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Abstract

Differential Item functioning (DIF) and bias measurement are often used as syn-
onyms in standardized tests fairness evaluation between individuals belonging to
different groups. Recently, Zumbo et al. (2016, 2017) have provided a redefinition of
DIF/bias term and proposed a new methodology for DIF/bias detection analysis. The
new definition of bias requires attributional reasoning; therefore, there is a need to
find a way to control for possible confounding factors. Only by balancing groups with
respect to covariates, it is possible to attribute DIF to group membership. Propensity
score matching techniques allow to carry out groups balancing and bias is detected if
item is flagged as DIF, after balancing groups. The conditional logistic regression is
proposed for DIF detection analysis after matching because it allows to consider the
data structure generated by matching.

The aim of this work is twofold. Firstly, we assess the efficacy and performance of
the new methodology in imbalanced groups, comparing its performance to performance
of traditional DIF detection methods (Mantel-Haenszel statistic, logistic regression and
Lord’s χ2). Our research, through a simulation study, shows that the new methodology
outperforms traditional DIF detection methods in imbalanced groups in situations of
large sample and DIF items presence. Nevertheless, the new methodology suffers to I
error inflation for large sample and simulation results suggest that the use of an effect
size measure (∆R2) reduces significantly this issue. Secondly, the proposal methodology
is applied to data coming from the large-scale standardized test administered by the
National Evaluation Institute for the School System (INVALSI) to evaluate pupils’
Italian language and mathematics competencies. The idea is to detect possible DIF
items among pupils from different academic tracks. The results reveal that very few
items are flagged as DIF, indicating the fairness of INVALSI tests.
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1. Introduction

1. Introduction

Educational standardized tests are useful tools for observing and measuring students’

abilities and competences. Test users administer the same test, composed by several

questions, to all pupils of a class or school in order to measure their competence in specific

subject. Ability is usually estimated through a statistical approach: the latent trait

analysis. This statistical approach allows to measure a latent variable (ability), assumed

to be continuous, observing categorical variables (question responses). Test users assume

that the test is comparable among different groups, but this is not always correct. It is

possible that the test, or a part of the test, advantages some subgroups rather than others,

therefore it results biased and unfair. Indeed, if standardized test presents this kind of

issue than it does not measure pupils’ ability in the same way for all subgroups.

When it comes to test inequity or bias among pupils allocated into different groups,

psychometric literature refers to an item characteristic: the differential item functioning

(DIF). DIF provides useful information about unfair items between groups. Indeed, DIF

occurs when individuals with the same latent trait level but allocated into different groups

present different probability of success to the item. Literature provides several DIF detection

techniques, both parametric and non parametric. Recently, a new methodology has been

proposed in the psychometric literature for detecting possible biased standardized test

items. The new method is developed on a redefinition of bias concept in DIF detection

analysis. From this redefinition, the new methodology allows to attribute DIF to group

allocation, controlling for confounding variables. The new methodology applies matching

techniques to DIF detection analysis and “. . . the purpose of matching on covariates is to

eliminate pre-test group differences to purify the sources of DIF and make a causal claim

about DIF” (Liu et al., 2016, p. 17).

The aim of this thesis is twofold. First of all, we want to assess the accuracy and

performance of the new methodology in situations in which groups are imbalanced with

respect to covariates. We use a simulation study in order to reach this goal. The assessment

of effectiveness and accuracy is based on false alarm rate (type I error) and power (1 minus

type II error), comparing traditional DIF detection methods and the new methodology.
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1. Introduction

Secondly, we want to assess if INVALSI tests are unfair among pupils from different

(academic) school tracks. We apply the new methodology to maths and Italian language

INVALSI tests 2016/2017 because it helps to reduce selection bias and attribute possible

bias to group allocation. This kind of application allows to evaluate the test quality and

fairness. In other words, we assess if INVALSI tests advantage some academic schools

rather than others. If we find that some academic tracks present advantages in tests,

the administration of the same test to different schools should be avoided. In addition,

it is possible that test unfairness associated to different schools could be attributed to

curriculum or teaching proposed by the schools. Therefore, if we find situations in which

item content or format disadvantages some schools, it could be useful revise their curriculum

and improve the teaching of specific content or accustom pupils to particular exercise

format.

The new methodology was presented in the literature from applicative (Liu et al.,

2016) and theoretical (Wu et al., 2017) point of view. Our contribution is to assess the

efficacy and accuracy of this new methodological proposal. In other words, we assess how

it performs in different situations, for example different test length, number of test takers

and percentage of DIF items. If the methodology presents good performance, or better

than traditional DIF methods, than it becomes an useful psychometric instrument in order

to detect standardized test efficacy and fairness. Indeed, the attributional claim linked to

the new methodology could help test users understand if a standardized test is fair with

respect to different groups and assess the instrument validity. In addition, we apply the

new methodology to a real dataset: INVALSI tests. The attributional claim allows us to

evaluate the test equity, comparing pupils from different academic schools. This kind of

analysis is useful for experts because it controls if is fair to administer the same test to

different academic tracks. If so, test users should understand why this happens and they

should modify and improve the test in order to make it fair.

The thesis structure is the following. The chapter 2 discusses the literature review.

Firstly, it presents sections dedicated to test fairness and school tracking with particular

focus on the school choice determinants and the educational Italian system. Subsequently,

we introduce the concept of differential item functioning, its recent developments in

the literature and the traditional methods for DIF detection analysis; finally, the new

19



1. Introduction

methodology is presented. The chapter 3 illustrates data and methods used for our research

objectives. Section about data describes INVALSI data, dependent and independent

variables used for the simulation study. The simulation design involves covariates, latent

trait, grouping variable and responses variables generation and the manipulated factors

considered for constructing scenarios. Section about methods describes how we assess the

performance of DIF detection techniques and details of the new methodology. Simulation

results are presented in chapter 4. After checking if scenarios are consistent to real data,

we provide propensity score matching analysis across different scenarios. Results about

DIF detection methods performance involve analysis on type I error inflation and test

power, with a deepening about the new methodology. We apply the new methodology to

INVALSI data 2016/2017 in chapter 5. In the end, chapter 6 discusses conclusions about

the main thesis results and its limits, useful for possible future developments.

20
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2. Literature Review

2. Literature Review

The first chapter of the thesis presents the literature review. First of all, section 2.1

introduces standardized tests and fairness of measurement instrument (measurement

invariance). Secondly, section 2.2 points out applicative context and motivations of

research. Section 2.3 and 2.4 provide statistical methods and tests for assessing measurement

invariance between two groups, with particular stress to a new methodological approach

recently proposed in psychometric literature (section 2.4).

2.1 Test fairness

Standardized tests are useful tools for observing and measuring complex phenomena or

constructs that are not directly measurable. For example, standardized tests can measure

individuals’ QI, well–being, anxiety or socio–economic status. You can think of studying the

anxiety that individuals felt during an exam. It is not possible to directly ask how anxious

people were while they were taking the exam. Anxiety is not directly observable, therefore

we must find an instrument in order to take over the anxiety, for example a standardized

test. Formally, tests measure latent constructs through something that is observable.

Standardized tests have several advantages. The first advantage is the equanimity, namely,

standardized tests are impartial in the judgment. In addition, standardized tests are easy

to correct and compare among results and they should be independent among test takers.

The most famous standardized tests are administered in educational fields. In edu-

cational contexts, standardized tests are developed for different reasons as, for instance,

mechanisms of school admission or educational system assessment. Most of the educational

tests aim to measure pupils’ ability and competence. Since these phenomena are not

directly observable there is the need to find something observable. Tests administered to

pupils present several questions or exercises (items) that refer to the ability and capacity

which the tests want to measure. Therefore, these test items become observable variables.

These variables can be dichotomous, which assume only two possible values, or polytomous

(for multiple responses), which can assume more than two possible values. This work treats

only the first case. The two possible values refer, respectively, to a correct response (usually

22
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coded by 1) and to a wrong response (coded by 0).

Nowadays, different popular standardized tests exist in educational context. PISA tests

(Programme for International Student Assessment), promoted by OECD, are the most

popular. PISA tests aim to measure teenagers’ learning level in maths, science and reading,

in international comparison. Italy has developed ad hoc test for the Italian students, namely

INVALSI (Istituto Nazionale per la VALutazione del SIstema educativo di istruzione e di

formazione–National Evaluation Institute for the School System) tests. INVALSI tests

are administered all years to pupils of four different levels of the educational system1 and

they aim to measure mathematical and Italian language abilities2. At the upper secondary

schools, INVALSI administers the same tests to pupils from different schools. Therefore,

INVALSI assumes that tests are unfair among the different school tracking. The starting

point of this thesis is to find tools and methodology for answering to questions as: Do

INVALSI tests measure the same ability among pupils from different school tracking? Is

this instrument unfair or biased with respect to school tracking?

Standardized tests are very important in today’s society. Although standardized tests

are not perfect evaluation instruments, they provide useful information that other evaluation

tools do not provide (Richard, 2008). The main feature of standardized tests is objectivity.

The objectivity allows to make decisions consistent with respect to reality, without possible

influence of personal opinions or subjective preconceptions. You can image a situation

in which a college admits only the best students. The college chooses to select students

through teachers judgment. It is possible that some worthy student will not attend the

college because of teachers’ bad personal opinions. This would not happen if students

were selected by a standardized tests. Consequently, for standardized tests objectivity,

policy makers often use these kinds of instruments in order to improve some public policies.

These instruments might also support policy makers in addressing their interventions.

Since often standardized tests guide policy makers decisions, it is necessary that tests are

fair among individuals and groups. In other words, if a test systematically advantages only

some individual or group, a policy decision based on test results will not be efficient. Fairness

is a complex concept and it has social rather than psychometric nature. Fairness can have

1II and V grade of primary school, III level of secondary school of I grade and II level of secondary
school of II grade.

2Starting from 2018, English abilities are tested in INVALSI tests for students of V level of primary
schools and III level of secondary schools of I grade.
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different meanings and Standards for Educational and Psychological Testing3 points out

four possible fairness meanings. The first meaning refers on equity of group outcomes.

Nevertheless, test literature agrees that differential outcomes do not unequivocally reflect

fairness. For the second meaning, all test takers must have the same treatment. In other

words, test takers equally have to enable to perform the test: same access to material,

same environment, same test administration, etc. The third meaning concerns comparable

opportunity to learn the subject matter covered by the test. The last meaning refers on

predictive bias. Predictive bias involves a statistical approach. Multiple regression models

are run, where the interested measure is regressed on the predictor score, grouping variable

and an interaction term. Fairness is not present if subgroup does not differ in regression

slopes or intercepts.

Despite the controversial nature of fairness concept, traditionally, in psychometric

literature, when we talk about test fairness, we refer to some desirable properties that a

measurement instrument should have. The main property is the measurement invariance.

It occurs when a measure is “. . . independent of the characteristics of the person being

measured, apart from those characteristics that are the intended focus of the measure.”

(Millsap, 2007). Measurement invariance is a statistical property of a measure and it

guarantees that the instrument measures the same latent trait between individuals from

different groups. A violation of the measurement invariance may prejudice the reliability

of instruments used to measure latent trait.

As previously said, educational standardized tests are composed of different items.

Therefore, it becomes focal to analyze item characteristics in order to evaluate test fairness

and measurement invariance. It is possible to distinguish between item impact and bias

(Dorans and Holland, 1992), when referring to test fairness assessment between individuals

from different groups. Item impact refers to a situation in which pupils from different

groups (e.g. gender or ethnic groups) present different probability to correctly answer

to an item. For example, males outperform females, in average, in standardized maths

total scores (INVALSI, 2016; OECD, 2015). Item impact may reflect the true existing

difference between the groups. In other words, the differential occurs because individuals

from different groups have different ability levels. Usually, test users assume test scores’

3Standards is a set of testing standards jointly developed by the American Educational Research
Association (AERA), American Psychological Association (APA), and the National Council on Measurement
in Education (NCME). Its last version was released in 2014.
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equivalence across various subgroups and they compare groups only through test scores.

This assumption is not always correct.

Item impact may also occur because item could be biased. Bias refers to a situation in

which individuals from different groups exhibit different probability to correctly answer to an

item due to some item characteristics that are not relevant to the construct being measured.

Item bias may occur because of the different meaning that individuals from different

groups might give to items, or because item measures a second latent trait, as cultural or

curricular latent trait (Martinková et al., 2017). This concept has a qualitative nature:

contextualization and reconstruction of meaning are required. Differently, Differential

Item Functioning (DIF) has a statistical nature. “Differential item functioning refers to a

psychometric difference in how an item functions for two groups” (Osterlind and Everson,

2009). DIF can be considered as measurement invariance property applied to test items.

DIF is a necessary, but not sufficient condition for bias. Traditionally, educational experts

adopt a twofold analysis in test fairness assessment among groups. Firstly, they compute

DIF detection analysis. If an item presents DIF, then it is subject to a qualitative analysis

by a multidisciplinary equipe (sociologists, statisticians, educational experts, psychologists).

2.2 School tracking

All education systems group pupils together on age and grade. When this process happens

separating pupils based on ability level, this is called formal differentiation or tracking.

Despite this formal meaning, tracking can be adopted as a free students decision (it is the

case of Italy). Education systems characterized by tracking present different tracks and

schools in which different curricula and teaching contents are proposed to students. Nowa-

days, in western education systems tracking does not exist at primary school. Nevertheless,

some systems group pupils into different school at (post–)secondary and tertiary school

(OECD, 2010). For example, German and Austrian tracking happens at the age of ten,

while in other countries tracking can happens later, at age of fourteen (Italy) or at age

of sixteen (United States). Differently, systems without tracking, namely comprehensive

schools, do not sort pupils in different school tracks. These schools propose an homogeneous

curriculum for all students. British secondary school and public high school in the United
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States and Canada are example of comprehensive schools.

2.2.1 The Italian system

Italy is a country in which tracking characterizes compulsory education, at secondary

school. The first eight educational years occur at comprehensive schools. The fist level of

education is characterized by an unique curriculum and teaching contents are equal for all

children. The primary school (scuola elementare) includes children from at the age of six

to ten4. The secondary school is divided in two levels. The first level (scuola unica media)

lasts three years. First level secondary schools propose similar curricula for all pupils and

only some teaching contents can differ5. At the end of the third year, student must take a

state exam that allows the student to enter to second level of secondary schools.

At the age of fourteen Italian pupils must choose a track of second level of secondary

school: academic, technical or vocational schools. Children and their parents are free to

choose the type of schools. Academic schools (licei) provide academic and general curricula.

These schools aim to prepare pupils for the next educational level, namely the tertiary

school. Academic schools differ from each other in basis on the main school subjects:

scientific, classical, social science contents, and so on. Differently, technical schools (istituti

tecnici) aim to prepare students for labor market, especially for technical and economic

positions. Finally, vocational schools (istituti professionali) transfer to pupils vocational

skills oriented to two main sectors: industry and handicraft and services. All these tracks

end with the final state exam, unique access channel for tertiary education. In addition to

these three branches, Italian pupils can opt for vocational training courses (formazione

professionale). These courses last from two years to five years and they exclusively form

students for labor market. In addition, vocational training courses aim to finish compulsory

education6, but only state exam guarantees the access to tertiary education (Azzolini and

Vergolini, 2014).

4Children born in the first four months of the year can anticipate the first year of primary school at the
age of five, by school agreement.

5For example, some schools teach two foreign languages, while others teach only English.
6Compulsory education ends with state exam or professional qualification obtained within eighteen years

old.
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2.2.2 School tracking and educational performance

Literature shows how tracking may affect pupils’ school performances. This can happen for

a twofold reason (Gamoran, 1992). First of all, tracking may increase educational inequality,

or the dispersion of achievement. For example, higher–status track (academic school) allows

pupils to learn more than lower tracks: tracking produces gap among students’ performance

from different school branches. Researchers have shown that tracking increases social

inequalities in education (Azzolini and Vergolini, 2014; Checchi and Flabbi, 2013; Hanushek,

2006): educational systems with tracking present more inequalities than those without

tracking, which tend to be more fair. Secondly, “the particular structure of tracking may

influence a school’s overall level of achievement, or educational productivity”(Gamoran,

1992, pp. 812-813).

Previous studies about school tracking and pupils’ performance have shown a systemat-

ically gap between different tracks (M. Becker et al., 2012; Opdenakker and Damme, 2006).

Students form academic schools get better mean scores in standardized tests than students

from other tracks, especially than students enrolled in vocationally-oriented tracks. This

gap involves both language and mathematics achievement, but it is more pronounced for

the second one.

Italian context also presents a gap in Italian language and mathematics competencies

among pupils from different tracks of upper secondary school. Academic schools outperform

technical schools in Italian language test. In turn, technical schools get higher average

scores than vocational schools, both at national and macro–area level. Similar results

emerge from mathematics test. At national level, academic schools outperform technical

schools that, in turn, outperform vocational schools. At macro–area level, differently

from Italian language test, north academic schools present significantly higher scores with

respect to national average scores, while south academic schools present significantly lower

scores. Similar results emerge for technical and vocational schools, but south schools do

not deviate from national average scores (INVALSI, 2017c; INVALSI, 2016). To sum up,

different Italian school tracks entail different competencies and abilities. It exists a gap in

abilities among upper secondary school branches that are also differentiated on territorial

level.
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2.2.3 Determinants of school tracking

Literature, especially economical and sociological, presents several works that analyze

and study determinants of school tracking. The choice of the secondary school track is

extremely important because it represents a relevant mechanism that deeply affects the

intergenerational persistence of educational attainment and labor markets returns across

different social classes (Dustmann, 2004). Persons’ education (in terms of achievement and

attainment7) affects their future life. More qualified people have better working positions,

higher wages, more satisfaction, their are healthier and so on. Consequently, researchers

have payed attention about school tracking in optic of intergenerational mobility and social

inequality. If pupils do not have the same chance to choose a determined track, social

inequalities can be produced (or re–produced).

Gender is the first determinant of secondary school choice. European statistics show

how youths opt for gender stereotyped working position. Mocetti (2012) shows that females

have more propensity to choose academic tracks rather than technical and vocational

schools. Academic schools prepare pupils for teaching, translation, secretarial duties

that are traditionally feminised occupations. Immigrant status also affects the choice of

secondary school track. If natives are enough homogeneous into different school tracks,

immigrants tend to be segregated into technical and vocational schools, controlling for

prior school outcomes. The segregation increases considering first generation, more present

into vocational and training centers (Barban and White, 2011).

In addition, there exists a strong dependence between parental education and the chil-

dren’ choice of school track and this dependence is more accentuated for males rather than

females (Checchi and Flabbi, 2013). More educated parents drive their sons and daughters

to enroll academic schools. Conversely, less educated parents give more importance to work,

guiding their children to technical and vocational schools. Connected to what has just

been said, pupils of upper social classes are more represented in academic schools, while

lower classes are are systematically under–represented (Azzolini and Vergolini, 2014) and

over-represented in technical and vocational tracks. A strong dependence exists between

social class of origin and secondary school choice. In addition, the relationship between

social class and the choice of secondary school grew over time: absolute inequities in the

7Achievement refers to students’ academic performance, development and cognitive skills. Attainment
refers to qualifications and academic degrees obtained by individuals (Boudon, 1974).
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probability of enrolling in academic schools decrease, but relative inequality persisted.

Pupils from upper classes tend to attend academic schools, while pupils from working class

tent to choose technical and vocational schools (Panichella and Triventi, 2014).

Aspiration is another important determinant of school tracking decision. Students

and parents with high school aspiration tend to choose schools that provide academic

and general curricula (R. Becker, 2003). A possible explanation is that pupils with high

educational aspiration tend to enroll academic schools because are those that prepare

better for post–secondary education. Conversely, pupils with low educational aspiration

choose technical and vocational schools because are those that prepare better for the

labor market. However, educational aspiration is affected by socio–economic background.

Educated parents motivate their children to study and they transmit them the importance

of scholastic success as a channel for future job carrier (Barone, 2006; Sewell and Shah,

1968).

