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Abstract

In this thesis we present an axiomatic approach to an invariant Harnack inequality for non
homogeneous PDEs in the setting of doubling quasi-metric spaces. We adapt the abstract
procedure developed by Di Fazio, Gutiérrez and Lanconelli, for homogeneous PDEs taking into
account the right hand side of the equation. In particular we adapt the notions of double ball
property and critical density property: these notions arise from Krylov-Safonov technique for
uniformly elliptic operators and they imply Harnack inequality. Then we apply the axiomatic
procedure to subelliptic equations in non divergence form involving Grushin vector fields and
to X-elliptic operators in divergence form.





Introduction

Harnack inequality was first introduced in 1887 for non negative solutions of harmonic
functions. Since then, it has been extended to non negative solutions of a huge variety of
PDEs both in divergence and non divergence form and in Euclidean and non Euclidean
setting. The importance of this type of inequality is widely recognized as it is a fundamental
tool in the investigation of regularity of solutions of partial differential equations. Moser
iteration technique ([39]) for elliptic operators in divergence form and Krylov-Safonov’s
measure theoretic approach ([32, 33, 40]) for linear equations in non divergence form and
rough coefficients are cornerstones in the development of Harnack inequality procedures. The
works [8] and [7] by Caffarelli and Caffarelli Cabré, where the Krylov-Safonov’s technique
is simplified and adapted to fully nonlinear operators, and the extension to the linearized
Monge-Ampère equation in [9], enlightened the key role of the Alexandrov-Bakelman-Pucci
maximum principle and the geometrical nature of the proof. It is indeed this last observation
that inspired axiomatic procedures to Harnack inequality in the general setting of quasi metric
spaces.

The term axiomatization of Harnack inequality refers to procedures that fix a quasi metric
space and a set of real valued functions on this space and aim to find sufficient conditions on
the set of functions considered in order to imply Harnack inequality over the balls defined
by quasi distance of the underlying space. This kind of approach was established by Aimar,
Forzani and Toledano in [2] for some families continuous functions, while Di Fazio, Gutiérrez
and Lanconelli in [14] substituted the regularity assumption on the functions with a more
natural requirement on the geometry of the underlying quasi metric space. Despite different
assumptions, both results rely on covering lemmas and state that the Harnack inequality is
a consequence of the power like decay of the distribution function of each element of the
considered family. In both works [2, 14], the power decay property is a consequence of the
validity of two other properties: the double ball and the critical density (see [14] for the
definitions). These two notions, that are hidden in the works by Krylov and Safonov, arise
from the analysis of the previously mentioned works by Caffarelli and Gutiérrez. Another type
of abstract approach was established by Indratno, Maldonado and Silwal in [30]. Here the
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authors substitute the double ball property with an integral condition (see [30, equation (2.14)]
) which makes the approach better suited for variational operators. These three axiomatic
procedures have been used to prove Harnack inequality for non negative solutions to equations
in divergence and non divergence form with underlying sub-Riemannian structures, see for
example [1, 37, 41, 27].

Unfortunately none of the axiomatic approaches above mentioned can be directly applied to
a PDE with non zero right hand side, indeed they can only handle functional sets closed under
multiplication by positive constant, while the set of solutions of a linear non homogeneous
PDE does not satisfy this requirement. However, a remark is in order. If a maximum principle
holds true in a form that permits to establish pointwise-to-measure estimates for super solutions
of the non homogeneous equation and if the existence of a solution for the Dirichlet problem
for the corresponding homogeneous PDE is guaranteed, then it is possible to obtain the non
homogeneous Harnack inequality from the homogeneous one by an elementary argument as in
[25, Theorem 5.5]. However, when dealing with subelliptic PDEs in non divergence form, it is
not known if a maximum principle holds true in a form that permits to establish pointwise-to-
measure estimates for super solutions such as [24, Theorem 2.1.1]. For non divergence PDEs
its proof depends in a crucial way upon the maximum principle of Aleksandrov, Bakelman and
Pucci, see for example [22, Section 9.8]. This principle for some subelliptic PDEs has been
recently studied, for example in [9, 6, 37, 13, 26, 3, 42]. However, nowadays this is still an
interesting open problem for subelliptic PDEs in non divergence form and this lack precludes
one from extending the method of [25, Theorem 5.5] to obtain a non homogeneous Harnack
inequality in general subelliptic settings and motivates our interest in the study of an axiomatic
approach.

Very recently in [23] we dealt with the problem of establishing an approach of this type in a
form that permits to handle both homogeneous and non homogeneous equations in divergence
and non divergence form in the general setting of quasi metric spaces. The purpose of this
dissertation is to present the results of this investigation and their application to Grushin type
and X-elliptic type operators, and some further developments.

The dissertation is organized in three main chapters followed by an Appendix. Here we
give an outline of the thesis and briefly present our main results.

In Chapter 1 we present the abstract approach to non homogeneous scale invariant Harnack
inequality obtained in [23, Section 2]. We recognize that the double ball and the critical density
properties are again the right assumptions to make in order to obtain Harnack inequality. On
the other hand, since the abstract approach has to be directly applicable to the case of PDEs
with possibly non zero right hand side, we need to modify these two notions in order to take
into account the non homogeneity. We will show how these two properties imply the power
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decay property, which in turn leads to a scale invariant Harnack inequality and consequently
Hölder regularity estimates.

In Chapter 2 we apply the results of the previous chapter to the case of X-elliptic operators.
These are second order operators in divergence form which are elliptic with respect to the
vector fields generating the underlying metric space. In the proof of the critical density property
we follow the ideas of [14] and we make use of some results by Uguzzoni [43]. In this last
mentioned work the author proves a scale invariant Harnack inequality, via Moser iteration
scheme, for non negative weak solutions to a class of X-elliptic operators that is more general
than ours. The purpose of this chapter is to show that the abstract approach of Chapter 1 is well
suited to operators in divergence form.

In Chapter 3 we extend, to the non homogeneous case, the Harnack inequality for non
negative classical solutions to Grushin type equations proved by Montanari in [37]. The
equations considered are of the type Lu = x2

1 f with L a subelliptic non divergence form operator
with measurable coefficients and involving Grushin vector fields and the right hand side is such
that x1 f ∈ L2

loc. When the right hand side is not of this type, Harnack inequality remains an
interesting open problem, indeed the Alexandrov-Bakelman-Pucci estimates, which are a key
tool towards the Harnack inequality, do not hold in general as shown in Theorem 3.7 and the
subsequent Remark. The proof of the double ball and the critical density properties will require
the construction of ad-hoc barriers in combination with a weighted Alexandrov-Bakelman-
Pucci maximum principle by Montanari. From these two properties, again by means of the
abstract procedure developed in Chapter 1, we deduce a non homogeneous scale invariant
Harnack inequality and Hölder regularity estimates. This is, in fact, our main result in [23,
Section 3]. After the preprint of this last mentioned work had been posted on arXiv:1709.03810
we learned that Diego Maldonado in [36] extended our example in [23, Section 3] to a larger
class of non homogeneous PDEs with right hand side of the same type considered in this thesis.
We will discuss his deep results at the end of Section 3.4. Then, we also prove Hölder regularity
estimates for the X-gradient.

Finally in the Appendix we show how Grushin type operators are related to the prescribed
Levi curvature equations in cylindrical coordinates. These equations are fully nonlinear subel-
liptic equations in non divergence form that arise from the problem of finding characterizing
property of the domains of holomorphy in terms of a differential property of the boundary;
they are therefore an important model of subelliptic operators related to the analysis in several
complex variables.





Table of contents

Introduction vii

1 An axiomatic approach to Harnack inequality 1
1.1 Definitions and preliminaries on quasi metric spaces . . . . . . . . . . . . . . 2
1.2 Double ball, critical density and power decay properties . . . . . . . . . . . . 4
1.3 Proof of the abstract Harnack inequality . . . . . . . . . . . . . . . . . . . . 18
1.4 Hölder regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Application to X-elliptic operators 27
2.1 Definitions and main assumptions . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Reverse doubling property . . . . . . . . . . . . . . . . . . . . . . . 29
2.1.2 Segment property . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Assumptions on the operator L . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 W 1 weak solution for the operator L . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Critical density property for X-elliptic operators . . . . . . . . . . . . . . . . 36

3 Application to Grushin type operators 47
3.1 Some definitions and useful results . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Grushin metric and sublevel sets . . . . . . . . . . . . . . . . . . . . 48
3.1.2 Grushin type operators . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1.3 An Alexandrov-Bakelman-Pucci maximum principle . . . . . . . . . 56

3.2 Double ball property for Grushin type operators . . . . . . . . . . . . . . . . 62
3.3 Critical density property for Grushin type operators . . . . . . . . . . . . . . 67
3.4 Harnack inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 A priori Hölder estimates for the X-gradient . . . . . . . . . . . . . . . . . . 79

Appendix The prescribed Levi curvature equation in cylindrical coordinates 85

List of Symbols 91



xii Introduction

References 93



Chapter 1

An axiomatic approach to Harnack
inequality

In this chapter we develop an abstract theory to obtain Harnack inequality for non ho-
mogeneous PDEs in the setting of doubling quasi metric Hölder spaces. Our approach is
a generalization of the one settled by Di Fazio, Gutiérrez and Lanconelli in [14], where an
abstract theory to homogeneous Harnack inequality is established.

As usual in the axiomatic approaches to Harnack inequality, the idea is to consider a
particular family of functions, and to prove that if this family satisfies certain properties (in our
case the double ball and the critical density: Definitions 1.2.5 and 1.2.4), plus some structural
conditions on the underlying space, then it satisfies the Harnack property (Definition 1.2.7).
When the abstract theory machinary is applied to prove Harnack inequality for solutions to
specific PDEs, the family of functions is chosen to be a subset of the set of non negative solution
to the considered PDE (in [2] the solutions must be continuous while in [14] they just need to
be measurable). In [2, 14, 30] they need to require the family to be closed under multiplication,
precluding in this way the possibility to deal with non homogeneous PDEs. The novelty of our
approach is that it permits to consider PDEs with non zero right hand side. Since we want to
take into account the right hand side f we will need to introduce a function SΩ, f to maintain
some kind of control on it. The role of this function will be made clearer in the next who
chapters where two applications of the abstract theory are presented and the function SΩ, f will
be chosen explicitly. For the moment it can be thought as some Lp norm of the right hand side.

At the beginning of this chapter some definitions and well known results about quasi metric
spaces theory are recalled. Then we introduce the notions of critical density, double ball, power
decay and Harnack property. With the aid of two Covering Theorems proved in [14] we show
that under some structural conditions on the quasi metric space, the double ball and critical
density properties imply the power decay property (Theorem 1.10). Finally in Theorem 1.11 we
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prove that the power decay property lead to the Harnack property, and consequently to Hölder
regularity estimates. Results contained in this chapter have been published in [23, Section 2].

1.1 Definitions and preliminaries on quasi metric spaces

We recall some definitions and well known results about quasi metric spaces that will be
extensively used in the sequel.

Definition 1.1.1. (Quasi distance) Let Y ̸= /0, we say that a function d : Y ×Y → [0,+∞[ is a
quasi distance if

• d(x,y) = d(y,x), for every x,y ∈ Y ;

• for every x,y ∈ Y , d(x,y) = 0 if and only if x = y;

• (quasi triangle inequality) there exists a constant K ≥ 1 such that

d(x,y)≤ K(d(x,z)+d(z,y)) for every x,y,z ∈ Y.

In this case the pair (Y,d) is called quasi metric space and the set

Br(x) := {y ∈ Y : d(x,y)< r}

is called a d-ball of center x ∈ Y and radius r > 0 (by abuse of notation, in the sequel, we will
write "ball" instead of "d-ball").

Definition 1.1.2. ([11, p.66]) We say that the quasi metric space (Y,d) is of homogeneous type
if the balls Br(y) are a basis of open neighborhoods and there exists a positive integer N such
that for each x and r > 0, the ball Br(x) contains at most N points x j such that d(xi,x j)≥ r/2
with i ̸= j.

Definition 1.1.3. (Doubling space) Let (Y,d) be a quasi metric space and µ a positive measure
on a σ -algebra of subsets of Y containing the d-balls. We say that the measure µ satisfies the
doubling property if there exists a constant CD > 0, called the doubling constant, such that

0 < µ(B2r(x))≤CDµ(Br(x)), for all x ∈ Y and r > 0.

In this case the triple (Y,d,µ) is called a doubling quasi metric space.
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In the sequel we will assume CD > 2 and we will use the notation Q = log2CD. We recall
that every doubling quasi metric space is of homogeneous type. For a proof of this fact we refer
the reader to [11]. In the sequel it will be useful the following lemma that contains a different
version of the doubling property.

Lemma 1.1. Let (Y,d,µ) be a doubling quasi metric space with doubling constant CD and
quasi triangle constant K. We define Q = log2CD, then we have

µ(Br2(x))≤CD

(
r2

r1

)Q

µ(Br1(x)), for every r1 < r2; (1.1)

µ(BR(y))≤CD

(
2KR

r

)Q

µ(Br(x)) for every Br(x)⊂ BR(y). (1.2)

Proof. Let k ∈ N be such that 2k−1r1 ≤ r2 ≤ 2kr1. Clearly we have(
r2

r1

)log2 CD

=
(

2log2(r2/r1)
)log2 CD

=C
log2

r2
r1

D ≥Ck−1
D

and by repeatedly applying the doubling property we get

µ(Br2(x))≤ µ(B2kr1
(x))≤CDCk−1

D µ(Br1(x))≤CD

(
r2

r1

)Q

µ(Br1(x)).

This proves (1.1). Since Br(x)⊂ BR(y)⊂ B2KR(x), inequality (1.2) follows directly from (1.1)
taking r2 = 2KR, r1 = r and recalling that µ(BR(y))≤ µ(B2KR(x)) .

Definition 1.1.4. (Hölder quasi-distance) We say that the quasi distance d is Hölder continuous
if there exist positive constants β ,α ∈]0,1] such that

|d(x,y)−d(x,z)| ≤ βd(y,z)α(d(x,y)+d(x,z))1−α for all x,y,z ∈ Y. (1.3)

In this case, the pair (Y,d) is said to be a Hölder quasi metric space.

Remark 1.2. Every metric space is a Hölder quasi metric space. Indeed by the triangle
inequality, for every x,y,z ∈ Y we have

d(x,z)−d(y,z)≤ d(x,y)≤ d(x,z)+d(y,z)

thus |d(x,y)−d(x,z)| ≤ d(y,z) and (1.3) holds true with α = β = 1.

The simplest example of Hölder doubling quasi metric space is the space Rn equipped with
the Euclidean distance and the Lebesgue measure. More interesting examples are homogeneous
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Lie group equipped with the Gauge distance and Lebesgue measure (see [14, Remark 2.5]).
In the sequel we will always assume d to be a Hölder quasi-distance. This requirement on
the regularity of d is not a restrictive assumption. Indeed, Marcías and Segovia [35, Theorem
2] proved that given a quasi distance d, it is always possible to construct an equivalent quasi
distance d′ which is Hölder continuous and such that d′-balls are open sets with respect the
topology induced by d′. Moreover we recall that any Hölder doubling quasi metric space is
separable (see [35]), consequently open sets are measurable as they are countable union of
d-balls and µ is a Borel measure.

In the sequel we will also need two extra structural conditions on the quasi metric space
(Y,d,µ). Let us fix Ω ⊂ Y .

Definition 1.1.5. (Reverse doubling condition) We say that the doubling quasi metric space
(Y,d,µ) satisfies the reverse doubling condition in Ω if there exists a constant δ ∈]0,1[ such
that

µ(Br(x))≤ δ µ(B2r(x)),

for every B2r(x)⊂ Ω.

Definition 1.1.6. (Ring condition) We say that the doubling quasi metric space (Y,d,µ) satisfies
the ring condition if there exists a non negative function ω(ε) such that ω(ε)→ 0 as ε → 0+

and for every ball Br(x) and all ε > 0 sufficiently small we have

µ
(
Br(x)\B(1−ε)r(x)

)
≤ ω(ε)µ(Br(x)).

Moreover we say that (Y,d,µ) satisfies the log-ring condition if it satisfies the ring condition
with ω(ε) = o

((
log 1

ε

)−2
)

as ε → 0+.

1.2 Double ball, critical density and power decay properties

Let us consider a Hölder doubling quasi metric space (Y,d,µ) and fix an open set Ω ⊆ Y .
As we have already said, we aim to build an axiomatic procedure that permits to prove non
homogeneous Harnack inequality for non negative measurable solutions to a possibly non
homogeneous PDE. For that reason we modify the notions of critical density, double ball, and
power decay property given in [14] in order to take into account the non homogeneity of the
PDE. We also need to consider families of functions that depend on the possibly non zero right
hand side f . With these new definitions we prove that, under some additional hypotheses on
the space (Y,d,µ), the double ball and the critical density properties imply the power decay
property.
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Let B(Ω) = {Br(x) : Br(x) ⊂ Ω} be the set of all the quasi metric balls contained in Ω

partially ordered by inclusion. We fix a set

F(Ω)⊆ { f : Ω → R, f is µ-measurable}

such that

• if f ∈ F(Ω), then λ f ∈ F(Ω) for every λ ∈ R.

Also, we fix a function

SΩ : B(Ω)×F(Ω)→ [0,+∞[

such that

• SΩ is order preserving in the first variable, that is SΩ(Br(y), f )≤ SΩ(BR(x), f ) for every
Br(y)⊆ BR(x) and for every f ∈ F(Ω).

• SΩ is homogeneous in the second variable: for every λ ∈ R, f ∈ F(Ω) and Br(x)⊆ Ω,
we have SΩ(Br(x),λ f ) = |λ |SΩ(Br(x), f ).

Definition 1.2.1. We define

L(Ω) = { f ∈ F(Ω) : SΩ(Br(x), f )<+∞ for every Br(x)⊆ Ω} .

Let us give a simple example of a space L(Ω). If we consider Rn with the Lebesgue mea-
sure µ and the Euclidean distance, F(Ω) = { f : Ω → R, f measurable} and SΩ(Br(x), f ) =(´

Br(x)
| f |pdµ

)1/p
we have that L(Ω) is exactly the space Lp

loc(Ω).

Remark 1.3. By the homogeneity of the function SΩ with respect to the second variable we
have that if f ∈ L(Ω), then λ f ∈ L(Ω) for every λ ∈ R.

Definition 1.2.2. For f ∈ L(Ω) we define KΩ, f a family of non negative measurable functions
with domain contained in Ω

KΩ, f ⊂ {u : A → R such that A ⊂ Ω, u ≥ 0 and u is µ-measurable}

such that the following two conditions hold:

• If u ∈KΩ, f then λu ∈KΩ,λ f for all λ ≥ 0.

• If u ∈KΩ, f then for every λ ,τ ≥ 0 such that τ −λu ≥ 0 we have τ −λu ∈KΩ,−λ f .
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In particular if u ∈KΩ, f and its domain contains A ⊂ Ω we will write u ∈KΩ, f (A).
In Chapters 2 and 3, where we will apply the abstract theory to specific operators, the

definition of the family KΩ, f will be clarified. Roughly speaking, KΩ, f will contain all the non
negative measurable solutions u with domain contained in Ω of an equation of the type Lu = f ,
where L is a second order partial differential operator.

As a convention, throughout this chapter, we do not specify the center of a ball if the center
is a point x0 ∈ Ω, namely we write BR instead of BR(x0).

Definition 1.2.3. (Structural constant) We say that c is a structural constant if it is independent
of each u belonging to the family KΩ, f , of f ∈ L(Ω) and of the balls defined by the quasi
distance considered.

We are now ready to state the critical density, double ball and power decay property that
will be crucial in the sequel.

Definition 1.2.4. (Critical density) Let ν ∈]0,1[. We say that KΩ, f satisfies the ν critical
density property if there exist structural constants εCD,c ∈]0,1[ depending on ν and a structural
constant ηCD > 1 such that for every ball BηCDR ⊂ Ω and for every u ∈KΩ, f (BηCDR) with

µ({x ∈ BR : u(x)≥ 1})≥ νµ(BR),

we have
inf
BR/2

u ≥ c or SΩ(BηCDR, f )≥ εCD.

In this case we say that the family KΩ, f satisfies the ν critical density CD(ν ,c,εCD,ηCD).

BR/2

BR

BηCDR

= {u ≥ c}

or SΩ(BηCDR, f )≥ εCD

BR

BηCDR

= {u ≥ 1}

covers at least (100×ν)% of BR

Fig. 1.1 Critical density property CD(ν ,c,εCD,ηCD)

The critical density property CD(ν ,c,εCD,ηCD) illustrated in Figure 1.1 can be interpreted
as follows: any u ∈KΩ, f (BηPR) is such that the information that the measure of the region of
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BR where u ≥ 1 is at least the (ν × 100)% of the measure of BR is enough to conclude that
SΩ(BηCDR, f )≥ εCD or u ≥ c on the whole ball of halved radius.

Definition 1.2.5. (Double ball property) We say that KΩ, f satisfies the double ball property if
there exist structural constants εDB,γ ∈]0,1[ and ηDB > 1 such that for every BηDBR ⊂ Ω and
for every u ∈KΩ, f (BηDBR) with

inf
BR/2

u ≥ 1 and SΩ(BηDBR, f )< εDB

we have
inf
BR

u ≥ γ.

In this case we say that the family KΩ, f satisfies the double ball property DB(γ,εDB,ηDB).

BR/2

BR

BηDBR

= {u ≥ 1}

and SΩ(BηDBR, f )< εDB

BR

BηDBR

= {u ≥ γ}

Fig. 1.2 Double Ball property DB(γ,εDB,ηDB)

The double ball property DB(γ,εDB,ηDB) illustrated in Figure 1.2 can be interpreted as
follows: if SΩ(BηDBR, f )< εDB, for any u ∈KΩ, f (BηDBR) such that u is greater or equal 1 on
the ball BR/2, we have that u is grater than a positive constant γ on the whole ball of doubled
radius BR.

Definition 1.2.6. (Power decay) We say that the family of functions KΩ, f satisfies the power
decay property if there exist structural constants γ ∈ [0,1[, εP ∈]0,1[ and ηP, M > 1 such that
for each u ∈KΩ, f (BηPR) with

inf
BR

u ≤ 1 and SΩ(BηPR, f )< εP

we have
µ({x ∈ BR/2 : u(x)> Mk})≤ γ

k
µ(BR/2) for every k ∈ N.
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In this case we say that the family KΩ, f satisfies the power decay property PD(M,γ,εP,ηP).

infBR u ≤ 1
and

SΩ(BηPR, f )< εP

x0 −ηPR x0 − R
2

x0 x0 +
R
2

x0 +ηPR

M

M2

M3

M4

Fig. 1.3 Power Decay property PD(M,γ,εP,ηP)

The power decay property PD(M,γ,εP,ηP) illustrated in Figure 1.3 can be interpreted as
follows. If SΩ(BηPR, f )< εP, for any u ∈KΩ, f (BηPR) such that u is smaller or equal 1 on the
ball BR, we have that the measure of the region inside the ball of halved radius BR/2 where
u ≥ Mk decays with rate γk as k increases.

Definition 1.2.7. We say that the family of functions KΩ, f satisfies the Harnack property if
there exist structural constants η > 1 and C > 0 such that for each u ∈ KΩ, f (BηR) locally
bounded we have

sup
BR

u ≤C

(
sup
BR

u+SΩ(BηR, f )

)
.

In this case we say that KΩ, f satisfies the Harnack property H(C,η).

It is not restrictive to require the critical density and the double ball properties to hold with
the same constants ηCD = ηDB and εCD = εDB, indeed

Remark 1.4. If the family KΩ, f satisfies the ν critical density property CD(ν ,c,εCD,ηCD) and
the double ball property DB(γ,εDB,ηDB) then it satisfies CD(ν ,c,ε,η) and DB(γ,ε,η) with
ε = min{εDB,εCD} and η = max{ηDB,ηCD}.

The double ball and critical density properties are in general independent. However, the
The following proposition shows that, for sufficiently small values of ν , the ν critical density
property implies the double ball property.

Proposition 1.5. Let CD be the doubling constant, if KΩ, f satisfies the ν critical density
property CD(ν ,c,εCD,ηCD) for some ν ∈]0,1/C2

D[, then KΩ, f satisfies the double ball property
DB(c,εCD,2ηDB).
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Proof. Suppose by contradiction that there exists u ∈KΩ, f (B2ηCDR) with B2ηCDR ⊂ Ω, such that
infBR/2 u ≥ 1 and SΩ(B2ηCDR, f )< εCD but infBR u < c. Then by the ν critical density property
we have

µ({x ∈ B2R : u(x)≥ 1})< νµ(B2R) or SΩ(B2ηCDR, f )≥ εCD.

