by Gibson [91], has been invest-

igated in robotics in the context of behaviour-based approaches to action selection.

We are experimenting with behaviour-based approaches in MARIO. To the best of

our knowledge this is the first attempt to formalise the notion of affordance as an

9http://www.ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl.
10The prefix time: stands for the namespace http://www.ontologydesignpatterns.org/ont/

mario/time.owl#.
11The prefix xsd: stands for the namespace http://www.w3.org/2001/XMLSchema#.

http://www.ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl
http://www.ontologydesignpatterns.org/ont/mario/time.owl#
http://www.ontologydesignpatterns.org/ont/mario/time.owl#
http://www.w3.org/2001/XMLSchema#

Chapter 3. An Ontology Network for Social Robots in Assistive Context 51

The user wants to
listen to some

music

The battery level
is critical Recharge

Play Music10

11

(a)

The user wants to
listen to some

music

The battery level
is critical Recharge

Play Music10

1

-10

(b)

Figure 3.5: Two equivalent action-selection schemes.

Ontology Design Pattern and to use it in the context of behaviour-based robotics.

In fact, MARIO uses a behaviour-based approach to action selection which relies

on both the notion of affordance devised by Gibson [91] and the proposal of Pattie

Maes [136]. MARIO exploits the Affordance ODP for dynamically decide which

action to perform in specific situations.

Figure 3.5 shows a simple example scenario. This scenario is about two alternat-

ive configurations of an affordance model (i.e., Figures 3.5a and 3.5b, respectively)

of a cognitive agent (i.e., the MARIO robot in our case). Both configurations are

composed of associations of known frames (represented as ovals) with some actions

(represented as rectangles) that the agent can perform to react to such situation de-

scriptions. The associations are weighted relations that convey affordance strengths.

A configuration is determined by the recognition of some situation (i.e., a frame oc-

curence) by the agent that satisfies a known frame. The first configuration (i.e.,

Figure 3.5a) comes from the recognition of two distinct and concurrent situations,

e.g., (i) the patient asks the robot to play her favourite music; (ii) and the robot

battery status is at 1%. In this configuration the robot is caused to prefer to re-

charge its battery instead of playing some music. In fact, the affordance strength

with value 11 and associated with the battery level frame is greater than the afford-

ance strength with value 10 associated with the play music action. It is worth noting

that the second configuration (i.e., Figure 3.5b) leads to the same effect, namely,

the agent react by performing the recharge action. In fact, when both situations

contemporary hold, the negative affordance strength of the second situation on play

52 Chapter 3. An Ontology Network for Social Robots in Assistive Context

music nullifies the affordance strength of the first one. As a consequence, the agent

chooses to perform recharge which results to be the action with highest affordance

value. The following RDF triples (in Frame 3.1), serialised as TURTLE, model the

configuration represented in Figure 3.5b according to the Affordance ODP.

: UserWantsToListenToSomeMusic a a f f : Frame ;

fn : hasFrameElement : genre , : user .

: genre a fn : FrameElement , a f f : BehaviorParameter .

: Ba t t e ry InCr i t a lLeve l a a f f : Frame ;

fn : hasFrameElement : batteryLeve l , : agent .

: ba t t e ryLeve l a fn : FrameElement .

: agent a fn : FrameElement .

: user a fn : FrameElement .

: PlayMusic a ac t i on : Behavior ;

a f f : hasParameter : genre .

: Recharge a a f f : Behavior .

: a f f o rdanceP layMus i cBat t e ryCr i t i c a l a a f f : Affodance ;

a f f : a f f o rdanceSt r ength ”−10”ˆˆxsd : double ;

a f f : ho lds : Ba t t e ry InCr i t a lLeve l ;

a f f : hasBehavior : PlayMusic .

: affordancePlayMusicUserWantsToListenToSomeMusic a a f f : Affodance ;

a f f : a f f o rdanceSt r ength ”10”ˆˆ xsd : double ;

a f f : ho lds : UserWantsToListenToSomeMusic ;

a f f : hasBehavior : PlayMusic .

: a f f o rdanceRecha rgeBat t e ryCr i t i c a l a a f f : Affodance ;

a f f : a f f o rdanceSt r ength ”1”ˆˆ xsd : double ;

Chapter 3. An Ontology Network for Social Robots in Assistive Context 53

a f f : ho lds : Ba t t e ry InCr i t a lLeve l ;

a f f : hasBehavior : Recharge .

: s i t 1 a a f f : S i t u a t i o n ;

: user : Freddy ;

: genre : Jazz ;

time : atTime : Time1 ;

dul : s a t i s f i e s : UserWantsToListenToSomeMusic .

: s i t 2 a a f f : S i t u a t i o n ;

: ba t t e ryLeve l “1 ’ ’ ˆˆ xsd : i n t e g e r ;

: agent :MARIO ;

time : atTime : Time1 ;

dul : s a t i s f i e s : Ba t t e ry InCr i t a lLeve l .

: actRechargeAtTime1 a ac t i on : Action ;

ac t i on : byAgent :MARIO ;

ac t i on : execute s : Ba t t e ry InCr i t a lLeve l ;

time : atTime : Time1 .

Frame 3.1: An example of usage of the Affordance ontology serialized in TURTLE

language

:UserWantsToListenToSomeMusic represents the frame where a :user request to

listen to some music of a particular :genre. :BatteryInCritalLevel represents

the frame where the :batteryLevel of a certain :agent is critical. :affordance-

PlayMusicBatteryCritical, :affordancePlayMusicUserWantsToListenToSome-

Music and :affordanceRechargeBatteryCritical represent the three affordance

relations depicted in figure 3.5b as arrows. :sit1 and :sit2 represent the situation

that hold at time 1. :actRechargeAtTime1 is the action carried out by :MARIO to

cope with the situations :sit1 and sit2.

54 Chapter 3. An Ontology Network for Social Robots in Assistive Context

3.3.2 Comprehensive Geriatric Assessment Ontology

The evaluation of elderly patients represents a complex universe difficult to evaluate

and manage as a unique body. The Comprehensive Geriatric Assessment (CGA)

represents one of the most used and validated approaches to evaluate the elderly

subjects. It is defined as a “multidimensional interdisciplinary diagnostic process

focused on determining a frail older person’s medical, psychological and functional

capability in order to develop a coordinated and integrated plan for treatment and

long term follow up” [185]. It can be roughly viewed as a set of tests aiming at

assessing the medical, psychological and functional capability of a person.

One of the objectives of the MARIO project was to take advantage of the continu-

ous monitor of a an elderly provided by a social robot so to facilitate the assessment

of the status of the elderly patient. The continuous monitoring activity aims also to

improve the communication inside the team who is in charge of the care of the sub-

ject and to manage and check rehabilitation plans. In the context of MARIO project

a customized CGA has been defined with the following instruments: i) Activities of

Daily Living (ADL) [109] and Instrumental Activities of Daily Living (IADL) [119]

for evaluating functional disabilities in the daily living; ii) Short-Portable Mental

Status Questionnaire (SPMSQ) [166] for assessing the cognitive status for dementia

screening; iii) Mini-Nutritional Assessment (MNA) [212] for assessing the nutritional

status; iv) Exton-Smith scale (ESS) [32] for evaluating the risk of pressure sores in

patients at high risk of immobilization or bed-ridden; v) Comorbidity Illness Rating

Scale (CIRS) [51] for carefully evaluating the the comorbidities; vi) Evaluation of

medication use for assessing the appropriateness of prescriptions, and the risk for

adverse drug reactions.

The contribution of the CGA ontology is twofold. On the one hand, the ontology

supports the execution of the assessment by providing a reference model for storing

test information (such as questions, expected answer etc.). On the other hand, it

allows to store the data resulting from the patient’s assessments.

Chapter 3. An Ontology Network for Social Robots in Assistive Context 55

Related Work. Medicine is one of the first fields that employed ontologies in

knowledge-base systems [170]. Ontologies have been used to create an unified med-

ical language [34, 87], to build a computer based patient record12, to allow the

representation of clinical narratives [204], to support professional decisions in the

life-cycle of home care treatments [177], to an ontology-driven adaptive medical

questionnaire [35] and so on. To the best of our knowledge it does not exist any

ontology able to represents the results of an execution of our customization of the

CGA. Some ontologies have been proposed for supporting the (general) medical as-

sessment process [36, 25]. This ontologies define high-level concepts for representing

medical assessment. The CGA ontology follow their approach and specializes the

high-level concepts where needed.

Module overview. The choice of customizing the Comprehensive Geriatric As-

sessment impedes the re-use of an off-the-shelf ontology for the CGA. The require-

ments of the ontology have been directly derived from the template13 used by phys-

icians during the assessment of an elderly patient. The competency questions ex-

tracted by analyzing these documents can be found at14.

The ontology is modular, meaning that it includes a different module for each

test in the MARIO’s customization of the CGA. The modules composing the CGA

ontology (together with the namespace specification) can be found in Table 3.3.

The submodules addressing specific tests specialize the CGA ontology on the

basis of the specific requirements of the test. For example, the CGA ontology

defines the class cga:GeriatricAssessment, encompassing all geriatric assessment

performed by an agent, and the ontology addressing ADL and IADL specializes that

class with ca:CapabilityAssessment, representing only the assessment aimed at

evaluating the capabilities of elderly patients.

The Figure 3.6 shows the UML class diagram of the CGA ontology. As in [25],

12CPRO, http://ontohub.org/bioportal/CPRO.owl
13MARIO’s settings for the customized Comprehensive Geriatric Assessment, http://etna.istc.

cnr.it/mario/D5.1/CGA.pdf
14http://etna.istc.cnr.it/mario/D5.1/CQ-CGA.pdf.

http://ontohub.org/bioportal/CPRO.owl
http://etna.istc.cnr.it/mario/D5.1/CGA.pdf
http://etna.istc.cnr.it/mario/D5.1/CGA.pdf
http://etna.istc.cnr.it/mario/D5.1/CQ-CGA.pdf

56 Chapter 3. An Ontology Network for Social Robots in Assistive Context

Namespace prefix Namespace

cga http://www.ontologydesignpatterns.org/ont/mario/cga.owl#

coh http://www.ontologydesignpatterns.org/ont/mario/cohabitationstatus.owl#

ca http://www.ontologydesignpatterns.org/ont/mario/capabilityassessment.owl#

spmsq http://www.ontologydesignpatterns.org/ont/mario/spmsq.owl#

ess http://www.ontologydesignpatterns.org/ont/mario/ess.owl#

cirs http://www.ontologydesignpatterns.org/ont/mario/cirs.owl#

mna http://www.ontologydesignpatterns.org/ont/mario/mna.owl#

action http://www.ontologydesignpatterns.org/ont/mario/action.owl#

clinicalact http://www.ontologydesignpatterns.org/ont/mario/clinicalact.owl#

time http://www.ontologydesignpatterns.org/ont/mario/time.owl#

Table 3.3: Ontology modules imported/reused by the CGA ontology.

action:Task

cga:ClinicalTest cga:correctResponse rdfs:Literal
cga:question rdfs:Literal
cga:score rdfs:Literal

cga:Question
clinicalact:hasMember

clinicalact:hasMember

action:Action

cga:answer rdfs:Literal

cga:Answer

cga:GeriatricAssessment

cga:toQuestion

dul:executesTask

cga:CGA

healthrole:Patient

cga:assessesPatient

time:TemporalEntity

time:atTime

time:atTime

1

1

1

clinicalact:hasMember action:Agent

action:byAgent

Figure 3.6: The UML class diagram of CGA ontology.

a patient assessment (i.e. cga:GeriatricAssessment) is an action having as parti-

cipant the assessed healthrole:Patient and an action:Agent15 who make the as-

sessment. The agent making the assessment can be either a healthrole:Physician

or another kind of agent (e.g. MARIO). In order to represent the description of how

the assessment is to be executed, we implemented the Ontology Design Pattern Task

Execution16. The action cga:GeriatricAssessment executes a cga:ClinicalTest

which provides a “description” of how the assessment has to be executed. A

cga:ClinicalTest can be composed of other clinical tests or some cga:Question.

15Since cga:GeriatricAssessment specializes the class action:Action
16Task execution ODP http://www.ontologydesignpatterns.org/cp/owl/taskexecution.owl

http://www.ontologydesignpatterns.org/ont/mario/cga.owl#
http://www.ontologydesignpatterns.org/ont/mario/cohabitationstatus.owl#
http://www.ontologydesignpatterns.org/ont/mario/capabilityassessment.owl#
http://www.ontologydesignpatterns.org/ont/mario/spmsq.owl#
http://www.ontologydesignpatterns.org/ont/mario/ess.owl#
http://www.ontologydesignpatterns.org/ont/mario/cirs.owl#
http://www.ontologydesignpatterns.org/ont/mario/mna.owl#
http://www.ontologydesignpatterns.org/ont/mario/action.owl#
http://www.ontologydesignpatterns.org/ont/mario/clinicalact.owl#
http://www.ontologydesignpatterns.org/ont/mario/time.owl#
http://www.ontologydesignpatterns.org/cp/owl/taskexecution.owl

Chapter 3. An Ontology Network for Social Robots in Assistive Context 57

Furthermore the CGA ontology allows to store information about the answers (i.e.

cga:Answer) a patient provides to reply a question.

Usage Scenario. The Frame 3.2 shows an example of usage of the CGA ontology.

The resource :CGA represents the CGA (intended as “test”), whereas the resource

:CGA-20160617 represents the actual execution of :CGA, performed on 17 June 2016,

for assessing the patient :Freddy. In this example :CGA is composed only of the

test :SPSMQ which represents a questionnaire containing only of the question (i.e.

:Q1-SPMSQ) “Who is the president now?”. :Q1-SPMSQ defines the conditions under

which the answer provided by the patient has to be considered correct (i.e. “Re-

quires only the correct last name”) and the score to be given if the patient properly

responds.

The actual execution of the CGA effectuated by the agent :DrRossi for assessing

the patient :Freddy is represented by :CGA-20160617. Within :CGA-20160617 the

Short Portable Mental Status Questionnaire is performed, i.e. :SPMSQ-20160616.

Freddy’s answer (i.e. :Answer-Freddy-Q1-20160616) to question Q1 is “Mat-

tarella”. The answer has been considered correct by the :DrRossi who gave the

score “1” to it. The answer’s assessment effectuated by the :DrRossi is represented

by :Answer-Freddy-Q1-20160616-Assessment.

:CGA a cga : C l i n i c a l T e s t ;

c l i n i c a l a c t : hasMember cga :SPMSQ .

:SPMSQ a cga : C l i n i c a l T e s t ;

c l i n i c a l a c t : hasMember cga : Q1−SPMSQ .

: Q1−SPMSQ a cga : Question ;

cga : cor rectResponse

“ Requires only the c o r r e c t l a s t name”@en ;

cga : ques t i on “Who i s the p r e s i d e n t now?”@en ;

cga : s c o r e “1” .

:CGA−20160617

58 Chapter 3. An Ontology Network for Social Robots in Assistive Context

a cga : Comprehens iveGer iatr icAssessment ;

a c t i on : byAgent : DrRossi ;

cga : executesTask :CGA ;

c l i n i c a l a c t : hasMember :SPMSQ−20160616 ;

cga : a s s e s s e s P a t i e n t : Freddy .

:SPMSQ−20160616

a spmsq : ShortPortab leMenta lStatusQuest ionna i re ;

a c t i on : byAgent : DrRossi ;

cga : executesTask :SPMSQ ;

c l i n i c a l a c t : hasMember

: Answer−Freddy−Q1−20160616−Assessment ;

cga : a s s e s s e s P a t i e n t : Freddy .

: Answer−Freddy−Q1−20160616 a cga : Answer ;

a c t i on : byAgent : Freddy ;

cga : toQuest ion : Q1−SPMSQ ;

cga : answer “ Mattare l l a ’ ’ .

: Answer−Freddy−Q1−20160616−Assessment

a spsmq : AnswerAssessment ;

s co r e “1 ’ ’ ;

a c t i on : byAgent : DrRossi ;

cga : derivedFrom : Answer−Freddy−Q1−20160616 .

Frame 3.2: An example of usage of the CGA ontology and the SPMSQ ontology

serialized in TURTLE language.

3.3.2.1 CGA Ontology Modules

In this section we provide an overview of the ontology modules composing the CGA

ontology.

Co-Habitation Status. The aim of the “Co-Habitation Status” ontology is to

provide a reference model for representing the habitation status of a patient so to

Chapter 3. An Ontology Network for Social Robots in Assistive Context 59

allow to make an assessment on it. The ontology, shown in Figure 3.7, answers

to the Competency Question in Table 3.4. The namespace prefix coh is associ-

ated with http://www.ontologydesignpatterns.org/ont/mario/cohabitation

status.owl#. The ontology implements the ODP Time Indexed Situation17 to

coh:Co-HabitationStatus

tis:TimeIndexedSituation
time:TemporalEntitytime:atTime

healthrole:Patienttis:forPatient

spatial:SpatialThing

coh:House coh:Institution

spatial:hasPlace

cga:GeriatricAssessment

cga:score rdfs:Literal

coh:Co-HabitationStatusAssessment
coh:assessesSituation

coh:PostalAddress

coh:hasPostalAddress
generic:name rdfs:Literal

coh:Residence
1

1..*

1

1..*

1..*

person:Person

tis:forEntity
1

Figure 3.7: The UML class diagram of the Co-Habitation status ontology.

CQ1 Does the patient live alone or with relatives/nurse or in an institution?

CQ2 Which is the address of the place where a patient lives?

CQ3 Which is the name of the place where a patient lives?

CQ4 Which is the assessment for a certain co-habitation status of a certain patient?

Table 3.4: Competency questions answered through the Co-Habitation status on-

tology.

represent the coh:Co-HabitationStatus of a healthrole:Patient at given time.

coh:Co-HabitationStatus can be seen as a n-ary relation connecting (i) a pa-

tient, (ii) its coh:Residence (an coh:House or an coh:Institution characterized

by a name and a coh:PostalAddress), (iii) and possibly some cohabitants. A

coh:Co-HabitationStatus is assessed by a coh:Co-HabitationStatusAssessment

which assigns a score to it.

Medication Use. The ontology module “Medication Use” enables to keep track

the medication use of a patient thus allowing to make an assessment on it. The on-

17Aldo Gangemi, Time Indexed Situation ODP, http://ontologydesignpatterns.org/cp/owl/

timeindexedsituation.owl

http://ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl
http://ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl

60 Chapter 3. An Ontology Network for Social Robots in Assistive Context

CQ1 Which is the assessment for a certain medication use of a certain patient?

CQ2 How many drugs does a patient use?

Table 3.5: Competency questions answered through the Medication Use ontology.

tology, shown in Figure 3.8, answers to the Competency Question in Table 3.5. The

namespace prefix medicationuse is associated with http://www.ontologydesign

patterns.org/ont/mario/medicationuse.owl#. The Medication Use is a Time

medicationuse:numberofDrugs xsd:positiveInteger

medicationuse:MedicationUse

tis:TimeIndexedSituation time:atTime

tis:forPatient

healthrole:Patient

time:TemporalEntity

cga:GeriatricAssessment

cga:score rdfs:Literal

medicationuse:MedicationUseAssessment

coh:assessesSituation 1..*

1

Figure 3.8: The UML class diagram of the Medication Use ontology.

Indexed Situation 17 involving i) the Patient targeted of certain treatments; ii) the

number of medications used by him; iii) and the time period in which he takes

the medications. A medicationuse:MedicationUse is assessed by a medication

use:MedicationUseAssessment which assigns a score to it.

Capability assessment. The ontology module “Capability assessment” allows

to store into a knowledge base the results of an execution of both Activities of

Daily Living (ADL) and Instrumental Activities of Daily Living (IADL). The

Figure 3.9 shows the UML class diagram of the Capability Assessment ontology.

The ontology allows to answer the competency questions listed in Table 3.6. The

namespace prefix ca is associated with http://www.ontologydesignpatterns.

org/ont/mario/capabilityassessment.owl#. The Capability Assessment on-

Chapter 3. An Ontology Network for Social Robots in Assistive Context 61

cga:GeriatricAssessment

ca:CapabilityAssessment

generic:name rdfs:Literal
generic:description rdfs:Literal
cga:score xsd:nonNegativeInteger

ca:CapabilityLevel

ca:hasCapabilityLevel

ca:description rdfs:Literal
ca:name rdfs:Literal

ca:Capability

ca:hasCapability cga:Question

cga:isAssessedBy

ca:hasCapabilityLevel
cga:isAssessedBy

cga:score rdfs:Literal

ca:IndexAssessment

clininicalact:hasMember

cga:Answer

cga:derivedFrom

cga:toQuestion

1

1..*

1

1..*

healthrole:Patient
cga:assessesPatient 1

Figure 3.9: The UML class diagram of the Capability Assessment ontology.

tology defines two cga:GeriatricAssessment, i.e. the ca:IndexAssessment and

ca:CapabilityAssessment. The former allows to represent the assessment (e.g.

an execution of ADL or IADl) made on the basis of a set of capability assessments

(e.g. Bathing, Dressing etc.). Therefore a ca:IndexAssessment specifies the set of

ca:CapabilityAssessment on which the the assessment is made and the resulted

total score (cga:score). The latter, ca:CapabilityAssessment is used to evalu-

ate a patient’s capability in performing the activities of daily living. A ca:Capa

bilityAssessment is an action used to associate a certain patient with a certain

ca:CapabilityLevel at a certain time. The ca:CapabilityAssessment could be

derived from a cga:Answer that the patient provide to reply to a cga:Question (e.g.

Do you need assistance for bathing? - No). ca:CapabilityLevel is used to define

the capability levels for a certain capability to assess. Each ca:CapabilityLevel is

characterized by the ca:Capability (e.g. Bathing) it refers to, its generic:name

(e.g. Receives no assistance), a generic:description (e.g. gets in and out of tub

by self if tub is usual means of bathing) and a cga:score to give if the patient being

assessed shows that level of capability (e.g. 1).

Short Portable Mental Status Questionnaire (SPMSQ). The SPMSQ on-

tology allows to store the results of a Short Portable Mental Status Questionnaire

into the Knowledge Base. The Figure 3.10 shows the UML diagram of the ontology.

62 Chapter 3. An Ontology Network for Social Robots in Assistive Context

CQ1 Which are the capabilities needed to assess the ADL/IADL?

CQ2 Which is the ADL/IADL question used to assess the capability level of a

certain patient?

CQ3 Which is the description of a certain capability level?

CQ4 Which is the score in ADL/IADL associated with a certain capability level?

CQ5 Which is the score of a correct answer of a certain question?

CQ6 Which is the total score of the ADL/IADL questionare of a certain patient

at a certain time?

CQ7 Which was the level of capability of the activities of daily living (such as,

bathing, dressing, toileting, transferring, controlling urination and bowel

movement, feeding) of a patient at a certain time?

CQ8 Which was the level of capability of the instrumental activities of the daily

living (such as, using a telephone, shopping, preparing food, housekeeping,

laundering, getting means of transportation, having responsibility of own

medications, managing finances) of a patient at a certain time?

Table 3.6: Competency questions answered through the Capability Assessment

ontology.

The CQs answered by the SPMSQ ontology are listed in Table 3.7. The namespace

prefix spmsq is associated with http://www.ontologydesignpatterns.org/ont/

mario/spmsq.owl#. An individual of type spmsq:ShortPortableMentalStatus-

cga:GeriatricAssessment

cga:score rdfs:Literal

spmsq:ShortPortableMentalStatusQuestionnaire

clinicalact:hasMember

cga:Question
cga:toQuestion

cga:Answer

cga:derivedFrom
cga:score rdfs:Literal

spmsq:AnswerAssessment

1..* 1

Figure 3.10: The UML class diagram of the SPMSQ ontology.

Chapter 3. An Ontology Network for Social Robots in Assistive Context 63

CQ1 Which is the total score of the SPMSQ at a certain time?

CQ2 Which is the score associated with an answer of the SPMSQ?

Table 3.7: Competency questions answered through the SPMSQ ontology.

Questionnaire is created when the questionnaire for assessing the mental status of

a patient is terminated. This instance provides the total result of the SPMSQ (i.e.

cga:score) scored by the assessed Patient. Each cga:Answer of the Patient being

assessed is associated with a spmsq:AnswerAssessment providing the evaluation

of that answer. spmsq:ShortPortableMentalStatusQuestionnaire aggregates all

the spmsq:AnswerAssessment and provides the sum scored answering to the in-

dividual questions. An example of usage of the SPMSQ ontology is shown in the

Frame 3.2.

Exton-Smith Scale (ESS). The ESS ontology allows to store into the KB the

results of an evaluation of a Patient through the Exton-Smith Scale. The UML

class diagram of the ESS ontology is shown in Figure 3.11. The CQs answered

through the ESS ontology are listed in Figure 3.8. The namespace prefix ess is as-

sociated with the value http://www.ontologydesignpatterns.org/ont/mario/

ess.owl#. The Exton-Smith Scale aims at evaluating the pressure sores risk

of a Patient. ess:Exton-SmithScaleAssessment represents an execution of this

assessment. It associates the Patient that is being assessed with a cga:score

and with the observed patient conditions that induced to this score. Moreover,

ess:Exton-SmithScaleAssessment associates (through ess:hasPressureSoresRi

sk) a Patient with a ess:PressureSoresRisk. An individual of type ess:Pressure

SoresRisk represents a level of pressure sores risk on the ESS scale (e.g. “Score 16-

20: minimum risk”). A ess:PressureSoresRisk is characterized by a generic:na

me (e.g. “minimum risk”) and the interval (i.e. cga:scoreMin and cga:scoreMax)

of values associated with the pressure sores risk (e.g. 16-20). The object prop-

erty ess:hasCondition is used to associate an ess:Exton-SmithScaleAssessment

with the current ess:PatientCondtion observed in the assessed Patient. The onto-

64 Chapter 3. An Ontology Network for Social Robots in Assistive Context

cga:GeriatricAssessment

cga:score xsd:nonNegativeInteger

ess:Exton-SmithScaleAssessment

ess:hasCondition

cga:Question or
cga:ClinicalTest

cga:score xsd:nonNegativeInteger
generic:name rdfs:Literal

ess:PatientCondition

cga:isAssessedBy
ess:Activity

ess:Incontinence

ess:MentalState

ess:MobilityInBed

ess:PatientGeneralCondition

1

clinicalact:hasMember

1

clinicalact:hasMember

1

clinicalact:hasMember

1

clinicalact:hasMember

1

cga:scoreMin xsd:nonNegativeInteger
cga:scoreMax xsd:nonNegativeInteger
generic:name rdfs:Literal

ess:PressureSoresRisk

ess:hasPressureSoresRisk
1..*

Figure 3.11: The UML class diagram of the ESS ontology.

logy defines five different types of patient condition that are evaluated by the ESS:

the ess:PatientGeneralCondition, the ess:MentalState, the ess:Activity, the

ess:Incontinence and the ess:MobilityInBed. Each ess:PatientCondtion has

a generic:name (e.g. “Doubly incontinent”) and a cga:score (e.g. 1) that can

contribute to the result of the ess:Exton-SmithScaleAssessment.

Cumulative Illness Rating Scale (CIRS). The CIRS ontology allows to store

the results of an evaluation of a patient with the Cumulative Illness Rating Scale.

The UML class diagram of the CIRS ontology is shown in Figure 3.12. The CQs

answered through the ESS ontology are listed in Figure 3.9. The namespace pre-

fix ess is associated with the value http://www.ontologydesignpatterns.org/

ont/mario/cirs.owl#. The ontology aims at evaluating the illness severity of

the patient’s biological system (e.g. cardiovascular system, respiratory system etc.).

The cirs:BiologicalSystems are characterized a generic:name (e.g.respiratory

system) and a generic:description (e.g. lungs, bronchi, trachea). cirs:Biologi-

calSystemAssessment represents an action aiming at assessing a cirs:Biological-

System. cirs:BiologicalSystemAssessment assigns at certain time a cirs:CIRS-

Rating (e.g. Moderate,3) to a cirs:BiologicalSystem. A cirs:CIRSRating has

Chapter 3. An Ontology Network for Social Robots in Assistive Context 65

CQ1 How was the condition of patient at a certain time? Was it Bad, Poor, Fair

or Good?

CQ2 How was the mental state of a patient at a certain time? Was it Stuporosous,

Confused, Apathetic or Alert?

CQ3 Which is the range of ESS scores associated with the high/medium/low risk

of sores?

CQ4 Which is the score associated with a certain patient activity level/condi-

tion/mental state/incontinence level/mobility?

CQ5 Which was the patient’s activity level at a certain time? Did s/he stay in

the bed all the day? Did s/he need of a chairfast? Did s/he walk with help?

Or, was s/he ambulant?

CQ6 Which was the patient’s incontinence level at a certain time? Was s/he

double incontinent? Was s/he usually incontinent of urine? Was s/he oc-

casionally incontinent? Or, wasn’t s/he incontinent?

CQ7 Which was the patient’s mobility in bed at a certain time? Was s/he im-

mobile, very limited, slightly limited, or full?

CQ8 Which was the patient’s score at the exton-smith scale (ESS) at a certain

time?

Table 3.8: Competency questions answered through the ESS ontology.

a generic:name (e.g. Moderate) and a cga:score (e.g. 3) which may contrib-

ute to the illness severity score and to the comorbidity index. An instance of

cirs:CIRSAssessment evaluates the illness severity score and the comorbidity in-

dex of a Patient at certain time. It indicates (through clinicalact:hasMember)

the cirs:BiologicalSystemAssessment used to compute these two scores.

Mini Nutritional Assessment (MNA). The Mini Nutritional Assessment (MNA)

aims at evaluating the nutritional status of a patient at a certain time. The MNA

ontology allows to store the results of the Mini Nutritional Assessment into the

Knowledge Base. The UML class diagram of the MNA ontology is shown in Fig-

66 Chapter 3. An Ontology Network for Social Robots in Assistive Context

cga:GeriatricAssessment

cirs:comorbidityIndex xsd:integer
cirs:illnessSeverityScore xsd:double

cirs:CIRSAssessment

cirs:BiologicalSystemAssessment

generic:description rdfs:Literal
generic:name rdfs:Literal

cirs:BiologicalSystem

generic:name rdfs:Literal
cga:score xsd:nonNegativeInteger

cirs:CIRSRating

clinicalact:hasMember
1..* cirs:hasRating

1

cirs:assessesBiologicalSystem 1

Figure 3.12: The UML class diagram of the CIRS ontology.

CQ1 Which is the name of a rating in the CUMULATIVE ILLNESS RATING

SCALE (C.I.R.S.)?

CQ2 Which was the patient’s illness rating for a biological system at a certain

time?

CQ3 Which was the patient’s COMORBIDITY INDEX (CIRS-CI) at a certain

time?

CQ4 Which was the patient’s ILLNESS SEVERITY SCORE (CIRS-IS) at a

certain time?

Table 3.9: Competency questions answered through the CIRS ontology.

ure 3.13. Refer to the OWL file for the CQs. The namespace prefix mna is as-

sociated with the value http://www.ontologydesignpatterns.org/ont/mario/

mna.owl#. The result of a Mini Nutritional Assessment is represented by mna:Mini

NutritionalAssessment that associates a certain Patient with the score (i.e. cga:

score) of the assessment and the resulting Malnutrition Indicator Score (represented

by mna:MNARating). An mna:MNARating has a generic:name (e.g. well-nourished)

and a quantitative value indicating the range of MNA score it refers to (e.g. a Pa-

tient is considered well-nourished if her score in the MNA is greater than 24). A

Chapter 3. An Ontology Network for Social Robots in Assistive Context 67

cirs:hasRatingcga:GeriatricAssessment

cga:score xsd:nonNegativeInteger

mna:MiniNutritionalAssessment mna:AnthropometricAssessment

mna:BMIAssessment

cga:score xsd:nonNegativeInteger

mna:BMIRatingcirs:hasRating
1

measurement:QuatitativeValue

measurement:QuatitativeValue or
measurement:Interval

mna:hasBMI 1

mna:hasBMI
mna:hasHeight
mna:hasWeight

1

clinicalact:hasMember
1

mna:MNATestsRating

generic:description rdfs:Literal

mna:MNARating
1

measurement:hasQuantitativeValue 1

Figure 3.13: The UML class diagram of the MNA ontology.

mna:MiniNutritionalAssessment is made on the basis of other four assessments:

the mna:AnthropometricAssessment, the mna:GeneralAssessment, the mna:Die

taryAssessment and the mna:SelfAssessment. Each of these assessment is made

evaluating other assessments. For instance, the mna:AnthropometricAssessment

is made on the basis of the mna:BMIAsssessment, the mna:CalfCircumferenceAs

sessment, the mna:MACAssessment and the mna:WeightLossAssessment. Each as-

sessment defines its rating scale, e.g. the rating scale of mna:BMIAsssessment is

mna:BMIRating.

3.3.3 Tagging Ontology

Tagging has become a key feature of the todays social media. A tag is a label

(precisely, a free-word keyword) that is attached to someone or something for many

purposes: identifying, categorizing, commenting, voting, reacting etc.

The aim of the tagging ontology is to represent a tagging action, i.e the action

performed by an agent that attaches a label or something with a well-defined se-

mantics (eg. a concept or a frame etc.) to some entity. In the context of the MARIO

project tags will be associated with multimedia contents (e.g. photos, videos, audios

and so on.), events (e.g. festivals, birthdays, daily events etc.) or personal memories

68 Chapter 3. An Ontology Network for Social Robots in Assistive Context

CQ1 Which is the tag associated with a certain photo or events?

CQ2 Who has given a tag to a certain entity?

CQ3 Which is the entity associated to a certain tag?

Table 3.10: Competency questions answered through the Tagging ontology.

(which can be considered as a particular kind of events in a person’s life). Hence,

the tagging ontology provides a reference model for representing tags in MARIO

and can be used for interacting with patients in a variety of tasks that requires

remembrances, e.g., stimulating the patient’s memory, entertaining the patient with

multimedia contents associated with particular moments of the her life, etc.

Related Work. Several ontologies[133, 115, 128] and Ontology Design Patterns18

have been proposed to conceptualize the tagging action so far. [112] surveyed the

state of the art in the tagging ontologies. In the most of them the tagging concept

is represented as reified n-ary relationship between the tagger (the agent who gives

the tag), the tag (often a keyword taken from a folksonomy), the entity tagged, and

the date when the action happened. Some of them tried to associate the tag with

its meaning [133], to express the polarity of the tagging 18 [115] or to attempt to

treat tagging as a vote 19.

Module overview. The ontology we propose does not deviate from the state of

the art significantly. However, our ontology allows MARIO to use not only simple

free-word keywords, but also individuals with a well defined semantics or even com-

plex named graphs. More in general, the designed ontology allows to answer the

competency questions of the table 3.10.

The figure 3.14 shows the ontology diagram. The class tagging:Tagging20 is a

reification of the relationship between the agent who made the tag, the tag itself and

18Aldo Gangemi, http://ontologydesignpatterns.org/cp/owl/tagging.owl
19http://info.slis.indiana.edu/ dingying/uto.owl
20The prefix tagging is associated with the namespace http://www.ontologydesignpatterns.org/

ont/mario/tagging.owl. Refer to Table 3.11 for the namespaces of the imported ontology modules.

http://ontologydesignpatterns.org/cp/owl/tagging.owl
http://info.slis.indiana.edu/~dingying/uto.owl
http://www.ontologydesignpatterns.org/ont/mario/tagging.owl
http://www.ontologydesignpatterns.org/ont/mario/tagging.owl

Chapter 3. An Ontology Network for Social Robots in Assistive Context 69

tagging:Tagging

tagging:label rdfs:Literal

tagging:Tag

tagging:usingTag

1..*

tiime:TemporalEntity

time:atTime
1..*

action:Action

event:Event or
media:Media

tagging:forEntity

1..*

action:Agent

action:byAgent

1..*

Figure 3.14: The UML class diagram of tagging ontology.

the entity tagged. It can be also viewed as an action whose agent is the tagger and

the patient is the entity tagged. An individual of tagging:Tagging has to define at

least an agent that performs the action (action:byAgent property), an entity target

for tagging action (action:forEntity property), the tag used (tagging:usingTag

property) and the date time when this action is performed (time:atTime property).

The class tagging:Tag represents any object that can be used to identify, cat-

egorize, describe or comment the entity being tagged. Being object of a the predicate

tagging:hasTag implies to be a Tag, therefore a richer description such as a frame,

a named graph, or a FRED graph can be used as tag for an entity. Furthermore,

the datatype property “rdfs:label” can be used to associate an individual of Tag

with the text it represents.

Currently, an individual of tagging:Tagging can be connected either to an

individual of the class event:Event or to an individual of the class media:Media

(such as photos, videos, audios etc.). A multimedia content (i.e., an individual of

the class media:Media) can be associated with an event by the object property

event:hasEvent, e.g. a video taken at a birthday party. Finally, we defined a

property chain to ensure that the tags of an event are inherited by all multimedia

content connected to it, e.g. if the birthday party has the tag “Birthday”, then the

video associated to it inherits the tag “Birthday”.

70 Chapter 3. An Ontology Network for Social Robots in Assistive Context

Namespace prefix Namespace

action http://www.ontologydesignpatterns.org/ont/mario/action.owl#

time http://www.ontologydesignpatterns.org/ont/mario/time.owl#

event http://www.ontologydesignpatterns.org/ont/mario/event.owl#

media http://www.ontologydesignpatterns.org/ont/mario/media.owl#

Table 3.11: Ontology modules imported/reused by the Tagging ontology.

: January 20 1971 a time : TemporalEntity .

: John 51s t b i r thday a event : Event ;

s p a t i a l : hasPlace : Piper Club ;

time : atTime : January 20 1971 .

: John p ic ture a media : Image .

: Piper Club a s p a t i a l : Spat ia lThing .

: t ag John 51s t b i r thday a tagg ing : Tag .

: t agg ing John 51s t b i r thday a tagg ing : Tagging ;

tagg ing : f o rEn t i t y : John 51st b i r thday , : John p ic ture ;

tagg ing : usingTag : tag John 51s t b i r thday .

Frame 3.3: An example of usage of the tagging ontology serialized in TURTLE

language

Usage Scenario MARIO might use the tagging ontology for annotating a picture

about the birthday of his patient John. This picture was takes at John’s 51st

birthday on January 20 1971. Thus, the tagging ontology can be used for tagging

the picture with this knowledge. Frame 3.3 shows the RDF graph resulting from

the usage of tagging ontology for the previous example.

3.3.4 Other Modules

This Section briefly overviews the remaining modules of the ontology network. These

modules have been derived from existing ontologies or well-known ontology design

patterns. These ontologies have been adapted in order to fulfill the requirements of

the case study of this thesis.

http://www.ontologydesignpatterns.org/ont/mario/action.owl#
http://www.ontologydesignpatterns.org/ont/mario/time.owl#
http://www.ontologydesignpatterns.org/ont/mario/event.owl#
http://www.ontologydesignpatterns.org/ont/mario/media.owl#

Chapter 3. An Ontology Network for Social Robots in Assistive Context 71

Action. The MON’s Action module21 is meant to implement the Task Execution

Ontology Design Pattern22. This module allows to keep track of the actions per-

formed either by the robot or by its users. An example of action performed by the

robot is the assessment of the patient Freddy using the CGA framework. Actions

execute and are classified by tasks. An example of task is assessing a patient through

the CGA. The class action:Task aims at collecting all the behaviors of the robot.

The Action module also defines a class named action:App which specializes Task

and encloses all the apps made available by the robot.

Activity. The MON’s Activity module23 is a specialization of the Action module

aimed at tracing activity performed by people. A person’s activity usually involve

many actions. For example, an activity of type listeningtomusic:ListeningTo

Music may includes the actions of type listeningtomusic:ListeningToSong or

listeningtomusic:SkipSong.

Calling, Chatting and Playing. The MON’s Calling24, Chatting25, and Play-

ing26 module specialize the Activity module in order to provide a vocabulary to

keep track of calling, chatting and playing activity of the users. The Calling on-

tology distinguishes calling:VideoCalling from calling:VoiceCalling. Video

calling allows to trace the calling activity of a user using a service providing the

functionality of video calling, whereas voice calls use services having voice calling

functionality.

Clinical Act. The MON’s Clinical Act module27 defines a simple vocabulary that

enable the robot to store the actions (i.e. clinicalact:ClinicalAct) performed by

21Action Module, http://ontologydesignpatterns.org/ont/mario/action.owl
22Task Execution,http://ontologydesignpatterns.org/wiki/Submissions:TaskExecution
23Activity Module, http://ontologydesignpatterns.org/ont/mario/activity.owl
24Calling Module, http://ontologydesignpatterns.org/ont/mario/calling.owl
25Chatting Module, http://ontologydesignpatterns.org/ont/mario/chatting.owl
26Playing Module, http://ontologydesignpatterns.org/ont/mario/playing.owl
27Clinical Act Module, http://www.ontologydesignpatterns.org/ont/mario/clinicalact.owl

http://ontologydesignpatterns.org/ont/mario/action.owl
http://ontologydesignpatterns.org/wiki/Submissions:TaskExecution
http://ontologydesignpatterns.org/ont/mario/activity.owl
http://ontologydesignpatterns.org/ont/mario/calling.owl
http://ontologydesignpatterns.org/ont/mario/chatting.owl
http://ontologydesignpatterns.org/ont/mario/playing.owl
http://www.ontologydesignpatterns.org/ont/mario/clinicalact.owl

72 Chapter 3. An Ontology Network for Social Robots in Assistive Context

physicians that involve a patient. These actions are described by the data property

generic:description.

Drinking and Eating. The dietary assessment in elderly is an important task

that avoid the risk malnutrition. Assistive social robots allow to continuously mon-

itor the food and liquid intake of elderly. MON’s Drinking28 and Eating29 modules

enable robots to keep track of food and liquid intakes. In particular, eating:Eating

and drinking:Drinking are two activities performed by a person that involve a as

patients eating:Course and drinking:Drink, respectively. The classes eating:

Course and drinking:Drink allow to specify the quantity and the substances the

person intakes.

Emotional State. The MON’s Emotional State module30 allows the robot to

trace the emotional state of a person over time. An emotional state is a time-indexed

situation defined as a ternary relation connecting (i) the person who expresses the

emotion, (ii) the emotion expressed (i.e. an individual of type emotionalstate:

Emotion), (iii) and, the time interval in which the person shows the emotion.

Event. The aim of the MON’s Event module31 is to enable the robot to trace the

relevant events it is involved in. An event:Event relates a number of agents and

entities involved in the event, the place where the event takes place and the time

when the event occurs.

Generic. The MON’s Generic module32 provide the robot with the data properties

for naming (i.e. generic:name) and describing (i.e. generic:description) things.

28Drinking Module http://www.ontologydesignpatterns.org/ont/mario/drinking.owl
29Eating Module, http://www.ontologydesignpatterns.org/ont/mario/eating.owl
30Emotional State Module, http://www.ontologydesignpatterns.org/ont/mario/emotionalstate.

owl
31Event Module, http://www.ontologydesignpatterns.org/ont/mario/event.owl
32Generic Module, http://www.ontologydesignpatterns.org/ont/mario/generic.owl

http://www.ontologydesignpatterns.org/ont/mario/drinking.owl
http://www.ontologydesignpatterns.org/ont/mario/eating.owl
http://www.ontologydesignpatterns.org/ont/mario/emotionalstate.owl
http://www.ontologydesignpatterns.org/ont/mario/emotionalstate.owl
http://www.ontologydesignpatterns.org/ont/mario/event.owl
http://www.ontologydesignpatterns.org/ont/mario/generic.owl

Chapter 3. An Ontology Network for Social Robots in Assistive Context 73

Health Role. The Health Role module33 provides a vocabulary that defines the

main health professional roles involved in the assistive context. The health roles

are defined as individuals of the class healthrole:HealthRole. The ontology also

defines for each role a class aimed at enclosing the persons having the role. For

example, for the health role healthrole:PhysicianRole, the ontology defines the

class healthrole:Physician which is specified as the class of all the persons hav-

ing healthrole:PhysicianRole as value for the property healthrole:hasHealth

Role.

Language. The MON’s Language module34 allows to associate a text fragment

with the language the text belongs to. It is a specialization of the more general Lit-

eral Reification Ontology Design Pattern35. A language:Text is an individual hav-

ing a language:content and a language (through the object property language:

hasLanguage). A language (i.e. language:LinguisticSystem) is defined as a sys-

tem of “signs, symbols, sounds, gestures, or rules used in communication”.

