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Abstract

The Internet of Things (IoT) is the paradigm that allows us to interact with the
real world by means of networking-enabled devices and convert physical phenom-
ena into valuable digital knowledge. The number of connected objects nowadays
consistently overtook the number of people in the world and novel IoT applica-
tions permeate several areas of our lives, among which home automation, indus-
try 4.0, healthcare, Smart Cities and environmental monitoring. Such a rapidly
evolving field leveraged the explosion of a number of technologies, standards and
platforms. Consequently, different IoT ecosystems behave as closed islands and
do not interoperate with each other, thus the potential of the number of connected
objects in the world is far from being totally unleashed. Typically, research efforts
in tackling such challenge tend to propose a new IoT interoperability platform or
standard, however, such solutions find obstacles in keeping up the pace at which
the field is evolving and interested parts hardly adapt.

Our work is different, in that it originates from the following observation:
in use cases that depend on common phenomena such as Smart Cities or en-
vironmental monitoring either a lot of useful data for applications is already in
place somewhere or devices capable of collecting such data are already deployed.
Specifically, for such scenarios, we propose and study the use of Collective Aware-
ness Paradigms (CAP), which offload data collection to a crowd of participants.
We bring three main contributions: (1) we study the feasibility of using Open Data
coming from heterogeneous sources, focusing particularly on crowdsourced and
user-contributed data that has the drawback of being incomplete, partially anno-
tated and imprecise and we then propose a State-of-the-Art algorithm and frame-
work that automatically classifies and annotates raw crowdsourced sensor data;
(2) we design a data collection framework that uses Mobile Crowdsensing (MCS)
and puts the participants and the stakeholders in a coordinated interaction in order
to regulate the data collection process according to the common needs, further-
more, we design a distributed data collection algorithm that prevents the users
from collecting too much or too less data, which would hinder the extraction of
knowledge that reflects the reality; (3) we design a Service Oriented Architecture
(SOA) that constitutes a unique interface to the raw data collected through CAPs
through their aggregation into ad-hoc services that can be created, instantiated
and destroyed by the end users through a customized language that we designed,
moreover, we provide a prototype implementation.

Our work is a novel effort in such direction and it is a significant step forward
in tackling the challenge of interoperability for IoT applications in the contexts of
Smart Cities and environmental monitoring for the common welfare.



Glossary of Acronyms
Here are defined (in alphabetical order) the acronyms used throughout the dis-

sertation in order to facilitate the reader.

1NN One-Nearest-Neighbor
3GPP 3rd Generation Partnership Project
ANOVA ANalysis Of VAriance
AO-F Asymptotic Opportunistic algorithm for Fairness
AO-JFS Asymptotic Opportunistic algorithm for Joined Fairness and

Satisfaction Index
AO-S Asymptotic Opportunistic algorithm for Satisfaction Index
AOB Asymptotically Optimal Backoff
AP Access Point
API Application Program Interface
BLE Bluetooth Low Energy
BNF Backus-Naur Form
BOPF Bag-of-Pattern Features
BOS Bag-of-Summaries
BOSS Bag-of-SFA-Symbols
BOW Bag-of-Words
BT Bluetooth
BSSID Basic Service Set IDentifier
CANOVA Classwise ANalysis Of VAriance
CAP Collective Awareness Paradigm
CBM Community-Based Monitoring
CBOS Classwise Bag-of-Summaries
CCU Central Coordination Unit
CDF Cumulative Distribution Function
CDMA Code Division Multiple Access
CIoT Cellular IoT
CoAP Constrained Application Protocol
CS Citizen Science
CSI Custom Service Instance
CSMA/CA Carrier Sense Multiple Access for Collision Avoidance
CST Custom Service Template
DDL-NLP Dictionary Damerau-Levenshtein with Natural Language Processing
DI Deviation Index
DLL ISO/OSI Data Link layer
DSA Datastream Annotator
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DSM Datastream Manager
DTW Dynamic Time Warping
ED Euclidean Distance
FDMA Frequency Division Multiple Access
GSM Global System for Mobile Communications
GZI Grid Zone Identifier
HAS Home Automation Systems
HTTP Hyper Text Transfer Protocol
IoT Internet of Things
IETF Internet Engineering Task Force
JFI Jain’s Fairness Index
LAN Local Area Network
LPWAN Low Power Wide Area Network
LTE Long-Term Evolution
MAC Medium Access Control sublayer
MCS Mobile Crowdsensing
MGRS Military Grid Reference System
ML Machine Learning
MoCroSS Mobile Crowdsensing module for SenSquare
MTC Machine Type Communication
NFC Near-Field Communication
OCS Opportunistic Crowdsensing
OFDMA Orthogonal Frequency Division Multiple Access
PAA Piecewise Aggregate Approximation
PCS Participatory Crowdsensing
PDF Probability Density Function
PHY ISO/OSI Physical Layer
PoC Proof of Concept
REST REpresentational State Transfer
RFID Radio Frequency IDentifier
RMS Root Mean Squared error
RSSI Received Signal Strength Indication
SAX Symbolic Aggregation approXimation
SI Satisfaction Index
SINR Signal and Interference to Noise Ratio
SOA Service-Oriented Architecture
SOSA Sensor, Observation, Sample, and Actuator
SSID Service Set IDentifier
SSN Semantic Sensor Network
TDOA Time Difference Of Arrival
TDMA Time Division Multiple Access
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TKSE Top-k Sequential Ensemble
TSC Time Series Classification
UMTS Universal Mobile Telecommunications System
WBAN Wireless Body Area Network
WLAN Wireless Local Area Network
WoT Web of Things
WPAN Wireless Personal Area Network
WWAN Wireless Wide Area Network
WSN Wireless Sensor Network
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Chapter 1

Introduction

The Internet of Things (IoT) is everywhere and it is nowadays permeating
nearly each aspect of our life, just as it was predicted few years ago [45]. In fact,
it is fostering novel applications in more and more areas, among which healthcare,
Smart Cities, environmental monitoring and smart houses, all of them with their
own different requirements. This makes the IoT a macro field in research that
cannot be studied as a whole. The number of connected devices is of the order
of magnitude of tens of billions, the number of personal mobile devices that can
connect to the Internet is soon predicted to overcome the human world population
and the amount of data generated about the environment that surrounds us is grow-
ing exponentially. The goal of the IoT is to transform such machine-interpretable
data in actual human-understandable knowledge for the common benefit, mapping
uniquely the real world into the digital world by means of sensors and actuators.
The IoT, given its high potential and the number of applications is one of the most
studied fields in research, indeed, it has still a number of research challenges that
capture the focus of a plethora of researchers worldwide. One of the most notable
challenges is the interoperability. The proliferation of a variety of standards and
technologies has led to “IoT islands”, closed ecosystems that do not interoperate
with each other; hence new applications often choose to rely on brand new (ex-
pensive) deployments and designs rather than reuse what is available, also due to
the lack of Open Source in the community. This is a well-known issue among
researchers in the field of IoT, in fact, many interoperability-based frameworks,
standards and solutions have been proposed throughout the years. However, many
of such solutions fail in providing a unique approach, either due to the high num-
ber of such proposals, or due to the fact that, according to them, the customer is
supposed to stick to a number of standards. Unfortunately, the pace at which the
field is evolving imposes rapid choices to the industry, which typically relies on
ad-hoc proprietary solutions. In contrast to this, in this dissertation we brought a
number of contributions that are founded on two main observations: (i) Especially
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within the scope of Smart Cities and environmental monitoring there are a lot of
Open Data repositories that provide data produced by IoT devices and, in general,
data about phenomena of common interest are already available somewhere and
(ii) Devices capable of providing data are, in many cases, already in place. These
observations are crucial in a world in which, typically, the information available
to individuals that extract it from their own ecosystem is limited. In fact, if a piece
of information is missing, it is likely being produced by some other entity. Mak-
ing both parts aware is a key feature of Collective Awareness Paradigms (CAP),
i.e. paradigms such as MCS or crowdsourcing, that leverage collaboration among
parties by offloading data collection tasks to a crowd of participants or making use
of what is already available. How then can we take advantage of it and transform
it into knowledge? This leads us to the definition of our main macro contributions
(1 and 2 are methodological innovations and 3 is a system implementation):

1. Regarding observation (i), Open Data is available in different formats and
many non-official sources do not have a semantic connotation, thus they
need a way (e.g. machine learning) to be interpreted. Considering that a
lot of such data is incomplete (often even missing a data class due to a poor
annotation) we need an automatic way to classify such data into a schema
that is well-known and reausable for the purpose of the applications. There-
fore, our first methodological macro contribution is an algorithm to clas-
sify unannotated datastreams, a topic that we cover throughout Chapter 4.

2. For observation (ii), we use the paradigm of Mobile Crowdsensing (MCS) –
i.e. monitoring an environment through the automated participation of users
through their own mobile devices and participating in a data collection cam-
paign – in order to provide useful data for scenarios like Smart Cities and
environmental monitoring. This opens up a plethora of new possibilities, but
there are challenges to deal with (data quality, coverage, energy efficiency,
budget constraints etc.). In our case, we focused on automatically balanc-
ing the amount of data collected in opportunistic MCS for a better energy
efficiency and less resource waste. Therefore, our second methodological
macro innovation is a distributed algorithm for balancing the amount
of data produced in opportunistic MCS scenarios, which is presented,
together with an experimental MCS platform, in Chapter 5.

3. Finally, in order to address the problem of lack of interoperability and reaus-
ability as well as gathering our scientific contributions into a big picture, we
carried out the implementation of a platform that fills the aforementioned
gaps and allows the creation and customization of IoT services based on
data produced through CAPs. The third contribution is SenSquare: an in-
teroperability framework for Smart Cities and environmental monitor-
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ing. This includes other prototypes that are outlined throughout the thesis
and we developed as part of our work: the Crowdroid app, the MoCroSS
framework, the INFORM platform and the RouteX framework.

Hereby is reported more in detail the structure of the single sections. The
whole Chapter 2 will be focused on the research landscape around the relevant
areas in order to give a context to our research work. In particular, the preface to
the chapter will give an introduction to what IoT is and under which perspective
we tackled the challenges; Section 2.1 will focus on Machine-to-Machine (M2M)
communication technologies, a pillar in the field of IoT about which we recently
published a survey paper [150] and two performance studies [152][153]; in Sec-
tion 2.2 we will give an extensive definition of the CAPs and their categorization
[154], focusing primarily on crowdsourcing and crowdsensing; Section 2.3 will
deal with the paradigm of Collaborative IoT and Open Data, as well as recent
works dealing with open and user-contributed data and why it matters [146]; Sec-
tion 2.4 deals with the concept of MCS, its main areas of research and its chal-
lenges, while Section 2.5 deals more in detail with a well-known issue that we
call the “Curse of Sensing”, that is, the inability of MCS applications to deal with
data that is too sparse or too dense and, thus, it leads to biased results [154]. Chap-
ter 3 wraps up the State-of-the-Art and, on top of the research challenges, outlines
our research question, already stated above and further expanded, to which we
respond with our contributions, detailed in Part II.

In Part II, Chapter 4 outlines our contributions in the field of Open Data, fo-
cusing on datasets contributed by users. In particular, Section 4.1 is about the
general paradigm of crowdsourced IoT data streams, together with our findings
and our proposals [146]; Section 4.2 explains in detail our Top-K Sequential En-
semble (TKSE) classification algorithm, that aims to automatically infer the data
class of unannotated and uncategorized raw datastreams [155]; Section 4.3 out-
lines briefly a framework that we designed in order to automatically annotate and
give a semantic description to poorly annotated datastreams according to ontolo-
gies [78]. Chapter 5 outlines our contributions in the field of MCS, oriented to
applications especially for Smart Cities and environmental monitoring. In partic-
ular, in Section 5.1 we propose MoCroSS, a framework for opportunistic MCS ap-
plications in which stakeholders can issue campaigns and participants can choose
which task to contribute in [149]. In Section 5.2 we tackle the challenge given
by the “Curse of Sensing” that can occur in scenarios like the one in Section 5.1.
Specifically, we design a distributed algorithm that tunes the number of observa-
tions required by the users, pushing users to contribute more when data is sparse
or less when data is dense [147]. In Chapter 6, in order to give a common scenario
to our contributions, we prototyped the SenSquare platform [148] , a community-
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sized platform that implements data collection both from MCS scenarios (using
the framework we designed) and Open Data repositories, automatically classified
and unified. With such a platform, through an easy and visual language that we
designed, users can create, share and instantiate personal aggregated services that
can provide compound and dedicated information.

Of course, this topic is vast and many future extensions are foreseen. In Chap-
ter 7 we propose a set of future works to enhance the State-of-the-Art and foster
scenarios in which contribution and collectiveness are a central enabler and we
wrap up the dissertation summarizing our contributions.
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Chapter 2

State-of-the-Art

The IoT is nowadays a key component of our life and permeates each of its
aspects. Our world is surrounded by smart devices and their connections, the goal
of which is the common benefit, the improvement of the conditions of individuals
and companies. As a consequence, the demand for smart things and environments
rose exponentially over the last decade and the amount of money invested in such
business is gargantuan. The term IoT was first coined by Kevin Ashton – exec-
utive director of the Auto-ID Center – in 1999 [12]. The original definition of
the IoT was significantly more restricted compared to the current use; in fact, it
used to be about the possibility to map objects in the real world to data through
the use of identifiers. By then, the majority of such technologies resided in the
Radio Frequency IDentifiers (RFID), small and cheap electronic tags that could
communicate a small amount of information about the identified object in the real
world. The amount of scientific works in the field of IoT is proportional to the
amount of definitions that have been given to it throughout the years [13]. For
such reason, and because the topic of IoT is so well-known that a basic knowl-
edge of what it is by the reader is assumed, we do not even report such definitions,
rather we outline here our own vision on the IoT. The definition in our point of
view can be summarized by Figure 2.1: in brief, the IoT is a paradigm in which
real world concepts and objects (the “things”) can be mapped in a 1-to-1 corre-
spondence to data in the digital world. This happens through a perception layer
typically formed by sensors, which can perform observations in the real world and
deliver them to a hub through communication technologies, most of them specif-
ically designed for the IoT. IoT data is not human-interpretable as it is, thus the
IoT circle is complete when algorithms for data processing (data mining, machine
learning, statistical methods, etc.) transform IoT data into valuable knowledge for
the consumers. In addition to this basic view, we can add other components, such
as the actuators (the dual of sensors) which are devoted to act on the real world
on top of certain data and commands from the digital world. The context, a set of
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Figure 2.1: Our vision on the IoT: the real world mapped to data, mapped in turn
to knowledge.

meta-information around the raw data itself, is often provided together with the
actual observation. Finally, there are some mechanisms that can trigger certain
behaviors on top of the acquired knowledge: the figure reports the example of If
This Then That (IFTTT), a platform in which various IoT services can be linked
together to set off a reaction by the system when a certain combination of events
occur. The IoT world is certainly vast, however, we believe that our concise defi-
nition is exhaustive enough to convey what we describe in this dissertation.

The IoT became a major trend in research and industry between 2008 and
2009, when the number of connected device surpassed the number of humans on
the planet [63]. Nowadays, pretty much every IoT-related paper indicates how
impressively the IoT is growing. To give an idea, three major forecasting reports
are cited and periodically updated: Ericsson Mobility Report [40], Machina Re-
search IoT Forecast [181] and Cisco Visual Networking Index (VNI) [45]. The
forecasts are skyrocketing: the global IoT market is expected to generate soon a
revenue of 4.3 trillions of dollars, by 2021 we expect to witness a total of 27.1
billions of connected devices, which means an average of 3.5 devices per capita
(12.9 if we only consider North America). In 2018 we experienced 7.9 billions of
mobile broadband subscriptions (which surpassed the world population) with an
impressive growth happened recently in India, China, Indonesia, Bangladesh and
Pakistan. We are also experiencing the usage of the IoT in more and more fields
of application (which would be detailed in Section 2.1) such as home automation,
Industry 4.0, environmental monitoring, Smart Cities, healthcare and many others.

The numbers of IoT undeniably dragged the interest of an uncountable amount
of researchers and companies. For such reason, before outlining our contributions
anticipated in the introduction, we will give an extensive literature review on the
IoT, with a focus on the fields of interest for our research work. In particular, we
will start with the communication technologies for the IoT and how they are im-
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plied in several use cases around the world (Section 2.1), then we will introduce
the Collective Awareness Paradigms (CAP), the main pillar on which our research
work is founded (Section 2.2), then we will discuss the role of Open Data in cur-
rent IoT applications and ecosystems (Section 2.3) and, finally, we will explore the
current State-Of-The-Art for Mobile Crowdsensing (MCS) (Section 2.4) focusing
particularly on the issue known as the “Curse of Sensing” (Section 2.5). All these
literature reviews are supported by the related works of each of our publications
plus two surveys, each of them revised in order to be up to date.
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2.1 Machine-to-Machine (M2M) communications for
the IoT

At the same time, heterogeneous IoT deployments might prioritize different
qualitative or quantitative metrics that are required by the applications on top.

The Machine-to-Machine (M2M) communication technologies play the cru-
cial role to enable wireless data exchange among the IoT devices and the gateway,
and then from the gateway to a remote repository via the Internet. The aim of this
section is to review the State-of-the-Art of the M2M wireless technologies for the
IoT by classifying the existing solutions according to a multi-layer taxonomy that
allows clarifying the technical features of each approach. Open issues and future
research directions are discussed as well. This work is a reduced version of our
recent survey paper [150], to which we redirect the interested reader for a deeper
analysis of the topic. Despite the overwhelming number of survey papers on IoT,
our work can be considered a missing piece of the puzzle , since:

• it focuses on the existing wireless technologies and on the PHY/MAC lay-
ers, hence it differs from generic surveys like [10], [226], [65], [7], [198],
[204], [178], [141], [125] and [8], which describe the IoT protocols at each
layer of the network stack, thus giving a broad vision of the IoT;

• at the same time, it is not restricted to any specific stack or infrastructure like
[208], [193], [203], [115] and [172], rather it provides an in-depth review
of the existing solutions, considering both open standards and proprietary
solutions, short-range, long-range and cellular-based solutions.

Three main contributions are provided. First, we introduce a novel multi-layer
taxonomy, which allows classifying the existing M2M wireless technologies. In
particular, we aim to analyze requirements that assure efficiency and suitability
involving M2M communication technologies (Section 2.1.1) as well as the axes
upon which we intend to pursue our categorization (Section 2.1.2). We then out-
line the common use cases for IoT scenarios with a particular focus on the weight,
for each use case, attributed to the different requirements (Section 2.1.3). Based
on the classification criteria defined above, we biefly review the existing tech-
nologies, distinguishing between short-range (Section 2.1.4) and long-range (Sec-
tion 2.1.5) solutions. Finally, we discuss the mapping between the enabling M2M
communication technologies and the IoT use cases (Section 2.1.6).

2.1.1 M2M Requirements
Here we report a list of features for M2M technologies universally considered

to be strong requirements, to which all the technologies presented in this paper
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adhere in different measures.

Low power consumption Low power consumption is clearly one of the key
features that devices must satisfy, since, in several cases, networked sensors and
actuators need to be powered by means of batteries, due to their extremely dis-
tributed physical topology, as the availability of power sources is usually limited
or absent and, especially in wide area deployments, the replacement of batteries
is time consuming and implies substantial costs in the long run. Network activity
is the main source of energy depletion, since connectivity has been shown to be
more energy-consuming than computation by two to three orders of magnitude
[189]. Hence, whenever a scenario hosts a number of devices with limited or no
access to constant power sources, energy-saving optimizations take place both at
the PHY and the MAC layer. Solutions like duty cycling, a technique that al-
lows the device to turn on and off its radio interface, and energy harvesting can
be adopted in order to maximize the battery duration [158][39]. Such algorithms
always imply a “deep sleep” time window, in which the radio interface is turned
off and the power consumption is close to null. The frequency of the wakeup pe-
riods depends on the use case, however, the technology is responsible for part of
the preprocessing duration. There are several other methods that can be adopted
in order to increase the energy efficiency of M2M communication. According to
[176], they can be divided in five main categories, i.e.: radio optimization, data
reduction, sleep schemes, energy-oriented routing and battery repletion. We redi-
rect the readers to [176] for further details on the topic.

Low Cost Due to the high number of devices in an IoT ecosystem, end devices
necessarily need to satisfy a low cost per unit, minimizing the amount of hard-
ware and, as a consequence, making the device extremely specialized on its task.
Furthermore, low cost and low power solutions are highly linked; in fact, manual
battery replacement is a costly process, especially when repeated for a huge num-
ber of units. The cost factor highly impacts the choices made at the MAC layer,
especially in the channel access techniques. For instance, in contention-free envi-
ronments, TDMA is the most viable option, since CDMA-based approaches are
not suitable for low power and low cost deployments, primarily due to their com-
plexity. Furthermore, pure FDMA approaches are not used in M2M application
due to the high cost of the high-performing frequency filters in the radio hardware
of each unit. An exception is given by OFDMA-based systems, due to their easy
and low cost implementation of the FFT in chips as well as the lack of necessity
for filters for each sub-channel [120].
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Scalability With the advent of massive IoT deployment for new use cases, scal-
ability is a necessary feature. Typically, a high number of nodes brings issues
regarding collisions, load balancing, deployment cost and data fusion; for such
reasons, a high scalability always implies reconfiguration to be efficient as well
as support for a high number of devices per gateway. Scalability also impacts the
channel access method, since in dynamic scenarios – i.e. with a non-static num-
ber of participants and with dynamically entering and leaving nodes – contention-
based methods face an increase of collisions, whereas contention-free ones need
to deal with a time-consuming reconfiguration [242].

Reliability Reliability is a strict requirement for many use cases. There are
several ways of estimating reliability in networks, which, in general, include the
probability that a certain node in the network will get the message upon the failure
of a certain set of links [177][197]. Now, as lack of reliability depends primarily
on link failures and lack of controlling mechanisms that would put a burden onto
the data packets, network topology (see also Section 2.1.2) and management have
a central role in addressing it. The failure of a communication link is a damage
to the system reliability that can be alleviated by the usage of mesh redundant
topologies. Networks organized in plain stars, a common topology used in long
range deployments, support reduced reliability, in fact a single link failure results
in a single node exclusion. In some use cases this is tolerable, however, in many
situations, node or gateway redundancy has to be supported, which results in a
cost growth. Lastly, tree networks are, reliability-wise, the worst topologies as
any link failure results in the exclusion of the whole subtree.

Low Latency Low latency is often a highly desirable feature and it is unavoid-
ably bound to other aspects that can influence it. There are physical deployment
dependencies such as the link strength between the endpoints and the number of
hops in an average communication path as well as the number of nodes in the net-
work. PHY layer mechanisms such as spread spectrum techniques, modulation
and coding schemes, frequency and spatial diversity also greatly affect latency
[220]. The choice of the MAC layer channel access method (i.e. contention-free
vs. contention-based) in relation with the network topology is also crucial, as it
can introduce unexpected delays [172]. In general, contention-based protocols
used in MTC communications suffer from idle listening and dramatically high
delays for large networks. This is the case of CSMA/CA, which is widely used
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in some technologies due to its possibility to scale efficiently with no need for re-
configuration in small networks. Contention-free protocols are more suitable for
large networks, since they offer algorithms capable of exploiting well the available
resources without waste, although they do not scale efficiently due to the need for
global reconfiguration anytime a node joins or leaves the network. This is the case
of TDMA networks, which are largely used in different adaptations in IoT.

Enhanced Communication Range A wider range of communication means a
wider area deployment, which is the current trend in future generation IoT de-
ployments targeting the market of monitoring and public welfare. For many use
cases, such feature is a must-have, being aware that the nominal range is often
not enough in order to calculate how wide a deployment can be. Indoor scenar-
ios, obstacles and the spatial coexistence with other technologies often put the
range in correlation with the spectrum frequency bands and modulation encoding
schemes. The 2.4 GHz frequency bands, besides being designed for relatively
consistent data transfer, has a list of non-negligible drawbacks for IoT long range
scenarios. Due to its nature, it supports more easily a high data rate, however it
suffers more from obstacles, indoor deployments and it requires more power in
order to be pushed to long distances. Furthermore, the recent overcrowding of
such frequency bands does not help in scenarios with high network population.
For such reasons, technologies deployed in sub-GHz bands are gaining more and
more interest in IoT [212]. Almost all the long-range technologies exploit either
unlicensed bands like the 868 MHz, or the licensed bands around 800 MHz, in co-
existence with other cellular technologies such as LTE, UMTS and GSM. Further-
more, enhanced range is typically chosen in contrast with the power consumption
at the price of a reduced data rate. Many future generation applications require
very low consumption and not much data rate, for which arising narrowband long-
range solutions designed for wide area deployments appear to be convenient [58].

Security Security is also a challenging issue due to the nature of M2M de-
ployments, which makes them vulnerable to attacks such as denial of service
(DoS) and might compromise confidentiality, authentication, integrity, authoriza-
tion, and availability. In fact, many aspects of M2M solutions unfortunately open
up new vectors for DoS. An example on how dangerous a lack of security can
be in a crowd on small devices is given by the Mirai botnet, which in September
2016 used more than 400,000 devices to perform DDoS attacks generating more
than enough traffic to knock several services offline [107] Although it is important
to mention security, it is being discussed in the present section mostly as an open
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issue. Furthermore, many other works address specifically the problem [69][80].

2.1.2 Technology Classification
In M2M we consider of paramount importance the differences brought by the

range and the data rate of each communication technology, as well as the topology
adopted in their deployment. Since such characteristics determine the suitability
of the technologies for specific purposes and the network size, we chose to clas-
sify each technology using these discriminants. As they are orthogonal, we believe
that their combination gives an efficient way to categorize each technology.

Figure 2.2: Diagram showing at a glance all the technologies included in the
present review work cathegorized by range and data rate. Proximity technologies
are identified in yellow boxes, capillary technologies in red and LPWAN tech-
nologies in blue [155].

Range and Data Rate M2M communication technologies are used in network
types that span, depending on their communication range, from Wireless Body
Area Network (WBAN) to Wireless Personal Area Network (WPAN), to Wireless
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Local Area Network (WLAN) to even Wireless Wide Area Network (WWAN).
According to this, we separate IoT communication technologies in Proximity,
Short Range and Long Range. Proximity technologies, such as RFID and NFC,
have typically a range of very few meters and are used for identification purposes
or small data transfers. Although they are the main pillars on which IoT rose, we
do not extensively deal with them in this section as we do not consider them as
strictly M2M technologies.Short Range technologies, often referred to as “Capil-
lary” and outlined in Section 2.1.4, have a communication range of some meters
up to a maximum of a hundred and are typically suitable for WBANs, WPANs
and WLANs. For such reason, their deployment is typically restricted to a certain
limited area (e.g. a room, a small building, a house). Finally, Long Range tech-
nologies, considered the rising star in the future IoT, are suitable for big WLANs
and WWANs, covering areas of few kilometers. This means that a single network
is able to serve a big building, a factory or even a rural area, depending on the
amount of direct LoS links. Figure 2.2 gathers nearly all the technologies that we
address, using spatial range as discriminant and putting it in orthogonal relation
with data rate.

(a) (b) (c)

Figure 2.3: Schemes showing the differences among topologies. (a) Mesh topol-
ogy, (b) Hierarchical tree topology, (c) Star topology [155].

Topology Network topology is also a determining feature in relation with the
purpose of a certain deployment. A small recall to the existing network topolo-
gies is shown in Figure 2.3. The star topology is the most common network type,
in which a central node acts as the sink, while the peripheral nodes are connected
to it via a direct link without being connected to each other. In general, the sink
is the gateway to the outer world or it is connected directly to such gateway. The
mesh topology is the dual of the star network, where nodes are connected to each
other in a multi-hop fashion with only few of them connected to the sink. In the
hierarchical tree topology connections are designed as in a tree, in which the root
is the sink and peripheral nodes are connected in layers via direct links. Choos-
ing one of such deployments determines a different priority given to a number
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of aspects and features for which the topology is responsible [196]: reliability,
scalability, energy efficiency and latency are among them.

2.1.3 Use Cases

Figure 2.4: The M2M use cases and main requirements [155].

Use cases determine what is required and what is optional when choosing
a specific communication technology for a deployment. Such differences can
involve the deployment size, the required latency, the required reliability, the
amount of data to be shared, the availability of power sources, the monetary re-
sources, the security requirements, the compatibility, the business models and,
clearly, the purpose [71]. Below we briefly mention M2M use cases and their de-
pendence on certain technical requirements. They are also summarized briefly in
Table 2.1, and illustrated in Figure 2.4.

Home Automation A common citizen, who deals with problems related to
home automation and everyday life monitoring purposes, rarely would care about
a scalable network or a wide deployment. Conversely, features such as compat-
ibility with preexisting infrastructures and cost would be much more preferred.
Low latency is also something appealing in home automation scenarios, since the
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interaction between sensors and actuators is commonly required “here and now”
[205].

Industry Industrial scenarios, concerning automation and process control, are a
completely different reality as they prioritize cost, low latency and reliability over
all the other possible metrics [213], giving in some cases secondary importance
to scalability and compatibility depending on the factory/installment physical size
and location. Required data rate may vary significantly from case to case, while
the security is also a central issue, since a malign agent can have devastating
consequences [185].

Healthcare Healthcare scenarios highly prioritize the qualitative metrics such
as reliability, the low latency and the security [30], while most of the others, such
as the cost and the power consumption are (or should be) of secondary importance.
The scalability strongly depends on the installment size which may span from very
small (a specialized hospital ward) to very wide (remote patient monitoring). Data
rate is also highly variable, since it might be high, like in real-time health status
and predictive information, or low, like in periodic monitoring.

Environmental Monitoring Environmental monitoring normally implies huge
deployment zones and prioritize scalability. The end nodes are only committed to
report periodically data and usually the network involves no actuator, thus, with
few exceptions, the use case normally tolerates delays as well as data unreliabil-
ity, simply by adding more sensing instances. For such reasons the end devices
must be extremely cost-effective and, due to the deployment size which implies a
significant maintenance cost, they must observe a high energy efficiency [116].

Smart Cities Smart city scenarios are rather complex deployments, in which
all the mentioned metrics are quite important, as any application relying on such
deployments requires the synergy of several IoT entities on a city-scale (e.g. bike
sharing applications) thus, information must cover long distances. Since actuators
are part of the network, data integrity and reliability is necessary as well. Cost is
another key issue, which can be partially covered whenever the new deployment
can coexist and cooperate with legacy systems [236].

Smart Grid Finally, the Smart Grid is another scenario for which IoT technolo-
gies and standards are of paramount importance and, since the continuous energy
supply is the main concern of customers, reliability, cost effectiveness and security
are the key concept for such systems [136].
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Table 2.1: M2M common use cases and requirements, for each of which the aver-
age estimated importance (from low to high) is stated.

Use Case Scalability Data rate Reliability Low Latency Low Power Cost Security Compatibility
Home Automation [205] Low Medium Medium High Medium Medium Medium High
Industry [213] Medium Medium High High Medium High High Medium
Environmental Monitoring [116] High Low Low Low High High Medium Low
Smart City [236] High Medium High Medium High High High High
Healthcare [30] Variable Variable High High Low Low High Low
Smart Grid [136] High High High High Low High High High

2.1.4 Short Range Communication Technologies (Capillary)

Capillary technologies are M2M technologies enabling a communication range
spanning from few to above a hundred meters. In most cases, technologies in this
category are used to design Wireless Sensor Networks (WSNs), consisting of a
set of devices with different tasks, committed to sense or act in the real world,
connected through peer-to-peer links and sticking to a set of constraint [9]. These
networks are suitable for deployment in spatially limited environments, usually
within a range of around a hundred meters (it can be more for multi-hop net-
works), where the interactions between the entities are contextually not separable
and require simple and secure communication links [82]. This is the case of home
automation scenarios, industrial process control, object identification, body activ-
ity monitoring, indoor localization and many others. In a current work we ex-
plored the suitability of legacy technologies (i.e. WiFi) for IoT home automation
scenarios, a use case for which such technologies are still suitable, but have their
undeniable drwabacks [152]. Most of the communication technologies used in
such contexts are outlined here and exhaustively reviewed in [150]. More in detail,
we covered popular technologies used for WPANs like IEEE 802.15.1 Bluetooth
Low Energy [67], IEEE 802.15.4 [90] together with its major implementations
in the upper layers of the stack (Thread 6LoWPAN [209], ZigBee [243], Wire-
lessHART [106] and ISA 100.11a [93]) and Z-Wave [234] as well as less known
and proprietary solutions such as INSTEON [91], EnOcean [138], the DASH7 Al-
liance Protocol (D7AP) [52] and DECT ULE [29]. The relevant features of each
technoloy are resumed in Table 2.2.