2.3 Differential Item Functioning

Differential item functioning, as said in section 2.1, is the statistical instrument used to

detect possible unfair tests between individuals from different groups (for example, gender

and ethnic group). DIF occurs when the functional relationship between response variable

and latent trait differs for the groups. Formally, Let Y as the response to a specific item, θ

as the latent trait (for example maths capacity) and G as the grouping variable, DIF is

present if

f(Y |θ,G = R) 6= f(Y |θ,G = F )

where R refers to reference group and F to focal group. Usually, the group that it is

assumed to have some advantages is the reference group, while that it is assumed to have

some disadvantages is the focal group. Nevertheless, this definition does not affect DIF

detection. As an example, we are interested to study DIF in a mathematics test between

males and females. From technical reports (INVALSI, 2016; OECD, 2015) emerge that

males, in average, outperform females. Thus, in DIF analysis, males will be reference

group, while females will be focal group.

The possible differential in the probability to give a correct answer to an item between
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groups may reflect the true difference in ability between groups. Consequently, it needs to

match individuals to the same level of ability in order to detect DIF items. It is essential

that DIF analysis is developed only for matched groups in order to avoid Simpson’s paradox

(Simpson, 1951). Again a gender example, it is possible that an item results more difficult

for females rather than males, while, if we control only for students with same ability, the

same item may result less difficult (Osterlind and Everson, 2009). Literature provides two

matching criteria for DIF detection analysis. The first directly involves the latent trait

estimated by an IRT (Item Response Theory) model. The second uses the total test score

as a proxy of ability, because observed score has high correlation with the IRT score (Tay,

Huang, et al., 2016).

Differential item functioning can be uniform or nonuniform. The first one (represented at

the top of figure 1), the simplest form of DIF, arises when the difference between reference

and focal group remains constant across the continuum of latent trait θ. This means

that one group (usually reference group) has the same amount of advantages throughout

the underlying latent trait. Differently, nonuniform DIF (represented at the bottom of

figure 1) occurs when the group’s advantage changes in a certain point of the latent trait’s

distribution. It can be seen as an existing interaction between θ and group.

2.3.1 Developments and methods

Attention for detecting DIF starts from about the 60’s in United States. In the last 30

years, the most important educational organizations have started to pay attention on this

issue in order to analyze the tests validity. Zumbo (2007) distinguishes three generation of

DIF analysis8. The first generation is characterized by the study of different performances

in educational tests concerning demographical variables, such as gender and race. The

purpose of this generation is to assess whether the difference in performance reflects the

reality or are due to bias tests. The second generation refers the period in which the

psychometric literature distinguishes between “impact” and “measurement equivalence” of

a test. This period is marked by a development of new statistical tools and methods in

order to detect DIF. In the last generation, scholars take into account new instruments

for DIF detection. The DIF analyses involve test characteristics (item format and item

8Zumbo does not suggest a distinction in historical periods. He suggests a linear stepwise progression of
knowledge and thinking.
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Figure 1: Uniform and nonuniform differential item functioning.
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content) and contextual variables (socioeconomic status, class size and so on) that may

affect the test performance.

Especially from the second generation, described previously, several statistical methods

about DIF detection were proposed. Nowadays, the majority of these methods is still

used. The main methods for DIF detection are based on test score or on IRT modeling

(Magis, Tuerlinckx, et al., 2015). The first approach uses a matching variable as a proxy
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Table 1: Summarize of main methods for DIF detection.

METHOD MATCHING CRITERION Type OF DIF

Mantel–Heanszel Test score Uniform
(Holland, D. T. Thayer, et al., 1988)
SIBTEST Test score Uniform
(Shealy and Stout, 1993)
Logistic Regression Test score Both
(Swaminathan and Rogers, 1990)
Lord’s χ2 Latent trait Both
(Lord, 1980)
Raju’s approach Latent trait Both
(Raju, 1988)
Likelihood Ratio Test Latent trait Both
(Thissen et al., 1988)

of the latent trait. Mantel Haenszel (MH) approach (Holland, D. T. Thayer, et al., 1988)

compares proportion of correct response in focal and reference group. Simultaneously

Item Bias Test (SIBTEST) (Shealy and Stout, 1993) is a comparison between weighted

difference in the proportion of individuals in two groups which correctly answer an item

conditioning on the underlying trait (French and Finch, 2015). Finally, Logistic Regression

(LR) approach (Swaminathan and Rogers, 1990) is a generalized linear model which is

able to identify both uniform and nonuniform DIF. LR regression compares, usually, three

nested models: free from DIF, uniform DIF model and nonuniform DIF.

Conversely, the other models (based on IRT approach) involve differences in item

parameters, estimated through IRT models. Lord’s χ2 (Lord, 1980) tests if statistical

significance is present in the difference between estimated item parameters in the focal and

reference group. Differently, Raju’s approach (Raju, 1988) assesses significant differences

in the focal group item characteristic curve and the focal group item characteristic curve.

Likelihood Ratio Test (Thissen et al., 1988) involves two nested IRT models. It tests

whether a model, constrained to present DIF on an item or multiple items, is significantly

different from an other model, constrained to have no DIF. Table 1 summarizes the main

statistical techniques for DIF detection analysis.

During the last few years, these methods for DIF detection have been developed and

extended to various statistical features (Lee and Geisinger, 2014). Data for educational

large-scale assessment are usually collected from a multilevel structure. Standard methods

for DIF detection may underestimate standard errors whether it were ignored the multilevel
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structure of the data. Thus it may lead to biased estimates, in statistical sense. Some

researchers (French and Finch, 2015; French and Finch, 2013; Beretvas et al., 2012; French

and Finch, 2010; Cho and A. Cohen, 2010) have developed new methods and extensions of

pre-existing methods in order to control the multilevel data structure. Tay et al. (2015),

Strobl et al. (2015) and Tutz & Berger (2015) have developed statistical methods to include

several covariates in order to detect DIF. The firsts suggest Item Response Theory With

Covariates (IRT-C), while the others propose partitioning recursive models. Svetina and

Rutkowski (2014), Magis et al. (2012) and Woods et al. (2012) propose methods for DIF

detection with multiple groups. Finally, mixture Item Response Theory models (Cho and

A. Cohen, 2010) and approaches of multidimensional IRT (Walker and Sahin, 2016) have

been developed.

2.3.2 Mantel–Heanszel statistic

In a seminal paper, Mantel and Haenszel (1959) have proposed a procedure for the study of

matched groups (Dorans and Holland, 1992). In the 80s, this approach was developed for

DIF detection by Holland (1985) and later by Holland and Thayer (1988). This procedure

treats the DIF detection problem through three-way contingency tables, where the three

dimensions are: whether one correctly (or incorrectly) responds to an item, the group

membership and the total score. In this approach the sum score is used as a matching

variable for the latent trait and the conditioning variable is categorized into several (j)

bins. This procedure allows us to compare the item responses between the reference and

the focal group conditioning on the various levels of matching variable.

The Mantel–Haenszel procedure can be understood by the sequent table:

Table 2: Mantel–Haenszel contingency ta-
ble.

Item score

Groups Yi = 1 Yi = 0 Total

Reference Aj Bj Nrj

Focal Cj Dj Nfj

Total M1j M0j Tj
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It is possible to construct the Mantel–Haenszel statistic:

MHχ2 =
[|
∑
j Aj −

∑
j E(Aj)| − 0.5]2∑

j V ar(Aj)
(1)

where E(Aj) =
NrjM1j

Tj
and V ar(Aj) =

NrjM1jNfjM0j

T 2
j (Tj−1)

. MHχ2 follows a χ2 distribution

with one degree of freedom. This statistic assesses the null hypothesis (H0) that there is

no association between item responses and group membership. In this formulation we are

interested to test a null hypothesis (H0) versus an alternative hypothesis (H1), where

H0 :
Aj/Cj
Bj/Dj

= 1 versus H1 : Aj/Cj = α(Bj/Dj) (2)

The Mantel–Haenszel statistic allows us to provide the DIF effect size (a linear association

between the row and the column variables in table 2) through the common odds ratio. For

an item and for jsm level of matching variable we can construct the odds ratio αj :

αj =
AjDj

BjCj
(3)

and for all levels of matching variable we have:

α̂MH =

∑
j AjDj/Tj∑
j BjCj/Tj

(4)

finally, the logarithm of common odds ratio α̂MH is normally distributed and is used as

effect size measure:

λMH = log(α̂MH) (5)

Educational Test Services (ETS) uses a scheme in order to classify the DIF effect size.

The scheme follows delta scale (Holland, D. T. Thayer, et al., 1988) and it is computed as

follow:

∆MH = −2.35λMH (6)

with sequent cut-offs:

• Large DIF (class C) |∆MH | > 1.5;

• Moderate DIF (class B) 1 < |∆MH | ≤ 1.5;
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• Small DIF (class A) |∆MH | ≤ 1.

To sum up, the Mantel–Haenszel approach is a three-step procedure. In the first step,

it examines whether MHχ2 is statistically significant. Secondly, it assesses the DIF effect

size, through the size of common odds ratio. In the final step, it is possible to judge

the significance of DIF using the ETS classification scheme. The main advantage of the

Mantel–Haenszel approach resides in his powerful, that is in the capacity of detecting DIF

items correctly. In addition, it provides both a statistical test and effect size. Finally,

it is accessible through popular statistical software (SAS, SPSS, R). Nevertheless, this

procedure has some limitations. First of all, it does not test for nonuniform DIF. Secondly,

there is the need to choose bins or levels in which put the matching score that may be

affect the statistical decision of DIF.

2.3.3 Logistic regression

Differently from Mantel-Haenszel procedure, the Logistic Regression (LR) is a parametric

approach. LR for DIF detection has been proposed by Swaminathan & Rogers (1990). Like

Mantel-Haenszel, LR assumes the total score as a proxy of the latent trait. The general

idea of Logistic Regression for DIF detection is tested three nested logistic models for all

items. The dependent variable is categorical and represents the likelihood of responding

correctly or incorrectly to an item and it is conditioned on matching criterion, grouping

variable and an interaction term (Osterlind and Everson, 2009).

The baseline model:

ln

(
P (Yi = 1)

1− P (Yi = 1)

)
= α+ β0T (7)

predicts the correct answer to an item conditioning only on the proxy of latent construct

(T ), where α is the model’s intercept and β0 is the parameter of total score. T is the sum

of the scores of all test items without the considered item.

ln

(
P (Yi = 1)

1− P (Yi = 1)

)
= α+ β0(T ) + β1(group) (8)

Adding β1 at baseline model (model 8), the parameter of group membership, we can

assess the presence of uniform DIF. A χ2 test with one degree of freedom compares the

improvement of model 8 with respect to baseline model. If adding the group membership
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variable improves the fit, than uniform DIF is detected.

ln

(
P (Yi = 1)

1− P (Yi = 1)

)
= α+ β0(T ) + β1(group) + β2(T · group) (9)

Finally, it is possible to test a nonuniform DIF (model 9), adding the interaction between

the group membership and the proxy of the latent trait (where β2 is the interaction’s

parameter). Always through a χ2 test with one degree of freedom it is possible to assess

the fit improvement. If adding the interaction improves data fit, than nonuniform DIF

might be present in the item.

As Mantel-Haenszel approach, there are some procedures in Logistic Regression in order

to assess the size of the DIF. Zumbo and Thomas (1997) consider a large DIF whether

the item displays a p-value ≤ 0.01 and R2 > 0.13. This method is criticized for being too

indulgent. More conservative, Gierl and McEwen (1998) proposed a different scheme:

• Large DIF (class C) R2 ≥ 0.07 and χ2 test significant;

• Moderate DIF (class B) 0.035 ≤ R2 < 0.07 and χ2 test significant;

• Small DIF (class A) R2 < 0.035 or χ2 test non significant.

As said previously, the main advantage of LR for DIF detection is that it is able to

identify both uniform and non uniform DIF. Another advantage of LR is its flexibility: “LR

model also allows for conditioning simultaneously on multiple abilities and can be extended

to multiple test taker groups” (Wiberg, 2007, p. 15).

2.3.4 IRT approach for DIF

Lord’s χ2 and Likelihood Ratio Test for DIF detection analysis are parametric methods

which require Item Response Theory models. IRT is a paradigm which aims to specify

information about test takers’ latent construct and the characteristics of test items (Os-

terlind and Everson, 2009). When test responses are dichotomous, the conventional IRT

models are logistic regressions with different parameters, that are the characteristics of test

items (Özdemir, 2015). The characteristics of test items are difficulty, discrimination and

guessing parameters and they identify three different IRT models. The simplest IRT model

is the One–Parameter (1PL) model, also known as Rasch model (Rasch, 1960). Rasch
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model estimates only difficulty parameter, fixing discrimination parameter equal to 1. The

Rasch model is represented by:

P (Yj = 1|θi) =
exp(θi − βj)

1 + exp(θi − βj)
(10)

where P (Yj = 1|θi) is the probability to correctly answer to item j while θi and βj

represents, respectively, the latent trait of person i and the difficulty parameter for item j.

Rasch model implies that test takers that correctly answer to the same number of items

will have the same level of ability θ. The second IRT model, namely the Two–Parameter

model (2PL) represented in equation 11, assumes a non–fixed discrimination parameter

(Birnbaum, 1958; Birnbaum, 1968). In other words, 2PL estimates the discrimination

parameter (aj) which represents the jth item capacity to distinguish people with different

abilities.

P (Yj = 1|θi) =
exp[aj(θi − βj)]

1 + exp[aj(θi − βj)]
(11)

The last IRT model, namely the Three–Parameter model (3PL), has less fortune in

assessment program with respect to 1PL and 2PL. 3PL (equation 12) adds guessing

parameter (ci) to 2PL model. Guessing parameter represents the probability of a subject

with very low ability to correctly answer to item j. In other words, 3PL allows to control

for possible random answers.

P (Yj = 1|θi) = ci + (1− ci)
exp[aj(θi − βj)]

1 + exp[aj(θi − βj)]
(12)

All three models have two fundamental assumptions: unidimensionality and local

independence. Unidimensionality refers to existence of only one latent trait underlying

the test responses. For example, only one ability is associated with pupils’ responses to a

mathematical test. If this assumption is not verified it is possible to resort to multidimen-

sional IRT (MIRT) models9 which allow more than one latent trait underlying the test

responses. Differently, local independence states that items responses are independent of

each other given a level of latent trait. Multilevel IRT approach (French and Finch, 2010;

Kamata, 2001) can be an optimal strategy in cases of local independence violation.

After briefly introducing IRT frameworks, now we focus on Lord’s χ2 for DIF detection.

9For more details, it is possible to consult Walker and Sahin, 2016.
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Lord (1980) provided a simple method in which items parameters are compared between

reference and focal groups. A statistic d tests, for each test item, the null hypothesis that

difficulty parameter (b̂) is equal for reference and focal groups. The statistic is given by

d =
b̂R − b̂F

SE(b̂R − b̂F )
(13)

where

SE(b̂R − b̂F ) =
√

[SE(b̂R)]2 + [SE(b̂R)]2 (14)

Under the null hypothesis H0 : bR = bF the statistic d is approximately distributed as

standard normal distribution. In addition, Lord suggested an appropriate DIF test in

situations where 2PL or 3PL models adapt better to data than Rasch model. The new

statistic χ2
L assesses simultaneously the differences of difficulty (b̂) and discriminant (â)

parameters between focal and reference groups. The statistic is approximately distributed

as a chi–square distribution with 2 degree of freedom and is given by

χ2
L = ν̂ ′S−1ν̂ (15)

where ν̂ ′ = (âR− âF , b̂R− b̂F ), while S represents the estimated variance–covariance matrix

of ν̂. Lord’s χ2 has the advantage to use directly the latent trait θ as matching criterion

with respect to Mantel–Haenszel approach and Logistic Regression.

As Mantel-Haenszel and Logistic Regression approach, Lord’s χ2 under Rasch model

proposes an effect size measure. This measure, similar to Mantel-Haenszel effect size

measure, is computed as -2.35 times the difference between item difficulties of the reference

group and the focal group (Penfield and Camilli, 2006, p. 138). The effect size measure is

classified with ETS delta scale (Holland and D. Thayer, 1985).

Likelihood Ratio Test (LRT) has been developed recently as IRT–based DIF method

(Thissen et al., 1988). This approach compares likelihood of two models. In the first model

(L(C)) parameters are constrained to be fixed between reference and focal group, while in

the second model (L(A)) parameters are free to vary. The LRT is computed as

G2 = 2ln
[L(A)

L(C)

]
(16)
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G2 is approximately distributed as a chi–square distribution. The degree of freedom

correspond to the number of constraints associated to the IRT model. For example, one

degree of freedom with Rasch model in which only item difficulty parameters are free to

vary. Differently, two degree of freedom under 2PL model in which both item difficulty

and discrimination parameters are free to vary.

2.4 A new bias approach

Psychometric literature usually refers to differential item functioning, bias and impact

when it studies and analyzes test fairness or inequity. As said in section 2.1, DIF and bias

definitions are very similar and they are usually used as interchangeable. It is possible

to distinguish them through their statistical (DIF) and qualitative (bias) connotation.

Differently, impact definition is clearer. Traditionally, impact refers to real difference in

group performances (Wu et al., 2017). From a statistical point of view, impact involves

groups’ discrepancy in the measurement outcomes (Millsap and Everson, 1993). Outcomes

averages among groups are usually used as instrument of impact detection.

Recently, Zumbo et al. have provided new developments in DIF detection analysis with

two articles published on Practical Assessment, Research and Evaluation (2016) and on

Frontiers in Education (2017). In particular, they redefine DIF, bias and impact terms

(the triplet DBI) and they provide a new methodology in order to detect bias and impact.

Redefinition decouples the second and the third term from DIF and the methodology

guarantees statistical techniques to detect them. The starting point is the redefinition of

bias. “It is biased to compare response outcomes among groups if the observed response

difference is attributable to the groups that are equal in the measured construct” (Wu et al.,

2017, p. 4). From this definition four points emerge:

1) the group composition is the reason of the detected DIF;

2) the comparison, and not the item, is biased;

3) such as for DIF detection, bias can be detected only comparing individuals with same

latent trait;

4) intention of attributional claim.
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Bias is present if the DIF identification is due to group comparison. We can image an

example in which test fairness is studied for a maths test between pupils from different

schools. If an item presents DIF, it is possible to talk about bias only if the schools

comparison is the reason for which the groups respond to the item in different way.

Consequently, bias refers to the group comparison (in the example the comparison among

schools) and not to item, as traditionally bias is conceived. Possible differential in the

probability of correctly answering to the item between schools may reflect the true difference

in ability. Therefore, such as for DIF detection (section 2.3), bias detection is possible only

to compare individuals with the same latent trait in order to avoid Simpson’s paradox.

Referring to the new methodology, terms bias and DIF are interchangeably used in this

work. The last point of bias definition is crucial. Due to attributional claim, control

of possible factors that may confound this attributional process is necessary. In other

words, it is not possible to directly compare the groups because they may be imbalanced

with respect to covariates that can confound the attributional process. When groups are

imbalanced it is possible that problems of selection bias are present.

2.4.1 Propensity score

Attributional claim requires randomized experiment studies where group assignment is

random. In this kind of study groups are balanced and, consequently, they are comparable.