Multimedia Content. The MON’s Multimedia Content module36 enables the

robot to create an archive of multimedia files. The main class of the ontology

is multimediacontent:Media that subsumes other media types like multimedia

content:Image, multimediacontent:Video and multimediacontent:Audio. A

Media is characterized by a multimediacontent:url, a name, a description, a time

in which it is taken, and (possibly) an event of the knowledge base which the media

refers to.

33Health Role Module, http://www.ontologydesignpatterns.org/ont/mario/healthrole.owl
34Language Module, http://www.ontologydesignpatterns.org/ont/mario/language.owl
35Literal Reification ODP,http://ontologydesignpatterns.org/wiki/Submissions:Literal

Reification
36Multimedia Content Module, http://www.ontologydesignpatterns.org/ont/mario/

multimediacontent.owl

http://www.ontologydesignpatterns.org/ont/mario/healthrole.owl
http://www.ontologydesignpatterns.org/ont/mario/language.owl
http://ontologydesignpatterns.org/wiki/Submissions:Literal_Reification
http://ontologydesignpatterns.org/wiki/Submissions:Literal_Reification
http://www.ontologydesignpatterns.org/ont/mario/multimediacontent.owl
http://www.ontologydesignpatterns.org/ont/mario/multimediacontent.owl

74 Chapter 3. An Ontology Network for Social Robots in Assistive Context

music:Musical
Collection

music:Song
hasSong

music:Musical
Work

multimedia:Audio

music:MusicArtist or
music:MusicGroup

music:Genre

hasG
enre

hasAuthor
isRecordedIn

music:Discography

ha
sM

us
ica

lW
or
k

hasM
usicalW

ork

multimedia:Video

has
Mu

sic
Vid

eo

music:Playlist

hasG
enre

music:index xsd:Integer

music:PlaylistSlot

ha
sS
lot

person:PersonhasCreator

ha
sM
us
ica
lW
ork

directlyFollows
directlyPrecedes

multimedia:title xsd:string
multimedia:url xsd:string
multimedia:fileFormat xsd:string

multimedia:Audio

music:Album

music:Album or
music:Song

ha
sF
irs
tS
lo
t

ha
sM

us
ica
lW
ork

Figure 3.15: The UML class diagram of Music ontology.

Measurement. The MON’s Measurement module37 provides a vocabulary for

expressing quantities and intervals. The module defines the class measurement:

QuantityValue to denote quantities (e.g. 42) and measurement:Interval to rep-

resent intervals (e.g. from 3 to 5). Quantities and Intervals may have unit of meas-

ure (e.g. kilogram). The unit of measure is identified by the class measurement:

MeasurementUnit which allows to specify the unit symbol through the data property

measurement:unitSymbol.

Music. The MON’s Music module38 enables the robot to store information about

the music it can reproduce. Figure 3.15 depicts the UML class diagram for the

Music ontology module. The class music:MusicalWork is aimed at including all the

musical works the robot is able to reproduce, namely songs (i.e. music:Song) and

musical collections (i.e. music:Album and music:Discography). Musical works

have an author (either a music:MusicArtist or a music:MusicGroup), a genre

37Measurement Module, http://www.ontologydesignpatterns.org/ont/mario/measurement.owl
38Music Module, http://www.ontologydesignpatterns.org/ont/mario/music.owl

http://www.ontologydesignpatterns.org/ont/mario/measurement.owl
http://www.ontologydesignpatterns.org/ont/mario/music.owl

Chapter 3. An Ontology Network for Social Robots in Assistive Context 75

(i.e. music:Genre), and are recorded in audio files. The ontology also allows to

define playlists, that is, ordered collections of items (i.e. music:PlaylistSlot). An

ordered collection is realized by applying the List Ontology Design Pattern39. The

items of the list are the playlist slots. Each playlist slot is associated with the slot

it directly precedes/follows and is connected to the musical work that has to be

reproduced. All the slots are grouped by an individual of the class music:Playlist

through the property music:hasSlot. The first slot of the playlist is identified using

the music:hasFirstSlot. The playlist is also associated with the music:Genre it

belongs to and the person who created the playlist.

Online Account. The MON’s Online Account module41 is aimed at storing the

information about the account owned by the robot’s user. An onlineAccount:

OnlineAccount is are associated with the service that provides the account, and,

with the unique identifier of the account. The object property onlineAccount:has

OnlineAccount associates the person with the account s/he holds.

Person. The information related to persons are modeled following the MON’s

Person module42. A person:Person is defined as an agent having a gender (i.e. an

individual of the class person:Sex), a residence (i.e. a spatial:Residence), a birth

place (i.e. a spatial:City), and an hometown (i.e. a spatial:City). Persons are

specialized in person:Male (defined as the persons having person:Male as value

of the property person:hasGender43) and person:Female (defined as the persons

having person:Female as value of the property person:hasGender). In this way,

the ontology gives the opportunity of defining other genders. The ontology also

defines a hierarchy of relations among persons44. The top property of this hierarchy

39List ODP,40

41Online Account Module, http://www.ontologydesignpatterns.org/ont/mario/onlineAccount.

owl
42Person Module, http://www.ontologydesignpatterns.org/ont/mario/person.owl
43person:Male and person:Female are defined both as classes and as individuals of the class

person:Gender.
44The hierarchy is inspired to http://vocab.org/relationship/.

http://www.ontologydesignpatterns.org/ont/mario/onlineAccount.owl
http://www.ontologydesignpatterns.org/ont/mario/onlineAccount.owl
http://www.ontologydesignpatterns.org/ont/mario/person.owl
http://vocab.org/relationship/

76 Chapter 3. An Ontology Network for Social Robots in Assistive Context

is person:hasRelationshipWith that relates two persons having any kind of rela-

tionship. This property is specialized by forty sub-properties (e.g. person:childOf,

person:worksWith). The domain and range of the sub-properties is also special-

ized where needed. For example the domain of person:brotherOf is person:Male,

whereas the domain of person:sisterOf is person:Female. The ontology also

defines proper inverse relation among the properties of the hierarchy. For example,

person:grandparentOf is defined as the inverse of person:grandchildOf.

Personal Events. The MON’s Personal Events module45 provides a vocabulary

for storing information about the main events of a person’s life (e.g. Marriage,

School attendance etc.). A personalevents:PersonalEvent is defined as an event

related to a person. Following the Neo-Davidsonian[58] event semantics, this class

subsumes six event types: (i) personalevents:Employment the fact of having a

paid work; (ii) personalevents:Marriage the fact of being married with some

one; (iii) personalevents:SchoolAttendance the fact of having attended a school;

(iv) personalevents:PetOwnership the fact of owning a pet; (v) personalevents:

LivingInAPlace the fact of living in a place; (vi) personalevents:VisitingA

Place the fact of visiting a place. These six event types support the application for

delivering the reminiscence therapy presented in Section 7.4.1.2. Additional event

types can be also gathered from Framester’s Frames (cf. Section 4.1). In fact, a

frame is a stereotyped situation that could used to model information about events

of a person’s life.

Pet. The MON’s Pet module46 is aimed at modeling all the information about pets

owned by the robot’s users. A pet:Pet is a defined as an agent having a certain

pet:PetType.

45Personal Events Module, http://www.ontologydesignpatterns.org/ont/mario/personalevents.

owl
46Pet Module, http://www.ontologydesignpatterns.org/ont/mario/pet.owl

http://www.ontologydesignpatterns.org/ont/mario/personalevents.owl
http://www.ontologydesignpatterns.org/ont/mario/personalevents.owl
http://www.ontologydesignpatterns.org/ont/mario/pet.owl

Chapter 3. An Ontology Network for Social Robots in Assistive Context 77

Postal Address. The MON’s Postal Address module47 provides a model for the

addresses that is compliant with the specifications of the EU INSPIRE directive 48.

Question Answer. The MON’s Question Answer module49 allows to specify a set

of questions and tracing what someone says in reaction to the question. A question

answer:Question is (a reification of) a sentence in interrogative form, whereas a

questionanswer:Answer represents the reaction of a Person to a question. The

relation between answer and question can be specified with the object property

questionanswer:toQuestion. Both questions and answers have a textual content

that can be specified through the data property questionanswer:textualContent.

Service. The MON’s Service module50 defines a vocabulary for specifying the

services (e.g. on line messaging services or social networks) users have an account on.

A service:Service is defined as “an intangible commodity”, and it is specialized

by the class service:OnlineService which represents the services available on the

web. The ontology allows to specify for each service the functionalities it provides

(e.g. voice calling, video calling etc.).

Spatial. The MON’s Spatial module51 provides classes and properties for specify-

ing the knowledge about spatial things (i.e. anything with a spatial extent) and

places (e.g. cities). These concepts are used for specifying the generic locations

for physical objects. This ontology module is an implementation of the Ontology

Design Pattern Place52.

47Postal Address Module, http://www.ontologydesignpatterns.org/ont/mario/postalAddress.

owl
48https://inspire.ec.europa.eu/Data-Models/Data-Specifications/2892
49Question Answer Module, http://www.ontologydesignpatterns.org/ont/mario/

questionanswer.owl
50Service Module, http://www.ontologydesignpatterns.org/ont/mario/service.owl
51Spatial Module, http://www.ontologydesignpatterns.org/ont/mario/service.owl
52Place Ontology Design Pattern http://ontologydesignpatterns.org/wiki/Submissions:Place

http://www.ontologydesignpatterns.org/ont/mario/postalAddress.owl
http://www.ontologydesignpatterns.org/ont/mario/postalAddress.owl
https://inspire.ec.europa.eu/Data-Models/Data-Specifications/2892
http://www.ontologydesignpatterns.org/ont/mario/questionanswer.owl
http://www.ontologydesignpatterns.org/ont/mario/questionanswer.owl
http://www.ontologydesignpatterns.org/ont/mario/service.owl
http://www.ontologydesignpatterns.org/ont/mario/service.owl
http://ontologydesignpatterns.org/wiki/Submissions:Place

78 Chapter 3. An Ontology Network for Social Robots in Assistive Context

Time. The MON’s Time module53 defines a vocabulary for specifying time-related

entities (such as instants and intervals) and for relating entities to time. This onto-

logy has been derived from the W3C’s Time ontology54. As in the W3C’s ontology

time related entities are subsumed by the class time:TemporalEntity. This class

subsumes time:Interval which, in turn, (differently from the W3C’s ontology) it

subsumes time:Instant. In fact, for the continuous nature of time and its infinite

divisibility, an instant it can be seen as a very short interval. Within the context

of knowledge base systems, an instant is usually defined as the unit of the shortest

granularity available on the system. The MON’s Time module allows to define an

instant as an xsd:datetime which gives to instants the granularity of milliseconds.

Time-indexed Situation. The MON’s Time-indexed Situation module55 allows

to represent situations that are explicitly indexed at some time and that involve

an entity. This ontology module implements the homonymous Ontology Design

Pattern56.

Time-indexed Relationship. The MON’s Time-indexed Relationship module57

allows to specify the fact that two persons have a relationship for a certain time.

A timeindexedrelationship:TimeIndexedRelationship is a time-indexed situ-

ation involving at least two persons, an entity of type timeindexedrelationship:

Relationship, and a temporal entity which indicates the beginning and the end of

the relationship of the two persons.

53Time Module, http://www.ontologydesignpatterns.org/ont/mario/time.owl
54W3C’s Time ontology, https://www.w3.org/TR/owl-time/
55Time-indexed Situation Module, http://www.ontologydesignpatterns.org/ont/mario/

timeindexedrelationship.owl
56Time-indexed Situation Ontology Desing Pattern, http://ontologydesignpatterns.org/wiki/

Submissions:TimeIndexedSituation
57Time-indexed Relationship Module, http://www.ontologydesignpatterns.org/ont/mario/

timeindexedrelationship.owl

http://www.ontologydesignpatterns.org/ont/mario/time.owl
https://www.w3.org/TR/owl-time/
http://www.ontologydesignpatterns.org/ont/mario/timeindexedrelationship.owl
http://www.ontologydesignpatterns.org/ont/mario/timeindexedrelationship.owl
http://ontologydesignpatterns.org/wiki/Submissions:TimeIndexedSituation
http://ontologydesignpatterns.org/wiki/Submissions:TimeIndexedSituation
http://www.ontologydesignpatterns.org/ont/mario/timeindexedrelationship.owl
http://www.ontologydesignpatterns.org/ont/mario/timeindexedrelationship.owl

Chapter 3. An Ontology Network for Social Robots in Assistive Context 79

Vital Signs. The MON’s Vital Signs module58 allows to keep track of the vital

signs of a patient over time. A vitalsigns:VitalSignsMeasurementInTime is a

time-indexed situation representing a measurement (specified with a measurement:

QuantitativeValue) of a certain vital sign (i.e. vitalsigns:VitalSign) at a cer-

tain time for a certain patient.

3.4 Discussion

The study reported in this chapter aimed at determining what kind of knowledge

social robots need in order to operate in socially assistive context (cf. RQ1, Sec-

tion 1.1). To this end, the chapter presented a proof-of-concept, called MARIO

Ontology Network (MON). MON defines a set of interconnected and modularized

ontologies for representing and structuring the knowledge processed by a social robot

in socially assistive context. The ontology modules were identified by analyzing and

generalizing the use cases that emerged from the MARIO project (cf. Section 1.3).

The most developed knowledge areas are those related to the medicine domain,

social and multimedia contents, and user-related information (user data, user’s life

events etc.). The competency questions falling in the area of multimedia contents,

user related information and transversal knowledge (e.g. temporal and spatial in-

formation) were mostly addressed by reusing and adapting existing ontologies. In-

stead, considerable effort was spent to meet the requirements related to the medicine

domain. In particular, there were no ontologies able to support a robot in perform-

ing a Comprehensive Geriatric Assessment of its patient. MON filled this gap with

the CGA Ontology (cf. Section 3.3.2) which enabled the robot to autonomously

perform a Comprehensive Geriatric Assessment (cf. Section 7.4.1.1).

Another innovative module of MON is the Affordance ontology (cf. Section 3.3.1)

which enables a novel mechanism for arbitrating robot’s actions. This model allows

to define a series of situations a robot should react to and the most appropriate

actions to perform in each situation. In this way the choice of the action to perform

58Vital Signs, http://www.ontologydesignpatterns.org/ont/mario/vitalsigns.owl

http://www.ontologydesignpatterns.org/ont/mario/vitalsigns.owl

80 Chapter 3. An Ontology Network for Social Robots in Assistive Context

is faced at the knowledge level [151] and the robot is able to take the decision with

all the knowledge it has. This ontology provides a simple and effective strategy for

designing robot’s personality and social rules it must follow in any situation. How-

ever, this ontology provides only an high level model for supporting this mechanism

and considerable work needs to be done in order to facilitate the definition of the

affordance relation. This could be done by defining a vocabulary of common situ-

ations social robots should reacts to. This gap is partially fulfilled by projects like

FrameNet [19] which provides a repository of stereotyped situations (called frames).

Nevertheless, FrameNet’s frames are too generic to be used for this mechanism and

need specialization in the social robotics domain.

Concerning the “sociality” of a robot, much work still to be done to investig-

ate to what extent the robot’s knowledge impacts on acceptability, empathy and

trustability of robots. Although Social Ontology [188] (i.e. the study of the nature

and properties of the social world) is a developed field in philosophy, the results of

this research area are closed off to robots. Therefore, future work should focus on

encoding social theories in a machine-interpretable format.

Chapter 4

Providing Linked Open Data as

Background Knowledge for Social Robots

While Chapter 3 focused on defining the intensional level of the robot’s knowledge,

this Chapter investigates the possibility of populating the extensional level with

data retrieved from the web (cf. Section 1.1, RQ2). To this end two lines of research

have been carried out in parallel focusing on linguistic and common sense knowledge

respectively. Regarding the first line of research this chapter presents Framester,

a huge linguistic knowledge graph integrating lexical, linguistic, ontological and

encyclopedic data. The method for building Framester is described in Section 4.1.

This Chapter also introduces a novel empirical method for assessing foundational

distinctions over Linked Open Data entities from a common sense perspective (e.g.

deciding if an entity inherently represents a class or an instance from a common

sense perspective). This method realizes the first step of a more general procedure

meant to automatically generate common sense knowledge from Linked Open Data.

Section 4.2 overviews methods and experiments aimed at assessing to what extent

Linked Open Data could be a source of common sense knowledge.

4.1 Framester: a Linguistic Data Hub

When dealing with robot understanding, we need to integrate knowledge about the

robot’s physical context, linguistic knowledge, and knowledge about the world in

82 Chapter 4. Providing LOD as Background Knowledge for Social Robots

general. Designing a knowledge base for a socially assistive robot can be therefore

considered a direct application of the Linked Data paradigm, which provides in-

teroperability across existing Linked Open Data (world’s background knowledge),

linguistic knowledge, user’s knowledge and robot’s sensor knowledge. In order to

create an adequate amount of background knowledge, and to make it accessible to

the robot, Framester1 [81], a large “cloud” of linguistic and factual data has been

created which stands on the shoulders of a flexible and cognitively-sound theory of

human sense making, Frame Semantics [75].

Framester is intended to work as a knowledge graph/linked data hub to connect

lexical resources, NLP results, linked data, and ontologies. It is bootstrapped from

existing resources, notably the RDF versions of FrameNet [153], WordNet [145],

VerbNet [187], and BabelNet [150], by interpreting their semantics as a subset of

(a formal version of) Fillmore’s frame semantics [75], and semiotics [80], and by

reusing or linking to off-the-shelf ontological resources including OntoWordNet [85],

DOLCE [138] and DOLCE-Zero [86], Yago [201], DBpedia [31].

4.1.1 Framester Overview

Framester uses the D&S (i.e. Descriptions and Situations) knowledge pattern [84],

which allows to distinguish the reification of the intension of a predicate (a descrip-

tion) from the reification of the extensional denotation of a predicate (a situation).

A description d can define or reuse concepts c1...cn that can be used to classify en-

tities e1...em involved in a situation s that is expected to be compatible with d. For

those reasons, D&S perfectly fits the core assumptions of Fillmore’s frame semantics,

by which a frame is a schema for conceptualising the interpretation of a natural lan-

guage text (and beyond), its denotation (a frame occurrence) is a situation, and the

elements (or semantic roles) of a frame are aspects of a frame, which can be either

obligatory, optional, inherited, reused, etc. Furthermore, D&S takes into account a

semiotic theory to integrate linguistic and formal semantics. It can therefore support

additional frame semantics assumptions such as evocation and semantic typing.

1Framester, https://w3id.org/framester

https://w3id.org/framester

Chapter 4. Providing LOD as Background Knowledge for Social Robots 83

As described in [153, 184], several recipes can be designed to interpret FrameNet

frames and frame elements as OWL classes, object properties, or punned individu-

als. Both FrameBase and Framester make use of the basic recipe that interprets

frames as classes and frame elements as properties. However, Framester goes deeper

in providing a two-layered (intensional-extensional) semantics for frames, semantic

roles, semantic types, selectional restrictions, and the other creatures that populate

the world of lexical resources. The two-layered representation is based on the De-

scriptions and Situations pattern framework [84], and exploits OWL2 punning, so

enabling both (intensional) navigation in the linked lexical datasets, and the reuse

of lexical predicates as extensional classes or properties. The Framester’s schema is

included in the MARIO Ontology Network and it is available online at2. The main

assumptions for Framester knowledge graphs are as follows:

1. A frame is a multigrade intensional predicate [156] f(e, x1, ..., xn), where f is

a first-order relation, e is a (Neo-Davidsonian) variable for any eventuality or

state of affairs described by the frame, and xi is a variable for any argument

place, which could admit several positions in case multiple entities are expected

to be classified in a place.

2. OWL2 punning allows to represent a frame as either a class f v framester:

Situation (a subclass of the framester:Situation class, having situations

as instances) or as an individual f ∈ framester:Frame (an instance of the

framester:Frame class).

3. Any word or multiword can evoke a frame: this is represented by means of a

property chain that connects a word entity to a (punned) frame.

4. Frame Projections include any projections of a frame relation. Assuming frame

semantics, each meaning consists of activated frames, whose formal counter-

parts are multigrade intensional predicates. When only some aspect of that

frame is considered, it can be formalized as a (typically unary or binary) pro-

2Framester’s schema, https://w3id.org/framester/schema

https://w3id.org/framester/schema

84 Chapter 4. Providing LOD as Background Knowledge for Social Robots

jection of a frame relation. Semantic role as well as co-participation relation

are binary projections of a frame.

5. A frame occurrence (a situation denoted by text or data) s ∈ f is an instance

of f and the entities {e, x1...xn} involved in a situation are individuals.

Due to the expressivity limitations of OWL, some refactoring was needed to

represent frame semantics: frames are represented as both classes and individuals,

semantic roles and co-participation relations as both (object or datatype) properties

and individuals, selectional restrictions and semantic types as both classes and indi-

viduals, situations and their entities as individuals. Frames and other predicates are

represented as individuals when a schema-level relation is needed (e.g. between a

frame and its roles, or between two frames), which cannot be represented by means

of an OWL schema axiom (e.g. subclass, subproperty, domain, range, etc.).

Example. Figure 4.1 shows how the D&S pattern framework (descriptions, situ-

ations, classification patterns) is at the basis of Framester representation of the

example predicate G suit. Related notions from WordNet (wn:), BabelNet (bn:),

FrameNet (fe:), DBpedia (dbr:), and DOLCE-Zero (dul:) make linguistic and fac-

tual data linked by using Framester ontology (fschema:) and data (framester:),

and OWL logic (owl:, rdfs:). In practice, this automated integration allows to

represent any data coming from different resources (i.e. not only those depicted,

but all those that are associated with them in the Linked Open Data cloud) in a

homogeneous and logically rigorous way. That would include instances of G-suits,

knowledge about G-suits, places where G-suits are produced or used, the frames

(e.g. Clothing) that include G suit as a participant, multilingual versions of the

predicates and entities associated with G suits, etc.

4.1.2 Semi-automatic Generation of Framester

The process for generating Framester includes several steps including conversion of

linguistic and factual resources in RDF, automatic generation and manual refinement

Chapter 4. Providing LOD as Background Knowledge for Social Robots 85

Figure 4.1: An example of Framester representation for the concept G suit.

of mapping among RDF individuals and assessment of integrity constraints. This

process guarantees the sustainability of Framester over time and follows the Extract,

Transform and Load (ETL) pattern.

4.1.2.1 Conversion of Input Resources in RDF

The input of the process is a collection of linguistic, factual, encyclopedic and ontolo-

gical resources. Most of the factual, encyclopedic and ontological resources (such as

DBpedia, YAGO, DOLCE etc.) are already available in RDF format, but this is not

the case for most of the linguistic resources (such as FrameNet, WordNet or VerbNet)

which are often distributed in non-standard format. In the last two decades several

projects (among others [16, 153, 65, 142, 184, 52]) aimed at publishing particular

versions of these datasets following the Linked Open Data principles. As a result

86 Chapter 4. Providing LOD as Background Knowledge for Social Robots

most of these datasets are now available as Linked Open Data (cf. Section 2.6).

Whenever a dataset (or one of its version) is not already available in Linked Open

Data, one of the following conditions holds. (i) The resource is distributed in a

standard syntactic format (e.g. XML or CSV), then, it can be converted in RDF

by using general purpose triplification tools (such as Semion [154], D2RQ [30] or

Any233). The schema of the generated RDF dataset is autonomously learned from

the input dataset and could be refined by defining some hand-crafted rules. (ii) For

particular datasets (e.g. FrameNet, WordNet) ad-hoc tools have been designed for

managing the transformation to RDF (e.g. WN-RDF4 [142] or Premon [52]). These

tools guarantee that future versions of the dataset can be easily converted to RDF

(unless substantial changes of the format of resource occur). (iii) For the remain-

ing datasets a tool for performing the conversion to RDF needs to be developed.

For example, this is the case of the Paraphrase Database (PPDB) [163] which is

distributed in non-standard tabular format. In order to convert PPDB in RDF we

have developed PPDB2RDF, a tool, available online at5, which converts the PPDB

dataset in RDF following the schema defined in the PPDB ontology6.

4.1.2.2 Normalization of the Input Resources

The second step of the process is meant to normalize the input datesets in order

to be compliant with the Framester ontology, existing rules and alignments. For

each imported dataset the Framester’s ontology provides a reference schema result-

ing from existing work. For example, the reference schema for WordNet is defined

by OntoWordNet [85], the FrameNet’s reference schema has been proposed in [153].

These reference schemas are also used to define integration and integrity rules. As

we will see later, to integrate the input datasets and to assessing the integrity of the

data, the process uses a set handcrafted rules and alignments among individuals be-

longing to different resources (e.g. mapping between WordNet synsets and DOLCE

3Any23, https://any23.apache.org/
4WN-RDF, https://github.com/jmccrae/wn-rdf
5PPDB2RDF, https://github.com/luigi-asprino/ppdb2rdf
6PPDB ontology, https://w3id.org/ppdb/ontology

https://any23.apache.org/
https://github.com/jmccrae/wn-rdf
https://github.com/luigi-asprino/ppdb2rdf
https://w3id.org/ppdb/ontology

Chapter 4. Providing LOD as Background Knowledge for Social Robots 87

classes provided by OntoWordNet [85]). Developing rules and alignments is a costly

activity, and, therefore it is desirable to reuse them as much as possible.

The normalization step involves both T-box and A-box of the new version of

the resource. The A-box resulting from the conversion step is transformed to make

it compliant to the T-box of the former version. For example, frames (i.e. the

FrameNet’s A-box) defined in FrameNet 1.7 are refactored following the ontology

defined for FrameNet [153]. In this way, rules (involving onlu the T-box) defined

for the former versions (i.e. FrameNet 1.5) can be applied on the new one (i.e

FrameNet 1.7). The other normalization action involves the entities within the A-

box. If the semantics of the entities has not changed, then a mapping between the

entities of the new version and the corresponding entities of the former one can be

created. For example, the synsets defined in WordNet 3.1 are mapped to the synsets

with the same semantics belonging to the former versions. This kind of mapping

is often provided by the resource creator (e.g. FrameNet provides for each release

the differences with the previous one). The mapping among entities of the various

versions guarantees the validity of the handcrafted alignments.

The variation of the semantics of an entity across two versions of a resource is

called semantic drift. The process is not able to automatically detect a semantic

drift, therefore, it could be only managed when the resource creator provides in-

formation about the entities that drifted their semantics. When this happens it is

possible to tracing the drift through by generating an individual for each meaning of

the entity, and, then connecting these individuals through an n-ary relation which

indicates the contextual information related to the drift (e.g. the version of the

resources where the entities come from).

4.1.2.3 Linking Entities of Different Resources

At the end of the normalization step all the input datasets are converted in RDF,

then, a series of actions can be undertaken to link the entities of these imported

datasets. Some of links among the entities already exist. BabelNet synsets are

linked to WordNet synsets and DBpedia indivduals. Classes defined in YAGO clas-

88 Chapter 4. Providing LOD as Background Knowledge for Social Robots

sify DBPedia individuals and are aligned with WordNet’s synsets. OntoWordNet

connects WordNet synsets to DOLCE classes. Predicate Matrix [116] integrates

WordNet, FrameNet, VerbNet and PropBank. Several projects aimed at aligning

FrameNet’s frame with WordNet’s synsets (among others eXtended WordFrame-

Net [117] and FrameBase [184]). PPDB has been used to increase the linguistic

coverage of FrameNet [163].

These alignments are mostly automatically generated and are used for bootstrap-

ping the linking among the imported datasets. The process also allows humans to

intervene for refining these alignments. This cleansing activity can be supported

by providing humans with additional information on the entities involved in the

alignment. This information can be retrieved from the imported datasets (e.g. de-

scriptions of the entities). As a concrete example of this kind of activity we describe

the cleansing of the mapping between WordNet’s synsets and FrameNet’s frames.

WordNet’s synsets are equivalence classes of word senses whose words can evoke

one or more frames. Alignments between WordNet’s synsets and corresponding

evoked FrameNet’s frames are provided by eXtended WordFramenet [117], Predicate

Matrix [116], FrameBase [184], and, more recently BabelNet [150] started publishing

the links between its synsets and FrameNet’s frames. The assessment of a relation

WordNet’s synset s and a FrameNet’s frame f can be supported by the following

information: (i) Informal description of the semantics of s and f (i.e. glosses);

(ii) Hyponyms and hypernyms of s with their glosses, and, frames subsumed by

f and frames from which f inherits with their glosses; (iii) Semantic Roles (i.e.

Frame Elements) and Semantic Types of f with their glosses; (iv) The DOLCE

class that OntoWordNet associates with the synset s; (v) A set of sentences from

WordNet containing a word annotated with the synset s, and, a set of sentences from

FrameNet containing a word annotated with the frame f ; (vi) Alternative synsets

(i.e. WordNet synsets containing at least a lexical unit of f) and alternative frames

(i.e. FrameNet’s frames having a lexical unit contained in the s). This information

helps a human in understanding the semantics of entities and shows some sentences

exemplifying the use of these entities in natural language. This information can

Chapter 4. Providing LOD as Background Knowledge for Social Robots 89

be retrieved from the imported datasets by firing some queries. Providing this

information in single graphical user interface could facilitate the cleansing activities

and relieve the human from the burden of submitting several queries.

A deep manual revision of the mapping between FrameNet’s frames and Word-

Net’s synset is fundamental for the Framester generation process. Similar revi-

sions could be carried out for other kind of mappings such as the mapping between

YAGO’s classes and WordNet’s synsets. These activities would require considerable

human effort and therefore crowdsourcing this task will be considered as a possible

solution for refining other mappings.

Novel Mappings. Novel mappings among the imported datasets have been also

created with a two-step approach. The first step is aimed at heuristically creating a

set of candidate links which are manually curated in a second step. The revision is

similar to the activity carried out for the existing mappings (as described above). An

example is the mapping between DBpedia classes and WordNet’s synsets. Candidate

synsets for mapping a DBpedia class are the synsets containing a word that matches

the class name. The refinement of this mapping is supported by providing a human

with: Hypernyms/Hyponyms of the synset, instances of the DBpedia class, and

DOLCE classes associated with the synsets in [85, 82] and with DBpedia classes

in [162]. A similar procedure has been carried out for mapping FrameNet’s Semantic

Types on WordNet’s synsets.

4.1.2.4 Heuristic Methods for Extending the Mapping

Manually curated mapping and links resulting from existing works (such as Onto-

WordNet [85, 82], YAGO [201], BabelNet [150] and more recently the work in [162])

constitute the base of the Framester’s linking structure. Additional links are gener-

ated by applying rules and heuristics.

Extending WordNet and FrameNet mapping. Further extensions of the

WordNet-FrameNet mapping were automatically performed based on: (i) WordNet

90 Chapter 4. Providing LOD as Background Knowledge for Social Robots

hyponymy relations between noun and verb synsets, where each frame is extended

with direct hyponyms of the noun or verb synsets already mapped to frames; (ii) “In-

stance-of” relations between WordNet noun synsets; (iii) Adjective synset similarity;

(iv) Same verb groups including verb synsets; (v) Pertainymy relations between ad-

verb synsets and noun or adjective synsets; (vi) Participle relations between adjective

and verb synsets; (vii) Morphosemantic links between adjective and verb synsets;

(viii) Transitive WordNet hyponymy relations; (ix) Unmapped siblings of mapped

noun or verb synsets; (x) Derivational links between different kinds of synsets.

Mapping DBpedia Entities on Frames. Following [85, 82], Framester inter-

prets WordNet synsets as classes and unary projections of frames. Therefore, an

individual belonging to a WordNet synset is either an occurrence or a participant of

a certain frame. In both cases the occurrence of the individual within an sentence

activates the frame. For example, “The Mayweather-McGregor boxing match”7 is

an event belonging to the synset “boxing match” (i.e. wn31:07481100-n8), and,

it is an occurrence of the synset frame “boxing match” (since the synset is one of

the frame’s unary projections). Floyd Mayweather Jr.9 is a boxer (and belongs to

the synset wn31:09889614-n10) which is a participant (i.e. a Semantic Type) of

the frame “Boxing match”. The occurrence of Floyd Mayweather also evokes, in a

weaker way than its match with Mc Gregor, the frame “boxing match”. For expli-

citing the fact that an individual activates a frame we defined the object property

fschema:playsRoleIn which connects an individual to the frame it can activate.

The alignment between classes of the DBpedia Ontology and WordNet’s synset are

then used compute the fschema:playsRoleIn relation: DBPedia entities belonging

to a class mapped on a WordSynset s1 are aligned with the synset frame having s1

as unary projection.

7https://en.wikipedia.org/wiki/Floyd Mayweather Jr. vs. Conor McGregor
8http://wordnet-rdf.princeton.edu/id/07481100-n
9https://en.wikipedia.org/wiki/Floyd Mayweather Jr.

10http://wordnet-rdf.princeton.edu/id/09889614-n

https://en.wikipedia.org/wiki/Floyd_Mayweather_Jr._vs._Conor_McGregor
http://wordnet-rdf.princeton.edu/id/07481100-n
https://en.wikipedia.org/wiki/Floyd_Mayweather_Jr.
http://wordnet-rdf.princeton.edu/id/09889614-n

Chapter 4. Providing LOD as Background Knowledge for Social Robots 91

ASK {
? i ex : subsumedBy+ ? i

}

SELECT ? i ?1 WHERE {
? i ex : subsumedBy+ ? i 1 .

? i 1 ex : subsumedBy+ ? i .

}

Frame 4.1: The SPARQL queries used for detecting a cycle within a hierarchy.

4.1.2.5 Assessing Integrity Constraints

A list of integrity rules have been developed in order to assess the consistency of the

dataset and to detect anomalies. Anomalies could have been generated during the

execution of an automatized task of the process or could come from the imported

datasets. The integrity rules are implemented as SPARQL queries: ASK queries are

used to check the presence of anomalies, and SELECT queries are used to retrieve

entities and relations involved in the anomalies. Following a recent W3C’s recom-

mendation, we plan to re-implement there rules using SHACL language11. When an

anomaly is detected it can be addressed with human intervention. Similarly to the

cleansing activities discussed in Section 4.1.2.3, a human can be assisted in this task

with the provision of side information retrieved from the dataset. For example, rules

can defined to avoid cycles within hierarchies. The queries showed in Frame 4.1 can

be used to detect a cycle in a hierarchy defined using ex:subsumedBy as subsump-

tion relation. The ASK query checks if there is an individual ?i that transitively

subsumes from itself, and the SELECT query returns all the edges involved in the

cycle. A manual inspection of these edges is needed to identify the incorrect edge(s)

and to fix the hierarchy.

11W3C’s Recommendation https://www.w3.org/TR/shacl/

https://www.w3.org/TR/shacl/

92 Chapter 4. Providing LOD as Background Knowledge for Social Robots

4.2 Assessing Foundational Distinctions in Linked

Open Data

The Web and its Semantic extension (i.e. Linked Open Data) contain open global-

scale knowledge and make it available to potentially intelligent machines that want to

benefit from it. Nevertheless, most of Linked Open Data lack ontological distinctions

and have sparse axiomatisation. For example, distinctions such as whether an entity

is inherently a class or an individual, or whether it is a physical object or not, are

hardly expressed in the data, although they have been largely studied and formalised

by foundational ontologies (e.g. DOLCE, SUMO). These distinctions belong to

common sense too, which is relevant for many artificial intelligence tasks such as

natural language understanding, scene recognition, and the like. There is a gap

between foundational ontologies, that often formalise or are inspired by pre-existing

philosophical theories and are developed with a top-down approach, and Linked

Open Data that mostly derive from existing databases or crowd-based effort (e.g.

DBpedia, Wikidata). In this Section we investigate whether machines can learn

foundational distinctions over Linked Open Data entities, and if they match common

sense. We want to answer questions such as “does the DBpedia entity for dog refer

to a class or to an instance?”.

Common Sense Knowledge and Linked Open Data. Common Sense Know-

ledge is knowledge about the world, shared by all people. Common sense reasoning

is also at the core of many Artificial Intelligence (AI) tasks such as natural lan-

guage understanding, object and action recognition, and behavior arbitration [59],

but it is difficult to teach to those systems. Its importance was assessed back in

1989 by [100] who argued that AI needs a “formalization of a sizable portion of

commonsense knowledge about the everyday physical world” (cit.), which, he says,

must have three main characteristics: uniformity, density, and breadth. The Se-

mantic Web effort has partly addressed this requirement with Linked Open Data

Chapter 4. Providing LOD as Background Knowledge for Social Robots 93

(LOD): ∼200 billion linked facts12, formally and uniformly represented in RDF and

OWL, and openly available on the Web. Nevertheless, LOD still fails in addressing

density (high ratio of facts about concepts) and breadth (large coverage of physical

phenomena). In fact, it is very rich for domains such as geography, linguistics, life

sciences and scholarly publications, as well as for cross-domain knowledge, but it

mostly encodes this knowledge from an encyclopaedic perspective. The goal of the

methodologies presented in this Section is to enrich LOD with common sense know-

ledge, going beyond the encyclopaedic view. We claim that an important gap to

be filled towards this goal is: assessing foundational distinctions over LOD entities,

that is to distinguish and formally assert whether a LOD entity inherently refers to

e.g. a class or an individual, a physical object or not, a location, a social object,

etc., from a common sense perspective.

Foundational Distinctions. We use DOLCE+DnS UltraLite (DUL)13 as refer-

ence foundational ontology to select the targets of our experiments. We start by

focusing on two very basic but diverse distinctions, which need to be addressed

before approaching all the others: whether a LOD entity e.g. dbr:Rome14, (i) inher-

ently refers to a class or an instance, and whether it (ii) refers to a physical object

or not. The first distinction (class vs. instance) is fundamental in formal onto-

logy, as evidenced by upper-level ontologies (e.g. SUMO and DOLCE), and showed

its practical importance in modelling and meta-modelling approaches in computer

science, e.g. the class/classifier distinction in Meta Object Facility15. It is also at

the basis of LOD knowledge representation formalisms (RDF and OWL) for sup-

porting taxonomic reasoning (e.g. inheritance). Automatically learning whether a

LOD entity is a class or an instance – from a common sense perspective – impacts

12https://lod-cloud.net/, accessed on April 5th 2019
13DOLCE+DnS UltraLite (DUL) http://www.ontologydesignpatterns.org/ont/dul/DUL.owl is

derived from DOLCE. DUL inherits most of DOLCE’s distinctions by providing a more intuitive

terminology and simplified axiomatisation. It has been widely adopted by the Semantic Web

community.
14dbr: stands for http://dbpedia.org/resource/
15https://www.omg.org/spec/MOF/

https://lod-cloud.net/
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://dbpedia.org/resource/
https://www.omg.org/spec/MOF/

94 Chapter 4. Providing LOD as Background Knowledge for Social Robots

on the behaviour of practical applications relying on LOD as common sense back-

ground knowledge. Examples include: question answering, knowledge extraction,

and more broadly human-machine interaction. In fact, many LOD datasets that are

commonly used for supporting these tasks (especially general purpose datasets e.g.

DBpedia, Wikidata, BabelNet) only partially, and often incorrectly, assert whether

their entities are classes or instances, and this has been proved to be a source of

many inconsistencies and error patterns [162]. It is worth noting that the notion of

what is a class and what is an instance is highly context dependent for information

systems’ ontologies and therefore one might argue that this distinction is meaning-

less. However, we assume a commonsense perspective which is a broad although

specified context and the high agreement in the results of experiments confirm that

it is reasonable to target this context.

The second distinction (physical object or not) is essential to represent the phys-

ical world. In fact, only physical objects can move in space or be the subject of

axioms expressing their expected (naive) physical behaviour (e.g. gravity). We refer

to the definition of Physical Object provided by DUL: “Any Object that has a proper

space region. The prototypical physical object has also an associated mass, but the

nature of its mass can greatly vary based on the epistemological status of the object

(scientifically measured, subjectively possible, imaginary)”.

In the reminder of this Section we describe an automated way of making these

distinctions emerge empirically. In summary, we present:

• a novel method that leverages supervised machine learning and crowdsourcing

to automatically assess foundational distinctions over LOD entities (cf. Section

4.2.2), according to common sense;

• four reusable datasets, based on a sample of DBpedia, separately annotated by

experts and by the crowd with class/instance and physical object classification,

for each entity (cf. Section 4.2.5). The crowdsourced task designs are on their

turn reusable;

Chapter 4. Providing LOD as Background Knowledge for Social Robots 95

• a set of reproducible experiments targeting two foundational distinctions (class

vs. instance and physical object vs. not a physical object) (cf. Section 4.2.6).

4.2.1 Related Work

Only a few studies focus on typing entities based on foundational distinctions.

To the best of our knowledge, our research is the first to test the hypothesis that ma-

chines can learn foundational distinctions that match common sense, by using web

resources. The closest work to ours in approach and scale is [86], which produced

a dataset of DBpedia entities annotated with DUL classes, using ontology learn-

ing. We reuse this dataset and compare our results against it. The work by Miller

and Hristea [146] addresses the problem of distinguishing classes from instances in

WordNet [145] synsets, through purely manual annotation. This approach is inap-

propriate to test our research questions due to its lack of scalability. A work by Zirn

et al. [216] faces the problem of distinguishing classes and instances within the Wiki-

pedia Category Taxonomy. However, the proposed method is hardly generalizable

for other foundational distinctions and for any LOD entities. This Chapter presents

a methodology that can assess any foundational distinction on any LOD entity. A

recent work [161] proposes a method for detecting classes among Wikipedia articles

by using simple linguistic features and heuristics. Similar assumptions, like checking

particular linguistic patterns and features, are investigated in this work.

4.2.2 Methods

We are interested in observing whether the Linked Open Data (LOD) and its re-

lated Web resources provide an empirical basis for making foundational distinctions

over entities represented in the LOD according to the commonsense intuition. Our

objective is to test all the distinctions formalised in DUL. Nevertheless, for each

of them we need to create a set of reference datasets (cf. Section 4.2.5) in order

to train and evaluate the proposed method, which requires a significant amount of

work. For this reason, we start focusing on two distinctions: between class and

96 Chapter 4. Providing LOD as Background Knowledge for Social Robots

instance, and between what is a physical object and what is not. These are two of

the most basic, but very diverse distinctions in knowledge representation and formal

ontology. The former applies at a very high level, and is usually modelled by means

of logical language primitives (e.g. rdf:type, rdfs:subClassOf). The latter con-

cerns the identification of those entities that constitute the physical world, hence

highly relevant and primitive as far as common sense about physics is concerned.

We argue that by investigating these two distinctions, given their diverse character,

we can assess the feasibility of a larger study based on the proposed method, and

get an indication of its generalisability.

We use DBpedia (release 2016-10) in our study as most LOD datasets link to

it. We approach this problem as a classification task, using two classification ap-

proaches: alignment-based (cf. Section 4.2.3) and machine learning-based (cf. Sec-

tion 4.2.4). Since no established procedure exists, we tested different families of

methods in an exploratory way. This led us to reuse – or compare to – existing

work, which provides us with a baseline, which includes T́ıpalo [86] as well as other

relevant alignments between DBpedia and lexical resources (cf. Section 4.2.3).

4.2.3 Alignment-based Classification

Alignment-based methods exploit the linking structure of LOD, in particular the

alignments between DBpedia, foundational ontologies, and lexical linked data, i.e.

LOD datasets that encode lexical/linguistic knowledge. The advantage of these

methods is their inherent unsupervised nature. Their main disadvantages are the

need of studying the data models for designing suitable queries, and the potential

limited coverage and errors that may accompany the alignments. We have developed

SENECA (Selecting Entities Exploiting Linguistic Alignments), which relies on

existing alignments in LOD, to make an automatic assessment of the foundational

distinctions asserted over DBpedia entities. A graphical description of SENECA is

depicted in Figure 4.2.

Chapter 4. Providing LOD as Background Knowledge for Social Robots 97

Class vs. Instance. As far as this distinction is concerned, SENECA works

based on the hypothesis that common nouns are mainly classes and they are ex-

pected to be found in dictionaries, while it is less the case for proper nouns, that

usually denote instances. This hypothesis was suggested by [146], who manually

annotated instances in WordNet, information that SENECA reuses when available.

A good quality alignment between the main LOD lexical resources and DBpedia is

provided by BabelNet [150]16. SENECA exploits these alignments and selects all

the DBpedia entities that are linked to an entity in WordNet17, Wiktionary18 or

OmegaWiki19. With this approach, 63,620 candidate classes have been identified,

as opposed to WordNet annotations that only provide 38,701 classes. In order to

further increase the potential coverage, SENECA leverages the typing axioms of

Tipalo [86], broadening it to 431,254 total candidate classes. All the other DBpe-

dia entities are assumed to be candidate instances. SENECA criteria for selecting

candidate classes among DBpedia entities are depicted in Figure 4.2a.

