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“We are what we repeatedly do, therefore excellence is not an act, but a habit.”

Aristotle
Will Durant, "The Story of Philosophy" 1926

“After a time, one may find that ’having’ is not as pleasing as ’wanting’.”

Spock
Star Trek, “Amok Time” 1968
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As agriculture becomes more high tech, a growing number of farmers are using GPS-
equipped autonomous systems supported by platforms that collect data on plants,
soil, and weather. This emerging field of precision agriculture is based on observ-
ing, measuring and responding to crops with smart technology. Robots are taking on
many tasks in agriculture nowadays, including planting greenhouse crops, harvest-
ing apples, pruning vineyards and/or plant health monitoring. Precision agriculture
refers to the way farmers manage crops to ensure efficiency of inputs such as water
and fertilizer, and to maximize productivity, quality, and yield as well minimizing
pests, unwanted flooding, and diseases. It begins the cycle by collecting information
about their crop yields. This is done through a series of sensors specialized for a pur-
pose, then the data is transferred to cloud for intelligent processing and further data
analytics and at the end is either suggested to take actions or is done autonomously.

Image/video processing for fruit detection in the tree using hard-coded feature ex-
traction algorithms has shown high accuracy on fruit detection during recent years.
While accurate, these approaches even with high-end hardware are still computa-
tionally intensive and too slow for real-time systems. This study details the use of
deep convolution neural networks architecture based on single-stage detectors. Us-
ing deep-learning techniques eliminates the need for hard-code specific features for
specific fruit shapes, color and/or other attributes. This architecture takes the input
image and divides into AxA grid, where A is a configurable hyper-parameter that
defines the fineness of the grid. To each grid cell an image detection and localization
algorithm is applied. Each of those cells is responsible to predict bounding boxes
and confidence score for fruit (apple and pear in the case of this study) detected in
that cell. We want this confidence score to be high if a fruit exists in a cell, otherwise
to be zero, if no fruit is in the cell. More than 100 images of apple and pear trees
were taken. Each tree image with approximately 50 fruits, that at the end resulted
on more than 5000 images of apple and pear fruits each. Labeling images for train-
ing consisted on manually specifying the bounding boxes for fruits, where (x, y) are
the center coordinates of the box and (w, h) are width and height. This architecture
showed an accuracy of more than 90% fruit detection. Based on correlation between
number of visible fruits, detected fruits on one frame and the real number of fruits
on one tree, a model was created to accommodate this error rate. Processing speed
is higher than 20FPS which is fast enough for any grasping/harvesting robotic arm
or other real-time applications.

HTTPS://WWW.UNIBO.IT/EN
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Cropload estimation is essential for efficient orchard management starting with op-
timizing chemical thinning, planning the labor force, harvest equipment, and vehi-
cles for transportation of fruit from field to the packing plant. A new approach to
determine tree cropload by using a combination of deep neural networks with con-
volution neural networks (CNN). For this we use a model to detect fruit in a canopy.
To accurately determine cropload, images of the canopy were fed to another CNN
which correlated tree canopy size and shape to the number of hidden fruit due to
occlusion, then the output is feed to an simple deep neural network (DNN) together
with detected fruit number to predict/estimate the overall canopy cropload. The
model was then compared to an algorithmic method where parameters like cultivar,
canopy shape and training system are manually estimated. Results show 60% to 80%
accuracy of the algorithmic method while the deep learning model shows accuracy
of around 95% prior to harvest, and more than 90% after chemical thinning, when
fruit reached 20mm. Based on this, another CNN was developed to estimate the
effectiveness of fruit thinning. Using these models, individual tree thinning can be
estimated, so that when mechanical thinning would be applied, it would be based
on those data.

With the increase of population in the world, the demand for quality food is increas-
ing too. In recent years, increasing demand and environmental factors have heavily
influenced the agricultural production. Automation and robotics for fruit and veg-
etable production/monitoring have become the new standard. An autonomous Un-
manned Aerial Vehicle (UAV) able to navigate through rows orchard rows was de-
scribed. The UAV is comprised of a flight controller (AP stack), a microcontroller for
analog reading of different sensors, and an On-Board Computer (OBC). Pictures are
taken through a camera and streamed through WiFi to a Ground Control Computer
(GCC) running a convolution neural network model. Based on prior training, the
model outputs three directions: RIGHT, LEFT and STRAIGHT. A moving average of
multiple frames per second is extracted and sent to a build-in Proportional-Integral-
Derivative (PID) controller on the UAV. After error correction from this feedback,
controller sends the direction to the flight controller using MAVLink protocol’s ra-
dio channel overrides, thus performing autonomous navigation.

∗ ∗ ∗
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Significance of this study

What is the aim of this study?

The primary goal of this study is to create a platform for fruit growers to estimate
the apple/fruit cropload in their orchards. By using Artificial Intelligence to detect
fruits and relate it to canopy shape and estimate the overall cropload. The platform
needs to be very modular and can be hot-plugged into autonomous tractors, rovers
and/or unmanned areal vehicles.

What is already known in this subject?

There are many studies done to detect fruits in the tree and correlate it to the overall
cropload. Most of the studies use hard-coded algorithms to extract features like
shape, color, reflectance and so on from fruits. Studies on fruit detection date back
to 50s and are use extensively for cropload estimation.

What are the new findings and innovations?

Our mani contributions to this field are with:

• A very accurate deep-learning model for fruit detection with accuracy up to
95% prior harvest,

• A model to relate tree canopy and shape to the fruit occlusion and overall
cropload,

• A model to estimate the effectiveness of chemical thinning based on fruit de-
tection and cropload models,

• A modular UAV platform for autonomous navigation within orchards that
would carry fruit detection systems,

• And a large dataset (images) with labeled and annotated fruits (apples and
pears).
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Chapter 1

Sensors, Robotics and Artificial
Intelligence in Agriculture

Abstract

As agriculture becomes more high tech, a growing number of farmers are using GPS-

equipped autonomous systems supported by platforms that collect data on plants, soil, and

weather. This emerging field of precision agriculture is based on observing, measuring and

responding to crops with smart technology. Robots are taking on many tasks in agricul-

ture nowadays, including planting greenhouse crops, harvesting apples, pruning vineyards

and/or plant health monitoring. Precision agriculture refers to the way farmers manage crops

to ensure efficiency of inputs such as water and fertilizer, and to maximize productivity, qual-

ity, and yield as well minimizing pests, unwanted flooding, and diseases. It begins the cycle

by collecting information about their crop yields. This is done through a series of sensors

specialized for a purpose, then the data is transferred to cloud for intelligent processing and

further data analytics. The next step is presented to the farmer as a suggestion to take actions

or is done autonomously. In this paper we present a review of this closed system from sensors

and data collection, big data and cloud computing until autonomous systems and robotics.
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1.1 Introduction

THE pace of technological change — whether through advances in computer sci-

ences & technology (CST), biotechnology, or such emerging fields as nanotech-

nology — will almost certainly accelerate in the next decade, with synergies across

technologies and disciplines generating advances in research and development, pro-

duction processes, and the nature of products and services [Harrison and Wolyniak,

2015]. In the CST field, for example, advances in microprocessors will support real-

time image recognition and detection,while artificial intelligence will make possible

the use of more intelligent robotics in manufacturing that will support the ability to

quickly reconfigure machines to produce prototypes and new production runs, with

implications for manufacturing logistics and inventories. Further technological ad-

vances are expected to continue to increase demand for a highly skilled workforce,

support higher productivity growth, and change the organization of business and

the nature of employment relationships [Lima and Souza, 2017].

Agriculture is a sector with very specific working conditions and constraints.

This isn’t only due to the dependency on weather conditions, but as well on the

labor market. During times of highly intensive agricultural activities (eg. harvest),

there are very pronounced peaks in workload which can only be predicted on a

short-term basis due to the weather and seasonality. According to [Fröder, 2014] the

world’s agricultural workforce is expected to decline around 30% between 2017 and

2030. This expected decline will be driven by structural changes within the agri-

food industry, but also because the opportunities for employment are expected to

be better in other sectors. Rural areas are already facing difficulties in creating at-

tractive jobs in general, pushing towards an ongoing migration towards urban cen-

tres. Those structural changes in agriculture are expected to continue with higher

investments in technology. For example, investing in precision farming and digital

agriculture are expected to significantly increase [Colbert, Yee, and George, 2016].

New technologies are set to impact the farm labour dynamic in many ways [Pier-

paoli et al., 2013], but two developments stand out. One, the increasing use of data

collection tools, such as sensors, and increasing sophistication of farm hardware and

software is increasing demand for higher analytical and technical skill sets [Aubert,

Schroeder, and Grimaudo, 2012; Mulla, 2013]. And two, the advancement of au-

tomation and autonomy on farm will decrease the reliance on human resources for
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low-skill and labour-intensive work while increasing autonomous machinery and

robotics presence [Bechar and Vigneault, 2016; Stafford, 2007; Yaghoubi et al., 2013].

A new field of agriculture and engineering has emerged, a concept of preci-

sion agriculture (PA) that utilizes the advances in computer sciences and electronics

for guidance and automatic steering, yield monitoring, variable rate input applica-

tion, remote sensing, in-field electronic sensors, section and row control on planters,

sprayers and fertilizer applicators, and spatial data management systems in agri-

culture. For a good agricultural practice (GAP), as described by [Zude-Sasse et

al., 2016], temporal changes within or between years and spatial patterns of plant

growth are to be considered. The most influenced temporal factors is weather con-

ditions and environmental changes while the most influential spatial is the terrain

[Manfrini, Taylor, and Grappadelli, 2009]. The fundamental concept of precision

agriculture, collecting data and making decisions based on that data, has been around

for many years. This was easier to do without technology on small plots. But as the

size of farms grew, this no longer was possible. The larger farms require new tech-

niques and tools [Brase, 2006]. These news tools have been developed over time.

The Geographic Information System (GIS) was one of the first precision farming

tool developed. As noted by [Brase, 2006] all major changes in agricultural technol-

ogy have often been treated with derision and controversy. The change from horses

or oxens to tractors was difficult for many people. Moving from single cross corn

seed to hybrid seed was controversial too. New scientific breakthroughs in genome

and gene manipulations are facing major backlash all over the world. Most regu-

lations worldwide stipulate that a new genetically modified (GM) crops have to be

compared to their closest non-GM counterpart as a corner stone of the pre-market

risk assessment [Slot et al., 2018]. Likewise, with precision agriculture we are facing

a major shift in technology. As with many of the previously stated technology shifts,

even though the techniques and tools changed, and while the processes remained

the same, the expected outcome always increased.

This paper presents an overview of new technologies and methodologies used in

PA with emphasis in fruit tree orchards or precision orchard management. It aims to

illustrate the challenges PA faces within this fast pace changing technological sector.

One is that the agricultural sector is extremely low margin, therefore, investments in

innovation are difficult [Pierpaoli et al., 2013]. Although the cost of smart farming
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is still high for any but the largest farms, this doesn’t exclude PA for being an in-

novative sector in research and application. This paper gives and account on those

technical advancements in computer sciences, machinery or else that are giving a

significant changing push to the core meaning of PA. It focuses especially on the

promise that Artificial Intelligence (AI) is making, on the new achievements surpass-

ing even human capacities and capabilities. For many years it has been suggested

that PA is in the crossroad where PA applications are catching up with technological

advancements [Stafford, 2000b], where as highly-advanced tractors, UAV and other

unmanned vehicles and other technologies will autonomously monitor, analyse and

manage agricultural farms [Stafford, 2000a].

1.1.1 Precision Agriculture 4.0

The term precision refers to being minutely exact or sharply defined, and in PA,

precise and sharply defined in the context of inputs means application of best mea-

surable "thing" at precise "place" and sharply defined "time" - TPT [Pierce, Robert,

and Mangold, 1994; Manfrini, Taylor, and Grappadelli, 2009].

The concept of PA has shifted its meaning from when was first conceptualized.

When first global positioning systems (GPS) in conjunction with yield monitors

and their strict relation were made available for field crops in late 80’s, marks a

rather short history of PA [Zude-Sasse et al., 2016]. In later years the introduction

of analyzing tools like geo-referencing with GIS, shifted the meaning of PA into a

more complete system. GIS is used to manage geo-spatial field data, including field

boundaries, imagery, soil information, application maps, yield data, and near-earth

and remotely sensed data. The affordability of those tools to measure, monitor and

analyse spatial variability, tailored the action-taking process into a site-crop-specific

[Stafford, 2000b]. PA also included the autosteering systems, variable rate appli-

cation (VRA) and zone management. The technology needed to accomplish VRA

includes an in-cab computer and software with a field zone application map, fertil-

izer equipment capable of changing rates during operation and GPS [Chen, Feng,

and Zhang, 2012]. Autosteering and telemetry is technology that captures data from

farm equipment operating in a field and transfers the data to farmer through in-

ternet [Pickett, 2004]. According to [Hedley, 2014] GPS and autosteering alone has

increased farm efficiency up to 10% thus making PA a more interesting and valuable
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concept, despite its slow adoption during early years [Pierpaoli et al., 2013].

Later on researchers started using light as means of observing the crop. When

crop is observed or its condition assessed without physically contact, it is a form of

remote sensing [Huang et al., 2018]. Observing the colors of the leaves or the overall

appearances of plants can determine its condition. Remotely sensed images taken

from satellites and aircraft provided a means of assessing wide area of fields for

a high vantage point and using them for VRA. Even though remote sensing dates

back to the 50’s [Bastiaanssen, Molden, and Makin, 2000], only recent technological

advances have made the benefits of remote sensing accessible to most farmers. Satel-

lite imagery (SI) in conjunction with VRA are often called "Grid farming" or Remote

Agriculture.

Due to the prominence of Internet of Things (IoT) and Cloud Computing, PA is

transforming into Smart Agriculture (SA). The system of PA is based on a precise

and targeted application of specific measures in the exact spatial arrangement for

more complex control structures [Mekala and Viswanathan, 2017]. Such structures

are systems that process the input information and execute the output action. The

input blocks of the control system are sensors that convert the input quantity of

physical quantity. Various types of sensors that expand the opportunities for ap-

plication, regulation, measurement and recording of data are being used in the PA

systems. There is a paradigm shift from use of wireless sensors network (WSN) as a

major driver of smart agriculture to the use of IoT and Data Analytics (DA) [Elijah

et al., 2018]. The IoT integrates several existing technologies such as WSN, radio fre-

quency identification (RFID), cloud computing, middleware systems and end-user

applications for delivering Agriculture-as-a-Service (AaaS) [Gill, Chana, and Buyya,

2017; Stočes et al., 2016]. While PA is just taking in-field variability into account, a

Smart Agriculture (SA) goes beyond that by basing management tasks not only on

location but also on data, enhanced by context- and situation awareness, triggered

by real-time events [Wolfert et al., 2017; Pivoto et al., 2018; OGrady and OHare, 2017;

Kaloxylos et al., 2012]

Agriculture is highly repetitive, and, many tasks can be automated. Each farming

operation requires many resources, for example planting, maintaining, and harvest-

ing crops need money, energy, labour and resources [Brown, 2012]. For those reasons

PA relies onto robotics and fully autonomous systems. For a farmer robot to be fully
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autonomous, it needs to navigate through very diverse and harsh environment with-

out the human supervision [Slaughter, Giles, and Downey, 2008]. Robots nowadays

are wirelessly connected to a central operator to both receive updated instructions

regarding the mission, and report status and data. However, making an autonomous

farm robot requires better controllers, localization, communication and action taking

systems. The technology is similar to that of autonomous cars but applied to agitech.

Where it differs is that farming robots often need to manipulate their environment,

picking vegetables or fruit, applying pesticides in a localized manner, or planting

seeds. All these tasks require sensing, manipulation, and processing of their own.

Until recent years, different traditional computer solving approaches have been

extensively adopted in the agricultural field, be that in pest and disease detection,

stress and water status monitoring or other. In recent years, with the significant

increase in computational power, in particular with special purpose processors op-

timized for matrix-like data processing and large amount of data calculations (eg.

Graphical Processing Unit - GPU), a lot of Machine Learning (ML), Deep Learning

(DL) models and methodologies have achieved breakthroughs never achieved be-

fore [LeCun, Bengio, and Hinton, 2015; Ensmenger, 2011]. ML Algorithms enable

one to analyze massive volumes of data, regardless of complexity, quickly and accu-

rately. The union of many components: computer vision (CV) with ML, autonomous

decision making based on trained model outcomes have been shown to be promising

in solving different problems in agriculture. The predictive potential made possible

by DL will cause a disruptive effect in different segments of the traditional industry

as well as agriculture [Patricio and Rieder, 2018].

The process of agriculture towards precision since introduction of GPS, georefer-

encing, VRA has gone from simple Precision Agriculture (PA1.0) into: firstly with re-

mote sensors and satellite and aircraft imagery to Remote Agriculture (PA2.0), then

with big data, cloud-computing and IoT to Smart Agriculture (PA3.0), and lastly

with Decision Support Systems (DSS), robotics and AI into Intelligent Self-Sustained

& Autonomously-Managed Agriculture (PA4.0). PA4.0 it’s a fully sustained cyclic

system, where outputs of one segment are the input for the next one. It can be

thought of three big steps, each including individual and/or independent smaller

steps. First step is monitoring and sensing, then comes analyzing and predicting,

lastly is managing and action taking. With drones, robots and intelligent monitoring
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FIGURE 1.1: PA as cyclic system

systems now successfully being used in research and field trials, artificial intelli-

gence, or machine learning, is set to revolutionize the future of agriculture as the

next phase of precision agriculture is on the horizon. Many operations will be done

remotely, processes will be automated, risks will by identified and solved before

occurring and farmers will be able to make more informed and rapid decisions.