If the second inequality holds we have an immediate contradiction. Otherwise if the first
inequality holds, since BR/2 ⊆ {x ∈ B2R : u(x)≥ 1}, we find

µ(BR/2)≤ µ({x ∈ B2R : u(x)≥ 1})≤ νµ(B2R)≤ νC2
Dµ(BR/2)< µ(BR/2)

a contradiction.

Notice that it holds the following

Remark 1.6. If the family KΩ, f satisfies the ν critical density property CD(ν ,c,εCD,ηCD),
then it also satisfies CD(ν ,c,εCD,ηCD) for any ν > ν , but, in general, it is not possible to
prove the same for ν < ν .

Now we want to prove that in a Hölder doubling quasi metric space (Y,d,µ), if KΩ, f

satisfies the double ball and critical density properties plus some other structural conditions on
(Y,d,µ), then KΩ, f has also the power decay property. We will need few preliminary results
and two covering theorems obtained by Di Fazio Gutiérrez and Lanconelli in [14]. These
covering theorems will play a key role in the proof of the power decay property.

Covering Theorem 1. Let (Y,d,µ) be a doubling quasi metric Hölder space satisfying the
log-ring condition for all balls Bt(x) and for all ε sufficiently small. Assume that there exist
a ball BR0(z) and a constant δ ∈]0,1[ such that µ(BR0(z))< δ µ(B2R0(z)). Then there exists
a constant c(δ ) ∈]0,1[ such that for any µ-measurable set E ⊂ BR0(z) with µ(E)> 0, there
exists a family of balls {Br j(x j)}∞

j=1 satisfying

i) r j ≤ 3KR0 for all j ∈ N. Here K the constant in the quasi triangle inequality for d;

ii) all x j are density points of E with respect to µ1;

iii) E ⊂
⋃

∞
j=1 Br j(x j) a.e. in the measure µ;

iv)
µ(Br j (x j)∩E)

µ(Br j (x j))
= δ for any j ∈ N;

v) µ(E)≤ c(δ )µ
(⋃

∞
j=1 Br j(x j)

)
.

1 We recall that x ∈ Y is a density point for X ⊂ Y if µ(BR(x)∩X)
µ(Br(x))

→ 1 as r → 0+
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Covering Theorem 2. Let (Y,d,µ) be a doubling quasi metric Hölder space and suppose
the function r 7→ µ(Br(x)) is continuous. Moreover, we assume that there exist a ball BR0(z)
and a constant δ ∈]0,1[ such that µ(BR0(z))< δ µ(B2R0(z)). Then there exist two constants
c(δ ) ∈]0,1[ and Cδ > 0 such that for any µ-measurable set E ⊂ BR0(z) with µ(E)> 0, there
exists a family of balls {Br j(x j)}∞

j=1 satisfying

i) r j ≤Cδ R0 for all j ∈ N;

ii) all x j are density points of E with respect to µ;

iii) E ⊂
⋃

∞
j=1 Br j(x j) a.e. in the measure µ;

iv) δ

CD
≤

µ(Br j (x j)∩E)
µ(Br j (x j))

< δ for any j ∈ N;

v) µ(E)≤ c(δ )µ
(⋃

∞
j=1 Br j(x j)

)
.

For the proof of Covering Theorem 1 and Covering Theorem 2 we refer the reader to [14,
Theorems 3.3 and 3.4] respectively.

Proposition 1.7. Suppose KΩ, f satisfies the double ball and the ν critical density properties
DB(γ,ε,η) and CD(ν ,c,ε,η) for every f ∈ L(Ω). Then there exists a structural constant
M0 =

1
γc > 1 such that for any positive constant α and for any u ∈KΩ, f (BηR) with

µ({x ∈ BR : u(x)≥ α})≥ νµ(BR),

we have
inf
BR

u ≥ α

M0
or SΩ(BηR, f )≥ εαc.

Proof. Since u ∈KΩ, f (BηR) we have u
α
∈K

Ω, f
α

(BηR). By the ν critical density property of
K

Ω, f
α

follows either infBR/2
u
α
≥ c or SΩ(BηR, f )≥ αε ≥ αcε . In the second case we are done,

otherwise u
αc ∈K

Ω, f
αc
(BηR) and so, either SΩ(BηR, f )≥ αcε or we can apply the double ball

property to obtain infBR
u

αc ≥ γ . Defining γc := 1
M0

we conclude the proof.

Lemma 1.8. Suppose KΩ, f satisfies the double ball and the ν critical density properties
DB(γ,ε,η) and CD(ν ,c,ε,η) for every f ∈ L(Ω). Define θ := K(1+4ηK) > 1 with K the
constant in the quasi triangle inequality. Let u ∈KΩ, f (BθR),

inf
BR

u ≤ 1

and suppose there exist structural constants α > 0, ρ < 2KR and y ∈ BR such that

µ({x ∈ Bρ(y) : u(x)≥ α})≥ νµ(Bρ(y)). (1.4)
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Then there exist positive structural constants σ , M1 such that

ρ ≤
(

M1

α

)σ

R or SΩ(BθR, f )≥ εαcγ p

M0
. (1.5)

Here M1 = (4K)1/σ M0, M0 is defined in Proposition 1.7, σ =− log2
logγ

and p ∈ N is chosen so
that 2p−1ρ ≤ 2KR ≤ 2pρ .

Proof. If the second inequality in (1.5) holds, the proof is completed. Thus we suppose
SΩ(BθR, f )< εαcγ p

M0
; this implies

SΩ(Br(ỹ), f )<
εαcγ p

M0
for every Br(ỹ)⊆ BθR. (1.6)

Since Bηρ(y) ⊂ BθR and inequality (1.4) holds, we apply Proposition 1.7 and taking into
account (1.6) we deduce

inf
Bρ (y)

u ≥ α

M0
. (1.7)

Moreover if p is chosen as in the statement, since y ∈ BR, it follows B2pηρ(y) ⊆ BθR and so
(1.6) implies

SΩ(B2k+1ηρ(y), f )<
εαcγ p

M0
≤ εαcγk

M0
for every 0 ≤ k ≤ p−1. (1.8)

Hence we can repeatedly apply the double ball property to uM0
αγk in B2k+1ηρ(y), where k =

0, . . . , p−1, obtaining
inf

B2pρ (y)
u ≥ γ

p α

M0
. (1.9)

Indeed by (1.7) we have infBρ (y)
uM0

α
≥ 1, this and (1.8) with k = 0, allow us to use the double

ball property of K
Ω, f M0

α

to get infB2ρ (y) uM0
α

≥ γ . Now we have infB2ρ (y) uM0
αγ

≥ 1. Again, by

(1.8) with k = 1, and the double ball property, infB4ρ (y) uM0
α

≥ γ2. We repeat this procedure p
times to find (1.9) and consequently

1 ≥ inf
BR

u ≥ inf
B2pρ (y)

u ≥ γ
p α

M0
.

From the first and the last inequality in the expression above we get γ p ≤ M0
α

. Since γσ = 1/2,
raising both side of the inequality to the power σ , it follows 2−p ≤

(M0
α

)σ . Finally, multiplying
both sides by 2pρ and keeping in mind the definition of p in the statement we get the thesis.
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Lemma 1.9. Under the same hypotheses of Lemma 1.8 we have

ρ ≤
(

M1

α

)σ

R or SΩ(BθR, f )≥ εc.

Proof. Let us define δ := αγ p

M0
≤ 1. We shall prove that if SΩ(BθR, f )< εc then δ ≤ 1. Indeed,

if SΩ(BθR, f )< εcδ then by the proof of the previous lemma δ ≤ 1. On the other side, if εcδ ≤
SΩ(BθR, f )< εc, then obviously δ < 1. Since in both cases δ ≤ 1, then ρ ≤

(M1
α

)σ R.

The next theorem shows that the double ball and the critical density properties combined,
imply the power decay property. We will prove it under two different set of hypotheses on the
Hölder doubling quasi-metric space. The proof follows the ideas in [14].

Theorem 1.10 (Power decay). Let (Y,d,µ) be a Hölder doubling quasi-metric space and con-
sider Ω ⊂ Y open, f ∈ L(Ω). Suppose there exists δ ∈]0,1[ such that µ(Br(x))≤ δ µ(B2r(x))
for every B2r(x)⊂ Ω and one of the following pairs of conditions holds

(A1) KΩ, f satisfies the double ball and the ν critical density properties DB(γ,ε,η) and
CD(ν ,c,ε,η) for every f ∈ L(Ω).

(A2) (Y,d,µ) satisfies the log-ring condition.

or

(B1) KΩ, f satisfies the ν critical density property CD(ν ,c,ε,η) for a ν ∈]0,1/C2
D[ and for

every f ∈ L(Ω). Here CD is the doubling constant.

(B2) The function r 7→ µ(Br(x)) is continuous.

Then the family KΩ, f satisfies the power decay property.

Proof. First of all we define τ := max{ν ,δ}, by Remark 1.6, KΩ, f satisfies the critical density
property CD(τ,c,ν ,η) for every f ∈ L(Ω). That said, throughout the proof we will write ν

instead of τ .
In order to prove the theorem under assumptions (A1), (A2) we consider u ∈KΩ, f (BηPr) and
set

Ek = {x ∈ BηPr : u(x)≥ Mk}, for every k ∈ N.

Moreover, we suppose

BηPr ⊂ Ω, inf
Br

u ≤ 1 and SΩ(BηPr, f )< εP (1.10)
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where ηP,M > 1 and 0 < εP < 1 are structural constants that will be soon determined (see
(1.15) and (1.18)). We shall prove that there exist structural constants ω ∈]0,1[ and M̃ > 1
such that

µ({x ∈ Br/2 : u(x)> M̃t})≤ ω
k
µ(Br/2) for every t ∈ N.

Notice that the second inequality in (1.10) implies

SΩ(Bρ(x), f )< εP for every Bρ(x)⊆ BηPr. (1.11)

We claim it is possible to construct a family of balls Bk of radius tk and concentric to BηPr such
that r = t0 > t1 > t2 > · · ·> r/2 and

µ(Bk+1 ∩Ek+2)≤ c(ν)µ(Bk ∩Ek+1), c(ν)< 1, k ∈ N0. (1.12)

In particular we will construct this family by choosing tk = Tkr where Tk are defined by
Tk = T1 −β1q3

∑
k−2
j=0 q j, k > 2

T2 = 3/4−β1q3

T1 = 3/4

i.e.

Tk+1 = Tk −β1qk+2, k > 1

T1 = 3/4.
(1.13)

Here
q := 1/Mσα , β1 := (2K)1−α

βMσα
1 (1+Mσ

1 )
1−α , (1.14)

σ , M1 are defined in Lemma 1.8; α, β are the constants in Definition 1.1.4 and K is the quasi
triangle inequality constant. Assuming the claim for a moment, from (1.12), we get

µ({x ∈ Br/2 : u(x)> Mk+2})≤ µ({x ∈ Btk+1 : u(x)> Mk+2})
≤ (c(ν))k+1

µ(Br)

≤ (c(ν))k+1CDµ(Br/2) for every k ∈ N0.

where CD is the doubling constant. Consider a positive integer k0 such that (c(ν))k0CD < 1, if
we define M̃ = Mk0+2, from the last inequality, for any t ∈ N, we have

µ({x ∈ Br/2 : u(x)> M̃t})≤ µ({x ∈ Br/2 : u(x)> Mk0+1+t})
≤ (c(ν))k0CD(c(ν))t

µ(Br/2)

≤ (c(ν))t
µ(Br/2) for every t ∈ N.

Hence KΩ, f has the power decay property PD(M̃,c(ν),εP,ηP).
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We now explicitly define ηP and M (these specific choices will be motivated in the proof of
the claim) such that

ηP > max{K(3ηK +1),θ},
M > max{M0,M},

(1.15)

where M is a positive constant big enough to have

max
{

β1
1

M2σα
,β1

1

M3σα ∑
j∈N0

1

M jσα

}
<

1
4

and M0 and θ are defined in Proposition 1.7 and Lemma 1.8 respectively. We remark that the
definition of M and Tk implies

1
2
< Tk ≤

3
4

for every k ∈ N. (1.16)

To complete the proof of the Theorem 1.10, we are left with the proof of claim (1.12). We will
explicitly show it in the case k = 0 and then for a generic k ∈ N, for the sake of clarity we will
subdivide each proof in five steps.
Proof of the claim for k = 0

Step I Consider t1 = T1r = 3/4r. Since B1 ∩ E2 ⊂ Br ⊂ B2r ⊂ Ω, the Covering Theorem
1 by Di Fazio Gutierréz and Lanconelli ensures the existence of a level ν covering
F1 = {B(xh,rh)} of B1 ∩E2 where xh are density points of B1 ∩E2, rh < 3Kr for every
h ∈ N and

ν =
µ(Brh(xh)∩B1 ∩E2)

µ(Brh(xh))
≤

µ(Brh(xh)∩E2)

µ(Brh(xh))
. (1.17)

Step II We show that
Brh(xh)⊂ E1, for every h ∈ N.

Since ηP >K(3ηK+1) and rh < 3Kr we have Bηrh(xh)⊂BηPr so that u∈KΩ, f (Bηrh(xh)).
By (1.17) and Proposition 1.7 it follows infBrh(xh) u ≥ M2/M0 > M or SΩ(Bηrh(xh), f )≥
εcM2. It suffices to choose

εP = εc (1.18)

in (1.10) and recall that, by definition we have M >M0 > 1 to exclude the latter alternative
and get Brh(xh)⊂ E1.

Step III Now we prove rh < 2Kr for all h ∈ N. Suppose by contradiction that there exists a
j ∈ N such that r j > 2Kr. Then B2r(x j)⊂ B2Kr(x j)⊂ Br j(x j). By Step II, infBr j (x j) u ≥
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M2/M0 > 1 and so infB2r(x j) u > 1. In addition, since x j is a density point of B1 ∩
E2, it follows that x j ∈ B1. Finally, recalling that t1 < r, we have Br ⊂ B2Kr(x j) and
consequently infBr u > 1. This contradicts (1.10).

Step IV We next show that
Brh(xh)⊂ B0, for every h ∈ N.

First of all notice that since ηP > θ we have u ∈ KΩ, f (Bθr). This, (1.17) and Step III
allow us to apply Lemma 1.9 with y, ρ and α replaced by xh, rh and M2, obtaining

rh ≤
(

M1

M2

)σ

r or SΩ(Bθr, f )≥ εc.

Since εP = εc and (1.11) holds, we conclude the first alternative take place. Now, if
z ∈ Brh(xh), inequality (1.3) and the quasi triangle inequality imply

d(z,x0)≤ d(xh,x0)+β (d(xh,z))α(d(xh,x0)+d(x0,z))1−α

≤ d(xh,x0)+(2K)1−α
β (d(xh,z))α(d(xh,x0)+d(xh,z))1−α

≤ t1 +(2K)1−α
β

(
M1

M2

)σα

rα

(
t1 +

(
M1

M2

)σ

r
)1−α

.

keeping in mind t1 = T1r we get

d(z,x0)≤ r
(

T1 +(2K)1−α
βq2Mσα

1
(
T1 +Mσ

1 q2/α
)1−α

)
≤ r
(

T1 +(2K)1−α
βq2Mσα

1
(
1+Mσ

1
)1−α

)
≤ r(T1 +β1q2)

where β1 e q are the positive constants defined in (1.14). In virtue of our choice of t1 and
M we have T1 +β1q2 < 1 and so, Brh(xh)⊂ Br concluding the proof of Step IV.

Step V By Covering Theorem 1 (v) we have

µ(B1 ∩E2)≤ c(ν)µ
(⋃

h∈N
Brh(xh)

)
,

on the other hand Step II and Step VI imply Brh(xh)⊂ B0 ∩E1 and hence

c(ν)µ
(⋃

h∈N
Brh(xh)

)
≤ c(ν)µ(B0 ∩E1),
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combining inequalities above we get (1.12) for k = 0.

Proof of the claim for a generic k ∈ N

Step I Consider tk+1 = Tk+1r, where Tk is defined in (1.13). Since Bk+1∩Ek+2 ⊂ Br ⊂ B2r ⊂ Ω,
the Covering Theorem 1 by Di Fazio Gutiérrez and Lanconelli ensures the existence
of a level ν covering Fk+1 = {Brh(xh)} of Bk+1 ∩Ek+2 where xh are density point of
Bk+1 ∩Ek+2, rh < 3Kr for every h ∈ N and

ν =
µ(Brh(xh)∩Bk+1 ∩Ek+2)

µ(Brh(xh))
≤

µ(Brh(xh)∩Ek+1)

µ(Brh(xh))
. (1.19)

Step II We show that
Brh(xh)⊂ Ek+1, for every h ∈ N.

Since ηP >K(3ηK+1) and rh < 3Kr we have Bηrh(xh)⊂BηPr so that u∈KΩ, f (Bηrh(xh)).
From (1.19) and Proposition 1.7 it follows that infBrh(xh) u≥Mk+2/M0 or SΩ(Bηrh(xh), f )≥
εcMk+2. By (1.11), the definition of εP, and our choice of M we exclude the latter alter-
native and get Brh(xh)⊂ Ek+1.

Step III Now we prove that rh < 2Kr for all h. Suppose by contradiction that there exists a
j ∈ N such that r j > 2Kr. Then B2r(x j)⊂ B2Kr(x j)⊂ Br j(x j). By Step II infBr j (x j) u ≥
Mk+2/M0 > 1 so that infB2r(x j) u > 1. In addition, since x j is a density point of Bk+1 ∩
Ek+2, it follows that x j ∈ Bk+1. Finally, recalling that tk+1 < r, we have Br ⊂ B2Kr(x j)

and consequently infBr u > 1, on the other hand (1.10) holds and we reach a contradiction.

Step IV We next show that
Brh(xh)⊂ Bk, for every h ∈ N.

First of all we notice that since ηP > θ we have u ∈ KΩ, f (Bθr). This, the second
inequality in (1.19) and Step III allow us to apply Lemma 1.9 with y, ρ and α replaced
by xh, rh and Mk+2 obtaining

rh ≤
(

M1

Mk+2

)σ

r or SΩ(Bθr, f )≥ εc.
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By (1.11) and the choice of εP we made, we can conclude that the first alternative take
place. Now, if z ∈ Brh(xh), inequality (1.3) and the quasi triangle inequality imply

d(z,x0)≤ d(xh,x0)+β (d(xh,z))α(d(xh,x0)+d(x0,z))1−α

≤ d(xh,x0)+(2K)1−α
β (d(xh,z))α(d(xh,x0)+d(xh,z))1−α

≤ tk+1 +(2K)1−α
β

(
M1

Mk+2

)σα

rα

(
tk+1 +

(
M1

Mk+2

)σ

r
)1−α

.

Moreover, since tk+1 = Tk+1r we have

d(z,x0)≤ r
(

Tk+1 +(2K)1−α
βqk+2Mσα

1
(
Tk+1 +Mσ

1 q(k+2)/α
)1−α

)
≤ r
(

Tk+1 +(2K)1−α
βqk+2Mσα

1
(
1+Mσ

1
)1−α

)
≤ r(Tk+1 +β1qk+2)

where β1 e q are the positive constant defined in (1.14). Keeping in mind (1.13) and
(1.16), we have Tk+1 +β1qk+2 = Tk < 1 and so Brh(xh) ⊂ Br concluding the proof of
Step IV.

Step V One one hand by Covering Theorem 1 (v) we have

µ(Bk+1 ∩Ek+2)≤ c(ν)µ
(⋃

h∈N
Brh(xh)

)
,

on the other hand Step II and Step VI imply Brh(xh)⊂ Bk ∩Ek+1 and hence

c(ν)µ
(⋃

k∈N
Brh(xh)

)
≤ c(ν)µ(Bk ∩Ek+1),

combining inequalities above we get (1.12) for general k ∈ N.

This proves the claim and completes the proof Theorem 1.10 under assumptions (A1) and (A2).
Now suppose hypotheses (B1) and (B2) hold, the proof proceeds exactly as before with

ηP := 2max{K(3ηK +1),θ}, by using Covering Theorem 2 instead of Covering Theorem 1.
Moreover (1.17) and (1.19) have to be replaced by

ν

CD
≤

µ(Brh(xh)∩B1 ∩E2)

µ(Brh(xh))
≤

µ(Brh(xh)∩E2)

µ(Brh(xh))
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and
ν

CD
≤

µ(Brh(xh)∩Bk+1 ∩Ek+2)

µ(Brh(xh))
≤

µ(Brh(xh)∩Ek+1)

µ(Brh(xh))

respectively.

We explicitly remark that in theorem above the power decay property has been proved for
every family KΩ, f with f ∈ L(Ω).

1.3 Proof of the abstract Harnack inequality

This section is the core of our work, here we prove that the Harnack property is a conse-
quence of the power decay property. We recall that our arguments are an adaptation to the ones
given in [14]. In particular we will show that

Theorem 1.11 (Harnack inequality). Let (Y,d,µ) be a doubling quasi metric Hölder space,
suppose KΩ, f satisfies the power decay property PD(M,γ,εP,ηP) for every f ∈ L(Ω).
Then, KΩ, f also satisfies the Harnack property for every f ∈L(Ω), that is for every BηR(x0)⊂
Ω, if u ∈KΩ, f (BηR(x0)) is locally bounded, there exists a positive structural constant C such
that

sup
BR(x0)

u ≤C
(

inf
BR(x0)

u+SΩ(BηR(x0), f )
)
.

Here η = 2K(2KηP +1) and K is the constant in the quasi triangle inequality.

We remark that in virtue to [35, Theorem 2] it is not restrictive to require d to be a
Hölder quasi distance, since if d do not satisfies this hypothesis, one can always consider
equivalent Hölder quasi distance d′. We prove Harnack inequality using the following lemma
and proposition.

Lemma 1.12. Let (Y,d,µ) be a doubling quasi metric space, suppose KΩ, f satisfies the
power decay property PD(M,γ,εP,ηP) for every f ∈ L(Ω). If SΩ(B2ηPR(z0), f ) ≤ εP, u ∈
KΩ, f (B2ηPR(z0)) is such that infB2R(z0) u ≤ 1, u(x0)≥ Mk and B2ρ(x0)⊂ BR(z0), then

sup
Bρ (x0)

u ≥ u(x0)

(
1+

1
M

)
. (1.20)

Here x0 ∈ BR(z0), k ≥ 2, ρ = γk/QR
c1

, Q = log2(CD), c1 <

(
γ1/Q(1−γ)1/Q

C1/Q
D 4KηP

)
, CD is the doubling

constant and K is the quasi triangle inequality constant.
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Proof. We shall prove the statement by contradiction. Suppose (1.20) is not true and define

A1 := {x ∈ BR(z0) : u(x)≥ Mk−1},
A2 := {x ∈ Bρ/(2ηP)(x0) : w(x)≥ M}

where

w(x) :=
u(x0)

(
1+ 1

M

)
−u(x)

u(x0)
M

= M+1− M
u(x0)

u(x) ∈K
Ω,− M f

u(x0)
(Bρ(x0)).

Since w(x0) = 1, infBρ/ηP
(x0)w(x)≤ 1. Moreover SΩ(Bρ(x0),− M

u(x0)
f ) = SΩ(Bρ(x0), f ) M

u(x0)
≤

εPM−k+1 ≤ εP, so the power decay property for K
Ω,− M

u(x0)
f and KΩ, f implies respectively

µ(A2)≤ γµ(Bρ/(2ηP)(x0)) and µ(A1)≤ γ
k−1

µ(BR(z0)).

Recalling that Bρ/(2ηP)(x0)⊂ Bρ(x0)⊂ Br(z0) we can show the inclusion Bρ/(2ηP) ⊂ A1 ∪A2.
Indeed if x ∈ Bρ/(2ηP) but x /∈ A1 then u(x)< Mk−1 so w(x)≥ M and hence x ∈ A2, vice versa
if x ∈ Br(z0) but x /∈ A2 then w(x)< M so u(x)> u(x0)≥ Mk and hence x ∈ A1. Consequently
we estimate the measure of Bρ/(2ηP)(x0) by

µ(Bρ/(2ηP)(x0))≤ µ(A1)+µ(A2)≤ γ
k−1

µ(BR(z0))+ γµ(Bρ/(2ηP)(x0)).

Now, since Bρ/(2ηP)(x0) ⊂ BR(z0) ⊂ B2KR(x0), recalling Lemma 1.1, the last inequality be-
comes

µ(Bρ/(2ηP)(x0))≤
(

γ
k−1CD

(
4KRηP

ρ

)Q

+ γ

)
µ(Bρ/2ηP(x0))

where Q = log2CD. From the strict positiveness of the measure of Bρ/(2ηP)(x0) and the
definition of ρ and c1 given in the statement, we get

1− γ ≤ γ
k−1CD

(
4KRηP

ρ

)Q

=CD(4KηPc1)
Q γk−1

γk =
CD

γ
(4KηPc1)

Q

that is equivalent to c0 := CD
γ(1−γ)(4KηPc1)

Q ≥ 1. On the other hand, since c1 <
(

γ1/Q(1−γ)1/Q

C1/Q
D 4KηP

)
we have c0 < 1 reaching a contradiction.