Nevertheless, educational standardized tests concern observational studies in which group

assignment mechanism is not random. In observational studies it is difficult to attribute

whether group differences are due to group membership or to pre–existent group differ-

ences. Consequently, there is a need to find a way to balance groups; with imbalanced

groups, statistical analysis can lead biased estimates. This bias, namely selection bias, is

introduced by a non–randomization of group selection, thereby sample does not guarantee

representativeness of the population. Rosenbaum & Rubin (1983) proposed the propensity

score in order to reduce the selection bias. Propensity score was previously popular mainly

in medical and economic research, but it has recently gained importance also in psycho-

logical, social and educational research and policy evaluation works (Austin, 2009a). The

propensity score is defined as

e(Xi) = Pr(Gi = 1|Xi)
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where Gi is an indicator for group membership. Usually, Gi = 1 refers to treatment group,

while Gi = 0 refers to control group10. It is usually estimated by logistic regression:

Pr(Gi = 1|Xi) =
exp(β0 + β(Xi))

1 + exp(β0 + β(Xi))

where β0 is the intercept and β is the vector of coefficients related to covariates Xi. Observa-

tions with the same, or similar, propensity score have the same covariates distribution and

they differ only for group membership. Propensity score matching follows a fundamental

theorem: the balancing property:

Gi ⊥ Xi | pr(Xi) (17)

From the formula 17 the distributions of group membership status Gi “. . . and the

observable control variables Xi are orthogonal to each other, once conditioning on the

propensity score p(Xi)” (Pellizzari, 2018, p. 1). In addition, propensity score matching

allows to, as well as groups balancing, estimate the treatment impact in an observational

study (Dehejia and Wahba, 2002; Dehejia and Wahba, 1999). Four main methods for

balancing groups are common in literature: stratification, regression adjustment, weighting

and matching.

In stratification subjects of a sample are divided into mutually exclusive subsets based

on propensity score (Austin, 2011). Subjects into the same stratum will have the same,

or very similar, propensity score; therefore, they will have same covariates distribution.

First of all, all subjects are split into the subgroups according to propensity score. Here

balanced property is checked and than quintiles of the estimated propensity score are used

in order to reduce the confounding effect. This simple method guarantees an optimal

selection bias reduction, approximately 90% (Rosenbaum and Rubin, 1984). Regression

adjustment method adds to a regression model (the model choice depends on the nature of

the outcome) a dummy variable referred to treatment status and the estimated propensity

score (Austin, 2011). In this way it is possible to analyze the effect of grouping mechanism

fixing, controlling, the estimated propensity score. Weighting, i.e. inverse probability of

treatment weighting (IPTW), was proposed by Rosenbaum (1987) as a standardization

10In DIF context treatment group refers to focal group and control group to reference group.
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based on a model. IPTW, in matching process, uses weights based on the propensity

score in order generate a balanced sample in which the probability to group assignment is

independent with respect to observed covariates. This method looks like survey sampling

weights. This kind of studies weight survey samples in order to make representative a

specific population (Morgan and Todd, 2008). Subject weight is defined as

wi =
Gi
ei

+
(1−Gi)
1− ei

where Gi is an indicator for group membership., while ei refers to subject’s propensity

score.

Several methods belong to matching strategy. All matching methods aim to approximate

random assignment mechanism. The main idea is to create matched sets/strata of treated

and untreated subjects11 using the estimated propensity score. Exact matching assigns

subjects with the same value of propensity score to all strata. This method is not very

common because many unmatched subjects can be present and, consequently, discharged,

reducing sample size. Greedy matching (e.g., nearest neighbor) assigns subjects to strata in

different way. A treated subject is randomly selected and the untreated with closest value

of propensity score is assigned to him. The process carries on until all treated subjects are

matched with untreated subjects.

Optimal matching works similar to greedy matching, but it does not match with closest

value of propensity score. Optimal matching adopts an algorithm which minimizes the

total differences in the estimated propensity score (Austin, 2009b) among treated and

untreated subjects. Optimal pair matching and optimal full matching characterize this

algorithm. The first one matches subjects in pair, discharging unmatched subjects. This

involves in a sample size reduction, developing possible problem of under–representation

and lower power for tests (Wu et al., 2017). Differently, the second one does not involve

any type of discharging and it matches subjects using full data set. In particular, it is

possible to match one treated with many untreated subjects (one–to–many) or to create

matched sets with many treated subjects and one untreated (many–to–one). In both cases

weights are used in order to adjust estimation of propensity score based on the number of

subjects into all strata (Rosenbaum, 1991).

11In DIF context matched strata are formed by subjects from reference and focal group.
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When you want to use propensity score matching you keep in mind an issue, called

common support. The common support is an assumption of propensity score matching

in which observations are matched according to their observed characteristics. Common

support concerns situations in which the propensity score distribution between treated

and controls overlaps. If groups (treated and controls) does not present common support,

we are not able to match some treated to control observations and vice versa, because

propensity score distribution does not perfectly overlap between group samples. Ignoring

common support can produce a biased matching “. . . because a comparison observation

would be matched that is not sufficiently similar to the treatment observation it is matched

to” (Lechner, 2001, p. 3). Literature presents proposal strategies in order to overcome this

problem estimating only a partial observed effect (Angrist and Imbens, 1995; Heckman

and Robb, 1986; Rubin, 1974).

Propensity score matching is not a perfect method for reducing selection bias. King

and Nielsen (2018) have shown that sometimes propensity score matching increases group

imbalanced and statistical bias. They refer to PSM paradox : “. . . if ones data are so

imbalanced that making valid causal inferences from it without heavy modeling assumptions

is impossible, then the paradox we identify is avoidable and PSM will reduce imbalance but

then the data are not very useful for causal inference by any method.” (King and Nielsen,

2018, p. 1).

2.4.2 Summary of the new methodology

From the attributional claim emerged by the redefinition of bias term, the first step for

bias detection is to balance groups with respect to covariates. Therefore, one of techniques

explained in previous section (section 2.4.1) for balancing groups should be adopted. There

is none better than others a priori, but in practice it is necessary to assess which of

techniques guarantees the better balance of the covariates distribution (Liu et al., 2016)

and, subsequently, to choose the best technique for the subsequent analysis. After balancing

groups, bias can be detected with traditional DIF detection analysis12. To sum up, bias

detection analysis can be summarized by the following points:

12Traditional DIF detection analysis does not consider the dependence structure of data, generated by
matched sets (Liu et al., 2016). Section 3.3.3 provides more information and details in order to apply DIF
detection analysis with this data structure.
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• Balance of the covariate distribution between groups.

• Detection of DIF for balanced groups.

Besides bias detection, as said previously, Zumbo et al. provide a new methodology for

impact detection. Studying group impact on the probability to correctly answer to an item

is the ultimate aim of educational experts, sociologists and policy makers. Indeed, finding

group impact may reflect possible group inequality or disparity in measured construct

(ability or achievement). It is possible to detect group impact only if the comparison

is unbiased, hence the first step involves checking for bias detection. Differently, with

respect to bias detection, matching criterion is not required. Nevertheless, impact detection

requires balanced groups due to control of confounding factors for the attributional process.

Conversely, three steps characterize impact detection:

• Balance of the covariate distribution between groups.

• Check for bias detection.

• Detection of impact (group differences) for balanced groups, only for items in which

the comparison is not biased.

In conclusion, this new analysis framework guarantees new perspective in test fairness

analysis. In particular, it is possible to attribute to group composition possible items

flagged as DIF.
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3. Data and methods

This part of the work is dedicated to find a way for assessing Zumbo’s methodology and

traditional DIF detection analysis techniques. This chapter is divided into three parts.

The first one (section 3.1) describes data and variables for the analyses, focusing on the

covariates balancing of grouping variable, e.g., school tracks. The second part illustrates

the simulation design (section 3.2). It describes different simulated scenarios, starting from

real data in order to reflect similarly covariates distribution. Section 3.2 describes the

generation of latent trait θ, grouping variable G, responses variables Y and the factors which

are manipulated to obtain scenarios. The last part of the chapter (section 3.3) provides

statistical techniques and methods for assessing accuracy of DIF detection methods.

3.1 Data

Empirical issues address the aims of this work, as anticipated in section 2.1. In particular,

the main aim is to answers these questions: Do INVALSI tests measure the same ability

among pupils from different school tracking? Is this instrument unfair or biased with

respect to school tracking? Hence, INVALSI data are the starting point of this work.

INVALSI (Istituto Nazionale per la VALutazione del SIstema educativo di istruzione e di

formazione–National Evaluation Institute for the School System) is a research institute

born in 1999 and its primary aim is to assess the Italian education system. The most

famous instrument for the evaluation is the INVALSI standardized tests. INVALSI tests

are administered all years, starting from 2009/2010, to all students of II and V grade of

primary school, III level of secondary school of I grade and II level of secondary school

of II grade. INVALSI tests include three parts13: Italian language test, mathematics test

and a student questionnaire for V grade of primary school and II level of secondary school

of II grade. The tests time differs according to educational level: from 45 minutes for II

grade of primary school to 75 minutes for II level of secondary school of II grade. The

student questionnaire lasts 30 minutes. The student questionnaire gathers information

about student’s background, family background, free time activities, opinions and behaviors

about school. A sampling is carried out at school grade and pupils from sampled schools

13Starting from 2018, INVALSI administers English test for students of V grade of primary schools and
III level of secondary schools of I grade.
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perform test in the presence of external observers. The simulation part of this thesis refers

to sample of INVALSI tests 2015/2016 that contains 33992 observations.

3.1.1 Dependent variables

Educational Italian system is characterized by a school tracking for the I level of upper

secondary school. At the age of fourteen, Italian pupils must choose a track of second level

of secondary school: academic, technical, vocational schools or vocational training courses.

In INVALSI sample there are no information about vocational training courses. Therefore,

the tracking variable can take as values academic, technical and vocational. Table A1, in

appendix A, represents school tracking composition of INVALSI sample.

This thesis has the interest of assessing if INVALSI tests are unfair for pupils from

different tracks. In chapter 2, a new methodology/framework has been presented, useful for

assessing research question. The simulation analysis considers only academic and technical

schools. Therefore, for the simulations a sample reduction (N=25058) is present because

pupils from vocational track are not considered for simplifying the simulation study. Finally,

in DIF context, academic track is the reference group, while technical track is the focal

group. For simplicity, the simulation considers only maths test. At national level, academic

track outperforms technical tracks, that, in turn, outperforms vocational both in Italian

language and maths test (INVALSI, 2017c; INVALSI, 2016). Hence, here, two dependent

variables are considered: tracking and mathematics proficiency.

3.1.2 Independent variables

Tracking is not randomized, but pupils have to make a choice that can depend on individual

characteristics. Section 2.2.3 provided a review on possible determinants on school tracking.

From the literature review, independent variables are selected in order to assess possible

imbalanced covariates in school tracks and to create scenarios useful for the simulation.

First of all, gender is a determinant of upper secondary school choice. European

statistics show how youths opt for gender stereotyped working position. Therefore, we

expect that females are over–represented into academic track. Immigrant status (here

better citizen) also affects the choice of secondary school track. If natives are enough

homogeneous into different school tracks, immigrants tend to be segregated into technical
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and vocational schools, controlling for prior school outcomes. For simplicity, this variable

considers only natives versus non–natives. This is a limitation because three types of

immigrant exist: I generations, II generations and mixed–parentage who present different

behaviors. I and II generations have their own behaviors, while mixed–parentage pupils

have similar behavior to natives (Azzolini, Schnell, et al., 2012).

Educational aspiration is another important determinant of school tracking decision.

Students and parents with high school aspiration tend to choose schools that provide

academic and general curricula (R. Becker, 2003). A possible explanation is that academic

tracks are those that prepare better for post–secondary education. Aspiration affects also

school achievement: pupils with high aspirations outperform those with low aspirations

(Khattab, 2015). An INVALSI question (Q12), from student questionnaire, is used as a

proxy of pupils’ aspiration. The question asks students which is the qualification they

intend to achieve. In this work, aspiration variable is treated as a dichotomous variable

where 1 refers to university degree aspiration, while 0 refers to not university degree

aspiration.

It is important to consider geographic area when you study Italian state: there are

significant differences among north, middle and south (especially between north and

south) in many spheres of individual life. In education context, northern pupils tend to

outperform pupils from the middle, who themselves outperform southern pupils, both in

Italian language and math test (INVALSI, 2017c; INVALSI, 2016).

Finally, there exists a strong dependence between parental education (Checchi and

Flabbi, 2013), social class (Azzolini and Vergolini, 2014; Panichella and Triventi, 2014) and

the students’ educational track choice. INVALSI provides a synthetic index in order to

simply this complex phenomenon. The continuous Economic, Social, and Cultural Status

index (ESCS) is computed starting from discrete indicators like the parents occupational

status and their education. In particular, this index is computed by a principal component

analysis on three indexes, detected from the student questionnaire: the parent occupational

status, the parent education (years of formal schooling) and a proxy of family wealth (the

household possession). By construction, ESCS index has the mean equals to zero and the

variance is set to one(Ricci, 2010). For INVALSI sample (without vocational track), this

index varies between -3.376 and 2.048 with mean and variance, respectively, equal to 0.118
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and 0.890. We expect that students from academic track exhibit higher ESCS index values

than students from technical track (Azzolini and Vergolini, 2014; Panichella and Triventi,

2014; Checchi and Flabbi, 2013). For an easier computation, this index is considered as a

discrete variable, despite of a lost of information. In particular, the first quartile (-0.522),

the median (0.142) and the third quartile (0.806) are used as cutoff points. Figure A1, in

appendix A, shows ESCS index box plot graph for INVALSI sample (without vocational

schools). Hence ESCS index presents four categories: I quartile, II quartile, III quartile

and IV quartile.

Table 3: Covariates balancing between groups in INVALSI sample.

Academic Technical p SMD

n 14185 10873

Gender

Male (%) 38.6 66.0 <0.001 0.571

Citizen

Not Italian (%) 7.0 11.4 <0.001 0.154

Aspiration

University degree (%) 79.7 34.1 <0.001 1.036

Area (%) 0.003 0.043

North 46.9 45.5

Middle 19.7 19.1

South 33.4 35.5

ESCS (%) <0.001 0.533

I quartile 21.9 39.5

II quartile 22.5 26.8

III quartile 24.3 20.7

IV quartile 31.2 13.0

Table 3 shows the covariates balancing between pupils from academic and technical

tracks. It presents the percentage differences in average and no one formal test on the

differences among covariates averages. This because we are not interested in testing if

the means differ statistically between the two groups, but because we are interested if
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covariates are over or under–represented between groups. Males tend to attend more

technical than academic ones. Academic tracks tend to have fewer not Italians, while

pupils with high aspiration are over–represented in these tracks. Finally, if the geographic

area has no effect, pupils with high ESCS index are over–represented in academic tracks

and under–represented in technical tracks. The results seem consistent with respect to

literature review (Azzolini and Vergolini, 2014; Panichella and Triventi, 2014; Checchi and

Flabbi, 2013; Mocetti, 2012; Barban and White, 2011; R. Becker, 2003).

The last column of the table presents the standardized mean differences (SMD), an

information on imbalanced effect size.

SMD =
(p̂treatment − p̂control)√

p̂treatment(1−p̂treatment+p̂control(1−p̂control))
2

where p̂treatment and p̂control denote the prevalence or mean of the dichotomous variable in

treated and untreated subjects, respectively (Austin, 2009a, p. 3087). Herein, the reference

group (academic track) is equivalent to treatment group, while the focal group (technical

track) is equivalent to control group. Hence, treatment–control and reference–focal terms

are used interchangeably.

The standardized mean differences were proposed in the psychological literature and

Cohen (1988) suggested a SMD value of 0.2 as small, 0.5 medium and 0.8 large effect

size. SMD is not influenced by sample size, therefore it can be used to compare balance

in measured variables between subjects from different groups which can have different

sample size (Austin, 2011; Austin, 2009a). From the table, it emerges that pupils’ tracking

allocation is not random, but it depends on the considered covariates, especially on gender,

aspiration and ESCS index. INVALSI sample presents one large size imbalance (aspiration),

two medium sizes (gender and ESCS ), one small size (citizen) and one negligible (geographic

area).

In addition, independent variables are correlated to maths proficiency. Table A2, in

appendix A, presents means and standard deviations of INVALSI sample raw scores14.

Males outperform females, Italians achieve better scores than not Italians and pupils

with high aspiration outperform low aspiration pupils. North regions have the best

performance, while the middle outperform the south. Finally, students at the top of ESCS

14Raw score is the sum of pupil’s correct answer of entire test.
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index distribution have better performance than students at the bottom of ESCS index

distribution.

3.2 Simulation design

A stepwise simulation strategy was chosen in order to create scenarios similar to the real

data. The first step (section 3.2.1) concerns the covariates generation. In the second step

(sections 3.2.2 and 3.2.3) latent trait and grouping variable are simulated. Starting from

previous steps, in the third step (section 3.2.4), responses variables are simulated. At

this point, section 3.2.5 describes factors that are manipulated in order to create different

scenarios.

3.2.1 Covariates generation

The first step of simulation strategy concerns the generation of covariates. The idea is to

simulate covariates with high confidence similarity with the real data. Therefore, when a

simulation scenario is generated, the proportions of main covariates reflect the distributions

of them for INVALSI sample. The generation of the first four covariates (gender, citizen,

aspiration, and geographic area) are based on the proportions in table 4. Note that results

may not have an exact N value due to rounding process.

Table 4: Proportion of test takers by gender, citizen, aspiration and geographic area.

University degree aspiration

Italian Not Italian

North Middle South North Middle South

Male 0.111 0.042 0.090 0.009 0.005 0.003

Female 0.146 0.059 0.108 0.015 0.007 0.004

Not University degree aspiration

Italian Not Italian

North Middle South North Middle South

Male 0.093 0.042 0.085 0.013 0.009 0.003

Female 0.064 0.025 0.047 0.012 0.005 0.003
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The Economic, Social, and Cultural Background index depends on gender, citizen

and geographic area, whereas aspiration depends, in turn, on ESCS. ESCS is simulated

after generating previous covariates in order to reflect as much as possible the real data.

For each cell of table 4, the total simulated is multiplied by proportions of table A3, in

appendix A. Suppose, for example, to having generated 100 Italian males from north with

high aspiration, therefore 15 of them will belong to I quartile of ESCS, 21 to II quartile, 26

to III quartile and 38 to IV quartile. Also here, it is possible that results may not have an

exact N value due to rounding process.

To sum up, five covariates are generated:

• Gender (dichotomous variable 1=“Male”, 0=“Female”);

• Citizen (dichotomous variable 1=“Not Italian”, 0=“Italian”);

• Aspiration (dichotomous variable 1=“University degree”, 0=“Not University degree”);

• Geographic Area (categorical variable 1=“North”, 2=“Middle”, 3=“South”);

• ESCS index (categorical variable 1=“I quartile”, 2=“II quartile”, 3=“III quartile”,

4=“IV quartile”).

This first simulation step is a sort of “benchmark” for the following steps. In other

words, three datasets are created with three different numbers of observations15. These

datasets are created maintaining the same covariates proportions of INVALSI sample. The

next simulation steps are applied according to these three datasets.

3.2.2 Latent trait θ

The relationship between latent trait (θ), grouping variable (G) and covariates (Xp) must

be high fidelity with the real data. Tay et al. (2016) developed a procedure to simulate

latent trait16, external covariates and their relationship high fidelity with real data. In

particular, they predict standardized SAT17 maths scores, used as a proxy of IRT latent

trait, with a OLS regression. Subsequently, they estimate simulated ability using the

previously predicted scores. Here, differently from Tay et al., an OLS model on real data

15See section 3.2.5.
16Maths proficiency.
17Scholastic Aptitude Test data.
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(INVALSI maths test 2015/2016) predicts directly pupils’ latent trait (θi), estimated from

Rasch model. The linear model is:

θ̂i = β0 +
P∑
p=1

βpXp + e (18)

where Xp and βp (p = 1, . . . , 5) represent, respectively, predictor variables and parameters

associated to them, while e represents error term. To simulate mathematics proficiency

(latent trait) distribution coherent with respect to model 18, random normal distributions

are simulated (θi ∼ N(θmean, 1)) for each combination of simulated covariates (X̄p).

θmean|X̄p = β̂0 +
P∑
p=1

β̂pX̄p (19)

In particular, each combination of covariates (X̄p) has its mean (θmean from model 19),

while all standard errors are set to 118. β̂0 and β̂p are the OLS estimated parameters

on sample, presented in table 5. In this way, θ depends on covariates which reflect the

relationship among them in INVALSI sample.