1.1.2 Artificial Intelligence in PA4.0

Scaling up of farm operations to match the exponential increase in consumption

will drive the need for automation technologies in the farms. As the farmers are

automating their operation, robots and autonomous systems have become an inte-

gral part of PA and are assisting farmers to improve yield and product quality while

addressing the increasing supply needs. AI has become the backbone of robotics,

as it enables a machine to use language processing and deep learning capabilities

to take cognitive decisions. With the development of AI technologies, it is easier to

track and predict the right time for planting, irrigation, and harvesting. AI helps to

predict the likelihood of rain, the outbreak of diseases or attack of pests and the soil

health condition. The information gathered from the field using satellite images and



8 Chapter 1. Sensors, Robotics and Artificial Intelligence in Agriculture

sensors on balloons would be juxtaposed with historical weather and other agro-

nomic data to generate customized data for a specific farm and a specific crop. The

advanced sensors and technologies, make the entire task of crop and soil manage-

ment uncomplicated for the farmers and easily automated.

The use of cognitive technologies in agriculture could also help determine the

best crop choice or the best managing practices for a crop mix adapted to various

objectives, conditions and better suited for farm’s needs. AI can use diverse capabil-

ities to understand how crops react to different soil types, weather forecasts and local

conditions. By analyzing and correlating information about weather, type of crops,

types of soil or infestations in a certain area, probability of diseases, data about what

worked best, year to year outcomes, marketplace trends, prices or consumer needs,

farmers can make decisions to maximize return on crops. These artificial intelligence

and cognitive systems will save time, increase safety and reduce potential human er-

ror while improving effectiveness.

The principle of AI is one where a machine can perceive its environment, and

through a certain capacity of flexible rationality, take action to address a specified

goal related to that environment. ML is when this same machine, according to a

specified set of protocols, improves in its ability to address problems and goals re-

lated to the environment as the statistical nature of the data it receives increases. As

the system receives an increasing amount of similar sets of data that can be catego-

rized into specified protocols, its ability to rationalize increases, allowing it to better

predict on a range of outcomes. Remote sensors, satellites, robots and autonomous

systems can gather information 24 hours per day over an entire field thus feeding

the system with huge amount of data, and in turn self-improving itself in reaching

its goal.

Agricultural technology adoption is increasing each year, and machinery based

applications, such as navigation technologies and yield monitors, are leading the

way. It appears that adoption is driven in large part by ease of use; the easier a

technology is to use, the more likely it is to be adopted on the farm [Pierpaoli et al.,

2013].
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1.2 Site specific crop monitoring - SSCM

The first step in PA4.0 is data collection and sensor monitoring. Different sen-

sors, communications protocols and transmission protocols are used. The purpose

of this step is that through crop monitoring for nutrients, water-stress, disease, in-

sect attack, overall plant health etc. the farmer is aware in real-time of what happens

in the field. This information can either be presented in raw-form to the farmer or

processed with on-board computers, local computers or cloud.

1.2.1 Sensors

A number of sensing technologies are used in precision agriculture, providing

data that helps farmers monitor and optimize crops, as well as adapt to changing

environmental factors [Zude-Sasse et al., 2016]. By design most of agricultural sen-

sors can be grouped into:

Location Sensors

use signals from GPS satellites to determine latitude, longitude, and altitude to

within 20cm. Three satellites minimum are required to triangulate a position. Pre-

cise positioning is the cornerstone of precision agriculture.

Optical Sensors

use light to measure soil and plant properties. The sensors measure different fre-

quencies of light reflectance in near-infrared, mid-infrared, and polarized light spec-

trums. Sensors can be placed on vehicles or aerial platforms such as drones or even

satellites. Soil reflectance and plant color data are just two variables from optical

sensors that can be aggregated and processed. In this category there are RGB, mul-

tispectral, hyperspectral, thermal, fluorescent cameras and Time of Flight ranging

sensors.

Electrochemical Sensors

provide key information required in precision agriculture: moisture, pH and soil

nutrient levels and other chemical triggers. Sensor electrodes work by detecting

specific ions in the soil/plant. Moisture sensors assess moisture levels by measuring

the dielectric constant (an electrical property that changes depending on the amount

of moisture present).
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Mechanical Sensors

measure force applied to the sensor or “mechanical resistance.” Some of those sen-

sors use a probe that penetrates the soil and records resistive forces through use of

load cells or strain gauges. A similar form of this technology is used on large tractors

to predict pulling requirements for ground engaging equipment. Tensiometers, de-

tect the force used by the roots in water absorption and are very useful for irrigation

interventions, Fruit gauges detect fluctuations on fruit growth of the fruit [Morandi

et al., 2007] with accuracy of micrometers. Trunk/stem dendrometers, air pressure

etc are all mechanical sensors.

Thermal Sensors

basically consists of two different metals such as nickel, copper, tungsten or alu-

minum etc, that are bonded together to form a Bi-metallic strip. The different linear

expansion rates of the two dissimilar metals produces a mechanical bending move-

ment when the strip is subjected to temperature change. The Thermistor is another

type of temperature sensor, whose name is a combination of the words THERM-ally

sensitive res-ISTOR. A thermistor is a special type of resistor which changes its phys-

ical resistance when exposed to changes in temperature. Their main advantage over

bi-metal types is their speed of response to any changes in temperature, accuracy

and repeatability. Most of the sap flow sensors are based on thermal sensors [Scalisi,

Bresilla, and Grilo, 2018].

1.2.2 Data transmission

During years with the increase development of IoT technologies and decrease in

price of computer raw power, wireless technologies have rapidly emerged [Zhang,

Wang, and Wang, 2002]. Different technologies are used for transmitting without

wires but likes of: light (infrared and/or laser point-to-point communications) and

radio-frequencies (Bluetooth, WiFi, ZigBee, LoRa, SigFox, CDMA and GSM/GPRS)

[Mirhosseini, Barani, and Nezamabadi-pour, 2017; Park, Lee, and Yoo, 2015; Carrabs

et al., 2015; Ferentinos and Tsiligiridis, 2007].

In agriculture, this technology has been adopted due to the acceptable cost (Vou-

gioukas et al., 2013). While this has still not seen a significant success in farmers

orchards, it is one of the most used technology that gathers hight resolution spatial
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and temporal data about the environment and the specific crop that is being moni-

tored.

Hardware required for Wireless Sensor Network (WSN) and/or Agriculture Wire-

less Sensor Network (AWSN) [Rehman et al., 2014; Ruiz-Garcia et al., 2009] is com-

posed of: (ranking based on importance)

1. Radio-frequency communication protocol

2. Energy-efficient processor

3. High-resolution analog inputs (sensors)

4. Long-life energy source

5. Hig-speed reaction outputs (actuators)

6. Development platform

Those systems are usually composed of a few sinks and large quantity of small

sensors nodes. Each wireless sensor node communicates with a gateway unit which

can communicate with other computers via other networks. Communication pro-

tocol (CP) consists of the application layer, transport layer, network layer, data link

layer, physical layer, power management, mobility management and the task man-

agement [Akyildiz et al., 2002; Ruiz-Garcia et al., 2009; Ojha, Misra, and Raghuwan-

shi, 2015].

Technology LoRa Zigbee Bluetooth WiFi RFID

Feature Mesh Mesh Star Star P2P

Power Very Low Low Ultra low Moderate Very Low

Data rate (up to) 300Kbps 200Kbps 1Mbps 100Mbps 100Kbps

Coverage 20km 500m 300m 50m 3m

Cost Very low Low Low Medium Low

TABLE 1.1: Comparison of Radio-Frequencies used in AWSN

CPs built over wireless standards, such as 802.15.4, facilitate the device network-

ing and bridge the gap between the internet-enabled gateways and the end-nodes.

Such protocols include ZigBee, ONE-NET, Sigfox, WirelessHART, ISA100.11a, and
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6LowPan, Bluetooth Low Energy (BLE), LoRa/LoRaWAN, DASH7 and LoWiFi [Tzou-

nis et al., 2017]. During years different technologies and advances in low power con-

sumption have been developed providing a better means for AWSN. Technologies

like Bluetooth were thought the best compromise between datarate, speed and dis-

tance [Vuran et al., 2018; Choudhury et al., 2015]. Bluetooth is probably the closest

peer to WSNs, but its power consumption has been of secondary importance in its

design. Later on, more robust, lower power consumption and better meshed tech-

nologies have been applied. [Tab 1.1] [Rehman et al., 2014; Wang and Li, 2013].

As shown in [Fig 1.2], most promising technolog with very high distance trans-

mission rate, low power consumption and reasonable data rate is LoRa. LoRa can be

used for free in spectrum bands 434 MHz in Europe and 960 MHz in US. LoRa has

many parameters; the most important one is the Spreading Factor (SF). SF is a set

of parameters that specify transmit power, subfrequency and air time. LoRa define

spreading factors numbered from 6 to 12, where LoRaWAN is using from 7 to 12.

The lower is the SF, the higher is the throughput, and the lower is the distance cov-

ered. Also, lower SF means lower power consumption [Fig 1.2]. Many algorithms

are implemented in order to automatically assign SF among nodes thus making an

efficient data-rate/energy-consumption ratio.

FIGURE 1.2: LoRa

Versatile and convenient form factors, low-cost devices, high-processing AWSN

can nowadays be used, on small batteries with or without assist of mounted solar

panels, and operate for long periods of time. Those modern embedded devices have
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sufficient resources to support even more demanding sensors, such as image sensors

and on-board image analysis.

Roughly all Agriculture WSNs can be grouped into three categories:

1. Barebone monitoring without processing. Most AWSN fall into this category,

AWSN in this case are used just as intermediary nodes between sensors and

internet gateways. AWSN log the data from the sensors, then through the RF

and CP send the data to the server where further processing is done and served

to the user/farmer [Akyildiz and Kasimoglu, 2004; Tzounis et al., 2017; Le and

Tan, 2015].

2. Monitoring and simple processing. A huge number of AWSN is now shift-

ing into smarter self-processing nodes. While they take data from sensor (be

that soil, plant or environment), they are able to give early warnings and some

barebone predictive analytics about the crop. Usually they are attached to ac-

tuators to automate some simplified actions like irrigation valves or other VRA

[Hu et al., 2010; Akyildiz and Kasimoglu, 2004; Mainwaring et al., 2002].

3. Monitoring and advanced processing. In this category fall the more compute-

hungry AWSNs. A lot of early pest detection and insect traps use small but

powerfull AWSN that have cameras for image analysis and detection [Chougule,

Jha, and Mukhopadhyay, 2016]. Those systems include a much power-hungy

processor in form of an embedded computer able to monitor crops in real time

[Liqiang et al., 2011; Lin and Liu, 2008; Lv, Shen, and Hu, 2009; Chougule, Jha,

and Mukhopadhyay, 2016].

AWSNs are spread across all domains of PA, starting with crop soil monitoring

[Wang and Li, 2013; Chen, Feng, and Zhang, 2012; Sun et al., 2009]. According

to [Kim, Evans, and Iversen, 2008] spatial and temporal variations of soil moisture

can be matched by precision irrigation management, which can increase applica-

tion efficiencies, reduce environmental impacts and even improve yields. However

for better and real-time usage Wireless Underground Sensor Networks (WUSNs)

have recently been investigated for unattended soil monitoring. Unlike wired sen-

sor, which need to be deployed and removed frequently during the process of plant-

ing, WUSNs are deployed in the ground at a safe depth and do not interfere with

agriculture machine operations, such as tillage practices [Akyildiz and Stuntebeck,
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2006]. These networks consist of wirelessly-connected underground sensor nodes

that communicate through soil [Dong, Vuran, and Irmak, 2013]. Each device con-

tains all necessary parts to make the device self contained WSN: sensors, memory, a

processor, a radio, an antenna, and a power source.

The widest adoption of AWSN is in the high-value crops e.g. orchard and/or

vineyards [Vougioukas et al., 2013]. A study by [Torres et al., 2017] was developed

to acquire a suitable knowledge to manage irrigation and verify the influences of

living mulches on the vine by using wireless sensor networks to measure the vapor

pressure deficit, soil water potential and soil water content. In another study ann

intelligent data acquisition and service system for apple orchard was developed by

[Guo et al., 2014] for acquiring apple tree growth information in time and manag-

ing orchard production remotely by Portable Digital Assistant (PDA) through the

ZigBee Wireless Sensors Network (WSN) deployed in the apple orchard.

Implementing AWSN has many challenges [Tzounis et al., 2017]. Biggest ones

are heterogeneity and signal penetration through the vegetation [Vougioukas et al.,

2013] and security [Sicari et al., 2015].

1.2.3 Traceability

RFID is an emerging technology that makes use of wireless communication. The

protocol was originally developed for short-range product identification, typically

covering the 2 mm - 2 m read range, and has been promoted as the replacement

technology for the optical bar-code found, with the use of EPC (Electronic Product

Code) [Ruiz-Garcia et al., 2009]. RFID has the ability to allow energy to penetrate

certain goods and to read a tag that is not visible [Dobkin and Wandinger, 2005].

RFID systems are comprised of three main components: the tag or transponder, the

reader or transceiver that reads and writes data to a transponder, and the computer

containing database and information management software [Li et al., 2006].

Fruit pack houses attach passive RFID tags to bins holding fruit associated with

a number. Every time a bin passes through an RFID portal, its tag is read, and data

is collected and sent to a database, thus creating an audit trail or chain-of-custody

[Gautam et al., 2017]. The audit trail contains valuable information about those fruit,

treatments done and when were they done, when it was picked and so on, which

machinery were used, the worker harvesting them (or autonomous machine). With
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this information readily available, players in the supply chain can quickly and effi-

ciently mitigate a recall. Now, instead of pulling every single product from storage

or even store shelves, it is possible to pinpoint and pull just the batch that contains

the affected products [Ghaani et al., 2016].

Semi-Active RFID tags equipped with battery-powered sensors allow farmers to

collect temperature data from pallets and bins. By reading the RFID tag, farmers

can make sure a pallet maintains a certain temperature and no infestation occurs.

And, if the pallet has hit a temperature above certain threshold at any point in its

life-cycle, the owner can evaluate the specific bins or adjust the expiration data as

appropriate [Piramuthu, Farahani, and Grunow, 2013]. Similarly, RFID tags now

exist that can monitor humidity, pressure, and event movement, arming users with

even more data to ensure food safety.

Tree-based monitoring and tracing was described by [Wu et al., 2013; Ampatzidis

and Vougioukas, 2009; Luvisi et al., 2011]. Electronic archives for each apple tree

were set up and the whole record of orchard productivity was utilized to inform the

management process.And [Ampatzidis et al., 2012] presented a real-time monitoring

system that can track and record individual picker efficiency during harvest of tree

crops. It integrated a digital weighing scale, RFID reader/writer. As harvested fruit

is dumped into a standard collection bin situated on the scale, the system reads

simultaneously the picker’s ID (RFID tag) and records the incremental weight of

fruit.

1.3 Crop specific data analytics - CSDA

This is the second step of PA4.0 and the most important one. After data are col-

lected through sensors in the field, and then transmitted through different proto-

cols to internet-gates, the data is forwarded to specific servers and/or computers

for analysis. There are different approaches, softwares and platforms that analyse

the data which will be discussed. Those data afterwards are either presented to

the farmer so he can check again and decide further actions or can be sent directly

to autonomous systems that act immediately based on specified algorithms and/or

routines.
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1.3.1 Big Data and Cloud Computing

During the significant development of technology of recent decades, the agricul-

ture world has quietly been introduced to data aggregation technology. Companies

built data systems into their machinery, farmers started enabling data acquisition

devices in their farms, and larger farms started using software to manage their op-

erations. The adoption of those new data sources has been slow [Pierpaoli et al.,

2013], and systems are often unwanted because they create lock-in to the software,

incompatible with the variety of other tools and/or brands used on the farm. De-

spite that, the amount ot data once the systems are functional, is very high [Fountas

et al., 2006]. The challenge here is not the amount ot data, but what should be done

with it, and how can it be processed to help farmers take better decisions [Wolfert

et al., 2017; McBratney et al., 2005].

A new phenomenon of Big Data has drawn a huge attention from all domains

of research [Wolfert et al., 2017]. According to [Li and Li, 2018] in 2011, the data

volume size (copied or created) was around 2 ZetaBytes, and the trend shows this is

exponentially increasing. So what is "big data" and what does it mean? Big data is

a very abstract concept, and to determine the difference from “massive data” it has

some additional features. According to [Ozkose, Ari, and Gencer, 2015], big data

should have those three main characteristics: volume, velocity and variety. Some

authors would add another characteristic: value, calling it the 4V-s. Big data is an

evolving term that defines any large amount of structured, semi-structured and un-

structured data that has the potential to be mined for information. Big data is a set

of methods and technologies that require new forms of integration to uncover large

hidden values from large dataset that are complex, diverse and of a massive scale.