Proposition 1.13. Let (Y,d,µ) be a doubling quasi metric space and suppose KΩ, f satisfies
the power decay property PD(M,γ,εP,ηP) for every f ∈ L(Ω). Consider BηR(x0)⊂ Ω, and
u ∈ KΩ, f (BηR(x0)) and locally bounded. Then, if infBR(x0) u < 1 and SΩ(BηR(x0), f ) < εP,
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there exists a positive structural constant C such that

sup
BR(x0)

u ≤C.

Proof. Consider BR(z) with z ∈ BR(x0) and define

D := sup
x∈BR(z)

u(x)g(x,R)

where

g(x,R) :=
(

R−d(x,z)
R

)δ/α

,

δ is a structural constant that will be soon defined and α is the exponent in the Hölder property
for d (see Definition 1.1.4). We claim that D is bounded from above by a structural constant C.
Deferring the proof of the claim for a moment we have

u(x)≤C
(

R
R−d(x,z)

)δ/α

, for all x ∈ BR(z) and for every z ∈ BR(x0), (1.21)

thus the thesis follows taking x = z in (1.21).
Hence we are left with the proof of the claim, to this aim choose

δ > 0 such that
1
M

= γ
δ/Q,

β∗ > 2(2K)1−α
β

(
1−
(

1+
1
M

)−α/δ
)−1

> 2β (2K)1−α ,

k0 ∈ N, k0 >
Q

logγ
log
(

c1

(
2

1
1−α −1

))
,

where M, ρ, γ and c1 are defined in the statement of Lemma 1.12, α, β are as in Defini-
tion 1.1.4, and Q = log2CD. Notice that k0 is a structural constant whose definition implies(
1+ ρ

R

)1−α
=
(
1+ γk/Q

c1

)1−α
< 2 for every k ≥ k0 and since u is non negative and locally

bounded, +∞ > D ≥ 0. If D > 0 pick D∗ ∈ (0,D), it suffices to show that D∗ is bounded from
above by a structural constant C to prove the claim. Since u ≥ 0 is not identically zero, there
exists x∗ ∈ BR(z) such that D∗ < u(x∗)g(x∗,R), if u(x∗) < 1 we are done otherwise choose
k ∈ Z such that Mk ≤ u(x∗)< Mk+1. For clarity sake we consider three different cases.
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Case I If k ≤ k0 then
D∗ < Mk+1g(x∗,R)≤ Mk0+1.

Case II If k > k0 and D∗

M cδ
1 < β

δ/α

∗ , clearly D∗ is bounded above by Mβ
δ/α
∗

cδ
1

.

Case III k > k0 and D∗

M cδ
1 ≥ β

δ/α

∗ . We will show that this is never the case.

So let us assume k > k0 and D∗

M cδ
1 ≥ β

δ/α

∗ . For ρ = γk/QR
c1

as in Lemma 1.20, we have

1 ≥ g(x∗,R)>
D∗

Mk+1 =
D∗

M
(γk)δ/Q =

D∗

M

(
c1

ρ

R

)δ

,

hence, combining inequalities above and the definition of g we compute

d(x∗,z)< R−β∗R1−α
ρ

α . (1.22)

Now, if y∈Bρ(x∗), by the Hölder property of the quasi distance and the quasi triangle inequality,
the definition of k0 and β∗, for every k ≥ k0 we have

d(y,z)≤ d(z,x∗)+(2K)1−α
β
(
d(x∗,y)

)α(d(x∗,y)+d(z,x∗)
)1−α

≤ R−β∗R1−α
ρ

α +(2K)1−α
βρ

α(ρ +R)1−α

≤ R−β∗R1−α
ρ

α +2(2K)1−α
βR1−α

ρ
α

< R,

hence
Bρ(x∗)⊂ BR(z). (1.23)

We can apply Lemma 1.12 with R, z0 and x0 replaced by KR, z and x∗ respectively to obtain

sup
Bρ (x∗)

u ≥ u(x∗)
(

1+
1
M

)
>

D∗

g(x∗,R)

(
1+

1
M

)
. (1.24)

Indeed since B2KRηP(z) ⊂ BηR(x0), we have infB2KR(z) u ≤ infBR(x0) u, and since BR(x0) ⊂
B2KR(z) we get u ∈KΩ, f (B2KRηP(z)); moreover u(x∗)≥ Mk and SΩ(B2KRηP(z), f )< εP. Thus
all the hypotheses of Lemma 1.12 are satisfied.
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By (1.23), for y ∈ Bρ(x∗)

sup
Bρ (x∗)

u ≤ D sup
y∈Bρ (x∗)

1
g(y,R)

=
D

g(x∗,R)
sup

y∈Bρ (x∗)

g(x∗,R)
g(y,R)

. (1.25)

Moreover by the Hölder property, the quasi triangle inequality and (1.22) we have(g(x∗,R)
g(y,R)

)α/δ

=
R−d(z,x∗)
R−d(y,z)

≤ R−d(z,x∗)
R−

(
d(z,x∗)+β (2K)1−αρα(d(z,x∗)+ρ)1−α

)
≤ 1

1− β (2K)1−α ρα (R+ρ)1−α

β∗ρα R1−α

≤ 1

1− 2β (2K)1−α

β∗

Combining (1.24), (1.25) and the inequality above we obtain

D∗ < D
(

M
1+M

)(
β∗

β∗−2β (2K)1−α

)δ/α

. (1.26)

hence taking the limit for D∗ → D in (1.26) we find 1 <
(

M
1+M

)(
β∗

β∗−2β (2K)1−α

)δ/α

from which
we get

β∗
((1+M

M

)α/δ

−1
)
−2β (2K)1−α

(1+M
M

)α/δ

< 0

β∗ < 2β (2K)1−α

(
1−
(M+1

M

)−α/δ)−1

which is in contrast with the previous choice of β∗.

Proof of Theorem 1.11. It suffices to prove supBR(x0)
u≤CM for every M = infBR(x0) u+ SΩ(BηR(x0), f )

εP
+

δ , with δ > 0. Consider

ũ :=
u
M

∈K
Ω, f̃ , where f̃ :=

f
M
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clearly infBR(x0) ũ ≤ 1 and S(BηR(x0), f̃ )≤ εP, so that by Proposition 1.13 we find supBR(x0)
u ≤

CM, hence

sup
BR(x0)

u ≤ C
εP

(
inf

BR(x0)
u+SΩ(BηR(x0), f )+δ

)
.

By letting δ → 0+ we get the thesis.

We have just showed that in the setting of doubling quasi metric Hölder spaces with the
reverse doubling property and satisfying the log-ring condition, for a family of function KΩ, f

it is enough to satisfy the double ball and the critical density property to conclude that it has
the Harnack property. We are going to prove that also the converse is true. Hence the Harnack
property is equivalent to the double ball and the critical density properties jointly considered.

Theorem 1.14. Suppose that KΩ, f satisfies the Harnack property H(C,η). Then, the fam-
ily KΩ, f satisfies the double ball and the ν critical density property DB

(k−1
kC , 1

kC ,2η
)

and
CD(ν , 1

kC ,
k−1
kC ,η) for any fixed k > 1 and for every u locally bounded.

Proof. Since KΩ, f satisfies the Harnack property H(C,η), there exist structural constants
C > 0 and η > 1 such that for each u ∈KΩ, f (Bηr), locally bounded, the function u satisfies
the inequality

sup
Br

u ≤C
(

inf
Br

u+S(Bηr, f )
)
.

We start proving the double ball property, so we assume

sup
Br

u ≥ 1 and SΩ(B2ηr, f )<
1

kC
for a fixed k > 1.

Then

1 ≤ inf
Br

u ≤ sup
B2r

u ≤C
(

inf
B2r

u+SΩ(B2ηr, f )
)
≤C

(
inf
B2r

u+
1

kC

)
from which we get the desired estimate for infB2r u,

inf
B2r

u ≥ k−1
Ck

.
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Now we want to prove the critical density property CD(ν , 1
kC ,

k−1
kC ,η) for each k > 1. Let us

suppose that infBr/2 u < 1
kC and SΩ(Bηr, f )< k−1

kC , k > 1, then

sup
Br

u ≤C
(

inf
Br

u+SΩ(Bηr, f )
)

<C
(

inf
Br/2

u+
k−1
kC

)
<C

(
1

kC
+

k−1
kC

)
= 1.

Hence µ({x ∈ Br : u(x)< 1})≥ µ(Br)≥ εµ(Br) for any ε ∈]0,1[. Clearly, from this property
we deduce that if there exists a constant ν ∈]0,1[ such that

µ({x ∈ Br : u(x)< 1})< (1−ν)µ(Br)

i.e.

µ({x ∈ Br : u(x)≥ 1})≥ νµ(Br)

then we must have infBr/2 u ≥ 1
kC or SΩ(Bηr, f )≥ k−1

kC , k > 1.

1.4 Hölder regularity

We briefly discuss how to obtain Hölder regularity estimates in the abstract setting we
have presented. It is well known that from the scale invariant Harnack inequality it is possible
to obtain an oscillation inequality which in turns gives Hölder regularity estimates (see for
example [22, Section 8.9]). We report the procedure with some minor modifications that are
necessary to adapt classical arguments to our abstract setting. It will be needed the following
Lemma.

Lemma 1.15 ([22] Lemma 8.23). Let ω and σ be two non decreasing functions on an interval
]0,R] satisfying the following inequality

ω(τρ)≤ γω(ρ)+σ(ρ)

for any ρ ≤ R and for some constants 0 < γ, τ < 1. Then, for any 0 < µ < 1 we have

ω(ρ)≤ M
((

ρ

R

)α

ω(R)+σ(ρµR1−µ)

)
for any ρ ≤ R,

where α = (1−µ) logγ

logτ
and M = M(γ,τ)> 0.
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In the next theorem will use the notation

Mr = sup
Br(x0)

u, mr = inf
Br(x0)

u, osc
Br(x0)

u = Mr −mr

and we define

K̃Ω, f ⊂ {u : A → R such that A ⊂ Ω, u is µ-measurable}

such that the following three conditions hold:

• KΩ, f ⊂ K̃Ω, f

• If u ∈ K̃Ω, f then λu ∈ K̃Ω,λ f for all λ ≥ 0.

• If u ∈ K̃Ω, f then for every λ ,τ ≥ 0 such that τ −λu ≥ 0 we have τ −λu ∈ K̃Ω,−λ f .

In other word K̃Ω, f is obtained from KΩ, f by removing the condition u ≥ 0.

Theorem 1.16. Suppose the family KΩ, f has the Harnack property H(C,η) (Definition 1.2.7)
and assume that for every ball BR(x0) ⊂ Ω and u ∈ K̃Ω, f (BR(x0)), if λ ∈ R is such that
u−λ ≥ 0, we have u−λ ∈KΩ, f (BR(x0)). Then, there exists two positive structural constants
c and α ∈]0,1[ such that

osc
Br(x0)

u ≤ crα

(
R−α sup

BR(x0)

|u|+ SΩ(Brµ R1−µ (x0), f )
rα

)

for every u ∈ K̃Ω, f (BR(x0)) locally bounded, r ∈]0,R] and µ ∈]0,1[.

Proof. In the proof we denote positive structural constants by C (even if the value of the
constant may change at each occurrence). The functions Mr −u and u−mr are non negative
so they belong to the family KΩ,− f (BR(x0)) and KΩ, f (BR(x0)), respectively. By the Harnack
property we get

Mr −mr/η ≤C
(
Mr −Mr/η +SΩ(Br(x0), f )

)
for every r ≤ R

Mr/η −mr ≤C
(
mr/η −mr +SΩ(Br(x0), f )

)
for every r ≤ R.

Summing up the two inequalities above we find

osc
Br(x0)

u+ osc
Br/η (x0)

u ≤C

(
osc

Br(x0)
u − osc

Br/η (x0)
u+2SΩ(Br(x0), f )

)
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from which we get the following oscillation inequality

osc
Br/η (x0)

u ≤ C−1
C+1

osc
Br(x0)

u+2
C

C+1
SΩ(Br(x0), f ) for every r ≤ R.

Since osc
Br/η (x0)

u and SΩ(Br(x0), f ) are non decreasing with respect to r, for every r ∈]0,R] we

can apply Lemma 1.15 with ω(r) osc
Br(x0)

u, σ(r) 2 C
C+1SΩ(Br(x0), f ), τ  1

η
and γ  C−1

C+1 .

We obtain

osc
Br(x0)

u ≤ c
(( r

R

)α

osc
BR(x0)

u+SΩ(Brµ R1−µ (x0), f )
)

for every r ∈]0,R] and µ ∈]0,1]. The thesis follows recalling that osc
BR(x0)

u ≤ 2supBR(x0)
|u|.

As a conclusion to this chapter we want to recall some literature regarding different
axiomatic approach to Harnack inequality in the general setting of doubling quasi metric spaces.
The first work we want to mention is [2] by Aimar Forzani and Toledano, where the authors
prove Harnack inequality for some class of continuous functions as a consequence of the double
ball and the power decay properties. Then, Di Fazio, Gutièrrez, and Lanconelli in [14] proved
the right covering argument, necessary to relax the continuity assumption in [2]; under an
additional assumption on the underlying quasi metric space, namely the ring condition, they are
able to consider family of just measurable functions. Another type of approach was introduced
by Indratno, Maldonado and Silwal in [30], where the authors replace the double ball property
with an integral condition that makes their approach better suited for variational equations.
In all these works the considered functional set is assumed to be closed under multiplication
by positive constants, this assumption precludes one to directly apply the abstract procedures
to family of solutions to PDE with non zero right hand side. In this chapter we have shown
that it is possible to extend the approach in [14] making it well suited for non homogeneous
equations.



Chapter 2

Application to X-elliptic operators

In this chapter we apply the abstract theory we have developed in Chapter 1 to a class of par-
tial differential equations in divergence form related to a family of locally Lipschitz vector fields.

We first recall the notion of Carnot–Carathéodory distance, set the main assumptions on
the metric space and we define the class of PDEs we want to deal with. Then we recall the
definition of Sobolev spaces related to a family of vector fields and the notion of W 1 weak
solutions. Finally, making use of some results obtained in [43, Section 2] we prove the ν

critical density property for non negative measurable weak solutions to the considered equation
for every ν ∈]0,1[. This property will allow us to set in motion the abstract theory machinery
(Theorem 1.10 under hypotheses (B1)-(B2) and Theorem 1.11) to prove Harnack inequality
and Hölder regularity estimate. We recall that Uguzzoni in [43] proved a Harnack inequality
for a class of operator more general then ours by means of an adapted Moser iteration technique.

2.1 Definitions and main assumptions

In this section we recall the definition of Carnot–Carathéodory distance and set the main
assumptions on the metric space and the class of operators considered.

On RN we consider X = {X1, . . . ,Xm} a family of vector fields with real valued locally
Lipschitz coefficients d jk

X j =
N

∑
k=1

d jk∂xk , for every j = 1, . . .m.

We endow RN with the Lebesgue measure | · |.



28 2. Application to X-elliptic operators

Definition 2.1.1. Let γ : [0;T ]→ RN be a Lipschitz curve. We say that γ is subunit if there
exist a vector valued function α : [0,T ]→ Rm such that

γ̇(t) =
m

∑
n=1

αn(t)Xn(γ(t)) almost everywhere in [0,T ]

and

sup
t∈[0,T ]

(
m

∑
n=1

|αn(t)|2
) 1

2

≤ 1.

The Carnot–Carathéodory distance or control distance associated to the family X is then
defined as follows

Definition 2.1.2. (Carnot–Carathéodory distance) Given x,y ∈ RN , we define

dX(x,y) = inf{T ∈ R s.t. γ : [0,T ]→ RN is subunit, γ(0) = x, γ(T ) = y}.

If the points x and y can not be connected through a subunit curve we set dX(x,y) = ∞.

From now on we assume the family X to be such that

(C) The Carnot–Carathéodory distance dX related to the family of vectors fields X is well
defined (i.e. for every x,y ∈ RN there exists a subunit curve joining x and y) and
continuous with respect to the Euclidean topology.

We recall that in general on a bounded set of RN , the topology generated by the control
distance is stronger than the Euclidean one. Indeed one has the following well known result
(see for example [28, Proposition 11.2].)

Lemma 2.1. Let K ⊂Y be compact. Then there exists a constant C > 0 depending on K and Y
such that

|x− y| ≤CdX(x,y), for every x,y ∈ K. (2.1)

Hence, under assumption (C) we have that on an open bounded set the Carnot–Carathéodory
topology is equivalent to the Euclidean one. We recall that (C) is true for a large class of vector
fields satisfying the so called Hormander condition (See for example [5, p.191 assumption
(H2) ]) which includes Carnot groups and Grushin type vector fields. We will denote by Br(x)
the ball of center x ∈ RN and radius r > 0 defined by the distance dX . We also assume the
following "local" properties:

(D) (Doubling condition) For each compact set K ⊂RN there exist positive constants CD > 1
and R0 > 0 such that

0 < |B2r(x)| ≤CD|Br(x)|
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for every dX -ball Br(x) with x ∈ K and r ≤ R0.

(P) (Poincaré inequality) For each compact set K ⊂RN there exists a positive constant C and
R0 > 0 such that  

Br

|u−ur| dx ≤Cr
 

B2r

|Xu| dx

for every C1 function u and for every d-ball Br(x) with x ∈ K and r ≤ R0.

Here we have denoted the mean value of u by ur =
ffl

Br
u dx := 1

|Br|
´

Br
u dx and the X-

gradient of u and the norm of the X-gradient respectively by Xu = (X1u, . . . ,Xmu) and |Xu|=(
∑

m
j=1 |X ju|2

) 1
2 . The number Q = log2CD is called the local homogeneous dimension relative

to the compact set K. Notice that, enlarging the doubling constant CD in (C) if needed, we can
always assume (and we do this) Q > 2.

From now on we let K ⊂ RN be compact and Y ⊂ K be open and connected. The space
(Y,dX , | · |) is then a doubling metric space for balls of small enough radius and, by Remark
1.2, dX has the Hölder continuity property (1.3). Since we want to apply the abstract theory
machinery presented in Chapter 1 we need to show that the structural hypotheses of Theorems
1.10 and 1.11 are satisfied. In particular we have to show that the function r 7→ |Br(x)| is
continuous and the reverse doubling property (Definition 1.1.5) holds true.

2.1.1 Reverse doubling property

Under the assumptions (C) and (D), a local version of the reverse doubling property has
been proven by Di Fazio, Gutiérrez and Lanconelli in [14, Theorem 2.10]. In particular they
have proved the following

Proposition 2.2. Suppose Y is open and connected and (Y,dX , | · |) satisfies (C) and (D). Then,
for every K ⊂ Y, K ̸= Y, there exists a positive constant R0 depending on K and Y such that
there exists a structural constant δ > 0 and a radius R0 > 0 depending on K and Y such that

δ |B2r(x)| ≥ |Br(x)|

for every B2r(x)⊂ K with r ∈]0;R0[.

They proved the proposition above as a special case of a more general theorem stated in the
context of doubling quasi metric Hölder spaces.
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Theorem 2.3 ([14], Theorem 2.9). Let (Y,d,µ) be a doubling quasi metric Hölder space and
suppose there exist two constants η ,θ such that 1 < η < 2θ < 2 and the ring B2θr(x)\Bηr(x)
is non empty. Then, there exists a constant δ = δ (η ,θ ,K,CD,α,β ) ∈]0,1[ such that

δ µ(B2r(x))≥ µ(Br(x)) for every B2r(x)⊂ Ω

Here α, β are as in (1.3).

Proof. Let y ∈ B2θr(x) \Bηr(x). First of all we want to show that there exists a constant
σ ∈]0,1[ depending on α and β such that Bσr(y) ⊂ B2r(x) \Br(x). Indeed if z ∈ Bσr(y) we
have

d(x,z)≥ d(x,y)−βd(z,y)α (d(z,y)+d(x,y))1−α

≥ ηr−β (σr)α(σr+2r)1−α

=
(
η −βσ

α(σ +2)1−α
)

r

and

d(z,y)≤ d(x,y)+βd(z,y)α (d(z,y)+d(x,y))1−α

≤ 2θr+β (σr)α(σr+2r)1−α

=
(
2θ +βσ

α(σ +2)1−α
)

r.

Hence we can choose σ > 0 satisfying βσα(σ + 2)1−α < min{2(1−θ),η −1} so that
Bσr(y)⊂ B2r(x)\Br(x). Now Lemma 1.1 implies

µ(B2r(x)) ≥ µ(Br(x)) + µ(Bσr(y)) ≥ µ(Br(x)) +

(
CD

(
4K
σ

)log2 CD
)−1

µ(B2r(x))

and the thesis follows for δ = 1−
(

CD
(4K

σ

)log2 CD
)−1

.

Let us prove Proposition 2.2 by showing that the space (Y,dX , | · |) satisfies the hypotheses
of Theorem 2.3

Proof of Proposition 2.2. By Theorem 2.3 it is enough to prove that ∂Br(x) ̸= /0 for every x ∈K
and r ∈]0,R0[. So we let y ∈ Y \K and consider the compact set K ∪{y}. By Lemma 2.1 we
know that |x− y| ≤CdX(x,y) for a suitable constant C =C(Y,K ∪{y}) but on the other hand
be can choose R0 > 0 so that |x− y| ≥ CR0 for every x ∈ K, hence dX(x,y) ≥ R0. Now let
γ : [0,1]→Y be a continuous curve connecting x and y. Clearly the function t 7→ dX(x,γ(t)) is
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continuous and dX(x,γ(0)) = 0 while dX(x,γ(1))≥ R0. Thus, for every r ∈]0,R0[ there exists
a t ∈]0,1[ such that dX(x,γ(t)) = r. This proves that ∂Br(x) ̸= /0 as desired.

2.1.2 Segment property

Another property that the space (Y,dx, | · |) must satisfy in order to set in motion the abstract
procedure is the property of continuity of the measure of the balls with respect to the radius. In
[14], in the general setting of doubling metric spaces, this fact is proved to be a consequence of
the following property.

Definition 2.1.3. (Segment property) We say that the metric space (Y,d) has the segment
property if for every x,y ∈ Y there exists a d-continuous curve γ : [0,1]→Y such that γ(0) = x,
γ(1) = y and

d(x,y) = d (x,γ(t))+d (γ(t),y) , for every t ∈ [0,1]. (2.2)

More precisely we have

Lemma 2.4. Let (Y,d,µ) be a doubling metric space. If (Y,d,µ) has the segment property,
then for every x ∈ Y , the function R 7→ µ(BR(x)) is continuous.

Proof. Since

lim
r→R−

µ(Br(x)) = µ(BR(x)) and lim
r→R+

µ(Br(x)) = µ(BR(x))

it suffices to prove that µ(∂BR) = 0. For every y ∈ ∂BR(x) we consider a d-continuous path
connecting y and x such that d(x,y) = d(x,z) + d(z,y) for every z ∈ γ . The existence of
such curve γ is guaranteed by the segment property. We fix z̃ ∈ γ so that d(x, z̃) = r

2 , then
B r

2
(z̃)⊂ BR(x)∩Br(y) and Br(y)⊂ B 3

2 r(z̃). Hence the doubling property (1.1) implies

µ(BR(x)∩Br(y))≥ µ(B r
2
(z̃))≥CD3log2 CD µ(B 3

2 r(z̃))≥CD3log2 CD µ(Br(y))

i.e.
µ(BR(x)∩Br(y))

µ(Br(y))
≥CD3log2 CD.

Since y is arbitrary, we deduce that ∂BR(x)⊂ S where

S =

{
y ∈ Y : lim

r→0

 
Br(y)

χBR(x) dµ ̸= 0

}
. (2.3)
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On the other hand the Lebesgue differentiation Theorem [29, Theorem 1.8] implies

0 = µ(S)≥ µ(∂BR(x))

concluding the proof.

We recall that in the particular setting of Carnot-Carathéodory spaces satisfying assumption
(C) and (D), the continuity of the function r 7→ |Br(x)| for every for ball of small enough radius
was proved in [12, Proof of Proposition 2.8]. We write the statement below for future reference.

Proposition 2.5. Consider the space (Y,dX , | · |) and assume (C) and (D) holds true. Then
there exists a radius R0 > 0 such that the function r 7→ |Br(x)| is continuous for every r < R0.