Physical Object. Almost 600,000 DBpedia entities are only typed as owl:Thing

or not typed at all. However, each DBpedia entity belongs to at least one Wikipedia

category. Wikipedia categories have been formalised as a taxonomy of classes (i.e.

by means of rdfs:subClassOf) and aligned to WordNet synsets in YAGO [201]20.

WordNet synsets are in turn formalised as an OWL ontology in OntoWordNet [85]21.

OntoWordNet is based on DUL, hence it is possible to navigate the taxonomy up

to the DUL class for Physical Object. SENECA looks up the Wikipedia category of

a DBpedia entity and follows these alignments. Additionally, it uses T́ıpalo, which

includes type axioms of DBpedia entities based on DUL classes. SENECA uses these

paths of alignments and taxonomical relations, as well as the automated inferences

16We use BabelNet 3.6, which is aligned to WordNet 3.1
17http://wordnet-rdf.princeton.edu/, we use WordNet 3.0 and its alignments to WordNet 3.1,

to ensure interoperability with the other resources
18https://www.wiktionary.org/
19http://www.omegawiki.org/
20We use YAGO 3, aligned to WordNet 3.1
21OntoWordNet is aligned to WordNet 3.0

http://wordnet-rdf.princeton.edu/
https://www.wiktionary.org/
http://www.omegawiki.org/

98 Chapter 4. Providing LOD as Background Knowledge for Social Robots

BabelNet

Tìpalo

BabelNet
Synset

WordNet Synset (class)

OmegaWikiSynset

skos:exactMatch

skos:exactMatchDBpedia
entity

skos:exactMatch
owl:Class

rdf:type

WiktionaryPage
bn-lemon:wiktionaryPageLink

(a) The alignment paths followed by

SENECA for selecting candidate classes

among DBpedia entities. It identifies as

classes all DBpedia entities aligned via Ba-

belNet to a WordNet synset, an Omega-

Wiki synset or a Wiktionary page, and all

DBpedia entities typed as owl:Class in

T́ıpalo.

Tìpalo

DB
pe
di
a

YAGO

DBpedia
category

YAGO
class

WordNet
Synset

rdfs:subClassOf owl:sameAs O
ntoW

ordNet

own2dul:d0

DBpedia
entity

dct:subject

dul:Physical
Object

rdf:type

(b) The alignment paths used by SENECA

for identifying candidate Physical Ob-

jects among DBpedia entities. It nav-

igates the YAGO taxonomy that via

OntoWordNet links DBpedia entities to

dul:PhysicalObject or T́ıpalo that links

DBpedia entities to dul:PhysicalObject.

Figure 4.2: SENECA approach for assessing whether a DBpedia entity is a class

or an instance (Figure 4.2a) and whether it is a physical object or not (Figure 4.2b).

that enable to assess whether a DBpedia entity is a Physical Object or not. With

this approach, graphically summarised in Figure 4.2b, 67,005 entities were selected

as candidate physical objects.

4.2.4 Machine Learning-based Classification

Within machine learning, classification is the problem of predicting which category

an entity belongs to, given a set of examples, i.e. a training set. The training

set is processed by an algorithm in order to learn a predictive model based on the

observation of a number of features, which can be categorical, ordinal, integer-valued

or real-valued. We have designed our target distinctions in the form of two binary

classifications. We have experimented with eight classification algorithms: J48,

Random Forest, REPTree, Naive Bayes, Multinomial Naive Bayes, Support Vector

Machines, Logistic Regression, and K-nearest neighbours classifier. We have used

WEKA22 for their implementation.

22https://www.cs.waikato.ac.nz/ml/weka/

https://www.cs.waikato.ac.nz/ml/weka/

Chapter 4. Providing LOD as Background Knowledge for Social Robots 99

4.2.4.1 Features

The classifiers were trained using the following four features.

Abstract. Considering that DBpedia entities are all associated with an abstract

providing a definitional text, our assumption is that these texts encode useful dis-

tinctive patterns. Hence, we retrieve DBpedia entity abstracts, and represent them

as 0-1 vectors (bags of words). We built a dictionary containing the 1000 most

frequent tokens found in all the abstracts of the dataset. The dictionary is case-

sensitive, since the tokens are not normalised. The resulting vector has a value 1

for each token mentioned in the abstract, 0 for the others. By inspecting a good

amount of abstracts, we noticed that very frequent words, such as conjunctions and

determiners, are used in a way that can be informative for this type of classifications.

For example, most of class definitions begin with “A” (“A knife is a tool...”). For

this reason, we did not remove stop-words.

URI. We notice that the ID part of URIs is often as informative as a label, and

often follows conventions that may be discriminating especially for the class vs. in-

stance classification. In DBpedia, the ID of a URI reflects an entity name (it is

common practice in order to make the URI more human-readable), and it always

starts with an upper case letter. If the entity’s name is a compound term and the

entity denotes an instance, each of its components starts with a capital letter. We

have also noticed that DBpedia entity names are always mentioned at the beginning

of their abstract and, for most of the instance entities, they have the same capit-

alisation pattern as the URI ID. Moreover, instances tend to have more terms in

their ID than classes. These observations were captured by three numerical features:

(i) number of terms in the ID starting with a capital letter, (ii) number of terms in

the ID that are also found in the abstract, and (iii) number of terms in the ID.

Incoming and Outgoing Properties. As part of our exploratory approach, we

want to test the ability of LOD to show relevant patterns leading to foundational

100 Chapter 4. Providing LOD as Background Knowledge for Social Robots

distinctions. Given that triples are the core tool of LOD, we model a feature based

on ongoing and outgoing properties of a DBpedia entity. An outgoing property of

a DBpedia entity is a property of a triple having the entity as subject. On the

contrary, an incoming property is a property of a triple having the entity as object.

For example, considering the triple dbr:Rome :locatedIn dbr:Italy, the property

:locatedIn is an outgoing property for dbr:Rome and an incoming property for

dbr:Italy. For each DBpedia entity, we count its incoming and outgoing properties,

per type. For example, properties such as dbo:birthPlace or dbo:birthDate are

common outgoing properties of an individual person, hence their presence suggests

that the entity is an individual.

Outcome of SENECA. Following an exploratory approach, we decided to use

the output of SENECA as a binomial feature (taking value “yes” or “no”) for the

classifiers (excluding Multinomial Naive Bayes classifier).

4.2.5 Reference Datasets

In order to perform our experiments and evaluate the results of our approach (cf.

Section 4.2.2), we have created two datasets for each of the foundational distinctions

under study: one annotated by experts, and another one annotated by the crowd. In

this way we can get an indication whether foundational distinctions match common

sense. The resulting datasets include a sample of annotated DBpedia entities and

are available online 23.

Selecting DBpedia Entities. The first step to build the datasets is to select a

sample of DBpedia entities to be submitted for annotations. It is not straightfor-

ward to select a balanced number of classes and instances from DBpedia. A random

selection would cause a strong unbalance towards instances because DBpedia con-

tains a larger number of named individuals – e.g. Rome or Barack Obama – than

23https://w3id.org/fox

https://w3id.org/fox

Chapter 4. Providing LOD as Background Knowledge for Social Robots 101

concepts24. A possible solution could be to manually select a sufficient equal number

of DBpedia instances and classes, however this may inject a bias in the datasets. We

have opted for a compromise solution by following the intuition that if entities are

represented as vectors, their neighbour vectors would include classes and instances

with a more balanced ratio than the random choice. As for minimising the bias, we

only manually select an arbitrarily small (i.e. 20) number of seeds (equally distrib-

uted). We leverage NASARI [42], a resource of vector representations for BabelNet

synsets and Wikipedia entities. For each vector corresponding to a seed entity, we

retrieve its 100 nearest neighbours25. After cleaning off duplicated entities (e.g.

Wikipedia redirects), entities without abstracts, disambiguation pages, etc., we still

assessed (through expert annotations) an unbalance towards instances (∼35 classes,

∼65 instances). In the light of a broader usage of the same dataset to also annotate

the distinction between physical objects and not physical objects, we enriched the

sample with class entities representing physical locations (a good source of physical

objects). In order to select only physical location classes from DBpedia, we used

the corresponding DBpedia category dbc:Places and the SUN database26, a com-

puter vision-oriented dataset containing a collection of annotated images, covering

a large variety of environmental scenes, places, and the objects within. We retrieved

DBpedia entities whose labels match SUN locations or that belong to the category

dbc:Places, and added a number of them to the sample that would suffice to im-

prove the balance. As a result, a total number of 4502 entities were collected in the

newly created dataset.

CIE Dataset: Class vs. Instance Annotation Performed by Experts. Two

authors of the paper have manually and independently annotated all entities by

indicating whether they were instances or classes, using the associated DBpedia ab-

24A rough estimation made on a random sample of DBpedia showed that ∼90 of entities are

instances.
25We observed that by picking 100 nearest neighbour entities the cosine similarity is always

above a threshold of 0.6
26https://groups.csail.mit.edu/vision/SUN/

https://groups.csail.mit.edu/vision/SUN/

102 Chapter 4. Providing LOD as Background Knowledge for Social Robots

stract as reference description. Their judgements showed an agreement of 93,6%:

they only disagreed on 286 entities. From a joint second inspection, they agreed on

additional 281 entities that were initially misclassified by one of the two. Examples

of misclassified entities are: dbr:Select Comfort (a U.S. manufacturer) that was

erroneously annotated as class; dbr:Catawba Valley Pottery (a kind of pottery)

annotated as instance instead of class. Among the remaining entities, five are poly-

semous cases, where the entity and its description point to both types of referents,

e.g. dbr:Slide Away Bed is a trademark commonly used also to refer to a type of

beds. The authors decided to annotate these entities as classes. As a result, the

CIE annotated dataset contains 1983 classes and 2519 instances, which is reasonable

balanced (44% classes, 56% instances).

CIC Dataset: Class vs. Instance Annotation Performed by Crowd. The

same dataset was then crowdsourced: each worker was asked to indicate whether an

entity is a class or an instance based on its name, abstract, and its corresponding

Wikipedia article. We want to assess the agreement between the experts and the

crowd, which indicates whether foundational distinctions match common sense or

not. The task was executed on Figure Eight 27 by English speakers with high

trustworthiness. The quality of the contributors has been assessed with 51 test

questions with a tolerance of only 20% of errors. We collected 22,510 judgments

from 117 contributors: each entity was annotated by at least 5 different workers.

For each entity e, we computed the level of agreement on each class c, weighted by

the trustworthiness scores

agreement(e, c) =
SumOfTrust(e, c)

SumOfTrustOfWorkers(e)
(4.1)

where SumOfTrust(e, c) is the sum of the trustworthiness scores of the workers

that annotated entity e with class c; and SumOfTrustOfWorkers(e) is the sum of

the trustworthiness scores of all the workers that annotated the entity e. Table 4.1

reports the results of the task indicating the distribution of classes and instances per

level of agreement. The average agreement of the crowd is 95.76% . We compared

27https://www.figure-eight.com/

https://www.figure-eight.com/

Chapter 4. Providing LOD as Background Knowledge for Social Robots 103

Agreement # Class # Instance Total

≥ 0.5 1934 2568 4502

≥ 0.6 1884 2495 4379

≥ 0.8 1631 2330 3961

Table 4.1: CIC dataset crowd-based annotated dataset of classes and instances.

The table provides an insight of the dataset per level of agreement. Agreement

values computed according to Formula 4.1.

crowd’s annotations (with agreement greater than 0.5) against experts’ ones. The

judgements of the crowd workers diverge from the experts’ only on 193 entities, i.e.

agreement is 95,7%, suggesting that the instance vs. class foundational distinction

matches common sense (cf. RQ1 applied to this distinction). Some of those entities

(61) also caused a disagreement between experts, hence denoting ambiguous cases.

Examples include polysemic entities such as dbr:Zeke the Wonder Dog or music

genres (e.g. dbr:Ragga).

POE Dataset: Physical Object Annotation Performed by Experts. Two

authors of the paper further annotated (independently) the dataset by indicating

for each entity whether it referred to a physical object (PO) or not (NPO), using

its DBpedia abstract as reference description. They only disagreed on 272 entities,

showing an agreement of 93,9%. By means of a joint second inspection, they agreed

that the disagreement was caused by errors in the classification, some of which

were borderline cases e.g.: communities (e.g. dbr:Desert Lake, California),

wrongly interpreted as society instead of neighbourhood, trademarked materials (e.g.

dbr:Waxtite) and entities with complex description (e.g. dbr:Caba~na pasiega).

The resulting POE annotated dataset contains 3055 POs and 1447 NPOs.

POC Dataset: Physical Object Annotation Performed by Crowd. We

also crowdsourced the annotations of physical objects vs. not a physical object: the

104 Chapter 4. Providing LOD as Background Knowledge for Social Robots

Agreement # Physical Object # ¬ Physical Object Total

≥ 0.5 3601 901 4502

≥ 0.6 3448 641 4089

≥ 0.8 2989 335 3324

Table 4.2: POC dataset: crowd-based annotated dataset of physical objects. The

table provides an insight of the dataset per level of agreement. Agreement values

computed according to Formula 4.1.

workers were asked to perform this task by using the entity’s name, its abstract,

and Wikipedia page as reference descriptions. The quality of the workers has been

assessed with 49 test questions, used to exclude contributors that scored an accuracy

lower than 80%28. We collected 25,776 judgments from 173 workers. Each entity has

been annotated by at least 5 different English speakers. Table 4.2 summarises the

level of agreement associated with the distribution of PO vs. NPO annotations. The

average agreement of the crowd’s annotations is 85.48% . The agreement between

the crowd and the experts is 85,69%, suggesting that the PO vs NPO foundational

distinction also matches common sense.

4.2.6 Evaluation

This Section presents a set of reproducible experiments evaluating the methods

presented in Chapter 4 for assessing the two foundational distinctions (class vs.

instance and physical object vs. not a physical object). The results of the performed

experiments are expressed in terms of precision, recall and F1 measure, computed

for each classification and for each target class (class vs. instance and physical

object vs. ¬ physical object). The average F1 score is also provided. We compare

the results of the methods, described in Section 4.2.2, against the reference datasets

CIE, CIC, POE and POC, described in Section 4.2.5. As for CIC and POC, we only

28We follow quality strategies recommended by the crowdsourcing platform team

Chapter 4. Providing LOD as Background Knowledge for Social Robots 105

Dataset PC RC FC
1 PI RI FI

1 F1

CIE .919 .693 .796 .753 .939 .836 .813

CIC .935 .731 .818 .778 .945 .853 .836

Dataset PPO RPO FPO
1 PNPO RNPO FNPO

1 F1

POE .877 .247 .385 .561 .965 .713 .548

POC .954 .247 .393 .567 .988 .721 .557

Table 4.3: Results of SENECA on the Class vs. Instance and Physical Object

classifications compared against the reference datasets described in Section 4.2.5.

P*, R* and F*
1 indicate precision, recall and F1 measure on Class (C), Instance (I),

Physical Object (PO) and complement of Physical Object (NPO). F1 is the average

of the F1 measures.

include the annotations having agreement ≥ 80%.

4.2.7 Alignment-based Methods: SENECA

Class vs. Instance. Table 4.3 shows SENECA’s performance on the class vs.

instance classification, by comparing its results with CIE and CIC. SENECA shows

very good performance with best avg F1 = .836, when compared with CIC. Consid-

ering that SENECA is unsupervised, and is based on existing alignments in LOD,

this result suggests that LOD may better reflect common sense than the expert’s

perspective, an interesting hint for further investigation on this specific matter.

Physical Object. Table 4.3 shows the performance of SENECA on the Physical

Object classification task computed by comparing its results with POE and POC

(cf. Section 4.2.5). We observe a significant drop in the best average F1 score

(.557) as compared to the class vs. instance classification task (.836). On one hand,

this may suggest that the task is harder. On the other hand, the alignment paths

followed in the two cases are different, since for classifying Physical Objects more

alignment steps are required. In the first case (class vs. instance), BabelNet directly

106 Chapter 4. Providing LOD as Background Knowledge for Social Robots

provides the final alignment step (cf. Figure 4.2a), while in the second case (PO

vs. NPO), three more alignment steps are required: DBpedia Category → YAGO

→ WordNet (cf. Figure 4.2b). It is reasonable to think that this implies a higher

potential of error propagation along the flow. This hypothesis is partly supported

by [86], who report a similar drop when they add an automatic disambiguation step

followed by an alignment step to DUL classes (including Physical Object). Also

for this distinction, SENECA better matches the judgements of the crowd than the

experts’.

4.2.8 Machine Learning Methods

We performed a set of experiments with eight classifiers: J48, Random Forest,

REPTree, Naive Bayes, Multinomial Naive Bayes, Support Vector Machines, Lo-

gistic Regression, and K-Nearest Neighbors (cf. Section 4.2.4). We used a 10-fold

cross validation strategy using the reference datasets (cf. Section 4.2.5). Before

training the classifiers, the datasets were adjusted in order to balance the samples

of the two classes. The CIE and POE datasets were balanced by randomly removing

a set of annotated entities. CIC and POC were balanced by removing entities as-

sociated with lower agreement (which constitute weak examples for the classifiers).

Each classifier was trained and tested with all four features, described in Section

4.2.4, both individually and in all possible combinations, with and without perform-

ing feature selection. We found that performing feature selection makes the results

worse. Having two datasets for each classification (i.e. annotated by the experts and

by the crowd) enables multiple configurations of the training set. When we train

the classifiers with samples from CIE and POE, they all have the same weight = 1.

Differently, when the samples come from CIC and POC, they are weighted according

to their associated agreement score agreement(e, c), computed with Formula 4.1 (cf.

Section 4.2.5). As previously studied by [6], this diverse weighing allows a classifier

to learn richer information, including ambiguity and consequent entities that may

belong to an “unknown” class, which better represent human cognitive behaviour.

Chapter 4. Providing LOD as Background Knowledge for Social Robots 107

We only report the results of the best performing algorithm29, which is Support

Vector Machine, without feature selection, trained and tested on samples associated

with an agreement score ≥ 80%. We report on all combinations of features, but D

alone (i.e. SENECA’s output).

Class vs. Instance. Table 4.4 shows the results of Support Vector Machine,

trained on and tested against CIE and CIC. The best average performance is ob-

tained with CIC by combining all features. Combining all features is also the best

configuration for each individual classification (i.e. Class (C) and Instance (I)).

When CIE is used there is a slight drop in performance, although the quality of the

classification remains high. A possible cause of this result may be the agreement-

based weighing provided by CIC.

Physical Object. Table 4.5 also shows the results of the Support Vector Machine

algorithm trained on and tested against POE and POC. Similarly to the behaviour

of SENECA, statistical approaches worsen their overall performance as compared to

the case of the class vs. instance classification. We also observe a different behaviour

of the individual features. The best average performance with POE is achieved by

combining all the feature, while the best average performance with POC is achieved

by combining the abstract (A), the outgoing/incoming properties (E), and SENECA

output (D). In a sense, this confirms that conventions used for creating URI IDs are

informative mainly for the class vs. instance distinction.

4.3 Discussion

This Chapter presented two different lines of research that investigate the possibility

of providing Linked Open Data as background knowledge for supporting daily tasks.

The two studies focused on linguistic and common sense knowledge respectively.

29The results of all experiments are available online at https://github.com/fdistinctions/ijcai18

https://github.com/fdistinctions/ijcai18

108 Chapter 4. Providing LOD as Background Knowledge for Social Robots

Results compared against CIE Results compared against CIC

A U E D PC RC FC
1 PI RI FI

1 F1 PC RC FC
1 PI RI FI

1 F1

.927 .921 .924 .921 .927 .924 .924 .958 .965 .961 .965 .957 .961 .961

.881 .933 .906 .929 .873 .909 .903 .908 .970 .938 .967 .902 .933 .936

.854 .975 .911 .971 .834 .897 .904 .886 .983 .932 .981 .874 .924 .928

.928 .935 .932 .935 .928 .931 .932 .966 .971 .968 .971 .966 .968 .968

.939 .943 .941 .943 .939 .941 .941 .971 .976 .974 .976 .971 .973 .974

.934 .927 .939 .928 .934 .931 .931 .966 .964 .965 .964 .966 .965 .965

.919 .968 .943 .966 .914 .939 .941 .961 .982 .971 .981 .963 .979 .971

.881 .939 .909 .935 .873 .903 .906 .908 .973 .939 .971 .902 .935 .937

.859 .978 .915 .975 .846 .903 .909 .889 .987 .935 .985 .877 .928 .932

.942 .946 .944 .945 .942 .944 .944 .973 .981 .976 .980 .973 .976 .976

.939 .933 .936 .934 .939 .937 .936 .968 .969 .968 .969 .968 .968 .968

.945 .949 .943 .941 .946 .943 .943 .973 .976 .975 .976 .973 .975 .975

.926 .967 .946 .966 .922 .944 .945 .964 .981 .973 .981 .964 .972 .973

.946 .949 .947 .948 .946 .947 .947 .981 .982 .982 .982 .981 .982 .982

Table 4.4: Results of the Support Vector Machine classifier on Class vs. Instance

task against the reference datasets described in Section 4.2.5. The first four columns

indicate the features used by the classifier: A is the abstract, U is the URI, E are

incoming and outgoing properties, D are the results of the alignment-based methods.

P*, R*, F*
1 indicate precision, recall and F1 measure on Class (C) and Instance (I).

F1 is the average of the F1 measures.

Providing Linguistic Knowledge. The first line of research focuses on lin-

guistic, factual and encyclopedic data that has been retrieved from the web and

integrated in a unique knowledge graph, called Framester. The Framester’s back-

bone is a huge linguistic sense inventory, mostly encoded by using semantic frames,

which integrates resources like FrameNet, WordNet and BabelNet. This feature

makes Framester as an ideal entry for the robot’s knowledge when the interaction

with users is through natural language. In fact, Framester allows to easily retrieves

all the knowledge related to the words meanings of an interaction.

The main Framster drawback is its coverage and ongoing work is about integrat-

ing and linking Framester’s linguistic information with other kinds of knowledge, so

Chapter 4. Providing LOD as Background Knowledge for Social Robots 109

Results compared against POE Results compared against POC

A U E D PPO RPO FPO
1 PNPO RNPO F NPO

1 F1 PPO RPO FPO
1 PNPO RNPO FNPO

1 F1

.828 .814 .821 .817 .832 .824 .823 .879 .837 .858 .844 .884 .864 .861

.615 .822 .703 .732 .485 .584 .644 .596 .863 .705 .751 .413 .533 .619

.786 .865 .824 .857 .764 .805 .814 .782 .886 .831 .868 .752 .806 .818

.831 .829 .838 .833 .832 .831 .831 .851 .811 .831 .819 .857 .838 .834

.869 .867 .868 .867 .870 .868 .868 .912 .853 .882 .862 .918 .889 .885

.849 .829 .835 .831 .843 .837 .836 .865 .834 .849 .839 .869 .854 .852

.816 .852 .833 .845 .808 .826 .832 .802 .889 .842 .875 .777 .823 .833

.659 .761 .707 .718 .607 .658 .682 .951 .243 .387 .565 .987 .719 .553

.928 .735 .826 .788 .943 .854 .837 .966 .762 .852 .803 .973 .886 .866

.865 .866 .866 .866 .865 .865 .865 .927 .847 .885 .859 .933 .894 .891

.831 .824 .828 .826 .833 .829 .828 .878 .831 .855 .838 .876 .856 .853

.867 .862 .864 .863 .868 .865 .865 .922 .879 .899 .884 .923 .903 .901

.933 .736 .823 .782 .947 .857 .843 .962 .759 .849 .801 .975 .877 .863

.871 .877 .871 .879 .872 .871 .871 .905 .866 .886 .872 .909 .895 .888

Table 4.5: Results of the Support Vector Machine classifier on Physical Object

classification task against the reference datasets described in Section 4.2.5. The

first four columns indicate the features used by the classifier: A is the abstract, U is

the URI, E are incoming and outgoing properties, D are the results of the alignment-

based methods. P*, R*, F*
1 indicate precision, recall and F1 measure on Physical

Object (PO) and the complement of Physical Object (NPO). F1 is the average of

the F1 measures.

to provide robots with a richer human-like knowledge base. Another line of research

is on improving linguistic coverage of Framester’s frames in cataloging and describing

situations. Methods like [176, 163] could be used to extend the lexical units associ-

ated with frames, but the main lack of FrameNet-based datasets is the scarcity of

semantic roles and semantic types associated with frames. A possible solution could

be analyzing statistical correlation (by using tools such as sense embedding [42, 41])

between occurrence of frames and ontology classes within a corpus. We hypothesize

that classes statistically correlated with a frame f are the semantic types involved

in situations described by f. Further work (e.g. involving crowdsourcing techniques)

is needed to determine semantic roles that entities of the discovered semantic types

110 Chapter 4. Providing LOD as Background Knowledge for Social Robots

play in situations described by f.

Providing Common Sense Knowledge. The second line of research presented

in this Chapter is concerned with the provision of Common Sense Knowledge to

social robots. This study reports a set of experiments for assessing whether Linked

Open Data provides an empirical basis to extract foundational distinctions, and if

they match common sense. We claim that the performed experiments show prom-

ising results as far as our research questions are concerned. RQ2 of Section 1.1

has been further refined in the questions discussed below (in line with the research

goals introduced in Section 4.2). Given the diversity and the basic nature of the

two distinctions that we have analysed, and the positive results obtained in both

cases by applying the same methods with the same configurations, we claim that

the proposed methods can be generalised to other foundational distinctions.

Do foundational distinctions match common sense? As anticipated in Section

4.2.5 the high agreement observed among workers that participated in the crowd-

sourcing tasks, as well as the high agreement between the crowd and the experts,

suggest that the foundational distinctions that we have tested do actually match

common sense.

Does the (Semantic) Web provide an empirical basis for supporting foundational

distinctions over LOD entities, according to common sense? We claim that the high

average value of F1 measure associated with all experiments indicates that the Web,

and in particular LOD, implicitly encodes foundational distinctions. We also think

that, more in general, this is a hint that the Web is a good source for common sense

knowledge extraction. We find particularly interesting to observe that the feature

E (i.e. ongoing/incoming properties) has always a positive impact, in all features

combinations, on the classifier’s performance (cf. Table 4.4 and 4.5), for both tasks.

This motivates us in conducting further investigations (i) towards identifying and

testing additional features based on LOD, e.g. more sophisticated use of assertions

and axioms from LOD as well as (ii) to analyse LOD at a much larger scale (e.g. by

using LOD Laundromat [26, 73]) with an empirical science perspective: looking for

Chapter 4. Providing LOD as Background Knowledge for Social Robots 111

emerging patterns that may encode relevant pieces of common sense knowledge [89].

Our promising results open a number of possible research directions: besides rep-

licating these experiments at a larger scale, we plan a follow up study concerning

the application of the same approach to distinguishing physical objects that can

act as locations for other physical objects. This is particularly relevant in order to

extract knowledge about where things are usually located in, whether a location is

appropriate for an object in terms of its size, etc. Another relevant distinction to be

investigated with priority is the one between physical and social objects (e.g. organ-

isations), which is often prone to systematic polysemy [175], i.e. objects that have

a same linguistic reference, but different (disjoint) types of referents. For example,

the term National Library is used to refer both to an organisation (a social object)

taking care of the library’s collections, and of the related administrative and organ-

isational issues, and to the buildings (physical objects) where the organisational staff

works and the collections are located in. Besides covering foundational distinctions,

we aim to extend our approach to learn or discover relational knowledge such as the

one modelled and encoded in terms of frames [75, 81].

What ensemble of features, resources, and methods works best to make machines

learn foundational distinctions over LOD entities? According to our results, stat-

istical methods perform better than alignment-based methods. We use supervised

learning and crowdsourcing to test two very diverse foundational distinctions, both

very basic in knowledge representation and foundational ontologies. It emerges that

two features show the same ability to positively impact on the methods’ perform-

ance, for both distinctions: A (a text describing the entity) and E (entity’s outgoing

and incoming properties). Both features convey the semantic description of an en-

tity: the former by means of natural language, which characterises a huge portion of

the web, the latter by means of LOD triples, which characterise the semantic web.

Based on these observations, we argue that the method can be generalised, even if

each specific distinction may benefit from a specialised extension of the feature set.

In our case, the U feature (i.e. URI ID) clearly shows effectiveness for the class vs.

instance rather than for PO vs. NPO. A question is whether DBpedia text is special

112 Chapter 4. Providing LOD as Background Knowledge for Social Robots

because of its “standardised” style of writing. Our experiments and results do not

cover this issue, which needs to be assessed in order to provide a stronger support

to our claim of generalisability. A similar doubt can be raised as far as outgoing

and incoming links are concerned. DBpedia properties mainly come from infoboxes,

which also follow, and are influenced by the standardised way of writing Wikipedia

pages. Nevertheless, for this feature we argue that the doubt does not apply, since

incoming and outgoing properties include links to and from LOD datasets that are

outside DBpedia, hence independent from the standardised content of Wikipedia.

Chapter 5

Accessing Background Knowledge using

Lizard

Nowadays a growing number of robotic frameworks relies on RDF and triple stores

for managing robots’ knowledge. Examples of such a framework are KnowRob [206],

RoboBrain [186], RACE [182]. Providing robotic applications with a simple inter-

face to access robot’s knowledge (cf. RQ3 Section 1.1) is a tricky task for two

reasons: i the wide variety of programming languages used to implement robotic

applications; ii the perceived difficulty of adopting Semantic Web technologies in

software development [111]. In recent years a number of frameworks have been pro-

posed to foster the adoption of Semantic Web technologies in software development.

Examples are Apache Jena1 [46], OWL API2 [102] or RDF4J3 (previously known as

Sesame [40]). These frameworks provide the basic facilities for manipulating/query-

ing and reasoning on RDF(S)/OWL compliant data. These frameworks are the

basic building blocks on top of which it is possible to design and implement complex

systems that rely on Semantic Web standard languages and technologies. However,

these tools require developers with extensive knowledge of models of Semantic Web

technologies and knowledge engineering. This knowledge is mandatory in order to

use these frameworks effectively. We propose a software framework aimed at easing

1Jena, https://jena.apache.org/
2OWL API, http://owlapi.sourceforge.net/
3RDF4J, http://rdf4j.org/

https://jena.apache.org/
http://owlapi.sourceforge.net/
http://rdf4j.org/

114 Chapter 5. Accessing Background Knowledge using Lizard

the software development of knowledge-aware systems by filling the gap between

Semantic Web technologies and Object-Oriented applications. This framework is

called Lizard. Lizard is an Object-RDF mapper providing software components

with the access to the knowledge base following the Object-Oriented paradigm. In

particular, given an ontology specified in OWL language as input, Lizard is able to

generate an application bundle (called ontology bundle) that provides applications

with an API for accessing RDF facts stored in a knowledge base This API enable

software components to access programmatically to the knowledge base following

the object-oriented paradigm and without dealing with Semantic Web models and

languages. The API reflect the semantics of the input ontology and allow trans-

parent access to the knowledge base. Differently from existing systems (such as

SuRF4 or ActiveRDF5 [157]), the Ontology Bundle also provides a RESTful layer

that exposes the API following the REST architectural style over HTTP. Lizard also

generates a description of the REST APIs (in OpenAPI language6). This descrip-

tion can be used to generate the code implementing clients of the RESTful API in

more than 40 programming languages. As a result, ontology bundles (i) avoid client

applications to deal with OWL and RDF; (ii) avoid client applications to interact

with a knowledge base by means of SPARQL queries; (iii) allow client applications

to programmatically interact with knowledge bases following the Object-Oriented

paradigm; (iv) allow client applications to interact with a knowledge base in more

than 40 programming languages.

Lizard is an open source project available on online as a Git repository at the

following link7. The repository contains three sub-projects: (i) Lizard Main im-

plements the main process for generating the ontology API; (ii) Lizard Commons

contains utility classes for the main process and implements the RESTful Web Ser-

vice that exposes the Java API functionalities (cf. Section 5.3.2); (iii) Lizard Jetty

runs a Jetty server exposing the RESTful Web Service.

4SuRF, https://pythonhosted.org/SuRF/
5Active RDF, https://github.com/ActiveRDF/ActiveRDF
6OpenApi (or Swagger), https://swagger.io/
7Lizard’s Repository, https://github.com/anuzzolese/lizard

https://pythonhosted.org/SuRF/
https://github.com/ActiveRDF/ActiveRDF
https://swagger.io/
https://github.com/anuzzolese/lizard

Chapter 5. Accessing Background Knowledge using Lizard 115

5.1 Requirements

The requirements that led the design of Lizard have been derived from the case

study of this thesis (i.e. the MARIO project). The objective of the project was

developing a social robot for assisting people with dementia. A social robot is an

example of agent that continuously performs knowledge-intensive tasks and needs

an easy access to its knowledge base. The main requirements of Lizard are the

following:

R1 Generation of procedural API for accessing data complying with an

OWL ontology. This requirement guarantees that (i) Lizard generates an

API that follows the semantics defined in a source ontology; (ii) The pro-

cedural API guarantees the programmatic access to ontological artifacts of a

knowledge base.

R2. Generation of REST API for accessing data complying with an OWL

ontology. This requirement guarantees that: (i) Lizard generates a REST

API that follows the semantics defined by a source ontology; (ii) Ontology arti-

facts can be accessed as a service by external components via HTTP requests

like GET, POST, PUT and UPDATE; (iii) Lizard allows to bind software

components to ontological artifacts via REST API.

R3. Dynamic adaptivity of produced API to the Ontology. Lizard has

to adapt the API it produces and exposes (both Java and REST) according

to any change occurring in the Ontology. By change we mean any addition,

deletion or update of the Ontology ranging from a single axiom to a whole

Ontology. This requirement is crucial in order to keep valid at runtime the

binding between the API produced by Lizard and the Ontology.

R4. Programmatic access to the Knowledge Base via Java. The Java API

produced by Lizard has to grant access to the Knowledge Base to the compon-

ents of the software architecture (cf. Chapter 7). The Knowledge Base consists

of a dataset in RDF format, modelled according to the semantics expressed by

116 Chapter 5. Accessing Background Knowledge using Lizard

the Ontology Network and stored in a triplestore (e.g., Virtuoso8 or Apache

Jena TDB9). The access via Java allows software components to perform op-

erations such as: query the Knowledge Base, retrieve knowledge expressed as

RDF, update the Knowledge Base, and delete facts from the Knowledge Base.

R5. Programmatic access to the Knowledge Base via REST. The REST

APIs generated by Lizard have to guarantee the access to the Knowledge Base

to the components of the software architecture (cf. Chapter 7). The access

via REST has to reflect all the operations enabled via Java, i.e., querying,

updating, deleting facts from, and retrieving facts from the Knowledge Base.

R6. Transparent access (with respect to client application) to the Know-

ledge Base. It is desirable to enable software developers to access the know-

ledge base without a deep knowledge of RDF(S)/OWL and SPARQL lan-

guages.

R7. Easy generation of language-agnostic clients for the APIs. It is desir-

able that applications intending to use the APIs are provided with facilities

for generating API clients.

R8. Access the Knowledge Base by following the Object-Oriented pro-

gramming paradigm. Lizard has to allow client applications to access to the

facts stored in the Knowledge Base by following the Object-Oriented paradigm.

This requirement aims at filling the gap between Semantic Web technologies

and Object-Oriented applications.

5.2 Architecture

Intuitively, given an OWL ontology as input, Lizard generates a software artifacts,

called Ontology Bundle implementing a set of APIs for creating, retrieving, updat-

ing, deleting facts from a Knowledge Base by reflecting the semantics defined in the

8Virtuoso, http://virtuoso.openlinksw.com/.
9Apache Jena TDB, https://jena.apache.org/documentation/tdb/.

http://virtuoso.openlinksw.com/
https://jena.apache.org/documentation/tdb/

Chapter 5. Accessing Background Knowledge using Lizard 117

O
ntology Bundle

OWL
Ontology

Knowledge
Base

Java API

REST API

Application

Figure 5.1: A diagram that shows the intuition behind Lizard and its operating

scenario.

input Ontology. The Figure 5.1 shows the intuition behind Lizard and its operating

scenario. Lizard comes into play when there is an application that need to interact

with a Knowledge Base storing a set of RDF triples that comply with an OWL

ontology. In this situation the application’s developer either could interact with the

knowledge base by means of standard semantic web technologies or could gener-

ate a Lizard’s Ontology Bundle and interact with RDF resources by following the

Object-oriented paradigm. In the former case, it is required that the application’s

developer has a deep understanding of languages, models and protocols involved by

Semantic Web technologies. In the latter case, the application can interact with

the knowledge base without any prior knowledge thus avoiding application to dir-

ectly deal with RDF(S), OWL and SPARQL. The Lizard’s Ontology Bundle reflects

the semantics defined by the input ontology and provide the access to the RDF

resources though a set of RESTful APIs which rely on the generated Java APIs.

118 Chapter 5. Accessing Background Knowledge using Lizard

Figure 5.2: The solution stack provided by Lizard that allow applications to inter-

act with a Knowledge Base.

The Figure 5.2 presents the solution stack provided by Lizard. This solution stack

provides application with four mechanisms for interacting with a Knowledge Base.

These mechanisms range from the direct interaction with the knowledge base to an

interaction mediated by a set of RESTful APIs.

Direct interaction with the Knowledge Base. The basic mechanism is the

direct interaction with the knowledge base. This is done through the SPARQL and

SPARUL protocols and languages. SPARQL is able to retrieve and manipulate

data stored in RDF through four different query variations: SELECT (that extracts

values and returns the result in a table format), CONSTRUCT (that extracts values

and returns the result in RDF format), ASK (that assesses a boolean condition in

Chapter 5. Accessing Background Knowledge using Lizard 119

Query q = QueryFactory . c r e a t e (“SELECT ∗ WHERE {? s ?p ?o}”) ;

QueryExecution qexec =

QueryExecutionFactory . c r ea t eSe rv i c eReque s t (

“ http :// dbpedia . org / spa rq l ” , q) ;

Resu l tSet r s = qexec . e x e c S e l e c t () ;

while (r s . hasNext ()) {
QuerySolution qs = r s . next () ;

Resource s = qs . getResource (“ s ”) ;

Resource p = qs . getResource (“p”) ;

Resource o = qs . getResource (“o”) ;

. . .

}

Frame 5.1: The Java code needed for executing a SPARQL query on the DBPedia

endpoint by using Apache Jena.

the knowledge base), DESCRIBE (that describes a resource of the knowledge base).

SPARUL is a declarative query language that allows to add and remove facts from

the knowledge base through INSERT and DELETE methods. The main advantage

of SPARQL and SPARUL is their flexibility. In fact, these two languages allow

to define complex patterns and conditions to be verified in a single query. The

disadvantage is that SPARQL and SPARUL require an extensive knowledge of the

RDF model, the SPARQL/SPARUL languages, and SPARQL/SPARUL protocols.

Interacting with the Knowledge Base through RDF API. RDF API frame-

works (such as Apache Jena, RDF4J, RDFLib10 and RDFHDT [74]) define an high-

level interface for working with RDF data in a programming environment. These

frameworks implement of SPARQL/SPARUL protocols thus providing client ap-

plications with facilities for submitting and retrieving queries with few lines of code

(cf. Frame 5.1). RDFAPI frameworks also provide client applications with a set of

programmatic API for listing all triples having a specific subject/predicate/object

or adding (removing) a triple to (from) the knowledge base. These APIs do not

10RDFLib, https://github.com/RDFLib

https://github.com/RDFLib

120 Chapter 5. Accessing Background Knowledge using Lizard

require the knowledge of SPARQL/SPARUL protocols but some familiarity with

RDF is still needed.

Interacting with the Knowledge Base through Object-Oriented Java API.

The Ontology Bundle generated by Lizard allows Java applications to interact with

a Knowledge Base following the Object-Oriented paradigm, hence abstracting from

the RDF/OWL model. Client applications that include an Ontology Bundle within

their project will be able to interact with the knowledge base by means of a set

of Java classes (that correspond to the classes defined in the ontology describing

the Knowledge Base) and methods (that correspond to the properties defined in

the ontology describing the Knowledge Base). The Java classes are populated with

the resources of the knowledge base. Therefore, developers with no knowledge of

semantic web technologies are able to interact with the Knowledge Base by means

of the Ontology Bundle classes.

Interacting with the Knowledge Base through REST API. The Ontology

Bundle exposes the Java classes as REST services, thus allowing applications written

in other programming languages to benefit of the functionalities of the Ontology

Bundle.

5.3 Ontology Bundle

Given an OWL ontology as input, Lizard generates an Ontology Bundle which allows

client applications to interact with a knowledge base following the Object-Oriented

approach. The functionalities provided by the ontology bundle comply with the

semantics defined in the input ontology. These functionalities are implemented in a

Java programming library that can be also accessed as a Web Service via a REST

architecture running on top of the Java API.

An Ontology Bundle consists of three main components: Java API which is a

Java programming library implementing the functionalities for interacting with the

Chapter 5. Accessing Background Knowledge using Lizard 121

knowledge base, REST API which is a REST service that exposes the Java API as

a Web Service, and a description of the functionalities exposed via REST provided

in Swagger language. Client applications are able to access the functionalities im-

plemented by the Ontology Bundle in three different ways: (i) Client applications

written in Java language can include the Ontology Bundle as an external library;

(ii) Remote applications (i.e. applications running on a machine that does not host

the target Knowledge Base) can access the ontology API via HTTP methods (e.g.

GET/POST) provided by the REST web service; (iii) Remote applications can al-

ternatively generate a client for the REST API by using Swagger’s Codegen11 and

include the generated library within their code.

5.3.1 Java API

The Java API library is generated using Sun’s JCodeModel framework12 and it im-

plements all the functionalities for interacting with the Knowledge Base following the

Object-Oriented paradigm. This library relies on Apache Jena13 for manipulating

RDF data and accessing data stored in the knowledge base.

Binding Java API with the Knowledge Base. Lizard enables the interaction

with three kinds of Knowledge Bases: (i) SPARQL endpoint; (ii) Apache Jena

TDB; (iii) RDF files. From the Lizard’s configuration file the user of the Java

API can choose which knowledge base s/he wants to interact with. For SPARQL

endpoints s/he has to provide the URL of the endpoint, whereas for the other types

of Knowledge Bases s/he has to indicate the file path within the file system. The

latter two types are available only if the Java APIs run on the same machine of the

knowledge base.

The Knowledge Bases are abstracted as Jena Model14 The class JenaLizard-

11Swagger Codegen, https://swagger.io/tools/swagger-codegen/
12JCodeModel, https://javaee.github.io/jaxb-codemodel/
13Apache Jena, https://jena.apache.org/
14Apache Jena’s Model https://jena.apache.org/documentation/javadoc/jena/org/apache/jena/

rdf/model/Model.html

https://swagger.io/tools/swagger-codegen/
https://javaee.github.io/jaxb-codemodel/
https://jena.apache.org/
https://jena.apache.org/documentation/javadoc/jena/org/apache/jena/rdf/model/Model.html
https://jena.apache.org/documentation/javadoc/jena/org/apache/jena/rdf/model/Model.html

122 Chapter 5. Accessing Background Knowledge using Lizard

Context manages this abstraction. This class instantiates the Model depending on

the Lizard’s configuration values and then makes available the Model to the Java

APIs. Moreover, Lizard can be also configured for applying inference rules on the

Model. In this case, JenaLizardContext retrieves from the Java APIs the ontologies

which the APIs correspond to and returns a Jena’s Inference Model.

The Jena Models for SPARQL endpoints and TDBs keep the knowledge base

updated (i.e. whenever something is updated on the Jena Model is also updated in

the Knowledge Base). This feature is not available for Jena Model for the RDF files,

hence the source files have to be explicitly updated. Lizard overcomes this issue by

setting an update listener on the Jena Model for the RDF file Whenever something

is updated on the Jena Model the listener makes sure that it is also updated on the

source file.

5.3.1.1 Mapping OWL on Java

The structure of the Java API aims at reflecting as much as possible the structure

and the semantics of the input ontology. The binding between OWL and Java

language has been studied in some previous work [108, 2, 68]. The proposed mapping

can be summarized as follows. OWL classes are used to “group individuals that

have something in common in order to refer to them”. Similar role is played by

Java classes which “is a blueprint or prototype from which objects are created”.

Therefore, Java objects belonging to the same class follow the same description. As

a consequence, individuals correspond to Java objects.