Most agriculture datasets have data related to crop patterns, weather parame-

ters, environmental conditions, soil types, soil nutrients, GIS and GPS data, farmer

records, agriculture machinery data, such as yield monitoring and VRA [1.2].

[Nguyen, Nguyen, and Kim, 2017] proposes a a platform for collecting and ana-

lyzing agricultural big data by suporting multiple methods of collecting data from

various data sources using Flume and MapReduce, by using multiple choices of

data storage including HDFS, HBase, and Hive and multiple analysis modules with

Spark and Hadoop.
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Data stage Process Difficulties

Data capture Sensor logs, UAV and Satel-

lite Imagery, GPS locations,

NDVI, Thermal ...

Availability and Quality

Data storage Cloud platforms, Distributed

File Systems, Hybrid Storage

Systems, Block-chains, P2P ...

Cost and Safety of data

Data transfer Internet, Intranet Integrity and Speed

Dta transform Data cleaning, Machine

Learning and AI, Normalize

and other statistics

Automation and Preprocessing

Data analytics Yield models, Planting in-

structions, Benchmarking,

Decision ontologies ...

Heterogeneity and Scalability

Data Marketing Visualization and Represen-

tation

Ownership and Privacy

TABLE 1.2: Big-Data stages in PA

Another term being extensively used in agriculture is cloud computing of agri-

cultural data [Woodard, 2016; Wolfert et al., 2017; Kaloxylos et al., 2012]. The idea

is certainly innovative and new in agriculture but is a very old term in other science

domains [Kamilaris, Kartakoullis, and Prenafeta-Boldu, 2017]. The idea of an “in-

tergalactic computer network” was introduced in the 1960s by JCR Licklider, who

was responsible for enabling the development of the Advanced Research Projects

Agency Network (ARPANET) in 1969. His vision was for everyone on the globe to

be interconnected and accessing programs and data at any site, from anywhere.

Cloud adoption is undoubtedly the cornerstone of digital transformation, it is

the foundation for rapid, scalable application development and delivery and as

such it has an important role in the development of modern agriculture. High-

performance computation may allow for faster and more accurate agricultural man-

agement, which could improve decision-making quality, reduce information asym-

metry, and increase profits [Jayaraman et al., 2016].

A research done by [Xia et al., 2018] evaluates the feasibility of applying cloud
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computing technology for spectrum-based classification of apple chilling injury, by

using frameworks like Spark and support vector machines (SVM) classification mod-

els for multivariate classification and analysis of the spectral data sets. The results

showed that the efficiency of the cloud computing platform was significantly im-

proved by increasing the spectral data set capacity or number of working nodes.

[Wang et al., 2018] demonstrated a highly-integrated, cloud-based, low-cost and

user-friendly portable NIRS system with its key components and main structure.

The system was used to predict the maturity level and TSS content of sweet cherry

samples. They named the system ‘Seefruit’ and they foresee the system to become a

universal application for fruit quality detection, which offers a fundamental frame-

work for future related research.

According to [Tan, 2016] Cloud computing is particularly beneficial for decision

support in PA for specialty crops. Firstly because of its nature on scalability, cloud

computing is able to handle large amount of data and scale automatically. Secondly

through cloud computing it is possible to change quickly the number of server in-

stances and other resources, based on the demand. Finally, agriculture decision

support systems are increasingly hosted on Internet, to take advantage of internet-

connected devices IoT and to build an online community. They developed a frame-

work for cloud-based Decision Support for orchards and Automation systems that

can acquire data from various sources, synthesize application-specific decisions, and

control field devices from the cloud.

Predictive Analytics

One of the most exciting technologies presently being used and widely being

transformed and developed has been the use of predictive analytics. Predictive an-

alytics as a whole can be comprised of numerous different statistical abilities from

modeling, machine learning, and data mining. Used for agriculture, these meth-

ods allow to analyze what has happened in the past on the farm, as well as what

currently is happening and is going to happen, to make use of the data to predict

the future and make decisions that impact the bottom line and end use of on-farm

products [Kamilaris, Kartakoullis, and Prenafeta-Boldu, 2017; Nguyen, Nguyen, and

Kim, 2017].
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By learning from historical and future data based on measured variables, man-

agement and outcomes of decisions can more readily be made that can greatly im-

pact efficiencies and processes. This is no easy task, as decisions and recommenda-

tions about the future require true datasets that are well defined from field to field,

even different areas within the field. This insight helps producers to make other-

wise challenging agronomic decisions that can take time to reach the field every day

quicker and easier. It gives them the opportunity to make a fast decision off of digital

information, often with the ability to be unbiased to the source, but relied upon the

facts. True agronomic knowledge is essential for success and the right outputs for

each digital tool. A small decision on the timing of an input application, could mean

the difference between profitability or loss for that application. Predictive scores are

given to each opportunity to help determine processes and decision making through

analyzing datasets and confidence. Predictive analytics can support to discover re-

lationship, and most importantly trends from those data [Zhang et al., 2017].

[Barbouchi et al., 2016], proposed a yield prediction from the input images gen-

erated by Radarsat 2. This work has a novel calculation technique from the relation-

ship between the yield obtained from situ and backscatter. The data is collected at

the end of the season with the Radarsat2 images. Single data is integrated with the

data obtained during acquisition stage and next data during flowering period.

While in anther study [Badr et al., 2016] proposed a platform for geospatial data

obtained from the yield from the single farm level up to the continental scale. They

identified the coupling of Big-Data approach with the integrated repository and ser-

vices (PAIRS), for the decision support system for agro-technology transfer (DSSAT)

crop model. This foresees the global scale of geospatial analytics, and PAIRS pro-

vides the solution for the heterogeneous data to integrate the crop models with the

dataset size of hundreds of terabytes.

In another paper [Suwantong et al., 2016], the evaluation takes place by NDVI

technique which is calculated from the energy of electromagnetic waves obtained

using the target crop. NDVI is calculated by the cosine function which is triply mod-

ulated with mean value, first stage of variables, and amplitude. The approach for

determining the initial period of one crop at 8-day composite is obtained by moder-

ate resolution imaging spectre radiometer.
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By using a center of big data and intelligently storing, screening, calibrating, min-

ning and extracting monitoring data [Zhang et al., 2017] established the crop growth

model based on big data, which can predict and forecast the water requirement of

crops in different growth periods and make the decision of automatic irrigation and

fertilization, finally realizing timely and proper irrigation of crops.

Another paper [Sahu, Chawla, and Khare, 2018] presents research work utilizing

a novel algorithm as to foresee the status of crop by monitoring the agriculture land

data and advice which area of crop would be suitable for that land. Contingent

on different farms, was intended to regularize the dataset fields that will suit for

all different crop managements. The algorithm had the functionality of loading the

dataset in database and comparing the previous dataset with the current processing

dataset and give viable crop prediction scenarios.

[Bendre, Thool, and Thool, 2015] forecasts using a regression model and big data

handle by cloud computing platforms which shows a considerable potential of data

fusion in field of crop and water management. As per results model predicted the

temperature and rainfall in the region by suggesting various decisions to farmers for

deciding the crop pattern and water management in the future.

1.3.2 Computer Vision

Another important way of retrieving high volume of data (BigData) in agriculture

is through cameras by using machine vision techniques. Computer vision (CV) is

the ability of cameras and other visual sensors to capture raw video and process

it into useful, actionable information. Information generated by CV is a type of

unstructured data, its a collection of very huge amount of data with no structure or

labels. The sheer volume of data is not the only challenge, a far bigger challenge is

to understand it and act on it in real time.

In PA there are different areas where CV is applied:

• Processing and quality control

• Vegetation indices for yield mapping

• Thermal imagery for stress status

• Pest and disease monitoring
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• Production growth and monitoring

One of the most interesting of those is the production growth and monitoring.

Especially fruit counting and detection. Agriculture is most of the time repetitive,

repetitive work of seeding, weeding, feeding, pruning, picking and harvesting, sort-

ing and so on. Agricultural robots automate those slow, repetitive and dull tasks for

farmers, allowing them to focus more on strategic matters and improving overall

production yields [Edan, Han, and Kondo, 2009]. One of the most popular robotic

application in agriculture are the autonomous harvesting and picking robots. That’s

because the speed and accuracy has increased significantly in recent years [Tao and

Zhou, 2017; Bechar and Vigneault, 2016]. While the robots in addition to harvest-

ing and picking can check at the same time the maturity level and sort based on

size [Edan, Han, and Kondo, 2009]. However, there are many challenges for an

autonomous robotic system to complete that task. In principle, for the robot to be

fully capable to perform harvesting and picking, it needs a sophisticated detection

algorithm in order to overcome challenges as naturally occurring changes in illumi-

nation, shape, pose, colour, and viewpoint [Barnea, Mairon, and Ben-Shahar, 2016].

The earliest fruit detection systems date since 1968 [Jiménez et al., 1999]. Us-

ing different methods and approaches based on photometric information (light re-

flectance difference from fruit and leaves in visible or infrared spectrum), these de-

tectors were able to differentiate fruit from other parts of the tree. According to the

reviews devoted to fruit detection by [Jiménez et al., 1999] and later on by [Kapach

et al., 2012], there were many problems related to growth habit that had to be consid-

ered. The unstructured and uncontrolled outdoor environment also presents many

challenges for computer vision systems in agriculture.

Light conditions have a major influence on fruit detection feasibility: direct sun-

light results in saturated spots without color information and in shadows that cause

standard segmentation procedures to split the apples surfaces into several frag-

ments. In order to decrease the non-uniform illumination (daytime lighting can be

bright, strong, directional and variable), [Payne et al., 2014] described a machine vi-

sion techniques to detect fruit based on images acquired during night time using

artificial light sources. The results described show 78% fruit detection, 10% errors

and suggesting that artificial lighting at night can provide consistent illumination

without strong directional shadows.
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In a different approach, [Kelman and Linker, 2014] presented an algorithm for lo-

calizing spherical fruit that have a smooth surface, such as apples, using only shape

analysis and in particular convexity. It is shown that in the images used for the

study, more than 40% of the apple profiles were none-convex, more than 85% of ap-

ple edges had 15% or more non-convex profiles, and more than 45% of apple edges

had 50% or more non-convex profiles. Overall, 94% of the apples were correctly

detected and 14% of the detections corresponded to false positives. Despite hight

accuracy number, the model is very specific to apples and wound not be extensi-

ble to other fruit crops with less spherical shapes. [Kapach et al., 2012] explains

colour highlights and spherical attributes, which tend to appear more often on the

smoother, more specular, and typically elliptical regions like fruit where the surface

normal bisects the angle between illumination and viewing directions.

A method for estimating the number of apple fruit in the orchard using a thermal

camera was developed by [Stajnko, Lakota, and Hočevar, 2004]. It shows an algo-

rithm able to threshold, count and report fruit’ morphological characteristics from

thermal images captured under natural conditions in the orchard. Snd since fruit

have bigger volume than leaves, they keep heat for higher amount of time, making

them easily to detect while the temperatures start to cool down. However position

of foliage on the tree prevent sunshine heating all fruit to the same degree for the

same period. fruit inside the canopy are exposed to the sunshine for a shorter time

than those outside the canopy, so they could be cooled in almost the same time as

leaves, making very difficult to detect the temperature gradient between inner fruit

and leaves.

With the development of better sensor cameras and vision techniques in recent

years, more sophisticated approaches have been used for apple detection. Range-

based devices such as stereo vision cameras, ultrasonic sensors, laser scanners and

Time of Flight cameras measure the distance from the sensor to the observed objects,

providing accurate range information in real-time and are consistent with varying

lighting condition and are used more widely in agricultural machines nowadays.

[Si, Liu, and Feng, 2015] describes location of apples in trees using stereoscopic vi-

sion. The advantage of the active triangulation method is that the range data may

be obtained without much computation and the speed is very high for any robotic

harvesting application. While [Jiang, Peng, and Ying, 2008] developed a binocular
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stereo vision tomato harvester in greenhouse. In this method, a pair of stereo images

was obtained by stereo cameras, and transformed to grey-scale images. According

to the grey correlation, corresponding points of the stereo images were searched, and

a depth image was obtained by calculating distances between tomatoes and stereo

cameras based on triangulation principle.

[Barnea, Mairon, and Ben-Shahar, 2016] describes RGB and range data to analyse

shape-related features of objects both in the image plane and 3D space. By combin-

ing both highlight detection and 3D shape/range data a colour-agnostic fruit detec-

tion framework was build. The framework is composed of two steps one following

the other. In the first step a high level based feature detector is applied to detect the

most probably regions of the frame that can contain fruit. The second step follows

immediately after by using a depth-based object classification of the resultant feature

vector using a support vector machine (SVM) on those regions passed by step one.

In another work [Nguyen et al., 2014] developed a multi-phase algorithm to detect

and localize apple fruit by combining an RGB-D camera and point cloud processing

techniques. [Tao and Zhou, 2017] developed an automatic apple recognition system

based on the fusion of color and 3D features.

For many years, traditional computer vision approaches have been extensively

adopted in the agricultural field. More recently, with the significant increase in

computational power, in particular with special purpose processors optimized for

matrix-like data processing and large amount of data calculations (eg. Graphical

Processing Unit - GPU), a lot of deep learning, CNN models and methodologies

specifically developed have achieved unprecedented breakthroughs [LeCun, Ben-

gio, and Hinton, 2015].

[Sa et al., 2016], developed a model called Deepfruit, for fruit detection. Adopting

a Faster R-CNN model, goal was to build an accurate, fast and reliable fruit detection

system. Model after training was able to achieve 0.838 precision and recall in the

detection of sweet pepper. In addition they used a multi-modal fusion approach

that combines the information from RGB and NIR images. The bottle-neck of the

model is that in order to deploy on a real robot system, the processing performance

required is a GPU of 8GB or more.

It is well known that all deep leaning models, to have a high accuracy, they need

high number of data [Krizhevsky, Sutskever, and Hinton, 2012]. In case of CNN,
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more pictures of the object of interest, the better the classification/detection perfor-

mance is. In a model called DeepCount, [Rahnemoonfar and Sheppard, 2017] de-

veloped a CNN architecture based on Inception-ResNet for counting fruit. In order

to use less training data, [Rahnemoonfar and Sheppard, 2017] used a different ap-

proach. They use another model to generate synthetic images/data to feed te main

model to train on. Those generated images were simply a brownish and greenish

color background with red circles drawn above it to simulate the background and

tomato plant with fruit on it. They used twenty-four thousand pictures generated to

feed into the model. The model was then tested on real world images and showed

an accuracy from 85-80%.

To better understand the amount of data needed for better fruit detection, [Bargoti

and Underwood, 2017] used different data augmentation techniques and transfer

learning from other fruit. It is shown that transferring weights between different

fruit did not have significant performance gains, while data augmentation like flip

and scale were found to improve performance resulting in equivalent performance

with less than half the number of training images.

1.4 Automated crop management systems - ACMS

The last step in PA4.0 is automation. When enough observations and predictive

analytics are made, then farmers are given the choice to take immediate action in

order to improve production yield, while reducing resources required. This is done

through some chain automation pipelines or autonomous systems (robots). Robots

are gradually changing every industry and agriculture isn’t an exception. The use of

robotics in PA isn’t widespread yet. However, it’s expected to grow significantly in

coming years.

1.4.1 Robotics and Autonomous Systems

Many modern farmers are already high-tech. Digitally-controlled farm imple-

ments are regularly in use. There are partially and fully automatic devices for most

aspects of agricultural functions from grafting to planting, from harvesting to sort-

ing, packaging and boxing. Farmers use software systems and aerial survey maps

and data to guide their field operations. They also use auto-steer systems included

in many new tractors which follow GPS and software guidance. Some farmers are
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already transitioning some of their operations to full autonomy. Thus forward-

thinking farm owners today may be able to skip over slow, incremental improve-

ments and jump directly to robotic and autonomous automation.

Fully autonomous vehicles have been studied for many years, with a number

of innovations explored as early as the 1920s. The concept of fully autonomous

agricultural vehicles is far from new; examples of early driverless tractor prototypes

using leader cable guidance systems date back to the 1950s and 1960s [[Basu et al.,

2018]. The potential for combining computers with image sensors provided huge

opportunities for machine vision based guidance systems.

In Agriculture, autonomous systems can be grouped in three main categories

[Emmi et al., 2014]:

1. Big autonomous tractors

2. Small specialized robots

3. Swarm or fleet robotics

Autonomous tractors have been studied and in use in agriculture for many years.

However precision agriculture was the one that helped advance vehicle guidance in

terms of providing position information that is required for vehicle guidance [Reid et

al., 2000]. The key elements of automatic guidance are navigation sensors, a vehicle

motion model, a navigation planner, and a steering controller

A tractor usually operates on all terrains, and there are a lot of unpredictable dis-

turbances and noise sources to the signals from the navigation sensors. Therefore,

it is necessary to have an effective means for signal conditioning and system state

estimation in the sensor fusion modules [Noguchi et al., 2001]. The topography, veg-

etation landscape, soil composition, texture and structure, air visibility, illumination,

light quality and atmospheric conditions change at rates varying from seconds to

months and on scales from millimeters to kilometers [Bechar and Vigneault, 2016].