2.2 Assumptions on the operator L

In this section we define the operator we want to deal with and set the assumption on it. Let
us recall that K is a fixed compact set, Y ⊂ K is open and we consider the space (Y,dX , | · |) and
assumptions (C), (D) and (P). In the open set Ω ⊂ Y , we consider linear second order partial
differential operators of the type

Lu =
N

∑
i, j=1

∂i(bi j∂ ju)+
N

∑
i=1

bi∂iu (2.4)

where bi j,bi are measurable functions and B = {bi j}i, j=1...N is a symmetric matrix. More-
over we allow the coefficients of L to have degeneracy controlled by the family of vector fields
X . More precisely we assume L to be uniformly X-elliptic in a bounded open set Ω ⊂ RN :

Definition 2.2.1. (X-Elliptic operator) We say that the operator L is uniformly X-elliptic in an
open subset Ω ⊂ RN if there exist positive constants 0 < λ ≤ Λ and a non negative function γ

such that, for every x ∈ Ω and ξ ∈ RN

λ

m

∑
j=1

⟨X j(x),ξ ⟩2 ≤ ⟨B(x)ξ ,ξ ⟩ ≤ Λ

m

∑
j=1

⟨X j(x),ξ ⟩2

⟨b(x),ξ ⟩2 ≤ γ
2(x)

m

∑
j=1

⟨X j(x),ξ ⟩2.

Here we use the notation b = (b1, . . . ,bN) and ⟨·, ·⟩ is the standard inner product in RN .

We recall that the definition of X-ellipticity was first explicitly introduced by Lanconelli
and Kogoj in [34] where an homogeneous Harnack inequality for operators in principal form



2.2 Assumptions on the operator L 33

(i.e. of the type (2.4) with bi = 0) is proved. X-elliptic operators have also been studied in
[15, 25, 4, 43].

Applying the abstract theory developed in Chapter 1 we prove the non homogeneous
Harnack inequality for non negative weak solution (in an appropriate sense that will be specified
in the sequel) of the equation

Lu = f . (2.5)

As in the elliptic case (see for example [22, Section 8.5]) we consider a right hand side f that
include a divergence form term

f = g+
N

∑
i=1

∂ihi

In particular, since it is possible to write the equation Lu = f as

Lu− f =
N

∑
i, j=1

∂i(bi j∂ ju−hi)+
N

∑
i=1

bi∂iu−g = 0

and L is X-elliptic, our assumption on divergence form term h = (h1, . . . ,hN) are the following:
h is a measurable function and there exists a non negative function γ0 satisfying

⟨h(x),ξ ⟩2 ≤ γ
2
0 (x)

m

∑
j=1

⟨X j(x),ξ ⟩2 for every x ∈ Ω,ξ ∈ RN . (2.6)

Also, we assume the following conditions on the low order terms b and on the right hand side
f . For a suitable p > Q

2 it holds

(LT) γ ∈ L2p(Ω).

(R) γ0 ∈ L2p(Ω) and g ∈ Lp(Ω).

We remark that the operator L here considered does not contain first order terms, so it is a
simplified version of the one studied by Gutiérrez, Lanconelli [25] and Uguzzoni [43] where
they prove Harnack inequality using an adapted Moser’s iteration technique. This restriction
on the class of operators considered is motivated by the fact that in order to apply the results
presented in Chapter 1 we need to require the family of solutions to be closed under sum of
constants. Authors in [25] require dilation invariance of vector fields and a positivity condition
on the operator ([25, equation (2.3)]), while in [43] these assumption are dropped. Since all
our assumptions are of "local nature", the Harnack inequality will be obtained for balls with
small radius and the constants appearing will depend on the compact set fixed. Very recently,
in [4] Battaglia and Bonfiglioli obtained an invariant non homogeneus Harnack inequality for
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solutions to a class of sub-elliptic operators in divergence form under global doubling and
Poincaré assumptions but no restrictions on the diameter of the set Ω.

2.3 W 1 weak solution for the operator L

In this section we recall the notions of Sobolev spaces modeled after a family of locally
Lipschitz vector fields and of W 1 weak solution to the equation Lu = f .

First of all we recall that assumptions (C), (D), (P) imply the local Sobolev inequalities

∥u∥ 2Q
Q−2

≤C(D)∥Xu∥2 for every u ∈C1
0(D) (2.7)

for every open set D with sufficiently small diameter and closure contained in the interior of K
and

∥u∥∗2Q
Q−2

≤Cr∥Xu∥∗2 for every u ∈C1
0(Br(x)) (2.8)

B̄r(x)⊂ Ω, 2r < R0 For a deeper discussion on this result see [17, 20, 28].
For every D bounded domain supporting the Sobolev inequality (2.7) we define the space

W 1
0 (D,X) to be the closure of C1

0(D) with respect to the norm u 7→ ∥Xu∥L2(D).

Now we want to introduce the notion of weak X-gradient. For any j = 1, . . . ,m the formal
adjoint of X j is the unique operator X∗

j such that

ˆ
RN

uX jv dx =
ˆ
RN

vX∗
j u dx for all u,v ∈C∞

0 (RN),

moreover given u ∈ L2(D) if there exists a function φ j ∈ L2(D) such that

ˆ
D

ϕφ j dx =
ˆ

D
uX∗

j ϕ dx for all ϕ ∈C∞
0 (D)

we say that X ju = φ j exists in the weak sense. Hereafter Xu denotes the weak X-gradient of
u ∈W 1

0 (D,X): Xu = (X1u, . . . ,Xmu). The Sobolev space W 1(D,X), is the space

W 1(D,X) = {u ∈ L2(D) : X ju ∈ L2(D) for every j = 1, . . . ,m}.

On W 1(D,X) we consider the norm ∥u∥W 1 = ∥u∥L2(D)+∥Xu∥L2(D) (see [20, Theorem A.2] ).
We adopt the usual notation

W 1
loc(D,X) = {u : for every D′open, D′ ⊂⊂ D we have u ∈W 1(D′,X)}.
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Since we will deal with functions that are solutions to Lu = f in a weak sense, the following
Meyer-Serrin type result will be very useful in the sequel. The result was proved independently
in [20, Theorem 1.13] and in [18, Theorem 1.2.3].

Theorem 2.6. The set C∞(D)∩W 1(D,X) is dense in W 1(D,X) with respect to the norm ∥·∥W 1.

By means of theorem above and an approximation argument it is possible to states assump-
tion (P) for functions in W 1(D,X) and the Sobolev inequality for functions in W 1

0 (D,X).
In order to introduce the notion of weak solution to the equation Lu = h we consider the

bilinear form

L(u,v) =
ˆ

D
⟨B∇u,∇v⟩−⟨b,∇u⟩v dx for u ∈C1(D), v ∈C1

0(D)

and the linear functional

F(v) =
ˆ

D
⟨h,∇v⟩−gv dx for v ∈C1

0(D).

Gutiérrez, Lanconelli in [25] and Uguzzoni in [43] showed respectively that L can be
extended continuously to W 1(D,X)∩ Lr(D)×W 1

0 (D,X), where 1
r = 1

2 +
1

2p and F can be
extended continuously to W 1

0 (D,X). Indeed, due to the positiveness of the matrix B, the
X-ellipticity assumption, the Sobolev inequality and assumption (LT), we have

|L(u,v)| ≤
ˆ

D
⟨B∇u,∇u⟩

1
2 ⟨B∇v,∇v⟩

1
2 + |⟨b,∇u⟩||v| dx

≤ Λ

ˆ
D
|Xu||Xv| dx+

ˆ
D
|Xv||u|γ dx

≤ Λ∥Xu∥2∥Xv∥2 +∥Xv∥2∥u∥r∥γ∥2p

. ∥Xv∥2(∥Xu∥2 +∥u∥r∥γ∥2p).

Moreover by assumption (R) and the Sobolev inequality we get

|F(v)| ≤
ˆ

D
γ0|Xv|+ |gv| dx

≤ ∥γ0∥2∥Xv∥2 +∥g∥ 2Q
Q+2

∥v∥ 2Q
Q−2

. ∥Xv∥2(∥γ0∥2p +∥g∥p).
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Thus, by density, L(u,v) and F(v) can be uniquely prolonged to operators

L : W 1(D,X)∩Lr(D)×W 1
0 (D,X)→ R,

F : W 1
0 (D,X)→ R.

Observations above give meaning to the following notion of weak solution

Definition 2.3.1. (Weak solution) We say that a function u ∈W 1
loc(Ω,X) is a weak subsolution

(resp. supersolution) to Lu = f in Ω if, for every domain D, D ⊂⊂ Ω supporting the Sobolev
inequality, we have

L(u,v)≤ F(v) (resp. L(u,v)≥ F(v)) for every v ≥ 0, v ∈W 1
0 (D,X).

We say that u is a solution if it is both a supersolution and a subsolution.

In the proof of the critical density property we will use of some arguments borrowed
from the Moser iterative scheme, hence it will be crucial to have cut-off functions. In two
independent works, Garofalo and Nhieu [21, Theorem 1.5] and Franchi, Serapioni e Serra
Cassano [19] proved the existence of cut-off functions for Carnot-Carathéodory balls under
assumption (C):

Theorem 2.7. Assume (C). Let BR(x) be a bounded metric ball. Then, for every 0 < R1 < R2 <

R, there exists a dX -Lipschitz continuous function φ : RN → [0,∞[ such that φ is W 1(B2R(x),X)

and

• φ ≡ 1 on BR1(x) and φ ≡ 0 on RN \BR2(x),

• |Xφ | ≤ C
R2−R1

for almost every x ∈ RN .

2.4 Critical density property for X-elliptic operators

In this section we show that non negative weak solutions to (2.5) have the ν-critical density
property for every ν ∈]0,1[, thus the Harnack inequality follows from Theorem 1.10 under
hypotheses (B) and Theorem 1.11. However, in order to set in motion the abstract machinery,
all the structural hypotheses of Theorem 1.10 must be satisfied. Here we have considered and
proved structural properties of "local nature" ((D), (C), Proposition 2.5 and Theorem 2.3 ), for
this reason we need to require the following

(O) The dX -diameter of Ω is small enough to have the double ball property, the reverse dou-
bling, the continuity of the function r 7→ Br(x), the Poincarè and the Sobolev inequality
for every BR(x)⊂ Ω.
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Let us now reformulate the problem using the notation of the abstract approach. We set

F(Ω) =

{
f = g+

N

∑
1=1

∂ihi, satisfying (2.6) and (R)

}

and for every f ∈ L := F(Ω), BR(x0)⊆ Ω, R < r0, δ = 1− Q
2p we define the function

SΩ (BR(x0), f ) = Rδ∥γ0∥L2p(BR(x0))
+R2δ∥g∥Lp(BR(x0))

and consider the family

KΩ, f = {u ∈W 1
loc(Ω,X) : u ≥ 0 is a weak solution to (2.5)}.

It is easy to see that the definition of SΩ (BR(x0), f ) is consistent with the abstract definition
given in Chapter 1. Moreover, for every non negative u ∈KΩ, f and λ ≥ 0 we have λu ∈KΩ,λ f

and if τ −λu ≥ 0 then τ −λu ∈KΩ,−λ f , so, also the definition of KΩ, f is consistent with the
abstract one (Definition 1.2.2). We will prove that KΩ, f has the critical density with the aid
of three lemmas. The first lemma ensures the local boundedness of solutions to (2.5). This
fact has been proved by Uguzzoni in [43] for a class of more general operators, indeed it is a
fundamental step towards the proof Harnack inequality by means of the Moser iteration scheme.
For the sake of completeness we report here the statement and the proof.

In the sequel we will abbreviate BR(x0) = BR for any R > 0 and the center x0 to be
understood.

Lemma 2.8 (Local boundedness). Let u be a weak solution to (2.5) in Ω, then u is locally
bounded.

Proof. Let us consider a ball B4R, such that B4R ⊂ Ω and recall that we have assumed (O). We
define u = u++σ , for all σ > 0 and Hn : [σ ,+∞)→ R

Hn(s) =

sβ s ∈ [σ ,n]

βnβ−1(s−n)+nβ s > n
, n ∈ N, β ≥ 1.

Clearly Hn is non decreasing, C1 and the sequence (Hn)n∈N converges to sβ . Moreover we set

G(t) =
ˆ t

σ

(H ′
n)

2 dx, and v = η
2G(u)
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where η ∈C1
0(B4R) is a given cut-off function as in Theorem 2.7. Since u is a weak solution to

(2.5) and v ∈W 1
0 (B4R,X), it holds L(u,v) = F(v). Using an approximation argument we can

assume u and v to be smooth, then

0 = F(v)−L(u,v) =−
ˆ

B4R

⟨B∇u−h,∇v⟩ dx+
ˆ

B4R

(⟨b,∇u⟩−g)v dx

≤−
ˆ

B4R

⟨B∇u+,η2G′(u)∇u+⟩ dx−
ˆ

B4R

⟨B∇u,2ηG(u)∇η⟩ dx+

+

ˆ
B4R

⟨h,η2G′(u)∇u++2ηG(u)∇η⟩ dx+
ˆ

B4R

(⟨b,∇u⟩−g)η
2G(u) dx.

Let D = B4R ∩{u > 0}. Exploiting (2.6), the fact that L is X-elliptic (Definition 2.2.1) and
moving the terms around we have

ˆ
D

η
2G′(u)|Xu|2 dx ≤ 2

Λ

λ

ˆ
D

ηG(u)|Xu||Xη | dx+
2
λ

ˆ
D

ηG(u)|γ0||Xη | dx+

+
1
λ

ˆ
D

η
2G′(u)|γ0||Xu| dx+

+
1
λ

ˆ
D
(γ|Xu|+ |g|)η

2G(u) dx.

(2.9)

In order to estimate each of the four term in the right hand side of inequality above we set

a =

(
γ2

λ 2 +
γ2

0
λ 2σ2 +

|g|
λσ

) 1
2

(2.10)

and we recall that

Hn(s)≤ sH ′
n(s)≤ βHn(s), G(t)≤ tG′(t),

|X(Hn(u))|2 = G′(u)|Xu|2χ{u>0}.

Then we have

2
Λ

λ

ˆ
D

ηG(u)|Xu||Xη | dx ≤
ˆ

D

(
Λ2

λ 2ε
u2|Xη |2 +η

2|Xu|2ε

)
G′(u) dx

≤ Λ2

λ 2ε

ˆ
D
(uH ′

n(u))
2|Xη |2 dx+ ε

ˆ
D

η
2|X(Hn(u))|2,

2
λ

ˆ
D

ηG(u)|γ0||Xη | dx ≤
ˆ

D
G′(u)u2 (a2

η
2 + |Xη |2

)
dx ≤

ˆ
D
(uH ′

n(u))
2 (a2

η
2 + |Xη |2

)
dx,
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1
λ

ˆ
D

η
2G′(u)|γ0||Xu| dx ≤ 1

2

ˆ
D

η
2G′(u)

(
|Xu|2 +a2u2) dx

≤ 1
2

ˆ
D

η
2|X(Hn(u))|2 dx+

1
2

ˆ
D

η
2 (uH ′

n(u)
)2 a2 dx,

1
λ

ˆ
D
(γ|Xu|+ |g|)η

2G(ū) dx ≤
ˆ

D
G′(u)η2

(
|Xu|2ε +

1
4ε

u2a2 +u2a2
)

dx

≤ ε

ˆ
D

η
2|X(Hn(u))|2 dx+

ˆ
D

η
2a2(uH ′

n(u))
2
(

1+
1

4ε

)
dx

We plug estimates above in (2.9), then choosing ε small and moving terms around we get
ˆ

B4R

η
2|X(Hn(u))|2 dx ≤Cβ

2
ˆ

B4R

Hn(u)2(|Xη |2 +η
2a2) dx.

Here C is a positive structural constant, in the sequel a structural constant will be always
denoted by C even if its value differs at each occurrence. Let us use the standard notation

∥u∥∗Lp = ∥u∥∗Lp(Br)
=
(

1
|Br|

´
Br

up dx
) 1

p , from inequality above we deduce

∥η |X(Hn(u))|∥∗L2(B4R)
≤Cβ

(
∥Hn(u)|Xη |∥∗L2(B4R)

+∥Hn(u)ηa∥∗L2(B4R)

)
.

By the Sobolev inequality (2.8) we get

∥ηHn(u)∥∗Lq(B4R)
≤CR(β +1)

(
∥Hn(u)|Xη |∥∗L2(B4R)

+∥Hn(u)ηa∥∗L2(B4R)

)
(2.11)

where q = 2Q
Q−2 . Now we focus on the term ∥Hn(u)ηa∥∗L2(B4R)

. We use Hölder inequality and

then the interpolation inequality ∥v∥∗Lτ ≤ ε∥v∥∗Lω + ε
ω−1−τ−1

τ−1−ν−1 ∥v∥∗Lν (valid for ν ≤ τ ≤ ω ) with
τ = 2p

p−1 , ω = q, ν = 2 obtaining

∥Hn(u)ηa∥∗L2(B4R)
≤ ∥a∥∗L2p(B4R)

(
ε∥ηHn(u)∥∗Lq(B4R)

+ ε
Q

Q−2p∥ηHn(u)∥∗L2(B4R)

)
. (2.12)

We choose
ε = (2Ca∗(1+β ))−1 with a∗(r) = sup

ρ≤4r

(
ρ∥a∥∗L2p(Bρ )

)
.

Let us notice that we can choose σ so that a∗ is controlled by a structural constant. Indeed if
we set δ = 1− Q

2p by the doubling condition (D) we have

a∗(r)≤Crδ

(
∥γ∥2

L2p(B4R)
+σ

−2∥γ0∥2
L2p(B4R)

+σ
−1∥g∥Lp(B4R)

) 1
2
.
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So that, if ∥g∥Lp(B4R) = 0 and ∥γ0∥L2p(B4R)
= 0, a∗ is bounded by a structural constant; otherwise

one takes σ = SΩ(B4R, f ) obtaining

a∗(r)≤C
(

r2δ∥γ∥2
L2p(B4R)

+2
) 1

2 ≤C
(

R2δ
0 ∥γ∥2

L2p(B4R)
+2
) 1

2 (2.13)

as desired. Substituting (2.12) in (2.11) we find

∥ηHn(u)∥∗Lq(B4R)
≤C(β +1)1+ν

(
R∥Hn(u)|Xη |∥∗L2(B4R)

+∥Hn(u)η∥∗L2(B4R)

)
with ν = Q

2p−Q , then we let n → ∞ to get

∥∥∥ηuβ

∥∥∥∗
Lq(B4R)

≤C(β +1)1+ν

(
R
∥∥∥uβ |Xη |

∥∥∥∗
L2(B4R)

+
∥∥∥uβ

η

∥∥∥∗
L2(B4R)

)
.

Inequality above holds true also for η ∈W 1
0 (B4R), so we choose η to be a cut off function as in

Theorem 2.7, with R ≤ R1 < R2 ≤ 2R. This choice of η and the doubling property (D) give∥∥∥uβ

∥∥∥∗
Lq(BR1)

≤C(β +1)1+ν

(
1+

R
R2 −R1

)∥∥∥uβ

∥∥∥∗
L2(BR2)

. (2.14)

It is convenient write inequality above using the following notation

ϕ(s,R) = ∥u∥∗Ls(BR)
.

Then, (2.14) reads as

ϕ(βq,R1)≤
[
C(β +1)1+ν

(
1+

R
R2 −R1

)] 1
β

ϕ(2β ,R2) (2.15)

for any β ≥ 1, and any R1,R2 such that R ≤ R1 < R2 ≤ 2R. Starting from this inequality we
can set in motion the celebrate Moser iterative scheme to conclude the proof. To this aim let us
choose τ ∈ ]2,q[ and, for any n ∈ N0 we set

βn = τ

(q
2

)n
, rn = R(1+2−n).

At the n-th step of the iteration we consider inequality (2.15) with (2β ,R1,R2) = (βn,rn+1,rn).
So that, starting from inequality (2.15) with the choice β = τ, R1 = r1, R2 = 2R (which
corresponds to the case n = 0) it is possible to iteratively estimates the left most hand side
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obtaining

ϕ

(
τ

(q
2

)n)
≤ (Cq)2(1+ν)(1+∑

n
k=1 k(2/q)k)

ϕ(τ,2R), for every n ≥ 1

here C > 1 is a suitable structural constant. Recalling that lims→∞ ϕ(s,R) = supBR
ū, and q > 2,

letting n to infinity we get
sup
BR

ū ≤C∥ū∥Lτ (B2R)

with ū = u+σ . In particular, letting τ → 2 we find

sup
BR(x0)

u ≤ c
( 

B2R(x0)
u2 dx

) 1
2

(2.16)

hence u+ is locally bounded. The above argument applies also to u−, indeed −u solves
L(−u) =− f . This concludes the proof.

Remark 2.9. We explicitly notice that in order to prove estimates (2.16) for u = u++σ we
have just used the fact that u is a weak subsolution to (2.5).

Notice that in the proof it has not been used the fact that the solution u is non negative, this
fact will be crucial in the proof of the next result instead.

Lemma 2.10 (Estimates for ∥X logu∥L2(BR)
). Let u be a weak solution to (2.5) in Ω, then there

exists a structural constant c > 0 such that
 

BR

|X logu|2 dx ≤ c
R2

for every B4R ⊂ Ω. Here u = u+σ , with σ = SΩ(B4R, f ).

Proof. We exploit the non negativeness of u to define the test function v = η2uβ with β ̸= 0
and η as in Theorem 2.7 with supp(η)⊂ B2R and η ≡ 1 in BR. By Lemma 2.8 we know that
u ∈ L∞

loc(Ω), hence v ∈W 1
0 (B4R,X). We proceed as in the proof of (2.9) obtaining

ˆ
B4R

η
2uβ−1|Xu|2 dx ≤ 2

λ |β |

ˆ
B4R

Ληuβ |Xu||Xη | dx+
2

λ |β |

ˆ
B4R

ηuβ |γ0||Xη | dx+

+
1
λ

ˆ
B4R

η
2uβ−1|γ0||Xu| dx+

1
λ |β |

ˆ
B4R

(γ|Xu|+ |g|)η
2uβ dx

(2.17)
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Let a be as in (2.10), then each of the four terms above can be estimated as follows

2
λ |β |

ˆ
B4R

Ληuβ |Xu||Xη | dx ≤ 1
λ |β |

ˆ
B4R

(
η

2uβ−1|Xu|2λε +Λ
2(λε)−1uβ+1|Xη |2

)
dx

≤ 1
6

ˆ
B4R

η
2uβ−1|Xu|2 dx+

6Λ2

|β |2λ 2

ˆ
B4R

uβ+1|Xη |2 dx

2
λ |β |

ˆ
B4R

ηuβ |γ0||Xη | dx ≤ 2
|β |

ˆ
B4R

ηuβ+1a|Xη | dx ≤ 1
|β |

ˆ
B4R

uβ+1 (a2
η

2 + |Xη |2
)

dx

1
λ

ˆ
B4R

η
2uβ−1|γ0||Xu| dx ≤

ˆ
B4R

η
2uβ a|Xu| dx

≤ 1
2

ˆ
B4R

η
2uβ−1|Xu|2 dx+

1
2

ˆ
B4R

a2
η

2uβ+1

1
λ |β |

ˆ
B4R

(γ|Xu|+ |g|)η
2uβ dx ≤ 1

|β |

ˆ
B4R

(
a|Xu|+a2u

)
η

2uβ dx

≤ 1
|β |

ˆ
B4R

1
2

η
2
(
|Xu|2uβ−1

ε +a2uβ+1
ε
−1
)
+a2

η
2uβ+1 dx

≤ 1
12

ˆ
B4R

η
2uβ−1|Xu|2 dx+

(
1
|β |

+
3

|β |2

)ˆ
B4R

a2
η

2uβ+1 dx

Here we have chosen ε = |β |
6 . Plugging those estimates in (2.17) and moving the terms around

we get ˆ
B4R

η
2uβ−1|Xu|2 dx ≤

(
min

{
1
6
,
|β |
6

})−2ˆ
B4R

uβ+1F dx

where F =
(

1+6Λ2

λ 2

)
|Xη |2+η2a2. For β =−1 and a suitable structural constant C, equation

above becomes ˆ
B4R

|ηX log ū|2 dx ≤C
ˆ

B4R

F dx.

Hereafter we will denote a positive structural constant by C even if its value may change at each
occurrence. This last estimate can be found in [43, pp 176]. Recalling the doubling condition
(D) and the definition of η , inequality above becomes

 
BR

|X logu|2 dx ≤CCD

 
B2R

F dx

≤C
 

B2R

1
R2 +a2 dx

=
C
R2

(
1+R2

 
B2R

a2 dx
)
.
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Then, by using Hölder inequality, we estimate the right hand side by

 
BR

|X logu|2 dx ≤ C
R2

(
R2
( 

B2R

a2p dx
)1/p

+1
)

≤ C
R2

(
(a∗(R))2 +1

)
.