Properties are binary relations connecting two individuals. Properties define a

domain, i.e. the class of entities that can instantiate the property, and a range,

i.e. the class of entities that describes the allowed property values. In the object-

oriented model, properties match with associations between two classes. Different

design patterns can be applied to realize associations in Java. The choice of a design

pattern depends on the responsibility and the cardinality of the association [118].

Following [108, 2], we chose to assign the responsibility of a property to the classes in

the domain (that are the classes of individuals that intuitevely “holds” the property).

Chapter 5. Accessing Background Knowledge using Lizard 123

Therefore, a class c in the domain of a property p will define a field for storing the

property values that objects belonging to c have for p. The property values for p can

be accessed through get/set methods. The default cardinality for properties is 0:n

on the domain and 0:n on the range, meaning that entities belonging to the domain

of a property can be connected to minimum 0 and maximum infinite entities in the

range (and vice-versa). This implies that the field corresponding to p has to allow

to store a collection of property values. OWL allows to restrict the cardinality of

properties but we left a proper management of these kind of restrictions to a future

work.

OWL distinguishes between two main categories of properties Object properties

(that link individuals to individuals) and Datatype properties (that links individual

to data values). The type of the range of a property p affects the type of the field

storing p. As discussed above, individuals are mapped to objects, therefore for

object properties, the type of the field for p corresponds to the class in the range

of p. OWL makes use of RDF datatype scheme (which is based on XML Schema).

Primitive datatypes (like string, int, double, boolean etc.) are directly mapped to

Java primitive types. The Jena library provide a type mapper for converting values

from the XML schema to Java primitive type and vice-versa. The custom datatypes

that could be defined in an ontology are treated as an rdfs:Literal.

The correspondences between ontology and Java entities will be furtherly and

detailed in the following paragraphs. Here we provide the reader with an overview

of the mapping:

1. Ontology classes correspond to Java Classes and Interfaces;

2. RDF individuals are mapped to Java objects;

3. Properties match with Java methods that manipulate property values stored

in the fields of objects;

4. RDF Literals are turned into Java primitive data types (where it is possible,

in strings otherwise);

124 Chapter 5. Accessing Background Knowledge using Lizard

5. All the classes defined in the input ontology are enclosed in a Java package.

5.3.1.2 Naming conventions

In OWL, ontologies, classes, properties, individuals and datatypes are denoted by

IRIs (i.e. Internationalized Resource Identifier). Java naming rules do not match

with the grammar for building IRIs. We devised some simple rules for deriving

Java-consistent names from IRIs.

Package names are derived from the ontology IRIs as follows: (i) We discard

the scheme of the IRI (e.g. “http://”) and the prefix “www” from the host part

(if it is present). (ii) We place suffix of the host part (e.g. “com”, “org” etc.)

at the beginning of the package name, followed by a dot and the rest of the host

path. (iii) Then, we append the path of the IRI by replacing slashes with dots.

(iv) Finally, if the IRI terminates with “.owl”, this sub-string is replaced with “ owl”.

For example, the name package that corresponds to the Action ontology module

http://ontologydesignpatterns.org/ont/mario/action.owl is org.ontology

designpatterns.ont.mario.action owl.

The name of the classes is derived by concatenating the right most part of the

IRI identifying the class with the namespace prefix of the ontology. For example,

the namespace prefix for the Action ontology is “action” and the name of the Java

class the corresponds to the class action:Action is Action Action15. A similar rule

is used to generate the names of the methods from the IRIs of the properties. In

this case, the prefix of the ontology is preceded by the “get”/“set” depending on

the aim of method. For example, the method for getting the values for the property

action:byAgent is named getAction byAgent.

5.3.1.3 Preliminary Tasks

The first task performed by Lizard is to download all the ontologies imported by the

input ontology. Each imported ontology will constitute a different Java pacakge. All

the ontologies (i.e. the input ontology and the imported ontologies) are included in

15For the Java naming conventions, a class name should start with an uppercase letter.

Chapter 5. Accessing Background Knowledge using Lizard 125

a single Jena model (i.e. called input model). Lizard then uses the Jena reasoning

subsystem in order to derive the facts inferred from the assertions stated in the input

model. The reasoning profile used by Lizard is the Jena’s OWL micro profile. The

Jena’s OWLMicro reasoner supports RDFS rules plus the various property axioms

like: owl:disjointWith, owl:intersectionOf, owl:unionOf and owl:hasValue.

It omits the cardinality restrictions and equality axioms. The reasoner enables to

construct the hierarchy of the classes and properties, to infer domain and ranges of

properties and so on. The reasoner also checks the validity of the input model, thus

avoiding that the knowledge generated by the Java API arises inconsistencies.

5.3.1.4 Hierarchy of the Java Classes

Lizard generates a Java interface and two Java classes (called Jena class and Bean

class) for ontology class defined in the input model. The interface defines the signa-

ture of the methods that have to be implemented by the concrete classes that are

intended to implement the semantics of the ontology class. The generated interfaces

also reflect the hierarchy of the ontology classes, since only interfaces (unlike classes)

are allowed to inherit from multiple parents as for ontology classes. Each interface

is implemented by two classes: the Jena class and the Bean class. The Jena class

aimed to implement the methods that manipulate data stored in the knowledge

base. The Bean class is created to encompass all the properties of an RDF resource

in a single object. The Figure 5.3 shows how Lizard turns a hierarchy of classes

defined by an ontology into a hierarchy of Java classes and interfaces. The ontology

(cf. 5.3a) defines four classes. A inherits from B and C, and B inherits from D. The

inheritance is stated using the property rdfs:subClassOf. For each class in the

input ontology Lizard generates an interface (i.e. A, B, C, and D) and two concrete

classes (i.e. AJena, ABean, BJena, BBean, CJena, CBean, DJena, DBean). The

hierarchy of the interfaces reflects the hierarchy defined in the ontology (cf. 5.3b):

the interface A inherits from B, C, and D (Lizard makes explicit the fact that A

inherits from D); the interface B inherits from D. A,B,C and D also inherit from

LizardInterface which aims at generalizing all the interfaces. The concrete classes

126 Chapter 5. Accessing Background Knowledge using Lizard

A

B C

D

rdfs:subClassOf

(a) An ontology defining

a hierarchy involving four

classes.

<<interface>>
A

<<interface>>
B

<<interface>>
C

<<interface>>
D

AJena ABean

CBean

CJena

BBean

BJena

DBean DJena

implements
extends

(b) The Java classes and interfaces generated by Liz-

ard that reflect the hierarchy defined in the ontology

showed in Figure 5.3a.

Figure 5.3: An example showing how the hierarchy of classes defined in the input

ontology (Figure 5.3a) is reflected in the Java classes generated by Lizard (Fig-

ure 5.3b).

(e.g. AJena and ABean) implement the interface corresponding to the ontology

class the concrete classes are generated from (i.e. A) and its super-interfaces (i.e. B,

C and D). Interfaces, Jena classes, and Bean classes are grouped in three different

packages. Interfaces are grouped in the main package of the Java API for the input

ontology, whereas Jena classes and Bean classes in its two different sub-packages.

More details of the classes are provided in the following paragraphs.

5.3.1.5 Assigning Methods to Classes

A method is a collection of statements that perform a specific task and return result

to the caller. Roughly speaking, within an Ontology Bundle, a method corresponds

to an ontology property and aims at realizing the CRUD operations related to that

property. The concrete methods manipulate the field of the class that correspond to

the property. Methods are assigned to the classes that explicitly or implicitly fall into

the domain or the range of the property. Therefore only objects belonging to a class

Chapter 5. Accessing Background Knowledge using Lizard 127

action:Task

action:Action

action
:byAg

ent

action:App

owl:disjointWith action:executesTask
some action:Task

action:Agent

owl:disjointW
ith

time:atTime some
time:TemporalEntity

time:TemporalEntity

owl:disjointWith

owl
:dis

join
tWith
owl:disjointWith

owl:dis
jointWith

action:executesTask

Figure 5.4: The Action ontology module of the Mario Ontology Network.

that explicitly or implicitly are in the domain or the range of a property are able to

instantiate the property. For example, consider the TaskExecution Ontology Design

Pattern16 as implemented by the Action module of the Mario Ontology Network17,

depicted in Figure 5.4. The object property action:byAgent has action:Action

as domain and time:TemporalEntity as range. According to the semantics of the

ontology, having the property action:byAgent implies being an action:Action. It

is worth noticing that the class action:Action is disjoint from all other classes in

the ontology (i.e. action:Task, action:Agent and time:TemporalEntity), and,

therefore entities belonging to the other classes cannot instantiate the property

action:byAgent (otherwise the model would violate the ontology). Therefore, only

objects belonging to the class Action Action can have the field action byAgent.

As a result, the interface Action Action defines the following methods for ma-

nipulating the field corresponding to action byAgent. For the sake of clarity of

presentation, for each meethod’s signature we present a SPARQL/SPARUL query

implementing the method’s semantics. It is worth noticing that the internal imple-

mentation of the API does not execute SPARQL/SPARUL queries but rely on Jena

API instead.

• public Set<Agent> getAction byAgent() returns all the agents that

performed this18 action. This method corresponds to the query shown in

16Task Execution ODP, http://ontologydesignpatterns.org/wiki/Submissions:TaskExecution
17MON’s Action module, http://ontologydesignpatterns.org/ont/mario/action.owl
18“This” means “the object on which the method is invoked”.

http://ontologydesignpatterns.org/wiki/Submissions:TaskExecution
http://ontologydesignpatterns.org/ont/mario/action.owl

128 Chapter 5. Accessing Background Knowledge using Lizard

SELECT DISTINCT ? agent WHERE {
? this ac t i on : byAgent ? agent .

}

Frame 5.2: SPARQL query that corresponds to method getAction byAgent(). The

variable ?this is bound to the IRI of the this object.

DELETE {? ac t i on ac t i on : byAgent ? agent .} WHERE {
? this ac t i on : byAgent ? agent .

}

INSERT DATA {
? this ac t i on : byAgent ? agent1 .

. . .

? this ac t i on : byAgent ?agentN .

}

Frame 5.3: SPARUL queries that correspond to method setAction by-

Agent(Set<Agent> agents). The variable ?this is bound to the IRI of the this object,

whereas the variables ?agent1,.., ?agentN are bound to the IRIs of the Agents passed

as argument of the method

Frame 5.2.

• public void setAction byAgent(Set<Agent> agents) sets the agents

that perform this action as the set passed as parameter. This method corres-

ponds to the queries shown in Frame 5.3.

• public void addAllAction byAgent(Set<Agent> agents) adds the set

passed as parameter to the agents of this action; This method corresponds to

the queries shown in Frame 5.4.

• public void removeAllAction byAgent(Set<Agent> agents) ensures

Chapter 5. Accessing Background Knowledge using Lizard 129

INSERT DATA {
? this ac t i on : byAgent ? agent1 .

. . .

? this ac t i on : byAgent ?agentN .

}

Frame 5.4: SPARUL query that corresponds to method addAllAction by-

Agent(Set<Agent> agents). The variable ?this is bound to the IRI of the this object,

whereas the variables ?agent1,.., ?agentN are bound to the IRIs of the Agents passed

as argument of the method

DELETE DATA{
? this ac t i on : byAgent ? agent1 .

. . .

? this ac t i on : byAgent ?agentN .

}

Frame 5.5: SPARUL query that corresponds to method setAction by-

Agent(Set<Agent> agents). The variable ?this is bound to the IRI of the this object,

whereas the variables ?agent1,.., ?agentN are bound to the IRIs of the Agents passed

as argument of the method

that the agents passed as parameters are no longer agents of this action. This

method corresponds to the queries shown in Frame 5.5.

Moreover, the interface for the class action:Action implements two static methods

to retrieve the actions having a certain property value for action:byAgent:

• public static Set<Action> getByAction byAgent() which returns all

the actions having the property action:byAgent instantiated. The body of

the method generated by Lizard is provided in the Frame A.2 of the Ap-

pendix A.1. This method retrieves from the knowledge base all the triples

having the property action:byAgent as predicate and the value passed as

130 Chapter 5. Accessing Background Knowledge using Lizard

SELECT DISTINCT ? ac t i on WHERE {
? ac t i on ac t i on : byAgent ? agent .

}

Frame 5.6: SPARQL query that corresponds to method getByAction byAgent().

SELECT DISTINCT ? agent WHERE {
? ac t i on ac t i on : byAgent ? agent .

}

Frame 5.7: SPARQL query that corresponds to method getByAction byAgent(

LizardInterface value). The variable ?action is bound to the IRI of the value object

passed as parameter of the method.

parameter as object. Then, the method instantiates all the subjects of these

triples as objects of the class Action and collect them into a set which is re-

turned as result. This method corresponds to the query shown in Frame 5.6.

• public static Set<Action> getByAction byAgent(LizardInterface

value) which takes as input a value and returns a set of all the actions having

that as property-value for action:byAgent. The body of the method gen-

erated by Lizard is provided in the Frame A.3 of the Appendix A.1. This

method retrieves from the knowledge base all the triples having the property

action:byAgent as predicate and the value passed as parameter as object.

Then, the method instantiates all the subjects of these triples as objects of

the class Action and collect them into a set which is returned as result. This

method corresponds to the query shown in Frame 5.7.

For each property that a class can instantiate, the interface defines the signature of

the above four methods and implements the two static methods.

It is worth noticing that the OWL language allows to define property restrictions

on classes. A property restriction is an anonymous class that defines a condition to be

Chapter 5. Accessing Background Knowledge using Lizard 131

p only C

B

A D

C

p

Figure 5.5: A simple ontology arising a name clash in the method signatures.

satisfied by all the individuals of the class. OWL distinguishes two kinds of property

restrictions: value constraints and cardinality constraints. A value constraint puts

constraints on the values of the property. For example, the range of the property

action:executesTask for the individuals belonging to action:Action is restricted

to action:Task. A cardinality constraint puts constraints on the number of values

a property can take. For example, each individual of the class action:Action

should have at least one value for the property action:executesTask. Lizard takes

into account value restriction to infer the range of a property for a specific class.

Suppose that the Action ontology module (cf. Figure 5.4) states that the range of

the property action:executesTask is owl:Thing (instead of action:Task). The

property restriction action:executesTask some action:Task restricts the range

of this property when applied on action:Action. As a consequence, when Lizard

generates the code corresponding to the class action:Action, it will consider the

property action:executesTask having action:Action as domain and action:-

Task as range. As the cardinality constraint is concerned, only existential constraint

are taken into account by Lizard. Constraints on the maximum cardinality of a

property are currently ignored. A proper management of this kind of property

restrictions is left to future work.

However, property value restrictions may arise a name clash in the methods

signatures. Consider the simple ontology depicted in Figure 5.5. This ontology

defines four classes A which inherits from B and C which is a subclass of D. The

ontology also defines an object property p with domain A and range D. For the

individuals of B, the range of the property p is restricted to C. Therefore, for the

132 Chapter 5. Accessing Background Knowledge using Lizard

property p, Lizard would generate for the interfaces A and B the following methods:

public interface A {
. . .

public Set<D> getP () ;

public void setP (Set<D> d) ;

public void addAllP (Set<D> d) ;

public void removeAllP (Set<D> d) ;

. . .

}

public interface B extends A {
. . .

public Set<C> getP () ;

public void setP (Set<C> c) ;

public void addAllP (Set<C> c) ;

public void removeAllP (Set<C> c) ;

. . .

}

Since the Java compiler ignores the argument of the generic set (i.e. it ignores D

in the interface A and C in the interface B), the signatures of the methods defined

in A and B are equivalent for the compiler and the methods defined in B cannot

override the methods in A. This situation causes a name clash. When this kind of

errors occurs, Lizard addresses the problem by assigning the the methods arising

the name clash (e.g. setP) only to the most generic interface (in this example A).

Other Static Methods Provided by an Interface. Each Java interface imple-

ments two static methods, namely getId(String entityUri) and getAll(). The body

of the getId method for the interface Action is provided in the Frame A.1 of the

Appendix A.1. This method takes as input the URI of an individual and returns as

output an object of the class Action. The method checks in the knowledge base if

the URI passed as parameter identifies an RDF individual that belongs to the class

action:Action. If this is the case, it instantiates and returns an object of the class

Action. The method getAll() retrieves from the knowledge base all the individuals

belonging to the class action:Action. Then, for each individual the method in-

stantiates an object of the Action and it returns all the instantiated objects in a

collection.

Chapter 5. Accessing Background Knowledge using Lizard 133

5.3.1.6 Jena and Bean Classes

The aim of the Jena classes is to implement the binding between the Java objects

and the data stored in the knowledge base. Jena classes have no fields and the

methods directly manipulates values of the knowledge base. Jena classes extend the

class InMemoryLizardClass, which in turn extends LizardClass. This class defines

the field individual to keep a reference to the IRI which the object refers to and

implements some general-purpose methods (e.g. for casting objects).

Bean classes aim at wrapping all the property values for an RDF individual in a

single object. Objects of bean classes are mainly used by the REST API for building

responses to REST calls. For each property assignable to the individuals of the cor-

responding Ontology class, Bean classes define a field, and all the interface methods

related to the property (i.e. “get”, “set”, “removeAll”, and “addAll”). A Bean

class is shown in Frame A.12 of the Appendix A.3. Bean objects are instantiated

by using the methods asBean() and asMicroBean() of the Jena classes. These two

methods will be described later in this section.

Constructor. The constructor of the Jena class takes as input an IRI (or an

object of the RDFIndividual which represents all the RDF individual stored in

a knowledge base) and creates a new entity of the corresponding ontology class.

This is done through the RDF API provided by Jena. The constructor of the class

Action ActionJena is shown in the Frame A.4 of the Appendix A.2. This constructor

takes as input an IRI, for example http://example.org/push, stores the IRI in the

variable individual of the super class (LizardClass),and asserts the following triple

in the knowledge base:

<http://example.org/push> rdf:type action:Action .

Interface Methods. These methods (whose signature is defined by an interface

implemented by the Jena class) aim at manipulating values corresponding to a

property that objects can instantiate. These methods retrieve, remove, add, update

RDF facts stored in the knowledge base by using the RDF API of Apache Jena. In

134 Chapter 5. Accessing Background Knowledge using Lizard

the following the details of the methods implemented by the class Action ActionJena

for the property action:byAgent

• public Set<Agent> getAction byAgent() (the code generated by Liz-

ard is shown in the Frame A.5 of the Appendix A.2): this method retrieves

from the knowledge base all the triples having the individual corresponding

to this object as subject and action:byAgent as predicate. For each object

retrieved from these triples, the method instantiates a new object of the class

Action AgentJena, and returns these objects as a collection of Agents.

• public void setAction byAgent(Set<Agent> agents) (the code gener-

ated by Lizard is shown in the Frame A.6 of the Appendix A.2): this method

removes from the knowledge base all the triples having the individual corres-

ponding to this object as subject and action:byAgent as predicate. Then,

for each Agent a passed as parameter, the method add to the knowledge a

triple that having (i) the individual corresponding to this object as subject;

(ii) action:byAgent as predicate; (iii) the individual corresponding to a as

object.

• public void addAllAction byAgent(Set<Agent> agents) (the code gen-

erated by Lizard is shown in the Frame A.7 of the Appendix A.2): for each

Agent a passed as parameter, the method add to the knowledge a triple having

(i) the individual corresponding to this object as subject; (ii) action:byAgent

as predicate; (iii) the individual corresponding to a as object.

• public void removeAllAction byAgent(Set<Agent> agents) (the code

generated by Lizard is shown in the Frame A.8 of the Appendix A.2): this

method removes from the knowledge base all the triples having the individual

corresponding to this object as subject and action:byAgent as predicate.

asBean() and asMicroBean() Methods. Objects of the Bean classes aim at

enclosing all the property values retrieved from the for the knowledge base for the

individual the Jena object refers to. The method asBean() instantiates an object

Chapter 5. Accessing Background Knowledge using Lizard 135

of the Bean class implementing the same interface of the Jena class. The method

executes a SPARQL Describe query on the knowledge base to retrieve the data about

the individual this object refers to. The result of the query is then parsed by some

private service methods of the Jena class. The Jena class provide one private method

each property of the object. These methods implement the same logic of the get

methods (i.e. they return the values that the individual has for the property). An

example of asBean() method is shown in Frame A.9 of the Appendix A.2, whereas

an example of private service method for the property action:byAgent is shown in

Frame A.11. By using the private service methods (instead of the Jena methods),

we reduce the number of queries executed on the knowledge base for creating a bean

object. If the asBean() method had used the jena get methods, then it would have

been executing one query for each property of the object (instead of one describe

query). Once retrieved the values from the service methods, asBean() fills the fields

of the bean object. In case of object properties, the fields are filled with Jena

objects. This allows the caller of asBean() to retrieve all the data associated to

object property values.

As we will see in the Section 5.3.2, the bean objects are serialized as JSON objects

and returned as results of the REST API calls. The serialization in JSON object

retrieves all the property values from the bean object. If a property refers to another

object, then the serialization process will also serialize the referred object. It is easy

to see that this process could be infinite (it stops if the object to serialize has only

datatypes as property values). To overcome this issue, we devised the asMicroBean()

method. This method makes sure that the caller of asMicroBean() is able to retrieve

only the values related to this object. This is done by filling the fields corresponding

to object properties with bean objects (instead of jena objects). Frame A.10 of the

Appendix A.2 provides an example of asMicroBean() method. By checking the field

isCompleted of the Bean objects, the caller will be able to distinguish bean objects

for which all the values are already retrieved from the knowledge base the objects

that are incomplete.

136 Chapter 5. Accessing Background Knowledge using Lizard

5.3.2 Rest API

Lizard provides a Web Service that exposes Java API by following the RESTful

architectural style over HTTP. The Web Service is realized by the Lizard Common’s

class RestImpl which implements a Web resource that produces and consumes data

in JSON format. All the functionalities provided by Java API can be invoked

through this Web Service. In particular, client applications can invoke the methods

of the Java API through different paths. The path and the parameters of request

indicates which ontology, class and individual the client wants to operate on and the

operation (e.g. “set” a property) that has to be invoked. The RestImpl class takes

advantage of the Java Reflection mechanism to invoke the right methods for each

possible path. In this section we overview the implementation of the Web Service.

Mapping OWL on REST Architecture. A REST architecture is composed of

four archetypes. (i) A document resource is the base archetype of REST architec-

ture. It is an entity that includes fields with values and links to other documents.

It is akin to RDF named individuals and Java Objects. (ii) A collection is a server-

-managed directory of resources. Clients may purpose to add a new item to the

collection, but it is up the collection to decide to create the new resource or not and

the URI of the new resource. A store is a client-managed directory of resources.

Stores let the clients decide when create, updated or delete resources and do not

generate the URI of the resources. Both collections and stores are suitable for classes

and properties. However, not allowing clients to decide the URI would avoid the

possibility of storing facts on existing RDF named individuals. Hence we use stores

for classes and resources. (iii) A controller is procedure that takes as input values

and returns values. We use controllers for mapping static methods of interfaces like

getByProperty.

URI Design. URI is composed by static (i.e. fixed names chosen by the designer)

and variable segments (i.e. filled with some identifier). In the following we enclose

variable segments of URIs within braces. The best practices for designing REST-

Chapter 5. Accessing Background Knowledge using Lizard 137

ful architecture[139] suggest (among others) (i) to use singular nouns for naming

documents and plural nouns for naming collections and stores; (ii) to hierarchically

organize path for resources; (iii) to not use function names; (iv) to use verbs for

naming controllers; (v) to use variable segments for identity based values. These

rules result paths like:

/leagues/{leagueId}/teams/{teamId}/players/{playerId}

However, these standards rules cannot be fully applied to design the URIs for the

REST API due to the following reasons: (i) The names of the stores (i.e. classes

and properties) are available only at running time (i.e. when the Ontology Bundle

is generated). (ii) Varying the name from singular to plural could confuse the

clients that know how the concepts are named in the ontology. (iii) Semantic Web

technologies are based on the assumption that things (i.e. individuals, classes and

properties) are denoted by IRIs. It would be desirable naming segments with IRIs

but it is not allowed to use all the IRI characters (e.g. “:”) in the path. Therefore,

we identify classes and properties by the abbreviated notation (i.e. using the prefix

of the namespace) where the colon is replaced with an underscore. Since named

individuals may have any prefix, the abbreviated notation cannot be used. We

identify individuals with query parameters (that can be passed as payload of HTTP

requests).

Ontology and Description of the API. The first part of the path indicates the

ontology the client wants to operate on. All the functionalities realized by the Java

API for the ontology are grouped under this path. There are no operations provided

for this path only. A client application can retrieve the description (provided in

OpenAPI language) of the operations available for the ontology by issuing an HTTP

GET at the path:

/{ontology}/swagger.json

138 Chapter 5. Accessing Background Knowledge using Lizard

Instantiating New Individuals. A client can instantiate new individuals of a

class by issuing a POST request at the following path:

/{ontology}/{class}

The POST method requires a parameter, called “iri”, that indicates the IRI of

the RDF individual the client wants to instantiate. Once received the request, the

RestImpl class identifies the name of the Jena class in charge of instantiating the

individual and uses the Java reflection API to invoke the constructor of the Jena

class. Suppose that a client issues the following POST request:

POST /org_ontologydesignpatterns_ont_mario_person_owl/person_person

Content-Type: application/json

{ ‘‘iri’’:‘‘http://example.org/luigi’’ }

The class RestImpl converts the path of the POST request /org ontologydesign

patterns ont mario person owl/person person/ in the name of the correspond-

ing Jena class org.ontologydesignpatterns.ont.mario.person owl.jena.PersonJena. The

Java reflection API allows to invoke the constructor of the Jena class.

Retrieving Individuals of a Class. A client can retrieve the individuals belong-

ing to a class by issuing a GET request at the following path

/{ontology}/{class}

This request (without parameters) invokes the getAll method defined in the cor-

responding Java interfaced generated by Lizard (cf. Section 5.3.1.5). This method

returns a collection of Jena objects which are transformed in Bean objects (by in-

voking the method asMicroBean()) and returned to the caller. A client can retrieve

an individual of a class by providing its IRI as parameter of the request:

GET /org_ontologydesignpatterns_ont_mario_person_owl/person_person

Content-Type: application/json

{ ‘‘iri’’:‘‘http://example.org/luigi’’ }

Chapter 5. Accessing Background Knowledge using Lizard 139

This request returns the JSON serialization of the Bean object corresponding to

IRI passed as parameter. The Bean object is retrieved by invoking the get method

defined in the interface that corresponds to the ontology class. If the get method

returns an object (which is a Jena object), then it is transformed in a Bean object

by invoking asMicroBean(). It is worth noticing that client applications can retrieve

all the individuals stored in the knowledge by activating the inference engine and

issuing a GET request.

Retrieving Individuals of a Class Having a Property. RDF named indi-

viduals stored in the knowledge base which have a given property can be retrieved

by issuing a GET request at the following path:

/{ontology}/{class}/having/{property}

The request returns all the individuals having a certain property which belong to a

certain class, but if the client activates the inference engine and chooses the class

owl:Thing it can retrieve all the individuals having the property. The result set is

built by transforming in Bean objects the collection of Jena objects returned by the

getBy method of the Interface that corresponds to the ontology class. Clients can

furtherly restrict the result of this operation by requesting the individuals that have

a specific value for a property. This is done by passing as parameter the value of

the property which can be either an IRI or a literal. The following request returns

all the persons having “Luigi” as first name.

GET /org_ontologydesignpatterns_ont_mario_person_owl/person_person/

having/Person_firstName

Content-Type: application/json

{ ‘‘value’’:‘‘Luigi’’ }

Managing Properties. Client applications are able to manage property values

assigned to RDF individuals by issuing GET, POST, PUT and DELETE requests

at the path

140 Chapter 5. Accessing Background Knowledge using Lizard

/{ontology}/{class}/{property}

The individual the client wants to operate on and, possibly, the property values it

wants to add/remove/update are provided as parameters of the request. In partic-

ular:

GET. The values that an IRI has for a property p can be retrieved by providing

the IRI as parameter of a GET request. To accomplish this request, the

RestImpl class retrieves the object (that corresponds to the IRI) from the

knowledge base, it invokes its getP() methods, and, finally returns the res-

ult. If the p is an object property the result objects are transformed in Bean

objects. For example, the following GET request retrieves the first name of

http://example.org/luigi

GET /org_ontologydesignpatterns_ont_mario_person_owl/person_person/

having/Person_firstName

Content-Type: application/json

{ ‘‘iri’’:‘‘http://example.org/luigi’’ }

PUT. The PUT method enables client applications to set the values that an indi-

vidual has for a property p. This method requires as input an IRI and the

values that client wants to set. This request is fulfilled by retrieving from the

knowledge base the object (that corresponds to the IRI) and by invoking the

method setP. The following request set the first name of http://example.org/

luigi as the literal “Luigi”

PUT /org_ontologydesignpatterns_ont_mario_person_owl/person_person/

having/Person_firstName

Content-Type: application/json

{ ‘‘iri’’:‘‘http://example.org/luigi’’,

‘‘value’’: ‘‘Luigi’’}

POST. The POST method adds the values passed as parameter to set of values that an

individual has for a property p. This method requires as input an IRI and the

Chapter 5. Accessing Background Knowledge using Lizard 141

values that client wants to add. The RestImpl class retrieves from the know-

ledge base the object (that corresponds to the IRI) and invokes the method

addAllP. The following request add an additional first name (i.e. “Maria”) to

the individual http://example.org/luigi

POST /org_ontologydesignpatterns_ont_mario_person_owl/person_person/

having/Person_firstName

Content-Type: application/json

{ ‘‘iri’’:‘‘http://example.org/luigi’’,

‘‘value’’: ‘‘Maria’’}

DELETE. The DELETE method removes the values passed as parameter from the set

of values that an individual has for a property p. This method requires as

input an IRI and the values that client wants to remove. The RestImpl class

retrieves from the knowledge base the object (that corresponds to the IRI)

and invokes the method removeAllP. The following request removes “Maria”

from the first names of the individual http://example.org/luigi

DELETE /org_ontologydesignpatterns_ont_mario_person_owl/person_person/

having/Person_firstName

Content-Type: application/json

{ ‘‘iri’’:‘‘http://example.org/luigi’’,

‘‘value’’: ‘‘Maria’’}

5.3.2.1 Description of the REST API

Lizard generates a description (in OpenAPI language) of all operations made avail-

able by the REST API. Intuitively, this description aims at specifying all possible

instantiations of the REST API allowed by RestImpl class that are compliant with

the ontology. For example, according to the Action ontology module of the Mario

Ontology Network, action:executesTask and action:byAgent are assignable to

individuals that belong to action:Action. The Java Interface for action:Action

142 Chapter 5. Accessing Background Knowledge using Lizard

defines the corresponding methods and the Jena and Bean classes provides the im-

plementation. The REST API description for the Action ontology will specify for

action:Action class and for these two properties the following paths:

1. /org ontologydesignpatterns ont mario action owl/action action that

accepts GET and POST HTTP methods;

2. /org ontologydesignpatterns ont mario action owl/action action/action

byAgent that accepts GET, PUT, POST and DELETE HTTP methods;

3. /org ontologydesignpatterns ont mario action owl/action action/having/

action byAgent that accepts GET method;

4. /org ontologydesignpatterns ont mario action owl/action action/action

executesTask that accepts GET, PUT, POST and DELETE HTTP meth-

ods;

5. /org ontologydesignpatterns ont mario action owl/action action/having/

action executesTask that accepts GET method.

An excerpt of the REST API description generated by Lizard for the Action ontology

is provided in Frame A.13 of the Appendix A.4. The description also specifies the

content and the status code (e.g. 200, 404 etc.) of the responses provided by the

REST API. The content specifies the structure of the objects returned from a REST

call and it complies with the Bean objects of the Java API.

Applications that want to interact with the Knowledge Base can use Swagger

codegen19 to generate a client for the REST API. Swagger codegen takes as input

the description (in OpenAPI language) of the REST API and provides as output a

library implementing the client for the REST API that can be included into client

applications that want to interact with the Knowledge Base. Swagger codegen is

able to generate REST API clients for forty programming languages.

19Swagger codegen, https://swagger.io/tools/swagger-codegen/

https://swagger.io/tools/swagger-codegen/

Chapter 5. Accessing Background Knowledge using Lizard 143

5.4 Discussion

This Chapter presented Lizard, a framework which is aimed at easing the software

development of knowledge-aware systems by filling the gap between Semantic Web

technologies and object-oriented applications. Lizard allows application running on

robotic frameworks to access RDF facts stored in the knowledge base in a program-

matic way (cf. RQ3 Section 1.1). Given an OWL ontology as input, Lizard is able

to generate an API for accessing RDF triples stored in a triple store without dealing

with Semantic Web models and languages. Section 7.4.1 will present two knowledge

intensive applications that rely on Lizard for interacting with the robot’s knowledge

base. These applications demonstrate Lizard’s benefits, feasibility and limitations

when developed, deployed and tested in a real socially assistive scenario.

Besides the lack of integration with the W3C’s Linked Data Platform specifica-

tion20 which we plan to address in the next release, a current limitation of Lizard

is the poor interaction paradigm offered to applications. Lizard, like other tools for

programmatically accessing knowledge bases, enables a triple-based interaction with

triple stores, i.e. generated Java methods deal with a single triple at time. This

is strongly limiting compared to querying a knowledge base with the possibility of

joining several triple patterns in a single SPARQL query. A valuable direction for

improving usability of the API and interaction with the knowledge base could be en-

abling a pattern-based interaction. For example, static methods could be generated

by Lizard to instantiate an ontology pattern by invoking a single method. In this

direction, ontology modularization research field [54, 55, 189] could provide Lizard

with techniques to identify patterns in input ontologies.

20https://www.w3.org/TR/ldp/

https://www.w3.org/TR/ldp/

144 Chapter 5. Accessing Background Knowledge using Lizard

Chapter 6

A Frame-based Approach for Integrating

Ontologies

Social robots have to deal with a wide range of heterogeneous data coming from sev-

eral sources such as data extracted from users’ speech, sensors, web etc. Supposing

that the syntax of this data is homogeneous (which is not always the case), then the

data could be expressed with a semantics either known by the robot or not. In the

former case, robots are able to process, ingest and react to input data, whereas in the

other they cannot unless semantic heterogeneity of data is addressed. This Chapter

proposes an approach for addressing semantic heterogeneity of data processed by

robots (cf. Section 1.1 RQ4) formalized as an ontology matching task. Ontologies

are artifacts encoding a description of a domain of interest for some purpose. On-

tologies can be defined by different people and can vary in quality, expressiveness,

richness, and coverage, hence increasing semantic heterogeneity of the resources

made available through the Linked Open Data. Among the various semantic tech-

nology proposed to handle heterogeneity, Ontology Matching [191] has proved to

be an effective solution to automate integration of distributed information sources.

Ontology Matching (OM) finds correspondences between semantically related entit-

ies of ontologies. However, most of the current ontology matching solutions present

two main limits: (i) they only partially exploit the natural language descriptions of

ontology entities and lexical resources as background knowledge; (ii) they are mostly

unable to find correspondences between entities specified through different logical

146 Chapter 6. A Frame-based Approach for Integrating Ontologies

types (e.g. mapping properties to classes). We argue that using lexical resources,

such as linguistic frames, as background knowledge for matching ontology entities

may lead to a step ahead in the state of the art of ontology matching.

Frame Semantics [75] is a formal theory of meaning based on the idea that

human can better understand the meaning of a single word by knowing the relational

knowledge associated to that word. For example, the meaning of the verb buy can

be clarified by knowing that it is used in a situation of a commercial transfer which

involves individuals playing specific roles, e.g. a buyer, a seller, goods, money and so

on. In other words, the verb buy evokes a scene where there are some individuals are

playing specific roles. Our hypothesis is that the frames evoked by words associated

with an ontological entity can be used to derive the intended meaning of that entity

thus facilitating the ontology matching task.

In this Chapter we introduce a novel approach aimed at finding correspondences

between ontology entities according to the intensional meaning of their models, hence

abstracting from their logical types. This strategy allows us to match ontological

entities with respect to their intensional meaning (that we suppose is evoked by the

textual annotations associated with them) instead of their axiomatization, hence

to abstract from their logical type. In fact, the axiomatization could have been

forced by the choice of certain language for specifying the ontology, by the personal

modeling style of the designer, or, other requirements (e.g. the compatibility with

an existing ontology) unrelated to the modeled domain. This method is aimed at

providing robots with the means for automatically integrating knowledge coming

from heterogeneous sources.

The proposed approach is not intended to replace existing OM solutions relying

on the logical specification of ontology entities (e.g. [107]), on the contrary it can be

used in combination with other logic-based techniques. For instance, the strategy

proposed in [126] can be used for combining our method (which focuses on the

lexicon related to entities) with other logic-based techniques (e.g. [107]). We argue

that this approach may lead to a step ahead in the state of the art of ontology

matching, and positively affect related applications such as question answering and

Chapter 6. A Frame-based Approach for Integrating Ontologies 147

knowledge reconciliation, ontology population and language generation.

6.1 Types of Semantic Heterogeneity

Klein [113] provides a classification of the types of heterogeneity between ontologies.

A first distinction is between mismatches at language level and at ontology level.

The languages of two ontologies can differ in their syntax, or, in the primitives that

are used to specify an ontology. OWL is the standard language for encoding on-

tologies in the Semantic Web context. However, OWL constructs forces ontology

designer to convey to some logical patterns. For instance, OWL does not provide

a construct for defining n-ary relations. When there is the need of defining n-ary

relations, a common pattern is to represent it by means of OWL classes. The second

level of mismatches is the ontology-level. A very useful distinction of ontology-level

mismatches is made by [164] who distinguished the conceptualization of ontologies

from their explication. A conceptualization mismatch is a difference in the inter-

pretation of a certain domain. This mismatch leads to define different ontological

concepts or different relations among concepts (i.e. the two ontologies present dif-

ferent coverage, granularity or scope). An explication mismatch is a difference in

the specification of a certain conceptualization (e.g. using a o relation instead of a

class). A mismatch of this type can be caused by differences in: (i) the choices of

the modeler about the style of modeling (e.g. using a datatype property instead of

an object property); (ii) the adopted terminology for naming concepts (e.g. using

synonyms for representing the same concept); (iii) local requirements of the onto-

logy project, for instance the request of using a certain language for specifying the

ontology could lead the modeler to some choices (e.g. representing n-ary relations

in OWL as classes) instead of others (e.g. PURO metamodel [202] does not have

the arity of relationships limited to two).

148 Chapter 6. A Frame-based Approach for Integrating Ontologies

6.2 Proposed Approach

Following [89], we devised an approach for ontology matching that considers frames

as “unit of meaning” for ontologies and exploits them as a mean for representing the

intensional meaning of the entities. Our strategy consists of two steps, summarized

as follows. First, we create a mapping between input ontologies and frames (see

section 6.2.1)1. In the second step we use the mapping ontologies-frames to find

correspondences among entities defined in the input ontologies (see section 6.2.2).

6.2.1 Mapping Ontology Entities on Frames

The first step of our strategy associates each ontology entity with one or more frames

representing its intensional meaning. Besides representing the intension of an entity,

frames also provide contextual information relevant for the described concept that

can be exploited for the comparison with other entities (see 6.2.2).

Selecting frames evoked by annotations. In order to associate ontological

entities with frames we analyze the textual annotation associated with them. In fact,

annotations provide humans with insights of the intensional meaning of a certain

entity. The main idea of this approach is that words used in the annotations evoke

frames that are representative of the intensional meaning of the entity.

An ontological entity can be associated with three textual annotation: (i) an

identifier (e.g. rdf:ID) which is not a proper annotation since it has been originally

thought for machines, but, in order to improve the readability of RDF data is often

meaningful; (ii) a label (e.g. rdfs:label), a short text content used for naming the

entity; (iii) a comment (e.g. rdfs:comment) which is a description of the resource in

natural language, often providing examples of the concept being defined. However,

comments often contain words that are not directly connected with the intension

of the entity (e.g., comments often use the verb “represent” which is not always

1This step can be seen as ontology matching as well. In fact, it aims at mapping a frame (which

is an ontology since it provides a conceptualization of a certain situation) and an ontology.

Chapter 6. A Frame-based Approach for Integrating Ontologies 149

hasParticipant :Object

Event

isParticipantIn :Event

ObjectisParticipantIn hasParticipant

isParticipantIn some Event

isParticipantIn

Figure 6.1: The UML class diagram of the Ontology Design Pattern Participation.

the most appropriate term to characterize an entity). Therefore we only consider

identifier and label as characterizing annotations of an entity. Our hypothesis is

that frames evoked by words contained in these annotations provide a model for the

intensional meaning of the entity.

In associating entity with frames, the ambiguity of words has to be taken into

account. For instance, depending on the word ”bind” may evoke either the frame

Imposing obligation2 (when it is intended as “bind by an obligation”) or the frame

Becoming attached3 (when it is intended as “wrap around with something so as

to cover or enclose”). Therefore, to associate entities with the most appropriate

frames, we have (i) to disambiguate the sense of the word in the text characterizing

entities; (ii) and then, to select frames evoked by the sense of the words (e.g. by

exploiting Framester’s WordNet-FrameNet mapping [81]).

Figure 6.1 shows the UML class diagram of the Ontology Design Pattern Parti-

cipation4. The ontology defines four entities, two classes and two object properties

connecting them. Table 6.1 shows an example of association of the entities defined

by the ODP Participation with the FrameNet’s frames. We used UKB [1] for WSD

and the mapping WordNet to FrameNet provided by Framester [81]. Due to the

vagueness of the terms “Object” and “Event”, the WSD confidence is quite low and

the association of Object and Event with frames (Popularity, Communication etc.)

is weak as well. Conversely, the WSD confidence associating isParticipantIn (or

2https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Imposing obligation.xml
3https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Becoming attached.xml
4http://ontologydesignpatterns.org/wiki/Submissions:Participation

https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Imposing_obligation.xml
https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Becoming_attached.xml
http://ontologydesignpatterns.org/wiki/Submissions:Participation

150 Chapter 6. A Frame-based Approach for Integrating Ontologies

Ontology Entity Associated Sense WSD Confidence Evoked Frame

isParticipantIn wn31:110459618-n 0.5226 Competition

isParticipantIn wn31:110459618-n 0.5226 Participation

isParticipantIn wn31:110459618-n 0.5226 People

isParticipantIn wn31:302340196-a 0.150614 Popularity

hasParticipant wn31:110459618-n 0.522534 Competition

hasParticipant wn31:110459618-n 0.522534 Participation

hasParticipant wn31:110459618-n 0.522534 Popularity

Object wn31:106321227-n 0.193556 Communication

Object wn31:200809123-v 0.151107 Assessing

Object wn31:200809123-v 0.151107 Cogitation

Object wn31:106142175-n 0.0966854 Artifact

Object wn31:106142175-n 0.0966854 Fields

Event wn31:111430739-n 0.305213 Being in effect

Event wn31:111430739-n 0.305213 Causation

Event wn31:111430739-n 0.305213 Objective influence

Event wn31:111430739-n 0.305213 Subjective influence

Event wn31:113966452-n 0.242894 State of entity

Table 6.1: An example of association ontology entity-frames.

hasParticipant) is rather high. It is easy to see that the frames Competition5

and Participation6 are somehow connected to the meaning of isParticipantIn (or

hasParticipant). The frames People and Popularity are also related7 to the sense

of the object properties, but they can not be mapped to the object properties (as

we can see in the next steps, the confidence of the mapping is too low).

Mapping Ontology Entities on Frames. At this point ontology entities are

associated with frames that are somehow related (i.e., evoked) to their intensional

5https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Competition.xml
6https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Participation.xml
7The sense assigned to “participant” is “a person who participates in or is skilled at some game”

which is a particular case of the meaning represented by the object properties isParticipantIn.

https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Competition.xml
https://framenet2.icsi.berkeley.edu/fnReports/data/frame/Participation.xml

Chapter 6. A Frame-based Approach for Integrating Ontologies 151

meaning, now an effective mapping between them has to be created. An example of

mapping is provided by FrameBase’s integration rules [184]. However, they focused

on the transformation of object properties (called, binary predicates) in binary pro-

jection of frames, and classes in their valences. These assumptions are too restrictive.

For instance, Nuzzolese et al. [153] used object properties for representing frame ele-

ments. The choice of certain ontological type for representing a concept depends on

requirements that are external from the domain that is being represented. Therefore,

we claim that the mapping ontologies-frames has to be done without assuming any

fixed correspondence between the ontological types of the two models (e.g. without

assuming that object properties always correspond to binary projections of frames).