In order to perform well, the next-gen agriculture autonomous robots (Agbots) must

be able to recognize and understand the physical properties of each specific object

encountered, and also be able to work under both varying field and controlled en-

vironment conditions [Eizicovits and Berman, 2014]. Therefore, sensing systems,

robotics arms, specialized manipulators, effectors should be able to work under dif-

ferent and unstable environmental conditions [Bechar and Vigneault, 2017].
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FIGURE 1.3: Basic elements of autonomous tractor
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Robots have wide applications in PA, ranging from soil analysis, seedling, weed

control, environmental monitoring, harvesting and so on, but in a broader perspec-

tive they can be groped in:

• Harvest Management

• Autonomous navigation

• Pest management and spraying

• Weed management and mowing

• Soil Management

• Irrigation Management

• Remote camera sensing UAVs

• Pruning and Thinning

• Sorting and packing

• Seedling and nursery

• Transporting and cleaning

• Other

According to [Bechar, Meyer, and Edan, 2009; Oren, Bechar, and Edan, 2011] a

robot, to perform a fully autonomous agricultural action needs to go through four

continuous steps: first, the robot senses and acquires raw data from and about the

environment, task and/or its state using various sensors; secondly, the robot pro-

cesses and analyses the data received from its sensors to generate reasoning and a

perception of the environment, the task or its state to some level of situation aware-

ness; thirdly, the robot generates an operational plan based on its perception of the

environment and state, or the task objectives; and lastly, the robot executes the re-

quired actions included in the operational plan.
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Stage Task

Sensing Sensory inputs like: RGB cameras, LIDAR, Sonar, rotary encoders, po-

tentiometers, resistors...

Analyzing Landmark detection, Point-cloud analyzing, Kinematics and Inverse

kinematics of manipulator...

Planning Trajectory estimation, object voidance...

Action Performing the planned action, triggering other actios based on loca-

tion, time, another action ...

TABLE 1.3: Continuous stages of an Agbot [Bechar and Vigneault,
2016]

In a research [Malavazi et al., 2018] developed an approach for autonomous robot

navigation inside crops using LIDAR (Light Detection and Ranging). The research

presents a new approach to extract lines from a point cloud with application to agri-

cultural robot autonomous navigation in a GPS denied environment. However they

show that to change row, for instance, is quite difficult with only one LiDAR sensor

in front of the robot. Indeed, when the robot is at the end of a row, it does not have

any information about what is behind it.

A new approach in robotics farming has started to gain attraction due to its flexi-

bility. Swarm robotics is a new type of robotics that allows simple individual robots

to work together to perform complex tasks. However, swarm robotics research is

still confined into the lab, and no application in the field is currently available.

The associated theoretical foundations for fleets/swarm robotics and applications

for agriculture are being researched and developed [Emmi et al., 2014]. There are

many advantages using a swarm of robots; using a group of robots cooperating with

each other to achieve a well-defined objective is an emerging and necessary concept

to achieve agricultural goals. Artificial swarm intelligence has been inspired by bio-

logical studies of behavior of ants, bees, wasps and termites and has been the spark

for changing the perspective on how robots were understood, and gives a new trend

to their functionality; such as solving problems through large population. [Anil et

al., 2015]. The individual robots can be regarded as agents with simple and single

abilities. Some of them have the ability to evolve themselves when dealing with

certain problems to make better compatibility and decisions [Tan and Zheng, 2013].
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However, for a robotic agricultural application, considerable information must be

processed, and a wide number of actuation signals must be controlled, which may

present a number of technical drawbacks. Thus, an important limitation is that the

number of total sensors, actuators, and computers/controllers... increases according

to the number of swarm units, a failure in one robot component causes the entire

swarm to malfunction. This influences swarm reliability, which is of extremely im-

portant for the application of automated systems to real tasks in agriculture [Emmi

et al., 2013].

Mobile Agricultural Robot Swarms (MARS) aims at the development of small

and stream-lined mobile agricultural robot units. The concept addresses looming

challenges of to optimize plant specific precision farming, leading to reduced in-

put of seeds, fertilizer and pesticides and to increased yields, to reduce the massive

soil compaction as well as energy consumption of heavy machinery and to meet

the increasing demand for flexible to use, highly automated and simple to operate

systems, anticipating challenges arising from climate change as well as shortage of

skilled labour.

Swarm Robotics for Agricultural Applications (SAGA) is using a group of small

unmanned aerial vehicles to monitor a sugar beet field and cooperatively map the

presence of harmful weed. They aim to determine when to perform weeding and on

which parts of the farm land, by multi-rotor UAVs enhanced with on-board camera

and vision processing, radio communication systems and suitable protocols to sup-

port safe swarm operations. They propose a solution that exploits multiple UAVs

that can focus on areas of interest while abandoning those areas of the field that do

not require closer inspection.

1.5 Conclusions

We stated the narrative over and over: by the year 2050 the global agricultural

community will have to nearly double its output to feed 9 billion people. Efficiency

and productivity will increase in the coming years as Precision Agriculture becomes

bigger and farms become more connected. But while the growing number of con-

nected devices and sensors in the farm represents a big opportunity for farmers, it

also adds complexity. The solution lies in making use of cognitive technologies that
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help understand, learn, adapt, reason, act, interact, and increase efficiency. Key in-

novations in new sensors, IoT, cloud computing, bg data, artificial intelligence and

robotics will assist farmers with answers and recommendations on specific prob-

lems.

As information becomes critical for good decision-making as part of the in-field

support, it must be collected, stored and interpreted in a timely manner. Because

of the overhead cost to maintain local computers, because of the computing power

needed needed, and because of expertise needed, many farmers will rely on cloud

computing and remote servers for data processing anf predictive analytics. Star-

tups that are aiming to capture, integrate and analyze all those data coming off the

farm, whether from sensors, drones, machinery, or imagery, stand to significantly

improve the decision-making process for farmers. With more and more companies

and start-ups coming up with new and innovative agricultural tools and platforms,

interoperability is rapidly becoming a point of concern. The various available tools

and technologies often do not follow the same technology standards/platforms as a

result of which there is a lack of uniformity in the final analysis referred to farmers.

Robots may one day consist of complete autonomous swarms of relatively small,

smart, and cheap units with an optimized allocation of all resources which will man-

age farms, collect data and perform various tasks. Robots will likely make inroads

fastest in areas where the labor is backbreaking, and peak harvest times create a

short supply of workers. However most robots built to date are for just one spe-

cialized tasks. A fully autonomous system, be that a single unit or multiple units

where the whole production chain can be monitored, analysed and managed is still

not here. Getting farmers thoroughly acquainted with the concept of smart farming

its of utmost importance and proven to be very challenging tasks. In addition to

the learning curve there is the motivation and uncertainty to new concepts such as

robotics, cloud, IoT and so on. Unfortunately though, the benefits do not become

apparent from the very beginning and many farmers still view this use of advanced

technology in agriculture as risky and uncertain.
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Chapter 2

Single-shot convolution neural
networks for real-time fruit
detection within the tree

Abstract

Image/video processing for fruit detection in the tree using hard-coded feature extraction

algorithms has shown high accuracy on fruit detection during recent years. While accurate,

these approaches even with high-end hardware are still computationally intensive and too

slow for real-time systems. This paper details the use of deep convolution neural networks

architecture based on single-stage detectors. Using deep-learning techniques eliminates the

need for hard-code specific features for specific fruit shapes, color and/or other attributes.

This architecture takes the input image and divides into AxA grid, where A is a configurable

hyper-parameter that defines the fineness of the grid. To each grid cell an image detection and

localization algorithm is applied. Each of those cells is responsible to predict bounding boxes

and confidence score for fruit (apple and pear in the case of this study) detected in that cell.

We want this confidence score to be high if a fruit exists in a cell, otherwise to be zero, if no

fruit is in the cell. More than 100 images of apple and pear trees were taken. Each tree image

with approximately 50 fruits, that at the end resulted on more than 5000 images of apple and

pear fruits each. Labeling images for training consisted on manually specifying the bounding

boxes for fruits, where (x, y) are the center coordinates of the box and (w, h) are width and

height. This architecture showed an accuracy of more than 90% fruit detection. Based on

correlation between number of visible fruits, detected fruits on one frame and the real number

of fruits on one tree, a model was created to accommodate this error rate. Processing speed

is higher than 20FPS which is fast enough for any grasping/harvesting robotic arm or other

real-time applications.
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2.1 Introduction

AGRICULTURE is a sector with very specific working conditions and constraints.

This isn’t only due to the dependency on the weather conditions, but as well

on the labor market. During times of highly intensive agricultural activities (eg. har-

vest), there are very pronounced peaks in workload which can only be predicted

on a short-term basis due to the weather conditions and seasonality. According to

[Fröder, 2014] the world’s agricultural workforce is expected to decline around 30%

between 2017 and 2030. This expected decline will be driven by structural changes

within the agri-food industry, but also because the opportunities for employment

are expected to be better in other sectors. Rural areas are already facing difficul-

ties in creating attractive jobs in general, pushing towards an ongoing migration

towards urban centres. Those structural changes in agriculture are expected to con-

tinue with higher investments in technology. For example, investing in precision

farming and digital agriculture are expected to significantly increase [Colbert, Yee,

and George, 2016]. New technologies are set to impact the farm labour dynamic in

many ways [Pierpaoli et al., 2013], but two developments stand out. One, the in-

creasing use of data collection tools, such as sensors, and increasing sophistication

of farm hardware and software is increasing demand for higher analytical and tech-

nical skill sets [Aubert, Schroeder, and Grimaudo, 2012; Mulla, 2013]. And two, the

advancement of automation and autonomy on farm will decrease the reliance on hu-

man resources for low-skill and labour-intensive work while increasing autonomous

machinery and robotics presence [Bechar and Vigneault, 2016; Stafford, 2007].

Along with many other emerging concepts of precision agriculture, the agricul-

tural robot has evolved as one of the most promising of all [Tao and Zhou, 2017].

Agriculture is most of the time repetitive, repetitive work of seeding, weeding, feed-

ing, pruning, picking and harvesting, sorting and so on. Agricultural robots au-

tomate those slow, repetitive and dull tasks for farmers, allowing them to focus

more on strategic matters and improving overall production yields [Edan, Han, and

Kondo, 2009]. One of the most popular robotic application in agriculture are the au-

tonomous harvesting and picking robots. That’s because the speed and accuracy has

increased significantly in recent years [Tao and Zhou, 2017; Bechar and Vigneault,

2016]. While the robots in addition to harvesting and picking can check at the same
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time the maturity level and sort based on size [Edan, Han, and Kondo, 2009]. How-

ever, there are many challenges for an autonomous robotic system to complete that

task. In principle, for the robot to be fully capable to perform harvesting and pick-

ing, it needs a sophisticated detection algorithm in order to overcome challenges

as naturally occurring changes in illumination, shape, pose, colour, and viewpoint

[Barnea, Mairon, and Ben-Shahar, 2016].

Over the years, different approaches and techniques have been developed to

tackle fruit detection and localization [Jiménez et al., 1999; Song et al., 2014]. All

the techniques until recently relied on feature extraction, be that, color, shape, re-

flectance, etc. [Rahnemoonfar and Sheppard, 2017; Song et al., 2014]. Besides the

aforementioned techniques, a new one which recently are gaining momentum and

higher accuracy are deep learning techniques [Rahnemoonfar and Sheppard, 2017;

Sa et al., 2016].

Many of the state-of-the-art object detector CNN are divided into two main groups.

In one side, are models that reach higher accuracy but are slower: the two-stage

detectors such as Faster R-CNN (Region-based Convolutional Neural Networks),

and/or Mask R-CNN, that use a Region Proposal Network to generate regions of

interests in the first stage and send the region proposals down the pipeline for ob-

ject classification and bounding-box regression. In other side are models that reach

lower accuracy but are faster: the single-stage detectors, such as You Only Look

Once (YOLO) and Single Shot MultiBox Detector (SSD), that treat object detection as

a simple regression problem which takes an input image and learns the class proba-

bilities and bounding box coordinates.

In this paper it is presented a CNN model for fast and accurate fruit detection

based on YOLO model [Redmon et al., 2015]. By using those DL techniques, the need

for hard-code specific features like specific fruit shapes, color and/or other attributes

was eliminated. The network consists of several convolution and pooling layers,

tweaked and changed from the standard model. Those modifications made to the

model, make it more accurate to detect objects of the same class on close proximity

(eg. only apple fruits, or only pear fruits). Even though the model was trained only

on apple images (training data), it shows high accuracy on other fruits with similar

attributes (green apples and green pears).
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2.2 Background and Related Work

The positions of the fruits in the tree are widely distributed, highly depending

on the tree size, form, and growth. Furthermore, in addition to their position, fruits

vary in size, shape, and reflectance due to the natural variation that exists in nature.

Currently, no growth models can predict where fruit will occur. The shape of the

fruit, one of the most distinctive features, varies between species and even cultivars

(e.g., apples, oranges, etc., are cylindrical, but the width/height ratio are not con-

stant with other fruits like pears) [Bac et al., 2014]. Reflectance (mostly color and

near-infrared) of fruit is a visual cue often used to distinguish fruit from other plant

parts and still it varies strongly [Tao and Zhou, 2017]. Color and texture are the

fundamental character of natural images and plays an important role in visual per-

ception. Color is often a distinctive and indicative cue for the presence of fruit. Most

fruits when ripe have a distinctive color: red (apples, strawberries, peaches, etc...),

orange (oranges, etc...), or yellow (pears, lemons, peaches, bananas). This makes

them stand out from the green foliage when they are ready to pick [Barnea, Mairon,

and Ben-Shahar, 2016; Edan, Han, and Kondo, 2009]. However, some fruits even

after ripening are still green (apple cv Granny Smith even after ripening does not

change color) making them indistinguishable from the foliage on the basis of color

alone [Edan, Han, and Kondo, 2009].

The earliest fruit detection systems date since 1968 [Jiménez et al., 1999]. Us-

ing different methods and approaches based on photometric information (light re-

flectance difference from fruits and leaves in visible or infrared spectrum), these

detectors were able to differentiate fruits from other part of the tree. According to

the reviews devoted to fruit detection by [Jiménez et al., 1999] and later on by [Ka-

pach et al., 2012], there were many problems related to growth habit that had to be

considered. The unstructured and uncontrolled outdoor environment also presents

many challenges for computer vision systems in agriculture.

Light conditions have a major influence on fruit detection: direct sunlight results

in saturated spots without color information and in shadows that cause standard

segmentation procedures to split the apple surfaces into several fragments. In order

to decrease the non-uniform illumination (daytime lighting can be bright, strong,

directional and variable), [Payne et al., 2014] described a machine vision technique to

detect fruit based on images acquired during night time using artificial light sources.
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They reported 78% fruit detection, 10% errors and suggesting that artificial lighting

at night can provide consistent illumination without strong directional shadows.

In a different approach, [Kelman and Linker, 2014] presented an algorithm for lo-

calizing spherical fruits that have a smooth surface, such as apples, using only shape

analysis and in particular convexity. It is shown that in the images used for the study,

more than 40% of the apple profiles were none-convex, more than 85% of apple

edges had 15% or more non-convex profiles, and more than 45% of apple edges had

50% or more non-convex profiles. Overall, 94% of the apples were correctly detected

and 14% of the detection corresponded to false positives. Despite high accuracy

number, the model is very specific to apples and would not be extensible to other

fruit crops with less spherical shapes. [Kapach et al., 2012] explains color highlights

and spherical attributes, which tend to appear more often on the smoother, more sec-

ular, and typically elliptical regions like fruits where the surface normal bisects the

angle between illumination and viewing directions. While a method for estimating

the number of apple fruits in the orchard using thermal camera was developed by

[Stajnko, Lakota, and Hočevar, 2004]. [Si, Liu, and Feng, 2015] describes location of

apples in trees using stereoscopic vision. The advantage of the active triangulation

method is that the range data may be obtained without much computation and the

speed is very high for any robotic harvesting application. [Jiang, Peng, and Ying,

2008] developed a binocular stereo vision tomato harvesting in greenhouse. In this

method, a pair of stereo images was obtained by stereo cameras and transformed

to gray-scale images. According to the grey correlation, corresponding points of

the stereo images were searched, and a depth image was obtained by calculating

distances between tomatoes and stereo cameras based on triangulation principle. A

similar method was described by [Barnea, Mairon, and Ben-Shahar, 2016] using RGB

and range data to analyse shape-related features of objects both in the image plane

and 3D space. In another work [Nguyen et al., 2014] developed a multi-phase algo-

rithm to detect and localize apple fruits by combining an RGB-D camera and point

cloud processing techniques. [Tao and Zhou, 2017] developed an automatic apple

recognition system based on the fusion of color and 3D features.

Until recent years, traditional computer vision approaches have been extensively

adopted in the agricultural field. In recent years, with the significant increase in

computational power, in particular with special purpose processors optimized for
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matrix-like data processing and large amount of data calculations (eg. Graphical

Processing Unit – GPU), a lot of deep learning, CNN models and methodologies

specifically have achieved breakthroughs never achieved before [LeCun, Bengio,

and Hinton, 2015].