Since (2.13) shows that a∗(R) is bounded from above by a structural constant we get the
thesis.

Lemma 2.11 (Fabes Lemma, [14] Lemma 7.4). Let v ∈W 1
loc(Ω,X), BR ⊂ Ω and define

E = {x ∈ BR : v(x) = 0}.

Then, if there exists 0 < ε ≤ 1 such that

|E| ≥ ε|BR|

we have  
BR

|v|2 dx ≤CR2
 

B2R

|Xv|2dx

where C ≥ 0 is a structural constant depending on ε .

Proof. Let us use the notation vE =
ffl

E v dx and vB =
ffl

BR
v dx. Then, since v ≡ 0 on E, we have

|v(x)|= |v(x)− vE |
≤ |v(x)− vB|+ |vB − vE |

≤ |v(x)− vB|+
|B|
|E|

 
BR

|v− vB| dx

≤ |v(x)− vB|+
1
ε

 
BR

|v− vB| dx

Squaring both sides, taking the average over BR and then using the Poincaré inequality 1 we
find  

BR

|v|2 dx ≤
(

1+
2
ε
+

1
ε2

) 
BR

|v|2 dx ≤CR2
 

B2R

|Xv|2dx.

This concludes the proof.

1here we use the the L2 Poincaré inequality
ffl

BR
|v|2 dx ≤CR2 ffl

B2R
|Xv|2 dx which is known to be implied by

inequality (P) (see for example [20] )
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We recall that, by definition, a structural constant does not depend on u ∈KΩ, f nor on the
balls defined by the quasi distance. On the other hand it may depend on the ellipticity constants
λ , Λ, the doubling constant CD, the constant in the Poincaré inequality (P), the Lipschitz
constant of vector fields {Xi}1,...,m and (∥γ∥2

2p +1)1/2.
We are now ready to prove that the family KΩ, f satisfies the ν-critical density property for

every ν ∈]0,1[.

Theorem 2.12. Let B8R ⊂Ω, and suppose u∈KΩ, f (B8R). Then, there exist structural constants
ε,c ∈]0,1[, such that if u satisfies

|{x ∈ BR : u(x)≥ 1}| ≥ ν |BR| for some ν ∈]0,1[

then we have
inf
BR/2

u ≥ c or SΩ(B8R, f )≥ ε.

Here c = c(ν) ∈]0,1[.

Proof. Let σ = SΩ(B8R, f ) and define h(u) := max{− logu,0} with u = u+ σ = u+ + σ ,
notice that σ ≥ 0, in particular σ = 0 if and only if g = 0 and h = 0. We consider the function

w := h(u) and we observe that the quantity
(ffl

BR
w2 dx

) 1
2

is bounded from above by a structural

constant. Indeed we have

|{x ∈ BR : w(x) = 0}|= |{x ∈ BR : u(x)≥ 1}|
≥ |{x ∈ BR : u(x)≥ 1}| ≥ ν |BR|,

hence, using the Fabes Lemma 2.11 and Lemma 2.10 we get
 

BR

|w(x)|2 dx ≤CR2
 

B2R

|Xw(x)|2 dx ≤CR2
 

B2R

|X log(u(x))|2 dx ≤C.

Now, if σ = 0, the function w is a weak subsolution to Lu = 0 with L the operator defined (2.4),
otherwise, if σ > 0 we have infΩ ū ≥ σ and w is a weak subsolution to

L̃w =
N

∑
i, j=1

∂i(bi j∂ jω)+
N

∑
i=1

b̃i∂iw = f̃
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with

b̃i =

bi − hi
u , if 0 < u < 1

bi, otherwise
, f̃ =

−g+∑
N
i=1 ∂ihi
u , if 0 < u < 1

0, otherwise
.

In both cases the the assumptions (LT) and (R) are satisfied, so, recalling Remark 2.9, we can
apply Lemma 2.8 obtaining

sup
BR/2

w ≤ c
( 

BR

w2 dx
) 1

2

where we have defined σw = SΩ(B8R, f̃ ) and w = w+σw ≤ w+2. So that

sup
BR/2

w ≤ sup
BR/2

w ≤ c
( 

BR

w2 dx
) 1

2

≤ c
( 

BR

w2 dx
) 1

2

+4.

But the term
(ffl

BR
w2 dx

) 1
2

is bounded from above by a structural constant, hence

sup
BR/2

w ≤ c

from which we get
inf
BR/2

u(x)≥ e−c = c0.

So that, if σ < ε ≤ c0
2 we find infBR/2 u(x)≥ c0/2.

Structural constants in Theorem 2.12 are independent of the right hand side f , so families
KΩ,λ f and KΩ,−λ f have the ν critical density property CD(ν ,c,ε,η) for every fixed 0 < ν < 1,
for every λ ≥ 0 and f ∈ L(Ω) = F(Ω) (here we are using the notation presented at the
beginning of this section). Indeed if u ∈KΩ, f , then for every λ > 0, uλ = λu ∈KΩ,λ and if
u−λ := τ −λu ≥ 0, then u−λ ∈KΩ,−λ f , so we can apply Theorem 2.12 to functions uλ and
u−λ . Moreover hypothesis (O) guarantees the reverse doubling property and the continuity of
the function r 7→ |Br(x)|. In addition, in Lemma 2.8 it has been proved that any weak solution
u to (2.5), without sign assumption, belongs to L∞

loc. Thus, recalling the definition of KΩ,λ f and
SΩ, we use Theorems 1.10 and 1.11 to get the following Harnack inequality.

Theorem 2.13. Let u ∈W 1
loc(Ω) be a non negative weak solution to Lu = f in Ω. Then there

exists a structural constant η such that for every Bηr ⊆ Ω we have

sup
Br

u ≤C
(

inf
Br

u+ rδ∥γ0∥L2p(Bηr)
+ r2δ∥g∥Lp(Bηr)

)
.
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Here C is a structural constant and δ = 1− Q
2p .

Furthermore, from Theorem 1.16 we get he following Hölder estimate

Theorem 2.14. Let u ∈W 1
loc(Ω) be a non negative weak solution to Lu = f in Ω, then for every

BR(x0)⊆ Ω we have

osc
Br(x0)

u ≤Crα

(
R−α sup

BR(x0)

|u|+∥γ0∥L2p(BR(x0))
+∥g∥Lp(BR(x0))

)

for every r ∈]0,R].

Proof. It suffices to recall that SΩ(BR(x0), f ) = Rδ∥γ0∥L2p(BR(x0))
+R2δ∥g∥Lp(BR(x0)) with δ =

1− Q
2p and to choose µ > α

δ
in the statement of Theorem 1.16.

Corollary 2.15. Let u ∈ W 1
loc(Ω,X) be a non negative weak solution to Lu = f in Ω. Then,

there exists two structural constants C > 0 and α ∈]0,1[ such that

sup
x,y∈Br

|u(x)−u(y)|
dX(x,y)α

≤C2α

(
(4r)−α sup

B5r

|u|+∥γ0∥L2p(Ω)+∥g∥Lp(Ω)

)

for every ball B̄5r ⊂ Ω.

Proof. Clearly it holds

sup
x,y∈Br

|u(x)−u(y)|
dX(x,y)α

≤ sup
x,y∈Br

osc
B2d(x,y)(x)

u

dX(x,y)α
(2.18)

Moreover, keeping in mind that B2d(x,y)(x)⊂ B4r(x), by Theorem 2.14 we have

osc
B2d(x,y)(x)

u ≤C(2d(x,y))α

(
(4r)−α sup

B4r(x)
|u|+∥γ0∥L2p(Ω)+∥g∥Lp(Ω)

)
.

Now it suffices to use estimates above in (2.18) and recall that B4r(x)⊂ B5r for every x ∈ Br to
get the thesis.

We explicitly notice that in the statement of Theorems 2.13 and 2.14 we do not make
assumption on the radius because we have already made a stronger assumption on the diameter
of Ω (assumption (O)). Moreover we want to recall again that the result contained in this
chapter are not new as they have been proved by Uguzzoni in [43] for a class of more general
operators (the author allows also the presence of first order term). What is new here is the
method used to obtain the result. This shows that the approach presented in Chapter 1 is well
adapted to divergence form operator.



Chapter 3

Application to Grushin type operators

In this chapter we apply the abstract procedure presented in Chapter 1 to Grushin-type
operators L, a family operators that are elliptic with respect to the Grushin vector fields but they
are not in divergence form. These type of operators arises from the geometric theory of several
complex variables, more details about this fact will be given in the Appendix. Grushin type
operators have been studied by Montanari in [37] where the author proves an invariant Harnack
inequality for non negative classical solutions to the the homogeneous equation Lu = 0. In this
chapter we improve the results obtained in [37] by considering the non homogeneous case;
nevertheless we make use of many results and ideas developed here. Very recently this type
of operators has been studied also by Maldonado in [36], we will give more details about his
results at the end of Section 3.4.

We first introduce the family of operators we want to consider and summarize few well
known facts about the Grushin metric. Then, we recall a weighted Alexandrov-Bakelman-Pucci
type maximum principle proved by A. Montanari in [37]. Then, we prove the double ball and
the critical density property by means of ad-hoc constructed barriers. Those properties will
lead to an invariant Harnack inequality, via Theorem 1.10 under hypotheses (A1)-(A2) and
Theorem 1.11. Finally, using the results in Chapter 2, we prove local Hölder estimates for the
X-gradient of the solutions.

3.1 Some definitions and useful results

Here we recall some facts about Grushin metric and set the notation that will be used
throughout the chapter. We start by defining Grushin vector fields and by introducing two
quasi-distance functions that will be useful to prove the double ball and the critical density
properties by means of ad-hoc barrier modeled after sublevel sets of these functions. We show
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that the log ring condition holds true in some of these sublevel sets and we present some useful
ball-box theorems. Then, we define the class of operators we are concerned about and the
family of functions on which we perform the abstract procedure of Chapter 1. Finally, we recall
a weighted Alexandrov-Bakelman-Pucci type maximum principle proved by A. Montanari in
[37] and we show that in general it is not possible to estimate the supremum of the negative
part of u ∈W 2,p by the Lp norm of Lu with 0 < p < 3.

3.1.1 Grushin metric and sublevel sets

Let us consider the space (R2,dX , | · |), where | · | is the Lebesgue measure and dX is the
distance induced by Grushin vector fields

X1 := ∂x1, X2 := x1∂x2. (3.1)

We recall that X1, X2 satisfy the well known Hörmander condition, so the control distance
dX (see Definition 2.1.2) is well defined. On the other hand X1, X2 are not left invariant with
respect to any group law on R2. It is also known that the group of dilations (δt)t>0,

δt : R2 → R2, δt(x) = (tx1, t2x2) (3.2)

is such that the vector fields X j are δt-homogeneous of degree one , i.e. for every u ∈C1(R2),
x ∈ R2 and t > 0

X j(u◦δt)(x) = t(X ju)(δt(x)).

Using results proved by Franchi and Lanconelli in [16] it is possible to describe the structure of
balls

BCC(x,r) = {y ∈ R2 : dX(x,y)< r}, x ∈ R2, r > 0

by means of boxes, x = (x1,x2),

Box(x,r) :=]x1 − r,x1 + r[× ]x2 − r(r+ |x1|),x2 + r(r+ |x1|)[.

More precisely we have

Structure Theorem 1. There exists a structural constant C̃ > 1 such that

Box(x,C̃−1r)⊂ BCC(x,r)⊂ Box(x,C̃r).
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Remark 3.1. We explicitly remark that the size of the Box depends on the first coordinate of
the center and in particular we notice that the Lebesgue measure of balls with center (0,x2)

and radius r is comparable to r3.

From Structure Theorem 1 we deduce the following chain of inequalities

C̃−2|Box(x,r)| ≤ |BCC(x,r)| ≤ C̃2|Box(x,r)|

for every x ∈ R2, r > 0. This, makes the space (R2,dX , | · |) a doubling metric space, but
unfortunately it is not sufficient to conclude that the ring condition (see Definition 1.1.6 in
Chapter 1) holds true. In [37] this problem is overcome by introducing a new Hölder quasi
distance

d̃(x,y) := |x1 − y1|+
√

x2
1 + y2

1 +4|x2 − y2|−
√

x2
1 + y2

1 (3.3)

on the measure space (R2, | · |). The triplet (R2, d̃, | · |) turns out to be a doubling quasi metric
space satisfying the ring condition and the reverse doubling property. Indeed if we let

B(x,r) := {y ∈ R2 : d̃(x,y)< r}, r > 0, x ∈ R2

be the quasi metric ball of center x and radius r, we have the following theorems.

Structure Theorem 2 ([37] Theorem 3.3). There exists a structural constant CB > 1 such that

Box(x,C−1
B r)⊂ B(x,r)⊂ Box(x,CBr) for every y ∈ R2, r > 0.

Hence
C−2

B |B(x,r)| ≤ |Box(x,r)| ≤C2
B|B(x,r)|.

Proof. Let us show the first inclusion. If x ∈ B(y,r), we have

|x1 − y1|< r and
√

x2
1 + y2

1 +4|x2 − y2|< r+
√

x2
1 + y2

1.

So that

4|x2 − y2| ≤
(

r+
√

x2
1 + y2

1

)2

− (x2
1 + y2

1) = r
(

r+2
√

x2
1 + y2

1

)
≤ r
(

r+2
√

(r+ |y1|)2 + y2
1

)
≤ r (r+2(2|y1|+ r))≤ 4r(r+ |y1|).



50 3. Application to Grushin type operators

Thus, x ∈ Box(y,r). On the other hand, if x ∈ Box(y,r), we have |x1 − y1|< r and |x2 − y2|<
r(r+ |y1|). Then,

|x1 − y1|+
√

x2
1 + y2

1 +4|x2 − y2|−
√

x2
1 + y2

1 <

< r+
√

x2
1 + y2

1 +4r(r+ |y1|)−
√

x2
1 + y2

1

= r+
√

x2
1 +(|y1|+2r)2 −

√
x2

1 + y2
1

≤ r+ |x1|+ |y1|+2r−
√

x2
1 + y2

1 ≤ 3r

Hence x ∈ B(y,3r). Moreover

|Box(x,r)| ≤C2
B

r
CB

(
r

CB
+ |x1|

)
=C2

B|Box(x,C−1
B r)| ≤C2

B|B(x,r)|

and
|Box(x,r)| ≥C−2

B |Box(x,CBr)| ≥C−2
B |B(x,r)|.

This concludes the proof.

We explicitly remark that theorem above implies the doubling doubling property in (R2, d̃, | · |),
indeed we have

|B(x,2r)| ≤C2
B|Box(x,2r)| ≤ (2CB)

2|Box(x,r)| ≤ 22C4
B|B(x,r)|. (3.4)

Moreover the space (R2, d̃, | · |) has the reverse doubling property indeed we have the
following remark

Remark 3.2. For every r > 0 and y ∈ Ω, the point
(3

2r+ y1,y2
)

belongs to the ring B(y,5r/3)\
B(y,4r/3) so hence the reverse doubling property follows from Theorem 2.3.

The ring condition is proved in the following theorem.

Theorem 3.3 ([37], Theorem 3.4). There exists a non negative function ω, such that for every
r > 0 and every sufficiently small value of ε > 0

|B(x,r)\B(x,(1− ε)r)| ≤ ω(ε)|B(x,r)| (3.5)

with ω(ε)→ 0 as ε → 0+.
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Proof. We fix y ∈ R2 and define the function f (r) = |B(y,r)|. Using Fubini’s theorem, it is
possible to write f as

f (r) =
ˆ y1+r

y1−r

(ˆ
4|x2−y2|<

(
r−|x1−y1|+

√
x2

1+y2
1

)2
−(x2

1+y2
1)

dx2

)
dx1

=
1
2

ˆ r

−r
(r−|t|)2 +2(r−|t|)

√
(y1 + t)2 + y2

1 dt.

Differentiating f we get

0 ≤ f ′(r) =
ˆ r

−r
(r−|t|)+

√
(y1 + t)2 + y2

1 dt = r2 +

ˆ r

−r

√
(y1 + t)2 + y2

1 dt

≤ r2 + r
(√

(y1 + r)2 + y2
1

)
≤ r2 + r(2|y1|+ r)< 4r(r+ |y1|).

Now, the Lagrange mean value theorem ensures the existence of θ ∈]1− ε,1[ such that

|B(x,r)\B(x,(1− ε)r)|= f (r)− f (r(1− ε)) = εr f ′(θr)≤ 4εr2(r+ |y1|)
= 4ε|Box(x,r)| ≤ 4C2

B|B(x,r)|.

The last inequality follows from Structure Theorem 2.

We now define suitable sublevel sets of particular functions gr and hr in which we are able to
construct barriers that will be essential to prove the critical density and the double ball property.
We construct these functions modifying the fundamental solution Γ(x,0) =

(
x4

1 +4x2
2
)(2−Q)/4

with pole at the origin of the subelliptic Laplacian X2
1 +X2

2 where Q = 3 is the homogeneous
dimension. As in [37], for every r > 0, y = (y1,y2) ∈ R2 we consider

ρ(x,y) =
(
(x2

1 − y2
1)

2 +4(x2 − y2)
2)1/4

, (3.6)

and we define

g̃r(x,y) =

ρ(x,y) if |y1|< r
1
|y1|ρ

2(x,y) if |y1| ≥ r.

We denote the sublevel sets of the function g̃r(·,y) by

G̃(y,r) := {x ∈ R2 : g̃r(x,y)< r}. (3.7)
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In order to avoid two zeros of g̃r in G̃(y,r) we also define the function

gr(x,y) =


ρ(x,y) if |y1|< r

1
|y1|ρ

2(x,y) if |y1| ≥ r and x1y1 ≥ 0

+∞ if |y1| ≥ r and x1y1 < 0

and consider its sublevel sets

G(y,r) := {x ∈ R2 : gr(x,y)< r}.

Moreover, for every r > 0 and y ∈ R2, we define

σ(x,y) =
(
(x2

1 − y2
1)

2 +2y2
1(x1 − y1)

2 +4(x2 − y2)
2)1/4 (3.8)

and

hr(x,y) =

σ(x,y) if |y1|< r
1
|y1|σ

2(x,y) if |y1| ≥ r.

Sublevel sets of the function hr(·,y) will be denoted by

H(y,r) := {x ∈ R2 : hr(x,y)< r}. (3.9)

Let us spend a few words to describe the main features of the sets defined above. The
G̃(y,r), are always symmetric with respect to the x2 axis and they are connected for |y1|< r,
but when |y1|> r they have two connected components (see Figure 3.1 ).

Fig. 3.1 Example of G̃ sublevel sets

Sets of type G(y,r) coincide with G̃(y,r) when |y1| < r, and for |y1| > r they are the
connected component of G̃(y,r) that contains the center, so they are always connected (Figure
3.3).
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Fig. 3.2 Example of G sublevel sets

Sublevel sets H(y,r) are connected but they are not symmetric with respect to the x2 axis
(see Figure 3.3).

Fig. 3.3 Example of H sublevel sets

Theorems below compare sublevel sets H(y,r) and G(y,r) with boxes Box(y,r), those
results are extensively used in the next section.

Structure Theorem 3. There exists a structural constant CH > 1 such that for every y ∈ R2

and r > 0
Box(y,C−1

H r)⊂ H(y,r)⊂ Box(y,CHr).

Hence
C−2

H |H(y,r)| ≤ |Box(y,r)| ≤C2
H |H(y,r)|.

Proof. To prove the inclusions we shall distinguish two case: |y1| < r and |y1| ≥ r. If we
assume |y1|< r and x ∈ Box(y,r/4) then

|x1 − y1|< r/4, |x2 − y2|< r/4(r/4+ |y1|)< 1/4(1/4+1)r2
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and

hr(x,y)4 = σ
4(x,y) = (x1 − y1)

2(x1 + y1)
2 +2y2

1(x1 − y1)
2 +4(x2 − y2)

2

≤ (1/4)2(|x1|+ |y1|)2r2 +4(1/4)2r4(1/4+1)2 +2(1/4)2r4

≤ (1/4)2(|x1 − y1|+2|y1|)2r2 +1/4r4(1/4+1)2 +2(1/4)2r4

≤ (1/4)2(1/4+2)2r4 +1/4(1/4+1)2r4 +2(1/4)2r4

= ((1/4)2(1/4+2)2 +1/4(1/4+1)2 +2(1/4)2)r4

= (213/256)r4 < r4.

Hence x ∈ H(y,r). Moreover if |y1|< r and x ∈ H(y,r) we have

|x2
1 − y2

1|< r2, 4|x2 − y2|2 < r4

from which we get

|x1 − y1| ||x1 − y1|−2|y1|| < r2, |x2 − y2|<
r2

2
≤ r(r+ |y1|).

Consequently if |x1 − y1|> 2|y1|, adding |y1|2 to both sides of the first inequality above and
taking the square root gives

|x1 − y1|− |y1|<
√

r2 + |y2
1|< 2r

from which we easily deduce x ∈ Box(y,3r). On the other hand if |x1 − y1| ≤ 2|y1| then
x ∈ Box(y,3r). Hence we have proved the thesis for |y1|< r.
To prove the other case suppose |y1| ≥ r and x ∈ Box(y,r/4) then

|x1 − y1|< r/4, |x2 − y2|< r/4(r/4+ |y1|)< 1/4(1/4+1)|y1|2

and

hr(x,y)2|y1|2 = σ
4(x,y) = (x1 − y1)

2(x1 + y1)
2 +2y2

1(x1 − y1)
2 +4(x2 − y2)

2

≤ (1/4)2(|x1|+ |y1|)2r2 +4(1/4)2r2y2
1(1/4+1)+2(1/4)2r2y2

1

≤ (1/4)2(|x1 − y1|+2|y1|)2r2 +1/4r2y2
1(1/4+1)+2(1/4)2r2y2

1

≤ (1/4)2(1/4+2)2r2y2
1 +1/4r2y2

1(1/4+1)+2(1/4)2r2y2
1

= ((1/4)2(1/4+2)2 +1/4(1/4+1)2 +2(1/4)2)r2y2
1

= (213/256)r2y2
1 < r2y2

1.
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Hence x ∈ H(y,r). Moreover if x ∈ H(y,r)

√
2|y1||x1 − y1|< r|y1|, 4|x2 − y2|2 < r2|y1|2

consequently

|x1 − y1|< r, |x2 − y1|<
r|y1|

2
< r(r+ |y1|),

hence x ∈ Box(y,r). As in Structure Theorem 2, the chain of inclusions in the statement implies
the chain of inequalities C−2

H |H(x,r)| ≤ |Box(x,r)| ≤C2
H |H(x,r)|.

The next ball-box theorem compares the measure of sublevel sets G(x,r) with boxes
Box(x,r). The proof is similar to the one of Theorem 3.1.1, so it is omitted.

Structure Theorem 4 ([37], Theorem 3.6). There exists a structural constant CG > 1 such
that for every y ∈ R2 and r > 0

Box(y,C−1
G r)⊂ G(y,r)⊂ Box(y,CGr).

Hence
C−2

G |G(y,r)| ≤ |Box(y,r)| ≤C2
G|G(y,r)|.

Whenever y = (y1,0) ∈ R2, from the theorem above we get

c−1r2(r+ |y1|)≤ |G(y,r)| ≤ cr2(r+ |y1|) (3.10)

sup
G(y,2r)

|x1| ≤ c̃(r+ |y1|) (3.11)

CM max{r,r(r+ |y1|)} ≥ diam(G(y,r))≥Cm max{r,r(r+ |y1|)}. (3.12)

with c, c̃,CM > 1 and Cm > 0 structural constants. Hereafter we denote the Euclidean diameter
of a set A by diam(A)

We now have introduced all the definitions and basic results concerning the Grushin plane
that will be needed in the following sections. So we move to the definition of the Grushin
operators.

3.1.2 Grushin type operators

Let Ω ⊆ R2 be open and consider the Hölder doubling quasi metric space (Ω, d̃, | · |) with d̃
defined in (3.3). We define the second order linear operator

L := a11(x1,x2)X2
1 +a22(x1,x2)X2

2 +2a12(x1,x2)X1X2, (3.13)
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where ai j : Ω → R are measurable functions. We assume L is elliptic with respect to the
family of vector fields {X1,X2}, i.e. there exist positive constants, called ellipticity constants,
0 < λ ≤ Λ such that for every ξ = (ξ1,ξ2) ∈ R2 we have

λ |ξ |2 ≤ a11ξ
2
1 +a22ξ

2
2 +2a12ξ1ξ2 ≤ Λ|ξ |2. (3.14)

Notice that in the definition of the operator L the term a21X2X1 is missing. Motivation to the
study of these type of operators arises from the geometric theory of several complex variables.
More precisely in the Appendix we show that, Levi curvature equations, which are fully
nonlinear equation in non divergence form, in cylindrical coordinates are non divergence PDEs
Lu = f with the operator L structured as in (3.13). In this dissertation we focus on equations of
the type

Lu = x2
1 f

with
f ∈ F(Ω) = {g : Ω → R,measurable and such that x1g ∈ L2

loc(Ω)}.