In order to identify the effective mapping between ontologies and frames, we

go through ontology entities and for each entity we compute all possible mappings

between entities and frames selected in the previous step (i.e. those evoked by

its annotations). In frame semantics, a frame is characterized by its roles (also

called frame elements) and each element possibly define the semantic type of the

individual that can play that role in the frame. Frames, frame elements and semantic

types have a name and a description. For each ontology entity, we compute the

similarity of the entity with the evoked frames, its elements, and its semantic types.

Therefore an ontology entity may correspond to one of these components defined in

the evoked frames. The similarity between a frame component and an ontology can

be estimated by computing the semantic text similarity of the descriptions of the

two elements. The semantic text similarity can be computed by using NLP tools

such as ADW [167].

For example, Consider the object property isParticipantIn having Object as

domain and Event as range. Its associated text evokes four frames: Competition,

Participation, People and Popularity. We start considering Competition and we

compute any possible mapping between the object property and the frame. The

core elements of Competition are Competition and Participant. All possible corres-

pondences between elements of the two models are shown in Figure 6.2. A dashed

line represents a possible correspondence between elements of the two models and

152 Chapter 6. A Frame-based Approach for Integrating Ontologies

its label is a confidence measure of the Semantic Text Similarity (STS) between the

comments of the two elements. It is easy to see that the top-scoring alignment is that

which maps the object property isParticipantIn to the frame element Participant

and the class Event to the frame Competition. The correspondences involving the

class Object have not totalised an high score, therefore Object is not mapped by

means of STS. With respect to the frame Competition, Object would represent the

semantic type of the frame element Participant. However, FrameNet does not define

any semantic type for Participant. Similarly, the frame element Competition is used

“for the name of the competition”, therefore is not mapped to any element of the

ODP since it does not define any similar element.

Actually, some clues emerged that could be used for mapping Object. The

confidence of Semantic Text Similarity is high enough to consider Event and is-

ParticipantIn mapped to respectively the frame Competition and its frame element

Participant. Furthermore, we can notice that isParticipantIn is defined in the

in the ODP Participation as an object property connecting Object and Event.

The object property isParticipantIn (which corresponds to the frame element

Participant) connects a class (i.e. Event) that is aligned to the frame Competition

to another class (i.e. Object). Therefore, Object can be reasonably treated as

semantic type of Participant. It is worth noting that only at this point we use the

ontological type of the entities.

In conclusion, the mapping holding between the ODP Participation and the

frame Competition is the following:

1. The class Event is aligned to the frame Competition;

2. The class Object corresponds to the semantic type of the frame element Par-

ticipant ;

3. The object property isParticipantIn matches to the frame element Parti-

cipant.

Chapter 6. A Frame-based Approach for Integrating Ontologies 153

isParticipantIn

Object Event

Competition

Competition Participant

do
ma

in

range
ha
sE
lem

en
t hasElement

0.82

0.617

0.493

0.50
7

0.176
0.232

0.411

0.141

0.181

Figure 6.2: An example of alignment between the object property

isParticipantIn and the frame Competition. A dashed line represents a possible

correspondence between elements of the two models. These edges are labeled with

a confidence measure based on the semantic text similarity of the two elements.

: footbal lTournament a p a r t i c i p a t i o n : Event ;

r d f s : label “ f o o t b a l tournament ’ ’ .

: Jo a p a r t i c i p a t i o n : Object ;

r d f s : label “Jo ’ ’ ;

p a r t i c i p a n t : i s P a r t i c i p a n t I n : footbal lTournament .

Frame 6.1: An example of usage of the mapping of the frame Competition on the

ODP Participation

For instance, the frame occurrence Competition(football tournament, Jo)8 can

be stored by means of the ODP Participation as shown in the Frame 6.1.

The described procedure for mapping the isParticipantIn object property to a

Frame (or its entities) has to be applied to every element of the source ontology and

the frames it evokes. The result will be a series of mapping between the ontology and

evoked frames. Each mapping will have a certain confidence computed by summing

the score of the word sense disambiguation and the score of semantic text similarity.

8The frame occurrence can be extracted from the sentence “Jo played in the football tourna-

ment.”.

154 Chapter 6. A Frame-based Approach for Integrating Ontologies

A threshold can be set to discard the mapping with low confidence.

6.2.2 Frame-based Ontology Matching

Once input ontologies and frames are aligned, each ontology entity is associated

with a formal specification of its intensional meaning (that we call frame-based spe-

cification). As pointed out in [180] the properties subclass of and sub-property

of are not enough to explicit complex relation between entities. In light of this

consideration we express the relation between frames and ontology entities by in-

terpreting both as predicates. A formalization of frames as multigrade predicates

is provided by [81]. A straightforward interpretation of ontology entities as pre-

dicates represents classes as n-ary predicates (the arguments of the n-ary predicate

are the entities in its neighborhood) and properties as binary predicates. For in-

stance, the class TimeIndexedPartipation9 can be represented as a ternary pre-

dicate with arguments provided by Event, TemporalEntity and Object. Inter-

preting frames and ontology entities in predicates allows us to express complex

relationship which cannot be formalized by only using OWL/RDFs vocabularies.

Framester ontology [81] defines a set relationship holding between predicates. Us-

ing the Framester vocabulary the class TimeIndexedPartipation can be specified

as projectionOf the frame Participation, with members involveEvent, atTime

and includesObject (which can be interpreted as subroles of Event, Time and

Participant). Also the property isParticipantIn of the ODP Participation can

be specified as projectionOf the frame Participation, with members Object and

Event. Therefore, the class TimeIndexedParticipation and the object property

isParticipantIn are “aligned” to the same frame and a complex correspondence

between TimeIndexedParticipation and isParticipantIn can be derived. In

this case isParticipantIn is a subframeOf TimeIndexedParticipation. The

subframe relation might be used for creating a CONSTRUCT SPARQL query or an

inference rule10 transforming instances of the class in instances of the property. Fig-

9Time Indexed Participation ODP https://goo.gl/qX3DDr
10Refer to [184] for examples of these kinds of rules.

https://goo.gl/qX3DDr

Chapter 6. A Frame-based Approach for Integrating Ontologies 155

Associate ontology entity with frames
evoked by their text annotation

Compute the effective mapping between
evoked frame and ontology entity

Associates ontology entity with frames
evoked by their text annotation

Computes the effective mapping between
evoked frame and ontology entity

Compare frame-based specifications
of two ontology entities

Ontology 1 Ontology 2

Compute the mapping between the
input ontologies

Figure 6.3: The workflow summarizing the macro steps of the proposed approach

for matching two ontologies.

ure 6.3 summarizes the proposed approach for matching two ontologies. Firstly,

each entity of the input ontologies is associated with frames evoked by its text an-

notation, and, then with a frame-based specification of its meaning (steps 1 and

2). Subsequently, frame-based specification of ontology entities of the two input

ontologies are compared (step 3). Finally, step 4 computes the mapping between

the input ontologies.

6.3 Discussion

In this Chapter we introduced a novel approach for ontology matching. This method

exploits the frame semantics as cognitive model for representing the intensional

meaning of ontology entities. The frame-based representation enabled at finding

complex correspondences between ontology entities abstracting from their logical

type thus leading a step ahead the state of the art of ontology matching.

Aligning ontologies with frames, in particular linguistic frames, has a second non-

negligible benefit related to both understanding and generation of natural language.

An increasing number of NLP frameworks is adopting linguistic frames as “pre-

ferred vocabulary” for extracting structured knowledge from text. Examples of such

tools are FRED [90], KNEWS [22], Google’s SLING [179] and Open-SESAME [203].

156 Chapter 6. A Frame-based Approach for Integrating Ontologies

These tools, combined with an alignment mapping linguistic frames on robot’s know-

ledge base schema, enables robot to directly ingest and integrate structured know-

ledge extracted from text. As far as natural language generation is concerned, it is

worth noticing that a linguistic frame (such those defined in FrameNet) often comes

with annotated sentences verbalizing some of its instances. For example the Frame

“Buy” is accompanied by the sentence “Luigi bought from Mary a car for 4000 euro”

which corresponds to the instance BUY(Buyer: Luigi, Seller: Mary, Money: 4000

euro, Goods: a car). This feature of linguistic frame repositories offers the unique

opportunity of having instances of structured knowledge (i.e. a frame schema and its

instances) with a set of corresponding verbalizations. These verablizations could be

used to extract generalized templates for verbalizing robot’s structured knowledge

(e.g. Buyer bought from Seller Goods for Money). In conclusion, we claim that

aligning linguistic frames with ontologies could be the key for filling the gap between

structured and unstructured knowledge.

The proposed approach is being implemented and evaluated, therefore we can-

not show results that directly demonstrate the feasibility of the proposed approach.

But, good results on classification linked data entities with respect to foundational

distinctions by using labels and descriptions of entities demonstrate that textual

annotations suggest the semantics of entities (cf. Section 4.2). Therefore, we hypo-

thesize that textual annotations in ontology found on the Web are rich enough to

be used for the frame ontology alignment task.

We plan to evaluate the frame-ontology alignments in a both direct and indirect

way. The benchmarks used for assessing ontology matching systems are mostly un-

able to evaluate the capability of finding correspondences among ontology entities

with different logical types. In order to accomplish this purpose we are extend-

ing the existing benchmarks for ontology matching. An example in this direction

is [214]. On the other hand, we are using the proposed approach in a question

answering system for selecting relevant resources answering a given question. The

frame occurrences in a question together with the frame-ontology alignment help in

formulate the query over the linked data, hence identifying resources that answer

Chapter 6. A Frame-based Approach for Integrating Ontologies 157

the given question.

158 Chapter 6. A Frame-based Approach for Integrating Ontologies

Chapter 7

A Knowledge Base Centered Software

Architecture for Social Robots

This chapter presents a component-based architecture relying on semantic web tech-

nologies for supporting knowledge-intensive tasks performed by social robots. The

design of the architecture has been guided by requirements coming from a real

socially assistive robotic application (presented in Section 1.3). The aim of the ar-

chitecture is orchestrating semantic technologies (cf. Section 1.1 RQ5), leveraging

on contributions of this thesis and state-of-the-art tools, with the ultimate goal of

creating a robotic platform for (i) easing customizability and extensibility of robot’s

behavior and its social skills; (ii) improving both inner (among architectural com-

ponents) and outer (with external entities) interoperability ; (iii) enabling a rapid

prototyping of robotic applications; (iv) enhancing reusability of architectural com-

ponents. The contributions presented in the previous chapters are included in this

architecture in order to provide developers with functionalities for structuring and

accessing robot’s knowledge, exploiting Linked Open Data, and integrating input

data with the existing knowledge. The core of the architecture is the knowledge

base. Robot behaviors can be developed as pluggable applications operating on top

of the software architecture. The robot behaviors, as well as other components, con-

tribute to and benefit from the knowledge base. For example, on the one hand, the

robot behaviors acquire and store knowledge such as user’s personal data, events,

environmental data etc. On the other hand, the robot behaviors use the acquired

160 Chapter 7. A Knowledge Centered Architecture for Social Robots

knowledge to perform the tasks and the execution of the behaviors is influenced by

information stored in the knowledge base.

A prototype of this architecture has been developed within the context of the

MARIO project. This prototype follows principles and design defined in this chapter

and gives the possibility of evaluating feasibility and benefits of the software archi-

tecture in a real social assistive context.

This chapter is structured as follows. Section 7.1 defines the functional and non-

functional requirements that lead the development of this architecture. Section 7.2

provides an overview of the architecture. The components constituting the software

architecture are described in Section 7.3. Finally, architecture prototype and its

evaluation are presented in Section 7.4.

7.1 Requirements of Software Architectures for

Social Robots

In order to introduce the software architecture we need to introduce the require-

ments of a social robots. In this section we emphasize on requirements that aim at

increasing the acceptability of the robot and facilitating the development of robotic

applications that manage the interaction with humans. These requirements have

been generalized from the use cases identified in the context of the MARIO pro-

ject [29]. An overview of the functional requirements is presented in Section 7.1.1,

whereas Non Functional Requirements are discussed in Section 7.1.2.

7.1.1 Functional Requirements

Functional requirements are defined as capabilities that must be met by a system to

satisfy a form of request. Therefore, functional requirements vary a lot depending on

the objectives of the specific system. In this section we discuss the general functional

requirements that a social robots should meet.

Chapter 7. A Knowledge Centered Architecture for Social Robots 161

Perceiving/Interacting/Motioning within the Environment. A Social Ro-

bot should be able to perceive the structural features of its operating environment,

to move itself within and physically interact with its operating environment. These

requirements must be met by all embodied agents that need to interact with their

operating environment through their physical body, such as mobile robots or service

robots. However, a Social Robot could overlook these requirements if the interac-

tion with humans is limited to non-physical languages (e.g. spoken language) and

if it does not need to pereceive the external environment. Examples of this kind

of robots are typically employed as personal assistants (e.g. Amazon Echo, Google

Home etc.).

Interacting with Humans. Interaction between robots and humans can take

several forms depending on human-robot proximity (cf. [103]). For a social in-

teraction it is important that humans and the robots are co-located in the same

environment. Within the same environment the interaction may require mobility,

physical manipulation, cognitive (e.g. natural language understanding) or emotional

(e.g. emotion recognition) abilities. Here, we highlight the most important abilities

that enable interaction with humans and increase the social acceptability of social

robots.

Dialoguing is a form of interaction where two or more parties communicate.

There are two main forms of human-robot dialogue verbal and non-verbal. Social

Robots should be able to interact with humans using natural language (i.e. verbal

communication). Natural language dialoguing involve capabilities related to speech

and natural language processing such as: (i) Speech recognition, i.e. the ability of

recognizing and translating spoken language into digital-encoded text; (ii) Natural

language understanding (also called machine reading), i.e. the ability of understand-

ing the meaning of the text and transforming the meaning to a formal structured

representation that can be interpreted by machines; (iii) Dialogue managing, i.e. the

ability of keeping the history and state of a dialog, managing the general flow of the

conversation and formulating the semantic representation of the robot’s utterances;

162 Chapter 7. A Knowledge Centered Architecture for Social Robots

(iv) Natural language generation, i.e. the ability of generating natural language text

from a semantic representation of the utterance; (v) Speech Synthesis, i.e. the ability

of converting the natural language text into speech.

Non-verbal interaction include the use natural cues (e.g. gaze, gestures, body

positioning etc.). The use of basic cues can bootstrap a person’s ability of developing

a social relationship with a robot [62]. For example, facial gestures [38] and motion

behaviors [63] may facilitate to develop a social relationship with a robot.

Emotions play a significant role in facilitating human-robot interaction (e.g. [155,

43]). Therefore, it is important that a Social Robot is able to recognize and identify

emotions in humans, and to express emotions.

Learning and Memorising Knowledge. In order to increase its social accept-

ability and to evolve its social skills, a Social Robot must be able to learn new

knowledge (e.g. facts, rules, norms etc.) and store and integrate the new knowledge

with the already acquired knowledge. Continuously evolving the robot’s knowledge

is useful for adapting the robot’s behavior in order to accommodate humans’ requests

in a way they expect.

7.1.2 Non Functional Requirements

One of the major challenges in robotics concerns the design of software architectures

to support the development robot behaviors as plug and play applications [49]. The

robot software architecture should offer extensibility mechanisms to support the

composition of new robot behaviors by combinating and reusing of the existing ser-

vices as building blocks. The requirements of flexibility, modifiability and extensib-

ility of the software architecture is even stronger for social robotics applications. In

fact, social robotics applications might involve a wide variety of components ranging

from the component that controls the wheel engines (i.e. components that directly

access to the robot’s hardware) to the component aimed at understanding what the

user says (i.e. components that perform high-level tasks). Managing all these as-

Chapter 7. A Knowledge Centered Architecture for Social Robots 163

pects in every behavior is expensive since the basic components are re-implemented

instead of reused.

In order to facilitate the development of social robotic applications, an archi-

tecture is required (i) to abstract as much as possible basic robot capabilities (e.g.

speaking, moving etc.), thus let developers focus only on high level behavior; (ii) to

allow behaviors to share and reuse common functions and information, thus enabling

behaviors to delegate work to other components of the architecture; (iii) to enable

incremental development of robot behaviors, thus allowing the development of more

convoluted behaviors from basic ones.

7.2 Robot Software Architecture Overview

The objective of the robot software architecture presented in this chapter is to

provide a flexible and extensible platform for development, deployment and manage-

ment of social-robot behaviors. A robot behavior is a sequence of actions performed

by the robot in order to achieve a goal. An example of behavior is “entertain-

ing the user”. This behavior might involve a series of actions like: “approaching”

and “dialoguing” to the user, “showing” videos, “reproducing” music and so on.

Actions requires some robot capabilities like: “moving”, “speaking”, “listening”,

“understanding”, “showing images” and so on.

Robot capabilities can be classified into basic and convoluted capabilities. A

similar classification has been proposed by Duffy in his PhD thesis [61]. Basic

capabilities include both the robot primitive functionalities (e.g. reproducing or

recording sounds) and basic platform services strongly related to the robot primitive

functionalities (e.g. speech recognition). Convoluted capabilities are higher level

services/functionalities (e.g. making phone calls) built on top of the basic ones. This

solution defines a layered architecture in which capabilities of higher level invoke or

activate capabilities on lower levels (cf. [5, 53, 134])

From a developer point of view, both classes of capabilities correspond to func-

tionalities provided by the robot platform. The main difference between these two

164 Chapter 7. A Knowledge Centered Architecture for Social Robots

Pub/Sub
Interface

Event Bus

Topic
Management
Interface

Text to
Speech Graphical User Interface Manager Speech to Text

Knowldege
Base

Behavior
Behavior Control

Interface
Task

Manager

Lizard

Generate
Ontology API
Bundle

Bundle Manager
Install
Bundle

Ontology
Bundle«deploy»

Create
Read

Update
Delete

Create
Read

Update
Delete

Speech
Interface

GUI Manager
Interface Speech To

Text Interface

Perception and
Motion Controller

Perception and Motion
Controller Interface

«deploy»

Natural Language
Understander

Module

Convoluted Capability
Manager

Understand

Integrate
Knowledge

Register
Module

Convoluted Capability
Module

Figure 7.1: The software architecture of the social robot.

classes of capabilities is that convoluted capabilities are services that can be included

in the robotic platform after the first deployment of the architecture. Another differ-

ence is that basic capabilities are inherently shared by most of the robot behaviors

(e.g. moving or speaking), convoluted capabilities might be behavior dependent or

not. For example, the behavior enabling the user to make phone call requires the

ability of the robot of understanding what the user says (which could be a behavior-

independent ability of the robot) and the ability of making phone calls (which is an

ability used only by one behavior).

The architecture shown in Figure 7.1 aims at fulfilling the requirements described

in Sections 7.1.1 and 7.1.2. In particular, this architecture gives emphasis to flexibil-

ity, modifiability and extensibility requirements. The requirement of extensibility is

also in line with the principles of the behavior-based robotics [5]. Behavior-based ro-

bots are initially provided with basic behaviors (such as that for charging the battery

or for avoiding obstacles) and more complex behaviors are added in a second stage.

Chapter 7. A Knowledge Centered Architecture for Social Robots 165

This architecture also enables (at running-time) to deploy new robot-capabilities

(that do not require new hardware components) and to extend the structure of the

knowledge base. This feature allows to incrementally develop the robot’s architec-

ture. A concrete example of this kind of architecture has been developed in the

context of the MARIO project which is the case study for this thesis. The next

section provides an overview of the components of the architecture.

7.3 Components

This Section describes the main components of the architecture depicted in Fig-

ure 7.1.

7.3.1 Behaviors and Task Manager

This Section overviews the behavior-based mechanism supported by this architec-

ture. Behaviors are software artifacts implementing the behavioral capabilities of the

robot. Behaviors are orchestrated by the Task Manager which is a special behavior

that actively coordinates other behaviors and manages the functional capabilities of

the robot.

7.3.1.1 Behavior

A Behavior is a software component that aims at realizing specific goals. Behavior

examples include “play music”, “locate a user”, “take user to a place” etc. A

behavior relies on perceptual capabilities of the robot that provide sensor data (as

made available by the robotic platform), performs potentially complex processing

(e.g. involving retrieving knowledge from and adding knowledge to the knowledge

base), and controls robot’s actuators and devices to operate on the environment and

interact with the user. Each behavior maintains and updates an internal state, and

decides the actions to perform based on sensor data, its state, the general state of

the robot and its internal behavior-specific logic.

166 Chapter 7. A Knowledge Centered Architecture for Social Robots

Each behavior has to expose an interface to allow the task manager to con-

trol the behavior (i.e. the Behavior Control Interface). This interface allows the

Task Manager to start and stop the behavior. Moreover, in order to implement an

affordance-based behavior arbitration1, the Behavior Control interface allows the

Task Manager to retrieve the situations that can be managed by the behavior. Us-

ing the Behavior Control Interface, the Task Manager can also grants the access to

robot’s capabilities to the behaviors. Once granted to use the robot’s capabilities,

(i) the behavior can use the interface provided by the Text To Speech component to

make the robot speak; (ii) the behavior can show to users pictures and videos using

Gui Manager Interface provided by the Graphical User Interface Manager; (iii) the

behavior can subscribe to the Speech to Text topic to retrieve what the user says;

(iv) the behavior can use the Perception and Motion Controller interface to retrieve

sensor data, and make the robot move in its operating environment.

Behaviors are able to store/retrieve knowledge from the Knowledge Base through

the Ontology Bundles. An Ontology Bundles implements RESTful service delivering

CRUD (Create, Read, Update, Delete) operations for a component of the Ontology

Network. A behavior can extend (at both intensional and extensional level) the

knowledge base with the specific knowledge that it need by deploying new Ontology

Bundles. This is done by using the Lizard interface that allows to generate an

Ontology API bundle for the Ontology Module needed by the behavior (in case that

the knowledge needed is not already covered by the Ontology Network).

A behavior can use robot’s convoluted capabilities. The convoluted capabilities

used by the behaviors in Figure 7.1 are the capabilities for natural language un-

derstanding2. Using Natural Language Understander modules a behavior is able to

(i) Understand natural language texts, i.e. associating a natural language text with

a formal representation of its meaning; (ii) Integrate Knowledge extracted from the

natural language texts into the knowledge base. A behavior can also extend robot’s

1More details of this mechanism are provided in the next section.
2This is only an example of convoluted capabilities that a behavior can use. The architectural

pattern involving the Behavior, the Natural Language Understander Module and the Convoluted

Capability Manager can be replicated for other kinds of robot’s capabilities.

Chapter 7. A Knowledge Centered Architecture for Social Robots 167

convoluted capabilities by registering new components using the Register Module

Interface of the Convoluted Capability Manager. The new Convoluted Capability

Manager is then deployed by the Bundle Manager and becomes available to other

behaviors.

7.3.1.2 Task Manager

The Task Manager is a special behavior that actively coordinates other behaviors

and manages the functional capabilities of the robot. It acts as a high-level control-

ler and supervisor, allowing the robot to execute behaviors. Once started by the

task manager, behaviors use robot’s computational and sensor/actuator resources

to achieve a goal. Specifically, the Task Manager is responsible for:

1. Processing incoming data/events (as provided by other software components)

and reasoning over the actual state and available knowledge, in order to detect

situations that require behavior activations;

2. Coordinating, scheduling and prioritizing task executions;

3. Activating, suspending, resuming and terminating tasks, as a result of a con-

tinuous decision making process;

4. Monitoring task executions, to detect successful task completions as well as

abnormal terminations, failures and exceptions that the tasks are unable to

directly handle.

The Task Manager implements an hybrid strategy for arbitrating the behaviors (i.e.

deciding which behavior to execute at each time). It implements a purely reactive

strategy through a collection of pre-programmed event-condition-action rules. This

strategy targets the most simple requests which do not need to build and reason on

a complex, abstract world models. For example, let the user make a phone call or

remembering the user to take his pills does not require a complex control strategy.

The purely reactive strategy has proven to be effective for a variety of problems

that can be completely specified at design-time with simple rules [140]. However,

168 Chapter 7. A Knowledge Centered Architecture for Social Robots

it is inflexible at runtime due to its inability to store new information in order to

adapt the robot’s behavior on the basis of its experience. Moreover, the burden of

predicting all possible input states and choosing the corresponding output actions

is completely left to the designer.

An extension of this the purely reactive strategy is a behavior-based approach

relying on the notion of affordance. The notion of affordance has been introduced by

Gibson [91] who devised a theory of how animals perceive opportunities for action.

Gibson called these opportunity affordance. He suggested that the environment of-

fers the agents (people or animals) opportunities for actions. For instance, a door

can have the affordance of “openability”. The strategy for controlling behavior im-

plemented by the task manager exploits and goes beyond of the notion of affordance

introduced by Gibson. The behavior-control mechanism is based on the assumption

that not only phyiscal objects, but also complex situations (e.g. the user wants to

listen to some music and the robot battery need to be charged) afford actions. A

complex situation can be seen as the fullfilment of certain conditions at a certain

time. These conditions may involve temporal aspects (e.g. lunchtime may afford

the task remember the user to take the pills), the perception of certain physical

objects, the reception of a command (e.g. I want to listen to some music), or, even

the existence of certain state-of-affairs (e.g. the situation the user is sitting on a

chair for a long while may afford the task entertain the user). All the conditions

that cause the start or the stop of behaviors can be stored in the knowledge base

my means of the Affordance module of the ontology network (cf. Section 3.3.1).

The task manager continuously check these conditions, and, whenever a condition

is satisfied, it retrieves the actions afforded by the fulfilled situation.

7.3.2 Event Bus

The Event Bus aims at providing the architecture’s components with message-based

communication mechanism. This component enables the communication among

components in a publish-subscribe form. The Event Bus exposes two interfaces,

namely: (i) the Topic Management Interface which allows software components

Chapter 7. A Knowledge Centered Architecture for Social Robots 169

to create new topics; (ii) the Publish/Subscribe Interface which allows software

components to publish messages on/subscribing to a topic. This component provides

an asynchronous communication mechanism that decouples software components.

This mechanism is used for realizing the communication between behaviors and

basic robot’s capabilities (these “communication channels” are highlighed in gray in

Figure 7.1).

7.3.3 Bundle Manager

The Bundle Manager allows to extend the architecture by dynamically deploy-

ing new software components. The Bundle Manager aims at providing an OSGi-

compliant3 platform for the robot’s software architecture enabling a dynamic com-

ponent model. Applications or components, coming in the form of bundles4 for

deployment, can be installed, started, stopped, updated, and uninstalled without

requiring a reboot. These features ensure the flexibility and the extensibility of the

software architecture. For the sake of simplicity, the Bundle Manager realizes only

one interface which allows Lizard and Convoluted Capability Manager to dynamic-

ally install Ontology Bundles and Capability Modules respectively.

7.3.4 Knowledge Management Framework

This Section presents the architectural components involved in the management of

the robot’s knowledge. The Knowledge Management Framework consists two main

components, namely the Knowledge Base and Lizard.

7.3.4.1 Knowledge Base

The Knowledge Base is the component intended to store the robot’s knowledge in a

structured format. The Knowledge Base provides facilities to create, read, updated,

3OSGi, https://www.osgi.org/
4Bundle is a term borrowed from Java-based platforms. A bundle is defined as a group of Java

classes and additional resources equipped with a detailed manifest file.

https://www.osgi.org/

170 Chapter 7. A Knowledge Centered Architecture for Social Robots

and delete (i.e. CRUD) facts. The reference data model for the knowledge base

is the RDF framework5. The facts stored into the knowledge base are compliant

to Ontology Network (c.f. Section 3). The Ontology Network is defined in OWL

language6 The knowledge base component also includes a reasoning engine that is

able to infer logical consequences (i.e. entailed facts).

7.3.4.2 Lizard

Lizard is an Object-RDF mapper providing software components with the access to

the knowledge base. Given an ontology as input, Lizard generates an application

bundle (i.e. an Ontology Bundle) that provides applications with APIs for accessing

RDF facts stored in the Knowledge Base following the Object-Oriented paradigm.

The APIs reflect the semantics of OWL ontology and allow transparent access to the

knowledge base. The Ontology Bundle also provides a RESTful layer that exposes

Object Oriented paradigm by using the REST architectural style over HTTP. The

Ontology Bundle avoids client applications to deal with OWL and RDF or to interact

with a knowledge base by means of SPARQL queries.

7.3.5 Basic Capabilities

Basic capabilities include both the robot primitive functionalities (e.g. reproducing

or recording sounds) and basic platform services strictly related to the robot prim-

itive functionalities (e.g. speech recognition). These capabilities are used by most

of the robot behaviors. This Section briefly describes the components providing

the basic robot capabilities. The capabilities delivered by these components are the

most significant with respect to the requirements for a social robot (cf. Section 7.1.1

and 7.1.2). The Section omits components providing general purpose services (e.g.

network connectivity).

5RDF 1.1 Concepts and Abstract Syntax, https://www.w3.org/TR/rdf11-concepts/
6OWL 2 Web Ontology Language Document Overview (Second Edition), https://www.w3.org/

TR/owl2-overview/

https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-overview/

Chapter 7. A Knowledge Centered Architecture for Social Robots 171

7.3.5.1 Text to Speech and Speech to Text

The Text to Speech component aims at converting natural language text into speech.

The Text to Speech implements an interface that allows behaviors to synthesize and

to reproduce synthesized speech. The Speech to Text component converts spoken

language into digital-encoded text. The Speech to Text component creates a topic

for publishing the converted text. The behaviors that need to recognize what users

say will subscribe to this topic and they will receive a message whenever the text is

converted.

7.3.5.2 Graphical User Interface Manager

Most of the social robots are equipped with one or more (touch-)screens in order to

complete the message conveyed by verbal communication. The joint use of verbal

and visual language for human computer interaction falls into the broader category

of multi-modal human-computer interaction. This architecture supports a bi-modal

interaction involving a both verbal and visual language. The verbal communication

relies on Text to Speech and Speech To Text components, whereas visual commu-

nication is ensured by the Graphical User Interface Manager. The Graphical User

Interface Manager component aims at providing behaviors with facilities for man-

aging the robot’s GUI. The component realizes an interface (i.e. the GUI Manager

Interface) that allows behaviors to show widgets on the screen. Using this inter-

face the behaviors can also receive a feedback whenever the user interact with such

widgets.

7.3.5.3 Perception and Motion Controller

The Perception and Motion Controller provides functional capabilities for support-

ing human-robot interactions. It includes a set of software routines that enable the

robot to perform a series of motion behaviors (e.g., approaching the user, following

the user, recharging, driving the user to a destination, etc.). The robot is able to

estimate current situation using different level of information, coming from several

172 Chapter 7. A Knowledge Centered Architecture for Social Robots

sensors like: (i) RFID in order to detect a list of tagged objects; (ii) Camera to

detect user using face and posture recognition and extract his relative position and

distance; (iii) Laser to perceive and identify dynamic objects/persons that were not

included in the static map (SLAM system). This information can be used to avoid

obstacles and approach/follow patient. The Motion Controller Interface provide

behaviors with high-level functionalities such as: go to X (where X is a point within

the robot’s operating area), give me user’s position, give me the tagged objects that

are currently near the robot etc.

7.3.6 Convoluted Capability Subsystem

The Convoluted Capability Subsystem manages the convoluted capabilities of the

robot. Convoluted capabilities are services that can be dynamically included in the

robotic platform after the deployment of the architecture. The new capabilities can

be installed by robot’s behaviors that intend to make available new functionalities

for other behaviors. The Convoluted Capability Subsystem consists of the Convo-

luted Capability Manager and the Convoluted Capability Module. The Convoluted

Capability Manager is responsible for the dynamic deployment of new capability

components. It realizes an interface (i.e. “Register Module”) which accept as in-

put an application bundle realizing the new capability to deploy. Once received an

application bundle, the Convoluted Capability Manager uses the Bundle Manager

interface to install the bundle.

7.4 Architecture Prototype for a Real Social As-

sistive Scenario

A prototype of the software architecture proposed in this chapter has been developed

within the context of the MARIO project (cf. Section 1.3). This prototype is aimed

at demonstrating feasibility and benefits of the contributions described in this thesis.

In particular, Section 7.4.1 two knowledge-intensive robotic running on top of the

Chapter 7. A Knowledge Centered Architecture for Social Robots 173

software architecture. The prototype has been deployed on Kompäı-2 robots, eval-

uated during supervised trials in different dementia care environments, including a

nursing home (Galway, Ireland), community groups and residential settings (Stock-

port, UK), and a geriatric unit in hospital settings (San Giovanni Rotondo, Italy).

Results of the evaluation carried out within the context of the MARIO project are

reported in Section 7.4.2.

7.4.1 Delivering Knowledge-intensive Applications for So-

cial Robots

Within the context of the MARIO project we developed two knowledge-intensive

applications enabling a social robot at (i) Assessing the medical, psycho-social and

functional status of a person by undertaking a dialogue-based interaction which is

part of the Comprehensive Geriatric Assessment (CGA) diagnostic process; (ii) De-

livering a reminiscence aimed at stimulating long-term autobiographical memory

with verbal interactions that focus on recalling positive memories about people,

past activities, experiences and personal events, often with the support of materials

such as photos that act as memory triggers.

7.4.1.1 Comprehensive Geriatric Assessment

The Comprehensive Geriatric Assessment (CGA) is a diagnostic process that aims

at collecting and analyzing data in order to determine the medical, psychosocial,

functional and environmental status of elderly patients, with the goal of improving

the diagnostic plan and supporting physicians in the definition of personalized plans

for treatment and long-term care.

A multidimensional assessment phase is at the heart of the CGA process and

represents a critical, time consuming activity for caregivers. To gather informa-

tion about the patient, physicians rely on a set of widely accepted, internationally

validated formal assessment tools and standardized rating scales designed to evalu-

ate patient’s functional abilities, physical and mental health, and cognitive status.

174 Chapter 7. A Knowledge Centered Architecture for Social Robots

Figure 7.2: Architectural model of the CGA and Reminiscence applications

As part of the assessment tools and procedures, the patient is required to answer

questions defined in standardized clinical questionnaires7 (e.g., about his/her daily

life and ability to autonomously perform specific activities). Depending on the an-

swers, a score is given to the patient and evaluated according to a reference rating

scale. The assessment enables the evaluation of a Multidimensional Prognostic Index

(MPI), a prognostic tool that combines the scores resulting from the questionnaires

to derive a single score able to synthetically represent patient’s health status and

define the severity grade of mortality risk in elderly subjects [168].

A CGA is typically carried out every 6 months and, on average, a questionnaire-

based evaluation requires between 20 and 30 minutes per patient to be completed.

As most of the total time available to the formal caregiver is consumed to collect in-

formation from the patient, the evaluation and definition of a personalized care plan

is often performed under time pressure, in particular in the setting of an ambulatory

7A standard CGA includes eight assessment tools and scales: Co-habitation status, Medication

use, Activities of Daily Living (ADL), Instrumental Activities of Daily Living (IADL), Short Port-

able Mental Status Questionnaire (SPMSQ), Exton-Smith Scale (ESS), Cumulative Illness Rating

Scale (CIRS), and Mini Nutritional Assessment (MNA).

Chapter 7. A Knowledge Centered Architecture for Social Robots 175

geriatric care unit. Nowadays health professionals increasingly use ICT supporting

tools and devices (such as computers and tablets) during the multidimensional as-

sessment phase for recording test results and calculate the corresponding scores.

However, it has been observed that these devices and the need to interact with

them to input information can represent a “communication barrier” between the

caregiver and the patient during clinical interviews [66]. The lack of visual contact

with the caregiver can further increase stress and anxiety in frail elderly patients

undergoing a cognitive evaluation whose results may potentially impact on their

autonomy.

The introduction of a robotic solution able of autonomously performing parts of

a CGA is expected to reduce the direct involvement of health professionals in the

time-consuming data collection tasks, as well as the perceived tiredness resulting

from the performance of repetitive tests. This will enable them to concentrate

their efforts on the interpretation of the results and the elaboration of personalized

care plans. In the long term, the objective is to enable a continuous monitoring

of patient’s conditions (e.g., by increasing the frequency of CGA sessions), with an

opportunity to early detect relevant changes in the health status. In this direction,

the ASSESSTRONIC project8 and the CLARC framework [20] are investigating

robotic solutions for supporting the CGA process.

MARIO’s CGA application, whose components are shown in Figure 7.2, aims

at enabling the robot to autonomously perform and manage the execution of the

questionnaire-based tests required in the CGA process, in order to assist the formal

caregivers and physicians in the multidimensional assessment phase and facilitate

the evaluation of the Multidimensional Prognostic Index. The CGA application is

thus designed to undertake a dialogue-based interaction with the patient, by posing

the defined questions and interpreting patient’s answers to assign the corresponding

scores. Moreover, by recording patient’s answers and calculated tests scores, the

application can generate health reports for the care staff, to allow them to access,

analyze and review test results. The CGA application relies on the CGA ontology

8http://echord.eu/essential grid/assesstronic/

http://echord.eu/essential_grid/assesstronic/

176 Chapter 7. A Knowledge Centered Architecture for Social Robots

(cf. Section 3.3.2).

In the CGA application (Figure 7.2), the Session and State Manager manages

the overall execution and status of CGA sessions, coordinating the scheduling and

performance of the configured tests. It operates on the basis of the user profile

and test configuration settings defined by the formal caregiver and available in the

knowledge base. In order to access the ontology and the corresponding data, the

CGA module exploits the functionalities and API provided by the knowledge man-

agement system introduced in Chapter 5. As CGA tests are typically performed

during a clinical encounter (e.g., when the patient is admitted to or discharged from

the geriatric unit), a CGA session can be initiated by the caregiver either through

the provided graphical interface or by vocally interacting with the robot, asking

MARIO to perform an assessment of the patient.

When the application is activated, the Session and State Manager initiates and

monitors the sequential execution of the specific tests to be performed. Specifically,

the Questionnaire-based Test Executor is in charge of the execution of questionnaire-

driven tests, and is thus responsible for engaging the patient in a dialogue-based

interaction, with the aim of gathering information that enables the calculation of

assessment scores and prognostic indexes. The dialogue flow is driven by the robot

and unfolds on the basis of a continuous question-answer interaction pattern. To this

end, the component relies on the speech-based communication capabilities provided

by the MARIO framework and operates on the basis of scripted representations

of the different questionnaires that are part of the CGA. Dialogue management is

driven by the questionnaire structure, which acts as a blueprint for the question-

answer interactions and provides the ordering and sequencing of the assessment

questions. For a specific test, the corresponding questionnaire script is derived from

its description and representation retrieved from the knowledge base.

Basically, the application gradually presents spoken questions to the patient and

gathers her vocal responses to be interpreted. Each question formulated by the app

and uttered by the robot is contextually shown on the touch screen. Depending on

the question type (open-ended or closed-ended question), possible answers may be

Chapter 7. A Knowledge Centered Architecture for Social Robots 177

shown on the screen as well. This enables the patient to provide her answers by

directly speaking to the robot or by interacting with the graphical interface. The

application relies on natural language understanding capabilities for interpreting

patient’s utterances representing answers to the evaluation questions. A proper

interpretation of provided answers ultimately results in the assignment of a score to

each answer. The Answers Understander takes as input the textual representation

of patient’s utterances, as provided by the speech-to-text subsystem. The actual

interpretation strategy directly depends on the question and corresponding answer

type.

In the case of Yes-No questions (e.g., “Do you need any help to wash or bathe

yourself?”), which cover most of the items in the CGA questionnaires, patient’s

answers are matched against regular expression patterns that aim at capturing both

positive and negative answers. The patterns were built by exploiting existing lin-

guistic resources, in particular the Paraphrase Database (PPDB)9, an automatically

extracted multilingual database of paraphrases. PPDB has been re-engineered in

RDF and included as part of the knowledge base, according to the reference PPDB

ontology10 we defined. In the case of Wh-questions, which cover most of the items

in the Short Portable Mental Status Questionnaire (e.g., “What is the date today?”,

“When were you born?”, “Who is the current Pope?”), the understanding process

maps to the task of comparing patient’s answers with known properties of named

entities, such as persons (including the patient herself, her parents, and well-known

present and historical individuals) and dates. These properties can be directly re-

trieved or derived by querying the knowledge base (e.g., by accessing patient’s pro-

file to get her birth day or her mother’s maiden name) and then compared with the

provided answer. The matching process relies on specialized understanding capab-

ilities that restrict the recognition and interpretation to specific domains, such as

locations and numbers, used for example when the user is asked to perform basic

math calculations as part of the SPMSQ questionnaire.

9http://paraphrase.org/
10http://w3id.org/ppdb/ontology/ppdb.owl

http://paraphrase.org/
http://w3id.org/ppdb/ontology/ppdb.owl

178 Chapter 7. A Knowledge Centered Architecture for Social Robots

Finally, the MPI Calculator is responsible for calculating the overall Multidimen-

sional Prognostic Index, taking into account the scores and rating scales resulting

from the execution of the assessment tests.

7.4.1.2 Reminiscence Therapy

Reminiscence therapy is based on verbal interactions that focus on recalling positive

memories about people, past activities, experiences and personal events, often with

the support of materials such as photos that act as memory triggers. Reminiscence

therapy thus targets and aims at stimulating long-term autobiographical memory,

which is relatively unaffected by the disease. Reported effects range from increased

socialization and self-esteem to improvements in cognition and mood, with a general

positive impact on quality of life [129, 213].

As discussed in [120, 200], existing systems for supporting reminiscence aim at

improving traditional practice and basically consist of software applications, de-

ployed on desktop/laptop computers or tablets, that act as personalized multimedia

systems for the storage and retrieval of digital reminiscence materials. Our approach

focuses on robot-enabled delivery of so-called simple reminiscence [129], based on

a conversational approach and highly focused verbal and visual memory triggers.

The application, whose components are shown in Figure 7.2, is thus specifically

designed to actively prompt the PWD and engage her in interactive and person-

alized reminiscence sessions, where dialogue-based interactions are complemented

with multimedia content associated with relevant people, places and life events.

Supporting reminiscence requires the availability of user-specific factual know-

ledge, gathered in the form of a life history from family members and caregivers.

In order to represent, structure, store and make available this heterogeneous in-

formation, specific ontology modules were defined as part of the MARIO Ontology

Network. The ontology modules supporting reminiscence cover three main know-

ledge areas, i.e., personal sphere, life events and multimedia content. They address

the need of representing persons and their basic biographic information, family and

Chapter 7. A Knowledge Centered Architecture for Social Robots 179

social relationships among them, life events, and multimedia objects along with their

association with persons, places and life events.

While biographic information covers basic data (e.g., first/last name, birth date

and hometown), family and social relationships enable the definition of a social graph

for the PWD. User profiles can be further enriched with the definition of life events

on the basis of a generalized representational schema, which includes the primary

properties of a life event and relies on the time-indexed situation ontology design

pattern. In addition to a title and a textual description, a life event is character-

ized by (i) a temporal dimension, to allow representing events that occurred in a

specific date (e.g., a marriage) or over a period of time (e.g., attendance to college);

(ii) a set of participants, to express the participation of potentially multiple persons

in the event; (iii) a location where the event took place; (iv) a set of multimedia

objects (photos, videos, etc.) associated with the event. Starting from this generic

representational structure, the need to specialize life events to cover specific domains

led us to narrow of the scope of the modeling approach and adopt a frame-based

representational structure. Specific life events and their properties are modeled as

frames, to cover typical domains including work and education (e.g., school attend-

ance and working experiences), personal and family events (such as a marriage and

the birth of a child), and living and travel experiences. A frame provides a schema

for conceptualizing the description of an event type and its participants in terms of

frame elements or semantic roles [81]. For example, a marriage involves two persons

participating as partners, and takes place in a specific location and date. Similarly,

a birth event includes an offspring (the person that was born) and involves two

persons as mother and father, along with the birth place and date.

The association between media objects and other entities relies on a semantic

tagging approach, as defined in a tagging ontology module (cf. Section 3.3.3) de-

signed so that any object (including frames or even named graphs) can be used to

categorize or describe the entity being tagged. This allows defining, for example, life

events and persons as tags for an image, in addition to simple properties expressing

when and where a photo was taken.