3.2.3 Grouping variable G

Grouping variable generation follows similar approach to that for θ, in order to reflect the

relationship between covariates and group membership highly close to reality. First of all,

generalized linear model with logit link, (model 20) predicts the probability of belonging to

one group, the reference group (Gi = 1), rather than another, the focal group (Gi = 0), in

INVALSI sample. For the simulation, Gi = 1 refers to academic tracks and Gi = 0 refers to

technical tracks. The predictor variables (Xp) are the same for the latent trait predictions.

P (Ĝi = 1) =
exp(β0 +

∑P
p=1 βpXp)

1 + exp(β0 +
∑P
p=1 βpXp)

(20)

Once estimated β coefficients on real situation (β̂), for each simulèe the grouping variable

is drawn from a Bernoulli distribution (P (Gi = 1) ∼ Ber(Pi)). The Bernoulli parameter

18The variance of mathematics competences for INVALSI sample 2015/2016 is approximately 1.55.
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Table 5: OLS and GLM of total score and academic track.

Dependent variable:

Total score Academic track

OLS GLM

(1) (2)

Gender

Male 0.548∗∗∗ −1.108∗∗∗

(0.014) (0.030)

Citizen

Non Italian −0.263∗∗∗ −0.333∗∗∗

(0.025) (0.053)

Aspiration

University degree 0.698∗∗∗ 1.794∗∗∗

(0.015) (0.031)

Area (ref. North)

Middle −0.345∗∗∗ 0.089∗∗

(0.019) (0.041)

South −0.699∗∗∗ −0.007
(0.016) (0.034)

ESCS (ref. I quartile)

II quartile 0.053∗∗∗ 0.283∗∗∗

(0.019) (0.040)

III quartile 0.118∗∗∗ 0.569∗∗∗

(0.020) (0.042)

IV quartile 0.238∗∗∗ 1.160∗∗∗

(0.020) (0.044)

Constant −0.167∗∗∗ −0.633∗∗∗

(0.019) (0.039)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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(Pi) depends on simulated covariates (X̄p) and is computed in following way:

Pi|X̄p =
exp(β̂0 +

∑P
p=1 β̂pX̄p)

1 + exp(β̂0 +
∑P
p=1 β̂pX̄p)

(21)

This simulation design allows to replicate scenarios similar to the real data. In addition, it

guarantees to simulate imbalanced groups with respect to covariates, therefore it allows to

assess new methodology presented in section 2.4.

3.2.4 Responses variables

From the previous steps three datasets are simulated with dependent and independent

variables. The third step of simulation design concerns the generation of responses variables

according to the three datasets. This work treats only dichotomous responses variables,

where 1 refers to right answer and 0 to wrong answer. Consequently, the response of

person i to item j, denoted by Yij , is drawn from a Bernoulli distribution (Yij ∼ Ber(Pj)).

Following Magis et al. (2015), the probability of success for the jth item is computed under

a Rasch model. More specifically, Magis et al. adopt a simulation design that guarantees

easy DIF imputation. The probability of success for individuals from reference group

(Gi=1) is computed by

Pj(θi) =
exp(θi − βj)

1 + exp(θi − βj)
(22)

while for individuals from focal group (Gi = 0) is computed by

Pj(θi) =
exp(θi − βj − δ)

1 + exp(θi − βj − δ)
(23)

where θi represents the latent trait for simulèe i and βj is the difficulty parameter (or

item location) of jth item (see section 3.2.5 for more details). The parameter δ refers to

DIF magnitude and it corresponds to the difference in item difficulty levels between the

two group (Magis, Tuerlinckx, et al., 2015). With this simple parameter, it is possible to

control and manipulate the proportion of DIF test items. It is clear that in presence of

tests without DIF items, the value of δ is null. From this simulation design, it emerges

that only uniform DIF is treated in this work, limiting results interpretations for situations

in which DIF is constant for continuum of θ.
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3.2.5 Manipulated factors

Four factors are manipulated in order to assess methods with respect to different possible

situations. A different number of items can compose large–scale standardized test and

researchers have found test lengths impact in DIF detection analysis (Tay, Huang, et al.,

2016; Magis, Tuerlinckx, et al., 2015; Khalid and Glass, 2013; Uttaro and Millsap, 1994).

Simulations are carried out for hypothetical standardized test composed by 20, 40 and 60

items.

Previous studies highlighted the effects of sample size in differential item functioning

analysis (Magis, Tuerlinckx, et al., 2015; Khalid and Glass, 2013; Glas and Falcón, 2003;

Uttaro and Millsap, 1994), therefore small sample (N=500), medium sample (N=1000)

and large sample (N=2000) are taken into consideration.

Standardized tests can have a different amount of DIF items. Previous simulation

studies considered small (5%. Berger and Tutz, 2016; Magis, Tuerlinckx, et al., 2015;

Oliveri et al., 2014), moderate (10%. Berger and Tutz, 2016; Magis, Tuerlinckx, et al., 2015;

Oliveri et al., 2014) and large (> 20%. Tay, Huang, et al., 2016; Oliveri et al., 2014; Woods

et al., 2013; Cho and A. Cohen, 2010; Gómez-Benito and Navas-Ara, 2000) proportion

of DIF items. This work considers three levels of proportion of DIF items: 0% (no DIF

presence), 10% and 20%.

Moreover, previous studies found an influence of DIF magnitude/size (δ) on DIF

detection analysis. Traditionally, three levels of DIF magnitude are considered: small

(δ ≤ 0.20. Cho and A. Cohen, 2010; Gómez-Benito, Hidalgo, et al., 2009), moderate

(δ = 0.40. French and Finch, 2013; French and Finch, 2010) and large size (δ ≥ 0.60.

Magis, Tuerlinckx, et al., 2015; French and Finch, 2013; French and Finch, 2010). The next

simulations takes into account moderate (δ = 0.40) and large (δ = 0.80) DIF magnitude.

In addition, two different assumptions about difficulty parameters β are considered.

Traditionally, these parameters are drawn from a normal distribution with null mean and

variance sets to one (Tutz and Berger, 2016; Berger and Tutz, 2016; Magis, Tuerlinckx,

et al., 2015; Khalid and Glass, 2013; Magis, Râıche, et al., 2011). Nevertheless, simulating

βs from standard normal distribution makes the difficulty parameters focus around zero

(the mean of standard normal distribution), excluding extreme values. This strategy

precludes the presence of very easy or very difficult items. Simulating βs from an uniform
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distribution (Weiss, 2014; Magis and Facon, 2012) allows to consider both very easy and

very difficult items. Therefore, a second set of simulations takes into consideration difficulty

parameters generated by an uniform distribution with parameters set to -2 and 219.

To sum up, the factors that compose scenarios of simulations are:

• Number of test takers (N = 500, 1000, 2000).

• Test length (J = 20, 40, 60).

• Percentage of items in which comparison is based (0%, 10%, 20%).

• DIF size (δ = 0.4, 0.8).

• β distribution assumption (β ∼ N(0, 1), β ∼ U(−2,+2)).

In conclusion, methods for DIF detection analysis are assessed among 90 different

situations/scenarios. In particular, 9 situations20 with no DIF items and 36 scenarios21 in

which DIF is present, for a total of 45 scenarios. Finally, the assessment and comparison

among methods consider the two different β assumptions, doubling scenarios for a total of

90 settings.

3.3 Methods

In each setting, described in section 3.2.5, 100 replications are generated. Twofold reason

gives origin to this choice. First of all, the majority of simulation studies, that refer to

DIF detection analysis, adopts the same choice (Berger and Tutz, 2016; Magis, Tuerlinckx,

et al., 2015; Oliveri et al., 2014; Khalid and Glass, 2013; Jodoin and Gierl, 2001). Secondly,

this choice allows to easily compute and interpret methods effectiveness and accuracy.

3.3.1 False alarm rate and power

The assessment of effectiveness and accuracy is based on false alarm rate (type I error) and

power (1 minus type II error). On one hand, type I error concerns false positive detection.

19Traditionally β parameters vary between about -4 and 4. The choice of setting these parameters to -2
and 2 is consistent with respect to previous works and the estimations of difficulty parameters provided by
INVALSI. For example, INVALSI 2015/2016 maths test for secondary schools presents difficulty parameters,
estimated by Rasch model, with range -1.46 and 2.80 (INVALSI, 2016).

203 test lengths by 3 amount of test takers.
213 test lengths by 3 amount of test takers by 2 percentages of items in which comparison is based by 2

DIF sizes.
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In DIF detection context, type I error refers to a situation in which a free DIF item is

mistakenly identified as exhibiting DIF. Therefore, for each setting, false alarm rate is

computed by the sum of items wrongly flagged as DIF divided for all items that should

not present DIF. Acceptance level is set to 5%.

On the other hand, power concerns false negative detection, in particular it refers to the

probability of making type II error. In DIF detection context, power refers to a situation

in which DIF item is correctly identified as exhibiting DIF. Hence, power is computed by

the sum of items correctly flagged as DIF divided for all items that should present DIF. Of

course, power is not computed for settings with absence of DIF. Also for power analysis,

nominal alpha level is set 0.05.

For example, you can image to compute false alarm and hit rate (power) for a test

with 40 items, where 20% of items are DIF. Hence, for each replication, 8 items should

be detected as DIF and 32 not. If the proportions of false positives are 3/32 in the 1st

replication, 5/32 in the second, and so on, it is possible to compute the average of the

test-wise type I error rate in the following way:

False alarm rate =
1

100
∗ (3/32 + 5/32 + . . .)

Conversely, if the proportions of true positives are 7/8 in the 1st replication, 5/8 in the

second, and so on, it is possible to compute the average of these proportions (power) in

the following way:

Power rate =
1

100
∗ (7/8 + 5/8 + . . .)

The incorrect identification of items flagged as DIF (inflation of type I error) is more

problematic than the correct identification for two reasons. First of all, it could lead to

remove items that are satisfactory, reducing the amount of items useful for the subsequent

analyzes (Jodoin and Gierl, 2001). Secondly, it could get in the way “. . . the development of

a better understanding of the nature or underlying psychology associated with DIF ” (Jodoin

and Gierl, 2001, p. 330). Therefore, we pay more attention to false alarm rate rather than

power.
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3.3.2 Matching analysis

Before assessing effectiveness and accuracy of DIF traditional methods and Zumbo’s

methodology, there is a need to keep in mind that groups are imbalanced with respect

to covariates for construction. Selected covariates affect the group allocation mechanism.

Therefore, without balancing statistical analysis may lead biased estimates and it is no

possible to attribute DIF to group allocation, due to confounding variables.

Section 2.4.1 provided a brief review of statistical tools able to reduce selection bias and

make comparable the groups. Zumbo et al. presented their works mainly with propensity

score matching techniques. Hence, randomness of group allocation is implemented by

propensity score matching techniques. In addition, propensity score matching creates a

stratification useful for the methodology described in section 3.3.3.

Two different algorithms are available to create treatment–control (reference–focal)

matches based on propensity scores: greedy and optimal matching. Greedy matching (e.g.,

nearest neighbor) assigns subjects to different strata. These strata contain one or many

subjects from reference group and one or many subjects from focal group, which have

equal or similar covariates distribution. A treated subject is randomly selected and the

untreated with closest value of propensity score is assigned to him. The process carries on

until all treated subjects are matched with untreated subjects.

Optimal matching works similar to greedy matching, but it does not match with

closest value of propensity score. Optimal matching adopts an algorithm which minimizes

the total differences in the estimated propensity score (Austin, 2009b) among treated

and untreated subjects. Optimal matching algorithm is used by optimal pair matching

and optimal full matching methods. The first one matches subjects in pair, discharging

unmatched subjects. This involves in a sample size reduction, developing possible problem

of under–representation and lower power for tests (Wu et al., 2017). Differently, the second

one does not involve any type of discharging and it matches subjects using full data set. In

particular, it is possible to match one treated with many untreated subjects (one–to–many)

or to create matched sets with many treated subjects and one untreated (many–to–one) or

to adopt a combination of one–to–many and many–to–one. Optimal algorithm performs

sometimes better than greedy for producing closely matched pairs, only marginally better,

but it is no better for producing balanced matched samples (Gu and Rosenbaum, 1993a).
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Here, the matching analysis are carried out both with nearest neighbor matching and full

matching with a combinations of one–to–many and many–to–one.

3.3.3 Conditional logistic regression

After matching analysis, traditional DIF detection analysis methods are inadequate because

they are not able to treat and handle matched sets. In particular, they do not take account

the dependence structure or the nested relationship of matched sets (Wu et al., 2017; Liu

et al., 2016). Like for multilevel structure data, ignoring the dependence structure of data

can lead biased estimation of standard errors (Raudenbush and Bryk, 2002). Consequently,

biased estimations can compromise hypothesis test results, and, in DIF context, this can

inflate type I error rates (French and Finch, 2013; French and Finch, 2010).

Zumbo et al. (2017, 2016) propose the conditional logistic regression models for DIF

detection analysis in order to avoid these issues. Differently from conventional logistic

models, parameters of conditional logistic regression are estimated using paired or clustered

sample (Liu et al., 2016). In matched studies, conditional logistic regression can increase

efficiency of estimations with respect to unconditional logistic regression22 (Hosmer et al.,

2013; Breslow et al., 1980). In addition, in matched studies, parameters estimated by

traditional logistic regression could be biased (Breslow et al., 1980).

The simplest situation is conditional logistic regression for pair matching in which one

unit of reference group is associated to one unit of focal group. The conditional likelihood

function (Breslow et al., 1980) for the pair matching is:

l(β) =
K∏
k=1

1

1 + exp[βT (x1k − x0k)]
(24)

where k (k = 1, 2, . . . ,K) denotes the pairs; the vector βT contains the covariates coefficients,

whereas (x1k − x0k) is a data vector or matrix of covariate(s). In DIF context, for uniform

DIF, the matrix βT (x1k − x0k) can be split into β1(total1k − total0k) and β2(group1k −

group0k) where total is the pupils’ total score and group is the group membership variable23.

“The constant term is summed to be equal to 0 and each pair corresponds to a positive

outcome (y = 1)” (Breslow et al., 1980, p. 253), in order to fit conditional logistic regression

22Traditional logistic regression.
23It is possible to detect nonuniform DIF adding β3(total ∗ group1k − total ∗ group0k).
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with available statistical software.

It is possible to generalize equation 24 for more complex designs. Suppose that one unit

of reference group is associated to M units of focal group (full matching one–to–many).

Hence, each stratum k contains one unit of reference group and Mk units of focal group.

The conditional likelihood function for this kind of design is:

l(β) =
K∏
k=1

1

1 +
∑Mk
t=1 exp[β

T (xtk − x0k)]
(25)

where k (k = 1, 2, . . . ,K) denotes the strata; the vector βT contains the coefficients of

covariates, whereas (xtk−x0k) is a data vector or matrix of covariate(s). t (t = 1, 2, . . . ,Mk)

denotes the tth unit of focal group in the kth stratum. In DIF context, for uniform DIF,

the matrix βT (xtk − x0k) can be split into β1(totaltk − total0k) and β2(grouptk − group0k)

where total is the pupils’ total score and group is the group membership variable24.

Finally, suppose that M units of reference group are associated to one unit of focal

group (full matching many–to–one). Hence, each stratum k contains one unit of focal

group and Mk units of reference group. The conditional likelihood function for this kind of

design is:

l(β) =
K∏
k=1

1

1 +
∑Mk
t=1 exp[β

T (x1k − xtk)]
(26)

where k (k = 1, 2, . . . ,K) denotes the strata; the vector βT contains the coefficients of

covariates, whereas (x1k−xtk) is a data vector or matrix of covariate(s). t (t = 1, 2, . . . ,Mk)

denotes the tth unit of reference group in the kth stratum. In DIF context, for uniform DIF,

the matrix βT (x1k − xtk) can be split into β1(total1k − totaltk) and β2(group1k − grouptk)

where total is the pupils’ total score and group is the group membership variable25.

In DIF context, conditional logistic regressions are run for each item. Conditional

logistic regression compares two nested models: the first one, baseline model, is a model

with raw test score as only covariate and the second one, uniform DIF model, a model

with grouping variable as additive covariate. Likelihood ratio test statistic is the test for

assessing model significance: if the second one fits better data, then item is flagged as DIF.

The statistic is computed by minus two times the difference between the log likelihoods of

the two models. Likelihood ratio test statistic is asymptotically distributed as a chi-square

24It is possible to detect nonuniform DIF adding β3(total ∗ grouptk − total ∗ group0k).
25It is possible to detect nonuniform DIF adding β3(total ∗ group1k − total ∗ grouptk).
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distribution, with the degrees of freedom equal to the difference in number of regression

coefficients in the two models (Wu et al., 2017; Liu et al., 2016; Hosmer et al., 2013; Breslow

et al., 1980).

3.3.4 Nagelkerke’s R2

As said in section 2.3, traditional DIF detection methods provide methods to compute DIF

size measure. The effect size measure is a descriptive statistic that gives information about

the magnitude or degree of DIF (Jodoin and Gierl, 2001). Using only null hypothesis sig-

nificance testing for DIF detection has been criticized (Kirk, 1996; J. Cohen, 1994) because

statistical test is sensitive to sample size. Therefore, using null hypothesis significance

testing with an effect size measure could overcome this issue.

Logistic regression for DIF detection analysis uses R2 for this kind of measure. Hosmer

et al. (2013) indicate that there is no single measure in conditional logistic model similar to

R2 in multiple regression. Nevertheless, they suggest Nagelkerke’s R2 as adequate measure.

Nagelkerke’s R2 for model m (Nagelkerke, 1991) is computed from the following formula:

R̄2
m =

R2
m

max(R2)
(27)

where max(R2) is the R2 for the baseline model (with no covariates) and

R2
m = 1− exp(l0 − lm)2/n (28)

where l0 refers to the log–likelihood of no covariates model, while lm refers to the log–

likelihood of model with covariates.

Nagelkerke’s R2 allows to compare nested models for computing effect size measure.

Thus, the effect size associated to uniform DIF is computed comparing R2 for the model 0

and R2 for the models 1, where model 0 and 1 are, respectively, the baseline conditional

logistic model (with only total score as covariate) and uniform conditional logistic model

(adding group variable). The effect size associated to nonuniform DIF is computed

comparing R2 for the model 1 and R2 for model 2, where model 2 is the nonuniform

conditional logistic model (adding interaction between group variable and total score).

Finally, it is possible to compute effect size associated with simultaneously uniform and
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nonuniform DIF as the difference between the R2 of model 0 and the R2 of model 2

(Gómez-Benito, Hidalgo, et al., 2009; Jodoin and Gierl, 2001). This work treats only case

in which uniform DIF is present, so the effect size measure is computed as follows:

∆R2 = |R2
0 −R2

1|

As for traditional DIF detection analysis, when you use DIF size measure it is a need to

chose thresholds for interpreting the size of DIF: small, medium, and large effect sizes

Cohen (1988). Here, the chosen criterion is the one proposed by Gierl and McEwen (1998)

for traditional logistic regression, more conservative than that proposed by Zumbo and

Thomas (1997):

• Large DIF (class C) R2 ≥ 0.07 and χ2 test significant;

• Moderate DIF (class B) 0.035 ≤ R2 < 0.07 and χ2 test significant;

• Small (negligible) DIF (class A) R2 < 0.035 or χ2 test non significant.
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4. A simulation study

This section presents simulations analysis results. Before presenting simulation analysis

deeper, section 4.1 provides a check of simulated data. Especially, simulated scenarios must

be constructed in such a way as to have reference and focal groups imbalanced with respect

to covariates. Secondly, section 4.2 presents matching analysis for all generated scenarios.

After matching, the core of results (section 4.3) presents analysis of false alarm rate and

power for each scenario previously described. The last part of the chapter, section 4.4,

involves a brief assessment to using effect size measure for conditional logistic regression

methods applied to DIF detection analysis.

4.1 Checking scenarios

Before entering deeply into simulation results, here, some analysis are presented in order

to check the simulated scenarios (e.g., the performance of simulation design). As said in

section 3.2, the first step of simulation design has been to create scenarios with covariates

distributions consistent with respect to INVALSI sample. As “benchmark” for simulations,

three datasets are created with three different numbers of observations.