When the right hand side of the equation is not structured as above, Harnack inequality remains
an interesting open problem. Indeed the Alexandrov-Bakelman-Pucci estimates, which are a
key ingredient towards Harnack inequality, do not hold in general as shown in Theorem 3.7
and the subsequent Remark.

In accordance with the notation of Chapter 1, for every measurable set A ⊂ Ω we define

SΩ(A, f ) := diam(A)∥x1 f∥L2(A),

L(Ω) = { f ∈ F(Ω) : SΩ(B(x,r), f )<+∞, for every B(x,r)⊆ Ω}
KΩ, f := {u ∈C2(Ω)∩C(Ω) : Lu = x2

1 f , u ≥ 0}, for every f ∈ L(Ω)

Here diam(A) denotes the Euclidean diameter of A. Since the operator L is linear and with no
zero-order term, if u is a classical solution to Lu = x2

1 f , the function τ −λu solves L(τ −λu) =
−λx2

1 f , for every λ , τ ∈ R. So that the definition of KΩ, f is coherent with Definition 1.2.2.

3.1.3 An Alexandrov-Bakelman-Pucci maximum principle

For classical supersolution to (3.1.2), a weighted Alexandrov-Bakelman-Pucci maximum
principle (ABP, henceforth) has been proved in [37, Theorem 2.5]; these kind of estimates are
extremely useful as it provides a pointwise bound on solutions in terms of a measure theoretic
quantity of the equation. We report the statement of the result for future references.
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Theorem 3.4 (ABP estimates). Let Ω ⊂ R2 be a bounded domain and assume u ∈ C(Ω)∩
C2(Ω), u ≥ 0 on ∂Ω is a classical solution to Lu(x) ≤ x2

1 f (x) in Ω with x1 f ∈ L2(Ω). Then
there exists a positive structural constant C such that

sup
Ω

u− ≤Cdiam(Ω)

(ˆ
Ω∩{u=Γu}

(x1 f+)2 dx
) 1

2

. (3.15)

Here diam(Ω) is the Euclidean diameter of Ω, f+(x) := max{ f (x),0}, Γu is the convex
envelope1 of −u−(x) :=−max{−u(x),0} in a Euclidean ball of radius 2diam(Ω) containing
Ω and u ≡ 0 outside Ω.

We remark that in [37, Theorem 2.5], the result is proved under the slightly more restrictive
assumption on f , precisely it is required f to be bounded. The same proof remain valid when it
is assumed x1 f ∈ L2(Ω) because, in this case, the right hand side of (3.15) is bounded. For the
reader’s convenience, we give a proof of Theorem 3.4. We will need the following well known
results (see for example [24, Theorem 1.1.13, Exercise 1.1.14 and Theorem 1.4.5]).

Theorem 3.5. Let Ω be open and u ∈C(Ω). We denote by Du the sub-differential of u.2 Then

B= {E ⊂ Ω : Du(E) is Lebesgue measurable}

is a Borel σ algebra. The function µu : B→ R defined by µu(E) = |Du(E)| is a Borel measure
and it is finite on compact sets. Moreover, if u ∈C2(Ω) is a convex function on Ω, then

µu(E) =
ˆ

E
det(D2u)(x)dx

for any Borel set E ⊂ Ω.

Theorem 3.6. Let Ω ⊂ R2 be a bounded open set, assume u ∈C(Ω), u ≥ 0 on ∂Ω and define
Γu is as in Theorem 3.4. Then there exists a positive structural constant c such that

sup
Ω

u− ≤ d
c
(µΓu({u = Γu}∩Ω))1/2 .

Proof of Theorem 3.4. We first prove the statement for u strictly convex on the contact set
{u = Γu}. Under this assumption Du is a one-to-one map. Moreover, the contact set {u = Γu}

1We recall that the convex envelope of a continuous function u in a convex set Ω is the function Γu defined as
follows: Γu(x) = sup{w(x) : w ≤ u, w is convex}

2The sub-differential of u ∈ C(Ω), is the set valued function Du defined by Du(x0) = {p ∈ R2 : u(x) ≥
u(x0)+ p · (x− x0) for all x ∈ Ω}
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do not intersects the line {x1 = 0}, indeed (a11u11)(0,x2) = Lu(0,x2) ≤ 0, and since a11 is
positive then u11(0,x2)≤ 0 while u is strictly convex in {u = Γu}. Notice that if u ∈C2(Ω) is
convex then the symmetric matrix

X2u =

(
X2

1 u X2X1u
X2X1u X2

2 u

)
=

(
u11 x1u12

x1u12 x2
1u22

)
(3.16)

is nonnegative definite. Here we have denoted by ui j = ∂xi∂x ju. Moreover, for u convex

det(D2u) = (u11u22 −u2
12) =

(
u11x2

1u22 − (x1u12)
2)

x2
1

=
det(X2u)

x2
1

≤
(
trace(AX2u)

)2

4x2
1 detA

(3.17)

for every A > 0 and A symmetric. Let BE be a Euclidean ball of radius 2diam(Ω) containing
Ω. The convex envelop Γu is a convex function so, for each x0 ∈ BE∩{u = Γu} ⊂ Ω, it has a
supporting hyperplane at x0. This hyperplane is also a supporting hyperplane for u at the same
point. Thus DΓu(x0)⊂ Du(x0) for x0 ∈ BE∩{u = Γu} ⊂ Ω, and by Theorem 3.5 we have

|DΓu({u = Γu}∩Ω)| ≤ |Du({u = Γu}∩Ω)|

=

ˆ
{u=Γu}∩Ω

(detD2u)dx

≤C
ˆ
{u=Γu}∩Ω

(Lu)2

x2
1

dx

(3.18)

where C is a positive constant depending on Λ,λ . The last inequality follows by applying
(3.17), indeed u is convex on the set {u = Γu}∩Ω. Recalling that Lu(x)≤ f (x)x2

1 = f+(x)x2
1

on the contact set and by applying Theorem 3.6 and (3.18), we get the desired estimate.
Now assume u is only convex in the contact set an define S0 = {x ∈ Ω : detD2u = 0}. By Sard’s
Theorem we have |Du(S0)|= 0. Since E = {u = Γu}∩Ω is a Borel set, E ∩S0 and E \S0 are
also Borel sets. Hence

|Du(E)|= |Du(E ∩S0)|+ |Du(E \S0)|= |Du(E \S0)|

and by (3.18) we have

|DΓu(E)| ≤ |Du(E)|= |Du(E \S0)|=
ˆ

E\S0

(detD2u)dx

≤C
ˆ

E\S0

(Lu)2

x2
1

dx ≤C
ˆ

E\S0

f 2x2
1dx ≤C

ˆ
E

f 2x2
1dx.
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This concludes the proof.

Let us go back to the statement of Theorem 3.4. If we denote by F = x2
1 f the right hand

side of the equation to which u is a supersolution, we can notice that, dissimilarly to what
usually happens (see for example [7, Theorem 3.6]), supΩ u− is not estimated by a quantity that
depends on the L2 norm of F , but rather on the L2 norm of F/x1.

In the following we show that the weight on the right hand side of (3.15) is crucial. Precisely,
we will show that ABP maximum principle of the type (3.15) can not hold in general for
solutions u of Lu ≤ f with f ∈ L3−ε and any 0 < ε < 3. We will proceed exactly as in [13]. In
that last mentioned article the authors consider a group of Heisenberg type of homogeneous
dimension Q, they construct a non divergence form operator Lε and show the impossibility
of ABP type estimates for W 2,Q−ε

loc solutions as a consequence of a non uniqueness result for
solutions to the Dirichlet problem Lεu = 0 in Ω, u = 0 on ∂Ω; hereafter W 2,p

loc (Ω,X) indicates
the Sobolev space of functions u ∈ Lp

loc having weak derivatives XiX ju ∈ Lp
loc. Mimicking their

approach and taking into account Remark 3.1 we get the following result

Theorem 3.7. Let ρ(x,0) =
(
x4

1+4x2
2
)1/4 as in (3.6). We define B1(0) = {x∈R2 : ρ1/4(x,0)<

1} ⊂ R2 be the ball of radius 1 and center the origin. Then, for every 0 < ε < 3, there exists
an operator Lε of the type (3.13) with bounded measurable coefficients such that the following
Dirichlet problem Lεu ≤ 0 in B1(0)

u = 0 on ∂B1(0).
(3.19)

has a non trivial solution uε ∈W 2,3−ε(B1(0),X))∩C(B1(0)).

Proof. We use the notation N(x1,x2) = ρ(x,0) =
(
x4

1 +4x2
2
)1/4. We choose the coefficients of

the operator Lε as follows

a11 = 1+ γ(ε)
(X1N)2

(X1N)2 +(X2N)2

a22 = 1+ γ(ε)
(X2N)2

(X1N)2 +(X2N)2

a12 = γ(ε)
X1NX2N

(X1N)2 +(X2N)2

where γ > 0 is a constant depending on ε that will be chosen in the sequel. It will be convenient
to explicitly write the coefficients of the operator Lε by computing the derivatives of N with
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respect to the vector fields X1 and X2:

X1N =
x3

1
N3 , X2N =

2x1x2

N3 ,

X2
1 N =

12x2
1x2

2
N7 , X2X1N =−

6x4
1x2

N7 , X2
2 N =

2x2
1

N7 (x
4
1 −2x2

2).

So we have

a11 = 1+ γ(ε)
x4

1
N4 a22 = 1+ γ(ε)

4x2
2

N4 a12 = 2γ(ε)
x2

1x2

N4 .

We look for a solution to (3.19) of the type uε = F(N):

LεF(N) = a11X2
1 F(N)+2a12X2X1F(N)+a22X2

2 F(N)

= F ′′(N)
(
a11(X1N)2 +2a12X1NX2N +a22(X2N)2)+F ′(N)Lε(N)

=
F ′′(N)

N10

(
(x4

1 +4x2
2 + γx4

1)x
6
1 + γ8x6

1x2
2 +(x4

1 +4x2
2 + γ4x2

2)4x2
1x2

2

)
+

+
F ′(N)

N11

(
(x4

1 +4x2
2 + γx4

1)12x2
1x2

2 − γ24x6
1x2

2

)
+

+
F ′(N)

N11 (x4
1 +4x2

2 + γ4x2
2)2x2

1(x
4
1 −2x2

2)

=
F ′′(N)

N10 x2
1
(
γ(x8

1 +16x4
2 +8x4

1x2
2)+N4(x4

1 +4x2
2)
)
+

F ′(N)

N11

(
2x2

1N8 − γ4x2
1x2

2N4)
= (1+ γ)

x2
1

N2

(
F ′′(N)+2

F ′(N)

(1+ γ)N

)
− γ4x2

1x2
2

F ′(N)

N7 .

In particular we choose F(N) = Nλ (ε)−1 and we want to determine λ > 0 so that LεNλ (ε) ≤ 0,
thus we require

h1 = (1+ γ)
x2

1
N2

(
F ′′(N)+2

F ′(N)

(1+ γ)N

)
= x2

1(1+ γ)
λ

N−λ+4

(
λ −1+

2
(1+ γ)

)
= 0

(3.20)

and

h2 = γ4x2
1x2

2
F ′(N)

N7 = γλ4x2
1x2

2Nλ−8 > 0. (3.21)
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Equation (3.20) holds true for

λ = 1− 2
1+ γ

< 1 for γ > 0. (3.22)

Moreover for γ > 1 we have λ > 0, hence also inequality (3.21) is satisfied. As we have
already said, for any 0 < ε < 3 we want to construct a solution uε to Luε = 0 belonging to
W 2,3−ε(B1(0),X). Since the solution will be of the type u = Nλ (ε)−1 it suffices to impose

(2−λ (ε))(3− ε)< 3 i.e. λ (ε)> max
{

0,1− ε

3− ε

}
or equivalently

γ(ε)> max
{

1,
6−3ε

ε

}
. (3.23)

Now, for any 0 < ε < 3 we define uε = Nλ (ε) − 1. Clearly it satisfies the Dirichlet con-
dition uε |∂B1(0) = 0 and the choice of λ (ε) we made ensures Luε = LNλ (ε) ≤ 0 and uε ∈
W 2,3−ε(B1(0),X). This concludes the proof.

From the above non uniqueness result we deduce the impossibility to obtain certain ABP
estimates, more precisely we have the following remark.

Remark 3.8. Let Ω be a bounded open set and L be structured as in (3.13) and suppose
there exists u ∈ W 2,p

loc (Ω,X) a solution to Lu ≤ f with f ∈ L3−ε(Ω). Then, in general, it is
not possible to estimate the supremum of u− on Ω by the Lp norm of the right hand side f
with p = 3− ε. Indeed, if such an ABP maximum principle held true, using the result and the
notations of the above theorem, we would have

sup
B1(0)

u−ε = sup
B1(0)

(Nλ (ε)−1)− ≤ 0

but Nλ (ε)(0) = 0 and Nλ (ε) = ρ(0,x)λ (ε) is an increasing function of ρ(0,x), hence

sup
B1(0)

(Nλ (ε)−1)− = sup
B1(0)

max
{

0,1−Nλ (ε)
}
= 1

reaching a contradiction.

Remark 3.9. The counterexample in the previous remark does not apply to the ABP maximum
principle (Theorem 3.4). Looking at the equations (3.20) and (3.21) we can notice that
LεF(N) = x2

1 f with f that behaves like Nλ−4 for a suitable λ ∈]0,1[. On the other hand the
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function f does not satisfy the hypotheses of Theorem 3.4 indeed x1 f ∼ x1Nλ−4 ∈ L2(B1(0)) if
and only if λ > 3/2 but, by (3.22) the counterexample works for λ ∈]0,1[.

3.2 Double ball property for Grushin type operators

In this section we prove double ball property for sublevel sets H(y,r), and then extend it to
balls B(x,r) with the aid of Structure Theorems 2 and 3. The idea is to follow the procedure
presented in [37]. In [37] sublevel sets of g̃r(·,y) (see for the definition (3.7)) are considered,
however in this thesis we prefer to use sublevel sets of hr(·,y) (see for the definition (3.9)) in
order to avoid the two zeros of the function g̃.

Lemma 3.10. Let Λ, λ > 0 be the ellipticity constants and σ the function defined in (3.8). For
α ≤ 4−10Λ/λ , the function φ(x) = σα is a classical solution to Lφ ≥ 0 in {σ > 0}.

Proof. We begin the proof computing first and second partial derivatives of σ :

σx1 = σ
−3((x2

1 − y2
1)x1 + y2

1(x1 − y1)
)
= σ

−3(x3
1 − y3

1)

σx2 = 2σ
−3(x2 − y2)

σx1x1 =−3σ
−7(x3

1 − y3
1
)2

+3σ
−3x2

1

σx1x2 =−3σ
−7(x3

1 − y3
1
)
(x2 − y2)

σx2x2 =−3σ
−7(x2 − y2)

2 +2σ
−3.

Using calculation above it is straightforward to compute

Lφ = ασ
α−2((α −1)(a11σ

2
x1
+2x1a12σ

2
x2
+ x2

1a22σ
2
x2
)+σLσ

)
= ασ

α−2
(

a11
(
(α −1)σ2

x1
+σσx1x1

)
+2x1a12

(
(α −1)σx1σx2 +σσx1x2

))
+

+ασ
α−2
(

x2
1a22

(
(α −1)σ2

x2
+σσx2x2

))
.

Defining
γ := a11(x3

1 − y3
1)

2 +4a12x1(x3
1 − y3

1)(x2 − y2)+4a22x2
1(x2 − y2)

2
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we get

Lφ = ασ
α−2
(
(α −4)σ−6

(
a11(x3

1 − y3
1)

2 +2a12x1(x3
1 − y3

1)2(x2 − y2)
)

+(α −4)σ−6a22x2
14(x2 − y2)

2 + x2
1σ

−2(3a11 +2a22)

)
= ασ

α−8((α −4)γ + x2
1σ

4(3a11 +2a22)
)
.

From the assumption (3.14) on the coefficients of L, we deduce

γ ≥ λ

(
(x3

1 − y3
1)

2 +4x2
1(x2 − y2)

2
)

and 3a11 +2a22 ≤ 5Λ,

so that

Lφ ≥ ασ
α−8
(
(α −4)λ

(
(x1 − y1)

2((x1 + y1)x1 + y2
1
)2

+ x2
14(x2 − y2)

2
)
+5Λx2

1σ
4
)

= ασ
α−8
((

(α −4)λ +5Λ
)
(x2

1 − y2
1)

2x2
1 +4

(
(α −4)λ +5Λ

)
(x2 − y2)

2x2
1+

+ y2
1(x1 − y1)

2(2λ (α −4)(x1 + y1)x1 +λ (α −4)y2
1 +10Λx2

1
))

= ασ
α−8
((

(α −4)λ +5Λ
)
(x2

1 − y2
1)

2x2
1 +4

(
(α −4)λ +5Λ

)
(x2 − y2)

2x2
1+

+ y2
1(x1 − y1)

2(2(λ (α −4)+5Λ)x2
1 +2λ (α −4)x1y1 +λ (α −4)y2

1
))

= ασ
α−8
((

(α −4)λ +5Λ
)
(x2

1 − y2
1)

2x2
1 +4

(
(α −4)λ +5Λ

)
(x2 − y2)

2x2
1+

+ y2
1(x1 − y1)

2((λ (α −4)+10Λ)x2
1 +λ (α −4)x2

1+

2λ (α −4)x1y1 +λ (α −4)y2
1
))

.

Now, the definition of α, implies α(λ (α −4)+5Λ)≥ 0 and α(λ (α −4)+10Λ)≥ 0, thus

Lφ ≥ λα(α −4)σα−8y2
1(x1 − y1)

2(x2
1 +2x1y1 + y2

1
)
≥ 0.

The next theorem uses lemma above to construct a barrier function Φ for the ring R(y,r,3r) :=
H(y,3r)\H(y,r).
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Theorem 3.11. Let σ be the function defined in (3.8) and α as in Lemma 3.10. Then, there
exist positive structural constants M1, M2 and 0 < γ < 1 such that for every y ∈ R2 and r > 0
the function Φ := M2σα −M1 satisfies

• Φ ∈C2(R(y,r,3r))∩C(R(y,r,3r)),

• LΦ ≥ 0 in R(y,r,3r),

• Φ |∂H(y,3r)= 0,

• Φ |∂H(y,r)= 1,

• infR(y,r,2r)Φ ≥ γ .

Proof. We choose M1 and M2 by imposing Φ |∂H(y,3r)= 0 and Φ |∂H(y,r)= 1, and we show that,
with this choice, the constants M1 and M2 are positive. Since H(y,r) are defined as sublevel set
of the function hr(x,y) and the definition of this function changes in case |y1|< r or |y1| ≥ r,
we have to distinguish four cases.

Case I |y1|< r, we have
M1 =

3α

1−3α > 0, M2 =
1

rα (1−3α ) > 0 and we define M3 := Φ |∂H(y,2r)=
2α−3α

1−3α > 0

Case II 3r ≤ |y1|, we have
M1 =

3α/2

1−3α/2 > 0, M2 =
1

(r|y1|)α/2(1−3α/2)
> 0 and we define M3 :=Φ |∂H(y,2r)=

2α/2−3α/2

1−3α/2 >

0

Case III r ≤ |y1|< 2r, we have
M1 =

3α

(|y1|/r)α/2−3α
> 0, M2 =

1
(r|y1|)α/2−(3r)α

> 0

and we define M3 := Φ |∂H(y,2r)=
2α−3α

(|y1|/r)α/2−3α
≥ 2α−3α

1−3α > 0

Case IV 2r ≤ |y1|< 3r, we have
M1 =

3α

(|y1|/r)α/2−3α
> 0, M2 =

1
(r|y1|)α/2−(3r)α/2 > 0

and we define M3 := Φ |∂H(y,2r)=
(2|y1|/r)α/2−3α

(|y1|/r)α/2−3α
≥ 6α/2−3α

2α/2−3α
> 0.

If we define γ := min
{

2α−3α

1−3α , 2α/2−3α/2

1−3α/2 , 6α/2−3α

3α/2−3α

}
we have Φ |∂H(y,2r)= M3 > γ , and since Φ is

constant on the sets ∂H(y,ρ) and decreasing with respect to ρ > 0 get Φ |R(y,r,2r)> γ . Finally,
by Lemma 3.10, LΦ ≥ 0 on R(y,r,3r), concluding the proof.

We are now ready to prove the double ball property for sublevel sets H.
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Theorem 3.12. (Double ball property in H(y,3r)) Let C and γ be as in Theorem 3.4 and 3.11
respectively and define ε < γ

2C < 1. Then if H(y,3r) ⊂ Ω and u is a non negative classical
solution to Lu = x2

1 f in H(y,3r) satisfying

inf
H(y,r)

u ≥ 1 and diam(H(y,3r))∥x1 f∥L2(H(y,3r)) < ε

we have
inf

H(y,2r)
u ≥ δ

where δ = γ/2.

Proof. Let Φ be the barrier function defined in Theorem 3.11 and consider ω = u−Φ. Since
ω ∈ C2(R(y,r,3r))∩C(R(y,r,3r)), ω ≥ 0 on ∂R(y,r,3r) and Lω ≤ x2

1 f in R(y,r,3r) we can
apply Theorem 3.4 to estimate ω−:

sup
R(y,r,3r)

((Φ−u)+) = sup
R(y,r,3r)

ω
−

≤Cdiam(R(y,r,3r))
ˆ

R(y,r,3r)
(x1 f+)2 dx

≤Cε

in particular
sup

R(y,r,2r)
((Φ−u)+)≤Cε.

Writing −u = Φ−u−Φ and taking the supremum over R(y,r,2r) we find

sup
R(y,r,2r)

(−u)≤ sup
R(y,r,2r)

(Φ−u)+ sup
R(y,r,2r)

(−Φ)

i.e.

− inf
R(y,r,2r)

u ≤Cε − inf
R(y,r,2r)

Φ.

It suffices to recall that infR(y,r,2r)Φ = γ and the definition of ε to get

inf
R(y,r,2r)

u ≥ γ

2
,

moreover, since by hypotheses infH(y,r) u ≥ 1 the thesis is proved.
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In the next theorem we repeatedly apply the double ball property on sublevel sets of hr to
get the same property for quasi metric balls B(y,r).

Theorem 3.13. (Double ball property in B(y,ηDBr)) There exist structural constants 0 <

εDB,γ < 1 and ηDB > 2 such that if u is a non negative classical solution to Lu = x2
1 f in

B(y,ηDBr) satisfying

inf
B(y,r)

u ≥ 1, and diam(B(y,ηDBr))∥x1 f∥L2(B(y,ηDBr)) < εDB

then
inf

B(y,2r)
u ≥ γ.

More precisely we have ηDB = 12C2 with C =CHCB and CH ,CB defined Structure Theorems
2 and 3; εDB = εδ p−1 and γ = δ p where p is chosen so that 2p−1(CHCB)

−1 ≤ 2CHCB ≤
2p(CHCB)

−1; ε and δ are defined in Theorem 3.12.

Proof. First of all we notice that the definition of ηDB and p imply the inclusion H(y,2pC−13r)⊂
B(y,ηDBr), consequently for 0 ≤ k ≤ p−1 we have

diam(H(y,2kC−13r))∥x1 f∥L2(H(y,2kC−13r) ≤ diam(B(y,ηDBr))∥x1 f∥L2(B(y,ηDBr))

< εδ
p−1.

(3.24)

Moreover, since infB(y,r) u ≥ 1, H(y,C−1r)⊂ B(y,r) and (3.24) holds, we can use the double
ball property in H(y,3C−1r) (Theorem 3.12) obtaining

inf
H(y,C−12r)

u ≥ δ .

In virtue of (3.24) we repeatedly apply (p− 1 times) Theorem 3.12 to u
δ k in H(y,2kC−13r)

where 1 ≤ k ≤ p−1 and get
inf

H(y,C−12pr)
u ≥ δ

p.

So, recalling that the definition of p, C and Structure Theorems 2 and 3 imply B(y,2r) ⊂
H(y,C−12pr), from the estimate above we deduce

inf
B(y,2r)

u ≥ δ
p.

This concludes the proof.
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3.3 Critical density property for Grushin type operators

In this section we prove critical density property for balls B(y,r). Exactly as in [37] we
obtain some rough estimates for the solutions on balls G((y1,0),r)⊂ Ω centered on the x1 axis
and then, by a dilation and translation argument, we refine the estimates and extend the result
to every set of type G(y,r). Once one has obtained the critical density property for every set
G(y,r)⊂ Ω, Structure Theorems 4 and 2 give the property on balls B(x,r)⊂ Ω.