Table 2.2: Capillary IoT technologies. Data was cross-checked with [104].
Name Spectrum Bandwidth Peak DR Range Topology PHY Modulation MAC Access
BLE 2.4 GHz 2 MHz 1 Mbps 100 m Star GFSK (FHSS) TDMA
Thread 6LowPAN 2.4 GHz 5 MHz 250 kbps 10− 75 m Mesh OQPSK (DSSS) CSMA/CA
ZigBee 2.4 GHz 2 MHz 250 kbps 10− 75 m All OQPSK (DSSS) S-CSMA/CA
ZigBee 915 MHz 1.2 MHz 40 kbps 10− 75 m All BPSK (DSSS) S-CSMA/CA
ZigBee 868 MHz 600 kHz 20 kbps 10− 75 m All BPSK (DSSS) S-CSMA/CA
WirelessHART 2.4 GHz 3 MHz 250 kbps 30− 90 m Mesh OQPSK (DSSS) TDMA
ISA 100.11a 2.4 GHz 5 MHz 250 kbps 30− 90 m Mesh OQPSK (DSSS) TDMA
Z-Wave 868/908 MHz 200 kHz 9.6− 40 kbps 30− 100 m Mesh FSK TDMA
Z-Wave 400 2.4 GHz - 200 kbps 30− 100 m Mesh FSK TDMA
INSTEON 908 MHz - 38.4 kbps 45 m Mesh FSK TDMA
EnOcean 868/315 MHz 62.5 kHz 125 kbps 30 m Mesh ASK, FSK TDMA
D7AP Hi-Rate 433/868/915 MHz 200 KHz 166.67 kbps 10 m Tree GFSK CSMA/CA
D7AP 433/868/915 MHz 200 KHz 55.55 kbps 100 m Tree GFSK CSMA/CA
DECT ULE 1.8/1.9 GHz 1.728 MHz 1152 kbps 70− 300 m Star GFSK TDMA
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2.1.5 Long Range Communication Technologies (LPWAN)

Nowadays, the common interest in IoT technologies is shifting from capillary
scenarios, in which object clusters are enclosed in a LAN (or a PAN), to wide
area scenarios, already envisioned as a key component of the future 5G deploy-
ments [16][178][141][8] and now starting to hit the market. Several companies
already working on proprietary IoT wireless protocols for the purpose of home
automation and monitoring scenarios are now focusing more and more on wide
area technologies, such as the Wavenis technology [49]. The architectures for
long range technologies follow the principles of the cellular deployments, there-
fore mesh networks are not an option, since the high capacity of the gateway and
the wide communication range make any node capable to reach the gateway in
one hop. Existing cellular networks, based on 2G, 3G and 4G technologies, al-
ready meet some of the MTC requirements, while some others, such as low power
and low battery consumption, are still a challenge. Several solutions have been
proposed and can be subdivided into two main categories: proprietary LPWAN
solutions, deployed in unlicensed spectrum bands, and solutions integrated with
the existing cellular infrastructure, sharing licensed bands with the current cellular
deployment. We will refer to the latter solutions as Cellular IoT (CIoT).

Proprietary LPWAN

The Low Power Wide Area Network (LPWAN) architectures aim to exploit
IoT over a wide area deploying the connections of small devices in unlicensed
spectrum bands [178]. This enables stringent requirements, such as a low per-
device cost, a long battery life, a low deployment cost, a high coverage (which is
granted by the long range transmission) in all scenarios (e.g. indoor and outdoor)
and a high scalability. Proprietary LPWAN technologies also can rely on imme-
diate deployment, since they do not need to coexist with legacy cellular standards
due to the different frequency bands. They are also considered a hot research
theme, since LPWAN connected objects are expected to be 3.6 billions by 2024,
according to Machina Research forecasts [135], an impressive slice of the mar-
ket. They are currently competing with 3GPP cellular technologies operating in
licensed bands, outlined in Section 2.1.5, which, however, are 1 to 3 years away
from providing a competitive solution and a significant deployment [128]. In
[150] we reviewed thoroughly the currently used LPWAN technologies: SigFox1,
LoRa2 [127], Weightless3 [68] and Ingenu’s Machine Network4 [50]. The relevant

1http://www.sigfox.com
2https://www.lora-alliance.org/
3http://www.weightless.org/
4http://www.ingenu.com/
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features of each technoloy are resumed in Table 2.3.

Table 2.3: LPWAN technologies operating in unlicensed bands. Data was cross-
checked with [104].

Name Spectrum Bandwidth Peak DR UL Peak DR DL Range PHY Modulation MAC Access
D7AP Lo-Rate 433/868/915 MHz 25 kHz 9.6 kbps 9.6 kbps ∼5 km GFSK CSMA/CA
SigFox 868/915 MHz 192 kHz ∼100 bps ∼100 bps >20 km GFSK/DBPSK (UNB) ALOHA
Ingenu MN 2.4 GHz 1 MHz ∼30 kbps ∼30 kbps ∼15 km FSK, PSK (DSSS) RPMA
LoRa 868/915 MHz 125 kHz ∼50 kbps ∼50 kbps ∼11 km CSS ALOHA
Weightless-N 868 MHz 200 Hz (?) ∼100 kbps - ∼5 km DBPSK (UNB) S-ALOHA
Weightless-P 868 MHz 12.5 kHz ∼100 kbps 100 kbps ∼2 km GMSK, OQPSK (UNB) FDMA,TDMA
Weightless-W 470/790 MHz 6− 8 MHz ∼10 Mbps ∼10 Mbps ∼10 km DBPSK/QPSK FDMA,TDMA

16-QAM (DSSS)

Cellular IoT (CIoT)

CIoT technologies represent the second facet of long range M2M technolo-
gies; their distinction lies in their deployment in licensed bands alongside with
existing cellular technologies, whereas proprietary LPWAN technologies use un-
licensed spectrum. The need for such technologies is quite evident from recent
performance evaluations; for instance, in one of our recent works we perform ac-
curate performance and simulation tests to assess the current unsuitability of LTE
for the busrty traffic typical of the IoT (in such case, the simulations have been per-
formed with respect to the vehicular infrastructure) [153]. The term CIoT was first
approved by 3GPP in GERAN and 3GPP is now seeking for new proposals with
regards to the following aspects [72]: improved indoor coverage (where RF signal
penetration is limited), support for a massive number of low throughput devices
in limited bandwidth and delay sensitivity These technologies are currently under
rollout, thus there is no operating instance. In [150] we reviewed thoroughly the
CIoT proposals: EC-GSM [5], LTE-M [4] (also referred to as LTE Cat-M1, LTE
Cat-M or eMTC), NB-LTE-M [159] (also known as LTE Cat-NB1 or, more com-
monly, simply as NB-IoT) and Clean Slate NB-IoT [233]. The relevant features
of each technology are resumed in Table 2.4.

Table 2.4: Cellular IoT technologies operating in licensed bands. Data was cross-
checked with [104].

Name Spectrum Bandwidth Peak DR UL Peak DR DL Range Modulation Access
EC-GSM 700/900 MHz 200 kHz ∼10 kbps ∼10 kbps ∼15 km GMSK TDMA
LTE-M 700/900 MHz 1.4 MHz ∼1 Mbps ∼1 Mbps ∼11 km QPSK, 16-QAM, 64-QAM OFDMA
NB-LTE-M 700/900 MHz 200 kHz ∼144 kbps ∼200 kbps ∼15 km QPSK, 16-QAM, 64-QAM OFDMA
NB-CIoT 800/900 MHz 180 kHz ∼36 kbps ∼45 kbps ∼15 km BPSK, QPSK, 16-QAM OFDMA

2.1.6 Discussion
In this Section, we examine horizontally the technologies that we presented in

Sections 2.1.4 and 2.1.5, focusing primarily on the metrics and the use cases we
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introduced in Sections 2.1.1, 2.1.2 and 2.1.3. In [150] we also report the major
research challenges specific to the design of M2M technologies and we redirect
there the interested reader leaving such matter apart for the purpose of the present
document.

Scenario Specific Discussion

We now discuss scenario specific possibilities using the technologies pre-
sented so far and related to the use cases introduced in Section 2.1.3.

Clearly, short range communication is more suited for networks that do not
need to span across considerable distances. Rather, their characteristics make
them useful for networks in need of local control, which may rely on other tech-
nologies to bring the data at longer distances through the Internet. Long range
communication technologies enable M2M devices to communicate at longer dis-
tances, enabling novel possibilities for services requiring communication over dif-
ferent places located farther apart.

Concerning Home Automation scenarios, short range technologies are cer-
tainly those which are better suited and more widespread in the current deploy-
ments [235]. While intra-network communication may leverage specific tech-
nologies tailored for the specific device and communication requirements, such
as Zigbee and Z-Wave, the use of a user device for interaction requires a shared
technology, like BLE.Typically, a bridge device, generally main powered, acts
as a central gateway which is equipped with multiple technologies (i.e. the ones
suited for the intra-network communication and the ones for communicating with
the user device or with the home router), which makes the communication possi-
ble. The main research challenge here resides on making the communication ef-
ficient between different technologies, which is typically realized in the gateway
through a middleware which handles the heterogeneity between the connections,
a challenge tackled in the Fog Computing paradigm. In contrast, long range tech-
nologies are not the best suitable option for Home Automation due to the limited
space in which the network is deployed. However, they may still be viable for
specific scenarios, such as connecting parts of the building that are either far apart
from each other or need different features not offered by short range technologies
in order to overcome obstacle shadowing (e.g. more transmitting power or lower
frequencies).

Industry 4.0 nowadays heavily relies on short range communication technolo-
gies, mainly due to energy efficiency and reliability. Among the possible scenarios
which Industry 4.0 face, such as Predictive Analytics and Machine Internal Con-
trol, all of them need long operational life, and resilience to malfunctions. For
such reason, in the vast majority of deployments, TDMA-based protocols (such
as WirelessHART and ISA 100.10a) are chosen over others, due to their efficiency
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in time and the fact that industrial scenarios are rarely subject to topology change.
BLE has been taken into account as well due to recent developments in its mesh
real-time variant [164]. Although Industry 4.0 does not normally rely on long
range technologies, since the majority of the nodes tend to be close to each other
in the network, long range technologies may be used for scenarios in which dif-
ferent buildings have to be connected or separate entities can be cut off from the
network. In fact, the use of unlicensed spectrum, as in LPWAN, has reliability
issues, due to the lack of guarantee of service availability, mainly because of duty
cycling and Listen-Before-Talk (LBT) regulations. The coexistence problems in-
troduced doubts on cellular solutions as well [200].

Healthcare is a broad scenario that makes large use of short range communi-
cation technologies. Apart from hospital devices, which form networks on their
own, more recent wearable computing devices also leverage these technology, for
continuous monitoring of the vital signs of human beings. These devices need a
gateway to report data to the user, being it the user’s smartphone, hence generally
using BLE, or a different gateway, hence using 802.15.4 [103]. Usually networks
are composed by a reduced number of devices, hence the challenges are rather on
the upper layer optimization, reducing communication between the end devices
and the gateway to reduce battery consumption. For Healthcare, long range tech-
nologies are mainly used to report patient monitoring data to a central aggregator.
This is particularly useful for recent scenarios such as those in which, instead of
monitoring patients in hospitals, the monitoring takes place remotely, however,
for many of the long range techologies, the reliability of the connection is not al-
ways granted. In fact, practical studies have been conducted, stressing the current
unsuitability of LPWAN technologies for critical monitoring use cases [168].

Environmental monitoring usually requires to span over large distances. Hence,
short range communication technologies are not the most suitable option, al-
though, using multi-hop short range communication technologies may still be
viable, clearly with increased battery consumption due to the increased volume
of communications. Long range technologies are much more suitable for Envi-
ronmental monitoring; standards like LoRa and SigFox are already used depend-
ing on the scenario requirements and, in the future, cellular technologies are also
desirable. Energy efficiency is the most important focus here, in contrast with
reliability, as a longer battery duration turns out in a huge monetary saving. In
particular, NB-LTE-M and LoRa appear to be suitable options, with more than
10 km range outdoors. NB-CIoT is another alternative too, although it slightly
penalizes the data rate, favoring the number of devices supported per BS.

In Smart cities and Smart buildings there are many different use cases, such as
the Smart grid. Clearly, there is and there will be a merge of different telecommu-
nication technologies, therefore, the main challenge is making those interactions
efficient and resilient to different problems. Energy efficient routing algorithms
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and software optimization such as caching, along with self healing capabilities for
both the devices and the bridge are needed. A specific technology is hard to pre-
dict, as each of those is built according to specific constraints and can suit better
a specific use case compared to others. Again, the interaction between different
networks and at different layers of the network architecture is the key challenge
and, in the commonly shared future IoT vision, such ecosystems will necessarily
make extensive use of long-range technologies as well. Finally, as already pointed
out, Smart cities and Smart buildings is a wide use case, in which both short range
and long range technologies are used. Depending on the size of the city, and on
the layer of optimization, different standards may be well suited. For instance,
the authors of [113] compare the coverage of GPRS, NB-IoT, LoRa, and SigFox
technologies via a simulation study over a realistic, large-scale city scenario; the
experimental results show that the NB-IoT technology provides the largest cover-
age, however they also reveal the need of additional measurements and research
studies in order to identify the best trade-off in presence of multiple requirements
(e.g. scalability and deployment costs on dense populated urban areas).

Current M2M Deployments

In this Section, we discuss the existing deployments of M2M technologies
worldwide, by identifying current trends and future initiatives. We mainly focus
on LPWAN-based deployments, since most of short range and capillary technolo-
gies constitute consolidated approaches and are less preferable for large-scale in-
stallations, particularly when these are sparse. This is not surprising, due to the
new requirements that characterize use cases like smart cities, healthcare and re-
mote monitoring, in which end devices are expected to be arbitrarily deployed
and moved anywhere without connectivity consequences [225]. To this end, pro-
prietary LPWAN technologies are already hitting the market in several countries,
while the efforts to bring CIoT technologies to an active state on the market are
still at their beginning. In fact, apart from few testbeds aimed to compare CIoT
technologies under similar environmental circumstances, the actual studies are
still limited to analytics [144][66] and simulations [167]. Technologies like Sig-
Fox and LoRa are still under rollout worldwide, however, they have been adopted
as a local network in different measures. SigFox, at the time of writing, covers
officially 20 countries in Europe, 10 in Asia, 11 in South America, 2 in North
America, 4 in Oceania and 3 in Africa [3], although the numbers are changing in-
credibly fast. It was first deployed to cover nationally France in 2014 and it fastly
reached coverage in 5 countries in 2015. LoRa is a big competitor to SigFox and
slightly more common. It is operating actively in 43 countries through 76 dif-
ferent network operators giving a public network access [129]. Although SigFox
and LoRa tend to be concurrent deployments, they have different features and,
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in a sense, they are complementary, thus coexisting deployments can serve eas-
ily different types of market and use cases [141], e.g. LoRa grants more payload
length, more latency performance and more deployment flexibility thanks to the
hierarchical network topology, whereas SigFox offers more coverage (only three
SigFox base stations can offer coverage to the whole Belgium).

The other big competitor in the area is LTE-M together with its complementary
NB-IoT (or NB-LTE-M), although it comes somewhat late in the big LPWAN
party, as currently (to the best of our knowledge) it has no active and publicly
available deployment. Nevertheless, its backward compatibility with the current
cellular deployments is a strong point that will give to this technology a central
role within the future IoT traffic in the 5G. Moreover, during 2017 and 2018 its
rise has been quite impressive, with 41 launches by 23 mobile IoT commercial
operators in 26 countries as of 21 February 2018 and currently under rollout [2].
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2.2 Collective Awareness Paradigms
A fundamental building block of the present dissertation is given by the Col-

lective Awareness Paradigms (CAP), a set of methodologies and systems that
leverage the power of the collaboration in information acquisition, data collec-
tion, task execution and many other fields in which a hard, complex and resource-
consumptive task is offloaded to a multitude of workers. This results in a mini-
mal effort for the individual, a benefit for both the executors and the issuers and,
whether the available resources are well managed, a massive economic saving.
In this section we introduce various CAPs that have been extensively studied in
literature and, due to the lack of a proper definition and separation of CAPs in
literature, we accurately define, as we did in a recent work [154]. In particular, we
identify the key features to classify the most used CAPs in IoT (Crowdsourcing
and Crowdsensing, for which we provide detailed definitions in Section 2.2.1). To
the best of our knowledge, this section and its related survey that we produced
[154] are the first ones that distill the features that could be used to classify such
applications, as, currently, works in the literature assume this to be known a priori
or devote very little attention to the classification aspect, which is imperative in
order to understand and solve real word problems with the right solution. In Sec-
tion 2.2.1 we provide the definition of every CAP that we found in literature, being
it related with IoT or not, in Section 2.2.2 we provide a minimal set of features
on top of which applications and contexts can be classified in the proper CAP,
finally, in Section 2.2.3 we provide a couple of examples that aim to stress the dif-
ferences between different CAPs, i.e. the same problem solved through different
CAP-based applications.

2.2.1 The Wisdom of the Crowds: CAP Definitions
We define Collective Awareness Paradigms (CAP) – there is no global consen-

sus so far on a term that comprehends all this types of application – as paradigms
that leverage the power of offloading tasks, as part of a campaign, to a crowd of
individuals. The purpose is to collect data from crowds (large group of people),
analyze and use such information for the benefit of the crowd itself [194]. CAPs
were introduced in works like [137], where they are referred to as “collective in-
telligence”, based upon the fact that the aggregation of different points of view or
observations leads to better decisions, a concept that has also been referred to as
“crowd wisdom” [206]. In this section, we aim to give an extensive description of
such paradigms and applications, inspecting their definitions in literature in-order
to identify features that can be used to draw a clear boundary between various
CAPs. Furthermore, we need to clearly separate software-based paradigms, such
as Crowdsensing and Crowdsourcing, from others where a dedicated platform is
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not strictly necessary, such as Community-Based Monitoring (CBM) and Citizen
Science.

Crowdsourcing

The CAP Crowdsourcing, coined in 2005 by Jeff Howe [84], defines a paradigm
for which a specific service, information or task is offloaded to a crowd of individ-
uals, often connected by a common interest/goal as in an online community. The
most comprehensive definition of crowdsourcing has been given in [62]: “Crowd-
sourcing is a type of participative online activity in which an individual, an insti-
tution, a non-profit organization, or company proposes to a group of individuals
of varying knowledge, heterogeneity, and number, via a flexible open call, the vol-
untary undertaking of a task. The undertaking of the task, of variable complexity
and modularity, and in which the crowd should participate bringing their work,
money, knowledge and/or experience, always entails mutual benefit. The user will
receive the satisfaction of a given type of need, be it economic, social recogni-
tion, self-esteem, or the development of individual skills, while the crowdsourcer
will obtain and utilize to their advantage what the user has brought to the ven-
ture, whose form will depend on the type of activity undertaken.” As recalled, the
process of transferring the task to the crowd happens through an open call – we
will refer to the terms “open call” and “campaign” interchangeably throughout
the paper – and it can be supported by different motivations: crowdsourcing has
been successfully implemented and adopted by platforms supported by monetary
incentives, such as Amazon Mechanical Turk5 and MicroWorkers6, or fostered by
a community interest, such as Wikipedia7.

Mobile Crowdsensing (MCS)

Mobile Crowdsensing (MCS) is another CAP which has been coined in [64]
and referred to in literature previously as “community sensing” [194], “mobile
crowdsourcing” and “people-centric sensing”. According to the original defini-
tion, a number of individuals, forming the crowd, is committed to perform obser-
vations of real world phenomena of common interest through the use of mobile
phones, given their capacity to sense the environment and other phenomena in
the community, e.g. finding the total number of people in a restaurant given their
GPS position, reporting anomalies in the traffic such as car accidents, reporting the
geo-located presence of a particular bird though pictures. The definition has been

5https://www.mturk.com/
6https://microworkers.com/
7https://www.wikipedia.org/
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extended from smartphones to any connected mobile device capable of observ-
ing phenomena and performing computation [73]. In [64] mobile crowdsensing
was first classified into participatory and opportunistic, a separation that has been
pointed out in other subsequent works. In particular:

• Participatory Crowdsensing (PCS) is a paradigm in which the user is ac-
tively involved, often through the use of a front-end application, and inten-
tionally reports observations through a specific action.

• Opportunistic Crowdsensing (OCS) is perceived as the dual of partici-
patory, where the user involvement is minimized (or, in some cases, none)
and, often, an application is running in background performing sensing and
monitoring tasks and performing decisions on where and when to sense and
send on behalf of the user.

In recent years, a multitude of many other contrasting definitions and nomen-
clatures for MCS have emerged [73][111][41]. Nonetheless, their definition tends
to be uncertain and their separation not well defined. For example, in [64] the main
discriminant is the spectrum of user involvement and the two paradigms, namely
PCS and OCS, are put at the opposite ends of the scale, a concept recalled in [73].
Differently, in [134] and [111] the separation line occurs towards user awareness
instead, and the PCS and OCS are depicted as complementary. Another sharp line
is drawn in [41], where the sensing automation is the key parameter and, more-
over, MCS is defined as a subset of crowdsourcing in which mobile phones are
required. Differently, in other works, like [73], MCS is considered as an exten-
sion of crowdsourcing, as it does not fit the original definition of crowdsourcing
in all cases. Some of these premises suggest that participatory and opportunistic
crowdsensing are orthogonal sets of MCS, instead, they intersect to a great ex-
tent with each other as well as with crowdsourcing. Due to the emerging of such
different definitions in the literature, the classification of software-based CAP ap-
plications – we consider Crowdsourcing and MCS (in particular OCS and PCS)
as software-based – is fuzzy. Hence, in the next section we develop and identify a
set of features that can be used to draw a clear boundary between various CAPs.

Community-Based Monitoring (CBM)

Another CAP that closely relates to our work is Community-Based Monitor-
ing (CBM), which is defined as “a process where concerned citizens, government
agencies, industry, academia, community groups, and local institutions collabo-
rate to monitor, track and respond to issues of common community environmen-
tal concern” [221]. Through such process, citizens and institutions collaborate
with the aim of solving issues related to the environment in which participants
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are committed to collect information through eye-witnessing and may or may not
take active part in the decisions deriving from the outcomes of the campaign. The
literature about human collaborative actions taken upon CBM and IoT concepts
is vast, indeed, environmental CBM has been deployed in several projects and it
is categorized on top of both the capabilities and the awareness that are granted
to participants [114]. More in detail, We refer to “consultative CBM” whenever
citizens are participating in collecting data and measurements without being nec-
essarily involved in observing the results neither in decisions taken upon them.
We name as “collaborative CBM” the paradigm in which participants are still the
primary source of information, however they can get access to the outcomes and
can take decisions on future directions. Collaborative CBM can be categorized
further and presents a more complex structure of user pool: it can include citi-
zens, stakeholders, producers and consumers. As an example, it can be pushed to
“transformative CBM”, in which the actual demand and the goals of each cam-
paign come directly from the end users, the citizens in most cases. Hence, it is
clear how consultative CBM, being driven by the government or a certified insti-
tution, has a clear goal and is able to provide long-term datasets. Nevertheless, it
is dramatically linked both to the issuer’s resources and to appropriate incentive
techniques. On the other hand, collaborative CBM presents an intrinsic advan-
tage for the participant, thus it needs less explicit incentives to reach a satisfactory
coverage. However, the power given to both malign and inexpert users might be
dangerous for the data credibility [47]. An example of one of such campaigns is
given by the Louisiana Bucket Brigade8, an environmental health and justice orga-
nization collecting participants’ reports and initiatives concerning petrochemical
pollution through eye-witnesses. CBM differentiates from Crowdsourcing and
MCS in that it is solely oriented to the observation of phenomena in the scope of
environmental and urban monitoring and does not require necessarily a software
platform (if it does, it then becomes an instance of Crowdsourcing or MCS).

Citizen Science (CS)

Citizen Science (CS) is a CAP that aims to involve citizens as volunteers in
the conduction of a task finalized to the accomplishment of scientific research.
With “citizens” we mean amateurs, people without the total knowledge of the
field that the research deals with. It has been defined in the mid nineties [92] and,
since then, it relies more and more on the support of technologies. In particular,
CS plays a fundamental role in Public Data Archiving (PDA) for scientific exper-
iments, in order to build open access datasets useful to researchers [165]. Clearly,
CS is a powerful and convenient tool, as it grants a consistent amount of data

8http://www.labucketbrigade.org/
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without the need to pay experts for its collection, however, on the other hand, it
suffers from two main weaknesses: it needs to sufficiently foster the participation
of volunteers (which is not always granted) and it can provide, due to the inexpe-
rience of volunteers, massive amounts of low quality and high biased data, which
can be even damaging to potential results [108]. CS is exploited for the most part
in the field of ecology and conservation biology, where finding volunteers driven
by passion is easier. Over the recent years CS has acquired a highly technological
connotation to the point that its blend with software-based CAPs is highly evi-
dent. This has been shown by several research groups among which the Cornell
Laboratory of Ornithology (CLO) [24], and some well-known Crowdsourcing and
Crowdsensing projects gathering electronic records of specimen, like eBird9 and
iNaturalist10. In spite of the reciprocal interest between the communities of engi-
neers and biologists, the interactions have always been sporadic; over the last few
years the area of Conservation Technology, a step forward in the collaboration
between the scientific communities, has risen [21].

2.2.2 Classification of Collective Awareness Paradigms

Below we define in detail the features that we used to classify CAPs. We
employ definitions similar to the ones used in the literature (where available) to
describe the features. We recall that, for the purpose of this dissertation as well as
a guideline for the whole computer science community, we solely refer to CAPs
that are software-based, namely Crowdsourcing and Crowdsensing, while others
are left apart even though they can blend to an extent. Below we enlist the features
used for the comparison.

• Participant: We define participant as any actor belonging to the crowd in
the CAP ecosystem that is able to be issued with, accept and perform tasks.
Whenever a participant contributes actively through specific actions (e.g.
providing content, activate sensors, go to a specific location, etc.) and/or
performs decisions, we say that there is a degree of User Involvement.

• Campaign and Task: We define a task as a sensing activity that can be
delivered to all or a defined group of participants. A task may or may not
have a time limit and it is defined upon a specific type of observation. A set
of tasks are generally combined into a campaign that is owned and managed
by an individual, organization or government.

9https://ebird.org/home
10https://www.inaturalist.org/
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• Sampling: We define sampling as a combination of sensing cycle and trans-
mission cycle. Sensing cycle refers to the frequency at which measure-
ments (termed observations) about a phenomenon are performed (either by
the sensor or by the participant). The transmission cycle refers to the fre-
quency at which the observations are reported. When the whole sampling
process or part of it is performed by a sensor or a software automatically
(i.e. without user intervention), we say that there is Sampling Automation.

• Location and Time: Information about location and time are key features
of CAP applications. Most CAP applications require tasks to make obser-
vations at a certain location during a defined period of time (e.g. report
pollution level in the city center of Melbourne, Australia during New Year’s
night). The information on location and time can be obtained manually or
automatically. If they are required, we say that the applications support
Spatio-Temporal awareness.
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Figure 2.5: Classification of Collective Awareness Paradigms [154].

In Figure 2.5 we present the classification of CAPs (Crowdsourcing, OCS and
PCS) based on the aforementioned features. From the figure, it is evident that
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MCS (which comprehends PCS and OCS) builds on the fundamentals of Crowd-
sourcing, while having its own unique features. For instance, Crowdsourcing and
PCS applications always require user involvement to perform a task while OCS
requires little to none. Similarly, the capability to infer location automatically
and dependence on time to perform a specific task is a requirement for PCS and
OCS, as opposed to Crowdsourcing. Finally, OCS applications require sampling
automation while crowdsourcing and PCS applications, due the high level of user
involvement, can cope with little or no sampling automation (e.g. user perform-
ing activities such as identifying images with a car in CAPTCHA11). Based on the
identified features used to classify CAPs, we propose the following definition to
clearly define MCS applications: “a paradigm through which a number of individ-
uals, called participants, are committed to perform tasks – as part of a campaign
– involving sampling of real world phenomena of common interest through the
use of portable, connected and Spatio-Temporal Aware mobile devices in order
to enable its mapping through information aggregation” .

2.2.3 Applications

Here we describe two application scenarios and use these to drive and further
exemplify the differences between Crowdsourcing, PCS and OCS.

Smart Transportation One of the most common examples is given by the traf-
fic navigator applications Google Maps12 and Waze13, in particular in their way of
predicting traffic intensity and jams. As a matter of fact, Google Maps performs an
opportunistic analysis on the GPS fingerprints of its users, estimating the amount
of vehicles located within the same road segment and their average speed; in light
of this it is an OCS application. On the other hand, Waze works upon the ac-
tive participation of its users, who are able to actively post notifications about car
accidents, traffic jams, road structure changes and many other phenomena; there-
fore, it is a PCS application. Furthermore, organizations such as VicRoad14 in
the city of Melbourne, Australia provide web-based form for citizens to report
road hazards, which is a classic example of Crowdsourcing (no Spatio-Temporal
Awareness of the device), while solutions such as Nericell [145] achieve the same
goal via OCS (minimal user involvement, Spatio-Temporal Awareness).

11https://captchas.net/
12https://www.google.com/maps/dir/
13https://www.waze.com/en/
14https://www.vicroads.vic.gov.au/traffic-and-road-use/report-

a-road-issue
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Smart Parking Another application to demonstrate the differences between
Crowdsourcing and MCS (both PCS and OCS) is the Smart Parking. Smart Park-
ing takes advantage of IoT and mobile devices to facilitate contextual functionali-
ties such as finding car parks based on the availability, distance and context [229].
For example, a Crowdsourcing application will require users to report availabil-
ity of parking spots at a given location via physical observation of the space. A
participatory MCS application would require the users to perform observation on
the parking availability on top of their location, as in [42]. An opportunistic MCS
such as ParkNet [139] will enable automatic detection of parking availability and
report this to a parking reservation system. Moreover, the advent of IoT could
further transform OCS application such as ParkNet with ability to fetch parking
information by communicating directly with the parking space monitoring sen-
sors.

A visual illustration of the both smart transportation and smart parking sce-
nario is depicted in Figure 2.2.3.

Figure 2.6: Smart City, Smart Transportation and Parking [154].
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2.3 Collaborative IoT and Open Data

Regardless of the different perspectives in predicting the near future in the
IoT, it is clear that the number of devices is growing, the data is becoming more
and more heterogeneous, and one of the main challenges is how to handle such
an amount of data and how to give a meaning to it. At the same time, makers
worldwide build their own IoT in-home networks, which provide a low cost and
customized environment that suit their needs. Platforms like Arduino15, (and all
its derivatives) and Raspberry Pi16 have demonstrated their ease of use and they
fit most of the needs of citizens willing to build their own network. However,
certain types of sensor can be too expensive, or cannot be deployed due to re-
strictions or physical space limitations, or simply because users might not have
the right skills to make use of a personal IoT ecosystem by themselves. For this
reason, a collaborative approach to IoT is seen as a useful solution that facilitates
the access to critical data. Open Data, described in this section, is one of the most
powerful solutions that creates cooperation between end users and an information
reuse through the massive generation and sharing of scattered IoT data. A funda-
mental requirement in successfully re-purposing such open IoT data, in order to
enable interoperability as envisioned by Semantic Web 3.0, is to be able to auto-
matically characterize its metadata i.e. information such as observation type (e.g.
temperature, humidity), unit of observation (e.g. Celsius, Fahrenheit), location
etc. However, as validated by a recent study in the literature [199], most publicly
available IoT data, due to their crowdsourced nature, lack availability of such ac-
curate metadata and, in most cases, even the observation type is unclear (i.e. what
is actually being measured).

This section addresses the current situation in the world of IoT architectures
for use cases such as Smart Cities and environmental monitoring, why Open Data
is a viable option for bridging gaps in the architectures’ interoperability and the
challenges that such approach introduces.

2.3.1 Data Silos

The Internet of Things (IoT) is one of the research and industrial fields that
faced the most rapid growth in the recent years, mostly thanks to the proliferation
of new technologies associated with the ease of installation and use. This devel-
opment has created a wide variety of standards and solutions at each layer of the
network and application stack, leading to an heterogeneous environment both in

15http://www.arduino.cc/
16https://www.raspberrypi.org/
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terms of communication technologies (as outlined in Section 2.1) and data stor-
age. Since the beginning of its diffusion, the potential of the IoT has been explored
in various fields of application and its major usefulness has been claimed to be in
service composition and interoperability [13]. The requirements when designing
collaborative IoT-related automation systems are varying due to the heterogeneity
of the platforms and the hardware components as well as the network interfaces.
This resulted in a sparse set of technologies and terminologies used in several
scenarios determining a lack of interoperability among systems. Therefore, IoT
ecosystems behave as disconnected network islands, in which it is easy to build
networks with homogeneous devices, however it is hard to integrate data provided
by other sources. It is actually difficult to talk about an “Internet of Things” when
what is out there it is more a set of “Intranet of Things”.