180 Chapter 7. A Knowledge Centered Architecture for Social Robots

Figure 7.3: Example of prompting questions formulation from user-specific know-

ledge graph

User-specific knowledge is directly exploited by the application for engaging the

patient in reminiscence sessions. A reminiscence session can be triggered as a res-

ult of a direct request issued by the user, either through the GUI provided by the

MARIO framework and available on the touchscreen, or via vocal commands, ex-

ploiting the multimodal interaction capabilities provided by the robot. Specifically,

a dialogue-based reminiscence session is driven by an extensible repertoire of in-

teraction patterns, that allow the application to prompt the user through specific

questions and triggers, associated with media objects such as images that are con-

textually shown on the touchscreen available onboard the robot.

An interaction pattern consists of: (i) a precondition, with constraints expressed

as queries over the knowledge base, defining under which conditions the prompt can

be instantiated and used; (ii) a parametric prompting question to be used for trigger-

ing reminiscence, represented as a partially-formulated prompt template containing

variables to be instantiated with data from the knowledge base; (iii) a set of quer-

ies over the knowledge base providing a binding for the variables in the prompting

question. On the basis of these patterns, the main step in the application logic con-

sists in contextually identifying the applicable patterns, by accessing the knowledge

base to evaluate their preconditions and instantiate the corresponding prompt. As

visual memory triggers are fundamental for reminiscence, the patterns are always

evaluated taking into account the availability of an image that will be shown to the

user while the prompt is uttered by the robot through its text-to-speech capabilities.

Chapter 7. A Knowledge Centered Architecture for Social Robots 181

Prompting questions are defined to cover the aforementioned knowledge ele-

ments, including life event types, people and tagged media objects. As inform-

ally shown in Figure 7.3, given a photo with information on where it was taken,

and who appears in the picture, examples of parametric prompting questions that

also exploit family/social relationships include “Is that your {familyRelationship}

{personName} in the photo with you?” or “That’s you {patientName} in the photo

with your {familyRelationship} {personName}. Where was this taken?”. Similarly,

the association between photos and life events can be exploited to formulate ques-

tions about the event. Assuming, for example, that there is a marriage event where

the PWD is one of the partners, prompting questions such as “ {patientName}, you

got married to {partnerName} in {eventDate}. Where did you get married?” can be

formulated.

In these examples, prompting questions take the form of targeted questions that

assume a specific, known answer, from a simple positive/negative reply to the identi-

fication of specific persons, places, dates or events. In the case of prompts formulated

as targeted questions, the interaction patterns are extended by defining the answer

type (e.g., a yes/no answer, a person, a date, etc.), the actual expected answer (by

referencing a concrete entity in the knowledge base, such as a specific person or loc-

ation), and utterance templates that are used by the robot depending on whether

user’s reply matches the expected answer or not. These additional elements are used

by the application in the user answer processing step, where the capabilities of the

natural language understanding subsystem are used. Targeted questions with spe-

cific answers constrain the language interpretation domain: the interpretation maps

to the task of named entity recognition and linking with respect to the knowledge

base, to identify mentions of named entities (e.g., a person or a location) in user’s

utterance and check the correspondence with the entity representing the expected

answer. Depending on the outcome of this step, the robot can reply with a confirm-

ation and encouragement if the answer is correct, or otherwise provide the patient

with intermediate hints or the expected answer.

As an approach based on repeated questions can create stress and anxiety and

182 Chapter 7. A Knowledge Centered Architecture for Social Robots

be inappropriate for people with cognitive impairments, prompting questions can

also be defined as open-ended prompts that aim at stimulating conversation. So for

example, considering again a picture related to a marriage event, the robot can use

prompts like “ {patientName}, you got married to {partnerName} in {eventDate}. Tell

me about you wedding day! What was it like?”. Similarly, given a picture of one

of patient’s children, prompts like “ {patientName}, this is your {childRelationship}

{childName} in this nice picture. What was {childName} like as a child?”. When deal-

ing with this type of prompts, the interpretation of user’s replies adopts a different

strategy and relies on sentiment analysis capabilities. Basically, the application

attempts identify the polarity of user’s utterances, to recognize whether the visual

and verbal prompt is eliciting a positive, neutral or negative mood or reaction from

the person. The interaction patterns are extended in this case by defining utterance

templates for the different polarities, so that the robot can, e.g., encourage the user

to tell him more about the subject if the reaction is positive, or otherwise propose

to move to another picture.

The selection of the interaction patterns is thus a dynamic process, driven by

patient’s replies and reactions, and by traversing the links in the knowledge graph on

the basis of the dialogue context and history. So, for example, a question about when

a photo was taken can be followed by a question concerning a person that appears

in the picture, and then move to a life event where the person participated in, and

so on, exploiting the properties of and links between the entities in the knowledge

base. Similarly, sentiment data can influence the selection process as well: for

example, a negative reaction to a picture concerning an event or showing a specific

person may lead to avoid subsequent prompts with images about the same event

or with that person. Moreover, sentiment data emerging from the interactions can

be associated with the concerned entities (pictures, people, events, etc.) and stored

in the knowledge base. This knowledge is then used in subsequent reminiscence

sessions so that, for example, photos that generated a positive reaction are favored

in the selection process, whereas those causing negative reactions are less likely to

be reproposed.

Chapter 7. A Knowledge Centered Architecture for Social Robots 183

7.4.2 Evaluation

In this section we report the key results obtained from the trials undertaken within

for the MARIO project. More details on the evaluation methodology and the results

can be found in [48]. The evaluation involved 38 people with dementia, each engaged

at least three times for 60 minutes, for a total of 195 engagements. The evaluation

methodology combined two approaches, a quantitative approach involving the use

of standardized assessment questionnaires, and a qualitative approach to capture

the perceptions and experiences of key stakeholders.

7.4.2.1 Quantitative Evaluation

Each participant performed seven different assessment questionnaires before and

after the introduction of the robot: (i) The mini mental state [76], a 30-point

questionnaire that is used extensively in clinical and research settings to measure

cognitive impairment; (ii) Cornell Scale for Depression in Dementia (CSDD) [3],

a screening tool for depression in participants with dementia; (iii) Quality of life

in Alzheimer’s disease (QOL-AD) [132], a 13-item self- and caregiver-report meas-

ure that assesses quality of life across several domains; (iv) The Comprehensive

Geriatric Assessment, a multidimensional diagnostic process intended to determ-

ine a person’s medical, psychosocial, and functional capacity (cf. Section 7.4.1.1);

(v) The Multidimensional Scale of Perceived Social Support (MSPSS) [215], a sub-

jective, self-reporting measurement of social support; (vi) The 14 ITEM Resilience

scale (RS-14) outlined in [47]; (vii) The Observational Measurement of Engagement

(OME) [50], a tool for assessing interactions between people with dementia and

environmental stimuli.

An overview of the result of the quantitative analysis is presented. The complete

results are reported in details in the MARIO D8.3 deliverable [48]. In the residential

care setting, no statistically significant difference was found in participant’s scores

pre and post MARIO as measured by the QoL-AD for patient, MSPSS, CSDD and

the RS14. In the hospital setting, a significant improvement was observed in pa-

tient’s depression (CSDD: p=0.01), resilience (RS-14: p<0.0001), and quality of life

184 Chapter 7. A Knowledge Centered Architecture for Social Robots

(QoL-AD) scores (patient: p=0.04). However, there was no statistically signific-

ant difference found in the MPSS. In the community setting, only 2 participants

completed the standardized assessment questionnaires, due to the small sample size

involved these were not analysed on a single site basis. When scores across all sites

were compared the combined participant’s resilience scores pre-and-post MARIO

were the only scores found to be significant (RS-14: p = 0.04).

A significant improvement was observed in the quality of life score of participants

in the hospital setting (QoL-AD patient: p=0.04), indicating that engagement with

MARIO had a positive impact. In MARIO study, there was some very limited evid-

ence of impact on resilience levels in the hospital setting (RS-14: p<0.0001) and no

statistically significant difference for other indicators emerged from the evaluation.

7.4.2.2 Qualitative Evaluation

Following [210], a qualitative interpretive descriptive design was used to gather and

analyse data from participants. Interpretive description was designed to give par-

ticipants a voice about their own experiences. Semi-structured interviews were de-

veloped from the literature and expertise of the researchers across all pilot sites.

In the following it is presented an overview of the results regarding the overall

impact. The complete results are reported in details in the MARIO D8.3 deliver-

able [48]. The analysis of the results revealed five key themes, namely: (i) Per-

ceptions/attitudes towards MARIO; (ii) Challenges to the use of social robots in

the context of the real world of dementia care; (iii) Impact of MARIO on cognitive

engagement, autonomy, loneliness, resilience, and quality of life; (iv) Utilization of

the MARIO applications.

Perceptions/Attitudes towards MARIO. The data revealed that most par-

ticipants across the three settings were accepting and had positive perceptions/at-

titude toward MARIO, and the deployment of social robots. People with dementia

enjoyed their interactions with MARIO and they often referred to MARIO as he or

Chapter 7. A Knowledge Centered Architecture for Social Robots 185

she, conceptualizing him as an embodied presence and some referred to MARIO as

“a friend” describing how they had developed a relationship with MARIO.

Challenges to the Use of Social Robots in the Context of Dementia Care.

Whilst the majority of carers and managers were positive about MARIO, some

expressed concerns regarding the deployment of robots in dementia care. These

concerns related to the fact that robots should not be seen as a replacement for

human interaction or care givers. Carers, managers, and relatives across all sites

commented on the fact that the stage of dementia was an important consideration

when deploying robots to work with people with dementia. They suggested that

MARIO was most useful to people at the mild to moderate stage of dementia.

The impact of MARIO. Participants suggested that the main impacts were

on increased cognitive engagement, autonomy, loneliness, resilience and quality of

life. Carers/relatives across all three settings indicated that working with MARIO

positively impacted the level of cognitive engagement of participants with demen-

tia. Working with MARIO, particularly in the residential settings enhanced the

autonomy of participants with dementia because it enabled them to make autonom-

ous choices about what activities they wanted to do. It was also observed that people

with dementia spent less time alone and more time socially engaged. MARIO was

found to facilitate conversations and social engagement with staff and relatives and

provided participants with the opportunity to converse about their own life. MARIO

had a limited impact on resilicence, only a few participants reported that they felt

that MARIO had impacted on their resilience. The provision of personalised activ-

ities, and the fact that MARIO provided entertainment and diversion that had a

positive impact on quality of life of participants. It was also suggested that MARIO

had an impact on quality of life because MARIO expanded social activities and

facilitated discussions and conversations.

Utilization of Applications. All the MARIO applications were personalised to

the individual. The most frequently used applications across all pilot sites were,

186 Chapter 7. A Knowledge Centered Architecture for Social Robots

in order of preference, My Music, My Memories (i.e. Reminiscence application)

and My Games, My Chat and My Family and Friends. In the following report the

utilization of the applications presented in Chapter 7.4.1.

The Reminiscence application described in Section 7.4.1.2 was the second most

popular app and was widely used and selected by participants with dementia across

all sites. Participants with dementia enjoyed using the app, and they emphasized

they enjoyed looking at the materials on MARIO. Relatives/carers in all settings

also commented on the importance of this application for the person with dementia

and some described their enjoyment in helping to compile the materials for the ap-

plication and how the application drew on preserved long-term memories, engaged,

stimulated the participant with dementia and created enjoyment.

The Comprehensive Geriatric Assessment (CGA) application, described in Sec-

tion 7.4.1.1 enabled MARIO to autonomously undertake a specific number of ques-

tions required in the CGA process. The average time of the CGA app sessions was

7.25 ± 2.55 minutes. Having a robot undertake the assessment process was found

acceptable to participants, with dementia and to caregivers. In addition, the find-

ings indicate that having MARIO conduct the CGA may optimise the “time care”

of healthcare professionals, allowing them to focus on other more meaningful patient

activities.

7.5 Discussion

This chapter presented a component-based software architecture which is aimed at

supporting knowledge-intensive tasks performed by social robots with a platform

implementing and orchestrating a set of off-the-shelf components. As far as RQ5

(cf. Section 1.1) is concerned, these components rely on contributions of this thesis

and state-of-the-art semantic web technologies to provide developers with generic

functionalities for structuring and accessing knowledge, exploiting linked open data,

and sharing knowledge among architectural components.

This architecture benefits of both symbolic and subsymbolic techniques (cf.

Chapter 7. A Knowledge Centered Architecture for Social Robots 187

Chapter 1). Subsymbolic techniques are used in perceptual tasks (such as translation

of spoken language into text), whereas symbolic techniques are used for controlling

the robot at an higher level [93]. In particular, subsymbolic subsystems of the robot

transform low-level perception in symbols so to enable the symbolic processing of

the control system. In this way the framework benefits of the state-of-the-art per-

formance on perceptual tasks of subsymbolic techniques without compromising the

possibility of having a system that is deterministic and able to explain its behavior

and decisions (important requirements for the case study of this thesis, cf. Sec-

tion 1.3). The other issue that prevented the use of subsymbolic techniques within

the control subsystem is the lack of data. But, if more data on the action to un-

dertake in a given situation is made available, then subsymbolic approaches would

become viable solutions to exploit for controlling robot’s behavior.

Moreover, this chapter presented a prototype which is aimed at demonstrating

feasibility and benefits of such a architecture and two applications running on top of

the architecture prototype. We claim that the prototype presented in this chapter is

only an example of robotic systems that benefit of framework proposed in the thesis.

This framework could potentially be integrated, with appropriate adaptions, with

every autonomous agents (not limited to embodied systems). The prototype has

been deployed on Kompäı-2 robots, evaluated during supervised trials in different

dementia care environments.

The findings reveal that social robots do have an important role in the social

care of people with dementia. A significant improvement was observed in the quality

of life score of participants in the hospital setting, indicating that engagement with

the prototype had a positive impact. A lighter impact on resilience level emerged

from the quantitative analysis and no statistically significant difference was found in

participants scores for other indicators. The data of the qualitative analysis revealed

that most participants across the three settings were accepting and had positive per-

ceptions/attitude toward the robot. Participants suggested that the main impacts

were on increased cognitive engagement, autonomy, loneliness, resilience and quality

of life.

188 Chapter 7. A Knowledge Centered Architecture for Social Robots

Our ultimate goal is creating a robotic platform orchestrating a series of off-the-

shelf components for (i) easing customizability and extensibility of robot’s behavior

and its social skills; (ii) improving both inner (among architectural components)

and outer (with external entities) interoperability ; (iii) enabling a rapid prototyping

of robotic applications; (iv) enhancing reusability of architectural components. Ar-

chitecture as well as other contributions of the thesis represent a progress towards

this goal. However, there is still a long way to go. The Task Manager proposed for

controlling robot’s behavior is able to react to only a set of few predefined situations

with a fixed set of behaviors. The Task Manager only demonstrated the feasibility

of a limited affordance mechanism, while customizability and extensibility of robot’s

behavior need to be investigated in the future. Moreover, another line of research

that could be investigated is the possibility of applying service-oriented techniques

such as service composition and orchestration [124]. Such techniques give the op-

portunity to quickly realize new behaviors by easily assembling (with no need of

code) existing behaviors and capabilities.

Similar considerations for the Convoluted Capability Manager. Architecture

prototype developed in MARIO has been equipped with some fixed capabilities, such

those exploited by behaviors presented in Section 7.4.1, but a Convoluted Capability

Manager is missing. Such a component is essential for guaranteeing reusability and

extensibility of robots’ capabilities, and could potentially be paired with a repository

of common capabilities from which behavior developers could easily download and

install the capabilities they need.

Chapter 8

Conclusion and Future Work

In this thesis we investigated feasibility and benefits of engineering background

knowledge of Social Robots with a framework based on Semantic Web technolo-

gies and Linked Data. This research has been supported and guided by a case study

(presented in Section 1.3) that provided a proof of concept through a prototype

tested in a real socially assistive context.

The thesis contributes to this goal by proposing a component-based architecture

centered on the robots’ knowledge base, namely, all the components contribute to

and benefit from the knowledge base which is the cornerstone of the architecture.

The knowledge base is structured by a set of interconnected and modularized on-

tologies, constituting the MARIO Ontology Network, which are meant to model

information relevant for robots’ activities in socially assistive context. The know-

ledge base is originally populated with lexical-linguistic, factual, and ontological

information retrieved from the Linked Open Data, and integrated within Framester.

The access to the knowledge base is guaranteed by Lizard, a tool that provides soft-

ware components with an API for accessing RDF facts stored in the knowledge base

in a programmatic way.

Moreover, this thesis proposed two methods for creating and manipulating know-

ledge needed by robots. (i) A novel method for automatically integrating knowledge

coming from heterogeneous sources with a frame-driven approach. This method aims

at evolving the robots’ knowledge with information learned during robots’ activit-

190 Chapter 8. Conclusion and Future Work

ies. (ii) A novel empirical method for assessing foundational distinctions over Linked

Open Data entities from a common sense perspective (e.g. deciding if an entity in-

herently represents a class or an instance from a common sense perspective). This

method realizes the first step of a more general procedure meant to automatically

generate common sense knowledge by using Linked Open Data as empirical basis.

We also presented two examples of knowledge-intensive robotic applications that

benefit of the framework described in this thesis. These two applications have been

developed, deployed and tested in a real socially assistive scenario. These two ap-

plications enable Social Robots at: (i) Assessing the medical, psycho-social and

functional status of a person by undertaking a dialogue-based interaction which is

part of the Comprehensive Geriatric Assessment (CGA) diagnostic process; (ii) De-

livering a reminiscence aimed at stimulating long-term autobiographical memory

with verbal interactions that focus on recalling positive memories about people,

past activities, experiences and personal events, often with the support of materials

such as photos that act as memory triggers.

Finally, this thesis presented a quantitative and qualitative evaluation of a pro-

totype of the framework tested in a real socially assistive context that involved 38

people with dementia. The findings reveal that social robots do have an important

role in the social care of people with dementia. A significant improvement was ob-

served in the quality of life score of participants in the hospital setting, indicating

that engagement with the prototype had a positive impact. A lighter impact on

resilience level emerged from the quantitative analysis and no statistically signific-

ant difference was found in participants scores for other indicators. The data of the

qualitative analysis revealed that most participants across the three settings were

accepting and had positive perceptions/attitude toward the robot. Participants sug-

gested that the main impacts were on increased cognitive engagement, autonomy,

loneliness, resilience and quality of life.

This thesis also presented some experiments for assessing whether the Web, and

in particular Linked Open Data, provides an empirical basis to extract foundational

distinctions, and if they match common sense. For testing the former, we adopt and

Chapter 8. Conclusion and Future Work 191

compare two approaches, namely alignment-based methods and machine learning

methods. For the latter we use crowdsourcing and compare the judgements of the

crowd with those of experts’. For both questions we observed promising results and

define a method that can be generalized to investigate additional distinctions.

8.1 Research Questions Revisited

The first chapter detailed several questions that we intended to explore. In this

section we review these questions stating the conclusions this work has set forth.

RQ1: What kind of knowledge a robot needs to operate in socially assistive context?

What exiting ontologies can be used to organize the robot’s knowledge? What

ontologies need to be advanced? What domains of interest in this context miss

of a conceptualization?

To investigate these questions, this thesis presented a proof-of-concept, namely

the MARIO Ontology Network. The most developed MON’s knowledge areas

are those related to the assistive and medical domain, social and multimedia

contents, and user-related information (user data, user’s life events etc.). The

competency questions falling in the area of multimedia contents, user related

information and transversal knowledge (e.g. temporal and spatial information)

were mostly addressed by reusing and adapting existing ontologies. Instead,

considerable effort was spent to meet the requirements related to the medical

domain. In particular, there were no ontologies able to support a robot in

performing a Comprehensive Geriatric Assessment of its users. MON filled

this gap with the CGA Ontology (cf. Section 3.3.2) which enabled the robot

to autonomously perform a Comprehensive Geriatric Assessment (cf. Sec-

tion 7.4.1.1). Another innovative module of MON is the Affordance ontology

(cf. Section 3.3.1) which enables a novel mechanism for arbitrating robot’s

actions. This model allows to define a series of situations a robot should react

to and the most appropriate actions to perform in each situation. Concerning

192 Chapter 8. Conclusion and Future Work

the “sociality” of a robot, much work still to be done to investigate to what

extent the robot’s knowledge impacts on acceptability, empathy and trustabil-

ity of robots. Although Social Ontology [188] (i.e. the study of the nature and

properties of the social world) is a developed field in philosophy, the results of

this research area are closed off to robots. Therefore, future work should focus

on encoding social theories in a machine-interpretable format.

RQ2: What Linked Data can provide background knowledge for social robots tasks?

Chapter 4 presented two different lines of research that investigate the possib-

ility of providing Linked Open Data as background knowledge for supporting

robots in their daily tasks. The two studies focused on linguistic and common

sense knowledge respectively. The high accuracy of the extracted knowledge

reveals that LOD is indeed a good source of knowledge for these domains. The

generated knowledge supports the applications presented in Chapter 7. The

positive impact of the prototype (assessed in three trials) motivates to further

extend the investigation to other knowledge domains.

RQ3: How to provide robots with access to knowledge?

Chapter 5 presented Lizard, a framework which is aimed at easing the software

development of knowledge-aware systems by filling the gap between Semantic

Web technologies and object-oriented applications. Lizard allows application

running on robotic frameworks to access RDF facts stored in the knowledge

base in a programmatic way. Robotic applications presented in Chapter 7

demonstrate Lizard’s benefits, feasibility and limitations when developed, de-

ployed and tested in a real socially assistive scenario. In particular, a current

limitation of Lizard is the poor triple-based interaction paradigm offered to

applications. This is strongly limiting compared to querying a knowledge base

with the possibility of joining several triple patterns in a single SPARQL query.

RQ4: How to integrate robot’s knowledge with data coming from robot’s experience?

Chapter 6 introduced a novel approach for ontology matching that uses frame

Chapter 8. Conclusion and Future Work 193

semantics as cognitive model for representing the intensional meaning of on-

tology entities. This method allows to integrate data coming from robot’s

experience (encoded in an ontology) with information already contained in ro-

bot’s knowledge base. Aligning ontologies with frames, in particular linguistic

frames, has a second non-negligible benefit related to both understanding and

generation of natural language. On the one hand, the combination of tools

for frame-based semantic role labelling and an alignment mapping linguistic

frames on robot’s knowledge base schema, enables robot to directly ingest

and integrate structured knowledge extracted from text. As far as natural

language generation is concerned, it is worth noticing that a linguistic frame

(such those defined in FrameNet) often comes with annotated sentences verb-

alizing some of its instances. We claim that aligning linguistic frames with

ontologies could be the key for filling the gap between structured and unstruc-

tured knowledge. The proposed approach is being implemented and evaluated,

therefore we cannot show results that directly demonstrate the feasibility of

the proposed approach. But, good results on classification linked data entities

with respect to foundational distinctions by using labels and descriptions of

entities demonstrate that textual annotations carry the semantics of entities

(cf. Section 4.2). Therefore, we hypothesize that textual annotations in on-

tology found on the Web are rich enough to be used for the frame ontology

alignment task.

RQ5: How to Semantic Web technologies can be orchestrated to support robot tasks?

Chapter 7 presented a component-based software architecture which is aimed

at supporting knowledge-intensive tasks performed by social robots with a

platform implementing and orchestrating a set of off-the-shelf components.

The components of the architecture rely on contributions of this thesis and

state-of-the-art semantic web technologies to provide developers with generic

functionalities for structuring and accessing knowledge, exploiting linked open

data, and sharing knowledge among architectural components. We claim that

194 Chapter 8. Conclusion and Future Work

the prototype presented in this chapter is only an example of robotic systems

that benefit of framework proposed in the thesis. This framework could po-

tentially be integrated, with appropriate adaptions, with every autonomous

agents (not limited to embodied systems). A prototype of this architecture

has been deployed on Kompäı-2 robots, evaluated during supervised trials in

different dementia care environments. The findings revealed that the proto-

type had an important role in the social care of people with dementia and

motivate to evaluate the prototype in other contexts.

8.2 Future Work

This thesis concludes with a discussion on possible lines of future work, some of

which are underway at the time of this writing.

Facing other Contexts. Although trials in different healthcare settings confirm

the validity of the approach, large part of the future activities shall be put in ana-

lyzing, adapting, deploying and evaluating the overall framework for other scenarios

different from the healthcare context (e.g. education or entertainment). New mod-

eling requirements for the architecture (e.g. new components to be integrated) and

for the ontology network (e.g. new modules to be designed) could emerge from new

scenarios. Novel information shall be possibly integrated within the knowledge base

for supporting robot’s activities in the new scenarios. Moreover, new contexts will

provide the opportunity to assess feasibility and benefits of the architecture which

could be assessed with techniques overviewed in [18].

Pattern-based Interaction with Knowledge Base. Lizard, like other tools for

programmatically accessing knowledge bases, enables a triple-based interaction with

triple stores, i.e. generated Java methods deal with a single triple at time. Instead,

a valuable direction for improving the usability of the API and the interaction with

the knowledge base could be enabling a pattern-based interaction. For example,

Chapter 8. Conclusion and Future Work 195

static methods could be generated by Lizard to instantiate an ontology pattern

by invoking a single method. In this direction, ontology modularization research

field [54, 55, 189] could provide Lizard with techniques to identify patterns in input

ontologies.

Extending Framester. Ongoing work is about integrating and linking Framester’s

linguistic information with other kinds of knowledge, so to provide robots with

a richer human-like knowledge base. The following types of knowledge could be

valuable for the robot activities: procedural knowledge (e.g [160]), physical know-

ledge (e.g. [78]), and open-domain common sense knowledge (such that produced

in projects like ConceptNet [196] and NELL [148]). Another line of research is

on improving linguistic coverage of Framester’s frames in cataloging and describing

situations. Methods like [176, 163] could be used to extend the lexical units associ-

ated with frames, but the main lack of FrameNet-based datasets is the scarcity of

semantic roles and semantic types associated with frames. A possible solution could

be analyzing statistical correlation (by using tools such as sense embedding [42, 41])

between occurrence of frames and ontology classes within a corpus. We hypothesize

that classes statistically correlated with a frame f are the semantic types involved

in situations described by f. Further work (e.g. involving crowdsourcing techniques)

is needed to determine semantic roles that entities of the discovered semantic types

play in situations described by f.

Frame-based Ontology Alignment. In this thesis we introduced a novel ap-

proach for ontology matching. This method exploits the frame semantics as cog-

nitive model for representing the intensional meaning of ontology entities. The

frame-based representation enabled finding correspondences between ontology en-

tities abstracting from their logical type thus leading a step ahead the state of the

art of ontology matching. The proposed approach is being implemented and evalu-

ated. We are evaluating the resulting alignments in a both direct and indirect way.

The benchmarks used for assessing ontology matching systems are mostly unable

196 Chapter 8. Conclusion and Future Work

to evaluate the capability of finding correspondences among ontology entities with

different logical types. In order to accomplish this purpose we are extending the ex-

isting benchmarks for ontology matching. An example in this direction is [214]. On

the other hand, we are using the proposed approach in a question answering system

for selecting relevant resources answering a given question. The frame occurrences in

a question together with the frame-ontology alignment help in formulate the query

over the linked data, hence identifying resources that answer the given question.

Common Sense Knowledge. This thesis reports a set of experiments for assess-

ing whether the Web, and in particular Linked Open Data, provides an empirical

basis to extract foundational distinctions, and if they match common sense. For

testing the former, we adopt and compare two approaches, namely alignment-based

methods and machine learning methods. For the latter we use crowdsourcing and

compare the judgements of the crowd with those of experts’. For both questions we

observe promising results and define a method that can be generalised to investig-

ate additional distinctions. We plan experiments on other foundational distinctions

(e.g. types of locations, objects that can serve as locations or containers, etc.) and

with additional methods. In this direction methods proposed in this thesis could

be combined with approaches in [23, 106] to extract relational common sense know-

ledge. The good precision of alignment-based methods (∼90% for both classifica-

tions) allows to hypothesize that SENECA output could provide valuable examples

for training Machine Learning methods. Our ultimate goal is to advance the state

of the art of AI tasks requiring common sense reasoning by designing a methodolo-

gical framework that enables mass-production of common sense knowledge, and its

injection into LOD. To this end effort should be payed on knowledge representation

languages and (meta-)models to encode common sense. Challenges for knowledge

representation filed come from the need of having suitable languages and models

for encoding: (i) agreement on, (ii) evidence of, and (iii) validity of common sense

facts. This information is essential for autonomous agents to take decision. Agree-

ment (i.e. the number of people that agree with a stated fact) and evidence (i.e.

Chapter 8. Conclusion and Future Work 197

other facts that support a given fact) of facts guarantee the trustworthiness of data

and the reliability of its decisions. The validity (i.e. where and when a fact is true)

guarantees the suitability of context in which the fact is used. Validity and evidence

together could enable an agent to assess: if a certain fact apply for the context at

a hand, and the degree of similarity between a situation an agent should face and

other situations where the fact has proven to be true. Future work shall focus on

investigating to what extent available languages and models are suitable to these

purposes.

Deeper Evaluation. Various contributions of this thesis need of a deeper evalu-

ation. Robotic applications developed in the case study provided a feedback on the

MARIO Ontology Network but more evidences could be gathered to assess the valid-

ity of proposed design solutions. As well the methodology developed for designing

the MARIO Ontology Network needs of a larger scale evaluation with experts. Con-

cerning Framester, a methodology (hopefully based on crowdsourcing techniques) is

needed to assess the linking structure of the resource. We also plan to assess the

usability of ontology API generated by Lizard. Experiments shall be performed with

application developers both having experience or not with Semantic Web technolo-

gies. A possible test could be asking developers to interact with a knowledge base

with and without the support of Lizard, and then evaluating limits and benefits

with a survey.

198 Chapter 8. Conclusion and Future Work

Appendix A

Code Generated by Lizard

The complete project generated by Lizard for the ontology Person1 is available on

line at2.

A.1 Interface

1 public stat ic Action get (S t r ing entityURI) {
2 Action e n t i t y = null ;

3 Model model = RuntimeJenaLizardContext . getContext () . getModel () ;

4 i f (model . conta in s (

5 ModelFactory . createDefau l tMode l () . c reateResource (entityURI) ,

6 RDF. type ,

7 ModelFactory . createDefau l tMode l ()

8 . c reateResource (

9 “ http : //www. on t o l o g yd e s i gnpa t t e rn s . org /ont /mario/ ac t i on . owl#Action”

10))) {
11

12 e n t i t y = new ActionJena (

13 ModelFactory . createDefau l tMode l ()

14 . c reateResource (entityURI)) ;

15

16 }

1http://ontologydesignpatterns.org/ont/mario/person.owl
2http://etna.istc.cnr.it/mario/lizard/person ont.zip

http://ontologydesignpatterns.org/ont/mario/person.owl
http://etna.istc.cnr.it/mario/lizard/person_ont.zip

200 Appendix A. Code Generated by Lizard

17 return e n t i t y ;

18 }

Frame A.1: The Java code implementing the static method get(String entityURI).

1 public stat ic Set<Action> getByAction byAgent () {
2 Set<Action> r e t = new HashSet<Action >() ;

3 Property p r e d i c a t e = ModelFactory . createDefau l tMode l ()

4 . c r ea teProper ty (ACTION BY AGENT) ;

5 Model model = RuntimeJenaLizardContext . getContext () . getModel () ;

6 StmtI t e ra to r stmtItTemp = model . l i s t S t a t e m e n t s (

7 null , p red i ca te , ((RDFNode) null)) ;

8 Model tempModel = ModelFactory . createDefau l tMode l () . add (stmtItTemp) ;

9 StmtI t e ra to r s tmtIt = tempModel . l i s t S t a t e m e n t s () ;

10 while (s tmtIt . hasNext ()) {
11 Statement stmt = stmtIt . next () ;

12 Resource subj = stmt . ge tSub jec t () ;

13 Action i n d i v i d u a l = new ActionJena (subj) ;

14 r e t . add (i n d i v i d u a l) ;

15 }
16 return r e t ;

17 }

Frame A.2: The Java code implementing the method getByAction byAgent().

1 public stat ic Set<Action> getByAction byAgent (L i z a r d I n t e r f a c e va lue) {
2 Set<Action> r e t = new HashSet<Action >() ;

3 Property p r e d i c a t e = ModelFactory . createDefau l tMode l ()

4 . c r ea teProper ty (ACTION BY AGENT) ;

5 Model model = RuntimeJenaLizardContext . getContext () . getModel () ;

6 StmtI t e ra to r stmtItTemp =

7 model . l i s t S t a t e m e n t s (null , p red i ca te , va lue . g e t I n d i v i d u a l ()) ;

8 Model tempModel = ModelFactory . createDefau l tMode l () . add (stmtItTemp) ;

9 StmtI t e ra to r s tmtIt = tempModel . l i s t S t a t e m e n t s () ;

10 while (s tmtIt . hasNext ()) {
11 Statement stmt = stmtIt . next () ;

12 Resource subj = stmt . ge tSub jec t () ;

13 Action i n d i v i d u a l = new ActionJena (subj) ;

Appendix A. Code Generated by Lizard 201

14 r e t . add (i n d i v i d u a l) ;

15 }
16 return r e t ;

17 }

Frame A.3: The Java code implementing the method getByAc-

tion byAgent(LizardInterface value).

A.2 Jena Class

1 public ActionJena (St r ing i n d i v i d u a l) {
2 super (

3 ModelFactory . createDefau l tMode l () . c reateResource (i n d i v i d u a l) ,

4 ModelFactory . createOntologyModel ()

5 . createOntResource (

6 “ http : //www. on t o l o g yd e s i gnpa t t e rn s . org /ont /mario/ ac t i on . owl#Action ”)) ;

7

8 Model model = RuntimeJenaLizardContext . getContext () . getModel () ;

9

10 model . add (

11 ((Resource) super . i n d i v i d u a l) ,

12 RDF. type ,

13 ModelFactory . createOntologyModel ()

14 . createOntResource (

15 “ http : //www. on t o l o g yd e s i gnpa t t e rn s . org /ont /mario/ ac t i on . owl#Action ”)) ;

16

17 }

Frame A.4: The constructor of the class Action ActionJena.

1 public Set<Agent> getAction byAgent () {
2 Set<Agent> retValue = new HashSet<Agent >() ;

3 Property p r e d i c a t e =

4 ModelFactory . createDefau l tMode l ()

5 . c r ea teProper ty (

6 “ http : //www. on t o l o g yd e s i gnpa t t e rn s . org /ont /mario/ ac t i on . owl#byAgent ”) ;

202 Appendix A. Code Generated by Lizard

7 Model model = RuntimeJenaLizardContext . getContext () . getModel () ;

8 StmtI te ra to r stmtItTemp = model . l i s t S t a t e m e n t s (

9 ((Resource) super . i n d i v i d u a l) ,

10 pred i cate ,

11 ((RDFNode) null)) ;

12 Model tempModel = ModelFactory . createDefau l tMode l () . add (stmtItTemp) ;

13 StmtI te ra to r s tmtIt = tempModel . l i s t S t a t e m e n t s () ;

14 while (s tmtIt . hasNext ()) {
15 Statement stmt = stmtIt . next () ;

16 RDFNode ob j e c t = stmt . getObject () ;

17 Agent obj = new AgentJena (ob j e c t) ;

18 retValue . add (obj) ;

19 }
20 return retValue ;

21 }

Frame A.5: The method getAction byAgent() as implemented by the class Ac-

tion ActionJena.

1 public void setAct ion byAgent (Set<Agent> agent) {
2 Property p r e d i c a t e =

3 ModelFactory . createDefau l tMode l ()

4 . c r ea teProper ty (

5 “ http : //www. on t o l o g yd e s i gnpa t t e rn s . org /ont /mario/ ac t i on . owl#byAgent ”) ;

6 Model model = RuntimeJenaLizardContext . getContext () . getModel () ;

7 removeAllAction byAgent (getAction byAgent ()) ;

8 for (Agent ob j e c t : agent) {
9 model . add (((Resource) super . i n d i v i d u a l) , p red i ca te ,

10 ob j e c t . g e t I n d i v i d u a l ()) ;

11 }
12 }

Frame A.6: The method setAction byAgent(Set<Agent> agents) as implemented

by the class Action ActionJena.

1 public void addAllAction byAgent (Set<Agent> agent) {
2 Property p r e d i c a t e =

Appendix A. Code Generated by Lizard 203

3 ModelFactory . createDefau l tMode l ()

4 . c r ea teProper ty (

5 “ http : //www. on t o l o g yd e s i gnpa t t e rn s . org /ont /mario/ ac t i on . owl#byAgent ”) ;

6 Model model = RuntimeJenaLizardContext . getContext () . getModel () ;

7 for (Agent ob j e c t : agent) {
8 model . add (((Resource) super . i n d i v i d u a l) , p red i ca te ,

9 ob j e c t . g e t I n d i v i d u a l ()) ;

10 }
11 }

Frame A.7: The method addAllAction byAgent(Set<Agent> agents) as imple-

mented by the class Action ActionJena.

1 public void removeAllAction byAgent (Set<Agent> agent) {
2 Property p r e d i c a t e = ModelFactory . createDefau l tMode l ()

3 . c r ea teProper ty (

4 “ http : //www. on t o l o g yd e s i gnpa t t e rn s . org /ont /mario/ ac t i on . owl#byAgent ”) ;

5 Model model = RuntimeJenaLizardContext . getContext () . getModel () ;

6 for (Agent ob j e c t : agent) {
7 model . remove (((Resource) super . i n d i v i d u a l) , p red i ca te ,

8 ob j e c t . g e t I n d i v i d u a l ()) ;

9 }
10 }

Frame A.8: The method removeAllAction byAgent(Set<Agent> agents) as im-

plemented by the class Action ActionJena.

1 public ActionBean asBean () {
2 Model model =

3 RuntimeJenaLizardContext . getContext () . getModel () ;

4 Query query = QueryFactory . c r e a t e ((

5 “DESCRIBE <”+(super . i n d i v i d u a l . asResource () . getURI()+“ >”))) ;

6 QueryExecution qexec =

7 RuntimeJenaLizardContext . getContext ()

8 . createQueryExecut ion (query , model) ;

9 Model m = qexec . execDescr ibe () ;

10 ActionBean act ionJena = new ActionBean () ;

204 Appendix A. Code Generated by Lizard

11 act ionJena . s e t I d (super . i n d i v i d u a l . asResource () . getURI ()) ;

12 act ionJena . setIsCompleted (true) ;

13 act ionJena . se tSpa hasPlace (this . getSpa hasPlace (m, fa l se)) ;

14 act ionJena . s e tAct ion execute sTask (

15 this . ge tAct ion executesTask (m, fa l se)) ;

16 act ionJena . setAction byAgent (this . getAction byAgent (m, fa l se)) ;

17 act ionJena . setTime atTime (this . getTime atTime (m, fa l se)) ;

18 act ionJena . s e t A c t i o n h a s P a r t i c i p a n t (

19 this . g e tAc t i on hasPar t i c i pant (m, fa l se)) ;

20 return act ionJena ;

21 }

Frame A.9: The method asBean() as implemented by the class Action ActionJena.

1 public ActionBean asMicroBean () {
2 Model model = RuntimeJenaLizardContext . getContext () . getModel () ;

3 Query query = QueryFactory . c r e a t e (

4 (”DESCRIBE <”+(super . i n d i v i d u a l . asResource () . getURI ()+” >”)));

5 QueryExecution qexec = RuntimeJenaLizardContext . getContext ()

6 . createQueryExecut ion (query , model) ;

7 Model m = qexec . execDescr ibe () ;

8 ActionBean act ionJena = new ActionBean () ;

9 act ionJena . s e t I d (super . i n d i v i d u a l . asResource () . getURI ()) ;

10 act ionJena . setIsCompleted (true) ;

11 act ionJena . se tSpa hasPlace (this . getSpa hasPlace (m, true)) ;

12 act ionJena . s e tAct ion execute sTask (

13 this . ge tAct ion executesTask (m, true)) ;

14 act ionJena . setAction byAgent (this . getAction byAgent (m, true)) ;

15 act ionJena . setTime atTime (this . getTime atTime (m, true)) ;

16 act ionJena . s e t A c t i o n h a s P a r t i c i p a n t (

17 this . g e tAc t i on hasPar t i c i pant (m, true)) ;

18 return act ionJena ;

19 }

Frame A.10: The method asMicroBean() as implemented by the class Ac-

tion ActionJena.

Appendix A. Code Generated by Lizard 205

1 private Set<Agent>

2 getAction byAgent (Model model , Boolean isForMicroBean) {
3 Set<Agent> retValue = new HashSet<Agent >() ;

4 Property p r e d i c a t e =

5 ModelFactory . createDefau l tMode l ()

6 . c r ea teProper ty (

7 “ http : //www. on t o l o g yd e s i gnpa t t e rn s . org /ont /mario/ ac t i on . owl#byAgent ”) ;

8 StmtI te ra to r s tmtIt = model . l i s t S t a t e m e n t s (

9 ((Resource) super . i n d i v i d u a l) , p red i ca te , ((RDFNode) null)) ;

10 while (s tmtIt . hasNext ()) {
11 Statement stmt = stmtIt . next () ;

12 RDFNode ob j e c t = stmt . getObject () ;

13 Agent obj = null ;

14 i f (isForMicroBean) {
15 obj = new AgentBean (ob j e c t) ;

16 obj . s e t I d (ob j e c t . asResource () . getURI ()) ;

17 obj . setIsCompleted (fa l se) ;

18 } else {
19 obj = new AgentJena (ob j e c t) ;

20 }
21 retValue . add (obj) ;

22 }
23 return retValue ;

24 }

Frame A.11: The private service method getAction byAgent of the class Ac-

tion ActionJena.

A.3 Bean Class

1 public class ActionBean extends InMemoryLizardClass

2 implements Action , Thing {
3

4 private St r ing id ;

5 private Boolean isCompleted ;

206 Appendix A. Code Generated by Lizard

6 private Set<Spatia lThing> spa hasPlace ;

7 private Set<TemporalEntity> time atTime ;

8 private Set<Agent> act ion byAgent ;

9 private Set<Task> ac t i on execute sTask ;

10 private Set<Agent> a c t i o n h a s P a r t i c i p a n t ;

11

12 public ActionBean () {
13 spa hasPlace = new HashSet<Spatia lThing >() ;

14 ac t i on execute sTask = new HashSet<Task >() ;

15 act ion byAgent = new HashSet<Agent >() ;

16 time atTime = new HashSet<TemporalEntity >() ;

17 a c t i o n h a s P a r t i c i p a n t = new HashSet<Agent >() ;

18 }
19

20 @Override

21 public void removeAllAction byAgent (Set<Agent> agent) {
22 act ion byAgent . removeAll (agent) ;

23 }
24 @Override

25 public void setAct ion byAgent (Set<Agent> agent) {
26 act ion byAgent = agent ;

27 }
28 @Override

29 public Set<Agent> getAction byAgent () {
30 return act ion byAgent ;

31 }
32 @Override

33 public void addAllAction byAgent (Set<Agent> agent) {
34 act ion byAgent . addAll (agent) ;

35 }
36

37 }

Frame A.12: An excerpt of the Bean Class for action:Action.

Appendix A. Code Generated by Lizard 207

A.4 REST API Description

1 {
2 “basePath ” : “/ o r g o n t o l o g y d e s i g n p a t t e r n s o n t m a r i o a c t i o n o w l ” ,

3 “ paths ” : {
4 “/ a c t i o n a c t i o n ” : {
5 “ get ” : {
6 “summary ” : “ Ret r i eve i n d i v i d u a l s that belong to ac t i on ” ,

7

8 }} ,

9 “/ a c t i o n a c t i o n / act ion byAgent ” : {
10 “ post ” : {
11 “summary ” : “Add the value to the act ion byAgent o f the ob j e c t

12 i d e n t i f i e d by the i r i passed as parameter . ” ,

13

14 “ parameters ” : [

15 {
16 “ in ” : “ query ” ,

17 “name ” : “ i r i ” ,

18 “ d e s c r i p t i o n ” : “ i r i ” ,

19 “ type ” : “ s t r i n g ” ,

20 “ r equ i r ed ” : true

21 } ,{
22 “ in ” : “ query ” ,

23 “name ” : “ value ” ,

24 “ d e s c r i p t i o n ” : “ value to be s e t ” ,

25 “ type ” : “ s t r i n g ” ,

26 “ r equ i r ed ” : true }]

27 } ,

28 “ get ” : {
29 “summary ” : “Get the act ion byAgent o f the i n d i v i d u a l i d e n t i f i e d

30 by the i r i passed as parameter . ” ,

31 “ re sponse s ” : {
32 “ 200” : {
33 “schema ” : {
34 “ type ” : “ array ” ,

208 Appendix A. Code Generated by Lizard

35 “ items ” : {“ $ r e f ” : “#/d e f i n i t i o n s /Agent”}
36 } ,

37 “ d e s c r i p t i o n ” : “ s u c c e s s f u l opera t i on ”

38 } ,

39 “ 404” : {“ d e s c r i p t i o n ” : “Not found ”}
40 } ,

41 . . .