We start with the construction of a barrier on sets G̃((y1,0),2r).

Lemma 3.14 ([37], Lemma 4.2). There exist positive structural constants C̃ > 0 and M > 1
such that for every y = (y1,0) ∈ R2 and r > 0 there is a C2 function φ̃ : R2 → R such that

φ̃ ≥ 0 in R2 \ G̃(y,2r),

φ̃ ≤−2 in G̃(y,r),

φ̃ ≥−M in R2,

Lφ̃(x)≤ C̃
x2

1
r2(r+ |y1|)2 ζ (x) in R2,

where 0 ≤ ζ ≤ 1 is a continuous function in R2 with suppζ ⊂ G̃(y,r).

Proof. We just give a sketch of the proof. First of all it is considered the function ρα(x,y) where
ρ is as in (3.6) with α ≤ 2−3Λ

λ
, it is proved that ρα is a classical solution to L(ρα)≥ 0 on the

set {ρ > 0}. Then, the "radial" function ϕ(x) = M1 −M2ρα(x,y) is defined on R2 \{ρ(x,y) =
0} and the constants M1 and M2 are chosen by using an argument similar to the one given in
Theorem 3.14. More precisely it is imposed

ϕ|G̃(y,2r) = 0 and ϕ|G̃(y,r) =−2 (3.25)

and the value −m = ϕ|G̃(y,r/2) is considered. It is possible to show that M1, M2, m are positive;
M1 and m are uniformly bounded and M2 is such that

K1

r
α

2 (r+ |y1|)
α

2
≤ M2 ≤

K2

r
α

2 (r+ |y1|)
α

2
(3.26)

with K1 and K2 structural constants. Since the defining function of sets G̃ has two different
definitions depending on whether |y1| < r or |y1| ≥ r, one has to impose (3.25) taking into
account four different cases: |y1| ≥ 2r, |y1|< r/2, r/2 < |y1|< r, r ≤ |y1|< 2r.
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Let β ∈ N and define

ψ(t) =

t, if −m ≤ t

−
´ 0

t+m
1

1+s2β
ds−m, if t >−m

.

Since for t <−m it holds

ψ
′(t) =

1
1+(t +m)2β

> 0, ψ
′′(t) =

2β (t +m)2β−1

(1+(t +m)2β )2 ,

then ψ ∈C2(R). The function

φ̃(x) =

ψ(ϕ̃(x)), if ρ(x,y)> 0,

−
´ 0
−∞

1
1+s2β

ds−m, if ρ(x,y) = 0

i.e.

φ̃(x) =


ϕ̃(x), if −m ≤ ϕ(x) and ρ(x,y)> 0,

−
´ 0

ϕ(x)+m
1

1+s2β
ds−m, if ϕ(x)<−m and ρ(x,y)> 0

−
´ 0
−∞

1
1+s2β

ds−m, if ρ(x,y) = 0

is constant on sets ∂ G̃(y,r) and increasing with respect to r, so that φ̃ ≥ 0 in R2 \ G̃(y,2r) and
φ̃ ≤−2, in G̃(y,r). Moreover, recalling that Lϕ ≤ 0, in G̃(y,r/2) it is possible to estimate Lφ̃

as follows

Lφ̃ = ψ
′′(ϕ)

(
a11ϕ

2
x1
+2a12x1ϕx1ϕx2 + x2

1a22ϕ
2
x2

)
+h′(ϕ)Lϕ

≤ |ψ ′′(ϕ)|Λ
(
(X1ϕ)2 +(X2ϕ)2)

≤ |ψ ′′(ϕ)|Λ
(
(−M2αx1(x2

1 − y2
1)ρ

α−4)2 +(−M2αx2x1ρ
α−4)2)

≤ |ψ ′′(ϕ)|ΛM2
2α

2x2
1ρ

2α−8 ((x2
1 − y2

1)
2 +4x2

2
)
= |ψ ′′(ϕ)|ΛM2

2α
2x2

1ρ
2α−4

≤C1ΛM1−2β

2 x2
1ρ

α−4−2αβ .

Observe that ρ <Cr
1
2 (r+ |y1|)1/2 in G̃(y,r/2) and chose β ∈N, β > max{1,1−4/α} so that

α −4−2αβ > 0. Hence, recalling (3.26) , we get

Lφ̃ ≤C1ΛM1−2β

2 x2
1ρ

α−4−2αβ ≤ C̃
x2

1
r2(r+ |y1|)2 .
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Eventually we recognize that since Lρα ≥ 0, in {ρ > 0}, we have Lφ̃ = Lϕ ≤ 0 in R2\G̃(y,r/2)

and Lφ̃ ≤C2
x2

1
r2(r+|y1|2)

in G̃(y,r/2). Now it suffices to choose a continuous function 0 ≤ ζ ≤ 1

such that ζ ≡ 1 in G̃(y,r/2), ζ ≡ 0 in R2\G̃(y,2r/3), even in the first variable x1 and satisfying

φ̃ ≥−M in R2, Lφ̃(x)≤ C̃ x2
1

r2(r+|y1|)2 ζ (x) in R2.

Exploiting the barrier constructed in theorem above we prove some rough estimates for the
solutions on balls centered on the x1 axis.

Theorem 3.15. Define ε̃ =(2C)−1 where C > 0 is the structural constant appearing in Theorem
3.4. Let y = (y1,0), r > 0 and u ∈ C2(G(y,2r))∩C(G(y,2r)) be a non negative solution to
Lu ≤ x2

1 f in G(y,2r) satisfying

inf
G(y,r)

u ≤ 1 and diam(G(y,2r))∥x1 f∥L2(G(y,2r)) < ε̃

Then there exist 0 < ν < 1, depending on ε̃ and M > 1 structural constant such that

|{u ≤ M}∩G(y,3r/2)| ≥ ν

max
{

r+ |y1|, 1
r+|y1|

} |G(y,3r/2)|. (3.27)

Proof. The function w := u+ φ̃ with φ̃ as in Lemma 3.14 satisfies Lw≤ x2
1

(
f +ζ (x) C̃

r2(r+|y1|)2

)
in G(y,2r), w ≥ 0 on ∂G(y,2r), and

inf
G(y,r)

w ≤ inf
G(y,r)

u−2 ≤−1.

Thus it is straightforward to apply weighted ABP maximum principle Theorem 3.4 in G(y,2r)
and get

1 ≤ sup
G(y,2r)

w−

≤Cdiam(G(y,2r))

(ˆ
{w=Γw}∩G(y,2r)

(
x1 f +ζ (x)

C̃x1

r2(r+ |y1|)2

)2

dx

)1/2

.
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Let us set U = {w = Γw}∩G(y,2r). Taking into account (3.11) and (3.12) we further estimate
the right hand side of inequality above by

1 ≤Cdiam(G(y,2r))

(
∥x1 f∥L2(G(y,2r))+

C̃
r2(r+ |y1|)2

(ˆ
U

(
ζ (x)x1

)2
dx
) 1

2
)

≤Cε̃ +CC̃
diam(G(y,2r))

r2(r+ |y1|)2

(ˆ
U

(
ζ (x)x1

)2
dx
) 1

2

≤Cε̃ +CC̃CM max{r,r(r+ |y1|)}
c̃(r+ |y1|)

r2(r+ |y1|)2

(ˆ
U

ζ
2 dx

) 1
2
.

Moreover by Lemma 3.14, 0 ≤ ζ ≤ 1 and supp ζ ⊂ G̃(y,r), so that keeping in mind (3.10), we
have

1−Cε̃ ≤ K
max{1,r+ |y1|}

r(r+ |y1|)
|{w = Γw}∩G(y,2r)∩ G̃(y,r)|1/2

≤ K
max{1,r+ |y1|}

r(r+ |y1|)
r(r+ |y1|)

1
2
|{w = Γw}∩G(y,2r)∩ G̃(y,r)| 1

2

|G(y,r)| 1
2

≤ K
max{1,r+ |y1|}

(r+ |y1|)
1
2

|{w = Γw}∩G(y,2r)∩ G̃(y,r)| 1
2

|G(y,r)| 1
2

≤ K max{(r+ |y1|)−
1
2 ,(r+ |y1|)

1
2}|{u ≤ M}∩G(y,2r)∩ G̃(y,r)| 1

2

|G(y,r)| 1
2

where K > 1 is a structural constant. Since w=Γw implies w≤ 0 and consequently u≤−φ ≤M
we have

1−Cε̃ ≤ K max{(r+ |y1|)−
1
2 ,(r+ |y1|)

1
2}|{u ≤ M}∩G(y,2r)∩ G̃(y,r)| 1

2

|G(y,r)| 1
2

(3.28)

Now recalling definition of ε̃ and that by Structure Theorems 2 and 4 we have |G(y,3r/2)| ≤
9C4

G/4|G(y,r)| we obtain

1 ≤ KC4
G

9
2

max
{
(r+ |y1|)−

1
2 ,(r+ |y1|)

1
2

} |{u ≤ M}∩G(y,2r)∩ G̃(y,3r/2)| 1
2

|G(y,3r/2)| 1
2

. (3.29)

At this stage we proceed as in [37, Theorem 5.1]. We need to consider three different cases.
When |y1| ≥ 2r the set G̃(y,2r) is the disjoint union of the two set G̃(y,2r) and G̃(−y,2r) and
G̃(y,3r/2) ⊂ G̃(y,2r), while for |y1| < 3r/2 we have G̃(y,3r/2) = G(y,3r/2). In both cases
we get G(y2r)∩ G̃(y,3r/2) = G(y,3r/2) and the thesis follows directly from the estimate above.



3.3 Critical density property for Grushin type operators 71

On the other hand if 3r/2 < |y1|< 2r the set G̃(y,3r/2) is the disjoint union of G(−y,3r/2) and
G(y,3r/2) so estimate above is not enough to conclude. The idea is to get (3.28) for a smaller
set so that conditions similar to the previous cases occur. We define ρ = 2r/3 and we proceed
exactly as in estimate (3.28) but considering the smaller set G(y,2ρ) instead of G(y,2r). We
remark that u ∈C2(G(y,2ρ))∩C((G(y,2ρ))) is a non negative solution to Lu ≤ x2

1 f in G(y,2ρ)

and we can consider a function ˜̃
φ as in Lemma 3.14 so that w̃ = u+ ˜̃

φ ≥ 0 on ∂G(y,2ρ). Let

τ = max
{(3

2ρ + |y1|
)− 1

2 ,
(3

2ρ + |y1|
)− 1

2

}
, then as in (3.28) we get

1 ≤ 2Kτ
|{u ≤ M}∩G(y,2ρ)∩ G̃(y,3ρ/2)|− 1

2

|G(y,3ρ/2)|1/2

= 2Kτ
|{u ≤ M}∩G(y,3ρ/2)|1/2

|G(y,3ρ/2)|1/2

where the last equality follows from the fact that |y1|> 3r/2 > 2ρ . Relabeling 3ρ/2 = r we
get

1 ≤ 2K max{(r+ |y1|)−1/2,(r+ |y1|)1/2}|{u ≤ M}∩G(y,r)|1/2

|G(y,r2)|1/2

≤ KC4
G

9
2

max{(r+ |y1|)−1/2,(r+ |y1|)1/2}|{u ≤ M}G(y,3r/2)|1/2

|G(y,3r/2)|1/2 .

from which we get the thesis.

We use the same dilations and translations arguments performed in [37, Theorem 5.2], to
extend Theorem 3.15 to every sublevel set G(y,r) and improve constant in (3.27).

Theorem 3.16. Define ε0 = ε̃
Cm

8CM
. Let u ∈C2(G(y,2r))∩C(G(y,2r)) with y ∈ R2, r > 0 be a

non negative solution to Lu ≤ x2
1 f in G(y,2r) satisfying

inf
G(y,r)

u ≤ 1, and diam(G(y,2r))∥x1 f∥L2(G(y,2r)) < ε0

then there exist structural constants 0 < ε < 1, depending on ε0 and M > 1 such that

|{u ≤ M}∩G(y,3r/2)| ≥ ε|G(y,3r/2)|. (3.30)

Here Cm,CM are the structural constants appearing in (3.12) and ε̃ is as in the statement of
Lemma 3.15.
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Proof. The proof is organized in four steps, at each step we prove the critical density property
for a larger family of sets.

STEP I Fix r = 1, y1 ∈ [−1,1] and y2 = 0. In this case we have max{(r+|y1|)1/2,(r+|y1|)−1/2}<
2 and by applying Theorem 3.15, we find

|{u ≤ M}∩G(y,3/2)| ≥ ν

2
|G(y,3/2)|.

STEP II Fix r ≥ 0, |y1| ≤ r and y2 ∈ R. Keeping in mind (3.2) we introduce the change of
variables

T (x) = T (x1,x2) := (rx1,y2 + r2x2), (3.31)

obtaining

Xiũ(x) = r(Xiu)(T (x)), for i = 1,2;

X2X1ũ(x) = r2(X2X1u)(T (x))

where ũ(x) := u(T (x)). Moreover T (x) ∈ G(y,r) if and only if x ∈ G((y1/r,0),1). The
new operator L̃ := ˜a11X2

1 +2ã12X2X1 + ã22X2
2 , with ãi, j(x) := ai, j(T (x)), i ≤ j ∈ {1,2},

is of the type (3.13) with ellipticity constants Λ ≥ λ > 0. We apply L̃ to ũ obtaining

L̃ũ = r2Lu(T (x))≤ r2(T (x))2
1 f (T (x)) = r4x2

1 f (T (x)) = x2
1 f̃ (x)

with f̃ (x) := r4 f (T (x)). We claim that ũ satisfies the hypotheses of Theorem 3.15 on
G((y1/r,0),2). The only not obviously satisfied assumption is

diam(G∗)∥x1 f̃ (x)∥L2(G∗) < ε̃ (3.32)

where we have denoted G∗= G((y1/r,0),2). Recalling (3.12) and changing coordinates
(x1 = ξ1/r, x2 = (ξ2 − y2)/r2) we have

diam(G∗)∥x1 f̃ (x)∥L2(G∗) ≤ 4CM max
{

1,1+
|y1|

r

}(ˆ
G∗
(x1 f̃ (x))2dx

) 1
2

≤ 4CM

(
1+

|y1|
r

)(ˆ
G(y,2r)

(r3
ξ1 f (ξ ))2 1

r3 dξ

) 1
2

≤ 4CM(r+ |y1|)r1/2∥ξ1 f (ξ )∥L2(G(y,2r))

(3.33)
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on the other hand by hypothesis and (3.12)

ε̃
Cm

8CM
> diam(G(y,2r))∥ξ1 f (ξ )∥L2(G(y,2r))

≥Cm max{r,r(r+ |y1|)}∥ξ1 f (ξ )∥L2(G(y,2r))

so that
ε̃ ≥ 8CMr max{1,r+ |y1|}∥ξ1 f (ξ )∥L2(G(y,2r)). (3.34)

Now, if r ≥ 1, it is straightforward to concatenate inequalities (3.33) and (3.34) to obtain
(3.32). Otherwise if r ≤ 1 and |y1| ≤ r, again combining (3.33) and (3.34) we find

diam(G∗)∥x1 f̃ (x)∥L2(G∗)
(3.33)
≤ 4CM(r+ |y1|)r1/2∥ξ1 f (ξ )∥L2(G(y,2r))

≤ 8CMr3/2∥ξ1 f (ξ )∥L2(G(y,2r))

≤ 8CMr max{1,r+ |y1|}∥ξ1 f (ξ )∥L2(G(y,2r))

(3.34)
≤ ε̃.

Hence ũ satisfies hypotheses of Theorem 3.15 with y1/r ∈ [−1,1], so that, by STEP I we
get

|{ũ ≤ M}∩G((y1/r,0),3/2)| ≥ ν

2
|G((y1/r,0),3/2)|

and consequently

|{u ≤ M}∩G(y,3r/2)|= |T
(
{ũ ≤ M}∩G((y1/r,0),3/2)

)
|

= r3|{ũ ≤ M}∩G((y1/r,0),3/2)|

≥ r3 ν

2
|G((y1/r,0),3/2)|

=
ν

2
|G(y,3r/2)|.

STEP III Fix r > 0, |y1|= 1 and y2 = 0. If r ≥ 1 we apply STEP II, otherwise, in case 0 < r < 1

we apply Theorem 3.15 and take into account that max
{

r+ |y1|, 1
r+|y1|

}
< 2, so that

|{u ≤ M}∩G((y1,0),3/2r)|> ν

2
|G((y1,0),3/2r)|.



74 3. Application to Grushin type operators

STEP IV Fix r > 0, y1,y2 ∈ R. If |y1| ≤ r we use STEP II. If |y1|> r apply the change of variable
defined in the second step with r replaced by |y1| in (3.31). Again we want to make use
of Theorem 3.15 and again the only need to check that

diam(G∗)∥x1 f̃ (x)∥L2(G∗) < ε̃, (3.35)

where f̃ (x) := |y1|4 f (T (x)) and G∗ = G((y1/|y1|,0),2r/|y1|).
Recalling (3.12) and changing coordinates (x1 = ξ1/|y1|, x2 = (ξ2 − y2)/|y1|2) we have

diam(G∗)∥x1 f̃ (x)∥L2(G∗) ≤ 4CM max

{
r

|y1|
,

r
|y1|

+
r2

|y1|2

}(ˆ
G∗
(x1 f̃ (x))2dx

)1/2

≤ 4CMr
|y1|1/2 max{|y1|, |y1|+ r}∥ξ1 f (ξ )∥L2(G(y,2r))

≤ 4CMr
|y1|1/2 (|y1|+ r)∥ξ1 f (ξ )∥L2(G(y,2r))

(3.36)

If |y1| ≥ 1, it is straightforward to concatenate (3.36) and (3.34) obtaining (3.35). Other-
wise if 0 < r < |y1|< 1, we estimate the right hand side of (3.36) as follows

diam(G∗)∥x1 f̃ (x)∥L2(G∗) ≤
4CM

|y1|1/2 r(|y1|+ r)∥ξ1 f (ξ )∥L2(G(y,2r))

≤ 8CM

|y1|1/2 r|y1|∥ξ1 f (ξ )∥L2(G(y,2r))

(3.37)

and then concatenate (3.37) with (3.34) and get the desired estimate.
Hence ũ satisfies hypotheses of Theorem 3.15 and using the third step we find

|{u ≤ M}∩G(y,3r/2)|= |T
(
{ũ ≤ M}∩G((y1/|y1|,0),3r/(2|y1|))

)
|

= |y1|3|{ũ ≤ M}∩G((y1/|y1|,0),3r/(2|y1|))|

≥ ν

2
|y1|3|G((y1/|y1|,0),3r/(2|y1|))|

≥ ν

2
|G(y,3r/2)|.

Hence we have proved (3.30) with ε = ν

2 and ν as in Theorem 3.15

Now we extend theorem above to quasi metric balls B(y,r).
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Theorem 3.17. Define ε0 as in Theorem 3.16. Let u ∈C2(B(y,2R))∩C(B(y,2R)) with y ∈ R2,
R > 0 be a non negative solution to Lu ≤ x2

1 f in B(y,2R) satisfying

inf
B(y,R/2C2)

u ≤ 1, and diam(B(y,2R))∥x1 f∥L2(B(y,2R)) < ε0.

Then there exist structural constants 0 < ν < 1, depending on ε0 and M > 1 such that

|{u ≤ M}∩B(y,R)| ≥ ν |B(y,R)|.

Here ε, ε0 are defined in statement of Theorem 3.16; ν = εC−4 with C =CBCG with CG and
CB the constants in Structure Theorem 4 and 2 respectively.

Proof. First of all we define r := 2R/3, so R > r. Since inclusions B(y,R/2C2) ⊂ G(y,r/C)

and G(y,2r/C)⊂ B(y,2R) imply respectively

inf
G(y,r/C)

u ≤ inf
B(y,R/2C2)

u ≤ 1 and diam(G(y,2r/C))∥x1 f∥L2(G(y,2r/C))< ε0,

by Theorem 3.16 there exist structural constants 0 < ε < 1 and M > 1 such that

|{u ≤ M}∩G(y,3r/(2C))| ≥ ε|G(y,3r/(2C))|.

With the aid of Structure Theorems 3 and 2 we estimate from below the right hand side by

ε|G(y,3r/(2C))| ≥ ε|Box(x,RCB/C2)| ≥ εC−4|Box(x,RCB)| ≥ εC−4|B(y,R)|.

concluding the proof.

Provided that we invert the relation of dependence between ν and ε0, the negation of
theorem above and the double ball property (Theorem 3.13) give the following critical density
property

Theorem 3.18. There exist structural constants ηCD,M > 1 and ν ,c,εCD ∈]0,1[ such that if,
u ∈C2(B(y,ηCDR))∩C(B(y,ηCDR)) with y ∈R2, R > 0 is a non negative solution to Lu ≤ x2

1 f
in B(y,ηCDR) satisfying

|{u > M}∩B(y,R)|> (1−ν)|B(y,R)|

then
inf

B(y,R)
u > c or diam(B(y,ηCDR))∥x1 f∥L2(B(y,ηCDR)) ≥ εCD.
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More precisely, ηCD = 2ηDB, εCD = min{γ pεDB,ε0}, c = γ p+1 where γ , εDB,ηDB are the
constants defined in Theorem 3.13, M, ν , ε0 are as in Theorem 3.17, and p ∈ N is chosen so
that 2p >C2 > 2p−1 with C =CGCB, CG and CB are the constants in Structure Theorems 4 and
2 respectively.

Proof. The negation of Theorem 3.17 says that if

|{u ≤ M}∩B(y,R)|< ν |B(y,R)|

i.e.
|{u > M}∩B(y,R)|> (1−ν)|B(y,R)|

then
inf

B(y,R/2C2)
u > 1 or diam(B(y,2R))∥x1 f∥L2(B(y,2R)) ≥ ε0.

If the second inequality holds or diam(B(y,ηCDR))∥x1 f∥L2(B(y,ηCDR)) ≥ εCD there is nothing to
prove. Otherwise since by the definition of p, 2p/C2 < 2, for every 0 ≤ k ≤ p we have

diam(B(y,R2k
ηDB/(2C2))∥x1 f∥

L2
(

B
(

y,R 2kηDB
2C2

))≤ diam(B(y,ηCDR))∥x1 f∥L2(B(y,ηCDR))< εCD

we can repeatedly apply the double ball property p+1 times (for k = 0, . . . , p) in B(y,R/2C2)

obtaining
inf

B(y,R)
u ≥ inf

B(y,2pR/C2)
u ≥ γ

p+1.

3.4 Harnack inequality

In this section we use the abstract approach of Chapter 1 to prove Harnack inequality
for non negative classical solution to Lu = x2

1 f in quasi metric balls B(x,r); then, Structure
Theorem 1 and 2 imply the desired result on Carnot–Carathéodory metric balls BCC(x,r).

We recall that Ω ⊂ R2 is open and the Hölder quasi metric space (Ω, d̃, | · |) satisfies
the doubling and the reverse doubling property (see (3.4) and Remark 3.2) and the log-ring
condition ([37, Theorem 3.4] ). At the end of subsection 3.1.2 we have observed that, due to
the linearity of L and the absence of zero order terms in L, the family

KΩ, f := {u ∈C2(Ω)∩C(Ω) : Lu = x2
1 f , u ≥ 0}
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with f ∈ L(Ω) = {g : Ω → R, measurable and x1g ∈ L2
loc(Ω)}, satisfies

• u ∈KΩ, f ⇒ λu ∈KΩ,λ f for all λ ≥ 0.

• u ∈KΩ, f , λ ,τ ≥ 0 such that τ −λu ≥ 0 ⇒ τ −λu ∈KΩ,−λ f .

It is also clear that the function SΩ(B(x,r), f ) := diam(B(x,r))∥x1 f∥L2(B(x,r)) is increasing with
respect to the first variable (here we think the family of all the quasi metric balls contained in
Ω partially ordered by inclusion) and homogeneous in the second variable (SΩ(B(x,r),λ f ) =
|λ |SΩ(B(x,r), f )). Moreover the family KΩ, f satisfies the double ball and the critical density
properties (Theorems 3.13 and 3.18). Thus we use Theorem 1.10 under hypotheses (A1)-(A2)
and Theorem 1.11 obtaining the following invariant Harnack inequality on quasi metric balls B.

Theorem 3.19. There exist structural constants C,η > 1 such that if u ∈C2(Ω)∩C(Ω) is a
non negative solution to Lu = x2

1 f in Ω, then

sup
B(y,r)

u ≤C
(

inf
B(y,r)

u+diam(B(y,ηr))∥x1 f∥L2(B(y,ηr))

)

for every B(y,ηr)⊂ Ω.