Projects for IoT Frameworks

The common approach to the problem of unifying entities within an ecosystem
is typically architectural and leads to a difficult reuse of the components among
different solutions [109]. To face these issues the European Commission sup-
ported initiatives like IoT-A17, which aimed to release an architectural reference
model, and FI-WARE18, which also helped architects in establishing a unified
vision and nomenclature and now had become an implementation-driven open
community. FI-WARE also provided a sandbox, in which partners could upload
their Open Data, although it is not of broad use nowadays. Such solutions, unfor-
tunately, did not solve the problem introduced by architectures, in fact different
approaches still tend to create separate ecosystems which are hard to unify. An-
other project that had significant audience is the Global Sensor Network (GSN)
[6] which consists of a middleware that implements virtual sensor abstraction to-
gether with a multitude of functionalities to declare and deploy a virtual sensor,
discover it and retrieve the values through powerful aggregate queries that com-
bine primitive data types. On the same concepts, more recently, the project Ope-
nIoT [202] had the goal of constructing a unique and interoperable IoT ecosystem
leveraging the concept of the Semantic Web applied to the world of IoT; for such
purpose they used ontologies like the Semantic Sensor Network (SSN), created
specifically for describing sensors and sensor data. Projects that leverage interop-
erability and automation in the IoT world have been indeed extremely appealing to
the European Commission, as a matter of fact, some of them reach an outstanding
size in terms of number of partners and fundings. This is the case of the Euro-

17http://www.iot-a.eu/public/front-page
18https://www.fiware.org
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pean project Arrowhead19[55], a project with more than 80 partners, to which we
brought significant contributions, outlined in detail in the Appendix.

Commercial IoT Frameworks

Commercial solutions aim to constitute a living ecosystem in which entities
are “plugged” and interoperable, participating for the benefit of the whole system
and fully compliant with the other actors within the same environment. Most of
the times, such frameworks, some of which are deeply investigated in [57], pro-
vide efficient software adapters for legacy systems. Such types of frameworks
are often self contained and tend to create a cluster of devices which need to
be framework-compatible in order to interoperate. An example is Cumulocity20,
a platform providing an unified service oriented HTTP REST interface to de-
vices. Another project attracting interest in recent years is AllJoyn21, developed
by the Allseen Alliance. Such a framework again forces devices to either imple-
ment an attachment to a software bus between applications, which is indeed the
AllJoyn core, or connect to an AllJoyn router using a thin library. Either way,
the communication introduces very low overhead and grants integration to even
constrained devices; however, the protocol used is highly customized and makes
AllJoyn a quite isolated ecosystem. Another example is Xively22, which, again,
allows devices to obtain interoperability even among different application proto-
cols (CoAP, MQTT, HTTP, XMPP and others) offering an API that implements a
custom message bus. Until few years ago Xively also provided a public instance
of the cloud, making possible for the users to only create a client device without
the need for a personal server, also generating an Open Data repository. Finally,
another framework to mention, which has been standardized by the Open Mobile
Alliance (OMA), is OMA-LwM2M23, which defines a custom layer over CoAP
focused on exchanging instances called “objects” and operating upon them via the
custom interfaces.

2.3.2 What is Open Data and Why it is Important

In our research we make use of a concept that makes immediately possible,
although not prone of difficulties, the integration of data from heterogeneous
sources, i.e. the use of Open Data, a powerful source of information for devel-

19http://www.arrowhead.eu/
20https://www.cumulocity.com/
21https://openconnectivity.org/developer/reference-

implementation/alljoyn
22https://www.xively.com/
23http://openmobilealliance.org/
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oping novel IoT applications in domains such as smart cities, defense, healthcare
and environmental monitoring, to name a few. Open Data is, as the name sug-
gests, data that is freely accessible in machine-readable format from public repos-
itories and might be either contributed by users or gathered in an open access
form through an initiative. In fact, we group Open Data repositories as “reliable”,
that is, repositories maintained by organizations or governments, and “unreliable”,
that is, repositories created through crowdsourcing: users freely contributing in
uploading datastreams through their personal devices [148]. Reliable Open Data
repositories are preferred, since the data they provide follows some sort of annota-
tion policy (i.e. we know exactly what it is), its updates are regular and its quality
is guaranteed by the use of professional appliances. Examples of reliable Open
Data repositories are the Environmental Protection Agency (EPA)24, providing
environmental monitoring data in the United States, the Regional Agency for the
Protection of the Environment (ARPA, the equivalent of EPA in Italy)25, various
services related to weather and forecasts providing APIs such as WeatherUnder-
ground26 and DarkSky27. It is also woth mentioning several Open Data initiatives
for Smart City projects such as the public repository in Singapore28 or in the city of
New York29 or the Spanish Santander project 30 which include several datasets that
can be useful to IoT applications. Unreliable Open Data repositories, on the other
hand, provide IoT data for which there is no warranty about its veracity neither
about what it actually measures; data is, in fact, typically unlabeled, poorly anno-
tated and incomplete and need a data processing step to classify which datastreams
are valuable and what do they actually measure. This opens up several issues, for
instance we could possibly exclude valuable results due to their bad labeling, i.e.
a temperature value could be named with a pointless name and thus not classi-
fied as meaningful, we could even include measurements that are not valuable for
our system. Examples of crowdsourced (and unreliable) Open Data repositories
are: ThingSpeak31, a repository where users can upload data generated by their
personal devices (mostly environmental) in “data channels”, or OpenSignal32, an
Open Data repository that gathers readings about the signal strength of each base
station for each cellular technology. Other Open Data repositories followed, until
few years ago, the same approach of ThingSpeak. Few examples are SparkFun

24https://www3.epa.gov/
25https://www.arpae.it/
26https://www.wunderground.com/
27https://darksky.net/
28https://data.gov.sg/
29https://data.cityofnewyork.us/
30http://datos.santander.es/
31https://thingspeak.com/
32https://opensignal.com/
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Electronics33, an open hardware reseller (they shut down their public cloud in
2017), and Xively34, the main product of which is a local data cloud for privates
(they had a public instance of their cloud until 2017). There is also a third class
of Open Data: the “Social Web”, which creates a huge amount of content that,
through various steps of processing, it can provide valuable information as well
as enriching existing one; however, we do not deal with such data as is intended
as a future work and, thus, outside of the scope of this dissertation.

Why then unreliable Open Data repositories should be of interest? First of
all, it is worth noting how observations coming from reliable sources are given at
a wide area granularity (often per-city), which, for some types of data, might be
inaccurate. Examples include the noise level, which varies dramatically when the
measurement is taken close to a highly crowded street or in a house backyard (the
distance between the two can be small), or the temperature, which, for instance,
drops in parks and rises in congested roads. Another reason lies upon the general
trend in the usage of these platforms throughout a time window of few years. Let
us consider the example of ThingSpeak, for which we analyzed all the public data
channels (around 160.000 out of a total of 600.000 are public at the time of writ-
ing), all of them coming with a creation date and the time of the last update. We
report the channels in the diagram in Figure 2.7. For each month in the diagram,
the horizontal line inside the boxplot represents the number of active channels,
the upper box is the number of newly created channels, and the lower box is the
number of channels that have been updated for the last time on such month (we
assume them to be inactive from that moment). Green boxes are those for which
the number of created channels is higher than the number of channels that ceased
their updates, red boxes are the opposite.

Starting from such analysis it results an exponential growth in created chan-
nels from 2011 until today. In particular, we can observe few steep increases, for
instance the one starting at the end of 2014. A possible intuition behind this phe-
nomenon is the parallel innovation in simple hardware modules, that, it, August
2014 corresponds to the launch of the first version of ESP826635 on the market and
in October 2014 was possible to flash its firmware though an SDK [1]. Such anal-
yses shed some light on how rapidly the world of Open Data is growing and people
are gaining interest in using a platform that takes away the burden of creating a
local ecosystem. Furthermore, taking a look at Figure 2.8, we also understand the
importance of using heterogeneous data sources. The figure shows all the geolo-
cated data channels that we extracted from the ThingSpeak and SparkFun Open

33https://www.sparkfun.com/
34https://xively.com
35http://www.esp8266.com/
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Figure 2.7: Trend in creation and update of ThingSpeak channels.

Data clouds in 2016 (even though the data channels in SparkFun were not really
geolocated using GPS, but using the name of the city, which we converted in ap-
proximated GPS coordinates). Given such results, the importance of information
fusion from different sources is clear, since merging such sources not only incre-
ments the sampling number of the sensing infrastructure, but also its coverage. In
fact, ThingSpeak appears to have much more utilization in the European region,
whereas SparkFun seems to be more popular in North America. Furthermore, this
consideration might be extended to different macro topic areas, meaning that some
Open Data sources are specialized on a specific field of measuring. For instance,
governmental sources providing Open Data such as EPA are primarily focused on
environmental data, whilst sources such as OpenSignal regard measurements on
cellular network signal strength and coverage.

The data collection regarding the primary environmental and urban measure-
ments, such as temperature, humidity, light intensity, noise, pressure, wind strength
and many others, is currently considered an easy and inexpensive task. For this
reason, location-aware community-based data collection (which is still considered
as crowdsensing) through either embedded or general-purpose devices, has been
found to be the basis for the development of novel IoT applications in domains
such as smart cities, defense, healthcare and environmental monitoring, to name a
few.

50



SOURCE SparkFun ThingSpeak

Figure 2.8: Location of all ThingSpeak and SparkFun sensing sources in 2016
[146].

2.3.3 The Issues of Crowdsourced Open IoT Datastreams

We use the term “datastream” to refer to an individual series of chronolog-
ically ordered numerical data points, each of them corresponding to an obser-
vation, together with its metadata, produced by a sensor on an IoT device. In
contrast, we refer to “IoT data” as the collection of data produced by several IoT
devices. We used such term to distinguish what we refer to as datastream and
what is commonly referred to in literature as “data stream”, since the latter is
tied to the concept of streaming: a stream is “an appropriate model when a large
volume of data is arriving continuously and it is either unnecessary or impracti-
cal to store the data in some form of memory” [160], whereas, we do not focus
on this aspect and, sometimes, datastreams are stored and queried through batch
analyses. Heterogeneous data collected from Open Data sources, as seen, often
has the drawback of being unlabeled and sparse and, therefore, its meaning is
hardly intelligible. Even metadata has a varying degree of availability and accu-
racy (partial to none). For such reasons, a data integration and classification layer
is necessary in order to understand the semantics of the data collected. Open IoT
datastream classification is a novel problem and has not been addressed well in the
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literature. In order to support the vision of the IoT-driven Web 3.0 – i.e. moving
from numerical data to smart data (data that is well described, allowing interop-
erability and re-purposing across several domains) – we focus on the challenge of
annotating open IoT datastreams produced by heterogeneous IoT environments.
Such heterogeneity, attributed to the nature of the Internet that allows everyone
to contribute, is due to diversities in the way data is captured (e.g. location, the
accuracy and range of the sensor producing the IoT datastream, non-alignment
in time, etc.) and imposes additional challenges in solving the IoT datastream
classification and annotation problem. In particular, our focus is on classifying
the observation type of an IoT datastream under the following two cases 1) lack
of metadata and 2) partial, incomplete or inaccurate textual metadata e.g., an IoT
datastream that produces temperature may be described by the user using non ma-
chine interpretable names such as “temp”, or “t1”, or “T (°C)”, or even something
way less interpretable, such as “field 1”.

Classification

The fact that unreliable datastreams tend to lack metadata rises the need for
an automatic way to infer features such as the data class, which is crucial if such
data is meant to be used by other application interoperably. This leads necessarily
to the establishment of a datastream classification algorithm. In our environment,
IoT datastreams are ordered sequences of sensor readings which can naturally be
seen as attributes that form what in the literature is called a “time series”. Time
Series Classification (TSC) problems, indeed, differ from ordinary classification
problems in that features are ordered (not necessarily in the dimension of time).
Within the last years, several TSC approaches have been proposed [14] as an alter-
native to the one-nearest-neighbor (1NN) approach using the simple pointwise Eu-
clidean Distance as a similarity measure between series as a standard benchmark
distance measure. The common agreement accepted among researchers as a “hard
to beat” standard distance measure between series has been Dynamic Time Warp-
ing (DTW) [17], for which several alternatives have been proposed in order to
contrast its high time complexity [98]. The above mentioned methods consider the
whole series, since they extract series similarities by pointwise comparison. Other
recent TSC approaches aim to find a subsequence, called “shapelet”, yielding the
highest information gain that can discriminate among classes and using a tree-
based classification algorithm [232]. Such shapelet-based approaches have been
improved over time, especially due to their high time complexity [173]. Finally,
a third type of well-performing methods, namely dictionary-based approaches,
split the time series in time windows and extract patterns out of each window as
new features. Such methods tend to be faster than the aforementioned ones due
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to feature numerosity reduction. Examples of such methods are Bag-of-Patterns
(BOP) [124], which uses piecewise aggregate approximation (PAA) through Sym-
bolic Aggregation approXimation (SAX) words [123] and Bag-of-SFA-Symbols
(BOSS) [188], which encodes subsequences through Discrete Fourier Transform
(DFT), and Time Series Forest (TSF) [56], which implies a random forest ap-
proach on summary features extracted from the intervals (different from our ran-
dom forest approach in that it still calculates localized features per interval). How-
ever, as we demonstrate in Section 4.2, TSC algorithms are not as suitable for a
heterogeneous type of data such as IoT data is. In general, heterogeneous data
classification is a strongly widespread research area, which has been studied over
decades by many researchers and typically algorithms are modeled over specific
data sets, while they perform badly over others (this is known as Wolpert’s no
free lunch theorem [222]). Nevertheless, it is worth mentioning some recent re-
search efforts such as the one carried out in [76], in which a genetic algorithm
that dynamically selects a combination of well-known classification algorithms is
proposed. We also experienced a wide use of clustering algorithms for class in-
ference in heterogeneous datasets, such as the one presented in [166] for land use
tagging. Clustering algorithms are seldom used when a large volume of manually
annotated data is available, since they rely on unsupervised or semi-supervised
bases, and are less application-specific. Narrowing down, the classification of IoT
data stemming from heterogeneous IoT devices has been in very few cases consid-
ered in literature. In [32], the authors imply a PAA-based approach which treats
the sensor data classification as a dictionary-based TSC problem and uses interval
slopes as features. A different approach has been taken in [26]. The authors ex-
tract user-annotated sensed data from a public platform, however, differently from
our work, they infer the trustworthiness and reliability of such values in relation
with a reference value, which is necessarily taken from a certified source (e.g.
the well-known Forecast.io, now replaced by DarkSky for the weather data).
On the one hand this is an efficient classification solution, taking into account the
measurements instead of the annotations, on the other hand it limits the classified
datastreams to only the ones for which a certified value is retrievable. In [148]
the datastreams are classified only on top of the metadata provided, i.e. the user-
assigned name.

In conclusion, no approach currently employs ensemble methodologies in or-
der to consider varying degree of metadata quality and availability for classifica-
tion; i.e. if no metadata is available it relies only on the numerical characteristics
of data, whereas if limited and inaccurate metadata in the form of text is available,
it uses a combination of numerical data and textual metadata. We address this
gap in literature in Section 4.2, where we propose, TKSE, a novel ensemble clas-
sification algorithm which uses a combination of any available textual metadata
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describing the datastream and numerical summaries.

Semantic Annotation

In the last decade, a significant number of ontologies have been proposed by
the research community to address the semantic interoperability challenge [183]
in IoT environments. These ontologies are mainly developed to enable automatic
integration of IoT data exposed by smart things into applications. In the rest of
this subsection a brief overview of the existing approaches approaches is given.

One of the most widely used semantic models in IoT is the Semantic Sensor
Network (SSN) ontology [46]. The SSN ontology describes sensors in terms of
their measurement capabilities, deployment environment, and observations. SSN
is an extendable ontology and allows flexible descriptions of sensor-related in-
formation over a variety of different domains. However, this ontology suffers
from two main drawbacks [112]. The first shortcoming of the SSN ontology is
its inefficiency: SSN has many peripheral components that makes it quite inef-
fective for IoT environments. However, W3C proposed a new version of SSN
ontology, which solves this shortcoming; the new version is built on top of a self-
contained core ontology called SOSA (Sensor, Observation, Sample, and Actua-
tor) that includes the SSN elementary classes and properties and can be indepen-
dently used to create basic conceptual annotations. Another shortcoming of SSN
is the lack of support for describing several important IoT-related concepts, such
as units of measurement, time, locations and domain concepts. Therefore, a con-
siderable number of projects extend the SSN ontology to support description of
other IoT fields. One of these developed ontologies is IoT-Lite [22]. IoT-Lite is a
lightweight variation of SSN ontology that extends it by introducing new concepts
such as “iot-lite:Object”, and “iot-lite:Service”. IoT-Lite can also be combined
with domain ontologies in order to represent IoT concepts with more details.

Many of the existing solutions that aim to fill the interoperability gap are
oriented towards middleware-driven solutions for interoperability, however, au-
tomatic annotation of open sensor data still remains a challenge due to the hetero-
geneity of the Open Data sources providing sensor readings. Furthermore, there
is no unique way to interpret such data, although there has been some efforts re-
ported in the literature. In [32] the authors annotate data produced in Open Data
clouds using the SSN ontology after a classification step. Similarly in [219], the
authors propose semantic enrichment of IoT data with particular focus on devel-
oping a Semantic Sensor Web. They employ rule-based reasoning approaches to
reason about additional metadata. In [195], the authors provide a recent survey
on semantic enrichment of IoT data. However, all the aforementioned approaches
require accurate metadata of the IoT sensor (e.g. temperature measured in Cel-
sius) to perform the semantic enrichment. Lack of metadata will render these
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approaches unusable.
In summary, the review of current studies show that automatic classification

and semantic annotation of open IoT datastreams is essential to understand and
re-purpose IoT data, but it still remains a challenge. With respect to this, in Sec-
tion 4.3, we will use IoT-Lite as our core ontology in order to store and automati-
cally annotate IoT datastreams.
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2.4 Mobile Crowdsensing
In Section 2.2 we introduced CAPs and, in particular, we defined the concept

of MCS, which is a central topic in the present dissertation, as many of our con-
tributions are focused on such paradigm (Chapter 5). Due to such skyrocketing
predictions, MCS has been a hot research area for computer scientists and en-
gineers over the last years, as it is a quite articulate and debated paradigm. We
foresee that future MCS applications for the IoT will have a significant influ-
ence in the data-driven decision making era, mainly due to their non-negligible
advantages: ubiquity, extra low cost and extremely high potential in generating
useful data. Nevertheless, many challenges lie ahead of these rapidly emerging
technologies before mission-critical application on top of these technologies can
be developed and enter the plateau of productivity [163]. MCS campaigns need
to deal with the citizen participation, normally fostered through user motivation,
low quality data and location awareness data mining, which are both challenging
and currently studied problems [74]. The clear advantage of MCS is the huge
amount of data samples that can be gathered due to the paramount spread of mo-
bile general-purpose devices – although MCS includes whatever mobile device
equipped with connectivity and location-awareness, in the vast majority of cases
we imply the use of smartphones –, which grants a large spatial and temporal
coverage and permits to observe a phenomenon through a significant number of
different measurements. It has also been demonstrated to be efficient in several
fields of application where the IoT is already considered as the key technology set
that tackles the most challenging tasks [207].

Up to now, in Section 2.2 and 2.3, we covered the different ways in which
citizens contribute to data collections and the importance of merging several data
sources in order to build a new set of reusable knowledge. In this section we will
give a closer look to the state-of-the-art in the area of MCS, as we will focus ex-
tensively on this paradigm, in particular, on a problem concerning the amount of
data gathered, known as the “Curse of Sensing”, which will be extensively cov-
ered in Section 2.5. More in detail, in the rest of the section we will cite the most
recent works in the areas of applied research in MCS – incentives, frameworks and
applications – and will depict the future (or soon-to-be, where pioneering efforts
are already in process) landscape in the MCS research.

2.4.1 Areas of applied research in MCS
Within this section we leave apart all the aspects related to the amount of data

gathered by the campaign and how to control and balance it, since it is a problem
that we deeply investigated and to which we dedicate the whole Section 2.5.
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Incentive Mechanisms

MCS is efficient when the penetration of the application is wide, which, as
said, is tough to obtain in case of a lack of incentives. Indeed, social and mon-
etary incentives have demonstrated to be essential for pushing the users towards
collaboration [95][241], in fact, any MCS application cannot be designed with-
out a proper incentive scheme. According to [241], incentives for MCS can be
grouped in three main categories: money-based, entertainment-based and service-
based. Monetary rewards, such as refunds and actual payments, are the most
immediate form of incentive and have been used in several forms. The first oc-
currences were static, such as the approach based on micro-payments presented in
[179], or dynamic, such as the one presented in [118], based on the reverse auc-
tion dynamic price with virtual participation credit and recruitment algorithm. The
latter relies on the concept for which participants are willing to sell their sensed
data to an auctioneer, which, on the other hand, is willing to buy the least expen-
sive measurements. After such cycle winners raise their prices and losers lower
theirs in order to rotate over the data sellers. Reverse auctions have been estab-
lished as an efficient standard for monetary incentive mechanisms, in fact, other
researchers proposed alternative algorithms that depend on the objective function,
e.g. in [228], the authors propose a polynomial-time reverse auction algorithm
that aims to maximize the utility of both participants and the platform, whereas
[118] focused on minimizing the platform costs. Other monetary approaches are
based on a Stackelberg game, as in [61], in which a leader (the platform) proposes
a least number of participants and a total available budget, on top of which users,
assuming they are aware of their own cost, decide whether to participate or not.
Other non-monetary approaches take into account personal interests of categories
of users, especially focusing on entertainment. In particular, gamification through
the proposal of online location-based games has shown to be efficient when con-
nected to certain kinds of observation. Games can be devoted to study network
coverage areas through games like Tycoon [20] in which users are pushed to ex-
plore as many areas as possible. Other games use GPS detection in order to either
generate GPS traces for scientific experiment, as in [105], or classify Points-of-
Interest in a city, as in CityExplorer [140]. Another type of incentive aims to give
rewards in the form of services; this is common in situations where the observa-
tions are immediately useful for other users of the same type, such as in smart
parking and transportation [83]. The challenge here is mainly to ensure real ob-
servations, which is tackled through a credit and refund system.
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Frameworks

Currently, MCS-based architectures are characterized by two main compo-
nents: the cloud backend and the client sensing application. Each cloud applica-
tion is associated with the respective client application, often without any vertical
interoperability among different applications. This is commonly referred to as
an application silos, which results a wastage of resources and data redundancy,
an issue that is specular to the problems presented for IoT data in Section 2.3.
To address this problem from the architectural side, many research works focus
in proposing efficient frameworks for MCS, in order to give a homogeneity and,
ultimately, interoperability to MCS applications [130]. An example is McSense
[37][207], a centralized MCS system that exploits monetary rewards to make the
backend entity assign sensing tasks to the users. In such framework, the geo-
localized task is automatically assigned to a minimal subset of users on top of their
profile and relevance. Different solutions exist for another paradigm in which re-
questing users generate tasks and responding user can accept and execute them;
one of the most famous implementation of such paradigm is given by Medusa
[171], which provides an ad-hoc programming language for non-expert users for
the task generation. The authors in [194] propose CAROMM, an MCS frame-
work implementing energy efficiency through edge deduplication, which aggre-
gates sensed data with social media information and uses online mining to reduce
the amount of data redundancy. MOSDEN [97] proposes the collaborative reuse
of sensor processing across several mobile apps and smartphones, alleviating the
necessities for application-specific processing. Pick-a-Crowd [60] assigns MCS
tasks to members of a crowd on top of their interests and skills. effSense [218]
is a data uploading framework that, depending on the type of connection and bat-
tery conditions of each device, designs different uploading schemes. In [53] the
authors design a oneM2M-based MCS framework for Smart Cities that is energy-
aware, semantic-compliant and self-adaptive. in [99] the authors design a com-
plete framework that has been deployed and tested in a campus. Frameworks are
an important building block of the research in MCS, although MCS applications
tend to be too diverse to be unified under a single architecture. Within the scope
of this dissertation, we propose a framework for Smart Cities and environmental
monitoring called SenSquare, focused on Collaborative IoT and MCS [149][148].
The MCS part is explained in detail in Section 5.1.

Applications

MCS is applied to a plethora of use cases, such as environmental monitoring
[174], social trends detection [73] and traffic estimation [162]. In environmen-
tal monitoring the MCS paradigm finds its natural application, since sensing the
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environment is a complex and challenging task to be performed by stand-alone
devices and, often, requires a high number of sensing units. Moreover, since most
devices natively support environmental sensors, leveraging the data coming from
the crowd can provide a more complete view of the sensed environment. This is
the example of SecondNose [119], which collects environmental data in order to
infer a number of indices concerning air quality and pollution and sensitize the
citizens. It is also integrated with specific portable multi-sensors in order to en-
large the number of detectable pollutants (such as benzene). Other applications
make use of the microphone in order to keep track of the noise levels in different
areas of a city, exploiting the concept of Mobile Learning (ML) [237], assigning
the measuring task to a dedicated class of citizens (e.g. the bicycle couriers [102]),
or focusing on a particular source of noise pollution (e.g. the traffic on highways
[117]). Smart Cities are another area in which MCS is extensively applied. In fact,
one of the most valuable application of MCS relies in Smart Cities, where phe-
nomena are mostly caused by social contexts and have collective consequences.
Citizens are more pushed to participate when their contribution leads to the de-
velopment of a service that they can make use of. Applications span over Smart
Parking, as exemplified in Section 2.2.3, where users publish information about
free parking spots in cities. PCS applications have been proposed, where users
intentionally post an information about parking spots [42], alternatively it can
happen indirectly, for which a plethora of user activity detection methods have
been proposed, such as measurements based on gyroscopes and accelerometers
[186], sonars [122], magnetometers [215] and on-board cameras [70]. Crowd-
sensed user’s transportation mode detection in smart cities is also well addressed
in literature [18] [19], where the authors base their analysis solely on the smart-
phones’ sensors. Public transportation is another area highly targeted by MCS
application, such as in [131], where city-scale data is fused with MCS data to
infer information about individuals. Moreover, MCS has been used in the fields
of the emergency management [132] as well as the city mapping [35], for which
many MCS applications make use of the GPS geo-fencing [187] in order to limit
zones of interests [36]. Even the healthcare system has found advantages in MCS,
such as in [44] or in [169], in which patients are collecting measurements about
their daily activities in order to provide a significant dataset to be analyzed by doc-
tors. Another application was established in Singapore for determining the usage
patterns of air conditioning using data coming from a major initiative called the
National Science Experiment36 [75]. A plethora of applications making use of the
smartphones’ sensors have been proposed in literature. Given the current status
of Collaborative IoT and MCS, we observed how most of the application relying
upon such concepts are commonly driven by specific campaigns that focus on a

36http://nse.sg/
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tiny portion of the aspects they can cover. To our knowledge, our work is the first
attempt proposing a global platform able to cope with heterogeneous data coming
from different available sources for environmental monitoring.

2.4.2 Future Research Landscape of MCS

MCS is a rising field of research and many solutions for a variety of issues
concerning different application domains have been proposed at an exponentially
growing rate over the last 5-6 years. Even though many of such issues have been
tackled extensively, some of them can be considered as open, since no global
consensus has been reached. In this section we enlist such open problems and
analyze where major efforts should be focused in the current research trends.

Semantics and Interoperability

Ontologies and semantic models have been used for the past years to enable
interoperability among different domains and applications. On the other hand,
MCS applications are fundamentally correlated with each other, however, there is
little effort in making their entities unified. A semantic categorization has been
defined within the scope of WSN, namely Semantic Sensor Network (SSN) [46],
which provides ontological homogeneity to entities such as sensors, actuators and
data streams. In spite of this, SSN is currently not expressive enough to sup-
port mobility concepts in relation with MCS, making it challenging to be used.
Furthermore, the heterogeneity of mobile devices makes imperative to refer to a
global data structure for the device’s capabilities and equipment. Such data struc-
ture is, at the moment, absent. Furthermore, the amount of data generated by
IoT and MCS application is currently not exploited, as many heterogeneous sys-
tems behave as closed islands and control both data gathering and aggregation.
Such problem has been recently addressed for common IoT application, however,
very little effort has been undertaken within the scope of MCS. Works in [202]
and [149] represent the first notable efforts in such sense. In particular, they rely
on the availability of a large amount of environmental data coming from crowd-
sensing campaigns and open data repositories in order to avoid requesting data
that is already in provided by another entity. Nevertheless, challenges about data
homogenization and quality are yet to be undertaken.

Contextualization

Most of the applications that perform MCS need to process the data in real-
time to be able to deliver the service on-time. On the other hand, one of the main
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characteristics of the data collected from MCS applications is the ability to cap-
ture the contexts around the observations. These contexts can help to describe
the sensing by adding more information about the data [230]. Furthermore con-
textualization of the data can improve processing of the data by considering only
the data that are relevant to the particular situation [229]. As a result, contextu-
alization can potentially improve data processing both in terms of efficiency and
effectiveness. Contextualization of the data has a great potential to improve the
processing time of the data in real-time applications. Contextualization has been
tackled extensively in the field of SOA architectures for common IoT environ-
ments, an example is given by the approach for service coordination in [43]. The
authors proposed a Situation Event Definition Language which is capable of defin-
ing situational event from basic events or other complex events via calculation or
combination. Further, based on the proposed language, they presented an event
detection algorithm and an architecture where event occurrence triggers a set of
services according to a publish/subscribe mechanism. Although this and other
similar studies consider contexts around data collection for data processing, there
is a lack of platforms that take into account MCS and its characteristics while
collecting the contexts around the observation.

Participation Rate

We describe the participation rate as a combination of data quality and fair-
ness. These two parameters will directly impact the participation rate of partici-
pants in the MCS and that will underpin MCS generating sparse or dense data.

Data Quality: The evaluation of information quality in MCS has been covered
extensively in literature, as it is a crucial point. Assessing the credibility of data
is always subject to a certain degree of imprecision, due to the sparsity and the
heterogeneity of the devices involved in the tasks and of the participants them-
selves. Without the goal of covering in detail such aspect, the interested reader is
redirected to [182] for a deeper analysis). Within the scope of this dissertation, the
vast majority of the recruitment frameworks, which will be covered in more detail
in Section 2.5.4, are focusing solely on data quantity and often leave the concept
of data quality apart, vice versa, solutions based on data quality do not consider if
the amount of data meets the requirements of the application. These two concepts
cannot be considered separately, which is why data quality needs to be taken into
account at the time of design and not as a second overlaying step.

Fairness: Fairness is a key concept in MCS, since it preserves the users from
dropping out of a campaign due to not being selected as contributors [94], i.e. an
equal opportunity for all the participant. While this is in contrast with data trust-
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worthiness, since the selection of only the most trusted participants is not compat-
ible, it is an important metric addressed within the scope of incentive mechanisms.
Despite this, it is seldom taken into account by solutions designed for dense MCS
scenarios and the balance between the optimal data quality and an acceptable par-
ticipant’s fairness has yet to be undertaken.

Privacy

With the transition from WNSs to MCS ecosystems, privacy had become a
crucial issue, since devices collect sensitive data of individuals and their disclo-
sure can have serious implications [79]. The user’s identity is typically recorded
for logging reasons: to assess other parameters such as data credibility and user
trustworthiness, as well as to enable participants-based push recruitment schemes,
which would not be applicable otherwise. Many platforms also track GPS routes
with a different degree of granularity, however, these information can lead to user
profiling (an example could be the well-known framework CarTel [87]). Further-
more, some recruitment frameworks acquire logging data that can severely harm
the user’s privacy, like a record of the phone calls [239][224][223], which con-
tributes to better design recruitment algorithms, however, in most cases, it would
not be considered acceptable in terms of privacy. Many existing works in litera-
ture leveraged independently private information enclosure in order to cope with
common de-anonymization oriented attacks (e.g. collusion and eavesdropping).
Notable works are LOCATE [27], which distributes the users trajectories across
all the participants to make them anonymous, PEPSI [54], which introduces an
additional registration authority and obscures the sensitive data with an identity
based encryption, and AnonySense [48], in which a task assignment language is
designed using anonymization. More recent efforts take into account location pri-
vacy for MCS scenarios such as the framework in [210] and the technique outlined
in [100], which shows that, with a great improvement in the entropy of the location
of the user, a task-assigner application end up with negligible limitations.
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2.5 The “Curse of Sensing”
A fundamental challenge faced by MCS application for IoT is the Curse of

Sensing. Inspired by Big Data’s Curse of Data, we define the Curse of Sensing
as the inability of MCS applications to control sensing processes that may result
in sparse or dense data. Sparse data may lead to insufficient information that
will impact the ability to make data-driven decision and/or predictions; on the
contrary, dense data could be influenced by Big Data’s Curse of Data problem,
i.e. too much data leading to insights that may not reflect the real-world state
and/or can lead to inaccurate predictions. Most of the recent surveys in the area
of MCS focus on various aspects of mobile crowdsensing including defining the
concept of crowdsensing [64], inspecting new applications [134], privacy [214],
cost and QoS [126], data quality and credibility [182], incentive techniques [241]
etc., with little or no attention to the Curse of Sensing, that is impacted by issues
such as participating rates and crowdsensing strategies [101]. However, there is
a clear gap in the current literature in identifying techniques and challenges to
address the Curse of Sensing problem. In summary, this section will provide the
following contributions:

• A taxonomy of factors and objectives of MCS: in Sections 2.5.2 and 2.5.3
we identify the factors and objectives that will have a direct impact on pro-
ducing sparse or dense data in MCS applications and, therefore, have an
impact on the Curse of Sensing problem, defined in Section 2.5.1.