Table 6 represents the covariates distributions for INVALSI sample, scenarios with

500, 1000 and 2000 simulated test takers. Covariates distributions in simulated datasets

are very close to covariates distributions of INVALSI sample. One half of observations

(49%) are males and only about one in ten is not Italian (9%). Pupils and simulèe with

university degree aspiration (high aspiration) are 60%. Almost half of them (46%) comes

from north Italy, while 20% and 34% of them comes, respectively, from middle and south

Italy. Reminding that ESCS index was coded into discrete variable using 3 cut off (e.g., I

quartile, median and III quartile) we expect equidistribution in the new four categories of

ESCS variable. Nevertheless, from the table it emerges that our expectations have not been

perfectly reached: III quantile is under–represented while IV quantile is over–represented.

This happens, probably, because of previous data cleaning: routine for DIF detection

analysis in software R requires no missing data26. Another possible explanation could be

26difR package allows missing value for response variables but not for grouping variable (Magis, Beland,
et al., 2010).
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linked to rounding activities.

Table 6: Composition of variables among INVALSI sample and simulations.

INVALSI sample N=500 N=1000 N=2000

Gender

Male (%) 0.49 0.49 0.49 0.49

Female (%) 0.51 0.51 0.51 0.51

Citizen

Italian (%) 0.91 0.91 0.91 0.91

Not Italian (%) 0.09 0.09 0.09 0.09

Aspiration

University degree (%) 0.60 0.61 0.61 0.61

Not University degree (%) 0.40 0.39 0.39 0.39

Geographic Area

North (%) 0.46 0.46 0.46 0.46

Middle (%) 0.20 0.21 0.21 0.21

South (%) 0.34 0.33 0.33 0.33

ESCS

I quantile (%) 0.26 0.24 0.25 0.25

II quantile (%) 0.25 0.25 0.25 0.25

III quantile (%) 0.22 0.22 0.21 0.22

IV quantile (%) 0.27 0.29 0.29 0.28

Economic, social, and cultural background is affected by the other considered variables.

If gender should not affect ESCS index, Italians and foreigners are characterized by a

strong disadvantage for the latter in socio–economic–cultural status27, especially in term of

poverty and deprivation (Berti et al., 2014). This gap (in particular economic gap) not only

is persistent but it seems to increase over the years (Gambacorta, 2017). Hence, we expect

to find Italians at the top of ESCS index distribution and, conversely, not Italians at the

bottom of ESCS index distribution. Traditionally, there exists gap between north–middle

and south Italy in different life spheres. South is characterized by lower levels of principal

socio–economic–cultural status indicators than north and middle: parental instruction,

perceived wellbeing, health, income (D’Alessio, 2017). Our expectation is to find ESCS

27Keep in mind that this work does not consider mixed parentage pupils who have similar behavior to
natives (Azzolini, Schnell, et al., 2012).
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index equistribution among pupils from north and middle, while more southern students at

the bottom of ESCS index distribution. Socio–economic–cultural status plays an important

role in the formulation of educational aspirations of students. Low and high pupils socio–

economic–cultural status impacts significantly in their academic aspiration (Salgotra and

Roma, 2018). Parents’ high social capital has an impact on academic aspiration of their

children: these families transmit to their children high educational expectations which turn

into academic aspiration (Shahidul et al., 2015). Therefore, we expect to find more pupils

with high aspiration at the top of ESCS index distribution and, conversely, more pupils

with low aspiration at the bottom of ESCS index distribution.

We provide an additional check in appendix A. Table A4, table A5, table A6 and

table A7 show ESCS index distribution across other covariates for, respectively, INVALSI

sample, simulations with 500, 1000 and 2000 sample size. Gender, aspiration and geographic

area do not show problems: the distribution of ESCS index across other covariates is quite

consistent with respect to INVALSI sample. Especially, pupils with higher values of ESCS

index have higher aspiration; conversely, pupils with lower values of ESCS index have lower

aspiration. In addition, southern pupils are more concentrated into lower quartiles of ESCS

index, while students from north and middle are most equidistributed across quartiles. If

citizen variable does not create problem for Italians, not Italians are over–represented into

IV quartile and under–represented into I quartile among generated datasets, especially,

for sample size of 500, probably due to the small number of not Italians. Nevertheless,

it appears that the covariates were generated similar to the INVALSI sample, reflecting

literature results.

The second step of simulation design concerns the generation of pupils’ ability θ.

Figure 2 represents kernel density of latent trait for INVALSI sample, sample size of 500,

1000 and 2000 units. Densities overlap well in the tails, while they does not overlap well

around the mean. Latent trait for INVALSI sample has a mean of 0.293 and a standard

deviation of 1.227. Generated θs have a mean of 0.254, 0.275, 0.272 and a standard

deviation of 1.149, 1.119, 1.151, respectively, for sample size of 500, 1000 and 2000 units.

In conclusion, simulated latent traits are satisfactory.
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Figure 2: Kernel distributions of latent traits.

Section 3.1.2 has provided analysis for balancing check in INVALSI sample: it presents

one large size (aspiration), two medium sizes (gender and ESCS ), one small size (citizen)

and one negligible (geographic area) imbalance. Generated grouping variables should be

imbalanced by construction. Hence, we expect to find reference (academic track) and focal

groups (technical track) imbalanced with respect to covariates, according to INVALSI

sample. Here, we provide a check in order to assess whether this variables have been

properly generated. Table 7 presents balancing analysis for INVALSI sample (already

present in table 3) and simulation with 500, 1000 and 2000 test takers.

First of all, it is possible to verify the grouping variables distribution. INVALSI sample

presents about 57% (14185/25058, where the denominator is the INVALSI sample size)

of pupils enrolled in academic tracks and about 43% (10873/25058) of them enrolled in

technical schools. If grouping variables are consistent with respect to INVALSI sample for
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1000 and 2000 sample size, there is one percentage point of difference for 500 sample size.

Therefore, proportions of grouping variables are respected in simulated datasets.

All situations present same patterns of INVALSI sample as regards group imbalance

analysis. Scores of standardized mean differences (SMD) in simulated datasets are very

close to SDM of INVALSI sample. Academic track tends to have more males, fewer not

Italians, pupils with high aspiration and with high socio–economic–cultural status. All

differences are statistically significant, except for geographic area. SMD columns show

that simulated datasets present one large size imbalance (aspiration), two medium sizes

(gender and ESCS ), one small size (citizen) as for INVALSI sample. SMD scores vary

across datasets and better INVALSI sample reproduction grows up with sample size.

4.2 Propensity score matching

In previous section we checked whether groups are imbalanced with respect to covariates in

all simulated datasets. Groups are imbalanced by construction and SDM analysis confirmed

it. The new methodology suggests (section 2.4) to match groups in situations of imbalanced

groups. Matching reduces selection bias and it should guarantee the attribution of DIF

identification to group allocation mechanism, controlling for other confounding variables.

Therefore, now, we provide propensity score matching analysis in order to balance groups

for the next DIF detection analysis.

As said in section 3.3.2, we use both greedy and optimal full matching. All matching

analysis are carried out with MatchIt package of software R (Ho et al., 2011). Greedy

(nearest neighbor) matching is an algorithm that matches one treated and one control unit

with closest value of propensity score. Here, we opt for using replacement option because

it outperforms without replacement option. Unfortunately, nearest neighbor matching

could lead a sample reduction, due to discarding of unmatched units. Differently, optimal

matching adopts an algorithm which minimizes the total differences in the estimated

propensity score (Austin, 2009b) among treated and untreated subjects. Here, we opt for

full option that allows to avoid sample reduction. In addition, we try both one–to–many

option and a combination with one–to–many and many–to–one option. Nevertheless,

this section presents only tables and figures referred to optimal full matching with a

combination of one–to–many and many–to–one because it performs better than nearest
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neighbor matching and full matching28.

Tables 8, 9 and 10 represent full matching analysis with a combination of one–to–

many and many–to–one for all three generated samples. In particular, they present mean

covariates distributions before matching for reference and focal groups (column 2 and 3),

mean differences between them (column 4), mean covariates distributions after matching

for focal group (column 5) and mean differences between columns 2 and 5. The last column

is the most interesting for matching analysis: the Percentage of Bias Reduction (PBR). It

represents how much bias reduction is driven by the matching.
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Figure 3: Propensity score distributions before and after matching using full matching with a
combination of one–to–many and many–to–one (N=500).

For sample with 500 units we set an upper restriction of 5 on the maximum units

for reference and focal group. From the table 8, it emerges that matching leads a good

bias reduction, especially, comparing it to values of PBR with nearest neighbor and full

28In appendix B you can find nearest neighbor matching and full matching analysis.
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matching, respectively, in table B1 and B2 in appendix B. Most of the variables shows

high bias reduction that swings between 73.0% (IV quartile) and 99.4% (aspiration). Only

middle and III quartile present a low bias reduction, 36.2% and 38.4%. In addition, figure 3

presents propensity score distributions before and after matching between reference and

focal groups. In the absence of bias selection, the two distributions overlap. We can see

that propensity score distribution of focal (control) group are very close to propensity score

distribution of reference (treated) group after matching.
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Figure 4: Propensity score distributions before and after matching using full matching with a
combination of one–to–many and many–to–one (N=1000).

Full matching with a combination of one–to–many and many–to–one for sample of

1000 units is restricted to having the maximum of 7 treated and 7 control units. Here, the

percentage of bias reduction (table 9) is better than bias reduction of greedy matching

and full matching, respectively, in table B3 and B4 in appendix B. PBR swings between

56.5% (III quartile) and 100.0% (aspiration), suggesting the goodness of matching. One
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covariate, south, presents PBR value close to zero, indicating no difference after matching.

Furthermore, figure 4 analysis allows to judge positively the bias reduction driven by the

matching.
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Figure 5: Propensity score distributions before and after matching using full many–to–one and
one–to–many matching (N=2000).

Table 10 presents PBR in dataset with 2000 units. Here, we set an upper restriction of

10 on the maximum treated and control units. Bias reduction is satisfactory and it swings

between 99.0% (aspiration) and 78.8% (citizen). It is not satisfactory only for geographic

area variable. If for south we find low bias reduction (10.9%), middle presents high and

negative value of PBR. This indicates that matching produces larger differences in middle

variable between the two groups. Nevertheless, this value is smaller than value for other

considered matching techniques (table B5 and B6 in appendix B). Once again, figure 5

confirms a good matching. To sum up, matching leads high bias reduction for all generated

datasets: after matching reference and focal groups are balanced with respect to covariates.
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4. A simulation study

The subsets created by full matching with a combination of many–to–one and one–to–many

are used for the next simulation results.

4.3 Results

Simulation analysis involves false alarm rates and power of DIF methods. We mainly focus

on the new methodology. We apply conditional logistic regression with the best matching

previously checked: full matching with a combination of many–to–one and one–to–many.

In addition, we compare its performance to the performance of traditional DIF methods.

We consider Mantel–Heanszel statistic, Lord’s χ2 and conventional logistic regression as

traditional DIF methods, described in section 2.3.1.

All figures below present the performance for DIF methods simultaneously, controlling

for all manipulated factor29. In particular, in all graphs the number of test takers are

represented on the x–axis, while y–axis represents false positive and true positive (power)

rates. In addition, tables C1– C9, in appendix C, give the point estimates for false alarm

rates and power for β ∼ N(0, 1). For false alarm rates we set a nominal alpha level to 0.05

(the red line in the graphs), that is, we tolerate that at most 5% of false positive detected

may be due to chance.

4.3.1 Type I error inflation

First of all, we analyze and comment simulation results with βs drawn from a standard

normal distribution (Tutz and Berger, 2016; Berger and Tutz, 2016; Magis, Tuerlinckx,

et al., 2015; Khalid and Glass, 2013; Magis, Râıche, et al., 2011). When we control for no

biased items (figure 6) all methods perform satisfactorily: they present false alarm rates

under or very close to nominal alpha level. In addition, all methods performances are

perfectly under 5% when test contains large number of items (J=60).

Introducing 10% biased items with moderate DIF size (figure 7), false positives identified

by all methods tend to increase compared to no bias scenarios. Nevertheless, they are still

under or very close to nominal alpha level. Once again, all methods perform better in

situations in which large number of items forms the test.

Now, if we double DIF size (figure 8), we find that general false alarm rates increase.

Furthermore, as sample size increases false positives detected increase. The new method-

29See section 3.2.5 for a detailed description.
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ology and Lord’s χ2 outperform MH statistic and LR, especially for large sample size.

Nevertheless, all methods exceed nominal alpha level for large samples. When we control

for 20% of biased items and moderate DIF size (figure 9) we can comment similar to

scenarios of figure 8.

Finally, figure 10 represents performances for 20% of biased items with large DIF size.

Here, general false alarm rates increase dramatically and as sample size increases false

positives detected increase. Furthermore, the new methodology outperforms traditional

DIF detection methods for large sample size. Here, it seems to be no significant differences

among different test lengths.

To sum up, Zumbo’s methodology outperforms, in terms of false alarm rates, traditional

DIF detection methods for large sample size. In addition, this result is more evident in

situations of moderate number of biased items and large DIF size. One possible explanation

for association between large sample and inflated type I error rate is the nature of statistical

test used. All considered methods are based on a statistic test which is approximately

distributed as a χ2. This statistic is sensitive to large sample sizes (Jodoin and Gierl, 2001),

amplifying the inflated type I error rate.

78



4. A simulation study

500 1000 2000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

J=20

Sample size

F
al

se
al

ar
m

ra
te

s

CLogistic
Logistic
MH
Lord’s χ2

500 1000 2000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

J=40

Sample size

F
al

se
al

ar
m

ra
te

s

CLogistic
Logistic
MH
Lord’s χ2

500 1000 2000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

J=60

Sample size

F
al

se
al

a
rm

ra
te

s

CLogistic
Logistic
MH
Lord’s χ2

Figure 6: False alarm rates of DIF methods: no biased items.
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Figure 7: False alarm rates of DIF methods: 10% biased items and δ=0.4.
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Figure 8: False alarm rates of DIF methods: 10% biased items and δ=0.8.

81



4. A simulation study

500 1000 2000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

J=20

Sample size

F
al

se
al

ar
m

ra
te

s

CLogistic
Logistic
MH
Lord’s χ2

500 1000 2000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

J=40

Sample size

F
al

se
al

ar
m

ra
te

s

CLogistic
Logistic
MH
Lord’s χ2

500 1000 2000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

J=60

Sample size

F
al

se
al

a
rm

ra
te

s

CLogistic
Logistic
MH
Lord’s χ2

Figure 9: False alarm rates of DIF methods: 20% biased items and δ=0.4.
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Figure 10: False alarm rates of DIF methods: 20% biased items and δ=0.8.
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4.3.2 Power rates

Now, we shift the attention towards test power linked to DIF methods. Of course, power

analysis does not include situations with no biased items. For moderate DIF size (figures 11

and 13), as number of test takers increases, true positives detected increase for all methods.

The global performance are not very satisfactory for small size, while it increases with larger

sample size. In addition, the new methodology underperforms traditional DIF detection

methods. Across test length, there seems to be no evident pattern: test length does not

impact the power rates.

Differently, for large DIF size (figures 12 and 14) all methods present satisfactory

trends, with a constant increase of true positives detected as sample size increases; only

MH statistic presents fluctuating trends. These results are not surprising because methods

should identify better a true positive when DIF size is large. Once again, number of items

does not significantly impact all performances. Furthermore, here, if the new methodology

presents lower power rates for small sample size, it tends to detect perfectly true positives

for large sample size30.

30This perfect detection is observed also for Lord’s χ2 and LR.
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Figure 11: Power rates of DIF methods: 10% biased items and δ=0.4.
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Figure 12: Power rates of DIF methods: 10% biased items and δ=0.8.

86



4. A simulation study

500 1000 2000

0.0

0.2

0.4

0.6

0.8

1.0

J=20

Sample size

P
ow

er
ra

te
s

Clogistic
Logistic
MH
Lord’s χ2

500 1000 2000

0.0

0.2

0.4

0.6

0.8

1.0

J=40

Sample size

P
ow

er
ra

te
s

Clogistic
Logistic
MH
Lord’s χ2

500 1000 2000

0.0

0.2

0.4

0.6

0.8

1.0

J=60

Sample size

P
ow

er
ra

te
s

Clogistic
Logistic
MH
Lord’s χ2

Figure 13: Power rates of DIF methods: 20% biased items and δ=0.4.
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Figure 14: Power rates of DIF methods: 20% biased items and δ=0.8.

To sum up, simulation results show that the new methodology outperforms, in several

situations, traditional DIF detection methods in imbalanced groups. In particular, it

presents the best performance for false alarm rates in situations of large number of

DIF items, large DIF size and large number of test takers. Nevertheless, it has some

disadvantages to correctly detect an item as DIF, especially for small samples. However,

this disadvantage disappears for large DIF size and large sample size. Therefore, if you

choose to apply the new methodology, you must be aware there exists a trade–off of false

positive and true positive detected when DIF is present: low type I error inflation involves
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low power rates. Nevertheless, we pay more attention to false positive inflation rather

than true positive identification. It is “dangerous” that an item is mistakenly flagged

as DIF. Traditionally, if an item is flagged as DIF, it is assessed from an expert equipe

and, subsequently, it is deleted from analysis. In this case, test mistakenly loses useful

information linked to the item in the analysis.

Previous simulation studies have shown that false alarm rates and power rates increase

for conventional logistic regression as the sample sizes increase (Jodoin and Gierl, 2001;

Narayanon and Swaminathan, 1996; Swaminathan and Rogers, 1990). MH statistic also

depends on sample size (Narayanon and Swaminathan, 1996). In addition, it is shown that

20 items tests present more inflation of type I error rates than one for the 40 items31 (Uttaro

and Millsap, 1994). Lord’s χ2 performance are very similar to MH procedure, though MH

identifies slightly more DIF items (Raju et al., 1993). In addition, conventional logistic

regression generally detected more DIF items than MH statistic (Gómez-Benito, Hidalgo,

et al., 2009; Hidalgo and LóPez-Pina, 2004). Finally, it was found that conventional LR

and MH procedure have similar powerful in detecting uniform DIF (Swaminathan and

Rogers, 1990). Our results are consistent with respect to previous results for traditional

DIF detection methods. Therefore, this can be considered a robustness check of our results.

As said in section 3.2.5, we want to assume also a different distribution for difficulty

parameter β. This occurs because simulating βs from standard normal distribution makes

the difficulty parameters focus around zero, excluding extreme values. This strategy

precludes the presence of very easy or very difficult items. Therefore, βs are also drawn

from an uniform distribution with parameters set to minus 2 and plus 2 (Weiss, 2014; Magis

and Facon, 2012). Uniform distribution allows to consider both very easy and very difficult

items. Nevertheless, we do not comment this results because we found the same patterns

and trends for situations in which βs are drawn from standard normal distribution. For

details, you can find figures and tables of performance analysis with uniform assumption

in appendix D.

In conclusion, when groups are imbalanced we suggest the use of new methodology for

two reasons. First of all, simulation results showed that Zumbo’s methodology presents

the same performance in some situation (small samples and small biased items) and better

31Our results present the same patterns for all DIF considered procedure; anyway, 60 items test presents
results similar to 20 items test.
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performance in others (large samples, large biased items and large DIF size). Secondly, it

is useful for detect casual effects of group allocation mechanism according to DIF analysis.

Thus, the new methodology is recommended for observational studies since traditional DIF

detection techniques do not present better performance in considered scenarios.

4.4 Effect size measure

Previous simulation results have demonstrated that the new methodology outperforms

traditional DIF detection techniques in some situations, especially for large sample size.

Nevertheless, also Zumbo’s methodology presents no satisfactory type I error inflation for

large sample size. That is, the false alarm rates exceed the nominal alpha level of 0.05.