In 2016, [Sa et al., 2016] developed a model called DeepFruits, for fruit detection.

Adopting a Faster R-CNN model, goal was to build an accurate, fast and reliable

fruit detection system. The model after training was able to achieve 0.838 precision

and recall in the detection of sweet pepper. In addition, they used a multi-modal fu-

sion approach that combines the information from RGB and NIR images. The bottle-

neck of the model is that in order to deploy on a real robot system, the processing

performance required is a GPU of 8GB or more.

To understand better the amount of data needed for better fruit detection, [Bargoti

and Underwood, 2017] used different data augmentation techniques and transfer

learning from other fruits. It is shown that transferring weights between different

fruits did not have significant performance gains, while data augmentation like flip

and scale were found to improve performance resulting in equivalent performance

with less than half the number of training images.

2.3 Materials and Methodology

2.3.1 Convolution Neural Networks

Convolutional neural networks are a specialized type of artificial neural networks

used for image analysis. Since computers sees the image as a matrix of numbers that

represent each pixels, it is important that the relation between the pixels (values)

remains even after the image is processed through the network. To save this spatial

relation between pixels, convolution neural networks are used that have different

mathematical operations stacked on top of each-other to create layers of the network.

In this first part of this section we will briefly explain those mathematical opera-

tion that serve as building blocks for our model architecture.

Convolution

Convolution is a mathematical operation that takes two functions (K(l)
i,j and Y(l−1)

j )

to produce a third one (Y(l)
i ). It is the process of adding each pixel of the image to
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its local neighbors, weighted by the kernel/filter of m× n size. In each layer, there

is a certain amount of filters. The number of filters p that is applied in one stage is

equivalent to the depth of the volume of output feature maps. Each filter detects a

particular feature at every location on the input. The output Y(l)
i of layer l consists

of p(l) feature maps of size m(l) × n(l). Thus the ith feature map is computed as:

Y(l)
i = B(l)

i +
pl−1

∑
i=0

K(l)
i,j ×Y(l−1)

j

where B(l)
i is bias matrix and K(l)

i,j is the kernel connecting the feature map j of

previous layer (l − 1) with ith feature map in current layer l.

Actvation

It is a function that takes the feature map Y(l−1)
j generated by the convolution and

creates the activation map as output Y(l)
j . It serves as a gate, to let certain part of the

map elements pass while others not. This is strictly element-wise operation:

Y(l)
i = f (Y(l−1)

i )

where f is the function that we multiply with.

In the case of our model used, the activation layer is a special implementation of

activation functions of non-linearity and rectification called PReLU:

Y(l)
i = max(α×Y(l−1)

i , Y(l−1)
i )

so when Y(l)
j < 0, it will have a small positive slope of α.

Pooling

Pooling layer is used to reduce the computational requirements through the net-

work and minimize overlapping by reducing the spatial size of the activation map.

Pooling has two key components: spatial grouping F(l) and spatial shift S(l). It takes

a input volume of p(l−1) ×m(l−1) × n(l−1) and provides a reduced volume output of

size p(l) ×m(l) × n(l) where:
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p(l) = p(l−1) m(l) = (m(l−1) − F(l))/S(l) + 1 n(l) = (n(l−1) − F(l))/S(l) + 1

Most of the classical techniques for object detection used different filters/kernels

to extract features and then programmatically apply detection. Those kernels, usu-

ally of 3× 3 size, were manually given to the program to perform convolution with

the image fed to it and then detect objects of interests. Depending on the kernel type,

those would extract features like edges, sharpening, color filtering, and many others

others [Lee and Rhodes, 1990]. Convolutional neural network, use techniques of loss

function optimization and back propagation to automatically generate those kernels

(in CNN called weights of the model). During this process the weights are updated

with each iteration (epochs), until the best possible version is reached.

2.3.2 Model Architecture

YOLO

YOLO is a state-of-the art convolutional network for detection and localization.

There are different versions of YOLO, and in this paper we modified and used

YOLO900 (also known as YOLOv2), and as such, in the remaining part of the pa-

per, we refer to YOLO900 as YOLO. Compared to other state-of-the art methods

that treat detection, classification and region extraction as different problems, YOLO

does all in one pass (hence the name You Only Look Once). To achieve that, YOLO

in one hand losses in accuracy but in other hand gains speed. YOLO takes as input

an image of max size 608× 608 and divides into S× S. Each grid cell is responsible

for the bounding box whose center is at the location of the grid cell, and predicts B

bounding boxes as well as confidence level and class probability. In a dataset with

C class labels, the output tensor is S× S× (C + B× 5). In our modified model, the

class C is equal to 1 since we train the network each time with one class (just apples,

just pears, etc...) which will be further discussed in section below. If the cell is offset

from the top left corner of image by (xc, yc) and the bounding box ground truth is of

size (gw, gy) then the prediction goes as:
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boxx = σ(xi) + xc

boxy = σ(yi) + yc

boxw = gwewi

boxh = ghehi

The model assigns five anchor boxes to each cell. For each anchor box we need

confidence score, four coordinates and the class number. xi and yi are the location

of the centre of the anchor box, wi and hi are the width and height of the anchor box

Ci confidence score of whether there is an object or not, and pi(c) is the classification

loss.

FIGURE 2.1: YOLO model with 24 Layers

The loss function is divided into three parts: coordinate loss (the penalization for

bounding box parameters), confidence loss (for whether the grid cell is responsible

for the ground truth) and class loss or classification error:
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λcoord

S2

∑
i=0

B

∑
j=0

1obj
ij [(xi − x̂i)

2 + (yi − ŷi)
2]

+λcoord

S2

∑
i=0

B

∑
j=0

1obj
ij [(
√

wi −
√

x̂i)
2 + (

√
hi −

√
ĥi)

2]

+λobj

S2

∑
i=0

B

∑
j=0

1obj
ij (Ci − Ĉi)

2 + λnoobj

S2

∑
i=0

B

∑
j=0

1noobj
ij (Ci − Ĉi)

2

+λcls

S2

∑
i=0

1obj
i ∑

c∈classes
(pi(c)− ˆpi(c))2

where λcoord, λobj, λnoobj, and λcls are independent parameters. Similarly, 1obj
i de-

notes if an object i appears in cell i and 1obj
ij denotes that the jth bounding box predic-

tor in cell i is responsible for that ij prediction.

Our model

Despite being one of the most popular state-of-the art model, YOLO has problems

detecting small objects [Redmon et al., 2015]. The main problem with YOLO is that,

the model can detect only one object class per cell, making it very difficult to detect

two apples at the same cell. And since in apple tree, we are dealing with small

fruits in relation to the canopy, we made different changes to the model, resulting in

different accuracy scores.

First method (noted as model M1) we used is to scale up the grid. The stan-

dard YOLO takes input image and divides into 13× 13. In our case we scaled up

to 26× 26. This improved the detection, as at this division of input image, we ap-

proximately have the grid cell size approximately like the apple size. However, this

almost doubled the training time, and decreased the overall detection speed. More

so, the input image is still of size 608× 608, it is just divided in more finer grid.

Second method (noted as model M2) we took the M1 model and removed some

layers, making the model shallower. We saw that, removing pooling layers and some

other convolutional layers, we increase in speed while not loosing in accuracy. In this

model, we tried to make the model run on higher frames per second, in embedded

devices like NVIDIA Jetson TX2. This network consists of the grid 26× 26, while the

network shallowness is reduced by half, instead of having 23 layers, in this model



52
Chapter 2. Single-shot convolution neural networks for real-time fruit detection

within the tree

we have 11 layers. We removed pooling layers, and used instead higher strides and

kernel/filter size in convolution layers.

Third method (noted as model M3) we used M2 model as base, and then we

added two other blocks (one in entrance and one in the end). The entrance block,

noted as "splitter" and the end one noted as "joiner". Splitter, takes the image and

separates it into 4 individual images. The resolution before split is 1216× 1216 and

then it gets splits into exactly four 608 × 608 images. The joiner at the end, is re-

sponsible to put the four pieces together and output the results in 1216× 1216 single

image with detection. Ths technique of adding blocks to split and join the image in-

troduced by [Chen, Zhang, and Ouyang, 2018], is very effective and accurate, how-

ever it decreases the speed of network, as this in essence in feeding four images

instead of one.

FIGURE 2.2: Model M3, with splitter and joiner blocks

2.3.3 Dataset

Images were collected in the experimental orchards of University of Bologna -

Department of Agriculture (Italy), and in privately owned production orchards in

Ferrara (Italy). There have been taken multiple images of same tree with different

angles, multiple fruit tree species and cultivars, multiple sources (webcam, DSLR

camera, smartphone) and during different time of the year with different weather

and light conditions.

In total 100 images of apples and 50 of pears are taken. Each image containing

approximately 50 fruits, resulting in more than 5000 images to train the models.
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Images were taken before the coloring of apples occur, thus all apples were still

green.

CAMERA NUMBER SIZE RESIZE AUGMENTED SYNTHETIC

Webcam 20 1280x720 608x608 80 0

Smartphone 100 + 30 2340x4608 1216x1216 200 100

DSLR 30 5664x8512 1216x1216 120 0

TABLE 2.1: Image number, sources and augmentation of apple fruits

For pears, the number is comparably lower than apples, but in this case we

wanted to observe some transfer learning techniques from apples, thus this amount

was enough to carry the study:

CAMERA NUMBER SIZE RESIZE AUGMENTED SYNTHETIC

Smartphone 50 2340x4608 1216x1216 60 0

TABLE 2.2: Image number, sources and augmentation of pear fruits

Data preparation

Data preparation and pre-analysis is the most important step in building ma-

chine learning algorithms. After images were collected together, we started the ex-

ploratory data analysis. Each image was shot in portrait mode, that the tree was

fully captured. However, 1/5 of image from top, and 1/5 from the bottom does not

contain any apple fruits. In some cases, the bottom part even had fallen apples, that

the model will try to detect, and later on results, would be considered as false pos-

itive and decrease the F1 score. To avoid that, and better fit the image in a square

dimensions, all the images were cropped. In addition to cropping, the images had

to be resized after to be suitable for the model. Depending on the model we used,

the images were resized into two different sizes: 608× 608 to be used by model M1

and M2 and 1216× 1216 to be used by model M3. Everything was done with a script

written in Python, that would take a batch of images and output the desired scaling

and cropped shape.

Images are divided into Training set and Testing set. For Testing we used only

images from smartphone camera. Those images have go through all procedures
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of other images, until training the model. Those images are never shown to the

training, as it is important for testing the accuracy of the models into images not

seen before. This way we can see if the model is over-fit only on those training

images, or is still able to generalize and detect fruits on images never seen before.

For labeling, we used a free and open-source labeling tool called BBoxLabelTool

where each image went through process of labeling. Most of problems during label-

ing come because of occlusion and overcrowded image. This happens when one ob-

ject is either partially or completely occluded by the other, and when a large amount

of objects are close or attached to each other. Due to the nature of the fruit trees, this

is present on every image taken of that tree. In each image, every apple fruit visible

was labeled with a bounding box representing the location of apple fruit. This is

done manually and very carefully to avoid mislabelling or occlusion. However, this

tool annotates the data into PASCAL Visual Object Classes format, and in our case

we needed the DARKNET format. All labeling data were automatically converted

for each bounding box with a Python script

Data augmentation

Fetching the right amount and type of data which matches the use-case of our

research is a difficult task. In addition, the data should have good diversity as the

object of interest needs to be present in varying sizes, lighting conditions and poses

in order to expect that our network generalizes well during the training phase. To

overcome this problem of limited quantity and limited diversity of data, we generate

our own data with the existing data which we have. This methodology of generat-

ing our own data is known as data augmentation. There are numerous approaches

to augment training data, in terms of quantity, it can be either by expanding the

dataset with copies of augmented versions, or by randomly augmenting some data

from dataset. In terms of diversity, there are techniques like color manipulation,

light and contrast, resizing, scaling, flipping, rotation, perspective transformation,

adding noise and so on. In this paper, we augmented all images in the dataset by

randomly choosing the augmentation technique. For each image, three of those ran-

dom augmentation were generated. In total 400 new images were created through

augmentation.
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(A) Augmenting from an image to other four (B) Synthetic generated image

FIGURE 2.3: Image augmentation and synthetic generated image

Synthetic data

As described by [Rahnemoonfar and Sheppard, 2017], deep-learning models re-

quire a lot of images to be collected and annotated then fed to the network. This is

a very time-consuming and difficult task. In order for us to use less real images, we

generated synthetic images for the network to train on. This is done automatically,

through a Python script, where a image canvas of 608× 608 was used. The upper

part of background was colored with blueish color, representing the sky, while the

down part was colored with mixture of brown. Above that image, random ellip-

tic dark-green shapes were generated representing leaves while random light-green

and light-red circles were generated to represent fruits. In total 100 synthetic images

were generated to observe if those data improve the detection of the models.

2.4 Results and Discussion

The results will be will be evaluated using the data (images with labels) from the

testing and validation set. The metrics evaluating the accuracy will be according

to the well known criteria based on Pascal Visual Object Classes (VOC) that many

research on this field use.

2.4.1 Metrics

Pixel-wise accuracy was measured by comparison of ground truth and predicted

information. Two metrics of accuracy are used: Confusion Matrix (precision, recall
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and F1 score) and Intersect over Union (IoU). While for measuring speed, frames per

second (FPS) is used.

PREDICTED

TRUE FALSE

GROUND

TRUTH

TRUE True Positive (TP) False Negative (FN)

FALSE False Positive (FP) True Negative (TN)

TABLE 2.3: Confusion Matrix

Precision evaluates the fraction of true positives (TP) detected bounding boxes

in the pool of all true positives predictions (TP) and false positive predictions (FP)

while recall evaluates the fraction of true positives (TP) detected bounding boxes in

the pool of all true positives predictions (TP) and false negatives predictions (FN):

precision =
TP

TP + FP
recall =

TP
TP + FN

Precision and recall are tightly related, thus we can use only the F1 score, which

takes in consideration both precision and recall to compute the score and how well

the prediction fit to the ground truth:

F1 = 2× precision× recall
precision + recall

However in order to compute the correctness of detection, we use intersect over

union. IoU is defined by calculating the overlapping area of prediction and ground

truth:

IoU =
(pw × ph) ∩ (gw × gh)

(pw × ph) ∪ (gw × gh)

where pw and ph is the prediction bounding box width and height, and gw and gh

is the ground truth bounding box width and height. A threshold above 0.5 IoU is

considered as positive, while under is considered as poor detection.

Another metric we used to measure speed is frames per second (FPS). In this case,

we tested how fast the model runs in a NVIDIA Jetson TX2 with 300 CUDA cores

and NVIDIA GeForce 960M with 960 CUDA cores. FPS were calculated by dividing

a second with the time in millisecond of processing a single image.
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2.4.2 Results

In this section we present the result obtained by comparing different models used,

their detection speed after training and the number of images the models are trained

and transfer learning techniques.

Model accuracy

Calculating accuracy and the speed of models, before choosing one to proceed,

we compared all three models which were trained on 100 images of apples taken

from sources mentioned in Table 2.1. As previously explained, stock YOLO is not

very accurate in detecting small objects with its standard 13 × 13 grid. However

first model M1 that uses 26× 26 grid cell, is vey accurate at detecting objects. As

shown in Figure 2.4a, the F1 score of the M1 is 0.81 while having a relative high IoU

score, as shown in Figure 2.4b. IoU in general tends to penalize single instances

of bad classification more than the F1 score quantitatively even when they both are

referring to the same bad detection instance. Since the image is resized 608× 608

pixels, more wrongly pixels are classified as fruits, thus IoU penalizes them more

than F1 score. With the grid 26 × 26 of model M1, speed suffers quiet a lot, see

Figure 2.5. Average speed on Nvidia Jetson TX2 was 5FPS and on Nvidia GeForce

960M was 8FPS, which is very slow for any real time application use.

(A) F1 accuracy score (B) IoU accuracy score

FIGURE 2.4: Comparison of accuracy of different models

When we moved to M2, where we removed some layers from the model, in order

to make it shallower, the model lost in F1 and IoU score. Respectively the F1 is 0.77
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while IoU is 0.53. And since the model is half less deeper than M1, the processing

speed from Figure 2.5, is significantly higher, with average FPS of 15 in TX2 and 20

in 960M.

(A) Nvidia Jetson TX2 (B) Nvidia GeForce 960M

FIGURE 2.5: Running speed of models in different platforms

When the "splitter" and "joiner" blocks are introduced to the M3 model, they im-

prove on accuracy of M2, both in terms of F1 score and IoU score. F1 being 0.79 and

IoU 0.58. However we loose some FPS. This is due fact, that every image feed to the

network, essentially is a 4 image split. Input size of the image is 1216× 1216, and

each of those 4 images of 608× 608 pixels goes through network. This makes the

model almost as accurate as model M1 while increasing the speed comparably from

8FPS to 20FPS (in Nvidia GeForce 960M).

For next results, we choose the M3 model to work with, and used other tech-

niques to improve on upon it, as showed in results below.
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Number of images

(A) F1 accuracy score (B) IoU accuracy score

FIGURE 2.6: Image augmentation and synthetic images results

Number if data is one of the most important factors in any deep learning model.