• Survey of techniques for coping with sparse and dense data in MCS: in Sec-
tion 2.5.4 we provide a review of current approaches that have been carried
out in recent years to address the Curse of Sensing problem. Here, we com-
pare the techniques identified from the literature based on the previously
established taxonomy.

• Challenges in coping with sparse and dense data: in Section 2.5.5 we con-
clude by discussing how the key challenges that are yet to be addressed in
the literature, presented in Section 2.4.2, will aid or impact the Curse of
Sensing problem in MCS applications.

2.5.1 Definition and Motivating Scenario
Depending on many factors, such as the type of incentive used and the interest

of individual(s)/crowd in achieving a common goal, the number of participants of
an MCS application may vary. This is largely attributed to the inherit nature of
MCS i.e. based on crowd participation and contribution that cannot be controlled
or planned. This also has direct impact on the amount of data generated by the
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MCS application as they may also vary depending on the aforementioned factor.
Hence, most MCS application from time to time will need to cope with sparse
or dense data which we refer to as “Curse of Sensing” problem in MCS domain.
Formally, we define the “Curse of Sensing” problem as the “inability of MCS
applications to directly control sensing processes and their propensity to generate
sparse or dense data, which can lead to significant gaps in the extracted knowl-
edge”.

We refer to data as sparse if the data collected via the MCS application is not
sufficient to meet the MCS task requirements, due to lack of available data in the
geographical areas covered by the MCS application and/or periods of time with
no corresponding data samples. Conversely, we refer to data as dense when large
amounts of data is contributed by the MCS participants, resulting in significantly
more processing overheads due to increased volume of data and wastage of re-
sources, such as the battery of the devices and the budget of the campaign issuer.
In either of these cases (sparse and dense), the amount of data can lead to a fuzzy
and inaccurate solution provided by the MCS application that provides a blurred
view of the observed phenomenon.

An example on how the problem of Curse of Sensing can have a significant
impact on the MCS application can be illustrated by the Smart Parking applica-
tion presented in Section 2.2.3. Let us imagine that users report available parking
spots within the parking areas through a Smart Parking application (either actively
or opportunistically). If this crowdsensed data is sparse, the smart parking appli-
cation may fail to make accurate and timely recommendation to users, due to lack
of data that can cause areas with parking spots to be uncovered or obsolete data
that does not reflect the real situation. Conversely, if too much data, due to no
control in asking for participation, is produced via Crowdsensing, the application
is then responsible for filtering the irrelevant data, aggregate multiple and poten-
tially contrasting observations about the same event, process the data (which due
to its volume and velocity can be characterized as Big Data and hence require
significant resources for processing) and deliver timely and accurate recommen-
dations to users. In either of these scenarios, the utility of the MCS application is
thrown into serious doubt.

2.5.2 Taxonomy of Factors Influencing Sparse and Dense Data
in MCS

In this section we enlist all the factors that can have an impact on MCS, re-
sulting in either sparse or dense data.
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Task

Building on the general definition of Task presented in 2.2.2, in this section we
refer to the concept of task assignment and completion. A task can be pull-based,
in which participants decide independently which tasks to participate in, or push-
based, in which participants are assigned by the campaign owner one or more
tasks to accomplish. Push-based and pull-based paradigms have a strong impact
on the generation of sparse and dense data. In particular, pull-based tasks yield
more decisions to the participants, thus are likely to generate more decentralized
data, since the central entity has less control on them.

Location

In MCS paradigms location is always either detected, i.e. reported by the
user’s device with every observation (or group of observations), or tracked, i.e.
reported continuously by the device, even without the occurrence of an observa-
tion. A tracked location helps more in designing a scheduling strategy for the
individual, however, it can easily affect privacy, while a detected location may not
be sufficient in order to avoid sparse and dense environments. Furthermore, the
notion of sparse and dense depends strongly on the concept of location granular-
ity, since information may be sparse in a fine grained location-based system, while
it may be at the same time dense for a coarse grained location-based system.

Prediction

Prediction is a key aspect of MCS and has been widely used to solve many
problems, including task allocation and tracking participant trajectories while ap-
plying prediction techniques on the actual captured data through the campaign.
Prediction may be macroscopic, if it is performed over a crowd or a location and
does not take into account the individual actions (e.g. the approximate number
of users expected to be in a certain area at a given time frame), or microscopic,
if it is performed over each participant (e.g. inferring the position of each user
depending on his or her past and current trajectory).

Sampling

We refer to the definition of sampling and its division into sensing cycle and
transmission cycle in 2.2.2. Sensing cycle can take place at a defined time fre-
quency or scheduling without any control by any other component. In such case
the sensing cycle is defined as continuous. Conversely, the measurement can be
triggered by another entity and, in particular, by an event that occurs whenever a
defined condition is met (e.g. the participant is in a certain location), in such case,
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the sensing cycle is defined as event-driven. Moreover, the measurement can be
directly triggered by the participant itself while performing an assigned task (e.g.
by taking a picture), in such case the sensing cycle is user-triggered. Furthermore,
transmission cycle can be categorized on top of the rate at which observations are
reported to the central entity. Some applications require the measurement to be
reported as soon as the data acquisition takes place and with no time window al-
lowance permitted. We define them as real-time, whereas others, permitting the
participant to upload data with some degree of intentional delay, are defined as de-
lay tolerant. The way in which participants sample data has a deep impact on the
generation of sparse and dense information. For instance, user-triggered sampling
is likely to be less controllable and more prone to produce sparse information,
whereas continuous sampling, if not tuned properly, can easily lead to dense in-
formation. The rate at which data is sent to the global server is another feature
that can cause sparse or dense information. In fact, delay tolerant applications,
according to what we defined in Section 2.2.2, may not reflect the current envi-
ronment situation, thus leading more easily to decentralized information.

Figure 2.9 provides a taxonomy of the aforementioned factors that influence
the generation of sparse or dense data in MCS.

2.5.3 Objectives for MCS Applications
In this section, we identify the main objectives that need to be addressed by

MCS applications and have a direct impact on the generation of sparse and dense
data. They normally result in a multi-objective optimization problem as one or
more of these objectives may need to be considered for different applications. As
stated, MCS, while introducing a fairly inexpensive way to obtain data, is limited
by several aspects:

1. Participants are running applications on battery-powered devices.

2. The location of the sensing devices is mainly uncontrollable.

3. Each observation reported by a participant is meant to be worth some form
of reward.

4. Participants excluded from the campaign are unlikely to participate again.

5. Participants are not meant to be experts and report data correctly and the
data credibility may be not easy to assess due to the lack of ground truth.

6. Data collection from personal devices presents a high risk of sensitive data
disclosure.
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Figure 2.9: A taxonomy of different factors influencing sparse or dense data in
MCS [154].

In this section we focus on a subset of these aspects that have been tackled in
the literature, namely energy, coverage, budget and privacy. We define them as
objectives and we break them into classes referring to the solutions present in lit-
erature. A graphical interpretation of the objectives is represented in Figure 2.10.
Depending on the MCS application, each objective may have different priority.
For instance, a campaign may have limited budget to carry out its task, thus it
would try to achieve as much coverage as possible, while trading it off with the
energy consumption of each device. Conversely, there might be the need of least
coverage for which the campaign tries to allocate tasks in order to minimize the
budget used. Designing a trade-off among such criteria is not an easy task, and
current solutions tend to prioritize some of them while penalizing, or not consid-
ering at all, the others.

Energy

Battery depletion of end devices has been repeatedly addressed in MCS ap-
plications as a crucial issue. In general, end devices consume energy during the
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Figure 2.10: Objectives upon which MCS applications deal with sparse and dense
information [154].

activities of sensing, computation and transmission, all of them part of the crowd-
sensing life cycle. However, since data transfer consumes the highest amount
energy by at least one order of magnitude [190], most approaches are focused on
energy saving methods in transmission. Nonetheless, in contrast to what some
solutions state, if mobile devices have a sufficient battery capacity (such as smart
phones), then sensing and transmitting sensed data might be nearly negligible
compared to all the other applications that run at the same time on such device.
Hence, depending on the MCS application, the issue of battery depletion can have
a fluctuating weight. On top of such premises, the approaches taken in literature
to tackle this problem are diverse. We group them into the following categories:
on-device, when the energy saving mechanism is operated by the end device (e.g.
by piggybacking the transmission over cellular connections) and overall, when the
recruitment strategy is oriented to the optimization of the overall battery lifetime
of the crowd.
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Coverage

The problem of capturing relevant and timely information in all the monitored
areas depends strongly on the coverage of the MCS application. Solutions adopt
different minimal requirement about coverage, which can either deal with sparse
or dense scenarios. In particular, applications may need to limit the number of ob-
servations due to data redundancy or cost and rather infer the missing data points
through interpolation-based methods. In any case, a least measure of coverage
of the monitored areas is required. Some applications require a total coverage,
which means that every monitored area must be observed by a participant at each
time cycle of each task, while others might require (or sometimes force) a partial
coverage of the monitored areas, enough to run an inference algorithm. Partial
coverage methods are the only ones that can cope with sparse scenarios, whereas,
in such cases, total coverage methods need to find other ways to recruit more
participants through incentives. A third paradigm is given by the multiple cov-
erage, which requires a minimum number k of observations for each area to be
monitored.

Budget

Each MCS campaign is required to provide incentives to its participants. Whether
they are monetary or not, we can assume the campaign issuer to rely on a certain
budget, that can be expressed in units. Recruitment strategies, given they take into
account such budget, focus either on the minimization of the expenses, or on the
allocation of a certain fixed amount to be distributed among the participants, either
evenly or as a reward for their performance.

Privacy

User privacy is a rather delicate topic in MCS. For example, in order to per-
form an accurate prediction, especially microscopic, many solutions track the
user’s features to different levels of extents. Nevertheless, privacy has to be taken
into account at the time of designing MCS application as it can lead to sparse or
dense data generated by corresponding campaigns. In fact, the number of par-
ticipant can have a strong impact on privacy requirements and fulfillment (e.g.
user’s habits in sparse scenarios are likely to be tracked singularly, while, in dense
scenarios, there might be the need of further tracking policies for participants se-
lection) and it can be seen as an obstacle in granting, for instance, high coverage.
For such reasons, it is not a surprise that many MCS frameworks do not take pri-
vacy into account.
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Energy, coverage, budget and privacy play a fundamental role in MCS appli-
cations and has been considered in most papers in the literature and presented
throughout this section at various degrees of importance. They are addressed ei-
ther as goals or constraints of the MCS application, as a strong correlation among
them has been observed: the more participants are recruited, the more coverage is
assured; however, it requires more budget and can easily lead to dense data.

2.5.4 Current State-Of-The-Art in Addressing the Curse of Sens-
ing Problem

In this section we focus on the diverse solutions and systems designed to cope
with sparse and dense data in MCS, i.e. to address the Curse of Sensing prob-
lem. We describe each method in correlation with the factors as identified in the
taxonomy in Section 2.5.2 and objectives as outlined in Section 2.5.3.

Compressive Sensing

Compressive sensing techniques for MCS scenarios leverage the fact that, due
to spatial and temporal correlation of data over an area, there is less need to ob-
serve physically the whole ambient. Rather, in order to lower the amount of data
to be acquired by mobile sensors and mitigate the problem of dense data, only
a selected part of the environment has to be covered by observations, while the
rest would be inferred. Such concept is based on a technique that has been intro-
duced for problems in signal processing in which a signal is reconstructed using
an amount of samples by far lower than the one required by the Shannon-Nyquist
sampling theorem. This relies on the assumption that the signal is sparse (i.e.
it has only a few non-zero entries) and reduces the problem to solving undeter-
mined linear systems [33]. This technique can also be applied on sensed data
samples, assuming a spatial and temporal correlation and redundancy as in en-
vironmental data such as temperature [133]. Such technique has been applied
to MCS scenarios, as in [227], where the author presents Cost-Aware Compres-
sive Sensing (CACS); a framework that leverages compressive sensing through
randomized sampling. In CACS, devices exploit their sensing opportunities and
independently calculate the probability of transmission using a cost function that
takes into account the device energy and transmission costs combined with the
need of real-time data. The web server component of CACS is committed to reply
to each observation with a set of parameters that ensure a randomized data collec-
tion rate and fairness via the Distributed Weighted Sampling (DWS) or Pairwise
Sampling (PW) heuristics. A slightly different approach is taken by Compressive
CrowdSensing Task Allocation (CCS-TA) [216], in which direct task assignment
is performed against the users. In such case, the whole environment is assumed
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as a matrix – the case study is the city of Beijing – and aims to reduce the number
of tasks in order to obtain a reasonably accurate sensing value for each sub-area,
either through direct sensing or deduction. In order to do so, a sensing task is
iteratively assigned to a participant in the matrix, then they assess the system
satisfaction within the matrix through Bayesian inference and design a stopping
criterion of top of it in order to decide if they should query someone else. As
soon as the predicted data accuracy is higher than a predefined threshold, the task
assignment stops. In such case the task assignment is performed sequentially, al-
lowing only an applicability over sufficiently long cycles and assuming a wide
user participation. It is also relevant the work in [217], in which the novel concept
of “Sparse Mobile Crowdsensing” is defined. It is the paradigm used in compres-
sive sensing-based solutions, that is, limiting the number of areas from which data
is sampled in order to indirectly limit the amount of budget to be paid and the
overall energy used by the end devices. Such solutions are typically divided in
three phases: the reconstruction phase, in which missing data values are inferred
through solving a matrix completion problem, optimal task allocation, in which
the cells that experienced the highest variance are selected as to be sensed, and
data accuracy estimation, which is carried out through the leave-one-out cross-
validation in evaluation phase and inference subsequently.

Piggyback Crowdsensing

A number of works proposed over the last years have been leveraging the con-
cept of “Piggyback Crowdsensing” (PCS), introduced officially in [110]. The au-
thors leverage the possibility to piggyback sensing and participation tasks over the
“Smartphone App Opportunities”, i.e. those occasions in which the device per-
forms primary actions like phone calls or accesses an application. In such cases,
the energy required to sense – the authors use GPS, accelerometer, camera and
microphone as examples – is significantly reduced, since the sensors no longer
need to be woken up from an idle state. This applies also for transmitting chunks
of data, in fact a data transfer consumes definitely more energy if performed with
pauses. The work is supported by a prediction model that guides the device to-
wards when to perform one of the scheduled tasks based on the user’s habits. As
a result of decreasing the energy consumption, PCS can improve the participation
rates which leads to higher task coverage (i.e. avoid sparse data). The approach
has been proposed in parallel with effSense [218], a framework that supports de-
lay tolerant crowdsensing tasks and predicts on the edge when to upload the next
chunk of data based on both user habits and the encounter of a non-cellular hotspot
(being it a WiFi access point or a bluetooth-enabled user that could serve better
the upload task). The approach is oriented to individual energy saving and cel-
lular data cost lowering, however, both these approaches do not consider neither
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incentives nor spatial coverage. Indeed, the coverage problem had been tackled
in [239], where the authors design an algorithm that uses the PCS paradigm and
predicts in a centralized way both the position and the likelihood of 3G voice calls
for the users based on historical records in order to minimize the number of par-
ticipants selected under coverage constraint. They chose to assign a spatial area to
each cellular base station in order to be compliant with the dataset used for evalu-
ation. A similar, more elaborated solution is EMC3 [224], where the authors build
complex prediction models on the 3G voice calls of the users and their mobility in
order to design a sub-optimal task assignment policy that ensures coverage. This
is subject to the concept of parallel transfer, used both for task assignment and
data uploading. A different approach had been taken in [223], where two different
kinds of problems are presented, both subject to a k-coverage parameter, meaning
that every zone has to be covered k times. If the k-coverage is the constraint (ev-
ery zone has to be covered at least k times), then the minimization object is the
budget, whereas, if the budget is the constraint, then the maximization object is
the coverage.

Edge Deduplication

The concept known as deduplication was one of the first introduced within the
scope of mobile sensing. Most of the computation in this paradigm takes place
at the client side, in order to reduce the energy consumption and the data redun-
dancy as much as possible. Related works show that the size of processed data is
considerably less than the raw data. Therefore, this approach not only reduces the
energy consumption related to data transmission, but also avoids creation of dense
data by reducing the amount of data transmitted to the MCS web server. Edge
Deduplication has been revised as an MCS efficient solution in [126], where it is
described as an edge computation technique in order to avoid duplication in ac-
quired data. Sensing is performed continuously, however the data is not streamed
to the upper layer unless it displays significant variations. This requires obviously
online learning strategies, such as the one proposed in [194], one of the first works
in this field. The idea is to perform an online mining algorithm based on clustering
techniques in order to upload data only when there is a subtle change in the sensed
observations, avoiding in this way to upload redundant data and to waste energy.
Such method has been used previously in other mobile edge-based sensor data
processing, such as in ACQUA [142]. Different is the approach adopted in [157],
in which data deduplication is performed at the fog layer. The authors design an
algorithm to eliminate similar data chunks while still keeping track of the users’
contribution and focus more on the privacy and coverage issues; however, energy
consumption is left apart.
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Distributed Heuristics

When dealing with real scenarios, given that the control over the fleet of users
is limited and many information (such as position and past records) may not be
available, there is often a need for approximation solutions that tend to an op-
timum value by taking data density into account. The work in [192] designs a
scheduling algorithm given the user’s trajectories in advance and gives an heuris-
tic to estimate such trajectories under realistic assumptions. In such work, the
authors do not divide the area to be sensed in sub-areas, instead, they consider it
to be limited to the roads, which are assumed to be narrow chains (i.e. having no
thickness). The assumption is that mobile users are only moving along the roads
and they have a sensing radius within which there is no need to sense twice. On
top of these premises a scheduling algorithm is designed. Conversely, our work
in [147], which is also presented in this dissertation in Section 5.2, designs a dis-
tributed algorithm for tuning the number of observations within a defined area to
achieve reasonable data density level while having acceptable task coverage. The
work is built on top of few assumptions, since the cloud entity is supposed to have
no control over the users and no tracking whatsoever. Under the assumption of
multiple coverage, users are only given a “satisfaction index” by the server, which
states how much the coverage is satisfied, and tune their probability of upload
upon each cycle using an inverse proportionality. A very similar algorithm is pre-
sented in [34], in which the needs of the platform are broadcasted periodically to
the devices, whcih compute locally their utility in contributing based on several
parameters, among which the battery consumption, the contextualization and their
past contributions. A performance comparison between these two works has been
recently performed in [211]. Other notable recent works base their heuristic on
probability for selection over a crowd of sensor nodes [88] [238].

Optimization-based

Achieving optimality in distributing crowdsensing tasks often implies finding
a balance among multiple metrics, as outlined in Section 2.5.3. Many algorithms
presented in the literature consider one of such metrics to be the objective on
which to design an optimization algorithm and, depending on the functional char-
acteristics of the problem, select a number of constraint as input of the algorithm.
One of the first recruitment algorithms in such fashion is the work in [180], which
considers explicitly a participatory scenario in which users contribute in the form
of pictures and, given the historical data about position, transportation mode and
credibility, an optimization algorithm that maximizes the coverage in presence
of a budget constraint is proposed. A more recent algorithm has been proposed
in [240], in which a similar goal is given. The proposed scheme focuses on op-
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timizing the coverage in a Point-of-Interest monitoring scenario given a budget
constraint. The scenario is further complicated by the network deployment, since
ad-hoc point-to-point communication technologies are implied (such as Bluetooth
and WiFi direct).

Context and Logical Dependencies

Sometimes recruitment strategies are purely mathematic and blind to other
contextual factors that can bring benefit to the selection. For such reason, some
solutions are designed to bring the contextually best participant into the task lever-
aging the set of semantic information that could emerge from participants and
tasks association at different levels. Works in this area try to achieve acceptable
coverage (i.e. avoid sparse data) by selecting the minimum number of eligible
users (i.e. avoid dense data) who are most likely able to participate in a given
task. An example of this approach has been proposed in [86], in which an inter-
data dependency is used as a key paradigm. The authors inspect as a case study
a disaster recovery scenario, in which communication bandwidth (and, therefore,
overall energy consumption) are considered as the parameters to minimize. Thus,
sensing occurs continuously at the edges, however, data transfer is triggered by
server queries that link concepts through logical clauses and data relationships in
order to fetch only the required data. Another work tackling context as a key pa-
rameter for MCS campaigns is CATA [77]. According to such solution, in order to
optimize the energy consumption of end devices, the authors design an algorithm
that assigns opportunistic tasks only to a subset of users for which the context cor-
respond to the one requested. The context is a set of meta information (personal
data about the owner and technical data about the device as well as data about the
activity) and can be compared to other contexts using a similarity function that re-
turns a score. Such score is the basis upon which the participants are chosen. The
work in [143] presents CloQue, a context-driver MCS query engine that forwards
queries to the participants. The novelty here resides in the context evaluation and
prediction: the context of each participant is assessed through a DNF-composed
predicate that establishes which are the true condisitons of the context, then, all
the predicates are evaluated in a specific order, on top of which one is expected to
cover the most cases, resolves the minimum amount of uncertainty about all the
other queries and incurs less energy to evaluate.

Table 2.5 summarizes and compares the papers we reviewed from literature
and discussed in this section against the factors and objectives of MCS application
that influence sparse and dense data.
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Sampling Task Location Prediction Energy Coverage Budget Privacy Type
[227] continuous/both pull detected - on-device partial - - Opp.
[216] event-based/real-time push tracked - overall partial minimization - Opp.
[217] event-based/real-time push tracked - overall partial minimization - Opp.
[110] event-based/delay tolerant pull detected microscopic on-device - - low Par.
[218] event-based/delay tolerant pull tracked microscopic on-device - - - Par.
[239] event-based/delay tolerant push tracked macroscopic on-device total minimization - Opp.
[224] event-based/delay tolerant push tracked microscopic on-device total minimization - Opp.
[223] event-based/delay tolerant push tracked microscopic on-device multiple min./fixed - Opp.
[194] continuous/real-time push detected - on-device - - - Opp.
[192] continuous/real-time push tracked microscopic overall total minimization - Opp.
[157] event-based/delay tolerant push detected - - total - high Opp.
[147] continuous/real-time pull detected macroscopic overall multiple - high Opp.
[34] continuous/real-time pull detected macroscopic overall multiple - high Opp.
[180] user-triggered/delay tolerant push detected microscopic - partial fixed low Par.
[240] user-triggered/delay tolerant push detected microscopic - partial fixed - Par.
[86] continuous/delay tolerant push detected - overall partial - - Par.
[77] event-based/delay tolerant push detected - overall total - high Opp.
[143] event-based/delay tolerant push detected macroscopic overall partial - high Opp.

Table 2.5: Table with all the State-of-the-Art solutions that deal with sparse and dense data, for which the relation with each
factor and objective is stated.



2.5.5 Discussion and Challenges

Designing a solution to develop MCS applications is a challenging task espe-
cially when MCS applications need to cope with dense and/or sparse data over
which it has no direct control. In Section 2.5.4 we discussed the approaches that
underpin the current research landscape and their relation with the factors and
objectives of MCS described in Sections 2.5.2 and 2.5.3, which are usually con-
sidered partially in each solution. In Section 2.4.2 we also presented the future
research landscape of MCS, in particular the aspects that have not yet completely
addressed. In this section we present a discussion on how such aspects would play
an important role in addressing the Curse of Sensing problem.

As it is discussed earlier, privacy is one of the objectives and research chal-
lenges in MCS. Although privacy is part of the design criteria in Section 2.5.3, it
is pointed out as a challenge in Section 2.4.2, and especially within the scope of
sparse and dense crowdsensing scenarios. First, privacy has a different outcome
depending on the type of scenario, second, we have observed that it is often treated
separately from the other design criteria, at the same time we consider the inclu-
sion of user privacy as of paramount importance in a solution design. Recently
there have been several studies proposing privacy preserving approaches for MCS
that aims to preserve the privacy of the users. However, they are not considering
the fact that dense and sparse situations may have different privacy requirements.
For example, when we are dealing with sparse situation the number of users are
limited so it would be easier to reveal more information about the particular users
who are providing the data. It is worth to mention that there are several studies in
the literature that can potentially tackle privacy concerns in related areas dynami-
cally and by considering sparse and dense situation/contexts as the input to adapt
the privacy pervasive algorithm [231]. However, there is no particular study that
considers such algorithms in MCS.
Fairness is another aspect that can be affected by the dense and sparse data. When
the number of participants providing data is not enough or is limited, majority/all
of the participants are required to contribute and provide data. However, in dense
situations distribution of the tasks in a way to fairly utilize the resources of the
participants providing the data can be challenging.
Data quality can be also impacted by dense and sparse situations equally and
hence requires development of techniques that consider suitable trade-off depend-
ing on the MCS application. For instance, when we have more data through large
contributions from participants, there is a potential for quality of data becoming
fuzzy (as in the Curse of Data). Similarly, when only limited data is available
due to limited participation, the quality of data can be low [23]. Moreover, one
of the main challenges in MCS is the fact that we do not know how much data is
sufficient data.
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Contextualization is a way to improve processing of the data by taking into ac-
count the surrounding contexts. Contextualization is more effective when data
volume is large as the filtering/aggregating of relevant data using relevant con-
texts results in better performance and accuracy. On the other hand, more dense
data situations lead to collect more contexts that require more effective and high-
performance techniques (including extrapolation and prediction). Semantics and
interoperability mechanisms can help with integration and contextualization of the
data. However, in more dense situations by increasing the volume, variety and,
velocity of the data, interoperability of the data becomes more challenging.

Figure 2.11: Challenges, factors and objectives with respect to sparse and dense
data in MCS [154].
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Objectives and factors discussed in Sections 2.5.2 and 2.5.3 also influence
dense and sparse data situations in MCS. For example, sampling should be higher
in sparse conditions to reduce the probability of missing data; on the other hand,
proper prediction of sparse and dense situations can help the system to manage
task distribution, budget and energy consumption in spatio-temporal environments
in such a way to reduce the risk of not meeting the coverage requirements in sparse
situations. Figure 2.11 provides a summary of this discussion where we illustrate
1) how each factor, objective influences the generation of dense or sparse data in
MCS and 2) the future research landscape that indicates areas that have been well
addressed in the literature (towards the bottom half of Figure 2.11) and areas that
needs further investigation (towards the upper half of Figure 2.11).
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Chapter 3

Motivations and Research Question

In this chapter we will outline the major contributions of the present disser-
tation, with respect to the current State-of-the-Art on Chapter 2 and as a conse-
quence of the considerations that we introduced in Chapter 1. With this short
chapter we aim to bind the two parts of the dissertation together – Part I is about
the current research and industry landscape and Part II is about what is being
presented as a contribution to the State-of-the-Art – and, in particular, to local-
ize where our research work fits into the big picture, to extract the challenges on
which we focused and, most importantly, why we think it is important and worth
it. We will further channel our motivations in a research question we aim to an-
swer through our contributions. Certainly, there are still aspects of this research
that can be enhanced and others that still need to be addressed, nevertheless, we
claim that the work presented in this thesis is a novel and important contribution
to the field of the Collaborative IoT and its derivations.

The spread of the Internet of Things (IoT), being in its industrial, research or
fan-made form, has been impressive over the last 15 years. The research in this
direction has been largely fostered, also because the areas of research, as well as
the use cases, are by now a lot and have different requirements. It is indeed impos-
sible to give a unique definition of how an IoT ecosystem is ought to work and be
structured. In fact, many of the use cases have orthogonal features and the areas
of research pertaining the IoT are getting farther and farther from each other in
dealing with such different sectors. This is evident, since nowadays many of the
IoT-related works in literature highlight the growing number of connected devices
and the amount of billions of dollars invested in the IoT market. Let us consider
the amount of money and effort that has been put in M2M communication tech-
nologies for IoT in order to cope with the vast amount of use cases that the current
demand has generated. Section 2.1 gives an idea of the plethora of technologies,
standards and protocols that have been proposed and distributed in the market.
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The outcome of this consideration, taking a look at the works that have been pro-
duced in different areas of IoT, is that this universe is currently moving at a pace
that sometimes research and standardization efforts cannot keep up; as new needs
come in, industrial ad-hoc efforts tend to come first. In fact, we are currently wit-
nessing a set of “Intranets of Things” rather than a true Internet of Things [244],
this is because current ecosystems tend to behave as closed islands with little or no
interoperability between each other. This happens either because solutions need to
be deployed “here and now”, so there is more need for the least solution that solves
the problem rather than something that can someday be useful to others, or else
because widespread and different industrial solutions force the customer to stick
to what has been envisioned by the manufacturer; therefore, interfacing with third
parties entities is tough. Of course standardization efforts have been envisioned,
especially from the architectural and semantic point of view. As a matter of fact,
the literature is literally covered in proposals for new IoT frameworks, new IoT
architectures, new IoT solutions that are expected to cover a plethora of possible
use cases; however, many of them end up being yet another standard that a small
amount of solutions adopt. Several of these standards are well written, however,
the prosperity of a standard “has not to be examined from the focus of whether
the standard was written or even implemented (the usual metric), but rather from
the viewpoint of whether the participants achieved their goals from their par-
ticipation in the standardization process” [38]. In our case, successfulness of
standardization efforts in some IoT fields – areas like architectures, application
layer protocols, services and semantics suffer the most from lack of standards –
are thrown into doubt, because, if a political interest in a standard becomes too
large, the various parties have too much at stake in their own vested interests to
be flexible enough to accommodate a unified view. This, together with the pace at
which the field is evolving, in many cases inhibits the institution of standard solu-
tions or makes them adapt to the current practice, sometimes including technical
mistakes or breaking the user base.

In Section 2.2 we introduced the concept of CAP for IoT scenario, a revolu-
tionary way to think about IoT, to sense and to actuate. We specifically talked
about the changes that cooperation and a wise use of a collective effort would
bring to legacy IoT ecosystems. For some of the use cases (i.e. monitoring and the
use of common resources in the Smart City) such paradigms have demonstrated to
be a key enabler to a whole new level of pervasiveness of any application as well
as, last but not least, a significant reduction in the costs. In fact what was formerly
required (e.g. the deployment of a consistent WSN) is, for some applications,
no longer necessary. Clearly, this paradigm is characterized by different issues,
in particular, issues that formerly were purely technological now are shifted to
social: people need to be instructed, encouraged to participate, incentivized and
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satisfied of the results. The greatest outcome the CAPs bring to the current trends
in some IoT use cases – we focus primarily in Smart Cities and environmental
monitoring – is given by two major concepts:

1. The data about a phenomenon of common interest is probably already in
place. The more the interest the more likely is to find data that can describe
it, being it institutional or crowdsourced. Section 2.3 is about the research
efforts carried out so far in this topic.

2. If the data is not available, the devices capable of reporting observations
about such phenomenon are probably already in place. MCS, addressed in
Sections 2.4 and 2.5, is the biggest trend that exploits this concept, however,
any collaborative solution could make the difference in such sense.

The points above are the major pillars on top of which we structure our re-
search work. In particular, with the final goal of bringing interoperability to IoT
ecosystems and bridging the gaps of data and device redundancy, we do not aim
to propose yet another standard framework/architecture/paradigm, rather we try
to make the most out of what is already in place. Such solution does bring a sig-
nificant added value to the current market, especially through saving economical
and human resources. In summary, in this dissertation we aim to answer to the
following research question:

For many application scenarios (i.e. environmental monitoring, Smart Cities)
either data is already collected somewhere or devices capable of providing such
data are already deployed. How can we make the most out of it and deliver ser-
vices that fit the needs of the citizens?

Clearly, this question is generic, thus we break it into the following, more spe-
cific, ones:

1. We need to gather data from accessible and heterogeneous sources about
the same phenomena. How do we integrate it? Moreover, many sources
(i.e. crowdsourced ones) expose open public datastreams that are manu-
ally annotated by users and, sometimes, not even significant. How do we
classify them into significant categories of data, i.e. how do we provide an
automatic annotation?

2. We need to gather data from the personal devices of citizens, how do we
structure the interplay of different actors in such an ecosystem and how do
we ensure a control over the data gathering in order to get the correct amount
of data (i.e. not incurring in the “Curse of Sensing” problem [154]) without
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harming citizens’ privacy, causing battery depletion and still getting enough
data?

3. Once data is gathered from heterogeneous sources, how do we offer it to
users who would aggregate it in a service-oriented fashion?