Now, Structure Theorems 1 and 2 ensures the inclusions BCC(x,r)⊂B(x,Cr) and B(x,Cηr)⊂
BCC(x,C2ηr) with C =CBC̃, so, if the ball BCC(x,C2ηr) is included in Ω, the invariant Harnack
inequality for Carnot– Carathéodory metric ball BCC(x,r) follows by applying theorem above
to quasi metric balls B(x,Cr).

After the paper [23], which contains the proof of Theorem 3.19, had been posted on
arXiv:1709.03810, we learned that D. Maldonado in [36] extended the example in this chapter
to a larger class of PDEs. He studies certain degenerate elliptic PDEs modeled after suitable
strictly convex function ϕ, of the type

trace(A(x)D2u(x))+ ⟨b,D2
ϕ
−1/2

∇u⟩+ c(x)u(x) = f (x) (3.38)

where A(x) is a symmetric matrix such that for every ξ ∈ Rn

λ ⟨D2
ϕ
−1

ξ ,ξ ⟩ ≤ ⟨Aξ ,ξ ⟩ ≤ Λ⟨D2
ϕ
−1

ξ ,ξ ⟩, with 0 < λ ≤ Λ <+∞ (3.39)

and ϕ is a strictly convex functions whose Monge-Ampère sections (see for example [24,
Definition 3.1.1] for the definition of section) are quasi-metric balls and whose Monge-Ampère
measure is doubling and satisfies the ring condition. Under some assumptions on ϕ and on
the lower order terms coefficients b and c, the author obtains an invariant Harnack inequality
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for continuous W 2,n
loc solutions to (3.38). Then, as an example he considers the class of PDEs

defined by
x2

1trace(Aν(x)D2u(x))+ ⟨b̄,D2
ϕ
−1/2

∇u⟩+ c̄(x)u(x) = f̄ (x) (3.40)

with Aν and ϕ satisfying (3.39) in a open bounded set Ω ⊂ R2, where

Aν =

a11
x2ν

1

a12
xν

1
a12
xν

1
a22

 , ϕ =
x2ν

1
(2ν −2)(2ν −1)

+
x2

2
2

and
∥ f x−ν

1 ∥L2(S), ∥cx−ν

1 ∥L2(S), ∥bx−ν

1 ∥L2(S) < ∞ (3.41)

for every Monge–Ampère section S ⊂ Ω. This operators are more general then the ones studied
in this Chapter where we have ν = 1, b = c = 0. Notice that in case ν = 1 it suffices to rename
f = x2

1 f to see that hypothesis (3.41) is equivalent to require ∥x1 f∥L2(S) < ∞ which is indeed
our assumption. Maldonado’s approach to Harnack inequality for solutions to (3.38) deeply
relay on the ABP Maximum principle [22, Theorem Section 9.1 and Exercise 9.3.] and [10,
Chapter 6], and with this tool the author proves the critical density, the double ball, the power
decay properties and the Weak Harnack inequality on the quasi metric balls defined by the
Monge-Ampére sections of ϕ. By taking into account the deep results in [36] it is easy to
recognize that, in absence of zero order terms, the abstract approach presented in Chapter 1
also applies to solutions to the class of PDEs defined by (3.38). On the other hand, there are
many subelliptic PDEs which are not contained in Maldonado’s class and which satisfies our
hypotheses. The easiest example is the Kohn Laplacian on the Heisenberg group H1, which is
a X-elliptic operator in divergence form and which writes as

Lu(ξ ) = trace
(
A(ξ )D2u(ξ )

)
= 0,

where D2u is the Euclidean Hessian of u and

A(ξ ) =

 1 0 2y
0 1 −2x
2y −2x 4(x2 + y2)


for all ξ = (x,y, t) ∈H1. Obviously, the matrix A(ξ ) has minimum eigenvalue identically zero
for all ξ = (x,y, t) ∈H1 and therefore, as a quadratic form, it can not be estimated a.e. from
below by the inverse of the Hessian matrix of a strictly convex function. More complicated
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examples of nondivergence subelliptic PDEs satisfying our conditions and which do not satisfy
Maldonado’s hypotheses could be find in [27, 41, 1].

3.5 A priori Hölder estimates for the X-gradient

It is well known that invariant Harnack inequalities give Hölder estimates for the solutions
of PDEs (see Section 1.4). However, to study regularity properties of fully nonlinear PDEs
one has to differentiate the equation and try to apply the theory to the equation solved by the
derivatives of the solution.

In this section we prove local Hölder estimates for each component of the X-gradient of
a solution to the equation Lu = x1 f . The idea is to prove regularity for each component of
the X-gradient by showing that it itself is a solution to an appropriate equation in divergence
form. More precisely, ∂x2u is a solution to the equation constructed by formal derivation of
Lu− x1 f = 0 with respect to ∂x2 , and the regularity for X2u is deduced from the regularity of
∂x2u. Analogously, we show that the first component of the X-gradient is a solution to the
equation obtain by formal derivation of Lu−x1 f = 0 with respect to X1. The new equations we
obtained by formal derivation, result to be X-elliptic so we refer to Chapter 2 to deduce Hö lder
regularity. We remark that this procedure is a modification to the one presented in [22, Section
12.2] and deeply relay on the fact that we are working with an equation that depends only on
two variables, in our case there is an added difficulty due to the non commutativeness of the
vector fields X2 and X1. More precisely we will prove the following

Theorem 3.20. Let Ω be a subset of R2 with small enough diameter (cf. (O)) u ∈C3(Ω) be a
solution to Lu = x1 f with L the operator defined in (3.13). Moreover assume f ∈ L2p(Ω) with
p > 3

2 . Then there exist two positive structural constants C and α ∈]0,1[ such that for every
BCC(x0,5r)⊂ Ω it holds

sup
x,y∈BCC(x0,r)

|∂x2u(x)−∂x2u(y)|
dX(x,y)α

≤C

(
(4r)−α sup

BCC(x0,5r)
|∂x2u|+

∥∥∥∥ f
a11

∥∥∥∥
L2p(Ω)

)
(3.42)
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Moreover for every BCC(z,5ρ)⊂ B, here B = BCC(x0,r/2) we have

sup
x,y∈BCC(z,ρ)

|X1u(x)−X1u(y)|
dX(x,y)α

≤C

(
1

4ρ−α
sup

BCC(z,5ρ)

|X1u|+
∥∥∥∥∣∣∣∣x1

f
a11

∣∣∣∣+2|∂x2u|
∥∥∥∥

L2p(B))

)
(3.43)

sup
x,y∈BCC(z,ρ)

|X2u(x)−X2u(y)|
dX(x,y)α

≤C

(
1

4ρ−α
sup

BCC(z,5ρ)

|X2u|+
∥∥∥∥∣∣∣∣x1

f
a11

∣∣∣∣+2
∣∣∣∣a12

a22
∂x2u

∣∣∣∣+2|∂x2u|
∥∥∥∥

L2p(B)

)
(3.44)

First of all we check that the setting is suitable for the purpose of applying results of Chapter
2. Let us consider the metric space (Ω,dX , | · |) where dX is the control distance associated to
X1, X2. Since {X1,X2} satisfies the Hörmander condition, assumption (C) is satisfied and we
have already proved that the doubling property holds true in (Ω,dX , | · |) (recall the Structure
Theorem 1), so assumption (D) is satisfied too. Moreover D. Jerison in [31], proved the
following Poincaré inequality on balls defined by the control distance associated with vector
fields satisfying Hörmander condition and with small enough radius:

ˆ
BCC(x0,r)

|u|p dx ≤Crp
ˆ

BCC(x0,αr)
|Xu|p dx (3.45)

with u∈C1(BCC(x0,αr)), α > 1, 1≤ p<+∞. We recall that a Poincaré inequality for Grushin
vector fields has been proved by Franchi and Lanconelli in [16]. Hence also (P) holds true and
we are in position to apply the results of Chapter 2.

Proof of Theorem 3.20. We prove (3.42) by showing that w = ∂x2u is a solution to an equation
of the type (2.5). Let u be a C3 solution to Lu = x1 f in Ω where L is the operator defined in
(3.13). Since by (3.14) we know a11 > 0 we can consider the equation

X2
1 u+2

a12

a11
X2X1u+

a22

a11
X2

2 u− x1
f

a11
= 0.

We formally differentiate equation above with respect to ∂x2 and get

X2
1 w+∂x2

(
2

a12

a11
x1X1w+

a22

a11
x1X2w− x1

f
a11

)
= 0.

which is an equation in divergence form:

X1 (X1w)+X2

(
2

a12

a11
X1w+

a22

a11
X2w

)
= X2

(
f

a11

)
. (3.46)
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It is not difficult to recognize that the operator is of X-elliptic type (Definition 2.2.1). Indeed if
we let

B =

(
1 0

2x1
a12
a11

x2
1

a22
a11

)
and bi j = (B)i j, bi = di = c = 0

and we define

Lu =
2

∑
i, j=1

∂xi

(
bi j∂x ju

)
(3.47)

equation (3.46) reads as
Lw = ∂x2h2

where h is the vector h = (h1,h2) =
(

0,x1
f

a11

)
. Recalling (3.14), for every ξ ∈ R2 we have

⟨Bξ ,ξ ⟩ ≤ 1
λ

(
a11ξ

2
1 +2a12ξ1(x1ξ2)+a22(x1ξ2)

2)≤ Λ

λ

(
ξ

2
1 +(x1ξ2)

2)
=

Λ

λ

(
⟨X1,ξ ⟩2 + ⟨X2,ξ ⟩2)

and analogously

⟨Bξ ,ξ ⟩ ≥ λ

Λ

(
⟨X1,ξ ⟩2 + ⟨X2,ξ ⟩2) ,

moreover

⟨h,ξ ⟩2 =

(
f

a11

)2

⟨X2,ξ ⟩2.

Since by hypotheses f ∈ L2p(Ω) and from (3.14) we deduce λ ≤ a11 ≤ Λ, we have f
a11

∈
L2p(Ω). Then assumptions (R) and (LT) are satisfied (it suffices to take γ0 = | f/a11| in (2.6))
so, by Corollary 2.15 we get (3.42). Consequently we can estimate ∥∂x2u∥L2p(B), hereafter
B = BCC(x0,r/2). This fact will be used in the sequel.
In order to prove (3.44) it will be convenient to use the notation

u1 = X1u and u2 = X2u.

We notice that the function u2 satisfies

Lu2 = ∂x1 h̄1 +∂x2 h̄2 in B
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with L the X-elliptic operator defined in (3.47) and h̄ = (h̄1, h̄2) =
(

2w,x2
1

f
a11

+2x1wa12
a22

)
.

Moreover it holds

⟨h̄,ξ ⟩2 ≤ 2(2w)2 ⟨X1,ξ ⟩2 +2
(

x1
f

a11
+2w

a12

a22

)2

⟨X2,ξ ⟩2

≤ 2
(

2|w|+
∣∣∣∣x1

f
a11

∣∣∣∣+2
∣∣∣∣wa12

a22

∣∣∣∣)2 (
⟨X1,ξ ⟩2 + ⟨X2,ξ ⟩2) .

Again, since by hypotheses f ∈ L2p(Ω) and we have just proved that w = ∂x2u ∈ L2p(B), we
have γ0 =

(
2|w|+

∣∣∣x1
f

a11

∣∣∣+2
∣∣∣wa12

a22

∣∣∣) ∈ L2p(B), so (R) and (LT) are satisfied and Corollary
2.15 can be applied to u2. This gives (3.44).
To get estimates for u1 = X1u we proceed in a similar way. We consider the equation

a11

a22
X2

1 u+2
a12

a22
X2X1u+X2

2 u− x1
f

a22
= 0

which is well defined since by (3.14) we know that a22 > 0, and we rewrite it as follows

a11

a22
X1u1 +2

a12

a22
X2u1 +X2u2 − x1

f
a22

= 0.

Formally differentiating with respect to X1 we find

X1

(
a11

a22
X1u1 +2

a12

a22
X2u1 − x1

f
a22

)
+X1X2u2 = 0. (3.48)

Now we notice that

X1X2u2 = X1(x2
1∂

2
x2

u) = 2x1∂
2
x2

u+ x2
1X1∂

2
x2

u = 2X2w+X2
2 u1.

Hence equation (3.48) is in divergence form

X1

(
a11

a22
X1u1 +2

a12

a22
X2u1

)
+X2 (X2u1) = X1

(
x1

f
a22

)
−2X2w. (3.49)

Again, if we let

B̃ =

(
a11
a22

2x1
a12
a22

0 x2
1

)
, b̃i j = (B̃)i j and h̃ =

(
h̃1, h̃2

)
=

(
x1

f
a11

,−2x1w
)
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equation (3.49) reads as
2

∑
1, j=1

∂xi

(
b̃i j∂x ju1

)
= ∂x1 h̃1 +∂x2 h̃2

and, for every ξ ∈ R2 we have Λ

λ

(
ξ 2

1 +(x1ξ2)
2) = Λ

λ

(
⟨X1,ξ ⟩2 + ⟨X2,ξ ⟩2) so that, recalling

(3.14) we find

λ

Λ

(
⟨X1,ξ ⟩2 + ⟨X2,ξ ⟩2)≤ ⟨Bξ ,ξ ⟩ ≤ Λ

λ

(
⟨X1,ξ ⟩2 + ⟨X2,ξ ⟩2) .

Moreover it holds

⟨h̃,ξ ⟩2 ≤ 2
(

x1
f

a11

)2

⟨X1,ξ ⟩2 +2(2w)2 ⟨X2,ξ ⟩2

≤ 2
(∣∣∣∣x1

f
a11

∣∣∣∣+2|w|
)2 (

⟨X1,ξ ⟩2 + ⟨X2,ξ ⟩2)
and the function γ0 =

∣∣∣x1
f

a11

∣∣∣+ 2|w| belongs to L2p(B). Now Corollary 2.15 gives Hölder
estimate for X1u concluding the proof.





The prescribed Levi curvature equation in
cylindrical coordinates

Here we want to show that Grushin type equations, considered in Chapter 3, arises from the
prescribed Levi curvature equation in cylindrical coordinates. This fact was first recognized by
Gutiérrez Lanconelli and Montanari and motivated the investigation carried out in [37]. Since
the scope of this appendix is just to give a motivation to the study of Grushin type operators we
do not aim to make it self complete and we refer the reader to [38] for precise definitions and
further details.

Let Ω ⊂ Cn+1 be a bounded domain with boundary ∂Ω. We consider f ∈ C2(Cn+1) a
defining function for Ω = {ζ = (z1, . . . ,zn+1) ∈ Cn+1 : f (ζ )< 0} such that ∂ f |∂Ω ̸= 0. Here
we have used the notations

fi =
∂ f
∂ zi

, fī =
∂ f
∂ z̄i

, ∂ f = ( f1, . . . , fn+1) .

Analogous notations will be used for second order derivatives. Then, the complex Hessian
matrix of the function f at a point p is

Hp( f ) =
(

f j,k̄(p)
)

j,k=1,...,n

and the complex tangent space to ∂Ω at a point p is

TC
p (∂Ω) = {h ∈ Cn+1 : ⟨h,∂ p f ⟩= 0}

where we have denoted the standard Hermitian product in Cn+1 by ⟨·, ·⟩ and ∂̄p f =
(

f1̄, . . . , fn+1
)
.

The Levi form of the function f at a point p is the restriction of the Hermitian form

ζ 7→ Lp( f ,ζ ) = ⟨Hp( f )ζ ,ζ ⟩
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to the complex tangent space TC
p (∂Ω). We recall that a domain Ω is said to be strictly Levi

pseudoconvex if the Levi form is strictly positive definite at each point of ∂Ω. We also need to
introduce the notion of B-normalized Levi matrix, that is the n×n Hermitian matrix

Lp( f ,B) =
(

1
|∂p f |

⟨HT
p ( f )u j,uk⟩

)
j,k=1,...,n

with B = {u1, . . . ,un} an orthonormal basis for TC
p (∂Ω). We remind that the eigenvalues of

Lp( f ,B) only depend on the domain Ω. Then the total Levi curvature is

K(n)
p (∂Ω) = det(Lp( f ,B)).

In the work [38, Section 2] the authors proved that the eigenvalues of the normalized Levi form
for the boundary ∂Ω are the eigenvalues of the matrix(

In −
ᾱ ⊗α

1+ |α|2

)
A( f ) (A.1)

where
(ᾱ ⊗α) jk = ᾱ jαk, α j :=

f j

fn+1
, j,k = 1, . . . ,n (A.2)

and
A( f ) =

(
A j,k̄( f )

)
j,k=1,...,n

with

A j,k̄( f ) =− 1
| fn+1|2

det

 0 fk̄ fn+1

f j f j,k̄ f j,n+1

fn+1 fn+1,k̄ fn+1,n+1

 .

So we can compute

A j,k̄( f ) =−det


0 fk̄

fn+1
1

f j
fn+1

f j,k̄ f j,n+1

1 fn+1,k̄ fn+1,n+1



=−det


0 0 1

f j
fn+1

f j,k̄ −
fk̄

fn+1
f j,n+1 f j,n+1

1 fn+1,k̄ −
fk̄

fn+1
fn+1,n+1 fn+1,n+1


(A.3)
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that is
A j,k̄( f ) = f j,k̄ −

fk̄
fn+1

f j,n+1 −
f j

fn+1
fn+1,k̄ +

f j fk̄
| fn+1|2

fn+1,n+1. (A.4)

With this formula in hands it is very easy to compute the total Levi curvature because it can be
expressed in terms of the matrix A( f ). We have

K(n)(∂Ω) =
1

|∂ f |n
det
((

In −
ᾱ ⊗α

1+ |α|2

)
A( f )

)
=

| fn+1|2

|∂ f |n+2 detA( f ). (A.5)

Let ζ = (z,zn+1) with z = (z1, · · · ,zn). We introduce cylindrical coordinates

zn+1 = t + iτ, r = |z|

and we consider f in the form f (z,zn+1) = u(|z|, t)− τ . We have

f j = ur
z̄ j

2r
; f j̄ = ur

z j

2r
, 1 ≤ j ≤ n.

fn+1 =
1
2
(ut + i), fn+1 =

1
2
(ut − i).

f j k̄ = urr
z̄ jzk

4r2 +ur
2δ jkr2 − z̄ jzk

4r3 , 1 ≤ j,k ≤ n.

f j n+1 = urt
z̄ j

4r
, fn+1 j̄ = urt

z j

4r
, 1 ≤ j ≤ n.

fn+1 n+1 =
1
4

utt .

We can write (A.4) as
A(u− τ) =

ur

2r
In +

γ

4r2 z̄⊗ z

with

γ =

(
urr −

ur

r
−2

urut

1+u2
t

urt +
u2

r

1+u2
t

utt

)
.

Then
detA =

(ur

2r

)n−1(ur

2r
+

γ

4

)
.

Moreover (
In −

ᾱ ⊗α

1+ |α|2

)
=

(
In −

u2
r

1+u2
r +u2

t

1
r2 z̄⊗ z

)
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and we rewrite (A.5) as

K(n)(∂Ω) = 2n u2
t +1(

u2
r +u2

t +1
)(n+2)/2

(ur

2r

)n−1(ur

2r
+

γ

4

)
. (A.6)

The matrix in (A.1) can be written in cylindrical coordinates as(
In −

ᾱ ⊗α

1+ |α|2

)
A( f ) =

(ur

2r
In +

γ

4r2 z̄⊗ z
)(

In −
u2

r

r2(1+u2
r +u2

t )
z̄⊗ z

)
=

ur

2r
In +

(
γ

4r2
(1+u2

t )

(1+u2
r +u2

t )
− u3

r

2r3(1+u2
r +u2

t )

)
z̄⊗ z

=
ur

2r
In +β z̄⊗ z.

Since det(z̄⊗ z) = 0 we have that

det
((

In −
ᾱ ⊗α

1+ |α|2

)
A( f )− ur

2r
In

)
= β

n det(z̄⊗ z) = 0

and this implies that ur
2r is an eigenvalue of the Levi form with multiplicity n− 1. So, if we

denote by λ the other eigenvalue of the Levi form, we have

trace
((

In −
ᾱ ⊗α

1+ |α|2

)
A( f )− ur

2r
In

)
= λ +(n−1)

ur

2r
.

On the other hand we can compute

trace
((

In −
ᾱ ⊗α

1+ |α|2

)
A( f )− ur

2r
In

)
= n

ur

2r
+β r2

and consequently λ = ur
2r + β r2 =

( ur
2r +

γ

4

) 1+u2
t

1+u2
t +u2

r
is an eigenvalue of the Levi form. We

summarize the above observations in the following theorem

Theorem A.1. The set Ω = {(r, t,τ) ∈ R+
0 ×R2 : u(r, t)− τ < 0} with u ∈C2 is strictly pseu-

doconvex if and only if

ur

r
> 0

and

(1+u2
t )
(ur

r
+urr

)
−2utururt +u2

r utt > 0.
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In this situation the total Levi curvature of ∂Ω is by (A.6)

K(n)(∂Ω) =
1
2

(ur
r

)n−1(
u2

r +u2
t +1

)(n+2)/2

(
(1+u2

t )
(ur

r
+urr

)
−2utururt +u2

r utt

)
. (A.7)

Now we use the notation

v =
ur

r
, q = ut , K = K(n)(∂Ω)

to rewrite (A.7) in the equivalent form

(1+q2)urr −2vqrurt + v2r2utt =−(1+q2)v+2K
(1+ v2r2 +q2)

n+2
2

vn−1 .

So, if we define X1 = ∂r and X2 = r∂t , the equation above becomes

trace

((
1+q2 −vq
−vq v2

)(
X2

1 u X2X1u
X2X1u X2

2 u

))
= f (q,v,K)

that is
Lu = f (q,v,K) (A.8)

with f =−(1+q2)v+2K (1+v2r2+q2)
n+2

2

vn−1 and L = (1+q2)X2
1 −2vqX2X1 + v2X2

2 . In particular,

if Ω is strictly pseudoconvex, by Theorem A.1 we have v > 0 and A =

(
1+q2 −vq
−vq v2

)
is

strictly positive definite. If we further assume q and v to be bounded, then the operator L in
(A.8) is structured as in (3.13).





List of Symbols

Here is a brief list of notations frequently used in this thesis.

Br(x) quasi metric ball of center x and radius r > 0 (p. 2).
Br quasi metric ball of center an understood and fixed point x0 and radius r > 0 (p.

2)
CD doubling constant (p. 2).
K quasi triangle inequality constant (p. 2).
diam(Ω) Euclidean diameter of the set Ω (p. 55).
supp u support of the function u (p. 41).
B(Ω) set of all the quasi metric balls contained in Ω and ordered by inclusion (p. 5).
F(Ω) particular subset of the real valued measurable functions defined on Ω (p. 5).
SΩ non negative function on B(Ω)×F(Ω), order preserving with respect to the first

variable and homogeneous in the second variable (p. 5).
L(Ω) subset of F(Ω) containing all the functions f such that SΩ(·, f ) is finite at each

ball in B(Ω) (p. 5).
KΩ, f particular subset of the non negative real valued measurable functions with

domain contained in Ω (p. 5).
K̃Ω, f particular subset of the measurable functions with domain contained in Ω which

in particular contains KΩ, f (p. 25).
osc
Br(x)

u oscillation of the function u over the ball Br(x), that is supBr(x) u− infBr(x) u (p.
25).

X family of m vector fields X = {X1, . . . ,Xm} on RN (p. 27).
dX Carnot–Carathéodory distance associated to the family of vector fields X (p. 28).
Xu X-gradient of the function u, that is = (X1u, . . . ,Xmu) (p. 29).



92 Notations Index

BCC(x,r) ball of center x ∈ R2 and radius r > 0 defined by the Carnot–Carathéodory
distance associated to Grushin vector fields (p. 48).

Box(x,r) rectangle in R2 of center x= (x1,x2) defined as Box(x,r) =]x1−r,x1+r[× ]x2−
r(r+ |x1|),x2 + r(r+ |x1|)[ (p. 48).

d̃ particular Hölder quasi distance equivalent to the Carnot–Carathéodory distance
associated to Grushin vector fields (p. 49).

B(x,r) quasi metric ball of center x ∈ R2 and radius r > 0, defined by the quasi distance
d̃ (p. 49).

G̃(x,r) sublevel set of the function g̃r(x, ·), it might have two connected component (p.
51).

G(x,r) sublevel set of the function gr(x, ·) (p. 52).
H(x,r) sublevel set of the function hr(x, ·) (p. 52).

C̃ structural constant in the Ball-Box theorem for Carnot–Carathéodory balls BCC .
(p. 48).

CB structural constant in the Ball-Box theorem for balls B. (p. 49).
CH structural constant in the Ball-Box theorem for sublevel sets H. (p. 53).
CG structural constant in the Ball-Box theorem for sublevel sets G. (p. 55).
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