Since the models generalize and learns patterns from labeled images, it is of out-

most importance the quantity and quality of those data. In the Figure 2.4, we used

100 images with approximately 50 fruits each, reaching F1 score of 0.79 which not

very high. In Figure 2.6 we increased the number of images by augmentation and

synthetic generated images and observed the model’s score. As expected, the F1

score of model M3 with 400 more augmented images (noted as M3+A) jumped from

0.79 to 0.89 and IoU from 0.57 to 0.62. When to the model M3 we added 100 syn-

thetic generated images (noted as M3+S), the F1 score improved very slightly from

0.79 to 0.81, while IoU improved from 0.57 to 0.60. This shows that synthetic gener-

ated images helped the model better localize the pixels of the detected apple. When

both 400 images from augmented part and 100 synthetic generated were added to

M3 (together noted as M3+AS) the model showed the highest score observed, with

F1 of 0.9 and 0.64 IoU.
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Transfer learning

(A) F1 accuracy score (B) IoU accuracy score

FIGURE 2.7: Transfer learning from M3+AS to pears images

For pears, we only had 50 images. From which 40 of them were used for training,

and we added another 60 from augmentation, resulting in around 5000 fruits, 15000

less than apples. This amount of images, as showed in Figure 2.4 results not more

than F1 of 0.8. To overcome that, we used transfer-learning techniques. Firstly, we

used the weights of model M3+AS and tested in pears without any further train-

ing. Noted as FF (Fixed Feature extractor) from Figure 2.7, the results were surpris-

ingly high with F1 score of 0.74. This showed that model M3+AS generalizes very

good even in different fruit tree species even though never trained on images of that

specie. When the wights were further trained in very few additional images of pears,

with just 5 more epochs the model reached a F1 score of 0.87 and IoU of 0.54.

2.4.3 Cropload

Estimating fruit number based just on detected fruit from the model is not very

accurate, despite the model being more than 90%accurate. This not due to the model

detection pipeline or architecture, but because of the nature of the tree itself. When

an image is taken of the tree, there are still apples that are not visible even by human

looking at the image. Even looking at the tree from two meeters far (the same dis-

tance the images were taken) is difficult to see fruits inside canopy. To solve this, we

correlated the number of visible apples and hidden ones. We counted every fruit in a

tree outside in the orchard where the images were taken, and then we counted again

each fruit in the image (manually). We found out that, depending on the training
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system this number varies from 70% visible to 85% visible. Thus we calculate the

tree cropload as below:

cropload = di + (di × (1− F1)) + (ti × (di + (di × (1− F1))))

where di is detection number by the model, F1 accuracy score, and ti is percentage of

hidden in that training system, in our case was 0.05 in one type of training system

and 0.1 in another one.

2.5 Conclusions

In this paper we presented an approach for fruit detection based on state-of-the

art deep neural networks techniques using single shot detectors (YOLO) as an con-

volutional neural network to detect fruits of apple and pears in the tree canopy. This

study demonstrates that modifications like the input grid on the standard model

of YOLO yields better results. Furthermore, removing some layers of the model, we

loose in accuracy but we gain in processing speed, this due to less compute resources

needed to drive the model. In order to accommodate both speed and accuracy, we

created another model, based on YOLO, with just 11 layers, with double grid size

and introduced two new blocks to it. Those two blocks are completely independent

and can be used with any other convolution neural network model. By splitting the

image into smaller pieces and feeding separately to the model, the images retains

higher resolution and its clearer. In addition, the objects in each individual block are

bigger and easier to detect from the model.

By increasing the number of images we increase the F1 and IoU score of the model.

With 5000 images of apple fruits, the accuracy of the detection was F1 0.79. With tech-

niques like augmenting, we increased this number by four, into 20000 apple fruits,

thus the F1 score reaches 0.9. In case when we added synthetic images, the F1 score

remained the same, however the IoU improved slightly. This shows that synthetic

images can be an easily approach to fast generate images to improve the localiza-

tion of pixels of detected object. Transfer-learning proved to be a very interesting

tool in fruit detection pipeline. Using the model trained solely in apple fruits, and

later testing unchanged in pears, we observed F2 of 0.72. Using weights from apple
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models, and training few epochs further in very small amount of pear images, the

F2 accuracy reached 0.87.

Current limitation of our platform is the compute power needed for the system

to run. Because most neural networks have many layers, especially convolutional

neural networks, the most suitable to run the models are the CUDA capable devices.

Our continuation of this work will include more images of different fruit species, at

different growth stages, with different training systems, and using a mobile platform

for capturing those images. The earlier and smaller the fruits is, more difficult is to

detect. But is very important for different orchard management procedures, to have

known the cropload in order to proceed with more precision for the specific task.

FIGURE 2.8: Detection of apples and pears samples
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Chapter 3

Estimating fruit tree cropload and
effectiveness of chemical thinning
based on fruit detection

Abstract

Cropload estimation is essential for efficient orchard management starting with optimiz-

ing chemical thinning, planning the labor force, harvest equipment, and vehicles for trans-

portation of fruit from field to the packing plant. In this paper is presented a new approach

to determine tree cropload by using a combination of deep neural networks with convolution

neural networks (CNN). For this we use a model to detect fruit in a canopy. To accurately de-

termine cropload, images of the canopy were fed to another CNN which correlated tree canopy

size and shape to the number of hidden fruit due to occlusion, then the output is feed to an

simple deep neural network (DNN) together with detected fruit number to predict/estimate

the overall canopy cropload. The model was then compared to an algorithmic method where

parameters like cultivar, canopy shape and training system are manually estimated. Results

show 60% to 80% accuracy of the algorithmic method while the deep learning model shows

accuracy of around 95% prior to harvest, and more than 90% after chemical thinning, when

fruit reached 20mm. Based on this, another CNN was developed to estimate the effectiveness

of fruit thinning. Using these models, individual tree thinning can be estimated, so that

when mechanical thinning would be applied, it would be based on those data
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3.1 Introduction

CROPLOAD estimation is one of the most important managing factors pre-harvest

assessments and it is essential for efficient and effective management of or-

chards [Gongal et al., 2016; Cheng et al., 2017]. For growers, flowering intensity and

yield forecast is very valuable information. Very early in season, this information

helps them to properly insure their crops so that they can be compensated in the

event of financial loss due to weather [Gongal et al., 2016; Cohen, Linker, and Naor,

2011]. Later in the season, cropload estimation helps to optimize chemical fruit thin-

ning [Volz, 1988; Manfrini, Taylor, and Grappadelli, 2009], which is key to improve

fruit quality and maximize marketable yield. According to [Mizushima and Lu,

2011] when growers have this information, they can develop more robust and effi-

cient crop load management and harvest strategies that can maximize their profits.

Further, cropload estimation prior to harvest is essential for efficient management of

the labor force, harvest equipment, and vehicles for transportation of fruit from field

to the packing plant [Wulfsohn et al., 2011]. Knowing the amount of production is

beneficiary for pack-houses to optimize post-harvest handling and storage [Gautam

et al., 2017; Ampatzidis and Vougioukas, 2009].

Crop load adjustment through fruit thinning is a routine practice adopted by fruit

growers to obtain a marketable product [Pla and Juste, 1995]. Management of crop

load is a balancing act between reducing crop load sufficiently to achieve optimum

fruit size and adequate return bloom and not reducing yield excessively. Reduc-

tion of crop load can be accomplished through hand thinning or chemically induced

thinning, although chemical thinning typically is the preferred method. Manual

thinning, although effective, is a labor-intense and expensive operation, accounting

for over 30% of the production costs [Gebbers et al., 2013; Layne and Bassi, 2008];

chemical thinning, on the other hand, provides inconsistent results and, though rel-

atively inexpensive, is an unreliable practice. Despite its shortcomings, for the past

50 years chemical thinning using plant-growth-regulating chemicals applied shortly

after bloom has been the preferred method apple growers use to thin fruit [Addicott

and Lynch, 1955].

There are mny different approaches on orchard design and tree management

among farmers. However there is an obvious correlation between the tree manage-

ment and fruit quality and/or quantity. Trunk cross-sectional area (TCSA) and the
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production potential of a tree are affected by different tree management and prun-

ing regimes [Westwood and Roberts, 1970]. According to [Forshey, 1986; Wright

et al., 2006; Koike et al., 2003] fruit thinning improves leaf:fruit ratio by increasing

the leaf area available to each of the remaining fruit. While a study by [Wright,

Nichols, and Embree, 2006] reported that the contour method of measurement for

apple tree canopy volumes and shape (TCVS) accounted for greater variation in fruit

sizes compared to TCSA measurements.

Most of the yield forecasts are based on manual counting of the number of ap-

ples on selected trees during the season. Classical yield estimation methods, which

consist on manual collection and weighing of the crop in a limited number of plants

prior to harvest is tedious and insufficient to obtain representative yield data [Aquino

et al., 2018; Manfrini, Taylor, and Grappadelli, 2009]. While field surveying is con-

sidered the most reliable method of forecasting crop yields and has been used as a

benchmark for validating yield forecast models based on remote sensing when true

yields were not available, it is still extremely time-consuming and the small number

of trees that can be inspected is insufficient to describe the high variability of yields

that exists in apple orchards. To address these issues, machine vision systems in-

volving different types of sensors and image processing techniques are considered

as potentially best solutios[Aggelopoulou et al., 2010; Gongal et al., 2016].

This study we present a new approach utilizing Artificial Intelligence models

based on Convolutional Neural Networks to estimate tree cropload at different times

in the season and to estimate effectiveness chemical thinning. This represents an ex-

tension of application of the fruit detection model presented in the previous chapter

of this dissertation.

Two approaches were used to estimate overall tree cropload based on the number

of apples detected by the model mentioned above. One based on a simple relation

between detection and cropload; the second one is based on CNNs. In order to take

into account tree canopy volume and shape and to estimate hidden fruit into canopy

(behind foliage) or fruit occlusion, a CNN called GoogLeNet was used. In this case

CNN is a very good choice as it tries to correlate tree canopy volume and shape

(TCVS) to the real number of fruit (hidden and detected).

To determine the effectiveness of chemical thinning, and to determine if and how

much manual/mechanical thinning should be applied, two different methods were
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used and compared. One, based on a simple relation between the cropload and the

desired amount of thinning. However, this might not be a good approach as there i

a lot of variability, a lot of trees can be small in size or have less cropload than the

desired cropload. Second, we use the same CNN (GoogLeNet) to correlate the TCVS

to the desired thinning amount.

3.2 Background and Related Work

Nowadays, since there are not accurate flowering and yield forecast methods,

growers tend to perform insufficient thinning, preferring to be on the safe side rather

than causing irreversibly low yields. This has significant repercussions later in the

season when hand thinning is required to compensate for the insufficient chemical

thinning. Furthermore, only after the process of natural fruit drop has ended and

the fruit have reached a size where growers can estimate yield by visual inspection,

then hand thinning is performed. According to [Cohen, Linker, and Naor, 2011] by

doing this, two consequences follow:

• it results in smaller fruit at harvest, which, in addition to having a lower market

value, require more time for harvesting.

• high crop load before the late thinning reduces flower bud initiation, which

lowers the potential bloom in the subsequent season.

As machine vision systems have gotten better during the years, and more open-

sourced and free image processing techniques together with AI have received more

attention in last years [Gongal et al., 2016; Rahnemoonfar and Sheppard, 2017]. Us-

ing imagery for yield estimation is not new in agriculture, with areial image acqui-

sition being reported for annual crops such as wheat [Pan, Li, and Sun, 2007] and

rice [Swain et al., 2008] as well as in perennial crops such as blueberries [Zaman

et al., 2008]. The prediction of crop yield by remote sensing technology has been

one of the most important subjects in precision agriculture [Rodriguez et al., 2004;

Yang et al., 2004]. However, most of the high altitude imagery and satellite based

sensing still has higher costs compared to ground and/or near ground imagery

[Aggelopoulou et al., 2010; Swain et al., 2008]. To understand better the cropload

many studies have suggested that the best practice is for individual fruit identi-

fication first [Gongal2016; Linker, Cohen, and Naor, 2012], followed by a model
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approximation second [Jiménez et al., 1999; Stajnko, Lakota, and Hočevar, 2004].

Different techniques and methods have been used over the years to identify fruit

and correlate between those algorithms prediction and manually counted fruit in an

image [Cheng et al., 2017; Dorj, Lee, and Yun, 2017]. Furthermore, different sensors

have been used like color camera [Linker and Kelman, 2015; Volz, 1988; Linker, Co-

hen, and Naor, 2012], thermal camera [Stajnko, Lakota, and Hočevar, 2004], and mul-

tispectral and hyperspectral cameras [Kim, Reid, and Zhang, 2008; Mehl et al., 2004].

Multispectral images have been used to estimate the number of oranges [Okamoto

and Lee, 2009] and mandarins [Ye et al., 2007] on trees close to harvest and to corre-

late them to the actual yield.

Other studies [Swain et al., 2008; Escolà et al., 2011; Llorens et al., 2011] used

ultrasonic sensor-based automatic yield monitoring system as well as LIDAR sen-

sors for canopy mapping [Cheein et al., 2015; Pfeiffer et al., 2018; Sanz et al., 2018],

while [Wei and Salyani, 2004] developed a laser scanning system and corresponding

algorithms for measurement of tree canopy height, width, and volume and relate

those data to yields. In almost all studies, detection was limited by clustering and

occlusions of fruit, and variable lighting conditions in orchards [Ji et al., 2012]

Apart from sensors, estimating fruit yield using digital images has been based on

a variety of features associated with field crop and various types of image process-

ing techniques have been investigated to identify fruit. According to [Bulanon and

Kataoka, 2010] those techniques can be divided into:

• Shaped-base techniques

• Spectral-base techniques

Several authors [Bulanon et al., 2002; Leemans, Magein, and Destain, 1999] used

spectral analysis to identify apples while [Linker and Kelman, 2015; Linker, Co-

hen, and Naor, 2012; Stajnko, Lakota, and Hočevar, 2004] used shape, color and

texture based analysis. [Swain et al., 2008] used the pixel index representing the ripe

fruit in the images and achieved very high estimation coefficient. In another study

[Adamsen et al., 2000] used colour digital images to count the number of flowers

and ultimately to estimate yield.

Using new and innovative techniques of AI, [Cheng et al., 2017] presented an

approach of using image analysis and tree canopy features to predict early yield
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with artificial neural networks. The novelty of this approach is the combination of

fruit features, tree canopy features and foliage leaf area to develop models for early

yield prediction.

3.3 Materials and Methodology

The study was carried out during 2017 in a 4 year apple orchard of the experimen-

tal farm of the University of Bologna, Cadriano, Italy. Data/images were collected

from a 0.5 ha orchard of ’Gala’ apples. The training system of the orchard is an

adapted Spindle system with planting dimensions 3.3m× 1m.

100 images of apple tree canopies were taken during the whole season, twice per

month. Different capture sensors (cameras), but this experiment we will consider

the 100 images taken with a smartphone camera. The camera sensor was 16 mega

pixels. Each photo that was taken was from a distance of 1.5 meter form the tree.

Each image was analysed, using fruit detection model presented in the previ-

ous chapter of this dissertation. Accuracy score and the number of apples on that

tree were given by the model, then was proceeded with cropload calculations. To

calculate cropload two methods were used: algorithmic method - AlgoCrop (a sim-

ple relation algorithm) and depp-learning method - DeepCrop (a CNN and DNN

chained together to estimate the cropload).

The determination of cropload per tree, allowed to perform an estimate of the

thinning intensity required to reach the desired cropload.

3.3.1 Fruit detection model

Despite being one of the most popular state-of-the art model, YOLO (You-Only-

Look-Once model) has problems detecting small objects [Redmon et al., 2015]. The

main problem with YOLO is that, the model can detect only one object class per

cell, making it very difficult to detect small apples. And since in apple tree, we are

dealing with small fruit in relation to the canopy, we needed t use a modified version

based on YOLO.

The standard YOLO takes input image and divides into 13× 13. In our case we

scaled up to 26× 26. This improved the detection, as at this division of input image,

we approximately have the grid cell size approximately like the apple size. Same
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time, we removed more layers, making the model shallower but faster. We saw that,

removing pooling layers and some other convolutional layers, we increase in speed

while not loosing in accuracy. Two more blocks were added (one in entrance and

one in the end, Figure 3.1). The entrance block, noted as "splitter" and the end one

noted as "joiner". Splitter, takes the image and separates it into 4 individual images.

The resolution before split is 1216 × 1216 and then it gets splits into exactly four

608× 608 images. The joiner at the end, is responsible to put the four pieces together

and output the results in 1216× 1216 single image with detection. Ths technique of

adding blocks to split and join the image introduced by [Chen, Zhang, and Ouyang,

2018], is very effective and accurate, however it decreases the speed of network, as

this in essence in feeding four images instead of one. More details of this model were

describes in previous chapter .