Therefore, here, we use an effect size measure in order to reduce I error inflation for the

new methodology. In particular, we assess the performance using an effect size measure,

always, in terms of false alarm rates and power rates. As in previous simulation studies

about the use of effect size measure for conventional LR (Gómez-Benito, Hidalgo, et al.,

2009; Jodoin and Gierl, 2001), we expect that it reduces both type I error and power rates

when sample is large.

As said in section 3.3.4, using only null hypothesis significance testing for DIF detection

has been criticized (Kirk, 1996; J. Cohen, 1994) because statistical test is sensitive to sample

size. Therefore, using null hypothesis significance testing with an effect size measure could

overcome this issue. “Moreover, there is a broad consensus about the need to bring together

the interpretation of effect size with significance tests in all types of research” (Gómez-

Benito, Hidalgo, et al., 2009, p. 24). Therefore, it is crucial to assess the performance of

the effect size measure use for different scenarios.

Tables 11 and 12 present the performance of effect size measure for the new methodology

across different scenarios. Table 11 shows the percentage of false positive (FP), where,

DIF–U represents the FP ratio detected from the new methodology only with statistical

test, while ∆R2−U represents the FP ratio detected using the effect size measure. Finally,

the 4th, the 7th and the 10th columns present the reduction of FP using the effect size

measure rather than null hypothesis significance testing32. Differently, table 12 shows the

percentage of correct identification (CI).

32If the reduction is not reported, it means that or ∆R2−U detects zero false positive either the reduction
exceeds 100%.

90



4. A simulation study

As threshold for DIF detection using effect size measure we use the criterion proposed

by Gierl and McEwen (1998): items is flagged as no DIF if ∆R2 < 0.035 or χ2 is non

significant. We can see that effect size measure produces very large reduction of false

positives. Especially, for small sample sizes the reduction occurs between about 10% and

20%. For example, in the first scenario (no biased items, J=20 and N=500) the new

methodology with only statistical test identifies, in average, about 5% of FPs, while using

effect size measure this percentage goes down to minus of 1% (0.30%). For moderate and

large sample sizes the reduction is greater than 100% and, for many scenarios, effect size

measure identifies no false positives.

In contrast, correct identification of DIF items suffers from a net reduction using effect

size measure. The reduction for small simple size is quite weak, between about 2% and 9%.

Here, there seems to be an effect of DIF size because the reduction is bigger for moderate

DIF size than for large DIF size. For moderate sample size, the reduction oscillates between

about 7% and 90% with, once again, greater reduction for moderate DIF size than for

large DIF size. Finally, for large sample size the reduction is greater than 100% and, for

most of scenarios, effect size measure identifies no true positives.

For uniform assumption of β (tables D10 and D11 in appendix D) the results are very

similar to normal assumption. As expected, false alarm rates benefits from using effect

size measure. For large samples, this allows to have no type I error inflation. Nevertheless,

a reduction of type I error rates involves also a reduction in power. That is, the effect size

measure guarantees to not mistakenly flag items as DIF, but it does not identify correctly

an item as DIF. Therefore, you must keep in mind the existence of this trade–off when

using effect size measure. For further developments, new effect size measures should be

explored in order to balance the FP and the CI percentages (Gómez-Benito, Hidalgo, et al.,

2009).
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5. Application to a real dataset

Now, we provide an application of DIF detection analysis with particular focus on the

Zumbo’s methodology. The application involves different academic tracks (section 5.1) from

INVALSI sample 2016/2017, described into section 5.2. We carry out DIF detection analysis

two groups at a time (section 5.3), and we have three different subsamples (subsections 5.3.1,

5.3.2 and 5.3.3) in which we carry out DIF detection analysis (subsection 5.3.4). Finally,

the last section (section 5.4) presents conclusions and discussion about DIF results.

5.1 Academic tracks

The Italian education system presents an horizontal stratification at upper secondary school

level. The stratification involves academic, technical, vocational schools and vocational

training courses. All curricular programs are decided at national level and the schools

provide some similar subjects, such as Italian language and literature, mathematics, history,

one or more foreign language and so on, while they differ for specific subjects. This

differentiation is due to different track purpose. As said in section 2.2.1, academic schools

provide academic and general curricula, technical schools aim to prepare students for labor

market, especially for technical and economic positions and vocational schools transfer to

pupils vocational skills oriented to industry and handicraft and services33.

For the simulation we have considered academic and technical schools, while for the

application, now, we consider only academic schools. Therefore, here, we exclusively focus

on academic track. Italian academic track presents a further horizontal stratification

that differs schools for the main subjects. Students can choose from classic lyceum (liceo

classico) characterized by Latin and Ancient Greek; scientific lyceum (liceo scientifico)

focused on scientific studies with mathematics, physics, chemistry, biology, earth science

and computer science; linguistic lyceum (liceo linguistico) characterized by modern foreign

languages such as English, French, Spanish and German, but also Russian, Arabic and

Chinese; artistic lyceum (liceo artistico) where the emphasis is on theoretical and practical

arts; human sciences lyceum (liceo delle scienze umane) oriented on sociology, psychology,

33In addition to these three branches, Italian pupils can opt for vocational training courses. We do not
consider them because there are no pupils from this track into INVALSI sample.
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anthropology and pedagogy; music and dance lyceum (liceo musicale e coreutico) oriented

to teach students music, playing instruments, dance and choreography.

The choice of apply the new methodology to different academic tracks leads an important

advantage. These groups should be more similar than groups of first stratification (academic,

technical, vocational tracks and vocational training courses), making easier matching and

results interpretation. Indeed, propensity score matching should perform well since groups

should be low imbalanced. This helps and eases the DIF attribution to group allocation

mechanism. Moreover, we find very interesting to consider pupils from academic tracks

because they should exhibit similar achievement, although scholastic curricula differ from

each other.

At the end of this chapter (section 5.4), discussion about bias results are proposed. We

expect to find differences in raw scores among academic schools because these different

curricula should transfer different abilities to pupils. However, we expect that the instrument

is fair with respect to academic track and the new methodology allows to assess this issue

and to attribute differential item functioning to group membership. For possible DIF item

detected, we analysis them more in detail, through a qualitative analysis about items

format and content. It is possible that some item format favors pupils from one particular

track and some school tracking could benefit some item contents. Therefore, if DIF item is

detected, this kind of analysis helps detect possible sources of DIF due to group allocation.

5.2 Data

For the application we use sample INVALSI referred to 2016/2017 academic year. Sample

contains 38285 units for the Italian language test, while the sample counts 38120 pupils for

the maths test. Our analytic sample contains only pupils with information about both

tests and pupils from academic tracks. Therefore, the final sample size contains 15699

pupils due to merge and data cleaning.
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Table 13: Sample composition by different academic tracks.

N %

Artistic 1281 8.16

Classic 1815 11.56

Human sciences 2642 16.83

Linguistic 2826 18.00

Scientific 7135 45.45

Table 13 presents the distribution of pupils into different academic schools. We aggregate

music and dance lyceum with artistic lyceum because of low sample size of pupils34 into

first lyceum. We opt for this choice because these schools teach similar main subjects.

Almost one half of sample attends to scientific lyceum (45.5%). Linguistic and human

sciences (HS) lyceum are frequented by about one fifth of students (respectively, 18.0%

and 16.3%), while one pupil on ten is enrolled in classic (11.6%) or artistic lyceum (8.2%).

Table 14: Descriptives of maths and Italian language raw scores by different tracks.

Maths Italian language

Mean SD Max Min Mean SD Max Min

Artistic 39.87 18.01 95.00 2.50 55.19 15.30 91.84 2.04

Classic 54.48 19.19 97.50 2.50 73.68 11.69 97.96 8.16

Human sciences 39.22 17.29 95.00 2.50 58.72 13.60 93.88 10.20

Linguistic 48.80 18.30 97.50 2.50 66.43 12.54 93.88 4.08

Scientific 69.18 18.89 97.50 2.50 68.05 13.30 97.96 2.04

From the table above (table 14), pupils from artistic and human sciences presents the

lowest performance, in terms of raw scores, both in math and Italian language. Scientific

outperforms other tracks in maths, while only classic overcomes it in Italian language

test. Classic and linguistic present results very similar in both tests, although the former

outperforms the latter. We are interested in DIF detection analysis among pupils from

different academic tracks, therefore we need to reduce the groups number in order to carry

34Only 1% of pupils is enrolled in music and dance lyceum (174 pupils in the former and 29 in the latter).
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5. Application to a real dataset

out DIF analysis in simple way. We decide to aggregate academic tracks as follow: artistic

with human sciences (HS), classic with linguistic and scientific alone. This aggregation

takes the sample size and similar raw score in both tests into consideration.
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Figure 15: Kernel density in maths and Italian language test for the three groups.

The aggregation leads to three new groups and figure 15 shows math and Italian

language abilities distributions across the groups. Abilities are estimated under a Rasch

model. We can see that scientific schools tend to have students with higher math ability

than others, while classic and linguistic schools tend to have students with higher math

ability than artistic and human sciences schools. Differently, students from scientific and

classic and linguistic schools present similar Italian language abilities and higher than

students from artistic and human sciences schools.

5.3 Results

Now, we provide DIF detection analysis among pupils from these three groups, two

groups at a time. This is because traditional DIF detection methods and Zumbo’s

methodology consider usually only two groups35, aware that it is a limitation of our

35In literature, some works provide methods of DIF detection for multiple groups (Finch, 2016; Woods
et al., 2013; Magis, Râıche, et al., 2011).
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research. Consequently, we have three different applications: scientific vs classic and

linguistic (application 1), scientific vs artistic and human sciences (application 2) and

classic and linguistic vs artistic and human sciences (application 3).

We apply conditional logistic regression. Therefore, first of all, we check covariates

balancing between groups and apply propensity score matching in order to reduce selection

bias. Conditional logistic regression, as traditional DIF methods, is based on statistical

tests that are distributed as a χ2 and they have been criticized (Kirk, 1996; J. Cohen,

1994) because of sensitive to sample size. Here, our sample size is very large (N=15699),

consequently, we can meet high risk of false positive identification. Therefore, we limit out

applications to Lombardy. We choose this region because it presents the higher sampling

number (N=1579).

The new methodology suggests to apply DIF detection analysis only for groups which

are comparable (without imbalanced covariates). Propensity score matching allows to

reduce covariates imbalance, but this technique requires no missing data. Therefore, sample

reduction occurs for guaranteeing the matching. In particular, sample reduction is equal

about to 10% and the final sample size contains 1427 pupils. We apply propensity score

matching only for that covariates which are significantly imbalanced in reference and focal

group. Consequently, the covariates can be different among the three applications. The

covariates are the same used for the simulation36 and described in section 3.1.2, with a

difference: ESCS index is treated as continuous variable. In addition, we consider other

variables which can affect the pupils’ upper secondary school choice: the regularity of

previous study (regular), if dialect is spoken at home (dialect), books number at home

(books), student attendance to primary school more than one year (primary) and material

deprivation index37 (material deprivation).

5.3.1 Scientific vs classic and linguistic

Before to apply conditional logistic regression, balancing check and propensity score

matching analysis is conducted for each application. First of all, we consider application

between scientific schools and classic and linguistic schools. In this case, scientific track

36No presence of area variable because we circumscribe application to one region.
37The index is an additive index composed by the student’s tenure of quiet place to study, computer to

study, desk for homework, encyclopedia (made up of books or CD-ROMs or DVDs), Internet and single
room.
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5. Application to a real dataset

refers to reference group, while classic and linguistic track refers to focal group.

Table 15: Covariates balancing between scientific and classic and linguistic tracks.

Scientific Classic and Linguistic p SMD

n 642 402

Gender

Male (%) 56.4 17.2 <0.001 0.809

Citizen

Not Italian (%) 8.1 10.2 0.239 0.081

Aspiration

Low (%) 10.1 20.1 <0.001 0.288

Regular

Yes (%) 93.8 90.8 0.096 0.112

Books (%) 0.038 0.162

< 25 7.3 10.4

> 26 and < 200 48.6 52.5

> 201 44.1 37.1

Dialect

Yes (%) 29.4 25.1 0.149 0.097

Primary

No or less than one year (%) 5.0 5.5 0.839 0.022

ESCS

(mean) 0.56 0.42 0.011 0.161

Material deprivation

(mean) 0.91 0.84 0.742 0.021

Here, reference and focal groups are very similar with respect to considered covariates.

Table 15 shows standardized mean differences (SMD) between the two groups. Only gender,

aspiration, books and ESCS index are statistically different between groups. Scientific

schools are more attended by males and students with higher aspiration. Although books

and ESCS index present significant differences, they have negligible or low differences

because SMD are close to 0.100. Consequently, these two groups are very similar.
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Figure 16: Percentage of Bias Reduction (PBR): scientific vs classic and linguistic.

Propensity score matching is performed for gender, aspiration, books and ESCS index.

In particular, we opt for a full matching with a combination of one–to–many and many–

to–one, where maximum control and treated are set to 13 subjects. Table 16 shows

that propensity score matching reduces the covariates differences between groups with

high reduction for all covariates from 100.0% for gender and aspiration to 87.9% for the

first category of books variable. Despite the groups are very similar before matching,

propensity score matching balances covariates for students with high value of propensity

score (figure 16).

5.3.2 Scientific vs artistic and human sciences

Now, we carry out matching analysis between scientific track (reference group) and artistic

and human sciences track (focal group).
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5. Application to a real dataset

Table 17: Covariates balancing between scientific and artistic and HS tracks.

Scientific Artistic and HS p SMD

n 642 383

Gender

Male (%) 56.4 24.3 <0.001 0.693

Citizen

Not Italian (%) 8.1 9.4 <0.549 0.046

Aspiration

Low (%) 10.0 36.0 <0.001 0.651

Regular

Yes (%) 93.8 85.4 <0.001 0.277

Books (%) 0.001 0.236

< 25 7.3 12.0

> 26 and < 200 48.6 54.0

> 201 44.1 33.9

Dialect

Yes (%) 29.4 35.8 0.042 0.135

Primary

No or less than one year (%) 5.0 8.4 0.043 0.135

ESCS

(mean) 0.56 0.17 <0.001 0.455

Material deprivation

(mean) 0.71 0.87 <0.009 0.166

Scientific and artistic and HS schools are very imbalanced with respect to covariates

(table 17). Reference group is more represented by males (56%), pupils with high aspiration

(90%) and pupils with higher value of economic–social–cultural index (0.56), on average,

than focal group. Reference and focal group are imbalanced, although in less marked way,

with respect to regular, books, dialect, primary and material deprivation. Citizen does not

present statistically significant differences between the groups.
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Figure 17: Percentage of Bias Reduction (PBR): scientific vs artistic and human sciences.

Here, propensity score matching is performed for gender, aspiration, regular, books,

dialect, primary, ESCS index and material deprivation. We opt for a full matching with a

combination of one–to–many and many–to–one and set 8 as maximum number controls

and treated. From table 18 and figure 17, it is possible to observe that propensity score

matching reduces significantly selection bias in reference and focal groups. In particular,

we find high reduction for gender, aspiration, regular and ESCS (from 79.9 % to 98.8%)

and moderate for the others (from 30.1% to 66.7%).

5.3.3 Classic and linguistic vs artistic and human sciences

The final application considers pupils from classic and linguistic schools (reference group)

and from artistic and human sciences schools (focal group).
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Table 19: Covariates balancing between classic and linguistic and artistic and HS tracks.

Classic and Linguistic Artistic and HS p SMD

n 402 383

Gender

Male (%) 17.2 24.3 0.018 0.176

Citizen

Not Italian (%) 10.4 9.4 0.710 0.035

Aspiration

Low (%) 20.1 36.0 <0.001 0.359

Regular

Yes (%) 90.8 85.4 0.025 0.168

Books (%) 0.590 0.073

< 25 10.4 12.0

> 26 and < 200 52.5 54.0

> 201 37.1 33.9

Dialect

Yes (%) 25.1 35.8 0.002 0.233

Primary

No or less 1 year (%) 5.5 8.4 0.146 0.114

ESCS

(mean) 0.42 0.17 <0.001 0.288

Material deprivation

(mean) 0.73 0.87 <0.033 0.152

Here, reference and focal group are imbalanced with respect to all covariates, except

for citizen, books and primary (table 19). In particular, males (17.2%), pupils with low

school aspiration (20.1%), dialect spoken at home (25.1%) and ESCS index (mean of 0.73)

are under–represented in classic and linguistic rather than in artistic and human sciences

schools. Conversely, regular students (90.8%) and material deprivation index (mean of

0.73) are over–represented in reference group.
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Figure 18: Percentage of Bias Reduction (PBR): classic and linguistic vs artistic and human
sciences.

Table 20 shows percentage of bias reduction of full matching with a combination of

one–to–many and many–to–one, where maximum control and treated are set to 8 subjects.

Matching is performed for gender, aspiration, regular, dialect, ESCS index and material

deprivation. It reduces differences in the propensity score distribution between the two

groups. The bias reduction is moderate for material deprivation (30.9%) and high for other

covariates (from 81.1% to 99.7%).

5.3.4 DIF detection analysis

Now, we can carry out DIF detection analysis following the new methodology. After

matching, we are able to apply conditional logistic regression considering the data de-

pendence structure. In the following pages, DIF detection analysis is carried out for

both maths and Italian language test. As described in previous section, three different
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5. Application to a real dataset

applications are considered: scientific vs classic and linguistic (application 1), scientific vs

artistic and HS (application 2) and classic and linguistic vs artistic and HS (application

3). DIF detection analysis considers both null hypothesis significance test and the effect

size measure. Complete DIF analysis are inserted in appendix E for all three applications:

table E2, E3 and E4 show group coefficients, hypothesis test values, with relative statistical

significance, and ∆R2 values, where necessary38, for both tests.

Maths INVALSI test 2016/2017 for secondary schools consists of 40 items. These items

aim to investigate students’ knowledge of mathematics, hence they have mathematical

contents. The maths test involves four different content areas: quantity, space and shape,

change and relationship, uncertainty and data. A second dimension, on which maths items

are constructed, concerns three moment of processes39: formulating, employing, interpreting

(INVALSI, 2012b). The items have four different formats: multiple–choice questions with

four possible choices (14 items), open–ended questions (19 items), complex multiple–

choice questions (6 items) and one cloze question40. Finally, each item is transformed

in dichotomous variable, where 1 refers to correct answer and 0 refers to wrong answer

(INVALSI, 2017c, p. 95).

Table 21 shows DIF results about maths test. Considering only null hypothesis test,

the first two applications present large DIF items, respectively, the 40% (16 items) and 45%

(18 items), while the last application presents the 12.5% (5 items) of DIF items. Although

DIF items are numerous, if we use the effect measure size we find that only three items are

significantly flagged as DIF. In particular, item M30 has large DIF size effect in the first

application and moderate DIF size effect in the second application. The first application

presents also item M31 as DIF (with moderate effect size), while the last application has

no DIF items.

38Values are not reported for hypothesis significance test not statistical significance.
39Activities for problem resolution.
40It is an exercise where some words or signs are removed from text portion. The test participants must

replace the missing words or signs.
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Table 21: DIF results about maths test among pupils from different academic tracks.

1st application 2nd application 3rd application

Test Size Test Size Test Size

M1 DIF A NoDIF A NoDIF A

M2 NoDIF A NoDIF A NoDIF A

M3 NoDIF A NoDIF A NoDIF A

M4a NoDIF A NoDIF A NoDIF A

M4b DIF A NoDIF A NoDIF A

M5 DIF A NoDIF A DIF A

M6 DIF A NoDIF A NoDIF A

M7 NoDIF A NoDIF A NoDIF A

M8 DIF A DIF A NoDIF A

M9 NoDIF A NoDIF A NoDIF A

M10 NoDIF A NoDIF A NoDIF A

M11 NoDIF A NoDIF A NoDIF A

M12 DIF A DIF A NoDIF A

M13 DIF A DIF A DIF A

M14a DIF A DIF A NoDIF A

M14b NoDIF A DIF A DIF A

M14c DIF A DIF A NoDIF A

M15 NoDIF A DIF A NoDIF A

M16a NoDIF A DIF A NoDIF A

M16b NoDIF A NoDIF A NoDIF A

M16c NoDIF A DIF A NoDIF A

M17 NoDIF A NoDIF A NoDIF A

M18 NoDIF A NoDIF A NoDIF A

M19 NoDIF A DIF A DIF A

M20a NoDIF A NoDIF A NoDIF A

M20b NoDIF A DIF A NoDIF A

M21 NoDIF A NoDIF A NoDIF A

M22 NoDIF A DIF A NoDIF A

M23 NoDIF A DIF A NoDIF A

M24 DIF A DIF A NoDIF A

M25 NoDIF A NoDIF A NoDIF A

Continued on next page
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Table 21 – continued from previous page.