Such questions are addressed throughout Part II of this dissertation, in which
our contributions are detailed. Although the chapter structure has been already in-
troduced in Chapter 1, we recall here what is presented in Part II in order to better
convey our work in light of the State-of-the-Art, the motivations and the research
questions we proposed. Question 1 is tackled in Chapter 4, in which a common
practice for the integration of heterogeneous data sources is proposed (Section 4.1,
based on the findings of our work in [146]), a classification algorithm for anno-
tating heterogeneous and crowdsourced IoT data streams is outlined (Section 4.2,
based on the algorithm that we proposed in [155]) and an annotation framework is
presented briefly (Section 4.3). Question 2 is addressed in Chapter 5, in which we
propose, under the form of an exemplified framework, a rule-based paradigm for
MCS in Smart Cities and environmental monitoring, meant to be used by partici-
pants and stakeholders (Section 5.1, based on our proposal published in [149]) and
a novel distributed and probabilistic algorithm for data collection control in urban
OCS scenarios (Section 5.2, based on our algorithm proposed in [147]). Finally,
we answer to question 3 through the presentation of SenSquare (Chapter 6, based
on our journal article in [148]), a Web platform that we developed as a prototype
in order to prove the benefit that the exploitation of data coming from the sources
cited bring and to show how the primary data points can be aggregated to form
complex and customized services for each member of the society.

User Willingness to Participate in CAPs

Users are a fundamental building block of CAPs. In order to better support our
motivations in using CAPs in the real world, in this section we present a user sur-
vey that we conducted as part of [148] in order to assess whether users are willing
to participate in a data gathering campaign hosting one or more crowdsensing ele-
ments in their everyday life. More in detail, we proposed to the users two different
ways of participating. First, we proposed to the participants to host a small multi-
sensor device, acting as a weather station, in an outer part of their house (e.g.
the rooftop, the windowsill, the balcony or the garden, if present). The device
is embedded in a small box not bigger than a 5 cm-sided cube and hosts sensors
for measuring temperature, humidity, pressure and environmental noise level. To
report the data, the weather station has to be connected to the Internet, therefore
we asked the participant to share their Wi-Fi connection with such devices. As an
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alternative, the device should report the data either through cellular connection or
through some other long-range technology, e.g. LoRa, rather than Wi-Fi, result-
ing in an increased cost for the device distributor. We still consider such approach
as crowdsensing, since, even though users do not materially own the appliance,
they have complete control on it. Second, we asked the participants about their
willingness to install a mobile application in their personal smartphones, which
runs in background and reports periodically sensed data to a central entity. For
both installments we assure that the participant will get a personal consumer ap-
plication able to monitor the data that their device, either the smartphone or the
weather station, is sending to the remote platform.

Table 3.1: Table showing collected demographic data about the interviewed peo-
ple.

Male 65.3%
Female 34.7%
Age 18-25 31.7%
Age 26-35 53.5%
Age 36-45 5.9%
Age 46-55 4.0%
Age 56-65 5.0%
Living in city (or town) center 57.4%
Living in the first outskirts 16.8%
Living in the periphery 13.9%
Living in the countryside 11.9%
Ownership of the roof 48.5%
Ownership of the garden 44.6%

We surveyed personally more than 100 individuals, all of them living within
the Italian region Emilia-Romagna, which counts 9 different provinces and around
348 different municipalities. As a matter of fact, we do not intend to provide
statistics over the general user acceptance of a crowdsensing paradigm, rather we
wanted to prove that the population of a sample region tends to be positive towards
an environmental crowdsensing campaign in exchange of a small reward. The user
survey involved human beings of different ages, both females and males, and it
is organized in three main sections: (A) The first section is about some general
questions about the users participating in the survey, which made possible to report
the participants demographics, outlined in Table 3.1. Such questions concern their
age, their gender, in which context they live and the ownership of outer parts of
their house. (B) We asked the participant whether he or she is willing to install
the above mentioned weather station in the outer parts of his or her house and
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report the data to our central database. The user can answer with a plain “Yes”, a
plain “No” or “Yes (without sharing the Wi-Fi)”. Should the user select the plain
“Yes”, the survey skips to section C, otherwise the user is offered to answer the
same question including a monetary reward of 5 C per month and, would he or she
answer neither in this case with a plain “Yes”, the reward is increased to 10 C per
month. After such proposal, regardless of the answer, the survey continues with
the subsequent section. (C) Here, the user is asked about his or her willingness to
install the previously mentioned mobile application; in this case the only possible
answers are “Yes” and “No”. The flow is similar to the previous one, thus, if
the user is not willing to install it, a monthly reward of 5 C is proposed and it is
increased to 10 C in case of another negative answer. Both in sections B and C, if
the user states to be willing to participate only in exchange of a monetary reward,
he or she is asked whether is willing to accept such reward supplied in the form of
a discount or an offer regarding a particular class of stakeholders (e.g. a discount
for train tickets or for mobile phone costs).
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Figure 3.1: The results of the survey. Figure 3.1(a) shows the results concerning
the weather station to be installed at home, while Figure 3.1(b) shows the results
for the smartphone APP [148].

Focusing on Figure 3.1(a), we see that more than the half of the users is willing
to install the reporting weather station and share the Wi-Fi connection. Interest-
ingly, the number of users who either do not want to install it or simply to share
the Wi-Fi is more or less constant regardless of the reward entity. Figure 3.1(a)
reports the results of the survey concerning the installation of the mobile appli-
cation on the participant’s smartphone. The behavior is similar to the previous
case, except for the fact that in this case we did not give the possibility to install
the app without sharing a connection, which is needed in order to report the data.
Nearly 80% of the participants replied that they would install the crowdsensing
application on their smartphone. Again, similarly to the previous case, increasing
the reward does not have the desired effect of increasing the number of positive
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users as well. Instead, their percentage remains more or less constant regardless
of the reward entity. An interesting aspect which emerges by comparing Figure
3.1(a) and Figure 3.1(b) is the fact that the users are more willing to install a mo-
bile application reporting data rather than trusting the installation of a third-party
device in their houses. Moreover, it is interesting to note that 73% of the partic-
ipants who replied ”No” or ”Yes without WiFi” to the installation of the weather
station for a 10 C per-month, answered positively to the installation of the mobile
application question without reward.

Finally, the vast majority of users requiring a reward surprisingly accepted
the alternative form of reward that we proposed. This suggests that a number of
stakeholders, spanning from telecom companies to transportation companies to
municipalities, are potentially motivated to take active part in such campaigns as
distributors. Indeed, a vast amount of meaningful sensed data is a powerful source
of knowledge that can help such stakeholders in planning and decision making.
An example of such alternative form of reward has been adopted in the crowd-
sensing campaign issued by Doxa, an Italian institution for market researches. In
particular, they proposed to the users to install a mobile application called Dox-
aMeter1 which monitors the cellular connectivity and offers a monthly discount
of 5 C for purchases on amazon.it.

1http://doxameter.it/
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Part II

Contributions
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Chapter 4

Integration of Heterogeneous Data
Sources for Data Redundancy

This chapter outlines our contributions in the context of Open Data and how
we used it to infer knowledge. Specifically, it discusses our general idea in using
Open Data, featuring some examples of repositories that we took into account,
an algorithm for classifying unannotated datastreams coming from Open Data
repositories and a framework for automatically adding semantic connotation to
homogenize the format of datastreams. The chapter is written on top of our works
in [146], [150].
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4.1 On the Integration of Heterogeneous Data Sources
With respect to Section 2.3, Open Data is a powerful source of information

when data about an environment (typically the surroundings of the user) cannot be
gathered by the end users themselves. In this section we report our early pioneer-
ing work [146] within the scope of Open Data for collaborative scenarios, with a
focus on the integration of crowdsourced and heterogeneous Open Data. Specifi-
cally, in this work we describe in detail two crowdsourced Open Data repositories
that we take as an example (Section 4.1.1), we inspect how they can be integrated
using a common data structure (Section 4.1.2), we propose a sample architec-
ture that leverages the usage of heterogeneous reliable and unreliable Open Data
sources (Section 4.1.3) and, finally, we wrap up our findings (Section 4.1.4).

4.1.1 Open Data as a Source
In this section we outline two well-known sources that we considered in order

to achieve an homogeneous data store. From both sources we extracted Open Data
in the form of datastreams, in which the owner uploads measurements produced
by its sensors. The information in this section has been extracted in 2016, in fact,
the Open Data cloud of SparkFun has been dismissed in late 2017 and now it is
not available anymore.

ThingSpeak

ThingSpeak1, originally launched in 2010 by ioBridge, is an open source data
platform and API for the IoT that allows the user to collect, store and analyze data.
In more detail, it provides a personal cloud that users can deploy over their LAN
and easily display the data produced by sensors using the straightforward API and
front-end application of ThingSpeak. Data analysis and visualization have been
possible due to the close relationship between ThingSpeak and Mathworks, Inc.
since such functionalities are driven by the integrated MatLab support. Further-
more, what is more interesting to our research is that such a platform provides
a global cloud2 hosting millions of Open Data records, which are useful both to
users who cannot deploy their own cloud and to consumers who need to infer in-
formation coming from the stored data. Data is organized in data channels, each
of them belonging to a user, which are annotated with an absolute freedom of ex-
pression, meaning that they can be labeled with any name and do not need to stick
to any constraint in terms of the amount and the quality of metadata. Data chan-
nels can be both private and public and provide also raw measurements encoded

1https://thingspeak.com/
2https://thingspeak.com/channels/public/
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in XML, JSON or CSV and can be updated with new measurements every 15 s,
according to the ThingSpeak documentation page.

In the recent years, ThingSpeak had become very popular due to the rise of
easily programmable IoT platforms such as Arduino, BeagleBone Black3, ESP8266
and many others. As such devices become cheaper, getting started with them is
easier. Nowadays, for instance, an ESP8266 is able to manage a sensor, get con-
nected through WiFi, be programmed through the simple, C-like Arduino SDK
and still cost less than 5 $ while its battery, if the duty cycle is light enough, is
estimated to have a duration of around 7 years [59]. With a WiFi connection and
an open platform such as ThingSpeak, a first home sensor network is very easy to
bootstrap, since the device owner does not need to have the control on the cloud
and, furthermore, the data produced by the sensor is easily displayable on the
personal device of the end consumer, such as a Smartphone or similar.

Sparkfun

SparkFun Electronics, Inc.4, founded in 2003 in Colorado, is a microcontroller
seller and manufacturer, known for releasing all the circuits and products as open-
source hardware. Along with the latter it also provides tutorials, examples and
classes. For the purpose of the present work, SparkFun also hosted its own open
source cloud of Open Data5, on which the customers could test and upload the
data collected by the embedded sensors. Users could push for free their data on
such cloud in datastreams of 50 MB maximum size and with a maximum fre-
quency of 100 pushes every 15 minutes. Unlike ThingSpeak, the location where
the data comes from is specified at a coarse granularity since the name of the
city is often obtainable, however the real GPS coordinates are never given. On the
other hand, data coming from SparkFun could not be private and consumers could
download datastream contents encoded in JSON, XML, CSV, MySQL, Atom and
PostgreSQL.

4.1.2 Data Unification
In this section we point out the characteristics of the channels obtainable from

our two sample Open Data clouds and how we aim to unify them onto a single
data structure. We extracted from both the sources the whole repositories and
parsed the JSON files in order to separate such data in components. Since the
data structure does not force strong constraints, data is often incomplete in such a
way that, in some cases, it is not usable, compliant with the issues introduced in

3http://beagleboard.org/black
4https://www.sparkfun.com/
5https://data.sparkfun.com/
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Section 2.3.3. This happens when no location information is given, the channel
name and the description is not understandable, the channel has not been recently
updated and so on so forth. For both platforms, data channels are given together
with metadata relative to the whole channel as well as one or more datastreams,
each of which is represented by a chronologically ordered series of floating point
values. A channel needs to be updated all at one, thus, every time the user updates
a datastream adding a new value, it needs to do it for each datastream in the same
channel through a single API call. This is typical when a IoT device is equipped
with more than one sensor, or a sensor that performs more than one measurement
at the same time (e.g. the popular DHT22 measures both temperature and rela-
tive humidity). Hereby the metadata that can be extracted from ThingSpeak or
SparkFun data channels are enlisted:

• Channel ID: it is the unique ID of the channel. In ThingSpeak it is rep-
resented by an incremental number, which is assigned when the channel is
created. In [146] we counted 28806 active and public channels with IDs
spanning from 0 to 100172. In SparkFun the unique ID is given by a string
of 20 random ASCII characters. In [146] we counted 3575 different Spark-
Fun channels.

• Channel name: it present in both platforms and it is determined by the
user with no constraint. It might carry or not useful information about the
channel.

• Geolocalization: it is present in both platforms. In ThingSpeak not all the
channels come with GPS data. Similarly, in SparkFun not all the chan-
nels are geolocalized, however, when they are, only the name of the city,
or sometimes just the state or even just the country, is given. When ex-
tracting data in JSON from SparkFun, GPS coordinates are given, however
we observed that such coordinates are probably obtained through some API
converting the name of the city, since channels coming from the same city
have the same GPS coordinates.

• Tags: are included in both platforms and represent the keywords that users
assign to channels. They often help to infer useful information about the
data.

• Creation Timestamp: it is included in all ThingSpeak and SparkFun chan-
nels as a metadata. It usually does not correspond to the timestamp rela-
tive to the first registered update, since each channel has a limited number
of updates that can be permanently stored in the cloud, then the platform
erases the oldest updates in excess. In SparkFun the limit is 50 MB, while
in ThingSpeak is 100 updates.
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• Last Update Timestamp: it is included in all ThingSpeak channels as a
metadata. In SparkFun is simply deducible from the timestamp of the last
update in the channel, since the timestamp is implicitly included for each
update.

• Description: it is a ThingSpeak metadata and its characterization is fully
assigned to the user (who can also decide not to include it).

• Elevation: it is a ThingSpeak metadata and not always indicated, it repre-
sents the location of the source of the channel on the z axis, i.e. its vertical
distance in meters from the sea level.

• Metadata: it is a non-mandatory ThingSpeak metadata which contains ad-
ditional data for the channel in plain text. It is suitable for structured data
such JSON and XML.

• Url: it is a non-mandatory ThingSpeak metadata indicating the address of
the official web page of the channel.

• Last Entry ID: it is a ThingSpeak metadata, which points to the most recent
update in all the datastreams of the channel, ordered using an incremental
ID for each update.

Datastreams belonging to the same channel, both in ThingSpeak and Spark-
Fun, also have their dedicated names, which represent the only way to discrimi-
nate which field registers which measurement. In both platforms each measure-
ment comes together with an integrated timestamp. In [146], from each channel
we extracted in particular the GPS position for a location analysis, finding that
such position is indicated, with different degree of precision, in 6665 datastreams
out of 32381 (nearly 21%). Thingspeak accounts for a total of nearly 14% of
geolocalized datastreams, while Sparkfun takes the remaining 7%. However, as
stated before, the GPS position provided by SparkFun indicates the center of the
entity (the city, or the region) where the source is located. Without the location
information, the channel is not useful, unless it can be inferred.

Therefore, a basic unification counting on an essential set of metadata is cru-
cial, composing the minimum skeleton to which a datastream should be linked.
For such purpose we aim to design an unique ID assignment policy, a geolocaliza-
tion (in GPS coordinates with a precision error), the freshness of the information
(given by the last update timestamp), when it was created (given by the channel
creation date), a friendly name and an inferred measurement category for each
field (such as temperature, humidity and so on) together with an unit of measure.
The latter is essential, since most applications need to use services providing a
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Figure 4.1: Our proposed Open Data architecture [146].

certain type of information, which will be given by the class assigned to the mea-
surement field. Without such a semantic approach, each datastream will have no
meaning. To this end, we will address more in detail the classification of unanno-
tated datastreams in Section 4.2 and their semantic connotation in Section 4.3.

4.1.3 Our Architectural Proposal

In this section we discuss our proposal and how we plan to carry out the ar-
chitectural design. We also give a glimpse on a set of possible case studies for
this scenario in order to show why would someone use Open Data integration
for measurement tasks. What is presented here as an “architecture” is meant to
be integrated with our concrete architectural proposal SenSquare. As a matter of
fact, the architecture proposed here is a sample view on how heterogeneous Open
Data sources can be a significant improvement on the existing ecosystem. Fig-
ure 4.1 shows our proposed architecture depicting several use cases. Note that
some entities are numbered in order to distinguish cases in which they are used
and deployed differently, however they can be occurrences of the same entity (i.e.
sensor stands for any type of sensor, consumer stands for any client device such
as a smartphone, a Raspberry Pi or a PC).

In our proposed architecture we assume to have a middleware with three main
components: a data cloud (which is dedicated to persistently store datastreams)
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and two orchestrators, one for the raw datastreams and one for aggregated ser-
vices. The Datastream Orchestrator is capable to return a datastream, given a
set of parameters determined by the user’s choice, from one among all the avail-
able sources, either reliable or unreliable (these concepts were defined in Sec-
tion 2.3.2). User may, for instance, prefer only reliable sources, since they are
provided by official and trustworthy organizations, however, their slow update
rate introduces a trade-off whenever a user must choose between a high reliability
or a fast update rate. Some applications, indeed, might require information at a
finer granularity over time, for example when they want to detect instantaneous
condition changes. In such cases the user, choosing the update frequency at the
expense of reliability, will necessarily use the data or the services provided by
neighbors. Furthermore, we assume to have our own data cloud for both datas-
treams and services that are not intended to be published onto one of the sources
mentioned. As a case study, a user can build and run a custom application making
use of different measurements, e.g. outdoor temperature and the amount of fine
dust or pollen in the air, in order to infer an environmental condition or to trigger
some action. For instance it would open automatically the window that is not fac-
ing the sun when it’s too hot, but only if the pollen in the air is below a certain
threshold, otherwise it turns on the air conditioning in order to avoid allergic reac-
tions. This avoids pointless wastes of electrical energy while keeping the domestic
environment safe. Such a case study can take place in different scenarios. A user,
for example, might be the owner of the temperature sensor, since it is cheap and
easily configurable, hence he or she will use it locally (in Figure 4.1 such case is
represented by “Sensor 3”). However, there could be other sensors, such as pollen
sensors or fine dust sensors, which might be too expensive or rare to get, or sim-
ply not owned by the end user and, therefore, measurements from other sources
are needed, provided they are nearby enough (this is also why geolocalization is
meant to be crucial). In this case, the outcome of the application is possible only
through integration of local resources with other measurements, either reliable or
unreliable, coming from other sources published in an Open Data platform (case
represented by “Sensor 2” in Figure 4.1) or in our cloud (case represented by
“Sensor 1” in Figure 4.1).

Our proposed architecture aims not only to unify raw datastreams and make
them universally available, but also to make users able to share their service end-
point and to provide additional capabilities derived from both data aggregation
and personal computational capabilities (represented by “Consumer 2” in the fig-
ure). As a simple example, a user receiving temperature and humidity data might
calculate the heat index and expose it as a service interface. In such cases, the
end consumer might not directly make use of the raw values of the datastreams,
but it can query the orchestrator for a published and available service, providing
processed and enhanced data, running on some private system. This reflects the
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concept of SOA, a solution we actually carried out in SenSquare (Chapter 6). In
conclusion, our proposal, given such a various set of use cases, provides the user
with a wide variety of options regarding deployment and data retrieval. This is
significantly straightforward, since the user is not forced to stick to a particular
approach and gives a great advantage in an era where heterogeneity affects not
only data and protocols, but also solutions.

4.1.4 Wrap Up and Future Perspectives
In this section we have introduced the challenging topic of data integration

between heterogeneous data sources for the IoT. We have considered Open Data
coming both from reliable sources like Governmental agencies as well as unreli-
able sources, made available through open clouds such as ThingSpeak and Spark-
Fun. We analyzed the differences, and proposed a new architecture to integrate
them together, along with the ability to deliver custom made services to the end
users, using both reliable and unreliable data. This is an introductory study that
opens up a new pathway for the research. Specific findings on this work are given
in major detail in Section 4.2 and Section 4.3, whereas its practical use in our
prototypical platform can be seen in Chapter 6.

Future works on this topic go through the integration of additional data sources,
which will eventually provide a wider set of data. Furthermore, data sources might
have a different update rate and a different “reliability”, since they may belong to
providers that are recognized as trustworthy or not. For non-official data we also
plan to use a feedback policy based on the estimated precision and update rate of
the datastreams as well as the opinions of users, helping consumers and orches-
trators to perform choices based on a trustworthiness value.
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4.2 Classification of Open IoT Datastreams
The IoT, underpinned by the principles of the Internet, has led to a phenome-

nal increase in the generation of IoT data that are contributed by users across the
globe and can be publicly accessed via the Internet. We leverage the fact that a lot
of data for such domains is available in open access forms from public platforms
[146], as we pointed out in Section 2.3. Such “Open Data” is a powerful source of
information for developing novel IoT applications, however, especially when such
data is crowdsourced, it is currently hardly usable by third parties. A fundamental
requirement in successfully re-purposing such open IoT data, in order to enable
interoperability as envisioned by Semantic Web 3.0, is to be able to automatically
characterize its metadata, i.e. information such as observation type (e.g. temper-
ature, humidity), unit of observation (e.g. Celsius, Fahrenheit), location an many
others. However, as validated by a recent study in the literature [199], most pub-
licly available IoT data lack availability of such accurate metadata and, in most
cases, even the observation type is unclear (i.e. what is actually being measured).

Recall that, in this chapter, as introduced in Section 4.1, we focus primarily
on “unreliable” IoT data, that is, data that is uploaded by the end users, who also
assign to each of their datastreams a set of metadata that is rarely complete and
accurate. In particular, we use primarily ThingSpeak, which seems very popular.
SparkFun and Xively used to be valid alternatives, used in literature for some
works related to ours [26][32], however, they are not available anymore. This
unreliable Open Data is crowdsourced, thus it is powerful and, looking at the
datastream creation trend, potentially able to cover many needs in scenarios like
environmental monitoring and smart cities. At the same time, it needs a processing
stage in order to be usable.

In this section we describe the work we carried out in [155], and we focus pri-
marily on assigning to unannotated (or poorly annotated) datastreams a class, i.e.
an observation type. In fact, in order to semantically characterize a datastream,
we first need to understand what is being measured (a temperature datastream
could be named like (“temp”, or “t1”, or “T (°C)”, or even something way less
interpretable, such as “field 1”) and if it is meaningful to the community (the tem-
perature of the boiler of someone is not useful to anyone else). Therefore, the
first step of assigning a class to the datastream is necessary. There are obviously
other semantic properties that could be inferred and are extremely important, for
instance the unit of measure or the location of non geolocated datastream. De-
ducing classes from names if available has been validated to be effective [148].
Therefore, the problem we are tackling here is annotating missing classes of datas-
treams produced from heterogeneous IoT environment which distinguishes itself
from the conventional time series classification typically on homogeneous datasets
[14], in fact, we will assess that conventional Time Series Classification (TSC) al-
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gorithms are unsuitable for this type of problem. In order to achieve the goal, we
imply Machine Learning (ML) techniques, in particular, in this section, we make
the following contributions:

• A novel Class-wise Bag of Summaries (CBOS) approach, based solely on
the numerical characteristics of the sensor readings. It is based on a TSC
algorithm, however, it does not use time series properties and, even though
its performance are not high enough, it is how we understood that problems
with heterogeneous datastreams are not to be solved through TSC.

• A novel Top-k Sequential Ensemble (TKSE) approach, which uses a com-
bination of any available textual metadata describing the datastream and
numerical summaries. This is proven to outperform standalone ML algo-
rithms.

• Creation and sharing of a dataset that comprehends several IoT datastreams
from ThingSpeak in the form of time series along with their metadata (the
numerical part of it could be integrated with the UCR dataset).

• Extensive experimental evaluations to validate the accuracy and the per-
formances of the proposed approaches against the current state-of-the-art
approaches in time series classification.

Our proposed sequential ensemble approach is a pioneering effort in the clas-
sification of IoT datastream that considers a combination of the numerical char-
acteristics and partially available metadata of the IoT datastream. Our proposed
methods are based on generic data mining and ML approaches and efficiently
support classification and annotation of open IoT datastreams with diversity in
accuracy and availability of metadata. The rest of the section is organized as fol-
lows: Section 4.2.1 introduces our IoT data classification problem and describes
the proposed CBOS and TKSE approaches, Section 4.2.2 describes our experi-
mental design and the IoT datasets used in our evaluations, Section 4.2.3 presents
the results of our experimental evaluations and, finally, Section 4.2.4 summarizes
the section with recommendations for future work.

4.2.1 CBOS and TKSE: Approaches for Classification and An-
notation of IoT Datastreams

In this section we first formulate the problem of IoT datastream classifica-
tion and annotation and then present our proposed algorithms: Classwise Bag of
Summaries (CBOS) and Top-k Sequential Ensemble (TKSE). Our algorithms are
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based on generic data mining and machine learning approaches that are extensi-
ble to other problem domains. The metadata can be further annotated through
semantic approaches by means of ontologies, however, this aspect is discussed in
Section 4.3.

Problem Formulation

Formally, we are given n IoT sensor datastreams NS = {S1,S2, . . . ,Sn},
each of which can be represented as an ordered tuple that resembles a time se-
ries with metadata. That is, ∀i ∈ [n] : Si = 〈Di, ri,1, ri,2, . . . , ri,m〉 where
[n] represents the interval from 1 to n, Di denotes a dictionary of metadata on
sensor stream i with or without annotations, and each ri,j is a numerical sen-
sor reading (typically a floating point value) from i-th stream at time τj . For
instance, consider a temperature stream Si with annotated metadata ’name’ and
’description’ and the annotation for metadata type missing. Then Di = {(name :
“outdoorTemp”), (description : “ESP8266 with DHT11”), (type : “”), . . .}. With-
out loss of generality and for simplicity, we assume datastreams being of the same
length m (thus, NS can be viewed as a column-ordered matrix of size n×m) and
time intervals {τj+1 − τj} between two consecutive readings in each datastream
being near-uniform. As, in our scenario, the values for the textual metadata type,
that indicate the classes of datastreams, are missing, our goal is to recover the
datastream class (the type value in {Di}) from the information of sensor readings
and/or other aiding metadata. To achieve this, types or classes are mapped to nu-
merical labels {yi}, i.e. datastreams become of the form {Si, yi}. Specifically,
streams with known classes in NS form the training set of size t, otherwise the
testing set of size n − t. From the training set, existing classes are mapped to c
distinct numerical labels L = {l1, l2, . . . , lc}6 and, normally, c � n. In training
phase classifiers are built for the later testing phase to inference, from L, which
class each missing yi in the test set belongs to. Throughout the paper, we use bold
symbols to denote multi-dimensional data structures such as vectors, matrices and
dictionaries.

For the above formulated classification and annotation problem, we first pro-
pose CBOS, a preliminary data mining solution based on statistical summaries of
numerical readings {ri,j}, what we call as “bag of summaries” (BOS). Then, we
introduce the best performer TKSE that sequentially and incrementally ensembles
multiple classifiers trained from the textual metadata and numerical summaries re-
spectively.

6For convenience, we can treat “class” and “label” equivalently.
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Classwise bag of summaries (CBOS)

Our first approach took place in investigating TSC algorithms for inferencing
the type of data measured by each datastream. Given the noisy fashion of each
datastream, we attempted to tackle the problem using Bag-of-Patterns-Features
(BOPF) [121], a recent phase-invariant dictionary-based approach based on SAX
words to encode local patterns. In essence, such approach splits the z-normalized
time series through a sliding window in time-ordered chunks and extracts a SAX
word by aggregating symbolic mappings of the mean values of the chunks. Fea-
tures are then represented by the distribution of SAX words across sliding win-
dows. In the training set, features are first ranked by their global ANOVA-F value
(the mean variance of a feature value across the whole dataset divided by the sum
of within-class variances of that feature) and then by means of a leave-one-out
cross validation together with the computed ANOVA-F ranking, a subset of fea-
tures yielding the highest cross-validation accuracy is selected.

Although TSC approaches are widely known to work well on homogeneous
datasets, such algorithm, as well as other TSC approaches we attempted, did not
perform the way we expected on IoT datasets (as shown later in Section 4.2.3)
due to heterogeneity in IoT data. To cope with this phenomenon, after some
experimentation, we observed that a set of global statistical summaries of each
non-normalized datastream can be highly discriminative for certain classes. For
example, pressure values tend to have an average of the order of magnitude of
104 hPa, thus, the unnormalized mean has a higher information gain since is far
from any other; likewise, values like RSSI (the received signal strength by a wire-
less appliance) are often negative, thus the minimum value of the datastream is
likely to be indicative. Hence, we adopt a set of meaningful statistical summary
features {F1, F2, . . . Ff} – defined as bag of summaries (BOS) – i.e. mean, me-
dian, minimum value, maximum value, root mean squared error (RMS) and stan-
dard deviation. Moreover, we propose the algorithmic approach CBOS, built on
BOS features, that differentiates classwise features, i.e. each class of instances
is trained to have its own/different discriminative subset of BOS features. This
is in contrast with the aforementioned BOPF approach, where identical global
features are shared by all classes. The proposed CBOS algorithm is presented in
Algorithm 1.

In Algorithm 1, instead of ranking global features by ANOVA-F values, we
compute classwise ANOVA-F (CANOVA-F) distributions AF on the training set
(line 4), where AFi,j is the global variance of feature Fj divided by the local vari-
ance of Fj among instances of class i (i ∈ [c] and j ∈ [f ]). Moreover, values in
AFi are normalized into weights (for our later weighted cross validation and test-
ing) by forcing them to sum up to 1. Similar to BOPF, both our cross validation
and testing phases rely on a simple 1NN feature distance classification against the
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Algorithm 1 CBOS Algorithm
Require: Training set TRAIN = {(S1, y1), . . . , (St, yt)}, test example (T, y)
Ensure: y ∈ {1, 2, . . . , c}

1: {TRAINING PHASE}
2: {(F1, y1), . . . , (Ft, yt)} := ExtractSummaryFeatures(TRAIN)
3: for i := 1 to c do
4: AFi := NormalizedCANOV A(i, {(F1, y1), . . . , (Ft, yt)})
5: Ceni := CalculateCentroids({(F1, y1), . . . , (Ft, yt)}i)
6: end for
7: h∗ := LeaveOneOutCV ({(F1, y1), . . . , (Ft, yt)},AF,Cen)
8:
9: {TESTING PHASE - 1NN}

10: for i := 1 to c do
11: di := 0
12: for j := 1 to h∗ do
13: di := di + ‖(F[j] −Ceni[j]) ·AFi[j]‖ # F is the feature value vector

of T
14: end for
15: end for
16: return y := arg mini di

training class centroids Ceni (line 5), obtained by averaging out the BOS fea-
ture values within the same class. The main difference is our leave-one-out cross
validation (line 7), which performs classwise discriminative feature selection on
all classes, i.e. it incrementally tries the h ∈ {1, 2, . . . , f} highest CANOVA-F-
ranked features of each class and eventually finds the best h∗ that yields the max-
imum cross-validation accuracy. For each class with its respective centroids and
CANOVA-F values, the distance between a new or cross-validated example and
the centroids of such class is calculated as their sum of feature distances weighted
by the respective feature CANOVA-F values (lines 10 to 16).

Top-k sequential ensemble (TKSE)

Within the scope of classification on data streams and time series, ensemble
algorithms have been shown to be effective and able to capture different facets of
the type of data [184]. However, most of the existing ensemble algorithms are de-
signed in a parallel fashion, in that a number of classifiers are built and trained on
the original data and the class of an unseen example is typically guessed via ma-
jority vote. In our case, as stated in Section 4.2.1, IoT datastreams may come with
partial and inaccurate metadata (e.g. the ThingSpeak dataset in Section 4.2.2),
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which can provide a powerful source of information from a different dimension,
for instance the dimension of the natural language. For such reason, we pro-
pose a novel sequential ensemble of classifiers that sequentially combines the
text-based Natural Language Processing (NLP) and numerical value-based classi-
fication techniques, on the metadata and sensor readings respectively, so that they
both contribute in classifying a datastream enriched with annotated metadata. In
particular, our proposed Top-k Sequential Ensemble (TKSE) algorithm aims to
independently train two or more classifiers of different nature and then classify a
new example in a pipeline, rather than doing it in parallel. Our choice of a sequen-
tial ensemble relies on the fact that data is noisy and presents features in several
dimensions. Hence, we think that a parallel ensemble of classifiers, each of them
trying to guess one class, would be hardly sufficient to get rid of the noise and
does not have a way to assign weights to classifiers operating on different dimen-
sions. Conversely, sequential classifiers iteratively get rid of sets of classes that
are highly unlikely to be the correct one.

Suppose that two classifiers Γ1 and Γ2 can be independently trained on the
same training set TRAIN = {(S1, y1) , . . . , (St, yt)} with training/ground truth
classes |L| = c and ∀i ∈ [t] : Si = 〈Di, ri,1, ri,2, . . . , ri,m〉. Then, for an unseen
example (T, y), the predicted classes for these two classifiers are y1 = Γ1(T, 1,L)
and y2 = Γ2(T, 1,L) respectively. We will call the predicted class by each clas-
sifier as its TOP-1 predicted class; in fact, in many cases, classifiers produce a
probabilistic rank of classes based on classification accuracy and the best ranked
class (the class that is most likely to be the correct one according to the classifier)
is selected as the final prediction. During the testing, TKSE instead first applies
the classifier Γ1(T, k,L) that outputs TOP-k ranked classes ⊆ L (this can also
be viewed as a filtering classifier) based on learning from annotated textual meta-
data. Then, these output classes from Γ1 are fed as the input class labels of TOP-1
Γ2 trained from sensor readings. Therefore, the final ensemble prediction result
becomes y = Γ2(T, 1,Γ1(T, k,L)). Note that if k = 1 then TKSE reduces to
Γ1(T, 1,L), and if k = c it reduces to Γ2(T, 1,L).