FIGURE 3.1: Fruit detection model

3.3.2 Estimating cropload

Estimating fruit number simply based on the fruit detected by the model is not

very accurate, despite the model being more than 90% accurate. This not because

of the model detection pipeline or architecture, but because of the nature of the tree

itself. Within an image of the tree, there will be still apples that are not visible even

by human looking at the image. This is a phenomenon well known in computer

vision counting and tracking systems . Even looking at the tree from 1.5 meters (the

same distance the images were taken) is difficult to see fruit inside canopy. To solve

this, two techniques were developed and compared them to see the performace.
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AlgoCrop

AlgoCrop is a simpler solution, which correlates the number of visible to that of

hidden apples. Every fruit was counted in a tree, and fruit were counted again in the

image, manually. Depending on the training system this number varies from 70%

visible to 85% visible. Thus tree cropload calculates as:

cropload = di + (di × (1− F1)) + ((ti + mi/2)× (di + (di × (1− F1))))

where di is detection number by the model, F1 accuracy score, ti is percentage of

hidden in that training system, and mi approximate canopy size.

DeepCrop

The second method uses a Convolutional Neural Network (GoogLeNet with 24

Layers) where the output of this CNN serves as input of another Deep-Neural Net-

work (a simple classifier with 6 Layers). It is important to use CNN to capture

the shape and the foliage of the tree, as fruit occlusion is highly dependant on the

amount of tree foliage.

GoogLeNet is used as a CNN classifier. Because of the use of Inception modules

(Figure 3.2), GoogLeNet is computationally very cheap but very accurate. However

a simple 3x3 kernel with 256 input channels and 256 output, would have an amount

of 9x256x256 calculations. Such a network where every output is connected to every

input, is referred as dense connection. And while in most of CNNs activation layer

for those connection is often either zero or not valuable, proving that not all those

input channels are connected to output ones. Despite many techniques developed to

cut off those unnecessary connections, the computation needed is huge. The incep-

tion module of the model we chose to work with approximates a sparse CNN with

a normal dense construction, and since the effective number is low (because of zeros

and unnecessary activations) the number of convolution filters is kept small. In ad-

dition it uses convolutions of different sizes to capture details at different scales (5x5,

3x3) and it uses the so called bottleneck layer 1x1, for reduction of computation re-

quirements. GoogLeNet is a 27 layer deep CNN, with 22 convolution and inception

layers and 5 pooling layers. However the overall number of the independent blocks

is over 100. The images were downresolutioned to 512x512x3 inputs for GoogLeNet.
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FIGURE 3.2: GoogLeNet’s Inception module

The last layer of the network serves as input of the next neural network, a simple

6 layer DNN.. However only after normalization with other inputs: date of im-

age taken, F1 score of detection model and number of apples detected by detection

model.

3.3.3 Estimating thinning amount

This task is far more complex. In our experimental trial, chemical thinning was

applied at the beginning of May (when fruit diameter was around 8mm) and man-

ual thinning at the end of June (when fruit diameter was around 25mm). The aim

of the thinning amount estimation is to define the effectiveness of chemical thinning

and estimate if and how much manual (or mechanical) thinning should be applied.

Again two methods were used: algorithmic method (AlgoThinning) and deep learn-

ing model (DeepThinning).

Images of fruit detected after chemical thinning (end of May) were used as in-

put, and images detected after manual thinning were used as target (beginning of

July). DeepCrop was used to estimate tree cropload after chemical thinning was per-

formed. AlgoThinning and DeepThinning were evluated and compared to estimate

how much manual thinning should be applied. To measure the precision of thinning

DeepCrop was used again on images taken after manual thinning was performed.

This provided data before and after thinning to train the models.
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AlgoThinning

The first methodology used to estimate the effectiveness of chemical thinning is a

simple relation between actual cropload after chemical thinning and the target. This

is a very simple relation, where the target amount is subtracted from the mean of

each tree cropload:

thinning =
100

∑
i=1

ci − T

where ci is cropload and T target amount for manual thinning.

DeepThinning

The second method implements another CNN. The goal is to exploit tree shape

in conjunction with cropload to define the thinning amount to be applied. This is

important as in many orchards variables light and soil conditions render cropload

and canopy quite different from tree to tree. Here a CNN estimated the vigour of the

tree and related it to the amount of thinning. The same CNN we used for DeepCrop,

the GoogLeNet model was used. The output of this CNN serves as one of the inputs

(together with CropLoad) of a simpler DNN with 6 layers.

3.4 Results

3.4.1 Cropload estimation

The objective of this part is to evaluate and compare algorithms and deep learning

architectures for the estimation apple fruit tree cropload before manual thinning is

done and subsequently until harvest.

As shown in Figures 3.3, 3.6, 3.9, and 3.12 the apple detection accuracy varied

for individual tree. However there it is clear that the latter the apple detection is

performed the higher the accuracy is. Accuracy of detection in late June (Figure 3.3),

the detection accuracy score (F1) is 86% while in early August (3.12), the F1 score

reaches 92%.
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FIGURE 3.3: Accuracy of apple detection (Late June)

FIGURE 3.4: Cropload estimation per individual tree (Late June)
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FIGURE 3.5: Comparison of cropload estimation methods (Late June)

However the detection rate here does not account for the fruit occlusions due to

canopy and foliage, that can be up to 30% of hidden fruits. And that varies highly

inside the orchard, due t the canopy structure. AlgoCrop and DeepCrop models are

compared and evaluated in 100 individual trees as shown in Figures 3.4, 3.7, 3.10,

and 3.13. The blue line indicates the real number of fruit in the tree (visible and

occluded). When we simply used the AlgoCrop algorithm (green line), with 0.87 F1

score, 0.8 occlusion per Spindle training system and 0.7 score of average canopy size

for late June (Figure 3.4) we have quiet disappointing results. The whole algorithmic

approach always assumes that there those variables are constant, thus, we have a

trend line that follows the patterns of detected fruit, which in our case is 30% higher

than the real number 3.5.
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FIGURE 3.6: Accuracy of apple detection (Early July)

FIGURE 3.7: Cropload estimation per individual tree (Early July)

Using DeepCrop (red line), the model was trained in multiple images, which was

able to better correlate the real number of fruit, with occluded number of fruit and

detected number of fruit, we got better results. As shown in Figures 3.4, 3.7, 3.10,

and 3.13 the model is very accurate in predicting the overall cropload more than 90%

few weeks before harvest (early August, Figure 3.14).
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FIGURE 3.8: Comparison of cropload estimation methods (Early July)

FIGURE 3.9: Accuracy of apple detection (Late July)
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FIGURE 3.10: Cropload estimation per individual tree (Late July)

FIGURE 3.11: Comparison of cropload estimation methods (Late July)

Figures 3.5, 3.8, 3.11, and 3.14, show the real number of fruit in the first column,

and the detected number of fruit in the second. As seen here, the number of detected

fruit varies quite a lot from tree to tree the earlier in season (Figure 3.5) the detec-

tion is performed, and it appears that the number of detected apple is higher than

the number of real apples, which shows that despite many apples being occluded,

the model still detects more apples. This is due to size of apples and miss-detection.

When fruit are around 20mm (and at that size they are green colored) is very difficult

to separate them from leaves. This factor was not considered initially in AlgoCrop,
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thus making it very poor at predicting overall cropload. On the other hand, Deep-

Crop, was able to learn during model training to relate the canopy size to the real

number, thus allowing the model to perform much better than AlgoCrop (Figure

3.5).

FIGURE 3.12: Accuracy of apple detection (Early August)

FIGURE 3.13: Cropload estimation per individual tree (Early August)
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FIGURE 3.14: Comparison of cropload estimation methods (Early
August)

3.4.2 Thinning estimation

Using DeepCrop estimation for cropload in mid/late June, two methods, Algo-

Thinning and DeepThinning, were compared to estimate amount of thinning (Figure

3.15). As shown, when using AlgoThinning, we subtracted from each tree the un-

necessary amount of fruit from the average of DeepCrop. Again here, as it was with

AlgoCrop, the AlgoThinning simply follows the DeepCrop trend line. When we

used DeepThinning, which in turn takes in consideration the shape of the canopy of

the tree, then the trend line seems very close to the desired amount of each individ-

ual tree.
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FIGURE 3.15: Thinning estimation per individual tree

FIGURE 3.16: Comparison of thinning estimation methods

At first glance, it might not look effective to create models for fruit thinning.

When cropload is known at more than 90% accuracy, then reaching the desired

cropload is a simple matter of subtraction of unnecessary fruit. However cropload

varies considerably from tree to tree making a per-tree model very desirable. An-

other point to be made is related to the cost of thinning. Manual thinning of each

tree to a specific number of fruit would be expensive. However, a mechanical thin-

ner, would load a GIS map containing each individual tree thinning instructions,

and could apply the amount required much more economically.
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3.5 Conclusions

This study presented some models to estimate the cropload on apple trees and

estimate the effectiveness of chemical thinning. The novelty of those models is the

use of convolutional neural networks to capture canopy size and shape, and relate

it to the actual number of fruit on the tree and the number of fruit detected by an-

other CNN model. These models show more than 95% accuracy in estimating tree

cropload and more than 90% accuracy in relating cropload to the effectiveness of

chemical thinning. The CNNs were able to accurately classify the canopy shape of

smaller or larger trees, and estimating the possible amount of fruit occlusion and

mis-detection.

However, more accurate and definitely earlier forecast of yield will increase the

confidence of growers to perform early chemical thinning, which will minimize the

needs for hand thinning, and in turn will increase the fruit size and potential flow-

ering in subsequent seasons.
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Chapter 4

Sensor-fusion and deep neural
networks for autonomous UAV
navigation within orchards

Abstract

With the increase of population in the world, the demand for quality food is increas-

ing too. In recent years, increasing demand and environmental factors have heavily influ-

enced the agricultural production. Automation and robotics for fruit and vegetable pro-

duction/monitoring have become the new standard. This paper discusses an autonomous

Unmanned Aerial Vehicle (UAV) able to navigate through rows orchard rows. The UAV

is comprised of a flight controller (AP stack), a microcontroller for analog reading of differ-

ent sensors, and an On-Board Computer (OBC). Pictures are taken through a camera and

streamed through WiFi to a Ground Control Computer (GCC) running a convolution neural

network model. Based on prior training, the model outputs three directions: RIGHT, LEFT

and STRAIGHT. A moving average of multiple frames per second is extracted and sent to a

build-in Proportional-Integral-Derivative (PID) controller on the UAV. After error correc-

tion from this feedback, controller sends the direction to the flight controller using MAVLink

protocol’s radio channel overrides, thus performing autonomous navigation.
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4.1 Introduction

AGRICULTURE as one of the oldest occupation in the world has seen many

changes. Before the Industrial Revolution more than 80% of the population

were estimated to be working as farmers, while now that number is estimated to be

less than 2%. One of the dominant changes that characterizes a growing economy

is the proportionate decline in agriculture sector [Fröder, 2014]. This phenomenon

is commonly attributed to two facts: food is not as demanding as other goods and

services, or/and the rapid development of new farming technologies leads to ex-

panding food supplies per hectare and per worker [Lima and Souza, 2017].

FIGURE 4.1: Distribution of the labour force by sector, 1850-2000

There is a significant change at every step of the industrial revolution. Industry

1.0 brought mechanization, water management etc.; Industry 2.0 brought engines,

electricity, protected environments etc.; Industry 3.0 brought computers and smart

appliances, GPS tractors and so on; while Industry 4.0 is foreseen to be the most sig-

nificant one, bringing AI, Automation and Robotics [Harrison and Wolyniak, 2015].

We face the challenge of how to feed the growing world population in the future:

it should certainly be sustainable, cost-effective and most importantly environmen-

tally friendly. In order to feed 9.5 billion people that the Food and Agriculture Orga-

nization (FAO) predicts to inhabit the planet by 2050 while climate change is making
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more difficult to grow crops - is going to be done by smart farming, a high-tech and

AI driven agricultural management system [Colbert, Yee, and George, 2016]. Agri-

culture is highly repetitive, and as such, many tasks can be automated. Each agricul-

tural activities on the farm takes a lot of resource: for example planting, maintaining,

and harvesting crops need money, energy, labour and resources [Aubert, Schroeder,

and Grimaudo, 2012; Mulla, 2013]. What if we can use technology to replace some

of the human activities and guarantee efficiency? That’s where artificial intelligence

and modern robotics is looking for changes.

Fully autonomous vehicles have been studied for many years, with a number of

innovations explored as early as the 1920s. The concept of fully autonomous agricul-

tural vehicles is far from new; examples of early driverless tractor prototypes using

leader cable guidance systems date back to the 1950s and 1960s [[Basu et al., 2018].

More recently the potential for combining computers with image sensors provided

huge opportunities for machine vision based guidance systems.

In Agriculture, autonomous systems can be grouped in three main categories

[Emmi et al., 2014]:

1. Big autonomous tractors

2. Small specialized robots

3. Swarm or fleet robotics

Autonomous tractors have been studied and have been in use in agriculture

for many years. Precision agriculture helped propel vehicle guidance in terms of

providing position information that is required for vehicle guidance [Reid et al.,

2000]. Agricultural tractors usually operate on all terrains, and there are a lot of

unpredictable disturbances and noise sources to the signals from navigation sen-

sors. Therefore, it is necessary to have an effective means for signal conditioning

and system state estimation in the sensor fusion modules [Noguchi et al., 2001]. The

topography, vegetation landscape, soil composition, texture and structure, air visi-

bility, illumination, light quality and atmospheric conditions change at rates varying

from seconds to months and on scales from millimeters to kilometers [Bechar and

Vigneault, 2016]. In order to perform well, the next-gen agriculture autonomous

robots (Agbots) must be able to recognize and understand the physical properties

of each specific object encountered, and also be able to work under both varying
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field and controlled environment conditions [Eizicovits and Berman, 2014]. There-

fore, sensing systems, robotics arms, specialized manipulators, effectors should be

able to work under different and unstable environmental conditions [Bechar and

Vigneault, 2017].

Robots have wide applications in PA, ranging from soil analysis, seedling, weed

control, environmental monitoring, harvesting and so on, but in a broader perspec-

tive they can be grouped as in [Tab 4.1]:

Purpose

1 Harvest Management

2 Autonomous navigation

3 Pest management and spraying

4 Weed management and mowing

5 Soil Management

6 Irrigation Management

7 Remote camera sensing UAVs

8 Pruning and Thinning

9 Sorting and packing

10 Seedling and nursery

11 Transporting and cleaning

12 Other general purposes

TABLE 4.1: Robots in Agriculture

According to [Bechar, Meyer, and Edan, 2009; Oren, Bechar, and Edan, 2011] a

robot, to perform a fully autonomous agricultural action needs to go through four

continuous steps: 1)the robot senses and acquires raw data from and about the en-

vironment, task and/or its state using various sensors; 2) the robot processes and

analyses the data received from its sensors to generate reasoning and a perception

of the environment, the task or its state to some level of situation awareness; 3) the

robot generates an operational plan based on its perception of the environment and

state, or the task objectives; and 4) the robot executes the required actions included

in the operational plan [Tab 4.2].
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Stage Task

Sensing Sensory inputs like: RGB cameras, LIDAR, Sonar, rotary encoders, po-

tentiometers, resistors...

Analyzing Landmark detection, Point-cloud analyzing, Kinematics and Inverse

kinematics of manipulator...

Planning Trajectory estimation, object voidance...

Action Performing the planned action, triggering other actions based on loca-

tion, time, another action ...

TABLE 4.2: Continuous stages of an Agbot [Bechar and Vigneault,
2016]

A farmer robot, to be fully autonomous, needs to navigate through very diverse

and harsh environments, where the changes are instant and imminent, and those

changes need to be observed and logged without human supervision. Then, it

should perform a set of actions at specific location like: picking fruits, evaluates

a site, spray pesticide, cut branches, plant a seed, image scan a whole plant or takes

specific measurement. Controlled environments like greenhouses are more manage-

able because of "controllable environment" and better engineered infrastructure, and

as result, sensor measurements produce less noise. Whereas outdoor environment

are much harsher and generally not controllable, thus making far more difficult for

mobile robots. Most of outdoor robot are equipped with GPS for sensing the lo-

cation, but due to the need of higher accuracy, they are often together with other

sensors like Inertial Measurement Unit (IMUs), 3DCameras, Rotary Encoders to cre-

ate a sensor fusion for a much more precise action taking process. Robots nowadays

are wirelessly connected to a central operator to both receive updated instructions

regarding the mission, and report status and data. However, a truly autonomous

farm robot requires better controllers, localization, communication and action tak-

ing systems. The technology is similar to that of autonomous cars applied to agitech.

Where it differs is that farming robots often need to manipulate their environment,

picking vegetables or fruits, applying pesticides in a localized manner, or planting

seeds.

Autonomous navigation robots for agriculture based on camera systems have

been in development since late the 80s [Reid and Searcy, 1987; Reid et al., 2000].

They were popular due to the availability of low cost cameras and the plethora of
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computer vision techniques that could be readily applied [Hiremath et al., 2014].

The most adopted approach in auto-navigation is GPS-based navigation [Pérez-Ruiz

et al., 2012]. However fruit production, the trees are often protected with anti-hail

netting that makes GPS lock unpredictable, ruling out to relay solely on GPS.