42 } ,

43 “ d e l e t e ” : {
44 “summary ” : “Remove the value from the act ion byAgent o f the

45 ob j e c t i d e n t i f i e d by the the i r i passed as parameter . ” ,

46

47 } ,

48 “put ” : {
49 “summary ” : “ Set the value as the act ion byAgent o f the ob j e c t

50 i d e n t i f i e d by the the i r i passed as parameter . ” ,

51 . . .

52 }
53 } ,

54 “/ a c t i o n a c t i o n / having / act ion byAgent ” : {
55

56 } ,

57 “/ a c t i o n a c t i o n / ac t i on execute sTask ” : {
58 . . .

59 } ,

60 “/ a c t i o n a c t i o n / having / ac t i on execute sTask ” : {
61 . . .

62 } ,

63 “/ a c t i o n t a s k ” : {
64

65 }
66 “ d e f i n i t i o n s ” : {
67 “ Action ” : {
68 “ p r o p e r t i e s ” : {
69 “ act ion byAgent ” : {
70 “ uniqueItems ” : true ,

Appendix A. Code Generated by Lizard 209

71 ” type ” : “ array ” ,

72 “ items ” : {“ $ r e f ” : “#/d e f i n i t i o n s /Agent”}
73 } ,

74 “ time atTime ” : { . . . } ,

75 “ ac t i on execute sTask ” : { . . . } ,

76 }}
77 . . .

78 }}
79

80 }}

Frame A.13: An excerpt of the REST API description (in Swagger language) for

Action ontology module of the Mario Ontology Network.

210 Appendix A. Code Generated by Lizard

Bibliography

[1] Eneko Agirre and Aitor Soroa. “Personalizing PageRank for Word Sense Dis-

ambiguation”. In: Proceedings of the 12th conference of the European chapter

of the Association for Computational Linguistics (EACL 2009). (Athens,

Greece). Edited by Alex Lascarides, Claire Gardent and Joakim Nivre. The

Association for Computer Linguistics, 2009, pages 33–41.

[2] Jose M. Alcaraz Calero, Jorge Bernal Bernabé, Juan M. Marin Perez, Diego

Sevilla Ruiz, Felix J. Garcia Clemente and Gregorio Mart́ınez Pérez. “To-

wards an Architecture to bind the Java and OWL languages”. In: Journal of

Research and Practice in Information Technology 44.1 (2012), pages 17–41.

[3] George S. Alexopoulos, Robert C. Abrams, Robert C. Young and Charles A.

Shamoian. “Cornell scale for depression in dementia”. In: Biological psychi-

atry 23.3 (1988), pages 271–284.

[4] Carlo Allocca, Mathieu d’Aquin and Enrico Motta. “DOOR - Towards a

Formalization of Ontology Relations”. In: Proceedings of the International

Conference on Knowledge Engineering and Ontology Development (KEOD

2009). (Funchal - Madeira, Portugal). Edited by Jan L. G. Dietz. 2009,

pages 13–20.

[5] Ronald C. Arkin. Behavior-based robotics. MIT press, 1998.

[6] Lora Aroyo and Chris Welty. “Truth Is a Lie: Crowd Truth and the Seven

Myths of Human Annotation”. In: AI Magazine 36.1 (2015), pages 15–24.

212 BIBLIOGRAPHY

[7] Luigi Asprino. “Addressing Knowledge Integration with a Frame-Driven Ap-

proach”. In: Proceedings of the 20th International Conference on Knowledge

Engineering and Knowledge Management and Satellite Events, EKM and

Drift-a-LOD (EKAW 2016). (Bologna, Italy). Edited by Paolo Ciancarini,

Francesco Poggi, Matthew Horridge, Jun Zhao, Tudor Groza, Mari Carmen

Suarez-Figueroa, Mathieu d’Aquin and Valentina Presutti. Springer Interna-

tional Publishing, 2016, pages 205–210. doi: 10.1007/978-3-319-58694-6 32.

[8] Luigi Asprino, Valerio Basile, Paolo Ciancarini and Valentina Presutti. “Em-

pirical Analysis of Foundational Distinctions in Linked Open Data”. In: Pro-

ceedings of the 27th International Joint Conference on Artificial Intelligence

and the 23rd European Conference on Artificial Intelligence (IJCAI-ECAI

18). Edited by Jérôme Lang. International Joint Conferences on Artificial

Intelligence, 2018, pages 3962–3969. doi: 10.24963/ijcai.2018/551.

[9] Luigi Asprino, Aldo Gangemi, Andrea Giovanni Nuzzolese, Valentina Pre-

sutti, Diego Reforgiato Recupero and Alessandro Russo. “Autonomous Com-

prehensive Geriatric Assessment”. In: Proceedings of the 1st International

Workshop on Application of Semantic Web technologies in Robotics co-located

with 14th ESWC (ANSWER 2017). (Portroz, Slovenia). Edited by Emanuele

Bastianelli, Mathieu d’Aquin and Daniele Nardi. 2017, pages 41–45.

[10] Luigi Asprino, Aldo Gangemi, Andrea Giovanni Nuzzolese, Valentina Pre-

sutti and Alessandro Russo. “A Knowledge Management System for Assistive

Robotics”. In: Proceedings of the 1st International Workshop on Application

of Semantic Web technologies in Robotics co-located with 14th ESWC (AN-

SWER 2017). (Portroz, Slovenia). Edited by Emanuele Bastianelli, Mathieu

d’Aquin and Daniele Nardi. 2017, pages 46–50.

[11] Luigi Asprino, Aldo Gangemi, Andrea Giovanni Nuzzolese, Valentina Pre-

sutti and Alessandro Russo. “Knowledge-driven Support for Reminiscence

on Companion Robots”. In: Proceedings of the 1st International Workshop

on Application of Semantic Web technologies in Robotics co-located with 14th

https://doi.org/10.1007/978-3-319-58694-6_32
https://doi.org/10.24963/ijcai.2018/551

BIBLIOGRAPHY 213

ESWC (ANSWER 2017). (Portroz, Slovenia). Edited by Emanuele Bastian-

elli, Mathieu d’Aquin and Daniele Nardi. 2017, pages 51–55.

[12] Luigi Asprino, Andrea Giovanni Nuzzolese, Aldo Gangemi, Valentina Pre-

sutti, Diego Reforgiato Recupero and Alessandro Russo. “Ontology-based

Knowledge Management for Comprehensive Geriatric Assessment and Re-

miniscence Therapy on Social Robots”. In: Data Science for Healthcare:

Methodologies and Applications. Edited by Sergio Consoli, Diego Reforgiato

Recupero and Milan Petkovic. Springer, 2018, (to appear).

[13] Luigi Asprino, Andrea Giovanni Nuzzolese, Alessandro Russo, Aldo Gangemi,

Valentina Presutti and Stefano Nolfi. “An Ontology Design Pattern for sup-

porting behaviour arbitration in cognitive agents”. In: Advances in Onto-

logy Design and Patterns. Edited by Karl Hammar, Pascal Hitzler, Adila

Krisnadhi, Agnieszka Lawrynowicz, Andrea Giovanni Nuzzolese and Monika

Solanki. IOS Press, 2017, pages 85–95.

[14] Luigi Asprino, Valentina Presutti and Aldo Gangemi. “Matching Ontolo-

gies Using a Frame-Driven Approach”. In: Proceedings of the 20th Inter-

national Conference on Knowledge Engineering and Knowledge Management

and Satellite Events, EKM and Drift-a-LOD (EKAW 2016). (Bologna, Italy).

Edited by Paolo Ciancarini, Francesco Poggi, Matthew Horridge, Jun Zhao,

Tudor Groza, Mari Carmen Suarez-Figueroa, Mathieu d’Aquin and Valentina

Presutti. Springer International Publishing, 2016, pages 101–104. doi: 10.

1007/978-3-319-58694-6 9.

[15] Luigi Asprino, Valentina Presutti, Aldo Gangemi and Paolo Ciancarini. “Frame-

Based Ontology Alignment”. In: Proceedings of the 31st AAAI Conference on

Artificial Intelligence and the Twenty-Ninth Innovative Applications of Arti-

ficial Intelligence Conference (AAAI 2017). (San Francisco, California USA).

Edited by Satinder P. Singh and Shaul Markovitch. AAAI Press, Palo Alto,

California, 2017, pages 4095–4096.

https://doi.org/10.1007/978-3-319-58694-6_9
https://doi.org/10.1007/978-3-319-58694-6_9

214 BIBLIOGRAPHY

[16] Mark van Assem, Aldo Gangemi and Guus Schreiber. “Conversion of Word-

Net to a standard RDF/OWL representation”. In: Proceedings of the 5th

International Conference on Language Resources and Evaluation, (LREC

2006). Edited by Nicoletta Calzolari, Khalid Choukri, Aldo Gangemi, Bente

Maegaard, Joseph Mariani, Jan Odijk and Daniel Tapias. 2006, pages 237–

242.

[17] Franz Baader, Ian Horrocks and Ulrike Sattler. “Description Logics”. In:

edited by Frank van Harmelen, Vladimir Lifschitz and Bruce W. Porter.

Volume 3. Foundations of Artificial Intelligence. Elsevier, 2008, pages 135–

179. isbn: 978-0-444-52211-5. doi: 10.1016/S1574-6526(07)03003-9.

[18] Muhammad Ali Babar and Ian Gorton. “Comparison of Scenario-Based Soft-

ware Architecture Evaluation Methods”. In: Proceedings of the 11th Asia-

Pacific Software Engineering Conference (APSEC 2004). 2004, pages 600–

607. doi: 10.1109/APSEC.2004.38.

[19] Collin F. Baker, Charles J. Fillmore and John B. Lowe. “The Berkeley Frame-

Net Project”. In: 36th Annual Meeting of the Association for Computational

Linguistics and 17th International Conference on Computational Linguist-

ics (COLING-ACL 1998). (Montréal, Quebec, Canada). Edited by Chris-

tian Boitet and Pete Whitelock. Morgan Kaufmann Publishers / ACL, 1998,

pages 86–90.

[20] Antonio Bandera, Juan Pedro Bandera, Pablo Bustos, Luis V. Calderita,

Álvaro Dueñas, Fernando Fernández, Raquel Fuentetaja, Angel Garćıa-Olaya,

Francisco Javier Garćıa-Polo, Jose Carlos González, Ana Iglesias, Luis J.

Manso, Rebeca Marfil, José Carlos Pulido, Christian Reuther, Adrián Romero-

Garcés and Cristina Suárez. “CLARC: a Robotic Architecture for Compre-

hensive Geriatric Assessment”. In: 17th Workshop of Physical Agents (WAF

2016). 2016, pages 1–8.

[21] Christoph Bartneck and Jodi Forlizzi. “A design-centred framework for social

human-robot interaction”. In: Proceedings of the 13th IEEE International

https://doi.org/10.1016/S1574-6526(07)03003-9
https://doi.org/10.1109/APSEC.2004.38

BIBLIOGRAPHY 215

Workshop on Robot and Human Interactive Communication (ROMAN 2004).

IEEE. 2004, pages 591–594.

[22] Valerio Basile, Elena Cabrio and Claudia Schon. “KNEWS: Using Logical and

Lexical Semantics to Extract Knowledge from Natural Language”. In: Pro-

ceedings of the European Conference on Artificial Intelligence (ECAI 2016).

2016.

[23] Valerio Basile, Soufian Jebbara, Elena Cabrio and Philipp Cimiano. “Pop-

ulating a Knowledge Base with Object-Location Relations Using Distribu-

tional Semantics”. In: Proceedings of the 20th International Conference on

Knowledge Engineering and Knowledge Management (EKAW 2016). (Bo-

logna, Italy). Edited by Eva Blomqvist, Paolo Ciancarini, Francesco Poggi

and Fabio Vitali. Springer International Publishing, 2016, pages 34–50. doi:

10.1007/978-3-319-49004-5 3.

[24] Emanuele Bastianelli, Mathieu d’Aquin and Daniele Nardi, editors. Proceed-

ings of the 1st International Workshop on Application of Semantic Web tech-

nologies in Robotics co-located with 14th ESWC (ANSWER 2017). (Portroz,

Slovenia). 2017.

[25] Bénédicte Batrancourt, Michel Dojat, Bernard Gibaud and Gilles Kassel. “A

core ontology of instruments used for neurological, behavioral and cognitive

assessments”. In: Proceedings of the 6th International Conference on Formal

Ontology in Information Systems (FOIS 2010). (Toronto, Canada). 2010,

pages 185–198.

[26] Wouter Beek, Laurens Rietveld, Stefan Schlobach and Frank van Harmelen.

“LOD Laundromat: Why the Semantic Web Needs Centralization (Even If

We Don’t Like It)”. In: IEEE Internet Computing 20.2 (2016), pages 78–81.

doi: 10.1109/MIC.2016.43.

[27] Roger Bemelmans, Gert Jan Gelderblom, Pieter Jonker and Luc de Witte.

“Socially Assistive Robots in Elderly Care: A Systematic Review into Effects

https://doi.org/10.1007/978-3-319-49004-5_3
https://doi.org/10.1109/MIC.2016.43

216 BIBLIOGRAPHY

and Effectiveness”. In: Journal of the American Medical Directors Association

13.2 (2012), pages 114–120. doi: 10.1016/j.jamda.2010.10.002.

[28] Tim Berners-Lee, James Hendler and Ora Lassila. “The semantic web”. In:

Scientific american 284.5 (2001), pages 34–43.

[29] David L. Bisset. D1.1 MARIO System Specification for Pilot 1. 2015. url:

http://www.mario-project.eu/portal/images/deliverables/D1.1-MARIO-

System-Specification-for-Pilot%201.pdf.

[30] Christian Bizer. “D2R MAP - A Database to RDF Mapping Language”. In:

Proceedings of the 12th International World Wide Web Conference (WWW

2003) - Poster. (Budapest, Hungary). Edited by Irwin King and Tamás

Máray. 2003.

[31] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian

Becker, Richard Cyganiak and Sebastian Hellmann. “DBpedia - A crystalliz-

ation point for the Web of Data”. In: International Journal of Web Semantics

7.3 (2009), pages 154–165. doi: 10.1016/j.websem.2009.07.002.

[32] Mary R. Bliss, Rhoda McLaren and Arthur N. Exton-Smith. “Mattresses

for preventing pressure sores in geriatric patients”. In: Monthly bulletin of

the Ministry of Health and the Public Health Laboratory Service 25 (1966),

pages 238–268.

[33] Eva Blomqvist, Valentina Presutti, Enrico Daga and Aldo Gangemi. “Ex-

perimenting with eXtreme Design”. In: Proceedings of the 17th International

Conference on Knowledge Engineering and Management by the Masses (EKAW

2010). (Lisbon, Portugal). Edited by Philipp Cimiano and Helena Sofia Pinto.

Volume 6317. Lecture Notes in Computer Science. Springer, 2010, pages 120–

134. doi: 10.1007/978-3-642-16438-5\ 9.

[34] Olivier Bodenreider. “The unified medical language system (UMLS): integ-

rating biomedical terminology”. In: Nucleic acids research 32.suppl 1 (2004),

pages 267–270.

https://doi.org/10.1016/j.jamda.2010.10.002
http://www.mario-project.eu/portal/images/deliverables/D1.1-MARIO-System-Specification-for-Pilot%201.pdf
http://www.mario-project.eu/portal/images/deliverables/D1.1-MARIO-System-Specification-for-Pilot%201.pdf
https://doi.org/10.1016/j.websem.2009.07.002
https://doi.org/10.1007/978-3-642-16438-5_9

BIBLIOGRAPHY 217

[35] Matt-Mouley Bouamrane, Alan Rector and Martin Hurrell. “Gathering Pre-

cise Patient Medical History with an Ontology-Driven Adaptive Question-

naire”. In: Proceedings of 21st IEEE International Symposium on Computer-

Based Medical Systems. 2008, pages 539–541. doi: 10.1109/CBMS.2008.24.

[36] Matt-Mouley Bouamrane, Alan Rector and Martin Hurrell. “Development of

an ontology for a preoperative risk assessment clinical decision support sys-

tem”. In: Proceedings of 22nd IEEE International Symposium on Computer-

Based Medical Systems. 2009, pages 1–6.

[37] Cynthia Breazeal. “Toward sociable robots”. In: Robotics and Autonomous

Systems 42.3 (2003), pages 167–175. issn: 0921-8890. doi: 10.1016/S0921-

8890(02)00373-1.

[38] Cynthia Lynn Breazeal. “Sociable machines: Expressive social exchange between

humans and robots”. PhD thesis. Massachusetts Institute of Technology,

2000.

[39] Joost Broekens, Marcel Heerink and Henk Rosendal. “Assistive social robots

in elderly care: a review”. In: Gerontechnology 8.2 (2009), pages 94–103.

[40] Jeen Broekstra, Arjohn Kampman and Frank Van Harmelen. “Sesame: A

generic architecture for storing and querying rdf and rdf schema”. In: Pro-

ceedings of the 1st International Semantic Web Conference (ISWC 2002).

Springer, 2002, pages 54–68.

[41] José Camacho-Collados and Mohammad Taher Pilehvar. “From Word to

Sense Embeddings: A Survey on Vector Representations of Meaning”. In:

Journal of Artificial Intelligence Research (2018), to appear.

[42] José Camacho-Collados, Mohammad Taher Pilehvar and Roberto Navigli.

“Nasari: Integrating explicit knowledge and corpus statistics for a multilin-

gual representation of concepts and entities”. In: Artificial Intelligence 240

(2016), pages 36–64. issn: 0004-3702. doi: 10.1016/j.artint.2016.07.005.

https://doi.org/10.1109/CBMS.2008.24
https://doi.org/10.1016/S0921-8890(02)00373-1
https://doi.org/10.1016/S0921-8890(02)00373-1
https://doi.org/10.1016/j.artint.2016.07.005

218 BIBLIOGRAPHY

[43] Lola Canamero and Jakob Fredslund. “I Show You How I Like You: Emo-

tional Human-Robot Interaction through Facial Expression and Tactile Stim-

ulation”. In: IEEE Transactions on Systems, Man, and Cybernetics - Part A:

Systems and Humans 31.5 (2001), pages 454–459. doi: 10.1109/3468.952719.

[44] Hoang-Long Cao, Pablo Gomez Esteban, Albert De Beir, Ramona Simut,

Greet Van De Perre and Bram Vanderborght. “A platform-independent robot

control architecture for multiple therapeutic scenarios”. In: Proceedings of

5th International Symposium on New Frontiers in Human-Robot Interaction

(NF-HRI 2016). (Sheffield, United Kingdom). Edited by Maha Salem, Astrid

Weiss, Paul Baxter and Kerstin Dautenhahn. The Association for Computer

Linguistics, 2016.

[45] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka

Jr. and Tom M. Mitchell. “Toward an Architecture for Never-Ending Lan-

guage Learning”. In: Proceedings of the 24th Conference on Artificial Intelli-

gence (AAAI 2010). (Atlanta, Georgia, USA). AAAI Press, 2010, pages 1306–

1313.

[46] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne

and Kevin Wilkinson. “Jena: implementing the semantic web recommenda-

tions”. In: Proceedings of the 13th international World Wide Web conference

(WWW 2004) - Alternate track papers & posters. 2004, pages 74–83. doi:

10.1145/1013367.1013381.

[47] Dympna Casey, Timur Beyan, Mary Kagkoura, Thomas Messervey, Andy

Bleaden, Grazia D’Onofrio and Daniele Sancarlo. D1.3 Assessment Method-

ology. EU Project Deliverable. 2015.

[48] Dympna Casey, Megan Burke, Tanja Kovacic, Keith Cortis, Kathy Murphy,

Aisling Dolan, Grazia D’Onofrio, Daniele Sancarlo, Francesco Ricciardi, Aimee

Teare, Massimiliano Raciti and Rubén Alonso. D8.3 Evidence of Service Ro-

bots Benefits. EU Project Deliverable. 2018.

https://doi.org/10.1109/3468.952719
https://doi.org/10.1145/1013367.1013381

BIBLIOGRAPHY 219

[49] Abdelghani Chibani, Yacine Amirat, Samer Mohammed, Eric Matson, Nori-

hiro Hagita and Marcos Barreto. “Ubiquitous robotics: Recent challenges

and future trends”. In: Robotics and Autonomous Systems 61.11 (2013),

pages 1162–1172. issn: 0921-8890. doi: 10.1016/j.robot.2013.04.003.

[50] Jiska Cohen-Mansfield, Maha Dakheel-Ali and Marcia S. Marx. “Engage-

ment in persons with dementia: the concept and its measurement”. In: The

American journal of geriatric psychiatry 17.4 (2009), pages 299–307.

[51] Yeates Conwell, Nicholas T. Forbes, Christopher Cox and Eric D. Caine.

“Validation of a measure of physical illness burden at autopsy: the Cumu-

lative Illness Rating Scale”. In: Journal of the American Geriatrics Society

41.1 (1993), pages 38–41.

[52] Francesco Corcoglioniti, Marco Rospocher, Alessio Palmero Aprosio and Sara

Tonelli. “PreMOn: a Lemon Extension for Exposing Predicate Models as

Linked Data”. In: Proceedings of the 10th International Conference on Lan-

guage Resources and Evaluation (LREC 2016). (Portorož, Slovenia). Ed-

ited by Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi,

Marko Grobelnik, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asunción

Moreno, Jan Odijk and Stelios Piperidis. European Language Resources As-

sociation (ELRA), 2016.

[53] Anneli Dahlström, Fredrik Heintz, Martin Jacobsson, Johan Thapper and

Martin Öberg. “The NOAI Team Description”. In: RoboCup 2000: Robot

Soccer World Cup IV. Edited by Peter Stone, Tucker R. Balch and Gerhard

K. Kraetzschmar. Volume 2019. Springer, 2000, pages 413–416. isbn: 3-540-

42185-8. doi: 10.1007/3-540-45324-5\ 49.

[54] Mathieu d’Aquin, Anne Schlicht, Heiner Stuckenschmidt and Marta Sabou.

“Ontology Modularization for Knowledge Selection: Experiments and Evalu-

ations”. In: Proceedings of the 18th International Conference on Database and

Expert Systems Applications (DEXA 2007). (Regensburg, Germany). Edited

by Roland R. Wagner, Norman Revell and Günther Pernul. Volume 4653.

https://doi.org/10.1016/j.robot.2013.04.003
https://doi.org/10.1007/3-540-45324-5_49

220 BIBLIOGRAPHY

Lecture Notes in Computer Science. Springer, 2007, pages 874–883. isbn:

978-3-540-74467-2. doi: 10.1007/978-3-540-74469-6\ 85.

[55] Mathieu d’Aquin, Anne Schlicht, Heiner Stuckenschmidt and Marta Sabou.

“Criteria and Evaluation for Ontology Modularization Techniques”. In: ed-

ited by Heiner Stuckenschmidt, Christine Parent and Stefano Spaccapietra.

Volume 5445. Lecture Notes in Computer Science. Springer, 2009, pages 67–

89. isbn: 978-3-642-01906-7. doi: 10 . 1007/978 - 3 - 642 - 01907 - 4\ 4. url:

https://doi.org/10.1007/978-3-642-01907-4.

[56] Kerstin Dautenhahn. “The art of designing socially intelligent agents: Sci-

ence, fiction, and the human in the loop”. In: Applied artificial intelligence

12.7-8 (1998), pages 573–617.

[57] Kerstin Dautenhahn, Sarah Woods, Christina Kaouri, Michael L. Walters,

Kheng Lee Koay and Iain Werry. “What is a robot companion - friend,

assistant or butler?” In: International Conference on Intelligent Robots and

Systems (IROS 2005). (Edmonton, Alberta, Canada). 2005, pages 1192–1197.

doi: 10.1109/IROS.2005.1545189.

[58] Donald Davidson. “The Logical Form of Action Sentences”. In: The Logic of

Decision and Action. Edited by Nicholas Rescher. University of Pittsburgh

Press, 1967.

[59] Ernest Davis and Gary Marcus. “Commonsense Reasoning and Common-

sense Knowledge in Artificial Intelligence”. In: Communications of the ACM

58.9 (2015), pages 92–103. issn: 0001-0782. doi: 10.1145/2701413.

[60] Giuseppe De Giacomo, Luca Iocchi, Daniele Nardi and Riccardo Rosati.

“Planning with Sensing for a Mobile Robot”. In: Proceedings of the 4th

European Conference on Planning (ECP 1997). Edited by Sam Steel and

Rachid Alami. Volume 1348. Springer, 1997, pages 156–168. isbn: 3-540-

63912-8. doi: 10.1007/3-540-63912-8\ 83.

[61] Brian R. Duffy. “The Social Robot”. PhD thesis. University College Dublin,

2000.

https://doi.org/10.1007/978-3-540-74469-6_85
https://doi.org/10.1007/978-3-642-01907-4_4
https://doi.org/10.1007/978-3-642-01907-4
https://doi.org/10.1109/IROS.2005.1545189
https://doi.org/10.1145/2701413
https://doi.org/10.1007/3-540-63912-8_83

BIBLIOGRAPHY 221

[62] Brian R. Duffy. “Anthropomorphism and the social robot”. In: Robotics

and Autonomous Systems 42.3 (2003), pages 177–190. doi: 10.1016/S0921-

8890(02)00374-3.

[63] Brian R. Duffy, Gina Joue and John Bourke. “Issues in assessing performance

of social robots”. In: Proceedings of the 2nd WSEAS International Conference

(RODLICS 2002). 2002.

[64] Brian R. Duffy, Colm Rooney, Greg MP O’Hare and Ruadhan O’Donoghue.

“What is a Social Robot?” In: Proceedings of the 10th Irish Conference on

Artificial Intelligence & Cognitive Science. 1999.

[65] Maud Ehrmann, Francesco Cecconi, Daniele Vannella, John Philip McCrae,

Philipp Cimiano and Roberto Navigli. “Representing Multilingual Data as

Linked Data: the Case of BabelNet 2.0”. In: Proceedings of the Ninth Inter-

national Conference on Language Resources and Evaluation (LREC 2014).

(Reykjavik, Iceland). Edited by Nicoletta Calzolari, Khalid Choukri, Thi-

erry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani, Asunción

Moreno, Jan Odijk and Stelios Piperidis. 2014, pages 401–408. isbn: 978-2-

9517408-8-4.

[66] European Coordination Hub for Open Robotics Development (ECHORD++).

Robotics for the Comprehensive Geriatric Assessment (CGA) Challenge. 2015.

url: http://echord.eu/portal/ProposalDocuments/download/9.

[67] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching, Second Edition. Ber-

lin, Germany: Springer, 2013. doi: 10.1007/978-3-642-38721-0.

[68] Joerg Evermann and Yair Wand. “Ontology based object-oriented domain

modelling: fundamental concepts”. In: Requirements Engineering 10.2 (2005),

pages 146–160. doi: 10.1007/s00766-004-0208-2.

[69] Georgios E. Fainekos, Antoine Girard, Hadas Kress-Gazit and George J. Pap-

pas. “Temporal logic motion planning for dynamic robots”. In: Automatica

45.2 (2009), pages 343–352. issn: 0005-1098. doi: 10.1016/j.automatica.2008.

08.008.

https://doi.org/10.1016/S0921-8890(02)00374-3
https://doi.org/10.1016/S0921-8890(02)00374-3
http://echord.eu/portal/ProposalDocuments/download/9
https://doi.org/10.1007/978-3-642-38721-0
https://doi.org/10.1007/s00766-004-0208-2
https://doi.org/10.1016/j.automatica.2008.08.008
https://doi.org/10.1016/j.automatica.2008.08.008

222 BIBLIOGRAPHY

[70] Jing Fan, Dayi Bian, Zhi Zheng, Linda Beuscher, Paul A. Newhouse, Lor-

raine C. Mion and Nilanjan Sarkar. “A Robotic Coach Architecture for

Elder Care (ROCARE) Based on Multi-User Engagement Models”. In: IEEE

Transactions on Neural Systems and Rehabilitation Engineering 25.8 (2017),

pages 1153–1163. issn: 1534-4320. doi: 10.1109/TNSRE.2016.2608791.

[71] Juan Fasola and Maja J. Matarić. “A Socially Assistive Robot Exercise Coach

for the Elderly”. In: Journal of Human-Robot Interaction 2.2 (2013), pages 3–

32. issn: 2163-0364. doi: 10.5898/JHRI.2.2.Fasola.

[72] David Feil-Seifer and Maja J. Matarić. “Socially Assistive Robotics”. In:

IEEE Robotics & Automation Magazine 18.1 (2011), pages 24–31. issn: 1070-

9932. doi: 10.1109/MRA.2010.940150.

[73] Javier D. Fernández, Wouter Beek, Miguel A. Mart́ınez-Prieto and Mario

Arias. “LOD-a-lot - A Queryable Dump of the LOD Cloud”. In: Proceedings

of the 16th International Semantic Web Conference (ISWC 2017), Part II.

(Vienna, Austria). Edited by Claudia d’Amato, Miriam Fernández, Valentina

A. M. Tamma, Freddy Lécué, Philippe Cudré-Mauroux, Juan F. Sequeda,

Christoph Lange and Jeff Heflin. Springer, 2017, pages 75–83. isbn: 978-3-

319-68203-7. doi: 10.1007/978-3-319-68204-4 7.

[74] Javier D. Fernández, Miguel A. Mart́ınez-Prieto, Claudio Gutiérrez, Axel

Polleres and Mario Arias. “Binary RDF Representation for Publication and

Exchange (HDT)”. In: International Journal of Web Semantics 19 (2013),

pages 22–41. doi: 10.1016/j.websem.2013.01.002.

[75] Charles J. Fillmore. “Frame semantics”. In: Linguistics in the Morning Calm.

Edited by Linguistic Society of Korea. Hanshin Publishing Co., 1982, pages 111–

137. doi: 10.1016/B0-08-044854-2/00424-7.

[76] Marshal F. Folstein, Susan E. Folstein and Paul R. McHugh. ““Mini-mental

state”: a practical method for grading the cognitive state of patients for the

clinician”. In: Journal of psychiatric research 12.3 (1975), pages 189–198.

https://doi.org/10.1109/TNSRE.2016.2608791
https://doi.org/10.5898/JHRI.2.2.Fasola
https://doi.org/10.1109/MRA.2010.940150
https://doi.org/10.1007/978-3-319-68204-4_7
https://doi.org/10.1016/j.websem.2013.01.002
https://doi.org/10.1016/B0-08-044854-2/00424-7

BIBLIOGRAPHY 223

[77] Terrence Fong, Illah R. Nourbakhsh and Kerstin Dautenhahn. “A survey

of socially interactive robots”. In: Robotics and Autonomous Systems 42.3-4

(2003), pages 143–166. doi: 10.1016/S0921-8890(02)00372-X.

[78] Maxwell Forbes and Yejin Choi. “Verb Physics: Relative Physical Know-

ledge of Actions and Objects”. In: Proceedings of the 55th Annual Meeting

of the Association for Computational Linguistics (ACL 2017). (Vancouver,

Canada). Edited by Regina Barzilay and Min-Yen Kan. Association for Com-

putational Linguistics, 2017, pages 266–276. isbn: 978-1-945626-75-3. doi:

10.18653/v1/P17-1025.

[79] Jannik Fritsch, Marcus Kleinehagenbrock, Axel Haasch, Sebastian Wrede and

Gerhard Sagerer. “A Flexible Infrastructure for the Development of a Robot

Companion with Extensible HRI-Capabilities”. In: Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA 2005). (Bar-

celona, Spain). IEEE, 2005, pages 3408–3414. doi: 10.1109/ROBOT.2005.

1570637.

[80] Aldo Gangemi. “What’s in a Schema?” In: Ontology and the Lexicon: A Nat-

ural Language Processing Perspective. Cambridge, UK: Cambridge University

Press, 2010, pages 144–182.

[81] Aldo Gangemi, Mehwish Alam, Luigi Asprino, Valentina Presutti and Diego

Reforgiato Recupero. “Framester: A Wide Coverage Linguistic Linked Data

Hub”. In: Proceedings of the 20th International Conference on Knowledge

Engineering and Knowledge Management (EKAW 2016). (Bologna, Italy).

Edited by Eva Blomqvist, Paolo Ciancarini, Francesco Poggi and Fabio Vitali.

Springer International Publishing, 2016, pages 239–254. doi: 10.1007/978-3-

319-49004-5 16.

[82] Aldo Gangemi, Nicola Guarino, Claudio Masolo and Alessandro Oltramari.

“Sweetening WORDNET with DOLCE”. In: AI Magazine 24.3 (2003), pages 13–

24.

https://doi.org/10.1016/S0921-8890(02)00372-X
https://doi.org/10.18653/v1/P17-1025
https://doi.org/10.1109/ROBOT.2005.1570637
https://doi.org/10.1109/ROBOT.2005.1570637
https://doi.org/10.1007/978-3-319-49004-5_16
https://doi.org/10.1007/978-3-319-49004-5_16

224 BIBLIOGRAPHY

[83] Aldo Gangemi, Nicola Guarino, Claudio Masolo, Alessandro Oltramari and

Luc Schneider. “Sweetening Ontologies with DOLCE”. In: Proceedings of

the 13th International Conference on Knowledge Engineering and Know-

ledge Management (EKAW 2002). (Sigüenza, Spain). Edited by Asunción

Gómez-Pérez and V. Richard Benjamins. Springer Berlin Heidelberg, 2002,

pages 166–181. isbn: 978-3-540-45810-4. doi: 10.1007/3-540-45810-7 18.

[84] Aldo Gangemi and Peter Mika. “Understanding the Semantic Web through

Descriptions and Situations”. In: Proceedings of Confederated International

Conferences, CoopIS, DOA, and ODBASE. (Catania, Sicily, Italy). Edited

by Robert Meersman, Zahir Tari and Douglas C. Schmidt. 2003, pages 689–

706. isbn: 3-540-20498-9. doi: 10.1007/978-3-540-39964-3\ 44.

[85] Aldo Gangemi, Roberto Navigli and Paola Velardi. “The OntoWordNet Pro-

ject: Extension and Axiomatization of Conceptual Relations in WordNet”.

In: Proceedings of Confederated International Conferences, CoopIS, DOA,

and ODBASE. (Catania, Sicily, Italy). Edited by Robert Meersman, Zahir

Tari and Douglas C. Schmidt. 2003, pages 3–7. isbn: 3-540-20498-9.

[86] Aldo Gangemi, Andrea Giovanni Nuzzolese, Valentina Presutti, Francesco

Draicchio, Alberto Musetti and Paolo Ciancarini. “Automatic Typing of

DBpedia Entities”. In: Proceedings of the 11th International Semantic Web

Conference (ISWC 2012), Part I. (Boston, MA, USA). Edited by Philippe

Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache, Jérôme Euzenat,

Manfred Hauswirth, Josiane Xavier Parreira, Jim Hendler, Guus Schreiber,

Abraham Bernstein and Eva Blomqvist. Volume 7649. Lecture Notes in Com-

puter Science. Springer, 2012, pages 65–81. doi: 10.1007/978-3-642-35176-

1 5.

[87] Aldo Gangemi, Domenico Pisanelli and Geri Steve. “Ontology integration:

Experiences with medical terminologies”. In: Proceedings of the 1st Interna-

tional Conference on Formal Ontology in Information Systems (FOIS 1998).

(Rome,Italy). Volume 46. 1998, pages 98–94.

https://doi.org/10.1007/3-540-45810-7_18
https://doi.org/10.1007/978-3-540-39964-3_44
https://doi.org/10.1007/978-3-642-35176-1_5
https://doi.org/10.1007/978-3-642-35176-1_5

BIBLIOGRAPHY 225

[88] Aldo Gangemi and Valentina Presutti. “Ontology Design Patterns”. In: Hand-

book on Ontologies. Edited by Steffen Staab and Rudi Studer. Springer, 2009,

pages 221–243. isbn: 978-3-540-70999-2. doi: 10.1007/978-3-540-92673-3 10.

[89] Aldo Gangemi and Valentina Presutti. “Towards a pattern science for the

Semantic Web”. In: Semantic Web 1.1-2 (2010), pages 61–68. doi: 10.3233/

SW-2010-0020.

[90] Aldo Gangemi, Valentina Presutti, Diego Reforgiato Recupero, Andrea Gio-

vanni Nuzzolese, Francesco Draicchio and Misael Mongiov̀ı. “Semantic Web

Machine Reading with FRED”. In: Semantic Web 8.6 (2017), pages 873–893.

doi: 10.3233/SW-160240.

[91] James Gibson. “The theory of affordances”. In: Perceiving, acting, and know-

ing: Toward an ecological psychology. Edited by Robert Shaw and John Brans-

ford. Lawrence Erlbaum Associates, 1977, pages 67–82.

[92] Ben Goertzel. “Perception Processing for General Intelligence: Bridging the

Symbolic/Subsymbolic Gap”. In: Artificial General Intelligence. Edited by

Joscha Bach, Ben Goertzel and Matthew Iklé. Springer Berlin Heidelberg,

2012, pages 79–88.

[93] Ben Goertzel. “Artificial General Intelligence: Concept, State of the Art, and

Future Prospects”. In: Journal of Artificial General Intelligence 5.1 (2014),

pages 1–48.

[94] Horst-Michael Gross, Christof Schroeter, Steffen Mueller, Michael Volkhardt,

Erik Einhorn, Andreas Bley, Tim Langner, Christian Martin and Matthias

Merten. “I’ll keep an eye on you: Home robot companion for elderly people

with cognitive impairment”. In: Proceedings of the IEEE International Con-

ference on Systems, Man, and Cybernetics. 2011, pages 2481–2488. doi: 10.

1109/ICSMC.2011.6084050.

[95] Horst-Michael Gross, Christof Schroeter, Steffen Müller, Michael Volkhardt,

Erik Einhorn, Andreas Bley, Tim Langner, Matthias Merten, Claire A. G. J.

Huijnen, Herjan van den Heuvel and Andreas van Berlo. “Further progress

https://doi.org/10.1007/978-3-540-92673-3_10
https://doi.org/10.3233/SW-2010-0020
https://doi.org/10.3233/SW-2010-0020
https://doi.org/10.3233/SW-160240
https://doi.org/10.1109/ICSMC.2011.6084050
https://doi.org/10.1109/ICSMC.2011.6084050

226 BIBLIOGRAPHY

towards a home robot companion for people with mild cognitive impairment”.

In: Proceedings of the IEEE International Conference on Systems, Man, and

Cybernetics (SMC 2012). (Seoul, South Korea). 2012. doi: 10.1109/ICSMC.

2012.6377798.

[96] Horst-Michael Gross, Christof Schröter, Steffen Müller, Michael Volkhardt,

Erik Einhorn, Andreas Bley, Christian Martin, Tim Langner and Matthias

Merten. “Progress in developing a socially assistive mobile home robot com-

panion for the elderly with mild cognitive impairment”. In: Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS 2011). 2011, pages 2430–2437. isbn: 978-1-61284-454-1. doi: 10.1109/

IROS.2011.6094770.

[97] Thomas R. Gruber. “A translation approach to portable ontology specifica-

tions”. In: Knowledge acquisition 5.2 (1993), pages 199–220. doi: 10.1006/

knac.1993.1008.

[98] Michael Grüninger and Mark S. Fox. In: Benchmarking – Theory and Prac-

tice. Edited by Asbjørn Rolstad̊as. Springer, 1995. Chapter The Role of Com-

petency Questions in Enterprise Engineering, pages 22–31. doi: 10.1007/978-

0-387-34847-6\ 3.

[99] Barbara Hammer and Pascal Hitzler, editors. Perspectives of Neural-Symbolic

Integration. Volume 77. Springer, 2007.

[100] Patrick Hayes. “The Second Naive Physics Manifesto”. In: Readings in qualit-

ative reasoning about physical systems. Edited by Daniel S. Weld and Johan

de Kleer. San Francisco, CA, USA: Morgan Kaufmann, 1989. isbn: 0-262-

62101-0.

[101] Jochen Hirth, Norbert Schmitz and Karsten Berns. “Towards Social Robots:

Designing an Emotion-Based Architecture”. In: International Journal of So-

cial Robotics 3.3 (2011), pages 273–290. doi: 10.1007/s12369-010-0087-2.

[102] Matthew Horridge and Sean Bechhofer. “The owl api: A java api for owl

ontologies”. In: Semantic Web 2.1 (2011), pages 11–21.

https://doi.org/10.1109/ICSMC.2012.6377798
https://doi.org/10.1109/ICSMC.2012.6377798
https://doi.org/10.1109/IROS.2011.6094770
https://doi.org/10.1109/IROS.2011.6094770
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1007/978-0-387-34847-6_3
https://doi.org/10.1007/978-0-387-34847-6_3
https://doi.org/10.1007/s12369-010-0087-2

BIBLIOGRAPHY 227

[103] “Human–robot interaction: a survey”. In: Foundations and Trends in Human–

Computer Interaction 1.3 (2008), pages 203–275. doi: 10.1561/1100000005.

[104] Julie Huschilt and Laurie Clune. “The Use of Socially Assistive Robots for De-

mentia Care”. In: Journal of Gerontological Nursing 38.10 (2012), pages 15–

19. doi: 10.3928/00989134-20120911-02.

[105] Chandimal Jayawardena, I-Han Kuo, Elizabeth Broadbent and Bruce A.

MacDonald. “Socially Assistive Robot HealthBot: Design, Implementation,

and Field Trials”. In: IEEE Systems Journal 10.3 (2016), pages 1056–1067.

doi: 10.1109/JSYST.2014.2337882.

[106] Soufian Jebbara, Valerio Basile, Elena Cabrio and Philipp Cimiano. “Ex-

tracting common sense knowledge via triple ranking using supervised and

unsupervised distributional models”. In: Semantic Web (2018), to appear.

doi: 10.3233/SW-180302.

[107] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. “LogMap: Logic-Based

and Scalable Ontology Matching”. In: Proceedings fo the 10th International

Semantic Web Conference (ISWC 2011), Part I. (Bonn, Germany). Edited

by Lora Aroyo, Chris Welty, Harith Alani, Jamie Taylor, Abraham Bernstein,

Lalana Kagal, Natasha Fridman Noy and Eva Blomqvist. Volume 7031. Lec-

ture Notes in Computer Science. Springer, 2011, pages 273–288. doi: 10 .

1007/978-3-642-25073-6 18.

[108] Aditya Kalyanpur, Daniel Jiménez Pastor, Steve Battle and Julian A. Padget.

“Automatic Mapping of OWL Ontologies into Java”. In: Proceedings of the

Sixteenth International Conference on Software Engineering & Knowledge

Engineering (SEKE 2004). (Banff, Alberta). Edited by Frank Maurer and

Günther Ruhe. 2004, pages 98–103.

[109] Sidney Katz, Amasa B. Ford, Roland W. Moskowitz, Beverly A. Jackson

and Marjorie W. Jaffe. “Studies of illness in the aged: the index of ADL:

a standardized measure of biological and psychosocial function”. In: Jama

185.12 (1963), pages 914–919. doi: 10.1001/jama.1963.03060120024016.

https://doi.org/10.1561/1100000005
https://doi.org/10.3928/00989134-20120911-02
https://doi.org/10.1109/JSYST.2014.2337882
https://doi.org/10.3233/SW-180302
https://doi.org/10.1007/978-3-642-25073-6_18
https://doi.org/10.1007/978-3-642-25073-6_18
https://doi.org/10.1001/jama.1963.03060120024016

228 BIBLIOGRAPHY

[110] John F. Kelley. “An Iterative Design Methodology for User-Friendly Nat-

ural Language Office Information Applications”. In: ACM Transactions on

Information Systems 2.1 (1984), pages 26–41. doi: 10.1145/357417.357420.

[111] Dan J. Kim, John Hebeler, Victoria Yoon and Fred Davis. “Exploring De-

terminants of Semantic Web Technology Adoption from IT Professionals’ Per-

spective: Industry Competition, Organization Innovativeness, and Data Man-

agement Capability”. In: Computers in Human Behavior 86 (2018), pages 18–

33. issn: 0747-5632. doi: 10.1016/j.chb.2018.04.014.