In all our experiments we use as Γ1 a simple supervised dictionary-based
NLP classifier, which we will refer to as a Dictionary Damerau-Levenshtein NLP
(DDL-NLP) classifier, first introduced in an earlier work [148]. We chose to use
it as Γ1, because of its TOP-k accuracy (i.e. the probability that the correct class
falls into its TOP-k guessed classes) is significantly higher than one of the other
classifiers we have considered. In Figure 4.2 the TOP-k accuracy of DDL-NLP
is shown; it is clearly increasing as k increases, because the TOP-k accuracy in-
cludes all the guesses in which the true positive is among the k classes chosen.

The algorithm focuses on the similarity of the metadata ’name’ attributed to
data streams as a classifying parameter. Algorithm 2 outlines the proposed TKSE
algorithm, detailing also the implementation of the DDL-NLP algorithm:
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Figure 4.2: TOP-k Accuracy of standalone DDL-NLP [150].

• In training phase, a “dictionary” for each class Lj is constructed in the form
of Bag-of-Words (BOWj) including all stream names in metadata attributed
to data streams within the same class (line 2). In practice, the name of every
datastream in the training set belonging to class Lj will be added to BOWj .

• In testing phase, for each class Lj , the classwise minimum edit distance
dj = min{ed(w, s) | s ∈ BOWj} of a testing example w is computed (lines
4-5). For the distance function ed, we leverage the Damerau-Levenshtein
edit distance [51] normalized by the maximum length between the two
words.

• The algorithm then picks the closest classes through the TOP-k smallest
distances among {d1, . . . , dc} (line 7).

• Subsequently inputs these to a second vanilla machine learning classifier Γ2

(line 8) such as decision tree, random forest and SVM (as experimented in
Section 4.2.3) trained on all the BOS features.

In order to properly combine two classifiers and achieve the best accuracy,
the optimal value of k has to be determined, since, an inappropriate k would
impact negatively on the performance by either missing many classes or intro-
ducing much noise. The straightforward approach would try all discrete values
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Algorithm 2 TKSE Algorithm with Γ1 as DDL-NLP
Require: Training set TRAIN = {(S1, y1), . . . , (St, yt)}, test example (T, y),

k
Ensure: y ∈ {1, 2, . . . , c}

1: for all (Si, yi) ∈ TRAIN do
2: BOWyi ← Di(

′name′) # Si = 〈Di, ri,1, ri,2, . . . , ri,m〉
3: end for
4: for j := 1 to c do
5: dj = min{ed(D(′name′), s) | s ∈ BOWj} # T = 〈D, ri,1, ri,2, . . . , ri,m〉
6: end for
7: C = {Lj | dj ∈ kmins{d1, . . . , dc}} # kmins picks the k lowest values
8: y = Γ2(T, 1,C)

of k ∈ [c] and choose the value k∗ which yields the highest accuracy in k cross-
validation rounds of Γ2 on the training set, however, such method could be slow
when c is large. This is also unlike applying stochastic gradient descent on ap-
proximating continuous non-convex functions. Instead, we perform a faster log-
arithmic search heuristic as a simple approximation: first let ACCk denote the
cross-validation accuracy for the chosen k, then from 1 to k we incrementally try
values {20, 21, 22, ..., k} and pick k′ = 2p with the highest ACCk′ . As intervals
between [2p−1, 2p] and [2p, 2p+1] might get larger, we can then recursively perform
the above logarithmic guesses in these intervals until they are small enough and
find the overall best guess k∗ = arg maxk′ ACCk′ . Note that if we have more
useful annotated metadata, TKSE can then be extended to a chain of more than
two classifiers, although this brings additional issues that are not discussed here.

4.2.2 Experimental Design

In this section we describe in detail the datasets we used to validate the pro-
posed approaches, our experimental objectives and design consideration.

Public Open IoT Datasets

We chose a combination of unannotated and partially annotated open source
IoT datasets, namely: The Swiss Experiment dataset7 and a dataset we extracted
from the public channels on the ThingSpeak cloud platform, which has been used
in our introductory work in Section 4.1, in order to validate the performance and
accuracy of the proposed approaches. The latter is entirely extracted, cleaned,

7http://www.swiss-experiment.ch/
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annotated and formatted by us and it is made available online, as we believe it
brings a substantial contribution in this research area.

The Swiss Experiment It is a platform that allows publishing environmental
sensor data located within the Swiss Alps mountain range on the web in real-
time. Data is highly noisy, comes from different microscopic locations and it
is taken within different time spans. The sampling rate is also different among
sensors making the phase shift of data series very significant. Neither semantic
annotation nor timestamps were originally provided, thus data is unusable as it
is, since the only information provided is the numerical datastream. To the best
of our knowledge, the Swiss Experiment dataset (for which a manually anno-
tated version is available at http://lsirpeople.epfl.ch/qvhnguye/
benchmark/) is one of the few heterogeneous datasets used in research for our
type of problem [32]. The authors in [] have used the dataset for their classifi-
cation experiments using an encoding with slopes, however, they still relied on
TSC-based algorithms. They also used data extracted from AEMET8, the Spanish
meteorological office, however, such datasets are constantly changing and the ex-
tracted data is usually not made available. The Swiss Experiment dataset consists
in datastreams measuring 11 different environmental parameters: CO2, humidity,
lysimeter, moisture, pressure, radiation, snow height, temperature, voltage, wind
speed and wind direction. Time series are of different length, however, some
of the algorithms we have tested require the time series to have the same length,
therefore we cut each time series to the length of the shortest stream in the dataset.
After such step, the dataset is composed by 346 datastreams without metadata and
445 data points each.

ThingSpeak To recap what has been introduced in Section 4.1.1, it is an on-
line cloud platform to which users can subscribe and push sensor data produced
by their personal device onto their personal “channel” through dedicated APIs.
Channels are optionally public and are composed by a set of time series (one for
each sensor) and partially and mostly inaccurate user-annotated metadata: each
channel has a name, a description, a name for each datastream and, optionally,
a geolocation in GPS coordinates. Each name (as well as the other metadata) is
user-assigned, thus it can be informative as well as useless. Each channel can be
updated at any time rate above 10 s and the cloud keeps permanently in mem-
ory the last 8000 measurements. Channels are numbered progressively and the
data streams belonging to the public ones are available as JSON objects. We
built our dataset by scraping the first 500,000 channels through parsing a JSON
object returned by the dedicated HTTP call https://thingspeak.com/

8http://www.aemet.es/en/portada
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channels/{ch}/feed.json?results=8000&start=2018-01-01
00:00:00, where {ch} is the number of the channel. With such call, the meta-
data and the last 8000 readings in year 2018 from all the datastreams belonging
to the queried channel are retrieved and, subsequently, all the datastreams were
made independent from their channel, thus the initial dataset is composed by
11,742 datastreams, each including a time series of sensor readings, with asso-
ciated timestamps, and a set of metadata. In order to provide a least consistency
among environmental value readings in data streams, we operated both a spatial
and a temporal clustering: we first clustered the data streams by location using
DBSCAN. We tested the algorithm with different radii in order to reach a con-
sistent number of instances within the same cluster and chose a radius of about
500 km over the most populated cluster: an area in central Europe, which in-
cludes parts of Germany, Poland, Czech Republic, Slovakia, Hungary and Aus-
tria. The amount of streams is then reduced to 1,803. We further filtered out
private streams, non geolocated streams and streams with less than 5,000 read-
ings in 2018; and clustered the rest both by time: in order to perform a temporal
consistency, we first homogenized each time series clustering the data points in
15 minutes time chunks. Then, we filtered our dataset calculating a time window
of 2 days within which we have the maximum number of series having mea-
surements in such window and including only those that have measurements in
at least 45 chunks belonging to the most ”populous” interval of 24 hours within
such window. The final number of data streams is 1,275, with measurements
starting on February 22nd 2018 at 6PM and ending on February 23rd 2018 at
6PM. The data, at this point, displays few missing points, which we interpo-
lated my means of cubic splines. Subsequently, we manually annotated all the
data streams, assigning them a class according to the environmental parameter
measures by means of the human interpretation of the metadata. The task has
been challenging due to different languages with which the metadata has been
annotated (English, German, Czech, Hungarian etc.) and some of the streams
had been excluded due to a too high uncertainty, therefore the final number of
streams is 1,091, belonging to 16 different classes: non-air temperature, humidity,
pressure, wind speed, wind direction, UV, light, sound, air quality, electrical pa-
rameter, RSSI, indoor air temperature, outdoor air temperature, heath index, rain
index, dew point. In summary, the dataset is composed by 1,091 datastreams with
metadata and 96 data points each. We made the dataset available for download at
https://github.com/stradivarius/TSopendatastreams.

Experimental Objectives

In order to evaluate the effectiveness and efficiency of our proposed IoT datas-
tream classification algorithms, we performed extensive experiments against other

106



state-of-the-art approaches on the above open IoT datasets. Experimental results
reveal that these datasets display similar behaviors over the evaluated approaches.

For the purpose of experimental evaluation, we use the following three met-
rics: Accuracy, Macro averaged F1-Score – defined in [201] as the harmonic mean
of macro averaged precision and recall over all classes – and the average runtime
performance over the number of folds in seconds. For the sake of clarity, we
report here the formulas for calculating accuracy (A), macro averaged precision
(P ), macro averaged recall (R) and macro averaged F1-Score (F1) on a dataset of
size m given, for a given class c, the number of true positives (tpc), the number of
false positives (fpc) and the number of false negatives (fnc):

A =

∑C
i=1 tpi
m

; P =

∑C
i=1

tpi
tpi+fpi

C
; R =

∑C
i=1

tpi
tpi+fni

C
; F1 =

2 ·P ·R
P +R

We chose to report the macro averaged F1-Score as the number of instances per
class in each of the datasets is unbalanced and, while a high accuracy indicates
the overall success, a high F1-Score implies that all classes have been equally
considered. Through the usage of such metrics, we performed the following ex-
periments:

Evaluation of Accuracy and F1-Score The objective of this experiment is to
validate the proposed algorithms on both our IoT datasets against time-series and
BOS-based algorithms from the literature. Each algorithm has been validated
through a k-fold cross validation. On Swiss Experiment we used 5-fold cross
validation (same as [32]), whereas on ThingSpeak, we used 10-fold, as the number
of instances is much higher. The algorithms are tested both on the original and
z-normalized time series, as the conventional homogeneous time series analysis
often requires normalized data.

Impact of K on TKSE This experiment has the goal of validating the behavior
of TKSE for different values of k. It is designed such that our BOS-based algo-
rithms are tested as a second step in TKSE together with the DDL-NLP method
(as described in Section 4.2.1) in a 10-fold cross validation on the ThingSpeak
dataset (with annotated names) on all values of k. Although the TKSE method
imposes a logarithmic search of the optimum value of k, for the sake of complete-
ness, we report the performances of such algorithms on the ThingSpeak datasets
using all the 16 values of k. Again, for each value of k, we use a 10-fold cross
validation and calculate the features over the non normalized data.

Evaluation of Runtime Performance This experiment has the purpose of vali-
dating the efficiency of the considered algorithm in time. They are tested on both
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datasets and the average runtime over the number of folds in seconds is reported.

Experimental Design

Our approaches CBOS and TKSE together with our adopted vanilla classi-
fiers: decision trees (C4.5) [170], random forest (RF)9 [28] (which have been
shown to perform well on remote sensing scenarios [161]) and Support Vector
Machines (SVM) [85] are compared with the following TSC algorithms and the
results obtained with the slope-based algorithm in [32] for sensor data:

The golden standard As sensor reading streams can be easily interpreted as
time series, we took into account the most widely used TSC algorithm: One Near-
est Neighbor with Dynamic Time Warping (1NN-DTW) [175] – considered as
the golden standard for TSC [17]. It is a whole series method that has been pro-
posed to cope with phase shifting when calculating series similarity. In particular,
suppose we want to compute the similarity between two series a(a0 . . . an) and
b(b0 . . . bn) and we calculate the pointwise n×n distance matrixD. The DTW dis-
tance between the series is the minimum warping path P = ((e1, f1), . . . , (en, fn))
that defines the transversal of the matrix N , i.e. intuitively a path that leads from
the point (1,1) to the point (n,n) increasing, at each step, the column, the row, or
both. It is superior to the typical whole series baseline, the 1NN with Euclidean
Distance (1NN-ED), which computes the similarity between two series by sum-
ming up the euclidean distances among their data points in the same position.

Dictionary approaches Within the scope of TSC, we also included two recent
dictionary-based approaches: Bag-of-Pattern-Features (BOPF) [121], which our
CBOS is based on as outlined in Section 4.2.1 and Bag-of-SFA-Symbols (BOSS)
[188]. BOPF is a recent linear time implementation of the well known BOP ap-
proach relying on the series transformation in approximated SAX words. In par-
ticular, the algorithm slides a window along the time series and breaks the interval
into chunks that are transformed into a SAX word according to some property
(usually their mean). A histogram counting how many times the same word oc-
curs within the series constitutes the bag of features for such series, which is then
classified through 1NN approach. This method is of particular interest since, given
the noise and the phase shift affecting the data, it is expected to perform better as
it is focused more on micro patterns. The recent linear time implementation uses,
as training features, the per-class centroid or the tf-idf of the series in the dic-
tionary rather than comparing each unseen example with every training instance.

9Although [56] has considered a more sophisticated RF, this is not the focus in dealing with
heterogeneous IoT data.
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BOSS is a recent dictionary-based time series classification algorithm that, as well
as BOPF, slides a window along the series sampling each time the words using,
instead of a PAA, encodes subsequences through Discrete Fourier Transform and
establishes the breakpoints a priori via Multiple Coefficient Binning, instead of
using fixed intervals. As well as BOPF, the method is an ensemble that validates
several parametrized classifiers over the training set keeping only the best ones
and guessing the unseen class via majority vote.

All experiments are performed on a computer with an Intel Core i7-7700HQ
CPU @ 2.80 GHz× 4 and 8 GB RAM while running Linux Mint 18.2 64-bit. All
tested algorithms are implemented in Python 3.5.2 except the implementations
of BOPF and BOSS, for which we used the original C++ code provided by the
authors.

4.2.3 Experimental Results and Discussions
In this section we provide results and insights about the experiments outlined

in Section 4.2.2.

Evaluation of Accuracy and F1-Score

We evaluated our proposed algorithms with the ones outlined in Section 4.2.2
using the Swiss Experiment and ThingSpeak datasets. Both accuracy and F1-
Score are reported for the datasets (Swiss Experiment in Figure 4.3 and ThingS-
peak in Figure 4.4) in their original and z-normalized form. Observing the out-
comes of such analysis, it is immediately clear how data normalization causes
the loss of important features and, hence, impacts the accuracy of classification
making this a much harder problem. In fact, only BOSS and BOPF achieve
similar results for both normalized and unnormalized datasets, in that such al-
gorithms were designed specifically to operate on z-normalized series and some
parameters are hard coded to cope with the underlying data. Nevertheless, they
still achieve a similar accuracy on the original series. Our first summary-based
approach CBOS performed poorly on z-normalized data. This is expected, as z-
normalization loses most of the information based on statistical summaries. But,
on the non z-normalized data CBOS improves on BOPF, which it is based on,
and is later shown to be faster than BOSS. In summary, the above mentioned
TSC approaches still do not achieve the desirable IoT data classification accuracy.
On the other hand, the golden standard DTW tends to perform better on non z-
normalized data, sometimes achieving good results on ThingSpeak. However, this
further validates our findings i.e. the trend of the time series is not as indicative as
the absolute value ranges in heterogeneous IoT data. These absolute value ranges
are better captured when the data is not z-normalized.
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Figure 4.3: Accuracy (above) and F1-Score (below) for Swiss Experiment Dataset
[150].
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Based on this inference, we further found through our experiments that the
vanilla machine learning methods performed using our BOS features achieve sig-
nificant accuracy and F1-Score gains. Our justification for such phenomenon lies
behind the fact that, due to heterogeneity in IoT data, different classes exhibit dif-
ferent behavior (and, therefore, bias) in terms of such features. For such reason,
tree-based classifiers (C4.5 and RF), built in a way in which the attribution of an
example to a class is driven by a sequence of decisions based on the threshold of
the feature itself, seem intuitively suitable for open sensor data. This is not the
way in which SVM are designed, in fact, they do not seem to work as well. It is
also interesting to notice that SVM tend to assign more likely the most populated
classes, resulting in a fairly poor F1-Score. Furthermore, on the Swiss Experi-
ment dataset, the authors in [32] have reported on normalized data in the form of
a pattern-based time series approach, achieving an accuracy of 67.7%, whereas
our RF approach on BOS easily achieves above 80%.

By looking at Figure 4.4 it is possible to see the performances of the DDL-
NLP algorithm and the proposed TKSE (which includes DDL-NLP as a first step).
DDL-NLP alone has been applied on open datasets previously (data extracted
from ThingSpeak and SparkFun) [148] with an accuracy close to 88%, however,
such datasets are purely composed by data streams annotated in English, whereas
the ThingSpeak dataset presented in Section 4.2.2 is annotated in different lan-
guages and the performances of the DDL-NLP approach alone drop to 65% in
both Accuracy and F1-Score. Looking at the bar charts, it is clear that TKSE with
tree-based methods (RF and C4.5) bring significant improvements (at k∗ = 4),
whereas all others coupling with DDL-NLP diminish the performances as detailed
in the next subsection, demonstrating the important influence of annotated meta-
data.

Impact of k on TKSE

The performance of the proposed TKSE approach has been evaluated via cou-
pling the DDL-NLP classifier with other feature-based classifiers included in our
previous test. For the purpose of this experiment we only used original data due to
their preserved distinguishing power. For completeness in the illustration we tried
each value of k rather than using a recursive logarithmic search. As stated before
and shown in Figure 4.5(a), only tree-based approaches display a performance in-
crease with TKSE, whereas the others tend to be pejorative. It is also interesting
to notice how the curves are similar in their trend, in particular they all display a
local maximum for k ' 4 while performance starts dropping for greater values
(as more noises are introduced). On the other hand, F1-Score, as shown in Fig-
ure 4.5(b), is not positively affected by TKSE on ThingSpeak, since DDL-NLP
is already the highest among the algorithms – this is mostly due to the reason that
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Figure 4.4: Accuracy (above) and F1-Score (below) for ThingSpeak Dataset
[150].
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Figure 4.5: Accuracy (above) and F1-Score (below) of TKSE approaches evalu-
ated on different algorithms. Tree-based algorithms display an evident increase in
accuracy [150].

the proposed TKSE searching/tuning process is designed with the objective of
optimizing the classification accuracy instead of the F1-Score. This phenomenon
requires our future investigation, but nevertheless TKSE-RF keeps the F1-Score
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to approximately the same as DDL-NLP alone. Therefore, along with its superior
accuracy, TKSE-RF on BOS is by far the best choice among all the algorithms.

Evaluation of Runtime Performance

We have tested extensively the runtime performances of all the evaluated meth-
ods. The results are reported in Table 4.1 and time is measured in seconds over
the cross-validation process divided by the number of the folds (which gives the
actual training and testing time over a training and a test set). In particular, the
Swiss Experiments has a training set size of 273 and a test set size of 73, while
the ThingSpeak dataset has a training set size of 974 and a test set size of 117. It
is interesting to notice how algorithms perform differently on such datasets due to
the relatively larger number of instances in ThingSpeak and longer series in the
Swiss Experiment (e.g. BOPF performs better on the Swiss Experiment, whereas
BOSS on ThingSpeak). The slow performance of DTW is expected due to its high
worst-case time complexity O(n2m2), where n is the number of stream instances
and m is the series length. Other time series based methods mostly have a linear
complexity (w.r.t the input size of nm data points): BOPF and CBOS both have
a complexity of O(nm), although, in practice, CBOS is significantly faster, and
BOSS has a complexity of O(nm

3
2 ). TKSE-based experiments were performed

with logarithmic search that is relatively slower but more accurate. Overall, except
for SVM and DTW all the other methods perform well in runtime, and, in particu-
lar standalone RF and TKSE-RF flexibly trade off some runtime for classification
quality and exhibit better performances than others on both datasets.

4.2.4 Wrap Up and Future Perspectives
In this section we proposed novel algorithms to tackle the challenge of anno-

tation and classification of open IoT datastreams produced from heterogeneous
IoT environments. In particular, we first proposed CBOS, a bag of summary-
based approach to classify IoT datastreams based on numerical characteristic of
the underlying IoT datastream. Through experimental evaluations and valida-
tion, CBOS showed that, although IoT datastreams are reminiscent of time series
datasets, due to the heterogeneity in the sensor readings produced by IoT devices,
classic TSC approaches perform poorly while vanilla classifiers such as decision
trees and random forest based on bag-of-summaries (BOS) perform significantly
better when only considering the numerical characteristics of the IoT datastream.
Our second proposed algorithm namely TKSE uses a novel sequential ensem-
ble approach to take advantage of both 1) partially available textual metadata that

10This algorithm is written in C++ since the original code provided by the authors has been
used, implying stronger runtime baselines to compare with.
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Table 4.1: Runtime performances in training and testing of all the algorithms on
both Swiss Experiment and ThingSpeak datasets

.

Time in seconds Time in seconds
(Swiss Experiment) (ThingSpeak)

1NN-DTW [175] 5989.694 1528.244
BOPF10 [121] 5.87 36.589
BOSS10 [188] 79.028 15.628
CBOS 0.068 0.265
C4.5-BOS 0.045 0.138
RF-BOS 0.589 1.178
SVM-BOS 24.194 845.437
DDL-NLP - 1.286
TKSE-CBOS - 11.670
TKSE-C4.5-BOS - 7.195
TKSE-RF-BOS - 21.510
TKSE-SVM-BOS - 5082.260

describes the IoT datastream and 2) the numerical characteristics of the IoT datas-
tream. Through extensive experimental evaluations and comparisons with state-
of-the-art approaches in the literature, we validated the significant gain in accuracy
of the proposed TKSE algorithm while imposing minimal impact on runtime per-
formance. Future work can be devoted into further improving annotation quality
with more sophisticated features and ensembles that leverage all useful metadata
to some extent, as well as studying the behavior of sequential ensembles in the
presence of more than two classifiers. In fact, if we have more useful annotated
metadata, TKSE can then extend to a chain of Θ classifiers as below:

y = ΓΘ(T, 1,ΓΘ−1(T, kΘ−1, . . . (Γ1(T, k1,L)) . . . ))

where ∀θ ∈ {2, 3, . . . ,Θ} : 0 < kθ < kθ−1 and k1 < c. However, we still
lack an efficient algorithm that finds all the optimal ki. Furthermore, as shown in
experiment Section 4.2.3 our simple DDL-NLP approach alone works reasonably
well for ThingSpeak, although a larger (external) dictionary corpus and a more
sophisticated NLP technique (might be much slower) could be later considered.
However, the focus of our approach until now has been a novel and efficient way
of ensembling classifiers for better classification.
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4.3 INFORM: Framework for Open IoT Data An-
notation

The process of classification itself is not enough to guarantee the reuse and
the adaptability of Open IoT datastreams. In fact, many of these datastreams
lack semantic annotations, an essential component required to effectively use the
IoT data in contexts where interaction between several components is required.
Furthermore, in order to monetize the IoT data11 [89], it is imperative to under-
stand, contextualize and categorize the IoT datastream, e.g. whether a particular
IoT datastream is indoor or outdoor temperature, what is its unit of measure, etc.
Hence, a tool that is able to automatically categorize IoT data and semantically
enrich them with metadata extracted from domain ontologies and semantic sensor
ontologies is imperative. To address this issue, we the platform INFORM that: 1)
automatically infers types of IoT datastreams through the novel classification al-
gorithm TKSE presented in the previous section (Section 4.2.1); and 2) annotates
datastreams with metadata extracted from relevant domain-specific ontologies and
semantic sensor ontologies such as SOSA. Although still a future work, we devel-
oped the prototype of inform for a submitted work [78].The reference ontology
used for this work is IoT-Lite [22], proposed within the FIWARE project. The
Proof of Concept (PoC) implementation takes non-annotated IoT datastreams and
produces a semantically annotated IoT datastream using IoT-Lite for annotation
and TKSE for classification. At the moment we only classify the observation type,
as pointed out in the previous section (Section 4.2.1), however, we envision to be
able to infer much more metadata in the future. For such reasons, no individual
evaluation is available for INFORM, however, we necessarily introduce this piece
of software as a fundamental component that will put sensor classification and an-
notation into the big picture of our framework, outlined in Chapter 6. Figure 4.6
illustrates the overall architecture of the INFORM tool. INFORM tool consists
of two main components: 1) Top-k Sequential Ensemble (TKSE) algorithm that
underpins the IoT datastream classification (presented in Section 4.2.1) and 2)
IoT Datastream Annotator (DSA) that provides the mechanism to semantically
annotate IoT datastreams.

DSA is responsible for annotating the datastreams (using IoT-Lite) classified
by the TKSE component thus making them discoverable for other IoT applications
and providing a subscription model for IoT applications to subscribe their interest
and specify a corresponding domain specific concepts (in the form of an ontology)
for semantic enrichment purposes. The annotation of datastreams associates the
IoT-Lite class with the output class from the TKSE module and we expect it to
semantically enrich the annotated IoT datastreams with domain specific concepts

11http://www.terbine.com/slidedeck.html
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Figure 4.6: INFORM Architecture.

provided by the IoT application. The DSA component has three modules, namely
Datastream Manager (DSM), responsible for annotating and storing datastreams,
the Annotation Manager, which produces a semantically annotated datastream
based on IoT application requirement, and Subscription Manager, which handles
IoT application subscriptions.

Based on the proposed architecture, we implemented a prototype of the IN-
FORM tool as a JavaEE web application and deployed it on Payara Server 4.2.

Figure 4.7: Inform subscription manager UI.

This application has a number of Restful APIs that allow IoT applications to eas-
ily interact with INFORM. We developed a desktop application which allows the
IoT application users to subscribe for their datastreams of interest and manage
their subscriptions through a user-friendly UI.

Figure 4.7 depicts the user interface of the subscription manager developed
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to test the functionalities of the INFORM tool. The provided screenshot shows
an example of subscription in INFORM where the domain ontology of interest is
http://opensensingcity.emse.fr/ontologies/airQuality/,
which is a quite simple ontology for monitoring air quality. This screen consists
of two columns, Matched datastreams and Extracted attributes. The extracted at-
tributes column lists all the attributes INFORM extracts from the domain ontology
provided by the IoT application in the subscription stage. When the user clicks
on one of these attributes, based on the selected attribute, a list of automatically
matched datastreams will be loaded in the matched datastreams column.

Although a missing piece of the work, since more classified metadata would be
needed in order to perform an evaluation, we presented this software as a practical
support to the classification module in our big picture.
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Chapter 5

Mobile Crowdsensing for Device
Redundancy

This chapter outlines our contributions in the context of MCS and how we use
it to get the data we need. Specifically, it discusses a framework we proposed for
MCS applications in Smart Cities where both participants and stakeholders take
part for the common benefit as well as a distributed probabilistic algorithm that we
designed for urban contexts that could be affected by the “Curse of Sensing”.This
Chapter is written on top of our works in [149] and [147].
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5.1 MoCroSS: A Mobile Crowdsensing framework
for Smart Cities and Environmental Monitoring

In Sections 2.4 and 2.5 we talked extensively about MCS and its main chal-
lenges in the current and future research landscape. What is also evident from the
current trend in dealing with MCS is that, typically, research is oriented to the user
perspective of MCS. As a matter of fact, some types of data could be costly for
the user to get, such as the throughput of the cellular connection, therefore, their
transmission should be limited to what is strictly needed, in order to overcome
the Curse of Sensing problem. Moreover, crowdsensing campaigns are typically
designed on a single goal, thus, an individual participating in multiple campaigns
results in running different applications and potentially uploading the same mea-
surement to different servers, resulting in a wastage of resources, particularly at
the user’s side. A lot of data is already collected on the field by privates and insti-
tutions, such as the air quality, environmental noise, temperature and many others.
This is another facet of data redundancy, which has been discussed in Chapter 4.
MCS represents also an opportunity for stakeholders, that is to say, those who
have interest in gathering and analyzing data. An example comes from the mobile
network operators, which need to monitor the performance of the cellular con-
nectivity for their users by testing it on the field. Indeed, thanks to MCS, such
operators could potentially ask directly to the end users to perform connectivity
measurements and report the data. In such case, gathering a sufficient number
of users producing the measurements is clearly not straightforward, but it is less
expensive than sending a dedicated specialized team in the location of interest to
measure the connectivity, despite the additional cost that a data analysis step at
the server side in order to filter out poor quality MCS data would involve.

One of the major problems in this domain is the fact that a general purpose
paradigm in which stakeholders can declare their needs and users can report their
data to be analyzed by stakeholders is missing. In this section we propose a novel
paradigm, through a platform, that fills this gap, designed to be a module of our
prototypical framework, SenSquare, described in its big picture in Chapter 6. In
this document we will refer to this module as MoCroSS (Mobile Crowdsensing
module for SenSquare) (although it has been published as SenSquare [149], as it
was published before our more general architecture was designed). In MoCroSS
stakeholders can declare their campaign and ask for certain data, users can then
subscribe to the needs of stakeholders and report the data needed by them. Re-
quests for the same data by different stakeholders are automatically handled so
that users only report data once for all the requesting stakeholders when is needed.

We compare our smart system with its non-smart counterpart, in which all the
sensing clients send their data with respect to a local timer and are totally unaware
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of the community and the issues related to the Curse of Sensing that may occur.
We claim that our system brings several advantages and an overall benefit more
efficiently that the non-smart one for the following reasons:

• Depending on the targeted scenario, our proposal limits significantly the
amount of redundant data to be sent, received, stored and processed by the
remote data aggregator, especially during “data rush hours”. This is done
without affecting the results, hence avoiding power and resources waste.
The design of an algorithm that optimizes the amount of data to be sent is
beyond the scope of this section, which is mainly dedicated to outline the
architecture. In fact, here we introduce a simple rule-based upload policy,
while the actual algorithm is discussed in Section 5.2. The upload policy
presented here significantly outperforms the non-smart policy and it is a
first step towards the design of the distributed algorithm, which uses the
framework and the rules presented in this section.

• Crowdsensing applications are known to meet scarcely the needs of the final
user when the personal income is not immediately visible due to a lack of
incentives, thus a rewarding mechanism has to be adopted. MoCroSS is fed
by both the users’ willingness to get rewards from the stakeholders and the
stakeholders’ needs to get data from the users.

The rest of this section is organized as follows: Section 5.1.1 details our pro-
posed architecture; Section 5.1.2 focuses on the server side and its reasoning ca-
pabilities; Section 5.1.3 follows with the details of a possible client implementa-
tion compliant with our architecture (we shown this as a prototype); Section 5.1.4
summarizes the results.

5.1.1 System Architecture
In this section we outline the architecture and the main components character-

izing MoCroSS. The system is organized in a star client-server topology, meaning
that client entities have no real or virtual communication link between each other
and the whole set of reasoning capabilities is assigned to a centralized component,
which we refer to as the Central Coordination Unit (CCU). The overall architec-
ture is shown in Figure 5.1. In our scenario there are two sets of client entities.
The first one, which we refer to as the sensing clients or the participants – a term
recalling our original definition in 2.2 –, include any device equipped with sens-
ing hardware and network connection, belonging to a final user and capable of
reporting sensed data through the Internet, such as smartphones and embedded
devices. We also envisage a number of stakeholders to take part in our scenario
as the second set of client entities. In particular, they are able to push rules to

121



Figure 5.1: The overall system architecture. It is highlighted how a measurement
coming from two smartphones in the same zone is not required to be updated by
both (the red cross outlines a denied transmission) [149].
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the CCU in order to orchestrate the update rate of the sensing clients that are sub-
scribed to the campaigns they issued. On the other hand, stakeholders can obtain
the subscription of participants to their campaigns by offering some kind of rev-
enue, depending on both the needs of both parts. The task of the CCU is to gather
and store the measurements of the participants and to provide each of them, in a
smart way, with a command stating the update rate needed for each measurement
with respect to the rules of each campaign stored by stakeholders. More in de-
tail, whenever a sensing client starts its activity, by sending all the measurements
available from its sensors, the CCU replies, for each sensor type, with a tempo-
ral constraint (correspondent to a timer after which the measurement from that
sensor is not valid anymore and has to be resent) and a spatial constraint (corre-
spondent to a zone outside which the measurement from that sensor in not valid
anymore has to be resent). Clearly, the spatial constraint is significant only when
the sensing client is a mobile system, such as a smartphone or a wearable module.
More in detail, temporal and spatial constraints are based on a set of rules stored
in the CCU, which are formally defined in Section 5.1.2. In summary, each rule is
dedicated to one and only one type of measurement and specifies time and space
properties:

• The rule specifies a duration, which is the absolute time interval within
which the rule is valid, and a sampling time span, which indicates how
frequently the measurement should be updated (within the same zone).