1st application 2nd application 3th application

Test Size Test Size Test Size

M26a NoDIF A NoDIF A NoDIF A

M26b NoDIF A NoDIF A NoDIF A

M27 NoDIF A NoDIF A NoDIF A

M28 DIF A DIF A DIF A

M29a DIF A DIF A NoDIF A

M29b DIF A DIF A NoDIF A

M30 DIF C DIF B NoDIF A

M31 DIF B NoDIF A NoDIF A

M32 DIF A NoDIF A NoDIF A

A = Negligible, B = Moderate and C = Large effect.

Italian language INVALSI test 2016/2017 for secondary schools consists of 49 items.

This test wants to assess reading (comprehension, interpretation, reflection and evaluation

of written text) and grammatical competences (INVALSI, 2012a). So, the Italian language

test consists of two different part. The first one aims to investigate student’s reading

comprehension, while the second one aims to investigate student’s ability and knowledge

of language. The first part presents questions about two argumentative texts (text A with

10 questions and D with 9 questions), 10 questions about an argumentative–expositive

text (text B) and 10 questions about a poetical text (text C). The second part (text E)

is composed by 10 questions about student’s ability and knowledge of language. Items

have different formats: multiple–choice questions with four possible choices (32 items),

open–ended questions (10 items), complex multiple–choice questions (6 items) and one

cloze question. Finally, as for maths test, each item is transformed in dichotomous variable,

where 1 refers to correct answer and 0 refers to wrong answer (INVALSI, 2017c, p. 83).

The Italian language test shows less DIF items than maths test, using only statistical

test. The first application shows about the 8% (4 items) of DIF items, while the second

and the third application show, respectively, about the 20% (10 items) and the 25% (12

items) DIF items. The effect size measure flags only item A4 3 as DIF (moderate effect)

for application 1, while in application 2 items C3, C8 and E10 present DIF with moderate
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effect. Differently, comparing pupils of third application, two items are flagged as moderate

DIF (B3 and E3) and four items as large DIF (A4 2, A4 2, A4 3 and E10).

Table 22: DIF results about Italian language test among pupils from different academic tracks.

1st application 2nd application 3rd application

Test Size Test Size Test Size

A1 NoDIF A NoDIF A NoDIF A

A2 NoDIF A NoDIF A NoDIF A

A3 NoDIF A NoDIF A NoDIF A

A4 1 NoDIF A NoDIF A DIF C

A4 2 NoDIF A NoDIF A DIF C

A4 3 DIF B NoDIF A DIF C

A4 4 NoDIF A NoDIF A NoDIF A

A4 5 NoDIF A DIF A NoDIF A

A4 6 NoDIF A NoDIF A NoDIF A

A5 NoDIF A NoDIF A NoDIF A

B1 NoDIF A NoDIF A NoDIF A

B2 NoDIF A DIF A DIF A

B3 DIF A NoDIF A DIF B

B4 NoDIF A NoDIF A NoDIF A

B5 NoDIF A NoDIF A NoDIF A

B6 NoDIF A NoDIF A NoDIF A

B7 NoDIF A NoDIF A NoDIF A

B8 NoDIF A NoDIF A NoDIF A

B9 DIF A DIF A NoDIF A

B10 NoDIF A NoDIF A NoDIF A

C1 NoDIF A NoDIF A NoDIF A

C2 NoDIF A NoDIF A NoDIF A

C3 NoDIF A DIF B NoDIF A

C4 NoDIF A NoDIF A DIF A

C5 NoDIF A NoDIF A NoDIF A

C6 NoDIF A DIF A DIF A

C7 NoDIF A NoDIF A NoDIF A

C8 NoDIF A DIF B NoDIF A

Continued on next page
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Table 22 – continued from previous page.

1st application 2nd application 3th application

Test Size Test Size Test Size

C9 NoDIF A NoDIF A NoDIF A

C10 NoDIF A NoDIF A NoDIF A

D1 NoDIF A NoDIF A NoDIF A

D2 NoDIF A NoDIF A NoDIF A

D3 DIF A NoDIF A NoDIF A

D4 NoDIF A NoDIF A NoDIF A

D5 NoDIF A NoDIF A NoDIF A

D6 NoDIF A NoDIF A NoDIF A

D7 NoDIF A NoDIF A NoDIF A

D8 NoDIF A NoDIF A DIF A

D9 NoDIF A NoDIF A NoDIF A

E1 NoDIF A NoDIF A NoDIF A

E2 NoDIF A DIF A DIF A

E3 NoDIF A DIF A DIF B

E4 NoDIF A NoDIF A NoDIF A

E5 NoDIF A NoDIF A NoDIF A

E6 NoDIF A DIF A DIF A

E7 NoDIF A NoDIF A NoDIF A

E8 NoDIF A NoDIF A NoDIF A

E9 NoDIF A NoDIF A NoDIF A

E10 NoDIF A DIF B DIF C

A = Negligible, B = Moderate and C = Large effect.

5.4 Discussion

Previous analysis has shown that the amount of items flagged as DIF is significant, especially

for maths test. Nevertheless, results change if we use misuse effect size in order to identify

DIF items. Indeed, it occurs a significant reduction of DIF items with the second method.

In particular, three items are flagged as DIF for the mathematics test, while ten for the

Italian language test. Applications involve situations in which the number of test takers is
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around one thousand units41 for length tests equal to 40 and 49 items. Section 4.4 has

shown that, in these situations, using effect size measure leads to better DIF identification.

In particular, we are sure to not mistakenly flag items as DIF, although the correct

identification of DIF items is low. Nevertheless, as said in section 4.3.2, it is more import

to keep false positive inflation low rather than keep correct identification high. Therefore,

we consider only effect size measure to understand DIF results, because it allows to keep

false positive inflation low (close to zero).

Now, we analyze these DIF items more in detail. Tables E2, E3 and E4, in appendix E,

show DIF results in details. In particular, they show group coefficients of the conditional

logistic regressions that allow to assess which group has advantage or not. For the maths

test, scientific presents an advantage for M30 and M31 over classic and linguistic track and

for M30 over artistic and human sciences track. For Italian language test, A4 3 is unfair in

favor of scientific rather than classic and linguistic. Scientific exhibits also some advantage

for E10 over artistic and HS, but for items C3 and C8 fairness changes in favor of artistic

and HS schools. Finally, classic and linguistic track presents disadvantage for A4 1, A4 2,

A4 3 and B3 over artistic and human sciences, while it exhibits some advantage for E3

and E10.

Considering the DIF items content, item M30 involves questions about mathematical

function, while item M31 concerns natural numbers (INVALSI, 2017b). DIF results show

a systematic advantage of scientific schools in these items. For the Italian language test

(INVALSI, 2017a), scientific exhibits advantage in one item (A4 3) of over classic and

linguistic in argumentative text. Poetical text is unfair for two items (C3 and C8) in favor

of artistic and HS rather than scientific, which has an advantage for item E10 in language

knowledge. Finally, argumentative text presents systematic disadvantage (A4 1, A4 2,

A4 1 and B3) for classic and linguistic rather than artistic and HS which, in turn, exhibits

advantage in two items (E3 and E10) about language knowledge.

Table E1, in appendix E, exhibits items format for both tests. There is no pattern for

the maths test due to few items flagged as DIF. Conversely, the Italian language test seems

to show some patterns. Artistic and human sciences schools present advantages about

multiple–choice questions over scientific (C3 and C8) and classic and linguistic (A4 1,

A4 2 and A4 1) schools, but it shows disadvantages in complex multiple–choice questions:

41Applications counts, respectively, 1044, 1025 and 785 pupils.
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E10 over scientific and E3 and E10 over classic and linguistic. Nevertheless, item format

analysis does not lead to a clear evidence and explanation.
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6. Conclusions

Test users and policy makers often direct their public actions from the educational stan-

dardized test results. They usually operate basing on the test total raw scores. This is

possible only assuming that the test is comparable among different groups, but this is not

alway correct. It is possible that the test, or a part of the test, advantages some subgroups

rather than others, therefore it results biased and unfair. Psychometric literature refers

to differential item functioning when you want to detect possible unfair items among

individuals from different groups. In educational context, DIF occurs when individuals

with the ability but allocated into different groups present different probability of success

to the item. Therefore, it is necessary to conduct DIF detection analysis in order to assess

test fairness.

This thesis work has had as first research goal that of assessing the performance of a

new methodology, recently proposed in literature for DIF detection analysis. This new

method, based on a redefinition of biased item, allows to reduce pre–existing differences

among groups. For this first goal, a simulation study has been implemented in which

groups are constructed to be imbalanced with respect to covariates. The simulation study

supports the new methodology in some situations. The assumptions on item difficulty

parameters and test length have no significance impact, while the other manipulated factors

exhibit an impact on DIF methods performances. Although the new methodology performs

similar to traditional DIF detection methods in some situations (no DIF items and small

simple size), it outperforms traditional DIF detection methods in situations where sample

size is large, DIF is present and the DIF size is large. Therefore, we recommend the new

methodology for imbalanced groups both because it presents the best performances and it

allows to attribute DIF to group allocation.

Despite the new methodology presents the best performances, it suffers from high false

alarm rates for large sample size. Therefore, we have integrated simulation study with

an effect size measure for the new methodology. This measure is based on ∆R2, similar

to measure for conventional logistic regression for DIF detection. The simulation results

have suggested that using the proposed effect size measure reduces sensibility the I error

inflation. In addition, the reduction for large samples is close to zero per cent of chance
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to commit this kind of error, but the effect size measure reduces sensibility the correct

identification of DIF items. Nevertheless, this measure is recommended because is more

“dangerous” to mistakenly identify an item as DIF, losing useful information linked to the

item in the analysis.

The second aim of this work has been to assess INVALSI tests, comparing different

academic schools in optic of test fairness. It seems that INVALSI tests present fair items

comparing pupils from different academic tracks. In this context, the INVALSI instrument

is robust, especially for mathematics. Some problems seems to be comparing classical and

linguistic to artistic and human sciences schools for Italian test. However, these results

could be affected by chosen aggregation. In addition, we tried to analyze deeper the few

items identified as DIF. In particular, we proposed a content and format item analysis.

Results exhibited no significant patterns for the second one. Differently, the content analysis

presented significant patterns. Pupils from scientific schools show a systematic advantage

in two items about mathematical function and natural numbers. In addition, poetical text

tend to advantage artistic and human science rather than scientific schools. Argumentative

text presents systematic disadvantage for classic and linguistic rather than artistic and

human science which, in turn, exhibits advantage in two items about language knowledge.

However, very few items are flagged as DIF by the new methodology and we can conclude

that INVALSI tests are fair for pupils from different academic schools.

6.1 Policy implications

The differential item functioning item presence leads consequences for a standardized test.

Traditionally, when an item is flagged as DIF, a qualitative assessment from an expert

equip is required in order to decide the “fate” of DIF item (Ramsey, 1993; Berk, 1982).

The new approach gives a statistical instrument to DIF detection analysis since it allows to

attribute DIF item to group allocation mechanism. Consequently, this new methodology

attributes DIF presence to allocation to one group rather than other, excluding the DIF

sources due to other possible confounding factors. When groups are not random and the

allocation depends on other individual characteristics, this statistical technique is very

useful and it develops possible policy implications. Test users and policy makers should

pay attention to DIF detection analysis when they use and assess standardized test results.
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DIF presence leads two critical issues that test users and policy makers should keep

in mind. On the one hand, traditionally, their evaluations and public decisions (actions)

on standardized tests take place on the basis of raw scores, e.g., the total test scores. As

has already been explained, this could be self-defeating whether some items advantage one

group rather the others. Consequently, policy actions could act in a wrong way, maintaining

social inequalities or even persisting inequalities and aggravating the situation. On the

other hand, understanding DIF sources should help policy makers act: one group could

be systematically disadvantaged in items with particular topic, so policy action should

understand where and why this happens in order to modify the situation. For example,

Le (2009) shows gender DIF in science PISA test 2006 that depends on item formats and

content domains. In particular, males tend to be advantaged on multiple choice and closed

response items and on items about science knowledge. Therefore, test users and policy

makers should act according to these results. Firstly, when they use and interpret test

results they should keep in mind that some items do not measure the same ability. Secondly,

they should promote policies in order to improve future tests and delete unfairness.

Now, we provide two final considerations, linked to results from this work, that allow

to formulate two policy implications. Firstly, our analysis exhibits the fairness for the

majority of items. In other words, INVALSI tests are robust measurement instrument,

comparing pupils from different academic tracks. Therefore, for Italian academic schools,

the administration of the same standardized test on school competences is fair and a robust

instrument to measure school pupils ability. Secondly, the few DIF items have been analysed

by format and content. If the first one does not present interesting results, the second one

does. For example, in mathematics, scientific schools exhibit an advantage in mathematical

function and natural numbers. On the other side, human science schools have advantages

in poetical and argumentative texts with respect to, respectively, scientific and classic and

linguistic, while language texts advantages this last with respect to human sciences. The

Italian educational system differentiates academic schools for different specific teaching

content. Probably, these various specifications transfer to pupils different meanings of

content according to specific school subject. Indeed, we can note that DIF items concern

the specific contents of schools: mathematical function and natural numbers for scientific

schools, poetical and argumentative texts for human science schools and language texts
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for classic and linguistic schools. In conclusion, test takers should be quite satisfied to

INVALSI results among pupils from academic schools. Possible test improvements should

regard the fortification of the teach subjects not specific of the schools in order to make

the test completely fair.

6.2 Limitations and further developments

Now, we consider the limits of our research, useful for possible future developments.

First of all, our simulation strategy are restricted to the assumption that the conditional

dependence between item performance and grouping variable remains constant (uniform

DIF). Nevertheless, the conditional logistic regression allows to detect nonuniform DIF.

Indeed, as said in section 3.3.3, it is possible to detect nonuniform DIF adding the

interaction term between pupils’ total score and grouping variable to models 24, 25 and 26.

We restricted our analysis to uniform DIF because our simulation design allows to generate

only uniform DIF items. In the future a different simulation strategy should be considered

for assessing how the new methodology performs in the presence of nonuniform DIF items.

Our second goal concerned the evaluation of INVALSI tests. The data presents

information on each item with dichotomous variable where 1 refers to correct answer and 0

refers to wrong answer. Despite the nature of INVALSI data, there exists standardized

tests, both in educational field and others, that contain and trait outcome variables with

more than two possible responses (polytomous variables). An algorithm of conditional

logistic regression for polytomous response variable has not been developed yet, so it is

possible apply this methodology only for dichotomous response variables (Liu et al., 2016).

The new methodology is computed for comparing two groups at a time. Therefore,

our simulation study considers only groups with two possible allocations. In addition,

our application involves chosen group aggregation in order to maintain dichotomous

groups. Nevertheless, Svetina and Rutkowski (2014) and Magis at al. (2011) proposed

Generalized Logistic Regression, while Woods et al. (2013) improved version of Lords χ2

Wald test for DIF detection analysis in multiple groups. Finch (2016) assessed Generalized

Mantel-Haenszel test, Generalized Logistic Regression, Lords χ2 test for multiple group,

showing that the first method outperforms the others as an optimal combination of type I

error control and power. Hence, future researches should integrate matching techniques
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to generalized DIF detection methods for multiple groups in order to improve the bias

detection.

Finally, from an applicative point of view, future developments should concern DIF

detection analysis among pupils from, not only academic, but also technical and vocational

schools. In addition, the new methodology helps attribute possible DIF items to particular

secondary school track. Probably, matching will be less precise than matching for academic

tracks because pupils from academic schools are more similar, in term of covariates distri-

bution, than pupils from technical and vocational schools. Nevertheless, this comparison

is very interesting because INVALSI results present systematic performance gap between

academic, technical vocational schools (INVALSI 2017c, 2016). Therefore, an evaluation

of INVALSI instrument validity is fundamental in order to robust the results and make

decision based on the standardized test.
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A. Variables check

Table A1: INVALSI sample: school tracking composition.

N %

Academic 14185 0.44

Technical 10873 0.34

Vocational 7193 0.22

-3 -2 -1 0 1 2

-0.522 0.142 0.806

Figure A1: Box plot of pupils’ ESCS index of INVALSI sample.
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Table A2: INVALSI sample: maths score means and standard deviations by covariates.

Means Standard Deviations

Gender

Male 50.74 23.07

Female 43.13 21.11

Citizen

Italian 47.45 22.56

Not Italian 42.04 20.59

Aspiration

University degree 51.87 22.66

Not University degree 39.64 19.99

Area

North 52.46 21.69

Middle 45.89 22.08

South 40.17 21.69

ESCS

I quartile 42.14 21.28

II quartile 45.79 22.08

III quartile 48.56 22.45

IV quartile 52.77 22.77
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Table A3: Pupils’ ESCS index composition among other variables.

I quartile II quartile III quartile IV quartile

Male Italian HighAspiration North 0.156 0.212 0.255 0.376

Male Italian HighAspiration Middle 0.153 0.210 0.247 0.389

Male Italian HighAspiration South 0.224 0.230 0.247 0.299

Male notItalian HighAspiration North 0.404 0.174 0.230 0.191

Male notItalian HighAspiration Middle 0.368 0.241 0.203 0.188

Male notItalian HighAspiration South 0.373 0.229 0.169 0.229

Male Italian LowAspiration North 0.319 0.282 0.236 0.162

Male Italian LowAspiration Middle 0.348 0.246 0.249 0.156

Male Italian LowAspiration South 0.449 0.256 0.191 0.104

Male notItalian LowAspiration North 0.503 0.245 0.156 0.095

Male notItalian LowAspiration Middle 0.537 0.245 0.116 0.102

Male notItalian LowAspiration South 0.534 0.329 0.091 0.045

Female Italian HighAspiration North 0.198 0.250 0.263 0.288

Female Italian HighAspiration Middle 0.187 0.211 0.277 0.325

Female Italian HighAspiration South 0.269 0.247 0.211 0.272

Female notItalian HighAspiration North 0.499 0.218 0.144 0.140

Female notItalian HighAspiration Middle 0.494 0.196 0.190 0.119

Female notItalian HighAspiration South 0.429 0.248 0.143 0.181

Female Italian LowAspiration North 0.342 0.286 0.230 0.142

Female Italian LowAspiration Middle 0.372 0.265 0.212 0.151

Female Italian LowAspiration South 0.524 0.265 0.212 0.151

Female notItalian LowAspiration North 0.593 0.217 0.147 0.043

Female notItalian LowAspiration Middle 0.572 0.221 0.137 0.069

Female notItalian LowAspiration South 0.061 0.167 0.167 0.061
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Table A4: Composition of pupils’ ESCS index among other variables (INVALSI sample).

I quantile II quantile III quantile IV quantile

Gender

Male (%) 0.29 0.24 0.23 0.24

Female (%) 0.30 0.25 0.22 0.23

Citizen

Italian (%) 0.28 0.25 0.23 0.24

Not Italian (%) 0.50 0.22 0.16 0.12

Aspiration

University degree (%) 0.22 0.23 0.24 0.30

Not University degree (%) 0.41 0.26 0.20 0.13

Area

North (%) 0.26 0.25 0.24 0.25

Middle (%) 0.28 0.23 0.24 0.25

South (%) 0.34 0.25 0.20 0.21

Table A5: Composition of pupils’ ESCS index among other variables (simulation N=500).