[112] Hak Lae Kim, Simon Scerri, John G. Breslin, Stefan Decker and Hong Gee

Kim. “The state of the art in tag ontologies: a semantic model for tagging

and folksonomies”. In: Proceedings of the International Conference on Dublin

Core and Metadata Applications. (Berlin, Germany). Edited by Jane Green-

berg and Wolfgang Klas. 2008, pages 128–137.

[113] Michel Klein. “Combining and relating ontologies: an analysis of problems

and solutions”. In: Proceedings of the IJCAI-01 Workshop on Ontologies and

Information Sharing. (Seattle, USA). Edited by Asunción Gomez Perez, Mi-

chael Gruninger, Heiner Stuckenschmidt and Uschold Mike. 2001, pages 53–

62.

[114] Marius Kloetzer and Calin Belta. “Temporal Logic Planning and Control of

Robotic Swarms by Hierarchical Abstractions”. In: IEEE Transactions on

Robotics 23.2 (2007), pages 320–330. doi: 10.1109/TRO.2006.889492.

[115] Torben Knerr. Tagging ontology-towards a common ontology for folksonom-

ies. 2006. url: https://tagont.googlecode.com/files/TagOntPaper.pdf.

[116] Maddalen Lopez De Lacalle, Egoitz Laparra and German Rigau. “Predicate

Matrix: Extending SemLink through WordNet mappings”. In: Proceedings of

the Ninth International Conference on Language Resources and Evaluation

(LREC 2014). (Reykjavik, Iceland). Edited by Nicoletta Calzolari, Khalid

Choukri, Thierry Declerck, Hrafn Loftsson, Bente Maegaard, Joseph Mariani,

https://doi.org/10.1145/357417.357420
https://doi.org/10.1016/j.chb.2018.04.014
https://doi.org/10.1109/TRO.2006.889492
https://tagont.googlecode.com/files/TagOntPaper.pdf

BIBLIOGRAPHY 229

Asunción Moreno, Jan Odijk and Stelios Piperidis. 2014, pages 903–909. isbn:

978-2-9517408-8-4.

[117] Egoitz Laparra and German Rigau. “eXtended WordFrameNet”. In: Pro-

ceedings of the International Conference on Language Resources and Evalu-

ation (LREC 2010). (Valletta, Malta). Edited by Nicoletta Calzolari, Khalid

Choukri, Bente Maegaard, Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike

Rosner and Daniel Tapias. European Language Resources Association, 2010.

isbn: 2-9517408-6-7.

[118] Craig Larman. Applying UML and Patterns : An Introduction to Object-

Oriented Analysis and Design and Iterative Development. Prentice Hall, 2004.

[119] M. Powell Lawton and Elaine M. Brody. “Assessment of older people: self-

maintaining and instrumental activities of daily living”. In: Gerontologist 9.3

(1969), pages 179–186.

[120] Amanda Lazar, Hilaire Thompson and George Demiris. “A Systematic Re-

view of the Use of Technology for Reminiscence Therapy”. In: Health Educa-

tion & Behavior 41.1 (2014), pages 51–61. doi: 10.1177/1090198114537067.

[121] Olivier Lebeltel, Pierre Bessière, Julien Diard and Emmanuel Mazer. “Bayesian

Robot Programming”. In: Autonomous Robots 16.1 (2004), pages 49–79. doi:

10.1023/B:AURO.0000008671.38949.43.

[122] Iolanda Leite, Carlos Martinho and Ana Paiva. “Social Robots for Long-

Term Interaction: A Survey”. In: International Journal of Social Robotics

5.2 (2013), pages 291–308. doi: 10.1007/s12369-013-0178-y.

[123] Séverin Lemaignan, Raquel Ros, Lorenz Mösenlechner, Rachid Alami and

Michael Beetz. “ORO, a knowledge management platform for cognitive ar-

chitectures in robotics”. In: Proceedings of the International Conference on

Intelligent Robots and Systems (IROS 2010). (Taipei, Taiwan). IEEE, 2010,

pages 3548–3553. isbn: 978-1-4244-6674-0. doi: 10.1109/IROS.2010.5649547.

https://doi.org/10.1177/1090198114537067
https://doi.org/10.1023/B:AURO.0000008671.38949.43
https://doi.org/10.1007/s12369-013-0178-y
https://doi.org/10.1109/IROS.2010.5649547

230 BIBLIOGRAPHY

[124] Angel Lagares Lemos, Florian Daniel and Boualem Benatallah. “Web Ser-

vice Composition: A Survey of Techniques and Tools”. In: ACM Computing

Surveys 48.3 (2015), 33:1–33:41. doi: 10.1145/2831270.

[125] Douglas B. Lenat. “CYC: A Large-Scale Investment in Knowledge Infra-

structure”. In: Communications of the ACM 38.11 (1995), pages 32–38. doi:

10.1145/219717.219745.

[126] Juanzi Li, Jie Tang, Yi Li and Qiong Luo. “RiMOM: A Dynamic Multistrategy

Ontology Alignment Framework”. In: IEEE Transactions on Knowledge and

Data Engineering 21.8 (2009), pages 1218–1232. doi: 10.1109/TKDE.2008.

202.

[127] Gi Hyun Lim, Il Hong Suh and Hyowon Suh. “Ontology-Based Unified Robot

Knowledge for Service Robots in Indoor Environments”. In: IEEE Transac-

tions on Systems, Man, and Cybernetics - Part A: Systems and Humans 41.3

(2011), pages 492–509. doi: 10.1109/TSMCA.2010.2076404.

[128] Freddy Limpens, Alexandre Monnin, David Laniado and Fabien Gandon.

“NiceTag Ontology: tags as named graphs”. In: Proceeding of the 1st Inter-

national Workshop on Social Networks Interoperability SNI. 2009.

[129] Yen-Chun Lin, Yu-Tzu Dai and Shiow-Li Hwang. “The Effect of Reminis-

cence on the Elderly Population: A Systematic Review”. In: Public Health

Nursing 20.4 (2003), pages 297–306. doi: 10.1046/j.1525-1446.2003.20407.x.

[130] Hugo Liu and Push Singh. “ConceptNet –A Practical Commonsense Reason-

ing Tool-Kit”. In: BT Technology Journal 22.4 (2004), pages 211–226. issn:

1358-3948. doi: 10.1023/B:BTTJ.0000047600.45421.6d.

[131] Giorgia Lodi, Luigi Asprino, Andrea Giovanni Nuzzolese, Valentina Presutti,

Aldo Gangemi, Diego Reforgiato Recupero, Chiara Veninata and Annarita

Orsini. “Semantic Web for Cultural Heritage Valorisation”. In: Data Analyt-

ics in Digital Humanities. Edited by Shalin Hai-Jew. Springer International

Publishing, 2017, pages 3–37. doi: 10.1007/978-3-319-54499-1 1.

https://doi.org/10.1145/2831270
https://doi.org/10.1145/219717.219745
https://doi.org/10.1109/TKDE.2008.202
https://doi.org/10.1109/TKDE.2008.202
https://doi.org/10.1109/TSMCA.2010.2076404
https://doi.org/10.1046/j.1525-1446.2003.20407.x
https://doi.org/10.1023/B:BTTJ.0000047600.45421.6d
https://doi.org/10.1007/978-3-319-54499-1_1

BIBLIOGRAPHY 231

[132] Rebecca G. Logsdon, Laura E. Gibbons, Susan M. McCurry and Linda Teri.

“Assessing quality of life in older adults with cognitive impairment”. In:

Psychosomatic medicine 64.3 (2002), pages 510–519.

[133] Steffen Lohmann, Paloma Dı́az and Ignacio Aedo. “MUTO: the modular

unified tagging ontology”. In: Proceedings of the 7th International Confer-

ence on Semantic Systems (I-SEMANTICS 2011). (Graz, Austria). Edited

by Chiara Ghidini, Axel-Cyrille Ngonga Ngomo, Stefanie N. Lindstaedt and

Tassilo Pellegrini. 2011, pages 95–104. doi: 10.1145/2063518.2063531. url:

http://doi.acm.org/10.1145/2063518.2063531.

[134] Martin Lötzsch, Joscha Bach, Hans-Dieter Burkhard and Matthias Jüngel.

“Designing Agent Behavior with the Extensible Agent Behavior Specification

Language XABSL”. In: RoboCup 2003: Robot Soccer World Cup VII. Edited

by Daniel Polani, Brett Browning, Andrea Bonarini and Kazuo Yoshida.

Volume 3020. Springer, 2003, pages 114–124. isbn: 3-540-22443-2. doi: 10.

1007/978-3-540-25940-4\ 10.

[135] Wing-Yue Geoffrey Louie, Tiago Stegun Vaquero, Goldie Nejat and J. Chris-

topher Beck. “An autonomous assistive robot for planning, scheduling and

facilitating multi-user activities”. In: Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA 2014). (Hong Kong, China).

2014, pages 5292–5298. doi: 10.1109/ICRA.2014.6907637.

[136] Pattie Maes. “The Dynamics of Action Selection”. In: Proceedings of the 11th

International Joint Conference on Artificial Intelligence (IJCAI). (Detroit,

MI, USA). Edited by N. S. Sridharan. Morgan Kaufmann, 1989, pages 991–

997. isbn: 1-55860-094-9.

[137] Ester Martinez-Martin and Angel P. del Pobil. “Personal Robot Assistants

for Elderly Care: An Overview”. In: Personal Assistants: Emerging Com-

putational Technologies. Edited by Angelo Costa, Vicente Julian and Paulo

Novais. 2018, pages 77–91. doi: 10.1007/978-3-319-62530-0 5.

https://doi.org/10.1145/2063518.2063531
http://doi.acm.org/10.1145/2063518.2063531
https://doi.org/10.1007/978-3-540-25940-4_10
https://doi.org/10.1007/978-3-540-25940-4_10
https://doi.org/10.1109/ICRA.2014.6907637
https://doi.org/10.1007/978-3-319-62530-0_5

232 BIBLIOGRAPHY

[138] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino and Aless-

andro Oltramari. WonderWeb Deliverable D18 - Ontology Library (Final Ver-

sion). EU IST project deliverable. 2003.

[139] Mark Masse. REST API Design Rulebook: Designing Consistent RESTful

Web Service Interfaces. O’Reilly, 2011.

[140] Maja J. Mataric. “Behaviour-based control: examples from navigation, learn-

ing, and group behaviour”. In: Journal of Experimental & Theoretical Artifi-

cial Intelligence 9.2-3 (1997), pages 323–336. doi: 10.1080/095281397147149.

[141] Nikolaos Mavridis and Deb Roy. “Grounded Situation Models for Robots:

Where words and percepts meet”. In: Proceedings of the IEEE International

Conference on Intelligent Robots and Systems (IROS 2006). IEEE, 2006,

pages 4690–4697. isbn: 1-4244-0258-1. doi: 10.1109/IROS.2006.282258.

[142] John McCrae, Christiane Fellbaum and Philipp Cimiano. “Publishing and

Linking WordNet using lemon and RDF”. In: Proceedings of the 3rd Work-

shop on Linked Data in Linguistics. 2014.

[143] Ross Mead, Eric Wade, Pierre Johnson, Aaron St. Clair, Shuya Chen and

Maja J. Mataric. “An architecture for rehabilitation task practice in socially

assistive human-robot interaction”. In: Proceedings of 19th IEEE Interna-

tional Conference on Robot and Human Interactive Communication (RO-

MAN 2010). (Viareggio, Italy). Edited by Carlo Alberto Avizzano and Emanuele

Ruffaldi. IEEE, 2010, pages 404–409. doi: 10.1109/ROMAN.2010.5598666.

[144] Larry R. Medsker. “Design and development of hybrid neural network and

expert systems”. In: Proceedings of IEEE International Conference on Neural

Networks (ICNN - 1994). Volume 3. 1994, pages 1470–1474. doi: 10.1109/

ICNN.1994.374503.

[145] George A. Miller. “WordNet: A Lexical Database for English.” In: Commu-

nications of the ACM 38.11 (1995), pages 39–41. issn: 0001-0782.

https://doi.org/10.1080/095281397147149
https://doi.org/10.1109/IROS.2006.282258
https://doi.org/10.1109/ROMAN.2010.5598666
https://doi.org/10.1109/ICNN.1994.374503
https://doi.org/10.1109/ICNN.1994.374503

BIBLIOGRAPHY 233

[146] George A. Miller and Florentina Hristea. “WordNet Nouns: Classes and In-

stances”. In: Computational Linguistics 32.1 (2006), pages 1–3. issn: 0891-

2017. doi: 10.1162/coli.2006.32.1.1.

[147] Marvin Minsky. A Framework for Representing Knowledge. Technical report.

Cambridge, MA, USA, 1974. url: http://hdl.handle.net/1721.1/6089.

[148] Tom M. Mitchell, William W. Cohen, Estevam R. Hruschka Jr., Partha

Pratim Talukdar, Justin Betteridge, Andrew Carlson, Bhavana Dalvi Mishra,

Matthew Gardner, Bryan Kisiel, Jayant Krishnamurthy, Ni Lao, Kathryn

Mazaitis, Thahir Mohamed, Ndapandula Nakashole, Emmanouil Antonios

Platanios, Alan Ritter, Mehdi Samadi, Burr Settles, Richard C. Wang, Derry

Tanti Wijaya, Abhinav Gupta, Xinlei Chen, Abulhair Saparov, Malcolm

Greaves and Joel Welling. “Never-Ending Learning”. In: Proceedings of the

29th AAAI Conference on Artificial Intelligence (AAAI 2015). (Austin, Texas,

USA). Edited by Blai Bonet and Sven Koenig. AAAI Press, 2015, pages 2302–

2310. isbn: 978-1-57735-698-1.

[149] Elaine Mordoch, Angela Osterreicher, Lorna Guse, Kerstin Roger and Genevieve

Thompson. “Use of social commitment robots in the care of elderly people

with dementia: A literature review”. In: Maturitas 74.1 (2013), pages 14–20.

doi: 10.1016/j.maturitas.2012.10.015.

[150] Roberto Navigli and Simone Paolo Ponzetto. “BabelNet: The Automatic

Construction, Evaluation and Application of a Wide-Coverage Multilingual

Semantic Network”. In: Artificial Intelligence 193 (2012), pages 217–250. doi:

10.1016/j.artint.2012.07.001.

[151] Allen Newell. “The knowledge level”. In: Artificial intelligence 18.1 (1982),

pages 87–127.

[152] Nils J. Nilsson. Shakey the robot. Technical report. SRI International, 1984.

[153] Andrea Giovanni Nuzzolese, Aldo Gangemi and Valentina Presutti. “Gath-

ering Lexical Linked Data and Knowledge Patterns from FrameNet”. In:

https://doi.org/10.1162/coli.2006.32.1.1
http://hdl.handle.net/1721.1/6089
https://doi.org/10.1016/j.maturitas.2012.10.015
https://doi.org/10.1016/j.artint.2012.07.001

234 BIBLIOGRAPHY

Proceedings of the sixth international conference on Knowledge Capture (K-

CAP). (Banff, AB, Canada). Edited by Mark A. Musen and Óscar Corcho.

ACM, 2011, pages 41–48. isbn: 978-1-4503-0396-5. doi: 10.1145/1999676.

1999685.

[154] Andrea Giovanni Nuzzolese, Aldo Gangemi, Valentina Presutti and Paolo

Ciancarini. “Semion: A Smart Triplification Tool”. In: Proceedings of the

17th International Conference on Knowledge Engineering and Management

by the Masses (EKAW 2010) - Poster and Demo Track. (Lisbon, Portugal).

Edited by Johanna Völker and Óscar Corcho. 2010.

[155] Tetsuya Ogata and Shigeki Sugano. “Emotional communication robot: WAMOEBA-

2R emotion model and evaluation experiments”. In: Proceedings of the Inter-

national Conference on Humanoid Robots. 2000.

[156] Alex Oliver and Timothy Smiley. “Multigrade Predicates”. In: Mind 113.452

(2004), pages 609–681. doi: 10.1093/mind/113.452.609.

[157] Eyal Oren, Benjamin Heitmann and Stefan Decker. “ActiveRDF: Embed-

ding Semantic Web data into object-oriented languages”. In: Journal of Web

Semantics 6.3 (2008), pages 191–202. doi: 10.1016/j.websem.2008.04.003.

[158] Jens Ortmann and Desiree Daniel. “An ontology design pattern for referential

qualities”. In: Proceedings fo the 10th International Semantic Web Conference

(ISWC 2011), Part I. (Bonn, Germany). Edited by Lora Aroyo, Chris Welty,

Harith Alani, Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Frid-

man Noy and Eva Blomqvist. Volume 7031. Lecture Notes in Computer Sci-

ence. Bonn, Germany: Springer, 2011, pages 537–552. doi: 10.1007/978-3-

642-25073-6\ 34.

[159] Jens Ortmann, Giorgio De Felice, Dong Wang and Desiree Daniel. “An ego-

centric semantic reference system for affordances”. In: Semantic Web 5.6

(2014), pages 449–472.

https://doi.org/10.1145/1999676.1999685
https://doi.org/10.1145/1999676.1999685
https://doi.org/10.1093/mind/113.452.609
https://doi.org/10.1016/j.websem.2008.04.003
https://doi.org/10.1007/978-3-642-25073-6_34
https://doi.org/10.1007/978-3-642-25073-6_34

BIBLIOGRAPHY 235

[160] Paolo Pareti, Ewan Klein and Adam Barker. “Linking Data, Services and Hu-

man Know-How”. In: Proceedings of the 13th European Semantic Web Con-

ference (ESWC 2016). (Heraklion, Crete, Greece). Edited by Harald Sack,

Eva Blomqvist, Mathieu d’Aquin, Chiara Ghidini, Simone Paolo Ponzetto

and Christoph Lange. Springer International Publishing, 2016, pages 505–

520. isbn: 978-3-319-34129-3. doi: 10.1007/978-3-319-34129-3\ 31.

[161] Marius Pasca. “Finding Needles in an Encyclopedic Haystack: Detecting

Classes Among Wikipedia Articles”. In: Proceedings of the 2018 World Wide

Web Conference on World Wide Web (WWW 2018). (Lyon, France). Ed-

ited by Pierre-Antoine Champin, Fabien L. Gandon, Mounia Lalmas and

Panagiotis G. Ipeirotis. ACM, 2018, pages 1267–1276. doi: 10.1145/3178876.

3186025.

[162] Heiko Paulheim and Aldo Gangemi. “Serving DBpedia with DOLCE – More

than Just Adding a Cherry on Top”. In: Proceedings of the 14th Interna-

tional Semantic Web Conference (ISWC 2015), Part I. (Bethlehem, PA,

USA). Edited by Marcelo Arenas, Oscar Corcho, Elena Simperl, Markus

Strohmaier, Mathieu d’Aquin, Kavitha Srinivas, Paul Groth, Michel Dumon-

tier, Jeff Heflin, Krishnaprasad Thirunarayan and Steffen Staab. Springer

International Publishing, 2015, pages 180–196. isbn: 978-3-319-25007-6. doi:

10.1007/978-3-319-25007-6 11.

[163] Ellie Pavlick, Travis Wolfe, Pushpendre Rastogi, Chris Callison-Burch, Mark

Dredze and Benjamin Van Durme. “FrameNet+: Fast Paraphrastic Tripling

of FrameNet”. In: Proceedings of the 53rd Annual Meeting of the Association

for Computational Linguistics and the 7th International Joint Conference on

Natural Language Processing of the Asian Federation of Natural Language

Processing, (ACL 2015) - Volume 2: Short Papers. (Beijing, China). 2015,

pages 408–413.

[164] R. S. Visser Pepijn, M. Jones Dean, T. J. M. Bench-capon and M. J. R. Shave.

“An analysis of ontological mismatches: Heterogeneity versus interoperabil-

https://doi.org/10.1007/978-3-319-34129-3_31
https://doi.org/10.1145/3178876.3186025
https://doi.org/10.1145/3178876.3186025
https://doi.org/10.1007/978-3-319-25007-6_11

236 BIBLIOGRAPHY

ity”. In: Proceedings of AAAI Spring Symposium on Ontological Engineering.

(Stanford, USA). 1997, pages 164–172.

[165] Silvio Peroni, Giorgia Lodi, Luigi Asprino, Aldo Gangemi and Valentina Pre-

sutti. “FOOD: FOod in Open Data”. In: Proceedings of the 15th International

Semantic Web Conference (ISWC 2016), Part II. (Kobe, Japan). Edited by

Paul Groth, Elena Simperl, Alasdair Gray, Marta Sabou, Markus Krötzsch,

Freddy Lecue, Fabian Flöck and Yolanda Gil. Springer International Pub-

lishing, 2016, pages 168–176. doi: 10.1007/978-3-319-46547-0 18.

[166] Eric Pfeiffer. “A short portable mental status questionnaire for the assessment

of organic brain deficit in elderly patients”. In: Journal of the American

Geriatrics Society 23.10 (1975), pages 433–441.

[167] Mohammad Taher Pilehvar, David Jurgens and Roberto Navigli. “Align, dis-

ambiguate and walk: A unified approach for measuring semantic similarity”.

In: Proceedings of the 51st Annual Meeting of the Association for Computa-

tional Linguistics (ACL 2013). (Sofia, Bulgaria). Edited by Massimo Poesio

Hinrich Schuetze Pascale Fun. Association for Computational Linguistics,

2013, pages 1341–1351. isbn: 978-1-937284-50-3.

[168] Alberto Pilotto, Daniele Sancarlo, Francesco Panza, Francesco Paris, Grazia

D’Onofrio, Leandro Cascavilla, Filomena Addante, Davide Seripa, Vincenzo

Solfrizzi, Bruno Dallapiccola, Marilisa Franceschi and Luigi Ferrucci. “The

Multidimensional Prognostic Index (MPI), based on a comprehensive geriat-

ric assessment predicts short- and long-term mortality in hospitalized older

patients with dementia”. In: Journal of Alzheimer’s disease 18.1 (2009),

pages 191–199. doi: 10.3233/JAD-2009-1139.

[169] Steven Pinker and Jacques Mehler. Connections and symbols. Volume 28. Mit

Press, 1988.

[170] Domenico M Pisanelli. Ontologies in medicine. Volume 102. IOS Press, 2004.

https://doi.org/10.1007/978-3-319-46547-0_18
https://doi.org/10.3233/JAD-2009-1139

BIBLIOGRAPHY 237

[171] Edson Prestes, Joel Luis Carbonera, Sandro Rama Fiorini, Vitor A. M. Jorge,

Mara Abel, Raj Madhavan, Angela Locoro, Paulo J. S. Gonçalves, Marcos

E. Barreto, Maki K. Habib, Abdelghani Chibani, Sébastien Gérard, Yacine

Amirat and Craig Schlenoff. “Towards a core ontology for robotics and auto-

mation”. In: Robotics and Autonomous Systems 61.11 (2013), pages 1193–

1204. doi: 10.1016/j.robot.2013.04.005.

[172] Valentina Presutti, Eva Blomqvist, Enrico Daga and Aldo Gangemi. “Pattern-

Based Ontology Design”. In: Ontology Engineering in a Networked World.

Edited by Mari Carmen Suárez-Figueroa, Asunción Gómez-Pérez, Enrico

Motta and Aldo Gangemi. Springer, 2012, pages 35–64. isbn: 978-3-642-

24793-4. doi: 10.1007/978-3-642-24794-1\ 3.

[173] Valentina Presutti, Enrico Daga, Aldo Gangemi and Eva Blomqvist. “eX-

treme Design with Content Ontology Design Patterns”. In: Proceedings of

the Workshop on Ontology Patterns (WOP 2009). (Washington, DC, USA).

Edited by Eva Blomqvist, Kurt Sandkuhl, François Scharffe and Vojtech

Svátek. Volume 516. CEUR Workshop Proceedings. CEUR-WS.org, 2009.

[174] Valentina Presutti, Giorgia Lodi, Andrea Nuzzolese, Aldo Gangemi, Silvio

Peroni and Luigi Asprino. “The Role of Ontology Design Patterns in Linked

Data Projects”. In: Proceedings of the 35th International Conference on Con-

ceptual Modeling (ER 2016). (Gifu, Japan). Edited by Isabelle Comyn-Wattiau,

Katsumi Tanaka, Il-Yeol Song, Shuichiro Yamamoto and Motoshi Saeki.

Springer International Publishing, 2016, pages 113–121. doi: 10.1007/978-3-

319-46397-1 9.

[175] James Pustejovsky. The Generative Lexicon. MIT Press, 1998.

[176] Pushpendre Rastogi and Benjamin Van Durme. “Augmenting FrameNet Via

PPDB”. In: Proceedings of the 2nd Workshop on EVENTS: Definition, De-

tection, Coreference, and Representation (EVENTS@ACL 2014). (Baltimore,

Maryland). Edited by Teruko Mitamura, Eduard H. Hovy and Martha Palmer.

https://doi.org/10.1016/j.robot.2013.04.005
https://doi.org/10.1007/978-3-642-24794-1_3
https://doi.org/10.1007/978-3-319-46397-1_9
https://doi.org/10.1007/978-3-319-46397-1_9

238 BIBLIOGRAPHY

Association for Computational Linguistics, 2014, pages 1–5. isbn: 978-1-

941643-14-3. doi: 10.3115/v1/W14-2901.

[177] David Riaño, Francis Real, Fabio Campana, Sara Ercolani and Roberta An-

nicchiarico. “An Ontology for the Care of the Elder at Home”. In: Proceedings

of the 12th Conference on Artificial Intelligence in Medicine AIME. (Verona,

Italy). Edited by Carlo Combi, Yuval Shahar and Ameen Abu-Hanna. 2009,

pages 235–239.

[178] Laurel D. Riek. “Wizard of Oz Studies in HRI: A Systematic Review and New

Reporting Guidelines”. In: Journal of Human-Robot Interaction 1.1 (2012),

pages 119–136. issn: 2163-0364. doi: 10.5898/JHRI.1.1.Riek.

[179] Michael Ringgaard, Rahul Gupta and Fernando C. N. Pereira. “SLING: A

framework for frame semantic parsing”. In: CoRR (2017). url: http://arxiv.

org/abs/1710.07032.

[180] Dominique Ritze, Christian Meilicke, Ondřej Šváb-Zamazal and Heiner Stuck-

enschmidt. “A pattern-based ontology matching approach for detecting com-

plex correspondences”. In: Proceedings of the 4th International Workshop on

Ontology Matching (OM 2009) collocated with the 8th International Semantic

Web Conference (ISWC 2009). (Chantilly, USA). Edited by Pavel Shvaiko,

Jérôme Euzenat, Fausto Giunchiglia, Heiner Stuckenschmidt, Natasha Noy

and Arnon Rosenthal. CEUR-WS.org, 2009, pages 25–36.

[181] Hayley Robinson, Bruce MacDonald and Elizabeth Broadbent. “The Role of

Healthcare Robots for Older People at Home: A Review”. In: International

Journal of Social Robotics 6.4 (2014), pages 575–591. doi: 10.1007/s12369-

014-0242-2.

[182] Sebastian Rockel, Bernd Neumann, Jianwei Zhang, Krishna Sandeep Reddy

Dubba, Anthony G. Cohn, Stefan Konecny, Masoumeh Mansouri, Federico

Pecora, Alessandro Saffiotti, Martin Günther, Sebastian Stock, Joachim Hertzberg,

Ana Maria Tomé, Armando J. Pinho, Lúıs Seabra Lopes, Stephanie von Rie-

gen and Lothar Hotz. “An Ontology-based Multi-level Robot Architecture for

https://doi.org/10.3115/v1/W14-2901
https://doi.org/10.5898/JHRI.1.1.Riek
http://arxiv.org/abs/1710.07032
http://arxiv.org/abs/1710.07032
https://doi.org/10.1007/s12369-014-0242-2
https://doi.org/10.1007/s12369-014-0242-2

BIBLIOGRAPHY 239

Learning from Experiences”. In: Proceedings of the AAAI Spring Symposium.

(Palo Alto, California, USA). AAAI, 2013, pages 52–57.

[183] Silvia Rossi, Enrico Leone, Michelangelo Fiore, Alberto Finzi and Francesco

Cutugno. “An extensible architecture for robust multimodal human-robot

communication”. In: Proceedings of the International Conference on Intelli-

gent Robots and Systems (IROS 2013). (Tokyo, Japan). IEEE, 2013, pages 2208–

2213. doi: 10.1109/IROS.2013.6696665.

[184] Jacobo Rouces, Gerard de Melo and Katja Hose. “FrameBase: Represent-

ing N-ary Relations using Semantic Frames”. In: Proceedings of the 12th

European Semantic Web Conference (ESWC 2015). (Portoroz, Slovenia). Ed-

ited by Fabien Gandon, Marta Sabou, Harald Sack, Claudia d’Amato, Phil-

ippe Cudré-Mauroux and Antoine Zimmermann. Springer, 2015, pages 505–

521. isbn: 978-3-319-25638-2. doi: 10.1007/978-3-319-18818-8 31.

[185] Laurence Z. Rubenstein, Andreas E. Stuck, Albert L. Siu and Darryl Wie-

land. “Impacts of geriatric evaluation and management programs on defined

outcomes: overview of the evidence”. In: Journal of the American Geriatrics

Society 39.S1 (1991), pages 8–16. doi: 10.1111/j.1532-5415.1991.tb05927.x.

[186] Ashutosh Saxena, Ashesh Jain, Ozan Sener, Aditya Jami, Dipendra Kumar

Misra and Hema Swetha Koppula. “RoboBrain: Large-Scale Knowledge En-

gine for Robots”. In: CoRRs (2014). url: http://arxiv.org/abs/1412.0691.

[187] Karin Kipper Schuler. “VerbNet: A Broad-Coverage, Comprehensive Verb

Lexicon”. PhD thesis. University of Pennsylvania, 2006.

[188] John R Searle. “Social ontology: Some basic principles”. In: Anthropological

theory 6.1 (2006), pages 12–29.

[189] Jaydeep Sen, Ashish R. Mittal, Diptikalyan Saha and Karthik Sankaranaray-

anan. “Functional Partitioning of Ontologies for Natural Language Query

Completion in Question Answering Systems”. In: Proceedings of the 27th In-

ternational Joint Conference on Artificial Intelligence and the 23rd European

Conference on Artificial Intelligence (IJCAI-ECAI 18). Edited by Jérôme

https://doi.org/10.1109/IROS.2013.6696665
https://doi.org/10.1007/978-3-319-18818-8_31
https://doi.org/10.1111/j.1532-5415.1991.tb05927.x
http://arxiv.org/abs/1412.0691

240 BIBLIOGRAPHY

Lang. 2018, pages 4331–4337. isbn: 978-0-9992411-2-7. doi: 10.24963/ijcai.

2018/602.

[190] Robert Shaw, Michael T Turvey and William Mace. “Ecological psychology:

The consequence of a commitment to realism”. In: Cognition and the symbolic

processes 2 (1982), pages 159–226.

[191] Pavel Shvaiko and Jerome Euzenat. “Ontology Matching: State of the Art

and Future Challenges”. In: IEEE Transactions on Knowledge and Data En-

gineering 25.1 (2013), pages 158–176. issn: 1041-4347. doi: 10.1109/TKDE.

2011.253.

[192] Elena Paslaru Bontas Simperl, Malgorzata Mochol and Tobias Bürger. “Achiev-

ing Maturity: the State of Practice in Ontology Engineering in 2009”. In:

International Journal of Computer Science and Applications (IJCSA) 7.1

(2010), pages 45–65. issn: 0972-9038.

[193] Push Singh. “The public acquisition of commonsense knowledge”. In: Pro-

ceedings of AAAI Spring Symposium: Acquiring (and Using) Linguistic (and

World) Knowledge for Information Access. (Palo Alto, CA, USA). Edited by

Jussi Karlgren. AAAI Press, 2002.

[194] Push Singh, Thomas Lin, Erik T. Mueller, Grace Lim, Travell Perkins and

Wan Li Zhu. “Open Mind Common Sense: Knowledge Acquisition from the

General Public”. In: Proceedings of the DOA/CoopIS/ODBASE Confeder-

ated International Conferences. (Irvine, California, USA). Edited by Robert

Meersman and Zahir Tari. Springer, 2002, pages 1223–1237. isbn: 3-540-

00106-9. doi: 10.1007/3-540-36124-3 77.

[195] Paul Smolensky. “Connectionist AI, symbolic AI, and the brain”. In: Ar-

tificial Intelligence Review 1.2 (1987), pages 95–109. issn: 1573-7462. doi:

10.1007/BF00130011.

[196] Robert Speer, Joshua Chin and Catherine Havasi. “ConceptNet 5.5: An Open

Multilingual Graph of General Knowledge”. In: Proceedings of the 31st AAAI

https://doi.org/10.24963/ijcai.2018/602
https://doi.org/10.24963/ijcai.2018/602
https://doi.org/10.1109/TKDE.2011.253
https://doi.org/10.1109/TKDE.2011.253
https://doi.org/10.1007/3-540-36124-3_77
https://doi.org/10.1007/BF00130011

BIBLIOGRAPHY 241

Conference on Artificial Intelligence and the Twenty-Ninth Innovative Ap-

plications of Artificial Intelligence Conference (AAAI 2017). (San Francisco,

California USA). Edited by Satinder P. Singh and Shaul Markovitch. AAAI

Press, Palo Alto, California, 2017, pages 4444–4451.

[197] Robert Speer and Catherine Havasi. “Representing General Relational Know-

ledge in ConceptNet 5”. In: Proceedings of the Eighth International Confer-

ence on Language Resources and Evaluation, LREC. (Istanbul, Turkey). Ed-

ited by Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Mehmet Ugur

Dogan, Bente Maegaard, Joseph Mariani, Jan Odijk and Stelios Piperidis.

European Language Resources Association (ELRA), 2012, pages 3679–3686.

isbn: 978-2-9517408-7-7.

[198] Thomas A. Stoffregen. “Affordances as properties of the animal-environment

system”. In: Ecological Psychology 15.2 (2003), pages 115–134.

[199] Anselm L. Strauss and Juliet M. Corbin. Basics of Qualitative Research:

Techniques and Procedures for developing Grounded Theory. 1998. doi: 10.

4135/9781452230153.

[200] Ponnusamy Subramaniam and Bob Woods. “Towards the Therapeutic Use

of Information and Communication Technology in Reminiscence Work for

People with Dementia: a Systematic Review”. In: International Journal of

Computers Healthcare 1.2 (2010), pages 106–125. doi: 10.1504/IJCIH.2010.

037457.

[201] Fabian M. Suchanek, Gjergji Kasneci and Gerhard Weikum. “Yago: A Core of

Semantic Knowledge”. In: Proceedings of the 16th International Conference

on World Wide Web (WWW 2007). (Banff, Alberta, Canada). Edited by

Carey Williamson, Mary Ellen Zurko, Peter Patel-Schneider and Prashant

Shenoy. ACM, 2007, pages 697–706. isbn: 978-1-59593-654-7. doi: 10.1145/

1242572.1242667.

[202] Vojtech Svátek, Martin Homola, Jan Kluka and Miroslav Vacura. “Metamodeling-

Based Coherence Checking of OWL Vocabulary Background Models”. In:

https://doi.org/10.4135/9781452230153
https://doi.org/10.4135/9781452230153
https://doi.org/10.1504/IJCIH.2010.037457
https://doi.org/10.1504/IJCIH.2010.037457
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667

242 BIBLIOGRAPHY

Proceedings of the 10th International Workshop on OWL: Experiences and

Directions (OWLED 2013) co-located with 10th Extended Semantic Web Con-

ference (ESWC 2013). (Montpellier, France). Edited by Mariano Rodriguez-

Muro, Simon Jupp and Kavitha Srinivas. 2013.

[203] Swabha Swayamdipta, Sam Thomson, Chris Dyer and Noah A. Smith. “Frame-

Semantic Parsing with Softmax-Margin Segmental RNNs and a Syntactic

Scaffold”. In: CoRR (2017). url: http://arxiv.org/abs/1706.09528.

[204] Cui Tao, Wei-Qui Wei, Harold R. Solbrig, Guergana Savova and Christopher

G. Chute. “CNTRO: A Semantic Web Ontology for Temporal Relation Infer-

encing in Clinical Narratives”. In: Proceedings of the Annual Symposium of

American Medical Informatics Association (AMIA 2010). (Washington DC,

USA). 2010, pages 787–791.

[205] Moritz Tenorth and Michael Beetz. “KNOWROB - knowledge processing for

autonomous personal robots”. In: Proceedings of the International Conference

on Intelligent Robots and Systems (IROS 2009). (St. Louis, Missouri, USA).

IEEE, 2009, pages 4261–4266. isbn: 978-1-4244-3803-7. doi: 10.1109/IROS.

2009.5354602.

[206] Moritz Tenorth and Michael Beetz. “KnowRob: A knowledge processing in-

frastructure for cognition-enabled robots”. In: The International Journal of

Robotics Research 32.5 (2013), pages 566–590. doi: 10.1177/0278364913481635.

[207] Moritz Tenorth and Michael Beetz. “Representations for robot knowledge in

the KnowRob framework”. In: Artificial Intelligence 247 (2017), pages 151–

169. doi: 10.1016/j.artint.2015.05.010.

[208] Moritz Tenorth, Alexander Clifford Perzylo, Reinhard Lafrenz and Michael

Beetz. “Representation and Exchange of Knowledge About Actions, Objects,

and Environments in the RoboEarth Framework”. In: IEEE Transactions

on Automation Science and Engineering 10.3 (2013), pages 643–651. doi:

10.1109/TASE.2013.2244883.

http://arxiv.org/abs/1706.09528
https://doi.org/10.1109/IROS.2009.5354602
https://doi.org/10.1109/IROS.2009.5354602
https://doi.org/10.1177/0278364913481635
https://doi.org/10.1016/j.artint.2015.05.010
https://doi.org/10.1109/TASE.2013.2244883

BIBLIOGRAPHY 243

[209] Michael Thielscher. “Representing the Knowledge of a Robot”. In: Proceed-

ings of the 7th International Conference on Principles of Knowledge Rep-

resentation and Reasoning (KR 2000). (Breckenridge, Colorado, USA). Ed-

ited by Anthony G. Cohn, Fausto Giunchiglia and Bart Selman. Morgan

Kaufmann, 2000, pages 109–120.

[210] Sally Thorne, Sheryl Reimer Kirkham and Katherine O’Flynn-Magee. “The

Analytic Challenge in Interpretive Description”. In: International Journal of

Qualitative Methods 3.1 (2004), pages 1–11. doi: 10.1177/160940690400300101.

[211] Elena Torta, Franz Werner, David O. Johnson, James F. Juola, Raymond

H. Cuijpers, Marco Bazzani, Johannes Oberzaucher, John Lemberger, Ha-

das Lewy and Joseph Bregman. “Evaluation of a Small Socially-Assistive

Humanoid Robot in Intelligent Homes for the Care of the Elderly”. In:

Journal of Intelligent and Robotic Systems 76.1 (2014), pages 57–71. doi:

10.1007/s10846-013-0019-0.

[212] Bruno Vellas, Yves Guigoz, Philip J. Garry, Fati Nourhashemi, David Ben-

nahum, Sylvie Lauque and Jean-Louis Albarede. “The Mini Nutritional As-

sessment (MNA) and its use in grading the nutritional state of elderly pa-

tients”. In: Nutrition 15.2 (1999), pages 116–122.

[213] Bob Woods, Laura O’Philbin, Emma M. Farrell, Aimee E. Spector and Mar-

tin Orrell. “Reminiscence therapy for dementia”. In: Cochrane Database of

Systematic Reviews 3 (2009), pages 1–36. doi: 10.1002/14651858.CD001120.

pub3.

[214] Lu Zhou, Michelle Cheatham, Adila Krisnadhi and Pascal Hitzler. “A Com-

plex Alignment Benchmark: GeoLink Dataset”. In: Proceedings of the 17th

International Semantic Web Conference (ISWC 2018) - Part II. (Monterey,

CA, USA). Edited by Denny Vrandecic, Kalina Bontcheva, Mari Carmen

Suárez-Figueroa, Valentina Presutti, Irene Celino, Marta Sabou, Lucie-Aimée

Kaffee and Elena Simperl. Volume 11137. Lecture Notes in Computer Science.

https://doi.org/10.1177/160940690400300101
https://doi.org/10.1007/s10846-013-0019-0
https://doi.org/10.1002/14651858.CD001120.pub3
https://doi.org/10.1002/14651858.CD001120.pub3

244 BIBLIOGRAPHY

Springer, 2018, pages 273–288. isbn: 978-3-030-00667-9. doi: 10.1007/978-3-

030-00668-6\ 17.

[215] Gregory D. Zimet, Nancy W. Dahlem, Sara G. Zimet and Gordon K. Far-

ley. “The multidimensional scale of perceived social support”. In: Journal of

personality assessment 52.1 (1988), pages 30–41.

[216] Cäcilia Zirn, Vivi Nastase and Michael Strube. “Distinguishing between In-

stances and Classes in the Wikipedia Taxonomy”. In: Proceedings of the 5th

European Semantic Web Conference (ESWC 2008). (Tenerife, Canary Is-

lands, Spain). Edited by Sean Bechhofer, Manfred Hauswirth, Jörg Hoffmann

and Manolis Koubarakis. Springer, 2008, pages 376–387. isbn: 978-3-540-

68233-2. doi: 10.1007/978-3-540-68234-9 29.

https://doi.org/10.1007/978-3-030-00668-6_17
https://doi.org/10.1007/978-3-030-00668-6_17
https://doi.org/10.1007/978-3-540-68234-9_29

	List of Tables
	List of Figures
	List of Publications
	Introduction
	Goals of the Thesis
	Contributions of the Thesis
	Case Study: Companion Robots in Socially Assistive Context
	Research Methodology
	Thesis Outline

	Background
	Social Robots
	Software Architectures for Social Robots

	The Semantic Web
	Extensible Markup Language (XML)
	Resource Description Framework (RDF)
	Web Ontology Language (OWL)
	SPARQL

	Ontologies
	Knowledge Management Frameworks for Social Robots

	Pattern-based Ontology Design
	Ontology Design Patterns
	eXtreme Design

	Ontology Matching
	Linguistic Linked Open Data Resources
	Common Sense Knowledge

	An Ontology Network for Social Robots in Assistive Context
	Design Methodology
	Guidelines for Ontology Re-use
	MARIO Ontology Network Development Process

	Knowledge Areas
	Ontology Modules
	Affordance Ontology
	Comprehensive Geriatric Assessment Ontology
	CGA Ontology Modules

	Tagging Ontology
	Other Modules

	Discussion

	Providing LOD as Background Knowledge for Social Robots
	Framester: a Linguistic Data Hub
	Framester Overview
	Semi-automatic Generation of Framester
	Conversion of Input Resources in RDF
	Normalization of the Input Resources
	Linking Entities of Different Resources
	Heuristic Methods for Extending the Mapping
	Assessing Integrity Constraints

	Assessing Foundational Distinctions in Linked Open Data
	Related Work
	Methods
	Alignment-based Classification
	Machine Learning-based Classification
	Features

	Reference Datasets
	Evaluation
	Alignment-based Methods: SENECA
	Machine Learning Methods

	Discussion

	Accessing Background Knowledge using Lizard
	Requirements
	Architecture
	Ontology Bundle
	Java API
	Mapping OWL on Java
	Naming conventions
	Preliminary Tasks
	Hierarchy of the Java Classes
	Assigning Methods to Classes
	Jena and Bean Classes

	Rest API
	Description of the REST API

	Discussion

	A Frame-based Approach for Integrating Ontologies
	Types of Semantic Heterogeneity
	Proposed Approach
	Mapping Ontology Entities on Frames
	Frame-based Ontology Matching

	Discussion

	A Knowledge Centered Architecture for Social Robots
	Requirements of Software Architectures for Social Robots
	Functional Requirements
	Non Functional Requirements

	Robot Software Architecture Overview
	Components
	Behaviors and Task Manager
	Behavior
	Task Manager

	Event Bus
	Bundle Manager
	Knowledge Management Framework
	Knowledge Base
	Lizard

	Basic Capabilities
	Text to Speech and Speech to Text
	Graphical User Interface Manager
	Perception and Motion Controller

	Convoluted Capability Subsystem

	Architecture Prototype for a Real Social Assistive Scenario
	Delivering Knowledge-intensive Applications for Social Robots
	Comprehensive Geriatric Assessment
	Reminiscence Therapy

	Evaluation
	Quantitative Evaluation
	Qualitative Evaluation

	Discussion

	Conclusion and Future Work
	Research Questions Revisited
	Future Work

	Appendices
	Code Generated by Lizard
	Interface
	Jena Class
	Bean Class
	REST API Description