• The rule specifies a zone of validity, which is the absolute zone within which
the rule is valid, and a sampling area granularity, which indicates the spatial
granularity of each measurement, that is, the area size outside which each
measurement is not considered to hold anymore and, thus, it needs to be
updated because it belongs to another sampling area.

Through our system, users can decide to subscribe to multiple campaigns is-
sued by stakeholders instead of sticking to the default rules. In fact, each type
of measurement has its own default rule, however, stakeholders can add to the
database their own rules, overriding the default ones, so that the participants sub-
scribed to a campaign of a stakeholder switches to a different update rate and can
potentially face a heavier resource consumption. On the other hand, stakeholders
offer a dedicated revenue to users in order to balance out the (often) higher par-
ticipation rate that they ask. As an example, a mobile network operator might be
interested in knowing the average cellular throughput (a costly resource in terms
of cellular traffic for the users, because they would need to perform data bursts)
with a spatial constraint of 10 meters and a temporal constraint of 5 minutes in
the zone around a point of interest (such rate is likely to be significantly lower in
the default rules). After a configurable number of uploads from a single client,
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it can offer a discount on the monthly phone plan for a subsequent period, which
represents a possible incentive pushing users to collaborate to the data collection.
It is worth mentioning that similar spatio-temporal control rules mechanisms have
been used for sensors and actuators such as in [15] and [11], however, the inter-
action with the stakeholders and the way in which spatio-temporal rules can be
included into each other has not, to the best of our knowledge, been presented so
far.

5.1.2 The Central Coordination Unit
As we already stated before, all the computational burden generated by our

ecosystem is concentrated on the CCU, which has always the control over the
monitored scenario. A section of its data store is dedicated to the set of rules
that determine the CCU’s responses, which, as said, include time and space con-
straints for the user’s next updates. More in detail, the CCU receives a set of
measurements from the sensing infrastructure and, for each of them, sends back
to the respective user a timer and an area that characterizes where and when such
measurement is valid, thus, implies in which cases the next update is required.

Timer for Measurement Update

A time constraint is represented by a timer after which the relative resource
is no longer valid and it is required to be updated. Clearly, some measurements
are supposed to change more often, hence different timers are associated to dif-
ferent sensors. For instance, the microphone, used as noise sensor, is expected to
be queried often, since the ambient noise can change rapidly and instantaneous
measurements are likely to give an accurate average value when their number is
not small. On the other hand, we expect air pressure values to change over a long
period of time, thus only few measurements per day are needed from a single user.
Time constraints can be fixed or change over time according to a set of other op-
tions, for instance, the amount of measurements received recently from a certain
zone. In this section we do not deal with such case, which is shown in detail in
Section 5.2, thus, for simplicity, we consider the time constraints to be fixed.

Zone for Measurement Update

Similarly to the time constraint, we use a spatial constraint in order to cope
with mobility within our scenario. For the sake of zone labeling, we use Military
Grid Reference System (MGRS) [156], which hierarchically encodes the world
map in square areas. As it can be seen in Figure 5.2(a), the world is divided in
6° by 8° rectangular geographic areas (except for a few cases close to the northern
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(a) (b)

Figure 5.2: Italy and the city of Bologna represented through the MGRS scheme.
In Figure 5.2(a) the system is at a coarse granularity, representing the 6° by
8° GZIs and their irregular division into 100 km sided squares. In Figure 5.2(b)
the 100 km sided square around the city of Bologna is represented, with its regular
10 by 10 square division [149].

and southern poles), uniquely identified by a Grid Zone Identifier (GZI), encoded
in two digits and one letter. Each of these grid zones is subdivided in 100 km
sided squares, identified by two more letters after the GZI. Such division is impre-
cise, in fact some squares are cut when crossing a grid zone edge. This happens
unavoidably due to the sphericity of the planet, for which, on a large scale, it is
impossible to set up a perfect squared grid. Each of the above mentioned squares,
as can be seen in Figure 5.2(b), is then further subdivided in 100 squares, dis-
tributed on a 10 × 10 grid, each with a 10 km side. All of them are identified
using two more digits (one for the x and one for the y coordinate) and further
subdivided repeatedly and hierarchically with the same system with a maximum
precision of 1 meter sided squares. Such reference system allows both to uniquely
identify squared zones of different granularity and to hierarchically obtain one of
the surrounding squares of bigger magnitude setting up a mask on the identifier
itself. Finally, a maximum precision of 1 meter is enough for our purposes, also
given the possible inaccuracies of the GPS. As an example, the north of Italy is
assigned to GZI 32T and the city of Bologna, which represents the area where we
deployed our test, as we will describe in Section 5.1.3, lies into a 100 km sided
square identified by 32TPQ. If, for instance, a smartphone geo-locates itself to be
into the square of 10 meters side identified by 32TPQ 5731 2957 (four digits for
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the x and four for the y), then we can infer that it also lies into the 100 m sided
square identified by 32TPQ 573 295, as well as the 1 km sided square identified
by 32TPQ 57 29, and so on so forth.

The Rules

Time and space conditions are based on a set of rules stored in the CCU’s
database, which can be either the default or specified by a stakeholder. In particu-
lar, a rule R is defined by a tuple 〈stakeholderID, sensorType, validityArea, sam-
pleGranularity, validityTime, sampleTimer〉, where R.stakeholderID is the identi-
fier for the stakeholder who owns the rule (or “default” if the rule has no owner),
R.validityArea identifies the MGRS identifier of the square within which the rule
is valid, R.sampleGranularity defines the area size within which each measure-
ment is valid and spans from 1 (100 km side) to 6 (1 meter side), R.validityTime
defines the timestamp until when the rule is valid and R.sampleTimer defines the
time span in seconds within which each measurement is considered valid. We ex-
ploit squares of different sizes, depending on the nature of the sensor and the rules
stored in the database. In case of multiple rules involving the same sensor for the
same area (for example when participating in multiple campaigns requiring simi-
lar observations) we always choose the smallest one for the sake of identifying the
spatial constraint for the resource. Similarly, the shortest timeout is picked for the
time constraint. In other words, we always pick the strictest spatial and temporal
constraints as, by satisfying the most demanding rules, we are also able to fulfill
the requirements of the coarser ones. We also define two operators. The unary
operator � extracts the granularity from an MGRS coordinate. For instance, let C
be 32TPQ 5731 2957; then, �C = 5. The operator⊕ is the mask operation: A⊕ b
extracts the MGRS area of granularity b containing the MGRS area A. This is
easily obtained by removing the last �A− b digits from both the x and the y coor-
dinates of A, which has granularity �A. Clearly, �A ≥ b, otherwise the operation
is not possible. For instance, using C defined above, C ⊕ 3 = 32TPQ 57 29.

More formally, let R1 and R2 be two different rules characterized by the re-
spective tuples in the database. They are both applicable to the same measurement
if and only if they are both valid, i.e. when the following conditions are verified:

{R1, R2}.validityTimer ≥ currentTime
R1.sensorType = R2.sensorType
R1.validityArea ⊆ R2.validityArea

,

where⊆ represents the geographical inclusion between square areas. IfR1, . . . , Rn

are all applicable, then we instruct the participants by sending a configuration
with max{R1.sampleGranularity, . . . , Rn.sampleGranularity} as the spatial con-
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(a) (b)

Figure 5.3: Two screenshots of the prototype client application implemented in
Android. They show the geo-fencing active on two instances of the smartphone
application. Figure 5.3(a) it resembles the surrounding circle for a 100 m sided
square, while in Figure 5.3(b), where the application is subscribed to more than
one stakeholder, a second circle for a 10 km sided square is shown [149].

straint andmin{R1.sampleTimer, . . . , Rn.sampleTimer} as the temporal constraint.
By performing this operation we assure that all the rules are satisfied.

5.1.3 The Crowdroid mobile application: a prototype imple-
mentation

In this section we present the implementation of our proposal and an Android
client mobile application developed as a demonstrator. Smartphones belonging to
users are potentially a gratuitous set of environmental sensors and the most rep-
resentative example of MCS. In our scenario they are the core entities collabora-
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tively forming the sensing infrastructure, configured by the CCU. As a deployment
for our proposed architecture, we built a Python CoAP/REST server together with
a MySQL database as the CCU and we also developed an Android application for
smartphones, named Crowdroid, as the mobile sensing clients for the scenario.
The application, at its bootstrap, checks the presence of the sensors we consid-
ered for crowdsensing purposes, performs the respective measurements and sends
the whole set of sensed data to the CCU, which returns a spatial and a temporal
constraint for each sensor involving the subsequent updates as explained in Sec-
tion 5.1.2. The sensors and measurements we take into account are: barometer,
light sensor, noise sensor, temperature, relative humidity, signal strength (RSSI)
and throughput for both WiFi and the cellular technolgy used (LTE, UMTS). In
particular WiFi RSSI is useful when assessing connectivity relative to WiFi in-
frastructural networks (such as the ones used by universities or companies) and
public networks. In our case, we detect BSSID, RSSI and SSID of the connected
access point. Observation of the RSSI over the cellular infrastructure gives us
feedbacks on the connectivity in different city zones and times. Furthermore, we
perform throughput tests as measurements using a default of 50 kB burst in up-
link and downlink. The latter represents a case for which measurements are very
costly if performed frequently. In addition, we note that stakeholders can specify
different packet sizes to be downloaded or uploaded for the throughput test, de-
pending on their monitoring purposes. For some of the measurements, due to the
Android listeners architecture, are not triggered by the application, thus the actual
measurement is not driven by the CCU’s command. This is the case of tempera-
ture, air pressure, light and humidity, which are updated onto the client whenever
a change is detected, while the CCU only instructs the client on when to upload
them. The sound level is measured using an internal software timeout and the
RSSI measurement is updated internally upon its variation, while the throughput
test is performed upon a request by the CCU in order to avoid a resource waste.
Each measurement is encoded in a JSON record and forwarded to the CCU us-
ing the CoAP application protocol, which is significantly lighter than HTTP and
more suitable for large-scale sensing applications [191]. The client receives the
update timer and the center as well as the length of half the diagonal of the de-
signed MGRS square delimiting the validity of the measurement. The diagonal of
the square is used in order to exploit the geo-fencing facility on the smartphones
[187], which allows the application to declare circular areas and send a notifica-
tion when the client detects itself to get in or drop out of the selected region. As
geo-fencing uses circular areas, we established to use the circumscribed circle for
each of the square areas, using half the diagonal as the circle’s radius. With this
method we ensure that no observation inside the MGRS area is lost, even though
the spatial precision is lower [31]. A more precise localization would be possible
by continuously polling the GPS, which, however, would rapidly deplete the bat-
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tery level of the device, hence limiting its practical use and potentially decrease
the willingness of users to install the application. A screenshot of the application
showing the geo-fencing is shown in Figures 5.3(a) and 5.3(b).
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Figure 5.4: Diagram showing the variability of the update time over 230 mea-
surements compared with the ideal non-smart approach, highlighting the different
granularities that can be configured with MoCroSS [149].

We select as a test case the city of Bologna, which happens to be split in two 10
km sided squares in the MGRS system, one identified by 32TPQ 8 2 (the southern
one) and the other by 32TPQ 8 3 (the northern one). We set up the default ruleRL
for the light sensor using RL.sensorType = Light, RL.sampleTimer = 300 and
RL.sampleGranularity = 2, that is, a 100 km sided square. Finally, we introduce
a stakeholder interested only in the northern half of the city, which declares a new
rule RS, setting up RS.sensorType = Light, RS.sampleGranularity = 4, that is,
a 100 m sided square, and the area of validity RS.validityArea = 32TPQ 8 3. The
diagram in Figure 5.4 shows how the timer for the update varies over a time span
of about 10 hours for a smartphone owned by one of the test users. More in detail,
on the x-axis the updates in chronological order are labeled with an increasing in-
dex, while on the y-axis we show the number of seconds elapsed from the previous
update. It is clear how, while the user is within the southern square, the updates
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Figure 5.5: Histogram showing the number of updates required by MoCroSS to
two different sensors, grouped in 15 minutes time slots [149].

are triggered at a regular interval and mostly regulated by the time constraint. In
such case, few irregularities are found, probably due to connection failures (high
spikes) or sporadic geo-fencing border crossing (low spikes). On the other hand,
while the user is within the northern square (where the train station is located), the
spatial constraint appears to be more effective, making the device send updates
more frequently. During this period, which approximately relies within the inter-
val [40, 180], high spikes probably denote a user moving slowly or standing still,
while low spikes denote a user walking fast and/or crossing a small lateral portion
of a 100 meter sided square. If compared to a non-smart application, which sends
data at a constant rate, the difference is evident. We assumed a rate of 60 sec-
onds for the non-smart approach, which guarantees a constant update, however it
is clear from the figure that the same number of updates covered a period of about
3.5 hours, thus, a lot more updates are required, resulting in a possible waste of
mobile device resources.

In Figure 5.5 we show a time-based analysis concerning the amount of updates
for MoCroSS and its non-smart counterpart, considering a sample user reporting
data to our infrastructure. We performed a test on two different measurements in
the southern square of Bologna (i.e. identified by the 32TPQ 8 2 MGRS square).
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We set the rule RN noise sensor (i.e. RN.sensorType = Noise) with a default
time constraint of RN.sampleTimer = 80 seconds, while the default rule RC
for the cellular RSSI (i.e. RN.sensorType = CellRSSI) has a time constraint
of RC.sampleTimer = 300. The considered stakeholder requires for both the
measurement a spatial constraint of 10 meters. During the first part of the time
span (before 3:00 PM) it is evident that the update rate is more spatial-driven,
because of the user was walking around, while when the user stands still, in the
second part of the time span (after 3:00 PM), the update rate is more time-driven.
This behavior can be clearly seen by the noise bars reporting the data around 15
times per quarter-hour, while the connectivity report is given around 3 times per
quarter-hour. On the other hand, the non-smart approach requires the same update
rate regardless of the spatial conditions, asking for useless measurements, as the
horizontal line at 15 updates per quarter-hour shows.

5.1.4 Wrap Up and Future Perspectives
In this section we presented MoCroSS, a MCS architecture for collaborative

IoT and its application to a case study performed with mobile devices. We out-
lined the advantages that MoCroSS brings both for users and stakeholders in terms
of saving resources, limiting the amount of data to be published while still keeping
its precision and pushing the users to collaborate through monetary incentives. We
also developed an Android mobile application, namely Crowdroid, as a demon-
strator in order to prove its effectiveness, comparing it to its non-smart counter-
part. The advantages of a Smart MCS architecture over the non-smart proposal is
evident, both in terms of measurement precision as well as resource waste.

We envisage as a future work the inclusion of machine learning techniques
addressed to establish the needed number of measurements in a specified zone,
determined by the data variance and the number of reporting users. In this way
the rules will shift from static to dynamic, outlining a self-adapting elastic IoT
ecosystem. The next section (Section 5.2) outlines a distributed algorithm to con-
trol thedynamically the data collection in an area. We also want sensing clients
to produce data either by sensing or enter the observations through a participatory
approach. Although the latter requires a more active user participation, it is still
supported by our architecture, in fact, clients can submit their data manually and
gain consequently a reward, provided that the information is relevant and trust-
worthy. Data reliability could be based on other user’s feedbacks, but we leave
this mechanism as a future work as it is out of the scope of this section. Further-
more, in a future development we foresee to use rules to identify malicious users,
attempting to corrupt the data pushing more frequently than requested and with
measurements far from the mean values.
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5.2 Distributed Data Collection Control

Recalling what has been discussed in the previous section (Section 5.1), there
is currently a huge interest in monitoring relevant environmental and urban phe-
nomena. Most of the times, the costs for such activities may be unpredictable and,
often, investing dedicated resources results in a consistent loss of money. Nev-
ertheless, tasks such environmental and infrastructural monitoring are considered
of paramount importance for predicting events, avoiding dangers and providing
dedicated and improved services to citizens. In this section, as in the previous
one, we focus on the usage of MCS in such use cases and address the problem
of regulating the amount of data to be transmitted by the participants. In fact,
according to the definition of the Curse of Sensing, controlling properly the data
flow results in an overall energy saving, since devices are discouraged to transmit
when not necessary, and limits data redundancy while still satisfying the required
coverage.

In light of this, in this section we present the work published in [147], a dis-
tributed probabilistic algorithm that aims to control the amount of data generated
and transmitted by participants, so that it tends to a defined value. The scenario we
take into account is the same as MoCroSS, previously introduced in Section 5.1.
It belongs to a poorly investigated category of MCS architectures; in fact, the co-
ordinator is unable to infer the number of participants in the zone, as their position
is not continuously tracked. Therefore, we designed a distributed algorithm ca-
pable to regulate the number of observations over time towards a desired value
without the need of extended common knowledge about the scenario. In partic-
ular, the algorithm falls in the category of “Distributed Heuristics” discussed in
Section 2.5.4. Another key parameter we take into account is the fairness: as
probabilistic solutions cannot assure that participants contribute equally, we are
interested in granting as much fairness as possible in order not to rely on few de-
vices and leave others underutilized. This is important when considering energy
depletion, since, without fairness, we would only care about the overall energy
without considering how much individuals consume. We assess the performances
of our proposal through extensive simulations in order to estimate its effective-
ness and its adaptability. We also take into account macro mobility of users using
a publicly available mobility dataset for pedestrians through which we will show
the algorithm’s reactiveness to changes.

The work presented in this section differs substantially from the related works
enlisted in Section 2.5.4 and brings a novel and lightweight approach to a barely
investigated problem. The scenario that we are taking into account is characterized
by the following novel features:
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1. Our ecosystem is user-oriented and push-based. Participants and their de-
vices are not instructed directly by any entity, instead, they decide where
and when to contribute with their data, upon the suggestion of stakeholders
and actors who can provide incentives, as indicated in Section 5.1 as well
as in [149] and [148]. As a consequence, we cannot identify the scenario
as task-oriented, since no task is effectively assigned to users as in other
works. Instead, tasks are normally continuous and, despite they can be at-
tributed with an expiry date, they do not have the notion of being completed,
since they refer to periodic environmental measurements.

2. The platform does not have any direct control over the users, meaning that
any information pushed by a participant is atomic and the participant is not
tracked. Although the central entity knows who uploads each observation,
it cannot infer who is in the interested zone at a defined moment, thus it has
a limited knowledge about the number of participants in such area. This dis-
tinguishes the present work from the ones presented in the literature, where
the position of each participant is typically known. We decided to pursue
this choice because it is way more privacy-friendly compared to approaches
that explicitly task individual nodes.

3. The system is centralized and assumes an infrastructure-based communica-
tion technology (e.g. LTE), thus we do not focus on communication issues
that may occur.

The section is divided in the following structure: Section 5.2.1 defines the
problem and all its parameters, Section 5.2.2 illustrates the baseline algorithms
we use and the one we proposed, Section 5.2.3 describes how we carried out our
evaluation tests and their results and, finally, Section 5.2.4 gives a summary of
what has been discussed here.

5.2.1 Problem Statement

Given the assumptions, the background and the ideal goal that we outlined in
Section 2.5, the essence of this work is concentrated on minimizing the number
of data transfers in excess performed by participants. The priority of the central
platform remains, however, the achievement of a defined number M0 of observa-
tions within a given time span, a scenario strongly subject to the Curse of Sensing.
Furthermore, the systems aims to homogenize the contribution given by each ac-
tor, that is, maximize the level of fairness of the ecosystem. Through the rest of
this section, we assume to be part of an MCS platform such as the one presented
in Section 5.1, thus, we can make the following assumptions:
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• With respect to the MGRS encoding, on top of which our platform in [149]
and [148] is built, we can assume that our algorithm operates within a square
area in which every observation is assumed to refer to the same phenomenon
(e.g. if the participants are measuring the temperature within a 100 m ×
100 m square, the temperature values are assumed to be homogeneous).

• The participants communicate with the central entity via IP-based technolo-
gies, therefore connection issues and delays are not considered, since tech-
nologies such as WiFi and LTE are assumed to provide enough coverage to
the whole area.

• The central entity does not track the identity of the participants posting ob-
servations, it only receives such observations seamlessly. As a consequence,
it has no clue about the number of active participants within the monitored
area, nor it can estimate it from the number of observations.

Given such assumptions, we can model the problem asN different stations that ad-
here to the MCS campaign and perform observations against a given phenomenon.
Such numberN can vary over time due to mobility, in particular, participants may
leave the interested area, whereas new ones may join it. We assume to split our
timeline in time slices ∆ti, that represent the atomic units during which a station
cannot transmit more than once due to internal clocks. We also assume that the
stations will send periodically observations relative to a certain resource Ψ0. The
central entity’s goal is to obtain exactly M0 observations about Ψ0 within every
time window Ti, the length of which is given by |T | = w. We follow the approach
of the sliding window, thus Ti = {∆ti−w, . . . ,∆ti}, this means that Ti and Ti−1

are overlapping by w − 1 time slots. The central entity displays the performances
of the data collection through a Satisfaction Index (SI), which is calculated upon
each time window Ti and it is defined as SIi = mi

M0
, wheremi is the actual number

of observations received within Ti. The aim of the central entity is to obtain a SI
equal to 1 (or as close as possible).

5.2.2 Proposed Algorithm
It is easy to observe that, from the point of view of the central entity, estimating

the number of participants within the interested area is an ill-posed problem. For
such reason, we propose a probabilistic distributed algorithm that reaches asymp-
totically the problem’s fixed point. In order to achieve it, we make use of two
different variations of the well known Asymptotically Optimal Backoff (AOB) al-
gorithm, which was introduced and validated firstly in [25], although originally
studied for a different problem. Such algorithm was developed for estimating the
optimal backoff for a number of stations aiming to transmit to an access point
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(AP) in CSMA/CA-based environments, such as IEEE 802.11. In brief, the basic
algorithm works as follows: stations are provided with the SIi, relative to ti, of
the central entity (the AP), which spans from 0 to 1; subsequently, the stations
calculate the probability of transmitting at the step ti+1 as Pi+1 = 1 − SIi. This
way, the more the central entity is occupied, the more stations are discouraged
to transmit and vice versa. However, such algorithm was designed and tuned for
environments in which only one station could transmit at a time due to collisions,
whereas, in our scenario, all participants are allowed to transmit in the same time
slot. We avoid further details for space constraints, and we refer the interested
reader to [25]. Hence, here we present two variations of the AOB algorithm that
we designed in order to achieve the goals outlined in Section 5.2.1.

Asymptotic Opportunistic algorithm for Satisfaction Index (AO-S)

The balance provided by legacy AOB method is not enough for our scenario
to reach a SI close to 1, thus we design a booster mechanism that pushes the
number of transmissions when the SI tends to stabilize at a low level. Conversely,
it hinders further the transmissions whenever the SI is too high. Given such
premises, we define the transmission probability as:

Pi+1 = 1− SIbi (5.1)

where b is defined as the booster factor, which is modified iteratively until SI
reaches a satisfactory point of stability. In particular, we aim to force SI ∈
[uSI ;tSI ], where uSI and tSI are, respectively, the lower and upper bound for
considering the SI acceptable. In order to estimate the point of stabilization of
the SI , we use the average SI over its last θ values:

ASIi =

∑i
j=i−θ SIj

θ
(5.2)

Ideally, we aim to increase or decrease b with respect to the current value of ASI
iteratively, that is, AO-S algorithm periodically runs Algorithm 3, which incre-
ments or decrements b by one unit per stage, however, b does not follow the inte-
ger numbers’ succession. In particular, we define the function inc(b) and dec(b)
as:

inc(b) =

{ 1
(1/b)−1

if b < 1

b+ 1 otherwise
(5.3)

dec(b) =

{
b− 1 if b > 1

1
(1/b)+1

otherwise (5.4)
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Figure 5.6: Diagram showing the probability curve with respect to the last re-
ceived value of the SI . The solid line represents the probability calculated upon
Pi+1 = 1 − SIi, the other curves show Pi+1 = 1 − SIbi for different values of b
[147].

In other words, the scale of values for b is designed to enable different curves of
increased (or decreased) steepness, forcing higher or lower values of the probabil-
ity, as shown in Figure 5.6. In conclusion, we set the goal of AO-S as minimizing
the deviation index DI , i.e. the difference over time (up to a time slot tτ ) between
ASI and 1:

DI = |1−
∑τ

i=0ASIi
τ

| (5.5)

Asymptotic Opportunistic algorithm for Fairness (AO-F)

While AO-S algorithm is committed to grant the achievement of a SI close to
the optimum, it still lacks fairness. In other words, there is no evidence that the
load of transmissions is balanced equally among all the participants. For such rea-
son we adopt a fair variant of the AOB algorithm, leveraging a concept introduced
in [25], defined as AO-F. In particular, we define the transmission probability as

Pi+1 = 1− SI1+k
i
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where k is the attempting factor, tuned upon the number of time slots elapsed
since the last transmission, i.e. the number of consecutive time slots for which the
participant decided to back off. More in detail, k is calculated as k = blog2(j)c,
where j > 0 is the number of ti slots elapsed since the last transmission. It is
clear that such mechanism pushes stations that experienced a significant num-
ber of consecutive backoffs to transmit with a higher probability than the others.
More specifically, with the AO-F algorithm, we aim to maximize the transmission
fairness among the participants, for which we adopt Jain’s Fairness Index (JFI)
[96]:

JFI =
(
∑N

h=1 xh)
2

N ·
∑N

h=1 x
2
h

(5.6)

where xh indicates the total number of transmissions performed by the partic-
ipant h.

Combining the approaches

In this section we provide a combination of the AO-S and the AO-F algo-
rithms, which we define as Asymptotic Opportunistic for Joined Fairness and Sat-
isfaction index (AO-JFS). We aim to:

1. Minimize the DI , which has an optimum value of 0 .

2. Maximize the JFI , which ranges from 1/n to 1.

Hence, we define the transmission probability as

Pi+1 = 1− SICi (5.7)

where C is given by the combination of b and k as C = inck(b), with fn(x)
indicating the iterative composition as fn(x) = f ◦ fn−1(x). After extensive
experiments we found that, for different values of b, k can sometimes be disruptive
for the DI . For such reason we redefined k on top of b as follows:

k =

{
blog2(j)c if b < 1
j · b if b ≥ 1

(5.8)

The resulting AO-JFS algorithm, formalized in Algorithm 3 calculates the b
value at each time slot and it is performed by the central entity, which is committed
to broadcast such value to the participants. Each participant, at each time slot,
calculates its own probability of transmission on top of the received value of b and
its own j. Such procedure is outlined formally in Algorithm 4.

Participants are allowed to operate in two different modes:
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Algorithm 3 Update the booster value b
calculate new SI
if SI > uSI then
b := dec(b)

else if SI < tSI then
b := inc(b)

end if
broadcast(SI, b)
sleep(|t|)

Algorithm 4 Calculate locally the probability of transmission
receive(SI, b) {Only in active mode}
if b < 1 then
k := blog2(j)c

else
k := j ∗ b

end if
C := b
for i := 1 to k do
C := inc(C)

end for
P := 1− SICi
transmit with probability P
if transmitted then
j := 0
receive(SI, b) {Only in power save mode}

else
j := j + 1

end if

1. Participants operating in active mode, at each time slot ti, as indicated in
Algorithm 4, perform a listening phase in which they capture the broadcast
message from the central entity. Thus, the SI and the b values are updated
constantly.

2. Participants operating in power save mode, as indicated in Algorithm 4,
obtain the updated values of SI and b only as a response to their transmis-
sion. This way, they are not updated in real time at each ti. It is clearly a
disadvantage for the sake of performances; however, it is a viable choice for
participants willing to consume as less as possible while still being part of
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the sensing community.

5.2.3 Simulation
In this section we demonstrate the effectiveness of our algorithm through ex-

tensive simulations. In this work we perform our evaluation study over both a
static scenario, i.e. where the number of participants in the interested zone does
not change over time; and a mobile scenario, i.e. where the number of participants
changes according to mobility traces. In particular, we assessed the performance
of the AO-JFS algorithm presented in Section 5.2.2 in comparison with AO-S and
AO-F algorithms as baselines.

Static Scenario

Within the scope of the static scenario, we took into account both sparse and
dense environments; in particular, we assigned to N the values 5, 10, 20, 50,
100, 200. The time slot t is set to 10 s and every participant performs a single
transmission decision located randomly within such time span. T is set to 30 and
M0 is set to 100. We set the upper bound uSI to 1.15 and the lower bound tSI to
0.95 and we also limited b to a minimum of 1/8 and a maximum of 50. In order
to avoid extreme behaviors we needed to force P to never assume the values 0
or 1. For such reason, we introduced 0.001 and 0.999 as respectively lower and
upper bound for P . Given such parameters, we performed a consistent number of
simulations for each chosen value of N assuming participants operating both in
active mode and in power save mode.

Mobile Scenario

We represented participants’ motion through the use of macro mobility – we
only consider the events that cause participants to exit and/or enter the interested
zone – considering all of them as pedestrians. In particular, we used the “KTH
Walkers Dataset” of pedestrian traces [81], that have been generated using differ-
ent levels of density using the urban area of Östermalm – a district in Stockholm
– as a location. We manipulated the traces in order to extract the instants where
participants either join or leave the area. For the purpose of the present work, we
selected one trace such that, after a transient in which participants are spawned, it
reaches a steady state which counts around N0 = 200 participants on the average
at the same time. In order to reach comparable conditions with the static scenario,
we introduced, for each join event, a probability Ps = 1− (N/N0) of blocking the
creation of the relative participant for each value of N used in the static scenario.
Each other parameter is set as in the static scenario.
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Figure 5.7: Diagram showing the aggregated PDF with respect to all the collected
values of the SI over different values of N in a static scenario (a) and a mobile
scenario (b), with all nodes operating in active mode. The case of nodes operat-
ing in power save mode is given in (c) for the static case and (d) for the mobile
analysis.

Minimizing the deviation

Here, we focus on the goal of obtaining the number of observations M0 that
the central entity requires, i.e. minimizing theDI . Figures 5.7(a)-5.7(b) show the
performance of the three algorithms with all the participants operating in active
mode; in particular, the aggregated Probability Density Function over all the used
values of N is shown with respect to the SI . In particular, we collected all the SI
values for a 3-hours simulation leaving out the first λ values, which are subject to
the transient bias, as we are interested only in the steady state behavior of the SI .
In all our simulations we set λ = 100. In general, it is clear how AO-F fails in
achieving a good value of DI as it is too dependent on the number of participants
and the SI assumes many more different values. As a matter of fact, in sparse
scenarios, i.e. when N is small, the SI gets stuck to a value lower than required;
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Table 5.1: DI and JFI with participants in active mode [147].
N = 5 N = 20 N = 100 N = 200

Static
DI (AO-S) 0.0389 0.0114 0.0029 0.0066
DI (AO-F) 0.3101 0.0404 0.0327 0.4796
DI (AO-JFS) 0.0314 0.0011 0.0038 0.0133
JFI (AO-S) 0.9761 0.8711 0.6430 0.5529
JFI (AO-F) 0.9999 0.9870 0.8458 0.9843
JFI (AO-JFS) 0.9796 0.8803 0.8395 0.7513
Mobile
DI (AO-S) 0.1196 0.0198 0.0048 0.0038
DI (AO-F) 0.3877 0.0660 0.0056 0.0555
DI (AO-JFS) 0.1166 0.0057 0.0058 0.0037

conversely, in highly dense scenarios the SI is too high. With respect to such
metric, we observe that AO-S and AO-JFS reach successfully a high number of
SI values close to 1 for mostly all the values of N . Comparing Figures 5.7(a)
and 5.7(b), respectively the static and the mobile scenario, we observe that AO-
S is more affected by mobility rather than AO-JFS. This suggests that AO-JFS
is more robust against changes and quicker in reverting to a steady state when a
perturbation occurs. We can observe from Table 5.1 that DI is minimized in AO-
S in dense scenarios, whereas in sparse scenarios it is minimized in AO-JFS. In
any case, AO-JFS and AO-S perform similarly, while AO-F performs poorly.