In fruit production, crop monitoring is extremely important. This paper discusses

an autonomous Unmanned Areal Vehicle (UAV) flying at tree canopy level, between

adjacent rows and under anti-hail nets. To successfully follow the row, the robot it

has firstly to know the orchard and where is the starting row, then has to determine

the path between two rows while maintaining the altitude and avoid any collision

with lateral branches from the trees and void any other obstacles. Machine learning

techniques have been used for a long time, to map visual inputs to actions [Giusti et

al., 2016]. This paper considers the whole navigation as a classification task: analyz-

ing the front face camera images, by using a convolution neural network to classify

the video frames stream into direction with respected weight on a single shot.

4.2 Formulation

Current orchards are very complex with components and management proce-

dures tht change during the growing season. There are many management deci-

sions that often change the structure and visuals of the orchard, thus making it an

ever changing organism. In this perspective, hard-coding algorithms for specific

tasks where randomness is infinite, is not a effective approach. The path between

two rows of trees, is maintained by farmers in different ways, differently during the

season, the same goes with the canopy, where plants starts without leaves but then

later they are covered with them. The UAV itself has to fly under anti-hail nets,

1.5m above the ground, making headway along the path, resembling a long corri-

dor. Using deep learning approach the model is able to accommodate for changes

and progressively learn how to navigate even when new scenarios are being dealt

with.

4.3 Materials

The UAV uses a RaspberryPi gen.3 as a On-Board Computer (OBC) which is

connected to the flight controller (PixHawk board with ArduPlot software stack)
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through a serial link. The OBC due to performance limitations can not run deep-

learning algorithms on its own, however its an excellent, power efficient computer

running full LINUX inside. This allows it to act as intermediary layer between flight

controller and other devices: Ground Control Computer (GCC), microcontroller (Ar-

duino) boards with different sensors, camera (RasPi Cam gen.2), and other radio-

communication devices. OBC and Flight controller communicate through MAVLink

protocol. MAVProxy is used to broadcast device info and status to other devices

through wireless hotspot. Since it runs full LINUX and Robotics Operating System

(ROS), with the help of MAVROS package, the whole UAV is controlled as any other

robot inside ROS. OBC’s camera is a RasPi Cam gen.2 which processes and encodes

in its own chips the image, making it very easy to directly stream in network.

The input images taken from front-facing camera, are sent to Ground Control

Computer GCC (CUDA capable) though WiFi. The computer runs the picture stream

through a trained model that has three outputs: right, left, and straight. The mov-

ing average of three outputs is sent as MAVLink RC_CHANEL_OVERRIDE through

OBC to PixHawk.

4.3.1 Data Acquisition

Data collection is done through the camera of the OBC in the UAV moving inside

the orchard, controlled manually by radio controller. At UAV start up, it automati-

cally starts some scripts on OBC (the process is managed with crontab):

1. Connect to known WiFi if any exist, else create hotspot

2. Use MAVproxy protocols to sent and receive flight plans and commands

3. Automatically output camera stream to network

In the GCC, the camera feed is piped from the network with netcat to a python

program. The program takes the camera input, divides it in frames, labels dnd saves

it in a proper dataset.

The UAV is flown very carefully inside the rows while streaming the camera feed

to GCC. The flight is repeated many times, in different rows and directions. How-

ever there have been three modes/categories, and for each mode a thousand pic-

tures/frames were taken and labelled accordingly:
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(A) LEFT

(B) STRAIGHT (C) RIGHT

FIGURE 4.2: Images taken from UAV - winter (trees without leaves)

1. LEFT: The drone would fly closer to the left row, and/or yawed (facing) the

left side. Data collected were labelled as LEFT, model would return LEFT and

RIGHT CHANNEL OVERRIDE would be sent. Fig 4.2a and 4.3a.

2. STRAIGHT: The drone would fly the best position as much as it can, in the

middle of the row, facing straight and having both rows symmetrical to each

other. Data collected were labelled as STRAIGHT, model would return STRAIGHT

and FORWARD CHANNEL OVERRIDE would be sent. Fig 4.2b and 4.3b.

3. RIGHT: The drone would fly closer to the right row, and/or yawed (facing) the

right side. Data collected were labelled as RIGHT, model would return RIGHT

and LEFT CHANNEL OVERRIDE would be sent. Fig 4.2c and 4.3c.

Pictures were captured during daytime in late winter of 2018. Daytime is impor-

tant as the RasPi Cam is very sensitive to light quality and light exposure.

In addition to this dataset, another set of images is used. The later set is taken
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(A) LEFT

(B) STRAIGHT (C) RIGHT

FIGURE 4.3: Images taken manually - autumn (trees with leaves)

manually (using a smartphone camera), but during autumn of 2017, while the tree

had leaves and chlorophyll was still green. The set has 100 images per mode/category

but this number proved to be very small. The same model is run through both sets

separately, and then together too.

4.3.2 The Model

To better manage different datasets and models, Nvidia’s Deep Learning GPU

Training System (DIGITS) is used. DIGITS is not in itself a machine-learning frame-

work, rather is a wrapper for most used frameworks available. It simplifies the com-

mon machine-learning tasks such as managing dataset including train/validation/test

splitting, designing and training different neural networks (on CUDA capable GPUs),

real-time monitoring of the training process and visualisation of the process.

GoogLeNet is used as a Convolutinal Neural Network (CNN) classifier. Because
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of the use of Inception modules, GoogLeNet is more versatile and computation-

ally less expensive. A simple 3x3 kernel with 256 input channels and 256 output,

would have an amount of 9x256x256 calculations. Such a network where every out-

put is connected to every input, is referred as dense connection. And while in most

of CNNs activation layer for those connection is often either zero or not valuable,

proving that not all those input channels are connected to output ones. Despite

many techniques developed to cut off those unnecessary connections, the compu-

tation needed is huge. The inception module of the model we chose to work with

approximates a sparse CNN with a normal dense construction, and since the effec-

tive number is low (because of zeros and unnecessary activations) the number of

convolutional filters is kept small. In addition it uses convolutions of different sizes

to capture details at different scales (5x5, 3x3) And it uses the so called bottleneck

layer 1x1, for reduction of computation requirements. GoogLeNet is a 27 layer deep

CNN (Fig 4.4), with 22 convolution and inception layers and 5 pooling layers. How-

ever the overall number of the independent blocks is well over 100.

FIGURE 4.4: GoogLeNet model structure

4.3.3 Training

Nvidia’s DIGITS dealt with splitting training, validation and testing sets. 15% of

images was kept for training and 5% for testing. Each images was of size 256x256.
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FIGURE 4.5: Training on 60 epochs

Through image augmentation (manually with a script), all LEFT images could be

mirrored and produce RIGHT images and vice versa, while STRAIGHT images

when mirrored created another STRAIGHT image. The model was trained for 60

epochs (Fig 4.5) in Amazon’s AWS S3 instance with NVIDIA’s Tesla K80 with 12GB

Memory. An Adaptive Movement Solver (ADAM Optimiser) with 0.002 base learn-

ing rate was chosen. A sigmoid decay of gamma 0.08 learning rate (Fig 4.6) with 60

steps is used. After training for few hours, the model is downloaded as a pre-trained

model, and transferred to the ground control computer (with CUDA capabilities)

that runs the transferred model through Nvidia’s GTX 960M GPU.

4.3.4 Navigation policy

As briefly mentioned above, the OBC, after capturing the data,it sends them

through WiFi to the GCC to run through the model. Since the OBC is not a pow-

erful enough computer, this step is necessary. Pictures received from the network

are piped to the Coffe2 model through Netcat (a GNU/Linux utility for reading

from and writing to network connections using TCP and UDP protocol). OpenCV

captures the Netcat pipe and serves to the model as frames (a single image where

the model performs the recognition).
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FIGURE 4.6: Learning rate

FIGURE 4.7: PID controller for finer control

The model has three outputs (LEFT, RIGHT, STRAIGHT), and based on recogni-

tion/classification confidence assigns to each frame the values from 0 (not confident)

to 1 (very confident) per class. The outputs are changed into RC_CHANEL_OVERRIDE

MAVLink protocol (with values from 1000 to 2000 per channel). Those values go

through a moving average script, that takes the values for several frames (in our

case all frames per second) and extract the moving average or running mean values

for each channel. Running mean of each channel is sent through ZeroMQ (an highly

efficient, high-performance and reliable asynchronous messaging library) to the PID

(Proportional Integral Derivative) controller that was built in the OBC.
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FIGURE 4.8: PID stabilizing mode

4.3.5 PID and Sensor Fusion

PID stands for Proportional, Integral, Derivative, it’s an algorithm that reads the

data from sensors and calculates how fast the motors should spin in order to attain

the desired rotation, angle and speed of the UAV. The goal of the PID controller is to

correct the “error“, the difference between a measured value (gyro sensor measure-

ment), and a desired set-point. This error can be minimized by adjusting the control

inputs in every loop, which is the speed of the motors.

There are 3 values in a PID controller, they are the P term, I term, and D term

(Figure 4.7):

• “P” looks at present error – the further it is from the set-point, the harder it

pushes

• “D” is a prediction of future errors – it looks at how fast a set-point is ap-

proached and counteracts P when it is getting close to minimize overshoot

• “I” is the accumulation of past errors, it looks at forces that happen over time;

for example if the UAV constantly drifts away from a set-point, it will spool up

motors to counteract it

PID is essential in stabilizing the UAV when the signal for channel override comes
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from the CNN. As shown in Figure 4.8, using the channel overrides without PID

regulation results in the UAV moving into an undesired position or correct position

but with a very unstable shift.

Other sensors (UltraSonic, LIDARv3 and Flow camera - facing down) have been

used for a finer control. UltraSonic sensors facing all four sides (forward, backwards

and both sideways) act as safe triggers when the UAV shifts very far and tends to

hit the row of trees. They are controlled by an Atmega microcontroller found in

Arduino and is connected to OBC through SPI.

For UAV in-air stabilizion, a specialized high resolution downward pointing cam-

era module is used and a 3-axis gyro that uses the ground texture and visible features

to determine aircraft ground velocity. In addition a downward facing Lidar is used

in flight modes which to have height control (altitude).

4.4 Restrictions

It does not go without mentioning that one of the major restrictions in this re-

search is the uncontrolled environment. Since the navigation relies the most on cam-

era input, light and sun exposure, time of the year, and the vegetative growth of the

trees change, make the performance very challenging. In this context, more images

under different weather conditions, different seasons and when tree leaves have dif-

ferent colours would make the model fit more scenarios and be more accurate.

4.5 Results

We ran the model through "test" dataset and reached accuracy of more than 85%.

In the first models, we trained the winter batch (set 1 of images) and autumn batch

(set 2 of images) separately, and tested images from the second dataset in the first

model the very low accuracy, under 20%. And the same vice versa. The third model,

that runs on all images together, reaches an accuracy greater than 76%. The testing

set compromised of well over 200 images that were manually separated from DIGITS

data frame. In cases where the front path is not visible in the image, the model gives

equal (or almost equal) confidence score to both RIGHT and LEFT, as, when path is

not in the frame, they are almost identical. To obviate this, PID on the OBC would

then make a decision as to where to go.
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(A) LEFT

(B) STRAIGHT

(C) RIGHT

FIGURE 4.9: Predictions per class

(A) LEFT

(B) STRAIGHT

(C) RIGHT

FIGURE 4.10: Activations of last convolutional layer
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4.6 Conclusions

Using deep learning and convolutional neural networks makes it possible for

UAVs and other mobile robots to navigate paths and spaces not explicitly programmed.

In orchard environments, where the top of the orchard is usually covered with hail

nets, it is impossible to assess trees and production from above. Our work shows

the possibility of using a UAV inside the orchard. Thiw will facilitate handeling spe-

cific sensors for precision measurement of fruit quality, fruit size estimation, tracking

maturity of the fruits, controlling for diseases. Qualitative and quantitative results

computed on large dataset used here show that this approach already yields an ac-

curacy comparable to the accuracy of humans that are tested on the same image

classification task.

Since the navigation direction are a moving average of many frames per second,

this makes the model quite robust to even small errors or when misclassification oc-

curs. In our case, one can argue that inference time is more important than accuracy.

A better model, taking into consideration all the restrictions mentioned, will con-

tribute to a robustness of classifications (in turn better navigation). In this research

we relied strongly on transferring the data from OBC to GCC for classification. By

using a better on-board computer better results would be gained as this transfer

would be eliminated. A NVIDIA’s Jetson platform or Intel’s Movidious Compute

Stick would run the model locally (in the edge, no need to relay on GCC), and would

make the platform more reliable and more responsive.
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Conclusions

Technological innovation propels society forward in leaps and bounds, and one

area that this is particularly true is in agriculture and farming. In the not-so distant

future, highly-advanced drones and tractors, as well as other technologies, will be

running farms and putting food in the mouths of billions. Spraying, mowing, water-

ing, fertilizing, pruning, harvesting are all computer-controlled. Even the soil they

grow in is monitored to within an inch of its life. Farms, then, are becoming like

factories: tightly controlled operations for turning out reliable products, immune as

far as possible from the vagaries of nature. The third industrial revolution was de-

fined by the pioneering of automation. What separates this fourth iteration is that

not only is the technology automated, but it is interconnected and has the capacity

for machine learning and artificial intelligence.

Monitoring huge fields of crops is the main task of growers. New sensor and

geo-mapping technologies are allowing growers to get a much higher level of data

about their crops than they have in the past. Ground robots and drones provide a

way to collect this data autonomously. Drones can measure stress on plants, irri-

gation water management and plant population counts, and as innovation drives

improvements, the potential to pinpoint problem areas and make decisions only in-

creases. Ground based robots, provide even more detailed monitoring as they are

able to get closer to the crops, and can also be used for other tasks like weeding and

fertilizing. The data collected can provide growers insight into what different areas

of their farms need. Rather than using a one-size-fits-all approach to applying chem-

ical thinning, for example, growers can put resources where they are needed most

and save on areas that may need less management. The future of autonomous sys-

tems in precision agriculture comes down to growers being ready and willing to try
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out the technology for themselves. Regulation will continue to evolve and new ad-

vancements will keep changing the paradigm around what those new technologies

can do. Getting involved now helps growers acquire an understanding around the

potential autonomous systems posses and also allows them to guide and determine

their own way forward.

In this study, we showed a potentially autonomous pipeline for an early cropload

estimation for fruit trees. Cropload estimation is essential for efficient orchard man-

agement starting with optimizing chemical thinning, planning the labor force, har-

vest equipment, and vehicles for transportation of fruit from field to the packing

plant. Management of cropload is a balancing act between reducing cropload suffi-

ciently to achieve optimum fruit size and adequate return bloom and not reducing

yield excessively. And since there are not any accurate cropload estimation sys-

tems, growers tend to perform insufficient thinning, preferring to be on the safe side

rather than causing irreversibly low yield. This has significant repercussions later in

the season when hand thinning is required to compensate for the insufficient chem-

ical thinning. By using Artificial Intelligence models, we have created this pipeline

where an autonomous UAV navigates the orchards, under anti-hail nets, takes im-

ages from the trees and estimates the cropload.

Today, more and more agricultural processes are becoming automated as preci-

sion farming technology becomes increasingly sophisticated. As precision agricul-

ture advances, fleets/swarm of smaller, self-driving tractors will replace the colossal

machinery on which many growers now rely. Steps are currently being made to

develop technologies that will enable the automation of individual tasks and gen-

eral purpose tasks that will empower growers to run operations in a fulfilling and

efficient way.
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Future work

Understanding growth patterns of various types of fruit and different cultivars of

a given crop is another area of research that affects the potential of machine vision

system. For example, stem length and fruit shape may vary substantially between

various apple cultivars. If a good understanding of such parameters is available,

machine vision system can use such knowledge to improve its effectiveness in de-

tection and/or reconstruction the whole tree canopy. In addition, future research

and development in machine vision system should focus on detecting precise fea-

tures from tree canopy training system and relate the fruit distribution for better

understanding of occlusion.

One of the most important factors on any deep neural network is the amount

of data together with the quality. More images on different stages of growth, im-

ages of different training systems and different cultivars as well as different fruit

species would certainly make the platform more appealing and robust. Further

studies and data collection, annotation and training are foreseen in the future, by

creating a whole dataset of many fruit species.

Fruit detection for yield estimation presents a challenge that is different from fruit

detection for robotic harvesting, and has some unique characteristics. First, in order

to minimize problems related to image registration and to enhance performance,

each image should contain a large portion of the tree, so that fruit appear as rather

small objects in the image. Also, unlike for robotic harvesting, for UAV and in-

line robots it is not possible to bring the camera closer to a specific suspected fruit,

to illuminate it or to improve its image in any way. The envisioned system will

consist of a geo-referenced systems equipped with one or several cameras mounted

sideways that will capture images on-the-fly while traveling at low speed.
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By using better, more powerfully and yet smaller on-board computer, with dedi-

cated artificial intelligence processing units (APUs) will help one making the whole

platforms (recognition, auto-navigation, cropload estimation ) into a single unit. Or

the other way around, the OBC would server only as intermediary to send large

amounts of data to the cloud for further processing. In this case, the trans-receivers

for data need to be very fast and very responsive so the sigal from the UAV to the

cloud and back should be in matter of seconds. This is what computing-on-the-edge

is all about, and can be a very content solution.
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