I quantile II quantile III quantile IV quantile

Gender

Male (%) 0.27 0.24 0.23 0.26

Female (%) 0.28 0.25 0.22 0.25

Citizen

Italian (%) 0.26 0.25 0.23 0.26

Not Italian (%) 0.37 0.27 0.16 0.20

Aspiration

University degree (%) 0.21 0.23 0.25 0.31

Not University degree (%) 0.37 0.26 0.19 0.16

Area

North (%) 0.24 0.26 0.23 0.27

Middle (%) 0.25 0.23 0.25 0.27

South (%) 0.33 0.25 0.20 0.22
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Table A6: Composition of pupils’ ESCS index among other variables (simulation N=1000).

I quantile II quantile III quantile IV quantile

Gender

Male (%) 0.28 0.24 0.23 0.25

Female (%) 0.29 0.25 0.22 0.24

Citizen

Italian (%) 0.27 0.25 0.23 0.25

Not Italian (%) 0.44 0.23 0.16 0.17

Aspiration

University degree (%) 0.22 0.23 0.25 0.30

Not University degree (%) 0.39 0.27 0.19 0.15

Area

North (%) 0.25 0.25 0.24 0.26

Middle (%) 0.28 0.22 0.24 0.26

South (%) 0.33 0.25 0.20 0.22

Table A7: Composition of pupils’ ESCS index among other variables (simulation N=2000).

I quantile II quantile III quantile IV quantile

Gender

Male (%) 0.28 0.25 0.22 0.25

Female (%) 0.30 0.25 0.22 0.23

Citizen

Italian (%) 0.27 0.25 0.23 0.25

Not Italian (%) 0.47 0.23 0.15 0.15

Aspiration

University degree (%) 0.22 0.23 0.24 0.31

Not University degree (%) 0.39 0.27 0.20 0.14

Area

North (%) 0.26 0.25 0.24 0.25

Middle (%) 0.29 0.23 0.23 0.25

South (%) 0.33 0.25 0.21 0.21
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B. Propensity score matching for simulations
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Figure B1: Propensity score distributions before and after matching using greedy matching (N=500).
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Figure B2: Propensity score distributions before and after matching using full matching (N=500).
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Figure B3: Propensity score distributions before and after matching using greedy matching (N=1000).
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Figure B4: Propensity score distributions before and after matching using full matching (N=1000).
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Figure B5: Propensity score distributions before and after matching using greedy matching (N=2000).
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Figure B6: Propensity score distributions before and after matching using full matching (N=2000).
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B. Propensity score matching for simulations
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B. Propensity score matching for simulations
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B. Propensity score matching for simulations
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B. Propensity score matching for simulations
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B. Propensity score matching for simulations
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C. Simulation results β ∼ N(0, 1)

C. Simulation results β ∼ N(0, 1)

Table C1: False alarm rates of DIF methods: no biased items.

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.056 0.070 0.060 0.055

J=40 0.043 0.057 0.044 0.040

J=60 0.052 0.052 0.040 0.035

N=1000

J=20 0.048 0.065 0.062 0.055

J=40 0.050 0.053 0.050 0.040

J=60 0.050 0.049 0.044 0.033

N=2000

J=20 0.056 0.073 0.059 0.053

J=40 0.048 0.056 0.050 0.041

J=60 0.048 0.049 0.041 0.034
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C. Simulation results β ∼ N(0, 1)

Table C2: False alarm rates of DIF methods: 10% biased items and δ=0.4.

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.064 0.074 0.057 0.050

J=40 0.058 0.059 0.045 0.044

J=60 0.055 0.058 0.044 0.038

N=1000

J=20 0.057 0.062 0.051 0.038

J=40 0.054 0.056 0.051 0.040

J=60 0.053 0.055 0.049 0.038

N=2000

J=20 0.049 0.068 0.056 0.038

J=40 0.047 0.066 0.057 0.040

J=60 0.048 0.059 0.056 0.043
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C. Simulation results β ∼ N(0, 1)

Table C3: False alarm rates of DIF methods: 10% biased items and δ=0.8.

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.069 0.082 0.056 0.045

J=40 0.065 0.070 0.051 0.050

J=60 0.063 0.071 0.051 0.045

N=1000

J=20 0.072 0.077 0.067 0.056

J=40 0.064 0.076 0.067 0.060

J=60 0.061 0.073 0.075 0.061

N=2000

J=20 0.079 0.099 0.103 0.079

J=40 0.069 0.099 0.099 0.080

J=60 0.080 0.091 0.095 0.078
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C. Simulation results β ∼ N(0, 1)

Table C4: False alarm rates of DIF methods: 20% biased items and δ=0.4.

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.068 0.080 0.061 0.051

J=40 0.068 0.074 0.052 0.050

J=60 0.062 0.070 0.052 0.045

N=1000

J=20 0.069 0.080 0.067 0.054

J=40 0.066 0.076 0.072 0.061

J=60 0.062 0.071 0.071 0.062

N=2000

J=20 0.077 0.106 0.110 0.076

J=40 0.071 0.101 0.101 0.078

J=60 0.082 0.091 0.099 0.078
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C. Simulation results β ∼ N(0, 1)

Table C5: False alarm rates of DIF methods: 20% biased items and δ=0.8.

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.101 0.131 0.102 0.088

J=40 0.095 0.119 0.084 0.087

J=60 0.092 0.117 0.084 0.083

N=1000

J=20 0.113 0.155 0.149 0.124

J=40 0.107 0.144 0.152 0.139

J=60 0.113 0.139 0.147 0.139

N=2000

J=20 0.177 0.276 0.302 0.269

J=40 0.159 0.240 0.267 0.249

J=60 0.161 0.246 0.285 0.269
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C. Simulation results β ∼ N(0, 1)

Table C6: Power rates of DIF methods: 10% biased items and δ=0.4.

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.250 0.410 0.355 0.315

J=40 0.210 0.342 0.302 0.285

J=60 0.248 0.368 0.325 0.303

N=1000

J=20 0.395 0.535 0.665 0.630

J=40 0.347 0.485 0.587 0.545

J=60 0.377 0.530 0.610 0.582

N=2000

J=20 0.630 0.895 0.895 0.910

J=40 0.572 0.830 0.842 0.865

J=60 0.532 0.843 0.838 0.886
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C. Simulation results β ∼ N(0, 1)

Table C7: Power rates of DIF methods: 10% biased items and δ=0.8.

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.680 0.930 0.900 0.885

J=40 0.657 0.875 0.837 0.885

J=60 0.673 0.880 0.828 0.853

N=1000

J=20 0.890 1.000 0.995 1.000

J=40 0.865 0.977 0.992 0.995

J=60 0.865 0.977 0.982 0.982

N=2000

J=20 0.995 1.000 0.950 1.000

J=40 0.985 1.000 0.945 1.000

J=60 0.977 0.998 0.923 1.000
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C. Simulation results β ∼ N(0, 1)

Table C8: Power rates of DIF methods: 20% biased items and δ=0.4.

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.210 0.350 0.312 0.277

J=40 0.202 0.299 0.346 0.234

J=60 0.203 0.297 0.237 0.252

N=1000

J=20 0.302 0.500 0.570 0.532

J=40 0.305 0.415 0.487 0.484

J=60 0.297 0.438 0.508 0.477

N=2000

J=20 0.477 0.795 0.785 0.822

J=40 0.484 0.726 0.795 0.766

J=60 0.467 0.738 0.768 0.782
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C. Simulation results β ∼ N(0, 1)

Table C9: Power rates of DIF methods: 20% biased items and δ=0.8.

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.595 0.852 0.812 0.797

J=40 0.565 0.811 0.750 0.761

J=60 0.584 0.809 0.743 0.769

N=1000

J=20 0.830 0.960 0.985 0.980

J=40 0.806 0.945 0.957 0.964

J=60 0.801 0.952 0.956 0.968

N=2000

J=20 0.975 1.000 0.915 1.000

J=40 0.940 0.995 0.897 0.998

J=60 0.951 0.997 0.882 0.998
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D. Simulation results β ∼ U(−2,+2)

D. Simulation results β ∼ U(−2,+2)
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Figure D1: False alarm rates of DIF methods: no biased items β ∼ U(−2,+2).
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D. Simulation results β ∼ U(−2,+2)

500 1000 2000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

J=20

Sample size

F
al

se
al

ar
m

ra
te

s

CLogistic
Logistic
MH
Lord’s χ2

500 1000 2000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

J=40

Sample size

F
al

se
al

ar
m

ra
te

s

CLogistic
Logistic
MH
Lord’s χ2

500 1000 2000

0.00

0.05

0.10

0.15

0.20

0.25

0.30

J=60

Sample size

F
al

se
al

ar
m

ra
te

s

CLogistic
Logistic
MH
Lord’s χ2

Figure D2: False alarm rates of DIF methods: 10% biased items and δ=0.4 β ∼ U(−2,+2).
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D. Simulation results β ∼ U(−2,+2)
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Figure D3: False alarm rates of DIF methods: 10% biased items and δ=0.8 β ∼ U(−2,+2).
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D. Simulation results β ∼ U(−2,+2)
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Figure D4: False alarm rates of DIF methods: 20% biased items and δ=0.4 β ∼ U(−2,+2).
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Figure D5: False alarm rates of DIF methods: 20% biased items and δ=0.8 β ∼ U(−2,+2).
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D. Simulation results β ∼ U(−2,+2)

Table D1: False alarm rates of DIF methods: no biased items β ∼ U(−2,+2).

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.050 0.075 0.062 0.057

J=40 0.049 0.056 0.045 0.039

J=60 0.050 0.055 0.039 0.033

N=1000

J=20 0.058 0.076 0.069 0.060

J=40 0.049 0.050 0.045 0.037

J=60 0.050 0.052 0.043 0.035

N=2000

J=20 0.056 0.071 0.069 0.057

J=40 0.047 0.056 0.047 0.038

J=60 0.048 0.045 0.041 0.031
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D. Simulation results β ∼ U(−2,+2)

Table D2: False alarm rates of DIF methods: 10% biased items and δ=0.4 β ∼ U(−2,+2).

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.049 0.069 0.055 0.048

J=40 0.051 0.061 0.043 0.039

J=60 0.055 0.060 0.045 0.037

N=1000

J=20 0.064 0.076 0.059 0.048

J=40 0.055 0.052 0.045 0.034

J=60 0.055 0.062 0.053 0.040

N=2000

J=20 0.056 0.073 0.064 0.043

J=40 0.054 0.069 0.060 0.044

J=60 0.053 0.058 0.050 0.031
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D. Simulation results β ∼ U(−2,+2)

Table D3: False alarm rates of DIF methods: 10% biased items and δ=0.8 β ∼ U(−2,+2).

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.054 0.074 0.053 0.047

J=40 0.061 0.068 0.049 0.046

J=60 0.062 0.072 0.048 0.049

N=1000

J=20 0.073 0.099 0.081 0.063

J=40 0.066 0.074 0.059 0.049

J=60 0.065 0.089 0.072 0.060

N=2000

J=20 0.076 0.125 0.107 0.081

J=40 0.078 0.116 0.101 0.081

J=60 0.074 0.102 0.085 0.074
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D. Simulation results β ∼ U(−2,+2)

Table D4: False alarm rates of DIF methods: 20% biased items and δ=0.4 β ∼ U(−2,+2).

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.060 0.085 0.066 0.060

J=40 0.063 0.069 0.047 0.048

J=60 0.061 0.072 0.049 0.048

N=1000

J=20 0.072 0.099 0.074 0.067

J=40 0.069 0.073 0.059 0.050

J=60 0.066 0.090 0.073 0.061

N=2000

J=20 0.076 0.114 0.099 0.082

J=40 0.078 0.117 0.105 0.086

J=60 0.076 0.106 0.093 0.077
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D. Simulation results β ∼ U(−2,+2)

Table D5: False alarm rates of DIF methods: 20% biased items and δ=0.8 β ∼ U(−2,+2).

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.089 0.134 0.103 0.094

J=40 0.088 0.110 0.077 0.083

J=60 0.091 0.119 0.081 0.088

N=1000

J=20 0.109 0.194 0.156 0.129

J=40 0.122 0.176 0.146 0.132

J=60 0.109 0.178 0.143 0.138

N=2000

J=20 0.167 0.310 0.280 0.245

J=40 0.158 0.298 0.272 0.247

J=60 0.163 0.298 0.266 0.250
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D. Simulation results β ∼ U(−2,+2)
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Figure D6: Power of DIF methods: 10% biased items and δ=0.4 β ∼ U(−2,+2).
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D. Simulation results β ∼ U(−2,+2)
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Figure D7: Power of DIF methods: 10% biased items and δ=0.8 β ∼ U(−2,+2).
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D. Simulation results β ∼ U(−2,+2)
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Figure D8: Power of DIF methods: 20% biased items and δ=0.4 β ∼ U(−2,+2).
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D. Simulation results β ∼ U(−2,+2)
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Figure D9: Power of DIF methods: 20% biased items and δ=0.8 β ∼ U(−2,+2).
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D. Simulation results β ∼ U(−2,+2)

Table D6: Power of DIF methods: 10% biased items and δ=0.4 β ∼ U(−2,+2).

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.265 0.385 0.335 0.305

J=40 0.235 0.315 0.270 0.245

J=60 0.212 0.345 0.275 0.221

N=1000

J=20 0.370 0.645 0.625 0.575

J=40 0.357 0.655 0.625 0.595

J=60 0.340 0.593 0.560 0.548

N=2000

J=20 0.570 0.915 0.910 0.865

J=40 0.557 0.885 0.872 0.832

J=60 0.518 0.890 0.870 0.862
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D. Simulation results β ∼ U(−2,+2)

Table D7: Power of DIF methods: 10% biased items and δ=0.8 β ∼ U(−2,+2).

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.650 0.870 0.865 0.825

J=40 0.597 0.827 0.780 0.792

J=60 0.682 0.882 0.818 0.852

N=1000

J=20 0.860 0.990 0.990 0.990

J=40 0.862 0.987 0.982 0.982

J=60 0.878 0.985 0.983 0.987

N=2000

J=20 0.990 1.000 1.000 1.000

J=40 0.977 1.000 0.997 1.000

J=60 0.982 1.000 1.000 1.000
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D. Simulation results β ∼ U(−2,+2)

Table D8: Power of DIF methods: 20% biased items and δ=0.4 β ∼ U(−2,+2).

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.207 0.302 0.267 0.235

J=40 0.186 0.276 0.231 0.221

J=60 0.196 0.296 0.283 0.226

N=1000

J=20 0.315 0.542 0.532 0.482

J=40 0.257 0.529 0.490 0.469

J=60 0.290 0.527 0.498 0.472

N=2000

J=20 0.467 0.842 0.825 0.770

J=40 0.459 0.795 0.779 0.759

J=60 0.460 0.817 0.762 0.785
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D. Simulation results β ∼ U(−2,+2)

Table D9: Power of DIF methods: 20% biased items and δ=0.8 β ∼ U(−2,+2).

CLogistic Logistic MH Lord’s χ2

N=500

J=20 0.597 0.822 0.790 0.762

J=40 0.527 0.737 0.680 0.691

J=60 0.559 0.792 0.712 0.752

N=1000

J=20 0.772 0.975 0.975 0.970

J=40 0.772 0.965 0.955 0.960

J=60 0.748 0.972 0.962 0.964

N=2000

J=20 0.967 1.000 1.000 1.000

J=40 0.944 0.999 0.999 0.999

J=60 0.962 0.999 0.999 0.999
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D. Simulation results β ∼ U(−2,+2)
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E. DIF results

E. DIF results

Table E1: Items format of maths and Italian language INVALSI tests
2016/2017.

Item Format Item Format Item Format Item Format

M1 MC M2 CMC M3 MC M4a CMC

M4b OE M5 MC M6 OE M7 MC

M8 OE M9 OE M10 MC M11 CMC

M12 OE M13 OE M14a OE M14b OE

M14c OE M15 Cloze M16a OE M16b OE

M16c OE M17 OE M18 MC M19 MC

M20a OE M20b OE M21 MC M22 MC

M23 MC M24 MC M25 MC M26a OE

M26b MC M27 CMC M28 MC M29a OE

M29b OE M30 CMC M31 CMC M32 OE

A1 MC A2 Cloze A3 CMC A4 1 MC

A4 2 MC A4 3 MC A4 4 MC A4 5 MC

A4 6 MC A5 MC B1 CMC B2 OE

B3 OE B4 MC B5 OE B6 MC

B7 MC B8 OE B9 MC B10 MC

C1 MC C2 MC C3 MC C4 MC

C5 MC C6 MC C7 MC C8 MC

C9 OE C10 MC D1 OE D2 MC

D3 OE D4 OE D5 OE D6 MC

D7 MC D8 MC D9 MC E1 OE

E2 MC E3 CMC E4 MC E5 CMC

E6 MC E7 CMC E8 MC E9 MC

E10 CMC

MC=multiple–choice questions with four possible choices, CMC=complex

multiple–choice and OE=open–ended.
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Guill, Karin, Oliver Lüdtke, and Olaf Köller (2017). “Academic tracking is related to gains

in students’ intelligence over four years: Evidence from a propensity score matching

study”. In: Learning and instruction 47, pp. 43–52.

Hanushek, Eric A (2006). “Does educational tracking affect performance and inequal-

ity? Differences-in-differences evidence across countries”. In: The Economic Journal

116(510).

Heckman, James J and Richard Robb (1986). “Alternative methods for solving the problem

of selection bias in evaluating the impact of treatments on outcomes”. In: Drawing

inferences from self-selected samples. Springer, pp. 63–107.
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Magis, David, Gilles Râıche, Sébastien Béland, and Paul Gérard (2011). “A generalized

logistic regression procedure to detect differential item functioning among multiple

groups”. In: International Journal of Testing 11(4), pp. 365–386.

180



References

Magis, David, Francis Tuerlinckx, and Paul De Boeck (2015). “Detection of differential

item functioning using the lasso approach”. In: Journal of Educational and Behavioral

Statistics 40(2), pp. 111–135.
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Özdemir, Burhanettin (2015). “A comparison of IRT-based methods for examining differ-

ential item functioning in TIMSS 2011 mathematics subtest”. In: Procedia-Social and

Behavioral Sciences 174, pp. 2075–2083.

Panichella, Nazareno and Moris Triventi (2014). “Social inequalities in the choice of

secondary school: Long-term trends during educational expansion and reforms in Italy”.

In: European Societies 16(5), pp. 666–693.

Pellizzari, Michele (2018). Propensity Score: Proofs of the Balancing Property and of Uncon-

foundedness. url: file:///C:/Users/bazoli/Downloads/PROPENSITYSCORE20101004152830%

5C%20(1).PDF (visited on 12/21/2018).

Penfield, Randall D and Gregory Camilli (2006). “5 Differential Item Functioning and Item

Bias”. In: Handbook of statistics 26, pp. 125–167.

Raju, Nambury S (1988). “The area between two item characteristic curves”. In: Psy-

chometrika 53(4), pp. 495–502.

Raju, Nambury S, Fritz Drasgow, and Jeffrey Slinde (1993). “An empirical comparison

of the area methods, Lord’s chi-square test, and the Mantel-Haenszel technique for

assessing differential item functioning”. In: Educational and psychological measurement

53(2), pp. 301–314.

Ramsey, Paul A (1993). “Sensitivity review: The ETS experience as a case study”. In:

Differential item functioning, pp. 367–388.

Rasch, Georg (1960). “Probabilistic models for some intelligence and achievement tests”.

In: Copenhagen: Danish Institute for Educational Research.

Raudenbush, Stephen W and Anthony S Bryk (2002). Hierarchical linear models: Applica-

tions and data analysis methods. Vol. 1. Sage.

182



References

Ricci, Roberto (2010). “The Economic, Social, and Cultural Background: a continuous

index for the Italian Students of the fifth grade”. In: Atti Convegno SIS-Società Italiana
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