Figures 5.7(c)-5.7(d) show the performance of the three algorithms with all
the participants operating in power save mode, using a PDF as in the previous
case. Since the power save mode yields by assumption worse performances, here
we used a different scale of values on the axes in order to better highlight the
differences. In fact, we can observe that, as expected, the lines tend to cover many
more values due to the inaccuracy of the updates received by each participant.
Furthermore, as in the previous case, AO-F fails in reaching an acceptable value of
SI , especially in sparse and dense scenarios. We also notice that AO-S, similarly
to the active mode, does not achieve a precision as good as AO-JFS does. In
addition, we observe in Figure 5.7(d) that many values of the SI tend to cluster
in another spot. This is mainly due to new participants joining the area, who do
not receive the value of the SI before any transmission, thus they transmit for the
first time upon a default value of P even when the SI is already too high. We
can notice in Table 5.2 that, similarly to the active mode case, AO-S and AO-JFS
share almost equally the minimum DI , although the overall performances of the
power save mode are poorer than the ones for the active mode.
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Table 5.2: DI and JFI with participants in power save mode
N = 5 N = 20 N = 100 N = 200

Static
DI (AO-S) 0.1749 0.0906 0.0199 0.0843
DI (AO-F) 0.3124 0.1813 0.1346 0.5629
DI (AO-JFS) 0.0750 0.0020 0.0728 0.1351
JFI (AO-S) 0.9582 0.7828 0.4290 0.3781
JFI (AO-F) 0.9993 0.9611 0.9670 0.9854
JFI (AO-JFS) 0.9986 0.6715 0.6039 0.5917
Mobile
DI (AO-S) 0.2402 0.0190 0.0805 0.7587
DI (AO-F) 0.3661 0.1284 0.3155 1.5702
DI (AO-JFS) 0.1597 0.0200 0.1589 0.7866

Maximizing the fairness

Here, we focus on maximizing the fairness of the system, i.e. maximizing the
calculated JFI for each configuration. Since AO-F is specifically designed for
fairness, it performs always better than the others in terms of balance. We can
observe it from Tables 5.1 and 5.2, in which the JFI value for AO-F is higher
than the others. However, such algorithm is itself not sufficient to achieve a good
value of DI , thus, we aim to consider solely the other two algorithms as potential
candidates. We can notice that, apart for only one case, our AO-JFS performs
significantly better than AO-S in terms of fairness. We did not collect the JFI
values in the mobile case, since it would need more microscopic information as
participants do not linger in the interested zone for the same period of time. Fair-
ness degrades naturally with the increase of participants because, assuming that
they transmit with the same probability, fewer participants would more naturally
balance, as each contribution tend to matter more when calculating the SI .

5.2.4 Wrap Up and Future Perspectives

In this paper we have presented a distributed probabilistic solution for achiev-
ing a satisfactory amount of observations in opportunistic MCS scenarios that
addresses the Curse of Sensing problem. In particular, we defined our goals as
the closeness of the number of observations to a certain value as well as the fair-
ness among the participants, in order to grant a minimum overhead of messages,
a maximum balance of the messages among participants, and the achievement of
a desired number of observations per time unit. We introduced the MCS prob-
lem relative to a scenario different from the vast majority of the ones present in
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literature and we provided two distributed algorithms as a baseline for solving
the problems. We also defined a combined approach using such algorithms and
we showed that it has good performances over all the problem requirements. Fu-
ture works are oriented to extending such work to a multi-sensor case and across
multiple areas. Furthermore, we plan to integrate the participatory case, which
is particularly useful when, despite the distributed algorithm, some areas remain
uncovered.
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Chapter 6

SenSquare: a Collaborative IoT
architecture for Smart Cities and
Environmental Monitoring

This chapter outlines our contributions in prototyping frameworks and plat-
forms that take advantage of the data collected through CAPs. Specifically, it
discusses SenSquare, our demonstrator in which we developed a service-oriented
layer devoted to compose customized services using the data that we collected
collaboratively. This Chapter is written on top of our work in [148].
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6.1 The Framework
As we first introduced in the preface to Chapter 2, a key feature of a complete

IoT ecosystem its the ability to get knowledge out of the data. Canonically, the
main trend in tackling such challenge relies in service composition and discovery
[13], typical features of a SOA. In fact, pretty much all the IoT high-level archi-
tectures and middlewares proposed so far have a SOA connotation. In the same
way, following up our research question in Chapter 3 – i.e. how do we offer the in-
formation that could be inferred from the multitude of raw datastreams collected
through CAPs –, we designed a SOA middleware that is responsible for aggre-
gating raw datastreams in composite services and deliver them to the final user.
In order to do so, in accordance with the philosophy that we conveyed throughout
the whole dissertation, we enable the service and knowledge sharing among all the
users of our ecosystem (being them privates or companies). Actors in our ecosys-
tem can be participants and provide their sensed data through MCS and Open Data
paradigms (as in Chapters 4 and 5). They can also be stakeholders and provide
a revenue soliciting more contribution regarding certain areas or certain types of
data that are more of interest than others (as in Section 5.1). Whichever of these
role they cover (if any), they can also be final users of our platform, who create,
share and use customized services that actually transform datastreams in valuable
knowledge for their needs and the common benefit.

The effectiveness and the exploitability of this paradigm in a plethora of IoT
application, both in the rural and the urban context, is demonstrated through the
real implementation of our prototype platform: SenSquare. It has been under de-
velopment and improvement for some years and the architecture changed slightly
as we introduced new components. The first version was introduced in [148],
which was our pioneering effort in the field of Collaborative IoT and, since then,
we have explored all its components (many of them presented as contributions in
previous sections), until we reached the current version. We recall that this is not a
proposal for a new IoT architecture to which we expect public and private entities
to adhere, rather, it is a prototype that demonstrates the potential of a CAP-based
solution for IoT applications. In fact, we still consider all the previous or differ-
ent client interfaces that we developed throughout our research work to be valid
contribution and possible options, even though we made significant changes over
time. Nevertheless, when we refer to SenSquare, we specifically focus on the cur-
rent version of SenSquare.

The overall architecture is presented in Figure 6.1, which we can conceptually
separate in three different areas:

1. The data gathering part is devoted to collect data through CAPs. It occu-
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pies the whole upper right corner of the figure and it includes all the compo-
nents that are actually committed to produce data. Specifically, it includes
reliable and unreliable Open Data repositories, together with the classifica-
tion infrastructure, as well as the whole MCS area, together with the CCU
and the architectural components that manage the data collection in MCS.
The gateway to other architectural sections is the INFORM architecture, in
particular the Annotation Manager, which outputs annotated and uniform
datastreams.

2. The data aggregation part is committed to unify data coming from different
sources and forms a layer of abstraction that transforms raw data in complex
services. It is the core of the SenSquare architecture, where the service
composition takes place. It is located in the upper left corner of the figure
and includes the persistent storage system (i.e. the three databases shown
in the figure) and the SenSquare service platform. This macro component
takes in input the unified raw datastreams and outputs aggregated and ad-
hoc services, shared with the community and based on the needs of users.

3. The user experience part provides the users with an access to the system
and allows them to create, share and make use of customized and dedicated
services, depending on their needs as an individual or a company.

We will discuss these components in detail throughout this section.

Data Gathering

The lowest layer of the architecture of SenSquare is in charge of retrieving
useful datastreams from publicly available resources and potential contributors.
This task is clearly non-trivial due to the heterogeneity of the data sources as well
as their potentially variable data quality, an issue that we discussed extensively in
Chapter 4 and 5.

Within the scope of public Open Data (Chapter 4), the only way to retrieve all
the possible datastreams is to construct a dedicated data scraper for each source
that periodically performs HTTP requests in order to extract the updated data
points from the web. In the figure we represented both reliable and unreliable
Open Data Sources, with some examples for each category, as well as their ded-
icated scrapers in dark and light green boxes. Data scrapers are scripts that run
periodically and update the knowledge base with fresh data points. Both reliable
and unreliable resources have been tested with success, in particular, we extracted
air quality datastreams from the Regional Agency for the Protection of the En-
vironment in the Italian region Emilia-Romagna (ARPAE)1. For the unreliable

1https://www.arpae.it/
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data sources, we extracted the whole knowledge base of the Open Data cloud of
ThingSpeak. Every extracted datastream for unreliable data sources goes through
an additional classification step through TKSE before getting into the DSM.

MCS is the other important powerful source of information for our framework
(Chapter 5). In particular, at the current stage, we focused on the opportunistic
collection of data. In particular, in the figure we represented symbolically a urban
environment with a fleet of mobile devices belonging to participants to our cam-
paign. Each of them runs the Crowdroid application (or a hypothetic equivalent
for other devices) and the environment is supervised by the MoCroSS framework
. The only difference with the original implementation of MoCroSS is that, in this
deployment, we use the distributed data collection control algorithm outlined in
Section 5.2. This means that the original MoCroSS protocol is slightly modified as
the time constraint in the rules no longer specifies when to upload a new measure-
ment, rather it instructs when the participant needs to check whether the update
has to be uploaded or not using AO-JFS. In fact, the SI calculated by the CCU has
to be integrated as an additional rule field. This assumes that every MGRS area
would have a dedicated optimal number of observations on top of which the SI is
calculated.

In order to step into the stage of service composition, we use the INFORM
architecture, introduced in Section 4.3, as a hub for the datastreams coming from
all the aforementioned sources.

As a potential client platform for SenSquare we reported as an example the
RouteX platform, a Home Automation System introduced in [151] and developed
by us, however, it can be any private IoT ecosystem.

Service Delivery

Service Oriented Architectures (SOA) are the added value to pure IoT ap-
plications, since they leverage the service composition of raw data streams and
add reasoning capabilities, making pure observation much more meaningful to
humans. In our case, raw data is commonly not made for being accessible to ev-
eryone as it is. In particular, whenever a user is willing to consume one or a set of
particular datastreams, her or his request is conveyed through the instantiation of a
service: the data aggregation is established upon the creation of service templates,
which specify the type of data to be consumed, and instantiated in a certain zone
as service instances. We implemented a mechanism by means of which users
can aggregate raw data streams and compose services, that can be exploited by
other users too. As an example, we can simply think about all the well-known
information that are obtainable by combining raw sensing measurement such as
temperature and humidity. This is the case of the heat index, or humidex, which
is a derived measurement calculated upon the values of temperature and humid-
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ity and it is commonly referred to as the “human-perceived temperature”. An-
other example is the Dew Point, which corresponds to the maximum temperature
at which water vapor in the air condenses and forms liquid dew. This is again
dependent on the values of humidity and air temperature and can be calculated
upon such measurements. Moreover, the definition of derived quantities can be
extended to custom ones. For instance, within the scope of house automation, a
participant may be interested in opening automatically the windows whenever the
environmental temperature reaches a value over a certain threshold. At the same
time, such participant may want to combine the value of temperature with some
other due to certain requirements, e.g. he or she might be allergic to pollen, thus,
if there is a high concentration of airborne pollen, the participant would rather
use air conditioning. This approach is a simple example of data aggregation as a
custom service that a user can create which, as a consequence, results in a combi-
nation of energy saving and safe health. In our proposed architecture, the service
“aeration for pollen intolerant” is intended to be created only once as a template
that can be instantiated by several participants in different locations, provided that
the right sensors are available in such places.

In order to give a formal and more detailed shape to such definition, services
are composed through two main primitive entities: the raw datastreams and the
Custom Service Templates (CST), defined as combinations of primary data classes
through a mathematical expression and shared in a common repository to encour-
age reuse. They are abstract compositions and users design them in the same way
a programmer writes a function: using a simplified language that we first defined
in Backus-Naur Form (BNF) in [148]. The current version of such language in-
cludes basic arithmetic and relational operations between datastream classes, the
if-then-else clause and logical connectives. Formally, a CST is defined by
a mathematical expression E. The BNF expression of its current version is as
follows:

E := c | DC | (E + E) | (E − E) | (E ∗ E) | (E/E) | IFTE(C,E,E)

C := b |C∧C |C∨C | ¬C |E > E |E ≥ E |E < E |E ≤ E |E = E |E 6= E

where c is a constant floating point value, b is a boolean value and DC is a datas-
tream class. IFTE(C,E1, E2) is the if-then-else clause, which executes
E1 if C is true, E2 otherwise. When defining eachDC, the CST specifies whether
it should correspond to a single datastream; in alternative, aggregated measures
for all the datastreams of the same type can be used (i.e. the maximum, the min-
imum and the average). A CST is stored in the database as a Python script with
the used datastream classes as parameters. For instance, the heat index would be a
CST that takes in input a temperature and a humidity value and returns a numeric
value.
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Figure 6.2: Relational diagram representing the repository of SenSquare [148].

Given such primitives, the actual services are defined as Custom Service In-
stances (CSI), again generated by the users through the instantiation of a CST in
a specific geographical area. Here we recall that actual observations belonging to
datastreams are used only with the instantiation of a CST to a CSI; a CST alone
is just a template and specifies only data classes. When a CSI is instantiated, the
user must choose the specific datastream of each type located in the area of inter-
est and required by the respective CST to be used for the calculation. If the CST
requires an aggregate measure instead, this step is ignored. We note that, as MCS
sources are not static, they can only take part in aggregates and cannot be selected
singularly. After this stage, the CSI behaves as a new geolocated datastream itself,
which takes in input raw measurements and returns periodically a numeric output,
using the expression contained in its CST as a calculation function. Therefore, it
could be potentially aggregated further, although the current implementation does
not allow it yet. CSTs and CSIs repositories are public, thus, once they are cre-
ated, they are accessible to all the users of the platform. For the sake of clarity,
in the next section we give an example of usage for CSTs and CSIs through the
desktop user interface.

Datastreams, CSTs and CSIs are stored onto a persistent database (the cur-
rent version of the architecture uses a MySQL database, therefore, the semantics
added by INFORM are not currently used). The relational diagram of the database
is shown in Figure 6.2. In particular, the system is characterized by two special
types of actors: the stakeholders, which, as said, propose data collection cam-
paigns, and the participants, who are able to produce data. A user is willing to
consume data in the form of services and can be a stakeholder or a participant
as well (but not necessarily). Each participant owns one or more devices, which
are the physical entities committed to sense the environment. Each device can
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produce one or more datastream, which are characterized by a single data type,
marked with a pre-defined data class. Finally, each datastream refers to a set of
measurements, to which, for each update, a new one is added. A special case
is given by the data channels retrieved from the open data platforms, which are
considered as single devices although they are not necessarily physical devices
and can refer to multiple ones. Each stakeholder can submit a number of rules
referring to a particular zone, and, whenever a participant decides to attend to the
campaign proposed by a particular stakeholder, its subscription is registered onto
a specific table. Users can create one or more CSTs and instantiate one or more
CSIs. Multiple CSIs can be instantiated from the same CST. A special type of
CSI, the “personal service” has the same structure as the CSI, but it is belonging
only to the user who owns the device and simply wants to receive updates from
his or her own datastreams.

152



6.2 Prototyping

In this section we outline our implementations of SenSquare. Section 6.2.1
shows the web application for the users of SenSquare; Section 6.2.2 describes
briefly a mobile application for SenSquare that has been developed previously;
Section 6.2.3 wraps up the contributions of this section and outlines possible fu-
ture directions.

6.2.1 The SenSquare Web Application

Throughout the development of our ecosystem we implemented several user
interfaces that reflect a possible usage of the architecture potentially interested
users. The first client applications were presented in [148] (both the desktop
and the mobile interfaces), however, several other features have been added over
time, therefore, here we present the current SenSquare desktop client application2,
where users make use of the datastreams gathered through collective awareness
by creating CSTs and instantiating them into CSIs. In order to better explain
the usage of the platform we will walk the interested reader through an exam-
ple that better clarifies each step. Let us say that a user is particularly sensitive
to urban pollution, however, he or she is also interested in jogging in zones in-
cluded in the urban area. In such case, the user would start with the creation of a
CST that informs whether the outdoor air quality is good enough to preserve her
health. Looking at the EPA air quality indices (AQI), we can establish the max-
imum level of PM10 (suspended particulate matter below 10 µm) bearable for a
good AQI is 54 µg/m3, whereas the maximum level of CO (Carbon Monoxide)
is 5 ppm. Hence, we would write a CST that, if both the levels are below the
respective thresholds, would output a positive value, negative otherwise. We do
not assume that inexperienced users have programming capabilities, therefore, we
leverage the paradigm of visual programming, widespread in the field of educa-
tion, for the composition of a new CST. In particular, we used the well-known
plugin Blockly by Google3 with customized functionalities in order to cover the
only the cases outlined in Section 6.1 (i.e. avoiding cycles) and provide as vari-
ables only parametric values coming from datastreams. Whenever selecting a
possible datastream that can be part of the CST, we ask to the user whether it has
to be a specific value or an aggregate. In our example, the composition of the CST
through Blockly is depicted in Figure 6.3(a), in which new blocks can be dragged
and dropped from the left end side into the main dashboard. We set the value of
PM10 to be an aggregate (the average value), whereas the value of CO has to be

2http://sensquare.disi.unibo.it/
3https://developers.google.com/blockly/
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(a)

(b)

Figure 6.3: Screenshots of the SenSquare Web application in creating a CST using
Blockly.

selected from a specific datastream at the time of instantiation. Our modification
to Blockly only allows to output a numeric value, therefore, we will interpret 1
as a “positive answer” and 0 as a “negative answer”. Once the CST is generated,
it is stored together with all the other CSTs created by other users. The list of
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(a)

(b)

Figure 6.4: Screenshots of the SenSquare Web application in creating a CSI
through instantiation.

CSTs is shown in the screen in Figure 6.3(b), where users can explore all the
created CSTs and select to instantiate one of them. Given that CSTs are created
through crowdsourcing, we introduced a rating mechanism in order to quantify
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the trustworthiness. Once the user selects one of the CSTs from the list, she will
be displayed with the instantiation wizard screen, which consists in a map where
the user should indicate a circular zone of interest (both the center and the radius
are customizable). As the user moves and edits the circle, all the static and ac-
tive datastreams within such area are displayed with a marker on the map (the
datastreams coming from MCS sources are not displayed, since they are moving
constantly and, therefore, will only take part in the aggregates). Only the datas-
treams of the same classes as the ones required by the respective CST are shown,
in our example only datastreams measuring PM10 and CO. Furthermore, in order
to complete the instantiation, the user must necessarily select a single datastream
for each class not used as an aggregate; in Figure 6.4(a), following our example,
we need to select a single CO datastream, whereas for PM10 it is not necessary, as
we are using the average over all the PM10 datastreams in the area. Once the CSI
is created it will be available to the whole community to be visualized. In Fig-
ure 6.4(b) we show the CSI visualization screen for our instantiated example. On
the right side the map with the circular area highlighted in dark grey is displayed,
together with the markers representing all the static sources taken into account. It
is also possible to filter them by type. The part on the left is dedicated to all the
metadata about the CSI, including its name, its location and the user who created
it, as well as the observation values, both by category and the final value computed
through the function implemented in the respective CST. In our example, we can
see that the values measured for PM10 and carbon monoxide are respectively 1
and 24.5, thus, the final value computed is 1 as expected, which stands for a good
AQI. We can conclude that jogging in such area is safe even for susceptible indi-
viduals. The whole platform has been developed using Angular 2.0 and Django
and its front-end interface has been designed following the guidelines of Material
Design to promote intuitiveness.

In [148] we presented the first version of the Web application, which used
Angular 1.0.

6.2.2 The Habitatest Mobile Application
In this section we describe our Android mobile application, called Habitatest,

which is composed by an Android activity to merge services together, and widgets
to monitor the services of the user. It has been proposed in [148] and it is a
simplified access to the repositories without using CSTs and CSIs.

In Figure 6.5(a) we show the main screen of the Habitatest app, where the user
is able to select the datastreams to monitor. The selection can be made either by
inserting the ID string or by scanning the QR code which can be retrieved from
the web service described in Section 6.2.1. The user can declare any number of
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Figure 6.5: The Habitatest APP. Figure 6.5(a) shows the service composition
screen; Figure 6.5(b) shows the aggregation of datastreams, Figure 6.5(c) shows
the selector for the merging method; finally, Figure 6.5(d) presents the charts
about the desired service.

datastreams of interest to be monitored through the Habitatest app and an update
frequency. After this step, the user is redirected to the activity shown in Figure
6.5(b), from which the user can select all the data is interested in. He or she can
also merge together data of the same class through 4 different methods, which
we show in Figure 6.5(c). The user can merge the data either by extracting the
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Figure 6.6: The widgets provided by the Habitatest APP. In Figure 6.6(a) we show
the simple one, while Figure 6.6(b) offers more information to the user, such as
the service range validity, the date, and geolocation information.

mean of the instances of the requested data class, their sum, the maximum or the
minimum value. In the example in the figure the user drags and drops all the
temperature sensors together each other as shown in Figure 6.5(b), and chooses to
get the maximum out of them as in Figure 6.5(c). In case the user is not interested
in some of the data classes, he or she can just drag them out of the screen to
remove them from the monitoring area. After the selection of the data classes
and their aggregation method, a local and personal service within the application
is created. The service is not saved onto the SenSquare repository, as it is saved
and aggregated locally. The user can then choose to monitor the service directly
through the Habitatest app, or by using one of the widgets provided, as in Figure
6.6(a) or Figure 6.6(b). After selecting the smaller (Figure 6.6(a)) or the bigger
version (Figure 6.6(b)), the user can then get updates directly on his or her home
screen. If the user selected more than one data class to be monitored, the widget
will give the possibility to the user to switch from one type of data to the other
through a right and left arrow.

The Habitatest app runs then in the background, gathering all the information
selected by the user and aggregating them together locally following the directions
given, assuming that the user selected to do so. The user also has the opportunity
to click on the data class to get the historian of the measurements, as shown in
Figure 6.5(d).

6.2.3 Wrap Up and Future Perspectives

In this section we presented SenSquare, a prototype middleware platform that
manages the multitude of datastreams that we collect through CAPs and aggre-
gates them in customized services that users can create, share and use as a com-
munity. We believe that a platform as SenSquare brings a significant contribu-
tion in filling the gap of many IoT applications in the real world: transforming
raw data in valuable knowledge for the personal and common benefit. With Sen-
Square, we recall that we do not propose a framework that is expected to be used
by individuals and companies, rather, we bring this platform as a demonstrator to
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prove the potential of CAPs when paired with a SOA able to provide users with
services. Clearly, there is much to do in improving such a platform, first of all,
we aim to redesign the repository in order to comply with the paradigm of the
Web of Things (WoT) and the Semantic Web, fully unleashing the potential of
our INFORM architecture. Another future work is the management of CSTs and
CSIs as microservices, so that they can be further combined together with primary
datastream classes.
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Chapter 7

Conclusions

With this dissertation we had the goal to prove the effectiveness of CAPs in
several IoT applications and how they can exponentially increase the knowledge
base. We took into account a currently major issue in IoT ecosystems: the inabil-
ity to cooperate and to share data that can potentially and exponentially enlarge
that knowledge base due to incompatibilities and interests of the various parties.
We tackled this problem in a different way compared to the vast majority of the
research literature, which is typically focused in proposing new IoT frameworks,
new IoT platforms, new IoT architectures, new IoT standards that hardly meet the
interests of citizens and companies, mainly because the field is growing at an im-
pressive pace. Instead, we aim to make use of what is already in place, since right
now we are just lacking edges to connect the enormous amount of nodes in the IoT
world; that is to say, we can get a lot of information from what is already in place.
In this dissertation, in order to take advantage of such data sources, we make use
of CAPs (introduced and classified in Section 2.2), paradigms that offload data
collection tasks to a crowd of participants, either directly (i.e. specifically recruit-
ing the participants) or indirectly (i.e. making use of the Open Data published by
the participants on third parties repositories). In particular, we analyzed two main
systems: Open Data and MCS.

Open Data has been introduced in Section 2.3. We provided definitions, ex-
amples in the real world and the (scarce) research landscape around it. We defined
the concepts of reliable and unreliable data sources: the former host basically data
provided by governmental or trustworthy sources which annotate their data and
use good appliances, the latter are formed by crowdsourced data coming from pri-
vates who typically annotate poorly the datastreams. Unreliable data sources are
growing and can potentially be an extremely useful added value to IoT applica-
tions, however, they need a processing step in order to be usable. To this end, we
studied the feasibility of their integration in Section 4.1, we proposed an efficient
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ensemble algorithm for the classification of unannotated, unreliable datastreams in
Section 4.2 and a framework that semantically annotates datastreams according to
a given set of ontologies in Section 4.3. Future works in this field are envisioned,
as the proposed classification algorithm, namely TKSE, is designed currently for
an ensemble of two different classifiers, we need to further explore the possibility
of adding an arbitrary number.

MCS has been introduced in Section 2.4, in particular, we focused on the prob-
lem of the “Curse of Sensing”, introduced separately in Section 2.5, defined as
the inability of current MCS applications in dealing with sparse or dense data. We
specifically took into account applications in the scope of Smart Cities and envi-
ronmental monitoring and proposed a paradigm, namely MoCroSS (Section 5.1,
that elaborates the requests for participants on top of a set of rules established by
the stakeholders, who are active actors in our architectures and represent the de-
mand for data in particular zones at a defined time. Furthermore, we tackled the
“Curse of Sensing” problem through a distributed algorithm that solicits the par-
ticipants in contributing opportunistically with a rate proportional to the demand
(Section 5.2). Future works here are mainly oriented to enhance the distributed
algorithm in order to consider an arbitrary number of sensors and zones, as well
as the possibility to include a participatory fashion. Better simulations and com-
parison with the State-of-the-Art are as well subject to studies.

Chapter 6 discussed our prototype platform SenSquare, that we developed in
order to demonstrate the effectiveness and the usability of the CAPs that we pro-
posed, as well as the plethora of possibilities derived from their usage. SenSquare
represents our vision for a global system that is fed with data coming from CAPs,
dictated by the needs of the users themselves, and displays end users with per-
sonalized, usable and flexible services. In particular, in Section 6.1, we defined a
language for composing service templates, used through the tool Blockly in order
to be usable by people with a non-programming background, and discussed how
users can instantiate services according to their needs in the area of interest. Fu-
ture works will be focused on defining a microservice-based architecture in which
service instances can be composed further in a layered fashion.

With this dissertation we brought the attention of the reader over the CAPs
and, in general, over a paradigm that, in this world where data is among the most
important goods, instead of building a new data architecture, makes the most of
what is already available. We know for a fact that the union of the efforts is way
more powerful that the sum of the parts, here we demonstrate how the power
of such union brings an exponentially growing benefit compared to self-acting
ecosystems, even though using data provided by crowds carries along a number
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of challenges. We firmly believe that this work opens up a plethora of novel pos-
sibilities in research as well as in any entity interested in building IoT applications
for the common benefit; in fact, much of the data needed for such applications is
already available, we just need to be aware of it.
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[21] Oded Berger-Tal and José J Lahoz-Monfort. Conservation Technology:
The next generation. Conservation Letters, page e12458, 2018.

[22] Maria Bermudez-Edo, Tarek Elsaleh, Payam Barnaghi, and Kerry Tay-
lor. Iot-lite: a lightweight semantic model for the internet of
things. In Ubiquitous Intelligence & Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud and
Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 Intl IEEE Confer-
ences, pages 90–97. IEEE, 2016.

[23] Jean Boivin and Serena Ng. Are more data always better for factor analysis?
Journal of Econometrics, 132(1):169–194, 2006.

[24] Rick Bonney, Caren B. Cooper, Janis Dickinson, Steve Kelling, Tina
Phillips, Kenneth V Rosenberg, and Jennifer Shirk. Citizen Science: a
developing tool for expanding science knowledge and scientific literacy.
BioScience, 59(11):977–984, 2009.

[25] Luciano Bononi, Marco Conti, and Enrico Gregori. Runtime Optimiza-
tion of IEEE 802.11 Wireless LANs Performance. IEEE Transactions on
Parallel and Distributed Systems, 15(1):66–80, 2004.

[26] João B. Borges Neto, Thiago H. Silva, Renato Martins Assunção, Raquel
A. F. Mini, and Antonio A. F. Loureiro. Sensing in the collaborative Inter-
net of things. Sensors, 15(3):6607–6632, 2015.

[27] Ioannis Boutsis and Vana Kalogeraki. Privacy preservation for participa-
tory sensing data. In Pervasive Computing and Communications (PerCom),
2013 IEEE International Conference on, pages 103–113. IEEE, 2013.

[28] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[29] Bob Buckiewicz. Technical Overview of DECT ULE. LSR White Paper,
2016.

167



[30] Nicola Bui and Michele Zorzi. Health care applications: a solution based
on the internet of things. In Proceedings of the 4th International Sympo-
sium on Applied Sciences in Biomedical and Communication Technologies,
pages 131:1—-131:5, 2011.

[31] Jeffrey A. Burke, Deborah Estrin, Mark Hansen, Andrew Parker, Nithya
Ramanathan, Sasank Reddy, and Mani B. Srivastava. Participatory sensing.
In: Workshop on World-Sensor-Web (WSW’06): Mobile Device Centric
Sensor Networks and Applications, pages 117–134, 2006.

[32] Jean-Paul Calbimonte, Oscar Corcho, Zhixian Yan, Hoyoung Jeung, and
Karl Aberer. Deriving semantic sensor metadata from raw measurements.
2012.

[33] Emmanuel J. Candès. Compressive sampling. Proceedings of the Interna-
tional Congress of Mathematicians, pages 1433–1452, 2006.

[34] Andrea Capponi, Claudio Fiandrino, Dzmitry Kliazovich, Pascal Bouvry,
and Stefano Giordano. A cost-effective distributed framework for data col-
lection in cloud-based mobile crowd sensing architectures. IEEE Transac-
tions on Sustainable Computing, 2(1):3–16, 2017.

[35] Giuseppe Cardone, Andrea Cirri, Antonio Corradi, and Luca Foschini. The
participact mobile crowd sensing living lab: The testbed for smart cities.
IEEE Communications Magazine, 52(10):78–85, 2014.

[36] Giuseppe Cardone, Andrea Cirri, Antonio Corradi, Luca Foschini, Raffaele
Ianniello, and Rebecca Montanari. Crowdsensing in Urban areas for city-
scale mass gathering management: Geofencing and activity recognition.
IEEE Sensors Journal, 14(12):4185–4195, 2014.

[37] Giuseppe Cardone, Luca Foschini, Paolo Bellavista, Antonio Corradi, Cris-
tian Borcea, Manoop Talasila, and Reza Curtmola. Fostering participaction
in smart cities: A geo-social crowdsensing platform. IEEE Communica-
tions Magazine, 51(6):112–119, 2013.

[38] Carl F. Cargill. Why standardization efforts fail. Journal of Electronic
Publishing, 14(1), 2011.

[39] Ricardo C. Carrano, Diego Passos, Luiz C. S. Magalhaes, and Celio
V. N. Albuquerque. Survey and taxonomy of duty cycling mechanisms
in wireless sensor networks. IEEE Communications Surveys and Tutorials,
16(1):181–194, 2014.

168



[40] Patrick Cerwall. Ericsson Mobility Report. Ericsson White Paper, 2018.

[41] Georgios Chatzimilioudis, Andreas Konstantinidis, Christos Laoudias, and
Demetrios Zeinalipour-Yazti. Crowdsourcing with smartphones. IEEE In-
ternet Computing, 16(5):36–44, 2012.

[42] Xiao Chen, Elizeu Santos-Neto, and Matei Ripeanu. Crowdsourcing for
on-street smart parking. In Proceedings of the second ACM international
symposium on Design and analysis of intelligent vehicular networks and
applications, pages 1–8. ACM, 2012.

[43] Bo Cheng, Ming Wang, Shuai Zhao, Zhongyi Zhai, Da Zhu, and Junliang
Chen. Situation-aware dynamic service coordination in an iot environment.
IEEE/ACM Transactions on Networking, 25(4):2082–2095, 2017.

[44] Atanu Roy Chowdhury, Ben Falchuk, and Archan Misra. Medially: A
provenance-aware remote health monitoring middleware. In Pervasive
Computing and Communications (PerCom), 2010 IEEE International Con-
ference on, pages 125–134. IEEE, 2010.

[45] Cisco. Cisco Visual Networking Index: Forecast and Methodology, 2016–
2021. Cisco White Paper, 2017.

[46] Michael Compton, Payam Barnaghi, Luis Bermudez, RaúL Garcı́A-Castro,
Oscar Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Hen-
son, Arthur Herzog, et al. The ssn ontology of the w3c semantic sensor
network incubator group. Web semantics: science, services and agents on
the World Wide Web, 17:25–32, 2012.

[47] Cathy C. Conrad and Krista G. Hilchey. A review of citizen science and
community-based environmental monitoring: Issues and opportunities. En-
vironmental Monitoring and Assessment, 176(1-4):273–291, 2011.

[48] Cory Cornelius, Apu Kapadia, David Kotz, Dan Peebles, Minho Shin, and
Nikos Triandopoulos. Anonysense: privacy-aware people-centric sensing.
In Proceedings of the 6th international conference on Mobile systems, ap-
plications, and services, pages 211–224. ACM, 2008.

[49] Coronis Systems. Wavenis Technology Plateform. Product Summary,
2013.

[50] Jeremy Cowan. On-Ramp Wireless rebrands as Ingenu and launches US-
wide M2M wireless public network, 2015.

169



[51] Fred J. Damerau. A technique for computer detection and correction of
spelling errors. Communications of the ACM, 7(3):171–176, 1964.

[52] DASH7 Alliance. DASH7 Alliance Wireless Sensor and Actuator Network
Protocol VERSION 1.0. DASH7 Alliance Specification, pages 1–69, 2015.

[53] Soumya Kanti Datta, Rui Pedro Ferreira Da Costa, Christian Bonnet, and
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